1366ngaq ogny

pIno) SIS

User’s Guide

Borland

Turbo Debugger

User’s Guide

Borland®
Turbo Debugger”

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001 -

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COoPYRIGHT © 1988, 1994 Borland International. Al rights reserved. All Borland product names are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.
1EO0R1094

9495969798987 65432
Hi1

Contents

Introduction 1

New features and changes for version 4.x

Typographic and icon conventions

Usingthismanual
Wheretonow?

First-time Turbo Debugger users 5
Experienced Turbo Debugger users. 5
Software registration and technical support . . .6
Chapter 1
Installing and configuring
Turbo Debugger 7
Installing Turbo Debugger 7
Configuring Turbo Debugger. 7
Turbo Debugger’s configuration files 8
Searching for configuration files. 8
Setting up the videoDLLs. 9
Dual-monitor debugging 9
The Optionsmenu 9
The Language command 10
Display Options command. 10
Display Swapping 10
IntegerFormat 11
ScreenLines. 11
TabSize, 11
Background Delay. 11
User ScreenDelay 11
Path for Sourcecommand 11
Save Optionscommand. 12
Restore Options command 12
Debugging ObjectWindows 1.0 programs . . . 12
Files installed with Turbo Debugger. 12
Turbo Debugger’s executable and
supportfiles. 13
Turbo Debugger’s utilities. 13
Specifying utility command-line options. . . 14
Turbo Debugger’s online text files. 14
Turbo Debugger’s example program 15
Chapter 2
Starting Turbo Debugger and
running your program 17

Preparing programs for debugging 17

Compiling from the integrated

environment. 18
Compiling from the command line 18
Starting Turbo Debugger 18
Specifying Turbo Debugger’s command-line
options. L. 19
Setting command-line options with
Turbo Debugger’s icon properties 19
Setting command-line options from
Borland’s C++ integrated environment . . . 20
Running Turbo Debugger 20
Loading your program into the debugger . . . 20
Searching for sourcecode. 22
Specifying program arguments 22
Restarting a debugging session 22
Controlling program execution. 23
TheRunmenu 24
Run........ 24
GotoCursor. 24
TraceInto 24
StepOver 25
ExecuteTo. 25
UntilReturn. 25
Animate 25
BackTrace. 26
Instruction Trace 26
Arguments. L. 26
ProgramReset. 26
Next Pending Status 27
WaitforChild. 27
Interrupting program execution 27
Stopping in Windowscode. 28
Reverseexecution. 28
The Execution History window
SpeedMenu 29
Inspect 29
Reverse Execute 29
FullHistory 29
The Keystroke Recording pane 29
The Keystroke Recording pane
SpeedMenu 30
Inspect e 30
Keystroke Restore. 30
Program termination. 30
Resetting your program. 30
Exiting Turbo Debugger. 31
Chapter 3
Debugging with Turbo Debugger 33
Debuggingbasics 33

Discoveringabug 33
Isolatingthebug 34
Findingthebug. 34
Fixingthebug. 34
What Turbo Debugger can do foryou 35
Turbo Debugger’s user interface. 35
Working withmenus 35
Working withwindows 36
Selectingawindow 36
Usingwindow panes 36
Moving and resizing windows. 36
Closing and recovering windows 37
SpeedMenus. 37
Turbo Debugger’'s windows 37
The View menu’s windows. 37
Breakpoints window 37
Stackwindow. 38
Logwindow 38
Watcheswindow. 38
Variableswindow 38
Modulewindow 38
Filewindow. 39
CPUwindow 39
Dumpwindow.
Registerswindow 39
Numeric Processor window 39
Execution History window. 39
Hierarchy window. 40
Windows Messages window. 40
Clipboard window. 40
Duplicatingwindows 40
Otherwindows 40
Inspector windows. 40
Userscreen 41
Turbo Debugger’s special features. 41
Automatic name completion 41
Selectbytyping. 42
Incremental matching 42
Keyboard macros. 42
The Macrosmenu 42
Create 42
Stop Recording. 43
Remove 43
Delete Al 43
The Clipboard. 43
The Pick dialogbox 43
The Clipboard window 44
The Clipboard window SpeedMenu 45
Dynamicupdating. 45
The GetInfotextbox. 45
The Attachcommand 46
The OSShellcommand 47
Gettinghelp. 48
Onlinehelp 48

ii

The status line

Chapter 4
Debugging a simple example

The Simple Paint program.
Running Simple Paint.
Compiling TDWDEMO
Comipiling TDWDEMO using DOS
commands L
Compiling TDWDEMO using the IDE
Debugging TDWDEMO
Running the buggy program.
Stepping through program code
Fixingabug.
Fixing warnings
Stepping into the méssage loop
Setting breakpoints
Creating a conditional breakpoint
Setting watches and inspecting data
structures
Setting watches
Running to the cursor location
Inspecting compound data structures.
Producing the bug in Turbo Debugger.
Resetting the program.
Changing the values of variables

Chapter 5
Setting and using breakpoints
Breakpoints defined

Breakpoint locations.
Breakpoint conditions.
Breakpoint actions
The Breakpoints window
The Breakpoints window SpeedMenu
Breakpoint types
Setting simple breakpoints
Setting expression-true breakpoints
Setting changed-memory breakpoints
Setting global breakpoints
Global breakpoint shortcuts
Setting hardware breakpoints
Breakpoint actions
Break.
Execute
Log
Enable group
Disablegroup.
Setting breakpoint conditions and actions . . .
Creating breakpoint condition sets
Creating breakpoint action sets
Multiple condition and action sets

The scope of breakpoint expressions 77

Breakpointgroups 77
Creating breakpoint groups. 78
Deleting breakpoint groups. 78
Enabling and disabling breakpoint groups. . . 79

Navigating to a breakpoint location. 79

Enabling and disabling breakpoints. 79

Removingbreakpoints. 79

Setting breakpoints on C++ templates 80

Setting breakpoints on threads 80

TheTogwindow . 81
The Log window SpeedMenu 81

OpenlogkFile. 82
CloseLogFile. 82
Logging 82
AddComment. 82
EraseLog 82
Display WindowsInfo 82

Chapter 6

Examining and modifying data 83

The Watcheswindow 83
Creatingwatches 84
The Watches window SpeedMenu 85

Watch 85
Edit. 85
Remove 85
Delete Al 85
Inspect. 85
Change 85

The Variables window. 86

The Variable window SpeedMenus 86
Inspect. 86
Change 87
Watch 8
Show. 87

Viewing variables from the Stack window . . . 87

Inspectorwindows 87
Opening Inspector windows 88
Scalar Inspector windows 88
Pointer Inspector windows 89
Structure and Union Inspector windows 90
Array Inspector windows. 90
Function Inspector windows 91
The Inspector window SpeedMenu 91

Range 91
Change 91
Inspect. 91
Descend. 92
New Expression 92
TypeCast. 92
The Stackwindow 92

The Stack window SpeedMenu 93
Inspect 93
Locals. 93
The Evaluate/Modify command. 93
Function Returncommand 95
Chapter 7
Evaluating expressions 97
Turbo Debugger’s expression evaluator. 97
Selecting anevaluator. 97
Expression limitations. 98
Typesof expressions 98
Specifying hexadecimal values 98
Specifying memory addresses. 99
Entering line numbers. 99
Entering bytelists 99
Callingroutines 100
Expressions with side effects 100
Format specifiers 100
Accessing symbols outside the current
SCOPE. « v v v e 101
How Turbo Debugger searches for
symbols 101
Implied scope for expression evaluation. . . .102
Scope overridesyntax. 102
Overriding scope in C, C++, and
assembler programs 102
Scope override examples using C. 103
Overriding scope in Pascal programs 104
Scope override examples using Pascal . . .104
ScopeandDLLs 105
Chapter 8
Examining disk files 107
Examining program source files 107
Loading sourcefiles. 108
The Module window SpeedMenu 109
Inspect 109
Watch. 109
Thread 109
Module 109
File. 110
Previous 110
Line........... 110
Search. 110
Next........... 110
Origin. 110
Goto. 111
Edit 111
Exceptions 111
Examining other disk files. 111

The File window SpeedMenu 112

Goto 112 The Selector pane SpeedMenu 126

Search 112 Selector L. 126

Next 113 Examine. 126

?ilsplay As oo ﬂg The Dumpwindow. 126

ile. ... ; i -

Bdit T 113 The Registerswindow 127
Chapter 9 ; \Cljvlilnaggvrslgebugging features 129
Assembly-level debugging 115 bt

. Monitoring window messages 129
The CPUwindow. 115 Specifvi indow t 6 130
Opening the CPU window 116 pecifying a window to monitor
pening the S d d 131
The Code pane e 117 pecifying a window procedure
Displ p 4 117 Specifying a window handle 131
Séfgnagy;)l;gasﬁ);.ii 50 SRR AR 118 Deleting window selections. 131
"""""""" Specifying the messages to track132
TheGCf:de pane SpeedMenu . . R ﬁg Specifying a message class to track 132
OO. O Specifying the message action. 133
rigin o 118 .
F , Breakingonmessages 133
ollow.......... 118 Logei 134
Caller. oo 118 Do%g‘.“g messages s andaction
Previous. 118 eleting message class and action
settings. 134

Search 118 M trackine ti 134

View Source 119 €SSABEMACKINGUPS - - - -« - e e

Mixed 119 Debugging dynamic-link libraries 135

Thread. 119 SteppingintoDLLcode. 135

OSExceptions 119 Returning fromaDLL. 135

NewEIP. 120 Accessing DLLs and source-code modules . .136

Assemble 120 Changing sourcemodules 136

/O oo 120 Changing executablefiles. 136

The Registerspane 120 Adding DLLs to the DLLs & Programs
The Regj_sters pane SpeedMenu 121 Bist. 137

Incrementvoviii 121 SteppingoverDLLs. 137

Decrement 121 Debugging DLL startupcode 138

Zero . 121 Debugging multithreaded programs 139

Change 121 The Threads Information pane 139

Registers 32-bit. 121 The Threads Listpane. 139

TheFlagspane 121 Threads List pane SpeedMenu. 140
The Flags pane SpeedMenu 122 Options. 140
TheDumppane. 122 Makecurrent. 140
The Dump pane SpeedMenu. 122 INSPECt © .+ v v oo et 141

Goto......... 123 Allthreadso .. 141

Search 123 Step . v v i 141

Next.......... 123 The Threads Detailpane 141

ghl‘imge """""""""""" 123 Tracking operating-system exceptions 142

OLOW - wve e z Specifying user-defined exceptions. 143

Previous. 123 .. .

Display AS . . .\ 124 Obtaining memory and module lists 143

Block .« o o o 124 Listing the contents of the globalheap 144

The Stackpane 124 Listing the contents of the localheap 145
The Stack pane SpeedMenu 125 Listing the Windows modules. 145

GOto . v 125 Converting memory handles to addresses . . 146

OHgIn . . o ooee e 125

FOlOW . « ot vveeeeeeee e 125 Chapter 11

gr}f:;gels -------------------- gg Debugging object-oriented programs 147

The Selectorpane. 125 TheHierarchy window 147

iv

The Classespane 148

The Classes pane SpeedMenu 148
Inspect. 148
Tree 148
The Hierarchy pane 148
The Hierarchy pane SpeedMenu 148
Inspect., 148
Parents. 149
The Parentspane 149
The Parent pane SpeedMenu. 149
Class Inspector windows 149
The Class Inspector window SpeedMenus . . 150
Inspect. 150
Hierarchy 150
Show Inherited. 150
Object Inspector windows. 150
The Object Inspector window
SpeedMenus. 151
Range 151
Change 151
Methods. 151
Show Inherited. 151
Inspect. 152
Descend. 152
New Expression 152
TypeCast. 152
Hierarchy 152
Exceptions, 152
C++exceptionhandling. 153
Cexceptionhandling 153
Chapter 12
Debugging TSRs and device drivers 155
What'saTSR?. 155
DebuggingaTSR. 156
What'sadevicedriver? 158
Debugging a devicedriver 158
Appendix A
Command-line options 161
Command-line option details. 161
Attaching to a running process. 162
Loading a specific configuration file (—) . . . 162
Display updating (-d options) 162
Getting help (<h and -? options) 163

Session restart modes (—j options) 163

Keystroke recording (k) 163
Assembler-mode startup (-1). 163
Mouse support (disabling/enabling). 163
Remote debugging (-roptions) 163
Source code handling (—s options). 164
Starting directory (-t) 164
Video hardware handling (-v options). 164
Windows crash message checking (-wc). . . .164
Windows DLL checking (-wd) 165
Command-line option summary 165
Appendix B
PP .
Remote debugging 167
Hardware and software requirements. 167
Starting the remote debugging session 168
Setting up the remote system 168
Configuring and starting WREMOTE 168
Serial configuration 169
LAN configuration. 169
Saving the communication settings 170
Starting WREMOTE 170
WREMOTE command-line options 170
Starting and configuring TDW 171
Serial configuration 171
LAN configuration. 171
Initiating the remotelink 172
Automatic file transfer. 172
TDW’s remote debugging command-line
options 173
Local and remote system names 173
Remote DOS debugging. 174
Differences between TDREMOTE and
WREMOTE. 174
Transferring files to the remote system. 175
Troubleshooting. 175
Appendix C
Turbo Debugger error messages 177
TD, TDW, and TD32 messages 177
Statusmessages 187
TDREMOTE messages. 188
WREMOTE messages 189
Index 191

Tables

Turbo Debugger’s executable and

supportfiles 13
Turbo Debugger’s utilities. 13
Turbo Debugger’s onlinefiles 14

Turbo Debugger’s example program

files N 15
Turbo Debugger programs 18
Starting Turbo Debugger 19
Turbo Debugger’s debugging functions . . . 35
Clipboard item types. 44
TDW’s System Information textbox. 46
Windows NT System Information

textbox........ L L. 46
Breakpointtypes 69
Evaluate/ Modify dialog box fields . . .". . . 94
Hexadecimal notation 99
Segment:Offset address notation. 9
Bytelists 100
Expression format specifiers 101

CPUwindow panes. 116
CPU window positioning 117
Mixed command options. 119
I/Ocommands. 120
TheCPUFlags. 121
Follow command options 123
Display As command options. 124
Block command options 124
Windows Messages window panes 130
Format of a global heaplist 144
Formatof alocalheap list 145

Format of a Windows module list
Turbo Debugger’s command-line
options. 165

WREMOTE command-line options 170
TDW’s remote debugging command-line

options. 173
TDREMOTE command-line options. 174

Figures

The Display Options dialogbox 10
The Load a New Program to Debug

dialogbox 21
The Enter Program Name to Load

dialogbox 21
The Set Restart Options dialogbox 23
The Execution History window 28
The Pick dialogbox. 43
The Clipboard window 44
The GetInfotextbox. 45
The Attach to and Debug a Running

Process dialogbox 47
The normal statusline 48
The status line with Al pressed.. 49
The status line with Ctrl pressed 49

TDWDEMO loaded into Turbo Debugger. . 55
Breakpoints window with a

conditional breakpoint. 60
Inspector and Watches windows 63
The Breakpoints window 68
The Breakpoint Options dialogbox 71
The Conditions and Actions dialog box. . . . 71

The Edit Breakpoint Groups dialogbox . . . 78

TheLogwindow 81
The Watcheswindow 84
The Variables window. 86
A C scalar Inspector window. 89
A C pointer Inspector window. 89

11.1
112
11.3
114

B.1

A C Structure and Union Inspector window .90
A Carray Inspectorwindow 90
A C function Inspector window. 91
The Stackwindow. 93
The Evaluate/Modify dialogbox. 94
The Modulewindow 107
TheFilewindow. 111
The File window showing hex data 112
TheCPUwindow 116
TheDumpwindow. 126
The Registerswindow 127
The Windows Messages window. 130
The Set Message Filter dialogbox. 132
The Load Module Source or DLL

Symbols dialogbox 136
The Threadswindow 139
The Thread Options dialogbox. 140
The Specify Exception Handling

dialogbox. 142
TDWs Windows Information

dialogbhox. 144
The Hierarchy window. 147
A Class Inspector window 149
An Object Inspector window 151
The Specify C and C++ Exception

Handling dialogbox 152
WRSETUP main window and Settings

dialogbox. 169

Introductio_n

Turbo Debugger is a set of tools designed to help you debug the programs you write
with Borland'’s line of compilers. The Turbo Debugger package consists of a set of
executable files, utilities, online text files, example programs, and this manual.

Turbo Debugger lets you debug the programs you're writing for Win16, Win32, and
DOS. When you load your program into Turbo Debugger, you can use the debugger to
control your program’s execution and to view the different aspects of your program
(including your program’s output, source code, data structures, and program values) as
it runs.

Turbo Debugger uses menus, multiple windows, dialog boxes, and online context-
sensitive help system to provide you with an easy-to-use, interactive debugging
environment. In addition, Turbo Debugger provides a comprehensive set of debugging
features:

* Full C, C++, Object Pascal, and assembler expression evaluation.

* Full program execution control, including program animation.

* Low-level access to the CPU registers and system memory.

» Complete data inspection capabilities.

» Powerful breakpoint and logging facilities.

* Windows message tracking, including breakpoints on window messages.

* Full object-oriented programming support, including class browsing and object
inspecting.

* Reverse execution.

* Remote debugging support.

* Macro recording of keystrokes to speed up repeated series of commands.
* Copying and pasting between windows and dialog boxes.

* Incremental matching, automatic name completion, and select-by-typing (to
minimize keyboard entries).

Introduction 1

Context-sensitive SpeedMenus throughout the product.

Dialog boxes that let you customize the debugger’s options.

New features and changes for version 4.x

Turbo Debugger 4.x provides the following enhancements over version 3.x:

Ability to debug both 16- and 32-bit Windows programs (debugging Win32
programs is provided with the addition of TD32, the 32-bit debugger).

Ability to debug larger programs.
Support for remote debugging on Windows systems (described in Appendix B).

Operating-system exception handling (described in section “Tracking operating-
system exceptions” on page 142).

C++ and C exception handling (described in section “Exceptions” on page 152).

Session-state saving (described in section “Restarting a debugging session” on
page 22).

Thread support for multithreaded Windows NT programs (described in section
“Debugging multithreaded programs” on page 139).

‘Abih'ty to attach to processes that are already running in Windows NT (described in

section “The Attach command” on page 46).
Ability to shell out to a selected editor while running Windows NT (described in
section “Edit” on page 111).

Ability to choose a Windows international sort order for items displayed in
Turbo Debugger (use Turbo Debugger’s configuration programs to access this
feature). ‘

Hardware requirements

Turbo Debugger’s hardware requirements are the same as those of your Borland
language compiler.

In addition, Turbo Debugger supports the following graphics modes and adapters:
CGA, EGA, VGA, Hercules monochrome-graphics, Super VGA (SVGA), TIGA, and
8514. You can use standard drivers with everything except SVGA, TIGA, and 8514.

Terminology in this manual

For convenience and brevity, several terms in this manual are used in slightly more
generic ways than usual:

2 Turbo Debugger User’s Guide

Argument

The term argument is used interchangeably with parameter in this manual and applies
both to command-line arguments used to invoke a program to be debugged and to
arguments passed to routines, functions, and procedures.

Module

This term refers to what is usually called a module in C++ and assembler, and also to
what is called a unit in Pascal. Modules are executable files such as .EXE files and .DLLs.

Routine
A routine, as used in this manual, refers to assembler and C++ functions, and to Pascal
functions, procedures, and object methods.

In this manual, the term “Turbo Debugger” refers to the Turbo Debugger programs
TD.EXE, TDW.EXE, and TD32.EXE. However, there are times when the text refers to a
specific Turbo Debugger program. In these cases, the term “TDW” refers to TDW.EXE,
“TD32" refers to TD32.EXE, and “TD” refers to TD.EXE.

Typographic and icon conventions

Boldface
ltalics
Monospace
Key1

Key1+Key2

Menu|
Command

Note

Screen
shots

Boldface type indicates language keywords (such as char, switch, and begin) and
command-line options (such as -rn).

Italic type indicates program variables and constants that appear in text. This typeface is
also used to emphasize certain words, such as new terms.

Monospace type represents text as it appears onscreen or in a program. It is also used for
anything you must type literally (such as TDi to start up Turbo Debugger for Windows).

This typeface indicates a key on your keyboard. For example, “Press Esc to exit a menu.”

Key combinations produced by holding down one or more keys simultaneously are
represented as Key1+Key2. For example, you can execute the Program Reset command by
holding down the Ctrl key and pressing F2 (which is represented as Cirl+F2).

This command sequence represents a choice from the menu bar followed by a menu
choice. For example, the command “File | Open” represents the Open command on the
File menu.

This indicates material you should take special notice of.

Unless otherwise noted, all screen shots in this manual depict TD32 while running
under Windows NT.

Introduction 3

This manual also uses the following icons to indicate sections that pertain to specific
Windows operating environments:

Windows 3.x

Windows 32s and NT

Windows 32s Windows NT

Using this manual

Here is a brief description of the chapters and appendixes in this manual:

Chapter 1, “Installing and configuring Turbo Debugger” describes the files that are
installed with the Turbo Debugger package and how to customize Turbo Debugger
once it is installed.

Chapter 2, “Starting Turbo Debugger and running your program” describes how to
prepare your program for debugging, and how to run Turbo Debugger and load your
program. This chapter also discusses the different ways to control your program’s
execution while you are running it in Turbo Debugger.

Chapter 3, “Debugging with Turbo Debugger” introduces you to Turbo Debugger’s
environment—its global and SpeedMenu system, dialog boxes, and debugging
windows. This chapter also discusses the basics of debugging, and the special features
that Turbo Debugger provides to make your debugging session run smoothly.

Chapter 4, “Debugging a simple example” leads you through a sample debugging
session that demonstrates the capabilities of Turbo Debugger.

Chapter 5, “Setting and using breakpoints” describes Turbo Debugger’s breakpoint
capability.

Chapter 6, “Examining and modifying data” explains the various ways you can
examine and modify the data used by your program.

Chapter 7, “Evaluating expressions” describes the types of expressions that Turbo
Debugger accepts, how to specify a display format of the expression results, and how to
override the scope in expressions.

Chapter 8, “Examining disk files” describes how to examine program source files, and
how to examine other disk files in either a text or binary format.

Chaﬁter 9, “Assembly-level debugging” describes Turbo Debugger’s CPU window.
Additional information about this window and about assembler-level debugging is in
the file TD_ASM.TXT.

Chapter 10, “Windows debugging features” describes the Turbo Debugger features
you can use to debug Windows programs.

4 Turbo Debugger User’s Guide

Chapter 11, “Debugging object-oriented programs” explains Turbo Debugger’s special
features that let you examine object oriented classes and objects.

Chapter 12, “Debugging TSRs and device drivers” describes how to use TD.EXE to
debug terminate and stay resident (TSR) programs and DOS device drivers.

Appendix A, “Command-line options” describes all the command-line options that are
available with Turbo Debugger.

Appendix B, “Remote debugging” describes the remote debugging capabilities of
Turbo Debugger.

Appendix C, “Turbo Debugger error messages” lists all the error messages and
prompts generated by Turbo Debugger. The list also gives suggestions on how to
respond to the prompts and error messages.

Where to now?

The following reading guidelines are proposed to help first-time and experienced
Turbo Debugger users.

First-time Turbo Debugger users

New Turbo Debugger users should read the first four chapters of this manual to get a
basic understanding of how the debugger works. Once you become familiar with the
basics of Turbo Debugger, read Chapters 5, 6, and 7 to become proficient with the
debugger’s most-often used features: breakpoints, data inspection, and expression
evaluation.

The remaining chapters in the book provide information about specific debugger
features (such as the CPU window), and provide help when you encounter problems
debugging a specific area of your program (such as with an object-oriented class or a
Windows DLL). Browse through these chapters to get an overview of the more
advanced debugger features.

If, while using Turbo Debugger, you have questions about a certain feature or menu
command, press F1 to access the debugger’s context-sensitive help system.

Experienced Turbo Debugger users

Users familiar with Turbo Debugger should read the “New features and changes for
version 4.x” section on page 2 to get an overview of items new to this release.
Experienced users should also read Chapter 2, “Starting Turbo Debugger and running
your program,” which lists the files installed with Turbo Debugger. Experienced users
should also read “Turbo Debugger’s special features” on page 41, which describes the
features that make Turbo Debugger especially easy to use. Even experienced

Turbo Debugger users might be surprised at some of the features they've previously
overlooked.

Introduction 5

Software registration and technical support

The Borland Assist program offers a range of technical support plans to fit the different
needs of individuals, consultants, large corporations, and developers. To receive help
with this product, send in the registration card and select the Borland Assist plan that
best suits your needs. North American customers can register by phone 24 hours a day
by calling 1-800-845-0147. For additional details on these and other Borland services, see
the Borland Assist Support and Services Guide included with this product.

6 Turbo Debugger User’s Guide

Chapter

Installing and configuring
Turbo Debugger

This chapter describes how to install Turbo Debugger and how to customize its default
options and display settings. Also described in this chapter are the many files that are
installed with the debugger.

Installing Turbo Debugger

The INSTALL.EXE program supplied with your Borland compiler installs the entire
Turbo Debugger package, which includes executable files, configuration files, utilities,
online text files, and example programs. A detailed listing of all files included with
Turbo Debugger starts on page 12.

The install program creates icons for your Borland compiler and language tools, and
places them inside a new Windows program group. Directions for using INSTALL.EXE
can be found in the User’s Guide of your Borland language product.

For general installation information, refer to the README file on your compiler’s
Installation disk. For a complete listing of the files installed by INSTALL.EXE, refer to
the FILELIST.DOC text file (this file is copied by the installation program to your main
language directory).

Configuring Turbo Debugger

You can configure Turbo Debugger’s display options and program settings with
customized configuration files and with the debugger’s Options menu. Settings in the
configuration files become effective when you load Turbo Debugger. To change the
debugger’s settings after you've loaded it, use the commands on the Options menu.

Chapter 1, Installing and configuring Turbo Debugger 7

Turbo Debugger’s configuration files

Turbo Debugger uses the following configuration, initialization, and session-state files
when it starts:

TDCONFIG.TD
TDCONFIG.TDW
TDCONFIG.TD2
TDW.INI

XXXX. TR
XXXX.TRW
XXXX.TR2

The configuration files TDCONFIG.TD, TDCONFIG.TDW, and TDCONEFIG.TD2 are
created and used by TD, TDW, and TD32, respectively. The settings in these files
override the default configuration settings of the debuggers. You can modify the
configuration files using the installation programs TDINST.EXE, TDWINST.EXE, and
TD32INST.

TDW.INTI is the initialization file used by TDW.EXE and TD32.EXE. It contains settings
for the video driver used with Turbo Debugger, the location of TDWINTH.DLL (the
Windows-debugging DLL), and the remote debugging settings you specify using
WRSETUP.EXE.

The installation program places a copy of TDW.INI in the main Windows directory. In
this copy of TDW.INI, the video driver setting ([videoDLL]) is set to SVGA.DLL, and the
DebuggerDLL setting indicates the path to TDWINTH.DLL. Refer to the online file
TD_HELPLTXT for a complete description of TDW.INL

Files ending with .TR, .TRW, and .TR2 extensions contain the session-state settings for
the debuggers. For information on session-state saving, refer to “Restarting a debugging
session” on page 22.

Searching for configuration files
When you start Turbo Debugger, it looks for its configuration files in the following
order:

1 In the current directory.

2 In the directory specified in the Turbo Directory settmg of Turbo Debugger’s
installation program.

3 In the directory that contains the debugger’s executable file.

If Turbo Debugger finds a configuration file, the settings in that file override any built-in
defaults. If you supply any command-line options when you start Turbo Debugger,
they override any corresponding default options or values specified in the configuration
file.

8 Turbo Debugger User’s Guide

Setting up the video DLLs

TDW and TD32 use different video DLLs to support the available types of video
adapters and monitors. After you've installed Turbo Debugger, run the utility program
TDWINILEXE to help you select or modify the video DLL that’s used with the
debuggers.

By default, TDW and TD32 use the SVGA.DLL video driver, which supports most video
adapters and monitors. For more information on the available video DLLs, refer to the
entries for DUAL8514.DLL, STB.DLL, SVGA.DLL, and TDWGULDLL in Table 1.1
(which appears later in this chapter), and the online Help system provided with
TDWINLEXE.

Dual-monitor debugging

Turbo Debugger supports dual-monitor debugging with TD and TDW, and with TD32
running on Windows 32s.

To create a dual-monitor system, you need a color monitor and video adapter, and a
monochrome monitor and video adapter. When you debug with two monitors, Turbo
Debugger appears on the monochrome monitor, and Windows and the program you're
debugging appears on the color monitor. The advantage of this system setup is that you
can see your program’s output while you're debugging it with Turbo Debugger.

Once your hardware setup is complete, use the —do command-line option to load TD or
TDW in dual-monitor mode. For more information on command-line options, see
Appendix A.

If you're running TD32 on Windows 32s, you must use Turbo Debugger’s SVGA.DLL
video DLL to have access to dual-monitor debugging. On this system, dual-monitor
debugging is enabled when the followmg line is inserted in the TDW.INI file, under the
heading [VideoOptions]:

mono=yes

To properly setup this video DLL, use the TDWINLEXE utility.

The Options menu

The Options menu contains commands that let you set and adjust the parameters that
control the overall appearance of Turbo Debugger.

Language. .. Source
Macros >
Display options...
Path for source...
Save options...
Restore options...

Chapter 1, Installing and configuring Turbo Debugger 9

The Language command

Use the Options | Language command to select the programming language evaluator
that the debugger uses. Chapter 7 describes how to set the expression evaluator and
how it affects the way Turbo Debugger evaluates expressions.

Display Options command

The Option | Display Options command opens the Display Options dlalog box. You use
the settings in this dialog box to control the appearance of Turbo Debugger’s display.
While TD, TDW, and TD32 share most display options, TD32 has several additional
options to provide support for the Windows NT multitasking operating system.

Figure 1.1 The Display Options dialog box

< > Hex
{ > Decimal
22, Both

Display Swapping
You can use the Display Swapping radio buttons to control the way Turbo Debugger
swaps your applications’ screens with the debugger’s windows.

None Found in TD32 only, this option specifies that no screen-swapping is to take
place. This option provides the fastest and smoothest screen updating when
you're single-stepping through a program and should be used if you're
using dual-monitor debugging. Beware, however, that this option can cause
your display to become corrupted. If this happens, use the Repaint Desktop
on the System menu to repaint the screen.

Smart Turbo Debugger activates the user screen when it detects that your program
is going to display output and when you step over routines.

Always Turbo Debugger activates the user screen every time your program runs.
Use this option if the Smart option isn’t finding all the times the program
writes to the screen. If you choose this option, the screen flickers every time
you step through your program because Turbo Debugger’s screen is
‘replaced for a short time with the User screen.

10 Turbo Debugger User’s Guide

Integer Format
The Integer Format radio buttons let you choose the way integers are displayed in
Turbo Debugger.

Hex Shows integers as hexadecimal numbers, displayed in a format appropriate
to the current language evaluator.

Decimal Displays integers in decimal notation.

Both Displays integers in both decimal and hexadecimal notation (the
hexadecimal numbers are placed in parentheses after the decimal value).

Screen Lines
Use the Screen Lines radio buttons to select either a 25-line display or a 43- or 50-line
display available with EGA and VGA display adapters.

Tab Size

The Tab Size input box lets you set the number of columns each tab stop occupies. To
see more text in source files that use tab indents, reduce the tab column width. You can
set the tab column width from 1 to 32.

Background Delay

Found only in TD32.EXE, the Background Delay input box lets you specify how often
Turbo Debugger’s screens get updated. When you use this setting in conjunction with
the Run | Wait for Child command, you can watch the effects of your program through
Turbo Debugger’s windows, while your program is running.

User Screen Delay

Found only in TD32, User Screen Delay lets you specify how long your program’s
screen is displayed when you press Alt+F5 (the Window | User Screen command). This
command is useful when you're using TD32 in full-screen mode, and you need to see
your application’s windows. By setting the delay, you can specify how long your
program’s screens will be displayed before Turbo Debugger regains control.

Path for Source command

Use the Path for Source command to specify the directories that Turbo Debugger
searches for your program’s source files. To enter multiple directories, separate each
directory with a semicolon.

Although the Enter Source Directory Path input box holds a maximum of 256
characters, you can use a response file to specify longer search paths. A response file
contains a single line that specifies the directories that should be searched for source
code. Each directory listed must be separated by a semicolon. For example, a response
file could contain the following line to specify three different search directories:

c:\my_proj\modl\source;c: \my_proj\mod2\source;c:\my_proj\mod3\source

To specify a response file in the Enter Source Directory Path input box, enter an at-
character (@) followed by the path and name of the response file. For example, the
following entry specifies the SRC_PATH.TXT response file:

Chapter 1, Installing and configuring Turbo Debugger 11

@C:\my_proj\src_path.txt

For more information on how Turbo Debugger conducts its search for source code, refer
to “Searching for source code” on page 22.

Save Options command
The Save Options command opens a dialog box that lets you save your Option menu
settings to a configuration file. You can save any or all of the following options:

Options Saves all settings made in the Options menu.
Layout Saves the current window layout and pane formats.
Macros Saves the currently defined keyboard macros.

You can specify the name of the configuration file by using the Save To input box. By
default, TDW.EXE uses the file name TDCONFIG.TDW, TD.EXE uses the file name
TDCONFIG.TD, and TD32.EXE uses the file name TDCONFIG.TD2.

By creating different names for your configuration files, you can have a different
debugger setup for each programming project you're working on. Each setup can
specify unique macros, window layouts, source directories, and so on.

Restore Options command

The Restore Options command restores a configuration from a disk file. The file loaded
must be a configuration file that was created with the Options | Save Options command
or with Turbo Debugger’s installation program (TDWINST for TDW.EXE and
TDINST32 for TD32.EXE).

Debugging ObjectWindows 1.0 programs

If you're using TDW to debug a program that uses ObjectWindows 1.0x, you must
configure the debugger so that it recognizes the ObjectWindows DDVT message
dispatch system. To configure TDW,

1 Run TDWINST.

2 Choose Options | Source Debugging to access the Source Debugging dialog box.
3 Check the OWL 1.0X Window Messages check box.

4 Save the configuration and exit TDWINST.

Files installed with Turbo Debugger

The following tables list the files installed with Turbo Debugger, arranged into the
following categories:

* Turbo Debugger’s executable and support files
¢ Turbo Debugger’s utilities

* Turbo Debugger’s online text files

* Turbo Debugger’s demonstration program

12 Turbo Debugger User’s Guide

Turbo Debugger’s executable and support files

Table 1.1 lists all the executable and support files needed to run TDW and TD32.

Table 1.1 Turbo Debugger's executable and support flles

File name Descnphon :

DUALS8514.DLL Video DLL that supports dual-monitor debuggmg with 8514 momtors

STB.DLL Video DLL that supports video adapters produced by STB.

SVGADLL Video driver that supports most adapters and monitors.

TD.EXE Executable program used to debug DOS applications.

TDDEBUG.386 TDW.EXE uses the device driver TDDEBUG.386 to access the special debug
registers of 80386 (and higher) processors. See page 74 for information on hardware
debugging.

TDHELP.TDH Help file for TD.EXE.

TDKBDW16.DLL Support file used with Windows 32s.

TDKBDW32.DLL Support file used with Windows 32s.

TDREMOTE.EXE Driver used on remote system to support DOS remote debugging.

TD32.EXE Executable program used to debug 32-bit programs written for Windows NT and
Windows 32s.

TD32ICO Icon used with TD32.EXE.

TD32HELP.TDH Help file for TD32.EXE.

TDVIDW16.DLL Support file used with Windows 32s.

TDVIDW32.DLL Support file used with Windows 32s.

TDW.EXE Executable program used to debug 16-bit Windows programs.

TDW.INI Initialization file used by TDW.EXE and TD32.EXE. This file is created by the install
program and placed in your main Windows directory.

TDWGUIDLL Video DLL that places Turbo Debugger in a window while using TDW under
Windows 3.x or while using TD32 under Windows 32s.

TDWHELP.TDH Help file for TDW.EXE.

TDWINTH.DLL Support DLL required by TDW.EXE. TDW.INL is set up to point to
TDWINTH.DLL.

WREMOTE.EXE Driver used on remote system to support Windows remote debugging.

Turbo Debugger’s utilities

The Turbo Debugger package includes utilities to help with the debugging process.
Table 1.2 lists the utilities and gives a general description of each one. For a more
detailed description of these utilities, refer to the online text file TD_UTILS.TXT.

Table 1.2

Turbo Debugger’s utilities

Creates an mod]ﬁes

NST.E

s configuration file,

TDMEM.EXE Displays the current availability of your computer’s memory, mcludmg Expanded
and Extended memory. Used for checking the programs and device drivers that are
loaded, and the addresses that they’re loaded into.

TDRF.EXE File transfer utility used to transfer files to remote system.

TD32INST.EXE Creates and modifies TD32's configuration file, TDCONFIG.TD2.

Chapter 1, Installing and configuring Turbo Debugger 13

Table1.2 Turbo Debugger’s utilities (continued)

Icon used with TD32INST.EXE.

TD32INST.ICO

TDSTRIP.EXE Sm(;lps Turbo Debugger’s debugging information (the symbol table) from 16-bit .EXEs
and .DLLs, without relinking.

TDSTRP32.EXE Strips Turbo Debugger’s debugging information (the symbol table) from 32-bit .EXEs
and .DLLs, without relinking,.

TDUMP.EXE Displays the file structure of 16-bit and 32-bit .EXE, .DLL, and .OBJ files. Also displays
the contents of the symbolic debug information.

TDWINLEXE Lets you change and customize Turbo Debugger’s video DLL settings.

TDWINLHLP Windows help file for TDWINLEXE.

TDWINST.EXE Creates and modifies TDW’s configuration file, TDCONFIG.TDW. Configures things
like the display options and screen colors of TDW.

WRSETUP.EXE Configuration file used to configure WREMOTE, the remote driver used with remote

debugging.

Specifying utility command-line options

Each Turbo Debugger utility can be started using special command-line options. For a
list of the command-line options available for the TDUMP, TDUMP32, and TDSTRIP
utility programs, type the program name at the DOS command-line and press Enter. To
see the command-line options for TDWINST and TDINST32, type the program name
followed by -?, then press Enter. For example,

TDWINST -?

Turbo Debugger’s online text files

The installation program places several text files in the DOC subdirectory of your main
language directory.

Although you might not need to access all online files, it’s important for you to look at
TD_RDME.TXT, which contains last-minute information not available in the manual.

Table1.3 Turbo Debugger’s online files

TD_ASM.TXT

This file contains information about debugging Turbo Assembler programs.
‘You might also find the information in this file helpful for debugging your inline
assembler code.

This file also contains information on using Turbo Debugger’s Numeric
Processor window.

TD_HELPL.TXT Contains answers to commonly encountered problems. Among other things,
TD_HELPLTXT discusses the syntactic and parsing differences between
Turbo Debugger and your language compiler, the TDW.INI file, debugging
multi-language programs, and common questions and answers concerning

Turbo Debugger.

TD_HDWBP.TXT

TD_RDME.TXT
TD_UTILS.TXT

This file contains information on how to configure Turbo Debugger so that it
takes advantage of the hardware debugging registers.

Contains last-minute information not contained in the manual.
This file describes the command-line utilities included with Turbo Debugger.

14 Turbo Debugger User’s Guide

All of Turbo Debugger’s online files are unformatted ASCII files, so you can use your
program editor to access them.

Turbo Debugger’s example program

Chapter 4, “Debugging a simple example,” introduces Turbo Debugger by showing
how to debug a simple example program. The following table lists the files used in the
example debugging chapter:

Table 1.4 Turbo Debugger’s example program files

File name Description

MAKEFILE Makefile used with the buggy example program.
TDWDEMO.BUG Buggy example program'’s source code.
TDWDEMO.H Header file used by the example program:.
TDWDEMO.ICO Example program’s icon.

TDWDEMO.IDE IDE project file used with the example program.
TDWDEMO.RC Resource file used with the example program.

S PAINT.C Example program’s source code.

S PAINT.EXE Working example program in executable form.

Chapter 1, Installing and configuring Turbo Debugger 15

16 Turbo Debugger User’s Guide

Starting Turbo Debugger and
running your program

A debugging session begins when you load your program into Turbo Debugger. After
you load your program, you can run it under the debugger’s control, pausing its
execution at various places to look for where things have gone wrong. Before you can
load your program into Turbo Debugger, however, you must prepare it for debugging.

This chapter describes

* Preparing programs for debugging

» Starting Turbo Debugger

* Loading your program into the debugger
* Controlling program execution

¢ Interrupting program execution

* Reverse execution

* Program termination

* Exiting Turbo Debugger

Preparing programs for debugging

When you're developing a program, whether it’s written in C, C++, Pascal, or
assembler, it’s best to compile and link it with debug information. Although debugging
information adds to the size of your executable files, it lets you see your program’s
source code and use its symbols to reference values while you're in the debugger.

Unless you have a very large project, it’s usually best to compile your entire project with
debug information turned on. This way, you'll have access to all your program modules
from within the debugger. With larger projects, however, you might want to add debug
information only to the modules you intend to load into the debugger.

Chapter 2, Starting Turbo Debugger and running your program 17

While you're developing your program, compile your program without compiler
optimizations. Even though optimizations create efficient programs, it can be confusing
to debug the sections of code that have been optimized by the compiler; the object code
that the compiler produces might not exactly match your program’s source code.
Because of this, you should compile your program with optimizations turned on only
after you've fully debugged your program.

Once your program is fully debugged and ready for distribution, compile and link your
program without debug information to reduce the size of your final program files.

»

Compiling from the integrated environment
If you're compiling your program from within the Borland C++ integrated

environment, you must be sure to include symbolic debug information in both your
.OB] files and your final executable files.

To include debug information in your .OBJ and .EXE files,

Choose the Options | Project command to open the Project Options dialog box.
Choose the Compiler | Debugging topic to access the Debugging options.
Check Debug Information in OB]Js.

Choose the Linker | General topics to access the linker options.

Check Include Debug Information.

G R WN -

Compiling from the command line

If you compile your programs with Borland’s C command-line compiler, use the —v
compiler directive to add debug information to each of your modules. Be sure to use the
—v linker switch to include the debug information in your final executable files.

Starting Turbo Debugger

After you've compiled and linked your program with debug information, you can begin
the debugging process by starting Turbo Debugger and loading your program into the
debugger.

The following table describes the appropriate debugger to use for the application you've
built:
Table2.1 Turbo Debugger programs

Turbo Debugger program _ Applications debugged

TD.EXE 16-bit DOS applications
TDW.EXE 16-bit Windows applications
TD32.EXE 32-bit Windows applications

18 Turbo Debugger User’s Guide

While TD must be started from the DOS command line, TDW and TD32.can be started
from the Windows locations listed in the following table:

Table2.2 Starting Turbo Debugger

Starting location Procedure

Windows Open your Borland compiler’s group from the Program Manager, and
choose the TDW or TD32 icon.

The compiler’s integrated Choose Tools | Turbo Debugger to debug the program in the active Edit

environment window.

Windows’ Program Manager ~ From the Command input box, type TDi or TD32, followed by any

File | Run dialog hox command line options.

Windows File Manager Double-click either the TDW.EXE or TD32.EXE executable file icon from

the directory containing Turbo Debugger.

