

Turbo Editor Toolbox

version 1.0

Owner's Handbook

Copyright (C) 1985 by

BORLAND INTERNATIONAL Inc.
4585 Scotts Valley Drive
Scotts Valley, CA 95066

TABLE OF CONTENTS
INTRODUCTION. • . . . • . • . . 1

What Can You Do With the Editor Toolbox? 1
Required Hardware. 1
Required Software ... 2
Structure of this Manual 2
Typography. 3
The Distribution Diskettes 3
Acknowledgments ... 4

Chapter 1. SOME TEXT-EDITING TERMS • . • 7
Editor '" 7
Text... 7
Line... 9
Text Stream ... 9
Window........... 9
Cursor .. 9
Block.. 10
File... 10
Command... 10
Command Dispatcher. 10
Command Processor ... 11
Document Mode, Nondocument Mode 11

Chapte~ 2. TYPES OF EDITORS.. 13
Line Editors. 13
WYSIWYG Editors. 14

Chapter 3. REPRESENTATION OF TEXT•................. 17
Character Data ... 17
The Structure of the Editor's Text Buffer. 18

The "Array-of-Lines" Approach.. 18
The "Fixed Buffer" Approach 19
The" Linked-List" Approach . 20

Chapter 4. AN (ALMOST) TRIVIAL EDITOR•...•.... 25

Chapter 5. CREATING FIRST-ED-A FIRST EDITOR
USING THE TOOLBOX•...................•.... 29

Building FIRST-ED .. 29
A Brief Introduction to FIRST-ED 32

Chapter 6. CUSTOMIZING FIRST-ED•.....•...............•. 35
The Rules of the Game: Required Files, Procedures,
and Data Structures .. 35
The Main Program ... 37

TABLE OF CONTENTS iii

Customizing the Command Interface:
The UserCommand Procedure. 37
A Simpler Editor-Using UserCommand to Disable
FIRST-ED Commands ... 38
A Matter of Personal Preference-Using UserCommand
to Filter Commands .. 39

A New Command 39
Integrating a New Single-Keystroke Command 40
Integrating a New Prefixed Command. 41
A More Complex Editor 42

Chapter 7. MICROSTAR-A SOPHISTICATED EDITOR 43
Getting to Know MicroStar 43

Building MicroStar ... 43
Using the Pulldown Menu System 44
The MicroStar Command Set.............. 44

Chapter 8. INSIDE MICROSTAR 47
The Command Dispatchers. 47
The Pulldown Menu System . 50
The Pop-Up Window Routines................................. 53
The Background Print Routines 53
Customizing Error Handling 53
Customizing the Status Display. 55
The "Dirty" Bit-Detecting Changes in the Text.................. 55

Chapter 9. TEXT AND WINDOW DATA STRUCTURES 59
How Text Data is Stored . 59
How Windows are Managed 61

Chapter 10. THE EDITOR KERNEL................................ 65
Keyboard Input .. 65
The Scheduler ... 65
The Primary Command Dispatchers 66
Prefixed Command Dispatchers. 66
The UserTask "Hook" . 67

Chapter 11. THE EDITOR SCREEN ROUTINES 69
Screen Manipulation ... 69

Default Screen Format. 69
The Screen Updating Routines 70
Colors .. 71

Chapter 12. THE TOOLBOX COMMAND PROCESSORS 73
Cursor Movement Commands. 73
Text Deletion Commands74
Word Processing Commands 76

iv Turbo Editor Toolbox Owner's Handbook

Multiple Windows and Text Buffers 77
Window Commands.. 78
Block Commands .. 80
File Commands .. 82
Exit Commands .. 86

Chapter 13. OVERLAYING YOUR EDITOR. 87
Cr~~ti~g. Overlay G.roups 87
Minimizing Thrashing. 88
The Toolbox Overlay Structure. 89
Caveats Regarding Overlays . 89

Chapter 14. INCLUDING AN EDITOR IN YOUR PROGRAM•.... 91
Including the Toolbox Directly in Your Code 91
Overlaying the Editor with Your Program 91

Chapter 15. TURBO EDITOR TOOLBOX FILES • 95
The Turbo Editor Toolbox Distribution Diskettes 95

Files Included on Disk 1 95
Files Included on Disk 2 . 97

Chapter 16. TURBO EDITOR TOOLBOX CONSTANTS•.•.... 99

Chapter 17. TURBO EDITOR TOOLBOX DATA TYPES 105

Chapter 18. TURBO EDITOR TOOLBOX VARIABLES................ 109

Chapter 19. TURBO EDITOR TOOLBOX PROCEDURES
AND FUNCTIONS•.........•....•...•.. 117

(see Procedures and Functions Index for a
complete listing of all procedures and functions)

SUBJECT INDEX•............................ 241

PROCEDURES AND FUNCTIONS INDEX•.........•........•. 243

LIST OF FIGURES
3-1. Representing an ASCII Character in an 8-bit Byte. 17
3-2. Array-of-Lines Buffer Structure 18
3-3. Layout of Memory in Fixed-Buffer Model. 20
3-4. Layout of Memory in Linked-List Model 20
6-1. Editor Toolbox Command Dispatching: Flow of Control 41
9-1. How the Editor Stores and Tracks Text Data 59
9-2. Window Descriptor Records. 61

TABLE OF CONTENTS v

INTRODUCTION

Welcome to Turbo Editor Toolbox. This software package will enable
you to explore the interesting world of editing systems using Turbo
Pascal. With the aid of the Editor Toolbox, you can develop text
editors and applications for the IBM PC family (and true compatibles)
that use text-editing functions.

This manual makes extensive use of Turbo Pascal programming ex­
amples, and a good working knowledge of Turbo Pascal is assumed. If
you need to brush up on the Pascal language, refer to the Turbo Pascal
Reference Manual and/or the Turbo Tutor.

What Can You Do With the Editor Toolbox?

The Turbo Editor Toolbox is designed to help you build both simple
and complex text editing applications. With the Toolbox, you can
write a complete, full-featured text editor, or add specific text editing
functions to your Turbo applications. We provide high- and low-level
procedures which allow you to manipulate textual information as:

• Single characters

• Groups of characters: words and lines

• Groups of lines: text streams

• Windows of text streams

• Blocks of lines

• Files of lines

• Screen displays

Required Hardware

As shipped, the Editor Toolbox will run with no alterations on an IBM
PC, PCjr, XT, or AT (or a 100% compatible computer). Any of the
standard display adapters may be used, incl.uding the IBM Mono­
chrome display adapter, the IBM Color/Graphics adapter, and the En­
hanced Color/Graphics adapter.

INTRODUCTION 1

If your computer is not 100% IBM PC-compatible, but uses a
"memory-mapped" video display, it may be possible to adapt the
Editor Toolbox display routines to your machine. This conversion
requires an intimate knowledge of the display hardware used in your
computer, and possibly some assembly language skills.

Required Software

To compile the Editor Toolbox routines, you will need Turbo Pascal
(preferably Version 3.0 or greater), as well as MS-DOS or PC-DOS
(Version 2.0 or greater).

Structure of this Manual

2

This manual is divided into four parts:

• Part I, A Text Editing Primer, is an overview of the terminology,
philosophy, user interfaces, and data structures of modern-day
text editing programs. This section provides the basic informa­
tion you need to know to make good use of the Turbo Editor
Toolbox.

• Section II, Bui/ding an Editor, guides you through the construction
of your first editor. The code for a very simple editor (which does
not use the Toolbox) is presented and explained. Then, the two
sample Toolbox editors, FIRST-ED and MicroStar, are described­
along with the details of their internal structure.

• Section III, Harnessing the Full Power of the Turbo Editor Toolbox,
takes you behind the scenes and explains the low-level structure
of the Toolbo~ itself. This is the information that you need to
modify the Turbo Editor Toolbox routines to suit your specific
needs.

• Section IV, the Turbo Editor Toolbox Technical Reference, lists all
of the constants, types, variables, procedures and functions of the
Turbo Editor Toolbox.

Turbo Editor Toolbox Owner's Handbook

Typography

The body of this manual is printed in normal typeface. Special charac­
ters are used for the following special purposes:

Alternate

Italics

Boldface

Alternate characters are used in program examples and
procedures and function declarations.

Italics are used to emphasize certain concepts and ter­
minology, such as predefined standard identifiers,
parameters, and other syntax elements.

Boldface type is used to mark reserved words; in the
text as well as in program examples.

Refer to the Turbo Pascal Reference Manual for a complete descrip­
tion of syntax, special characters, and overall appearance of the Turbo
Pascal language.

The Distribution Diskettes

The Turbo Editor Toolbox is distributed on two diskettes. Disk #1
contains:

• The files README.COM and READ.ME, which describe in detail
the most current version of the Toolbox.

• The source code for the Toolbox routines (.ED files).

• The file EDITERR.MSG, which contains the error messages dis­
played by the Toolbox routines.

• A simple editor, FIRST-ED. PAS, which uses the Turbo Editor Tool­
box. This file should be compiled to a .COM file before being run.

INTRODUCTION 3

Disk #2 contains the following files:

• MicroStar (MS.PAS), a sophisticated editor that uses the Turbo
Editor Toolbox. This file should be compiled to a .COM file before
being run.

• Include files (.ED, .OVL, .INC) necessary to compile MicroStar
(some of these are duplicates of files found on Disk #1).

• Another copy of the error message file, EDITERR.MSG.

For a complete listing of the files included in the Turbo Editor Toolbox
package, insert Disk #1 into your computer and type README. Last­
minute modifications will also be described here.

Your distribution diskettes are your master copy of the Turbo Editor
Toolbox files. Immediately after receiving the Toolbox, you should
complete and mail the License Agreement at the front of this manual.
You should then copy your distribution diskettes and put them away
in a safe place. Never use your distribution diskettes as working disk­
ettes. There is a charge for replacement copies.

Acknowledgments

4

In this manual, references are made to several products:

Turbo Editor Toolbox, MicroStar, Turbo Pascal, Turbo Tutor, SideKick,
and SuperKey are trademarks of Borland International.

IBM is a registered trademark and PC, PCjr, Xl, AT, and PC-DOS are
trademarks of International Business Machines Corporation.

MacWrite is a trademark of Apple Computer Corp.

MS-DOS and Microsoft Word are trademarks of Microsoft Corpora­
tion.

MultiMate is a trademark of MultiMate International Corporation.

PFS:Write is a trademark of Software Publishing.

Volkswriter is a trademark of Lifetree Software Inc.

WordPerfect is a trademark of Satellite Software International.

WordStar is a trademark of MicroPro International Corporation.

Turbo Editor Toolbox Owner's Handbook

Section I

A TEXT EDITING PRIMER

Chapter 1
SOME TEXT-EDITING TERMS

Before working with the Editor Toolbox, you will need to understand
the text-editing terminology used throughout this manual. Some of
the most important terms and concepts are defined below.

Editor

Text

An editor is a program that allows its user to create, update, or modify
information, usually stored in logical chunks called files. Some
editors are used to edit graphic information, such as topographic
maps, or schematic diagrams. Others edit textual information,
encoded in a language that is intended for a computer or a human to
read. Editors come in many flavors and styles, to suit different needs
and purposes. Here we will discuss several types of editors.

Our focus is on text editors, which edit files containing textual
encoded information. Text editors allow the user to create, update, or
modify text at many levels of organization-from single characters or
groups of them, to entire blocks or files of text.

A text editor may be very simple, such as the line editor supplied with
the operating system, or as sophisticated as MicroStar, the
demonstration editor supplied with the Turbo Editor Toolbox. You are
probably already familiar with the text editor that is integrated into
Turbo Pascal. With the Editor Toolbox, you can write your own appli­
cations with built-in editors.

The term text refers to a sequence of characters and/or lines that are
being edited. Text may be a program, a document, or any sequence of
one or more characters.

The characters of a piece of text are usually represented using the
widely-accepted ASCII (American Standard Code for Information In­
terchange) code. This standard assigns a numeric value to every char­
acter in the English alphabet, distinguishing upper from lower case. It

SOME TEXT-EDITING TERMS 7

8

also includes the numeric characters '0' through '9', some special
symbols (e.g., !@#$% A &*()-+ ={} [] :;""< > 7,./), and finally, a set of
control characters.

Besides assigning a unique numeric value to each character, the
ASCII character code also establishes an order for the characters in
the character set. Programs can depend on, and take advantage of,
the fact that no matter what numeric value the letter "B" is assigned
to, that value is always one more than the numeric value for "A".

In most natural languages like English, and in nearly every computer
programming language like Pascal, characters are combined in
groups, separated by "white space" such as blanks, tabs, line feeds,
or carriage returns. Most editors allow the user to manipulate text not
only on a character basis, but also on several other organizational
levels, including words, lines, and contiguous sequences of lines.

An editor can distinguish these units of information from one another
by looking for special unseen characters in electronic text, called con­
trol characters. Although not usually considered to be a part of the
message of a piece of text, they are always embedded in the text, and
take up the same room as other characters do. The following control
characters are used by nearly every text editor on most computer
systems, whether they're microcomputers or supercomputers:

Space, or <SP> (ASCII code 32)

Tab, or < HT> (ASCII code 9)

Return, or <CR> (ASCII code 13)
and

Line feed, or <LF> (ASCII code 10)

Form feed, or <FF> (ASCII code 12)

- Separates words

- Separates words, indicates
spacing

Together, these characters
- mark the end of a line of

text

- Marks the end of a page

Sometimes, more than one kind of textual delimiter, or separating
character, may be acceptable to mark a particular division in a piece of
text. For example, programs like compilers often allow words to be
separated by either spaces or tabs, and lines by either line feeds
carriage returns, or both. All of the characters listed above are tradi­
tionally referred to as "white space", since they don't print anything
on paper when output to a printer. However, they do affect the loca­
tion where neighboring visible characters will be printed.

Turbo Editor Toolbox Owner's Handbook

Line

Some editors have the capability to show these characters graphi­
cally on the display device. Turbo Editor Toolbox allows you to make
editors which graphically display most control characters, but space,
tab, line feed, and return are always recognized as text delimiters.

A line is a sequence of characters displayed on a single row of the
screen. In many text editors, it is possible for there to be more charac­
ters in a line than there are columns on the screen; in this case, a
means is usually provided to shift the displayed characters left and
right so that the entire line may be seen.

Text Stream

A text stream is a group of one or more lines of text. A text editor
manipulates one or more text streams.

Window

A window is a rectangular region of the computer's screen used to
display information and keep it separate from other information that
may be present on the screen at the same time. In a text editor, a
window usually "looks" into, and displays a portion of, the text
stream being edited. If the editor is capable of displaying more than
one window, different parts of the same text stream (or parts of two
different text streams) may be displayed simultaneously. In the Editor
Toolbox, windows always span the full width of the screen.

Cursor

The cursor is a small block or line on the screen (sometimes blinking)
that marks the place where changes are being made to the text. In a
screen editor, the cursor is usually within a text window. In editors
built with the Toolbox, each window can have a different cursor posi­
tion, although the cursor itself will only be displayed in one window at
a time.

SOME TEXT-EDITING TERMS 9

Block

File

A block is a contiguous sequence of characters within a larger body of
text. By "marking" a block (that is, indicating its beginning and end),
the user of a text editor enables operations to be performed on that
entire piece of text as a unit.

In editors built with the Turbo Editor Toolbox, as in most screen­
oriented editors, the currently marked block of text is displayed in a
different color from the rest of the text (or as highlighted text on a
monochrome display). To improve the speed and efficiency of the
editor, the Toolbox routines require a block to consist of whole lines of
text, rather than parts of lines.

Depending oJ"! the context, the term file may refer to a disk file or to the
text of a disk file which is being edited. In a window-oriented editor,
such as can be built with the Toolbox, files may be read and written to
and from windows.

Command

A command is a keystroke or sequence of keystrokes given to an
editor that invokes an editor operation. A command may modify text
in some way, or it may manipulate a block, file, or window. The Tool­
box contains many predefined routines which process commands. In
addition, you may write your own commands to supplement the Tool­
box, or to replace existing commands.

Command Dispatcher

10 '

A command dispatcher is a procedure in an editor (or other inter­
active program) that interprets characters typed as commands, and
calls one or more command processors to execute those commands.

Turbo Editor Toolbox Owner's Handbook

Command Processor

A command processor is a procedure that does the actual work asso­
ciated with the performance of a command. The Turbo Editor Toolbox
contains a complete set of command processors for the manipulation
of text.

Document Mode, Nondocument Mode

The desired behavior of a text editor often depends on the type of text
being edited. When editing a letter, for instance, it is often convenient
to have the editor adjust the format of the text so that the lines are full
and even. This feature (called word wrapping) is very useful for cor­
respondence, but is not helpful to a user who is composing computer
programs (where the vertical alignment of the text must not be dis­
turbed). For this reason, text editors usually edit text files in one of two
modes: either "document" or "nondocument" mode.

In document mode, the editor reformats text as it is entered to make
paragraphs look pleasing. To speed this reformatting process (and
also to distinguish characters which were added for aesthetic
purposes from those which the user specifically typed), the editor
may place a "1" in the high bits of certain character codes in the text.
Such a file will appear garbled when typed with the DOS "type"
command, but no information has been lost; in fact, additional infor­
mation about how the text has been formatted is present in the file.

In nondocument mode, an editor performs no automatic reformat­
ting; the user must position every character manually. This is useful
when writing computer programs, in which the exact position of
every word of text should be controlled to provide high legibility.
Because this mode does not use the high bits of character codes to
contain editor information, these bits can be used to perform other
functions. For instance, on the IBM PC, the character codes with the
high bit set cause special graphic and foreign-language characters to
be displayed. Non-document mode gives the user the ability to inter­
sperse these characters with text. (Such characters might confuse, or
be misinterpreted by, an editor operating in document mode.)

SOME TEXT-EDITING TERMS 11

Chapter 2
TYPES OF EDITORS

Line Editors

The earliest text editors for microcomputers were line editor~
editors that allow the user to display and edit text only one line at a
time. Every computer with MS-DOS or IBM PC-DOS comes with a line
editor on the operating system disk; it is called EDLIN, and is designed
to work with any MS-DOS machine.

EDLIN does not know what kind of terminal the computer uses, and
thus can make very few assumptions about how it may move the
cursor or manipulate the image you see on the screen. In fact, it
cannot assume that there is a video display at all-and so restricts
itself to actions which can be done on a printing terminal, such as a
teletype.

In EDLIN, the user enters single-letter commands to manipulate lines
of the file. For instance, the EDLIN command to enter new text into a
file is "I", for "insert," followed by a carriage return:

I <RETURN>

EDLIN responds by asking for a line of text. If the file is new, EDLIN will
ask for line 1 by responding:

and waiting for the user to input a line. When the user types a carriage
return at the end of the line, EDLIN responds by prompting for an­
other, and another, until <Ctrl-Z> is pressed:

1 : This is some text
2: to test the line editor.
3: <Ctrl-Z>

TYPES OF EDITORS 13

The user can use other single-letter commands to perform basic
editing operations, such as "L" to list lines, "0" to delete lines, "R" to
replace one string with another, and "W" to write the edited file to the
disk.

While EDLIN is a powerful editor, and can be used in some situations
where an editor like WordStar cannot, it is certainly not convenient for
everyday use. The requirement to type "L" just to see what the text
looks like is annoying, and since every line must be referred to by
number, the user expends much unnecessary effort just trying to find
the line number associated with the text to be worked on.

If you are fortunate enough never to have had to use a line editor, you
may want to find EDLIN on your DOS disk and experiment with it. It is
by far the best way to appreciate how far text editors have come since
the early days of microcomputers!

WYSIWYG Editors

14

The acronym WYSIWYG (pronounced "whizzy-wigll) stands for the
phrase "What You See Is What You Get"-a characteristic of most
modern text editors. When using a WYSIWYG editor, the user sees
what the finished text will look like (or something close to it) as it is
manipulated. Text is entered by simply typing it in; a cursor indicates
where the new text will go. At all times, the context surrounding the
place where the editing is being performed is visible.

Virtually all WYSIWYG editors also have commands to allow the user
to mark blocks of text "by eye" (rather than specifying them by line
number). These blocks can then be copied, moved, or deleted.

Some of the more advanced WYSIWYG editors (such as the editors
that can be built with this Toolbox) have the ability to display more
than one window at a time. This feature allows two texts to be
compared or combined with great ease and efficiency.

Most modern text editors are WYSIWYG editors. One of the oldest,
and still the most popular, is called WordStar, which can be had for
almost any computer, regardless of size or type. The command
structure of WordStar is so well-known to so many computer users
that we at Borland elected to use it in the editors for Turbo Pascal and
SideKick.

Turbo Editor Toolbox Owner's Handbook

Other popular WYSIWYG editors include Microsoft Word,
Volkswriter, PFS:Write, WordPerfect, and MacWrite. Some of these
editors will even allow pictures to be included in the text, and will
show different fonts by manipulating individual pixels of the display
screen.

RAM-Based Editors

A RAM-based editor is an editor that loads an entire disk file into
memory at once, and keeps it there while it is being edited. Because
all of the text in the file is available to the program directly through
data structures in RAM, searching through the file is simply a matter
of examining these data structures, and new text is added by creating
new ones. Most RAM-based editors are extremely small, fast, and
simple; the Turbo Pascal, SideKick, and SuperKey editors are all
RAM-based for this reason (as are the editors you can build with this
Toolbox).

"Swapping" or "Virtual" Editors

Of course, using system memory to store the text limits the amount of
text that can be edited at anyone time to the amount of memory in the
system. This is acceptable for many applications, such as program­
ming, where it is good practice to break programs up into small, easily
understandable modules. However, for some applications (or for
computer systems with limited memory) it may be desirable to be
able to edit a file of any size. A "swapping" or "virtual" editor allows
the user to do this.

In a "virtual" editor, parts of the text that are not currently being
edited or displayed are written out to a disk file (called a "swap" file),
and replaced with the portion of the text that is being worked on at the
time. The text being edited can thus be as large as the storage device
that holds the swap file. However, because disk accesses are much
slower than memory accesses, operations involving data in the swap
file are slowed down dramatically.

This is an important trade-off in editor design: fast with limited
capacity, or slow with unlimited capacity. The Toolbox is primarily
designed to operate as a memory-resident editor, but may be altered
to allow a "swapping" mode as well.

TYPES OF EDITORS 15

Chapter 3
REPRESENTATION OF TEXT

Character Data

Most computer systems represent character data as 8-bit bytes. The
ASCII standard defines the numbers 0 through 127 as valid numeric
codes that stand for commonly used characters. Because it takes
seven bits to represent 128 different values, an extra bit in each byte
usually remains unused. By convention, this is the "high bit" of the
byte, or bit number seven. The following is a graphical represen­
tation of a byte, and an ASCII character in that byte.

H~Tth 1t4.t-----ASCII Character---~.~I

Figure 3-1. Representing an ASCII Character in an 8-bit Byte

Because a byte is just a unit of storage in a digital computer, it can be
treated as a number, and compared with other bytes, just like integers
can be compared. Compilers and other computer programs use this
notion to decode the user's program text when compiling a program.

Some editors, such as the SideKick editor and the Turbo Pascal editor,
treat characters strictly according to their ASCII codes. Other editors,
such as MultiMate, use their own (nonstandard) modification of
ASCII. WordStar has a "nondocument mode" that selectively sets the
high bit of certain bytes. This high bit is very useful for storing infor­
mation about how the text is formatted (for example, right justifica­
tion, proportional spacing, fonts, and so on). However, there are no
standards for the meaning of the high bit, so setting the high bit
usually makes the file unintelligible to other programs and
computers.

REPRESENTATION OF TEXT 17

The Structure of the Editor's Text Buffer

One of the most important characteristics of the design of a text editor
is the data structure it uses to store textual data in memory while it is
being edited. There are a number of possible techniques, and each
affects the performance of specific editing tasks. Here, we will con­
sider three ways of managing the text buffer, in order of increasing
complexity and elegance.

The "Array-ot-Lines" Approach

18

The simplest and most obvious way to arrangs the text is simply as
an array of strings, each with a given maximum length. For instance, if
you were writing an editor to edit a piece of text that was never more
than 400 lines long, and each line was to be no more than 80 charac­
ters in length, you might declare your buffer as shown in Figure 3-2.

type
Buffer = array [1 .. 400] of string [80] ;

var
Note: Buffer;

and perform your editing within that array.

Line 1

Line 2

Line 3

......

T Line 400 T r-- 80 bytes ~

Figure 3-2. Array-of-Lines Buffer Structure

Turbo Editor Toolbox Owner's Handbook

This "brute force" method, while extremely fast and simple, makes
very poor use of space. Each line takes up the full 80 characters (plus
an additional byte for the length) whether it is empty or full. Since a
Turbo Pascal program can have, at most, 64K of global variables or
stack space-of which this size array will take up nearly half-it must
be allocated on the heap if there is to be room available for many
additional variables. If there are to be several active buffers at one
time, the space on the heap may be quickly consumed as well.

When this approach is used, adding characters to a line is very fast;
the characters are merely appended to the appropriate string. Scan­
ning for a pattern is reasonably fast when using the Turbo Pos func­
tion. However, adding a new line requires a block move, which is quite
time-consuming.

The "Fixed Buffer" Approach

The next technique also allocates a fixed chunk of memory to store
the text in, but does not waste as much space. The text is simply read
into a large, contiguous block of memory, control characters and all.
Viewed as a very big array of bytes, this organization has the advan­
tage of being quick to scan for strings. It is also fairly quick to scan for
end of lines when moving up or down in the file.

Another advantage to this approach is that the transfer of text to and
from the computer's file system (usually disk files) is most efficient.
Text can be read from disk directly into the text buffer with no need to
scan it as it is read; similarly, it can be quickly output to files using
Turbo Pascal's BlockWrite procedure.

This structure displays its greatest weakness when text is inserted
into the buffer. Inserting characters into the buffer in the middle (or,
worse, at the beginning) can be very slow if the most obvious method
is used-that is, performing a block move to make space for each new
character. Insertions can be speeded up somewhat by creating a large
"hole" in the middle of the buffer in which to insert text, so that only
one block move is done as the insertion begins. However, as the body
of text gets large, opening the hole still causes an inordinately long
delay.

REPRESENTATION OF TEXT 19

Fixed Buffer
defined as an
array that can be
manipulated at
the character
level by the
editor.

Unused space

End of text

Start of text

Not inserting text

End of text

Text inserted here

Insertion point

Start of text

Inserting text­
"Hole" open at point

of insertion

Figure 3-3. Layout of Memory in Fixed-Buffer Model

The "Linked-List" Approach

20

In this representation, the text consists of a linked list of Pascal
records, each of which contains pointers to: 1) the previous line, 2) the
following line, and 3) a string containing the line of text. This is the
representation used in the Turbo Editor Toobox.

Head of list this is a line ...

this is another ...

the third line ...

Figure 3-4. Layout of Memory in Linked-List Model

Turbo Editor Toolbox Owner's Handbook

In this approach, insertion of new lines is relatively simple and fast. A
new list record, called a line descriptor, is allocated on the heap and
linked into the existing list of lines. Space for the text of the line is also
allocated dynamically, and is pointed to by the text pointer of the new
line descriptor.

This approach is more complicated to program than the previous two,
but provides more even performance all around. Some of its advan­
tages follow.

First, operations such as j1cut" and "paste" are implemented as
simple splicing of linked data structures. Implementing this kind of
operation is very simple and quick.

