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I ntroductian 

The Turbo Numerical Methods Toolbox is a reference manual for both the student 
of numerical analysis and the professional needing efficient routines. An elemen­
tary background in calculus and linear algebra is assumed, although many of the 
algorithms use only high-school-level mathematics. A general knowledge of Turbo 
Pascal® is also assumed. If you need to brush up on your knowledge of Pascal, we 
suggest looking at the Turbo Pascal Reference Manual and/or the Turbo Pascal 
Tutor Manual. 

Before you begin using a particular routine, read through this brief introductory 
chapter and then refer to the chapter that interests you. 

Toolbox Functions 

The Turbo Pascal Numerical Methods Toolbox provides routines for 

• Finding solutions to equations 

• Interpolations 

• Calculus 

• l'iumerical derivatives and integrals 

• Matrix operations: inversions, determinants, and eigenvalues 



• Differential equations 

• Least-squares approximations 

• Fourier transforms 

About this Manual 

The major areas in numerical analysis are represented in this Toolbox, with each 
chapter focusing on a particular problem. Each routine begins with a general 
description of the implemented algorithm or numerical method. (References to 
numerical analysis texts are provided for each numerical procedure.) User-supplied 
types, functions, and input and output parameters are defined, and the syntax of 
the procedure call is provided. If appropriate, a "Comments" section is also pro­
vided. 

Finally, every algorithm in the Toolbox is accompanied by a general-purpose 
program that handles all the necessary I/O, while allowing you to try each algo­
rithm without building any code. Handily, these sample programs will often reduce 
the coding your own application may require. 

As an example, let's say you want to find the roots to an equation in one variable. 
First, you would read the introduction to Chapter 2, "Roots to Equations in One 
Variable," and choose the numerical method best suited to your particular problem. 
Second, you would run the sample program for the desired numerical method to 
determine the necessary input and output. Third, you would write a Turbo Pascal 
function defining your equation, using the function already coded in the sample 
program as a guide. Fourth, you would run the sample program with your function 
substituted for the original one. Of course, if these algorithms are to be part of a 
larger program, you must build all the interfaces to the other parts of the system; 
but this should only be done after you gain experience with the particular numeri­
cal method. 

Several books are referred to throughout the text; complete references are listed 
at the back of the book in the section entitled "References." 

The body of this manual is printed in normal typeface; other typefaces serve to 
illustrate the following: 

Alternate 

Italics 

Boldface 

2 

This type displays program examples and procedure and function 
declarations. 

This type emphasizes certain concepts, first-mentioned terms, and 
mathematical expressions. 

This type marks the reserved words of Turbo Pascal in text and in 
program examples. 
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On the Distribution Disks 

The routines for this Toolbox are contained on three packed disks. Their contents 
and general installation instructions are covered in Chapter l. 

System Requirements 

All routines will run in standard Turbo Pascal version 3.0. (They will also run in 
version 2.0, but you must make one change to use the sample programs; see the 
section entitled "Installation" in Chapter 1.) All sample programs will run on an 
IBM® PC or compatible machine using DOS 2.0 or greater. 

A small portion of the Toolbox uses graphics (see Chapter 11). These programs 
are for PC-DOS users only, requiring either an IBM PC Color Graphics Adapter, 
an IBM Enhanced Graphics Adapter, or a Hercules Monochrome Graphics 
Adapter. Recompiling these requires the Turbo Pascal Graphix Toolbox® version 
1.06A or later, and Turbo Pascal 3.0. They can also be recompiled for the EGA and 
several other cards using version 1.07 A of the Graphix Toolbox. 

We strongly recommend that anyone serious about numerical analysis invest in 
hardware and software to run Turbo Pascal with support for the Intel 8087 numeri­
cal processing chip: 

• Hardware: an 8087 chip plugged into the motherboard of a PC, XT® or equiva­
lent, or an 80287 chip in an AT® or equivalent. 

• Software: TURBO-87.COM, the version of Turbo Pascal designed to take advan­
tage of the 8087 chip. 

For machines running the Intel 8088 CPU, the increase in execution speed of 
programs using real-number arithmetic is often a factor of ten or more, while for 
80286 machines, the increase is only about a factor of two (Fried 1985). Perhaps 
more important than speed is the increase in accuracy -16 significant figures accu­
racy for Turbo Pascal with 8087 support versus 11 significant figures for standard 
Turbo. Since round-off errors are a serious concern in numerical analysis, the 
increased accuracy is of great value. 

All of the examples in this manual were run using Turbo-87. If you run them 
without the Turbo-87, you will usually get less accurate answers. 
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c H A p T E R 1 
Routine Beginnings 

This chapter provides you with everything you need to start using the routines in 
this Toolbox. We'll discuss how to unpack the disks for use and list the files avail­
able once the disks are unpacked. We also briefly discuss data types and defined 
constants used in the Toolbox, and the setting of compiler directives. 

First, though, before we thrust you into the middle of numerical madness, let's 
take a look at one way to use this Toolbox. 

Using the Toolbox: An Example 

In late 1986 and early 1987, the America's Cup 12-meter yacht championship was 
held. The 12-meter yachts are just large sailboats, but the competition is so intense 
that the only way to be competitive is to use dozens of people, spend millions of 
dollars, design a special boat, and spend a couple of years training for the race. The 
race has become so sophisticated that many of the sailboats have on-board com­
puters and other electronic equipment. 

To keep stride with other challengers, one yacht's crew used personal com­
puters, and of course, Borland software. They used Turbo Pascal to design the 
boat's hull. They used Reflex: The Analyst® to maintain their databases and to dis­
play plots while the boat was sailing. And when it came time to do some mathemat­
ical modeling, again they turned to Borland for its inimitable software and chose 
the Toolbox. 
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Simply speaking, the problem they had was one of "precision monitoring." It 
takes a crew of very highly skilled sailors to compete in America's Cup races, but 
even the best skippers cannot act with sufficient precision to win. A typical race 
lasts for several hours, and the winner usually wins by only a few feet. 

The electronic equipment on a boat can sense with reasonable accuracy all of the 
crucial variables: boat velocity, wind velocity, boat direction, boat position, and so 
on. This data must then be made available to the skipper in a coherent form, and 
he/she must decide at what angle to place the rudder based on that information. 
The problem is too complex to rely on intuition alone. 

Even just displaying the velocity is more complex than you might think at first. 
When sailing on the ocean, the waves are big enough that the velocity is in constant 
flux. Fortunately, the fluctuations due to the waves represents a steadily periodic 
force. By using the Fourier transforms in Chapter 10 of the Toolbox, the crew was 
able to identify the periodic portion of the velocity and subtract it out. The result: 
the velocity as a function of time but with the wave fluctuations eliminated. The 
graph of this modified velocity is much smoother, and allows the skipper to tell 
much more quickly and accurately whether the boat is accelerating or decelerating. 

To measure the acceleration quantitatively, the crew used the fact that the accel­
eration is the derivative of the velocity. They were able to do this easily with the 
differentiation routines in Chapter 4 of the Toolbox. They were also able to directly 
measure the distance travelled by using the integration routines in Chapter 5, and 
the fact that distance is the integral of the speed. 

Perhaps the most difficult problem in navigating a sailboat is aiming the rudder. 
You can't just aim the boat in the direction that you want to go, rather you have to 
pick a direction that you can sail rapidly, depending on the wind direction. An 
experienced skipper can judge this pretty well, but not well enough. Every boat is 
a little different, and the best way to handle one boat is not necessarily the best way 
to handle another. 

So, the team ran extensive trial races with the boat to gather data on how the 
boat performed in various circumstances. The data was collected automatically by 
electronic instruments on board, and stored digitally on floppy disks. They then 
used Reflex to manage the data and to display graphs. But they lacked the tools to 
relate their data to the data they would have under actual racing conditions. 

In order to predict the behavior of their boat in an actual race, the team created a 
model from their collected data using the least-squares routines in Chapter 9 of the 
Toolbox. With the least-squares routines, you can create a multiparameter model 
and then find the values of the parameters that make the model most accurately fit 
the data. With a mathematical model of the boat's behavior, the team was then able 
to predict how the boat would perform under circumstances similar but not identi­
cal to its practices. 
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This, of course, is just one of many applications of this Toolbox. Now, let's go on 
to the fundamentals. 

. The Distribution Disks 

All of the Toolbox routines are contained on three disks. (Note, however, that 
MS-DOS® users will receive two disks; Disk 3 is for PC-DOS users only.) Each 
disk has packed files corresponding to chapters in the manual. Use the program 
UNPACK.EXE to unpack the files, described in the next section, "Installation." 

The files for each chapter are self-contained and do not require any files from 
any other chapter, with these exceptions: 

\ 

• All files require Turbo Pascal (not included). 

• Most files require COMMON.INC, located on Disk l. 

• The files for Chapter 11 require files from Chapters 9 and 10, as well as the 
Turbo Pascal Craphix Toolbox (not included). 

The numerical analysis routines are in the files with the .INC suffix. The files 
with the .PAS suffix are demonstration programs. To run a demonstration program, 
get into Turbo Pascal and load the .PAS file of your choice. The menus are self­
explanatory. The .DAT files contain input data for specific .PAS files. 

If you're a PC-DOS user with an IBM color graphics monitor or compatible, you 
can run LSQIBM.COM or FFfIBM.COM from Disk 3 to see a quick graphic 
demonstration of the power and usefulness of the Toolbox. These routines require 
the files SAMP11A.DAT, SAMPllB.DAT, 4X6.FON, 8X8.FON, and ERROR.MSC 
to be on the current directory. (These files are also on Disk 3.) 

Contents of the enclosed disks: 

Disk 1 
README 
README.COM (program to display README file) 
UNPACK.EXE (installation program to unpack chapters) 
COMMON.INC (used throughout the Toolbox) 
COMMON2.INC (for Turbo Pascal 2.0 users) 
CHAP2 (packed file with routines for Chapter 2) 
CHAP3 (packed file with routines for Chapter 3) 
CHAP4 (packed file with routines for Chapter 4) 
CHAP5 (packed file with routines for Chapter 5) 
CHAP6 (packed file with routines for Chapter 6) 
CHAP7 (packed file with routines for Chapter 7) 
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Disk 2 
UNPACK.EXE (installation program to unpack chapters) 
CHAP8 (packed file with routines for Chapter 8) 
CHApg (packed file with routines for Chapter 9) 
CHAPIO (packed file with routines for Chapter 10) 
CHAP11 (packed file with routines for Chapter 11; PC-DOS users only) 

Disk 3 (PC-DOS users only) 
README 
README.COM (program to display README file) 
LSQIBM.COM (requires IBM graphics monitor) 
FFTIBM.COM (requires IBM graphics monitor) 
LSQHERC.COM (requires Hercules graphics card) 
FFTHERC.COM (requires Hercules graphics card) 
SAMP11A.DAT (data file for LSQ*.COM) 
SAMP11B.DAT (data file for FFT*.COM) 
14X9.FON (from the Graphix Toolbox) 
4X6.FON (from the Graphix Toolbox) 
8X8.FON (from the Graphix Toolbox) 
ERROR.MSG (from the Graphix Toolbox) 

Installation 

The files CHAP2 through CHAP11 are packed files corresponding to the chapters 
in this manual. In order to use these files, you must first unpack them with 
UNPACK.EXE. The syntax is as follows: 

UNPACK packed-file-name target-drive 

For example, the files for Chapter 2 can be extracted and put on the current 
directory on drive C by placing Disk 1 in drive A, changing the logged drive to A by 
typing A: at the DOS prompt, and then typing 

UNPACK CHAP2 c: 
Wildcards are okay to use for the packed file name, and a directory can be 

specified with the target drive if it ends with a backslash (\). For example, all of the 
packed files on disk can be placed in a directory C:\NUMERIC by doing the 
following: 

UNPACK CHAP* C:\NUMERIC\ 

if the directory C:\NUMERIC already exists. 
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You may wish to copy the packed files onto your hard disk, and then unpack 
them as you need them. 

Note: These files are not copy protected. All files are ordinary DOS files; there 
are no hidden files. The unpacking program only extracts ordinary text files - it 
will not create directories, modify the distribution disk, create hidden or protected 
files, or do anything unexpected. 

Contents of the packed files: 

CHAP2 (packed file) 

BISECT.lNC 

BISECT.PAS 

LAGUERRE.lNC 

LAGUE RRE. PAS 

MULLER.lNC 

MULLERPAS 

NEWTDEFL.lNC 

CHAP3 (packed file) 

CUBE_CLA.lNC 

CUBE_CLAPAS 

CUBE-FRE.lNC 

CUBE_FRE.PAS 

DIVDIF.INC 

DIVDI F. PAS 

LAGRANGE.lNC 

LAGRANGE. PAS 

SAMPLE3A.DAT 

CHAP4 (packed file) 

DERIV.lNC 

DERIV.PAS 

DERIV2.1NC 

DERIV2.PAS 

DERIVFN.lNC 

DERIVFN.PAS 

Routine Beginnings 

"Roots to Equation in One Variable" 

N EWTDEFL. PAS 

RAPHSON.lNC 

RAPHSON .PAS 

RAPHSON2.PAS 

SECANT.lNC 

SECANT.PAS 

"Interpolation" 

SAMPLE3B.DAT 

SAMPLE3C.DAT 

SAMPLE3D.DAT 

SAMPLE3E.DAT 

SAMPLE3F.DAT 

SAMPLE3G.DAT 

SAMPLE3H.DAT 

SAMPLE31.DAT 

"Numerical Differentiation" 

DERIV2FN.lNC 

DERIV2FN .PAS 

INTERDRV.lNC 

INTERDRV.PAS 

SAMPLE4A.DAT 

SAMPLE4B.DAT 
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CHAP5 (packed file) 

ADAPGAUS.lNC 

ADAPGAUS.PAS 

ADAPSIMP.lNC 

ADAPSIMP.PAS 

ROMBERG.INC 

CHAP6 (packed file) 

DET.INC 

DET.PAS 

DIRFACT.INC 

DIRFACT.PAS 

GAUSELIM.INC 

GAUSELIM.PAS 

GAUSSIDL.INC 

GAUSSIDL.PAS 

CHAP7 (packed file) 

INVPOWER.INC 

INVPOWERPAS 

JACOBI.INC 

JACOBI. PAS 

POWER.INC 

"Numerical Integration" 

ROMBERG.PAS 

SIMPSON.lNC 

SIMPSON.PAS 

TRAPZOID.lNC 

TRAPZOID.PAS 

"Matrix Routines" 

INVERSE.INC 

INVERSE.PAS 

PARTPIVT.INC 

PARTPIVT.PAS 

SAMPLE6A.DAT 

SAMPLE6B.DAT 

SAMPLE6C.DAT 

SAMPLE6D.DAT 

"Eigenvalues and Eigenvectors" 

POWERPAS 

SAMPLE7 ADAT 

WIELANDT.lNC 

WIELANDT.PAS 

CHAPS (packed file) "Initial Value and Boundary Value Methods" 
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ADAMS_l.INC RUNGE-2.PAS 

ADAM S_I. PAS 

LINSHOT2.1NC 

LINSHOT2.PAS 

RKF_l.INC 

RKF_l.PAS . 

RUNGE_l.INC 

RUNGE_I. PAS 

RUNGE-2.INC 

RUNGE_N.INC 

RUNGE-N.PAS 

RUNGE_Sl.INC 

RUNGE_Sl.PAS 

RUNGE_S2.INC 

SHOOT2.INC 

SHOOT2.PAS 
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CHAP9 (packed file) 

EXP.LSQ 

FOURIERLSQ 

LEAST.INC 

LEAST. PAS 

LOG.LSQ 

CHAPIO (packed file) 

COMPCNVL.INC 

COMPCORRINC 

COMPFFT.INC 

FFT87B2.INC 

FFT87B4.INC 

FFTB2.INC 

FFTB4.INC 

"Least-Squares Approximations" 

POLY.LSQ 

POWERLSQ 

SAMPLE9A.DAT 

USERLSQ 

"Fast Fourier Transform Routines" 

FFTPROGS.PAS 

REALCNVL.INC 

REALCORR.INC 

REALFFT.IN C 

SAMPIOA.DAT 

SAMPI0B.DAT 

SAMPIOC.DAT 

CHAPll (packed file) "Graphics Programs" IPC-DOS only 

FFTDEMO.PAS LEAST.MOD 

GENERIC.LSQ 

GRAPHIX.EGA 

GRAPHIX.HGC 

IOCHECK.INC 

LSQDEMO.PAS 

All sample programs call the include file COMMON.INC from the disk. This 
file includes procedures that are common to all sample programs. When copying 
any of the sample programs to a disk, be sure to also copy the file COMMON.INC 
to that disk or the sample programs will not compile. 

To use the sample programs with Turbo Pascal version 2.0, rename COM­
MON2.INC (which is on Disk 1) to COMMON.INC. (You may wish to preserve a 
copy of tlie original COMMON.INC file by first copying it to a file called COM­
MON3.INC). If you run the sample programs with version 2.0 and do not make 
this change, the programs will compile but will handle I/O errors incorrectly. 

We have made the sample programs general and easy to use. For example, 
numerical input can originate from the keyboard (where improper input is trap­
ped) or from a text file; output can be sent to the printer, screen, or text file; other 
refinements are also included. Since, to a beginner, the supporting code may 
obscure the simplicity of calling the procedure, we have included a minimal sample 
program for Newton-Raphson's method of root-finding (RAPHSON2.INC). 
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The Graphics Denws 

Because graphic displays are often an essential part of numerical analysis, we have 
included two demonstration programs (for PC-DOS users only) that involve dis­
play numerical results. As previously stated, graphics hardware is not necessary for 
this Toolbox, but it is required for these two graphics programs. The programs are 
built with subsets of the Turbo Pascal Graphix Toolbox; there are separate versions 
for systems with the Hercules Monochrome Graphics card and the IBM Color 
Graphics card (or good emulations of these cards). 

The demonstration programs are on Disk 3. For instructions about how to run or 
recompile them, see Chapter 11. 

Data Types and Defined Constants 

Data types that might be confused with those in the calling program have been 
prefixed with the letters TN (for Turbo Numerical); for example, TNmatrix or 
TN vector. You must define these variable types in your top-level program for two 
reasons. First, you will probably need to use this type in your top-level program, 
and the type must be defined to have the same scope as the Toolbox procedure. 
Second, you will want to dimension arrays based on your particular needs. For 
example, the Lagrange procedure requires the definition 

type TNvector = array[O .. TNArraySize] of Real; 

The identifier TNArraySize is never referred to in any of the include files. It 
should be optimized by the user, although we have set a default value in each of the 
sample programs. It may be replaced with an integer or byte. 

TNNearlyZero is the only defined constant that must be changed when standard 
Turbo Pascal is used (instead of Turbo-87); it should be changed to IE - 7. (With­
out changing this constant, you will get a syntax error when compiling with stan­
dard Turbo Pascal.) For Turbo-87, the default value of this constant is IE -15. 
(There are a few exceptions to these default values; where appropriate, the "Com­
ments" section of each routine indicates the exceptions.) 
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Compiler Directives 

Aside from the usual default values of the compiler directives in standard Turbo 
Pascal, we have set the compiler directive to {$R + } in all include files that use 
arrays, and to {$I-} in all sample programs. The first directive checks to see that all 
array-indexing operations are within the defined bounds and all assignments to 
scalar and subrange variables are within range. The latter directive disables I/O 
error-checking. All the sample programs have their own I/O error-checking proce­
dures (loaded in the file COMMON.lNC), so that the {$I-} directive must remain 
disabled in the sample programs. The array checker {$R +} should always be 
active, since the performance penalty is slight and the advantages are significant. 
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c H A p T E R 2 
Roots to Equations in One Variable 

The routines in this chapter are for finding the roots of a single equation in one real 
variable. A typical problem is to solve 

x * exp(x) - 10 = 0 . 

In general, the routines find a value of x, where x is a scalar real variable, 
satisfying 

f(x) = 0.0 

where f is a real-valued function that you program in Pascal. 

All of the methods are approximate methods, meaning that they find an approxi­
mate value of x that makesf(x) close to zero. Because of round-off error, it is usually 
not possible to find the exact value of x. Furthermore, they are all iterative 
methods, meaning that you specify some initial guess that is some value for x, 
which you think is reasonably close to the solution. The routine repeats some calcu­
lations that replace the guess x with a more accurate guess until the required level 
of accuracy is achieved. 

The bisection method (BISECT.INC) returns an approximation to a root of a real 
continuous function of the real variable x. This method always converges (as long as 
the function changes signs at a root), but may do so relatively slowly. 

The Newton-Raphson method (RAPHSON.INC) also returns an approximation 
to a root of a real functionf of the real variable x. When this algorithm converges, it 
is usually faster than the bisection method. If more than one root of a polynomial 
equation is desired, then use Newton-Horner's method (NEWfDEFL.INC). 
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The secant method (SECANT.lNC) is similar to the Newton-Raphson method, 
but doesn't require knowledge of the first derivative of the function. Consequently, 
it is more flexible than the N ewton-Raphson method, though somewhat slower. 

Newton-Horner's method (NEWfDEFL.lNC) applies Newton's method to 
real polynomials. It also uses deflation techniques to attempt to approximate all the 
real roots of a real polynomial. Both the Newton-Horner and Newton-Raphson 
methods are faster than the bisection and secant methods, but are undefined if 
If'(x)1 < = TNNearlyZero. This is less of a problem on machines with a high­
precision math coprocessor, since TNNearlyZero is smaller. 

The Newton-Horner and Newton-Raphson methods both converge around mul­
tiple roots, although convergence is slow. These algorithms depend upon an initial 
approximation of the root. If the initial approximation is not sufficiently close to the 
root, the Newton methods may not converge. In some instances, an initial choice 
may lead to successive iterations that oscillate indefinitely about a value of x usu­
ally associated with a relative minimum or relative maximum off. In either case, 
the bisection method could be used to determine the root or to determine a close 
approximation to the root that can be employed as an initial approximation in the 
Newton-Raphson or Newton-Horner methods. 

Muller's method (MULLER.lNC) returns an approximation to a root (possibly 
complex) of a complex function of the complex variable x. Although Muller's 
method can approximate the roots of polynomials, we recommend that you use 
Newton-Horner's method, the secant method, or (in the case of complex polyno­
mials) Laguerre's method to find the roots of polynomials. 

Laguerre's method (LAGUERRE.lNC) attempts to approximate all the real and 
complex roots of a real or complex polynomial. Laguerre's method is very reliable 
and quick, even when converging to a multiple root. This is the best general 
method to use with polynomials. 

A caution when solving polynomial equations: Polynomials can be ill­
conditioned, in the sense that small changes in the coefficients may lead to large 
changes in the roots. 
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Stopping Criteria 

All the root-finding routines use the function TestForRoot to determine if a root has 
been found. 

function TestForRoot{X, OldX, V, Tol : Real) : Boolean; 

(********************************************************************) 
(* Here are four stopping criteria. If you wish to *) 
(* change the active criteria, simply comment off the current *) 
{* criteria (including the appropriate or) and remove the comment *) 
{* brackets from the criteria (including the appropriate or) you *) 
(* wish to be active. *) 
(********************************************************************) 

begin 
TestForRoot := 

(ABS{V) <= TNNearlyZero) 

or 

(ABS{X - OldX) < ABS{OldX*Tol)) 

{* or 
{* 
{* (ABS{X - OldX) < Tol) 
{* 
{* or 
{* 
(* (ABS{V) <= Tol) 

end; { procedure TestForRoot } 

(***************************) 
(* V=O *) 
(* *) 
(* *) 
(* *) 
(* relative change in X *) 
(* *) 
(* *) 

*) (* *) 
*) (* *) 
*) (* absolute change in X *) 
*) (* *) 
*) (* *) 
*) (* *) 
*) (* absolute change in V *) 

(***************************) 

The four separate tests provided by function TestForRoot may be used in any 
combination. The default criteria tests the absolute value of Y and the relative 
change in X. If you wish to change the active criteria, simply comment off the 
current criteria (including the appropriate or) and remove the comment brackets 
from the criteria (including the appropriate or) you wish to be active. 

The first criterion simply checks to see if Y is zero (TNNearlyZero is defined at 
the beginning of the procedure). This criterion should usually be kept active. 

The second criterion examines the relative change in X between iterations. To 
avoid division by zero errors, QldX has been multiplied through the inequality. 

The third criterion checks the absolute change in X between iterations. 

The fourth criterion determines the absolute difference between Y and the 
allowable tolerance. Note: The parameter Tol(erance) means something different in 
each test. Be sure you know which tests are active when you input a value for Tol. 
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Root of a Function Using the Bisection Method 
(BISECT. INC) 

Description 

This method (Burden and Faires 1985, 28 ff.) provides a procedure for finding a 
root of a real continuous function f, specified by the user on a user-supplied real 
interval [a,b]. The functionsfia) and fib) must be of opposite signs. The algorithm 
successively bisects the interval and converges to the root of the function. You must 
also specify the desired accuracy to which the root should be approximated. 

User-Defined Function 

funct;on TNTargetF(x : Real) : Real; 

The procedure Bisect determines the roots of this function. 

Input Parameters 

LeftEnd:Real; Left end of the interval 

RightEnd:Real; Right end of the interval 

To 1 : Rea 1 ; Indicates accuracy of solution 

Maxlter:Real; Maximum number of iterations permitted 
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The preceding parameters must satisfy the following conditions: 

1. LeftEnd < RightEnd. 

2. TNTargetF(LeftEnd) * TNTargetF(RightEnd) < 0; the endpoints must have 
opposite signs. 

3. Tol > O. 

4. MaxIter ~ O. 
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Output Pararneters 

Answer:Real; An approximate root of TNTargetF 

fAnswer:Real; The value of the function at the value Answer 

Iter: Integer; Number of iterations to find answer 

Error:Byte; 0: No error 
1: Iter > MaxIter 
2: Endpoints are of the same sign 
3: LeftErul > RightErul 
4: Tol :::;; 0 
5: MaxIter < 0 

If Error = 1 (maximum number of iterations exceeded), Answer is set to the last 
x value tested and fAnswer is set to TNTargetF(Answer). If Error> 1, then the other 
output parameters are not defined. 

Syntax of the Procedure Call 

Bisect(LeftEnd, RightEnd, Tol, MaxIter, Answer, fAnswer, Iter, Error); 

The procedure Bisect determines the roots of function TNTargetF. 

Comrnents 

If a root occurs at a relative maximum or relative minimum, the bisection method 
will be unable to locate that value of p if P does not occur as an endpoint of a 
subinterval. 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. 

Sample Program 

The sample program BISECT.PAS provides I/O functions that demonstrate the 
bisection algorithm. To modify this program for your own function, simply change 
the definition of function TNTargetF. Note that the file BISECT.INC is included 
after the function TNTargetF is defined. 
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Example 

Problem. Determine the solution to the equation cos(x) = x. 

1. Write the following code for function TNTargetF into BISECT.PAS: 

{----------- HERE IS THE FUNCTION ------------} 

funct;on TNTargetF(x : Real) : Real; 
beg;n 

TNTargetF := Cos (x) - x; 
end; { function TNTargetF } 

{---------------------------------------------} 
2. Run BISECT.PAS: 

Left endpoint: 0 
Right endpoint: 100 

Tolerance (> 0, default = 1.000E-08): 1E-6 

Maximum number of iterations (>= 0, default = 100)? 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Left endpoint: O.OOOOOOOOOOOOOOE+OOO 
Right endpoint: 1.00000000000000E+002 

Tolerance: 1.00000000000000E-006 
Maximum number of iterations: 100 

Number of iterations: 28 
Calculated root: 7.39085301756859E-001 

Value of the function 
at the calculated root: -2.82073423951701E-007 
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Root of a Function Using the Newton-Haphson Method 
(RAPHSON.INC) 

Description 

This example uses Newton-Raphson's algorithm (Burden and Faires 1985,42 fr.) to 
find a root of a real user-specified function when the derivative of the function and 
an initial guess are given. The algorithm constructs the tangent line at each iterate 
approximation of the root. The intersection of the tangent line with the x-axis 
provides the next iterate value of the root. You must specify the desired tolerance to 
which the root should be approximated. 

User-Defined Functions 

function TNTargetF(x : Real) : Real; 

function TNDerivF(x : Real) : Real; 

The procedure Newton Raphson determines the roots of the function 
TNTargetF. 

The function TNDerivF must be the first derivative of function TNTargetF. 

Input Parameters 

Guess:Real; 

Tol:Real; 

User's initial approximation to the root 

Tolerance in answer (see "Comments") 

MaxIter: Integer; Maximum number of iterations permitted 

The preceding parameters must satisfy the following conditions: 

1. Tal> 0 

2. MaxIter > 0 
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Output Parameters 

Root: Rea 1 ; Approximate root. 

Va 1 ue: Rea 1; Value of the function at the approximate root. 

Deri v: Rea 1 ; Value of the derivative at the approximated root. 

Iter: Integer; Number of iterations needed to find the root. 

Error:Byte; 0: No error. 
1: Iter < MaxIter. 
2: The slope is zero (see "Comments"). 
3: Tol :$ O. 
4: MaxIter < O. 

If a root is found, it is returned along with the value of the function at the root 
(which, of course, should be close to zero) and the value of the derivative at the 
root. If Error :$ 2, the data from the last iteration is returned. 

Syntax of the Procedure Call 

Newton_Raphson{Guess, Tol, MaxIter, Root, Value, Deriv, Iter, Error); 

Comments 

Newton's method involves division by the value of the derivative of the function. 
Should the algorithm attempt to do any calculations at a point where the deriva­
tive is less than TNNearlyZero, the routine will stop and return an error message 
(Error = 2). 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. 

Sample Program 

The sample program RAPHSON .PAS provides I/O functions that demonstrate the 
Newton-Raphson algorithm. Note that the file RAPHSON.INC is included after 
the functions TNTargetF and TNDerivF are defined. 

The program RAPHSON2.PAS also provides I/O functions that demonstrate the 
Newton-Raphson method. It is an extremely bare-bones program and is provided 
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for the newcomer to Turbo Pascal who wants to see a simple, straightforward appli­
cation of a Toolbox routine. 

Example 

Problem. Determine the solution to the equation cos(x) = x. 

1. Code the following two functions into RAPHSON.PAS (or RAPHSON2.PAS): 

{---------- HERE IS THE FUNCTION -------------} 

function TNTargetF{x : Real) : Real; 
begin 

TNTargetF := Cos (x) - x; 
end; { function TNTargetF } 

{---------------------------------------------} 

{-------- HERE IS THE DERIVATIVE -------------} 

function TNDerivF{x : Real) : Real; 
begin 

TNDerivF := -Sin{x) - 1; 
end; { function TNDerivF } 

{---------------------------------------------} 
2. Run RAPHSON.PAS: 

Initial approximation to the root: 0 

Tolerance (> 0, default = 1.000E-08): 1E-6 

Maximum number of iterations (>= 0, default = 100): 100 

Direct output to one of the following: 
{S)creen 
{P)rinter 
{F)i1e 

Initial approximation: O.OOOOOOOOOOOOOOE+OOO 
Tolerance: 1.00000000000000E-006 

Maximum number of iterations: 100 

Number of iterations: 5 
Calculated root: 7.39085133215161E-001 

Value of the function 
at the calculated root: O.OOOOOOOOOOOOOOE+OOO 

Value of the derivative 
of the function at the 

calculated root: -1.67361202918321E+000 
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Here is the RAPHSON2.PAS version of the same function: 

Initial approximation to the root: 0 
Tolerance: 1E-6 

Maximum number of iterations: 100 

Error = 0 

Number of iterations: 5 
Root: 7.39085133215161E-001 

Value of the 
function at the root: O.OOOOOOOOOOOOOOE+OOO 

Derivative of the 
function at the root: -1.67361202918321E+000 
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Root of a Function Using the Secant Metlwd 
(SECANT. INC) 

Description 

This example uses the secant method (Gerald and Wheatley 1984, 11-13) to find a 
root of a user-specified real function given two initial real approximations to the 
root. The secant method constructs a secant through the two points specified by 
the initial approximations. The intersection of this line and the x-axis is used as the 
next best approximation to the root. The approximation to the root and its prede­
cessor are used to construct the next secant line. The process continues until a root 
is approximated with specified accuracy or until a specified number of iterations 
have been exceeded. 

User-Defined Function 

function TNTargetF(x : Real) : Real; 

The procedure Secant will determine the roots of this function. 

Input Parameters 

Guessl:Real; 

Guess2:Real; 

Tol:Real; 

User's first approximation to the root 

User's second approximation to the root 

Indicates accuracy in solution 

MaxIter: Integer; Maximum number of iterations permitted 

The preceding parameters must satisfy the following conditions: 

1. Tal> 0 

2. MaxIter;::: 0 
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Output Parameters 

Root: Rea 1 ; Approximate root. 

Va 1 ue: Rea 1; Value of the function at the approximate root. 

Iter: Integer; Number of iterations needed to find the root. 

Error:Byte; 0: No error. 
1: Iter> Max Iter. 
2: The slope is zero (see "Comments"). 
3: Tal :s; O. 
4: MaxIter < O. 

If a root is found, it is returned with the value of the function at the root (which, 
of course, should be nearly zero). If Error :s; 2, then the data from the last iteration 
is returned. 

Syntax of the Procedure Call 

Secant(Guessl, Guess2, Tol, MaxIter, Root, Value, Iter, Error); 

The procedure Secant determines the roots of the function TNTargetF. 

Comments 

The secant algorithm constructs a line through two points and finds the intersec­
tion of that line with the x-axis. If the line has a slope whose absolute values are 
less than TNNearlyZero (that is, the two points have the same y-value), then it has 
no intersection with the x-axis (or infinitely many if it lies on the x-axis) and the 
algorithm will no longer continue. If this happens, Error 2 is returned. Error 2 will 
also be returned if the absolute difference of the two initial approximations (Guessl 
and Guess2) is less than TNNearlyZero. 

Convergence is determined with the Boolean function TestForRoat described at 
the beginning of this chapter. 

Sample Program 

The sample program SECANT.PAS provides I/O functions that demonstrate the 
secant algorithm. Note that the file SECANT.lNC is included after the function 
TNTargetF is defined. 
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Example 

Problem. Determine the solution to the equation cos(x) = x. 

1. Write the following code for procedure TNTargetF into SECANT.PAS: 

{----------- HERE IS THE FUNCTION ------------} 

function TNTargetF{x : Real) : Real; 
begin 

TNTargetF := Cos (x) - x; 
end; { function TNTargetF } 

{---------------------------------------------} 
2. Run SECANT.PAS: 

First initial approximation to the root: 0 

Second initial approximation to the root: 

Tolerance (> 0, default = 1.000E-08): 1E-8 

Maximum number of iterations (>= 0, default 100): 100 

Direct output to one of the following: 
{S)creen 
(P)rinter 
(F) il e 

First initial approximation: O.OOOOOOOOOOOOOOE+OOO 
Second initial approximation: 1.00000000000000E+000 

Tolerance: 1.00000000000000E-008 
Maximum number of iterations: 100 

Number of iterations: 6 
Calculated root: 7.39085133215161E-001 

Value of the function 
at the calculated root: O.OOOOOOOOOOOOOOE+OOO 
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Real Roots of a Real Polynomial Equation Using the 
Newton-Horner Metlwd with Deflation (NEWIDEFL.INC) 

Description 

This example uses Newton-Horner's algorithm and deflation (see RAPHSON.INC 
in this chapter for a description of Newton's method). Newton-Horner is the New­
ton-Raphson method applied to polynomials (Burden and Faires 1985, 42 £I). Defla­
tion is used to find several roots of a user-specified real polynomial given an initial 
guess specified by the user. This procedure approximates a real root and then 
removes the corresponding linear factor from the given polynomial. The newly 
obtained (deflated) polynomial is then analyzed for a real root. This process con­
tinues until a quadratic remains, the remaining roots are complex, or the algorithm 
is unable to approximate the remaining real roots. Should the polynomial contain 
two complex roots, they may be determined using the quadratic formula. You must 
specify (at most) the tolerance to which the roots should be approximated. 

User-Defined Types 

TNvector = array[O .. TNArraySize] of Real; 

TNlntVector = array[O .. TNArraySize] of Integer; 

Input Parameters 

Ini tDegree: Integer; Degree of user-defined polynomial 

Ini tPoly:TNvector; Coefficients of user-defined polynomial 

Guess:Real; 

Tol:Real; 

MaxIter:Integer; 
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User's initial approximation 

Indicates accuracy in solution 

Maximum number of iterations permitted 
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The preceding parameters must satisfy the following conditions: 

1. InitDegree > 0 

2. Tol > 0 

3. Maxlter ~ 0 

4. InitDegree =:; TNArraySize 

TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector. TNArraySize is not a variable name and 
is never referenced by the procedure; hence there is no test for condition 4. If 
condition 4 is violated, the program will crash with an Index Out of Range error 
(assuming the directive {$R + } is active). 

Output Parameters 

Degree: Integer: Degree of the deflated polynomial (> 2 if some of the roots are 
not approximated). 

NumRoots: Integer: Number of roots found. 

Poly:TNvector; Coefficients of the deflated polynomial. 

Root:TNvector: Real part of all roots found. 

Imag:TNvector: Imaginary part of all roots found (nonzero for 2 at most). 

Value:TNvector: Value of the polynomial at each approximate root. 

Deriv:TNvector: Value of the derivative at each found root. 

Iter:TNIntVector: Number of iterations required to find each root. 

Error:Byte: 0: No error. 
1: Maximum number of iterations exceeded. 
2: The slope is zero (see "Comments"). 
3: Degree =:; O. 
4: Tol =:; O. 
5: Maxlter < O. 

If a root is found, it is returned with the value of the polynomial at that root 
(which should be close to zero) and with the value of the derivative at that root. If 
the last two roots are complex (only two can be complex, since they are evaluated 
by the quadratic formula), then the value and derivative at those points are arbi­
trarily set to zero. If all the roots have not been found, then the unsolved deflated 
polynomial is also returned. 
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Syntax of the Procedure Call 

Newt-Horn_Defl(InitDegree, InitPoly, Guess, Tol, MaxIter, Degree, 
NumRoots, Poly, Root, Imag, Value, Deriv, Iter, Error); 

Comments 

Newton's method involves division by the derivative of the function. Should the 
algorithm attempt to do any calculations at a point where the absolute values of the 
derivative are less than TNNearlyZero, the routine stops and returns an error mes­
sage (Error = 2). 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. 

Sample Program 

The sample program NEWTDEFL.PAS provides I/O functions that demonstrate 
the Newton-deflation algorithm. 

Input Files 

It is possible to input the coefficients from a text file. The format for the text file is 
as follows: 

1. The degree of the polynomial 

2. The coefficients in descending order, beginning with the leading coefficient 
and decreasing to the constant term 

Spaces or carriage returns can be used to separate the data. It does not matter 
whether the file ends with a carriage return; for example, the polynomial 

F(x) = x3 
- 2x 

could be entered in a text file as 

310 -20 

Example 

Problem. Determine the roots to the 7th degree polynomial: 

Xfi + x5 
- 49x·' + 69x3 + 120x2 + 98x - 240 
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Run NEWTDEFL.PAS: 

(K)eyboard or (F)ile input of data? K 

Degree of the pol ynomi a 1 « = 30)? 6 

Input the coefficients of the polynomial 
where Poly[n] is the coefficient of x~n 

Poly[6] 1 
Poly[5] 1 
Poly[4] -49 
Poly[3] 69 
Poly[2] 120 
Poly[l] 98 
Po 1 y [0] -240 

Initial approximation to the root: 0 

Tolerance (> 0, default = 1.000E-08): 1E-8 

Maximum number of iterations (>= 0, default 100): 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) i1 e 

Initial Polynomial: 
Poly[6]: 1.00000000000000E+000 
Poly[5]: 1.00000000000000E+000 
Poly[4]: -4.90000000000000E+001 
Poly[3]: 6.90000000000000E+001 
Poly[2]: 1.20000000000000E+002 
Poly[l]: 9.80000000000000E+001 
Poly[O]: -2.40000000000000E+002 

Initial approximation: O.OOOOOOOOOOOOOOE+OOO 
Tolerance: 1.00000000000000E-008 

Maximum number of iterations: 100 

Number of calculated roots: 6 

Root 1 
Number of iterations: 7 

Calculated root: 3.00000000000000E+000 
Value of the function 

at the calculated root: 4.83169060316868E-013 
Value of the derivative 

of the function at 
the calculated root: -7.47999999999999E+002 
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Root 2 
Number of iterations: 7 

Calculated root: 1.00000000000000E+000 
Value of the function 

at the calculated root: O.OOOOOOOOOOOOOOE+OOO 
Value of the derivative 

of the function at 
the calculated root: 3.60000000000000E+002 

Root 3 
Number of iterations: 32 

Calculated root: -8.00000000000000E+000 
Value of the function 

at the calculated root: O.OOOOOOOOOOOOOOE+OOO 
Value of the derivative 

of the function at 
the calculated root: -6.43500000000000E+004 

Root 4 
Number of iterations: 25 

Calculated root: 5.00000000000000E+000 
Value of the function 

at the calculated root: O.OOOOOOOOOOOOOOE+OOO 
Value of the derivative 

of the function at 
the calculated root: 3.84800000000000E+003 

Root 5 
Number of iterations: 0 

Calculated root: -1.00000000000000E+000 + -1.00000000000000E+000i 
Value of the function 

at the calculated root: O.OOOOOOOOOOOOOOE+OOO 
Value of the derivative 

of the function at 
the calculated root: O.OOOOOOOOOOOOOOE+OOO 

Root 6 
Number of iterations: 0 

Calculated root: -1.00000000000000E+000 + 1.00000000000000E+000i 
Value of the function 

at the calculated root: O.OOOOOOOOOOOOOOE+OOO 
Value of the derivative 

of the function at 
the calculated root: O.OOOOOOOOOOOOOOE+OOO 
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Complex Roots of a Complex Function Using Muller's 
Metlwd (MULLERINC) 

Description 

This example uses Muller's method (Burden and Faires 1985, 71-75) to find a 
possibly complex root of a user-defined complex function. The algorithm finds a 
root of a parabola defined by three distinct points of the given function. This 
approximation to the root and its two predecessors are used to construct the next 
parabola. This is repeated until the convergence criteria is satisfied. Muller's 
method has the advantage of nearly always converging; however, it is slow because 
it uses complex arithmetic. You must create a complex function, input an initial 
guess (which need not be very accurate), the tolerance in the answer, and the 
maximum number of iterations. 

User-Defined Types 

TNcomplex = record 
Re, Im:Real; 

end; 

User-Defined Procedure 

procedure TNTargetF(x:TNcomplex; var y:TNcomplex); 

The Muller procedure approximates a complex root of this function. 

Input Parameters 

Guess:TNcomplex; An initial guess 

Tol:Real; Indicates accuracy in solution 

MaxIter: Integer; Maximum number of iterations 
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The preceding parameters must satisfy the following conditions: 

1. Tol > 0 

2. MaxIter;::: 0 

Output Parameters 

Answer:TNcomplex; An approximate root of the function 

yAnswer: TNcomp 1 ex; Value of the function at the approximate root 

Iter:Integer; 

Error:Byte; 

Number of iterations required to find the root 

0: No error 
1: Iter> MaxIter 
2: Parabola could not be formed (see "Comments") 
3: Tol :5 0 
4: MaxIter < 0 

If Error :5 2, then the information from the last iteration is output. 

Syntax of the Procedure Call 

Muller(Guess, Tol, MaxIter, Answer, yAnswer, Iter, Error); 

The procedure Muller approximates a complex root of function TNTargetF. 

Comments 

Muller's method involves constructing a parabola from three points. If they all lie 
on a line whose slope in absolute value is less than TNNearlyZero, then a parabola 
that intersects the x-axis cannot be constructed. Such a construction will halt the 
algorithm and return Error = 2. Fortunately, this does not commonly occur. 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. Complex arithmetic is used. 

34 Turbo Numerical Methods Toolbox 



Sample Program 

The sample program MULLERPAS provides I/O functions that demonstrate 
M iiller' s method. 

The user-defined function is contained in the procedure TNTargetF. It is neces­
sary to separately define the real and complex parts of the function. To define the 
complex function F(x), you must code the following definitions: 

y.Re : = Re[F(x.Re + ix.Im)]; 
y.Im : = Im[F(x.Re + ix.Im)]; 

where i is the square root of - 1. 

For example, the complex function F(x) : = exp(x) would be coded like this: 

y.Re : = exp(x.Re) * cos(x.Im); 
y.Im : = exp(x.Re) * sin(X.Im); 

Note that the procedure TNTargetF is defined before MULLER.lNC is 
included. 

Example 

Problem. Find a solution to the complex equation cos(x) = x. 

1. First, code the following procedure TNTargetF into MULLERPAS: 

(*------------- HERE IS THE FUNCTION ------------------*) 

procedure TNTargetF(x : TNcomplex; var y : TNcomplex); 

beg;n { this is the complex function y = Cos (x) - x } 
y.Re := Cos(x.Re)*(Exp(-x.lm) + Exp(x.lm))/2 - x.Re; 
y.lm := Sin(x.Re)*(Exp(-x.lm) - Exp(x.lm))/2 - x.lm; 

end; { procedure TNTargetF } 

(*-----------------------------------------------------*) 

2. Run MULLERPAS: 

Initial approximation to the root: 
Re(Approximation)= -4 
Im(Approximation)= 4 

Tolerance (> 0, default = 1.000E-08): 1E-6 

Maximum number of iterations (>= 0, default = 100): 100 
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Direct output to one of the following: 
(S}creen 
(P}rinter 
(F) il e 

Initial approximation: -4.00000000000000EtOOO t 4.00000000000000EtOOOi 
Tolerance: 1.00000000000000E-006 

Maximum number of iterations: 100 

Number of iterations: 18 
Calculated root: -9.10998745393294EtOOO t 2.95017086170180EtOOOi 

Value of the function 
at the calculated root: -1.42534872793476E-011 t 3.75033337718378E-011i 
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Complex Roots of a Complex Polynomial Using Laguerre's 
Method and Deflation (LAGUERRE.INC) 

Description 

This example uses Laguerre's method (Ralston and Rabinowitz 1978, 380-383) and 
linear deflation to find the possibly complex roots of a complex (or real) polynomial. 
You must input the coefficients of the polynomial, an initial guess, the tolerance 
with which to find the answer, and the maximum number of iterations. 

User-Defined Types 

TNcomplex = record 
Re, Im:Real; 

end; 

TNIntVector = array[O •• TNArraySize] of Integer; 

TNCompVector = array[O •• TNArraySize] of TNcomplex; 

Input Parameters 

Degree: Integer; 

Poly:TNvector; 

Degree of the user's polynomial 

Coefficients of the user's polynomial 

InitGuess:TNcompl ex; Initial guess of the root 

Tol :Real; 

MaxIter: Integer; 

Indicates accuracy in solution 

Maximum number of iterations 

The preceding parameters must satisfy the following conditions: 

1. degree> 0 

2. Tol> 0 

3. MaxIter ~ 0 

4. degree ~ TNArraySize 
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TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector. TNArraySize is not a variable name and 
is never referenced by the procedure; hence there is no test for condition 4. If 
condition 4 is violated, the program will crash with an Index Out of Range error 
(assuming the directive {$R + } is enabled). 

Output Parameters 

Degree:Integer; 

Poly:Integer; 

NumRoots:Integer; 

Degree of the deflated polynomial 

Coefficients of deflated polynomial 

N umber of approximate roots 

Roots :TNCompVector; Approximate roots 

yRoots :TNCompVector; Value of the polynomial at the approximate root 

Iter:TNlntVector; 

Error:Byte; 

Number of iterations required to find each root 

0: No error 
1: Iter ~ Max Iter 
2: Degree:::;; 0 
3: Tal:::;; 0 
4: MaxIter < 0 

Syntax of the Procedure Call 

Laguerre(Degree, Poly, InitGuess, Tol, MaxIter, NumRoots, 
Roots, yRoots, Iter, Error); 

Comments 

For some polynomials, certain starting values (Guess) will not yield convergence. If 
the routine does not converge to a solution, try a different starting value. Note that 
convergence is slower around multiple roots than around single roots. 

Convergence is determined with the Boolean function TestForRaat described at 
the beginning of this chapter. 
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Sample Program 

The sample program LAGUERRE.PAS provides I/O routines that demonstrate 
Laguerre's method. 

Input Files 

It is possible to input the coefficients from a text file. The format for the text file is 
as follows: 

1. The degree of the polynomial 

2. The real and imaginary parts of the coefficients in descending order, begin­
ning with the leading coefficient and descending to the constant term 

Spaces or carriage returns can be used to separate the data. It does not matter 
whether the file ends with a carriage return; for example, the polynomial 

F(x) = x-l - (2 + 2i)x3 + 4ix2 + (2 - 2i)x -1 

where i represents the square root of - 1, could be entered in a text file like this: 

410 -2 -2042 -2 -10 

Example 

Problem. Find all the roots to the complex polynomial 

F(x) = l - (2 + 2i)x3 + 4ix2 + (2 - 2i)x - 1 

where i is the square root of - 1. 