Specifying Turbo Debugger’s command-line options

Turbo Debugger uses command-line options to specify special start-up parameters and
debugging modes. The command-line options must be specified before you start
Turbo Debugger; you can’t specify them once Turbo Debugger is loaded.

The command-line syntax for starting Turbo Debugger is as follows:
TD | TDW | TD32 [options] [progname [progargs]]

The items enclosed in brackets are optional. The options are Turbo Debugger command-
line options, and are described in Appendix A. The item progname refers to the name of
the program you're debugging, and progargs are optional arguments supplied to your
program. When using this syntax, be sure to supply a correct path for the program
you're debugging.

For example, the following command line starts TDW with the —jp command-line
option, and loads my_prog with the arguments mammal and river:

TDW -jp my_prog mammal river

Setting command-line options with Turbo Debugger’s icon properties

If you start Turbo Debugger using the TDW or TD32 icons, you can specify command-
line options using the icon’s Property dialog box. This is usually the best way to specify
command-line options because the options you specify are saved with the icon’s
property settings.

You can also specify your program (and optional program arguments) in the command
you enter into the Properties dialog box. If you specify your program it'll be loaded into
Turbo Debugger when you double-click the debugger’s icon. This is the best way to
load your program if you're working on an ongoing project.

To specify an icon’s Property settings, click the icon, then choose File | Properties from
the Windows Program Manager. In the Command Line input box, type the executable
name of the debugger, followed by the desired command-line option(s). Choose OK
when you're done.

Chapter 2, Starting Turbo Debugger and running your program 19

Setting command-line options from Borland’s C++ integrated environment
If you transfer to Turbo Debugger from Borland’s C++ for Windows integrated
environment, you can specify Turbo Debugger’s command-line options using the
following procedure:

1 From the C++ integrated environment, choose Options | Tools to access the Tools
dialog box.

2 Select TDStartup from the Tools list box.
3 Click the Edit button to open the Tools Options dialog box.

4 In the Command Line input box, enter Turbo Debugger’s command-line options
after the $TD transfer macro setting.

The $2RG transfer macro in the Command Line input box indicates the arguments that
are passed to your program when you transfer to Turbo Debugger from the integrated
environment. To specify program arguments,

1 From the integrated environment, choose Options | Environment to open the
Environment Options dialog box.

2 Select Debugger in the Topics list box.
3 Enter the program arguments in Run Arguments list box.

Running Turbo Debugger

When you run TDW (or TD32 under Win32s), the debugger opens in full-screen
character mode. However, unlike other applications, you cannot access the Windows
shortcut keys Alt+Esc and Cirl+Esc from Turbo Debugger. Although you can access the
Windows task list from your program, you should not change tasks when Turbo
Debugger is running because of the special way the debugger uses system resources.

This is different from running TD32 under Windows NT. In this case, Turbo Debugger
activates in a command-prompt window, and it has all the features of a normal
Windows application.

Loading your program into the debugger

You can load your program into Turbo Debugger using its command-line syntax (which
is described on page 19) or from within Turbo Debugger once it has started.

To load a new program into Turbo Debugger (or to change the currently loaded
program), use the File | Open command. This command opens a two-tiered set of dialog
boxes, the first being the Load a New Program to Debug dialog box.

20 Turbo Debugger User’s Guide

Figure 2.1 The Load a New Program to Debug dialog box

TD and TDWs' Load a New Program to Debug dialog box contains an additional
button, Session, to support its remote debugging feature. For more information on the
Session button, see “Starting and configuring TDW” on page 171.

If you know the name of the program you want to load, enter the executable name into
the Program Name input box and press Enter.

To search through directories for your program, click the Browse button to open the
second dialog box (the Enter Program Name to Load dialog box):

Figure 2.2 The Enter Program Name to Load dialog box

doc :
exanples
expert

include
1ib
source

The Files list box displays the files in the currently selected directory. By entering a file
mask into the File Name input box (such as *.EXE), you can specify which files should be
listed. You can also use the File Name input box to change disk drives.

To “walk” through disk directories, double-click the entries listed in the Directories list
box (the .. entry steps you back one directory level). Once you've selected a directory,
choose a file to load from the Files list box. To quickly search for a file, type a file name
into the Files list box. Turbo Debugger’s incremental matching feature moves the
highlight bar to the file that begins with the letters you type. Once you've selected a file,
press OK. This action returns you to the Load a New Program to Debug dialog box.

After you've specified a program in the Load a New Program to Debug dialog box,
specify whether or not you want the debugger to run its startup code. If you check the
Execute Startup Code check box, Turbo Debugger runs the program to main (or its
equivalent) when you load the program. If you leave this box unchecked,

Turbo Debugger will not run any code when you load the program.

To support remote debugging, TDW contains a set of radio buttons in the Load a New
| Program to Debug dialog box. The Session radio buttons specify whether or not the

Chapter 2, Starting Turbo Debugger and running your program 21

program you're debugging is on a local or remote system. If it’s located on a remote
system, select the Remote Windows radio button; if it's not on a remote system, select
Local. See Appendix B for complete instructions on remote debugging.

Note Before loading a program into the debugger, be sure to compile your source code into
an executable file (EXE or .DLL) with full debugging information. Although you can
load programs that don’t have debug information, you will not be able to use the
Module window to view the program’s source code. (The debugger cannot reference
the source code of executable modules that lack debug information. If you load a
module that doesn’t contain debug information, Turbo Debugger opens the CPU
window to show the disassembled machine instructions of that module.)

When you run a program under the control of Turbo Debugger, the program’s
executable files (including all .DLL files) and original source files must be available. In
addition, all .EXE and .DLL files for the application must be located in the same
directory.

Searching for source code

When you load a program or module into Turbo Debugger, the debugger searches for
the program’s source code in the following order:

1 In the directory where the compiler found the source files.

2 In the directory specified in the Options | Path for Source command.
3 In the current directory.

4 In the directory where the .EXE and .DLL files reside.

Note Directories specified with the —sd command-line option override any directories set
with the Options | Path for Source command.

Specifying program arguments

Once your program is loaded into Turbo Debugger, you can use the Run | Arguments
command to set or change the arguments supplied to your program. See page 26 for
mcre information on this command.

If you load your program using Turbo Debugger’s command-line syntax (as described
on page 19), you can supply arguments to the program you're debugging by placing
them after the program name in the command line. For instance, the following
command loads the program MyProg with the command-line arguments a, b, and c:

myprog a b ¢

Restarting a debugging session

When you exit Turbo Debugger, it saves to the current directory a session-state file that
contains information about the debugging session you're leaving. When you reload
your program from that directory, Turbo Debugger restores your settings from the last
debugging session.

22 Turbo Debugger User's Guide

By default, all history lists, watch expressions, Clipboard items, breakpoints, operating-
system exception settings, and C++ and C exception settings are saved to the session-
state file. Session-state files are named XXXX.TR, XXXX.TRW, and XXXX.TR2 by TD,
TDW, and TD32, respectively, where XXXX is the name of the program you're
debugging. If no program is loaded when you exit Turbo Debugger, then XXXX will be
the debugger’s executable file name (TD, TDW, or TD32).

The Options | Set Restart Options command opens the Restart Options dialog box, from
where you can customize how Turbo Debugger handles the session-state files.

Figure 2.3 The Set Restart Options dialog box

Use pestart info Restope at pesti

The Restore at Restart check boxes specify which debugger settings you want saved to
the session-state file, and the Use Restart Info radio buttons specify when the session-
state file should be loaded.

Because breakpoint line numbers and variable names can change when you edit and
recompile your source code, the Use Restart Info radio buttons give you the following
options for loading the session-state file:

Always Always use the session-state file.

Ignore if old Don’t use the session-state file if you've recompiled your program.

Prompt if old Turbo Debugger asks if you want to use the session-state file if
you've changed your program.

Never Do not use the session-state file.

These options can also be specified using command-line switches.

Controlling program execution

The process of debugging usually entails alternating between times when your program
has control, and times when Turbo Debugger has control. When the debugger has
control, you can use its features to search through your program’s source code and data
structures, looking for where things have gone wrong. However, when your program
has control, you can’t access the debugger’s menus and windows; you must pause your
program’s execution and allow the debugger to regain control. (TD32’s Wait for Child
command, explained on page 27, is an exception to this rule.)

Using the debugger’s execution control mechanisms, you can specify when and where
you want the execution of your program to pause. Turbo Debugger offers the following
mechanisms to control your program’s execution:

Chapter 2, Starting Turbo Debugger and running your program 23

* “Single-Step” through machine instructions or source lines.
* Step over calls to functions.

* Run to a specified program location.

* Execute until the current function returns to its caller.

* “Animate” (perform continuous single-stepping).

* Reverse program execution.

* Run until a breakpoint is encountered.

* Run until a specific Windows message is encountered.

* Pause when a C++ or C exception is thrown.

Except for breakpoints, Windows messages, and C++ exceptions, all execution control
mechanisms are located on the Run menu.

The Run menu

The Run menu has a number of options for executing different parts of your program.
Since these commands are frequently used, most are linked to function keys.

Run .
The Run command runs your program at full speed. Control returns to Turbo Debugger
when one of the following events occurs:

* Your program terminates.

* A breakpoint with a break action is encountered.

* You interrupt execution with the program interrupt key.
» A program error halts execution.

* A C++ or C exception that you have marked is thrown.

Go to Cursor

The Go to Cursor command executes your program up to the line containing the cursor
in the current Module window or CPU Code pane. If the current window is a Module
window, the cursor must be on a line of source code.

Trace Into
Known as single-stepping, this command executes a single source line or assembly-level
instruction at a time.

If the current window is a Module window, a single line of source code is executed; if
it's a CPU window, a single machine instruction is executed. If the current source line
contains a function call, Turbo Debugger traces into the function, providing that it was
compiled with debug information. If the current window is a CPU window, pressing F7
on a CALL instruction steps to the called routine.

When you single-step through machine instructions (using Trace Into in the CPU
window or by pressing Alt+F7), Turbo Debugger treats certain sets of machine
instructions as a single instruction. This causes multiple assembly instructions to be
executed, even though you're single-stepping through the code.

24 Turbo Debugger User’s Guide

(A)

Alt

Here is a list of the machine instructions that cause multiple instructions to be executed
when you are single-stepping at the instruction level:

CALL LOOPNZ
INT LOOPZ
LOOP

Also stepped over are REP, REPNZ, or REPZ followed by CMPS, CMPS, CMPSW,
LODSB, LODSW, MOVS, MOVSB, MOVSW, SCAS, SCASB, SCASW, STOS,
STOSB, or STOSW.

Turbo Debugger treats a class member function just like any other function; F7 traces
into the source code if it’s available.

Step Over

The Step Over command, like the Trace Into command, executes a single line of source
code or machine instruction at a time. However, if you issue the Step Over command
when the instruction pointer is located at a routine call, Turbo Debugger executes that
routine at full speed, and places you at the statement following the routine call.

When you step over a source line that contains multiple statements, Turbo Debugger
treats any routine calls in that line as part of the line—you don’t end up at the start of
one of the routines. If the line contains a return statement, Turbo Debugger returns you
to the previously called routine.

The Run | Step Over command treats a call to a class member function like a single
statement, and steps over it like any other function call.

Execute To

Executes your program until the address you specify in the Enter Code Address to
Execute To dialog box is reached. The address you specify might never be reached if a
breakpoint action is encountered first, or if you interrupt execution.

Until Return

Executes your program until the current routine returns to its caller. This is useful in two
circumstances: when you've accidentally single-stepped into a routine that you don’t
need to debug, or when you've determined that the current routine works to your
satisfaction, and you don’t want to slowly step through the rest of it.

Animate

Performs a continuous series of Trace Into commands, updating the screen after each
one. The animate command lets you watch your program’s execution in “slow motion,”
and see the values of variables as they change. Press any key to interrupt this command.

After you choose Run | Animate, Turbo Debugger prompts you for a time delay
between successive traces. The time delay is measured in tenths of a second; the default
is 3.

Chapter 2, Starting Turbo Debugger and running your program 25

Back Trace

If you're tracing through your program using F7 or Alt+F7, you can use Back Trace to
reverse the direction of program execution. Reverse execution is handy if you trace
beyond the point where you think there might be a bug, and you want to return to that
point.

Using the Back Trace command, you can back-trace a single-step at a time or back-trace
to a specified point that’s highlighted in the Execution History window. Although
reverse execution is always available in the CPU window, you can execute source code
in reverse only if Full History is turned On in the Execution History window.

For complete instructions on the Execution History window, see page 29.

Instruction Trace

The Instruction Trace command executes a single machine instruction. Use this
command when you want to trace into an interrupt, or when you're in a Module
window and you want to trace into a routine that doesn’t contain debug information
(for example, a library routine).

Since you will no longer be at the start of a source line, issuing this command usually
places you inside a CPU window.

Arguments

Use the Arguments command to set or change the command-line arguments supplied
to the program you're debugging. Enter new arguments exactly as you would following
the name of your program on the command line.

Once you've entered the arguments, Turbo Debugger asks if you want to reload your
program from disk. You should answer “Yes” because most programs read the
argument list only when the program is first loaded.

Program Reset
The Program Reset command terminates the program you're running and reloads it
from disk. You might use this command in the following circumstances:

* When you've executed past the place where you think there is a bug.
* When your program has terminated and you want to run it again.

* If you've suspended your application with the program interrupt key and you want
restart it from the beginning. Make sure, however, that you don’t interrupt the
execution of your program if Windows kernel code is executing.

+ If you want to debug a DLL that’s already been loaded. To do so, set the Debug
Startup option in the Load Module Source or DLL Symbols dialog box to Yes for the
DLL you're interested in, and reset your program.

If you choose the Program Reset command while you're in a Module or CPU window,
the Turbo Debugger resets the Instruction Pointer to the beginning of the program.
However, the display is not changed from the location where you issued the Program
Reset command. This behavior makes it easy for you to resume debugging from the
position you were at prior to issuing the Program Reset command.

26 Turbo Debugger User’'s Guide

For example, if you chose Program Reset because you executed a few statements past a
bug, press Cirl+F2 to rest your program and reposition the cursor up a few lines in your
source file. Pressing F4 will then run to that location.

Next Pending Status

The Next Pending Status command (available when you're debugging with Windows
NT) can be used when the Run | Wait for Child command is set to No. When Wait for
Child is set to No (and your program is running in the background while you're
accessing Turbo Debugger), you can use the Next Pending Status command to retrieve a
program status message. To indicate that a status message has been sent, Turbo
Debugger’s activity indicator displays PENDING. Status messages are sent on the
occurrence of events such as breakpoints and exceptions.

Wait for Child

Wait for Child (used exclusively by TD32 for debugging Windows NT programs) can be
toggled to either Yes or No. When this option is set to No, you can access Turbo Debugger
while your program is running; you don't have to wait for your program to hit a
breakpoint or exception to access the debugger’s views and menus.

This command can be useful when you're debugging interactive programs. For
example, if your program reads a lot of information from the keyboard, you can access
the debugger while the program is waiting for input. You can set breakpoints and
examine your program’s data, even though your program has focus. Use the Refresh
option in TD32INST to set the rate that TD32 updates the information in its windows.

Interrupting program execution

If your program is running, you can access Turbo Debugger by pressing the program
interrupt key. The program interrupt key you use depends on the type of application
you're debugging:

* Use Ctrl+Alt+SysRq when you're debugging a Windows 3.x program.
* Use Cirl+Alt+F11 when you're debugging a Win32s program.

¢ Use F12 when you're debugging a Windows NT program.

* Use Ctrl+Break when you're debugging a DOS program.

Interrupting program execution is useful when you need to access Turbo Debugger, but
haven’t set any breakpoints that will interrupt your program’s execution.

For example, if you single-step through a Windows application, you'll eventually get
caught in the message loop, waiting for a message to be sent to your program. When
this happens, you must press F9 to run the program past the message loop. Once the

program is running, you can press the program interrupt key to return to

Turbo Debugger.

Chapter 2, Starting Turbo Debugger and running your program 27

Stopping in Windows code

If, when you return to Turbo Debugger, you see a CPU window without any
instructions corresponding to your program, you're probably in Windows kernel code.
If this happens, return to Turbo Debugger and set a breakpoint at a location you know
your program will execute. Next, run your program (F9) until it encounters the
breakpoint. You are now out of Windows code, and can resume debugging your

program.

Even though you can access the Module window, set breakpoints, and do other things
inside Turbo Debugger, there are a few things that you should not do while you're
stopped in Windows code:

* Don't single-step through your program. Attempting to single-step through
Windows kernel code can produce unpredictable effects.

* Don’t terminate or reload your application or Turbo Debugger—this might cause a
system crash.

If you attempt to reload your application, Turbo Debugger displays a prompt asking
if you want to continue. Select No to return to Turbo Debugger.

Reverse execution

Turbo Debugger’s execution history keeps track of each instruction as it’s executed,
provided that you're tracing into the code. Using the Execution History window, you
can examine the instructions you've executed and, if you like, return to a point in the
program where you think there might be a bug. Turbo Debugger can record about 400
instructions.

Figure 2.4 The Execution History window

i

tdudemo#t531 <(WBN2084
PR A

1t
o

The following rules apply to reverse execution:

* The execution history keeps track only of instructions that have been executed with
the Trace Into command (F7) or the Instruction Trace command (Alt+F7). However, it
will also track Step Over commands if the instructions listed on page 24 (in the “Trace
Into” section) and page 29 (in the “Reverse Execute” section) aren’t executed.

* The INT instruction causes the execution history to be thrown out. You can’t reverse
back over this instruction, unless you press Alt+F7 to trace into the interrupt.

* Assoon as you use the Run command or execute past an interrupt, the execution
history is deleted. (It starts recording again when you resume tracing.)

28 Turbo Debugger User’s Guide

Note

* If you step over a function call, you won’t be able to trace back beyond the instruction
following the return.

* Tracing back through a port-related instruction has no effect, because you can’t undo
reads and writes.

* Turbo Debugger cannot execute in reverse any Windows code called by your
program, unless you are in the CPU window and the code is in a DLL you've selected
for debugging.

Although reverse execution is always available in a CPU window, you can only execute
source code in reverse if Full History is On. (Full History is found on the Execution
History SpeedMenu.)

The Execution History window SpeedMenu
The SpeedMenu for the Execution History window contains the following commands:

Inspect
Reverse execute
Full history

Inspect

Takes you to the command highlighted in the Instructions pane. If it is a line of source
code, you are shown that line in the Module window. If there is no source code, the CPU
window opens with the instruction highlighted in the Code pane.

Reverse Execute

Reverses program execution to the instruction highlighted in the window, and activates
the Code pane of the CPU window. If you selected a line of source code, you are
returned to the Module window.

The following instructions don’t cause the history to be thrown out, but they cannot
have their effects undone. Be prepared for unexpected side effects if you back up over
these instructions:

IN INSB OUTSB
ouT INSW OuUTSW
Full History

Toggles from On to Off. If it’s set to On, backtracing is enabled. If it’s set to Off,
backtracing is disabled.

The Keystroke Recording pane

TD.EXE has an extra pane in the Execution History window that lets you execute back
to a given point in your program if you inadvertently destroy your execution history.

The Keystroke Recording pane at the bottom of the Execution History window becomes
active when you have keystroke recording enabled. The -k command-line option enables

Chapter 2, Starting Turbo Debugger and running your program 29

keystroke recording (refer to Appendix A, page 163, for more information on the -k
command-line option). You can also use TDINST to set keystroke recording to On.

When Keystroke Recording is enabled, each line in the Keystroke Recording pane

- shows how Turbo Debugger gained control from your running program (breakpoint,
trace, and so forth) and the location of your program at that time. The program location
is followed by the corresponding line of source code or disassembled machine
instruction.

Keystroke recording works in conjunction with reverse execution to let you return to a
previous point in your debugging session. When keystroke recording is turned on,
Turbo Debugger keeps a record of all the keys that you press, including the commands
you issue to the debugger and the keys you press when you're interacting with the
program you are debugging. The keystrokes are recorded in a file named XXXX.TDK,
where XXXX is the name of the program you're debugging.

The Keystroke Recordihg pane SpeedMenu

The local menu for the Keystroke Recording pane contains two commands: Inspect and
Keystroke Restore.

Inspect

When you highlight a line in the Keystroke Recording pane and choose Inspect from the
SpeedMenu, Turbo Debugger activates either the Module window or the CPU window
with the cursor positioned on the line where the keystroke occurred.

Keystroke Restore

If you highlight a line in the Keystroke Recording pane, then choose Keystroke Restore,
Turbo Debugger reloads your program and runs it to the highlighted line. This is
especially useful after you execute a Turbo Debugger command that deletes your
execution history.

Program termination

When your program terminates, Turbo Debugger regains control and displays a
message indicating the exit code that your program returned. After this, issuing any of
the Run menu options causes Turbo Debugger to reload your program.

The program segment registers and stack are usually incorrect after your program has
terminated, so don’t examine or modify any program variables after termination.

Resetting your program

When you're debugging a program, it’s easy to accidentally step past the cause of the
problem. If you do, you can restart the debugging session by choosing Run | Program
Reset (Cirl+F2) to reload your program from disk. Resetting a program doesn’t affect any
debugging settings, such as breakpoints and watches.

30 Turbo Debugger User’s Guide

Reloading the program from disk is the safest way to restart a program after it has
terminated. Since many programs initialize variables from the disk image of the
program, some variables might contain incorrect data if you restart the program
without first resetting it.

Exiting Turbo Debugger

You can end your debugging session and return to the Windows Program Manager at
any time (except when you're in a dialog box or when your program has control) by
pressing Aft+X. You can also choose File | Quit to exit the debugger.

Chapter 2, Starting Turbo Debugger and running your program 31

32 Turbo Debugger User’s Guide

Debugging with Turbo Debugger

Debugging is the process of finding and correcting errors (“bugs”) in the programs you
write. Although debugging is not an exact science (the best debugging tool is your own
“feel” for where a program has gone wrong), you can always profit from developing a
systematic approach to finding and correcting program bugs.

This chapter discusses the basic tasks involved in debugging a program and describes
how you can use Turbo Debugger to accomplish these tasks. This chapter also provides
an overview of Turbo Debugger, including a section on the debugger’s special features.

Debugging basics

The debugging process can be broadly divided into four steps:

1 Discovering a bug
2 Isolating the bug
3 Finding the bug

4 Fixing the bug

These four steps offer a simplified model of an actual debugging session. As a general
rule, it’s best to divide your program into discrete sections and debug each section
separately. By verifying the functionality of each section before moving on, you can
debug even the largest and most complicated programs.

Regardless of your personal debugging approach, one thing remains constant: testing
and fixing source code is a part of producing software. As your programming projects
become more complex, you'll reduce the time you spend debugging by developing a
systematic method for testing your software.

Discovering a bug

The first debugging step can be painfully obvious. You run your program and the
computer freezes. However, the presence of a bug might not be so obvious. Your

Chapter 3, Debugging with Turbo Debugger 33

program might seem to work fine, until you enter a negative number or until you
examine the output closely. Only then do you notice that the result is off by a factor of .2
or that the middle initials are missing in a list of names.

When you create a schedule for the production of your program, be sure to schedule
time for a systematic test of your finished product. Be aware that if you don’t
thoroughly test your software, the users of your program will discover the bugs for you.

Isolating the bug

The second step can sometimes be the most difficult part of the debugging process.
Isolating the bug involves narrowing down your code to the routine that contains the
programming error.

Sometimes you'll be able to determine the general location of the error as soon as you
see the problem. Other times, the error might show up in one place, and then in another.
If you can reproduce the bug (find a consistent series of steps that lead to the bug), you can
usually identify the routine that contains the problem.

If you can’t reproduce the bug, you'll need to break your program up into individual
routines and debug and verify each routine separately. Turbo Debugger is the perfect
tool for this because you can check your program’s data values before you run a routine,
and then recheck them after the routine runs. If a routine’s output is correct, then you
can move on to the next routine in your program. If the output doesn’t seem correct,
then it’s time to delve deeper into the workings of the routine.

Finding the bug

Uncovering the cause of programming errors is the true test of software engineers.
Sometimes, just discovering the problem leads you to the error. For example, if you find
your name list is missing everyone’s middle initial, it’s likely that the bug is in the line
that prints the names.

Other bugs can spread themselves out through several routines, requiring that you
rethink the entire design of your program. In these cases, you must trace through
several functions, carefully scrutinizing the variables and data structures used in your
program. This is where Turbo Debugger can help the most. By studying a routine’s
behavior while it runs, you can uncover the bugs that are hiding in your code.

Fixing the bug

The final step is fixing the error. Even though Turbo Debugger can help with finding the
bug, you cannot use the debugger to fix your program. Once you've found the bug, you
must exit Turbo Debugger to fix the source code, and then recompile your program for
the fix to take effect. However, you can use Turbo Debugger to test your theory of why
things went wrong; you don’t need to recompile your program just to test a simple fix.

34 Turbo Debugger User’s Guide

What Turbo Debugger can do for you

Turbo Debugger helps with the two hardest parts of the debugging process: isolating
the bug and finding the bug. By controlling your program’s execution, you can use
Turbo Debugger to examine the state of your program at any given spot. You can even
test your “bug hypothesis” by changing the values of variables to see how they affect
your program.

With Turbo Debugger, you can perform the following debugging functions:
Table 3.1 Turbo Debugger’s debugging functions

Function Description
Tracing Executes your program one line at a time (single-stepping).
Stepping Executes your program one line at a time, but steps over any routine calls. If you're sure

that a routine is error-free, stepping over it speeds up debugging.

Viewing Opens special Turbo Debugger windows to see the state of your program from various
perspectives: variables and their values, breakpoints, the contents of the stack, a data file,
a source file, CPU code, memory, registers, numeric coprocessor information, object or
class hierarchies, execution history, or program output.

Inspecting Delves deeper into the workings of your program by examining the contents of complex
data structures (such as arrays).

Watching Isolates program variables and keeps track of their changing values as the program runs.

Changing Replaces the current value of a variable, either globally or locally, with a value you
specify.

Back tracing Traces backward through code that has already been executed.

Turbo Debugger’s user interface

The Turbo Debugger environment consists of a series of menus, dialog boxes, and
special debugger windows. In addition, the debugger has many special features that
remain hidden to the casual user. To get the most out of Turbo Debugger, you should
become familiar with the features listed here and in the section “Turbo Debugger’s
special features” on page 41.

Working with menus

Turbo Debugger’s global menu system (called the menu bar), runs along the top of the
screen and lets you access the debugger’s commands via menus. The menu bar is
always available, except when a dialog box is active. To open Turbo Debugger’s menus,
use one of these methods:

* Press F10, then use Right arrow or — or Left arrow or < to go to the desired menu and
press Enter.

* Press F10, then press the highlighted letter of any menu (press Spacebar for the
= (System) menu).

Chapter 3, Debugging with Turbo Debugger 35

* Press Al plus the highlighted letter of any menu. The = (System) menu opens with
Alt+Spacebar.

¢ (lick the menu bar command with the mouse.

Once you access a menu, you can choose a command by pressing the highlighted letter
of the command.

Working with windows

Turbo Debugger uses a number of windows that provide information about the
program you're debugging. To make debugging easier, Turbo Debugger provides
many window-management commands that let you arrange and move through the
windows you open. The window-management commands are located on the Window
menu and on the = (System) menu.

Selecting a window

Each window that you open is numbered in the upper right corner to allow quick access
to that window. Usually, the Module window is window 1 and the Watches window is
window 2. The window you open next will be window 3, and so on.

You can activate any of the first nine open windows by pressing Alt in combination with
the window number. For example, if you press Alt+2 to make the Watches window
active, any commands you choose will affect that window and the items in it.

The bottom half of the Window menu lists the open windows. To activate a specific
window, open the Window menu and press the window number. If you have more
than nine windows open, the window list will include a Window Pick command;
choose it to open a menu of all the windows open onscreen.

You can also cycle through the windows onscreen by pressing F6 (or choosing
Window | Next). This is handy if an open window’s number is covered up and you
don’t know which number to press to make it active.

Using window panes
If a window has panes—areas of the window reserved for a specific types of data—you

can move from one pane to another by choosing Window | Next Pane or pressing Tab or
Shift+Tab.

As you move from pane to pane, you'll notice that a blinking cursor appears in some
panes and a highlight bar appears in others. If a cursor appears, you can move around
the text using standard keypad commands.

Moving and resizing windows

When you open a new window in Turbo Debugger, it appears near the current cursor
location. If the size or the location of the window is inconvenient, you can use the
Window | Size/ Move command to adjust it. Once you give this command, use the
arrow keys to move the window, or use Shift and the arrow keys to resize the window.

If you want to enlarge or reduce a window quickly, choose Window | Zoom (F5), or click
the mouse on the minimize or maximize box in the upper right corner of the window.

36 Turbo Debugger User’s Guidke

Closing and recovering windows
When you're through working with a window, you can close it by pressing Alt+F3, by

choosing Window | Close, or by clicking the close button in the upper left corner of the
window.

If you close a window by mistake, you can recover it by choosing Window | Undo Close
(Alt+F6). This works only for the last window you closed.

If your program has overwritten your environment screen with output (because you
turned off screen swapping), you can clean it up again with = (System) | Repaint
Desktop. To restore Turbo Debugger’s screen layout to its opening setup, choose the
= (System) | Restore Standard.

SpeedMenus

Each Turbo Debugger window has a special SpeedMenu that contains commands
specific to that window. In addition, individual panes within a window can have
unique SpeedMenus. To access a SpeedMenu in the currently active window (or
window pane), do one of the following;:

* DPress the right mouse button inside the active window (or window pane).

* Press Alt+F10 to open the currently active window SpeedMenu.

* Press Cirl and the highlighted letter of the SpeedMenu command to choose that
command (shortcut keys must be enabled for this to be effective).

Turbo Debugger’s windows

Turbo Debugger uses windows (or views) to display information relating to the
program you're debugging. The many different windows in Turbo Debugger each
display a different type of information.

Although most of Turbo Debugger’s windows are opened from the View menu, several
windows are opened by other means. For example, the Inspector window can be
opened by choosing the Data | Inspect command, or by pressing Ctr/+/ from the Module
window.

The View menu’s windows

The View menu provides the entry point to the majority of Turbo Debugger’s windows.
A brief outline of each of the View menu’s windows is given in the following sections.

Breakpoints window

You use the Breakpoint window to set, modify, or delete breakpoints. A breakpoint
defines a location in your program where the debugger can pause the execution of your
program so you can examine its status.

Chapter 3, Debugging with Turbo Debugger 37

The Breakpoint window contains two panes: the left pane lists all set breakpoints and
the right pane describes the conditions and actions of the breakpoint highlighted in the
left pane. See Chapter 5 for a complete description of the Breakpoint window.

Stack window

The Stack window displays the current state of the program stack, The first function
called is listed on the bottom of window, with each subsequently called function layered
on top. :

You can bring up and examine the source code of any function listed in the Stack
window by highlighting it and pressing Ctrl+/. In addition, you can open a Variables
window that displays all local variables and function arguments by highlighting a
function in the Stack window and pressing Cirl+L. Chapter 6 provides detailed
information on the Stack window.

Log window

The Log window displays the contents of the message log, which contains a scrolling list
of messages and information generated as you work in Turbo Debugger. It tells you
such things as why your program stopped, the results of breakpoints, and the contents
of windows you saved to the log.

You can also use the log window to obtain information about memory usage, modules,
and window messages for your Windows application. For more information on the Log
window, see Chapter 5.

Watches window

The Watches window displays the values of variables and expressions. By entering
expressions into the Watches window, you can track their values as they change during
the program execution. Watches can be easily added to the Watches window by
pressing Cirl+W when the cursor is on a variable in the Module window. See Chapter 6
for more about the Watches window.

Variables window

The Variables window displays all the variables within a given scope of your program.
The upper pane of the window lists global variables and the lower pane shows any
variables local to the current function.

This Variables window is helpful when you want to find a routine or symbol whose
name you can’t fully remember. By looking in the global Symbol pane, you can quickly
find what you want. Chapter 6 describes the Variables window in more detail.

Module window

The Module window is perhaps the most important window in the debugger, because it
displays the source code for the program module you're currently debugging (this
includes any DLLs your program might call). However, for the source code of a module
to be displayed, the module must be compiled with debug information. Chapter 8
describes the Module window and its commands.

38 Turbo Debugger User’s Guide

File window

The File window displays the contents of any disk file; not just program modules as
with the Module window. You can view the file either as raw hex bytes or as ASCII text,
and you can search for specific text or byte sequences. Chapter 8 contains more
information about the File window.

CPU window

The CPU window (described in Chapter 9) displays the current state of the central
processing unit (CPU). This window has six panes showing: the program’s
disassembled machine instructions, the contents of the Windows selecters (in TDW.EXE

only), data as hex bytes, the stack as hex words, the CPU registers, and the CPU flags.

The CPU window is useful when you want to watch the exact sequence of instructions
that make up a line of source code, or the bytes that comprise a data structure. This view
is also used when you want to debug Assembler programs.

Dump window
The Dump window displays the raw hexadecimal contents of any area of memory.
(This window is the same as the Dump pane of a CPU window.)

Using the Dump window, you can view memory as characters, hex bytes, words,
doublewords, or any floating-point format. In addition, the SpeedMenu has commands
to let you modify the displayed data and manipulate blocks of memory. See Chapter 9
for more on the Dump window.

Registers window

The Registers window displays the contents of the CPU’s registers and flags. This
window has two panes, a registers pane and a flags pane. You can change the value of
any of the registers or flags through this window SpeedMenu commands. Chapter 9
provides more information on the Registers window.

Numeric Processor window

The current state of the numeric coprocessor is displayed in the Numeric Processor
window. This window has three panes: one shows the contents of the floating-point
registers, one shows the values of the status flag values, and one shows the values of the
control flag.

This window can help you diagnose problems in routines that use the numeric
coprocessor. To reap the benefits of this window, you must have a good understanding
of how the numeric coprocessor works. See the online file TD_ASM.TXT for more
information about the Numeric Processor window.

Execution History window

The Execution History window (described in Chapter 2) displays machine instructions
or program source lines up to the last line executed. You use this view when you want
to execute code in reverse order. The window shows the following information:

Chapter 3, Debugging with Turbo Debugger 39

* Whether you are tracing or stepping. ‘
» The line of source code for the instruction about to be executed.
e The line number of the source code.

Hierarchy window
The Hierarchy window displays a hierarchy tree of all classes used by the current
module. The window has two panes: one for the class list, the other for the class.
hierarchy tree. This window shows you the relationship of the classes used by the
current module. By using this window SpeedMenu commands, you can examine any

. class’ data members and member functions. See Chapter 11 for more information about
using the Hierarchy window.

Windows Messages window

The Windows Messages window (described in Chapter 10) displays a list of messages
sent to the windows in your Windows program. The panes in this window show the
windows that you've set up for message tracking, the type of messages you're tracking,
and the messages being tracked.

Clipboard window

Turbo Debugger’s Clipboard is used for clipping and pasting items from one debugger
window to another. The Clipboard window shows the items you have clipped and their
item types. See page 43 for more information on Turbo Debugger’s Clipboard.

Duplicating windows
Use the View | Another command on the Views menu to duplicate the following three
windows: the Dump vvindow, the File window, and the Module window.

Using the Another command lets you keep track of different areas of assembly code,
different program files, or different areas of memory.

Other windows

In addition to the windows listed on the Views menu, Turbo Debugger also lets you
access Inspector windows and the user screen.

Inspector windows

An Inspector window displays the current value of a selected variable. Open it by
choosing Data | Inspect or Inspect from a SpeedMenu. Usually, you close this window
by pressing Esc or clicking the close box with the mouse. If you've opened more than
one Inspector window in succession, as often happens when you examine a complex
data structure, you can remove all the Inspector windows by pressing Alt+F3 or using the
Window | Close command.

You can open an Inspector window to look at an array of items or to examine the
contents of a variable or expression. The number of panes in the window depends on
the nature of the data you are inspecting; Inspector windows adapt to the type of data
being displayed.

40 Turbo Debugger User’s Guide

Note

Inspectors display simple scalars (int, float, and so on), pointers, arrays, structures,
unions, classes, and objects. Each type of data item is displayed in a way that closely
mimics the way you're used to seeing it in your program’s source code.

You can create additional Inspector windows by choosing the Inspect command from
within an Inspector window.

User screen

The user screen shows your program’s full output screen. The screen you see is exactly

the same as the one you would see if your program was running directly under
Windows and not under Turbe Debugger.

You can use this screen to check that your program is at the place in your code that you
expect it to be, and to verify that it's displaying what you want on the screen. To switch
to the user screen, choose Window | User Screen. After viewing the user screen, press
any key to return to the debugger screen.

Alt+F5 is the hot key that toggles between the environment and the user screen.

Turbo Debugger’s special features

G

Turbo Debugger has many special features that make debugging easier. To get the most
out of your Turbo Debugger sessions, take the time to become familiar with the
following features:

* Automatic name completion

* Select by typing

* Incremental matching

* Keyboard macro capability

* The Clipboard

* The Get Info text box

* The Attach command (TD32 only)

* The OS Shell command (TD and TD32 only)
* Comprehensive help

Automatic name completion

Whenever an input box prompts you for a symbol name, you can type in just part of the
symbol name and then press Ctrl+N to have Turbo Debugger’s automatic name completion
fill in the rest of the name for you.

The following rules apply to automatic name completion:

* If you have typed enough of a name to uniquely identify it, Turbo Debugger fills in
the rest of it.

+ If the name you have typed so far is not the beginning of any known symbol name,
nothing happens.

Chapter 3, Debugging with Turbo Debugger 41

* If you type something that matches the beginning of more than a single symbol, a list
of matching names is presented so you can choose the one you need.

Note IfREADY... appears in the upper right corner of the screen, it means the symbol table is
being sorted. Ctrl+N won’t work until the ellipsis disappears, indicating that the symbol
table is available for name completion.

Select by typing

A number of windows let you start typing a new value or search string without first
choosing a SpeedMenu command. Select by typing usually applies to the most frequently
used SpeedMenu commands, like Goto in a Module window, Search in a File window,
or Change in a Registers window.

Incremental matching

Turbo Debugger’s incremental matching feature helps you find entries in alphabetical
lists. As you type each letter, the highlight bar moves to the first item starting with the
letters you've just typed. The position of the cursor in the highlighted item indicates
how much of the name you have already typed.

Once an item is selected (highlighted) from a list, you can press Alt+F10 or click the right
mouse button to display the SpeedMenu and choose a command relevant to the
highlighted item. In many lists, you can also just press Enter once you have selected an
item. This acts as a hot key to one of the commonly used local-menu commands.

Keyboard macros

Macros are simply hot keys that you define. You can assign any series of commands and
keystrokes to a single key, and use them whenever you want.

The Macros menu
The Macros command (located on the Options menu) displays a pop-up menu that
provides commands for defining new keystroke macros and deleting ones that you no

longer need. It has the following commands: Create, Stop Recording, Remove, and
Delete AlL

Create
When issued, the Create command starts recording keystrokes to an assigned macro
key. As an alternative, press the Alt+= (Alt+Equal) hot key for Create.

When you choose Create to start recording, you are prompted for a key to assign the
macro to. Respond by typing in a keystroke or combination of keys (for example,
Shift+F9). The message RECORDING will be displayed in the upper right corner of the screen
while you record the macro.

42 Turbo Debugger User’s Guide

Stop Recording

The Stop Recording command terminates the macro recording session. Use the Alf+
(Alt+Hyphen) hot key to issue this command or press the macro keystroke that you are
defining to stop recording.

Do not use the Options | Macro | Stop Recording menu selection to stop recording your
macro, because these keystrokes will then be added to your macro.

Remove

Displays a dialog box listing all current macros. To delete a macro, select it from the list
and press Enfer.

Delete All

Removes all keystroke macro definitions and restores all keys to their original meaning.

The Clipboard

Turbo Debugger has an extensive copy and paste feature called the Clipboard. With the
Clipboard you can copy and paste between Turbo Debugger windows and dialog
boxes.

The items copied to the Clipboard are dynamic; if an item has an associated value, the
Clipboard updates the value as it changes during your program’s execution.

To copy an item into the Clipboard, position the cursor on the item (or highlight it with
the Ins and arrow keys), then press Shift+F3. To paste something into a window or dialog
box from the Clipboard, press Shift+F4 (or use the Clip button in the dialog box) to bring
up the Clipboard’s Pick dialog box.

The Pick dialog box
Pressing Shift+F4 (or a dialog box’s Clip button) brings up the Pick dialog box.

Figure 3.1 The Pick dialog box

EiitdwdenoliZl4 PenColor
Bt 1214 S1

-

The Pick dialog box contains a list of the items in the Clipboard and a set of radio
buttons that lets you paste the items in different ways:

String String pastes the Clipboard item.
Location = Location pastes the address of the Clipboard item.
Contents Contents pastes the contents located at the address of the Clipboard item.

Chapter 3, Debugging with Turbo Debugger 43

To paste an item, highlight it, select how you want to paste it, and click either OK or Paste,
depending on whether you want to edit the entry:

* If you want to edit the entry, choose OK to copy the Clipboard item to the input box.
Once the item is copied, you can edit the entry before pressing Enter.

« If you don’t need to edit the entry, click Paste to copy the Clipboard item to the input
box and to cause the dialog box to immediately perform its function.

The Clipboard window
The Clipboard window (opened with the View | Clipboard command) displays the
entire contents of the Clipboard.

Figure 3.2 The Clipboard window

Each listing in the Clipboard window begins with the Clipboard item type. The item
type is followed with the Clipboard item, and (if the item is an expression) the item’s
value. The following table shows Turbo Debugger’s Clipboard item types:

Table3.2 Clipboard item types

o

E e e
An address without data or code attached
Control flag An 80x87 control flag value

Coprocessor = An 80x87 numeric coprocessor register

CPU code An address and byte list of executable instructions from the Code pane of the CPU

, window

CPU data An address and byte list of data in memory from the Dump pane of the CPU window or
the Dump window

CPU flag A CPU flag value from the Flags pane of the CPU window

CPU register A .re&gister name and value from the Register pane of the CPU window or the Registers
window

CPU stack A source position and stack frame from the Stack pane of the CPU window

Expression An expression from the Watches window

File A position in a file (in the File window) that isn’t a module in the program

Inspector One of the following:

* A variable name from an Inspector window

* A constant value from an Inspector or Watches window
* A register-based variable from an Inspector window

* Abit field from an Inspector window

Module A module context, including a source code position, like a variable from the Module
window ‘

Status flag An 80x87 status flag value

String A text string, like a marked block from the File window

44 Turbo Debugger User’s Guide

When pasting items, be careful to match the Clipboard item type with the type that the
input field is expecting.

The Clipboard window SpeedMenu
The Clipboard window SpeedMenu contains the commands Inspect, Remove, Delete
All, and Freeze.

The Inspect command positions the cursor in the window from which the item was
clipped.

Remove deletes the highlighted Clipboard item or items. De! is a shortcut for the
Remove command.

The Delete All command erases the contents of the Clipboard.

Freeze stops the Clipboard item’s value from being dynamically updated. When you
freeze an item’s value, an asterisk (*) is displayed next to the entry in the Clipboard
window.

Dynamic updating

The Clipboard dynamically updates the values of any items that can be evaluated, such
as expressions from the Watches window. However, the Freeze command on the
Clipboard window SpeedMenu lets you turn off the dynamic updating for specific
Clipboard items. This lets you use the Clipboard as a large Watches window, where you
can freeze and unfreeze items as you like.