Second, an editor designed around this technique can manage an
unlimited number of files of arbitrary size (subject only to memory
constraints), since memory is allocated dynamically.

This method is not without disadvantages. Its primary drawback is
that files read into the structure from disk must be scanned while they
are read to break them up into lines, and memory must be allocated
for each line when a new line is read from the file. Writing to files from
this structure involves a write to the disk for each line, using the line's
text buffer as the write buffer as well.

If the impact of these problems on performance is minimized, then
the linked-list model is superior to the fixed buffer model. In the case
of the Turbo Editor Toolbox, a linked-list model is combined with
high-speed disk liD routines to provide the best overall performance.

REPRESENTATION OF TEXT 21

Section II

BUILDING AN EDITOR

Chapter 4
AN (ALMOST) TRIVIAL EDITOR

In this chapter, we will present an extremely simple editor based on
the array-of-lines data structure. This editor is so simple that it does
not require the services of the toolbox at all; however, its limitations
help to highlight the power and ease of use that an editor built with
the toolbox can provide.

We start by defining an array of strings to serve as the buffer for our
text. Since this is only a small sample program, we will settle for 50
lines of up to 80 characters each; thus, the buffer can be defined as:

const
MaxLines = 50; {We will allocate space for 50 lines

var
Lines: array [l..MaxLines] of string[80]; { The text buffer}

We also need some housekeeping variables-one to keep track of the
line we are currently working on, another to serve as a loop index, and
another to hold the command input by the user, etc. The remaining
declarations provide these variables.

We begin execution by clearing all of the strings in the array to the null
string, and setting the current-line pointer equal to 1. We then enter an
endless loop, in which we get a command and process it. The large
case statement processes all of the commands; each is only a few
lines of code long. The user can change any line by entering a new line
to take its place; he or she can also show the current line, list all the
lines, and write the text to a file.

Try all of the commands in this simple program (it is on your program
disk) and use them to create some text. Despite its simplicity, this is a
real text editor, similar to the editors that the pioneers of
microcomputing used on their early machines!

AN (ALMOST) TRIVIAL EDITOR 25

26

progru Line;

{$R+ }

caDst
MaxlLne • 50; {We w11l allocate space for 50 lines

var
Lines : array [1. .MaxLine] of str1Dg[80]; {The text buffer}
CurLine : 1. . MaxLine ; {The current line}
i : 1. .MaxLine; {Loop index, used in various commands}
cmd : char; {Command character}
fn : str1Dg[80]; {Name of file to read or write}
f : text; {File variable for work file}

begin
for i : = 1 to MaxLine do
Lines[i) := ";

{Clear the buffer}

CurLine : = 1; {Start with the current line at the beginning}

repeat
Write('Line' curline:2, '>');
ReadIn(cmd);

{Prompt with line number}
Wet a command}

case UpCase (cmd) 0 f

'U' : if curline > I theD
cur line : = Pred (curline);

'0' : if curline < maxline theD
cur line : = Succ (curline);

'c' : begin
Writeln ('New line: ') ;
ReadIn (lines [cur line)) ;

end;

{Up line}

{Down line}

{Change line}

Turbo Editor Toolbox Owner's Handbook

'S' : Writeln(lines[curline));

, L ' : for i : = I to maxline do
Writeln(!:l. ') '. lines [ill;

'W' : begin
Write ('Filename:');
Readln (fn);
Assign (f. fn);
Rewrite (f);
for i : = I to maxline do

writeln (f. lines [i]);

Close (f);
end;

'Q' : Halt;

else
wri teln (' Illegal command');

end;
until false; {Loop until user quits}

end.

{Show lines}

{List buffer}

{Write file}

{Exit}

{Case}

Because of its simplicity, this editor is far from bulletproof; for exam­
ple, any file 1/0 error will crash the program immediately. While not a
commercial-quality product, this program does illustrate the ease
with which a very simple line editor can be created. Of course, most of
us are spoiled nowadays-we want (and expect) an editor with the
power of the Turbo Pascal editor or the Turbo Editor Toolbox.

AN (ALMOST) TRIVIAL EDITOR 27

Chapter 5
CREATING FIRST-ED-A FIRST
EDITOR USING THE TOOLBOX

The task of designing a good text editor is a difficult one. How should
the text appear on the screen? What should the commands be like?
How should files be formatted? Should the editor support multiple
text windows? Ultimately, the answers to all of these questions are a
matter of personal preference. The Turbo Editor Toolbox is flexible
enough to allow you to create editors with a wide variety of features.

With the Turbo Editor Toolbox, you do not need to start from scratch
when designing your customized text editor. The Toolbox comes out
of the package pre-configured as a simple, but powerful, editor with
WordStar-like commands.

In this chapter, we will show how the Toolbox can be used unaltered
to create and use FIRST-ED, the Toolbox default editor. In subsequent
chapters, we will demonstrate how to customize FIRST-ED, and re­
arrange the parts of the Toolbox to create an editor of your own
design.

Building FIRST-ED

FIRST-ED, the default Toolbox editor, demonstrates how to use the
entire Toolbox as a "black box." To build FIRST-ED, it is only neces­
sary to include all of the Toolbox files (those files with the extension
.EO) in a program in the proper order, and define some empty
procedures (these are "hooks" that we will use to customize the
editor later). The Toolbox variables are initialized by invoking the
procedure Editlnitialize, and a built-in command loop is invoked with
a call to the procedure EditSystem. Because the entire Toolbox is used
here with no changes, the main program for FIRST-ED is only three
lines long, including one line to simply clear the screen when the
program is finished!

CREATING FIRST-ED-A FIRST EDITOR USING THE TOOLBOX 29

30

{IC-,I-}
program FirstEditor;
{

Copyright (c) 1985 by Borland International, Inc.

1. Program name.
FIRST-ED - Simplest editor possible for Turbo Editor Toolbox.

2. Functional description.
This program demonstrates how easy it is to generate an editor with
Turbo Editor Toolbox. The following source includes all of the
necessary modules and then calls EditSystem to execute the default
editor loop.

Last modified: 10/25/85

System requirements: IBM PC and true compatibles
TURBO PASCAL 3.0
DOS 2.0 or later
128 K-bytes system memory minimum

List of data files:
EDITERR.MSG - Text file containing error messages.

{II VARS.ED } { Toolbox global variables and data structure definitions }

}

The following procedures must always be defined, even if they are just
null procedures (as they are here). Why? They're "hooks" into the Toolbox
command processors, error processors, display routines, and scheduler.
These routines will allow you to (1) redefine and add commands, (2) control
the presentation of error messages to the user, (3) control the status line
display, (4) Control the prompting mechanism for find & replace operations,
and (5) provide tasks for the editor's multitasking scheduler to execute in
the background.

procedure UserCommand(var ch : byte);
{ user command processor hook }
begin
end:

procedure UserError (var Msgno byte) ;
{ user error handler hook }
begin
end:

Turbo Editor Toolbox Owner's Handbook

procedure UserStatusline(var Yin : byte; Column, Line: integer);
{ user status line handler }
begin
end;

procedure UserReplace (var ch : byte);
{ user replace handler hook }
begin
end;

procedure UserTask;
{ user multi-tasking hook }
begin
end;

{SI USER.ED
{SI SCREEN. ED

{SI INIT.ED
{SI KCMD.ED
{$I OCMD.ED
{SI QCMD.ED
{SI CMD.ED

{SI K.ED
{SI O.ED
{SI Q.ED
{SI DISP.ED
{SI TASK.ED
{$I INPUT. ED

{ Editor kernel and primitive level helper routines}
{ Screen updating routines }

{ initialization code
{ Ctrl-K routines
{ Ctrl-O routines
{ Ctrl-Q routines
{ general editing commands }

{ Ctrl-K dispatcher and interface
{ Ctrl-O dispatcher and interface
{ Ctrl-Q dispatcher and interface
{ General command dispatcher
{ Scheduling subsystem and central dispatcher }
{ Input routines }

begin { program body }
Edi tIni tialize;
Edi tSystem;
ClrScr;

end.

{ Initialize dynamic structures }
{ Use the default main loop }

While this program may be deceptively simple to build, it is actually an
extremely powerful editor with multiple text windows, a WordStar­
like command interface, an Undo command, and a full complement of
useful text-editing features. We suggest that you compile and run
FIRST-ED (it's in the file FIRST-ED.PAS on your Toolbox disk) and
explore the functions of this editor. Remember that all of these
features, and others that you create, will be available to you in any
program you write with Toolbox!

CREATING FIRST-ED-A FIRST EDITOR USING THE TOOLBOX 31

A Brief Introduction to FIRST-ED

32

To compile FIRST-ED, start Turbo Pascal and specify FIRST-ED as the
Main file by typing the letter M followed by the file name FIRST­
ED.PAS. You will want to compile FIRST-ED to a .COM file, so that it
will have the maximl!m possible memory; to do this, type the se­
quence OCOC (Opticns, COM file, Quit options menu, Compile). After
Turbo Pascal finishes compiling FIRST-ED, type 0 (for Quit) to exit
Turbo and FIRST-ED to run the editor.

When you start FIRST-ED, you will see a screen with a single status
line. The status line gives the name of the file being edited, along with
the line and column numbers of the cursor within the file. When first
loaded, the status line should show that you are editing file NONAME
in Window 1.

If you type some text into the window and experiment with it a bit, you
will find that the command interface is much like WordStar. The
WordStar cursor diamond works as expected, as do many of the other
control keys and prefix/command combinations.

Certain commands, however, are missing, while others are new and
unique to the Toolbox. For instance, Ctrl-OO, which does nothing in
WordStar, creates a whole new editing window in FIRST-ED! Escape,
the Undo command, is also new. Try deleting a few lines and restoring
them using this feature-it is an excellent way to do a quick block
move without marking the text.

We will leave you here with a quick command reference that will allow
you to explore all of the features of FIRST-ED. We recommend that
you pay special attention to some of the novel features of the Toolbox,
such as the windowing commands. Remember that to exit FIRST-ED,
you must use Ctrl-KX, not Ctrl-KD or Ctrl-KO. Enjoy!

Turbo Editor Toolbox Owner's Handbook

Here is a list of all of the commands for FIRST-ED; these are the
default commands for any editor written with the Toolbox.

Table 5-1. FIRST-ED Quick Command Reference

Command Description Command Description

'A Left Word 'Q'C To end of file
'S Left Character 'Q'R To top of file
'0 Right Character 'Q'I Toggle Autoindent Mode
'F Right Word 'Q'B To Beginning of Block
'E Up Line 'Q'K To End of Block
'X Down Line 'Q' J Jump to Marker
'C Down Page 'Q'A Find and replace
'w Scroll Up 'Q' F Find pattern
'z Scroll Down 'Q'D To right on line
'p Insert Character by ASCII 'Q'S To left on line
'J Jump to Beg/End of Line 'Q'y Delete line right
RETURN New Line 'Q 1 Jump to marker 1
'N Insert Line 'Q2 Jump to marker 2
'G, DEL Delete Char
, I Tab 'Q9 Jump to marker 9
'R Up Page
'T Delete Words 'K'B Begin Block
'y Delete Line 'K'K End Block
'B Reformat Paragraph 'K'C Copy Block
'V Toggle Insert Mode 'K'V Move Block
'L Find Next Occurrence 'K'Y Delete Block
'R Up Page 'K'H Hide Block
ESC Undo 'K'R Read File

'K'W Write File
~O'X Down Window 'K'S Save File
'O'G GotoWindow 'K'T Set Tab Width
'O'E Up Window 'K'X Exit
'0' J Link Window 'K'M Set Marker
'O'Y Delete Window 'K 1 Set marker 1
'0'0 Create Window 'K 2 Set marker 2
'O'W Toggle Wordwrap Mode
'O'C Center Line 'K9 Set marker 9
'0'1 Jump to Column
'O'N Jump to Line
'OAK Change Case of Current Character
'0' L Set Left Margin
'OAR Set Right Margin
'O'S Set UNDO Limit
'01 Jump to window 1
'02 Jump to window 2

'09 Jump to window 9

CREATING FIRST-ED-A FIRST EDITOR USING THE TOOLBOX 33

Chapter 6
CUSTOMIZING FIRST-ED

By now, we hope you have experimented with FIRST-ED and dis­
covered some of its capabilities and limitations. You may want to
re-map commands or install the function keys. You may also decide
that you don't like FIRST-EO's screen layout, or the way it handles
error messages, or even the colors in which it displays text! With the
Turbo Editor Toolbox, all of the properties of the editor-the com­
mand interface, the screen display, even the representation of the text
in memory or on the disk-may be changed to suit your whim and
fancy. There are even hooks to add macro capabilities-and possibly
a command language-if you so choose.

The Rules of the Game: Required Files, Procedures
and Data Structures

To make an editor with the Editor Toolbox, you must merge the Tool­
box source code with a simple main program. We suggest that you
begin with the source for FIRST-ED (shown in Chapter 5), and build
from there.

Your program should use the {$I} compiler directive to include each
Toolbox module you are using. (Of course, you should only include
the modules containing routines that you will use in your final ver­
sion. For illustrative purposes, FIRST-ED uses them all.)

The first editor module contains the declarations of the most impor­
tant variables and types that Toolbox uses internally, which must be
included in any editor built with the Toolbox. It is:

VARS.ED Global constants, types, and variables

Next, it is necessary to declare some required procedures, as follows:

procedure UserCommand (var ch : byte); {user cmd processor hook}
procedure UserError (var Msgno : byte); {user error handler hook}
procedure UserStatusline (var Wn : byte; {user status line handler}

Column, Line : Integer);
procedure UserReplace (var ch : byte); {user replace handler hook}
procedure UserTask;

CUSTOMIZING FIRST-ED 35

36

As mentioned in Chapter 5, these procedures will allow you to add
features to the editor without having to modify the Toolbox routines
directly. They can be defined as null procedures (as they are in FIRST­
ED) if not used. We will discuss how to use each of these procedures
in subsequent sections.

Next, the editor kernel routines-important procedures that are called
from many places throughout the code-must be included. These are
contained in the following module:

USER.ED Editor kernel routines

Following the kernel routines is the module containing the Toolbox
screen routines. This module is called:

SCREEN.ED

After the screen routines, include the editor initialization code and the
command processors:

INIT.ED
KCMD.ED
OCMD.ED
OCMD.ED
CMD.ED

Initialization code
All overlaid Ctrl-K routines
All overlaid Ctrl-O routines
All overlaid Ctrl-O routines
Overlaid single-keystroke editing commands

Finally, the remaining modules should be included in the following
order:

K.ED
O.ED
O.ED
DISP.ED
TASK.ED
INPUT.ED

Ctrl-K dispatcher and interface
Ctrl-O dispatcher and interface
Ctrl-O dispatcher and interface
General command dispatcher
Scheduling system and central dispatcher
Input routines

This ordering need not be followed exactly; however, deviating from
it to any great extent may require forward declarations to be added to
your program. In general, any procedure that is defined in the mod­
ules you include may be called from anywhere in your program, sub­
ject to the scope rules of Pascal.

Turbo Editor Toolbox Owner's Handbook

If you want to make very major changes to FIRST-ED, you may
decide to replace an entire Toolbox module with your own code. (In
MicroStar, our sophisticated Toolbox editor, we replaced the com­
mand dispatchers EditK, EditO, and EditQ with new user interface
procedures and a pulldown menu system.)

The Main Program

The main program of your editor should consist of:

• A procedure call to Editlnitialize, to initialize the editor data
structures

• A call to the Toolbox's predefined command-processing loop
(EditSystem)

• Code to "clean up" the screen, and so on, after the editor is fin­
ished.

In some cases, you may wish to provide your own command­
processing loop instead of EditSystem, the Toolbox default. This will
rarely be necessary, however, since the Toolbox provides easy access
to the command dispatching routines.

Customizing the Command Interface:
The UserCommand Procedure

The procedure UserCommand is the simplest hook into the Toolbox
command dispatchers. This procedure takes and returns a single byte
as a var parameter, and is called by Toolbox whenever a new com­
mand character is entered from the keyboard.

UserCommand is given the opportunity to act on, and/or change, each
control character before it gets to the main command dispatcher.
Because the character is passed as a var parameter, UserCommand
can act as a filter that transforms one keystroke, or sequence of
keystrokes, into another. It can also dispatch or process commands
itself.

CUSTOMIZING FIRST-ED 37

After control has returned from UserCommand, the command key­
stroke is passed on to procedure EditPrccmd, the Toolbox default
command dispatcher. If UserCommand has done all the processing
that needs to be done for a keystroke, it can change the var parameter
to the number 255 before returning a signal that the default command
dispatcher is to do nothing. If UserCommand does not alter the key­
stroke, or changes it to a value other than 255, EditPrcCmd will
process that character just as if it were typed on the keyboard.

A Simpler Edito~-Using UserCommandto Disable
FIRST-ED Commands

38

The following is an example of a UserCommand procedure that con­
verts FIRST-ED into a very simple editor indeed-one that does not
have any commands that are prefixed by Ctrl-K, Ctrl-O, or Ctrl-D.

procedure UserCommand (var Ch : byte);
begin
if Ch = Ctrlk then

begin
EditCprfw;
Ch : = 255;

end
else if Ch = Ctrlq then

begin
EditCpwfw;
Ch : = 255;

end
else if Ch = Ctrlo then

Ch : = 255;
end; {UserCommand}

{ have Ctrl-K read a file }

{ the predefined read file processor }
{ indicate it I S done }

{ have Ctrl-Q write file }

{ the predefined write file processor }
{ indicate it I S done }

{ disable this prefix }

{ all single-key commands remain the same }

Of course, disabling so many of the Toolbox commands would vastly
diminish the power of FIRST-ED. However, if one were to actually
make this change, it would be possible to delete the procedures which
handle commands prefixed with Ctrl-K, Ctrl-O, and Ctrl-O-EditK,
EditO, and EditO, respectively-as well as the code that processed
these commands. Such surgery would result in a significantly smaller
final program.

Turbo Editor Toolbox Owner's Handbook

A Matter of Personal Preference-Using
UserCommandto Filter Commands

UserCommand can also be used to configure certain editor keys the
way you like them. For instance, in FIRST-ED, the Backspace key is
destructive; that is, it deletes the character to the left of the cursor, as
in the Turbo, SideKick, and SuperKey editors. However, if you are
used to the default configuration of the program WordStar, you may
want the backspace key simply to move the cursor to the left-a
change that can be easily implemented in UserCommand. Just
change the Ctrl-H character generated by the backspace key to a Ctrl-S
(cursor left):

procedure UserCommand (var Ch : byte);
begin
if Ch = Ctrlh then

Ch : = CtrlS;
end; {UserCommand}

A New Command

{ Backspace becomes cursor left }

{ all other commands remain the same }

Suppose you want to write a new command not included in FIRST­
ED.PAS. Imagine, for a moment, that FIRST-ED had no command to
delete all text on the current line to the right of the cursor. Making one,
while it requires some knowledge of the editor's internal data
structures, is not difficult. Here is the way this command is imple­
mented in the Toolbox:

procedure Edi tDeleteTextRight;

var
i: integer;

begin { Edi tDeleteTextRight }
with Curwin' do
begin
if Colno < = Cur line' ,Buff Len then
begin

for i : = Colno to Cur line • ,Buff Len do
Curline',Txt', [i] := I I ;

if not EditSizeline (Cur line , Colno) then

CUSTOMIZING FIRST-ED 39

begin
EditErrormsg (35);

exit;

end
end

end
end;

{ No more memory }

{ Edi tDeleteTextRight }

In this example, the with statement indicates that all operations are
to be performed within the current window, whose descriptor record
is pointed to by the global pointer CurWin. If the cursor is already past
all the text on the line, nothing happens. Otherwise, the for loop puts
spaces in all columns on the current line (Curline), starting at the
cursor column, Col no. The procedure then sets the line length to the
column number, and calls EditSizeline to free any extra space.

Integrating a New Single-Keystroke Command

40

The above procedure could be called from anywhere in an editor or a
program you have integrated with an editor. But-since you have
intended it to be a command invoked by the user-you need to make
it available from the keyboard. The best way to do this depends on the
key sequence you choose to trigger the command.

If you want to invoke the command with a single keystroke, the proce­
dure UserCommand would be the best way to add it to the user
interface. Here's how to change the editor to make Ctrl-J delete all the
text to the right of the cursor and leave all other commands the same.

procedure UserCommand (var Ch : byte);

begin {UserCommand}

if Ch = Ctrlj then
begin

Edi tDeleteTextRight;
Ch : = 255;

end
end; {UserCommand}

{ make Ctrl-J a special command }

{ call our own procedure }

{ indicate the command's done }

Note that this change would override the standard command associ­
ated with theCtrl-J key (go to beginning/end of line). The old com­
mand would become inaccessible as a result of the change.

Turbo Editor Toolbox Owner's Handbook

Integrating a New Prefixed Command

In the Editor Toolbox, prefixed commands (commands that consist
of Ctrl-K, Ctrl-O, or Ctrl-O followed by another keystroke) are handled
in two steps. When the prefix is typed, control is passed to a special
dispatching procedure that handles commands with that prefix
(EditK, EditO, or EditO, respectively). This procedure then prompts for
the additional character, passing control to the appropriate command
processing routine. Figure 6-1 shows the flow of control within the
Toolbox for both prefixed and non-prefixed commands:

Command Processors for
Prefixed Commands

Prefixed
Command
Dispatchers
(prompt for
additional
keystroke)

Figure 6-1. Editor Toolbox Command Dispatching: Flow of Control

Thus, while a single-keystroke command can be added by modifying
UserCommand, creating or changing a prefixed command must be
done by modifying the dispatcher for that prefix. When we wrote the
Toolbox, we added our Ctrl-OY command by modifying the Ctrl-Q
command dispatcher procedure EditQ (found in the file O.ED) as
shown below:

procedure Edi tQ;
{

1. Proc name.
EditQ-perform window and searching command processing.

2. Functional description.
This routine processes the Ctrl-Q command processing for the
edi tor. The Ctrl-Q command is simply a submenu of commands to
which window and searching commands may be added. You can remove
commands from the editor by removing their references in the case
statement in this procedure. If all of the commands in a module
are to be deleted (say, all window commands), then you can simply
omit that include and comment out the references in this
procedure.

CUSTOMIZING FIRST-ED 41

vat

ch: byte;

begin
EditAppcmdnam (' <Ctrl-Q> ');
ch : = EditCtrlChar;
case ch of

Ctrla : EditCpreplace;
Ctrlb : EditTopBlock;
Ctrlc : EditWindowBottomFile;
Ctrld : EditEndLine;
Ctrlf : EditCpfind;
Ctrli : EditToggleAutoindent ;
Ctrlj : EditCpjmpmrk;
Ctrlk : EditBottomBlock;
Ctrlr : EditWindowTopFile;
Ctr Is : EditBeginningLine;,
Ctrly : EditDeleteTextRight;

{ EditQ }

{ COMMAND DESCRIPTION}
{ Find and Replace }

{ Cursor to beg, of block }
{ Bottom of window}

{ End of current line }
{ Find pattern }

{ Toggle auto indent mode }
{ Jump to marker (prompt) }
{ Cursor to end of block }

{ Top of window}
{ Beg, of current line }

{ Delete text to eol }
One, ,Nine : EditJumpMarker(ch - Zero); {Jump to numbered marker }

end
~; {OO~}

If you want to redefine many commands, the best course of action is
usually to completely replace the default EditQ, Edit/(,. and EditO
procedures with your own.

A More Complex Editor

42

You can make very complex editors with the Toolbox by writing your
own command and prefix command dispatchers, as well as addi­
tional command procedures. MicroStar, the powerful demonstration
editor to be presented in the next chapter, is such a program. The
command dispatchers have been extensively modified (MS.PAS in­
cludes its own EditK, EditO, and EditQ routines), and som~ com­
mands have been written from scratch. We have implemented
procedures to rename, copy, and delete files, a directory display
similar to SideKick's, and a complete set Qf WordStar-compatible
commands. There is a pull-down menu system (invoked QY pressing
the F10 key), and a background printing routine! All of these features
were built on top of the basic Toolbox editor, using the "hooks"
described earlier.

Turbo Editor Toolbox Owner's Handbook

Chapter 7
MICROSTAR-A SOPHISTICATED
EDITOR

To demonstrate the power and versatility of the Turbo Editor Tool­
box, we have developed a "super-editor" using the Toolbox routines.
We call it MicroStar, and it's in the file MS.PAS on your Toolbox disk.

MicroStar, a professional-quality editor in its own right, was designed
to use-and show off-every feature of the Turbo Editor Toolbox.
Some of the goodies you will find include:

• Wordstar command emulation

• An Undo facility (thanks to the Toolbox)

• Fast, multitasking background printing

• Sidekick-like directory display

• A complete pulldown menu system

... all with complete source code!

Getting to Know MicroStar

To compile MicroStar, start Turbo Pascal and specify MS as the Main
file by typing the letter M followed by the file name MS. You will want
to compile MS to a .COM file, so that it will have the maximum possi­
ble memory; to do this, type the sequence OCOC (Options, COM file,
Quit options menu, Compile). After Turbo Pascal finishes compiling
MS, type 0 (Quit) to exit Turbo and MS to run the editor.

Building Microstar

Compiling the file MS.PAS on your Toolbox disk will automatically
pull in all of the necessary Toolbox routines to build MicroStar. All of
these files are replaced by code in the body of MicroStar.

MICROSTAR-A SOPHISTICATED EDITOR 43

As with FIRST-ED, the first thing you should do is run MicroStar to get
a feel for its user interface and text-handling capabilities.

MicroStar will display a pop-up window that asks for the name of a file
to edit. You can enter a filename here, or simply hit the ESCAPE key. If
you do the latter, then MicroStar will restrict your movements to the
pulldown menus at the top of the screen; you may not type text until
you have named the file you are going to create or edit.

Using the Pulldown Menu System

The arrow keys (or the WordStar cursor commands) will allow you to
move along the menu bar. To "open" a pulldown menu, press the
RETURN key, or type the letter corresponding to the capitalized letter
in the menu name. The menu will open, and you will be able to select
an item either by letter again, or by moving to your selection and
pressing RETURN.

You can make a pulldown menu disappear by pressing the Escape
key. If no pulldown menu is exposed, the next press of the Escape key
will cause you to exit the pulldown menu system (assuming that you
have a file open) and return to the text window.

