
BORLAND

Turbo Pascal®

Reference Guide

Version 5.0

Copyrightc 1983,1989
All rights reserved

Borland International
1800 Green Hills Road

P.O. Box 660001
Scotts Valley, CA 9~1

R3

This manual was produced with
SprintOP The Professional Word Processor

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks

or registered trademarks of their respective holders.
Copyrighto 1989 Borland International.

Printed in the U.S.A.

109876543

Table of Contents

Introduction 1
What's On Your Disks 0 1

Installing Turbo Pascal On Your System 0 4
About This Manual 0 •• 0 • 0 0 4
Typography 00 0 0 0 0 0 5
How to Contact Borland 0 • 0 0 0 0 0 5

Part 1 Programmer's Reference

Chapter 1 Tokens and Constants 9
Special Symbols and Reserved Words 0 9
Iden tifiers 0 •• 0 0 0 0 11
!.abels 000000000000000000000000000000000000000 •••••••• 0 0 0 000 0000 12
Numbers 00 0 0 0 13
Character Strings 0 14
Constant Declarations 0 • 0 0 0 00 0 0 0 0 15
Comments 00 0 16
Program Lines 0 16

Chapter 2 Blocks, Locality, and Scope 17
Syntax 000 0000.0 17
Rules of Scope 00 19
Scope of Interface and Standard Identifiers 0 0 0 0 0 0 0 ••• 0 • 0 •••• 0 0 00 0 0 0 0 19

Chapter 3 Types 21
Simple Types 0 0 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 • 0 • 0 • 0 0 0 0 0 0 0 .0 0 •• 0 22

Ordinal Types . 0 0 0 0 0 ••• 0 • 0 • 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 •• 22
Integer Types o. 0 0 0 0 0 • 0 •••• 0 0 0 0 0 0 0 •• 0 23
Boolean Type 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 •• 0 0 0 • 0 0 0 0 0 0 0 0 o. 24
Char Type 0 0 0 • 0 0 0 • 0 0 0 0 0 0 •• 0 • 0 0 0 0 0 24
Enumerated Types 0000.0000000000000 ••• 00000.0 ••••• 00.0000 •• 24
Subrange Types 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 •• 25

Real Types 0 0 0 0 0 0 0 0 0 0 • 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 • 0 0 0 • 0 26
Software Floating Point 0 • 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 26
8087 Floating Point 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 •• 0 27

String Types 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 27
Structured. Types 0 28

Array Types 0 28
Record Types 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29
Set Types 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31
File Types 0 • 0 0 0 0 31

Pointer Types 0 32
Procedural Types 0 33
Identical and Compatible Types 0.00. 0 0 0 0000000000000000000 •• 0 0 0 0 00 33

Type Identity 0" 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 • 0 0 0 • 0 0 33
Type Compatibility 0 0 • 0 0 0 0 • 0 0 • 0 0 • 0 • 0 0 0 0 0 •• 0 0 0 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 0 •• 34
Assignment Compatibility 0 .. 0 0 0 0 0 .. 0 .. 0 •••• 0 0 0 •• 0 •• 0 34

The Type Declaration Part .. 0 0 • 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 • 0 • 0 0 0 0 ••• 0 • 0 35

Chapter 4 Variables 37
Variable Declarations 0000 •• 000 •• 000000.000 •••• 000 •• 00000000000 •• 0 37

The Data Segment 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 38
The Stack Segment 0 0 0 ••• 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 • 0 0 • 0 0 0 • 0 0 0 0 • 0 0 0 0 0 •• 38
Absolute Variables 00000 •••• 0.00.000000000.0. 0 0 0 0 00.000000.0000 39

Variable References .. 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 39
Qu.alifiers 0 0 0 0 0 0 0 0 0 • 0 0 • 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 ••• 0 0 0 0 • 0 0 0 • 0 40

Arrays, Strings, and Indexes ... 0 0 0 0 • 0 0 0 0 0 •• 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 •• 0 41
Records and Field Designators. 0" 0 0" 0.00.0 .. 0 0 0 0 ... 0 0 0 0 •• 0 41
Pointers and Dynamic Variables . 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 42

Variable Typecasts 0000000.000 •• 00.0.000000.00. 0 '.0 ••• 0 0 00000 •• 0 •• 42

Chapter 5 Typed Constants 45
Simple-Type Constants 0 •• 0 • 0 0 0 0 0 • 0 • 0 0 0 0 • 0 0 0 • 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 • 0 0 46
String-Type Constants 00 ••• 0.00 ••• 0 • 0 0 0 0 •••• 0 • 0 0.000000 00000.0 ••• 46
Structured-Type Constants o. 0 •••••• 0.0.0000000000.00000 .000000.0 0 46

Array-Type Constants 0 •• 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 0 0 0 ••• 0 47
Record-Type Constants .. 000000. 0 0 0 00000000000.000. 00 •• 00000. 0.0 48
Set-Type Constants .. 0 0 •• 0 0 0 ••• 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 •• 0 0 0 • 0 • 0 0 0 • 0 • 0 0 "0 48

Pointer-Type Constants 0 0 0 •• 0 0 •• 0 0 • 0 • 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 • 0 0 49

Chapter 6 Expressions 51
Expression Syntax 0 ••• 0 0 ••• 0 0 0 0 0 • 0 •• 0 • 0 0 0 0 •• 0 0 0 0 0 • 0 0 •• 0 • 0 0 0 0 • 0 • •• 52
Operators .. 0 0 0 0 0 0 0 ••• 0 0 ••• 0 ••• 0 0 • 0 • 0 • 0 0 ••• 0 •• 0 0 0 • 0 0 0 •• 0 0 0 0 0 •• o. 54

Arithmetic Operators 00000000 ••• 0 0 0 0 • 0 • 0 0 0 00000000000 0000000.00 54
Logical Opera tors 0 •••••••••••••••••••••••••• 0 0 • • • • • •• 56
B<>olean Operators 0 •• 0 •• 0 0 0 0 0 00. 0 0 0 .0 •• 0 • 0 0 000 •• 0 .000 .00. 0 000.0 56
String Operator . 0 ••• 0 •• 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 • 0 0 •• 0 • 0 0 0 0 • 0 • 0 0 57
Set Operators 0 0 0 0 0 • 0 • 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 • 0 0 0 0 •••• 0 0 0 0 0 0 •• 0 0 • 0 0 0 • •• 58
Relational Operators 000 •• 0 0 000000000.00000 •• 000000000 • 000.00 ••• 58

Comparing Simple Types 0 0 0 0 0 •• 0 0 • 0 0 •• 0 0 • 0 0 0 0 0 •• 0 0 •• 0 0 0 0 0 0 • •• 59
Comparing Strings 0 0 •• 0 0 0 0 0 0 • 0 0 0 • 0 • 0 •••••• 0 0 • 0 0 0 ••• 0 0 0 • • • • •• 59
Comparing Packed Strings . 0 •• 0 0 0 • 0 •• 0 0 •• 0 • 0 0 • 0 0 0 •••• 0 0 0 • 0 0 •• 60
Comparing Pointers 0 ••• 0 0 ••• 0 •••••• 0 0 0 • 0 • 0 0 •• 0 0 0 •• 0 0 • 0 60
Comparing Sets ... 0 •••••• 0 •••••• 0 • 0 ••• 0 0 • 0 0 0 •• 0 0 0 0 •• 0 0 • 0 0 0 0 0 60
Testing Set Membership .. 0 0 0 0 •• 0 •• 0 0 •• 0 0 • 0 0 0 0 0 ••• 0 0 • 0 0 • 0 0 • 0 0 0 60

The @ Operator 0 0 0 ••••••• 0 0 0 ••••••••• 0 0 0 0 •••• 0 0 0 0 ••••• 0 0 ••••• 0 61
@ with a Variable .. 0 0 0 0 0 0 • 0 • 00 •••• 0 000 0 ••• 0 000 •• 0. 0 • 0 0 0 • 0 •••• 61

Ii

@ with a Value Parameter 61
@ with a Variable Parameter 0 •• 62
@ with a Procedure or Function 0 ••••••••••••••••••• 0 • • • • •• 62

Function Calls 0 ••••••••••••••••••••• 0 •••• 62
Set Constructors 0 ••••••••••••••••••• 0 •• 0 0 •• 63
Value Typecasts 0 ••••••••••• 0 ••••••••••••••••••• 0 • 0 • • •• 64

Chapter 7 Statements 65
Simple Statements 0 ••••••• 0 •••• 0 •• 0 ••• 0 ••• 0 ••••••• 0 •• 0 •••• 65

Assignment Statements 0 ••••••••••••••••••••• 0 •••• 66
Proced.ure Statements 0 • • •• 66
Goto Statements ... 0 • • •• 67

Structured Statements 0 •••••••••••••••••••••••••• 67
Compound Statements 0 ••••••••••••••••• 0 •••••••••• 0 •••• 67
Conditional Statements 0 ••••••••••••••••••••• 0 • • •• 68

If Statements .. 0 • • •• 68
Case Statements 0 •••••••••••••• 0 • • •• 69

Repetitive Statements 0 ••••••••••• 0 •••• 70
Repeat Statements 0 •••• 70
While Statements 0 ••• 0 ~ ••••••••• 0 •••• 71
For Statements ... 0 • • •• 72

With Statements .. 74

Chapter 8 Procedures and Functions 77
Procedure Declarations ' .. 0 •••••••• 77

Forward Declarations .. 78
External Declarations .. 79
Inline Declarations .. 80

Function Declarations .. 80
Parameters .. .

Value Parameters .. .
Variable Parameters .. .
Untyped Variable Parameters

Procedural Types
Procedural Type Declarations 0 •••••••••

Procedural Variables o ••••••••••••••••••••••••••

Procedural Type Parameters 0 •••••••••••••••••••

Procedural Types in Expressions

Chapter 9 Programs and Units
Program Syntax 0 0 ••••••••• 0 • 0 •••••••••••••••••••••••••••

The Program Heading o. 0 ••••••••••••••••••••• 0 ••••••••••••••••

The Uses Clause , ... 0 •••••••

Unit Syntax .. .
The Unit Heading 0 ••••••••••••• 0 •••••••••••••••

The Interface Part 0 •••••••••••••••• 0 ••••••••••••••••

ill

82
82
83
83
84
84
85
87
89

93
93
93
93
94
95
95

The Implementation Part 95
The Initialization Part .. 96
Indirect Unit References .. 96
Circular Unit References 97

Sharing Other Declarations 99

Chapter 10 Input and Output 101
An Introduction to I/O ... 101
Standard Procedures and Functions for All Files 102

Procedures .. 102
Functions ... 103

Standard Procedures and Functions for Text Files 103
Procedures .. 104
Functions ... 104

Standard Procedures and Functions for Untyped Files. 105
The FileMode Variable. 105
Devices in Turbo Pascal ... 106

OOS Devices .. 106
The CON Device ... 107
The LPT1, LPT2, and LPT3 Devices 107
The COM1 and COM2 Devices .. 107
The NUL Device ... 107

Text File Devices ... 108

Chapter 11 Standard Procedures and Functions 109
Flow Control Procedures .. 109
Dynamic Allocation Procedures and Functions 109

Procedures ' 110
Functions ... 110

Transfer Functions ... 110
Arithmetic Functions ... 110
Ordinal Procedures and Functions. .. 111

Procedures .. 111
Functions '. 111

String Procedures and Functions 112
Procedures .. 112
Functions ... 112

Pointer and Address Functions. .. 112
Miscellaneous Procedures and Functions 112

Procedures .. 112
Functions ... 113

Chapter 12 Standard Units 115
Standard Unit Dependencies. .. 116
The System Unit ... 116
The Printer Unit .. 119

Iv

The Dos Unit 00 119
Constants, Types, and Variables 00000000000000000000000000000000 120

Flags Constants 0 120
File Mode Constants 0 0 0 •• 120
File Record Types . 0 0 0 • 0 • 0 •••••••• 0 0 •••• 0 •• 0 •••• 0 •• 0 •••••• 0 0 120
File Attribute Constants 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 121
The Registers Type 0 122
The DateTime Type 0 122
The SearchRec Type 0 122
The File-Handling String Types 0 123
The DosError Variable 0 123

Interrupt Support Procedures 0 123
Date and Time Procedures 0 0 0 0000000000000000000000000000000000 124
Disk Status Functions 0 124
File-Handling Procedures and Functions 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 124

Procedures 0 124
Functions 00000000000000000 00000000000000000000.000 000000 125

Process-Handling Procedures and Functions 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 •• 0 0 • 0 125
Procedures 000000000000000 •• 000000 •• 0 0 0 0 0 0000000000000000 125
Functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 '0 0 0 125

Environment-Handling Functions . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 • 0 0 0 0 0 125
Miscellaneous Procedures and Function 00000000000.0.00000.00000 125

Procedures. 0 0 0 0 0 0 0 0000000000000000000000 •• 00.0000.0000 •• 125
Function 00000000.000000000000000.00000000000 •• 000 •• 00000 126

The Crt Unit . 0 126
The Input and Output Files 000000.00000000000000000000000000000 126
Windows 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • o. 0 0 0 126

Special Characters 0 0 0 0 0 0 0 0 0 0 0 •• 0 • o. 0 0 0 127
Line Input 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 • 0 0 0 127

Constants, Types, and Variables 00 00000000000000000000000.00.000 128
Crt Mode Constants 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 o. 0 0 0 128
Text Color Constants 0 • 0 0 0 0 0 0 0 •• 0 • 0 0 0 128
Crt Variables . 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 129

CheckBreak 0 •• 0 0 • 0 • 0 • 0 0 0 129
CheckEOF 0 0 0 0 0 0 • 0 •• 0 0 ••• 0 • 0 0 0 130
CheckSnow 0 0 0 0 • 0 • 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 130
DirectVideo 0 130
LastMode 000000000000000000000000000000000000000.0000000 131
TextAttr 0 • 0 0 0 131
WindMinand WindMax 00000000 .. 0 0 0 .. 0 0 0 .. 0 .. 0" 131
Procedures 0 132
Functions 0 • 0 0 • 0 0 0 132

The Graph Unit 0 • 0 0 • 0 0 0 133
Drivers 0 0 0 0 0 0 00 • 0 0 • 0 0 0 133

IBM 8514 Support 00000000000000000000000000000000000.00.000 134

v

Coordinate System ... 135
Current Pointer .. 135
Text .. 136
Figures and Styles .. 136
Viewports and Bit Images 137
Paging and Colors .. 137
Error-Handling .. 137
Getting Started .. 138

User-Written Heap Management Routines 140
Graph Unit Constants, Types and Variables 142

Constants ... 142
Types ... 146
Variables .. 148

Procedures .. 148
Functions ... 151

The Turbo3 Unit ... 152
Interface Section ... 152

Kbd .. 153
CBreak .. 154

Procedures .. 154
Functions ... 154

The Graph3 Unit ... 155
Procedures .. 155

Chapter 13 Overlays 159
The Overlay Unit. .. 160

Constants and Variables 161
The OvrResult Variable 161
Result Codes .. 161

Proced.ures and Functions 162
OvrInit ... 162
OvrInitEMS ... 162
OvrSetBuf .. 163
OvrGetBuf .. 163
OvrClearBuf .. 163

Designing Overlaid Programs. .. 164
Overlay Code Generation 164
The FAR Call Requirement 164
Initializing the Overlay Manager 165
Initialization Sections in Overlaid Units 167
What Not to Overlay ... 168
Debugging Overlays .. 169
External Routines in Overlays 169

Chapter 14 Using the 8087 171
The 8087 Data Types. .. 172

vi

Extended Range Arithmetic 173
Comparing Reals .. 174
The 8087 Evaluation Stack .. 175
Writing Reals with the 8087 .. 176
Units Using the 8087 '" 176

Detecting the 8087 .. 176
Using 8087 Emulation in Assembly Language 178

Chapter 15 Inside Turbo Pascal 179
The Heap Manager 181

Disposal Methods .. 0.... 182
The Free List .. 185
The Heap Error Function 187

Internal Data Formats ... 188
Integer Types 188
Char Types 189
Boolean Types ... 189
Enumerated Types ... 189
Floating-Point Types .. 189

The Real Type ... 189
The Single Type .. 190
The Double Type ... 190
The Extended Type .. 191
The Comp Type .. 191

Pointer Types .. 192
String Types 192
Set Types. .. 192
Array Types 193
Record Types 193
File Types ... 193
Procedural Types. .. 194

Calling Conventions .. 195
Variable Parameters .. 195
Value Parameters .. 195
Function Results ... 196
NEAR and FAR Calls ... 197
Nested Procedures and Functions 197
Entry and Exit Code .. 198
Register-Saving Conventions 199

Linking with Assembly Language 199
Turbo Assembler and Turbo Pascal .. 200
Examples of Assembly Language Routines 201

Turbo Assembler Example. .. 204
Inline Machine Code. .. 205

Inline Statements .. 205
Inline Directives ... 207

vII

Direct Memory and Port Access 208
The Mem, MemW, and M~mL Arrays 208
The Port and PortW Arrays 208

Interru.pt Handling .. 209
Writing Interrupt Procedures 209

Text File Device Drivers ... 210
The Open Function ... 211
The InOut Function. .. 212
The Flush Function ... 212
The Close Function ... 212
Examples of Text File Device Drivers. .. 212

Exit Procedures .. 216
Automatic Optimizations 217

Constant Folding .. 218,
Constant Merging .. 218
Short-Circuit Evaluation 218
Order of Evaluation .. 219
Range-Checking ... 219
Shift Instead of Multiply 219
Automatic Word Alignment 219
Dead Code Removal .. 220
Smart Linking ... 220

Chapter 16 Turbo Pascal Reference Lookup 223
Sample procedure 223
Abs function .. 224
Addr function ... 224
Append procedure ... 225
Arc procedure ... 226
ArcTan function .. 226
Assign proced. ure .. 227
AssignCrt,procedure ... 228
Bar procedure ... 229
Bar3D procedure .. 229
BlockRead procedure ... 230
BlockWrite procedure ... 232,
ChDir procedure .. 233
Chr function .. 233
Circle procedure ... 234
Clear Device procedure. .. 234
ClearViewPort procedure 235
Close procedure. .. 236
CloseGraph procedure .. 236
ClrEol procedure ~ .. 237
C1rScr procedure ... 237
Concat function 238

viii

Copy function ... 239
Cos function .. 239
cSeg function. .. 240
Dec procedure ... 240
Delay procedure ... 240
Delete procedure .. 241
DeILine procedure ... 241
DetectGraph procedure ... 242
DiskFree function .. 243
DiskSize function .. 243
Dispose procedure ... 244
DosExitCode function .. 245
Dos Version function .. 245
DrawPoly procedure ... 246
DSeg function ... 247
Ellipse procedure '.......... 247

, EnvCount function ... 248
EnvStr function .. 248
Eof function (text files) .. 249
Eof function (typed, untyped files) .. 249
Eoln function .. 250
Erase procedure. .. 250
Exec procedure .. 251
Exit procedure .. 253
Exp function .. 253
FExpand function .. 254
FilePos function .. 254
FileSize function ... 255
FillChar procedure ... 255
FillEllipse procedure .. 256
FillPoly procedure. .. 257
FindFirst procedure .. 258
FindNext procedure .. 259
FloodFill procedure .. 259
Flush procedure .. 261
Frac function .. 261
FreeMem procedure .. 261
FSearch function ... 262
FSplit procedure ... 263
GetArcCoords procedure. .. 264
GetAspectRatio procedure. .. 265
GetBkColor function .. 266
GetCBreak procedure 267
GetColor function .. 267
GetDate procedure ... 268

Ix

GetDefaultPalette function 268
GetDir procedure .. 269
GetDriverName function .. 270
GetEnv function ... 270
GetF Attr procedure .. 271
GetFilIPattem procedure .. 272
GetFillSettings procedure 273
GetFfime procedure -. 274
GetGraphMode function .. 274
GetImage procedure .. 276
GetIntVec procedure. .. 277
GetLineSettings procedure 277
GetMaxColor function .. 278
GetMaxMode function .. 279
GetMaxX function .. 280
GetMaxY function. .. 281
GetMem procedure ... 281
GetModeName function .. 282
GetModeRange procedure. .. 283
GetPalette procedure ... 283
GetPaletteSize function ... 284
GetPixel function .. 285
GetTextSettings procedure 285
GetTime procedure .. 287
GetVerify procedure .. 287
GetViewSettings procedure. .. 287
GetX function. .. 288
GetY function .. 289
GotoXY procedure ... 290
GraphDefaults procedure 291
GraphErrorMsg function 291
GraphResult function ... 292
Halt procedure. .. 294
Hi function 295
High Video procedure. .. 295
ImageSize function ... 296
Inc procedure. .. 297
InitGraph procedure .. 297
Insert procedure ... 300
InsLine procedure .. 300
InstallUserDriver function 301
InstallUserFont function .. 304
Int function .. 305
Intr procedure ... 305
IOResult function .. 306

x

Keep proced.ure .. 307
KeyPressed function .. 307
Length function : .. 308
Line proced.ure .. 308
LineRel proced.ure .. 309
LineTo proced.ure .. 310
Ln function .. 311
Lo function .. 312
LowVideo procedure ... 312
Mark procedure. .. 313
MaxAvail function. .. 313
MemAvail function ... 314
MkDir procedure ... 314
Move proced.ure ... 315
MoveRel proced.ure .. 316
MoveTo procedure ... 317
MsDos procedure .. 318
New proced.ure .. 318
NormVideo proced.ure .. 319
NoSound procedure .. 319
Odd function .. 319
OIs function ... 320
Ord function .. 320
OutText procedure ... 320
OutTextXY proced.ure .. 322
OvrClearBufprocedure ... 323
OvrGetBuf function .. 324
Ovrlnit proced.ure .. 325
OvrlnitEMS procedure.. 325
OvrSetBuf proced.ure ... 327
PackTime proced.ure .. 328
ParamCount function 328
ParamStr function 328
Pi function .. 329
PieSlice procedure .. 329
Pos function 330
Pred function .. 331
Ptr function ... 331
PutImage procedure .. 331
PutPixel proced.ure 334
Random function. 334
Randomize procedure .. 335
Read procedure (text files) 335
Read procedure (typed files) 337
ReadKey function .. 337

xl

Readln procedure .. 338
Rectangle procedure .. 339
RegisterBGldriver function 340
RegisterBGIfont function .. 342
Release procedure .. 344
Rename procedure ... 345
Reset procedure .. 345
RestoreCrtMode procedure .. 346
Rewrite procedure ... 347
RmDir procedure .. 348
Round function .. 349
RunError procedure .. 349
Sector procedure ... 350
Seek procedure .. 351
SeekEof function ... 351
SeekEoln function 352
Seg function ... 352
SetActivePage procedure .. 353
SetAllPalette proced.ure 354
SetAspectRatio procedure 355
SetBkColor procedure .. 356
SetCBreak procedure ... 357
SetColor procedure ... 358
SetDate procedure .. 358
SetFAttr procedure ... 359
SetFillPattem procedure. .. 359
SetFillStyle procedure ... 361
SetFfime procedure .. 362
SetGraphBufSize procedure 362
SetGraphMode procedure 363
SetlntVec procedure .. 365
SetLineStyle procedure ... 366
SetPalette procedure .. 367
SetRGBPalette procedure .. 369
SetTextBuf procedure .. 370
SetTextJustify procedure .. 372
SetTextStyle procedure .. 373
SetTime procedure ... 374
SetUserCharSize procedure .. 375
SetVerify procedure .. 376
SetViewPort procooure ... 376
SetVisualPage procedure 378
SetWriteMode procedure. .. 379
Sin function ... 380
SizeOf function .. 381

xii

Sound procedure .. 381
SPtr function .. 382
Sq,r function ... 382
Sq,rt function .. 382
sSeg function .. 382
Str procedure .. 383
Succ function .. 383
Swap function ... 384
SwapVectors procedure ... 384
TextBack~oundprocedure 385
TextColor procedure .. 385
TextHeight function .. 386
TextMode procedure ... 387
TextWidth function .. 389
Trunc function .. 390
Truncate procedure. .. 391
UnpackTime procedure ... 391
UpCase function ... 391
Val procedure ... 392
WhereX function .. 393
Where Y function 393
Window procedure .. 394
Write procedure (text files) 395
Write procedure (typed files) 397
Writeln procedure .. 397

Part 2 Appendices

Appendix A Comparing Turbo Pascal 5.0 with ANSI Pascal 401
Exceptions to ANSI Pascal Requirements 401
Extensions to ANSI Pascal .. 403
Implementation-Dependent Features 405
Treatment of Errors. .. 406

Appendix B Compiler Directives 407
Switch Directives. .. 408

Align Data .. 408
Boolean Evaluation ... 409
Debug Information ... 410
Emulation ... 410
Force FAR Calls .. 411
Input/Output-Checking 411
LocalSymbolInformation 412
Numeric Processing .. 412
Overlay Code Generation 413
Range-Checking ... 413

xiii

Stack-Overflow Checking 414
Var-String Checking .. 414

Parameter Directives ... 415
Include File .. 415
Link Object File .. 415
Memory Allocation Sizes 416
Overlay Unit Name. 416

Conditional Compilation. .. 416
Conditional Symbols ... 417

The DEFINE Directive 419
The UNDEF Directive. .. 419
The IFDEF Directive .. 419
The IFNDEF Directive 419
The IFOPT Directive .. 420
The ELSE Directive .. 420
The ENDIF Directive 420

Appendix C Reference Materials 421
ASCII Codes .. 421
Extended Key Codes. .. 424
Keyboard Scan Codes .. 425

Appendix D Error Messages and Codes 427
Compiler Error Messages. .. 427
Run-time Errors. .. 443

DOS Errors .. 443
I/O Errors ... 445
Critical Errors ... 446
Fatal Errors .. 447

Index 449

xlv

List of Figures

Figure 15.1: Turbo Pascal Memory Map 180
Figure 15.2: Disposal Method Using Mark and Release 182
Figure 15.3: Heap Layout with Release(P) Executed 183
Figure 15.4: Creating a "Hole" in the Heap 184
Figure 15.5: Enlarging the Free Block 184
Figure 15.6: Releasing the Free Block 185

xv

List of Tables

Table 3.1: Predefined Integer Types 23
Table 3.2: Real Data Types ... 26
Table 6.1: Precedence of Operators 51
Table 6.2: Binary Arithmetic Operations 55
Table 6.3: Unary Arithmetic Operations 55
Table 6.4: Logical Operations 56
Table 6.5: Boolean Operations 56
Table 6.6: String Operation .. 57
Table 6.7: Set Operations .. 58
Table 6.8: Relational Operations 59
Table 6.9: Pointer Operation 61
Table 12.1: Standard Units .. 116
Table 16.1: Components of the Output String 3%
Table 16.2: Components of the Fixed-Point String 396
Table C.1: ASCII Table ... 422
Table C.2: Extended Key Codes424
Table C.3: Keyboard Scan Codes 426

xvi

N T R o D u c T o N

Welcome to the second book in the Turbo Pascal 5.0 set. The first book,
Turbo Pascal User's Guide, provided you with many basics (and more) for
getting started with programming in Turbo Pascal, plus guided you
through using the integrated environment. Now you're ready to delve into
the details of the Turbo Pascal language.