The Get Info text box

The File | Get Info command opens the System Information text box, which displays
general system information. Once you’'ve finished examining the system information,
close the text box by pressing Enter, Spacebar, or Esc.

The System Information text boxes display different sets of information, depending on
the operating system in use. The title bar of the System Information text box lists the
operating system: Windows, Win32s, or Windows NT. Figure 3.3 shows the Get Info
text box used with Windows NT.

Figure 3.3 The Get Info text box

All System Information text boxes display the following general information:

Chapter 3, Debugging with Turbo Debugger 45

* The name of the program you're debugging.

* A status line that describes how Turbo Debugger gained control. (A complete listing
of Status line messages is given on page 187.)

¢ The DOS or Windows version number.
¢ The current date and time.

In addition to the general information previously listed, TDW’s System Information text
box provides the following global memory information:

Table3.3 TDW’s System Information text box

Mode Memory modes can be large-frame EMS, small-frame EMS, and non-EMS (extended
memory).
Banked The amount in kilobytes of memory above the EMS bank line (eligible to be swapped to

expanded memory if the system is using it).
Not banked The amount in kilobytes of memory below the EMS bank line (not eligible to be swapped

to expanded memory).
Largest The largest contiguous free block of memory, in kilobytes.
Symbols The amount of RAM used to load you program’s symbol table.

TDW’s System Information text box contains an additional field located under the
Global Memory information. The Hardware field displays either Hardware or Software,
depending on whether or not the TDDEBUG.386 device driver has been installed. For
information on hardware debugging, see page 74.

The System Information text box for Win32s provides the same information as TDW's,
with the exception of the two fields Symbols and Hardware.

In addition to the general information previously listed, the Windows NT System
Information text box displays the following memory statistics:

Table 3.4 Windows NT System Information text box

Memdry Load Factor Diéplays the percénfage of used RAM.

Physical Displays the available and total amounts of your system’s RAM.
Page file Displays the size of the current page file, and the file’s maximum size.
Virtual Displays the available and total amounts of virtual memory.

The Attach command

The File | Attach command lets you connect TD32 to a process that’s already running
under Windows NT. This command is useful when you know where a program
encounters problems, but are having difficulties reproducing the problem when the
program runs under the debugger. By running your program up to the point of
difficulty, and then attaching to it, you can start your debugging session at the point
where things begin to go wrong,.

46 Turbo Debugger User’s Guide

When you issue the File | Attach command, the Attach to and Debug a Running Process
dialog box opens.

Figure 3.4 The Attach to and Debug a Running Process dialog box

Srur
“WOW Exec

To attach to a running process,

1 Run the process you want to debug.

2 Start TD32.

3 Choose File | Change Dir to change to the directory of the running process.

4 Choose File | Attach to open the Attach to and Debug a Running Process dialog box.
5

Check or clear the Stop on Attach check box according to the following criteria:

* Check the Stop on Attach check box if you want Turbo Debugger to pause the
process” execution when you attach to it.

» Clear the Stop on Attach check box if you don’t want to pause the process when
you attach to it.

6 Choose a process from the Processes list box (or enter a process identification number
into the Process ID input box), and choose OK.

If the process contains debug information, and Turbo Debugger can find the source
code, then the Module window opens with the cursor positioned at the instruction
pointer, otherwise the CPU window opens. However, if the process is executing
Windows code when you attach to it, then the cursor is positioned at the beginning of
the program.

Once you attach to a running process, you can access Turbo Debugger and debug the
process as you normally would.

If you disconnect Turbo Debugger from the running process while it's running (by
either resetting the program (Ctrl+F2), exiting Turbo Debugger, or loading a new
program), the process terminates.

The OS Shell command

The File | OS Shell command, found in TD and TD32, works with DOS and the
Windows NT operating systems. When you issue this command, Turbo Debugger
opens a command prompt. To return to the debugger from the command prompt shell,
type Exit.

Chapter 3, Debugging with Turbo Debugger 47

Getting help

Turbo Debugger offers several ways to obtain help while you're in the middle of a
debugging session:

* You can access an extensive context-sensitive help system by pressing F1. Press F1
again to bring up an index of help topics from which you can select what you need.

* An activity indicator in the upper right corner always displays the current activity.
For example, if your cursor is in a window, the activity indicator reads READY; if there’s
a menu visible, it reads MENU; if you're in a dialog box, it reads PROMPT. Other activity
indicator modesare SIZE/MOVE, MOVE, ERROR, RECORDING, REMOTE, WAIT, RUNNING, HELP, STATUS,
and PLAYBACK.

* The status line at the bottom of the screen always offers a quick reference summary of
keystroke commands. The line changes as the context changes and as you press Alf or
Ctrl. Whenever you are in the menu system, the status line offers a one-line synopsis
of the current menu command.

Online help
Turbo Debugger offers context-sensitive help at the touch of a key. Help is available
anytime you're in a menu or window, or when an error message or prompt is displayed.

Press F1 to bring up a Help screen showing information pertinent to the current context
(window or menu). If you have a mouse, you can also bring up help by clicking F1 on
the status line. Some Help screens contain highlighted keywords that let you get
additional help on that topic. Use the arrow keys to move to any keyword and then
press Enter to get to its screen. Use the Home and End keys to go to the first and last
keywords on the screen, respectively.

You can also access the onscreen help feature by choosing Help from the menu bar
(Alt+H).

To return to a previous Help screen, press Alt+F1 or choose Previous Topic from the Help
menu. From within the Help system, use PgUp to scroll back through up to 20 linked
help screens. (PgDn works only when you're in a group of related screens.) To access the
Help Index, press Shift+F1 (or F1 from within the Help system), or choose Index from the
Help menu. To get help on Help, choose Help | Help on Help. To exit from Help, press
Esc.

The status line
Whenever you're in Turbo Debugger, a quick-reference help line appears at the bottom
of the screen. This status line always provides help for the current context.

When you're in a window, the status line shows the commands performed by the
function keys:

Figure 3.5 The normal status line

48 Turbo Debugger User’s Guide

If you hold down the Al key, the commands performed by the Alf-key combinations are
displayed:

Figure 3.6 The status line with Alt pressed

Rlt: F2-Bkpt at F3-Close F4-Back Fs-User F6-Undo F7-Instr F8-Rtn F?-To F1B-SMenul

If you hold down the Cirl key, the commands performed by the Cirl-key combinations are
displayed on the status line. Because this status line shows the keystroke equivalents of
the current SpeedMenu commands, it changes to reflect the current window and pane.
If there are more SpeedMenu commands than can be described on the status line, only
the first keys are shown.

Figure 3.7 The status line with Ctrl pressed

trl: 1 Inspect

Whenever you're in a menu or dialog box, the status line displays an explanation of the
current item. For example, if you have highlighted View | Registers, the status line says
Open a CPU registers window.

Chapter 3, Debugging with Turbo Debugger 49

50 Turbo Debugger User’s Guide

Debugging a simple example

This chapter introduces you to Turbo Debugger’s basic features by guiding you through
a simple debugging session. After completing the example debugging session, you'll be
able to:

Start Turbo Debugger and load your program into the debugger.
Run the program.

Single-step through source code.

Set breakpoints to pause your program’s execution.

Set conditional breakpoints.

Set watches on program variables.

Examine the values of arrays and data structures.

Change the value of variables.

Test bug fixes.

The Simple Paint program

The example program, titled “Simple Paint,” is a Windows program that lets you draw
rectangles, lines, and ellipses. To install the example program files,

1
2

Run the Borland C++ 4.5 installation program.

Click the Customize BC 4.5 Installation button to open the Customize BC 4.5
Installation dialog box.

Click the Example Files button to open the Borland C++ Example Options dialog box.

4 Check the Misc. Windows Examples check box.
5 Click the Install button to install the example program files into the

EXAMPLES\WINDOWS\TDW subdirectory under your Borland C++ directory.

The Simple Paint program consists of the source-code file S PAINT.C and the
executable program S PAINT.EXE. In addition to these two files, the example program

Chapter 4, Debugging a simple example 51

_ also contains all the files you'll need to create a buggy version of the program for the
sample debugging session: MAKEFILE, TDWDEMO.H, TDWDEMO.RC,
TDWDEMO.ICO, TDWDEMO.IDE, and TDWDEMO.BUG.

Although the example program is not particularly useful, it effectively demonstrates
how to debug a program using Turbo Debugger. In addition, this chapter shows you
how to overcome some of the obstacles you might encounter while debugging
Windows programs.

Running Simple Paint

Before you begin debugging the example program, run the working version of the
program (S_PAINT.EXE) to get an idea of what the program does:

1 Choose File | Run from the Windows Program Manager.

2 Type \<YourBC++Directory>\EXAMPLES\WINDOWS\TDW\S_PAINT into the Command Line
input box.

3 Choose OK.

When you run the program, it displays a blank window titled “Simple Paint.”
Experiment with the program by dragging the mouse to draw lines, rectangles, and
ellipses using the three available colors and three different pen sizes. Notice that when
you resize or minimize the Simple Paint window, the figures you've drawn are
remembered and correctly redrawn by the program. When you've finished
experimenting with the program, click the Quit menu item to exit the program.

Once you have an idea of what the program does, examine S_PAINT.C in Borland’s
C++ Integrated Development Environment (or your favorite program editor) to see how
the program works.

The beginning of the program contains the prototypes of several user-defined functions.
The functions that do most of the work in Simple Paint are DoLButtonDown (which
does the preparation work when you press the left mouse button to begin drawing),
DoMouseMove (which draws the shapes as you move the mouse), and DoLButtonUp
(which cleans up when you’'ve finished drawing a shape).

Compiling TDWDEMO

Now that you're familiar with the working version of the program, you can compile the
buggy version of the program and begin the example debugging session. First, make a
working copy of the buggy program by copying TDWDEMO.BUG to TDWDEMO.C
using the following DOS commands:

cd \<YourBC++Directory>\examples\windows\tdw
copy tdwdemo.bug tdwdemo.c

Now compile the example program using either DOS commands or Borland’s C++
Integrated Development Environment (IDE).

52 Turbo Debugger User’s Guide

Compiling TDWDEMO using DOS commands

To compile the example program from a DOS command line, issue the following DOS
command from the \ <YourBC++Directory>\EXAMPLES\WINDOWS\TDW directory:

make -DWIN16 -DDEBUG

Note To make a 32-bit version of the example program, substitute the make switch -DWIN32 for
-DWIN16.

Compiling TDOWDEMO using the IDE

Follow these steps to compile the example program using Borland’s C++ IDE:

1 Load the IDE by double-clicking the Borland C++ icon in the Borland C++ 4.5
program group.
2 Choose Project | Open Project to access the Open Project File dialog box.

3 In the Directories list box, navigate to the directory
\<YourBC++Directory>\EXAMPLES\WINDOWS\TDW.

4 Double-click the file TDWDEMO.IDE in the File Name list box.
The Project window opens at the bottom of the IDE.
5 Choose Project | Build All to compile the example program.
6 Choose OK when the project finishes building to close the Compile Status dialog box.

Debugging TDWDEMO

When you compile the example program for the first time, the compilation ends with a
couple of warnings and a string of error messages. Although the compiler will generate
an executable file if your program has warnings, it will not create an executable file if
your program has errors.

The first error message reported is
Error TDWDEMO.C 171: Statement missing ;

You have now stumbled across the first bug, a program syntax error—the program
source code doesn’t conform to the syntax of your language compiler.

Syntax errors are the easiest program bugs to find because your language compiler flags
each syntax error with an error message. Each error message displays the source file
containing the error (in this case, TDWDEMO.C), the line number on which the error
occurs (in this case, line 171), and the reason why the compilation failed (in this case, a
semicolon is missing). Although the compiler might not find the exact cause or location
of the program error, the error message usually gives enough information to help you
find the bug in the program’s source code. Because of this, you don’t need Turbo
Debugger to find or fix syntax errors.

To fix the first syntax error,

Chapter 4, Debugging a simple example 53

1 Load TDWDEMO.C into your program editor and navigate to line 171. (If you're
using the IDE, double-click on the first error message in the Message window.)

When you arrive at line 171, you'll find that it cannot contain the error; line 171
contains only a closing brace. However, because the compiler could not get past this
point during compilation, you can deduce that the error must be located in one of the
preceding lines of code.

If you examine line 170, you'll see a call to the function LineTo that is missing the
statement-closing semicolon.

Insert a semicolon after the LineTo function call to fix the first program bug.
Save the change to the TDWDEMO.C file.

If you're not using the IDE, exit your program editor.

g BN

Recompile the program using the steps given in the “Compiling TDWDEMO”
section on page 52.

The program now compiles without any errors and the executable file TDWDEMO.EXE
is created. This bug fix demonstrates two things:

* A single syntax error can generate several compiler errors.

* Syntax errors usually cause the compiler to fail on the line immediately following the
one that contains the error.

Running the buggy program

Now that you've corrected the syntax error, you have an executable program that can be
run under Windows. You can run TDWDEMO through either the Program Manager or
by creating a program icon. Be careful when you do this, however, because it might
hang your system.

To run the program through Windows’ Program Manager:
1 Choose File | Run from the Program Manager.

2 Type \<YourBC++Directory>\EXAMPLES\WINDOWS\TDW\TDWDEMO into the Command Line
input box.

3 Choose OK.

To create a program icon for TDWDEMO:
Open the Borland C++ 4.5 program group in Windows.
Choose File | New from the Windows Program Manager.

Choose the Program Item radio button and choose OK.

Press Tab.

Type \<YourBC++Directory>\EXAMPLES\WINDOWS\TDW\TDWDEMO into the Command Line
input box.

1

2

3

4 Enter Simple Paint into the Description input box.
5 :

6

54 Turbo Debugger User’s Guide

7 Choose OK.
The Simple Paint icon is added to the Borland C++ program group.
8 Double-click the Simple Paint icon to run the program.

When you run this version of the program, the Simple Paint window comes up but
nothing else happens. You can’t draw any shapes, you can’t access any program menus,
and you can'’t close the window. In fact, you'll have to reboot your system to terminate
the program.

This is a bug that Turbo Debugger can help you resolve. After restarting your system,
run Turbe Debugger (as described in the “Starting Turbo Debugger” section on page 18)
and load TDWDEMO.EXE (using the method described in “Loading your program into
the debugger” on page 20).

When you load TDWDEMO.EXE into Turbo Debugger, the debugger activates the
Module windows and places the cursor at the WinMain function, as shown in
Figure 4.1.

Figure4.1 TDWDEMO loaded into Turbo Debugger

_Brea
le:
* function WinMain
H#pragma argsused
> int PRSGHL WinMain(HINSTANCE hlndtance, HINSTANCE hPrevinstance.
LPSTR 1pszCmdLine, int nGmdShow)

<

UNDCLASS wndClass;

MBG nsgs

HUWND hind;

/%

» Register window class style if first

* instance of this program.

*/
if (*hPrevinstance>

CGS_HREDRAYW i CS_UREDRAY;

Stepping through program code

Now you're ready to begin debugging the program. However, you don’t want to start
by running the program because you know that this would hang your system. Instead,
you must try to find this error by stepping through the program code:

1 Press F7 (or choose the Run | Trace Into command) to execute the first line of code.

This command positions the instruction pointer at the next line of executable code
(marked with a bullet in the left column of the Module window), which contains the
statement if (!hPrevinstance). This line begins the block of code that initializes and
registers the window class of the application’s parent window.

Chapter 4, Debugging a simple example 55

2 Press F7 twelve times to step through the program to the line of code containing the
CreateWindow call. (Make sure the program finishes each step before you press F7 to
execute the next step.) :

Executing this series of steps confirms that the window is registered correctly.

3 Press F7 three more times to create the window, display the window onscreen, and
validate the window.

The cursor now rests on the line that contains the while statement that marks the
beginning of the message loop (the lines of code where the program receives and
dispatches window messages).

4 Press F7 twice to execute the calls to GetMessage and TranslateMessage.

At this point, the instruction pointer returns to the while statement containing the
GetMessage call.

Careful examination reveals the problem: the previous received message was never
dispatched. Although the program receives messages from the message queue, the call
to DispatchMessage is outside the message loop block. This bug causes the program to
hang because it never gets a chance to process the messages that are sent to it.

Fixing a bug

When you find a bug as serious as this one, you must fix it before you can continue
~ debugging. To fix this program bug,

1 Exit Turbo Debugger.
2 Load TDWDEMO.C into your program editor and navigate to line 93.

If you're using the IDE, open the TDWDEMO project and navigate to line 93.
3 Restructure the message loop so it reads as follows:

while (GetMessage(&msg, NULL, 0, 0))
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return 0;
4 Save the new file.
5 If you're not using the IDE, exit the editor.

6 Recompile the program using the methods described in “Compiling TDWDEMO”
on page 52.

Note The “Compiling TDWDEMO using the IDE” section on page 53 explains how to open
and compile a project.

56 Turbo Debugger User’s Guide

Fixing warnings

Compile the program again. This time, you don’t receive any error messages, but you
still receive the warnings. In spite of the warnings, the compiler generates the executable
file TDWDEMO.EXE.

Now when you run the program (using the steps described in “Running the buggy
program” on page 54), it runs without hanging the system. You can draw different
colored lines, rectangles, and ellipses. However, you'll soon discover a number of
serious problems. In fact, there are so many problems that it might be difficult to figure
out which one to fix first.

In this case, the best place to start is with the compiler warning:
Warning tdwdemo.c 164: Possibly incorrect assignment

Although you can sometimes ignore compiler warnings, you must first know the cause
of the warnings so you can determine if will affect the behavior of your program. For
example, the linker warning can be ignored because it only notifies you of the absence of
a .DEF file.

To find the cause of the compiler warning, open TDWDEMO.C in your program editor
and navigate to line 164, where you'll find the following code:

If (Slope = 1)

This code reveals a common C programming error: the assignment operator (a single
equal sign) was used where an equality operator (a double equal sign) was needed. This
programming error causes the condition in the if statement to always evaluate true (the
value 1 can always be assigned to the variable Slope) and the else block of the if- then-else
statement never gets executed.

This warning cannot be ignored; you must fix the problem before continuing:

1 Open TDWDEMO.C in your program editor and navigate to line 164 (if you're using
the IDE, double-click on the warning in the Message window).

2 Modify the source code so the if statement reads as follows:
If (Slope == 1)
3 Save the program change.
4 Recompile the program.
The program now compiles without errors or warnings.

5 Run the program to see the effect of your latest fix.

Stepping into the message loop

Test the program again: you'll find that things work better, but the program is still not
perfect. The shapes that appear onscreen aren’t the same shapes you're drawing, but
when you resize the window, the correct shapes appear.

Again, you can use Turbo Debugger to find the cause of these problems:

Chapter 4, Debugging a simple example 57

1 Reload the program into Turbo Debugger (if you're in the IDE, you can choose the
Tool | TDW command to transfer to Turbo Debugger). ‘

The following message appears: Restart info is old, use anyhow?

2 Click No to discard the old session-state information (for more information on
session-state files, see “Restarting a debugging session” on page 22).

The screen shown in Figure 4.1 is displayed.
3 Step to the message loop on line 93 by pressing F7 sixteen times.
Now you’'re ready to see how the program handles the messages passed to it.

4 Press F7 three times to execute the message loop functions TranslateMessage and
DispatchMessage.

The instruction pointer returns to the beginning of the message loop.
5 Press F7 three more times.
Again the instruction pointer is placed at the beginning of the message loop.

At this point, you're trapped in the message loop. To get out of the loop, you must run
your program so that it will generate window messages that can be processed by
WndProc.

Note If you step into the message loop using F7 or F8, you'll be trapped in the loop until you
press F9 to run out of the loop. However, before pressing F9 to run the program, you
must set execution controls so that Turbo Debugger can regain control from the program
after it starts running. Execution controls consist of items such as breakpoints and
messagepoints.

Setting breakpoints

When you set a breakpoint in your code, it’s best to position the breakpoint just before
the area where you think there’s a bug. If you have an idea of where your program runs
into trouble, you can use a breakpoint to pause your program’s execution before it hits
the trouble spot. When your program pauses, control is given to Turbo Debugger and
you can use its features to monitor your program’s behavior.

To figure out where to place a breakpoint in TDWDEMO.C, you must focus on a single
bug. With TDWDEMO, the most obvious bug shows itself as soon as you move the
mouse to draw a shape. By reviewing the source code, you can see that the function
DoMouseMove draws the shapes. Knowing this, you can place a breakpoint on the
DoMouseMove function so that Turbo Debugger will gain control when this function is
called:

1 With Turbo Debugger’s Module window active, press Ctrl+S (or choose the Search
command from the Module window SpeedMenu) to bring up the Enter Search String
input box.

2 Type DoMousetiove, and press Enter to search for the DoMouseMove function
definition.

The cursor moves to the DoMouseMove function call.

58 Turbo Debugger User’s Guide

3 Press Cirl+N (or choose the Next command from the Module window SpeedMenu) to
repeat the search for the function definition.

The cursor moves to the comment section for the DeMouseMove function.

4 Press Cirl+N again to bring the cursor to the definition of DoMouseMove (line 375 in
TDWDEMO.C).

Use one of the following methods to place a breakpoint at the beginning of the
DoMouseMove function:

e Press F2.
+ Choose Breakpoints | Toggie.
¢ (lick in either of the two leftmost columns of the Module window.

When you set the breakpoint, the line containing the breakpoint changes colors.

After setting the breakpoint, run the program by pressing F9. The Simple Paint window
is displayed.

Now as soon as you move the mouse, the breakpoint activates and the program’s
execution pauses at the beginning of the DoMouseMove function. However, this isn’t
exactly what you intended because you need the breakpoint to pause the program just
before the program gets into trouble. In this case, you need Turbo Debugger to gain
control just as you begin to draw a shape.

To get the proper result from the breakpoint, you must modify it so that it activates only
when a shape is being drawn. You can do this by setting a conditional breakpoint.

Creating a conditional breakpoint
In the Simple Paint program, the static variable mouseDown is used to indicate whether
or not a shape is being drawn; when you're drawing a shape, mouseDown equals 1.

With this information, you can create a conditional breakpoint that pauses the program
on DoMouseMove only when you're drawing a shape:

1 Open Turbo Debugger’s Breakpoints window (View | Breakpoints).
2 Ifit’s not already highlighted, highlight the breakpoint listed as _DoMouselove.

3 Press the right mouse button inside the left pane of the Breakpoints window to open
the Breakpoint window SpeedMenu.

4 Choose Set Options to open the Breakpoint Options dialog box.
5 Click the Change button to open the Conditions and Actions dialog box.

6 Click the Expression True radio button and enter the following expression into the
Condition Expression list box:

mouseDown ==
7 Choose OK to exit the Conditions and Actions dialog box.
8 Choose OK to exit the Breakpoint Options dialog box.

Chapter 4, Debugging a simple example 59

The Breakpoints window displays the newly created conditional breakpoint, as
shown in Figure 4.2.

Figure 4.2 Breakpoints window with a conditional breakpoint

1o

sdem
* HOTXORPEN turns hlack on black white. black on white hlack
* and white on white white.

|{» void DoMouseMove (HWND h¥nd. LONG 1Param>
<
HDC hdc;

if <{mouseD
<

SaveROP = SetROP2Chde,. RZ2 _NOTHRORPEN);

DrawShape Chdc,. Shapes[ShapeNumherl.Points. left,
Shapes[ShapeNumber].Points . top, oldx. oldy.
Shapes[ShapeNumber].Shape .

Shapes [ShapeNumber1.Penllidth.

9 C(lose the Breakpoints window by clicking the close button in the window’s upper
left corner.

Once you've set the conditional breakpoint, press F9 to run the program.

When you run the program this time, you can move the mouse freely without pausing
the program’s execution. However, as soon as you press the mouse button to draw a
shape, the breakpoint activates and causes Turbo Debugger to display the following,
message:

Breakpoint at _DoMouseMove "mouseDown == 1" true
Choose OK to dismiss the message.

Turbo Debugger now gains control and you can begin stepping through the
DoMouseMove function:

1 Press F7 four times to bring the instruction pointer to the DrawShape function call.
2 Press F8 to “step over” this function call.

Because you're not interested in examining the function DrawShape, you can run
this function without stepping into it by pressing F8. However, if step into a function
by accident (using F7), you can run that function to its end by choosing the Run | Until
Return command. From there, you can continue single-stepping.

After stepping over the call to DrawShape, the instruction pointer is placed at thé
following line of code:

0ldy = LOWORD(1Param);

This line of code places the low-order word of the [Param argument into the variable oldy
to set the y starting coordinate for the shape. This line is interesting because the program
seems to be drawing the shape from the wrong starting position.

60 Turbo Debugger User’s Guide

By tracing the [Param argument back to its origin, you can find that it was passed to the
program as part of the WM_MOUSEMOVE window message. If you look up the
definition of WM_MOUSEMOVE, you'll see that its [Param argument represents x and
y coordinates, divided into a low-order word and a high-order word. However, the low-
order word represents the x coordinate, not the y coordinate as the program implies. In
the program, the variables oldy and oldx are incorrectly assigned each other’s values.

This program bug causes the program to draw incorrect shapes every time you move
the mouse. To fix the bug, exit Turbo Debugger and use your editor to modify lines 395
and 396 of TDWDEMO.C to read as follows:

vidx = LOWORD(1lParam);
0oldy = HIWORD(lParam);

After saving your program changes, recompile TDWDEMO.C.

Setting watches and inspecting data structures

The new bug fix lets you draw shapes, but there are still some problems that prevent the
program from working smoothly. When you experiment with the program now, you'll
find that extra lines appear when you release the left mouse button after drawing a line.
However, the extra lines disappear when you resize the window.

Inspecting the source code reveals that the user-defined function DoLButtonUp
processes the program’s WM_LBUTTONUP window messages (these messages are
sent to your program whenever you release the left-mouse button after drawing a
shape). Because of this, the DoLButtonUp function might be a good place to find the
next bug.

Run Turbo Debugger and load TDWDEMO.EXE to begin searching for this bug. When
you load the program, the following message is again displayed by Turbo Debugger:

Restart info is old, use anyhow?

This message pertains to the session-state file that contains the settings from your last
debugging session. In your last session, you created a conditional breakpoint in the
DoMouseMove function. Because you no longer need this breakpoint, click the No
button to close the message box without loading this breakpoint setting.

Next, navigate to the DoLButtonUp function:

1 With the Module window active, press Cirl+S (or choose the Search command from
the Module window SpeedMenu) to bring up the Enter Search String input box.

2 Type DoLButtonUp and choose OK.
The cursor moves to the DoLButtonUp function call.

3 Press Cirl+N (or choose the Next command from the Module window SpeedMenu)
two times to move the cursor to the DoLButtonUp function definition on line 316 of
TDWDEMO.C.

Setting watches
You can now set watches to monitor the oldx and oldy function variables:

Chapter 4, Debugging a simple example 61

1 Press Cirl+F7 (or choose Data | Add Watch) to open the Enter Expression to Watch
input box.

2 Type oldx and choose OK to set the first watch.

3 Use the down-arrow key to move the cursor to line 361 of TDWDEMO.C.
This line contains the code oldy = -1;.

4 Use the mouse to highlight the variable oldy.

5 Press Ctrl+W (or choose Watch from the Module window SpeedMenu) to add the
variable oldy to the Watches window.

The Watches window at the bottom of your display now shows the watches oldx and
oldy, which both have a value of -1.

Running to the cursor location

You're now ready to run the program and examine the workings of the DoLButtonUp
function. To pause the program’s execution inside this function, run the program to the
cursor location:

1 Move the cursor to the SetRect function call on line 328 of TDWDEMO.C.
2 Run the program to this location by choosing Run | Go To Cursor (or by pressing F4).

When you run the program, its screen appears. To reproduce the bug you're working
on, draw a negatively-sloped line that starts in the lower right corner of the screen and
ends in the upper left corner of the screen. As soon as you release the left-mouse button,
Turbo Debugger regains control at the SetRect call, which is in the DoLButtonUp
function.

Inspecting compound data structures

Because the DoLButtonUp function is called only after you've finished drawing a
shape, you can inspect the Shapes data structure to see how the program stores the line
you've just drawn:

1 Use the — key to place the cursor under the S in Shapes on the line containing the
Cursor.

2 Press Clrl+l (or choose Inspect from the Modules window SpeedMenu) to open an
Inspector window on the Shapes array.

The Inspector window opens and displays the contents of the array Shapes. Each
element in the Shapes array is a structure of the SSHAPE data type.

3 Use the | key to highlight the first element in the array (array element [0] holds the
data pertaining to the line you've just drawn).

4 Press Cirl+D (or choose Descend from the Module window SpeedMenu) to replace the
current Inspector window with an Inspector window that displays the data structure
of the first Shape array element.

If the new Inspector window is covering the Watches window, uncover the Watches
window by moving the Inspector window to a different screen location.

62 Turbo Debugger User’s Guide

The Watches window shows the variables oldx and oldy, which correspond to the x and
y starting coordinates of your line. The ending point of your line is contained in the
Points data member of the SSHAPES data structure, which can be seen by examining the
Inspector window.

Figure 4.3 Inspector and Watches windows

1le s o File:
rectangle for the shape.

: - goid DoLButtonUpCHUND hiind, . LONG 1Param)

if {mouseDoun == @)
retarn;

ReleaseCapture(d;

/%
#* Por pectangles to work wi
* they must he stoved as 1
*s :

SetRect(&ShapesIShapeNunber S;. s
minSShapes [ShapeNunber1.Points..left, LOWORD(1Parand).
nintShapes [ShapeNunber 1. Points.top. HIWORD{1Paramnd) .

Now, you can watch the program’s behavior by monitoring the Inspector window:
1 Press F7 to step past the SetRect function call.

The Points data member in the SSHAPES data structure has been updated to contain
the starting and ending points of the line you've just drawn.

2 Press F7 two more times to execute the if statement and the statement that follows it.

These two statements set the value of the Slope variable if the shape drawn was a line.
The second statement uses the ternary operator to set the Slope variable to 1 if the slope
of the line is positive, and to 0 if the slope of the line is negative.

You can see the result of the operation by examining the Slope variable in the Inspector
window—the slope of the line has been set to 1. This setting indicates a positively-
sloped line. However, the line you drew was negatively-sloped. You have just
uncovered another bug in the program.

By examining the condition in the ternary expression, you can see that the condition is
correct, but the assignments at the end of the statement are switched. The last line in the
statement should read as follows:

HIWORD (1Param)) ? 1 : 0;

Fix this bug by exiting Turbo Debugger and editing the source code on line 343 in
TDWDEMO.C so that it matches the preceding line of code. After saving your change,
recompile the program.

Now when you run the program, things seem to work better. You can draw lines that
start from any corner of the screen and you can change colors and line thicknesses. You
can also draw ellipses and rectangles. However, overlapping rectangles aren’t drawn

Chapter 4, Debugging a simple example 63

correctly and if you draw three shapes and resize the screen, only two shapes get
redrawn. Indeed, there’s still one more bug left in the code.

Producing the bug in Turbo Debugger

By closely watching the behavior of the program, you can find a place to begin the next -
bug search. One part of the bug shows itself whenever the program redraws the screen.
In the program, the function DoPaint processes the WM_PAINT messages, which in
turn causes the program to redraw the screen. When you inspect this function’s code,
you'll discover that the for loop on line 242 does the actual drawing of the shapes.

However, the condition in the for loop looks a bit suspicious; it appears to terminate the
loop before the last shape is drawn. Because you can modify the for loop during the
execution of your program, you can use Turbo Debugger to test your theory about why
things are going wrong. To do this, run the program once to demonstrate the bug and
then run it a second time to see if you can fix the problem:

1 Run Turbo Debugger and load TDWDEMO.C.

2 Click No to dismiss the Restart info is old, use anyhow? message.

3 Run the program by pressing F9.

4 Draw three shapes that overlap each other: a line, an ellipse, and a rectangle.
5 Resize the window.

The bug should be now be apparent—only two of the original three shapes are
redrawn.

6 Click Quit to exit the program. ‘
Turbo Debugger displays the message: Terninated, exit code 0.
7 Choose OK.

Resetting the program

You can now test your fix by modifying the value of ShapeNumber to see if that changes
the behavior of the program.

1 Press F9 to run the program.
Turbo Debugger issues the following message:
Program already terminated, reload?
2 Click Yes to reload the program from disk.

The Simple Paint window now opens, but everything seems to be broken; you can’t
draw any shapes. However, this behavior is a result of the way that Windows interacts
with Turbo Debugger. To fix this, press the Al key.

Note When you reset a program (either after it terminates or after using the Run | Program
Reset command) and then run it, you must press the Alt key before Windows resumes
passing mouse messages to the program.

64 Turbo Debugger User’s Guide

Click Quit to exit the program, then choose OK to dismiss the Terminated, exit code 0
message.

Changing the values of variables

You're now ready to resume testing. Press Cirl+F2 to reset the program. Next, set a
breakpoint that activates when the program processes a WM_PAINT window message:

1 Navigate to the for in the DoPaint function (line 242 of TDWDEMO.C).
2 Press F2 to set a breakpoint on that line.

You now need to modify the breakpoint so that it activates after DoPaint is called for
the fourth time. This will pause the program just before you resize the program’s
screen.

3 Choose View | Breakpoints to open the Breakpoints window.
4 Ifit's not already highlighted, highlight the breakpoint listed as #TDWDEMO#242.

5 Choose Set Options on the Breakpoints window SpeedMenu to open the Breakpoint
Options dialog box.

6 Press the Change button to open the Conditions and Actions dialog box.

7 Type 4 into the Pass Count input box, and choose OK to return you to the Breakpoint
Options dialog box.

This sets the Pass Count to 4, which causes the breakpoint to activate the fourth time
it's encountered during the program’s execution.

8 Press Enter two times to return you to the Module window.
Now run the program to test your theory of the bug.
9 Press F9 to run the program.

10 Press the Alt key to tell Windows to resume passing mouse messages to your
program.

11 Draw three overlapping shapes, a line, an ellipse, and a rectangle.

12 Resize the screen.

The breakpoint you set has now been encountered for the fourth time and Turbo
Debugger regains control. The Module window opens with the cursor positioned on
the for loop, and you're ready to modify the value of ShapeNumber:

13 Use the mouse to highlight ShapeNumber in the for loop.
14 Choose Data | Evaluate/Modify to open the Evaluate/Modify dialog box.
ShapeNumber is inserted onto the Expression input boex.

15 Press the Eval button to evaluate the expression.

Chapter 4, Debugging a simple example 65

When you press the Eval button, the Result list box displays the current value of the
expression being evaluated. In this case, the Result list box shows that the current value
of ShapeNumber is 2.

To force the loop to draw all shapes, change the value of ShapeNunber to 3 using the
Evaluate/Modify dialog box:

1 Enter 3 into the New Value input box in the Evaluate/Modify dialog box.
2 Press the Modify button to have the change take effect.
The Result list box now shows the new value of ShapeNumber.

3 Close the Evaluate/Modify dialog box by clicking its close button in the upper left
corner of the window.

4 Press F9 to resume running the program.

When the program’s execution resumes, all three shapes are correctly redrawn. Your
bug fix worked perfectly. However, the patch you made to the program works only for
this one WM_PAINT message. The next time you draw a shape or resize the window,
the bug will show up again. To correct this final program bug, you'll need to exit Turbo
Debugger and fix the source code.

This last bug is actually a common C programming mistake: the condition in the for
loop is off by one. You can fix this last bug by changing the for loop on line 242 in
TDWDEMO.C to read as follows:

for (i = 0; 1 <= ShapeNumber; ++1)
~ After you compile the program this time, you'll find it runs without errors.

You've now complete the sample debugging session and should be able to use

Turbo Debugger’s basic features. However, this chapter introduces only some of the
more powerful features of the debugger. To get the most out of Turbo Debugger, skim
the rest of the book to get a general idea of the other features that you can use while

debugging your programs.

66 Turbo Debugger User’s Guide

Setting and using breakpoints

Breakpoints are tools that you use to control the execution of your program. By setting
breakpoints in the areas of your program that you want to examine, you can run your
program at full speed, knowing that its execution will pause when the breakpoints are
encountered. Once your program’s execution is paused, you can use Turbo Debugger’s
features to examine the state of your program.

In this chapter, you'll learn how to set the following types of breakpoints:
* Simple breakpoints

* Expression-true breakpoints

* Changed-memory breakpoints

* Global breakpoints
* Hardware breakpoints

This chapter also describes the Log window (see page 81), which lets you “take notes”
during your debugging session.

Breakpoints defined

Turbo Debugger defines a breakpoint in three ways:

* The location in the program where the breakpoint is set.
* The condition that allows the breakpoint to activate.
* The action that takes place when the breakpoint activates.

Breakpoint locations

A breakpoint is usually set on a specific source line or machine instruction in your
program. When set at a specific location, Turbo Debugger evaluates the breakpoint when
your program’s execution encounters the code containing the breakpoint.

Chapter 5, Setting and using breakpoints 67

However, a breakpoint can also be global in context. Turbo Debugger evaluates global
breakpoints after the execution of each line of source code or machine instruction. Global
breakpoints let you pinpoint where in your program a variable or pointer gets modified.

Breakpoint conditions

When your program’s execution encounters a breakpoint, Turbo Debugger checks the
breakpoint’s condition to see if the breakpoint should activate. If the condition evaluates
to true, the breakpoint activates, and its actions are carried out.

The condition of a breakpoint can be any of the following:

* Always activate when the breakpoint is encountered.
* Activate when an expression evaluates to true.
* Activate when a data object changes value.

In addition to the breakpoint condition, a pass count can be specified, requiring that a
breakpoint be encountered a designated number of times before it activates.

When you're debugging programs written for Windows NT, you can also set
breakpoints that relate to specific program threads. For more on setting breakpoints on
program threads, see the section “Setting breakpoints on threads” on page 80.

Breakpoint actions

When a breakpoint activates, it performs a specified action. A breakpoint’s action can be
any of the following:

* Pause the program’s execution.
* Log the value of an expression.
* Execute an expression.

* Enable a group of breakpoints.
* Disable a group of breakpoints.

The Breakpoints window

The Breakpoints window, opened with the View | Breakpoints command, lists all
currently set breakpoints.

Figure 5.1 The Breakpoints window

Breakpoints List pane Breakpoints Detail pane

The Breakpoints window has two panes. The List pane (on the left) lists the addresses of
all currently set breakpoints. The Detail pane (on the right) displays the condition and

68 Turbo Debugger User’s Guide

action settings of the breakpoint that’s highlighted in the List pane. (Although a break-
point can have several sets of conditions and actions, the Detail pane displays only its
first set of details.)

The Breakpoints window SpeedMenu

You access the SpeedMenu of the Breakpoints window through the List pane. The
commands in this menu let you add new breakpoints, delete existing ones, and change a
breakpoint’s settings.

Breakpoint types

Note

In Turbo Debugger, you can create the following types of breakpoints:
Table 5.1 Breakpoint types

Breakpoint type Definition

Simple breakpoints Always pause your program'’s execution when they’re encountered.

Expression-true breakpoints Pause your program when an expression you enter evaluates to true
(nonzero).

Changed-memory breakpoints Pause your program when a specific location in memory changes
value.

Global breakpoints Expression-true or changed-memory breakpoints that are evaluated
after the execution of each source line or machine instruction is
executed.

Hardware breakpoints Global changed-memory breakpoints that are hardware assisted.

You can also set breakpoints on window messages. For a complete description of
message breakpoints, refer to Chapter 10, page 133.

Setting simple breakpoints

When you first set a breakpoint, Turbo Debugger creates a simple breakpoint by default.
Simple breakpoints are set on specific lines of code and contain a condition of “ Always”
and an action of “Break.”

When you begin a debugging session, you can quickly reach the sections of code you
want to examine by setting simple breakpoints in the code. After setting the break-
points, run your program using F9; the program’s execution will pause when it
encounters the breakpoints.

Although there are several ways to set simple breakpoints, the Module window and the
Code pane of the CPU window offer the easiest methods:

* If you're using the keyboard, place the cursor on any executable line of source code
(or on any machine instruction in the Code pane of the CPU window) and press F2.
(In the Module window, executable lines of source code are marked with a “+” in the
leftmost column.) The Breakpoint | Toggle command provides the same functionality.

Chapter 5, Setting and using breakpoints 69

Whenever you set a breakpoint, the line containing the breakpoint turns red. Pressing
F2 again removes the breakpoint.

* Alternately, if you're using a mouse, click either of the two leftmost columns of the
line where you want the breakpoint set. (When you're in the correct column, an
asterisk (*) appears inside the mouse pointer.) Clicking the line again removes the
breakpoint.

* The Breakpoint | At command also sets a simple breakpoint on the current line in the
Module window or Code pane of the CPU window. However, in addition to setting
the breakpoint, the At command opens the Breakpoint Options dialog box, giving
you quick access to the commands that let you customize the breakpoint. The hot key
for Atis Alt+F2.

In addition to setting breakpoints from the Module and CPU windows,
Turbo Debugger offers the following commands for setting simple breakpoints:

* You can set breakpoints on the entry points of all the functions in the currently
loaded module, or on all member functions in a class, using the Breakpoints window
SpeedMenu Group command. For more information on this command, see page 77.

* You can use the Add command on the Breakpoint window SpeedMenu to set
breakpoints. This command opens the Breakpoint Options dialog box and positions
the cursor on an empty Address input box. Enter an address or line number
expression for which you'd like a breakpoint to be set.

For example, if you'd like to set a breakpoint at line number 3201 in your source code,
type #3201 in the input box. If the line of code is in a module other than the one
displayed in the Module window, type a pound sign (#) followed by the module
name, followed by another pound sign and the line number. For example:
#OTHERMOD#3201.

You can also access the Add command by typing an address directly into the
Breakpoints window. After typing the first character of the address, the Breakpoint
Options dialog box opens with the Address input box active.

Once you set a breakpoint, you can modify the action that it will take when it activates.
The default action is “Break”—Turbo Debugger pauses the program’s execution when
the breakpoint is activated. For a list of possible breakpoint actions, see page 74.

Setting expression-true breakpoints

Expression-true breakpoints, like simple breakpoints, are set at specific program locations.
However, unlike simple breakpoints, expression-true breakpoints have special
conditions and actions added to their definitions.

Sometimes, you will not want a breakpoint to activate every time it’s encountered,
especially if the line containing the breakpoint is executed many times before the actual
occurrence you're interested in. Likewise, you might not always want a breakpoint to
pause the program’s execution. With Turbo Debugger, you can specify when a
breakpoint should activate and the actions it should take when it does activate.

70 Turbo Debugger User’s Guide

Expression-true breakpoints are essentially simple breakpoints that have been
customized. The following steps explain how to create an expression-true breakpoint:

1 Set a simple breakpoint (as described in the previous section).
2 Open the Conditions and Actions dialog box:

1 Open the breakpoints window, and highlight the desired breakpoint in the List
pane.

2 Choose Set Options from the SpeedMenu to open the Breakpoint Options dialog
box.

Figure 5.2 The Breakpoint Options dialog box

The Breakpoint Options dialog box contains commands that let you modify
breakpoint settings. The Conditions and Actions list box displays the current
settings of the selected breakpoint.

3 To modify a breakpoint’s condition and action settings, click the Change button to
open the Conditions and Actions dialog box.