Run LAGUERRE.PAS: 

(K)eyboard or (F)ile input of data? K 

Degree of the polynomial «= 30)? 4 

Input the coefficients of the polynomial 
where Poly[n] is the coefficients of x~n 

Re(Poly[4]) = 1 
Im(Poly[4]) = 0 

Re(Poly[3]) = -2 
Im(Poly[3]) = -2 

Re(Poly[2]) 0 
Im(Poly[2]) = 4 
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Re{Poly[l]) = 2 
Im{Poly[l]) = -2 

Re{Poly[O]) = -1 
Re{Poly[O]) = 0 

Initial approximation: 
Re{Approximation) = 0 
Im{Approximation) = 0 

Tolerance (> 0, default = 1.000E-08): 1E-6 
Maximum number of iterations (>= 0, default = 100): 100 

Direct output to one of the following: 
{S)creen 
{P)rinter 
(F) il e 

Initial Polynomial: 
Poly[4]: 1.00000000000000E+000 + O.OOOOOOOOOOOOOOE+OOOi 
Poly[3]: -2.00000000000000E+000 + -2.00000000000000E+000i 
Poly[2]: O.OOOOOOOOOOOOOOE+OOO + 4.00000000000000E+000i 
Poly[l]: 2.00000000000000E+000 + -2.00000000000000E+000i 
Poly[O]: -1.00000000000000E+000 + O.OOOOOOOOOOOOOOE+OOOi 

Initial approximation: O.OOOOOOOOOOOOOOE+OOO + O.OOOOOOOOOOOOOOE+OOOi 
Tolerance: 1.00000000000000E-006 

Maximum number of iterations: 100 

Root 1 
Number of iterations: 14 

Calculated root: 9.99999949924438E-001 + 1.30979567319146E-008i 
Value of the function at 

the calculated root: -2.44249065417534E-015 + -4.67073566002583E-015i 

Root 2 
Number of iterations: 2 

Calculated root: 1.00000001879739E+000 + -3.01914119849697E-009i 
Value of the function at 

the calculated root: -3.33066907387547E-016 + -1.03591657956252E-015i 

Root 3 
Number of iterations: 6 

Calculated root: 2.54057206426756E-007 + 9.99999844722996E-001i 
Value of the function at 

the calculated root: -1.57873714101697E-013 + -8.07179393811825E-014i 
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Root 4 
Number of iterations: 2 

Calculated root: -5.97412717946260E-008 + 1.00000003900209E+OOOi 
Value of the function at 

the calculated root: -9.32587340685131E-015 + -3.90669101062423E-015i 

The exact roots of this polynomial are 
x = 1 
x = 1 
x = i 
x = i 
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c H A p T E R 3 
Interpolation 

Interpolation is useful when some values of a function are known but others are 
required. For example, suppose values are known for a functionJ(x) at x = 2.3,2.4, 
2.5, 2.6, 2.7, 2.8, and the value ofJ(x) is desired at x = 2.415. The routines in this 
chapter provide the means to model to given values of J(x) with an appropriate 
function, so that the function can be evaluated at other arbitrary points. 

The goal of interpolation is to approximate the value of the function at a speci­
fied value of x, given N values of the function at N distinct points. This approxima­
tion will be a polynomial determined from the input data. The value of the 
polynomial at x will be returned as the approximation to the value ofJ(x). 

The Lagrange method (LAGRANGE.INC) accepts points in any order. The x­
values need not be equally spaced. An interpolating polynomial is explicitly calcu­
lated. Although an interpolating polynomial can be useful for computing deriva­
tives (and more), the Lagrange method is a lengthy process. Furthermore, high­
degree polynomials may cause significant round-off error in some interpolations. 

Newton's general divided-difference algorithm (DIVDIF.INC) does not require 
input to have equally spaced x-values, nor is it necessary that the x-values be 
in either ascending or descending order. For large amounts of data, the divided­
difference routine (DIVDIF.INC) is more accurate than Lagrangian interpola­
tion (LAGRANGE.INC). 

If there are many input points, the Lagrange (LAGRANGE.INC) and the 
divided-difference (DIVDIF.INC) methods may result in high-degree polynomials 
whose oscillatory nature can produce an inaccurate approximation. This is espe-
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cially true if the interpolation occurs at a value near the midpoint between adjacent 
input x-values. In such cases, the cubic spline methods (CUBEJ'RE.INC and 
CUBE_CLA.INC) are preferable. 

The cubic spline methods require that the x-values be entered in ascending 
order. The clamped cubic spline method (CUBE_CLA.lNC) may yield more accu­
rate results than the free cubic spline method (CUBEJ'RE.lNC), but requires 
knowledge of the first derivative of the function at the endpoints of the input data. 
When this information is not available; the free cubic spline routine should be 
used. 

The values at which interpolation is to occur should lie in the closed interval 
bounded by the extreme values of the input x-values. The preceding methods will 
not give accurate approximations to values outside this interval (extrapolation). 
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Polynomial Interpolation Using Lagrange's Metlwd 
(LAGRANGE. INC) 

Description 

This example provides an interpolation algorithm (Burden and Faires 1985, 84 If; 
Horowitz and Sahni 1984,429-430). Given a set of N data points (x,y), the routine 
uses Lagrange polynomials to construct a polynomial to fit the data points. The 
degree of the polynomial is at most N - l. 

Note: The nature of high-degree polynomials may cause significant error if the 
algorithm is used with large amounts of data (about N > 25). In such cases, DIV 
DIF.INC, CUBEJ'RE.INC, or CUBE_CLA.INC should be used. You must sup­
ply the data points and the x-values at which interpolation will take place. 

User-Defined Types 

TNvector = array[O .. TNArraySize] of Real; 
TNmatrix = array[O .. TNArraySize] of TNvector; 

Input Parameters 

The parameters for Lagrange: 

NumPoi nts: Integer; Number of data points 

XData:TNvector; The x-coordinates of the data points 

YData:TNvector; The y-coordinates of the data points 

Numlnter: Integer; Number of interpolations 

Xlnter:TNvector The x-coordinates at which interpolation is to take place 

The preceding parameters must satisfy the following conditions: 

1. The x-coordinates of the data points (Xlnter) must be unique. 

2. NumPoints, Numlnter ~ TNArraySize. 

3. NumPoints > O. 
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TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector. TNArraySize is not a variable name and 
is never referenced by the procedure; hence there is no test for condition 2. If 
condition 2 is violated, the program will crash with an Index Out of Range error 
(assuming the directive {$R + } is active). 

Output Parameters 

YInter:TNvector; The interpolated values at Xlnter 

Poly:TNvector; The coefficients of the interpolating polynomial 

Error:Byte; 0: No error 
1: X-values of the data points not unique 
2: NumPoints < 1 

Syntax of the Procedure Call 

Lagrange(NumPoints, XData, YData, NumInter, XInter, YInter, Poly, Error); 

Sample Program 

The sample program LAGRANGE.PAS provides I/O functions that demonstrate 
the Lagrange interpolating algorithm. 

Input Files 

Data may be entered from a text file. The x and y coordinates should be separated 
by a space and followed by a carriage return. For example, data values of sqr(x) 
could be entered in a text file as: 
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Example 

Problem. Construct and use an interpolating polynomial for the cosine function 
between x = 1 degree and x = 20 degrees. 

Run LAGRANGE.PAS: 

(K)eyboard or (F)ile entry of the data points? F 

File name? SAMPLE3A.DAT 

(K)eyboard or (F)ile entry of the interpolated points? F 

File name? SAMPLE3B.DAT 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

The data: 
1.0000000 
2.0000000 
3.0000000 
4.0000000 
5.0000000 
6.0000000 
7.0000000 
8.0000000 
9.0000000 

10.0000000 
11.0000000 
12.0000000 
13.0000000 
14.0000000 
15.0000000 
16.0000000 
17.0000000 
18.0000000 
19.0000000 
20.0000000 

The polynomial: 

9.99847695156391E-001 
9.99390827019096E-001 
9.98629534754574E-001 
9.97564050259824E-001 
9.96194698091746E-001 
9.94521895368273E-001 
9.92546151641322E-001 
9.90268068741570E-001 
9.87688340595138E-001 
9.84807753012208E-001 
9.81627183447664E-001 
9.78147600733806E-001 
9.74370064785235E-001 
9.70295726275996E-001 
9.65925826289068E-001 
9.61261695938319E-001 
9.56304755963035E-001 
9.51056516295154E-001 
9.45518575599317E-001 
9.39692620785908E-001 

Poly[19]= -1.72986376643586E-028 
Poly[18]= 3.57504241395844E-026 
Poly[17]= -3.43926153199199E-024 
Poly[16]= 2.04507188280402E-022 
Poly[15]= -8.41710490427928E-021 
Poly[14]= 2.54454663251946E-019 
Poly[13]= -5.85115478257286E-018 
Poly[12]= 1.04567701944119E-016 
Poly[ll]= -1.47131277721604E-015 
Poly[10]= 1.64108936708876E-014 
Poly[9]= -1.45382580196402E-013 
Poly[8]= 1.02034999744286E-012 
Poly[7]= -5.63354870368428E-012 
Poly[6]= 2.41324946244329E-011 
Poly[5]= -7.90989844502363E-011 
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Poly[4] = 4.05827439744465E-009 
Poly[3]= -3.31023555675263E-010 
Poly[2]= -1.52308331145220E-004 
Poly[l]= -2.53687934078865E-010 
Poly[O]= 1.00000000007368E+000 

X 
1.500 
2.500 
3.500 
4.500 
5.500 
6.500 
7.500 
8.500 
9.500 

10.500 
11.500 
12.500 
13.500 
14.500 
15.500 
16.500 
17.500 
18.500 
19.500 
20.500 

Interpolated Y value 
9.99657324975249E-001 
9.99048221581889E-001 
9.98134798421861E-001 
9.96917333733130E-001 
9.95396198367178E-001 
9.93571855676587E-001 
9.91444861373810E-001 
9.89015863361917E-001 
9.86285601537231E-001 
9.83254907563954E-001 
9.79924704620830E-001 
9.76296007119933E-001 
9.72369920397676E-001 
9.68147640378107E-001 
9.63630453208623E-001 
9.58819734868193E-001 
9.53716950748226E-001 
9.48323655206200E-001 
9.42641491092201E-001 
9.36672189247006E-001 

Actual values 
9.99657324975557E-00 1 
9.99048221581858E-001 
9.98134798421867E-001 
9.96917333733128E-001 
9.95396198367179E-001 
9.93571855676587E-001 
9.9144486137381OE-001 
9.89015863361917E-001 
9.8628560 1537231E-00 1 
9.83254907563955E-00 1 
9.79924704620830E-001 
9.76296007119933E-001 
9.72369920397677E-001 
9.68147640378108E-001 
9.63630453208623E-00 1 
9.58819734868193E-001 
9.53716950748227E-001 
9.48323655206199E-001 
9.42641491092178E-001 
9.36672189248398E-00 1 

The data is taken from a function of which the derivative could be computed 
exactly. Though the actual values in the right-hand column are not displayed on 
screen, they are shown here to indicate the accuracy of the routine. 
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Interpolation Using Newton's Interpolary 
Divided-Difference Metlwd (DWDIEINC) 

Description 

This example provides an interpolation algorithm. Given a set of data points (x,y), 
the routine uses Newton's interpolary divided-difference equation to interpolate 
between the points (Burden and Faires 1985,100-102). The data points must have 
unique x-values, but these values need not be evenly spaced nor set in any particu­
lar order. You must supply the data points and the x-values at which interpolation is 
to take place. 

User-Defined Types 

TNvector = array[O •. TNArraySize] of Real; 

TNmatrix = array[O •• TNArraySize] of TNvector; 

Input Parameters 

NumPoi nts: Integer; Number of data points 

XData:TNvector; The x-coordinates of the data points 

YData:TNvector; The y-coordinates of the data points 

NumInter: Integer; Number of interpolations 

XInter:TNvector The x-coordinates at which interpolation is to take place 

The preceding parameters must satisfy the following conditions: 

1. The x-coordinates of the data points (Xlnter) must be unique. 

2. NumPoints, Numlnter ~ TNArraySize. 

3. NumPoints > o. 

TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector. TN Array Size is not a variable name and 
is never referenced by the procedure; hence there is no test for condition 2. If 
condition 2 is violated, the program will crash with an Index Out of Range error 
(assuming the directive {$R + } is active). 

Interpolation 49 



Output Parameters 

Ylnter:TNvector; The interpolated values at Xlnter 

Error:Byte; 0: No error 
1: X-values of the data points not unique 
2: NumPoints < 1 

Syntax of the Procedure Call 

Divided-Difference(NumPoints, XData, YData, Numlnter, Xlnter, Ylnter, Error); 

Sample Program 

The sample program DIVDIF.PAS provides I/O functions that demonstrate New­
ton's interpolary divided-difference algorithm. 

Input Files 

Data may be entered from a text file. The x and y coordinates should be separated 
by a space and followed by a carriage return. For example, data values of sqr(x} 
could be entered in a text file as 

11 
24 
39 
416 
525 

Example 

Problem. Interpolate the cosine function between x = Ix and x = 20x. 

Run DIVDIF.PAS: 

(K)eyboard or (F)ile entry of the data points? F 

File name? SAMPLE3C.DAT 

(K)eyboard or (F)ile entry of the interpolated points? K 
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Number of points (0-50}?15 

Point 1: 1.5 
Point 2: 2.5 
Point 3: 3.5 
Point 4: 4.5 
Point 5: 5.5 
Point 6: 6.5 
Point 7: 7.5 
Point 8: 8.5 
Point 9: 9.5 
Point 10: 10.5 
Point 11: 11.5 
Point 12: 12.5 
Point 13: 13.5 
Point 14: 14.5 
Poi nt 15: 15.5 

Direct output to one of the following: 
(S}creen 
(P}rinter 
(F) il e 

X 
12.000 
8.000 
1.000 

10.000 
5.000 

15.000 
4.000 
3.000 
7.000 

14.000 

X 
1.500 
2.500 
3.500 
4.500 
5.500 
6.500 
7.500 
8.500 
9.500 

10.500 
11. 500 
12.500 
13.500 
14.500 
15.500 

y 
0.9781476 
0.9902681 
0.9998477 
0.9848078 
0.9961947 
0.9659258 
0.9975641 
0.9986295 
0.9925462 
0.9702957 

Interpolated Y value 
9.99656668284607E-001 
9.99047982204853E-001 
9.98134846782587E-001 
9.96917355869352E-001 
9.95396200633579E-001 
9.93571893532269E-001 
9.91444906399794E-001 
9.89015879894104E-001 
9.86285623948171E-001 
9.83254980952454E-001 
9.79924765142406E-001 
9.76295923083642E-001 
9.72369781236267E-001 
9.68147757339141E-001 
9.63629212784399E-001 

Actual Values 
9.99657324975557E-001 
9.99048221581858E-001 
9.98134798421867E-001 
9.96917333733128E-001 
9.95396198367179E-001 
9.93571855676587E-001 
9.9144486137381OE-001 
9.890 15863361917E-00 1 
9.86285601537231E-OOI 
9.83254907563955E-OOl 
9.79924 704620830E-00 1 
9.76296007119933E-001 
9. 72369920397677E-OO 1 
9.68147640378108E-001 
9.63630453208623E-OO 1 

The data is taken from a function of which the derivative could be computed 
exactly. Though the values in the right-hand column are not displayed on screen, 
they are shown here to indicate the accuracy of the routine. 
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Free Cubic Spline Interpolation (CUBEJRE.INC) 

Description 

This example constructs a smooth curve through a given set of data points. The 
curve is a cubic spline interpolant with the following properties: 

1. It passes through every data point. 

2. It is continuous. 

3. Its first derivative is continuous. 

4. Its second derivative is continuous. 

The second derivative is assumed to be zero at both endpoints (thus the cubic 
spline is "free") of the interval determined by the data (Burden and Faires 1985, 
117 fI). Cubics that join adjacent data points are of the following form: 

S[i](x) = CoefO[i] + Coefl[i](x - x[i]) + Coef2[i](x - x[i]? 

+ Coef3[i](x- X[i])3 

where i ranges between 1 and the number of data points minus 1, the x[i]' s are the 
x-coordinates of the input data, and x[i] :5 x < x[i + 1]. The interpolated values of 
f(x) are found by evaluating the ith cubic polynomial at x, where 

x[i] :5 x :5 x[i + 1]. 

User-Defined Types 

TNvector = array[O •• TNArraySize] of Real; 

Input Parameters 

NumPoi nts: Integer; Number of data points 

XData:TNvector; The x-coordinates of the data points 

YData: TNvector; The y-coordinates of the data points 

Numlnter: Integer; Number of interpolations 

Xlnter:TNvector; X-coordinates of points at which to interpolate 
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The preceding parameters must satisfy the following conditions: 

1. X data points must be unique. 

2. X data points must be in ascending order. 

3. NumPoints, Numlnter ~ TNArraySize. 

4. NumPoints > 1. 

TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector. TNArraySize is not a variable name and 
is never referenced by the procedure; hence there is no test for condition 3. If 
condition 3 is violated, the program will crash with an Index Out of Range error 
(assuming the directive {$R + } is active). 

Output Parameters 

CoefO:TNvector; Coefficient of the constant term 

Coefl: TNvector; Coefficient of the linear term 

Coef2:TNvector; Coefficient of the squared term 

Coef3: TNvector; Coefficient of the cubed term 

YInter:TNvector; Interpolated values at Xlnter 

Error:Byte; 0: No error 
1: X-values of the data points not unique 
2: X-values of the data points not in ascending order 
3: NumPoints < 2 

Syntax of the Procedure Call 

CubicSplineFree(NumPoints, XData, YData, Numlnter, Xlnter, 
CoefO, Coefl, Coef2, Coef3, Ylnter, Error); 

Sample Program 

The sample program CUBE-FRE.PAS provides I/O functions that demonstrate 
the free cubic spline algorithm. 
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Input Files 

Data may be entered from a text file. The x and y coordinates should be separated 
by a space and followed by a carriage return. For example, data values of sqr(x) 
could be entered in a text file as 

11 
24 
39 
416 
525 

Example 

Problem. Construct an interpolating spline for the following figure: 

3 

2 

2 3 4 5 6 

Because a cusp occurs at x = 3.55, we will construct two splines, one for each 
side of the cusp. 

Run CUBE_FRE.PAS: 

(K)eyboard or (F)ile entry of the data points? F 

File name? SAMPLE3D.DAT 

(K)eyboard or (F)ile entry of the interpolated points? F 

File name? SAMPLE3E.DAT 
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Direct output to one of the following: 
(S)creen 

Data: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

(P)rinter 
(F) il e 

x 
0.0000000000 
0.1000000000 
0.2000000000 
0.6000000000 
1.0000000000 
1.4000000000 
1.8000000000 
2.0000000000 
2.2000000000 
2.6000000000 
3.0000000000 
3.4000000000 
3.4500000000 
3.5000000000 
3.5500000000 

y 
2.8000000000 
2.7000000000 
2.6000000000 
2.2000000000 
1.8000000000 
1.6000000000 
1.4000000000 
1.4200000000 
1.4000000000 
1.5000000000 
1.8000000000 
2.4000000000 
2.6000000000 
2.8000000000 
2.9000000000 

Splines: CoefO 
1: 2.800000 
2: 2.700000 
3: 2.600000 
4: 2.200000 
5: 1.800000 
6: 1.600000 
7: 1.400000 
8: 1.420000 
9: 1.400000 

Coefl 
-0.9988332302 

Coef2 
0.0000000000 

-0.0350030942 
0.1400123770 

-0.3412801689 
1.2251082984 

-0.8091530249 
2.0115038012 

-1.4507167575 
0.7913632286 
0.9762686929 

-0.9464380003 
8.4344833084 
5.7508044511 

-31. 4377011128 

10: 1.500000 
11: 1. 800000 
12: 2.400000 
13: 2.600000 
14: 2.800000 

-1.0023335396 
-0.9918326113 
-1.0723397281 
-0.7188084763 
-0.5524263669 
-0.0714860563 
0.0406713524 

-0.0911993534 
0.6158534153 
0.6277856923 
3.6230038155 
4.3322682035 
3.0479233704 

Interpolated Points: X 
1: 0.3000000000 
2: 0.5000000000 
3: 1.2000000000 
4: 1.6000000000 
5: 2.1000000000 
6: 2.3000000000 
7: 2.5000000000 
8: 2.7000000000 
9: 2.9000000000 

10: 3.2000000000 
11: 3.3000000000 

Interpolation 

y 
2.5018157855 
2.3042222482 
1. 6916808945 
1.4759529845 
1.4132967676 
1.3989477848 
1.4480232575 
1.5697457729 
1.7293593063 
1.9502390938 
2.1142270171 

Coef3 
-0.1166769808 
0.5833849040 

-0.4010771215 
1.3053237227 

-1.6952177695 
2.3505473551 

-5.7703675978 
3.7367999767 
0.1540878869 

-1. 6022555777 
7.8174344240 

-17 .8911923822 
-247.9233704257 
209.5846740851 
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Second half of the figure: 

(K)eyboard or (F)ile entry of the data points? F 

File name? SAMPLE3F.DAT 

(K)eyboard or (F)ile entry of the interpolated points? F 

File name? SAMPLE3G.DAT 

Direct output to one of the following: 
(S)creen 

Data: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

(P)rinter 
(F) il e 

X 
3.5500000000 
3.6000000000 
3.6500000000 
3.8000000000 
4.0000000000 
4.3000000000 
4.8000000000 
5.3000000000 
5.6000000000 
5.8000000000 
6.0000000000 

Splines: CoefO 
1: 2.9000000000 
2: 2.8000000000 
3: 2.6500000000 
4: 2.5000000000 
5: 2.3500000000 
6: 2.2000000000 
7: 1.9500000000 
8: 1.6000000000 
9: 1.3000000000 

10: 1.2000000000 

Interpolated Points: X 

y 
2.9000000000 
2.8000000000 
2.6500000000 
2.5000000000 
2.3500000000 
2.2000000000 
1.9500000000 
1.6000000000 
1.3000000000 
1.2000000000 
0.0000000000 

Coefl 
-1. 6719664279 
-2.6560671441 
-2.7037649955 
-0.4016786037 
-0.7704798556 
-0.4200828166 
-0.4754252188 
-1.2782163082 
0.1155473174 

-3.0330135193 

Coef2 
0.0000000000 

-19.6820143244 
18.7280572976 
-3.3808146854 
1.5368084259 

-0.3688182960 
0.2581334916 

-1.8637156703 
6.5095944222 

-22.2523986055 

1: 3.7000000000 
y 

2.5554905401 
2.4342200313 
2.2862027357 
2.2404374617 
2.1045744477 
2.0520666406 
1.8539237670 
1.7105990402 
1.3442375346 
1.3287140209 
0.7112619930 

2: 3.9000000000 
3: 4.1000000000 
4: 4.2000000000 
5: 4.5000000000 
6: 4.6000000000 
7: 5.0000000000 
8: 5.2000000000 
9: 5.5000000000 

10: 5.7000000000 
11: 5.9000000000 

Coef3 
-131.2134288293 
256.0671441466 
-49.1308266290 

8.1960385189 
-2.1173630243 
0.4179678583 

-1.4145661079 
9.3036778805 

-47.9366550462 
37.0873310092 
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Clamped Cubic Spline Interpolation (CUBE_CLAINC) 

Description 

Tl1is example constructs a smooth curve through a given set of data points. The 
curve is a cubic spline interpolant with the following properties: 

1. It passes through every data point. 

2. It is continuous. 

3. Its first derivative is continuous. 

4. Its second derivative is continuous. 

The first derivative at the endpoints of the interval determined by the input data 
is defined by the user (Burden and Faires 1985, l22 ff.). (This is what makes the 
cubic spline "clamped.") The cubics that join adjacent data points are of the follow­
ing form: 

S[i](x) = CoefO[i] + Coefl[i](x - x[i]) + Coef2[i](x - X[i])2 

+ Coef3[i](x - x[i]? 

where i ranges between 1 and the number of data points minus 1, the x[i]' s are the 
x-coordinates of the input data, and x[i] S x < x[i + 1]. The interpolated values of 
f(x) are found by evaluating the ith cubic polynomial at x, where x[i] S x S 

x[i + 1]. 

User-Defined Types 

TNvector = array[O .. TNArraySize] of Real; 

Input Parameters 

NumPoi nts : Integer; Number of data points 

XData:TNvector; 

YData:TNvector; 

DerivLE:Real; 

DerivRE:Real; 

Interpolation 

The x-coordinates of the data points 

The y-coordinates of the data points 

Derivative of the function at the left endpoint 

Derivative of the function at the right endpoint 

57 



NumInter: Integer; Number of interpolations 

XInter:TNvector; X-coordinates of points at which to interpolate 

The preceding parameters must satisfy the following conditions: 

1. X data points must be unique. 

2. X data points must be in ascending order. 

3. NumPoints, Numlnter S TNArraySize. 

4. NumPoints > 1. 

TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector. TNArraySize is not a variable name and 
is never referenced by the procedure; hence there is no test for condition 3. If con­
dition 3 is violated, the program will crash with an Index Out of Range error 
(assuming the directive {$R + } is active). 

Output Parameters 

CoefO:TNvector; Coefficient of the constant term 

Coef1:TNvector; Coefficient of the linear term 

Coef2: TNvector; Coefficient of the squared term 

Coef3: TNvector; Coefficient of the cubed term 

YInter:TNvector; Interpolated values at Xlnter 

Error: Integer; 0: No error 
1: X-values of the data points not unique 
2: X-values of the data points not in ascending order 
3: NumPoints < 2 

Syntax of the Procedure Call 

CubicSplineClamped(NumPoints, XData, YData, DerivLE, DerivRE, NumInter, 
XInter, CoefO, Coefl, Coef2, Coef3, YInter, Error); 
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Sample Program 

The sample program CUBE_CLA.PAS provides I/O functions that demonstrate 
the clamped cubic spline interpolation algorithm. 

Input Files 

Data may be entered from a text file. The x- and y -coordinates should be separated 
by a space and followed by a carriage return. The last two values in the file must be 
the derivatives of the function at the endpoints. For example, data values of sqr(x) 
could be entered in a text file as 

11 
24 
39 
416 
525 
210 

Note that the last two values are the derivatives of sqr(x) at the endpoints x = 1 
and x = 5. 

Example 

Problem. Construct an interpolating spline for the following figure: 

3 

2 

2 3 4 5 6 
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Because a cusp occurs at x = 3.55, we will construct two splines, one for each 
side of the cusp. 

Run CUBE_CLA.PAS: 

(K}eyboard or (F}ile entry of the data points? F 

File name? SAMPLE3H.DAT 

(K}eyboard or (F}ile entry of the interpolated points? F 

File name? SAMPLE3E.DAT 

Direct output to one of the following: 
(S}creen 

Data: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

(P}rinter 
(F) i1 e 

x 
0.0000000000 
0.1000000000 
0.2000000000 
0.6000000000 
1.0000000000 
1.4000000000 
1.8000000000 
2.0000000000 
2.2000000000 
2.6000000000 
3.0000000000 
3.4000000000 
3.4500000000 
3.5000000000 
3.5500000000 

y 
2.8000000000 
2.7000000000 
2.6000000000 
2.2000000000 
1.8000000000 
1.6000000000 
1.4000000000 
1.4200000000 
1.4000000000 
1.5000000000 
1.8000000000 
2.4000000000 
2.6000000000 
2.8000000000 
2.9000000000 

Derivative at X= O.OOOOOOOOOOOOOOE+OOO 
Derivative at X= 3. 55000000000000E+000 

-1.33333333333333E+000 
3.00000000000000E+000 

Sp 1 i nes: CoefO 
1: 2.8000000000 
2: 2.7000000000 
3: 2.6000000000 
4: 2.2000000000 
5: 1.8000000000 
6: 1.6000000000 
7: 1.4000000000 
8: 1.4200000000 
9: 1.4000000000 

10: 1.5000000000 
11: 1.8000000000 
12: 2.4000000000 
13: 2.6000000000 
14: 2.8000000000 

60 

Coefl 
-1.3333333333 
-0.9091317890 
-1.0301395105 
-1.0620777385 
-0.7215495356 
-0.5517241193 
-0.0715539872 
0.0405240212 

-0.0905420975 
0.6122045428 
0.6417239262 
3.5708997526 
4.4477600660 
2.6380599835 

Coef2 
5.7579845570 

-1.5159691140 
0.3058918989 

-0.3857374687 
1.2370579761 

-0.8124944355 
2.0129197658 

-1.4525297241 
0.7971991306 
0.9596674704 

-0.8858690121 
8.2088085781 
9.3283976905 

-45.5223993401 

Coef3 
-24.2465122365 

6.0728700429 
-0.5763578064 
1.3523295373 

-1.7079603429 
2.3545118344 

-5.7757491499 
3.7495480911 
0.1353902832 

-1.5379470688 
7.5788979919 
7.4639274157 

-365.6719802043 
655.2239934014 
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Interpolated Points: X 
1: 0.3000000000 
2: 0.5000000000 
3: 1.2000000000 
4: 1.6000000000 
5: 2.1000000000 
6: 2.3000000000 
7: 2.5000000000 
8: 2.7000000000 
9: 2.9000000000 

10: 3.2000000000 
11: 3.3000000000 

Second half of figure: 

y 
2.4994686101 
2.3029267570 
1.6915087292 
1.4759914934 
1.4132766530 
1.3990531718 
1.4482408301 
1.5692791819 
1.7285068643 
1.9535412087 
2.1174192125 

(K)eyboard or (F)ile entry of the data points? F 

File name? SAMPLE3I.DAT 

(K)eyboard or (F)ile entry of the interpolated points? F 

File name? SAMPLE3G.DAT 

Direct output to one of the following: 
(S)creen 

Data: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

(P)rinter 
(F)ile 

X 
3.5500000000 
3.6000000000 
3.6500000000 
3.8000000000 
4.0000000000 
4.3000000000 
4.8000000000 
5.3000000000 
5.6000000000 
5.8000000000 
6.0000000000 

y 
2.9000000000 
2.8000000000 
2.6500000000 
2.5000000000 
2.3500000000 
2.2000000000 
1.9500000000 
1.6000000000 
1.3000000000 
1.2000000000 
0.0000000000 

Derivative at X= 3.55000000000000EtOOO -4.00000000000000EtOOO 
Derivative at X= 6.00000000000000EtOOO: -1.70000000000000EtOOl 

Sp 1 i nes: CoefO 
1: 2.9000000000 
2: 2.8000000000 
3: 2.6500000000 
4: 2.5000000000 
5: 2.3500000000 
6: 2.2000000000 
7: 1.9500000000 
8: 1.6000000000 
9: 1.3000000000 

10: 1.2000000000 

Interpolation 

Coefl 
-4.0000000000 
-2.0111665197 
-2.9553339213 
-0.3238290709 
-0.7983524409 
-0.3974941891 
-0.5494435897 
-1.0047314521 
-0.7151931996 
-0.4462017001 

Coef2 
80.2233303937 

-40.4466607874 
21.5633127559 
-4.0199470867 
1.6473302365 

-0.3111360640 
0.0072372629 

-0.9178129877 
1.8829404961 

-0.5379829989 

Coef3 
-804.4666078741 
413.3998236224 
-56.8516885392 

9.4454622054 
-2.1760736673 
0.2122488846 

-0.6167001671 
3.1119483153 

-4.0348724916 
-136.1550425028 
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Interpolated Points: X 
1: 3.7000000000 
2: 3.9000000000 
3: 4.1000000000 
4: 4.2000000000 
5: 4.5000000000 
6: 4.6000000000 
7: 5.0000000000 
8: 5.2000000000 
9: 5.5000000000 

10: 5.7000000000 
11: 5.9000000000 
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y 
2.5490351248 
2.4368630843 
2.2844619846 
2.2388141319 
2.1097537107 
2.0584802174 
1.8354671712 
1.6919117155 
1.3872367766 
1.2432752125 
1.0138449575 
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c H A p T E R 4 
Numerical Differentiation 

Differentiation is a process used in calculus to quantify the rate of change of a given 
function. The derivative of a real-valued function of a real variable is another real­
valued function of a real variable. For example, suppose you are driving down the 
freeway in your car and f(t) gives the distance traveled at time t. Typical values 
might be 

x f(x) 
1.0 45.0 

1.1 49.2 

1.2 54.5 
1.3 59.8 

1.4 65.1 
1.5 70.4 

The units are in hours and miles, and the data refers to a trip that started at 
noon.f(l.O) = 45.0, so the distance traveled by one o'clock is 45.0 miles, andf(l.5) 
= 70.4, so by half past one you will be 70.4 miles from where you were at noon. 

The derivative of this distance function gives the velocity function. The car's 
velocity at one o'clock is the value of the derivative at x = l.0. From the previous 
data, it is impossible to compute the derivative exactly, but it is possible to approxi­
mate the derivative. The car traveled 49.2 - 45.0 = 4.2 miles in the six minutes 
after one o'clock (1.1 - 1.0 = 0.1 hours = 6 minutes). Thus, the average velocity 
of the car during thos~ six minutes is 4.2 / 0.1 = 42 miles per hour. This gives an 
approximation to the velocity at one o'clock. 
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Each method described in this chapter approximates derivatives of a real func­
tion of one real variable. 

The routines DERIV.lNC, DERIV2.1NC, and INTERDRV.lNC compute 
derivatives of a function that is represented by tabular data. Consequently, their 
accuracy depends heavily upon the precision and spacing of the data points. 

The routines DERIVFN.lNC and DERIV2FN.lNC compute derivatives of a 
user-defined function. Consequently, the accuracy of the values calculated with 
these routines is limited by the precision of the computer. 

Differentiation consists of subtracting two very close numbers and dividing by a 
very small number; hence, it is extremely sensitive to round-off error. The accuracy 
of the first derivative is approximately the square root of the precision with which 
real numbers are represented; the accuracy of the second derivative is approxi­
mately equal to the fourth root. Thus, the precision of the first derivative will be 
about IE - 8 when run with the 8087 math coprocessor, or about IE - 4 when run 
without the 8087 math coprocessor. The precision of the second derivative will be 
about IE - 4 with the 8087, or IE - 2 without it. 

The first derivative of a function that is represented by a table of values can be 
approximated in DERIV.lNC via a two-point formula, a three-point formula, or a 
five-point formula. The accuracy of the formula increases with the number of 
points used in the formula. In order to use the five-point formula, however, the 
domain values of the data points (that is, the x-coordinates) must be equally spaced. 
This is not required for the two-point and three-point formulas. Derivatives can 
only be approximated at data points. 

The second derivative of a function that is represented by a table of values can 
be approximated in DERIV2.1NC via a three-point formula or a five-point for­
mula. The domain values of the data points must be equally spaced (regardless of 
whether the three-point formula or five-point formula is used). Second derivatives 
can only be approximated at data points. 

The routine INTERDRV.lNC approximates a function by constructing a free 
cubic spline to a set of data points. Cubic splines avoid the undesirable oscillatory 
behavior of other interpolating polynomials. The derivative of the cubic spline at a 
given domain value, which may be different from the input data values, will then 
approximate the corresponding derivative of the function. 

The first derivative of a user-supplied function is approximated in DERIV 
FN.lNC via a three-point formula. The approximation is refined with Richardson 
extrapolation. The derivative can be approximated at any point within the domain 
of the function. 
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The second derivative of a user-supplied function is approximated in 
DERIV2FN.INC via a three-point formula. The approximation is refined with 
Richardson extrapolation. The second derivative can be approximated at any point 
within the domain of the function. 
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First Differentiation Using Two-Point, Three-Point, or 
Five-Point Formulas (DERIV.INC) 

Description 

This example contains several algorithms for approximating the derivative of a 
functionj(x), given several data points (x,j(x)). The user must specify whether a 
two-point, three-point, or five-point formula should be used. Two points are used 
in the two-point formula, three in the three-point formula, and five in the five­
point formula. The user must supply the data points (x,j(x)) and the x-values of the 
data points at which to approximate the derivative. Note: Derivatives can only be 
approximated at x-values corresponding to input data points. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Real; 

Input Parameters 

NumPoi nts : Integer; Number of data points 

XData : TNvector; X-coordinates of data points 

YData : TNvector; Y-coordinates of data points 

Poi nt : Byte; Two-point, three-point, or five-point differentiation 

NumDeriv : Integer; Number of points at which the derivative is to be approxi­
mated 

XDeriv : TNvector; X-coordinates of data points at which the derivative is to be 
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approximated 

The preceding parameters must satisfy the following conditions: 

1. XData points must be unique. 

2. XData points must be entered in ascending order. 

3. At least two points are needed for two-point differentiation, three for 
three-point differentiation, and five for five-point differentiation. 

4. Point must equal two, three, or five. 
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5. XData points must be equally spaced for five-point differentiation. 

6. XDeriv points must be a subset of the XData points. 

7. NumPoints, NumDeriv ::::;; TNArraySize. 

TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvector. TNArraySize is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 7. If condition 7 is 
violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R + } is active). 

Output Parameters 

YDeriv : TNvector; Approximation to the first derivative at the points in XDeriv 

Error: Byte; 0: No errors 
1: WARNINGI Not all the derivatives were computed (see 
"Comments") 
2: X-values not unique 
3: X-values not in ascending order 
4: Not enough data 
5: Point not equal to 2, 3, or 5 
6: X-values not equally spaced for the five-point formula 

Syntax of the Procedure Call 

First_Derivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDeriv, Error); 

Comments 

If an x-value at which the derivative is to be approximated is not among the data 
points, the value - 9.999999999E35 is arbitrarily assigned to the derivative at that 
point and Error = 1 is returned. When using five-point differentiation with only 
five points, there is not enough information to approximate the derivative at the 
first, second, fourth, or fifth points. Likewise, if only six points are input, there is 
insufficient information for approximating the derivative at the second and fifth 
data points. Should an attempt be made to approximate the derivative at any of 
these points, the value of 9.999999999E35 is arbitrarily assigned the derivative at 
that point and Error = 1 is returned. 
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Since numerical differentiation is prone to round-off errors, TNNearlyZero is 
different in this routine. The values of TNNearlyZero are TNNearlyZero = IE - 13 
if using the 8087 math coprocessor and TNNearlyZero = IE - 6 if not using the 
8087. 

Sample Program 

The sample program DERIV.PAS provides I/O functions that demonstrate differ­
entiation with two-point, three-point, and five-point formulas. 

Input Files 

Data points may be entered from a text file. The x- and y- coordinates should be 
separated by a space and followed by a carriage return. For example, data values of 
sqr(x) could be entered in a text file as 

11 
24 
39 
416 
525 

Derivative points may also be entered from a text file. Every derivative point 
must be followed by a carriage return. For example, to determine the derivatives of 
the preceding points, create the following file of derivative points: 

1 
2 
3 
4 
5 

Example 

Problem. Approximate the first derivative off(x) = sqr(x) * cos (x) at several points 
between one and two radians. The output from three runs is given. Actual values of 
the derivatives to eight significant figures are also given. 
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Run DERrV.PAS: 

(K)eyboard or (F)ile entry of the data points? F 

File name? SAMPLE4A.DAT 

(K)eyboard or (F)ile entry of the derivative pOints? K 

Number of X values (0-100)? 5 

Poi nt 1: 1.1 
Point 2: 1.3 
Point 3: 1.5 
Point 4: 2.0 
Point 5: 2.2 

2-, 3-, or 5-point differentiation (default = 5)? 2 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Input Data: X 
1.0000000 
1.1000000 
1.2000000 
1.3000000 
1.4000000 
1.5000000 
1.6000000 
1.7000000 
1.8000000 
1.9000000 
2.0000000 

y 
5.40302305868140E-001 
5.48851306924949E-001 
5.21795166446410E-001 
4.52073020375553E-001 
3.33135600084472E-001 
1.59158703752332E-001 

-7.47507770912994E-002 
-3.72360588514066E-001 
-7.36134786805602E-001 
-1.16707533637725E+000 
-1.66458734618857E+000 

Output using two-point differentiation: 

<* --------------------------- *> 
<* WARNING *> 

<* --------------------------- *> 

X Derivative at X 
1.100 8.54900105680900E-002 
1.300 -6.97221460708569E-001 
1.500 -1.73976896332140E+000 
2.000 -4.97512009811320E+000 
2.200 No derivative calculated 
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Output using three-point differentiation: 

<* --------------------------- *> 
<* WARNING *> 

<* --------------------------- *> 

X Derivative at X 
1.100 -9.25356971086502E-002 
1.300 -9.43297831809691E-001 
1.500 -2.03943188587886E+000 
2.000 -5.30797739931155E+000 
2.200 No derivative calculated 

Output using five-point differentiation: 

<* --------------------------- *> 
<* WARNING *> 

<* --------------------------- *> 

X 
1.100 
1.300 
1.500 
2.000 
2.200 

Derivative at X 
-8.08749392678299E-002 
-9.32986606435738E-001 
-2.03221450709712E+000 
-5.30200229054730E+000 
No derivative calculated 

Actual Values 
X Derivative at X 

1.100 -0.0804494 
1.300 -0.9329163 
1.500 -2.0321521 
2.000 -5.3017771 
2.200 -6.5025275 

The data is taken from a function of which a derivative could be computed 
exactly. Though the values in the right-hand columns (under "Actual Values") are 
not displayed on screen, they are shown here to indicate the accuracy of the rou­
tine. 

The warning signal indicates that some derivatives were not calculated. 

The derivative is not approximated for x = 2.2 in any of the examples because 
x = 2.2 is not among the data points. 
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Second Differentiation Using Three-Point or Five-Point 
Formulas (DER1V2.INC) 

Description 

This example contains two algorithms that approximate the second derivative of a 
functionf(x) when several data points (x,f(x)) are specified. You decide whether to 
use a three-point or five-point formula (Gerald and Wheatley 1984, 236-237); 
three points are used in the three-point formula, and five in the five-point formula. 
You must supply the data points (x,j(x)) and the x-values of the data points at which 
the second derivative is to be approximated. The second derivative may only be 
approximated at x-values that were input as data points. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Real; 

Input Parameters 

NumPoints : Integer; Number of data points 

XData : TNvector; X-coordinates of the data points 

YData : TNvector; Y-coordinates of the data points 

Point: Byte; Three-point or five-point differentiation 

NumDeriv : Integer; Number of points at which the derivative is to be approxi­
mated 

XDeriv : TNvector; X-coordinates of points at which the derivative is to be approx-
imated 

The preceding parameters must satisfy the following conditions: 

1. XData points must be unique. 

2. XData points must be entered in ascending order. 

3. At least three points for three-point differentiation and five points for five­
point differentiation. 

4. Point must equal 3 or 5. 
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5. XData points must be equally spaced. 

6. XDeriv points must be a subset of the XData points. 

7. NumPoints, NumDeriv :5 TNArraySize. 

TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvector. TNArraySize is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 7. If condition 7 is 
violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R + } is active). 

Output Parameters 

YDeri v : TNvector; Approximation to the second derivative at the XDeriv points 

Error : Byte; 0: No errors 
1: WARNING! At least one derivative was not approximated 
(see "Comments") 
2: X-values not unique 
3: X-values not in increasing order 
4: Not enough data 
5: Point not equal to 3 or 5 
6: X-value points not equally spaced 

Syntax of the Procedure Call 

Second-Derivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDeriv, Error); 

Comments 

If an x-value at which the second derivative is approximated is not among the data 
points, the value - 9.9999999E35 is arbitrarily assigned to the derivative at that 
point and Error = 1 is returned. When using five-point second differentiation with 
only five data points, there is insufficient information for approximating the second 
derivative at the second and fourth data points. Should an attempt be made to 
approximate the second derivative at these points, the value 9.9999999E35 is arbi­
trarily assigned to the second derivative at that point and Error = 1 is returned. 
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Since numerical differentiation is extremely prone to round-off error, TNNear­
lyZero is different in this routine. The values of TNNearlyZero are TNNearlyZero 
= IE - 13 if using the 8087 math coprocessor and TNNearlyZero = IE - 6 if not 
using the 8087. 

Sample Program 

The sample progam DERIV2.PAS provides I/O functions that demonstrate 
second-order differentiation with three-point and five-point formulas. 

Input Files 

Data points may be entered from a text file. The x- and y-coordinates should be 
separated by a space and followed by a carriage return. For example, data values of 
sqr(x) could be entered in a text file as 

11 
24 
39 
416 
525 

Derivative points may also be entered from a text file. Every derivative point 
must be followed by a carriage return. For example, to determine the second deriv­
atives of the preceding points, create the following file of derivative points: 

1 
2 
3 
4 
5 

Example 

Problem. Approximate the second derivative of f(x) = sqr(x) * cos(x) at several 
points between x = 1 and x = 2 radians. The output from two runs is given. Actual 
values of the second derivatives to eight significant figures are also given. 
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Run DERIV2.PAS: 

(K)eyboard or (F)ile entry of the data points? F 

File name? SAMPLE4A.DAT 

(K)eyboard or (F)ile entry of the derivative points? K 

Number of X values (0-100)?5 

Point 1: 1.1 
Point 2: 1.3 
Point 3: 1.5 
Point 4: 2.0 
Point 5: 2.2 

3- or 5-point second differentiation (default = 5)? 3 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) i 1 e 

Input Data: X 
1.0000000 
1.1000000 
1.2000000 
1.3000000 
1.4000000 
1.5000000 
1.6000000 
1.7000000 
1.8000000 
1.9000000 
2.0000000 

y 
5.40302305868140E-001 
5.48851306924949E-001 
5.21795166446410E-001 
4.52073020375553E-001 
3.33135600084472E-001 
1.59158703752332E-001 

-7.47507770912994E-002 
-3.72360588514066E-001 
-7.36134786805602E-001 
-1. 16707533637725E+000 
-1.66458734618857E+000 

Output using three-point second differentiation: 

<* --------------------------- *> 
<* WARNING *> 
<* --------------------------- *> 

X 2nd Derivative at X 
1.100 -3.56051415353479E+000 
1.300 -4.92152742202240E+000 
1.500 -5.99325845114913E+000 
2.000 -6.65714602396721E+000 
2.200 No 2nd derivative calculated 

74 Turbo Numerical Methods Toolbox 



Output using five-point second differentiation: 

<* --------------------------- *> 
<* WARNING *> 

<* --------------------------- *> 

X 
1.100 
1.300 
1.500 
2.000 
2.200 

2nd Derivative at X 
-3.61167369644119E+000 
-4.92756964541465E+000 
-6.00263647117236E+000 
-6.59765691992321E+000 
No 2nd derivative 
calculated 

Actual Values 
X 
1.100 
1.300 
1.500 
2.000 
2.200 

2nd Derivative at X 
-3.5629714 
-4.9275779 
-6.0026542 
-6.4420857 
-5.4434251 

The data is taken from a function of which the derivative could be computed 
exactly. Though the values in the right-hand columns (under "Actual Values") are 
not displayed on screen, they are shown here to indicate the accuracy of the rou­
tine. 

The warning signal indicates that some second derivatives were not calculated. 

The second derivative is not approximated at x = 2.2 for either run because 
x = 2.2 is not among the input x-value points. 
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Differentiation with a Cubic Spline Interpolant 
(INTERDRV.INC) 

Description 

This example contains an algorithm for approximating the first and second deriva­
tives of a function given several data points (x,f(x)). The algorithm assumes that a 
free cubic spline interpolant (Burden and Faires 1985, 117-122) is an adequate ap­
proximation to the functionf(x), so that the slope of the interpolant at any value x. 
is an adequate approximation tof'(x). See Chapter 3 (CUBE_FRE.lNC) for mor~ 
information on free cubic splines. The user must supply the data points (x,f(x)) and 
the x-values at which to approximate the derivatives. Derivatives may be approxi­
mated at any x-value contained in the closed interval determined by the data 
points. This routine will likely give significant errors if interpolation (Gerald and 
Wheatley 1984, 227-231) is attempted outside the range of x-values (extrapo­
lation). 

User-Defined Types 

TNvector = array[l .• TNArraySize] of Real; 

Input Parameters 

NumPoints : Integer; Number of data points 

XData : TNvector; X-coordinates of data points 

YData : TNvector; Y-coordinates of data points 

NumDeriv : Integer; Number of points at which the derivative is to be approxi­
mated 

XDeri v : TNvector; X-coordinates of points at which the derivative is to be approx­
imated 
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The preceding parameters must satisfy the following conditions: 

1. XData points must be unique. 

2. XData points must be in ascending order. 

3. NumPoints ~ 2. 

4. NumPoints, NumDeriv S TNArraySize. 

TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvector. TN Array Size is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 4. If condition 4 is 
violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R + } is active). 

Output Parameters 

Ylnter : TNvector; Interpolated y-values at the XDeriv points 

YDeri v : TNvector; Approximation to the first derivative at the x-values in XDeriv 

YDeriv2 : TNvector; Approximation to the second derivative at the x-values in 

Error: Byte; 

XDeriv 

0: No errors 
1: X-values not unique 
2: X-values not in ascending order 
3: NumPoints < 2 

Syntax of the Procedure Call 

Interpolate-Derivative(NumPoints, XData, YData, NumDeriv, 
XDeriv, Ylnter, YDeriv, YDeriv2, Error); 

Sample Program 

The sample program INTERDRV.PAS provides I/O functions that demonstrate 
differentiation with a cubic spline interpolant. 
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Input Files 

Data points may be entered from a text file. The x- and y-coordinates should be 
separated by a space and followed by a carriage return. For example, data values of 
sqr(x) could be entered in a text file as 

11 
24 
39 
416 
525 

Derivative points may also be entered from a text file. Every derivative point 
must be followed by a carriage return. For example, to determine the derivatives of 
the preceding points, create the following file of derivative points: 

1 
2 
3 
4 
5 

Example 

Problem. Determine the first and second derivative ofJ(x) = sqr(x) * cos (x) at 
several points between one and two radians. Actual values of the derivatives to 
eight significant figures are given here. 

