
r.n 
~ 
LLl 

~ 
~ 
V') 

6 
LLl 
~ 

~ 

~ 
ii.. 
0 
z 
0 ...... 
r.n 
~ a 
t/) 

~ 

~ 
~ 
v:i 

~ 
t 
0 
r.t.. 
0 
>-r.n 
LLl 

~ 
:::::> 
0 
u 
LLl 
Q., 

0 u 
ti) 

0 
0::: 
u 
~ 

COVER SUITE: 
DIAGNOSING 

PROBLEM CODE 

• 

Borland has added the m'issing ingredient to its product 
line with Turbo Debugger. It challenges Microsoft CodeView's 

preeminence among high-level language debuggers. 

BEN MYERS 

.!t..eneration of PC software <level- With more complex applications, is downwardly compatible with the 
opers cut their teeth on the ven- developers demand more sophisticated older command-line oriented debug-
erable DOS DEBUG. Initially, it tool . Symbolic debuggers improve on gers, DEBUG and SYMDEB . (For a re-

was the only debugging tool around, assembly-level debuggers by using view of CodeView, see "Multilevel De-
but the market soon exploded. linker .MAP files or symbolic informa- bugger,'' Mark S. Ackerman, March 

Today, a wide array of debuggers tion embedded in the object-code file 1987, p. 90.) 
is available. The most significant recent to relate assembly-level addresses to Rounding out the list are the hard-
development in the market is Borland's variables or functions. Disassembled ware-assisted debuggers and the ICEs. 
Turbo Debugger, which could attract code shows variable and function These products are the most sophisti-
users of not only Borland's languages, names, rather than hexadecimal oper- cared and expensive PC debuggers. 
but also Microsoft's languages. ands. Microsoft's SYMDEB, introduced Hardware-assisted debuggers typi-· 

Since the early days of DEBUG, in 1985, is a symbolic debugger. cally control and monitor the debug-
the debugger market has evolved into High-level language debuggers go ging process with an expansion board 
five broad, nonexclusive classes: as- one step further than symbolic debug- installed on the bus. They are more 
sembly-language, symbolic, high-level ger by simultaneously displaying flexible than their software counter-
language (into which Turbo Debugger source and assembly code so that the parts because their hardware break-
falls), hardware-assisted, and in-circuit logical relationship between them is points do not affect the speed of a pro-
emulator (ICE) debuggers. readily apparent. The machine code is gram· furthermore, they can run pro-

Assembly-language debuggers, of disassembled in clear relation to vari- grams in protected memory, which can 
which DEBUG is the most famous and ables and functions, and developers prevent the need to reboot when a 
widely used example, work solely with can debug individual high-level Ian- piece of code hangs the system. More-
machine code. Software developers guage statements. . over, the software developer can usu-
writing in high-level languages cannot Microsoft s CodeView, introduced ally break out of a feisty program with 
easily correlate source code with com- in late 1986, is the most popular high- a break button. ICEs have the same fea-
piled assembly code. They must resort level language debugger-and the one tures as hardware-assisted debuggers 
to tricks such as including program with which Turbo Debugger will com- but are more expensive because they 
statements to write out values of critical pete most directly. Though primarily consist of outboard hardware that re-
variables during program execution. menu and window oriented, CodeView places the PC's processor. 

46 PC TECH JOURNAL 

0:: 
LLl 
:3 
~ 
LLl 
u 
:::> 
0:: 
~ 
• 
~ 
~ 
0 
0 
E-
0 
:r: 
Q., 



TURBO DEBUGGER 
The second article of this month's 

cover suite ("Hardware Assistance," 
Marty Franz, p. 58) examines hardware 
debuggers and looks at two in detail: 
Atron's 386 Source Probe and The Peri­
scope Company's Periscope III. 

TURBO ERGONOMICS 
In August 1988, Borland International 
announced its high-level language de­
bugging environment, Turbo Debugger 
1.0, which began shipping in late Sep­
tember. Borland simultaneously intro­
duced Turbo Pascal 5.0, Turbo C 2.0, 
and a package containing both Turbo 
Assembler and Turbo Debugger. In 
addition to other new features, both 
Pascal and C now have an integrated 
source-level debugger. Borland also of­
fers two packages-Turbo Pascal Pro-

HELP FROM THE HARDWARE 
All 8Qx86 processors have two fea­
tures that help developers implement 
debuggers: the breakpoint instruction 
and single-step execution. The break­
point instruction, INT 3, has a one­
byte operand code (OCCH), not the 
two-byte form used by other interrupt 
instructions. Because an INT 3 is one 
byte long, it can replace the first byte 
of an instruction without corrupting 
subsequent ones (see Tech Notebook, 
this issue, p. 121). 

When a program executes INT 3, 
the CPU transfers control to the 
breakpoint interrupt vector at low­
memory location OCH; the debugger 
will have previously set this vector to 
a debugger entry point. The CPU 
saves the code segment (CS) and the 
instruction pointer (IP) flag registers 
on the stack, with the IP pointing just 
past the INT 3 instruction. 