Figure 5.3 The Conditions and Actions dialog box

5

Ce> Hapluare

The Conditions and Actions dialog box lets you customize the conditions under
which a breakpoint is activated, and the actions that take place once the conditions
are met.

3 Select the Expression True radio button.

By default, the breakpoint’s condition is set to Always—the breakpoint will activate
each time it is encountered by the program’s execution. Clicking the Expression True
radio button specifies that the breakpoint should activate when an expression you
supply becomes true (nonzero).

Chapter 5, Setting and using breakpoints 71

4 Enter the expression you want evaluated each time the breakpoint is encountered
into the Condition Expression input box.

5 If needed, specify a pass count with the breakpoint settings.

The Pass Count input box lets you set the number of times the breakpoint condition
set must be met before the breakpoint is activated. The default number is 1. The pass
count is decremented only when the entire condition set attached to the breakpoint is
true; if you set a pass count to 7, the breakpoint is activated the nth time the entire
condition set evaluates to true.

6 If you want to change the breakpoint’s default action, click the desired Action radio .
button and enter any pertinent action expression into the Action Expression input
box. Page 74 lists the different actions that you can associate with a breakpoint. For a
list of possible breakpoint actions, see page 74.

See page 75 for details on entering breakpoint condition and action sets.

7 Choose OK or press Esc to exit the Conditions and Actions dialog box.

Setting changed-memory breakpoints

Changed-memory breakpoints (sometimes known as watchpoints) monitor expressions that
evaluate to a specific data object or memory location. Set on specific lines of code,
changed-memory breakpoints activate if a data object or memory pointer has changed
value.

To set a changed-memory breakpoint, follow the same instructions for setting an
expression-true breakpoint (described in the preceding section), with two exceptions:

1 In the Conditions and Actions dialog box, click the Changed Memory radio button
instead of the Expression True radio button.

2 In the Condition Expression input box, enter an expression that evaluates to a
memory location (a data object or memory pointer).

Note When your program’s execution encounters a line that contains a changed-memory
breakpoint, the condition expression is evaluated before the line of code gets executed.
Because of this, carefully consider the placement of changed-memory breakpoints.

When entering an expression, you can also enter a count of the number of objects you
want monitored. The total number of bytes watched in memory is the size of the object
that the expression references times the object count.

For example, suppose you have declared the following C array:
int string(81];

You can watch for a change in the first ten elements of this array by entering the
following item into the Condition Expression input box:

&string[0], 10

The area monitored is thus 20 bytes long—an int is 2 bytes and you instructed
Turbo Debugger to monitor ten of them.

72 Turbo Debugger User’s Guide

Setting global breakpoints

Global breakpoints are essentially expression-true or changed-memory breakpoints with
the added characteristic that the breakpoint is monitored continuously during your
program’s execution. Because Turbo Debugger checks the breakpoint conditions after
the execution of every line of source code or machine instruction, global breakpoints are
excellent tools for pinpointing code that’s corrupting data.

To create a global breakpoint, first set either a changed-memory or expression-true
breakpoint, as described in the previous sections. Then, after you exit the Conditions
and Actions dialog box, check the Global check box in the Breakpoint Options dialog
box to specify that the breakpoint should be global.

When you create a global breakpoint, the Address input box in the Breakpoint Options
dialog box reads <not available>; global breakpoints are not associated with specific
program locations.

Normally, Turbo Debugger checks a global breakpoint after the execution of every line
of source code. However, if you want Turbo Debugger to check the breakpoint after
every machine instruction, press F9 while the CPU window is active.

Because Turbo Debugger evaluates global breakpoints after the execution of every line
of source code or machine instruction, these breakpoints greatly slow the execution of
your program. Be moderate with your use of global breakpoints; use them only when
you need to closely monitor the behavior of your program.

Although it’s possible to create a global breakpoint with a condition of “ Always,” it’s
not recommended. Because the breakpoint condition is evaluated after the execution of
each source line, a condition of “ Always” will cause the breakpoint to activate after the
execution of each line of code.

Global breakpoint shortcuts

The Breakpoints menu contains two commands that provide fast ways to set global
breakpoints: Changed Memory Global and Expression True Global. When you set a
breakpoint with either of these two commands, the breakpoint action is set to “Break”
by default.

Changed Memory Global sets a global breakpoint that’s activated when an area of
memory changes value. When you issue this command, you're prompted for an area of
memory to watch with the Enter Memory Address, Count input box. For information
on valid expression types, see the preceding “Setting changed-memory breakpoints”
section.

Expression True Global sets a global breakpoint that is activated when the value of a
supplied expression becomes true (nonzero). When you select this command, you are
prompted for the expression to evaluate with the Enter Expression for Conditional
Breakpoint input box.

Chapter 5, Setting and using breakpoints 73

Setting hardware breakpoints

Hardware breakpoints, available with TDW and with TD32 when you debug Windows
NT programs, take advantage of the special debugging registers of Intel 80386 (or
higher) processors and certain hardware debugging boards. Hardware breakpoints let
your hardware monitor the global breakpoints, so you don’t have to use CPU-expensive
software for that task.

Before you can set a hardware breakpoint in TDW, the TDDEBUG.386 device driver
must be copied to your hard disk and loaded by your CONFIG.SYS file. If you want,
Turbo Debugger’s installation program can complete the installation process for you, or
you can install it yourself by following the directions in the online file TD_HDWBP.TXT.
When TDDEBUG.386 is properly installed, the Breakpoints field in TDW’s File | Get Info
dialog box reads Hardware; otherwise it reads Software.

To set a hardware breakpoint, choose the Hardware Breakpoint command from the
Breakpoints menu. This command automatically checks the Global check box in the
Breakpoint Options dialog box, chooses the Hardware radio button in the Conditions
and Actions dialog box, and opens the Hardware Breakpoint Options dialog box. This
dialog box contains all the hardware breakpoint settings, and is fully described in the
online text file TD_HDWBP.TXT.

You can also create a hardware breakpoint by modifying an existing breakpoint:
1 Check the Global check box in the Breakpoint Options dialog box.
2 Open the Conditions and Actions dialog box and choose the Hardware radio button.

3 Click the Hardware button in the Conditions and Actions dialog box to access the
Hardware Breakpoint Options dialog box.

4 Specify the hardware breakpoint settings and choose OK.
5 If needed, specify the action settings in the Conditions and Actions dialog box.

When you set a hardware breakpoint, its listing in the Breakpoint window’s List pane
will have an asterisk (*) displayed next to it.

Breakpoint actions

The Action radio buttons in the Conditions and Actions dialog box (Figure 5.3) specify
the actions that you want a breakpoint to perform when it activates. Each of the
following actions can be applied to any of the breakpoints you set.

Break

The Break button (default) pauses your program when the breakpoint is activated.
When your program pauses, Turbo Debugger becomes active, and you can use its
windows and commands to view your program'’s state.

74 Turbo Debugger User’s Guide

Execute

The Execute button executes an expression that you enter into the Action Expression
input box. For best results, use an expression that changes the value of a variable or data
object.

By “splicing in” a piece of code before a given source line, you can effectively test a
simple bug fix; you don’t have to go through the trouble of compiling and linking your
program just to test a minor change to a routine. Keep in mind, however, that you
cannot use this technique to directly modify your compiled program.

Log

The Log button writes the value of an expression to the Log window. Enter the
expression you want evaluated into the Action Expression input box. (For more
information on the Log window, see page 81.)

This command is handy when you want to output a value each time you reach a specific
place in your program (this technique is known as instrumentation). By creating a
breakpoint with a Log action, you can log values each time the breakpoint activates.

For example, you can place a breakpoint at the beginning of a routine and set it to log
the values of the routine arguments. Then, after running the program, you can
determine where the routine was called from, and if it was called with erroneous
arguments.

Note When you log expressions, be careful of expressions that unexpectedly change the
values of variables or data objects.

Enable group

The Enable Group button causes a breakpoint to reactivate a group of breakpoints that
have been previously disabled. Supply the group integer number to enable in the Action
Expression input box. See page 77 for information on breakpoint groups.

Disable group

The Disable Group button lets you disable a group of breakpoints. When a group of
breakpoints is disabled, the breakpoints are not erased, they are simply hidden from the
debugging session. Supply the group integer number to disable in the Action
Expression input box.

Setting breakpoint conditions and actions

You use the Conditions and Actions dialog box, shown in Figure 5.3, to specify when a
breakpoint should activate, and what it should do when it does activate. Usually, you
will enter a single condition or action expression for any given breakpoint. However,
Turbo Debugger lets you create condition and action sets that contain multiple

Chapter 5, Setting and using breakpoints 75

~ expressions. In addition, a single breakpoint can have several condition and actions sets
associated with it.

The following sections describe how to create complex breakpoint condition and action
sets.

Creating breakpoint condition sets

When you create an expression-true or changed-memory breakpoint, you must provide
a condition set so the debugger knows when to activate the breakpoint. A condition set
consists of one or more expressions. For the breakpoint to activate, every expression in
the condition set must evaluate to true. To create a condition set,

1 Choose either the Changed Memory or Expression True radio button.
2 Enter the condition expression into the Condition Expression input box.
3 Choose the Add button under the Condition Expression input box.

To enter more than one condition expression to a breakpoint’s definition, repeat steps
2 and 3 until all your expressions have been added to the Condition Expression input
box.

The Delete button located below the Condition Expression input box lets you remove
the currently highlighted expression from the Condition Expression input box.

Creating breakpoint action sets

When you select either an Execute, Log, Enable Group, or Disable Group Action radio
button, you must provide an action set so Turbo Debugger knows what to do when the
breakpoint activates. An action set is composed of one or more expressions. To create an
action set,

1 Choose either the Execute, Log, Enable Group, or Disable Group radio button.
2 Enter the action into the Action Expression input box. '
3 Choose the Add button under the Action Expression input box.

To execute more than one expression when the breakpoint activates, repeat steps 1, 2,
and 3, until all expressions have been added to the Action Expression input box.

Note If the Enable Group or Disable Group radio button is chosen, type the breakpoint group
number into the Action Expression input box to reference the group of breakpoints you
want enabled or disabled.

The Delete button located below the Action Expression input box lets you remove the
currently highlighted expression from the action set.

When you have finished entering actions, choose OK on the Conditions and Actions
dialog box.

76 Turbo Debugger User’s Guide

Multiple condition and action sets

A single breakpoint can have several condition and action sets associated with it. To
assign multiple condition and action sets to a single breakpoint, choose OK on the
Conditions and Actions dialog box after you have entered the first series of conditions
and actions. This closes the Conditions and Actions dialog box and returns you to the
Breakpoint Options dialog box. From here, choose the Add button to enter a new set of
conditions and actions.

Each condition and action set is evaluated in the order in which it was entered. If any
condition set evaluates to true, then the actions associated with those conditions are
performed.

To delete a condition and action set from a breakpoint’s definition, select the Delete
button on the Breakpoint Options dialog box.

The scope of breakpoint expressions

Both the conditions and actions of a breakpoint are controlled by the expressions you
supply. Turbo Debugger evaluates breakpoint expressions with regards to the scope of
the breakpoint location, not the scope of the location where you happen to be when
you're entering the expressions.

Using scope-override syntax, you can access the values of any data objects that are
defined when the breakpoint is encountered. However, breakpoints that reference data
objects that are out of scope execute much slower than breakpoints that use only local or
global variables. For a complete discussion of scopes and scope overrides, see

“ Accessing symbols outside the current scope” on page 101.

To modify a breakpoint that’s set in a module that isn’t currently loaded, you must use
scope-overriding syntax to identify the module. However, when setting and modifying
breakpoints, it’s easiest to access the desired module using the View | Another | Module
command.

Breakpoint groups

Turbo Debugger lets you group breakpoints together, allowing you to enable, disable,
or remove breakpoints with a single action. In addition, you can set a group of break-
points on all functions in a module or all member functions in a class with a single
command.

The Group command on the Breakpoints window SpeedMenu activates the Edit
Breakpoint Groups dialog box. Using this dialog box, you can create and modify
breakpoint groups.

Chapter 5, Setting and using breakpoints 77

Figure 5.4 The Edit Breakpoint Groups dialog box

Hedudenott226
fitdudenol332 #itdudemoli3?8 Htdudemol4B89
4 fitdudenoli3?2

A breakpoint group is identified by a positive integer, generated automatically by
Turbo Debugger or assigned by you. The debugger automatically assigns a new group
number to each breakpoint as it’s created. The group number generated is the lowest
number not already in use. Thus, if the numbers 1, 2, and 5 are already used by groups,
the next breakpoint created is automatically given the group number 3.

Once a breakpoint is created, you can modify its group status with the commands in the
Edit Breakpoint Groups dialog box. You can also assign a breakpoint to a new or
existing breakpoint group with the Group ID input box on the Breakpoints window’s
Breakpoint Options dialog box.

Creating breakpoint groups

The Add button on the Edit Breakpoint Groups dialog box activates the Add Group
dialog box. The Add Group dialog box contains one list box and a set of radio buttons
that let you add all functions in a single module, or all member functions in a class, to a
breakpoint group.

The Module/Class list box displays a list of the modules or classes contained in the
currently loaded program. Highlight the desired module or class and press OK to set

breakpoints on all routines in that module or class. All breakpoints set in this manner
are collected into a single breakpoint group.

Using the two radio buttons in the Add Group dialog box, you can select the type of
routines that are displayed in the Module/Class list box:

* The Modules radio button selects all modules contained in the current program.
* The Classes radio button selects all the Borland C++ classes contained in the current
program.

Deleting breakpoint groups

The Delete button on the Edit Breakpoint Groups dialog box removes the group
currently highlighted in the Groups list box. Use this command with caution; all
breakpoints in the selected group, along with their settings, are permanently erased by
this command.

78 Turbo Debugger User’s Guide

Enabling and disabling breakpoint groups

The Edit Breakpoint Groups dialog box contains two commands for enabling and
disabling breakpoint groups. The Enable button activates a breakpoint group that has
been previously disabled.

The Disable button temporarily masks the breakpoint group that is currently
highlighted in the Groups list box. Breakpoints that have been disabled are not erased;
they are merely set aside for the current debugging session. Enabling the group
reactivates all the settings for all the breakpoints in the group.

In addition to the two commands on the Edit Breakpoint Groups dialog box, you can
enable and disable breakpoint groups through the action settings of breakpoints. For
information on this feature, see page 75.

Navigating to a breakpoint location

Note

The Inspect command on the breakpoint window SpeedMenu opens the Module or
CPU window, and positions the display at the location of the breakpoint that’s
highlighted in the List pane.

You can also invoke this command by pressing Enter once you have highlighted the
desired breakpoint in the List pane.

Enabling and disabling breakpoints

Checking the Disabled check box in the Breakpoint Options dialog box masks the
current breakpoint, hiding it until you want to reenable it by unchecking this box. When
the breakpoint is reenabled, all settings previously made to the breakpoint become
effective.

Disabling a breakpoint is useful when you have defined a complex breakpoint that you
don’t need just now, but will need later. It saves you from having to delete the
breakpoint, and then reenter it along with its complex conditions and actions.

Removing breakpoints

You can erase existing breakpoints from either the Breakpoints window SpeedMenu, or
the Breakpoint menu.

The Remove command on the Breakpoint window SpeedMenu erases the breakpoint
currently highlighted in the List pane. Del is the hot key for this command.

The Delete All command, found on both the Breakpoint menu and the Breakpoints
window SpeedMenu, removes all the currently set breakpoints, including global
breakpoints and those set at specific addresses. Use this command with caution; its
effects cannot be reversed.

Chapter 5, Setting and using breakpoints 79

Setting breakpoints on C++ templates

Turbo Debugger supports the placement of breakpoints on C++ templates, function
templates, and template class instances and objects.

The method you use to set template breakpoints affects the way the breakpoints are set:

* If you set a breakpoint on a template by pressing F2 while in the Module window,
breakpoints are set on all class instances of the template. This lets you debug the
overall template behavior.

* If you press Alt+F2 to set a template breakpoint, the Breakpoint Options dialog box
activates, and you can enter the address of a template into the Address input box. A
dialog box opens that lets you choose a specific class instance for the breakpoint.

* You can set a breakpoint on a specific class instance of a template through the CPU
window. Position the cursor on a line of template code in a single class instance and
press F2 to set a breakpoint on that class instance only.

You remove template breakpoints just as you remove other breakpoints; position the
cursor on the breakpoint in the Module window and press F2. All breakpoints on
associated class instances are deleted.

You can remove specific template breakpoints by deleting them from the CPU window.
Position the cursor on the desired breakpoint in the CPU window and press F2 to it.

Setting breakpoints on threads

Programs written for the Windows NT operating system consist of one or more
executable “threads.” When debugging a Windows NT program, you can set a
breakpoint on a specific thread, even though the code at the breakpoint location is
shared by multiple threads.

When you set a breakpoint in a Windows NT program, by default, the breakpoint is set
for all program threads. To specify that the breakpoint should be checked for a single
thread only, ‘

1 Highlight the desired breakpoint in the Breakpoints window’s List pane.
2 Choose the List pane Set Options SpeedMenu command.

3 Click the Change button in the Breakpoint Options dialog box to open the Conditions
and Actions dialog box. Set the breakpoint’s conditions and actions as needed.

By default, the All Threads check box is checked, indicating that the breakpoint is set
 for all active threads.

4 Clear the All Threads check box; the Threads input box becomes available. .

5 Type the Windows NT thread number you want to monitor into the Threads input
box.

To obtain a Windows NT thread number, open the Threads window with the View |
Threads command. The Threads List pane displays all currently active threads,
listing them by the Windows NT thread number and their given name.

80 Turbo Debugger User’s Guide

6 Choose OK to confirm your breakpoint settings.

For more information on debugging threads, see “Debugging multi-threaded
programs” on page 139.

The Log window

The Log window keeps track of the significant events that occur during your debugging
session. To open the Log window, choose View | Log.

Figure 5.5 The Log window

By default, the Log window can list 50 lines of text. However, you can change the
default using TDWINST.EXE or TDINST32.EXE.

The following debugging actions are tracked by the Log window:
* When your program pauses, the program location is recorded in the Log window.

* When you use the Log window’s Add Comment command, your comment gets
added to the Log window.

* When a breakpoint activates that logs an expression, the value of the expression is
written to the Log window.

* When you choose the Edit | Dump Pane to Log command, the contents of a pane or
window are recorded in the Log window.

» When you use the Display Windows Info command on the Log window SpeedMenu,
the global or local heap information, or the list of program modules is written to the
Log window.

* When you set Send to Log Window to Yes from the Windows Messages window, all
window messages sent to that window are copied to the Log window.

The Log window SpeedMenu

The commands in the Log window SpeedMenu let you write the log to a disk file, stop
and start logging, add a comment to the log, clear the log, and write information about a
Windows program to the log.

Open log file...
Close log file
Logging Yes

Add comment...
Erase Tog
Display Windows info...

Chapter 5, Setting and using breakpoints 81

Open Log File

The Open Log File command causes all lines written to the Log window to also be
written to a disk file. When you choose this command, a dialog box prompts you for the
name of the disk file. By default, the log file’s name is the name of your program,
followed by a .LOG extension.

When you open a log file, all the lines already displayed in the Log window are written
to the disk file. This lets you open a disk log file after you see something interesting in
the log that you want to record to disk.

If you want to start a disk log that doesn’t contain the lines already displayed in the Log
window, choose Erase Log before choosing Open Log File.

Close Log File
The Close Log File command closes the log file that you opened with the Open Log File
command.

- Logging
The Logging command enables and disables the writing of events to the Log window.
Use this command to control when events are logged. When logging is turned off, the
Log window’s title bar displays Paused.

Add Comment
Add Comment lets you insert comments into the Log window. When you choose this
command, a dialog box opens, prompting you for a comment.

Erase Log
Erase Log clears the Log window. This command affects only what's in memory; the log
disk file is not erased by this command.

Display Windows Info

The Display Windows Info command, available only with TDW, displays the Windows
Information dialog box. This dialog box lets you list global heap information, local heap
information, or the list of modules making up your application. See page 144 in
Chapter 10 for more information on this feature.

82 Turbo Debugger User’s Guide

Examining and modifying data

The data in your program consists of global variables, local variables, and defined
constants. Turbo Debugger provides the following ways to view and modify the data
that your program processes:

* The Watches window displays the current values of variables and expressions.
* The Variables window displays your program’s local and global variables.

* The Inspector windows display the values of program data items, including
compound data objects.

* The Stack window displays the current functions and procedures located on the
stack, including their argument values.

* The Evaluate/ Modify command evaluates expressions and lets you assign new
values to variables.

* The Function Return command displays the value that the currently executing
function is about to return.

The Watches window

The Watches window provides the easiest way to keep track of your program’s data
items. In the Watches window, you list the program variables and expressions whose
values you want to track. Each time your program’s execution pauses, Turbo Debugger
evaluates all the items listed in the window and updates their displayed values.

With the Watches window, you can watch the value of both simple variables (such as
integers) and compound data objects (such as arrays). In addition, you can watch the
values of calculated expressions that do not refer directly to memory locations. For
example, you could watch the expressionx * y + 4.

Chapter 6, Examining and modifying data 83

Figure 6.1 The Watches window

Expressions that you enter as watches are listed on the left side of the Watches window,
and their corresponding data types and values appear on the right. The values of items
in compound data objects (such as arrays and structures) appear with their values
between braces ({ }). The Watches window truncates any expressions or values that do
not fit into the window.

Creating watches

To create a watch, choose one of the following commands:

* The Data | Add Watch command

+ The Module window SpeedMenu Watch command
+ The Variable window SpeedMenu Watch command
* The Watches window SpeedMenu Watch command

When you choose a command to create a watch, Turbo Debugger opens the Enter
Expression to Watch dialog box. Enter a variable name or expression, and press Enfer to
add it to the Watches window.

If the cursor is on a variable in the Module window, that variable is automatically added
to the Watches window when you choose the SpeedMenu Watch command. The same
is true for expressions selected using Ins and the arrow keys.

Unless you use scope override syntax (as described in Chapter 7), Turbo Debugger
evaluates watch expressions with regards to the current instruction pointer. If a watch
expression contains a symbol that isn't accessible from the currently active scope, the
value of the expression is undefined, and is displayed as four question marks (?2??).

When you enter expressions into the Watches window, you can use variable names that
aren’t yet defined; Turbo Debugger lets you set up a watch expression before its scope
becomes active. This is the only situation in Turbo Debugger where you can enter an
expression that can’t be immediately evaluated.

Be careful when you enter expressions into the Watches window. If you mistype the
name of a variable, Turbo Debugger won't detect the mistake because it assumes the
variable will become available at a later time during program execution.

When you're tracing inside a member function, you can add the this pointer to the
Watches window. Turbo Debugger knows about the scope and presence of the this
pointer. You can evaluate this and follow it with format specifiers and quantifiers.

~ 84 Turbo Debugger User’s Guide

The Watches window SpeedMenu

The Watches window SpeedMenu contains all the commands needed to manage the
items in the window:

Watch...
Edit...
Remove
Delete all

Inspect
Change. ..

Watch

The Watch command prompts you for a variable name or expression to add to the
Watches window. Unless you explicitly enter a scope, Turbo Debugger evaluates the
expression with regards to the current cursor location.

Edit

Edit opens the Edit Watch Expression dialog box, letting you modify the expression
currently highlighted in the Watches window. When you've finished editing the
expression, press Enter or click the OK button.

You can also invoke this command by pressing Enter after you've highlighted the watch
expression you want to change.

Remove
The Remove command removes the currently selected item from the Watches window.

Delete All

Delete All removes all expressions from the Watches window. This command is useful
if you move from one area of your program to another, and the variables you were
watching are no longer relevant.

Inspect

The Inspect command opens an Inspector window that shows the details of the
currently highlighted watch. This command is useful when the watch expression is a
compound data object, or if the expression is too long to be fully displayed in the
Watches window.

Change

Use the Change command to modify the value of the currently highlighted variable in
the Watches window. When you enter a new value into the Enter New Value dialog
box, Turbo Debugger performs any necessary type conversion, exactly as if the
assignment operator had been used to change the variable.

Chapter 6, Examining and modifying data 85

The Variables window

The Variables window displays the names and values of all the local and global
variables accessible from the current program location. You can use this view to
examine and change the values of variables, and to view the variables local to any
function that has been called. To access this window, choose View | Variables.

Figure 6.2 The Variables window

Global pane

Local pane

The Variables window has two panes:

+ The Global pane shows all the global symbols in your program.

* The Local pane shows all the static symbols in the module and all the symbols local to
the current function or procedure.

Both panes display the variable names bn the left and their data types and values on the
right. If Turbo Debugger can’t resolve a symbol’s data type, it displays four question
marks (2?7?).

The Variable window SpeedMenus

Each pane of the Variables window has its own SpeedMenu. Both menus contain
Inspect, Change, and Watch commands; the Local pane also has the Show command.

Inspect
Change. ..
Watch
Show. ..

Inspect
The Inspect command opens an Inspector window that displays the contents of the
currently highlighted global, local, or static symbol.

If you inspect a global variable whose name matches a local variable’s name,

Turbo Debugger displays the value of the global variable, not the local variable. This
behavior is slightly different from the usual behavior of Inspector windows, which
normally display values from the point of view of your current program location. This
difference gives you a convenient way to look at global variables whose names are also
used as local variables.

If you issue the Inspect command on an entry that’s a routine name (in the Global pane),
Turbo Debugger activates the Module window and places the cursor on the routine’s

86 Turbo Debugger User’s Guide

source code. If Turbo Debugger can’t find the source code, or if the file wasn’t compiled
with debug information, a CPU window opens, showing the disassembled instructions.

Change

The Change command opens the Change dialog box so you can modify the value of the
currently highlighted symbol. Turbo Debugger performs any necessary data type
conversion exactly as if the assignment operator for your current language had been
used to change the variable.

You can also access the Change dialog box by choosing the SpeedMenu Inspect
command and typing the new value inte the Inspect window.

Watch

The Watch command opens a Watches window and adds the currently highlighted
symbol to that window.

The Watches window doesn’t keep track of whether the variable is local or global. If you
insert a global variable using the Watch SpeedMenu command, and later encounter a
local variable by the same name, the local variable takes precedence whenever you're in
the scope of the local variable. The Watches window always displays the value of a
variable from the point of view of your current program location.

Show

The Local pane’s Show command brings up the Local Display dialog box. The radio
buttons in this dialog box enable you to change the scope of the variables displayed in
the Local pane and the module from which these variables are selected:

Static Show only static variables.
Auto Show only variables local to the current block.
Both Show both static and local variables (default).

Module Change the current module. This command brings up a dialog box showing
the list of modules for the program, from which you can select a new
program module.

Viewing variables from the Stack window

Using the Stack window, you can examine the variables of any routine that’s located on
the stack, including the different version of a recursive routine. To do so, open the Stack
window and highlight the routine you want to examine. Next, press Alt+F10, and choose
Locals. The Static pane of the Variables window opens, showing the argument values of
the selected routine.

Inspector windows

Inspector windows are the best way to view data items because Turbo Debugger
automatically formats Inspector windows according to the type of data being displayed.

Chapter 6, Examining and modifying data 87

Inspector windows display data differently for scalars (for example, char or int),
pointers (char *), structures, arrays (long x[4]), and functions. In addition, there are
special Inspector windows for C++ classes (for a description of class Inspector windows,
see Chapter 11). In the sections that follow, Inspector windows are described as they
appear when you inspect scalar, pointer, structure and union, array, and function data

types.

Inspector windows are especially useful when you want to examine compound data
objects, such as arrays and linked lists. Because you can inspect individual items
displayed in an Inspector window, you can “walk” through compound data objects by
opening an Inspector window on a component of the compound object.

Inspector windows also offer a quick way to view the raw bytes of a data item. To do so,
choose View | Dump when an Inspector window is active. The Dump window opens
with the cursor positioned on the data displayed in the Inspector window.

Opening Inspector windows

Although you cannot open Inspector windows from the View menu, you can open
them from the following debugger locations:

The Data | Inspect command

The Module window SpeedMenu
Watches window SpeedMenu
Variables window SpeedMenu
Inspector window SpeedMenu

When you open an Inspector window, the Enter Variable to Inspect dialog box prompts
you for an expression to inspect. After entering a variable name or expression, an
Inspector window opens, displaying the value of the expression entered.

If the cursor is on a program symbol when you issue the Inspect command, or if you
select an expression using Ins and the arrow keys, Turbo Debugger automatically places
the selected symbol in the input box.

When you open an Inspector window, the title of the window displays the expression
that's being inspected. The first item listed in an Inspector window is always the
memory address of the data item that’s detailed in the rest of the window, unless the
data item is a constant or is a variable that has been optimized to a register.

Scalar Inspector windows

Scalar Inspector windows show the values of simple data items, such as char, int, long,
and so on.

Scalar Inspector windows have two lines of information. The first line contains the
address of the variable. The second line displays the type of the scalar on the left and the
current value of the variable on the right. The value can be displayed as decimal,
hexadecimal, or both. Normally, however, the value is displayed first in decimal,
followed by the hexadecimal value enclosed in parentheses.

88 Turbo Debugger User’s Guide

Figure 6.3 A C scalar Inspector window

If the variable being inspected is of type char, the equivalent character is displayed to
the left of the numeric values. If the present value doesn’t have a printing character
equivalent, Turbo Debugger displays a backslash (\) followed by the hexadecimal value
that represents the character value.

Pointer Inspector windows

Pointer Inspector windows show the values of variables that point to other data items.
Pointer Inspector windows have a top line that contains the address of the variable,
followed by detailed information regarding the data pointed to. Pointer Inspector
windows also have a lower pane indicating the data type to which the pointer points.

Figure 6.4 A C pointer Inspector window

If the value pointed to is a compound data object (such as a structure or an array),
Turbo Debugger enclosed the values in braces ({ }) and displays as much of the data as
possible.

If the pointer appears to be pointing to a null-terminated character string,

Turbo Debugger displays the value of each item in the character array. The left of each
line displays the array index ([0], [1], [2], and so on), and the values are displayed on the
right. When you're inspecting character strings, the entire string is displayed on the top
line, along with the address of the pointer variable and the address of the string that it
points to.

In addition, you can use the Range command to cause the Inspector window to display
multiple lines of information. This is helpful for Borland C++ programmers who use
pointers to point to arrays of data structures as well as to single items. For example,
suppose you have the following code:

int array[10];
int *arrayp = array;

To see what arrayp points to, use the Range local command on arrayp, and specify a
starting index of 0 and a range of 10. If you had not done this, you would have seen only
the first item in the array.

Chapter 6, Examining and modifying data 89

Structure and Union Inspector windows

Structure and Union Inspector windows show the values of members contained in
compound data objects.

Figure 6.5 A C Structure and Union Inspector window

Structure and Union Inspector windows have two panes:

* The top pane displays the address of the data object, followed by lines listing the
names and values of the data members contained in the object. This pane contains as
many lines as are necessary to show the entire data object.

» The lower pane consists of one line. If you highlight the address of the data object in
the top pane, the lower pane displays the type of the data object (either structure or
union) along with its name. Otherwise, the lower pane displays the data type of the
object member highlighted in the top pane.

The Structure and Union Inspector window shown in Figure 6.5 was taken from a
program containing the following code:

struct linfo {
unsigned int count;
unsigned int firstletter;
} letterinfo [26];

Array Inspector windows

Array Inspector windows show the values of the elements contained in arrays. These
windows contain a line for each element in the array. The left side of each line shows the
index of the array element, and the right side shows the element’s value. If the value is a
compound data object, Turbo Debugger displays as much of the object as possible.

Figure 6.6 A C array Inspector window

As an example of using the Array Inspector window, suppose your program contains
the following statement:

MyCounter [TheGrade] ++;

90 Turbo Debugger User’s Guide

Pressing Ctrl+| when the cursor is at MyCounter in the Module window opens an
Inspector window that displays the contents of the entire array. However, if you press
Clrl+l after selecting the entire array name and index (using Ins and the arrow keys),
Turbo Debugger opens an Inspector window that displays only the single element of
the array.

You can also use the Range SpeedMenu command to show any portion of an array.

Function Inspector windows

Function Inspector windows show the memory address of the function, foliowed by the
arguments with which a function is called. To inspect a function, use the function’s
name without parenthesis or arguments.

Figure 6.7 A C function Inspector window

Function Inspector windows also give you information about the return type and
calling conventions of the function you're inspecting. The return type is displayed in the
lower pane.

The Inspector window SpeedMenu

The Inspector window SpeedMenu offers a variety of commands:

Range...
Change. ..

Inspect

Descend

New expression...
Type cast...

Range

The Range command sets the starting element and number of elements that you want to
view in an array. Use this command when you have a large array and you need to
examine only a subset of its elements.

Change

The Change command lets you change the value of the currently highlighted item to the
value you enter in the Enter New Value dialog box. Turbo Debugger performs any
necessary casting exactly as if an assignment operator had been used to change the
variable.

Inspect
Inspect opens a new Inspector window listing the highlighted item in the current
Inspector window. Use this command if you're inspecting a compound data object

Chapter 6, Examining and modifying data 91

(such as a linked list), and you want to open a new Inspector window on one of the
items in the object. If the current Inspector window is displaying a function, issuing the
Inspect command activates the Module window, and shows you the source code for
that function.

You can also invoke this command by pressing Enter after highlighting the item you
want to inspect.

To return to the previous Inspector window, press Esc. If you are through inspecting a
data structure and want to remove all the Inspector windows, use the Window | Close
command or its hot key, Alf+F3.

Descend

The Descend command works like the Inspect SpeedMenu command, except that it
replaces the current Inspector window with the new item you want to examine. Using
this command reduces the number of Inspector windows onscreen.

Note When you use Descend to expand a data structure, you can’t return to previous views of
the data like you can when you use the Inspect command. Use Descend when you want
to work your way through a complicated data structure, and don’t need to return to a
previous view of the data. i

New Expression

You can inspect a different expression by selecting the New Expression command. The
data in the current Inspector window is replaced with the data relating to the new
expression you enter.

Type Cast

The Type Cast command lets you specify a different data type (for example int, char *,
gh2fp, h2fp, and so on) for the item being inspected. Typecasting is useful if the
Inspector window contains a symbol for which there is no type information, and when
you want to explicitly set the type for untyped pointers. Page 146 explains how to use
the gh2fp and 1h2fp data types.

The Stack window

The Stack window deciphers the call stack and lists all active functions and their
argument values in a readable format. The most recently called function is displayed at
the top of the list, followed by its caller, then by that caller’s caller, and so on. This
display of called functions continues down to the first function in the calling sequence,
which is displayed at the bottom of the list. Functions that have been called from DLLs
and Windows kernel code are also listed in the Stack window, even though they might
not have symbolic names associated with them.

The View | Stack command opens the Stack window:

92 Turbo Debugger User’s Guide

Figure 6.8 The Stack window

The Stack window also displays the names of member functions. Each member function
is prefixed with the name of the class that defines the function; for example,

shapes::acircle(174, 360, 75.0)

The Stack window SpeedMenu

The Stack window SpeedMenu contains the following commands:

Inspect...
Locals

Inspect

The Inspect command opens a Module window and positions the cursor at the active
line in the currently highlighted function. If the highlighted function is at the top of the
call stack (the most recently called function), the Module window shows the location of
the current instruction pointer. If the highlighted function is not at the top of the call
stack, the cursor is positioned on the line following the related function call.

You can also invoke this command by pressing Enter when the highlight bar is
positioned over the desired function.

Locals
The Local command opens a Variables window that shows the symbols that are local to
the current module and to the currently highlighted function.

When a function calls itself recursively, the Stack windows shows multiple instances of
the function. By positioning the highlight bar on an instance of that function, you can
use the Locals command to look at the local variables of a particular function call.

The Evaluate/Modify command

The Evaluate/Modify command on the Data menu opens the dialog box shown in
Figure 6.9. The Expression input box automatically contains the text located at the
cursor position, or the expression that you have selected using Ins and the arrow keys.
When you choose the Eval button, the expression in the Expression input box is
evaluated, and the result is placed in the Result field.

Chapter 6, Examining and modifying data 93

Figure 6.9 The Evaluate/Modify dialog box

CurrentShape =

The Evaluate/Modify dialog box contains the following three fields:
Table 6.1 Evaluate/Modify dialog box fields

Expression You enter expressions to evaluate into the Expression input box. This input box contains
a history list of all the expressions you enter.
Result The Result field displays the result of the expression evaluation.

Data strings that are longer than the width of the Result input box are terminated by an
arrow (»). You can see more of the string by scrolling to the right.

New Value The New Value input box is where you enter a new value for the ex&ression highlighted
in the Evaluate input box. This entry takes effect when you choose the Modify button.

If the expression can’t be modified, this box reads <Not available>, and you can’t move
your cursor into it.

When you evaluate expressions, be careful of Borland C++ expressions that cause side
effects. See “Expressions with side effects” on page 100 for more information on side
effects.

If you're debugging an object-oriented program, the Evaluate/Modify dialog box also
lets you display the member functions of a class instance. You can use any format
specifier with an instance that can be used in evaluating a record.

To call member functions from the Evaluate/Modify dialog box, type the instance name
followed by a dot, followed by the member function name, followed by the actual
parameters (or empty parentheses if there are no parameters). You cannot, however,
execute constructors or destructors from the Evaluate window.

For example, suppose your program contains the following code:

class point {
public:
int x, y, visible;
point ();
~point();
int Show();
int Hide();
void MoveTo(int NewX, int NewY);
}i

point APoint;

94 Turbo Debugger User’s Guide

You could then enter any of the following expressions in the Evaluate window:

Expression Possible result
APoint.x int 2 (0x2)

APoint class point {1,2,27489}
APoint.MoveTo void () @6B61:0299
APoint.Show int () @6B61:0285
APoint.Show() int 1 (0x1)

Function Return command

The Function Return command, located on the Data menu, displays the value that the
currently executing function is about to return. You should use this command only
when the current function is about to return to its caller.

The return value is displayed in an Inspector window, so you can easily examine return
values that are pointers to compound data objects. This command saves you from
having to use the CPU window to examine return values that are placed in registers.

Chapter 6, Examining and modifying data 95

96 Turbo Debugger User’s Guide

Chapter

Evaluating expressions

An expression is a sequence of program symbols, constants, and language operators that
can be evaluated to produce a value. To be valid, an expression must conform to the
rules and syntax of the selected language. Turbo Debugger’s expression evaluator ensures
that the expressions you enter are valid, and it evaluates them to produce a value.

In this chapter, you'll learn how to select an expression evaluator, how to formulate
different types of expressions, and how to use scope override syntax to explicitly
reference a program symbol.

Turbo Debugger’s expression evaluator

When you enter an expression into one of Turbo Debugger’s input boxes, the expression
is passed to the selected expression evaluator. The evaluator checks the expression’s
syntax and resolves the values of any symbols used in the expression. If all the symbols
can be resolved and the syntax of the expression conforms to the syntax of the
expression evaluator, then Turbo Debugger evaluates the expression and returns its
calculated value.

Selecting an evaluator

To select an expression evaluator, choose Options | Language to open the Expression
Language dialog box. The four radio buttons in this dialog box let you choose an
expression evaluator for your debugging session:

¢ Source

e C

* Pascal

¢ Assembler

Chapter 7, Evaluating expressions 97

By default, Turbo Debugger selects the Source radio button, which automatically
determines which expression evaluator to use (either C, Pascal, or Assembler) according
to the source language of the current module being debugged. If Turbo Debugger can’t
determine the module’s language, it uses the expression rules for inline assembler.

Usually, you can let Turbo Debugger choose the expression evaluator. Sometimes,
however, you'll find it useful to explicitly set the evaluator. For example, if you're
debugging an assembler module that’s called from another language, you might want
to override the default evaluator.

Also, by manually setting the expression evaluator, you can enter expressions in the
language of your choice. Turbo Debugger can successfully resolve expressions that are
not in your program’s language; the debugger retains information about the original
source language and handles the conversions appropriately.

Expression limitations

For the most part, Turbo Debugger supports the full language syntax for C, C++, Object
Pascal, and assembler expressions. However, there are certain language statements and
expressions that are out of context while debugging. For example, control structures
such as if/then/ else statements cannot be entered into the debugger. In addition, data
and function declarations, and expressions that attempt to assign values to more than a
single variable will be flagged as errors. Also be aware that the debugger cannot call
object constructors or destructors. For complete details on language syntax, refer to the
manuals accompanying your Borland language product.

Types of expressions

Although you'll usually use expressions to access the values of program symbols,
calculate values, and change the values of data items, you can also use expressions to:

Specify hexadecimal values
Specify memory addresses
Enter program line numbers
Enter byte lists

Call functions and routines

Specifyihg hexadecimal values

While debugging, you might need to supply a hexadecimal value to Turbo Debugger.
For example, you'll need to use a hexadecimal address to specify a memory location.

98 Turbo Debugger User’s Guide

The notation used to specify hexadecimal values depends upon the expression
evaluator you've selected, as shown in the following table:

Table 7.1 Hexadecimal notation

Language 16-bit 32-bit

Assembler Onnnnh nnnnnnnnh
C Oxnnnn Oxnnnnnnnn
Pascal $nnnn Snnnnnnnn

In assembler, hexadecimal numbers starting with A to F must be prefixed with a zero.

Specifying memory addresses

To specify a 16-bit offset or a 32-bit address, preface the hexadecimal address location
with the formats described in Table 7.1.

If you're debugging 16-bit code, you can use segment:offset notation to specify an exact
memory location. When doing so, use the hexadecimal format of the expression
evaluator you've selected. The following table gives examples:

Table7.2 Segment:Offset address notation

Example
1234h:0B010h

VA’sse'ﬁﬂble.r‘ ' nnnnh k
C Oxnnnn 0x1234:0x0010
Pascal $nnnn $1234:$0010

In assembler, hexadecimal numbers starting with A to F must be prefixed with a zero.

Entering line numbers

If you're using the C or Assembler expression evaluator, you can use an expression to
specify a program line number. To do so, precede the decimal line number with a cross
hatch (#). For more information on this notation, see “Overriding scope in C, C++, and
assembler programs” on page 102.

Entering byte lists

In Turbo Debugger, several commands require that you enter a list of bytes. For
example, the Search command in the File window requires a byte list as the search
criteria when it’s displaying a file in hexadecimal format.

A byte list can be any mixture of scalar (non-floating-point) numbers and strings in the
syntax of the current expression evaluator. Scalars are converted into a corresponding
byte sequence. For example, the C long value 123456 becomes a 4-byte hex quantity
40 E2 01 00.

Chapter 7, Evaluating expressions 99

The following table gives an example of a byte list for each of the expression evaluators:

Table7.3 Bytelists

C “ab” 0x04 “c” 61 62 04 63
Pascal ‘ab’$04'c 61 62 04 63

Calling routines

You can call routines from expressions exactly as you do in your source code. Turbo
Debugger executes your program code with the routine arguments that you supply.
This can be a useful way to quickly test the behavior of a routine; simply call the routine
with different arguments and check the return values after each call.

If you make specific calls to routines while debugging, be aware that certain routines
n can have the side effect of changing program data values. After calling such a routine,

-you cannot count on your program behaving normally during the rest of your

debugging session. For more information on side effects, see the following section.

Note If you call a Pascal routine that doesn’t use parameters, you must follow the routine
name with empty parentheses to indicate to the debugger that you are indeed making a
call to the routine. Without the parentheses, Turbo Debugger will return the address of
the routine.

