TURBO PASGAL TOOLBOX

NUMERIGAL METHODS

A complete collection
of Turbo Pascal®
routines and programs

Provides state-of-
W the-art math tools
to solve scientific
= and engineering
problems—
e fast!

IBM" VERSION

PC, XT?® AT>& True Compatibles

Turbo Pascal Numerical Methods Toolbox

Borland’s No-Nonsense License Statement!
This software is protected by both United States copyright law and international treaty provisions. Therefore
you must treat this software just like a book, with the following single exception. Borland International authorizes
you to make archival copies of the software for the sole purpose of backing-up our software and protecting
your investment from loss.

By saying, “just like a book,” Borland means, for example, that this software may be used by any number of
people and may be freely moved from one computer location to another, so long as there is no possibility of it
being used at one location while it's being used at another. Just like a book that can't be read by two different
people in two different places at the same time, neither can the software be used by two different peaple in two
different places at the same time. (Unless, of course, Borland's copyright has been violated.)

Borland International grants you (the licensed owner of the Turbo Pascal Numerical Toolbox) the right to
incorporate toolbox routines into your programs. You may distribute your programs that contain Numerical
Toolbox routines in executable form without restriction or fee, but you may not give away or sell any part of
the actual Numerical Methods Toolbox source code. You are not, of course, restricted from distributing your
own source code.

Sample programs are provided on the Numerical Methods Toolbox diskettes as examples of how to use the
various toolbox features. You may edit or modify these sample programs and incorporate them into the
programs that you write. Use of these sample programs is governed by the same conditions and restrictions as
outlined in the first paragraph above.

WARRANTY

With respect to the physical diskette and physical documentation enclosed herein, Borland International, Inc.
("Borland") warrants the same to be free of defects in materials and workmanship for a period of 60 days from
the date of purchase. In the event of notification within the warranty period of defects in material or workman-
ship, Borland will replace the defective diskette or documentation. If you need to return a product, call the
Borland Customer Service Department to obtain a return authorization number. The remedy for breach of
this warranty shall be limited to replacement and shall not encompass any other damages, including but not
limited to loss of profit, and special, incidental, consequential, or other similar claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or implied, including but not
limited to implied warranties of merchantability and fitness for a particular purpose with respect to defects in
the diskette and documentation, and the program license granted herein in particular, and without limiting
operation of the program license with respect to any particular application, use, or purpose. In no event shall
Borland be liable for any loss of profit or any other commercial damage, including but not limited to special,
incidental, consequential or other damages.

GOVERNING LAW

This statement shall be construed, interpreted, and governed by the laws of the state of California.

First Edition
Printed in USA
987654321

Turbo Pascal

Numerical Methods
Toolbox

Copyright ©1986

All Rights Reserved

BORLAND INTERNATIONAL, INC.
4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066
USA

Table of Contents

INErOQUCHION .ot sre st st bt ssseneben e ssesebsenssnensaessssaseas 1
TOOIDOX FUNCHONS cvvivivereveisieeeenirerersiesiaessesisssssessesssescessssesssssssssssssssssesesosessenssssenssass 1
About this Manual ... esrrressnsssssrsrissssesesssssssssesssssrsssessessosnes 2
On the Distribution Disks .c.cccovenireninrincniiierecneeerene st senes 3
System ReqUIrements ... e snsnsas 3
ACKNOWIEAEZEMENLS o.veeireireceieeierrcae s erersesses s easessisessssssesessessseesansessscssserenas 4
Chapter 1. ROUTINE BEGINNINGSc.coonininineeinennenereneeressrseneesenenens 5
Using the Toolbox: An Example ..o 5
The Distribution DISKS ...ccvervieiiireririnieeieeinieetrseneesnscseeeesesenseenseressessessesesssaces 7
INSEAIlAHON ..oevveiicceeece s s bbb e e s a s 8
The Graphics DEIMOS ..ccceecrenirirecncenenieienrereiereterseesrsseressesssesensaseseserensssesssnse 12
Data Types and Defined Constantsccocovnireneernereineneenenceeeessseensenssesesses 12
ComPiler DIFECHIVES ...coveriereecieeirirerecre sttt sessb s st bene 13
Chapter 2. ROOTS TO EQUATIONS IN ONE VARIABLEccccocevnune 15
Stopping Criterid .coccvvecveiiecrir ettt e 17
Root of a Function Using the Bisection Method (BISECT.INC)ccocoevriniine 18
Description ..o 18
User-Defined FUNCHON ...ccovviiieininiriiinieiecieriesesiescsssessesossasesesssessessssesessaeses 18
Input Parameters ... e 18
 OULPUL PATAMELETS oovvueivercieeceeeseetes st ss s bbb sae st seb s sanes 19
Syntax of the Procedure Callccovicciiinininiccrei e, 19

COIMMEIS 1eviiriireiciririeireeeresierereeissaeessesisesssasessessntestatssnssssesssasssssestessaseossnsssasses 19

SamPle PIOGIAIN ..oovivieieriicieiniesiseenssssessesssesssssssssssssssesssassssssesessessssssssasssnsses 19
EXAMPIE oo enes 20
Root of a Function Using the Newton-Raphson Method (RAPHSON.INC) 21
DESCrIPHON coviieeiiiecertte 21
User-Defined FUNCHONS ...cccveiininienenimeirercesennenneeniseessersssesssemmesesessesessssene 21
Input Parameters ... 21
Output Parameterscccoceceieccnininiicniniiiess s 22
Syntax of the Procedure Callccooivreirinninneinineeeneneenieneseseseessaens 22
COMIMENES ..ottt sa s bbb s bbb s s bt 22
SAMPIE PrOZIam .ccvecreeeiciniieisnieseessisesesensesesessmenessssesessssssssssessessessssssssasenes 22
EXAINPIE .ooviriivrveceirenerenennennreesenersssiseseseseseseesessassessenssesensesessesansrsnssssrorsenes 23
Root of a Function Using the Secant Method (SECANT.INC) ...cccccevevevnverennee 25
DESCIIPHON oottt e s 25
User-Defined FUNCHON ...ovvvurevieeieiincrincestneeeeeaeesessisessesseesesseseessessseessssesesnes 25
INput Parameters ..o e 25
Output Parameters ... 26
Syntax of the Procedure Callccoivirriennerrceeneesceser s 26
(07010103153 11 OO 26
SAmMPle PIOGIAIMN ..vccvvverrerieinsirenreissesimsassseeesesstsesetsesessessesessensesesssentssessssssssssesas 26
EXAMPIE oottt srssses e snssssssssnsssaseseresses s astre s sssnes 27
Real Roots of a Real Polynomial Equation Using the Newton-Horner
Method with Deflation (NEWTDEFL.INC) ...cocvvieineeieenrenienereneressiesennens 28
D ZSETe w134 10 ¢ U OO 28
USer-Defined TYPES ocvvevveirerreiseerersieieesiesestmesseseisessesene st ssesesaessessesessessasssesns 28
Input Parameters ..., 28
Output Parameters ...t 29
Syntax of the Procedure Callcocoveiivinencrenenincrneneeieececert e 30
COMIMENES eevrirrerereeereirrnrresereseseiseressressesesesssssssssessassesssssssererssessssssnsssesssessssressesere 30
SamMPIE PrOZIam ..cvcccereceeririeinreensieseiensenseesessssssestessensestesessnsonsssssssessssesssseses 30
INPUL FIlES oveieeie et aes 30
EXAIMNPIE oot niessessanes e sessrsessenssises e sensssestrsensnenenssenseses 30
Complex Roots of a Complex Function Using Miiller's Method
(MULLER.INC) .covvicerirereererienmenersnserensessressssesesens ettt eanas 33
DESCrIPHON cooverieiiricceiiece et 33
User-Defined TYPES .ooovvrecrmicinniniienicinncisessiesnnsessessesessessssssessseessasssssssenes 33
User-Defined Procedure cceecceeinineeeneueeeciecneseeseremeseesessescesessesenssssesecses 33
Input Parameters ... 33
Output Parametersccccvvvevereneennnminnereneensne st esssee e 34
Syntax of the Procedure Callc.ccoveviiiniincseae 34
COMIMENES vt s e 34
SAMPIE PrOZIAM ocoviceerrcecireteseseesssssse et ssssastssssassetessssssssesssassnsesassessssssssesesans 35
EXAIMPIE oottt et s seseeanis 35

Turbo Numerical Methods Toolbox

Complex Roots of a Complex Polynomial Using Laguerre’s Method and Deflation

(LAGUERRE.INC) cooooerseeereeensemssssesssssssssesssessesesesesssssssssssesssessssscseoe 37
DESCIIPHON ..ovvieeiiiierrccirenres st et st et sesbe s e s s sn e e ss 37
User-Defined TYPES covvveveereinenireiirnsisessasissasssssssssssesssssssssssssssessssssssnens 37
Input Parameters ... s 37
Output Parameters ccoeveeeeeereieneimieserneerenissnsessnsessesessessssssscesesesessesnsssnasses 38
Syntax of the Procedure Callc.occcconeniiiiniviennrerereceercstrirse e 38
COMIMENLS ..t s esas s ans 38
SaMPIE PIOZIAM .oooiiiieiiicecceeie ettt et see sttt b s s s s st sresasanasaen 39

INDUL FIlES oooiiieiiviinreireiiesnre st ssessessssesssssssessssssssessssssanes 39
EXAMPIE oot sa st st et s e 39
Chapter 3. INTERPOLATION cccovovririnirrresineneniisesnnessasnessssssssssssssesssssssenss 43
Polynomial Interpolation Using Lagrange’s Method (LAGRANGE.INC) 45
DESCIIPHON vttt ettt ses sttt see st s 45
User-Defined TYPES .ovvvereereeceiericirieeeeeentiscree et seisescs s ssessesesssss s nessssseesas 45
Input Parameters ... e 45
Output Parameters ...t s sesssesns 46
Syntax of the Procedure Callcocovvevininininincenecerecnieeeseeeenresiesseens 46
SamPle PrOZIam ..ot sssase et sesssss e seene 46
INPUL FIlES ettt enesesesss st nss s sene 46
ExXample ..ottt sttt 47
Interpolation Using Newton’s Interpolary Divided-Difference Method

(DIVDIF.ING) ..ocooevirternerrinieeseistsstssssssss e essesesssssssssssssesssssassassssssesssssssssssssnsnsess 49
DeSCrIPION oottt e e 49
USer-Defined TYPES ..cvvvereeeeerermiecrineeesentrscreiseesseessesessesssssssessssesessesmessensseene 49
Input Parameters ... s 49
Output Parameters ... 50
Syntax of the Procedure Callccoooieienincriinecnre e seeee 50
Sample Program ...t sssinsesssssense 50

INPUL FHIES 1ot b e et sss b sa e s sre s as s senene 50
EXAMDIE oottt sttt sttt s se st bt 50
Free Cubic Spline Interpolation (CUBE_FRE.INC) .i..ccccoverermnrernerererrrerenens 52
DESCIIPHION oottt et ettt e es et b st e e sane 52
User-Defined TYPES ..covvereriminiensiienininsescsisesssesesssssssasssessmmessesssenes 52
Input Parameters ... s 52
Output PAarametersocovveviiinierienniecniersnesesiseese e eessesssssssssssssassessaeenees 53
Syntax of the Procedure Call ..o, 53
SamPLE PrOZIAIM .ooovreereiiriccveiniiree et sesetsesaasesees st sessiessessssseasessossosssssseses 53
INPUL FHlES oottt sesse s s s senens 54
Example
Clamped Cubic Spline Interpolation (CUBE_CLA.INC) ...ccocovccrmeirirecrnerennne 57
DESCHPLION .vevieeceeieieierintrireere ettt en e st s ese s sb et s s s ses 57
USer-Defined TYPES c.cvvverevreveeriircnniresiesseseetsesateseesssesssesessssssessssesenssscsossnsaeses 57

Table of Contents iii

Input Parameters ... 57

Output Parameters ... seisseseiees 58
Syntax of the Procedure Callccvvniiiiniiniccnece e 58
Sample PrOZIam .ocevcecccniennisesinssssssessssesssssnsssssssssssassssssssesessssnsssssssses 59
INPUL FIIES oottt svssese et st esese s esess s ensraes 59
EXAIMNPLE oot str e essesrn et sn st ssese s ssassissssnenes 59
Chapter 4. NUMERICAL DIFFERENTIATIONccooovvinnnnnevenererernnenens 63
First Differentiation Using Two-Point, Three-Point, or Five-Point Formulas
(DERIV.ING) oo eeosseeesseseessesessessessesssss e sesessssssssssseeessesseessseseeseren 66
Description ..o 66
User-Defined TYPES .covececrreeieieecerireeneeseesseesceeesrseseesesensseesensesessesssssesensees 66
Input Parametersccvcerveeiinniiiienieiceitcteeetnee et s 66
Output Parameters ... 67
Syntax of the Procedure Callcccoovicrneiininrrnninnesisenseseseeesesssneseecssens 67
COMIMENES it e e bbb ss s 67
SAMPIE PrOZraIn occvcvieccrnrinircirinesnnsesssesessessiossssesnisessssnessesssssesessesessessasessresnens 68
INPUL FIIES covivreieeeeiiiresisccesenie ettt eeer et e snaer e sesetsessasnessnens 68
EXAIMPIE oottt st eseeseseseserenesstensesesasessnsaene 68
Second Differentiation Using Three-Point or Five-Point Formulas
(DERIVZ.ING) ooovooreeeresoeseesssssesessssmesessssesssesessssessssesessssssesssssesssessssresees 71
DESCIIPHON .euiveeieiirieieeieierires ettt b e tse s estos e s sasreserenssanee 71
User-Defined TYPES ..cccceeieririrniniecieesiesresetnesiss st sesssesssssesssssssssessssssesesssessssssnes 71
Input Parameters ... s 71
Output Parameterscocccivriniieneiicniiiceirsre e assenes 72
Syntax of the Procedure Callccoooueevcniinnrcennenencsesississiseesnsssesesessees 72
COMIMENES vttt e s s a s 72
Sample Program ... e 73
INPUL FHIES wovvviiviicrricrerinire e sessesen s seseneressesesesossesasessssescssessosssacesens 73
EXAIMNPIE .ot ieeeietsensis e sr e sttt sen et saees 73
Differentiation with a Cubic Spline Interpolant INTERDRV.INC) 76
DeSCription cccviiviiiciii s 76
User-Defined TYPES .ccovrerrrnereremrtreesreriescstnesssssieisssesssesessssssssmsassssssssssns 76
Input Parameters ... 76
Output Parametersc.ccccceverenninineeneeetcet e e renene 77
Syntax of the Procedure Callcccoecvuvirrvinnennncnevc e 77
SAMPIE PrOGraIn ooveevecericrrereeierecnreerennesenssen e tsesesesesensessressiscssssnsssessesersesssens 77
INPUL FIlES oevveiieercccniicneree st scsces s ssessesssssessnasens 78
EXamPple oo ss e aes 78
Differentiation of a User-Defined Function (DERIVFN.INC)ccccooerervrvnnnans 80
DESCIIPHON .vivvierieriieiieciiiene et 80
User-Defined TYPES ottt ses et eesess et reesesensessssnaes 80
User-Defined FUNCHON ...vcueeericieineieecineieeet e remesessesessenssensessessessens 80
INPut Parameterscoccoeovvrreeinennineeceeieeeercise et er e sere e ssaes 80

iv Turbo Numerical Methods Toolbox

Output Parametersccccieeirieccninineiieeienisenneeseeeesessessssssssesssesesasssnsessens 81

Syntax of the Procedure Call ... e iens 81
COMMENES ittt et er e ses b s s et eres s bas e essenes 81
SamPIE PrOGram ..ccccvievcnienennerinniesissseseessse e sesessssssssssssessssessssesssesssssseses 81
INPUL FILES oottt ettt st b st s bt s s s 81
EXAMPIE oottt s st s et en s s nes 82
Second Differentiation of a User-Defined Function (DERIV2FN.INC) 83
DESCIIPHON 1ouviviieriiiirinene et snreseseesseseressesesseresessessssesenessssssessssannsansens 83
USEr-Defined TYPES -.cvvveerenrrrsensninirnnesseissssnssssssssssssssssssssnssssssassssssssesesssens 83
User-Defined FUNCHON ..o.cvecenenieiiceiinnieireenesiieisesiesessvssissssnsssssssssessssssssssens 83
Input Parameters ... isseresesesanesesssessesssesssssessssnsens 83
Output Parameterscccriiieniicerinseeneeessertsesnseessesemsessessesssenes 84
Syntax of the Procedure Callccveiinenninnccineeensessssssisesesssesessesenes 84
COMMENES .ottt ettt et stessa s e sas s st sesensresessanasesenens 84
Sample PrOZramccccceneceninicneineneiseessesssss s e s tssesssssssss st sensssssssses 84
INPUL FIlES vttt inse bbb s b s ass s sass st sssaesesens 85
EXAMPIE oottt sa s et nan st 85
Chapter 5. NUMERICAL INTEGRATION ccovimmrmmreirnseenesiesessessoseenns 87
Integration Using Simpson’s Composite Algorithm (SIMPSON.INC) 89
DESCrIPHON ..ottt rse s s aas st et besssesesasanabasansane 89
User-Defined FUNCHON ocoeevirinivniiinnseenceecnnnnsnnenesesesssssssssnssesssssesessesseseses 89
Input Parameters ..ot s s aein 89
Output PArametersooeveveceercrcvnnnnieeessnesnessessssssssseensesssesssissssesmmesesessnne 90
Syntax of the Procedure Callcccovirvecorierninieineeneseesnsnenisssssssnnsssesnens 90
SAmPle PrOZram ..c.c..cooveveevereniceniininnesessisssessissnsssssssssssssssssssssssssssssossmssssassesas 90
EXAINPLE oovivieiiereiricrireesssetieiee s ssss e sas sttt nas s sa b st 90
Integration Using the Trapezoid Composite Rule (TRAPZOID.INC) 92
DESCIIPHON ..ottt ee s sressssertsbasess st ssesesnssasasenes 92
User-Defined FUNCHON ccoeevrninnrinrenreeenernsrnsssnsessssssssssssssssssssssssssssersssns 92
Input Parameters ..ottt ne 92
Output Parameterscccccoeeneinininenisesneeinniseresisssesesssrssssssssnesesesasesssssess 93
Syntax of the Procedure Callccviveriernenicnnneesisssiisesssssnsnsessisens 93
SamPle Programcccccoveceveenininninsiesss e ssesssssssssssssssssassssssssssssessssesesssans 93
EXaMPLE oottt sttt nae e 93
Integration Using Adaptive Quadrature and Simpson’s Rule
(ADAPSIMP.ING) oottt eeieesesies st ssess s ab et s s s s sn s ssanas 95
DesCription oeieviiiiecii e r e st ens 95
User-Defined FUNCHON ...ccovveeeeniueirenenieiensisennsstssssssssssssssessssssssionsssesssssens 95
Input Parameterscocccccevccciiienieienioneieenisiesssssssee s e sassssessssssssessnes 95
Output Parameters ...t srssssssses s ssenssssssesens 96
Syntax of the Procedure Callcooovvcinrenirinrnrnercrs s ssesre e 96
COMIMENES ..ottt et st sttt bbbt sa et one 96
Sample Programcoievcccnncnnnssesesssnses s sssssssssssssssssessesssssses 96

Table of Contents v

EXAMPLE oottt et ettt e s st ss et sean 97
Integration Using Adaptive Quadrature and Gaussian Quadrature

(ADAPGAUS.ING) coooeeeeeeseeeesssmsesessessesssssoesssesssssssssssesessseessesseeseesssseesesens 98
DESCIIPHON .ottt bbb ses 98
User-Defined FUNCHON ...o.coveceeecereircietnieenressereesasseseessesesessesesstsesessesesasessees 98
Input Parameters ... s 98
Output Parameters ... 99
Syntax of the Procedure Callccoveveieirreinnernnnieienceneeseereee s senees 99
COMINENES ..ottt st r et et ses st sresesssrenssassssaesares 99
SAMPIE PrOZIAImM ...coveviviriecicecenieesisineneesnsasesesessmesesssersssssessssssessassssesesosssssssses 101

EXAMPIE cooviiiieriieciniieienieinistieinesesssessssisssssnsssossesesesssssiessessssssessassssssssssesasess 101
Integration Using the Romberg Algorithm (ROMBERG.INC)cccevvvrvrenen. 102
DESCrIPHOn vttt st s 102
User-Defined FUnCtion ..o 102
Input Parameters ... 102
Output Parameters ... 103
Syntax of the Procedure Callcccovvenirciirriecrr e 103
Sample Programccoeeieeceeicieies st st saesssesssssssss s sessssssasssesesesens 103
EXAMPIE oot vt sttt tnn 103
Chapter 6. MATRIX ROUTINESccooiemrerinicinnnensiresssensessssssseesssssessanses 105
Determinant of a Matrix (DET.INC) ..cocvirieeccnreereeeeireneeeeneisesenessseseseeseresnes 107
DeSCriPHON ..ot 107
User-Defined TYPES .ocvvcveeverirnninirereisinisessserssssnsssseresssssssssesssssssssssesessssssasssess 107
Input Parameters ... e 107
Output Parameters ..o e 108
Syntax of the Procedure Callccoouvueivinrinerineennrncne e 108
Sample Program ..o sssessssesssssneseensens 108
INPUL FIlE oottt ettt ses et saseessesessenes e sens 108
EXAMPIE oottt ettt sen et 109
Inverse of a Matrix (INVERSE.INC)ccoevcvrrernecrnincnen: et e enes 110
DESCIIPHON ettt et ettt st st e es e enssbens 110
User-Defined TYPes ...ccovevvrerrreerenrvernnerecnineenns Ceetreerseast et esrnsasantssetsastsaenes 110
Input Parameterscoccooevcecirerniieieeen ettt seseseses e nens 110
OUutput Parameters ocecvereerennriineniesieniineennenseississtssesssessassersessssossossesessessees 111
Syntax of the Procedure Callocooiriiivriennrenenesireereresreresseseienns 11
SAmPlE PrOGIaml ...cccivieirireeicrceiennesesnnse s seseseseseseseeseseseesssssssssesesessssesssssssssesans 11
INDUL FHlES ettt bt sassssb e bt bbbt as m
EXAMPIE oottt s bbb sa s st en 112
Solving a System of Linear Equations with Gaussian Elimination

(GAUSELIM.INGC) ..ooviveirierisnierenieniinisssssssssssisssssessssssessssssssessssssssssssssssessssnsens 114
DesCription ... 114
User-Defined TYPES ovveeveriinenenrseneesnieenissesessessessessesssssassssssessesssssssesssssssanses 114
Input Parameterscceococeercinneinneceneesecsreee ettt e se oo saene 114

vi Turbo Numerical Methods Toolbox

OUutput Parametersccvveecverrcnoiinnnnseeseiesesisssseeesiesessesesneresessessstsinassesneses 115

Syntax of the Procedure Call ..ot 115
SAMPIE PrOZIAIN ..coveiviiveierenenienineiessnisssnsssesssssssssssesssssseressesssessenssersosssesesses 115
Input File oottt r e er et ses 115
EXAMPLE oottt snb et e s e e s e 116
Solving a System of Linear Equations with Gaussian Elimination and
Partial Pivoting (PARTPIVT.ING)ocooiivirnrririeecnrcieeeninesssesesesessssesssssenens 17
DESCIIPHON coviviririiinicieeineieniisrss et seessesseseseessssesssssrassontsssusssasssssens nu7
USer-Defined TYPES .vovvvrrierereneiniirerseeseesescssisassessesensesissssssssssesessisessssnsesesess 17
Input Parameters ... 17
Output Parameters ...t 118
Syntax of the Procedure Call ..ol ... 118
SAMPIE PrOGram ...cccooviveiineriersicnniereinnsseesnsensssssssesesssesssssssmsesessasessssessasasssses 118
INPUE FIle oottt es st naens 118
EXAMNPIE oottt i ess s e s ss e srensas s es 119
Solving a System of Linear Equations with Direct Factoring
(DIRFACTIING) coccvtreeeinirernineserereesernanmnssssesesesssnmsssssesssesenseissassssassssassssssssssens 120
DESCIIPHOI 1vvvviiecrirriiirririseneenesenissesesseesesresonsessssessssssessssesnoressssassssssostsasnssanes 120
User-Defined TYPES .covevereeerereerienniccineiseesserstsensesessessessesmaesssscsseseessessisesssseaes 120
Procedure LU_Decompose Input Parametersccocovenerrecnneirennerenans 121
Procedure LU_Decompose Output Parameterscccccoeeveeencercncrcenneseanaes 121
Syntax of the Procedure Callcoccoevevinmrriecninennnnneereesseeseaeassesees 121
Procedure LU_Solve Input Parametersccennieenemscmsnsnmnenes 121
Procedure LU_Solve Output Parameterscccovevennerivenerienssssesersesnnansnaens 122
Syntax of the Procedure Callccccoevemieeiniincrneernirenenrereseeessienneeeees 122
SAMPIE PrOGIAIN o.ocvveuiiiniiinicsnerniisisisesssesssessossssssssssssssssssasesssnssssosssnerassssnes 122
INPUL File ot snes et ssss e st s b s s 122
EXAMPIE oottt st sss s e n e 123
Solving a System of Linear Equations with the Iterative Gauss-Seidel Method
(GAUSSIDLING) covvveeereosseeeesersessesssssesssssessssseessseesssssensessessssmsessessesses 126
DESCIIPHON ..ovviiciiicirinreiisiisrcinene st asss e ssae e sasesaesas 126
User-Defined TYPES ..coivcvveeeeieeiriiiieresesesscstsresesssssssssssssssssssssesssssssesssiessssssnns 126
Input Parameters ... 127
Output Parametersococeceeiiiinireneniieeeiesesieenssiisssiesssens 127
Syntax of the Procedure Callcooeeervcnnercecrneceene e esiscseeenens 128
Sample PIOZram ..o imesssssens 128
Input File o 128
EXAINPIE oot ses s sss et seresensesessebsssssesses 129
Chapter 7. EIGENVALUES AND EIGENVECTORScccoinnmeniinniniees 131
Real Dominant Eigenvalue and Eigenvector of a Real Matrix Using the
Power Method (POWER.INC) ettt et ren et sh st aeesen e R b n e ens 133
DESCIIPHON vttt e st s 133
User-Defined TYPES ceovvcevvveveririceinerrninesesessesisssssssesessensasssssessssssentosessosssessenens 133

Table of Contents vii

Input Parameters ... 133

Output Parameters ... 134
Syntax of the Procedure Callccoooeevccvirncnencnnnieceseeeneisesssiseesessenees 134
COMIMENES coeiveeeieiiieentrtn ettt e bsesbst bbb s stas s e e basrens 134
SamPle PrOZram ...cccecoeviinieieeencirnenssnisnssesessesessssssssesssscssessessssosssnscsesscsesens 135
INDUL FIlE oot s ettt et sta s ss st staes 135
EXAIMPIE oottt sess s sesars s s ben s 135
Real Eigenvalue and Eigenvector of a Real Matrix Using the Inverse
Power Method (INVPOWER.INC)coeveveuniniennenneenenesseisinsaesseseessessesenens 137
DESCrIPHON .ottt sasressseas 137
USer-Defined TYPES .oovveecvrerreriririesiesiiesnsestessssseseresssssssesssesssssessassassesssessanaes 137
Input Parameters ... e ses s sens 137
Output PArameters ...t seesesesesisesesesseresssesessesens 138
Syntax of the Procedure Call ... 138
COMIMENES cevevviirierereireetrie e st rsessssesases e esesssastsesssssassssesesensassanesasseseasssans 139
Sample PrOZIam cccccevvevierininnniereiseesnessassnssessesisssssssssssscssssssssssnssssssessassesens 139
INDUL FIlE ottt cs e sen st sens s senesenees 139
EXAMPIE ovrieeeceeiicitreec sttt s ese et sen e 140
Real Eigenvalues and Eigenvectors of a Real Matrix Using the Power
Method and Wielandt's Deflation (WIELANDT.ING)ccccovvmvirenenerseneennes 143
DESCHIPHON ..ovvniicniieiiiereic st e e s s enene 143
USEr-Defined TYPES ...ocoveervverenrereerieintnensicisasee s essessessssessssssssssesasssenesnes 143
INPut Parametersoccocoieiiiinienencsecre e e e ssesee st esesssseesessassesressesseenes 143
Output Parameters uccreciiiecireeresesrsssiirensessessssissssseesesesssssossssaen 144
Syntax of the Procedure Callccoovvemierinnnierineenneeresresesesssessssesesnas 145
COMIMENES o ses e srensasee s sasre e s sbsbsbs e aersens s bsbsberensn 145
Sample Program ... s s ssenensesessanes 146
INPUL FIlE oot sass et s e s e sas s er e s s s 146
EXAMPIE ceceeveircurisisieninetseiisssisseseesessre e nmsssssessasesssesssstsessesssessensasessnese bt seanes 146
The Complete Eigensystem of a Symmetric Real Matrix Using the Cyclic
Jacobi Method (JACOBLING) ..cccccvveircrennirnirrererseesesseesseseasesensensessessersessesens 149
DeSCription ccieceiiniiiiiirc et e 149
User-Defined TYPES ...oevvrrinrieneriernnissssmmmnseesesessssssassensssessssssssssssasssssssseses 149
Input Parameters ...ttt 149
OUutput PArameters cocoececivevieieereincenensereesssesssnsseseresessesssssnssssssesessssssssenesene 150
Syntax of the Procedure Callccocoovveerreercnreee e sereseeneens 150
COMIMENES 1evvvervecveereesseseseessesssssssssssssecssssssessssssbessssssssssssssssssssssssssssessessassssns 151
SamPple PrOZIAIMN ..ot ssssesssssseessses st sssnssassesesssssssssssssssesssesesenes 151
INPUL FIle ottt seasssesereseess et srae e et sesees 151
EXAIMPIE ooeoviviiviriierieeneerntnnnenie st sensese st sass st sass et sstssses s anesesesenens 152
Chapter 8. INITIAL VALUE AND BOUNDARY VALUE METHODS ... 155
Solution to an Initial Value Problem for a First-Order Ordinary Differential
Equation Using the Runge-Kutta Method (RUNGE_LINC)c.coeovieererrerenne 159

viii Turbo Numerical Methods Toolbox

DeSCIIPHON oot s 159

User-Defined TYPES ...cvvcerrrereirerserenniirsiseneieesssessissssssssessessssssssessessessssnssnnes 159
User-Defined FUNCHON .uvevevevcecniceecincesesisnressessis e sesssssesssesssssssesssassssens 160
Input Parametersccccocvvviininenienieiinnteieestinteenesteste st sse s st e e e 160
Output Parameterscccveveevnieseenseermessinniiessessessesesssesissssenses 160
Syntax of the Procedure Callcccvevvevrnieeieieneseieseessesssesesnssisserenenns 161
COMIMENES ittt et sttt s bbb st s hasas et ensos 161
SAMPIE PIOZIAIM .ccoovieeecieiieierereerer s ssse s ssastesssas s sssse s sesensesessssesenes 161
EXAMPIE ittt esens 162
Solution to an Initial Value Problem for a First-Order Ordinary Differential

Equation Using the Runge-Kutta-Fehlberg Method (RKF_1INC) 163
DeSCriPtion ..o e e 163
User-Defined Typesccoovnnee. e bR s 163
User-Defined FUNCHON c.cvvivcieceeciccicteinnisiesrs et sssssesssesssessosesenns 163
Input Parametersocccieiiinmmiiiiis s ene 164
Output Parameters ... 164
Syntax of the Procedure Call c.ccoovevereornininencireeineeresseeeecessnssansnss 164
COMIMENES vttt essseesesesseshssssessessessbensessases 165
Sample Programc.cceoeenciennneiisieisseesesese e sssessssssssssesessessssssens 165
EXAMPLE coecveeereeceriinieineninsseissinescesssseseeseesessssersssssssssserssssessscasssessesssessssass 166

Solution to an Initial Value Problem for a First-Order Ordinary Differential
Equation Using the Adams-Bashforth/Adams-Moulton Predictor/Corrector

SCheme (ADAMS_LING) oeevvoeseceersesssersesssessssesssssessesssesssesssesssmseessssneee 168
Description ... 168
User-Defined TYPES ocvevecrrririveniiscrnenesiissse s ssssssesssnssssessssssesosssssssssasasanns 169
User-Defined FUNCHON ocvuvvcrnniercreeinrenieinensesssssssrssssssssssstssssssssssesessonss 169
Input Parametersc.o.covvvrnriiciiiiiiniine e st seaes 169
Output Parameters coeicivireeiennersenmmnsesennninessesessesssssesssseesassesssnsressesees 169
Syntax of the Procedure Callccovnicneeiiiieseeneseeeie s e sasennens 170
COMMENLS ovvviiivisiriicitiii s e 170
Sample Program ... esssssssessssesssscsessesasssnens 170

EXAMPIE vttt s s nas 171
Solution to an Initial Value Problem for a Second-Order Ordinary Differential

Equation Using the Runge-Kutta Method (RUNGE_2.INC)c.cccevrrineernnne 172
DeESCriPHon .cocviieeiiieiiei e s s saene 172
User-Defined TYPES .cvcuvveveverinrrnisnierersssieeseseiniinsssssssssissssssssssesessesssessssssosssnses 173
User-Defined FUNCHON ..o.cieiiiiinininceiiresninsessersesssiesesesseseesssssesernnssenne 173
Input Parameters ... 173
Output Parameters ..o sesens 174
Syntax of the Procedure Callc.cocoermrerrnireeieeneresresessesssessesienens S 174
COMIMENES .eeieiietiuirnreie e reerees et st et st st r e s see s sas b b sbe st sressseb e sbsbereseesbans 174
SamPIE PrOZIam cocciieiiireeiiieeiesceereeese e esssessesessssensseesessesenssesesssanasseens 175

EXAMPIE oot ettt et sr b st seaee 175

Table of Contents ix

Solution to an Initial Value Problem for an nth-Order Ordinary Differential

Equation Using the Runge-Kutta Method (RUNGE_N.INC)cccceoevrrernrnes 178
DESCIIPHON ..ttt sessre e sesesessasaseseseeresastssesassseses 178
User-Defined TYPES ..ceeeeeveeereeenireiiersesieseeseenesseesesisessesessese s ssssasessasssnis 180
User-Defined FUNCHON ..c.c.cvirreiirerceriiniernnnssnrnnmessessnsessesssssssssssesssssssssssesssssens 180
INput Parameters ...c...cococcvneiniiieirnernesensenesnssssenesseesesssssiessessssessenensssenes 180
Output Parameters ... e ser e seseseseesssesesssesesenens 181
Syntax of the Procedure Callccovvceviininerinrinnnrnrescs s ssesssaeeees 181
COMIMENES .ottt sresaes et ses e sas st sn s eeses e sas e ssnenassnssesnesaaste 181
Sample PrOZIAM .occoveicvicieiiiseeie s ces s tesssssssssessesssseastesssassesessssssaseses 182

EXAMPIE oottt eries e s s et as et es et b nas 182

Solution to an Initial Value Problem for a System of Coupled First-Order
Ordinary Differential Equations Using the Runge-Kutta Method

(RUNGECSLING) cocieiieierernieieteresisissssssssssssssssssssssssssssssssssessssassesssessssssesesasess 186
DESCIIPHON .eceiiiieiirircciinecidn sttt reeste e st sere st st e e eae e e sne s 186
User-Defined TYPES ..uocieeerveceereenercirirssse e tsssssesssssessssesssssssssesesssssssnssssnes 188
User-Defined FUnCHONS c.cccveieeiiriiininicisseee e sssesssessessesssssssssssssssesesens 188
Input Parameters ...t ssasssessens 189
Output Parameterscococreirecnneeeninceenennsestceseeseeeesseesessssesescsasesseressses 189
Syntax of the Procedure Callcccoovveeivnecciinneininerirersiesienssissssssssssesssenens 190
COMIMENES ottt ettt seesa e ssassasesresesessnsssnessassersesontons 190
Sample Programceccecievcceieriiineeeesesee et ssasessse st sesesssesesesasssesssenesassens 191

EXAIMDIE ocvovieirrec ettt snss et sre st s san st st 191

Solution to an Initial Value Problem for a System of Coupled Second-Order
Ordinary Differential Equations Using the Runge-Kutta Method

(RUNGELS2.INC) coovvevenneenesiseeansssissssssisssssssssesisssssssssssssessssesssssssssssssssssens 196
DESCIIPHON .ocvveriiiiiiieiiinecenenenenenerrrre e e sresreseesesessessesse st assessesaesessetons 196
USer-Defined TYPES .ocvevrvienrnrnirnieiseesesssnssessssesssnssesssssssssssssssssssssssssssssssesens 199
Usei-Defined FUNCHONS ...ccvvvueerenerennerieeeeesiresssssersessrsarssssssssissssssesssssssasarses 199
Input Parameters ... 200
Output Parameters coceienierneriiinsimennsessesssesanmessosssmessresesssseses 201
Syntax of the Procedure Callcccocovrvivrriernrnrrreesrecr e e esesesesenens 201
COMMENLS oviiiriicirecicce e s s snssse s s e s e st ne 201
Sample Program ..cccceccninecnnrene e sssssss s e sssessssssssssssssssssssssseses 203

EXAMPIE oottt s 203

Solution to Boundary Value Problem for a Second-Order Ordinary Differential
Equation Using the Shooting and Runge-Kutta Methods (SHOOT2.INC) .. 208

DeSCription ..o e 208
USer-Defined TYPES .cvovvveererrereeenerirnsseseseesssssessssssessssssssssssssssssssssssessssssssessssns 209
User-Defined FUNCHON ..vovevivieiceeniviniriseessenienmessnnsssssiesssessissesessssssesssenns 209
Input Parameterscoocccreecnnneeniecnenneee s sense e 209
Output Parameters ... 210
Syntax of the Procedure Callcccoveverirenmrevcrsnmnnennrnsssnsessesesesseens 210
COMMENES vt s 210

X Turbo Numerical Methods Toolbox

SAMPIE PrOZram ..coccvevcieiivecsinirenecisesnssenssssesssessseseasssssssssssssssssssssssssessessssasans 211
EXAMPIE coorriiiiriicti ettt sttt et ns et een 211
Solution to a Boundary Value Problem for 2 Second-Order Ordinary Linear
Differential Equation Using the Linear Shooting and Runge-Kutta Methods

(LINSHOTZ2.INC) cocvrerererereinrerseresssssiesessasssesssssssessssssesssessssssssssssesssssnssassessssens 215
DeSCriPHiON ..ccviviiricriiniii i 215
USer-Defined TYPES ...covvvvecurieivernisrnsssisssssssnnmnsisssssessssssssssssssasssssassssessesssasssses 216
User-Defined FUNCHON ..ovvviiereineniniinieeninseessennssssisssssnssesssssessisssssesesses 216
Input Parameters ..ottt s ssesesenss 216
Output Parameters ... 216
Syntax of the Procedure Callcccvvvvvvrcinininnnerennnissiseesnsesns e essessssnnes 217
COMMENES vttt ettt ss e st e eb st s snss b bbb asssreassaeass 217
SamPle PrOZIAIM ...cvcvceiieeeeeciereiineeesstesssssssssssissssssessssassssssssssssessessessssessssossssns 218

EXAMPIE vttt er e et essnassss e e snenesnans 218
Chapter 9. LEAST-SQUARES APPROXIMATIONccooevvvvivernnneeneinnererenenns 221
Least-Squares Approximation (LEASTINGC) .cccocevvvevnmrennerenernnnesseseensssresenns 292

DeSCription ..ot s sssbes 222
USer-DefIned TYPES .crceceecuriverrereirensiresssreesesersiseesessessssessesssssssrssssssessesnssesseseses 223
Input Parameters ... eaes 223
OUtPUt PArametersccccceerevenievennneniriinsenesesssssesesssessesesssessesessssesssssenssses 224
Syntax of the Procedure Call ..o 224
COMIMENES cviiiiriiieisceitrt et srsas st se s sa s ssatsae e sens s e st bsnes 224

POLY.LSQ ottt esteessass s sssessssns 224

FOURIER.LSQ ..ottt tnresreeeestsst st st stsasssee s esaasanesesens 225

POWER.LSQ oovvvinrcrrernisreesseissnssssssssssssssssssssssssssssssssssssssessssssssssssassns 225

EXPLSQ ettt sstsnsene s st snsse e et rasaesesteserananesseenes 225

LOG.LSQ cooceirerireneernensinesseserstsstssssssssssssss s ssssssasssssssnsssssssssssssssesssssasssssses 226

USER.LSQ oottt eetseesesssesaesessssssessessssosssessesasserssnsssessossrenes 226

Sample Programcccevninncneinnie s iessessessasssessasesssissesssasens 227

INPUL FAlES .ovviiciec e bbbt b e st ss s 227

EXAMPDIE oottt snst sttt ens st snre s sa s s s e saens 227
Chapter 10. FAST FOURIER TRANSFORM ROUTINESccccoermrennen. 233
The Application Programs ...t 235
Data SampPlINg .ottt ses e 239
User-Defined TYPES .cvvcvrvrcrrereirniresesiessesessnsssstsssesssessssssssesessssessssssasssassasass 240
Fast Fourier Transform Algorithmscccveieeincnnnnnnnniennissnsnsnniessseseens 241

Procedure TEStINPULc.ccvcririeererecernnisssisnssensssresessnissssssssseastsssssressssssessesesss 241

DESCIIPLON eiviiiceriiccinreriireseseseretaesessrestsresesresesseranessessssssansesssssssseressasessanes 241

Input Parametersccoccvveveervcnineeionerneniennessienessenssessenesosssssiosessesesses 241

Output Parameterscccovevieeiiciinnecneiiisnnencensesesenesesseeseesnseessessenes 241

Syntax of the Procedure Callccccovmmrrreveceenrenenesere e reseene 241

Procedure MakeSinCoSTableccccvievvircrereineiesnseresesssessesssssssassessesenes 242

Table of Contents xi

DESCHIPHON wooviiririieiiiriiiiiiteeeneeesssreesesisssesssesssssssssssessessssssssssesasssersans 242

INput PAarameterscccovvecerinenieniesiinnsnenisessensensssinsssseesenssnesssssssessesens 242
Output Parametersc.ccceevveiveninienesnrsssermnesenseisissnssssssessssesesssessnns 242
Syntax of the Procedure Callccoocemveeerieierereeeeeeee e 242
Procedure FET ...t issseesssasens 242
DESCrIPHON cocceeiiiicririirciniiiii et eeees e sesesesesessssas s sssnsaes 242
Input Parametersccciiivicninceeinne ettt 243
Output Parameters ... nessssssssesssens 243
Syntax of the Procedure Callcoocrvinrinervncnnenenneinenerneeseseenens 243
Fast Fourier Transform ApplICAtIONSc.cccccveeverneeecseieensensresesssssssesssessssnsens 244
COMPEFTINC it et et sesssssesssssenssssesessssnsssssssssesens 244
DeESCIPHON ..eoeirieiiieiiineceitninee e setsess e sarasssresssesasnsssesasesesesessansens 244
Input Parametersccccccvcvcrnnneinsienensessnenessssessissssnnessseesssssssssssions 244
Output Parameters ... essesesesesasseseseenens 244
Syntax of the Procedure Callccccoeorvicvinrenirenieeeereee e reseensenaes 245
COMIMENES 1ttt sr s e st et ssrsasessesssesesasasns 245
REALFETINC .ot reneseereseiesesesesssse et sessbsesssesesssesssesesees 245
DESCIPHON ..ottt seessesesssessssssesessssssssesesenssnssssesasenses 245
Input Parameters ...ttt sesse e sasans 245
Output Parametersccocoiverivevnneeeineiseiennisesismsesienssssssessessssesssseses 246
Syntax of the Procedure Callcccooveivvivvernevcrnenrereieiennnsnneesse s 246
COMIMENES 1ottt seebseee s sre e s s s s ese v bessssnsnsasaresans 246
COMPCONVLINC ..ot eeseseseseeseseesesesesessesesasssesssens 246
DeSCrPOn ocviviirieiniieiiinictct ettt ee e sessen e s reseaens 246
Input Parameters ... ssesessssssesesnes 247
Output Parameters ... 247
Syntax of the Procedure Callcocovvvveiveimrnnrcsninsnennsinensnesssesssesens 247
COMMENES coviiiiri st s e seseaesesesets 247
REALCNVLINGC .oiiiiiiiiiiiicineeseeensensseresesssisesasssssesssnsssssssssessassenss 248
DeSCripHON oottt e sse e ese s s bonn 248
Input Parameterscccccoreiiiniciccnncnnnensnesnneness e eressssienennes 248
Output Parameterscoeeievenininininnienceiireeeescreeeesereasessessesenssesasens 248
Syntax of the Procedure Callcccccoerriernniiennieineienensnssssssessensennes 249
COMIMENES .evirrciirierieeeriteree ettt es e ees e e s s s e sesaesssbesesesarasasens 249
COMPCORRINC o e ssesessessessensssasesssssnnes 249
DESCIIPON ..covviiiiiirii et ees 249
Input Parametersccccovvienniiieniennneneiinneienssnsenessnesesssesssssssenenns 250
Output Parameters ... eseseseseens 250
Syntax of the Procedure Callccoeiverrvninnrncsennnnsesinsesissesse s 250
COMMENES ottt sesseseeesss e esssestsesssssesesesesesassssssssessanns 250
REALCORRINC .ocieeeereerrrreresesesseseseesre s e sesesesssssssssssesssssssnssnaes 251
DeSCrIPHON .ovviviiririciiniciiiircserret ettt et s an 251
Input Parameters ...ttt s seseens 251
Output Parametersccooveevevenneeererincener oo esessssesesssens 252

xii Turbo Numerical Methods Toolbox

Syntax of the Procedure Callccooeveriieceerinnresieeseneeseseseseenesenes 252

COMMENLS ot ettt 252
Samnple PrOgramoccooeeceninieneeniniesmseinmmessssasensssssssasssssssessessases 252
INPUL FilE oottt bbb b 253
EXAMPIE oeviireiieciceireniets ettt sttt ses et s st sb st snas s nas 253
Chapter 11. GRAPHICS PROGRAMSc.covverrrreirnninnnsnetesssssressssessseses 261
Function of the Least-Squares Graphics Demonstration Program —................. 262
Function of the Fourier Transform Graphics Demonstration Program 264
PrINHNE oottt et resesenesstsesssesssesesesasssssesessnsesssnasssnssssssssses 265
Rebuilding LSQIBM.COM c.vimemineiniinennesneisesssesnesssisesssssssssssssssssssees 267
Rebuilding FFTIBM.COM ...ovvevveninreeereeesennirsresssssssssssssssssssssssessssssesssans 268
Rebuilding for the Hercules Cardcccoeenineerinnininieesinnesseseesesnssssesenns 269
Rebuilding for the EGA Card ..o ssssessesessnssssneos 269
Using the Math COPIOCESSOT ccceirieriernenrneisrssissssrersessessessssesesssssessssnsons 270
REFERENCES ..ottt ss e ssssssseesesssnasssessenes 271
INDEX it ast s s e e s sbe s sn e 273

Table of Contents xiii

Xiv Turbo Numerical Methods Toolbox

Introduction

The Turbo Numerical Methods Toolbox is a reference manual for both the student
of numerical analysis and the professional needing efficient routines. An elemen-
tary background in calculus and linear algebra is assumed, although many of the
algorithms use only high-school-level mathematics. A general knowledge of Turbo
Pascal® is also assumed. If you need to brush up on your knowledge of Pascal, we
suggest looking at the Turbo Pascal Reference Manual and/or the Turbo Pascal
Tutor Manual.

Before you begin using a particular routine, read through this brief introductory
chapter and then refer to the chapter that interests you.

Toolbox Functions

The Turbo Pascal Numerical Methods Toolbox provides routines for

* Finding solutions to equations

* Interpolations

+ Calculus

* Numerical derivatives and integrals

* Matrix operations: inversions, determinants, and eigenvalues

+ Differential equations
* Least-squares approximations

* Fourier transforms

About this Manual

The major areas in numerical analysis are represented in this Toolbox, with each
chapter focusing on a particular problem. Each routine begins with a general
description of the implemented algorithm or numerical method. (References to
numerical analysis texts are provided for each numerical procedure.) User-supplied
types, functions, and input and output parameters are defined, and the syntax of
the procedure call is provided. If appropriate, a “Comments” section is also pro-

vided.

Finally, every algorithm in the Toolbox is accompanied by a general-purpose
program that handles all the necessary 1/0, while allowing you to try each algo-
rithm without building any code. Handily, these sample programs will often reduce
the coding your own application may require.

As an example, let’s say you want to find the roots to an equation in one variable.
First, you would read the introduction to Chapter 2, “Roots to Equations in One
Variable,” and choose the numerical method best suited to your particular problem.
Second, you would run the sample program for the desired numerical method to
determine the necessary input and output. Third, you would write a Turbo Pascal
function defining your equation, using the function already coded in the sample
program as a guide. Fourth, you would run the sample program with your function
substituted for the original one. Of course, if these algorithms are to be part of a
larger program, you must build all the interfaces to the other parts of the system;
but this should only be done after you gain experience with the particular numeri-

cal method.

Several books are referred to throughout the text; complete references are listed
at the back of the book in the section entitled “References.”

The body of this manual is printed in normal typeface; other typefaces serve to
illustrate the following;

Alternate This type displays program examples and procedure and function
declarations.
Italics This type emphasizes certain concepts, first-mentioned terms, and

mathematical expressions.

Boldface This type marks the reserved words of Turbo Pascal in text and in
program examples.

2 Turbo Numerical Methods Tooclbox

On the Distribution Disks

The routines for this Toolbox are contained on three packed disks. Their contents
and general installation instructions are covered in Chapter 1.

System Requirements

All routines will run in standard Turbo Pascal version 3.0. (They will also run in
version 2.0, but you must make one change to use the sample programs; see the
section entitled “Installation” in Chapter 1.) All sample programs will run on an
IBM® PC or compatible machine using DOS 2.0 or greater.

A small portion of the Toolbox uses graphics (see Chapter 11). These programs
are for PC-DOS users only, requiring either an IBM PC Color Graphics Adapter,
an IBM Enhanced Graphics Adapter, or a Hercules Monochrome Graphics
- Adapter. Recompiling these requires the Turbo Pascal Graphix Toolbox® version
1.06A or later, and Turbo Pascal 3.0. They can also be recompiled for the EGA and
several other cards using version 1.07A of the Graphix Toolbox.

We strongly recommend that anyone serious about numerical analysis invest in
hardware and software to run Turbo Pascal with support for the Intel 8087 numeri-
cal processing chip:

¢ Hardware: an 8087 chip plugged into the motherboard of a PC, XT® or equiva-
lent, or an 80287 chip in an AT® or equivalent.

 Software: TURBO-87.COM, the version of Turbo Pascal designed to take advan-
tage of the 8087 chip.

For machines running the Intel 8088 CPU, the increase in execution speed of
programs using real-number arithmetic is often a factor of ten or more, while for
80286 machines, the increase is only about a factor of two (Fried 1985). Perhaps
more important than speed is the increase in accuracy — 16 significant figures accu-
racy for Turbo Pascal with 8087 support versus 11 significant figures for standard
Turbo. Since round-off errors are a serious concern in numerical analysis, the
increased accuracy is of great value.

All of the examples in this manual were run using Turbo-87. If you run them
without the Turbo-87, you will usually get less accurate answers.

Introduction 3

Acknowledgements

We refer to several products throughout the manual; following is a list of each one
and its respective company.

* Turbo Pascal, Turbo Pascal Graphix Toolbox, SideKick, SuperKey, and
Reflex: The Database Manager are registered trademarks and Turbo Pascal
Numerical Methods Toolbox is a trademark of Borland International, Inc.

» IBM, XT, and AT are registered trademarks of International Business Machines
Corp.

* MS-DOS is a registered trademark of Microsoft Corp.

4 Turbo Numerical Methods Toolbox

c H A P T E R 1

Routine Beginnings

This chapter provides you with everything you need to start using the routines in
this Toolbox. We'll discuss how to unpack the disks for use and list the files avail-
able once the disks are unpacked. We also briefly discuss data types and defined
constants used in the Toolbox, and the setting of compiler directives.

First, though, before we thrust you into the middle of numerical madness, let’s
take a look at one way to use this Toolbox.

Using the Toolbox: An Example

In late 1986 and early 1987, the America’s Cup 12-meter yacht championship was
held. The 12-meter yachts are just large sailboats, but the competition is so intense
that the only way to be competitive is to use dozens of people, spend millions of
dollars, design a special boat, and spend a couple of years training for the race. The
race has become so sophisticated that many of the sailboats have on-board com-
puters and other electronic equipment.

To keep stride with other challengers, one yacht’s crew used personal com-
puters, and of course, Borland software. They used Turbo Pascal to design the
boat’s hull. They used Reflex: The Analyst® to maintain their databases and to dis-
play plots while the boat was sailing. And when it came time to do some mathemat-
ical modeling, again they turned to Borland for its inimitable software and chose
the Toolbox.

Simply speaking, the problem they had was one of “precision monitoring.” It
takes a crew of very highly skilled sailors to compete in America’s Cup races, but
even the best skippers cannot act with sufficient precision to win. A typical race
lasts for several hours, and the winner usually wins by only a few feet.

The electronic equipment on a boat can sense with reasonable accuracy all of the
crucial variables: boat velocity, wind velocity, boat direction, boat position, and so
on. This data must then be made available to the skipper in a coherent form, and
he/she must decide at what angle to place the rudder based on that information.
The problem is too complex to rely on intuition alone.

Even just displaying the velocity is more complex than you might think at first.
When sailing on the ocean, the waves are big enough that the velocity is in constant
flux. Fortunately, the fluctuations due to the waves represents a steadily periodic
force. By using the Fourier transforms in Chapter 10 of the Toolbox, the crew was
able to identify the periodic portion of the velocity and subtract it out. The result:
the velocity as a function of time but with the wave fluctuations eliminated. The
graph of this modified velocity is much smoother, and allows the skipper to tell
much more quickly and accurately whether the boat is accelerating or decelerating.

To measure the acceleration quantitatively, the crew used the fact that the accel-
eration is the derivative of the velocity. They were able to do this easily with the
differentiation routines in Chapter 4 of the Toolbox. They were also able to directly
measure the distance travelled by using the integration routines in Chapter 5, and
the fact that distance is the integral of the speed.