What's On Your Disks

The distribution disks that come with this manual include two different
versions of the Pascal compiler: an integrated environment version and a
stand-alone, command-line version.

You might not need all the files that come on your distribution disks. Use
the INSTALL program and then delete the files you don't need from your
working disks. (See the "Turbo Pascal Utilities" Appendix in the User's
Guide for information on INSTALL.) The README file contains a complete
file list. For your reference, here's a summary of most of the files on disks
and how to determine which ones to retain:

README To see any last-minute notes and corrections, type README

at the system prompt. (If you have a printer, you can
print it out.) Once you review this material, keep it
around for future reference.

HELPME!.DOC Contains answers to many common questions about
Turbo Pascal 5.0.

TURBO.EXE This is the integrated (menu-driven) environment
version of Turbo Pascal. It lets you edit, compile, run,
and debug your program. See Chapter 7 in the User's
Guide, "All About the Integrated Environment," for
more information.

TURBO.TPL This contains the units (program libraries) that come
with Turbo Pascal, including System, Crt, Dos, Overlay,

Introduction

TURBO. HLP

THELP.COM

TPC.EXE

GRAPH.TPU

*.ARC files

*.BGI files

*.CHRfiles

*.DOC files

*.PAS files

INSTALL.EXE

and Printer-this is a must! See Chapter 12, "Standard
Units," for more information on these units.

This contains the online, context-sensitive help text used
by the integrated environment and the THELP utility.
See the section "Online Help" in Chapter 2 of the User's
Guide for details on the help feature, and Appendix C of
the User's Guide, "Turbo Pascal Utilities, for information
on THELP.

This is the memory-resident that provides access to
Turbo Pascal's context-sensitive help system from any
program. See Appendix C in the User's Guide, "Turbo
Pascal Utilities."

This is the command-line version of Turbo Pascal. If you
use a separate editor, make heavy use of batch files, and
so on, you'll probably want to use this. Refer to Chapter
8, "Command-Line Reference," in the User's Guide for
information on how to use the command-line compiler.

This contains the Graph unit (the Borland Graphics
Interface unit). See the section "The Graph Unit" in
Chapter 12 of this manual for more information.

Packed files that contain documentation files, example
programs, graphics drivers fonts, interface section
listings for Turbo Pascal's units, and more. Chapter 1 of
the User's Guide walks you through the dearchiving of
these files with the INSTALL program.

BGI graphics device drivers.

BGI graphics stroked character fonts.

These include the interface section listings for all the
standard units.

These include an overlay example and the MicroCalc
source files, as well as other sample programs.

This new utility sets up Turbo Pascal on your system.
Refer to Chapter 1 of the User's Guide for information on
INSTALL.

TPUMOVER.EXE This utility allows you to move units to or remove units
from the TURBO.TPL file. Appendix C in the User's
Guide, "Turbo Pascal Utilities," contains information on
TPUMOVER.

2 Turbo Pascal Reference Guide

TINST.EXE

TINSTXFR.EXE

MAKE.EXE

GREP.COM

TOUCH.COM

BINOBJ.EXE

TPCONFIG.EXE

UPGRADE.DTA
UPGRADE.EXE

GRAPH3.TPU
TURB03.TPU

README.COM

Introduction

This utility allows you to customize certain features of
TURBO.EXE. See Appendix D in the User's Guide,
"Customizing Turbo Pascal," for more information.

This utility transfers the customized settings you created
with TINST in 4.0 to 5.0. See Appendix D in the User's
Guide, "Customizing Turbo Pasca1."

This is an intelligent project manager that allows you to
keep your programs up-to-date and is especially useful
when mixing assembler and Pascal and using the
command-line compiler (TPC.EXE). See Appendix C in
the User's Guide, "Turbo Pascal Utilities," for more infor­
maztion on using MAKE.

This is a fast, powerful text search utility. See Appendix
C in the User's Guide, "Turbo Pascal Utilities," for more
information on using GREP.

This utility changes the date and time of one or more
files to the current date and time, making it "newer"
than the files that depend on it. It's generally used in
conjunction with MAKE.EXE.

Use this utility to convert a binary data file to an .OBJ
file.

This utility takes your integrated environment configu­
ration file and converts it to work with the command­
line compiler (as TPC.CFG). It's helpful if you want to
use the integrated environment to set all your options,
but want to compile with the command-line version.
This utility will also convert a TPC.CFG file to a . TP file.

This utility does a quick upgrade of Turbo Pascal ver­
sion 3.0 source files, modifying them for compatibility
with Turbo Pascal version 5.0. See the section on
UPGRADE in Appendix A of the User's Guide for more
informa tion.

These are version 3.0 compatibility units. Refer to
Appendix A in the User's Guide, "Differences Between
Turbo Pascal 3.0, 4.0, and 5.0.")

This is the program to display the README file. Once
you've read the README, you can delete this.

3

Installing Turbo Pascal On Your System

Your Turbo Pascal package includes all the files and programs necessary to
run both the integrated environment and command-line versions of the
compiler. A new program, INSTALL.EXE, sets up Turbo Pascal on your
system. INSTALL works on both floppy-based and hard disk systems.
Refer to Chapter 1 in the User's Guide for information about INSTALL.

About This Manual

This book is split into two parts: a programmer's reference and appendices.
The first part of this manual, "Programmer's Reference," offers technical
information on the following features of the language:

• Chapter 1: Tokens and Constants
• Chapter 2: Blocks, Locality, and Scope

• Chapter 3: Types
• Chapter 4: Variables

• Chapter 5: Typed Constants
• Chapter 6: Expressions
• Chapter 7: Statements
• Chapter 8: Procedures and Functions

• Chapter 9: Programs and Units

• Chapter 10: Input and Output
• Chapter 11: Standard Procedures and Functions

• Chapter 12: Standard Units

• Chapter 13: Overlays
• Chapter 14: Using the 8087
• Chapter 15: Inside Turbo Pascal
• Chapter 16: Turbo Pascal Reference Lookup

Part two, 1/ Appendices," discusses 5.0 and ANSI Pascal, covers the com­
piler directives provided, provides some reference materials (an ASCII
chart, extended key codes, and keyboard scan codes), and lists all the
compiler and run-time error messages· generated by Turbo Pascal.

• Appendix A: Comparing Turbo Pascal 5.0 with ANSI Pascal

• Appendix B: Compiler Directives
• Appendix C: Reference Materials

• Appendix D: Error Messages and Codes

4 Turbo Pascal Reference Guide

Typography

This manual was produced by Borland's Sprint: The Professional Word
Processor on a PostScript printer. The different typefaces displayed are
used for the following purposes:

Italics

Boldface

Monospace

Keycaps

In text, this typeface represents constant identifiers, field
identifiers, and formal parameter identifiers, as well as
unit names, labels, variables, procedures, and functions.

Turbo Pascal's reserved words are set in this typeface.

This type represents text that appears on your screen.

This typeface indicates a key on your keyboard. It is
often used when describing a key you have to press to
perform a particular function; for example, "Press Esc to
exit from a menu."

How to Contact Borland

If, after reading this manual and using Turbo Pascal, you would like to
contact Borland with comments or suggestions, we suggest the following
procedures:

• The best way is to log on to Borland's forum on CompuServe: Type GO
BPROGA at the main CompuServe menu and follow the menus to section 2.
Leave your questions or comments here for the support staff to process .

• If you prefer, write a letter detailing your problem and send it to

Technical Support Department
Borland International

P.O. Box 660001
1800 Green Hills Road

Scotts Valley, CA 95066-0001

Please note: If you include a program example in your message, it must
be limited to 100 lines or less. We request that you submit it on disk,
include all the necessary support files on that disk, and provide step-by­
step instructions on how to reproduce the problem. Before you decide to
get technical support, try to replicate the problem with the code con­
tained on a floppy disk, just to be sure we can duplicate the problem
using the disk you provide us.

Introduction 5

• You can also telephone our Technical Support department at (408)
438-5300. To help us handle your problem as quickly as possible, have
these items handy before you call:

• product name and version number
• product serial number
• computer make and model number
• operating system and version number

If you're not familiar with Borland's No-Nonsense License statement,
now's the time to read the agreement at the front of this manual and mail in
your completed product registration card.

6 Turbo Pascal Reference Guide

p A R T

1

Programmer's Reference

7

8 Turbo Pascal Reference Guide

The names in rectangular boxes stand for actual constructions. Those in
circular boxes-reserved words, operators, and punctuation-are the actual
terms to be used in the program.

letter

digit

hex digit

Special symbols and reserved words are characters that have one or more
fixed meanings. These single characters are special symbols:

+ -* / = < > [1., ():; A@ () $ #

These character pairs are also special symbols:

<= >= := .. (* *) (. .)

Some special symbols are also operators. A left bracket ([) is equivalent to
the character pair of left parentheses and a period «.). Similarly, a right
bracket (]) is equivalent to the character pair of a period and a right
parentheses (.».
Following are Turbo Pasca1's reserved words:

absolute end inline procedure type
and external interface program unit
array file interrupt record until
begln for label repeat uses
case forward mod set var
const function nil shl while
div goto not shr with
do if of string xor
downto !mplementation or then
else In packed to

10 Turbo Pascal Reference Guide

c H A p T E R

1

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program, and
they are categorized as special symbols, identifiers, labels, numbers, and
string constants.

A Pascal program is made up of tokens and separators, where a separator is
either a blank or a comment. Two adjacent tokens must be separated by one
or more separators if each token is a reserved word, an identifer, a label, or
a number.

Separators cannot be part of tokens except in string constants.

Special Symbols and Reserved Words

Turbo Pascal uses the following subsets of the ASCII character set:

• Letters-the English alphabet, A through Z and a through z.

• Digits-the Arabic numerals 0 through 9.

• Hex digits-the Arabic numerals 0 through 9, the letters A through F,
and the letters a through f.

• Blanks-the space character (ASCII 32) and all ASCII control c.haracters
(ASCII 0 to 31), including the end-of-line or return character (ASCII 13).

What follows are syntax diagrams for letter, digit, and hex digit. To read a
syntax diagram, follow the arrows. Alternative paths are often possible;
paths that begin at the left and end with an arrow on the right are valid. A
path traverses boxes that hold the names of elements used to construct that
portion of the syntax.

Chapter 7, Tokens and Constants 9

Reserved words appear in lowercase boldface throughout this manual.
Turbo Pascal isn't case sensitive, however, so you can use either uppercase
or lowercase letters in your programs.

Identifiers

Identifiers denote constants, types, variables, procedures, functions, units,
programs, and fields in records. An identifier can be of any length, but only
the first 63 characters are significant.

An identifier must begin with a letter or an underscore character and can­
not contain spaces. Letters, digits, and underscore characters (ASCII $5F)
are allowed after the first character. Like reserved words, identifiers are not
case sensitive.

When several instances of the same identifier exist, you may need to
qualify the identifier by a unit identifier in order to select a specific instance
(units are described in Chapter 4 of the User's Guide and 12 of this manual).
For example, to qualify the identifier ldent by the unit identifier UnitName,
you would write UnitName.ldent. The combined identifier is called a
qualified identifier.

Chapter 7, Tokens and Constants 11

identifier

qualified
identifier

underscore ~

program identifier,
unit identifier, --...... 1 identifier ~
field identifier

~. .1 identifier~
Yun;1 identifier t--<.:)-J

Here are some examples of identifiers:

Writeln
Exit
Rea12String
System.MemAvail
Dos.Exec
Crt.Window

In this manual, standard and user-defined identifiers are italicized when
they are referred to in text.

Labels

A label is a digit sequence in the range 0 to 9999. Leading zeros are not
significant. Labels are used with goto statements.

label

12 Turbo Pascal Reference Guide

As an extension to standard Pascal, Turbo Pascal also allows identifiers to
function as labels.

Numbers

Ordinary decimal notation is used for numbers that are constants of type
integer and real. A hexadecimal integer constant uses a dollar sign ($) as a
prefix. Engineering notation (E or e, followed by an exponent) is read as
"times ten to the power of' in real types. For example, 7E-2 means 7 x 10-2;

12.25e+6 or 12.25e6 both mean 12.25 x 10+6• Syntax diagrams for writing
numbers follow.

hex digit sequence hex digit

digit sequence

unsigned integer digit sequence

hex digit sequence

sign -""'-Q5J--.t ~ - ~

unsigned real

digit sequence digit sequence

scale factor digit sequence ~

unsigned number -"I""""I~ unsigned integer

unsigned real

Chapter 7, Tokens and Constants 13

signed number unsigned number r---.

Numbers with decimals or exponents denote real-type constants. Other
decimal numbers denote integer-type constants; they must be within the
range -2147483648 to 2147483647.

Hexadecimal numbers denote integer-type constants; they must be within
the range $00000000 to $FFFFFFFF. The resulting value's sign is implied by
the hexademical notation.

Character Strings

A character string is a sequence of zero or more characters from the
extended ASCII character set (Appendix C), written on one line in the
program and enclosed by apostrophes. A character string with nothing
between the apostrophes is a null string. Two sequential apostrophes in a
character string denote a single character, an apostrophe. The length attrib­
ute of a character string is the actual number of characters within the
apostrophes.

As an extension to standard Pascal, Turbo Pascal allows control characters
to be embedded in character strings. The # character followed by an
unsigned integer constant in the range 0 to 255 denotes a character of the
corresponding ASCII value. There must be no separators between the #
character and the integer constant. Likewise, if several control characters
are part of a character string, there must be no separators between them.

character string --.a ~o-. ti string character j:J
string character any char except 0 or CR ~r---"

A character string of length zero (the null string) is compatible only with
string types. A character string of length one is compatible with any char
and string type. A character string of length n, where n is greater than or

14 Turbo Pascal Reference Guide

equal to 2, is compatible with any string type and with packed arrays of n
characters.

Here are some examples of character strings:

'TURBO'
113110

'You"ll see'
'Line l't13'Line2'

, , , ,

Constant Declarations

, ., , , ,
t7t7'Wake up!'t7t7

A constant declaration declares an identifier that marks a constant within
the block containing the declaration. A constant identifier cannot be
included in its own declaration.

constant declaration

constant ----I~~I expression

As an extension to standard Pascal, Turbo Pascal allows use of constant
expressions. A constant expression is an expression that can be evaluated by
the compiler without actually executing the program. Examples of constant
expressions follow:

100
'A'
256 - 1
(2.5 + 1) / (2.5 - 1)
'Turbo' + ' , + 'Pascal'
Chr(32)
Ord('Z') - Ord('A') + 1

The simplest case of a constant expression is a simple constant, such as 100
or I A'; wherever standard Pascal allows only a simple constant, Turbo
Pascal allows a constant expression.

Since the compiler has to be able to completely evaluate a constant expres­
sion at compile time, the following constructs are not allowed in constant
expressions:

• references to variables and typed constants
• function calls (except those noted in the following text)
• the address operator (@)

Chapter 1, Tokens and Constants 15

Except for these restrictions, constant expressions follow the exact syntacti­
cal rules as ordinary expressions (described in Chapter 6, IJExpressions").

The following standard functions are allowed in constant expressions:

Abs
Pred

Chr
Ptr

Hi Length Lo
Round SizeOf Succ

Odd
Swap

Ord
Trunc

Here are some examples of the use of constant expressions in constant
declara tions:

COJ1at

Min = 0;
Max = 100;
Center = (Max - Min) div 2;
Beta = Chr(225);
NumChars = Ord('Z') - Ord('A') + 1;
Message = 'Out of memory';
ErrStr =' Error: ' + Message + '. ';
ErrPos = 80 - Length(ErrorStr) div 2;
Ln10 = 2.302585092994045684;
Ln10R = 1 / Ln10j
Numeric = ['0' •• '9'];
Alpha = ['A' •• 'Z' ,'a' •• 'z'];
AlphaNum = Alpha + Numeric;

Comments

The following constructs are comments and are ignored by the compiler:

{ Any text not containing right brace }
(* Any text not containing star/right parenthesis *)

A comment that contains a dollar sign ($) immediately after the opening
(or (* is a compiler directive. A mnemonic of the compiler command
follows the $ character. The compiler directives are summarized in
AppendixB.

Program Lines

Turbo Pascal program lines have a maximum length of 126 characters.

16 Turbo Pascal Reference Guide

c H A p T E R

2

Blocks, Locality, and Scope

A block is made up of declarations, which are written and combined in any
order, and statements. Each block is part of a procedure declaration, a
function declaration, or a program or unit. All identifiers and labels
declared in the declaration part are local to the block.

Syntax

The overall syntax of any block follows this format:

block --+f declaration part 1 ---~~I statement part ~

declaration part ..

M label declaration part I
I

r-. constant declaration part I
I

r-+ type declaration part I
I

-+I variable declaration part I

J

~ procedure and function declaration part ~

The label declaration part is where labels that mark statements in the
corresponding statement part are declared. Each label must mark only one
statement.

Chapter 2, Blocks, Locality, and Scope 17

label declaration part

The digit sequence used for a label must be in the range 0 to 9999.

The constant declaration part consists of constant declarations local to the
block.

constant declaration part)--.,.....,~ constant declaration

typed constant declaration

The type declaration part includes all type declarations local to the block.

type declara~on part ~ type declara~on II ..

The variable declaration part is composed of variable declarations local to the
block.

variable declaration part variable declaration

The procedure and function declaration part comprises procedure and function
declarations local to the block.

procedure and function declaration part -;--r-I~ procedure declaration t----r-'"I'-i~

function declaration

The statement part defines the statements or algorithmic actions to be exe­
cuted by the block.

statement part --......... 1 compound statement ~

18 Turbo Pascal Reference Guide

Rules of Scope

The presence of an identifier or label in a declaration defines the identifier
or label. Each time the identifier or label occurs again, it must be within the
scope of this declaration. The scope of an identifier or label encompasses its
declaration to the end of the current block, including all blocks enclosed by
the current block; some exceptions follow.

• Redeclaration in an enclosed block: Suppose that Exterior is a block that
encloses another block, Interior. If Exterior and Interior both have an
identifier with the same name, for example, j, then Interior can only
access the j it declared, and similarly Exterior can only access the j it
declared.

• Position of declaration within its block: Identifiers and labels cannot be
used until after they are declared. An identifier or label's declaration
must come before any occurrence of that identifier or label in the
program text, with one exception.

The base type of a pointer type can be an identifier that has not yet been
declared. However, the identifier must eventually be declared in the
same type declaration part that the pointer type occurs in.

• Redeclaration within a block: An identifier or label can only be declared
once in the outer level of a given block. The only exception to this is when
it is declared within a contained block or is in a record's field list.

A record field identifier is declared within a record type and is significant
only in combination with a reference to a variable of that record type. So,
you can redeclare a field identifier (with the same spelling) within the
same block but not at the same level within the same record type.
However, an identifier that has been declared can be redec1ared as a field
identifier in the same block.

Scope of Interface and Standard Identifiers

Programs or units containing uses clauses have access to the identifiers
belonging to the interface parts of the units in those uses clauses.

Each unit in a uses clause imposes a new scope that encloses the remaining
units used and the entire program. The first unit in a uses clause represents
the outermost scope, and the last unit represents the innermost scope. This
implies that if two or more units declare the same identifier, an unqualified
reference to the identifier will select the instance declared by the last unit in
the uses clause. However, by writing a qualified identifier, every instance
of the identifier can be selected.

Chapter 2, Blocks, Locality, and Scope 19

The identifiers of Turbo Pascal's predefined constants, types, variables,
procedures, and functions act as if they were declared in a block enclosing
all used units and the entire program. In fact, these standard objects are
defined in a unit called System, which is used by any program or unit
before the units named in the uses clause. This suggests that any unit or
program can redeclare the standard identifiers, but a specific reference can
still be made through a qualified identifier, for example, System.Integer or
System. Writeln.

20 Turbo Pascal Reference Guide

c H A p T E R

3

Types

When you declare a variable, you must state its type. A variable's type
circumscribes the set of values it can have and the operations that can be
performed on it. A type declaration specifies the identifier that denotes a
type.

type declaration

type -r---l~

When an identifier occurs on the left side of a type declaration, it is
declared as a type identifier for the block in which the type declaration
occurs. A type identifier's scope does not include itself except for pointer
types.

There are five major classes of types:

• simple types
• string types
• structured types
• pointer types
• procedural types

Chapter 3, Types 21

Each of these classes are described in the following sections.

Simple Types

Simple types define ordered sets of values.

simple type

real type ~ real type identifier r--.
A type real identifier is one of the standard identifiers: real, single, double,
extended, or compo Refer to the sections entitled "Numbers" and "String
Constants" in Chapter 1 to find out how to denote constant type integer
and real values.

Ordinal Types

Ordinal types are a subset of simple types. All simple types other than real
types are ordinal types, which are set off by four characteristics:

• All possible values of a given ordinal type are an ordered set, and each
possible value is associated with an ordinality, which is an integral value.
Except for type integer values, the first value of every ordinal type has
ordinality 0, the next has ordinality 1, and so on for each value in that
ordinal type. A type integer value's ordinality is the value itself. In any
ordinal type, each value other than the first has a predecessor, and each
value other than the last has a successor based on the ordering of the
type.

• The standard function Ord can be applied to any ordinal-type value to
return the ordinality of the value.

• The standard function Pred can be applied to any ordinal-type value to
return the predecessor of the value. If applied to the first value in the
ordinal type, Pred produces an error.

• The standard function Succ can be applied to any ordinal-type value to
return the successor of the value. If applied to the last value in the
ordinal type, Succ produces an error.

The syntax of an ordinal type follows.

22 Turbo Pascal Reference Guide

ordinal type subrange type

enumerated type

ordinal type identifier

Turbo Pascal has seven predefined ordinal types: integer, shortint, longint,
byte, word, boolean, and char. In addition, there are two other classes of
user-defined ordinal types: enumerated types and subrange types.

