MICROSCOPE COURTESY OF OPTICAL SYSTEMS DIVISION OF CAMBRIDGE INSTRUMENTS

COVER SUITE:

DIAGNOSING
PROBLEM CODE

Turbo
Debugging

Borland has added the missing ingredierit (o its product
line with Turbo Debugger. It challeniges Microsoft CodeView's
preeminence among bhigh-level language debuggers.

generation of PC software devel-

Aopers cut their teeth on the ven-

erable DOS DEBUG. Initially, it
was the only debugging tool around,
but the market soon exploded.

Today, a wide array of debuggers
is available. The most significant recent
development in the market is Borland’s
Turbo Debugger, which could attract
users of not only Borland’s languages,
but also Microsoft’s languages.

Since the early days of DEBUG,
the debugger market has evolved into
five broad, nonexclusive classes: as-
sembly-language, symbolic, high-level
language (into which Turbo Debugger
falls), hardware-assisted, and in-circuit
emulator (ICE) debuggers.

Assembly-language debuggers, of
which DEBUG is the most famous and
widely used example, work solely with
machine code. Software developers
writing in high-level languages cannot
easily correlate source code with com-
piled assembly code. They must resort
to tricks such as including program
statements to write out values of critical
variables during program execution.

46

BEN MYERS

With more complex applications,
developers demand more sophisticated
tools. Symbolic debuggers improve on
assembly-level debuggers by using
linker .MAP files or symbolic informa-
tion embedded in the object-code file
to relate assembly-level addresses to
variables or functions. Disassembled
code shows variable and function
names, rather than hexadecimal oper-
ands. Microsoft’'s SYMDEB, introduced
in 1985, is a symbolic debugger.

High-level language debuggers go
one step further than symbolic debug-
gers by simultaneously displaying
source and assembly code so that the
logical relationship between them is
readily apparent. The machine code is
disassembled in clear relation to vari-
ables and functions, and developers
can debug individual high-level lan-
guage statements.

Microsoft’s CodeView, introduced
in late 1986, is the most popular high-
level language debugger—and the one
with which Turbo Debugger will com-
pete most directly. Though primarily
menu and window oriented, CodeView

is downwardly compatible with the
older command-line oriented debug-
gers, DEBUG and SYMDEB . (For a re-
view of CodeView, see “Multilevel De-
bugger,” Mark S. Ackerman, March
1987, p. 90.)

Rounding out the list are the hard-
ware-assisted debuggers and the ICEs.
These products are the most sophisti-
cated and expensive PC debuggers.

Hardware-assisted debuggers typi-
cally control and monitor the debug-
ging process with an expansion board
installed on the bus. They are more
flexible than their software counter-
parts because their hardware break-
points do not affect the speed of a pro-
gram; furthermore, they can run pro-
grams in protected memory, which can
prevent the need to reboot when a
piece of code hangs the system. More-
over, the software developer can usu-
ally break out of a feisty program with
a break button. ICEs have the same fea-
tures as hardware-assisted debuggers
but are more expensive because they
consist of outboard hardware that re-
places the PC’s processor.

PC TECH JOURNAL

PHOTOGRAPHY * BRUCE WELLER

TURBO DEBUGGER

The second article of this month’s
cover suite ("Hardware Assistance,”
Marty Franz, p. 58) examines hardware
debuggers and looks at two in detail:
Atron’s 386 Source Probe and The Peri-
scope Company's Periscope IIL

TURBO ERGONOMICS

In August 1988, Borland International
announced its high-level language de-
bugging environment, Turbo Debugger
1.0, which began shipping in late Sep-
tember. Borland simultaneously intro-
duced Turbo Pascal 5.0, Turbo C 2.0,
and a package containing both Turbo
Assembler and Turbo Debugger. In
addition to other new features, both
Pascal and C now have an integrated
source-level debugger. Borland also of-
fers two packages—Turbo Pascal Pro-

fessional and Turbo C Professional—
that bundle Turbo Assembler and
Turbo Debugger with Turbo Pascal 5.0
and Turbo C 2.0, respectively.

Borland paid considerable atten-
tion to human factors when it designed
Turbo Debugger’s interface. The pack-
age is entirely menu driven—from the
installation and customization programs
to the debugger itself. By contrast,
CodeView is a more cumbersome hy-
brid that uses both commands and
pull-down menus.

.Turbo Debugger has more than
200 hot keys and main- and local-menu
commands. Despite this intimidating
number, developers can easily navigate
the program through the windows in-
terface and its pop-up data-entry and
selection boxes.

The main screen has a menu bar
across the top to access primary func-
tions, such as working with files, setting
breakpoints, and running programs.
The bottom line displays context-sensi-
tive, function-key actions that vary for
each window. When the user presses
the Alt key, the bottom line shows ad-
ditional options available using Alt with
various key combinations. Pressing the
Ctrl key shows the local commands,
initiated by Ctrl combined with letter
keys. Borland calls these commands
local because they initiate actions in
the current window.