Perhaps the most difficult problem in navigating a sailboat is aiming the rudder.
You can’t just aim the boat in the direction that you want to go, rather you have to
pick a direction that you can sail rapidly, depending on the wind direction. An
experienced skipper can judge this pretty well, but not well enough. Every boat is
a little different, and the best way to handle one boat is not necessarily the best way
to handle another.

So, the team ran extensive trial races with the boat to gather data on how the
boat performed in various circumstances. The data was collected automatically by
electronic instruments on board, and stored digitally on floppy disks. They then
used Reflex to manage the data and to display graphs. But they lacked the tools to
relate their data to the data they would have under actual racing conditions.

In order to predict the behavior of their boat in an actual race, the team created a
model from their collected data using the least-squares routines in Chapter 9 of the
Toolbox. With the least-squares routines, you can create a multiparameter model
and then find the values of the parameters that make the model most accurately fit
the data. With a mathematical model of the boat’s behavior, the team was then able
to predict how the boat would perform under circumstances similar but not identi-
cal to its practices.

6 Turbo Numerical Methods Toolbox

This, of course, is just one of many applications of this Toolbox. Now, let’s go on
to the fundamentals.

The Distribution Disks

All of the Toolbox routines are contained on three disks. (Note, however, that
MS-DOS® users will receive two disks; Disk 3 is for PC-DOS users only.) Each
disk has packed files corresponding to chapters in the manual. Use the program
UNPACK.EXE to unpack the files, described in the next section, “Installation.”

The files for each chapter are self-contained and do not require any files from
any other chapter, with these exceptions:

+ All files require Turbo Pascal (not inciuded).
+ Most files require COMMON.INC, located on Disk 1.

* The files for Chapter 11 require files from Chapters 9 and 10, as well as the
Turbo Pascal Graphix Toolbox (not included).

The numerical analysis routines are in the files with the .INC suffix. The files
with the .PAS suffix are demonstration programs. To run a demonstration program,
get into Turbo Pascal and load the .PAS file of your choice. The menus are self-
explanatory. The .DAT files contain input data for specific .PAS files.

If you're a PC-DOS user with an IBM color graphics monitor or compatible, you
can run LSQIBM.COM or FFTIBM.COM from Disk 3 to see a quick graphic
demonstration of the power and usefulness of the Toolbox. These routines require
the files SAMP11A.DAT, SAMP11B.DAT, 4X6.FON, 8X8.FON, and ERROR.MSG
to be on the current directory. (These files are also on Disk 3.)

Contents of the enclosed disks:

Disk 1

README

README.COM (program to display README file)
UNPACK.EXE (installation program to unpack chapters)
COMMON.INC (used throughout the Toolbox)
COMMONZ2.INC (for Turbo Pascal 2.0 users)
CHAP2 (packed file with routines for Chapter 2)
CHAPS3 (packed file with routines for Chapter 3)
CHAP4 (packed file with routines for Chapter 4)
CHAPS5 (packed file with routines for Chapter 5)
CHAPG (packed file with routines for Chapter 6)
CHAP?7 (packed file with routines for Chapter 7)

Routine Beginnings 7

Disk 2

UNPACK.EXE (installation program to unpack chapters)

CHAPS (packed file with routines for Chapter 8)

CHAP9 (packed file with routines for Chapter 9)

CHAPI0 (packed file with routines for Chapter 10)

CHAPII (packed file with routines for Chapter 11; PC-DOS users only)

Disk 3 (PC-DOS users only)

README

README.COM (program to display README file)
LSQIBM.COM (requires IBM graphics monitor)
FFTIBM.COM (requires IBM graphics monitor)
LSQHERC.COM (requires Hercules graphics card)
FFTHERC.COM (requires Hercules graphics card)
SAMP11A.DAT (data file for LSQ*.COM)
SAMP11B.DAT (data file for FFT*.COM)
14X9.FON (from the Graphix Toolbox)

4X6.FON (from the Graphix Toolbox)

8X8.FON (from the Graphix Toolbox)
ERROR.MSG (from the Graphix Toolbox)

Installation

The files CHAP2 through CHAPI11 are packed files corresponding to the chapters
in this manual. In order to use these files, you must first unpack them with
UNPACK.EXE. The syntax is as follows:

UNPACK packed-file-name target-drive
For example, the files for Chapter 2 can be extracted and put on the current

directory on drive C by placing Disk 1 in drive A, changing the logged drive to A by
typing A: at the DOS prompt, and then typing

UNPACK CHAPZ C:

Wildcards are okay to use for the packed file name, and a directory can be
specified with the target drive if it ends with a backslash (\}. For example, all of the
packed files on disk can be placed in a directory C:\NUMERIC by doing the
following:

UNPACK CHAP* C:\NUMERIC\
if the directory C:\NUMERIC already exists.

8 Turbo Numerical Methods Toolbox

You may wish to copy the packed files onto your hard disk, and then unpack
them as you need them.

Note: These files are not copy protected. All files are ordinary DOS files; there
are no hidden files. The unpacking program only extracts ordinary text files —it
will not create directories, modify the distribution disk, create hidden or protected
files, or do anything unexpected.

Contents of the packed files:

CHAP?2 (packed file) “Roots to Equation in One Variable”
BISECT.INC NEWTDEFL.PAS
BISECT.PAS RAPHSON.INC
LAGUERRE.INC RAPHSON.PAS
LAGUERRE.PAS RAPHSONZ2.PAS
MULLER.INC SECANT.INC
MULLER.PAS SECANT.PAS
NEWTDEFL.INC

CHAP3 (packed file) “Interpolation”
CUBE_CLA.INC SAMPLE3B.DAT
CUBE_CLA.PAS SAMPLES3C.DAT
CUBE_FRE.INC SAMPLES3D.DAT
CUBE_FRE.PAS SAMPLE3E.DAT
DIVDIF.INC SAMPLE3F.DAT
DIVDIF.PAS SAMPLE3G.DAT
LAGRANGE.INC SAMPLE3H.DAT
LAGRANGE.PAS SAMPLES3I.DAT
SAMPLES3A.DAT

CHAPH4 (packed file) “Numerical Differentiation”

DERIV.INC DERIV2FN.INC
DERIV.PAS DERIV2FN.PAS

DERIV2.INC INTERDRV.INC
DERIV2.PAS INTERDRV.PAS
DERIVFN.INC SAMPLE4A.DAT
DERIVFN.PAS SAMPLE4B.DAT

Routine Beginnings 9

CHAP5 (packed file)

ADAPGAUS.INC
ADAPGAUS.PAS
ADAPSIMP.INC
ADAPSIMP.PAS

ROMBERG.INC

CHAP6 (packed file)

DETINC
DET.PAS
DIRFACT.INC
DIRFACT.PAS
GAUSELIM.INC
GAUSELIM.PAS
GAUSSIDL.INC
GAUSSIDL.PAS

CHAP7 (packed file)

INVPOWER.INC
INVPOWER.PAS
JACOBILINC
JACOBI.PAS
POWER.INC

CHAPS (packed file)

ADAMS_LINC
ADAMS_1.PAS
LINSHOT2.INC
LINSHOT2.PAS
RKF_1INC
RKF_1.PAS .
RUNGE_-LINC
RUNGE-1.PAS
RUNGE.2.INC

“Numerical Integration”

ROMBERG.PAS
SIMPSON.INC
SIMPSON.PAS
TRAPZOID.INC
TRAPZOID.PAS

“Matrix Routines”

INVERSE.INC
INVERSE.PAS
PARTPIVT.INC
PARTPIVT.PAS
SAMPLEG6A.DAT
SAMPLEG6B.DAT
SAMPLEG6C.DAT
SAMPLE6D.DAT

POWER.PAS
SAMPLE7A.DAT
WIELANDTINC
WIELANDT.PAS

RUNGE_2.PAS
RUNGE_N.INC
RUNGE_N.PAS
RUNGE_S1LINC
RUNGE_S1.PAS
RUNGE_.S2.INC
SHOOTZ2.INC
SHOOT2.PAS

“Eigenvalues and Eigenvectors”

“Initial Value and Boundary Value Methods”

Turbo Numerical Methods Toolbox

CHAP9 (packed file) “Least-Squares Approximations”

EXP.LSQ POLY.LSQ
FOURIERLSQ POWER.LSQ
LEASTINC SAMPLE9A.DAT
LEAST.PAS USER.LSQ
LOG.LSQ

CHAPI0 (packed file) “Fast Fourier Transform Routines”

COMPCNVL.INC FFTPROGS.PAS
COMPCORR.INC REALCNVL.INC

COMPFFTINC REALCORR.INC
FFT87B2.INC REALFFTINC
FFT87B4.INC SAMPI10A.DAT
FFTB2.INC SAMPI10B.DAT
FFTB4.INC SAMPI10C.DAT

CHAPI1I (packed file) “Graphics Programs™/PC-DOS only

FFTDEMO.PAS LEASTMOD
GENERIC.LSQ LSQDEMO.PAS
GRAPHIX.EGA

GRAPHIX.HGC

IOCHECK.INC

All sample programs call the include file COMMON.INC from the disk. This
file includes procedures that are common to all sample programs. When copying
any of the sample programs to a disk, be sure to also copy the file COMMON.INC
to that disk or the sample programs will not compile.

To use the sample programs with Turbo Pascal version 2.0, rename COM-
MONZ2.INC (which is on Disk 1) to COMMON.INC. (You may wish to preserve a
copy of the original COMMON.INC file by first copying it to a file called COM-
MONS.INC). If you run the sample programs with version 2.0 and do not make
this change, the programs will compile but will handle I/O errors incorrectly.

We have made the sample programs general and easy to use. For example,
numerical input can originate from the keyboard (where improper input is trap-
ped) or from a text file; output can be sent to the printer, screen, or text file; other
refinements are also included. Since, to a beginner, the supporting code may
obscure the simplicity of calling the procedure, we have included a minimal sample
program for Newton-Raphson’s method of root-finding (RAPHSONZ2.INC).

Routine Beginnings I

The Graphics Demos

Because graphic displays are often an essential part of numerical analysis, we have
included two demonstration programs (for PC-DOS users only) that involve dis-
play numerical results. As previously stated, graphics hardware is not necessary for
this Toolbox, but it is required for these two graphics programs. The programs are
built with subsets of the Turbo Pascal Graphix Toolbox; there are separate versions
for systems with the Hercules Monochrome Graphics card and the IBM Color
Graphics card (or good emulations of these cards).

The demonstration programs are on Disk 3. For instructions about how to run or
recompile them, see Chapter 11.

Data Types and Defined Constants

Data types that might be confused with those in the calling program have been
prefixed with the letters TN (for Turbo Numerical); for example, TNmatrix or
TNvector. You must define these variable types in your top-level program for two
reasons. First, you will probably need to use this type in your top-level program,
and the type must be defined to have the same scope as the Toolbox procedure.
Second, you will want to dimension arrays based on your particular needs. For
example, the Lagrange procedure requires the definition

type TNvector = array[0..TNArraySize] of Real;

The identifier TNArraySize is never referred to in any of the include files. It
should be optimized by the user, although we have set a default value in each of the
sample programs. It may be replaced with an integer or byte.

TNNearlyZero is the only defined constant that must be changed when standard
Turbo Pascal is used (instead of Turbo-87); it should be changed to 1E —7. (With-
out changing this constant, you will get a syntax error when compiling with stan-
dard Turbo Pascal.) For Turbo-87, the default value of this constant is 1E — 15.
(There are a few exceptions to these default values; where appropriate, the “Com-
ments” section of each routine indicates the exceptions.)

12 Turbo Numerical Methods Toolbox

Compiler Directives

Aside from the usual default values of the compiler directives in standard Turbo
Pascal, we have set the compiler directive to {$R +} in all include files that use
arrays, and to {$1-} in all sample programs. The first directive checks to see that all
array-indexing operations are within the defined bounds and all assignments to
scalar and subrange variables are within range. The latter directive disables I/0
error-checking. All the sample programs have their own 1/O error-checking proce-
dures (loaded in the file COMMON.INC), so that the {$I-} directive must remain
disabled in the sample programs. The array checker {$R+} should always be
active, since the performance penalty is slight and the advantages are significant.

Routine Beginnings 3

Turbo Numerical Methods Toolbox

C H A P T E R 2

Roots to Equations in One Variable

The routines in this chapter are for finding the roots of a single equation in one real
variable. A typical problem is to solve

x *explx) — 10 = 0"

In general, the routines find a value of x, where x is a scalar real variable,
satisfying

flx) = 0.0
where f'is a real-valued function that you program in Pascal.

All of the methods are approximate methods, meaning that they find an approxi-
mate value of x that makes f{x) close to zero. Because of round-off error, it is usually
not possible to find the exact value of x. Furthermore, they are all iterative
methods, meaning that you specify some initial guess that is some value for «,
which you think is reasonably close to the solution. The routine repeats some calcu-
lations that replace the guess x with a more accurate guess until the required level
of accuracy is achieved.

The bisection method (BISECT.INC) returns an approximation to a root of a real
continuous function of the real variable x. This method always converges (as long as
the function changes signs at a root), but may do so relatively slowly.

The Newton-Raphson method (RAPHSON.INC) also returns an approximation
to a root of a real function f of the real variable x. When this algorithm converges, it
is usually faster than the bisection method. If more than one root of a polynomial
equation is desired, then use Newton-Horner’s method (NEWTDEFL.INC).

The secant method (SECANT.INC) is similar to the Newton-Raphson method,
but doesn’t require knowledge of the first derivative of the function. Consequently,
it is more flexible than the Newton-Raphson method, though somewhat slower.

Newton-Horner’s method (NEWTDEFL.INC) applies Newton’s method to
real polynomials. It also uses deflation techniques to attempt to approximate all the
real roots of a real polynomial. Both the Newton-Horner and Newton-Raphson
methods are faster than the bisection and secant methods, but are undefined if
| f'@)] <= TNNearlyZero. This is less of a problem on machines with a high-
precision math coprocessor, since TNNearlyZero is smaller.

The Newton-Horner and Newton-Raphson methods both converge around mul-
tiple roots, although convergence is slow. These algorithms depend upon an initial
approximation of the root. If the initial approximation is not sufficiently close to the
root, the Newton methods may not converge. In some instances, an initial choice
may lead to successive iterations that oscillate indefinitely about a value of x usu-
ally associated with a relative minimum or relative maximum of f. In either case,
the bisection method could be used to determine the root or to determine a close
approximation to the root that can be employed as an initial approximation in the
Newton-Raphson or Newton-Horner methods.

Miiller’s method (MULLER.INC) returns an approximation to a root (possibly
complex) of a complex function of the complex variable x. Although Miiller’s
method can approximate the roots of polynomials, we recommend that you use
Newton-Horner’s method, the secant method, or (in the case of complex polyno-
mials) Laguerre’s method to find the roots of polynomials.

Laguerre’s method (LAGUERRE.INC) attempts to approximate all the real and
complex roots of a real or complex polynomial. Laguerre’s method is very reliable
and quick, even when converging to a multiple root. This is the best general
method to use with polynomials.

A caution when solving polynomial equations: Polynomials can be ill-
conditioned, in the sense that small changes in the coefficients may lead to large
changes in the roots.

16 Turbo Numerical Methods Toolbox

Stopping Criteria

All the root-finding routines use the function TestForRoot to determine if a root has
been found.

function TestForRoot(X, 01dX, Y, Tol : Real) : Boolean;

(**)

(* Here are four stopping criteria. If you wish to *)
(* change the active criteria, simply comment off the current *)
(* criteria (including the appropriate or) and remove the comment *)
(* brackets from the criteria (including the appropriate or) you *)

(* wish to be active. *)
(**)

begin
TeStFOYROOt .= (***************************)
(ABS(Y) <= TNNearlyZero) E: Y=0 *;
*
or (* *)
* *)
(ABS(X - 01dX) < ABS(01dX*Tol)) (* relative change in X *)
* *
(-)
(* or *) (*)
(* *) (* *)
(* (ABS(X - 01dX) < Tol) *) (* absolute change in X *)
* * * *
g* or *; g* *;
(* *) (* *)
(* (ABS(Y) <= Tol) *) (* absolute change in Y *)

(***************************)

end; { procedure TestForRoot }

The four separate tests provided by function TestForRoot may be used in any
combination. The default criteria tests the absolute value of Y and the relative
change in X. If you wish to change the active criteria, simply comment off the
current criteria (including the appropriate or) and remove the comment brackets
from the criteria (including the appropriate or) you wish to be active.

The first criterion simply checks to see if Y is zero (TNNearlyZero is defined at
the beginning of the procedure). This criterion should usually be kept active.

The second criterion examines the relative change in X between iterations. To
avoid division by zero errors, OldX has been multiplied through the inequality.

The third criterion checks the absolute change in X between iterations.

The fourth criterion determines the absolute difference between Y and the
allowable tolerance. Note: The parameter Tol(erance) means something different in
each test. Be sure you know which tests are active when you input a value for Tol.

Roots to Equations in One Variable 17

Root of a Function Using the Bisection Method
(BISECTINC)

Description

This method (Burden and Faires 1985, 28 ff.) provides a procedure for finding a
root of a real continuous function f, specified by the user on a user-supplied real
interval [a,b]. The functions fla) and fib) must be of opposite signs. The algorithm
successively bisects the interval and converges to the root of the function. You must
also specify the desired accuracy to which the root should be approximated.

User-Defined Function

function TNTargetF(x : Real) : Real;

The procedure Bisect determines the roots of this function.

Input Parameters

LeftEnd:Real; Left end of the interval
RightEnd:Real; Right end of the interval
Tol:Real; Indicates accuracy of solution

MaxIter:Real; Maximum number of iterations permitted
The preceding parameters must satisfy the following conditions:
1. LeftEnd < RightEnd.

2. TNTargetF (LeftEnd) «+ TNTargetF(RightEnd) < 0; the endpoints must have
opposite signs.

3. Tol > 0.
4, Maxlter = 0.

18 Turbo Numerical Methods Toolbox

Output Parameters

Answer:Real; An approximate root of TNTargetF
fAnswer:Real; The value of the function at the value Answer
Iter:Integer; Number of iterations to find answer
Error:Byte; 0: No error

1: Iter > Maxlter

2: Endpoints are of the same sign
3: LeftEnd > RightEnd

4:Tol =0

5: MaxIter < 0

If Error = 1 (maximum number of iterations exceeded), Answer is set to the last
x value tested and fAnswer is set to TNTargetF(Answer). If Error > 1, then the other
output parameters are not defined.

Syntax of the Procedure Call

Bisect(LeftEnd, RightEnd, Tol, MaxIter, Answer, fAnswer, Iter, Error);

The procedure Bisect determines the roots of function TNTargetF.

Comments

If a root occurs at a relative maximum or relative minimum, the bisection method
will be unable to locate that value of p if p does not occur as an endpoint of a
subinterval.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program BISECT.PAS provides I/O functions that demonstrate the
bisection algorithm. To modify this program for your own function, simply change
the definition of function TNTargetF. Note that the file BISECT.INC is included
after the function TNTargetF is defined.

Roots to Equations in One Variable 19

Example

Problem. Determine the solution to the equation cos(x) = x.

1. Write the following code for function TNTargetF into BISECT.PAS:

{-mmmmmmeem HERE IS THE FUNCTION ===c==c-aua- +
function TNTargetF(x : Real) : Real;
begin
TNTargetF := Cos{x) - x;
end; { function TNTargetF }
{rmmmmmm e }

2. Run BISECT.PAS:

Left endpoint: 0
Right endpoint: 100

Tolerance (> 0, default = 1.000E-08): 1E-6
Maximum number of iterations (>= 0, default = 100)? 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Left endpoint: 0.00000000000000E+000
Right endpoint: 1.00000000000000E+002
Tolerance: 1.00000000000000E-006
Maximum number of iterations: 100

Number of iterations: 28
Calculated root: 7.39085301756859E-001
Value of the function
at the calculated root: -2.82073423951701E-007

20 Turbo Numerical Methods Toolbox

Root of a Function Using the Newton-Raphson Method
(RAPHSON.INC)

Description

This example uses Newton-Raphson’s algorithm (Burden and Faires 1985, 42 ff.) to
find a root of a real user-specified function when the derivative of the function and
an initial guess are given. The algorithm constructs the tangent line at each iterate
approximation of the root. The intersection of the tangent line with the x-axis
provides the next iterate value of the root. You must specify the desired tolerance to
which the root should be approximated.

User-Defined Functions

function TNTargetF(x : Real) : Real;
function TNDerivF(x : Real) : Real;

The procedure Newton Raphson determines the roots of the function
TNTargetF.

The function TNDerivF must be the first derivative of function TNTargetF.

Input Parameters

Guess:Real; User’s initial approximation to the root
Tol:Real; Tolerance in answer (see “Comments”)

MaxIter:Integer; Maximum number of iterations permitted
The preceding parameters must satisfy the following conditions:
1. Tol >0
2. Maxlter > 0

Roots to Equations in One Variable 21

Output Parameters

Root:Real; Approximate root.

Value:Real; Value of the function at the approximate root.
DeriviReal; Value of the derivative at the approximated root.
Iter:Integer; Number of iterations needed to find the root.

Error:Byte; 0: No error.
1: Iter < Maxlter.
2: The slope is zero (see “Comments”).
3: Tol < 0.
4: Maxlter < 0.

If a root is found, it is returned along with the value of the function at the root
(which, of course, should be close to zero) and the value of the derivative at the
root. If Error < 2, the data from the last iteration is returned.

Syntax of the Procedure Call

Newton_Raphson(Guess, Tol, MaxIter, Root, Value, Deriv, Iter, Error);

Comments

Newton’s method involves division by the value of the derivative of the function.
Should the algorithm attempt to do any calculations at a point where the deriva-
tive is less than TNNearlyZero, the routine will stop and return an error message

(Error = 2).

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program RAPHSON.PAS provides I/0 functions that demonstrate the
Newton-Raphson algorithm. Note that the file RAPHSON.INC is included after
the functions TNTargetF and TNDerivF are defined.

The program RAPHSONZ2.PAS also provides 1/0 functions that demonstrate the
Newton-Raphson method. It is an extremely bare-bones program and is provided

22 Turbo Numerical Methods Toolbox

for the newcomer to Turbo Pascal who wants to see a simple, straightforward appli-

cation of a Toolbox routine.

Example

Problem. Determine the solution to the equation cos(x) = x.

1. Code the following two functions into RAPHSON.PAS (or RAPHSON2.PAS):

{----===-- HERE IS THE FUNCTION -------c-enuu }
function TNTargetF(x : Real) : Real;
begin
TNTargetF := Cos(x) - x;
end; { function TNTargetF }
{rmmmmrm e }
{--=-=---- HERE IS THE DERIVATIVE -----vocea-ae 1
function TNDerivF(x : Real) : Real;
begin
TNDerivF := -Sin(x) - 1;
end; { function TNDerivF }
{rmmmmmme e }

2. Run RAPHSON.PAS:

Initial approximation to the root: 0

Tolerance (> 0, default = 1.000E-08): 1E-6

Maximum number of iterations (>= 0, default = 100): 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Initial approximation: 0.00000000000000E+000
Tolerance: 1.00000000000000£-006
Maximum number of iterations: 100

Number of iterations: 5
Calculated root: 7.39085133215161E-001
Value of the function
at the calculated root: 0.00000000000000E+000
Value of the derivative
of the function at the
calculated root: -1.67361202918321E+000

Roots to Equations in One Variable

23

Here is the RAPHSON2.PAS version of the same function:

Initial approximation to the root:
Tolerance:
Maximum number of iterations:

Error = 0

Number of iterations:
Root:

Value of the

function at the root:

Derivative of the

function at the root:

24

0
1E-6
100

5
7.39085133215161E-001
0.00000000000000E+000

-1.67361202918321E+000

Turbo Numerical Methods Toolbox

Root of a Function Using the Secant Method
(SECANT.INC)

Description

This example uses the secant method (Gerald and Wheatley 1984, 11-13) to find a
root of a user-specified real function given two initial real approximations to the
root. The secant method constructs a secant through the two points specified by
the initial approximations. The intersection of this line and the x-axis is used as the
next best approximation to the root. The approximation to the root and its prede-
cessor are used to construct the next secant line. The process continues until a root
is approximated with specified accuracy or until a specified number of iterations
have been exceeded.

User-Defined Function

function TNTargetF(x : Real) : Real;

The procedure Secant will determine the roots of this function.

Input Parameters

Guessl:Real; User's first approximation to the root
Guess2:Real; User's second approximation to the root
Tol:Real; Indicates accuracy in solution

MaxIter:Integer; Maximum number of iterations permitted
The preceding parameters must satisfy the following conditions:
1. Tol >0
2. Maxlter = 0

Roots to Equations in One Variable 25

Output Parameters

Root:Real; Approximate root.
Value:Real; Value of the function at the approximate root.
Iter:Integer; Number of iterations needed to find the root.
Error:Byte; 0: No error.

1: Iter > MaxlIter.

2: The slope is zero (see “Comments”).

3: Tol < 0.

4: Maxlter < 0.

If a root is found, it is returned with the value of the function at the root (which,
of course, should be nearly zero). If Error < 2, then the data from the last iteration
is returned.

Syntax of the Procedure Call

Secant(Guessl, Guess2, Tol, MaxIter, Root, Value, Iter, Error);

The procedure Secant determines the roots of the function TNTargetF.

Comments

The secant algorithm constructs a line through two points and finds the intersec-
tion of that line with the x-axis. If the line has a slope whose absolute values are
less than TNNearlyZero (that is, the two points have the same y-value), then it has
no intersection with the x-axis (or infinitely many if it lies on the x-axis) and the
algorithm will no longer continue. If this happens, Error 2 is returned. Error 2 will
also be returned if the absolute difference of the two initial approximations (Guessl
and Guess2) is less than TNNearlyZero.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program SECANT.PAS provides 1/O functions that demonstrate the
secant algorithm. Note that the file SECANTINC is included after the function
TNTargetF is defined.

26 Turbo Numerical Methods Toolbox

Example

Problem. Determine the solution to the equation cos(x) = x.

1. Write the following code for procedure TNTargetF into SECANT.PAS:

¥ HERE IS THE FUNCTION ---=ncoaee- }
function TNTargetF(x : Real) : Real;
begin
TNTargetF := Cos(x) - x;
end; { function TNTargetF }
{rmmmrem e }

2. Run SECANT.PAS:

First initial approximation to the root: 0
Second initial approximation to the root: 1
Tolerance (> 0, default = 1.000E-08): 1E-8
Maximum number of iterations (>= 0, default = 100): 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

First initial approximation: 0.00000000000000E+000
Second initial approximation: 1.00000000000000E+000
Tolerance: 1.00000000000000E-008

Maximum number of iterations: 100

Number of iterations: 6
Calculated root: 7.39085133215161E-001
Value of the function
at the calculated root: 0.00000000000000E+000

Roots to Equations in One Variable

27

Real Roots of a Real Polynomial Equation Using the
Newton-Horner Method with Deflation (NEWTDEFL.INC)

Description

This example uses Newton-Horner's algorithm and deflation (see RAPHSON.INC
in this chapter for a description of Newton’s method). Newton-Horner is the New-
ton-Raphson method applied to polynomials (Burden and Faires 1985, 42 ff). Defla-
tion is used to find several roots of a user-specified real polynomial given an initial
guess specified by the user. This procedure approximates a real root and then
removes the corresponding linear factor from the given polynomial. The newly
obtained (deflated) polynomial is then analyzed for a real root. This process con-
tinues until a quadratic remains, the remaining roots are complex, or the algorithm
is unable to approximate the remaining real roots. Should the polynomial contain
two complex roots, they may be determined using the quadratic formula. You must
specify (at most) the tolerance to which the roots should be approximated.

User-Defined Types

TNvector = array[0..TNArraySize] of Real;

TNIntVector = array[0..TNArraySize] of Integer;

Input Parameters

InitDegree:Integer; Degree of user-defined polynomial

InitPoly:TNvector; Coefficients of user-defined polynomial

Guess:Real; User's initial approximation
Tol:Real; Indicates accuracy in solution
MaxIter:Integer; Maximum number of iterations permitted

28 Turbo Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. InitDegree > 0

2. Tol > 0

3. Maxlter = 0

4. InitDegree < TNArraySize

TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector. TNArraySize is not a variable name and
is never referenced by the procedure; hence there is no test for condition 4. If

condition 4 is violated, the program will crash with an Index Out of Range error
(assuming the directive {$R +} is active).

Output Parameters

Degree:Integer; Degree of the deflated polynomial (> 2 if some of the roots are
not approximated).
NumRoots:Integer; Number of roots found.
Poly:TNvector; Coefficients of the deflated polynomial.
Root:TNvector; Real part of all roots found.
Imag:ThNvector; Imaginary part of all roots found (nonzero for 2 at most).
value:TNvector; Value of the polynomial at each approximate root.
Deriv:TNvector; Value of the derivative at each found root.
Iter:TNIntVector; Number of iterations required to find each root.
Error:Byte; 0: No error.
1: Maximum number of iterations exceeded.
2: The slope is zero (see “Comments”).
3: Degree <0.
4: Tol = 0.
5: MaxlIter < 0.

If a root is found, it is returned with the value of the polynomial at that root
(which should be close to zero) and with the value of the derivative at that root. If
the last two roots are complex (only two can be complex, since they are evaluated
by the quadratic formula), then the value and derivative at those points are arbi-
trarily set to zero. If all the roots have not been found, then the unsolved deflated
polynomial is also returned.

Roots to Equations in One Variable 29

Syntax of the Procedure Call

Newt_Horn_Def1(InitDegree, InitPoly, Guess, Tol, MaxIter, Degree,
NumRoots, Poly, Root, Imag, Value, Deriv, Iter, Error);

Comments

Newton’s method involves division by the derivative of the function. Should the
algorithm attempt to do any calculations at a point where the absolute values of the
derivative are less than TNNearlyZero, the routine stops and returns an error mes-
sage (Error = 2).

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program NEWTDEFL.PAS provides I/O functions that demonstrate
the Newton-deflation algorithm.

Input Files

It is possible to input the coefficients from a text file. The format for the text file is
as follows:

1. The degree of the polynomial
2. The coefficients in descending order, beginning with the leading coefficient

and decreasing to the constant term

Spaces or carriage returns can be used to separate the data. It does not matter
whether the file ends with a carriage return; for example, the polynomial

Flx) = 2° — 2«
could be entered in a text file as
310 ~-20

Example

Problem. Determine the roots to the 7th degree polynomial:

2+ 2® — 49" + 69x° + 12047 + 98x — 240

30 Turbo Numerical Methods Toolbox

Run NEWTDEFL.PAS:
(K)eyboard or (F)ile input of data? K

Degree of the polynomial (<= 30)? 6

Input the coefficients of the polynomial
where Poly[n] is the coefficient of x™n

Poly[6] = 1
Poly[5] = 1
Poly[4] = -49
Poly[3] = 69
Poly[2] = 120
Poly[1] = 98
Poly[0] = -240

Initial approximation to the root: 0
Tolerance (> 0, default = 1.000E-08): 1E-8
Maximum number of iterations (>= 0, default = 100): 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Initial Polynomial:

Poly[6]: 1.00000000000000E+000
Poly[5]: 1.00000000000000E+000
Poly[4]: -4.90000000000000E+001
Poly[3]: 6.90000000000000E+001
Poly{2]: 1.20000000000000E+002
Poly[1]: 9.80000000000000E+001
Poly[0]: -2.40000000000000E+002

Initial approximation: 0.00000000000000E+000
Tolerance: 1.00000000000000E-008
Maximum number of iterations: 100

Number of calculated roots: 6

Root 1
Number of iterations: 7
Calculated root: 3.00000000000000£4000
Value of the function
at the calculated root: 4.83169060316868E-013
Value of the derivative
of the function at
the calculated root: -7.47999999999999E+002

Roots to Equations in One Variable 31

Root 2

Number of iterations:
Calculated root:

Value of the function

at the calculated root:

Value of the derivative
of the function at

the calculated root:

Root 3

Number of iterations:
Calculated root:

Value of the function

at the calculated root:

Value of the derivative
of the function at

the calculated root:

Root 4

Number of iterations:
Calculated root:

Value of the function

at the calculated root:

Value of the derivative
of the function at

the calculated root:

Root 5

Number of iterations:
Calculated root:

Value of the function

at the calculated root:

Value of the derivative
of the function at

the calculated root:

Root 6

Number of iterations:
Calculated root:

Value of the function

at the calculated root:

Value of the derivative
of the function at

the calculated root:

32

7
1.00000000000000E+000

0.00000000000000E+000
3.60000000000000E+002
32

-8.00000000000000E+000
0.00000000000000E+000
-6.43500000000000E+004
25

5.00000000000000E +000
0.00000000000000E+000

3.84800000000000E+003

0

-1.00000000000000E+000 + -1.00000000000000E+0001

0.00000000000000E+000

0.00000000000000E+000

0

-1.00000000000000E+000 +

0.00000000000000E+000

0.00000000000000E +000

1.00000000000000E+0007

Turbo Numerical Methods Toolbox

Complex Roots of a Complex Function Using Miiller’s
Method (MULLER.INC)

Description

This example uses Miiller’'s method (Burden and Faires 1985, 71-75) to find a
possibly complex root of a user-defined complex function. The algorithm finds a
root of a parabola defined by three distinct points of the given function. This
approximation to the root and its two predecessors are used to construct the next
parabola. This is repeated until the convergence criteria is satisfied. Miiller’s
method has the advantage of nearly always converging; however, it is slow because
it uses complex arithmetic. You must create a complex function, input an initial
guess (which need not be very accurate), the tolerance in the answer, and the
maximum number of iterations.

User-Defined Types

TNcomplex = record
Re, Im:Real;
end;

User-Defined Procedure

procedure TNTargetF(x:TNcomplex; var y:TNcomplex);

The Muller procedure approximates a complex root of this function.

Input Parameters

Guess:TNcomplex; An initial guess
Tol:Real; Indicates accuracy in solution

MaxIter:Integer; Maximum number of iterations

Roots to Equations in One Variable 33

The preceding parameters must satisfy the following conditions:
1 Tol >0
2. Maxlter = 0

Output Parameters

Answer:TNcomplex; An approximate root of the function
yAnswer:TNcomplex; Value of the function at the approximate root
Iter:Integer; Number of iterations required to find the root

Error:Byte; 0: No error
1: Iter > MaxIter
2: Parabola could not be formed (see “Comments”)
3:Tol =0
4: Maxlter < 0

If Error < 2, then the information from the last iteration is output.

Syntax of the Procedure Call

Muller(Guess, Tol, MaxIter, Answer, yAnswer, Iter, Error);

The procedure Muller approximates a complex root of function TNTargetF.

Comments

Miiller’s method involves constructing a parabola from three points. If they all lie
on a line whose slope in absolute value is less than TNNearlyZero, then a parabola
that intersects the x-axis cannot be constructed. Such a construction will halt the
algorithm and return Error = 2. Fortunately, this does not commonly occur.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter. Complex arithmetic is used.

34 Turbo Numerical Methods Toolbox

Sample Program

The sample program MULLER.PAS provides I/O functions that demonstrate
Miiller’s method.

The user-defined function is contained in the procedure TNTargetF. It is neces-
sary to separately define the real and complex parts of the function. To define the
complex function F(x), you must code the following definitions:

y.Re := Re[F(x.Re + ix.Im)];
yIm := Im[F(x.Re + ix.Im));

where i is the square root of — 1.
For example, the complex function F(x) : = exp(x) would be coded like this:

exp(x.Re) * cos(x.Im);
exp(x.Re) * sin(X.Im);

y.Re :
yIm:

Note that the procedure TNTargetF is defined before MULLER.INC is
included.

Example

Problem. Find a solution to the complex equation cos(x) = «x.

1. First, code the following procedure TNTargetF into MULLER.PAS:
[C— HERE IS THE FUNCTION =-mmeemmmmmmmmmeee *)

procedure TNTargetF(x : TNcomplex; var y : TNcomplex);

begin { this is the complex function y = Cos(x) - x }

y.Re := Cos(x.Re)*(Exp(-x.Im) + Exp(x.Im))/2 - x.Re;
y.Im := Sin(x.Re)*(Exp(-x.Im) - Exp(x.Im))/2 - x.Im;
end; { procedure TNTargetF }
K e e e e e e o e i e = *
()

2. Run MULLER.PAS:

Initial approximation to the root:
Re(Approximation)= -4

Im(Approximation)= 4

Tolerance (> 0, default = 1.000E-08): 1E-6

Maximum number of iterations (>= 0, default = 100): 100

Roots to Equations in One Variable 35

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Initial approximation: -4.00000000000000E+000 + 4.00000000000000E+000i
Tolerance: 1.00000000000000E-006
Maximum number of iterations: 100

Number of iterations: 18
Calculated root: -9.10998745393294E+000 + 2.95017086170180E+000i
Value of the function
at the calculated root: -1.42534872793476E-011 + 3.75033337718378E-011i

36 Turbo Numerical Methods Toolbox

Complex Roots of a Complex Polynomial Using Laguerre’s

Method and Deflation (LAGUERRE.INC)

Description

This example uses Laguerre’s method (Ralston and Rabinowitz 1978, 380-383) and
linear deflation to find the possibly complex roots of a complex (or real) polynomial.
You must input the coefficients of the polynomial, an initial guess, the tolerance

with which to find the answer, and the maximum number of iterations.

User-Defined Types

TNcomplex = record
Re, Im:Real;
end;
TNIntVector = array[0..TNArraySize] of Integer;

TNCompVector = array[0..TNArraySize] of TNcomplex;

Input Parameters

Degree: Integer; Degree of the user’s polynomial
Poly:TNvector; Coefficients of the user’s polynomial
InitGuess:TNcomplex; Initial guess of the root

Tol:Real; Indicates accuracy in solution
MaxIter:Integer; Maximum number of iterations

The preceding parameters must satisfy the following conditions:

1. degree > 0

2. Tol > 0

3. Maxlter = 0

4. degree < TNArraySize

Roots to Equations in One Variable

37

TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector. TNArraySize is not a variable name and
is never referenced by the procedure; hence there is no test for condition 4. If
condition 4 is violated, the program will crash with an Index Out of Range error
(assuming the directive {$R+} is enabled).

Output Parameters

Degree:Integer; Degree of the deflated polynomial
Poly:Integer; Coefficients of deflated polynomial
NumRoots: Integer; Number of approximate roots

Roots:TNCompVector; Approximate roots
yRoots : TNCompVector; Value of the polynomial at the approximate root
Iter:TNIntVector; Number of iterations required to find each root

Error:Byte; 0: No error
1: Iter = MaxlIter
2: Degree < 0
3:Tol <0
4: MaxIter < 0

Syntax of the Procedure Call

Laguerre(Degree, Poly, InitGuess, Tol, MaxIter, NumRoots,
Roots, yRoots, Iter, Error);

Comments

For some polynomials, certain starting values (Guess) will not yield convergence. If
the routine does not converge to a solution, try a different starting value. Note that
convergence is slower around multiple roots than around single roots.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

38 Turbo Numerical Methods Toolbox

Sample Program

The sample program LAGUERRE.PAS provides I/O routines that demonstrate
Laguerre’s method.

Input Files

It is possible to input the coefficients from a text file. The format for the text file is
as follows:

1. The degree of the polynomial
2. The real and imaginary parts of the coefficients in descending order, begin-
ning with the leading coefficient and descending to the constant term
Spaces or carriage returns can be used to separate the data. It does not matter
whether the file ends with a carriage return; for example, the polynomial
Fx) = x* — (2 + 2i)® + 4ix® + (2 — 2i)x —1
where i represents the square root of — 1, could be entered in a text file like this:
410-2-2042 -2 -10

Example

Problem. Find all the roots to the complex polynomial
Fx) =x' — 2 + 2i)° + 4ix® + (2 — 2i)x — 1

where i is the square root of — 1.

Run LAGUERRE.PAS:

(K)eyboard or (F)ile input of data? K

Degree of the polynomial (<= 30)? 4

Input the coefficients of the polynomial
where Poly[n] is the coefficients of x™n

Re(Poly[4]) = 1
Im(Poly[4]) = O
Re(Poly([3]) = -2
Im(Poly[3]) = -2
Re(Poly[2]) = O
Im(Poly[2]) = 4

Roots to Equations in One Variable 39

Re(Poly[1]) = 2
Im(Poly[1]) = -2
Re(Poly[0]) = -1
Re(Poly[0]) = O

Initial approximation:
Re(Approximation) = 0
Im(Approximation) = 0

Tolerance (> 0, default = 1.000E-08): 1E-6
Maximum number of iterations (>= 0, default = 100): 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Initial Polynomial:

Poly[4]: 1.00000000000000E+000 + 0.00000000000000E+000i
Poly[3]: -2.00000000000000E+000 + -2.00000000000000E+0001
Poly[2]: 0.00000000000000E+000 + 4.00000000000000E+000i
Poly[1]: 2.00000000000000E+000 + -2.00000000000000E+0001
Poly[0]: -1.00000000000000E+000 + 0.00000000000000E+0001

Initial approximation: 0.00000000000000E+000 + 0.00000000000000E+000i
Tolerance: .00000000000000E-006
Maximum number of iterations: 100

[y

Root 1
Number of iterations: 14
Calculated root: 9.99999949924438E-001 + 1.30979567319146E-0081i
Value of the function at
the calculated root: -2.44249065417534E-015 + -4.67073566002583E-0151

Root 2
Number of iterations: 2
Calculated root: 1.00000001879739E+000 + -3.01914119849697E-009i
Value of the function at
the calculated root: -3.33066907387547E-016 + -1.03591657956252E-0151

Root 3
Number of iterations: 6
Calculated root: 2.54057206426756E-007 + 9.99999844722996E-0011
Value of the function at
the calculated root: -1.57873714101697E-013 + -8.07179393811825E-0141

40 Turbo Numerical Methods Toolbox

Root 4
Number of iterations: 2
Calculated root: -5.97412717946260E-008 +
Value of the function at
the calculated root: -9.32587340685131E-015 +

The exact roots of this polynomial are
x=1

x=1
x =i
x =i

Roots to Equations in One Variable

1.00000003900209E+0001

-3.90669101062423E-~0151

4

42

Turbo Numerical Methods Toolbox

C H A P T E R 3

Interpolation

Interpolation is useful when some values of a function are known but others are
required. For example, suppose values are known for a function f(x) at x = 2.3, 2.4,
2.5, 2.6, 2.7, 2.8, and the value of f(x) is desired at x = 2.415. The routines in this
chapter provide the means to model to given values of f(x) with an appropriate
function, so that the function can be evaluated at other arbitrary points.

The goal of interpolation is to approximate the value of the function at a speci-
fied value of x, given N values of the function at N distinct points. This approxima-
tion will be a polynomial determined from the input data. The value of the
polynomial at x will be returned as the approximation to the value of f(x).

The Lagrange method (LAGRANGE.INC) accepts points in any order. The x-
values need not be equally spaced. An interpolating polynomial is explicitly calcu-
lated. Although an interpolating polynomial can be useful for computing deriva-
tives (and more), the Lagrange method is a lengthy process. Furthermore, high-
degree polynomials may cause significant round-off error in some interpolations.

Newton’s general divided-difference algorithm (DIVDIF.INC) does not require
input to have equally spaced x-values, nor is it necessary that the x-values be
in either ascending or descending order. For large amounts of data, the divided-
difference routine (DIVDIF.INC) is more accurate than Lagrangian interpola-
tion (LAGRANGE.INC).

If there are many input points, the Lagrange (LAGRANGE.INC) and the
divided-difference (DIVDIF.INC) methods may result in high-degree polynomials
whose oscillatory nature can produce an inaccurate approximation. This is espe-

43

cially true if the interpolation occurs at a value near the midpoint between adjacent
input x-values. In such cases, the cubic spline methods (CUBE_FRE.INC and
CUBE_CLA.INC) are preferable.

The cubic spline methods require that the x-values be entered in ascending
order. The clamped cubic spline method (CUBE_CLA.INC) may yield more accu-
rate results than the free cubic spline method (CUBE_FRE.INC), but requires
knowledge of the first derivative of the function at the endpoints of the input data.
When this information is not available, the free cubic spline routine should be
used.

The values at which interpolation is to occur should lie in the closed interval
bounded by the extreme values of the input x-values. The preceding methods will
not give accurate approximations to values outside this interval (extrapolation).

44 . Turbo Numerical Methods Toolbox

Polynomial Interpolation Using Lagrange’s Method
(LAGRANGE.INC)

Description

This example provides an interpolation algorithm (Burden and Faires 1985, 84 ff;
Horowitz and Sahni 1984, 429-430). Given a set of N data points (x,y), the routine
uses Lagrange polynomials to construct a polynomial to fit the data points. The
degree of the polynomial is at most N — 1.

Note: The nature of high-degree polynomials may cause significant error if the
algorithm is used with large amounts of data (about N > 25). In such cases, DIV
DIF.INC, CUBE_FRE.INC, or CUBE_CLA.INC should be used. You must sup-
ply the data points and the x-values at which interpolation will take place.

User-Defined Types

array[0..TNArraySize] of Real;
array[0..TNArraySize] of TNvector;

TNvector
TNmatrix

Input Parameters

The parameters for Lagrange:

NumPoints:Integer; Number of data points
XData:Thvector; The x-coordinates of the data points
YData:Thvector; The y-coordinates of the data points
NumInter:Integer; Number of interpolations

XInter:TNvector The x-coordinates at which interpolation is to take place
The preceding parameters must satisfy the following conditions:
1. The x-coordinates of the data points (XInter) must be unique.
2. NumPoints, NumInter < TNArraySize.
3. NumPoints > 0.

Interpolation 45

TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector. TNArraySize is not a variable name and
is never referenced by the procedure; hence there is no test for condition 2. If
condition 2 is violated, the program will crash with an Index Out of Range error
(assuming the directive {$R+} is active).

Output Parameters

YInter:Thvector; The interpolated values at XInter
Poly:TNvector; The coefficients of the interpolating polynomial

Error:Byte; 0: No error
1: X-values of the data points not unique
2: NumPoints < 1

Syntax of the Procedure Call

Lagrange(NumPoints, XData, YData, NumInter, XInter, YInter, Poly, Error);

Sample Program

The sample program LAGRANGE.PAS provides 1/O functions that demonstrate
the Lagrange interpolating algorithm.

Input Files

Data may be entered from a text file. The x and y coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as:

11
24
39
416
525

46 Turbo Numerical Methods Toolbox

Example

Problem. Construct and use an interpolating polynomial for the cosine function
between x = 1 degree and x = 20 degrees.

Run LAGRANGE.PAS:
(K)eyboard or (F)ile entry of the data points? F

File name? SAMPLE3A.DAT
(K)eyboard or (F)ile entry of the interpolated points? F
File name? SAMPLE3B.DAT

Direct output to one of the following:

(S)creen

(P)rinter

(F)ile
The data:
1.0000000 9.99847695156391E-001
2.0000000 9.99390827019096E-001
3.0000000 9.98629534754574E-001
4.,0000000 9.97564050259824E-001
5.0000000 9.96194698091746E-001
6.0000000 9.94521895368273E-001
7.0000000 9.92546151641322E-001
8.0000000 9.90268068741570E-001
9.0000000 9.87688340595138E-001
10.0000000 9.84807753012208E-001
11.0000000 9.81627183447664E-001
12.0000000 9.78147600733806E-001
13.0000000 9.74370064785235E-001
14.0000000 9.70295726275996E-001
15.0000000 9.65925826289068E-001
16.0000000 9.61261695938319E-001
17.0000000 9.56304755963035E-001
18.0000000 9.51056516295154E-001
19.0000000 9.45518575599317E-001
20.0000000 9.39692620785908E-001

The polynomial:

Poly[19]= -1.72986376643586E-028
Poly[18]= 3.57504241395844E-026
Poly[17]= -3.43926153199199E-024
Poly[16]= 2.04507188280402E-022
Poly[15]= -8.41710490427928E-021
Poly[14]= 2.54454663251946E-019
Poly[13]= -5.85115478257286E-018
Poly[12]= 1.04567701944119E-016
Poly[11]= -1.47131277721604E-015
Poly[10]= 1.64108936708876E-014
Poly[9]= -1.45382580196402E-013
Poly[8]= 1.02034999744286E-012
Poly[7]= -5.63354870368428E-012
Poly[6]= 2.41324946244329E-011
Poly[5]= -7.90989844502363E-011

Interpolation 47

Poly[4]= 4.05827439744465E-009
Poly[3]= -3.31023555675263E-010
Poly[2]= -1.52308331145220E-004
Poly[1]= -2.53687934078865E-010

Poly[0}J= 1.00000000007368E+000

X Interpolated Y value Actual values
1.500 9.99657324975249E-001 9.99657324975557E-001
2.500 9.99048221581889E-001 9.99048221581858E-001
3.500 9.98134798421861E-001 9.98134798421867E-001
4,500 9.96917333733130E-001 9.96917333733128E-001
5.500 9.95396198367178E-001 9.95396198367179E-001
6.500 9.93571855676587E-001 9.93571855676587E-001
7.500 9.91444861373810E-001 9.91444861373810E-001
8.500 9.89015863361917E-001 9.89015863361917E-001
9.500 9.86285601537231E-001 9.86285601537231E-001
10.500 9.83254907563954E-001 9.83254907563955E-001
11.500 9.79924704620830E-001 9.79924704620830E-001
12.500 9.76296007119933E-001 9.76296007119933E-001
13.500 9.72369920397676E-001 9.72369920397677E-001
14.500 9.68147640378107E-001 9.68147640378108E-001
15.500 9.63630453208623E-001 9.63630453208623E-001
16.500 9.58819734868193E-001 9.58819734868193E-001
17.500 9.53716950748226E-001 9.53716950748227E-001
18.500 9.48323655206200E-001 9.48323655206199E-001
19.500 9.42641491092201E-001 9.42641491092178E-001
20.500 9.36672189247006E-001 9.36672189248398E-001

The data is taken from a function of which the derivative could be computed
exactly. Though the actual values in the right-hand column are not displayed on
screen, they are shown here to indicate the accuracy of the routine.

48 Turbo Numerical Methods Toolbox

Interpolation Using Newton’s Interpolary
Divided-Difference Method (DIVDIF.INC)

Description

This example provides an interpolation algorithm. Given a set of data points (x,y),
the routine uses Newton’s interpolary divided-difference equation to interpolate
between the points (Burden and Faires 1985, 100-102). The data points must have
unique x-values, but these values need not be evenly spaced nor set in any particu-
lar order. You must supply the data points and the x-values at which interpolation is
to take place.

User-Defined Types

TNvector = array[0..TNArraySize] of Real;

TNmatrix = array[0..TNArraySize] of TNvector;

Input Parameters

NumPoints:Integer; Number of data points
XData:Thvector; The x-coordinates of the data points
YData:TNvector; The y-coordinates of the data points
NumInter:Integer; Number of interpolations
XInter:TNvector The x-coordinates at which interpolation is to take place
The preceding parameters must satisfy the following conditions:
1. The x-coordinates of the data points (XInter) must be unique.
2. NumPoints, NumInter < TNArraySize.
3. NumPoints > 0.
TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector. TNArraySize is not a variable name and
is never referenced by the procedure; hence there is no test for condition 2. If

condition 2 is violated, the program will crash with an Index Out of Range error
(assuming the directive {$R+} is active).

Interpolation 49

Output Parameters

Yinter:TNvector; The interpolated values at XInter

Error:Byte; 0: No error
1: X-values of the data points not unique
2: NumPoints < 1

Syntax of the Procedure Call

Divided_Difference(NumPoints, XData, YData, NumInter, XInter, YInter, Error);

Sample Program

The sample program DIVDIF.PAS provides I/O functions that demonstrate New-
ton’s interpolary divided-difference algorithm.

Input Files

Data may be entered from a text file. The x and y coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525

Example

Problem. Interpolate the cosine function between x = lx and x = 20x.
Run DIVDIF.PAS:
(K)eyboard or (F)ile entry of the data points? F

File name? SAMPLE3C.DAT

(K)eyboard or (F)ile entry of the interpolated points? K

50 Turbo Numerical Methods Toolbox

Number of points (0-50)?715
Point 1: 1.5
Point 2: 2.5
Point 3: 3.5
Point 4: 4.5
Point 5: 5.5
Point 6: 6.5
Point 7: 7.5
Point 8: 8.5
Point 9: 9.5
Point 10: 10.5
Point 11: 11.5
Point 12: 12.5
Point 13: 13.5
Point 14: 14.5
Point 15: 15.5
Direct output to one of the following:
(S)creen
(P)rinter
(F)ile
X Y
12.000 0.9781476
8.000 0.9902681
1.000 0.9998477
10.000 0.9848078
5.000 0.9961947
15.000 0.9659258
4.000 0.9975641
3.000 0.9986295
7.000 0.9925462
14.000 0.9702957
X Interpolated Y value Actual Values
1.500 9.99656668284607E-001 9.99657324975557E-001
2.500 9.99047982204853E-001 9.99048221581858E-001
3.500 9.98134846782587E-001 9.98134798421867E-001
4,500 9.96917355869352E-001 9.96917333733128E-001
5.500 9.95396200633579E-001 9.95396198367179E-001
6.500 9.93571893532269E-001 9.93571855676587E-001
7.500 9.91444906399794E-001 9.91444861373810E-001
8.500 9.89015879894104E-001 9.89015863361917E-001
9.500 9.86285623948171E-001 9.86285601537231E-001
10.500 9.83254980952454E-001 9.83254907563955E-001
11.500 9.79924765142406E-001 9.79924704620830E-001
12.500 9.76295923083642E-001 9.76296007119933E-001
13.500 9.72369781236267E-001 9.72369920397677E-001
14,500 9.68147757339141E-001 9.68147640378108E-001
15.500 9.63629212784399E-001 9.63630453208623E-001

The data is taken from a function of which the derivative could be computed
exactly. Though the values in the right-hand column are not displayed on screen,
they are shown here to indicate the accuracy of the routine.

Interpolation 51

Free Cubic Spline Interpolation (CUBE_FRE.INC)

Description

This example constructs a smooth curve through a given set of data points. The
curve is a cubic spline interpolant with the following properties:

1. It passes through every data point.

2. It is continuous.

3. Its first derivative is continuous.

4. Its second derivative is continuous.

The second derivative is assumed to be zero at both endpoints (thus the cubic

spline is “free”) of the interval determined by the data (Burden and Faires 1985,
117 fl). Cubics that join adjacent data points are of the following form:

S[i](x) = Coef0[i] + Coefl[i](x — x[i]) + Coef2[il(x — «[i])®
+ Coef3[i}(x — «[i])°

where i ranges between 1 and the number of data points minus 1, the x[i]'s are the
x-coordinates of the input data, and x[i] < x < x[i + 1]. The interpolated values of
f(x) are found by evaluating the ith cubic polynomial at x, where

x[i] < x < «fi + 1].