To set an unconditional break­
point, the debugger saves the break­
point address and the byte of code at 
that address, then inserts an INT 3 
there. \Vhen an INT 3 occurs, the 
debugger takes control and puts back 
the first byte of the instruction. Then, 
the user can issue commands to in­
spect or change program variables. 

To resume execution at break­
point, the debugger subtracts a value 
of one from the IP on the stack and 
does an IRET to execute the original 
instruction. The program runs under 
its own control until the next break­
point occurs. Because the debugger 
executes only when a breakpoint is 
reached, the mechanism for uncondi­
tional breakpoints does not degrade 
program execution time significantly. 

48 

fessional and Turbo C Professional­
that bundle Turbo Assembler and 
Turbo Debugger with Turbo Pascal 5.0 
and Turbo C 2.0, respectively. 

Borland paid considerable atten­
tion to human factors when it designed 
Turbo Debugger's interface. The pack­
age is entirely menu driven-from the 
installation and customization programs 
to the debugger itself. By contrast, 
CodeView is a more cumbersome hy­
brid that uses both commands and 
pull-down menus. 

. Turbo Debugger has more than 
200 hot keys and main- and local-menu 
commands. Despite this intimidating 
number, developers can easily navigate 
the program through the windows in­
terface and its pop-up data-entry and 
selection boxes. 

The second feature that aids trac­
ing on Intel processors is single-step 
execution. The debugger enables this 
feature by setting the trap flag (TF) in 
the flags register. Whenever the TF is 
set, the processor transfers control to 
the address in the INT 1 vector (at 
location 4 in low memory) after exe­
cuting each instruction. Single-step 
execution is slower than normal exe­
cution, often by a factor of 100. 

Implementing conditional break­
points using only these two features 
is laborious. If the user wants to 
break program execution based on 
the change of a variable in memory, 
the debugger must execute the ·pro­
gram entirely in single-step mode. 
With each single-step interrupt, the 
program checks the variable being 
monitored for a change, and, if no 
change has occurred, executes the 
next instruction. 

For conditional breakpoints set at 
source level, a well-designed debug­
ger can run somewhat faster by in­
serting breakpoints at the first assem­
bly instruction generated for each 
line of source code. A breakpoint­
handling procedure tests the variable 
and continues program execution if 
no change is found. Conditional 
breakpoints based on the value of the 
expression are handled in much the 
same way. When a debugging inter­
rupt occurs, the debugger evaluates 
the parsed expression to see if it is 
true and acts accordingly. 

Additional debugging help comes 
from the 386 processor's ability to set 
four hardware-monitored breakpoint 
addresses. Debugging software can set 

The main screen has a menu bar 
across the top to access primary func­
tions, such as working with files, setting 
breakpoints, and running programs. 
The bottom line displays context-sensi­
tive, function-key actions that vary for 
each window. When the user presses 
the Alt key, the bottom line shows ad­
ditional options available using Alt with 
various key combinations. Pressing the 
Ctrl key shows the local commands, 
initiated by Ctrl combined with letter 
keys. Borland calls these commands 
local because they initiate actions in 
the current window. 

Borland extends the window meta­
phor further with panes, which are log­
ical subdivisions within a window. The 
tab key allows movement from pane 
to pane within any window. Progress 

a breakpoint for instruction execu­
tion, data writes, or data reads and 
writes; data breakpoints can be one, 
two, or four bytes wide. 

Unlike the INT 3 instruction, 386 
breakpoints do not modify the code 
to set an instruction breakpoint, and 
they can be set on data accesses. 
Breakpoint interrupts for this feature 
occur on the INT 1 vector; the 
single-step interrupt is still supported 
by the 386 on this vector, so the CPU 
provides a status register to give the 
reason for the interrupt. 

Although the 386 debug registers 
are a welcome addition to the tools 
for a debugger, they still leave a great 
deal of work for the debugger de­
signer. This is especially true in 
multitasking environments such as 
Unix and OS/2. For example, the 
debug registers are not stored in the 
task-state segment; therefore, the soft­
ware must explicitly save and restore 
them when more than one task is 
being debugged. 

A major element in the design of 
a 386 debugger is how to make best 
use of the four sets of debug regis­
ters. Watching data entirely with soft­
ware is many times slower than with 
the 386 debug registers. Thus, the 
design of a 386 debugger favors 
watching data through the debug reg­
isters whenever possible. If the de­
bugger allows more than four concur­
rent breakpoints, a combination of 
INT 3 and single-step interrupt hand­
lers must suffice for the excess that 
cannot be accommodated by the 386 
debug registers. 

-Ben Myers 

PC TECH JOURNAL 



through window already opened is 
even faster using history lists, which 
tore the la t sequence of choices 

n1ade in the current ession. As a short 
cut, pressing the Alt key and the win­
dow number selects an open window. 

DEBUGGING ENVIRONMENTS 
Unlike CodeView, Turbo Debugger has 
built-in support for a variety of hard­
ware. It supports four different debug­
ging environments: 8086 mode, 386 vir­
tual mode remote, and hardware­
assisted debugging. In all rnodes, the 
Turbo Debugger user can step through 
tatement execution, with or without 

dropping down into function call , at 
oth ource-code and assembly levels. 