Run INTERDRY.PAS: 

(K)eyboard or (F)ile entry of data points? F 

File name? SAMPLE4B.DAT 

(K)eyboard or (F)ile entry of derivative points? K 

Number of derivative points (0-100)?5 

Point 1: 1.1 
Poi nt 2: 1. 3 
Point 3: 1.55 
Point 4: 1.95 
Point 5: 2.20 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 
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Input Data: X 
1.000 
1.100 
1.200 
1.300 
1.400 
1.500 
1.600 
1.700 
1.800 
1.900 
2.000 

y 
0.5403023 
0.54885l3 
0.5217952 
0.4520730 
0.3331356 
0.1591587 

-0.0747508 
-0.3723606 
-0.7361348 
-1.1670753 
-1.6645873 

Using free cubic spline interpolation: 

X 
1.100 
1.300 
1.550 
1.950 
2.200 

Value at X 
5.48851300000000E-001 
4.52073000000000E-001 
4.99429267146238E-002 

-1.41057141673716E+000 
-2.57545316779455E+000 

1st Deriv at X 
-5.86015666816468E-002 
-9.31377366861404E-001 
-2.33770918101853E+000 
-5.01018588841893E+000 
-3.43222090956677E+000 

2nd Deriv at X 
-4.32274700 
-4.98862501 
-6. 19118137 
-4.20790661 
16.83162644 

The data is taken from a function of which the derivative could be computed 
exactly. The actual values are shown here: 

X Value at X 1st Deriv at X 2nd Deriv at X 
1.1 0.5488513 -0.0804494 -3.5629715 
1.3 0.4520730 -0.9329164 -4.9275779 
1.55 0.0499596 -2.3375165 -6.2070293 
1.95 -1.4076126 -4.9760746 -6.5786348 
2.20 -2.8483454 -6.5025275 -5.4434252 

Note the poor results obtained at values outside the range of input data 
(x = 2.2). Also note the large error in the second derivatives near the endpoints of 
the interval determined by the data. 

Numerical Differentiation 79 



Differentiation of a User-Defined Function 
(DERIVFN.INC) 

Description 

Given a user-defined function fix), this example will approximate the first deriva­
tive of the function at a set of x values. The formula 

f' (x) = [f(x + ~X) - f(x - ~X)]/2*~ 

gives a first approximation to the derivative. Richardson extrapolation is then used 
to refine the approximation (Burden and Faires 1985,137-152). 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Real; 

User-Defined Function 

function TNTargetF(X Real) Real; 

Input Parameters 

NumDeriv : Integer; Number of points at which the derivative is to be approximated 

XDeriv : TNvector; X-coordinates of points at which the derivative is to be approxi­
mated 

To 1 erance : Real; Indicates accuracy of solution 

The preceding parameters must satisfy the following conditions: 

l. NumDeriv::::; TNArraySize 

2. Tolerance > TNNearlyZero 

TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvector. TNArraySize is rwt a variable name and is never refer­
enced by the procedure; hence there is no test for condition 1. If condition 1 is 
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violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R + } is active). 

Output Parameters 

YDer;v : TNvector; Approximation to the first derivative at the x-values in XDeriv 

Error: Byte; 0: No errors 
1: Tolerance < TNNearlyZero 

Syntax of the Procedure Call 

F;rstDer;vat;ve(NumDer;v, XDer;v, YDer;v, Tolerance, Error}; 

The procedure FirstDerivative approximates the first derivative of function 
TNTargetF. 

Comments 

Since numerical differentiation is extremely prone to round-off errors, TNNear­
lyZero is different in this routine. Its values are TNNearlyZero = IE -10 if using 
the 8087 math coprocessor and TNNearlyZero = IE - 5 if not using the 8087. 

Sample Program 

The sample program DERIVFN.PAS provides I/O functions that find the first 
derivative of a function at a set of points. 

Input Files 

Derivative points may be entered from a text file. Every derivative point must be 
followed by a carriage return. For example, to determine the derivatives at x-values 
1 through 5, create the following file of derivative points: 

1 
2 
3 
4 
5 
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Example 

Problem. Determine the first derivative off(x) = sqr(x) * cos(x) at several points 
between 1 and 2.2. Actual values of the derivatives to eight significant figures are 
given here. 

First, write the function into the DERIVFN.PAS program: 

(* ----- here is the function to differentiate -------------------- *) 

funct;on TNTargetF(X : Real) : Real; 

beg;n 
TNTargetF := Sqr(X)*Cos(X); 

end; { function TNTargetF } 

(* ---------------------------------------------------------------- *) 

Run DERIVFN.PAS: 

(K)eyboard or (F)ile entry of derivative points? K 

Number of points (0-100)? 5 

Poi nt 1: 1.1 
Point 2: 1.3 
Point 3: 1.55 
Point 4: 1.95 
Point 5: 2.2 

Tolerance (> 0, default = 1.000E-02)? 1E-4 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Tolerance = 1.00000000000000E-004 

X 
1.100 
1.300 
1.550 
1.950 
2.200 

Derivative at X 
-8.04494385380506E-002 
-9.32916380187812E-001 
-2.33751652942968E+000 
-4.97607456093019E+000 
-6.50252751001358E+000 

Actual Values 
X Value at X 1st Deriv at X 
1.1 0.5488513 -0.0804494 
1.3 0.4520730 -0.9329164 
1.55 0.0499596 -2.3375165 
1.95 -1.4076126 -4.9760746 
2.20 -2.8483454 -6.5025275 

The data is taken from a function of which the derivative could be calculated 
exactly. Though the values in the three right-hand columns (under "Actual Values") 
are not displayed on screen, they are shown here to indicate the accuracy of the 
routine. 
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Second Differentiation of a User-Defined Function 
(DERIV2FN.INC) 

Description 

Given a user-defined function fix), this example will approximate the second deriv­
ative of the function at a set of x values. The three-point formula 

f" (x) = [f(x + /lX) - 2f(x) + f(x - AX)]/AX2 

gives a first approximation to the second derivative. Richardson extrapolation is 
then used to refine the approximation (Burden and Faires 1985, 142-152). 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Real; 

User-Defined Function 

function TNTargetF(X Real) Real; 

Input Parameters 

NumDeri v : Integer; Number of points at which the derivative is to be approximated 

XDeriv : TNvector; X-coordinates of points at which the derivative is to be approxi­
mated 

To 1 erance : Real; Indicates accuracy in solution 
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The preceding parameters must satisfy the following conditions: 

1. NumDeriv $; TNArraySize 

2. Tolerance ~ TNNearlyZero 

TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvector. TNArraySize is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 1. If condition 1 is 
violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R + } is active}. 

Output Parameters 

YDeri v : TNvector; Approximation to the second derivative at the x-values in XDeriv 

Error: Byte; 0: No errors 
1: Tolerance < TNNearlyZero 

Syntax of the Procedure Call 

SecondDerivative(NumDeriv, XDeriv, YDeriv, Tolerance, Error); 

SecondDerivative approximates the derivative of function TNTargetF. 

Comments 

Since numerical differentiation is extremely prone to round-off errors, TNNear­
lyZero is different in this routine. Its values are TNNearlyZero = IE - 4 if using 
the 8087 math coprocessor and TNNearlyZero = IE - 2 if not using the 8087. 

Sample Program 

The sample program DERIV2FN.PAS provides I/O functions that find the second 
derivative of a function at a set of points. 
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Input Files 

Derivative points may be entered from a text file. Every derivative I,Joint must be 
followed by a carriage return. For example, to determine the second derivatives at 
x-values 1 through 5, create the following file of derivative points: 

1 
2 
3 
4 
5 

Example 

Problem. Determine the second derivative of fix) = sqr(x) * cos (x) at several 
points between 1 and 2.2. Actual values of the derivatives to eight significant fig­
ures are given here. 

First, write the function into the DERIV2FN . PAS program: 

(* ----- here is the function to differentiate -------------------- *) 

function TNTargetF(X : Real) : Real; 

begin 
TNTargetF := Sqr(X)*Cos(X); 

end; { function TNTargetF } 

(* ---------------------------------------------------------------- *) 

Run DERIV2FN.PAS: 

(K)eyboard or (F)ile entry of derivative pOints? K 

Number of points (0-100)? 5 

Point 1: 1.1 
Point 2: 1.3 
Point 3: 1.55 
Point 4: 1.95 
Point 5: 2.2 

Tolerance (> 0, default = 1.000E-02)? 1E-4 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F)ile 

Tolerance = 1.00000000000000E-004 

Numerical Differentiation 85 



X 
1.100 
1.300 
1.550 
1.950 
2.200 

2nd Derivative at X 
-3.56297143915941E+000 
-4.92757787674466E+000 
-6.20702925534123E+000 
-6.57863484485542E+000 
-5.44342524529641E+000 

Actual Values 
X Value at X 2nd Deriv at X 

1.1 0.5488513 -3.5629715 
1.3 0.4520730 -4.9275779 
1.55 0.0499596 -6.2070293 
1.95 -1.4076126 -6.5786348 
2.20 -2.8483454 -5.4434252 

The data is taken from a function of which the derivative could be calculated 
exactly. Though the values in the three right-hand columns (under "Actual Values") 
are not displayed on screen, they are shown here to indicate the accuracy of the 
routine. 
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c H A p T E R 5 
Numerical Integration 

Integration is another concept used in calculus. It is just the opposite of differentia­
tion, for which routines are provided in Chapter 4. Differentiation tells you the 
changes in a function, where integration tells you how to add those changes to get 
the original function. 

Integration is most easily understood in terms of areas under curves. Given a 
function f(x) and real numbers a and b with a < b, the area under the curve 
y = f(x) and above the x-axis between x = a and x = b is given by the integral of 
f(x) from a to b. 

As with derivatives, the laws of calculus are required to compute integrals 
exactly. The routines in this chapter provide very accurate approximations. 

Several methods are described here that approximate the value of a deRnite 
integral of a real function of one real variable. Both limits of integration must be 
Rnite. 

The trapezoid method (TRAPZOID.lNC) and Simpson's method (SIMPSON. 
INC) return an approximation of the integral when a number of equal length 
subintervals are speciRed. For a given number of subintervals, Simpson's method 
is preferre~ over the trapezoid method whenever the function being integrated is 
sufficiently smooth. 

It is sometimes possible to approximate the deRnite integral to within a user­
speciRed accuracy with fewer function evaluations using adaptive schemes. Adap­
tive schemes determine the length of each subinterval by the local behavior of the 
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integrand. Simpson's method (ADAPSIMP.INC) and the Gaussian quadrature 
method (ADAPGAUS.INC) are used with adaptive schemes. The Gaussian quad­
rature method permits, in some instances, the integrand to possess a singularity at 
an endpoint of integration, since the function is evaluated at points that are not the 
endpoints of the interval of integration. 

The Romberg method (ROMBERG.INC) uses the trapezoid method and Rich­
ardson extrapolation to approximate the integral. It returns an approximation 
within a user-specified accuracy. Except for extremely oscillatory functions or 
functions that possess an endpoint singularity, this method is fastest and most 
accurate. If the function oscillates substantially or possesses an endpoint singular­
ity, the adaptive Gaussian quadrature routine is preferred. 
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Integration Using Simpson's Composite Algorithm 
(SIMPSON. INC) 

Description 

This example uses Simpson's composite algorithm (Burden and Faires 1985, 156-
167) to approximate the definite integral of a functionJ\x) over an interval [a, b]. 
The interval is divided into N subintervals of equal length. The curve in each 
subinterval is approximated by a second-degree Lagrange polynomial. The integral 
of the resulting polynomial is then calculated. The sum of the integrals of the N 
Lagrange polynomials approximates the integral of the function! over the interval 
[a, b J. You must supply the function, the limits of integration, and the number of 
subintervals. 

User-Defined Function 

function TNTargetF(x : Real) : Real; 

The procedure Simpson approximates the integral of this function. 

Input Parameters 

LowerL i mi t : Rea 1 ; 

UpperLi mit : Real; 

Lower limit of integration 

Upper limit of integration 

NumIntervals : Integer; Number of subintervals over which to apply Simpson's rule 

The preceding parameters must satisfy the following condition: 

NumI ntervals > 0 
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Output Parameters 

Integral: Real; Approximation to the integral of the function 

Error: Byte; 0: No errors 
1: Numlntervals :5 0 

Syntax of the Procedure Call 

Simpson(LowerLimit, UpperLimit, NumIntervals, Integral, Error); 

Simpson approximates the integral of TNTargetF. 

Sample Program 

The sample program SIMPSON.PAS provides I/O functions that demonstrate 
Simpson's composite algorithm. 

Example 

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using Simpson's 
composite algorithm. 

1. Code function TNTargetF: 

funct;on TNTargetF(x : Real) : Real; 

(**************************************************************************) 
(**** THIS IS THE FUNCTION TO INTEGRATE ****) 
(**************************************************************************) 

beg;n 
TNTargetF .­

end; 

90 

Exp(3*X) + Sqr(X)/3; 
{ function TNTargetF } 
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2. Run SIMPSON.PAS: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Number of intervals (> O)? 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower limit: O.OOOOOOOOOOOOOOE+OOO 
Upper limit: 5.00000000000000E+000 

Number of intervals: 100 

Integral: 1.08968620446199E+006 

To eight significant figures, the correct answer is 1,089,686.2. 
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Integration Using the Trapezoid Composite Rule 
(TRAPZOID.INC) 

Description 

This example uses the trapezoid composite rule (Burden and Faires 1985,154-167) 
to approximate the definite integral of a function fix) over an interval [a, b]. The 
interval is divided into N subintervals of equal length. In each subinterval the 
function is approximated by a straight line. The sum of the integrals of the result­
ing trapezoids approximates the integral of the function f over the interval [a, b]. 
You must supply the function, the limits of integration, and the number of subinter­
vals. 

User-Defined Function 

funct;on TNTargetF(x : Real) : Real; 

The procedure Trapezoid approximates the integral of this function. 

Input Parameters 

Lower L i mi t : Real; Lower limit of integration 

UpperLimit : Real; Upper limit of integration 

NumInterva 1 s : Integer; Number of subintervals over which to apply the trapezoid 
rule 

The preceding parameters must satisfy the following condition: 

Numlntervals > 0 
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Output Parameters 

Integral: Real; Approximation to the integral of the function 

Error: Byte; 0: No errors 
1: NumI ntervals S 0 

Syntax of the Procedure Call 

Trapezoid(LowerLimit, UpperLimit, NumIntervals, Integral, Error); 

Trapezoid approximates the integral of TNTargetF. 

Sample Program 

The sample program T~APZOID.PAS provides I/O functions that demonstrate the 
trapezoid composite rule. 

Example 

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using the trape­
zoid composite rule. 

1. Code function TNTargetF: 

function TNTargetF(x : Real) : Real; 

(*****************************************************************************) 
(**** THIS IS THE FUNCTION TO INTEGRATE ****) 
(*****************************************************************************) 

begin 
TNTargetF .­

end; 
Exp(3*X) + Sqr(X)/3; 

{ function TNTargetF } 
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2. Run TRAPZOID.PAS: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Number of intervals (> O)? 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower limit: O.OOOOOOOOOOOOOOE+OOO 
Upper limit: 5.00000000000000E+000 

Number of intervals: 100 

Integral: 1.09172838320798E+006 

To eight significant figures, the correct answer is 1,091,728.3. 
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Integration Using Adaptive Quadrature and Simpson's Rule 
(ADAPSIMP.INC) 

Description 

This example contains an algorithm for approximating the definite integral of a 
functionf(x) over an interval [a,b] within a specified tolerance. By increasing the 
number of subintervals in regions of large functional variation (adaptive quadra­
ture), the desired degree of accuracy can be reached (Burden and Faires 1985, 
153-167). The integral within each subinterval is calculated with Simpson's rule. 
The adaptive quadrature approximates the integral over a subinterval twice: once 
over the whole subinterval, and again as the sum of the integral over each half of 
the subinterval. The algorithm halts when the fractional difference between these 
two approximations is less than the tolerance. You must supply the function, the 
limits of integration, and the tolerance with which to approximate the integral. 

User-Defined Function 

function TNTargetF(x : Real) : Real; 

The procedure Adaptive-.Simpson approximates the integral of this function. 

Input Parameters 

Lower Limit: Real; 

UpperLi mi t : Real; 

Lower limit of integration 

Upper limit of integration 

Tolerance: Real; Indicates accuracy in solution 

MaxInterval s : Integer; Maximum number of subintervals 

The preceding parameters must satisfy the following conditions: 

1. Tolerance > 0 

2. Maxlntervals > 0 
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Output Parameters 

Integral: Real; Approximation to the integral of the function 

NumInterval s : Integer; Number of subintervals used 

Error : Byte; 0: No errors 
1: Tolerance S 0 
2: Maxlntervals s,O 
3: Numlntervals ~ Maxlntervals 

Syntax of the Procedure Call 

Adaptive-Simpson(LowerLimit, UpperLimit, Tolerance, MaxIntervals, 
Integral, NumIntervals, Error); 

Adaptive_Simpson approximates the integral of TNTargetF. 

Comments 

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure 
calls (which slow down the execution), a stack is created on the heap to simulate 
recursion. Should you attempt to evaluate the integral to a very high degree of 
accuracy with a large number of subintervals, you may get run-time error $FF, 
Heap/Stack collision. If this happens, remove any RAM-resident software (for 
example, SideKick®, SuperKey®, or a print buffer). If the problem remains, the 
adaptive Simpson routine cannot be used to approximate the integral to the 
desired accuracy. 

Adaptive quadrature uses the New/Dispose procedures to manipulate the heap 
and should not be used in any program that uses Mark/Release to manipulate the 
heap. 

Sample Program 

The sample program ADAPSIMP.PAS provides I/O functions that demonstrate the 
adaptive quadrature method with Simpson's rule. 
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Example 

Problem. Approximate the integral exp(3x) + sqr(x)/3 from ° to 5 using adaptive 
quadrature and Simpson's rule. 

1. Code function TNTargetF: 

function TNTargetF(x : Real) : Real; 

(****************************************************************************) 
(** THIS IS THE FUNCTION TO INTEGRATE ***) 
(****************************************************************************) 

begin 
TNTargetF := Exp(3*X) + Sqr(X)/3; 

end; { function TNTargetF } 

2. Run ADAPSIMP.PAS: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Tolerance (> 0, default = 1.000E-08): 1E-8 

Maximum number of subintervals (> 0, default 1000): 1000 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower 1 imit: 
Upper 1 imi t: 

Tolerance: 
Maximum number of subintervals: 

Number of subintervals used: 

Integral: 

O.OOOOOOOOOOOOOOE+OOO 
5.00000000000000E+000 
1.00000000000000E-008 

1000 
511 

1.08968601332498E+006 

To eight significant figures, the correct answer is 1,089,686.0. 
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Integration Using Adaptive Quadrature and Gaussian 
Quadrature (ADAPGAUS.INC) 

Description 

This example contains an algorithm for approximating the integral of a functionf(x) 
over an interval [a,b] within a specified tolerance. By increasing the number of 
subintervals in regions of large functional variation (adaptive quadrature), the 
desired degree of accuracy can be reached. The integral within each subinterval is 
approximated by applying Gaussian quadrature (Burden and Faires 1985,184-188) 
with a 16th degree Legendre polynomial. Adaptive quadrature (Burden and Faires 
1985, 172-176) approximates the integral over a subinterval twice: once over the 
whole subinterval, and again as the sum of the integral over each half of the subin­
terval. The algorithm halts when the fractional difference between these two 
approximations is less than the tolerance. You must supply the function, the limits 
of integration, and the tolerance with which to approximate the integral. 

User-Defined Function 

funct;on TNTargetF(x : Real) : Real; 

The procedure Adaptive_Gauss_Quadrature approximates the integral of this 
function. 

Input Parameters 

LowerLimit : Real; 

UpperLimit : Real; 

To 1 erance.: Real; 

Lower ~imit of integration 

Upper limit of integration 

Indicates accuracy in solution 

MaxInterval s : Integer; Maximum number of subintervals 

The preceding parameters must satisfy the following conditions: 

1. Tolerance > 0 

2. Maxlntervals > 0 
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Output Parameters 

Integral: Real; Approximation to the integral of the' function 

NumIntervals : Integer; Number of subintervals used 

Error: Byte; 0: No errors 
1: Tolerance :5 0 
2: Maxlntervals :5 0 
3: Numlntervals ~ Maxlntervals 

Syntax of the Procedure Call 

Adaptive_Gauss_Quadrature(LowerLimit, UpperLimit, Tolerance, MaxIntervals, 
Integral, NumIntervals, Error); 

Adaptive_Gauss_Quadrature approximates the integral of TNTargetF. 

Comments 

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure 
calls (which slow down execution), a stack is created on the heap to simulate recur­
sion. Should you attempt to evaluate the integral to a very high degree of accuracy 
with a large number of subintervals, you may get run-time error $FF, Heap/Stack 
collision. If this happens, remove any RAM-resident software (for example, Side­
Kick, SuperKey, or a print buffer). If the problem remains, the adaptive Gaussian 
quadrature routine cannot be used to approximate the integral to the desired accu­
racy. 

Adaptive quadrature uses the New/Dispose procedures to manipulate the heap 
and should not be used in any program that uses Mark/Release to manipulate the 
heap. 

Gaussian quadrature uses orthogonal polynomials (in this case, Legendre poly­
nomials) to approximate an integral. Generally, a higher degree polynomial will 
yield a more accurate result, but will take more time to compute. The 16th degree 
Legendre polynomial used in ADAPGAUS.lNC is very efficient. The values of its 
zeros and weight factors follow (Abramowitz and Stegun 1972). 
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The following condition is satisfied by the numbers that follow it: 

Integral from -1 to 1 ofJ(x) dx 

equals 

Sum from i = 1 to NumLegendreTerms of 
Legendre[i].Weight * J(Legendre[i].Root) 

for an arbitrary functionJ(x). 

Legendre[I] ........................ ............... Root: 
Weight: 

Legendre[2] ...................... ................. Root: 
Weight: 

Legendre[3] ... .................................... Root: 
Weight: 

Legendre[4] ................. ...................... Root: 
Weight: 

Legendre[5] ....................................... Root: 
Weight: 

Legendre[6] ....................................... Root: 
Weight: 

Legendre[7] ....................................... Root: 
Weight: 

Legendre[8] ... .................................... Root: 
Weight: 

Legendre[9] ....................................... Root: 
Weight: 

Legendre[10] ..................................... Root: 
Weight: 

Legendre[ll] ..................................... Root: 
Weight: 

Legendre[12] ..................................... Root: 
Weight: 

Legendre[13] ..................................... Root: 
Weight: 

Legendre[14] ..... ; ............................... Root: 
Weight: 

Legendre[15] ..................................... Root: 
Weight: 

Legendre[16] ..................................... Root: 
Weight: 

100 

0.0950125098376370440185 
0.189450610455068496285 
0.281603550778258913230 
0.182603415044923588867 
0.458016777657227386342 
0.169156519395002538189 
0.617876244402643748447 
0.149595988816576732081 
0.755404408355003Q33895 
0.124628971255533872052 
0.865631202387831743880 
0.095158511682492784810 
0.944575023073232576078 
0.062253523938647892863 
0.989400934991649932596 
0.027152459411754094852 

- 0.0950125098376370440185 
0.189450610455068496285 

- 0.281603550778258913230 
0.182603415044923588867 

- 0.458016777657227386342 
0.169156519395002538189 

- 0.617876244402643748447 
0.149595988816576732081 

- 0.755404408355003033895 
0.124628971255533872052 

- 0.865631202387831743880 
0.095158511682492784810 

- 0.944575023073232576078 
0.062253523938647892863 

- 0.989400934991649932596 
0.027152459411754094852 
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Sample Program 

The sample program ADAPGAUS.PAS provides I/O functions that demonstrate 
the adaptive quadrature method with Gaussian quadrature. 

Example 

Problem. Approximate the integral exp(3x) + sqr(x)/3 from ° to 5 using adaptive 
quadrature with Gaussian quadrature algorithm. 

1. Code function TNTargetF: 

funct;on TNTargetF(x : Real) : Real; 

(*****************************************************************************) 
(** THIS IS THE FUNCTION TO INTEGRATE ***) 
(*****************************************************************************) 
beg;n 

TNTargetF := Exp(3*X) + Sqr(X)/3; 
end; { function TNTargetF } 

2. Run ADAPGAUS.PAS: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Tolerance (> 0, default = 1.000E-08): 1E-8 

Maximum number of subintervals (> 0, default 1000): 1000 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower limit: 
Upper 1 imit: 

Tolerance: 
Maximum number of subintervals: 

Number of subintervals used: 

Integral: 

O.OOOOOOOOOOOOOOE+OOO 
5.00000000000000E+000 
1.00000000000000E-008 

1000 
1 

1.08968601304609E+006 

To eight significant figures, the correct answer is 1,089,686.0. 
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Integration Using the Romberg Algorithm 
(ROMBERG. INC) 

Description 

This example contains an algorithm (Burden and Faires 1985,177-182) for approxi­
mating the integral of a functionf(x) over an interval [a, b] within a specified toler­
ance. The trapezoid rule is used to generate a preliminary approximation, and 
Richardson extrapolation (Burden and Faires 1985,148-152) is subsequently used 
to improve the approximation. Extrapolation continues until the fractional differ­
ence between successive approximations of the integral is less than the tolerance. 
You must supply the function, the limits of integration, and the tolerance with 
which to approximate the integral. 

User-Defined Function 

funct;on TNTargetF(x : Real) : Real; 

The procedure Romberg approximates the integral of this function. 

Input Parameters 

LowerLi mi t : Real; Lower limit of integration 

UpperLimit : Real; Upper limit of integration 

To 1 erance : Real; Indicates accuracy in solution 

Max Iter : Integer; Maximum number of iterations allowed 

The preceding parameters must satisfy the following conditions: 

1. Tolerance > 0 

2. MaxIter > 0 
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Output Paralneters 

Integral: Real; Approximation to the integral of the function 

Iter: Integer; Number of iterations 

Error: Byte; 0: No errors 
1: Tolerance :5 0 
2: MaxIter :5 0 
3: Iter;::: MaxIter 

Syntax of the Procedure Call 

Romberg(LowerLimit, UpperLimit, Tolerance, MaxIter, Integral, Iter, Error); 

Romberg approximates the integral of TNTargetF. 

Sample Program 

The sample program ROMBERG.PAS provides I/O functions that demonstrate the 
Romberg algorithm. 

Example 

Problem. Approximate the integral exp(3x} + sqr(x}/3 from 0 to 5 using the Rom­
berg algorithm. 

1. Code function TNTargetF: 

function TNT~rgetF(x : Real) : Real; 

(*************************************************************************) 
(**** THIS IS THE FUNCTION TO INTEGRATE ****) 
(*************************************************************************) 
begin 

TNTargetF := Exp(3*X) + Sqr(X)/3; 
end; { function TNTargetF } 
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2. Run ROMBERG.PAS: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Tolerance (> 0, default =' 1.000E-08): 1E-8 

Maximum number of iterations: (> 0, default = 100) 100 

Direct output to one of the following: 
{S)creen 
{P)rinter 
(F) il e 

Lower 1 imit: 
Upper 1 i mit: 

Tolerance: 
Maximum number of iterations: 

Number of iterations: 

Integral: 

O.OOOOOOOOOOOOOOE+OOO 
5.00000000000000E+000 
1.00000000000000E-008 

100 
7 

1.08968601696675E+006 

To eight significant figures, the correct answer is 1,089,686.0. 
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c H A p T. E R 6 
Matrix Routines 

This chapter provides routines for dealing with systems of linear equations. An 
example of a system of linear equations is as follows: 

2X+Y+Z=7 
X-Y+Z=2 
X+Y-Z=O 

Matrix algebra is a collection of notations that constitutes a technique for han­
dling such systems. With matrix algebra, the preceding system would be written 

Ax = b 

where 

[~ 
1 

A= -1 
1 

In Pascal, x and b are represented as one-dimensional arrays, and A is repre­
sented as a two-dimensional array. In matrix notation, the solution is given by 

x = A-I b 

where A - I is the inverse to A. 

The determinant is an indicator of whether the matrix can be inverted. For 
example, the equations 

3X - 3Y = 4 
-2X + 2Y = 5 
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cannot be solved. Even for different values of the right-hand side, the equations 
can only be solved in certain exceptional cases. (If you change 4 and 5 to 3 and - 2, 
then there are infinitely many solutions; but there are none if you change 4 and 5 to 
3 and - 3.0001.) 

Following is a description of several routines that operate on matrices and sys-
tems of linear equations. 

The determinant of a square matrix is found via DET.INC. 

The inverse of a nonsingular matrix is found via INVERSE.INC. 

The direct techniques implemented to solve a system of N linear equations in N 
unknowns are Gaussian elimination (GAUSELIM.INC), Gaussian elimination 
with partial pivoting (PARTPIVT.INC), and direct factorization (DIRFACT.INC) .. 

The Gauss-Seidel method (GAUSSIDL.INC), an iterative technique that con­
verges to the solution, is seldom used for solving small systems, since the time 
required for sufficient accuracy exceeds that required for the preceding direct 
techniques. 

In general, Gaussian elimination with partial pivoting is the fastest, most accu­
rate algorithm (see Chapter 9, LEAST.INC, for an application of PARTPIVT.INC). 
The following special cases may warrant the use of one of the other routines: 

• If you are considering systems where round-off is minimal (that is, small systems 
whose coefficients are all of nearly the same magnitude), Gaussian elimination 
without pivoting may be used. It is somewhat faster than its pivoting counterpart 
(PARTPIVT.INC). 

• When considering sparse coefficient matrices, the Gaussian elimination routine 
with partial pivoting is the most efficient and accurate routine. If the matrix is 
small and the nonzero coefficients do not differ wildly from each other, regular 
Gaussian elimination (GAUSELIM.INC) can usually be used safely. 

• For large, dense matrices, the iterative technique (GAUSSIDL.INC) is the most 
efficient; it creates less round-off error than the direct methods. However, the 
Gauss-Seidel algorithm has' its own weaknesses (see the section, "Solving a Sys­
tem of Linear Equations with the Iterative Gauss-Seidel Method," for more 
details). 

• When it is necessary to solve several systems with the same coefficient matrix 
but a different vector of· constant terms, the direct factorization method 
(DIRFACT.INC) is the most efficient. This is because it does not require reduc­
tion of the coefficient matrix for each vector of constants. (See Chapter 7 for an 
application of DIRFACT.INC.) 
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Determinant of a Matrix (DET.INe) 

Description 

The determinant of an N X N matrix can be computed by the following algorithm 
(Gerald and Wheatley 1984, 110-111): 

1. Use elementary row operations to make the matrix upper triangular (that 
is, all the elements below the main diagonal are zero). 

2. Find the product of the main diagonal elements - this will be the determi­
nant. 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Real; 

TNmatrix = array[l .• TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; Dimension of the data matrix 

Data: TNmatrix; The square matrix 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen S; TNArraySize 

TNArraySize sets an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 
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Output Parameters 

Det : Rea 1 ; Determinant of the data matrix 

Error: Byte; 0: No errors 
1: Dimen < 1 

Syntax of the Procedure Call 

Determinant(Dimen, Data, Det, Error); 

Sample Program 

The sample program DET.PAS provides I/O functions that demonstrate how to 
find the determinant of a matrix. 

Input File 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be like this: 

1. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 
[1, 1], [1, 2] ... [1, N], [2, 1] ... [2, N] ... [N, N], 
where N is the dimension of the matrix 

For example, a text file containing the matrix 

could look like this: 

2 
2 3 

-4 0 
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Example 

Problem. Find the determinant of the following matrix: 

[-i ! ~ =~:~ 1 
2 2 1 -3.0 
o 0 3 -4.0 

Run DET.PAS: 

(K)eyboard or (F)ile input of data? F 

File name? SAMPLE6A.DAT 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) ile 

The matrix: 
1.00000000 2.00000000 0.00000000 -1.00000000 

-1.00000000 4.00000000 3.00000000 -0.50000000 
2.00000000 2.00000000 1.00000000 -3.00000000 
0.00000000 0.00000000 3.00000000 -4.00000000 

Determinant = -2.10000000000000E+001 
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Inverse of a Matrix (INVERSE.INC) 

Description 

The inverse of an N X N matrix A is an N X N matrix A - \ such that A -lA equals 
the identity matrix (Burden and Faires 1985, 306-316). Gauss-Jordan elimination 
(Gerald and Wheatley 1984, 96-98) is used to transform the original matrix into 
the identity matrix. The same elementary row operations that reduce A to the 
identity matrix transform the identity matrix into the inverse of the original matrix 
A. If one or more of the main diagonal elements of the transformed original matrix 
(that is, after Gauss-Jordan elimination) is zero, then the original matrix A is singu­
lar and its inverse does not exist. 

User-Defined Types 

TNvector = array[l .• TNArraySize] of Real; 

TNmatrix = array[l .. TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; Dimension of the data matrix 

Data: TNmatrix; The elements of the square matrix 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen ~ TNArraySize 

TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 
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Output Paranreters 

INV : TNmatrix; The inverse of the data matrix 

Error: Byte; 0: No errors 
1: Dimen < 1 
2: No inverse exists 

Syntax of the Procedure Call 

Inverse(Dimen, Data, INV, Error); 

Sample Program 

The sample program INVERSE.PAS provides I/O functions that demonstrate how 
to find the inverse of a matrix. 

Input Files 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

1. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 
[1, 1], [1, 2] ... [1, N], [2, 1] ... [2, N] ... [N, N], 
where N is the dimension of the matrix 

For example, a text file containing the matrix 

could look like this: 

2 
2 3 

-4 0 
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Example 

Problem. Invert the following matrix: 

[ 

1 2 0 
-1 4 3 
221 
003 

-1.0] -0.5 
-3.0 
-4.0 

Run INVERSKPAS: 

(K)eyboard or (F)ile input of data? F 

File name? SAMPLE6A.DAT 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F)ile 

The matrix: 
1.000000000 2.000000000 0.000000000 -1.000000000 

-1.000000000 4.000000000 3.000000000 -0.500000000 
2.000000000 2.000000000 1.000000000 -3.000000000 
0.000000000 0.000000000 3.000000000 -4.000000000 

Inverse: 
-1.952380952 0.190476190 1.571428571 -0.714285714 
0.761904762 0.047619048 -0.357142857 0.071428571 

-1.904761905 0.380952381 1.142857143 -0.428571429 
-1.428571429 0.285714286 0.857142857 -0.571428571 

To continue this example, reinvert the matrix just obtained: 

(K)eyboard or (F)ile input of data? F 

File name? SAMPLE6B.DAT 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

The matrix: 
-1.952380952 0.190476190 1.571428571 -0.714285714 
0.761904762 0.047619048 -0.357142857 0.071428571 

-1.904761905 0.380952381 1.142857143 -0.428571429 
-1.428571429 0.285714286 0.857142857 -0.571428571 

Inverse: 
1.000000000 2.000000000 0.000000000 -1.000000000 

-1.000000000 4.000000000 3.000000000 -0.500000000 
2.000000000 2.000000000 1.000000000 -3.000000000 

-0.000000000 -0.000000000 3.000000000 -4.000000000 
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The coefficients of the original matrix are returned to fourteen significant figures 
(only ten are displayed). The coefficients will be less precise if this example is run 
on a machine without an 8087 math coprocessor. 
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Solving a System of Linear Equations with Gaussian 
Elimination (GAUSELIM.INC) 

Description 

The solution to a system of N linear equations, AX = B, in N unknowns may be 
found by simultaneously performing Gaussian elimination (Burden and Faires 
1985,291-304) on the matrix containing the coefficients of the equations (the coef­
ficient matrix A) and the vector containing the constant terms of the equations (the 
constant vector B). First, elementary row operations are used to make A upper 
triangular (that is, all the elements below the main diagonal are zero). Backward 
substitution (whereby X[N] is calculated and used to calculate X[N -1], which is 
then used to calculate X[N - 2], and so on) is then used to compute the solution 
vector X. If one or more of the elements on the main diagonal of the upper triangu­
lar matrix is zero, then no unique solution to the system exists. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Real; 

TNmatrix = array[l .. TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; Dimension of the coefficients matrix 

Coefficients: TNmatrix; The square matrix containing the coefficients of the equa­
tions 

Constants: TNvector; The constant terms of each equation 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen:5 TNArraySize 

TNArraySize sets an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
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condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Output Parameters 

So 1 ut ion : TNvector; Solution to the set of equations. 

Error: Byte; 0: No errors. 
1: Dimen < 1. 
2: Coefficients matrix is singular; no unique solution exists. 

Syntax of the Procedure Call 

Gaussian_Elimination(Dimen, Coefficients, Constants, Solution, Error); 

Sample Program 

The sample program GAUSELIM.PAS provides I/O functions that demonstrate 
how to solve a system of linear equations with Gaussian elmination. 

Input File 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

1. The dimension of the coefficient matrix 

2. The elements of the matrix in row order; that is, 
[1, 1], [1, 2], ... , [1, N], [2, 1], "', [2, N], ... , [N, N], 
where N is the dimension of the matrix 

3. The elements of the constant vector, in the order [l], ... ,[N] 

Matrix Routines 115 



For example, to solve the system 

2x + 3y = 10 
-4x = 10 

a text file could be created to look like this: 

2 
2 3 

-4 0 
10 
10 

Example 

Problem. Solve the following linear system: 

w + 2x + Oy - z = 10.0 
- w + 4x + 3y - 0.5z = 21.5 

2w + 2x + y - 3z = 26.0 
3y - 4z = 37.0 

Run GAUSELIM.PAS: 

(K)eyboard or (F)ile input of data? F 

File name? 5AMPLE6A.DAT 

Direct output to one of the following: 
(5) creen 
(P)rinter 
(F) il e 

The coefficients: 
1.000000000 2.000000000 0.000000000 -1.000000000 

-1.000000000 4.000000000 3.000000000 -0.500000000 
2.000000000 2.000000000 1.000000000 -3.000000000 
0.000000000 0.000000000 3.000000000 -4.000000000 

The constants: 
1.00000000000000E+001 
2. 15000000000000E+001 
2.60000000000000E+001 
3.70000000000000E+001 

The solution: 
-1.00000000000000E+000 
2.00000000000000E+000 
3.00000000000000E+000 

-7.00000000000000E+000 

116 Turbo Numerical Methods Toolbox 



Solving a System of Linear Equations with Gaussian 
Elimination and Partial Pivoting (PARTPIVT.INC) 

Description 

The solution to a system of N linear equations, AX = B, in N unknowns may be 
found by simultaneously performing Gaussian elimination (Burden and Faires 
1985, 291-304) on the matrix containing the coefficients of the equations (the coef­
ficient matrix A) and the vector containing the constant terms of the equations (the 
constant vector B). However, excessive round-off errors can occur when elements 
on the main diagonal are small compared to the elements below them in the same 
column. To avoid this, partial pivoting (maximal column pivoting) is performed 
(Burden and Faires 1985, 324-327); that is, row interchanges are performed so that 
each main diagonal element is greater than or equal to the elements below it in the 
same column. (See Chapter 9 for an application of PARTPIVf.lNC.) 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Real; 

TNmatrix = array[l .• TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; Dimension of the coefficients matrix 

Coefficients: TNmatrixi The square matrix containing the coefficients of the equa­
tions 

Constants: TNvector; The constant terms of each equation 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen::; TNArraySize 

TNArraySize sets an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
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condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Output Parameters 

So 1 ut ion : TNvector; Solution to the set of equations. 

Error : Byte; 0: No errors. 
1: Dimen < l. 
2: Coefficients matrix is singular; no unique solution exists. 

Syntax of the Procedure Call 

Partial_Pivoting(Dimen, Coefficients, Constants, Solution, Error); 

Sample Program 

The sample program PARTPIVT.PAS provides I/O functions that demonstrate how 
to solve a system of linear equation with Gaussian elimination and partial pivoting. 

Input File 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

1. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 
[1, 1], [1, 2], ... , [1, N], [2, 1], ... , [2, N], ... , [N, N], 
where N is the dimension of the matrix 

3. The elements of the constant vector, in the order [l], ... ,[N] 
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For example, to solve the system 

2x + 3y = 10 
-4x = 10 

a text file could be created to look like this: 

2 
2 3 

-4 0 
10 
10 

Example 

Problem. Solve the following linear system: 

w + 2x + Oy - z = 10 
-w + 4x + 3y - 0.5z = 21.5 

2w + 2x + Y - 3z = 26 
3y - 4z = 37 

Run 'PARTPIVf.PAS: 

{K)eyboard or {F)ile input of data? F 

File name? SAMPLE6A.DAT 

Direct output to one of the following: 
{S)creen 
{P)rinter 
(F) i 1 e 

The coefficients: 
1.000000000 2.000000000 0.000000000 -1.000000000 

-1.000000000 4.000000000 3.000000000 -0.500000000 
2.000000000 2.000000000 1.000000000 -3.000000000 
0.000000000 0.000000000 3.000000000 -4.000000000 

The constants: 
1.00000000000000Et001 
2. 15000000000000Et001 
2.60000000000000Et001 
3.70000000000000Et001 

The solution: 
-1.00000000000000EtOOO 
2.00000000000000EtOOO 
3.00000000000000EtOOO 

-7.00000000000000EtOOO 
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Solving a System of Linear Equations with Direct Factoring 
(DIRFACT.INC) 

Description 

The solution to a system of N linear equations, AX = B, in N unknowns can be 
computed by factoring the matrix containing the coefficients of the N equations 
(the coefficient matrix A) into an upper triangular matrix U (that is, all the elements 
below the main diagonal are zero) and a lower triangular matrix L (that is, all the 
elements above the main diagonal are zero) such that A = LU. Partial pivoting is 
used to reduce round-off error. A record of the pivoting permutations are recorded 
in a permutation matrix P, so that the equation is actually A = PLU. Forward 
substitution (analogous to backward substitution; see "Solving a System of Linear 
Equations with Gaussian Elimination") is used to solve the equations LZ = B 
(actually LZ = PB, where P is the pivoting permutation matrix) and UX = Z 
(where X is the solution to the N linear equations, and Z is an intermediate solu­
tion). If the coefficient matrix cannot be factored into nonsingular triangular 
matrices, then no unique solution exists. 

This module includes two procedures to perform this algorithm. Procedure 
LUJJecompose performs the LV decomposition of a matrix, and procedure 
LU-.Solve performs forward and backward substitution to solve the linear equa­
tions. Both procedures are in the include file DIRFACT.INC. 

The most efficient way to calculate the solutions to several systems with the 
same coefficient matrix but different constant vectors is to first decompose the 
coefficient matrix A into Land U (Burden and Faires 1985, 342-349). Then per­
form backward substitution on this decomposed matrix and each of the constant 
vectors B. Thus, the coefficient matrix is decomposed only once. 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Real; 

TNmatrix = array[l •• TNArraySize] of TNvector; 
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Procedure LU-Decompose Input Parameters 

Dimen : Integer; Dimension of the coefficients matrix 

Coefficients: TNmatrix; Square matrix containing the coefficients of the equations 

The preceding parameters must satisfy the following conditions: 

l. Dimen > 0 

2. Dimen ~ TNArraySize 

TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Procedure LU-Decompose Output Parameters 

Decomp : TNmatrix; The LV decomposition of the coefficients matrix. 

Permute: TNmatrix; A permutation matrix that records the effects of pivoting. 

Error: Byte; 0: No errors. 
1: Dimen < l. 
2: The coefficients matrix is singular. 

Syntax of the Procedure Call 

LU_Decompose(Dimen, Coefficients, Decomp, Permute, Error); 

Procedure LU-Solve Input Parameters 

Dimen : Integer; 

Decomp : TNmatrix; 

Dimension of the coefficients matrix 

The LV decomposition of the coefficients matrix 

Constants: TNmatrix; The constant terms of each equation 

Permute: TNmatri x; A permutation matrix that records the effects of pivoting 
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The preceding parameters must satisfY the following conditions: 

1. Dimen > 0 

2. Dimen::; TNArraySize 

TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Procedure LU...solve Output Parameters 

Solution: TNvector; Solution to each system of equations 

Error: Byte; 0: No errors 
1: Dimen < 1 

Syntax of the Procedure Call 

LU_Solve(Dimen, Decomp, Constants, Permute, Solution, Error); 

Sample Program 

The sample program DIRFACT.PAS provides I/O functions that demonstrate how 
to solve a system of linear equations with the method of direct factoring. 

Input File 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

l. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 
[1, 1], [1, 2], ... , [1, N], [2, 1], ... , [2, N], ... , [N, N], 
where N is the dimension of the matrix 

3. The elements of the first constant vector, in the order [1], ... ,[N], with each 
element followed by a carriage return 
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4. The elements of any additional constant vectors, in the order [l], ... ,[N], 
with each element followed by a carriage return 

For example, to solve the systems 

2x + 3y = 10 
-4x = 10 

2x + 3y = 1 
-4x = 2 

a text file could be created to look like this: 

2 
2 3 

-4 0 
10 
10 
1 
2 

Example 

Problem. Given the following set of coefficients: 

2w + x + 5y - 8z 
7 w + 6x + 2y + 2z 

- 1w - 3x - lOy + 4z 
2w + 2w + 2y + z 

compute solutions for each of the five constant vectors: 

[ 0 

-15 14 -13 5] 17 50 1 84 30 

-1~ -5 -12 -51 -15 
17 1 37 10 

Run DIRFACT.PAS: 

(K)eyboard or (F)ile input of data? F 

File name? SAMPLE6C.DAT 

Direct output to one of the following: 
(S)creen. 
(P)rinter 
(F) il e 
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The coefficients: 
2.000000000 1.000000000 5.000000000 -8.000000000 
7.000000000 6.000000000 2.000000000 2.000000000 

-1.000000000 -3.000000000 -10.000000000 4.000000000 
2.000000000 2.000000000 2.000000000 1.000000000 

The constants: 
O.OOOOOOOOOOOOOOE+OOO 
1.70000000000000E+001 

-1.00000000000000E+001 
7.00000000000000E+000 

The solution: 
9.99999999999999E-001 
1.00000000000000E+000 
9.99999999999999E-001 
9.99999999999999E-001 

The constants: 
-1.50000000000000E+001 
5.00000000000000E+001 

-5.00000000000000E+000 
1.70000000000000E+001 

The solution: 
2.00000000000000E+000 
4.99999999999999E+000 
1.85358974546113E-015 
3.00000000000000E+000 

The constants: 
1.40000000000000E+001 
1.00000000000000E+000 

-1.20000000000000E+001 
1.00000000000000E+000 

The solution: 
1.00000000000000E+000 

-1.00000000000000E+000 
1.00000000000000E+000 

-1.00000000000000E+000 

The constants: 
-1.30000000000000E+001 
8.40000000000000E+001 

-5.10000000000000E+001 
3.70000000000000E+001 

The solution: 
3.99999999999999E+000 
5.00000000000001E+000 
6.00000000000000E+000 
7.00000000000000E+000 
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The constants: 
5.00000000000000E+OOO 
3.00000000000000E+OOl 

-1.50000000000000E+OOl 
1.OOOOOOOOOOOOOOE+OOl 

The solution: 
-1.01506105108586E-015 

5.00000000000000E+OOO 
O.OOOOOOOOOOOOOOE+OOO 
O.OOOOOOOOOOOOOOE+OOO 
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Solving a System of Linear Equations with the Iterative 
Gauss-Seidel Metlwd (GAUSSIDL.INC) 

Description 

The solution to a system of N linear equations, AX = B, in N unknowns can be 
approximated by the Gauss-Seidel iterative technique (Burden and Faires 1985, 
424-432). The equation AX = B is transformed into X = TX + C. Given an initial 
approximation X

o
' the sequence Xm = TX

m
_

1 
+ C is generated with the following 

formula: 

i-I N 

I A[i,j] X",[j] - I (A[i,j] Xm_Jj]) + B[i] 

X,Ji] = 
j=I j=i+l 

A[i,i] 

The algorithm halts when the fractional difference for each element of the vector 
X between two iterations is less than a specified tolerance. 

If A is diagonally dominant (that is, each of the diagonal terms is greater than or 
equal to the sum of the off-diagonal terms in the same row), then the sequence will 
converge to the solution X. If the matrix A is not diagonally dominant, then the 
sequence may converge to the solution, but more likely it will not. You must supply 
the tolerance with which to approximate a solution. 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Real; 

TNmatrix = array[l .. TNArraySize] of TNvector; 
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Input Parameters 

Dimen : Integer; Dimension of the coefficients matrix 

Coeffi ci ents : TNmatri X; The square matrix containing the coefficients of the equa­
tions 

Constants: TNvector; 

To1 : Real; 

MaxIter : Real; 

The constant terms of the equation 

Indicates accuracy in solution 

Maximum number of iterations 

The preceding parameters must satisfy the following conditions: 

J. Dimen > O. 

2. Dimen =::; TNArraySize. 

3. Tal> O. 

4. MaxIter ~ O. 

5. The coefficients matrix may not contain a zero on the main diagonal. 

TNArraySize sets an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Output Parameters 

Solution: TNvector; Solution to the set of equations. 

Iter: Real; 

Error: Byte; 

Matrix Routines 

The number of iterations required to find the solution. 

0: No errors. 
1: Iter> MaxIter and matrix is not diagonally dominant. 
2: Iter > MaxIter and matrix is diagonally dominant. 
3: Dimen < 1. 
4: Tal =::; O. 
5: MaxIter < O. 
6: Zero on the diagonal of the coefficients matrix. 
7: Sequence is diverging. 
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If the coefficients matrix is diagonally dominant, then the Gauss-Seidel method 
will converge to a solution. If the coefficients matrix is not diagonally dominant, 
then the Gauss-Seidel may converge to a solution, but more likely it will not. Error 
7 can only occur when the coefficients matrix is not diagonally dominant. If Error 1 
is returned, it is likely that convergence is not possible; if Error 2 is returned, 
convergence is possible but will take more than MaxIter iterations. 

If the diagonal of the coefficients matrix contains a zero (Error 6), then the 
Gauss-Seidel method may not be used to solve the system of equations. 

If the system of equations is under-determined, the Gauss-Seidel method will 
still converge to a (nonunique) solution. The Gauss-Seidel method cannot distin­
guish between unique and nonunique solutions. If you suspect that your system of 
equations is under-determined, use one of the direct methods (for example, 
GAUSELIM.INC) to attempt a solution; Gaussian elimination will give an error if 
it is under-determined. Alternatively, you could use DET.INC to find the determi­
nant; if the determinant is zero, then the system is under-determined. 