User-Defined Types

TNvector = array[0..TNArraySize] of Real;

Input Parameters

NumPoints:Integer; Number of data points

XData:Thvector; The x-coordinates of the data points
YData:TNvector; The y-coordinates of the data points
NumInter:Integer; Number of interpolations

XInter:Thvector; X-coordinates of points at which to interpolate

52 Turbo Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. X data points must be unique.

2. X data points must be in ascending order.

3. NumPoints, NumInter < TNArraySize.

4. NumPoints > 1.

TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector. TNArraySize is not a variable name and
is never referenced by the procedure; hence there is no test for condition 3. If

condition 3 is violated, the program will crash with an Index Out of Range error
(assuming the directive {$R +} is active).

Output Parameters

Coef0:TNvector; Coefficient of the constant term
Coefl:Thvector; Coefficient of the linear term
Coef2:TNvector; Coefficient of the squared term
Coef3:Thvector; Coefficient of the cubed term
Yinter:TNvector; Interpolated values at XInter

Error:Byte; 0: No error
1: X-values of the data points not unique
2: X-values of the data points not in ascending order
3: NumPoints < 2

Syntax of the Procedure Call

CubicSplineFree(NumPoints, XData, YData, NumInter, XInter,
Coef0, Coefl, Coef2, Coef3, YInter, Error);

Sample Program

The sample program CUBE_FRE.PAS provides I/O functions that demonstrate
the free cubic spline algorithm.

Interpolation 53

Input Files

Data may be entered from a text file. The x and y coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525

Example

Problem. Construct an interpolating spline for the following figure:

Because a cusp occurs at x = 3.55, we will construct two splines, one for each
side of the cusp.

Run CUBE_FRE.PAS:
(K)eyboard or (F)ile entry of the data points? F

File name? SAMPLE3D.DAT
(K)eyboard or (F)ile entry of the interpolated points? F

File name? SAMPLE3E.DAT

54 Turbo Numerical Methods Toolbox

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

o
E-1
I
o

WOONDIO D WN —
ee se se ss es ee se as ws es

Splines: Coef0

: .800000
.700000
.600000
.200000
.800000
.600000
.400000
.420000
.400000
.500000
.800000
.400000
.600000
.800000

NN N = = = == NN NN

X
0.0000000000
0.1000000000
0.2000000000
0.6000000000
1.0000000000
1.4000000000
1.8000000000
2.0000000000
2.2000000000
10: 2.6000000000
11: 3.0000000000
12: 3.4000000000
13: 3.4500000000
14: 3.5000000000
15: 3.5500000000

NN NN - === NN

Coefl
-0.9988332302
-1.0023335396
-0.9918326113
-1.0723397281
-0.7188084763
-0.5524263669
-0.0714860563

0.0406713524
-0.0911993534
0.6158534153
0.6277856923
3.6230038155
4.3322682035
3.0479233704

Interpolated Points: X

HOWOONOOLE WN =
e we 65 s s es es es se es o

——

Interpolation

WWMNHNDNNNNE-,OO

3000000000
5000000000
2000000000
6000000000
1000000000
.3000000000
5000000000
7000000000
9000000000
.2000000000
3000000000

Y

.8000000000
7000000000
6000000000
2000000000
.8000000000
6000000000
4000000000
4200000000
.4000000000
.5000000000
8000000000
4000000000
.6000000000
8000000000
.9000000000

Coef2

0.0000000000
-0.0350030942
0.1400123770
-0.3412801689
1.2251082984
-0.8091530249
2.0115038012
-1.4507167575
0.7913632286
0.9762686929
-0.9464380003
8.4344833084
5.7508044511
-31.4377011128

Y
.5018157855
.3042222482
.6916808945
.4759529845
.4132967676
3989477848
.4480232575
.5697457729
7293593063
.9502390938
.1142270171

N bt b= = = NN

Coef3

.1166769808
.5833849040
.4010771215
3053237227
.6952177695
.3505473551
7703675978
7367999767
1540878869
.6022555777
8174344240
.8911923822
-247.
209.

9233704257
5846740851

55

Second half of the figure:
(K)eyboard or (F)ile entry of the data points? F

File name? SAMPLE3F.DAT
(K)eyboard or (F)ile entry of the interpolated points? F
File name? SAMPLE3G.DAT

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile
Data: X Y
1: 3.5500000000 2.9000000000
2: 3.6000000000 2.8000000000
3: 3.6500000000 2.6500000000
4: 3.8000000000 2.5000000000
5: 4.0000000000 2.3500000000
6: 4.3000000000 2.2000000000
7: 4,8000000000 1.9500000000
8: 5.3000000000 1.6000000000
9: 5.6000000000 1.3000000000
10: 5.8000000000 1.2000000000
11: 6.0000000000 0.0000000000
Splines: Coef0 Coefl Coef2 Coef3
1: 2.9000000000 -1.6719664279 0.0000000000 -131.2134288293
2: 2.8000000000 -2.6560671441 -19.6820143244 256.0671441466
3: 2.6500000000 -2.7037649955 18.7280572976 -49.1308266290
4: 2.5000000000 -0.4016786037 -3.3808146854 8.1960385189
5: 2.3500000000 -0.7704798556 1.5368084259 -2.1173630243
6: 2.2000000000 -0.4200828166 -0.3688182960 0.4179678583
7: 1.9500000000 -0.4754252188 0.2581334916 -1.4145661079
8: 1.6000000000 -1.2782163082 -1.8637156703 9.3036778805
9: 1.3000000000 0.1155473174 6.5095944222 -47.9366550462
10: 1.2000000000 -3.0330135193 -22.2523986055 37.0873310092
Interpolated Points: X Y
1: 3.7000000000 2.5554905401
2: 3.9000000000 2.4342200313
3: 4.1000000000 2.2862027357
4: 4.2000000000 2.2404374617
5: 4.,5000000000 2.1045744477
6: 4.,6000000000 2.0520666406
7: 5.0000000000 1.8539237670
8: 5.2000000000 1.7105990402
9: 5.5000000000 1.3442375346
10: 5.7000000000 1.3287140209
11: 5.9000000000 0.7112619930
56 Turbo Numerical Methods Toolbox

Clamped Cubic Spline Interpolation (CUBE_CLA.INC)

Description

This example constructs a smooth curve through a given set of data points. The
curve is a cubic spline interpolant with the following properties:

1. It passes through every data point.
2. It is continuous.

3. Its first derivative is continuous.

4

Its second derivative is continuous.

The first derivative at the endpoints of the interval determined by the input data
is defined by the user (Burden and Faires 1985, 122 f.). (This is what makes the
cubic spline “clamped.”) The cubics that join adjacent data points are of the follow-
ing form:

S[i}(x) = CoefO[i] + Coeflfi](x — x[i]) + Coef2[i](x — x[i])*
+ Coef3[il(x — x[i])°

where i ranges between 1 and the number of data points minus 1, the «[i]’s are the
x-coordinates of the input data, and x[i] < x < x[i + 1]. The interpolated values of
fix) are found by evaluating the ith cubic polynomial at x, where xfi] < x <
«fi + 1].

User-Defined Types

TNvector = array[0..TNArraySize] of Real;

Input Parameters

NumPoints:Integer; Number of data points

XData:TNvector; The x-coordinates of the data points
YData:Thvector; The y-coordinates of the data points
DerivLE:Real; Derivative of the function at the left endpoint
DerivRE:Real; Derivative of the function at the right endpoint

Interpolation 57

NumInter:Integer; Number of interpolations
XInter:Thvector; X-coordinates of points at which to interpolate

The preceding parameters must satisfy the following conditions:

1. X data points must be unique.

2. X data points must be in ascending order.

3. NumPoints, NumInter < TNArraySize.

4. NumPoints > 1

TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector. TNArraySize is not a variable name and
is never referenced by the procedure; hence there is no test for condition 3. If con-

dition 3 is violated, the program will crash with an Index Out of Range error
(assuming the directive {$R+} is active).

Output Parameters

Coef0:Thvector; Coefficient of the constant term
Coefl:Thvector; Coefficient of the linear term
Coef2:TNvector; Coefficient of the squared term
Coef3:Thvector; Coefficient of the cubed term
Yinter:TNvector; Interpolated values at XInter

Error:Integer; 0: No error
1: X-values of the data points not unique
2: X-values of the data points not in ascending order
3: NumPoints < 2

Syntax of the Procedure Call

CubicSplineClamped (NumPoints, XData, YData, DerivLE, DerivRE, NumInter,
XInter, Coef0, Coefl, Coef2, Coef3, YInter, Error);

58 Turbo Numerical Methods Toolbox

Sample Program

The sample program CUBE_CLA.PAS provides I/O functions that demonstrate
the clamped cubic spline interpolation algorithm.

Input Files

Data may be entered from a text file. The x- and y -coordinates should be separated
by a space and followed by a carriage return. The last two values in the file must be
the derivatives of the function at the endpoints. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525
210

Note that the last two values are the derivatives of sqr(x) at the endpoints x = 1
andx = 5.

Example

Problem. Construct an interpolating spline for the following figure:

Interpolation 59

Because a cusp occurs at x =
side of the cusp.

Run CUBE_CLA.PAS:
(K)eyboard or (F)ile entry of the data points? F

File name? SAMPLE3H.DAT

3.55, we will construct two splines, one for each

(K)eyboard or (F)ile entry of the interpolated points? F

File name? SAMPLE3E.DAT

Direct output to one of the following:
(S)creen
(P)rinter
(Fyile

o
@
s
I
.

Derivative at X= 0.00000000000000E+000 :
Derivative at X= 3.55000000000000E+000 :

Spl

60

OLCONOTOH WN =
ee ae se e as ae ee ee e

ines

M

NN === NN NN

X
.0000000000
.1000000000
.2000000000
6000000000
0000000000
4000000000
8000000000
.0000000000
2000000000
6000000000
.0000000000
.4000000000
4500000000
5000000000
5500000000

WWWWWNRNN M= OOOO

Coef0

.8000000000 -1.
7000000000 -0
.6000000000 -1
.2000000000 -1
8000000000 -0
6000000000 -0
4000000000 -0
4200000000 0
4000000000 -0
.5000000000 0
8000000000 0
4000000000 3
.6000000000 4
.8000000000 2

Coefl

Y

2.8000000000
2.7000000000
2.6000000000
2.2000000000
1.8000000000
1.6000000000
1.4000000000
1.
1
1
1
2
2
2
2

4200000000

4000000000
.5000000000
8000000000
4000000000
6000000000
8000000000
9000000000

Coef2

3333333333 5.7579845570

.9091317890 -1.5159691140
.0301395105 0.3058918989
.0620777385 -0.3857374687
.7215495356 1.2370579761
.5517241193 -0.8124944355
.0715539872 2.0129197658
0405240212 -1.4525297241
.0905420975 0.7971991306
.6122045428 0.9596674704
6417239262 -0.8858690121
.5708997526 8.2088085781
4477600660 9.3283976905
.6380599835 -45.5223993401

-1.33333333333333E+000
3.00000000000000E+000

Coef3
-24.2465122365
6.0728700429
-0.5763578064
1.3523295373
-1.7079603429
2.3545118344
-5.7757491499
3.7495480911
0.1353902832
-1.5379470688
7.5788979919
7.4639274157
-365.6719802043
655.2239934014

Turbo Numerical Methods Toolbox

Interpolated Points: X

.3000000000
5000000000
2000000000
.6000000000
.1000000000
.3000000000
5000000000
7000000000
9000000000
.2000000000
.3000000000

Second half of figure:

O ONOOEWN -

10:
11:

WWNRMNOMNDNNE-=SOO

Y
4994686101
3029267570
.6915087292
.4759914934
.4132766530
.3990531718
.4482408301
.5692791819
.7285068643
.9535412087
.1174192125

N = et e e = = = = NN

(K)eyboard or (F)ile entry of the data points? F

File name? SAMPLE3I.DAT

(K)eyboard or (F)ile entry of the interpolated points? F

File name? SAMPLE3G.DAT

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

o
2
ot
Y]

—_OWONOUH WN =
ee o3 es s se 4s es e ss es es e

X
.5500000000
.6000000000
6500000000
8000000000
0000000000
3000000000
8000000000
3000000000
6000000000
8000000000
0000000000

UL WWWW

——

Derivative at X= 3.55000000000000E+000 :
Derivative at X= 6.00000000000000E+000 :

Splines: Coef0 Coefl
1:. 2
2: 2
3: 2
4: 2
5: 2
6: 2
7: 1
8: 1
9: 1

10: 1

Interpolation

2.
2.
2
2
2
2.
1
1
1
1
0.

Y
9000000000
8000000000

6500000000
.5000000000
.3500000000

2000000000

9500000000
6000000000
3000000000
.2000000000

0000000000

Coef2

.9000000000 -4.0000000000 80.2233303937
.8000000000 -2.0111665197 -40.4466607874
6500000000 -2.9553339213 21.5633127559
5000000000 -0.3238290709 -4.0199470867
3500000000 -0.7983524409 1.6473302365
2000000000 -0.3974941891 -0.3111360640
9500000000 -0.5494435897 0.0072372629
6000000000 -1.0047314521 -0.9178129877
3000000000 -0.7151931996 1.8829404961
.2000000000 -0.4462017001 -0.5379829989

-4.00000000000000E+000
-1.70000000000000E+001

Coef3
-804.4666078741
413.3998236224
-56.8516885392
9.4454622054
-2.1760736673
0.2122488846
-0.6167001671
3.1119483153
-4.0348724916
-136.1550425028

6l

Interpolated Points:
7000000000
.9000000000
1000000000
.2000000000
.5000000000
6000000000
.0000000000
.2000000000
5000000000
.7000000000
.9000000000

62

[ergy—y

HOWRNOAOGHWN =
s o5 a5 o8 se se ae se se ev &

eSS RWW

X

e = NN NN NN

Y

.5490351248
4368630843
.2844619846
.2388141319
.1097537107
.0584802174
.8354671712
.6919117155
.3872367766
2432752125
.0138449575

Turbo Numerical Methods Toolbox

C H A P T E R 4

Numerical Differentiation

Differentiation is a process used in calculus to quantify the rate of change of a given
function. The derivative of a real-valued function of a real variable is another real-
valued function of a real variable. For example, suppose you are driving down the
freeway in your car and f(t) gives the distance traveled at time ¢. Typical values
might be

X f(x)

1.0 45.0
11 . 49.2
12 54.5
13 59.8
14 65.1
15 70.4

The units are in hours and miles, and the data refers to a trip that started at
noon. f(1.0) = 45.0, so the distance traveled by one o’clock is 45.0 miles, and f(1.5)
= 70.4, so by half past one you will be 70.4 miles from where you were at noon.

The derivative of this distance function gives the velocity function. The car’s
velocity at one o’clock is the value of the derivative at x = 1.0. From the previous
data, it is impossible to compute the derivative exactly, but it is possible to approxi-
mate the derivative. The car traveled 49.2 — 45.0 = 4.2 miles in the six minutes
after one o’clock (1.1 — 1.0 = 0.1 hours = 6 minutes). Thus, the average velocity
of the car during those six minutes is 4.2 /0.1 = 42 miles per hour. This gives an
approximation to the velocity at one o’clock.

63

Each method described in this chapter approximates derivatives of a real func-
tion of one real variable.

The routines DERIV.INC, DERIV2.INC, and INTERDRV.INC compute
derivatives of a function that is represented by tabular data. Consequently, their
accuracy depends heavily upon the precision and spacing of the data points.

The routines DERIVFN.INC and DERIV2FN.INC compute derivatives of a
user-defined function. Consequently, the accuracy of the values calculated with
these routines is limited by the precision of the computer.

Differentiation consists of subtracting two very close numbers and dividing by a
very small number; hence, it is extremely sensitive to round-off error. The accuracy
of the first derivative is approximately the square root of the precision with which
real numbers are represented; the accuracy of the second derivative is approxi-
mately equal to the fourth root. Thus, the precision of the first derivative will be
about 1E — 8 when run with the 8087 math coprocessor, or about 1E —4 when run
without the 8087 math coprocessor. The precision of the second derivative will be
about 1E —4 with the 8087, or 1E —2 without it.

The first derivative of a function that is represented by a table of values can be
approximated in DERIV.INC via a two-point formula, a three-point formula, or a
five-point formula. The accuracy of the formula increases with the number of
points used in the formula. In order to use the five-point formula, however, the
domain values of the data points (that is, the x-coordinates) must be equally spaced.
This is not required for the two-point and three-point formulas. Derivatives can
only be approximated at data points.

The second derivative of a function that is represented by a table of values can
be approximated in DERIV2.INC via a three-point formula or a five-point for-
mula. The domain values of the data points must be equally spaced (regardless of
whether the three-point formula or five-point formula is used). Second derivatives
can only be approximated at data points.

The routine INTERDRV.INC approximates a function by constructing a free
cubic spline to a set of data points. Cubic splines avoid the undesirable oscillatory
behavior of other interpolating polynomials. The derivative of the cubic spline at a
given domain value, which may be different from the input data values, will then
approximate the corresponding derivative of the function.

The first derivative of a user-supplied function is approximated in DERIV
FN.INC via a three-point formula. The approximation is refined with Richardson
extrapolation. The derivative can be approximated at any point within the domain
of the function.

64 Turbo Numerical Methods Toolbox

The second derivative of a user-supplied function is approximated in
DERIV2FN.INC via a three-point formula. The approximation is refined with
Richardson extrapolation. The second derivative can be approximated at any point
within the domain of the function.

Numerical Differentiation 65

First Differentiation Using Two-Point, Three-Point, or
Five-Point Formulas (DERIV.INC)

Description

This example contains several algorithms for approximating the derivative of a
function f(x), given several data points (x, f(x)). The user must specify whether a
two-point, three-point, or five-point formula should be used. Two points are used
in the two-point formula, three in the three-point formula, and five in the five-
point formula. The user must supply the data points (x, f(x)) and the x-values of the
data points at which to approximate the derivative. Note: Derivatives can only be
approximated at x-values corresponding to input data points.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

Input Parameters

NumPoints : Integer; Number of data points

XData : Thvector; X-coordinates of data points

YData : Thvector; Y-coordinates of data points

Point : Byte; Two-point, three-point, or five-point differentiation

NumDeriv : Integer; Number of points at which the derivative is to be approxi-
mated

XDeriv : Thvector; X-coordinates of data points at which the derivative is to be
approximated

The preceding parameters must satisfy the following conditions:
1. XData points must be unique.
2. XData points must be entered in ascending order.

3. At least two points are needed for two-point differentiation, three for
three-point differentiation, and five for five-point differentiation.

4. Point must equal two, three, or five.

66 Turbo Numerical Methods Toolbox

5. XData points must be equally spaced for five-point differentiation.

6. XDeriv points must be a subset of the XData points.

7. NumPoints, NumDeriv < TNArraySize.

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNuvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 7. If condition 7 is

violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +} is active).

Output Parameters

YDeriv : TNvector; Approximation to the first derivative at the points in XDeriv

Error : Byte; 0: No errors
1: WARNING! Not all the derivatives were computed (see
“Comments”)
2: X-values not unique
3: X-values not in ascending order
4: Not enough data
5: Point not equal to 2, 3, or 5
6: X-values not equally spaced for the five-point formula

Syntax of the Procedure Call

First_Derivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDeriv, Error);

Comments

If an x-value at which the derivative is to be approximated is not among the data
points, the value —9.999999999E35 is arbitrarily assigned to the derivative at that
point and Error = 1 is returned. When using five-point differentiation with only
five points, there is not enough information to approximate the derivative at the
first, second, fourth, or fifth points. Likewise, if only six points are input, there is
insufficient information for approximating the derivative at the second and fifth
data points. Should an attempt be made to approximate the derivative at any of
these points, the value of 9.999999999E35 is arbitrarily assigned the derivative at
that point and Error = 1 is returned.

Numerical Differentiation 67

Since numerical differentiation is prone to round-off errors, TNNearlyZero is
different in this routine. The values of TNNearlyZero are TNNearlyZero = 1E — 13
if using the 8087 math coprocessor and TNNearlyZero = 1E —6 if not using the
8087.

Sample Program

The sample program DERIV.PAS provides I/O functions that demonstrate differ-
entiation with two-point, three-point, and five-point formulas.

Input Files

Data points may be entered from a text file. The x- and y- coordinates should be
separated by a space and followed by a carriage return. For example, data values of
sqr(x) could be entered in a text file as

11
24
39
416
525

Derivative points may also be entered from a text file. Every derivative point
must be followed by a carriage return. For example, to determine the derivatives of
the preceding points, create the following file of derivative points:

1

[91 9NV

Example
Problem. Approximate the first derivative of fix) = sqr(x) * cos(x) at several points

between one and two radians. The output from three runs is given. Actual values of
the derivatives to eight significant figures are also given.

68 Turbo Numerical Methods Toolbox

Run DERIV.PAS:

(K)eyboard or (F)ile entry of the data points? F

File name? SAMPLE4A.DAT

(K)eyboard or (F)ile entry of the derivative points? K

Number of X values (0-100)? 5

Point 1: 1.1
Point 2: 1.3
Point 3: 1.5
Point 4: 2.0
Point 5: 2.2

2-, 3-, or 5-point differentiation (default = 5)? 2

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

Input Data: X

.0000000
.1000000
.2000000
3000000
4000000
.5000000
6000000
7000000
.8000000
9000000
.0000000

S e e e et

w0,

Y

.40302305868140E-001
.48851306924949E-001
.21795166446410E-001
.52073020375553E-001
.33135600084472E-001
.59158703752332E-001
-7.
-3.
-7.
-1.
-1.

47507770912994E-002
72360588514066E-001
36134786805602E-001
16707533637725E+000
66458734618857E+000

Output using two-point differentiation:

(¥ mccmccccmcccccmc—m e m—eae———
c* WARNING
(¥ mmmmdcmcecmcemmmmcammee————

X Derivative at X
1.100 8.54900105680900E-002
1.300 -6.97221460708569E-001
1.500 -1.73976896332140E+000
2.000 -4.97512009811320E+000
2.200 No derivative calculated

Numerical Differentiation

69

Output using

1.100
1.300
1.500
2,000
2.200

Output using

1.100
1.300
1.500
2.000
2.200

three-point differentiation:

Derivative at X
-9.25356971086502E-002
-9.43297831809691E-001
-2.03943188587886E+000
-5.30797739931155E+000
No derivative calculated

five-point differentiation:

Derivative at X
-8.08749392678299E-002
-9.32986606435738E-001
-2.03221450709712E+000
-5.30200229054730E+000
No derivative calculated

Actual Values
X Derivative at X
1.100 -0.0804494
1.300 -0.9329163
1.500 -2.0321521
2.000 -5.3017771
2.200 -6.5025275

The data is taken from a function of which a derivative could be computed
exactly. Though the values in the right-hand columns (under “Actual Values”) are
not displayed on screen, they are shown here to indicate the accuracy of the rou-

tine.

The warning signal indicates that some derivatives were not calculated.

The derivative is not approximated for x = 2.2 in any of the examples because
x = 2.2 is not among the data points.

70

Turbo Numerical Methods Toolbox

Second Differentiation Using Three-Point or Five-Point
Formulas (DERIV2.INC)

Description

This example contains two algorithms that approximate the second derivative of a
function f(x) when several data points (x, f(x)) are specified. You decide whether to
use a three-point or five-point formula (Gerald and Wheatley 1984, 236-237);
three points are used in the three-point formula, and five in the five-point formula.
You must supply the data points (x, f{x)) and the x-values of the data points at which
the second derivative is to be approximated. The second derivative may only be
approximated at x-values that were input as data points.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

Input Parameters

NumPoints : Integer; Number of data points

XData : TNvector; X-coordinates of the data points

YData : TNvector; Y-coordinates of the data points

Point : Byte; Three-point or five-point differentiation

NumDeriv : Integer; Number of points at which the derivative is to be approxi-
mated

XDeriv : TNvector; X-coordinates of points at which the derivative is to be approx-
imated

The preceding parameters must satisfy the following conditions:
1. XData points must be unique.
2. XData points must be entered in ascending order.

3. At least three points for three-point differentiation and five points for five-
point differentiation.

4. Point must equal 3 or 5.

Numerical Differentiation 71

5. XData points must be equally spaced.
6. XDeriv points must be a subset of the XData points.
7. NumPoints, NumDeriv < TNArraySize.

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 7. If condition 7 is
violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +} is active).

Output Parameters

YDeriv : TNvector; Approximation to the second derivative at the XDeriv points

Error : Byte; 0: No errors
1: WARNING! At least one derivative was not approximated
(see “Comments”)
2: X-values not unique
3: X-values not in increasing order
4: Not enough data
5: Point not equal to 3 or 5
6: X-value points not equally spaced

Syntax of the Procedure Call

Second_Derivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDeriv, Error);

Comments

If an x-value at which the second derivative is approximated is not among the data
points, the value —9.9999999E35 is arbitrarily assigned to the derivative at that
point and Error = 1 is returned. When using five-point second differentiation with
only five data points, there is insufficient information for approximating the second
derivative at the second and fourth data points. Should an attempt be made to
approximate the second derivative at these points, the value 9.9999999E35 is arbi-
trarily assigned to the second derivative at that point and Error = 1 is returned.

72 Turbo Numerical Methods Toolbox

Since numerical differentiation is extremely prone to round-off error, TNNear-
lyZero is different in this routine. The values of TNNearlyZero are TNNearlyZero
= 1E — 13 if using the 8087 math coprocessor and TNNearlyZero = 1E — 6 if not
using the 8087.

Sample Program

The sample progam DERIV2.PAS provides /O functions that demonstrate
second-order differentiation with three-point and five-point formulas.

Input Files

Data points may be entered from a text file. The x- and y-coordinates should be
separated by a space and followed by a carriage return. For example, data values of
sqr(x) could be entered in a text file as

11
24
39
416
525

Derivative points may also be entered from a text file. Every derivative point
must be followed by a carriage return. For example, to determine the second deriv-
atives of the preceding points, create the following file of derivative points:

1

[V BNV S

Example

Problem. Approximate the second derivative of f(x) = sqr(x) * cos(x) at several
points between x = 1 and x = 2 radians. The output from two runs is given. Actual
values of the second derivatives to eight significant figures are also given.

Numerical Differentiation 73

Run DERIV2.PAS:
(K)eyboard or (F)ile entry of the data points? F

File name? SAMPLE4A.DAT
(K)eyboard or (F)ile entry of the derivative points? K

Number of X values (0-100)75

Point 1: 1.1
Point 2: 1.3
Point 3: 1.5
Point 4: 2.0
Point 5: 2.2

3- or 5-point second differentiation (default = 5)7 3

Direct output to one of the following:

(S)creen

(P)rinter

(F)ile

Input Data: X Y

1.0000000 5.40302305868140E-001
1.1000000 5.48851306924949E-001
1.2000000 5.21795166446410E-001
1.3000000 4,52073020375553E-001
1.4000000 3.33135600084472E-001
1.5000000 1.59158703752332E-001
1.6000000 -7.47507770912994E-002
1.7000000 -3.72360588514066E-001
1.8000000 -7.36134786805602E-001
1.9000000 -1.16707533637725E+000
2.0000000 -1.66458734618857E+000

Output using three-point second differentiation:

(¥ cccccecmeecmee——cc————————— *y
<* WARNING *>
(¥ e mce——————— *y
X 2nd Derivative at X
1.100 -3.56051415353479E+000
1.300 -4.92152742202240E+000
1.500 -5.99325845114913E+000
2.000 -6.65714602396721E+000
2.200 No 2nd derivative calculated

74 Turbo Numerical Methods Toolbox

Output using five-point second differentiation:

1.100
1.300
1.500
2.000
2.200

2nd Derivative at X
-3.61167369644119E+000
-4,92756964541465E+000
-6.00263647117236E+000
-6.59765691992321E+000
No 2nd derivative
calculated

Actual Values

X

1.100
1.300
1.500
2.000
2.200

2nd Derivative at X
-3.5629714
-4,.9275779
-6.0026542
-6.4420857
-5.4434251

The data is taken from a function of which the derivative could be computed
exactly. Though the values in the right-hand columns (under “Actual Values™) are
not displayed on screen, they are shown here to indicate the accuracy of the rou-

tine.

The warning signal indicates that some second derivatives were not calculated.

The second derivative is not approximated at x = 2.2 for either run because
x = 2.2 is not among the input x-value points.

Numerical Differentiation

75

Differentiation with a Cubic Spline Interpolant
(INTERDRV.INC)

Description

This example contains an algorithm for approximating the first and second deriva-
tives of a function given several data points (x, f(x)). The algorithm assumes that a
free cubic spline interpolant (Burden and Faires 1985, 117-122) is an adequate ap-
proximation to the function f(x), so that the slope of the interpolant at any value «,
is an adequate approximation to f '(x). See Chapter 3 (CUBE_FRE.INC) for more
information on free cubic splines. The user must supply the data points (x, f(x)) and
the x-values at which to approximate the derivatives. Derivatives may be approxi-
mated at any x-value contained in the closed interval determined by the data
points. This routine will likely give significant errors if interpolation (Gerald and
Wheatley 1984, 227-231) is attempted outside the range of x-values (extrapo-
lation).

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

Input Parameters

NumPoints : Integer; Number of data points
XData : Thvector; X-coordinates of data points
YData : TNvector; Y-coordinates of data points

NumDeriv : Integer; Number of points at which the derivative is to be approxi-
mated

XDeriv : TNvector; X-coordinates of points at which the derivative is to be approx-
imated

76 Turbo Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. XData points must be unique.

2. XData points must be in ascending order.

3. NumPoints = 2.

4. NumPoints, NumDeriv < TNArraySize.

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 4. If condition 4 is

violated, the program will crash with an Index Out of Range error (assuming the
directive {$R+} is active).

Output Parameters

Yinter : TNvector; Interpolated y-values at the XDeriv points
YDeriv : TNvector; Approximation to the first derivative at the x-values in XDeriv

YDeriv2 : TNvector; Approximation to the second derivative at the x-values in
XDeriv

Error : Byte; 0: No errors
1: X-values not unique
2: X-values not in ascending order
3: NumPoints < 2

Syntax of the Procedure Call

Interpolate_Derivative(NumPoints, XData, YData, NumDeriv,
XDeriv, YInter, YDeriv, YDeriv2, Error);

Sample Program

The sample program INTERDRV.PAS provides I/O functions that demonstrate
differentiation with a cubic spline interpolant.

Numerical Differentiation 77

Input Files

Data points may be entered from a text file. The x- and y-coordinates should be
separated by a space and followed by a carriage return. For example, data values of
sqr(x) could be entered in a text file as

11
24
39
416
525

Derivative points may also be entered from a text file. Every derivative point
must be followed by a carriage return. For example, to determine the derivatives of
the preceding points, create the following file of derivative points:

1

2
3
4
5

Example

Problem. Determine the first and second derivative of f{x) = sqr(x) * cos(x) at
several points between one and two radians. Actual values of the derivatives to
eight significant figures are given here.

Run INTERDRV.PAS:
(K)eyboard or (F)ile entry of data points? F

File name? SAMPLE4B.DAT
(K)eyboard or (F)ile entry of derivative points? K

Number of derivative points (0-100)?5

Point 1: 1.1
Point 2: 1.3
Point 3: 1.55
Point 4: 1.95
Point 5: 2.20

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

78 Turbo Numerical Methods Toolbox

Input Data: X Y

1.000 0.5403023
1.100 0.5488513
1.200 0.5217952
1.300 0.4520730
1.400 0.3331356
1.500 0.1591587
1.600 -0.0747508
1.700 -0.3723606
1.800 -0.7361348
1.900 -1.1670753
2.000 -1.6645873
Using free cubic spline interpolation:

X Value at X 1st Deriv at X 2nd Deriv at X
1.100 5.48851300000000E-001 -5.86015666816468E-002 -4,32274700
1.300 4.52073000000000E-001 -9.31377366861404E-001 -4.98862501
1.550 4.99429267146238E-002 -2.33770918101853E+000 -6.19118137
1.950 -1.41057141673716E+000 -5.01018588841893E+000 -4.20790661
2.200 -2.57545316779455E+000 -3.43222090956677E+000 16.83162644

The data is taken from a function of which the derivative could be computed
exactly. The actual values are shown here:

X Value at X 1st Deriv at X 2nd Deriv at X
1.1 0.5488513 —0.0804494 -3.5629715
1.3 0.4520730 —0.9329164 —4.9275779
1.55 0.0499596 —2.3375165 —6.2070293
1.95 —1.4076126 —4.9760746 —6.5786348
2.20 —2.8483454 —6.5025275 —5.4434252

Note the poor results obtained at values outside the range of input data
(x = 2.2). Also note the large error in the second derivatives near the endpoints of
the interval determined by the data.

Numerical Differentiation 79

Differentiation of a User-Defined Function
(DERIVFN.INC)

Description

Given a user-defined function flx), this example will approximate the first deriva-
tive of the function at a set of x values. The formula

f'@) = [fx + AX) — flx — AX)]/2+AX

gives a first approximation to the derivative. Richardson extrapolation is then used
to refine the approximation (Burden and Faires 1985, 137-152).

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

User-Defined Function

function TNTargetF(X : Real) : Real;

Input Parameters

NumDeriv : Integer; Number of points at which the derivative is to be approximated

XDeriv : TNvector; X-coordinates of points at which the derivative is to be approxi-
mated

Tolerance : Real; Indicates accuracy of solution
The preceding parameters must satisfy the following conditions:
1. NumDeriv < TNArraySize
2. Tolerance > TNNearlyZero
TNArraySize represents the number of elements in each vector. It is used in the

type definition of TNvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 1. If condition 1 is

80 Turbo Numerical Methods Toolbox

violated, the program will crash with an Index Out of Range error {(assuming the
directive {$R+} is active).

Output Parameters

YDeriv : TNvector; Approximation to the first derivative at the x-values in XDeriv

Error : Byte; 0: No errors
1: Tolerance < TNNearlyZero

Syntax of the Procedure Call

FirstDerivative(NumDeriv, XDeriv, YDeriv, Tolerance, Error);

The procedure FirstDerivative approximates the first derivative of function
TNTargetF.

Comments

Since numerical differentiation is extremely prone to round-off errors, TNNear-
lyZero is different in this routine. Its values are TNNearlyZero = 1E —10 if using
the 8087 math coprocessor and TNNearlyZero = 1E —5 if not using the 8087.

Sample Program

The sample program DERIVFN.PAS provides I/O functions that find the first
derivative of a function at a set of points.

Input Files
Derivative points may be entered from a text file. Every derivative point must be

followed by a carriage return. For example, to determine the derivatives at x-values
1 through 5, create the following file of derivative points:

1
2
3
4
5

Numerical Differentiation 8l

Example

Problem. Determine the first derivative of flix) = sqr(x) * cos(x) at several points
between 1 and 2.2. Actual values of the derivatives to eight significant figures are
given here.

First, write the function into the DERIVFN.PAS program:

(* ---m- here is the function to differentiate ~=---e-mmmmcccanaaa- *)

function TNTargetF(X : Real) : Real;

begin
TNTargetF := Sqr(X)*Cos(X);
end; . { function TNTargetF }
(* __ *)
Run DERIVFN.PAS:

(K)eyboard or (F)ile entry of derivative points? K
Number of points (0-100)? 5

Point 1:
Point 2:
Point 3:
Point 4:
Point 5:

N = = =
e e e o
N WO O W =
(S8,)

Tolerance (> 0, default = 1.000E-02)? 1E-4

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Tolerance = 1.00000000000000E-004
Actual Values

X Derivative at X X Value at X 1st Deriv at X
1.100 -8.04494385380506E~-002 1.1 0.5488513 -0.0804494
1.300 -9.32916380187812E-001 1.3 0.4520730 -0.9329164
1.550 -2.33751652942968E+000 1.55 0.0499596 -2.3375165
1.950 -4.97607456093019E+000 1.95 -1.4076126 -4.9760746
2.200 -6.50252751007358E+000 2.20 -2.8483454 -6.5025275

The data is taken from a function of which the derivative could be calculated
exactly. Though the values in the three right-hand columns (under “Actual Values”)
are not displayed on screen, they are shown here to indicate the accuracy of the
routine.

82 Turbo Numerical Methods Toolbox

Second Differentiation of a User-Defined Function
(DERIV2FN.INC)

Description

Given a user-defined function f{x), this example will approximate the second deriv-
ative of the function at a set of x values. The three-point formula

£ = [fe + AX) - 2f) + flx - AX)YAX?

gives a first approximation to the second derivative. Richardson extrapolation is
then used to refine the approximation (Burden and Faires 1985, 142-152).

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

User-Defined Function

function TNTargetF(X : Real) : Real;

Input Parameters

NumDeriv : Integer; Number of points at which the derivative is to be approximated

XDeriv : TNvector; X-coordinates of points at which the derivative is to be approxi-
mated

Tolerance : Real; Indicates accuracy in solution

Numerical Differentiation 83

The preceding parameters must satisfy the following conditions:
1. NumDeriv < TNArraySize
2. Tolerance = TNNearlyZero

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 1. If condition 1 is
violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +} is active).

Output Parameters

YDeriv : TNvector; Approximation to the second derivative at the x-values in XDeriv

Error : Byte; 0: No errors
1: Tolerance < TNNearlyZero

Syntax of the Procedure Call

SecondDerivative(NumDeriv, XDeriv, YDeriv, Tolerance, Error);

SecondDerivative approximates the derivative of function TNTargetF.

Comments

Since numerical differentiation is extremely prone to round-off errors, TNNear-
lyZero is different in this routine. Its values are TNNearlyZero = 1E —4 if using
the 8087 math coprocessor and TNNearlyZero = 1E —2 if not using the 8087.

Sample Program

The sample program DERIV2FN.PAS provides I/0 functions that find the second
derivative of a function at a set of points.

84 Turbo Numerical Methods Toolbox

Input Files

Derivative points may be entered from a text file. Every derivative point must be
followed by a carriage return. For example, to determine the second derivatives at
x-values 1 through 5, create the following file of derivative points:

1

DU~ WD

Example

Problem. Determine the second derivative of fix) = sqr(x) = cos(x) at several
points between 1 and 2.2. Actual values of the derivatives to eight significant fig-
ures are given here.

First, write the function into the DERIV2FN.PAS program:
(* ~=-m- here is the function to differentiate ----e-e-eoooaaaaaaas *)
function TNTargetF(X : Real) : Real;

begin

TNTargetF := Sqr(X)*Cos(X):
end; { function TNTargetF }

Run DERIV2FN.PAS:

(K)eyboard or (F)ile entry of derivative points? K

Number of points (0-100)? 5

Point 1: 1.1
Point 2: 1.3
Point 3: 1.55
Point 4: 1.95
Point 5: 2.2

Tolerance (> 0, default = 1.000E-02)? 1E-4
Direct output to one of the following:
(S)creen .
(P)rinter
(F)ile

Tolerance = 1.00000000000000E-004

Numerical Differentiation 85

X 2nd Derivative at X
1.100 -3.56297143915941E+000
1.300 -4,92757787674466E+000
1.550 -6.20702925534123E+000
1.950 -6.57863484485542E+000
2.200 -5.44342524529641E+000

X
1.1
1.3
1.55
1.95
2.20

Actual Values

Value at X
0.5488513
0.4520730
0.0499596
-1.4076126
-2.8483454

2nd Deriv at X
-3.5629715
-4.9275779
-6.2070293
-6.5786348
-5.4434252

The data is taken from a function of which the derivative could be calculated
exactly. Though the values in the three right-hand columns (under “Actual Values™)
are not displayed on screen, they are shown here to indicate the accuracy of the

routine.

86

Turbo Numerical Methods Toolbox

C H A P T E R 5

Numerical Integration

Integration is another concept used in calculus. It is just the opposite of differentia-
tion, for which routines are provided in Chapter 4. Differentiation tells you the
changes in a function, where integration tells you how to add those changes to get
the original function.

Integration is most easily understood in terms of areas under curves. Given a
function f(x) and real numbers ¢ and b with a < b, the area under the curve
y = f(x) and above the x-axis between x = @ and x = b is given by the integral of

f(x) from a to b.

As with derivatives, the laws of calculus are required to compute integrals
exactly. The routines in this chapter provide very accurate approximations.

Several methods are described here that approximate the value of a definite
integral of a real function of one real variable. Both limits of integration must be
finite.

The trapezoid method (TRAPZOID.INC) and Simpson’s method (SIMPSON.
INC) return an approximation of the integral when a number of equal length
subintervals are specified. For a given number of subintervals, Simpson’s method
is preferred over the trapezoid method whenever the function being integrated is
sufficiently smooth.

It is sometimes possible to approximate the definite integral to within a user-
specified accuracy with fewer function evaluations using adaptive schemes. Adap-
tive schemes determine the length of each subinterval by the local behavior of the

87

integrand. Simpson’s method (ADAPSIMP.INC) and the Gaussian quadrature
method (ADAPGAUS.INC) are used with adaptive schemes. The Gaussian quad-
rature method permits, in some instances, the integrand to possess a singularity at
an endpoint of integration, since the function is evaluated at points that are not the
endpoints of the interval of integration.

The Romberg method (ROMBERG.INC) uses the trapezoid method and Rich-
ardson extrapolation to approximate the integral. It returns an approximation
within a user-specified accuracy. Except for extremely oscillatory functions or
functions that possess an endpoint singularity, this method is fastest and most
accurate. If the function oscillates substantially or possesses an endpoint singular-
ity, the adaptive Gaussian quadrature routine is preferred.

88 Turbo Numerical Methods Toolbox

Integration Using Simpson’s Composite Algorithm
(SIMPSON.INC)

Description

This example uses Simpson’s composite algorithm (Burden and Faires 1985, 156
167) to approximate the definite integral of a function f{x) over an interval [a, b].
The interval is divided into N subintervals of equal length. The curve in each
subinterval is approximated by a second-degree Lagrange polynomial. The integral
of the resulting polynomial is then calculated. The sum of the integrals of the N
Lagrange polynomials approximates the integral of the function f over the interval
[a, b]. You must supply the function, the limits of integration, and the number of
subintervals.

User-Defined Function

function TNTargetF(x : Real) : Real;

The procedure Simpson approximates the integral of this function.

Input Parameters

LowerLimit ; Real; Lower limit of integration

UpperLimit : Real; Upper limit of integration

NumIntervals : Integer; Number of subintervals over which to apply Simpson’s rule
The preceding parameters must satisfy the following condition:

NumlIntervals > 0

Numerical Integration 89

Output Parameters

Integral : Real; Approximation to the integral of the function

Error : Byte; 0: No errors
1: NumlIntervals < 0

Syntax of the Procedure Call

Simpson(LowerLimit, UpperLimit, NumIntervals, Integral, Error);

Simpson approximates the integral of TNTargetF.

Sample Program

The sample program SIMPSON.PAS provides I/O functions that demonstrate
Simpson’s composite algorithm.

Example

Problem. Approximate the integral exp(3x) + sqr{x)/3 from 0 to 5 using Simpson’s
composite algorithm.

1. Code function TNTargetF:

function TNTargetF(x : Real) : Real;

(**)

(Fxx THIS IS THE FUNCTION TO INTEGRATE *EAK)

(**)

begin
TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

90 Turbo Numerical Methods Toolbox

2. Run SIMPSON.PAS:

Lower 1imit of integration? 0
Upper limit of integration? 5
Number of intervals (> 0)? 100
Direct output to one of the following:
(S)creen
(P)rinter
(F)ile
Lower 1imit: 0.00000000000000E+000
Upper limit: 5.00000000000000E+000
Number of intervals: 100
Integral: 1.08968620446199E+006

To eight significant figures, the correct answer is 1,089,686.2.

Numerical Integration

9l

Integration Using the Tmpezbid Composite Rule
(TRAPZOID.INC)

Description

This example uses the trapezoid composite rule (Burden and Faires 1985, 154-167)
to approximate the definite integral of a function fix) over an interval [a, b]. The
interval is divided into N subintervals of equal length. In each subinterval the
function is approximated by a straight line. The sum of the integrals of the result-
ing trapezoids approximates the integral of the function f over the interval [a, b].
You must supply the function, the limits of integration, and the number of subinter-
vals.

User-Defined Function

function TNTargetF(x : Real) : Real;

The procedure Trapezoid approximates the integral of this function.

Input Parameters

Lower Limit : Real; Lower limit of integration
UpperLimit : Real; Upper limit of integration

NumIntervals : Integer; Number of subintervals over which to apply the trapezoid
rule

The preceding parameters must satisfy the following condition:

NumlIntervals > 0

92 Turbo Numerical Methods Toolbox

Output Parameters

Integral : Real; Approximation to the integral of the function

Error : Byte; 0: No errors
1: NumlIntervals < 0

Syntax of the Procedure Call

Trapezoid(LowerLimit, UpperLimit, NumIntervals, Integral, Error);

Trapezoid approximates the integral of TNTargetF.

Sample Program

The sample program TRAPZOID.PAS provides 1/O functions that demonstrate the
trapezoid composite rule.

Example

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using the trape-
zoid composite rule.

1. Code function TNTargetF:
function TNTargetF(x : Real) : Real;

(***)

(rwr THIS IS THE FUNCTION TO INTEGRATE)

(***)

begin
TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

Numerical Integration 93

2. Run TRAPZOID.PAS:

Lower limit of integration? 0
Upper Timit of integration? 5
Number of intervals (> 0)? 100
Direct output to one of the following:
(S)creen
(P)rinter
(F)ile
Lower 1imit: 0.00000000000000E+000
Upper limit: 5.00000000000000E+000
Number of intervals: 100
Integral: 1.09172838320798E+006

To eight significant figures, the correct answer is 1,091,728.3.

94 Turbo Numerical Methods Toolbox

Integration Using Adaptive Quadrature and Simpson’s Rule
(ADAPSIMP.INC)

Description

This example contains an algorithm for approximating the definite integral of a
function f(x) over an interval [a,b] within a specified tolerance. By increasing the
number of subintervals in regions of large functional variation (adaptive quadra-
ture), the desired degree of accuracy can be reached (Burden and Faires 1985,
153-167). The integral within each subinterval is calculated with Simpson’s rule.
The adaptive quadrature approximates the integral over a subinterval twice: once
over the whole subinterval, and again as the sum of the integral over each half of
the subinterval. The algorithm halts when the fractional difference between these
two approximations is less than the tolerance. You must supply the function, the
limits of integration, and the tolerance with which to approximate the integral.

User-Defined Function

function TNTargetF(x : Real) : Real;

The procedure Adaptive—_Simpson approximates the integral of this function.

Input Parameters

Lower Limit : Real; Lower limit of integration
UpperLimit : Real; Upper limit of integration
Tolerance : Real; Indicates accuracy in solution

MaxIntervals : Integer; Maximum number of subintervals
The preceding parameters must satisfy the following conditions:
1. Tolerance > 0

2. MaxIntervals > 0

Numerical Integration 95

Output Parameters

Integral : Real; Approximation to the integral of the function
NumIntervals : Integer; Number of subintervals used

Error : Byte; 0: No errors
1: Tolerance < 0
2: MaxIntervals < 0
3: NumlIntervals = MaxIntervals

Syntax of the Procedure Call

Adaptive_Simpson(LowerLimit, UpperLimit, Tolerance, MaxIntervals,
Integral, NumIntervals, Error);

Adaptive_Simpson approximates the integral of TNTargetF.

Comments

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure
calls (which slow down the execution), a stack is created on the heap to simulate
recursion. Should you attempt to evaluate the integral to a very high degree of
accuracy with a large number of subintervals, you may get run-time error $FF,
Heap/Stack collision. If this happens, remove any RAM-resident software (for
example, SideKick®, SuperKey®, or a print buffer). If the problem remains, the
adaptive Simpson routine cannot be used to approximate the integral to the
desired accuracy.

Adaptive quadrature uses the New/Dispose procedures to manipulate the heap
and should not be used in any program that uses Mark/Release to manipulate the
heap.

Sample Program

The sample program ADAPSIMP.PAS provides I/O functions that demonstrate the
adaptive quadrature method with Simpson’s rule.

96 Turbo Numerical Methods Toolbox

Example

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using adaptive

quadrature and Simpson’s rule.

1. Code function TNTargetF:
function TNTargetF(x : Real) : Real;

(**)

(** THIS IS THE FUNCTION TO INTEGRATE

(**)

begin
TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

2. Run ADAPSIMP.PAS:

Lower 1imit of integration? 0

Upper limit of integration? 5

Tolerance (> 0, default = 1.000E-08): 1E-8

Maximum number of subintervals (> 0, default = 1000): 1000

Direct output to one of the following:
' (S)creen
(P)rinter
(F)ile

Lower limit: 0.00000000000000E+000

Upper limit: 5.00000000000000E+000

Tolerance: 1.00000000000000E~-008
Maximum number of subintervals: 1000
Number of subintervals used: 511

Integral: 1.08968601332498E+006

To eight significant figures, the correct answer is 1,089,686.0.

Numerical Integration

97

Integration Using Adaptive Quadrature and Gaussian
Quadrature (ADAPGAUS.INC)

Description

This example contains an algorithm for approximating the integral of a function f(x)
over an interval [a,b] within a specified tolerance. By increasing the number of
subintervals in regions of large functional variation (adaptive quadrature), the
desired degree of accuracy can be reached. The integral within each subinterval is
approximated by applying Gaussian quadrature (Burden and Faires 1985, 184-188)
with a 16th degree Legendre polynomial. Adaptive quadrature (Burden and Faires
1985, 172-176) approximates the integral over a subinterval twice: once over the
whole subinterval, and again as the sum of the integral over each half of the subin-
terval. The algorithm halts when the fractional difference between these two
approximations is less than the tolerance. You must supply the function, the limits
of integration, and the tolerance with which to approximate the integral.

User-Defined Function

function TNTargetF(x : Real) : Real;

The procedure Adaptive_Gauss_Quadrature approximates the integral of this
function.

Input Parameters

LowerLimit : Real; Lower limit of integration
UpperLimit : Real; Upper limit of integration
Tolerance : Real; Indicates accuracy in solution

MaxIntervals : Integer; Maximum number of subintervals
The preceding parameters must satisfy the following conditions:
1. Tolerance > 0

2. MaxIntervals > 0

98 Turbo Numerical Methods Toolbox

Output Parameters

Integral : Real; Approximation to the integral of the function
NumIntervals : Integer; Number of subintervals used

Error : Byte; 0: No errors
1: Tolerance < 0
2: MaxIntervals < 0
3: NumlIntervals = MaxIntervals

Syntax of the Procedure Call

Adaptive_Gauss_Quadrature(LowerLimit, UpperLimit, Tolerance, MaxIntervals,
Integral, NumIntervals, Error);

Adaptive_Gauss—Quadrature approximates the integral of TNTargetF.

Comments

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure
calls (which slow down execution), a stack is created on the heap to simulate recur-
sion. Should you attempt to evaluate the integral to a very high degree of accuracy
with a large number of subintervals, you may get run-time error $FF, Heap/Stack
collision. If this happens, remove any RAM-resident software (for example, Side-
Kick, SuperKey, or a print buffer). If the problem remains, the adaptive Gaussian
quadrature routine cannot be used to approximate the integral to the desired accu-
racy.

Adaptive quadrature uses the New/Dispose procedures to manipulate the heap
and should not be used in any program that uses Mark/Release to manipulate the
heap.

Gaussian quadrature uses orthogonal polynomials (in this case, Legendre poly-
nomials) to approximate an integral. Generally, a higher degree polynomial will
yield a more accurate result, but will take more time to compute. The 16th degree
Legendre polynomial used in ADAPGAUS.INC is very efficient. The values of its
zeros and weight factors follow (Abramowitz and Stegun 1972).

Numerical Integration 99

The following condition is satisfied by the numbers that follow it:

Integral from —1 to 1 of f(x) dx
equals

Sum from i=1 to NumLegendreTerms of

Legendreli] Weight * f(Legendre[i}.Root)

for an arbitrary function f(x).

Legendre[1]......cccoeiiiiiiiieniinininenenenen, Root:
Weight
Legendre[2].......ccccoovveiiiniiniiiiiiiinennnn, Root:
Weight
Legendre[3]........ccovvviviviiniininniiiinnnnns Root:
Weight
Legendre[4]........ccooviiieiiiiiiiniiiinnnnnn, Root:
Weight
Legendre[5]......cc.covvviveeiiiiiiiininiiinnn, Root:
Weight
Legendre[6]..........cooovvviniiiiiiiniiiiiinnnns Root:
Weight
Legendre[T].....cooveviiiiiiiiiiiiiiiinieinenns Root:
Weight
Legendre[8].......oooiviiieiiiiiiiiiiiiienennns Root:
Weight
Legendre[9]......c.cooovvviviiiniiiiininiinnnnnn, Root:
Weight
Legendre[10]cocvviiiiiiiiiinineen, Root:
Weight
Legendre[11]c.cooviiiiiniiiiiiiiiiieen, Root:
Weight
Legendre[12]c.oovviiiiiiiiiiiiiniiinann, Root:
Weight
Legendre[13]oooviiiiiiiiiiiiiiiiiiniceinn, Root:
Weight
Legendre[14]ccoooviiiiiiiininiiniininnn, Root:
Weight
Legendre[15]ovviiiiiiiniiiiiiiienininena, Root:
Weight
Legendre[16]cooovviiiiiiiiiiiiiniinnn, Root:
Weight
100

0.0950125098376370440185
0.189450610455068496285
0.281603550778258913230
0.182603415044923588867
0.458016777657227386342
0.169156519395002538189
0.617876244402643748447
0.149595988816576732081
0.755404408355003033895
0.124628971255533872052
0.865631202387831743880
0.095158511682492784810
0.944575023073232576078
0.062253523938647892863
0.989400934991649932596
0.027152459411754094852
—0.0950125098376370440185
0.189450610455068496285
—0.281603550778258913230
0.182603415044923588867
—0.458016777657227386342
0.169156519395002538189
—0.617876244402643748447
0.149595988816576732081
—0.755404408355003033895
0.124628971255533872052
—0.865631202387831743880
0.095158511682492784810
—0.944575023073232576078
0.062253523938647892863
—0.989400934991649932596
0.027152459411754094852

Turbo Numerical Methods Toolbox

Sample Program

The sample program ADAPGAUS.PAS provides 1/O functions that demonstrate
the adaptive quadrature method with Gaussian quadrature.