Borland extends the window meta-
phor further with panes, which are log-
ical subdivisions within a window. The
tab key allows movement from pane
to pane within any window. Progress

HELP FROM THE HARDWARE

All 80x86 processors have two fea-
tures that help developers implement
debuggers: the breakpoint instruction
and single-step execution. The break-
point instruction, INT 3, has a one-
byte operand code (0OCCH), not the
two-byte form used by other interrupt
instructions. Because an INT 3 is one
byte long, it can replace the first byte
of an instruction without corrupting
subsequent ones (see Tech Notebook,
this issue, p. 121).

When a program executes INT 3,
the CPU transfers control to the
breakpoint interrupt vector at low-
memory location 0CH; the debugger
will have previously set this vector to
a debugger entry point. The CPU
saves the code segment (CS) and the
instruction pointer (IP) flag registers
on the stack, with the IP pointing just
past the INT 3 instruction.

To set an unconditional break-
point, the debugger saves the break-
point address and the byte of code at
that address, then inserts an INT 3
there. When an INT 3 occurs, the
debugger takes control and puts back
the first byte of the instruction. Then,
the user can issue commands to in-
spect or change program variables.

To resume execution at break-
point, the debugger subtracts a value
of one from the IP on the stack and
does an IRET to execute the original
instruction. The program runs under
its own control until the next break-
point occurs. Because the debugger
executes only when a breakpoint is
reached, the mechanism for uncondi-
tional breakpoints does not degrade
program execution time significantly.

The second feature that aids trac-
ing on Intel processors is single-step
execution. The debugger enables this
feature by setting the trap flag (TF) in
the flags register. Whenever the TF is
set, the processor transfers control to
the address in the INT 1 vector (at
location 4 in low memory) after exe-
cuting each instruction. Single-step
execution is slower than normal exe-
cution, often by a factor of 100.

Implementing conditional break-
points using only these two features
is laborious. If the user wants to
break program execution based on
the change of a variable in memory,
the debugger must execute the pro-
gram entirely in single-step mode.
With each single-step interrupt, the
program checks the variable being
monitored for a change, and, if no
change has occurred, executes the
next instruction.

For conditional breakpoints set at
source level, a well-designed debug-
ger can run somewhat faster by in-
serting breakpoints at the first assem-
bly instruction generated for each
line of source code. A breakpoint-
handling procedure tests the variable
and continues program execution if
no change is found. Conditional
breakpoints based on the value of the
expression are handled in much the
same way. When a debugging inter-
rupt occurs, the debugger evaluates
the parsed expression to see if it is
true and acts accordingly.

Additional debugging help comes
from the 386 processor’s ability to set
four hardware-monitored breakpoint
addresses. Debugging software can set

a breakpoint for instruction execu-
tion, data writes, or data reads and
writes; data breakpoints can be one,
two, or four bytes wide.

Unlike the INT 3 instruction, 386
breakpoints do not modify the code
to set an instruction breakpoint, and
they can be set on data accesses.
Breakpoint interrupts for this feature
occur on the INT 1 vector; the
single-step interrupt is still supported
by the 386 on this vector, so the CPU
provides a status register to give the
reason for the interrupt.

Although the 386 debug registers
are a welcome addition to the tools
for a debugger, they still leave a great
deal of work for the debugger de-
signer. This is especially true in
multitasking environments such as
Unix and OS/2. For example, the
debug registers are not stored in the
task-state segment; therefore, the soft-
ware must explicitly save and restore
them when more than one task is
being debugged.

A major element in the design of
a 386 debugger is how to make best
use of the four sets of debug regis-
ters. Watching data entirely with soft-
ware is many times slower than with
the 386 debug registers. Thus, the
design of a 386 debugger favors
watching data through the debug reg-
isters whenever possible. If the de-
bugger allows more than four concur-
rent breakpoints, a combination of
INT 3 and single-step interrupt hand-
lers must suffice for the excess that
cannot be accommodated by the 386
debug registers.

—Ben Myers

48

PC TECH JOURNAL

through windows already opened is
even faster using history lists, which
store the last sequence of choices
made in the current session. As a short
cut, pressing the Alt key and the win-
dow number selects an open window.

DEBUGGING ENVIRONMENTS
Unlike CodeView, Turbo Debugger has
built-in support for a variety of hard-
ware. It supports four different debug-
ging environments: 8086 mode, 386 vir-
tual mode, remote, and hardware-
assisted debugging. In all modes, the
Turbo Debugger user can step through
statement execution, with or without
dropping down into function calls, at
both source-code and assembly levels.

» To use the virtual-memory fea-
tures when debugging on a 386, the
user must install the TDH386.SYS
driver in CONFIG.SYS and then run the
386 virtual debugger, TD386. TD386
runs entirely in extended memory, al-
lowing the program being debugged
(target program) to load and run at the
virtual memory address it would use in
actual conditions. The 386 device
driver permits the developer to set
hardware breakpoints for instruction
fetches, memory reads, and read/write
memory accesses at specified addresses
(see the sidebar at left, “Help from the
Hardware”).