Syntax of the Procedure Call 

Gauss-Seidel(Dimen, Coefficients, Constants, Tol, MaxIter, Solution, Iter, Error); 

Sample Program 

The sample program GAUSSIDL.PAS provides I/O functions that demonstrate 
how to solve a system of linear equations with the iterative Gauss-Seidel method. 

Input File 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

l. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 
[1, 1], [1, 2], "', [1, N], [2, 1], ... , [2, N], ... , [N, N], 
where N is the dimension of the matrix 

3. The elements of the first constant vector, in the order [l], ... ,[N] 
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For example, to solve the systems 

20x + 3y = 10 
-4y = 10 

a text file could be created to look like this: 

2 
20 3 
o -4 

10 
10 

Example 

Problem. Solve the following linear system to within a tolerance of IE - 12: 

10v + w + 2x - 3y + 2z = 29 
4v + SOw + x + z = 35 

- 2v + 5w - 30x + Y + z = 25 
6v + 4w + lOy + 3z = 46 

- 3v - 2w - x + 6y + 25z = - 106 

Run GAUSSIDL.PAS: 

(K)eyboard or (F)ile input of data? F 

File name? SAMPLE6D.DAT 

Tolerance (> 0, default = 1.000E-08): 1E-12 

Maximum number of iterations (> 0, default = 100): 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F)ile 

The coefficients: 
10.000000000 1.000000000 2.000000000 -3.000000000 2.000000000 
4.000000000 50.000000000 1.000000000 0.000000000 1.000000000 

-2.000000000 5.000000000 -30.000000000 1.000000000 1.000000000 
6.000000000 4.000000000 0.000000000 10.000000000 3.000000000 

-3.000000000 -2.000000000 -1.000000000 6.000000000 25.000000000 
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The constants: 
-2.90000000000000E+001 
3.50000000000000E+001 

-2.50000000000000E+001 
-4.60000000000000E+001 
-1.06000000000000E+002 

Tolerance: 1.00000000000000E-012 
Maximum number of iterations: 100 

Number of iterations: 15 
The result: 
-2.99999999999997E+000 
9.99999999999999E-001 
9.99999999999998E-001 

-1.99999999999999E+000 
-4.00000000000000E+000 
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c H A p T E R 7 
Eigenvalues and Eigenvectors 

The routines in this chapter can find the eigenvalues and eigenvectors. A scalar c is 
an eigenvalue (or characteristic value) of a square matrix A if there is a nonzero 
vector v satisfying 

Av = cv 

The vector v is called the eigenvector corresponding to c. 

The eigenvalues and eigenvectors of a matrix provide a lot of information about 
the matrix. If a matrix is written in terms of a basis of eigenvectors, then it is 
diagonal, meaning. that its only nonzero terms are on the main diagonal. 

Each procedure in this chapter attempts to approximate at least' one real eigen­
value (and associated eigenvector) of a real square matrix. The eigenvector is nor­
malized so that the element with the largest magnitude is 1. 

The power method (POWER.INC) approximates the eigenvalue that is largest 
in magnitude (dominant eigenvalue). The iterative process will converge slowly or 
not at all if the dominant eigenvalue is not simple or if it has nearly the same 
magnitude as the next most-dominant eigenvalue. 

The inverse power method (INVPOWER.INC) approximates the eigenvalue 
nearest to a user-supplied real value. This process usually converges more rapidly 
than the power method, and may be used to refine the approximate value of the 
eigenvalue determined by the latter method (POWER.INC). 
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The Wielandt method (WIELANDT.lNC) attempts to approximate a user­
specified number of eigenvalues of a given matrix. The power method (POWER. 
INC) is first used to approximate the dominant eigenvalue of the matrix. Deflation 
is employed to form a deflated, square matrix (that is, a square matrix whose 
dimension is one less than the original matrix). The eigenvalues of the deflated 
matrix are identical to those of the original matrix except for the determined domi­
nant eigenvalue. Eigenvectors of the remaining eigenvalues from the original 
matrix are also contained in the deflated matrix. The dominant eigenvalue of the 
new deflated" matrix is then determined using the power method. Wielandt's 
method is susceptible to round-off error, thus it may be desirable to use its results 
as input to the inverse power method (INVPOWER.lNC). 

The cyclic Jacobi method QACOBI.INC) approximates all the eigenvalues of a 
symmetric matrix. The iterative process uses orthogonal plane rotations to reduce 
the given matrix into a diagonal form. Although Jacobi's method is only applicable 
to symmetric matrices, it is much more efficient and accurate than Wielandt's 
method. 
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Real Dominant Eigenvalue and Eigenvector of a Real 
Matrix Using the Power Method (POWERINC) 

Description 

The power method (Burden and Faires 1985, 452-456) approximates the dominant 
real eigenvalue of a matrix and its associated eigenvector. The dominant eigen­
value is the eigenvalue of the largest absolute magnitude. Given a square matrix A 
and a real nonzero vector v, a vector w is constructed by the matrix operation 
Av = w. The vector w is normalized by dividing by its element of the largest 
absolute magnitude q. If the absolute difference between each of the correspond­
ing elements in wand v is less than a specified tolerance, then the procedure halts. 
Otherwise, v is set equal to w, and the operation repeats until a solution is found. 
The magnitude q is the dominant eigenvalue, and w will be the associated eigen­
vector of the matrix A. 

You must supply the matrix A, an initial approximation to the eigenvector v, and 
the tolerance. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Real; 

TNmatrix = array[l .. TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; 

Mat: TNmatrix; 

Dimension of the matrix Mat 

The matrix 

GuessVector : TNvector; Initial approximation to the eigenvector 

MaxIter : Integer; 

Tolerance: Real; 

Maximum number of iterations 

Indicates accuracy in solution 
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The preceding parameters must satisfy the following conditions: 

1. Dimen > 1 

2. Dimen S TNArraySize 

3. Tolerance> 0 

4. MaxIter > 0 

TNArraySize fixes an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error (assuming the directive {$R + } is active). 

Output Parameters 

Eigenval ue : Real; Approximation to the dominant eigenvalue of the matrix 

Eigenvector: TNvector; Approximate eigenvector associated with the dominant 
eigenvalue 

Iter: Integer; Number of iterations required to find the solution 

Error: Byte; 0: No errors 
1: Dimen S 1 
2: Tolerance S 0 
3: MaxIter S 0 
4: Iter;:::: MaxIter 

Syntax of the Procedure Call 

Power(Dimen, Mat, GuessVector, MaxIter, Tolerance, 
Eigenvalue, Eigenvector, Iter, Error); 

Comments 

The power method will not converge if the initial approximation (Guess) to the 
eigenvector is orthogonal to the dominant eigenvector. If the initial approximation 
is orthogonal, then the power method will converge to a different eigenvector with­
out warning. If you suspect this has happened, run the routine with several differ­
ent initial approximations. 
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The power method may not converge to repeated eigenvalues with linearly 
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen­
vectors do not pose a problem. 

The eigenvectors are normalized such that the element of largest absolute mag­
nitude in each vector is equal to one. 

Sample Program 

The sample program POWER.PAS provides I/O functions that demonstrate the 
power method of approximating eigenvalues. 

Input File 

Data may be input from a text file. Entries in the text file should be separated by 
spaces or carriage returns, and it does not matter if the text file ends with a carriage 
return. The format of the text file should be as follows: 

1. Dimension of the matrix 

2. Elements of the matrix, in the order 
[1, 1], [1, 2], ... , [1, N], ... , [N, 1], ... , [N, N], 
where N is the dimension of the matrix 

For example, to find the dominant eigenvalue of the matrix 

you could first create the following text file: 

4 
1 
2 
3 
4 

Example 

Problem. Find the dominant eigenvalue of the matrix: 

[~ 1~ ~] 
024 

using the initial guess (1, 2, 3). 
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Run POWER.PAS: 

(K)eyboard or (F)ile entry of data? K 

Dimension of the matrix (1-60)? 3 

Matrix[l, 1]: 2 
Matrix[l, 2]: 10 
Matrix[l, 3]: 0 
Matrix[2, 1]: 0 
Matrix[2, 2]: 1 
Matrix[2, 3]: 0 
Matrix[3, 1]: 0 
Matrix[3, 2]: 2 
Matrix[3, 3]: 4 

Now input an initial guess for the eigenvector: 
Vector[l]: 1 
Vector[2]: 2 
Vector[3]: 3 

Tolerance (> 0, default = 1.000E-06): 1E-8 

Maximum number of iterations (> 0, default 100): 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F)ile 

The matrix: 
2.00000000000000E+00 1.00000000000000E+01 O.OOOOOOOOOOOOOOE+OO 
O.OOOOOOOOOOOOOOE+OO 1.00000000000000E+00 O.OOOOOOOOOOOOOOE+OO 
O.OOOOOOOOOOOOOOE+OO 2.00000000000000E+00 4.00000000000000E+00 

Tolerance: 1.00000000000000E-008 
Maximum number of iterations: 100 

Number of iterations: 12 
The approximate eigenvector: 
-2.30295155112597E-014 
3. 15544362088405E-030 
1.00000000000000E+000 

The associated eigenvalue: 4.00000000000000E+000 

The exact solution is 

Eigenvalue = 4 
Eigenvector = (0, 0, 1) 
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Real Eigenvalue and Eigenvector of a Real Matrix Using 
the Inverse Power Method (INVPOWERINC) 

Description 

Where the power method converges to the dominant real eigenvalue of a matrix 
(see POWER.INC), the inverse power method (Burden and Faires 1985, 459-462) 
converges to the real eigenvalue nearest to a user-supplied real value. Given a 
square matrix A, an initial approximation p to the eigenvalue, and an initial approx­
imation v to the eigenvector, the linear system (A - pI)w = v (where I is the 
identity matrix) is solved via LV decomposition (see Chapter 6, "Solving a System 
of Linear Equations with Direct Factoring"). The vector w is normalized by divid­
ing through by the element q with the largest absolute magnitude. If the absolute 
difference between each of the corresponding elements in v and w is less than a 
specified tolerance, then the procedure halts. Otherwise, v is set equal to w, and 
the previous matrix equation is solved again. The process repeats until a solution is 
reached. The eigenvalue of A closest to p will be (l/q + p), and w will be the 
associated eigenvector. 

You must supply the matrix A, the initial approximations p and v, and the toler­
ance. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Real; 

TNmatrix = array[l •• TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; Dimension of the matrix Mat 

Mat: TNmatri x; The matrix 

GuessVector : TNvector; Initial approximation (Guess) of the eigenvector 

ClosestVal : Real; 

Max Iter : Integer; 

To 1 erance : Real; 

The approximate eigenvalue 

Maximum number of iterations 

Indicates accuracy of solution 

Eigenvalues and Eigenvectors 137 



The preceding parameters must satisfy the following conditions: 

1. Dimen> 1 

2. Dimen S TN Array Size 

3. Tolerance > 0 

4. MaxIter > 0 

TN Array Size sets an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error (assuming the directive {$R +} is active). 

Output Parameters 

Eigenval ue : Real; Approximation to the eigenvalue closest to ClosestVal 

Eigenvector: TNvector; Approximation to the eigenvector associated with Eigen­
value 

Iter: Integer; 

Error : Byte; 

Number of iterations required to find the solution 

0: No errors 
1: Dimen S 1 
2: Tolerance S 0 
3: MaxIter S 0 
4: Iter ~ MaxIter 
5: Eigenvalue/Eigenvector not calculated (see "Comments") 

Syntax of the Procedure Call 

InversePower(Dimen, Mat, GuessVector, ClosestVal, MaxIter, 
Tolerance, Eigenvalue, Eigenvector, Iter, Error); 

138 Turbo Numerical Methods Toolbox 



Comments 

The inverse power method approximates the solution of a system of linear equa­
tions. If the matrix (Mat - Eigenvalue * I) is singular, where I is the identity rnatrix, 
the method will not converge to a solution and Error 5 will be returned. If this 
occurs, run the routine again with a slightly different initial approximation, 
ClosestVal. 

The power method may not converge to repeated eigenvalues with linearly 
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen­
vectors do not pose a problem. 

The inverse power method is sensitive to the initial approximation (ClosestVal). 
If ClosestVal is not close to an eigenvalue or lies midway between two eigenvalues, 
the algorithm will converge very slowly, if at all. 

The eigenvectors are normalized such that the element of the largest absolute 
magnitude in each vector is equal to one. 

5mnple Program 

The sample program INVPOWER.PAS provides I/O functions that demonstrate 
the inverse power method of approximating eigenvalues. 

Input File 

Data may be input from a text file. Entries in the text file should be separated by 
spaces or carriage returns, and it does not matter if the text file ends with a carriage 
return. The format of the text file should be as follows: 

1. Dimension of the matrix 

2. Elements of the matrix, in the order 
[1, 1], [1, 2], ... , [1, N], "', [N, 1], ... , [N, N], 
where N is the dimension of the matrix 

3. Elements of the initial guess, in the order [1], [2], ... , [N], 
where N is the dimension of the matrix 
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For example, to find an eigenvalue of the matrix 

with an initial guess of (11, 10), you could first create the following text file: 

4 
1 
2 
3 
4 

11 
10 

Example 

Problem. Suppose you know that two of the eigenvalues of the matrix 

[
2 10 0] 
010 
024 

are approximately 1.999 and 0.7. Use the inverse power method with an initial 
guess of (1, 2, 3) to refine these approximations. 

Run INVPOWER.PAS with 1.999 as the approximate eigenvalue: 

(K)eyboard or (F)i1e entry of data? K 

Dimension of the matrix (1-30)? 3 

Matrix[1. 1]: 2 
Matrix[1. 2]: 10 
Matrix[1. 3]: 0 
Matrix[2. 1]: 0 
Matrix[2. 2]: 1 
Matrix[2. 3]: 0 
Matrix[3. 1]: 0 
Matrix[3. 2]: 2 
Matrix[3. 3]: 4 

Now input an initial guess for the eigenvector: 
Vector[1]: 1 
Vector[2]: 2 
Vector[3]: 3 

Approximate eigenvalue (default = 5.2857): 1.999 

To1 erance (> O. default = 1.0.00E-06): 1E-8 

Maximum number of iterations (> O. default = 200): 200 
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Direct output to one of the following: 
{S}creen 
{P}rinter 
{F)ile 

The matrix: 
2.00000000000000E+000 1.00000000000000E+00I O.OOOOOOOOOOOOOOE+OOO 
O.OOOOOOOOOOOOOOE+OOO 1.00000000000000E+000 O.OOOOOOOOOOOOOOE+OOO 
O.OOOOOOOOOOOOOOE+OOO 2.00000000000000E+000 4.00000000000000E+000 

Approximate eigenvalue: 1.99900000000000E+000 
Tolerance: 1.00000000000000E-008 

Maximum number of iterations: 200 

Number of iterations: 4 
The approximate eigenvector: 

1.00000000000000E+000 
9. 12736381850482E-014 

-5. 13983108970145E-014 

The associated eigenvalue: 2.00000000000091E+000 

Run INVPOWERPAS with 0.7 as the approximate eigenvalue: 

{K}eyboard or {F}ile entry of data? K 

Dimension of the matrix {1-30}? 3 

Matrix[l, 1]: 2 
Matrix[l, 2]: 10 
Matrix[l, 3]: 0 
Matrix[2, 1]: 0 
Matrix[2, 2]: 1 
Matrix[2, 3]: 0 
Matrix[3, 1]: 0 
Matrix[3, 2]: 2 
Matrix[3, 3]: 4 

Now input an initial guess for the eigenvector: 
Vector[l]: 1 
Vector[2]: 2 
Vector[3]: 3 

Approximate eigenvalue {default = 5.2857}: 0.7 

Tolerance {> 0, default = 1.000E-06}: 1E-8 

Maximum number of iterations {> 0, default = 200}: 200 

Direct output to one of the following: 
{S}creen 
{P}rinter 
{F)ile 
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The matrix: 
2.00000000000000E+000 1.00000000000000E+001 O.OOOOOOOOOOOOOOE+OOO 
O.OOOOOOOOOOOOOOE+OOO 1.00000000000000E+000 O.OOOOOOOOOOOOOOE+OOO 
O.OOOOOOOOOOOOOOE+OOO 2.00000000000000E+000 4.00000000000000E+000 

Approximate eigenvalue: 7.00000000000000E-001 
Tolerance: 1.00000000000000E-008 

Maximum number of iterations: 200 

Number of iterations: 12 
The approximate eigenvector: 

1.00000000000000E+OOO 
-1.00000002395103E-001 
6.66666682633328E-002 

The associated eigenvalue: 9.99999976048973E-001 

The exact solutions are 

Eigenvalue = 2; Eigenvector = (1, 0, 0) 
Eigenvalue = 1; Eigenvector = (1, - 0.1, 2/30) 
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Real Eigenvalues and Eigenvectors of a Real Matrix Using 
the Power Method and Wielandt's Deflation 
(WIELANDT.INC) 

Description 

Wielandt's deflation is a technique that approximates each real eigenvalue and 
related eigenvector of a matrix (Burden and Faires 1985,452-456). Once the domi­
nant real eigenvalue/vector of a matrix has been approximated with the power 
method (see "Real Dominant Eigenvalue and Eigenvector of a Real Matrix Using 
the Power Method"), the next most dominant real eigenvalue/vector is approxi­
mated by removing the dominant solution. This deflates the matrix. The deflated 
matrix will have the same eigenvalues as the original matrix (except for the 
removed ones). The eigenvectors of the deflated matrix will be related to the 
eigenvectors of the original matrix. (They will not be identical because the dimen­
sion of the deflated matrix is less than the dimension of the original matrix.) The 
power method then approximates the dominant eigenvalue of the deflated matrix. 
This process is repeated until the appropriate number (user-supplied) of eigen­
values/vectors have been approximated. 

You must supply the matrix, the number of eigenvalues/vectors to approximate, 
and the tolerance with which to approximate the eigenvalues/vectors. 

User-Defined Types 

TNvector = array[l •. TNArraySize] of Real; 

TNmatrix = array[l •. TNArraySize] of TNvector; 

TNIntVector = array[l •. TNArraySize] of Integer; 

Input Parameters 

Dimen : Integer; 

Mat: TNmatrix; 

Guess: TNvector; 

Dimension of the matrix Mat 

The matrix 

Initial approximation (Guess) of an eigenvector 
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MaxEigens : Integer; Number of eigenvalues/vectors to find (at most, Dimen), (see 
"Comments") 

Max Iter : Integer; Maximum number of iterations 

Tolerance: Real; Indicates accuracy in solution 

The preceding parameters must satisfy the following conditions: 

l. Dimen> 1 

2. Dimen ::;; TN Array Size 

3. Tolerance > 0 

4. MaxIter> 0 

5. MaxEigens > 0 

6. MaxEigens ::;; Dimen 

TNArraySize sets an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error (assuming the directive {$R + } is active). 

Output Parameters 

NumEigens : Integer; The number of eigenvectors returned (will be ::;; 
MaxEigens). 

Ei genva 1 ues : TNvector; The first NumEigens eigenvalues of the matrix. 

Eigenvectors: TNmatrix; The eigenvectors associated with the eigenvalues. 

Iter: TNIntVector; Number of iterations required to find each eigenvalue/ 
vector. 

Error: Byte; 
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0: No errors. 
1: Dimen ::;; l. 
2: Tolerance ::;; O. 
3: MaxIter ::;; O. 
4: MaxEigens ~ 0, MaxEigens > Dimen. 
5: Iter ~ MaxIter. 
6: Warning! Not a fatal error! 

The last two eigenvalues aren't real. 
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Syntax of the Procedure Call 

Wielandt(Dimen, Mat, Guess, MaxEigens, MaxIter, Tolerance, 
NumEigens, Eigenvalues, Eigenvectors, Iter, Error); 

Comments 

It is often unnecessary to determine the complete eigensystem of a matrix. The 
parameter MaxEigens prevents the routine from approximating more eigenvalues/ 
vectors than needed. For example, if the four most dominant eigenvalues of a 
20 X 20 matrix are desired, set MaxEigens equal to 4. The algorithm will halt 
when it has approximated the four most dominant eigenvalues, thus saving a con­
siderable amount of time. Note, however, that the dimension of the vector 
eigenvalues and the matrix eigenvectors must still be TNArraySize (that is, the 
same as the dimension of the matrix). 

The power method may not converge to repeated eigenvalues with linearly 
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen­
vectors do not pose a problem. 

The eigenvectors are normalized such that the element of the largest absolute 
magnitude in each vector is equal to one. 

This routine stores much information on the heap. If you try to compute all the 
eigenvalues of a large matrix (say, all 20 of a 20 X 20 matrix), you may get run-time 
error $FF, Heap/Stack collision. If this happens, the dimension of TNvector and 
TNmatrix should be reduced as much as possible. If this is not possible, then 
remove any RAM-resident software (for example, SideKick, SuperKey, or a print 
buffer). 

It is difficult to determine why the power method doesn't converge to a particu­
lar eigenvector; usually the eigenvalue is complex, or eigenvectors of repeated 
eigenvalues are linearly dependent. However, when Wielandt's deRation has 
deRated the matrix to a 2 X 2, it is easy to determine if the eigenvalues of the 
2 X 2 are real or complex. If the last two eigenvalues are real, then they (and their 
associated eigenvectors) are returned; if the last two eigenvalues are complex, 
Error 6 is returned. (Error 6 is only a warning; it is not a fatal error.) It is returned 
to give you some information about the undetermined eigenvectors. 

This procedure uses the New/Dispose procedures to manipulate the heap and 
should not be used in any program that uses Mark/Release to manipulate the heap. 
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Sample Program 

The sample program WIELANDT.PAS provides I/O functions that demonstrate 
Wielandt's method of approximating eigensystems. 

Input File 

Data may be input from a text me. Entries in the text me should be separated by 
spaces or carriage returns, and it does not matter if the text me ends with a carriage 
return. The format of the text me should be as follows: 

1. Dimension of the matrix 

2. Elements of the matrix, in the order 
[1, 1], [1, 2], ... , [1, N], ... , [N, 1], "', [N, N], 
where N is the dimension of the matrix 

For example, to find the dominant eigenvalue of the matrix 

you could first create the following text me: 

4 
1 
2 
3 
4 

Example 

Problem. Find all real eigenvalues and eigenvectors of the matrix 

[

2 100] o 10 
o 24 

using an initial guess of (1, 2, 3). 
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Run Wielandt.PAS: 

(K)eyboard or (F)ile entry of data? K 

Dimension of the matrix (1-10)? 3 

Matrix[l, 1]: 2 
Matrix[l, 2]: 10 
Matrix[l, 3]: 0 
Matrix[2, 1]: 0 
Matrix[2, 2]: 1 
Matrix[2, 3]: 0 
Matrix[3, 1]: 0 
Matrix[3, 2]: 2 
Matrix[3, 3]: 4 

Now input an initial guess for the eigenvector: 
Vector[l]: 1 
Vector[2]: 2 
Vector[3]: 3 

Tolerance (> 0, default = 1.000E-06): 1E-6 

Maximum number of eigenvalues/eigenvectors to find «= 3, default 3): 3 

Maximum number of iterations (> 0, default = 200): 200 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) i1 e 

The matrix: 
2.00000000000000E+000 1.00000000000000E+001 O.OOOOOOOOOOOOOOE+OOO 
O.OOOOOOOOOOOOOOE+OOO 1.00000000000000E+000 O.OOOOOOOOOOOOOOE+OOO 
O.OOOOOOOOOOOOOOE+OOO 2.00000000000000E+000 4.00000000000000E+000 

Tolerance: 1.00000000000000E-006 
Maximum number of eigenvalues/eigenvectors to ,find: 3 
Maximum number of iterations: 200 

Number of iterations: 10 
The approximate eigenvector: 
-8.32731765653921E-007 
4.60590249431080E-015 
1.00000000000000E+000 

The associated eigenvalue: 4.00000000000004E+000 

Number of iterations: 0 
The approximate eigenvector: 

1.00000000000000E+000 
O.OOOOOOOOOOOOOOE+OOO 
O.OOOOOOOOOOOOOOE+OOO 
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The associated eigenvalue: 2.00000000000000E+000 

Number of iterations: 0 
The approximate eigenvector: 

1.00000000000000E+000 
-9.99999888969117E-002 
6.66666592646070E-002 

The associated eigenvalue: 9.99999999999991E-001 

The exact solution is 

Eigenvalue = 4; Eigenvector = (0, 0, 1) 
Eigenvalue = 2; Eigenvector = (1, 0, 0) 
Eigenvalue = 1; Eigenvector = (1, - 0.1, 2/30) 
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The Complete Eigensystem of a Symmetric Real Matrix 
Using the Cyclic Jacobi Method UACOBI.INC) 

Description 

The eigensystem of a symmetric matrix can be computed much more simply and 
efficiently than the eigensystem of an asymmetric matrix. The cyclic Jacobi method 
(Atkinson and Harley 1983, 154-160) is an iterative technique for approximating 
the complete eigensystem of a symmetric matrix to within a given tolerance. It 
consists of multiplying the matrix A by a series of rotation matrices R

I
. The rotation 

matrices are chosen so that the elements of the upper triangular part of A (exclud­
ing the diagonal) are systematically annihilated; that is, Rl is chosen so that A[l, 2] 
becomes zero, R2 is chosen so that A[l, 3] becomes zero, and so on. Since the matrix 
is symmetric, this will also annihilate the lower triangular part of A. Because each 
rotation wili probably change the value of elements annihilated in previous rota­
tions, the method is iterative. Eventually, the matrix will be diagonalized. The 
eigenvalues will be the elements of the main diagonal of the diagonal matrix; the 
eigenvectors will be the corresponding rows of the matrix created by the product of 
the rotation matrices R

I
• 

User-Defined Types 

TNvector = array [1. . TNArraySize] of Real; 

TNmatrix = array[l .• TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; Dimension of the matrix Mat 

Mat: TNmatrix; The symmetric matrix 

MaxIter : Integer; Maximum number of iterations 

Tolerance: Real; Accuracy in solution 
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The preceding parameters must satisfy the following conditions: 

1. Dimen> 1. 

2. Dimen :5 TNArraySize. 

3. Tolerance > O. 

4. MaxIter > O. 

5. Mat must be symmetric. 

TNArraySize sets an upper bound on the number of elements in each vector. It 
is used in the type definition of TNvector and TNmatrix. TNArraySize is not a 
variable name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error (assuming the directive {$R + } is active). 

Output Parameters 

Ei genva 1 ues : TNvector; Approximation to the eigenvalues of the matrix 

Eigenvectors: TNmatrix; Approximation to the eigenvectors associated with the 
eigenvalues 

Iter: Integer; Number of iterations required to find eigenvalues/vectors 

Error: Byte; 0: No errors 
1: Dimen :5 1 
2: Tolerance :5 0 
3: MaxIter :5 0 
4: Mat not symmetric 
5: Iter 2: MaxIter 

Syntax of the Procedure Call 

Jacobi(Dimen, Mat, MaxIter, Tolerance, Eigenvalues, Eigenvectors, Iter, Error); 
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Comments 

For symmetric matrices, the Jacobi method is preferred to Wielandt's deRation. 

Unlike the power (POWER.lNC) and inverse power (INVPOWER.lNC) 
methods, the efficiency of the Jacobi method is not affected by repeated eigen­
values with linearly dependent eigenvectors. 

The eigenvectors are normalized such that the element of largest absolute mag­
nitude in each vector is equal to one. 

Sample Program 

The sample program JACOBI.PAS provides I/O functions that demonstrate 
Jacobi's method of approximating the eigensystem of symmetric matrices. 

Input File 

Data may be input from a text file. Entries in the text file should be separated by 
spaces or carriage returns, and it does not matter if the text file ends with a carriage 
return. The format of the text file should be as follows: 

1. Dimension of the matrix 

2. Elements of the matrix, in the order 
[1, 1], [1, 2], "', [1, N], ... , [N, 1], ... , [N, N], 
where N is the dimension of the matrix 

For example, to find the dominant eigenvalue of the matrix 

you could first create the following text file: 

4 
1 
2 
2 
1 
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Example 

Problem. Find the complete eigensystem of the symmetric matrix 

[ ~ i ={ =~ 1 
-3 -1 1 2 
-1 -3 2 1 

Run JACOBI.PAS: 

{K)eyboard or {F)ile entry of data? F 

File name? SAMPLE7A.DAT 

Tolerance (> 0, default = 1.000E-06): 1E-8 

Maximum number of iterations (> 0, default = 200): 200 

Direct output to one of the following: 
{S)creen 
(P) ri nter 
(F) il e 

The matrix: 
1.000000000 2.000000000 -3.000000000 -1.000000000 
2.000000000 1.000000000 -1.000000000 -3.000000000 

-3.000000000 -1.000000000 1.000000000 2.000000000 
-1.000000000 -3.000000000 2.000000000 1.000000000 

Tolerance: 1.00000000000000E-008 
Maximum number of iterations: 200 

Number of iterations: 4 
The approximate eigenvector: 

1.00000000000000E+000 
1.00000000000000E+000 

-1.00000000000000E+000 
-1.00000000000000E+000 

The associated eigenvalue: 7.00000000000000E+000 

The approximate eigenvector: 
-9.99999999977159E-001 
9.99999999977775E-001 
1.00000000000000E+000 

-9.99999999999384E-001 

The associated eigenvalue: 1.00000000000000E+000 

The approximate eigenvector: 
1.00000000000000E+000 

-9.99999556935431E-001 
9.99999999977774E-001 

-9.99999556913205E-001 
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The associated eigenvalue: -2.99999999999990E+000 

The approximate eigenvector: 
9.99999556935431E-001 
9.99999999999384E-001 
9.99999556934815E-001 
1.00000000000000E+000 

The associated eigenvalue: -1.00000000000010E+000 

The exact solution is 

Eigenvalue = 
Eigenvalue = 
Eigenvalue = 
Eigenvalue = 

7; Eigenvector = (1, 1, -1, -1) 
1; Eigenvector = (-1, 1, 1, -1) 

- 3; Eigenvector = (1, - 1, 1, - 1) 
-1; Eigenvector = (1, 1, 1, 1) 
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c H A p T E R 8 
Initial Value and Boundary Value Metlwds 

A differential equation is like an ordinary equation except that the unknown is a 
function, and derivatives of the function appear in the equation. For example, 

f"(x) + f(x) = 0 

is a differential equation.f"(x) is the second derivative off(x). The solutions are the 
functions of the form 

f(x) = a * cos(x) + b * sin(x) 

The function is uniquely determined by suitable initial conditions, such as 

f(O) = 3 
f'(O) = 4 

in which case the solution is 

f(x) = 3 * cos(x) + 4 * sin(x) 

The routines in this chapter solve differential equations that are ordinanJ and 
linear. A differential equation is ordinary if there is only an independent variable 
(that is, the unknown function is a function of only one variable), and thus the 
derivatives are ordinary derivatives and not partial derivatives. A differential equa­
tion is linear if the unknown function and its derivatives appear linearly in the 
equation. 

This chapter describes routines that specifically solve: (1) initial value problems 
for nth-order ordinary differential equations, (2) initial value problems for systems 
of coupled first-order and second-order ordinary differential equations, and (3) 
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boundary value problems for second-order ordinary differential equations. 

Note that these routines work only with ordinary differentiai equations, not par­
tial differential equations. All of the routines in this chapter can solve problems 
involving nonlinear equations (except the linear-shooting routine LINSHOT 
2.1NC). 

Two one-step techniques that solve initial value problems for first-order ordinary 
differential equations are implemented. The first technique employs the 
fourth-order Runge-Kutta method (RUNGE_I.lNC), also known as the classical 
Runge-Kutta method. The second employs the Runge-Kutta-Fehlberg method 
(RKF_l.INC). 

Each one-step technique approximates the value of the dependent variable at a 
mesh point, which is a value of the independent variable, by using only the infor­
mation obtained from the preceding mesh point. The Runge-Ku~ta method 
employs equally spaced mesh points. On the other hand, the Runge-Kutta­
Fehlberg method varies the spacing of the mesh points in order to control the local 
truncation error. This produces a corresponding bound on the global error. 

The Adams-BashforthIAdams-Moulton predictor/corrector method (ADAMS_I. 
INC) is a multistep method that uses information obtained at several preceding 
mesh points to approximate the value of the dependent variable at the current 
mesh point. The procedure employs the Adams-Bashforth four-step method to 
obtain a predictor. It is subsequently used as input for the Adams-Moulton three­
step method to obtain a corrector. The corrector is the approximate value of the 
solution. Mesh points are equally spaced, and the starting values for the process are 
determined by the one step, fourth-order Runge-Kutta method. 

The Runge-Kutta methods are the most reliable and should be used when you 
are uncertain of the behavior of the differential equation (for example, if the solu­
tion to the differential equation is not very smooth). If you want the output to be 
evenly spaced (in x) or do not require a high degree of accuracy, use the classical 
Runge-Kutta method. Otherwise, the Runge-Kutta-Fehlberg method is the best 
general purpose routine to use, since it provides control over the accuracy of the 
solution. 

The Adams-Bashforth/Adams-Moulton method achieves the same accuracy (for 
equally spaced mesh points) as the fourth-order Runge-Kutta formula, but if is 
significantly faster. Consequently, the Adams-Bashforth/Adams-Moulton method is 
the most desirable method if you are reasonably certain that the differential equa­
tion is well-behaved. 

Initial value problems for first-order ordinary differential equations are guaran­
teed to have a unique solution on the interval a, b if the function 

x' = f(t, x) 
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is continuous over the interval a, h, and if the function satisfies the Lipshitz condi­
tion. The Lipshitz condition states that there exists a positive number L such that 

If(t, x2) - f(t, Xl) I ~ Llx2 - XII 
for all a ~ t ~ h, - 00 < X < 00. 

Initial value problems for second-order ordinary differential equations can be 
solved via a fourth-order Runge-Kutta method (RUNGE--2.INC). This procedure 
reduces a given differential equation to a system of two, first-order ordinary differ­
ential equations. The solution to this system is approximated at equally spaced 
mesh points with the fourth-order Runge-Kutta method. 

Initial value problems for second-order ordinary differential equations are guar­
anteed to have a unique solution on the interval a, h if the function 

x" = f(t, x, x') 

is continuous over the interval a, h and if the function satisfies the Lipshitz condi­
tion. For a second-order differential equation, the Lipshitz condition states that 
there exists a positive number L such that 

If(t, x2' X'2) - f(t, Xl' X'2) I ~ L( IX2 - XII + Ix'2 - x'II) 

for all a ~ t ~ h, - 00 < X < 00, - 00 < X I < 00. 

The Runge-Kutta method can be generalized for any order ordinary differential 
equation. The file RUNGE_N.INC contains an algorithm that can solve an initial 
value problem for an nth-order differential equation with the fourth-order Runge­
Kutta formulas. The Lipshitz condition can be generalized for any order ordinary 
differential equation. (For details, consult the reference book listed in the section, 
"Solution to an Initial Value Problem for a First-Order Ordinary Differential Equa­
tion Using the Runge-Kutta Method.") 

Although RUNGE-N.INC can be used to solve initial value problems for first­
order and second-order ordinary differential equations, we recommend that 
RUNGE_l.INC and RUNGE--2.INC be used instead. The notation used by these 
routines is somewhat simpler than the general case. There is no significant differ­
ence in computation time between the general program (RUNGE_N.INC) and the 
specific programs (RUNGE_l.INC and RUNGE--2.INC). 

Systems of coupled equations may also be solved with Runge-Kutta techniques. 
A system of up to ten first-order ordinary differential equations can be solved with' 
the file RUNGE_Sl.INC. A system of up to ten second-order ordinary differen­
tial equations can be solved with the file RUNGE_S2.INC. The algorithms in 
both these files are based on the classical Runge-Kutta method with uniform spac­
ing between mesh points; hence, they do not allow for accuracy control (as 
in the Runge-Kutta-Fehlberg method). (The Lipshitz condition for systems of 
equations is given in the reference in the sections about RUNGE_Sl.INC and 
RUNGE_S2.INC.) 
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Boundary value problems for second-order ordinary differential equations 
(where the value of the dependent variable is specified at the two endpoints of 
interval) can be solved using slwoting techniques. Shooting techniques converge 
onto the slope of the function at one boundary. This reduces the boundary value 
problem to a series of initial value problems. The series concludes when the initial 
value problem satisfies the boundary condition at the other boundary. 

If the second-order differential equation is linear (that is, linear in the dependent 
variable(s), not necessarily linear in the independent variable), the linear-shooting 
method (LINSHOT2.INC) may be used. A linear combination of solutions to two 
initial value problems yields the solution to the boundary value problem. 

If the second-order differential equation is nonlinear, the routine SHOOT2.1NC 
must be used. The secant method generates a sequence of solutions with different 
values of the first derivative until the appropriate boundary condition, subject to a 
desired accuracy, is satisfied. Although SHOOT2.1NC may be used to solve linear 
boundary value problems, LINSHOT2.1NC is more efficient for the linear case . 

. Boundary value problems for second-order differential equations are guaranteed 
to have a unique solution on the interval a, b if the function 

y" = !(x, y, y') 

and the two partial derivatives a!lay, apay' are continuous on the interval [a, b]. 
Furthermore, apay must be positive and apay' must be bounded for all x, y, y' 
a :5 x :5 b, - 00 < y < 00, - 00 < y" < 00 • 

The convergence to the appropriate initial value of the first derivative is not 
assured for nonlinear boundary value problems. A good guess of the derivative 
boundary condition is often required and may involve considerable trial and error. 

Interpolation techniques (see Chapter 3) may be used to approximate the solu­
tion of values of the independent variable that are not mesh points. 
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Solution to an Initial Value Problemfor a First-order 
Ordinary Differential Equation Using the Runge-Kutta 
Method (RUNGEJ..INC) 

Description 

This example uses the Runge-Kutta method (Burden and Faires 1985,220-227) to 
approximate the solution to a first-order ordinary differential equation with a speci­
fied initial condition. 

Given a function of the form 

dx/dt = TNTargetF(t, x) 

which satisfies the conditions given at the beginning of this chapter, and an initial 
condition 

x[LowerLimit] = Xlnitial 

and spacing 

h = (UpperLimit - LowerLimit)/Numlntervals 

the fourth-order Runge-Kutta method approximates x in the interval [LowerLimit, 
UpperLimit]. 

The fourth-order Runge-Kutta formulas consist of the following: 

F1 = h * TNTargetF(t, x[t]) 
F2 = h * TNTargetF(t + h/2, x[t] + Fl/2) 
F3 = h * TNTargetF(t + h/2, x[t] + F2/2) 
F4 = h * TNTargetF(t + h, x[t] + F3) 
x[t + 1] = x[t] + (F1 + 2 * F2 + 2 * F3 + F4)/6 

where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a 
truncation error of order h 4• 

You must supply LowerLimit, UpperLimit, Xlnitial, Numlntervals, and TNTar­
getF. 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Real; 
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User-Defined Function 

TNTargetF{t, X : Real) : Real; 

dx/dt = TNTargetF(t, x) 

The function TNTargetF(t, x) is a user-defined function that calculates the deriv­
ative dx/dt. 

Input Pararneters 

Lower limit of interval 

Upper limit of interval 

Value of X at LowerLimit 

LowerLimit : Real; 

UpperL imi t : Real; 

XInitial : Real; 

NumReturn : Integer; Number of (t, x) pairs returned from the procedure 

NumInterval s : Integer; Number of subintervals used in calculations 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlnteroals ~ NumReturn 

3. LowerLimit ¢ UpperLimit 

Output Pararneters 

TVal ues : TNvector; Values of t between the limits 

XVal ues : TNvector; Values of X approximated at the values in TValues 

Error : Byte; 
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0: No errors 
1: NumReturn < 1 
2: Numlntervals < NumReturn 
3: LowerLimit = UpperLimit 
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Syntax of the Procedure Call 

InitialCondlstOrder(LowerLimit, UpperLimit, Xlnitial, NumReturn, 
Numlritervals, TValues, XValues, Error); 

The procedure InitialConditionlstOrder integrates the first-order differential 
equation. 

Comments 

This procedure will compute Numlntervals values in its calculations; however, you 
will rarely need to use all the values. The vectors TValues and XValues will contain 
only NumReturn values at roughly equally spaced t-values between the lower and 
upper limits. (They will be equally spaced only when Numlntervals is a multiple of 
NumReturn.) Thus, you can ensure a highly accurate solution (by making Numln­
tervals large) without generating an excessive amount of output (by making Num­
Return small). 

The Runge-Kutta method uses the New/Dispose procedures to manipulate the 
heap and should not be used in any program that uses Mark/Release to manipulate 
the heap. 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable{s) is 
changing; for example, y = x + e - lOOx. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals). 

Sample Program 

The sample program RUNGE_l.PAS provides I/O functions that demonstrate the 
Runge-Kutta method of solving initial value problems. Note that the file 
RUNGE_l.INe is included after the function TNTargetF is defined. 
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Example 

Problem. Solve the following initial value problem with the Runge-Kutta method: 

X' = xlt + t - 1 I:5t:52 
x(l) = 1 

1. Code the equation into the program RUNGE_l.PAS: 

funct;on TNTargetF(t, X : Real) : Real; 

(************************************************************************) 
(**** THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ****) 
(************************************************************************) 

beg;n 
TNTargetF := x/t + t - 1 

end; { function TNTargetF } 

2. Run RUNGE_I.PAS: 

Lower limit of interval? 1 

Upper limit of interval? 2 

X value at t = 1.00000000E+00: 

Number of values to return (1-500)? 10 

Number of intervals (>= 10, default = 10)? 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower limit: 1.00000000000000E+000 
Upper limit: 2.00000000000000E+000 

Value of X at 1.0000: 1.00000000000000E+000 
Number of intervals: 100 

t 
1.00000000 
1.10000000 
1.20000000 
1.30000000 
1.40000000 
1.50000000 
1.60000000 
1.70000000 
1.80000000 
1.90000000 
2.00000000 

X 
1.00000000000000E+000 
1.10515880220649E+000 
1.22121413182916E+000 
1.34892645616477E+000 
1.48893886869362E+000 
1.64180233779216E+000 
1.80799419315265E+000 
1.98793197313186E+000 
2. 18198400310574E+000 
2.39047761619428E+000 
2.61370563879444E+000 

The exact solution is 

x = l - t * In(t) 
X(2) = 2.6137056 
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Solution to an Initial Value Problemfor a First-Order 
Ordinary Differential Equation 
Using the Runge-Kutta-Fehlberg Method (RKFJ..INC) 

Description 

This example uses the Runge-Kutta-Fehlberg method (Burden and Faires 1985, 
230-235) to approximate a solution within a specified tolerance to a first-order 
ordinary differential equation with a specified initial condition. 

Where the Runge-Kutta method (see RUNGE_l.INe) uses a constant spacing 
h, the Runge-Kutta-Fehlberg method varies the spacing so that the solution can be 
approximated with accuracy. 

Given a function of the form 

dx/dt = TNTargetF(t, x) 

which satisfies the conditions given at the beginning of this chapter, and an initial 
condition 

x[LowerLimit] = Xlnitial 

both the fourth-order and fifth-order Runge-Kutta formulas are used to approxi­
mate x in the interval [LowerLimit, UpperLimit]. The number of subintervals is 
continually increased until the fractional difference between the results of the 
fourth-order and fifth-order formulas (which give a truncation error of h4 and h5

, 

respectively) in each subinterval is less than the specified tolerance. 

You must supply LowerLimit, UpperLimit, Tolerance, and TNTargetF. 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Real; 

User-Defined Function 

TNTargetF(t, X : Real) : Real; 

dx/dt = TNTargetF(t, x) 
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Input Parameters 

LowerLimit : Real; Lower limit of interval 

UpperLimit : Real; Upper limit of interval 

XInitial : Real; Value of X at LowerLimit 

To 1 erance : Real; Maximum tolerable fractional difference between iterate 
values 

NumReturn : Integer; Number of (t, x) values to be returned 

The preceding parameters must satisfy the following conditions: 

1. Tolerance > 0 

2. NumReturn > 0 

3. LowerLimit ¢ UpperLimit 

Output Parameters 

TVal ues : TNvector; Values of t at which X was approximated 

XVal ues : TNvector; Values of X at the values in TValues 

Error : Byte; 0: No errors 
1: Tolerance :5 0 
2: NumReturn :5 0 
3: LowerLimit = UpperLimit 
4: Tolerance not reached 

Syntax of the Procedure Call 

RungeKuttaFehlberg{LowerLimit, UpperLimit, XInitial, Tolerance, 
NumReturn, TValues, XValues, Error); 

The procedure RungeKuttaFehlberg integrates the first-order differential equa­
tion TNTargetF. 
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Comments 

This procedure will compute more values in its calculations than it will return in 
the vectors TValues and XValues. The vectors TValues and XValues will contain 
only NumReturn values at subintervals between the lower and upper limits. More 
values will be returned in regions of large functional variation than in regions· of 
small functional variation. Thus, you can ensure a highly accurate solution (by 
making the Tolerance small) without generating an excessive amount of output (by 
making NumReturn small). 

The Runge-Kutta-Fehlberg method improves the accuracy in the solution by 
reducing the spacing between successive values of t. However, if the Tolerance is 
too small, the spacing required to reach Tolerance may be beyond the machine's 
limit of precision. Consequently, the routine will not converge to a solution that 
meets the required Tolerance and Error 5 will be returned. 

The Runge-Kutta-Fehlberg method uses the New/Dispose procedures to manip­
ulate the heap and should not be used in any program that uses Mark/Release to 
manipulate the heap. 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e- 1OOx

• The Runge-Kutta-Fehlberg method may 
generate a numerical solution that bears no resemblance to the exact solution of the 
differential equation. This unstable numerical solution usually grows exponentially 
and may be oscillatory. However, if the exact solution of the differential equation 
grows as the independent variable increases, the instability may be difficult to 
detect. If a suspected instability has been encountered, reduce the interval size 
(NumI ntervals). 

Sample Program 

The sample program RKF_l.PAS provides I/O functions that demonstrate the 
Runge-Kutta-Fehlberg method of solving initial value problems. Note that the file 
RKF_l.INC is included after the function TNTargetF is defined. 
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Example 

Problem. Use the Runge-Kutta-Fehlberg method to solve the following initial 
value problem with a tolerance of lE-6: 

X' = x/t + t - 1 1 $; t $; 2 
x(l} = 1 

1. Code the differential equation into the program RKF_l.PAS: 

function TNTargetF(t, X : Real) : Real; 

(************************************************************************) 
(**** THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ****) 
(************************************************************************) 

begin 
TNTargetF := x/t + t - 1; 

end; { function TNTargetF } 

2. Run RKF_l.PAS: 

Lower limit of interval? 

Upper limit of interval? 2 

X value at t = 1.00000000E+00: 

Number of values to return (1-500)? 10 

Tolerance (> 0, default = 1.000E-06)? 1E-6 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower limit: 1.00000000000000E+000 
Upper limit: 2.00000000000000E+000 

Value of X at 1.0000: 1.00000000000000E+000 
Tolerance: 1.00000000000000E-006 

t 
1.00000000 
1.10000000 
1.20000000 
1.30000000 
1.40000000 
1.50000000 
1.60000000 
1.70000000 
1.80000000 
1.90000000 
2.00000000 
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X 
1.00000000000000E+000 
1.10515881708653E+000 
1.22121416069278E+000 
1.34892649817459E+000 
1.48893892310351E+000 
1.64180240395245E+000 
1.80799427050390E+000 
1.98793206119471E+000 
2.18198410146987E+000 
2.39047772450816E+000 
2.61370575675625E+000 
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Now solve the same problem with a smaller tolerance, l.OOOE-OB: 

Lower limit of interval? 1 

Upper limit of interval? 2 

X value at t = 1.00000000E+00: 

Number of values to return (1-500)? 10 

Tolerance (> 0, default = 1.000E-06)? 1E-8 

Direct output to one of the following: 
{S)creen 
(P)rinter 
(F) il e 

Lower limit: 1.00000000000000E+000 
Upper limit: 2.00000000000000E+000 

Value of X at 1.0000: 1.00000000000000E+000 
Tolerance: 1.00000000000000E-008 

t 
1.00000000 
1.12208941 
1.20585321 
1.29271260 
1.38286653 
1.47648998 
1.57374241 
1.67477301 
1.77972398 
1.88873280 
2.00193373 

X 
1.00000000000000E+000 
1. 12982837391732E+000 
1.22836146826667E+000 
1.33921121906568E+000 
1.46405185209736E+000 
1.60468229863568E+000 
1.76304147973215E+000 
1.94122165006705E+000 
2. 14148082447423E+000 
2.36625482837546E+000 
2.61816928222327E+000 

The exact solution is 

x = t 2 - t In(t) 

X(2) = 2.6137056 

X(2.00193373) = 2.61B1693 

In the first run, a solution could be approximated within tolerance with a spacing 
of 0.1. In the second run, the algorithm had to vary the spacing in order to approxi­
mate a solution within the tolerance. 
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Solution to an Initial Value Problemfor a First-Order 
Ordinary Differential Equation 
Using the Adams-Bashforth/Adams-Moulton 
Predictor/Corrector Scheme (ADAMSJ..INC) 

Description 

This example approximates the solution to a first-order ordinary differential equa­
tion with a specified initial condition using the four-step Adams-Bashforth/Adams­
Moulton formulas (Burden and Faires 1985, 238-247). Runge-Kutta methods are 
one-step methods, because each calculation uses information from only one pre­
vious point. The Adams' formulas use information from four previous points, thus 
the four-step method. 