Example

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using adaptive
quadrature with Gaussian quadrature algorithm.

1. Code function TNTargetF:
function TNTargetF(x : Real) : Real;

(***)

(** THIS IS THE FUNCTION TO INTEGRATE *¥k)

(***)

begin
TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

2. Run ADAPGAUS.PAS:
Lower 1imit of integration? 0
Upper limit of integration? 5
Tolerance (> 0, default = 1.000E-08): 1E-8
Maximum number of subintervals (> 0, default = 1000): 1000
Direct output to one of the following:
(S)creen
(P)rinter
(F)ile
Lower limit: 0.00000000000000E+000
Upper limit: 5.00000000000000E+000
Tolerance: 1.00000000000000E-008
Maximum number of subintervals: 1000
Number of subintervals used: 1
Integral: 1.08968601304609E+006

To eight significant figures, the correct answer is 1,089,686.0.

Numerical Integration 101

Integration Using the Romberg Algorithm
(ROMBERG.INC)

Description

This example contains an algorithm (Burden and Faires 1985, 177-182) for approxi-
mating the integral of a function f(x) over an interval {a, b] within a specified toler-
ance. The trapezoid rule is used to generate a preliminary approximation, and
Richardson extrapolation (Burden and Faires 1985, 148-152) is subsequently used
to improve the approximation. Extrapolation continues until the fractional differ-
ence between successive approximations of the integral is less than the tolerance.
You must supply the function, the limits of integration, and the tolerance with
which to approximate the integral.

User-Defined Function

function TNTargetF(x : Real) : Real;

The procedure Romberg approximates the integral of this function.

Input Parameters

LowerLimit : Real; Lower limit of integration
UpperLimit : Real; Upper limit of integration
Tolerance : Real; Indicates accuracy in solution

MaxIter : Integer; Maximum number of iterations allowed
The preceding parameters must satisfy the following conditions:
1. Tolerance > 0

2. MaxIter > 0

102 Turbo Numerical Methods Toolbox

Output Parameters

Integral : Real; Approximation to the integral of the function
Iter : Integer; Number of iterations

Error : Byte; 0: No errors
1: Tolerance < 0
2: Maxlter < 0
3: Iter = MaxlIter

Syntax of the Procedure Call

Romberg(LowerLimit, UpperLimit, Tolerance, MaxIter, Integral, Iter, Error);

Romberg approximates the integral of TNTargetF.

Sample Program

The sample program ROMBERG.PAS provides I/O functions that demonstrate the
Romberg algorithm.

Example

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using the Rom-
berg algorithm.

1. Code function TNTargetF:
function TNT}argetF(x : Real) : Real;

(***)

(Fxxx THIS IS THE FUNCTION TO INTEGRATE *akk)

(***)
begin

TNTargetF := Exp{(3*X) + Sqr(X)/3;
end; . { function TNTargetF }

Numerical Integration 103

2. Run ROMBERG.PAS:
Lower Timit of integration? 0
Upper limit of integration? 5
Tolerance (> 0, default = 1.000E-08): 1E-8
Maximum number of iterations: (> 0, default = 100) 100
Direct output to one of the following:
(S)creen
(P)rinter
(F)ile
Lower limit: 0.00000000000000E+000
Upper Timit: 5.00000000000000E+000
Tolerance: 1.00000000000000E-008
Maximum number of iterations: 100
Number of iterations: 7
Integral: 1.08968601696675E+006

To eight significant figures, the correct answer is 1,089,686.0.

104 Turbo Numerical Methods Toolbox

C H A P T. E R 6

Matrix Routines

This chapter provides routines for dealing with systems of linear equations. An
example of a system of linear equations is as follows:

2X+Y+Z=7
X-Y+Z=2
X+Y-Z=0

Matrix algebra is a collection of notations that constitutes a technique for han-
dling such systems. With matrix algebra, the preceding system would be written

Ax=b

where

2 1 1 X 7
A= |1 -1 1 x= | Y b= | 2
1 1 -1 Z| T —=]o0

In Pascal, x and b are represented as one-dimensional arrays, and A is repre-
sented as a two-dimensional array. In matrix notation, the solution is given by

t=A"'b
where A™! is the inverse to A.

The determinant is an indicator of whether the matrix can be inverted. For
example, the equations

3X -3y =4
-2X+2Y=35

105

cannot be solved. Even for different values of the right-hand side, the equations
can only be solved in certain exceptional cases. (If you change 4 and 5 to 3 and —2,

then there are infinitely many solutions; but there are none if you change 4 and 5 to
3 and —3.0001.)

Following is a description of several routines that operate on matrices and sys-
tems of linear equations.

The determinant of a square matrix is found via DET.INC.
The inverse of a nonsingular matrix is found via INVERSE.INC.

The direct techniques implemented to solve a system of N linear equations in N
unknowns are Gaussian elimination (GAUSELIM.INC), Gaussian elimination
with partial pivoting (PARTPIVT.INC), and direct factorization (DIRFACT.INC).

The Gauss-Seidel method (GAUSSIDL.INC), an iterative technique that con-
verges to the solution, is seldom used for solving small systems, since the time
required for sufficient accuracy exceeds that required for the preceding direct
techniques.

In general, Gaussian elimination with partial pivoting is the fastest, most accu-
rate algorithm (see Chapter 9, LEAST.INC, for an application of PARTPIVT.INC).
The following special cases may warrant the use of one of the other routines:

* If you are considering systems where round-off is minimal (that is, small systems
whose coefficients are all of nearly the same magnitude), Gaussian elimination
without pivoting may be used. It is somewhat faster than its pivoting counterpart
(PARTPIVT.INC).

* When considering sparse coefficient matrices, the Gaussian elimination routine
with partial pivoting is the most efficient and accurate routine. If the matrix is
small and the nonzero coefficients do not differ wildly from each other, regular
Gaussian elimination (GAUSELIM.INC) can usually be used safely.

* For large, dense matrices, the iterative technique (GAUSSIDL.INC) is the most
efficient; it creates less round-off error than the direct methods. However, the
Gauss-Seidel algorithm has its own weaknesses (see the section, “Solving a Sys-
tem of Linear Equations with the Iterative Gauss-Seidel Method,” for more
details).

* When it is necessary to solve several systems with the same coefficient matrix
but a different vector of -constant terms, the direct factorization method
(DIRFACT.INC) is the most efficient. This is because it does not require reduc-
tion of the coefficient matrix for each vector of constants. (See Chapter 7 for an
application of DIRFACT.INC.)

106 Turbo Numerical Methods Toolbox

Determinant of a Matrix (DET.INC)

Description

The determinant of an N X N matrix can be computed by the following algorithm
(Gerald and Wheatley 1984, 110-111):

1. Use elementary row operations to make the matrix upper triangular (that
is, all the elements below the main diagonal are zero).

2. Find the product of the main diagonal elements — this will be the determi-
nant.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the data matrix

Data : TNmatrix; The square matrix
The preceding parameters must satisfy the following conditions:
1. Dimen > 0

2. Dimen < TNArraySize

TNArraySize sets an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Matrix Routines 107

Output Parameters

Det : Real; Determinant of the data matrix

Error : Byte; 0: No errors
1: Dimen < 1

Syntax of the Procedure Call

Determinant(Dimen, Data, Det, Error);

Sample Program

The sample program DET.PAS provides I/O functions that demonstrate how to
find the determinant of a matrix.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be like this:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
(111, [1,2]..[1,N], [2,1] ... [2, N] ... [N, NI,
where N is the dimension of the matrix

For example, a text file containing the matrix

-4 o]

could look like this:
2
2 3
-4 0

108 Turbo Numerical Methods Toolbox

Example

Problem. Find the determinant of the following matrix:

1 2 0 -10

-1 4 3 -05

2 2 1 =30

0 0 3 —-40
Run DET.PAS:

(K)eyboard or (F)ile input of data? F
File name? SAMPLE6A.DAT

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

The matrix:
1.00000000 2.00000000 0.00000000 -1.00000000
-1.00000000 4.00000000 3.00000000 -0.50000000
2.00000000 2.00000000 1.00000000 -3.00000000
0.00000000 0.00000000 3.00000000 -4.00000000

Determinant = -2.10000000000000E+001

Matrix Routines

109

Inverse of a Matrix (INVERSE.INC)

Description

The inverse of an N X N matrix A is an N X N matrix A™", such that A™"A equals
the identity matrix (Burden and Faires 1985, 306-316). Gauss-Jordan elimination
(Gerald and Wheatley 1984, 96-98) is used to transform the original matrix into
the identity matrix. The same elementary row operations that reduce A to the
identity matrix transform the identity matrix into the inverse of the original matrix
A. If one or more of the main diagonal elements of the transformed original matrix
(that is, after Gauss-Jordan elimination) is zero, then the original matrix A is singu-
lar and its inverse does not exist.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the data matrix

Data : TNmatrix; The elements of the square matrix

The preceding parameters must satisfy the following conditions:

1. Dimen > 0

2. Dimen < TNArraySize

TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

110 Turbo Numerical Methods Toolbox

Output Parameters

INV : Thmatrix; The inverse of the data matrix

Error : Byte; 0: No errors
1: Dimen < 1
2: No inverse exists

Syntax of the Procedure Call

Inverse(Dimen, Data, INV, Error);

Sample Program

The sample program INVERSE.PAS provides 1/O functions that demonstrate how
to find the inverse of a matrix.

Input Files

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
(L1}, [1,2].. [, N, [2,1] ... [2, N] ... [N, N},
where N is the dimel_lsion of the matrix

For example, a text file containing the matrix

-5 o]

could look like this:
2
2 3
-4 0

Matrix Routines Il

Example

Problem. Invert the following matrix:

1 20
-1 4 3
2 21
0 0 3

—-1.0
-0.5
-3.0
—4.0

Run INVERSE.PAS:
(K)eyboard or (F)ile input of data? F

File name? SAMPLE6A.DAT

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

The matrix:
1.000000000
-1.000000000
2.000000000
0.000000000

Inverse:
-1.952380952
0.761904762
-1.904761905
-1.428571429

ON PN

000000000
.000000000
000000000
000000000

0.190476190
0.
0
0

047619048

.380952381
.285714286

000000000
000000000
000000000
000000000

W= wo

—

.571428571
-0.357142857
.142857143
0.857142857

—

-1.
-0.
-3.
-4,

-0.

0.
-0.
-0.

000000000
500000000
000000000
000000000

714285714
071428571
428571429
571428571

To continue this example, reinvert the matrix just obtained:

(K)eyboard or (F)ile input of data? F

File name? SAMPLE6B.DAT

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

The matrix:

-1.952380952
0.761904762
-1.904761905
-1.428571429

Inverse:
1.000000000
-1.000000000
2.000000000
-0.000000000 -

112

cooco

.190476190
047619048
.380952381
.285714286

2.000000000
4,

2.000000000
0.

000000000

000000000

1.571428571

-0.357142857

1.142857143
0.857142857

0.000000000
3.000000000
1.000000000
3.000000000

-0.
-0.
0.

-1.
-0.
-3
-4.

714285714
071428571
428571429
571428571

000000000
500000000

000000000

000000000

Turbo Numerical Methods Toolbox

The coefficients of the original matrix are returned to fourteen significant figures
(only ten are displayed). The coefficients will be less precise if this example is run
on a machine without an 8087 math coprocessor.

Matrix Routines 13

Solving a System of Linear Equations with Gaussian
Elimination (GAUSELIM.INC)

Description

The solution to a system of N linear equations, AX = B, in N unknowns may be
found by simultaneously performing Gaussian elimination (Burden and Faires
1985, 291-304) on the matrix containing the coefficients of the equations (the coef-
ficient matrix A) and the vector containing the constant terms of the equations (the
constant vector B). First, elementary row operations are used to make A upper
triangular (that is, all the elements below the main diagonal are zero). Backward
substitution (whereby X[N] is calculated and used to calculate X[N—1], which is
then used to calculate X[N—2], and so on) is then used to compute the solution
vector X. If one or more of the elements on the main diagonal of the upper triangu-
lar matrix is zero, then no unique solution to the system exists.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the coefficients matrix

Coefficients : TNmatrix; The square matrix containing the coefficients of the equa-
tions

Constants : TNvector; The constant terms of each equation
The preceding parameters must satisfy the following conditions:
1. Dimen > 0
2. Dimen < TNArraySize
TNArraySize sets an upper bound on the number of elements in each vector. It

is used in the type definition of TNuvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for

4 Turbo Numerical Methods Toolbox

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Output Parameters

Solution : TNvector; Solution to the set of equations.

Error : Byte; 0: No errors.
1: Dimen < L
2: Coefficients matrix is singular; no unique solution exists.

Syntax of the Procedure Call

Gaussian—Elimination(Dimen, Coefficients, Constants, Solution, Error);

Sample Program

The sample program GAUSELIM.PAS provides I/O functions that demonstrate
how to solve a system of linear equations with Gaussian elmination.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the coefficient matrix

2. The elements of the matrix in row order; that is,
[1’ 1]’ []" 2]’ ey [1’ N]? [2’ l]’ seey [2’ N]’ reey [N, N]’
where N is the dimension of the matrix

3. The elements of the constant vector, in the order [1],...,[N]

Matrix Routines 115

For example, to solve the system

22 + 3y = 10
—-4x =10
a text file could be created to look like this:
2
2 3
-4 0
10
10
Example
Problem. Solve the following linear system:
w+ 2x + 0y —z =100
—w + 4x + 3y — 0.5z = 21.5
2w+ 2x +y — 3z = 26.0
3y — 4z = 37.0

Run GAUSELIM.PAS:
(K)eyboard or (F)ile input of data? F

File name? SAMPLEGA.DAT

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

The coefficients:
1.000000000 2.000000000 0.000000000
-1.000000000 4.000000000 3.000000000
2.000000000 2.000000000 1.000000000
0.000000000 0.000000000 3.000000000

The constants:
1.00000000000000E+001
2.15000000000000£+001
2.60000000000000E+001
3.70000000000000E+001

The solution:
-1.00000000000000E+000
2.00000000000000E+000
3.00000000000000E+000

-7.00000000000000E+000

116

-1.000000000
-0.500000000
-3.000000000
~4.000000000

Turbo Numerical Methods Toolbox

Solving a System of Linear Equations with Gaussian
Elimination and Partial Pivoting (PARTPIVT.INC)

Description

The solution to a system of N linear equations, AX = B, in N unknowns may be
found by simultaneously performing Gaussian elimination (Burden and Faires
1985, 291-304) on the matrix containing the coefficients of the equations (the coef-
ficient matrix A) and the vector containing the constant terms of the equations (the
constant vector B). However, excessive round-off errors can occur when elements
on the main diagonal are small compared to the elements below them in the same
column. To avoid this, partial pivoting (maximal column pivoting) is performed
(Burden and Faires 1985, 324-327); that is, row interchanges are performed so that
each main diagonal element is greater than or equal to the elements below it in the
same column. (See Chapter 9 for an application of PARTPIVT.INC.)

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the coefficients matrix

Coefficients : TNmatrix; The square matrix containing the coefficients of the equa-
tions

Constants : TNvector; The constant terms of each equation
The preceding parameters must satisfy the following conditions:
1. Dimen > 0
2. Dimen < TNArraySize
TNArraySize sets an upper bound on the number of elements in each vector. It

is used in the type definition of TNvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for

Matrix Routines 17

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Output Parameters

Solution : TNvector; Solution to the set of equations.

Error : Byte; 0: No errors.
1: Dimen < 1.
2: Coefficients matrix is singular; no unique solution exists.

Syntax of the Procedure Call

Partial_Pivoting(Dimen, Coefficients, Constants, Solution, Error);

Sample Program

The sample program PARTPIVT.PAS provides I/O functions that demonstrate how
to solve a system of linear equation with Gaussian elimination and partial pivoting.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
[1’ 1]7 [1, 2]’ ey [1, N]’ [2’ 1]7 e [2’ N]’ ey [N’ N]’
where N is the dimension of the matrix

3. The elements of the constant vector, in the order [1]....,[N]

118 Turbo Numerical Methods Toolbox

For example, to solve the system

2x + 3y = 10
—4x = 10
a text file could be created to look like this:
2
2 3
-4 0
10
10
Example
Problem. Solve the following linear system:
w+2x+0 —2z2=10
—w + 4x + 3y — 0.5z = 21.5

2w+ 2x +y ~ 32 =26
3y — 42 = 37

Run PARTPIVT.PAS:
(K)eyboard or (F)ile input of data? F

File name? SAMPLEG6A.DAT

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

The coefficients: .
1.000000000 2.000000000 0.000000000
-1.000000000 4.000000000 3.000000000
2.000000000 2.000000000 1.000000000
0.000000000 0.000000000 3.000000000

The constants:
1.00000000000000E+001
2.15000000000000E+001
2.60000000000000E+001
3.70000000000000E+001

The solution:

-1.00000000000000E+000
2.00000000000000E+000
3.00000000000000E+000

-7.00000000000000E+000

Matrix Routines

-1.000000000
-0.500000000
-3.000000000
-4.000000000

19

Solving a System of Linear Equations with Direct Factoring
(DIRFACT.INC)

Description

The solution to a system of N linear equations, AX = B, in N unknowns can be
computed by factoring the matrix containing the coefficients of the N equations
(the coefficient matrix A) into an upper triangular matrix U (that is, all the elements
below the main diagonal are zero) and a lower triangular matrix L (that is, all the
elements above the main diagonal are zero) such that A = LU. Partial pivoting is
used to reduce round-off error. A record of the pivoting permutations are recorded
in a permutation matrix P, so that the equation is actually A = PLU. Forward
substitution (analogous to backward substitution; see “Solving a System of Linear
Equations with Gaussian Elimination”) is used to solve the equations LZ = B
(actually LZ = PB, where P is the pivoting permutation matrix) and UX = Z
(where X is the solution to the N linear equations, and Z is an intermediate solu-
tion). If the coefficient matrix cannot be factored into nonsingular triangular
matrices, then no unique solution exists.

This module includes two procedures to perform this algorithm. Procedure
LU_Decompose performs the LU decomposition of a matrix, and procedure
LU_Solve performs forward and backward substitution to solve the linear equa-
tions. Both procedures are in the include file DIRFACT.INC.

The most efficient way to calculate the solutions to several systems with the
same coefficient matrix but different constant vectors is to first decompose the
coefficient matrix A into L and U (Burden and Faires 1985, 342-349). Then per-
form backward substitution on this decomposed matrix and each of the constant
vectors B. Thus, the coefficient matrix is decomposed only once.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

TNmatrix = array[l..TNArraySize] of TNvector;

120 Turbo Numerical Methods Toolbox

Procedure LU_Decompose Input Parameters

Dimen : Integer; Dimension of the coefficients matrix

Coefficients : TNmatrix; Square matrix containing the coefficients of the equations
The preceding parameters must satisfy the following conditions:
1. Dimen > 0

2. Dimen < TNArraySize

TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Procedure LU_Decompose Output Parameters

Decomp : TNmatrix; The LU decomposition of the coefficients matrix.
Permute : TNmatrix; A permutation matrix that records the effects of pivoting.

Error : Byte; 0: No errors.
1: Dimen < 1.
2: The coefficients matrix is singular.

Syntax of the Procedure Call

LU_Decompose (Dimen, Coefficients, Decomp, Permute, Error);

Procedure LU_Solve Input Parameters

Dimen : Integer; Dimension of the coefficients matrix
Decomp : TNmatrix; The LU decomposition of the coefficients matrix
Constants : TNmatrix; The constant terms of each equation

Permute : TNmatrix; A permutation matrix that records the effects of pivoting

Matrix Routines 121

The preceding parameters must satisfy the following conditions:
1. Dimen > 0

2. Dimen < TNArraySize

TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Procedure LU_Solve Output Parameters

Solution : TNvector; Solution to each system of equations

Error : Byte; 0: No errors
1: Dimen < 1

Syntax of the Procedure Call

LU_Solve(Dimen, Decomp, Constants, Permute, Solution, Error);

Sample Program

The sample program DIRFACT.PAS provides 1/O functions that demonstrate how
to solve a system of linear equations with the method of direct factoring.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
(L1} (1 2], .., [LN], [21], .., (2 N], .. [N, N],
where N is the dimension of the matrix

3. The elements of the first constant vector, in the order [1],...,[N], with each
element followed by a carriage return

122 v Turbo Numerical Methods Toolbox

4. The elements of any additional constant vectors, in the order [1],...,[N],

with each element followed by a carriage return

For example, to solve the systems

—

2x + 3y = 10 2x + 3y =
—4x =10 —4x =2

a text file could be created to look like this:

2

2 3
-4 0
10

10

1

2

Example

Problem. Given the following set of coefficients:

2w+ x+ S5y — 8z
Tw + 6x + 2y + 2z
—1lw — 3x — 10y + 4z
2w+ 2w+ 2+ z

compute solutions for each of the five constant vectors:

0 -—-15 14 -13 5
17 50 1 84 30
-10 -5 —-12 -51 -15
7 17 1 37 10
Run DIRFACT.PAS:
(K)eyboard or (F)ile input of data? F
File name? SAMPLE6C.DAT
Direct output to one of the following:
(S)creen-

(P)rinter
(F)ile

Matrix Routines

123

The coefficients:
2.000000000 1.000000000
7.000000000 6.000000000

5.000000000
2.000000000

-1.000000000 -3.000000000 -10.000000000

2.000000000 2.000000000

The constants:
0.00000000000000E+000
1.70000000000000E+001

-1.00000000000000E+001
7.00000000000000E +000

The solution:
9.99999999999999E-001
1.00000000000000E+000
9.99999999999999E-001
9.99999999999999E-001

The constants:
-1.50000000000000E+001
5.00000000000000E+001
-5.00000000000000E+000
1.70000000000000E+001

The solution:
2.00000000000000E+000
4.99999999999999E+000
1.85358974546113E-015
3.00000000000000E+000

The constants:
1.40000000000000E4001
1.00000000000000E+000

~1.20000000000000E+001
1.00000000000000E+000

The solution:

1.00000000000000E+000
-1.00000000000000E+000
1.00000000000000E+000
-1.00000000000000E4+000

The constants:

-1.30000000000000E+001
8.40000000000000E+001
-5.10000000000000E+001
3.70000000000000E+001

The solution:
3.99999999999999E+000
5.00000000000001E+000
6.00000000000000E+000
7.00000000000000E+000

124

2,000000000

-8.000000000
2.000000000
4.000000000
1.000000000

Turbo Numerical Methods Toolbox

The constants:
5.00000000000000E+000
3.00000000000000E+001

-1.50000000000000E+001
1.00000000000000E+001

The solution:

-1.01506105108586E-015
5.00000000000000E+000
0.00000000000000E+000
0.00000000000000E+000

Matrix Routines 125

Solving a System of Linear Equations with the Iterative
Gauss-Seidel Method (GAUSSIDL.INC)

Description

The solution to a system of N linear equations, AX = B, in N unknowns can be
approximated by the Gauss-Seidel iterative technique (Burden and Faires 1985,
424-432). The equation AX = B is transformed into X = TX + C. Given an initial
approximation X , the sequence X, = TX _ + C is generated with the following
formula:

N

= DAGAX - > (@ X, [+ Bl

X [i] =

m

Alii]

The algorithm halts when the fractional difference for each element of the vector
X between two iterations is less than a specified tolerance.

If A is diagonally dominant (that is, each of the diagonal terms is greater than or
equal to the sum of the off-diagonal terms in the same row), then the sequence will
converge to the solution X. If the matrix A is not diagonally dominant, then the
sequence may converge to the solution, but more likely it will not. You must supply
the tolerance with which to approximate a solution.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

TNmatrix = array[1..TNArraySize] of TNvector;

126 Turbo Numerical Methods Toolbox

Input Parameters

Dimen : Integer; Dimension of the coefficients matrix

Coefficients : TNmatrix; The square matrix containing the coefficients of the equa-
tions

Constants : Thvector; The constant terms of the equation
Tol : Real; Indicates accuracy in solution

MaxIter : Real; Maximum number of iterations
The preceding parameters must satisfy the following conditions:
1. Dimen > 0.

2. Dimen < TNArraySize.

3. Tol > 0.

4. MaxIter = 0.

5. The coefficients matrix may not contain a zero on the main diagonal.
TNArraySize sets an upper bound on the number of elements in each vector. It

is used in the type definition of TNvector and TNmatrix. TNArraySize is not a

variable name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Output Parameters

Solution : TNvector; Solution to the set of equations.
Iter : Real; The number of iterations required to find the solution.

Error : Byte; 0: No errors.
1: Iter > MaxlIter and matrix is not diagonally dominant.
2: Iter > MaxlIter and matrix is diagonally dominant.
3: Dimen < 1.
4:Tol = 0.
5: MaxIter < 0.
6: Zero on the diagonal of the coefficients matrix.
7: Sequence is diverging.

Matrix Routines 127

If the coefficients matrix is diagonally dominant, then the Gauss-Seidel method
will converge to a solution. If the coefficients matrix is not diagonally dominant,
then the Gauss-Seidel may converge to a solution, but more likely it will not. Error
7 can only occur when the coefficients matrix is not diagonally dominant. If Error 1
is returned, it is likely that convergence is not possible; if Error 2 is returned,
convergence is possible but will take more than MaxIter iterations.

If the diagonal of the coefficients matrix contains a zero (Error 6), then the
Gauss-Seidel method may not be used to solve the system of equations.

If the system of equations is under-determined, the Gauss-Seidel method will
still converge to a (nonunique) solution. The Gauss-Seidel method cannot distin-
guish between unique and nonunique solutions. If you suspect that your system of
equations is under-determined, use one of the direct methods (for example,
GAUSELIM.INC) to attempt a solution; Gaussian elimination will give an error if
it is under-determined. Alternatively, you could use DET.INC to find the determi-
nant; if the determinant is zero, then the system is under-determined.

Syntax of the Procedure Call

Gauss_Seidel(Dimen, Coefficients, Constants, Tol, MaxIter, Solution, Iter, Error);

Sample Program

The sample program GAUSSIDL.PAS provides I/O functions that demonstrate
how to solve a system of linear equations with the iterative Gauss-Seidel method.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
(1,1}, 01 2], ... (1, N], [2,1], ... [2,N], ..., [N, N],
where N is the dimension of the matrix

3. The elements of the first constant vector, in the order [1],...,[N]

.

128 Turbo Numerical Methods Toolbox

For example, to solve the systems

20x + 3y = 10
—4y = 10
a text file could be created to look like this:
2
20 3
0 -4
10
10
Example
Problem. Solve the following linear system to within a tolerance of 1E — 12:
100+ w+ 2¢x— 3y+ 2z2= - 29
40+ 50w+ x+ z= 35
20+ 5w —-30x+ y+ z=-—25
6v + 4w + 10y + 3z = — 46
—3v—-2w—- =x+ 6y + 25z = —106

Run GAUSSIDL.PAS:
(K)eyboard or (F)ile input of data? F

File name? SAMPLE6D.DAT
Tolerance (> 0, default = 1.000E-08): 1E-12
Maximum number of iterations (> 0, default = 100): 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

The coefficients:
10.000000000 1.000000000 2.000000000 -3.000000000
4.000000000 50.000000000 1.000000000 0.000000000
-2.000000000 5.000000000 -30.000000000 1.000000000
6.000000000 4.000000000 0.000000000 10.000000000

2.000000000
1.000000000
1.000000000
3.000000000

-3.000000000 -2.000000000 -1.000000000 6.000000000 25.000000000

Matrix Routines

129

The constants:

-2.90000000000000E+001
3.50000000000000E+001
-2.50000000000000E+001
-4.60000000000000E+001
-1.06000000000000E+002

Tolerance: 1.00000000000000E-012
Maximum number of iterations: 100

Number of iterations: 15
The result:
-2.99999999999997E+000

9.99999999999999E-001
9.99999999999998E-001
-1.99999999999999E+000
-4.00000000000000E+000

130 Turbo Numerical Methods Toolbox

C H A p T E R7

Eigenvalues and Eigenvectors

The routines in this chapter can find the eigenvalues and eigenvectors. A scalar ¢ is
an eigenvalue (or characteristic value) of a square matrix A if there is a nonzero
vector v satisfying

Av=cv
The vector v is called the eigenvector corresponding to c.

The eigenvalues and eigenvectors of a matrix provide a lot of information about
the matrix. If a matrix is written in terms of a basis of eigenvectors, then it is
diagonal, meaning that its only nonzero terms are on the main diagonal.

Each procedure in this chapter attempts to approximate at least one real eigen-
value (and associated eigenvector) of a real square matrix. The eigenvector is nor-
malized so that the element with the largest magnitude is 1.

The power method (POWER.INC) approximates the eigenvalue that is largest
in magnitude (dominant eigenvalue). The iterative process will converge slowly or
not at all if the dominant eigenvalue is not simple or if it has nearly the same
magnitude as the next most-dominant eigenvalue.

The inverse power method (INVPOWER.INC) approximates the eigenvalue
nearest to a user-supplied real value. This process usually converges more rapidly
than the power method, and may be used to refine the approximate value of the
eigenvalue determined by the latter method (POWER.INC).

131

The Wielandt method (WIELANDT.INC) attempts to approximate a user-
specified number of eigenvalues of a given matrix. The power method (POWER.
INC) is first used to approximate the dominant eigenvalue of the matrix. Deflation
is employed to form a deflated, square matrix (that is, a square matrix whose
dimension is one less than the original matrix). The eigenvalues of the deflated
matrix are identical to those of the original matrix except for the determined domi-
nant eigenvalue. Eigenvectors of the remaining eigenvalues from the original
matrix are also contained in the deflated matrix. The dominant eigenvalue of the
new deflated matrix is then determined using the power method. Wielandt’s
method is susceptible to round-off error, thus it may be desirable to use its results
as input to the inverse power method (INVPOWER.INC).

The cyclic Jacobi method (JACOBI.INC) approximates all the eigenvalues of a
symmetric matrix. The iterative process uses orthogonal plane rotations to reduce
the given matrix into a diagonal form. Although Jacobi’s method is only applicable
to symmetric matrices, it is much more efficient and accurate than Wielandt’s
method.

132 Turbo Numerical Methods Toolbox

Real Dominant Eigenvalue and Eigenvector of a Real
Matrix Using the Power Method (POWER.INC)

Description

The power method (Burden and Faires 1985, 452—456) approximates the dominant
real eigenvalue of a matrix and its associated eigenvector. The dominant eigen-
value is the eigenvalue of the largest absolute magnitude. Given a square matrix A
and a real nonzero vector v, a vector w is constructed by the matrix operation
Av = w. The vector w is normalized by dividing by its element of the largest
absolute magnitude q. If the absolute difference between each of the correspond-
ing elements in w and v is less than a specified tolerance, then the procedure halts.
Otherwise, v is set equal to w, and the operation repeats until a solution is found.
The magnitude q is the dominant eigenvalue, and w will be the associated eigen-
vector of the matrix A.

You must supply the matrix A, an initial approximation to the eigenvector v, and
the tolerance.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the matrix Mat

Mat : TNmatrix; The matrix

GuessVector : TNvector; Initial approximation to the eigenvector
MaxIter : Integer; Maximum number of iterations

Tolerance : Real; Indicates accuracy in solution

Eigenvalues and Eigenvectors 133

The preceding parameters must satisfy the following conditions:

1. Dimen > 1

2. Dimen < TNArraySize

3. Tolerance > 0

4. MaxIter > 0

TNArraySize fixes an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +} is active).

Output Parameters

Eigenvalue : Real; Approximation to the dominant eigenvalue of the matrix

Eigenvector : TNvector; Ai)proximate eigenvector associated with the dominant
eigenvalue

Iter : Integer; Number of iterations required to find the solution

Error : Byte; 0: No errors

1: Dimen < 1

2: Tolerance = 0
3: MaxIter < 0
4: Iter = MaxIter

Syntax of the Procedure Call

Power(Dimen, Mat, GuessVector, MaxIter, Tolerance,
Eigenvalue, Eigenvector, Iter, Error);

Comments

The power method will not converge if the initial approximation (Guess) to the
eigenvector is orthogonal to the dominant eigenvector. If the initial approximation
is orthogonal, then the power method will converge to a different eigenvector with-
out warning. If you suspect this has happened, run the routine with several differ-
ent initial approximations.

134 Turbo Numerical Methods Toolbox

The power method may not converge to repeated eigenvalues with linearly
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen-
vectors do not pose a problem.

The eigenvectors are normalized such that the element of largest absolute mag-
nitude in each vector is equal to one.

Sample Program

The sample program POWER.PAS provides I/O functions that demonstrate the
power method of approximating eigenvalues.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order
[1,1],11,2],..[1,N), .. [N,1] .., [N, N],
where N is the dimension of the matrix

For example, to find the dominant eigenvalue of the matrix

[5:]

you could first create the following text file:
4

WD

Example

Problem. Find the dominant eigenvalue of the matrix:

2100
010
0 24
using the initial guess (1, 2, 3).

Eigenvalues and Eigenvectors 135

Run POWER.PAS:
(K)eyboard or (F)ile entry of data? K

Dimension of the matrix (1-60)? 3

Matrix[1, 1]:
Matrix[1, 2]:
Matrix[1, 3]:
Matrix{2, 1]:
Matrix[2, 2]:
Matrix[2, 3]:
Matrix[3, 1]:
Matrix[3, 2]:
Matrix[3, 3]:

—

HBNOOHOOON

Now input an initial guess for the eigenvector:
Vector[1]: 1
Vector[2]: 2
Vector[3]: 3

Tolerance (> 0, default = 1.000E-06): 1E-8
Maximum number of iterations (> 0, default = 100): 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

The matrix:

2.00000000000000E+00 1.00000000000000E+01 0.00000000000000E+00
0.00000000000000E+00 1.00000000000000E+00 0.00000000000000E+00
0.00000000000000E+00 2.00000000000000E+00 4.00000000000000E+00

Tolerance: 1.00000000000000E-008
Maximum number of iterations: 100

Number of iterations: 12
The approximate eigenvector:
-2.30295155112597€E-014
3.15544362088405E-030
1.00000000000000E+000
The associated eigenvalue: 4.00000000000000E+000
The exact solution is

Eigenvalue = 4
Eigenvector = (0, 0, 1)

136 Turbo Numerical Methods Toolbox

Real Eigenvalue and Eigenvector of a Real Matrix Using
the Inverse Power Method (INVPOWER.INC)

Description

Where the power method converges to the dominant real eigenvalue of a matrix
(see POWER.INC), the inverse power method (Burden and Faires 1985, 459-462)
converges to the real eigenvalue nearest to a user-supplied real value. Given a
square matrix A, an initial approximation p to the eigenvalue, and an initial approx-
imation v to the eigenvector, the linear system (A — pl)w = v (where I is the
identity matrix) is solved via LU decomposition (see Chapter 6, “Solving a System
of Linear Equations with Direct Factoring”). The vector w is normalized by divid-
ing through by the element g with the largest absolute magnitude. If the absolute
difference between each of the corresponding elements in v and w is less than a
specified tolerance, then the procedure halts. Otherwise, v is set equal to w, and
the previous matrix equation is solved again. The process repeats until a solution is
reached. The eigenvalue of A closest to p will be (1/g 4+ p), and w will be the
associated eigenvector.

You must supply the matrix A, the initial approximations p and v, and the toler-
ance.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the matrix Mat
Mat : TNmatrix; The matrix

GuessVector : TNvector; Initial approximation (Guess) of the eigenvector

ClosestVal : Real; The approximate eigenvalue
MaxIter : Integer; Maximum number of iterations
Tolerance : Real; Indicates accuracy of solution

Eigenvalues and Eigenvectors 137

The preceding parameters must satisfy the following conditions:

1. Dimen > 1

2. Dimen < TNArraySize

3. Tolerance > 0

4. Maxlter > 0

TNArraySize sets an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +} is active).

Output Parameters

Eigenvalue : Real; Approximation to the eigenvalue closest to ClosestVal

Eigenvector : TNvector; Approximation to the eigenvector associated with Eigen-
value

Iter : Integer; Number of iterations required to find the solution

Error : Byte; 0: No errors

1: Dimen < 1

2: Tolerance < 0

3: MaxIter < 0

4: Iter = Maxlter

5: Eigenvalue/Eigenvector not calculated (see “Comments”)

Syntax of the Procedure Call

InversePower(Dimen, Mat, GuessVector, ClosestVal, MaxIter,
Tolerance, Eigenvalue, Eigenvector, Iter, Error);

138 Turbo Numerical Methods Toolbox

Comments

The inverse power method approximates the solution of a system of linear equa-
tions. If the matrix (Mat - Eigenvalue * I) is singular, where I is the identity matrix,
the method will not converge to a solution and Error 5 will be returned. If this
occurs, run the routine again with a slightly different initial approximation,
ClosestVal.

The power method may not converge to repeated eigenvalues with linearly
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen-
vectors do not pose a problem.

The inverse power method is sensitive to the initial approximation (ClosestVal).
If ClosestVal is not close to an eigenvalue or lies midway between two eigenvalues,
the algorithm will converge very slowly, if at all.

The eigenvectors are normalized such that the element of the largest absolute
magnitude in each vector is equal to one.

Sample Program

The sample program INVPOWER.PAS provides I/O functions that demonstrate
the inverse power method of approximating eigenvalues.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order
[17 l]’ [1’ 2]’ ey [l’ N]’ sy [N7 l]) ey [N, N]’
where N is the dimension of the matrix

3. Elements of the initial guess, in the order [1], [2], ..., [N],
where N is the dimension of the matrix

Eigenvalues and Eigenvectors ' 139

For example, to find an eigenvalue of the matrix

[5:]

with an initial guess of (11, 10), you could first create the following text file:

Example

Problem. Suppose you know that two of the eigenvalues of the matrix

2100
0 10
0 24

are approximately 1.999 and 0.7. Use the inverse power method with an initial
guess of (1, 2, 3) to refine these approximations.

Run INVPOWER.PAS with 1.999 as the approximate eigenvalue:
(K)eyboard or (F)ile entry of data? K

Dimension of the matrix (1-30)? 3

Matrix[1, 1]:
Matrix[1, 2]:
Matrix[1, 3]:
Matrix[2, 1]:
Matrix[2, 2]:
Matrix[2, 3]:
Matrix[3, 1]:
Matrix[3, 2]:
Matrix([3, 3]:

—

MO O—ROOOMN

Now input an initial guess for the eigenvector:
Vector[l]: 1

Vector[2]: 2

Vector[3]: 3

Approximate eigenvalue (default = 5.2857): 1.999
Tolerance (> 0, default = 1.000E-06): 1E-8

Maximum number of iterations (> 0, default = 200): 200

140 Turbo Numerical Methods Toolbox

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

The matrix:

2.00000000000000E+000 1.00000000000000E+001 0.00000000000000E+000
0.00000000000000E+000 1.00000000000000E+000 0.00000000000000E+000
0.00000000000000E4000 2.00000000000000E+000 4.00000000000000E+000

Approximate eigenvalue: 1.99900000000000E+000
Tolerance: 1.00000000000000E-008
Maximum number of iterations: 200

Number of iterations: 4
The approximate eigenvector:
1.00000000000000E+000
9.12736381850482E-014
-5.13983108970145E-014

The associated eigenvalue: 2.00000000000091E+000

Run INVPOWER.PAS with 0.7 as the approximate eigenvalue:
(K)eyboard or (F)ile entry of data? K

Dimension of the matrix (1-30)? 3

Matrix[1, 1]:
Matrix[1, 2]:
Matrix[1, 3]:
‘Matrix[2, 1]:
Matrix[2, 2]:
Matrix[2, 3]:
Matrix[3, 1]:
Matrix[3, 2]:
Matrix[3, 3]:

—

PN OO—~ROOON

Now input an
Vector[1]: 1
Vector[2]: 2
Vector[3]: 3

initial guess for the eigenvector:

Approximate eigenvalue (default = 5.2857): 0.7
Tolerance (> 0, default = 1.000E-06): 1E-8
Maximum number of iterations (> 0, default = 200): 200
Direct output to one of the following:

(S)creen

(P)rinter
(F)ile

Eigenvalues and Eigenvectors ’ 141

The matrix:

2.00000000000000E+000 1.00000000000000E+001 0.00000000000000E+000
0.00000000000000E+000 1.00000000000000E+000 0.00000000000000E+000
0.00000000000000E+000 2.00000000000000E+000 4.00000000000000E+000

Approximate eigenvalue: 7.00000000000000E-001
Tolerance: 1.00000000000000E-008
Maximum number of iterations: 200

Number of iterations: 12
The approximate eigenvector:
1.00000000000000E+000
-1.00000002395103E-001
6.66666682633328E-002
The associated eigenvalue: 9.99999976048973E-001
The exact solutions are

Eigenvalue = 2; Eigenvector = (1, 0, 0)
Eigenvalue = 1; Eigenvector = (1, —0.1, 2/30)

142 Turbo Numerical Methods Toolbox

Real Eigenvalues and Eigenvectors of a Real Matrix Using
the Power Method and Wielandt’s Deflation
(WIELANDT.INC)

Description

Wielandt’s deflation is a technique that approximates each real eigenvalue and
related eigenvector of a matrix (Burden and Faires 1985, 452—-456). Once the domi-
nant real eigenvalue/vector of a matrix has been approximated with the power
method (see “Real Dominant Eigenvalue and Eigenvector of a Real Matrix Using
the Power Method”), the next most dominant real eigenvalue/vector is approxi-
mated by removing the dominant solution. This deflates the matrix. The deflated
matrix will have the same eigenvalues as the original matrix (except for the
removed ones). The eigenvectors of the deflated matrix will be related to the
eigenvectors of the original matrix. (They will not be identical because the dimen-
sion of the deflated matrix is less than the dimension of the original matrix.) The
power method then approximates the dominant eigenvalue of the deflated matrix.
This process is repeated until the appropriate number (user-supplied) of eigen-
values/vectors have been approximated.

You must supply the matrix, the number of eigenvalues/vectors to approximate,
and the tolerance with which to approximate the eigenvalues/vectors.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;
TNmatrix = array[l..TNArraySize] of TNvector;

TNIntVector = array[l..TNArraySize] of Integer;

Input Parameters

Dimen : Integer; Dimension of the matrix Mat
Mat : TNmatrix; The matrix
Guess : TNvector; Initial approximation (Guess) of an eigenvector

Eigenvalues and Eigenvectors 143

MaxEigens : Integer; Number of eigenvalues/vectors to find (at most, Dimen), (see
“Comments”)

MaxIter : Integer; Maximum number of iterations

Tolerance : Real; Indicates accuracy in solution

The preceding parameters must satisfy the following conditions:
1. Dimen > 1
2. Dimen < TNArraySize
3. Tolerance > 0
4. Maxlter > 0
5. MaxEigens > 0
6. MaxEigens < Dimen

TNArraySize sets an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +} is active).

Output Parameters

NumEigens : Integer; The number of eigenvectors returned (will be =
MaxEigens).

Eigenvalues : Thvector; The first NumEigens eigenvalues of the matrix.

Eigenvectors : TNmatrix; The eigenvectors associated with the eigenvalues.

Iter : TNIntVector; Number of iterations required to find each eigenvalue/
vector.
Error : Byte; 0: No errors.

1: Dimen < 1.
2: Tolerance < 0.
3: Maxlter < 0.
4: MaxEigens < 0, MaxEigens > Dimen.
5: Iter = Maxlter.
6: Warning! Not a fatal error!
The last two eigenvalues aren’t real.

144 Turbo Numerical Methods Toolbox

Syntax of the Procedure Call

Wielandt(Dimen, Mat, Guess, MaxEigens, MaxIter, Tolerance,
NumEigens, Eigenvalues, Eigenvectors, Iter, Error);

Comments

It is often unnecessary to determine the complete eigensystem of a matrix. The
parameter MaxEigens prevents the routine from approximating more eigenvalues/
vectors than needed. For example, if the four most dominant eigenvalues of a
20 X 20 matrix are desired, set MaxEigens equal to 4. The algorithm will halt
when it has approximated the four most dominant eigenvalues, thus saving a con-
siderable amount of time. Note, however, that the dimension of the vector
eigenvalues and the matrix eigenvectors must still be TNArraySize (that is, the
same as the dimension of the matrix).

The power method may not converge to repeated eigenvalues with linearly
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen-
vectors do not pose a problem.

The eigenvectors are normalized such that the element of the largest absolute
magnitude in each vector is equal to one.

This routine stores much information on the heap. If you try to compute all the
eigenvalues of a large matrix (say, all 20 of a 20 X 20 matrix), you may get run-time
error $FF, Heap/Stack collision. If this happens, the dimension of TNvector and
TNmatrix should be reduced as much as possible. If this is not possible, then
remove any RAM-resident software (for example, SideKick, SuperKey, or a print

buffer).

It is difficult to determine why the power method doesn’t converge to a particu-
lar eigenvector; usually the eigenvalue is complex, or eigenvectors of repeated
eigenvalues are linearly dependent. However, when Wielandt's deflation has
deflated the matrix to a 2 X 2, it is easy to determine if the eigenvalues of the
2 X 2 are real or complex. If the last two eigenvalues are real, then they (and their
associated eigenvectors) are returned; if the last two eigenvalues are complex,
Error 6 is returned. (Error 6 is only a warning; it is not a fatal error.) It is returned
to give you some information about the undetermined eigenvectors.

This procedure uses the New/Dispose procedures to manipulate the heap and
should not be used in any program that uses Mark/Release to manipulate the heap.

Eigenvalues and Eigenvectors 145

Sample Program

The sample program WIELANDT.PAS provides I/O functions that demonstrate
Wielandt’s method of approximating eigensystems.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order
[1’ 1]’ [1’ 2]’ eeey [1’ N]’ ey [N’ 1]) ooy [N7 N],
where N is the dimension of the matrix

For example, to find the dominant eigenvalue of the matrix
12
34
you could first create the following text file:
. .

= W N =

Example

Problem. Find all real eigenvalues and eigenvectors of the matrix

2100
010
0 24

using an initial guess of (1, 2, 3).

146) Turbo Numerical Methods Toolbox

Run Wielandt.PAS:
(K)eyboard or (F)ile entry of data? K

Dimension of the matrix (1-10)? 3

Matrix[1, 1]:
Matrix[1, 2]:
Matrix[1, 3]:
Matrix[2, 1]:
Matrix[2, 2]:
Matrix[2, 3]:
Matrix[3, 1]:
Matrix[3, 2]:
Matrix[3, 3]:

—

PANOCO~ROOOMN

Now input an
Vector[1]: 1
Vector[2]: 2
Vector[3]: 3

initial guess for the eigenvector:

Tolerance (> 0, default = 1.000E-06): 1E-6
Maximum number of eigenvalues/eigenvectors to find (<= 3, default = 3): 3
Maximum number of iterations (> 0, default = 200): 200

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

The matrix:

2.00000000000000E+000 1.00000000000000E+001 0.00000000000000E+000
0.00000000000000E4000 1.00000000000000E+000 0.00000000000000E+000
0.00000000000000E4000 2.00000000000000E+000 4.00000000000000E+000

Tolerance: 1.00000000000000E-006
Maximum number of eigenvalues/eigenvectors tO\find: 3
Maximum number of iterations: 200

Number of iterations: 10
The approximate eigenvector:
-8.32731765653921E-007
4.60590249431080E-015
1.00000000000000E+000

The associated eigenvalue: 4.00000000000004E+000

Number of iterations: 0
The approximate eigenvector:
1.00000000000000E+000
0.00000000000000E+000
0.00000000000000E +000

Eigenvalues and Eigenvectors 147

The associated eigenvalue: 2.00000000000000E+000

Number of iterations: 0
The approximate eigenvector:
1.00000000000000E+000
-9.99999888969117E-002
6.66666592646070E-002

The associated eigenvalue: 9.99999999999991E-001

The exact solution is

Eigenvalue = 4; Eigenvector = (0, 0, 1)
Eigenvalue = 2; Eigenvector = (1, 0, 0)
Eigenvalue = 1; Eigenvector = (1, —0.1, 2/30)

148 ' Turbo Numerical Methods Toolbox

The Complete Eigensystem of a Symmetric Real Matrix
Using the Cyclic Jacobi Method (JACOBLINC)

Description

The eigensystem of a symmetric matrix can be computed much more simply and
efficiently than the eigensystem of an asymmetric matrix. The cyclic Jacobi method
(Atkinson and Harley 1983, 154-160) is an iterative technique for approximating
the complete eigensystem of a symmetric matrix to within a given tolerance. It
consists of multiplying the matrix A by a series of rotation matrices R, The rotation
matrices are chosen so that the elements of the upper triangular part of A (exclud-
ing the diagonal) are systematically annihilated; that is, R, is chosen so that A[1, 2]
becomes zero, R, is chosen so that A[1, 3] becomes zero, and so on. Since the matrix
is symmetric, this will also annihilate the lower triangular part of A. Because each
rotation will probably change the value of elements annihilated in previous rota-
tions, the method is iterative. Eventually, the matrix will be diagonalized. The
eigenvalues will be the elements of the main diagonal of the diagonal matrix; the
eigenvectors will be the corresponding rows of the matrix created by the product of
the rotation matrices R,

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the matrix Mat
Mat : Thmatrix; The symmetric matrix
MaxIter : Integer; Maximum number of iterations

Tolerance : Real; Accuracy in solution

Eigenvalues and Eigenvectors 149

The preceding parameters must satisfy the following conditions:

L

2
3
4.
5

Dimen > 1.

Dimen < TNArraySize.
Tolerance > 0.
Maxlter > 0.

Mat must be symmetric.

TNArraySize sets an upper bound on the number of elements in each vector. It
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a
variable name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +} is active).

Output Parameters

Eigenvalues : TNvector; Approximation to the eigenvalues of the matrix

Eigenvectors : TNmatrix; Approximation to the eigenvectors associated with the

eigenvalues
Iter : Integer; Number of iterations required to find eigenvalues/vectors
Error : Byte; 0: No errors

1: Dimen < 1

2: Tolerance < 0

3: MaxIter < 0

4: Mat not symmetric
5: Iter = MaxlIter

Syntax of the Procedure Call

Jacobi(Dimen, Mat, MaxIter, Tolerance, Eigenvalues, Eigenvectors, Iter, Error);

150

Turbo Numerical Methods Toolbox

Comments

For symmetric matrices, the Jacobi method is preferred to Wielandt’s deflation.

Unlike the power (POWER.INC) and inverse power (INVPOWER.INC)
methods, the efficiency of the Jacobi method is not affected by repeated eigen-
values with linearly dependent eigenvectors.

The eigenvectors are normalized such that the element of largest absolute mag-
nitude in each vector is equal to one.

Sample Program

The sample program JACOBI.PAS provides I/O functions that demonstrate
Jacobi’s method of approximating the eigensystem of symmetric matrices.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order
[1’ l]’ [1’ 2], ey [1, N]’ ey [N’ 1]’ ey [N’ N])
where N is the dimension of the matrix

For example, to find the dominant eigenvalue of the matrix

H

you could first create the following text file:
4

— D N

Eigenvalues and Eigenvectors 151

Example

Problem. Find the complete eigensystem of the symmetric matrix

1 2-3-1
2 1-1-3
-3-1 1 2
-1-3 2 1
Run JACOBIL.PAS:

(K)eyboard or (F)ile entry of data? F

File name? SAMPLE7A.DAT

Tolerance (> 0, default = 1.000E-06): 1E-8

Maximum number of iterations (> 0, default = 200): 200

Direct output to one of the following:
(S)creen
(P)rinter
(Fyile

The matrix: :

1.000000000 2.000000000 -3.000000000 -1.000000000
2.000000000 1.000000000 -1.000000000 -3.000000000
-3.000000000 -1.000000000 1.000000000 2.000000000
-1.000000000 -3.000000000 2.000000000 1.000000000

Tolerance: 1.00000000000000E-008
Maximum number of iterations: 200

Number of iterations: 4
The approximate eigenvector:
1.00000000000000E+000
1.00000000000000E+000
-1.00000000000000E+000
-1.00000000000000E+000

The associated eigenvalue: 7.00000000000000E+000

The approximate eigenvector:
-9.99999999977159E-001
9.99999999977775E-001
1.00000000000000E+000
-9.99999999999384E-001

The associated eigenvalue: 1.00000000000000E+000

The approximate eigenvector:
1.00000000000000E+000
-9.99999556935431E-001
9.99999999977774E-001
-9.99999556913205E-001

152 Turbo Numerical Methods Toolbox

The associated eigenvalue: -2.99999999999990E+000

The approximate eigenvector:
9.99999556935431E-001
9.99999999999384E-001
9.99999556934815E-001
1.00000000000000E+000

The associated eigenvalue: -1.00000000000010E+000

The exact solution is

Eigenvalue = T; Eigenvector = (1,1, —1, —1)
Eigenvalue = 1; Eigenvector = (—1,1,1, —1)
Eigenvalue = —3; Eigenvector = (1, —1,1, —1)
Eigenvalue = —1; Eigenvector = (1,1,1,1

Eigenvalues and Eigenvectors 153

154 Turbo Numerical Methods Toolbox

c H A P T E R 8

Initial Value and Boundary Value Methods

A differential equation is like an ordinary equation except that the unknown is a
function, and derivatives of the function appear in the equation. For example,

f@) + flx) =0
is a differential equation. f "(x) is the second derivative of f(x). The solutions are the
functions of the form

flx) = a = cos(x) + b * sin(x)

The function is uniquely determined by suitable initial conditions, such as

fl0)=3

f'0) =4
in which case the solution is

fx) = 3 % cos(x) + 4 * sin(x)

The routines in this chapter solve differential equations that are ordinary and
linear. A differential equation is ordinary if there is only an independent variable
(that is, the unknown function is a function of only one variable), and thus the
derivatives are ordinary derivatives and not partial derivatives. A differential equa-
tion is linear if the unknown function and its derivatives appear linearly in the
equation.

This chapter describes routines that specifically solve: (1) initial value problems
for nth-order ordinary differential equations, (2) initial value problems for systems
of coupled first-order and second-order ordinary differential equations, and (3)

155

boundary value problems for second-order ordinary differential equations.

Note that these routines work only with ordinary differential equations, not par-
tial differential equations. All of the routines in this chapter can solve problems
involving nonlinear equations (except the linear-shooting routine LINSHOT
2.INC).