The target program can use 80286
and most 386 instructions, except for
those that operate in protected mode.
A toggle changes the display between
the 32-bit 386 extended registers or
16-bit registers.

The virtual-8086 mode and mem-
ory management make the system prac-
tically immune to crashes, even if the
target program destroys memory con-
tents within its own address space.
These same features, however, slow the
program down and cause timing prob-
lems for some applications.

When a 386-based PC is not avail-
able or memory is at a premium,
Turbo Debugger’s remote debugging
interface program, TDREMOTE, is a
useful alternative. Turbo Debugger runs
on the first machine, and TDREMOTE
and the target program run on the sec-
ond, effectively insulating the debugger
from crashes. TDREMOTE requires only
15KB of memory, permitting the devel-
oper to debug large programs (see
table 1 for a comparison of Turbo De-
bugger and CodeView target-program
sizes). Setting up to debug a program
in a remote PC is a relatively simple
process. TDREMOTE and Turbo Debug-
ger communicate through serial ports
interconnected by a null modem cable.

 JANUARY 1989

TABLE 1: Turbo Debugger and CodeView Comparison

®=Yes O=No N/A= Notapplicable

with Microsoft.

BORLAND MICROSOFT
PRODUCT Turbo Debugger CodeView
VERSION 1.0 2.2
DEBUGGING PROGRAMS
Compiled with /Zi (TDCONVRT) ® o
With MAP files (TDMAP) 2] O
Supports other languages with .MAP files © O
0O§/2 O e
Microsoft Windows O o
Turbo C 2.0 and Turbo Pascal 5.0 © O
OTHER DEBUGGING FEATURES
Views 32-bit 80386 registers ° @
Uses 80386 hardware debugger features o ©
Documented hardware debugger support & o)
Has remote debugging ® o
Uses command macros or files Macros* Files
Logs output o o’
Views data structures in source format ® o
Integrates use of mouse for commands o ®
Uses expanded memory © ®
Reports own and target’'s EMS usage ® O
Searches for instructions in assembly code ® @
MAXIMUM SIZE OF PROGRAM AND DOS (KB)
8088, 8086, or 80286 411 410
80386 640 410
Remote PC 625 N/A

@ CodeView for Windows applications is available with Windows 2.1 Software Development Kil.
b The CodeView file format is available to developers who enter into a contractual agreement

€ Command macros cannot be saved between debugging sessions.
4 Screen output is redirected to a file and is not visible to the user.

Turbo Debugger offers users of Borland languages the functionality of Microsoft’s
CodeView, with many added features including Borland’s use of the 386’s
memory-management and debugging features and innovative remote debugging.

TDREF, a program running the ma-
chine used for the debugger, supports
file transfer between Turbo Debugger
and the target PC. TDRF transfers data
at 9,600, 40,000, or 115,000 bits per
second (bps) and permits normal DOS
functions such as file deletion and re-
naming, directory creation, deletion,
and listing on the remote computer.

Borland provides documentation
for writing device drivers for interfac-
ing Turbo Debugger to hardware de-
buggers so that memory- and I/O-
access breakpoints produced by the
board are handled by Turbo Debugger.
No vendors are yet shipping a compati-
ble hardware driver, although several,
including Atron and Periscope, are con-
sidering such a product. Borland says
the interface eventually will support in-
struction trace-back and extra onboard
memory for a symbol table.

If vendors of hardware debuggers
provide their own drivers to meet the
Borland debugger driver specification,

the promise of well-integrated hard-
ware and software debugging will be
realized. Several hardware debugger
manufacturers support CodeView for-
mat files under license agreements
with Microsoft. .

Turbo Debugger can use EMS 3.2
or 4.0 to store its symbol tables, and it
keeps track of expanded memory used
by the program being debugged. Ex-
panded memory is used for symbol
tables only; no executable code is
loaded in EMS. On 386-based PCs,
Turbo Debugger runs the target pro-
gram in 1MB of virtual 8086 space
(640KB of program space) and uses the
386 memory-protection hardware to
keep the target program from contami-
nating the rest of the environment.
Through 386 microprocessor capabili-
ties, Borland has given the developer
much of the functionality of a hardware-
assisted debugger. CodeView users can
get 386 functionality with MagicCV, an
add-in product from Nu-Mega.

49

TURBO DEBUGGER

While Turbo Debugger supports
Borland’s language compilers and as-
sembler, developers also can debug
programs written in Microsoft lan-
guages at the source level, using the
TDCONVRT facility included with the
debugger. The program converts Micro-
soft .EXE files compiled for CodeView
into the Borland .EXE format.

Turbo Debugger works with most
compilers and linkers that produce de-
tailed .MAP files by using the included
TDMAP utility to append Turbo Debug-
ger information to the .EXE file. Turbo
Debugger, however, operates only
under DOS, not OS/2, and cannot
debug programs compiled for the
Microsoft Windows environment.
Microsoft, on the other hand, has
added OS/2-specific features to Code-
View (see the sidebar, “CodeView
Under OS/2: Nice Threads™).