Expressions with side effects

An expression is said to have a side effect when the evaluation of the expression changes
the value of a data item. Using expressions to change the values of data items can be a
powerful debugging technique. However, there are times when you should avoid such
expressions. For example, the expressions you enter for breakpoint conditions must not
contain side effects.

Expressions that generate side effects are:

* Expressions that use assignment operators (=, +=, and so on).
* Expressions that use the C increment (++) and decrement (——) operators.

A more subtle type of side effect occurs when you call a function or procedure that
changes the value of a data item. Because you can’t always tell which functions change
the values of program variables, all functions are considered to generate side effects.

Format specifiers

When Turbo Debugger displays the value of an expression, it displays the value in a
format based on the value’s data type. To change the default display format of an

100 Turbo Debugger User’s Guide

expression, follow the expression with a comma and with one of the following format
specifiers:

Table7.4 Expression format specifiers

Character Format

c Displays a character or string expression as raw characters. Normally, nonprinting
character values are displayed as some type of escape or numeric format. This
option forces the characters to be displayed using the full IBM extended character
set.

d Displays an integer as a decimal number.

£1# Displays the number in decimal notation. An integer following the specifier
indicates the number of digits to the right of the decimal point. EIf you don’t supply
this number, as many digits as necessary are used to represent the number.

m Displays a memory-referencing expression as hex bytes.

md Displays a memory-referencing expression as decimal bytes.

p Displays a raw pointer value, showing segment as a register name if applicable. Also
shows the object pointed to. This is the default if no format control is specified.

s Displays an array or a pointer to an array of characters as a quoted character string.

xorh Displays a value as a hexadecimal number.

Turbo Debugger ignores any format specifier that cannot be applied to the expression’s
data type.

Note In addition to a format specifier, you can supply a repeat count to indicate that the
expression relates to repeating data item such as an array or pointer. To specify a repeat
count, follow the expression with a comma, the repeat count, another comma, and the
format specifier.

Accessing symbols outside the current scope

The scope of a symbol is the area in your program in which the symbol can be
referenced. The current scope is the area in your program in which defined symbols can
be referenced. Usually, the current scope is defined with regards to the location of the
instruction pointer. This section describes:

* How Turbo Debugger searches for symbols
* The implied scope for expression evaluation
* Scope override syntax

* Scope and DLLs

How Turbo Debugger searches for symbols

When you enter an expression that contains symbols, Turbo Debugger tries to resolve
the symbols by searching the following locations in the order shown:

1 The symbols located in the current function’s stack.
2 The symbols local to the module or unit containing the current function.
3 The global symbols for the entire program.

Chapter 7, Evaluating expressions 101

4 The global symbols of any loaded DLLs, starting with the earliest loaded DLL.

However, using scope override syntax, you can access any program symbol that has a
defined value within the currently loaded executable module, including symbols that
are private to a function and symbols that have conflicting names. By specifying an
object module, a file within a module, a routine name, or a line number, you can give
explicit directions to where a symbol can be found.

Implied scope for expression evaluation

Whenever you enter an expression into Turbo Debugger, the expression is evaluated
according to the current scope. However, instead of using the instruction pointer to
define the current scope, Turbo Debugger uses the current cursor position to determine
the scope of an expression. Thus, you can set the scope in which an expression will be
evaluated by moving the cursor to a specific line in the Module window. You can also
change the scope of evaluation by either moving through the Code pane of a CPU
window, moving the cursor to a routine in the Stack window, or moving the cursor to a
routine name in a Variables window.

If you change the scope from where Turbo Debugger paused your program, you might
get unexpected results when you evaluate expressions. To ensure that expressions are
evaluated relative to the current position of your program, use the Origin command in
the Module window to return the text to the location of the instruction pointer.

Scope override syntax

Turbo Debugger uses different syntax to override the scope of a symbol, depending on
the language evaluator specified in the Options | Language dialog box:

* With the C, C++, and Assembler evaluators, use a cross hatch (#) to override scope.
(The following section provides more information.)

* With the Pascal evaluator, use a period (.) to override scope. (See page 104 for more
information.)

Overriding scope in C, C++, and assembler programs

You can use either of the following two types of scope overriding syntax with C, C++,
and assembler expressions (items enclosed in brackets ([]) are optional):

[#module[#filename.ext]]#]1inenumber[#symbolname]
[#module[#filename.ext]#] [functionname#]symbolname

The following rules also apply to the scope overrides:
* If you don't specify an object module, the currently loaded object module is assumed.

* If you use a file name in a scope override statement, it must be preceded by an object
module name.

+ If a file name has an extension (such as .ASM, .C, or .CPP), you must specify it;
Turbo Debugger doesn’t determine extensions.

102 Turbo Debugger User’s Guide

If a function name is the first item in a scope override statement, it must not have a #
in front of it. If there’s a #, Turbo Debugger interprets the function name as a module
name.

Any variable you access through scope override syntax must be initialized. Although
an automatic variable doesn’t have to be in scope, it must be located on the stack and
in the currently loaded executable module.

If you're trying to access an automatic variable that’s no longer in scope, you must
use its function name as part of the scope override statement.

You can't use scope override syntax to access the value of a register variable because
once the scope changes, the register no longer holds the value of the variable.

The scope of a template depends on the current location in the program. The value of
a template expression depends on the object that is currently instantiated.

Usually, you'll enter expressions that can be evaluated from the current scope.
However, scope overrides are useful when you want to specifically reference a program
symbol. For example, you could set up two watches for the variable nlines. By setting the
watches at different program locations, you can monitor how the variable changes
value. The following expressions could be used to set watches on nlines for both lines 51

and 72:

#51#nlines
#72#nlines

Scope override examples using C

Here are some examples of C and C++ expressions that use scope overrides:

#123
#123#myvarl

#mymodule#123
fmymodule#filel.cpp#l23

fmymoduleffilel.cpp#123#myvarl

#myvar?

#mymodules#my func#myvar2

#mymodule#file2. cmyvar2

AnObject#AMemberVar

AnObject #AMemberF

Line 123 in the current module.

Symbol mywvarl accessible from line 123 of the
current module.

Line 123 in module mymodule.

Line 123 in source file filel.cpp, which is part of
the object module mymodule.

Symbol myvarl accessible from line 123 in
source file filel.cpp, which is part of mymodule.

Symbol myvar in the current scope.

Symbol myvar2 accessible from routine myfunc
in module mymodule.

Symbol myvar2 accessible from file2.c, which is
defined in mymodule.

Data member AMemberVar accessible in object
AnObject accessible in the current scope.

Member function AMemberF accessible in
object AnObject accessible in the current scope.

Chapter 7, Evaluating expressions 103

#AModule#AnObject #AMemberVar = Data member AMemberVar accessible in object
AnQbject accessible in module AModule.

#AModule#AnObject#AClass: :AMemberVar Data member AMemberVar of class AClass
accessible in object AnObject accessible in
module AModule.

Note To examine or call an overloaded member function, enter the name of the function in the
appropriate input box. Turbo Debugger opens the Pick a Symbol Name dialog box,
which shows a list box of all the functions of that name with their arguments, enabling
you to choose the specific function you want.

Overriding scope in Pascal programs
You can use either of the following two types of scope overriding syntax with the Pascal
expression evaluator (items enclosed in brackets ([]) are optional):

[unit.] [procedurename.] symbolname
[unit.] [objecttype. | objectinstance.] [method.] fieldname

The following additional rules apply to the Pascal scope override syntax:
* If you don’t specify a unit, the current unit is assumed.

¢ If you're trying to access a local variable that’s no longer in scope, you must use its
procedure or function name as part of the scope override statement.

* You can’t use a line number or a file name as part of a Pascal scope override
statement. If you want to use line number syntax, change the expression evaluator to
C with the Options | Language command.

Scope override examples using Pascal
Here are some examples of Pascal expressions that use scope overrides:

MyVar Variable MyVar in the current scope.

MyProc.MyVar Variable MyVar accessible from the routine MyProc.

MyUnit.MyVar Variable MyVar accessible from the unit MyUnmit.

MyUnit.MyProc.MyVar Variable MyVar accessible from procedure MyProc in unit
MyUnit.

AnInstance Instance Anlnstance accessible in the current scope.

AnInstance.AField Field AField accessible in instance Anlnstance accessible in the

current scope.

AnObjectType.AMethod Method AMethod accessible in object type AnObjectType
accessible in the current scope.

AnInstance.AMethod Method AMethod accessible in instance Anlnstance accessible
in the current scope.

104 Turbo Debugger User’s Guide

AUnit.AnInstance.AField Field AField accessible in instance Anlnstance accessible in the
unit AUnit.

AUnit.AnObject.AMethod Method AMethod accessible in object type AnObjectType
accessible in unit AUnit.

Scope and DLLs

When you step into a function that’s located in a .DLL, Turbo Debugger loads the
symbol table for the .DLL, if it exists, over the currently loaded symbol table. Because a
DLL’s symbol table will be overwritten when your program makes a cail to another
executable file, you won't have immediate access to variables that are located in an
executable file that isn’t currently loaded.

If a variable has the same name in multiple .EXE or .DLL files, you can access the
desired symbol by loading the executable file in which the symbol is located (press F3,
and use the Load Modules and DLLs dialog box to load the executable file containing
the symbol). For more information on symbol tables and .DLL files, see page 136.

Note When debugging, all .EXE and .DLL files must be located in the same directory.

Chapter 7, Evaluating expressions 105

106 Turbo Debugger User’s Guide

Examining disk files

Turbo Debugger provides two ways to view source files, data files, and other files that
you have stored on disk:

» The Module window displays the source code relating to executable modules that
were compiled with debug information.

* The File window lets you view any disk file as either ASCII text or as hexadecimal
data.

Examining program source files

The Module window is the most frequently used window in Turbo Debugger. You can
use this window to examine the executable source code of any module that was
compiled and linked with debug information.

Figure 8.1 The Module window

[I=Module: tdudemo File: .. _MPLESN\TDSTDUDEM32\DEMO2\tdudemo.c 38%2—i=[1L 1=}
» button is also marked as pressed.
7

zoid DoLButtonDown CHWND hind. LONG 1Param>

7%

* Redirect all subsequent mouse movements to this

* window until the mouse button is released.

*/

SetCaptureChlind);
oldy = thisShapel++CurrentPointJ.Points.top = HIWORD{(1Param);
oldx = thisShapelCurrentPointl.Points.left = LOWORDCIParamd;
thisShapelCurrentPointl.thefhape = CurrentShape;
thisShape[CurrentPoint 1.PenWidth = PenWidth;
this8hape [CurrentPoint]1.PenColor = PenColowr;

mouseDown = 13

When you open the Module window, the title bar displays the name of the currently
loaded module, the name of the current source file, and the cursor’s line number.

Chapter 8, Examining disk files 107

In the Module window, executable lines of code are marked with a bullet (*) in the left
column of the window. You can set breakpoints or step to any of these lines of code. An
arrow (») in the first column of the window indicates the location of the instruction
pointer. This always points to the next statement to be executed.

As you step through your program, the Module window automatically displays the
source code relating to the current location of the instruction pointer. By navigating to
different source-code locations, you can set breakpoints and watches, and inspect the
values of different program variables.

If the abbreviation opt appears after the file name in the title bar, the program has been
optimized by the compiler. If you compiled your program with optimizations, you
might have trouble finding variables that have been optimized away. In addition,
compiler optimizations can place variables in registers, meaning that they cannot be
linked to memory addresses. Because of this, it is recommended that you do not
optimize your program while you are in the debugging stage.

If the word modified appears after the file name in the title bar, the file has been changed
since it was last compiled. In this case, the line numbers in the source file might not
correspond to the line numbers in the executable’s debug information. If these line
numbers don’t match, the debugger will not be able to show the correct program
locations when you step through your code. To correct this problem, recompile your
program with symbol debug information.

Loading source files

When you load a program into Turbo Debugger, the file containing the entry point to
the program automatically loads into the Module view.

If you want to change the source file that's currently displayed in the Module window,
choose one of the following two commands from the Module window SpeedMenu:

* The File command lets you change to another source file contained in the current
program module.

* The Module command lets you change the currently loaded program module.

108 Turbo Debugger User’s Guide

The Module window SpeedMenu

The Module window SpeedMenu provides commands that let you navigate through
the displayed file, inspect and watch data items, and load new source code files. The
SpeedMenu in TD32 also has the Thread and Edit commands:

Inspect
Watch

Thread
Module. ..
File...

Previous
Line...
Search. ..
Next

Origin
Goto...

Edit
Exceptions...

Inspect

The Inspect command opens an Inspector window that shows the details of the
program variable at the current cursor position. If the cursor isn’t on a variable, you're
prompted to enter an expression to inspect.

You can also use the arrow keys or your mouse to quickly select an expression or string
of text in the Module window. To use the keyboard, press Ins, and use the left or right
arrow keys to mark your selection. To use the mouse, click and drag the mouse pointer
over the section of text you want to select. After selecting an expression, press Cirl+l to
activate the Inspector window.

Watch

Watch adds the variable at the current cursor position to the Watches window. Putting a
variable in the Watches window lets you monitor the value of that variable as your
program executes.

If you have selected an expression in the Module window, press Cir/+W to add the
expression to the Watches window.

Thread

The Thread command, found only in TD32, opens the Pick a Thread dialog box, from
which you can pick a specific program thread to monitor. For more information on
threads, see page 139.

Module
The Module command lets you load a different module into the debugger by picking
the module you want from the Load Module Source or DLL Symbols dialog box.

The Load Module Source or DLL Symbols dialog box is fully described on page 136.

Chapter 8, Examining disk files 109

File

File lets you examine another source file that's compiled into the module you're
currently viewing. This command opens the Pick a Source File dialog box, which lists
the source files that contain executable code. When you choose the source file you want
to examine, that file replaces the current file in the Module window.

To view different files simultaneously, use the View | Another | Module command to
open multiple Module windows.

Files that are included in your program with the #include directive are also program
source files. If an include file contains executable lines of code, you can use the File
command to load the file into the Module window. However, if the include file doesn’t
contain executable code (such as many C header files), you must use the File window to
examine the file.

Previous :

The Previous command returns you to the source location you were viewing before you
changed your position. For example, if you use the Goto command to view the source
code at a different address, the Previous command returns you to your original position.

Line

Line positions you at a new line number in the file. The Enter New Line Number dialog
box prompts you for a decimal line number. If you enter a line number after the last line
in the file, you will be positioned at the end of the file.

Search

The Search command searches for a character string, starting at the current cursor
position. When you choose this command, the Enter Search String dialog box prompts
you for a search string. If the cursor is positioned over something that looks like a
variable name, the dialog box opens initialized to that name.

If you mark a block in the file using Ins and the arrow keys, that block will be used to
initialize the Search String dialog box.

You can also search using simple wildcards: a question mark (?) indicates a match on
any single character and an asterisk (*) matches zero or more characters.

The search does not wrap around from the end of the file to the beginning. To search the
entire file, first go to the beginning of the file by pressing Ctrl+PgUp.

Next
Next searches for the next instance of the character string you specified with the Search
command.

Origin

The Origin command positions the cursor at the module and line number containing the
current instruction pointer. If the module you are currently viewing is not the module
that contains the instruction pointer, the Module window will change to show that
module.

110 Turbo Debugger User’s Guide:

This command is useful when you have been examining various places in your code,
and you want to return to the location of the instruction pointer.

Goto

Goto opens the Enter Address to Position To dialog box, which enables you to view any
address location within your program. Enter the address you want to examine as either
a procedure name or a hexadecimal address. If the address you enter doesn’t have a
corresponding source line, the CPU window opens. See “Types of expressions” on
page 98 for a description of entering addresses.

Note You can alsc invoke this command by typing into the Module window. This brings up
the Enter Address to Position To dialog box, exactly as if you had chosen the Goto
command.

Edit

When you're debugging a Win32s program with TD32, you can invoke the editor of
your choice using the Edit command. This command is useful if you've found the
program bug, and you want to fix the source code before leaving Turbo Debugger.

Before you can use this command, you must configure TD32 so it knows where to find
your editor:

1 Load the TDINST32.EXE installation program.
2 Choose Options | Directories to access the Directories dialog box.

3 Enter the absolute path and name of your editor into the Editor Program Name input
field.

4 Save the settings.

Exceptions
If you have implemented C or C++ exception handling in your program, the Exception
command becomes active. For complete details on this command, see page 152.

Examining other disk files

You can use the File window to examine any disk file, including binary and text files.

Figure 8.2 The File window

[11=FPile C:xBCANEMAMPLESSTDSTDUDEM32Ntduwdemo.h f——————— g [J=—y
‘*mmmmm&mmmmm

ko ; Copyright Ced 1993 by Borland International. Inc. :
D M- 0 00000300 0 0 00000 00300 - D 1 DD,

#idef ine szfippHame. "SinplePaint!
#define LINE 1 :
H#define ELLIPSE 2

#define RECTANGLE 3

fidefine MID QUIT 108
#define MID _LINE 281 -
#def ine MID ELLIPSE 262
fidef ine MID _RECTANGLE 203
H#def ine D _THIN 38:
fidefine

#idef ine

Chapter 8, Examining disk files 111

When you choose View | File from the menu bar, Turbo Debugger displays the Enter
Name of File to View dialog box. You can type a specific file name to load, or you can
enter a file mask using wildcards characters to get a list of files to choose from.

After you select a file name, the File window opens and displays the file name and
contents.

Figure 8.3 The File window showing hex data

TDUDEMI2\tdudeno .exe
HZP L)

=
g B

g 10‘
G EE
This pro
gram mus
t be run
undey 4
ind2 e

32 @d Pa 24
: BB AR BB PR B0 BA PO

The File window displays files as either ASCII text or as hexadecimal bytes, depending
on the contents of the file. If Turbo Debugger determines that the file contains text, it
displays the file as ASCIL otherwise, the file is displayed as hexadecimal. You can
switch between an ASCII or hexadecimal display using the Display As SpeedMenu
command. If you're viewing the file as ASCII, the current line number is also displayed
in the title bar.

The File window SpeedMenu

The File window SpeedMenu has commands for navigating through a disk file and for
changing the file’s display format.

Goto...
Search...
Next

Display as Ascii
File...

Goto

The Goto command positions the display at a new line number or offset in the file. If
you are viewing the file as ASCII text, enter the new line number to go to. If you are
viewing the file as hexadecimal bytes, enter the offset that you want to move to. If you
enter a line number greater than the last line in the file (or an offset beyond the end of
the file), Turbo Debugger displays the end of the file.

Search

The Search command searches for a character string, starting at the current cursor
position. When you choose this command, the Enter Search String dialog box prompts
you for a search string. If the cursor is positioned over something that looks like a
variable name, the dialog box opens initialized to that name.

112 Turbo Debugger User’s Guide

If you mark a block in the file using Ins and the arrow keys, that block will be used to
initialize the Search String dialog box.

The search does not wrap around from the end of the file to the beginning. To search the
entire file, first go to the beginning of the file by pressing Cirl+PgUp.

If the file is displayed in ASCII, you can use DOS wildcards in your search string: a
question mark (?) indicates a match on any single character and an asterisk (*) matches
zero or more characters.

If the file is displayed as hexadecimal bytes, enter a byte list consisting of a series of byte
values or quoted character strings, using the syntax of the selected expression evaluator.
For example, if the language is C++, a byte list consisting of the hex numbers 0408
would be entered as 0x0804. If the language is Pascal, the same byte list is entered as
$0804.

You can also invoke this command by typing the string that you want to search for. This
brings up the Search dialog box exactly as if you had specified the Search command.

Next
The Next command searches for the next instance of the character string you specified
with the Search command.

Display As
Display As toggles the display between the following two formats:

» ASCII displays the file using the printable ASCII character set.

* Hex displays the file in hexadecimal format. With this display, each line starts with
the offset from the beginning of the file (shown as a hexadecimal number), followed
by the hexadecimal representation of the bytes in the file.The ASCII character for
each byte in the file appears on the right side of the display. The File window
displays the entire 256 IBM extended-character set.

File

The File command lets you change the file that’s displayed in the File window. This
command lets you view different files without opening duplicate File windows. If you
want to view two different files (or two parts of the same file) simultaneously, choose
View | Another | File to open another File window.

Edit
The Edit command is the same as the Module window SpeedMenu Edit command. For
more information, refer to page 111.

Chapter 8, Examining disk files 113

114 Turbo Debugger User’s Guide

.
>3
3
=
oS
]
‘e
g
to)
et

Assembly-level debugging

When you're debugging a program, the high-level view of your source code is often all
you need. Sometimes, however, you might need to take a closer look at your program.
Viewing the assembly-level aspects of your program can reveal details such as the
machine code generated by your compiler, the contents of the CPU registers and flags,
and the items contained on the call stack.

Turbo Debugger provides the following windows for examining the assembly-level
state of your program:

* The CPU window

* The Dump window

* The Registers window

* The Numeric Processor window

This chapter describes how to use these windows to view the assembly-level aspects of
your program. The online file TD_ASM.TXT contains additional information on

assembly-level debugging, including a section describing the Numeric Processor
window.

The CPU window

The CPU window uses various panes to describe the low-level state of your program. A
SpeedMenu in each pane provides commands specific to the contents of that pane.

Among other things, you can use the CPU window to:

* Examine the machine code and disassembled assembly instructions produced from
your program’s source code.

+ Examine and modify the bytes that make up your program’s data structures.

* Use the built-in assembler in the Code pane to test bug fixes.

The CPU window is shown in Figure 9.1. Table 9.1 gives brief a description of each pane
in the CPU window.

Chapter 9, Assembly-level debugging 115

Figure 9.1 The CPU window

Code pane Registers pane Flags pane

Dump pane Stack pane

Table9.1 CPU window panes

Code pane Shows the machine code and disassembled assembly instructions of ybu
program. Source code lines can also be displayed.

Registers pane Shows the contents of the CPU registers.

Flags pane Shows the state of the eight CPU flags.

Dump pane Shows a hexadecimal dump of any memory area accessible by your program. A
variety of display formats is available.

Stack pane Shows the hexadecimal contents of the program stack.

Selector pane Available in TDW only, this pane shows and describes all Windows 3.x selectors.

From within the Code, Dump, and Stack pane, it’s possible to scroll outside the current
protected-mode segment, even though the operating system marks these as invalid
addresses for your program. Because of this, the CPU window displays question marks
for any addresses referenced outside the current-mode segment.

Note In the Code, Dump, and Stack panes, press Cirl+Left and Cirl+Right to shift the starting
display address of the pane by 1 byte up or down. Using these keystrokes is often faster
than using the Goto command to make small adjustments to the display.

Opening the CPU window

To open the CPU window, choose View | CPU from the menu bar. Turbo Debugger
opens the CPU window automatically in the following cases:

* Ifit gains control when Windows code is being executed.

*» If you enter a module that doesn’t contain debug information.

* If your program stops on an instruction within a line of source code.
* If you trace through instructions using Alt+F7.

When you open the CPU window, Turbo Debugger positions the display at the
appropriate Code, Dump, or Stack pane, depending on the window that was active

116 Turbo Debugger User’s Guide

when you opened the CPU window. The following table describes where the cursor is
positioned when you open the CPU window:

Table9.2 CPU window positioning

Current window ‘ CPU pane ~ Position

Module window Code Address of item

Breakpoint (nonglobal) Code Breakpoint address

Variable window Dump/Code Address of item

Watches window Dump/Code Address of item

Inspector window Dump/Code Address ot item

Stack window Stack Top of stack frame for highlighted item
Other area Code Current instruction pointer location

Once opened, the title bar of the CPU window displays your system’s processor type
(8086, 80286, 80386, or 80486). In addition, if the highlighted instruction in the Code
pane references a memory location, the memory address and its current contents are
displayed in the title bar of the CPU window. This lets you see both where an
instruction operand points in memory and the value that is about to be accessed.

The Code pane

The left side of the Code pane lists the address of each disassembled instruction. If
you're viewing 16-bit code, the addresses are shown in segment:offset notation.
Otherwise, addresses are displayed as 32-bit addresses. An arrow (~) to the right of the
memory address indicates the location of the current instruction pointer. The instruction
pointer always points to the next instruction to be executed. To the right of this, the CPU
window displays the hexadecimal machine code, followed by its disassembled
assembly instruction.

When an assembly instruction contains an immediate operand, you can infer its size
from the number of digits in the operand: a 1-byte immediate has two digits, a 16-bit
immediate has four digits, and a 32-bit immediate has eight digits.

Displaying source code

If you set the Mixed SpeedMenu command to Yes, the Code pane displays the source
code that relates to the displayed assembly instructions. If an address corresponds to
either a global symbol, static symbol, or line number, the CPU window displays the
original source code above the first disassembled instruction relating to the source code.
Also, if there is a line of source code that corresponds to the symbol address, it is
displayed after the symbol.

Global symbols appear simply as the symbol name. Static symbols appear as the
module name, followed by a cross hatch (#), followed by the static symbol name. Line
numbers appear as the module name, followed by a cross hatch (#), followed by the
decimal line number.

Chapter 9, Assembly-level debugging 117

Setting breakpoints

You can set or remove breakpoints in the Code pane by highlighting the desired
assembly instruction, and pressing F2. Also, clicking a line sets and removes breakpoints
on that line. Once a breakpoint is set, the line containing the breakpoint turns red (the
default color).

The Code pane SpeedMenu

The SpeedMenu contains commands that let you navigate through the Code pane, alter
the pane’s display, and assemble instructions that you supply.

For the most part, the SpeedMenus for TDW and TD32 contain the same commands.
However, TDW has the extra command I/O, and TD32 contains the extra commands
Thread and OS Exceptions.

Goto

When you choose the Goto command, the Enter Address to Position To dialog box
prompts you for an address to go to. You can examine any address that your program
can access, including addresses in the ROM BIOS, inside DOS, and in the Windows

program.

Origin

The Origin command positions you at the location of the instruction pointer. This
command is useful when you have navigated through the Code pane, and you want to
return to the next instruction to be executed.

Follow

The Follow command positions the Code pane at the destination address of the
currently highlighted instruction. Use this command in conjunction with instructions
that cause a transfer of control (such as CALL, JMP, INT), and with conditional jump
instructions (JZ, JNE, LOOP, and so forth). For conditional jumps, the address is shown
as if the jump had occurred. Use the Previous command to return to the origin of the
jump.

Caller

Caller positions you at the instruction that called the current interrupt or subroutine. Be
aware that if the current interrupt routine has pushed data items onto the stack, Turbo
Debugger might not be able to determine where the routine was called from.

Previous

The Previous command restores the Code pane display to the position it had before the
last command that explicitly changed the display (such as Previous, Caller, Origin, and
Follow). The keys do not affect this command.

Search

The Search command searches forward in the code for an expression or byte list that
you supply (see Chapter 7 for information on byte lists).

118 Turbo Debugger User’s Guide

Note

When you search for an expression in the Code pane, Turbo Debugger assembles the
expression that you're searching for, and searches for a match in the resulting machine
code. Because of this, care must be taken when you specify the search expression; you
should search only for expressions that don’t change the bytes they assemble to. For
example, you will not encounter problems if you search for the following expressions:

PUSH DX
POP [DI+4]
ADD AX,100

However, searching for these instructions can cause unpredictable results:

T 199
UL 140

CALL MYFUNC
LOOP 100

View Source

The View Source command activates the Module window, showing you the source code
that corresponds to the current disassembled instruction. If there is no corresponding
source code (for example, if you're examining Windows kernel code), this command has
no effect.

Mixed

Mixed toggles between the three ways of displaying disassembled instructions and
related source code:

Table 9.3 Mixed command options

No Disassembled instructions arewdiswplaiyea thout source code.
Yes Source code lines are listed before the first disassembled instruction relating to that

source line. This is the default mode for C and Pascal programs.

Both Source code lines replace disassembled lines for the lines that have corresponding
source code. If there is no source code, the disassembled instruction appears. This is
the default mode for assembly modules.

Use this mode when you're debugging an assembler module and you want to see the
original source code instead of the corresponding disassembled instructions.

Thread

The Thread command, found only in TD32, lets you choose the thread of execution you
want to debug. When selected, this command opens the Pick a Thread dialog box, from
which you can pick a specific program thread. For more information on threads, see
page 139.

0S Exceptions

The OS Exceptions command, found only in TD32, lets you choose the operating-system
exceptions you want to handle. For more information on operating-system exceptions,
see page 142.

Chapter 9, Assembly-level debugging 119

New EIP

The New EIP command changes the location of the instruction pointer to the currently
highlighted line in the Code pane (in TDW, this command is called New CS:IP). When
you resume program execution, execution starts at this address. This command is useful
when you want to skip certain machine instructions.

Use this command with extreme care; it is easy to place your system in an unstable state
n when you skip over program instructions.

Assemble

The Assemble command assembles an instruction, replacing the instruction at the
currently highlighted location. Use this command when you want to test bug fixes by
making minor changes to assembly instructions.

When you choose Assemble, the Enter Instruction to Assemble dialog box opens,
prompting you for an expression to assemble. For more information on assembling
instructions, refer to “The Assembler” section in the online file TD ASM.TXT.

This command is invoked if you type into the Code pane.

[0

The I/ O command, found only in TDW, reads or writes a value in the CPU’s I/ O space,
and lets you examine and write to the contents of special I/ O registers. This command
gives you access to the I/ O space of peripheral device controllers such as serial cards,
disk controllers, and video adapters.

When you choose this command, a menu opens with the following commands:

Table 9.4 |/O commands

In Byte Reads a byte from an I/ O port. You are prompted for the I/ O port whose value you
want to examine.

Out Byte Writes a byte to an I/ O port. You are prompted for the I/ O port to write to and the
value you want to write.

Read Word Reads a word from an I/O port.

Write Word Writes a word to an1/0O port.

Some I/O devices perform an action (such as resetting a status bit or loading a new data
n byte into the port) when their ports are read. Because of this, you might disrupt the
normal operation of the device with the use of these commands.

The Registers pane

The Registers pane displays the contents of the CPU registers. The display varies,
depending on whether you're using TDW or TD32. By default, TDW displays the
thirteen 16-bit registers. TD32 always displays the fifteen registers found in the 80386
(and higher) processors.

120 Turbo Debugger User’s Guide

The Registers pane SpeedMenu
Using the commands on the Register pane SpeedMenu, you can modify and clear the
register values.

Increment
Decrement

Lero

Change. ..
Registers 32-bit

Increment
Increment adds 1 to the value in the cuirently highlighted register. This iets you test
“off-by-one” bugs by making small adjustments to the register values.

Decrement
Decrement subtracts 1 from the value in the currently highlighted register.

Zero
The Zero command sets the value of the currently highlighted register to 0.

Change

Change lets you change the value of the currently highlighted register. When you chose
this command, the Enter New Value dialog box prompts you for a new value. You can
make full use of the expression evaluator to enter new values.

You can also invoke this command by typing the new register value into the Registers
pane.

Registers 32-bit
The Registers 32-bit command, used only by TDW, toggles the register display between
16-bit values and (on systems with 32-bit processors) 32-bit values.

TDW usually displays 16-bit registers, unless you use this command to set the display to
32-bit registers. Toggle this command to Yes if you're debugging a module that uses 32-
bit addressing. Notice that all segment registers will remain as 16-bit values, even when
you toggle on the 32-bit display.

The Flags pane

The Flags pane shows the state of the eight CPU flags. The following table lists the
different flags and how they are shown in the Flags pane:

Table9.5 The CPU Flags

¢ Carry

z Zero

s Sign

o ‘Overflow

Chapter 9, Assembly-level debugging 121

Table 9.5 The CPU Flags (continued)

p Parity

a Auxiliary carry
i Intérrupt enable
d Direction

The Flags pane SpeedMenu

The Flags pane contains the Toggle command, which changes the value of the currently
highlighted flag between 0 and 1. You can also press Enter or the Spacebar to toggle the
value of a flag.

The Dump pane

This pane shows a raw hexadecimal display of an area in memory. The leftmost part of
each line shows the starting address of that line, using either 16-bit segment:offset
notation or 32-bit flat addresses. With 16-bit code, the address is displayed as either a
hex segment and offset, or with the segment value replaced with one of the register
names if the segment value is the same as that register. The Dump pane matches
registers in the following order: DS, ES, SS, CS.

To the right of the address, the value of one or more data items is displayed. The format
of this area depends on the display format selected with the Display As SpeedMenu
command. If you choose one of the floating-point display formats (Comp, Float, Real,
Double, or Extended), a single floating-point number is displayed on each line. Byte
format displays 8 bytes per line, Word format displays 4 words per line, and Long
format displays 2 long words per line.

When the data is displayed as bytes, the rightmost part of each line shows the ASCII
characters that correspond to the data byte values. Turbo Debugger displays all byte
values as their display equivalents, including “nonprintable” characters and the
characters from the IBM extended-character set.

If you use the Goto command in the Dump pane to examine the contents of the display
memory, the ROM BIOS data area, or the vectors in low memory, you will see the
values of the program being debugged, not the actual values that are in memory while
Turbo Debugger is running. Turbo Debugger detects when you're accessing areas of
memory that it is using, and displays the correct program values from where it stores
them in memory.

The Dump pane SpeedMenu

The Dump pane SpeedMenu contains commands that let you navigate through the
pane, modify memory contents, follow near or far pointers, format the display, and
manipulate blocks of memory.

122 Turbo Debugger User’s Guid‘e

Goto

Goto prompts you for a new area of memory to display with the Enter Address to
Position To dialog box. Enter any expression that evaluates to a memory location that
your program can access.

Search
The Search command searches for a character string or byte list, starting from the
memory address indicated by the cursor.

Next
Next searches for the next instance of the item you previously specified in the Search
command.

Change

The Change command lets you modify the bytes located at the current cursor location. If
the display is ASCII or if the hexadecimal format is Byte, you're prompted for a byte list.
Otherwise, you're prompted for an item of the current display type.

You can invoke this command by typing into the Dump pane.

Follow

The Follow command opens a menu containing commands that let you examine the
data at near and far pointer addresses. The TD32 menu contains only the commands
that relate to 32-bit addressing.

Table 9.6 Follow command options

“ iﬁtérpfét e cu p p
segment specified by the CS register. This command activates the Code
pane, and positions it to the near address.

Néaf Codé

Far Code Interprets the doubleword under the cursor in the Dump pane as a far
address (segment:offset). This command activates the Code pane, and
positions it to the far address.

Offset to Data Lets you follow word-pointer chains (near and offset only). The Dump
pane is set to the offset specified by the word at the current cursor location.
Segment:Offset to Data Lets you follow long pointer chains (far, segment, and offset). The Dump
ane is set to the oftset specified by the two words at the current cursor
ocation.
Base Segment: to Data Interprets the word under the cursor as a segment address and positions

the Dump pane to the start of that segment.

Previous
Previous restores the Dump pane position to the address before the last command that
explicitly changed the display address. The arrow keys do not affect this command.

Turbo Debugger maintains a stack of the last five addresses accessed in the Dump pane,
- so you can backtrack through multiple uses of the Follow menu or Goto commands.

Chapter 9, Assembly-level debugging 123

Display As
Use the Display As command to format the data that s listed in the Dump pane. You can
choose any of the following data formats:

Table 9.7 Display As command options

-
exadecimal bytes.

yte

Word 2-byte hexadecimal numbers.

Long 4-byte hexadecimal numbers.

Comp 8-byte decimal integers.

Float 4-byte floating-point numbers in scientific notation.
Real 6-byte floating-point numbers in scientific notation.
Double 8-byte floating-point numbers in scientific notation.
Extended 10-byte floating-point numbers in scientific notation.
Block

This command brings up a menu that lets you move, clear, and set blocks of memory. In
addition, you can read and write memory blocks to and from files. Use Ins and the arrow
keys to quickly select the block of bytes that you want to work with.

Table 9.8 Block command options

Clear Sefs aébﬁnguos f m;mr;f r (0; You are“r‘cx)téd or the addressand
the number of bytes to clear.

Move Copies a block of memory from one address to another. You are prompted for the
source address, the destination address, and how many bytes to copy.

Set Sets a contiguous block of memory to a specific byte value. You are prompted for the
address of the block, how many bytes to set, and the value to set them to.

Read Reads all or a portion of a file into a block of memory. You are prompted for the file

name to read from, for the address to read it into, and for how many bytes to read.

Write Wrrites a block of memory to a file. You are prompted for the file name to write to, for
the address of the block to write, and for how many bytes to write.

The Stack pane

The Stack pane shows the hexadecimal contents of the program stack. An arrow ()
shows the location of the current stack pointer.

Although you might need to review the hexadecimal bytes that make up the program
stack, Turbo Debugger uses the Stack window to show the contents of the stack in a
more readable format. See page 92 for a discussion on the Stack window.

124 Turbo Debugger User’s Guide

The Stack pane SpeedMenu

The SpeedMenu of the Stack pane contains the following commands:

Goto
Origin
Follow
Previous
Change. ..

Goto
Goto prompts you for an address to view with the Enter Address to Position To dialog
box. If you want, you can enter addresses cutside your program’s stack, although it’s

usually easier to use the Dump pane to examine arbitrary memory locations.

Origin
Origin positions you at the current stack location as indicated by the SS:SP register pair.

Follow

The Follow command positions you at the location in the stack pointed to by the
currently highlighted word. This is useful for following stack-frame threads back to the
calling procedure.

Previous

The Previous command restores the Stack pane position to the address before the last
command that explicitly changed the display address (such as Goto, Origin, and
Follow). The arrow keys do not affect this command.

Change
Change lets you enter a new word value for the currently highlighted stack word with
the Enter New Value for Unsigned Int dialog box.

You can invoke this command by typing the new value for the highlighted stack item.

The Selector pane

The Selector pane, found only in TDW, lists the Windows 3.x protected-mode selectors.
A selector can be either valid or invalid. If valid, the selector points to a location in the
protected-mode descriptor table corresponding to a memory address. If invalid, the
selector is unused.

If a selector is valid, the pane shows the following information:

* The contents of the selector segment (Data or Code).

* The status of the selector memory area: Loaded (present in memory) or Unloaded
(swapped out to disk).

* The length of the referenced memory segment in bytes.

If the selector references a data segment, the pane displays additional information on
the access rights (Read/Write or Read Only), and the direction in which the segment
expands in memory (Up or Down).

Chapter 9, Assembly-level debugging 125

The Selector pane SpeedMenu

You use the SpeedMenu of the Selector pane to go to a new selector or see the contents
of the currently highlighted selector. Turbo Debugger displays selector contents in
either the Code pane or the Dump pane, depending on the nature of the data being
displayed.

Selector

The Selector command opens the Enter New Selector dialog box, which prompts you for
a selector to display in the pane. You can use full expression syntax to enter the selector.
If you enter a numeric value, Turbo Debugger assumes it is decimal, unless you use the
syntax of the current language to indicate that the value is hexadecimal.

For example, if the current language were C, you could type the hexadecimal selector
value 7F as 0x7F. For Pascal, you'd type it as $7F. You can also type the decimal value 127
to go to selector 7F.

Another method of entering the selector value is to display the CPU window and check
the segment register values. If a register holds the selector you're interested in, you can
enter the name of the register preceded by an underscore (_). For example, you could
type the data segment register as _DS.

Examine

Examine displays the contents of the memory area referenced by the currently
highlighted selector. When this command is invoked, either the Code pane or the Dump
pane gains focus. If the selector points to a code segment, the contents are displayed in
the Code pane. If the selector contents are data, they’re displayed in the Dump pane.

The Dump window

The Dump window, opened with the View | Dump command, displays the raw data
that’s located in any area of memory that can be accessed by your program. The Dump
window is identical in behavior to the Dump pane in the CPU window, including all
SpeedMenu commands (see page 122 for a description of this pane). The advantage of
using the Dump window, however, is that it can be resized.

Figure9.2 The Dump window

The Dump window is useful when you're in an Inspector window and you want to look
at the raw bytes that make up the object you're inspecting. Choosing the View | Dump
command when an Inspector window is active opens a Dump window that’s positioned
at the address of the data in the Inspector window.

126 Turbo Debugger User’s Guide

You can open several Dump windows simultaneously by choosing View | Another |
Dump.

The Registers window

The Registers window is a combination of the Registers and Flags panes in the CPU
window (see page 120).

Figure 9.3 The Registers window

[+)=Regs=3=[1
eax ARPZ2B26E

Registers pane -

Flags pane

gs B80Q

eip BAA2009%

You can perform the same functions from the SpeedMenu of the Registers window as
you can from the SpeedMenus of the Registers and the Flags panes in the CPU window.

Chapter 9, Assembly-level debugging 127

128 Turbo Debugger User’s Guide

Chapter

Windows debugging features

Programs written for the Windows operating system can be robust and powerful.
However, the added complexity of programming for Windows opens up a new
category of software bugs. Turbo Debugger provides the following features to help you
find the bugs in your Windows code:

» Windows message tracking and message breakpoints

* Dynamic-link library debugging

* Thread support (for Windows NT only)

* Operating-system exception support for Windows NT and Windows 32s

» Listings of your program’s local heap, global heap, and program modules (TDW
only)

* Expression typecasting from memory handles to near and far pointers (TDW only)

* A Selector pane in the CPU window of TDW lets you examine any Windows 3.x
protected-mode selector (see “The Selector pane” on page 125 for a description of this
feature)

Monitoring window messages

The Windows Messages window provides commands for tracking and examining the
window messages received by your program. Using this window, you can create
message breakpoints (breakpoints that pause your program’s execution when a specific
window message is received), and you can log the messages that a particular window
processes.

You open the Windows Messages window, shown in Figure 10.1, with the View |
Windows Messages command. Table 10.1 defines the three panes of the Windows
Messages window.

Chapter 10, Windows debugging features 129

Figure 10.1 The Windows Messages window

Window Selection pane Message Class pane

Message Log pane

Table 10.1 Windows Messages window panes

Window Selector pane Lists the windows that you've selected for messages tracking:

Message Class pane Lists the messages and message classes that you're tracking for the highlighted
window in the Window Selection pane.

Message Log pane Displays the window messages received by your program.

To track messages for a specific window, follow these steps:
1 Specify a window to monitor.
2 Specify the messages you want to track.

8 Specify the action that Turbo Debugger should take when the window messages are
received: Break or Log.

Specifying a window to monitor

The first step in tracking window messages is to specify the window you want to
monitor. Although the procedure for spec1fy1ng windows is similar in both TD32 and
TDW, there are some differences.

To specify a window in TD32, use the name of the window procedure that processes the
window’s messages:

1 Open the Add Window Procedure to Watch dialog box by choosing Add from the
Window Selector pane SpeedMenu, or typing directly into the pane.

2 Type the name of the window procedure into the Window Identifier input box, and
press Enter.

You can repeat this procedure for each window whose messages you want to monitor.

In TDW, you can specify a window by either its window handle or by the window
procedure that processes the window’s messages. In either case, you use the Add
Window or Handle to Watch dialog box to select a window. To access this dialog box,
choose Add from the Window Selector pane SpeedMenu, or type directly into the pane.

130 Turbo Debugger User’'s Guide

Note

In TDW’s Add Window or Handle to Watch dialog box, the Identify By radio buttons let
you choose how you're going to specify the window whose messages you're going to
track:

Window Proc Choose this when you supply the name of the routine that processes the
window messages (for example WndProc).

Handle Choose this when you supply the name of the window’s handle.

Specifying a window procedure

If you select the Window Proc radio button, enter the name of the window procedure
that processes the window’s messages in the Window Identifier input box. This is
usually the best way to specify a window because you can enter the procedure name
any time after you've loaded your program.