Integer Types

There are five predefined integer types: shortint, integer, longint, byte, and
word. Each type denotes a specific subset of the whole numbers, according
to the following table:

Type

shortint
integer
longint
byte
word

Table 3.1: Predefined Integer Types

Range

-128 .. 127
-32768 .. 32767

-2147483648 .. 2147483647
0 .. 255
0 .. 65535

Format

Signed 8-bit
Signed 16-bit
Signed 32-bit
Unsigned 8-bit
Unsigned 16-bit

Arithmetic operations with type integer operands use 8-bit, 16-bit, or 32-bit
precision, according to the following rules:

• The type of an integer constant is the predefined integer type with the
smallest range that includes the value of the integer constant.

• For a binary operator (an operator that takes two operands), both oper­
ands are converted to their common type before the operation. The
common type is the predefined integer type with the smallest range that
includes all possible values of both types. For instance, the common type
of integer and byte is integer, and the common type of integer and word
is longint. The operation is performed using the precision of the common
type, and the result type is the common type.

• The expression on the right of an assignment statement is evaluated
independently from the size or type of the variable on the left. .

• Any byte-sized operand is converted to an intermediate word-sized
operand that is compatible with both integer and word before any
arithmetic operation is performed.

Chapter 3, Types -23

An integer type value can be explicitly converted to.another integer type
through typecasting. (Typecasting is described in Chapters 4 and 6.)

Boolean Type

Type boolean values are denoted by the predefined constant identifiers false
and true. Because boolean is an enumerated type, these relationships hold:

• false < true
• Ord<talse) = 0

• Ord(true) = 1

• Succ<talse) = true
• Pred(true) = false

Char Type

This type's set of values are characters, ordered according to the extended
ASCII character set (Appendix C). The function call Ord(Ch), where Ch is a
char value, returns Ch's ordinality.

A string constant of length 1 can denote a constant character value. Any
character value can be generated with the standard function Chr.

Enumerated Types

Enumerated types define ordered sets of values by enumerating the
identifiers that denote these values. Their ordering follows the sequence in
which the identifiers are enumerated.

enumerated type ~ identifier list I-+G ~

identifier list

When an identifier occurs within the identifier list of an enumerated type, it
is declared as a constant for the block in which the enumerated type is
declared. This constant's type is the enumerated type being declared.

An enumerated constant's ordinality is determined by its position in the
identifier list in which it is declared. The enumerated type in which it is

24 Turbo Pascal Reference Guide

declared becomes the constant's type. The first enumerated constant in a
list has an ordinality of zero.

An example of an enumerated type follows:

type
suit = (club,diamond,heart,spade);

Given these declarations, diamond is a constant of type suit.

When the Ord function is applied to an enumerated type's value, Ord
returns an integer that shows where the value falls with respect to the other
values of the enumerated type. Given the preceding declarations, Ord(club)
returns zero, Ord(diamond) returns 1, and so on.

Subrange Types

A subrange type is a range of values from an ordinal type called the host
type. The definition of a subrange type specifies the least and the largest
value in the subrange; its syntax follows:

subrange type -----I constant ~ constant ~

Both constants must be of the same ordinal type. Subrange types of the
form a .. b require that a is less than or equal to b.

Examples of subrange types:

o •• 99
-128 •• 127
club •• heart

A variable of a subrange type has all the properties of variables of the host
type, but its run-time value must be in the specified interval.

One syntactic ambiguity arises from allowing constant expressions where
Standard Pascal only allows simple constants. Consider the following
declarations:

CODlt

x = 50;
Y = 10;

type
color = (red,green,blue);
scale = (x-y)*2 •• (x+y)*2;

Standard Pascal syntax dictates that, if a type definition starts with a
parenthesis, it is an enumerated type, such as the color type described
previously. However, the intent of the declaration of scale is to define a

Chapter 3~ Types 25

subrange type. The solution is to either reorganize the first subrange
expression so that it does not start with a parenthesis, or to set another
constant equal to the value of the expression, and then use that constant in
the type definition:

type
scale = 2*{x-y) •• (x+y) *2;

Real Types

A real type has a set of values that is a subset of real numbers, which can be
represented in floating-point notation with a fixed number of digits. A
value's floating-point notation normally comprises three values-m, b, and
e-such that m x be = n, where b is always 2, and both m and e are integral
values within the real type's range. These m and e values further prescribe
the real type's range and precision.

There are five kinds of real types: real, single, double, extended, and compo

The real types differ in the range and precision of values they hold (see
Table3.2).

Table 3.2: Real Data Types

Type Range Significant Digits Size in Bytes

real 2.9 x 10-39 .. 1.7 x 1038 11-12 6
single 1.5 x 10-45 .. 3.4 x 1038 7-8 4
double 5.0 x 10-324 .. 1.7 X 10308 15-16 8
extended 3.4 x 10-4932 .. 1.1 X 104932 19-20 10
comp -263+1 .. 263-1 19-20 8

Note: The comp type holds only integral values within the range -263+1 to
263-1, which is approximately -9.2 x 1018 to 9.2 X 1018.

Turbo Pascal supports two models of code generation for performing real­
type operations: software floating point and 8087 floating point. The
appropriate model is selected through the $N compiler directive. If no 8087
is present, enabling the {$E} compiler directive will provide full 8087
emulation in software.

Software Floating Point

In the {$N-} state, which is selected by default, the code generated performs
all real type calculations in software by calling run-time library routines.
For reasons of speed and code size, only operations on variables of type

26 Turbo Pascal Reference Guide

real are allowed in this state. Any attempt to compile statements that
operate on the single, double, extended, and comp types generates an error.

8087 Floating Point

In the {$N+} state, the code generated performs all real type calculations
using 8087 instructions. This state permits the use of all five real types.

Turbo Pascal includes a run-time library that will automatically emulate an
8087 in software if one is not present; the $E compiler directive is used to
determine whether or not the 8087 emulator should be included in a
program.

For further details on 8087 floating-point code generation and software
emulation, refer to Chapter 14, #Using the 8087."

String Types

A type string value is a sequence of characters with a dynamic length at­
tribute (depending on the actual character count during program
execution) and a constant size attribute from 1 to 255. A string type
declared without a size attribute is given the default size attribute 255. The
length attribute's current value is returned by the standard function Length.

string type~ •

l.cD---.I unsigned integer ~
The ordering between any two string values is set by the ordering rela­
tionship of the character values in corresponding positions. In two strings
of unequal length, each character in the longer string without a
corresponding character in the shorter string takes on a higher or greater­
than value; for example, 'Xs' is greater than 'X'. Null strings can only be
equal to other null strings, and they hold the least string values.

Characters in a string can be accessed as components of an array, as
described in # Arrays, Strings, and Indexes" in Chapter 4. Type string
operators are described in #String Operator" and ''Relational Operators" in
Chapter 6, #Expressions." Type string standard procedures and functions
are described in "String Procedures and Functions" on page 112.

Chapter 3, Types 27

Structured Types

A structured type, characterized by its structuring method and by its com­
ponent type(s), holds more than one value. If a component type is
structured, the resulting structured type has more than one level of
structuring. A structured type can have unlimited levels of structuring.

structured type ~..-----...... ----l"
==::::::;-'

The word packed in a structured type's declaration tells the compiler to
compress data storage, even at the cost of diminished access to a compo­
nent of a variable of this type. The word packed has no effect in Turbo
Pascal; instead packing occurs automatically whenever possible.

Note: The maximum permitted size of any structured type in Turbo Pascal
is 65520 bytes.

Array Types

Arrays have a fixed number of components of one type-the component
type. In the following syntax diagram, the component type follows the
word of.

array type --c array ~ __ i_nd-lex type...,..._~.......] . of type J-.
- 0

index type --.f ordinal ty~ J---.

The index types, one for each dimension of the array, specify the number of
elements. Valid index types are all ordinal types except longint and
subranges of longint. The array can be indexed in each dimension by all
values of the corresponding index type; the number of elements is therefore
the number of values in each index type. The number of dimensions is
unlimited.

The following is an example of an array type:

array[l •• lOO] of real

28 Turbo Pascal Reference Guide

If an array type's component type is also an array, you can treat the result
as an array of arrays or as a single multidimensional array. For instance,

array [boolean] of array[1 •• 10] of array[Size] of real

is interpreted the same way by the compiler as

array[boolean,1 •• 10,Size] of real

You can also express

packed array [1. .10] of packed array [1. .8] of boolean

as

packed array[1 •• 10,1 •• 8] of boolean

You access an array's components by supplying the array's identifier with
one or more indexes in brackets (see "Arrays, Strings, and Indexes" in
Chapter 4).

An array type of the form

packed array[m •• n] of char

where m is less than n is called a packed string type (the word packed may
be omitted, because it has no effect in Turbo Pascal). A packed string type
has certain properties not shared by other array types (see "Identical and
Compatible Types" later in this chapter).

Record Types

A record type comprises a set number of components, or fields, that can be
of different types. The record type declaration specifies the type of each
field and the identifier that names the field.

record~ -E) ': 1.8+
~ field list ~

field list t fixed part

I ~, r-----~ '-f,o • ~ variant part ~ t..(:)J

fixed part

t
., identif .. rnst~

Chapter 3, Types 29

The fixed part of a record type sets out the list of fixed fields, giving an
identifier and a type for each. Each field contains information that is always
retrieved in the same way.

The following is an example of a record type:

record
year: integer;
month: 1. .12;
day: 1. .31;

end

The variant part shown in the syntax diagram of a record type declaration
distributes memory space for more than one list of fields, so the infor­
mation can be accessed in more ways than one. Each list of fields is a
variant. The variants overlay the same space in memory, and all fields of all
variants can be accessed at all times.

VariantPart~ Lj. . K)J~ tag fiold typo ~
Identifier : ;

tag field type ~ ordinal type identifier ~

variant

~constarl(: (~ . ~ .. ~
field list ,

You can see from the diagram that each variant is identified by at least one
constant. All constants must be distinct and of an ordinal type compatible
with the tag field type. Variant and fixed fields are accessed the same way.

An optional identifier, the tag field identifier, can be placed in the variant
part. If a tag field identifier is present, it becomes the identifier of an
additional fixed field-the tag field-of the record. The program can use
the tag field's value to show which variant is active at a given time.
Without a tag field, the program selects a variant by another criterion.

Some record types with variants follow.

30

record
firstName,lastName : .tring[40);
birthDate : Date;

Turbo Pascal Reference Guide

cas. citizen : boolean of

and

true : (birthPlace: atring[40));
false: (country : atring[20);

entryPort : atring[20);
entryDate : Date;
exitDate : Date);

record
x,y : real;
caa. kind : Figure of

and

rectangle: (height,width: real);
triangle: (sizel,side2,angle: real);
circle: (radius: real);

Set Types

A set type's range of values is the power set of a particular ordinal type (the
base type). Each possible value of a set type is a subset of the possible
values of the base type.

A variable of a set type can hold from none to all values of the set.

set type --~~~ ordinal type ~

The base type must not have more than 256 possible values, and the ordinal
values of the upper and lower bounds of the base type must be within the
range 0 to 255. For these reasons, the base type of a set cannot be shortint,
integer, longint, or word.

Set-type operators are described in the section entitled "Set Operators" in
Chapter 6. "Set Constructors" in the same chapter shows how to construct
set values.

Every set type can hold the value [], which is called the empty set.

File Types

A file type consists of a linear sequence of components of the component
type, which can be of any type except a file type or any structured type
with a file-type component. The number of components is not set by the
file-type declaration.

file type

Chapter 3, Types 31

If the word of and the component type are omitted, the type denotes an
untyped file. Untyped files are low-level I/O channels primarily used for
direct access to any disk file regardless of its internal format.

The standard file type text signifies a file containing characters organized
into lines. Text files use special input/output procedures, which are
discussed in Chapter 10, IIInput and Output."

Pointer Types

A pointer type defines a set of values that point to dynamic variables of a
specified type called the base type. A type pointer variable contains the
memory address of a dynamic variable.

pointer type -®--.J base type ~

base type --+I type identifier r-.
If the base type is an undeclared identifier, it must be declared in the same
type declaration part as the pointer type.

You can assign a value to a pointer variable with the New procedure, the @

operator, or the Ptr function. The New procedure allocates a new memory
area in the application heap for a dynamic variable and stores the address
of that area in the pointer variable. The @ operator directs the pointer
variable to the memory area containing any existing variable, including
variables that already have identifiers. The Ptr function points the pointer
variable to a specific memory address.

The reserved word nil denotes a pointer-valued constant that does not
point to anything.

The predefined type pointer denotes an untyped pointer, that is, a pointer
that does not point to any specific type. Variables of type pointer cannot be
dereferenced; writing the pointer symbol" after such a variable is an error.
Like the value denoted by the word nil, values of type pointer are
compatible with all other pointer types.

See Chapter 4's section entitled 'Tointers and Dynamic Variables" for the
syntax of referencing the. dynamic variable pointed to by a pointer variable.

32 Turbo Pascal Reference Guide

Procedural Types

Standard Pascal regards procedures and functions strictly as program parts
that can be executed through procedure or function calls. Turbo Pascal has
a much broader view of procedures and functions: It allows procedures
and functions to be treated as objects that can be assigned to variables and
passed as parameters. Such actions are made possible through procedural
types.

For a complete discussion of procedural types, please refer to the
"Procedural Types" section on page 84. .

Identical and Compatible Types

Two types may be the same, and this sameness (identity) is mandatory in
some contexts. At other times, the two types need only be compatible or
merely assignment-compatible. They are identical when they are declared
with, or their definitions stem from, the same type identifier.

Type Identity

Type identity is required only between actual and formal variable
parameters in procedure and function calls.

Two types-say, T1 and T2-are identical if one of the following is True: Tl
and T2 are the same type identifier; Tl is declared to be equivalent to a type
identical to T2.

The second condition connotes that TI does not have to be declared directly
to be equivalent to T2. The type declarations

T1 = integer;
T2 = Tl;
T3 = integer;
T4 = T2;

result in TI, T2, T3, T4, and integer as identical types. The type declarations

T5 = let of integer;
T6 = let of integer;

don't make T5 and T6 identical, since set of integer is not a type identifier.
Two variables declared in the same declaration, for example:

Vl, V2: let of integer;

Chapter 3, Types 33

are of identical types-unless the declarations are separate. The
declarations

Vl: .et of integer;
V2: .et of integer;
V3: integer;
V4: integer;

mean V3 and V4 are of identical type, but not Vl and V2.

Type Compatibility

Compatibility between two types is sometimes required, such as in
expressions or in relational operations. Type compatibility is important,
however, as a precondition of assignment compatibility.

Type compatibility exists when at least one of the following conditions is
True:

• Both types are the same.
• Both types are real types.
• Both types are integer types.
• One type is a subrange of the other.
• Both types are subranges of the same host type.
• Both types are set types with compatible base types.
• Both types are packed string types with an identical number of

components.
• One type is a string type and the other is a string type, packed string

type, or char type.

• One type is pointer and the other is any pointer type.
• Both types are procedural types with identical result types, an identical

number of parameters, and a one-to-one identity between parameter
types.

Assignment Compatibility

Assignment compatibility is necessary when a value is assigned to some­
thing, such as in an assignment statement or in passing value parameters.

A value of type T2 is assignment-compatible with a type Tl (that is, Tl := T2
is allowed) if any of the following are True:

• Tl and T2 are identical types and neither is a file type or a structured type
that contains a file-type component at any level of structuring.

34 Turbo Pascal Reference Guide

• T1 and T2 are compatible ordinal types, and the values of type T2 falls
within the range of possible values of T 1.

• T1 and T2 are real types, and the value of type T2 falls within the range of
possible values of T 1.

• T1 is a real type, and T2 is an integer type.

• T 1 and T 2 are string types.
• T1 is a string type, and T2 is a char type.
• T1 is a string type, and T2 is a packed string type.
• T1 and T2 are compatible, packed string types.
• T1 and T2 are compatible set types, and all the members of the value of

type T 2 fall within the range of possible values of T 1.

• T1 and T2 are compatible pointer types.
• T1 and T2 are compatible procedural types.
• T 1 is a procedural type, and T 2 is a procedure or function with an

identical result type, an identical number of parameters, and a one-to-one
identity between parameter types.

A compile or run-time error occurs when assignment compatibility is
necessary and none of the items in the preceding list are True.

The Type Declaration Part

Programs, procedures, and functions that declare types have a type
declaration part. An example of this follows:

type
Range = integer;
Number = integer;
Color = {red,green,blue};
CharVal = Ord{'A'} •. Ord{'Z'};
Testlndex = 1 •• 100;
TestValue = -99 •• 99;
TestList = array[Testlndex] of TestValue;
TestListPtr = ATestList;
Date = record

year: integer;
month: 1. .12;
day: 1. .31;

end;
MeasureData = record

Chapter 3, Types

when: Date;
count: Testlndex;
data: TestListPtr;

end;

35

MeasureList = array[l •• 50] of MeasureData;
Name = string [80] ;
Sex = (male,femalel;
Person = APersonData;
PersonData = record

PersonBuf
People

name,firstName: Name;
age: integer;
married: boolean;
father,child,sibling: Person;
case s: Sex of
male: (bearded: booleanl;
female: (pregnant: booleanl;

end;
= array[O •• SizeOf(PersonDatal-l] of Byte;
= fi1. of PersonData;

In the example, Range, Number, and integer are identical types. TestIndex is
compatible and assignment-compatible with, but not identical to, the types
Number, Range,' and integer. Notice the use of constant expressions in the
declarations of CharVal and PersonBuf.

36 Turbo Pascal Reference Guide

c H A p T E R

4

Variables

Variable Declarations

A variable declaration embodies a list of identifiers that designate new
variables and their type.

variable dedaration -..f IdenUfier list ~ l/ rC0-+-
absolute clause

The type given for the variable(s) can be a type identifier previously
declared in a type declaration part in the same block, in an enclosing block,
or in a unit; it can also be a new type definition.

When an identifier is specified within the identifier list of a variable
declaration, that identifier is a variable identifier for the block in which the
declaration occurs. The variable can then be referred to throughout the
block, unless the identifier is redeclared in an enclosed block. Redeclaration
causes a new variable using the same identifier, without affecting the value
of the original variable.

An example of a variable declaration part follows:

var
X,Y,Z: real;
I,J,K: integer;
Digit: O •• 9;
C: Color;
Done, Error: boolean;
Operator: (plus, minus, times);
Huel,Hue2: .et of Color;

Chapter 4, Variables 37

Today: Date;
Results: MeasureList;
Pl,P2: Person;
Matrix: array[l •• lO,l •• lO] of real;

Variables declared outside procedures and functions are called global
variables, and reside in the data segment. Variables declared within pro­
cedures and functions are called local variables, and reside in the stack
segment.

The Data Segment

The maximum size of the data segment is 65520 bytes. When a program is
linked (this happens automatically at the end of the compilation of a
program), the global variables of all units used by the program, as well as
the program's own global variables, are placed in the data segment.

If you need more than 65520 bytes of global data, you should allocate the
larger structures as dynamic variables. For further details on this subject,
see "Pointers and Dynamic Variables" on page 42.

The Stack Segment

The size of the stack segment is set through a $M compiler directive-it can
be anywhere from 1024 to 65520 bytes. The default stack segment size is
16384 bytes.

Each time a procedure or function is activated (called), it allocates a set of
local variables on the stack. On exit, the local variables are disposed.. At any
time during the execution of a program, the total size of the local variables
allocated by the active procedures and functions cannot exceed the size of
the stack segment.

The $5 compiler directive is used to include stack overflow checks in the
code. In the default ($5+} state, code is generated to check for stack
overflow at the beginning of each procedure and function. In the ($5-} state,
no such checks are performed. A stack overflow may very well cause a
system crash, so don't turn off stack checks unless you are absolutely sure
that an overflow will never occur.

38 Turbo Pascal Reference Guide

Absolute Variables

Variables can be declared to reside at specific memory addresses, and are
then called absolute variables. The declaration of such variables must include
an absolute clause following the type:

absolute clause unsigned integer

Note that the variable declaration's identifier list can only specify one
identifier when an absolute clause is present.

The first form of the absolute clause specifies the segment and offset at
which the variable is to reside:

CrtMode : byte absolute $0040:$0049;

The first constant specifies the segment base, and the second specifies the
offset within that segment. Both constants must be within the range $0000
to $FFFF (0 to 65535).

The second form of the absolute clause is used to declare a variable "on
top" of another variable, meaning it declares a variable that resides at the
same memory address as another variable.

var
Str: string [32] ;
StrLen: byte absolute Str;

This declaration specifies that the variable StrLen should start at the same
address as the variable Str, and because the first byte of a string variable
contains the dynamic length of the string, StrLen will contain the length of
Str.

Variable References

A variable reference signifies one of the following:

• a variable
• a component of a structured- or string-type variable
• a dynamic variable pointed to by a pointer-type variable

Chapter 4, Variables 39

The syntax for a variable reference is

variable reference

Note. that the syntax for a variable reference allows a function call to a
pointer function. The resulting pointer is then dereferenced to denote a
dynamic variable.

Qualifiers

A variable reference is a variable identifier with zero or more qualifiers that
modify the meaning of the variable reference.

qualifier

An array identifier with no qualifier, for example, references the entire
array:

Results

An array identifier followed by an index denotes a specific component of
the array-in this case a structured variable:

Results [Current+l]

With a component that is a record, the index can be followed by a field
designator; here the variable access signifies a specific field within a specific
array component.

Results[Current+l].data

The field designator in a pointer field can be followed by the pointer
symbol (a A) to differentiate between the pointer field and the dynamic
variable it points to.

Results[Current+l].dataA

If the. variable being pointed to is an array, indexes can be added to denote
components of this array.

Results[Current+l].dataA[J]

40 Turbo Pascal Reference Guide

Arrays, Strings, and Indexes

A specific component of an array variable is denoted by a variable refer­
ence that refers to the array variable, followed by an index that specifies the
component.

A specific character within a string variable is denoted by a variable
reference that refers to the string variable, followed by an index that
specifies the character position.

index -+0-.... 1-1 1 oxp£jl----•• G)-.

The index expressions select components in each corresponding dimension
of the array. The number of expressions can't exceed the number of index
types in the array declaration. Furthermore, eacll expression's type must be
assignment-compatible with the corresponding index type.

When indexing a multidimensional array, multiple indexes or multiple
expressions within an index can be used interchangeably. For example:

Matrix [I] [J]

is the same as

Matrix [I,J]

You can index a string variable with a single index expression, whose value
must be in the range Ooon, where n is the declared size of the string. This
accesses one character of the string value, with the type char given to that
character value.

The first character of a string variable (at index 0) contains the dynamic
length of the string; that is, Length(S) is the same as Ord(SlO]). If a value is
assigned to the length attribute, the compiler does not check whether this
value is less than the declared size of the string. It is possible to index a
string beyond its current dynamic length. The characters thus read are
random, and assignments beyond the current length will not affect the
actual value of the string variable.

Records and Field Designators

A specific field of a record variable is denoted by a variable reference that
refers to the record variable, followed by a field designator specifying the
field.

Chapter 4, Variables 41

field designator ~ field identifier r-..
Some examples of a field designator include:

Today. year
Results[l].count
Results[l].when.month

In a statement within a with statement, a field designator doesn't have to
be preceded by a variable reference to its containing record.

Pointers and Dynamic Variables

The value of a pointer variable is either nil or the address of a value that
points to a dynamic variable.

The dynamic variable pointed to by a pointer variable is referenced by
writing the pointer symbol (") after the pointer variable.

You create dynamic variables and their pointer values with the standard
procedures New and GetMem. You can use the @ (address-of) operator and
the standard function Ptr to create pointer values that are treated as
pointers to dynamic variables.

nil does not point to any variable. The results are undefined if you access a
dynamic variable when the pointer's value is nil or undefined.

Some examples of references to dynamic variables:

Pl"
Pl" .sibling"
Results[l].data"

Variable Typecasts

A variable reference of one type can be changed into a variable reference of
another type through a variable typecast.

variable typecast ---i type identifier ~ variable reference ~

When a variable typecast is applied to a variable reference, the variable
reference is treated as an instance of the type specified by the type
identifier. The size of the variable (the number of bytes occupied by the
variable) must be the same as the size of the type denoted by the type

42 Turbo Pascal Reference Guide

identifier. A variable typecast can be followed by one or more qualifiers, as
allowed by the specified type.

Some examples of variable typecasts follow:

type
ByteRec = record

lo,hi: byte;
end;

WordRec = record
low, high: word;

end;
PtrRec = record

ofs, seg: word;
end;

BytePtr = AByte;
var

B: byte;
W: word;
L: longint;
P: pointer;

begin
W := $1234;
B := ByteRec(W) .10;
ByteRec(W).hi := 0;
L := $01234567;
W := WordRec(L) .10;
B := ByteRec(WordRec(L).lo) .hi;
B := By tePtr(L) A;
P := Ptr($40,$49);
W := PtrRec(P) .seg;
Inc (PtrRec(P) .ofs, 4);

end.