To u the virtual-memory fea­
tures when debugging on a 386, the 
user must in tall the TDH386.SYS 
driver in CONFIG.SYS and then run the 
386 virtual debugger, TD386. TD386 
runs entirely in extended memory, al­
lowing the progran1 being debugged 
(target prooram) to load and run at the 
virtual memory addre it would use in 
actual conditions. The 386 device 
driver permits the developer to set 
hardware breakpoints for in truction 
fetche , memory reads, and read/write 
memory accesses at specified addresses 
( ee the sidebar at left, "Help from the 
Hardware''). 

The target program can use 80286 
and most 386 in ·tructions, except for 
those that operate in protected mode. 
A toggle changes the di play between 
the 32-bit 386 extended registers or 
16-bit registers. 

The virtual-8086 mode and mem­
ory management make the system prac­
tically immune to crashes, even if the 
target program destroy memory con­
tents within its own addres space. 
These ame features, however, slow the 
program down and cau e timing prob­
len1s for some applications. 

When a 386-based PC i not avail­
able or memory i at a premium, 
Turbo Debugger' remote debugging 
interface program, TDREMOTE, is a 
u eful alternative. Turbo Debugger runs 
on the first machine, and TDREMOTE 
and the target program run on the sec­
ond, effectively insulating the debugger 
from cr~he . TDREMOTE requires only 
lSKB of memory, permitting the devel­
oper to debug large program (see 
table 1 for a comparison of Turbo De­
bugger and CodeView target-program 
izes). etting up to debug a program 

in a remote PC is a relatively simple 
proce . IDREMOTE and Turbo Debug­
ger communicate through serial ports 
interconnected by a null modem cable. 

. JANUARY 1989 

TABLE 1: Turbo Debugger and Code View Comparison 

BORLAND MICROSOFf 

PRODUCT Turbo Debugger Code View 
VERSION 1.0 2.2 
DEBUGGING PROGRAMS 
Compiled with /Zi (TDCONVRT) • • 
With MAP files (TDMAP) • 0 

Supports other languages with .MAP files • 0 

OS/2 0 ea 
Microsoft Windows 0 • 
Turbo C 2.0 and Turbo Pascal 5.0 • 0 

OTHER DEBUGGING FEATURES 
Views 32-bit 80386 registers • • 
Uses 80386 hardware debugger features • 0 

Documented hardware debugger support • oh 

Has remote debugging • 0 

Uses command macros or files Macrosc Files 
Logs output • .d 
Views data structures in source format • 0 

Integrates use of mouse for commands 0 • 
Uses expanded memory • • 
Reports own and target's EMS usage • 0 

Searches for instructions in assembly code • 0 

MAXIMUM SIZE OF PROGRAM AND DOS (KB) 
8088, 8086, or 80286 411 410 
80386 640 410 
Remote PC 625 NIA 

• = Yes o = No NIA = Not applicable 

a CodeView for Windows applicaJions is available with Windows 2.1 Software Developnumt Kit. 
b The Code View file f onnat is available to developers who enter into a contractua,l agreement 

with Microsoft. 
c Command macros cannot be saved between debugging sessions. 
d Screen output is redirected to a file and is not visible to the user. 

Turbo Debugger offers users of Borland languages the functionality of Microsoft's 
CodeView, with many added features including Borland's use of the 386's 
memory-management and debugging features and innovative remote debugging. 

TDRF, a program running the ma­
chine used for the debugger, supports 
file transfer between Turbo Debugger 
and the target PC. ID RF transfers data 
at 9,600, 40,000, or 115,000 bits per 
second (bps) and permits normal DOS 
functions such as file deletion and re­
naming, directory creation, deletion, 
and listing on the remote computer. 

Borland provides documentation 
for writing device drivers for interfac­
ing Turbo Debugger to hardware de­
buggers so that memot)'- and VO­
access breakpoints produced by the 
board are handled by Turbo Debugger. 
No vendors are yet shipping a compati­
ble hardware driver, although several, 
including Atron and Periscope, are con­
sidering such a product. Borland says 
the interface eventually will support in­
struction trace-back and extra onboard 
memory for a sy1nbol table. 

If vendors of hardware debuggers 
provide their own drivers to meet the 
Borland debugger driver specification, 

the promise of well-integrated hard­
ware and software debugging will be 
realized. Several hardware debugger 
manufacturers support CodeView for­
mat files under license agreements 
with Microsoft. 

Turbo Debugger can use EMS 3.2 
or 4.0 to store its symbol tables, and it 
keeps track of expanded memory used 
by the program being debugged. Ex­
panded memory is used for symbol 
tables only; no executable code is 
loaded in EMS. On 386-based PCs, 
Turbo Debugger runs the target pro­
gram in lMB of virtual 8086 space 
(640KB of program space) and uses the 
386 memory-protection hardware to 
keep the target program from contami­
nating the rest of the environment. 
Through 386 microprocessor capabili­
ties, Borland has given the developer 
much of the functionality of a hardware­
assisted debugger. CodeView users can 
get 386 functionality with MagicCV, an 
add-in product from Nu-Mega. 