The MicroStar Command Set

44

The MicroStar command set is similar to that of FIRST-ED, with some
enhancements. Ctrl-KO and Ctrl-KQ work as expected. Background
printing from a file is possible, and the Escape key will Undo your last
deletion. Table 7-1 shows a complete list ofthe MicroStar commands:

Turbo Editor Toolbox Owner's Handbook

Table 7-1. Micro-Star Quick Command Reference

Command Description Command Description

AA Left Word AQAS To left on line
AS Left Character AQAD To right on line
AD Right Character AQ A J Jump to marker
AF Right Word AQAI Toggle Autoindent Mode
AE Up Line AQA R To top of File
AX Down Line AQAC To end of File
AR Up Page AQA B To begin of Block
AC Down Page AQAK To end of Block
AW Scroll Up AQ 1 Jump to Marker 1
AZ Scroll Down AQ2 Jump to Marker 2

RETURN New Line
AN Insert Line AQ9 Jump to Marker 9
AG,DEL Delete Character AQAy Delete Line Right

BKSP Delete Left Character AQAF Find Pattern
A I Tab AQAA Find and Replace
AT Delete Word
Ay Delete Line AKAS Save File & Resume
AB Reformat Paragraph AKAD Save & Open file
AV Toggle Insert Mode AKAX Exit to DOS
AL Find Next Occurrence AKAQ Abandon & open file
AJ Beginning/End of line A K 1 Set Marker 1
Ap Insert Char by ASCII AK 2 Set Marker 2

AOAO Open new window AK9 Set Marker 9
AOAL Set Left Margin AKAB Begin Block
AOAR Set Right Margin AKAK End Block
AOAC Center Line AKAH Hide Block
AOAK Change Case AKAC Copy Block
AOAS Set UNDO Limit AKAV Move Block
AQAW Toggle Wordwrap Mode AKAy Delete Block
AOAG Goto other window AKAW Write Block
AOA I Goto Column AKAR Read block
AOAN Goto Line AKAM Set marker
AOAy Destroy window AKAT Define tab width

ESC Undo last change AKAL Lightning spell check

F10 Activate Pulldown Menus

MICROSTAR-A SOPHISTICATED EDITOR 45

Chapter 8
INSIDE MICROSTAR

In this chapter, we will share the secrets of the MicroStar editor, so
that you, too, can create equally powerful text-editing systems using
the Turbo Editor Toolbox. We will cover:

• The command dispatchers

• The pulldown menu system

• The pop-up window routines

• The background print spooler

• Customizing error handling

• Customizing the status display

• The "dirty" bit-detecting changes in the text

The Command Dispatchers

In Chapter 6, we showed graphically the flow of control within the
Turbo Toolbox command dispatching routines. In MicroStar, two
levels of the original hierarchy are replaced: the procedure
EditPrccmd, which processes the characters filtered through User­
Command, and EditK, EditO, and EditQ, which process the prefixed
commands.

The command dispatchers in MicroStar underwent only minor
changes from those in the Toolbox. Because of the different display
requirements of MicroStar, we added the procedure SecondChar to
get the second character of the command, rather than using EditAp­
pcmdnam. We also eliminated the calls to EditZapCmdnam for the
same reason. The EditO command dispatcher actually became
simpler than the corresponding default Toolbox routine. Because
MicroStar allows, at most, two windows to appear on the screen, the
commands involving numbered windows were eliminated.

This command dispatcher changes only a few single-character com­
mands from the original. The most important difference between this
version and the standard Toolbox dispatcher is that the call to Edit­
ZapCmdname has been removed; this prevents the Toolbox from
blanking a portion of the screen that is no longer used for status or
commands. If desired, however, any or all of the editor commands
could have been changed by modifying this procedure.

INSIDE MICROSTAR 47

48

The EditK, EditO, and EditQ procedures underwent more drastic
modifications.

The new EditK supports the enhanced layout of tha MicroStar screen
display by replacing the call to EditAppcmdnam (which prompts for
the second character for FIRST-EO's prefixed commands) with a new
procedure, SecondChar. It also replaces the default "Block Move"
combination, Ctrl-KM, with the more familiar Ctrl-KV. It implements
the WordStar Ctrl-KO (Done) and Ctrl-KQ (Quit) commands, and al­
lows the Ctrl-KX command to save the file before terminating the
editor.

procedure Edi tK;
{ This routine is the utility supercommand processor for the

editor. The Ctrl-K command is simply a submenu of commands
to which file I/O and block commands may be added. You can remove
commands from the editor by removing their references in the case
statement in this procedure. If all of the commands in a module
are to be deleted (say. all block commands). then you can simply
omi t that include and comment out the references in this procedure.

var
ch: byte;

begin
EditAppcmdnam (' <Ctrl-K>');
ch : = EditCtrlChar;
case ch of

Ctrlb : EditBlockBegin;
Ctrlc : EditBlockCopy;
Ctrlh : EditBlockHide;
Ctrlk : EditBlockEnd;
Ctrlm : EditCpsetmrk;
Ctrlr : EditCprfw;
Ctrls : Edi tcpfilesave;
Ctrlt : EditCptabdef;
Ctrlv : EditBlockMove;
Ctrlw : EditCpwfw;
Ctrlx : Edi tCpexi t;
Ctrly : EditBlockDelete;

{ EditK }

{ COMMAND DESCRIPTION
{ begin block
{ copy block
{ hide/display toggle block }
{ end block }
{ set marker (prompt) }
{ read file into window
{ save file from window
{ define tab width
{ move block
{ write file from window
{ exi t edi tor
{ delete block

One .. Nine: EditSetMarker(ch - Zero); { set marker #
end

end; {Edi tK}

The new EditO also integrates the display routine SecondChar, and
removes two of the original Toolbox commands Ctrl-OE (a nonstan­
dard "jump to end of block" command) and Ctrl-OA (toggle
"autoindent" mode-this was replaced by the Turbo-compatible
Ctrl-QI).

Turbo Editor Toolbox Owner's Handbook

procedure Edit 0 ;
l This routine processes the Ctrl-O command processing for the editor. The Ctrl-O command

is simply a submenu of commands to which text manipulation commands may be added. You can
remove commands from the editor by removing their references in the case statement in this
procedure. If all of the commands in a module are to be deleted, then you can simply omit
that include and comment out the references in this procedure.

vat
ch : byte;

begin
EditAppcmdnam (' <Ctrl-O>');
ch : = EditCtrlChar;
case ch of

Ctrlc : EditCenterLine;
Ctrle : EditWindowUp;
Ctrlg : EditCpgotowin;
Ctrli : EditCpgotocl;
Ctrlj : EditCplnkwin;
Ctrlk : EditChangeCase;
Ctrll : Edi tCpsetlm;
Ctrln : EditCpgotoln;
Ctrlo : EditCpcrewin;
Ctrlr : EditCpsetrm;
Ctrls : EditCpundlim;
Ctrlw : EditToggleWordwrap;
Ctrlx : EditWindowDown;
Ctrly : EditCpdelwin;

One .. Nine: Edi tWindowGoto (ch - Zero);
end

{ EditO }

{ COMMAND DESCRIPTION
{ center text
{ up window
{ goto window (prompt)
{ goto column i
{ link (join) window
{ change case
{ set left margin
{ goto line n
{ open new window
{ set right margin
{ set undo limit
{ toggle word wrap mode
{ down window
{ destroy window
{ jump to window #

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

end; {EditO}

The new EditQ integrates Secondchar, and eliminates the Toolbox
windowing commands Ctrl-OL (Link Window), Ctrl-OE (Up Window),
and Ctrl-OX (Down Window). It adds confirmation to the Ctrl-OY com­
mand (Delete Text in Window), so that the user who is accustomed to
the WordStar command Ctrl-OY (Delete to End of Line) does not lose
all of the text in the window without warning.

procedure Edi tQ;
{ This routine processes the Ctrl-Q command processing for the editor. The Ctrl-Q command

is simply a submenu of commands to which window and searching commands may be added. You
can remove commands from the editor by removing their references in the case statement in
this procedure. If all of the commands in a module are to be deleted (say, all window
commands), then you can simply omit that include and comment out the references in this
procedure.

var
ch: byte;

begin
Edi tAppcmdnam (' <Ctrl-Q>');
ch : = Edi tCtr lChar;
case ch of

Ctr la : EditCpreplace;
Ctrlb : Edi tTopBlock;
Ctrlc : EditWindowBottomFile;
Ctr Id : EditEndLine;

INSIDE MICROSTAR

{ EditQ }

{ COMMAND DESCRIPTION
{ Find and replace }
{ Cursor to beg. of block }
{ Bottom of window }
{ End of current line }

49

Ctrlf : EditCpfind;
Ctrli : Edi tToggleAutoindent;
Ctrlj : Edi tCpjmpmrk;
Ctrlk : EditBottomBlock;
Ctrlr : EditWindowTopFile;

{ Find pattern
{ Toggle auto indent mode
{ Jump to marker (prompt) }
{ Cursor to end of block }
{ Top of window

Ctrls : Edi tBeginningLine; { Beg of current line
Ctrly : EditDeleteTextRight; { Delete text to eol

One .. Nine: EditJumpMarker (ch - Zero); { Jump to numbered marker }
end

end: { Edi tQ }

The Pulldown Menu System

50

The pulldown menu system included with MicroStar is a useful
general-purpose utility that can be used in other programs as well.

The data structures giving the text strings for the pulldown menu
system are defined as typed constants at the very beginning of the file
MS.PAS. The name of the first constant string must be "st01"; the
lengths and positions of the remaining items are calculated by the
menu initialization routines.

The first group of strings gives the headlines to be placed in the
"menu bar." Of course, there must be exactly as many strings in this
group as there will be menus. The last headline is followed by a
constant string set to null that indicates the end of the list, as shown
below: .

{The following strings are the headline of the pull-down menu. Insert
only spaces before the section. If you need more than one space after
the whole line, change the value of "NoSpaces." The length must
match the actual length of the string.}

stol:string[06j=' Block';
st02:string[08j=' Search';
sto3:string[07j=' Go to';
sto4:string[13j=' Text format';
st05:string[08j=' Window';
sto6:string[06j=' File';
sto7:string[Olj ="; {The headline and each submenu are terminated by an empty string wi th length of "I"}

The list of headlines is followed by an equal number of lists of menu
entries, each also terminated by a null string. Note that the length of
the first entry determines the width of the menu; it must be at least as
wide as the other entries to prevent them from being truncated.

Turbo Editor Toolbox Owner's Handbook

{Here comes the 1 st submenu. The first entry has to be filled with
spaces as it represents the maximum length of a submenu}

stH : string[12] = 'Begin
stl2 : string [03] = 'End';
stl3 : string [04] = 'Copy';
stl4 : string [04] = 'Move';
stl5 : string [04] = 'Read';
stl6 : string [05] = 'Write';
stl7 : string [06] = 'Delete';
stlB : string[09] = 'Hide/show';
sU9 : string[12] = 'Spell check';
stlx : string[Ol] = ";

Similar groups of strings are used to define the remaining pUlidowns.

The menu initialization routine, InitMainMenu is called at the begin­
ning of the program to display the menu bar. From this point on, the
procedure PulldownMenu activates pulldown menu operation.

The items in the menus are linked to command processor routines
through a large case statement in procedure PulldownMenu, as
follows:

if ch = #13 then
case CurrSubmenu of

1 : case CurrSelection of
1: Edi tBlockBegin;
2: Edi tBlockEnd;
3: Edi tBlockcopy;
4: Edi tBlockmove;
5: ReadBlock;
6:if WriteFile(true) then;
7: Edi tBlockOelete;
B: Edi tBlockHide;
9:SpeHingCheck;

end;
2:case CurrSelection of

1 : FindRep(false, true);
2: FindRep (true, true) ;
3:1f Replast then

end;

FindRep(true, false)
else

FindRep (false, false) ;

INSIDE MICROSTAR

{ a selection has been made }

51

52

A menu item may be made to invoke any routine in the Toolbox
through modifications to this case statement.

The UserCommand procedure is used to trigger MicroStar's pull­
down menu routines when F10 is pressed. In the Toolbox, all of the
special keys on the keyboard that do not have assigned functions
generate a null character followed by the "scan code" of the key. The
scan codes for some of the unused special keys are as follows:

F1-F10:
Shift + F1-F10:
Control + F1-F1 0:
Alt + F1-F10:
Ctrl + <-:
Ctrl + ->:
Ctrl + End:
Ctrl + PgOn:
Ctrl + Home:
Alt + 1-10:
Ctrl + PgUp:

59-68
84-93
94-103

104-113
115
116
117
118
119

120-129
132

UserCommandtraps the F10 key and activates the menus as follows:

procedure UserCommand(var ch : byte);

{ This is the user command processor hook }

begin { procedure UserCommand }

if ch = 0 then { Function key }

end;

begin
ch : = Edi tGetInput;

if ch = 68 then
PulldownMenu;

ch := 255;

end;

{ FlO pulls down menu }

{ Always absorb key code }

{ procedure UserCommand }

This is a very convenient way to integrate a menu system, since the
command generated by the menu can be returned in the var parame­
ter of UserCommand and processed immediately by EditPrcCmd.
Multi-character commands can be returned by UserCommand by
using the procedure EditUserPush; the pushed characters are auto­
matically processed so that they do not pass through UserCommand
again. The menu routines can also call command processor routines
directly. In MicroStar, we used this approach because many of the
menu items invoked low-level command processors directly.

Turbo Editor Toolbox Owner's Handbook

The Pop-Up Window Routines

MicroStar uses pop-up windows to prompt for yes/no responses and
other information from the user. Each window saves the information
that was on the screen underneath it, and restores it when through.
The routines:

procedure MakeWindow(col,line,nc,nl : byte);
and

procedure RestoreWindow(col,line,nc,nl : byte);

draw the windows and save and restore the screen contents.

The Background Print Routines

The Toolbox task scheduler, which is part of the loop invoked by the
procedure EditSystem, allows the user to run background tasks while
the editor is waiting for keyboard input. MicroStar specifies that the
printing routines are to be run in the background by placing calls to
them in the procedure UserTask:

procedure UserTask;
begin

PrintNext;
end;

The procedure PrintNext is a simple state routine whose first line is: if
not printing then exit;.

This provides a speedy return and prevents any noticeable system
degradation when not printing. When a file is being printed, PrintNext
will read characters from a buffer and send them to a printer until it
detects input at the keyboard; it then returns control to the main
editor loop.

Customizing Error Handling

The Turbo Editor Toolbox allows a user routine to take control of error
processing in much the same way that it allows filtering of keyboard
commands. When the toolbox detects an error, it passes control to the
procedure User Error, with a var parameter indicating the type of error
that occurred.

INSIDE MICROSTAR 53

54

When User Error returns, the var parameter Msgno is passed to the
standard Toolbox routine EditErrormsg. If Msgno is set to any value
other than zero, EditErrormsg will produce an error message corres­
ponding to that value, and display it in the upper left-hand corner of
the screen. If the value is zero, the Toolbox assumes that the error has
already been handled appropriately.

Because the standard Toolbox error-handling routines would place
the error message in an unpleasing position on the MicroStar display,
MicroStar's User Error routine unconditionally handles all error
messages through MicroStar's own procedure, ErrorCheck:

procedure UserError {(var Msgno : byte)}; {user error handler hook}
begin
if Er ro rCheck (Msgno) then;
Msgno : = 0;

end;

ErrorCheck, in turn, calls the Toolbox function EditMessage, which
retrieves the error message corresponding to a particular error num­
ber from an error message file. It then displays the error message in
an aesthetically pleasing way on the screen.

The format of the Toolbox error message file, EDITERR.MSG, is de­
signed to allow easy modification. Each line with a valid error
message must begin with a three-digit error number, followed by a
space and the message string, as follows:

*** This is a comment, and will be ignored

001 File does not exist
002 File is not open for input
003 File is not open for output
004 File is not open
005 File unreadable
006 File unwri table
016 Invalid numeric format

Turbo Editor Toolbox Owner's Handbook

The error messages defined by the Toolbox include the Turbo Pascal
file 1/0 errors-which are, in fact, numbered exactly the same in the
Toolbox as they are in Turbo. You may use any of the unused numbers
to define up to 255 total messages. MicroStar defines a number of
messages that are pertinent to its own operations; these are dis­
played through direct calls to the procedure ErrorCheck when
needed.

Customizing the Status Display

The Turbo Editor Toolbox also allows the user to redefine the way
that the editor status (current line, column, window, etc.) is displayed
on the screen. The" hook" for this operation is

procedure UserStatusline (var TWindow: byte; Column,line: in­
teger);

Before displaying the current editor status, the Toolbox calls
UserStatusLine with the pertinent information. If UserStatusLine
returns with the window number TWindow greater than zero, the
default Toolbox status display is used. If TWindow is returned as zero,
then the Toolbox assumes that the user has displayed the information
and does nothing.

MicroStar uses a customized UserStatusLine routine to display infor­
mation for up to two windows in the upper right-hand corner of the
user screen. TWindow is unconditionally set to zero to disable the
default Toolbox routines.

The "Dirty" Bit-Detecting Changes in the Text

Most editors have a number of commands which, implicitly or ex­
plicitly, destroy the text stream currently in memory (such as Ctrl-K).
Before executing such commands, it is desirable to prompt the user
and ask whether it is OK to abandon any changes that might have
been made before proceeding with the operation.

INSIDE MICROSTAR 55

56

The Turbo Editor Toolbox provides a mechanism to do this through a
global boolean variable called EditChangeFlag. This flag is set by all
of the Toolbox command processors when they modify the text
stream; the Toolbox itself performs no other operations on this flag.
Your routines must set the bit in command processors that you
define, and must clear it when a file has been successfully saved.

MicroStar manipulates EditChangeFlag in many routines throughout
the file MS.PAS. Any editor written with the Toolbox should maintain
the flag in a similar fashion to ensure that the user is warned appropri­
ately of the consequences of his or her actions.

The background-printing routine in MicroStar does not process
WordStar-style "dot" commands; however, it does ignore lines that
begin with a dot so that WordStar files print in an attractive way.
Because the printing routines go directly to the IBM PC BIOS when
checking for keyboard input, they must be modified if the Toolbox is
ported to a non-compatible computer.

Turbo Editor Toolbox Owner's Handbook

Section III

HARNESSING THE FULL
POWER OF THE TURBO

EDITOR TOOLBOX

Chapter 9
TEXT AND WINDOW DATA
STRUCTURES

This section of the manual describes the internals of the Turbo Editor
Toolbox. With this information in hand, you will be able to tailor the
architecture and features of the Toolbox to your needs.

How Text Data is Stored

In order to modify Toolbox, you must first understand how the editor
stores and keeps track of the text stream(s) being edited. As men­
tioned earlier, streams of text are represented in Toolbox routines as
linked lists of lines, each with a forward pointer, a backward pointer, a
dynamically allocated string, a length word, and some flags.
Represented pictorially, the structure as shown in Figure 9-1.

Fwdlink: Backlink: Txt: Flags: Buff Len:
Plinedesc Plinedesc Ptextdesc Integer Integer

~ ~,

(To next line's descriptor) (Text data) ...

Figure 9-1. How the Editor Stores and Tracks Text Data

The types Plinedesc and Ptextline are pointers to objects of types
Linedesc and Textline, respectively. The type Textline is defined in the
module VARS.ED as a maximum-length Turbo Pascal string (255
characters).

The fields of the line descriptor record include the following:

Fwdlink. A pointer to the line immediately following. If the line in
question is the last line in the text, this field is nil. To insert a line into a
linked list of lines, use a section of code similar to this:

TEXT AND WINDOW DATA STRUCTURES 59

60

{assume line p is to be inserted above}

{line 9 }
p •. Fwdlink : = q •. Fwdlink;

q •. Fwdlink· . Backlink : = p;

p •. Backlink : = q;

p •. Backlink· . Fwdlink : = p;

Backlink. A pointer to the line immediately preceding. If the line in
question is the first line in the text, this field is nil. To insert a line into a
linked list of lines, use a section of code similar to the previous
example.

Txt. A pointer to a dynamically allocated string containing the text on
the line. To get at the character in a particular column on a line, use an
expression of the form Line". Txt" [Column J.

Note that the objects pointed to by Txt are actually blocks of space
that are allocated on the heap using Turbo Pascal's Getmem proce­
dure, not variables of type Textline. If they were variables of type
Textline every line would need 256 bytes reserved for it (255 charac­
ters plus a length byte), and no line could be over 255 characters long.
This would waste space, and would also prevent the editor from
being able to handle text files with very long lines. To sidestep these
problems, the Toolbox takes advantage of the fact that all Turbo
pointer types are compatible by allocating a block of memory for each
line that is as long as (or slightly longer than) needed. It then points
the Txt pointer to that area, and uses it to hold the string.

Flags. An integer containing various bits indicating whether the line is
wordwrapped, in the block, or should be displayed in the special color
Usercolor. To test for one of these properties, the display routines
logically AND this field with the predefined constants Inb/ock,
Wrapped, or Colored. Since only three of the 16 bits of this word are
used, the remaining bits are available for your use.

Buff Len. An integer indicating the length of the text on the line. Be­
cause it is possible for the line to be longer than 255 characters, the
first byte of the area pointed to by Txt may not be able to hold the
length of the line. Buff Len is therefore used for this purpose.

Turbo Editor Toolbox Owner's Handbook

How Windows are Managed

The Turbo Editor Toolbox maintains a linked list of records called
window descriptors that specify the data relevant to each window.
The window descriptor records are shown in Figure 9-2.

Window Descriptor Reco
(type Windesc)

(To previous window
descriptor)

rd

......

Fwdlink: Pwindesc

Backlink: Pwindesc

Filename: Varstring

Insertflag: Insflag

WW,AI: Boolean;

Firstlineno,
Lastlineno: Integer;

Lmargin,
Rmargin: Integer;

Lineno, Clineno,
Colno: Integer;

Curline: Integer;

Stream: Integer;

Figure 9-2. Window Descriptor Records

TEXT AND WINDOW DATA STRUCTURES

... .. (To next window
descriptor)

61

62

The type Pwindesc is a pointer to a window descriptor record, and
Varstring is a Turbo string of length 80. The type Insf/ag is an
enumerated type with the values (Insert, Typeoven.

The fields of the window-descriptor record are detailed below.

Fwdlink. A pointer to the descriptor for the window below this one.
Because the displayed windows are in a circular linked list, the
Fwdlink field of the bottom window points to the top window. To
insert a window into a linked list of windows, use a section of code
similar to the following.

{ assume p is the window to be inserted, and q is the }
{window after which you wish P to be inserted }

p' .Fwdlink : = q' .Fwdlink;
q' . Fwdlink' . Backlink : = p;

p' . Backlink := q;

p' . Backlink' . Fwdlink : = p;

Backlink. A pointer to the descriptor for the window above this one.
The displayed windows are in a circular linked list, so the Backlink
field of the top window points to the bottom window.

Filename. A string which is set by EditFileRead. It contains the name
of the file from which the text stream in the window was read.

Insertflag. A variable that indicates whether the window is in Insert or
Overtype mode. When a window is in Insert mode, inserting new text
pushes other text on the current line to the right; in Typeover mode,
new text overwrites text that is already present.

WW A boolean that indicates whether the window is in Wordwrap
mode or not. When a window is in Wordwrap mode, any text typed
past the currently defined right margin will wrap down to the next line
and start at the currently defined left margin.

AI. A boolean that indicates whether the window is in Autoindent
mode or not. When a window is in Autoindent mode, pressing the
Return key positions the cursor under the first nonblank character on
the previous line after inserting the new line. This mode is also pres­
ent in the Turbo editor.

Turbo Editor Toolbox Owner's Handbook

Firstlineno. An integer that indicates the top screen line the window
owns; this is therefore the physical screen row that the status line will
be put on. To change the displayed size of a window, the program
must change the Firstlineno of one window and the Lastlineno of an
adjacent window.

Lastlineno. An integer.that indicates the last screen line the window
"owns." If there is a window below this window, the lower window's
default status line will be on the next line.

Lmargin, Rmargin. Integers that indicate the current margins. This
information is used by EditPrctxt and EditReformat for wordwrap­
ping.

Lineno. An integer that indicates the physical screen line of cursor.

Clineno. An integer that indicates the line in the text stream where the
cursor is located, starting from the beginning of the text stream.

Colno. An integer that indicates the cursor screen column. This infor­
mation is used to update the character under the cursor.

Topline. A pointer to a descriptor for the top text line in the window
(used for vertical scrolling).

Curline. A pointer to the descriptor for the text line the cursor is on.
The expression Curwin A .Curline A .Txt A [Colno] references the char­
acter at the current cursor position.

Stream. A unique integer that identifies the window's text stream.
When two windows are "linked," their stream fields are equated and
their Curline fields point to lines in the same text stream.

Leftedge. An integer that indicates the column in the text currently
displayed in physical screen column 1 (used for horizontal scrolling).

Two global variables of type Pwindesc are available in the editor:
Window1 and Curwin. Window1 is the window displayed at the top of
the screen, just below the command line. Curwin is the window the
cursor is currently in; if the cursor is on the command line (asking for
input, responding to an error message, and so forth), Curwin is the
window the cursor was most recently in. All of the window and text
data structures can be reached by traversing the lists referenced by
these pointers.

TEXT AND WINDOW DATA STRUCTURES 63

Chapter 10
THE EDITOR KERNEL

This section describes the operation of the editor kernel: how
keystrokes and commands are interpreted, how the screen is
updated, and how multitasking is performed. This information will be
useful if you need to modify the operation of the low-level editor
routines, or if you want to alter the flow of control through the Tool­
box.

Keyboard Input

All of the commands are taken from the keyboard. The routines that
handle keyboard input directly are in the module INPUT.ED.

The EditKeypressed function checks DOS's typeahead buffer to see if
the user has typed anything. It then calls Pokechr to push the charac­
ter into the editor's typeahead buffer. At this point, the editor checks
for the abort character Ctrl-U. If this occurs, the editor calls EditAbort
to clear the typeahead buffer and display an error message. If Edit­
Keypressed did receive input, it returns the value TRUE.

EditBreathe is a procedure that merely calls EditKeypressed and dis­
cards the return value. This is enough to get characters from the DOS
typeahead buffer and place them.in the editor typeahead buffer. In an
operation that takes a long time or that may be interrupted with Ctrl-U
(such as reading a file), it is desirable to call EditBreathe at least once
in the main loop of the routine.

The Scheduler

The scheduler, contained in the procedure EditSystem, is the heart of
the Toolbox editor. It determines when there is input in the editor
typeahead buffer to be processed; it also calls the screen updating
routines and background task(s) when there is nothing else to do. If it
sees input in the typeahead buffer, it will take it and call EditClsinp to
classify it. EditClsinp immediately calls UserCommand with the char­
acter. If UserCommand returns 255, EditClsinp does nothing more;
otherwise, it classifies what UserCommand returned. If the character

THE EDITOR KERNEL 65

is a control character (ASCII 0-31) or delete character (ASCII 127), it
calls EditPrccmd to process the character as a command. Otherwise,
EditClsinp calls EditPrctxtto process the character as text.

The Primary Command Dispatchers

EditPrccmd is the general command dispatcher. It calls a specific
command processor (or a prefixed command dispatcher) depending
on the input it receives. This routine may be changed to modify the
command mapping (as it is in MicroStar).

EditPrctxt is the text processor. When it receives a character, it inserts
it into the current line (if in Insert mode) or replaces the current char­
acter with the parameter (if in Overwrite mode). It then moves the
cursor right one character. If wordwrap mode is on and the text just
added extends beyond the right margin, the text will be wrapped to
the next Ii ne.

In most editing applications, it is useful to have a facility to insert
control characters directly into the text. To do this, we use a command
processor that asks the user for a character, converts that input to a
control character, and then calls EditPrctxt directly-sidestepping the
classification facility. The Toolbox default command for this function
is Ctrl-P.

Prefixed Command Dispatchers

66

As mentioned in earlier chapters, the procedure EditPrccmd can
invoke procedures that implement prefixed commands. In the default
Toolbox editor, these commands use the prefixes Ctrl-K, Ctrl-O, and
Ctrl-Q. The dispatchers that come with the Toolbox (EditK, EditO, and
EditQ) can be rewritten to implement the prefixed commands differ­
ently (as done in MicroStar), or can be eliminated completely.