Given a function of the form 

dx/dt = TNTargetF(t, x) 

which satisfies the conditions given at the beginning of this chapter, and an initial 
condition 

x[LowerLimit] = Xlnitial 

and spacing 

h = (UpperLimit - LowerLimit)/Numlntervals 

the fourth-order Runge-Kutta formula (see RUNGE_l.INC) is used to find approx­
imations at the first three points in the interval [LowerLimit, UpperLimit]. Then 
the following explicit Adams-Bashforth formula: 

xJi + 1] = x[i] + h/24 * { 55 * TNTargetF(t[i], x[i]) 

- 59 * TNTargetF(t[i - 1], x[i -1]) 

+ 37 * TNTargetF(t[i - 2], x[i - 2]) 

- 9 * TNTargetF(t[i - 3], x[i - 3]) } 

and the following implicit Adams-Moulton formula: 

x[i + 1] = x[i] + h/24 * { 9 * TNTargetF(t[i + 1], xJi + 1]) 

+ 19 * TNTargetF(t[i], x[i]) 

- 5 * TNTargetF(t[i - 1], x[i -1]) 

+ TNTargetF(t[i - 2], x[i - 2]) } 

approximate (predict) and refine (correct) all other points in the interval. 
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You must supply UpperLimit, LowerLimit, Xlnitial, Numlntervals, and TNTar­
getF. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Real; 

User-Defined Function 

TNTargetF(t, X : Real) : Real; 

dxldt = TNTargetF(t, x) 

Input Parameters 

LowerL imi t : Real; 

UpperLimit : Real; 

Lower limit of interval 

Upper limit of interval 

XInitial : Real; Value of X at LowerLimit 

NumReturn : Integer; Number of (t, x) values to be returned from the procedure 

NumInterva 1 s : Integer; Number of subintervals to be used in calculations 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlntervals ~ NumReturn 

3. LowerLimit ~ UpperLimit 

Output Parameters 

TVal ues : TNvector; Values of t between the limits 

XVal ues : TNvector; Values of X determined at the values in TValues 

Error: Byte; 0: No errors 
1: NumReturn < 1 
2: Numlntervals < NumReturn 
3: LowerLimit = UpperLimit 
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Syntax of the Procedure Call 

Adams(LowerLimit, UpperLimit, XInitial, NumReturn, 
NumIntervals,TValues, XValues, Error); 

The procedure Adams integrates the first-order differential equation TNTargetF. 

Comments 

This procedure will compute Numlntervals values in its calculations; however, you 
will rarely need to use the values. The vectors TValues and XValues will contain 
only NumReturn values at roughly equally spaced t-values between the lower and 
upper limits. (They will be equally spaced only when Numlntervals is a multiple of 
NumReturn.) Thus, you can ensure a highly accurate solution (by making Numln­
tervals large) without generating an excessive amount of output (by making Num­
Return small). 

The Adams-Bashforth/Adams-Moulton method uses the New/Dispose proce­
dures to manipulate the heap and should not be used in any program that uses 
Mark/Release to manipulate the heap. 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e- 1OOx

• The Adams-Bashforth/Adams-Moulton 
method may generate a numerical solution that bears no resemblance to the exact 
solution of the differential equation. This unstable numerical solution usually 
grows exponentially and may be oscillatory. However, if the exact solution of the 
differential equation grows as the independent variable increases, the instability 
may be difficult to detect. If a suspected instability has been encountered, reduce 
the interval size (Numlntervals). 

Sample Program 

The sample program ADAMS_l.PAS provides I/O functions that demonstrate the 
Adams-Bashforth/Adams-Moulton predictor/corrector method of solving initial 
value problems. Note that the file ADAMS_l.lNC is included after the function 
TNTargetF is defined. 
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Example 

Problem. Solve the following initial value problem with the Adams-Bashforth/ 
Adams-Moulton method: 

X' = x/t + t - 1 
x(l) = 1 

l:5t:52 

1. Code the differential equation into the program ADAMS_l.PAS: 

function TNTargetF{t, X : Real} : Real; 

{**************************************************************************} 
{**** THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ****} 
{**************************************************************************} 

begin 
TNTargetF := x/t + t - 1; 

end; 

2. Run ADAMS_l.PAS: 

Lower limit of interval? 1 

Upper limit of interval? 2 

X value at t = 1.00000000E+00: 

Number of values to return {1-500}? 10 

{ function TNTargetF } 

Number of intervals {>= 10, default = 10}? 100 

Direct output to one of the following: 
{S}creen 
(P}rinter 
(F) ile 

Lower limit: 1.00000000000000E+000 
Upper limit: 2.00000000000000E+000 

Value of X at 1~0000: 1.00000000000000E+000 
Number of intervals: 100 

t 
1.00000000 
1.10000000 
1.20000000 
1.30000000 
1.40000000 
1.50000000 
1.60000000 
1.70000000 
1.80000000 
1.90000000 
2.00000000 

X 
1.00000000000000E+000 
1.10515880229293E+000 
1.22121413201736E+000 
1.34892645643801E+000 
1.48893886904034E+000 
1.64180233820416E+000 
1.80799419362396E+000 
1.98793197365806E+000 
2. 18198400368348E+000 
2.39047761682098E+000 
2.61370563946811E+000 

The exact solution is 

X = t2 
- t In(t) 

x(2) = 2.6137056 
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Solution to an Initial Value Problem/or a Second-Order 
Ordinary Differential Equation 
Using the Runge-Kutta Metlwd (RUNGE....2.INC) 

Description 

This example approximates the solution to a second-order ordinary differential 
equation with specified initial conditions using the two variable Runge-Kutta for­
mulas (Burden and Faires 1985, 261-269). 

Given a function of the form 

d2x/dt2 = TNTargetF(t, x, x') 

where x' indicates dx/dt (which satisfies the Lipshitz condition given at the begin­
ning of this chapter), the initial conditions 

x[LowerLimit] = InitialValue 
x'[LowerLimit] = InitialDeriv 

and spacing 

h = (UpperLimit - LowerLimit)/Numlntervals 

rewrite the second-order differential equation as two, first-order differential equa­
tions: 

x' = y 
y' = TNTargetF(t, x, y) 

Then the fourth-order, two-variable Runge-Kutta method can be used to approx­
imate simultaneously x and y (x and x'). 

The fourth-order Runge-Kutta formulas for these equations consist of the follow­
ing: 
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FIx = h * y[t] 

Fly = h * TNTargetF(t, x[t], y[t]) 

F2x = h * (y[t] + F1y/2) 

F2y = h * TNTargetF(t + h/2, x[t] + F1x/2, y[t] + F1y/2) 

F3x = h * (y[t] + F2y/2) 

F3y = h * TNTargetF(t + h/2, x[t] + F2x/2, y[t] + F2y/2) 

F4x = h * (y[t] + F3y) 

F4y = h * TNTargetF(t + h, x[t] + F3x, y[t] + F3y) 
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x[t+ 1] = x[t] + (FIx + 2 * F2x + 2 * F3x + F4x)/6 

y[t + 1] = y[t] + (Fly + 2 * F2y + 2 * F3y + F4y)/6 

where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a 
truncation error of order h 4• 

You must supply LowerLimit, UpperLimit, Xlnitial, Numlntervals, and TNTar­
getF. 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Real; 

User-Defined Function 

TNTargetF(t, x, XPrime : Real) : Real; 

dx2/dt2 = TNTargetF(t, x, dx/dt) 

Input Parameters 

LowerLimit : Real; 

UpperLimit : Real; 

InitialValue: Real; 

InitialDeriv : Real; 

NumReturn : Integer; 

Lower limit of interval 

Upper limit of interval 

Value of X at LowerLimit 

Derivative of X at LowerLimit 

Number of (t, x) values returned from the procedure 

NumInterval s : Integer; Number of subintervals used in the calculations 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlntervals;::= NumReturn 

3. LowerLimit ~ UpperLimit 
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Output Parameters 

TValues : TNvector; Values of t between the limits 

XV a 1 ues : TNvector; Values of X determined at the values in TValues 

XDeri vVa 1 ues : TN vector ; Values of the first derivative of X determined at the values 
in TValues 

Error: Byte; 0: No errors 
1: NumReturn < 1 
2: Numlntervals < NumReturn 
3: LowerLimit = UpperLimit 

Syntax of the Procedure Call 

InitialCond2ndOrder(LowerLimit, UpperLimit, InitialValue, InitialDeriv, 
NumReturn, NumIntervals, TValues, XValues, 
XDerivValues, Error); 

The procedure InitialCond2ndOrder integrates the second-order differential 
equation TNTargetF. 

Comments 

This procedure will compute Numlntervals values in its calculations; however, you 
will rarely need to use all these values. The vectors TValues, XValues, and XDeriv­
Values will contain only NumReturn values at roughly equally spaced t-values 
between the lower and upper limits. (They will be equally spaced only when 
Numlntervals is a multiple of NumReturn.) Thus, you can ensure a highly accurate 
solution (by making Numlntervals large) without generating an excessive amount 
of output (by making NumReturn small). 

Warning: A differential equation occurs when there are at least two very differ­
ent scales of the independent variable on which the dependent variable(s) is chang­
ing; for example, y = x + e -IOOx. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals). 
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Sample Program 

The sample program RUNGE-2.PAS provides I/O functions that demonstrate the 
Runge-Kutta method of solving initial value problems for second-order ordinary 
differential equations. Note that the file RUNGE-2.INC is included after the func­
tion TNTargetF is defined. 

Example 

Problem. A weight with mass m lies on a frictionless table and is connected to a 
spring with spring constant k: 

'4-Wall 

F( w) 
k 

m 

. . It ~ FnctlOn ess surlace 

If the weight is subject to a driving force F sin(oo t) (00 represents the frequency 
of the driving force and t is time), the equation of motion of the mass is as follows: 

m d2x/dt2 + k x = F sin(oo t) 

Given 

m = 2kg 
F=9N 
k = 32 N/m 
00 = 5 cycles/sec 
x(O) = 0 m 

dx(O)/dt = -2.5 m/sec 

find the position and velocity of the block from t = 0 second to t = 2 seconds. 

1. Rewrite the preceding second-order differential equation: 

d2x/dt2 
= F/m sin(oo t) - kim x 
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2. Code this second-order differential equation into the program RUNGE--2.PAS: 

function TNTargetF(t : Real; 
X : Real; 
XPrime : Real) : Real; 

(*************************************************************************) 
(**** THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION ****) 
(*************************************************************************) 

begin 
TNTargetF := 9/2 * Sin (5 * t) - 32/2 * x; 

end; { function TNTargetF } 

3. Run RUNGE--2.PAS: 

Lower limit of interval? 0 

Upper limit of interval? 2 

Enter X value at t = O.OOOOOOOOE+OO: 0 
Enter derivative of X at t = O.OOOOOOOOE+OO: -2.5 

Number of values to return (1-500)? 10 

Number of intervals (>= 10, default = 10)? 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower 1 imit: 
Upper 1 i mit: 

Value of X at 0.0000: 

O.OOOOOOOOOOOOOOE+OOO 
2.00000000000000E+000 
O.OOOOOOOOOOOOOOE+OOO 

Value of X' at 0.0000: 
Number of intervals: 

-2.50000000000000E+000 
100 

t 
0.00000000 
0.20000000 
0.40000000 
0.60000000 
0.80000000 
1.00000000 
1.20000000 
1.40000000 
1.60000000 
1.80000000 
2.00000000 
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Value of X 
O.OOOOOOOOOOOOOOE+OOO 

-4.20735284275848E-001 
-4.54648724216734E-001 
-7.05605786993375E-002 
3.78400378699554E-001 
4.79461767300631E-001 
1.39708469016311E-001 

-3.28491796183335E-001 
-4.94677974769030E-001 
-2.06059519715175E-001 
2. 72008842396951E-001 

Derivative of X 
-2.50000000000000E+000 
-1.35075642830665E+000 

1.04036531118478E+000 
2.47497991717220E+000 
1.63411037473655E+000 

-7.09151289407567E-001 
-2.40042152228323E+000 
-1.88475529635974E+000 
3.63745224811839E-001 
2.27781864414105E+000 
2.09767516082021E+000 
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The exact solution is 

F sin{oo t) 
x=-------

F., cos{oo t) 
dx/dt = -------

m (oo
0

2 
- (0

2
) 

where 00
0 

is the natural frequency of the system 

00
0

2 
= kim 

The period of oscillation is given by 

t = 2 'Tr/oo = 1.257 sec 

The data is taken from a function of which the derivative could be computed 
exactly. Following are the actual values: 

t Values of X 
0.0 O.OOOOOOOOOOOOE + 000 
0.2 - 4.207354924039E - 001 
0.4 - 4.546487134128E - 001 
0.6 -7.056000402993E - 002 
0.8 3.784012476539E - 001 
1.0 4.794621373315E - 001 
1.2 1.397077490994E - 001 
1.4 - 3.284932993593E - 001 
1.6 -4.946791233116E - 001 
1.8 - 2.060592426208E - 001 
2.0 2.720105554446E - 001 
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Derivative of X 
- 2.500000000000E + 000 
...:. 1.350755764670E + 000 

1.040367091367E + 000 
2.474981241501E + 000 
1.634109052159E + 000 

-7.091554636580E - 001 
- 2.400425716625E + 000 
- 1.884755635858E + 000 

3.637500845215E - 001 
2.277825654711E + 000 
2.097678822691E + 000 
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Solution to an Initial Value Problemfor an nth-Order 
Ordinary Differential Equation Using the Runge-Kutta 
Metlwd (RUNGE...N.INC) 

Description 

This example integrates an nth-order ordinary differential equation with specified 
initial conditions using the generalized Runge-Kutta formulas· (Burden and Faires 
1985,261-269). 

Given a function of the form 

dnx/dt" = TNTargetF(t, x, x(l), ... , x(n-l») 

where xlJ> indicates dJx/dtJ, which satisfies the general Lipshitz condition (the Lip­
shitz condition for first-order and second-order ordinary differential equations is 
given at the beginning of this chapter, and initial condition 

x [LowerLimit] = a
1 

x(l)[LowerLimit] = a
2 

x(n-l)[LowerLimit] = an 

and spacing 

h = (UpperLimit - LowerLimit)/Numlnteroals 

rewrite the nth-order differential equation as n first-order differential equations: 

X(l) = Y
I 

X(2) = y(I)I = Y2 

X(3) = y(I)2 = Y3 

x(n-I) = (1) 
Y n-2 = Yn - I 

X(n) = y(I)n_I = TNTargetF(t, x, YI' Y
2

, ... , Yn-I) 

Then the fourth-order general Runge-Kutta method can be used to approximate 
simultaneously the y's (x and its derivatives). 
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The general Runge-Kutta formulas for these equations consist of the following: 

FIx = h * yJt] 

FIY l = h * Yz[t] 

FIy
lI

_ z = h * y
lI
_Jt] 

FIY
n

_ l = h * TNTargetF(t, x[t], yJt], ... , yn_Jt]) 

F2x = h * (yJt] + Fly/2) 

F2Yl = h * (Yz[t] + Fly/2) 

F2y
lI

_ z = h * (yn_Jt] + FIyn_/2) 

F2Yn_l = h * TNTargetF(t + h/2, x[t] + Flx/2, yl[t] + Fly/2, ... , yn_Jt] 
+ FIyn_/2) 

F3x = h * (yJt] + F2y/2) 

F3Yl = h * (Yz[t] + F2y/2) 

F3YIl_2 = h * (y
lI
_Jt] + F2yn_/2) 

F3Y
II

_ l = h * TNTargetF(t + h/2, x[t] + F2x/2, yJt] + F2y/2, ... , yn_Jt] 
+ F2Yn_/2) 

F4x = h * (yJt] + F3y) 

F4Yl = h * (Yz[t] + F3yz) 

F4YIl_2 = h * (ylI_Jt] + F3YII_) 

F4Y
II

_ l = h * TNTargetF(t + h, x[t] + F3x, yJt] + F3yl, ... , yn_Jt] 
+ F3YIl_) 

x[t + 1] = x[t] + (FIx + 2 * F2x + 2 * F3x + F4x)/6 

yJt+ 1] = yJt] + (FlYl + 2 * F2Yl + 2 * F3Yl + F4y)/6 

Y2[t+ 1] = Yz[t] + (FIY2 + 2 * F2yz + 2 * F3yz + F4Yz)/6 

YIl_2[t + 1] = y
lI

_ 2[t] + (FIY
II

_ 2 + 2 * F2yn_z + 2 * F3Yn_2 + F4YIl_2)/6 

ylI)t+ 1] = ylI_Jt] + (FIY"_l + 2 * F2YII _l + 2 * F3Y
II

_ l + F4yn_l)/6 

where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a 
truncation error of order h -t. 
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You must supply the order, limits, initial values, and TNTargetF. The order may 
be arbitrarily large. 

User-Defined Types 

TNvector = array[O •• TNRowSize] of Real; 
TNmatrix = array[O •• TNColumnSize] of TNvector; 

TNRowSize is an upper bound for the number of values returned for a particular 
variable (NumReturn). TNColumnSize is an upper bound for the order of the differ­
ential equation (Order). 

User-Defined Function 

TNTargetF(V : TNvector) : Real; 

The elements of V are defined as 

V[O] corresporids to t 
V[l] corresponds to x 
V[2] corresponds to first derivative of x 
V[3] corresponds to second derivative of x 

This is the differential equation: 

dnx/dt = TNTargetF(t, x, X(l), ... x(n-l») where n is the order of the equation. 

The procedure Initial Condition integrates this nth-order differential equation. 

Input Parameters 

Order: Integer; 

LowerLimit : Real; 

UpperLimit : Real; 

Order of the differential equation 

Lower limit of interval 

Upper limit of interval 

InitialValues : TNvector; Values of X and its derivatives at LowerLimit 

NumReturn : Integer; Number of (t, x, X(l), ... , X (n») values returned from the pro­
cedure 

NumInterval s : Integer; Number of subintervals used in the calculations 
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The preceding parameters must satisfy the following conditions: 

l. NumReturn > 0 

2. Numlntervals 2: NumReturn 

3. Order> 0 

4. LowerLimit ~ UpperLimit 

Output Parameters 

SolutionValues : TNmatrix: Values of t, x and the derivatives of x between the limits 

Error: Byte: 0: No errors 
1: NumReturn < 1 
2: Numlntervals < NumReturn 
3: Order < 1 
4: LowerLimit = UpperLimit 

Syntax of the Procedure Call 

InitialCondition(Order, LowerLimit, UpperLimit, InitialValues, 
NumReturn, Numlntervals, SolutionValues, Error): 

Comments 

The first row of Solution Values will be the values of t between the limits, the 
second row of Solution Values will be the values of x between the limits, the third 
row of SolutionValues will be the values of X(l) between the limits, and so on. 

This procedure will compute Numlntervals values in its calculations; however, 
you will rarely need to use all those values. The rows of Solution Values will contain 
only NumReturn values at roughly equally spaced t-values between the lower and 
upper limits. (They will be equally spaced only when Numlntervals is a multiple of 
NumReturn.) Thus, you can ensure a highly accurate solution (by making Numln­
tervals large) without generating an excessive amount of output (by making Num­
Return small). 

There are no bounds on the order of the differential equation. 
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This routine stores much information on the heap. If you try to solve a high­
order differential equation very precisely (that is, both Order and Numlntervals are 
large), you may get run-time error $FF, Heap/Stack collision. If this happens, the 
dimension of TNvector and TNmatrix should be reduced as much as possible. If 
this is not possible, remove any RAM-resident software (for example, SideKick, 
SuperKey, or a print buffer). 

The Runge-Kutta method uses the New/Dispose procedures to manipulate the 
heap and should not be used in any program that uses Mark/Release to manipulate 
the heap. 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e -100%. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals). 

Sample Program 

The sample program RUNGE_N.PAS provides I/O functions that demonstrate the 
Runge-Kutta method of solving initial value problems for high-order ordinary dif­
ferential equations. Note that the file RUNGE-N.lNC is included after the func­
tion TNTargetF is defined. 

Example 

Problem. Find the solution to the following fourth-order ordinary differential equa­
tion from t = 0 to t = 1: 

d4x(t)/dt = - 4 x(t) d3x(t)/dt3 

x(O) = 1 
dx(O)/dt = - 1 

d2x(O)/dt2 = 2 
d3x(O)/dt3 

= - 6 
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1. Code the equation into the program RUNGE_N.PAS: 

function TNTargetF(V : TNvector) : Real; 

(***********************************************) 
(* THIS IS THE DIFFERENTIAL EQUATION *) 
(***********************************************) 
(* *) 
(* dn x (1) (n-1) *) 

(* = TNTargetF(t, x, x , ..• x *) 
(* *) 
(* dtn 

*) 
(* *) 
(* where n is the order of the equation. *) 
(* *) 
(* The elements of V are defined: *) 
(* V[O] corresponds to t *) 
(* V[l] corresponds to X *) 
(* V[2] corresponds to 1st derivative of X *) 
(* V[3] corresponds to 2nd derivative of X *) 
(* *) 
(* *) 
(* *) 
(***********************************************) 

begin 
TNTargetF := -4 * V[l] * V[4]; 

end; { function TNTargetF } 

2. Run RUNGE-N.PAS: 

Order of the equation (1-10)? 4 

Lower limit of interval? 0 

Upper limit of interval? 

Enter X value at t 
Derivative 1 of X at t 
Derivative 2 of X at t 
Derivative 3 of X at t 

O.OOOOOOOE+OOO: 1 
O.OOOOOOOE+OOO: -1 
O.OOOOOOOE+OOO: 2 
O.OOOOOOOE+OOO: -6 

Number of values to return (1-100)? 10 

Number of intervals (>= 10, default = 10)? 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower limit: O.OOOOOOOOOOOOOOE+OOO 
Upper limit: 1.00000000000000E+000 

Number of intervals: 100 
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Initial conditions at lower limit: 

t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 
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X[l]= 1.00000000000000E+000 
X[2]= -1.00000000000000E+000 
X[3]= 2.00000000000000E+000 
X[4]= -6.00000000000000E+000 

Value X[l] 
1.00000000000000E+000 
9.09090909737517E-001 
8.33333334189337E-001 
7.69230770157394E-001 
7.14285715280102E-001 
6.66666667788519E-001 
6.25000001337168E-001 
5.88235295769619E-001 
5.55555557625526E-001 
5.26315792064849E-001 
5.00000003213983E-001 

Val ue X[2] 
-1.00000000000000E+000 
-8.26446283273189E-001 
-6.94444446826215E-001 
-5.91715977923112E-001 
-5.10204082090465E-001 
-4.44444443661452E-001 
-3.90624997971428E-001 
-3.46020758007957E-001 
-3.08641970911504E-001 
-2.77008304743045E-001 
-2.49999993429933E-001 

Value X[3] 
2.00000000000000E+000 
1.50262961438149E+000 
1. 15740742373768E+000 
9.10332288053840E-001 
7.28862989793594E-001 
5.92592607536865E-001 
4.88281263842229E-001 
4.07083261374878E-001 
3.42935540127152E-001 
2.91587706310718E-001 
2.50000010753535E-001 

Value X[4] 
-6.00000000000000E+000 
-4.09808076056272E+000 
-2.89351855059016E+000 
-2.10076680857258E+000 
-1.56184925333600E+000 
-1. 18518520443061E+000 
-9.15527359078898E-001 
-7. 18382215400418E-001 
-5.71559223064178E-001 
-4.60401631119694E-001 
-3.75000005740567E-001 
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X[I] are the values of x(t}. 
X[2] are the values of dx(t}jdt. 
X[3] are the values of d2x(t}jdt2

• 

X[ 4] are the values of d\(t}jdt3
• 

The exact solution is 

x(t} = (t+ Ifl 
dx(t}jdt = - (t + I}-2 

d2x(t}jdt2 = 2(t + I}-3 
d3x(t}jdt3 = - 6(t + If4 

x(I) = 0.5 
dx(I}jdt = - 0.25 

d2x(I}jdt2 = 0.25 
d3x(I}jdt3 = - 0.375 
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Solution to an Initial Value Problem/or a System 0/ 
Coupled First-Order Ordinary Differential Equations Using 
the Runge-Kutta Metlwd (RUNGE-S1.INC) 

Description 

This example integrates a system of coupled first-order ordinary differential equa­
tions with specified initial conditions using the generalized Runge-Kutta formulas 
(Burden and Faires 1985, 261-269). 

Given m first-order ordinary differential equations in the form 

dx/dt = TNTargetF1(t, Xl' X2' ... , xJ 
dx/dt = TNTargetF2(t, Xl' X2' ... , xJ 

dx Idt = TNTargetFm(t, Xl' X
2

' ... , X ) m m 

which satisfies the Lipshitz condition (the Lipshitz condition for first-order and 
second-order ordinary differential equations is given at the beginning of this chap­
ter; consult the previous book reference for details of the Lipshitz condition for 
systems), and initial conditions 

xJLowerLimit] = a
l 

xJLowerLimit] = a
2 

x.JLowerLimit] = am 

and spacing 

h = (UpperLimit - LowerLimit)/Numlnteroals 

the fourth-order general Runge-Kutta method can be used to approximate simulta­
neously the xj's. 
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The general Runge-Kutta formulas for these equations are as follows: 

FIxl = h * TNTargetFI(t, xl[t], x2[t], ... , x.Jt]) 

FIx2 = h * TNTargetF2(t, xJt], x2[t], ... , x.Jt]) 

FIx", = h * TNTargetFm(t, xJt], x2[t], "', x.Jt]) 

F2xl = h * TNTargetFI(t + h/2, xl[t] + FIx/2, x2[t] + FIx/2, ... , x.Jt] 
+ FIx,/2) 

F2x2 = h * TNTargetF2(t + h/2, xJt] + FIx/2, x2[t] + FIx/2, ... , x.Jt] 
+ FIx,/2) 

F2x", = h * TNTargetFm(t + h/2, xJt] + FIx/2, x2[t] + FIx/2, ... , x.Jt] 
+ FIx,/2) 

F3xl = h * TNTargetFI(t + h/2, xJt] + F2x/2, x2[t] + F2x/2, ... , x.Jt] 
+ F2x,/2) 

F3x2 = h * TNTargetF2(t + h/2, xJt] + F2x/2, x2[t] + F2x/2, ... , x.Jt] 
+ F2x,/2) 

F3x", = h * TNTargetFm(t + h/2, xl[t] + F2x/2, x2[t] + F2x/2, ... , x.Jt] 
+ F2x /2) 

rn 

F4xl = h * TNTargetFI(t + h, xJt] + F3xl, x2[t] + F3x2, ... , x.Jt] + F3x,J 

F4x2 = h * TNTargetF2(t + h, xJt] + F3xl, x2
[t] + F3x

2
, ... , x.Jt] + F3x",) 

F4x", = h * TNTargetFm(t + h, xl[t] + F3xl, x2[t] + F3x2, "', x.Jt] + F3x,,) 

xJt + 1] = xl[t] + (FIx l + 2*F2xl + 2*F3xl + F4x)/6 

xJt + 1] = x
2
[t] + (FIx

2 
+ 2*F2x2 + 2*F3x

2 
+ F4x

2
)/6 

x [t+ 1] = x [t] + (FIx + 2*F2x + 2*F3x + F4x )/6 
m m m m m m 
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where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a 
truncation error of order h 4 • 

You must supply the number of differential equations, the limits, initial values, 
and TNTargetF's. 

This procedure can solve a system of up to ten differential equations (see "Com­
ments" for information about how to increase this limit). 

User-Defined Types 

TNvector .; array[O .. TNRowSize] of·Real; 
TNmatrix = array[O •• TNColumnSize] of TNvector; 

TNRowSize is an upper bound for the number of values returned for a particular 
variable (NumReturn). TNColumnSize is an upper bound for the number of differ­
ential equations (NumEquations). 

User-Defined Functions 

function TNTargetFl(V TNvector) Real; 

function TNTargetF2(V TNvector) Real; 

function TNTargetF3(V TNvector) Reali 

function TNTargetF4(V TNvector) Real; 

function TNTargetF5(V TNvector) Real; 

function TNTargetF6(V TNvector) Real; 

function TNTargetF7(V TNvector) Real; 

function TNTargetF8(V TNvector) Real; 

function TNTargetF9(V TNvector) Real; 

function TNTargetF10(V : TNvector) : Real; 

These are the differential equations: 

dx/dt = TNTargetFj(t, Xl' X2' ... , xIO) 

where j ranges from 1 to 10. 
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The elements of the vector V are defined as follows: 

V[O] = t 
V[l] = Xl 

V[2] = X
2 

V[10] = XlO 

The procedure defined in RUNGE_Sl.INC solves this system of coupled differ­
ential equations (a maximum of ten equations). All ten functions must be defined, 
even if your system contains less than ten equations. 

Input Parameters 

NumEquations : Integer; Number of first-order differential equations 

LowerL imi t : Real; Lower limit of interval 

UpperLimit : Real; Upper limit of interval 

InitialValues: TNvector; Values of Xl' X
2

' ... , Xm at LowerLimit 

NumReturn : Integer; Number of (t, Xl' X
2

' ... , xJ values returned from the 
procedure 

NumInterval s : Integer; Number of subintervals used in the calculations 

The preceding parameters must satisfy the following conditions: 

l. NumReturn > 0 

2. Numlntervals ~ NumReturn 

3. NumEquations > 0 

4. LowerLimit ~ UpperLimit 

Output Parameters 

SolutionValues : TNmatrix; Values oft, Xl' X
2

' ... xm between the limits 

Error: Byte; 0: No errors 
1: NumReturn < 1 
2: Numlnteroals < NumReturn 
3: NumEquations < 1 
4: LowerLimit = UpperLimit 
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Syntax of the Procedure Call 

InitialConditionSystem(NumEquations, LowerLimit, UpperLimit, 
InitialValues, NumReturn, Numlntervals, 
SolutionValues, Error): 

Comments 

The first row of SolutionValues will be the values of t between the limits, the 
second row of SolutionValues will be the values of Xl between the limits, the third 
row of Solution Values will be the values of x

2 
between the limits, and so on. 

All ten user-defined functions are called from the procedure. If your system has 
less than ten equations, you must still define all ten functions or the program will 
not compile. The superfluous functions should be defined as follows (TNTargetFIO 
is used as an example): 

funct;on TNTargetF10(V : TNvector} : Real; 

beg;n 
end: { function TNTargetF10 } 

If you need to solve a system with more than ten equations, then edit the include 
file RUNGE_Sl.lNC. The following line should be added to the end of procedure 
Step: 

F[ll] := Spacing * TNTargetFll(CurrentValues}; 

More statements (for F[12], and so on) may be added as necessary. All new 
functions (for example, TNTargetFll) must be defined in your top-level program. 
Note: Before making any changes to the include file, make sure you have a backup 
copy. 

This procedure will compute Numlntervals values in its calculations; however, 
you will rarely need to use these values. The rows of SolutionValues will contain 
only NumReturn values at roughly equally spaced t-values between the lower and 
upper limits. (They will be equally spaced only when Numlntervals is a multiple of 
NumReturn.) Thus, you can ensure a highly accurate solution (by making Numln­
tervals large) without generating an excessive amount of output (by making Num­
Return small). 

This routine stores much information on the heap. If you try to accurately solve a 
large system (that is, if both NumEquations and Numlntervals are large), you may 
get run-time error $FF, Heap/Stack collision. If this happens, the dimension of 
TNvector and TNmatrix should be reduced as much as possible. If this is not possi­
ble, then remove any RAM-resident software (for example, SideKick, SuperKey, or 
a print buffer). 
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The Runge-Kutta method uses the New/Dispose procedures to manipulate the 
heap and should not be used in any program that uses Mark/Release to manipulate 
the heap. 

·Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e- 1OOx

• The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals). 

Sample Program 

The sample program RUNGE_S1.PAS provides I/O functions that demonstrate the 
Runge-Kutta method of solving initial value problems for systems of first-order 
ordinary differential equations. Note that the file RUNGE_S1.INC is included 
after the TNTargetF functions are defined. 

Example 

Problem. A weight with mass m lays on a frictionless table and is connected to a 
spring with spring constant k: 

~Wall 

F( w) 
k 

m 

Frictionlts surface 

Initial Value and Boundary Value Methods 191 



If the mass is subject to a driving force F sin(w t) (w represents the frequency of 
the driving force and t is time), the equation of motion of the mass is as follows: 

m d2xldt2 + k x = F sin(w t) 

Given 

m = 2kg 
F=9N 
k = 32 N/m 
w = 5 cycles/sec 
x(O) = 0 m 
dx(O)/dt = - 2.5 m/sec 

find the position and velocity of the block from t = 0 second to t = 2 seconds. 

1. Write the second-order ordinary differential equations as a system of two cou­
pled first-order ordinary differential equations: 

dx/dt = x2 

dx/dt = (F/m) sin(w t) - (kim) Xl 

2. Code these equations into the program RUNGE_Sl.PAS: 

funct;on TNTargetF1(V : TNvector) : Real; 

(**************************************************) 
(* THIS IS THE FIRST DIFFERENTIAL EQUATION *) 
(**************************************************) 
(* *) 
(* dx [1] *) 
(* ----- = TNTargetF1(t, x[1], x[2], ..• x[m]) *) 
(* dt *) 
(* *) 
(* The vector V is defined: *) 
(* V[O] = t *) 
(* V[1] = X[1] *) 
(* V[2] = X[2] *) 
(* *) 
(* *) 
(* *) 
(* V[m] = X[m] *) 
(* *) 
(* where m is the number of coupled equations. *) 
(**************************************************) 

beg;n 
TNTargetFl := V[2]; 

end; { function TNTargetF1 } 

funct;on TNTargetF2{V TNvector): Real; 
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(**************************************************) 
(* THIS IS THE SECOND DIFFERENTIAL EQUATION *) 
(**************************************************) 
(* *) 
(* dx[2] *) 
(* TNTargetF2(t, x[l], x[2], ... x[m]) *) 
(* dt *) 
(* *) 
(* The vector V is defined: *) 
(* V[O] t *) 
(* V[l] X[l] *) 
(* V [2] X [2] *) 
(* *) 
(* *) 
(* *) 
(* V[m] X[m] *) 
(* *) 
(* where m is the number of coupled equations. *) 
(**************************************************) 

begin 
TNTargetF2 := 

end; 
9/2 * Sin(5 * V[O]) - 32/2 * V[l]; 

{ function TNTargetF2 } 

function TNTargetF3(V : TNvector) : Real; 

(**************************************************) 
(* THIS IS THE THIRD DIFFERENTIAL EQUATION *) 
(**************************************************) 
(* *) 
(* dx[3] *) 
(* TNTargetF3(t, x[l], x[2], ..• x[m]) *) 
(* dt *) 
(* *) 
(* The vector V is defined: *) 
(* V [0] t *) 
(* V[l] X[l] *) 
(* V[2] X[2] *) 
(* *) 
(* *) 
(* *) 
(* V [m] X [m] * ) 
(* *) 
(* where m is the number of coupled equations. *) 
(**************************************************) 

begin 
end; { function TNTargetF3 } 

Functions TNTarget4 to TNTargetlO should be defined like the function 
TNTargetF3. 
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3. Run RUNGE_S1.PAS: 

Number of first order equations: (1-10)? 2 

Lower limit of interval? 0 

Upper limit of interval? 2 

Enter X[l] value at t = O.OOOOOOOOE+OO: 0 
Enter X[2] value at t = O.OOOOOOOOE+OO: -2.5 

Number of values to return (1-100)? 10 

Number of intervals (> = 10, default=10)? 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower limit: O.OOOOOOOOOOOOOOE+OOO 
Upper limit: 2.00000000000000E+000 

Number of intervals: 100 
Initial conditions at lower limit: 

t 
0.00000000 
0.20000000 
0.40000000 
0.60000000 
0.80000000 
1.00000000 
1.20000000 
1.40000000 
1.60000000 
1.80000000 
2.00000000 

t 
0.00000000 
0.20000000 
0.40000000 
0.60000000 
0.80000000 
1.00000000 
1.20000000 
1.40000000 
1.60000000 
1.80000000 
2.00000000 

X[l]= O.OOOOOOOOOOOOOOE+OOO 
X[2]= -2.50000000000000E+000 

Value X[l] 
O.OOOOOOOOOOOOOOE+OOO 

-4.20735284275848E-001 
-4.54648724216734E-001 
-7.05605786993375E-002 
3.78400378699554E-001 
4.79461767300631E-001 
1.39708469016311E-001 

-3.28491796183335E-001 
-4.94677974769030E-001 
-2.06059519715175E-001 
2.72008842396951E-001 

Value X[2] 
-2.50000000000000E+000 
-1.35075642830665E+000 
1.04036531118478E+000 
2.47497991717220E+000 
1.63411037473655E+000 

-7.09151289407567E-001 
-2.40042152228323E+000 
-1.88475529635974E+000 
3.63745224811839E-001 
2.27781864414105E+000 
2.09767516082021E+000 

X[l] are the values of x(t), the position. X[2] are the values of dx(t)/dt, the veloc­
ity. 
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The exact solution is 

F sin{w t) 
x=-------

F", cos{w t) 
dxldt = -------

m (w
o

2 
- (

2
) 

where Ul
o 

is the natural frequency of the system: 

wo

2 = kim 

The period of oscillation is given by 

T = 2 -rrlw = 1.257 sec 

The data is taken from a function of which the derivative could be computed 
exactly. The actual values are as follows: 

t Values of X 
0.0 O.OOOOOOOOOOOOE + 000 
0.2 - 4.207354924039E - 001 
0.4 - 4.546487134128E - 001 
0.6 - 7.056000402993E - 002 
0.8 3.784012476539E -001 
1.0 4.794621373315E -001 
1.2 1.397077490994E - 001 
1.4 - 3.284932993593E - 001 
1.6 - 4.946791233116E - 001 
1.8 - 2.060592426208E - 001 
2.0 2.720105554446E - 001 

Initial Value and Boundary Value Methods 

Derivative of X 
- 2.500000000000E + 000 
- 1.350755764670E + 000 

1.040367091367E + 000 
2.474981241501E + 000 
1.634109052159E + 000 

-7.091554636580E - 001 
- 2.400425716625E + 000 
- 1.884755635858E + 000 

3.6375008452l5E - 001 
2.277825654711E + 000 
2.097678822691E + 000 
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Solution to an Initial Value Problemfor a System of 
Coupled Second-Order Ordinary Differential Equations 
Using the Runge-Kutta Metlwd (RUNGE-S2.INC) 

Description 

This example integrates a system of coupled second-order ordinary differential 
equations with specified initial conditions using the generalized Runge-Kutta for­
mulas (Burden and Faires 1985,261-269), 

Given m coupled second-order ordinary differential equations of the form 

d
2
x/dt

2 
= TNTargetF1(t, Xl' X'I' X2' X' 2' .. ,' Xm ' X' J 

d
2
x/dt

2 
= TNTargetF2(t, Xl' X'I' X2' X' 2' .. " Xrn ' X' J 

d
2
x",Idt

2 
= TNTargetFm(t, Xl' X'I' X2' X' 2' .. ,' Xrn ' X' J 

where x') indicates dx/dt, which satisfies the Lipshitz condition (the Lipshitz con­
dition for first-order and second-order ordinary differential equations is given at 
the beginning of this chapter; consult the previous book reference for details of the 
Lipshitz condition for systems), and initial condition 

xJLowerLimit] = a
l 

x' JLowerLimit] = hI 

X' 2[LowerLimit] = h2 . 

xJLowerLimit] = am x'JLowerLimit] = hm 
and spacing 

h = (UpperLimit - LowerLimit)/Numlntervals 
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rewrite each of the second-order differential equations as two, first-order differen­
tial equations: 

dx/dt = YI 

dy/dt = TNTargetFI(t, Xl' YI' X2' Y2, "', Xm' yJ 
dx/dt = Y2 
dx/dt = TNTargetF2(t, Xl' YI, X2' Y2, .. ,' Xm' yJ 

dx)dt = Ym 
dx)dt = TNTargetFm(t, Xl' YI, X2' Y2' "', Xm' yJ 
Then the fourth-order general Runge-Kutta method can be used to approximate 

the xj's and the yj's simultaneously, 

The general Runge-Kutta formulas for these equations are as follows: 

Flxl = h * Yl 
FIY I = h * TNTargetFI(t, xl[t], yJt], x2[t], y2[t], "', xJt], yJt]) 

Flx2 = h * Y2 
FIY2 = h * TNTargetF2(t, xJt], yJt], x2[t], y2[t], "', xJt], yJt]) 

Flxm = h * Ym 
FIYm = h * TNTargetFm(t, xJt], yJt], x2[t], y2[t], .. ,' xJt], yJt]) 

F2x1 = h * (YI + Fly/2) 

F2YI = h * NTargetFI(t + h/2, xJt] + Flx/2, yl[t] + Fly/2, x2[t] 

+ Flx/2, Y2[t] + Fly/2, "', xJt] + Flx)2, yJt] + Fly)2) 

F2x2 = h * (Y2 + Fly/2) 

F2Y2 = h * NTargetF2(t + h/2, xJt] + Flx/2, yJt] + Fly/2, x2[t] 

+ Flx/2, Y2[t] + Fly/2, .. ,' xJt] + Flx)2, yJt] + Fly)2) 

F2xm = h * (Yrn + Fly)2) 

F2Yrn = h * TNTargetFm(t + h/2, xl[t] + Flx/2, yl[t] + Fly/2, x2[t] 

+ Flx/2, Y2[t] + Fly/2, "', x.Jt] + Flx,/2, y.Jt] + Fly,/2) 
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F3xl ::::: h * (Yl + F2y/2) 

F3Yl ::::: h * TNTargetFI(t + h/2, xl[t] + F2x/2, Yl[t] + F2y/2, X2[t] 

+ F2x/2, Y2[t] + F2y/2, ... , xJt] + F2x)2, yJt] + F2y)2) 

F3x2 ::::: h * (Y2 + F2y/2) 

F3Y2 ::::: h * NTargetF2(t + h/2, xJt] + F2x/2, Yl[t] + F2y/2, X2[t] 

+ F2x/2, Y2[t] + F2y/2, ... , x)t] + F2x)2, yJt] + F2y)2) 

F3xm ::::: h * (Ym + F2y)2) 

F3y", ::::: h * TNTargetFm(t + h/2, xl[t] + F2x/2, Yl[t] + F2y/2, X2[t] 

+ F2x/2, Y2[t] + F2y/2, ... , x)t] + F2x)2, y)t] + F2y)2) 

F4xl ::::: h * (Yl + F3Yl) 

F4Yl ::::: h * TNTargetFI(t + h, xl[t] + F3xl, yJt] + F3Yl' X2[t] + F3x2, Y2[t] 

+ F3Y2' ... , X,Jt] + F3x"" yJt] + F3y,J 

F4x2 ::::: h * (Y2 + F3Y2) 

F4Y2 ::::: h * TNTargetF2(t + h, xl[t] + F3xl, yJt] + F3Yl' X2[t] + F3x2, Y2[t] 

+ F3Y2' ... , X.Jt] + F3x"" y"Jt] + F3y,J 

F4x", ::::: h * (y", + F3y) 

F4y", ::::: h * TNTargetFm(t + h, xJt] + F3xl, yJt] + F3Yl' X2[t] + F3x2, Y2[t] 

+ F3Y2' ... , X)t] + F3x"" y,Jt] + F3y) 

xJt + 1] ::::: xJt] + (Flx l + 2 * F2xl + 2 * F3xl + F4xl)/6 

yJt+ 1] ::::: yJt] + (FlYl + 2 * F2Yl + 2 * F3Yl + F4y)/6 

x2[t + 1] ::::: x2[t] + (Flx2 + 2 * F2x2 + 2 * F3x2 + F4x2)/6 

Y2[t + 1] ::::: Y2[t] + (FlY2 + 2 * F2Y2 + 2 * F3Y2 + F4Y2)/6 

x [t + 1] ::::: x [t] + (FIx + 2 * F2x + 2 * F3x + F4x )/6 
til m m III til m 

yJt + 1] ::::: yJt] + (Fly", + 2 * F2y", + 2 * F3y", + F4y,)/6 

where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a 
truncation error of order h 4. 
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You must supply the number of equations, limits, initial values, and TNTargetF's. 

This procedure can solve a system of up to ten, second-order ordinary differen­
tial equations (see "Comments" for information about how to increase this limit). 

User-Defined Types 

TNData = record 
x : Real; 
xDeriv : Real; 

end; { TNData record} 
TNvector = array[O •• TNRowSize] of TNData; 
TNmatrix = array[O •• TNColumnSize] of TNvector; 

TNRowSize is an upper bound for the number of values returned for a particular 
variable (NumReturn). TNColumnSize is an upper bound for the number of second­
order differential equations (NumEquations). 

User-Defined Functions 

function TNTargetFl(V TNvector) Real; 

function TNTargetF2(V TNvector) Real; 

function TNTargetF3(V TNvector) Real; 

function TNTargetF4(V TNvector) Real; 

function TNTargetF5(V TNvector) Real; 

function TNTargetF6(V TNvector) Real; 

function TNTargetF7(V TNvector) Real; 

function TNTargetF8(V TNvector) Real; 

function TNTargetF9(V TNvector) Real; 

function TNTargetFIO(V : TNvector) : Real; 
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Here are the differential equations: 

d2x/dl = TNTargetFj(t, Xl' X'I' X2' X' 2' ... , X IO' X'1O) 

where j ranges from 1 to 10. 

The elements of the vector V are defined as follows: 

V[O].X = t 
V[l].x = x[l] 

V[l].xDeriv = x'[l] 
V[2].x = x[2] 

V[2].xDeriv = x' [2] 

V[10].x = x[10] 
V[10].xDeriv = x'[10] 

The procedure defined in RUNGE_S2.INC solves this system of coupled differ­
ential equations (a maximum of ten equations). All ten functions must be defined, 
even if your system contains less than ten equations. 

Input Parameters 

NumEquations : Integer; Number of second-order differential equations 

LowerLimit : Real; Lower limit of interval 

UpperLimit : Real; Upper limit of interval 

InitialValues : TNvector; Values of Xj'S and X'j'S at LowerLimit 

NumReturn : Integer; Number of (t, Xl' X'I' X2' X' 2' "', Xm ' X' J values returned 
from the procedure 

NumInterval s : Integer; Number of subintervals used in the calculations 
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The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlntervals;::: NumReturn 

3. NumEquations > 0 

4. LowerLimit ~ UpperLimit 

Output Parameters 

SolutionValues : TNmatrix; Values oft, Xi' and x'} between the limits 

Error: Byte; 0: No errors 
1: NumReturn < 1 
2: Numlntervals < NumReturn 
3: NumEquations < 1 
4: LowerLimit = UpperLimit 

Syntax of the Procedure Call 

InitialConditionSystem2(NumEquations, LowerLimit, UpperLimit, 
InitialValues, NumReturn, Numlntervals, 
SolutionValues, Error); 

Comments 

) 

The first row of Solution Values will be the values of t between the . limits, the 
second row of Solution Values will be the values of Xl and XiI between the limits, the 
third row of Solution Values will be the values of x

2 
and x' 2 between the limits, and 

so on. 

All ten user-defined functions are called from the procedure. If your system has 
less than ten equations, you must still define all ten functions or the program will 
not compile. The superfluous functions should be defined as follows (TNTargetF10 
is used as an example): 

function TNTargetFIO(V : TNvector) : Real; 

begin 
end; { function TNTargetFIO } 
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If you need to solve a system with more than ten equations, then edit the include 
file RUNGE-S2.1NC. The following lines should be added to the end of procedure 
Step: 

F[ll].xDeriv := Spacing * CurrentValues[ll].xDeriv; 
F[ll].x := Spacing * TNTargetFll(CurrentValues); 

More statements (for F[12], and so on) may be added as necessary. All new 
functions (for example, TNTargetFll) must be defined in your top-level program. 
Note: Before making any changes to the include file, make sure you have a backup 
copy. 

The procedure will compute Numlntervals values in its calculations; however, 
you will rarely need to use these values. The rows of SolutionValues will contain 
only NumReturn values at roughly equally spaced t-values between the lower and 
upper limits. (They will be equally spaced only when Numlntervals is a multiple of 
NumReturn.) Thus, you can ensure a highly accurate solution (by making Numln­
tervals large) without generating an excessive amount of output (by making Num­
Return small). 

This routine stores much information on the heap. If you try to accurately solve a 
large system (that is, both NumEquations and Numlntervals are large), you may get 
run-time error $FF, Heap/Stack collision. If this happens, the dimension of TNvec­
tor and TNmatrix should be reduced as much as possible. If this is not possible, 
then remove any RAM-resident software (for example, SideKick, SuperKey, or'a 
print buffer). 

The Runge-Kutta method uses the New/Dispose procedures to manipulate the 
heap and should not be used in any program that uses Mark/Release to manipulate 
the heap. 

Warning: A' stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e- 1oo

%. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals). 
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Sample Program 

The sample program RUNGE_S2.PAS provides I/O functions that demonstrate 
the Runge-Kutta method of solving initial value problems for systems of first-order 
ordinary differential equations. Note that the file RUNGE_S2.INC is included 
after the TNTargetF functions are defined. 

Example 

Problem.Two weights of mass m each hang from a pendulum of length l and are 
connected by a spring with spring constant k: 

Ceiling 

k 

®-~ 
y UUUUUUUUUUUU X 

The equations of motion of these two masses are as follows: 

m d2x/dt2 
= -m g x/I - k(x - y) 

m d2y/de = -m g y/l + k(x - y) 

where g is the acceleration due to gravity, t is time, and x and yare the displace­
ments of the two weights from their rest positions. Given 

m = 2kg 
k = 32 N/m 
g = 9.8 m/sec2 

l = 0.6l25 m 

x(O) = 1 m 
y(O) = -1 m 

dx(O)/dt = 0 m/sec 
dy(O)/dt = 0 m/sec 
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find the positions and velocities of the two weights from t 
seconds. 