49 



TIJRBO DEBUGGER 
While Turbo Debugger supports 

Borland's language compilers and as­
sembler, developer also can debug 
programs written in Microsoft lan­
guage at the ource level, using the 
TDCONVRT facility included with the 
debugger. The program converts Micro­
soft .EXE files compiled for CodeView 
into the Borland .EXE format. 

Turbo Debugger works with most 
compilers and linker that produce de­
tailed .MAP files by using the included 
IDMAP utility to append Turbo Debug­
ger information to the .EXE file. Turbo 
Debugger, however, operates only 
under DO , not OS/2, and cannot 
debug programs compiled for the 
Micro oft Windows environment. 
Microsoft, on the other hand, has 
added OS/2-specific feature to Code­
View (see the sidebar, "CodeView 
Under OS/2: Nice Thread ). 

GETI1NG UNDERWAY 
Installation of the three Turbo Debug­
ger diskettes takes only a few minutes 
with the menu-driven IN TAU pro-

gram, which automatically unpacks 
compressed files. The TDINST program 
controls several customization parame­
ters; the user can change many while 
Turbo Debugger is running. 

Customization options include 
choosing window colors; specifying 
editor, source, and debugger direc­
tories; enabling remote debugging and 
use of EMS; selecting the language syn­
tax used for expression evaluation; and 
selecting how display video pages are 
managed between the debugger and 
the user screen. 

TD INST has several options for 
handling screen swapping between the 
debugger and the executing program's 
(user) display screen image. If the sys­
tem has multiple display pages, as in 
the CGA, EGA, or VGA, the Turbo De­
bugger screen will be maintained on a 
separate display page. The user can 
also swap screens in software-a 
slower, but less di ruptive method. 

A second monitor can display 
Turbo Debugger while the first displays 
the user screen. TDINST permits the 

CODEVIEW UNDER OS/2: NICE THREADS 
While Borland was busy creating 
Turbo Debugger, Microsoft was work­
ing to add 0 /2-specific features to its 
existing CodeView debugger. In most 
respects, CodeView is unchanged 
since we last reviewed it (see "Multi­
level Debugger,' Mark Ackerman, 
March 1987, p. 90). However Micro­
soft C 5 .1 includes a major enhance­
ment to CodeView that facilitates 
OS/2 debugging-support for multi­
threaded applications. 

The OS/2 environment refines 
multitasking within a proces to a 
thread level, 0 12' fundamental unit 
of scheduling. Unlike an individual 
process that has its own data pace, 
an 0 12 thread shares the process 
environment of its parent. Starting a 
program under OS/2 actually invokes 
an instance of the program as thread 
1. Thereafter, thread 1 can start other 
threads (for example, threads 2, 3, 
and so on). 

The behavior of CodeView's stan­
dard commands is affected by these 
threads. For example, a breakpoint 
that is set with the BP command will 
stop when any thread reaches the 
breakpoint. Other commands, such as 
Trace, Step, and Execute, apply to the 
current thread, but also allow other 
threads to run concurrently. Thus, an 
Execute command will run the cur­
rent thread in low motion, but OS/2 

. JANUARY 1989 

can schedule other threads that could 
preempt that thread. Similarly, a Trace 
command will execute a single in:­
struction in the current thread, but 
0 12 may also run many instructions 
in other threads before it returns to 
Code View. 

To reflect the multiple-thread na­
ture of OS/2, CodeView uses a com­
mand prompt that displays the num­
ber of the current thread, which is the 
thread currently selected for debug­
ging (for example, 001> ). Because 
every thread has its own stack and 
register set, the display changes to 
reflect new values any time the current 
thread i changed. Note that CodeView 
controls and monitors just the threads 
in the program being debugged; 
OS/2 schedules other threads in the 
system in the normal way. 

For detecting elusive bugs in 
multithreaded programs, developers 
need precise control over threads. 
Help comes in the form of the thread 
command, -.J (the tilde character), to 
control execution of specific threads. 
The command has two fields. The 
first field specifies the thread to be 
operated upon: 

n thread number n; 

# the last thread executed; 
* all threads in the program; 

the current thread . 

user to update screens continuously, 
when a change occurs, or not at all. 

The commands TD or TD386 fol­
lowed by command-line options and 
the target program name starts Turbo 
Debugger. Commands follow either 
Unix style (preceded by a hyphen) or 
the DOS convention (preceded by a 
forward slash). An -h or -? displays 
all command-line options. 

Source-level debugging requires 
programs compiled or assembled with 
the following options. For Borland's 
Turbo languages, the /v command-line 
opUon or its menu equivalent instructs . 
the compiler to include debugging in­
formation in the .OBJ file. Microsoft 
languages that support CodeView re­
quire the /Zi option as if CodeView is 
the debugger. TDCONVRT then con­
verts the resulting .EXE files. For prop­
erly linked and compiled programs, 
Turbo Debugger presents a source­
code window, which displays the first 
executable lines of source code. Other­
wise, the package displays disassembled 
machine language. 

