

Borland's No-Nonsense License Statement!
This software is protected by both United States copyright law and international treaty
provisions. Therefore, you must treat this software just like Q book, with the following single
exception. Borland International authorizes you to make archival copies of the software for the

. sole purpose of backing-up our software and protecting your investment from loss.

By saying. "just like a book." Borland means, for example, that this software may be used by any
number of people and may be freely moved from on~ computer location to another, so long as
there is no possibility of it being used at one location while it's being used at another. Just like a
book that can't be read by two different people in two different places at the same time, neither
can the software be used by two different people in two different places at the same time.
(Unless. of course. Borland's copyright has been violated.)

Borland International grants you (the licensed owner of Turbo Graphix Toolbox) the right to
incorporate Graphix Toolbox routines into your programs. You may distribute your programs
that contain Graphix Toolbox routines in executable form without restriction or fee, but you
may not give away or sell any part of the actual Graphix Toolbox source code. You are not, of
course, restricted from distributing your own source code.

Sample programs included on the Turbo Graphix Toolbox disk demonstrate how to use the
Graphix Toolbox. You may edit or modify them and incorporate them into programs that you
write without restriction or fee. Use of sample programs is governed by the same conditions
and restrictions as outlined in the first paragraph above.

WARRANTY
With respect to the physical diskette and physical documentation enclosed herein, Borland
International. Inc. ("Borland") warrants the same to be free of defects in materials and
workmanship for a period of 60 days from the date of purchase. In the event of notification
within the warranty period of defects in material or workmanship, Borland will replace the
defective diskette or documentation. If you need to return a product. call the Borland
Customer Service Department to obtain a return authorization number. The remedy for
breach of this warranty shall be limited to replacement and shall not encompass any other
damages. including but not limited to loss of profit. and special. incidental, consequential. or
other similar claims.

Borland International. Inc. specifically disclaims all other warranties, expressed or implied,
including but not limited to implied warranties of merchantability and fitness for a particular
purpose with respect to defects in the diskette and documentation, and the program license
granted herein in particular, and without limiting operation of the program license with respect
to any particular application. use. or purpose. In no event shall Borland be liable for any loss of
profit or any other commercial damage. including but not limited to special, incidental,
consequential or other damages.

GOVERNING LAW
This statement shall be construed. interpreted, and governed by the laws of the state of
California.

Second Edition
Printed in U.S.A

9 8 7 6 543

Turbo Graphix Toolbox

version 1

Owner's Handbook

Copyright © 1985
All Rights Reserved

Borland International, Inc.
4585 Scotts Valley Drive
Scotts Valley, CA 95066

USA

TABLE OF CONTENTS
INTRODUCTION 1

What Can You Do With the Graphix Toolbox? .. 1
Structure of This Manual 4
Typography .. 5
The Distribution Diskette 5
Acknowledgements .. 6

Chapter 1. A COMPUTER GRAPHICS PRIMER ... 7
Pixels .. 7
Screens .. 7
Characters and Fonts .. 8
Coordinate Systems ... 9

Absolute Screen Coordinate System ... 10
World Coordinate System .. 10

Windows .. 11
Clipping 12

How to Use the Turbo Graphix Toolbox With Your Hardware 13
The IBM PC and True Compatibles 14
IBM Color Graphics Card ... 15
Hercules Monochrome Graphics Card ... 15
IBM Enhanced Graphics Adapter 15
Heath/Zenith Z-100 Computer 15

Chapter 2. GETTING STARTED 17
Including Turbo Graphix Routines in Your Program 17
Drawing Points 18

Drawing a Single Point ... 19
Drawing a Cluster of Points ... 20
Drawing Points Using a World Coordinate System 21
Erasing a Point ... 22
Summary of Point Routines ... 22

Drawing Lines .. 23
Drawing a Single Line ... 23
Drawing a "Walking Line" .. 24
Summary of Line-Drawing Routines ... 26

Drawing Squares ... 26
Summary of Square-Drawing Routines .. 27

Drawing Circles .. 27
Summary of Related Routines 29

TABLE OF CONTENTS

Text .. 29
Displaying Machine-Dependent Text 30
Displaying 4x6-Pixel Text .. 32
Summary of Text-Drawing Routines ... 34

Windows ... 34
Defining a Window.. 34
Displaying a Drawing in a Window... 37
Moving Windows ... 39
Another Use for Windows: the Flow Chart 43
Summary of Window Routines 47

Pie and Bar Charts 48
Pie Charts 49
Bar Charts 53
Summary of Pie and Bar Chart Routines 58

Plotting Curves ... 59
A Simple Example: Plotting a Sine Curve 59
The DrawAxis Procedure .. 62
Drawing a Sine Curve with Axes 64
Polygon Modification Routines 66
Finding a World to Fit a Polygon 69

Solving Curve-Fitting Problems ... 73
Fitting a Curve with the Spline Procedure 73
Modeling a Curve with the Bezier Procedure 76
Summary of Polygon/Curve Routines 80

Screens ... 80
Saving and Loading Screens 80
Printing Screens .. 85

Chapter 3. TECHNICAL REFERENCE 91
Turbo Graphix Files 91

Basic System Files .. 91
Supplemental System Files 92
High-Level Command Files 92
A Sample Turbo Graphix Toolbox Program 94

Constant and Type Definitions 94
AspectFactor ... 95
BackgroundArray 96
CharFile ... 96
ConOutPtr 96
HardwareGrafBase 96
HeaderSizeGlb 96
IVStepGlb 97
MaxBackground 97
MaxForeground 97

;i Turbo Graphix Toolbox Owner's Handbook

MaxPiesGlb 98
MaxPlotGlb .. 98
MaxWindowsGlb 98
MaxWorldsGlb 98
Min Background ... 99
MinForeground .. 99
PieArray ... 99
PlotArray ... 100
RamScreenGlb .. 100
ScreenSizeGlb ... 101
StringSizeGlb .. 101
WrkString 101
XMaxGlb 102
XScreenMaxGlb .. 102
YMaxGlb 102

Quick Reference Guide to Turbo Graphix Routines 103
Procedures and Functions 107

BaseAddress ... 108
Bezier .. 109
ClearScreen .. 112
ClearWindowStack .. 113
Clip .. 114
Clipping 115
CopyScreen .. 116
CopyWindow 117
DC ... 118
DefineHeader .. 119
DefineTextWindow .. 120
DefineWindow ... 122
DefineWorld ... 123
DisplayChar ... 124
DP ... 125
Draw Ascii .. 126
DrawAxis 127
DrawBorder : ... 129
DrawCartPie .. 130
DrawCircle 132
DrawCircleDirect ... 133
DrawCircleSegment .. 134
DrawCross .. 136
DrawCrossDiag ... 137
DrawDiamond .. 138
DrawHistogram ... 139
DrawLine ... 141

TABLE OF CONTENTS iii

DrawLineClipped ... 142
DrawPoint ... 143
DrawPolarPie ... 144
DrawPolygon ... 146
DrawSquare .. 149
DrawSquareC .. 150
DrawStar ... 151
DrawStraight ... 152
DrawText .. 153
DrawTextW ... 155
DrawWye 156
EnterGraphic 157
Error .. 158
FindWorld .. 159
GetAspect ... 160
GetColor .. 161
GetErrorCode .. 162
GetLineStyle .. 163
GetScreen ... 164
GetScreenAspect .. 165
GetVStep .. 166
GetWindow 167
GotoXY ... 168
GotoXYTurbo .. 169
HardCopy .. 170
HardwarePresent .. 171
Hatch ... 172
InitGraphic ... 173
InvertScreen .. 175
InvertWindow .. 176
LeaveGraphic .. 177
LoadScreen ... 178
LoadWindow 179
LoadWindowStack 180
MoveHor 181
MoveVer 182
PD ... 183
PointDrawn .. 184
RedefineWindow ... 185
RemoveHeader ... 186
ResetWindowStack ... 187
ResetWindows .. 188
ResetWorlds .. 189
RestoreWindow ... 190
RotatePolygon 191

iv Turbo Graphix Toolbox Owner's Handbook

RotatePolygonAbout ... 192
SaveScreen ... 193
SaveWindow 194
SaveWindowStack .. 195
Scale Polygon ... 196
SelectScreen ... 197
SelectWindow ... 198
SelectWorld ... 199
SetAspect .. 200
SetBackground ... 201
SetBackground8 ... 202
SetBackgroundColor ... 203
SetBreakOff .. 204
SetBreakOn .. 205
SetClippingOff ... 206
SetClippingOn ... 207
SetColorBlack ... 208
SetColorWhite ... 209
SetForegroundColor .. 210
SetHeaderOff .. 211
SetHeaderOn 212
SetHeaderToBottom ... 213
SetHeaderToTop ... 214
SetLineStyle 215
SetMessageOff 216
SetMessageOn ... 217
SetScreenAspect 218
SetVStep 219
SetWindowModeOff .. 220
SetWindowModeOn 221
Spline .. 222
StoreWindow ... 224
SwapScreen .. 226
TextDown .. 227
TextLeft ... 228
TextRight .. 229
TextUp .. 230
TranslatePolygon .. 231
WindowMode 232
WindowSize 233
WindowX 234
WindowY 235

TABLE OF CONTENTS v

Appendix A. HARDWARE CONFIGURATIONS AND
COMPATIBILITY PROBLEMS 237

The IBM Color Graphics Card 237
Color .. 238
Text ... 239

The Hercules Monochrome Graphics Card 239
Color .. 240
Text ... 240
Special Notes... 240

The Zenith Color Graphics Card ... 241
Color .. 242
Text ... 242

Compatibility Issues .. 242
Screen Size ... 243
Text Placement ... 243
Color .. 246
Speed .. 246
Premature Termination .. 247

Appendix B. GLOSSARy...... 249

INDEX ... 253

LIST OF FIGURES

0-1 A Sampler of Drawings Done with the Graphix Toolbox 2
0-2 Stacked Windows .. 3
0-3 Variations on a Pie Chart ... 3
0-4 Two Curves Displayed with Coordinate Axes 4

1-1 The Clipping Option Used To "Zoom In" on a Drawing 13

2-1 A Single Point (DRWPNT.PAS Example) 19
2-2 A Cluster of Points (DRWPNTS.PAS Example) 20
2-3 Previous (DRWPNTS.PAS) Example on Hercules Screen 21
2-4 A Line (DRWLlN.PAS Example) ... 24
2-5 A Walking Line (DRWLlNS.PAS Example) 25
2-6 Squares (DRWSQ.PAS Example) .. 27
2-7 Circles (DRWCIR.PAS Example) .. 29
2-8 Machine-Dependent Text (DRWSTXT.PAS Example) 31
2-9 4x6-Pixel Text (DRWATXT.PAS Example) 33
2-10 A Window (SIMPWIND.PAS Example) 36
2-11 Three Windows (MULTWIND.PAS Example) 39
2-12 Moving a Window (MOVEWIND.PAS Example) 42

vi Turbo Graphix Toolbox Owner's Handbook

2-13 A Flow Chart (FLOWDEMO.PAS Example) 47
2-14 A Pie Chart (ONEPIE.PAS Example) 53
2-15 A Bar Chart (ONEHIST.PAS Example) 55
2-16 Pie and Bar Chart Displaying Same Data

(PIEHISTO.PAS Example) .. 58
2-17 Plotting a Smooth Curve (ONEPOLY.PAS Example) 61
2-18 Labeled Axes (ONEAXIS.PAS Example) 63
2-19 A Smooth Curve and Coordinate Axes

(POL YAXIS.PAS Example .. 65
2-20 Finding a World for a Polygon (FINDWRLD.PAS Example)... 72
2-21 Finding a Smooth Curve with Cubic Splines

(INTERP.PAS Example) .. 76
2-22 Finding Points to Fit a Smooth Curve of

Predetermined Shape (BEZIDEMO.PAS Example) 79

TABLE OF CONTENTS vii

INTRODUCTION

Welcome to the Turbo Graphix Toolbox. The procedures and functions
that make up this software package will expand your repertoire of Turbo
Pascal programming tools. With the aid of the Graphix Toolbox, you can
develop high-resolution monochrome graphics for IBM PC and PC­
compatible computers (using either an IBM or Hercules graphics card),
and the Zenith Z-100 computer.

This manual makes extensive use of Turbo Pascal programming exam­
ples; a good working knowledge of Turbo Pascal is assumed. If you
need to brush up on your Pascal knowledge, refer to the Turbo Pascal
manual, and/or the Turbo Tutor.

What Can You Do With the Graphix Toolbox?

The Turbo Graphix Toolbox is a versatile package, designed for both
simple and complicated graphics applications. Simple procedures allow
you to draw

• Points

• Lines

• Rectangles with optional shading

• Ellipses

• Circles

High-level procedures let you create the more complex graphics that are
often needed in business and scientific applications:

INTRODUCTION 1

What Can You Do With the Graphix Toolbox?

2

• Labeled pie charts

• Bar charts with programmable shading

• A variety of curves, using different linestyles and with optional
smoothing

• Curve fitting

• Line and solid modeling

• Labeled coordinate axes

• Polygons of any shape, with optional rotation or translation

All your drawings can be displayed either on the full screen, or in win­
dows that you define. You can also draw on a RAM (virtual) screen in
memory, without display, and move the resulting images to the
displayed screen when desired.

Here are some examples of the kind of drawings you'll soon be able to
generate with the Graphix Toolbox.

, ~': I", " •• • •

. ,' :, . ':.' .',":,.,:'"

. I':: '" ,.' . "
t ,I. , ,: " I ~ .. .' :: .' '" • :

•.• ',:,',':'.' :" I,,' ••

' ,

Figure 0-1: A Sampler of Drawings Done with the Graphix Toolbox

Turbo Graphix Toolbox Owner's Handbook

INTRODUCTION

What Can You Do With the Graphix Toolbox?

Line 8 ColuM L----I----I----I--'r==========:=!!!!:=!!!!:=!!!!=:=,11
This is a deMOnst
Minda a1.;" n.. I

Mindo,;:=:==============;
All r
Minda
outsi
the
allo

Figure 0-2: Stacked Windows

JAM I 30 J5

Figure 0-3: Variations on a Pie Chart

3

What Can You Do With the Graphix Toolbox?

0.11
O.H
0.'1
o.n
O.H
0.71
O.SS
1.00

·3.1H.1H
1.00'0\--.,.........,..............-......-...--...---+-...,......-.---.---.--.--...--4

·3.1' ·ZH ·US ·US i).I! US 2.H

Figure 0-4: Two Curves Displayed with Coordinate Axes

Structure of This Manual

4

This manual is divided into five parts:

• Chapter 1 provides an overview of the Turbo Graphix Toolbox. Basic
graphics terms you need to know in order to use the toolbox are
defined, and illustrations of some of the things you can draw are
given. This chapter also talks about the different hardware
configurations that can run the Turbo Graphix Toolbox.

• Chapter 2 gets you started on using the Turbo Graphix Toolbox. Tur­
bo Pascal examples for the most commonly used procedures are
given, along with the resulting drawings. You'll also see how to define
and manipulate windows, and save and print the graphic images you
create.

• Chapter 3 is the technical reference part of the manual. All the con­
stants, types, procedures, and functions contained in the Turbo Gra­
phix Toolbox are described, in alphabetical order, with parameters,
function, restrictions, and examples.

• Appendix A explains how to use the Turbo Graphix Toolbox with
different hardware configurations.

• Appendix B provides a glossary of terms used in the manual.

Turbo Graphix Toolbox Owner's Handbook

Typography

Typography

The body of this manual is printed in normal typeface. Special charac­
ters are used for the following special purposes:

Alternate

Italics

Boldface

Al ternate characters are used in program examples
and procedure and function declarations.

Italics are used to emphasize certain concepts and termI­
nOlogy, such as predefined standard identifiers, parame-
ters, and other syntax elements.

Boldface type is used to mark reserved words, in the
text as well as in program examples.

Refer to the Turbo Pascal Reference Manual for a complete description
of the syntax, special characters, and overall appearance of the Turbo
Pascal language.

The Distribution Diskette

The Turbo Graphix Toolbox distribution diskette contains the following:

• Installation and demonstration files

• Files containing all the procedures and functions

• All the commented program examples used in Chapter 2

See the READ.ME! file for a complete list of all 53 files on your diskette.
The distribution diskette is your only source for the Turbo Graphix Tool­
box files. The first thing you should do upon receiving the diskette is to
complete and mail the License Agreement at the front of this manual.
You should then make a copy of the distribution diskette. Put the origi­
nal diskette in a safe place, and use only the copy for doing your work.
You should never use the distribution diskette for your work, since there
is a charge for a replacement copy.

INTRODUCTION 5

Acknowledgments

Acknowledgments

6

In this manual, references are made to several products:

• Flight Simulator is a registered trademark of Sublogic Inc.

• Hercules is a registered trademark of Hercules Computer
Technology, Inc.

• IBM is a registered trademark of International Business Machines Inc.

• MS-DOS is a registered trademark of Microsoft Inc.

• Turbo Pascal is a registered trademark of Borland International Inc.

• Zenith Z-100 is a registered trademark of Heath Co.

Turbo Graphix Toolbox Owner's Handbook

Chapter 1
A COMPUTER GRAPHICS PRIMER

Before you do any drawing with the Turbo Graphix Toolbox, you will
need to understand the graphics and screen display terms used
throughout this manual. Each of these concepts is described below, fol­
lowed by a list of the Turbo Graphix procedures and functions that apply
to each.

Pixels

The term pixel is an acronym for picture element. Pixels, in fact, are the
basic elements that make up a video display image. The tiny dots that
combine to make the text and graphic images you see on your comput­
er monitor are pixels.

The Turbo Graphix Toolbox allows you to display pixels as black or
white with monochrome cards, or in any color supported by a color card.

Screens

A screen is the configuration of pixels that make up displayed text or
graphic images. Depending on the type of graphics card installed in your
system, the screen display will be made up of the following horizontal­
by-vertical pixel dimensions:

• IBM 640x200

• Hercules 720x350

• Zenith 640x225

A COMPUTER GRAPHICS PRIMER 7

Screens

Because the Hercules display is made up of a greater number of pixels,
the graphic images created are finer in grain-that is, they are higher in
resolution. Because of their higher resolution, they also take longer to
draw. IBM and Zenith graphics images are coarser grained, and there­
fore lower in resolution. The concept of resolution is easy to understand
if you think of drawings made with pencils or pens; a drawing done with
a fine-point drawing pen will be of a higher resolution, and will take
longer to draw than one done with a blunt pencil.

For standard text display-that is, the text normally displayed by your
system-a screen can also be thought of as a sequence of 80 vertical
character columns that make up the width, and 25 lines of characters
that make up the height.

There are two types of screens that you can use for creating images
with the Toolbox: the screen displayed on your monitor, and a RAM (vir­
tual) screen in memory. You can draw on either screen, but only the
monitor screen is viewable; the RAM screen is invisible. The screen you
are currently drawing on is called the active screen. RAM screens are
useful for storing complicated images that are used often and are time
consuming to redraw, or for animation, when it would be distracting to
allow the computer to visibly redraw the screen.

The procedures and functions that are used to manipulate screens are:

ClearScreen
CopyScreen
GetScreen
InvertScreen

LoadScreen
SaveScreen
SelectScreen
SwapScreen

Characters and Fonts

8

A character is a letter, number, or symbol that is represented on your
screen by a rectangular configuration of pixels. A sequence of charac­
ters makes up a display of text.

There are two styles-or fonts-in which text can be displayed with the
Turbo Graphix Toolbox:

Turbo Graphix Toolbox Owner's Handbook

Characters and Fonts

• A simple, 4x6-pixel upper- and lower-case font that is used to display
window headers, pie chart labels, or any text you wish to display in
integer multiples of 4x6 pixels

• A larger, higher quality font (8x8 pixels with an IBM card, 9x14 pixels
with the Hercules card, and 8x9 pixels with the Zenith card) that
corresponds to the font normally used with the particular graphics
card installed in your system

Exactly how the Turbo Graphix Toolbox utilizes these two fonts will be­
come clear when you read the next section about coordinate systems.

The procedures and functions that affect text are:

DC
DefineHeader
DefineTextWindow
DisplayChar
DrawAscii
DrawText

Coordinate Systems

DrawTextW
TextDown
TextLeft
TextRight
TextUp

A coordinate system is a method used to identify a location according to
its position relative to horizontal and vertical axes. In mathematics, usu­
ally, and in Turbo Graphix Toolbox programming in particular, the hor­
izontal axis is labeled X, and the vertical axis Y. The exact location of,
for example, a point, is determined by the X and Y coordinates of that
point-that is, its distance from the X and Y zero axes.

Coordinate systems are extremely important in graphics programming,
since all screen positions for text and graphics must be specified using
X and Y coordinates. There are two types of coordinate systems that
you can choose when working with the Turbo Graphix Toolbox: abso­
lute screen and world coordinate systems.

A COMPUTER GRAPHICS PRIMER 9

Coordinate Systems

Absolute Screen Coordinate System

The absolute screen coordinate system refers to the entire monitor
screen, and the actual character and pixel screen positions, for plotting
text and graphics; coordinates [0,0] are in the upper left corner of the
screen, with the X coordinates increasing to the right, and the Y coordi­
nates increasing downward. As mentioned earlier, the screen can be re­
garded either as a configuration of pixels or as a series of 25 lines by 80
columns.

Text is handled in two ways. The simple, 4x6-pixel font used for window
headers and footers can be plotted anywhere on the screen, and can be
scaled to be any size that is an integer multiple of 4x6 pixels (for exam­
ple, 8x12). The higher quality font is plotted according to 80x25 text
column and line coordinates.

World Coordinate System

For most graphics, the absolute screen coordinate system will not easily
translate to the application's numeric values. A world coordinate system
is an arbitrary coordinate system that you specify to accommodate your
particular application. The numbers you use in your world coordinate
system can be (and usually are) completely unrelated to pixel coordi­
nates. In Turbo Graphix Toolbox language, this is called defining a
world.

A world coordinate system can be used to scale images so that they fit
correctly into the windows you have defined. After you define the world
for a given window, any images you subsequently draw will be automati­
cally, proportionately scaled to fit the window.

The procedures and functions that affect worlds are:

DefineWorld
FindWorld

ResetWorlds
SelectWorld

Windows

10

A window is any area of the screen that you define as the drawing area.
Several windows, containing different drawings and text, can be defined
and then displayed simultaneously on the screen. Each window can be
moved independently of the other windows, placed on top of other win­
dows, and stored to, recalled from, or erased from memory. Windows

Turbo Graphix Toolbox Owner's Handbook

Windows

can be stored and loaded individually or in groups to and from disk.
Several windows can be stored in RAM, and quickly copied to and from
the active screen. You can draw borders, incorporate high-quality text,
and label your windows with headers or footers. The window you are
currently drawing in is called the active window.

A window can be specified to be almost any size, from the whole screen
to 1 vertical pixel by 8 horizontal pixels. You define a window area by
specifying the X and Y coordinates of its upper left and lower right
corners, with Y coordinates measured in 1-pixel units and X coordinates
measured in 8-pixel units. These coordinates are called window
definition coordinates. In window definition coordinates, the point [0,0]
refers to the upper left corner of the screen.

Once you're working within a window, you can redefine its world coordi­
nate system, thereby allowing multiple images to be displayed within one
window, each with its own coordinate system. Coordinate axes, along
with lettering, can be easily added to any drawing.

A special RAM memory area, the window stack, is set aside for tem­
porary storage of windows. The stack comes in handy when you have
several windows that you want to keep but don't want to display all at
the same time. The stack is also used for storing windows that would
otherwise be erased when another window is moved over them on the
screen.

The procedures and functions that affect windows are:

ClearWindowStack
Clip
Clipping
CopyWindow
DefineHeader
DefineWindow
DefineWorld
DrawBorder
GetWindow
InvertWindow
LoadWindow
LoadWindowStack

RedefineWindow
RemoveHeader
ResetWindows
ResetWindowStack
RestoreWindow
SaveWindow
SaveWindowStack
SelectWindow
SelectWorld
SetBackground
SetBackground8
SetClippingOn

A COMPUTER GRAPHICS PRIMER

SetClippingOff
SetHeaderOn
SetHeaderOff
SetHeaderTo Top
SetHeaderToBottom
SetWindowModeOff
SetWindowModeOn
StoreWindow
WindowSize
WindowStackSize
WindowX
WindowY

11

Windows

Clipping

12

The Turbo Graphix Toolbox allows you to "clip" images at window
boundaries if you wish. This feature accomplishes several purposes:

• It relieves you from having to be exact when you're drawing in a win­
dow. The Toolbox does the nitty-gritty work of keeping your work
within window boundaries.

• It lets you "zoom in" on some aspect of a drawing. For example,
let's say you've defined your world coordinate system for a window.
Once you're working in the window, you can redefine the world.
When the image is drawn, the Turbo Graphix program will "zoom in"
and "clip" any part of your drawing that falls outside the window with
the new coordinate system.

• It protects program memory. Drawings that stray outside screen
boundaries can encroach on other parts of memory, including parts
of your application program.

THIS IS A lARm umo

tHIS Ii A CORRECT UORLO

Figure 1-1: The Clipping Option Used To "Zoom In" on a Drawing

There are times when you'll choose not to clip drawings. For instance,
you may develop a program using the clipping option, but once the pro­
gram is debugged, and you know your drawings are within bounds, you
can turn clipping off. This speeds up the drawing process considerably.
Or, if you're working strictly with absolute coordinates, you don't need
to worry about drawing outside screen boundaries.

Turbo Graphix Toolbox Owner's Handbook

Windows

How to Use the Turbo Graphix Toolbox With Your Hardware

There are a few differences between the computer systems and graph­
ics cards that can run the Toolbox. In some cases, these differences re­
quire your special consideration when creating Toolbox-based pro­
grams.

There are two hardware considerations to take into account if you are
using the IBM version of the the Turbo Graphix Toolbox: IBM compati­
bility, and graphics cards. The information below will tell you briefly what
you need to know about your particular system; more technical details
about certain hardware configurations can be found in Appendix A.

The IBM PC and True Compatibles

The Turbo Graphix Toolbox runs on any IBM PC, PC Jr., and compati­
ble computer. But what exactly is a true IBM-compatible computer?
There are many computers on the market today that are billed as IBM­
compatible, and to some extent they are. However, when considering
whether a computer is IBM compatible, it is important to look at the
specific application you are using the computer for. In the case of the
Turbo Graphix Toolbox, you must consider whether the graphics
displayed by your computer will be true to your program design.

A potential problem with some IBM compatibles is that their screen
display is of a higher resolution than the IBM screen. The Corona PC is
a good example. Although the Corona's higher resolution display can
make for very high-quality text and graphics, graphic images created
with the Turbo Graphix Toolbox will not display true-to-form on the
Corona screen; because of the Corona's higher resolution, the drawing
will appear to be compressed vertically.

A good test for whether your IBM-compatible computer will run the
Toolbox is to test the Flight Simulator program (written for the IBM PC)
on your system. If your computer can run Flight Simulator, it's a good
bet it will also run the Toolbox without problems.

Compatibility is also a consideration when your program will be running
on more than one computer system. Some distortion of screen images
may result when a program designed on a computer with an IBM card is
run on a computer with a Hercules card. See Appendix A for information
about how to cope with those kinds of problems.

A COMPUTER GRAPHICS PRIMER 13

How to Use the Turbo Graphix Toolbox With Your Hardware

Below is a list of computers and graphics cards that are sure to run the
Turbo Graphix Toolbox. Next to the name of the product, the Turbo
Graphix Toolbox version that runs with that product is given in
parentheses. If your computer or graphics card is not on this list, give a
call to Borland's technical support staff; they'll be able to tell you wheth­
er your computer will run the Graphix Toolbox.

AT&T PC 6300 (IBM)
Columbia MBC, VP (IBM)
Compaq Portable and DeskPro (IBM)
Comway Comgraphics card (Hercules)
Comway Comtronics (IBM)
Comway Comcolor (IBM)
Heath/Zenith Z100 series (Zenith)
Heath/Zenith Z150 series (IBM)
Hercules color card (IBM)
Hercules monochrome card (Hercules)
IBM Color/Graphics adapter (IBM)
IBM Enhanced Graphics adapter (IBM)
IBM PCjr (IBM)
Leading Edge PC (IBM)
MA Systems PC Peacock (IBM)
Panasonic SR Partner (IBM)
Paradise/USI MultiDisplay (IBM)
Paradise Modular Graphics Card (IBM)
Profit Systems Multigraph (IBM)
QuadRAM QuadColor I,ll (IBM)
Seequa Chameleon line (IBM)
STB Graphics Plus II (IBM)
Tandy 1000 (IBM)
Tava (IBM)
Tecmar Graphics Master (IBM)
TeleVideo PC (IBM)
Tseng Laboratories UltraPAK (Hercules)
Vutek Color Plus (IBM)

IBM Color Graphics Card

14

If you have an IBM graphics card installed in your computer, your screen
display is 640 pixels wide by 200 pixels tall. The SetBackground­
Color and SetForegroundColor procedures are used to determine back­
ground and display image colors. You can also use the SetColor­
White and SetColorBlack procedures to reverse the background and
foreground colors.

Turbo Graphix Toolbox Owner's Handbook

How to Use the Turbo Graphix Toolbox With Your Hardware

Hercules Monochrome Graphics Card

The Hercules graphics card produces a higher resolution display: 720
pixels wide by 350 pixels tall. The background of the display will be
black, and the displayed images will be in the color produced by your
monochrome monitor.

There are some important considerations to keep in mind when you de­
cide to run your programs developed with a Hercules card on other sys­
tems. These and other potential problems are discussed in Appendix A.

Heath/Zenith Z-100 Computer

The Zenith version of the Turbo Graphix Toolbox produces a screen
display 640 pixels wide by 225 pixels tall. The Z-100 computer runs the
Turbo Graphix Toolbox in essentially the same way as an IBM­
compatible computer. However, you have only seven colors to choose
from when setting the color of the displayed images, and background
color must be black.

A COMPUTER GRAPHICS PRIMER 15

Notes:

16 Turbo Graphix Toolbox Owner's Handbook

Chapter 2
GETTING STARTED

Ready to start drawing? This tutorial chapter takes you on a step-by­
step tour of the Turbo Graphix Toolbox, using commented program ex­
amples for both basic and sophisticated graphics routines. The exam­
ples build on each other, so if you read the chapter through in order, by
the end you should be ready to incorporate the Turbo Graphix routines
you need into any graphics application program.

This chapter is designed as a basic tutorial. Technical details about the
Turbo Graphix procedures used in this chapter can be found in Chapter
3. Basic graphics concepts and terminology used in this chapter are ex­
plained in Chapter 1 and Appendix B.

Including Turbo Graphix Routines in Your Program

To use the Turbo Graphix Toolbox, you must first incorporate three
basic system files in your program with the Turbo Pascal include direc­
tive. The include directive is a comment that tells the compiler to read
the program contained in the specified file. This directive starts with $1,
followed by the file name and extension of the file to be included. To be
understood by the Turbo Graphix Toolbox, the entire include directive
must be enclosed within braces, i.e., ($I filename. ???). You must enter
the include directive in the first column of your program text, before any
code that utilizes the routines in the include file. Drive designations are
also supported, and with Turbo 3.0, you can use full MS-DOS tree­
structured directory path names.

Every Turbo Graphix program must include the following three system
files, in the order given below.

{$I TYPEDEF.SYS}
{$I GRAPHIX.SYS}
{$I KERNEL.SYS}

You must copy the GRAPHIX file written for your hardware (supplied on
the distribution disk) onto the GRAPHIX.SYS file. This is done by invok­
ing the Turbo Graphix batch program, i.e., type tginst hgc or tginst ibm.
Failure to do so may cause malfunctioning of your Turbo Graphix pro­
grams.

GETTING STARTED 17

Including Turbo Graphix Routines in Your Program

Next, before calling the Turbo Graphix routines you need for your
particular application, you must initialize the graphics system by calling
the InitGraphic procedure. At the end of your program, you must call
LeaveGraphic to return your system to text mode. See Chapter 3 for
detailed information about these procedures.

All of the example programs in this chapter are included on the Turbo
Graphix Toolbox distribution disk, so you can try out the examples and
experiment with the calling parameters in the various procedures.
Each example program is listed under a file name of the form
FILENAME.PAS.

Every program example consists of five basic steps:

Include at least the three core Turbo Graphix files

Call InitGraphic to enter graphics mode

Call DrawBorder to draw a border around the drawing area (optional)

Draw your images or text

Include a wait loop so you can view the display (optional)

Call LeaveGraphic to return to text mode

Drawing Points

18

You can use the Turbo Graphix DrawPoint procedure to draw points us­
ing either absolute screen or world coordinates. (See Chapter 1 for a
definition of coordinate systems). The next two sections show you how
to draw pOints using the screen coordinate system, while the section fol­
lowing explains how points are drawn in world coordinates. You should
read this section even if you aren't interested in drawing points, because
the rest of the examples in this chapter utilize world coordinate systems;
it is important that you understand the point-drawing examples in order
to see the difference between screen and world coordinate systems.

Turbo Graphix Toolbox Owner's Handbook

Drawing Points

Drawing a Single Point

Writing a program that draws a single point is the simplest thing you can
do with the Turbo Graphix Toolbox. Below is a Turbo Pascal program
(DRWPNT.PAS on the distribution disk) that draws and displays a single
pOint.

program EKamplePoint;

{$I typedef. sys}
{$I graphix.sys}
{$I kernel. sys}

begin

Ini tGraphic;
Dra'llBorder;

DrawPoint (100, 1(0) ;

{include system independent type definitions}
{include system dependent defs and routines}
{include system independent support routines}

{initialize the graphics system}

{draw the point}

rapeat until KeyPressed;
LeaveGraphic;

{wait until a key is pre~
{leave the graphics system}

em.

Figure 2-1: A Single Point (DRWPNT.PAS Example)

GETTING STARTED 19

Drawing Points

Drawing a Cluster of Points

20

The following program (DRWPNTS.PAS on the distribution disk) draws
1000 points, displayed randomly on the screen. For this example, let's
assume you have an IBM graphics card installed in your system.

p~ DrawPoints;

{$I typedef.sys}
{$I graphix. sys}
{$I kernel.sys}

var i: integer;

begin
Ini tGraphic;
DrawBorder;

{include the graphics system code}

{ini t the system and screen}

for i : =1 to 1000 00 {draw 1000 random points on :I:J:N screen}
DrawPoint(random(639),random(199));

repeat until KeyPressed;
LeaveGraphic;

em.

{wai t until a key is pressed}

Figure 2-2: A Cluster of Points (DRWPNTS.PAS Example)

Turbo Graphix Toolbox Owner's Handbook

Drawing Points

If you were to run this program on a system with a Hercules graphics
card, the points would be drawn in the upper left corner of the screen.
This is because the points are drawn in absolute screen coordinates.
Since screen dimensions produced by the Hercules card are larger than
IBM (720x350 instead of 640X200), and since coordinates [0,0] are in
the upper left corner of the screen, the random points would be drawn
as though they were on an IBM screen placed in the upper left corner of
the Hercules screen.

,', , ','

r ',"
"::". ,';::'

"",:"

I', '

Figure 2-3: Previous (DRWPNTS.PAS) Example on Hercules Screen

To avoid this skewed placement, and to allow you to run your program
on systems with different graphics cards, you can write this program so
that it uses a world coordinate system instead of the absolute screen
coordinate system, as described next.

Drawing Points Using a World Coordinate System

A world coordinate system lets you define the addressing dimensions of
your drawing area, independently of the screen type and size. Once you
have defined your world, the Turbo Graphix program will scale the draw­
ing to fit the screen or window you are using.

The following program (WDRWPNTS.PAS on the distribution disk) is
identical to the one in the previous section, but uses a world coordinate
system instead of the absolute screen coordinate system.

GETTING STARTED 21

Drawing Points

program WorldDr.awPoints;

{$I typedef. sys}
{$I graphix. sys}
{$I kernel.sys}

val' i:integer;

begin
InitGraphic;
Dr.awBorder;

DefineWorld(l,O, 1000, 1000,0);
SelectWorld(1) ;
SelectWindow(1) ;

{include the gr.aphics system code}

{init the system and screen}

{define a world for dr.awing}
{select it}

for i: =1 to 1000 00 {dr.aw 1000 r.and.om points on world}
Dr.awPoint(r.andom(lOOO),r.andom(lOOO));

repeat until KeyPressed;
LeaveGraphic;

em.

{wait until a key is pressed}

Erasing a Point

To erase a point, change the drawing color to black, and then draw the
pOint, as follows:

SetCo1orBlack;
Dr.awPoint(x,y) ;

Summary of Point Routines

22

DrawPoint draws a point in world or screen coordinates

DP draws a point in absolute screen coordinates only

PO returns TRUE if a point is drawn at specified screen coordinates

PointDrawn returns TRUE if a pOint is drawn at specified world
coordinates

Turbo Graphix Toolbox Owner's Handbook

Drawing Lines

Drawing Lines

The DrawLine procedure allows you to draw and display lines in the
current line style (selected by the SetLineStyle procedure). The coordi­
nates for lines drawn in the following program examples are all calculat­
ed using world coordinate systems.

Drawing a Single Line

The following program (DRWLlN.PAS on the distribution disk) draws a
line from the upper right to the lower left corner of the screen. Endpoint
coordinates are passed to the procedure as the X and Y coordinates of
the first endpoint, followed by the X and Y coordinates of the second
endpoint.

program DrawLine;

{$I typedef. sys}
{$I graphix.sys}
{$I kernel. sys}

vat" i: integer;

begin
Ini tGraphic;
Drawf30rder;

{include graphics system}

{initialize the graphics system}

DefineWorld(l,O,lOOO, 1000,0); {define the world to draw in}
SelectWor Id(1) ;
SelectWindow(1) ;

DrawLine(O,lOOO,lOOO,O);

repeat until KeyPressed;
LeaveGraphic;

em.

GETTING STARTED

{draw the line}

{wait until a key is pre~
{leave the graphics system}

23

Drawing Lines

Figure 2-4: A Line (DRWLlN.PAS Example)

Drawing a "Walking Line"

24

An intriguing variation on the DrawLine procedure is the "walking line."
A walking line program generates, by increments, a series of endpoint
coordinates, thereby creating a "walking line." By changing the formula
used to generate the endpoint coordinates, a variety of shapes can be
drawn. In the example below (DRWLlNS.PAS on the distribution disk),
the first endpoint moves uniformly across the top of the screen from left
to right, while the other endpoint moves incrementally and diagonally
from the upper right to the lower left corner of the screen.

Turbo Graphix Toolbox Owner's Handbook

Drawing Lines

program DrawLines;

{$I typedef.sys}
{$I graphix.sys}
{$I kernel.sys}

var i: integer;

begin
Ini tGraphic;

DefineWorld(l,O, 1000, 1000,0);
SelectWorld(1);
SelectWindow(1) ;

SetBackground(O) ;
DrawBorder;

{include the graphics system code}

{init the system and screen}

{define a world for drawing}
{select it}

for i:=l to 20 00 DrawLine(i*50,O, lOOO-i*50,i*50);

repeat Wltil KeyPressed;
LeaveGraphic;

em.

{wai t until a key is pressed}

Figure 2-5: A Walking Line (DRWLlNS.PAS Example)

GETTING STARTED 25

Drawing Lines

Summary of Line-Drawing Routines

Clip clips a line at active window boundaries

DrawLine draws a line using world or screen coordinates

DrawLineClipped clips a line at screen boundaries

DrawStraight draws a horizontal line

SetLinestyle selects one of five linestyles for drawing lines

GetLinestyle returns the current linestyle

Drawing Squares

26

The DrawSquare procedure draws rectangles in the current line style
(selected by the SetLineStyle procedure). A rectangle is defined by the
coordinates of the points at its upper left and lower right corners. A boole­
an value, Fill, allows you to fill the rectangle with the current drawing color
(determined by the SetForegroundColor procedure). The following pro­
gram (DRWSQ.PAS on the distribution disk) draws a series of consecu­
tively larger squares around the center of the screen, with no fill. Another
example program not illustrated here (DRWHCH.PAS on the distribution
disk) draws hatched squares.

program DrawSquares;

{$1 typedef.sys}
{$1 graphix.sys}
{$1 kernel. sys}

val' i: integer;
begin

1ni tGraphic;
DefineWorld(1,0, 1000, 1000,0);
SelectWorld(1);
SelectWindow(l);
DrawBorder;

{include the graphics system code}

{ini t the system and screen}
{define a world for drawing}
{select it}

for i: =1 to 20 do DrawSquare (500-i *25, 500-i *25, 500+i *25,500+ i *25, false) ;
repeat until KeyPressed; {wai t until a key is pressed}
LBaveGraphic;

em.

Turbo Graphix Toolbox Owner's Handbook

Drawing Squares

II I

I I
I

[11] !

Figure 2-6: Squares (DRWSQ.PAS Example)

Summary of Square-Drawing Routines

DrawSquare draws a square using world coordinates

DrawSquareC draws a square using screen coordinates, but clipped at
the boundaries of the active window

SetForegroundColor chooses the current drawing color

SetLinestyle chooses the line style

Drawing Circles

Because different graphics cards produce screen displays with different
vertical-by-horizontal dimensions, and because different monitors have
different screen proportions, a correctly-proportioned circle drawn on
one screen may look distorted on another screen. To adjust for
differences in screen proportions, Turbo Graphix routines that deal with
circles and ellipses-DrawCircle, DrawCircleSegment, DrawCartPie and
DrawPolarPie-utilize the concept of the aspect ratio.