Notice the use of the ByteRec type to access the low- and high-order bytes of
a word; this corresponds to the built-in functions Lo and Hi, except that a
variable typecast can also be used on the left hand side of an assignment.
Also, observe the use of the WordRec and PtrRec types to access the low­
and high-order words of a long integer, and the offset and segment parts of
a pointer.

Chapter 4, Variables 43

44 Turbo Pascal Reference Guide

c H A p T E R

5

Typed Constants

Typed constants can be compared to initialized variables-variables whose
values are defined on entry to their block. Unlike an untyped constant (see
the section entitled "Constant Declarations" in Chapter 1), the declaration
of a typed constant specifies both the type and the value of the constant.

typed constant declaration --1 identifier ~ typed constant ~

typed constant

Typed constants can be used exactly like variables of the same type, and
can appear on the left-hand side in an assignment statement. Note that
typed constants are initialized only once-at the beginning of a program.
Thus, for each entry to a procedure or function, the locally declared typed
constants are not reinitialized.

Chapter 5, Typed Constants 4S

Simple-Type Constants

Declaring a typed constant as a simple type simply specifies the value of
the constant:

const
Maximum : integer = 9999;
Factor : real = -0.1;
Breakchar : char = 13;

Because a typed constant is actually a variable with a constant value, it
cannot be interchanged with ordinary constants. For instance, it cannot be
used in the declaration of other constants or types.

const
Min : integer = 0;
Max : integer = 99;

type
Vector = array[Min •• Max] of integer;

The Vector declaration is invalid, because Min and Max are typed constants.

String-Type Constants

The declaration of a typed constant of a string type specifies the maximum
length of the string and its initial value:

const
Heading : string[7] = 'Section';
NewLine : string [2] = 113110;
TrueStr : string [5] = 'Yes';
FalseStr : string [5] = 'No';

Structured-Type Constants

The declaration of a structured-type constant specifies the value of each of
the structure's components. Turbo Pascal supports the declaration of type
array, record, set, and pointer constants; type file constants, and constants
of array and record types that contain type file components are not
allowed.

46 Turbo Pascal Reference Guide

Array-Type Constants

The declaration of an array-type constant specifies, enclosed in parentheses
and separated by commas, the values of the components.

array constant ~ typed cormant ~
'-------i() t---...

An example of an array-type constant follows:

typa
Status = (Active,Passive,Waiting);
StatusMap = array[Status] of string[7];

conat
StatStr: StatusMap = ('Active','Passive' ,'Waiting');

This example defines the array constant StatStr, which can be used to con­
vert values of type Status into their corresponding string representations.
The components of StatStr are

StatStr[Active] = 'Active'
StatStr[Passive] = 'Passive'
StatStr[Waiting] = 'Waiting'

The component type of an array constant can be any type except a file type.
Packed string-type constants (character arrays) can be specified both as
single characters and as strings. The definition

const
Digits: array[0 •. 9] of char = ('0','1' ,'2','3' ,'4' ,'5' ,'6','7' ,'8','9');

can be expressed more conveniently as

con.t
Digits: array[0 .• 9] of char = '0123456789';

Multidimensional array constants are defined by enclosing the constants of
each dimension in separate sets of parentheses, separated by commas. The
innermost constants correspond to the rightmost dimensions. The
declaration

typa
Cube = array[O •• l,O •• l,O .• l] of integer;

con.t
Maze: Cube = «(0,1),(2,3)),«4,5),(6,7)));

provides an initialized array Maze with the following values:

Chapter 5, Typed Constants 47

Maze[O,O,O] = °
Maze[O,O,1] = 1
Maze[O,1,0] = 2
Maze[0,1,1] = 3
Maze[1,O,0] = 4
Maze[1,O,1] = 5
Maze[1,1,O] = 6
Maze[1,1,1] = 7

Record-Type Constants

The declaration of a record-type constant specifies the identifier and value
of each field, enclosed in parentheses and separated by semicolons.

record constant field identifier

Some examples of record constants follow:

type
Point = record

x,y: real;
end;

Vector = array[O •. 1] of Point;

typed constant

Month = (Jan,Feb,Mar,Apr,May,Jun,Jly,Aug,Sep,Oct,Nov,Dec);
Date = record

d: 1 •. 31; m: Month; y: 1900 .• 1999;
end;

const
Origin : Point = (x: 0.0; y: 0.0);
Line : Vector = ((x: -3.1; y: 1.5),(x: 5.8; y: 3.0));
SomeDay: Date = (d: 2; m: Dec; y: 1960);

The fields must be specified in the same order as they appear in the
definition of the record type. If a record contains fields of file types, the
constants of that record type cannot be declared. If a record contains a
variant, only fields of the selected variant can be specified. If the variant
contains a tag field, then its value must be specified.

Set-Type Constants

The declaration of a set-type constant specifies zero or more member
constants, enclosed in square brackets and separated by commas. A

48 Turbo Pascal Reference Guide

member constant is a constant, or a range consisting of two constants,
separated by two periods.

set constant

member constant ---i constant I ~ t.
Lo, constant f---J

Some examples of set constants follow:

type
Digits = let of 0 •• 9;
Letters = let of 'A' .. 'Z';

const
EvenDigits: Digits = [0,2,4,6,8];
Vowels Letters = ['A' ,'E' ,'I' ,'0' ,'U' ,'Y'];
HexDigits : sat of 'O' •. 'z' = ['0' •• '9','A' .. 'F','a' •.. f'];

Pointer-Type Constants

The declaration of a pointer-type constant can only specify the value nil.
Some examples include

type
NamePtr = ANameRec;
NameRec = record

const

Next: NamePtr;
Name: string[31];

end;

NameList: NamePtr = nil;
NoName: NameRec = (Next: nil; Name: ");

Chapter 5, Typed Constants 49

50 Turbo Pascal Reference Guide

c H A P T E R

6

Expressions

Expressions are made up of operators and operands. Most Pascal operators
are binary, that is, they take two operands; the rest are unary and take only
one operand. Binary operators use the usual algebraic form, for example, a
+ b. A unary operator always precedes its operand, for example, -b.

In more complex expressions, rules of precedence clarify the order in which
operations are performed (see Table 6.1).

Table 6.1 : Precedence of Operators

Operators

@,not
*, I, div, mod, and, shl, shr
+,-, or, xor
=,<>,<,>,<=,>=,in

Precedence Categories

first (high)
second
third
fourth (low) .

unary operators
multiplying operators
adding opera tors
relational operators

There are three basic rules of precedence:

1. First, an operand between two operators of different precedence is
bound to the operator with higher precedence.

2. Second, an operand between two equal operators is bound to the one on
its left.

3. Third, expressions within parentheses are evaluated prior to being
treated as a single operand.

Operations with equal precedence are normally performed from left to
right, although the compiler may at times rearrange the operands to
generate optimum code.

Chapter 6, Expressions Sl

Expression Syntax

The precedence rules follow from the syntax of expressions, which are built
from factors, terms, and simple expressions.

A factor's syntax follows:
factor variable reference t----;.--I~

l--O'-.... procedure identifier

function identifier

value typecast

A function call activates a function and denotes the value returned by the
function (see "Function Calls" on page 62). A set constructor denotes a
value of a set type (see the "Set Constructors" section on page 63). A value
typecast changes the type of a value (see "Value Typecasts" on page 64). An
unsigned constant has the following syntax:

unsigned constant

52 Turbo Pascal Reference Guide

Some examples of factors include

x
@X
15
(X+Y+Z)
Sin (X/2)
['O •• '9','A' •• 'Z']
not Done
char (Digit+48)

Terms apply the multiplying operators to factors:

term

Here are some examples of terms:

X*y
Z/ (l-Z)
Done or Error
(X <= Y) and (Y < Z)

{ Variable reference
Pointer to a variable

{ Unsigned constant
{ Subexpression
{ Function call
Set constructor

Negation of a boolean
{ Value typecast

Simple expressions apply adding operators and signs to terms:

simple expression

Chapter 6, Expressions 53

Here are some examples of simple expressions:

x+y
-x
Huel + Hue2
1*J + 1

An expression applies the relational operators to simple expressions:

expression simple expression

Here are some examples of expressions:

x = 1.5
Done <> Error
(I < J) = (J < K)
C in Huel

Operators

simple expression

The operators are classified as arithmetic operators, logical operators, string
operators, set operators, relational operators, and the @ operator.

Arithmetic Operators

The following tables show the types of operands and results for binary and
unary arithmetic operations.

54 Turbo Pascal Reference Guide

Table 6.2: Binary Arithmetic Operations

Operator Operation Operand Types Result Type

+

*

/

div
mod

addition

subtraction

multiplication

division

integer division
remainder

integer type
real type
integer type
real type
integer type
real type
integer type
real type
integer type
integer type

in teger type
real type
in teger type
real type
in teger type
real type
real type
real type
in teger type
integer type

Note: The + operator is also used as a string or set operator, and the +, -,
and * opera tors are also used as set opera tors.

Table 6.3: Unary Arithmetic Operations

Operator Operation Operand Types Result Type

+ sign identity

sign negation

integer type
real type
integer type
real type

in teger type
real type
in teger type
real type

Any operand whose type is a subrange of an ordinal type is treated as if it
were of the ordinal type.

If both operands of a +, -, *, div, or mod operator are of an integer type, the
result type is of the common type of the two operands. (See the section
"Integer Types" in Chapter 3 for a definition of common types.)

If one or both operands of a +, -, or * operator are of a real type, the type of
the result is real in the {$N-} state or extended in the {$N+} state.

If the operand of the sign identity or sign negation operator is of an integer
type, the result is of the same integer type. If the operator is of a real type,
the type of the result is real or extended.

The value of x/y is always of type real or extended regardless of the oper­
and types. An error occurs if y is zero.

The value of i div j is the mathematical quotient of i/j, rounded in the
direction of zero to an integer-type value. An error occurs if j is zero.

The mod operator returns the remainder obtained by dividing its two
operands, that is,

i mod j = i - (i div j) * j

Chapter 6, Expressions 55

The sign of the result of mod is the same as the sign of i. An error occurs if j
is zero.

Logical Operators

The types of operands and results for logical operations are shown in Table
6.4.

Operator

not
and
or
xor
shl
sm

Table 6.4: Logical Operations

Operation Operand Types

Bitwise negation
Bitwise ana
Bitwise or
Bitwise xor
Shift left
Shift right

integer type
integer type
integer type
integer type
integer type
in teger type

Note: The not operator is a unary operator.

Result Type

integer type
integer type
integer type
integer type
integer type
integer type

If the operand of the not operator is of an integer type, the result is of the
same integer type.

If both operands of an and, or, or xor operator are of an integer type, the
result type is the common type of the two operands.

The operations i shl j and i shr j shift the value of i to the left or to the right
by j bits. The type of the result is the same as the type of i.

Boolean Operators

The types of operands and results for Boolean operations are shown in
Table 6.5.

Operator

not
and
or
xor

Table 6.5: Boolean Operations

Operation Operand Types Result Type

negation
logical and
logical or
logicalxor

Boolean
Boolean
Boolean
Boolean

Boolean
Boolean
Boolean
Boolean

Note: The not operator is a unary operator.

56 Turbo Pascal Reference Guide

Normal Boolean logic governs the results of these operations. For instance,
a and b is True only if both a and b are True. '

Turbo Pascal supports two different models of code generation for the and
and or operators: complete evaluation and short-circuit (partial) evaluation.

Complete evaluation means that every operand of a Boolean expression,
built from the and and or operators, is guaranteed to be evaluated, even
when the result of the entire expression is already known. This model is
convenient when one or more operands of an expression are functions with
side effects that alter the meaning of the program.

Short-circuit evaluation guarantees strict left-to-right evaluation and that
evaluation stops as soon as the result of the entire expression becomes
evident. This model is convenient in most cases, since it guarantees
minimum execution time, and usually minimum code size. Short-circuit
evaluation also makes possible the evaluation of constructs that would not
otherwise be legal; for instance:

while (1<=Length(S)) and (S[1]<>' ') do 1nc(1)i
while (P<>nil) and (pA.Value<>S) do P:=pA.Nexti

In both cases, the second test is not evaluated if the first test is False.

The evaluation model is controlled through the $B compiler directive. The
default state is {$B-} (unless changed using the Options/Compiler menu),
and in this state short-circuit evaluation code is generated. In the {$B+}
state, complete evaluation code is generated.

Since standard Pascal does not specify which model should be used for
Boolean expression evaluation, programs depending on either model being
in effect are not truly portable. However, sacrificing portability is often
worth gaining the execution speed and simplicity provided by the short­
circuit model.

String Operator

The types of operands and results for string operation are shown in Table
6.6.

Table 6.6: string Operation

Operator Operation Operand Types

+ concatenation

Chapter 6, Expressions

string type,
char~pe,or
packea string type

Result Type

string type

57

Turbo Pascal allows the + operator to be used to concatenate two string
operands. The result of the operation s + t, where sand t are of a string
type, a char type, or a packed string type, is the concatenation of sand t.
The result is compatible with any string type (but not with char types and
packed string types). If the resulting string is longer than 255 characters, it
is truncated after character 255.

Set Operators

The types of operands for set operations are shown in Table 6.7.

Operator

+

*'

Table 6.7: Set Operations

Operation Operand Types

union
difference
intersection

compatible set types
compatible set types
compatible set types

The results of set operations conform to the rules of set logic:

• An ordinal value c is in a + b only if c is in a or b.
• An ordinal value c is in a - b only if c is in a and not in b.
• An ordinal value c is in a *' b only if c is in both a and b.

If the smallest ordinal value that is a member of the result of a set operation
is a and the largest is b, then the type of the result is set of a .. b.

Relational Operators

The types of operands and results for relational operations are shown
in Table 6.8.

58 Turbo Pascal Reference Guide

Table 6.8: Relational Operations

Operator
Type Operation Operand Types Result Type

= equal compatible simple, Boolean
pointer, set, string,
or packed string types

<> not equal compatible simple, Boolean
pointer, set, string,
or packed string types

< less than compatible simI'le, Boolean
string, or packeCl
string types

> greater than compatible simI'le, Boolean
string, or packeCl
string types

<= less or equal compatible simI'le, Boolean
string, or packeCl
string types

>= greater or compatible simI'le, Boolean
equal string, or packeCl

string types

<= subset of compatible set types Boolean

>= superset of compatible set types Boolean

in member of left o~rand: any Boolean
ordinal type t;
right operand: set whose
base is compatible with t.

Comparing Simple Types

When the operands of =, <>, <, >, >=, or <= are of simple types, they must
be compatible types; however, if one operand is of a real type, the other can
be of an integer type.

Comparing Strings

The relational operators =, <>, <, >, >=, and <= compare strings according
to the ordering of the extended ASCII character set. Any two string values
can be compared, because all string values are compatible.

A character-type value is compatible with a string-type value, and when
the two are compared, the character-type value is treated as a string-type

Chapter 6, Expressions 59

value with length 1. When a packed string-type value with n components is
compared with a string-type value, it is treated as a string-type value with
length n.

Comparing Packed Strings

The relational operators =, <>, <, >, >=, and <= can also be used to compare
two packed string-type values if both have the same number of
components. If the number of components is n, then the operation
corresponds to comparing two strings, each of length n.

Comparing Pointers

The operators = and <> can be used on compatible pointer-type operands.
Two pointers are equal only if they point to the same object.

Note: When comparing pointers, Turbo Pascal simply compares the
segment and offset parts. Because of the segment mapping scheme of the
80x86 processors, two logically different pointers can in fact point to the
same physical memory location. For instance, Ptr($0040,$0049) and
Ptr($0000,$0449) are two pointers to the same physical address. Pointers
returned by the standard procedures New and GetMem are always
normalized (offset part in the range $0000 to $OOOF), and will therefore
always compare correctly. When creating pointers with the Ptr standard
function, special care must be taken if such pointers are to be compared.

Comparing Sets

If a and b are set operands, their comparisons produce these results:

• a = b is True only if a and b contain exactly the same members; otherwise,
a <> b.

• a <= b is True only if every member of a is also a member of b.
• a >= b is True only if every member of b is also a member of a.

Testing Set Membership

The in operator returns true when the value of the ordinal-type operand is
a member of the set-type operand; otherwise, it returns false.

60 Turbo Pascal Reference Guide

The @ Operator

A pointer to a variable can be created with the @ operator. Table 6.9 shows
the operand and result types.

Table 6.9: Pointer Operation

Operator Operation Operand Types

@ Pointer formation Variable reference
or procedure or
furiction identifier

Result Type

Pointer (same
as nil)

@ is a unary operator that takes a variable reference or a procedure or
function identifier as its operand, and returns a pointer to the operand. The
type of the value is the same as the type of nil, therefore it can be assigned
to any pointer variable.

Note: Special rules apply to use of the @ operator with a procedural
variable. For further details, refer to the "Procedural Types" section on
page 84.

@ with a Variable

The use of@ with an ordinary variable (not a parameter) is uncomplicated.
Given the declarations

type
TwoChar = array[O .. l] of char;

var
Int: integer;
TwoCharPtr: hTwoChar;

then the statement

TwoCharPtr := @Int;

causes TwoCharPtr to point to Int. TwoChIlrPtr" becomes are-interpretation
of the value of Int, as though it were an array [0 .. 1] of char.

@ with a Value Parameter

Applying @ to a formal value parameter results in a pointer to the stack
location containing the actual value. Suppose Foo is a formal value
parameter in a procedure and FooPtr is a pointer variable. If the procedure
executes the statement

Chapter 6, Expressions 61

FooPtr := @FoOi

then FooPtrA references Foo's value. However, FooPtrA does not reference
Foo itself, rather it references the value that was taken from Foo and stored
on the stack.

@ with a Variable Parameter

Applying @ to a formal variable parameter results in a pointer to the actual
parameter (the pointer is taken from the stack). Suppose One is a formal
variable parameter of a procedure, Two is a variable passed to the
procedure as One's actual parameter, and OnePtr is a pointe~ variable. If the
procedure executes the statement

OnePtr := @Onei

then OnePtr is a pointer to Two, and OnePtrA is a reference to Two itself.

@ with a Procedure or Function

You can apply @ to a procedure or a function to produce a pOinter to its
entry point. Turbo Pascal does not give you a mechanism for using such a
pointer. The only use for a procedure pointer is to pass it to an assembly
language routine or to use it in an inline statement. See "Turbo Assembler
and Turbo Pascal" on page 200 for information on interfacing Turbo
Assembler and Turbo Pascal.

Function Calls

A function call activates the function specified by the function identifier.
Any identifier declared to denote a function is a function identifier.

The function call must have a list of actual parameters if the corresponding
function declaration contains a list of formal parameters. Each parameter
takes the place of the corresponding formal parameter according to
parameter rules set forth in Chapter 10, "Input and Output."

function call function identifier

actual parameter list

actual parameter list ~L-__ a_ctu-lal parameter ~
- O~

62 Turbo Pascal Reference Guide

actual parameter

Some examples of function calls follow:

Sum (A, 63)
Maximum (147 ,J)
Sin (X+Y)
Eof(F)

Volume (Radius, Height)

Note: A function can also be invoked via a procedural variable. For further
details, refer to the "Procedural Types" section on page 84.

Set Constructors

A set constructor denotes a set-type value, and is formed by writing
expressions within brackets ([]). Each expression denotes a value of the set .

.. tconsbuc~r --0 L? ~r0-
~ member group ~

'-----iG} ... -----'

member group -I expression I ~ . ~
•• expresSIon

The notation [1 denotes the empty set, which is assignment-::compatible
with every set type. Any member group x .. y denotes as set members all
values in the range x .. y. If x is greater than y, then x .. y does not denote any
members and [x .. yl denotes the empty set.

All expression values in member groups in a particular set constructor
must be of the same ordinal type.

Some examples of set constructors follow:

[red, C, green]
[1, 5, 10 •• K mod 12, 23]
['A' •• 'Z', 'a' •• 'z', Chr(Digit+48)]

Chapter 6, Expressions 63

Value Typecasts

The type of an expression can be changed to another type through a value
typecast.

value typecast -+I type identifier ~ expression ~

The expression type and the specified type must both be either ordinal
types or pointer types. For ordinal types, the resulting value is obtained by
converting the expression. The conversion may involve truncation or
extension of the original value if the size of the specified type is different
from that of the expression. In cases where the value is extended, the sign
of the value is always preserved; that is, the value is sign-extended.

The syntax of a value typecast is almost identical to that of a variable type­
cast (see "Variable Typecasts" on page 42). However, value typecasts
operate on values, not on variables, and can therefore not participate in
variable references; that is, a value typecast may not be followed by
qualifiers. In particular, value typecasts cannot appear on the left-hand side
of an assignment statement.

Some examples of value typecasts include

64

integer (' A')
char(48)
boolean (0)
Color(2)
Longint (@Buffer)
BytePtr(Ptr($40,$49))

Turbo Pascal Reference Guide

c H A p T E R

7

Statem.ents

Statements describe algorithmic actions that can be executed. Labels can
prefix statements, and these labels can be referenced by goto statements.

statement

simple statement

structured statement

As you saw in Chapter 1, a label is either a digit sequence in the range 0 to
9999 or an identifier.

There are two main types of statements: simple statements and structured
statements.

Simple Statements

A simple statement is a statement that doesn't contain any other statements.

simple statement assignment statement t----r-~

procedure statement

goto statement 1-------'

Chapter 7. Statements 65

Assignment Statements

Assignment statements either replace the current value of a variable with a
new value specified by an expression or specify an expression whose value
is to be returned by a function.

assignment statement variable reference

function identifier

The expression must be assignment-compatible with the type of the vari­
able or the result type of the function (see the section "Type Compatibility"
on page 34).

Some examples of assignment statements follow:

X := HZ;
Done := (1)=1) and (1<100);
Hue1 := [blue,Succ(C)];
I := Sqr (J) - I*K;

Procedure Statements

A procedure statement specifies the activation of the procedure denoted by
the procedure identifier. If the corresponding procedure declaration con­
tains a list of formal parameters, then the procedure statement must have a
matching list of actual parameters (parameters listed in definitions are
formal parameters; in the calling statement, they are actual parameters). The
actual parameters are passed to the formal parameters as part of the call.

procedure
statement procedure identifier t-r--------~

actual parameter list

Some examples of procedure statements follow:

PrintHeading;
Transpose(A,N,M);
Find(Name,Address);

Note: A procedure can also be invoked via a procedural variable. For
further details, refer to the "Procedural Types" section on page 84.

66 Turbo Pascal Reference Guide

Goto Statements

A goto statement transfers program execution to the statement prefixed by
the label referenced in the goto statement. The syntax diagram of a goto
statement follows:

9Oto statement

The following rules should be observed when using goto statements:

• The label referenced by a go to statement must be in the same block as the
goto statement. In other words, it is not possible to jump into or out of a
procedure or function .

• Jumping into a structured statement from outside that structured state­
ment (that is, jumping to a udeeper" level of nesting) can have undefined
effects, although the compiler will not indicate an error.

Structured Statements

Structured statements are constructs composed of other statements that are
to be executed in sequence (compound and with statements), conditionally
(conditional statements), or repeatedly (repetitive statements).

structured statement ---r--l~ compound statement

repetitive statement

with statement

Compound Statements

The compound statement specifies that its component statements are to be
executed in the same sequence as they are written. The component
statements are treated as one statement, crucial in contexts where the Pascal
syntax only allows one statement. begin and end bracket the statements,
which are separated by semicolons.

compound statement

Chapter 7, Statements 67

Here's an example of a compound statement:

beqin
Z := X;
X := Y;
Y := Z;

end;

Conditional Statements

A conditional statement selects for execution a single one (or none) of its
component statements.

conditional statement --....,....--1.. if statement

case statement

If Statements

The syntax for an if statement reads like this:

if statement --1"'-

The expression must yield a result of the standard type boolean. If the
expression produces the value true, then the statement following then is
executed.

If the expression produces false and the else part is present, the statement
following else is executed; if the else part is not present, nothing is
executed.

The syntactic ambiguity arising from the construct

if e1 then if e2 then sl 81s8 s2

is resolved by interpreting the construct as follows:

68

if e1 then
begin

if e2 then
sl

81se
s2

end

Turbo Pascal Reference Guide

In general, an else is associated with the closest if not already associated
with an else.