Two one-step techniques that solve initial value problems for first-order ordinary
differential equations are implemented. The first technique employs the
fourth-order Runge-Kutta method (RUNGE_1L.INC), also known as the classical
Runge-Kutta method. The second employs the Runge-Kutta-Fehlberg method
(RKF_LINC).

Each one-step technique approximates the value of the dependent variable at a
mesh point, which is a value of the independent variable, by using only the infor-
mation obtained from the preceding mesh point. The Runge-Kutta method
employs equally spaced mesh points. On the other hand, the Runge-Kutta-
Fehlberg method varies the spacing of the mesh points in order to control the local
truncation error. This produces a corresponding bound on the global error.

The Adams-Bashforth/Adams-Moulton predictor/corrector method (ADAMS_1.
INC) is a multistep method that uses information obtained at several preceding
mesh points to approximate the value of the dependent variable at the current
mesh point. The procedure employs the Adams-Bashforth four-step method to
obtain a predictor. It is subsequently used as input for the Adams-Moulton three-
step method to obtain a corrector. The corrector is the approximate value of the
solution. Mesh points are equally spaced, and the starting values for the process are
determined by the one step, fourth-order Runge-Kutta method.

The Runge-Kutta methods are the most reliable and should be used when you
are uncertain of the behavior of the differential equation (for example, if the solu-
tion to the differential equation is not very smooth). If you want the output to be
evenly spaced (in x) or do not require a high degree of accuracy, use the classical
Runge-Kutta method. Otherwise, the Runge-Kutta-Fehlberg method is the best
general purpose routine to use, since it provides control over the accuracy of the
solution.

The Adams-Bashforth/Adams-Moulton method achieves the same accuracy (for
equally spaced mesh points) as the fourth-order Runge-Kutta formula, but it is
significantly faster. Consequently, the Adams-Bashforth/Adams-Moulton method is
the most desirable method if you are reasonably certain that the differential equa-
tion is well-behaved. ‘

Initial value problems for first-order ordinary differential equations are guaran-
teed to have a unique solution on the interval a, b if the function

x' = f(t, x)

156 Turbo Numerical Methods Toolbox

is continuous over the interval a, b, and if the function satisfies the Lipshitz condi-
tion. The Lipshitz condition states that there exists a positive number L such that

|ftt.x) = ft.x)| < Lis, = x|
foralla <t <b — ©» <x < x,

Initial value problems for second-order ordinary differential equations can be
solved via a fourth-order Runge-Kutta method (RUNGE_2.INC). This procedure
reduces a given differential equation to a system of two, first-order ordinary differ-

ential equations. The solution to this system is approximated at equally spaced
mesh points with the fourth-order Runge-Kutta method.

Initial value problems for second-order ordinary differential equations are guar-
anteed to have a unique solution on the interval a, b if the function

1" = ft, x,x') '

is continuous over the interval g, b and if the function satisfies the Lipshitz condi-
tion. For a second-order differential equation, the Lipshitz condition states that
there exists a positive number L such that

|f@t, 2, 2") — flt.x, 2") | = L(|]x, — x| +

foralla =t <bh — ©o <x < 0, -0 <z < o,

', = 7))

The Runge-Kutta method can be generalized for any order ordinary differential
equation. The file RUNGE_N.INC contains an algorithm that can solve an initial
value problem for an nth-order differential equation with the fourth-order Runge-
Kutta formulas. The Lipshitz condition can be generalized for any order ordinary
differential equation. (For details, consult the reference book listed in the section,
“Solution to an Initial Value Problem for a First-Order Ordinary Differential Equa-
tion Using the Runge-Kutta Method.”)

Although RUNGE_N.INC can be used to solve initial value problems for first-
order and second-order ordinary differential equations, we recommend that
RUNGE_LINC and RUNGE_2.INC be used instead. The notation used by these
routines is somewhat simpler than the general case. There is no significant differ-
ence in computation time between the general program (RUNGE_N.INC) and the
specific programs (RUNGE_LINC and RUNGE_2.INC).

Systems of coupled equations may also be solved with Runge-Kutta techniques.
A system of up to ten first-order ordinary differential equations can be solved with
the file RUNGE_SLINC. A system of up to ten second-order ordinary differen-
tial equations can be solved with the file RUNGE_S2.INC. The algorithms in
both these files are based on the classical Runge-Kutta method with uniform spac-
ing between mesh points; hence, they do not allow for accuracy control (as
in the Runge-Kutta-Fehlberg method). (The Lipshitz condition for systems of
equations is given in the reference in the sections about RUNGE_SLINC and
RUNGE_S2.INC.)

Initial Value and Boundary Value Methods 157

Boundary value problems for second-order ordinary differential equations
{(where the value of the dependent variable is specified at the two endpoints of
interval) can be solved using shooting techniques. Shooting techniques converge
onto the slope of the function at one boundary. This reduces the boundary value
problem to a series of initial value problems. The series concludes when the initial
value problem satisfies the boundary condition at the other boundary.

If the second-order differential equation is linear (that is, linear in the dependent
variable(s), not necessarily linear in the independent variable), the linear-shooting
method (LINSHOT2.INC) may be used. A linear combination of solutions to two
initial value problems yields the solution to the boundary value problem.

If the second-order differential equation is nonlinear, the routine SHOOT2.INC
must be used. The secant method generates a sequence of solutions with different
values of the first derivative until the appropriate boundary condition, subject to a
desired accuracy, is satisfied. Although SHOOT2.INC may be used to solve linear
boundary value problems, LINSHOT2.INC is more efficient for the linear case.

" Boundary value problems for second-order differential equations are guaranteed
to have a unique solution on the interval a, b if the function

y' = fle,yy')

and the two partial derivatives df/dy, df/dy’ are continuous on the interval [a, b].
Furthermore, 8f/dy must be positive and 3f/dy’ must be bounded for all x, y, y’
a<x<bh - o<y<ow —xo <y <o,

The convergence to the appropriate initial value of the first derivative is not
assured for nonlinear boundary value problems. A good guess of the derivative
boundary condition is often required and may involve considerable trial and error.

Interpolation techniques (see Chapter 3) may be used to approximate the solu-
tion of values of the independent variable that are not mesh points.

158 Turbo Numerical Methods Toolbox

Solution to an Initial Value Problem for a First-Order
Ordinary Differential Equation Using the Runge-Kutta
Method (RUNGE_LINC)

Description

This example uses the Runge-Kutta method (Burden and Faires 1985, 220-227) to
approximate the solution to a first-order ordinary differential equation with a speci-
fied initial condition.

Given a function of the form
dx/dt = TNTargetF(, x)

which satisfies the conditions given at the beginning of this chapter, and an initial
condition

x[LowerLimit] = Xlnitial
and spacing
h = (UpperLimit — LowerLimit)/NumlIntervals

the fourth-order Runge-Kutta method approximates x in the interval [LowerLimit,
UpperLimit).

The fourth-order Runge-Kutta formulas consist of the following:

F1 = h = TNTargetF(t, x[t])

F2 = h « TNTargetF(t + h/2, x[t] + F1/2)

F3 = h = TNTargetF(t + h/2, x[t] + F2/2)

F4 = h x TNTargetF(t + h, x[t] + F3)

xft + 1] = «x[t] + (F1 + 2« F2 + 2 = F3 + F4)/6
where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h'.

You must supply LowerLimit, UpperLimit, XInitial, NumIntervals, and TNTar-
getF.

User-Defined Types

Thvector = array[l..TNArraySize] of Real;

Initial Value and Boundary Value Methods 159

User-Defined Function

TNTargetF(t, X : Real) : Real;
dx/dt = TNTargetFt, x)

The function TNTargetF(t, x) is a user-defined function that calculates the deriv-
ative dx/dt.

Input Parameters

LowerLimit : Real; Lower limit of interval

UpperLimit : Real; Upper limit of interval

XInitial : Real; Value of X at LowerLimit

NumReturn : Integer; Number of (¢, x) pairs returned from the procedure

NumIntervals : Integer; Number of subintervals used in calculations
The preceding parameters must satisfy the following conditions:
1. NumReturn > 0
2. NumlIntervals = NumReturn

3. LowerLimit # UpperLimit

Output Parameters

TValues : TNvector; Values of ¢ between the limits
XValues : TNvector; Values of X approximated at the values in TValues

Error : Byte; 0: No errors
1: NumBeturn < 1
2: NumlIntervals < NumBReturn
3: LowerLimit = UpperLimit

160 Turbo Numerical Methods Toolbox

Syntax of the Procedure Call

InitialCondlstOrder(LowerLimit, UpperLimit, XInitial, NumReturn,
NumIntervals, TValues, XValues, Error);

The procedure InitialConditionlstOrder integrates the first-order differential
equation.

Comments

This procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use all the values. The vectors TValues and XValues will contain
only NumReturn values at roughly equally spaced ¢-values between the lower and
upper limits. (They will be equally spaced only when NumIntervals is a multiple of
NumReturn.) Thus, you can ensure a highly accurate solution (by making NumlIn-
tervals large) without generating an excessive amount of output (by making Num-
Return small).

The Runge-Kutta method uses the New/Dispose procedures to manipulate the
heap and should not be used in any program that uses Mark/Release to manipulate
the heap.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢ '°*. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-

vals).

Sample Program

The sample program RUNGE_1.PAS provides I/O functions that demonstrate the
Runge-Kutta method of solving initial value problems. Note that the file
RUNGE_LINC is included after the function TNTargetF is defined.

Initial Value and Boundary Value Methods 161

Example

Problem. Solve the following initial value problem with the Runge-Kutta method:
' =at+t -1 l=t=2
(1) =1
1. Code the equation into the program RUNGE_LPAS:
function TNTargetF(t, X : Real) : Real;

(**)

(Fxx¥ THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION FHAK)

(**)

begin
TNTargetF := x/t + t - 1
end; { function TNTargetF }

2. Run RUNGE_1.PAS:
Lower 1limit of interval? 1
Upper limit of interval? 2
X value at t = 1.00000000E+00: 1
Number of values to return (1-500)? 10
Number of intervals (>= 10, default = 10)? 100
Direct output to one of the following:
(S)creen
(P)rinter
(F)ile
Lower limit: 1.00000000000000E+000
Upper Timit: 2.00000000000000E+000

Value of X at 1.0000: 1.00000000000000E+000
Number of intervals: 100

t X
1.00000000 1.00000000000000E+000
1.10000000 1.10515880220649E+000
1.20000000 1.22121413182916E+000
1.30000000 1.34892645616477E+000
1.40000000 1.48893886869362E+000
1.50000000 1.64180233779216E+000
1.60000000 1.80799419315265E+000
1.70000000 1.98793197313186E+000
1.80000000 2.18198400310574E+000
1.90000000 2.39047761619428E+000
2.00000000 2.61370563879444E+000

The exact solution is

X =% —t=In@
X(2) = 2.6137056

162 Turbo Numerical Methods Toolbox

Solution to an Initial Value Problem for a First-Order

Ordinary Differential Equation
Using the Runge-Kutta-Fehlberg Method (RKF_LINC)

Description

This example uses the Runge-Kutta-Fehlberg method (Burden and Faires 1985,
230-235) to approximate a solution within a specified tolerance to a first-order
ordinary differential equation with a specified initial condition.

Where the Runge-Kutta method (see RUNGE_LINC) uses a constant spacing
h, the Runge-Kutta-Fehlberg method varies the spacing so that the solution-can be
approximated with accuracy.

Given a function of the form
dx/dt = TNTargetF(t, x)

which satisfies the conditions given at the beginning of this chapter, and an initial
condition
x[LowerLimit] = Xlnitial

both the fourth-order and fifth-order Runge-Kutta formulas are used to approxi-
mate x in the interval [LowerLimit, UpperLimit]. The number of subintervals is
continually increased until the fractional difference between the results of the
fourth-order and fifth-order formulas (which give a truncation error of h* and A°,
respectively) in each subinterval is less than the specified tolerance.

You must supply LowerLimit, UpperLimit, Tolerance, and TNTargetF.

User-Defined Types

Thvector = array[1..TNArraySize] of Real;

User-Defined Function

TNTargetF(t, X : Real) : Real;
dx/dt = TNTargetF(t, x)

Initial Value and Boundary Value Methods 163

Input Parameters

LowerLimit : Real; Lower limit of interval

UpperLimit : Real; Upper limit of interval

XInitial : Real; Value of X at LowerLimit
Tolerance : Real; Maximum tolerable fractional difference between iterate
values

NumReturn : Integer; Number of (£, x) values to be returned
The preceding parameters must satisfy the following conditions:
1. Tolerance > 0
2. NumReturn > 0

3. LowerLimit # UpperLimit

Output Parameters

Tvalues : Thvector; Values of ¢ at which X was approximated
XValues : TNvector; Values of X at the values in TValues
Error : Byte; 0: No errors
1: Tolerance < 0
2: NumBReturn < 0
3: LowerLimit = UpperLimit
4: Tolerance not reached

Syntax of the Procedure Call

RungeKuttaFehlberg(LowerLimit, UpperLimit, XInitial, Tolerance,
NumReturn, TValues, XValues, Error);

The procedure RungeKuttaFehlberg integrates the first-order differential equa-
tion TNTargetF. '

64 Turbo Numerical Methods Toolbox

Comments

This procedure will compute more values in its calculations than it will return in
the vectors TValues and XValues. The vectors TValues and XValues will contain
only NumReturn values at subintervals between the lower and upper limits. More
values will be returned in regions of large functional variation than in regions of
small functional variation. Thus, you can ensure a highly accurate solution (by
making the Tolerance small) without generating an excessive amount of output (by
making NumReturn small).

The Runge-Kutta-Fehlberg method improves the accuracy in the solution by
reducing the spacing between successive values of t. However, if the Tolerance is
too small, the spacing required to reach Tolerance may be beyond the machine’s
limit of precision. Consequently, the routine will not converge to a solution that
meets the required Tolerance and Error 5 will be returned.

The Runge-Kutta-Fehlberg method uses the New/Dispose procedures to manip-
ulate the heap and should not be used in any program that uses Mark/Release to
manipulate the heap.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e '°*. The Runge-Kutta-Fehlberg method may
generate a numerical solution that bears no resemblance to the exact solution of the
differential equation. This unstable numerical solution usually grows exponentially
and may be oscillatory. However, if the exact solution of the differential equation
grows as the independent variable increases, the instability may be difficult to
detect. If a suspected instability has been encountered, reduce the interval size
(NumlIntervals).

Sample Program

The sample program RKF-1.PAS provides I/O functions that demonstrate the
Runge-Kutta-Fehlberg method of solving initial value problems. Note that the file
RKF_LINC is included after the function TNTargetF is defined.

Initial Value and Boundary Value Methods 165

Example
Problem. Use the Runge-Kutta-Fehlberg method to solve the following initial
value problem with a tolerance of 1E-6:

X =xt+t—1 lst=<?2
x(1) =1

1. Code the differential equation into the program RKF_1.PAS:
function TNTargetF(t, X : Real) : Real;

(**)

(Fxwx THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION Hokk)

(**)

begin
TNTargetF := x/t + t - 1;
end; { function TNTargetf }

2. Run RKF_1.PAS:
Lower limit of interval? 1
Upper limit of interval? 2
X value at t = 1.00000000E+00: 1
Number of values to return (1-500)? 10
Tolerance (> 0, default = 1.000E-06)? 1E-6
Direct output to one of the following:
(S)creen
(P)rinter
(F)ile
Lower limit: 1.00000000000000E+000
Upper limit: 2.00000000000000E+000

Value of X at 1.0000: 1.00000000000000E+000
Tolerance: 1.00000000000000E-006

t X
1.00000000 1.00000000000000E+000
1.10000000 1.10515881708653E+000
1.20000000 1.22121416069278E+000
1.30000000 1.34892649817459E+000
1.40000000 1.48893892310351E+000
1.50000000 1.64180240395245E+000
1.60000000 1.80799427050390E+000
1.70000000 1.98793206119471E+000
1.80000000 2.18198410146987E+000
1.90000000 2.39047772450816E+000
2.00000000 2.61370575675625E+000

166 Turbo Numerical Methods Toolbox

Now solve the same problem with a smaller tolerance, 1.000E-08:

Lower 1imit of interval? 1

Upper Timit of interval? 2

X value at t = 1.00000000E+00: 1

Number of values to return (1-500)? 10

Tolerance (> 0, default = 1.000E-06)? 1E-8

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

Lower limit:
Upper limit:
Value of X at 1.0000:

1.00000000000000E+000
2.00000000000000E+000
1.00000000000000E+000

Tolerance: 1.00000000000000E-008
t X
1.00000000 1.00000000000000E+000
1.12208941 1.12982837391732E+000
1.20585321 1.22836146826667E+000
1.29271260 1.33921121906568E+000
1.38286653 1.46405185209736E+000
1.47648998 1.60468229863568E+000
1.57374241 1.76304147973215E+000
1.67477301 1.94122165006705E+000
1.77972398 2.14148082447423E+000
1.88873280 2.36625482837546E+000
2.00193373 2.61816928222327E+000

The exact solution is

X©)

X

t* — tIn()
2.6137056

X(2.00193373) = 2.6181693

In the first run, a solution could be approximated within tolerance with a spacing
of 0.1. In the second run, the algorithm had to vary the spacing in order to approxi-

mate a solution within the tolerance.

Initial Value and Boundary Value Methods

167

Solution to an Initial Value Problem for a First-Order
Ordinary Differential Equation

Using the Adams-Bashforth/Adams-Moulton
Predictor/Corrector Scheme (ADAMS_1.INC)

Description

This example approximates the solution to a first-order ordinary differential equa-
tion with a specified initial condition using the four-step Adams-Bashforth/Adams-
Moulton formulas (Burden and Faires 1985, 238-247). Runge-Kutta methods are
one-step methods, because each calculation uses information from only one pre-
vious point. The Adams’ formulas use information from four previous points, thus
the four-step method.

Given a function of the form
dx/dt = TNTargetF(t, x)

which satisfies the conditions given at the beginning of this chapter, and an initial
condition

x[LowerLimit] = XInitial
and spacing
h = (UpperLimit - LowerLimit)/NumlIntervals

the fourth-order Runge-Kutta formula (see RUNGE_1.INC) is used to find approx-
imations at the first three points in the interval [LowerLimit, UpperLimit]. Then
the following explicit Adams-Bashforth formula:

x[i+1] = x[i] + h/24 = { 55 * TNTargetF(t[i}, [i])
— 59 % TNTargetF(t[i — 1], x[i — 1])
+ 37 * TNTargetF(tli — 2], x[i — 2])
— 9« TNTargetF(t[i — 3], x[i — 3]) }

and the following implicit Adams-Moulton formula:

xli+1] = x[i] + h/24 * {9 * TNTargetF(t[i +1], x [i + 1])
+ 19 = TNTargetF(t{i], x[i])
— 5 = TNTargetF(t[i — 1], «[i — 1])
+ TNTargetF(t[i—2], [i —2]) }

approximate (predict) and refine (correct) all other points in the interval.

168 Turbo Numerical Methods Toolbox

You must supply UpperLimit, LowerLimit, XInitial, NumlIntervals, and TNTar-
getF.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

User-Defined Function

TNTargetF(t, X : Real) : Real;
dx/dt = TNTargetF(t, x)

Input Parameters

LowerLimit : Real; Lower limit of interval

UpperLimit : Real; Upper limit of interval

XInitial : Real; Value of X at LowerLimit

NumReturn : Integer; Number of (¢, x) values to be returned from the procedure

NumIntervals : Integer; Number of subintervals to be used in calculations
The preceding parameters must satisfy the following conditions:
1. NumBReturn > 0
2. Numlntervals = NumReturn

3. LowerLimit = UpperLimit

Output Parameters

TValues : TNvector; Values of ¢t between the limits
XValues : TNvector; Values of X determined at the values in TValues

Error : Byte; 0: No errors
1: NumReturn < 1
2: NumlIntervals < NumReturn
3: LowerLimit = UpperLimit

Initial Value and Boundary Value Methods 169

Syntax of the Procedure Call

Adams (LowerLimit, UpperLimit, XInitial, NumReturn,
NumIntervals,TValues, XValues, Error);

The procedure Adams integrates the first-order differential equation TNTargetF.

Comments

This procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use the values. The vectors TValues and XValues will contain
only NumReturn values at roughly equally spaced ¢-values between the lower and
upper limits. (They will be equally spaced only when NumlIntervals is a multiple of
NumReturn.) Thus, you can ensure a highly accurate solution (by making NumlIn-
tervals large) without generating an excessive amount of output (by making Num-
Return small).

The Adams-Bashforth/Adams-Moulton method uses the New/Dispose proce-
dures to manipulate the heap and should not be used in any program that uses
Mark/Release to manipulate the heap.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e ", The Adams-Bashforth/Adams-Moulton
method may generate a numerical solution that bears no resemblance to the exact
solution of the differential equation. This unstable numerical solution usually
grows exponentially and may be oscillatory. However, if the exact solution of the
differential equation grows as the independent variable increases, the instability
may be difficult to detect. If a suspected instability has been encountered, reduce
the interval size (NumlIntervals).

Sample Program

The sample program ADAMS_1.PAS provides 1/O functions that demonstrate the
Adams-Bashforth/Adams-Moulton predictor/corrector method of solving initial
value problems. Note that the file ADAMS_LINC is included after the function
TNTargetF is defined.

170 Turbo Numerical Methods Toolbox

Example
Problem. Solve the following initial value problem with the Adams-Bashforth/
Adams-Moulton method:
X =axt+t -1 l1st=<s2
x(1) =1
1. Code the differential equation into the program ADAMS_1.PAS:
function TNTargetF(t, X : Real) : Real;

(**)

(Gl THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION *xkK)

(**)

begin
TNTargetF := x/t + t - 1;
end; { function TNTargetF }

2. Run ADAMS_1.PAS:
Lower limit of interval? 1
Upper limit of interval? 2
X value at t = 1.00000000E+00: 1
Number of values to return (1-500)? 10
Number of intervals (>= 10, default = 10)? 100
Direct output to one of the following:
(S)creen
(P)rinter
(F)ile
Lower Timit: 1.00000000000000E+000
Upper limit: 2.00000000000000E+000

Value of X at 1.0000: 1.00000000000000E+000
Number of intervals: 100

t X
1.00000000 1.00000000000000E+000
1.10000000 1.10515880229293E+000
1.20000000 1.22121413201736E+000
1.30000000 1.34892645643801E+000
1.40000000 1.48893886904034E+000
1.50000000 1.64180233820416E+000
1.60000000 1.80799419362396E+000
1.70000000 1.98793197365806E+000
1.80000000 2.18198400368348E+000
1.90000000 2.39047761682098E+000
2.00000000 2.61370563946811E+000

The exact solution is

= — tIn(t)
2.6137056

>
|

x(2)

Initial Value and Boundary Value Methods 171

Solution to an Initial Value Problem for a Second-Order
Ordinary Differential Equation
Using the Runge-Kutta Method (RUNGE_2.INC)

Description

This example approximates the solution to a second-order ordinary differential
equation with specified initial conditions using the two variable Runge-Kutta for-
mulas (Burden and Faires 1985, 261-269). :

Given a function of the form
x/dt = TNTargetF(, x, x')

where ¢’ indicates dx/dt (which satisfies the Lipshitz condition given at the begin-
ning of this chapter), the initial conditions

x[LowerLimit] = InitialValue
x'[LowerLimit] = InitialDeriv

and spacing
h = (UpperLimit — LowerLimit)/NumlIntervals

rewrite the second-order differential equation as two, first-order differential equa-
tions:

y
TNTargetF(t, x, y)

x
y'
Then the fourth-order, two-variable Runge-Kutta method can be used to approx-

imate simultaneously x and y (x and x').

The fourth-order Runge-Kutta formulas for these equations consist of the follow-
ing:
Flx = h = ylt]
Fly = h = TNTargetF(t, x[t], y[t])
F2x = h = (y[t] + Fly/2)
F2y = h = TNTargetF(t + h/2, x[t] + Flx/2, y[t] + Fly/2)
F3x = h = (ylt] + F2y/2)
F3y = h * TNTargetF(t + h/2, x[t] + F2x/2, y[t] + F2y/2)
Fdx = h = (y[t] + F3y) .
Fdy = h = TNTargetF(t + h, x[] + F3x, y[t] + F3y)

172 Turbo Numerical Methods Toolbox

x[t+1] = «ft] + (Flx + 2 « F2x + 2 « F3x + F4x)/6
ylt+1] = ylt] + (Fly + 2 =« F2y + 2 = F3y + F4y)/6

where ¢ ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h'.

You must supply LowerLimit, UpperLimit, XInitial, NumlIntervals, and TNTar-
getF.

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

User-Defined Function

TNTargetF(t, X, XPrime : Real) : Real;
dx’/dt® = TNTargetF(t, x, dx/dt)

Input Parameters

LowerLimit ; Real; Lower limit of interval
UpperLimit : Real; Upper limit of interval
InitialValue : Real; Value of X at LowerLimit
InitialDeriv : Real; Derivative of X at LowerLimit

NumReturn : Integer; Number of (¢, x) values returned from the procedure

NumIntervals : Integer; Number of subintervals used in the calculations
The preceding parameters must satisfy the following conditions:
1. NumReturn > 0
2. NumlIntervals = NumBReturn

3. LowerLimit = UpperLimit

Initial Value and Boundary Value Methods 173

Output Parameters

TValues : TNvector; Values of ¢t between the limits

XValues : TNvector; Values of X determined at the values in TValues

XDerivValues : TNvector; Values of the first derivative of X determined at the values
in TValues

Error : Byte; 0: No errors

1: NumReturn < 1
2: NumlIntervals < NumReturn
3: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialCond2ndOrder(LowerLimit, UpperLimit, InitialValue, InitialDeriv,
NumReturn, NumIntervals, TValues, XValues,
XDerivValues, Error);

The procedure InitialCond2ndOrder integrates the second-order differential
equation TNTargetF.

Comments

This procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use all these values. The vectors TValues, XValues, and XDeriv-
Values will contain only NumReturn values at roughly equally spaced t-values
between the lower and upper limits. (They will be equally spaced only when
NumlIntervals is a multiple of NumReturn.) Thus, you can ensure a highly accurate
solution (by making NumlIntervals large) without generating an excessive amount
of output (by making NumReturn small).

Warning: A differential equation occurs when there are at least two very differ-
ent scales of the independent variable on which the dependent variable(s) is chang-
ing; for example, y = x + ¢ '”. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-

vals).

174 ' Turbo Numerical Methods Toolbox

Sample Program

The sample program RUNGE_2.PAS provides I/O functions that demonstrate the
Runge-Kutta method of solving initial value problems for second-order ordinary
differential equations. Note that the file RUNGE_2.INC is included after the func-
tion TNTargetF is defined.

Example

Problem. A weight with mass m lies on a frictionless table and is connected to a
spring with spring constant k:

-—Wall

F(w) .

" {D0ACG00000000

Frictionless surface

If the weight is subject to a driving force F sin(® t) (o represents the frequency
of the driving force and ¢ is time), the equation of motion of the mass is as follows:

mdx/dt® + kx = F sin(o t)

Given

m = 2kg
F=9N

k = 32 N/m

o = 5 cycles/sec
x0) = 0m

dx(0)/dt = -2.5 m/sec
find the position and velocity of the block from ¢ = 0 second to t = 2 seconds.
1. Rewrite the preceding second-order differential equation:

%t/di* = F/m sin(w t) — k/m x

Initial Value and Boundary Value Methods 175

2. Code this second-order differential equation into the program RUNGE_2.PAS:

function TNTargetF(t : Real;
X : Real;
XPrime : Real) : Real;

(***)

(xHx* THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION Fhkk)

(***)

begin
TNTargetF := 9/2 * Sin (5 * t) - 32/2 * x;
end; { function TNTargetF }

3. Run RUNGE_2.PAS:

Lower limit of interval? 0
Upper Timit of interval? 2

Enter X value at t = 0.00000000E+00: O
Enter derivative of X at t = 0.00000000E+00: -2.5

Number of values to return (1-500)? 10
Number of intervals (>= 10, default = 10)? 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Lower 1imit: 0.00000000000000E+000

Upper Tlimit: 2.00000000000000E+000

Value of X at 0.0000: 0.00000000000000E+000

Value of X' at 0.0000: -2.50000000000000E+000
Number of intervals: 100

t Value of X Derivative of X
0.00000000 0.00000000000000E+000 -2.50000000000000E+000
0.20000000 -4.20735284275848E-001 -1.35075642830665E+000
0.40000000 -4.54648724216734E-001 1.04036531118478E+000
0.60000000 -7.05605786993375E-002 2.47497991717220E+000
0.80000000 3.78400378699554E-001 1.63411037473655E+000
1.00000000 4.79461767300631E-001 -7.09151289407567E-001
1.20000000 1.39708469016311£-001 -2.40042152228323E+000
1.40000000 -3.28491796183335E-001 -1.88475529635974E+000
1.60000000 -4.94677974769030E-001 3.63745224811839E-001
1.80000000 -2.06059519715175E£-001 2.27781864414105E+000
2.00000000 2.72008842396951E-001 2.09767516082021E+000

176 Turbo Numerical Methods Toolbox

The exact solution is
F sin(w ?)

m (e’ — o)

F_ cos(o t)
dx/dt =

m(w® — w’)
where o _is the natural frequency of the system
w’ =k/m
The period of oscillation is given by
= 2 m/w = 1.257 sec

The data is taken from a function of which the derivative could be computed
exactly. Following are the actual values:

t Values of X Derivative of X
0.0 0.000000000000E + 000 —2.500000000000E + 000
0.2 —4.207354924039E — 001 —1.350755764670E + 000
0.4 —4.546487134128E — 001 1.040367091367E + 000
0.6 —7.056000402993E — 002 2.474981241501E + 000
0.8 3.784012476539E — 001 1.634109052159E + 000
1.0 4.794621373315E — 001 —7.091554636580E — 001
1.2 1.397077490994E — 001 —2.400425716625E + 000
14 —3.284932993593E — 001 — 1.884755635858E + 000
1.6 —4.946791233116E — 001 3.637500845215E — 001
1.8 —2.060592426208E — 001 2.277825654711E + 000
2.0 2.720105554446E — 001 2.097678822691E + 000

Initial Value and Boundary Value Methods 177

Solution to an Initial Value Problem for an nth-Order
Ordinary Differential Equation Using the Runge-Kutta
Method (RUNGE_N.INC)

Description

This example integrates an nth-order ordinary differential equation with specified
initial conditions using the generalized Runge-Kutta formulas (Burden and Faires
1985, 261-269).

Given a function of the form
"t/dt" = TNTargetF(t, x, x°, ..., ")

where 2 indicates d’x/dt’, which satisfies the general Lipshitz condition (the Lip-
shitz condition for first-order and second-order ordinary differential equations is
given at the beginning of this chapter, and initial condition

x[LowerLimit] = a,

xV[LowerLimit] = a,

2" "[LowerLimit] = a,
and spacing
h = (UpperLimit — LowerLimit)/NumlIntervals

rewrite the nth-order differential equation as n first-order differential equations:

1
x()

= yl
2) __ a
r= y,=y,
@) _ a
x - y 2 y3
=1 _ 1) —_
x - y n—2 yn—l

2 =y = TNTargetF(t, x,y,y, -, Y,_,)

Then the fourth-order general Runge-Kutta method can be used to approximate
simultaneously the y’s (x and its derivatives).

178 Turbo Numerical Methods Toolbox

The general Runge-Kutta formulas for these equations consist of the following:

Flx = h+yt]
Fly, = h=y,]i]
Flyu—ﬁ = h * yn—l[t]

Fly,_, = h* TNTargetF(t, «[t], y [t], ..., y__ [t])
F2x = h*(y[t] + Fly /2)
F2y = h =« (ylt] + Fly/2)

F2y , = hx(y [t + Fly _/2)
F2y = hx TNTargetF(t + h/2, x[t] + F1x/2, y[t] + Fl1y,/2, ...y _[t]
+ Fly _/2)
F3x = hx(ylt] + F2y,/2)

F3y = h* (yt] + F2y/2)

F3y ,= h=* (y"_l[t] + F2y, _./2)
F3y,_, = h+ TNTargetF(t + h/2, x[t] + F2x/2,y[f] + F2y /2, ...y, _ [t]
+ F2y"_l/2)
F4x = h = (y[t] + F3y)
Fdy = h = (y,[t] + F3y,)
Fdy _, = h=(y, [t] + F3y)
F4y,_, = h* TNTargetF(t + h,x[t] + F3x, y [t] + F3y, ...y _ [t]
+ F3y,_)
xft+1] = «[t] + (Flx + 2+ F2x + 2 * F3x + F4x)/6

ylt+1] = ylt] + (Fly, + 2 % F2y, + 2 F3y, + Fdy)/6
ylt+1] = y[t] + (Fly, + 2 = F2y, + 2 « F3y, + F4y,)/6

y,Jt+1] =y]+ (Fly , +2* F2y ,+2+F3y , + Fdy)6
y t+1l =y [+ (Fly,_, +2+F2y + 2+F3y _ + F4y)6

where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h'.

Initial Value and Boundary Value Methods 179

You must supply the order, limits, initial values, and TNTargetF. The order may
be arbitrarily large.

User-Defined Types

TNvector = array[0..TNRowSize] of Real;
TNmatrix = array[0..TNColumnSize] of TNvector;

TNRowSize is an upper bound for the number of values returned for a particular
variable (NumReturn). TNColumnSize is an upper bound for the order of the differ-
ential equation (Order).

User-Defined Function

TNTargetF(V : TNvector) : Real;
The elements of V are defined as

V10] corresponds to ¢

V(1] corresponds to x

V[2] corresponds to first derivative of x
V[3] corresponds to second derivative of x

This is the differential equation:
"x/dt" = TNTargetF(t, x, ", ... x"~") where n is the order of the equation.

The procedure InitialCondition integrates this nth-order differential equation.

Input Parameters

Order : Integer; Order of the differential equation

LowerLimit : Real; Lower limit of interval

UpperLimit : Real; Upper limit of interval

InitialValues : TNvector; Values of X and its derivatives at LowerLimit

NumReturn : Integer; Number of (¢, x, £, ..., ™) values returned from the pro-
cedure

NumIntervals : Integer; Number of subintervals used in the calculations

180 Turbo Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:
1. NumBeturn > 0

2. Numlntervals = NumReturn

3. Order > 0

4. LowerLimit = UpperLimit

Output Parameters

SolutionValues : TNmatrix; Values of ¢, x and the derivatives of x between the limits

Error : Byte; 0: No errors
1: NumReturn < 1
2: NumlIntervals < NumReturn
3: Order < 1
4: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialCondition(Order, LowerLimit, UpperLimit, InitialValues,
NumReturn, NumIntervals, SolutionValues, Error);

Comments

The first row of SolutionValues will be the values of ¢t between the limits, the
second row of SolutionValues will be the values of x between the limits, the third
row of SolutionValues will be the values of x" between the limits, and so on.

This procedure will compute NumlIntervals values in its calculations; however,
you will rarely need to use all those values. The rows of SolutionValues will contain
only NumReturn values at roughly equally spaced t-values between the lower and
upper limits. (They will be equally spaced only when Numlntervals is a multiple of
NumReturn.) Thus, you can ensure a highly accurate solution (by making NumlIn-
tervals large) without generating an excessive amount of output (by making Num-
Return small).

There are no bounds on the order of the differential equation.

Initial Value and Boundary Value Methods 18l

This routine stores much information on the heap. If you try to solve a high-
order differential equation very precisely (that is, both Order and NumlIntervals are
large), you may get run-time error $FF, Heap/Stack collision. If this happens, the
dimension of TNvector and TNmatrix should be reduced as much as possible. If
this is not possible, remove any RAM-resident software (for example, SideKick,
SuperKey, or a print buffer).

The Runge-Kutta method uses the New/Dispose procedures to manipulate the
heap and should not be used in any program that uses Mark/Release to manipulate
the heap.

Warning: A stiff differential equation occurs when there are at least two very
" different scales of the independent variable on which the dependent variable(s) is

changing; for example, y = x + ¢~ "*”. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-
vals).

Sample Program

The sample program RUNGE_N.PAS provides I/O functions that demonstrate the
Runge-Kutta method of solving initial value problems for high-order ordinary dif-
ferential equations. Note that the file RUNGE_N.INC is included after the func-
tion TNTargetF is defined.

Example

Problem. Find the solution to the following fourth-order ordinary differential equa-
tion from¢ = 0tot = 1:

x@)/dt' = —4 x(t) d’x(t)/df

x(0)= 1
dx(0)y/dt = —1
dx0)/de = 2
d’x(0)/df = —6

182 Turbo Numerical Methods Toolbox

1. Code the equation into the program RUNGE_N.PAS:
function TNTargetF(V : TNvector) : Real;

(***)

(* THIS IS THE DIFFERENTIAL EQUATION *)
(***)
* *
g* d" x (1) (n-1) *))
(G — = TNTargetF(t, x, x , ... X) *)
(* *
(* dt’ *)
(* *)
(* where n is the order of the equation. *)
(* *)
(* The elements of V are defined: *)
(* V[0] corresponds to t *)
(* V[1] corresponds to X *)
(* V[2] corresponds to 1st derivative of X *)
(* V[3] corresponds to 2nd derivative of X *)
* *
(-)
* *)

.
(***)

begin
TNTargetF := -4 * V[1] * V[4];
end; { function TNTargetfF }

2. Run RUNGE_N.PAS:

Order of the equation (1-10)? 4

Lower 1imit of interval? 0

Upper limit of interval? 1

0.0000000E+000: 1
0.0000000E+000: -1

0.0000000E+000: 2
0.0000000E+000: -6

Enter X value at t
Derivative 1 of X at t
Derivative 2 of X at t
Derivative 3 of X at t

Number of values to return (1-100)? 10
Number of intervals (>= 10, default = 10)? 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Lower limit: 0.00000000000000E+000

Upper limit: 1.00000000000000E+000
Number of intervals: 100

Initial Value and Boundary Value Methods 183

Initial conditions at lower limit:
X[1]= 1.00000000000000E+000
X[2]= -1.00000000000000E+000
X[3]1= 2.00000000000000E+000
X[4]= -6.00000000000000E+000

0.
0.
0.
0.
0.
0.
0.

HOOOOODOOOOO _HOOOODOOODOOO

HOOODODOODOOOO

t
00000000
10000000
20000000
30000000
40000000
50000000
60000000

0.70000000
0.
0
1

80000000

.90000000
00000000

t

00000000
10000000
.20000000
30000000
40000000
.50000000
.60000000
.70000000
.80000000
.90000000
00000000

t
00000000
10000000
20000000
30000000
40000000
.50000000
60000000
70000000
.80000000
90000000
.00000000

t
00000000
10000000
20000000
.30000000
40000000
.50000000
60000000
.70000000
80000000
90000000
.00000000

184

OO N N 0 W =

-1.
.26446283273189E-001
-6.
-5.
-5.
-4,
-3.
-3.
-3.
-2.
-2.

NN WPEDROINWY - =N

-6.
-4,
-2.
-2.
-1.
-1.
-9.
-7.
.71559223064178E-001
-4,
-3.

Value X[1]

.00000000000000E+000
.09090909737517E-001
.33333334189337E-001
.69230770157394E-001
.14285715280102E-001
.66666667788519E-001
.25000001337168E-001
.88235295769619E-001
.55555557625526E-001
.26315792064849E-001
.00000003213983E-001

value X[2]
00000000000000E+000

94444446826215E-001
91715977923112E-001
10204082090465E-001
44444443661452E-001
90624997971428E-001
46020758007957E-001
08641970911504E-001
77008304743045E-001
49999993429933E-001

Value X[3]

.00000000000000E+000
.50262961438149E+000
.15740742373768E+000
.10332288053840E-001
.28862989793594E-001
.92592607536865E-001
.88281263842229E-001
.07083261374878E-001
.42935540127152E-001
.91587706310718E-001
.50000010753535E-001

Value X[4]
00000000000000E +000
09808076056272E+000
89351855059016E+000
10076680857258E+000
56184925333600E+000
18518520443061E+000
15527359078898E-001
18382215400418E-001

60401631119694E-001
75000005740567E-001

Turbo Numerical Methods Toolbox

X[1] are the values of x(t).

X[2] are the values of dx(£)/dt.
X[3] are the values of d*x(t)/dt".
X[4] are the values of d’x(t)/d¢’.

The exact solution is

) = @+
dx(/dt = —(¢+1)
@)/de = 20+1)7°

&)t = —6@E+1)""

x(1) = 05
dx(1)/dt = —0.25
d’x()/de = 025
d’x(L)/df’ = —0.375

Initial Value and Boundary Value Methods 185

Solution to an Initial Value Problem for a System of
Coupled First-Order Ordinary Differential Equations Using
the Runge-Kutta Method (RUNGE_-SLINC)

Description

This example integrates a system of coupled first-order ordinary differential equa-
tions with specified initial conditions using the generalized Runge-Kutta formulas
(Burden and Faires 1985, 261-269).

Given m first-order ordinary differential equations in the form

dx /dt = TNTargetF1(¢, x, x,, ..., x,)
dx /dt = TNTargetF2(t, x, x,, ..., x,)

dx /dt = TNTargetFm(t, x, x,, ..., x_)

which satisfies the Lipshitz condition (the Lipshitz condition for first-order and
second-order ordinary differential equations is given at the beginning of this chap-
ter; consult the previous book reference for details of the Lipshitz condition for
systems), and initial conditions

x [LowerLimit] = a,
x,[LowerLimit] = a,

x [LowerLimit] = a_
and spacing
h = (UpperLimit — LowerLimit)/NumlIntervals

the fourth-order general Runge-Kutta method can be used to approximate simulta-
neously the xs. ‘

186 Turbo Numerical Methods Toolbox

The general Runge-Kutta formulas for these equations are as follows:

Flx, = h * TNTargetF1(t, x [t], x[t], ..., x [t])
Flx, = h * TNTargetF2(t, x [t], x[t], ..., x [t])

Flx_ = h * TNTargetFm(t, x,[t], x,[t], ..., x_[¢])

F2x, = h * TNTargetF1(t + h/2, x [t] + Flx /2, x[t] + Flx /2, .., x [t]
+ Flx /2)

F2x, = h » TNTargetF2(t + h/2, x[t] + Flx /2, x[t] + Flx/2, ..., x [i]
+ Flx /2)

F2x = h s TNTargetFm(t + h/2,x[t] + Flx /2, x[t] + Flx /2, .., x [t]

+ Flx_/2)

F3x, = h % TNTargetF1(t + h/2, x[t] + F2x /2, x[t] + F2x /2, ..., x [t]
+ F2x J2)

F3x, = h * TNTargetF2(t + h/2, x [t] + F2x /2, x[t] + F2x/2, .., x [t]
+ F2x /9)

F3x = h + TNTargetFm(t + h/2, x[¢] + F2x /2, x[t] + F2x,/2, ..., x [t]
+ F2x /2)

F4x = h + TNTargetF1(t + h, x[t] + F3x, x,[t] + F3x,, .., x [t] + F3x)
F4x, = h = TNTargetF2(t + h, x[t] + F3x, x,[t] + F3x,, .., x [t] + F3x)

F4x = h * TNTargetFm(t + h, x[t] + F3x, x[t] + F3x,, .., x [t] + F3x)

x[t+1] = x [t] + (Flx, + 2+F2x + 2+F3x, + F4x))/6
xlt+1] = x[t] + (Flx, + 2+F2x, + 2+F3x, + F4x,)/6

x [t+1] = x [t] + (Flx + 2¢F2x + 2+F3x + F4x)/6

m

Initial Value and Boundary Value Methods 187

where ¢ ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h’.

You must supply the number of differential equations, the limits, initial values,
and TNTargetF's.

This procedure can solve a system of up to ten differential equations (see “Com-
ments” for information about how to increase this limit).

User-Defined Types

TNvector = array[O..TNRowSizé] of Real;
TNmatrix = array[0..TNColumnSize] of TNvector;

TNRowSize is an upper bound for the number of values returned for a particular
variable (NumReturn). TNColumnSize is an upper bound for the number of differ-
ential equations (NumEquations).

User-Defined Functions

function TNTargetF1(V : TNvector) : Real;
function TNTargetF2(V : TNvector) : Real;
function TNTargetF3(V : TNvector) : Real;
function TNTargetF4(V : TNvector) : Real;
function TNTargetF5(V : TNvector) : Real;
function TNTargetF6(V : TNvector) : Real;
function TNTargetF7(V : TNvector) : Real;
functi.on TNTargetF8(V : TNvector) : Real;
function TNTargetF9(V : TNvector) : Real;
function TNTargetF10(V : TNvector) : Real;
These are the differential equations:
dxj/dt = TNTargetFjt, x, x,, ..., X,))

where j ranges from 1 to 10.

188 Turbo Numerical Methods Toolbox

The elements of the vector V are defined as follows:

V0] = ¢
V(1] = x,
V2] = x,
VIO] = =,

The procedure defined in RUNGE_S1.INC solves this system of coupled differ-
ential equations (a maximum of ten equations). All ten functions must be defined,
even if your system contains less than ten equations.

Input Parameters

NumEquations : Integer; Number of first-order differential equations

LowerLimit : Real; Lower limit of interval

UpperLimit : Real; Upper limit of interval

InitialValues : TNvector; Values ofxl, X,, ..., X at LowerLimit

NumReturn : Integer; Number of (¢, x, x,, .., x,) values returned from the
procedure

NumIntervals : Integer; Number of subintervals used in the calculations
The preceding parameters must satisfy the following conditions:
1. NumBReturn > 0
2. Numlntervals = NumReturn
3. NumEquations > 0
4. LowerLimit # UpperLimit

Output Parameters

SolutionValues : Thmatrix; Values of ¢, x, x,, ... x_ between the limits

Error : Byte; 0: No errors
1: NumReturn < 1
2: NumlIntervals < NumReturn
3: NumEquations < 1
4: LowerLimit = UpperLimit

Initial Value and Boundary Value Methods 189

Syntax of the Procedure Call

InitialConditionSystem(NumEquations, LowerLimit, UpperLimit,
InitialValues, NumReturn, NumIntervals,
SolutionValues, Error);

Comments

The first row of SolutionValues will be the values of ¢t between the limits, the
second row of SolutionValues will be the values of x, between the limits, the third
row of SolutionValues will be the values of x, between the limits, and so on.

All ten user-defined functions are called from the procedure. If your system has
less than ten equations, you must still define all ten functions or the program will
not compile. The superfluous functions should be defined as follows (TNTargetF10
is used as an example):

function TNTargetF10(V : TNvector) : Real;

begin
end; { function TNTargetF10 }

If you need to solve a system with more than ten equations, then edit the include
file RUNGE_S1.INC. The following line should be added to the end of procedure
Step:

F[11] := Spacing * TNTargetF1l(CurrentValues);

More statements (for F[12], and so on) may be added as necessary. All new
functions (for example, TNTargetF11) must be defined in your top-level program.
Note: Before making any changes to the include file, make sure you have a backup
copy.

This procedure will compute NumlIntervals values in its calculations; however,
you will rarely need to use these values. The rows of SolutionValues will contain
only NumReturn values at roughly equally spaced t-values between the lower and
upper limits. (They will be equally spaced only when NumlIntervals is a multiple of
NumReturn.) Thus, you can ensure a highly accurate solution (by making NumlIn-
tervals large) without generating an excessive amount of output (by making Num-
Return small).

This routine stores much information on the heap. If you try to accurately solve a
large system (that is, if both NumEquations and NumlIntervals are large), you may
get run-time error $FF, Heap/Stack collision. If this happens, the dimension of
TNvector and TNmatrix should be reduced as much as possible. If this is not possi-
ble, then remove any RAM-resident software (for example, SideKick, SuperKey, or
a print buffer).

190 Turbo Numerical Methods Toolbox

The Runge-Kutta method uses the New/Dispose procedures to manipulate the
heap and should not be used in any program that uses Mark/Release to manipulate
the heap.

‘Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢~ '"”. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-
vals).

Sample Program

The sample program RUNGE_S1.PAS provides /O functions that demonstrate the
Runge-Kutta method of solving initial value problems for systems of first-order
ordinary differential equations. Note that the file RUNGE_SLINC is included
after the TNTargetF functions are defined.

Example

Problem. A weight with mass m lays on a frictionless table and is connected to a
spring with spring constant k:

<—Wall

F(w) "

B 0

Frictionless surface

Initial Value and Boundary Value Methods 191

If the mass is subject to a driving force F sin(w t) (o represents the frequency of
the driving force and ¢ is time), the equation of motion of the mass is as follows:

mdx/df + k x = F sin(w t)

Given

m = 2kg
F=9N

k = 32 N/m

o = 5 cycles/sec
x(0) = 0m

dx(0)/dt = —2.5 m/sec
find the position and velocity of the block from ¢ = 0 second to ¢ = 2 seconds.

1. Write the second-order ordinary differential equations as a system of two cou-
pled first-order ordinary differential equations:
dx /dt = x,
dx/dt = (F/m) sin(w t) — (k/m) x,
2. Code these equations into the program RUNGE_S1.PAS:
function TNTargetF1(V : TNvector) : Real;

(**)

(* THIS IS THE FIRST DIFFERENTIAL EQUATION *)
(**)
(* *)
(* dx[1] *)
(* ----- = TNTargetF1(t, x[1], x[2], ... x[m]) *)
(* dt *)
(* *)
(* The vector V is defined: *)
(* v[0] = t *)
(* v[1] = x[1] *)
(* vi2] = x[2] *)
(* . *)
(* *)
(* . *)
(* Vim] = X[m] *)
(* *)

(* where m is the number of coupled equations. *)
(**)

begin
TNTargetFl := V[2];
end; { function TNTargetF1 }

function TNTargetF2(V : TNvector) : Real;

192 Turbo Numerical Methods Toolbox

(**)

(* THIS IS THE SECOND DIFFERENTIAL EQUATION *)

(**)

(* *)
(* dx[2] ' . *
(* —eee- = TNTargetF2(t, x[1], x[2], ... x[m]) *)
(* dt *)
(* *)
(* The vector V is defined: *)
(* v[0] = t *)
(* v[1] = X[1] *)
(* v[2] = X[2] *)
(* . *)
(* *)
(* . *)
(* V[m} = X[m] *)
(* *)

(* where m is the number of coupled equations. *)
(**)

begin
TNTargetF2 := 9/2 * Sin(5 = V[0]) - 32/2 » V[1];
end; { function TNTargetfF2 }

function TNTargetF3(V : TNvector) : Real;

(**)

(* . THIS IS THE THIRD DIFFERENTIAL EQUATION *)

(**)

(* *)
(* dx[3] *)
(* ----- = TNTargetF3(t, x[1], x[2], ... x[m]) *)
(* dt *)
(* *)
(* The vector V is defined: *)
(* vio] =t *)
(* V[1] = X[1] : *)
(* v[2] = x[2] *)
(* . *)
(* *)
(* . *)
(* V[m] = X[m] *)
(* *)

(* where m is the number of coupled equations. *)
(**)

begin
end; { function TNTargetF3 }

Functions TNTarget4 to TNTargetl0O should be defined like the function

TNTargetF3.

Initial Value and Boundary Value Methods

193

3. Run RUNGE_S1.PAS:

Number of first order equations: (1-10)? 2
Lower limit of interval? 0
Upper Timit of interval? 2

Enter X[1] value at t
Enter X[2] value at t

0.00000000E+00: O
0.00000000E+00: -2.5

Number of values to return (1-100)? 10
Number of intervals (> = 10, default=10)? 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile
Lower limit: 0.00000000000000E+000
Upper limit: 2.00000000000000E+000
Number of intervals: 100
Initial conditions at lower limit:
X[1]= 0.00000000000000E+000
X[2]= -2.50000000000000E+000

t Value X[1]
0.00000000 0.00000000000000E +000
0.20000000 -4.,20735284275848E-001
0.40000000 -4.54648724216734E-001
0.60000000 -7.05605786993375E-002
0.80000000 3.78400378699554E~001
1.00000000 4,79461767300631E-001
1.20000000 1.39708469016311E-001
1.40000000 -3.28491796183335E-001
1.60000000 -4.,94677974769030E-001
1.80000000 -2.06059519715175E-001
2.00000000 . 2.72008842396951E-001

t Value X[2]
0.00000000 -2.50000000000000E+000
0.20000000 -1.35075642830665E+000
0.40000000 1.04036531118478E+000
0.60000000 2.47497991717220E+000
0.80000000 1.63411037473655E+000
1.00000000 -7.09151289407567E-001
1.20000000 -2.40042152228323E+000
1.40000000 -1.88475529635974E+000
1.60000000 3.63745224811839E-001
1.80000000 2.27781864414105E+000
2.00000000 2.09767516082021E+000

X[1] are the values of x(t), the position. X[2] are the values of dx(t)/dt, the veloc-
ity.

194 Turbo Numerical Methods Toolbox

The exact solution is

F sin(w ?)

F_ cos(w t)
dx/dt =

mo® —)

where «_is the natural frequency of the system:
o’ =km
The period of oscillation is given by
T = 2 7m/o = 1.257 sec

The data is taken from a function of which the derivative could be computed
exactly. The actual values are as follows:

t Values of X Derivative of X
0.0 0.000000000000E + 000 - 2.500000000000E + 000
0.2 —4.207354924039E — 001 —1.350755764670E + 000
04 —4.546487134128E — 001 1.040367091367E + 000
0.6 —7.056000402993E — 002 2.474981241501E + 000
0.8 3.784012476539E — 001 1.634109052159E + 000
1.0 4.794621373315E — 001 —7.091554636580E — 001
1.2 1.397077490994E — 001 —2.400425716625E + 000
1.4 —3.284932993593E — 001 —1.884755635858E + 000
1.6 —4.946791233116E — 001 3.637500845215E — 001
1.8 —2.060592426208E — 001 2.277825654711E + 000
2.0 2.720105554446E — 001 2.097678822691F + 000

Initial Value and Boundary Value Methods 195

Solution to an Initial Value Problem for a System of
Coupled Second-Order Ordinary Differential Equations
Using the Runge-Kutta Method (RUNGE_S2.INC)

Description

This example integrates a system of coupled second-order ordinary differential
equations with specified initial conditions using the generalized Runge-Kutta for-
mulas (Burden and Faires 1985, 261-269).