Specifying a window handle
If you prefer to use the window’s handle name, follow these steps to specify the
window’s handle:

1 Run your program past the line where the handle is initialized (Turbo Debugger
issues an error message if you try to specify a handle name before it’s assigned a
value).

2 Open the Windows Messages window and choose Add from the Window Selection
pane SpeedMenu.

3 C(lick the Handle radio button.

4 Type the name of the window handle into the Window Identifier input box, and cast
the handle to a UINT data type.

For example, the following entry would be used to specify the h/iWnd window handle:
(UINT) hiind
5 Complete the entry by pressing Enter.

If you enter a handle name but click the Window Proc radio button, Turbo Debugger
will accept your input, falsely assuming that the “window procedure” will be defined
later during your program’s execution.

Deleting window selections
The Window Selection pane SpeedMenu contains two menu commands for deleting
window selections: Remove and Delete AllL

To delete a single window selection, highlight the desired window entry in the Window
selection pane, and press Cfrl+R (or choose Remove from the pane SpeedMenu). The
Delete All command (Ctrl+D) erases all window selections, which removes all existing
window message tracking.

Chapter 10, Windows debugging features 131

Specifying the messages to track

After you specify a window in the Window Selector pane, Turbo Debugger, by default,
lists all the WM_ messages sent to that window in the Message Log pane. Because a

. single window can process many messages, you'll probably want to narrow the focus
by selecting the specific messages you're interested in.

To change a window’s message-tracking settings, use the Set Message Filter dialog box,
which is accessed with the Window Class pane SpeedMenu Add command. (You can
also begin typing into the Window Class pane to access the dialog box.) This dialog box
lets you select window messages by either message class or by individual message
names.

Figure 10.2 The Set Message Filter dialog box

) Initialization
) Clipboard
> BDE

2> Non—client
> Other
> Single message

Note Before you can access the Set Message Filter dialog box, you must first specify a window
* in the Window Selection pane.

Specifying a message class to track

To track a specific message class for the highlighted window in the Window Selection
pane, open the Set Message Filter dialog box and choose one of the following message
classes from the Message Class radio buttons.

All Messages All window messages.

Mouse Messages generated by a mouse event (for example,
WM_LBUTTONDOWN and WM. MOUSEMOVE).

Window Messages generated by the window manager (for example,
WM_PAINT and WM_CREATE).

Input Messages generated by a keyboard event or by the user accessing

a System menu, scroll bar, or size box (for example,
WM_KEYDOWN).

System Messages generated by a system-wide change (for example,
: WM_FONTCHANGE and WM_SPOOLERSTATUS).
Initialization Messages generated when an application creates a dialog box or a

window (for example, WM_INITDIALOG and
WM_INITMENU).

132 Turbo Debugger User’s Guide

Clipboard Messages generated when the user accesses the Clipboard (for
example, WM_DRAWCLIPBOARD and
WM_SIZECLIPBOARD).

DDE - Dynamic Data Exchange messages, generated by applications
communicating with one another’s windows (for example,
WM_DDE_INITIATE and WM_DDE_ACK).

Non-client Messages generated by Windows to maintain the non-client area
of an application window (for example, WM_NCHITTEST and
WM_NCCREATE).

Other Any messages that don't fall into the other message categories,
such as owner draw control messages and multiple document
interface messages.

Single Message Lets you specify a single message to track.
To track a single message, choose the Single Message radio button and enter the

message name or message number (an integer) into the Single Message Name input
box. Message names are case sensitive; be sure to match their names exactly.

Although you can set up a single window to track many different message classes and
message names, you can add only one message class or message name at a time. If you
want to track more than a single class or message with a particular window,

1 Specify a single message class or message name.
2 Choose Add from the Message Class pane SpeedMenu.

3 Append additional message classes or message names to the window’s message-
tracking definition.

Specifying the message action

After specifying a window and the messages to track, you must indicate the action that
you want to perform when the window messages are received. Turbo Debugger
provides the following two Action radio buttons in the Set Message Filter dialog box:

Break Pause program execution when the window receives one of the specified
messages.
Log List all specified messages in the Message Log pane of the Windows

Messages window (default).

Breaking on messages

If you want Turbo Debugger to gain control when a specific window message is
received by your program, choose Break as the message action. This setting is known as
a message breakpoint.

The following example shows how to set a message breakpoint on WM_PAINT, which
pauses your program every time the message is sent to the window you've selected in
the Window Selection pane:

Chapter 10, Windows debugging features 133

1 Enter a window procedure name into the Window Selection pane.

2 Activate the Message Class pane (on the top right), and choose Add from its
SpeedMenu. This opens the Set Message Filter dialog box.

3 Click Single Message from the Message Class radio buttons, and enter WM_PAINT in the
Message Name input box.

4 Click the Break radio button.
5 DPress Enter.

Figure 10.1 on page 130 shows how the Windows Messages window looks after you
have made these selections and a WM_PAINT message has been received.

Logging messages

If you choose the Log radio button, Turbo Debugger lists the specified window
messages in the Message Log pane of the Windows Messages window. This pane can
list up to 200 messages.

If you're tracking many messages, you might want to write the messages to a file so you
don’t overwrite the messages already sent to the Message Log pane. To do so,

1 Set the Action radio button to Log.

2 Activate the Message Log pane, and set the Send to Log Window SpeedMenu
command to Yes.

3 Open the Log window, using the View | Log command.
4 Choose Open Log File from the Log window SpeedMenu.
For details on logging messages to a file, see page 82.

To clear the Message Log pane, choose Erase Log from its SpeedMenu. Messages
already written to the Log window are not affected by this command.

Deleting message class and action settings

To delete a window’s message and action settings, highlight the desired item in the
Message Class pane and choose Remove from the SpeedMenu. You can also remove
window settings by pressing either Delete or Cirl+R. To delete all window message and
action settings, choose Delete All from the SpeedMenu, or press Ctrl+D.

If you delete all message and action settings, the default setting (Log All Messages) is
automatically assigned to the window highlighted in the Window Selection pane.

Message tracking tips

The following tips can be helpful when you track window messages:

* If you're tracking messages for more than a single window, don’t log all the
messages. Instead, log specific messages or specific message classes for each window.
If you log all messages, the large number of messages being transferred between
Windows and Turbo Debugger might cause your system to crash.

134 Turbo Debugger User’s Guide

* When setting a message breakpoint on the Mouse message class, be aware that a
WM_MOUSEDOWN message must be followed by a WM_MOUSEUP message
before the keyboard becomes active again. This restriction means that when you
return to the application, you might have to press the mouse button several times to
get Windows to receive a WM_MOUSEUP message. You'll know that Windows has
received the message when you see it displayed in the Message Log pane.

Debugging dynamic-link libraries
A dynamic-link library (DLL) is a library of routines and resources that is linked to your
Windows application at run time rather than at compile time. Windows links DLLs at
run time to save memory by allowing multiple applications to share a single copy of
routines, data, or device drivers. When an application needs to access a DLL, Windows
checks to see if the DLL is already loaded into memory. If the DLL is loaded, then there
is no need to load a second copy of the file.

DLLs can be loaded into memory by your program at two different times:

* When your program loads (DLLs are loaded at this time if you've statically linked
them using the IMPLIB utility)

* When your program issues a LoadLibrary call

Stepping into DLL code

When you single-step into a DLL function, Turbo Debugger loads the DLL’s symbol,
loads the source code of the DLL into the Module window, and positions the cursor on
the called routine.

However, before a DLL’s source code can be loaded into the Module window, the
following conditions must be met:

* The DLL must be compiled with symbolic debug information.
* The .DLL file must be located in the same directory as your program’s .EXE file.
» The DLL’s source code must be available.

Turbo Debugger searches for DLL source code the same way it searches for the
source code of your program’s executable file, as described on page 22.

If a DLL doesn’t contain debug information, or if Turbo Debugger can’t find the DLL’s
source code, Turbo Debugger opens the CPU window and displays the DLL’s
disassembled machine instructions.

Returning from a DLL

If, when debugging a DLL function, you step past the return statement with F7 or F8,
your program might begin to run as though you had pressed F9. This behavior is typical
when you're debugging a DLL that was called from a routine that doesn’t contain
symbolic debug information, or when the DLL function returns through a Windows
function call.

Chapter 10, Windows debugging features 135

If you're debugging DLL startup code, set a breakpoint on the first line of your program
before you load the DLL to ensure that your program will pause when you step past the
DLL’s return statement.

Accessing DLLs and source-code modules

Although Turbo Debugger makes stepping into DLL functions transparent, you might
need to access a DLL before your program makes a call to it. For example, you might
need to access a DLL to set breakpoints or watches, or to examine a function’s source
code.

To access an executable module other than the one that's currently loaded, open the
Load Module Source or DLL Symbols dialog box by choosing the View | Modules
command or by pressing F3.

Figure 10.3 The Load Module Source or DLL Symbols dialog box

famy

SER32 .DLLw!!
ERMEL32.DLL
D132 .DLL=
ITDLL.DLL=

The Source Modules list box displays all the source modules contained in the currently
loaded executable file. The DLLs & Programs list box displays all the . DLL and .EXE
files that are currently loaded by Windows. (If you're running TDW, the list also
displays all loaded .DRV and .FON files.)

Abullet (*) next to a DLL listing indicates that it can be loaded into Turbo Debugger (as
long as the DLL contains symbolic debug information and the source code is available).
An asterisk (*) next to a module indicates that the module has been successfully loaded
by Turbo Debugger.

Note Because your program might load DLL modules with the LoadLibrary call, the DLLs &
Programs list box might not display all of the .DLL files your program uses.

Changing source modules

If you need to access a different source code module in the currently loaded executable
file, highlight the desired module in the Source Modules list box, and press the Load
button (you can also double click the desired module to load it). Turbo Debugger opens
the Module window, which displays the selected source code module.

Changing executable files
To access an executable file that’s not currently loaded:

136 Turbo Debugger User’s Guide

1 Open the Load Module Source or DLL Symbols dialog box (press F3 or choose
View | Modules).

2 Highlight the desired file in the DLLs & Programs list box.
3 Choose the Symbol Load button.

Turbo Debugger opens the Module window, which displays the first source code
module found in the executable module. If you need to switch source code modules,
follow the directions in the preceding section.

Adding DLLs to the DLLs & Programs list

To access a DLL through the Load Module Source or DLL Symbols dialog box, the DLL
must be listed in the DLLs & Programs list box. However, if a DLL is loaded with the
LoadLibrary call, the DLL might not yet be listed (a DLL’s name is listed only after it's
been loaded).

To add a DLL to the DLLs & Programs list box:

1 Open the Load Module Source or DLL Symbols dialog box (press F3 or choose
View | Modules).

2 Activate the DLL Name input box, and enter the name of the desired DLL (enter the
full path if necessary).

3 Press the Add DLL button to add the DLL to the list.

Stepping over DLLs

Whenever you step into a function contained in a DLL, Turbo Debugger automatically
loads in the symbol table and source code for that DLL (providing that the source code
is available and the DLL was compiled with symbolic debug information). This includes
DLLs that your program loads with the LoadLibrary call.

Because it takes time to swap symbol tables and source code, you might want to
disable the swapping operation for the DLLs you don’t need to debug. To prevent
Turbo Debugger from loading a DLL’s symbol table and source code,

1 Open the Load Module Source or DLL Symbols dialog box (press F3 or choose
View | Modules).

2 Highlight the desired DLL in the DLLs & Programs list box.
3 Choose the No radio button, and choose OK.

To re-enable the loading of a DLL’s symbol table, choose the Yes radio button in the
Load Symbols group.

When you disable the loading of a DLL’s symbol table, the bullet next to the DLL listing
in the DLLs & Programs list box disappears. Although Turbo Debugger will now
automatically step over calls to the DLL, you can still access the DLL through the
Symbol Load button, as described in the preceding section “Accessing DLLs and source-
code modules.”

Chapter 10, Windows debugging features 137

Note When you reload a program, the Load Symbols radio button is set to Yes for all DLLs
and modules, even for DLLs or modules that were previously set to No.

Debugging DLL startup code

When your application loads a DLL (when either the program is loaded or when your
program makes a LoadLibrary call), the DLL’s startup code is executed. By default, Turbo
Debugger does not step through a DLL’s startup code. However, if you need to verify
that a DLL is loading correctly, then you'll need to debug the DLL’s startup code.

Turbo Debugger lets you debug two types of DLL startup code:
¢ The inijtialization code immediately following LibMain (default mode).

- The assembly-language code linked to the DLL. This code initializes the startup
procedures and contains the emulated math packages for the size model of the DLL.
(Select this debug mode by starting Turbo Debugger with the -1 command-line
option.)

You set DLL startup code debugging with the Load Module Source or DLL Symbols
dialog box. However, if you try to run your application after setting the startup
debugging, Turbo Debugger might not behave as you expect because some or all of the
DLLs might already have been loaded. Because of this, you must load your application,
set the startup debugging for selected DLLs, and then restart your application using the
Run | Program Reset command (Ctrl+F2).

With these preliminaries in mind, follow these steps to specify startup debugging for
one or more DLLs:

1 Load your program into Turbo Debugger.

2 Bring up the Load Module Source or DLL Symbols dialog box (press F3 or choose
View | Modules).

3 Highlight the DLL whose startup code you want to debug in the DLLs & Programs
list box.

4 Choose the Debug Startup Yesradio button.

If the needed DLL isn’t on the list, add it using the method described in the section
“Adding DLLs to the DLLs & Programs list” on page 137.

When you specify startup debugging for a DLL, the DLL’s entry in the DLLs &
Programs list box displays a double exclamation point (!!) next to it.

5 Repeat steps 3 and 4 until you've set startup debugging for all desired DLLs.
6 Choose Run | Program Reset or Ctrl+F2 to reload your application.

After you've set up startup debugging for DLLs, you're ready to run your program.
However, before you begin, keep the following in mind:

* Besure to run to the end of a DLL's startup code before reloading the current application or
loading a new one. If you don't, the partially executed DLL startup code might cause
Windows to hang, forcing you to reboot.

138 Turbo Debugger User’s Guide

* Setting breakpoints on the first line of your application, or the first line after a
LoadLibrary call, guarantees that control returns to Turbo Debugger after the DLL’s
startup code executes.

* As your application loads each DLL, Turbo Debugger places you in either the
Module window at the DLL’s LibMain function (the default), or in the CPU window
at the start of the assembly code for the startup library.

* When you've finished debugging the startup code for a DLL, press F9 to run through
the end of the startup code and return to the application. If you've specified any
additional DLLs for startup code debugging, Turbo Debugger displays startup code
for them when your application loads them.

Debugging multithreaded programs

The Threads window (opened with the View | Threads command) supports the
multithreaded environment of Windows NT.

Figure 10.4 The Threads window

Threads
Information pane

Threads Detail pane Threads List pane

The Threads Information pane

The Threads Information pane, which lists general thread information, consists of these
fields:

The Last field lists the last thread that was executing before Turbo Debugger regained
control.

The Current field shows the thread whose values are displayed in Turbo Debugger’s
windows. You can change the thread you're debugging via the Make Current
SpeedMenu command.

The Total field indicates the total number of active program threads.

The Notify field displays either Yes or No, the Notify on Termination status of all threads.
Although you can set the Notify on Termination status for individual threads, the
overall status is set through the All Threads SpeedMenu command. Newly created
threads are also assigned this status.

The Threads List pane

The Threads List pane lists all your program’s active threads. Threads are identified by a
thread number (assigned by Windows NT) and a thread name. Turbo Debugger
generates a thread name when your program creates a thread. The first thread created is

Chapter 10, Windows debugging features 139

named Thread 1, followed by Thread 2, and so on. You can modify a thread’s name using
the Option command on the List pane SpeedMenu.

Threads List pane SpeedMenu

The Threads window contains a single SpeedMenu (which you activate through the
Threads List pane) which contains the Options, Make Current, and All Threads
commands.

Options
The Options SpeedMenu command opens the Thread Options dialog box. This dialog
box lets you set options for individual program threads.

Figure 10.5 The Thread Options dialog box

The Freeze check box lets you freeze and thaw individual threads. When you freeze a
thread by checking this box, the thread will not run. To thaw the thread (which enables
it to run), clear the check box. For your program to run, there must be at least one thread
that isn’t frozen.

Note If you freeze the only thread in your program that processes window messages, your
program and the debugger will hang when you run the program.

The Notify on Termination check box lets you specify whether Turbo Debugger should
notify you when the currently highlighted thread terminates. When this box is checked,
Turbo Debugger generates a message when the thread terminates, and activates a
Module or CPU window that displays the current program location. If you clear the
Notify on Termination check box, Turbo Debugger doesn’t pause when the thread

* terminates. To set the Notify on Termination status for all threads, use the All Threads
SpeedMenu command.

The Thread Name input box lets you modify the thread name that’s generated by Turbo
Debugger. If your program generates many threads, it can be easier to keep track of
them if you specify your own thread names.

Make current

The Make Current command lets you change the thread currently being processed by
Turbo Debugger. To change the current thread, highlight the thread that you want to
examine in the Threads List pane, and press Ctrl+M (or choose the Make Current
command). When you do so, the Thread Information pane displays the thread number
whose data values are displayed in Turbo Debugger’s windows, and all references to
the CPU registers and stack data will now relate to this thread.

140 Turbo Debugger User’s Guide

Inspect

The Inspect command opens a Module or CPU window that shows the current point of
execution for the highlighted thread. Pressing Enter has the same effect as choosing
Inspect from the SpeedMenu.

All threads
The All Threads command opens a menu whose commands relate to all program
threads.

The Thaw command unfreezes any currently frozen threads. When you issue this
command, all threads in your program are able to run.

The Freeze command disables all thread execution. When you issue this command, all
threads in your program will be frozen and unable to run. For your program to run, you
must thaw at least one thread using the Options SpeedMenu command (or use the
Thaw command on the All Threads menu to unfreeze all the threads).

The Enable Exit Notification command sets the notify-on-exit status for all program
threads, including threads that have yet to be created. Choosing this command causes
Turbo Debugger to issue a message when any thread terminates. The status of notify-
on-exit is displayed in the Notify field of the Threads Information pane.

The Disable Exit Notification command turns off the notify-on-exit status. This is Turbo
Debugger’s default setting.

Step
The Step command toggles between All and Single:

When set to All (the default), all the threads in your program can run as you step
through your program using F7 or F8. If you're debugging a thread with a low priority,
other threads might execute several statements before the thread you're debugging
executes a single statement. (This can sometimes make it difficult to watch the behavior
of a single thread in your program.)

When the Step command is set to Single, only the thread located at the current
instruction pointer will run as you step. This is different from freezing threads because
different threads can be created and destroyed, and you can step into these threads as
your program’s execution dictates.

The Threads Detail pane

The Thread Detail pane, shown in Figure 10.4, displays the details of the thread that’s
highlighted in the Threads List pane.

The first line of the Thread Detail pane displays the status of the highlighted thread
(either suspended or runnable) and the thread’s priority. The priority, which is set by the
operating system, can be one of five different states:

Chapter 10, Windows debugging features 141

-2 (lowest) 1 (above normal)
-1 (below normal) 2 (highest)
0 (normal)

The second line of the Thread Detail pane displays the current execution point of the
thread that’s highlighted in the Threads List pane.

The third line, if present, indicates how Turbo Debugger gained control from the
running thread. A complete list of the messages that Turbo Debugger can generate for
this line is given in the “Status messages” section on page 187.

The fourth line of the Thread Detail pane, if present, lists the thread’s settings. Possible
settings are Frozen and Notify on Termination.

Tracking operating-system exceptions

In TD32, the OS Exceptions command (located on the SpeedMenu of the CPU window’s
Code pane) opens the Specify Exception Handling dialog box. This dialog box lets you
specify how Turbo Debugger should handle the operating-system exceptions that are
generated by your program.

Figure 10.6 The Specify Exception Handling dialog box

Data type misalignment
Array bounds exceeded

Floating point denormalized operand
Floating point divide hy zero
Floating point inexact result
Floating point invalid operation
Floating point overflow
Floating point stack check

loatin pint underf low

The Exceptions list box displays all the operating-system exceptions that can be
handled by Turbo Debugger. For each exception in the list, you can specify whether
Turbo Debugger should handle the exception or whether your program’s exception-
handling routine should take control.

By default, all exceptions generated by the operating system are handled by

Turbo Debugger. This means that whenever your program generates an operating-
system exception, Turbo Debugger pauses your program and activates the Module or
CPU window with the cursor located on the line of code that caused the exception.

To change the debugger’s default exception handling behavior,

1 Open the Specify Exception Handling dialog box using the OS Exceptions command
on the SpeedMenu of the CPU window’s Code pane.

2 Highlight the exception you want your program to handle.

142 Turbo Debugger User’s Guide

3 Click the User Program radio button.

When you specify that your program will handle an operating-system exception,
Turbo Debugger places a bullet (*) next to the exception listing in the Exceptions list
box.

If you want your program to handle all the operating-system exceptions, click the User
All button on the right side of the Specify Exception Handling dialog box. To have
Turbo Debugger pause on all operating-system exceptions, click the Debugger All
button (default).

Specifying user-defined exceptions

Turbo Debugger supports user-defined operating-system exceptions with the Range
Low and Range High input boxes in the Specify Exception Handling dialog box.

By default, Turbo Debugger sets both the Range Low and Range High input boxes to 0.
This default state indicates that there are no user-defined operating-system exceptions.

To have Turbo Debugger monitor a single user-defined operating-system exception,
enter the hexadecimal number generated by the exception into the Range Low input
box. The following line then appears at the bottom of the Exception list box, where
xxxxxxxx equals the hexadecimal value of the exception:

Range: XXXXXXXX to XXXXXXXX

If you've defined more than one operating-system exception, enter the lowest user-

defined operating-exception number into the Range Low input box, and the highest
user-defined operating-exception number into the Range High input box. The Range
listing the Exceptions list box will then indicate the range of user-defined operating-
system exceptions that Turbo Debugger will monitor.

Obtaining memory and module lists

In TDW, you can write either the contents of the global heap, the contents of the local
heap, or the list of modules used by your program to the Log window. The Windows
Information dialog box (accessed by choosing the Display Windows Info command on
the Log window SpeedMenu) lets you pick the type of list you want displayed, and
where you want the list to start.

Chapter 10, Windows debugging features 143

Figure 10.7 TDWs Windows Information dialog box

[—indows information

(+) Global heap
() Local heap
() Module 1ist

av1 Table>

Listing the contents of the global heap

The global heap is the global memory Windows makes available to all applications. If you
allocate resources like icons, bit maps, dialog boxes, and fonts, or if you allocate memory
using the GlobalAlloc function, your application uses the global heap.

To see a list of the data objects in the global heap, select the Global Heap radio button in
the Windows Information dialog box and choose OK. The data objects in the global
heap are then listed in the Log window.

In addition to listing the global heap, the Start At radio buttons let you choose whether
to display the list from the top or bottom of the heap, or from a location indicated by a
starting handle.

A handle is the name of a global memory handle set in your application by a call to a
Windows memory allocation routine like GlobalAlloc. Picking a handle causes Turbo
Debugger to display the object at that handle and the next four objects that follow it in
the heap.

Note Because the global heap listing is likely to exceed the number of lines in the Log window
(the default is 50 lines), you should either write the contents to a log file (using the Log
window’s Open Log File SpeedMenu command) or increase the number of Log window
lines (using TDWINST). The Log window can hold a maximum of 200 lines.

The following line shows an example of a global heap listing. Table 10.2 gives an
explanation of each field in the output.

053E (053D) 00002DCOb PDB (0F1D) DATA MOVEABLE LOCKED=00001 PGLOCKED=0001

i _ o . e

053E Either a handle to the memory object, expressed as a 4-digit hex value, or the word
FREE, indicating a free memory block.

(053D) A memory selector pointing to an entry in the global descriptor table. The selector
isn’t displayed if it’s the same value as the memory handle.

00002DC0b A hexadecimal number representing the length of the segment in bytes.

PDB The allocator of the segment, usually an application or library module. A PDB is a
process descriptor block; it is also known as a program segment prefix (PSP). ‘

(OF1D) A handle indicating the owner of a PDB.

144 Turbo Debugger User’s Guide

Table 10.2 Format of a global heap list (continued)

Field Description

DATA The type of memory object. Possible types are:
* DATA Data segment of an application or DLL.
* CODE Code segment of an application or DLL.
» PRIV Either a system object or global data for an application or DLL.

MOVABLE A memory allocation attribute. An object can be FIXED, MOVABLE, or MOVABLE
DISCARDABLE.
LOCKED=00001 For a movable or movable-discardable object, this is the number of locks on the

object that have been set using either the GlobalLock or LockData functions.

PGLOCKED=0001 For 386 Enhanced mode, the number of page locks on the object that have been set
using the GlobalPageLock function. With a page lock set on a memory object,
Windows can’t swap to disk any of the object’s 4-kilobyte pages.

Listing the contents of the local heap

The local heap is a private memory area used by your program; it is not accessible to
other Windows applications, including other instances of the same application.

A program doesn’t necessarily have a local heap. Windows creates a local heap only if
the application uses the LocalAlloc function.

To see alist of the data objects in the local heap, select the Local Heap radio button in the
Windows Information dialog box, then choose OK. The local heap data objects will be
listed in the Log window.

The following line shows an example local heap listing. Table 10.3 gives an explanation
of each field in the output.

05CD: 0024 BUSY (10AF)

Table 10.3 Format of a local heap list

Field Description

05CD: ' The object’s offset in the local data segment.
0024b The length of the object in bytes.

BUSY The disposition of the memory object, as follows:

* FREE An unallocated block of memory.
* BUSY Anallocated object.

(10AF) A local memory handle for the object.

Listing the Windows modules

To see a list of the tasks and DLL modules that have been loaded by Windows, select the
Module List radio button in the Windows Information dialog box, then choose OK. The
modules will be listed in the Log window.

The following line shows an example module listing. Table 10.4 gives an explanation of
each field in the output.

Chapter 10, Windows debugging features 145

0EFD TASK GENERIC C:\TPW\GENERIC.EXE

Table 10.4 Format of a Windows module list

OEFD A handle for the memory segment, expressed as a 4-digit hex value. o
TASK The module type. A module can be either a task or a DLL.

GENERIC The module name.

C:\TPW\GENERIC.EXE The path to the module’s executable file.

Converting memory handles to addresses

In a Windows program, you reference a data object using a symbolic name instead of
using the object’s physical address. This way, Windows can perform its own memory
management, and can change the physical address of the object without creating
conflicts with your program.

Turbo Debugger provides two special data types to help you obtain the physical
address of a data object that’s referenced by a memory handle: 1h2fp and gh2fp. If you
need the actual address referred to by a memory handle, use the typecast symbols Ih2fp
to dereference a local handle and gh2fp to dereference a global handle.

You use Turbo Debugger’s special data types for typecasting, just as you can use any of
C’s built-in data types. For example, you could cast the local memory handle
hLocalMemory using two methods:

* Use the Data | Inspect window to evaluate the expression (1h2fp)hLocalMemory.

* Use the Type Cast command in the Inspector local window and enter 1h2fp as the
type.

In either case, the expression evaluates to the first character of the memory block
pointed to by hLocalMemory.

You could also use either of these techniques to do a more complicated cast. For
example, a two-stage cast—from a handle into a character pointer into a pointer to the
data in memory—could read as follows:

(Mystruct far *)(lh2fp)hLocalMemory

146 Turbo Debugger User’s Guide

Debugging object-oriented programs

Turbo Debugger supplies the following features to help you debug object-oriented
programs:

* The Hierarchy window

* (lass Inspector windows

* Object inspector windows

* C++ and C exception handling

The Hierarchy window

The Hierarchy window, which is opened with the View | Hierarchy command, provides
a graphic display of the class hierarchies in your program.

Figure 11.1 The Hierarchy window

Classes pane Hierarchy pane

Parents pane

The Hierarchy window displays the heritage of object-oriented program classes. The

window is composed of two or three panes, depending on whether or not your program
uses multiple inheritance.

Chapter 11, Debugging object-oriented programs 147

The Classes pane

The Classes pane displays an alphabetical listing of the classes used by the currently
loaded module. The class that’s hlghhghted in this pane is detailed in the pane(s) on the
window’s right side.

The Classes pane uses incremental matching to help you quickly find the class you're
interested in. As you type the name of a class into the pane, Turbo Debugger highlights
the class whose name matches the keystrokes you've pressed.

The Classes pane SpeedMenu
The Classes pane contains two SpeedMenu commands:

Inspect
Tree

Inspect

The Inspect command opens a Class Inspector window for the currently highlighted
class. Alternately, you can press Enter to open a Class Inspector window for the
highlighted class. For a description of Class Inspector windows, see page 149.

Tree
The Tree command activates the Hierarchy pane, highlighting the currently selected
class.

The Hierarchy pane

The Hierarchy pane displays the loaded module’s classes and their hierarchies. Original
base classes are placed at the left margin of the pane with derived classes displayed
beneath their base classes.

Classes that inherit from multiple base classes are marked with asterisks. The first class
in a group of multiply-inherited classes is marked with a double-asterisk (**); all other
classes that are part of the same multiple-inheritance group are marked with a single
asterisk (*).

To locate a class in a complex hierarchy, choose the Tree command from the Classes
pane SpeedMenu. This navigates to the class in the Hierarchy pane.

The Hierarchy pane SpeedMenu
The Hierarchy pane SpeedMenu has one or two commands, depending on whether or
not your program implements classes with multiple inheritance.

Inspect
When you choose Inspect (or press Enter), a Class Inspector window opens for the class
that’s highlighted in the pane.

148 Turbo Debugger User’s Guide

Parents

If you're debugging an object-oriented program that implements classes derived
through multiple inheritance, the Hierarchy pane SpeedMenu also contains the Parents
command. The Parents command toggles on and off the display of the Hierarchy
window’s Parents pane. The default for Parents is Yes.

The Parents pane

The Hierarchy window’s Parents pane appears only if your program contains classes
that inherit from multiple base classes, and the Parents command on the Hierarchy pane
SpeedMenu is set to Yes.

The Parents pane displays all base classes for the classes that are derived through
multiple inheritance. A class’ display begins with the message Parents of <ClassName>.
Beneath this, the pane displays a reverse hierarchy tree for each set of base classes, with
lines indicating the base class and derived class relationships.

The Parent pane SpeedMenu

The Parent pane, if displayed, contains a single SpeedMenu command: Inspect.
Choosing Inspect (or pressing Enter), opens a Class Inspector window for the class
highlighted in the pane.

Class Inspector windows

The Class Inspector window lets you inspect the details of object-oriented program
classes. To open a Class Inspector window, activate the Hierarchy window (choose
View | Hierarchy), highlight a class, and press Enter.

Figure 11.2 A Class Inspector window

Data Member
pane

Member Function
pane

A Class Inspector window is divided horizontally into two panes. The top pane lists the
class’” data members and type information, and the bottom pane lists the class’ member
functions and their return types.

A Class Inspector window summarizes the data members and member functions
contained in a C++ class; it doesn’t, however, reflect the data of any particular instance.
If you want to examine a member function’s arguments, highlight the member function
and press Enter. A Function Inspector window opens, displaying the code address for
the object’s implementation of the function and the names and types of all its
arguments.

Chapter 11, Debugging object-oriented programs 149

If the highlighted data member is a pointer to a class, pressing Enter opens another Class
Inspector window for the highlighted class. (This action is identical to choosing Inspect
in the SpeedMenu for this pane.) Using this functionality, you can inspect complex,
nested classes with a minimum of keystrokes.

As with all Inspector windows, Esc closes the current Inspector window and Alt+F3
closes them all.

The Class Inspector window SpeedMenus

The SpeedMenus in each pane of the Class Inspector window contain identical
commands, although they behave slightly differently in each pane:

Inspect
Hierarchy
Show inherited Yes

Inspect

The Data Member pane’s Inspect command opens an Inspector window on the
highlighted data member. If the data member is a pointer to another class, a Class
Inspector window opens for that class.

The Member Function pane’s Inspect command opens a Function Inspector window on
the highlighted member function. To display a member function’s source code, position
the cursor over the address of the member function in the Function Inspector window,
and press Enter to activate the Module window.

Hierarchy
The Hierarchy command on each SpeedMenu opens the Hierarchy window, displaying
the currently inspected class. The Hierarchy window is described on page 147.

Show Inherited
The Show Inherited command toggles between Yes and No in each pane of the Class
Inspector window. The default value in each pane is Yes.

When Show Inherited is set to Yes, Turbo Debugger shows either all the data members
or all the member functions of the currently highlighted class, including all the items
that the class inherits. If the toggle is set to No, Turbo Debugger displays only the data
members or member functions defined within the class being inspected.

Object Inspector windows

While Class Inspector windows provide information about the structure of a class, they
say nothing about the data contained in a particular class instance. To view the structure
and the values of a specific class instance, use the Object Inspector window.

To open an Object Inspector window, place the cursor on an object name in the Module
window, and press Cirl+.

150 Turbo Debugger User’s Guide

Figure 11.3 An Object Inspector window

Data Member pane

Member Function pane

Type pane

An Object Inspector window contains three panes. The Data Member pane displays the
current values of the object’s data members. The Member Function pane shows the
current values and code addresses of the object’s member functions. The Type pane
displays the data type of the highlighted data member or member function.

The Object Inspector window SpeedMenus

The Object Inspector window’s Data Member and Member Function panes both contain
a SpeedMenu. Each menu contains identical commands, except that the Data Member
pane contains the additional Change command.

Range...
Change...
Methods Yes
Show inherited Yes

Inspect

Descend

New expression...
Type cast
Hierarchy

Range
The Range command lets you specify a range of array elements to be displayed. If the
currently highlighted item is not an array or a pointer, the item cannot be accessed.

Change
The Change command, available only from the Data Member pane, lets you modify the
value of the highlighted data member.

Methods

The Methods command can be toggled between Yes and No; Yes is the default setting.
When set to Yes, Turbo Debugger opens the middle pane of the Object Inspector
window, where member functions are summarized. When Methods is set to No, the
middle pane is not displayed. The Methods setting is carried forward to the next opened
Object Inspector window.

Show Inherited

The Show Inherited command is also a Yes /No toggle. When it’s set to Yes, all data
members and all member functions are shown, whether they are defined within the
class being inspected or inherited from a base class. When the command is set to No, only

Chapter 11, Debugging object-oriented programs 151

those data members and member functions defined within the class being inspected are
displayed.

Inspect

The Inspect command (which can be opened from the SpeedMenu or by pressing Enter)
opens an Inspector window on the currently highlighted data member or member
function. Inspecting a member function opens the Module view, with the cursor
positioned on the code that defines the member function.

Descend

The Descend command works like the Inspect SpeedMenu command, except that it
replaces the current Inspector window with the new item you want to examine. Using
this command reduces the number of Inspector windows onscreen; however, you can’t
return to a previous Inspector window as you could if you use the Inspect command.

New Expression

Use the New Expression command to inspect a different expression. The data in the
current Inspector window is replaced with the data relating to the new expression you
enter.

Type Cast

The Type Cast command lets you specify a different data type for the currently
highlighted item. This command is useful if your class contains a symbol for which
there is no type information, as well as for explicitly setting the type of pointers.

Hierarchy

The Hierarchy command opens the Hierarchy window, displaying the heritage of the
class being inspected. The Hierarchy window is described on page 147.

Exceptions

The Exceptions command is found on the SpeedMenu of the Module window. If you
have implemented C or C++ exception handling in your program, the Exception
command becomes active. Choosing this command opens the Specify C and C++
Exception Handling dialog box:

Figure 11.4 The Specify C and C++ Exception Handling dialog box

152 Turbo Debugger User’s Guide

C++ exception handling

If your program implements C++ exception handling using try, catch, and throw
statements, you can specify how you want Turbo Debugger to treat the exceptions your
program generates.

Using the C++ Exceptions radio buttons, specify the exception handling in the following
ways:

None Specifies that Turbo Debugger should not interfere with your program’s
exception handling.

Types Lets you specify the exception data types you want to trap with Turbo
Debugger. Enter the data types of the exceptions you want to trap into the
Exception Types input box.

If you want Turbo Debugger to trap exceptions in classes derived from the
ones you enter into the Exception Types input box, check the Derived Classes
check box.

All Specifies that you want Turbo Debugger to trap all exceptions generated by
your program.

If, for example, you specify that Turbo Debugger should trap char* exceptions, then
Turbo Debugger will pause whenever program execution encounters a throw(char *)
statement. Once your program has paused, you can examine the Stack window and
other views to determine why the exception occurred.

C exception handling

If your C program implements C exception handling, you can control how Turbo
Debugger handles the exceptions that your program generates.

Using the C Exceptions radio buttons, specify the C exception handling in the following

ways:

None Specifies that Turbo Debugger should not interfere with your program’s
exception handling.

Values Lets you specify the exception values you want to trap with Turbo Debugger.
Enter the numbers of the exceptions you want to trap into the Exception
values input box. :

All Specifies that you want Turbo Debugger to trap all exceptions generated by
your program.

Chapter 11, Debugging object-oriented programs 153

154 Turbo Debugger User’s Guide

Debugging TSRs and device drivers

Using TD.EXE, you can debug DOS terminate and stay resident (TSR) programs and
DOS device drivers. Turbo Debugger has three commands on the file menu that are
specifically designed to be used for debugging these types of programs: File | Resident,
File | Symbol Load, and File | Table Relocate.

This chapter gives a brief explanation of what TSRs and device drivers are and it
provides information on how to debug them with Turbo Debugger.

What'’s a TSR?

Terminate and stay resident programs (TSRs) are programs that stay in RAM after you
“exit” the program. Once you exit the program, you can reinvoke the TSR via special hot
keys or from programs that issue special software interrupts. Borland’s C and C++
compilers provide a function, geninterrupt, that issues such software interrupts.

TSRs consist of two parts: a transient portion and a resident portion. The transient portion
is responsible for loading the resident portion into RAM and for installing an interrupt
handler that determines how the TSR is invoked. If the TSR is to be invoked through a
software interrupt, the transient portion places the address of the resident portion of the
code in the appropriate interrupt vector. If the TSR is to be invoked through a hot key,
the resident portion must intercept the DOS interrupt handler for keyboard presses.

When the transient portion is finished executing, it invokes a DOS function that allows a
portion of the .EXE file to stay resident in RAM after execution is terminated—hence the
phrase “terminate and stay resident.” The transient portion of the TSR knows the size of
the resident portion as well as the resident portion’s location in memory, and passes this
information along to DOS. DOS then leaves the specified block of memory alone, but is
free to overwrite the unprotected portion of memory. Thus the resident portion stays in
memory, while the transient portion can be overwritten.

The trick to debugging TSRs is that you want to be able to debug the resident portion as
well as the transient portion. When the .EXE file executes, the only code that is executed

Chapter 12, Debugging TSRs. and device drivers 155

is the transient portion of the TSR. Therefore, when you run a TSR under Turbo
Debugger, the only code you see executing is the transient portion as it installs the
resident portion and its interrupt handlers. To debug the resident portion of a TSR, you
must set a breakpoint in the resident code, and make Turbo Debugger itself go resident.

Debugging a TSR

Debugging the transient portion of a TSR is the same as debugging any other file. It's
only when you start to debug the resident portion of your program that anything
different happens.

Note If you're debugging the keyboard handler of your TSR (INT 9), use the mouse to
navigate through Turbo Debugger. This way, the keyboard handler won’t confuse
which keys get trapped. If this doesn’t work, try using the remote debugging
capabilities of Turbo Debugger.

Here’s how you debug a TSR program:

Compile or assemble the TSR with symbolic debug information.
Run Turbo Debugger and load the TSR program.

Set a breakpoint at the beginning of the resident portion of the TSR.
Run the transient portion of your program by choosing Run | Run.

Debug the transient portion of the program using normal debugging techniques.

D A B W N =

After the transient portion is fully debugged, exit the TSR; the resident portion of the
TSR program remains installed in RAM.

7 Choose the File | Resident command to make Turbo Debugger go resident.

This has nothing to do with making your TSR go memory-resident; the TSR goes
resident when you run it from Turbo Debugger. Once Turbo Debugger is resident,
you can return to DOS and invoke your TSR, which makes its resident portion
execute.

8 Atthe DOS command line, execute the resident portion of your TSR by pressing its
hot key (or by doing whatever is needed to invoke it), and run through your program
asusual. ‘

9 Exit the TSR program.

The resident portion of the TSR now executes, causing Turbo Debugger to encounter
the breakpoint. When the breakpoint activates, Turbo Debugger pauses the TSR at
the beginning of the resident portion of the program, and you can debug the resident
code. (To reenter Turbo Debugger from DOS, press Ctrl+Break twice.)

A second method of debugging a TSR’s resident portion involves executing the TSR
from the DOS command line and using Turbo Debugger's CPU window to debug the
area of RAM containing the TSR:

1 Compile your program with debug information.

2 Use TDSTRIP to strip the symbol table from the program and place it in a .TDS file.

156 Turbo Debugger User’s Guide

The symbol table contains a set of symbols tied to relative memory locations in your
code. The symbols in the symbol table are all prefixed by the characters #FILENAVE#,
where FILENAME is the name of your TSR source file. For example, if your source
file was called TSR.ASM and contained a label Intr, the symbol #TSR#INTR marks a
location in memory.

Execute your TSR from the DOS command line.

Run TDMEM (described in TD_UTILS.TXT) to obtain a memory map of your
computer. Note the segment address at which the resident portion of your TSR is
loaded.

Run Turbo Debugger and load your TSR’s symbol table by choosing File | Symbol
Load and specifying the .TDS file you created with the TDSTRIP utility.

Set a breakpoint at the beginning of the resident portion of the TSR.
7 Choose the File | Resident command to make Turbo Debugger go resident.

8 Atthe DOS command line, execute the resident portion of your TSR by pressing its
hot key and run through your program as usual.

When your program hits the breakpoint, Turbo Debugger activates with your TSR
paused at the beginning of the resident portion of the program. However, to make
things easier, synchronize the symbol table with the code in memory.

The symbols in the symbol table are offset from each other by the correct number of
bytes, but the absolute location of the first symbol isn’t determined yet because DOS
might have loaded your TSR at a different absolute memory location than the one at
which it was assembled. For this reason, you must use the File | Table Relocate
command to explicitly locate the first symbol in memory.

Use File | Table Relocate to place the first symbol from the symbol table at the proper
location in memory. In this way, the symbolic information present corresponds with
your code. To do this, add 10 hex to the segment address Seg of your TSR to account
for the 256-byte program segment prefix (PSP). Use this number as the TSR segment
address in the Table Relocate command.

The disassembled statements from memory are synchronized with information from
the symbol table. If your source file is present, source statements are printed on the
same line as the information from the symbol table.

10 Use the Goto command (Ctrl+G) in the CPU window to go to the segment of RAM
containing your TSR. Do this either by giving the segment address of your TSR,
followed by offset 0000H, or by going to a specific symbolic label in your code.

11 Debug the resident portion of your TSR.
Once you've finished debugging the TSR, exit the debugging session as follows:

* If you loaded the TSR through Turbo Debugger, exit the debugger by pressing Alt+X;

the TSR will be unloaded automatically.
* If you're debugging a TSR that you loaded from DOS, run the TSR until Turbo

Debugger goes resident and press Crl+Break twice to bring up Turbo Debugger. Press

Alt+X to exit Turbo Debugger. This leaves the TSR resident.

Chapter 12, Debugging TSRs and device drivers

157

What’s a device driver?