GETTING STARTED 27

Drawing Circles

An aspect ratio is defined as the height-ta-width ratio of a circle or ellipse.
Turbo Graphix circle routines allow you to vary the aspect ratio's vertical
dimension by calling the SetAspect procedure. In addition, a global con­
stant, AspectFactor, sets the system-dependent aspect ratio, so that an
aspect ratio of 1.0 produces a true circle on a particular hard­
ware screen.

The following program (DRWCIR.PAS on the distribution disk) draws a
series of circles, and varies both their radii and aspect ratios. The
parameters passed to the DrawCircle procedure specify the X and Y
world coordinates of the center of the circle; the radius corresponds to
the X (horizontal) dimension of the circle.

program DrawCirc;

{$I typedef. sys}
{$I graphix.sys}
{$I kernel. sys}

var i:integer;
Aspectloo, rad: real.;

begin
Ini tGraphic;
DefineWorld(l,O,lOOO,lOOO,O);
SelectWorld(l) ;
SelectWindow(l) ;
DrawBorder;

rad:=1.5;
Aspectloo: =GetAspect;
SetAspect (0.2) ;

tor i:-l to 15 do
begin

DrawCircle(500,500,rad);
SetAspect(O.2+i/lO);
rad: .. rad-O. 05;

em;

{include the graphics system code}

{ini t the system and screen}
{define a world for drawing}
{select it}

{set initial radius}
{save default aspect ratio}
{ini tit for this routine}

{draw circles}

SetAspect (AspectI..oo) ; {restore previous aspect ratio}

repeat mtil KeyPressed; {wai t until a key is pressed}
l..eaveGraphic;

em.

28 Turbo Graphix Toolbox Owner's Handbook

Drawing Circles

Figure 2-7: Circles (DRWCIR.PAS Example)

Summary of Related Routines

DrawCircle draws a circle or ellipse using world or screen coordinates

DrawCircleDirect draws a circle or ellipse using screen coordinates

DrawCircleSegment draws an arc of a circle

DrawPie draws a pie chart

GetAspect returns the current aspect ratio

SetAspect determines the aspect ratio for a circle

Text

As explained in Chapter 1, the Turbo Graphix Toolbox supports both a
4x6-pixel text and a machine-dependent text. The size of machine­
dependent characters is 8x8 pixels for IBM, 9x14 pixels for Hercules,
and 8x9 pixels for Zenith.

GETTING STARTED 29

Text

Displaying Machine-Dependent Text

30

The text routines used by the Turbo Graphix Toolbox are very similar to
those used by Turbo Pascal; the screen is defined as 25 lines by 80
columns (characters), and the Turbo Pascal procedures Go toXY, Write
and WriteLN are supported by the Graphix Toolbox. However, there are·
a few considerations specific to the Turbo Graphix text mode concern­
ing the alignment of text with drawings, and within windows. Since the
size of the text font varies with the graphics card installed, some adjust­
ments must be made when attempting to align text with drawings. In
particular, Hercules text, which is defined on a 9-pixel horizontal boun­
dary, must be adjusted for the 8-pixel window boundary. See Appendix
A for technical information on text fitting.

The following program (DRWSTXT.PAS on the distribution disk) places
the start of a text string at the center of the screen, demonstrates the
automatic new-line performed by WriteLN, and places the text within a
filled box whose dimensions are determined according to the world coor­
dinate system. The coordinates for the points at the corners of the box
are computed from the character positions of the text.

program DrawSta.ndardI'ext;

{$I typedef.sys}
{$I graphix.sys}
{$I kernel. sys}

const MlxWorldX: real=lOOO.O;
MlxWorldY: real=lOOO.O;

val' i:integer;
CharHeight,ChatWidth:real;

begin
Ini tGraphic;

{include graphics system}

{initialize the graphics system}

DefineWorld(l,O,MlxWorldY,MaxWorldX,O); {define world to draw in}
SelectWorld(1);
SelectWindow(l);
DrawBorder;

Turbo Graphix Toolbox Owner's Handbook

Text

GotoXY(39,12); {goto the center of the text screen}
writeln('* <- This should be at the center I); {do two lines of text}
write('This should be on the next line');

ChafWidth:~orldX/80;

CharHeignt:=MaxWorldY/25;
{compute a character's width}
{compute a character's heignt}

DrawSquare(9*ChafWidth,7*CharHeignt, {draw box at text loc [la,S]}
(22*ChafWidth) +2, (S*CharHeignt) +2, true) ;

GotoXY(la,S);
write('Text in a box');

repeat until KeyPressed;
I..eaveGraphic;

em.

rrext In a boxl

his should be on the next line

{wri te text in it}

{wait until a key is pre~
{leave the graphics system}

* (- This should be at the center

Figure 2-8: Machine-Dependent Text (DRWSTXT.PAS Example)

GETTING STARTED 31

Text

Displaying 4x6-Pixel Text

32

The 4x6-pixel character set is used for window headers, and for applica­
tions that require text that is smaller or larger than the machine­
dependent text. Unlike the machine-dependent text, the 4x6-pixel char­
acters can be placed at any screen location. The Scale parameter
passed to the DrawText procedure specifies the size of the characters
(in integer multiples of 4x6 pixels); the larger the value of Scale, the
larger the character.

Since a character in the 4x6-pixel font is made up of only a few pixels,
this text is of a coarser quality than the machine-dependent text, even
when they are scaled to the same size.

The following example (DRWATXT.PAS on the distribution disk) uses
the DrawText procedure to display upper-case characters, in different
positions and sizes, in the center of the screen. The complete character
set is then displayed at the upper left corner of the screen, scaled to its
smallest size.

program DrawAl ternateText;

{$I typedef. sys}
{$I graphix.sys}
{$I kernel. sys}

const MaxWorldX: real=lOOO.O;
MaxWorldY: real=lOOO.O;
CharArrayl: array [0 .. 25] of char=

{include graphics system}

('A', 'B', 'e', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',
'M', 'N', '0', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z');

var i : integer;
CharHeight,ChatWidth:real;

begin

{define an array of characters}

Ini tGraphic; {ini tialize the graphics system}

DefineWorld(l,O,MaxWorldY,MaxWorldX,O); {define the world to draw in}
SelectWorld(1);
SelectWindow(1) ;
DrawBorder;

Turbo Graphix Toolbox Owner's Handbook

Text

for i : .. 1 to 50 do {print random characters in center of screen}
DrawrextW(random(600)+200, random (600)+200,

random(5) , CharArIa8l[random (26)]) ;

DrawrextW(15,50,l, 'ABaEiGIIJKlMNO~'); {type chars in corner}
DrawrextW(15, 100, 1, 'abodefghijklmnopqrstuvwxyz');
DrawrextW(15,l5O,1,' 1234567890-:0\1 I@#$%"&*(L+I');
DrawrextW(15,2OO,1, '[] 0:";, .o/?');

repeat mill KeyPressed;
LeaveGraphic;

em.

!mEFGHIJKL~NCpmlUU~Hil

'~(Qelih i ,;k l~noPQrSluuwxy:

mmmo,:\"'el$;:,mi.'1
tlU :':, ,(}/~

{wait until a key is pre~
{leave the graphics system}

Figure 2-9: 4x6-Pixel Text (DR WA TXT. PAS Example)

GETTING STARTED 33

Text

Summary of Text-Drawing Routines

For machine-dependent text:

DC draws a character at the specified text coordinates

Define Text Window uses specified text coordinates to define a window

DisplayChar draws a character at the specified text coordinates

TextDown, TextLeft, TextRight, TextUp adjust space between window
boundaries and text (text fitting)

For 4x6-pixel text:

DefineHeader defines a window header

DrawAscii draws a character at the specified screen coordinates

DrawText draws a character string at the specified screen coordinates

DrawTextW draws a character string at the specified world coordinates

Windows

This section tells you how to create and manipulate on-screen windows.
The use of windows allows greater flexibility in graphics applications,
since you can display several different drawings on the screen at once,
using different world coordinate systems; and you are not limited to the
pixel dimensions of the window.

Defining a Window

34

When the Turbo Graphix Toolbox is initialized with the InitGraphic pro­
cedure, the entire screen is, in effect, defined as a window whose world
coordinates correspond to the pixel dimensions of the screen. However,
you can redefine any region of the screen as a window, from an 8x1-
pixel (horizontal by vertical) box to the entire screen.

Once defined, a window acts more or less independently of other win­
dows and even the screen. Windows can be small or large, moved
around, drawn on with reference to their own coordinate systems and
boundaries, and individually removed, stored, and retrieved.

Turbo Graphix Toolbox Owner's Handbook

Windows

Generally, you will want to define a new world coordinate system for
every window you define; otherwise, any drawing you do in a window
will take place as if the screen coordinate system were mapped to that
window. All drawing routines-except routines internal to the graphics
system, routines for machine-dependent text positioning such as
Go toXY, and window positioning routines-can use world coordinate
systems.

To associate a world with a window, you must always call SelectWorld
before Select Windo w. If a new window is subsequently selected, the
current world is retained. Thus, to draw alternately in two windows with
different worlds, SelectWorld must be called before each SelectWindow:

repeat
SelectWorld(l);
SelectWindow(l);

{ Insert code to draw something in window 1
USing world coordinate system 1 }

SelectWorld(4) ;
SelectWindow(2) ;

{ Insert code to draw something in window 2
using world coordinate system 4 }

mtil KeyPressed;

Besides Simply defining the dimensions of your window, you can label it
with a header or footer, fill it in with a color or background pattern, or
draw a border around it in any line style. When a new window is defined
or an existing window is redefined, the header associated with that win­
dow number is destroyed. This means that DefineWindow must be
called before DefineHeader.

To change the dimensions of an existing window, without changing its
header, use the RedefineWindow procedure.

The following example (SIMPWIND.PAS) shows you how to define a
window with a border and a header.

GETTING STARTED 35

Windows

36

program SimpleWindow;

{$I typedef. sys}
{$I graphix. sys}
{$I kernel. sys}
{$I windows.sys}

Ini tGraphic;
DraWBorder;

{these files must be}
{included and in this order}

{initialize the graphics system}
{draw a border around the drawing}
{area of the primary window}

DefineWindow(1,10,20, XMaxGlb-lO, ~b-20); {define a window 80 pixels}
{in from the left and right edges, and 2O}
{from the top and bottom edges}

DefineHeader(l, ''!HIS IS AN EXAMFtE WINIXm'); {give it a header}
SetlleaderOn;
SetBackground(85) ;
SelectWindow(l) ;
SelectWor Id(1) ;
DefineWorld(l,O,lOOO,lOOO,O);
Drav.i30rder;
repeat until KeyPressed;
LeaveGraphic;

mxl.

{give ita grey background}
{select the window}
{select the worl~
{give it a world coordinate system}
{draw the border}
{wait until a key is pre~
{leave the graphics system}

Figure 2-10: A Window (SIMPWIND.PAS Example)

Turbo Graphix Toolbox Owner's Handbook

Windows

Displaying a Drawing in a Window

Suppose you want to display the "walking line" example in a window.
You can display the example using a world coordinate system, and in
any position on the screen by following these steps:

• Define the window

• Define the world coordinate system for the window

• Select the world coordinate system

• Select the window for drawing

• Draw a border (optional)

• Display the walking lines

The following example (MUL TWIND.PAS) displays the walking line ex­
ample in three different windows, each with its own coordinate system,
with the drawings clipped at window boundaries.

p~ MUltipleWindows;

{$I typedef. sys}
{$I graphix. sys}
{$I kernel. sys}
{$I windows.sys}

var i: integer;

procedure DrawLines;
var i: integer;
begin

{these files must be}
{included and in this order}

tor i: =1 to 20 do Drav.Li.ne (i *50,0, lDOO-i *50, i *50) ;
end;

GETTING STARTED 37

Windows

38

begin
InitGraphic;
Drav.Border;

{initialize the graphics system}
{draw a border around the drawing}
{area of the primary window}
{(the dimensions of the primary window}
{defaul t to the screen dimensions)}

DefineWindow(1,trunc(XMaxGlb/10),trunc(YMaxGlb/10),
trunc (XMaxGlb/2) , trunc (YMaxGlb/2)) ;

{define a window one tenth of the way}

{in from the left and top edges, and half}
{way down from the right and bottom edges}

DefineHeader(l, ''lliIS IS A I...AIGR WORID'); {give it a header}
DefineWorld(1,0,2000,2000,0); {give it a larger world coord. system}
DefineWindow(2,trunc(XMaxGlbl3),trunc(YMaxGlb/3),

trunc((XMaxGlb*2)/3), trunc((YMaxGlb*2)/3));
{define a window one third of the way}
{in from the left and top edges, and}
{from the right and bottom edges}

DefineHeader(2, ''lliIS IS A CORRELT IDRLD'); {give it a header}
DefineWorld(2,0,lOOO,lOOO,0); {give it a correct world coord. system}
DefineWindow(3,trunc(XMaxGlb/2),trunc(YMaxGlb/2),

trunc((XMaxGlb*9)/lO),trunc((YMaxGlb*9)/lO));
{define a window one half of the way}

{in from the left and top edges, and half}
{way down from the right and bot tom edges}

DefineHeader(3, ''IHIS IS A SvWl..ER IDRLD'); {give it a header}
DefineWorld(3,0,500,500,0); {give it a smaller world coordinate system}

for i:=l to 3 cb
begin

SelectWorld(i) ;
SelectWindow(i) ;
SetHeaderOn;
SetBackground(O) ;
DrawBorder;
DrawLines;

em;

repeat until KeyPressed;
LeaveGraphic;
em.

{select it}
{select it}

{give ita black background}
{draw border}
{draw lines}

{wai t until a key is pressed}
{leave the graphics system}

Turbo Graphix Toolbox Owner's Handbook

Windows

Figure 2-11: Three Windows (MUL TWIND.PAS Example)

Moving Windows

Once you've defined a window, you can move it to any position on the
screen using the MoveVer and MoveHor procedures; windows are
moved by increments (multiples of 8 horizontal pixels and multiples of 1
vertical pixel).

MoveHor and MoveVer work by automatically and continually refreshing
the screen images over which the window is moved. They do this by storing
the displayed screen image to the virtual screen.

If you want to move multiple windows, things get a bit more complicated;
you must manage the windows and other screen images yourself. What
this means is that you must continually rebuild the virtual screen image
every time you move windows. If there are any images on the screen that
you wish to keep, you must copy those images either to the window stack
with the StoreWindow procedure (if the images are in a window) or to the
RAM (virtual) screen with the CopyWindowor CopyScreen procedure (if
the images are on the screen) so they can be retrieved later; otherwise,
when you move a window over those images, they will be erased, and
there will be no way to restore them.

GETTING STARTED 39

Windows

40

For your windows to keep their integrity and to be moved independently,
you must keep copies of all windows on the window stack, and store all
screen images you want to keep on disk. For instance, if the screen
contains two windows that you want to display independently-that is,
you want to be able to move them around and place them on top of
each other-you should do the following: using the SaveScreen pro­
cedure, store the screen (without any windows) on disk, and store up­
to-date copies of both windows on the window stack using the
StoreWindow procedure.

Every time you draw something in a window, or change what was previ­
ously drawn, save a copy of the window on the window stack. When
you want to move a window, save the presently displayed screen­
without the window you plan to move-to the RAM virtual screen using
the CopyScreen procedure, so the non-moving window is now also
copied to the virtual screen. The virtual screen should now contain
everything that was on the displayed screen, except the window you
want to move. Now, draw the window you want to move on the screen,
and use MoveHor and MoveVer to move the window around, without
destroying the fixed images underneath.

The window stack is a RAM memory area where window images can be
stored temporarily. You might want to use the stack when, for instance,
you have defined and drawn in several windows but only want to display
a few on the screen, or if one window is obstructing another and the ob­
structed window needs to be displayed. Whole window stacks, as well
as individual windows in the stack, can be stored to and recalled from
disk using the Save Window and RestoreWindow procedures. Windows
on the stack can be accessed in any order.

Windows can be restored from the stack to any location on the screen
by specifying X and Yoffsets. To restore the window to its former posi­
tion, use offsets of O.

If the window currently selected with the SelectWindow procedure is the
same as the one being restored from the stack, the screen coordinates
of the selected window will shift to match the offset of the restored win­
dow. The selected window does not change when any other window is
restored from the stack.

Stored windows and the RAM screen are dynamically allocated on the
heap using the Turbo GetMem and FreeMem procedures. Therefore,
the Mark/Release method of memory management should not be used
in your programs.

Turbo Graphix Toolbox Owner's Handbook

Windows

The following program (MOVEWIND.PAS) shows how to move windows
about on the screen; use the arrow keys to move the windows, and
press the space bar to stop program execution.

program MJveWindows;

{$I typedef.sys}
{$I graphix. sys}
{$I kernel.sys}
{$I windows. sys}

var i: integer;
Ch: char;

procedure DrawLines;
var i: integer;
begin

{these files must be}
{included and in this order}

for i:=l to 20 do DrawLine(i*50,O,lOOO-i*50,i*50);
em;

begin
Ini tGraphic;
DrawBorder;

{ini tialize the graphics system}
{draw a border around the drawing}
{area of the primary window}
{(the dimensions of the primary window}
{defaul ts to the screen dimensions)}

DefineWindow(l,trunc(XMaxGlb/lO),trunc(YMaxGlb/lO),
trunc(XMaxGlb/2),trunc(YMaxGlb/2));

{define a window one tenth of the way}

{in from left and top edges and half}
{way down from right and bottom edges}

DefineHeader(1, ''!HIS IS '!HE FIXED WINlX>W'); {give it a header}
DefineWorld(1,0, 1000, 1000,0); {give it a world coordinate system}
DefineWindow(2,trunc(XMaxGlb/2),trunc(YMaxGlb/2),

trunc((XMaxGlb*9)/lO), trunc((YMaxGlb*9)/lO));
{define a window one half of the way}

{in from left and top edges, and half}
{way down from right and bottom edges}

DefineHeader(2, ''!HIS IS '!HE MJVEAEl.E WINlX>W'); {give it a header}
DefineWorld(2,O,1000,1000,O); {give it a world coordinate system}
SelectWorld(l); {select world}
SelectWindow(l); {select fixed window}
SetHeaderOn;
SetBackground(0) ;

GETTING STARTED

{give ita black background}

41

Windows

42

DrawBorder;
DrawLines;
CopyScreen;
SetBreakOff;
SetMessageOff;
SelectWorld(2) ;
SelectWindow(2);
SetHeaderOn;
SetBackground(0) ;
DrawBorder;
DrawLines;

repeat
read (Kl:xi, Ch) ;
case ord(Ch) of

em;

72 : MYveVer(-4, true) ;
75 ~veHor(-l, true);
71 ~veHor(l, true);
00 MYveVer(4, true);

until Ch=' ,.

LeaveGraphic;
em.

{draw the window}
{draw lines in it}
{copy it to the virtual screen}
{don't error when edge hit}

{select world}
{select moveable window}

{give ita black background}
{draw the window}
{draw lines in it}

{read the keystroke}

{up arrow?}
{left arrow?}
{right arrow?}
{down arrow?}

{space char exits program}

{leave the graphics system}

IHISI;IHEFImmoou

IHI; E THE Momm U1NDDU

Figure 2-12: Moving a Window (MOVEWIND.PAS Example)

Turbo Graphix Toolbox Owner's Handbook

Windows

Another Use for Windows: the Flow Chart

Anything that can be contained in a rectangle can be animated using
windows. The following example (FLOWDEMO.PAS) animates a flow
chart by using a moveable window. The drawing of the flow chart is the
fixed screen image, while a window that contains the present state of
the "machine" is moved along the flow chart drawing to show how the
processor modifies variables when the program executes. The program
increments a count and tests the result. If the count is not large enough,
the program increments the count and tests again. When the count is
high enough, the "program" is finished.

program Flo\\DelOO;

{$I typedef.sys}
{$I graphix.sys}
{$I kernel. sys}
{$I windows. sys}

procedure FlowChartDelOO;

var Xl, Yl, X2, Y2, i, Count: integer;
Temp :wrkstring;

{these files must be}
{included and in this order}

procedure DrawArrowHor(Xl, Yl,X2,Y2:integer); {draw horizontal arrow}
{with tip at point [X2,Y2]}

begin
DrawLine(Xl, Yl,X2, Y2);
if X2>Xl then
begin

DrawLine(X2-4, Y2-2,X2, Y2);
DrawLine(X2-4, Y2+2, X2, Y2) ;

em
else
begin

DrawLine(X2+5, Y2-2,X2, Y2);
DrawLine(X2+5, Y2+2,X2, Y2);

em;
em;

GETTING STARTED 43

Windows

44

procedure DrawArrowVer(Xl, Yl,X2, Y2: integer); {draw vertical arrow}

begin
DrawLine (Xl, Yl, X2, Y2) ;
if Y2>Yl then
begin

DrawLine (X2-2, Y2-3, X2, Y2) ;
DrawLine (X2+2, Y2-3, X2, Y2) ;

em
else
begin

DrawLine (X2-2, Y2+3, X2, Y2) ;
DrawLine(X2+2, Y2+3,X2, Y2);

em;
em;

{with tip at point [X2, Y2]}

procedure Blink(Count, time: integer) ; {blink the current window}
var i: integer;
begin for i: =1 to Count ck>

begin
Delay (time) ;
InvertWindow;

em;
em;

begin {FlowChartDemo}
DefineWindow(l,O,O,79,185);
DefineWindow(2,12,20,25,40);
DefineWindow(3,15,55,22,75);
DefineWindow(4, 11, 110,26, 130);
DefineWindow(5,47,90,56,110);

ClearScreen;
SetColorWhi te;

DefineHeader(l, 'A FLOW CHART');
SetHeaderOn;
SelectWindow(l);
DraM30rder;
SetHeaderOff;
SelectWindow(2) ;
DraM30rder;
DrawText (125, Z7 ,2, 'srARl") ;
SetWindowModeOff;
DrawArrowVer(151,40,151,55) ;
SetWindowModeOn;

{define the 'FLOW CHART'window}
{define the 'srARl" window}
{define the 'I=l' window}
{define the 'IF I<=5' window}
{define the 'I=I+l' window}

{draw the surrounding window}

{draw the 'srARl" window}

{draw the connecting line}

Turbo Graphix Toolbox Owner's Handbook

SelectWindow(3) ;
DravSorder;
Dravtrext(136,63,2, '1=1');
SetWindowModeOff;
DrawArrowVer(151,75,151,110);
SetWindowModeOn;
SelectWindow(4);
DravSorder;
Dravtrext(lOB,118,2, 'IF 1<=5');
DrawStraight(215,417,l2O);
SetWindowModeOff;
DrawArrowVer(417,120,417, 110) ;
DrawArrowVer(151, 130, 151, 155);
SetWindowModeOn;
SelectWindow(l);
Dravtrext(300, 110,2, 'YES');
Dravtrext(160, 137,2, 'NO');

SelectWindow(5) ;
DravSorder;
Dravtrext(39O,98,2, '1=1+1');
SetWindowModeOff;
DrawLine(417,90,417,80) ;
DrawArrowHor(417,80, 151,00);

SetAspect (1.0) ;
DrawCircle(151,165,25);
SelectWindow(l);
Dravtrext(137, 163,2, 'END');
SetWindowModeOn;
SetHeaderOn;

CopyScreen;

{ClearEol (25) ;}
{gotoxy(27,25);}

DefineWindow(2,15,21,22,39);
SelectWindow(2) ;
SetBackground(0) ;
DravSorder;
InvertWindow;
Delay (1000) ;

GETTING STARTED

Windows

{draw the '1=1' window}

{draw the connecting line}

{draw the 'IF 1>=5' window}

{draw the connecting lines}

{draw the '1=1+1' window}

{draw the connecting lines}

{draw the 'END' circle}

{make an image of this screen}
{on the virtual RAM screen}

{set up the moving window}

45

Windows

46

InvertWindow;

Temp: =' l23456' ;
fybveVer(35, true) ;
DrawText(139,63,2, 'I='+Temp[l]);
Blink(3O,50) ;
fybveVer(55, true) ;

{ini tialize the number array}
{move window over ini t statement}
{'init' it}

{move it down to increment loop}

for Count:=2 to 6 do {do increment loop}
begin

Delay (500) ;
fybveHor(33, true);
fybveVer(-2O,true);
SetBackground(0) ;
DrawBorder;
DrawText (400, 98, 2, 'I='+Temp[Count]);
Blink(3O,50) ;
fybveVer(-20, true) ;
fybveHor(-33, true);
fybveVer(40, true);

em;

InvertWindow;
Delay(1000);
fybveVer(46, true);
Blink (30,50) ;

fybveHor(45, true) ;
fybveVer(-136, true) ;
fybveHor(-45, true) ;
SetHeaderOn;

em;

begin
InitGraphic;
FlowChartDemo;
repeat until KeyPressed;
LeaveGraphic;

em.

{move to the 'END' statement}

{move back up to the top}

{initialize the graphics system}
{do the demo}
{wait until a key is presseCn
{leave the graphics system}

Turbo Graphix Toolbox Owner's Handbook

Windows

, , ,". A flow ch.rt '" • 7', ", \' ,'l:;::' ;,,1.

Figure 2-13: A Flow Chart (FLOWDEMO.PAS Example)

Summary of Window Routines

ClearWindowStack deletes a window from the stack

CopyScreen copies the active screen onto the inactive screen

CopyWindow copies a window from one screen to another

DefineHeader defines a window header

DefineWindow defines an area of the screen as a window

DefineWorld defines a world coordinate system

DrawBorder draws a line around the window

GetWindow returns the code number of the active window

InvertWindow inverts the color of the active window

LoadWindow loads a window from disk to the specified world
coordinates

LoadWindowStack stores a window stack from disk to the window
stack

GETTING STARTED 47

Pie and Bar Charts

Redefine Window changes the dimensions of an existing window

RemoveHeaderremoves a window header

Reset Windo wStack erases all windows from the stack

ResetWindows sets all windows to the size of the physical screen

SaveWindow saves a window to disk

SaveWindowStack saves a window stack to disk

SelectWindow selects a window for drawing

Select World selects a world coordinate system

SetHeaderOff,SetHeaderOn determine whether a window header is
displayed

SetHeaderToBottom, SetHeaderToTop place a header at the bottom or
top of a window

Set Windo wModeOff, SetWindowModeOn determine whether drawing
takes place in a window or on the screen

Store Window stores a window on the window stack

WindowMode returns the window status

WindowSize determines whether there is room for a window on the stack

WindowStackSize returns the number of free bytes on the window stack

Pie and Bar Charts

48

Pie and bar charts provide a way to graphically represent numeric
results that are common to many business and statistical applications.
Three high-level routines-DrawCartPie and DrawPolarPie for pie
charts, and DrawHistogram for bar charts-do most of the work re­
quired to display information in pie and bar charts; all you have to do is
supply the numerical data. As long as you are familiar with Turbo Pas­
cal, the program examples used in this section can be easily tailored to
a particular application.

Turbo Graphix Toolbox Owner's Handbook

Pie and Bar Charts

Pie Charts

Pie charts are used to display a series of values or percentages (the pie
"slices") that make up a total unit (the whole pie). A pie chart shows, at
a glance, the relative proportion of the whole that is represented by
each value. For instance, a pie chart format is an effective way to show
a company's market share, or the results of a scientific experiment.

The DrawCartPie and DrawPo/arPie procedures not only automatically
draw a pie chart that corresponds to your input values; they can also la­
bel each pie segment with text and/or a numeric value, as well as pull
any pie segment away from the pie for display emphasis. Although pie
charts can be drawn with reference to either world or screen coordi­
nates, it is usually best to use world coordinates, especially if you want
your program to run correctly on different computer systems. Also, pie
charts drawn using a world coordinate system will be correctly propor­
tioned in any given window, regardless of the size of the window.

A pie chart is drawn by passing the following parameters:

• Coordinates of the center point of the pie

• Coordinates of the starting point of the first pie segment

• Value and optional label of each segment in an array

• Desired labeling options

• Scale of the label characters (multiples of 4x6 pixels)

A pie chart can be specified so that the starting point of the first seg­
ment of the pie chart is referenced to either of two coordinate systems:
Cartesian coordinates [X, YJ, or polar coordinates [Radius,Ang/e]. The
Cartesian coordinate system, used by the DrawCartPie procedure, al­
lows the drawing to be referenced to a position located by [X, YJ coordi­
nates. For instance, the first pie segment can be defined by a point rela­
tive to the center of the pie. The polar coordinate system references the
pie chart to its radius and the angle of its first segment.

It is usually easiest to use polar coordinates-that is, to think of a pie
chart as a circle with a certain radius, and with its first segment starting
at a particular angle. The DrawPo/arPie procedure uses polar coordi­
nates. Since this is the method used most often, the DrawPo/arPie pro­
cedure is used in the example program ONEPIE.PAS.

GETTING STARTED 49

Pie and Bar Charts

50

In this example, DrawPolarPie first defines a window that is the size of
the entire screen, with a header and border. Next, the array of values
and optional text labels to be used in the creation of the pie chart are ini­
tialized. This part of the example is normally the only part that is
application-specific. The size of each pie segment is specified by the
.area entry in this array. This area is displayed as a percentage of the
total area (determined by totalling all the other areas to be displayed in
the pie). The numbers appropriate to your application are used here, and
the DrawPolarPie procedure displays each segment according to its per­
centage of the whole pie. If you give any of the array entries a negative
value, the pie drawing procedure will move this segment outward. This
feature can be used to draw attention to important segments of the pie
chart.

The Mode parameter allows you to display area values and/or text con­
tained in PieArray as labels. These labels are usually displayed at the
end of optional label lines. The area information is displayed exactly as
passed in the array. If you don't want to display the numeric value of the
segment, the Mode parameter allows you to display a text label only;
the text is passed in the PieArray. The text label can include any al­
phanumeric character or ESCape sequence (used to specify special
graphics characters). See the DrawCartPie and DrawPolarPie pro­
cedures in Chapter 3 for more information about this option.

The next part of the ONEPIE.PAS example determines the position,
size, and shape of the pie to be drawn. The pie is specified by the coor­
dinates of its center point, and radius and starting angle. (If the example
were using the DrawCartPie procedure, the starting point would be
specified by an [X, Y] position.)

The shape of the pie chart, like any other circle, is determined by its as­
pect ratio-its height-to-width ratio. You can vary the shape of the pie
chart by calling the SetAspect procedure. In addition, a global constant,
AspectFactor, sets the system-dependent aspect ratio, so that an as­
pect ratio of 1.0 produces a true circle on a particular hardware screen.

Turbo Graphix Toolbox Owner's Handbook

Pie and Bar Charts

The parameters InRadius and OutRadius specify the inside and outside
endpoints of the radial label line. This label line relates a text and numer­
ic label with a particular pie segment. InRadius and OutRadius are refer­
enced to the edge of the pie chart. A value of 1.0 puts the endpoint on
the edge of the pie chart, a value of 0.5 puts the endpoint halfway
between the edge and the center, and a value of 2.0 puts the endpoint
at a distance of twice the radius out from the center of the chart. If both
InRadius and OutRadius are 1.0, the label line is one dot long, coincides
with the edge of the pie chart, and, thus, for all practical purposes, is
not drawn.

The final parameters, Mode and Size, specify which labels, if any, are
drawn, and their size. Mode allows four possibilities: no label, text label
only, numeric label only, and both text and numeric label. Size specifies
the scale of the label characters (multiples of 4x6 pixels).

program OnePieDemo;

{$I typedef.sys}
{$I graphix.sys}
{$I kernel. sys}
{$I windows.sys}
{$I circsegpl.hgh}
{$I pie. hgh}

procedure OnePieDem;

{these files must be}
{included and in this onder}

var sum, xl, yl, Radius, Theta, InRadius, OutRadius: real;
n,Mode,Size:integer;
a:PieArray;
back: byte;
ch:char;

begin
ClearScreen;
SetColorWhi te;

DefineWindow(l,O,O,XMaxGlb,YMaxGlb);
DefineHeader(1, 'A snn.E PIE CHARl"); {set up a window}
DefineWorld(l,O, 1000, 1000,0);
SelectWorld(1) ;
SelectWindow(l);
SetHeaderOn;
SetBackground(0) ;
DravSonder;

GETTING STARTED 51

Pie and Bar Charts

52

n:=5;
a[l] . area: =25;
a[2].area:=l7.5;
a[3] .area:=9.6;
a[4] .area:=2l;
a[5] .area:..:35;
a[l].text:='JAN.=' ;
a[2].text:='FEB.=' ;
a[3]. text:"'MAR.=' ;
a[4]. text:='AFR.=';
a[5]. text:='MAY=' ;

a[l] .area:=-a[l] . area;

xl: =500;
yl:=500;

Radius: =200;
Theta:c60;

SetAspect (1.0) ;

InRadius:..Q. 7;
OutRadius: =1.25;
M:x:le:=2;
Size: =2;

{the number of pie semments}
{ini tialize the pie array}

{move the first semnent outward}

{set the center to mid screen}

{set the start of the circle}

{set the aspect ratio}

{set the ends of the label line}

{set to draw both label}
{set to text size two}

Dr.awPolarPie(xl,yl,Radius,Theta,InRadius,OutRadius,a,n,Mode,Size);
{draw the pie}

em;

begin
Ini tGraphic;
OnePieDem;
repeat until KeyPressed;
LeaveGraphic;

em.

{ini tialize the graphics system}
{do the demo}
{wait until a key is pre~
{leave the graphics system}

Turbo Graphix Toolbox Owner's Handbook

Pie and Bar Charts

, . , '!' ~ S1HGL£ PIE CHA!! • - '" • • '

HAV=35.00

APR. =21. 00
FEB.=1i,SO

HAR.=~.60

Figure 2-14: A Pie Chart (ONEPIE.PAS Example)

BarCharts

Bar charts (histograms) are used to represent the way a given set of
data changes over time. A bar chart displays a sequence of values as
vertical bars, with each bar's height in proportion to the value associated
with that bar. A bar chart is automatically generated by passing the ar­
ray of the values to be displayed to the DrawHistogram procedure. The
resulting bars are drawn adjacent to each other and always completely
fill the width of the active window. The height of the bars is scaled by
the world coordinate system active at the time.

The demo program ONEHIST.PAS is an example of the DrawHistogram
procedure. This program draws ten random-length bars across a win­
dow that fills the screen. The procedure first fills the PlotArray with ten
random values. The PlotArray is the same as that used to plot polygons,
and therefore has two values in each array element (the X position and
the Y displacement). The X value in this case is determined by the pro­
gram, and the Y (vertical displacement) value is used by DrawHistogram.

Next, a window is defined and selected that fills the screen, and a world
coordinate system is defined and selected that will determine the vertical
scaling of the bar lengths. The X dimension specification can take any
value except 0, since it is corrected for by the DrawHistogram routine.

The Hatch parameter specifies whether the bars are to be cross­
hatched with slanting lines; HatchDen specifies the number of vertical
pixels between each hatch line. The sign of HatchDen determines the
direction of hatching; if it is negative, the first hatch line goes from lower

GETTING STARTED 53

Pie and Bar Charts

54

left to upper right (positive slope); if it is positive, the first hatch line goes
from upper right to lower left (negative slope); hatching direction alter­
nates with each consecutive bar. In the call to DrawHistogram, a nega­
tive value for DisplyLen indicates that bars should be drawn from the Y
zero axis (which is, in this case, at the bottom of the window). A positive
value would specify that bars are always drawn from the bottom of the
window, with negative values plotted as positive values.

program OneHist;

{$I typedef.sys}
{$I graphix. sys}
{$I kernel. sys}
{$I windows. sys}
{$I hatch.hgh}
{$I histogrm.hgh}

procedure HistoDem;

var i,DisplyLen,HatchDen:integer;
a:PlotArray;
r:real;
ch:char;
Hatch: boolean;

begin
DisplyI..en: =10;

{these files must be}
{included and in this order}

{draw ten bars}

for i: =0 to DisplyI..en 00 {ini t the display array with random #' s}
begin;

a[i+l,2] :=random;
em;

SetColorWhi te; {set up the window for the bar chart}
SetBackground(0) ;
SetHeaderOn;
DefineWindow(l,O,O,XMaxGlb,YMaxGlb);
DefineHeader(1, 'A RANr:<:N BAR mARl' WI'IH HA'I'(}IIN;');
DefineWorld(l,-lO,l.O,lO,O);
SelectWorld(1);
SelectWindow(l);
DrawBorder; {draw the window}
Hatch: =true; {enable hatching}
HatchDen:=7; {draw hatch lines this far apart}
Drav.Histogram(a,-DisplyLen,Hatch,HatchDen); {draw the bar chart}

em;

Turbo Graphix Toolbox Owner's Handbook

begin
InitGraphic;
HistoDem;
repeat lllltil KeyPressed;
LeaveGraphic;

em.

Pie and Bar Charts

{initialize the graphics s.ystem}
{do the demo}
{wait until a key is pre~
{leave the graphics system}

Figure 2-15: A Bar Chart (ONEHIST.PAS Example)

The following example program (PIEHISTO.PAS on the distribution disk)
shows both a bar and pie chart displaying the same data. An example of
how to label bar charts is also included.

progr.wn PieHisto;

{$I typedef. s.ys}
{$I graphix.s.ys}
{$I kernel. sys}
{$I windows. s.ys}
{$I circsegm.hgh}
{$I pie. hgh}
{$I hatch. hgh}
{$I histogrm. hgh}

GETTING STARTED

{these files must be}
{included and in this order}

55

Pie and Bar Charts

56

procecllr9 PieHistoDem;

var SlUD, xl, y I, x2, y2, InRadius, OutRadius: real;
i,n: integer;
a:PieArray;
b:PlotArray;
ch:char;
NumText:WrkString;

begin

n:=5;
a[l] . area: =25;
a[2].area:=17.5;
a[3] .area:c9.6;
a[4] .area:=21;
a[5] . area: =35;
a[I].text:='JAN. ';
a[2]. text:='Fm. ,.
a[3]. text:='MAR. ';
a[4]. text:=' Am. ';

. a[5]. text:='MAY ';

{the number of data points}
{initialize the pie array}

for i: .. l to n <b
b[i,2]:ma[i].area;

{ini t the histogram array}

ClearScreen;
SetColorWhi te;

DefineWindow(I,O,O,XMaxGlb,YMaxGlb);
DefineHeader(l, 'BO'lH A PIE AND A BAR ~'); {set up a window}
SelectWindow(I);
SetHeaderOn;
SetBa.ckground(O) ;
DrawBorder;

for i:=l to n <b {type the info in the up-rt corner}
begin

GotoXY(60,4+i) ;
write(a[i].text, '-');
str(a[i].area:6:2,NumText);
wri te(NumText) ;

em" .

{goto correct line}
{type the label info}
{format the numeric info}
{type the numeric info}

Turbo Graphix Toolbox Owner's Handbook

Pie and Bar Charts

DefineWindow(2,trunc(XMaxGlb/lO),trunc(YMaxGlb/lO),
trunc(XMaxGlb*6/l0), trunc(YMaxGlb*7 110));

DefineHeader(2, 'A PIE CHART'); {set up a window}
DefineWorld(2,0,lOOO,lOOO,0);
SelectWorld(2) ;
SelectWindow(2);
SetHeaderOn;
SetBackground(O) ;
DrawBorder;

a[l].area:=-a[l].area;
SetAspect (1.0) ;

{move the first seg}Il9nt outward}
{set the aspect ratio}

xl: =500;
yl:=500;

{set the center to mid screen}

x2:=600;
y2:=350;

{set the start of the circle}

InRadius:=O. 7;
OutRadius: = 1.25;

{set the ends of the label lino}

DrawCartPie(xl,Yl,x2,y2,InRadius,OutRadius,a,n,2,1); {draw the pie}

a[l].area:=-a[l].area; {reset the sign}

DefineWindow(3,trunc(XMaxGlb/2),trunc(YMaxGlb/2),
trunc(XMaxGlb*9/l0),trunc(YMaxGlb*9/l0));

DefineHeader(3, 'A BAR CHART'); {set up a window}
DefineWorld(3,0,60,10,0);
SelectWorld(3) ;
SelectWindow(3);
SetHeaderOn;
SetBackground(0) ;
DrawBorder;

DrawHistogram(b,n,true,5);

for i:=l to n do {draw the bar chart labels}
begin
DraWTextW((lO/n)*(i-l),lO,l,'
str(a[i].area:6:2,NurnText);
DraWTextW((10/n)*(i-l),16,1, ,

em· ,

em;

GETTING STARTED

'+a[i]. text);

, +NuntI'ext) ;

{draw the text}
{format the number}
{draw the number}

57

Pie and Bar Charts

begin
Ini tGraphic;
PieHistoDem;

{ini tialize the graphics system}
{do the demo}

repeat until KeyPressed;
LeaveGraphic;

{wait until a key is preSSEKq
{leave the graphics system}

em.

10TH A PIE m A EAR CHART

I

'\~ I
A;R ::00 \

JAN, : 25,99
FEB, : 17,59
MAR, : 9,69
APR, : 21.99
MAY : 35,99 ~All:~" ~"':s,,:

Mii.! (I) FE! 1'P=========;
liN. m. MAR

2UO 17.:0 U0

Figure 2-16: Pie and Bar Chart Displaying Same Data
(PIEHISTO.PAS Example)

Summary of Pie and Bar Chart Routines

58

DrawCircleSegment draws an arc of a circle with optional text and
numeric labels

DrawCartPie draws a pie chart using Cartesian coordinates

DrawPolarPie draws a pie chart using polar coordinates

DrawHistogram draws a bar chart

Turbo Graphix Toolbox Owner's Handbook

Plotting Curves

Plotting Curves

Any curve that is made up of a series of pOints, usually connected by
line segments, is called a polygon. By default (constant MaxPlotGlb), a
polygon consists of a maximum of 100 points. If your application re­
quires more points, the default for MaxPlotGlb can be changed, or, al­
ternatively, multiple polygons can be used to create the final image.
Because the resolution of a screen is limited, a smooth curve can usual­
ly be made out of a small number of line segments.