GETTING UNDERWAY

Installation of the three Turbo Debug-
ger diskettes takes only a few minutes
with the menu-driven INSTALL pro-

gram, which automatically unpacks
compressed files. The TDINST program
controls several customization parame-
ters; the user can change many while
Turbo Debugger is running.

Customization options include
choosing window colors; specifying
editor, source, and debugger direc-
tories; enabling remote debugging and
use of EMS; selecting the language syn-
tax used for expression evaluation; and
selecting how display video pages are
managed between the debugger and
the user screen.

TDINST has several options for
handling screen swapping between the
debugger and the executing program’s
(user) display screen image. If the sys-
tem has multiple display pages, as in
the CGA, EGA, or VGA, the Turbo De-
bugger screen will be maintained on a
separate display page. The user can
also swap screens in software—a
slower, but less disruptive method.

A second monitor can display
Turbo Debugger while the first displays
the user screen. TDINST permits the

user to update screens continuously,
when a change occurs, or not at all.
The commands TD or TD386 fol-
lowed by command-line options and
the target program name starts Turbo

| Debugger. Commands follow either

Unix style (preceded by a hyphen) or
the DOS convention (preceded by a
forward slash). An —h or —? displays
all command-line options.

Source-level debugging requires
programs compiled or assembled with
the following options. For Borland’s
Turbo languages, the /v command-line
option or its menu equivalent instructs .
the compiler to include debugging in-
formation in the .OBJ file. Microsoft
languages that support CodeView re-
quire the /Zi option as if CodeView is
the debugger. TDCONVRT then con-
verts the resulting .EXE files. For prop-
erly linked and compiled programs,
Turbo Debugger presents a source-
code window, which displays the first
executable lines of source code. Other-
wise, the package displays disassembled
machine language.

CODEVIEW UNDER 08/2: NICE THREADS

While Borland was busy creating
Turbo Debugger, Microsoft was work-
ing to add OS/2-specific features to its
existing CodeView debugger. In most
respects, CodeView is unchanged
since we last reviewed it (see “Multi-
level Debugger,” Mark Ackerman,
March 1987, p. 90). However, Micro-
soft C 5.1 includes a major enhance-
ment to CodeView that facilitates
0S/2 debugging—support for multi-
threaded applications.

The OS§/2 environment refines
multitasking within a process to a
thread level, OS/2’s fundamental unit
of scheduling. Unlike an individual
process that has its own data space,
an OS/2 thread shares the process
environment of its parent. Starting a
program under OS/2 actually invokes
an instance of the program as thread
1. Thereafter, thread 1 can start other
threads (for example, threads 2, 3,
and so on).

The behavior of CodeView’s stan-
dard commands is affected by these
threads. For example, a breakpoint
that is set with the BP command will
stop when any thread reaches the
breakpoint. Other commands, such as
Trace, Step, and Execute, apply to the
current thread, but also allow other
threads to run concurrently. Thus, an
Execute command will run the cur-
rent thread in slow motion, but OS/2

can schedule other threads that could
preempt that thread. Similarly, a Trace
command will execute a single in-
struction in the current thread, but
OS/2 may also run many instructions
in other threads before it returns to
CodeView. :

To reflect the multiple-thread na-
ture of OS/2, CodeView uses a com-
mand prompt that displays the num-
ber of the current thread, which is the
thread currently selected for debug-
ging (for example, 001>). Because
every thread has its own stack and
register set, the display changes to
reflect new values any time the current
thread is changed. Note that CodeView
controls and monitors just the threads
in the program being debugged;

OS/2 schedules other threads in the
system in the normal way.

For detecting elusive bugs in
multithreaded programs, developers
need precise control over threads.
Help comes in the form of the thread
command, ~ (the tilde character), to
control execution of specific threads.
The command has two fields. The
first field specifies the thread to be
operated upon:

n thread number 7;

the last thread executed;

* all threads in the program,;
the current thread.

The thread command’s second
field is a subset of the CodeView
commands: BreakPoint, Execute, Go,
Program Step, and Trace. Three other
commands are also recognized. The
Select command changes the current
thread to the one specified. The
Freeze command disables threads so
they will not run in the background.
Freezing all but the current thread,
for example, ensures that only the
thread being debugged runs during a
specific section of code. The Unfreeze
command reverses the effect of the
Freeze uncommand.

The thread command is power-
ful, but painfully cryptic. For example,

~ Show status of all threads

~*F Freeze all threads

~4510] Unfreeze thread 3

~*G Run all unfrozen threads
=98 Make thread 2 current
~2BP .53 Set a breakpoint for thread

2 at line 53

CodeView has strong debugging
abilities for OS/2, but they certainly
look clumsy when compared with
Borland’s Turbo Debugger. If Micro-
soft intends for CodeView to reign
supreme under OS/2, the company
needs to send its debugger in for an
overhaul before Borland hauls Turbo
Debugger over to OS/2.