Given m coupled second-order ordinary differential equations of the form
*x /At = TNTargetF1(t, x, x', x,, 'y, .r X, 2")
“x,/dt = TNTargetF2(t, x, ', x, 2y, oy %, 2")

d’x /df = TNTargetFm(t, x, x', x, &', ..y x,, %')
where ', indicates dx /dt, which satisfies the Lipshitz condition (the Lipshitz con-
dition for first-order and second-order ordinary differential equations is given at
the beginning of this chapter; consult the previous book reference for details of the
Lipshitz condition for systems), and initial condition

x,[LowerLimit] = a, x' [LowerLimit] = b,
x,[LowerLimit] = a, x' [LowerLimit] = b,
x [LowerLimit] = a x' [LowerLimit] = b_

and spacing

h = (UpperLimit — LowerLimit)/NumlIntervals

196 Turbo Numerical Methods Toolbox

rewrite each of the second-order differential equations as two, first-order differen-
tial equations:

dx/dt =y,
dy /dt = TNTargetF1(t, %, y,, X, Y,y s X, Y,)
dx/dt =y,

m

dx,/dt = TNTargetF2(t, x, y,, X, Y, 0 X, Y,)

dx /dt =y .
dx /dt = TNTargetFm(t, x, y,, X,, Y, wr X, Y.)

Then the fourth-order general Runge-Kutta method can be used to approximate
the x/s and the y's simultaneously.

The general Runge-Kutta formulas for these equations are as follows:
Flx, = h *.yl

Fly, = h * TNTargetF1(t, x[t], y,[¢], x,[¢], y,[¢], ..., x [t], y_[t])

Flx, = h*y,

Fly, = h * TNTargetF2(t, x,[t], y [t], z,[8], y [¢], ..., = [t], y_[¢])

Flx, =h=xy_
Fly, = h * TNTargetFm(t, x,[t], y,[t], x,[t], y,[¢], ... x [t], y,[t])

F2x, = h* (y, + Flyf2)

F2y = h* NTargetF1(t + h/2, x[t] + Flx /2, y [t] + Fly /2, x[t]
+ Flx,/2, y,[t] + Fly,/2, .., x [t] + Flx /2,y [t] + Fly /2)

F2x, = h*(y, + Fly,/2) -

F2y, = h = NTargetF2(t + h/2, x[t] + Flx /2,y [t] + Fly /2, x[t]
+ Flx,/2,ylt] + Fly/2, ..,z [t] + Flx /2,y [t] + Fly [2)

Fox = hx(y + Fly /2)
F2y = h * TNTargetFm(t + h/2, x[t] + Flx /2,y [t] + Fly /2, xt]
+ Flx,/2, y,[t] + Fly,/2, ..,z [t] + Flx 2,y [t] + Fly [2)

Initial Value and Boundary Value Methods 197

F3x, = h* (y, + F2y,/2)

F3y, = h x TNTargetF1(t + h/2, x[t] + F2x /2,y [¢] + F2y /2, x[t]
+ F2x,/2,y,[t] + F2y,/2, .., x [t] + F2x /2,y [f] + F2y /2)

F3x, = h* (y, + F2y,/2)

F3y, = h = NTargetF2(t + h/2, x[t] + F2x /2 y,lt] + F2y /2, x,[t]
+ F2x,/2, ylt] + F2y,/2, .., x [t] + F2x /2,y [t] + F2y /2)

F3x = h=x(y, + F2y /2)
F3y, = h* TNTargetFm(t + h/2, x[t] + F2x /2,y [t] + F2y /2, x[t]
+ F2x,/2,ylt] + F2y,/2, .., x [t] + F2x /2,y [¢] + F2y /2)

Fdx, = h = (y, + F3y)

F4y = h = TNTargetF1(t + h,x[t] + F3x, y[t] + F3y, x,[t] + F3x,, y[¢]
+ F3y,, .., x [t] + F3x ,y [¢] + F3y,)

F4x, = h * (y, + F3y,

F4y, = h * TNTargetF2(t + h,x[t] + F3x, y[t] + F3y, x,[t] + F3x, y,[f]
+ F3y,, ... x [t] + F3x ,y [t] + F3y)

m

F4x"' = h * (y’" + F3y"l)
F4y = h % TNTargetFm(t + h, x [t] + F3x, y [t] + F3y, x,[t] + F3x,, y,li]
+ F3y,, .., x [t] + F3x ,y [t] + F3y,)

m m?

x[t+1] = x]

+
ylt+1] = y 1] +
aft+1] = x)] +

+

—

Flx, + 2 % F2x + 2 * F3x, + F4x))/6
Fly, + 2+ F2y + 2 = F3y, + F4y)/6
Flx, + 2 + F2x, + 2 = F3x, + Fdx)/6
Fly, + 2 + F2y, + 2 = F3y, + F4y)/6

—~ L~

2

ylt+11 = y,[t]

—

[t+ 1] = [] (lem + 2% F2xm + 2% F3xm + F4xm)/6
ylt+1] =y [t] + (Fly, + 2+ F2y + 2=F3y + Fdy)6

m

where ¢ ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order k",

198 Turbo Numerical Methods Toolbox

You must supply the number of equations, limits, initial values, and TNTargetF’s.

This procedure can solve a system of up to ten, second-order ordinary differen-
tial equations (see “Comments” for information about how to increase this limit).

User-Defined Types

TNData = record
X : Real;

xDeriv : Real;

end;
TNvector

{ TNData record }

array[0..TNRowSize] of TNData;

TNmatrix = array[0..TNColumnSize] of TNvector;

TNRowSize is an upper bound for the number of values returned for a particular
variable (NumReturn). TNColumnSize is an upper bound for the number of second-
order differential equations (NumEquations).

User-Defined Functions

function TNTargetF1(V :
function TNTargetF2(V :
function TNTargetF3(V :
function TNTargetF4(V :
function TNTargetF5(V :
function TNTargetF6(V :
function TNTargetF7(V :
function TNTargetF8(V :
function TNTargetFI(V :

function TNTargetF10(V :

Initial Value and Boundary Value Methods

TNvector)
TNvector)
TNvector)
TNvector)
TNvector)
TNvector)
TNvector)
TNvector)

TNvector)

: Real;
: Real;
: Real;
: Real;
: Real;
: Real;
¢ Real;
: Real;

: Real;

TNvector) : Real;

199

Here are the differential equations:
2 2 __ I} ’ !
xj/dt = TNTargetFj(t, x,, x', x,, &', o0y X0, X'
where j ranges from 1 to 10.

The elements of the vector V are defined as follows:

V[0]lx = ¢

Villx = «[1]
V[1].xDeriv = x'[1]

Vi2lx = x[2]

V[2]xDeriv = x'{2]

V[10]a = x[10]
V[10].xDeriv = x'[10]

The procedure defined in RUNGE_S2.INC solves this system of coupled differ-
ential equations (a maximum of ten equations). All ten functions must be defined,
even if your system contains less than ten equations.

Input Parameters

NumEquations : Integer; Number of second-order differential equations
LowerLimit : Real; Lower limit of interval

UpperLimit : Real; Upper limit of interval

InitialValues : TNvector; Values ofx},’s and x'j’s at LowerLimit

NumReturn : Integer; Number of (¢, x, x',, x,, «',, ..., x, x') values returned
from the procedure

NumIntervals : Integer; Number of subintervals used in the calculations

200 Turbo Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:
1. NumBeturn > 0

2. NumlIntervals = NumReturn

3. NumEquations > 0

4. LowerLimit # UpperLimit

Output Parameters

SolutionValues : TNmatrix; Values of ¢, x, and x’ | between the limits
Error : Byte; 0: No errors

1: NumReturn < 1

2: NumlIntervals < NumBReturn

3: NumEquations < 1

4: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialConditionSystem2 (NumEquations, LowerLimit, UpperLimit,
InitialValues, NumReturn, NumIntervals,
SolutionValues, Error);

Comments

The first row of SolutionValues will be the values of ¢ between thé. limits, the
second row of SolutionValues will be the values of x, and x’, between the limits, the
third row of SolutionValues will be the values of x, and x', between the limits, and
SO on.

All ten user-defined functions are called from the procedure. If your system has
less than ten equations, you must still define all ten functions or the program will
not compile. The superfluous functions should be defined as follows (TN TargetF10
is used as an example):

function TNTargetF10(V : TNvector) : Real;

begin
end; { function TNTargetF10 }

Initial Value and Boundary Value Methods 201

If you need to solve a system with more than ten equations, then edit the include
file RUNGE_S2.INC. The following lines should be added to the end of procedure

Step:

F[11].xDeriv := Spacing * CurrentValues[11].xDeriv;
F[11].x := Spacing * TNTargetF11(CurrentValues);

More statements (for F[12], and so on) may be added as necessary. All new
functions (for example, TNTargetF11) must be defined in your top-level program.
Note: Before making any changes to the include file, make sure you have a backup
copy.

The procedure will compute NumlIntervals values in its calculations; however,
you will rarely need to use these values. The rows of SolutionValues will contain
only NumRBeturn values at roughly equally spaced t-values between the lower and
upper limits. (They will be equally spaced only when NumlIntervals is a multiple of
NumReturn.) Thus, you can ensure a highly accurate solution (by making NumlIn-
tervals large) without generating an excessive amount of output (by making Num-
Return small).

This routine stores much information on the heap. If you try to accurately solve a
large system (that is, both NumEquations and NumlIntervals are large), you may get
run-time error $FF, Heap/Stack collision. If this happens, the dimension of TNvec-
tor and TNmatrix should be reduced as much as possible. If this is not possible,
then remove any RAM-resident software (for example, SideKick, SuperKey, or a
print buffer).

The Runge-Kutta method uses the New/Dispose procedures to manipulate the

heap and should not be used in any program that uses Mark/Release to manipulate
the heap.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢~*". The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-
vals).

202 Turbo Numerical Methods Toolbox

Sample Program

The sample program RUNGE_S2.PAS provides I/O functions that demonstrate
the Runge-Kutta method of solving initial value problems for systems of first-order
ordinary differential equations. Note that the file RUNGE_S2.INC is included
after the TNTargetF functions are defined.

Example

Problem.Two weights of mass m each hang from a pendulum of length ! and are
connected by a spring with spring constant k:

/{ [l S LS

Ceiling

v OUSOB0B0000

The equations of motion of these two masses are as follows:
mdx/dt = —mgax/l — kix — y)
mdy/df = —mgy/l + kx — y)

where g is the acceleration due to gravity, ¢ is time, and x and y are the displace-
ments of the two weights from their rest positions. Given

m = 2kg

k = 32 N/m

g = 9.8 m/sec’
[= 06125 m
x0) = 1m
y(0) = —1m

dx(0)/dt = 0 m/sec
dy(0)/dt = 0 m/sec

Initial Value and Boundary Value Methods 203

find the positions and velocities of the two weights from ¢ = 0 second to ¢ = 2
seconds.

1. Rewrite the equations of motion as shown here:

dx/dit = —gx/l — kim@x — y)

d’y/dt* = —gy/l + kim(x — y)
2. Code these equations into the program RUNGE_S2.PAS:
function TNTargetF1({V : TNvector) : Real;

(***)

(* THIS IS THE FIRST DIFFERENTIAL EQUATION *)
(***)
(*)
(*)
(* d x[1] *)
(* =----- = TNTargetF1(t, x[1], x'[1], x[2], x'[2], *)
(* «eey X[m], x"[m] *)
* *)
(* dt’ *)
(* *)
(* The elements of the vector V are defined: *)
(* V[0l.x = t *)
(* V1l.x = X[1])
(* V[1].xDeriv = X'[1] *)
(* VI2).x = X[2])
(* V2] .xDeriv = X'[2] *)
(x :)
(* %)
(x :)
(* Vind.x = X[n])
(* V[m].xDeriv = X'[m] *)
(*)
(* where m is the number of coupled equations. *)
(***)
var

t : Real;
begin

t := v[0].x;
TNTargetFl := -9.8 * V[1].x/0.6125 - 32/2 * (V[1].x - V[2].x);
end; { function TNTargetF1 }

204 Turbo Numerical Methods Toolbox

function TNTargetF2(V : TNvector) : Real;

(***)

(* THIS IS THE SECOND DIFFERENTIAL EQUATION *)
(***)
(* *)
(* *)
(* d*[2] *
(* -me--- = TNTargetF2(t, x[1], x'[1], x[2], x'[2], *)
., eoer X[m], x*[m] *)
(* dt *)
(* *)
(* *)
(* The elements of the vector V are defined: *)
(* V[0l.x = t *)
(* V[1].x = X[1] *)
(* V[1].xDeriv = X*'[1] *)
(* v[2].x = X[2] *)
(* V[2].xDeriv = X'[2] *)
(* . *)
(* *)
(* . *)
(* Viml.x = X[m] *)
(* V[m] .xDeriv = X'[m] *)
(* *)
(* where m is the number of coupled equations. *)

(***)

var
t : Real;

begin

t := v[0].x;

TNTargetF2 := -9.8 * V[2].x/0.6125 + 32/2 » (V[1].x - V[2].x);
end; { function TNTargetF2 }

Initial Value and Boundary Value Methods 205

function TNTargetF3(V : TNvector) : Real;

(***)

(* THIS IS THE THIRD DIFFERENTIAL EQUATION *)
(***)
(* *)
(> *)
(* d* x[3] *
(* —m---- = TNTargetF3(t, x[1], x'[1], x[2], x'[2], *)
., ever x[m}, x*'[m] *)
(* dt *)
(* *)
(* *)
(* The elements of the vector V are defined: *)
(* V[0].x = t *)
(* V[1].x = X[1] *)
(* V[1].xDeriv = X'[1] *)
(* v[2].x = x[2] *)
(* v[2].xDeriv = X'[2] *)
(* . *)
(* *)
(* . *)
(* Viml.x = X[m] *)
(* V[m] .xDeriv = X'[m] : *)
* *)
(* where m is the number of coupled equations. *)

(***)

var
t : Real;
begin
end; { function TNTargetF3 }

Functions TNTargetF4 to TNTargetF10 should be defined like function TNTargetF3.
3. Run RUNGE_S2.PAS:

Number of second order equations: (1-20)? 2
Lower limit of interval? 0

Upper limit of interval? 1

0.00000000E+00: 0.01
0.00000000E+00: 0.00

0.00000000E+00: -0.01
0.00000000E+00: 0.00

Enter X[1] value at t
Enter X'[1] value at t
Enter X[2] value at t
Enter X'[2] value at t

Number of values to return (1-100)?7 10

Number of intervals (>= 10, default=10)? 100

206 Turbo Numerical Methods Toolbox

Direct output to one
(S)creen
(P)rinter

~(F)ile

Number

of the following:

Lower limit:
Upper limit:
of intervals: 100

Initial conditions at lower limit:
X[1]= 1.00000000000000E-002
X'[1]= 0.00000000000000E+000
x[2]= -1.00000000000000E-002
X'[2]= 0.00000000000000E+000

t
0.00000000 1.
0.10000000 7.
0.20000000 1
0.30000000 -4
0.40000000 -9.
0.50000000 -9.
0.60000000 -5.
0.70000000 1
0.80000000 7
0.90000000 9
1.00000000 7
t
0.00000000 -1
0.10000000 -7.
0.20000000 -1.
0.30000000 4
0.40000000 9.
0.50000000 9.
0.60000000 5.
0.70000000 -1
0.80000000 -7.
0.90000000 -9.
1.00000000 -7.

Value X[1]
00000000000000E-002
69447788485895E-003

.84099813762452E-003
.86137387553900E-003

32214486443693E-003
48443369885917E-003
27340834792187E-003

.36920877108260E-003
.38047758874091E-003
.98857556718864E-003
.99089728515028E-003

Value X[2]

.00000000000000E-002

69447788485895E-003
84099813762452E-003

.86137387553900E-003

32214486443693E-003
48443369885917E£-003
27340834792187E-003

.36920877108260E-003

38047758874091E£-003
98857556718864E-003
99089728515028E-003

0.
-4,
-6.
-6.
-2.

2

5.
6.
4,
3.
-4,

0.
4.
6.
6.

N

-2.
-5,
-6.
-4.
-3.

4,

0.00000000000000E+000
1.00000000000000E+000

Deriv X[1]
00000000000000E+000
42511063153028E-002
80978317847279E-002
05443464988731E-002
50735962983904E-002

.19586991271007E-002

88657408762406E-002
86295294795966E-002
67479393932010E-002
31066873866277E-003
16531651968366E-002

Deriv X[2]
00000000000000E+000
42511063153028E-002
80978317847279E-002
05443464988731E-002

.50735962983904E-002

19586991271007E-002
88657408762406E-002
86295294795966E-002
67479393932010E-002
31066873866277E-003
16531651968366E-002

The weights move in opposite directions; the system is in one of its normal
modes. The natural frequency w is given by the following:

o’ =g/l + 2k/m

[

o = 6.928 cycles/sec

Thus the period of oscillation, ¢, is

t = 2m/w,
t = 0.9069 sec

Initial Value and Boundary Value Methods

207

Solution to Boundary Value Problem for a Second-Order
Ordinary Differential Equation Using the Shooting and
Runge-Kutta Methods (SHOOT2.INC)

Description

This example uses the shooting method to approximate the solution to a second-
order ordinary differential equation with specified boundary conditions (Burden
and Faires 1985, 526-531).

Given a second-order differential equation (Burden and Faires 1985, 261-269) of
the form

d’y/dx* = TNTargetF(x, y, y')

where y' represents dy/dx, which satisfies the conditions given at the beginning of
this chapter, boundary conditions

ylLowerLimit] = LowerlInitial

ylUpperLimit] = Upperlnitial
and spacing

h = (UpperLimit — LowerLimit)/NumlIntervals
and an initial approximation (guess) to the slope at LowerLimit

y'[LowerLimit] = InitialSlope
the shooting method first solves the second-order initial value problem (using the
method described in RUNGE_2.INC). Based on a comparison of the solution at
UpperLimit with the boundary condition Upperlnitial, a new approximation to the
slope at LowerLimit is made. In this way, a new “shot” at the solution is made by
observing the result of the previous “shot” Subsequent iterations use information
from two previous shots and the secant method (see Chapter 2, “Roots of a Func-
tion Using the Secant Method”) to approximate the slope at LowerLimit. This pro-

cess is repeated until the fractional difference between successive approximations
to the boundary condition at UpperLimit is less than a specified tolerance.

You must supply the LowerLimit, UpperLimit, Lowerlnitial, UpperInitial,
InitialSlope, NumlIntervals, Tolerance, and TNTargetF.

208 Turbo Numerical Methods Toolbox

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

User-Defined Function

TNTargetF(x, y, yPrime : Real) : Real;
d’y/dx’* = TNTargetF(x, y, dy/dx)

The procedure Shooting integrates this second-order differential equation.

Input Parameters

LowerLimit : Real; Lower limit of interval

UpperLimit : Real; Upper limit of interval

LowerInitial : Real; Value of y at LowerLimit

UpperInitial : Real; Value of y at UpperLimit

InitialSlope : Real; Approximation to the slope at LowerLimit

NumReturn : Integer; Number of (x, y, y') values returned from the procedure

Tolerance : Real; Indicates accuracy in solution

MaxIter : Integer; Maximum number of iterations

NumIntervals : Integer; Number of subintervals used in calculations

The preceding parameters must satisfy the following conditions:

L

2
3
4.
5

NumReturn > 0
NumlIntervals = NumReturn
LowerLimit = UpperLimit
Tolerance > 0

MaxIter > 0

Initial Value and Boundary Value Methods

209

Output Parameters

Iter : Integer; Number of iterations required to reach a solution

XValues : TNvector; Values of x between the limits

YValues : Thvector; Values of y determined at values in XValues

YDerivValues : TNvector; Values of the first derivative of y determined at values in
XValues

Error : Byte; 0: No errors

1: NumReturn < 1

2: NumlIntervals < NumBeturn
3: LowerLimit = UpperLimit
4: Tolerance < 0

5: MaxIter < 0

6: Iter > MaxlIter

7: Convergence not possible

Syntax of the Procedure Call

Shooting(LowerLimit, UpperLimit, LowerInitial, UpperInitial, InitialSlope,
NumReturn, Tolerance, MaxIter, NumIntervals, Iter, XValues,
YValues, YDerivValues, Error);

Comments

The parameter Tolerance can be misleading. The shooting method converges to the
initial slope, which satisfies the upper boundary condition. Convergence is
achieved when the fractional difference between Upperlnitial and the upper
boundary approximation is less than Tolerance. This does not mean that every
value between the boundaries has been approximated with the same degree of
accuracy. To improve the accuracy of the entire approximation, increase the num-
ber of intervals. The example demonstrates the different effects of Tolerance and
NumlIntervals.

The shooting algorithm will compute NumlIntervals values in its calculations.
However, you will rarely need to use all those values. The vectors XValues,
YValues, and YDerivValues will contain only NumReturn values at roughly equally
spaced t-values between the lower and upper limits. (They will be equally spaced
only when NumlIntervals is a multiple of NumReturn.) Thus, you can ensure a
highly accurate solution (by making NumlIntervals large) without generating an
excessive amount of output (by making NumReturn small).

210 : Turbo Numerical Methods Toolbox

Boundary value problems are notoriously difficult to solve. The shooting method
is extremely sensitive to the approximation of the initial slope. If the shooting
method does not converge onto a solution (Error 7), run the program with a differ-
ent value of the initial slope InitialSlope. You may also alleviate some stability
problems by solving the equation backwards (from UpperLimit to LowerLimit).
Considerable trial and error may be involved before a solution is found.

The Runge-Kutta method uses the New/Dispose procedures to manipulate the
heap and should not be used in any program that uses Mark/Release for heap
management.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢'°*. The shooting method may generate a numeri-
cal solution that bears no resemblance to the exact solution of the differential equa-
tion. This unstable numerical solution usually grows exponentially and may be
oscillatory. However, if the exact solution of the differential equation grows as the
independent variable increases, the instability may be difficult to detect. If a sus-
pected instability has been encountered, reduce the interval size (NumlIntervals).

Sample Program

The sample program SHOOT2.PAS provides I/O functions that demonstrate the
shooting method of solving boundary value problems. Note that the file SHOOT
2.INC is included after the function TNTargetF is defined.

Example

Problem. Use the nonlinear shooting method to solve the following boundary value
problem:

y" = 192 sqr(y/y’) 0=sx<1
y(l) = 1
y(@) = 16

Initial Value and Boundary Value Methods ' 211

1. Code the differential equation into the program:

function TNTargetF(x : Real;
y : Real;
yPrime : Real) : Real;

***)

* THIS IS THE SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATION *)

(***)

begin
TNTargetF := 192 * Sqr(y/yPrime);
end; {function TNTargetF}

2. Run SHOOT2.PAS:

Lower limit of interval? 0
Upper 1imit of interval? 1

0.00000000E+00: 1
1.00000000E+00: 16

Enter Y value at X
Enter Y value at X

Entef a guess for the slope at X = 0.00000000E+00 (default=1.50E401): 15
Number of points returned (1-500)? 10

Number of intervals (>= 10, default=10)? 10

Tolerance (> 0, default = 1.000E-06)? 1E-12

Maximum number of iterations (> 0, default = 100)? 100

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Lower 1imit: 0.00000000000000E+000
Upper limit: 1.00000000000000E+000
Value of Y at 0.0000: 1.00000000000000E+000
Value of Y at 1.0000: 1.60000000000000E+001
Initial slope at 0.0000: 1.50000000000000E+001
NumIntervals: 10
Tolerance: 1.000E-012
Maximum number of iterations: 100

212 . Turbo Numerical Methods Toolbox

Number of iterations:

X
0.00000000000000E+000
1.00000000000000E-001
2.00000000000000E-001
3.00000000000000E-001
4.,00000000000000E-001
5.00000000000000E-001
6.00000000000000E-001
7.00000000000000E-001
8.00000000000000E-001
9.00000000000000E-001
1.00000000000000E+000

6
Y Value Derivative of Y

1.00000000000000E+000 4.00053795390884E+000
1.46417721408153E+000 5.32386904044879E+000
2.07370562259973E+000 6.91162114244397E+000
2.85621262766442E+000 8.78752756627335E+000
3.84170902091389E+000 1.09754927855527E+001
5.06259931530967E+000 1.34994802016423E+001
6.55368547624580E+000 1.63834750611955E+001
8.35216836918581E+000 1.96514712240017E+001
1.04976483580762E+001 2.33274661179548E+001
1.30321255669365E+001 2.74354587043771E+001
1.60000000000094E+001 3.19994486182108E+001

Now solve the same problem using a smaller spacing, but with a greater tolerance:

Lower Timit of interval? 0

Upper limit of interval? 1

Enter Y value at X
Enter Y value at X

Enter a guess for the slope at X = 0.00000000E+00 (default = 1.50E+01): 15

0.00000000E+00: 1
1.00000000E+00: 16

Number of points returned (1-500)? 10

Number of intervals (>= 10, default = 10)? 100

Toterance (> 0, default = 1.000E-06)? 1E-6

Maximum number of iterations (> 0, default = 100)? 100

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

Lower limit:

Upper limit:

Value of Y at 0.0000:
Value of Y at 1.0000:
Initial slope at 0.0000:
: 100

NumIntervals

Tolerance:
Maximum number of iterations: 100

0.00000000000000E+000
1.00000000000000E+000
1.00000000000000£+000
1.60000000000000E+001
1.50000000000000E+001

1.000E-006

Initial Value and Boundary Value Methods

213

0

-0 0ONOLHWN =

Number of iterations:

X
.00000000000000E+000
.00000000000000E-001
.00000000000000E-001
.00000000000000E-001
.00000000000000E-001
.00000000000000E-001
.00000000000000E-001
.00000000000000E-001
.00000000000000E-001
.00000000000001E-001
.00000000000000E+000

The exact solution is

X
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

y=@&+ 1

=0 AUTWNMN - -

5

Y Value

.00000000000000E+000
.46410005120828E+000
.07360008576235E+000
.85610011557157E+000
.84160014547825E+000
.06250017769403E+000
.55360021337284E+000
.35210025321451E+000
.04976002977125E+001
.30321003472617E+001
.60000004022081E+001

4.
.32400035609946E+000
.91200027103432E+000
.78800025750412E+000
.09760002747783E+001
.35000003070170E+001
.63840003476283E+001
.96520003937080E+001
-33280004439140E+001
.74360004976014E+001
.20000005544507E+001

WMNN === =000,

Derivative of Y
00000062625638E+000

Y Value
1.0000000000
1.4641000000
2.0736000000
2.8561000000
3.8416000000
5.0625000000
6.5536000000
8.3521000000
1.0497600000
1.3032100000
1.6000000000

Derivative of Y
4.000000000
5.324000000
6.912000000
8.788000000
1.097600000
1.350000000
1.638400000
1.965200000
2.332800000
2.743600000
3.200000000

Although the tolerance is smaller (that is, more exacting) in the first case, the
accuracy of the approximation is greater in the second case. The spacing in the first
case is too large to permit a more accurate approximation.

214

Turbo Numerical Methods Toolbox

Solution to a Boundary Value Problem for a Second-Order
Ordinary Linear Differential Equation Using the Linear
Shooting and Runge-Kutta Methods (LINSHOT2.INC)

Description

This example uses the linear shooting method to approximate the solution to a
second-order linear ordinary differential equation with specified boundary condi-
tions (Burden and Faires 1985, 519-524).

Given a second-order differential equation (Burden and Faires 1985, 261-264) of
the form

d’y/dx* = TNTargetF(x, y, y')
which is linear in both y and y’, where y' represents dy/dx, and which satisfies the
conditions given at the beginning of this chapter, boundary conditions

ylLowerLimit] = Lowerlnitial

ylUpperLimit] = Upperlnitial
and spacing

h = (UpperLimit — LowerLimit)/NumlIntervals
the shooting method solves the two initial value problems (see RUNGE_2.INC):

y'[LowerLimit] = 0 y[LowerLimit] = Lowerlnitial

y'[LowerLimit] = 1 y[LowerLimit] = LowerlInitial

(These values are particular to this implementation; any other nonidentical set of
initial conditions will suffice.) Since neither of these initial values of y' is likely to
be correct, the solutions generated are not likely to satisfy the boundary condition
at Upperlnitial. However, because of the linearity of the equation, an appropriate
linear combination of these two solutions will be a solution to the boundary value
problem. The linear shooting method requires that only two initial value problems
be solved, where the ordinary shooting method (SHOOT2.INC) requires that an

unknown number of initial value problems be solved before the method converges
to a solution.

You must supply the LowerLimit, UpperLimit, Lowerlnitial, UpperInitial,
NumlIntervals, and TNTargetF.

Initial Value and Boundary Value Methods 215

User-Defined Types

TNvector = array[l..TNArraySize] of Real;

User-Defined Function

TNTargetF(x, y, yPrime : Real) : Real;
d’y/dx* = TNTargetF(x, y, dy/dx)

The procedure LinearShooting integrates this second-order differential equation.

Input Parameters

LowerLimit : Real; Lower limit of interval

UpperLimit : Real; Upper limit of interval

LowerInitial : Real; Value of y at LowerLimit

UpperInitial : Real; Value of y at UpperLimit

NumIntervals : Integer; Number of subintervals used in calculations

NumReturn : Integer; Number of (x, y, y') triples returned from the procedure
The preceding parameters must satisfy the following conditions:
1. NumBReturn > 0
2. Numlintervals = NumReturn

3. LowerLimit # UpperLimit

Output Parameters

XValues : TNvector; Values of x between the limits

Yvalues : TNvector; Values of y determined at values in XValues

YDerivValues : TNvector; Values of the first derivative of y determined at values in
XValues

Error : Byte; 0: No errors

1: NumReturn < 1

2: NumlIntervals < NumReturn
3: LowerLimit = UpperLimit
4: Equation not linear

216 Turbo Numerical Methods Toolbox

Syntax of the Procedure Call

LinearShooting(LowerLimit, UpperLimit, LowerInitial, UpperInitial,
NumReturn, NumIntervals, XValues, YValues,
YDerivValues, Error);

Comments

If TNTargetF is a nonlinear function, the linear shooting algorithm will usually
compute a solution (albeit an incorrect one) without returning an error message.
Error 4 (nonlinear equation) will be returned in only a few cases where the two
initial value problems happen to yield solutions with the same y-value at
x = UpperLimit.

The procedure will compute NumlIntervals values in its calculations; however,
you will rarely need to use these values. The vectors XValues, YValues, and
YDerivValues will contain only NumReturn values at roughly evenly spaced inter-
vals between the lower and upper limits. (They will be exactly evenly spaced only
when NumlIntervals is a multiple of NumReturn.) Thus, you can ensure a highly
accurate solution (by making NumlIntervals large) without generating an excessive
amount of output (by making NumReturn small).

The Linear Shooting/Runge Kutta method uses the New/Dispose procedures to
manipulate the heap and should not be used in any program that uses Mark/
Release to manipulate the heap.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢ The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-
vals).

Initial Value and Boundary Value Methods 217

Sample Program

The sample program LINSHOTZ2.PAS provides I/O functions that demonstrate the
linear shooting method of solving boundary value problems. Note that the file
LINSHOT2.INC is included after the function TNTargetF is defined.

Example
Problem.Use the linear shooting method to solve the following boundary value
problem:
y" =y'lx — ylsqr(x) + 1 l=x<10
y() =1
y(10) = 76.974149

1. Code the differential equation into the program LINSHOT2.PAS:

function TNTargetF(x : Real;
y : Real;
yPrime : Real) : Real;

(***)

(* THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION *)

(***)

begin
TNTargetF := yPrime/x - y/Sqr(x) + 1;
end; { function TNTargetF }

2. Run LINSHOT2.PAS:

Lower limit of interval? 1
Upper 1imit of interval? 10

1.00000000E400: 1
1.00000000E+01: 76.974149

Enter Y value at X
Enter Y value at X

Number of points returned (1-500)? 9
Number of intervals (>= 9, default = 9)? 9

Direct output to one of the following:
(S)creen
(P)rinter
(F)ile

Lower Timit: 1.00000000000000E+00
Upper Timit: 1.00000000000000E+01
Value of Y at 1.0000: 1.00000000000000E+00
Value of Y at 10.0000: 7.69741490000000E+01
NumIntervals: 9.00000000000000E+00

v

218 Turbo Numerical Methods Toolbox

—OooNO OGS WN -

X
.00000000000000E+000
.00000000000000E+000
.00000000000000E+000
.00000000000000E+000
.00000000000000£+000
.00000000000000E+000
.00000000000000E+000
.00000000000000E +000
.00000000000000E +000
.00000000000000E+001

NOYE WN =0T N

Y Value

.00000000000000E+000
.61170356138588E+000
.70207271413620E+000
.04528257144925E+001
.69509897305375E+4001
.52478687612139E+001
.53773649984557E+001
.73635728977226E+001
.12245068576119E+001
.69741490000000E+001

— e = O N O W N

Derivative of Y

.00042467674563E+000
.30627678512124E+000
.90115296191831E+000
.61367861126495E+000
.39067355864438E+000
.20845513089500E+000
.10543869346579E+001
.29209245920937E+001
.48032011472994E+001
.66978931711222E+001

Now solve the same problem with a spacing of only 0.1:

Lower limit of interval?

1

Upper limit of interval? 10

Enter Y value at X
Enter Y value at X

1.00000000E+00: 1
1.00000000E+01: 76.974149

Number of points returned (1-500)? 9

Number of intervals (>= 9, default = 9)? 90

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

Lower limit:

Upper Timit:

Value of Y at 1.0000:
Value of Y at 10.0000:
NumIntervals:

WO N =

WCONOANOC WM =

X
.00000000000000E+000
.00000000000000E+000
.00000000000000E+000
.00000000000000E+000
.00000000000000E+000
.00000000000000E+000
.99999999999999E+000
.99999999999999E+000
.99999999999999E+000
.99999999999998E+000

The exact solution is

y =xxx — x*Inx)

y() =1

y(10) = 7.6974149

The second approximation is more accurate.

Initial Value and Boundary Value Methods

.00000000000000E+00
.00000000000000E+01
.00000000000000E+00
.69741490000000E+401
.00000000000000E+01

Y Value Derivative of Y
1.00000000000000E+000 1.00000001942594E4000
2.61370547174514E+000 2.30685275847028E+000
5.70416298088411E4+000 3.90138768358927E+000
1.04548224122436E+001 5.61370562650429E+000
1.69528103026793E+001 7.39056208402440E+000
2.52494430584438E+001 9.20824053324639E+000
3.53786288412165E+001 1.10540898579729E+001
4.73644675641047E+001 1.29205584690303E+001
6.12249787166508E+001 1.48027754364805E+001
7.69741490000000E+001 1.66974149235206E+001

y' (1) =1

y'(10) = 16.6974149

219

220 ' Turbo Numerical Methods Toolbox

C H A P T E R 9

Least-Squares Approximation

Given a set of data points, this chapter provides routines to model the data with a
function of a given type. The most common application of this concept is linear
regression.

With linear regression, there is some control variable, say X, and some observed
variable, say Y. X and Y are known or suspected to have some linear relationship,
say

Y=axX+0Db

but the parameters a and b are unknown. Usually there is some experimental error
or some other nonlinear influence on Y, so that there are no values of @ and b for
which the preceding equation holds exactly. The method of regression provides a
formula for @ and b in terms of the values of X and Y such that the error is mini-
mized. The error is the sum of squares of the errors (@ * X + b — Y) on each data
point. Except in certain unusual cases, there is exactly one value for a and one
value for b that makes this sum of squares the least possible. This is called the
least-squares solution.

This concept of least squares also applies when more variables are present—
then it is often called multiple regression. Using this method, you can find the best
model for a given set of data that is linear in a given set of other data sets or
functions. Models that are nonlinear variables can also be treated as long as the
unknown parameters appear linearly.

221

Least-Squares Approximation (LEAST.INC)

Description

This model provides a method for finding a least-squares approximation (Cheney
and Kincaid 1985, 362-387) to a set of data points (x, y). The approximation must
be a linear combination of a set of basis vectors. The functional form of the approxi-
mation (polynomial, logarithmic, and so on) is therefore determined by the user, as
long as it is represented linearly. (How to represent logarithmic, and other func-
tions linearly is discussed later.)

Given a set of m data points (x, y), an m X n matrix (m = n), A, is constructed,
where n is the number of basis vectors in the approximation. The elements of the
matrix are

Ali,) = V(X)

where V(X)) is the jth basis vector evaluated at the data value X[i]. A vector Y is
constructed that contains the y-values of the data points. The coefficients of the
basis vectors that form the least-squares approximation will be the n vector C, such
that the Euclidean norm of (AC — Y) (represented by || AC — Y ||,) is a minimum.
This requirement is converted to the requirement that

I1BC =z, + | R,

be a minimum. Here B is an n X n matrix, Z is an n vector, and R is an (m — n)
vector. The equations BC = Z are the normal equations. The previous expression
will be minimized when C solves the equation BC = Z. Gaussian elimination with
partial pivoting (see Chapter 6, “Solving a System of Linear Equations with Gauss-
ian Elimination and Partial Pivoting”) is used to solve the normal equations.

The goodness of fit is indicated by the standard deviation:
$.D. = ((¥[i] = FX[))/m — n)**

where F(X[i]) is the least-squares solution at the point X[i], (Y[i] — F(X[i])) is the
residual, and (m — n) is the degree of freedom of the fit.

222 Turbo Numerical Methods Toolbox

User-Defined Types

TNColumnVector = array[l..TNColumnSize] of Real;
TNRowVector = array[l..TNRowSize] of Real;

(TNColumnSize will usually be much larger than TNRowSize.)

TNmatrix = array[l..TNColumnSize] of TNRowVector;
TNSquareMatrix = array[l..TNRowSize] of TNRowVector;
TNStringd40 = string[40];

Input Parameters

NumPoints : Integer; Number of data points
XData : TNColumnVector; X coordinates of the data points
YData : TNRowVector; Y coordinates of the data points

NumTerms : Integer; Number of terms in the least-squares approximation

.The preceding parameters must satisfy the following conditions:

1. NumPoints > 1.

2. NumTerms < NumPoints.

3. NumPoints < TNColumnSize.

4. NumTerms < TNRowSize.

5. The XData points cannot all be identical.

TNColumnSize and TNRowSize set an upper bound on the number of elements
in a vector. Neither of these identifiers are variable names and are never referenced

by the procedure. If conditions 3 or 4 are violated, the program will crash with an
Index Out of Range error (assuming the directive {$R +} is active).

Least-Squares Approximation 223

Output Parameters

Solution : TNRowVector; Coefficients of the basis vectors that form the least-
squares approximation

YFit : TNColumnVector; Values of the least-squares fit evaluated at the XData
values

Residuals : TNColumnVector; Difference between YData and YFit values
StandardDeviation : Real; Square root of the variance —indicates the goodness of fit

Error : Byte; 0: No error
1: NumPoints < 2
2: NumTerms < 1
3: NumTerms > NumPoints
4: Least-squares solution does not exist (see “Com-
ments”)

Syntax of the Procedure Call

LeastSquares (NumPoints, XData, YData, NumTerms, Solution,
YFit, Residuals, StandardDeviation, Error);

Comments

The least-squares routine is kept in two modules (include files). One is called
LEAST.INC and must always be included in your top-level program. The choice of
the second module will depend upon the functional form (basis vectors) to which
you fit the data. Following are the five basis modules included in this package:

POLY.LSQ

This module uses Chebyshev polynomials to fit a polynomial to the data points.
NumTerms must be one greater than the degree of the polynomial (for example, to
fit a fourth-degree polynomial, input NumTerms = 5). To get a straight-line least-
squares fit, use this module and fit a curve with only two coefficients. The elements
of the Solution vector will be as follows:

Solution[j] = a, 1 < j < NumTerms

where a, is the coefficient of x’ -

224 Turbo Numérical Methods Toolbox

FOURIER.LSQ

This module will fit a finite Fourier series to the data points. The number of terms
in the approximation will be NumTerms. The elements of the Solution vector will
be as follows:

Solution[j] = F,_, 1 < j < NumTerms

where F,_| is the (j—1)th term in the Fourier series. Following are the first few
terms in the Fourier series:

Fl0l]=1

F[1] = cos(x)

F[2] = sin(x)

F[3] = cos(2x)
F[4] = sin(2x)
F[5] = cos(3x)
F[6] = sin(3x)

POWER.LSQ

This module will fit the function
y = ax’

where a and b are real numbers to the data points. A linear equation is obtained by

taking the log of both sides, like so:
In(y) = In(a) + b * In(x)

and expanding on basis vectors 1 and In(x). The x-values of the data points must all
be positive, and the y-values of the data points must all have the same sign. The
number of coefficients in the approximation will be two regardless of the value of
NumTerms (unless NumTerms > NumPoints, in which case Error 3 will occur).
The elements of the Solution vector will be as follows:

Solution[l] = a
Solution[2] = b

EXPLSQ

This module will fit the function
y = aebx

where a and b are real numbers to the data points. A linear equation is obtained by
taking the log of both sides, like so:

In(y) = In(a) + bx

Least-Squares Approximation 225

and expanding on basis vectors 1 and x. The y-values of the data points must all
have the same sign. The number of coefficients in the approximation will be two
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which
case Error 3 will occur). The elements of the Solution vector will be as follows:

Solution[1] = a
Solution[2] = b

LOG.LSQ

This module will fit the function
y = aln(bx)

where a and b are real numbers to the data points. A linear equation is obtained by
rewriting the equation:

y = aln(d) + aln(x)

and expanding on basis vectors 1 and In(x). The x-values of the data points must all
have the same sign. The number of coefficients in the approximation will be two
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which
case Error 3 will occur). The elements of the Solution vector will be as follows:

Solution[l] = a
Solution[2] = b

USER.LSQ

This module is included if you need a least-squares approximation on a set of basis
vectors different from the ones listed earlier. This module allows you to create your
own set of basis vectors. The source code contains detailed instructions of how to
flesh out the skeleton contained in USER.LSQ.

A least-squares solution may not exist for some input data and choice of basis
vectors (Error 4). The reasons for this will depend on the module you are using. For
example, it is impossible to fit an exponential function (module EXP.LSQ) to data
with y-values of differing signs; Error 4 will occur if you try. The same data could
be fit with a polynomial and no error would result. Error 4 will also occur if all the
x-values of the data are identical.

226 Turbo Numerical Methods Toolbox

Sample Program

The demonstration program LEAST.PAS contains I/O routines that allow you to
run the least-squares approximation routine. Note that there are two include com-
mands:

{$1 POLY.LSQ} (* Toad the basis vectors *)
{$1 LEAST.INC} (* load procedure LeastSquares *)

The LEAST.INC file must always be included after the basis module. To change

the basis vectors of the approximation, simply load a different basis module with
the first INCLUDE command. ’

Input Files

Data may be entered from a text file. The x- and y-coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525

Example

Problem. Given the following data {contained in the file SAMPLE9A.DAT), fit a
fourth-degree polynomial and a logarithmic function to the data:

0.00000000000000E+00 1.33830225764886E-03
0.10000000000000E+00 4.43184841193803E-02
0.20000000000000£+00 5.39909665131879E-01
0.30000000000000E+00 2.41970724519143E+00
0.40000000000000E+00 3.98942280401433E+00
0.02000000000000E+00 2.91946925791461E-03
0.04000000000000E+00 6.11901930113775E-03
0.06000000000000E+00 1.23221916847303E-02
0.08000000000000E+00 2.38408820146486E-02
0.12000000000000E+00 7.91545158298001E-02
0.14000000000000E+00 1.35829692336855E-01
0.16000000000000E+00 2.23945302948430E-01
0.18000000000000E+00 3.54745928462313E-01
0.22000000000000E+00 7.89501583008939E-01
0.24000000000000E+00 1.10920834679455E+00
0.26000000000000E+00 1.49727465635745E+00
0.28000000000000E+00 1.94186054983213E+00
0.32000000000000E+00 2.89691552761483E+00
0.34000000000000E+00 3.33224602891800E+00
0.36000000000000E+00 3.68270140303323E+00
0.38000000000000E+00 3.91042693975456E+00

Least-Squares Approximation 227

(The function is the left-hand side of a Gaussian distribution curve with mean =
0.5 and standard deviation = 0.1.) Note that the points do not have to be in any

particular order.

First fit the polynomial; include the proper include files in the LEAST.PAS pro-

gram.

{$1 POLY.LSQ}
{$1 LEAST.INC}

Run LEAST.PAS:
(K)eyboard or (F)ile entry of data? F
File name? SAMPLE9A.DAT
Number of terms in the least squares fit (<= 21)? 5
Direct output to one of the following:
(S)creen
(P)rinter
(F)ite

The Data Points:

X
.200
.300
.400
.500
100
.120
.140
160
.180
.220
.240
.260
280
.320
340
.360
380
.420
.440
.460
0.480

OO0 OO0 O0ODODO0ODODODO0OODOCOODOOO
.

228

(* Toad the basis vectors *)

(* Toad procedure LeastSquares *)

0.
.5399097
.4197072
.9894228
.0013383
.0029195
.0061190
.0123222
.0238409
.0791545
.1358297
.2239453
.3547459
.7895016
.1092083
.4972747
.9418605
.8969155
.3322460
.6827014
.9104269

WWWNHEF PR OODOOODODOODOOWNO

Y
0443185

Turbo Numerical Methods Toolbox

Coefficients in least squares approximation:

Coefficient 0:
Coefficient 1:
Coefficient 2:
Coefficient 3:
Coefficient 4:

X
0.2000
0.3000
0.4000

0.5000 -

0.1000
0.1200
0.1400
0.1600
0.1800
0.2200
0.2400
0.2600
0.2800
0.3200
0.3400
0.3600
0.3800
0.4200
0.4400
0.4600
0.4800

Standard Deviation :
The fourth-degree polynomial that best fits this data is as follows:
y = —1052.34 %" + 1205.86 ° —439.005 x> + 64.0480 x — 3.19056

Note that a fourth-degree polynomial requires five terms in the fit.

Least Squares Fit
2.1944857683E-02
5.4757594258E-01
2.4228330082E+400
4.0432402964E+00
-7.5189129229€-02
3.9032402623E-02
7.6262215339E-02
6.8115144530E-02
4,2165058391E-02
2.6946475745E-02
7.2620878494E-02
1.7037806441E-01
3.2758706456E-01
8.2963179468E-01
1.1690007497E+00
1.5568879689E+00
1.9804576462E+00
2,8630963140E+00
3.2762888552E+00
3.6334109560E+00
3.9014219733E+00

-3.1905595419E+00
6.4048009604E+01
~4,3900537685E+02
1.2058567475E+03
-1.0523352671E403

5.381534E-02

1
HF N WSN W

"1 11
rnNoroyon

WO

-3

-5.
.9290447012E-02
-9.

Residual

.2373626436E-02
.6662774545E-03
.1257630399E-03
.3817492408E-02
.6527431486E-02
.6112933365E-02
.0143196038E-02
.5792952845E-02
.8324176377E-02
.2208040084E-02
.3208813842E-02
.3567238538E-02
.7158863898E-02
.0130211675E-02
.9792402863E-02
.9613312500E-02
.8597096373E-02
.3819213604E-02

5957173721E-02

0049664504E-03

Now fit the logarithmic function; include the proper include files in the LEAST.
PAS program.

{$1 L0G.LSQ}
{$1 LEAST.INC}

(* load the basis vectors *)

Run LEAST.PAS:

(K)eyboard of (F)ile entry of data? F

File name? SAMPLESA.DAT

(* Toad procedure LeastSquares *)

Number of terms in the least squares fit (<= 21)? 2

Least-Squares Approximation

229

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile
The Data Points:
X Y
0.200 0.0443185
0.300 0.5399097
0.400 2.4197072
0.500 3.9894228
0.100 0.0013383
0.120 0.0029195
0.140 0.0061190
0.160 0.0123222
0.180 0.0238409
0.220 0.0791545
0.240 0.1358297
0.260 0.2239453
0.280 0.3547459
0.320 0.7895016
0.340 1.1092083
0.360 1.4972747
0.380 1.9418605
0.420 2.8969155
0.440 3.3322460
0.460 3.6827014
0.480 3.9104269
K e e e o = o o e o A = e o o o e e *
Logarithmic Least Squares Fit
* *

230 Turbo Numerical Methods Toolbox

Coefficients in least squares approximation:

Coefficient 0:
Coefficient 1:

2.5984092387E+00
6.0253489685E+00

X Least Squares Fit
0.2000 4.8470072529E-01
0.3000 1.5382650082E+00
0.4000 2.2857807630E+00
0.5000 2.8655990283E+00
0.1000 -1.3163793125E+00
0.1200 -8.4263329487E-01
0.1400 -4.,4208674425E-01
0.1600 -9.5117540004E-02
0.1800 2.1093098801E-01
0.2200 7.3235557703E-01
0.2400 9.5844674288E-01

. 0.2600 1.1664304540E+00
0.2800 1.3589932935E+00
0.3200 1.7059624977E+00
0.3400 1.8634900752E+00
0.3600 2.0120110257E+00
0.3800 2.1524997930E+00
0.4200 2.4125575764E+00
0.4400 2.5334356148E+00
0.4600 2.6489394853E+00
0.4800 2.7595267806E+00

Residual
4.4038224117E-01
9.9835534304E-01

-1.3392648216E-01
-1.1238237757E400
-1.3177176147E+00
-8.4555276412E-01
-4.4820576355E-01
-1.0743973169E-01
1.8709010600E-01
6.5320106120€-01
8.2261705054E-01
9.4248515104E-01
1.0042473650E+00
9.1646091473E-01
7.5428172837€-01
5.1473636940E-01
2.1063924317E-01
-4.8435795124E-01
-7.9881041414E-01
-1.0337619177E+00
-1.1509001591E+00

Standard Deviation : 8.320742E-01
The logarithmic function that bests fits this data is as follows:
y = 2.59841 = In(6.02535x)

The standard deviation of the polynomial fit is much smaller than that of the
logarithmic fit; a fourth-degree polynomial fits this data much better than a loga-
rithmic function.

Least-Squares Approximation 231

232 Turbo Numerical Methods Toolbox

C H A P T E R10

Fast Fourier Transform Routines

Fourier transforms are used to analyze periodic phenomena such as waves. A con-
tinuous function f that has period 2w (= 2 * 3.14159265...); that is, satisfies

flx + 2m) = f)
for all x, can be decomposed into sines and cosines:

fx) = al0] + a[1] = cos(x) + b[1] = sin(x) + a[2] * cos(2x)
+ b[2] * sin(2x) + ...

This is an infinite series where the coefficients get closer and closer to zero. The
routines in this chapter can be used to calculate the coefficients.

The Fast Fourier Transform (FFT) is a particular algorithm for computing Fou-
rier transforms efficiently.

This chapter includes two kinds of units. One group consists of four variations of
the FFT method of calculating discrete Fourier transforms (FFTB2.INC, FFT
B4.INC, FFT87B2.INC, FFT87B4.INC), each optimized for certain conditions.
All are variations of the original Cooley-Tukey method. The second group consists
of six applications (COMPFFTINC, REALFFT.INC, COMPCNVL.INC, REAL
CNVL.INC, COMPCORR.INC, REALCORR.INC) that can each be used with
any of the FFT methods. You can select the FFT method most appropriate to the
circumstances and combine it with the appropriate application or integrate it into
another program (Brigham 1974; Nussbaumer 1982).

In each FFT unit the procedure calls have exactly the same form (although there
are different restrictions on the data) so that any one FFT unit can be combined

233

with any of the application units without rewriting code. Each of these algorithms
will compute either a forward or an inverse transform.

Each unit contains two procedures needed to prepare for the FFT calculation:
procedure TestInput and procedure MakeSinCosTable. TestInput examines the
input data to ensure that it satisfies certain conditions (for example, that there is
more than 1 data point). MakeSinCosTable precalculates a table of the nth roots of
unity for look up in the FFT calculation.

FFTB2.INC contains a procedure that implements the Cooley-Tukey powers-of-
two (radix 2 or base 2) Fast Fourier Transforms. It is optimized to reduce the
number of real multiplications by taking advantage of the symmetries of certain
roots of unity and by using a complex multiplication that requires three real multi-
plications and three real additions. This algorithm is appropriate when the time for
real multiplications is significantly greater than the time for real additions; for
example, when running on an 8088 machine with no numeric coprocessor.

FFT87B2.INC implements the same algorithm as FFTB2.INC. The difference
is that the complex multiplications are done with four real multiplications and two
real additions. By using this standard form of complex multiplication, storage over-
head and assignment statements are reduced. This algorithm is appropriate when
the time for a real multiplication is close to the time for a real addition; for example,
when running an 8088 machine with an 8087 numeric coprocessor, or an 80286
machine with an 80287 numeric coprocessor.

Standard Turbo Pascal uses 6-byte reals; Turbo-87 Pascal (which utilizes the
8087 coprocessor) uses 8-byte reals. Consequently, given the same amount of
memory, more data points can be manipulated in Turbo Pascal than in Turbo-87
Pascal. Both FFTB2.INC and FFT87B2.INC require the number of data points to
be a power of two up to a maximum of 4,096 points when in Turbo-87, or 8,192
points when in standard Turbo Pascal.

FFTB4.INC and FFT87B4.INC implement powers-of-four (radix 4 or base 4)
Fast Fourier Transforms. The powers-of-four method is the same as the Cooley-
Tukey algorithm except at each stage of reduction a given transform is converted
into four transforms each with one fourth the data points of its predecessor (Nus-
sbaumer 1982). When this algorithm is optimized, there are about 25 percent
fewer multiplications and slightly fewer additions than in a radix-2 algorithm. The
algorithm has the disadvantage of only being applicable to data sets where the
number of points is a power of four up to a maximum of 4,096 points whether in
Turbo-87 or standard Turbo. A reduction in execution time of about 20 percent is
accomplished when FFTB4.INC or FFT87B4.INC is used over its B2 counterpart.

234 Turbo Numerical Methods Toolbox

FFTB4.INC performs complex multiplication with three real multiplications
and three real additions and thus is most appropriate when multiplications take
much more time than additions.

FFT87B4.INC performs complex multiplication with four real multiplications
and two additions and thus is most appropriate with a numeric coprocessor.

Table 10-1 shows the recommended use of the four FFT algorithms for optimal
performance.

Table 10-1 Four Fast Fourier Transforms

Number of Points Without Coprocessor With Coprocessor
ot FFTB2.INC FFT87B2.INC
&

FFTB4.INC FFT87B4.INC

Although each of the algorithms is most efficient under different sets of
circumstances, all four FFT algorithms will work whether you have a math
coprocessor or not. The sample program defaults to the Turbo-87 radix-2 algorithm
(FFT87B2.INC).

The Application Programs

There are six application programs that use the basic FFT routines
contained in the previously mentioned include files (COMPFFTINC,
REALFFT.INC, COMPCNVL.INC, REALCNVL.INC, COMPCORR.INC, and
REALCORR.INC).