A Simple Example: Plotting a Sine Curve

The following example program (ONEPOLY.PAS on the distribution disk)
plots a smooth sine curve using the DrawPolygon procedure. This ex­
ample uses 30 line segments to produce the curve. In this case, the full
screen is used; on the standard IBM graphics screen, there are approxi­
mately 20 pixels between the endpoints of the line segments. As can be
seen from the graphics display output by this program, a smooth curve
is drawn when this number of segments is used, with little evidence of
where one line segment ends and another begins.

DrawPolygon receives its input as X and Y coordinates in the array
PlotArray. This array is two dimensional-that is, each point's sequence
in the curve is specified by the. first dimension, and its X and Y values
are selected by the second dimension. For example the value in the ar­
ray PlotArray[5,1] would be the X position of the 5th point, and the
value in PlotArray[5,2] would be the Y position.

A symbol can be optionally placed at each vertex point on the curve. If
the value used to specify the symbol type is negative, the symbols are
not connected by lines. The size of the symbols, and whether lines are
drawn from the vertices to the X axis, are also specified by parameters
passed to the procedure. See the DrawPolygon procedure description in
Chapter 3 for detailed information about these options. This example
simply draws a single sine curve across the screen. The array to draw is
passed to DrawPolygon (with instructions to draw from the first to last
pOint in the array) with no symbols at the vertices, and the curve is
drawn as a series of line segments that connect the vertices.

GETTING STARTED 59

Plotting Curves

60

The PlotArray for DrawPolygon is filled by the GenerateFunction pro­
cedure. Varying the value of n in this program varies the number of ver­
tices in the curve. You can use the ONEPOLY.PAS example to experi­
ment with the proper number of pOints needed to generate a smooth
curve on your screen. In addition, you can draw a subset of the polygon
by starting and ending the drawing on any element of this array; the in­
dices of the desired start and end points are passed to the routine as
parameters.

progr.wa OnePolygon;

{$I typedef. sys}

{$I graphix.sys}
{$I kernel. sys}

{$I windows. sys}
{$I polygon. hgh}

procedure PolygonDem;

var n:integer;
b,a:PlotArray;
ch:char;
xl, x2: integer;

{these files must be}
{included in this order}

procedure Gener.ateFUnction(var a,b:PlotArray;n:integer);

var i:integer;
del ta: real ;

begin
delta:=2*pi/(n-l);
for i:=l to n 00

end;

begin
a[i,lJ:=(i-l)*delta-pi;
a[i,2J:=sin(a[i,lJ);

end;

{gener.ate a sine polygon}

Turbo Graphix Toolbox Owner's Handbook

begin
ClearScreen;
n:=30;
GenerateFunction(a,b,n);

Plotting Curves

{generate the polygon}

DefineWindow(l,O,O,XMaxGlb,YMaxGlb);
DefineHeader(1, 'SINE CURVE AS A POLYroN'); {set up the screen}
DefineWorld(l,-pi,l,pi,-l);
SelectWorld(1) ;
SelectWindow(1);
SetBackground(0) ;
SeilieaderOn;
DrawBorder;
DrawPolygon(a,l,n,O,O,O); {draw the polygon}

eo:l;

begin
Ini tGraphic;
PolygonDem;
repeat Until KeyPressed;
LeaveGraphic;

eo:l.

{ini tialize the graphics system}
{do the dem}
{wai t until a key is pressed}
{leave the graphics s,ystem}

SINE CU~lI£ AS A PDlVGDN •

\

Figure 2-17: Plotting a Smooth Curve (ONEPOL Y.PAS Example)

GETTING STARTED 61

Plotting Curves

The DrawAxis Procedure

62

In many graphics applications that illustrate numeric results, it is useful
to display a ruler that indicates the values of the displayed results. The
DrawAxis procedure is used to draw rulers (and accompanying X and Y
axes) along the left and bottom edges of the area that contains the
graph. The rulers are scaled to fit the active window. DrawAxis automat­
ically creates a new subwindow, bounded by the rulers, where drawing
will take place. The world coordinate system (defined by the
DefineWorld procedure) now fits in this subwindow.

Optional parameters passed to DrawAxis can provide a space between
the rulers and the active window boundaries. This feature can also be
used to provide space between legends or axis labels and the rulers,
and/or to display multiple axes in one window. Other options can draw a
border around the subwindow, turn the display of numeric labels and
ruler tick marks on and off, draw zero X and Yaxes, and select a line
style for the axes.

The rulers have a couple of characteristics you should understand if you
are to use them effectively. First, and most important, ruler markings are
spaced according to screen pixel spacing. This means that the numbers
associated with the rulers are correct with respect to the curve, but do
not necessarily mark the decimal (or other number system) locations
relevant to your application. In other words, ruler labels do not neces­
sarily increment by one, ten, or other standard unit. In addition, with a
higher resolution screen, (such as with the Hercules card), there will be
more markings than with the same rulers drawn using a standard IBM
graphics card.

The following example (ONEAXIS.PAS on the distribution disk) shows
the simplest use of the DrawAxis procedure. This example defines a
window that fills the whole screen, defines a world, and draws coordi­
nate axes for the whole screen.

program OneAxis;

{$I typedef.sys}
{$I graphix. sys}
{$I kernel. sys}
{$I windows.sys}
{$I axis.hgh}

{these files must be}
{included and in this onjer}

Turbo Graphix Toolbox Owner's Handbook

Plotting Curves

procedure OneAxisDem;

begin
ClearScreen;
SetColorWhi te;
SetBackground(0) ;

DefineHeader(l, 'LABELED AXES');
SetHeaderOn ;
DefineWorld(l,-lO,lO,lO,-lO);
SelectWor ld(1) ;
SelectWindow(l);
DrawBorder;
DrawAxis(8,-7,O,O,O,O,O,O,true);

em;

begin
1ni tGraphic;
OneAxisDem;
repeat mtil KeyPressed;
LeaveGraphic;

em.

{init screen}

{define the window}

{draw it}
{draw coordinate axis}

{initialize the graphics system}
{do the demo}
{wait until a key is pressed}
{leave the graphics system}

• '.; LAEElEDftHES " '

iU 1,
I '
, ~

(I J~~

j
OS01 ,

i
o:Sj

000
1
1'

0,2;

Hoi
us.

1. ~:+-.OU-l "'--.0""1"': i-j ""'-'''''0 ::-,:. -'--'0 ...-: ::i--'--.lj""\-~ """"';''"'1'1) >-!5 ~-I:I : i~--,....-'j.,..\.-? ~...,..I) t ~-,,? -,-...) I-U-1(1

Figure 2-18: Labeled Axes (ONEAXIS.PAS Example)

GETTING STARTED 63

Plotting Curves

Drawing a Sine Curve with Axes

64

The following example (POL YAXIS.PAS on the distribution disk) com­
bines the previous two examples to display a sine curve inside axes that
are bounded by the screen edges.

program OnePolygon;

{SI typedef.s,ys}
{$I graphix. s,ys}
{$I kernel. sys}
{$I windows. sys}
{SI axis. hgh}
{SI polygon. hgh}

procedure PolygonDem;

var n:integer;
b,a:PlotArray;
ch:char;
xl,x2:integer;

{these files must be}
{included in this order}

procedure GenerateFunction(var a,b:PlotArray;n:integer);

var i: integer;
delta: real;

begin
del ta: ... 2*pil (n-l) ;
for i:=l to n cD

begin

em;

a[i,l): ... (i-l)*delta-pi;
a[i,2):=sin(a[i,1));

em;

{generate a sine polygon}

Turbo Graphix Toolbox Owner's Handbook

Plotting Curves

begin
ClearScreen;

n:=30;

GenerateFunction(a,b,n); {generate the polygon}

DefineWindow(l,O,O,XMaxGlb,YMaxGlb);
DefineHeader(l,'SINE CURVE AS A POLYGON');
DefineWorld(l,-pi,l,pi,-l);

{set up the screen}

SelectWorld(1) ;
SelectWindow(l);
SetBackground(O) ;
SetHeaderOn;
DraM30rder;
DrawAxis(8,-8,O,O,O,O,O,O,false);
DrawPolygon(a,l,n,O,O,O);

em;

{draw the axes}
{draw the polygon}

begin
InitGraphic;
PolygonDem;

{initialize the graphics system}
{do the demo}

repeat mtil KeyPressed;
LeaveGraphic;

em.

{wait until a key is pressed}
{leave the graphics system}

. ' sm CUlUE AS A mVGDn'" .? ",;~'

. :; .

. ::<1

i i)

:' 1· ,I ;~

Figure 2-19: A Smooth Curve and Coordinate Axes
(POLYAXIS.PAS Example)

GETTING STARTED 65

Plotting Curves

Polygon Modification Routines

66

There are several procedures that adjust the values in the PlotArray to
translate (move), or rotate a polygon. These routines could be used for
animation applications, to allow a single polygon to be used as the
model for all the polygons that are to be subsequently moved about on
the screen.

The example program (MOVEPOLY.PAS on the distribution disk) uses
the RotatePolygon and TranslatePolygon procedures to draw an arrow­
head on the screen, enable the cursor keys to rotate it, and move it for­
ward and backward in the direction pointed to by the arrow. To end pro­
gram execution, press the space bar.

The program initializes the polygon as an arrowhead in the center of the
world, pointing towards the top of the screen. RotatePolygon rotates
the polygon around its present "center of mass". This means that the
polygon rotates around itself, rather than the origin (point [0,0]) of the
coordinate system. To rotate the polygon about the origin (or any other
point), use the RotatePolygonAbout procedure.

The TranslatePolygon procedure is used to move the arrowhead in the
direction it is pointing. When the polygon is rotated, new increment
values are used to translate the polygon in the new direction.

To move a polygon, you must first erase the old image before redrawing
the new one. To do this, set the drawing color to black with the
SetColorBlack procedure before calling DrawPolygon with the informa­
tion from the last polygon.

There are no limits on where the polygon can be moved. Since the po­
lygon is positioned using real coordinates, it would take a long time for
this program to move the object to the end of the real number system.
However, it does not take long to move the arrowhead off the screen.
To mako the program display the polygon in the world correctly, and to
prevent the arrow from moving off the screen and destroying part of
program memory, this program activates clipping by assigning a nega­
tive value to the last point to be displayed when calling DrawPolygon.
When the arrowhead goes off the screen, DrawPolygon only draws the
part of the line that fits the defined world.

Turbo Graphix Toolbox Owner's Handbook

Plotting Curves

program MJvePolygon;
{$I typedef. sys}
{$I graphix. sys}
{$I kernel. sys}
{$I windows. sys}
{$I polygon. hgh}
{$I modpoly. hgh}

var ArrowAngle: integer;
Ch: char;
Arrow: PlotArr8¥;

{these files must be}
{included in this order}

CurrX, CurrY, IncrX, IncrY, Size, Speed: real ;
ArrowIncr: arr8¥[O .. 7,1. .2] of real;

procedure MakeArrow;
begin

Arrow[1, 1] : =0;
Arrow[1,2] :=0;
Arrow[2,1]:=Size;
Arrow[2,2]:=-Size;
Arrow[3, 1] :=0;
Arrow[3,2]:=Size;
Arrow[4,1]:=-Size;
Arrow[4,2]:=-Size;
Arrow[5,1]:=O;
Arrow[5,2] :=0;

em;
procedure MakeMJveTable;
begin

Arrowlncr[O,l]:=O;
Arrowlncr[0,2]:=1;
Arrowlncr[l,l]:=-l;
Arrowlncr[1,2]:=1;
Arrowlncr[2,1]:=-1;
Arrowlncr[2,2]:=O;
Arrowlncr[3,1]:=-1;
Arrowlncr[3,2]:=-1;
Arrowlncr[4,1]:=O;
Arrowlncr[4,2]:=-1;
Arrowlncr[5,1]:=1;
Arrowlncr[5,2]:=-1;
Arrowlncr[6,1]:=1;
Arrowlncr[6,2]:=O;
Arrowlncr[7,1]:=1;
Arrowlncr[7,2]:=1;

em;

GETTING STARTED

{PlotArr8¥ ini t for the arrowhead}

{component velocities for radial moves}

67

Plotting Curves

68

procedure MoveForward; {routine to move polygon fonvard}
begin

SetColorBlack; {draw over old polygon to erase it}
Dr.awPolygon(Arrow,1,-5,O,O,O);
CurrX:=CurrX+IncrX; {move to new position}
CurrY:=CurrY+IncrY;
TTanslatePolygon(Arrow,5,IncrX,IncrY);
SetColorWhi te; {draw polygon in new position}
Dr.awPolygon(Arrow,1,-5,O,O,O);

mxl;

procedure MoveBack;
begin

{routine to move polygon back}

SetColorBlack; {same as above}
Dr.awPolygon(Arrow,1,-5,O,O,O);
CurrX:=CurrX-IncrX;
CurrY:=CurrY-IncrY;
TTanslatePolygon(Arrow,5,-IncrX,-IncrY);
SetColorWhi te;
Dr.awPolygon(Arrow,1,-5,O,O,O);

mxl;

procedure TurnLeft; {rotate polygon counter-clockwise}
begin

SetColorBlack; {undraw old polygon}
Dr.awPolygon(Arrow,1,-5,O,O,O);
RotatePolygon(Arrow,5,45); {rotate it 45 degrees}
ArrowAngle:=Arrow~e+l;

if ArrowAngle>7 then ArrowAngle:=O;
IncrX:=Speed * Arrowlncr[ArrowAngle,l]; {get new velocity}
Incry:=Speed * Arrowlncr[Arrow~e,2];
SetColotWhite; {draw rotated polygon}
Dr.awPolygon(Arrow,1,-5,O,O,O);

eIrl;

procedure TurnRight; {rotate polygon clockwise}
begin

SetColorBlack; {same as above}
Dr.awPolygon(Arrow,1,-5,O,O,O);
RotatePolygon(Arrow,5,-45);
ArrowAngle:=ArrowAngle-l;
if ArrowAngle<O then ArrowAngle: =7;
IncrX:=Speed * Arrowlncr[ArrowAngle, 1];
Incry:=Speed * Arrowlncr[ArrowAngle,2];
SetColorWhi te;
Dr.awPolygon(Arrow,1,-5,O,O,O);

mxl;

Turbo Graphix Toolbox Owner's Handbook

begin
Ini tGraphic;
DefineWindow(1, 0,0 ,XMaxGlb, YMaxGlb) ;
DefineWorld(l,-lOOO,lOOO,lOOO,-lOOO);
SelectWor Id(1) ;
SelectWindow(1) ;
SetBackground(0) ;
Size:-lOO;
Speed:-30;
CurrX:-0;
CurrY:-o;
Arrow Angle : -0;
IncrX:-=O;
IncrY: =Speed;

MakeArrow;
MakeiOOveTable;
DrawPolygon(Arrow,1,5,O,O,O);

repeat
read(Kbd,Ch);
case ord(Ch) of

end;

72 : lOOveForward;
75 : 'l\1rnI..a ft ;
77 : TurnRight;
00 : lOOveBa.ck;

until Ch .. ' ';
LeaveGraphic;
end.

Finding a World to Fit a Polygon

Plotting Curves

{ini tialize the graphics system}

{give ita world coord. system}
{select its worl~
{select wiIXlow}
{give ita black ba.ckgrouOO}

{make the arrowhead}
{make the move table}
{draw it pointing up}

{read the keystroke}

{up arrow?}
{left arrow?}
{right arrow?}
{down arrow?}

{' sp3.C9' char exits program}
{leave the graphics system}

In many applications that involve curves, the final form of the graph that
is to be displayed is not known until the program is run. In these cases,
the· FindWorld procedure can be used to find the world coordinate sys­
tem that will exactly fit the curve, or that is a specified percentage larger
than the curve. FindWorld ensures that the area in which your curve is
displayed is of the proper dimensions for your application. This pro­
cedure, in conjunction with the DrawAxis and DrawPolygon procedures,
can produce a tailormade graphic presentation.

GETTING STARTED 69

Plotting Curves

70

The FindWorld procedure always sets up a world with its lowest coordi­
nates at the upper left corner of the window. The following code can be
used after a call to FindWorld to turn the world coordinate system up­
side down:

with World[I] ck> {integer I is the world being changed}
begin

Temp:=Yl; {Temp is a real variable}
Yl:=Y2;
Y2:=Temp;

em;

This must be done before selecting the world! (You can also flip the
coordinate system horizontally by swapping the X coordinates X1 and
X2.)

Note: World coordinates in earlier versions of the Graphix Toolbox
defined the Y axis using the Cartesian coordinate system. If you have a
program written for an earlier version, you must switch the two Y
parameters in each instance of DefineWorld, so that, for example,

DefineWorld(WorldNUmber,Xl,Yl,X2,Y2);

becomes

DefineWorld(WorldNUmber ,Xl, Y2,X2, Yl);

The following program (FINDWRLD.PAS on the distribution disk) demon­
strates FindWorld and some of the more advanced features of the
DrawPolygon and DrawAxis routines. This program draws five random
points on the screen with star symbols at each of the vertices, and axis
rulers to show the scale of the numbers.

progr.wn FindWorld;

{$I typedef. sys}
{$I graphix.sys}
{$I kernel. sys}
{$I windows. sys}
{$I findwrld.hgh}
{$I axis. hgh}
{$I polygon. hgh}
{$I spline. hgh}

{these files must be}
{included in this order}

Turbo Graphix Toolbox Owner's Handbook

Plotting Curves

procedure FindWorldDem;

var x: real;
dx,dy,i,n,lines,scale:integer;
Xl,Yl,X2,Y2:integer;
b,a:PlotArray;

begin

DefineWindow(l,O,O,XMaxGlb,YMaxGlb); {define windows as whole screen}
DefineWindow(2,O,O,XMaxGlb,YMaxGlb);
DefineWorld(l,O,lOOO,lOOO,O); {give a world to the screen}

DefineHeader(2, 'A FOUND WORlD');
SelectWindow(2);
SetHeaderOn;

n:=lO;
for i:=l to n dl

begin
a[i, 1] :=i-l;
a[i,2]:=random-Q.5;

end;

FindWorld(2,a,n,1,1.08);

SelectWindow(2);
DravSorder;

{window where curve will go}

{fill polygon array}

{make world 2 the rignt size}

{select it and draw border}

dx:=-8;
dy':=7;
Xl: =3;
Yl:=5;
X2:-25;
Y2:=lO;
lines: =0;
scale: =0;

{draw axis inset from window edgo}

SetLineStyle(O); {draw curve as solid line}
DrawAxis(dx,dy,Xl, Yl,X2, Y2, lines, scale, false);
DrawPolygon(a,1,n,7,2,O);

SelectWorld(1) ;
SelectWindow(1) ;

GETTING STARTED

{select outside window}

71

Plotting Curves

72

DrawTextW(720,450,1,1\['7~ The data');
DrawTextW(720,550,1, '- The curve');

{print legend}

em;

begin
Ini tGraphic;
FindWorldDem;
repeat until KeyPressed;
I..eaveGraphic;

em.

{ini tialize the graphics system}
{do the demo}
{wai t until a key is pressed}
{leave the graphics system}

The special features of the DrawAxis procedure are used to make a
border around the drawing, and inset it from the edges of the active win­
dow. The inset feature can be used to make room for labels and
legends, and to allow multiple drawings in one window.

iFOUNouom

* !~! d,l;

0,00 1.50 ;,00 !.So 1.00 i,:,O

Figure 2-20: Finding a World for a Polygon (FINDWRLD.PAS Example)

Turbo Graphix Toolbox Owner's Handbook

Solving Curve-Fitting Problems

Solving Curve-Fitting Problems

This section introduces you to the Spline and Bezier procedures. Both
these procedures use polynomials to create curves. However, they are
used for different reasons: the Spline procedure is used for fitting
smooth curves to a given configuration of points, while Bezier is used to
find the points that will create a desired curve. The Spline procedure is
appropriate for many curve-fitting applications (for example, creating a
smooth curve that intersects a set of experimental data), while Bezier is
the procedure to use for line modeling and generating curves of arbitrary
shape.

Fitting a Curve with the Spline Procedure

The curve produced by the FINDWRLD.PAS example is quite jagged;
this is because the data points are connected by straight lines. The
Spline procedure allows you to take the same set of points and find a
smooth curve to fit that configuration of pOints. The general method
used to find the function that will produce such a curve is called interpo­
lation; using interpolation, you can generate the "missing" points that
will smooth the curve.

The simplest way to interpolate a given set of points with a curve is the
following: given n points [X1, Y1],[X2, Y2],[X3, Y3]. .. [Xn, Yn], we can in­
terpolate the points with the n'th degree polynomial:

(x-x2) ... (x-xn) + (x-X I)(X-X3) ... (x-x,,)
Pn(x) = YI (Y2 (XI-X2) ... (xl-xn) (X2-XI) X2-X3) ... (X2-X,,)

(X-XI) ... (x-xn_l) + . . . + Y n __ ---.; ____ -"---:..c....-

(xn-x l) ... (xn-xn- I)

This polynomial is known as the Lagrange Interpolating Polynomial, and
it generates an exact curve that will pass through all the points. Howev­
er, there is a problem inherent in this method of interpolation: it requires
a formula with the same number of elements as the number of points to
be intersected. Interpolating 90 points, for example, will yield a polyno­
mial of degree 90, which is quite unwieldy.

A second, simpler approach to the problem is to fit a separate curve in
each interval [Xi.1,Xi], so that the curves meet with no jaggedness or ir­
regularity. In other words, the function consists of pieces of polynomials
that are patched together. The method used is known as "Cubic
Splines". Using this method, 3rd degree polynomials are used in each
interval and patched together to form a "smooth" curve.

GETTING STARTED 73

Solving Curve-Fitting Problems

74

The Turbo Graphix Spline procedure uses this technique to interpolate
the points that make up the curve. To produce the curve, the initial set
of points is passed to the Spline procedure in the PlotArray, along with
information about where to start and stop the interpolation, and a
second PlotArray to receive the points of the smooth curve.

The following example (INTERP.PAS on the distribution disk) is essen­
tially identical to the FINDWRLD.PAS example, except that an additional
interpolated curve is plotted. Since the points are plotted at random,
running the program several times will give you a good feel for how
splines behave.

program Interpolate;

{$I typedef.sys}
{$I graphix.sys}
{$I kernel. sys}
{$I windows. sys}
{$I findwrld.hgh}
{$I axis.hgh}
{$I polygon. hgh}
{$I spline. hgh}

procedure SplineDem;

var x, temp: real;
dx,dy,i,n,m,lines,scale:integer;
Xl,Yl,X2,Y2:integer;
b,a:PlotArray;

begin

{these files must be}
{included in this order}

DefineWindow(l,O,O,~lb,YMBxGlb)

DefineWindow(2,0,0,~lb,YMBxGlb);

DefineWorld(l,O, 1000, 1000,0);

{define both windows}
{ as whole screen}
{give a world to the screen}

DefineHeader(2, 'A spline interpolation'); {window where curves will go}
SetHeaderOn;

n:=12;
for i:=l to n 00

begin
a[i, 1] :=i-l;
a[i,2]:=random-Q.5;

end;

{fill polygon array}

Turbo Graphix Toolbox Owner's Handbook

m:=50;
spline(a,n,a[2,l],a[n-l,l],b,m);
FindWorld(2,b,m,l,l.08);
with World[2] 00

begin
temp:=Yl;
Yl:=Y2;
Y2:=temp;

em;
SelectWindow(2) ;
DrawBorder;

dx:=-8;
dy:=7;
Xl:=3;
Yl:=5;
X2:=25;
Y2:=1O;
lines: =0;
scale: =0;

Solving Curve-Fitting Problems

{generate spline with 50 points}

{make world 2 the right size}
{flip the found world vertically}

{select it and draw border}

{draw axis inset from window edge}

SetLineStyle(l); {draw initial curve as dotted lino}
DrawAxis(dx,dy,Xl,Yl,X2,Y2,lines,scale,false);
DrawPolygon(a,2,n-l,7,2,O); {don't draw the endpoints}

SetLineStyle(O); {draw interpolated curve as solid 1 inl
DrawAxis(O,O,Xl,Yl,X2,Y2,O,O,false);
DrawPolygon(b,l,-m,O,O,O); {spline is not good on endpoints}

SelectWorld(1) ; {select outside window}
SelectWindow(l);

DrawTextW(730,400,l, "['7@2 The data'); {print legend}
DrawTextW (730,500, I, , " The initial polygon') ;
DrawTextW(730,600,l, '_ The interpolated values');

em;

begin
1ni tGraphic;
SplineDem;

{initialize the graphics system}
{do the demo}

repeat lIDtil KeyPressed;
LeaveGraphic;

eOO.

GETTING STARTED

{wait until a key is pressed}
{leave the graphics system}

75

Solving Curve-Fitting Problems

" '. A$pline interpol.tlon '.

* Ih! d.t.

0,10 US 0,10 US O.iQ U:

Figure 2-21: Finding a Smooth Curve with Cubic Splines
(INTERP.PAS Example)

Modeling a Curve with the Bezier Procedure

76

The Bezier procedure uses polynomials to solve the opposite problem
that the Spline procedure handles: finding a set of points that will gen­
erate a predetermined curve. Bezier polynomials are defined by a given
set of guiding (control) pOints. With the Bezier procedure, you continual­
ly redefine these control points so that they "pull on" the curve until it is
of the desired shape. Once the guiding pOints are defined, if you have
some talent for mathematics, you can easily find the equations for the
corresponding Bezier polynomials that will draw the curve-that is, the
algebraic formula for the curve drawn by this procedure. In addition, you
can then use these points of the solution to plot the curves as polygons
in other windows, using different coordinate systems, or on other
screens on different computer systems.

The Bezier polynomial takes the following form:
m. .

pAt) = L Cr t' (1- t)m-I x;
;=0

m, .
Py(t) = L Cr t' (1_t)m-I y;

;=0

where C~ is the number of combinations of m objects taken i at a time.

Turbo Graphix Toolbox Owner's Handbook

Solving CUNe-Fitting Problems

The following example (BEZIDEMO.PAS on the distribution disk) shows
you how to use a set of control points to generate a desired curve. This
technique is extremely useful for line modeling and some architectural
applications. To illustrate the flexibility of the Bezier procedure, run this
example program and try to make it loop twice.

program BeziDemo;

{$I typedef.sys}
{$I graphix.sys}
{$I kernel.sys}
{$I windows.sys}
{$I axis. hgh}
{$I polygon. hgh}
{$I bezier. hgh}

procedure ClearToEbl;
var i: integer;

begin
for i:=l to 00 do write(' ');

em;

procedure BezierDem;

{these files must be}
{included and in this order}

{proc to clear to end of line}

var result,i,MaxControlPoints,MaxIntPoints:integer;
dunmyx, c:lunm\YY: real;
a,b:PlotArray;
break: boolean;
DummwS,Temp2,Temp:wrkstring;

begin

MaxControlPoints: =7; {initialize everything}
MaxIntPoints:=15;
a[l,l]:=1;a[2,1]:=1.5;a[3,1]:=2;a[4,l]:=2.5;a[5,1]:=3;a[6,1]:=4;
a[7,l]:=5;a[1,2]:=2;a[2,2]:=1.5;a[3,2]:=1;a[4,2]:=2.5;a[5,2]:=4;
a[6,2]:=4.5;a[7,2]:=5;

ClearScreen; {set up screen}
SetColorWhi te;
DefineWorld(1,O,7.0,6.33,O); {set world so rulers are good}
SelectWorld(1);
DefineWindow(1,O,O,XMaxGlb,17*YMaxGlb div 20);

GETTING STARTED 77

Solving Curve-Fitting Problems

78

SelectWindow(l);
SetBackground(0) ;
DrawBorder;
DrawAxis(7,-7,0,0,0,0,0,0,false);

break:=false;

repeat

{ini t exit flag}

SetLinestyle(1); {draw polygon between points}
DrawAxis(O,O,O,O,O,O,O,O,false); {do this so it lines up ok (no text)}
DrawPolygon(a,1,MaxControlPoints,4,2,0);

bezier(a,MaxControlPoints,b,MaxIntPoints); {do bezier operation}

SetLinestyle(O); {plot it}
DrawAxis(O,O,O,O,O,O,O,O,false);
DrawPolygon(b,l,MaxIntPoints,O,O,O);

repeat
gptaxy(1,24); {clear out old text}
ClearToEol;
gptaxy(1,25);
ClearToEol;
gptaxy(1,23);
ClearToEol;
gptaxy(l,23); {get point to change}
write(I Enter the number of the point to change I);
gptaxy(43,23) ;
read (Temp) ;
val (Temp, i, result);

until i in [0 .. MaxControlPoints];

if i>O then
begin

repeat
gptaxy(1,24); {get new values for x and y}
write('Old position [I ,a[i,1]:4:2,',' ,a[i,2]:4:2, 1]1);
gptaxy(40,24) ; write (I New position x: I);
gptaxy(60,24) ;
read(~);

while DummyS[l]=' I do delete(DummyS,l,l);
Temp: =DumnyS;
gptaxy(40,25) ;write(I New position y: I);
gptaxy(60,25) ;

Turbo Graphix Toolbox Owner's Handbook

Solving Curve-Fitting Problems

read (1)mmyS) ;
while DummyS[l]=' , do delete(DurnmyS,l,l);
Temp2: =DummyS; val (Temp, dumnyx, resul t) ; val (Temp2, dumnyy, resul t) :
Wltil ((~XlWlcr;lb) and (dunnI\vX<=X2Wlcr;lb))

and ((dumnyy>=YlWlcr;lb) and (clunm\YY<=Y2Wlcr;lb));

SetLinestyle(l); {undraw old curve}
SetColorBlack;
DrawAxis(O,O,O,O,O,O,O,O,false);
DrawPolygon(a,1,MaxControlPoints,4,2,O);
SetLinestyle(O) ;
DrawAxis(O,O,O,O,O,O,O,O,false);
DrawPolygon(b,l,MaxIntPoints,O,O,O);
a[i,1]:=dummyx;a[i,2]:=dumm&Y;
SetColorWhi te;

em
else break: =true ;

Wltil break;,
{done?}

em;

begin
Ini tGraphic;
BezierDem;
LeaveGraphic;

{initialize the graphics system}
{do the demo}
{leave the graphics system}

em.

6,00

5,00

UO

3.00

2.00

"

"
1.00 ""'''1'

0,00
0,00 1.00 2.00 3.00 uo 5,00 6.00

Figure 2-22: Finding Points to Fit a Smooth Curve of Predetermined Shape
(BEZIDEMO.PAS Example)

GETTING STARTED 79

Solving Curve-Fitting Problems

Summary of Polygon/Curve Routines

Bezier computes a smooth curve of predetermined shape from a set of
control pOints

DrawAxis draws X and Yaxes with ruler markings

DrawPolygon draws a polygon

FindWorld finds a world coordinate system to fit a given polygon

RotatePolygon rotates a polygon about its center of gravity

RotatePolygonAbout rotates a polygon about a given point

Spline computes a smooth curve from a set of control points

TranslatePolygon moves a polygon vertically and horizontally

Screens

There are two types of screens available for drawing with the Turbo
Graphix Toolbox: the displayed screen, and a RAM (virtual) screen in
memory. Turbo Graphix routines allow you to save and load either of
these screens to and from disk, and restore them when you need them.
You can also send images from either screen to your printer, and swap
the contents of one screen with the contents of the other.

Saving and Loading Screens

80

Use the SaveScreen procedure to store the active screen as a file on
disk. The single string parameter passed to the routine specifies the file
name in which to save the screen contents. If a file with the same name
already exists, it is overwritten. When you want to display the screen
again, LoadScreen retrieves the screen from the file specified by its file
name.

Turbo Graphix Toolbox Owner's Handbook

Screens

Both SaveScreen and LoadScreen use a format that is screen-type­
specific; this means that a screen saved or loaded in a system with one
graphics card may not keep its integrity if you attempt to retrieve or
save it later on a system with another graphics card. This is also true
with the LoadWindowStack and StoreWindowStack procedures; win­
dow stacks are not necessarily compatible between different versions of
the Turbo Graphix Toolbox. However, there is no incompatibility
between individual windows; you can safely store or load a window us­
ing the LoadWindow and Store Window procedures from one graphics
screen type to another with no problems.

The following program example (SCREENIO.PAS on the distribution
disk) demonstrates saving and loading a screen; included in this exam­
ple is a routine that draws a Sierpinski curve. This screen image is
stored to disk as file DEMO.PIC, the screen is cleared, and the image
is read back to the screen. SaveWindow/LoadWindow and
SaveWindowStack/LoadWindowStack can also be tested with this ex­
ample. Simply substitute their names for the SaveScreen and
LoadScreen procedures, and make sure the data you want to save and
load is available.

program ScreenIO;

{$I typedef.sys}
{$I graphix.sys}
{$I kernel. sys}

procedure Sierpinski;

const n=5;
var i,h,x,y,xO,yO:integer;

sec:boolean;

procedure plot;

begin
DrawLine(x,y,xO,yO) ;
xO:=x;
yO:=y;

em;

GETTING STARTED

{these files must be}

{included in this order}

{draw a line}

81

Screens

procedure b(i:integer); forward;

procedure c(i:integer); forward;

procedure d(i:integer); forward;

procedure a(i:integer);

begin
if i>O then
begin

a(i-l);
x:=x+h;
y:=y-h;
plot;
b(i-l);
x:=x+2*h;
plot;
d(i-l);
x:=x+h;
y:=y+h;
plot;
a(i-l);

em;
em;

procedure b;

begin
if i>O then
begin

b(i-l);
x:=x-h;
y:=y-h;
plot;
c(i-l);
y:=y-2*h;
plot;
a(i-l);
x:=x+h;
y:=y-h;
plot;
b(i-l);

em;
em;

{forward references for recursion}

{first recursive procedure}

{second recursive procedure}

82 Turbo Graphix Toolbox Owner's Handbook

procedure c;

begin
if i>O then
begin

c(i-l);
x:=x-h;
y:=y+h;
plot;
d(i-l);
x:=x-2*h;
plot;
b(i-l);
x:=x-h;
y:=y-h;
plot;
c(i-l);

em;
em;

procedure d;

begin
if i>O then
begin

d(i-l);
x:=x+h;
y:=y+h;
plot;
a(i-l);
y:=y+2*h;
plot;
c(i-l);
x:=x-h;
y:=y+h;
plot;
d(i-l);

em;
em;

GETTING STARTED

Screens

{third recursive procedure}

{last recursive procedure}

83

Screens

procedure Dolt;

begin
i:=3;
h:=l6;
xO:=30;
yO: =240;
repeat

i:=i+l;
xO:=xO-h;
h:=h div 2;
yO:=yO+h;
x:=xO;
y:=yO;
a(i-l);
x:=x+h;
y:=y-h;
plot;
b(i-l);
x:=x-h;
y:=y-h;
plot;
c(i-l);
x:=x-h;
y:=y+h;
plot;
d(i-l);
x:=x+h;
y:=y+h;
plot;

until i=n;
em;

begin
SetHeaderOn;
DefineWorld(l,-3,258,258,-3);
SelectWorld(l);
SelectWindow(l) ;
DrawBorder;
Dolt;

em;

{sierpinski main procedure}

{sierpinski}

84 Turbo Graphix Toolbox Owner's Handbook

Screens

begin
Ini tGraphic; {ini tialize the graphics system}
DefineHeader(1, 'I:EMJNSIRA'IE SCREEN SAVE AND READ WIFRCld DLSK');
SetHeaderOn; {give it a header}
Sierpinski; {do the curve}
SaveScreen('IEvD.PIC'); {save the screen to disk}
ClearScreen; {clear the screen}
Delay(1000); {delay so hard or RAM disk users can see the action}
U:>adScreen('IEvD. PIC') ; {retrieve it from disk}
repeat until KeyPressed; {wait until a key is pressed}
LeaveGraphic; {leave the graphics system}

em.

Printing Screens

There are two ways to print screen images. You can either use the Tur­
bo Graphix HardCopy procedure, or the existing screen printing facility
of your computer.

The HardCopy procedure prints screen images on any printer compati­
ble with the Epson MX, RX, or FX series. Depending on the printer
used, several width formats are available. These range from 640 points
across the page to 1920 pOints. Since the standard IBM color graphics
screen is 640 pixels wide, one screen will exactly fit across the page if
the printer is able to print in the lowest resolution mode.

Some printers do not support all the available modes. For instance, the
standard IBM, Epson MX-80-compatible printer will only print in the
960-points-per-line mode (mode 1). If you select any other mode for this
printer, it will never enter graphics mode and will attempt to print the
graphics screen in text characters.

Because of the different resolutions that are possible with HardCopy,
the horizontal-to-vertical proportions (aspect ratio) of some images may
be different on the screen than when the images are printed. Experiment
with your printer and the resolution modes available to it to find what
works best for you.

There is another way to print screen images using an IBM-compatible
printer. First, install the graphics print routine that comes with the com­
puter. Usually, this is done by running the system program
GRAPHICS. COM that is on the MS-DOS system disk. Then, when you
want to print a screen image, simply press the PrtSc key; on some key­
boards, you must also press the Shift key.

GETTING STARTED 85

Screens

86

There are a couple of advantages to using this program for printing
screens. One is that it works on all Epson-like printers, and another is
that it prints the image down the page rather than across it. The screen
image fills the whole sheet, and the aspect ratio of the image is very
close to that of the screen. Since the image is so large, fine details of
the drawing look sharp and clear.

The following example program (SCRNPRNT.PAS on the distribution
disk) prints out the screen image used in the SCREENIO.PAS example.

program ScreenIO;

{$I typedef.sys}
{$I graphix.sys}
{$I kernel. sys}

procedure Sierpinski;

const n=6;
var i,h,x,y,xO,yO:integer;

sec:boolean;

procedure plot;

begin
DrawLine(x,y,xO,yO) ;
xO:=x;
yO:=y;

em;

procedure b(i:integer); forward;
procedure c (i: integer); forward;
procedure d(i: integer); forward;
procedure a (i : integer) ;

begin
if i>O then

begin
a(i-l);
x:=x+h;
y:=y-h;
plot;
b(i-l);
x:=x+2*h;
plot;
d(i-l);

{these files must be}
{included in this order}

{draw a line}

{forward references for recursion}

{first recursive procedure}

Turbo Graphix Toolbox Owner's Handbook

x:=x+h;
y:=y+h;
plot;
a(i-l);

eIXi;
eIXi-.
pI"OCEdlre b;

begin
if i>O then

begin
b(i-l);
x:=x-h;
y:=y-h;
plot;
c(i-l);
y:';'y-2*h;
plot;
a(i-l);
x:=x+h;
y:=y-h;
plot;
b(i-l);

eIXi;
eIXi;

procedure c;

begin
if i>O then
begin

c(i-l);
x:=x-h;
y:=y+h;
plot;
d(i-l);
x:=x-2*h;
plot;
b(i-l);
x:=x-h;
y:=y-h;
plot;
c(i-l);

eIXi;
eIXi;

GETTING STARTED

Screens

{second recursive procedure}

{third recursive procedure}

87

Screens

88

procedure d;

begin
it i>O then
begin

d(i-l);
x:=x+h;
y:=y+h;
plot;
a(i-l);
y:=y+2*h;
plot;
c(i-l);
x:=x-h;
y: .. y+h;
plot;
d(i-l);

end;
em;

procedure Dolt;

begin
i:=3;
h:=l6;
xO:=30;
yO: =240;
repeat

i:=i+l;
xO:=xO-h;
h:=h div 2;
yO:=yO+h;
x:=xO;
y:=yO;
a(i-l);
x:=x+h;
y:=y-h;
plot;
b(i-l);
x:=x-h;
y:=y-h;
plot;

{last recursive procedure}

{sierpinski main procedure}

Turbo Graphix Toolbox Owner's Handbook

Screens

c(i-l);
x:=x-h;
y:=y+h;
plot;
d(i-l);
x:=x+h;
y:=y+h;
plot;

mill i=n;
em;

~ {sierpinski}
SetlleaderOn;
DefineWorld(1,-3,258,258,-3);
SelectWorld(1) ;
SelectWindow(l);
DrawBorder;
I))It;

em;

begin
lnitGraphic; {initialize the graphics system}
DefineHeader (1, I IEwDNSIRA'IE SCRElll FRINI'll(; I) ; {give it a header}
SetlleaderOn;
Sierpinski;
HardCopy (false, 1) ;
repeat mtil KeyPressed;
LeaveGraphic;

em.

GETTING STARTED

{do the curve}
{print it}
{wait until a key is pre~
{leave the graphics system}

89

Notes:

90 Turbo Graphix Toolbox Owner's Handbook

Chapter 3
TECHNICAL REFERENCE

This chapter provides detailed information about all the routines con­
tained in the Turbo Graphix Toolbox. The first section gives an overview
of the modular files that you'll need to include in your graphics applica­
tion programs, along with a sample program. The following section
defines and describes the constants and types used in the Turbo Gra­
phix procedures, the third section provides a quick reference guide to
Turbo Graphix routines, and the final section describes all the functions
and procedures contained in the package.

Turbo Graphix Files

Turbo Graphix Toolbox is supplied on the distribution disk as an assort­
ment of Turbo Pascal source files that you will need to "include" in your
application program. These files are organized as modules to allow you
to choose only the files you need for compilation into your final program.