1. Rewrite the equations of motion as shown here: 

d2xldt2 = - g xll - klm(x - y) 
d2Yldt2 

= - g yll + klm(x - y) 

2. Code these equations into the program RUNGE_S2.PAS: 

function TNTargetFl(V : TNvector) : Real; 
(*******************************************************) 
(* THIS IS THE FIRST DIFFERENTIAL EQUATION *) 
(*******************************************************) 
(* *) 
(* *) 
(* d2 x[l] *) 
(* TNTargetFl(t, x[l], x'[l], x[2], x'[2], *) 
(* .•• , x [m], x' [m] *) 
(* *) 
(* dt2 

*) 
(* *) 
(* The elements of the vector V are defined: *) 
(* V[O].x = t *) 
(* V[l].x = X[l] *) 
(* V[l].xDeriv X'[l] *) 
(* V[2].x X[2] *) 
(* V[2] .xDeriv = X' [2] *) 
(* *) 
(* *) 
(* *) 
(* V[m].x X[m] *) 
(* V[m].xDeriv X'[m] *) 
(* *) 
(* where m is the number of coupled equations. *) 
(*******************************************************) 

var 
t Real; 

begin 
t := v[O] .x; 
TNTargetFl .­

end; 
-9.8 * V[1].x/O.6125 - 32/2 * (V[l].x - V[2].x); 

{ function TNTargetFl } 

o second to t 2 
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function TNTargetF2(V : TNvector) : Real; 

(*******************************************************) 
(* THIS IS THE SECOND DIFFERENTIAL EQUATION *) 
(*******************************************************) 
(* *) 
(* *) 
(* d2x[2] *) 
(* TNTargetF2(t, x[l], Xl [1], x[2], Xl [2], *) 
(* ... , x [m], x I [m] *) 
(* dt2 

*) 
(* *) 
(* *) 
(* The elements of the vector V are defined: *) 
(* V[O].x t *) 
(* V[l].x X[l] *) 
(* V[l].xDeriv X' [l] *) 
(* V[2].x X[2] *) 
(* V[2].xDeriv X' [2] *) 
(* *) 
(* *) 
(* *) 
(* V[m] .x X[m] *) 
(* V[m].xDeriv XI[m] *) 
(* *) 
(* where m is the number of coupled equations. *) 
(*******************************************************) 

var 
t Real; 

begin 
t := v[O] .x; 
TNTargetF2 := 

end; 
-9.8 * V[2].x/O.6125 + 32/2 * (V[l].x - V[2].x); 

{ function TNTargetF2 } 
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function TNTargetF3(V : TNvector) : Real; 

(*******************************************************) 
(* THIS IS THE THIRD DIFFERENTIAL EQUATION *) 
(*******************************************************) 
(* *) 
(* *) 
(* d2 x[3] *) 
(* TNTargetF3(t, x[l], x'[l], x[2], x'[2], *) 
(* ••• , x [m], x' [m] *) 
(* dt2 

*) 
(* *) 
(* *) 
(* The elements of the vector V are defined: *) 
(* V[O].x t *) 
(* V[l].x X[l] *) 
(* V[l].xDeriv X'[l] *) 
(* V[2].x X[2] *) 
(* V[2].xDeriv X'[2] *) 
(* *) 
(* *) 
(* *) 
(* V[m].x X[m] *) 
(* V[m].xDeriv X'[m] *) 
(* *) 
(* where m is the number of coupled equations. ~) 
(*******************************************************) 

var 
t Real; 

begin 
end; { function TNTargetF3 } 

Functions TNTargetF 4 to TNTargetF 10 should be defined like function TNTargetF3. 

3. Run RUNGE_S2.PAS: 

Number of second order equations: (1-20)? 2 

Lower limit of interval? 0 

Upper limit of interval? 

Enter X[l] value at t O.OOOOOOOOE+OO: 0.01 
Enter X'[l] value at t O.OOOOOOOOE+OO: 0.00 
Enter X[2] value at t = O.OOOOOOOOE+OO: -0.01 
Enter X'[2] value at t = O.OOOOOOOOE+OO: 0.00 

Number of values to return (1-100)? 10 

Number of intervals (>= 10, default=10)? 100 
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Direct output to one of the following: 
(S)creen 
(P)rinter 
(F)ile 

Lower limit: O.OOOOOOOOOOOOOOE+OOO 
Upper limit: 1.00000000000000E+000 

Number of intervals: 100 
Initial conditions at lower limit: 

t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

X[l]= 1.00000000000000E-002 
X' [l]= O.OOOOOOOOOOOOOOE+OOO 
X[2]= -1.00000000000000E-002 

X' [2]= O.OOOOOOOOOOOOOOE+OOO 

Value X[l] 
1.00000000000000E-002 
7.69447788485895E-003 
1.84099813762452E-003 

-4.86137387553900E-003 
-9.32214486443693E-003 
-9.48443369885917E-003 
-5.27340834792187E-003 
1.36920877108260E-003 
7.38047758874091E-003 
9.98857556718864E-003 
7.99089728515028E-003 

Value X[2] 
-1.00000000000000E-002 
-7.69447788485895E-003 
-1.84099813762452E-003 
4.86137387553900E-003 
9.32214486443693E-003 
9.48443369885917E-003 
5.27340834792187E-003 

-1.36920877108260E-003 
-7.38047758874091E-003 
-9.98857556718864E-003 
-7.99089728515028E-003 

Deriv X[I] 
O.OOOOOOOOOOOOOOE+OOO 

-4.42511063153028E-002 
-6.80978317847279E-002 
-6.05443464988731E-002 
-2.50735962983904E-002 
2.19586991271007E-002 
5.88657408762406E-002 
6.86295294795966E-002 
4.67479393932010E-002 
3.31066873866277E-003 

-4.16531651968366E-002 

Deri v X[2] 
O.OOOOOOOOOOOOOOE+OOO 
4.42511063153028E-002 
6.80978317847279E-002 
6.05443464988731E-002 
2.50735962983904E-002 

-2.19586991271007E-002 
-5.88657408762406E-002 
-6.86295294795966E-002 
-4.67479393932010E-002 
-3.31066873866277E-003 
4.16531651968366E-002 

The weights move in opposite directions; the system is in one of its normal 
modes. The natural frequency 00

0 
is given by the following: 

00,,2 = gil + 2k/m 
00" = 6.928 cycles/sec 

Thus the period of oscillation, t, is 

t = 27r/ooo 
t = 0.9069 sec 
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Solution to Boundary Value Problemfor a Second-Order 
Ordinary Differential Equation Using the Slwoting and 
Runge-Kutta Metlwds (SHOOT2.INC) 

Description 

This example uses the shooting method to approximate the solution to a second­
order ordinary differential equation with specified boundary conditions (Burden 
and Faires 1985,526-531). 

Given a second-order differential equation (Burden and Faires 1985, 261-269) of 
the form 

d2y/dx2 
= TNTargetF(x, y, y') 

where y' represents dy/dx, which satisfies the conditions given at the beginning of 
this chapter, boundary conditions 

y[LowerLimit] = Lowerlnitial 
y[UpperLimit] = Upperlnitial 

and spacing 

h = (UpperLimit - LowerLimit)/Numlntervals 

and an initial approximation (guess) to the slope at LowerLimit 

y'[LowerLimit] = InitialSlope 

the shooting method first solves the second-order initial value problem (using the 
method described in RUNGE-2.1NC). Based on a comparison of the solution at 
UpperLimit with the boundary condition Upperlnitial, a new approximation to the 
slope at LowerLimit is made. In this way, a new "shot" at the solution is made by 
observing the result of the previous "shot." Subsequent iterations use information 
from two previous shots and the secant method (see Chapter 2, "Roots of a Func­
tion Using the Secant Method") to approximate the slope at LowerLimit. This pro­
cess is repeated until the fractional difference between successive approximations 
to the boundary condition at UpperLimit is less than a specified tolerance. 

You must supply the LowerLimit, UpperLimit, LowerInitial, Upperlnitial, 
InitialSlope, Numlntervals, Tolerance, and TNTargetF. 
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User-Defined Types 

TNvector = array[l •• TNArraySize] of Real; 

User-Defined Function 

TNTargetF(x, y, yPrime : Real) : Real; 

cfy/dx2 = TNTargetF(x, y, dy/dx) 

The procedure S/woting integrates this second-order differential equation. 

Input Parameters 

LowerLimit : Real; 

UpperLimit : Real; 

LowerInitial : Real; 

UpperInitial : Real; 

InitialSlope: Real; 

NumReturn : Integer; 

Tolerance: Real; 

Lower limit of interval 

Upper limit of interval 

Value of y at LowerLimit 

Value of y at UpperLimit 

Approximation to the slope at LowerLimit 

Number of (x, y, y') values returned from the procedure 

Indicates accuracy in solution 

Max Iter : Integer; Maximum number of ilerations 

NumInterval s : Integer; Number of subintervals used in calculations 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlntervals ~ NumReturn 

3. LowerLimit;c UpperLimit 

4. Tolerance > 0 

5. Maxlter > 0 
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Output Parameters 

Iter: Integer: 

XVal ues : TNvector: 

YValues : TNvector: 

Number of iterations required to reach a solution 

Values of x between the limits 

Values of y determined at values in XValues 

YDerivValues : TNvector: Values of the first derivative of y determined at values in 
XValues 

Error: Byte: 0: No errors 
1: NumReturn < 1 
2: Numlntervals < NumReturn 
3: LowerLimit = UpperLimit 
4: Tolerance S 0 
5: MaxIter S 0 
6: Iter> MaxIter 
7: Convergence not possible 

Syntax of the Procedure Call 

Shooting(LowerLimit, UpperLimit, LowerInitial, UpperInitial, InitialSlope, 
NumReturn, Tolerance, MaxIter, NumIntervals, Iter, XValues, 
YValues, YDerivValues, Error): 

Comments 

The parameter Tolerance can be misleading. The shooting method converges to the 
initial slope, which satisfies the upper boundary condition. Convergence is 
achieved when the fractional difference between Upperlnitial and the upper 
boundary approximation is less than Tolerance. This does not mean that every 
value between the boundaries has been approximated with the same degree of 
accuracy. To improve the accuracy of the entire approximation, increase the num­
ber of intervals. The example demonstrates the different effects of Tolerance and 
Numlntervals. 

The shooting algorithm will compute Numlntervals values in its calculations. 
However, you will rarely need to use all those values. The vectors XValues, 
YValues, and YDerivValues will contain only NumReturn values at roughly equally 
spaced t-values between the lower and upper limits. (They will be equally spaced 
only when Numlntervals is a multiple of NumReturn.) Thus, you can ensure a 
highly accurate solution (by making Numlntervals large) without generating an 
excessive amount of output (by making NumReturn small). 
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Boundary value problems are notoriously difficult to solve. The shooting method 
is extremely sensitive to the approximation of the initial slope. If the shooting 
method does not converge onto a solution (Error 7), run the program with a differ­
ent value of the initial slope InitialSlope. You may also alleviate some stability 
problems by solving the equation backwards (from UpperLimit to LowerLimit). 
Considerable trial and error may be involved before a solution is found. 

The Runge-Kutta method uses the New/Dispose procedures to m~nipulate the 
heap and should not be used in any program that uses Mark/Release for heap 
management. 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e1OOx

• The shooting method may generate a numeri­
cal solution that bears no resemblance to the exact solution of the differential equa­
tion. This unstable numerical solution usually grows exponentially and may be 
oscillatory. However, if the exact solution of the differential equation grows as the 
independent variable increases, the instability may be difficult to detect. If a sus­
pected instability has been encountered, reduce the interval size (Numlntervals). 

Sample Program 

The sample program SHOOT2.PAS provides I/O functions that demonstrate the 
shooting method of solving boundary value problems. Note that the file SHOOT 
2.1NC is included after the function TNTargetF is defined. 

Example 

Problem. Use the nonlinear shooting method to solve the following boundary value 
problem: 

Y 1/ = 192 sqr(y/y') 

y(l) = 1 
y(2) = 16 

0:5x:51 
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1. Code the differential equation into the program: 

function TNTargetF(x : Real; 
y : Real; 
yPrime : Real) : Real; 

(*******************************************************************) 
(* THIS IS THE SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATION *) 
(*******************************************************************) 

begin 
TNTargetF := 192 * Sqr(y/yPrime); 

end; {function TNTargetF} 

2. Run SHOOT2.PAS: 

Lower limit of interval? 0 

Upper limit of interval? 1 

Enter Y value at X = O.OOOOOOOOE+OO: 1 
Enter Y value at X = 1.00000000E+00: 16 

Enter a guess for the slope at X = O.OOOOOOOOE+OO (default=1.50E+01): 15 

Number of points returned (1-500)? 10 

Number of intervals (>= 10, default=10)? 10 

Tolerance (> 0, default = 1.000E-06)? 1E-12 

Maximum number of iterations (> 0, default 100)? 100 

Direct output to one of the following: 
(S)creen 
(P) ri nter 
(F) il e 

Lower limit: 
Upper limit: 

Value of Y at 0.0000: 
Value of Y at 1.0000: 

Initial slope at 0.0000: 
NumIntervals: 

Tolerance: 
Maximum number of iterations: 

212 

O.OOOOOOOOOOOOOOE+OOO 
1.00000000000000E+000 
1.00000000000000E+000 
1.60000000000000E+001 
1.50000000000000E+001 

10 
1.000E-012 

100 
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Number of iterations: 6 

X 
O.OOOOOOOOOOOOOOE+OOO 
1.00000000000000E-001 
2.00000000000000E-001 
3.00000000000000E-001 
4.00000000000000E-001 
5.00000000000000E-001 
6.00000000000000E-001 
7.00000000000000E-001 
8.00000000000000E-001 
9.00000000000000E-001 
1.00000000000000E+000 

Y Value 
1.00000000000000E+000 
1.46417721408153E+000 
2.07370562259973E+000 
2.85621262766442E+000 
3.84170902091389E+000 
5.06259931530967E+000 
6.55368547624580E+000 
8.35216836918581E+000 
1.04976483580762E+001 
1.30321255669365E+001 
1.60000000000094E+001 

Derivative of Y 
4.00053795390884E+000 
5.32386904044879E+000 
6.91162114244397E+000 
8.78752756627335E+000 
1.09754927855527E+001 
1.34994802016423E+001 
1.63834750611955E+001 
1.96514712240017E+001 
2.33274661179548E+001 
2.74354587043771E+001 
3. 19994486182108E+001 

Now solve the same problem using a smaller spacing, but with a greater tolerance: 

Lower limit of interval? 0 

Upper limit of interval? 1 

Enter Y value at X = O.OOOOOOOOE+OO: 1 
Enter Y value at X = 1.00000000E+00: 16 

Enter a guess for the slope at X = O.OOOOOOOOE+OO (default = 1.50E+01): 15 

Number of points returned (1-500)? 10 

Number of intervals (>= 10, default = 10)? 100 

Tolerance (> 0, default = 1.000E-06)? 1E-6 

Maximum number of iterations (> 0, default = 100)? 100 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Lower 1 i mit: 
Upper 1 i mit: 

Value of Y at 0.0000: 
Value of Y at 1.0000: 

Initial slope at 0.0000: 
NumIntervals: 

Tolerance: 
Maximum number of iterations: 

O.OOOOOOOOOOOOOOE+OOO 
1.00000000000000E+000 
1.00000000000000E+000 
1.60000000000000E+001 
1.50000000000000E+001 

100 
1.000E-006 

100 
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Number of iterations: 5 

X 
O.OOOOOOOOOOOOOOE+OOO 
1.OOOOOOOOOOOOOOE-OOl 
2.00000000000000E-OOI 
3.00000000000000E-OOI 
4.00000000000000E-OOI 
5.00000000000000E-OOI 
6.00000000000000E-OOI 
7.00000000000000E-OOI 
8.00000000000000E-OOI 
9.00000000000001E-OOI 
1.OOOOOOOOOOOOOOE+OOO 

The exact solution is 

y = (x + It 
X Y Value 

Y Value 
1.OOOOOOOOOOOOOOE+OOO 
1.46410005120828E+OOO 
2.07360008576235E+OOO 
2.85610011557157E+OOO 
3.84160014547825E+OOO 
5.06250017769403E+OOO 
6.55360021337284E+OOO 
8.35210025321451E+OOO 
1.04976002977125E+OOl 
1.30321003472617E+OOl 
1.60000004022081E+OOl 

Derivative of Y 
4.00000062625638E+OOO 
5.32400035609946E+OOO 
6.91200027103432E+OOO 
8.78800025750412E+OOO 
1.09760002747783E+OOl 
1.35000003070170E+OOl 
1. 63840003476283E+OOI 
1.96520003937080E+OOl 
2.33280004439140E+OOI 
2.74360004976014E+OOI 
3.20000005544507E+OOI 

Derivative ofY 
0.0 1.0000000000 4.000000000 
0.1 1.4641000000 5.324000000 
0.2 2.0736000000 6.912000000 
0.3 2.8561000000 8.788000000 
0.4 3.8416000000 1.097600000 
0.5 5.0625000000 1.350000000 
0.6 6.5536000000 1.638400000 
0.7 8.3521000000 1.965200000 
0.8 1.0497600000 2.332800000 
0.9 1.3032100000 2.743600000 
1.0 1.6000000000 3.200000000 

Although the tolerance is smaller (that is, more exacting) in the first case, the 
accuracy of the approximation is greater in the second case. The spacing in the first 
case is too large to permit a more accurate approximation. 
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Solution to a Boundary Value Problem/or a Second-Order 
Ordinary Linear Differential Equation Using the Linear 
Shooting and Runge-Kutta Methods (LINSHOT2.INC) 

Description 

This example uses the linear shooting method to approximate the solution to a 
second-order linear ordinary differential equation with specified boundary condi­
tions (Burden and Faires 1985, 519-524). 

Given a second-order differential equation (Burden and Faires 1985, 261-264) of 
the form 

d2y/dx2 = TNTargetF(x, y, y') 

which is linear in both y and y', where y' represents dy/dx, and which satisfies the 
conditions given at the beginning of this chapter, boundary conditions 

y[LowerLimit] = Lowerlnitial 
y[UpperLimit] = Upperlnitial 

and spacing 

h = (UpperLimit - LowerLimit)/Numlntervals 

the shooting method solves the two initial value problems (see RUNGE-2.INC): 

y'[LowerLimit] = 0 y[LowerLimit] = Lowerlnitial 

y'[LowerLimit] = 1 y[LowerLimit] = Lowerlnitial 

(These values are particular to this implementation; any other nonidentical set of 
initial conditions will suffice.) Since neither of these initial values of y' is likely to 
be correct, the solutions generated are not likely to satisfy the boundary condition 
at Upperlnitial. However, because of the linearity of the equation, an appropriate 
linear combination of these two solutions will be a solution to the boundary value 
problem. The linear shooting method requires that only two initial value problems 
be solved, where the ordinary shooting method (SHOOT2.INC) requires that an 
unknown number of initial value problems be solved before the method converges 
to a solution. 

You must supply the LowerLimit, UpperLimit, Lowerlnitial, Upperlnitial, 
Numlntervals, and TNTargetF. 
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User-Defined Types 

TNvector = array[l •• TNArraySize] of Real; 

User-Defined Function 

TNTargetF(x, y, yPrime : Real) : Real; 

d2y/dx2 
= TNTargetF(x, y, dy/dx} 

The procedure LinearSlwoting integrates this second-order differential equation. 

Input Parameters 

LowerLimit : Real; 

UpperLimit : Real; 

LowerInitial : Real; 

UpperInitial : Real; 

Lower limit of interval 

Upper li.:nit of interval 

Value of y at LowerLimit 

Value of y at UpperLimit 

NumInterval s : Integer; Number of subintervals used in calculations 

NumReturn : Integer; Number of (x, y, y') triples returned from the procedure 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlntervals;::: NumReturn 

3. LowerLimit ~ UpperLimit 

Output Parameters 

XValues : TNvector; 

YVa 1 ues : TN vector ; 

Values of x between the limits 

Values of y determined at values in XValues 

YDerivVal ues : TNvector; Values of the first derivative of y determined at values in 
XValues 

Error: Byte; 
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0: No errors 
1: NumReturn < 1 
2: Numlntervals < NumReturn 
3: LowerLimit = UpperLimit 
4: Equation not linear 
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Syntax of the Procedure Call 

LinearShooting(LowerLimit, UpperLimit, LowerInitial, UpperInitial, 
NumReturn, Numlntervals, XValues, YValues, 
YDerivValues, Error); 

Comments 

If TNTargetF is a nonlinear function, the linear shooting algorithm will usually 
compute a solution (albeit an incorrect one) without returning an error message. 
Error 4 (nonlinear equation) will be returned in only a few cases where the two 
initial value problems happen to yield solutions with the same y-value at 
x = UpperLimit. 

The procedure will compute Numlntervals values in its calculations; however, 
you will rarely need to use these values. The vectors XValues, YValues, and 
YDerivValues will contain only NumReturn values at roughly evenly spaced inter­
vals between the lower and upper limits. (They will be exactly evenly spaced only 
when Numlntervals is a multiple of NumReturn.) Thus, you can ensure a highly 
accurate solution (by making Numlntervals large) without generating an excessive 
amount of output (by making NumReturn small). 

The Linear Shooting/Runge Kutta method uses the New/Dispose procedures to 
manipulate the heap and should not be used in any program that uses Mark/ 
Release to manipulate the heap. 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e - lOOx. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals). 
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Sample Program 

The sample program LINSHOT2.PAS provides I/O functions that demonstrate the 
linear shooting method of solving boundary value problems. Note that the file 
LINSHOT2.1NC is included after the function TNTargetF is defined. 

Example 

Problem.Use the linear shooting method to solve the following boundary value 
problem: 

y" = y' /x - y/sqr(x) + 1 1 = x S 10 

y(1) 1 

y(10) 76.974149 

1. Code the differential equation into the program LINSHOT2.PAS: 

funct;on TNTargetF(x : Real; 
y : Real; 

yPrime : Real) : Real; 

(***************************************************************) 
(* THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION *) 
(***************************************************************) 

beg;n 
TNTargetF := yPrime/x - y/Sqr(x) + 1; 

end; { function TNTargetF } 

2. Run LINSHOT2.PAS: 

Lower limit of interval? 1 

Upper limit of interval? 10 

Enter Y value at X = 1.00000000E+00: 1 
Enter Y value at X = 1.00000000E+01: 76.974149 

Number of points returned (1-500)? 9 

Number of intervals (>= 9, default = 9)? 9 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F)ile 

Lower limit: 1.00000000000000E+00 
Upper limit: 1.00000000000000E+01 

Value of Y at 1.0000: 1.00000000000000E+00 
Value of Y at 10.0000: 7.69741490000000E+01 

NumIntervals: 9.00000000000000E+00 
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X 
1.00000000000000E+000 
2.00000000000000E+000 
3.00000000000000E+000 
4.00000000000000E+000 
5.00000000000000E+000 
6.00000000000000E+000 
7.00000000000000E+000 
8.00000000000000E+000 
9.00000000000000E+000 
1.00000000000000E+001 

Y Value 
1.00000000000000E+000 
2.61170356138588E+000 
5.70207271413620E+000 
1.04528257144925E+001 
1.69509897305375E+001 
2.52478687612139E+001 
3.53773649984557E+001 
4.73635728977226E+001 
6. 12245068576119E+001 
7.69741490000000E+001 

Derivative of Y 
1.00042467674563E+000 
2.30627678512124E+000 
3.90115296191831E+000 
5.61367861126495E+000 
7.39067355864438E+000 
9.20845513089500E+000 
1.10543869346579E+001 
1.29209245920937E+001 
1.48032011472994E+001 
1.66978931711222E+001 

Now solve the same problem with a spacing of only 0.1: 

Lower limit of interval? 1 

Upper limit of interval? 10 

Enter Y value at X = 1.00000000E+00: 1 
Enter Y value at X = 1.00000000E+01: 76.974149 

Number of pOints returned (1-500)? 9 

Number of intervals (>= 9, default = 9)? 90 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) 11 e 

Lower limit: 1.00000000000000E+00 
Upper limit: 1.00000000000000E+01 

Value of Y at 1.0000: 1.00000000000000E+00 
Value of Y at 10.0000: 7.69741490000000E+01 

NumIntervals: 9.00000000000000E+01 

X 
1.00000000000000E+000 
2.00000000000000E+000 
3.00000000000000E+000 
4.00000000000000E+000 
5.00000000000000E+000 
6.00000000000000E+000 
6.99999999999999E+000 
7.99999999999999E+000 
8.99999999999999E+000 
9.99999999999998E+000 

The exact solution is 

y = x * x - x * In(x) 

y(l) = 1 

Y Value 
1.00000000000000E+000 
2.61370547174514E+000 
5.70416298088411E+000 
1.04548224122436E+001 
1.69528103026793E+001 
2.52494430584438E+001 
3.53786288412165E+001 
4.73644675641047E+001 
6.12249787166508E+001 
7.69741490000000E+001 

y'(l) = 1 

Derivative of Y 
1.00000001942594E+000 
2.30685275847028E+000 
3.90138768358927E+000 
5.61370562650429E+000 
7.39056208402440E+000 
9.20824053324639E+000 
1.10540898579729E+001 
1.29205584690303E+001 
1.48027754364805E+001 
1.66974149235206E+001 

y(10) = 7.6974149 y'(10) = 16.6974149 

The second approximation is more accurate. 
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c H A p T E R 9 
Least-Squares Approximation 

Given a set of data points, this chapter provides routines to model the data with a 
function of a given type. The most common application of this concept is linear 
regression. 

With linear regression, there is some control variable, say X, and some observed 
variable, say Y. X and Yare known or suspected to have some linear relationship, 
say 

Y=a*X+b 

but the parameters a and b are unknown. Usually there is some experimental error 
or some other nonlinear influence on Y, so that there are no values of a and b for 
which the preceding equation holds exactly. The method of regression provides a 
formula for a and b in terms of the values of X and Y such that the error is mini­
mized. The error is the sum of squares of the errors (a * X + b - Y) on each data 
point. Except in certain unusual cases, there is exactly one value for a and one 
value for b that makes this sum of squares the least possible. This is called the 
least-squares solution. 

This concept of least squares also applies' when more variables are present­
then it is often called multiple regression. Using this method, you can find the best 
model for a given set of data that is linear in a given set of other data sets or 
functions. Models that are nonlinear variables can also be treated as long as the 
unknown parameters appear linearly. 
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Least-Squares Approximation (LEAST.INC) 

Description 

This model provides a method for finding a least-squares approximation (Cheney 
and Kincaid 1985, 362--387) to a set of data points (x, y). The approximation must 
be a linear combination of a set of basis vectors. The functional form of the approxi­
mation (polynomial, logarithmic, and so on) is therefore determined by the user, as 
long as it is represented linearly. (How to represent logarithmic, and other func­
tions linearly is discussed later.) 

Given a set of m data points (x, y), an m X n matrix (m ;::: n), A, is constructed, 
where n is the number of basis vectors in the approximation. The elements of the 
matrix are 

A[i,j] = V/X
j
) 

where ~(X) is the jth basis vector evaluated at the data value Xli]. A vector Y is 
constructed that contains the y-values of the data points. The coefficients of the 
basis vectors that form the least-squares approximation will be the n vector C, such 
that the Euclidean norm of(AC - Y) (represented by II AC - Y liz) is a minimum. 
This requirement is converted to the requirement that 

be a minimum. Here B is an n X n matrix, Z is an n vector, and R is an (m - n) 
vector. The equations BC = Z are the normal equations. The previous expression 
will be minimized when C solves the equation Be = Z. Gaussian elimination with 
partial pivoting (see Chapter 6, "Solving a System of Linear Equations with Gauss­
ian Elimination and Partial Pivoting") is used to solve the normal equations. 

The goodness of fit is indicated by the standard deviation: 

S.D. = ((Y[i] - F(X[i]))z/(m - n))I/Z 

where F(X[i]) is the least-squares solution at the point Xli], (Y[i] - F(X[i])) is the 
residual, and (m - n) is the degree of freedom of the fit. 
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User-Defined Types 

TNColumnVector = array[l .. TNColumnSize] of Real; 
TNRowVector = array[l .. TNRowSize] of Real; 

(TNColumnSize will usually be much larger than TNRowSize.) 

TNmatrix = array[l .. TNColumnSize] of TNRowVector; 
TNSquareMatrix = array[l .. TNRowSize] of TNRowVector; 
TNString40 = str1ng[40]; 

Input Parameters 

NumPoi nts : Integer; Number of data points 

XOata : TNCol umnVector; X coordinates of the data points 

YOata : TNRowVector; 

NumTerms : Integer; 

Y coordinates of the data points 

Number of terms in the least-squares approximation 

The preceding parameters must satisfy the following conditions: 

1. NumPoints > 1. 

2. NumTerms:5 NumPoints. 

3. NumPoints:5 TNColumnSize. 

4. NumTerms:5 TNRowSize. 

5. The XData points cannot all be identical. 

TNColumnSize and TNRowSize set an upper bound on the number of elements 
in a vector. Neither of these identifiers are variable names and are never referenced 
by the procedure. If conditions 3 or 4 are violated, the program will crash with an 
Index Out of Range error (assuming the directive {$R +} is active). 
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Output Parameters 

So 1 ut ion: TNRowVector; Coefficients of the basis vectors that form the least-
squares approximation 

YFit : TNColumnVector; Values of the least-squares fit evaluated at the XData 
values 

Res i dua 1 s : TN Co 1 umnVector; Difference between YData and YFit values 

StandardDevi ation : Real; Square root of the variance-indicates the goodness of fit 

Error: Byte; 0: No error 
1: NumPoints < 2 
2: NumTerms < 1 
3: NumTerms > NumPoints 
4: Least-squares solution does not exist (see "Com­

ments") 

Syntax of the Procedure Call 

LeastSquares(NumPoints, XData, YData, NumTerms, Solution, 
YFit, Residuals, StandardDeviation, Error); 

Comments 

The least-squares routine is kept in two modules (include files). One is called 
LEAST.lNC and must always be included in your top-level program. The choice of 
the second module will depend upon the functional form (basis vectors) to which 
you fit the data. Following are the five basis modules included in this package: 

POLY.LSQ 

This module uses Chebyshev polynomials to fit a polynomial to the data points. 
NumTerms must be one greater than the degree of the polynomial (for example, to 
fit a fourth-degree polynomial, input NumTerms = 5). To get a straight-line least­
squares fit, use this module and fit a curve with only two coefficients. The elements 
of the Solution vector will be as follows: 

Solution[j] = a
J 

1 s j S NumTerms 

where a. is the coefficient of Xl-I. 
} 
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FOURIER.LSQ 

This module will fit a finite Fourier series to the data points. The number of terms 
in the approximation will be NumTerms. The elements of the Solution vector will 
be as follows: 

Solution[j] = F
j

_
1 

1 :5 j :5 NumTerms 

where F
j

_
1 

is the (j - l)th term in the Fourier series. Following are the first few 
terms in the Fourier series: 

F[O] = 1 
F[l] = cos{x) 
F[2] = sin{x) 
F[3] = cos{2x) 
F[4] = sin{2x) 
F[5] = cos{3x) 
F[6] = sin{3x) 

POWER.LSQ 

This module will fit the function 

y = al 
where a and b are real numbers to the data points. A linear equation is obtained by 
taking the log of both sides, like so: 

In{y) = In{a) + b * In{x) 

and expanding on basis vectors 1 and In{x). The x-values of the data points must all 
be positive, and the y-values of the data points must all have the same sign. The 
number of coefficients in the approximation will be two regardless of the value of 
NumTerms (unless NumTerms > NumPoints, in which case Error 3 will occur). 
The elements of the Solution vector will be as follows: 

Solution[l] = a 
Solution[2] = b 

EXP.LSQ 

This module will fit the function 

y = aebx 

where a and b are real numbers to the data points. A linear equation is obtained by 
taking the log of both sides, like so: 

In{y) = In{a) + bx 
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and expanding on basis vectors 1 and. x. The y-values of the data points must all 
have the same sign. The number of coefficients in the approximation will be two 
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which 
case Error 3 will occur). The elements of the Solution vector will be as follows: 

Solution[l] = a 
Solution[2] = b 

WG.LSQ 

This module will fit the function 

y = a In(bx) 

where a and b are real numbers to the data points. A linear equation is obtained by 
rewriting the equation: 

y = a In(b) + a In(x) 

and expanding on basis vectors 1 and In(x). The x-values of the data points must all 
have the same sign. The number of coefficients in the approximation will be two 
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which 
case Error 3 will occur). The elements of the Solution vector will be as follows: 

Solution[l] = a 
Solution[2] = b 

USERLSQ 

This module is included if you need a least-squares approximation on a set of basis 
vectors different from the ones listed earlier. This module allows you to create your 
own set of basis vectors. The source code contains detailed instructions of how to 
flesh out the skeleton contained in USER.LSQ. 

A least-squares solution may not exist for some input data and choice of basis 
vectors (Error 4). The reasons for this will depend on the module you are using. For 
example, it is impossible to fit an exponential function (module EXP.LSQ) to data 
with y-values of differing signs; Error 4 will occur if you try. The same data could 
be fit with a polynomial and no error would result. Error 4 will also occur if all the 
x-values of the data are identical. 
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Sample Program 

The demonstration program LEAST.PAS contains I/O routines that allow you to 
run the least-squares approximation routine. Note that there are two include com­
mands: 

{$I POLY.LSQ} (* load the basis vectors *) 
{$I LEAST. INC} (* load procedure LeastSquares *) 

The LEAST.lNC file must always be included after the basis module. To change 
the basis vectors of the approximation, simply load a different basis module with 
the first INCLUDE command. 

Input Files 

Data may be entered from a text file. The x- and y-coordinates should be separated 
by a space and followed by a carriage return. For example, data values of sqr(x) 
could be entered in a text file as 

11 
24 
39 
416 
525 

Example 

Problem. Given the following data (contained in the file SAMPLE9A.DAT), fit a 
fourth-degree polynomial and a logarithmic function to the data: 

O.oooooooOOOOOOOE+OO 1.33830225764886E-03 
0.10000000000000E+00 4.43184841193803E-02 
0.20000000000000E+00 5.39909665131879E-01 
0.30000000000000E+00 2.41970724519143E+00 
0.40000000000000E+00 3.98942280401433E+00 
0.02000000000000E+00 2.91946925791461E-03 
0.04000000000000E+00 6.11901930113775E-03 
0.06000000000000E+00 1.23221916847303E-02 
0.08000000000000E+00 2. 38408820146486E-02 
0.12000000000000E+00 7.91545158298001E-02 
0.14000000000000E+00 1.35829692336855E-01 
0.16000000000000E+00 2.23945302948430E-01 
0.18000000000000E+00 3.54745928462313E-01 
0.22000000000000E+00 7.89501583008939E-01 
0.24000000000000E+00 1.10920834679455E+00 
0.26000000000000E+00 1.49727465635745E+00 
0.28000000000000E+00 1.94186054983213E+00 
0.32000000000000E+00 2.89691552761483E+00 
0.34000000000000E+00 3.33224602891800E+00 
0.36000000000000E+00 3.68270140303323E+00 
0.38000000000000E+00 3.91042693975456E+00 
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(The function is the left-hand side of a Gaussian distribution curve with mean = 
0.5 and standard deviation = 0.1.) Note that the points do not have to be in any 
particular order. 

First fit the polynomial; include the proper include files in the LEAST. PAS pro­
gram. 

{$I POLY.LSQ} (* load the basis vectors *) 
{$I LEAST. INC} (* load procedure LeastSquares *) 
Run LEAST.PAS: 

(K)eyboard or (F)ile entry of data? F 

File name? SAMPLE9A.DAT 

Number of terms in the least squares fit «= 21)? 5 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

The Data Points: 
X 

0.200 
0.300 
0.400 
0.500 
0.100 
0.120 
0.140 
0.160 
0.180 
0.220 
0.240 
0.260 
0.280 
0.320 
0.340 
0.360 
0.380 
0.420 
0.440 
0.460 
0.480 

Y 
0.0443185 
0.5399097 
2.4197072 
3.9894228 
0.0013383 
0.0029195 
0.0061190 
0.0123222 
0.0238409 
0.0791545 
0.1358297 
0.2239453 
0.3547459 
0.7895016 
1.1092083 
1.4972747 
1.9418605 
2.8969155 
3.3322460 
3.6827014 
3.9104269 

*----------------------------------------* 
Polynomial Least Squares Fit 

*----------------------------------------* 
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Coefficients in least squares approximation: 
Coefficient 0: -3.1905595419E+00 
Coefficient 1: 6.4048009604E+Ol 
Coefficient 2: -4.3900537685E+02 
Coefficient 3: 1.2058567475E+03 
Coefficient 4: -1.0523352671E+03 

X 
0.2000 
0.3000 
0.4000 
0.5000 . 
0.1000 
0.1200 
0.1400 
0.1600 
0.1800 
0.2200 
0.2400 
0.2600 
0.2800 
0.3200 
0.3400 
0.3600 
0.3800 
0.4200 
0.4400 
0.4600 
0.4800 

Least Squares Fit 
2.1944857683E-02 
5.4757594258E-Ol 
2.4228330082E+00 
4.0432402964E+00 

-7.5189129229E-02 
3.9032402623E-02 
7.6262215339E-02 
6.8115144530E-02 
4.2165058391E-02 
2.6946475745E-02 
7.2620878494E-02 
1.7037806441E-Ol 
3.2758706456E-Ol 
8.2963179468E-Ol 
1. 1690007497E +00 
1.5568879689E+00 
1.9804576462E+00 
2.8630963140E+00 
3.2762888552E+00 
3.6334109560E+00 
3.9014219733E+00 

Standard Deviation: 5.381534E-02 

Residual 
-2.2373626436E-02 
7.6662774545E-03 
3.1257630399E-03 
5.3817492408E-02 

-7.6527431486E-02 
3.6112933365E-02 
7.0143196038E-02 
5.5792952845E-02 
1.8324176377E-02 

-5.2208040084E-02 
-6.3208813842E-02 
-5.3567238538E-02 
-2.7158863898E-02 
4.0130211675E-02 
5.9792402863E-02 
5.9613312500E-02 
3.8597096373E-02 

-3.3819213604E-02 
-5.5957173721E-02 
-4.9290447012E-02 
-9.0049664504E-03 

The fourth-degree polynomial that best fits this data is as follows: 

y = -1052.34 X4 + 1205.86l - 439.005 x2 + 64.0480 x - 3.19056 

Note that a fourth-degree polynomial requires five terms in the fit. 

Now fit the logarithmic function; include the proper include files in the LEAST. 
PAS program. 

{$I LOG.LSQ} (* load the basis vectors *) 
{$I LEAST.INC} (* load procedure LeastSquares *) 

Run LEAST. PAS: 

{K)eyboard of {F)ile entry of data? F 

File name? SAMPLE9A.DAT 

Number of terms in the least squares fit (<= 21)? 2 
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Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

The Data Points: 
X 

0.200 
0.300 
0.400 
0.500 
0.100 
0.120 
0.140 
0.160 
0.180 
0.220 
0.240 
0.260 
0.280 
0.320 
0.340 
0.360 
0.380 
0.420 
0.440 
0.460 
0.480 

y 
0.0443185 
0.5399097 
2.4197072 
3.9894228 
0.0013383 
0.0029195 
0.0061190 
0.0123222 
0.0238409 
0.0791545 
0.1358297 
0.2239453 
0.3547459 
0.7895016 
1.1092083 
1.4972747 
1. 9418605 
2.8969155 
3.3322460 
3.6827014 
3.9104269 

*----------------------------------------* 
Logarithmic Least Squares Fit 

*----------------------------------------* 
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Coefficients in least squares approximation: 
Coefficient 0: 2.5984092387E+00 
Coefficient 1: 6.0253489685E+00 

X 
0.2000 
0.3000 
0.4000 
0.5000 
0.1000 
0.1200 
0.1400 
0.1600 
0.1800 
0.2200 
0.2400 
0.2600 
0.2800 
0.3200 
0.3400 
0.3600 
0.3800 
0.4200 
0.4400 
0.4600 
0.4800 

Least Squares Fit 
4.8470072529E-01 
1.5382650082E+00 
2.2857807630E+00 
2.8655990283E+00 

-1.3163793125E+00 
-8.4263329487E-01 
-4.4208674425E-01 
-9.5117540004E-02 
2.1093098801E-01 
7.3235557703E-01 
9.5844674288E-01 
1. 1664304540E+00 
1.3589932935E+00 
1.7059624977E+00 
1.8634900752E+00 
2.0120110257E+00 
2.1524997930E+00 
2.4125575764E+00 
2.5334356148E+00 
2.6489394853E+00 
2.7595267806E+00 

Standard Deviation : 8.320742E-01 

Residual 
4.4038224117E-01 
9.9835534304E-01 

-1.3392648216E-01 
-1.1238237757E+00 
-1.3177176147E+00 
-8.4555276412E-01 
-4.4820576355E-01 
-1.0743973169E-01 
1.8709010600E-01 
6.5320106120E-01 
8.2261705054E-01 
9.4248515104E-01 
1.0042473650E+00 
9.1646091473E-01 
7.5428172837E-01 
5.1473636940E-01 
2.1063924317E-01 

-4.8435795124E-01 
-7.9881041414E-01 
-1.0337619177E+00 
-1.1509001591E+00 

The logarithmic function that bests fits this data is as follows: 

y = 2.59841 * In(6.02535x) 

The standard deviation of the polynomial fit is much smaller than that of the 
logarithmic fit; a fourth-degree polynomial fits this data much better than a loga­
rithmic function. 
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c H A p T E R 10 
Fast Fourier Transform Routines 

Fourier transforms are used to analyze periodic phenomena such as waves. A con­
tinuous functionfthat has period 2'TT (= 2 * 3.14159265 ... ); that is, satisfies 

f(x + 2'TT) = f(x) 

for all x, can be decomposed into sines and cosines: 

f(x) = a[O] + a[l] * cos(x) + b[l] * sin(x) + a[2] * cos(2x) 
+ b[2] * sin(2x) + ... 

This is an infinite series where the coefficients get closer and closer to zero. The 
routines in this chapter can be used to calculate the coefficients. 

The Fast Fourier Transform (FFT) is a particular algorithm for computing Fou­
rier transforms efficiently. 

This chapter includes two kinds of units. One group consists of four variations of 
the FFT method of calculating discrete Fourier transforms (FFTB2.INC, FFT 
B4.INC, FFT87B2.INC, FFT87B4.INC), each optimized for certain conditions. 
All are variations of the original Cooley-Tukey method. The second group consists 
of six applications (COMPFFT.INC, REALFFT.INC, COMPCNVL.lNC, REAL 
CNVL.INC, COMPCORR.INC, REALCORR.INC) that can each be used with 
any of the FFT methods. You can select the FFT method most appropriate to the 
circumstances and combine it with the appropriate application or integrate it into 
another program (Brigham 1974; Nussbaumer 1982). 

In each FFT unit the procedure calls have exactly the same form (although there 
are different restrictions on the data) so that anyone FFT unit can be combined 
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with any of the application units without rewriting code. Each of these algorithms 
will compute either a forward or an inverse transform. 

Each unit contains two procedures needed to prepare for the FFf calculation: 
procedure Testlnput and procedure MakeSinCosTable. TestInput examines the 
input data to ensure that it satisfies certain conditions (for example, that there is 
more than 1 data point). MakeSinCosTable precalculates a table of the nth roots of 
unity for look up in the FFf calculation. 

FFfB2.1NC contains a procedure that implements the Cooley-Tukey powers-of 
two (radix 2 or base 2) Fast Fourier Transforms. It is optimized to reduce the 
number of real multiplications by taking advantage of the symmetries of certain 
roots of unity and by using a complex multiplication that requires three real multi­
plications and three real additions. This algorithm is appropriate when the time for 
real multiplications is significantly greater than the time for real additions; for 
example, when running on an 8088 machine with no numeric coprocessor. 

FFf87B2.1NC implements the same algorithm as FFTB2.1NC. The difference 
is that the complex multiplications are done with four real multiplications and two 
real additions. By using this standard form of complex multiplication, storage over­
head and assignment statements are reduced. This algorithm is appropriate when 
the time for a real multiplication is close to the time for a real addition; for example, 
when running an 8088 machine with an 8087 numeric coprocessor, or an 80286 
machine with an 80287 numeric coprocessor. 

Standard Turbo Pascal uses 6-byte reals; Turbo-87 Pascal (which utilizes the 
8087 coprocessor) uses 8-byte reals. Consequently, given the same amount of 
memory, more data points can be manipulated in Turbo Pascal than in Turbo-87 
Pascal. Both FFfB2.INC and FFf87B2.1NC require the number of data points to 
be a power of two up to a maximum of 4,096 points when in Turbo-87, or 8,192 
points when in standard Turbo Pascal. 

FFfB4.1NC and FFf87B4.1NC implement powers-offour (radix 4 or base 4) 
Fast Fourier Transforms. The powers-of-four method is the same as the Cooley­
Tukey algorithm except at each stage of reduction a given transform is converted 
into four transforms each with one fourth the data points of its predecessor (Nus­
sbaumer 1982). When this algorithm is optimized, there are about 25 percent 
fewer multiplications and slightly fewer additions than in a radix-2 algorithm. The 
algorithm has the disadvantage of only being applicable to data sets where the 
number of points is a power of four up to a maximum of 4,096 points whether in 
Turbo-87 or standard Turbo. A reduction in execution time of about 20 percent is 
accomplished when FFfB4.1NC or FFf87B4.1NC is used over its B2 counterpart. 
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FFTB4.INC performs complex multiplication with three real multiplications 
and three real additions and thus is most appropriate when multiplications take 
much more time than additions. 

FFT87B4.INC performs complex multiplication with four real multiplications 
and two additions and thus is most appropriate with a numeric coprocessor. 

Table 10-1 shows the recommended use of the four FFT algorithms for optimal 
performance. 

Table 10-1 Four Fast Fourier TransJorms 
Number of Points Without Coprocessor 

FFfB2.1NC 
FFfB4.1NC 

With Coprocessor 

FFf&7B2.1NC 
FFf87B4.1NC 

Although each of the algorithms is most efficient under different sets of 
circumstances, all four FFT algorithms will work whether you have a math 
coprocessor or not. The sample program defaults to the Turbo-87 radix-2 algorithm 
(FFT87B2.IN C). 

The Application Programs 

There are six application programs that use the basic FFT routines 
contained in the previously mentioned include files (COMPFFT.INC, 
REALFFT.lNC, COMPCNVL.lNC, REALCNVL.INC, COMPCORR.INC, and 
REALCORR.INC). 

Fast Fourier Transforms are particularly useful for analyzing periodic signals. 
Such a signal is represented by a function J satisfying 

J(t + T) = J(t) 

where t is time and T is the period. Under mild hypotheses,J can be expanded into 
a Fourier series such as the following: 

oc 

J(t) = N- 112 I F(n) exp (2'Ti' i n tiT) 
11= - oc 

where i is the square root of - 1. The term exp (2'Ti' i n tiT) is a sinusoid of period 
Tin and frequency niT, and its coefficient F(n) gives the strength of that frequency 
component in the original signal. 

Fast Fourier Transform Routines 235 



To analyze a signal on a digital computer, the signal must be discretized. Let x(n) 
be computed by discretizing the function f at N equidistant points in one period. 
Thus, let 

x(n) = f(nTIN) n = 0,1, ... N - 1 

Once we restrict attention to N points; it only makes sense to represent the 
signal in terms of N of the functions 

exp (2'TT i n tiT) 

since the rest are redundant. For example: 

exp (2'TT i ( -1) tiT) = exp (2'TT i (N -1) tiT) 

for t = nTIN, n = 0,1, ... N - 1. The Fourier series for the signal is then a finite 
sum, and has the form 

N-I 

x(n) = N- 1/2 I X(k) exp (2'TT i k nlN) 
k'" 0 

(The factor of N- I12 is a matter of convention. Some books do not include it in this 
formula, resulting in a factor of liN in the formula for X that follows.) 

The formula for the coefficients X(k) is as follows: 

N-I 

X(k) = N- 1/2 I x(n) exp (-i 2'TT n kiN) 
n'" 0 

This formula for X makes sense for any integer k. X is then periodic, satisfying 

X(k + N) = X(k) 

for all k. In formulas and programs, it is more convenient to let k run from ° t9 
N - 1, but for analyzing signals it makes more sense to think of k as running from 
(- N/2) to (N/2 - 1). This is because values of k near zero represent the low 
frequency information, and values of k near or greater than N 12 represent frequen­
cies that are so high that the discretization is too coarse to realize them accurately 
anyway. Therefore, if k is between N 12 and N, X(k) should be thought of as the 
coefficient of 

exp (2'TT i (k - N) tiT) 

rather than 

exp (2'TT i k tiT) 

In other words, negative frequencies are represented on the right half of the 
transform. 
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COMPFFT.lNC simply takes the complex Fast Fourier Transform of a set of 
complex data points. The complex Fourier transform is defined as 

N-I 

X
f 

= N- I12 L xn exp (- 21T if n/N) f = O .. N - 1 
,,= 0 

where i is the square root of - 1. The inverse Fourier transform (which may also be 
calculated with COMPFFT.lNC) is defined as 

N-I 

xn = N- 1I2 L ~ exp ( - 21T if n/N) n = O .. N - 1 
f= 0 

where the bar stands for complex conjugation. 

REALFFT.lNC provides a procedure that is optimized for a discrete Fourier 
transform with all real data. It proceeds by mapping the N real data points onto 
N /2 complex points, applying one of the FFT routines, then reconstructing the N 
points of the desired transform. This reduces the computation time by about 25 
percent compared to applying the complex FFT routine to the N real data points. 
REALFFT.lNC can be used with any of the given FFT methods, but note that if a 
radix-4 method is used (FFTB4.1NC or FFT87B4.1NC), N/2 must be a power of 
four; so N must be of the form 2 * 4k. 