—David Methvin

JANUARY 1989

51

TURBO DEBUGGER

PHOTO 1: Setting Breakpoints PHOTO 2: Viewing Variables

CIReTT Ve ~ Breakpoints Data Window Options
ndulr ACCURACY File: ACCURACY.PAS 152——
UM fireakpoints—— E8ts inverse.}
var Breakpoint
i Global 2 Data changed “1,5" @755h:0001,
LTI EE I ACCURACY . 415 Bnabled
AR ar [a] |65 p—
for |ACCURACY.FILLA
biACCURACY .FILLB
X IACCURACY .FILLC
XIACCURACY .NULT
f HACCURACY . SUNIT
nACCURACY . DSGN
¢ iACCURACY .HEADER e6FBA:06BA
i nCCUBﬁCY ﬂRlTH 96?89 OUDB

File Vies BRun Breakpoints = Data
fodule: ACCURACY File: ACCURACY. i'uq 152
| {TES[Preakpointss

var Bvcakpoint o

1 = Data changed "1,5 9?55b 0001,
» bcgln | Enabled

Hladou Bptinns

READY

———

w3 S inucrsc.}

EGFBB 0900 I
@6FBA:009C (K
@6FBA:017B|L
e6FBA:01DA (N
R6FBA:HZAD
@6FBA:037E

snmemenad i }
208554 (96F8A)
2265 ($809)
100 ($64)
17639 ($45AF)

dition of matrix}
for

exp(xx/L0G1GE): {slowly decreases conditioning)

filla : fillb : fillc :

nult ; sumit ;

errll] := sun/sqriN) : {error is average absolute error per elenent)

if err(1] > MINERR then logerr(l] := -In(errll]) = LOGI1OE

else logerrll] := LOGHIN:
testerr(1] :=
end ;

testerrll] := testerrii11/5.0 :

E
|
|
!

VL%(%}??:;- ~> —

s

A few keystrokes can set a breakpoint, run the program,
trace the execution at the breakpoint, add another condi-
tional breakpoint, and review current status in seconds.

testerr{1] ¢« (LOGHIN - logerrlll) :

tcsterr[ll
end :

Ud'.(:hl".:;‘ S ———————

trstcrrll] + (LUGHIH - logerr[l]) -

testerril) := testerr(11/5.0 ;

e e e e tearenten)

PZ—l!pt,F3~Ciase Pi—Hare PS-Znon Fbéﬂext P?-!race Fﬁ-Step FS-Rnn Fio-Henn

A listing of all the variables in the program ACCURACY.PAS
is only two keystrokes away—Alt-V, V. The right pane
shows global variables; the left pane shows local variables.

Turbo Debugger has many options
for running target programs. One pos-
sibilitysis to execute a single instruc-
tion, what Borland calls the trace-into
function. This selection executes one
instruction at a time, including calls.
When traced, a call is executed and the
window displays the code within the
called function or procedure. Turbo
Debugger also has a step-over function
that executes the call and returns to
the instruction following the call, treat-
ing the call as one logical instruction.

Another alternative is animation,
which runs the program in slow mo-
tion, highlighting each instruction as it
executes. Animation continues until the
program encounters a breakpoint, ter-
minates, or is interrupted by the Ctrl-
Break keystroke combination. The user
can set the time interval between ani-
mated instructions (0.3 of a second is
the default).

Manipulating breakpoints is an
easy proposition. The user sets break-
points with either a single keystroke
or from the breakpoint window (see
photo 1). While the breakpoint window
is active, the user can enable, disable,
remove, and add breakpoints. To deter-
mine where to set a breakpoint, the
user can examine local and global vari-
ables from the view-variables window
(see photo 2).

Breakpoints can trigger when the
target program reaches a specified line
of source or assembly code, a variable
has a stated value, or an expression is
true. In Turbo Debugger, the term
breakpoint encompasses the CodeView
concepts of breakpoint, watchpoint,
and tracepoint.

52

An unconditional breakpoint is
a specific place in the program code
where execution is to stop. A condi-
tional breakpoint stops program execu-
tion only when a certain condition is
true, such as when a variable has a
given value or the program changes a
value in memory. Turbo Debugger’s
conditional-breakpoint expressions are
stated in the syntax of the source lan-
guage (C, Pascal, or assembly) and can
be conditioned on either an expression
being true or a change in a variable.

A watchpoint evaluates a value of
an expression and stops the program
when the expression is true. A trace-
point checks all specified program vari-
ables or memory-referencing expres-
sions for changes after each instruction
executes.

The CPU window provides an all-
in-one machine-level view of the target
program. It has separate panes for dis-
assembled instructions, registers, flags,
stack values, and data. The user can
also create multiple windows, each dis-
playing a separate code or data area.