If your system is equipped with a Hercules or IBM graphics card, the
Turbo Graphix distribution disk will contain some files that are specific to
your graphics card or computer system. Such files are named by a
filename with an extension (.HRC for Hercules, .IBM for IBM) that indi­
cates the graphics card the file is designed for. For instance, there is a
GRAPHIX.IBM file that contains procedures for drawing, loading, and
storing IBM screens, and a GRAPHIX.HRC file that contains the same
procedures for Hercules screens. You must copy the GRAPH IX file writ­
ten for your hardware (supplied on the distribution disk) onto the
GRAPHIX.SYS file. This is done by invoking the Turbo Graphix batch
program, i.e., type tginst hgc or tginst ibm. Failure to do so may cause
malfunctioning of Turbo Graphix programs.

Basic System Files

The following files must be included in all Turbo Graphix applications,
since they contain the global variable declarations, drawing primitives,
and system routines that are necessary for drawing. The files must be
included in the order given below.

TECHNICAL REFERENCE 91

Turbo Graphix Files

TYPEDEF.SYS Variable declarations for the Turbo Graphix Toolbox

GRAPHIX.SYS Variables and routines for basic drawing, and for load­
ing and storing screens

KERNEL.SYS Primitives for control and initialization of the Turbo
Graphix Toolbox

Supplemental System Files

These files are necessary for applications that use windows, text, or er­
ror messages. The only file that you have to include yourself is the
WINDOWS.SYS file; the other files listed here will be used by your appli­
cation automatically if they are needed.

WINDOWS.SYS Routines for moving, loading and storing windows

8X8.FON

14X9.FON

8x9.FON

4X6.FON

ERROR.MSG

High-resolution font for IBM

High-resolution font for Hercules

High-resolution font for Zenith

Turbo Graphix font

Error message text

High-Level Command Files

92

The high-level routines are necessary for more complex graphics appli­
cations; you need only include the files you need for your particular ap­
plication. All of the high-level files utilize the procedures contained in the
basic system files; you must therefore include those files in order to util­
ize the high-level procedures.

Some of these high-level procedures rely on or work in conjunction with
each other; in such cases, all the associated routines must be included
in your application in the correct order. For instance, HISTOGRAM.HGH
uses AXIS.HGH and PIE.HGH uses CIRCSEGM.HGH. To use either
HISTOGRAM.HGH or PIE.HGH, you must first include the other high­
level files that they use. Refer to specific routines listed in the final sec­
tion of this chapter for other examples.

Turbo Graphix Toolbox Owner's Handbook

Turbo Graphix Files

The high-level command files are as follows:

FINDWRLD.HGH Procedure that finds a world coordinate system to
fit a polygon

AXIS.HGH Procedure that draws coordinate axes and labels

POL YGON.HGH Procedure that draws polygons

MODPOLY.HGH Procedures that rotate, scale and translate poly­
gons

SPLlNE.HGH Procedure that does spline smoothing on polygons

BEZIER.HGH Procedure that does Bezier interpolations on poly­
gons

HATCH.HGH Procedure that fills (hatches) bars in bar charts

HISTOGRM.HGH Procedure that draws bar charts

CIRCSEGM.HGH Procedure that draws and labels circle segments

PIE.HGH Procedure that draws and labels pie charts

TECHNICAL REFERENCE 93

Turbo Graphix Files

A Sample Turbo Graphix Toolbox Program

This sample program demonstrates the essential elements of a Turbo
Graphix Toolbox program.

program simple;

{$I typedef.sys}
{$I graphix.sys}
{$I kernel. sys}

begin

Ini tGraphic;
DrawBorder;

{these files must be}
{included in this order}

{initialize the graphics system}
{draw a border around the drawing}
{area of the active window}
{(the dimensions of the active window}
{default to 64Ox2OO points)}

DrawLine(10,10,600,18O);
DrawSquare(lO, 10,600, 180, false);
DrawLine (-100, -20, 7BO, 320) ;

{draw a line}
{draw a square}
{draw a line to demonstrate}
{clipping}

repeat until KeyPressed;
LeaveGraphic;

em.

{hold screen until key pre~
{leave the graphics system}

Constant and Type Definitions

94

This section defines and describes, in alphabetical order, the constants
and types used in Turbo Graphix Toolbox routines. Each constant or
type is first defined, then described in detail as it applies to various pro­
cedures and functions. The Turbo Graphix file-either TYPEDEF.SYS or
GRAPHIX.SYS-that contains the constant or type is given in brackets
next to the constant or type name.

To customize your application, you can change some of the constants
and types by altering the TYPEDEF.SYS or GRAPHIX.SYS file; howev­
er, this should be done with great care, and only after you have made
certain that you thoroughly understand the Turbo Graphix Toolbox pro­
gram. Otherwise, a system crash or other unpredictable disasters could
occur.

Turbo Graphix Toolbox Owner's Handbook

AspectFactor [GRAPHIX. SYS]

AspectFactor [GRAPHIX.SYS]

Declaration

Purpose

Remarks

Remarks

canst AspectFactor: real = (depends on system);

AspectFactor is used to adjust the aspect ratio
(horizontal-to-vertical ratio) of a circle or ellipse so that a
true circle is drawn on a particular physical screen using
a particular graphics board. Without this adjustment, a
circle may be drawn in a distorted way-too tall or too
wide. This is because the horizontal-to-vertical ratio
varies on different monitors.

The graphics system multiplies the aspect ratio for a
given circle or ellipse by the value of AspectFactor (which
varies with the particular hardware screen installed) to
create the desired shape. Multiplying AspectFactor by a
constant creates ellipses with the same width, but with
different heights. AspectFactorX 1 creates a true circle
on any screen, while AspectFactorX 2 gives an ellipse
that is twice as tall as it was, and AspectFactor-+ 2 gives
one that is half as tall as it was. Varying the aspect ratio
varies the height of the drawn figure while keeping the
width constant. Thus, if three circles are drawn with as­
pect ratios of AspectFactor-+ 2, AspectFactor, and
AspectFactorX 2, respectively, the three figures will be
tangent to each other at their leftmost and rightmost
points, but not at their top and bottom points.

This constant should not be altered, since it is specific to
the graphics hardware in your system.

TECHNICAL REFERENCE 95

BackgroundArray [TYPEDEF.SYSj

96

BackgroundArray [TYPEDEF.SYS]

Declaration

Purpose

type BackgroundArray = array [0 .. 7] of byte;

BackgroundArray is used by the SetBackgroundB pro­
cedure to pass the specified 8x8 bit pattern for filling a
window background.

CharFile [TYPEDEF .SYS]

Declaration

Purpose

Remarks

ooost CharFile: FileName = '4x6.font';

CharFile contains the 4x6-pixel font.

You can change this constant by altering either the
TYPEDEF.SYS file or the main program before you call
the InitGraphic procedure.

ConOutPtr [Turbo Pascal]

For information, please refer to the Turbo Pascal Reference Manual ("User
Written I/O Drivers").

HardwareGrafBase [GRAPHIX.SYS]

Declaration

Purpose

ooost HardwareGrafBase:integer = (depends on system);

HardwareGrafBase defines the hardware segment ad­
dress of graphics memory for a particular machine or
graphics board.

HeaderSizeGlb [TYPEDEF.SYS]

Declaration

Purpose

Remarks

ooost HeaderSizeGlb: = 10;

HeaderSizeGlb defines the vertical dimension, in pixels,
of window headers. Its value must be greater than or
equal to 6.

The total vertical drawing area available in a given win­
dow is reduced by the size of its header.

Turbo Graphix Toolbox Owner's Handbook

HeaderSizeGlb [TYPEDEF.SYS]

IVStepGlb [GRAPHIX.SYS]

Declaration

Purpose

Remarks

const IVStepnb: integer = (depends on system);

IVStepGlb specifies the initial value of VStep, the step
size (increment) by which windows are moved vertically.

IVStep is used by the Turbo Graphix program to speed
the vertical movement of large windows. Its value varies
according to the particular hardware installed. See the
MoveVer and SetVStep procedures.

MaxBackground [GRAPHIX.SYS]

Declaration

Purpose

Remarks

const MaxBackground: integer = (depends on system);

MaxBackground is a value that specifies the maximum
number of available background ("black") colors for a
particular hardware configuration: 0 or 15 for IBM ver­
sions, 0 for Hercules, and 0 for Zenith.

This constant should not be changed, since it is specific
to the graphics hardware installed.

MaxForeground [GRAPHIX.SYS]

Declaration

Purpose

Remarks

const MaxForeground: integer = (depends on system);

MaxForeground is a value that specifies the maximum
number of available foreground ("white") drawing colors
for a particular hardware configuration: 15 for IBM (ex­
cept the PCjr version, which allows only black or white),
o for Hercules, and 7 for Zenith.

This constant should not be changed, since it is specific
to the graphics hardware installed.

It is illegal to set the foreground and background colors
to the same value. See the SetBackgroundColor and
SetForegroundColor procedures for more information.

TECHNICAL REFERENCE 97

MaxPiesGlb [TYPEDEF.SYSj

98

MaxPiesGlb [TYPEDEF.SYS]

Declaration

Purpose

canst MaxPiesnb 0: 10;

MaxPiesGlb specifies the maximum number of sections
allowed in a pie chart.

MaxPlotGlb [TYPEDEF .SYS]

Declaration

Purpose

Remarks

canst MaxPlotGlb = 100;

MaxPlotGlb defines the maximum number of points in a
PlotArray.

Plot Array is used to store the vertices of polygons. Bez­
ier, DrawHistogram, DrawPolygon, FindWorld, Rotate­
Polygon, ScalePolygon, Spline, and TranslatePolygon
make use of the MaxPlotGlb constant.

MaxWindowsGlb [TYPEDEF .SYS]

Declaration

Purpose

canst MaxWindoWEGlb .. 16;

MaxWindowsGlb specifies the maximum number of
defined windows.

MaxWorldsGlb [TYPEDEF.SYS]

Declaration

Purpose

Remarks

canst MaxWorldsGlb = 4;

MaxWorldsGlb specifies the maximum number of world
coordinate systems that can be defined.

Only one world coordinate system can be used at one
time.

Turbo Graphix Toolbox Owner's Handbook

MinBackground [GRAPHIX.SYSj

MinBackground [GRAPHIX.SYS]

Declaration

Purpose

Remarks

00DSt MinBackground: integer - (depends on system);

MinBackground specifies the minimum value for the
background ("black") color for a particular graphics card:
o for IBM, 0 for Hercules, and 0 for Zenith.

This constant should not be changed, since it is specific
to the graphics hardware installed.

MinForeground [GRAPHIX.SYS]

Declaration

Purpose

Remarks

00DSt MinForeground: integer - (depends on system);

MinForeground specifies the minimum value for the fore­
ground ("white") drawing color for a particular graphics
card: 1 for IBM, 1 for Hercules, and 1 for Zenith.

This constant should not be changed, since it is specific
to the graphics hardware installed.

PieArray [TYPEDEF .SYS]

Declaration

Purpose

Remarks

tJpa PieArray - array [1 .. MaxPies:llb] of PieType;

PieArray is used to pass the definition of a pie chart to
the DrawCartPie and DrawPolarPie procedures; each ele­
ment of the array defines a single section of the pie. The
two fields in the array are Area (a real number), and Text
(a string).

The maximum number of pie sections is determined by
the MaxPiesGlb constant.

TECHNICAL REFERENCE 99

PlotArray [TYPEDEF.SYSj

PlotArray [TYPEDEF .SYS]

Declaration

Purpose

Remarks

type PlotArray = array [1. .MaxPlotGlb, 1. .2] of real;

PlotArray specifies the vertices of a given polygon, and is
used to pass polygons to a procedure.

In the Turbo Graphix Toolbox, the term polygon can
mean any ordered collection of points, possibly (but not
necessarily) connected by lines. Thus, a sampling of a
sine wave can be called a polygon, though a smooth sine
wave with an infinite number of pOints cannot. The data
structure simply contains points. Poly[i,1] is the i'th X
coordinate, and Poly[i,2] is the i'th Y coordinate. The
maximum number of pOints in a polygon is determined by
the constant MaxPlotGlb.

PlotArray is used by Bezier, DrawHistogram,
DrawPolygon, FindWorld, RotatePolygon, ScalePolygon,
Spline, and TranslatePolygon.

RamScreenGlb [TYPEDEF.SYS]

Declaration

Purpose

Remarks

100

oonst RamScreenGlb: boolean = true;

RamScreenGlb determines whether or not a RAM (virtu­
al) screen is allocated for drawing.

A RAM screen takes up a large chunk of memory (as
defined by the constant ScreenSizeGlb, in bytes) but it
enables you to do many things, such as two-screen ani­
mation and smooth window movement over a back­
ground (see the MoveWindow procedure).

Some hardware configurations allocate dedicated
memory for RAM screens; in those cases,
RamScreenGlb will always be TRUE. See Appendix A for
further information.

Turbo Graphix Toolbox Owner's Handbook

ScreenSizeGlb [GRAPHIX.SYSj

ScreenSizeGlb [GRAPHIX.SYS]

Declaration

Purpose

Remarks

oonst ScreenSizeGlb:integer .. (depends on system);

ScreenSizeGlb specifies the size of the screen (in bytes
divided by 2) for a particular hardware configuration.

This constant should not be altered, since it is specific to
the size of the physical screen in your computer; any
change to this constant may cause a system crash or un­
necessary memory allocation.

StringSizeGlb [TYPEDEF .SYS]

Declaration

Purpose

Remarks

oonst Strin~izeGlb .. 00;

StringSizeGlb specifies the maximum string length of the
type WrkString.

This constant is used by any procedure that requires a
text string.

WrkString [TYPEDEF .SYS]

Declaration

Purpose

Remarks

~ WtkString - string[Strin~izeGlb];

WrkString is the string type used by Turbo Graphix pro­
cedures that either require string parameters, or use
strings internally.

The DefineHeader and DrawText procedures use
WrkString as their principle parameter.

TECHNICAL REFERENCE 101

XMaxGlb [GRAPHIX.SYSj

XMaxGlb [GRAPHIX.SYS]

Declaration

Purpose

Remarks

oonst XMaxGlb: integer = (depends on system);

XMaxGlb specifies the width of the screen in bytes, less
1 ; that is, the maximum value of an X (horizontal) window
definition coordinate. The maximum screen width is
XMaxGlbX 8 + 7.

This constant should not be changed, since it is specific
to the particular hardware configuration.

The DefineWindow procedure uses XMaxGlb to check
whether a window is being defined within the physical
screen.

XScreenMaxGlb [GRAPHIX.SYS]

Declaration

Purpose

Remarks

oonst 2!ScreenMaxGlb:integer ... (XMaxGlb*8+7)

XScreenMaxGlb specifies the maximum width of the
screen for a particular hardware configuration.

This constant should not be changed, since it is specific
to the particular hardware configuration.

YMaxGlb [TYPEDEF.SYS]

Declaration

Purpose

102

oonst YMaxGlb:integer = (depends on system);

YMaxGlb specifies the height of the screen in pixels; that
is, the maximum value of a Y (vertical) absolute screen
coordinate.

This constant should not be changed, since it is specific
to the particular hardware configuration. .

The DefineWindow procedure uses YMaxGlb to check
whether a window is being defined within the physical
screen.

Turbo Graphix Toolbox Owner's Handbook

Quick Reference Guide to Turbo Graphix Routines

Quick Reference Guide to Turbo Graphix Routines

In the following list, the Turbo Graphix Toolbox routines are grouped by
function into six sections: Initialization and Error, Screens, Windows,
Color and Drawing, Text, and Internal. Since the list is designed to help
you find routines according to their logical use, and since some routines
logically relate to more than one function, a few routines appear in
more than one section. The declaration for each routine is list­
ed, followed by its page number.

Initialization and Error

p~ lnitGraphic; .. 173
p~ EnterGraphic; .. 157
p~ LeaveGraphic; .. 177
procedure Error(Proc,Code); ... 158
1\Jnction GetErrorCode: integer; .. 162
procedure SetBreakOff; .. 204
procedure SetBreakOn; .. 205
procedure SetMessageOff; .. 216
procedure SetMessageOn; .. 217
p~ SetVStep(Step:integer); .. 219
1\Jnction HardwarePresent: boolean; .. 171

Screens

procedure SelectScreen(I: integer) ; .. 197
procedure LoadScreen(FileName:WrkString); .. 178
procedure ClearScreen; 112
procedure CopyScreen; .. 116
procedure SaveScreen(FileName:WrkString); .. 193
1\Jnction GetScreen: integer; ... 164
1\Jnction GetScreenAspect: real; .. 166
procedure InvertScreen; .. 175
procecl1re SwapScreen; .. 226
procedure HardCopy(Inverse:boolean; MJde:byte); 170

TECHNICAL REFERENCE 103

Quick Reference Guide to Turbo Graphix Routines

Windows

procedure SetWindov.t&:xieOn; ... 221
procedure SetWindov.ModeOff; ... 220
1'unction Windov.Mode:boolean; ... 232
procedure DefineWindow(I, XLoN , YI.oN , Xlii, YHi : integer); 122
procedure RedefineWindow(I,XLoN,YlDw,XIii,YHi:integer); 185
procedure DefineTextWindow(I,Left,Up,Right,Down,Border:integer); 120
procedure DefineWorld(I: integer;XLDw, YI.oN ,Xlii, YHi: real) ; 123
procedure SelectWor ld(I : integer); 199
procedure SelectWindow(I: integer) ; 198
1'unction GetWindow:integer; ... 167
procedure SetClippingOn; .. 207
procedure SetClippingOff; ... 206
1'unction Clip(var Xl,Yl,X2,Y2:integer):boolean; 114
1'unction Clipping: boolean; ... 115
procedure SetBackground(Pattern:byte); ... 201
procedure SetBackground8(Pattern:Ba.ckgroundArray); 202
procedure DefineHea.der(I:integer;Hir:WrkString); 119
procedure SetHea.derOn; .. 212
procedure SetHea.derOff; .. 211
procedure SetHeader'I'oTop; ... 214
procedure SetHea.derToBottom; ... 213
procedure DrawSorder; 129
procedure RemoveHea.der; ... ,. 186
procedure SetVStep(Step:integer); .. 219
1'unction GetVStep:integer; ... 166
procedure MoveHor(Delta:integer;FillOut:boolean); 181
procedure MoveVer(Delta:integer;FillOut:boolean); 182
procedure InvertWindow; .. 176
procedure CopyWindow(From, To: byte; Xl, Yl: integer) ; 117
1'unction WindowSize (Nr: integer) : integer; 233
procedure StoreWindow(Window: integer); ... 224
procedure RestoreWindow(I,DeltaX,DeltaY:integer); 190
procedure SaveWindow(I:integer;FileName:WrkString); 194
procedure SaveWindowStack(FileName: WrkString) ; 195
procedure LoadWindow(I,X, Y: integer; FileName :WrkString); 179
procedure LoadWindowStack(FileName:WrkString); 181
procedure ClearWindowStack(Nr: integer); 113
procedure ResetWindowStack; 187
procedure ResetWindows; .. 188
procedure ResetWorlds; .. 189
1'unction WindowX(X:real) : integer; .. 234
1'unction WindowY(Y: real) : integer; .. 235

104 Turbo Graphix Toolbox Owner's Handbook

Quick Reference Guide to Turbo Graphix Routines

Color and Drawing

procedure SetBackgroundColor(Color:integer); .. 203
procedure SetForegroundColor(Color: integer) ; 210
procedure SetColorWhi te; .. 209
procedure SetColorBlack; .. 208
1'\lncti.on GetColor: integer; ... 161
procedure DrawPoint(X, Y: real); .. 143
1'\lncti.on PointDrawn(X, Y) :boolean; .. 184
procedure Setl..ineStyle(I..S: integer); .. 215
function Getl..ineStyle:integer; .. 163
procedure DrawLine (Xl, YI, X2, Y2: real); ... 141
procedure DrawLineClipped(Xl,YI,X2,Y2:integer); 142
procedure DrawStraight (Xl, X2, Y: integer) ; ... 152
procedure DrawSquare(Xl, Yl,X2, Y2: real; Fill :boolean); 149
procedure DrawSquareC (Xl, YI, X2, Y2: integer; Fill: boolean) ; 150
procedure Hatch(Xl,Yl,X2,Y2:real;Delta:integer); 172
procedure SetAspect (Aspect: real); .. 200
procedure SetscreenAspect(Aspect:real); ... 218
function GetAspect: real; ... 160
f\mction GetscreenAspect: real; .. 166
procedure DrawCircle(X,Y,R:real); .. 132
procedure DrawCircleDirect(X, Y,R: integer; Clip:boolean) ; 133
procedure DrawCircleSegment(XCenter,YCenter:real;var

XStart,YStart: real; Inner, Outer, Angle, Area: real;
Text: WrkString; Option, Scale: byte); 134

procedure DrawCartPie(XCenter,YCenter,XStart,YStart,Inner,Outer:real;
A:PieArray;N,Option,Scale:integer); 130

procedure DrawPolarPie(XCenter,YCenter,Radius, Angle, Inner, Outer: real;
A:PieArray;N,Option,Scale:integer); 144

procedure DrawAxis(XDensity,YDensity,Left,Top,Right,Bottom:integer;
XAxis, YAxis: integer; Arrows: boolean) ; 127

procedure DrawHistogram(A:PlotArray;N: integer); 139
procedure DrawPolygon(A:PlotArray;

First ,Last, Code, Scale, Lines: integer); 146
procedure FindWorld(I:integer;A:PlotArray;

N:integer;ScaleX,ScaleY:real); ... 159
procedure ScalePolygon(A:PlotArray;N:integer;XFactor,YFactor:real); 196
procedure RotatePolygon(A:PlotArray;N:integer;Angle:real); 191
procedure Rota tePolygonAbout (A: PlotArray; N: integer; Angle, X, Y: real) ; 192
procedure TranslatePolygon(A:PlotArray;N:integer;

Del taX, Del taY: real); .. 231
procedure Spline(A:PlotArray;N:integer;Xl,Xm:real;var B:PlotArray;

M: integer); .. 222
procedure Bezier(A:PlotArray;N:integer;var B:PlotArray;M:integer); 109

TECHNICAL REFERENCE 105

Quick Reference Guide to Turbo Graphix Routines

Text

procecllre Dravll'ext(X,Y,Scale:integer;Text:WrkString) 153
procecllre Dravll'extW(X,Y,Scale:real.;Text:WrkString) 155
procecllre DrawAscii (var x, Y: integer; Size, Ch: byte) 126
procecllre DefineHeader(I:integer;Ii:lr:WrkString) 119
procecllre DefineTextWindow(I,U3ft,Up,Right,Down,Border:integer) 120
f\mction TextDown(TY,Bounda.ry:integer) : integer 227
f\mction TextU3ft(TX,Bounda.ry:integer) : integer 228
fUnction TextRight(TX, Boundary: integer) : integer 229
f\mction TextUp(TY, Boundary: integer) : integer 230

Internal

f\mction BaseAa:lress(Y:integer) : integer ... 108
procecllre OC(c: byte) .. 118
procecllre DisplayChar(C:byte) ... 124
procecllre DP(X,Y:integer) ... 125
procecllre DrawCross(X, Y,Scale:integer) ... 136
procecllre DrawCrossDiag(X, Y, Scale: integer) .. 137
procecllre DrawOiaJOOnd(X,Y,Scale:integer) ... 138
procecllre DrawStar(X,Y,Scale:integer) ... 151
procecllre DrawWye (X, Y, Scale: integer) ... 156
procecllre GotoXY(X,Y:integer) ... 168
procecllre GotoXYTurbo(X,Y:integer) .. 169
f\mction HardwarePresent:boolean ; 171
f\mction PD(X, Y) :boolean ... 183

106 Turbo Graphix Toolbox Owner's Handbook

Procedures and Functions

Procedures and Functions

This section defines and describes, in alphabetical order, all the pro­
cedures and functions contained in the Turbo Graphix Toolbox. The
call-up for each procedure or function is given, followed by a detailed
description of its function. Remarks, restrictions, and examples are
given where appropriate, as well as cross-referencing to related pro­
cedures and functions. The Turbo Graphix file that contains the pro­
cedure or function is given in brackets next to the name of the pro­
cedure or function.

Refer to page 94 for a description of the constants and types used in
these procedures and functions.

If your system contains an IBM or Hercules graphics card, you must
copy the GRAPH IX file written for your hardware (supplied on the distri­
bution disk) onto the GRAPHIX.SYS file. This is done by invoking the
Turbo Graphix batch program, i.e., type tginst hgc or tginst ibm. Failure
to do so may cause malfunctioning of Turbo Graphix programs.

TECHNICAL REFERENCE 107

BaseAddress [GRAPHIX.SYSj

BaseAddress [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

Example

108

tonction BaseAddress(Y:integer) : integer;

8aseAddress(Y);

Y: a screen line (O ... YMaxGlb)

BaseAddress calculates the offset of screen line Y in
memory.

This function is for internal use by the graphics system.

None

I: =BaseAddress(5) ;
I is the offset at the start of screen line 5 (the sixth line

on the screen).

FiUChar(Mem[GrafBase:BaseAckiress(9)] ,XMaxGlb,O);
sets the 10th screen line to II black. "

Turbo Graphix Toolbox Owner's Handbook

Bezier [aEZIER.HGH]

Bezier [BEZIER.HGH]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure Bezier(A:PlotArray;N:integer;
var B:PlotArray;M:integer);

Bezier(A,N,B,M);

A: array of X and Y control points
N: number of control points
a: array of resultant Bezier-function base points
M: desired number of base points in resultant Bezier

polynomial curve

aezier computes a Bezier polynomial curve from an ar­
ray, A, that contains N control points. The resultant ar­
ray, a, is filled with M base points that constitute a
parametric curve. The curve passes through the first and
last control points, and passes as close as possible to
each of the other points.

A Bezier function is defined by a set of control points (X
and Y values). Within this defined interval, the Bezier
function calculates the resultant base points.

Bezier polynomials are often used when a smooth curve
of some particular form is needed. Increasing the value
of M smooths the curve, but slows down the computing
process.

The specific attributes of Bezier functions and their appli­
cations in graphic design are discussed in the book, Prin­
ciples of Computer Graphics, by W. Newmann and
R.Sproul.

The maximum values for Nand M are determined by the
constant MaxPlotGlb, specified in the TYPEDEF.SYS file.
The default value is 100 (of MaxPlotGlb).

DrawPolygon
RotatePolygon
ScalePolygon
TranslatePolygon

TECHNICAL REFERENCE 109

Bezier [BEZIER.HGH]

Example

110

This example, taken from the Turbo Graphix demo pro­
gram, uses seven control points to draw a curve. Fifteen
base points (shown as a dotted line) are generated by
this procedure. The positions of the points and the value
of M can be changed interactively.

program BezierDemo;
{$i typedef. sys}
{$igraphix. sys}
{$ikernel. sys}
{$ibezier . hgh}
{$ipolygon. hgh}

const
ControlPoints=7;

var
A,B: PlotArray;
NewX,NewY: real;
I,BezierPoints: integer;

begin
Ini tGraphic;
SetHeaderOn;

BezierPoints:=15;
A[1,1]:=I;A[2,1]:=1.5;A[3,1]:~2;A[4,1]:~2.5;A[5,1]:~;

A[6,1]:=4;A[7,1]:=5;
A[I,2]: =2;A[2,2] : ... 1.5;A[3,2] : .. l;A[4,2] :~2.5;A[5,2] :-4;

A[6,2]:=4.5;A[7,2]:=5;
DefineWorld(I,Q,Q,6,6);

SelectWorld(1) ;
DefineWindow(I,Q,Q,79,17Q);
SelectWindow(1) ;
DefineHeader(1, 'BEZIER PRC>CEX.m: DEMJNSIRATION');
repeat

ClearScreen;
DrawBorder;
SetLinestyle(I);
DrawPolygon(A,1,ControlPoints,4,2,Q);
Bezier(A,ControlPoints,B,BezierPoints);
SetLinestyle(Q) ;
DrawPolygon(B,I,BezierPoints,Q,Q,Q);
gotaxy(I,23);

Turbo Graphix Toolbox Owner's Handbook

Bezier [BEZIER.HGH]

wri te('Enter point # to change (0 to change # of Bezier points): ');
readln(1);
if I in [1 .. ControlPoints] tllen
begin

repeat
gotoxy(1, 24) ;
write('Old position: [' ,A[1, 1] :4:2, , , , ,A[1,2] :4:2, ']');
gotax;y(40,24) ; write ('New position x:');
readln(NewX) ;
gotax;y(40,25) ; write ('New position y: ');
readln(NewY) ;

until (NewX>=O) and (NewX<~) and (NewY>=O) and (NewY<~);
A[1,I] :=NewX;
A[1,2] :=NewY;

em
else if 1=0 tllen
begin

gotoxy(I,24) ;
write('Old density: ',BezierPoints,' New density: I);
readln(BezierPoints);

em;
until not (I in [0 .. ControlPoints]) ;
LeaveGraphic;

em.

TECHNICAL REFERENCE 111

ClearScreen [KERNEL.SYSj

ClearScreen [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

112

procedJ.re ClearScreen;

ClearScreen;

ClearScreen erases the screen that is currently in use
(the active screen).

Initialization is not performed by this procedure; see
InitGraphic.

None

InitGraphic

program ClearScreenEKample;
{$i typedef. sys}
{$igraphix. sys}
{$ikernel. sys}
begin

DrawLine(l,l,200,200);
DrawLine(1,200,200,1);
gotoxy(50, 12);
write('Hit return to clear screen: I);
readln;
ClearScreen;
gotoxy(10,25) ;
write ('Hit return to end: ');
readln;

em.

Turbo Graphix Toolbox Owner's Handbook

ClearWindowStack [WINDOWS.SYSj

ClearWindowStack [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procecl1re ClearWindowStack(Nr: integer) ;

ClearWindowStack(Nr);

Nr. index of window to be erased [1 .. MaxWindowsGlb]

ClearWindowStack deletes a designated window, Nr,
from the window stack. If there is no window entry at the
given index, the operation is not performed.

A call to RestoreWindow cannot restore a window
erased using this routine.

The value of Nr must lie between 1 and the constant
MaxWindowsGlb (defined in the TYPEDEF.SYS file).

ResetWindowStack
RestoreWindow
StoreWindow

ClearWindowStack(7) ;
removes the window stack entry (if there is one) for

window 7.

TECHNICAL REFERENCE 113

Clip [KERNEL.SYSj

Clip [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

114

1'tmction Clip(var Xl, Yl,X2, Y2: integer) :boolean;

Clip(X1 ,Y1 ,X2,Y2);

X1, Y1 : coordinates of starting point of line
X2, Y2 : coordinates of end point of line
boolean: if FALSE, line lies outside window

Clip clips a line to fit the active window, and determines
whether or not the full length of a line is drawn. The four
integer variables represent absolute screen coordinates.
Clip adjusts them as follows: if a line is drawn from
[X1, Y1] to [X2, Y2], any part of the line that lies outside
the active window is removed. The resulting coordinates
describe a line that is entirely contained by the active
window. The boolean function value is TRUE if the ad­
justed coordinates still represent a line, and FALSE if the
entire line is clipped away.

Although this function is mainly for internal use, it can
also be useful when you are working with window mode
off (SetWindowModeOff), to ensure that drawings remain
within the physical screen.

Since the four integer parameters are modified by Clip,
they must be variables; they cannot be expressions.

Clipping
SetClippingOff
SetClippingOn
SetWindowModeOff
SetWindowModeOn

it Clip(Xl,Yl,X2,Y2) then DrawLine(Xl,Yl,X2,Y2);
draws only the part of the line that falls within the ac­

tive window.

B:=Clip(Xl,Yl,X2,Y2);
adjusts [X1, Y1] and [X2, Y2] so that the line between

them is entirely contained by the active window; sets B
to TRUE if any part of the original line remains.

Turbo Graphix Toolbox Owner's Handbook

Clipping [KERNEL. S YS]

Clipping [KERNEL.SYS]

Declaration

Usage

Function

Restrictions

See Also

Example

runct10n Clipping:boolean;

Clipping;

Clipping returns the clipping status: TRUE when Clipping
is enabled with the SetClippingOn procedure; FALSE
when clipping is disabled with the SetClippingOff pro­
cedure.

None

Clip
SetClippingOn
SetClippingOff

B: .. Clipping;
sets B to TRUE if Clipping is enabled, FALSE if not.

TECHNICAL REFERENCE 115

CopyScreen [KERNEL.SYSj

CopyScreen [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

116

p:roceclIre CopyScreen;

CopyScreen;

CopyScreen copies the active screen onto the inactive
screen.

If the active screen is the RAM screen, this procedure
copies it to the displayed screen. CopyScreen is often
used to save a window background when another win­
dow is being moved over the background. See Chapter
2, page 39 for detailed information about moving win­
dows.

In order to use this procedure, there must be an available
RAM screen in memory, i.e, the constant RamScreenGlb
must be TRUE in the TYPEDEF.SYS file.

LoadScreen
SaveScreen
SelectScreen
SetBackground
SwapScreen

CopyScreen;
copies the active screen onto the inactive screen.

Turbo Graphix Toolbox Owner's Handbook

CopyWindow [WINDOWS.SYSj

CopyWindow [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procecl1re CopyWindow(From, To:byte; Xl, Y1: integer);

CopyWindow(From,To,X1, Y1);

From : screen from which window is copied
To : screen window is to be copied onto
X1, Y1 : window definition coordinates where window

is copied

CopyWindow copies the contents of the active window
to and from the RAM screen and the displayed screen. A
value of 1 for To or From designates the displayed
screen, while a value of 2 for To or From designates the
RAM screen. The window is copied to the screen loca­
tion specified by window definition coordinates [X1, Y1].

CopyWindow copies images from the area enclosed by
the active window in the specified screen. This may have
surprising results if the wrong screen is specified!

See page 39 for complete information about moving win­
dows.

To use CopyWindow, there must be an available RAM
screen in memory, i.e. the constant RamScreenGlb is
TRUE (defined in the TYPEDEF.SYS file).

LoadWindow
SelectWindow

CopYWindow(1,2,10,20);
copies the active window from the displayed screen to

the RAM screen, placing the upper left corner of the win­
dow at window definition coordinates [10,20] (screen
coordinates [80,20]).

CopYWindow(1,1,50,5);
copies the active window from its current position on

the displayed screen to window definition coordinates
[50,S] (screen coordinates [400,5]) on the displayed
screen.

TECHNICAL REFERENCE 117

DC [GRAPHIXSYSj

DC [GRAPHIX.SYS]

Declaration

Usage

Parameter

Function

Remarks

Restrictions

See Also

Example

118

procecllre OC (C: byte) ;

DC(C);

C: ASCII code of drawn character

DC draws the character whose ASCII code is C at text
coordinates [XTextGlb, YTextGlb] (internal variables) in
the font used by the particular hardware configuration in­
stalled.

DC is for internal use by the graphics system. It does not
advance the cursor.

None

DefineTextWindow
TextDown
TextLeft
TextRight
TextUp

OC(32);
displays character 32 (space) at the current cursor po­

sition on the active screen, without moving the cursor.

Turbo Graphix Toolbox Owner's Handbook

DefineHeader [KERNEL.SYSj

DefineHeader [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

procecilre DefineHeader(I:integer; I-tlr:WrkString);

DefineHeader (I,Hdr);

: index of window for which header is defined
[1 .. MaxWindowsGlb]

Hdr : string term for window header

DefineHeader defines a window header, Hdr, for a given
window, I. The procedure defines the text that makes up
the header, but has no effect on the display; the header
is not displayed or altered until procedure DrawBorder is
called. The header is then centered horizontally either on
the top or the bottom of the window, depending on
whether the last call was to SetHeaderToTop or
SetHeaderToBottom.

Window headers can only be drawn with the 4x6-pixel
character set.

The value of I must lie between 1 and the constant
MaxWindowsGlb (defined in TYPEDEF.SYS file).

DrawBorder
RemoveHeader
SetHeaderOff
SetHeaderOn
SetHeaderToBottom
SetHeaderToTop

DefineHeader (1, '*** Edit window ***');
defines the header of window 1 to be ... ** Edit window

"'**, without affecting the display of the header.

TECHNICAL REFERENCE 119

DefineTextWindow [KERNEL.SYSj

DefineTextWindow [KERNEL.SVS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

120

procedure DefineTextWindow(I,Left,up,Right,Down,
Border: integer) ;

DefineTextWindow(I,Left,Up,Right,Down, Border);

I : index of window
Left : X coordinate of left edge of machine-dependent

text
Up : Y coordinate of upper edge of machine-

dependent text
Right : X coordinate of right edge of machine­

dependent text
Down : Y coordinate of bottom edge of machine­

dependent text
Border: desired number of pixels between text and

window boundaries

DefineTextWindow uses the given text coordinates (Left,
Up, Right, Down, and Border) and the number of pixels,
Border, that you want between the text and all four
edges of the window, to define a window. The window
defined will allow for a uniform space between the text
and the window edges.

DefineTextWindow is used to fit and align text within a
window. It is particularly useful with the Hercules version
of the Turbo Graphix Toolbox, since Hercules text is
defined on 9-pixel boundaries, while windows are defined
on a-pixel boundaries; this one-pixel offset can create
alignment problems.

If you wish to vary the space between your text and any
of the four window edges, use the TextLeft, TextRight,
TextUp, and TextDown functions to define the space in­
dividually for each window edge.

If you define a 4x6-pixel header for your window, the place­
ment of the machine-dependent text will be thrown off by
the size of the header; in this case, use the four functions
mentioned above to realign text within the window.

Note that the horizontal border values are only approxi­
mate, since they are restricted to window defintion coor­
dinates, and are adjusted outward if necessary.

Turbo Graphix Toolbox Owner's Handbook

See Also

Example

DefineHeader
DefineWindow
TextDown
TextLeft
TextRight
TextUp

DefineTextWindow [KERNEL.SYSJ

DefineTextWindow(3,2,2,79,24,4);
defines window 3 so that it encloses text coordinates

from [2,2] to [79,24], with a border of at least 4 pixels
between the text and all edges.

TECHNICAL REFERENCE 121

DefineWindow [KERNEL.SYSj

DefineWindow [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

122

procedure DefineWindow(I,XLow,YLow,XHi,YHi:integer);

DefineWindow(I,XLow,XHi, YHi};

I : index of window [1 .. MaxWindowsGlb]
XLow : X value of upper left window position

[O .. XMaxGlb]
YLow : Y value of upper left window position

[0 .. YMaxGlb]
XHi : X value of lower right window position

[1 .. XMaxGlb]
YHi : Y value of lower right window position

[0 .. YMaxGlb]

DefineWindow defines a region of the screen as a win­
dow, I. The window is defined as a rectangle with the
upper left corner at [XL ow, YLow] and the lower right
corner at [XHi, YHI].

The X coordinates of a window are defined in 8-pixel
chunks; i.e, windows are placed on byte boundaries in
memory. If DefineWindow is called with parameters
(1,10,1 O,19,19), the defined window is 10 pixels tall and
80 pixels wide.

The value of I must be between 1 and MaxWindowsGlb
(as defined in the TYPEDEF.SYS file), all coordinates
must lie within the physical screen, and the Low coordi­
nates must be lower in numeric value than the Hi coordi­
nates; otherwise, an error will occur.

RedefineWindow
SelectWindow

DefineWindow(4,5 ,5,10,10);
defines window 4 , with upper left corner at window

definition coordinates [5,5] and lower right corner at
[10,10] (screen coordinates [40,5] and [87,10]).

DefineWindow(2,0,0,XMaxGlb div 2, YMaxGlb div 2);
defines window 2 as the upper left quarter of the

screen.

Turbo Graphix Toolbox Owner's Handbook

DefineWorld [KERNEL.SYSj

DefineWorld [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure DefineWorld(I:integer; XLow,YLow,XHi,YHi:real);

DefineWorld(I,XLow,YLow,XHi,YHi);

I
XLow
YLow
XHi
YHi

: index of world to be defined [1 ... MaxWorldsGlb]
: X coordinate of upper left vertex
: Y coordinate of upper left vertex
: X coordinate of lower right vertex
: Y coordinate of lower right vertex

DefineWorld defines a world coordinate system, delineat­
ed by the rectangle formed by the vertices [XLow, YLow]
and [XHi, YHI]. World coordinates therefore range from
[XLow, YLow] to [XHi, YHI].

The world coordinate system is not enabled until
Select World is called.

The world's index value, I, must lie between 1 and
MaxWorldsGlb (as defined in the TYPEDEF.SYS file),
and the Low coordinates must be lower in numeric value
than their respective Hi coordinates; otherwise, an error
will occur.

DefineWindow
SelectWindow
SelectWorld

DefineWorld(l,O,-l,2*Pi,l);
defines a world suitable for displaying one cycle of the

sine function.

TECHNICAL REFERENCE 123

DisplayChar [GRAPHIX.SYSj

DisplayChar [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

124

procedure DisplayChar(C: byte) ;

DisplayChar(C);

C. ASCII code of drawn character

DisplayChar draws the character whose ASCII code is C
at text coordinates [XTextGlb, YTextGlb] (internal vari­
ables). This procedure uses the font specific to the
hardware configuration installed. ConOutPtr is set to
pOint to this procedure while graphics mode is active.

This procedure is for internal use by the graphics system.
XTextGlb and YTextGlb are updated to the new cursor
position.

None

DefineTextWindow
TextDown
TextLeft
TextRight
TextUp

DisplayChar(I ! ') ;
displays an exclamation pOint at the current cursor po­

sition, then advances the cursor.

Turbo Graphix Toolbox Owner's Handbook

DP [GRAPHIX.SYSj

DP [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure DP(X, Y: integer);

DP(X,Y);

X, Y: coordinates of drawn point

DP draws a point at screen coordinates [X, Yj.

This procedure is primarily for internal use of the graph­
ics system.

Since no clipping is performed by this procedure, it is im­
portant to specify valid X and Y parameters; otherwise,
program memory may be encroached upon, or the sys­
tem may crash.