COMPCNVL.lNC provides a procedure for calculating convolutions of two 
complex vectors (Brigham 1974; Nussbaumer 1982). The discrete. ~onvolution of 
two complex functions x and h is defined by 

m = 0,1, ... N - 1 
,,= 0 

where subscripts are taken modulo N (circular convolution). The basic theorem that 
allows us to calculate these effectively using FFTs is shown in the following: 

y = X H 
In In In 

m = 0,1, ... N - 1 

where capital letters indicate the transforms of the functions represented by lower­
case letters. Thus the procedure 'for convolution works like this: 

1. Transform both given data sets using FFTs. 

2. Multiply the resulting transforms.point by point. 

3. Find the inverse transform of this product using FFTs. 
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REALCNVL.INC provides a procedure for calculating convolutions of two real 
vectors (Brigham 1984; Nussbaumer 1982). This procedure is exactly the same 
as the previous procedure (COMPCNVL.INC) for complex convolution except that 
only one forward Fourier transform need be performed. The procedure is as 
follows: 

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal plus iHReal, where i is the square root of - 1. 

2. Transform this complex vector. 

3. Extract the transforms of the two real functions from the transform of the 
complex function (using the symmetry X

f 
= X_

f
, where the bar stands for 

complex conjugation). 

4. Multiply the resulting transforms point by point. 

5. Find the inverse transform of this product using FFTs. REALCNVL.INC 
is about 25 percent faster than its complex counterpart for the same set of 
real data. 

COMPCORR.INC provides a procedure for calculating the crosscorrelation of 
two discrete complex functions or the autocorrelation of one discrete complex func­
tion (Brigham 1974). If x and h are the given discrete functions, then their correla­
tion is defined as 

N - 1 . 

C = " x h m L n n+m 
m = 0,1, ... N - 1 

n = 0 

where subscripts are taken modulo N (circular convolution). This can be computed 
using FFTs with a method analogous to that used in COMPCNVL.INC: 

c = X H 
m m N-m 

m = 0,1, ... N - 1 

Commonly x and h are real functions; in which case the preceding formula 
reduces to C = X Ii , where the bar stands for complex conjugation. Thus the 
procedure fo; correGtio~ works like this: 

1. Transform both given data sets using FFTs. 

2. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data. 

3. Find the inverse transform of this product using FFTs. 

REALCORR.INC provides a procedure for calculating the crosscorrelation of 
two discrete real functions or the autocorrelation of one discrete real function 
(Brigham 1974). This procedure is exactly the same as the previous procedure for 
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complex correlation except that only one forward Fourier transform need be per­
formed. The procedure is as follows: 

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal + iHReal, where i is the square root of - 1. 

2. Transform this complex vector. 

3. Extract the transforms of the two real vectors from the transform of the 
complex vector (using the symmetry X

f 
= X_

f
, where the bar stands for 

complex conjugation). . 

4. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data. 

5. Find the inverse transform of this product using FFTs. 

Anyone of the FFT include files can be used with any of the applications. 

Data Sampling 

While sampling theory is beyond the scope of this Toolbox, we would like to men­
tion several common problems associated with data sampling (Brigham 1974; Press 
et al. 1986, Ch.12). The most common frustration is aliasing. A Fourier transform 
only represents frequencies up to a certain limit (called the Nyquist limit, or 
Nyquist frequency), which is given by half the sampling rate. (For example, if a 
signal is sampled sixty times a second, the Nyquist frequency will be 30 Hz.) 'A 
sample containing frequencies greater than this limit will not be properly trans­
formed. The high frequencies will falsely contribute to the transform. This contri­
bution will be indistinguishable from a contribution of a frequency below the 
Nyquist frequency. 

There are several ways to combat aliasing. Increasing the sampling rate will 
increase the Nyquist frequency and thus reduce aliasing effects. It is also possible 
to pass the signal through a low pass filter, thus eliminating the high frequencies 
before sampling. If the Fourier transform of a signal does not converge to zero at 
the Nyquist frequency, the transform has very likely been aliased. 

The Fourier transform assumes that the sample represents a periodic function 
and that the sample is an integer multiple of one period. If the latter condition is 
not true, spurious frequencies will show up in the transform. For example, if a sine 
wave is sampled from 0 to 270 degrees (instead of the full period), a sharp bound­
ary is created because the sine of 0 does not equal the sine of 270. High frequen­
cies will be introduced into the transform to account for that sharp boundary. 
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The assumption of periodicity can cause problems when convolving or correlat-
. ing two signals that are not periodic. The convolution of each point in a signal 
affects the points surrounding it (the nature and extent of the affect depends on the 
particular convolving function). The assumption of periodicity means that the con­
volution at one end of the signal will affect the other end of the signal. This "end 
effect" can be eliminated by padding the data (on either end) with a sufficient 
number of zeros. 

User-Defined Types 

TNvector = array[O .. TNArraySize] of Real; 

TNvectorPtr = ~TNvector; 

These user-defined types are different from others in this Toolbox, because they 
involve pointers. Pointers are used to transcend the limitations imposed by the 64K 
data segment size of Turbo Pascal. One array of 8,000 elements uses the entire data 
segment (in Turbo-87). However, it is possible to store these arrays on the heap, 
and to point to them with pointers that only require 4 bytes. The size of the heap 
(and hence the maximum size and number of TNvectors) is determined by the 
amount of memory in the machine. 
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Fast Fourier Transform Algorithms 

The following documentation generally applies to all four FFT algorithms 
(FFTB2.INC, FFTB4.INC, FFT87B2.INC, FFT87B4.INC). When a difference 
between the radix-2 and radix-4 algorithms needs to be described, the radix-4 
information will be placed in brackets following the radix-2 information (for exam­
ple, the number of points must be a power of two [four]). The following describes 
the three procedures contained in each of the include files. 

Procedure TestInput 

Description 

This example determines the number of data points in terms of a power of two 
[four]. If the number of data points is not a power of two [four], then an error is 
returned. 

Input Parameters 

NumPoi nts : Integer; Number of data points 

The preceding parameter must satisfy the following conditions: 

1. NumPoints ~ 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

NumberOfBits : Byte; Number of data points as a power of two [four] 

Error: Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 

Syntax of the Procedure Call 

TestInput(NumPoints, NumberOfBits, Error); 
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Procedure MakeSinCosTable 

Description 

This example creates a look-up table ofNumPoints/2 [3/4 NumPoints] roots of unity. 
The roots of unity are defined as follows: 

Root
n 

= exp ( - i 2'TT n/NumPoints n = O .. NumPoints/2 [3/4 NumPoints] 

where i is the square root of -1. These values are stored in two tables: SinTable, 
containing the imaginary parts of the roots of unity, and CosTable, containing the 
real parts of the roots of unity. It is faster to look up these values in a table than to 
calculate them in the FFf procedure. 

Input Pararneters 

NumPoints : Integer; Number of data points 

The preceding parameter must satisfy the following conditions: 

1. NumPoints ~ 2. 

2. NumPoints must be a power of two [four]. 

Output Pararneters 

Si nTabl e : TNvectorPtr; Table of sine values 

CosTabl e : TNvectorPtr; Table of cosine values 

Syntax of the Procedure Call 

MakeSinCosTable(NumPoints, SinTable, CosTable); 

Procedure FFT 

Description 

This example implements the particular variation of the Cooley-Tukey algorithm. 
The Fast Fourier Transform of the data XReal, Xlmag is made in place and is thus 
returned in the vectors XReal, Xlmag. The inverse transform of the data can also 
be calculated with this procedure. 
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It is essential that procedures TestInput and MakeSinCosTable be called before 
procedure FFT is called. TestInput will flag any errors in the data (for example, 
number of points that are not a power of two [four]), and MakeSinCosTable 
generates a table of sine and cosine values referenced by FFT. TestInput and 
MakeSinCosTable need only be called once, even if several calls to FFT are made 
within the same program (for example, when computing the discrete convolution), 
as long as the number of data points is unchanged. If the number of data points 
changes between two calls of FFT, TestInput and MakeSinCosTable must be called 
again. (Interested readers are urged to consult the references given in the begin­
ning of the chapter for details about the Cooley-Tukey algorithm.) 

Input Parameters 

Number of data points as a power of two [four] 

Number of data points 

NumberOfBi ts : Byte; 

NumPoi nts : Integer; 

Inverse: Boolean; FALSE equals forward transform; TRUE equals inverse 
transform 

XRea 1 ': TNvectorPt r; 

XImag : TNvectorPtr; 

Pointer to real values of the data points 

Pointer to imaginary values of the data points 

SinTable: TNvectorPtr; Table of sine values 

CosTable : TNvectorptr: Table of cosine values 

The preceding parameters must satisfy the following conditions: 

1. NumPoints;::: 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

XReal : TNvectorPtr; Pointer to real values of the discrete Fourier transform of the 
input data 

XImag : TNvectorPtr; Pointer to imaginary values of the discrete Fourier transform 
of the input data 

Syntax of the Procedure Call 

FFT(NumberOfBits, NumPoints, Inverse, XReal, XImag, SinTable, CosTable); 
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Fast Fourier Transform Applications 

Each of the six application programs calls the three procedures contained within 
FFT algorithm files. 

COMPFFT.INC 

Description 

This example is the most basic application, performing a complex Fast Fourier 
Transform. It simply calls Testlnput, MakeSinCosTable, and FFT sequentially; thus 
accomplishing an in-place transformation of the complex data XReal, Xlmag. 

Input Parameters 

NumPoints : Integer; Number of data points 

Inverse: Boolean; FALSE equals forward transform; TRUE equals inverse trans­
form 

XReal : TNvectorPtr; Pointer to real values of the data points 

XImag : TNvectorPtr; Pointer to imaginary values of the data points 

The preceding parameters must satisfy the following conditions: 

1. NumPoints ~ 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

XReal : TNvectorptr; Pointer to real values of the discrete Fourier transform of the 
input data 

XImag : TNvectorPtr; Pointer to imaginary values of the discrete Fourier transform 
of the input data 

Error: Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 
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Syntax of the Procedure Call 

Comp1exFFT(NumPoints, Inverse, XRea1, XImag, Error); 

Comments 

The complex Fast Fourier method uses the New/Dispose procedures to manipulate 
the heap and should not be used in any program that uses Mark/Release to manip­
ulate the heap. 

REALFFT.INC 

Description 

This example performs a complex Fast Fourier Transform of real data. The Num­
Points real data points are first mapped onto NumPoints/2 complex data points. A 
complex Fast Fourier Transform of these complex points is performed by calling 
TestInput, Make Sin Cos Table , and FFT. The NumPoints/2 transform is then mapped 
onto NumPoints complex points. The real part of the transformation will be even, 
and the imaginary part of the transformation will be odd. If you are implementing 
this application with a radix-4 algorithm, be sure that the number of real data 
points (NumPoints) is twice the power of four. 

Input Parameters 

NumPoints : Integer; Number of data points 

Inverse: Boo1 ean; FALSE equals forward transform; TRUE equals inverse trans­
form 

XReal : TNvectorPtr; Pointer to real values of the data points 

The preceding parameters must satisfy the following conditions: 

1. NumPoints ~ 4. 

2. NumPoints must be a power of two (twice a power of four for a radix-4 
algorithm). 

At least four data points are required, because this algorithm transforms the real 
vector to a complex vector half the size. If only two real data points were entered, 
the routine would have to take the transform of a single complex point. 
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Output Parameters 

XRea 1 : TNvectorPt r; Pointer to real values of the Fourier transform of the input data 

XImag : TNvectorPtr; Pointer to imaginary values of the Fourier transform of the 
input data 

Error: Byte; 0: No errors 
1: NumPoints < 4 
2: NumPoints not a power of two [twice a power of four] 

Syntax of the Procedure Call 

RealFFT{NumPoints, Inverse, XReal, XImag, Error); 

Comments 

This method uses the New/Dispose procedures to manipulate the heap and should 
not be used in any program that uses Mark/Release to manipulate the heap. 

COMPCNVL.INC 

Description 

The calculation of the convolution of two complex vectors is facilitated with a Fast 
Fourier Transform routine. The discrete convolution of two functions x and h is 
defined by 

N-I 

Ym = IXn hm _ n 
m = 0,1, ... N - 1 

1\ = 0 

where subscripts are taken modulo N (circular convolution). The basic theorem 
that allows us to calculate these effectively using FFTs is as follows: 

m = 0,1, ... N - 1 
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where capital letters indicate the transforms of the functions represented by lower­
case letters. Thus the procedure for convolution works like this: 

1. Transform both given data sets using FFTs. 

2. Multiply the resulting transforms point by point. 

3. Find the inverse transform of this product using FFTs. 

Input Parameters 

NumPoints : Integer; Number of data points 

XReal : TNvectorPtr; Pointer to real values of the first set of data points 

XImag : TNvectorptr; Pointer to imaginary values of the first set of data points 

HReal : TNvectorptr; Pointer to real values of the second set of data points 

HImag : TNvectorptr; Pointer to imaginary values of the second set of data points 

The preceding parameters must satisfy the following conditions: 

1. NumPoints ~ 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

XReal : TNvectorptr; Pointer to real values of the convolution of XReal, Xlmag and 
HReal, Hlmag 

XImag : TNvectorptr; Pointer to imaginary values of the convolution of XReal, Xlmag 
and HReal, Hlmag 

Error: Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 

Syntax of the Procedure Call 

ComplexConvolution(NumPoints, XReal, XImag, HReal, HImag, Error); 

Comments 

This method uses the New/Dispose procedures to manipulate the heap and should 
not be used in any program that uses Mark/Release to manipulate the heap. 
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REALCNVL.INC 

Description 

The calculation of the convolution of two real vectors is facilitated with a Fast 
Fourier Transform routine. This procedure is exactly the same as the previous 
procedure for complex convolution (COMPCNVL.lNC) except that only one 
Fourier transform need be performed. The procedure is as follows: 

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal + iHReal, where i is the square root of -1. 

2. Transform this complex vector. 

3. Extract the transforms of the two real functions from the transform of the 
complex function (using the symmetry X

f 
= X_

f
, where the bar stands for 

complex conjugation). 

4. Multiply the resulting transforms point by point. 

5. Find the inverse transform of this product using FFTs. REALCNVL.lNC is 
about 25 percent faster than its complex counterpart for the same set of real 
data. 

Input Parameters 

NumPoints : Integer; Number of data points 

XReal : TNvectorPtr; Pointer to real values of the first set of data points 

HReal : TNvectorptr; Pointer to real values of the second set of data points 

The preceding parameters must satisfy the following conditions: 

1. NumPoints ~ 2. 

2. NumPoints must be a power of two [four]' 

Output Parameters 

XReal : TNvectorPtr; Pointer to real values of the convolution of XReal and HReal 

XImag : TNvectorPtr; Pointer to imaginary values of the convolution of XReal and 
HReal 

Error: Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 
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Syntax of the Procedure Call 

RealConvolution(NumPoints, XReal, Xlmag, HReal, Error); 

Comments 

This method uses the New/Dispose procedures to manipulate the heap and should 
not be used in any program that uses Mark/Release to manipulate the heap. 

COMPCORR.INC 

Description 

The calculation of the correlation of two complex vectors is facilitated with a Fast 
Fourier Transform routine. The discrete correlation of two complex functions x and 
h is defined by 

N-l 

Y = "'xh 
m L n m+n 

m = 0,1, ... N - 1 
11 = 0 

where subscripts are taken modulo N (circular correlation). The basic theorem that 
allows us to calculate these effectively using FFTs is as follows: 

y = X H 
m m N-m 

m = 0,1, ... N - 1 

where capital letters indicate the transforms of the functions represented by lower­
case letters and - indicates the complex conjugate. (Commonly x and h are real 
functions, in which case the preceding formula reduces to the more familiar 
expression Grn = Xm H,1l' where the bar stands for complex conjugation. (See REAL 
CORR.INC for a real version of correlation.) Thus the procedure for correlation 
works like this: 

1. Transform both given data sets using FFTs. 

2. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data. 

3. Find the inverse transform of this product using FFTs. 

If the functions x and h are different, the correlation is called crosscorrelation; if 
the functions x and h are the same, the correlation is called autocorrelation. 

Fast Fourier Transform Routines 249 



Input Parameters 

NumPo; nts : Integer; Number of data points 

Auto : Boolean; FALSE equals crosscorrelation; TRUE equals autocorrelation 

XReal : TNvectorPtr; Pointer to real values of the first set of data points 

XImag : TNvectorptr; Pointer to imaginary values of the first set of data points 

HReal : TNvectorPtr; Pointer to real values of the second set of data points (for cross­
correlation) 

HImag : TNvectorPtr; Pointer to imaginary values of the second set of data points (for 
crosscorrelation) 

The preceding parameters must satisfy the following conditions: 

1. NumPoints;;::: 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

XReal : TNvectorptr; Pointer to real values of the correlation of XReal, Xlmag and 
HReal, Hlmag (or the autocorrelation of XReal, Xlmag if 
Auto = TRUE) 

Xlmag : TNvectorPtr; Pointer to imaginary values of the correlation of XReal, Xlmag 
and HReal, Hlmag (or the autocorrelation of XReal, Xlmag if 
Auto = TRUE) 

Error: Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 

Syntax of the Procedure Call 

ComplexCorrelation(NumPoints. Auto. XReal. Xlmag. HReal. HImag. Error): 

Comments 

If you are performing an autocorrelation of the vector XReal, Xlmag, then set 
Auto = TRUE. In this case, the vector HReal, Hlmag will not contain any informa­
tion but must still be passed into the procedure. Autocorrelations are faster to 
compute, since only one forward transformation must be made, as opposed to two 
for crosscorrelation. 
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This method uses the New/Dispose procedures to manipulate the heap and 
should not be used in any program that uses Mark/Release to manipulate the heap. 

REALCORR.INC 

Description 

The calculation of the convolution of two real vectors is facilitated with a Fast 
Fourier Transform routine. This procedure is exactly the same as the previous 
procedure for complex correlation (COMPCORR.INC) except that only one for­
ward Fourier transform need be performed. The procedure is as follows: 

1. Given two real vectors XReal and HReal, combine them into a complex 
vector XReal + iHReal, where i is the square root of· - 1. 

2. Transform this complex vector. 

3. Extract the transforms of the two real vectors from the transform of the 
complex vector (using the symmetry X

f 
= X_

f
, where the bar stands for 

complex conjugation). 

4. Multiply each element of the transform of the first data set by the appro­
priate element of the transform of the second data. 

5. Find the inverse transform of this product using FFTs. 

Input Parameters 

NumPoi nts : Integer; Number of data points 

Auto: Bool ean; FALSE equals crosscorrelation; TRUE equals autocorrelation 

XRea 1 : TNvectorPtr; Pointer to real values of the first set of data points 

HRea 1 : TNvectorPtr; Pointer to real values of the second set of data points (for cross-
correlation) 

The preceding parameters must satisfy the following conditions: 

1. NumPoints 2! 2. 

2. NumPoints must be a power of two [four]. 
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Output Parameters 

XReal : TNvectorptr; Pointer to real values of the correlation of XReal and HReal (or 
the autocorrelation of XReal if Auto = TRUE) 

Xlmag : TNvectorPtr; Pointer to imaginary values of the correlation of XReal and 
HReal (or the autocorrelation of XReal if Auto = TRUE) 

Error : Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 

Syntax of the Procedure Call 

RealCorrelation(NumPoints, Auto, XRe31, Xlmag, HReal, Error); 

Comments 

If you are performing an autocorrelation of the vector XReal, then set Auto equal 
to TRUE. In this case, the vector HReal will not contain any information but must 
still be passed into the procedure. Autocorrelations are faster to compute, since 
only one forward transformation must be made, as opposed to two for crosscorrela­
tion. This method uses the New/Dispose procedures to manipulate the heap and 
should not be used in any program that uses Mark/Release to manipulate the heap. 

Sample Program 

The sample program FFTPROGS.PAS provides I/O functions that demonstrate 
any of the application programs. The FFT algorithm routines are included with the 
following statements: 

(*{$I FFTB2.INC} 
{*{$I FFTB4. INC} 
{$I FFT87B2.INC} 
(*{$I FFT87B4.INC} 

(* radix 2, 8088 version *) 
(* radix 4, 8088 version *) 
(* radix 2, 8087 version *) 
(* radix 4, 8087 version*) 

As you can see, three of the include statements must be commented-off so that 
only one file is included. To change which file is included, simply comment-off the 
one that is currently active (in this example that would be FFT87B2.INC) and 
remove the comment symbol (* from the include file of your choice. 
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Input File 

Data may be entered from a text file. The real and imaginary parts of a complex 
number should be separated by a space and followed by a carriage return. Real 
numbers should each be followed by a carriage return. 

The application files COMPFFT.lNC, COMPCNVL.lNC, and COMP 
CORR.lNC expect data to be in complex form. A data file containing a four-point 
complex square wave could look like this: 

00 
11 
11 
00 

The application files REALFFT.lNC, REALCNVL.lNC, and REAL 
CORR.INC expect data to be in real form. A data file containing a four-point real 
square wave could look like this: 

o 
1 
1 
o 

Example 

Problem. Perform a Fourier transform and an autocorrelation of a 32-point square 
wave. Also, convolve and crosscorrelate this square wave with a saw-tooth wave 
(assume you are working in Turbo-87). 

1. First, make sure that the FFT file FFT87B2.1NC is included in 
FFTPROGS.PAS: 

(*{$I FFTB2. INC} 
(*{$I FFTB4.INC} 
{$I FFT87B2.INC} 
(*{$I FFT87B4.INC} 

(* radix 2, 8088 version *) 
(* radix 4, 8088 version *) 
(* radix 2, 8087 version *) 
(* radix 4, 8087 version *) 

The input data file SAMPI0A.DAT is as follows (note that this is in real 
format): 

o 
o 
o 
o 
o 
o 
o 
o 
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o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

2. Run FFTPROGS.PAS: 

1. Real Fast Fourier Transform 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transform 
6. Complex Convolution 
7. Complex Autocorrelation 
8. Complex Crosscorrelation 

Select a number (1-8): 1 

********* Real Fast Fourier Transform ********* 

(F)orward or (I)nverse transform? F 

Enter data from (K)eyboard or (F)ile? F 

File name? SAMPI0A.DAT 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 
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Results of Real Fourier Transform: 
1.94454364826301E+OOO O.OOOOOOOOOOOOOOE+OOO 

-1.59057003804788E+OOO -3.14018491736755E-OI6 
7.53417436515731E-OOI 5.88784672006416E-OI7 
5.96901852132470E-002 -2.94392336003208E-OI6 

-4.26776695296637E-OOI 3.92523114670944E-OI7 
2.89883706652938E-OOI -2.94392336003208E-OI6 
6.20757203331860E-002 7.85046229341887E-OI7 

-2.66655959906343E-OOI -5.39719282672548E-OI7 
1.76776695296637E-OOI O.OOOOOOOOOOOOOOE+OOO 
6.63840517512576E-002 2.06074635202245E-OI6 

-2.08522329739913E-OOI 1.76635401601925E-OI6 
1.27160952826887E-OOI -1. 17756934401283E-016 
7.32233047033632E-002 -1.37383090134830E-OI6 

-1.83841625879619E-OOI -6.86915450674151E-OI7 
1.00135954077543E-OOI 2.74766180269661E-OI6 
8.37351650164209E-002 1.37383090134830E-OI6 

-1.76776695296637E-OOI O.OOOOOOOOOOOOOOE+OOO 
8.37351650164209E-002 -1.37383090134830E-OI6 
1.00135954077543E-OOI -2.74766180269661E-OI6 

-1.83841625879619E-OOI 6.86915450674151E-OI7 
7.32233047033632E-002 1.37383090134830E-OI6 
1.27160952826887E-OOI 1. 17756934401283E-016 

-2.08522329739913E-OOI -1.76635401601925E-016 
6.63840517512576E-002 -2.06074635202245E-OI6 
1.76776695296637E-OOI O.OOOOOOOOOOOOOOE+OOO 

-2.66655959906343E-OOI 5.39719282672548E-OI7 
6.20757203331860E-002 -7.85046229341887E-OI7 
2.89883706652938E-OOI 2.94392336003208E-OI6 

-4.26776695296637E-OOI -3.92523114670944E-OI7 
5.96901852132470E-002 2.94392336003208E-OI6 
7.53417436515731E-OOI -5.88784672006416E-OI7 

-1.59057003804788E+OOO 3.14018491736755E-OI6 

Note that the transform of the even real-square wave is an even real function. If 
you take the inverse transform of this data, you should get back the original square 
wave. 

3. Run FFfPROGS.PAS: 

1. Real Fast Fourier Transform 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transform 
6. Complex Convolution 
7. Complex Autocorrelation 
8. Complex Crosscorrelation 

Select a number (1-8): 5 

********* Complex Fast Fourier Transform ********* 

(F)orward or (I)nverse transform? I 

Enter data from (K)eyboard or (F)ile? F 

File name? SAMPI0B.DAT 
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Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Results of Complex Fourier Transform: 
1.88411095042053E-015 O.OOOOOOOOOOOOOOE+OOO 
1.72710170455215E-015 O.OOOOOOOOOOOOOOE+OOO 
2.04112019628891E-015 -3.92523114670944E-017 
2.04112019628891E-015 -1.19825492681322E-016 
1.17756934401283E-015 O.OOOOOOOOOOOOOOE+OOO 
1.09906472107864E-015 -3. 14264671746203E-016 
1.02325930356393E-015 1.53635757788210E-016 
1.02243303999922E-015 -3.53529506016654E-017 
1.07086707894778E-015 O.OOOOOOOOOOOOOOE+OOO 
3.60019188480208E-016 2.56022496768081E-016 

-3.89233270203019E-017 1.57501605887274E-016 
1.00000000000000E+000 4.33843984418077E-016 
1.00000000000000E+000 O.OOOOOOOOOOOOOOE+OOO 
1.00000000000000E+000 4.71273917614581E-016 
1.00000000000000E+000 2.94392336003208E-016 
1.00000000000000E+000 5.69158516272868E-016 
9.99999999999999E-001 O.OOOOOOOOOOOOOOE+OOO 
1.00000000000000E+000 3.92523114670944E-017 
1.00000000000000E+000 3.92523114670944E-017 
9.99999999999999E-001 -4. 13208697471334E-017 
1.00000000000000E+000 O.OOOOOOOOOOOOOOE+OOO 
1.00000000000000E+000 1. 56763065858929E-016 

-8. 12038283536641E-017 -1.53635757788210E-016 
2.33640926947802E-016 -2.78665541135090E-016 
9.70253117341126E-016 O.OOOOOOOOOOOOOOE+OOO 
1.21007327020357E-015 -2.95274808235175E-016 
4.31446441691246E-016 -1.57501605887274E-016 
1.80560632748634E-015 -2.72697621989622E-016 
9.42055475210265E-016 O.OOOOOOOOOOOOOOE+OOO 
2.04112019628891E-015 -3.13772311727307E-016 
1.80560632748634E-015 -2.94392336003208E-016 
1.96261557335472E-015 -2.55140024536113E-016 

You get back the original square wave, accurate to 15 significant figures. 

The autocorrelation of a square wave is simply a triangle. Let's take the 
autocorrelation of the square wave. 

4. Run FFTPROGS.PAS: 

1. Real Fast Fourier Transform 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transform 
6. Complex Convolution 
7. Complex Autocorrelation 
8. Complex Crosscorrelation 

Select a number (1-8): 3 

********* Real Autocorrelation ********* 
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Enter data from (K)eyboard or (F)ile? F 

File name? SAMP10A.DAT 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) il e 

Results of Autocorrelation: 
1.94454364826301E+OOO -6.89287897017933E-016 
1.76776695296637E+OOO -5.49532360539321E-016 
1.59099025766973E+OOO -6.55792559089139E-016 
1.41421356237309E+OOO -4. 17055809337878E-016 
1.23743686707646E+OOO -4.44089209850063E-016 
1.06066017177982E+OOO -2.74766180269661E-016 
8.83883476483184E-001 -3.84393694788862E-016 
7.07106781186547E-001 -1. 17756934401283E-016 
5.30330085889910E-001 5.37799391805346E-017 
3.53553390593274E-001 -1.96261557335472E-016 
1.76776695296637E-001 -1.88132137453390E-016 
O.OOOOOOOOOOOOOOE+OOO -9.32242397343491E-017 

-3.92523114670944E-016 4.44089209850063E-016 
2.35513868802566E-016 O.OOOOOOOOOOOOOOE+OOO 
4.71027737605132E-016 -1.06260198549818E-016 
4.71027737605132E-016 -1.66822323735151E-016 
1.57009245868377E-016 5.81728018656864E-016 

-3.14018491736755E-016 3.92523114670944E-016 
O.OOOOOOOOOOOOOOE+OOO 6.00281407857881E-016 

-1.57009245868377E-016 2.89485797069821E-016 
-3.92523114670944E-016 4.44089209850063E-016 
-3. 14018491736755E-016 1. 17756934401283E-016 
1.76776695296636E-001 4.39904846020120E-016 
3.53553390593273E-001 -1.96261557335472E-017 
5.30330085889910E-001 5.37799391805346E-017 
7.07106781186547E-001 3.53270803203849E-016 
8.83883476483184E-001 2.43643288684648E-016 
1.06066017177982E+OOO 2.20794252002406E-016 
1.23743686707646E+OOO -4. 44089209850063E-016 
1.41421356237309E+OOO 1.57009245868377E-016 
1.59099025766973E+OOO 5.07490473185598E-017 
1.76776695296637E+OOO 3.04205413869981E-016 

Keeping in mind that this is a periodic function (see "Data Sampling"), you 
can see that this is a triangle wave. 

Let's now convolve the square wave with a saw-tooth wave. The input file for 
the saw-tooth wave (SAMPIOC.DAT) is as follows: 

o 
o 
o 
o 
o 
o 
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o 
o 
o 
o 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

5. Run FFTPROGS.PAS: 

1. Real Fast Fourier Transform 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transform 
6. Complex Convolution 
7. Complex Autocorrelation 
B. Complex Crosscorrelation 

Select a number (I-B): 2 

********* Real Convolution ********* 

Enter data from (K)eyboard or (F)ile? F 

The first function: 

File name? SAMPI0A.DAT 
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The second function: 

File name? SAMP10C.DAT 

Direct output to one of the following: 
(S)creen 
(P)rinter 
(F) i1 e 

Results of Real Convolution~ 
1. 16672618895780E+001 O.OOOOOOOOOOOOOOE+OOO 
1. 14904851942814E+001 1.09906472107864E-015 
1. 11369318036881E+001 6.28036983473510E-016 
1.06066017177982E+001 4.71027737605132E-016 
9.89949493661168E+000 O.OOOOOOOOOOOOOOE+OOO 
9.01561146012848E+000 7.85046229341887E-016 
7.95495128834866E+000 -6.28036983473510E-016 
6.71751442127220E+000 1.57009245868377E-016 
5.30330085889910E+000 O.OOOOOOOOOOOOOOE+OOO 
3.71231060122936E+000 -1.96261557335472E-015 
1.94454364826299E+000 -2.11962481922310E-015 

-1.85270910124685E-014 -2.98317567149917E-015 
-2.04112019628891E-014 O.OOOOOOOOOOOOOOE+OOO 
-1.13046657025232E-014 -3.29719416323593E-015 
-1.44448506198907E-014 -3.45420340910430E-015 
-9.42055475210265E-015 -3.45420340910430E-015 
~1.50728876033642E-014 O.OOOOOOOOOOOOOOE+OOO 
-1.38168136364172E-014 -4.71027737605132E-016 
-1.38168136364172E-014 -6.28036983473510E-016 
-1.13046657025232E-014 -1.57009245868377E-016 
-1. 13046657025232E-014 O.OOOOOOOOOOOOOOE+OOO 
-5.02429586778808E-015 -1.09906472107864E-015 
1.76776695296632E-001 6.28036983473510E-016 
5.30330085889907E-001 -2.04112019628891E-015 
1.06066017177982E+000 O.OOOOOOOOOOOOOOE+OOO 
1.76776695296637E+000 1.33457858988121E-015 
2.65165042944956E+000 2.11962481922310E-015 
3.71231060122938E+000 2.66915717976242E-015 
4.94974746830584E+000 O.OOOOOOOOOOOOOOE+OOO 
6.36396103067893E+000 3.61121265497268E-015 
7.95495128834867E+000 3.45420340910430E-015 
9.72271824131504E+000 5.33831435952483E-015 

Now let's crosscorrelate the square wave with the saw-tooth wave. 

6. Run FFTPROGS.PAS: 

1. Real Fast Fourier Transform 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transform 
6. Complex Convolution 
7. Complex Autocorrelation 
8. Complex Crosscorrelation 

Select a number (1-8): 4 

********* Real Crosscorrelation ********* 
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Enter data from {K)eyboard or {F)ile? F 

The first function: 

File name? SAMPI0A.DAT 

The second function: 

File name? SAMPI0C.DAT 

Direct output to one of the following: 
{S)creen 
{P)rinter 
(F) il e 

Results of Real Crosscorrelation: 
1.16672618895780E+001 O.OOOOOOOOOOOOOOE+OOO 
9.72271824131504E+000 -6.67289294940604E-016 
7.95495128834866E+000 -7.85046229341887E-016 
6.36396103067893E+000 -9.02803163743171E-016 
4.94974746830583E+000 O.OOOOOOOOOOOOOOE+OOO 
3.71231060122937E+000 -1.49158783574959E-015 
2.65165042944954E+000 -2.04112019628891E-015 
1.76776695296636E+000 -1.72710170455215E-015 
1.06066017177981E+000 O.OOOOOOOOOOOOOOE+OOO 
5.30330085889897E-001 -2.62990486829532E-015 
1. 76776695296621E-001 -3.29719416323593E-015 

-1.38168136364172E-014 -2.86541873709789E-015 
-1.63289615703113E-014 O.OOOOOOOOOOOOOOE+OOO 
-1.06766287190497E-014 -3.06168029443336E-015 
-1.25607396694702E-014 -3. 14018491736755E-015 
-1.00485917355762E-014 -4.39625888431457E-015 
-1. 13046657025232E-014 O.OOOOOOOOOOOOOOE+OOO 
-9.42055475210265E-015 -3. 53270803203849E-016 
-5.02429586778808E-015 7.85046229341887E-016 
-5.02429586778808E-015 -2.74766180269661E-016 
-5.33831435952483E-015 O.OOOOOOOOOOOOOOE+OOO 
-3.76822190084106E-015 -5.49532360539321E-016 
1.94454364826300E+000 2.04112019628891E-015 
3.71231060122937E+000 4.71027737605132E-016 
5.30330085889911E+000 O.OOOOOOOOOOOOOOE+OOO 
6.71751442127221E+000 3. 65046496643978E-015 
7.95495128834867E+000 3.29719416323593E-015 
9.01561146012849E+000 4.04298808111072E-015 
9.89949493661168E+000 O.OOOOOOOOOOOOOOE+OOO 
1.06066017177982E+001 5.10280049072227E-015 
1.11369318036881E+001 3. 14018491736755E-015 
1. 14904851942814E+001 5.65233285126159E-015 
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c H A p T E R n 
Graphics Programs 

The programs in this chapter can only be run by those users with PC-DOS. 

There are some programs that graphically demonstrate the usefulness of the 
least-squares routines in Chapter 9 and the Fourier transforms in Chapter 10. A 
graphics monitor is required. Each program reads a data set from an input file, and 
uses this Toolbox to display the results. You will see curves being fitted to data 
using the least-squares routines and also see a signal being transformed into its 
Fourier spectrum. 

The programs LSQIBM.COM and FFTIBM.COM graphically illustrate the 
power and utility of the Turbo Pascal Numerical Methods Toolbox. To run them, 
you'll need an IBM Color Graphics Adapter (CGA) or a suitable clone. (The pro­
grams LSQHERC.COM AND FFTHERC.COM can be used to graphically illus­
trate the Toolbox on a Hercules Monochrome Graphics Adapter or compatible.) 
And to print, you'll need an Epson or IBM compatible dot-matrix printer. As 
explained in this chapter, these programs can be recompiled to run on other hard­
ware, including the IBM Enhanced Graphics Adapter (EGA) in its high resolution 
mode. The programs can also be recompiled to take advantage of the 8087 (or 
80287) math coprocessor. 
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Function of the Least-Squares Graphics Demonstration 
Program 

The program LSQIBM.COM demonstrates the least-squares capabilities of the 
Toolbox. To run it, you must have 

• 4x6.FON (Graphix fonts) 

• 8x8.FON (Graphix fonts) 

• ERROR.MSG (Graphix error messages) 

• LSQIBM.COM 

• SAMPllA.DAT (Input data file) 

on the current directory. (The first three files are identical to those in the Graphix 
Toolbox.) 

By default the input is a file called SAMPllA.DAT that has X and Y values (in 
ASCII form) separated by carriage returns. Running LSQIBM.COM will provide 
five different least-squares fits to the input data. The different fits are based on the 
function forms: logarithm, exponential, polynomial, power law, and finite Fourier 
series. The fits are displayed graphically on the screen and can be printed on an 
Epson or compatible printer. 

The first plot shows the input data from SAMPllA.DAT along with three curves. 
The three curves are the graphs of the power function 

Y = aXb 

the exponential function 

Y = a exp (bX) 

and the logarithm function 

Y = a In(bX) 

The header to the plot tells which curve corresponds to which function. The next 
plot shows the same input data plotted with a five-term Fourier series: 

Y = a + b * cos(x) + c * sin(x) + d * cos(2X) + e * sin(2X) 

and a five-term polynomial (that is, a polynomial of degree four). The coefficients 
are found using the routines from Chapter 9, and they give the least-square error 
among all functions of that form. (In some cases, the problem is transformed into a 
linear problem, and the error is actually the least for the transformed problem but 
possibly not exactly the least for the original problem.) Again, the header to the plot 
tells which curve corresponds to which function. 
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Finally, a bar chart shows the error for each function. The data is not at all 
periodic, so the Fourier series model is the worst. The five-degree polynomial gives 
the best fit, but it is not much better than the fit obtained by using power, exponen­
tial, or logarithm functions. 

Pressing the space bar allows you to cycle through the different screens. Press­
ing I]l exits the program. PressingIJDsends a hard copy to the printer (see the 
section entitled "Printing"). 

You can use your own data to run the program by running LSQDEMO with two 
file names, such as 

LSQIBM LSQIN.DAT L~QOUT.DAT 

The input data from LSQIN.DAT along with the least-squares fits and coeffi­
cients are output to a text file called LSQOUT.DAT. 

A default output data file can easily be arranged by changing a constant 
WriteToFile in LSQDEMO.PAS and recompiling it. (See the section, "Rebuilding 
LSQIBM.COM; to recompile it, and the comment in LSQDEMO.PAS next to the 
constant WriteToFile.) 
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Function of the Fourier Transform Graphics Demonstration 
Program 

The program FFfIBM.COM demonstrates the Fourier capabilities of the Toolbox. 
To run it, you must have 

• 4x6.FON (Graphix fonts) 

• 8x8.FON (Graphix fonts) 

• ERROR.MSG (Graphix error messages) 

• FFTIBM.COM 

• SAMPllB.DAT (Input data file) 

on the current directory. (The first three files are identical to those in the Graphix 
Toolbox.) 

By default the input is a file called SAMPllB.DAT that has 1,024 real values (in 
ASCII form) separated by carriage returns. These represent sample points from a 
two-second signal sampled at a rate of 512 points per second. The program will 
display four FFT transforms at the following sampling rates: 8 per second (16 
points), 32 per second (64 points), 128 per second (256 points), and 512 per second 
(1,024 points). For the last two samplings, the default data yields the same trans­
forms, demonstrating that a sample rate higher than twice the highest frequency 
adds no new information (the Nyquist limit). The transforms are shown on a scale 
of - 64 to + 63 cycles per second. 

In addition to the transforms, the program displays the inverse transform over 
the original data, illustrating the degree to which information is lost at different 
sampling rates. The header tells which curve is the original data and which is the 
inverse transform. 

Pressing the space bar cycles through the four plots. To the right of each plot is 
two smaller plots that show the coefficients for the real and imaginary parts of the 
Fourier transform. Some information about the sample and the transform appears 
after each plot. 

The graphs that appear on the screen can be printed on an Epson or compatible 
printer. 

You can use your own data to run the program by running FFfDEMO with two 
file names on the command line, such as 

FFTIBM FFTIN.DAT FFTOUT.DAT 

The 1,024 complex points of the 1,024-point FFTwill be written into the output 
file FFfOUT.DAT, with one complex number per line. The real and imaginary 
parts are separated by a space. 
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A default output data file can easily be arranged by changing the constant 
WriteToFile in FFTDEMO.PAS and recompiling it. (See the section, "Rebuilding 
FFfIBM.COM; to recompile it, and the comment in FFfDEMO.PAS next to 
Write ToFile.) 

Printing 

Both LSQIBM.COM and FFfIBM.COM provide the capability to print the 
graphs that appear on the screen. If you run these programs on the default data 
sets, the printouts will look just like the ones displayed here (see Figure 11-1,11-2, 
and 11-3). This is particularly useful when you would like a permanent, visual 
record of your program results. 

Figure 11-1 LSQIBM.COM 

Least-square fits of power, exponential, and logarithmic functions to data in SAMPllA.DAT. Note: This was run 
without an 8087. 
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Figure 11-2 LSQIBM.COM 
Sum of squares of residuals for five fits. Left side displays bar graph comparing various fits. Right side depicts 

same data fitted by 5th degree polynomial and a partial Fourier series. Note: This was run without an 8087. 

Ti.e interval = 2 seconds. Sople rate = 32 per second. 
TransFor. tI.e = 8.7 seconds. IllYerse tI.e = 8.5 seconds. 

Press (SPACE) to continue. (Q) to quit 

Figure 11-3 FFTIBM.COM 
Graph depicts data ofSAMPllB.DAT. Upper right-hand side displays real transform coefficients. Mid right-hand 

side displays imaginary coefficients. Dotted lines represent inverse transform of the Fourier transform, superim­
posed over original data. Inverse transform is not identical to original data because of coarseness of sample rate. 
Note: This was run without an 8087. 
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To get a printout, merely pressl]lfor Hardcopy at the menu prompt. An Epson 
or IBM compatible dot-matrix printer is required. (You cannot get a graphics print­
out on a daisy-wheel printer.) 

If your printer is not Epson-compatible and the Hardcopy command is not func­
tioning properly, you can rebuild the program with a different printer mode. (See 
the instructions that follow for rebuilding the program.) Both LSQDEMO.PAS and 
FFfDEMO.PAS have a constant called PrintMode near the beginning of the file. 
Setting PrintMode to the value 1 will allow printing on the largest number of 
printers, but a mode value of 4 will give the best looking output from a color display 
to an Epson printer. The default value is 6, since that gives good results for the 
Color Graphics Adapter, Hercules, and Enhanced Graphics Adapter. 

You can also use the DOS program GRAPHICS.COM, which enables the 
I PrtSc I key to print the screen in graphics mode. 

Rebuilding LSQIBM.COM 

The sources to LSQIBM.COM are provided. To recompile, you need Turbo Pascal 
(version 3.0) and Turbo Graphix Toolbox (version 1.06A or later), as well as this 
Toolbox. 

To rebuild LSQIBM.COM, the following files are needed: 

From CHAP9: 

EXP.LSQ (for the exponential model) 
FOURIER.LSQ (Fourier series) 
LOG.LSQ (logarithmic) 
POLY.LSQ (polynomial) 
POWER.LSQ (power law) 

From CHAPll: 

GENERIC.LSQ 
IOCHECK.lNC (a modification of COMMON.lNC) 
LEAST.MOD (a modification of LEAST.lNC from Chapter 9) 
LSQDEMO.PAS 

From Turbo Pascal: 
(These files are not included in this Toolbox.) 

TURBO.COM or TURBO-87.COM (the Turbo Pascal compiler) 
TURBO.MSG (compiler error messages) 
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From the Turbo Pascal Graphix Toolbox (version 1.06A or later): 
(These files are not included in this Toolbox.) 

AXIS.HGH 
FINDWRLD.HGH 
GRAPHIX.SYS (a copy of GRAPHIX.IBM) 
HATCH.HGH 
HISTOGRM.HGH 
KERNEL.SYS 
POLYGON.HGH 
TYPEDEF.SYS 
WINDOWS.SYS 

Once you have all of these files on the current directory, enter Turbo Pascal and 
compile LSQDEMO.PAS to disk. The resulting LSQDEMO.COM should be 
renamed LSQIBM.COM to distinguish it from the Hercules version. 

Rebuilding FFTIBM.COM 

The sources to FFTIBM.COM are provided. To recompile, you need Turbo Pascal 
(version 3.0) and Turbo Graphix Toolbox (version 1.06A or later), as well as this 
Toolbox. 

To rebuild FFTIBM.COM, the following files are needed: 

From CHAPIO: 

COMPFFT.lNC 
FFTB2.1NC 
REALFFT.lNC 

From CHAPll: 

4X6.FON (originally from the Graphix Toolbox) 
8X8.FON (originally from the Graphix Toolbox) 
ERROR.MSG (originally from the Graphix Toolbox) 
FFTDEMO.PAS 
IOCHECK.lNC (a modification of COMMON.INC) 

From Turbo Pascal: 
(These files are not included in this Toolbox.) 

TURBO.COM or TURBO-87.COM (the Turbo Pascal compiler) 
TURBO.MSG (compiler error messages) 
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From the Turbo Pascal Graphix Toolbox (version 1.06A or later): 
(These files are not included in this Toolbox.) 

AXIS.HGH 
FINDWRLD.HGH 
GRAPHIX.SYS (a copy of GRAPHIX.lBM) 
KERNEL.SYS 
POLYGON.HGH 
TYPEDEF.SYS (with MaxPlotGlb changed to the value 1,024) 
WINDOWS.SYS 

The system constant MaxPlotGlb in the file TYPEDEF.SYS must be changed to 
have the value 1,024 instead of 100. Without this change, FFTDEMO will termi­
nate with an error message. 

Once you have all of these files on the current directory, enter Turbo Pascal and 
compile FFTDEMO.PAS to disk. The resulting FFTDEMO.COM should be 
renamed FFTIBM.COM to distinguish it from the Hercules version. 

Rebuilding for the Hercules Card 

To recompile for the Hercules graphics card, simply copy GRAPHIX.HGC to 
GRAPHIX.SYS, as explained in the Turbo Pascal Graphix Toolbox. The font file 
14X9.FON is also required from the Graphix Toolbox, and the version of the 
Graphix Toolbox must be 1.07 A or later. (You can use version 1.06A of the Graphix 
Toolbox if you're using the copy of GRAPHIX.HGC accompanying the other 
CHAPll files.) 

The resulting files LSQDEMO.COM and FFTDEMO.COM should be 
renamed to LSQHERC.COM and FFTHERC.COM to distinguish them from the 
IBM CGA versions. 

Rebuilding for the EGA Card 

To recompile for the IBM Enhanced Graphics Adapter (EGA), you must copy 
GRAPHIX.EGA to GRAPHIX.SYS. A copy of GRAPHIX.EGA is included with 
this Toolbox since many users purchased copies of the Turbo Graphix Toolbox 
before support for the EGA was added. 

LSQIBM.COM and FFTIBM.COM will run on machines with an EGA card. 
However, to take advantage of the higher resolution offerred by this card, you must 
copy GRAPHIX.EGA and recompile. 
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Release 1.07 A of the Graphics Toolbox also supports other graphics hardware. 
LSQDEMO and FFTDEMO can be recompiled for any of these systems. 

Using the Math Coprocessor 

To recompile to take advantage of the math coprocessor, you must use TURBO-
87.COM instead of TURBO.COM. Some increased performance in the FFr demo 
program will be obtained ifFFfB2.1NC is replaced by FFT87B2.INC from Chap­
ter 10 of the Toolbox. 
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clamped, 44, 57-62 
free, 44,52-56, 64,76-79 

Cyclic Jacobi method, 132, 149-153 

D 
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Differential equations 
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nth order, 157, 178-185 
ordinary, 155 
second-order, 158, 172-177, 192, 
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stiff, 161 
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Direct factorization of matrices, 106, 
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DIRFACT.lNC. 106, 120-122 
DIRFACT.PAS, 122-125 
Distribution disks, 7-11 
DIVDIF.lNC, 49-50 
DIVDIF.PAS, 50-51 
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Eigensystem, 149 
Eigenvalue, 131-132 
Eigenvector, 131 
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Enhanced Graphics Adapter, 3, 261, 267 
rebuilding for, 269-270 

EXP.LSQ, 225-226, 267 

F 

Fast Fourier Transform, 233 
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sample program, 252-260 

FFT87B2.1NC, 233-235 
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FFT procedure, 242-243 
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Fourier transform, 3, 233-260 
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GAUSELIM.lNC, 106, 114-115 
GAUSELIM.PAS, 115-116 
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with partial pivoting, 106, 117-119 
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GAUSSIDL.INC, 106, 126-127 
GAUSSIDL.PAS, 128-130 
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Goodness of fit, 222 
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168-171 
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JACOBI.PAS, 151-153 

L 

LAGRANGE.INC, 45-46 
Lagrange method, 43, 45-48 
LAGRANGE.PAS, 46-48 
LAGUERRE.INC, 37-38 
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Laguerre's method, 16 
finding roots of complex polynomial, 

37-41 
LEAST.IN C, 106, 222-226 
LEAST. MOD, 267 
LEAST.PAS, 227-231 
Least-squares approximation, 222-231 
Least-squares solution 

graphics demo, 262-263 
linear regression, 221 
multiple regression, 221 

Linear equations, 105-106 
differential, 155 
with direct factoring, l20-125 
with Gaussian elimination, 114-119 

LINSHOT2.1NC, 156, 158, 215-218 
LINSHOT2.PAS, 218-219 
Lipshitz condition, 157 
LOG.LSQ, 226 
LSQDEMO.COM, 268 
LSQDEMO.PAS, 263 

rebuilding for EGA, 269 
rebuilding for printing, 265-267 

LSQHERC.COM, 261 
rebuilding for Hercules, 269 

LSQIBM.COM, 261-263 
graphics demo, 265-267 
rebuilding, 267 
rebuilding for EGA, 269 

LUJ)ecompose, l20-l21 
LU_Solve, l20-l22 

M 

MakeSinCosTable, 242-243 
Mark/Release, 96, 99, 145 

in Adams-Bashforth/Adams-Moulton, 
170 

in complex fast Fourier, 245-252 
in Linear Shooting/Runge-Kutta, 217 
in Runge-Kutta, 161, 182, 191, 202, 211 
in Runge-Kutta-Fehlberg, 165 

Matrix 
algebra, 105 
diagonal, 131 
direct factorization, 106, l20 
identity, 139 
nonsingular, 106, l20-l25 
orthogonal, 134 
permutation, l20 
rotation, 149 
square, 106, 131-133, 137 
symmetric, 132, 149-153 
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Mesh points, 156 
MULLERINC, 33-35 
MULLERPAS, 35-36 
Muller's method, 16 

N 

finding roots of complex function, 
33-36 

New/Dispose, 96, 99, 145 
in Adams-Bashforth/Adams-Moulton, 

170 
in complex fast Fourier, 245-252 
in Linear Shooting/Runge-Kutta, 217 
in Runge-Kutta, 161, 182, 191,202,211 
in Runge-Kutta-Fehlberg, 165 

NEWTDEFL.INC, 28-30 
NEWTDEFL.PAS, 30-32 
Newton-Horner method, 15-16 

with deflation, 28-32 
Newton-Raphson method, 15-16 

root of a function using, 21-24 
Newton's general divided-difference 
algorithm, 43, 49-51 

Nonlinear shooting method, 158, 
208-214 

Numerical differentiation, 63-65 
five-point formulas, 64, 66-75 
three-point formulas, 64, 66-75 
two-point formulas, 64, 66-70 

Nyquist frequency, 239, 264 
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Partial pivoting, 106, 117 
and direct factoring, l20 

PARTPIVT.INC, 106, 117-118 
PARTPIVT. PAS , 118-119 
POLY.LSQ, 224, 267 
Polynomials 

Lagrange, 89 
Legendre, 98-100 
methods to approximate roots of, 16, 

25-41 
POWERINC, 131-135 
POWERLSQ, 225, 267 
Power method, 131-136 

and Wielandt's deflation, 143-148 
POWERPAS, 135-136 
Powers-of-four, 234 
Powers-of-two, 234 
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application, 248-249 
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application, 251-252 
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SECANT.INC, 25-26 
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in nonlinear equations, 158, 208-214 
root of a function using, 25-27 
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Wielandt method, 132 
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BORLAND 
INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066 

Available at better dealers nat1onwide. 
To order by credit card, call (800) 255-8008; CA (BOO) 742-1133; 
CANADA (800) 237-1136. 