The thread command's second 
field is a subset of the CodeView 
commands: BreakPoint, Execute, Go, 
Program Step, and Trace. Three other 
commands are also recognized. The 
Select command changes the current 
thread to the one specified. The 
Freeze command disables threads so 
they will not run in the background. 
Freezing all but the current thread, 
for example, ensures that only the 
thread being debugged runs during a 
specific section of code. The Unfreeze 
command reverses the effect of the 
Freeze uncommand. 

The thread command is power­
ful, but painfully cryptic. For example, 

--2BP .53 

Show status of all threads 
Freeze all threads 
Unfreeze thread 3 
Run all unfrozen threads 
Make thread 2 current 
Set a breakpoint for thread 

2 at line 53 

CodeView has strong debugging 
abilities for OS/2, but they certainly 
look clumsy when compared with 
Borland's Turbo Debugger. If Micro­
soft intends for CodeView to reign 
supreme under OS/2, the company 
needs to send its debugger in for an 
overhaul before Borland hauls Turbo 
Debugger over to OS/2. 

-David Methvin 

51 



TIJRBO DEBUGGER 

PH OTO 1: 5'etting Breakpoints PHOTO 2: Viewing Variables 

·1 Sb: oee i. 

A few keystrokes can set a breakpoint run the program 
trace the execution at the breakpoint add another condi­
tional breakpoint, and review current statu in second . 

A listing of all the variables in the program ACCURACY.PAS 
is only two keystrokes away- Alt-V, V. The right pane 
shows global variables; the left pane shows local variables. 

Turbo Debugg r ha many opti n 
for running target program . One p -
sibility 1.i to xecut a single in tru -
tion, what B rland call the trace-into 
function. Thi election xecut on 
in truction at a tim includin call ·. 
When traced, a call is ex cuted and d1 
window displays th cod ithin th 
called function or procedure. Turbo 
Debugger also ha a step-a er functi n 
that execute the call and returns t 
the instruction foll wing the all, tr at­
ing the call as on logical in rructi n. 

Another alternative i animation 
hich run the pr gram in l m -

tion, highlighting each in tructi n a it 
execute . Animati n continu until th 
program encounter a breakp int, t r­
minate or i interrupted b the Ctrl­
Break keystroke combination. The u r 
can set the time interval between ani­
mated instruction 0.3 of a cond i 
the default). 

Manipulating breakpoint i an 
easy propo ition. The u r e break­
points with either a ingl ke tr k 
or from the breakpoint wind ( 
photo 1). While th breakpoint wind 
i active, the user can enable di abl 
remove, and add breakp in . To d t r­
mine where to set a breakpoint, th 
u er can e amine local and ol bal ri-
ables from the vi w-variable ind 
( ee photo 2 . 

Breakpoints can trigger h n th 
target program reaches a p cified line 
of source or assembly c de a varia 1 
has a tated value or an expr i n i 
true. In Turb Debugg r th term 
breakpoint encompasse the C de i w 
concep of breakpoint atchpoint 
and tracepoint. 

52 

An unconditional breakp int is 
p ific pl ce in the progran1 cod 

wh r x ution i to top. A condi­
tional br al point top pro r m x cu­
ti n nly h n a certain condition i 
tru uch wh n a variabl ha a 
ai n valu r th pr oram chang a 
valu in m mory. Turb Debugg r 

nditional-breakpoint xpr ion re 
tat d in th yntax of the s urce lan­

guag C Pascal, r as mbJ and can 
be c nditi ned n eith r an xpr ion 
bein rru r a chang in a riabl . 

A watchpoint evalu te a valu f 
an pre i n and top the pr gram 

hen the pre ion i true. A trac -
point check all pecifi d pr gran1 vari­
able or m mory-referencing expr -
ion for change after each instruction 
xecutes. 

The CPU window provide an all­
in-on machine-1 veJ vi w of the target 
program. It has s parate pan for dis­
a embJed in truction , regi t r , flags 
tack valu , and data. The u er can 

al r at multipl indow each di -
playing a parate cod or data ar a. 

The dump wind w di pl y data in 
mem ry, a refer need by th curr nt 
data- gm nt r i ter f the target pro­
gram. Th u er c n s arch£ rand 
chan a lue in n1em ry fr m th 
dump wind w. ta £ rma includ 
byt word long comp, float real, dou-
1 nd ct nd d. In byte £ rmat, ach 

byt i ace mpani d by its en char-
act r rep r ntati n. Tu rb Debu o er 
al di pl y data in any fl ating-p int 
form t upp rted by rland compiler 
in I uding Turb Pa cal real and any 

IEEE format upp rted by an Int l 
80 7 math copr ce. r. 

The developer elects a source­
cod module including the main mod­
ule and any ource files) for viewing 
and debugging throuoh th module 
window. From this indow, the devel­
oper can easily ee th a embly code 
that corre ponds to the source code by 
acce ing the CPU window. Thi feature 
is a distinct advantag over Cod View, 
wh r the user has t scroll thr ugh 
as 1nbly code to find the corre pond­
ing ource cod . 