DrawPoint

DP(2,3);
draws a pOint at screen coordinates [2,3] on the active

screen in the current drawing color.

TECHNICAL REFERENCE 125

DrawAscii [KERNEL.SYSj

DrawAscii [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

126

prooecllre DrawAscii(Var X,Y:integer; Size,Ch:byte);

Draw Ascii(X, Y,Size,Ch);

x, Y : coordinates of drawn character
Size: size of character
Ch : ASCII value of character

DrawAscii draws a single character with ASCII value Ch
at screen coordinates [X, Yj. The 4x6-pixel character set
is used. The character is drawn with its upper left corner
at screen coordinates (X, Y - (2 X Size) + 1). Each point
of the character is drawn as a Size-by-Size box, so the
character is multiplied by Size in both directions. X is
changed to X + (6 X Size), so that another call to
DrawAscii using the same X and Y variables would draw
the next character one position to the right (with a
2 X Size blank space between the characters).

The character is clipped at the boundaries of the active
window if clipping is enabled with SetClippingOn. The
character would be displayed to the right, and both
above and below coordinates [X, Yj

None

DefineHeader
DrawText
DrawTextW

DrawAscii(20,40,25, 'W');
draws a very large (1 00x150 pixel) W at screen coordi­

nates [20,40]. Modifies X so that if another character of
that size were drawn, it would be placed directly after the
first character.

Turbo Graphix Toolbox Owner's Handbook

DrawAxis [AXIS.HGH]

DrawAxis [AXIS.HGH]

Declaration

Usage

Parameters

Function

procedure DrawAxis(XDensity,YDensity,Left,Top,Rignt,Bottom:
integer;XAxis,YAxis:integer;Arrows:boolean);

DrawAxis(XDensity, YDensity, Left, Top, Right, Bottom,XAxis,
YAxis,Arrows);

XDensity: density of tick marks on X ruler (- 9 to 9)
YDensity: density of tick marks on Y ruler (- 9 to 9)
Left : distance of drawing area from left edge of

window
Top : distance of drawing area from top edge of

window
Right : distance of drawing area from right edge of

window
Bottom : distance of drawing area from bottom edge of

window
XAxis : line style of horizontal axis
YAxis : line style of vertical axis
Arrows : if TRUE, arrow symbols drawn at ends of

axes; if FALSE, arrows not drawn

DrawAxis draws X and Y axes with ruler markings in the
active window, to provide coordinate reference informa­
tion for plots and drawings. This procedure can optionally
define the world drawing area to be smaller than a win­
dow, draw a line around the drawing area, provide au­
tomatically labeled rulers for X and Y axes with variable
tick mark density, and coordinate axes in various line
styles.

The parameters Left, Top, Right, and Bottom move the
drawing area in from the edges of the active window. If
these parameters are all equal to 0, the drawing area is
the entire window. XDensity and YDensity select how
close together tick marks are drawn on the rulers, from
-9 to 9. The sign of the Density parameters is ignored,
except that if one of the Density parameters is negative
and the other positive, a line is drawn around the drawing
area. The XAxis and YAxis parameters specify the line
styles of the horizontal and vertical axes. If either is
negative in value, the corresponding axis is not drawn.
The line styles correspond to those used to select line
styles in the DrawLine procedure.

TECHNICAL REFERENCE 127

DrawAxis [AXIS.HGH]

Restrictions

Example

128

Moving the drawing area in from the edges of the active
window is subject to the following conditions:

1. It only affects procedures DrawHistogram and
DrawPolygon.

2. It is disabled after one call to either DrawHistogram or
DrawPolygon.

3. To draw more polygons or histograms in this smaller
window, set the global variable AxisGlb to TRUE be­
fore each additional call to DrawPolygon or DrawHis­
togram.

Dr.awAxis(2,2,Q,Q,Q,Q,Q,Q,false);
draws solid axes that extend to the edges of the active

window, with arrows on their ends. Numbers on the axes
are displayed very far apart.

Dr.awAxis(9,-1,1,4,1,4,1,-1,true);
draws a dashed horizontal axis with an arrow on the

end, and with numbers displayed very close together.
Axis is drawn in an area that is smaller than the active
window by 8 pixels on the right and left and 4 pixels on
the top and bottom. A border is drawn around the draw­
ing area.

Turbo Graphix Toolbox Owner's Handbook

DrawBorder [KERNEL.SYSj

DrawBorder [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

p:rocecbre DrawBorder;

DrawBorder;

DrawBorder draws a border around the active window in
the current drawing color and line style.

If a header has been defined for the active window with
the DefineHeader procedure, DrawBorder positions the
header on the upper edge of the window if
SetHeaderToTop has been called, or on the lower edge
of the window if SetHeaderToBottom has been called. A
header reduces the available drawing area in the window;
if no header is defined, the whole window is used as the
drawing area.

DrawBorder does not erase the active window. If you
need to erase the window background, use SetBack­
ground (set to 0).

If the header is too long to fit within the window, it is not
drawn. (Header length X 6) must be less than the width
of the window in pixels, - 2.

DefineHeader
DrawSquare
SetBackground
SetHeaderOff
SetHeaderOn
SetHeaderToBottom
SetHeaderToTop

DrawBorder;
draws a border around the active window, along with a

header or footer if one was previously defined with the
DefineHeader procedure.

TECHNICAL REFERENCE 129

DrawCartPie [PIE.HGH]

DrawCartPie [PIE.HGH] (also requires CIRCSEGM.HGH)

Declaration

Usage

Parameters

Data Format

Function

130

procedure DTawCartPie(XCenter,YCenter,XStart,YStart,
Inner, Outer: real;A:PieArray; N,Option,
Scale:integer;

DrawCartPie(XCenter, YCenter,XStart, YStart,lnner ,Outer,
A,N,Option,Scale);

XCenter, YCenter : world coordinates of center pOint of

XStart, YStart

Inner

Outer

A
N
Option

1
Scale

circle
: world coordinates of starting point of

first circle segment
: inner radius of label line in radius

units
: outer radius of label line in radius

units
: pie chart array
: number of circle segments
: labeling options

Option = 0 : no label
Option = 1 : text label only
Option = 2 : text and numeric label
Option = 3 : numeric label only

: multiplier for specifying size of label

Pie chart data is passed to the procedure as an array of
the following form:

type PieType=record
Area: real;
Text :wrkstring;

em;
PieArray=array [1 .. MaxPiel:Glb] of PieType;

DrawCartPie draws a pie chart, referenced to the X and
Y coordinates of the starting point of the first pie seg­
ment, with optional text or numeric labels. Each
segment's area and label are passed to the procedure in
the PieArray, A, which defines the pie chart to be drawn.

DrawCartPie first determines each segment's proportion
of the whole pie chart, then draws and labels the seg­
ments. Each segment's percentage of the pie chart is

Turbo Graphix Toolbox Owner's Handbook

Remarks

See Also

Example

DrawCartPie [PIEHGH1

determined by totaling the areas of all segments, then
displaying each segment's area as a percentage of the
total area. Since this computation of percentage is not
affected by the absolute values of the areas, any number
system can be used for specifying the areas. A negative
value for area causes the pie segment to move out radi­
ally and be displayed separately from the rest of the pie
chart.

A line is drawn from each pie segment, starting at a dis­
tance of Inner away from the center segment and ending
at a distance of Outer. A text and/or numeric label can
be drawn at the end of each segment line in the 4x6-
pixel character set. Inner and Outer specify the inner and
outer radii that the radial label line is to traverse, with 1
being on the circle itself. Option specifies whether the
area value and/or text is displayed; a value of 0 desig­
nates no label, 1 specifies text label only, 2, text and
numeric label, and 3, numeric label only. Scale specifies
the size of the characters that make up the label.

Pie segments are drawn in a clockwise direction. Any
part of the pie chart that lies outside the window boun­
daries is clipped if clipping is enabled with the SetClip­
pingOn procedure.

Note that the aspect ratio is applied to pie charts. The
aspect ratio must be set to 1 with the SetAspect pro­
cedure to ensure a circular pie chart.

To draw a pie chart with reference to its radius and the
angle of its first segment, use DrawPolarPie.

DrawCircleSegment
DrawPolarPie
PieArray (type)
SetAspect

DrawCartPie(lOO,lOO,125,lOO,1.1,1.4,SalesFigures,9,2,1);
draws a pie chart, with 9 sections, from the

SalesFigures array. The starting point of the first pie seg­
ment is at [125,100]. Both numeric and text labels are at­
tached to the pie with short lines. Labels are drawn in
4x6-pixel characters without scaling.

TECHNICAL REFERENCE 131

DrawCircle [KERNEL.SYSj

DrawCircle [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

132

procedure Dr.awCircle(X,Y,R:real);

DrawCircle(X, Y, R);

X, Y: coordinates of pOint at center of circle or ellipse
R : radius of circle or ellipse

DrawCircle draws circles and ellipses. The circle or el­
lipse is drawn with its radius measured in the horizontal
(X) direction, and with Radius X Aspect in the vertical (Y)
direction.

The horizontal-to-vertical ratio (aspect ratio) is set with
the procedure SetAspect. Small aspects produce ellipses
stretched horizontally, and large aspects produce vertical
ellipses, while an aspect of 1 draws a true circle.

If SetWindowModeOn has been called, the value of the
radius should be provided in an order of magnitude of 1;
if SetWindowModeOff has been called, the order of mag­
nitude should be 100.

AspectFactor (constant)
DrawCircleDirect
DrawCircleSegment
SetAspect

Dr.awCircle(20,40,15)
draws a circle whose center point is at coordinates

[20,40] with a radius of 15.

Turbo Graphix Toolbox Owner's Handbook

DrawCircleDirect [KERNEL.SYSJ

DrawCircleDirect [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

proceWre DrawCirc1eDirect(X, Y ,R: integer; Clip:boo1ean);

DrawCircleDirect(X, Y ,R,Clip);

x, Y : screen coordinates of point at center of circle or
ellipse

R : radius of circle or ellipse
Clip: enables/disables clipping

DrawCircleDirect draws a circle or ellipse, with the radius
measured in X units of the screen. If Clip is TRUE, the
circle is clipped at window boundaries; if FALSE, the cir­
cle is not clipped.

This procedure is used for fast circle drawing. It should
be used with caution, since it could cause drawing out­
side the physical screen. DrawCircle should be used in
applications where speed of operations is not crucial.

None

DrawCircle
SetAspect

DrawCirc1eDirect(100,100,100, true);
draws a circle at screen coordinates [100,100] with a

radius of 100 pixels, without clipping at window boun­
daries.

TECHNICAL REFERENCE 133

DrawCircleSegment [CIRCSEGM.HGH]

DrawCircleSegment [CIRCSEGM.HGH]

Declaration

Usage

Parameters

Function

134

procedure DrawCircleSegment(XCenter,YCenter:real;var XStart,
YStart: real; Inner, Outer, Angle,Area: real;Text:
WrkString;Option,Scale:Qyte);

DrawCircleSegment{XCenter, YCenter,XStart, YStart, Inner,
Outer,Angle,Area, Text,Option,Scale);

XCenter, YCenter : coordinates of pOint at center of circle
XStart, YStart : coordinates of starting point of

Inner

Outer

Angle
Area

Text
Option

Scale

segment
: inner radius of label line in radius

units
: outer radius of label line in radius

units
: angle of segment in degrees
: numeric label corresponding to

segment
: text label corresponding to segment
: display options

Option = 0 : no label
Option = 1 : text label only
Option = 2 : text and numeric label
Option = 3 : numeric label only

: multiplier used to determine the size
of label

DrawCircleSegment draws an arc of a circle with optional
text and numeric labels. The center of the circle is at
coordinates [XCenter, YCenter] (world coordinates), and
the starting point of the arc is at coordinates [XStart,
YStart]. The angle of the arc is passed directly in de­
grees. A line segment pointing outwards from the arc is
drawn starting at a distance Inner away from the arc,
and continuing to a distance Outer. After the segment is
drawn, the coordinates of the endpoint are passed back
through the starting position variables.

Turbo Graphix Toolbox Owner's Handbook

Remarks

Restrictions

See Also

Example

DrawCircleSegment [CIRCSEGM.HGH]

Text and/or numeric labels can be added. A radial label
line can be drawn from the center of the circle segment
outward to any location; its inside starting point is
specified by Inner and its outside radius by Outer. Inner
and Outer are scaled radius values: a value of 1 specifies
a point on the circle segment, 0.5 a point halfway
between the circle segment and its center, and a .value of
2 indicates a point one radius distance outside the circle
segment. A value of 1 for both inner and outer radii
effectively disables the line so it does not appear. The
outer radius determines where the label is to be placed.
The Option parameter specifies whether to type text
and/or numerics as the label; a value of 0 specifies no la­
bel, 1 specifies text label only, and 2, both text and
numeric label. Labels are drawn in the 4x6-pixel charac­
ter set. Scale determines the size of the characters in the
label.

If part of the segment lies outside the defined window
boundaries and SetClippingOn has been called, the seg­
ment is clipped at window boundaries.

The aspect ratio is used by this procedure; see the
SetAspect procedure.

If Inner or Outer is equal to 0, the label line is not drawn.

AspectFactor (constant)
DrawCartPie
DrawCircle
DrawCircleDirect
DrawPolarPie
SetAspect

DrawCirc1eSegment(X,Y,ArcX,ArcY,l.l,l.4,30,2300, 'Capital
gflins: $',2,1)

draws an arc starting at [ArcX,Arc Y] that extends 30
degrees counterclockwise, centered around coordinates
[X, Y]. A line is added with label saying Capital gains:
$2300 in 4x6-pixel characters.

TECHNICAL REFERENCE 135

DrawCross [KERNEL.SYSj

DrawCross [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

136

procedure DrawCross(X,Y,Scale:integer);

DrawCross(X, Y ,Scale);

x, Y : coordinates of point at center of cross
Scale: multiplier for specifying size of cross

DrawCross draws a cross (+) at coordinates [X, Y]. The
size of the cross is approximately 2* Scale X 2* Scale.

This procedure is primarily for internal use of the graph­
ics system; it is used by DrawPolygon to mark lines.

None

DrawCrossDiag
DrawDiamond
DrawStar
DrawWye

DrawCross(137 ,42,5) ;
draws a cross at screen coordinates [137,42].

Turbo Graphix Toolbox Owner's Handbook

DrawCrossDiag [KERNEL.SYSj

DrawCrossDiag [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedIre DrawCrossDiag(X, Y, Scale : integer) ;

DrawCrossDiag(X, Y ,Scale);

x, Y : coordinates of point at center of cross
Scale: multiplier for specifying size of cross

DrawCrossDiag draws a diagonal cross (x) at coordi­
nates [X, Yj. The size of the diagonal cross is approxi­
mately 2* Scale X 2* Scale.

This procedure is primarily for internal use of the graph­
ics system; it is used by DrawPolygon to mark lines.

None

DrawCross
DrawDiamond
DrawStar
DrawWye

DrawCrossDiag(89,70,8);
draws a diagonal cross at screen coordinates [89,70].

TECHNICAL REFERENCE 137

DrawDiamond [KERNEL.SYSj

DrawDiamond [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

Example

138

procecl1re DrawDiamooo.(X, Y,Scale:integer);

DrawDiamond(X, Y ,Scale);

x, Y : coordinates of point at center of diamond
Scale: multiplier for specifying size of diamond

DrawDiamond draws a diamond (0) at coordinates [X, Y].
The size of the diamond is approximately 2* Scale X
2* Scale.

This procedure is primarily for internal use of the graph­
ics system; it is used by DrawPolygon to mark lines.

None

DrawDi8nxmd(470,40,4) ;
draws a diamond at screen coordinates [470,40].

Turbo Graphix Toolbox Owner's Handbook

DrawHistogram [HISTOGRM.HGH]

DrawHistogram [HISTOGRM.HGH]

Declaration

Usage

Parameters

Data Format

Function

procedure DrawHistogram(A:PlotArray; N:integer);
Hatching: boolean; HatchStyle:integer);

DrawHistogram(A,N,Hatching,HatchStyle);

A : array of bar chart
N : number of bars in chart
Hatching : enable or disable hatching
HatchStyle : density of hatching

negative value = positive slope direction
positive value = negative slope direction

Bar chart data is passed in an array of the type Plot­
Array, with the following form:

A[i,1] = not used
A[i,2] = height of the i'th bar (Yvalue)

DrawHistogram can create many types of bar charts with
different hatchings and an optional axis display.

DrawHistogram draws a bar chart from an array, A, of
real number values, [MaxPlotGlb,2]. DrawHistogram
uses the [i,2] elements of the array to determine the
height of each bar. The array is somewhat compatible
with a polygon array, in that the Yaxis components are
displayed with constant increments in the X dimension.
DrawHistogram calculates these increments from the
window display width and the number of elements in the
array to be displayed. The height of the histogram bars
are scaled using the world coordinate system active at
the time. The bars can be displayed in two modes: they
can either be drawn from the bottom of the display area,
or from the Y axis. When N, which specifies the number
of bars in the chart, is positive, the bars are drawn from
the bottom of the display area, and the absolute value
function is applied. This forces all values to be positive,
and thus prevents negative values from overwriting the
ruler display when it is near the Y axis. When N is nega­
tive, bars are drawn from the Yaxis, and the actual posi­
tive and negative values are used.

TECHNICAL REFERENCE 139

DrawHistogram [HISTOGRM.HGH]

Remarks

Restrictions

See Also

Example

140

If Hatching is TRUE, each bar is hatched. The density
and direction of the hatch lines is determined by
HatchStyle. The value of HatchStyle determines the
number of pixels between hatch lines; a value of 1 gives
solid bars with no hatching, with increasing values widen­
ing the space between bars. The sign of the HatchStyle
value determines the initial direction of hatching; hatching
direction alternates with each consecutive bar. If
HatchStyle is negative, the initial hatch line is drawn with
a positive slope; if HatchStyle is positive, it is drawn with
negative slope.

The active window is entirely filled horizontally with the
bar chart.

The number of bars is limited by the constant
MaxPlotGlb, as defined in the TYPEDEF.SYS file.

MaxPlotGlb (constant)

DrawHistogram(BarChartPoints,-4Q,true,6);
draws a bar chart with 40 bars in the active window.

The bars may go up or down from the (invisible) horizon­
tal axis, and they are hatched sparsely.

Turbo Graphix Toolbox Owner's Handbook

DrawLine [KERNEL.SYSj

DrawLine [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

See Also

Restrictions

Example

procedure DrawLine (Xl. Yl.X2. Y2: real) ;

DrawLine(X1,Y1,X2,Y2);

X1, Y1 : coordinates of starting point of line
X2, Y2: coordinates of end point of line

DrawLine draws a line from [X1, Y1] to [X2, Y2] in the line
style selected by the SetLinestyle procedure.

The line is drawn in world coordinates unless the window
mode is disabled with the SetWindowModeOff pro­
cedure, in which case the line is drawn in absolute
screen coordinates. With window mode enabled, any part
of the line that lies outside the window boundaries is
clipped.

DrawStraight
SetLinestyle

None

DrawLine(40.107.5.99.50)
draws a line between world coordinates [40,107.5] and

[99,50].

TECHNICAL REFERENCE 141

DrawLineClipped [KERNEL.SYSj

DrawLineClipped [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

142

prooecl1re DrawLineClipped(Xl, Yl, X2, Y2: integer) ;

DrawLineClipped(X1 ,Y1 ,X2,Y2);

X1, Y1 : coordinates of starting point of line
X2, Y2: coordinates of end point of line

DrawLineClipped is a special procedure used to draw a
line safely when the window mode is disabled with the
SetWindowModeOff procedure. The line is drawn in ab­
solute screen coordinates.

This procedure clips a line at the active window bound­
aries, regardless of whether window mode is on or off.

None

DrawLine

DrawLineClipped(l,l,l99,199);
draws a line between screen coordinates [1,1] and

[199,199].

Turbo Graphix Toolbox Owner's Handbook

DrawPoint [KERNEL.SYSj

DrawPoint [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

See Also

Restrictions

Example

procedure DrawPoint(X,Y:real);

DrawPoint(X, V);

x, Y : coordinates of point

DrawPoint draws or redraws a point at coordinates
[X, Y]. If window mode is enabled with the SetWin­
dowModeOn procedure, the point is drawn in the active
window in world coordinates and is scaled accordingly; if
window mode is disabled with the SetWindowModeOff
procedure, the point is drawn in absolute screen coordi­
nates.

If clipping is enabled with the SetClippingOn procedure,
the point is clipped (not displayed) if it lies outside the ac­
tive window boundaries.

SetColorBlack
SetColorWhite

None

DrawPoint(35.9,50.2)
draws a point at world coordinates [35.9,50.2].

For Phi: =0 To 359 Ie
DrawPoint(Phi,Sin(Phi*Pi/l8O));
draws one cycle of a sine wave, with the world coordi­

nate system defined by coordinates [0, - 1] and [359,1].

TECHNICAL REFERENCE 143

DrawPolarPie [PIE.HGH]

DrawPolarPie [PIE.HGH] (requires CIRCSEGM.HGH)

Declaration

Usage

Parameters

Function

144

procedure DrawPo1arPie(XCenter,YCenter,Radius,Angle,
Inner, Outer: real; A: PieArray; N, Option,
Scale: integer;

DrawPolarPie(XCenter, YCenter, Radius,Angle, Inner,Outer,
A,N,Option,Scale);

XCenter, YCenter : world coordinates of center point

Radius
Angle
Inner
Outer
A
N
Option

Scale

of circle
: radius of pie
: angle of first pie segment (in degrees)
: inner radius of label line in radius units
: outer radius of label line in radius units
: pie chart array
: number of circle segments
: labeling options

Option = 0 : no label
Option = 1 : text label only
Option = 2 : text and numeric label
Option = 3 : numeric label only

: multiplier for specifying size of label

Data Format Pie chart data is passed to the procedure
as an array of the following form:

type PieType=record
Area: real;
Text: wrkstring;

end;
PieArray=array [1 .. MaxPieallb] of PieType;

DrawPolarPie draws a pie chart, referenced to its radius
and the angle of its first segment, with optional text or
numeric labels. Each segment's area and label are
passed to the procedure in the PieArray, A, which
defines the pie chart to be drawn.

DrawPolarPie first determines each segment's proportion
of the whole pie chart, then draws and labels the seg­
ments. Each segment's percentage of the pie chart is
determined by totaling the areas of all segments, then
displaying each segment's area as a percentage of the

Turbo Graphix Toolbox Owner's Handbook

Remarks

See Also

Example

DrawPolarPie [PIE.HGH]

total area. Since this computation of percentage is not
affected by the absolute values of the areas, any number
system can be used for specifying the areas. A negative
value for area causes the pie segment to move out radi­
ally and be displayed separately from the rest of the pie
chart.

A line is drawn from each pie segment, starting at a dis­
tance of Inner away from the center segment and ending
at a distance of Outer. A text and/or numeric label can
be drawn at the end of each segment line in the 4x6-
pixel character set. Inner and Outer specify the inner and
outer radii that the radial label line is to traverse, with 1
being on the circle itself. Option specifies whether the
area value and/or text is displayed; a value of 0 desig­
nates no label, 1 specifies text label only, and 2, text and
numeric label. Scale specifies the size of the characters
that make up the label.

Pie segments are drawn in a clockwise direction. Any
part of the pie chart that lies outside the window boun­
daries is clipped if clipping is enabled with the SetClip­
ping On procedure.

Note that the aspect ratio is applied to pie charts. The
aspect ratio must be set to 1 with the SetAspect pro­
cedure to ensure a circular pie chart.

To draw a pie chart in reference to the starting point (X
and Y coordinates) of its first segment, use DrawCartPie.

DrawCartPie
DrawCircleSegment
PieArray (type)
SetAspect

DrawPolarPie(lOO,lOO,50,45,1.1,1.4,SalesFigures,9,2,1);
draws a pie chart, with 9 sections, from the

SalesFigures array. Its radius is 50, and its first segment
has a 45 degree angle. Both numeric and text labels are
attached to the pie with short lines. Labels are drawn in
4x6-pixel characters without scaling.

TECHNICAL REFERENCE 145

DrawPolygon [POL YGON.HGH]

DrawPolygon [POL YGON.HGH]

Declaration

Usage

Parameters

Data Format

Function

146

procedure DrawPolygon(A:PlotArray; First, Last, Code, Scale,
Lines: integer) ;

DrawPolygon(A,First,Last,Code,Scale,Lines);

A : polygon vertex array (see data format)
First : array index of first vertex to plot
Last : array index of last vertex to plot
Code: code of a graphic symbol
Scale: multiplier for specifying size of symbol (scaling)
Lines: choice of bar presentation

The coordinates of the points of a polygon are passed in
the global array PlotArray. The data type PlotArray is
defined as follows:

type PlotArray = array [l. .MaxPlotGlb,l. .2] of real;

MaxPlotGlb is a constant that gives the maximum
number of vertices (points) of a polygon. This number is
preset to 100, but may be changed to any number by
editing the TYPEDEF .SYS file.

The coordinates of the points must be presented in the
following manner:

A[i,1] = X coordinate of the fth point
A[i,2] = Y coordinate of the fth point

DrawPolygon draws a polygon using line segments with
variable attributes and vertex symbols. The polygon is
drawn in the active window in the current drawing color
and line style.

First and Last define the range of the array, A. When
Last is negative, all drawings are clipped. This is useful
after rotations, moves, scaling, or after the world coordi­
nate system has been changed. When Last is positive,
only symbols are clipped, and drawing takes places fas­
ter than in the full clipping mode.

Turbo Graphix Toolbox Owner's Handbook

DrawPolygon [POL YGON.HGH]

First specifies the array index of the first vertex to plot. If
any of the following conditions are not fulfilled, an error
occurs.

First < abs(Last)
First> 0
abs(Last) - First?: 2

Code specifies the code for a graphics symbol. If Code is
a negative value, only symbols are displayed at vertices;
if it is positive, symbols are displayed at vertices, and the
vertices are connected with lines in the line style chosen
by the SetLinestyle procedure. The following list shows
the available symbols, along with their codes.

Code Symbol

0 line
1 (+)
2 (X)
3 (0)
4 (-)
5 (0)
6 (Y)
7 (*)
8 (0)
9 (.)

>9 line

TECHNICAL REFERENCE 147

DrawPolygon [POL YGON.HGH]

Remarks

Restrictions

See Also

Example

148

Scale determines the size of the symbol; its value must
always be greater than 1.

Line determines whether or not vertical lines are drawn
from the axis to the vertices. Options are:

Line < 0: lines are drawn from Y-zero-axis to
each vertex

Line = 0: no lines

Line > 0: lines are drawn up from bottom of display area
to each vertex

To draw coordinate axes for the polygon, call DrawAxis
before calling DrawPolygon.

None

PlotArray (type)

DrawPolygon(Points,lO,3Q,8,1,O);
draws the 10th through 30th points of the Points array.

Points are displayed as small circles, and are connected
by lines drawn in the current line style.

Turbo Graphix Toolbox Owner's Handbook

DrawSquare [KERNEL.SYSj

DrawSquare [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procecllre DrawSquare (Xl, Yl, X2, Y2: real; Fill: boolean) ;

DrawSquare(X1,Y1,X2,Y2,Fill);

X1, Y1 : world coordinates of point at upper left corner
of rectangle

X2, Y2: world coordinates of point at lower right corner
of rectangle

Fill : enables/disables filling of rectangle

DrawSquare draws a rectangle, with point [X1, Y1] as the
upper left corner and point [X2, Y2] as the lower right
corner. The rectangle is drawn in the line style selected
by the SetLineStyle procedure. When Fill is TRUE, the
rectangle is filled with the current drawing color.

To fill a square with a background pattern, define the
square as a window and use SetBackground or
SetBackgroundB.

None

DrawLine
DrawStraight
SetForegroundColor
SetLinestyle

DrawSquare(2,3,50,90, true) ;
draws a solid rectangle defined by world coordinates

[2,3] through [50,90}

TECHNICAL REFERENCE 149

DrawSquareC [KERNEL.SYSJ

DrawSquareC [KERNEL.SYS]

Declaration

Parameters

Function

Remarks

Restrictions

See Also

Example

150

procedure DrawSquareC (Xl, Yl, X2, Y2 : integer; Fill: boolean) ;

X1, Y1 : screen coordinates of point at upper left corner
of rectangle

X2, Y2: screen coordinates of pOint at lower right corner.
of rectangle

Fill : enables/disables filling of rectangle

DrawSquareC draws a rectangle, with coordinate
[X1, Y1] at the upper left corner and coordinate [X2, Y2]
at the lower right corner of the rectangle. The rectangle
is drawn in screen coordinates, but is clipped at the
boundaries of the active window.

This procedure is used internally by the DrawBorder pro­
cedure.

None

DrawSquare

DrawSquareC(2,3,50,90,false);
draws the part of the square (defined by screen coordi­

nates [2,3] and [50,90]) that fits in the active window.

Turbo Graphix Toolbox Owner's Handbook

DrawStar [KERNEL.SYSj

DrawStar [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procecl1re DrawStar(X, Y,Scale:integer);

DrawStar(X, Y ,Scale);

x, Y : coordinates of center point of star
Scale: multiplier for determining size of star

DrawStar draws a six-pointed star (*) at coordinates
[X, Y]. The size of the star is approximately 2*Scale X
2* Scale (in pixels).

This procedure is mainly for internal use by the graphics
system; it is used by DrawPolygon for marking lines.

None

DrawCross
DrawCrossDiag
DrawDiamond
DrawWye

DrawStar(400,130,30) ;
draws a large star at screen coordinates [400,130].

TECHNICAL REFERENCE 151

DrawStraight [GRAPHIXSYSj

DrawStraight [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

152

procedure DrawStraight(Xl,X2, Y: integer);

DrawStraight(X1,X2,Y);

X1 :X screen coordinate of starting point of line
X2 :X screen coordinate of end point of line
Y : Y screen coordinate of line

DrawStraight draws a horizontal line from [X1, Y] to
[X2, Y] in absolute screen coordinates; no clipping is per­
formed.

Although DrawLine can accomplish the same function as
DrawStraight, this procedure performs the task of draw­
ing horizontal lines much faster. DrawStraight is useful
for speedy filling of squares. The line is always drawn in
line style 0 (See SetUnestyle).

None

DrawLine
SetLinestyle

DrawStraight(23,502,lOO);
draws a long horizontal line between screen coordi­

nates [23,100] and [502,100].

Turbo Graphix Toolbox Owner's Handbook

DrawText [KERNEL.SYSj

DrawText [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure DrawText (x. Y, Scale: integer; Text: WrkString) ;

DrawText(X, Y ,Scale, Text);

x, Y : coordinates of point at beginning of character string
Scale: multiplier for specifying character size
Text : character string

DrawText draws the given string, Text, beginning at
screen coordinates [X, Yj. The procedure uses the 4x6-
pixel character set multiplied both vertically and horizon­
tally by Scale. If an ESCape (character 27 decimal) is in
the string, a particular symbol is drawn according to the
next character in the string.

There are eight possible symbols, corresponding to the
sequences ESC 1 through ESC 8:

1 = +
2= X
3=0
4=.
5=0
6='Y'
7=*
8=0

The symbols are drawn to the same scale as the text.
The ESCape sequence can also be given in the form
ESC n @ 5, where n is a number between 1 and 8 and 5
is an integer value. In this case, ESC n designates which
symbol to draw, while 5 specifies the scale of the sym­
bol. For instance, the sequence ESC 1 @ 5 would draw
a cross with a scale of 5.

Text is clipped at active window boundaries if SetClip­
pingOn has been called.

None

DrawTextW

TECHNICAL REFERENCE 153

DrawText [KERNEL.SYSj

Example

154

DrawText(100,100,2, 'Sane text');
draws the character string Some text beginning at

screen coordinates [100,1 ~O], in 8x12-pixel characters.

DrawText(250, 19,:3, ''Ibis is a diamorxi: ' +Olr(ZT)+ '5' ;
draws the character string This is a diamond <> begin­

ning at screen coordinates [250,19] in 12x18-pixel char­
acters.

Turbo Graphix Toolbox Owner's Handbook

DrawTextW

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

DrawTextW

procecl1re DrawTextW(X, Y,Scale: real; Text:WrkString);

DrawTextW(X, Y ,Scale, Text);

x, Y : world coordinates of point at beginning of
character string

Scale: multiplier for specifying character size
Text : character string

DrawTextW draws the given string, beginning at world
coordinates [X, Y]. The procedure uses the 4x6-pixel
character set multiplied both vertically and horizontally by
Scale. If an ESCape (character 27 decimal) is in the
string, a particular symbol is drawn according to the next
character in the string.

See DrawText for possible ESC sequence symbols.

None

DisplayChar
DrawText

DrawTextW(5.7,19.02,3, 'This text starts at
(5.7,19.02) in world coordinates');

draws the character string beginning at world coordi­
nates (5.7,19.02) in the active window.

TECHNICAL REFERENCE 155

DrawWye [KERNEL.SYSj

DrawWye [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

156

procedure DrawWye(X,Y,Scale:integer);

DrawWye(X, Y ,Scale);

x, Y : coordinates of center point of Y symbol
Scale: multiplier for specifying size of symbol

DrawWye draws a Y -shaped symbol at coordinates
[X, YJ. The size of the Y is approximately 2*Scale X
2* Scale.

This procedure is mainly for internal use by the graphics
system; it is used by DrawPolygon for marking lines.

None

DrawCross
DrawCrossDiag
DrawDiamond
DrawStar

DrawWye(50,90,4) ;
draws a Y-shaped figure at screen coordinates [50,90].

Turbo Graphix Toolbox Owner's Handbook

EnterGraphic [GRAPHIX.SYSj

EnterGraphic [GRAPHIX.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure EnterGraphic;

EnterGraphic;

EnterGraphic turns the graphics mode on and clears the
screen. This procedure is normally called to reactivate
the graphics mode after LeaveGraphic has been called.

EnterGraphic does not initialize the graphics system; to
do that, InitGraphic must be called. EnterGraphic also
loads the system-dependent (higher quality) character set
the first time it is called, and sets ConOutPtr to point to
DisplayChar.

After EnterGraphic is called, "black" will be true black
and "white" will be true white, regardless of the graphics
card installed. A call to SetBackgroundColor or SetFore­
groundColor, followed by a call to EnterGraphic, will can­
cel the colors set by the SetColor procedures and set
them to true black and white.

None

InitGraphic
LeaveGraphic

EnterGraphic;
clears the screen, sets the colors to true black and

white, and turns graphics mode on.

TECHNICAL REFERENCE 157

Error [KERNEL. S YSJ

Error [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

158

procedure Error(Proc,Code);

Error(Proc, Code);

Proc : address of procedure where error was detected
Code: error code

Error is called when an error is discovered by one of the
Turbo Graphix procedures; the address of the procedure
and an error code are given. If break mode is enabled
with the SetBreakOn procedure, an error will halt the
program and an error message and a trace of the ad­
dresses of the procedures in the calling sequence that
caused the error are displayed. If break mode is disabled
with the SetBreakOff procedure, the Error procedure
stores the error code for later examination when the
GetErrorCode function is called. If message mode is en­
abled with the SetMessageOn procedure, a message is
displayed, regardless of SetBreakOn/Off.

Error messages are displayed on line 25 of the screen. If
SetBreakOn has been called, a list of addresses is
displayed. The first address given is the location of the
call to Error. If the compiler Option Find is used on the
program, the compiler will display the statement
Error(p,c) for the graphics procedure where the error was
detected. The next number is the address of the state­
ment that called the procedure that found the error. Each
successive number is the caller of the previous pro­
cedure. The last number points out the line in the main
program that started the fatal calling sequence.

None

GetErrorCode
SetBreakOff
SetBreakOn
SetMessageOff
SetMessageOn

Error(2,3) ;
signals error code 3 in procedure 2.

Turbo Graphix Toolbox Owner's Handbook

FindWorld [FINDWRLD.HGH]

FindWorld [FINDWRLD.HGH]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure FindWorld(I:integer; A:PlotArray; N:integer;
ScaleX, SealeY: real);

FindWorld (I,A,N,ScaleX,ScaleY);

I : index of world
A : polygon array
N : number of vertices in polygon array
SealeX: additional scaling factor in X direction
Scale Y: additional scaling factor in Y direction

FindWorld determines a world coordinate system for a
polygon. The procedure finds the maximum and minimum
X and Y values used to draw a polygon, and then defines
a world that either exactly encloses the polygon, or that
is larger or smaller by some chosen percentage (SealeX
and Scale Y). FindWorld automatically executes
Define World and Select World procedures after it deter­
mines the appropriate world coordinate system.

The I parameter selects the index of the world that is to
be modified. The selected polygon, A, is passed in the
PlotArray, with N specifying the number of vertices in the
polygon. The X and Y dimensions can be multipled by
SealeX and SealeY, respectively, to adjust the scaling of
the world dimensions; this allows extra space around the
polygon or changes its proportions. If no extra scaling is
desired, SealeX and SealeY should be set to 1.

For a more complete description of the data structure for
polygons of the type PlotArray, refer to the description
for DrawPolygon.

None

DefineWorld
DrawPolygon
PlotArray (type)
SelectWorld

FindWorld(l,Diagram,30,l,2);
sets a world coordinate system 1, so that the 3D-point

polygon Diagram exactly fits the world horizontally, and
half fills it vertically.

TECHNICAL REFERENCE 159

GetAspect [KERNEL.SYSj

GetAspect [KERNEL.SYS]

Declaration

Usage

Function

Remarks

See Also

Restrictions

Example

160

fUnction GetAspect:real;

GetAspect;

GetAspect returns the current value of the aspect ratio.

See SetAspect for complete information on the aspect
ratio.

AspectFactor (constant)
GetScreenAspect
SetAspect
SetScreenAspect

None

R: =GetAspect;
R gets the current aspect ratio.

Turbo Graphix Toolbox Owner's Handbook

GetC%r [KERNEL.SYSJ

GetColor [KERNEL.SYS]

Declaration

Usage

Function

Remarks

See Also

Restrictions

Example

fUnction GetColor:integer;

GetColor;

GetColor returns the drawing color: 0 if the current color
is "black", and 255 if it is "white".

"Black" and "white" can be any color available to the
particular graphics card installed. For more information
on hardware configuration, see Chapter 1 and Appendix
A.

SetBackgroundColor
SetColorBlack
SetColorWhite
SetForegroundColor

None

I:=GetColor;
I is 0 if the current drawing color is black, or 255 if the

current drawing color is white.

TECHNICAL REFERENCE 161

GetErrorCode [KERNEL.SYSJ

GetErrorCode [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

162

tunction GetErrorCode: integer;

GetErrorCode;

GetErrorCode returns the error code of the most recent
error, or -1 if no error occurred. A call to GetErrorCode
resets the error code to - 1 .

The error codes are:
-1 : No error

0: Error msg missing
1: Font file missing
2: Index out of range
3: Coordinates out of range
4: Too few array elements
5: Error opening file
6: Out of window memory
7: Value(s) out of range

GetErrorCode should be called after the use of any rou­
tine that could cause the errors listed above.

The procedure or function that caused the error cannot
be determined with this routine; see SetBreakOn.

Error
SetBreakOff
SetBreakOn
SetMessageOff
SetMessageOn

If GetErrorCode < >-1 '!ben Shut:J);)wn;
executes procedure ShutDown if any graphics error

has occurred.

Turbo Graphix Toolbox Owner's Handbook

GetLineStyle [KERNEL.SYS]

GetLineStyle [KERNEL.SYS]

Declaration

Usage

Function

Restrictions

See Also

Example

fUnction GetL1neStyle:integer;

GetLineStyle;

GetLineStyle returns the current line style (selected by
SetLineStyle), an integer from 0 to 4, or 256 to 511.

None

SetLineStyle

I:-GetL1neStyle;
I gets a value in the ranges 0 .. 4 and 256 .. 511,

representing the current line style.

TECHNICAL REFERENCE 163

GetScreen [KERNEL.SYSj

GetScreen [KERNEL.SYS]

Declaration

Usage

Function

Restrictions

See Also

Example

164

function Getscreen: integer;

GetScreen;

GetScreen returns the code corresponding to the RAM
(virtual) or displayed screen currently in use (active): code
1 if the displayed screen is active, or 2 if the RAM screen
is active.

None

SelectScreen

I:=Getscreen;
I is 1 if the displayed screen is the active screen, or 2 if

the RAM screen is active.

Turbo Graphix Toolbox Owner's Handbook

GetScreenAspect [KERNEL.SYSJ

GetScreenAspect [KERNEL.SYS]

Declaration

Usage

Function

Remarks

See Also

Restrictions

Example

fUnction GetAspect:real;

GetScreenAspect;

GetScreenAspect returns the current pixel value of the
aspect ratio.

See SetAspect for complete information on the aspect
ratio.

AspectFactor (constant)
GetAspect
SetAspect
SetScreenAspect

None

R: =GetscreenAspect;
R gets the current aspect ratio, in pixels.

TECHNICAL REFERENCE 165

GetVStep [KERNEL.SYSj

GetVStep [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

166

fUnction GetVStep:integer;

GetVStep;

GetVStep returns the current value of the step (single in­
crement) for vertical window movement.

See SetVStep for explanation of step.

None

SetVStep

I:=GetVStep;
I is the current vertical step value.

Turbo Graphix Toolbox Owner's Handbook

GetWindow [KERNEL.SYSj

GetWindow [KERNEL.SYS]

Declaration

Usage

Function

Restrictions

See Also

Example

fUnction GetWindow:integer;

GetWindow;

GetWindow returns the code number of the active win­
dow (selected by SelectWindow).

None

SelectWindow

I:=GetWindow;
I is the code number of the active window.