Turbo Editor Toolbox Owner's Handbook

The UserTask" Hook"

The scheduler allows for command multitasking by repeatedly cal­
ling the procedure UserTask whenever the editor is waiting for input.
Since the multitasking is not pre-emptive, the scheduler relies on the
background task to return control whenever keyboard input is pres­
ent, or when it has finished some incremental portion of its job.

The UserTask procedure can implement almost any background task.
Some useful jobs that can be run in the background might be:

• Printing a file

• Redialing a remote computer

• Uploading or downloading files by modem

• Maintaining a log of system activity

• Performing automatic saves of a file being edited after predeter­
mined intervals

• Backing up a hard disk

The only requirements for the background task code are: 1) It must be
able to return control to the system quickly when editor input is de­
tected, and 2) It must maintain its state (either in local typed constants
or in global variables) so that it can resume operation the next time
UserTaskis called.

THE EDITOR KERNEL 67

Chapter 11
THE EDITOR SCREEN ROUTINES

Screen Manipulation

The module SCREEN. ED contains all the routines that display text
and other information on the screen. The key display routine is
EditUpdphyscr, which updates all information on the screen. Other,
more specific routines are used to update a single screen line, the
status line of a window, or an entire window. The command line (the
region in the upper left-hand corner of the screen) is also handled as a
special case.

Default Screen Format

The default editor, FIRST-ED, is designed to display multiple text win­
dows, using the top line to display commands and error messages.
EditAppcmdnam and EditZapcmdnam are the two routines that affect
this line; they both use a special string variable, Cmdlinest, to update
the line's contents. The remainder of the screen is partitioned into one
or more windows, each splitting the screen horizontally.

The top line of each window is called the window status line. This line
displays information like the file name, cursor position, window num­
ber, and so on. Since there are 25 physical screen lines on an IBM
display, the maximum number of displayed text lines is 23 (25 less
one command line and one window status line). Further partitioning
decreases display space but increases the number of different
streams of text available at once.

All columns of the screen are used. The extreme right-most column
(80) is used for special flag characters. The global variable Logscrcols
controls this column. A left angle bracket indicates that the line was
terminated with a carriage return. A period indicates that the line is
past the end of the file. A blank indicates that the line was word­
wrapped. If Logscrcols = Physcrcols (the physical number of columns
on the screen), then the flag characters will not be displayed. If
Logscrcols < Physcrcols, then flag characters will be displayed. Set­
ting Logscrcols to less than Pred (Physcrcols) will not generate addi-

THE EDITOR SCREEN ROUTINES 69

tional flag characters, but will starve the editor of display space.
Because Logscrcols is a variable and not a constant, you may change
it multiple times in an editor to turn the flags on and off. In MicroStar,
the flags are left off at all times.

The Screen Updating Routines

70

Several levels of screen updating routines are provided. The highest
level, EditUpdphyscr, updates the entire screen using lower-level
routines. The first line it updates is the cursor line; then it updates the
command line. If any input is ready, the routine will abort so that the
command may be processed. Otherwise, the windows will be
updated one by one starting with the current window. The updating
process is interrupted by keyboard input, so that the user may per­
form scrolling commands (such as Ctrl-R and Ctrl-C) in rapid succes­
sion without waiting for the editor to "paint" each screen.

EditUpdwindo\M an intermediate-level routine, is called by
EditUpdphyscr to update individual windows on the screen. It uses
the lowest-level routines to update each line in the window, and then
calls EditUpdwinsl to update the status line. This routine can be used
to update a single window by passing it a pointer to the window's
window-descriptor record (described in Chapter 9).

EditUpdwinsl updates the status line of a single window. It is passed a
Pwindesc pointing to the window's descriptor. It moves the file name,
line and column numbers, window number, and labels for the flags
into the status line. The various labels, like "Window:" , are defined as
constants in VARS.ED. You may change these constants to change
~he look of the status line. EditUpdwinsl is also called by Editlncline
and EditDecline, which increment or decrement the line number and
then display it immediately. You can also change EditUpdwinsl to
remove certain information, add more information, or change the
positions of labels.

Turbo Editor Toolbox Owner's Handbook

If your display format differs greatly from that provided by the
default Toolbox routines, you may wish to use the UserStatusLine
procedure (described in Chapter 8) to display status information.
EditUpdwinsl calls UserStatusLine with a window number and status
information about the window. If the window number (a var parame­
ter) is set to zero by UserStatusLine, EditUpdwinsl performs no fur­
ther actions.

The lowest level screen routines are EditWrline and EditUpdrowasm.
EditWrline is passed a string, a row number, and a color. It compares
the string with the text on the physical screen on the row indicated. If
the two are the same, it returns FALSE, indicating that the row does
not need to be updated. If the strings are different, or if the color is
different, EditWrline will change the Screen array to match the string
and color, and then returns TRUE, indicating that the screen needs to
be updated.

EditUpdrowasm is passed a row number to update. It copies the slice
of the Screen array corresponding to that row directly into video
memory, making screen updates very fast. If the global variable
Retracemode is set, the routine will wait until the display card indi­
cates that the display is performing a horizontal or vertical retrace
operation so that the memory can be accessed without causing
"snow" on the display. Retracemode need only be set to TRUE if the
machine running the editor has an IBM (or equivalent) Color/Graphics
adapter. The IBM Monochrome and Enhanced Color/Graphics cards
do not require waiting for retrace.

The usual calling sequence is to call EditWrline to see if the screen
array needs updating and, if so, update it; if EditWrline returns TRUE,
call EditUpdrowasm to update the display.

Colors

The editor has five different attributes or combinations of color and
intensity that are used for displaying ordinary text, blocks, window
status lines, the command line, and special text such as menus. These

THE EDITOR SCREEN ROUTINES 71

72

color sets are variables, so they may be changed during an editing
session. A simple command may be written to change the colors. The
five colors are:

• Txtcolor

• Bordcolor

• Blockcolor

• Cmdcolor

• Usercolor

ordinary text

window status lines

marked text

the command line

special text

Text may be marked Colored (displayed in User c%r) by using the
procedures EditC%rLine and EditC%rFile. Edite%rLine sets the
C%redflag for the current line; EditC%rFilesets the C%redflag for
every text line in the current window. This is useful if a menu or help
file is to be displayed in a window, or to produce a strong contrast
between windows.

Turbo Editor Too/box Owner's Handbook

Chapter 12
THE TOOLBOX COMMAND
PROCESSORS

A command processor is a procedure that implements a Toolbox
editing command. This chapter describes the different kinds of com­
mand processors available 'in the Toolbox. These routines can be
called from a command dispatcher, from another command proces­
sor, or anywhere in a user program that has access to the global
variables defined in VARS.ED. In general, the command processors
that begin with EditCp are procedures that ask for input and then pass
it to another procedure with a similar name (for instance,
EditCpcrewin asks for input and calls EditWindowCreate to perform
the operation). Command processors without a Cp in their names are
usually passed the information they require in parameters or global
variables.

Cursor Movement Commands

The movement commands do not change text; they simply move the
cursor. Predefined commands can move the cursor left or right a
single character or word, up or down a single line or screenful, or
scroll the current window a single line. There are also predefined
commands to move to the top or bottom of the text. Most movement
commands only affect the current window. Many commands can be
simulated by repetitive calling of these procedures; for instance, you
can create a command to move the cursor left one word, which will
move left one character repeatedly until the current character is a
space.

THE TOOLBOX COMMAND PROCESSORS 73

Summary of movement command procedures:

EditLeftChar
EditUpLine
EditScrollUp
EditUpPage
EditLeftWord
EditBeginning Line
EditWindowTopFile
EditTopBlock
EditCpgotoln
EditCpgotocl
EditBeginningEndLine

EditRightChar
EditDownLine
EditScrollDown
EditDownPage
EditRightWord
EditEndLine
EditWindowBottomFile
EditBottomBlock
EditGotoLine
EditGotoCol
EditGotoColumn

An example of a movement command is the predefined
EditRightChar command procedure. This procedure is called by the
general command dispatcher.

procedure Edi tRi gh tChar ;
begin

with Curwin· do

if Colno < Pred (Maxint) then
Colno : = Succ (Colno)

end;

{ EditRightChad

{EditRightChar}

Text Deletion Commands

74

Commands are defined in the Toolbox to remove text from a text
stream on a character-by-character or line-by-line basis. Commands
exist to delete a single character, a single word, a single line, or all the
text in a window. Like movement commands, these commands may
be repeated to simulate· other operations. For example, Edit­
DeleteRightChar, which deletes the character under the cursor, can be
simulated by calling EditRightChar to move past the character, and
then calling EditDeleteLeftChar to delete it. Most of these commands
affect only the current window.

Turbo Editor Toolbox Owner's Handbook

Summary of text deletion command processors:

EditDeleteRightChar
EditDeleteLine
EditBlockDelete
EditDeleteRightWord

EditDeleteLeftChar
EditWindowDelete Text
EditDeleteTextRight

An example of a text manipulation command is the predefined Edit­
DeleteRightChar procedure:

procedure Edi tDeleteRightChar;
{ This routine deletes the character underneath the cursor.
var i, j : integer;

begin { Edi tDeleteRightchar }
Edi tChangeFlag : = true;
with Curwin' do

,begin

end;

if Colno > = Cur line ' . Buff Len then
begin
if not EditSizeline (Cur line, Succ (Colno)) then

begin

end;

Edi tErrormsg (35);
exit

end

with Cur line ' do

end

begin
i := BuffLen;
while (i > 1) and (Txt' til = , ') do i := Pred (i);
for j : = Co1no to Pred (Buff Len) do

Txt' [j] := Txt' [Succ (j)];
Txt' [Buff Len] : = , ';
if (Colno > i) or (i = 1) then
if EditJoinline then;

end
{ try to join lines }

{ Edi tDeleteRightChar }

THE TOOLBOX COMMAND PROCESSORS 75

Word Processing Commands

76

The next group of command processors supports general word pro­
cessing functions.

Some routines affect only a single character, such as the change case
command. Others affect only the current line, such as the center line
command. The wordwrapping commands affect a paragraph. The
text markers provided may be set anywhere in any window, and may
be jumped to and from different windows or files. There are routines
to jump to specific places, such as to the beginning or end of a block,
or to a specific column or line. Also included is an Undo facility, with
which you can undo line or block deletions anywhere, or decide how
many lines the editor should retain for this facility.

Any of these routines may be called from a command dispatcher or
any procedure in the editor. As mentioned earlier, those commands
prefixed with Cp are procedures that ask the user for input. Their
counterparts take that information as a parameter.

Summary of text processing command procedures:

EditReplace
EditChangeCase
EditCpReplace
EditSetLeftMargin
EditSetRightMargin
EditToggleAutoindent
EditReformat
EditUndo
EditCpsetlm
EditCpsetrm
Togglelnsert
EditDefine Tab
EditCptabdef
EditTogglelnsert

EditCenterLine
EditFind
EditJumpMarker
EditSetMarker
EditSetUndoLimit
EditToggleWordwrap
EditlnsertCtrlChar
EditCpjmpmrk
EditCpsetmrk
EditCpundlim
EditlnsertLine
EditTab
EditCpFind

An example of a text processing command procedure is the
predefined EditChangeCase procedure.

Turbo Editor Toolbox Owner's Handbook

procedure Edi tChangeCase;
{ This routine checks the character at the current cursor position.

lf it is an alphabetic character. it changes the case from upper
to lower case or vice versa. If the character is not alphabetic.
no action is performed.

var
Ch : char;

begin
Edi tChangeFlag : = true;
with Curwin' do

end;

begin
Ch : = Cur line •. Txt' [Colno 1;
if (Ch > = 'A') AND (Ch < = 'Z') then

Ch : = Chr (ord (Ch) + 32)
else if (Ch >= 'a') and (Ch <= 'z') then

Ch : = Chr (ord (Ch) - 32);
Cur line' . Txt' [Colno 1 : = Ch

end

{ Edi tChangeCase }

{ Edi tChangeCase }

Multiple Windows and Text Buffers

Sometimes it is useful to view several files at the same time, or even
edit them at the same time. For example, suppose you have a Turbo
Pascal program that calls a routine in this Toolbox but you'd like to see
the source for MicroStar (MS.PAS) to see how to call the routine.
Instead of leaving in the middle of your work by saving it, and opening
a new file, it would be nice to be able to partition the screen to see part
of the program you're working on in one window, and the source to
MS.PAS in the other.

This is made possible with the Editor Toolbox window management
routines. The Toolbox keeps track of a window on the screen through
a window descriptor record. As we mentioned in Chapter 9, this
record supplies the contents and position of the window, the filename
of the text being edited, the starting row number of the window, and
how many lines it uses onthe display. It also contains mode flags that
indicate whether wordwrapping, autoindenting, etc., is to be per­
formed while editing in that window.

THE TOOLBOX COMMAND PROCESSORS 77

In the Toolbox, it is possible to create as many windows as can be
contained in memory, and even have them share text streams. This is
called window linking. The toolbox has routines to manage window
linking automatically, so that operations performed in one window
cause the displays in linked windows to be updated if necessary.

Windows are normally created by calling the default Toolbox window
routines. Of course, you can define windows yourself without calling
the Toolbox routines to do it, and create a text stream for those win­
dows. However, these windows will not be displayed on the screen
unless they are linked into the system's list of windows.

Windows of text that are not displayed can be used to store text in
memory for later use. A simple procedure can be written that makes
the window visible on the screen, and another that removes it from
the screen; this can be helpful if the user is editing many small files
and does not want (or need) to see every one at once.

Window Commands

78

The Toolbox has high-level and low-level routines to manipulate win­
dows. EditCpcrewin and EditCpdelwin are procedures that ask the
user for data concerning a window to be created or deleted, and then
perform the operation. EditWindowCreate and EditWindowDelete
are procedures that are passed this information as parameters. The
lowest level routine, EditCrewindow, does not reorganize the display
as it creates a new window; it merely initializes a record. An editor can
use any combination of these routines to modify windows. A com­
mand dispatcher might have one command call, EditCpcrewin, to ask
the user about creating a window, and another command call, Edit­
WindowCreate, with a fixed value. These different levels give you
maximum flexibility.

Summary of window manipulation command processors:

EditWindowCreate
EditWindowTopFile
EditWindowDelete Text
EditWindowUp
EditWindowGoto
EditCpcrewin
EditCplnkwin

EditWindowDelete
EditWindowBottomFile
EditWindowLink
EditWindowDown
EditCpgotowin
EditCpdelwin

Turbo Editor Toolbox Owner's Handbook

An example of a window manipulation command is the predefined
EditWindowCreate procedure.

procedure EditWindowCreate (Size : byte; Win : byte);
{ This routine creates a window of the specified size, taking

the lines from the window specified by Win.

var : integer;
p, q : Pwindesc;

begin { Edi tWindowCreate }
if Size >= 3 then

begin
if Win < 1 then exit;
p : = Windowl;
i : = 1;

whUe i < Win do
begin

p := p' . Fwdlink;
i : = Succ (i)

end:

{ Make a new window structure }

q : = Edi tCrewindow (Succ (p'. Lastlineno-Size) ,
Size,
Nofile,
Linel,
CollI ;

if q = nil then
begin { No memory for window }

Edi tErrormsg (35);

exit
end;

if p' . Lastlineno-p' . Firstlineno - Size >= 1 then
begin { If window can be compressed }

p' . Lastlineno : = p' . Lastlineno - Size;

{ we may be positioned outside the window's area now }

whUe p' . Lineno > (p' . Lastlineno - p' .Firstlineno) do
begin { Fix up the pOinters }

p' . Lineno : = Pred (p'. Lineno) ;
p' .Curline := p' .Curline· . Backlink

end;

THE TOOLBOX COMMAND PROCESSORS 79

end;

q' . Backlink : = p;
q' . Fwdlink : = p' .Fwdlink;
p' . Fwdlink' . Backlink : = q;

p' . Fwdlink : = q

end
else

EditErrormsg (22);

end
{ Edi tWindowCreate }

Block Commands

80

A block is a contiguous series of lines in a piece of text. There can only
be one block defined at anyone time, but it may be accessed from
another window or another file. A block is defined by marking its first
line and last line, using the predefined procedures EditBlockBegin
and EditBlockEnd. These can be called from a command dispatcher or
directly from a procedure. Once the block is marked, all lines between
the two markers are labeled with the Inblock flag, which tells the
screen updating routines that the lines should be displayed in Block­
color.

There are three basic operations that can be performed on blocks. A
block may be moved; that is, its contents deleted from their current
location and inserted at a new location. A block may be copied so that
the block text is inserted at a new location but the original copy is not
changed. A block may also be deleted from the text. All block opera­
tions will operate from another window or file. These manipulation
procedures can be called from a command dispatcher or another
procedure.

Summary of block manipulation command processors:

EditBlockBegin
EditBlockCopy
EditBlockDelete

EditBlockEnd
EditBlockMove
EditBlockHide

An example of a block manipulation command is the predefined
EditBlockBegin procedure.

procedure Edi tBlockBegin;

vat

p : Plinedesc;

Turbo Editor Toolbox Owner's Handbook

beq1n
Edi tOffblock;
w1th Cur. in· do

{ EditBlockBegin }
{ Turn off all lines in blocks }

Blockfrom : = Cur line ; { Repoint the beginning of the block }

{ If end is not nil, then turn on the block display,
provided .e are stii! in the same text stream. Scan
now for stream contiguity }

if Blockto = nil then
begin

Blockhide : = TRUE;
exit

end;
p : = Blockfrom;
whUe p <> nil do

begin
if p = Blockto then

begin
Blockhide : = false;
exit

end
else

p : = p •. Fwdlink

end;
Blockto : = nil;
Blockhide : = true

end;

{ Only beginning defined }

{ Scan }

{ Turns on block display }

{ Scan next linedesc }

{ Markblk won I t mark anymore }
{ Different streams now }

{ Edi tBlockBegin }

An example of a command processor that could duplicate the current
line might look like this.

procedure DupLine;

begin
Edi tBlockBegin;
Edi tBlockEnd;
Edi tBlockCopy;
Edi tBlockHide;

end;

{ mark the block at the current line }

{ duplicate the line }
{ turn off block highlighting }

THE TOOLBOX COMMAND PROCESSORS 81

File Commands

82

These commands let you read and write files. A file may be read into a
window, or the text in a window may be written to a file. There are two
levels of file access: EditCprfw and EditCpwfw, which ask the user for
input and then operate on that input, and EditFileRead and Edit­
FileWrite, which are passed a filename as a parameter to operate on.
Thus, a command dispatcher might call EditCprfw to read a file, and
an initializtion routine might call EditFileReadto read in a message or
help file. Both levels of access may be used interchangeably within an
editor.

The basic file 1/0 routine is EditReatxtfil. It opens a file, and uses block
1/0 (unrelated to editor blocks) to read its text. It interprets a carriage
return from the upper ASCII set (with the high bit set) as a
wordwrapped line. The file writing commands check for the Wrapped
flag as they write, and terminate wordwrapped lines with this same
character. You can modify these routines to do 1/0 the way you want,
or to do automatic buffering of text to disk.

Summary of file manipulation command processors:

EditFileRead
EditFileSave
EditCpwfw
EditCpFilesave

EditFile Write
EditCprfw
EditReatxtfil

An example of a file manipulation command is the predefined
EditReatxtfil procedure.

Turbo Editor Toolbox Owner's Handbook

procedure EditReatxtfil (Fn : Varstring);
{ This routine opens the file specified and copies it line by

line into the current window's text stream,

const
Bufsize = 512;

var
Error
Nulln
Endoffile

boolean;
boolean;
boolean; { Set by read routine }

Endofline boolean;
Ch char;
Nrecsread
Infile

integer;
file;

{ Bytes read by read routine }

Colnosave integer;
Linenosave integer;

integer;
Pointer integer;

Plinedesc;
Plinedesc;
String80;

{ Next byte to read in buffer }
Topsave
Textsave
Filnam
Buffer array [1., Bufsize 1 of char;

real; { Number of bytes to read }

begin { Reatxtfil }
Assign (Infile, Fn);
Reset (Infile, 1) ;
x : = longfilesize (InFile) ;
if EditFileerror then exit;

{ Get number of bytes to read }

with Curwin A do
begin

if Filename = Nofile then
Filename : = Fn;

Nulln := true;
for i := I to CurlineA,BuffLen do
if Cur line A ,Txt A [i 1 <> ' , then Nulln : = false;

if (Cur line A ,Backlink = nil) and
(Cur line A ,Fwdlink = nil) and Nulln then

begin
end

THE TOOLBOX COMMAND PROCESSORS 83

B4

else if not Edi tInsbuf (1) then
begin

Edi tErrormsg (40);
Close (In file);
exit

end;
Topsave : = Topline;
Textsave : = Curline;
Colnosave : = Colno;
Linenosave : = Lineno

end;
Error : = false;
Pointer : = Succ (Bufsize);
Nrecsread : = 0;
Endoffile := false;
repeat

with Curwin' ao
begin

Error : = Error or Abortcmd;
Endofline := false;
repeat
if Pointer > Nrecsread then
begin
if x > BufSize then
begin

{ Inserts line }

{ Save cursor posi tion }

{ Force read on the first time }

{ Get next char in line }

{ Need to load another buffer full }

Blockread (Infile, Buffer, Bufsize, Nrecsread);
x : = x - Nrecsread; { Number of bytes left to read }

end
else

Blockread (In file, Buffer, trunc (x), Nrecsread);
Error : = Error or EditFileerror;
Pointer: = 1

end;
if Nrecsread = 0 then

Ch : = chr (Ctr lz)
else

Turbo Editor Toolbox Owner's Handbook

begin
Ch : = Buffer [Pointer);
Pointer : = Succ (Pointer)

end;
case ord (Ch) of

Ctrlm : begin end;
141 : Curline·. Flags : = Cur line •. Flags or Wrapped;

Ctrlj : begin
if not Edi tInsbuf (1) then
begin

EditErro rmsg (40);
Error : = true

end
else

CoIno : = 1
end;

Ctrlz : begin
Endofline : = true;
Endoffile : = true

end;
else
begin
if not EditSizeline (Cur line. Succ (CoIno)) then
begin

EditErrormsg (40);

Error : = true
end
else

end

begin
Curline' . Txt' [Colno 1 : = Ch;
CoIno : = Succ (Colno)

end

THE TOOLBOX COMftAAND PROCESSORS B5

end
until Error or Endofline;
if (not Endoffile) and (not Error) then {Don't add line if not needed}

if not Edi tInsbuf (1) then
begin { Out of memory in middle of file }

EditErrormsg (40);
Error : = true

end
end

until Endoffile or Error;
Close (lnfile);
with Curwin' do
begin

Topline : = Topsave;
Curline : = Textsave;
CoIno : = Colnosave;
Lineno : = Linenosave

end;
end;

{ with }

{ Restore original cursor position }

{ Edi tReatxtfil }

Exit Commands

These command processors allow a graceful exit from the editor.

Summary of exit command processors:

EditExit EditCpExit

86 Turbo Editor Toolbox Owner's Handbook

Chapter 13
OVERLAYING YOUR EDITOR

Because the Turbo Editor Toolbox has so many useful features, it is
possible to exceed Turbo Pascal's 64K code size limit when building a
sophiticated editor such as MicroStar. Such occurrences are even
more likely if the Toolbox editor is combined with another applica­
tion, such as a database or a spreadsheet.

The Turbo Pascal overlay system, if used correctly, can allow you to
create programs much larger than 64K with very little degradation in
performance. This system works by allowing any number of separate
procedures or functions in your program to share the same area of
memory, with the required procedures brought in as needed.

Creating Overlay Groups

An overlay group is a group of routines that share the same space in
memory. To create an overlay group, you simply precede each of a
series of successive procedure and/or function declarations with the
reserved word overlay, as follows:

overlay procedure a;
begin

end;

overlay procedure b;
begin

end;

overlay procedure c;
begin

end;

OVERLAYING YOUR EDITOR 87

In this example, the three procedures just defined would all share the
same space in memory. When compiling this program, Turbo would
create an overlay file with a three-digit extension to hold the code for
the procedures in the overlay group. For instance, if these procedures
comprised the first overlay group of a program called TEST.COM,
these procedures would be compiled into the file TEST.OOO.

Any procedure or function declaration that does not contain the word
overlay ends an overlay group. Thus, if the above procedures were
followed by

procedure e;

begin

end;

overlay procedure f;

begin

end;

overlay procedure g;

begin

end;

procedure f would not share memory with procedures a, b, and c-­
but only with procedure g. These two procedures would generate a
separate overlay file, TEST.OO1.

Minimizing Thrashing

88

When a number of procedures in the same overlay group are called in
rapid succession, many reads of the program disk may be necessary.
This phenomenon is called thrashing, and results in greatly reduced
performance (especially on floppy-based systems). Avoiding this
problem requires careful consideration when designing the overlay
structure for a program.

Turbo Editor Toolbox Owner's Handbook

Thrashing can be avoided by putting seldom-used code (such as
initialization routines) or sections of code in which the user will likely
remain for some period of time (such as a find-and-replace proce­
dure) in overlays. In an editor, for instance, it would be poor practice
to overlay the cursor movement routines-but help facilities, direc­
tory listing programs, and file handling procedures could be placed in
overlays without significantly affecting the utility of the program.

The Toolbox Overlay Structure

The first sample editor, FIRST-ED, does not use overlays. In Micro­
Star, there is one overlay group that consists of many of the com­
mands invoked by the Ctrl-O, Ctrl-K, and Ctrl-Q prefixes (and also a
few single-keystroke commands, such as Reformat Text). Because
these commands are not as frequently used as the non prefixed com­
mands (and because many of them access the disk anyway), the per­
formance of the Toolbox does not suffer noticeably as a result.

To add your own procedures to this overlay group, insert your overlay
procedures and functions immediately before or after the overlay
group indicated in the source of MS.PAS.

Caveats Regarding Overlays

There are reasons, however, why you may not want to place your
procedures in the same overlay group as the Toolbox routines. The
most important reason to avoid this practice is that procedures in the
same overlay group cannot call one another. If one of your
procedures is placed in the Toolbox overlay group, and attempts to
call one of the other routines there, your program will crash without
warning!

Two other restrictions also apply to overlay procedures and func­
tions. First, they cannot be declared forward (though you may declare
another forward procedure which, in turn, calls the overlay proce­
dure). Second, they cannot be recursive (this counts as a call to a
procedure in the same overlay group).

If these practices are avoided, overlay procedures will prove to be a
useful and efficient way to add more power to your Turbo programs.
For additional information on overlays and how they work, consult
the Turbo Pascal Reference Manual.

OVERLAYING YOUR EDITOR B9

Chapter 14
INCLUDING AN EDITOR IN YOUR
PROGRAM

Because the Turbo Editor Toolbox comes with complete source code,
you can recompile the Toolbox modules as part of a larger program
that you design. This chapter discusses the different strategies you
can use to accomplish a smooth integration.

Including the Toolbox Directly in Your Code

The simplest and most straightforward way to integrate the Toolbox
with your program is to simply include all the modules in the same
order that they are included in FIRST-ED.PAS or MS.PAS. This tech­
nique is best when your program and the Toolbox routines that you
use can both fit in memory at the same time.

If this technique is used, be sure that the Toolbox modules are in­
cluded in the same order that was described in Chapter 6, and that
Editlnitialize is called before invoking the editor's scheduler for the
first time.