Turbo Debugger list all. variable 
in a program that have global scope, 
including function or procedure nam 
in the 1 ft-hand pane of the variables 
window. The right-hand pane di play 
all variabl s local to the current func­
tion or procedure. The window dis­
play the current value of all variable 
in the format known by the source 
program. The value as ociated with a 
function name is a pointer, for exam­
pl , and the value of a Turbo Pascal 
string variable i ASCII text surr unded 
b ingl quot . 

The package di plays Turbo Pascal 
Bo lean and enumerated data types 
with their source-code values a well a 
th ir int ger equiva1 nts; the values of 
Bo lean variables ar either tru or 
fal . Because the debugger di plays 
data tru ture as aggregat of impl 
variable , the developer cannot change 
an ntire data tructure. Howev r, ele­
m nts of an array or data tructure can 
be modified individually. 

To e th tatu of and set and 
re et unc nditi nal r conditional 
br akpoints, the developer acce es the 
breakpoint window. The F2 key i a 
quick way to t ogle n unconditional 

PC TECHJOURNAL 



breakpoint anytime at a source- or as­
sembly-code line where the cursor is 
positioned. The u er can set condi­
tional breakpoints ba ed on either a 
change in a variable or an expre ion 
being true. Either 1nake the program 
run slowly becau e the debugger evalu­
ates the breakpoint condition after 
single-stepping through each instruc­
tion and should be used sparingly, gen­
erally after topping the program in a 
presumed problem area with an un­
conditional breakpoint. 

The Turbo Debugger mechanism 
u ed £ r managino breakpoint i im­
ple, is menu driven, and, unlike Code­
View, does not u e a command syntax 
for etting conditional breakpoints. The 
developer enters the expre ion that 
control a conditional breakpoint into a 
pop-up window in the yntax of the 
language selected from the debugger 
option pull-down menu. Conditional 
breakpoints based on change in vari­
ables al o are entered into a pop-up 
window. 

Turbo Debugger u ers can moni­
tor simple variable or data tructures 
in the watch window. The value of a 
watch variable is updated within the 
watch window while a progran1 runs 
under control of the debugger. If the 
target program i running on a y tern 
with an 80x87 math coproce or, the 
u er can inspect, clear, and alter as 
many a eight 80-bit floating-point tack 
registers and 19 flags through the math 
coprocessor window. 

The helpful u er-screen function 
permit the u er to see the actual 
screen the executing program would 
display at any given moment. Pres ing 
Alt-F5 toggles between the u er screen 
and the debugging creen. 

LEARN FROM EXPERIENCE 
Finding the bugs and examining the 
Turbo Pascal runtime library and DOS 
program are eas) task . For ource­
level debugging, the relation hip be­
tween ource and assembly code i 
readily apparent, particularly with the 
Turbo Debugoer option to view either 
one or both. Turbo Debugger was in­
stalled on a PC De igns 8-MHz Turbo 
AT with an Atronics EGA+ video con­
troller, a 16-MHz IBM P 12 Model 80, 
and a Compaq 386/20. The package 
performed well when u ed to debug 
program with several usual and some 
not- a-common problem . 
Uninitialized variables. A ource-code 
analyzer that executed correctly when 
co1npiled with Turbo Pa cal 3.01 pro­
duced unexpected result with Turbo 
Pascal 5.0. Within 10 minute , Turbo 

JANUARY 1989 

Debugger pinpointed an uninitialized 
variable that cau ed the problen1. An 
unconditional breakpoint wa set in a 
procedure where tbe problem wa su -
peered, and the code wa traced, 
watching the value of variables related 
to the ymptom. The .COM file format 
of Turbo Pascal 3.01 had initialized the 
variable to zero, masking the logic 
error in the progra1n. Without a debug­
ger, a developer would have to analyze 
the source-code structure, which is less 
likely to pinpoint the problem and can 
be difficult and time-consuming. 
Incorrect variable types. Julian date­
translation procedures converted from 
Turbo Pascal 3.01 real to 5.0 long inte­
gers failed when called by a production 

The Turbo Debugger mech­
anism for managing break­
points is simple1 menu 
driven) and does not use a 
command syntax. 

program, but worked when called by a 
test program. Turbo Debugger's two 
views of the variables revealed that the 
production progran1 called the func­
tions by passing integer variables rather 
than long-integer variables. 
Cooling hot spots. Turbo Debugger 
helped optimize the hot spot (a pro­
cessor-in ten ive area) of a statistical 
analysis package. To view the generated 
as embly code, the .EXE program was 
loaded under control of Turbo Debug­
ger; the source file for the procedure 
being optimized was selected. The cur­
sor was then moved to the ource lines 
being optimized, the CP window was 
accessed, and the code generated by 
the con1piler was inspected. As changes 
were made to optimize a major loop in 
the source code, the debugger dis­
played the corresponding assembly 
code. This compari on allowed exami­
nation of the clock cycles required for 
the generated code until a practical 
minimum wa reached. 