TECHNICAL REFERENCE 167

GotoXY [KERNEL.SYSj

GotoXY [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

168

prooeciIre GotoXY(X, Y: integer);

GotoXY(X, V);

x, Y: coordinates of character

GotoXY positions the text cursor (invisible cursor that
determines where next character is to be drawn) at coor­
dinates [X, YJ.

This procedure tells DisplayChar where to draw the next
character, and thereby augments Turbo's normal
GotoXY procedure.

None

DisplayChar
GotoXYTurbo

GotoXY(1,20) ;
causes the cursor to be positioned at the first charac­

ter on screen line 20.

Turbo Graphix Toolbox Owner's Handbook

GotoXYTurbo [KERNEL.SYSj

GotoXYTurbo [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure GotoXY'furbo (X, Y: integer) ;

GotoXYTurbo(X, Y);

x, Y: coordinates of character

GotoXYTurbo calls Turbo's GotoXY procedure, and aids
the DisplayChar procedure by keeping track of the loca­
tion of the X and Y coordinates of characters.

This is an internal procedure.

None

DisplayChar
GotoXY

GotoXY'furbo (1 120) ;
causes the cursor to be positioned at the first charac­

ter of screen line 20; however, the graphics system is
unaware of the cursor.

TECHNICAL REFERENCE 169

HardCopy [KERNEL.SYSj

HardCopy [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

170

prooecllre HardCopy (Inverse: boolean; Ptbie: byte) ;

HardCopy(lnverse, Mode);

Inverse: enables/disables reverse video printout
Mode : specifies print mode

HardCopy supplies a printed copy of the active screen. If
Inverse is TRUE, the image is printed with black and
white reversed. Mode specifies the density of the printed
image. Seven modes are available:

0,4,5 640 points/line (Epson mode 4)
1 960 points/line (Epson mode 1)
2 960 points/line (Epson mode 2)
3 1920 pOints/line (Epson mode 3)
6 720 points/line (Epson mode 6)

This procedure can be used with Epson printers of series
MX, RX, and FX. Pre-FX series printers can be used, but
with Mode 1 only. See the Epson printer manuals for
more information.

Non-Epson printers are not supported.

Epson printer manuals
SelectScreen

HardCopy(false, 3) ;
causes the active screen to be printed in Epson graph­

ics mode 3.

Turbo Graphix Toolbox Owner's Handbook

HardwarePresent [GRAPHIX.SYSj

HardwarePresent [GRAPHIX.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

1\mction HarciwarePresent: boolean;

HardwarePresent;

HardwarePresent checks whether or not the necessary
graphics hardware is installed in the system (i.e., IBM
Color graphics adapter for IBM version, Hercules card for
Hercules version) and returns TRUE if found. If
HardwarePresent is FALSE, an error occurs.

This is an internal function called by InitGraphic.

This function is useful in a program that uses graphics
mode only for certain presentations. If HardwarePresent
is FALSE, those graphic presentations are not available.

If InitGraphic is called when HardwarePresent is FALSE,
the program is terminated.

InitGraphic

It Not HardwarePresent 'Iben
WriteLn('No graphics board detected in your computer. Mako
another selection');

Else
Begin
{Do Graphics}

EIxl;

TECHNICAL REFERENCE 171

Hatch [HA TCH.HGH]

Hatch [HATCH.HGH]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

172

procedure Hatch(Xl, Yl,X2, Y2: real;Del~: integer);

Hatch(X1 ,Y1 ,X2,Y2,Delta);

X1, Y1 : coordinates of point at upper left corner of rect­
angle to be hatched

X2, Y2: coordinates of point at lower right corner of rect­
angle to be hatched

Delta : distance between hatch lines

Hatch shades a rectangular area of the screen defined
by world coordinates [X1, Y1] and [X2, Y2]. The hatch
pattern is formed with diagonal lines separated by a dis­
tance of Delta. A Delta value of 1 gives solid hatching (no
space between lines), a Delta value of 2 gives 50% filled
space, a value of 3 gives 33V3% filled space, and so on.
If Delta is positive, the lines are drawn from the upper left
to the lower right; if Delta is negative, the lines are drawn
from the lower left to the upper right.

If window mode is disabled with the SetWindowModeOff
procedure, the rectangle is drawn in absolute screen
coordinates.

None

DrawSquare

Hatch(5,5,30,17,4);
hatches part of the active window, defined by coordi­

nates [5,5] and [30,17], with diagonal lines that fill 14 of
the given area.

Turbo Graphix Toolbox Owner's Handbook

InitGraphic [KERNEL.SYSj

InitGraphic [KERNEL.SYS]

Declaration

Usage

Function

procedure Ini tGraphic;

InitGraphic;

InitGraphic initializes the Turbo Graphix Toolbox. It must
be called before any other graphics procedure or func­
tion, but may only be called once within a program. Ini­
tGraphic selects the displayed screen as the active
screen and erases it. All windows and worlds are initial­
ized. In addition, InitGraphic performs these functions:

• Checks for the presence of appropriate graphics
hardware

• Reads in the error messages file
• Reads in the 4x6-pixel character set
• Allocates the RAM screen if RamScreenGlb is TRUE

in the TYPEDEF.SYS file
• Sets aspect ratio to machine-dependent default
• Sets vertical window move step (increment) to

machine-dependent default

InitGraphic calls the following procedures:

EnterGraphic;
HardwarePresent;
SelectWindow (1);
SelectWorld (1);
SelectScreen (1);
SetAspect (AspectFactor);
SetBackgroundColor (Min Background);
SetBreakOn;
SetClippingOn;
SetColorWhite;
SetForegroundColor (MaxForeground);
SetHeaderOff;
SetHeaderToTop;
SetLineStyle (0);
SetMessageOn;
SetWindowModeOn;

TECHNICAL REFERENCE 173

InitGraphic [KERNEL.SYSj

Restrictions

See Also

Example

174

InitGraphic can be called only once within a program.

EnterGraphic
LeaveGraphic

Ini tGraphic;
initializes the graphics system and turns on graphics

mode.

Turbo Graphix Toolbox Owner's Handbook

InvertScreen [GRAPHIX.SYSj

InvertScreen [GRAPHIX.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure InvertScreen;

I nvertScreen;

InvertScreen inverts the screen display by changing pix­
els from black to white or white to black.

"Black" and "white" can be any color available to the
particular graphics card installed in your system. See
Chapter 1 and Appendix A for more information on
hardware configuration.

None

InvertWindow

InvertScreen;
changes each pixel on the active screen from "black"

to "white", or from "white" to "black."

TECHNICAL REFERENCE 175

In vert Window [WINDOWS.SYSJ

InvertWindow [WINDOWS.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

176

procedure InvertWindow;

InvertWindow;

In vert Window inverts the active window display by
changing pixels from black to white or white to black.

"Black" and "white" can be any color available to the
particular graphics card installed in your system. See
Chapter 1 and Appendix A for more information on
hardware configuration.

None

InvertScreen

InvertWindow;
changes each pixel on the active window from "black"

to "white," or from "white" to "black."

Turbo Graphix Toolbox Owner's Handbook

LeaveGraphic [GRAPHIX.SYSj

LeaveGraphic [GRAPHIX.SYS]

Declaration

Usage

Function

Restrictions

See Also

Example

procedure LeaveGraphic;

LeaveGraphic;

LeaveGraphic turns the graphics mode off and returns
the system to text mode (which was active before Ini­
tGraphic was called). LeaveGraphic also sets ConOutPtr
back to its previous value.

None

EnterGraphic
InitGraphic

LeaveGraphic;
turns graphics mode off and text mode on.

TECHNICAL REFERENCE 177

LoadScreen [GRAPHIX.SYSj

LoadScreen [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

178

procedure LoadScreen(Fi1eName:WrkString);

LoadScreen(FileName);

FileName: screen file name (as saved on disk)

LoadScreen opens the file containing a graphics screen,
named FileName, and reads the screen onto the active
RAM or displayed screen.

Screens saved with one version of the Turbo Graphix
Toolbox are not necessarily compatible with any other
version. See Appendix A for more on system compatibili­
ty.

SaveScreen
StoreScreen

LoadScreen('srnEEN.1 ') ;
loads the contents of the file SCREEN.1 into the active

screen.

Turbo Graphix Toolbox Owner's Handbook

LoadWindow [WINDOWS.SYSj

LoadWindow [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procecllre LoadWindow(I,X,Y:integer; FileName:WrkString);

LoadWindow(I,X,Y,FileName);

I : index of window to be loaded
X, Y : world coordinates of point where window is

loaded
FileName: window file name (as stored on disk)

LoadWindow loads a window, I, named by FileName, to
position [X, Y] (world coordinates). If X or Y is negative,
the previous (saved) X or Y coordinate value is used (Le.,
the negative value is ignored.) The window is loaded into
the active window, thereby erasing the contents of the
old window.

FileName can include both the filename and an exten­
sion, and a disk drive declaration (e.g., b: filename. xxx).
Windows saved with different versions of the Turbo Gra­
phix Toolbox are compatible. However, this is not the
case for the LoadScreen procedure.

If a negative value is given for X or Y, the previous
(saved) value for that coordinate is used.

LoadScreen
SaveScreen
SaveWindow

LoadWindow(3,-1,20, 'WlNIX1R.3');
loads the contents of the file WINDOW.3 into window

3, using the X position previously stored in the file, and
the new Y position (20).

TECHNICAL REFERENCE 179

LoadWindowStack [WINDOWS.SYSj

LoadWindowStack [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

180

proceclIre LoadWindowStack(FileName:WrkString);

LoadWindowStack(FileName);

FileName: filename of window stack (as stored on disk)

LoadWindowStack stores a window stack, named
FileName, from disk to window memory. This procedure
automatically searches for two files, FileName.STK (file
containing the stack) and FileName.PTR (a pointer file);
therefore, you should not add an extension to FileName.

When loading a window stack from a floppy or hard disk,
the entire contents of the existing window stack are de­
stroyed.

Window stacks saved by different versions of the Turbo
Graphix Toolbox will not necessarily be compatible. See
Appendix A for more information on compatibility
between systems.

LoadWindow
SaveWindow
SaveWindowStack

LoadWindowStack('Sl'ACK') ;
loads a window stack from the files STACK.STK and

STACK.PTR.

Turbo Graphix Toolbox Owner's Handbook

MoveHor [WINDOWS.SYSj

MoveHor [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

procechre lOOveHor(Del ta: integer; FillOut: boolean) ;

MoveHor(Delta,FiIIOut);

Delta : distance window is moved
FillOut enable/disable copy from RAM screen

MoveHor moves the active window horizontally by Delta
steps (8 pixels per step). If FillOut is FALSE, the area
that used to be under the window is filled with the oppo­
site of the current color; if FiIIOut is TRUE, and there is a
RAM screen allocated (RamScreenGlb is TRUE in
TYPEDEF.SYS), the area is filled with the corresponding
area of the inactive screen. Thus, to move a window over
a background, the background must be stored in the
inactive screen (with CopyScreen) before the window to
be moved is drawn on the active screen. The back­
ground is then copied from the inactive screen as the
window moves.

None

MoveVer
SetBackground

lOOveHor(-7,false);
moves the active window by 7 X window definition

coordinates (56 pixels) to the left, fill~ng the former loca­
tion of the window with the opposite of the current draw­
ing color.

TECHNICAL REFERENCE 181

MoveVer [WINDOWS.SYSj

MoveVer [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

182

procecl1re MoveVer(Del ta: integer; FillOut:boolean);

MoveVer(Delta, FiIIOut);

Delta : distance window is moved
Fil/Out : enable/disable copy from RAM screen

MoveVer moves the current window vertically by Delta
steps (1 pixel per step). If FiIIOut is FALSE, the area that
used to be under the window is filled with the opposite of
the current color; if Fil/Out is TRUE, and there is a RAM
screen allocated (RamScreenGlb is TRUE in
TYPEDEF.SYS file), the area is filled with the
corresponding area of the inactive screen. Thus, to move
a window over a background, the background must be
stored to the inactive screen (with CopyScreen) before
the window to be moved is drawn on the active screen.
The background is then copied from the inactive screen
as the window moves.

SetVStep can be called to specify the number of pixels
to move a window vertically at one time; this will speed
the vertical movement of the window. For example, if
Delta is 10 and VStep is 3, the window will move 3 times
by 3, then once by 1, for a total move of 10 pixels (in the
time a 4-pixel move would take without the use of
SetVStep).

None

MoveHor

MoveVer(20,true);
moves the active window 20 pixels toward the bottom

of the screen, filling the former location of the window
with the contents of the same location on the inactive
screen.

Turbo Graphix Toolbox Owner's Handbook

PD [GRAPHIX.SYSj

PO [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

1\mcti00 PD(X, Y) :boolean;

PD(X,Y);

X, Y: screen coordinates of point

PD checks whether a pOint has been drawn at screen
coordinates [X, Y]. PD returns TRUE if a pOint exists at
[X, Y] in the current drawing color; otherwise, it returns
FALSE.

None

DrawPoint
PointDrawn

B:=PD(5,5) ;
B is TRUE if the point at screen coordinates [5,5] is set

to the current drawing color.

PointCount: -=0
For X:=O To XScreenMlxGlb Ib

For Y: =0 To YMaxGlb Ib
If PD(X, Y) 'lben PointCount:=PointCount+l;

This program counts the number of points on the
screen.

TECHNICAL REFERENCE 183

PointDrawn [GRAPHIX.SYSj

PointDrawn [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

184

fUnction PointDrawn(X,Y):boo1ean;

PointDrawn(X, V);

X, Y: world coordinates of pOint

PointDrawn checks whether or not a point has been
drawn at world coordinates [X, Y]. PointDrawn returns
TRUE if a point exists at [X, Y] in the current drawing
color; otherwise, it returns FALSE.

None

DrawPoint
PD

B:=PointDrawn (12.3,17.8)
B is TRUE if the pOint at world coordinates [12.3,17.8]

is set in the current drawing color.

Turbo Graphix Toolbox Owner's Handbook

RedefineWindow [KERNEL.SYSj

RedefineWindow [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure RedefineWindow(I,XLow,YLow,XHi,YHi:integer);

RedefineWindow(l,XLow,XHi, YHi);

I : index of window [1 .. MaxWindowsGlb]
XLow : X value of upper left window position

[O .. XMaxGlb]
YLow : Y value of upper left window position

[0 .. YMaxGlb]
XHi : X value of lower right window position

[1 .. XMaxGlb]
YHi : Y value of lower right window position

[0 .. YMaxGlb]

RedefineWindow redefines the dimensions of an existing
window, I. The window is defined as a rectangle with the
upper left corner at [XLow, YLow] and the lower right
corner at [XHi, YHI]. The previously defined window
header is not affected by Redefine Window.

The X coordinates of a window are defined in 8-pixel
chunks; i.e, windows are placed on byte boundaries in
memory. If RedefineWindow is called with parameters
(1,10,10,19,19), the defined window is 10 pixels tall and
80 pixels wide.

The value of I must be between 1 and MaxWindowsGlb
(as defined in the TYPEDEF.SYS file), all coordinates
must lie within the physical screen, and the Low coordi­
nates must be lower in numeric value than the Hi coordi­
nates; otherwise, an error will occur.

DefineWindow
SelectWindow

RedefineWindow(4,5,5,lO,lO);
redefines window 4 , with upper left corner at window

definition coordinates [5,5] and lower right corner at
[10,10] (screen coordinates [40,5] and [87,10]).

RedefineWindow(2,O,O,XMaxGlb div 2,YMaxGlb div 2);
redefines window 2 as the upper left quarter of the

screen.

TECHNICAL REFERENCE 185

RemoveHeader [KERNEL.SYSj

RemoveHeader [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

186

proceWre RelOOVeHeader(I:integer);

RemoveHeader(I);

I : index for window

RemoveHeader removes the header from window I. As
with DefineHeader, this procedure has no effect on the
display of the header; the header is erased only when
DrawBorder is called again.

Once the header is removed, the drawing area of the
window will include the part of the window that had been
occupied by the header.

None

DefineHeader
DrawBorder
SetHeaderOn
SetHeaderToBottom
SetHeaderToTop

RemoveHeader(8) ;
removes the header of window 8, so that a subsequent

call to DrawBorder will not draw the header.

Turbo Graphix Toolbox Owner's Handbook

ResetWindowStack [WINDOWS.SYSj

ResetWindowStack [WINDOWS.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procecllre ResetWindowStack;

ResetWindowStack;

ResetWindowStack erases all windows contained in
memory. All windows saved in the window stack are dis­
carded, and all the space allocated for the window stack
becomes available for the storage of new windows.

This procedure initializes the window stack in the same
way as InitGraphic. It is especially useful for long pro­
grams that require several different drawing environ­
ments.

Windows saved in the window stack are dynamically allo­
cated with Turbo Pascal's GetMem and FreeMem pro­
cedures. Because of this, the Mark/Release method of
memory management must not be used.

None

InitGraphic
ResetWindows
ResetWorlds
RestoreWindow
StoreWindow

ResetWindowStack;
discards any windows saved on the window stack.

TECHNICAL REFERENCE 187

ResetWindows [KERNEL.SYSj

ResetWindows [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

188

procedure ResetWindows;

ResetWindows;

ResetWindows sets all windows to the size of the
screen, selects Window 1 (see the SelectWindow pro­
cedure), and removes all headers. This procedure does
not affect the current screen display, but further draw­
ings will be scaled according to absolute screen coordi­
nates.

This procedure resets windows in the same way as Init­
Graphic.

None

InitGraphic
ResetWindowStack
ResetWorlds
SelectWindow

ResetWindows;
sets all windows to the size of the screen.

Turbo Graphix Toolbox Owner's Handbook

ResetWorlds [KERNEL.SYS]

ResetWorlds [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procecllre ResetWorlds;

ResetWorlds;

ResetWorlds sets all worlds to the size of the physical
screen and selects World 1. (See the SelectWorld pro­
cedure.) Further drawings will be scaled to absolute
screen coordinates.

This procedure resets worlds in the same way as Init­
Graphic.

None

InitGraphic
ResetWindows
ResetWindowStack
SelectWorld

Reset\'br~;

sets all worlds to the size of the screen.

TECHNICAL REFERENCE 189

RestoreWindow [WINDOWS.SYSj

RestoreWindow [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

190

procedure RestoreWindow(I,DeltaX,DeltaY:integer);

RestoreWindow(1 ,DeltaX,Delta V);

I : index of window [1 .. MaxWindowsGlb]
DeltaX : X offset
Delta Y: Yoffset

RestoreWindow takes a window, I, that was stored in
the window stack with the StoreWindow procedure and
places it on the screen. If I is negative, the restored win­
dow is then discarded from the window stack. If no
saved window is available under the given index number,
an error will occur. The DeltaX and DeltaY parameters
give the X and Y offsets used to position the window on
the screen. A value of 0 for both DeltaX and DeltaYposi­
tions the window in the same place it was when it was
saved with Store Window. A value of 1 for both DeltaX
and Delta Y moves the window horizontally by 8 pixels
and vertically by 1 pixel.

The value of I must lie between 1 and the constant
MaxWindowsGlb (defined in TYPEDEF.SYS file).

ClearWindowStack
LoadWindow
StoreWindow

RestoreWindow(4,lO,O);
restores the saved copy of window 4 to the active

screen, at its previous Y position but 10 X window
definition coordinates (80 pixels) to the right of its previ­
ous X position.

Turbo Graphix Toolbox Owner's Handbook

RotatePolygon [MODPOL Y.HGH]

RotatePolygon [MODPOL Y .HGH]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure RotatePolygon(A:PlotArray; N:integer;
Angle: real) ;

RotatePolygon(A,N,Angle);

A : polygon array to be rotated
N : number of polygon vertices
Angle: rotation angle in degrees

RotatePolygon rotates a polygon A, containing N ver­
tices, around its center of gravity in a counterclockwise
direction by Angle degrees. The center of gravity is cal­
culated with the assumption that each vertex has equal
weight.

When displaying a rotated polygon using DrawPolygon,
the number of vertices should be given as a negative
value; this guarantees that the polygon will be clipped at
window boundaries.

Use RotatePolygonAbout to rotate a polygon about an
arbitrary point.

None

DrawPolygon
RotatePolygonAbout
ScalePolygon
TranslatePolygon

RotatePolygon(Image,45,37.5);
changes the values of the 45 coordinate pairs in Image

so that the polygon is rotated 37.5 degrees clockwise
about its center of gravity.

TECHNICAL REFERENCE 191

RotatePolygonAbout [MODPOL Y.HGH]

RotatePolygonAbout [MODPOL Y .HGH]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

192

procedure RotatePolygonAbout(A:PlotAr~; N:integer;
Angle,X, Y: real);

RotatePolygonAbout(A,N,Angle,X, V);

A : polygon array to be rotated
N : number of polygon vertices
Angle : rotation angle in degrees
X, Y : world coordinates of point around which

polygon is rotated

RotatePolygonAbout rotates a polygon A containing N
vertices about an arbitrary pOint [X, YJ, in a counterclock­
wise direction by Angle degrees.

When displaying a rotated polygon with DrawPolygon,
the number of vertices should be given as a negative
value, to ensure clipping at window boundaries.

None

DrawPolygon
RotatePolygon
Scale Polygon
TranslatePolygon

RotatePolygonAbout(Image,45,37.5,30.5,99);
changes the values of the 45 coordinate pairs in Image

so that the polygon is rotated 37.5 degrees clockwise
about world coordinages [30.5,99].

Turbo Graphix Toolbox Owner's Handbook

SaveScreen [GRAPHIX.SYSj

SaveScreen [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

procedure SaveScreen(FileName:WrkString);

SaveScreen(FileName);

FileName: file name of screen (as saved on disk)

SaveScreen stores a displayed or RAM screen on a
floppy or hard disk. If a file with name FileName already
exists, it is overwritten.

Screens saved with one version of the Turbo Graphix
Toolbox are not necessarily compatible with any other
version.

LoadScreen
LoadWindow
SaveWindow

SaveScreen('ffiEI'IY.PIC');
saves the active screen in a file called PRETTY. PIG.

TECHNICAL REFERENCE 193

SaveWindow [WINDOWS.SYSJ

SaveWindow [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

194

proceclu'e SaveWindow(I: integer; FileName: WrkString) ;

SaveWindow(I,FileName);

I : index of window to be saved
FileName: file name of window

SaveWindow creates a file named by FileName, and
saves window I in it. FileName can include an extension
and a disk drive declaration (e.g., a:FileName.xxx) If a file
named FileName already exists, it is overwritten. The
size and position of the window are saved in the file, and
are used when the window is loaded with LoadWindow,
though the position can be changed if positive values are
given for the X and Y coordinates when LoadWindow is
called.

Windows saved with different versions of the Turbo Gra­
phix Toolbox will be compatible.

None

LoadScreen
LoadWindow
SaveScreen

SaveWindow(15, 'MENU.WIN');
saves window 15 in a file called MENU. WIN.

Turbo Graphix Toolbox Owner's Handbook

SaveWindowStack [WINDOWS.SYSj

SaveWindowStack [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

prooecl1re SaveWindowStack(FileName:WrkString);

SaveWindowStack(FileName);

FileName: file name of window stack

SaveWindowStack stores a window stack on a floppy or
hard disk. The contents of the stack include all defined
and stored windows. The procedure automatically
creates two files with extensions, FileName. STK (window
stack) and FileName.PTR (pointer file). For this reason,
you should not specify an extension for FileName,
although a disk drive declaration can be specified. If a file
with name FileName exists, it is overwritten.

Window stacks saved by different versions of the Turbo
Graphix Toolbox will not necessarily be compatible.

LoadWindow
LoadWindowStack
SaveWindow

SaveWindowStack (I GAO(I) ;
saves any windows that are currently stored in the win­

dow stack in two disk files, WSTACKSTK and
WSTACKPTR.

TECHNICAL REFERENCE 195

ScalePolygon [MODPOL Y.HGH]

ScalePolygon [MODPOL Y.HGH]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

196

procedure ScalePolygon(Var A:PlotArray; N:integer;
XFactor , YFactor: real) ;

ScalePolygon(A,N ,XFactor, YF actor);

A : polygon array
N : number of polygon vertices
XFactor: multiplication factor (scaling) in X direction
YFactor: multiplication factor (scaling) in Y direction

ScalePolygon scales the lines that make up a polygon A
by a proportional amount (XFactor and YFactor) in both
horizontal (X) and vertical (Y) directions. The X coordi­
nate of each of the N vertices is multiplied by XFactor,
and the Y coordinate by YFactor.

When drawing a scaled polygon using DrawPolygon, the
number of vertices should be given as a negative value,
to ensure clipping at window boundaries.

None

DrawPolygon
RotatePolygon
RotatePolygonAbout
TranslatePolygon

ScalePolygon(Image,35,2,O.5);
changes the values of the 35 coordinate pairs in Image

so that the polygon is stretched to twice its former width,
and compressed to half its former height.

Turbo Graphix Toolbox Owner's Handbook

SelectScreen (KERNEL.SYSJ

SelectScreen [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure SelectScreen(I:integer);

SelectScreen(I);

I: displayed or RAM screen

SelectScreen selects either the displayed or RAM screen
for drawing. If I is 1, the displayed screen is selected. If I
is 2, the RAM screen is selected.

The constant RamScreenGlb, defined in TYPEDEF.SYS,
must be set to TRUE (the default) to enable a RAM
screen.

Drawing is not visible on the RAM screen unless it is first
copied to the displayed screen with CopyScreen or
SwapScreen.

CopyScreen
GetScreen
SwapScreen

SelectScreen(1) ;
selects the displayed screen for subsequent drawing.

TECHNICAL REFERENCE 197

SelectWindow [KERNEL.SYSJ

SelectWindow [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

198

proceWre SelectWindow(I: integer) ;

SelectWindow(I);

I: index of selected window ([1 .. MaxWindowsGlb])

SelectWindow selects a window I for drawing. All subse­
quent drawing and window commands will refer to the
selected window.

If clipping is enabled with the SetClippingOn procedure,
drawing is limited to the area inside the window.

The value of I must lie between 1 and the constant
MaxWindowsGlb (defined in TYPEDEF.SYS FILE).

If a world is to be associated with a window, SelectWorld
must be called before Select Windo w.

DefineWindow
SelectWorld

SelectWindow(5);
selects window 5 for subsequent operations.

Turbo Graphix Toolbox Owner's Handbook

SelectWorld [KERNEL.SYSj

SelectWorld [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

procedure SelectWorld(I:integer);

SelectWorld(I);

I: index of selected world ([1 .. MaxWorldsGlb])

SelectWorld selects a world coordinate system, I, for the
drawing commands that follow. This procedure must be
followed by SelectWindow to associate the world with a
window. .

The value of I must lie between 1 and the constant
MaxWorldsGlb (defined in TYPEDEF.SYS file).

DefineWindow
DefineWorld
FindWorld
SelectWindow

SelectWorld(3) ;
SelectWindow(4) ;

selects window 4, with world coordinate system 3, for
subsequent operations.

TECHNICAL REFERENCE 199

SetAspect [KERNEL.SYSj

SetAspect [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

200

prooecllre SetAspect (Aspect: real) ;

SetAspect(Aspect);

Aspect aspect ratio for circle

SetAspect sets the value of the aspect ratio for drawing
circles and ellipses. The default value for Aspect is the
constant AspectFactor, defined in the GRAPHIX.SYS file.
SetAspect(1) draws a true circle on any screen.

The aspect ratio determines the shape of circles and el­
lipses. Changing the aspect ratio changes how tall a cir­
cle is. A machine-dependent constant, AspectFactor,
specifies a ratio that should give a true circle for a partic­
ular physical screen. Drawing the same circle with aspect
ratios of AspectFactor-:- 2, AspectFactor, and
AspectFactor X 2 will give three figures of the same
width, but each twice as tall as the previous figure.

None

AspectFactor (constant)
DrawCartPie
DrawCircleSegment
DrawPolarPie
GetAspect
GetScreenAspect
SetScreenAspect

SetAspect (1) ;
causes circles to be correctly proportioned on any

screen.

Turbo Graphix Toolbox Owner's Handbook

SetBackground [GRAPHIX.SYSj

SetBackground [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procecl1re SetBackground(Pattern:byte);

SetBackground(Pattern);

Pattern: bit pattern used for background (0 to 255)

SetBackground determines the background pattern of
the active window. There are 256 possible patterns,
represented by the value of Pattern. Shading patterns
consist of an 8-bit word repeated across each horizontal
line to fill the window. The lowest (1) bit of the pattern is
the rightmost pixel on the screen, and the highest (128)
is the leftmost.

A Pattern value of 0 creates a completely black back­
ground (which erases the contents of the window), while
a value of 255 creates a white background.

None

DrawSquare

SetBackground(17);
fills the active window with the pattern represented by

the number 17: 00010001 binary (that is, 1 out of every 4
points are drawn).

TECHNICAL REFERENCE 201

SetBackgroundB [GRAPHIX.SYSj

SetBackground8 [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

202

pI"OO8Cllre SetBackgrouIlCE(Pat tern: BackgroundArI'a8) ;

SetBackground8(Pattern);

Pattern: 8-byte background pattern

SetBack ground fills the active window with the specified
bit pattern, Pattern. The BackgroundArray is an array of
8 bytes. The lowest 3 bits of the screen line number are
used to determine which byte of the array to use; i.e.,the
o array element is used on screen lines whose Y coordi­
nates divide evenly by 8: for a screen line, Yi, array [Yi
mod 8]. The lowest (1) bit of each byte of pattern is the
rightmost, and the highest (128) is the leftmost pixel on
the screen.

None

SetBackground

For I:"() To 7 n> BackgroundPattern [I] :-I*I;
SetBackgrouIlCE (BackgroundPattern) ;

This program fills the active window with the pattern
below:

+-------+
0 1
1 *1
4 * 1
9 * *1

16 * 1
25 ** *1
36 * * 1
49 ** *1

+-------+

Turbo Graphix Toolbox Owner's Handbook

SetBackgroundC%r [GRAPH/X.SYSj

SetBackgroundColor [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procecl1re SetBa.ckgrourxiColor(Color: integer) ;

SetBackgroundColor(Color);

C%r: background color

SetBackgroundC%r chooses the background color
("black") from the colors available to your particular
graphics card. Its value lies between the constants
MinBackground and MaxBackground (defined in the
GRAPHIX.SYS file).

/nitGraphic and EnterGraphic always reset colors to true
black and white.

For IBM versions, the value of SetBackgroundC%r must
be 0 (true black) for the IBM color graphics adapter and the
3270 PC, or can be between 1 and 15 for the PCjr or
Enhanced Graphics Adapter; the value of SetForeground­
C%r can be between 1 and 15. For Hercules, SetBack­
groundC%r and SetForegroundC%r must both be 0, al­
ways black and white (or green or amber depending on the
monitor). For Zenith, SetBackgroundC%r must be 0 (true
black), while SetForegroundC%r can range between 1
and 7. Changing the colors changes the current display,
and may have other system-dependent consequences; see
Appendix A for more information.

Appendix A
SetForegroundColor

SetBackgroundColor (4);
sets the color "black" to whatever color 4 represents

for the particular graphics card installed. Any "black" im­
ages currently displayed immediately change to color 4.

TECHNICAL REFERENCE 203

SetBreakOff [KERNEL.SYSj

SetBreakOff [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

204

proc::ecilre SetBreakOff;

SetBreakOff;

SetBreakOff turns break mode off. When break mode is
enabled with the SetBreakOn procedure, system errors
cause the program to halt. With break mode off, the pro­
gram proceeds, and it is up to the programmer to check
for errors.

The default state is break mode on.

GetErrorCode returns the code of the last error, or -1 if
no error has occurred since the last call to GetErrorCode.
If a second error happens before the first is cleared, the
first error code is lost. See Error for discussion.

None

Error
GetErrorCode
SetBreakOn
SetMessageOff
SetMessageOn

SetBreakOff;
causes the program to continue in the event of a

graphics error.

Turbo Graphix Toolbox Owner's Handbook

SetBreakOff [KERNEL.SYSj

SetBreakOn [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure SetBreakOn;

SetBreakOn;

SetBreakOn turns break mode on. When an error oc­
curs, the program halts and the error routine takes con­
trol of the program. The program counter value where
the error occurred and an error code are displayed if
SetMessageOn is enabled.

The default state is break mode on. To allow a program
to continue when an error occurs, SetBreakOff must be
called.

None

Error
GetErrorCode
SetBreakOff
SetMessageOff
SetMessageOn

SetBreakOn;
causes graphics errors to abort the program.

TECHNICAL REFERENCE 205

SefClippingOff [KERNEL.SYSj

SetClippingOff [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

206

procedure SetClippingOff;

SetClippingOff;

SefClippingModeOff turns clipping mode off. All images
are drawn in their entirety, regardless of window bound­
aries.

The default state is Clipping mode on.

SefClippingOff causes drawing to take place somewhat
faster; however, this procedure should be used with cau­
tion, since an attempt to draw outside window bound­
aries using invalid coordinates can cause a system crash
and/or overwriting of program memory.

None

Clip
Clipping
SetClippingOn
SetWindowModeOff
SetWindowModeOn

SetClippingOff;
allows drawings to spill over the boundaries of the ac­

tive window.

Turbo Graphix Toolbox Owner's Handbook

SetClippingOn [KERNEL.SYSj

SetClippingOn [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure SetClippingOn;

SetClippingOn;

SetClippingOn turns clipping mode on. If part of a draw­
ing falls outside the boundaries of the active window, it is
not drawn.

The default state is clipping mode on.

Drawing takes place somewhat slower in this mode than
with SetClippingOff, but it is the safer procedure to use,
since drawings are prevented from encroaching on pro­
gram or data memory.

None

Clip
Clipping
SetClippingOff
SetWindowModeOff
SetWindowModeOn

SetClippingOn;
causes any part of a drawing that strays outside win­

dow boundaries to be clipped.

TECHNICAL REFERENCE 207

SetColorBlack [KERNEL.SYSj

SetColorBlack [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

208

procedure SetColorBlack;

SetColorBlack;

SetColorBlack selects "black" as the current drawing
color. All further text and graphics will be drawn in
"black" until a call to SetColorWhite.

Default drawing color is white.

"Black" can be any background color supported by your
graphics card, except true white; see SetForeground­
Color.

You may want to use the SetBackground procedure to
fill a window with a non-black pattern before drawing in
"black".

When SetColorBlack has been called, the PointDrawn
function will return TRUE if the specified point is drawn in
black.

For systems with color graphics cards, the color substi­
tuted for "black" cannot be true white.

DrawPoint
GetColor
PointDrawn
SetBackground
SetBackgroundColor
SetColorWhite
SetForegroundColor

SetColorBlack;
causes subsequent images to be drawn in "black" (the

background color).

Turbo Graphix Toolbox Owner's Handbook

SetColorWhite [KERNEL.SYSj

SetColorWhite [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure SetColorWhi te;

SetColorWhite;

SetColorWhite selects "white" as the current drawing
color. All further text and graphics will be drawn in
"white" until a call to SetColorBlack.

Default drawing color is white.

"White" can be any foreground color supported by your
graphics card, except true blac.k; see SetForeground­
Color.

You may want to use SetBackground to fill a window
with a non-white pattern before drawing in white.

When SetColorWhite has been called, the PointDrawn
function returns TRUE when the specified point is drawn
in white.

On systems with color graphics cards, the color
represented by "white" cannot be true black.

DrawPoint
GetColor
PointDrawn
SetBackground
SetBackgroundColor
SetColorBlack
SetForegroundColor

SetColorWhi te;
causes subsequent images to be drawn in "white" (the

foreground color). .-

TECHNICAL REFERENCE 209

SetForegroundColor [KERNEL. S YSj

SetForegroundColor [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

210

prooecl1re SetForegroundColor(Color: integer) ;

SetForegroundColor(Color);

Color. color of displayed text and graphics

SetForegroundColor selects the drawing color from the
colors available to your particular graphics card. Its value
lies between the constants MinForeground and MaxFore­
ground (defined in GRAPHIX.SYS).

InitGraphic and EnterGraphic always reset colors to true
black and white.

See the discussion under SetBackgroundColor for more
information.

See SetBackgroundColor.

SetBackgroundColor
SetColorBlack
SetColorWhite

SetForegroundColor (9) ;
sets the color "white" as whatever color 9 represents

on the particular graphics card installed. Any "white" im­
ages currently displayed immediately change to color 9.

Turbo Graphix Toolbox Owner's Handbook

SetHeaderOff [KERNEL. S YSj

SetHeaderOff [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

pI"OC8llre SetHeaderOff;

SetHeaderOff;

SetHeaderOff suppresses the display of window headers
and footers until a call to SetHeaderOn. This means that
DrawBorder will not display any header or footer unless
SetHeaderOn has been called.

The default state is header mode off.

Windows currently displayed on the screen are not
affected by SetHeaderOff.

See DefineHeader for how to define headers.

None

DefineHeader
DrawBorder
RemoveHeader
SetHeaderOn
SetHeaderToBottom
SetHeaderToTop

SetHeaderOff;
subsequent calls to DrawBorder will not draw a header

for any window, even if a header is defined.

TECHNICAL REFERENCE 211

SetHeaderOn [KERNEL.SYSJ

SetHeaderOn [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

212

prooecl1re SetHea.derOn;

SetHeaderOn;

SetHeaderOn allows window headers and footers to be
displayed when DrawBorder is called.

Default state is header mode off.

SetHeaderOn does not affect windows currently
displayed on the screen.

See DefineHeader for how to define window headers.

None

DefineHeader
DrawBorder
RemoveHeader
SetHeaderOff
SetHeaderToBottom
SetHeaderToTop

SellieaderOn;
subsequent calls to DrawBorder will draw a header for

any window for which a header is defined.

Turbo Graphix Toolbox Owner's Handbook

SetHeaderToBottom [KERNEL.SYSj

SetHeaderToBottom [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procecllre SetHeaderToBottom;

SetHeaderToBottom;

SetHeaderToBottom. displays all headers at the bottom
edge of windows, i.e., as footers, when DrawBorder is
called.

Headers are displayed at the top of windows by default.

This procedure does not affect windows currently dis­
played on the screen.

See DefineHeader for how to define window headers.

None

DefineHeader
DrawBorder
RemoveHeader
SetHeaderOff
SetHeaderOn
SetHeaderToTop

SetHeaderToBot tom;
subsequent calls to DrawBorder will draw window

headers at the bottom of windows.

TECHNICAL REFERENCE 213

SetHeaderToTop [KERNEL.SYSJ

SetHeaderToTop [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

214

proceWre SetReaderToTop;

SetHeaderToTop;

SetHeaderToTop allows window headers to be drawn at
the top edge of windows when DrawBorder is called.

Headers are displayed at the top of windows by default.

SetHeaderToTop does not affect windows currently
displayed on the screen.

See DefineHeader for how to define window headers.

None

DefineHeader
DrawBorder
RemoveHeader
SetHeaderOff
SetHeaderOn
SetHeaderToBottom

SetHeaderToTop;
subsequent calls to DrawBorder will draw window

headers at the top of windows.

Turbo Graphix Toolbox Owner's Handbook

SetLineStyle [KERNEL.SYSj

SetLineStyle [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procecl.1re SetLineSty Ie (LS: integer) ;

SetLineStyle(LS);

LS: one of five possible line styles

SetLineStyle selects one of five available line styles for
drawing lines; custom patterns can also be designed.
Patterns consist of eight repeating pixels. The five
predefined patterns are:

0: **************** (unbroken line)
1: * * * * (dotted line)
2: ***** ***** (dashed line)
3: *** * *** * (dash-dot-dash-dot)
4: *** *** *** *** (short dashes)

Any integer value larger than 4 is interpreted according to
the modulo function; that is, the high-order byte of the in­
teger is discarded, and the remaining 8 bits specify the
pattern to be repeated. The lowest bit comes first. Thus,
a linestyle of 100 decimal is 01100100 binary, for a line­
style of

** * ** * ** * ** * ** *

GetLineStyle returns the linestyle as a value of 0 to 4 for
the predefined patterns, and 256 + pattern for custom
patterns.

None

GetLineStyle

SetLineStyle(1);
sets the line style to pattern 1, a dotted line.

SetLineStyle(117) ;
sets the line style to the bit pattern represented by de­

cimal 117, binary 01110101, as follows:

*** * * *** * *

TECHNICAL REFERENCE 215

SetMessageOff [KERNEL. S YSj

SetMessageOff [KERNEL.SYS]

Declaration

Usage

Function

SetBreakOn
Enabled

SetBreakOff
Enabled

Remarks

Restrictions

See Also

Example

216

procecl1re SetMessageOff;

SetMessageOff;

SetMessageOff suppresses the display of complete error
messages. However, if break mode is enabled with the
SetBreakOn procedure, a brief, non-explanatory mes­
sage is displayed. The following table shows how error
messages are handled by SetMessageOff and SetMes­
sageOn, in conjunction with SetBreakOn and
SetBreakOff.

SetMessageOn

Complete error message
including traceback
displayed; halts.

Complete error message
displayed on line 24;
program continues with
no traceback.

SetMessageOff

"Graphics error ", proc,
code displayed;
program halts.

No message; program
continues.

The default state is message mode on.

The reason a brief message is displayed with SetMes­
sage Off is so that, if you sell a program written with the
Turbo Graphix Toolbox, your end users can provide you
with information about the cause of an error.

None

Error
GetErrorCode
Set BreakOff
SetBreakOn

SetMessageOff;
if break mode is off, errors will not cause error mes­

sages to be displayed. If break mode is on, only a brief
error message is displayed before the program is abort­
ed.

Turbo Graphix Toolbox Owner's Handbook

SetMessageOn [KERNEL.SYSj

SetMessageOn [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

p:rocecllre SetMessageOn;

SetMessageOn;

SetMessageOn allows complete error messages to be
displayed, whether break mode is enabled or not. See
the table under SetMessageOff for an explanation of
how error messages are handled by the SetMessage
procedures.