The dump window displays data in
memory, as referenced by the current
data-segment register of the target pro-
gram. The user can search for and
change a value in memory from the
dump window. Data formats include
byte, word, long, comp, float, real, dou-
ble, and extended. In byte format, each
byte is accompanied by its ASCII char-
acter representation. Turbo Debugger
also displays data in any floating-point
format supported by Borland compilers
(including Turbo Pascal real) and any
[EEE format supported by an Intel
80x87 math coprocessor.

The developer selects a source-
code module (including the main mod-
ule and any source files) for viewing
and debugging through the module
window. From this window, the devel-
oper can easily see the assembly code
that corresponds to the source code by
accessing the CPU window. This feature
is a distinct advantage over CodeView,
where the user has to scroll through
assembly code to find the correspond-
ing source code.

Turbo Debugger lists all variables
in a program that have global scope,
including function or procedure names,
in the left-hand pane of the variables
window. The right-hand pane displays
all variables local to the current func-
tion or procedure. The window dis-
plays the current values of all variables
in the format known by the source
program. The value associated with a
function name is a pointer, for exam-
ple, and the value of a Turbo Pascal
string variable is ASCII text surrounded
by single quotes.

The package displays Turbo Pascal
Boolean and enumerated data types
with their source-code values as well as
their integer equivalents; the values of
Boolean variables are either true or
false. Because the debugger displays
data structures as aggregates of simple
variables, the developer cannot change
an entire data structure. However, ele-
ments of an array or data structure can
be modified individually.

To see the status of and set and
reset unconditional or conditional
breakpoints, the developer accesses the
breakpoint window. The F2 key is a
quick way to toggle an unconditional

PC TECH JOURNAL

breakpoint anytime at a source- or as-
sembly-code line where the cursor is
positioned. The user can set condi-
tional breakpoints based on either a
change in a variable or an expression
being true. Either makes the program
run slowly because the debugger evalu-
ates the breakpoint condition after
single-stepping through each instruc-
tion and should be used sparingly, gen-
erally after stopping the program in a
presumed problem area with an un-
conditional breakpoint.

The Turbo Debugger mechanism
used for managing breakpoints is sim-
ple, is menu driven, and, unlike Code-
View, does not use a command syntax
for setting conditional breakpoints. The
developer enters the expression that
controls a conditional breakpoint into a
pop-up window in the syntax of the
language selected from the debugger
option pull-down menu. Conditional
breakpoints based on changes in vari-
ables also are entered into a pop-up
window.

Turbo Debugger users can moni-
tor simple variables or data structures
in the watch window. The value of a
watch variable is updated within the
watch window while a program runs
under control of the debugger. If the
target program is running on a system
with an 80x87 math coprocessor, the
user can inspect, clear, and alter as
many as eight 80-bit floating-point stack
registers and 19 flags through the math
coprocessor window.

The helpful user-screen function
permits the user to see the actual
screen the executing program would
display at any given moment. Pressing
Alt-F5 toggles between the user screen
and the debugging screen.

LEARN FROM EXPERIENCE

Finding the bugs and examining the
Turbo Pascal runtime library and DOS
programs are easy tasks. For source-
level debugging, the relationship be-
tween source and assembly code is
readily apparent, particularly with the
Turbo Debugger options to view either
one or both. Turbo Debugger was in-
stalled on a PC Designs 8-MHz Turbo
AT with an Atronics EGA+ video con-
troller, a 16-MHz IBM PS/2 Model 80,
and a Compaq 386/20. The package
performed well when used to debug
programs with several usual and some
not-so-common problems.

Uninitialized variables. A source-code
analyzer that executed correctly when
compiled with Turbo Pascal 3.01 pro-
duced unexpected results with Turbo
Pascal 5.0. Within 10 minutes, Turbo

JANUARY 1989

Debugger pinpointed an uninitialized
variable that caused the problem. An
unconditional breakpoint was set in a
procedure where the problem was sus-
pected, and the code was traced,
watching the values of variables related
to the symptom. The .COM file format
of Turbo Pascal 3.01 had initialized the
variable to zero, masking the logic
error in the program. Without a debug-
ger, a developer would have to analyze
the source-code structure, which is less
likely to pinpoint the problem and can
be difficult and time-consuming.
Incorrect variable types. Julian date-
translation procedures converted from
Turbo Pascal 3.01 reals to 5.0 long inte-
gers failed when called by a production

Tbe Turbo Debugger mech-
anism for managing break-
poinis is simple, menu
driven, and does not use a
command Syniax.

program, but worked when called by a
test program. Turbo Debugger’s two
views of the variables revealed that the
production program called the func-
tions by passing integer variables rather
than long-integer variables.

Cooling hot spots. Turbo Debugger
helped optimize the hot spot (a pro-
cessor-intensive area) of a statistical
analysis package. To view the generated
assembly code, the .EXE program was
loaded under control of Turbo Debug-
ger; the source file for the procedure
being optimized was selected. The cur-
sor was then moved to the source lines
being optimized, the CPU window was
accessed, and the code generated by
the compiler was inspected. As changes
were made to optimize a major loop in
the source code, the debugger dis-
played the corresponding assembly
code. This comparison allowed exami-
nation of the clock cycles required for
the generated code until a practical
minimum was reached.