"11,rll.fll ® 11E IEBI1" 
IJ.J IR.IIJ : IIRSAIIIIER 
Whether you're running WordStar,® Lotus,® dBASE,® 

or any other program, SideKick puts all these desktop 
accessories at your fingertips-Instantly! 

A full-screen WordStar-like Editor to jot 
down notes and edit files up to 25 pages 
long. 

A Phone Directory for names, addresses, 
and telephone numbers. Finding a name or a 
number is a snap. 

An Autodialer for all your phone calls. It will 
look up and dial telephone numbers for you. 
(A modem is required to use this function.) 

All the SideKick windows stacked up over Lotus 1-2-3.­
From bottom to top: SideKick's "Menu Window," ASCII 
Table, Notepad, Calculator, Appointment Calendar, Monthly 
Calendar, and Phone Dialer. 

A Monthly Calendar from 1901 through 
2099. 

Appointment Calendar to remind you 
of important meetings and appointments. 

A full-featured Calculator ideal for 
business use. It also performs decimal 
to hexadecimal to binary conversions. 

An ASCII Table for easy reference. 

Here's SideKick running over Lotus 1-2-3. In the 
SideKick Notepad you'll notice data that's been imported 
directly from the Lotus screen. In the upper right you can 
see the Calculator. 

The Critics' Choice 
"In a simple, beautiful implementation of WordStar's 
block copy commands, SideKick can transport all 
or any part of the display screen (even an area 
overlaid by the notepad display) to the notepad." 

-Charles Petzold, PC MAGAZINE 

"SideKick deserves a place in every PC." 
-Gary Ray, PC WEEK 

"SideKick is by far the best we've seen. It is also 
the least expensive." 

-Ron Mansfield, ENTREPRENEUR 

"If you use a PC, get SideKick. You'll soon become 
dependent on it." -Jerry Pournelle, BYTE 

Suggested Retail Price: $84.95 (not copy protected) 

Minimum system configuration: IBM PC, XT, AT, PCjr and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk 
drive. A Hayes-compatible modem, IBM PCjr internal modem, or AT&T Modem 4000 is required for the autodialer function. 

SideKick is a registered trademark of BorlCJld International. Inc. dBASE is a registered trademark of 
Ashton-Tate. IBM. XT. AT. and PCjr are registered trademarks of International Business Machines Corp. 
AT&T is a registered trademark of AmericCJl Telephone & Telegraph Company. Lotus and 1-2-3 are 
registered trademarks of Lotus Development Corp WordStar is a registered trademark of MicroPro 
International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc. 
Copyright 1987 Borland International BOR0060C 



The Organizer For The Computer Age! 
Traveling SideKick is BinderWare,@ both a binder you take with you when you travel 
and a software program-which includes a Report Generator-that generates and 

prints out all the information you'll need to take with you. 

Information like your phone list, your client list, 
your address book, your calendar, and your 
appointments. The appointment or calendar files 
you'r~ already using in your SideKick8 can auto­
matically be used by your Traveling SideKick. You 
don't waste time and effort reentering information 
that's already there. 

One keystroke prints out a form like your address 
book. No need to change printer paper; 

What's inside Traveling SideKick 

you simply punch three holes, fold and clip 
the form into your Traveling SideKick binder, and 
you're on your way. Because Traveling SideKick is 
CAD (Computer-Age Designed), you don't fool 
around with low-tech tools like scissors, tape, or 
staples. And because Traveling SideKick is 
electronic, it works this year, next year, and all the 
"next years" after that. Old-fashioned daytime 
organizers are history in 365 days. 

What the software program and its 
Report Generator do for you before 
you go-and when you get back 

Belore you go: 
• Prints out your calendar, 

appointments, addresses, phone 
directory, and whatever other 
information you need from your 
data files 

When you return: 
• Lets you quickly and easily enter all 

the new names you obtained while 
you were away into your 
SideKick data files 

It can also: 
• Sort your address book by contact, 

zip code or company name 
• Print mailing labels 
• Print information selectively 
• Search files for existing addresses 

or calendar engagements 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system configuration: IBM PC, XT, AT, Portable, PCjr, 3270 and true compatibles. PC·DOS (MS·DOS) 2.0 or later. 
256K RAM mimimum. 

BORLAND 
INTERNATIONAL 

SideKick. BinderWare and Traveling SideKick are registered trademarks of Borland 
International. Inc. IBM. AT. XT. and PCjr are registered trademarks 01 International Business 
Machines Corp. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987 
Borland Inlernational BOR 0083A 



RAM-resident 
Increased productivity for IBM8PCs Dr compatibles 

SuperKey's simple macros are electronic shortcuts to success. 
By letting you reduce a lengthy paragraph into a single keystroke 

of your choice, SuperKey eliminates repetition. 

SuperKey turns 1,000 keystrokes into 1! 
SuperKey can record lengthy keystroke sequences and play them back at the touch of a single key. 
Instantly. Like magic. 
In fact, with Super Key's simple macros, you can turn "Dear Customer: Thank you for your inquiry. 
We are pleased to let you know that shipment will be made within 24 hours. Sincerely," into the 
one keystroke of your choice! 

SuperKey keeps your confidential files-confidential! 
Without encryption, your files are open secrets. Anyone can walk up to your PC and read your 
confidential files (tax returns, business plans, customer lists, personal letters, etc.). 
With SuperKey you can encrypt any file, even while running another program. As long as you keep 
the password secret, only you can decode your file correctly. SuperKey also implements the U.S. 
government Data Encryption Standard (DES). 

~ RAM resident-accepts new macro files ~ Keyboard buffer increases 16 character 
keyboard "type-ahead" buffer to 128 
characters 

even while running other programs 
~ Pull-down menus 
~ Superfast file encryption 
~ Choice of two encryption schemes 
~ On-line context-sensitive help 
~ One-finger mode reduces key 

commands to single keystroke 

~ Real-time delay causes macro playback 
to pause for specified interval 

~ Transparent display macros allow 
creation of menus on top of application 
programs 

~ Screen OFF/ON blanks out and restores 
screen to protect against "burn in" 

~ Data entry and format control using 
"fixed" or "variable" fields 

~ Command stack recalls last 256 
characters entered ~ Partial or complete reorganization of 

keyboard 

Suggested Retail Price: $99.95 (not copy protected) 

Minimum system configuration: IBM PC. Xl. AT. PCjr. and true compatibles: PC-DOS (MS-DOS) 
2.0 or greater. 128K RAM. One disk drive. 

SuperKey is a registered trademark 01 Borland Internationat. Inc. IBM. XT, AT. and PCjr are 
registered trademarks 01 International Business Machines Corp. MS-DOS is a registered 
trademark 01 Microsoft Corp. BOR 0062C 



If you use an IBM® PC, you need 

T U R B 0 

Lightning® 
Turbo Lightning teams up 
with the Random House 
Concise Word List to 
check your spelling as 
you type! 

Turbo Lightning, using the 
BO,OOO-word Random House 
Dictionary, checks your spelling 
as you type. If you misspell a 
word, it alerts you with a 
"beep." At the touch of a key, 
Turbo Lightning opens a 
window on top of your 
application program and 
suggests the correct spelling. 
Just press one key and the 
misspelled word is instantly 
replaced with the correct word. 

Turbo Lightning works 
hand-in-hand with the 
Random House Thesaurus 
to give you instant access 
to synonyms 

Turbo Lightning lets you 
choose just the right word from 
a list of alternates, so you 
don't say the same thing the 
same way every time. Once 
Turbo Lightning opens the 
Thesaurus window, you see a 
list of alternate words; select 
the word you want, press 
ENTER and your new word will 
instantly replace the original 
word. Pure magic! 

II you ever write a 
word, think a word, or 
say a word, you need 
Turbo Lightning 

The Turbo Lightning Proofreader 

The Turbo Lightning Thesaurus 

Suggested Retail Price: $99.95 (not copy protected) 

" . 

You can teach Turbo 
Lightning new words 

You can teach your new Turbo 
Lightning your name, business 
associates' names, street 
names, addresses, correct 
capitalizations, and any 
specialized words you use 
frequently. Teach Turbo 
Lightning once, and it 
knows forever. 

Turbo Lightning is the 
engine that powers 
Borland's Turbo Lightning 
Libraryf'J 

Turbo Lightning brings 
electronic power to the 
Random House Concise Word 
List and Random House 
Thesaurus. They're at your 
fingertips-even while you're 
running other programs. Turbo 
Lightning will also "drive" 
soon-to-be-released 
encyclopedias, extended 
thesauruses, specialized 
dictionaries, and many other 
popular reference works. You 
get a head start with this 
first volume in the Turbo 
Lightning Library. 

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles with 2 lIoppy disk drives. PC·DOS (MS·DOS) 2.0 or greater. 
256K RAM. Hard disk recommended. 

BORLAND 
INTERNATIONAL 

Turbo Lightning and Turbo Lightning Library are registered trademarks of Bortand tnternational, Inc. 
IBM. XT, AT, and PCjr are registered trademarks of International Business Machines Corp, Random 
House is a registered trademark of Random House, Inc, Copyright 1987 Borland International 

BOR 0070B 



Your Development Toolbox and Technical Reference Manual for Thrbo lightning@) 

l I G H T N I N G 

Lightning Word Wizard includes complete, commented Turbo 
Pascal® source code and all the technical information you'll 

need to understand and work with Turbo Lightning's "engine." 
More than 20 fully documented Turbo Pascal procedures 

reveal powerful Turbo Lightning engine calls. Harness the full power 
of the complete and authoritative Random House® Concise 

Word List and Random House Thesaurus. 

Turbo Lightning's "Reference 
Manual" 
Developers can use the versatile on-line 
examples to harness Turbo Lightning's 
power to do rapid word searches. Lightning 
Word Wizard is the forerunner of the data­
base access systems that will incorporate " 
and engineer the Turbo Lightning Library® 
of electronic reference works. 

The ultimate collection of word 
games and crossword solvers! 
The excitement, challenge, competition, 
and education of four games and three 
solver utilities-puzzles, scrambles, spell­
searches, synonym-seekings, hidden words, 
crossword solutions, and more. You and 
your friends (up to four people total) can 
set the difficulty level and contest the high­
speed smarts of Lightning Word Wizard! 

Turbo Lightning-Critics' Choice 
"Lightning's good enough to make programmers and users cheer, executives of other 
software companies weep." Jim Seymour, PC Week 

"The real future of Lightning clearly lies not with the spelling checker and thesaurus currently 
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles 

"This newest product from Borland has it all." Don Roy, Computing Now! 

Minimum system configuration: IBM PC. XT. AT. PCjr. Portable. and true compatibles. 256K RAM minimum. PC·DOS (MS·DOS) 2.0 
or greater. Turbo Lightning software required. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code. 

Suggested Retail Price: $69.95 
(not copy protected) 

Turbo Pascal, Turbo Lightning and Turbo Lightning Library are registered trademarks and Lightning Word Wizard is a trademark of Borland International, Inc. Random 
House is a registered trademark of Random House, Inc. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a 
registered trademark of Microsoft Corp. CqJyright 1987 Borland International BOR00878 



I 'EEI Ell ® TIE DATABASE 
~r'~II: .ANABEI 

The high-performance database manager 
that's so advanced it's easy to use! 

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists, 
customer files, or even your company's budgets-Reflex is the database manager for you! 

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends 
database management with business graphics. Because a picture is often worth a 1000 words, Reflex 
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see. 

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports. 
You can use database files created with Reflex or transferred from Lotus 1-2-3,8 dBASE,8 PFS: File,8 
and other applications. 

Reflex: The Critics' Choice 

" ... if you use a PC, you should know about Reflex ... may be the best bargain in software today." 
Jerry Pournelle, BYTE 

"Everyone agrees that Reflex is the best-looking database they've ever seen." 
Adam B. Green, Info World 

liThe next generation of software has officially arrived." Peter Norton, PC Week 

Reflex: don't use your PC without it! 
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of 
Borland's award-winning Reflex. 

Suggested Retail Price: $149.95 (not copy protected) 

Minimum system configuration: IBM PC, Xl, AT, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules 
Monochrome Graphics CArd, or equivalent. PC·DOS (MS· DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1·2·3, dBASE, 
or PFS: File optional. 

Reflex is a trademark of Bortand/Analytica tnc. Lotus 1-2-3 is a registered trademark of Lotus 
Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: Fite is a 
registered trademark of Software Publishing Corporation. IBM. XT. AT, and IBM Color Graphics 
Adapter are registered trademarks of International BUSiness Machines Corporation. Hercules 
Graphics Card is a trademark of Hercules Computer Technology. MS-DOS is a registered 
trademark of Microsoft Corp. Copyright 1987 Borland International BOA 0066C 



REILEX: TIE WIIISII"· 
Includes 22 "instant templates" covering a broad range of 

business applications (listed below). Also shows you how to 
customize databases, graphs, crosstabs, and reports. It's an invaluable 

analytical tool and an important addition to another one of 
our best sellers, Reflex: The Database Manager. 

Fast-start tutorial examples: 
Learn Reflex@) as you work with practical business applications. The Reflex Workshop Disk supplies 
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in each 
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple 
steps to adapt the files to your own needs. 
22 practical business applications: 
Workshop's 22 "instant templates" give you a wide range of analytical tools: 

Administration • Tracking Manufacturing Quality Assurance 
• Scheduling Appointments • Analyzing Product Costs 
• Planning Conference Facilities Accounting and Financial Planning 
• Managing a Project • Tracking Petty Cash 
• Creating a Mailing System • Entering Purchase Orders 
• Managing Employment Applications • Organizing Outgoing Purchase Orders 
Sales and Marketing • Analyzing Accounts Receivable 
• Researching Store Check Inventory • Maintaining Letters of Credit 
• Tracking Sales Leads • Reporting Business Expenses 
• Summarizing Sales Trends • Managing Debits and Credits 
• Analyzing Trends • Examining Leased Inventory Trends 

• Tracking Fixed Assets 
Production and Operations • Planning Commercial Real Estate Investment 
• Summarizing Repair Turnaround 

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex: 
The Workshop will help you quickly become an expert database analyst. 

Minimum system configuration: IBM PC, AT, and XT, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 384K RAM minimum. Requires Rellex: 
The Database Manager, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card or equivalent. 

Suggested Retail Price: $69.95 
(not copy protected) 

Reflex is a registered trademark and Reflex: The Workshop is a trademark of Borland/Analytica, Inc. IBM, AT, and Xl are registered trademarks 01 International Business 
Machines Corp. Hercules is a trademark 01 Hercules Computer Technology. MS-DOS is a registered trademark 01 Microsoft Corp. Copyright 1987 Borland International 

BOA 0088B 



Version 3.0 with 8087 support and BCD reals 

Free MicroCaic Spreadsheet With Commented Source Code! 
FEATURES: 
One-Step Compile: No hunting & fishing 
expeditions! Turbo finds the errors, takes you 
to them, lets you correct them, and instantly 
recompiles. You're off and running in 
record time. 

Built-in Interactive Editor: WordStar~like 
easy editing lets you debug quickly. 

Automatic Overlays: Fits big programs into 
small amounts of memory. 

THE CRITICS' CHOICE: 
"Language deal of the century ... Turbo Pascal: 
it introduces a new programming environment 
and runs like magic." 

-Jell Duntemann, PC Magazine 

"Most Pascal compilers barely fit on a disk, but 
Turbo Pascal packs an editor, compiler, linker, 
and run-time library into just 39K bytes of 
random access memory." 

-Dave Garland, Popular Computing 

MicroCalc: A sample spreadsheet on your disk 
with ready-to-compile source code. 

"What I think the computer industry is headed 
for: well-documented, standard, plenty of 
good features, and a reasonable price." 

IBM~ PC Version: Supports Turtle Graphics, 
color, sound, full tree directories, window 
routines, input/output redirection, and 
much more. 

-Jerry Pournelle, BYTE 

LOOK AT TURBO NOW! 

@' More than 500,000 users worldwide. 

@' Turbo Pascal is the de facto industry 
standard. 

@' Turbo Pascal wins PC MAGAZINE'S 
award for technical excellence. 

@' Turbo Pascal named "Most 
Significant Product of the Year" by 
PC WEEK. 

@' Turbo Pascal 3.0-the fastest Pascal 
development environment on the 
planet, period. 

Suggested Retail Price: $99.95; CP/M~-80 version without 8081 and BCD: $69.95 

Features lor 16-bit Systems: 8087 math co-processor support for intensive calculations. 
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business application. 

Minimum system configuration: 128K RAM minimum. Includes 8087 & BCD features for 16-bit MS-DOS 2.0 or later and 
CP/M-86 1.1 or later. CP/M-80 version 2.2 or later 48K RAM minimum (8087 and BCD features not available). 8087 
version requires 8087 or 80287 co-processor. 

Turbo Pascal is a registered trademark of Bor1and International. Inc. CP/M is a registered trademark 
of Digital Research Inc. IBM is a registered tradermrk of International Business Machines Corp. 
MS-DOS is a registered tradermrk of Micr~ft Corp. VlbrdStar is a registered trademark of 
MicroPro International. Copyright 1987 Borland International BOA 00619 



VERSION 2.0 

Learn Pascal From The Folks Who Created 
The Turbo Pascal® Family 

Borland International proudly presents Turbo Tutor, the perfect complement 
to your Turbo Pascal compiler. Turbo Tutor is really for everyone-

even if you've never programmed before. 

And if you're already proficient, Turbo Tutor can sharpen up the fine paints. 
The manual and program disk focus on the whole spectrum of Turbo 
Pascal programming techniques. 

• For the Novice: It gives you a concise history of Pascal, tells you how to write a 
simple program, and defines the basic programming terms you need to know. 

• Programmer's Guide: The heart of Turbo Pascal. The manual covers the fine points 
of every aspect of Turbo Pascal programming: program structure, data types, control 
structures, procedures and functions, scalar types, arrays, strings, pointers, sets, files, 
and records. 

• Advanced Concepts: If you're an expert, you'll love the sections detailing such topics as 
linked lists, trees, and graphs. You'll also find sample program examples for PC-DOS and 
MS-DOS.@) 

10,000 lines of commented source code, demonstrations of 20 Turbo Pascal features, multiple­
choice quizzes, an interactive on-line tutor, and more! 

Turbo Tutor may be the only reference work about Pascal and programming you'll ever need! 

Suggested Retail Price: $39.95 (not copy protected) 

Minimum system configuration: Turbo Pascal 3.0. PC-DOS (MS-DOS) 2.0 or later. 192K RAM minimum (CP/M-80 
version 2.2 or later: 64K RAM minimum). 

Turbo Pascal and Turbo Tutor are regislered tademarks of Borland International Inc. CP 1M is a 
registered trademark of Digital Research Inc. MS-DOS is a registered trademark of Microsoft Corp. 
Copyright 1987 Borland International BOR 0064C 



Is The Perfect Complement To Turbo Pascal® 

It contains a complete library of Pascal procedures that 
allows you to sort and search your data and build powerful database 

applications. It's another set of tools from Borland that will give 
even the beginning programmer the expert's edge. 

THE TOOLS YOU NEED! 
TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it 
possible to access records in a file using key words instead of numbers. Now available with 
complete source code on disk, ready to be included in your programs. 

TURBO SORT: The fastest way to sort data using the QUICKSORT algorithm-the method 
preferred by knowledgeable professionals. Includes source code. 

GINST (General Installation Program): Gets your programs up and running on other 
terminals. This feature alone will save hours of work and research. Adds tremendous value 
to all your programs. 

GET STARTED RIGHT AWAY.-FREE DATABASE! 
Included on every Toolbox diskette is the source code to a working database which 
demonstrates the power and simplicity of our Turbo Access search system. Modify it to suit 
your individual needs or just compile it and run. 

THE CRITICS' CHOICE! 
liThe tools include a B+ tree search and a sorting system. I've seen stuff like this, but not as 
well thought out, sell for hundreds of dollars." -Jerry Pournelle, BYTE MAGAZINE 

liThe Turbo Database Toolbox is solid enough and useful enough to come recommended." 
-Jeff Duntemann, PC TECH JOURNAL 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system conliguration: 128K RAM and one disk drive (CP/M·80: 48K). 16·bit systems: Turbo Pascal 2.0 or greater lor 
MS·DOS or PC·DOS 2.0 or greater. Turbo Pascal 2.1 or greater lor CP/M·86 1.0 or greater. 8·bit systems: Turbo Pascal 2.0 or 
greater lor CP/M·80 2.2 or greater. 

BORLAND 
INTERNATIONAL 

Turbo Pascal and Turbo Database Toolbox are registered trademarks of Borland International 
Inc. CP 1M is a registered trademark of Dignal Research. Inc. MS-DOS is a registered 
trademark of Microsoft Corp. Copyright 1987 Borland International BOR 00630 



7VRBO MS'CAl. 

GRAPHlx200tsox® 
A Library of Graphics Routines for Use with Turbo Pasca/® 

High-resolution graphics for your IBM" PC, AT," XT," PCjr", true PC compatibles, and the Heath 
Zenith Z-100:" Comes complete with graphics window management. 

Even if you're new to Turbo Pascal programming, the Turbo Pascal Graphix Toolbox will get you started 
right away. It's a collection of tools that will get you right into the fascinating world of high-resolution 
business graphics, including graphics window management. You get immediate, satisfying results. And 
we keep Royalty out of American business because you don't pay any-even if you distribute your own 
compiled programs that include all or part of the Turbo Pascal Graphix Toolbox procedures. 

What you get includes: 

• Complete commented source code on disk. 
• Tools for drawing simple graphics. 
• Tools for drawing complex graphics, including 

curves with optional smoothing. 
• Routines that let you store and restore graphic 

images to and from disk. 
• Tools allowing you to send screen images to 

Epsone-compatible printers. 

• Full graphics window management. 
• Two different font styles for graphic labeling. 
• Choice of line-drawing styles. 
• Routines that will let you Quickly plot functions 

and model experimental data. 
• And much, much more ... 

"While most people only talk about low-cost personal computer software, Borland has been doing 
something about it. And Borland provides good technical support as part of the price." 

John Markov & Paul Freiberger, syndicated columnists. 

II you ever plan to create Turbo Pascal programs that make use of business graphics or scientific 
graphics, you need the Turbo Pascal Graphix Toolbox. 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system configuration: IBM PC, Xl, AT, PCjr, true compatibles and the Heath Zenith Z-100. Turbo Pascal 3.0 or later. 192K 
RAM minimum. Two disk drives and an IBM Color Graphics Adapter (CGA), IBM Enhanced Graphics Adapter (EGA), Hercules Graphics 
Card or compatible. 

BORLAND 
INTERNATIONAL 

Turbo Pascal and Turbo Graphix Toolbox are registered trademarks 01 Borland International. 
Inc. IBM. XT. AT. and PCjr are registered trademarks 01 International Business Machines 
Corporation. Hercules Graphics Card is a trademark 01 Hercules Computer Technology. Heath 
Zenith Z-1 00 is a trademark 01 Zenith Data Systems Epson is a registered trademark 01 
Epson Corp. Copyright 1987 Borland Intemational BOR 0068C 



2VRBO PASCAl. 

.EDJ2OR 2totsox® 
It's All You Need To Build Your Own Text Editor 

Or Word Processor 
Build your own lightning-fast editor and incor­
porate it into your Turbo Pascale programs. 
Turbo Editor Toolbox gives you easy-to-install 
modules. Now you can integrate a fast and powerful 
editor into your own programs. You get the source 
code, the manual, and the know-how. 

Create your own word processor. We provide all 
the editing routines. You plug in the features you want. 
You could build a WordStare -like editor with pull-down 
menus like Microsoft'se Word, and make it work as fast 
as WordPerfect.e 

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for 
two sample editors: 

Simple Editor A complete editor ready to include in your programs. With windows, block commands, and 
memory-mapped screen routines. 

MicroStar A full-blown text editor with a complete pull-down menu user interface, plus a lot more. 
Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs. 

The Turbo Editor Toolbox gives you all the 
standard features you would expect to find 
in any word processor: 

• Wordwrap 
, UN-delete last line 
• Auto-indent 
• Find and Find/Replace with options 
• Set left and right margin 
• Block mark, move, and copy 
• Tab, insert and overstrike modes, 

centering, etc. MicroStar's pull-down menus. 

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match. 
Just to name a few: 

[3" RAM-based editor. You can edit very large [3" Multiple windows. See and edit up to eight 
files and yet editing is lightning fast. documents-or up to eight parts of the same 

[3" Memory-mapped screen routines. In- document-all at the same time. 
stant paging, scrolling, and text display. [3" Multitasking. Automatically save your 

[3" Keyboard installation. Change control text. Plug in a digital clock, an appointment 
keys from WordStar-like commands to any that alarm-see how it's done with MicroStar's 
you prefer. "background" printing. 

Best of all, source code is included for everything in the Editor Toolbox. 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system configuration: IBM PC, XT, AT, 3270, PCjr, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 192K RAM. 
You must be using Turbo Pascal 3.0 for IBM and compatibles. 

Turbo Pascal and Turbo Editor Toolbox are registered trademarks of Borland International. Inc. 
WordStar is a registered trademark of MicroPro International Corp. Word and MS-DOS are 
registered trademarks of Microsoft Corp. WordPerfect is a trademark of Satellite Software 
International. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines 
Corp. BOR 0067B 



Secrets And Strategies 01 The Masters Are 
Revealed For The First Time 

® 

Explore the world of state-of-the-art computer games with Turbo GameWorks. Using 
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create 
your own computer games using Turbo Pascal.8 Or, for instant excitement, play the three 

great computer games we've included on disk-compiled and ready to run. 

TURBO CHESS 

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your way to 
becoming a master chess player. Explore the complete Turbo Pascal source code and discover the secrets of 
Turbo Chess. 

"What impressed me the most was the fact that with this program you can become a computer chess analyst. 
You can add new variations to the program at any time and make the program play stronger and stronger chess. 
There's no limit to the fun and enjoyment of playing Turbo GameWorks Chess, and most important of all, with this 
chess program there's no limit to how it can help you improve your game." 

-George Koltanowski, Dean of American Chess, former President of 
the United Chess Federation, and syndicated chess columnist. 

TURBO BRIDGE 

Now play the world's most popular card game-bridge. Play one-on-one with your computer or against up to 
three other opponents. With Turbo Pascal source code, you can even program your own bidding or scoring 
conventions. 

"There has never been a bridge program written which plays at the expert level, and the ambitious user will 
enjoy tackling that challenge, with the format already structured in the program. And for the inexperienced player, 
the bridge program provides an easy-to-follow format that allows the user to start right out playing. The user can 
'play bridge' against real competition without having to gather three other people." 

-Kit Woolsey, writer of several articles and books on bridge, 
and twice champion of the Blue Ribbon Pairs. 

TURBO GO-MOKU 

Prepare for battle when you challenge your computer to a game of Go-Moku-the exciting strategy game also 
known as Pente." In this battle of wits, you and the computer take turns placing X's and D's on a grid of 19X19 
squares until five pieces are lined up in a row. Vary the game if you like, using the source code available on your 
disk. 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PClr, and true compatibles. PC·DOS (MS·DOS) 2.0 or later. 192K 
RAM minimum. To edit and compile the Turbo Pascal source code, you must be using Turbo Pascal 3.0 for IBM PCs and 
compatibles. 

~ " BORLAND Turbo Pascal and Turbo GameWorks are registered trademarks of Borland International. Inc. 
Pente is a registered trademark of Parker Brothers. IBM. XT. AT. and PCjr are registered 

'# I N T ERN A T ION A L trademarks of International Business Machiles Corporation. MS-DOS is a registered trademark 
of Microsoft Corporation. Copyright 1987 Borland International BOR0065C 



TURBO 

the natural language of ArtiflCiallntelrlgenCe 

Turbo Prolog brings fifth-generation supercomputer 
power to your IBM®PC! 

Turbo Prolog takes Turbo Prolog provides 
programming into a new, a fully integrated pro-
natural, and logical gramming environment 
environment like Borland's Turbo 
With Turbo Prolog, Pascal,® the de facto 
because of its natural, worldwide standard. 
logical approach, both You get the 
people new to programming complete Turbo 
and professional programmers Prolog programming 
can build powerful applica- system 
tions such as expert systems, You get the 2DD-page 
customized knowledge manual you're holding, 
bases, natural language software that includes 
interfaces, and smart L.~ ••• ~<.<".~";; _____ ~_~ ___ ............. ,,,,-, the lightning-fast Turbo 
information management systems. Prolog six-pass 
Turbo Prolog is a declarative language which compiler and interactive editor, and the 
uses deductive reasoning to solve free GeoBase natural query language 
programming problems. database, which includes commented 

source code on disk, ready to compile. 

Turbo Prolog's development system 
ncludes: 
] A complete Prolog compiler that is a variation 

of the Clocks in and Mellish Edinburgh 
standard Prolog. 

] A full-screen interactive editor. 
] Support for both graphic and text windows. 
] All the tools that let you build your own 

expert systems and AI applications with 
unprecedented ease. 

-.=.., 

BORLAND 
-~ INTERNATIONAL 

(GeoBase is a complete database designed 
and developed around U.S. geography. 
You can modify it or use it "as is.") 

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PCjr 
and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 384K RAM 
minimum. 

Suggested Retail Price: $99.95 
(not copy protected) 

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark of Borland International. Inc. 
IBM. AT. XT. and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a 
registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0016D 
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Enhances Turbo Prolog with more than 80 tools 
and over 8,000 lines 01 source code 

Turbo Prolog, the natural language of Artificial Intelligence, is the 
most popular AI package in the world with more than 100,000 users. 

Our new Turbo Prolog Toolbox extends its possibilities. 

The Turbo Prolog Toolbox enhances Turbo Prolog-our 5th-generation computer programming 
language that brings supercomputer power to your IBM PC and compatibles-with its more than 80 
tools and over 8,000 lines of source code that can be incorporated into your programs, quite easily. 

Turbo Prolog Toolbox features include: 
& Business graphics generation: boxes, circles, ellipses, bar charts, pie charts, scaled graphics 
& Complete communications package: supports XModem protocol 
& File transfers from Reflex,~ dBASE III,~ Lotus 1-2-3,~ Symphony~ 
& A unique parser generator: construct your own compiler or query language 
& Sophisticated user -interface design tools 
& 40 example programs 
& Easy-to-use screen editor: design your screen layout and 1/0 
& Calculated fields definition 
& Over 8,000 lines of source code you can incorporate into your own programs 

Suggested Retail Price: $99.95 (not copy protected) 

Minimum system configuration: iBM PC, XT, AT or true compatibles. PC-DOS (MS-DOS) 2.0 or later. Requires Turbo Prolog 1.10 
or higher. Dual-floppy disk drive or hard disk. 512K. 

Turbo Prolog Toolbox and Turbo Prolog are trademarks of Borland International, Inc. Reflex 
is a registered trademark of Borland/Analytica, Inc. dBASE III is a registered trademark of 
Ashton-Tate. Lotus 1-2-3 and Symphony are registered trademarks of Lotus Development 
Corp. IBM, XT. and AT are registered trademarks of International Business Machines Corp. 
MS-DOS is a registered trademark of Microsoft Corp. BOR 0240 
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The high-speed BASIC you've been waiting for! 

You probably know us for our Turbo Pascale and Turbo Pr%g.'" Well, we've done 
it again! We've created Turbo Basic, because BASIC doesn't have to be slow. 

If BASIC taught you how to walk, Turbo Basic will teach you how to run! 
With Turbo Basic, your only speed is "Full Speed Ahead"! Turbo Basic is a complete development 
environment with a lightning fast compiler, an interactive editor and a trace debugging system. And 
because Turbo Basic is also compatible with BASICA, chances are that you already know how to use 
Turbo Basic. . 

Turbo Basic ends the basic confusion 
There's now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is 
right, the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing 
Borland family of programming languages we call the "Turbo Family." And hundreds of thousands of 
users are already using Borland's languages. So, welcome to a whole new generation of smart PC 
users! 

Free spreadsheet included with source code! 
Yes, we've included MicroCalc, our sample spreadsheet, complete with source code. So you can get 
started right away with a "real program." You can compile and run it "as is," or modify it. 

A technical look at Turbo Basic 
B Full recursion supported 
B Standard IEEE floating-point format 
B Floating-point support, with full 8087 

executable program, with separate windows 
for editing, messages, tracing, and execution 

B Compile and run-time errors place you in 
coprocessor integration. Software emulation 
if no 8087 present 

source code where error occurred 
B Access to local, static and global variables 
B New long integer (32-bit) data type B Program size limited only by available 

memory (no 64K limitation) 
B EGA and CGA support 

B Full 80-bit precision 
B Pull-down menus 

B Full integration of the compiler, editor, and B Full window management 

Suggested Retail Price: $99.95 (not copy protected) 

Minimum system configuration: IBM PC. AT. XT or true compatibles. 256K. One floppy drive. PC-DOS (MS-DOS) 2.0 or lalel. 

Turbo Basic and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of 
Borland International. Inc. IBM. AT. and XT are regislered trademarks of International Business 
Machines Corp. MS-DOS is a registered trademark of Microsolt Corp. 
Copyright 1987 Borland International BOR 0265A 



Includes tree 
MicroCalc spreadsheet 

with source code 

A complete interactive development environment 
With Turbo C, you can expect what only Borland delivers: 
Quality, Speed, Power and Price. And with its compilation 
speed of more than 7000 lines a minute, Turbo C makes 

everything else look like an exercise in slow motion. 

Turbo C: The C compiler for both amateurs and professionals 
If you're just beginning and you've "kinda wanted to learn C," now's your chance to do it the easy way. 
Turbo C's got everything to get you going. If you're already programming in C, switching to Turbo C will 
considerably increase your productivity and help make your programs both smaller and faster. 

Turbo C: a complete interactive development environment 
Like Turbo Pascale and Turbo Prolog,'" Turbo C comes with an interactive editor that will show 
you syntax errors right in your source code. Developing, debugging, and running a Turbo C 
program is a snap! 

Technical Specifications 
[Y' Compiler: One-pass compiler generating native in- [iY' Development Environment: A powerful "Make" is 

line code, linkable object modules and assembler. included so that managing Turbo C program 
The object module format is compatible with the development is easy. Borland's fast "Turbo 
PC-DOS linker. Supports small, medium, compact, Linker" is also included. Also includes pull-down 
large, and huge memory model libraries. Can mix menus and windows. Can run from the environ-
models with near and far pointers. Includes ment or generate an executable file. 
floating point emulator (utilizes 8087/80287 if [iY' Links with relocatable object modules created 
installed). using Borland's Turbo Prolog into a 

[Y' Interactive Editor: The system includes a powerful, single program. 
interactive full-screen text editor. If the compiler [iY' ANSI C compatible. 
detects an error, the editor automatically positions ~ Start-up routine ~ource ~ode included .. 
the cursor appropriately in the source code. ~ Both. co~mand line and Integrated enVIronment 

versions Included. 

"Sieve" benchmark (25 Iterations) 

Turbo C MicrosoftPJ C Lattice C 

Compile time 3.89 16.37 13.90 

Compl7e and link time 9.94 29.06 27.79 

Execution time 5.77 9.51 13.79 

Object code size 274 297 301 

Price $99.95 $450.00 $500.00 

Benchmark run on a 6 Mhz IBM AT using Turbo eversion 1.0 and the Turbo Linker version 1.0; Microsoft eversion 4.0 and the 
MS overlay linker version 3.51; Lattice eversion 3.1 and the MS object linker version 3.05. 

Suggested Retail Price: $99.95* (not copy protected) ·Introductory offer good through July 1. 1987. 

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. One floppy drive. 320K. 

Turbo C and Turbo Pascal are registered traoomarks and Turbo Prolog is a trademark 01 Borland 
International. Inc. Microsoft C and MS-DOS ere registered trademarks 01 Microsoft Corp. lattice C 
is a registered trademark 01 lattice. Inc. IBM, Xl, and AT are registered trademarks 01 International 
Business Machines Corp. BOA 0243 
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The solution to your most complex 

equations-in seconds! 
If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with 
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap. 

Eureka also handles maximization and minimization problems, plots functions, generates reports, and 
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you 
solve your real-world mathematical problems fast, without having to learn numerical approximation 
techniques. Using Borland's famous pull-down menu design and context-sensitive help screens, Eureka 
is easy to learn and easy to use-as simple as a hand-held calculator. 

X + exp(X) = 10 solved instantly instead 01 eventually! 
Imagine you have to "solve for X," where X + exp(X) = 10, and you don't have Eureka: The Solver. 
What you do have is a problem, because it's going to take a lot of time guessing at "X." With Eureka, 
there's no guessing, no dancing in the dark-you get the right answer, right now. (Ps: X = 2.0705799, 
and Eureka solved that one in .4 of a second!) 

How to use Eureka: The Solver 
It's easy. 
1. Enter your equation into the 

full-screen editor 
2. Select the "Solve" command 
3. Look at the answer 
4. You're done 

Some 01 Eureka's key leatures 
You can key in: 
~ A formula or formulas 
~ A series of equations-and solve for 

all variables 
~ Constraints (like X has to be 

< or = 2) 
~ A function to plot 
~ Unit conversions 
~ Maximization and minimization problems 
~ Interest Rate/Present Value calculations 
~ Variables we call "What happens?," like 

You can then tell Eureka to 
• Evaluate your solution 
• Plot a graph 
• Generate a report, then send the output 

to your printer, disk file or screen 
, • Or all of the above 

Eureka: The Solver includes 
~ A full-screen editor 
~ Pull-down menus 
~ Context-sensitive Help 
~ On-screen calculator 
~ Automatic 8087 math co-processor 

chip support 
~ Powerful financial functions 
~ Built-in and user-defined math and 

financial functions 
~ Ability to generate reports complete with 

plots and lists 
"What happens if I change this variable to 
21 and that variable to 27?" 

~ Polynomial finder 
~ Inequality solutions 

Minimum system configuration: IBM PC, AT, XT, Portable, 
3270 and true compatibles. PC-DOS (MS-DOS) 2.0 and 
later. 384K. 

Suggested Retail Price: $99.95* 
(not copy protected) 

Eureka: The Solver is a trademark of Borla1d International, Inc. IBM, AT, and XT are registered 
trademarks of International Business Machnes Corp. MS-DOS is a registered trademark of 
Microsoft Corp. Copyright 1987 Borland International BOR 0221A 

'Introductory price expires July 1, 1987 



"II'EII'PI® THE BEBKTllfI IJJ Ift'lIJ : IIRSAIIIIER Release 2.0 
Macintosh™ 

The most complete and comprehensive collection of 
desk accessories available for your Macintosh! 

Thousands of users already know that SideKick is the best collection of desk accessories available 
for the Macintosh. With our new Release 2.0, the best just got better. 

We've just added two powerful high-performance tools to SideKick-Outlook": The Outliner 
and MacPlan'": The Spreadsheet. They work in perfect harmony with each other and while you 
run other programs! 

Outlook: The Outliner 
• II's the desk accessory with more power than a stand-alone outliner 
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics 

into your outlines 
• Works hand-in-hand with MacPlan 
• Allows you to work on several outlines at the same time 

MacPlan: The Spreadsheet 
• Integrates spreadsheets and graphs 
• Does both formulas and straight numbers 
• Graph types include bar charts, stacked bar charts, pie charts and line graphs 
• Includes 12 example templates free! 
• Pastes graphics and data right into Outlook creating professional memos and reports, complete 

with headers and footers. 

SideKick: The Desktop Organizer, 
Release 2.0 now includes 

~ Outlook: The Outliner 
~ MacPlan: The Spreadsheet 
~ Mini word processor 
~ Calendar 
~ Phone Log 
~ Analog clock 
~ Alarm system 
~ Calculator 
~ Report generator 
~ Telecommunications (new version now 

supports XModem file transfer protocol) 
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MacPlan does both spreadsheets and business 
graphs. Paste them into your Outlook files and 

generate professional reports. 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One BOOK or two 400K drives are recommended. 
With one 400K drive, a limited number of desk accessories will be installable per disk. 

SideKick is a registered trademark and Outlook and MacPlan are trademarks of Borland 
International, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. licensed to Apple 
Computer, Inc. Copyright 1987 Borland International BOR 00690 
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The easy-to-use relational database that thinks like a spreadsheet. 
Rellex lor the Mac lets you crunch numbers by entering lormulas and link 

databases by drawing on-screen lines. 

5 free ready-to-use templates are included on the examples disk: 

• A sample 1040 tax application with Sched­
ule A, Schedule 8, and Schedule 0, each 
contained in a separate report document. 

• A portfolio analysis application with linked 
databases of stock purchases, sales, and 
dividend payments. 

• A checkbook application. 

• A client billing application set up for a law 
office, but easily customized by any 
professional who bills time. 

• A parts explosion application that breaks 
down an object into its component parts 
for cost analysis. 

Reflex for the Mac accomplishes all of these tasks without programming-using 
spreadsheet-like formulas. Some other Reflex for the Mac features are: 

• Visual database design. 
• "What you see is what you get" report and form layout 

with pictures. 
• Automatic restructuring of database files when data 

types are changed, or fields are added and deleted. 
• Display formats which include General, Decimal, 

Scientific, Dollars, Percent. 

• Data types which include variable length text, number, 
integer, automatically incremented sequence number, 
date, time, and logical. 

• Up to 255 fields per record. 
• Up to 16 files simultaneously open. 
• Up to 16 Mac fonts and styles are selectable for 

individual fields and labels. 

• file Edit form.t OllCrlb. D,"'''' S •• n .. Milt Window 
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After opening the "Overview" window, you 
draw link lines between databases directly 
onto your Macintosh screen. 

The link lines you draw establish both 
visual and electronic relationships between 
your databases. 

You can have multiple windows open 
simultaneously to view all members 01 a 
linked set-which are interactive and truly 
relational. 

Critic's Choice 
" ... a powerful relational database ... uses a visual approach to information management." InfoWorld 

" ... gives you a lot of freedom in report design; you can even import graphics." A+ Magazine 

". '.' bridges the gap between the pretty programs and the power programs." Stewart Alsop, PC Letter 

Suggested Retail Price: $99.95* 
(not copy protected) 

Minimum syslem configuration: Macirtosh 512K or Macintosh Plus with one disk drive. Second external drive recommended. 

Reflex is a registered trademark of BorlandiAnalytica. Inc. MaCintosh is a trademark of MCintosh Laboratory. Inc. and is used with express permission of as owner. 
Copyright 1987 Borland Internationat 

'Introductory price expires July 1. 1987 

BOR0149A 



The ultimate Pascal development environment 

Borland's new Turbo Pascal for the Mac is so incredibly fast that it can 
compile 1,420 lines of source code in the 7.1 seconds it took you to read this! 

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac 
to compile at least 60,000 more lines of source code! 

Turbo Pascal for the Mac does both Windows and "Units" 
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units," 
which can be linked to any Turbo Pascal program. This "modular pathway" gives you "pieces" which can 
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the 
time it takes to develop large programs. 

Turbo Pascal for the Mac is so compatible with Lisae that they should be living together 
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run 
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File 
System of the Macintosh. 

The 27-second Guide to Turbo Pascal for the Mac 
• Compilation speed of more than 12,000 lines 

per minute 
• "Unit" structure lets you create programs in 

modular form 
• Multiple editing windows-up to 8 at once 

Workshop Pascal (with minimal changes) 
• Compatibility with Hierarchical File System of 

your Mac 
• Ability to define default volume and folder names 

used in compiler directives 
• Compilation options include compiling to disk or 

memory, or compile and run 
• Search and change features in the editor speed up 

and simplify alteration of routines 
• No need to switch between programs to compile 

or run a program 
• Ability to use all available Macintosh memory 

without limit 
• Streamlined development and debugging • "Units" included to call all the routines provided by 
• Compatibility with Macintosh Programmer's Macintosh Toolbox 

Suggested Retail Price: $99.95* (not copy protected) 
·Introductory price expires July 1. 1987 

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive. 

Turbo Pascal and SideKick are registered trademarks of Borland International, Inc. and Reflex is a 
registered trademark of Borlandl Analytica, Inc. Macintosh is a trademark 01 Mcintosh Laboratories, Inc. licensed 
to Apple Computer with its express permission. Lisa is a registered trademark of Apple Computer, Inc. Inside 
Macintosh is a copyright of Apple Computer, Inc. 
Copyright 1987 Borland International BOR 0167A 
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,
ew from Borland's Scientific & Engineering Division, Turbo 
Pascal Numerical Methods Toolbox implements the latest 
high-level mathematical methods to solve common scientific 
and engineering problems. Fast. 

So every time you need to calcu­
late an integral, work with Fourier 
Transforms or incorporate any of the 
classical numerical analysis tools into 
your programs, you don't have to 
reinvent the wheel. Because the 
Numerical Methods Toolbox is a 
complete collection of Turbo Pascal 
routines and programs that gives you 
applied state-of-the-art math tools. 
It also includes two graphics demo 
programs, Least Squares Fit and Fast 
Fourier Transforms, to give you the 
picture along with the numbers. 

The Numerical Methods Toolbox is 
a must for you if you're involved with 
any type of scientific or engineering 
computing. Because it comes with 
complete source code, you have total 
control of your application. 

What Numerical Methods 
Toolbox will do for you now: 
• Find solutions to equations 
• Interpolations I 

• Calculus: numerical derivatives 
and integrals 

• Matrix operations: inversions, 
determinants and eigenvalues 

• Differential equations 

• Least squares approximations 
• Fourier transforms 

5 free ways to look at 
"Least Squares Fit"! 

As well as a free demo "Fast 
Fourier Transforms," you also get 
"Least Squares Fit" in 5 different 
forms-which gives you 5 
different methods of fitting curves 
to a collection of data pOints. 
You instantly get the picture 1 The 
5 different forms are: 
1. Power 4. 5-term Fourier 
2. Exponential 5. 5-term 
3. Logarithm Polynomial 

They're all ready to compile 
and run "as is." To modify or 
add graphics to your own 
programs, you simply add Turbo 
Graphix Toolbox" to your soft­
ware library. Our Numerical 
Methods Toolbox is designed to 
work hand-in-hand with our 
Turbo Graphix Toolbox to make 
professional graphics in your 
own programs an instant part of 
the picture! 

Minimum s,stem conllgul.don: IBM PC. XT, AT and true compatibles. PC-DOS (MS-OOSI 2.0 or later 256K. Turbo 
Pascal 2.0 or later. The graphics modules reQuire a graphics monilor with an IBM CGA. IBM EGA, or Hercules compatible 
adapter card, and reQuire the Turbo Graph~ Toolbox. MS-DOS generic version will not support Turbo Graphix Toolbox 
routines. An 8087 or 80287 numeric co-processor is not reQuired, bul recommended lor optimal perlormance. 

Turbo Pascal Numerical Methods Toolbox ~ a trademark and Turbo Pascal and Turbo Graphix Toolbox are registered 
trademarks 01 Borland International, Inc. IBM, XT, and AT are registered trademarks of International Business Machines 
Corp. MS-DOS is a registered trademark 01 Microso" Corp. Hercules is a trademark 01 Hercules Compuler TechnOlogy. 
Apple is a registered trademark 01 Apple Computer, Inc. Macintosh is a trademark 01 Mcintosh Laboralory. Inc. licensed 
10 Apple Computer. Copyright 1986 Borland Inlernational BOA 0224 