Device drivers are collections of routines used by DOS to control low-level I/O
functions. Installable device drivers (as opposed to those intrinsic to DOS) can be
installed from your CONFIG.SYS using commands such as:

device = clock.sys

When DOS has to perform an I/ O operation involving a single character, it scans
through a linked list of device headers looking for a device with the appropriate logical
name (for example, COMI). In the case of block device drivers (such as disk drives),
DOS keeps track of how many block devices have been installed and designates each by
a letter, with A for the first block device driver installed, B for the second, and so on.
When you make a reference to drive C, for example, DOS knows to call the third block
device driver.

The linked list of device headers contains offsets to the two components of the device
driver itself, the strategy routine and the interrupt routine.

When DOS determines that a given device driver needs to be invoked, it calls the driver
twice. The first time the driver is called, DOS talks to the strategy routine and passes it a
pointer to a memory buffer called the request header. The request header contains
information about what DOS wants the device driver to do. The strategy routine simply
stores this pointer away for later use. On the second call to the device driver, DOS
invokes the interrupt routine, which does the actual work specified by DOS in the
request header, such as transferring characters in from a disk.

The request header specifies what the device driver is to do through a byte in the
request header called a command code. This specifies one of a predefined set of operations
all device drivers must perform. The set of command codes is dlfferent for character
device drivers than for block device drivers.

The problem with debugging device drivers is that there is no .EXE file to load into
Turbo Debugger; drivers are installed when your computer boots up and have
extensions of .SYS, .COM or .BIN. To debug a device driver, it must be resident in
memory when you start Turbo Debugger. Hence the functions to load and relocate
symbol tables become very useful because they can restore symbolic information to the
disassembled segment of memory where the device driver is loaded. The File | Resident
command is also very useful. :

Debugging a device driver

There are two approaches to debugging device drivers. The first approach is similar to
the method shown on page 156 for debugging TSRs. Another approach involves the
remote debugging capabilities of Turbo Debugger. To use this approach, read Appendix
B for a description of remote debugging, then debug your device driver using the
following steps:

1 Compile the device driver with symbolic debug information.

2 Strip the symbolic debug information from the device driver using TDSTRIP
(described in TD_UTILS.TXT).

158 Turbo Debugger User’s Guide

Copy the device driver to the remote system.

Modify your CONFIG.SYS file on the remote system so that it loads the device driver
when it boots up. Then, reboot the remote system to load the device driver.

Run TDMEM on the remote system to obtain the memory location of your device
driver.

Load TDREMOTE on the remote system.

7 Load Turbo Debugger on the local system, connecting it to the remote system.

8 Load in your device driver’s symbol table into Turbo Debugger using the

File | Symbol Load command.

Use the File | Table Relocate command to synchronize the first symbol of the symbol
table with the proper location in memory. In this way, the symbolic information
present will correspond with your code. To do this, specify the segment address for
your device driver (which you determined using TDMEM) to the Table Relocate
command prompt.

10 Set a breakpoint at the beginning of the device driver’s code.
11 Choose the File | Resident command to make TDREMOTE go resident.

This has nothing to do with making your device driver memory resident; it goes
resident when you boot up the remote system. You make TDREMOTE resident so
you can return to DOS and do whatever is necessary to invoke your device driver.

12 At the DOS command line on the remote system, perform a command to activate

your device driver. For example, send information to whatever device it controls.

13 When your program hits the breakpoint, Turbo Debugger displays the device

driver’s source code at the appropriate point and you can begin debugging your
code. (To reenter Turbo Debugger while DOS is running, press Clrl+Break.)

Chapter 12, Debugging TSRs and device drivers 159

160 Turbo Debugger User’s Guide

Appendix

Command-line options

If you start Turbo Debugger from a command line (as described on page 19), you can
use the following syntax to configure certain Turbo Debugger options:

TD | TDW | TD32 [options] [program_name [program_args]]

You can use this syntax to start TD.EXE, TDW.EXE, or TD32.EXE from a command line.
In the syntax, items enclosed in square brackets are optional. The options item represents
Turbo Debugger’s command-line options.

Command-line option details

All Turbo Debugger command-line options start with a dash (-) and must be separated
from other items in the command line by at least one space. To explicitly turn a
command-line option off, follow the option with another dash. For example, -p—
disables the mouse.

Any settings you specify using command-line options will take precedence over the
settings loaded from Turbo Debugger’s configuration files.

The following sections describe Turbo Debugger’s command-line options in detail.
Unless otherwise noted, all options work the same for TD, TDW, and TD32.

Appendix A, Command-line options 161

Attaching to a running process |

The —a options, used only by TD32, lets you attach Turbo Debugger to a process that’s
already running under Windows NT. See “The Attach command” on page 46 for details
‘on attaching to a running program.

—ar# The-ar option attaches TD32 to process identification number # The
process will continue to run after the attachment is made.

—as# The-as option is the same as the —ar option, except that TD32 gains
control when the attachment is made.

Loading a specific configuration file ()

By default TD.EXE loads the configuration file TDCONFIG.TD, TDW.EXE loads
TDCONFIG.TDW, and TD32.EXE loads TDCONFIG.TD?2, if the files exist. The
—cfilename option lets you load a different configuration file, specified by filename. There
must not be a space between —c and the file name.

For example, the following command loads the configuration file MYCONF.TDW and
the program MYPROG:

TDW -cMYCFG.TDW MYPROG

Display updating (—d options)

The —d options, used by TD and TDW, affect the way Turbo Debugger updates the
display.

—do The—do option enables dual-monitor debugging. This lets you view your
program’s screen on the primary display and Turbo Debugger’s on the
secondary one. For more information on dual-monitor debugging, see “Dual-
monitor debugging” on page 9.

—dp The —dp option, used only with TD.EXE, enables screen flipping—Turbo
Debugger is displayed on one screen page and the program you're debugging
is displayed on a second screen page. Screen flipping minimizes the time it
takes to switch between the debugger’s screens and your program’s. To use
this mode, your display adapter must support multiple screen pages and the
program you're debugging must not use screen paging.

—ds This option, known as screen swapping, maintains separate screen images in
memory for both the debugger and for the program you're debugging. These
images are then “swapped” back and forth from memory as each program
runs.

Although this technique is the most time-consuming method for displaying the
screens, it is the most reliable method. Because of this, display swapping is
turned on by default for all displays.

162 Turbo Debugger User’s Guide

Note

Getting help (-h and -? options)

The —h and -? options display a help window that describes the command-line syntax
and command-line options that are available with each debugger.

Session restart modes (—j options)

The —j options specify how Turbo Debugger should handle the session-state files
(described on page 22) when it starts. The options work as follows:

—ji Don't use the session-state file if you've recompiled your program.

—n Turn off session-state restoring (do not use the restart file).

—-ip Prompt if the program has been recompiled since the session-state file was
created.

—ju Always use the session-state file, even if it's old.

Keystroke recording (—k)

The -k option, used only by TD.EXE, enables keystroke recording. When keystroke
recording is turned on, all keystrokes you type during a debugging session will be
recorded to a disk file, including the keys you press in Turbo Debugger and the keys
you press inside your program. Keystroke recording lets you easily recover a previous
point in your debugging session. For more information on keystroke recording, see
“The Keystroke Recording pane” on page 29.

Assembler-mode startup (-)

The -1 (lowercase ell) option forces the debugger to start in assembler mode. In this
mode, Turbo Debugger does not execute your program’s startup code as it's loaded into
the debugger (which it normally does). Use this option when you want to debug your
program’s startup code, or the startup code to a DLL.

Mouse support (disabling/enabling)
The —p option enables mouse support. However, since the default for mouse support is
On, this option is normally used to turn mouse support off (—p-).

If the mouse driver is disabled for Windows, it will also be disabled for Turbo
Debugger. In this case, the —p option has no effect.

Remote debugging (-r options)

The —r, -rL;R, —rp#, and —rs# options, used by TD and TDW, are fully described on
page 173.

Appendix A, Command-line options 163

Source code handling (s options)

—sc The -sc option causes Turbo Debugger to ignore the case when you enter
symbol names, even if your program was linked with case sensitivity enabled.

Without the -sc option, Turbo Debugger ignores case only when you've linked
your program with the case ignore option enabled.

-sd The-sd option lets you specify one or more directories that Turbo Debugger
should search through to find the source code for your program. The syntax for
this option is:

—sddirnamel[;dirname...]

Note The —sd option doesn’t change the starting directory.

To specify multiple directories, separate each directory name with a semicolon (;).
Turbo Debugger searches for directories in the order specified. dirname can be a relative
or absolute path and can include a disk letter. If the configuration file specifies any
directories, the ones specified by the —sd option are added to the end of that list. See
page 22 for details on how Turbo Debugger searches for source code.

Starting directory (1)

The —tdirname option changes the directory where Turbo Debugger looks for its
configuration file and for .EXE files not specified with a full path. There must not be a
space between the option and the directory path name, and only a single directory can
be specified with this option.

Video hardware handling (-v options)

All—v options, used only by TD.EXE, affect how Turbo Debugger handles the video
hardware.

-vg Saves complete graphics image of your program’s screen. Enabling this option
uses an extra 8K of memory, but it lets you debug programs that use certain
graphic display modes. Try this mode if your program’s graphic screens
become corrupted when you're running under TD.EXE.

-vn Disables the 43 /50-line display under TD.EXE. You can save some memory by
using this option when you know you won't be switching to 43/50-line mode.

-vp Enables the EGA /VGA palette save. If your program alters the EGA/VGA
palette, use this option to have TD.EXE save your program’s palette to
memory.

Windows crash message checking (-wc)

The —wc option, used only by TDW, disables Turbo Debugger’s system crash checkmg,
which is turned on by default.

164 Turbo Debugger User’s Guide

If your program generates Turbo Debugger’s System crash possible. Continue? error
message, you can use this option to turn the message off. Normally, this error message is
generated after you have paused your program'’s execution with the system interrupt
key and then begin to single-step. When you disable the system crash checking, Turbo
Debugger issues the message only once, and not as you continue to single step through

your program.

Windows DLL checking (-wd)

The —wd option, used only by TDW, enables DLL checking by Turbo Debugger. When

this option is turned on (the defaulit setting), Turbo Debugger makes a check when your
program is loaded to see if all the DLLs used by your program are available. By turning
this option off, you can disable the check for the DLLs.

Command-line option summary

Table A.1 lists all of Turbo Debugger’s command-line options.

Table A.1
Option
—ar#
—as#

—cfilename
—do

—sddir[;dir...]
~tdirectory
—vg

—vn

-vp

Turbo Debugger’s command-line options

Description

Attach to process id number #and continue runru'hg process.
Attach to process id number #and give control to Turbo Debugger.
Use filename configuration file.

Display TD.EXE or TDW.EXE on secondary display.

Enable page flipping for TD.EXE.

Swap Turbo Debugger and user screens to memory.

Display help screen listing all command-line options.

Ignore old saved-state information.

Don't use saved-state information.

Prompt if saved-state information is old (default).

Use saved-state information, even if old.

Enable keystroke recording for TD.EXE.

Assembler startup code debugging for applications and DLLs (this option letter is a
lowercase ell).

Enable/disable mouse (default is on).

Starts TD.EXE or TDW.EXE with default remote-debugging settings.
Remote debugging over a network.

Set port for remote serial debugging.

Set speed for remote serial debugging.

No case-checking of symbols for search stringé'.

Source-file search directories.

Set starting directory for loading configuration and executable files.
Save program graphics screen (TD.EXE only).

Disable 43/50 line display ability for TD.EXE.

Enable EGA/VGA palette save for TD.EXE.

Appendix A, Command-line options

165

—we Enable/ disable ystem Crash Possible error message (default is ébl)
-wd Enable/ disable checking for the presence of all your program’s DLLs (default is on).

166 Turbo Debugger User’s Guide

Remote debugging

TD and TDW support remote debugging, which lets you run Turbo Debugger on one
computer and the program you're debugging on another. The two systems can be
connected either through serial ports or through a NETBIOS-compatible local area
network (LAN).

Remote debugging is useful in several situations:

* If your program uses a lot of memory, and you can’t run Turbo Debugger and your
program on the same computer. .

If you receive any memory allocation errors while debugging your program, try
using two systems to debug your program. The remote debugging drivers
(TDREMOTE and WREMOTE) use far less memory than does Turbo Debugger, so
the program you're debugging will behave more like it does when it’s running
without the debugger in the background.

¢ If you need to debug a device driver.

* If your system has a single monitor, and you don’t want to swap screens between
Turbo Debugger’s character mode screens and your program’s graphics mode
screens. (However, you might also want to try dual-monitor debugging. For more
information on this, see “Dual-monitor debugging” on page 9.)

Hardware and software requirements

You can use either a serial connection or a LAN connection for the remote session.
Although the two setups use different hardware, both share the following requirements:

* A development system with enough memory to load Windows and Turbo
Debugger. This is the local system.

Appendix B, Remote debugging 167

* A second PC with enough memory to load Windows, the remote debugging driver
(TDREMOTE or WREMOTE), and the Windows program you want to debug. This is
the remote system.

For a serial connection, you'll need a null-modem cable to connect the serial ports of the
two systems; regular serial cables won't send and receive the signals correctly. At the
very least, the null-modem cable must swap the transmit and receive lines (lines 2 and 3
on 9-pin and 25-pin cables) of a regular serial cable.

For a LAN connection, you'll need a LAN running Novell Netware-compatible software
(IPX and NETBIOS version 3.0 or later). NETBIOS must be loaded onto both the local
and remote systems before either Turbo Debugger or the remote driver can be loaded.

Starting the remote debugging session

To initiate a remote debugging session, you must:

* Set up the remote system.

* Configure and start WREMOTE, the remote debugging driver.
* Start and configure TDW on the local system.

* Load the program for debugging.

“Remote DOS debugging” on page 174 describes debugging DOS applications with a
remote connection.

Setting up the remote system

Before you can begin a remote debugging session, the remote system must contain the
following files:

* The program you're debugging.

The setup on the remote system must include all program support files, such as data
input files, configuration files, help files, Windows DLL files, and so on. Set up these
files as you would in a normal debugging session. For information on loading your
program’s .EXE file onto the remote system, see “ Automatic file transfer” on page
172.

* WREMOTE.EXE, the remote debugging driver.
* WRSETUP.EXE, the configuration program for WREMOTE.EXE.

Configuring and starting WREMOTE

Before you run WREMOTE, you must first run WRSETUP to establish the
communication settings. When you run WRSETUP (by clicking the Remote Setup icon),
a window opens displaying the commands File, Settings, and Help. Choose Settings to
access the Remote Driver Setting dialog box:

168 Turbo Debugger User’s Guide

Figure B.1 WRSETUP main window and Settings dialog box

'=]V WRSetup Remote Driver Setup v«

File Settings Help

Remote Driver Settings

Quit when host quits
Starting directory: i B(a)u:ﬁr:l;e]
l ' ® 19200
Hemote type < 38400
@ gerial < 115000
O Network
Comm port™—
Network remote name: @ COM1
[REMOTE | O com2
QO com3
O coma

Serial configuration
If you're using a serial connection:

1
2

Click the Serial radio button.

Choose the rate of communications by clicking the appropriate Baud Rate radio
button. If you're using the higher transmission speeds (38,400 or 115,000 baud), click
the Disable Clock Interrupts check box to help TDW make a reliable connection with
WREMOTE.

Choose the communications port that works for your hardware setup by clicking the
appropriate Comm Port radio button.

Enter the directory location of your program in the Starting Directory input box.

5 If you want WREMOTE to return control to Windows when you terminate Turbo

Debugger on the local machine, click the Quit When Host Quits check box.

By default, WREMOTE uses a link speed of 19,200 baud, with communications over
COM1. :

LAN configuration
If you're using a LAN connection:

1
2

Click the Network radio button.
Specify the remote system name in the Network Remote Name input box.

By default, the remote system name is REMOTE. For information on naming the local
and remote systems, see “Local and remote system names” on page 173.

Enter the directory location of your program in the Starting Directory input box.

Appendix B, Remote debugging 169

4 If you want WREMOTE to return control to Windows when you terminate Turbo
Debugger on the local machine, check the Quit When Host Quits check box.

Saving the communication settings

After you've set your options and closed the WRSETUP window, WRSETUP saves your
settings to TDW.INI in your Windows directory. The following excerpt from a TDW.INI
file shows the WREMOTE settings when you have chosen a serial connection at 19,200
baud on COM2 with clock interrupts disabled and program control returning to
Windows when Turbo Debugger terminates:

[WRemote]
BaudRate=19200
Port=2

Quit=1

Clock=0
Directory=C:MYPROJ
Type=1
RemoteName=REMOTE

Starting WREMOTE

Once WREMOTE is properly configured, you can load it by clicking the Remote
Debugging icon, by using the Windows File | Run command, or by using the Windows
File Manager. After starting WREMOTE, the mouse cursor on the remote system
displays an hourglass, indicating that it's waiting for you to start TDW at the other end
of the link. (To terminate WREMOTE while it’s waiting to establish a connection with
TDW, press Clrl+Break on the remote machine.)

WREMOTE command-line options

If needed, you can use WREMOTE command-line options to override the remote
settings in the TDW.INI file. Start an option with either a dash (-) or a slash (/), using
the following syntax:

WREMOTE [options] [progname [progargs]]

Table B.1 WREMOTE command-line options

Option. . ‘:,Descuphon -

—c<ftlename> ' Uses <ﬁlename> as the conﬁguratlon (- I.NI) ﬁle
—d<dir> Uses <dir> as the startup directory

~hor-? Displays the help screen

~1c0 Enables clock interrupts

-rcl Disables clock interrupts

—-rn<remotename> Uses remote LAN debugging

-1pl Uses port 1 (COMLI); default

-1p2 Uses port 2 (COM2)

-rp3 Uses port 3 (COM3)

-rp4 Uses port 4 (COM4)

-rq0 Doesn't return to Windows when you exit Turbo Debugger

170 Turbo Debugger User’s Guide

Note

Table B.1 WREMOTE command-line options (continued)

Option Description

-rql Returns to Windows when Turbo Debugger exits
-rs1 Uses slowest speed (9,600 baud)

—rs2 Uses slow speed (19,200 baud); default

-1s3 Uses medium speed (38,400 baud)

-rs4 Uses fast speed (115,000 baud)

Starting and configuring TDW

After you've started WREMOTE, you can start TDW. However, before connecting TDW
to WREMOTE, it must be configured for the remote session.

The easiest way to configure TDW for the remote debugging session is through the
debugger’s File | Open command. However, you can also use TDWINST’s Options |
Miscellaneous command or TDW’s command-line options to configure the remote
debugging session (for information on the command-line options, see “TDW’s remote
debugging command-line options” on page 173).

Serial configuration

When you use a null modem cable to connect the local and remote systems, you must
specify both the communication rate and the serial port that TDW will use for the
connection. To initiate a serial remote debugging session:

1 Start WREMOTE on the remote system (as previously described in this chapter).

2 Start TDW, and choose File | Open to open the Load a New Program to Debug dialog
box.

3 Click the Session button to open the Set Session Parameters dialog box.

4 Click the Serial Remote radio button. (Click the Local radio button if you're not using
remote debugging.)

5 Choose the serial port of the local system by clicking the appropriate Remote Link
Port radio button.

6 Choose the serial communications speed by clicking the appropriate Link Speed
radio button.

7 Choose OK to accept the serial communication settings and return you to the Load a
New Program to Debug dialog box.

Although the local and remote systems can use different serial ports for the remote link,
the link speeds of the two systems must match for the serial connection to work.

LAN configuration
To configure TDW for a remote debugging session on a NETBIOS local area network:

Appendix B, Remote debugging 171

1 Start WREMOTE on the remote system (as previously described in this chapter).

2 Start TDW, and choose File | Open to open the Load a New Program to Debug dialog
box.

3 Click the Session button to open the Set Session Parameters dialog box.
4 Choose the Network Remote radio button.
5 Specify the local and remote system names:

By default, Turbo Debugger sets the local and remote system names to LOCAL and
REMOTE, respectively. However, if there is more than one remote debugging session
running over the same network, you'll have to specify your own system names to
uniquely identify the systems you're using.

6 Choose OK to accept the LAN communication settings and return you to the Load a
New Program to Debug dialog box.

Initiating the remote link

Once you've configured TDW for the remote debugging session, load your program
using the Load a New Program to Debug dialog box (described on page 20). When you
load your program, TDW displays the copyright and version information of TDW, and
the following message:

Waiting for handshake from remote driver (Ctrl+Break to quit)

While waiting for a connection, an hourglass is displayed on the remote system. If the
link is successful, the hourglass disappears, and Turbo Debugger’s normal display
appears on the local machine. (Press Cirl+Break to exit TDW if the link is not successful.)

Once you start TDW in remote mode, the Turbo Debugger commands work exactly the
same as they do on a single system; there is nothing new to learn. If you access TDW’s
CPU window, the remote system’s CPU type is listed as part of the CPU window title
with the word REMOTE before it.

Because the program you're debugging is actually running on the remote system, any
screen output or keyboard input to that program happens on the remote system. The
Window | User Screen command has no effect when you're running on the remote link.

Automatic file transfer
Once you make a remote connection and load a program into TDW, the debugger
automatically checks to see if your program needs to be sent to the remote system.

TDW is smart about loading programs onto the remote system. First, a check is made to
see if the program exists in the working directory of the remote system. If the program
doesn’t exist on the remote system, then it’s sent over the link right away. If the program
does exist on the remote system, Turbo Debugger checks the time stamp of the program
on the local system and compares this with the copy on the remote system. If the
program on the local system is later (newer) than the remote copy, Turbo Debugger
presumes you've recompiled or relinked the program, and sends it over the link.

At the highest serial link speed (115,000 baud), file transfers move at a rate of
approximately 10K per second. Thus, a 60K program takes roughly six seconds to

172 Turbo Debugger User’s Guide

transfer. To indicate that the system is working, the screen on the remote system adds
up the bytes of the file as Turbo Debugger transfers it.

Automatic file transfer can save time and energy. However, TDW transfers only .EXE
files; Windows DLL files and other program support files are not transferred to the
remote system via automatic file transfer.

TDW’s remote debugging command-line options

If you use TDWINST or TDW’s command-line options to configure TDW, you must do
so before you load TDW. For instructions on using TDWINST, see the online file
TD_UTILS.TXT. For details on TDW’s remote command-line options, see Table B.2.

+ If you started TDW without first configuring it for remote debugging, use TDW’s
File | Open command to configure the remote settings.

TableB.2 TDW’s remote debugging command-line options

Option Description = S

-r Initiates remote débugging usiﬁg the default settings.

-mLR Uses remote LAN debugging (see the following section titled “Local and remote
system names” for more information).

-1pl Uses port 1 (COML1); default

-1p2 Uses port 2 (COM2)

-1p3 Uses port 3 (COM3)

-1p4 Uses port 4 (COM4)

-rs1 Uses slowest speed (9,600 baud)

—-rs2 Uses slow speed (19,200 baud); default

-1s3 Uses medium speed (38,400 baud)

-r54 Uses high speed (115,000 baud)

Here's a typical TDW command to start a serial remote connection:

TDW -rs3 myprog

This command begins the link on the default serial port (usually COM1), at the link
speed of 38,400 baud. In addition, the program myprog is loaded for debugging.

Local and remote system names
The —-rnL;R command-line option takes two optional parameters: the local system name
and the remote system name, separated by a semicolon.

Since both parameters are optional, there are four ways to use the -rn command-line
option with Turbo Debugger. The following commands all load Turbo Debugger,
specify a remote LAN connection, and load the program filename for debugging.

TDW -rn filename

TDW -rnLOCALL filename

TDW -rn;REMOTE1 filename

TDW -rnLOCALIL;REMOTEl filename

Appendix B, Remote debugging 173

The first command uses default names for both the local and remote systems, LOCAL and
REMOTE respectively. The second command specifies LOCALI as the local system name, but
uses the default name (REMOTE) for the remote system. The third command uses the
default name for the local system (LOCAL), but specifies REMOTEL as the remote system
name. Finally, the fourth command specifies both local and remote system names.

Note While you can create local and remote system names up to 16 characters in length, the
need to specifically name local and remote systems arises only when there are
simultaneous remote debugging sessions running on a network. If only one person on a
network is using TDW’s remote debugging feature, then it isn't necessary to define
special local and remote system names.

Remote DOS debugging

You can use TD to debug DOS applications over a remote link just as you use TDW to
debug Windows applications remotely. In fact, using TD over a remote link is exactly
the same as using TDW over a remote link except that you use the remote driver
TDREMOTE on the remote system instead of using WREMOTE. Because of this, you
can follow the instructions for remote debugging a Windows application (starting on
page 168 with “Starting the remote debugging session”) to debug a DOS application
over a remote link. To use the TDW instructions, substitute TD for TDW, and
TDREMOTE for WREMOTE.

Differences between TDREMOTE and WREMOTE

Although the instructions for debugging a Windows application over a remote link can
be used for DOS applications, there is one difference: TDREMOTE does not have a setup
program (as does WREMOTE). Because of this, you must use command-line options to
configure TDREMOTE when you start it. Use the following to configure TDREMOTE:

TDREMOTE [options]

The following table summarizes TDREMOTE’s command-line options:

TableB.3 TDREMOTE command-line options

“hor-? ’ “ Displays the help screen

-rn<remotename> Uses remote LAN debugging

-1pl Uses port 1 (COMI); default

-1p2 Uses port 2 (COM2)

-rp3 Uses port 3 (COM3)

-rp4 Uses port 4 (COM4)

-1sl Uses slowest speed (9,600 baud)

—1s2 Uses slow speed (19,200 baud)

-1s3 Uses medium speed (38,400 baud)
-rs4 Uses fast speed (115,000 baud); default

174 Turbo Debugger User’s Guide

Each TDREMOTE command-line option must be prefixed with either a dash (-) or a
slash (/), and it must be separated by other options by a space.

Before starting TDREMOTE, be sure the directory on the remote system is set to the
directory that contains the program files. This is essential because TDREMOTE puts the
program to be debugged into the directory that is current when you start Turbo
Debugger.

When loaded, TDREMOTE signs on with a copyright message, then indicates that it's
waiting for you to start TD.EXE at the other end of the link. To stop and return to DOS,
press Ctrl+Break.

Transferring files to the remote system

To transfer files to the remote DOS system, you can use either floppy disks or
TDRE.EXE, the remote file-transfer utility. (The online file TD_UTILS.TXT describes
TDRF.EXE)

To send files over to the remote system while running Turbo Debugger, choose
File | OS Shell to obtain a DOS prompt and use TDREF to transfer the necessary files. To
return to Turbo Debugger, type EXIT at the DOS prompt.

Troubleshooting

Here's a list of troubleshooting techniques you can try if you experience problems with
the remote setup:

¢ Check your cable hookups. This is the most common cause of problems.

* Check to make sure you're using the correct serial port settings (you must use the
same link speed on both the local and remote systems) or that you're properly
connected to the network.

*» With serial connections, try successively slower baud rates until you find a speed that
works.

* Some hardware and cable combinations don’t always work properly at the highest
speed. If the link works only at slower speeds, try a different cable or, if possible,
different computers.

¢ If you can’t get the serial connection to work at any speed when you're using TDW,
use WRSETUP to Disable clock interrupts and try running the link at 9,600 baud. If that
works, try successively higher communication speeds.

Appendix B, Remote debugging 175

176 Turbo Debugger User’s Guide

Appendix

Turbo Debugger error messages

Turbo Debugger can display a variety of messages while you're debugging your
program. This Appendix lists the following types of messages:

* Messages generated by TD, TDW, and TD32.

+ Status messages listed in the Get Info dialog box and in the Thread Detail pane of the
Threads window (page 187).

* Messages generated by TDREMOTE (page 188).
* Messages generated by WREMOTE (page 189).

TD, TDW, and TD32 messages

This section gives an alphabetical listing of the messages generated by TD, TDW, and
TD32. Following each message listing is a description that suggests how to handle the
message.

Messages can be either error messages (some of them fatal) or messages that prompt
you for information. You can easily distinguish an error message from a prompt if you
turn on Error Message Beeps in TDWINST or TD32INST.

Fatal messages cause Turbo Debugger to exit to Windows. Although some fatal errors
occur when you start Turbo Debugger, others can occur while you're in the middle of
debugging your program. In either case, after having solved the problem, your only
remedy is to restart Turbo Debugger.

Turbo Debugger displays messages that prompt for information in a dialog box. The
title bar of the dialog box contains a description of the type of information that’s needed.
In some cases, the dialog box will contain a history list of the previous responses you've
given.

You can respond to message prompts in one of two ways:

Appendix C, Turbo Debugger error messages 177

* Enter a response and press Enter.
* Press Esc to cancel the dialog box.

‘) expected
While evaluating an expression, Turbo Debugger found a left parenthesis without a matching right parenthesis.

‘" expected , ;
While evaluating a C expression, a question mark (?) separating the first two expressions of the ternary operator (? :) was
encountered, but the colon (:) that separates the second and third expressions was not found.

T expected

While evaluating an expression, Turbo Debugger found a left bracket () without a matching right bracket (J).

This error can also occur when entering an assembler instruction using the built-in assembler. In this case, a left bracket
was encountered that introduced a base or index register memory access, and there was no corresponding right bracket.

All threads frozen
You've tried to run or step your Windows NT program after freezing all program threads. For the program to be able to
run, you must unfreeze at least one thread using the Options command on the Threads window SpeedMenu.

Already logging to a file
You issued an Open Log File command after having already issued the same command without an intervening Close
Log File command. If you want to log to a different file, first close the current log by issuing the Close Log File command.

Already recording, do you want to abort?
You're already recording a keystroke macro. You can't start recording another keystroke macro until you finish the
current one. Press Y to stop recording the macro, or press N to continue recording.

Ambiguous symbol name

You used a symbol in an expression that does not uniquely identify a C++ member function or Object Pascal method
name. Before the expression can be evaluated, you must pick a valid symbol from the list of member functions or
methods.

Bad configuration file
Turbo Debugger’s configuration file is corrupted.

Bad or missing configuration file
You have specified a nonexistent, corrupted, or outdated file name with the -c command-line option.

Can’t do this when debugging an attached process
You cannot reset a program (Clrl+F2) after you have attached to it using TD32's File | Attach command.

Can't execute DOS command processor
You've issued the File | OS Shell command, and Turbo Debugger cannot find COMMAND.COM. Either
COMMAND.COM or the COMSPEC environment variable is corrupted.

Can't find filename. DLL
This message is generated by Turbo Debugger in two situations:

* You're attempting to load a program that requires one or more DLLs into Turbo Debugger, and the debugger can’t locate
one of the .DLL files. The DLLs with symbol tables required by your executable must be in the same directory as the
program you're debugging,.

* You are attempting to load TDW, and the program can’t find TDWINTH.DLL. Either you have an invalid file name or
path in the DebuggerDLL entry in TDW.INI, or TDW can’t find TDW.INL

Either edit the DebuggerDLL entry in TDW.INTI to reflect the correct path and file name, or if there is no TDW.INI, move
TDWINTH.INI to the main Windows directory.

178 Turbo Debugger User’s Guide

Can’t have more than one segment override
You attempted to assemble an instruction where both operands have a segment override. Only one operand can have a
segment override. For example,

mov es: [bx],ds:1

should have been
mov es: [bx],1

Can'tload
You specified a bad DLL name in the TDW.INI file.

Can’t run TDW on Windows NT
You must use TD32 to debug a 32-bit Windows NT program

Can't set a breakpoint at this location
You tried to set a breakpoint in ROM or in segment 0. The only way to view the execution of ROM code is to step though
it at the instruction level using Alt+F7.

Can’t set any more hardware breakpoints
The hardware debugging registers have already been allocated by other hardware breakpoints. You can’t set another
hardware breakpoint without first deleting one you have already set.

Can’t set hardware condition on this breakpoint
You've attempted to set a hardware condition on a breakpoint that isn’t a global breakpoint. Hardware conditions can
only be set on global breakpoints.

Can’t set that sort of hardware breakpoint
The hardware device driver that you have installed in your CONFIG.SYS file can’t do a hardware breakpoint with the
combination of cycle type, address match, and data match that you have specified.

Cannot access an inactive scope
The expression you entered contains a symbol that isn’t contained in the current scope. See page 101 for information on
scope overrides.

Cannot be changed

You tried to change a symbol that can’t be changed. The only symbols that can be changed directly are scalars (int, long,
real, integer, and so forth) and pointers. If you want to change data in a structure or array, you must change the
individual elements one at a time.

Constructors and destructors cannot be called

This error message appears only if you're debugging a program that uses C++ or Object Pascal objects. You tried to
evaluate a member function or method that’s either a constructor or a destructor; Turbo Debugger cannot evaluate
expression that create or destroy objects.

Count value too large
In the Dump pane of the CPU window, you've entered too large a block length to one of the SpeedMenu Block
commands. The block length can’t exceed FFFFFh.

Destination too far away
You attempted to assemble a conditional jump instruction where the target address is too far from the current address.
The target for a conditional jump instruction must be within —128 and 127 bytes of the instruction itself.

Device error — Retry?
An error has occurred while writing to a character device, such as the printer. This could be caused by the printer being
unplugged, offline, or out of paper. Correct the condition and then press Y to retry or N to cancel the operation.

Disk error on drive ___ — Retry?

A hardware error has occurred while accessing the indicated drive. This might mean you don’t have a floppy disk in the
drive or, in the case of a hard disk, it might indicate an unreadable or unwriteable portion of the disk. You can press Y to
retry the disk read, or, press N to cancel the operation.

Display adapter not supported by filename
The video driver filename indicated in the VideoDLL entry in TDW.INI does not support your display adapter. For more
information on video DLL, see the section describing TDWINLEXE in the online file TD_UTILS.TXT.

Appendix C, Turbo Debugger error messages 179

Divide by zero
You entered an expression using a divide (/, div) or modulus operator (mod, %) where the divisor evaluates to zero.

DLL already in list
In the View | Modules dialog box, you tried to add a DLL to the DLLs & Programs list, but the DLL was a]ready in the
list.

DLL not loaded
You tried to load a DLL’s symbol table before the DLL has been loaded by Turbo Debugger. Make sure that the DLL is
loaded before explicitly trying to load its symbol table.

Edit program not specified
You must first specify an editor using TD32INST before you can issue TD32's Edit command.

Error ##loading
Error number ## occurred when you attempted to load the DLL listed in the error message.

Error loading filename

Turbo Debugger was unable to load the video driver filename. The video driver could be an invalid driver file or it could
be corrupted. For more information on video drivers, refer to the section describing TDWINLEXE in the online file
TD_UTILS.TXT.

Error opening file
Turbo Debugger couldn’t open the file that you want to view in the File window. Check to ensure that the file name and
path are correct.

Error reading block into memo:
The block you specified could not be read from the file into memory. You probably specified a byte count that exceeded
the number of bytes in the file.

Error saving configuration

Turbo Debugger couldn’t write your configuration to disk. Make sure that your disk contains enough free space for the
file.

Error writing block to disk

The block you specified couldn’t be written to the disk file. You probably entered a count that exceeded the amount of
free space available on your disk.

Error writing log file

An error occurred while writing from the Log window to the log file. The file name you supplied for the Open Log File
SpeedMenu command can’t be opened because there’s not enough room to create the file or because the disk, directory
path, or file name you specified is invalid. Either make room for the file by deleting some files from your disk, or supply
a correct disk, path, and file name.

Error writing to file
Turbo Debugger couldn’t write your changes back to the disk. The file might be marked as read-only, or an error mlght
have occurred while writing to disk.

Expression too complex
The expression you supplied is too complicated; you must supply an expression that has fewer operators and operands.
You can have up to 64 operators and operands in an expression.

Expression with side effects not permitted
You have entered an expression that modifies a memory location when it gets evaluated. There are several places where
Turbo Debugger doesn’t allow this type of expression; for example, in Inspector windows.

Extra input after expression

You entered an expression that was valid, but there was more text after the valid expression. This sometimes indicates
that you omitted an operator in your expression. You could also have entered a number in the wrong syntax for the
language you're using. For example, you might have entered 0xF000 instead of OF000h as an assembler expression.

Fatal memory error
The Windows memory manager reported a fatal error to Turbo Debugger.

180 Turbo DebuggerkUser’s Guide

Help file ___ not found
You asked for help, but Turbo Debugger’s help file couldn’t be found. Make sure that the help file is in the same directory
as the debugger program.

Immediate operand out of range
You entered an instruction that had a byte-sized operand combined with an immediate operand that is too large to fit in
a byte. For example,

add BYTE PTR[bx],300
should have been
add WORD PTR[bx],300

Initialization not complete

You have attempted to access a variable in your program before the data segment has been set up properly by the
compiler’s initialization code. You must let the compiler execute to the start of your source code before you can access
most program variables.

Invalid argument list

The expression you entered contains a function call that does not have a correctly formed argument list. An argument list
starts with a left parenthesis, has zero or more comma-separated expressions for arguments, and ends with a right
parenthesis.

Invalid character constant
The expression you entered contains a badly formed character constant. A character constant consists of a single quote
character (') followed by a single character, ending with another single quote character.

Invalid format string
You have entered an invalid format control string after an expression. See Chapter 7 for a description of format strings.

Invalid function parameter(s)
You entered an expression that calls a function, but you supplied incorrect arguments to the call.

Invalid instruction
You entered an instruction to assemble that had a valid instruction mnemonic, but the operand you supplied was
invalid.

Invalid instruction mnemonic
When entering an instruction to be assembled, you failed to supply an instruction mnemonic. An instruction consists of
an instruction mnemonic followed by optional arguments. For example,

AX,123
should have been
MOV ax,123
Invalid number entered

You entered an invalid number in a dialog box. For example, in a File window, you typed an invalid number to go to.
Here, entries must be integers greater than zero.

Invalid operand(s)

The instruction you're trying to assemble has one or more operands that aren’t allowed. For example, a MOV instruction
cannot have two operands that reference memory, and some instructions only work on word-sized operands. For
example,

POP al
should have been
POP ax

Invalid operator/data combination
You've entered an expression where the operator can’t perform its function with the type of operand supplied. For
example, you cannot multiply a constant by the address of a function.

Appendix C, Turbo Debugger error messages 181

Invalid pass count entered
You have entered a breakpoint pass count that is not between 1 and 65,535. Pass counts must be greater than 0; a pass
count of 1 means that the breakpoint can activate the first time it’s encountered.

Invalid register ‘
You entered an invalid floating-point register as part of an instruction being assembled. A floating-point register consists
of the letters ST, optionally followed by a number between 0 and 7 within parentheses; for example, ST or ST(4).

Invalid register combination in address expression

When entering an instruction to assemble, you supplied an operand that did not contain one of the permitted
combinations of base and index registers. An address expression can contain a base register, an index register, or one of
each. The bae registers are BX and BP, and the index registers are SI and DI. Here are the valid address register
combinatior.s:

BX BX+SI
BP BP+SI
DI BX+DI
SI BP+DI

Invalid register in address expression
You entered an instruction to assemble using an invalid register as part of a memory address expression between
brackets ([]). You can only use the BX, BP, SI, and DI registers in address expressions.

Invalid switch: __
You supplied an invalid option switch on the command line. Appendix A discusses each command-line option in detail.

Invalid symbol in operand
When entering an instruction to assemble, you started an operand with a character that cannot be used to start an
operand: for example, the colon ().

Invalid typecast
A correct C or C++ typecast starts with a left parenthesis, contains a possibly complex data type declaration (excluding
the variable name), and ends with a right parenthesis. For example,
x *)p
should have been
(st uct x *)p

Invalid value entered
When prompted to enter a memory address, you supplied a floating-point value instead of an integer value.

Invalid window handle
In TDW, you tried to indicate a window using a window handle. The handle must be initialized before it can be used to
specify a window for message tracking. Run your program past the point where the handle is initialized.

Invalid __ , missing
This fatal error message occurs when you have written your own video or keyboard DLL to work with Turbo Debugger,

but have left out a section in the DLL. The name of the DLL is given in the first field, and the missing section is listed in
the second field. !

Keyword not a symbol
The expression you entered contains a keyword where a variable name was expected. You can only use keywords as
part of typecast operations, with the exception of the sizeof special operator. For example,

floatval = char charval
should have been
floatval = char (charval)

Left side not a record, structure, or union
‘You entered an expression that used one of the C structure member selectors (. or ->) symbol, however, was not preceded
by a structure name, nor was it preceded by a pointer to a structure.

182 Turbo Debugger User’s Guide

No C or C++ exception handler
You tried to access the Module window SpeedMenu Exception command. To access this command, your program must
include exception-handling routines.

No coprocessor or emulator installed

You tried to open a Numeric Processor window using the View | Numeric Processor command, but there is no numeric
processor chip installed in your system, and the program you're debugging either doesn’t use the software emulator or
the emulator has not been initialized.

No hardware debugging available

You have tried to set a hardware breakpoint, but you don’t have the hardware debugging device driver installed. You
can also get this error if your hardware debugging device driver does not find the hardware it needs. See page 74 for
more information on hardware breakpoints.

No help for this context
You pressed F1 to get help, but Turbo Debugger could not find a relevant help screen. Please report this to Borland
Technical Support.

No modules have line number information

You issued the View | Module command, but Turbo Debugger can't find any modules with debug information. This
message usually occurs when you're debugging a program without a symbol table. See the “Program has no symbol
table” error message entry on page 185 for more information on symbol tables.

No network present
You have attempted to start Turbo Debugger using a remote network connection, but Turbo Debugger couldn’t detect a
NETBIOS network connection.

No pending status from program being debugged
You've issued TD32's Run | Next Pending Status command, but your program has no events waiting in the operating
system. ‘

No previous search expression
You attempted to perform a Next command from the SpeedMenu of a text pane, but you had not previously issued a
Search command to specify what to search for.

No program loaded
You attempted to issue a command that requires a program to be loaded. For example, none of the commands in the Run
menu can be performed without first loading a program.

No type information for this symbol
You entered an expression that contains a symbol not found in the debug information. Check to ensure that you typed
the symbol name correctly.

Not a function name
You entered an expression that contains a call to a routine, but the routine cannot be found. Any time a pair of
parentheses immediately follows a symbol, the expression parser presumes that you intended to call a routine.

Not a record, structure, or union member
You entered an expression that used one of the C structure member selectors (. or ->) the symbol wasn’t preceded by a
structure name or a pointer to a structure.

Not a 32-bit program
You've tried to load a 16-bit program into TD32 running under Windows 32s or Windows NT. Exit TD32, and use TDW
to debug the 16-bit program.

Not a Windows program
You can only use TDW to debug Windows programs.

Not enough memory
Turbo Debugger ran out of working memory while loading.

Not enough memory for selected operation
Your system ran out of working memory while trying to open a new Turbo Debugger window. Try closing some other
windows before you reissue the command.

Appendix C, Turbo Debugger error messages 183

Not enough memory to load filename
Turbo Debugger ran out of working memory while loading the video driver filename.

Not enough memory to load program
Your program’s symbol table has been successfully loaded into memory, but there is not enough memory left to load
your program.

Not enough memory to load symbol table

There is not enough room to load your program'’s symbol table into memory. When this message is issued, you must free
enough memory to load both your program and its symbol table. Try making the symbol table smaller by generating
debug information for only the necessary source modules.

Old or invalid configuration file
You've attempted to start Turbo Debugger using a configuration file from a previous version of the debugger.