Two examples of if statements follow:

if x < 1.5 than
Z := X+Y

else
Z := 1.5;

if Pl <> nil then
Pl := P1A.father;

Case Statements

The case statement consists of an expression (the selector) and a list of
statements, each prefixed with one or more constants (called case constants)
or with the word else. The selector must be of an ordinal type, and the
ordinal values of the upper and lower bounds of that type must be within
the range -32768 to 32767. Thus, string types and the integer types longint
and word are invalid selector types. All case constants must be unique and
of an ordinal type compatible with the selector type.

case statement

case 1 ~ 1 __ ":1 ~c~o_n_s~ta~n_t __1_---1~,-_co_n_st_an_t -"I I ..:, ,Slaumv.nl ~

else part

The case statement executes the statement prefixed by a case constant equal
to the value of the selector or a case range containing the value of the
selector. If no such case constant of the case range exists and an else part is

Chapter 7, Statements 69

present, the statement following else is executed. If there is no else part,
nothing is executed.

Examples of case statements follow:

ca.. Operator of
plus: X:= X+Y;
minus: X:= X-Y;
times: X:= X*Y;

ud;

ca •• I of
0,2,4,6,8: Writeln{'Even digit');
1,3,5,7,9: Writeln{'Odd digit');
10 •• 100: Writeln{'Between 10 and 100'); .la.
Writeln{'Negative or greater than 100');

ud;

Repetitive Statements

Repetitive statements specify certain statements to be executed repeatedly.

repetitive statement -~--I~ repeat statement

while statement

for statement

If the number of repetitions is known beforehand, the for statement is the
appropriate construct. Otherwise, the while or repeat statement should be
used.

Repeat Statements

A repeat statement contains an expression that controls the repeated
execution of a statement sequence within that repeat statement.

I expression t-+"

The expression must produce a result of type boolean. The statements
between the symbols repeat and until are executed in sequence until, at the
end of a sequence, the expression yields true. The sequence is executed at

70 Turbo Pascal Reference Guide

least once, because the expression is evaluated after the execution of each
sequence.

Examples of repeat statements follow:

repeat
K := I mod J;
I := J;
J := K;

antil J = 0;

repeat
Write('Enter value (0 •• 9): ');
Readln (1);

antil (I >= 0) and (I <= 9);

While Statements

A while statement contains an expression that controls the repeated
execution of a statement (which can be a compound statement).

while statement ~ expression ~ statement r---.
The expression controlling the repetition must be of type boolean. It is
evaluated before the contained statement is executed. The contained
statement is executed repeatedly as long as the expression is true. If the
expression is false at the beginning, the statement is not executed at all.

Examples of while statements include:

while Data(1) <> X do I := I + 1;

while I > 0 do
begin

if Odd (I) then Z := Z * X;
I := I div 2;
X := Sqr(X);

end;

while not Eof(1nFile) do
begin

Readln(1nFile,Line);
Process(Line);

end;

Chapter 7, Statements 71

For Statements

The for statement causes a statement (which can be a compound statement)
to be repeatedly executed while a progression of values is assigned to a
control variable.

for statement

control variable ----.J variable identifier r--.-
initial value ----.J expression r---.
final value ----.J expression r---.

The control variable must be a variable identifier (without any qualifier)
that signifies a variable declared to be local to the block containing the for
statement. The control variable must be of an ordinal type. The initial and
final values must be of a type assignment-compatible with the ordinal type.

When a for statement is entered, the initial and final values are determined
once for the remainder of the execution of the for statement.

The statement contained by the for statement is executed once for every
value in the range initial value to final value. The control variable always
starts off at initial value. When a for statement uses to, the value of the
control variable is incremented by one for each repetition. If initial value is
greater than final value, the contained statement is not executed. When a for
statement uses downto, the value of the control variable is decremented by
one for each repetition. If initial value value is less than final value, the
contained statement is not executed.

It's an error if the contained statement alters the value of the control
variable. After a for statement is executed, the value of the control variable
value is undefined, unless execution of the for statement was interrupted
by a goto from the for statement.

With these restrictions in mind, the for statement

for V := Exprl to Expr2 do Body;

is equivalent to

begin

72 Turbo Pascal Reference Guide

Ternp1 := Expr1;
Ternp2 := Expr2;
if Temp1 <= Temp2 then
begin

V := Ternp1;
Body;
while V <> Temp2 do
begin

V := Succ (V) ;
Body;

end;
end;

end;

and the for statement

for V := Expr1 downto Expr2 do Body;

is equivalent to

begin
Temp1 := Expr1;
Ternp2 := Expr2;
if Temp1 >= Temp2 then
begin

V := Ternp1;
Body;
while V <> Temp2 do
begin

V := Pred (V) ;

Body;
end;

end;
end;

where Templ and Temp2 are auxiliary variables of the host type of the
variable V and don't occur elsewhere in the program.

Examples of for statements follow:

for I := 2 to 63 do
if Data[I] > Max then Max := Data[I]

for I := 1 to 10 do
for J := 1 to 10 do
begin

X := 0;
for K := 1 to 10 do

X := X + Mat1[I,K] * Mat2[K,J];
Mat[I,J] := X;

end;

for C := red to blue do Check(C);

Chapter 7, Statements 73

With Statements

The with statement is shorthand for referencing the fields of a record.
Within a with statement, the fields of one or more specific record variables
can be referenced using their field identifiers only. The syntax of a with
statement follows:

with statement

record variable reference --..J variable reference ~

Following is an example of a with statement:

with Date do
if month = 12 then
begin

month := 1;
year := year + 1

end
alaa

month := month + 1;

This is equivalent to

if Date.month = 12 then
begin

Date.month := 1;
Date.year := Date.year + 1

aDd
alaa

Date.month := Date.month + 1;

Within a with statement, each variable reference is first checked to see if it
can be interpreted as a field of the record. If so, it is always interpreted as
such, even if a variable with the same name is also accessible. Suppose the
following declarations have been made:

74

type
Point = record

var

x,y: integer;
end;

x: Point;
y: integer;

Turbo Pascal Reference Guide

In this case, both x and y can refer to a variable or to a field of the record. In
the statement

with x do
begin

x := 10;
y := 25;

end;

the x between with and do refers to the variable of type Point, but in the
compound statement, x and y refer to x.x and x.y.

The statement

with V1,V2, ..• Vn do 5;

is equivalent to

with V1 do
with V2 do

with Vn do
S;

In both cases, if Vn is a field of both Vl and V2, it is interpreted as V2.Vn,
not Vl.Vn.

If the selection of a record variable involves indexing an array or
dereferencing a po in ter, these actions are executed once before the
component statement is executed.

Chapter 7, Statements 75

76 Turbo Pascal Reference Guide

c H A p T E R

8

Procedures and Functions

Procedures and functions allow you to nest additional blocks in the main
program block. Each procedure or function declaration has a heading
followed by a block. A procedure is activated by a procedure statement; a
function is activated by the evaluation of an expression that contains its call
and returns a value to that expression.

This chapter discusses the different types of procedure and function
declarations and their parameters.

Procedure Declarations

A procedure declaration associates an identifier with a block as a
procedure; that procedure can then be activated by a procedure statement.

procedure declaration --+I procedure heading ~ procedure body ~

procedure heading

formal parameter list

procedure body --r----------r~~~

'------------~ inline directive

Chapter 8, Procedures and Functions 77

The procedure heading names the procedure's identifier and specifies the
formal parameters (if any). The syntax for a formal parameter list is shown
in the section IIParameters" on page 82.

A procedure is activated by a procedure statement, which states the
procedure's identifier and any actual parameters required. The statements
to be executed on activation are noted in the statement part of the
procedure's block. If the procedure's identifier is used in a procedure
statement within the procedure's block, the procedure is executed
recursively (it calls itself while executing).

Here's an example of a procedure declaration:

procedure NumString(N: integer; var S: string);
var

V: integer;
begin

V := Abs(N);
S := ";
repeat

S := Chr(N mod 10 + Ord('O')) + S;
N := N div 10;

until N = 0;
if N < 0 than S := '-' + S;

and;

A procedure declaration can optionally specify an interrupt directive
before the block, and the procedure is then considered an interrupt
procedure. Interrupt procedures are described in full in Chapter 15, "Inside
Turbo Pasca1." For now, note that interrupt procedures cannot be called
from procedure statements, and that every interrupt procedure must
specify a parameter list exactly like the following:

procedure Mylnt(Flags,CS,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP: word);
interrupt;

Instead of the block in a procedure or function declaration, you can write a
forward, external, or inline declaration.

Forward Declarations

A procedure declaration that specifies the directive forward instead of a
block is a forward declaration. Somewhere after this declaration, the
procedure must be defined by a defining dec1aration-a procedure
declaration that uses the same procedure identifier but omits the formal
parameter list and includes a block. The forward declaration and the
defining declaration must appear in the same procedure and function
declaration part. Other procedures and functions can be declared between

78 Turbo Pascal Reference Guide

them, and they can call the forward-declared procedure. Mutual recursion
is thus possible.

The forward declaration and the defining declaration constitute a complete
procedure declaration. The procedure is considered declared at the forward
declaration.

An example of a forward declaration follows:

procedure Walter(m,n : integer); forward;

procedure Clara(x,y : real);
begin

Walter(4,5);

end;

procedure Walter;
begin

Clara(8.3,2.4);

end;

A procedure's defining declaration can be an external declaration;
however, it cannot be an inline declaration or another forward declaration.
Likewise, the defining declaration cannot specify an interrupt directive.

Forward declarations are not allowed in the interface part of a unit.

External Declarations

External declarations allow you to interface with separately compiled
procedures and functions written in assembly language. The external code
must be linked with the Pascal program or unit through {$L filename}
directives. For further details on linking with assembly language, refer to
Chapter 15.

Examples of external procedure declarations follow:

procedure MoveWord(var source,dest; count: word); external;
procedure MoveLong(var source,dest; count: word); external;

procedure FillWord(var dest; data: integer; count: word); external;
procedure FillLong(var dest; data: longint; count: word); external;

{$L BLOCK.OBJ}

You should use external procedures when you need to incorporate
substantial amounts of assembly code. If you only require small amounts of
code, use inline procedures instead.

Chapter 8, Procedures and Functions 79

Inline Declarations

The inline directive permits you to write machine code instructions instead
of the block. When a normal procedure is called, the compiler generates
code that pushes the procedure's parameters onto the stack, and then
generates a CALL instruction to call the procedure. When you "call" an
inline procedure, the compiler generates code from the inline directive
instead of the CALL. Thus, an inline procedure is "expanded" every time
you refer to it, just like a macro in assembly language. Here's a short
exampie of two inline procedures:

procedure Disablelnterrupts; inline($FA);
procedure Enablelnterrupts; iDline($FB);

{ eLI }
{ STI }

Inline procedures are described in full in Chapter 15, "Inside Turbo Pasca1."

Function Declarations

A function declaration defines a part of the program that computes and
returns a value.

function declaration --.J function heading ~ function body ~

function heading

formal parameter list

result type

function body

The function heading specifies the identifier for the function, the formal
parameters (if any), and the function result type.

80 Turbo Pascal Reference Guide

A function is activated by the evaluation of a function call. The function
call gives the function's identifier and any actual parameters required by
the function. A function call appears as an operand in an expression. When
the expression is evaluated, the function is executed, and the value of the
operand becomes the value returned by the function.

The statement part of the function's block specifies the statements to be
executed upon activation of the function. The block should contain at least
one assignment statement that assigns a value to the function identifier. The
result of the function is the last value assigned. If no such assignment
statement exists or if it is not executed, the value returned by the function is
unspecified.

If the function's identifier is used in a function call within the function's
block, the function is executed recurSively.

Following are examples of function declarations:

function Max(a: Vector; n: integer): extended;

x: extended;
i: integer;

begin
x:=a[l];
for i := 2 to n do

if x < ali] than x := ali];
Max := x;

ad;

function Power(x: extended; y: integer): extended;

z: extended;
i: integer;

begin
z := 1.0; i := y;
while i > 0 do
begin

if Odd (i) tha z := z * x;
i := i div 2;
x := Sqr(x);

end;
Power := Z;

ad;

Like procedures, functions can be declared as forward, external, or inline;
however, interrupt functions are not allowed.

Chapter 8. Procedures and Functions 81

Parameters

The declaration of a procedure or function specifies a formal parameter list.
Each parameter declared in a formal parameter list is local to the procedure
or function being declared, and can be referred to by its identifier in the
block associated with the procedure or function.

formal
parameter
list

parameter declaration ~ -I idenlWier list 1 ~ ;t -
~ ~ parameter type ~

parameter type

There are three kinds of parameters: value, variable, and untyped variable.
They are characterized as follows:

• A parameter group without a preceding var and followed by a type is a
list of value parameters.

• A parameter group preceded by var and followed by a type is a list of
variable parameters.

• A parameter group preceded by var and not followed by a type is a list of
untyped variable parameters.

Value Parameters

A formal value parameter acts like a variable local to the procedure or
function, except that it gets its initial value from the corresponding actual
parameter upon activation of the procedure or function. Changes made to a
formal value parameter do not affect the value of the actual parameter.

A value parameter's corresponding actual parameter in a procedure
statement or function call must be an expression, and its value must not be
of file type or of any structured type that contains a file type.

82 Turbo Pascal Reference Guide

The actual parameter must be assignment-compatible with the type of the
formal value parameter. If the parameter type is string, then the formal
parameter is given a size attribute of 255.

Variable Parameters

A variable parameter is employed when a value must be passed from a
procedure or function to the caller. The corresponding actual parameter in a
procedure statement or function call must be a variable reference. The
formal variable parameter represents the actual variable during the activa­
tion of the procedure or function, so any changes to the value of the formal
variable parameter are reflected in the actual parameter.

Within the procedure or function, any reference to the formal variable
parameter accesses the actual parameter itself. The type of the actual
parameter must be identical to the type of the formal variable parameter
(you can bypass this restriction through untyped variable parameters). If
the formal parameter type is string, it is given the length attribute 255, and
the actual variable parameter must be a string type with a length attribute
of 255.

File types can only be passed as variable parameters.

If referencing an actual variable parameter involves indexing an array or
finding the object of a pointer, these actions are executed before the
activation of the procedure or function.

Untyped Variable Parameters

When a formal parameter is an untyped variable parameter, the corres­
ponding actual parameter may be any variable reference, regardless of its
type.

Within the procedure or function, the untyped variable parameter is
typeless; that is, it is incompatible with variables of all other types, unless it
is given a specific type through a variable typecast.

An example of untyped variable parameters follows:

function Equal(var source,dest; size: word): boolean;
type

Bytes = array[O .• Maxlnt] of byte;
var

N: integer;
begiJl

N := 0;
while (N<size) and (Bytes (dest) [N] <> Bytes (source) [N]) do Inc(N);

Chapter 8, Procedures and Functions 83

Equal := N = size;
ad;

This function can be used to compare any two variables of any size. For
instance, given the declarations

type
Vector = array[l •• lO] of integer;
Point = record

Tar

x,y: integer;
end;

Vecl,Vec2: Vector;
N: integer;
P: Point;

then the function calls

Equal(Vecl,Vec2,SizeOf(Vector))
Equal(Vecl,Vec2,SizeOf(integer)*N)
Equal (Vec[l],Vecl [6],SizeOf(integer) *5)
Equal(Vecl[1],P,4)

compare Vec1 to Vec2, compare the first N components of Vec1 to the first N
components of Vec2, compare the first five components of Vec1 to the last
five components of Vec1, and compare Vec1[1] to P.x and Vee1[2] to P.y.

Procedural Types

As an extension to Standard Pascal, Turbo Pascal allows procedures and
functions to be treated as objects that can be assigned to variables and
passed as parameters; procedural types make this possible.

Procedural Type Declarations

A procedural type declaration specifies the parameters and, for a function,
the result type.

procedure heading

procedural type
function heading

In essence, the syntax for writing a procedural type declaration is exactly
the same as for writing a procedure or function header, except that the
identifier after the procedure or function keyword is omitted. Some
examples of procedural type declarations follow:

84 Turbo Pascal Reference Guide

type
Proc
SwapP roc
StrProc
MathFunc

= procedure;
= procedure(var X,Y: integer);
= procedure(S: string);
= function(X: real): real;

DeviceFunc = function(var F: text): integer;
MaxFunc = function(A,B: real; F: MathFunc): real;

The parameter names in a procedural type declaration are purely
decorative-they have no effect on the meaning of the declaration.

Note: Turbo Pascal does not allow you to declare functions that return pro­
cedural type values; a function result value must be a string, real, integer,
char, boolean, pointer, or a user-defined enumera tion.

Procedural Variables

Once a procedural type has been defined, it becomes possible to declare
variables of that type. Such variables are called procedural variables. For
example, given the preceding type declarations, the following variables can
be declared:

var
P: SwapProc;
F: MathFunc;

like an integer variable that can be assigned an integer value, a procedural
variable can be assigned a procedural value. Such a value can of course be
another procedural variable, but it can also be a procedure or a function
identifier. In this context, a procedure or function declaration can be viewed
as a special kind of constant declaration, the value of the constant being the
procedure or function. For example, given the following procedure and
function declarations,

{$F+}

procedure Swap(var A,B: integer);

Temp: integer;
begin

Temp := A; A := B; B := Temp;
end;

function Tan(Angle: real): real;
begin

Tan := Sin(Angle) / Cos(Angle);
end;

{$F-}

Chapter 8, Procedures and Functions 85

The variables P and F declared previously can now be assigned values:

P := Swap;
F := Tan;

Following these assignments, the call P (I, J) is equivalent to Swap (I, J), and
F (X) is equivalent to Tan (X).

As in any other assignment operation, the variable on the left and the value
on the right must be assignment-compatible. To be considered assignment­
compatible, procedural types must have the same number of parameters,
and parameters in corresponding positions must be of identical types;
finally, the result types of functions must be identical. As mentioned
previously, parameter names are of no significance when it comes to
procedural-type compatibility.

In addition to being of a compatible type, a procedure or function must
satisfy the following requirements if it is to be assigned to a procedural
variable:

• It must be compiled in the ($F+) state .
• It cannot be

• a standard procedure or function.
• a nested procedure or function.
• an inline procedure or function.
• an interrupt procedure or function.

The easiest way to satisfy the ($F+) requirement is simply to place a ($F+)
compiler directive at the beginning of the source text (or to set the o/e/
Force Far Calls switch to On in the IDE).

Standard procedures and functions are the procedures and functions
declared by the System unit, such as Writeln, Readln, Chr, and Ord. To use a
standard procedure or function with a procedural variable, you will have
to write a "shell" around it. For example, given the procedural type

type
IntProc = procedure(N: integer};

the following is an assignment-compatible procedure to write an integer:

procedure Writelnt(Number: integer};
begin

Write(Number};
end;

Nested procedures and function cannot be used with procedural variables.
A procedure or function is nested when it is declared within another
procedure or function. In the following example, Inner is nested within
Outer, and Inner cannot therefore be assigned to a procedural variable.

86 Turbo Pascal Reference Guide

program Nested;
procedure Outer;
procedure Inner;
begin

Writeln{'Inner is nested');
ad;
begin

Inner;
ad;
begin

Outer;
ad.

The use of procedural types is not restricted to simple procedural variables.
Like any other type, a procedural type can participate in the declaration of
a structured type, as demonstrated by the following declarations:

type
GotoProc = procednre{X,Y: integer);
ProcList = array[1 •• 10] of GotoProc;
WindowPtr = AWindowRec;
WindowRec = record

Next: WindowPtr;
Header: atring[31];
Top,Left,Bottorn,Right: integer;
SetCursor: GotoProc;

ad;
var

P: ProcList;
W: WindowPtr;

Given the preceding declarations, the following statements are valid
procedure calls:

P [3](1, 1);
WA• SetCnrsor (10, 10) ;

When a procedural value is assigned to a procedural variable, what
physically takes place is that the address of the procedure is stored in the
variable. In fact, a procedural variable is much like a pointer variable,
except that instead of pointing to data, it points to a procedure or function.
Like a pointer, a procedural variable occupies 4 bytes (two words),
containing a memory address. The first word stores the offset part of the
address, and the second word stores the segment part.

Procedural Type Parameters

Since procedural types are allowed in any context, it is possible to declare
procedures or functions that take procedures or functions as parameters.

Chapter 8, Procedures and Functions 87

The following program demonstrates the use of a procedural type
parameter to output three tables of different arithmetic functions:

program. Tables;

type
Fune = fuDCtion(X,Y: integer): integer;

{$F+}

function Add(X,Y: integer): integer;
begin

Add := X + Y;
ad;

function Multiply (X,Y: integer): integer;
begin

Multiply := X * Y;
ad;

function Funny(X,y: integer): integer;
begin

Funny := (X+Y) * (X-Y);
ad;

{$F-}

procedure PrintTable(W,H: integer; Operation: Fune);

X,Y: integer;
begin

for Y : = 1 to H do
begin

for X := 1 to W do Write(Operation(X,Y):5);
Writeln;

end;
Writeln;

ad;

begin
PrintTable(10,10,Add);
PrintTable(10,10,Multiply);
PrintTable(10,10,Funny);

ad.

When run, the Tables program outputs three tables. The second one looks
like this:

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70

88 Turbo Pascal Reference Guide

8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Procedural type parameters are particularly useful in situations where a
certain common action is to be carried out on a set of procedures or
functions. In this case, the PrintTable procedure represents the common
action to be carried out on the Add, Multiply, and Funny functions.

If a procedure or function is to be passed as a parameter, it must conform to
the same type-compatibility rules as in an assignment. Thus, such proce­
dures and functions must be compiled with ($F+}, they cannot be built-in
routines, they cannot be nested, and they cannot be declared with the
inline or interrupt attributes.

Procedural Types in Expressions

In general, the use of a procedural variable in a statement or an expression
denotes a call of the procedure or function stored in the variable. There is
however one exception: When Turbo Pascal sees a procedural variable on
the left-hand side of an assignment statement, it knows that the right-hand
side has to represent a procedural value. For example, consider the
following program:

{$F+}

type
IntFunc = function: integer;

var
F: IntFunc;
N: integer;

function ReadInt: integer;
var

I: integer;
begin

Read (1);

ReadInt := I;
end;

begin
F := ReadInt;
N := ReadInt;

end.

{ Assign procedural value
{ Assign function result

The first statement in the main program assigns the procedural value
(address of) Readlnt to the procedural variable F, where the second
statement calls Readlnt, and assigns the returned value to N. The distinction

Chapter 8, Procedures and Functions 89

between getting the procedural value or calling the function is made by the
type of the variable being assigned (F or N).

Unfortunately, there are situations where the compiler cannot determine
the desired action from the context. For example, in the following
statement, there is no obvious way the compiler can know if it should
compare the procedural value in F to the procedural value of Readlnt, to
determine if F currently points to Readlnt, or whether it should call F and
Readlnt, and then compare the returned values.

if F = ReadInt than WriteLn('Equal')i

However, standard Pascal syntax specifies that the occurrence of a function
identifier in an expression denotes a call to that function, so the effect of the
preceding statement is to call F and Readlnt, and then compare the returned
values. To compare the procedural value in F to the procedural value of
Readlnt, the following construct must be used:

if @F = @ReadInt than Writeln('Equal')i

When applied to a procedural variable or a procedure or function identifier,
the address (@) operator prevents the compiler from calling the procedure,
and at the same time converts the argument into a pointer. Thus, @F

converts F into an untyped pointer variable that contains an address, and
@ReadInt returns the address of Readlnti the two pointer values can then be
compared to determine if F currently refers to Readlnt.

Note: To get the memory address of a procedural variable, rather than the
address stored in it, a double address (@@) operator must be used. For
example, where @P means convert P into an untyped pointer variable, @@P
means return the physical address of the variable P.

Turbo Pascal fully supports variable typecasts involving procedural types.
For example, given the declarations

type
Func = function(X: integer): integer;

var
F: Funci
P: Pointer;
N: integer;

you can construct the following assignments:

90

F := Func(P)i
Func(P) := F;
@F := Pi
P := @Fi

N := F(N);
N := Func(P) (N)i

(Assign procedural value in P to F)
{ Assign procedural value in F to P }

{ Assign pointer value in P to F }
{ Assign pointer value in F to P }

{ Call function via F }
{ Call function via P }

Turbo Pascal Reference Guide

In particular, notice that the address operator (@), when applied to a
procedural variable, can be used on the left-hand side of an assignment.
Also, notice the typecast on the last line to call a function via a pointer
variable.

Chapter 9, Programs and Units 91

92 Turbo Pascal Reference Guide

c H A p T E R

9

Progratns and Units

Program Syntax

A Turbo Pascal program takes the form of a procedure declaration except
for its heading and an optional uses clause.

program -rl progam heading r.Qf L:j fO:rl block r-o
. uses clause

The Program Heading

The program heading specifies the program's name and its parameters.

program heading

program parameters

program parameters ---.J identifier list ~

The program heading, if present, is purely decorative and is ignored by the
compiler.

The Uses Clause

The uses clause identifies all units used by the program, including units
used directly and units used by those units.