PC Tech journal's OPTZTEST.PAS 
program, designed to test common 
code optimization , was peeded up 
using Turbo Debugger t see what 
code Turbo Pascal generates ( ee photo 
3 ). OPTZTEST (available for download­
ing on PCTECHline) uses the standard 
Turbo Pascal Move procedure to move 
information in memory quickly. The 

code in the Move procedure within the 
runtimes linked into the application 
was viewed. The Move procedure al­
ways does slower 8-bit moves (REP 
MOVSB) rather than fast 16-bit moves 
(REP MOVSW) for all but the odd byte 
being moved. A faster procedure was 
substituted for Move, resulting in a 50-
percent reduction in processor time for 
moving data and a nominal increase in 
.EXE file size (see photo 4). 
Dissecting FORMAT. The statistical analy­
si software mentioned above can mon­
itor and count INT 13H disk BIOS calls; 
however, it failed to show disk activity 
for the DOS 3.3 FORMAT command 
when formatting a 3.5-inch diskette. 
Turbo Debugger verified that FORMAT 
does not use the INT 13H disk BIOS in 
this case. FORMAT was loaded under 
the control of Turbo Debugger, and 
unconditional breakpoints were set on 
INT 13H instructions. 

On a 5.25-inch diskette, one break­
point for each track was formatted with 
an INT 13H, AH = 05H (format track). 
When a 3.S-inch diskette was formatted, 
no INT 13H breakpoints were encoun­
tered. Turbo Debugger's Search func­
tion found the INT 13H instructions 
quickly; this could not be done with 
CodeView, because it cannot search for 
as embly-level instructions. 

The argument mu t be exact 
when the Turbo Debugger search func­
tion is used to find code in memory. 
A useful addition to Turbo Debugger 
would be the ability to search for oc­
currences of a symbolic operand (op) 
code, regardless of its hexadecimal 
value. This would make it easy to 
search FORMAT.COM for all OUT in­
struction , with any value from the 
set OE6H, OE7H, OEEH, or OEFH. 
Bugs in the debugger. A minor malfunc­
tion occurred during testing. When 
TDH386 was run with the command­
line arguments FORMAT B:, FORMAT 
did not find the B: argument, indicating 
that the 386 version of the debugger 
may not be setting up the program seg­
ment prefix of the target program cor­
rectly. The non-386 Turbo Debugger 
performed correctly under the same 
conditions. Borland technical support 
said the problem will be corrected, but 
would not commit to a definite date. 

SUPPORTING PLAYERS 
Several utilities play important support­
ing role for Turbo Debugger. After 
debugging i complete, the IDSTRIP 
utility re1nove symbol-table informa­
tion fron1 .EXE file , which eliminates 
the need to recompile a program to 
get a fini hed product. 

53 

• 



TURBO DEBUGGER 

PHOTO 3: CPU Status PHOTO 4: Assembly Code Implementation 

cs:81D5 C70678099190 nou . un d ptr l09? 
OPlZJEST .81: 1Uectorli21 ; = Z; { iZ renains 

cs:91DB B113E5690 nou di, £80561 
cs:elDF D1E7 shl di ,1 
cs:91£1 C76570900289 nou uord ptr [dj+ 

OPTZlESl.85: · IUectorliZJ := Z; s~e .uhat re 
cs:em BB3£5669 ,,011 di ,1oes61 
cs:01EB Dll7 sbl dL1 
cs:OlED C78570800209 nou uord ptr £di+ 

OPJZIEST .86: IUectorC2l := 3; 
cs:61F3 C7a671998380 nou uord ptr £007 

OPTZtEST.88: i3 :~ 1 • 2; {test constant ar 

ax 08M 
bx 0091 
ex 063[ 
dx 0000 
si O&BA 
di 80&1 
hp 3FfC 
sp 3FF£ 
ds 6F7A 
es 6F7A 
SS 716:£ 
cs 6F8A 
ip 915£ 

c~ 

z=O 
s=O 
n:O 
p=O 
a:O 
i=l 
d=O 

nou 
cld 
cnp 
jnb 
add 
add 
dee 
dee 
std 

dx,ds 
s i, ss : Cbx•OJU 
di , ~s: lb~ ·e&J 
cx,ss: lbx .. 9J1 

s i,di 
U SP 
si,cx 
di,cx 
si 
di 

ax ne&it 
bx 8991 
ex 993£ 
dx eeoe 
sJ 968A 

. di 0061 
bp 3f FC 
sp 3FFE 
ds &f7A 
es &f7A 
SS 71(,£ 
cs 6f8A 
ip 015£ 

c=O 
z=O 
s=O 
o~e 

p=9 
a=e 
f =1 
d=O 

ds:ooeo CD ze 83 as oo 9A PO FE = a.a ii=• 
ds:0806 ID fO 69 93 AF 15 2D 03 •='••E-. 
ds :0010 AF 45 ZF ez DE 4A }'1 39 »E1a IJ.±0 
ds :aorn 01 01 01 oe ez FF FF FF e 

ds~oeoo eD 20 83 es ee 9A re FE = aa li=• 
~s;8088 1·D FO 60 03 AF 45 ZD 83 +:' t»J:-t 
ds~eete AF 45 ZF 02 DE 4A Yi 38 ~E/O JJ:!.9 
ds:0018 81 01 91 00 92 Ff ff Ff ~ D 

ss:4899 7£00 
ss:3fFE~0009 

Disassembled machine code generated by Turbo Pascal 
overlays the related source code in the CPU window, 
whose five panes include stack, registers, flags, code, and a 
data pane of raw data in the area of memory selected. 