Overlaying the Editor with Your Program

A slightly more complex way to merge the Toolbox with your pro­
gram is to overlay an editor that you create with the rest of your code.
Since Turbo Pascal allows overlay procedures to be nested, it is possi­
ble to make a Toolbox editor, such as FIRST- ED, into a procedure that
shares memory with your program. Data can be passed back to your
program through the heap, through global variables, or through text
files. This method allows better use of memory than including the
Toolbox routines in your program-but, like that method, entails long
compile times when debugging and/or testing new features.

INCLUDING AN EDITOR IN YOUR PROGRAM 91

Making the Editor a Chain File

It is also possible to compile a Toolbox editor as a Turbo Pascal chain
fillr-a special file with the extension .CHN that can be loaded and run
by your main program. Because a program run from a chain file can
share global variables with the main program, data is easily passed
back and forth between the editor and other parts of the program.

A big advantage of chain files that developers will appreciate is that
they are compiled separately from the main program. Since the Tool­
box is a substantial piece of code, this may save you many minutes of
waiting as Turbo recompiles everything.

If you do use the editor as a chain file, be sure that you carefully read
the documentation in the Turbo Pascal Reference Manual regarding
the requirements for chain files. In particular, note that you must
manually set the sizes of the code and data areas for the main pro­
gram to be greater than or equal to that of the chained program-this
is done by entering the largest value of each into the Turbo Pascal
Options menu at compile time. Also, make sure that all global
variables are declared the same way and in the same order at the
beginning of each program (an include file is useful for this purpose),
so that data can be shared and the programs do not overwrite one
another's variables.

Invoking the Editor with the Execute Procedure

92

Another method, which also allows your program to be compiled
separately from the editor modules, is to invoke the editor (compiled
as a normal .COM file) as a separate program using Turbo's Execute
procedure. This method does not allow variables to be shared, but
may save space if not much sharing is needed between the programs.
The programs can pass data back and forth via the file system, and
can also send brief messages to one another through an absolute
variable at the address Cseg:$80. The size constraints for programs
invoked with the Execute procedure are the same as for chained pro­
grams. For more information on using the Execute procedure, see the
Turbo Pascal Reference Manual.

Turbo Editor Toolbox Owner's Handbook

Section IV

Turbo Editor Toolbox
Technical Reference

Chapter 15
TURBO EDITOR TOOLBOX FILES

This part of the manual provides detailed technical information about
all the routines contained in the Turbo Editor Toolbox. The first sec­
tion lists all of the modular files that you'll need to include in your
application programs; the following section describes the constants,
types, and variables used by the Toolbox. Finally, there is a complete
listing of the procedures and functions contained in the package.

The Turbo Editor Toolbox Distribution Diskettes

The Turbo Editor Toolbox is provided on two diskettes. Disk #1 con­
tains the Toolbox itself, the FIRST-ED demonstration program, and
the README files. Disk #2 contains the MicroStar editor, complete
with a series of .INC and .OVL files that overlay the Toolbox command
processor routines for MicroStar.

Files Included on Disk #1

README.COM A program which lists the READ.ME file. You should
run this program immediately upon receiving your
distribution diskettes.

READ.ME This file contains a brief list of all the files on the
Turbo Editor Toolbox distribution diskettes, and
details of any last-minute changes or additions to
the Toolbox.

VARS.ED A module containing constant, type, and variable
declarations for the Toolbox routines.

USER.ED A module containing low-level routines used
throughout the Toolbox.

SCREEN.ED A module containing the Toolbox routines that ma­
nipulate the screen during editing.

INIT.ED A module containing the initialization routine for the
Toolbox.

TURBO EDITOR TOOLBOX FILES 95

KCMO.EO

OCMO.EO

aCMO.EO

CMO.EO

K.EO

O.ED

a.ED

96

A module containing the command processor
routines for commands prefixed by A K in the default
Toolbox command set. These commands deal gen­
erally (but not exclusively) with files and blocks of
text.

A module containing the command processor
routines for commands prefixed by A 0 in the
default Toolbox command set. These commands
deal generally (but not exclusively) with the way text
appears on the screen.

A module containing the command processor
routines for commands prefixed by A a in the
default Toolbox command set. These commands
deal generally (but not exclusively) with quick
movements through the text.

A module containing the command processor
routines for commands invoked by a single key­
stroke in the default Toolbox command set.

A module containing the command dispatcher
routines for the command processors in KCMO.ED.
Also included here are the command
"preprocessor" routines (with names including the
letters "Cp") which ask for input prior to invoking
the command processors in KCMO.ED.

A module containing the command dispatcher
routines for the command processors in OCMO.ED.
Also included here are the command
"preprocessor" routines (with names including the
letters "Cp") which ask for input prior to invoking
the command processors in OCMO.EO.

A module containing the command dispatcher
routines for the command processors in aCMD.EO.
Also included here are the command
"preprocessor" routines (with names including the
letters "Cpfl) which ask for input prior to invoking
the command processors in QCMO.ED.

Turbo Editor Toolbox Owner's Handbook

DISP.ED A module containing the main command dispatcher
for the Editor Toolbox commands.

TASK.ED A module containing the task scheduler and main
command loop for the Toolbox editors.

INPUT.ED A module containing the keyboard input routines
for the Toolbox.

EDITERR.MSG A file containing the error messages for the Toolbox
editors.

FIRST-ED.PAS The source code for the default Toolbox editor,
FIRST-ED.

MS.COM Compiled code for the sample editor, MicroStar.

MS.OOO Overlay file for MicroStar.

FIRST-ED.COM Compiled code for FIRST-ED.

Files Included on Disk #2

MS.PAS The source code for MicroStar, a sophisticated
editor built with the Toolbox.

VARS.MS A module containing constant, type, and variable
declarations for the Toolbox routines.

USER.MS A module containing low-level routines used
throughout the Toolbox.

SCREEN.MS A module containing the Toolbox routines that ma­
nipulate the screen during editing.

FASTCMD.MS A module containing the command processor
routines which are not overlaid in the MicroStar
editor. These include both prefixed and non­
prefixed commands.

INIT.MS A module containing the initilization routine for the
Toolbox as an overlay procedure.

TURBO EDITOR TOOLBOX FILES 97

98

KCMD.MS A module containing the overlaid command proces­
sor routines for commands prefixed by .. K in the
MicroStar command set.

OCMD.MS A module containing the overlaid command proces­
sor routines for commands prefixed by .. 0 in the
MicroStar command set.

QCMD.MS A module containing the overlaid command proces­
sor routines for commands prefixed by .. Q in the
MicroStar command set.

CMD.MS A module containing the overlaid command proces­
sor routines for commands invoked by a single key­
stroke in MicroStar.

TASK.MS A module containing the task scheduler and main
command loop for the Toolbox editors.

INPUT.MS A module containing the keyboard input routines
for the Toolbox.

EDITERR.MSG A file containing the error messages for the Toolbox
editors. (This file is identical to the file with the same
name on Disk #1.)

PRINT.MS Print routines for MicroStar.

MSCMD.MS MicroStar-specific commands.

SPELL.MS MicroStar/Lightning spell checker.

PULLDOWN.MS Pulldown menu routines .

K.MS

O.MS

Q.MS

DISP.MS

.. K command dispatcher.

.. 0 command dispatcher.

.. Q command dispatcher.

MicroStar main command dispatcher.

Turbo Editor Toolbox Owner's Handbook

Chapter 16
TURBO EDITOR TOOLBOX
CONSTANTS

This section describes, in alphabetical order, the constants used in
the Turbo Editor Toolbox routines.

Col1

Declaration

Purpose

Colored

Declaration

Purpose

Ctrla-Ctrlz

Declaration

Purpose

Defhelplen

Declaration

Purpose

const Coll = 1;

Logical column number 1.

const Colored = 4;

Flag in Linedesc record indicating that the line
should be displayed in Usercolor instead of Txtcolor
or Blockcolor.

const Ctrla = 1; Ctr1b = 2; ... ; Ctrlz = 26;

ASCII codes of the control characters A A- A Z.

const Defhelplen = 9;

Default number of lines in help window.

TURBO EDITOR TOOLBOX CONSTANTS 99

Defnocols

Declaration

Purpose

Defnorows

Declaration

Purpose

Deftypahd

Del

Declaration

Purpose

Declaration

Purpose

Errorfile

Declaration

Purpose

Escape

Declaration

Purpose

100

const Defnocols = 80;

Number of columns on the physical screen.

const Defnorows = 25;

Number of rows on the physical screen.

const Deftypahd = 500;

. Default size of the typeahead buffer.

const Del = 127;

ASCII code of the Delete key (Ctrl-Backspace).

const Errorfile = 'EDITERR.MSG';

Name of the Toolbox error message file.

const Escape = 27;

ASCII code of the escape key.

Turbo Editor Toolbox Owner's Handbook

Inblock

Declaration

Purpose

Lex 1

Declaration

Purpose

Line1

Declaration

Purpose

Maxlinelength

Declaration

Purpose

Maxmarker

Declaration

Purpose

Nofile

Declaration

Purpose

const Inhlock = 1;

Flag in Linedesc record indicating that the line is
inside the block.

const Lexl = 1;

lexical level 1.

const Linel = 1;

logical line number 1.

const Maxlinelength = 255;

Mamimum number of characters in a textline string.

const Maxmarker = 20;

Maximum number of text markers.

const Nofile = 'NONAME';

Filename for a window that has not had a file read
into it yet.

TURBO EDITOR TOOLBOX CONSTANTS 101

Notavailable

Declaration

Purpose

Nul

Declaration

Purpose

Sereenadr

Declaration

Purpose

Stai

Declaration

Purpose

Steol

Declaration

Purpose

Stfile

Declaration

Purpose

102

const Notavailable = 255;

Value returned by input routines indicating no input
was present.

const Nul = 0;

ASCII code of the null character.

const Screenadr : integer = $B800;

Physical memory address of the color screen.

const Stai : string (2) = 'AI';

Label for ,use on window status line indicating that
Autoinde'nt mode is active.

const Stcol : string (4) = 'Col:';

Label for use on window status line indicating abso­
lute cursor column in text stream.

const Stfile : string (5) = 'File:';

Label for use on window status line indicating the
current pathname.

Turbo Editor Toolbox Owner's Handbook

Stins

Declaration

Purpose

Stline

Declaration

Purpose

Stte

Declaration

Purpose

Stwindow

Declaration

Purpose

Stww

Declaration

Purpose

Wrapped

Declaration

Purpose

Zero-Nine

Declaration

Purpose

const Stins : string [3] = 'INS';

Label for use on window status line indicating that
Insert mode is active.

const Stline : string [5] = 'Line:';

Label for use on window status line indicating abso­
lute cursor line in text stream.

const Stte : string [2] = 'TE';

Label for use on window status line indicating that
tab expansion mode is active.

const Stwindow : string [7] = 'Window:';

Label for use on window status line indicating the
window number.

const Stww : string [2] = 'Wi';

Label for use on window status line indicating that
Wordwrap mode is active.

const Wrapped = 2;

Flag in linedesc record indicating that the line was
created by wordwrapping.

const Zero = 48; One = 49; ... ; Nine = 57;

ASCII codes of the digits 0-9.

TURBO EDITOR TOOLBOX CONSTANTS 103

Chapter 17
TURBO EDITOR TOOLBOX DATA
TYPES

This section describes, in alphabetical order, the data types used in
the Turbo Editor Toolbox routines.

Character

Declaration

Purpose

Insflag

Declaration

Purpose

Linedesc

Declaration

Purpose

type Character = record
Ch : char;
Color : byte

end;

Used to store a display character including
color/attribute.

type Insflag = (Insert, Typeover);

Indicator for Insert mode in window data structure.

type Linedesc = record
Fwdlink : Plinedesc;
Backlink : Plinedesc;
Txt : ptextline;
Flags : integer;
Buflen : integer

end;

A complete description of a line in a text stream,
including pointers to its neighbors, the text on the
line, flags indicating that it is inside a block,
wordwrapped, etc., and the length of the text on the
line.

TURBO EDITOR TOOLBOX DATA TYPES 105

Plinedesc

Declaration

Purpose

Ptextline

Declaration

Purpose

Pwindesc

Declaration

Purpose

St6

Declaration

Purpose

String80

Declaration

Purpose

Strvartype

Declaration

Purpose

106

type Plinedese = • Linedese;

Pointer to a complete line descriptor including links
to neighboring line descriptors.

type ptextline = • Textline;

Pointer to the string of text on a line in a text stream.

type Pwindesc = • Windese;

Pointer to a window structure.

type St6 = string [6];

String for use in input translation.

type String80 = string [80];

String for use in file utilities.

type Strvartype = string [Maxlinelength];

String for use in user interface.

Turbo Editor Toolbox Owner's Handbook

Textline

Declaration

Purpose

Varstring

Declaration

Purpose

Windesc

Declaration

Purpose

type Textline = string [Maxlinelength];

String used to hold text on a line in a text stream.

type Varstring = string [Defnocols];

General-use variable length string.

type Windesc = record
Fwdlink : Pwindesc;
Backlink : Pwindesc;
Filename : Varstring;
Insertflag : Insflag;
Wi : boolean;
AI : boolean;
Firstlineno : integer;
Lastlineno : integer;
Lmargin : integer;
Rmargin : integer;
Lineno : integer;
Colno : integer;
Clineno : integer;
Topline : Plinedesc;
Curline : Plinedesc;
Stream : integer;
Leftedge : integer

end;

A complete description of a window including poin­
ters to its neighbors, its current filename, the current
operation modes, where it is located on the screen,
its margins, the absolute line number, pointers to
the current line and top line, a unique stream iden­
tifier, and the leftmost displayed column.

TURBO EDITOR TOOLBOX DATA TYPES 107

Chapter 18
TURBO EDITOR TOOLBOX
VARIABLES

This section describes, in alphabetical order, the global variables
used in the Turbo Editor Toolbox routines.

Abortcmd

Declaration

Purpose

Aborting

Declaration

Purpose

Asking

Declaration

Purpose

Blockcolor

Declaration

Purpose

Blockfrom

Declaration

Purpose

var Abortcmd : boolean;

Set to indicate that user has aborted with AU.

var Aborting : boolean;

Set when inside EditAbortto prevent recursion.

var Asking : boolean;

Set if EditAskfor is getting input from the command
line.

var Blockcolor : integer;

Color/attribute for text inside a block.

var Blockfrom : Plinedesc;

Pointer to top line of the currently defined block.

TURBO EDITOR TOOLBOX VARIABLES 109

Blockhide

Declaration

Purpose

Blockto

Declaration

Purpose

Bordcolor

Declaration

Purpose

Circbuf

Declaration

Purpose

Circin

Declaration

Purpose

Circout

Declaration

Purpose

110

var Blockhide : boolean;

Set if block is not displayed.

var Blockto : Plinedesc;

Pointer to bottom line of the currently defined block.

var Bordcolor : integer;

Color/attribute for window status lines.

var Cirbuf : array [0 .. Deftypahd] of char;

The circular typeahead buffer.

var Circin : integer;

Pointer into the typeahead buffer where Pokechr
should insert characters.

var Circout : integer;

Pointer into the typeahead buffer where EditPushtbf
should insert characters and where EditGetinput
should remove them.

Turbo Editor Toolbox Owner's Handbook

Cmdcol

Declaration

Purpose

Cmdcolor

Declaration

Purpose

Cmdlinest

Declaration

Purpose

Curwin

Declaration

Purpose

EditChangeflag

Declaration

Purpose

var Cmdcol : integer;

Column at which the next command line operation
should start.

var Cmdcolor : integer;

Color/attribute for command line.

var Cmdlinest : Textline;

Image of the command line for screen updating.

var Curwin : Pwindesc;

Pointer to the current window's descriptor.

var Edi tchangeFlag: boolean;

Set if editor should exit.

EditUsercommandlnput

Declaration

Purpose

var Edi tusercommandlnput : integer;

Count of characters pushed into the typeahead buf­
fer by UserCommand.

TURBO EDITOR TOOLBOX VARIABLES 111

Interactive

Declaration

Purpose

Intrflag

Declaration

Purpose

Linelength

Declaration

Purpose

Logscrcols

Declaration

Purpose

Logscrrows

Declaration

Purpose

Logtopscr

Declaration

Purpose

112

var Interactive : boolean;

Set if EditAskfor is getting input directly from the
keyboard instead of the typeahead buffer.

var Intrflag : (Nointrpt. Intrpt);

Nointrpt indicates that the routine is not to be
aborted if input is discovered in process. Intrpt indi­
cates that the routine may abort if input is encoun­
tered.

var Linelength : integer;

Number of characters in a text line.

var Logscrcols : integer;

Number of columns in a logical line.

var Logscrrows : integer;

Number of lines on the logical screen.

var Logtopscr : integer;

Physical line number for logical line 1.

Turbo Editor Toolbox Owner's Handbook

Marker

Declaration

Purpose

Nextstream

Declaration

Purpose

Notfound

Declaration

Purpose

Optstr

Declaration

Purpose

Physcrcols

Declaration

Purpose

Physcrrows

Declaration

Purpose

var Marker: array [1. .Maxmarkerj of Plinedesc;

Array of text markers.

var Nextstream : integer;

Next stream identifier to be assigned to a stream.

var Notfound : boolean;

Set if pattern not found by search or search/replace.

var Optstr : Varstring;

String of find/replace options.

var Physcrcols : integer;

Number of columns in a physical display line.

var Physcrrows : integer;

Number of lines on the physical screen.

TURBO EDITOR TOOLBOX VARIABLES 113

Physcrsig

Declaration

Purpose

Replacestr

Declaration

Purpose

Retracemode

Declaration

Purpose

Rundown

Declaration

Purpose

Screen

Declaration

Purpose

Searchstr

Declaration

Purpose

114

var Physcrsig : integer;

Physical screen line for logical command line.

var Replacestr : Varstring;

Previous string used to replace search pattern.

var Retracemode : boolean;

Set if waiting for vertical retrace is necessary in
screen updating.

var Rundown : boolean;

Set if editor should exit.

var Screen: array [1. .Defnorows, 1. .Defnocolsl
of Character;

Memory image of the screen used to determine
whether to update the physical screen.

var Searchstr : Varstring;

Previous pattern searched for.

Turbo Editor Toolbox Owner's Handbook

Tabsize

Declaration

Purpose

Txtcolor

Declaration

Purpose

Typbufovl

Declaration

Purpose

Undocount

Declaration

Purpose

Undoend

Declaration

Purpose

Undolimit

Declaration

Purpose

var Tabsize : integer;

Number of columns between tab stops.

var Txtcolor : integer;

Color/attribute for normal text.

var Typbufovl : boolean;

Set if typeahead buffer has overflowed.

var Undocount : integer;

Number of lines currently on the UNDO stack.

var Undoend : Plinedesc;

Pointer to end of Undo stack where very old lines are
discarded.

var Undolimi t : integer;

Maximum number of lines the Undo stack can hold.

TURBO EDITOR TOOLBOX VARIABLES 115

Undostack

Declaration

Purpose

Updcurflag

Declaration

Purpose

Usercolor

Declaration

Purpose

Window1

Declaration

Purpose

Winstack

Declaration

Purpose

116

var Undostack : Plinedesc;

Pointer to the top of the Undo stack.

var Updcurflag : boolean;

Set if the cursor needs to be updated.

var Usercolor : integer;

Auxiliary color for applications-like menus.

var Windowl : Pwindesc;

Pointer to the window displayed at the top of the
screen.

var Wins tack : Pwindesc;

Pointer to the top of the list of free window
structures.

Turbo Editor Toolbox Owner's Handbook

Chapter 19
TURBO EDITOR TOOLBOX
PROCEDURES AND FUNCTIONS

This section describes, in alphabetical order, the Turbo Editor Tool­
box procedures and functions. The call-up for each procedure or func­
tion is given, followed by a detailed description of its function.
Remarks and restrictions are given where appropriate, as well as
cross-referencing to related procedures and functions. The Turbo
Editor file that contains the procedure or function is given in brackets
next to the name of the procedure or function.

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 117

Advance [CMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

118

procedure Advance;

Advance;

None

This routine is local to EditRightWord, and is used to
move the cursor rightward one character, moving to
the beginning of the following line if necessary.

None

Turbo Editor Toolbox Owner's Handbook

EditAbort [INPUT. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tAbort;

EditAbort;

None

This routine aborts the typeahead buffer. It sets the
global variable Abortcmd, which should be checked
by any procedure that does input. It then calls Edit­
Errormsg to display a message on the command
line and clear the typeahead buffer.

In the default editing system, this is the only com­
mand processor that is called from Pokechr instead
of a menu processor. This ensures that it will be
immediate and not buffered behind other com­
mands.

None

EditErrormsg
Pokechr

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 119

EditAppchar [USER. ED]

Declaration

Usage

Parameters

Function

Restrictions

120

procedure EditAppchar (var s : Varstring; Ch : byte);

EditAppchar (S, Ch);

s : variable length string
Ch : character to add

This routine is used internally to append the speci­
fied character to the string, and return the result in
that string.

Length (s) must be less than Defnocols, otherwise
an overflow will occur.

Turbo Editor Toolbox Owner's Handbook

EditAppcmdnam [USER.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure EditAppcmdnam (5 : Varstring);

EditAppcmdnam (s);

s : string to display

This routine displays the specified string on the
command line, to the right of any other text present.
It also updates Cmdcol so that EditAskfor will posi­
tion the cursor correctly for input, and calls Edit­
Curadrto position the cursor there.

If the string given is longer than the space left on the
command line, it will overwrite part of the top win­
dow's status line; thus, this must either be checked
or avoided.

EditAskfor
EditCuradr
EditZapcmdnam

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 121

EditAskfor [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

122

procedure EditAskfor (var s : Varstring);

EditAskfor (s);

s : string to place user's input in

This routine positions the cursor on the command
line in Cmdcol, and gets input into the specified
string until a carriage return is typed.

If the global variable Interactive is set to FALSE, in­
put is taken from the typeahead buffer; otherwise,
input is taken directly from the keyboard without
affecting the typeahead buffer. If control characters
are typed, they appear as a caret followed by the
representative character; i.e., Ctrl-A appears as A A.
Input is not accepted when there is no room to dis­
play it on the command line. The return is always a
string; to get a number, use this routine followed by
EditCvts2i. If a carriage return is typed immediately,
a string of zero length is returned. Any previous con­
tents of the string are lost unless Ctrl-U is typed
during the input.

None

EditCvts2i
EditZapcmdnam

Turbo Editor Toolbox Owner's Handbook

EditBackground [TASK.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tBackground;

EditBackground;

None

This routine performs the real-time functions that
must be executed whenever input is pending and
the editor cannot execute a command.

None

EditSchedule
EditSystem

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 123

EditBeginningEndLine [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

124

procedure Edi tBeginningEndLine;

EditBeginningEndLine;

None

This routine jumps between the beginning and the
end of the current line in the current window.

If the cursor is not in column one, it is moved there;
if the cursor is in column one, it is positioned imme­
diately after the last non-blank character on the cur­
rent line.

None

Turbo Editor Toolbox Owner's Handbook

EditBeginningLine [QCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tBeginningLine;

EditBeginningLine;

None

This routine positions the cursor to column 1 of the
current line.

None

EditEndLine
EditBeginningEndLine

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 125

EditBlockBegin [KCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

126

procedure Edi tBlockBegin;

EditBlockBegin;

None

This routine processes the begin block command. It
repoints the Blockfrom pointer in the current win­
dow to the line on which the cursor is positioned
(Curline).

None

EditBlockEnd
EditBlockH ide

Turbo Editor Toolbox Owner's Handbook

EditBlockCopy [KCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tBlockCopy;

EditBlockCopy;

None

This routine processes the copy block command. It
copies the text lines in the range of the block defined
by the pointers Blockfrom and Blockto for the cur­
rent window into the place where the cursor is posi­
tioned.

None

EditBlockMove
EditBlockDelete

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 127

EditBlockDelete [KCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

128

procedure Edi tBlockDelete;

EditBlockDelete;

None

This routine processes the delete block command. It
deletes the text lines in the range of the block
defined by the pointers Blockfrom and Blockto for
the current window.

All deletes should be done with Delline, so that mul­
tiple windows pointing to the same text stream are
handled. Delline also handles preparation for Undo.

None

EditBlockMove
EditBlockCopy

Turbo Editor Toolbox Owner's Handbook

EditBlockEnd [KCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tBlockEnd;

EditBlockEnd;

None

This routine processes the begin block command. It
repoints the Blockto pointer in the current window
to the line on which the cursor is positioned
(Curline).

None

EditBlockBeg in
EditBlockHide

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 129

EditBlockHide [KCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

130

procedure Edi tBlockHide;

EditBlockHide;

None

This routine processes the hide/display block toggle
command. If BlockHide = false upon entry, then it is
set to true. If otherwise, it is set to false only if both
Blockfrom and Blockto are defined to be < > nil and
they span the same text stream.

None

EditBlockBegin
EditBlockEnd

Turbo Editor Toolbox Owner's Handbook

EditBlockMove [KCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tBlockliove;

EditBlockMove;

None

This routine processes the move block command. It
moves the text lines in the range of the block defined
by the pointers Blockfrom and Blockto into the place
where the cursor is positioned. Before the move, it
makes sure the cursor is not inside the block.

None

EditBlockCopy
EditBlockDelete

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 131

EditBottomBlock [QCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

132

procedure EditBottomBlock;

EditBottom Block;

None

This routine moves the cursor in the current window
to the last line in the block.

If the block is present in a different window, the cur­
sor position in the current window is saved, and the
cursor is moved to the window in which the block
occurs. If the block is not defined, an error message
is displayed.

None

EditTopBlock

Turbo Editor Toolbox Owner's Handbook

EditBreathe [INPUT.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tBreathe;

EditBreathe;

None

This routine is called by an editor procedure to ac­
cept characters typed at the keyboard while some
other operation is being performed, such as file liD.

EditBreathe calls EditKeypressed, which will check
the keyboard and fill the editor's typeahead buffer,
thus ensuring that the BIOS buffer will not overflow.

None

EditKeypressed

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 133

EditCenterLine [OCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

134

procedure Edi tCenterLine;

EditCenterLine;

None

This routine centers the text on the current line in the
current window.

If Wordwrap mode is set for the current window, the
text is centered between the currently defined mar­
gins; otherwise it is centered between column 1 and
the right margin. If the operation causes the text to
be pushed beyond the current line's buffer length,
the procedure will attempt to allocate more
memory. If enough memory cannot be allocated, an
error message is displayed, and the operation is
aborted. The cursor position remains unchanged.

None

EditCpgotoln
EditGotoLine

Turbo Editor Toolbox Owner's Handbook

EditChangeCase [OCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

procedure Edi tChangeCase ;

EditChangeCase;

None

This routine changes the case of the character at the
current cursor position in the current window.

If that character is uppercase, it is changed to lower­
case; if it is lowercase, it is changed to uppercase. If
the character is not alphabetic, no action is per­
formed. The cursor position remains unchanged.

None

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 135

EditClsinp [TASK.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

136

procedure Edi tClsinp;

EditClsinp;

None

This routine reads the next character from the
typeahead buffer. If it was pushed by UserCom­
mand, it will be processed only by the Toolbox
routine EditPrccmd. If it wasn't pushed by UserCom­
mand, then UserCommand gets a chance to process
it before any other Toolbox routine. If UserCom­
mand doesn't want the Toolbox command proces­
sors to see the input it saw, it sets its argument to a
value of 255 before returning.