Default state is message mode on.

None

Error
GetErrorCode
SetBreakOff
SetBreakOn
SetMessageOff

SetMessageOn;
If break mode is off, errors will cause error messages

to be displayed on screen line 24. If break mode is on,
error messages will include the name of the procedure
and the nature of the error, along with a a traceback.

TECHNICAL REFERENCE 217

SetScreenAspect [KERNEL.SYSj

SetScreenAspect [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

218

prooeclJre SetScreenAspect (Aspect: real) ;

SetScreenAspect(Aspect);

Aspect aspect ratio for circle, in pixels

SetScreenAspect sets the value of the aspect ratio, in
pixels, for drawing circles and ellipses. SetScreen­
Aspect(1) makes a circle or ellipse that is equal in pixel
width and height.

This procedure is used for applications in which you need
to create a circle or ellipse that is proportional in terms of
pixels. Note that such a circle is not necessarily correctly
proportioned when viewed on the screen; a certain
number of consecutive pixels displayed horizontally is
quite a bit shorter in length than the same number verti­
cally. An aspect ratio of about 0.6 often gives a truer cir­
cle on the screen. Use SetAspect to draw visually pro­
portioned circles on a particular screen.

None

AspectFactor (constant)
DrawCartPie
DrawCircleSegment
DrawPolarPie
GetAspect
GetScreenAspect
SetAspect

SetScreenAspect (1) ;
causes circles to have the same number of vertical as

horizontal pixels.

Turbo Graphix Toolbox Owner's Handbook

SetVStep [KERNEL.SYSJ

SetVStep [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure SetVStep(Step:integer);

SetVStep(Step);

Step: number of vertical pixels moved by a window at
one time

SetVStep specifies the vertical distance, in pixels, that a
window moves at one time. Step can be any integer value
larger than O. Small Step values cause smooth, slower
window movement, while larger values cause fast­
er, but somewhat jerkier movement.

The default value for VStep depends on the resolution
produced by the particular graphics card installed in your
system. This default value is set by the constant IVStep
in GRAPHIX.SYS. See Appendix A for more information
on hardware configurations.

If a window is moved a distance that is not a multiple of
the current VStep value, it is moved by multiples of
VStep towards its destination, then one final, variable­
length Step to reach its destination. See MoveVer.

The value for Step must be a positive integer.

Appendix A
MoveVer

SetVStep(12);
causes vertical window movement (with the MoveVer

procedure) to take place in 12-pixel increments.

TECHNICAL REFERENCE 219

SetWindowModeOff [KERNEL. S YSj

SetWindowModeOff [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

220

proceclJre SetWindov.fOOdeOff;

SetWindowModeOff;

SetWindowModeOff allows drawing to take place on the
screen, in absolute screen coordinates, rather than in a
window. Drawings are not clipped at window boundaries
unless clipping is enabled with the SetClippingOn pro­
cedure.

Default state is window mode on.

Since no clipping is performed when SetWindow(J1odeOff
has been called, drawing takes place somewhat faster.
However, this procedure should be used with caution,
since invalid coordinates can cause drawing to encroach
on program memory or crash the system.

None

DefineWindow
SelectWindow
SetClippingOff
SetClippingOn
SetWindowModeOn

SetWindowModeOff;
turns window mode off, so that subsequent coordi­

nates are calculated as screen coordinates, with no clip­
ping at window boundaries.

Turbo Graphix Toolbox Owner's Handbook

SetWindowModeOn {KERNEL.SYSj

SetWindowModeOn [KERNEL.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

proceWre SetWindovtOOdeOn;

SetWindowModeOn;

SetWindowModeOn allows you to draw in a window, in
world coordinates. Drawings are clipped at the active
window boundaries if clipping is enabled with the SetClip­
pingOn procedure.

Default state is window mode on.

Although drawing takes place somewhat slower with win­
dow mode on, SetWindowModeOn is the safer pro­
cedure to use, since clipping at window boundaries is
possible and program memory therefore protected.

None

DefineWindow
SelectWindow
SetClippingOff
SetClippingOn
SetWindowModeOff

SetWindov.tOCxieOn;
turns window mode on, so that world coordinate sys­

tems can be used, and drawings can be clipped at win­
dow boundaries.

TECHNICAL REFERENCE 221

Spline [SPLlNE.HGH)

Spline [SPLINE.HGH]

Declaration

Usage

Parameters

Function

222

prooedlre Spline(A:PlotArray; N:integer; Xl,XM:real;
var B:PlotArray; M:integer);

Spline(A,N,X1,XM,B,M);

A : polygon array (base points)
N : number of base points
X1 : index value from which interpolation begins
XM : index of value where interpolation ends
B : resultant spline polygon array (to be filled with

calculated spline)
M : number of pOints to calculate in spline array

When polygons are ploUed with a few data pOints, the
connection of these points sometimes results in a vague,
angular representation of the true curve. One way to
resolve this problem is to evaluate additional base pOints
to smooth the graph plot. However, the calculation time
involved in this method may be prohibitive.

The spline functions use smoothing polynomials to gen­
erate additional base points. Spline functions are stable
in all parts of the definition interval and, unlike many oth­
er polynomials, they do not tend to have strong oscilla­
tions.

The Spline procedure calculates smoothed curves from
corresponding data. The number and density of the inter­
polated points created by the spline function is arbitrary.

To use the Spline procedure, first pass a PlotArrayand
the number of points in the array (N). X1 and XM specify
the starting and ending points, respectively, for the inter­
polation. The PlotArray B receives the resultant interpo­
lated curve. The calculated base points are evenly
spaced between the starting and ending points of the in­
put curve.

The spline function is calculated with the following formula:

(X-X2) ... (x-xn) + (x-X I)(X-X3) ... (x-xn)
Pn (x) = Y I Y 2 ---'----'---'----'----.:..---.:..:..:.-

(X I -X2) ... (XI-Xn) (X2 -XI)(X2 -X3) ... (X2 -Xn)

(X-XI) ... (X-Xn_ l) + ... + Y --------'---
n (Xn-XI) ... (Xn-Xn- I)

Turbo Graphix Toolbox Owner's Handbook

Restrictions

Example

Spline [SPLlNE.HGH]

For the base pOints of the interpolation the following con­
ditions apply:

X1;::: X2 XN - 1 :5 XM

X2/ N - 1 represents the second/second to the last
point of the polygon. The interpolation may only be car­
ried out within that interval.

Spline(RougnCurve,lO,5.7,213,SmootherCurve,50);
interpolates a smoothed 50-point curve from the given

1 a-point curve, over the X range of 5.7 to 213.

TECHNICAL REFERENCE 223

Store Window [WINDOWS. S YSj

StoreWindow [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

224

~ StoreWindow(Window:integer);

StoreWindow(Window);

Window: index of window to be saved
[1 .. MaxWindowsGlb]

StoreWindow saves a given window in the window stack.
The procedure checks the window memory to see if
sufficient space is available to store the window. If space
is not available, an error occurs and the window is not
stored. If a previously stored window and the active win­
dow share the same index number, the active window
overwrites the stored window.

Storing a window does not affect the screen display.

Stored windows are dynamically allocated on the heap
with Turbo Pascal's GetMem and FreeMem procedures.
Windows are always allocated in multiples of 1 K (1024)
bytes. Because the StoreWindow and RestoreWindow
procedures use GetMem and FreeMem, your program
must not use the Mark/Release method of memory
management.

Turbo Pascal's built-in function, MaxAvail can be used to
determine whether a window will fit on the stack.
MaxA vail returns the size of the largest chunk of free
memory on the stack, expressed in paragraphs (16-byte
chunks). By comparing MaxAvail to WindowSize, which
returns the amount of memory required by a particular
window, you can tell if there is sufficient room on the
stack for the window. That is,

It lS.O*MaxAvail > WindowSize(i) then ok

The value for Window must lie between 1 and the con­
stant MaxWindowsGlb (defined in the TYPEDEF.SYS
file). If an illegal window number is given for Window, or if
the stack is out of space, an error occurs.

Turbo Graphix Toolbox Owner's Handbook

See Also

Example

RestoreWindow
WindowSize
WindowStackSize

StoreWindow(12);

Store Window [WINDOWS.SYSj

causes window 12 to be copied to the window stack
for later retrieval.

TECHNICAL REFERENCE 225

SwapScreen [GRAPHIX.SYSj

SwapScreen [GRAPHIX.SYS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

226

pI"OO8Cl1re SwapScreen;

SwapScreen;

SwapScreen exchanges the contents of the displayed
screen with the contents of the RAM screen.

The active screen is not changed by SwapScreen. This
means that, if you are drawing on one screen and call
SwapScreen while you are still drawing, the part of the
drawing that is complete is moved to the inactive screen,
but subsequent drawing takes place on the active
screen.

This procedure can only be used if a RAM screen is allo­
cated, i.e., RamScreenGlb is TRUE (defined in
TYPEDEF.SYS file).

CopyScreen
LoadScreen
SaveScreen
SelectScreen

SwapScreen;
swaps the contents of the displayed and RAM screens.

Turbo Graphix Toolbox Owner's Handbook

TextDown [GRAPHIX.SYSJ

TextDown [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

1\mction TextDown('IY, Bounda.ry:integer) : integer;

TextDown(TY, Boundary);

TY : Y coordinate of given machine-dependent
text that is to be within a window

Boundary : desired number of pixels between text and
bottom edge of window

TextDown uses the given Y text coordinate, TY, and the
number of pixels, Boundary, that you want to have
between the text and the bottom edge of the window, to
calculate a Y window definition coordinate. The function
then returns the Y coordinate of the bottom edge of a
window that is at least Boundary pixels below the bottom
edge of text coordinate TY.

Along with TextLeft, TextRight, and TextUp, this func­
tion is used to fit and align text within a window. It is par­
ticularly useful with the Hercules version of the Turbo
Graphix Toolbox, since Hercules text is defined on 9-
pixel boundaries, while windows are defined on a-pixel
boundaries; this 1-pixel offset can cause alignment prob­
lems. If you want a uniform space between your text and
all four window boundaries, use the Define Text Window
procedure. See Appendix A for more information.

None

Appendix A
DefineTextWindow
TextLeft
TextRight
TextUp

I: -TextDown(16.2) ;
sets I to the Y screen coordinate at the bottom of row

16, with a boundary of 2 pixels between the text and the
window.

TECHNICAL REFERENCE 227

TextLeft [GRAPHIX.SYSj

TextLeft [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

228

f\mction TextLeft('IX, Boundary: integer) : integer;

Text Left(TX , Boundary);

TX : X coordinate of given machine-dependent
text that is to be inside a window

Boundary : desired number of pixels between text
and left edge of window

TextLeft uses the given X text coordinate, TX, and the
number of pixels, Boundary, that you want to have
between the text and the left edge of the window, to cal­
culate an X window definition coordinate. The function
then returns the X coordinate of the left edge of a win­
dow that is at least Boundary pixels to the left of the left
edge of text coordinate TX.

Along with TextDown, TextRight, and TextUp, this func­
tion is used to fit and align text within a window. It is par­
ticularly useful with the Hercules version of the Turbo
Graphix Toolbox, since Hercules text is defined on 9-
pixel boundaries, while windows are defined on a-pixel
boundaries; this 1-pixel offset can create alignment prob­
lems. If you want a uniform space between your text and
all four window boundaries, use the DefineTextWindow
procedure. See Appendix A for more information.

None

Appendix A
DefineTextWindow
TextDown
TextRight
TextUp

I:=TextLeft(LeftMargin,O);
sets I to the X screen coordinate that corresponds to

the left edge of column LeftMargin.

Turbo Graphix Toolbox Owner's Handbook

TextRight [GRAPHIX.SYSJ

TextRight [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

1\mction TextRight(TX,Boundary:integer) : integer;

TextRight(TX, Boundary);

TX : X coordinate of given machine-dependent
text that is to be inside a window

Boundary : desired number of pixels between text
and right edge of window

TextRight uses the given X text coordinate, TX, and the
number of pixels, Boundary, that you want to have
between the text and the right edge of the window, to
calculate an X window definition coordinate. The function
then returns the X coordinate of the right edge of a win­
dow that is at least Boundary pixels to the right of the
right edge of text coordinate TX.

Along with TextDown, TextLeft and TextUp, this function
is used to fit and align text within a window. It is particu­
larly useful with the Hercules version of the Turbo Gra­
phix Toolbox, since Hercules text is defined on 9-pixel
boundaries, while windows are defined on 8-pixel boun­
daries; this 1-pixel offset can create alignment problems.
If you want a uniform space between your text and all
four window boundaries, use the DefineTextWindow pro­
cedure. See Appendix A for more information.

None

Appendix A
Define TextWindow
TextDown
TextLeft
TextUp

TextRight(68, 1);
sets J to the X screen coordinate that is at least 1 pixel

to the right of column 68.

TECHNICAL REFERENCE 229

TextUp [GRAPHIX.SYSj

TextUp [GRAPHIX.SYS]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

230

fUnction TextUp('lY, Bounda.ry:integer) : integer;

TextUp(TY, Boundary);

TY : Y coordinate of given machine-dependent
text that is to be within a window

Boundary: desired number of pixels between text
and top edge of window

TextUp uses the given Y text coordinate, TY, and the
number of pixels, Boundary, that you want to have
between the text and the top edge of the window, to cal­
culate a Y window definition coordinate. The function
then returns the Y coordinate of the upper edge of a win­
dow that is at least Boundary pixels above the top edge.
of text coordinate TY.

Along with TextLeft, TextRight, and TextDown, this
function is used to fit and align text within a window. It is
particularly useful with the Hercules version of the Turbo
Graphix Toolbox, since Hercules text is defined on 9-
pixel boundaries, while windows are defined on a-pixel
boundaries; this 1-pixel offset can create alignment prob­
lems. If you want a uniform space between your text and
all four window boundaries, use the DefineTextWindow
procedure. See Appendix A for more information.

None

Appendix A
DefineTextWindow
TextDown
Text Left
TextRight

U:aTextUp(TopLine,HeaderSize);
sets U to the Y screen coordinate that is HeaderSize

pixels above row TopLine.

Turbo Graphix Toolbox Owner's Handbook

TranslatePolygon [MODPOL Y.HGH]

TranslatePolygon [MODPOL V .HGH]

, Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure TranslatePolygon(Var A:PlotArray; N:integer;
Del taX, Del taY: real) ;

TranslatePolygon(A, N, DeltaX, Delta V);

A : polygon array
N : number of polygon vertices
DeltaX : displacement in X direction
Delta Y : displacement in Y direction

TranslatePolygon moves all polygon line endpoints by
adding X and Y displacements, thus moving the entire
polygon both vertically by DeltaX and horizontally by
DeltaY.

When drawing a translated polygon using DrawPolygon,
the number of vertices should be passed as a negative
value, so that DrawPolygon clips the polygon at window
boundaries.

None

DrawPolygon
RotatePolygon
Scale Polygon

TranslatePolygon(Image,73,25,-19.8)
changes the values of the 73 coordinate pairs in Image

so that the polygon is moved 25 X units to the right, and
19.8 Yunits towards the top of the screen.

TECHNICAL REFERENCE 231

WindowMode [KERNEL.SYSj

WindowMode [KERNEL.SYS]

Declaration

Usage

Function

Restrictions

See Also

Example

232

function WindO\\fOOde:boolean;

WindowMode;

WindowMode returns the window status: TRUE if Win­
dowModeOn has been called, FALSE if WindowModeOff
has been called.

None

SetWindowModeOff
SetWindowModeOn

B: =WindO\\fOOde;
B is TRUE if window mode is currently enabled.

Turbo Graphix Toolbox Owner's Handbook

WindowSize [WINDOWS.SYSj

WindowSize [WINDOWS.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

f'unction WindowSize (Nr:integer) : integer;

WindowSize(Nr);

Nr: index of window [1 .. MaxWindowsGlb]

WindowSize calculates the size of a window in bytes. In
a window stack operation, this size is compared to the
available window stack space to see if there is sufficient
room for the window in the stack; if not, an error occurs.

The formula used for this calculation is:

WindowSize: = (Y2 - Y1 + 1) (X2 - X1)

The value returned is rounded up to the nearest 1,024 to
match with the amount of space the window will con­
sume if it is saved on the window stack. [X1, Y1] are the
coordinates of the left upper corner of the window, and
[X2, Y2] are the coordinates of the right lower corner of
the window.

The value of Nr must lie between 1 and the constant
MaxWindowsGlb (defined in the TYPEDEF.SYS file).

ClearWindowStack
RestoreWindow
StoreWindow
WindowStackSize

I: =WindowSize (3) ;
I contains the number of bytes needed to store window

3 in the window stack.

TECHNICAL REFERENCE 233

WindowX [KERNEL.SYSj

WindowX [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

234

function WindowX(X: real.) : integer;

WindowX(X);

X: X world coordinate

WindowX translates an X world coordinate into an abso­
lute screen coordinate and returns this value.

None

DefineWorld
DefineWindow
SelectWindow
SelectWorld

X:=WindowX(Xl) ;
converts the world coordinate X1 to a screen coordi­

nate and stores the value in X.

Turbo Graphix Toolbox Owner's Handbook

WindowY [KERNEL. S YSj

WindowY [KERNEL.SYS]

Declaration

Usage

Parameters

Function

Restrictions

Example

1Uncti.an WindowY(Y: real.) : integer;

WindowY(Y);

Y: Y world coordinate

WindowY translates a Y coordinate from world coordi­
nate to absolute screen coordinates, and returns this
value.

None

Y:-WindowY(Yl) ;
converts world coordinate Y1 to a screen coordinate

and stores the value in Y.

TECHNICAL REFERENCE 235

Notes:

236 Turbo Graphix Toolbox Owner's Handbook

Appendix A.
HARDWARE CONFIGURATIONS
AND COMPATIBILITY PROBLEMS

This section describes three of the hardware configurations that support
the Turbo Graphix Toolbox. Problems or considerations specific to the
IBM, Hercules, and Zenith implementations are first discussed separate­
ly; a detailed discussion about compatibility between different hardware
configurations follows.

Complete information about the constants, types, procedures and func-
tions mentioned in this Appendix can be found in Chapter 3. '

The IBM Color Graphics Card

The IBM Color Graphics card supports a hardware environment with the
following general characteristics:

• Screen is 640 pixels wide by 200 pixels tall.

• Default step (increment) for vertical window movement (as defined in
the constant IVStep) is 2 pixels.

• A RAM screen is enabled (constant RamScreenGlb = TRUE) and' is
placed in normal RAM.

Constants take the following default values with the IBM card:

AspectFactor
HardwareGrafBase
IVStep
MaxBackground
MaxForeground
Min Background

* depends on version

= 0.44
= $B800
=2
= *
= 15
=0

MinForeground
RamScreenGlb
ScreenSizeGlb
XMaxGlb
XScreenMaxGlb
YMaxGlb

1
= TRUE
= 8191
= 79
= 639;
= 199

HARDWARE CONFIGURATIONS AND COMPA TlBILITY PROBLEMS 237

The IBM Color Graphics Card

C%r

238

The different IBM versions of the Turbo Graphix Toolbox allow either
one background color, true black (constants MinBackground and
MaxBackground are both 0), or up to fifteen background colors
(MinBackground = 0, MaxBackground = 15); fifteen foreground colors
are available (MinForeground = 1, MaxForeground = 15), except with
the PCjr, which allows only black or white for the foreground color.
MaxForeground is the default value, set both by the InitGraphic and
EnterGraphic procedures. The following table lists the colors for the IBM
Color/Graphics Adapter (CGA), the PCjr, the Enhanced Graphics
Adapter (EGA), and the 3270 PC.

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CGA
Black
Blue
Green
Cyan
Red
Magenta
Brown
Light gray
Dark gray
Light blue
Light green
Light cyan
Light red
Light magenta
Yellow
White

CGA
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black

Foreground Colors
PCjr EGA
Black
White
Black
White
Black
White
Black
White
Black
White
Black
White
Black
White
Black
White

Black
Blue
Green
Cyan
Red
Magenta
Brown
Light gray
Dark gray
Light blue
Light green
Light cyan
Light red
Light magenta
Yellow
White

Background Colors
PCjr EGA
Black
Blue
Green
Cyan
Red
Magenta
Brown
Light gray
Dark gray
Light blue
Light green
Light cyan
Light red
Light magenta
Yellow
White

Black
Blue
Green
Cyan
Red
Magenta
Brown
Light gray
Dark gray
Light blue
Light green
Light cyan
Light red
Light magenta
Yellow
White

3270 PC
Black
Blue
Green
Turquoise
Red
Pink
Yellow
White
Black
Blue
Green
Turquoise
Red
Pink
Yellow
White

3270 PC
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black

Turbo Graphix Toolbox Owner's Handbook

The Hercules Monochrome Graphics Card

Text

In addition to the standard 4x6-pixel font used by Turbo Graphix, the
IBM card allows higher quality text characters to be drawn in the normal
IBM Color/graphics adapter font. These characters take the form of
8x8-pixel cells, and can only be drawn at X and Y coordinates that are
multiples of 8 pixels. Since windows are also defined on 8-pixel horizon­
tal boundaries, the higher quality text can be aligned exactly with win­
dows.

Text can be moved vertically to any screen position using the window
movement procedure MoveVer. Unlike the 4x6-pixel font, IBM text is
never clipped at window boundaries.

The Hercules Monochrome Graphics Card

The Hercules Monochrome Graphics card supports a hardware environ­
ment with the following general characteristics:

• Screen is 720 pixels wide by 350 pixels tall.

• Default step (increment) for vertical window movement is 5 pixels (as
specified by the constant IVStep).

• A RAM screen is allocated (constant RamScreenGlb = TRUE). The
RAM screen can be placed in normal RAM (default) or on the Her­
cules card itself, as determined by the initialized variable
RamScreenlnCard in the GRAPHIX.HGC file. If RamScreenlnCafd is
TRUE, the RAM screen is on the Hercules card; if FALSE, it is in nor­
mal RAM. If you change RamScreenlnCard to TRUE, your Hercules
card must be placed in the "full" configuration.

Constants take the following values with the Hercules card:

AspectF actor
HardwareGrafBase
IVStep
MaxBackground
MaxForeground
Min Background
MinForeground

= 0.75
= $BOOO
=5
=0
= 1
= 0
= 1

RamScreenGlb
* RamScreenlnCard

ScreenSizeGlb
XMaxGlb
XScreenMaxGlb
YMaxGlb

* Specific to the Hercules implementation

= TRUE
= FALSE
= 16383
= 89
= 719
= 349

HARDWARE CONFIGURA TlONS AND COMPA TlBILlTY PROBLEMS 239

The Hercules Monochrome Graphics Card

C%r

The Hercules card does not support color. Neither background nor fore­
ground color can be changed; both MinBackground and MaxBack­
ground are set to ° (black) and both MinForeground and MaxFore­
ground are set to 1 (white).

Text

In addition to the standard 4x6-pixel font used by Turbo Graphix to
draw window headers and footers, the Hercules card allows higher qual­
ity text characters to be drawn on the screen in the normal Hercules
font. These characters take the form of 9x14 pixel cells, can only be
drawn at text coordinates that start at [0,0], and move in steps (incre­
ments) of 9 horizontal pixels by 14 vertical pixels. Using the window
movement procedures MoveHor and MoveVer, you can move text to
any desired screen location. However, because Hercules horizontal text
coordinates are at multiples of 9 pixels, and window definition coordi­
nates are at multiples of 8, care must be taken when attempting to draw
text inside a window; the alignment of text with the window may be
Slightly skewed due to the repeating 1-pixel offset of text.

Unlike the 4x6-pixel Turbo Graphix font, Hercules text is never clipped
at window boundaries.

Special Notes

240

Though the Hercules card normally has a resolution of 720x348,
through special programming, the Hercules version of the Turbo Graphix
Toolbox changes the resolution to 720x352; the last two vertical pixels
are ignored by the program, thus giving a resolution of 720x350. There
are a few monitors that may not be able to display this higher resolution.
If your monitor loses its horizontal hold when you use Turbo Graphix,
you must change two constants in GRAPHIX.SYS: YMaxGlb should be
changed from 349 to 347, and VRowsGlb should be changed from $58
to $57. Be sure to change both constants.

Turbo Graphix Toolbox Owner's Handbook

The Hercules Monochrome Graphics Card

With the Hercules card, if a program terminates while in graphics mode,
part of the current graphic display will remain on the screen, and part
will be erased. This is because MS-DOS does not understand that the
computer is in graphics mode, and will try to use the Hercules card as if
it were in text mode. To prevent this, you must use the DOS command
MODE MONO or run the program HFIX.COM (on the Turbo Graphix
Toolbox distribution disk).

Suppose your program terminates due to an I/O or runtime error. In this
case, you will probably want to see the error message, so you should
use HFIX.COM, which displays the error message, rather than MODE
MONO, which clears the screen. However, part of the error message
may scroll off the screen. One way to capture the error message before
it disappears is to use the Shift-Printscreen sequence. DOS will then
display the text screen even though there is also a graphics display.

The Zenith Color Graphics Card

The Zenith Color Graphics card supports a hardware environment with
the following general characteristics:

• Screen is 640 pixels wide by 225 pixels tall.

• Default step (increment) for vertical window movement (as defined in
the constant IVStep) is 3 pixels.

• A RAM screen is enabled (constant RamScreenGlb = TRUE) and is
placed in normal RAM.

Constants take the following default values with the Zenith card:

AspectFactor
HardwareGrafBase
IVStep
MaxBackground
MaxForeground
MinBackground

= .495
= $COOO
=3
=0
=7
=0

MinForeground
RamScreenGlb
ScreenSizeGlb
XMaxGlb
XScreenMaxGlb
YMaxGlb

= 1
= TRUE
= 24575
= 79
= 639
= 224

HARDWARE CONFIGURA TIONS AND COMPA TlBILlTY PROBLEMS 241

The Zenith C%r Graphics Card

C%r

The Zenith version of the Turbo Graphix Toolbox allows only one back­
ground color, true black (constants MinBackground and MaxBack­
ground must both be 0); seven foreground colors are available (MinFore­
ground = 1, MaxForeground = 7). MaxForeground is the default value,
set both by the InitGraphic and EnterGraphic procedures. Available
colors are:

1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Yellow
7 White

Text

In addition to the standard 4x6-pixel font used by Turbo Graphix, the
Zenith card allows higher quality text characters to be drawn in the nor­
mal Zenith font. These characters take the form of 8x9-pixel cells, and
can only be drawn at X and Y coordinates that are multiples of 8 hor­
izontal by 9 vertical pixels. Since windows are also defined on horizontal
8-pixel boundaries, the higher quality text can be aligned exactly with
windows.

Text can be moved vertically to any screen position using the window
movement procedure MoveVer. Unlike the 4x6-pixel font, Zenith text is
never clipped at window boundaries.

Compatibility Issues

242

This section discusses the problems involved with writing a program for
more than one version of the Turbo Graphix Toolbox, and offers
suggestions for resolving those problems.

Turbo Graphix Toolbox Owner's Handbook

Compatibility Issues

Screen Size

Probably the biggest problem involved with writing programs for
different Turbo Graphix versions is that the graphics cards support
different screen sizes. This is especially troublesome for drawings that
use absolute screen coordinates. You could define a window and display
the drawing using world coordinates, which partially resolves the prob­
lem; however, the placement of the window itself depends on the reso­
lution of the screen. For instance, on the IBM Color/graphics adapter, a
window with its upper left corner at [20,50] and lower right corner at
[60,150] is a centered window that is approximately 1/4 the size of the
screen. On the Hercules card, the same window would be placed slightly
further to the left on the screen, and significantly closer to the top, and
would take up only about 1/8 of the screen.

One solution to this problem would be to use the global constants
XMaxGlb and YMaxGlb to standardize the placement of the window.
The statement

DefineWindow(l,XMaxGlb Div 4,YMaxGlb Div 4,XMaxGlb*3 Div 4,
YMaxGlb*3 Div 4);

would define a centered window that takes up approximately 1/4 of the
screen, regardless of the actual screen size.

Text Placement

Another potential compatibility problem is text placement. Although the
4x6-pixel text can be placed at any screen coordinates with the
DrawText procedure, or at any world coordinates with the DrawTextW
procedure, recreating the same text on different screens is difficult. This
is because the size of the characters may also have to be adjusted. The
machine-dependent font is correctly proportioned for the graphics card
in use, though it can be difficult to place. For example, suppose, on the
IBM Color adapter version, that a window is to be defined that will en­
close text coordinates [10,2] through [20,4]. The following statement
shows one way to define that window:

DefineWindow(l, (XMaxGlb*lO) Div 00, (YMaxGlb*2) Div 25,
(XMaxGlb*20) Div 00, (YMaxGlb*4) Div 25);

HARDWARE CONFIGURATIONS AND COMPATIBILITY PROBLEMS 243

Compatibility Issues

244

This statement is equivalent to

or

or

DefineWindow(l, (79*10) Div 00, (199*2) Div 25, (79*20) Div 00,
(199*4) Div 25);

DefineWindow(1, (790) Div 00, (300) Div 25, (1580) Div 00,
(796) Div 25);

DefineWindow(1,9,15,19,31) ;

The screen coordinates above are (72,15,159,31) (the X screen coordi­
nate is greater by 7 because it includes the entire byte at that coordi­
nate).

On the IBM version, text is drawn at every 8 pixels in both directions, so
the screen coordinates to use for a window that includes text coordi­
nates [10,2] through [20,4] are (80,16,167,39). If (XMaxGlb+ 1) and
(YMaxGlb + 1) were used in the first statement,

DefineWindow(l, ((XMaxGlb+l)*10) Div 00, ((YlvbxGlb+l)*2) Div 25,
((XMaxGlb+l)*20) Div 00, ((YMixGlb+l)*4) Div 25);

the resulting window would be at screen coordinates (80,16,167,32),
which would align the text more exactly with the window. Adding 7 to
the final Y coordinate makes it exact:

DefineWindow(l, ((XMaxGlb+l)*10) Div 00, ((YlvbxGlb+l)*2) Div 25,
((XMaxGlb+l)*20) Div 00, ((YMixGlb+l)*4) Div 25 + 7);

However, if the last statement is used on the Hercules card, the final
coordinates come out as (88,28,183,63), which is close to the correct
(90,28,188,64)-but not close enough. Text drawn in that window
would spill over the right and bottom edges of the window. But the
correct window (90,28,188,64) is an illegal window! The first X coordi­
nate, 90, is not a multiple of 8, and the second, 188, is not 1 less than a
multiple of 8.

Turbo Graphix Toolbox Owner's Handbook

Compatibility Issues

Because of the complexity involved in choosing a window to fit text,
four functions are provided that choose window definition coordinates
based on text coordinates. Each function is given a text coordinate and
a minimum boundary value. The function returns a window definition
coordinate that will contain the given text coordinate and provide a bor­
der of at least the boundary pixel value. The border cannot always be
exact because of the difference between text coordinates and byte-at­
a-time window coordinates on some machines.

The four functions are:

TextLeft(TX,Boundary:integer):integer;

Returns X window coordinate that is at least Boundary pixels to the
left of the left edge of text coordinate TX

TextRight(TX,Boundary:integer):integer;

Return~X window coordinate that is at least Boundary pixels to the
right of the right edge of text coordinate TX

TextQp(TY,Boundary:integer):integer;

Returns Y window coordinate that is at least Boundary pixels above
the top edge of text coordinate TY.

TextDown(TY,Boundary:integer):integer;

Returns Y window coordinate that is at least Boundary pixels below
the bottom edge of text coordinate TX

There are two functions for each direction because the font size is not
known to the user program, so the addition of the actual width of the
character to its upper lefthand corner coordinate must be done by the
system.

Returning to the original example, to define that window enclosing text
coordinates [10,2] through [20,4] and give a border of at least 1 pixel on
all sides, we use

DefineWindow(1,TextLert(lO,1),TextQp(2,1),TextRight(20,1),TextDown(4,1));

HARDWARE CONFIGURA TlONS AND COMPATIBILITY PROBLEMS 245

Compatibility Issues

In addition to the four functions, the procedure

DefineTextWindow(I,Left,up,Right,Down,Border:integer);

can also be used to adjust a window to text coordinates. This procedure
is a more convenient way to solve the alignment problem, since all
parameters are defined in one routine; however, it is less flexible, since
the size of the border between text and window boundaries must be the
same for all four directions.

C%r

The color capabilities of the various Turbo Graphix Toolbox versions
range from absolute monochrome (black and white only) to a choice of
16 colors each for the foreground and background. It is very difficult to
use the color capabilities in a machine-independent way. The range of
colors available is known to the user program, but the actual colors as­
sociated with the numbers are not. If two different colors are arbitrarily
chosen for foreground and background, there is no way to ensure
against, for instance, the choice of blue for foreground and aquamarine
for background!

In addition, the consequences of changing the current color vary from
machine to machine. On some machines, there may be a considerable
delay while pixel colors are being changed. On others, the color may be
changed by simply reprogramming the display controller to interpret the
same bit patterns as different colors.

Also, on some machines, changing both foreground and background to
the same color may destroy the graphic image currently being displayed.

Because of these considerations, it is recommended that programs that
are to be used with several versions of the Turbo Graphix Toolbox be
written for true black and white.

Speed

246

The speed of the Turbo Graphix Toolbox varies widely on different
machines. The variance is not simple; from one machine to the next, one
operation may be twice as fast, and another be about the same speed.
You should therefore make no assumptions about speed or timing when
you are writing a program that is to run on several machines.

Turbo Graphix Toolbox Owner's Handbook

Compatibility Issues

Premature Termination

On some machines, if a program ends while still in graphics mode, the
computer may behave erratically. For instance, if a program written for
the Hercules graphics card version ends without a call to LeaveGraphic,
DOS does not know that the screen is in graphics mode, and acts as if
it is in text mode.

Included on the Turbo Graphix Toolbox distribution disk is a program,
HFIX.COM, to be used to reorient your system after a program ter­
minates improperly. You are free to distribute HFIX.COM with any pro­
gram you write.

HARDWARE CONFIGURA TlONS AND COMPA TlBILlTY PROBLEMS 247

Notes:

248 Turbo Graphix Toolbox Owner's Handbook

Appendix B.
GLOSSARY

absolute screen coordinate system: Coordinate system that uses the
entire screen area to plot the pixel location of text or graphics; coordi­
nate [0,0] is in the upper left corner of the screen.

absolute value: The value of a positive or negative number when the
sign has been removed. For example, the absolute value of both - 2
and + 2 is 2.

active window: The displayed or RAM (virtual) window in which draw­
ing is currently taking place.

active screen: The displayed or virtual screen in which drawing is
currently taking place.

aspect ratio: The horizontal-to-vertical ratio of a circle or ellipse. Used
by the Turbo Graphix Toolbox to proportion circles and pie charts.

background: The screen surface and color on which drawing is taking
place. See foreground.

bar chart: A graph consisting of vertical or horizontal bars with lengths
proportioned according to specified quantities.

base point: Any of the points that constitute a graph or curve.

Bezier function: Function that uses an array of control points to con­
struct a parametric, polynomial curve of a predetermined shape.

Cartesian coordinate system: A method used to plot an object's loca­
tion according to its horizontal-by-vertical position. This position is refer­
enced to horizontal (X) and vertical (Y) axes.

clipping: Turbo Graphix Toolbox function that keeps graphic images
within window or screen boundaries by preventing any part of the draw­
ing that falls outside the window or screen from being displayed.

control point: Any of the points used to plot a graph. Used by the Tur­
bo Graphix Toolbox to construct curves.

GLOSSARY 249

GLOSSARY

250

coordinate system: A method used to plot an object's location accord­
ing to its horizontal-by-vertical position. See absolute screen coordinate
system and world coordinate system.

displayed screen: The visible screen displayed on your computer moni­
tor. See RAM screen.

flow chart: A graphic representation of a sequence of consecutive
events or operations. The Turbo Graphix Toolbox uses a sequence of
moving windows to represent a flow chart.

font: Either of two sets of characters used by the Turbo Graphix Tool­
box. Window headers, and text that must be in multiples of 4x6 pixels,
are displayed in the standard 4x6-pixel text font. All other text is
displayed in a machine-dependent, higher resolution text font-8x8-
pixels for the IBM card, 9x14 pixels for the Hercules card, and 8x9 pix­
els for the Zenith card.

foreground: The color used to display text and draw graphic images.
See background.

graphics mode: Mode of computer operation in which graphics sym­
bols and drawings are displayed. See text mode.

header: A user-defined text label, displayed in the Turbo Graphix stan­
dard 4x6-pixel font, that is placed either at the top or bottom edge of a
window.

histogram: A graphic representation of a frequency distribution that
takes the form of a bar chart.

inactive screen: The RAM or displayed screen that is not currently be­
ing used for drawing.

include directive: Program comment of the form {$I filename. ext} that
instructs the compiler to read the program contained in filename.

interpolation: Method of determining the value of a function that is
between known values, using a procedure or algorithm. See spline func­
tion.

Turbo Graphix Toolbox Owner's Handbook

GLOSSARY

machine-dependent text: Text that corresponds to the font used by
the particular graphics card installed in your system. Text is 8x8-pixels
for the IBM card, 8x9 pixels for the Zenith card, and 9x14-pixels for the
Hercules card. Machine-dependent text is of a higher resolution than the
standard, 4x6-pixel text used by the Turbo Graphix Toolbox to display
window headers. See font.

modeling: Method used to find the points (and the corresponding func­
tion) that will represent a predetermined line, curve, or solid shape. See
Bezier function.

origin: In any coordinate system, point [0,0], i.e. the point where the
coordinate axes intersect.

pie chart: A circular chart used to represent the relative sizes of several
quantities that make up a whole unit. The pie chart is divided into sec­
tions by radial lines, with each section proportional in angle and area to
the quantity it represents.

pixels: Acronym for picture elements. The tiny dots that together make
up a graphics or text screen display. Pixels are the basic units of meas­
ure used by coordinate systems to plot the location of screen objects.

polar coordinate system: Method used to plot a pie chart in reference
to its radius and the angle of its first segment.

polygon: A figure that encloses a collection of points, possibly (but not
necessarily) connected by line segments.

RAM (virtual) screen: A screen that is stored in RAM memory. It is
identical in size and shape to the displayed screen, but any drawing that
takes place on it is invisible.

resolution: The quality and accuracy of detail of a displayed image.
Resolution depends on the number of pixels within a given area of the
screen; the more pixels there are, the higher the resolution.

scaling: Ability of the Turbo Graphix Toolbox to reduce or enlarge an
image to fit in a given window according to the world coordinate system
specified by the user.

GLOSSARY 251

GLOSSARY

252

screen coordinate system: See absolute screen coordinate system.

spline function: Polynomial function that smooths a curve by calculat­
ing and generating additional base pOints.

step: The increment by which a text character, window, or graphic im­
age moves at one time.

text mode: Computer mode in which only characters are manipulated
and displayed. See graphics mode.

vertex: The point where the sides of an angle intersect.

virtual screen: See RAM screen.

window: An area of the screen specified by the user for drawing. It can
range in size between 1 vertical pixel by a horizontal pixels and the en­
tire screen.

window definition coordinates: The two sets of X and Y coordinates
that define the upper left and lower right corners of a window. Windows
are defined on a-bit horizontal by 1-bit vertical boundaries, so that each
X window definition coordinate represents one a-pixel horizontal unit,
and each Y coordinate represents one 1-pixel vertical unit.

window stack: RAM area in which windows can be temporarily stored.

world coordinate system: A user-defined coordinate system that is
used to scale drawings within a given window. World X (horizontal) and
Y (vertical) coordinates do not necessarily correspond to actual pixel lo­
cations, but can be assigned any values that suit the application. A
world is enclosed by the X (horizontal) and Y (vertical) coordinates of the
upper left and lower right corners of the drawing area.

zero axes: The horizontal (X) and vertical (y) axes used to plot the lo­
cation of a screen object.