Fast Fourier Transforms are particularly useful for analyzing periodic signals.
Such a signal is represented by a function f satisfying

fe + 1) = f@)

where t is time and T is the period. Under mild hypotheses, f can be expanded into
a Fourier series such as the following:

f® = N7 " Flo) exp @m i n t/T)

where i is the square root of — 1. The term exp (2w i n t/T) is a sinusoid of period
T/n and frequency n/T, and its coefficient F(n) gives the strength of that frequency
component in the original signal.

Fast Fourier Transform Routines ‘ 235

To analyze a signal on a digital computer, the signal must be discretized. Let x(n)
be computed by discretizing the function f at N equidistant points in one period.
Thus, let

x(n) = f(nT/N) n=01.N-1

Once we restrict attention to N points; it only makes sense to represent the
signal in terms of N of the functions

exp 2wint/T)
since the rest are redundant. For example:
exp @wi(—1)¢/T) = exp @w i (N—1)t/T)

fort = nT/N,n = 0,1, .. N — L The Fourier series for the signal is then a finite
sum, and has the form

x(n) = N '”22_ X(k) exp (2 i k n/N)

k=0
(The factor of N™'* is a matter of convention. Some books do not include it in this
formula, resulting in a factor of 1/N in the formula for X that follows.)
The formula for the coefficients X(k) is as follows:
N-1
Xk) = N°'# z x(n) exp (—1i 2w n k/N)

n=0
This formula for X makes sense for any integer k. X is then periodic, satisfying
Xk + N) = X(k)

for all k. In formulas and programs, it is more convenient to let k run from 0 to
N — 1, but for analyzing signals it makes more sense to think of k as running from
(—=N/2) to (N/2 — 1). This is because values of k near zero represent the low
frequency information, and values of k near or greater than N/2 represent frequen-
cies that are so high that the discretization is too coarse to realize them accurately
anyway. Therefore, if k is between N/2 and N, X(k) should be thought of as the
coefficient of

exp 2w i(k—N)t/T)
rather than
exp 2w ik t/T)

In other words, negative frequencies are represented on the right half of the
transform.

236 Turbo Numerical Methods Toolbox

COMPFFT.INC simply takes the complex Fast Fourier Transform of a set of
complex data points. The complex Fourier transform is defined as
N-~-1
X =N" z x_exp (—2wifn/N) f=0N-1
n=0

where i is the square root of — 1. The inverse Fourier transform (which may also be
calculated with COMPFFT.INC) is defined as

N-1
x, =N"" zf,eXp (—2mifn/N) n=0N-1
=0
where the bar stands for complex conjugation.

REALFFT.INC provides a procedure that is optimized for a discrete Fourier
transform with all real data. It proceeds by mapping the N real data points onto
N/2 complex points, applying one of the FFT routines, then reconstructing the N
points of the desired transform. This reduces the computation time by about 25
percent compared to applying the complex FFT routine to the N real data points.
REALFFT.INC can be used with any of the given FFT methods, but note that if a
radix-4 method is used (FFTB4.INC or FFT87B4.INC), N/2 must be a power of
four; so N must be of the form 2 * 4",

COMPCNVL.INC provides a procedure for calculating convolutions of two
complex vectors (Brigham 1974; Nussbaumer 1982). The discrete convolution of
two complex functions x and h is defined by

N-1
y, = x h m=01..N-1
n=0
where subscripts are taken modulo N (circular convolution). The basic theorem that
allows us to calculate these effectively using FFTs is shown in the following:

Y =X H m=01.N-1

where capital letters indicate the transforms of the functions represented by lower-
case letters. Thus the procedure for convolution works like this:

1. Transform both given data sets using FFTs.
2. Multiply the resulting transforms.point by point.

3. Find the inverse transform of this product using FFTs.

Fast Fourier Transform Routines 237

REALCNVL.INC provides a procedure for calculating convolutions of two real
vectors (Brigham 1984; Nussbaumer 1982). This procedure is exactly the same
as the previous procedure (COMPCNVL.INC) for complex convolution except that
only one forward Fourier transform need be performed. The procedure is as
follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec-
tor XReal plus iHReal, where i is the square root of — 1.

2. Transform this complex vector.

3. Extract the transforms of the two real functions from the transform of the
complex function (using the symmetry X, = X_, where the bar stands for
complex conjugation).

4. Multiply the resulting transforms point by point.

5. Find the inverse transform of this product using FFTs. REALCNVL.INC
is about 25 percent faster than its complex counterpart for the same set of

real data. ,
COMPCORR.INC provides a procedure for calculating the crosscorrelation of
two discrete complex functions or the autocorrelation of one discrete complex func-
tion (Brigham 1974). If x and h are the given discrete functions, then their correla-

tion is defined as
N-1 -
cm=2xnhn+m m=01.N-1

n=20

where subscripts are taken modulo N (circular convolution). This can be computed
using FFTs with a method analogous to that used in COMPCNVL.INC:

C =XH,_ m=01..N-1

Commonly x and h are real functions; in which case the preceding formula
reduces to C, = X _H_, where the bar stands for complex conjugation. Thus the
procedure for correlation works like this:

1. Transform both given data sets using FFTs,

2. Multiply each element of the transform of the first data set by the appropri-
ate element of the transform of the second data.

3. Find the inverse transform of this product using FFTs.
REALCORR.INC provides a procedure for calculating the crosscorrelation of

two discrete real functions or the autocorrelation of one discrete real function
(Brigham 1974). This procedure is exactly the same as the previous procedure for

238 Turbo Numerical Methods Toolbox

complex correlation except that only one forward Fourier transform need be per-
formed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec-
tor XReal + iHReal, where i is the square root of —1.

2. Transform this complex vector.

3. Extract the transforms of the two real vectors from the transform of the

complex vector (using the symmetry X, = X_, where the bar stands for
complex conjugation).

4. Multiply each element of the transform of the first data set by the appropri-
ate element of the transform of the second data.

5. Find the inverse transform of this product using FFTs.

Any one of the FFT include files can be used with any of the applications.

Data Sampling

While sampling theory is beyond the scope of this Toolbox, we would like to men-
tion several common problems associated with data sampling (Brigham 1974; Press
et al. 1986, Ch.12). The most common frustration is aliasing. A Fourier transform
only represents frequencies up to a certain limit (called the Nyquist limit, or
Nyquist frequency), which is given by half the sampling rate. (For example, if a
signal is sampled sixty times a second, the Nyquist frequency will be 30 Hz.)'A
sample containing frequencies greater than this limit will not be properly trans-
formed. The high frequencies will falsely contribute to the transform. This contri-
bution will be indistinguishable from a contribution of a frequency below the
Nyquist frequency.

There are several ways to combat aliasing. Increasing the sampling rate will
increase the Nyquist frequency and thus reduce aliasing effects. It is also possible
to pass the signal through a low pass filter, thus eliminating the high frequencies
before sampling. If the Fourier transform of a signal does not converge to zero at
the Nyquist frequency, the transform has very likely been aliased.

The Fourier transform assumes that the sample represents a periodic function
and that the sample is an integer multiple of one period. If the latter condition is
not true, spurious frequencies will show up in the transform. For example, if a sine
wave is sampled from 0 to 270 degrees (instead of the full period), a sharp bound-
ary is created because the sine of 0 does not equal the sine of 270. High frequen-
cies will be introduced into the transform to account for that sharp boundary.

Fast Fourier Transform Routines 239

The assumption of periodicity can cause problems when convolving or correlat-
‘ing two signals that are not periodic. The convolution of each point in a signal
affects the points surrounding it (the nature and extent of the affect depends on the
particular convolving function). The assumption of periodicity means that the con-
volution at one end of the signal will affect the other end of the signal. This “end
effect” can be eliminated by padding the data (on either end) with a sufficient
number of zeros.

User-Defined Types

TNvector = array[0..TNArraySize] of Real;
TNvectorPtr = “TNvector;

These user-defined types are different from others in this Toolbox, because they
involve pointers. Pointers are used to transcend the limitations imposed by the 64K
data segment size of Turbo Pascal. One array of 8,000 elements uses the entire data
segment (in Turbo-87). However, it is possible to store these arrays on the heap,
and to point to them with pointers that only require 4 bytes. The size of the heap
(and hence the maximum size and number of TNuvectors) is determined by the
amount of memory in the machine.

240 Turbo Numerical Methods Toolbox

Fast Fourier Transform Algorithms

The following documentation generally applies to all four FFT algorithms
(FFTB2.INC, FFTB4.INC, FFT87B2.INC, FFT87B4.INC). When a difference
between the radix-2 and radix-4 algorithms needs to be described, the radix-4
information will be placed in brackets following the radix-2 information (for exam-
ple, the number of points must be a power of two [four]). The following describes
the three procedures contained in each of the include files.

Procedure TestInput

Description

This example determines the number of data points in terms of a power of two
[four]. If the number of data points is not a power of two [four], then an error is
returned.

Input Parameters

NumPoints : Integer; Number of data points
The preceding parameter must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

NumberOfBits : Byte; Number of data points as a power of two [four]

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

TestInput (NumPoints, NumberOfBits, Error);

Fast Fourier Transform Routines . 241

Procedure MakeSinCosTable

Description

This example creates a look-up table of NumPoints/2 [3/4 NumPoints] roots of unity.
The roots of unity are defined as follows:

Root, = exp (—i 2w n/NumPoints n = 0..NumPoints/2 [3/4 NumPoints)

where i is the square root of — 1. These values are stored in two tables: SinTable,
containing the imaginary parts of the roots of unity, and CosTable, containing the
real parts of the roots of unity. It is faster to look up these values in a table than to
calculate them in the FFT procedure. ’

Input Parameters

NumPoints : Integer; Number of data points
The preceding parameter must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

SinTable : ThNvectorPtr; Table of sine values

CosTable : TNvectorPtr; Table of cosine values

Syntax of the Procedure Call

MakeSinCosTable(NumPoints, SinTable, CosTable);

Procedure FFT

Description

This example implements the particular variation of the Cooley-Tukey algorithm.
The Fast Fourier Transform of the data XReal, XImag is made in place and is thus
returned in the vectors XReal, XImag. The inverse transform of the data can also
be calculated with this procedure.

242 Turbo Numerical Methods Toolbox

It is essential that procedures TestInput and MakeSinCosTable be called before
procedure FFT is called. TestInput will flag any errors in the data (for example,
number of points that are not a power of two [four]), and MakeSinCosTable
generates a table of sine and cosine values referenced by FFT. TestInput and
MakeSinCosTable need only be called once, even if several calls to FFT are made
within the same program (for example, when computing the discrete convolution),
as long as the number of data points is unchanged. If the number of data points
changes between two calls of FFT, TestInput and MakeSinCosTable must be called
again. (Interested readers are urged to consult the references given in the begin-
ning of the chapter for details about the Cooley-Tukey algorithm.)

Input Parameters

NumberOfBits : Byte; Number of data points as a power of two [four]

NumPoints : Integer; Number of data points
Inverse : Boolean; FALSE equals forward transform; TRUE equals inverse
transform

XReal': TNvectorPtr; Pointer to real values of the data points
XImag : TNvectorPtr; Pointer to imaginary values of the data points
SinTable : TNvectorPtr; Table of sine values

CosTable : TNvectorPtr; Table of cosine values
The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : ThvectorPtr; Pointer to real values of the discrete Fourier transform of the
input data

XImag : TNvectorPtr; Pointer to imaginary values of the discrete Fourier transform
of the input data

Syntax of the Procedure Call

FFT(NumberOfBits, NumPoints, Inverse, XReal, XImag, SinTable, CosTable);

Fast Fourier Transform Routines 243

Fast Fourier Transform Applications

Each of the six application programs calls the three procedures contained within
FFT algorithm files.

COMPFFTINC

Description

This example is the most basic application, performing a complex Fast Fourier
Transform. It simply calls TestInput, MakeSinCosTable, and FFT sequentially; thus
accomplishing an in-place transformation of the complex data XReal, XImag.

Input Parameters

NumPoints : Integer; Number of data points

Inverse : Boolean; FALSE equals forward transform; TRUE equals inverse trans-
form

XReal : TNvectorPtr; Pointer to real values of the data points

XImag : TNvectorPtr; Pointer to imaginary values of the data points
The preceding parameters must satisfy the following conditions:
1. NumbPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : ThvectorPtr; Pointer to real values of the discrete Fourier transform of the
input data

XImag : TNvectorPtr; Pointer to imaginary values of the discrete Fourier transform
of the input data

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

244 Turbo Numerical Methods Toolbox

Syntax of the Procedure Call

ComplexFFT(NumPoints, Inverse, XReal, XImag, Error);

Comments

The complex Fast Fourier method uses the New/Dispose procedures to manipulate
the heap and should not be used in any program that uses Mark/Release to manip-
ulate the heap.

REALFFTINC

Description

This example performs a complex Fast Fourier Transform of real data. The Num-
Points real data points are first mapped onto NumPoints/2 complex data points. A
complex Fast Fourier Transform of these complex points is performed by calling
TestInput, MakeSinCosTable, and FFT. The NumPoints/2 transform is then mapped
onto NumPoints complex points. The real part of the transformation will be even,
and the imaginary part of the transformation will be odd. If you are implementing
this application with a radix-4 algorithm, be sure that the number of real data
points (NumPoints) is twice the power of four.

Input Parameters

NumPoints : Integer; Number of data points

Inverse : Boolean; FALSE equals forward transform; TRUE equals inverse trans-
form

XReal : TNvectorPtr; Pointer to real values of the data points
The preceding parameters must satisfy the following conditions:
1. NumPoints = 4.
2. NumPoints must be a power of two (twice a power of four for a radix-4

algorithm).

At least four data points are required, because this algorithm transforms the real
vector to a complex vector half the size. If only two real data points were entered,
the routine would have to take the transform of a single complex point.

Fast Fourier Transform Routines . 245

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the Fourier transform of the input data

XImag : TNvectorPtr; Pointer to imaginary values of the Fourier transform of the
input data

Error : Byte; 0: No errors
1: NumPoints < 4
2: NumPoints not a power of two [twice a power of four]

Syntax of the Procedure Call

RealFFT{NumPoints, Inverse, XReal, XImag, Error);

Comments

This method uses the New/Dispose procedures to manipulate the heap and should
not be used in any program that uses Mark/Release to manipulate the heap.

COMPCNVLINC

Description

The calculation of the convolution of two complex vectors is facilitated with a Fast
Fourier Transform routine. The discrete convolution of two functions x and h is

defined by

N-1
ym = an h,m__'l m = 0,]., ees N -].

n=20

where subscripts are taken modulo N (circular convolution). The basic theorem
that allows us to calculate these effectively using FFTs is as follows:

Y =X H, m=01.N~-1

246 Turbo Numerical Methods Toolbox

where capital letters indicate the transforms of the functions represented by lower-
case letters. Thus the procedure for convolution works like this:

1. Transform both given data sets using FFTs.
2. Multiply the resulting transforms point by point.
3. Find the inverse transform of this product using FFTs.

Input Parameters

NumPoints : Integer; Number of data points

XReal : TNvectorPtr; Pointer to real values of the first set of data points

XImag : TNvectorPtr; Pointer to imaginary values of the first set of data points
HReal : TNvectorPtr; Pointer to real values of the second set of data points

HImag : TNvectorPtr; Pointer to imaginary values of the second set of data points
The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the convolution of XReal, XImag and

HReal, HImag

XImag : TNvectorPtr; Pointer to imaginary values of the convolution of XReal, XImag
and HReal, HImag

Error : Byte; 0: No errors

1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

ComplexConvolution(NumPoints, XReal, XImag, HReal, HImag, Error);

Comments

This method uses the New/Dispose procedures to manipulate the heap and should
not be used in any program that uses Mark/Release to manipulate the heap.

Fast Fourier Transform Routines 247

REALCNVL.INC

Description

The calculation of the convolution of two real vectors is facilitated with a Fast
Fourier Transform routine. This procedure is exactly the same as the previous
procedure for complex convolution (COMPCNVL.INC) except that only one
Fourier transform need be performed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec-
tor XReal + iHReal, where i is the square root of — 1.

2. Transform this complex vector.

3. Extract the transforms of the two real functions from the transform of the
complex function (using the symmetry X, = X__, where the bar stands for
complex conjugation).

4. Multiply the resulting transforms point by point.

5. Find the inverse transform of this product using FFTs. REALCNVL.INC is
about 25 percent faster than its complex counterpart for the same set of real
data.

Input Parameters

NumPoints : Integer; Number of data points

XReal : ThvectorPtr; Pointer to real values of the first set of data points

HReal : TNvectorPtr; Pointer to real values of the second set of data points
The preceding parameters must satisfy the following conditions:

1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the convolution of XReal and HReal

XImag : ThNvectorPtr; Pointer to imaginary values of the convolution of XReal and
HReal

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

248 Turbo Numerical Methods Toolbox

Syntax of the Procedure Call

RealConvolution(NumPoints, XReal, XImag, HReal, Error);

Comments

This method uses the New/Dispose procedures to manipulate the heap and should
not be used in any program that uses Mark/Release to manipulate the heap.

COMPCORR.INC

Description

The calculation of the correlation of two complex vectors is facilitated with a Fast
Fourier Transform routine. The discrete correlation of two complex functions x and

h is defined by
N-1

y,= > xh m=01.N-1
n=0

where subscripts are taken modulo N (circular correlation). The basic theorem that
allows us to calculate these effectively using FFTs is as follows:

Y =X H m=0,1..N-1

N-—m
where capital letters indicate the transforms of the functions represented by lower-
case letters and ~ indicates the complex conjugate. (Commonly x and h are real
functions, in which case the preceding formula reduces to the more familiar
expression C = X 1-7, » where the bar stands for complex conjugation. (See REAL
CORR.INC for a real version of correlation.) Thus the procedure for correlation
works like this:

1. Transform both given data sets using FFTs.

2. Multiply each element of the transform of the first data set by the appropri-
ate element of the transform of the second data.

3. Find the inverse transform of this product using FFTs.

If the functions x and h are different, the correlation is called crosscorrelation; if
the functions x and A are the same, the correlation is called autocorrelation.

Fast Fourier Transform Routines 249

Input Parameters

NumPoints : Integer; Number of data points

Auto : Boolean; FALSE equals crosscorrelation; TRUE equals autocorrelation
XReal : TNvectorPtr; Pointer to real values of the first set of data points

XImag : TNvectorPtr; Pointer to imaginary values of the first set of data points

HReal : TNvectorPtr; Pointer to real values of the second set of data points (for cross-
correlation)

HImag : TNvectorPtr; Pointer to imaginary values of the second set of data points (for
crosscorrelation)
The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the correlation of XReal, XImag and
HReal, HImag (or the autocorrelation of XReal, XImag if
Auto = TRUE)

XImag : TNvectorPtr; Pointer to imaginary values of the correlation of XReal, XImag
and HReal, HImag (or the autocorrelation of XReal, XImag if
Auto = TRUE)

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

ComplexCorrelation(NumPoints, Auto, XReal, XImag, HReal, HImag, Error);

Comments

If you are performing an autocorrelation of the vector XReal, XImag, then set
Auto = TRUE. In this case, the vector HReal, HImag will not contain any informa-
tion but must still be passed into the procedure. Autocorrelations are faster to
compute, since only one forward transformation must be made, as opposed to two
for crosscorrelation.

250 Turbo Numerical Methods Toolbox

This method uses the New/Dispose procedures to manipulate the heap and
should not be used in any program that uses Mark/Release to manipulate the heap.

REALCORR.INC

Description

The calculation of the convolution of two real vectors is facilitated with a Fast
Fourier Transform routine. This procedure is exactly the same as the previous
procedure for complex correlation (COMPCORR.INC) except that only one for-
ward Fourier transform need be performed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex
vector XReal + iHReal, where i is the square root of —1.

2. Transform this complex vector.

3. Extract the transforms of the two real vectors from the transform of the
complex vector (using the symmetry X = X__, where the bar stands for
complex conjugation).

4. Multiply each element of the transform of the first data set by the appro-
priate element of the transform of the second data.

5. Find the inverse transform of this product using FFTs.

Input Parameters

NumPoints : Integer; Number of data points
Auto : Boolean; FALSE equals crosscorrelation; TRUE equals autocorrelation
XReal : TNvectorPtr; Pointer to real values of the first set of data points

HReal : TNvectorPtr; Pointer to real values of the second set of data points (for cross-
correlation)

The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Fast Fourier Transform Routines 251

Output Parameters

XReal : ThvectorPtr; Pointer to real values of the correlation of XReal and HReal (or
the autocorrelation of XReal if Auto = TRUE)

XImag : TNvectorPtr; Pointer to imaginary values of the correlation of XReal and
HReal (or the autocorrelation of XReal if Auto = TRUE)

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

RealCorrelation(NumPoints, Auto, XReal, XImag, HReal, Error);

Comments

If you are performing an autocorrelation of the vector XReal, then set Auto equal
to TRUE. In this case, the vector HReal will not contain any information but must
still be passed into the procedure. Autocorrelations are faster to compute, since
only one forward transformation must be made, as opposed to two for crosscorrela-
tion. This method uses the New/Dispose procedures to manipulate the heap and
should not be used in any program that uses Mark/Release to manipulate the heap.

Sample Program

The sample program FFTPROGS.PAS provides 1/O functions that demonstrate
any of the application programs. The FFT algorithm routines are included with the
following statements:

(*{$1 FFTB2.INC} (* radix 2, 8088 version *)
(*{$1 FFTB4.INC} (* radix 4, 8088 version *)
{$1 FFT87B2.INC} (* radix 2, 8087 version *)
(*{$1 FFT87B4.INC} (* radix 4, 8087 version *)

As you can see, three of the include statements must be commented-off so that
only one file is included. To change which file is included, simply comment-off the
one that is currently active (in this example that would be FFT87B2.INC) and
remove the comment symbol (* from the include file of your choice.

252 Turbo Numerical Methods Toolbox

Input File

Data may be entered from a text file. The real and imaginary parts of a complex
number should be separated by a space and followed by a carriage return. Real
numbers should each be followed by a carriage return.

The application files COMPFFT.INC, COMPCNVL.INC, and COMP
CORR.INC expect data to be in complex form. A data file containing a four-point
complex square wave could look like this:

00
11
11
00

The application files REALFFTINC, REALCNVL.INC, and REAL
CORR.INC expect data to be in real form. A data file containing a four-point real
square wave could look like this:

0

1
1
0

Example

Problem. Perform a Fourier transform and an autocorrelation of a 32-point square
wave. Also, convolve and crosscorrelate this square wave with a saw-tooth wave
(assume you are working in Turbo-87).

1. First, make sure that the FFT file FFT87B2.INC is included in
FFTPROGS.PAS:

(*{$1 FFTB2.INC} (* radix 2, 8088 version *)
(*{$1 FFTB4.INC} (* radix 4, 8088 version *)
{$1 FFT87B2.INC} (* radix 2, 8087 version *)
(*{$1 FFT87B4.INC} (* radix 4, 8087 version *)
The input data file SAMPI0OA.DAT is as follows (note that this is in real
format):
0
0
0
0
0
0
0
0

Fast Fourier Transform Routines 253

OO OO OO C O OO bl bt ek d e o e e el © DO

2. Run FFTPROGS.PAS:

. Real Fast Fourier Transform

. Real Convolution

. Real Autocorrelation

. Real Crosscorrelation

. Complex Fast Fourier Transform
. Complex Convolution

. Complex Autocorrelation

. Complex Crosscorrelation

O NOOT 2 WN =

Select a number (1-8): 1
kkkkxkk Real Fast Fourier Transform *¥xxikkik
(F)orward or (I)nverse transform? F
Enter data from (K)eyboard or (F)ile? F
File name? SAMP10A.DAT
Direct output to one of the following:
(S)creen

(P)rinter
(F)ile

254 Turbo Numerical Methods Toolbox

Results of Real Fourier Transform:

1.
-1.
7.
5.
-4.
2.
6.
-2.
1.
6.
-2.
1.
7.
-1.
1.
8.
-1.
8.
1.
-1.
7.
1.
-2.
6.
1.
-2.
6.
2.
.26776695296637E-001

-4

5.
7.
-1.
Note that the transform of the even real-square wave is an even real function. If
you take the inverse transform of this data, you should get back the original square

94454364826301E+000
59057003804788E+000
53417436515731E-001
96901852132470E-002
26776695296637E-001
89883706652938E-001
20757203331860E-002
66655959906343E-001
76776695296637E-001
63840517512576E-002
08522329739913E-001
27160952826887E-001
32233047033632E-002
83841625879619E-001
00135954077543E-001
37351650164209E-002
76776695296637E-001
37351650164209E-002
00135954077543E-001
83841625879619E-001
32233047033632E-002
27160952826887E-001
08522329739913E-001
63840517512576E-002
76776695296637E-001
66655959906343E-001
20757203331860E-002
89883706652938E-001

96901852132470E-002
53417436515731E-001
59057003804788E+000

wave.
3. Run FFTPROGS.PAS:

Real Fast Fourier Transform

ONOOTHE WN =

Select a number (1-8): 5

hakxkkxkx Complex Fast Fourier Transform x¥#kxixk

Real Convolution

. Real Autocorrelation
Real Crosscorrelation

0

-3.
5.
-2.

—

-1.
-2,

0
5
-7
2
-3
2
-5
3

.00000000000000E+000
14018491736755E-016
88784672006416E-017
94392336003208E-016
.92523114670944E-017
.94392336003208E-016
.85046229341887E-017
.39719282672548€-017
.00000000000000E+000
.06074635202245E-016
.76635401601925E-016
.17756934401283E-016
.37383090134830E-016
.86915450674151E-017
.74766180269661E-016
.37383090134830E-016
.00000000000000E+000
.37383090134830E-016
.74766180269661E-016
.86915450674151E-017
.37383090134830E-016
.17756934401283E-016
76635401601925E-016
06074635202245E-016
.00000000000000E+000
.39719282672548E~017
.85046229341887E-017
.94392336003208E-016
.92523114670944E-017
.94392336003208E-016
.88784672006416E-017
.14018491736755E-016

Complex Fast Fourier Transform

. Complex Convolution
. Complex Autocorrelation

Complex Crosscorrelation

(F)orward or (I)nverse transform? I

Enter data from (K)eyboard or (F)ile? F

File name? SAMP10B.DAT

Fast Fourier Transform Routines

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

Results of Compiex Fourier Transform:

.88411095042053E-015 0.00000000000000E+000
.72710170455215E-015 0.00000000000000E+000
.04112019628891E-015 -3.92523114670944E-017
.04112019628891E-015 -1.19825492681322E-016
.17756934401283E-015 0.00000000000000E+000
.09906472107864E-015 -3.14264671746203E-016
.02325930356393E-015 1.53635757788210E-016
.02243303999922E-015 -3.53529506016654E-017
.07086707894778E-015 0.00000000000000E+000

.60019188480208E-016 2.56022496768081E-016
-3.89233270203019E-017 1.57501605887274E-016
.00000000000000E+000 4.33843984418077E-016
.00000000000000E+000 0.00000000000000E+000
.00000000000000E+000 4.71273917614581E-016
.00000000000000E+000 2.94392336003208E-016
.00000000000000E+000 5.69158516272868E-016
.99999999999999E-001 0.00000000000000E+000
.00000000000000E+000 3.92523114670944E-017
.00000000000000E+000 3.92523114670944E-017
.99999999999999E-001 -4.13208697471334E-017
.00000000000000E+000 0.00000000000000E+000
.00000000000000E+000 1.56763065858929E-016
-8.12038283536641E-017 -1.53635757788210E-016
.33640926947802E-016 -2.78665541135090E-016
.70253117341126E-016 0.00000000000000E+000
.21007327020357E-015 -2.95274808235175E-016

.31446441691246E-016

-1.

57501605887274E-016

.80560632748634E-015 -2.72697621989622E-016
.42055475210265E-016 0.00000000000000E+000
.04112019628891E-015 -3.13772311727307E-016
.80560632748634E-015 -2.94392336003208E-016

= RO 5 ORN OO DO = WO b b b W e = = NN b

.96261557335472E-015 -2.55140024536113E-016

You get back the original square wave, accurate to 15 significant figures.

The autocorrelation of a square wave is simply a triangle. Let’s take the
autocorrelation of the square wave.

Run FFTPROGS.PAS:

. Real Fast Fourier Transform

. Real Convolution

. Real Autocorrelation

. Real Crosscorrelation

. Complex Fast Fourier Transform
. Complex Convolution

. Complex Autocorrelation

. Complex Crosscorrelation

L

ONOOT L WN -

Select a number (1-8): 3

*xkkkkkk% Real Autocorrelation ****xkixx

256 Turbo Numerical Methods Toolbox

Enter data from (K)eyboard or (F)ile? F

File name? SAMP10A.DAT

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

Results of Autocorrelation:

OWME B BMNWOF WO N OO s e s

e = 00 N O WD

.94454364826301E+000
.76776695296637E+000
.59099025766973E+000
.41421356237309E+000
.23743686707646E+000
.06066017177982E+000
.83883476483184E-001
.07106781186547E-001
.30330085889910E-001
.53553390593274E-001
.76776695296637E-001
.00000000000000E+000
.92523114670944E-016
.35513868802566E-016
.71027737605132E-016
.71027737605132E-016
.57009245868377E-016
.14018491736755E-016
.00000000000000E+000
.57009245868377E-016
.92523114670944E-016
.14018491736755E-016
.76776695296636E-001
.53553390593273E-001
.30330085889910E-001
.07106781186547E-001
.83883476483184E-001
.06066017177982E+000
.23743686707646E+000
.41421356237309E+000
.59099025766973E+000
.76776695296637E+000

-6.
-5.
-6.
-4.
-4.
-2.
-3.
-1.

5.
-1.
-1,
-9.

4.

0.
-1.
-1.

5.

WO BNNWOAH A= RNOYW

89287897017933€E-016
49532360539321E-016
55792559089139E-016
17055809337878E-016
44089209850063E-016
74766180269661E-016
84393694788862E-016
17756934401283E-016
37799391805346E-017
96261557335472E-016
88132137453390E-016
32242397343491E-017
44089209850063E-016
00000000000000E+000
06260198549818E-016
66822323735151E-016
81728018656864E-016

.92523114670944E-016
.00281407857881E-016
.89485797069821E-016
.44089209850063E-016
.17756934401283E-016
.39904846020120E-016
.96261557335472E-017
.37799391805346E-017
.53270803203849E-016
.43643288684648E-016
.20794252002406E-016
.44089209850063E-016
.57009245868377E-016
.07490473185598E-017
.04205413869981E-016

Keeping in mind that this is a periodic function (see “Data Sampling”), you
can see that this is a triangle wave.

Let’s now convolve the square wave with a saw-tooth wave. The input file for

the saw-tooth wave (SAMP10C.DAT) is as follows:

S OO OO O

Fast Fourier Transform Routines

257

1

C OO OO OO OO OHHODOOLNOTULWDHOOOOO

5. Run FFTPROGS.PAS:

. Real Fast Fourier Transform

. Real Convolution

Real Autocorrelation

Real Crosscorrelation

. Complex Fast Fourier Transform
. Complex Convolution

. Complex Autocorrelation

. Complex Crosscorrelation

ONOUHWN -

Select a number (1-8): 2

kkkkkkkkk Rea'l convo]ution ddkdkkkhkkkk
Enter data from (K)eyboard or (F)ile? F
The first function:

File name? SAMP10A.DAT

258 Turbo Numerical Methods Toolbox

The second function:

File name? SAMP10C.DAT

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

Results of Real Convolution:

1.16672618895780E+001
1.14904851942814E+001
1.11369318036881E+001
1.06066017177982E+001
9.89949493661168E+000
9.01561146012848E+000
7.95495128834866E+000
6.71751442127220E+000
5.30330085889910E+000
3.71231060122936E+000
1.94454364826299E+000
-1.85270910124685E-014
-2.04112019628891E-014
-1.13046657025232E-014
-1.44448506198907E-014
-9.42055475210265E-015
-1.50728876033642E-014
-1.38168136364172E-014
-1.38168136364172E-014
-1.13046657025232E-014
-1.13046657025232E-014
~5.02429586778808E-015
1.76776695296632E-001
5.30330085889907E-001
.06066017177982E+000
.76776695296637E+000
.65165042944956E+000
.71231060122938E+000
.94974746830584E+000
.36396103067893E+000
.95495128834867E+000
9.72271824131504E+000

NO P WN

Now let’s crosscorrelate the square wave with the saw-tooth wave.

0.00000000000000E+000
1.09906472107864E-015
6.28036983473510E-016
4.71027737605132E-016
0.00000000000000E +000
7.85046229341887E-016
6.28036983473510E-016
1.57009245868377E-016
0.00000000000000E +000
-1.96261557335472E-015
-2.11962481922310E-015
-2.98317567149917E-015
0.00000000000000E+000
-3.29719416323593E-015
-3.45420340910430E-015
-3.45420340910430E-015
0.00000000000000E +000
-4.71027737605132E-016
-6.28036983473510E-016
-1.57009245868377E-016
0.00000000000000E+000
-1.09906472107864E-015
6.28036983473510E-016
-2.04112019628891E-015
0.00000000000000E +000
1.33457858988121E-015
2.11962481922310E-015
2.66915717976242E-015
0.00000000000000E+000
3.61121265497268E-015
3.45420340910430E-015
5.33831435952483E-015

6. Run FFTPROGS.PAS:

1, Real Fast Fourier Transform

. Real Convolution

. Complex Convolution

ONOYOT P~ WN

Select a number (1-8):

. Real Autocorrelation
. Real Crosscorrelation
. Complex Fast Fourier Transform

. Complex Autocorrelation
. Complex Crosscorrelation

ddkkkkkkk Real Crosscorrelation *xkxkikx

Fast Fourier Transform Routines

259

Enter data from (K)eyboard or (F)ile? F

The first function:

File name? SAMP10A.DAT

The second function:

File name? SAMP10C.DAT

Direct output to one of the following:

(S)creen
(P)rinter
(F)ile

Results of Real Crosscorrelation:

(
— e = = N WY N WO

] UL 1 LIS S B |
et = O WO SN UTW e WO OO WO e =

.16672618895780E+001
.72271824131504E+000
.95495128834866E+000
.36396103067893E+000
.94974746830583E+000
.71231060122937E+000
.65165042944954E+000
.76776695296636E+000
.06066017177981E+000
.30330085889897E-001
.76776695296621E-001
.38168136364172E-014
-1.
.06766287190497E-014
.25607396694702E-014
.00485917355762E-014
.13046657025232E-014
.42055475210265E-015
.02429586778808E-015
.02429586778808E-015
.33831435952483E-015
.76822190084106E-015
.94454364826300E+000
.71231060122937E+000
.30330085889911E+000
.71751442127221E+000
.95495128834867E+000
.01561146012849E+000
.89949493661168E+000
.06066017177982E+001
.11369318036881E+001
.14904851942814E+001

63289615703113E-014

260

0
-6
-7
-9

0

-1.
-2.
-1.

0.

.00000000000000E+000
.67289294940604E-016
.85046229341887E-016
.02803163743171E-016
.00000000000000E+000
49158783574959E-015
04112019628891E-015
72710170455215E-015
00000000000000E+000
.62990486829532E-015
.29719416323593E-015
.86541873709789E-015
.00000000000000E+000
.06168029443336E-015
.14018491736755E-015
.39625888431457E-015
.00000000000000E+000
.53270803203849E-016
.85046229341887E-016
.74766180269661E-016
.00000000000000E+000
.49532360539321E-016
.04112019628891E-015
.71027737605132E-016
.00000000000000E+000
.65046496643978E-015
.29719416323593E-015
.04298808111072E-015
.00000000000000E +000
.10280049072227E-015
.14018491736755E-015
.65233285126159E-015

Turbo Numerical Methods Toolbox

C H A P T E R .ll

Graphics Programs

The programs in this chapter can only be run by those users with PC-DOS.

There are some programs that graphically demonstrate the usefulness of the
least-squares routines in Chapter 9 and the Fourier transforms in Chapter 10. A
graphics monitor is required. Each program reads a data set from an input file, and
uses this Toolbox to display the results. You will see curves being fitted to data
using the least-squares routines and also see a signal being transformed into its
Fourier spectrum. '

The programs LSQIBM.COM and FFTIBM.COM graphically illustrate the
power and utility of the Turbo Pascal Numerical Methods Toolbox. To run them,
you'll need an IBM Color Graphics Adapter (CGA) or a suitable clone. (The pro-
grams LSQHERC.COM AND FFTHERC.COM can be used to graphically illus-
trate the Toolbox on a Hercules Monochrome Graphics Adapter or compatible.)
And to print, you'll need an Epson or IBM compatible dot-matrix printer. As
explained in this chapter, these programs can be recompiled to run on other hard-
ware, including the IBM Enhanced Graphics Adapter (EGA) in its high resolution
mode. The programs can also be recompiled to take advantage of the 8087 (or
80287) math coprocessor.

261

Function of the Least-Squares Graphics Demonstration
Program

The program LSQIBM.COM demonstrates the least-squares capabilities of the
Toolbox. To run it, you must have

* 4x6.FON (Graphix fonts)

8x8.FON (Graphix fonts)

ERROR.MSG (Graphix error messages)

LSQIBM.COM

SAMPI1A.DAT (Input data file)

on the current directory. (The first three files are identical to those in the Graphix
Toolbox.)

By default the input is a file called SAMP11A.DAT that has X and Y values (in
ASCII form) separated by carriage returns. Running LSQIBM.COM will provide
five different least-squares fits to the input data. The different fits are based on the
function forms: logarithm, exponential, polynomial, power law, and finite Fourier
series. The fits are displayed graphically on the screen and can be printed on an
Epson or compatible printer.

The first plot shows the input data from SAMP11A.DAT along with three curves.
The three curves are the graphs of the power function

Y = aX’
the exponential function

Y = a exp (bX)
and the logarithm function

Y = aln(bX) _

The header to the plot tells which curve corresponds to which function. The next
plot shows the same input data plotted with a five-term Fourier series:

Y =a + b =cos(x) + ¢ *sinx) + d * cos(2X) + e * sin(2X)

and a five-term polynomial (that is, a polynomial of degree four). The coefficients
are found using the routines from Chapter 9, and they give the least-square error
among all functions of that form. (In some cases, the problem is transformed into a
linear problem, and the error is actually the least for the transformed problem but
possibly not exactly the least for the original problem.) Again, the header to the plot
tells which curve corresponds to which function.

262 Turbo Numerical Methods Toolbox

Finally, a bar chart shows the error for each function. The data is not at all
periodic, so the Fourier series model is the worst. The five-degree polynomial gives
the best fit, but it is not much better than the fit obtained by using power, exponen-
tial, or logarithm functions.

Pressing the space bar allows you to cycle through the different screens. Press-
ing (@] exits the program. Pressing({)sends a hard copy to the printer (see the
section entitled “Printing”).

You can use your own data to run the program by running LSQDEMO with two
file names, such as
LSQIBM LSQIN.DAT LSQOUT.DAT

The input data from LSQIN.DAT along with the least-squares fits and coeffi-
cients are output to a text file called LSQOUT.DAT.

A default output data file can easily be arranged by changing a constant
WriteToFile in LSQDEMO.PAS and recompiling it. (See the section, “Rebuilding
LSQIBM.COM, to recompile it, and the comment in LSQDEMO.PAS next to the
constant WriteToFile.)

Graphics Programs v 263

Function of the Fourier Transform Graphics Demonstration
Program '

The program FFTIBM.COM demonstrates the Fourier capabilities of the Toolbox.
To run it, you must have

* 4x6.FON (Graphix fonts)

+ 8x8.FON (Graphix fonts)

+ ERROR.MSG (Graphix error messages)
+ FFTIBM.COM

» SAMPI1B.DAT (Input data file)

on the current directory. (The first three files are identical to those in the Graphix
Toolbox.)

By default the input is a file called SAMP11B.DAT that has 1,024 real values (in
ASCII form) separated by carriage returns. These represent sample points from a
two-second signal sampled at a rate of 512 points per second. The program will
display four FFT transforms at the following sampling rates: 8 per second (16
points), 32 per second (64 points), 128 per second (256 points), and 512 per second
(1,024 points). For the last two samplings, the default data yields the same trans-
forms, demonstrating that a sample rate higher than twice the highest frequency
adds no new information (the Nyquist limit). The transforms are shown on a scale
of —64 to +63 cycles per second.

In addition to the transforms, the program displays the inverse transform over
the original data, illustrating the degree to which information is lost at different
sampling rates. The header tells which curve is the original data and which is the
inverse transform.

Pressing the space bar cycles through the four plots. To the right of each plot is
two smaller plots that show the coefficients for the real and imaginary parts of the
. Fourier transform. Some information about the sample and the transform appears
-after each plot.

The graphs that appear on the screen can be printed on an Epson or compatible
printer.

You can use your own data to run the program by running FFTDEMO with two
file names on the command line, such as
FFTIBM FFTIN.DAT FFTOUT.DAT

The 1,024 complex points of the 1,024-point FFT will be written into the output

file FFTOUT.DAT, with one complex number per line. The real and imaginary
parts are separated by a space.

264 Turbo Numerical Methods Toolbox

A default output data file can easily be arranged by changing the constant
WriteToFile in FFTDEMO.PAS and recompiling it. (See the section, “Rebuilding
FFTIBM.COM;, to recompile it, and the comment in FFTDEMO.PAS next to
WriteToFile.)

Printing

Both LSQIBM.COM and FFTIBM.COM provide the capability to print the
graphs that appear on the screen. If you run these programs on the default data
sets, the printouts will look just like the ones displayed here (see Figure 11-1, 11-2,
and 11-3). This is particularly useful when you would like a permanent, visual
record of your program results.

L LB D4 B 1G. FT-R 3 + E-fInENife = o JCARILan T 4
.
.

€16

(WD

.51

¥, 13

3.76

ERT)

2.88

2.22

L.90.

1.5,

Figure 11-1 LSQIBM.COM

Least-square fits of power, exponential, and logarithmic functions to data in SAMP11A.DAT. Note: This was run
without an 8087.

Graphics Programs 265

- J
Figure 11-2 LSQIBM.COM

Sum of squares of residuals for five fits. Left side displays bar graph comparing various fits. Right side depicts
same data fitted by 5th degree polynomial and a partial Fourier series. Note: This was run without an 8087.

/ E e, (a5 E R ry vy = \

2.9%
2.53.
2.13.
1,72
[RYY IR o
0.90] i
ons] °
0.08]
0.334
0.7%
1,18,
1.5¢]
1.9¢]
2.7,
2.7%

~3.00 C -0.7% -0.50 -0.2§ -0.00 0:25 i 9.50 0.7§ I
Tiwe interval = 2 seconds. Sample rate = 32 per second.
Transform time = 8.7 seconds. Inverse time = 0.5 seconds.

Press (SPACE> to continue, <@ to quit

- /

Figure 11-3 FFTIBM.COM

Graph depicts data of SAMP11B.DAT. Upper right-hand side displays real transform coefficients. Mid right-hand
side displays imaginary coefficients. Dotted lines represent inverse transform of the Fourier transform, superim-
posed over original data. Inverse transform is not identical to original data because of coarseness of sample rate.
Note: This was run without an 8087.

266 Turbo Numerical Methods Toolbox

To get a printout, merely press(fi}for Hardcopy at the menu prompt. An Epson
or IBM compatible dot-matrix printer is required. (You cannot get a graphics print-
out on a daisy-wheel printer.)

If your printer is not Epson-compatible and the Hardcopy command is not func-
tioning properly, you can rebuild the program with a different printer mode. (See
the instructions that follow for rebuilding the program.) Both LSQDEMO.PAS and
FFTDEMO.PAS have a constant called PrintMode near the beginning of the file.
Setting PrintMode to the value 1 will allow printing on the largest number of
printers, but a mode value of 4 will give the best looking output from a color display
to an Epson printer. The default value is 6, since that gives good results for the
Color Graphics Adapter, Hercules, and Enhanced Graphics Adapter.

You can also use the DOS program GRAPHICS.COM, which enables the
key to print the screen in graphics mode.

Rebuilding LSQIBM.COM

The sources to LSQIBM.COM are provided. To recompile, you need Turbo Pascal
(version 3.0) and Turbo Graphix Toolbox (version 1.06A or later), as well as this
Toolbox.

To rebuild LSQIBM.COM, the following files are needed:

From CHAP9:

EXP.LSQ (for the exponential model)
FOURIER.LSQ (Fourier series)
LOG.LSQ (logarithmic)

POLY.LSQ (polynomial)
POWER.LSQ (power law)

From CHAPI1I:

GENERIC.LSQ

IOCHECK.INC (a modification of COMMON.INC)
LEAST.MOD (a modification of LEAST.INC from Chapter 9)
LSQDEMO.PAS

From Turbo Pascal:
(These files are not included in this Toolbox.)

TURBO.COM or TURBO-87.COM (the Turbo Pascal compiler)
TURBO.MSG (compiler error messages)

Graphics Programs 267

From the Turbo Pascal Graphix Toolbox (version 1.06A or later):
(These files are not included in this Toolbox.)

AXIS.HGH

FINDWRLD.HGH

GRAPHIX.SYS (a copy of GRAPHIX.IBM)
HATCH.HGH

HISTOGRM.HGH

KERNEL.SYS

POLYGON.HGH

TYPEDEF.SYS

WINDOWS.SYS

Once you have all of these files on the current directory, enter Turbo Pascal and
compile LSQDEMO.PAS to disk. The resulting LSQDEMO.COM should be
renamed LSQIBM.COM to distinguish it from the Hercules version.

Rebuilding FFTIBM.COM

The sources to FFTIBM.COM are provided. To recompile, you need Turbo Pascal
(version 3.0) and Turbo Graphix Toolbox (version 1.06A or later), as well as this
Toolbox.

To rebuild FFTIBM.COM, the following files are needed:

From CHAP10:
COMPFFTINC

FFTB2.INC
REALFFTINC

From CHAPI11:

4X6.FON (originally from the Graphix Toolbox)
8X8.FON (originally from the Graphix Toolbox)
ERROR.MSG (originally from the Graphix Toolbox)
FFTDEMO.PAS

IOCHECK.INC (a modification of COMMON.INC)

From Turbo Pascal:
(These files are not included in this Toolbox.)

TURBO.COM or TURBO-87.COM (the Turbo Pascal compiler)
TURBO.MSG (compiler error messages)

268 Turbo Numerical Methods Toolbox

From the Turbo Pascal Graphix Toolbox (version 1.06A or later):
(These files are not included in this Toolbox.)

AXIS.HGH

FINDWRLD.HGH

GRAPHIX.SYS (a copy of GRAPHIX.IBM)

KERNEL.SYS

POLYGON.HGH

TYPEDEF.SYS (with MaxPlotGlb changed to the value 1,024)
WINDOWS.SYS

The system constant MaxPlotGIb in the file TYPEDEF.SYS must be changed to
have the value 1,024 instead of 100. Without this change, FFTDEMO will termi-
nate with an error message.

Once you have all of these files on the current directory, enter Turbo Pascal and
compile FFTDEMO.PAS to disk. The resulting FFTDEMO.COM should be
renamed FFTIBM.COM to distinguish it from the Hercules version.

Rebuilding for the Hercules Card

To recompile for the Hercules graphics card, simply copy GRAPHIX.HGC to
GRAPHIX.SYS, as explained in the Turbo Pascal Graphix Toolbox. The font file
14X9.FON is also required from the Graphix Toolbox, and the version of the
Graphix Toolbox must be 1.07A or later. (You can use version 1.06A of the Graphix
Toolbox if you're using the copy of GRAPHIX.HGC accompanying the other
CHAPII files.)

The resulting files LSQDEMO.COM and FFTDEMO.COM should be
renamed to LSQHERC.COM and FFTHERC.COM to distinguish them from the
IBM CGA versions.

Rebuilding for the EGA Card

To recompile for the IBM Enhanced Graphics Adapter (EGA), you must copy
GRAPHIX.EGA to GRAPHIX.SYS. A copy of GRAPHIX.EGA is included with
this Toolbox since many users purchased copies of the Turbo Graphix Toolbox
before support for the EGA was added.

LSQIBM.COM and FFTIBM.COM will run on machines with an EGA card.
However, to take advantage of the higher resolution offerred by this card, you must
copy GRAPHIX.EGA and recompile.

Graphics Programs . 269

Release 1.07A of the Graphics Toolbox also supports other graphics hardware.
LSQDEMO and FFTDEMO can be recompiled for any of these systems.

Using the Math Coprocessor

To recompile to take advantage of the math coprocessor, you must use TURBO-
87.COM instead of TURBO.COM. Some increased performance in the FFT demo
program will be obtained if FFTB2.INC is replaced by FFT87B2.INC from Chap-
ter 10 of the Toolbox.

270 Turbo Numerical Methods Toolbox

References

Abramowitz, Milton, and Irene A. Stegun, eds. Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. Washington, D.C.:
National Bureau of Standards Applied Mathematics Series, 55, 1972.

Atkinson, L.V.,, and P.J. Harley. An Introduction to Numerical Methods with
Pascal. Reading: Addison-Wesley Publishing Co., 1983. This is an excellent text for
learning numerical methods, with an emphasis on the implementation of various
numerical algorithms.

Brigham, E. Oran. The Fast Fourier Transform. Englewood Cliffs: Prentice-Hall,
Inc., 1974. A very complete, easy-to-read text on the use and implementation of the
fast Fourier transform algorithm.

.The next three texts are excellent for learning numerical analysis, emphasizing
the mathematical theory underlying the algorithms in this toolbox.

Burden, Richard L., and J. Douglas Faires. Numerical Analysis, 3rd ed. Boston:
Prindle, Weber & Schmidt, 1985.

Cheney, Ward, and David Kincaid. Numerical Mathematics and Computing, 2nd
ed. Monterey: Brooks/Cole Publishing Co., 1985.

Dahlquist, Germund, and Ake Bjorck. Numerical Methods, trans. Ned Anderson.
Englewood Cliffs: Prentice-Hall, Inc., 1974.

Fried, Stephen S. “Evaluating 8087 Performance on the IBM PC.” Byte. Vol. 9,
Number 9 (Special Issue), 1985, pp.197-208.

271

Gerald, Curtis F., and Patrick O. Wheatley. Applied Numerical Analysis, 3rd ed.
Reading: Addison-Wesley Publishing Co., 1984. This is another excellent source for
learning numerical analysis.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-
ling. Numerical Recipes: The Art of Scientific Computing. New York: Cambridge
University Press, 1986. This book is user-oriented, discusses many of the subtle
problems encountered when implementing numerical methods, and has program
listings in Turbo Pascal.

Ralston, Anthony, and Philip Rabinowitz. A First Course in Numerical Analysis.
New York: McGraw-Hill Book Co., 1978. A well-written mathematics text that is a
step more sophisticated than the preceding ones.