None

EditPrccmd
EditPrctxt

Turbo Editor Toolbox Owner's Handbook

EditColorFile [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tColorFile;

EditColorFi Ie;

None

This routine sets the Colored flag in every line in the
current window's text stream.

This function causes the screen updating routines to
display the text in Usercolor instead of Blockcolor or
T>rtcolor. If any lines in the text are already colored,
they will remain so.

None

EditColorLine

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 137

EditColorLine [USER.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

138

procedure Edi tColorLine;

EditColorLine;

None

This routine sets the Colored flag for the current line
in the current window.

This function causes the screen updating routines to
display the line in Usercolor rather than Blockcolor
or Txtcolor. If the flag is already set for the current
line, it is unchanged.

None

EditColorFile

Turbo Editor Toolbox Owner's Handbook

EditCompressLine [CMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tCompressLine (Lp : Plinedesc) ;

EditCompressLine (Lp);

Lp : pointer to line to compress

This routine is local to EditReformat, and is used to
compress multiple spaces to single spaces on the
line referenced. It thus makes the line-splicing al­
gorithms clearer.

None

EditReformat

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 139

EditCpcrewin [O.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

140

procedure Edi tCpcrewin;

EditCpcrewi n;

None

This routine creates a new window on the screen. It
calls EditAskfor to get two strings from the user,
EditCvts2i to convert them to a size and a window
number to compress, and then EditWindowCreate
to perform the operation. That routine handles all
error conditions.

None

EditAskfor
EditCvts2i
EditWindowCreate

Turbo Editor Toolbox Owner's Handbook

EditCpdelwin [O.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure EditCpdelwin;

EditCpdelwin;

None

This routine deletes a window from the screen. It
calls EditAskfor to get a string from the user,
EditCvts2i to convert it to a window number to
delete, and then EditWindowDelete to perform the
operation. That routine handles all error conditions.

None

EditAskfor
Ed itCvts2i
EditWindowDelete

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 141

EditCpexit [K.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

142

procedure Edi tCpexi t;

EditCpexit;

None

This routine is used to query the user before exiting
the editor.

EditCpexit calls EditAskfor to make sure the user
wants to exit the editor. If the string returned is
"YES" (ignoring case), then EditExit is called to exit
the editor. If any other string is specified, no action is
performed.

This routine does not save any window files before
exiting (hence the query). This must either be done
manually by the user or automatically by the calling
routine.

Ed itAskfor
EditExit

Turbo Editor Toolbox Owner's Handbook

EditCpFileSave [K.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tCpFileSave;

EditCpFileSave;

None

This routine gets the filename from the command
line and transfers the name to the EditFileWrite pro­
cedure

None

EditFileWrite

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 143

EditCpFind [Q.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

144

procedure Edi tCpFind;

EditCpFind;

None

This routine asks for the find parameter and calls
EditFind.

None

EditFind

Turbo Editor Toolbox Owner's Handbook

EditCpgotocl [O.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tCpgotocl;

EditCpgotocl;

None

This routine moves the cursor to a column number.

EditCpgotoclcalis EditAskforto get a string from the
user, EditCvts2i to convert it to a number, and then
EditGotoColumn to perform the operation. Edit­
GotoColumn does all error checking.

None

EditAskfor
EditCpgotoln
EditCpjmpmrk
EditCvts2i
EditGotoColumn

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 145

EditCpgotoln [O.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

146

procedure Edi tCpgotoln;

EditCpgotoln;

None

This routine moves the cursor to a specific line in the
current window.

EditCpgotoln calls EditAskforto get a string from the
user, EditCvts2i to convert it to a number, and then
EditGotoLine to perform the operation. Edit­
GotoLine performs all error checking.

None

Ed itAskfor
EditCpgotocl
EditCpjmpmrk
EditCvts2i
EditGotoLine

Turbo Editor Toolbox Owner's Handbook

EditCpgotowin [O.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Ed1 tCpgotowin;

EditCpgotowi n;

None

This routine moves the cursor to a specific window.
It calls EditAskfor to get string from the user,
EditCvts2i to convert it to a destination window
number, and then EditWindowGoto to perform the
operation. EditWindowGoto handles all error condi­
tions.

None

EditAskfor
EditCvts2i
EditWindowGoto

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 147

EditCpjmpmrk [Q.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

148

procedure EditCpjmpmrk;

EditCpjmpmrk;

None

This routine moves the cursor to a text marker.

EditCpjmpmrk calls EditAskfor to get a string from
the user, EditCvts2i to convert it to a nlimber, and
then calls EditJumpMarker to perform the opera­
tion. EditJumpMarker does all error checking.

None

EditAskfor
EditCpgotocl
EditCpgotoln
EditCvts2i
EditJumpMarker

Turbo Editor Toolbox Owner's Handbook

EditCplnkwin [O.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tCplnkwin;

EditCplnkwin;

None

This routine links two windows together. It calls
EditAskfor to get two strings from the user,
EditCvts2i to convert them to a destination window
number and a source window number, and then
EditWindowLinkto perform the operation.

EditWindowLink handles all error conditions.

None

Ed itAskfor
EditCvts2i
EditWindowLink

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 149

EditCpReplace [Q.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

150

procedure Edi tCpReplace;

EditCpReplace;

None

This routine asks for the replace parameters and
calls EditReplace.

None

EditReplace

Turbo Editor Toolbox Owner's Handbook

EditCprfw [K.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tCpr rw ;

EditCprfw;

None

This routine queries the user for a filename to read
into the current window. It then calls EditFileReadto
perform the operation.

The filename specified will be overwritten if it
already exists; the calling procedure or the user
should check before calling to make sure that
valuable data will not be destroyed.

EditFileRead

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 151

EditCpsetlm [O.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

152

procedure Edi tCpsetlm;

EditCpsetlm;

None

This routine sets the left margin for the current win­
dow.

EditCpsetlm calls EditAskfor to get a string from the
user, EditCvts2i to convert it to a number, and then
EditSetLeftMargin to perform the operation. Edit­
SetLeftMargin performs all error checking.

None

Ed itAskfor
EditCpsetrm
EditCvts2i
EditSetLeftMargin

Turbo Editor Toolbox Owner's Handbook

EditCpsetmrk [K.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tcpsetmrk;

EditCpsetmrk;

None

This routine sets a text marker to the current line in
the current window.

EditCpsetmrk calls EditAskfor to get a string from
the user, EditCvts2i to convert it to a number, and
then EditSetMarker to perform the operation. Edit­
SetMarker performs a" error checking.

None

Ed itAskfor
Ed itCvts2i
EditJumpMarker
EditsetMarker

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 153

EditCpsetrm [O.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

164

proc::edure EditCpsetrm;

EditCpsetrm;

None

This routine sets the right margin for the current
window.

EditCpsetrm calls EditAskforto get a string from the
user, EditCvts2i to convert it to an integer, and then
EditSetRightMargin to perform the operation. Edit­
SetRightMargin performs all error checking.

None

EditAskfor
EditCpsetlm
EditCvts2i
EditSetRightMargin

Turbo Editor Toolbox Owner's Handbook

EditCptabdef [K.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure EdHCptabdef;

EditCptabdef;

None

This routine asks the user for a tab width to set.

EditCptabdef calls EditAskfor to get a string, then
EditCvts2i to convert it to an integer. If the string
returned is NULL, then EditDefineTab is called with a
parameter one less than the current column num­
ber, so that a tab from column one would land di­
rectly in that column. If a number is given,
EditDefineTab is called with that number. Edit­
DefineTab checks for overflow and underflow.

None

EditAskfor
EditCvts2i
EditDefineTab

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 155

EditCpundlim [O.ED]

Declaration

Usage

Function

Remarks

Restrictions

See Also

156

procedure Edi tCpundlim;

EditCpundlim;

This routine sets the Undo stack limit.

EditCpundlim calls EditAskfor to get a string from
the user, EditCvts2i to convert it to a number, and
then EditSetUndoLimit to perform the operation.
EditSetUndoLimit performs all error checking.

None

Ed itAskfor
Ed itCvts2i
EditSetUndoLimit

Turbo Editor Toolbox Owner's Handbook

EditCpwfw [K.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tCpwfw;

EditCpwfw;

None

This routine queries the user for a filename to write
the current window's text to. It then calls Edit­
FileWrite to perform the operation.

Note that the filename specified will be overwritten
if it already exists; the calling procedure or the user
should check before calling to make sure that
valuable data will not be destroyed.

EditFileWrite

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 157

EditCvts2i [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

158

procedure EdHCvts2i (Src : Varstring;
vat Resul t : integer);

EditCvts2i (Src, Result);

Src : string to convert Result: variable to return the
value in

This routine converts the character string in Src to
an integer using the Turbo procedure Val.

If Val returns a non-zero error code, an error
message is displayed indicating an error in the
string; otherwise, the integer translation is returned
in Result.

None

Turbo Editor Toolbox Owner's Handbook

EditDecline [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tDecline;

EditDecline;

None

This routine decrements the absolute line number
for the current window and calls EditUpdwinsl to
display it.

EditDecline provides fast scrolling even in very large
files.

None

EditUpdwinsl

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 159

EditDefineTab [KCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

160

procedure EditDefineTab (Size : integer);

EditDefineTab (Size);

Size: distance in columns between tab stops.

This routine sets the global variable Tabsize to the
parameter passed. This variable is used by EditTab
to determine where to place the cursor.

If the number passed is less than 1 or greater than
Maxint, no action is performed.

None

EditTab

Turbo Editor Toolbox Owner's Handbook

EditDeleteLeftChar [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tDeleteLeftChar;

EditDeleteLeftChar;

None

This routine deletes the character to the left of the
cursor in the current window. The cursor is moved
left one column, and all text to the right of the cursor
is shifted left one column.

If the cursor is in column one, the current line is
joined to the. previous line, if that line exists. If the
cursor is in column one on the top line of the text
stream, no action is performed.

None

EditDeleteRightChar

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 161

EditDeleteLine [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

162

procedure Edi toeleteLine;

EditDeleteLine;

None

This routine deletes the current line in the current
window from its text stream.

If there is only one line of text in the window, it is
filled with spaces but not deleted. If the Undo facility
is enabled, the line wi" be replicated and placed on
the Undo stack. If the current line is marked by a
marker, that marker will become undefined. If the
current line is a block boundary, that block pointer
will become undefined, and the block highlighting
will be tu rned off.

None

EditDeleteLeftChar
EditDeleteRightChar
EditDeleteRightWord

Turbo Editor Toolbox Owner's Handbook

EditDeleteRightChar [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tDeleteRightChar;

EditDeleteRightChar;

None

This routine deletes the character at the current cur­
sor position in the current window. The text to the
right of the cursor is shifted left one column.

If the cursor is beyond the last non-blank character
on the current line, the line below will be joined to it,
if that line exists and memory can be allocated to
hold the joined line.

None

EditDeleteLeftChar

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 163

EditDeleteRightWord [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

164

procedure Edi tDeleteRightWord;

EditDeleteRightWord;

None

This routine deletes a word from the current line in
the current window, starting at the cursor position.
A word is defined as all characters in the same class,
followed by spaces, if any. The three classes are al­
phanumeric characters, punctuation characters,
and spaces.

If the cursor is beyond the last non-blank character
on the current line, the line below is joined to the
current one. If that line does not exist, no action is
performed.

None

EditDeleteLeftChar
Ed itDeleteLeftWord
EditDeleteLine
EditDeleteRightChar

Turbo Editor Toolbox Owner's Handbook

EditDeleteTextRight [QCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

procedure Edi tDeleteTextRight;

EditDelete TextRight;

None

This routine deletes the character at the current cur­
sor position, and all text to the right of it on the same
line.

None

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 165

EditDelline [USER.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

166

procedure EditDelline (p : Plinedesc) ;

EditDelline (p);

p : pointer to line descriptor to delete

This routine deletes a line descriptor from a text
stream. The text stream is not spliced around the
current line; this must be done manually before cal­
ling EditDelline. The routine checks to make sure
that the line does not point to any window's Topline
or Curline, Blockfrom, Blockto, or a text marker.

If the line is a block limit or a marker, the appropriate
pointer will be reset to nil. If the line points to a
window's Curline, the Curline pointer for that win­
dow will be moved to another line. If the line points
to any window's Topline, the window will be
scrolled to move Topline. If deleting the line shor­
tens the window's visible span, EditRealign is called
to fix up the display and the other windows. Finally
the line is replicated for Undo, and EditDestxtdes is
called to free the line.

If the line in question is in a text stream, the Fwdlink
and Backlink pointers of its neighbors must be
spliced around the line before calling this routine.

EditDestxtdes
EditRealign

Turbo Editor Toolbox Owner's Handbook

EditDestxtdes [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tDestxtdes (Desc : Plinedesc) ;

EditDestxtdes (Desc);

Desc : pointer to line descriptor to release

This routine is passed a pointer to a line descriptor. It
first frees the pointer to the text line, then the
descriptor itself. The line is not replicated for Undo.

If this routine is passed a line that has not been
removed from a text stream, unpredictable results
can occur. The calling routine must check to make
sure that it is not deleting the Topline or Curline of
any window, a text marker, a block limit, the current
line, etc. The text stream pointers must also be
spliced around the line to be deleted. EditDelline
makes all necessary checks and replicates the line
for Undo before calling this routine.

The line specified must be completely removed
from the text stream it was a part of, if any. The text
stream must then be spliced around the line. The
line must not point to the Topline or Curline of any
window; it must not be marked as a block limit or a
text marker.

EditDeliine

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 167

EditDownLine [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

168

procedure Edi tDownLine;

EditDownLine;

None

This routine moves the cursor in the current window
down one line.

If the cursor is on the last displayed line in the win­
dow, the window is scrolled down to keep the cursor
within the window. If the cursor is on the last line in
the text stream, no action is performed.

None

EditUpLine

Turbo Editor Toolbox Owner's Handbook

EditDownPage [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tDownPage ;

EditDownPage;

None

This routine slides the current window down one
page over its text stream. The number of lines
scrolled will be one less than the number of lines
displayed in the window.

If the last line of the text stream is displayed on the
top line of the window, no action is performed.

None

EditUpPage

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 169

EditEndLine [QCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

170

procedure Edi tEndLine ;

EditEndLine;

None

This routine positions the cursor to the right of the
last nonblank character in the current line.

None

EditBeginningLine
EditBeginningEndLine

Turbo Editor Toolbox Owner~ Handbook

EditErrormsg [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure EditErrormsg (Msgno : byte);

EditErrormsg (Msgno);

Msgno : code of message to display

This routine is called when an error is encountered
in the editor. The parameter passed is a code for the
error message to display; for instance, code 1 indi­
cates an out of memory error. It clears the typeahead
buffer and waits for a key to be struck before clear­
ing the command line. Before any message is dis­
played, User Error is called with the same message
code.

If this routine resets the code to zero, EditErrormsg
returns; otherwise, it continues and displays the
message. If the error code is out of range, no
message is displayed but the routine still clears the
typeahead buffer and waits for input.

None

EditFileerror

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 171

EditExit [KCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

172

procedure Edi tExi t ;

EditExit;

None

This routine terminates the editor by setting the
global variable Rundown to TRUE.

Note that this procedure does not save files; they
must be saved manually or by the calling procedure.

Ed itAskfor
EditCpExit

Turbo Editor Toolbox Owner's Handbook

EditFileRead [KCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure EditFileRead (Fname : Varstring);

EditFileRead (Fname);

Fname : complete pathname of file to read.

This routine appends the string "[Wait]" to the
command line, updates the screen, and then calls
EditReatxtfil to read the file named by Fname into
the current window. EditReatxtfil checks for out of
memory errors, file errors, and other problems.

None

EditReatxtfil

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 173

EditFileWrite [KCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

174

procedure EditFileWrite (Fname : Varstring);

EditFileWrite (Fname);

Fname : complete pathname of file to write.

This routine writes all text in the current window to
the file named by Fname. If the file does not exist, it
is created; if it does exist, it is overwritten. This
routine checks for file errors (invalid name, etc.).
Unes that have the Wrapped attribute are indicated
by a carriage return with the high bit set (ASCII 141).

Note that the filename specified will be overwritten
if it already exists; the calling procedure or the user
should check before calling to make sure that
valuable data will not be destroyed.

Turbo Editor Toolbox Owner's Handbook

EditFind [QCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Aiso

procedure Edi tFind;

EditFind;

None

This routine uses EditAskforto get a string to search
for from the typeahead buffer.

If the string obtained is null, it will be assigned the
previous string searched for. It then calls EditScan­
pat to search for the pattern on each line of the file,
starting at the current cursor position. If the pattern
is not found, an error message is displayed.

None

EditAskfor
EditScanpat

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 175

EditGenlineno [SCREEN.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

176

procedure Edi tGenlineno;

EditGenlineno;

None

This routine generates the absolute line number for
each window displayed by starting at the current
line and stepping backward until the top of the
stream is reached.

If input is encountered at any time during this
process, the routine is aborted because it is time
consuming. The line number is not displayed on the
status line by this routine, only calculated.

None

Turbo Editor Toolbox Owner's Handbook

EditGotoColumn [OCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure EditGotoColumn (Cno : integer);

EditGotoColumn (Cno);

Cno : column number to go to.

This routine positions the cursor to the specified col­
umn number.

If the number passed is less than 1 or greater than
Maxint, no operation is performed.

None

EditCpgotocl

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 177

EditGotoLine [OCMD.ED]

178

Declaration

Usage

Parameters

Function

Remarks

Restrictions

procedure Edi tGotoLine (Lno : integer);

EditGotoLine (Lno);

Lno : line number to go to.

This routine positions the cursor to the line speci­
fied.

If it is less than 1, no operation is performed. If it is
greater than the number of lines in the text stream,
the cursor is placed on the last line in the text
stream. The column position remains unchanged.

None

See Also " EditCenterline
EditCpgotoln
EditCpsetmrk

Turbo Editor Toolbox Owner's Handbook

EditHscroll [SCREEN. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

procedure Edi tHscroll;

EditHscroll;

None

This routine horizontally scrolls all windows if nec­
essary to keep their cursors within the confines of
the windows at all times.

This is done by testing the current column number,
and if it is out of bounds, the Leftedge field for that
window is reset to bring the cursor within the win­
dow. If input is encountered at any time the routine
is aborted.

None

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 179

Editlncline [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

180

procedure EditIncline;

Editlncline;

None

This routine increments the absolute line number
for the current window and calls EditUpdwinsl to
display it.

Editlncline provides fast scrolling even in very large
files.

None

EditUpdwinsl

Turbo Editor Toolbox Owner's Handbook

Editlnitialize [LISTPROCS.ED]

Declaration

Usage

Parameters

Function

Restrictions

procedure Edi tIni tialize;

Editlnitialize;

None

This routine is called to initialize the entire editing
environment. It sets the default display colors, tab
size, search and replace strings, undo stack size, and
block pointers. It also clears the screen and in­
itializes the screen array. It then uses BIOS interrupt
10H to determine the screen type. It finally creates
two windows on the screen and initalizes the text
markers.

This routine should always be the first routine called
in any editor. Modifications to the initial setup may
be made after this routine is called.

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 181

EditlnsertCtrlChar [CMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

182

procedure Edi tInsertCtrlChar;

EditlnsertCtrlChar;

None

This routine accepts a single character from the
typeahead buffer, and translates it to a control char­
acter. It then calls EditPrctxt with the ASCII value of
this character to insert it into the text.

None

EditlnsertLine
EditPrctxt

Turbo Editor Toolbox Owner's Handbook

EditlnsertLine [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tInsertLine;

EditlnsertLine;

None

This routine inserts a line at the current cursor posi­
tion.

If the cursor is in column one, a blank line is inserted
above the current line. If the cursor is beyondthe
last non-blank character on the current line, a line is
inserted below the current line. Otherwise, the cur­
rent line will be split, and all text to the right of the
cursor will be moved to the new line below the cur­
rent one. If insufficient memory exists to create the
new line, an error message is displayed.

None

Editl nsertCtrlChar

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 183

EditJoinline [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

184

procedure ditJ 0 inline ;

EditJoinline;

None

This routine joins the line below the current line in
the current window to the current line. The cursor
must be positioned at the location where the line
below should be appended.

If the resultant line is longer than the current line's
buffer length, EditSizeline will be called to allocate a
new text line. If EditSizeline reports insufficient
memory, an error message is displayed and the text
is not affected. Otherwise, the line below is ap­
pended and its line descriptor freed (and duplicated
for Undo). .

The cursor must be positioned where the first char­
acter of the line below should be placed.

EditSizeline

Turbo Editor Toolbox Owner's Handbook

EditJumpMarker [QCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure EditJumpMarker (m : byte);

EditJumpMarker (m : byte);

m : marker number to jump t.

This routine jumps to a text marker.

If the number passed is less than 1 or greater than
Maxmarker, an error message is displayed indicat­
ing the operation is not possible. Otherwise, the cur­
sor is positioned to the marker. If the specified
marker is in a different window, the current win­
dow's cursor position is saved and the cursor is
moved to that window. The window's column num­
ber is not changed.

None

EditCpjmpmrk
EditCpsetmrk
EditSetMarker

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 185

EditK [K.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

186

procedure Edi tK;

EditK;

None

This routine is the default utility menu processor for
the editor. It displays the message ,,< Utility>" on
the command line, waits for input, and then calls the
appropriate toolbox routine to process the com­
mand.

If a different mapping of comamnds is desired, a
new version of this procedure may be created using
the default as a guide.

None

EditO
EditQ

Turbo Editor Toolbox Owner's Handbook

EditLeftChar [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tLe ftChar ;

EditLeftChar;

None

This routine moves the cursor in the current window
left one character.

If the cursor is in column one, it is moved to the
column immediately following the last non-blank
character on the previous line. If the cursor is in col­
umn one on the first line in the text stream, no action
is performed.

None

EditLeftWord

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 187

EditLeftWord [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

188

procedure EditLeftWord;

Ed itLeftWord ;

None

This routine moves the cursor in the current window
left one word.

If the cursor was positioned on or to the left of the
first non-blank character on the current line, it is
moved to the first column of the current line. If the
curSOr was positioned in the first column of the cur­
rent line, it is moved to the column immediately fol­
lowing the last non-blank character on the previous
line. If the cursor was positioned at the first charac­
ter in the text stream, no action is performed. Other­
wise: the cursol.' is positioned to the beginning of the
previous word on the same line.

None

EditRightWord

Turbo Editor Toolbox Owners Handbook

EditLongLine [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure EditLongline;

EditLongline;

None

This routine is local to EditReformat, and is used to
remove all text on the current line which extends
beyond the current right margin.

If there is a line below the current Ine, the text is
inserted at the beginning of that line. Otherwise, a
new line is created below the current one, and the
text is placed there. If the text extending beyond the
right margin is a single word that also extends to the
left of the left margin, an error message will indicate
that there is a word too long.

None

EditNewLine
EditReformat
EditShortLine

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 189

EditMarkblock [SCREEN.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

190

procedure Edi tMarkblock;

EditMarkblock;

None

This routine marks the currently defined block by
stepping from the Blockfrom pointer to the Blocldo
pointer and setting the Inblock flag for each line in
that range.

If input is encountered at any time while marking,
the operation is aborted. If the block highlighting is
turned off, or if either limit pointer is undefined, no
action is performed.

None

Turbo Editor Toolbox Owner's Handbook

EditNewLine [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tNewLine;

EditNewLine;

None

This routine inserts a new line into the current win­
dow's text stream if Insert mode is set for the current
window. Line splitting is identical to EditlnsertLine,
except that the cursor is moved with the text split.

If Insert mode is not set, the cursor is simply moved
down one line, unless the cursor is on the last line of
the text stream, in which case a new line is created.
In this case, the current line is not split, but the cur­
sor is positioned on the new line. If Autoindent
mode is set for the current window, the cursor is
positioned under the first non-blank character on
the previously current line. If that line is blank, or
Autoindent mode is not set, the cursor is positioned
in column one. This routine also resets the Wrapped
flag for the previously current line, indicating the
end of the paragraph to EditReformat

None

EditLong Li ne
EditReformat
EditShortLi ne

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 191

EditO [O.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

192

procedure Edi to;

EditO;

None

This routine is the default text menu processor for
the editor. It displays the message" <Text>" on the
command line, waits for input, and then calls the
appropriate toolbox routine to process the com­
mand.

If a different mapping of comamnds is desired, a
new version of this procedure may be created using
the default as a guide.

None

EditK
EditQ

Turbo Editor Toolbox Owner's Handbook

EditOffblock [USER.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

procedure EditOffblock;

EditOffblock;

None

This routine resets the Inblock flag in every text line
in every text stream in the editing system.

It is used by block routines when they determine
that a block has been made discontiguous or cor­
rupt. The block limit pointers are not disturbed.

None

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 193

EditPrccmd [DISP.ED]

Declaration

Usage

Parameters

Function

Restrictions

194

procedure EditPrccmd (Ch : byte);

EditPrccmd (Ch);

Ch : byte to be interpreted as a command.

This routine interprets the byte passed as a com­
mand, and calls the appropriate toolbox routine to
process that command. If the byte passed is not
mapped to a command, no action is performed.

None

Turbo Editor Toolbox Owner's Handbook

EditPrctxt [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tPrctxt (Ch : byte);

EditPrctxt (Ch);

Ch : ASCII code of character to insert into text.

This routine inserts the specified character into the
current text stream at the current cursor position.

If Insert mode is set for the current window, text to
the right of the cursor is pushed to the right to make
room for the character. If Insert mode is reset, the
character replaces the character at the current cur­
sor position. If the length of the current line is in­
creased beyond the next 16-byte boundary,
EditPrctxtwili attempt to allocate more space for the
text. If it is unable to do this, it will display a· message
indicating so. If the character inserted pushes the
cursor past the right edge of the screen, the window
is horizontally scrolled. If Wordwrap mode is set for
the current window and the character inserted
pushes the cursor past the right margin, the word
preceding the cursor is removed from the current
line and inserted on a new line immediately below.
The current line is always updated on the screen to
reflect the change.

None

EditPrctxt

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 195

EditPushtbf [USER.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

196

procedure EditPushtbf (Ch : byte);

EditPushtbf (Ch);

Ch : ASCII code of character to be placed in buffer

This routine pushes the specified character onto the
front of the typeahead buffer so that it will be the
next character read by EditGetinput.

This is useful for implementing macros. If the
typeahead buffer overflows, an error message is
displayed and the buffer is cleared.

None

EditGetinput

Turbo Editor Toolbox Owner's Handbook

EditQ [Q.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tQ;

EditQ;

None

This routine is the default window menu processor
for the editor. It displays the message" <Window>"
on the command line, waits for input, and then calls
the appropriate toolbox routine to process the com­
mand.

If a different mapping of commands is desired, a
new version of this procedure may be created using
the default as a guide.

None

EditK
EditO

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 197

EditRealign [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

198

procedure EditRealign;

EditRealign;

None

This routine updates the relative line number, cur­
rent line pointer, and top line pointer for every win­
dow in the system. This is necessary when lines are
inserted into or deleted from text streams.

It assumes that Curline and Topline are defined for
each window; this is assured if EditDelline is used to
delete lines from a text stream.