Chapter 9, Programs and Units 93

uses ckwse -e t III'---id_e_n_ti ... fi_le:r:_---..1 II 0-
O~

The System unit is always used automatically. System implements all low­
level, run-time support routines to support such features as file I/O, string
handling, floating point, dynamic memory allocation, and others.

Apart from System, Turbo Pascal implements many standard units, such as
Printer, Dos, and Crt. These are not used automatically; you must include
them in your uses clause, for instance,

us.s Dos,Crt; { Can now access facilities in Dos and Crt

The standard units are described in Chapter 12, "Standard Units."

To locate a unit specified in a uses clause, the compiler first checks the
resident units-those units loaded into memory at startup from the
TURBO.TPL file. If the unit is not among the resident units, the compiler
assumes it must be on disk. The name of the file is assumed to be the unit
name with extension .TPU. It is first searched for in the current directory,
and then in the directories specified with the 0 /D /Unit Directories menu
command or in a / U directive on the TPC command line. For instance, the
construct

us.s Memory;

where Memory is not a resident unit, causes the compiler to look for the file
MEMORY.TPU in the current directory, and then in each of the unit
directories.

When the Compile/Make and Compile/Build commands compile the
units specified in a uses clause, the source files are searched for in the same
way as the .TPU files, and the name of a given unit's source file is assumed
to be the unit name with extension .P AS.

Unit Syntax

Units are the basis of modular programming in Turbo Pascal. They are
used to create libraries that you can include in various programs without
making the source code available, and to divide large programs into
logically related modules.

unit implementation part initialization part

94 Turbo Pascal Reference Guide

The Unit Heading

The unit heading specifies the unit's name.

unit heading ~ unit identifier ~

The unit name is used when referring to the unit in a uses clause. The name
must be unique-two units with the same name cannot be used at the same
time.

The Interface Part

The interface part declares constants, types, variables, procedures, and
functions that are public, that is, available to the host (the program or unit
using the unit). The host can access these entities as if they were declared in
a block that encloses the host.

interface part

procedure and function
heading part

constant declaration part

type declaration part

variable declaration part

procedure heading

function heading inline directive

Unless a procedure or function is inline, the interface part only lists the
procedure or function heading. The block of the procedure or function
follows in the implementation part.

The Implementation Part

The implementation part defines the block of all public procedures and
functions. In addition, it declares constants, types, variables, procedures,
and functions that are private, that is, not available to the host.

Chapter 9, Programs and Units 95

implementation part

Implementation

label declaration part

constant declaration part

type declaration part

variable declaration part

In effect, the procedure and function declarations in the interface part are
like forward declarations, although the forward directive is not specified.
Therefore, these procedures and functions can be defined and referenced in
any sequence in the implementation part.

Note: Procedure and function headings can be duplicated from the
interface part. You don't have to specify the formal parameter list, but if
you do, the compiler will issue a compile-time error if the interface and
implementation declarations don't match.

The Initialization Part

The initialization part is the last part of a unit. It consists either of the
reserved word end (in which case the unit has no initialization code) or of a
statement part to be executed in order to initialize the unit.

initialization part

~~ statE;rnent part

The initialization parts of units used by a program are executed in the same
order that the units appear in the uses clause.

Indirect Unit References

The uses clause in a module (program or unit) need only name the units
used directly by that module. Consider the following example:

96

program P rog;
uses Unit2;

Turbo Pascal Reference Guide

con.t a = b;
baqin end.

unit Unit2;
interface
u.e. Unit1;
conat b = C;
implementation
end.

unit Unit1;
interface
con.t c = 1;
implementation
con.t d = 2;
end.

In the above example, Unit2 is directly dependent on Unitl, and Prog is
directly dependent on Unit2. Furthermore, Prog is indirectly dependent on
Unitl (through Unit2), even though none of the identifiers declared. in Unitl
are available to Prog.

In order to compile a module, Turbo Pascal must be able to locate all units
upon which the module depends (directly or indirectly). So, to compile
Prog above, the compiler must be able to locate both Unitl and Unit2, or
else an error occurs.

When changes are made in the interface part of a unit, other units using the
unit must be recompiled. However, if changes are only made to the
implementation or the initialization part, other units that use the unit need
not be recompiled. In the preceding example, if the interface part of Unitl is
changed (for example, c = 2) Unit2 must be recompiled; changing the
implementation part (for example, d = 1) doesn't require recompilation of
Unit2.

When a unit is compiled, Turbo Pascal computes a unit version number,
which is basically a checksum of the interface part. In the preceding
example, when Unit2 is compiled, the current version number of Unitl is
saved in the compiled version of Unit2. When Prog is compiled, the version
number of Unitl is checked against the version number stored in Unit2. If
the version numbers do not match, indicating that a change was made in
the interface part of Unitl since Unit2 was compiled, the compiler shows an
error or recompiles Unit2, depending on the mode of compilation.

Circular Unit References

Placing a uses clause in the implementation section of a unit allows you to
further hide the inner details of the unit, since units used in the implemen-

Chapter 9, Programs and Units 97

tation section are not visible to users of the unit. More importantly,
however, it also enables you to construct mutually dependent units.

The following program demonstrates how two units can "use" each other.
The main program, Circular, uses a unit named Display. Display contains
one routine in its interface section, WriteXY, which takes three parameters:
an (x, y) coordinate pair and a text message to display. If the (x, y)
coordinates are on screen, WriteXY moves the cursor to (x, y) and displays
the message there; otherwise, it calls a simple error-handling routine.

So far, there's nothing fancy here-WriteXY is taking the place of Write.
Here's where the circular unit reference enters in: How is the error­
handling routine going to display its error message? By using WriteXY
again. Thus you have WriteXY, which calls the error-handling routine
Show Error, which in turn calls WriteXY to put an error message onscreen. If
your head is spinning in circles, let's look at the source code to this
example, so you can see that it's really not that tricky.

The main program, Circular, clears the screen and makes three calls to
WriteXY:

program Circular;
{ Display text using WriteXY

u.e.
Crt, Display;

begin
ClrScr;
WriteXY(l, 1, 'Upper left corner of screen');
WriteXY(100, 100, 'Way off the screen');
WriteXY(81 - Length('Back to reality'), 15, 'Back to reality');

ad.

Look at the (x, y) coordinates of the second call to WriteXY. It's hard to
display text at (100, 100) on an 80x25 line screen. Next, let's see how
WriteXY works. Here's the source to the Display unit, which contains the
WriteXY procedure. If the (x, y) coordinates are valid, it displays the
message; otherwise, WriteXY displays an error message:

98

unit Display;
{ Contains a simple video display routine

interface

procedure WriteXY(X, Y integer; Message string);

implementation
u.e.

Crt, Error;

procedure WriteXY(X, Y integer; Message string);
begin

Turbo Pascal Reference Guide

if (X in [1 •• 80]) and (Y in [1 •• 25]) then
begin

GoToXY(X, Y);
Write(Message);

ad
el.e

ShowError('Invalid WriteXY coordinates');
ad;

ad.

The ShowError procedure called by WriteXY is declared in the following
code in the Error unit. ShowError always displays its error message on the
25th line of the screen:

unit Error;
{ Contains a simple error-reporting routine }

interface

procedure ShowError(ErrMsg : string);

implementation

u.e.
Display;

procedure ShowError(ErrMsg : string);
begin

WriteXY(l, 25, 'Error: ' + ErrMsg);
end;

ad.

Notice that the uses clause in the implementation sections of both Display
and Error refer to each other. These two units can refer to each other in their
implementation sections because Turbo Pascal can compile complete
interface sections for both. In other words, the Turbo Pascal compiler will
accept a reference to partially compiled unit A in the implementation
section of unit B, as long as both A and B's interface sections do not depend
upon each other (and thus follow Pascal's strict rules for declaration order).

Sharing Other Declarations

What if you want to modify WriteXYand ShowError to take an additional
parameter that specifies a rectangular window onscreen:

procedure WriteXY(SomeWindow : WindRec;
X, Y : integer;

Message: string);

procedure ShowError(SomeWindow : WindRec;
ErrMsg : string);

Chapter 9, Programs and Units 99

Remember these two procedures are in separate units. Even if you declared
WindData in the interface of one, there would be no legal way to make that
declaration available to the interface of the other. The solution is to declare
a third module that contains only the definition of the window record:

unit WindData;
interface
type

WinDRec = record
Xl, Yl, X2, Y2 : integer;
ForeColor,
BackColor
Active

and;
implamantation
and.

: byte;
: boolean;

In addition to modifying the code to WriteXYand Show Error to make use of
the new parameter, the interface sections of both the Display and Error units
can now "use" WindData. This approach is legal because unit WindData has
no dependencies in its uses clause, and units Display and Error refer to each
other only in their respective implementation sections.

100 Turbo Pascal Reference Guide

c H A p T E R

10

Input and Output

This chapter briefly describes the standard (or built-in) input and output
(I/O) procedures and functions of Turbo Pascal; for more detailed
information, refer to Chapter 16.

An Introduction to 1/0

A Pascal file variable is any variable whose type is a file type. There are
three classes of Pascal files: typed, text, and untyped. The syntax for writing
file types is given in the section "Structured Types" in Chapter 3.

Before a file variable can be used, it must be associated with an external file
through a call to the Assign procedure. An external file is typically a named
disk file, but it can also be a device, such as the keyboard or the display.
The external file stores the information written to the file or supplies the
information read from the file.

Once the association with an external file is established, the file variable
must be "opened" to prepare it for input andlor output. An existing file
can be opened via the Reset procedure, and a new file can be created and
opened via the Rewrite procedure. Text files opened with Reset are read­
only, and text files opened with Rewrite and Append are write-only. Typed
files and untyped files always allow both reading and writing regardless of
whether they were opened with Reset or Rewrite.

The standard text-file variables Input and Output are opened automatically
when program execution begins. Input is a read-only file associated with
the keyboard and Output is a write-only file associated with the display.

Chapter 10, input and Output 101

Every file is a linear sequence of components, each of which has the
component type (or record type) of the file. Each component has a
component number. The first component of a file is considered to be
component zero.

Files are normally accessed sequentially; that is, when a component is read
using the standard procedure Read or written using the standard procedure
Write, the current file position moves to the next numerically-ordered file
component. However, typed files and untyped files can also be accessed
randomly via the standard procedure Seek, which moves the current file
position to a specified component. The standard functions FilePos and
FileSize can be used to determine the current file position and the current
file size.

When a program completes processing a file, the file must be closed using
the standard procedure Close. After closing a file completely, its associated
external file is updated. The file variable can then be associated with
another external file.

By default, all calls to standard I/O procedures and functions are
automatically checked for errors: If an error occurs, the program
terminates, displaying a run-time error message. This automatic checking
can be turned on and off using the ($I+) and ($I-) compiler directives. When
I/O checking is off-that is, when a procedure or function call is compiled
in the ($I-) state-an I/O error does not cause the program to halt. To check
the result of an I/O operation, you must instead call the standard function
IOResult.

Standard Procedures and Functions for All
Files

Here's a summary of the procedures and functions you can use in all files.

Procedures

Assign

ChDir

Close

Erase

GetDir

MkDir

Rename

102

Assigns the name of an external file to a file variable.

Changes the current directory.

Closes an open file.

Erases an external file.

Returns the Cll...1'!'ent directory of a specified drive.

Creates a subdirectory.

Renames an external file.

Turbo Pascal Reference Guide

Reset

Rewrite

RmDir

Functions

Opens an existing file.

Creates and opens a new file.

Removes an empty subdirectory.

Eof Returns the end-of-file status of a file.

IOResult Returns an integer value that is the status of the last I/O
function performed.

Standard Procedures and Functions for Text
Files

This section summarizes input and output using file variables of the
standard type Text. Note that in Turbo Pascal the type Text is distinct from
the type file of char.

When a text file is opened, the external file is interpreted in a special way: It
is considered to represent a sequence of characters formatted into lines,
where each line is terminated by an end-of-line marker (a carriage-return
character, possibly followed by a line-feed character).

For text files, there are special forms of Read and Write that allow you to
read and write values that are not of type char. Such values are auto­
matically translated to and from their character representation. For
example, Read(/,i), where i is a type integer variable, will read a sequence of
digits, interpret that sequence as a decimal integer, and store it in i.

As noted previously there are two standard text-file variables, Input and
Output. The standard file variable Input is a read-only file associated with
the operating system's standard input file (typically the keyboard), and the
standard file variable Output is a write-only file associated with the
operating system's standard output file (typically the display). Input and
Output are automatically opened before a program begins execution, as if
the following statements were executed:

Assign(Input,"); Reset(Input);
Assign(Output,"); Rewrite(Output);

Likewise, Input and Output are automatically closed after a program
finishes executing.

Note: If a program uses the Crt standard unit, Input and Output will no
longer by default refer to the standard input and standard output files. (For

Chapter 10, Input and Output 103

further details, refer to the description of the Crt unit in Chapter 12,
"Standard Units").

Some of the standard procedures and functions listed in this section need
not have a file variable explicitly given as a parameter. If the file parameter
is omitted, Input or Output will be assumed by default, depending on
whether the procedure or function is input- or output-oriented. For
instance, Read(x) corresponds to Read(Input,x) and Write(x) corresponds to
Write(Output,x).

If you do specify a file when calling one of the procedures or functions in
this section, the file must have been associated with an external file using
Assign, and opened using Reset, Rewrite, or Append. An error message is
generated if you pass a file that was opened with Reset to an output­
oriented procedure or function. Likewise, it's an error to pass a file that was
opened with Rewrite or Append to an input-oriented procedure or function.

Procedures

Append

Flush

Read

Readln

SetTextBuf

Write

Writeln

Functions

Eoln

SeekEof

SeekEoln

104

Opens an existing file for appending.

Flushes the buffer of an output file.

Reads one or more values from a text file into one or more
variables.

Does what a Read does and then skips to the beginning of
the next line in the file.

Assigns an I/O buffer to a text file.

Writes one or more values to a text file.

Does the same as a Write, and then writes an end-of-line
marker to the file.

Returns the end-of-line status of a file.

Returns the end-of-file status of a file.

Returns the end-of-line status of a file.

Turbo Pascal Reference Guide

Standard Procedures and Functions for
Untyped Files

Untyped files are low-level I/O channels primarily used for direct access to
any disk file regardless of type and structuring. An untyped file is declared
with the word file and nothing more, for example:

var
DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra
parameter to specify the record size used in data transfers.

For historical reasons, the default record size is 128 bytes. The preferred
record size is 1, because that is the only value that correctly reflects the
exact size of any file (no partial records are possible when the record size is
1).

Except for Read and Write, all typed file standard procedures and functions
are also allowed on untyped files. Instead of Read and Write, two
procedures called BlockRead and BlockWrite are used for high-speed data
transfers.

BlockRead Reads one or more records into a variable.

BlockWrite Writes one or more records from a variable.

With the exception of text files, the following procedures and functions
may be used on a file variable of any type:

FilePos

File Size

Seek

Truncate

Returns the current file position of a file.

Returns the current size of a file.

Moves the current position of a file to a specified
component.

Truncates the file size at the current file position.

The FileMode Variable

The FileMode variable defined by the System unit determines the access code
to pass to DOS when typed and untyped files (not text files) are opened
using the Reset procedure.

The default FileMode is 2, which allows both reading and writing.
Assigning another value to FileMode causes all subsequent Resets to use that
mode.

Chapter 70, Input and Output 105

The range of valid FileMode values depends on the version of DOS in use.
However, for all versions, the following modes are defined:

0: Read only
1: Write only
2: Read/Write

DOS version 3.x defines additional modes, which are primarily concerned
with file-sharing on networks. (For further details on these, please refer to
your DOS Programmer's reference manual.)

Note: New files created using Rewrite are always opened in Read/Write
mode, corresponding to FileMode = 2.

Devices in Turbo Pascal

Turbo Pascal and the DOS operating system regard external hardware,
such as the keyboard, the display, and the printer, as devices. From the
programmer's point of view, a device is treated as a file, and is operated on
through the same standard procedures and functions as files.

Turbo Pascal supports two kinds of devices: DOS devices and text file
devices.

DOS Devices

DOS devices are implemented through reserved file names that have a
special meaning attached to them. DOS devices are completely
transparent-in fact, Turbo Pascal is not even aware when a file variable
refers to a device instead of a disk file. For example, the program

var
Lst: Text;

begin
Assign(Lst,'LPT1'); Rewrite(Lst);
Writeln(Lst,'Hello World ••• ');
Close(Lst);

end.

will write the string Hello World ..• on the printer, even though the syntax
for doing so is exactly the same as for a disk file.

The devices implemented by DOS are used for obtaining or presenting
legible input or output. Therefore, DOS devices are normally used only in
connection with text files. On rare occasions, untyped files can also be
useful for interfacing with DOS devices.

106 Turbo Pascal Reference Guide

Each of the DOS devices is described in the next section. Other DOS
implementations can provide additional devices, and still others cannot
provide all the ones described here.

The CON Device

CON refers to the CONsole device, in which output is sent to the display,
and input is obtained from the keyboard. The Input and Output standard
files and all files assigned an empty name refer to the CON device when
input and/or output is not redirected.

Input from the CON device is line-oriented and uses the line-editing
facilities described in the DOS manual. Characters are read from a line
buffer, and when the buffer becomes empty, a new line is input.

An end-of-file character is generated by pressing Ctrl-Z, after which the Eo!
function will return True.

The LPT1, LPT2, and LPT3 Devices

The line printer devices are the three possible printers you can use. If only
one printer is connected, it is usually referred to as LPTl, for which the
synonym PRN can also be used.

The line printer devices are output-only devices-an attempt to Reset a file
assigned to one of these generates an immediate end-of-file.

Note: The standard unit Printer declares a text-file variable called Lst, and
makes it refer to the LPTI device. To easily write something on the printer
from one of your programs, include Printer in the program's uses clause,
and use Write(Lst, ...) and Writeln(Lst, ...) to produce your output.

The COMl and COM2 Devices

The communication port devices are the two serial communication ports.
The synonym AUX can be used instead of COMl.

The NUL Device

The null device ignores anything written to it, and generates an immediate
end-of-file when read from. You should use this when you don't want to
create a particular file, but the program requires an input or output file
name.

Chapter 10, Input and Output 107

Text File Devices

Text file devices are used to implement devices unsupported by DOS or to
make available another set of features other than those provided by a
similar DOS device. A good example of a text file device is the CRT device
implemented by the Crt standard unit. Its main function is to provide an
interface to the display and the keyboard, just like the CON device in DOS.
However, the CRT device is much faster and supports such invaluable
features as color and windows (for further details on the CRT device, see
Chapter 12, "Standard Units").

Contrary to DOS devices, text file devices have no reserved file names; in
fact, they have no file names at all. Instead, a file is associated with a text
file device through a customized Assign procedure. For instance, the Crt
standard unit implements an AssignCrt procedure that associates text files
with the CRT device.

In addition to the CRT device, Turbo Pascal allows you to write your own
text file device drivers. A full description of this is given in the section
"Text File Device Drivers" on page 210 of Chapter 15, "Inside Turbo
Pascal."

108 Turbo Pascal Reference Guide

c H A p T E R

11

Standard Procedures and Functions

This chapter briefly describes all the standard (built-in) procedures and
functions in Turbo Pascal, except for the I/O procedures and functions
discussed in Chapter 10, "Input and Output." Additional procedures and
functions are provided by the standard units described in Chapter 12,
"'Standard Units." For more detailed information, refer to Chapter 16,
"'Turbo Pascal Reference Lookup."

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within
the program.

Flow Control Procedures

Exit Exits immediately from the current block.

Halt Stops program execution and returns to the operating system.

RunError Stops program execution and generates a run-time error.

Dynamic Allocation Procedures and
Functions

These procedures and functions are used to manage the heap-a memory
area that occupies all or some of the free memory left when a program is
executed. A complete discussion of the techniques used to manage the heap

Chapter 11, Standard Procedures and Functions 109

is given in the section "The Heap Manager" on page 181 of Chapter 15,
"Inside Turbo Pasca1."

Procedures

Dispose

FreeMem

GetMem

Mark

New

Release

Functions

Disposes a dynamic variable.

Disposes a dynamic variable of a given size.

Creates a new dynamic variable of a given size and sets a
pointer variable to point to it.

Records the state of the heap in a pointer variable.

Creates a new dynamic variable and sets a pointer variable
to point to it.

Returns the heap to a given state.

MaxAvail Returns the size of the largest contiguous free block in the
heap, corresponding to the size of the largest dynamic vari­
able that can be allocated at the time of the call to MaxAvail.

MemAvail Returns the number of free bytes of heap storage available.

Transfer Functions

The procedures Pack and Unpack, as defined in standard Pascal, are not
implemented by Turbo Pascal.

ehr Returns a character of a specified ordinal number.

Ord Returns the ordinal number of an ordinal-type value.

Round Rounds a type real value to a type longint value.

Trune Truncates a type real value to a type longint value.

Arithmetic Functions

Note: When compiling in numeric processing mode, {$N +}, the return
values of the floating-point routines in the System unit (Sqrt, Pi, Sin, and so
on) are of type extended instead of real:

{$N+}
begin

110 Turbo Pascal Reference Guide

Writeln(Pi); { 3.14159265358979E+OOOO }
end.

{$N-}
beqin

Writeln (Pi) { 3.1415926536E+OO}
end.

Abs Returns the absolute value of the argument.

ArcTan Returns the arctangent of the argument.

Cos Returns the cosine of the argument.

Exp Returns the exponential of the argument.

Frac Returns the fractional part of the argument.

Int Returns the integer part of the argument.

Ln Returns the natural logarithm of the argument.

Pi Returns the value of Pi (3.1415926535897932385).

Sin Returns the sine of the argument.

Sqr Returns the square of the argument.

Sqrt Returns the square root of the argument.

Ordinal Procedures and Functions

Procedures

Dec Decrements a variable.

Inc Increments a variable.

Functions

Odd Tests if the argument is an odd number.

Pred Returns the predecessor of the argument.

Succ Returns the successor of the argument.

Chapter 11, Standard Procedures and Functions 111

String Procedures and Functions

Procedures

Delete Deletes a substring from a string.

Insert Inserts a substring into a string.

Str Converts a numeric value to its string representation.

Val Converts the string value to its numeric representation.

Functions

Concat Concatenates a sequence of strings.

Copy Returns a substring of a string.

Length Returns the dynamic length of a string.

Pos Searches for a substring in a string.

Pointer and Address Functions

Addr Returns the address of a specified object.

CSeg Returns the current value of the CS register.

DSeg Returns the current value of the DS register.

Ofs Returns the offset of a specified object.

Ptr Converts a segment base and an offset address to a pointer-type
value.

Seg Returns the segment of a specified object.

SPtr Returns the current value of the SP register.

SSeg Returns the current value of the SS register.

Miscellaneous Procedures and Functions

Procedures

FillChar

112

Fills a specified number of contiguous bytes with a
specified value.

Turbo Pascal Reference Guide

Move Copies a specified number of contiguous bytes from a
source range to a destination range.

Randomize Initializes the built-in random generator with a random
value.

Functions

Hi Returns the high-order byte of the argument.

Lo Returns the low-order byte of the argument.

ParamCount Returns the number of parameters passed to the program
on the command line.

ParamStr Returns a specified command-line parameter.

Random Returns a random number.

SizeOf Returns the number of bytes occupied by the argument.

Swap Swaps the high- and low-order bytes of the argument.

Up Case Converts a character to uppercase.

Chapter 7 7, Standard Procedures and Functions 113

114 Turbo Pascal Reference Guide

c H A p T E R

12

Standard Units

Chapter 11, IIStandard Procedures and Functions," describes all the built-in
procedures and functions of Turbo Pascal, which can be referred to without
explicitly requesting them (as standard Pascal specifies). It's through Turbo
Pascal's standard units, though, that you'll get the most programming
power (see Chapter 16, IITurbo Pascal Reference Lookup," for more
informa tion).

Standard units are no different from the units you can write yourself. The
following eight standard units are available to you:

Crt Exploits the full power of your PC's display and keyboard,
including screen mode control, extended keyboard codes, color,
windows, and sound.

Dos Supports numerous DOS functions, including date-and-time
control, directory search, and program execution.

Graph A powerful graphics package with device-independent graphics
support for CGA, EGA, VGA, HERC, IBM 3270 PC, MCGA,
AT&T 6300, and IBM 8514.

Graph3 Implements Turbo Pascal 3.0 Turtlegraphics.

Overlay Implements 5.0's powerful overlay manager (refer to Chapter 13,
IIOverlays").

Printer Allows you to easily access your printer.

System Turbo Pascal's run-time library. This unit is automatically used
by any unit or program.