272 ' Turbo Numerical Methods Toolbox

Index

273

$FF error, 145, 190, 202

A

ADAMS_LINC, 156, 168-170
ADAMS_1.PAS, 170-171
Adams-Bashforth/Adams-Moulton
predictor-corrector method, 156,
168-171
Adams-Bashforth formula, 168
Adams-Moulton formula, 168
ADAPGAUS.INC, 88, 98-100
ADAPGAUS.PAS, 101
ADAPSIMP.INC, 88, 95-96
ADAPSIMP.PAS, 96-97
Adaptive schemes, 87
quadrature, 95-101
Aliasing, 239

B

Backward substitution, 114, 120
Basis vectors, 222
BISECT.INC, 18-19
Bisection method, 15
root of a function using, 18-20
BISECT.PAS, 19-20
Boundary value problems, 155-156, 158
using Linear Shooting/Runge-Kutta
methods, 215-219
using Shooting/Runge-Kutta methods,
208-214

C

Chebyshev polynomials, 224
Color Graphics Adapter, 3, 12
for graphics demos, 261, 267
COMMONL.INGC, 7, 11, 13
COMPCNVL.INC, 233, 235, 237-238
application, 246-247
COMPCORR.INC, 233, 235, 238
application, 249-250
COMPFFT.INC, 233, 235, 237
application, 244-245
Compiler directives, 13
Convergence, rate of, 15-16
Cooley-Tukey method, 233-234
Coprocessor, 3, 270
CUBE_CLA.INC, 57-58
CUBE_CLA.PAS, 59-62
CUBE_FRE.INC, 52-53
CUBE_FRE.PAS, 53-56

274

Cubic spline methods

clamped, 44, 57-62

free, 44, 52-56, 64, 76-79
Cyclic Jacobi method, 132, 149-153

D

Data sampling, 239-240
Data types, 12
Defined constants, 12
Deflation, 16

and Laguerre, 37-41

and Newton-Horner, 28-32

of a matrix, 132, 143-148
DERIV2FN.INC, 64-65, 83-84
DERIV2FN.PAS, 84-86
DERIV2.INC, 64, 71-73
DERIV2.PAS, 73-75
Derivative, 63

approximation of, 64-86
DERIVFN.INC, 64, 80-81
DERIVFN.PAS, 81-82
DERIV.INC, 64, 6668
DERIV.PAS, 68-70
Determinant of a matrix, 105-109
DET.INC, 106-108, 128
DET.PAS, 108-109
Diagonally dominant, 126
Diagonal matrix, 131
Differential equations

first-order, 159-171

coupled, 186-195

linear, 155

nth order, 157, 178-185

ordinary, 155

second-order, 158, 172-177, 192,

208-219
coupled, 196-207

stiff, 161

systems of, 157
Direct factorization of matrices, 106,

120-125

DIRFACT.INC. 106, 120-122
DIRFACT.PAS, 122-125
Distribution disks, 7-11
DIVDIF.INC, 49-50
DIVDIF.PAS, 50-51

E

Eigensystem, 149
Eigenvalue, 131-132
Eigenvector, 131

Turbo Numerical Methods Toolbox

Enhanced Graphics Adapter, 3, 261, 267
rebuilding for, 269-270
EXP.LSQ, 225-226, 267

F

Fast Fourier Transform, 233
algorithms, 241-243
applications, 244-260
sample program, 252-260

FFT87B2.INC, 233-235
algorithms, 241-243
with the math coprocessor, 270

FFT87B4.INC, 233-235,
algorithms, 241-243
and REALFFTINC, 237

FFTB2.INC, 233-234
algorithms, 241-243
rebuilding for FFTIBM.COM, 268
with the math coprocessor, 270

FFTB4.INC, 233-235
algorithms, 241-243
and REALFFTINC, 237

FFTDEMO.COM, 269

FFTDEMO.PAS, 264-269

FFTHERC.COM, 261

FFTIBM.COM, 261
graphics demo, 264-266
rebuilding, 268-269

FFT procedure, 242-243

FFTPROGS.PAS, 252-260

Forward substitution, 120

Forward transform, 234

FOURIER.LSQ, 225, 267

Fourier series, 225
in graphics programs, 262

Fourier transform, 3, 233-260
in graphics demo, 264-265

G

GAUSELIM.INC, 106, 114-115
GAUSELIM.PAS, 115-116
Gaussian elimination, 106

with partial pivoting, 106, 117-119
Gaussian quadrature, 88

using Legendre polynomials, 98-101
GAUSSIDL.INC, 106, 126-127
GAUSSIDL.PAS, 128-130
Gauss-Jordan elimination, 110
Gauss-Seidel iterative method, 106,

126-130

GENERIC.LSQ, 267
Goodness of fit, 222

Index

Graphics

demo programs, 12, 262-267

printing, 265-267

system requirements, 3, 261
GRAPHICS.COM, 267
GRAPHICS.EGA, 269

H

Heap/Stack collision, 145, 190, 202
Hercules Monochrome Graphics Adapter,
3, 12, 261

rebuilding for, 269

I

Initial value problems, 155-157
Adams-Bashforth/Adams-Moulton,
168-171
Runge-Kutta order five, 163-167
Runge-Kutta order four, 159-167,
172207
Installation, 8-11
Integration, 87-104
INTERDRV.INC, 64, 76-77
INTERDRV.PAS, 77-79
Interpolation, 43, 158
cubic splines, 52-62
Lagrange polynomials, 45-48
Newton’s divided-difference method,
49-51
INVERSE.INC, 106, 110-111
Inverse of a matrix, 105-106, 110-113
INVERSE.PAS, 111-113
Inverse power method, 131-132, 137-142
Inverse transform, 234
INVPOWER.INC, 131-132, 137-139
INVPOWER.PAS, 139-142
IOCHECK.INC, 267
Iterative methods, 15
cyclic Jacobi, 149-153
Gauss-Seidel, 106

J

JACOBLILINC, 132, 149-151
JACOBILPAS, 151-153

L

LAGRANGE.INC, 4546
Lagrange method, 43, 45-48
LAGRANGE.PAS, 4648
LAGUERRE.INC, 37-38
LAGUERRE.PAS, 3941

275

Laguerre’s method, 16
finding roots of complex polynomial,
3741
LEAST.INC, 106, 222-226
LEAST.MOD, 267
LEAST.PAS, 227-231
Least-squares approximation, 222-231
Least-squares solution
graphics demo, 262-263
linear regression, 221
multiple regression, 221
Linear equations, 105-106
differential, 155
with direct factoring, 120-125
with Gaussian elimination, 114-119
LINSHOT2.INC, 156, 158, 215-218
LINSHOT2.PAS, 218-219
Lipshitz condition, 157
LOG.LSQ, 226
LSQDEMO.COM, 268
LSQDEMO.PAS, 263
rebuilding for EGA, 269
rebuilding for printing, 265-267
LSQHERC.COM, 261
rebuilding for Hercules, 269
LSQIBM.COM, 261-263
graphics demo, 265-267
rebuilding, 267
rebuilding for EGA, 269
LU_Decompose, 120-121
LU_Solve, 120-122

M

MakeSinCosTable, 242-243
Mark/Release, 96, 99, 145

in Adams-Bashforth/Adams-Moulton,

170

in complex fast Fourier, 245-252

in Linear Shooting/Runge-Kutta, 217

in Runge-Kutta, 161, 182, 191, 202, 211

in Runge-Kutta-Fehlberg, 165
Matrix

algebra, 105

diagonal, 131

direct factorization, 106, 120

identity, 139

nonsingular, 106, 120-125

orthogonal, 134

permutation, 120

rotation, 149

square, 106, 131-133, 137

symmetric, 132, 149-153

276

Mesh points, 156
MULLER.INC, 33-35
MULLER.PAS, 35-36
Muller’s method, 16
finding roots of complex function,
33-36

N

New/Dispose, 96, 99, 145
in Adams-Bashforth/Adams-Moulton,
170
in complex fast Fourier, 245-252
in Linear Shooting/Runge-Kutta, 217
in Runge-Kutta, 161, 182, 191, 202, 211
in Runge-Kutta-Fehlberg, 165
NEWTDEFL.INC, 28-30
NEWTDEFL.PAS, 30-32
Newton-Horner method, 15-16
with deflation, 28-32
Newton-Raphson method, 15-16
root of a function using, 21-24
Newton’s general divided-difference
algorithm, 43, 49-51
Nonlinear shooting method, 158,
208-214
Numerical differentiation, 63-65
five-point formulas, 64, 66-75
three-point formulas, 64, 66-75
two-point formulas, 64, 66-70
Nyquist frequency, 239, 264

P

Partial pivoting, 106, 117

and direct factoring, 120
PARTPIVT.INC, 106, 117-118
PARTPIVT.PAS, 118-119
POLY.LSQ, 224, 267
Polynomials

Lagrange, 89

Legendre, 98-100

methods to approximate roots of, 16,

25-41

POWER.INC, 131-135
POWER.LSQ, 225, 267
Power method, 131-136

and Wielandt’s deflation, 143-148
POWER.PAS, 135-136
Powers-of-four, 234
Powers-of-two, 234

Turbo Numerical Methods Toolbox

R

RAPHSON2.INC, 11
RAPHSON.INC, 9, 21-22
RAPHSON.PAS, 22-24
REALCNVL.INC, 233, 235, 238
application, 248-249
REALCORR.INC, 233, 235, 238
application, 251-252
REALFFT.INC, 233, 235, 237
application, 245-246
Richardson extrapolation

and numerical integration, 64, 80-82

and Romberg method, 88, 102-104
numerical integration, 64, 80-82
RKF_LINC, 156, 163-165
RKF_1.PAS, 165-167
Romberg algorithm, 102-104
ROMBERG.INC, 88, 102-103
Romberg method, 88

using trapezoidal rule, 102-104
ROMBERG.PAS, 103-104
Roots of an equation, 15-42
Rotation matrix, 149-153
Runge-Kutta-Fehlberg, 156, 163-167
'RUNGE_LINC, 156-157, 159-161
RUNGE_1.PAS, 161-162
RUNGE_2.INC, 157, 172-175
RUNGE2.PAS, 175-177
Runge-Kutta formulas, 179, 187-188,

197-199

Runge-Kutta methods, 156

fifth-order, 163

fourth-order, 156-157, 159-168,

172-186

RUNGE_N.INC, 157, 178-182
RUNGE_N.PAS, 182-185
RUNGE_SLINC, 157, 186-191
RUNGE_SL.PAS, 191-195
RUNGE_S2.INC, 157, 196-203
RUNGE_S2.PAS, 203-207

S

SECANT.INC, 25-26
Secant method, 16

in nonlinear equations, 158, 208-214

root of a function using, 25-27
SECANT.PAS, 26-27
SHOOT2.INC, 158, 208-211
SHOOT2.PAS, 211-214
Shooting method, 158

linear, 215-219

nonlinear, 208-214

Index

SideKick, 96, 99, 145, 190, 202
SIMPSON.INC, 87, 89-90
SIMPSON.PAS, 90-91

Simpson’s method, 87-97

Splines (see Cubic spline methods)
SuperKey, 96, 99, 145, 190, 202
System requirements, 3

T

TestForRoot, 17
TestInput, 241, 243
TNArraySize, 12
TNcomplex, 33-34
TNCompVector, 37-38
TNIntVector, 28-29
TNNearlyZero, 12, 16-17
TNTargetF, 18
TNvector, 12
Trapezoid composite rule, 92-94
Trapezoid method, 87-88
TRAPZOID.INC, 87, 92-93
TRAPZOID.PAS, 93-94
Turbo-87, 34, 12
TURBO-87.COM, 267-268, 270
TURBO.COM, 267268, 270
TURBO.MSG, 267-268
Turbo Pascal, 1-3, 11
rebuilding with, 267-268
Turbo Pascal Graphix Toolbox, 3, 12
in graphics demos, 267-268
rebuilding, 267-269

U

UNPACK.EXE, 7-8
USER.LSQ, 226

w

WIELANDTINC, 132, 143-145
Wielandt method, 132
with deflation, 143-148

278 Turbo Numerical Methods Toolbox

Borland
Software

4585 Scotts Valley Drive, Scotts Valley, CA 95066

Available at better dealers nationwide.
To order by credit card, call (800) 255-8008; CA (800) 742-1133;
CANADA (800) 237-1136. '

" THE DESKTOP

S'nfxlc - ORGANIZER

Whether you're running WordStar,> Lotus,” dBASE,
or any other program, SideKick puts all these desktop
accessories at your fingertips—Instantly!

A full-screen WordStar-like Editor to jot A Monthly Calendar from 1901 through
down notes and edit files up to 25 pages 2099.

long. Appointment Calendar to remind you
A Phone Directory for names, addresses, of important meetings and appointments.

and telephone numbers. Finding a name or a

number is a snap. A full-featured Calculator ideal for

business use. It also performs decimal

An Autodialer for all your phone calls. It will to hexadecimal to binary conversions.
An ASCII Table for easy reference.

look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3° Here's SideKick running over Lotus 1-2-3. In the
From bottom to top: SideKick's “Menu Window,” ASCII SideKick Notepad you'll notice data that's been imported
Table, Notepad, Calculator, Appointment Calendar, Monthly directly from the Lotus screen. In the upper right you can
Calendar, and Phone Dialer. see the Calculator.

The Critics’ Choice
“In a simple, beautiful implementation of WordStar's “SideKick is by far the best we've seen. It is also
block copy commands, SideKick can transport all the least expensive.” .
or any part of the display screen (even an area —Ron Mansfield, ENTREPRENEUR

overlaid by the notepad display) to the notepad.” “ L)
—Charles Petzold, PC MAGAZINE If you use a PC, get SideKick. You'll soon become

dependent on it.”
"SideKick deserves a place in every PC." —Jerry Pournelle, BYTE

—~Gary Ray, PC WEEK
Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk
drive. A Hayes-compatible modem, IBM PCjr internal modem, or AT&T Modem 4000 is required for the autodialer function.

SideKick is a registered trademark of Borland International, Inc. dBASE is a registered trademark of

E3 R Ashton-Tate. [BM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp.
= lAND AT&T is a registered trademark of American Telephone & Telegraph Company. Lotus and 1-2-3 are
INTERNATIONA L registered trademarks of Lotus Development Corp. WordStar is a registered trademark of MicroPro

International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.
Copyright 1987 Borland International BOR0060C

SIDEKICK

The Organizer For The Computer Age!

Traveling SideKick is BinderWare,” both a binder you take with you when you travel
and a software program—which includes a Report Generator—that generates and
prints out all the information you'll need to take with you.

Information like your phone list, your client list,
your address book, your calendar, and your
appointments. The appointment or calendar files
you're already using in your SideKick® can auto-
matically be used by your Traveling SideKick. You
don’t waste time and effort reentering information
that's already there.

One keystroke prints out a form like your address
book. No need to change printer paper;

What’s inside Traveling SideKick

TABLET OF EXTRA F(

IN POCKET ON BACK FtAP FOH USE IN ANY OF THE
(ORGANIZER SECTIONS.

ADDRESS BOOK SECTION

PREPRINTED ADDRESS FORMS WITH TABBED
DIVIDERS FOR EASY REFERENCE.
MISCELLANEOUS SECTION
TO STORE ALL EXTRA PREPRINTED FORMS AND
COMMONLY-USEQ RECORDS.

ROLLER BALLPOINT PEN

BLACK PEN THAT FITS IN FLAP FOR EASY ACCESS.

REFERENCE SECTION .
NTAINS MAPS THAT SHOW AREA CODES AND

TIME ZONES, TOLL-FREE NUMBERS FOR TRAVEL

ACCOMODATIONS, METRIC CONVERSION S.

FINANCE SECTION

MULTI-USE LEDGER FORMS, RECEIPT LOG AND

STORAGE ENVELOPE, CREDIT CARD INFORMATION.

CCALENDAR SECTION

YEARLY, MONTHLY, WEEKLY, AND DALY

ENGAGEMENT CALENDARS SUPPLEMENT THOSE

YOU PRINT OUT WlYH TRAVEUNG SIDEKICK.

PENDING SECTIO}

A“TO BE CONYWUED SECTION FOR CURRENT

FROJECT& MEETING NOTES, ETC

N ONE OF 1W0 BUSINESS-CARD-SIZE STORAGE
POCKET.

va.ma SIDEKICK SOFTWARE
GENERATES, UPDATES. AND PRINTS YOUR
ADDRESS AND CALENDAR Fit

Suggested Retail Price: $69.95 (not copy protected)

you simply punch three holes, fold and clip

the form into your Traveling SideKick binder, and
you're on your way. Because Traveling SideKick is
CAD (Computer-Age Designed), you don't fool
around with low-tech tools like scissors, tape, or
staples. And because Traveling SideKick is
electronic, it works this year, next year, and all the
“next years" after that. Old-fashioned daytime
organizers are history in 365 days.

What the software program and its
Report Generator do for you before
you go—and when you get back

Before you go:

o Prints out your calendar,
appointments, addresses, phone
directory, and whatever other
information you need from your
data files

When you return;

o Lets you quickly and easily enter all
the new names you obtained while
you were away into your
SideKick data files

It can also:

o Sort your address book by contact,
zip code or company name

o Print mailing labels

o Print information selectively

o Search files for existing addresses
or calendar engagements

Minimum system configuration: IBM PC, XT, AT, Portable, PCjr, 3270 and true compatibles. PC-D0S (MS-DOS) 2.0 or later.

256K RAM mimimum.

=
E INTERNATIONAL

Borland International

SideKick, BinderWare and Traveling SideKick are registered trademarks of Borland
International, Inc. IBM, AT, XT, and PCjr are registered trademarks of International Business
Machines Corp. MS-DOS s a registered trademark of Microsoft Corp. Copyright 1987

BOR 0083A

SUPERKEY- m: proscruir

RAM-resident
Increased productivity for IBM°PCs or compatibles

SuperKey’s simple macros are electronic shortcuts to success.
By letting you reduce a lengthy paragraph into a single keystroke
of your choice, SuperKey eliminates repetition.

SuperKey turns 1,000 keystrokes into 1!
SuperKey can record lengthy keystroke sequences and play them back at the touch of a single key.
Instantly. Like magic.

In fact, with SuperKey's simple macros, you can turn “Dear Customer: Thank you for your inquiry.
We are pleased to let you know that shipment will be made within 24 hours. Sincerely,” into the
one keystroke of your choice!

SuperKey keeps your confidential files—confidential!
Without encryption, your files are open secrets. Anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, efc.).

With Superkey you can encrypt any file, even while running another program. As long as you keep
the password secret, only you can decode your file correctly. SuperKey also implements the U.S.
government Data Encryption Standard (DES).

™ RAM resident—accepts new macro files ~ © Keyboard buffer increases 16 character

even while running other programs keyboard “type-ahead” buffer to 128
& Pull-down menus characters
& Superfast file encryption & Real-time delay causes macro playback
& Choice of two encryption schemes to pausg for specilied interval
& On-line context-sensitive help & Transparent display macros allow
& One-finger mode reduces key creation of menus on top of application
commands to single keystroke - pDrograms t .
™ Screen OFF/ON blanks out and restores "f?;gdg’nt(;? .?cgia%@?tﬁgfd"stml using
screen to protect against “burn in”
™ Partial or complete reorganization of &4 Command stack recalls last 256

characters entered

keyboard

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles: PC-DOS (MS-D0S)
2.0 or greater. 128K RAM. One disk drive.

= = BORLAND SuperKey is a registered trademark of Borland International, Inc. IBM, XT, AT, and PCjr are
= registered trademarks of International Business Machines Corp. MS-DOS is a registered

INTERNATIONAL trademark of Microsoft Corp. BOR 0062C

If you use an IBM® PC, you need

Lriguhtﬁnlir

Turbo Lightning teams up
with the Random House
Concise Word List to
check your spelling as
you type!

Turbo Lightning, using the
80,000-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a
“beep.” At the touch of a key,
Turbo Lightning opens a
window on top of your
application program and
suggests the correct spelling.
Just press one key and the
misspelled word is instantly
replaced with the correct word.

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you
choose just the right word from
a list of alternates, so you
don't say the same thing the
same way every time. Once
Turbo Lightning opens the
Thesaurus window, you see a
list of alternate words; select
the word you want, press
ENTER and your new word will
instantly replace the original
word. Pure magic!

If you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

e third square
D on neck saciess

W g apeer that ghers w
i3 Tsdin sometine aroand e owap ¢

The Turbo Lightning Proofreader

The Turbo Lightning Thesaurus

Suggested Retail Price: $99.95 (not copy protected)

PPN

o

®

You can teach Turbo
Lightning new words

You can feach your new Turbo
Lightning your name, business
associates’ names, street
names, addresses, correct
capitalizations, and any
specialized words you use
frequently. Teach Turbo
Lightning once, and it

knows forever.

Turbo Lightning is the
engine that powers
Borland’s Turbo Lightning
Library®

Turbo Lightning brings
electronic power to the
Random House Concise Word
List and Random House
Thesaurus. They're at your
fingertips—even while you're
running other programs. Turbo
Lightning will also “drive”
soon-to-be-released
encyclopedias, extended
thesauruses, specialized
dictionaries, and many other
popular reference works. You
get a head start with this

first volume in the Turbo
Lightning Library.

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles with 2 floppy disk drives. PC-DOS (MS-D0S) 2.0 or greater.

256K RAM. Hard disk recommended.

%) BORLAND

INTERNATIONAL

Turbo Lightning and Turbo Lightning Library are registered trademarks of Borland International, Inc.
IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp. Random
House is a registered trademark of Random House, Inc.

Copyright 1987 Borland International
BOR 00708

Your Development Toolbox and Technical Reference Manual for Turbo Lightning®

L |/ 66 H T N I N &6

Lightning Word Wizard includes complete, commented Turbo
Pascal® source code and all the technical information you’ll
need to understand and work with Turbo Lightning’s “engine.”
More than 20 fully documented Turbo Pascal procedures
reveal powerful Turbo Lightning engine calls. Harness the full power
of the complete and authoritative Random House® Concise
Word List and Random House Thesaurus.

Turbo Lightning’s “Reference The ultimate collection of word
Manual” games and crossword solvers!

Developers can use the versatile on-line The excitement, challenge, competition,
examples to harness Turbo Lightning’s and education of four games and three

power to do rapid word searches. Lightning solver utilities—puzzles, scrambles, spell-

Word Wizard is the forerunner of the data- searches, synonym-seekings, hidden words,

base access systems that will incorporate * crossword solutions, and more. You and

and engineer the Turbo Lightning Library® your friends (up to four people total) can

of electronic reference works. set the difficulty level and contest the high-
speed smarts of Lightning Word Wizard!

Turbo Lightning—Critics’ Choice
“Lightning’s good enough to make programmers and users cheer, executives of other

software companies weep.” Jim Seymour, PC Week
“The real future of Lightning clearly lies not with the spelling checker and thesaurus currently
included, but with other uses of its powerful look-up engine.” Ted Silveira, Profiles
“This newest product from Borland has it all.” Don Roy, Computing Now!

Minimum system configuration: IBM PC, XT, AT, PCjr, Portable, and true compatibles. 256K RAM minimum. PC-DOS (MS-D0S) 2.0
or greater. Turbo Lightning software required. Optional—Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code.

% BORLAND Suggested Retail Price: $69.95

INTERNATIONAL (not copy protected)

Turbo Pascal, Turbo Lightning and Turbo Lightning Library are registered trademarks and Lightning Word Wizard is a trademark of Borland International, Inc. Random
House is a registered trademark of Random House, Inc. 1BM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a
registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR00878

REFLEN;

The high-performance database manager
that’s so advanced it’s easy to use!

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists,
customer files, or even your company's budgets—Reflex is the database manager for you!

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends
database management with business graphics. Because a picture is often worth a 1000 words, Reflex
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see.

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports.
You can use database files created with Reflex or transferred from Lotus 1-2-3° dBASE? PFS: File®
and other applications.

Reflex: The Critics’ Choice

“...if you use a PC, you should know about Reflex . . . may be the best bargain in software today.”
Jerry Pournelle, BYTE
“Everyone agrees that Reflex is the best-looking database they've ever seen.”
Adam B. Green, InfoWorld

“The next generation of software has officially arrived.” Peter Norton, PC Week

Refiex: don’t use your PC without it!
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of
Borland’s award-winning Reflex.

Suggested Retail Price: $149.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules
Monochrome Graphics CArd, or equivalent. PC-DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE,
or PFS: File optional.

Reflex is a trademark of Borland/Analytica Inc. Lotus 1-2-3 is a registered trademark of Lotus
a Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: File is a
= BORLAND registered trademark of Software Publishing Corporation. IBM, XT, AT, and IBM Color Graphics
= Adapter are registered trademarks of International Business Machines Corporation. Hercules
INTERNATIONAL Graphics Card is a trademark of Hercules Computer Technology. MS-DOS is a registered
trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0066C

”[’ lf”.' THE WORKSHOP

Includes 22 “instant templates’’ covering a broad range of
business applications (listed below). Also shows you how to
customize databases, graphs, crosstabs, and reports. It’s an invaluable
analytical tool and an important addition to another one of
our best sellers, Reflex: The Database Manager.

Fast-start tutorial examples:

Learn Reflex® as you work with practical business applications. The Reflex Workshop Disk supplies
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in each
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple
steps to adapt the files to your own needs.

22 practical business applications:
Workshop's 22 “instant templates” give you a wide range of analytical tools:

Administration * Tracking Manufacturing Quality Assurance
* Scheduling Appointments * Analyzing Product Costs

X mggg"‘lg C:’g?g?;‘ccte Facilities Accounting and Financial Planning
ging a rroj » Tracking Petty Cash
* Crealing a Mailing System * Entering Purchase Orders

* Managing Employment Applications * Organizing Outgoing Purchase Orders

Sales and Marketing * Analyzing Accounts Receivable
* Researching Store Check Inventory * Maintaining Letters of Credit
* Tracking Sales Leads * Reporting Business Expenses
* Summarizing Sales Trends » Managing Debits and Credits
¢ Analyzing Trends » Examining Leased Inventory Trends
, , * Tracking Fixed Assets
Production and Operations * Planning Commercial Real Estate Investment

* Summarizing Repair Turnaround

Whether you're a newcomer learning Reflex basics or an experienced “power user” looking for tips, Reflex:
The Workshop will help you quickly become an expert database analyst.

Minimum system configuration: IBM PC, AT, and XT, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 384K RAM minimum. Requires Reflex:
The Database Manager, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card or equivalent.

= BORLAND Suggested Retail Price: $69.95

INTERNATIONGAL (not copy protected)

i

Reflex is a registered trademark and Reflex: The Workshop is a trademark of Borland/Analytica, Inc. IBM, AT, and XT are registered trademarks of International Business
Machines Corp. Hercules is a trademark of Hercules Computer Technology. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987 Borland International
BOR 00888

Version 3.0 with 8087 support and BCD reals
Free MicroCalc Spreadsheet With Commented Source Code!

FEATURES:

One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct them, and instantly
recompiles. You're off and running in

record time.

Built-in Interactive Editor: WordStar®like
easy editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

MicroCalc: A sample spreadsheet on your disk
with ready-to-compile source code.

IBM® PC Version: Supports Turtle Graphics,
color, sound, full tree directories, window
routines, input/output redirection, and

much more.

THE CRITICS’ CHOICE:

“Language deal of the century . . . Turbo Pascal:
it introduces a new programming environment
and runs like magic.”

—Jeff Duntemann, PC Magazine

“Most Pascal compilers barely fit on a disk, but
Turbo Pascal packs an editor, compiler, linker,
and run-time library into just 39K bytes of
random access memory.”

—Dave Garland, Popular Computing

“What | think the computer industry is headed
for: well-documented, standard, plenty of
good features, and a reasonable price.”

—Jerry Pournelle, BYTE

LOOK AT TURBO NOW!

[More than 500,000 users worldwide.

(M Turbo Pascal is the de facto industry
standard.

M Turbo Pascal wins PC MAGAZINE'S
award for technical excellence.

[Turbo Pascal named “Most
Significant Product of the Year” by
PC WEEK.

[Turbo Pascal 3.0—the fastest Pascal
development environment on the
planet, period.

Suggested Retail Price: $99.95; CP/M®-80 version without 8087 and BCD: $69.95

Features for 16-bit Systems: 8087 math co-processor support for intensive calculations.
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business application.

Minimum system configuration: 128K RAM minimum. Includes 8087 & BCD features for 16-bit MS-DOS 2.0 or later and
CP/M-86 1.1 or later. CP/M-80 version 2.2 or later 48K RAM minimum (8087 and BCD features not available). 8087

version requires 8087 or 80287 co-processor.

235 BORLAND

INTERNATIONAL

Turbo Pascal is a registered trademark of Borand International, Inc. CP/M is a registered trademark
of Digital Research Inc. IBM is a registered trademark of Intemational Business Machines Corp.
MS-DOS is a registered trademark of Microsoft Corp. WordStar is a registered trademark of
MicroPro International. Copyright 1987 Borland International BOR 00618

TURBO TUTOR

VERSION 2.0

Learn Pascal From The Folks Who Created
The Turbo Pascal® Family

Borland International proudly presents Turbo Tutor, the perfect complement
to your Turbo Pascal compiler. Turbo Tutor is really for everyone—
even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine points.
The manual and program disk focus on the whole spectrum of Turbo
Pascal programming techniques.

o For the Novice: It gives you a concise history of Pascal, tells you how to write a
simple program, and defines the basic programming terms you need to know.

o Programmer’s Guide: The heart of Turbo Pascal. The manual covers the fine points
of every aspect of Turbo Pascal programming: program structure, data types, control
structures, procedures and functions, scalar types, arrays, strings, pointers, sets, files,
and records.

e Advanced Concepts: If you're an expert, you'll love the sections detailing such topics as
linked lists, trees, and graphs. You'll also find sample program examples for PC-DOS and
MS-DOS®

10,000 lines of commented source code, demonstrations of 20 Turbo Pascal features, multiple-
choice quizzes, an interactive on-line tutor, and more!

Turbo Tutor may be the only reference work about Pascal and programming you'll ever need!
Suggested Retail Price: $39.95 (not copy protected)

Minimum system configuration: Turbo Pascal 3.0. PC-DOS (MS-DO0S) 2.0 or later. 192K RAM minimum (CP/M-80
version 2.2 or later: 64K RAM minimum).

= Turbo Pascal and Turbo Tutor are registered rademarks of Borland Internationa! Inc. CP/M is a
= registered trademark of Digital Research Inc. MS-DOS is a registered rademark of Microsoft Corp.

INTERNATIONAL Copyright 1987 Borland International BOR 0064C

TURBO PASCAL .
DATABASE TOOLBOX
Is The Perfect Complement To Turbo Pascal’

It contains a complete library of Pascal procedures that
allows you to sort and search your data and build powerful database
applications. It’s another set of tools from Borland that will give
even the beginning programmer the expert’s edge.

THE TOOLS YOU NEED!

TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it
possible to access records in a file using key words instead of numbers. Now available with
complete source code on disk, ready to be included in your programs.

TURBO SORT: The fastest way to sort data using the QUICKSORT algorithm—the method
preferred by knowledgeable professionals. Includes source code.

GINST (General Installation Program): Gets your programs up and running on other
terminals. This feature alone will save hours of work and research. Adds tremendous value
to all your programs.

GET STARTED RIGHT AWAY—FREE DATABASE!

Included on every Toolbox diskette is the source code to a working database which
demonstrates the power and simplicity of our Turbo Access search system. Modify it to suit
your individual needs or just compile it and run.

THE CRITICS’ CHOICE!

“The tools include a B+ tree search and a sorting system. I've seen stuff like this, but not as
well thought out, sell for hundreds of dollars.” —Jerry Pournelle, BYTE MAGAZINE

“The Turbo Database Toolbox is solid enough and useful enough to come recommended.”
—Jeff Duntemann, PC TECH JOURNAL

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: 128K RAM and one disk drive (CP/M-80: 48K). 16-bit systems: Turbo Pascal 2.0 or greater for
MS-DOS or PC-DOS 2.0 or greater. Turbo Pascal 2.1 or greater for CP/M-86 1.0 or greater. 8-bit systems: Turbo Pascal 2.0 or
greater for CP/M-80 2.2 or greater.

= BORLA"D Turbo Pascal and Turbo Database Toolbox are registered trademarks of Borland Interational
= Inc. CP/M is a registered trademark of Digital Research, Inc. MS-DOS is a registered

INTERNATIONAL trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0063D

GRAPHIXTOOLBOX'

A Library of Graphics Routines for Use with Turbo Pascal®

High-resolution graphics for your IBM" PC, AT,” XT,” PCjr", true PC compatibles, and the Heath
Zenith Z-100.” Comes complete with graphics window management.

Even if you're new to Turbo Pascal programming, the Turbo Pascal Graphix Toolbox will get you started
right away. II's a collection of tools that will get you right into the fascinating world of high-resolution
business graphics, including graphics window management. You get immediate, satisfying results. And
we keep Royalty out of American business because you don't pay any—even if you distribute your own
compiled programs that include all or part of the Turbo Pascal Graphix Toolbox procedures.

Tariations of the Pie

What you get includes:

o Complete commented source code on disk.
o Tools for drawing simple graphics.
e Tools for drawing complex graphics, including Choice of line-drawing styles.

curves with optional smoothing. Routines that will let you quickly plot functions
o Routines that let you store and restore graphic and model experimental data.

images to and from disk. And much, much more . . .
 Tools allowing you to send screen images to

Epson®-compatible printers.

Full graphics window management.
Two different font styles for graphic labeling.

"While most people only talk about low-cost personal computer software, Borland has been doing
something about it. And Borland provides good technical support as part of the price.”
John Markov & Paul Freiberger, syndicated columnists.

If you ever plan to create Turbo Pascal programs that make use of business graphics or scientific
graphics, you need the Turboe Pascal Graphix Toolbox.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr, true compatibles and the Heath Zenith 2-100. Turbo Pascal 3.0 or later. 192K
RAM minimum. Two disk drives and an IBM Color Graphics Adapter (CGA), IBM Enhanced Graphics Adapter (EGA), Hercules Graphics
Card or compatible.

= Turbo Pascal and Turbo Graphix Toolbox are registered trademarks of Borland International,
= RLAND Inc. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines
INTERNATIONAL Corporation. Hercules Graphics Card is a trademark of Hercules Computer Technelogy. Heath
Zenith 2-100 is a trademark of Zenith Data Systems. Epson is a registered trademark of

Epson Corp. Copyright 1987 Borland Intemational BOR 0068C

TURBO PASCAL
EDITOR TOOLBOX'
It’s All You Need To Build Your Own Text Editor
Or Word Processor

Build your own lightning-fast editor and incor- Create your own word processor. We provide all
porate it into your Turbo Pascal® programs. the editing routines. You plug in the features you want.
Turbo Editor Toolbox gives you easy-to-install You could build a WordStar®-like editor with pull-down
modules. Now you can integrate a fast and powerful menus like Microsoft's® Word, and make it work as fast
editor into your own programs. You get the source as WordPerfect®

code, the manual, and the know-how.

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for
two sample editors:

Simple Editer A complete editor ready to include in your programs. With windows, block commands, and
memory-mapped screen routines.

MicroStar A full-blown text editor with a complete pull-down menu user interface, plus a lot more.
Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

» Wordwrap

» UN-delete last line

* Auto-indent

« Find and Find/Replace with options

« Set left and right margin

« Block mark, move, and copy

e Tab, insert and overstrike modes,
centering, etc. MicroStar's puli-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few: ;

B/ RAM-based editor. You can edit very large B’ Multiple windows. See and edit up to eight
files and yet editing is lightning fast. documents—or up to eight parts of the same
Memory-mapped screen routines. In- document—all at the same time.
stant paging, scrolling, and text display. [2’ Multitasking. Automatically save your
Keyboard installation. Change control text. Plug in a digital clock, an appointment
keys from WordStar-like commands to any that alarm—see how it's done with MicroStar’s
you prefer. “background” printing.

Best of all, source code is included for everything in the Editor Toolbox.
Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: {BM PC, XT, AT, 3270, PCjr, and true compatibles. PC-D0OS (MS-DO0S) 2.0 or greater. 192K RAM.
You must be using Turbo Pascal 3.0 for IBM and compatibles.

= Turbo Pascal and Turbo Editor Toolbox are registered trademarks of Borland International, Inc.
= RLAN WordStar is a registered trademark of MicroPro International Corp. Word and MS-DOS are
= registered trademarks of Microsoft Corp. WordPerfect is a trademark of Satellite Software

INTERNATIONAL International. IBM, XT, AT, and PCir are registered trademarks of International Business Machines
. Corp. BOR 00678

GAME WORKS'

Secrets And Strategies Of The Masters Are
Revealed For The First Time

Explore the world of state-of-the-art computer games with Turbo GameWorks. Using
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal® Or, for instant excitement, play the three
great computer games we've included on disk—compiled and ready to run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your way to
becoming a master chess player. Explore the complete Turbo Pascal source code and discover the secrets of
Turbo Chess.

“What impressed me the most was the fact that with this program you can become a computer chess analyst.
You can add new variations to the program at any time and make the program play stronger and stronger chess.
There’s no limit to the fun and enjoyment of playing Turbo GameWorks Chess, and most important of all, with this
chess program there's no limit to how it can help you improve your game.”

—George Koltanowski, Dean of American Chess, former President of
the United Chess Federation, and syndicated chess columnist.

TURBO BRIDGE

Now play the world’s most popular card game—bridge. Play one-on-one with your computer or against up to
three other opponents. With Turbo Pascal source code, you can even program your own bidding or scoring
conventions.

“There has never been a bridge program written which plays at the expert level, and the ambitious user will
enjoy tackling that challenge, with the format already structured in the program. And for the inexperienced player,
the bridge program provides an easy-to-follow format that allows the user to start right out playing. The user can
‘play bridge’ against real competition without having to gather three other people.”

—NKit Woolsey, writer of several articles and books on bridge,
and twice champion of the Blue Ribbon Pairs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku—the exciting strategy game also
known as Pente In this battle of wits, you and the computer take turns placing X's and 0's on a grid of 19%X19
squares until five pieces are lined up in a row. Vary the game if you like, using the source code available on your
disk.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PCjr, and true compatibles. PC-DOS (MS-DO0S) 2.0 or later. 192K
RAM minimum. To edit and compile the Turbo Pascal source code, you must be using Turbo Pascal 3.0 for IBM PCs and
compatibles.

Turbo Pascal and Turbo GameWorks are registered trademarks of Borland International, Inc.
BORLAND Pente is a registered trademark of Parker Brothers. IBM, XT, AT, and PCir are registered
INTERNAT/IONA(lrademarks of International Business Machines Corporation. MS-DOS is a registered trademark

of Microsoft Corporation. Copyright 1987 Borland International BOR0065C

the natural language of Artificial Intelligence

Turbo Prolog brings fifth-generation supercomputer
power to your IBM°PC!

Turbo Prolog takes
programming into a new,
natural, and logical
environment

With Turbo Prolog,

because of its natural,

logical approach, both

people new to programming
and professional programmers
can build powerful applica-
tions such as expert systems,
customized knowledge

bases, natural language
interfaces, and smart
information management systems.

Turbo Prolog is a declarative language which
uses deductive reasoning to solve
programming problems.

Turbo Prolog’s development system
ncludes:

7 A complete Prolog compiler that is a variation
of the Clocksin and Mellish Edinburgh
standard Prolog.

1 A full-screen interactive editor.

7 Support for both graphic and text windows.

1 All the tools that let you build your own
expert systems and Al applications with
unprecedented ease.

INTERNATIONAL

3

Turbo Prolog provides
a fully integrated pro-
[l gramming environment
like Borland’s Turbo
l Pascal® the de facto
d worldwide standard.

Prolog programming
ystem

manual you're holding,
| software that includes
{ the lightning-fast Turbo
Prolog six-pass
compiler and interactive editor, and the
free GeoBase natural query language
database, which includes commented
source code on disk, ready to compile.
(GeoBase is a complete database designed
and developed around U.S. geography.
You can modify it or use it “as is.”)

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PCjr
and true compatibles. PC-DOS (MS-D0S) 2.0 or later. 384K RAM
minimum.

Suggested Retail Price: $99.95
(not copy protected)

Turbo Prolog is a frademark and Turbo Pascal is a registered trademark of Borland International, Inc.
IBM, AT, XT, and PCjr are registered trademarks of ional Business Machines Corp. MS-DOS is a
registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0016D

TURBO PROLOG
TOOLBOX

Enhances Turbo Prolog with more than 80 tools
and over 8,000 lines of source code

Turbo Prolog, the natural language of Artificial Intelligence, is the
most popular Al package in the world with more than 100,000 users.
Our new Turbo Prolog Toolbox extends its possibilities.

The Turbo Prolog Toolbox enhances Turbo Prolog—our 5Sth-generation computer programming
language that brings supercomputer power to your IBM PC and compatibles—with its more than 80
tools and over 8,000 lines of source code that can be incorporated into your programs, quite easily.

Turbo Prolog Toolbox features include:
Business graphics generation: boxes, circles, ellipses, bar charts, pie charts, scaled graphics
Complete communications package: supports XModem protocol
File transfers from Reflex® dBASE il Lotus 1-2-3,° Symphony®
A unique parser generator: construct your own compiler or query language
Sophisticated user-interface design tools
40 example programs
Easy-to-use screen editor: design your screen layout and 1/0
Calculated fields definition
Over 8,000 lines of source code you can incorporate into your own programs

EEEEEEE"

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT or true compatibles. PC-DOS (MS-D0S) 2.0 or later. Requires Turbo Prolog 1.10
or higher. Dual-floppy disk drive or hard disk. 512K,

Turbo Prolog Toolbox and Turbo Prolog are trademarks of Borland international, Inc. Reflex
is a registered trademark of Borland/Analytica, Inc. dBASE Il is a registered trademark of

=N
= BORLAND Ashlon-Tale. Lotus 1-2-3 and Symphony ase registered trademarks of Lotus Development
= Corp. IBM, XT, and AT are registered trademarks of International Business Machines Corp.

INTERNATIONAL MS-DOS s a registered trademark of Microsoft Corp. BOR 0240

TURBO BASIG

The high-speed BASIC you’ve been waiting for!

You probably know us for our Turbo Pascal® and Turbo Prolog.” Well, we've done
it again! We’ve created Turbo Basic, because BASIC doesn’t have to be slow.

If BASIC taught you how to walk, Turbo Basic will teach you how to run!

With Turbo Basic, your only speed is “Full Speed Ahead”! Turbo Basic is a complete development
environment with a lightning fast compiler, an interactive editor and a trace debugging system. And
because Turbo Basic is also compatible with BASICA, chances are that you already know how to use
Turbo Basic.

Turbo Basic ends the basic confusion

There’s now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is
right, the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing
Borland family of programming languages we call the “Turbo Family.” And hundreds of thousands of
users are already using Borland's languages. So, welcome to a whole new generation of smart PC
users! '

Free spreadsheet included with source code!
Yes, we've included MicroCalc, our sample spreadsheet, complete with source code. So you can get
started right away with a “real program.” You can compile and run it “as is,” or modify it.

A technical look at Turbo Basic

1 Full recursion supported executable program, with separate windows
™ Standard IEEE floating-point format for editing, messages, tracing, and execution
& Floating-point support, with full 8087 Compile and run-time errors place you in

coprocessor integration. Software emulation source code where error occurred

if no 8087 present ™ Access to local, static and global variables
™ Program size limited only by available ™ New long integer (32-bit) data type

memory {no 64K limitation) & Full 80-bit precision
™ EGA and CGA support & Pull-down menus
™ Full integration of the compiler, editor, and & Full window management

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, AT, XT or true compatibles. 256K. One floppy drive. PC-DOS (MS-DOS) 2.0 or later.

=y Turbo Basic and Turbo Pascal are registered trademarks and Turbo Prolog is a lrademark of
= BORLA"D Borland International, Inc. IBM, AT, and XT are registered trademarks of International Busi
= Machines Corp. MS-DOS is a registered trademark of Microsoft Corp.

INTERNATIONAL Copyright 1987 Borland International BOR 0265A

TURBO &

Includes freé
MicroCalc spreadsheel
with source co0€

A complete interactive development environment

With Turbo C, you can expect what only Borland delivers:

Quality, Speed, Power and Price. And with its compilation

speed of more than 7000 lines a minute, Turbo C makes
everything else look like an exercise in slow motion.

Turbo C: The C compiler for both amateurs and professionals

If you're just beginning and you've "kinda wanted to learn C,” now’s your chance to do it the easy way.
Turbo C's got everything to get you going. If you're already programming in C, switching to Turbo C will
considerably increase your productivity and help make your programs both smaller and faster.

Turbo C: a complete interactive development environment
Like Turbo Pascal® and Turbo Prolog,” Turbo C comes with an interactive editor that will show
you syntax errors right in your source code. Developing, debugging, and running a Turbo C

program is a snap!

& Compiler: One-pass compiler generating native in-
line code, linkable object modules and assembler.
The object module format is compatible with the

large, and huge memory mode! libraries. Can mix
models with near and far pointers. Includes
floating point emulator (utilizes 8087/80287 if
installed).

& Interactive Editor: The system includes a powerful,
interactive full-screen text editor. If the compiler
detects an error, the editor automatically positions
the cursor appropriately in the source code.

PC-DOS linker. Supports small, medium, compact,

Technical Specifications

& Development Environment: A powerful “Make” is
included so that managing Turbo C program
development is easy. Borland's fast “Turbo
Linker" is also included. Also includes pull-down
menus and windows. Can run from the environ-
ment or generate an executable file.

' Links with relocatable object modules created
using Borland's Turbo Prolog into a
single program.

cd AN%I (? cgmpalible.

Start-up routine source code included.

@ Both command line and integrated environment

versions included.

“Sieve” benchmark (25 iterations)

Turbo € Microsoft® C Lattice C
Compile time 3.89 16.37 13.90
Compile and link time 9.94 29.06 27.79
Execution time 877 9.51 13.79
Object code size 274 297 301
Price $99.95 $450.00 $500.00

Benchmark run on a 6 Mhz IBM AT using Turbo C version 1.0 and the Turbo Linker version 1.0; Microsoft C version 4.0 and the
MS overlay finker version 3.51; Lattice C version 3.1 and the MS object linker version 3.05.

Suggested Retail Price: $399.95* (not copy protected) -riocuctry ofer good trough iy 1, 1987,

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. One floppy drive. 320K.
=Y Turbo C and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of Borland

= BORLAND International, Inc. Microsoft G and MS-DOS are registered trademarks of Microsoft Corp. Lattice C

INTERNATIONGAL is a registered trademark of Lattice, Inc. IBM, XT, and AT are registered irademarks of International

Business Machines Corp. BOR 0243

f””f“‘.’ THE SOLVER

The solution to your most complex
equations—in seconds!

If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap.

Eureka also handles maximization and minimization problems, plots functions, generates reports, and
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you
solve your real-world mathematical problems fast, without having to learn numerical approximation
techniques. Using Borland’s famous pull-down menu design and context-sensitive help screens, Eureka
is easy to learn and easy to use—as simple as a hand-held calculator.

X + exp(X) = 10 solved instantly instead of eventually!

Imagine you have to “solve for X,” where X + exp(X) = 10, and you don't have Eureka: The Solver.
What you do have is a problem, because it's going to take a lot of time guessing at “X.” With Eureka,
there's no guessing, no dancing in the dark—you get the right answer, right now. (PS: X = 2.0705799,
and Eureka solved that one in .4 of a second!)

How to use Eureka: The Solver

It's easy. o You can then tell Eureka to
1. Enter your equation into the m Evaluate your solution
full-screen editor ® Plot a graph
2. Select the “Solve™ command ®m Generate a report, then send the output
3. Look at the answer to your printer, disk file or screen
4. You're done * m 0Or all of the above
Some of Eureka’s key features Eureka: The Solver includes
You can key in: ™ A full-screen editor
™ A formula or formulas ™ Pull-down menus
™ A series of equations—and solve for ™ Context-sensitive Help
all variables ™ On-screen calculator
™ Constraints (like X has to be ™ Automatic 8087 math co-processor
<or=2) chip support
™ A function to plot ™ Powerful financial functions
™ Unit conversions ™ Built-in and user-defined math and
™ Maximization and minimization problems financial functions
™ Interest Rate/Present Value calculations ™ Ability to generate reports complete with
™ Variables we call “What happens?,” like plots and lists
“What happens if | change this variable to ™ Polynomial finder
21 and that variable to 277" ™ Inequality solutions
Minimum system configuration: (BM PC, AT, XT, Portable, Suggested Retail Price: $99.95*
3270 and true compatibles. PC-DOS (MS-DOS) 2.0 and (ﬂDl copy protected)
later. 384K.

=Y Eureka: The Solver is a trademark of Borland International, Inc. 1BM, AT, and XT are registered
= BORLAND trademarks of International Business Machines Corp. MS-DOS is a registered trademark of
= Microsoft Corp. Copyright 1987 Borland International BOR 0221A

INTERNATIONAL “Introductory price expires July 1, 1987

SIDERIGK: iz

Macintosh™

The most complete and comprehensive collection of
desk accessories available for your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick—Outlook™ The Qutliner
and MacPlan™; The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Outliner
w |t's the desk accessory with more power than a stand-alone outliner
= A great desktop publishing tool, Outlook lets you incorporate both text and graphics
into your outlines
= Works hand-in-hand with MacPlan
Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
Integrates spreadsheets and graphs
Does both formulas and straight numbers
Graph types include bar charts, stacked bar charts, pie charts and line graphs
includes 12 example templates free!
Pastes graphics and data right into Outlook creating professional memos and reports, complete
with headers and footers.

& File Edit Diew Special Worksheet
Lo Forecast

SideKick: The Desktop Organizer, :
Release 2.0 now includes e —
& Outiook: The Outliner = Hastien praph EESSSE
™ MacPlan: The Spreadsheet
& Mini word processor
& Calendar
& PhonelLog
& Analog clock
& Alarm system
& Calculator
© Report generator MacPlan does both spreadsheets and business
Telecommunications (new version now graphs. Paste them into your Outlook files and
supports XModem file transfer protocol) Generate professional reports.

B 1361% Sakes b
O 159¢8 SaksB
DEIE Tolal Revenses

a o3 .
B 03 Bgmses
O a3% Labor
M aeq Matwrins
B 1% ovmead N
O 11188 Total Bxpenses |
g o

B 1845% Net Profit

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One 800K or two 400K drives are recommended.
With one 400K drive, a limited number of desk accessories will be installable per disk.

2
= = BORLAND SideKick is a registered trademark and Outiook and MacPlan are trademarks of Borland
= International, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. licensed to Apple

INTERNATIONAL Computer, Inc. Copyright 1987 Borland International BOR 00690

®
B‘.’ﬂ m THE DATABASE
= MANAGER
The easy-to-use relational database that thinks like a spreadsheet.

Reflex for the Mac lets you crunch numbers by entering formulas and link
databases by drawing on-screen lines.

§ Iree ready-to-use templates are included on the examples disk:

m A sample 1040 tax application with Sched-
ule A, Schedule B, and Schedule D, each
contained in a separate report document.

® A portfolio analysis application with linked
databases of stock purchases, sales, and
dividend payments.

® A checkbook application.

m A client billing application set up for a law
office, but easily customized by any
professional who bills time.

B A parts explosion application that breaks
down an object into its component parts
for cost analysis.

Reflex for the Mac accomplishes all of these tasks without programming—using
spreadsheet-like formulas. Some other Reflex for the Mac features are:

® Visual database design. = Data types which include variable length text, number,

® “What you see is what you get" report and form layout integer, automatically incremented sequence number,
with pictures. date, time, and logical.

® Automalic restructuring of database files when data m Up to 255 fields per record.
types are changed, or fields are added and deleted. ® Up to 16 files simultaneously open.

® Display formats which include General, Decimal, & Up to 16 Mac fonts and styles are selectable for
Scientific, Dollars, Percent. individua! fields and labels.

After opening the “Overview” window, you The link lines you draw establish both You can have multiple windows open
draw link lines between databases directly visual and electronic relationships between simultaneously to view all members of a
onto your Macintosh screen. your databases. linked set—which are interactive and truly

relational.

Critic’s Choice

“... a powerful relational database . . . uses a visual approach to information management.” InfoWorld
“... gives you a lot of freedom in report design; you can even import graphics.” A-+ Magazine

“. ... bridges the gap between the prelty programs and the power programs.” Stewart Alsop, PC Letter

2 Suggested Retail Price: $99.95*
EQBI;,A,”R (not copy protected)

Minimum system configuration: Macintosh 512K or Macinlosh Plus with one disk drive. Second external drive recommended.

Reflex is a registered trademark of Borland/Analytica, Inc. Macintosh is a trademark of Mclntosh Laboratory, Inc. and is used with express permission of its owner.
Copyright 1987 Borland International

*Introductory price expires July 1, 1987

i

BORO149A

TURBO

P Asc‘l ;‘EIIIIHS”"

The ultimate Pascal development environment

Borland’s new Turbo Pascal for the Mac is so incredibly fast that it can
compile 1,420 lines of source code in the 7.1 seconds it took you to read this!

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac
to compile at least 60,000 more lines of source code!

Turbo Pascal for the Mac does both Windows and “Units”

The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called “Units,”
which can be linked to any Turbo Pascal program. This “modular pathway” gives you “pieces” which can
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the
time it takes to develop large programs.

Turbo Pascal for the Mac is so compatible with Lisa° that they should be living together
Routines from Macintosh Programmer’s Workshop Pascal and Inside Macintosh can be compiled and run
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File
System of the Macintosh.

The 27-second Guide to Turbo Pascal for the Mac
® Compilation speed of more than 12,000 lines Workshop Pascal (with minimal changes)
per minute ® Compatibility with Hierarchical File System of
® “Unit" structure lets you create programs in your Mac
modular form o Ability to define default volume and folder names
® Multiple editing windows—up to 8 at once used in compiler directives
® Compilation options include compiling to disk or e Search and change features in the editor speed up
memory, or compile and run and simplify alteration of routines
e No need to switch between programs to compile ® Ability to use all available Macintosh memory
or run a program without limit
o Streamlined development and debugging ® “Units* included to call all the routines provided by
® Compatibility with Macintosh Programmer’s Macintosh Toolbox

Suggested Retail Price: $99.95* (not copy protected)

*Introductory price expires July 1, 1987

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive.

Turbo Pascal and SideKick are registered trademarks of Borland International, Inc. and Reflex is a

2 Bonu"p registered trademark of Borland/Analytica, Inc. Macintosh is a trademark of Mclntosh Laboratories, Inc. licensed
= to Apple Computer with its express permission. Lisa is a registered trademark of Apple Computer, Inc. Inside
= INTERNATIONAL Macintosh is a copyright of Apple Computer, Inc.
Copyright 1987 Borland International BOR 0167A

== BORLAND

INTERNATIONAL
4585 Scotts Valley Drive Scotts Valley, California 95066

/I |
To Order ™™ n ¥
By Credit 4 A California '

|

l

l | J cl |
I ‘?;Z’ ~ (500) !
| (800

742-1133 |
Canada call
S ' 800) Z07.1:08
1 I T 1T 1 10

NOTES

NOTES

NOTES

TURBO PASCAL

NUMERIGAL
METHODS
T001BOX

A complete collection
of Turbo Pascal®
routines and programs

IBM" VERSION

PC, XT® AT"& True Compatibles

Pascal Numerical Methods Toolbox implements the latest

, ew from Borland’s Scientific & Engineering Division, Turbo

high-level mathematical methods to solve common scientific
and engineering problems. Fast.

So every time you need to calcu-
late an integral, work with Fourier
Transforms or incorporate any of the
classical numerical analysis tools into
your programs, you don't have to
reinvent the wheel. Because the
Numerical Methods Toolbox is a
complete collection of Turbo Pascal
routines and programs that gives you
applied state-of-the-art math tools.

It also includes two graphics demo
programs, Least Squares Fit and Fast
Fourier Transforms, to give you the
picture along with the numbers.

The Numerical Methods Toolbox is
a must for you if you're involved with
any type of scientific or engineering
computing. Because it comes with
complete source code, you have total
control of your application.

What Numerical Methods

Toolbox will do for you now:

® Find solutions to equations

® [nterpolations

® Calculus: numerical derivatives
and integrals

® Matrix operations: inversions,
determinants and eigenvalues

® Differential equations

B [east squares approximations
® Fourier transforms

§ free ways to look at
“Least Squares Fit"!

As well as a free demo “Fast
Fourier Transforms,” you also get
“Least Squares Fit" in 5 different
forms—uwhich gives you 5
different methods of fitting curves
to a collection of data points.
You instantly get the picture! The
5 different forms are:

1. Power 4. 5-term Fourier
2. Exponential 5. 5-term
3. Logarithm Polynomial

They're all ready to compile
and run “as is.” To modify or
add graphics to your own
programs, you simply add Turbo
Graphix Toolbox® to your soft-
ware library. Our Numerical
Methods Toolbox is designed to
work hand-in-hand with our
Turbo Graphix Toolbox to make
professional graphics in your
own programs an instant part of
the picture!

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-D0S) 2.0 or later. 256K. Turbo
Pascal 2.0 or later. The graphics modules require a graphics monitor with an IBM CGA, IBM EGA, or Hercules compatible
adapter card, and require the Turbo Graphix Toolbox. MS-DOS generic version will not support Turbo Graphix Toolbox
routines. An 8087 or 80287 numeric co-processor is not required, but recommended for optimal performance.

Turbo Pascal Numerical Methods Toolbox is a trademark and Turbo Pascal and Turbo Graphix Toolbox are registered

trademarks of Borland International, Inc. IBM, XT, and AT are registered trademarks of International Business Machines
Corp. MS-DOS s a registered trademark of Microsoft Corp. Hercules is a trademark of Hercules Computer Technology.
Apple is a registered trademark of Apple Computer, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. licensed

to Apple Computer.

BORLAND

INTERNATIONAL

Copyright 1986 Borland International BOR 0224

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CA 95066

ISBN 0-87524-157-3