None

EditDelline

Turbo Editor Toolbox Owner's Handbook

EditReatxtfil [USER. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

procedure EditReatxtfil (Fn : Varstring);

EditReatxtfil (Fn);

Fn : pathname of file to read

This routine attempts to read the file named by Fn,
and insert its text into the current window after the
current line.

If the file does not exist or some other liD error oc­
curs, an appropriate error message is displayed and
the operation is aborted. If memory is insufficient to
read the entire file it reads what it is able to and then
displays an error message. The cursor position is
not changed. The operation may be aborted at any
time during the read with Ctrl-U.

None

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 199

EditReformat [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

200

procedure EditReformat;

EditReformat;

None

This routine reformats text lines to fit within the cur­
rent margins, starting at the cursor position. It will
move words down from the end of a line or bring
words up a line to fill in as much space as possible. It
continues to reformat until it encounters either the
end of the text stream or a line in which the Wrapped
bit is not set.

If the routine causes new lines to be inserted, they
are given the Wrapped attribute unless they are
eventually the last line in the paragraph. This
routine will operate whether or not Wordwrap mode
is set for the current window.

None

EditLong Li ne
EditNewLine

Turbo Editor Toolbox Owner's Handbook

EditReplace [QCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tReplace ;

EditReplace;

None

This routine finds a pattern in the current text
stream, replacing it if a match is found.

None

EditFind

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 201

EditRightChar [CMD.ED 1
Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

202

procedure EditRightChar;

EditRightChar;

None

This routine moves the cursor in the current window
right one character.

If the cursor is beyond the current line's buffer
length, it is moved rightward anyway. If text is sub­
sequently typed beyond the buffer length, EditPrctxt
will attempt memory allocation.

None

EditLeftChar
EditPrctxt

Turbo Editor Toolbox Owner's Handbook

EditRightWord [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure EditRightWord;

EditRightWord;

None

This routine moves the cursor in the current window
right one word.

If the cursor is beyond the last non-blank character
on the current line, it is moved to the beginning of
the line below, if that line exists. If the cursor is on a
space, it is moved to the first non-blank character to
the right. If the cursor is not on a space, it is moved
across all characters in the same class, and then
across spaces, if any. The three character classes are
alphanumerics, punctuation characters, and
spaces. if the cursor is beyond the last non-blank
character in the text stream, no action is performed.

None

EditLeftWord

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 203

EditSchedule [TASK.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

204

procedure EditSchedule;

Editschedule;

None

This routine determines if a character is available to
process on the typeahead buffer, and if so, the input
classifier is called. If no input is present, the back­
ground process is executed, which updates the
screen, etc.

None

Editsystem
EditBackground

Turbo Editor Toolbox Owner's Handbook

Ed itScro II Down [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tScrollDown;

EditScrollDown;

None

This routine slides the current window down one
line over its text stream.

If the cursor is on the topmost displayed line of the
window, it is moved down one line to keep it within
the window. If the last line in the text stream is the
only line displayed in the window, no action is per­
formed.

None

EditScroliUp

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 205

EditScroliUp [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

206

procedure Edi tScrollUp;

EditscrollUp;

None

This routine slides the current window up one line
over its text stream.

If the cursor is on the last displayed line in the win­
dow, it is moved up one line to keep it within the
window. If the top line of the text stream is currently
displayed at the top of the window, no action is per­
formed.

None

Editscrol I Down

Turbo Editor Toolbox Owner's Handbook

EditSetLeftMargin [OCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure EditSetLeftMargin (No: integer);

EditsetLeftMargin (No);

No : column to set left margin to.

This routine sets the left margin for the current win­
dow to the number passed to it.

If the number is less than 1 or greater than the
current right margin, an error message is displayed
indicating the operation is not possible.

None

EditCpsetlm
EditCpsetrm

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 207

EditSetMarker [KCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

208

procedure EdHSetMarker (m : byte);

EditsetMarker (m);

m : marker number to set.

This routine sets the specified marker to the current
line in the current window.

If the specified number is less than 1 or greater than
Maxmarker, an error message is displayed indicat­
ing the operation is not possible, and the marker is
undisturbed. Otherwise, the marker is set to the cur­
rent line, and the previous value of the marker is
destroyed.

None

EditCpsetmrk
EditJumpMarker

Turbo Editor Toolbox Owner's Handbook

EditSetRightMargin [OCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure EditSetRightllargin (No : integer);

EditsetRightMargin (No);

No : column number to set.

This routine sets the right margin for the current
window to the column specified.

If the number is greater than Maxint or less than the
current left margin, an error message is displayed
indicating the operation is not possible.

None

Edit Cpsetrm

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 209

EditSetUndoLimit [OCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

210

procedure EditSetUndoLimi t (Limit : integer);

Edit$etUndoLimit (Limit);

Limit: new Undo stack size.

This routine sets the maximum number of lines that
will be retained for Undo.

If the number passed is greater than Maxint or less
than 1, no operation is performed.

None

Turbo Editor Toolbox Owner's Handbook

EditShiftLine [CMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure EditShiftLine (Lp : Plinedesc);

EditShiftLine (Lp);

Lp : pointer to line to be shifted

This routine is local to EditReformat, and is used to
shift the text on that line right to ensure that the first
non-blank character on the line falls on or to the
right of the current left margin. This improves clarity
in the splicing algorithms.

None

EditReformat

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 211

EditShortline [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

212

procedure Edi tShortline;

Editshortline;

None

This routine is local to EditReformat, and is used to
remove words from the line below the current line
and append them to the current line.

it will only remove enough text to fill the space be­
tween the end of the current line and the right mar­
gin without extending beyond the margin. If there is
no line below the current line, or if that line does not
have the Wrapped bit set, the reformat operation is
terminated.

None

EditLongLine
EditReformat
EditNewLine

Turbo Editor Toolbox Owner's Handbook

EditSystem [TASK.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tSystem;

Editsystem;

None

This routine serves as an example for an editor main
loop. It repeatedly calls EditSchedule until the
variable Rundown is true, at which time it exits.

None

Editschedule

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 213

EditTab [CMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

214

procedure Edit Tab;

EditTab;

None

This routine moves the cursor to the next tab stop to
the right. If Insert mode is set for the current win­
dow, tabs are inserted into the current line as the
cursor is moved. If the resulting longer line exceeds
the current line's buffer length, EditTab will attempt
to allocate new memory for the line. If it could not
allocate the memory, an error message is displayed
and no action is performed.

None

Turbo Editor Toolbox Owner's Handbook

EditToggleAutoindent [QCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tToggleAutoindent;

EditToggleAutoindent;

None

This routine is local to Autoindent mode for the cur­
rent window. This mode is used by EditNewLine to
determine where to position the cursor when
< RETURN> is pressed.

None

EditNewLine

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 215

EditTogglelnsert [CMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

216

procedure Edi tTogglelnsert;

EditTogglelnsert;

None

This routine toggles Insert mode in the current win­
dow.

None

Turbo Editor Toolbox Owner's Handbook

EditToggleWordwrap [OeMO.EO]

Declaration

Usage

Parameters

Function

Restrictions

procedure Edi tToggleWord,rap;

EditToggleWordwrap;

None

This routine toggle Wordwrap mode for the current
window. This mode is used by EditPrctxt to deter­
mine whether text should automatically wrap to the
next line when it exceeds the right margin.

None

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 217

EditTopBlock [QCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

218

procedure EditTopBlock;

EditTopBlock;

None

This routine moves the cursor to the top line of the
current block.

If the block is not defined, an error message is dis­
played indicating that the operation is not possible.
If the block is defined in a window other than the
current one, the current window's cursor position is
saved and the cursor is moved to the window
containing the block. The column position is not
changed.

None

EditBottomBlock

Turbo Editor Toolbox Owner's Handbook

EditUndo [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

procedure Edi tundo ;

EditUndo;

None

This routine removes a text line from the Undo stack
and inserts it into the current text stream above the
current line.

If the Undo stack size is set to zero, or if there are no
lines on the stack to be removed, no action is per­
formed.

None

TURBO EDITOR TOOLBOX PROCEDURES & !=UNCTIONS 219

EditUpcase [USER. ED]

Declaration

Usage

Parameters

Function

Restrictions

220

procedure Editupcase (var s : Varstring);

EditUpcase (s);

s : string to convert

This routine changes all lowercase letters in s to
their equivalent uppercase letters, and returns the
new string in s.

None

Turbo Editor Toolbox Owner's Handbook

EditUpdphyscr [SCREEN. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tupdphyscr;

EditUpdphyscr;

None

This routine updates the physical screen. It updates
the current line of the current window first, then the
command line. If any input is pending, the operation
is terminated at this point; otherwise, all windows
including the current one are updated completely
with EditUpdwindow.

If input is encountered at any time during this
process, the operation is terminated. However, if In­
trflag is set to Nointrpt, the entir screen will be
updated, even if input is present.

None

EditUpdwindow

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 221

EditUpdrowasm [SCREEN.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

222

procedure Edi tupdrowasm (Row : byte);

EditUpdrowasm (Row);

Row: physical screen row to update.

This routine is passed a row number to update. It
takes the data for that screen row from the Screen
array and copies it directly to screen memory.

If Retracemode is set, inline code is used to wait for
the display processor to indicate vertical retrace is
active, so that no "snow" is observed during updat­
ing. This is the lowest-level screen updating routine.

The parameter must be in the range 1-Defnorows; if
it is not, a run-time array bounds overflow error will
occur. If array bounds checking is turned off and the
row number is out of range, the results are unpre­
dictable.

Turbo Editor Toolbox Owner's Handbook

EditUpdwindow [SCREEN.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tupdwindow (w : Pwindesc);

EditUpdwindow(Curwin) ;

w : The window to be updated

This routine updates the status line, then updates
every line in the text region by calling EditWrline
and EditUpdrowasm.

None

EditUpdwinsl
EditUpdphyscr

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 223

EditUpdwinsl [SCREEN. ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

224

procedure Edi tupdwinsl (w : Pwindesc);

EditUpdwinsl(Curwin) ;

w : The window whose status line is to be updated

This routine updates the status line for the specified
window.

None

EditUpdwindow
EditU pdphyscr

Turbo Editor Toolbox Owner's Handbook

EditUpLine [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tupLine ;

EditUpLine;

None

This routine moves the cursor in the current window
up one line.

If the cursor is on the topmost displayed line in the
window, the window will be scrolled up one line to
keep the cursor within the window. If the cursor is on
the topmost line in the text stream, no action is per­
formed.

None

EditDownUne

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 225

EditUpPage [CMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

226

procedure Edi tupPage ;

EditUpPage;

None

This routine slides the current window up one page
over its text stream.

The total number of lines scrolled is one less than
the number of lines displayed in the window. The
window will never be scrolled so as to position the
top line of the text stream below the topmost screen
line of the window. If the top line of the text stream is
displayed at the top of the window, no action is per­
formed.

None

EditDownPage

Turbo Editor Toolbox Owner's Handbook

EditUserpush [INPUT. ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Edi tUserpush (s : Varstring);

EditUserpush (s);

s : String to be pushed onto the typeahead buffer.

This routine pushes the string passed onto the front
of the typeahead buffer in reverse order, so that the
characters of the string will be removed by Edit­
Getinput in the correct order. EditPushtbfis called to
perform the actual operation on each element of the
string.

This routine is useful in implementing macro pro­
cessing. If the string passed is NULL, no action is
performed.

None

EditGetinput
EditPushtbf

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 227

EditWindowBottomFile [QCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

22B

procedure Edi tWindowBot tomFile;

EditWindowBottomFile;

None

This routine moves the cursor in the current window
to the bottom of its text stream. The cursor column
is set to 1, and the last line of the text stream is
displayed on the top line of the window.

None

EditWindowTopFile

Turbo Editor Toolbox Owner's Handbook

EditWindowCreate [OCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure EditWindowCreate (Size : byte; Win : byte);

EditWindowCreate (Size, Win);

Size: number of screen lines to be given to the new
window Win: window number to be compressed

This routine creates a new window and inserts it into
the linked list of displayed windows. The requested
size must be at least three lines, one status line and
two text lines. The new window may not compress
the specified one smaller than three lines. If either of
these conditions occurs, an appropriate error
message is displayed and the operation is ter­
minated.

If the new window cannot be created using
EditCrewindow, an out of memory error is reported.
Otherwise, the window is initialized and inserted
into the linked list. The compressed window's
Lastlineno field is adjusted to compress its visible
span. If that window's current line was below the
new lower limit, it is moved to the last displayed line
of that window.

None

EditCrewindow

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 229

EditWindowDelete [OCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

230

procedure EditWindowDelete (Wno : byte);

EditWindowDelete (Wno);

Wno : window number to delete

This routine deletes a window from the linked list of
display windows. If there is only one window dis­
played, an error message is reported. Otherwise,
Wno is interpreted modulo the number of windows
defined.

If the requested number is window 1, the second
window will be given the freed space, otherwise the
window above the deleted one will claim the freed
space. The window's text stream will be deleted but
not placed on the undo stack, so it is lost. If the
deleted window contained the currently defined
block, it also is deleted and the limit pointers reset to
nil. If the window is linked to another, its text stream
will not be deleted, and the text will be present in the
other window; but the link will be destroyed. After
the text is deleted, the window record is placed on
the free list.

None

Turbo Editor Toolbox Owner's Handbook

EditWindowDeleteText [QCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

procedure Edi tWindowDeleteText;

EditWindowDeleteText;

None

This routine deletes all text from the current win­
dow. The text lines are not placed on the undo stack,
so they are lost. The filename is reset to nona me,
and a blank text line is created for the new first line of
the window.

If another window is linked to the cleared one, its
text stream is deleted as well, and the link is
destroyed. If the block was in the current window or
a window linked to it, it too is deleted, and its limit
pointers are reset to nil. There are no error condi­
tions.

None

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 231

EditWindowDown [QCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

232

procedure Edi tWindowDown;

EditWindowDown;

None

This routine changes the current window to the win­
dow immediately below. The cursor position in the
old current window is saved, and the cursor position
in the new current window will be the previously
saved cursor position there. If the current window is
the bottom window on the screen, the cursor is
moved to window 1. There are no error conditions,
and no manipulation of text is performed.

None

EditWindowUp

Turbo Editor Toolbox Owner's Handbook

EditWindowGoto [QCMD.ED]

Declaration

Usage

Parameters-

Function

Restrictions

procedure Edi UiindowGoto (Wno : byte);

EditWindowGoto (Wno);

Wno : window number to move to

This routine changes the current window to the win­
dow number specified. The cursor position in the
old current window is saved, and the cursor position
in the new current window will be the previously
saved cursor position there. The requested window
number is interpreted modulo the number of win­
dows currently defined. There are no error condi­
tions, and no manipulation of text is performed.

None

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 233

EditWindowLink [QCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

234

procedure EditWindowLink (ito: byte; Wfrom : byte);

EditWindowLink (Wto, Wfrom);

Wto : window number of destination window
Wfrom : window number of source window

This routine links two windows together. The text in
window number Wto is deleted (unless another win­
dow is linked to it), and its stream is made identical
to that of window number Wfrom. Both parameters
are interpreted modulo the number of windows cur­
rently displayed.

If both window numbers are the same or if their
windows already reference the same text stream, an
error message is displayed indicating that the oper­
ation was not possible. If the operation was success­
ful, any further manipulation of text in one of the
linked windows will be reflected in the other's text,
though they remain able to be scrolled indepen­
dently.

None

Turbo Editor Toolbox Owner's Handbook

EditWindowTopFile [QCMD.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tWindowTopFile;

EditWindowTopFile;

None

This routine moves the cursor in the current window
to the top of its text stream. The line and column
positions are set to 1.

None

EditWindowBottomFile

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 235

EditWindowUp [QCMD.ED]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

236

procedure Edi tWindowUp;

EditWindowUp;

None

This routine changes the current window to the win­
dow immediately above. The cursor position in the
old current window is saved, and the cursor position
in the new current window will be the previously
saved cursor position there.

If the current window is window 1, the cursor is
moved to the bottom window on the screen. There
are no error conditions, and no manipulation of text
is performed.

None

EditWindowDown

Turbo Editor Toolbox Owner's Handbook

EditZapcmdnam [USER.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Edi tZapcmdnam;

EditZapcmdnam;

None

This routine clears the command line. It sets the
command line string to spaces to blank it, and sets
Cmdcol to 1 so that EditAppcmdnam and EditAskfor
will operate starting in column one.

None

EditAppcmdnam
EditAskfor

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 237

MoveFromScreen [SCREEN.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

238

procedure MoveFromScreen (Var Source, Dest; Length; Integer);

MoveFromScreen(ScreenLoc, Dest, Size);

Source : The screen memory location to move from
Dest : The non-screen memory location to move to
Size: The number of bytes to move

Move memory, as Turbo's Move procedure, but
assume that the source is in video memory. Prevent
screen flicker based on this assumption, unless
RetraceMode is false. Timing is very tight: if the
code were 1 clock cycle slower, it would cause
flicker.

Should be used only to move data from the screen.

MoveToScreen

Turbo Editor Toolbox Owner's Handbook

MoveToScreen [SCREEN.ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure MoveToScreen(Var Source,Dest; Length: Integer);

MoveToScreen(ScreenLoc, Dest, Size);

Source: The non-screen memory location to move
from Dest : The screen memory location to move to
Size: The number of bytes to move

Move memory, as Turbo's Move procedure, but
assume that the target is in video memory. Prevent
screen flicker based on this assumption, unless
RetraceMode is false. Timing is very tight: if the
code were 1 clock cycle slower, it would cause
flicker.

Should be used only to move data to the screen.

MoveFromScreen

TURBO EDITOR TOOLBOX PROCEDURES & FUNCTIONS 239

Pokechr [INPUT. ED]

Declaration

Usage

Parameters

Function

Restrictions

See Also

240

procedure Pokechr (Ch : char);

Pokechr (Ch);

Ch : character to place on the typeahead buffer.

This routine is called to place a character on the end
of the typeahead buffer, in a queue style. If the char­
acter passed is a Ctrl-U, EditAbortis called directly. If
the typeahead buffer is full, it will be emptied, an
error message will be displayed, and the character
passed will be lost.

None

EditAbort

Turbo Editor Toolbox Owner's Handbook

SUBJECT INDEX

A
Array-of-Lines buffer structure,

18-19
ASCII code, 7-8

B
Block, 10

commands, 80-81

C
Character data, representation of,

17
Color, 71-72
Command

definition of, 10
dispatcher, 10

Command processors, 11, 73-86
block commands, 80-81
cursor movement commands,

73-74
file commands, 82-86
multiple windows and text

buffers, 77 - 78
text deletion commands, 74-75
window commands, 78-80
word processing commands,

76-77
Commands, new

prefixed, 41
single keystroke, 40
writing, 39-40

Complex editor, how to write, 42
Constants, Turbo Editor Toolbox,

99-103
Control characters, 8
Cursor, 9

movement commands, 73-74

D
Data types, Turbo Editor Toolbox,

95-98
Delimiters, text, 8
Distribution diskettes, 3, 95-98
Document mode, 11

SUBJECT INDEX

E
EDITERR.MSG file, 3
Editor(s)

colors in, 71-72
complex, how to write, 42
definition of, 7
EDLIN, 13
including in your program, 91
kernel, 65-67
line, 13-14
overlaying, 87-89
RAM - based, 15
screen routines, 69-72
simple, 25-27
swapping, 15
text, 7
WYSIWYG (What You See is

What You Get), 14
EDLIN line editor, 13
Error handling, customizing, 53-55

F
File, 10

commands, 82-86
Files, Turbo Editor Toolbox, 95-98
FIRST-ED, 29-33

building, 29-31
customizing, 35-42
quick command reference, 33
using, 32

FIRST-ED.PAS, 3
Fixed buffer structure, 19-20
Functions, Turbo Editor Toolbox,

117ff
(see also Procedures and
Functions Index)

Include files, 4

H
Hardware, required, 1

K
Keyboard input, 65

241

L
Line editors, 13-14
Linked list buffer structure, 20-21

M
MicroStar, 4, 43ff

background print routines, 53
building, 43-44
command dispatchers, 47
command set, 44-45
error handling, 53-55
pop-up window routines, 53
pull-down menu system, 44,

50-52
quick command reference, 45
status display, 55

Multiple windows, 77-78

N
New commands, how to write, 39-40
Nondocument mode, 11

o
Overlay

groups, 87-88
structure, 89

Overlaying the editor, 87-89

p
Procedures and functions, Turbo

Editor Toolbox, 117ff
(see also Procedures and
Functions Index)

Q
Quick command reference

FIRST-ED, 33
MicroStar, 45

R
RAM-based editors, 15
READ-ME file, 3

S
Scheduler, 65-67
Screen

format, default, 69-70
manipulation, 69
updating routines, 70-71

Simple editor, 25-27
Software, required, 2
Source code for Toolbox routines, 3
Status display, customizing, 55
Storage of text data, 59-60
Swapping editors, 15

T
Text, 7

buffers, 18-21, 77-78
data, storage of, 59-60
del i miters, 8
detecting changes in, 55-56
editor, 7
stream, 9

Turbo Editor Toolbox

U

constants, 99-103
data types, 105-107
distribution diskettes, 3, 95-98
files, 95-98
procedures and functions, 117ff
(see also Procedures and ~
Functions Index)

variables, 109-116

UserCommand procedure, 37-39
UserTask procedure, 67

V
Virtual editors, 15

W
WYSISYG (What You See is What You Getl

editors, 14
Window(s), 9, 61-63

commands, 78-80
descriptor records, 61
multiple, 77-78
status line, 69

Word processing commands, 76-77

242 Turbo Editor Toolbox Owner's Handbook

PROCEDURES AND FUNCTIONS
INDEX

A
Advance, 118

E
EditAbort, 119
EditAppchar, 120
EditAppcmdnam, 121
EditAskfor, 122

EditBackground, 123
EditBeginningEndLine, 124
EditBeginningLine, 125
EditBlockBegin, 126
EditBlockCopy, 127
EditBlockDelete, 128
EditBlockEnd, 129
EditBlockHide,130
EditBlockMove, 131
EditBottomBlock,132
EditBreathe, 133

EditCenterLine, 134
EditChangeCase,135
EditClsinp, 136
EditColorFile, 137
EditColorLine,138
EditCompressLine,139
Ed itCpcrewi n, 140
EditCpdelwin,141
EditCpexit, 142
EditCpFileSave, 143
EditCpFind,144
EditCpgotocl, 145
EditCpgotoln, 146
EditCpgotowin, 147
EditCpjmprk,148
EditCplnkwin,149
EditCpReplace, 150
EditCprfw, 151
EditCpsetlm, 152
EditCpsetmrk,153
EditCpsetrm, 154

EditCptabdef, 155
EditCpundlim,156
EditCpwfw, 157
EditCvts2i, 158

EditDecline,159
EditDefineTab, 160
EditDeleteLeftChar, 161
EditDeleteLine, 162
EditDeleteRightChar, 163
EditDeleteRightWord, 164
EditDeleteTextRight, 165
EditDelline, 166
EditDestxtdes, 167
EditDownLine, 168
EditDownPage, 169

EditEndLine, 170
EditErrormsg, 171
EditExit, 172

EditFileRead, 173
EditFileWrite,174
EditFind, 175

EditGenlineno, 176
EditGotoColumn,177
EditGotoLine, 178

EditHscroll, 179

Editlncline, 180
Editlnitialize, 181
EditlnsertCtrlChar, 182
EditlnsertLine, 183

EditJoinLine,184
EditJumpMarker, 185

EditK,186

PROCEDURES AND FUNCTIONS INDEX 243

EditLeftChar, 187
EditLeftWord, 188
EditLongLine, 189

EditMarkblock, 190

EditNewLine, 191

EditO, 192
EditOffblock,193

EditPrccmd, 194
EditPrctxt, 195
EditPushtbf, 196

EditO,197

EditRealign, 198
EditReatxtfil,199
EditReformat, 200
EditReplace, 201
EditRightChar, 202
EditRightWord, 203

EditSchedule, 204
EditScroliDown, 205
EditScrollUp,206
EditSetLeftMargin, 207
EditSetMarker, 208
EditSetRightMargin, 209
EditSetUndoLimit,210
EditShiftLine, 211
EditShortLine,212
EditSystem,213

EditTab, 214
EditToggleAutoindent, 215
EditTogglelnsert,216
EditToggleWordwrap, 217
EditTopBlock,218

244

EditUndo,219
EditUpcase, 220
EditUpdphyscr, 221
EditUpdrowasm, 222
EditUpdwindow, 223
EditUpdwinsl, 224
EditUpLine, 225
EditUpPage, 226
EditUserpush, 227

EditWindowBottomFile,228
EditWindowCreate, 229
EditWindowDelete,230
EditWindowDeleteText, 231
EditWindowDown, 232
EditWindowGoto, 233
EditWindowLink, 234
EditWindowTopFile, 235
EditWindowUp, 236

EditZapcmdnam, 237

M
MoveFromScreen, 238
MoveToScreen,239

p
Pokechr,24O

Turbo Editor Toolbox Owner's Handbook

~"G~ ~~ .. ~~
o"~f1"tl

"()\)~ CATALOG
OF

BORLAND
PRODUCTS

+
BORLAND
INTERNATIONAL

4585 Scotts Valley Drive
Scotts Valley, CA 95066

Available at better dealers nationwide. Call (800) 556-2283 for the dealer
nearest you. To order by Credit Card call (800) 255-8008, C4 (800) 742-1133

®

VERSION 1.5
INFOWORLDJS

SOFTWARE PRODUCT OF THE YEAR
Whether you're running WOrdStar™, Lotus™, d8ase™,
or any other program, SIDEKICK puts all these desktop

accessories at your fingertips. Instantly.

A full-scrB,n WordStBf-lIk, Editor You may jot
down notes and edit files up to 25 pages long.

A Phon, DlrBctory for your names, addresses
and telephone numbers. Finding a name or a
number becomes a snap.

An Autodlal" for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SIDEKICK windows stacked up over Lotus 1-2-3.
From bottom to top: SIDEKICK'S "Menu Window," ASCII
Table, Notepad, Calculator, Datebook, Monthly Calendar and
Phone Dialer.

A Monthly C,',nd" functional from year 1901
through year 2099.

A D,t,book to remind you of important
meetings and appointments.

A full-f"turBd C,'cul,tor ideal for business use.
It also performs decimal to hexadecimal to
binary conversions.

An ASCII T,bl, for easy reference.

Here's SIDEKICK running over Lotus 1-2-3. In the SIDEKICK
Notepad you'll notice data that's been imported directly from
the Lotus screen. In the upper right you can see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar'sTl.
block copy commands, SIDEKICK can transport all or
any part of the display screen (even an area overlaid by
the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SIDEKICK deserves a place in every PC."
-Garry Ray, PC WEEK

"SIDEKICK is by far the best we've seen. It is also the
least expensive." -Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SIDEKICK. You'll soon become
dependent on it." -Jerry Pournelle, BYTE

SIDEKICK IS AN UNPARALLELED BARBAIN AT ONLY $54.95 {eopy-proteeted}

OR $84.95 {not eopy-proteeted}

Minimum System Conflgurallon: SIDEKICK Is available now for your IBM PC, XT, AT, PCjr., and 100% compatible microcomputers.
The IBM PC Jr. will only accept the SIDEKICK not copy-protected version. Your computer must havl at least 128K RAM, one disk
drive and PC-DOS 2.0 or greater. A HayesTl

• compallble modem, IBM PClr.TII Internal modem, or AT&T@ Modem 4000 Is required for
the autodialer function.