Another view of the CPU window shows the underlying as­
sembly-code implementation of a Move procedure call in 
Turbo Pascal. This kind of analysis by Turbo Debugger can 
help in making decisions optimizing performance. 

If a program that was compiled 
with a non-Borland compiler is linked 
with .MAP files, the TDMAP progran1 
appends the .MAP information to the 
.EXE file in Turbo format. The user can 
then debug the e program with Turbo 
Debugger. With TDMAP, developers 
also can use Turbo Debugger on Turbo 
Pascal 4.0 program . The tep to do 
this are as follow : 
• Compile Turbo Pascal 4.0 program 

with /$T + con1mand-line option to 
create a .TPM file. 

• Create a .MAP file from the .TPM file 
using the Turbo Pa cal 4.0 utility, 
TD MAP. 

• Run TDMAP to combine the .EXE file 
with information from the .MAP file 
into Turbo Debugger format. 

Another worthwhile utility, TDUMP 
(which Borland calls a module di -
assembler), is actually a fi le analyzer 
that breaks down the tructure of 
programs, object files, and libraries. 
TDUMP does not disa en1ble code, but 
relie on the debugger to do o. For 
programs, TDUMP decodes the .EXE 
file header and show the initial stack 
seg1nent address the program entry 
point, and all addresses requiring 
loader relocation. 

For object files, TDUMP forn1ats 
the egment definition infi rmation, 
PUBLIC symbols and locations requir­
ing linker fix-up . The utility al o di -
play the contents of all data and c de 
segments in hexadecimal format. For 
libraries, which are collections of ob­
ject files, TDUMP hows the san1e .OBJ 
information and ome library- pecific 
infonnation. 

JANUARY 1989 

If a file is not in one of these 
three forn1ats, TDUMP simply prints a 
file dun1p in hexadecimal, ASCII, or 
both. It does not analyze the structure 
of Turbo Pascal 5.0 .TPU or .TPL files, 
which are the equivalent of libraries in 
other language . No Turbo Debugger 
utility is provided to accomplish this 
ta k, but TDUMP does give a straight 
hexadecimal readout of the files. 

The TDPACK utility reduces the 
size of the debugging information ap­
pended to the executable code of an 
.EXE file. For example, a SSKB file 
compiled with debugging information 
grew to llSKB. TDPACK eliminated 
about 9 ,000 bytes of duplicate informa­
tion, uch as string and data-type in­
formation. If Turbo Debugger runs out 
of memory while d bugging a large 
program, running TDPACK could help. 
All the utilities display a list of options 
when tarted without a command-line 
argument. 

The Turbo Debugger User's Guide 
i well written and detailed, covering 
in tallation and ove rall operation. The 
bulk of the guide explains operation 
details, such as examining and modify­
ing fi les and data, setting breakpoints, 
and evaluating breakpoint and watch 
expressions in the target program, 
source language. Several chapter ex­
plain the nuances of debugging pro­
gra1ns at the assembly level and debug­
ging with an 80x87 coproces or. 

AN EXCELLENT VALUE 
Finding bug in oftware is a con1plex 
ta k. While no oftware can replace 
careful analysis, high-level language 

debuggers provide an invaluable aid. 
With Turbo Debugger, the developer 
can work in the familiar high-level 
source-code environment, but can eas­
ily drop down to compiler-generated 
machine instructions. 

Turbo Debugger is a solid addition 
to any software developer toolbox 
and rounds out Borland s progran1ming 
product line. It has many attractive fea­
ture including an easy-to-u e interface; 
close integration with Turbo C and 
Turbo Pascal; the ability to debug 
CodeView-compatible .EXE files ; and 
the capacity to debug very large pro­
grams, e ither on a 386-based PC or 
remotely, using two PCs. 

Moreover, the package is a bar­
gain. Borland ells Turbo Assembler 
and Turbo Debugger bundled together 
for $149.95. Turbo Debugger i in­
cluded with Borland s Professional 
Turbo C and Profe sional Turbo Pa cal; 
both package sell for $250.00 each. 
Current users of Turbo C or Turbo Pas­
cal can upgrade to the Profe sional 

r-=-=,,.--r.;:-.. 

packages for $99.95 each. ~1iiiii111 1 

Borland International 
1800 Green Hills Road 
P 0. Box 660001 
Scotts Valley, CA 95066-0001 
4081438-5300 
Turbo Debugger 1. 0 
CIRCLE 331 ON READER SERVICE CARD 

Ben MJ er. , owner of Spirit of Performance 
Inc. in Harvard, Massachusetts, specialize 
in languages and other oftware. His last 
article for PC Tech Journal wa a rei iew of 
Turbo Pascal 4.0 in April 1988. 

55 