Turbo3 Provides an even higher degree of compatibility with Turbo
Pascal 3.0.

Chapter 72, Standard Units 115

To use one of the standard units, simply include its name in your uses
clause, for instance:

u ••• Dos,Crt,Graph;

The standard units usually all reside in the TURBO.TPL library, which is
automatically loaded when you start up Turbo Pascal. To save memory,
you can move seldom-used units, such as Turbo3 and Graph3, out of the
TURBO.TPL file by using the TPUMOVER utility.

Standard Unit Dependencies

Both the compatibility units" Turbo3 and Graph3, depend on facilities made
available by the Crt unit. So, when using Turbo3 and Graph3, you must first
specify Crt in your uses clause. Table 12.1 lists the standard units.

Table 12.1: Standard Units

Unit Uses

Crt
Dos
Graph
Graph3
Overlay
Printer
System
Turbo3

None
None
None
Crt
None
None
None
Crt

We purposefully didn't indicate in the table that all units use the System
unit; that's because System is always used implicitly, and need never be
specified in a uses clause.

The System Unit

The System unit is, in fact, Turbo Pascal's run-time library. It implements
low-level, run-time support routines for all built-in features, such as file
I/O, string handling, 8087 emulation, floating point, overlay management,
and dynamic memory allocation. The System unit is used automatically by
any unit or program, and need never be referred to in a uses clause.

The procedures and functions provided by System are described in
Chapters 10, IIInput and Output.." and 11, IIStandard Procedures and
Functions." A number of predeclared variables are also available,
including:

116 Turbo Pascal Reference Guide

con.t
OvrCodeList: word = 0;
OvrHeapSize: word = 0;
OvrDebugPtr: pointer = nil;
OvrHeapOrg: word = 0;
OvrHeapPtr: word = 0;
OvrHeapEnd: word = 0;
OvrLoadList: word = 0;
OvrDosHandle: word = 0;
OvrEmsHandle: word = 0;
HeapOrg: pointer = nil;
HeapPtr: pointer = nil;
FreePtr: pointer = nil;
FreeMin: word = 0;
HeapError: pointer = nil;
ExitProc: pointer = nil;
ExitCode: integer = 0;
ErrorAddr: pointer = nil;
PrefixSeg: word = 0;
StackLimit: word = 0;
InOutRes: integer = 0;
RandSeed: longint = 0;
FileMode: byte = 2;
Test80S7: byte = 0;

var
Input: text;
Output: text;
SavelntOO: pointer;
Savelnt02: pointer;
SavelntlB: pointer;
SaveInt23: pointer;
Savelnt24: pointer;
Savelnt34: pointer;
Savelnt35: pointer;
Savelnt36: pointer;
Savelnt37: pointer;
Savelnt38: pointer;
Savelnt39: pointer;
Savelnt3A: pointer;
Savelnt3B: pointer;
Savelnt3C: pointer;
Savelnt3D: pointer;
Savelnt3E: pointer;
Savelnt3F: pointer;
Savelnt75: pointer;

{ Overlay code segment list
Initial overlay buffer size

{ Overlay debugger hook
{ Overlay buffer origin

{ Overlay buffer pointer
{ Overlay buffer end
Loaded overlays list
{ Overlay DOS handle
{ Overlay EMS handle

{ Heap origin
{ Heap pointer

Free list pointer
Minimum free list size

Heap error function
{ Exit procedure

{ Exit code
Run-time error address

{ Program segment prefix
{ Minimum stack pointer

{ I/O result buffer
{ Random seed

{ File open mode
8087 test result

Input standard file
{ Output standard file }
{ Saved interrupt $00 }
{ Saved interrupt $02 }
{ Saved interrupt $lB }
{ Saved interrupt $23 }
{ Saved interrupt $24 }
{ Saved interrupt $34 }
{ Saved interrupt $35 }
{ Saved interrupt $36 }
{ Saved interrupt $37 }
{ Saved interrupt $38 }
{ Saved interrupt $39 I
{ Saved interrupt $3A }
{ Saved interrupt $3B I
{ Saved interrupt $3C I
{ Saved interrupt $3D }
{ Saved interrupt $3E I
{ Saved interrupt $3F }
{ Saved interrupt $75 }

The Overlay unit uses OvrCodeList, OvrHeapSize, OvrDebugPtr, OvrHeapOrg,
OvrHeapPtr, OvrHeapEnd, OvrLoadList, OvrDosHandle, and OvrEmsHandle to
implement Turbo Pascal's overlay manager. The overlay buffer resides
between the stack segment and the heap, and OvrHeapOrg and OvrHeapEnd

Chapter 12, Standard Units 117

contain its starting and ending segment addresses. The default size of the
overlay buffer corresponds to the size of the largest overlay in the program;
if the program has no overlays, the size of the overlay buffer is zero. The
size of the overlay buffer can be increased through a call to the OvrSetBuf
routine in the Overlay unit; in that case, the size of the heap is decreased
accordingly, by moving HeapOrg upwards.

The heap manager uses HeapOrg, HeapPtr, FreePtr, FreeMin, and HeapError
to implement Turbo Pascal's dynamic memory allocation routines. The
heap manager is described in full in Chapter 15, "Inside Turbo Pascal."

The ExitProc, ExitCode, and Error Addr variables implement exit procedures.
This is also described in Chapter 15, "Inside Turbo Pascal."

PrefixSeg is a word variable containing the segment address of the Program
Segment Prefix (PSP) created by DOS when the program was executed. For
a complete description of the PSP, refer to your DOS manual.

StackLimit contains the offset of the bottom of the stack in the stack
segment, corresponding to the lowest value the SP register is allowed to
assume before it is considered a stack overflow. By default, StackLimit is
zero, but in a program compiled with {$N+,E+}, the 8087 emulator will set
it to 224 to reserve workspace at the bottom of the stack segment if no 8087
is present in the system.

The built-in I/O routines use InOutRes to store the value that the next call
to the IOResult standard function will return.

RandSeed stores the built-in random number generator's seed. By assigning
a specific value to RandSeed, the Random function can be made to generate a
specific sequence of random numbers over and over. This is useful is
applications that deal with data encryption, statistics, and simulations.

The FileMode variable allows you to change the access mode in which typed
and untyped files are opened (by the Reset standard procedure). For further
details, refer to Chapter 10, "Input and Output."

TestSDS7 stores the result of the coprocessor autodetection logic, which is
executed at startup in a program compiled with {$N+}. For further details,
refer to Chapter 14, "Using the 8087."

Input and Output are the standard I/O files required by every Pascal
implementation. By default, they refer to the standard input and output
files in DOS. For further details, refer to Chapter 10, ''Input and Output."

The System unit takes over several interrupt vectors. Before installing its
own interrupt handling routines, System stores the old vectors in the
SavelntXX variables.

Note that the System unit contains an INT 24 handler for trapping critical
errors. In a Turbo Pascal program, a DOS critical error is treated like any

118 Turbo Pascal Reference Guide

other I/O error: In the {$l+} state, the program halts with a run-time error,
and, in the {$l-} state, IOResult returns a nonzero value.

Here's a skeleton program that restores the original vector, and thereby the
original critical error-handling logic:

program Restore;
11 ••• Dos;
begin

Set IntVec ($24, SaveInt24);

end.

The SwapVectors routine in the Dos unit swaps the contents of the
SavelntXX variables with the current contents of the interrupt vectors.
Swap Vectors should be called just before and just after a call to the Exec
routine, to ensure that the Exec'd process does not use any interrupt
handlers installed by the current process, and vice versa. For more
information, refer to page 384 for the entry on Swap Vectors in Chapter 16 of
the Reference Guide, "Turbo Pascal Reference Lookup."

The Printer Unit

The Printer unit is a very small unit designed to make life easier when
you're using the printer from within a program. Printer declares a text file
called Lst, and associates it with the LPTI device. Using Printer saves you
the trouble of declaring, assigning, opening, and closing a text file yourself.
Here's an example of a short program using Printer:

program HelloPrinter;
11 ••• Printer;
begin

Writeln(Lst,'Hello Printer ••• ');
end.

The Dos Unit

The Dos unit implements a number of very useful operating system and
file-handling routines. None of the routines in the Dos unit are defined by
standard Pascal, so they have been placed in their own module.

For a complete description of DOS operations, refer to the IBM DOS
Technical Manual.

Chapter 72. Standard Units 119

Constants, Types, and Variables

Each of the constants; types, and variables defined by the Dos unit are
briefly discussed in this section. For more detailed information, see the
descriptions of the procedures and functions that depend on these objects
in Chapter 16, "Turbo Pascal Reference Lookup."

Flags Constants

The following constants test individual flag bits in the Flags register after a
call to Intr or MsDos:

conat
FCarry = $0001;
FParity = $0004;
FAuxiliary = $0010;
FZero = $0040;
FSign = $0080;
FOverflow = $0800;

For instance, if R is a register's record, the tests

R.Flags and FCarry <> 0
R.Flags and FZero = 0

are True respectively if the Carry flag is set and if the Zero flag is clear.

File Mode Constants

The file-handling procedures use these constants when opening and closing
disk files. The mode fields of Turbo Pascal's file variables will contain one
of the values specified below.

conet
fmClosed = $07BO;
fmlnput = $07B1;
fmOutput = $07B2;
fmlnOut = $07B3;

File Record Types

The record definitions used internally by Turbo Pascal are also declared in
the Dos unit. FileRec is used for both typed and untyped files, while TextRec
is the internal format of a variable of type text.

120 Turbo Pascal Reference Guide

type
(Typed and untyped files

FileRec = record
Handle: word;
Mode: word;
RecSize: word;
Private: array[l •• 26] of byte;
UserData: array[l •• 16] of byte;
Name: array[O •• 79] of char;

end;

Textfile record)
TextBuf = array[O •• 127] of char;
TextRec = record

Handle : word;
Mode : word;
BufSize : word;
Private : word;
BufPos : word;
BufEnd : word;
BufPtr : "TextBuf;
OpenFunc : pointer;
InOutFunc : pointer;
FlushFunc : pointer;
CloseFunc : pointer;
UserData : array[l .• 16] of byte;
Name : array[O •• 79] of char;
Buffer : TextBuf;

end;

File Attribute Constants

These constants test, set, and clear file attribute bits in connection with the
GetFAttr, SetFAttr,FindFirst, and FindNext procedures:

const
ReadOnly
Hidden
SysFile
VolumeID

= $01;
= $02;
= $04;
= $08;

Directory = $10;
Archive = $20;
AnyFile = $3F;

The constants are additive, that is, the statement

FindFirst('*.*', ReadOnly + Directory, S);

Chapter 12, Standard Units 121

will locate all normal files as well as read-only files and subdirectories in
the current directory. The AnyFile constant is simply the sum of all
attributes.

The Registers Type

The Intr and MsDos procedures use variables of type Registers to specify the
input register contents and examine the output register contents of a
software interrupt.

type
Registers = record

ca.e integer of
0: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: word);
1: (AL,AH,BL,BH,CL,CH,DL,DH: byte);

end;

Notice the use of a variant record to map the 8-bit registers on top of their
16-bit equivalents.

The DateTime Type

Variables of DateTime type are used in connection with the UnpackTime and
PackTime procedures to examine and construct 4-byte, packed date-and­
time values for the GetFTime, SetFTime, FindFirst, and FindNext procedures.

type
DateTime = record

Year,Month,Day,Hour,Min,Sec: word;
end;

Valid ranges are Year 1980 .. 2099, Month 1..12, Day 1..31, Hour 0 .. 23, Min
0 .. 59, and Sec 0 .. 59.

The SearchRec Type

The FindFirst and FindNext procedures use variables of type SearchRec to
scan directories.

type
SearchRec = record

122

Fill: array[l •• 21) of byte;
Attr: byte;
Time: longint;
Size: longint;

Turbo Pascal Reference Guide

Name: Itring[12];
end;

The information for each file found by one of these procedures is reported
back in a SearchRec. The Attr field contains the file's attributes (constructed
from file attribute constants), Time contains its packed date and time (use
UnpackTime to unpack), Size contains its size in bytes, and Name contains its
name. The Fill field is reserved by DOS and should never be modified.

The File-Handling String Types

These string types are are defined by the Dos unit to handle file names and
paths in connection with the string procedure FSplit:

ComStr = string[127];
PathStr = string[79];
DirStr = string[67];
NameStr = string[8];
ExtStr = string[4];

The DosError Variable

{ Command-line string }
{ Full file path string }

{ Drive and directory string }
{ File-name string }

{ File-extension string }

DosError is used by many of the routines in the Dos unit to report errors.

var DosError: integer;

The values stored in DosError are DOS error codes. A value of 0 indicates
no error; other possible error codes include:

2 = File not found
3 = Path not found
5 = Access denied
6 = Invalid handle
8 = Not enough memory

10 = Invalid environment
11 = Invalid format
18 = No more files

Interrupt Support Procedures

Here's a brief listing of the interrupt support procedures:

GeUntVec Returns the address stored in a specified interrupt
vector.

Intr Executes a specified software interrupt.

Chapter 72, Standard Units 123

MsDos

SetlntVec

Executes a DOS function call.

Sets a specified interrupt vector to a specified address.

Date and Time Procedures

GetDate

GetFTime

GetTime

PackTime

SetDate

SetFTime

SetTime

UnpackTime

Returns the current date set in the operating system.

Returns the date and time a file was last written.

Returns the current time set in the operating system.

Converts a DateTime record into a 4-byte, packed date­
and-time character longint used by SetFTime. The fields
of the DateTime record are not range-checked.

Sets the current date in the operating system.

Sets the date and time a file was last written.

Sets the current time in the operating system.

Converts a 4-byte, packed date-and-time character
longint returned by GetFTime, FindFirst, or FindNext into
an unpacked DateTime record.

Disk Status Functions

DiskFree

DiskSize

Returns the number of free bytes of a specified disk
drive.

Returns the total size in bytes of a specified disk drive.

File-Handling Procedures and Functions

Procedures

FindFirst

FindNext

FSplit

124

Searches the specified (or current) directory for the first
entry matching the specified file name and set of
attributes.

Returns the next entry that matches the name and
attributes specified in a previous call to FindFirst.

Splits a file name into its three component parts
(directory, file name, and extension).

Turbo Pascal Reference Guide

GetFAttr

SetFAttr

Functions

FExpand

FSearch

Returns the attributes of a file.

Sets the attributes of a file.

Takes a file name and returns a fully qualified file name
(drive, directory, and extension).

Searches for a file in a list of directories.

Process-Handling Procedures and Functions

Procedures

Exec

Keep

Swap Vectors

Functions

DosExitCode

Executes. a specified program with a· specified command
line.

Keep (or Terminate Stay Resident) terminates the
program and makes it stay in memory.

Swaps all saved interrupt vectors with the current
vectors.

Returns the exit code of a subprocess.

Environment-Handling Functions

EnvCount

EnvStr

GetEnv

Returns the number of strings contained in the DOS
environment.

Returns a specified environment string.

Returns the value of a specified environment variable.

Miscellaneous Procedures and Function

Procedures

GetCBreak Returns the state of elrl-Break checking in 005.

Chapter 72, Standard Units 125

GetVerify

SetCBreak

SetVerify

Returns the state of the verify flag in DOS.

Sets the state of etr/-Break checking in 005.

Sets the state of the verify flag in DOS.

Function

DosVersion Returns the DOS version number.

The Crt Unit

The Crt unit implements a range of powerful routines that give you full
control of your PC's features, such as screen mode control, extended key­
board codes, colors, windows, and sound. Crt can only be used in pro­
grams that run on IBM PCs, ATs, PS/2s, and true compatibles.

One of the major ad vantages to using Crt is the added speed and flexibility
of screen output operations. Programs that do not use the Crt unit send
their screen output through DOS, which adds a lot of overhead. With the
Crt unit, output is sent directly to the BIOS or, for even faster operation,
directly to video memory.

The Input and Output Files

The initialization code of the Crt unit assigns the Input and Output standard
text files to refer to the CRT instead of to DOS's standard input and output
files. This corresponds to the following statements being executed at the
beginning of a program:

AssignCrt(Input); Reset(Input);
AssignCrt(Output); Rewrite(Output);

This means that I/O redirection of the Input and Output files is no longer
possible unless these files are explicitly assigned back to standard input
and output by executing

Assign(Input,"); Reset(Input);
Assign(Output,"); Rewrite(Output);

Windows

Crt supports a simple yet powerful form of windows. The Window proce­
dure lets you define a window anywhere on the screen. When you write in

126 Turbo Pascal Reference Guide

such a window, the window behaves exactly as if you were using the entire
screen, leaving the rest of the screen untouched. In other words, the screen
outside the window is not accessible. Inside the window, lines can be
inserted and deleted, the cursor wraps around at the right edge, and the
text scrolls when the cursor reaches the bottom line.

All screen coordinates, except the ones used to define a window, are
relative to the current window, and screen coordinates (1,1) correspond to
the upper left comer of the screen.

The default window is the entire screen.

Turbo Pascal also supports screen modes for EGA (43 line) and VGA (50
line) (see the TextMode description in Chapter 16).

Special Characters

When writing to Output or to a file that has been assigned to the CRT, the
following control characters have special meanings:

#7 Bell-emits a beep from the internal speaker.

#8 Backspace-moves the cursor left one character. If the cursor is
already at the left edge of the current window, nothing happens.

#10 Line feed-moves the cursor one line down. If the cursor is
already at the bottom of the current window, the window scrolls
up one line.

#13 Carriage return-returns the cursor to the left edge of the current
window.

All other characters will appear on the screen when written.

Line Input

When reading from Input or from a text file that has been assigned to Crt,
text is input one line at a time. The line is stored in the text file's internal
buffer, and when variables are read, this buffer is used as the input source.
Whenever the buffer has been emptied, a new line is input.

When entering lines, the following editing keys are available:

BackSpace Deletes the last character entered.

Esc Deletes the entire input line.

Enter Terminates the input line and stores the end-of-line marker
(carriage return/line feed) in the buffer.

Chapter 72, Standard Units 127

Ctrl-S Same as BackSpace

Ctrl-D Recalls one character from the last input line.

Ctrl-A Same as Esc.

Ctrl-F Recalls the last input line.

Ctrl-Z Terminates the input line and generates an end-of-file
marker.

Ctrl-Z will only generate an end-of-file marker if the CheckEOF variable has
been set to True; it is False by default.

To test keyboard status and input single characters under program control,
use the KeyPressed and Read Key functions.

Constants, Types, and Variables

Each of the constants, types, and variables defined by the Crt unit are
briefly discussed in this section.

Crt Mode Constants

The following constants are used as parameters to the TextMode procedure:

con.t
BW40 = 0;
BW80 = 2;
Mono = 7;
C040 = 1;
C080 = 3;
Font8x8 = 256;
C40 = C040;
C80 = C080;

{ 40x25 B/W on color adapter }
{ 80x25 B/W on color adapter }

80x25 B/W on monochrome adapter }
{ 40x25 color on color adapter }
{ 80x25 color on color adapter }

{ For EGA/VGA 43 and 50 line }
{ For 3.0 compatibility }
{ For 3.0 compatibility }

BW40, C040, BW80, and C080 represent the four color text modes supported
by the IBM PC Color/Graphics Adapter (CGA). The Mono constant repre­
sents the single black-and-white text mode supported by the IBM PC
Monochrome Adapter. Font8x8 represents EGA/VGA 43- and 50-line
modes. The C40 and C80 constants are for 3.0 compatibility. LastMode
returns to the last active text mode after using graphics.

Text Color Constants

The following constants are used in connection with the TextColor and
TextBackground procedures:

128 Turbo Pascal Reference Guide

COD8t

Black = 0;
Blue = 1;
Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;
DarkGray = 8;
LightBlue = 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;
Blink = 128;

Colors are represented by the numbers between 0 and 15; to easily identify
each color, you can use these constants instead of numbers. In the color text
modes, the foreground of each character is selectable from 16 colors, and
the background from 8 colors. The foreground of each character can also be
made to blink.

Crt Variables

Here are the variables in Crt:

var
CheckBreak : boolean;
CheckEof : boolean;
CheckS now : boolean;
DirectVideo : boolean;
LastMode : word;
TextAttr : byte;
WindMin
WindMax

CheckBreak

: word;
: word;

Enables and disables checks for etr/-Break.

var CheckBreak: boolean;

When CheckBreak is True, pressing etrl-Break will abort the program when it
next writes to the display. When CheckBreak is False, pressing etr/~Break has
no effect. CheckBreak is True by default. (At run time, Crt stores the old etr/­
Break interrupt vector, $lB, in a global pointer variable called SavelntlB.)

Chapter 72, Standard Units 129

CheckEOF

Enables and disables the end-of-file character:

var CheckEOF: boolean;

When CheckEOF is True, an end-of-file character is generated if you press
Ctrl-Z while reading from a file assigned to the screen. When CheckEOF is
False, pressing Ctrl-Zhas no effect. CheckEOF is False by default.

CheckSnow

Enables and disables "snow-checking" when storing characters directly in
video memory.

var CheckSnow: boolean;

On most CGAs, interference will result if characters are stored in video
memory outside the horizontal retrace intervals. This does not occur with
Monochrome Adapters or EGAs.

When a color text mode is selected, CheckS now is set to True, and direct
video-memory writes will occur only during the horizontal retrace
intervals. If you are running on a newer CGA, you may want to set
CheckSnow to False at the beginning of your program and after each call to
TextMode. This will disable snow-checking, resulting in significantly higher
output speeds.

CheckSnow has no effect when DirectVideo is False.

DirectVideo

Enables and disables direct memory access for Write and Writeln statements
that output to the screen.

var DirectVideo: boolean;

When DirectVideo is True, Writes and Writelns to files associated with the
CRT will store characters directly in video memory instead of calling the
BIOS to display them. When DirectVideo is False, all characters are written
through BIOS calls, which is a significantly slower process.

DirectVideo always defaults to True. If, for some reason, you want char­
acters displayed through BIOS calls, set DirectVideo to False at the begin­
ning of your program and after each call to TextMode.

130 Turbo Pascal Reference Guide

Las tMo de

Each time TextMode is called, the current video mode is stored in LastMode.
In addition, lAstMode is initialized at program startup to the then-active
video mode.

var LastMode: word;

TextAttr

Stores the currently selected text attributes.

var TextAttr: byte;

The text attributes are normally set through calls to TextColor and
TextBackground. However, you can also set them by directly storing a value
in TextAttr. The color information is encoded in TextAttr as follows:

7 654 3 2 1 0

B b b b f f f f

where ffff is the 4-bit foreground color, bbb is the 3-bit background color,
and B is the blink-enable bit. If you use the color constants for creating
TextAttr values, note that the background color can only be selected from
the first 8 colors, and that it must be multiplied by 16 to get it into the
correct bit positions. The following assignment selects blinking yellow
characters on a blue background:

TextAttr := Yellow + Blue * 16 + Blink;

WindMin and WindMax

Store the screen coordinates of the current window.

var WindMin, WindMax : word;

These variables are set by calls to the Window procedure. WindMin defines
the upper left corner, and WindMax defines the lower right corner. The X
coordinate is stored in the low byte, and the Y coordinate is stored in the
high byte. For example, Lo(WindMin) produces the X coordinate of the left
edge, and Hi(WindMax) produces the Y coordinate of the bottom edge. The
upper left comer of the screen corresponds to (X, Y) = (0,0). Note, however,
that for coordinates passed to Window and GotoXY, the upper left corner is
at (1,1).

Chapter 72, Standard Units 131

Procedures

AssignCrt

ClrEol

ClrScr

Delay

DelLine

GotoXY

HighVideo

InsLine

LowVideo

NormVideo

NoSound

Sound

TextBackground

TextColor

TextMode

Window

Functions

KeyPressed

ReadKey

WhereX

WhereY

132

Associates a text file with the CRT.

Clears all characters from the cursor position to the
end of the line without moving the cursor.

Clears the screen and places the cursor in the upper
left-hand comer.

Delays a specified number of milliseconds.

Deletes the line containing the cursor and moves all
lines below that line one line up. The bottom line is
cleared.

Positions the cursor. X is the horizontal position. Y is
the vertical position.

Selects high-intensity characters.

Inserts an empty line at the cursor position.

Selects low-intensity characters.

Selects normal characters.

Turns off the internal speaker.

Starts the internal speaker.

Selects the background color.

Selects the foreground character color.

Selects a specific text mode.

Defines a text window on the screen.

Returns True if a key has been pressed on the
keyboard, and False otherwise.

Reads a character from the keyboard.

Returns the X-coordinate of the current cursor
position, relative to the current window. X is the
horizontal position.

Returns the Y-coordinate of the current cursor
position, relative to the current window. Y is the
vertical position.