PC Tech Journal’'s OPTZTEST.PAS
program, designed to test common
code optimizations, was speeded up
using Turbo Debugger to see what
code Turbo Pascal generates (see photo
3). OPTZTEST (available for download-
ing on PCTECHline) uses the standard
Turbo Pascal Move procedure to move
information in memory quickly. The

code in the Move procedure within the
runtimes linked into the application
was viewed. The Move procedure al-
ways does slower 8-bit moves (REP
MOVSB) rather than fast 16-bit moves
(REP MOVSW) for all but the odd byte
being moved. A faster procedure was

| substituted for Move, resulting in a 50-

percent reduction in processor time for
moving data and a nominal increase in
EXE file size (see photo 4).

Dissecting FORMAT. The statistical analy-
sis software mentioned above can mon-
itor and count INT 13H disk BIOS calls;
however, it failed to show disk activity
for the DOS 3.3 FORMAT command
when formatting a 3.5-inch diskette.
Turbo Debugger verified that FORMAT
does not use the INT 13H disk BIOS in
this case. FORMAT was loaded under
the control of Turbo Debugger, and
unconditional breakpoints were set on
INT 13H instructions.

On a 5.25-inch diskette, one break-
point for each track was formatted with
an INT 13H, AH = 05H (format track).
When a 3.5-inch diskette was formatted,
no INT 13H breakpoints were encoun-
tered. Turbo Debugger’s Search func-
tion found the INT 13H instructions
quickly; this could not be done with
CodeView, because it cannot search for
assembly-level instructions.

The arguments must be exact
when the Turbo Debugger search func-
tion is used to find code in memory.

A useful addition to Turbo Debugger
would be the ability to search for oc-
currences of a symbolic operand (op)
code, regardless of its hexadecimal
value. This would make it easy to
search FORMAT.COM for all OUT in-
structions, with any value from the

set OE6GH, OE7H, OEEH, or OEFH.

Bugs in the debugger. A minor malfunc-
tion occurred during testing. When
TDH386 was run with the command-
line arguments FORMAT B:, FORMAT
did not find the B: argument, indicating
that the 386 version of the debugger
may not be setting up the program seg-
ment prefix of the target program cor-
rectly. The non-386 Turbo Debugger
performed correctly under the same
conditions. Borland technical support
said the problem will be corrected, but
would not commit to a definite date.

SUPPORTING PLAYERS

Several utilities play important support-
ing roles for Turbo Debugger. After
debugging is complete, the TDSTRIP
utility removes symbol-table informa-
tion from .EXE files, which eliminates
the need to recompile a program to
get a finished product.

53

TURBO DEBUGGER

PHOTO 3: CPU Status B PHOTO 4: Assembly Code Implementation

me Uiew Run Breakpoints Data Window Opti

File ' View = Run Br ”;f' _Data Window 0y
[Pl 80386 :

|7e1c 1143 BBDC : | ax 0064
1701C:1145 6600 nov dx,ds ~ bx 0901
l010:1147 36C577200 1ds si,ss:(bx+0A1| ox 003F
ou: 1148 35cmoa~:-; ~ les di,ss:[bx+061] dx 0000
170 MOV CX,SS: [bx+951 ~ si 0686
| ki e0ge)
si,di bp 3FFC
115F sp 3FFE
S17EXEE ~ ds 6F7A
di,cx ~es 6F78
dec. si ~ ss 716E
Sidec s idi cs bF8A
std : ip O15E

;UPTZIESI 83: IVectorl®] := 1; { See how SNl ax 0064
Il cs:01D5 C70670600100 mov . wopd ptr [007{ bx 0001
H0PTZIEST.B4: VectorliZ] := 2; { i2 remains | cx B03E
._.q,s,,emn 8B3ES606 nov ',;,jdi.{eosal; | dx 0800
j cs:01DF DIE? Sishldig ~ si O6BA
- cs:01E1 C78570000260 nov word ptr [di+] di 6064
0 IVectorliZ] := 2: { see uhat re{ bp 3FFC
"cszelg? 8B3ES600 nov di, (00561 sp 3FFE
| cs:01EB DIE7 - shi*= " di;1 ds bF7R
 cs:B1ED C?BS?OOBOZOO nov word pir [di+] es B6F7A
IVector(2] := 3; ss 716E
'01!‘3 C76674090308 mov word ptr [00?{ cs 6FB8A
ﬂP!ZIEST 88‘ i3 =1 » 2 { Iest constant ar{ ip O15E

IR]

e :

B e
B L | LT

ds:8000 CD 20 83 85 06 9a F6 FE = 55 (15}
{ ds:0008 1D FO 60 03 AF 45 2D 03 «='w»E-v : T
| ds:0010 AF 45 2F 02 DE 4A F1 30 »E/B20 55:4000 7E00 jH
e :0018 61 01 01 00 62 FF FF FF 222 6 ss:3FFEMOBOD |

ds 0090 CD

20 8
~ ds:0008 1D FO

45

0

3
B
E
1

ss:4000 7E00
ss:3FFEF00O0

 ds:0010 AF
 ds:0018 01

Hlatches———m —————————————————
|
| !