SideKick and SuperKey are registered trademarks of Borland International, Inc. dBase is a trademark of Ashton·Tate.IBM is a registered trademark and PC ir. is a trademark of International Business
Machines Corp. AT&T isa registered trademark of American Telephone & Telegraph Company.lnfoworld is a trademark of Popular Computing, Inc., a subsidiary of CW Communications Inc. Lotus 1·2·3 is

a trademark of Lotus Development Corp. WordStar is a trademark of Micropro International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.

INCREASE YOUR PRODUCTIVITY
BY 500,1, OR YOUR MONEY BACK

SuperKey turns 1,000 keystrokes into 1!
Yes, SuperKey can record lengthy keystroke sequences and play them back at the
touch of a single key. Instantly. Like Magic.
Say, for example, you want to add a column of figures in 1-2-3. Without SuperKey you'd
have to type seven keystrokes just to get started. ("shift-@-s-u-m-shift-('l With SuperKey
you can turn those 7 keystrokes into 1.

SuperKey keeps your 'confidential' files . .. CONFIDENTIAL!
Time after time you've-experienced it: anyone can walk up to your PC, and read your
confidential files (tax returns, business plans, customer lists, personal letters .. :).
With SuperKey you can encrypt any file, even while running another program. As long
as you keep the password secret, only YOU can decode your file. SuperKey imple­
ments the U.S. government Data Encryption Standard (DES).

SuperKey helps protect your capital investment.
SuperKey, at your convenience, will make your screen go blank after a predetermined
time of screen/keyboard inactivity. You've paid hard-earned money for your PC.
SuperKey will protect your monitor's precious phosphor ... and your investment.

SuperKey protects your work from intruders while you take a break.
Now you can lock your keybo.ard at any time. Prevent anyone from changing hours of
work. Type in your secret password and everything comes back to life ... just as you left it.

SUPERKEY is now available for an unbelievable $69.95 {not copy-protected}.

Minimum System Configuration: SUPEHKEY is compatible with your IBM PC, XT, AT, PCjr. and 100%
compatible microcomputers. Your computer must have at least 128K HAM, one disk drive and PC-DOS 2.0
or greater.

SideKick and SuperKey are registered trademarks of Bo~and International, Inc.
IBM and PC-DOS are trademarks of International Business Machines Corp. Lotus t -2-3 is a trademark of Lotus Development Corp

REFLEX
THE ANALYST""

ReI/ex" Is the most amazing and easy to use database management
system. And II you already use Lotus 1-2-3, dBASE or PFS File, you

need ReI/ex-because It's a totally new way to look at your data. It shows
you patterns and Interrelationships you didn't know were there, because

they were hidden in data and numbers. It's also the greatest
report generator lor 1-2-3.

REFLEX OPENS MULTIPLE WINDOWS WITH NEW VIEWS AND GRAPHIC INSIGHTS INTO YOUR DATA.

I~,. gil fjlllt;l',1i liiii liiiiii Lilt ~,
WSIII8I

.... ,,-
n .. :1IIuII , ..
I:IIn 1_]: I_I

."""'_J:S!J
Imm,

"' '.lIi I~

I

..... ..

... -DlItt,fII:oN
PIrlntort
""Ie
ClwDl'"

llMi'II:I$.ll

JIi
"' "' ..

.", ..

.", ..
"' .. "'
"' .. F

- iii - Ills - -. '" -. p,,,,, .. p,,,,,
'" p,,,,, -. '-' .. ,-, '" ,-, -. - ..

..
'"
III Inl

." lin

'" "" ...; II. ...
"" '" Ilil .. '" '" IIU

'" ""
0" ..

..
"" lin
U'1

""
" ..
'" ...
'" II!
III

""

1
-l.Jhl."-'''''I''''. ! - , , .
.. i

• I I . .

"',i''' •. " II1II .:., -;;;...,.

h",_

... 11:

STR:'"
.rI:e.. •

_n"",

The FORM VIEW lets you build and view your database. The LIST VIEW lets you put data in tabular List form
just like a spreadsheet.

The GRAPH VIEW gives you instant interactive
graphic representations.

.,. Ult "intAii. Iiiiiiii

s-" W- FlIlf:iiH
!,-

IV , ... '" i I:: ,., ... , . ..
The CROSSTAB VIEW gives you E:,,.... II" ..
amazing "cross-referenced" .. • m 1110

pictures of the links and
relationships hidden in your data.

liiiiii

II1II ...
'm
I'"
Itll

""

croulit

IlL

"" "" "" "" The REPORT VIEW allows you t~
import and export to and frorr

Reflex, 1-2-3, dBASE, PFS File and
other applications and prints 001

information in the formats you want.

Sa Rlfllx lhowl you. Inltant anlWln. Inllant plcturel. Inlllnt analYIII. Inltant underltandlng.

THE CRITICS' CHOICE:
"The next generation of software has officially arrived."

P,t" N'rt,n, PC WEEK
"Reflex is one of the most powerful database programs on
the market. Its multiple views, interactive windows and graphics, great
report writer, pull-down menus and cross tabulation make this
one of the best programs we have seen in a long time ...

The program is easy to use and not intimidating to the novice ...
Reflex not only handles the usual database functions such as sorting
and searching, but also "what-if" and statistical analysis ... it can
create interactive graphics with the graphics module. The separate
report module is one of the best we've ever seen." _.,e St"", INFOWORLD

MIIIImum SpIIm R"IInIMRtI: RttItII'1llll DllIIIe IBMe PC, IT. AT and camIllU"'I •• 3141(RAM 1'IIIIIInIn. 11M Color are_. AUpIer8. HIfCtIII.
Monocllrome Breplllu ClnI"', or 1l1li. PC-DOS 2.0 or gruter. Hini dllII and moult 1. Lotn 1-2-3. dBASE. or PFS Fill 1.

Aef!e~ is ~ trademi!!"~ o! BOAI.A!!OIAna!ytica I!!C. Lotus is ~ registered trademar!! ~ml Lotus 1-2-~ is a trademm cl Lotus Oe~elellmer.t Corl*:lk:n. dllASE is; ragistarell
trademark of Ashton·Tate. PfS is a registered trademark and PfS File is a trademark of Software Publishing Corporation. IBM PC, Xl. AT, PC-~OS and IBM Color Graphics Adapter are
registered trademarks of International Business Machines Corporation. Hercules Graphics Card is a trademark of Hercules Computer TechnoIoIGY.

If you use an IBM PC, you need

T U RB 0

Lightning"
Turbo LI,htnln,TM tllm, up
with the R.ndom Hou"
,p.llln, Dlctlon.rye to 'check
your ,p.llln, 11"lIly,.'
Turbo Lightning, using the
83,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a 'beep'.
At the tou,::h of a key, Turbo
Lightning opens a window on top
of your application program and
suggests the correct spelling.
Just press ENTER and the
misspelled word is instantly
replaced with the correct word.
It's that easy!

Turbo LI,htnl", work, hand-In­
hand with the Random Hou"
Thllauru,® to ,Ive you Insllnl
acce" to ,ynonym"
Turbo Lightning lets you choose
just the right word from a list of
alternates, so you don't say the
same thing the same way every
time. Once Turbo Lightning opens
the Thesaurus window, you see a
list of alternate words, organized by
parts of speech. You just select the
word you want, press ENTER and
your new word will instantly replace
the original word. Pure magic!

If you ."er writ. a word, think
• word, or IIY • word, you
nlld Turbo LI,htnln"

The Turbo Lightning Dictionary.

The Turbo Lightning Thesaurus.

~~~;p~:ntAJo~;gr~~~ ~~{g~:~~er:~ :~~~:~~Str~d~:~~~~:c~~~~~e~~e~;;'~~~f gg{g }~l~E li;2;~e~s~:~~~~~3~~~~~rf~h~~n~~~~ 
Microsoft is a registered trademark of Microsoft Corporation. SideKick is a registered trademark and Turbo Lightning and Turbo Lightning 
Library are trademarks of Borland Internalional. Random House Dictionary and Random House Thesaurus are registered Irademarks of 
Random House Inc Reflex is a Irademark of BORLAND/Analylica Inc, MulliMate is a trademark of MulliMate Inlernationallnc, 

Turbo LI,htnln,', Int.l/l,enc. 
I.t, you tllch It n.w word" 
Th. more you u" Turbo 
Lightnln" the ,marter It ,.t,/ 
You can also teach your new Turbo 
Lightning your name, business 
associates' names, street names, 
addresses, correct capitalizations, 
and any specialized words you use 
frequently. Teach Turbo Lightning 
once, and it knows forever. 

Turbo Llghtnlng™ Is the 
en,lne that powers Bor/and', 
Turbo Lightning LlbraryTM, 
Turbo Lightning brings electronic 
power to the Random House 
Dictionary® and Random House 
Thesaurus®. They're at your 
fingertips -even while you're 
running other programs. Turbo 
Lightning will also 'drive' soon-to­
be-released encyclopedias, 
extended thesauruses, specialized 
dictionaries, and many other 
popular reference works. You get 
a head start with this first volume 
in the Turbo Lightning Library. 
And because Turbo Lightning is a 
Borland product, you know you can 
rely on our quality, our 60-day 
money-back guarantee, and our 
eminently fair prices. 

SUllested Retail Price $99.9S' 
(not copy-protected) 

Minimum System Requirements: 
128K IBM PC@ or 100% compatible computer. 
with 2 floppy disk drives and PC-DOS (MS-DOS) 
2,0 or greater, 



SideKick, the Macintosh Office Manager, brings 
information management, desktop organization and 
telecommunications to your Macintosh. Instantly, 

while running any other program. 

A lull-screen editorlmini;.word processor 
lets you jot down notes and create or edit 
files. Your files can also be used by your 
favorite word processing program like 
MacWrite™ or MicroSoft® Word™. 
A complete telecommunication 
program sends or receives information 
from anyon-line network or electronic 
bulletin board while using any of your 
favorite application programs. A modem is 
required to use this feature. 
A lull-Ieatured linancial and scientilic 
calculator sends a paper-tape output to 
your screen or printer and comes complete 
with function keys for financial modeling 
purposes. 
A print spooler prints any text file while 
you run other programs. 
A versatile calendar lets you view your 
appointments for a day, a week or an entire 
month. You can easily print out your 
schedule for quick reference. 
A convenient UThings-to-Do" lile 
reminds you of important tasks. 

A convenient alarm system alerts you to 
daily engagements. 
A phone log keeps a complete record of all 
your telephone activities. It even computes 
the cost of every call. Area code hook-up 
provides instant access to the state, region 
and time zone for all area codes. 
An expense account lile records your 
business and travel expenses. 
A credit card lile keeps track of your 
credit card balances and credit limits. 
A report generator prints-out your mailing 
list labels, phone directory and weekly 
calendar in convenient sizes. 
A convenient analog clock with a 
sweeping second-hand can be displayed 
anywhere on your screen. 
On-line help is available for all of the 
powerful SIDEKICK features. 
Best 01 all, everything runs 
concurrently. 
SIDEKICK, the software Macintosh 
owners have been waiting for. 

SideKick, Macintosh's Office Manager is available now for 
$84.95 (not copy-protected). 

Minimum System Configuration: SIDEKICK Is avanable now for your Macintosh microcomputer In a format that Is not copy-protected. 
Your computer must have 8t least 128K RAM and one disk drive. Twei disk drives are recommended If you wish to USB other application 
programs. A Hayes-compatible modem Is required for the telecommunications function. To use SIDEKICK'S autodliling capability you 
need the Borland phone· link Interflce, Se. Insld. far detella, 

.~~~ 
SIDEKICK 18 a registered trademark of Borland International, Inc. Mllclntoah II a trademark of Mclntoah Laboratory, Inc. MlcWrlte Is a trademark of ~Dle 

Computer, Ino. IBM 1$ a trademark of InternaUonal Businetl Machin. Corp. MIcI'OlO1t 'a I registered trademark and \'«Ird Is a trademark of MICroSoft Corp. 
Hay" Is a tractemark 01 Hayes Microcomputer Products. Inc. 



WITH COMMENTED SOURCE CODE! 

VERSION 3.0 

THE CRITICS' CHOICE: 
"Language deal of the century ... Turbo 
Pascal: it introduces a new programming 
environment and runs like magic." 

-Jeg Dunlemann, PC Magazine 

"Most Pascal compilers barely fit on a disk, 
but Turbo Pascal packs an editor, compiler, 
linker, and run-time library into just 39K 
bytes of random-access memory." 

-Dave Garland, Popular Com puling 

"What I think the computer industry is 
headed for: well - documented, standard, 
plenty of good features, and a reasonable 
price." -Jerry Pour nelle, BYTE 

LOOK AT TURBO NOWI 
D More than 400,000 users worldwide. 

D TURBO PASCAL is proclaimed as the 
de facto industry standard. 

D TURBO PASCAL PC MAGAZINE'S award 
for technical excellence. 

OPTIONS FOR 16-BIT SYSTEMS: 
8087 math co-processor support for intensive 
calculations. 

Binary Coded Decimals (BCD): Eliminates 
round-off error! A must for any serious .business 
application. (No additional hardware required.) 

THE FEATURES: 
One-Slep Compile: No hunting & fishing 
expeditions! Turbo finds the errors, takes you 
to them, lets you correct, then instantly 
recompiles. You're off and running in record 
time. 

Buill-In Inleracllve Edllor: WordStar-like easy 
editing lets you debug quickly. 

Aulomallc Overlays: Fits big programs into 
small amounts of memory. 

Mlcroca/c: A sample spreadsheet on your disk 
with ready-to-compile source code. 

IBM PC VERSION: Supports Turtle Graphics, 
Color, Sound, Full Tree Directories, Window 
Routines, Input/Output Redirection and much 
more. 

D TU RBO PASCAL named 'Most Significant 
Product of the Year' by PC WEEK. 

D TURBO PASCAL 3.0 - the FASTEST 
Pascal development environment on the 
planet, PERIOD. 

Turbo Pascal 3.0 is availabl. now 
lor $69.9S. 

Opllons: Turbo Pascal wllh 8087 Dr BCD aI, low 
$109.90. Turbo Pascal wllh bolh opllons (8087 
and BCD} priced al "24.95. 

MINIMUM SYSTEM CONFI6URATlON: To use Turbo P"a/3.0 ""ulm 64K RAM, OM dlak drlw, Z-80, 8088186, 80186 Dr B0286 
mlcroproces.or runnln, ,llher CP IM-80 2.2 Dr ,mllr, CP IM-B6 ,., Dr ,mllr, MS-DOS 2.0 Dr ,mill Dr PC-DOS 2.0 ,mllr, 
MS-DOS 2.0 Dr gr"IIr Dr PC-ODS 2.0 Dr ,mllr. A XENIX wl1lon of Turbo PI., will .DOn III .nnoullClll, .ntI bIfofl IIIe .nd of 
lb. yur. Turbo P"t:l1 will b. runnln, on mOlI6BOOO-blod ml"Ot:IJmpulll1. 

Turbo Pascal is a registered trademark of 80~and Intemational,lnc. 
CP 1M is registered trademark of Digilal Research, Inc. 
IBM an PC·DOS are registered tradernarks of International Business 
Machines Corp. 
MS·DOS is a trademark 01 Microsoft Corp. 
zeo is a trademark of Zilog Corp. 



LEARN PASCAL FROM THE FOLKS WHO INVENTED 
TURBO PASCAL ® AND TURBO DATABASE TOOLBOX®. 

Borland International proudly introduces Turbo Tutor®', The perfect 
complement to your Turbo Pascal compiler. Turbo Tutor is really for everyone­

even if you've never programmed before. 

And if you're already proficient, Turbo Tutor can sharpen up the fine points. The 300 
page manual and program disk divides your study of Pascal into three learning modules: 

FOR THE NOVICE: Gives you a concise history of Pascal, tells you how to write a simple program, and 
defines the basic programming terms you need to know. 

ADVANCED CONCEPTS: If you're an expert, you'll love the sections detailing subjects such as "how to 
use assembly language routines with your Turbo Pascal programs." 

PROGRAMMER'S GUIDE: The heart of Turbo Pascal. This section covers the fine points of every aspect 
of Turbo Pascal programming: program structure, data types, control structures, procedures and 
functions, scalar types, arrays, strings, pointers, sets, files and records. 

A MUSl You'll find the source code for all the examples in the book on the accompanying disk ready to 
compile. 

Turbo Tutor may be the only reference on Pascal and programming you'll ever need! 

TURBO TUTOR-A REAL EDUCATION FOR ONLY $34.95. 
{not copy-protected} 

*Mlnlmum Systlm Conflguntlon: TURBO TUTOR Is lvalllbil todlY for your computlr running TURBO PASCAL for PC-DOS, MS-DOS, 
CP IM-8D, Ind CP IM-86. Your computlr must hlVlIt Illsf 128K RAM, onl disk drivi Ind PC-DDS 1.0 or grlltlr, MS-DOS 1.0 or 
gmtlr, CP/M-80 2.2 or grlltlr, or CP/M-86 1.1 or grotlr. 

Turbo Pascal and Turbo Tutor are registered trademarks and Turbo Database Toolbox is a trademark of Bortand !nternational.lnc .. CP/M is a 
trademark of Digital Research, Inc., MS-DOS is a trademark of Microsoft Corp., PC-DOS is a trademark of IntemationalBusiness Machines Corp. 



TURBO GRAPHIX TOOLBOX™ 

HIGH RESOLUTION GRAPHICS AND GRAPHIC WINDOW MANAGEMENT 
FOR THE IBM PC 

D.zzllng graphics .nd p.inless windows. 
The Turbo Graphix Toolbox™ will give even a beginning programmer the expert's edge. It's a 
complete library of Pascal procedures that include: 

• Full graphics window management. 
• Tools that allow you to draw and hatch pie charts, bar charts, circles, rectangles 

and a full range of geometric shapes. 

• Procedures that save and restore graphic images to and from disk. 

• Functions that allow you to precisely plot curves. 

• Tools that allow you to create animation or solve those difficult curve. fitting 
problems. 

No sWllt .nd no roy.,t/es. 
You can incorporate part, or all of these tools in your programs, and yet, we won't charge you 
any royalties. Best of all, these functions and procedures come complete with source code on 
disk ready to compile! 

John Markoff & P.ul Fre/berger, syndlc.ted columnists: 
"While most people only talk about low-cost personal computer software, Borland has been 
doing something about it. And Borland provides good technical support as part of the price." 

Turbo Graphix Toolbox-only $54.95 (not copy protected]. 

Minimum System Configuration: Turbo Graphix Toolbox Is available today lor your computer running Turbo Pascal 2.0 or greater for 
PC-DOS, or truly compatible MS-DOS. Your computer must have at least 128K RAM, one disk drive and PC-DOS 2.0 or greater. and 
MS-DOS 2.0 or greater with IBM Graphics Adapter or Enhanced Graphics Adapter, IBM-compatible Graphics Adapter, or Hercules 
Graphics Card. 

Turbo Pascal is a registered trademark and Turbo Graphix Toolbox is a trademark of Borland International, Inc. 
IBM and PC-DOS are trademarks of International Business Machines Corp. MS-DOS is a trademark of Microsoft Corp. 



Is The Perfect Complement To Turbo Pascal. 
It contains a complete library of Pascal procedures that allows you to sort 

and search your data and build powerful applications. It's another set of tools 
from Borland that will give even the beginning programmer 

the expert's edge. 

THE TOOLS YOU NEEDI 
TURBOACCESS Files Using 8+Trees- The best way to organize and search your data. 
Makes it possible to access records in a file using key words instead of numbers. Now 
available with complete source code on disk ready to be included in your programs. 

TURBOSORT -The fastest way to sort data-and TUR80S0RT is the method preferred by 
knowledgeable professionals. Includes source code. 

GINST {General Installation Program} - Gets your programs up and running on other ter­
minals. This feature alone will save hours of work and research. Adds tremendous value 
to all your programs. 

GET STARTED RIGHT AWAY: FREE DATABASEI 
Included on every Toolbox disk is the source code to a working database which demon­
strates the power and simplicity of our Turbo Access search system. Modify it to suit 
your individual needs or just compile it and run. Remember, no royalties! 

THE CRITICS' CHOICE! 
"The tools include a 8+ tree search and a sorting system. I've seen stuff like this, but not 
as well thought out, sell for hundreds of dollars." 

-Jerry Pournelle, BYTE MAGAZINE 

"The Turbo Database Toolbox is solid enough and useful enough to come recommended." 
-Jeff Duntemann, PC TECH JOURNAL 

TURBO DATABASE TOOLBOX-ONLY $54.95 (not copy-protected). 

Minimum system configurations: 64K RAM and one disk drive. 16·bit systems: TURBO PASCAL 2.0 or greater for MS·DOS or PC·DOS 
2.0 or greater. TURBO PASCAL 2.1 or greater for CP /M·86 1.1 or greater. Eight·bit systems: TURBO PASCAL 2.0 or greater for 
CP/M·80 2.2 or greater. 

+ BORLAND 
INrfR,-';Ar;ONAL 

Turbo Pascal is a registered trademark and Turbo Database Toolbox is a trademark of Borland International, Inc. CP 1M and CP IM-B6 are registered trademarks ot Digital Research, Inc. 
IBM and PC-DOS are registered trademarks of International Business Machines Corp. MS-DOS is a trademark of Microsoft Corp. 



Secrets And Strategies 01 The Masters Are 
Revealed For The First Time 

Explore the world of state-of-the-art computer games with Turbo GameWorksTiI. Using 
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create 
your own computer games using Turbo Pascal@. Or, for instant excitement, play the three 

great computer games we've included on disk-complied and ready-to-run. 

TURBO CHESS 

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your 
way to becoming a master chess player. Explore the complete Turbo Pascal source code and discover 
the secrets of Turbo Chess. 

"What impressed me the most was the fact that with this program you can become a computer 
chess analyst. You can add new variations to the program at any time and make the program play 
stronger and stronger chess. There's no limit to the fun and enjoyment of playing Turbo GameWorks' 
Chess, and most important of all, with this chess program there's no limit to how it can help you 
improve your game." -George Kollanowski, Dean of American Chess, former President of 

the United Chess Federation and syndicated chess. columnist. 

TURBO BRIDGE 

Now play the world's most popular card game-Bridge. Play one-on-one with your computer or against 
up to three other opponents. With Turbo Pascal source code, you can even program your own bidding 
or scoring conventions. 

"There has never been a bridge program written which plays at the expert level, and the ambitious 
user will enjoy tackling that challenge, with the format already structured in the program. And for- the 
inexperienced player, the bridge program provides an easy-to-follow format that allows the user to start 
right out playing. The user can "play bridge" against real competition without having to gather three 
other people." -Kit Woolsey, writer and author 01 several arlic/es and books 

and twice champion 01 the Blue Ribbon Pairs. 

TURBO GO-MOKU 

Prepare for battle when you challenge your computer to a game of Go-Moku-the exciting strategy 
game also know as "Pente"TI •. In this battle of wits, you and the computer take turns placing X's and 
O's on a grid of 19X19 squares until five pieces are lined up in a row. Vary the game if you like using 
the source code available on your disk. 

Minimum system configuration: IBM PC, Xl, AT, Portable, 3270, PCir, and true compatibles with 192K system memory, running 
PC-DOS (MS-DOS) 2.0 or later. To edit and compile the Turbo Palcal source code, you mUlt be ullng Turbo Palcal3.0 for IBM PC 
and compatibles. 

Su"ested Retail Price: $69.95 (not copy~prDtected) 

• 
BORLAND Turbo Pascal is a registered trademark and Turbo GameWorks is a trademark of 

D Borland International. Inc. Pente is a registered trademark of Parker Brothers. 
IBM PC, Xl, AT, PCjr and PC-DOS are registered trademarks of International Business 

I N T ERN A T ION A L Machines Corporation. MS-DOS is a trademark of Microsoft Corporation. 



---- .to,. m i 

+ BORLANDCO.o,,'Pllo,.Ct'h i 
~b I 

J INTERNATIONAL i 

J For The ........ ....... To Order I i 
I Dealer I~D~' By Credit r Ii 

II MONEY-BACK I' rl I llearest , GUARANTEE , .;al1 , , i 

I 
You, ~, Call I 

~n ~O~ I I (800) 255-8008 i 
I 556-2283 In California (800) 742-113 Ii 
1..-------. I 

I 

I 

I 



TURBO 
EDl7OR7txx·BOX 

It's All You Need To Build Your Own Text Editor 
Or Word Processor. 

Build your own lightning-fast editor and incor­
porate it into your Turbo Pascal programs. Turbo 
Editor Toolbox'· gives you easy-to-install modules. 
Now you can integrate a fast and powerful editor into 
your own programs. You get the source code, the 
manual and the know how. 

Create your own word processor. We provide all 
the editing routines. You plug in the features you want. 
You could build a WordStar®-like editor with pull­
down menus like Microsoft's® Word, and make it work 
as fast as WordPerfect'·. 

To demonstrate the tremendOus power of Turbo Editor Toolbox, we give you the source code for two 
sample editors: 
Simple Editor A complete editor ready to include in your programs. With windows, block commands, and 

memory-mapped screen routines. 
MicroStar' · A full-blown text editor with a complete pull-down menu user interface, plus a lot more. 

Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs 

The Turbo Editor Toolbox gives you all the 
standard features you would expect to find 
in any word processor: 

• Word wrap 
• UNDO last change 
• Auto indent 
• Find and Find/Replace with options 
• Set left and right margin 
• Block mark, move and copy. 
• Tab, insert and overstrike modes, 

centering, etc. MicroStar's pull·down menus. 

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match. 
Just to name a few: 

[3" RAM-based editor. You can edit very large [3" Multiple windows. See and edit up to eight 
files and yet editing is lightning fast. documents-or up to eight parts of the same 

[3" Memory-mapped screen routines. In- document-all at the same time. 
stant paging, scrolling and text display. [3" Multi-Tasking. Automatically save your 

[3" Keyboard installalion. Change control text. Plug in a digital clock . . . an appointment 
keys from WordStar -like commands to any that alarm-see how it's done with MicroStar's 
you prefer. "background" printing 

Best of all, source code is included for everything in the Editor Toolbox. Use any of the Turbo Editor Toolbox's 
features in your programs. And pay no royalties. 
Minimum system configuration: The Turbo Editor Toolbox requires an IBM PC, IT, AT, 3270, PClr or true compatible with a minimum 
192K RAM, running PC· DOS (MS· DOS) 2.0 or greater. You must be using Turbo Pascal 3.0 for IBM and compatibles. 

4585 SCOTTS VALLEY DRIVE 
SCOTTS VALLEY, CALIFORNIA 95066 

Turbo Pascal is a registered trademark and Turbo Editor Toolbox and MicroStar are trademarks 01 Borland 
International, Inc. WordStar is a registered trademark of MicroPro International Corp. MicrosoH and MS·DOS are 
registered trademarks of MicrosoH Corp. WordPerfect is a trademark of Satellite Software Infernational. IBM, 
IBM PC, XT, AT, PCjr. and PC-DOS are registered trademarks of International Business Machine Corp. 

ISBN 0-87524-148- 4 