Turbo Graphix Toolbox Owner's Handbook

SUBJECT INDEX

A
Animation, 42
AspectFactor, 28, 50, 95, 200
Aspect ratio (see Circle drawing)

B
BackgroundArray, 96
Barchart, 48, 53ft, 139
BaseAddress, 108
Be~e~73,76ft, 109

C
CharFile,96
Circle drawing, 27ft, 132

aspect ratio, 27, 50, 95,
132,160,165,200

screen coordinates, 133
ClearScreen, 112
ClearWindowStack, 113
Clipping, 12, 67, 114,

115,142,206,207
Color, 236

background,97, 99, 203,
237,239,241

drawing, 97, 99, 161,
208,209,210,237,
239,242

reverse video, 175, 176
Compatibility between

difterent systems, 242ft
ConOutPtr, 96, 124, 157, 177
Constants, 94ft, 237, 239, 241

altering, 95
Coordinate axes, 62, 127
Coordinate system

absolute screen, 9, 10, 221,
235

cartesian, 49
polar, 49
world, 9, 10, 35

SUBJECT INDEX

CopyScreen, 39, 116
CopyWindow, 39,117
Curves

D

bezier, 76, 109
fitting, 73ft
plotting, 59ft, 73ft
spline interpolation, 73, 222

DC, 118
DefineHeader, 119, 129
DefineTextWindow, 120
DefineWindow, 122
DefineWorld, 123
DisplayChar, 124
DP,125
DrawAscii,126
DrawAxis, 62ft, 127
DrawBorder, 18, 129
DrawCartPie, 48, 130
DrawCircle, 27, 132
DrawCircleDirect, 133
DrawCircleSegment, 134
DrawCross, 136
DrawCrossDiag, 137
DrawDiamond, 138
DrawHistogram, 48, 53ft, 139
DrawLine, 23ft, 141
DrawLineClipped, 142
DrawPoint, 18ft, 143
DrawPolarPie, 48ft, 144
DrawPolygon, 26ft, 146
DrawSquare, 149
DrawSquareC, 150
DrawStar, 151
DrawStraight, 152
DrawText, 32, 153
DrawTextW,155
DrawWye, 156

253

SUBJECT INDEX

E
EnterGraphic, 157
Error, 158
Error processing, 158, 162,

171, 204, 205, 216,
217,241

F
FindWorld, 69ft, 159
Flow chart, 43

G
GetAspect, 160
GetColor, 161
GetErrorCode, 162
GetLineStyle, 163
GetScreen, 164
GetScreenAspect, 165
GetVStep, 166
GetWindow, 167
GotoXY, 168
GotoXYTurbo, 169

H
HardCopy, 85, 170
Hardware configurations,

13ft,71,237ft
HardwareGrafBase, 96
HardwarePresent, 171
Hatch,172
HeaderSizeGlb, 96
Hercules monochrome
graphics card, 1, 8, 15, 21, 63

91,97,99,203,239
High-level command files, 2, 92

IBM color graphics card, 1,
8,13,14,15,21,63,
91,97,99,237

IBM Enhanced Graphics Adapter, 15
InitGraphic, 18, 34, 173
Initialization, 18, 157, 173
InvertScreen, 175
InvertWindow, 176
IVStepGlb, 97

L
LeaveGraphic, 18, 177
Line drawing, 23ft, 141

clipped,142
horizontal, 152
line style, 163, 215

LoadScreen, 80ft, 178
LoadWindow, 179
LoadWindowStack, 81, 180

M
MaxBackground,97
MaxForeground, 97
MaxPiesGlb, 98
MaxPlotGlb, 59, 98
MaxWindowsGlb, 98, 122
MaxWorldsGlb, 98, 123
Min Background, 99
MinForeground, 99
Modeling, 76, 109
MoveHor, 38, 181
MoveVer, 38, 182

P
PO, 183
Pie chart, 48ft, 98, 99,

130, 134, 144
PieArray, 50, 99
Pixels defined, 7
PlotArray, 53,59,74,100,139,146
Point drawing, 18ft, 143, 208

absolute screen coordinate,
125,183

world coordinates, 21, 184
PointDrawn, 184
Polygon

clipping, 67
defining world for, 70ft, 159
drawing, 59, 10Q, 146
MaxPlotGlb, 98
moving, 66ft, 191, 192, 231
PlotArray, 100
rotating, 66ft
scaling, 196

254 Turbo Graphix Toolbox Owner's Handbook

Premature termination, 247
Printing, 170
Procedures and functions, 107ff

R
RamScreenGlb, 100
Rectangle drawing, 26, 149

clipped,150
hatched, 172

RedefineWindow, 35, 185
RemoveHeader, 186
ResetWindows, 188
ResetWindowStack, 187
ResetWorlds, 189
Resolution, 8
RestoreWindow, 190
RotatePolygon, 66ff, 191
RotatePolygonAbout, 66, 192

S
SaveScreen, 80ff, 193
SaveWindow, 194
SaveWindowStack, 81, 195
ScalePolygon, 196
Screen

active, 8, 164
clearing, 112
copying, 116
displayed, 2, 8
loading, 80ff, 178
printing, 85, 170
RAM, 2, 8, 100, 237, 239,

241
saving, 80ff, 193
selecting for drawing, 197
size, 7, 101, 102,237,

239,241,243
swapping, 226

ScreenSizeGlb, 101
SelectScreen, 197
SelectWindow, 198
SelectWorld, 199
SetAspect, 28, 50, 200
SetBackground, 201
SetBackground8, 202

SUBJECT INDEX

SUBJECT INDEX

SetBackgroundColor, 203
SetBreakOff, 204
SetBreakOn, 205
SetClippingOff,206
SetClippingOn, 207
SetColorBlack, 208
SetColorWhite, 209
SetForegroundColor, 26, 210
SetHeaderOff, 211
SetHeaderOn, 212
SetHeaderToBottom, 129, 213
SetHeaderToTop, 129,214
SetLineStyle, 23, 26, 215
SetMessageOff, 216
SetMessageOn, 217
SetScreenAspect, 218
SetVStep, 219
SetWindowModeOff,220
SetWindowModeOn, 221
Spline, 73ff, 222
Square drawing

(see Rectangle drawing)
StoreWindow, 39, 224
Strings, 101
StringSizeGlb, 101
SwapScreen, 226
System files, 1

T
Text,29ff

4x6 pixel, 9, 10, 29,
32,96,119,126,153,
155, 211-214, 243

Hercules, 30, 120, 240
IBM,238
machine-dependent, 8, 9,

10,30,101,118,120,
124,126,153,155,168,
169,227,228,229,
230,240,242,243

Zenith,242
TextDown, 227
TextLeft, 228
TextRight, 229

255

SUBJECT INDEX

TextUp, 230
TranslatePolygon, 66ff, 231
Turbo Graphix files

including, 17, 91
Tutorial, 17ff
Types,94ff

W
Window

active, 167
background pattern, 96,

201,202
border, 129
copying, 117
defining, 11, 34, 98, 122
fitting text in, 30, 120,

227,228,229,230,
238,240,242,243

flow chart, 43
header, 96, 119,129,

186, 211, 212, 213,
214

initialization, 188
loading, 179
mode,220,221,232
moving, 39, 97, 166,

181,182,219,237,
239,241

placement on different
screens, 243
saving, 194
selecting for drawing, 198
size, 11, 102, 233
stack, 11,40,113,

180,187,195,224,
233

storing, 190, 224
WindowMode, 232
WindowSize, 233
WindowX, 234
WindowY, 235
World, 221, 234, 235

defining, 98, 123

256

selecting, 199
for polygons, 69ff
initialization, 189

WrkString, 101

X
XMaxGlb, 102
XScreenMaxGlb, 102

y
YMaxGlb, 102

Z
Zenith Z-100 computer, 1,8,

15,97,99,203,241

Turbo Graphix Toolbox Owner's Handbook

Borland
Software

INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Available at better dealers nationwide.
To order by credit card, call (800) 255-8008; CA (800) 742-1133.

VERSION 3.0 with 8081 support and BCD reals

Free MicroCa/c Spreadsheet With Commented Source Code!
FEATURES:
One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct them, and instantly
recompiles. You're off and running in
record time.

Built-in Interactive Editor: WordStar~qike
easy editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

THE CRITICS' CHOICE:
"Language deal of the century ... Turbo Pascal:
it introduces a new programming environment
and runs like magic."

-Jeff Duntemann, PC Magazine

"Most Pascal compilers barely fit on a disk, but
Turbo Pascal packs an editor, compiler, linker,
and run-time library into just 39K bytes of
random access memory."

-Dave Garland, Popular Computing

MicroCalc: A sample spreadsheet on your disk
with ready-to-compile source code.

"What I think the computer industry is headed
for: well-documented, standard, plenty of
good features, and a reasonable price."

IBM~ PC Version: Supports Turtle Graphics,
color, sound, full tree directories, window
routines, input/output redirection, and
much more.

-Jerry Pournelle, BYTE

LOOK AT TURBO NOW!

5J' More than 500,000 users worldwide.

5J' Turbo Pascal is the de facto industry
standard.

5J' Turbo Pascal wins PC MAGAZINE'S
award for technical excellence.

5J' Turbo Pascal named "Most
Significant Product of the Year" by
PC WEEK.

5J' Turbo Pascal 3.0-the fastest Pascal
development environment on the
planet, period.

Suggested Retail Price: $99.95; CP/M~-80 version without 8087 and BCD: $69.95

Features for 16-bil Systems: 8087 math co-processor support for intensive calculations.
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business application.

Minimum system configuration: l28K RAM minimum. Includes 8087 &. BCD features for l6-bit MS-DOS 2.0 or later and
CP/M-86 1.1 or .Iater. CP/M-80 version 2.2 or later 48K RAM minimum (8087 and BCD features not available). 8087
version requires 8087 or 80287 co-processor.

~.o BORLAND ~ INTERNATIONAL

Turbo Pascal is a registered trademar1< 01 BorBnd International, Inc. CP/M is a registered trademark
01 Digital Research Inc. IBM is a registered trademark 01 International Business Machines Corp. MS­
DOS is a registered trademark of Microson Cap. W:lrdStar is a registered trademark of MicroPro
International.

dOR0061A

"'" PASCAl ~AC""'I
The ultimate Pascal development environment

Borland's new Turbo Pascal.lor the Mac'" is so incredibly last that it can
compile 1,420 lines of source code in the 7.1 seconds it took you to read thisl
And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac
to compile at least 60,000 more lines of source code!

Turbo Pascal for the Mac does both Windows and "Units"
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units,"
which can be linked to any Turbo Pascal- program. This "modular pathway" gives you "pieces" which can
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the
time it takes to develop large programs.

Turbo Pascal for the Mac is so compatible with Lisa· that they should be living together
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File
System of the Macintosh.'"

The 27-second Guide to Turbo Pascal for the Mac
• Compilation speed of more than 12,000 lines

per minute
• "Unit" structure lets you create programs in

modular form
• Multiple editing windows-up to 8 at once

Workshop Pascal (with minimal changes)
• Compatibility with Hierarchical File System of

your Mac
• Ability to define default volume and folder names

used in compiler directives
• Compilation options include compiling to disk or

memory, or compile and run
• Search and change features in the editor speed up

and simplify alteration of routines
• No need to switch between programs to compile

or run a program
• Ability to use all available Macintosh memory

without limit
• Streamlined development and debugging • "Units" included to call all the routines provided by
• Compatibility with Macintosh Programmer's Macintosh Toolbox

Suggested Retail Price: $99.95 (not copy protected)

., ~~O BORLAND
- ;7,NTERN-ATIONAL

Minimum system configuration:
256K. One 400K drive.

Turbo Pascal is a registered Irademark and Turbo Pascal lor the Mac, SideKick lor the Mac, and Reflex 101 the MJC
are trademarks 01 Borland International, Inc. Macintosh is a Irademark 01 Mcintosh Laboratories, Inc. and hcen~d to
Apple Computer With Its express permission Lisa is a registered trademark 01 Apple Computer, Inc. InSide
Macintosh is a copyright 01 Apple Computer, Inc.

110110''''

VERSION 2.0

Learn Pascal From The Folks Who Created
The Turbo Pascal® Family

Borland International proudly presents Turbo Tutor, the perfect complement
to your Turbo Pascal compiler. Turbo Tutor is really for everyone-

even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine points.
The manual and program disk focus on the whole spectrum of Turbo
Pascal programming techniques.

• For the Novice: It gives you a concise history of Pascal, tells you how to write a
simple program, and defines the basic programming terms you need to know.

• Programmer's Guide: The heart of Turbo Pascal. The manual covers the fine pOints
of every aspect of Turbo Pascal programming: program structure, data types, control
structures, procedures and functions, scalar types, arrays, strings, pOinters, sets, files,
and records.

• Advanced Concepts: If you're an expert, you'll love the sections detailing such topics as
linked lists, trees, and graphs. You'll also find sample program examples for PC-DOS and
MS-DOS.~

10,000 lines of commented source code, demonstrations of 20 Turbo Pascal features, multiple­
choice quizzes, an interactive on-line tutor, and more!

Turbo Tutor may be the only reference work about Pascal and programming you'll ever need!

Suggested Retail Price: $39.95 (not copy protected)

Minimum system configuration: Turbo Pascal 3.0. PC-DOS (MS-DOS) 2.0 or later. 192K RAM minimum (CP/M-aD
version 2.2 or later: 64K RAM minimum).

Turbo Pascal and Turbo Tutor are registered trademarks of Borland International Inc. CP/M is a registered
trademark of Digital Research Inc. MS-DOS is a registered trademark of Microsoft Corp. BOR 00648

Is The Perfect Complement To Turbo Pasca/~

It contains a complete library of Pascal procedures that
allows you to sort and search your data and build powerful database

applications. It's another set of tools from Borland that will give
even the beginning programmer the expert's edge.

THE TOOLS YOU NEED!
TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it
possible to access records in a file using key words instead of numbers. Now available with
complete source code on disk. ready to be included in your programs.

TURBO SORT: The fastest way to sort data using the QUICKSORT algorithm-the method
preferred by knowledgeable professionals. Includes source code.

GINST (General Installation Program): Gets your programs up and running on other
terminals. This feature alone will save hours of work and research. Adds tremendous value
to all your programs.

GET STARTED RIGHT AWAY.-FREE DATABASE!
Included on every Toolbox diskette is the source code to a working database which
demonstrates the power and simplicity of our Turbo Access search system. Modify it to suit
your individual needs or just compile it and run.

THE CRITICS' CHOICE!
liThe tools include a B+ tree search and a sorting system. I've seen stuff like this. but not as
well thought out. sell for hundreds of dollars." -Jerry Pournell, BYTE MAGAZINE

liThe Turbo Database Toolbox is solid enough and useful enough to come recommended."
-Jeff Duntemann, PC TECH JOURNAL

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: 128K RAM and one disk drive (CP/M-8D: 40K). 16-bit systems: Turbo
Pascal 2.0 or greater for MS-DOS or PC-DOS 2.0 or greater. Turbo Pascal 2.1 or greater for CP/M-06
1.0 or greater. 8-bit systems: Turbo Pascal 2.0 or greater for CP/M-80 2.2 or greater.

Turbo Pascal and TurbO Database Toolbox are registered trademarks 01 Borland International
Inc. CP/M is a registered trademark 01 Digla! ResearCh. Inc. MS-DOS is a registered
trademark 01 Microsoft Corp. DOll 00638

2VRBO PASCAl.

.EDllOR 2tDr,BOXTM
It's All You Need To Build Your Own Text Editor

Or Word Processor
Build your own lightning-last editor and incor­
porate it into your Turbo Pasca/~ programs.
Turbo Editor Toolbox gives you easy-to-install
modules. Now you can integrate a fast and powerful
editor into your own programs. You get the source
code, the manual, and the know-how.

Create your own word processor. We provide all
the editing routines. You plug in the features you want.
You could build a WordStar~-like editor with pull-down
menus like Microsoft's~ Word, and make it work as fast
as WordPerfect.~

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for
two sample editors:

Simple Editor A complete editor ready to include in your programs. With windows, block commands, and
memory-mapped screen routines.

MicroStar A full-blown text editor with a complete pull-down menu user interface, plus a lot more.
Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

• Wordwrap
• UN-delete last line
• Auto-indent
• Find and Find/Replace with options
• Set left and right margin
• Block mark, move, and copy
• Tab, insert and overstrike modes,

centering, etc. MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

[!J RAM-based editor. You can edit very large ~ Multiple windows. See and edit up to eight
files and yet editing is lightning fast. documents-or up to eight parts of the same

[!J Memory-mapped screen routines. In- document-all at the same time.
stant paging, scrolling, and text display. [3' Multitasking. Automatically save your

[!J Keyboard installation. Change control text. Plug in a digital clock, an appointment
keys from WordStar -like commands to any that alarm-see how it's done with MicroStar's
you prefer. "background" printing.

Best of all, source code is included for everything in the Editor Toolbox.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, 3270, PCjr, and true compatibles. PC·DOS (MS-DOS) 2.0 or greater. 192K RAM. You must be
using Turbo Pascal 3.0 for IBM and compatibles.

Turbo Pascal is a registered trademark and Turbo Editor Toolbox is a trademark of Borland
International. Inc. WordStar is a registered trademark of MicroPro International Corp. Word and
MS-DOS are registered trademarks of Microsoft Corp WordPerfect is a trademark of Satellite
Software International. IBM. XT. AT. and PCjr are registered trademarks of International Business
Machines Corp BOR 0067 A

.-®

Secrets And Strategies Of The Masters Are
Revealed For The First Time

Explore the world of state-of-the-art computer games with Turbo GameWorks. Using
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal.e Or, for instant excitement, play the three

great computer games we've included on disk-compiled and ready to run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your way to
becoming a master chess player. Explore the complete Turbo Pascal source code and discover the secrets of
Turbo Chess.

"What impressed me the most was the fact that with this program you can become a computer chess analyst.
You can add new variations to the program at any time and make the program play stronger and stronger chess.
There's no limit to the fun and enjoyment of playing Turbo GameWorks Chess, and most important of all, with this
chess program there's no limit to how it can help you improve your game."

-George Koltanowski, Dean of American Chess, former President of
the United Chess Federation, and syndicated chess columnist.

TURBO BRIDGE

Now play the world's most popular card game-bridge. Play one-on-one with your computer or against up to
three other opponents. With Turbo Pascal source code, you can even program your own bidding or scoring
conventions.

"There has never been a bridge program written which plays at the expert level, and the ambitious user will
enjoy tackling that challenge, with the format already structured in the program. And for the inexperienced player,
the bridge program provides an easy-to-follow format that allows the user to start right out playing. The user can
'play bridge' against real competition without having to gather three other people."

-Kit Woolsey, writer of several articles and books on bridge,
and twice champion of the Blue Ribbon Pairs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku-the exciting strategy game also
known as Pente.s In this battle of wits, you and the computer take turns placing X's and D's on a grid of 19X19
squares until five pieces are lined up in a row. Vary the game if you like, using the source code available on your
disk.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, Portable, 3270, PClr, and true compatibles. PC·OOS (MS·OOS) 2.0 or later. 192K
RAM minimum. To edit and compUe the Turbo Pascal source code, you must be using Turbo Pascal 3.0 for IBM PCs and
compatibles.

Turbo Pascal and Turbo GameWorks are regstered trademarks of Borland International. Inc.
Pente is a registered trademark of Parker Brothers. IBM, XT, AT. and PCjr are registered
trademarks of International Business Machirl3s Corporation. MS-DOS is a registered tradcrmrk
of Microsoft Corporation.

BOR OOG5B

If you use an IBM® PC, you need

T U R B 0

Lightnings
Turbo Lightning teams up
with the Random Housee

Concise Dictionary to
check your spelling as
you type!

Turbo Lightning, using the
83,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a beep.
At the touch of a key, Turbo
Lightning opens a window on
top of your application pro­
gram and suggests the correct
spelling. Just press one key
and the misspelled word is
instantly replaced with the
correct word. It's that easy!

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you choose
just the right word from a list of
alternates, so you don't say the
same thing the same way every
time. Once Turbo Lightning
opens the Thesaurus window,
you see a list of alternate
words, organized by parts of
speech. You just select the
word you want, press ENTER
and your new word will in­
stantly replace the original
word. Pure magic!

/I you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

,--"ktlt,CA/f ' /OCt fTiNt l< CoL ~s l!itDT ""

........
- lU. ... -
.~

1:-
!c~
1:-
1:_ ,."­
C:AoII_Io_U'-lI'Iot,-

PaIJp .. "...t ,

p!----,--,.~ ~ t~~----R

The Turbo Lightning Dictionary

The Turbo Lightning Thesaurus

Suggested Retail Price: $99.95 (not copy protected)

Turbo Lightning's
intelligence lets you teac,
it new words. The more
you use Turbo Lightning,
the smarter it gets

You can also teach your new
Turbo Lightning your name,
business associates' names,
street names, addresses,
correct capitalizations, and any
specialized words you use
frequently. Teach Turbo
Lightning once, and it
knows forever.

Turbo Lightning
is the engine that
powers Borland's Turbo
Lightning Library'"

Turbo Lightning brings
electronic power to the Random
House Dictionary and Random
House Thesaurus. They're at
your fingertips-even while
you're running other programs.
Turbo Lightning will also
"drive" soon-to-be-released
encyclopedias, extended
thesauruses, specialized
dictionaries, and many other
popular reference works.
You get a head start with this
first volume in the Turbo
Lightning Library.

And because Turbo Lightning is
a Borland product, you know
you can rely on our quality, our
60-day money-back guarant~e,
and our eminently fair prices.

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles with 2 floppy disk drives. PC·DOS (MS·DOS) 2.0 or greater.
256K RAM. Hard disk recommended.

BORLAND
INTERNATIONAL

IBM. XT. AT. and PCjr are registered traderrnrks of International Business Machines Corp. Turbo
Lightning is a registered trademark and Turbo Lightning Library is a trademark of Borland
International, Inc, Random House is a registered trademark of Random House Inc. BOR 0070A

TURBO

Turbo Prolog brings fifth-generation supercomputer
power to your IBM~PC!

Turbo Prolog takes
programming into a new,
natural, and logical
environment

With Turbo Prolog,
because of its natural,
logical approach, both
people new to programming
and professional programmers
can build powerful applica­
tions such as expert systems,
customized knowledge
bases, natural language
interfaces, and smart
information management systems.

Turbo Prolog is a declarative language
which uses deductive reasoning to solve
programming problems.

Turbo Prolog's development system
includes:
o A complete Prolog compiler that is a variation of the

Clocksin and Mellish Edinburgh standard Prolog.
o A full-screen interactive editor.
o Support for both graphic and text windows.
o All the tools that let you build your own

expert systems and AI applications with
unprecedented ease.

Turbo Prolog provides
a fully integrated pro­
gramming environment
like Borland's Turbo
Pascal,® the de facto
worldwide standard.

You get the complete
Turbo Prolog program­
ming system
You get the 200-page
manual you're holding,
software that includes
the lightning-fast Turbo

" ~_~_~_ Prolog six-pass
compiler and interactive editor, and the
free GeoBase natural Query language
database, which includes commented
source code on disk, ready to compile.
(GeoBase is a complete database
designed and developed around U.S.
geography. You can modify it or use
it "as is.")

Minimum system configuration: IBM PC, XT, AT,
Portable, 3270, PCjr, and true compatibles. PC-DOS
(MS-DOS) 2.0 or later. 384K RAM minimum.

Suggested Retail Price $99.95
(Not Copy Protected)

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark 01
Borland Inlernalional. Inc. IBM AT. XT. and PCjr are regislered trademarks 01
International Business Machines Corp. MS-DOS is a registered
trademark 01 Microsolt Corp.

BOR OQl(,C

Your Development Toolbox and Technical Reference Manual for Thrbo Lightningt'>

l I G H T N I N G

Lightning Word Wizard includes complete, commented Turbo
Pascal@> source code and all the technical information you'll

need to understand and work with Turbo Lightning's "engine. II
More than 20 fully documented Turbo Pascal procedures

reveal powerful Turbo Lightning engine calls. Harness the full power
of the complete and authoritative Random House® Concise

Word List and Random House Thesaurus.

Turbo Lightning's "Reference
Manual"
Developers can use the versatile on-line
examples to harness Turbo Lightning's
power to do rapid word searches. Lightning
Word Wizard is the forerunner of the data­
base access systems that will incorporate
and engineer the Turbo Lightning Library'·
of electronic reference works.

The ultimate collection of word
games and crossword solvers!
The excitement, challenge, competition,
and education of four games and three
solver utilities-puzzles, scrambles, spell­
searches, synonym-seekings, hidden words,
crossword solutions, and more. You and
your friends (up to four people total) can
set the difficulty level and contest the high­
speed smarts of Lightning Word Wizard!

Turbo Lightning-Critics' Choice
"Lightning's good enough to make programmers and users cheer, executives of other
software companies weep." Jim Seymour, PC Week

"The real future of Lightning clearly lies not with the spelling checker and thesaurus currently
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles

"This newest product from Borland has it all." Don Roy, Computing Nowl

Minimum system configuration: IBM PC, Xl, AT, PCjr, Portable, and true compatibles. 256K RAM minimum. PC-DOS (MS-DOS) 2.0
or greater. Turbo Lightning sohware required. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code.

Suggested Retail Price: $69.95
(not copy protected)

Turbo Pascal and Turbo Lightning are regisEred trademarks and Lightning Word Wizcrd and Turbo Lightning Library are trademarks 01 Borland International. Inc. Rancjom
House is a registered trademark 01 Random House. Inc. IBM, Xl. AT. and PCjr are registered trademarks 01 International Business Machines Corp. MS-DOS is a
registered trademark 01 Microsoft Corp. BOROO87 A

REFLEX®
THE ANALYST

Reflex is the most amazing and easy-to-use database management
system. And il you already use Lotus 1-2-3,® dBASE,® or PFS: File,®

you need Rellex--because it's a totally new way to look at your data.
It shows you patterns and interrelationships you didn't know were

there, because they were hidden in data and numbers.
It's also the greatest report generator lor 1-2-3.

REFLEX OPENS MULTIPLE WINDOWS WITH NEW VIEWS AND GRAPHIC INSIGHTS INTO YOUR DATA.
',,.,~
IIIIM tilt Inl III

IUS EIIIl

IIIIIH,!CIIl

Illll,_

PIIIII£1,iIIIo

1!fIUI""

1ftl

V'M uiLt

H
......

,
.:J.I

!Jiot-15
:J.I-115
I::
'
!F ...

"lnt~lIf !;O;;_ furdl

Il I - iIlIi ." - IUs '" - Coot,. .lI
"" .. iIIIo '" ""'" 'Us -i ""'" -. 'ItrCl iIIIo
Pltrc:t 'Us lit
'ItrCl Coot, • ,.
Trllllllt iIIIo ". "...,1 '" '" ,_, -. OJ - iIIIo ""

.. " LIst V, .. ,. I"tl'~ T
I~

I [,.. [,..

"" la,
lin 1m
$112 $.'1
IJ07 $197
Ill.
UII " .. Sill In
171 ",

II .. '" "" '" lOt IJ.I ... ""

blll~ProIb:tfarlll:hStart

I~ui
$.tlaRanl

IUUM

Illll_

PIIIII£1_.

PllTI1V."
SWI93

aI1T 124

'"ft' ~ 1U III!I
pun ..

!!t:: -.~~''''' xMIM!i7S _.
The FORM VIEW leiS you build and examine your database. The LIST VIEW lets you put data in tabular list form The GRAPH VIEW gives you instant interacti-.e

just like a spreadsheet. .--____ ---, graphic representations .

The CROSSTAB VIEW
gives you amazing "cross­
referenced" pictures of the
links and relationships hidden
in your data.

. - _. -,,- -,~' '=-",='-'-' .!....---~

'U1M tchl I'I'lnl"lIl AItOI'ds Crosstill

I-',~ FII[d,llA'l!
PIIIII£1 -. 'v III!I III

II:"", Il .. '" - ... ,.[... ,m
! I

P
'''''

'211 1M 1911 m2 ,_, 11M 161' nil
IIU _137 "" -

So Rellel sIIows you-Instant answers. Instant pictures. Instant analysis. Instant understanding.

THE CRITICS' CHOICE:
"The next generation of software has officially arrived."

Peter Norton, PC WEEK

The REPORT VIEW
allows you to import

and export 10 and from
Reflex, 1-2-3, dBASE,

PFS: File, and other
applications, and prinls

out information in the
lormals you want.

"Reflex is one of the most powerful database programs on the
market. Its multiple views, interactive windows and graphics, great
report writer, pull-down menus, and cross tabulation make this one
of the best programs we have seen in a long time ...

The program is easy to use and not intimidating to the novice ...
Reflex not only handles the usual database functions such as
sorting and searching, but also "what-if" and statistical analysis ...
it can create interactive graphics with the graphics module. The
separate report module is one of the best we've ever seen."

Marc Stern, INFO WORLD

Suggested Retail Price $149.95 (not copy protected)
Minimum system configuration: IBM PC, Xl, AT, and true compatibles. PC·DOS (MS·DOS) 2.0 or greater. 384K RAM minimum. IBM
Color Graphics Adapter, Hercules Monochrome Graphics Card, or equivalent. Hard disk and mouse optional. Lotus 1·2·3, dBASE, or
PFS: File optional.

Reflex is a registered trademark 01 Borland/Aralytica Inc. Lotus 1-2-3 is a registered tradclmrk 01
Lotus Development Corporation. dBASE is a registered trademark of Ashton-Tate. PfS. I [Ie IS a
registered !r~demark 01 Software Publishing Corporation. IBM, XT, AT, and IBM Color Graplics
Adilpier are registered trademarks of Internatilllal Business Machines Corporation. Hcrculcs Graph[cs
Card is a trademark of Hercules Computer Technology. llOIl OOG6A

REFLEX

Includes 22 "instant templates" covering a broad range 01
business applications (listed below). Also shows you how to

customize databases, graphs, cross tabs, and reports. It's an invaluable
analytical tool and an important addition to another one 01

our best sellers, Rellex: The Analyst 1.1.

Fast-start tutorial examples:
Learn Reflexe as you work with practical business applications. The Reflex Workshop Disk supplies
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in each
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple
steps to adapt the files to your own needs.
22 practical business applications:
Workshop's 22 "instant templates" give you a wide range of analytical tools:

Administration
• Scheduling Appointments
• Planning Conference Facilities
• Managing a Project
• Creating a Mailing System
• Managing Employment Applications

Sales and Marketing
• Researching Store Check Inventory
• Tracking Sales Leads
• Summarizing Sales Trends
• Analyzing Trends

Production and Operations
• Summarizing Repair Turnaround

• Tracking Manufacturing Quality Assurance
• Analyzing Product Costs

Accounting and Financial Planning
• Tracking Petty Cash
• Entering Purchase Orders
• Organizing Outgoing Purchase Orders
• Analyzing Accounts Receivable
• Maintaining Letters of Credit
• Reporting Business Expenses
• Managing Debits and Credits
• Examining Leased Inventory Trends
• Tracking Fixed Assets
• Planning Commercial Real Estate Investment

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex
Workshop will help you Quickly become an expert database analyst.

Minimum 1,ltem configuration: IBM PC, AT, and Xl, and true compallbles. PC·DOS (MS·DOS) 2.0 or greater. 384K RAM minimum. Requlrel Rellel: The
Anal,lt. and tBM Color Graphici Adapter, Herculel Monochrome Graphici Card or equivalent.

Suggested Retail Price: $69.95
(not copy protected)

Reflex is a registered trademark and Rellex Workshop is a trademark of Borland/Analytica. Inc. IBM, AT, and Xl are registered trademarks of International Business
Machines Corp. Hercules is a trademark of Hercules Computer Technology. MS·DOS is a registered trademark of Microsoft Corp.

BOROO88A

REFLEX
FOR THE MACT~

The easy-to-use relational database that thinks like a spreadsheet.
Reflex for the Mac lets you crunch numbers by entering formulas

and link databases by drawing on-screen lines.

5 free ready-to-use templates are included on the examples disk:

• A checkbook application.
1:1 A client billing application set up for

a law office, but easily customized
by any professional who bills time.

• A parts explosion application that
breaks down an object into its
component parts for cost analysis.

Reflex for the Mac accomplishes all of these tasks without programming-using
spreadsheet-like formulas. Some other Reflex for the Mac features are:

• Visual database design.
.. "What you see is what you get" report

and form layout with pictures.
• Automatic restructuring of database files when

data types are changed, or fields
are added and deleted.

• Display formats which include General, Decimal,
Scientific, Dollars, Percent.

• Data types which include variable length text,
number, integer, automatically incremented
sequence number, date, time, and logical.

• Up to 255 fields per record.
• Up to 16 files simultaneously open.
• Up to 16 Mac fonts and styles are selectable

for individual fields and labels.

• rMe UII "~"",I I •• ertlle ' 11 Mlu 1111 ,
~;;;,::;,K~' I
"."_"1.""

CDmllon.nIOfl.l.g

After opening the "Overview" window, you
draw link lines between databases directly
onto your Macintosh screen.

The link lines you draw establish bolll visual
and electronic relationships between your
databases.

You can have multiple windows open
sirnultaneously to view alt members of a
linked set-which are interactive and truly
relational.

Critic's Choice
" .. , a powerful relational database .. , uses a visual approach to information management." InloWorld

" .. , gives you a lot of freedom in report design; you can even import graphics." A+ Magazine
" .. , bridges the gap between the pretty programs and the power programs." Stewart Alsop, PC Letter

Suggested Retail Price:
$99.95*

'Introductory Offer Through 1/15/87

Renex for the Mac is a trademark 01 BorIaro'Analytica, Inc. Macintosh is a trademark of Mcintosh laboratory, Inc. and is used willi express permission of its owner.
BOfl0149

SIDIIICIO
Whether you're running WordStar,® Lotus,® dBASE,®

or any other program, SideKick puts al/ these desktop
accessories at your fingertips-Instantly!

A full-screen WordStar-like Editor to jot
down notes and edit files up to 25 pages
long.

A Phone Directory for names, addresses,
and telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3.­
From bottom to top: SideKick's "Menu Window," ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through
2099.

Appointment Calendar to remind you
of important meetings and appointments.

A full-featured Calculator ideal for
business use. It also performs decimal
to hexadecimal to binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In the
SideKick Notepad you'll notice data that's been imported
directly from the Lotus screen. In the upper right you can
see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's
block copy commands, SideKick can transport all
or any part of the display screen (even an area
overlaid by the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SideKick deserves a place in every PC."
-Gary Ray, PC WEEK

"SideKick is by far the best we've seen. It is also
the least expensive."

-Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SideKick. You'll soon become
dependent on it." -Jerry Pournelle, BYTE

Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PClr and true compatibles. The IBM PClr will only accept the SideKick not copy­
protected versions. PC·DOS (MS·DOS) 2.0 or greater. 128K RAM. One disk drive. A Hayes·compatlble modem, IBM PClr Internal
modem, or AT&T Modem 4000 Is required for the autodialer function.

SideKick is a registered trademark of Borlirld International. Inc. dBASE is a registered trademark of
3- D BORLAND Ashton-Tate. IBM. XT. AT. and PCjr are registered trademarks of International Business Machines Corp.

==: I AT&T is a registered trademark of Americirl Telephone & Telegraph Company. lotus and 1-2-3 are
:II ~ I N T ERN A T ION A L registered trademarks of lotus Developmeri Corp. WordStar is a registered trademark of MicroPro

International Corp. Hayes is a trademark of Hayes Microcomputer Products. Inc. BOR 0060B

SIDIIICI
for the Mac™

SideKick for the Mac brings information
management, desktop organization, and
telecommunications to your Macintosh.TM

Instantly, while running any other program!

A full-screen editor/mini-word processor
lets you jot down notes and create or edit
files. Your files can also be used by your
favorite word processing program, like
MacWrite

TII

or Microsoft8 Word.

A complete telecommunications program
sends or receives information from any
on-line network or electronic bulletin
board while using any of your favorite
application programs (modem required).

A full-featured financial and scientific
calculator sends a paper-tape output to
your screen or printer and comes
complete with function keys for financial
modeling purposes.

A print spooler prints any "text only" file
while you run other programs.

A versatile calendar lets you view your
appointments for a day, a week, or an
entire month. You can easily print out your
schedule for quick reference.

A convenient "Things-to-Do" file reminds
you of important tasks.

A convenient alarm system alerts you to
daily engagements.

PhoneLinkTO allows you to autodial any
phone number, as well as access any long­
distance carrier.

A phone log keeps a complete record of
all your telephone activities. It even
computes the cost of every call.

Area code look-up provides instant access
to the state, region, and time zone for all
area codes.

An expense account file records your
business and travel expenses.

A credit card file keeps track of your
credit card balances and credit limits.

A report generator prints out your mailing
list labels, phone directory, and weekly
calendar in convenient sizes.

A cf!nvenient analog clock with a sweeping
second-hand can be displayed anywhere
on your screen.

On-line help is available for all of the
powerful SideKick features.

Best of all, everything runs concurrently

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: 128K RAM and one disk drive. Two disk drives are recommended If you wlsb to use other
application programs. HFS compatible.

SideKick is a registered trademark and PhoneLink is a trademark of Borland InternatlOlIJI, Inc.
Macintosh is a trademark of Mcintosh Laboratory, Inc. licensed to Apple COrTllutcr, Inc.
MacWrite is a trademark of Apple Computer, Inc. Microsoft Word is a registered Iradcrrork 01
Microsoft Corp.

BOn OOG~C

The Organizer For The Computer Age!
Traveling SideKick is BinderWare;- both a binder you take with you when you travel
and a software program-which includes a Report Generator-that generates and

prints out all the information you'll need to take with you.

Information like your phone list, your client list,
your address book, your calendar, and your
appointments. The appointment or calendar files
you're already using in your SideKicke can auto­
matically be used by your Traveling SideKick. You
don't waste time and effort reentering information
that's already there.

One keystroke prints out a form like your address
book. No need to change printer paper;

What's inside Traveling SideKick

you simply punch three holes, fold and clip
the form into your Traveling SideKick binder, and
you're on your way. Because Traveling SideKick is
CAD (Computer-Age Designed), you don't fool
around with low-tech tools like scissors, tape, or
staples. And because Traveling SideKick is
electronic, it works this year, next year, and all the
"next years" after that. Old-fashioned daytime
organizers are history in 365 days.

AND

What the software program and its
Report Generator do for you before
you go-and when you get back

Before you go:
• Prints out your calendar,

appointments, addresses, phone
directory, and whatever other
information you need from your
data files

When you return:
• Lets you quickly and easily enter all

the new names you obtained while
you were away into your
SideKick data files

It can also:
• Sort your address book by contact,

TRAVELING SIDEKICK SOnwARE
GENERATES. UPQI\TES. AND PAINTS YOUR
ADDRESS AND CALENDAR ALES

zip code or company name
• Print mailing labels

*Suggested Retail Price: $69.95

• Print information selectively
• Search files for existing addresses

or calendar engagements

Minimum syslem configuration: IBM PC, Xl, Al, Portable, PClr, 3270 and Irue compatibles. PC·DOS (MS-DOS) 2.0 or laler.
256K RAM mlmlmum.

*Speclallnlroduclory oHer

~.D BORLAND ~ INTERNATIONAL

SideKick and Traveling SideKick are registered trademarks and BinderWare is a trademark of
Borland International, Inc. IBM, AT, Xl, and PCjr are registered trademarks of International
Business Machines Corp. MS-DOS is a registered trademark of Microson Corp. BOA 0083

Increased Productivity for Anyone
Using IBM®PCs Dr Compatibles

SuperKey turns 1,000 keystrokes into 1!
Yes, SuperKey can record lengthy keystroke sequences and play them back at the touch of
a single key. Instantly. Like magic. •
Say, for example, you want to add a column of figures in 1-2-3.8 Without SuperKey, you'd
have to type 5 keystrokes just to get started: @ sum (. With SuperKey, you can turn
those 5 keystrokes into 1.

SuperKey keeps your confidential files-CONFIDENTIAL!
Time after time you've experienced it: anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).
With SuperKey you can encrypt any file, even while running another program. As long as
you keep the password secret, only YOU can decode your file correctly. SuperKey also
implements the U.S. government Data Encryption Standard (DES).

SuperKey helps protect your capital investment
SuperKey, at your convenience, will make your screen go blank after a predetermined time
of screen/keyboard inactivity. You've paid hard-earned money for your PC. SuperKey will
protect your monitor's precious phosphor and your investment.

SuperKey protects your work from intruders while you take a break
Now you can lock your keyboard at any time. Prevent anyone from changing hours of
work. Type in your secret password and everything comes back to life-just as you left il.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PClr, and true compatibles. PC·DOS (MS·DOS) 2.0 or greater. 128K RAM.
One disk drive.

- ~ -=;; BORLAND
=~ -::=- IN T ERN A TID N A L

SuperKey is a registered trademark of Borland International. Inc. IBM, Xl, AT,
and PCjr are registered trademarks of Intemational Business Machines Corp. 1-2-3 is a
registered trademark of Lotus Development Corp. MS-DOS is a registered trademark of
Microsoft Corp. BOR 00(;2[1

.HoW!lbBuy
Borland
Software

'iWJT~@ Jl1 (3e!\ Tr

GIUlPH,X2bal-SOX®
A lifJr81Jf of Gr8pilics Roufines for Use rtJiiil Turbo PBJsca/®

High-resolution graphics for your IBM® PC, AT, ® Xl, ® PCjr®, true PC compatibles, and the Heath
Zenith Z-100:" Comes complete with graphics window management.

Even if you're new to Turbo Pascal programming, the Turbo Pascal Graphix Toolbox will get you started right
away. It's a collection of tools that will get you right into the fascinating world of high-resolution business
graphics, including graphics window management. You get immediate, satisfying results. And we keep Royalty
out of American business because you don't pay any-even if you distribute your own compiled programs that
include all or part of the Turbo Pascal Graphix Toolbox procedures.

What you get includes:

• Complete commented source code on disk.
• Tools for drawing simple graphics.
• Tools for drawing complex graphics, including

curves with optional smoothing.
• Routines that let you store and restore graphic

images to and from disk.
• Tools allowing you to send screen images to

Epson®-compatible printers.

• Full graphics window management.
• Two different font styles for graphic labeling.
• Choice of line-drawing styles.
• Routines that will let you Quickly plot functions

and model experimental data.
• And much, much more ...

"While most people only talk about low-cost personal computer software, Borland has been doing
something about it. And Borland provides good technical support as part of the price."

John Markov & Paul Freiberger, syndicated columnists.

/I you ever plan to create Turbo Pascal programs that make use of business graphics or scientific
graphics, you need the Turbo Pascal Graphix Toolbox.

Minimum system configuration: IBM PC, Xl, AT, PCjr, true compatibles and the Heath Zenith Z-100. Turbo Pascal 3.0 or later. 192K
RAM minimum. Two disk drives and an IBM Color Graphics Adapter (CGA), IBM Enhanced Graphics Adapter (EGA), Hercules Graphics
Card or compatible.

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066

Turbo Pascal and Turbo Graphix Toolbox are registered trademarks of Borland International,
Inc. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines
Corporation. Hercules Graphics Card is a trademark of Hercules Computer Technology. Heath
Zenith Z-100 is a trademark of Zenith Data Systems. Epson is a registered trademark of
Epso~ Corp.

ISBN 0-87524-001-1