Alt: FZ-Bkpt at F3-Mod F4-Anim FS-User F6-Undo F7-Instr F8-Rtn F9-To F10-Local |

b
2
8

1

:Latcne“

fit: F2-Rkpt at F3-Mod F4-Anin F5-User Fo-Undo F?-Instr F8-Rin F9-To PlO-Local

Disassembled machine code generated by Turbo Pascal Another view of the CPU window shows the underlying as-
overlays the related source code in the CPU window, sembly-code implementation of a Move procedure call in
whose five panes include stack, registers, flags, code, and a Turbo Pascal. This kind of analysis by Turbo Debugger can
data pane of raw data in the area of memory selected. help in making decisions optimizing performance.

If a program that was compiled If a file is not in one of these debuggers provide an invaluable aid.
with a non-Borland compiler is linked three formats, TDUMP simply prints a With Turbo Debugger, the developer
with .MAP files, the TDMAP program file dump in hexadecimal, ASCII, or can work in the familiar high-level
appends the .MAP information to the both. It does not analyze the structure source-code environment, but can eas-
EXE file in Turbo format. The user can | of Turbo Pascal 5.0 .TPU or .TPL files, ily drop down to compiler-generated
then debug these programs with Turbo | which are the equivalent of libraries in | machine instructions.

Debugger. With TDMAP, developers other languages. No Turbo Debugger Turbo Debugger is a solid addition

also can use Turbo Debugger on Turbo | utility is provided to accomplish this to any software developer’s toolbox

Pascal 4.0 programs. The steps to do task, but TDUMP does give a straight and rounds out Borland’s programming

this are as follows: hexadecimal readout of the files. product line. It has many attractive fea-

* Compile Turbo Pascal 4.0 program The TDPACK utility reduces the tures including an easy-to-use interface;
with /§T+ command-line option to size of the debugging information ap- close integration with Turbo C and
create a .TPM file. pended to the executable code of an Turbo Pascal; the ability to debug

* Create a .MAP file from the .TPM file EXE file. For example, a 55KB file CodeView-compatible .EXE files; and
using the Turbo Pascal 4.0 utility, compiled with debugging information the capacity to debug very large pro-
TDMAP. grew to 115KB. TDPACK eliminated grams, either on a 386-based PC or

e Run TDMAP to combine the .EXE file | about 9,000 bytes of duplicate informa- | remotely, using two PCs.
with information from the .MAP file tion, such as strings and data-type in- Moreover, the package is a bar-
into Turbo Debugger format. formation. If Turbo Debugger runs out | gain. Borland sells Turbo Assembler

Another worthwhile utility, TDUMP | of memory while debugging a large and Turbo Debugger bundled together
(which Borland calls a module dis- program, running TDPACK could help. for $149.95. Turbo Debugger is in-
assembler), is actually a file analyzer All the utilities display a list of options cluded with Borland’s Professional
that breaks down the structures of when started without a command-line Turbo C and Professional Turbo Pascal;
programs, object files, and libraries. argument. both packages sell for $250.00 each.
TDUMP does not disassemble code, but The Turbo Debugger User's Guide Current users of Turbo C or Turbo Pas-
relies on the debugger to do so. For is well written and detailed, covering cal can upgrade to the Professional
programs, TDUMP decodes the .EXE installation and overall operation. The packages for $99.95 each. (i
file header and shows the initial stack bulk of the guide explains operation
segment address, the program entry details, such as examining and modify- | Borland International
point, and all addresses requiring ing files and data, setting breakpoints, 1800 Green Hills Road
loader relocation. and evaluating breakpoint and watch P.O. Box 660001

For obiject files, TDUMP formats expressions in the target program’s Scotts Valley, CA 95066-0001
the segment definition information, source language. Several chapters ex- 408/438-5300
PUBLIC symbols, and locations requir- plain the nuances of debugging pro- Turbo Debugger 1.0
ing linker fix-ups. The utility also dis- grams at the assembly level and debug- | CIRCLE 331 ON READER SERVICE CARD
plays the contents of all data and code ging with an 80x87 coprocessor.
segments in hexadecimal format. For =
libraries, which are collections of ob- AN EXCELLENT VALUE fen /l.ivers, _Ow”er of ‘5‘0 geof {’e;forz?za.; 0%

: A 20 ; , nc. in Harvard, Massachusetts, specializes
ject files, TDUMP shows the same .OB] Finding bugs in software is a complex in languages and other software. His last
information and some library-specific task. While no software can replace article for PC Tech Journal was a review of
information. careful analysis, high-level language Turbo Pascal 4.0 in April 1988.

JANUARY 1989 55