Only one operand size allowed
You entered an instruction to assemble that had more than one size indicator. Once you have set the size of an operand,
you can’t change it. For example, ‘

mov WORD PTR BYTE PTR[bx],1
should have been
mov BYTE PTR[bx],1

Operand must be memory location
You entered an expression that contained a subexpression that should have referenced a memory location. Some things
that must reference memory include the assignment operator and the C increment and decrement (++ and —-) operators.

Operand size unknown
You entered an instruction to assemble, but did not specify the size of the operand. Some instructions that can act on
bytes or words require you to specify which size to use if it cannot be deduced from the operands. For example,

add [bx],1

should have been
add BYTE PTR[bx],1

Overwrite __ ?
You tried to write to an already existing file. You can choose to overwrite the file, replacing its previous contents, or you
can cancel the command and leave the previous file intact.

Overwrite existing macro on selected key
You have pressed a key to record a macro, and that key already has a macro assigned to it. If you want to overwrite the
existing macro, press Y; otherwise, press N to cancel the command.

Path not found
You entered a drive and directory combination that does not exist. Check that you have specified the correct drive and
that the directory path is spelled correctly.

Path or file not found
You specified a nonexistent or invalid file name or path when prompted for a file name to load. If you do not know the
exact name of the file you want to load, you can pick the file name from a list by pressing Browse.

Press key to assign macro to

Press the key that you want to assign the macro to. Then, press the keys to do the command sequence that you want to
assign to the macro key. The command sequence will actually be performed as you type it. To end the macro recording
sequence, press the key you assigned the macro to, or press Alf+- (the Alt key plus the hyphen key).

Program already terminated, Reload?
You have attempted to run or step your program after it has already terminated. If you choose Y, your program will be
reloaded. If you choose N, your program will not be reloaded, and your run or step command will not be executed.

Program has invalid symbol table
The symbol table attached to your program has become corrupted. You must recompile your program with debug
information.

184 Turbo Debugger User’s Guide

Program has no objects or classes
You've attempted to open a View | Hierarchy window on a program that isn't object-oriented.

Program has no symbol table

The program you want to debug has been successfully loaded, but it doesn’t contain symbolic debug information. You'll
be able to use the CPU view to debug your program, but you wont be able to use the program’s source code or symbol
names while debugging. Refer to Chapter 2 for information on compiling your program for debugging.

Program has no threads
You tried to open the Threads window in TD32 (using Cirl+T) while running Windows 32s. Windows 32s doesn’t support
process threads.

Program is running
Youissued a command torun y , buit the program was aiready running.
Program linked with wrong linker version

You loaded a program with out-of-date debug information. Recompile your program using the latest version of the
compiler.

Program not found
The program name you specified does not exist. Either supply the correct name or pick the program name from the file
list.

Program out of date on remote, send over link?

When you start a remote debugging session, Turbo Debugger checks to see if the .EXE file on the remote system is the
latest version of the program. If the program on the local system is newer than the copy on the remote system, you will
receive this prompt. Enter Y if you want to send your program over the link, or N if you don't.

Register cannot be used with this operator
You have entered an instruction to assemble that attempts to use a base or index register as a negative displacement. You
can only use base and index registers as positive offsets. For example,

INC WORD PTR[12-BX]

should have been
INC WORD PTR[12+BX]

Register or displacement expected
The instruction you tried to assemble has a badly formed expression between brackets ([]). You can only put register
names or constant displacement values between the base-index brackets.

Remote link timeout
The connection to the remote system has been disrupted. Try rebooting both the systems and starting again. For details
on remote debugging, see Appendix B.

Restart info is old, use anyhow?

When starting Turbo Debugger, it restores the settings of the previous debugging session. If the program has been
changed since you last loaded it into the debugger, you will receive the prompt. See page 22 for more information on
session-state saving.

Run out of space for keystroke macros
~ The macro you are recording has run out of space. You can record up to 256 keystrokes for all macros.

Search expression not found

The text or bytes that you specified could not be found. The search starts at the current location in the file, as indicated by
the cursor, and proceeds forward. If you want to search the entire file, press Ctrl+PgUp before issuing the search
command.

Source file ___ not found
Turbo Debugger can’t find the source file for the module you want to examine. See page 22 for more information on how
Turbo Debugger searches for source code.

Appendix C, Turbo Debugger error messages 185

Symbol not found
You entered an expression that contains an invalid variable name. Make sure that you correctly spelled the symbol name,
and that it’s in scope.

Symbol table file not found
The symbol table file that you have specified does not exist. You can specify either a .TDS or .EXE file for the symbol file.

Syntax error
You entered an expression that doesn’t conform to the syntax of the selected language parser.

System crash possible, continue?

After pressing the program interrupt key, Turbo Debugger gained control while your program was executing Windows
kernel code. If you try to-exit Turbo Debugger, or reset your program, this error message is generated. Exiting Turbo
Debugger or reloading your program while paused inside Windows kernel code will have unpredictable results, most
likely hanging the system and forcing a reboot. :
To remedy this situation, set a breakpoint in your code and run your program to that breakpoint. When the breakpoint
activates, you can either exit Turbo Debugger, or reset your program.

The —wc command-line option controls the generation of this error message.

Too many files match wildcard mask
You specified a wildcard file mask that specifies more files than can be handled. TDW can display up to 1,000 file names,
and TD32 can display up to 10,000 file names.

Unexpected end of line
While evaluating an expression, the end of your expression was encountered before a valid expression was recognized.

Unknown character
You entered an expression that contains an illegal character, such as a reverse single quote (°).

Unknown record, structure, or union name
You have entered an expression that contains a typecast with an unknown record or enum name. (Note that assembler
structures have their own name space different from variables.)

Unknown symbol
You entered an expression that contained an invalid symbol name. Make sure the module name, symbol name, or line
number is correct.

Unterminated string
You entered a string that did not end with a closing quote (”). To enter a string with quote characters, you must precede
each quote with a backslash (\) character.

Value must be between nn and nn
You have entered an invalid numeric value for an editor setting (such as the tab width) or printer setting (such as the
number of lines per page). The error message will tell you the allowed range of numbers.

Value must be between 1 and 32 tenths of a second
The value entered for the background screen updating must be an integer between 1 and 32.

Value out of range
You have entered a value for a variable that is outside the range of allowed values.

Variable not available
The variable in question has been optimized away by the compiler and cannot be accessed by the debugger. For best
results, compile without optimizations while you're developing your program.

Video mode not available
You have attempted to switch to 43/50-line mode, but your display adapter does not support this mode; you can use
43/50-line mode only with EGA, VGA or SVGA video adapters.

Video mode not supported by filename

The video mode Windows is using isn’t supported by the video DLL indicated in the VideoDLL entry in the TDW.INI
file. Refer to the description of TDWINLEXE in the online file TD_UTILS.TXT for more information on video DLLs.

186 Turbo Debugger User’s Guide

Video mode switched while flipping pages

Your program has changed the video display mode when Turbo Debugger is in page flipping mode. This means that the
contents of your program’s screen might be lost. You can avoid this by using the —ds command-line option to turn on the
video swapping mode.

Waiting for remote driver. Press Esc to stop waiting
You've configured TDW for remote debugging either through a serial or network connection, and it is now waiting to
connect to WREMOTE on the remote system. Press Esc to exit the debugger. See Appendix B for details on remote

debugging.
Wrong version of remote driver

TDW tried making a remote connection with WREMOTE, but the version of WREMOTE does not match that of TDW.
Make sure that TDW and WREMOTE are installed from the same Borland software package.

You must run WREMOTE on remote system
Make sure that the remote system is running WREMOTE, and not a copy of TDREMOTE used with earlier versions of
Turbo Debugger.

Status messages

Here are the messages you'll see on the Status line of the Get Info text box and in the
Thread Detail pane of the Threads window. These messages describe how
Turbo Debugger gained control from your running process.

Breakpoint at __
Your program encountered a breakpoint that was set to pause your program. The text after “at” is the address of the
breakpoint.

Divide by zero
Your program has executed a divide instruction where the divisor is zero.

Exception

A processor exception has occurred, which usually happens when your program attempts to execute an illegal
instruction opcode. The Intel processor documentation describes the exception codes in detail.

The most common exception to occur with a Windows program is Exception 13. This exception indicates that your
program has attempted to perform an invalid memory access. (Either the selector value in a segment register is invalid or
the offset portion of an address points beyond the end of the segment.) You must correct the invalid pointer causing the
problem.

Global breakpoint __at__
A global breakpoint has been activated. This status message includes the breakpoint number and the address where the
breakpoint occurred.

Interrupt
You pressed the program interrupt key to regain control.

Loaded

You either reset your program or loaded it without executing any startup code. Because no instructions have been
executed at this point (including those that set up your stack and segment registers), most of Turbo Debugger’s windows
show incorrect data.

No program loaded
You started Turbo Debugger without loading a program. You cannot execute any code until you either load a program
or assemble some instructions using the Assemble SpeedMenu command in the Code pane of a CPU window.

Step
You executed a single source line or machine instruction, skipping function calls, with F8 (Run | Step Over).

Appendix C, Turbo Debugger error messages 187

Stopped at

Your program stopped as the result of a completed Run | Execute To, Run | Go to Cursor, or Run | Until Return
command. This status line message also appears when your program is first loaded, and the compiler startup code in
your program has been executed to place you at the start of your source code.

Terminated, exit code

Your program has finished executing. The text after “code” is the numeric exit code returned to Windows by your
program. If your program does not explicitly return a value, a. garbage value might be displayed. You cannot run your
program until you reload it with Run | Program Reset.

Trace
You executed a single source line or machine instruction with F7 (Run | Trace).

Window message breakpoint at__
Your program encountered a message breakpoint that paused your program. The text after “at” is the window
procedure that handles the message received.

TDREMOTE messages

Here’s the list of error messages that can be generated by TDREMOTE.

Can’t create file
TDREMOTE can't create a file on the remote system. This can happen if there isn’t enough room on the remote disk to
transfer the executable program across the link.

Download failed, write error on disk
TDREMOTE can't write part of a received file to disk. This usually happens when the disk fills up. You must delete some
files before TDREMOTE can successfully download the file.

Interrupted
You pressed Cirl+Break while waiting for communications to be established with the other system.

Invalid command-line option
You gave an invalid command-line option when you started TDRF from the DOS command line.

Link broken
The program communicating with TDREMOTE has stopped and returned to DOS.

Program load failed, EXEC failure

DOS could not load the program into memory. This can happen if the program has become corrupted or truncated.
Delete the program file from the remote system’s disk to force Turbo Debugger to send a new copy over the link. If this
message happens again after deleting the file, you should relink your program using TLINK on the local system and try
again.

Program load failed; not enough memory
The remote system doesn't have enough free memory to load the program you want to debug

Program load failed; (—,l:\ gram not found
TDREMOTE could not find the program on its disk. This should never happen because Turbo Debugger downloads the
program to the remote system if TDREMOTE can't find it.

Unknown request: message

TDREMOTE has received an invalid request from the local system (where you're running Turbo Debugger). If you get
this message, check that the link cable is in good working order. If you keep getting this error, try reducing the link speed
(use the -rs command-line option).

188 Turbo Debugger User’s Guide

WREMOTE messages

Here’s the list of error messages that can be generated by WREMOTE.

Can't find configuration file: ___
The file you specified using the . command-line option cannot be found. Check to ensure the path and file name are
spelled correctly.

Can’t open COMLx serial port
WREMOTE is trying to use a COM port that is either in use or doesn’t exist.

Invalid switch

You specified an unkinown option on the WREMOTE command line. Refer to Appendix B for a description of
WREMOTE command-line options.

No network present

WREMOTE is unable to detect a NETBIOS compatible network. Make sure you have loaded NETBIOS (version 3.0 or
greater), and are logged onto the network.

Appendix C, Turbo Debugger error messages

189

190 Turbo Debugger User’s Guide

Symbols

I (exclamation points), in Load
Module Source or DLL
Symbols dialog box 138

(cross hatch)

in CPU window 117

in expressions 99, 102
* (asterisk)
in Breakpoints window 74
in Clipboard window 45
in Hierarchy window 148
in Load Module Source or
DLL Symbols dialog
box 136
** (asterisks), in Hierarchy
window 148
> (arrow)
in CPU window 117, 124
in Module window 108
-? command-line option 163
?22?? (four question marks)
in CPU window 116
in Variables window 86
in Watches window 84
* (bullet)
in Load Module Source or
DLL Symbols dialog
box 136
in Module window 108
in Specify Exception
Handling dialog box 143
=menu (System) 35

Numerics

80x87 processors 39

A

-a command-line options 162
Action Expression input box 75
Action radio buttons 71, 74-75
activity indicator 48
READY 42
RECORDING 42
REMOTE 172
adapters See video adapters
Add command
. breakpoint groups 78
Breakpoints window 70
Windows Messages
window 130, 132

Index

Add Comment command (Log
window) 81, 82
Add DLL button 137
Add Group dialog box 78
Add Watch command (Data
menu) 84
Add Window or Handle to
Waich dialog box 130
Add Window Procedure to
Watch dialog box 130
Address input box 70, 73
addresses
expressions 99
navigating to 111, 118
running to specified 25
setting breakpoints 70, 73
shifting 116
viewing invalid (CPU
window) 116
All Threads check box 80
All Threads command (Threads
window) 141
allocating memory 46
Alt+key shortcuts See hot keys
Animate command (Run
menu) 25
Another command (View
menu) 40
arguments
calling function 38
command-line 26
defined 3
this 84
Arguments command (Run
menu) 26
arrays
displaying character
strings 101
inspecting 89, 90
See also Inspector windows
subranges 91
modifying 179
arrow keys, in CPU window 116
ASCII files, viewing 112
Assemble command (CPU
window) 120
assembler
instructions See machine
instructions
registers See CPU window,
registers
assignment operator 100

At command (Breakpoints
window) 70

Attach command (TD32’s File
menu) 46

Attach to and Debug a Running
Process dialog box 47

automatic name completion 41

Back Trace command (Run
menu) 26
Background Delay input box 11
backward trace See reverse
execution
Baud radio buttons 169
Block command (CPU
window) 124
Borland, contacting 6
Breakpoint Options dialog
box 71
breakpoints
See also Breakpoints window
action sets 76
actions 68, 74-75
changed-memory 72
condition sets 76
conditions 68
CPU window 118
defined 67
disabling/enabling 75, 79
expression-true 70
global 68,73
Always action and 73
groups 75,77-79
hardware 74
problems with 179, 183
inspecting source 79
instrumentation 75
line numbers and 23
location 67
logging values 75
modifying 71
pass counts 68, 72
reloading programs 31
removing 79
saving 23
scope of expressions 77
setting 69
in different modules 77
simple 69
templates and 80
threads and 80

Index 191

TSR programs 156
types 69
window messages and 129,
133
Breakpoints window 37, 68-69
panes 68
bugs, finding 34
buttons 44 ,
byte list expressions 99

C

-c command-line option 162
C++ programs
See also object-oriented
programs
class instances, formatting 94
exceptions 152
multiple inheritance 149
stepping over 25
tracing into 25
call stack See stack
Caller command (CPU
window) 118
case sensitivity, overriding 164
casting See type conversion
central processing unit See CPU
window
CGA See video adapters
Change command
Breakpoints window 71
CPU window 121, 123, 125
Inspector windows 91
Object Inspector window 151
Variables window 87
Watch window 85
Change dialog box 87
Changed Memory Global
command (Breakpoints
menu) 73
character strings See strings
characters, nonprinting - 101
Class Inspector window 149-150
SpeedMenu 150
Classes radio button 78
classes See C++ programs; object-
oriented programs
Clipboard command (View
menu) 44
Clipboard window 40, 44
item types 44
saving 23
SpeedMenu 45
watching expressions 45
Close command (Window
menu) 40

Close Log File command (Log
window) 82
code See source code; startup
code
Comm Port radio buttons 169
command-line options 19, 161
See also specific switch
changing 26
disabling 161
help with 163
integrated environment
and 20
remote debugging 173
setting 26
TDREMOTE 174
utilities 14
WREMOTE 170
commands
See also specific command
choosing 35
macros as 42
onscreen summary of 48
shortcuts See hot keys
compiler
directive (-v) 18
optimizations 108
compiling 17
integrated environment
and 18
optimizations 18
Condition Expression input
box 72
Condition radio buttons 71
conditional breakpoints See
breakpoints
Conditions and Actions dialog
box 71
Conditions and Actions list
box 71
configuration files 7-8
changing default name 12
directory paths 164
loading 162
overriding 8, 161
saving options to 12
searching for 8
control-key shortcuts See hot
keys
conversion See type conversion
coprocessor, numeric 39
See also Numeric Processor
window
copying and pasting 43
CPU window 39
addresses
navigating to 118
shifting display 116

192 Turbo Debugger User’s Guide

viewing invalid 116
cursor 117
display format 119, 121, 122,
124

expressions, searching on 119
flags 121, 127
See also Registers window
immediate operands 117
instruction pointer 117
navigating to 118
memory dump 122
See also Dump window
opening 116
panes 116
registers 120, 127
32-bit display 121
See also Registers window
I/0 120
modifying 121
SpeedMenu 118-120
title bar display 117
Create command (Macros) 42
Ctrl+Alt+F11 (Windows 32s
interrupt key) 27
Ctrl+Alt+SysRq (Windows 3.x
interrupt key) 27
Ctrl-key shortcuts See hot keys
current activity, help with 48
cursor
CPU window 117
Module window 107
running programs to 24
customer service 6

D

-d command-line options 162
data
See also Dump pane
examining raw bytes 88
inspecting 88, 126
See also Inspector windows
modifying 91, 123
monitoring 72
types See type conversion
viewing raw bytes 39
watching See Watches
window
data objects See object-oriented
programs
Debug Startup radio buttons 138
debugger boards 74
Debugger See Turbo Debugger
debugging
assembly code 14
assembly-level 115
defined 33

device drivers 158-159
DLLs See DLLs
dual-monitors 9, 162
execution control 24
features 1
functions 100
information 17
adding to files 18
adding to modules 18, 22
interactive programs and 27
memory use and 46
methodology 33-35
muiti-language programs 14
multitasking and 27
multithread programs 139
object-oriented programs See
object-oriented programs
ObjectWindows programs 12
program termination 30
recursive functions 87, 93
remote See remote debugging
reproducing the bug 34
steps 17-18, 33"
terminology 2
testing fixes 34, 75, 120
tools 35
TSR programs 155-157
tutorial 51-66
Windows programs 129
decimal numbers 11
Decrement command (CPU
window) 121
default settings
overriding 8
See also TDWINST.EXE file
restoring 12
Delete All command
Breakpoints window 79
Macros menu 43
Watch window 85
Windows Message
window 134
Derived Classes check box 153
Descend command
Inspector windows 92
Object Inspector window 152
device drivers 158
debugging 158-159
dialog boxes
See also specific dialog box
responding to 177
status line help 49
directories
changing 21, 164
searching 164
WREMOTE and 170

Disable Clock Interrupts check
box 169
Disabled check box 79
disk drives, changing 21
display
See also screens
adapters See video adapters
CPU window 119, 122, 124
32-bit registers 121
expression formats 100
file formats 113
integer formats 11
modes, setting 10
starting addresses,
shifting 116
Display As command
CPU window 124
File window 113
Display Options command
(Options menu) 10
Display Options dialog box 10
Display Swapping radio
buttons 10
Display Windows Info
command (Log window) 82,
143
displays 162
DLL Name input box 137
DLLs
checking at program load 165
debugging 26, 135
startup code 138
loading 135, 136
problems with 178
returning from 135
running programs with
reverse execution and 29
scope 105
startup code types 138
stepping into 135
stepping over 137
DLLs & Programs list box 136
documentation 5
overview 4
printing conventions 3
DOS
interrupt handlers and TSR
programs 155
DOS version, viewing 46
drives, changing 21
DUALB8514.DLL 13
dual-monitor debugging 9, 162
Dump Pane to Log command
(Log window) 81
Dump window 39, 126-127
dynamic link libraries See DLLs

E

Edit Breakpoint Groups dialog
box 77
Edit command
File window 113
Module window 111
Watch window 85
Edit Watch Expression dialog
box 85
EGA, line display 11
EMS, usage 46
Enter Address to Position To
dialog box 111, 118, 123, 125
Enter Code Address to Execute
To dialog box 25
Enter Expression for Conditional
Breakpoint input box 73
Enter Expression to Watch dialog
box 84
Enter Instruction to Assemble
dialog box 120
Enter Memory Address Count
input box 73
Enter New Selector dialog
box 126
Enter New Value dialog box 85,
91,121
Enter New Value for Unsigned
Int dialog box 125
Enter Program Name to Load
dialog box 21
Enter Search String dialog
box 110, 112
Enter Source Directory Path
input box 11
Enter Variable to Inspect dialog
box 88
Erase Log command
Log window 82
Window Messages
window 134
error messages 177-187
fatal 177
memory 167
TDREMOTE 188
WREMOTE 189
Evaluate/Modify dialog box
93-95
events, running to 27
Examine command (CPU
window) 126
example program 15
Exception 13 (Windows) 187
Exception command (Module
window) 152

Index 193

~ exceptions
Cand C++ 152 ‘
operating-system 119, 142
sped.(%/ing 143
Exceptions list box 142
executable program files See files
Execute Startup Code check
box 21
Execute To command (Run
menu) 25
executing programs See
programs, running
execution history
See also reverse execution
deleting 28
recovering 30
Execution History window
28-30, 39
SpeedMenu 29
exit code, returned to
Windows 188
exiting Turbo Debugger 31
expression evaluators 97
selecting 97
Expression input box 94
Expression Language dialog
box 97
expression-true breakpoints 70
Expression True Global
command (Breakpoints
menu) 73
Expression True radio button 71
expressions 97-101
addresses 99
byte lists 99
current IP vs. current
scope 102
defined 97
evaluating 93-95, 102
format specifiers 100
functions and 100
hexadecimal 98
inspecting 88
See also Inspector windows
language evaluators 97
selecting 97
line numbers 99
repeat counts 101
scope and 102, 103
side effects 94, 100
types 98
watching 45, 83
See also Watches window

F

F12 (Windows NT interrupt
key) 27

fatal errors 177

features, new 2

' File command

File window 113
Module window 110
View menu 112
File window 39, 111-113
SpeedMenu 112-113
FILELIST.DOC 7
files
See also File command; File
window
configuration See
configuration files
display format 113
example program 15
executable and support 13
changing 136
header 110
include statements and 110
loading a new module 109
moving to specific line
number 110, 112
non-source 111
online 14
opening 20
response 11
searching through 110, 112
session-state 22, 163
source See source files
utility 13
viewing 39, 107, 110, 112
program address 111
flags, CPU 121, 127
floating-point numbers 39
displaying 101
Follow command (CPU
window) 118, 123, 125
format specifiers 100
Freeze check box 140
Full History command
(Execution History
window) 29 ‘
function keys See hot keys
Function Return command (Data
menu) 95
functions
calling 100
inspecting 91, 93
See also Inspector windows
names, finding 38
recursive 87,93
return values and 95

194 Turbo Debugger User’s Guide

returning from 25
stepping over 25
viewing in stack 38, 92

G

Get Info command (File
menu) 45
Get Info text box 45-46
gh2fp (typecast symbol) 146
global breakpoints 68, 73
See also breakpoints
Always action and 73
Global check box 73
global memory, listing 144
global menus 35
See also menus
global variables 86
See also variables
GlobalAlloc function 144
GlobalLock function 145
GlobalPageLock function 145
Go to Cursor command (Run
menu) 24
Goto command
CPU window 118, 123, 125
File window 112
Module window 111
graphics adapters See video
adapters
Group command (Breakpoints
window) 77
Group ID input box 78

H

-h command-line option 163
handle
casting to far pointer 146
window messages and 131
hardware
adapters See video adapters
breakpoints 74
primary and secondary
displays 162
requirements 2
Hardware Breakpoint Options
dialog box 74
header files, viewing 110
heap 145
viewing 144
Help 48-49
Index 48
help
command-line options 163
current activity 48
online 48

Help menu 48
hexadecimal numbers 11
displaying 101
notating 98
Hierarchy command
Class Inspector window 150
Object Inspector window 152
Hierarchy window 40, 147-149
panes 147
SpeedMenu 148, 149
highlight bar 36
history lists
See also execution history
saving 23
hot keys
Alt+- (Stop Recording) 43
Alt+= (Create Macros) 42
Alt+F2 (Breakpoints At) 70,
80

Alt+F4 (Back Trace) 26

Alt+F5 (User screen) 41

Alt+F6 (Undo Close) 37

Alt+F7 (Instruction trace) 24,
26

Alt+F9 (Execute To) 25

Alt+H (Help) 48

Alt+X (Exit) 31

Ctrl+F2 (Program Reset) 26,
30

problems with 64
Ctrl+N (Text Entry) 41
F2 (Toggle Breakpoint) 69
F4 (Go to Cursor) 24
F5 (Zoom) 36
F6 (Next Window) 36
F7 (Trace Into) 24
F8 (Step Over) 25
F8 (Until Return) 25
F9 (Run) 24
help with 49
macros as 42
Shift-F3 (Clip) 43
Shift-F4 (Paste) 43
SpeedMenus 49
Tab/Shift-Tab (Next Pane) 36

1/0 command (CPU
window) 120

icon conventions
(documentation) 3

immediate operands and CPU
window 117

include files 110

Increment command (CPU
window) 121

incremental matching 42
Index command (Help
window) 48
indicators See activity indicators
input boxes
See also dialog boxes
entering text 41
Inspect command
Breakpoints window 79
Class Inspector window 150
Execution History
window 29, 30
Hierarchy window 148, 149,
150
Inspector windows 91
Module window 109
Object Inspector window 152
Stack window 93
Threads window 141
Variables window 86
Watch window 85
Inspector windows 40, 87-92
arrays 89, 90
character values in 89
class See Class Inspector
window
closing 40, 92
compound data objects
and 88, 92
entering expressions 88
functions 86, 91
global symbols and 86
member functions 149
object See Object Inspector
window
opening 88
panes 90
pointers 89
scalars 88
selecting expressions 88
SpeedMenus 91-92
structures 90
types 87
unions 90
viewing memory contents 88
INSTALL.EXE 7
installation 7
instruction pointer 117
changing 120
location 108
navigating to 110, 118
Instruction Trace command (Run
menu) 26
execution history and 28
instructions See machine
instructions
instrumentation (defined) 75

Integer Format radio buttons 11
integers
See also numbers
displaying 101
formatting 11
interrupts
machine instructions 118
program execution 27
reversing 28
tracing into 26
TSR programs and 156

J

-j command-line options 163
jump instructions 118

K

-k command-line option 163
keys See hot keys
keystroke recording 29, 163
Keystroke Restore command 30
keystrokes

replaying 29

restoring from macro 43

L

-1 command-line option 163
labels, running to 25
Language command (Options
menu) 10, 97
language evaluator
default 97
selecting 97
language syntax 98
In2fp (typecast symbol) 146
LibMain function 139
Line command (Module
window) 110
line numbers
CPU window and 117
expressions and 99
moving to specific 110, 112
resetting and 26
Link Speed radio buttons 171
list boxes
See also dialog boxes
incremental matching in 42
lists, choosing items 42
Load a New Program to Debug
dialog box 20
Load button 136
Load Module Source or DLL
Symbols dialog box 109, 136
Load Symbols radio buttons 137

Index 195

LoadLibrary function 137
Local Display dialog box 87
local memory, listing 145
Local radio button 171
local variables See variables
LocalAlloc function 145
Locals command (Stack
window) 93
LockData function 145
Log window 38, 81-82
adding comments 81
logging window
messages 134
SpeedMenu 81-82
writing to disk 82
Logging command (Log
window) 82

machine instructions
See also CPU window
back tracing into 29
inspecting 29
See also Inspector windows
interrupts 118
multiple treated as single 24
recording 29
replacing 120
stepping over 25
tracing into 24, 26
transferring control 118
viewing history 28
watching 39
macros 42
creating 42
removing 43
restoring keystrokes 43
saving 12
Macros command (Options
menu) 42
Macros menu 4243
MAKEEFILE 15
manual i
overview 4
printing conventions 3
using 5
math coprocessor 39
See also Numeric Processor
window
member functions See object-
oriented programs
memory
allocation 46
changing values 73
dump 122, 126
error messages 167

expression format 101
global handles 144
global heap 144
local heap 145
modifying 124
monitoring 72
usage 46
viewing 39
menu bar 35
menus
activating 35
global 35
Help 48
local See SpeedMenus
Macros 42-43
Options 9-12
Run 24-27
program termination
and 30
System (=) 36
View 37-40
Window 36
message breakpoints
defined 129
setting 133
Message Class radio buttons 132
message classes 133
monitoring 132
removing window message
actions 134
message log 38
See also Windows Messages
window
messages
See also Windows Messages
window
error. 177-187
Exception 13 187
status 187-188
Methods command (Object
Inspector window) 151
Microsoft Windows See
Windows
Mixed command (CPU
window) 117, 119
Module/Class list box 78
Module command (Module
window) 109 : «
Module window 38, 107-111
incorrect source listing 108
opening 108
SpeedMenu 109-111
modules
See also Module window
adding debug
information 18,22
changing 136

196 Turbo Debugger User’s Guide

compiling 17

defined 3

listing 145

loading 108, 109

scope override and 103

setting breakpoints 77

tracing into 26

viewing 38
Modules radio button 78
monitors See hardware; screens
mouse, disabling/enabling 163
multi-language programs 14
multiple inheritance 149
multitasking and debugging 27
multithread programs,

debugging 139
See also threads

name completion (symbols),
automatic 41
NETBIOS, remote debugging
and 168
Network Remote Name input
box 169
New CS:IP command (CPU
window) 120
New EIP command (CPU
window) 120
New Expression command
Inspector windows 92
Object Inspector window 152
Next command
See also Search command
CPU window 123
File window 113
Module window 110
Next Pane command (Window
menu) 36
Next Pending Status command
(TD32’s Run menu) 27
Next Window command
(Window menu) 36
nonprinting characters,
displaying 101
Notify on Termination check
box 140 :
null-modem cable, remote
debugging and 168
null-terminated character
string 89
numbers
decimal 11
displaying 101
floating-point 39, 101

formatting 11

hexadecimal 11, 98, 101
numeric coprocessor 39
numeric exit code 188
Numeric Processor window 39

0

Object Inspector window 150
panes 151
SpeedMenu 151
object-oriented programs 147
ancestor classes 151
constructors and
destructors 94, 179
derived classes 149
evaluating member
functions 94
formatting objects 94
inspecting
classes 149
data members 149
member functions 149
nested classes 150
Object Inspector window 150
scope override 103, 105
this pointer 84
viewing member
functions 93
ObjectWindows 1.0x,
debugging 12
online files 14
online help See help
OOP See object-oriented
programs :
Open command (File menu) 20
Open Log File command (Log
window) 82
operands (CPU window) 117
operating-system
exceptions 119, 142
handling 142
specifying user-defined 143
operators, assignment and
expressions 100
optimizations, compiler 18, 108
options
See also Options menu
command-line See command-
line options
restoring defaults 12
saving 12
Options menu 9-12
Origin command
CPU window 118, 125
Module window 110

OS Exceptions command (CPU
window) 119

OS shell command (TD32’s File
menu) 47

output, verifying 41

P

-p command-line option 163
parameters 3
See also arguments
Parents command (Hierarchy
window) 149
parsing differences 14
Pass Count input box 72
pass counts 68
setting 72
pasting and copying 43
Path for Source command
(Options menu) 11
paths, directory See directories
Pick a Source File dialog box 110
Pick a Thread dialog box 109,
119
Pick dialog box 43
pointers
displaying 101
inspecting 89
instruction See instruction
pointer
ports, writing and reading 120
Previous command
CPU window 118, 125
Help window 48
Module window 110
printing conventions
(documentation) 3
program files See files
program interrupt key 27
Program Reset and 28
TSR programs and 156
Program Reset command (Run
menu) 26, 30
problems with 64
program interrupt key
and 28
programs
ar ents 19
gég?nmand—]jne syntax
and 22
setting 26
C++ See C++ programs
compiling 17
integrated environment
and 18
controlling execution 23-24
debugging See debugging

example 15
finding instruction
pointer 110
information on 45
loading 20
without debug
information 22
low-level view 115
memory usage 38
modified since compiled 108
multi-language 14
multitasking 27
multithread 139
See also threads
object-oriented See object-
oriented programs
output screen 41
reloading 26
resetting 26, 30
problems with 64
program interrupt key
and 28
stack and 30
returning to Turbo
Debugger 24
reverse execution 26, 28-30
running 24-27, 179
controlling 23
to cursor 24
to an event 27
at full speed 24
interrupting 27, 28
to labels 25
reversing 26, 28-30
in slow motion 25
scope See scope
termination 30
why paused 46
Windows See Windows
prompts, responding to 177 *
protected mode selectors 125

Q

Quit command (File menu) 31
Quit When Host Quits check
box 169

-r command-line options 173
radio buttons See specific radio
button
Range command
Inspector windows 89, 91
Object Inspector window 151
read-only memory See ROM
READY indicator 42

Index 197

- RECORDING indicator 42
recursive functions 87, 93
registers :
See also CPU window;
Registers window
32-bit display 121
I/0 120
modifying 121
termination and 30
valid address
combinations 182
viewing 120, 127
Registers 32-bit command (CPU
window) 121
Registers window 39, 127
reloading programs 26
Relocate Table command 159
remote debugging
configuring 21
DOS applications 174
hardware and software
requirements 167
loading programs 172
local and remote systems 167
NETBIOS and 168
‘network compatibility 168
null-modem cable 168
remote Windows driver 168
system names 173
troubleshooting 175
REMOTE indicator 172
Remote Link Port radio
buttons 171
Remove command
Breakpoints window 79
Macros menu 43
Watch window 85
Windows Message
window 134
Repaint Desktop command
(System menu) 37
resetting programs 26, 30
program interrupt key 28
Resident command 156
response file 11
Restart Options dialog box 23
Restore at Restart check boxes 23
Restore Options command
(Options menu) 12
Restore Standard command
(System menu) 37
Result input box 94
return values 95
breakpoints and 75

Reverse Execute command
(Execution History
window) 29
reverse execution 26, 28-30
ROM, program execution
and 179
Run command (Run menu) 24
execution history and 28
Run menu 24-27
program termination and 30
running programs See programs,
running

S

-s command-line options 164
S PAINT.C 15
S PAINT.EXE 15
Save Optionis command (Options
menu) 12
Save To input box 12
scalars, inspecting 88
scope 101-105
breakpoint expressions 77
changing 102
DLLs and 105
inactive 179
overriding syntax 102
templates 103
watch expressions 84
Screen Lines radio buttons 11
screen shots 3
screens
See also display; hardware
display swapping 162
dual-monitor debugging 9,
162
lines per, setting 11
problems with writing 10
restoring layout 37
screen flipping 162
screen swapping 162
swapping 10
-sd command-line option 22
Search command
See also Next command
CPU window 118, 123
File window 112
Module window 110
secondary display See dual-
monitoring debugging
select by typing 42
selecting text 109

‘Selector command (CPU

window) 126
selectors 125

198 Turbo Debugger User’s Guide

Send to Log Window command
(Windows Messages
window) 134

Session button 21, 170

Session radio buttons 21, 171

session-state files 22, 163

Set Message Filter dialog
box 132

Set Options command
(Breakpoints window) 71

Set Session Parameters dialog
box 171

settings, default 8, 12

shortcuts See hot keys

Show command (Variables
window) 87

Show Inherited command

Class Inspector window 150
Object Inspector window 151

side effects, expressions 94, 100

simple breakpoints 69

single stepping 24

continuous 25
into interrupts 26
inreverse 26

Size/Move command (Window
menu) 36

source code

incorrect listing 108
inspecting 29, 79
See also Inspector windows
searching for 22
splicing with breakpoints 75
stepping over 25
stepping through See Step
Over command
tracing into 24
See also Trace Into
command
verifying position 41
viewing 107
program address 111
source files
See also files
adding debug information 18
loading 108
viewing 110

Source Modules list box 136

Specify C and C++ Exception
Handling dialog box 152

Specify Exception Handling
dialog box 142

SpeedMenus

accessing 37

Class Inspector window 150
Clipboard 45 '
command shortcuts 42

CPU window 118-120
Execution History
window 29
File window 112-113
Hierarchy window 148, 149
hot keys in 49
Inspector windows 91-92
Log window 81-82
Module window 109-111
Object Inspector window 151
Stack window 93
Threads window 140
Variabies window 86-87
Watches window 85
splicing code 75
stack
See also CPU window; Stack
window
current state 38
modifying 125
Stack window 38, 92-93
SpeedMenu 93
viewing local variables 87
starting directory, changing 164
Starting Directory input box 169
starting Turbo Debugger 18
assembler mode 163
command-line options See
command-line
startup code
debugging 163
DLLs 138
running 21
state, saving 22
static symbols and CPU
window 117
status line 48
status messages 187-188
STB.DLL 13
Step command (Threads
window) 141
Step Over command (Run
Menu)
execution history and 28
Step Over command (Run
menu) 25
Stop on Attach check box 47
Stop Recording command
(Macros) 43
strings
displaying 101
inspecting 89
null-terminated 89
searching for 110, 112
next occurrence 110, 113
structures :
inspecting 88, 89, 90, 92

modifying 179
SVGADLL 13

switches See command-line
options

Symbol Load button 137
Symbol Load command 157
symbol tables

creating 17

DLLsand 135

sorting 42
symbols 41

scope 101

searching for 101
syntax, supported 98
syntax errors 53
System Information text box 45
System menu (=) 36

T

-t command-line option 164
Tab Size input box 11
Table Relocate command 157
tabs, setting 11
TD.EXE 13
TD_ASM.TXT 14
TD_HDWBP.TXT 14, 74
TD_HELPLTXT 14
TD_RDME.TXT 14
TD_UTILS.TXT 14
TD32.EXE 13
TD32.ICO 13
TD32HELP.TDH 13
TD32INST.EXE 13
TD32INST.ICO 14
TDCONFIG.TD 8
overriding 8
TDCONFIG.TD2 8
TDCONFIG.TDW 8
TDDEBUG.386 13, 74
TDHELP.TDH 13
TDINST.EXE 13
TDK files 30
TDKBDW16.DLL 13
TDKBDW32.DLL 13
TDMEM 157
TDMEM.EXE 13
TDREMOTE.EXE 13
command-line options 174
error messages 188
TDRF.EXE 13,175
TDSTRIP 156
TDSTRIP.EXE 14
TDSTRP32.EXE 14
TDUMP.EXE 14

TDVIDW16.DLL 13
TDVIDW32.DLL 13
TDW.EXE 13
TDW.INI 8, 13
TDWDEMO.BUG 15
TDWDEMO.H 15
TDWDEMO.ICO 15
TDWDEMO.IDE 15
TDWDEMO.RC 15
TDWGUILDLL 13
TDWHELP.TDH 13
TDWINLEXE 9, i4
TDWINLHLP 14
TDWINST.EXE 14
TDWINTH.DLL 13
technical support 6
templates
breakpoint behavior 80
scope of 103
text :
searching 118
selecting 109
text files, viewing 112
text modes See display, modes
this pointer 84
Thread command
CPU window 119
Module window 109
Thread Name input box 140
Thread Options dialog box 140
threads
See also Threads window
active 139
breakpoints and 80
current 140
debugging 139
emperor has no 185
execution point 142
freezing 140, 141
naming 140
priority 142
suspended and runnable 141
terminating 140, 141
thawing 141
Threads input box 80
Threads window 139
panes 139
SpeedMenu 140
thread numbers 139
Toggle command (Breakpoints
window) 69
TR files 23
.TR2files 23
Trace Into command (Run
menu) 24
execution history and 28

Index 199

tracing See Tracing Into
command
Tree command (Hierarchy
window) 148
TRW files 23
TSR programs
debugging 155-157
defined 155
resident portion 156
Turbo Debugger
command-line syntax 19
configuring 7-12
defined 1
icon settings 19
new features 2
running 20
as resident 156
starting 18
utilities 13
windows overview 37-41
tutorial 51-66
Type Cast command
Inspector windows 92
Object Inspector window 152
type conversion
memory handle to far
pointer 146
typographic conventions 3

U

Undo Close command (Window
menu) 37
unions, inspecting 90
Until Return command (Run
menu) 25
Use Restart Info radio buttons 23
User Screen 10
User Screen command (Window
menu) 41
remote debugging 172
User Screen Delay input box 11
utilities 13
command-line options 13

vV

-v command-line options 164
-v compiler directive 18
variables
See also Variables window
adding watches 87
DLLsand 105
evaluating and modifying 87,
93-95
global 86
local vs. 86

modifying 87
in recursive routines 87

inspecting 86
See also Inspector windows
logging (breakpoints) 75
program termination and 30
scope override 103
viewing 86
in stack 38
watching 38, 83
See also Watches window
Variables command 86
Variables window 38, 86-87
modifying local display 87
panes 86
SpeedMenu 86-87
video adapters 2,9
EGA and VGA 11
View menu 37-40
View Source command (CPU
window) 119

w

-w command-line options 164,
165
Wait for Child command (TD32’s
Run menu) 23, 27
Watch command
Module window 109
Variables window 87
Watch window 85
watches
creating 84
expressions
editing 85
scope 84
inspecting compound 85
freezing in Clipboard 45
global vs. local variables 87
modifying 85
reloading programs 31
saving 23
this pointer and 84
Watches window 38, 83-85
opening 84
SpeedMenu 85
watchpoints 72
See also breakpoints
wildcards, searching with 110,
113
Window menu 36
window messages
debugging tips 134
handles and 131

logging 134
toafile 134

200 Turbo Debugger User’s Guide

monitoring 129, 130
classes 132
processing 131
removing selected 131
setting breakpoints 133
tracking single 133, 134
window panes
See also windows
highlight bar 36
movirg between 36
Next F'ane command 36
Window Pick command
(Window menu) 36
Windows
crash checking, system 164
debugging programs 129
tips 27
Display Windows Info
command 143
executing Windows code 28
messages 129
Exception 13 187
numeric exit code 188
returning to 31
shortcut keys 20
switching applications 20
windows 3741
Breakpoints 37, 68-69
Class Inspector 149-150
Clipboard 40, 44
CPU 39
Dump 39, 126-127
duplicating 40
Execution History 28-30, 39
File 39, 111-113
Hierarchy 40, 147-149
Inspector 40, 87-92
layout, saving 12
Log 38, 81-82
managing 36
messages See window
messages
Module 38, 107-111
moving/resizing 36
Next Window command 36
numbering system 36
Numeric Processor 39
panes See window panes
recovering last closed 37
Registers 39
saving contents of 81
specifying 131
Stack 38, 92-93
status line 48
user screen 41
Variables 38, 86-87
Watches 38, 83-85
Windows Messages 40

Windows 32s, support files 13
Windows Information dialog
box 143
Windows Messages
window 40, 129
See also window messages

WREMOTE.EXE 13
command-line options 170
configuring 168
error messages 189

WRSETUP.EXE 14

Z

Zero command (CPU

window) 121

Zoom command (Window

menu) 36

Index

201

202 Turbo Debugger User’s Guide

Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Brazil,
Canada, Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, Singapore, Spain,
Sweden, Taiwan, and United Kingdom ¢ Part # BCP1245WW21778 « BOR 7776

S

* 5,

NDLY
©
&

Hiuv3®

ARND- ¢

&

)
"onzis