Turbo Pascal Reference Guide

The Graph Unit

The Graph unit implements a complete library of more than 50 graphics
routines that range from high-level calls, like SetViewPort, Circle, Bar3D,
and DrawPoly, to bit-oriented routines, like GetImage and Putlmage. Several
fill and line styles are supported, and there are several fonts that may be
magnified, justified, and oriented horizontally or vertically.

To compile a program that uses the Graph unit, you'll need your program's
source code, the compiler, and access to the standard units in TURBO.TPL
and the Graph unit in GRAPH.TPU. To run a program that uses the Graph
unit, in addition to your .EXE program, you'll need one or more of the
graphics drivers (.BGI files, see the next section). In addition, if your
program uses any stroked fonts, you'll need one or more font (.CHR) files
as well.

(Pursuant to the terms of the license agreement, you can distribute the
.CHR and .BGI files along with your programs.)

Drivers

Graphics drivers are provided for the following graphics adapters (and true
compatibles):

.CGA
• MCGA
• EGA
.VGA

• Hercules
• AT&T 400 line
.3270 PC
• IBM 8514

Each driver contains code and data and is stored in a separate file on disk.
At run time, the InitGraph procedure identifies the graphics hardware,
loads and initializes the appropriate graphics driver, puts the system into
graphics mode, and then returns control to the calling routine. The
CloseGraph procedure unloads the driver from memory and restores the
previous video mode. You can switch back and forth between text and
graphics modes using the RestoreCrtMode and SetGraphMode routines. To
load the driver files yourself or link them into your .EXE, refer to
RegisterBGldriver in Chapter 16.

Graph supports computers with dual monitors. When Graph is initialized by
calling InitGraph, the correct monitor will be selected for the graphics driver
and mode requested. When terminating a graphics program, the previous
video mode will be restored. If autodetection of graphics hardware is
requested on a dual monitor system, InitGraph will select the monitor and
graphics card that will produce the highest quality graphics output.

Chapter 72, Standard Units 133

CGA.BGI
EGAVGA.BGI
HERC.BGI
ATI.BGI
PC3270.BGI
IBM8514.BGI

Driver for IBM CGA, MCGA
Driver for IBM EGA, VGA
Driver for Hercules monochrome
Driver for AT&T 6300 (400 line)
Driver for IBM 3270 PC
Driver for IBM 8514

IBM 8514 Support

Turbo Pascal supports the IBM 8514 graphics card, which is a new, high­
resolution graphics card capable of resolutions up to 1024 x 768 pixels, and
a color palette of 256 colors from a list of 256K colors. The driver file name
is IBM8514.BGI.

Turbo Pascal cannot properly autodetect the IBM 8514 graphics card (the
autodetection logic recognizes it as VGA). Therefore, to use the IBM 8514
card, the GraphDriver variable must be assigned the value IBM8514 (which
is defined in the Graph unit) when InitGraph is called. You should not use
DetectGraph (or Detect with InitGraph) with the IBM 8514 unless you want
the emulated VGA mode.

The supported modes of the IBM 8514 card are IBM8514LO (640x480
pixels), and IBM8514HI (l024x768 pixels). Both mode constants are defined
in the interface for GRAPH.TPU.

The IBM 8514 uses three 6-bit values to define colors. There is a 6-bit Red,
Green, and Blue component for each defined color. To allow you to define
colors for the IBM 8514, a new routine was added to the BGI library. The
routine is defined in GRAPH.TPU as follows:

procedure SetRGBPalette(ColorNum, Red, Green, Blue: word);

The argument ColorNum defines the palette entry to be loaded. ColorNum is
an integer from 0-255 (decimal). The arguments Red, Green, and Blue define
the component colors of the palette entry. Only the lower byte of these
values is used, and out of this byte, only the 6 most-significant bits are
loaded in the palette.

The other palette manipulation routines of the graphics library may not be
used with the IBM 8514 driver (that is, SetAllPalette, SetPalette, GetPalette).

For compatibility with the balance of the IBM graphics adapters, the BGI
driver defines the first 16 palette entries of the IBM 8514 to the default
colors of the EGA/VGA. These values can be used as is, or changed using
the SetRGBPalette routine.

The FloodFill routine will not work with the IBM 8514 driver.

These same restrictions apply when also using the VGA in 256-color mode.

134 Turbo Pascal Reference Guide

Coordinate System

By convention, the upper left comer of the graphics screen is (0,0). The x
values, or columns, increment to the right. The y values, or rows, increment
downward. Thus, in 320x200 mode on a CGA, the screen coordinates for
each of the four corners with a specified point in the middle of the screen
would look like this:

(0,0) (319,0)

- (159,99)

(0,199) (319,199)

Current Pointer

Many graphics systems support the notion of a current pointer (CP). The
CP is similar in concept to a text mode cursor except that the CP is not
visible.

Write (' ABC');

In text mode, the preceding Write statement will leave the cursor in the
column immediately following the letter C. If the C is written in column 80,
then the cursor will wrap around to column 1 of the next line. If the C is
written in column 80 on the 25th line, the entire screen will scroll up one
line, and the cursor will be in column 1 of line 25.

MoveTo(O, 0)
LineTo (20, 20)

In graphics mode, the preceding LineTo statement will leave the CP at the
last point referenced (20,20). The actual line output would be clipped to the
current viewport if clipping is active. Note that the CP is never clipped.

The MoveTo command is the equivalent of GoToXY. It's only purpose is to
move the CPo Only the commands that use the CP move the CP: InitGraph,

Chapter 72, standard Units 135

MoveTo, MoveRel, LineTo, LineRel, OutText, SetGraphMode,* GraphDefaults,*
ClearDevice,* SetViewPort,* and ClearViewPort*.

Note: The procedures with an asterisk (*) after their names in the preceding
list move the CP to (0,0).)

Text

An 8x8 bit-mapped font and several "stroked" fonts are included for text
output while in graphics mode. A bit-mapped character is defined by an
8x8 matrix of pixels. A stroked font is defined by a series of vectors that tell
the graphics system how to draw the font.

The advantage to using a stroked font is apparent when you start to draw
large characters. Since a stroked font is defined by vectors, it will still retain
good resolution and quality when the font is enlarged.

When a bit-mapped font is enlarged, the matrix is multiplied by a scaling
factor and, as the scaling factors becomes larger, the characters' resolution
becomes coarser. For small characters, the bit-mapped font should be
sufficient, but for larger text you will want to select a "stroked" font.

The justification of graphics text is controlled by the SetTextJustify proce­
dure. Scaling and font selection is done with the SetTextStyle procedure.
Graphics text is output by calling either the OutText or OutTextXY
procedures. Inquiries about the current text settings are made by calling the
GetTextSettings procedure. The size of stroked fonts can be customized by
the SetUserCharSize procedure.

Stroked fonts are each kept in a separate file on disk with a .CHR file
extension. Font files can be loaded from disk automatically by the Graph
unit at run time (as described), or they can also be linked in or loaded by
the user program and "registered" with the Graph unit.

A special utility, BINOBJ.EXE, is provided that converts a font file (or any
binary data file, for that matter) to an .OBJ file that can be linked into a unit
or program using the ($L} compiler directive. This makes it possible for a
program to have all its font files built into the .EXE file. (Read the
comments at the beginning of the GRLINK.P AS sample program on the
distribution disks.)

Figures and Styles

All kinds of support routines are provided for drawing and filling figures,
including points, lines, circles, arcs, ellipses, rectangles, polygons, bars, 3-D

136 Turbo Pascal Reference Guide

bars, and pie slices. Use SetLineStyle to control whether lines are thick or
thin, or whether they are solid, dotted, or built using your own pattern.

Use SetFillStyle and SetFillPattern, FillPoly and FloodFill to fill a region or a
polygon with cross-hatching or other intricate patterns.

Viewports and Bit Images

The ViewPort procedure makes all output commands operate in a rectan­
gular region on the screen. Plots, lines, figures-all graphics output-are
viewport-relative until the viewport is changed. Other routines are pro­
vided to clear a viewport and read the current viewport definitions. If
clipping is active, all graphics output is clipped to the current port. Note
that the CP is never clipped.

GetPixel and PutPixel are provided for reading and plotting pixels. Getlmage
and Putlmage can be used to save and restore rectangular regions on the
screen. They support the full complement of BitBlt operations (copy, xor, or,
and, not).

Paging and Colors

There are many other support routines, including support for multiple
graphic pages (EGA, VGA, and Hercules only; especially useful for doing
animation), palettes, colors, and so on.

Error-Handling

Internal errors in the Graph unit are returned by the function GraphResult.
GraphResult returns an error code that reports the status of the last graphics
operation. The following error return codes are defined:

• O:Noerror
• -1: (BGI) graphics not installed (use InitGraph)
• -2: Graphics hardware not detected
• -3: Device driver file not found
• -4: Invalid device driver file
• -5: Not enough memory to load driver
• -6: Out of memory in scan fill
• -7: Out of memory in flood fill
• -8: Font file not found
• -9: Not enough memory to load font

Chapter 72, Standard Units 137

• -10: Invalid graphics mode for selected driver
• -11: Graphics error
• -12: Graphics I/O error
• -13: Invalid font file
• -14: Invalid font number

The following routines set GraphResult:

Bar
Bar3D
Clear ViewPort
CloseGraph
DetectGraph
DrawPoly
FillPoly
FloodFill
GetGraphMode

lmageSize
InitGraph
InstallUserDriver
InstallUserFont
PieS lice
RegisterBGldriver
Register BGlfont
SetAliPalette

SetFillPattern
SetFillStyle
SetGraphBufSize
SetGraphMode
SetLineStyle
SetPalette
SetTextJustify
SetTextStyle

Note that GraphResult is reset to zero after it has been called. Therefore, the
user should store the value of GraphResult into a temporary variable and
then test it. The following return code constants are defined:

conat
(GraphResult error return codes
grOk 0;
grNoInitGraph -1;
grNotDetected -2;
grFileNotFound -3;
grInvalidDriver -4;
grNoLoadMem -5;
grNoScanMem -6;
grNoFloodMem -7;
grFontNotFound -8;
grNoFontMem -9;
grInvalidMode = -10;
grError = -11;
grIOError = -12;
grInvalidFont = -13;
grInvalidFontNum = -14;

Getting Started

Here's a simple graphics program:

138

1 program GraphTest;
2 u •••
3 Graph;
4 var

Turbo Pascal Reference Guide

5 GraphDriver: integer;
6 GraphMode integer;
7 ErrorCode integer;
8 begin
9 GraphDriver:= Detect; Set flag: do detection }
10 InitGraph(GraphDriver, GraphMode, 'C:\DRIVERS');
11 ErrorCode:= GraphResult;
12 if ErrorCode <> grOk then { Error? }
13 begin
14 Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
15 Writeln('Program aborted ••• ');
16 Halt (1);

17 end;
18 Rectangle (0, 0, GetMaxX, GetMaxY);
19 SetTextJustify(CenterText, CenterText);
20 SetTextStyle(DefaultFont, HorizDir, 3);
21 OutTextXY(GetMaxX div 2, GetMaxY div 2,
22 'Borland Graphics Interface (BGI)');
23 Readln;
24 CloseGraph;
25 end. { GraphTest

{ Draw full screen box
{ Center text

Center of screen }

The program begins with a call to InitGraph, which autodetects the hard­
ware and loads the appropriate graphics driver (located in C:\DRIVERS). If
no graphics hardware is recognized or an error occurs during initialization,
an error message is displayed and the program terminates. Otherwise, a
box is drawn along the edge of the screen and text is displayed in the center
of the screen.

Note: Neither the AT&T 400 line card nor the IBM 8514 graphics adapter is
autodetected. You can still use these drivers by overriding autodection and
passing InitGraph the driver code and a valid graphics mode. To use the
AT&T driver, for example, replace lines 9 and 10 in the preceding example
with the following three lines of code:

GraphDriver := ATT400;
GraphMode := ATT400Hi;
InitGraph(GraphDriver, GraphMode, 'C:\DRIVERS');

This instructs the graphics system to load the AT&T 400 line driver located
in C: \ DRIVERS and set the graphics mode to 640 by 400.

Here's another example that demonstrates how to switch back and forth
between graphics and text modes:

Chapter 72, Standard Units 139

1 program GraphTest;
2 use.
3 Graph;
4 var
5 GraphDriver integer;
6 GraphMode integer;
7 ErrorCode integer;
8 begin
9 GraphDriver:= Detect; { Set flag: do detection }
10 InitGraph(GraphDriver, GraphMode, 'C:\DRIVERS')i
11 ErrorCode:= GraphResult;
12 if ErrorCode <> grOk then { Error? }
13 begin
14 Writeln('Graphics error: " GraphErrorMsg(ErrorCode))i
15 Writeln('Program aborted ••• ');
16 Halt (1) ;

17 end;
18 OutText('In Graphics mode. Press <RETURN>');
19 Readln;
20 RestoreCRTMode;
21 Write('Now in text mode. Press <RETURN>');
22 Readln;
23 SetGraphMode(GraphMode)i
24 OutText('Back in Graphics mode. Press <RETURN>');
25 Readln;
26 CloseGraph;
27 end. { GraphTest

Note that the SetGraphMode call on line 23 ,resets all the graphics parameters
(palette, current pointer, foreground, and background colors, and so on) to
the default values.

The call to CloseGraph restores the video mode that was detected initially by
InitGraph and frees the heap memory that was used to hold the graphics
driver.

User-Written Heap Management Routines

Two heap management routines are used by the Graph unit: GraphGetMem
and GraphFreeMem. GraphGetMem allocates memory for graphics device
drivers, stroked fonts, and a scan buffer. GraphFreeMem deallocates the
memory allocated to the drivers. The standard routines take the following
form:

procedure GraphGetMem(var P : pointer; Size: word);
{ Allocate memory for graphics }

procedure GraphFreeMem(var P : pointer; Size: word);
{ Deallocate memory for graphics }

140 Turbo Pascal Reference Guide

Two pointers are defined by Graph that by default point to the two
standard routines described here. The pointers are defined as follows:

var
GraphGetMemPtr : pointer;
GraphFreeMemPtr : pointer

{ Pointer to memory allocation routine
Pointer to memory deal location routine

The heap management routines referenced by GraphGetMemPtr and
GraphFreeMemPtr are called by the Graph unit to allocate and deallocate
memory for three different purposes:

• a multi-purpose graphics buffer whose size can be set by a call to
SetGraphBufSize (default = 4K)

• a device driver that is loaded by InitGraph (*.BGI files)
• a stroked font file that is loaded by SetTextStyle (*.CHR files)

The graphics buffer is always allocated on the heap. The device driver is
alloca ted on the heap unless your program loads or links one in and calls
RegisterBGldriver, and the font file is allocated on the heap when you select
a stroked font using SetTextStyle-unless your program loads or links one
in and calls RegisterBGlfont.

Upon initialization of the Graph unit, these pointers point to the standard
graphics allocation and deallocation routines that are defined in the
implementation section of the Graph unit. You can insert your own memory
management routines by assigning these pointers the address of your
routines. The user-defined routines must have the same parameter lists as
the standard routines and must be far procedures. The following is an
example of user-defined allocation and deallocation routines; notice the use
of MyExitProc to automatically call CloseGraph when the program
terminates:

program UserHeapManagement;
{ Illustrates how the user can steal the heap
{ management routines used by the Graph unit.

uses
Graph;

var
GraphDriver, GraphMode : integer;
ErrorCode : integer;
PreGraphExitProc : pointer;

{ Used to store GraphResult return code
{ Used to save original exit proc

{$F+} {User routines must be far call model}
procedure MyGetMem(var P : pointer; Size: word);
{ Allocate memory for graphics device drivers, fonts, and scan buffer }
begin

GetMem(P, Size)
end; { MyGetMem }

procedure MyFreeMem(var P : pointer; Size: word);

Chapter 72. Standard Units 141

{ Deallocate memory for graphics device drivers, fonts, and scan buffer }
begin

if P <> nil then (Don't free Nil pointers!
begin

FreeMem(P, Size);
P := nil;

end;
end; { MyFreeMem

procedure MyExitProc;
(Always gets called when program terminates
begin

ExitProc := PreGraphExitProc;
CloseGraph;

end; (MyExitProc)
($F-)

begin
(Install clean-up routine
PreGraphExitProc := ExitProc;
ExitProc := @MyExitProc;

GraphGetMemPtr := @MyGetMem;
GraphFreeMemPtr := @MyFreeMem;

GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

Restore original exit proc
(Do heap clean up

(Control memory allocation
Control memory deallocation

Writeln('Graphics error: " GraphErrorMsg(ErrorCode)};
Readln;
Halt(1);

end;
Line(O, 0, GetMaxX, GetMaxY);
OutTextXY(1, 1, 'Press <Return>:');
Readln;

end. {UserHeapManagment}

Graph Unit Constants, Types and Variables

Constants

The following error values are returned by GraphResult:

142 Turbo Pascal Reference Guide

const
grOk 0;
grNolnitGraph -1;
grNotDetected -2;
grFileNotFound -3;
grlnvalidDriver -4;
grNoLoadMem -5;
grNoScanMem -6;
grNoFloodMem -7;
grFontNotFound -8;
grNoFontMem -9;
grlnvalidMode = -10;
grError = -11; generic error
grIOerror = -12;
grInvalidFont = -13;
grlnvalidFontNum = -14;

Use these driver and mode constants with InitGraph, DetectCraph, and
GetModeRange:

conK
Detect = 0; { Requests autodetection }
CGA = 1;
MCGA = 2;
EGA = 3;
EGA64 = 4;
EGAMono = 5;
IBM8514 = 6;
HercMono = 7;
ATT400 = 8;
VGA = 9;
PC3270 = 10;
CurrentDriver = -128; { Passed to GetModeRange }

{ 320x200 palette 0: LightGreen, LightRed, Yellow; 1 page
320x200 palette 1: LightCyan, LightMagenta, White; 1 page

CGACO = 0;
CGAC1 = 1;
CGAC2 = 2;
CGAC3 = 3;
CGAHi = 4;
MCGACO = 0;
MCGAC1 = 1;
MCGAC2 = 2;
MCGAC3 = 3;
MCGAMed = 4;
MCGAHi = 5;
EGALo = 0;
EGAHi = 1;
EGA64Lo = 0;
EGA64Hi = 1;
EGAMonoHi = 3;
HercMonoHi = 0;

{ 320x200 palette 2: Green, Red, Brown; 1 page
{ 320x200 palette 3: Cyan, Magenta, LightGray; 1 page

{ 640x200 1 page }
320x200 palette 0: LightGreen, LightRed, Yellow; 1 page }

320x200 palette 1: LightCyan, LightMagenta, White; 1 page }
{ 320x200 palette 2: Green, Red, Brown; 1 page }

{ 320x200 palette 3: Cyan, Magenta, LightGray; 1 page }
{ 640x200 1 page }
{ 640x480 1 page }

640x200 16 color 4 page }
640x350 16 color 2 page }
640x200 16 color 1 page }

{ 640x350 4 color 1 page }
{ 640x350 64K on card, 1 page; 256K on card, 2 page }

{ 720x348 2 page }

Chapter 72. Standard Units 143

ATT400CO
ATT400C1
ATT400C2
ATT400C3
ATT400Med
ATT400Hi
VGALo
VGAMed
VGAHi
PC3270Hi
IBM8514LO
IBM8514HI

= 0;
= 1;
= 2;
= 3;
= 4;
= 5;
= 0;
= 1;
= 2;
= 0;
= 0;
= 1;

{ 320x200 palette 0: LightGreen, LightRed, Yellow; 1 page }
320x200 palette 1: LightCyan, LightMagenta, White; 1 page }

{ 320x200 palette 2: Green, Red, Brown; 1 page}
{ 320x200 palette 3: Cyan, Magenta, LightGray; 1 page }

{ 640x200 1 page
{ 640x400 1 page

640x200 16 color 4 page
640x350 16 color 2 page
640x480 16 color 1 page

{ nOx350 1 page
{ 640x480 256 colors

{ 1024x768 256 colors

Use these color constants with SetPalette and SetAllPalette:

conet
Black = 0;
Blue = 1;
Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;
DarkGray = 8;
LightBlue = 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

These color constants can be used with SetRGBPalette to select the standard
EGA colors on an IBM 8514 graphics adapter:

conat
EGABlack = 0; { dark colors }
EGABlue = 1;
EGAGreen = 2;
EGACyan = 3;
EGARed = 4;
EGAMagenta = 5;
EGABrown = 20;
EGALightgray = 7;
EGADarkgray = 56; { light colors }
EGALightblue = 57;
EGALightgreen = 58;
EGALightcyan = 59;
EGALightred = 60;
EGALightmagenta = 61;

144 Turbo Pascal Reference Guide

EGAYe 11 ow
EGAWhite

= 62;
= 63;

Use these line style constants with GetLineSettings and SetLineStyle:

conat
SolidLn = 0;
DottedLn = 1;
CenterLn = 2;
DashedLn = 3;
UserBitLn = 4;

NormWidth = 1;
ThickWidth = 3;

{ User-defined line style }

Use these font control constants with GetTextSettings and SetTextStyle:

conat
DefaultFont = 0;
TriplexFont = 1;
SmallFont = 2;
SansSerifFont = 3;
GothicFont = 4;

HorizDir = 0;
VertDir = 1;

UserCharSize = 0;

8x8 bit mapped font
{ "Stroked" fonts

{ Left to right
{ Bottom to top

{ User-defined char size

These constants control horizontal and vertical justification for
SetTextJustify:

conat
Left Text = 0;
CenterText = 1;
RightText = 2;

BottomText = 0;
CenterText = 1; already defined above }
TopText = 2;

Use these constants with SetViewPort to control clipping. With clipping on,
graphics output is clipped at the viewport boundaries:

conat
ClipOn = true;
ClipOff = false;

These constants may be used with Bar3D to specify whether a 3-D top
should be drawn on top of the bar (allows for stacking bars and only
drawing a top on the topmost bar):

conat
TopOn = true;
TopOff = false;

Chapter 72, Standard Units 145

These fill pattern constants are used by GetFillSettings and SetFillStyle. Use
SetFillPattern to define your own fill pattern; then call

SetFillStyle(UserFill, SomeColor)

and make your fill pattern the active style:

con.t
EmptyFill = 0; { Fills area in background color
SolidFill = 1; { Fills area in solid fill color
LineFill = 2; { --- fill}
LtSlashFill = 3; { I I I fill }
SlashFill =4; { III fill with thick lines}
BkSlashFill = 5; { \\\ fill with thick lines}
LtBkSlashFill = 6; { \\ \ fill }
HatchFill = 7; { Light hatch fill }
XHatchFill = 8; { Heavy cross hatch fill
InterleaveFill = 9; { Interleaving line fill
WideDotFill = 10; { Widely spaced dot fill
CloseDotFill = 11; { Closely spaced dot fill }
UserFill = 12; { User-defined fill }

Use these BitBlt operators with both PutImage and SetWriteMode:

conK
Copy Put
XORPut

= 0;
= 1;

{ MOV }
{ XOR }

These BitBlt operators are used by PutImage only:

conK
OrPut = 2; {OR}
AndPut = 3; { AND }
NotPut = 4; { NOT }

This constant is used by GetPalette, GetDefaultPalette, SetAllPalette, and to
define the PaletteType record:

conK
MaxColors = 15;

Types

This record is used by GetPalette, GetDefaultPalette, and SetAllPalette:

type
PaletteType = record

Size : byte;
Colors: array[O •• Maxcolors] of shortint;

end;

This record is used by by GetLineSettings:

146 Turbo Pascal Reference Guide

type
LineSettingsType = record

LineStyle : word;
Pattern : word;
Thickness : word;

end;

This record is used by by GetTextSettings:

type
TextSettingsType = record

Font : word;
Direction : word;
CharSize : word;
Horiz : word;
Vert : word;

end;

This record is used by by GetFillSettings:

type
FillSettingsType = record

Pattern : word;
Color : word;

end;

This record is used by GetFillPattern and SetFillPattern:

type
FillPatternType = array[1 •• 8] of byte; {User-defined fill style I

This type is defined for your convenience. Note that both fields are of type
integer (not word):

type
Point Type = record

X, Y : integer;
end;

This record is used by GetViewSettings to report the status of the current
viewport:

type
ViewPort Type = record

xl, yl, x2, y2 : integer;
Clip : boolean;

end;

This record is used by by GetArcCoords and can be used to retrieve
informa tion about the last call to Arc or Ellipse:

Chapter 12, Standard Units 147

type
ArcCoordsType = record

X, Y integer;
Xstart, Ystart integer;
Xend, Yend integer;

end;

Variables

These variables initially point to the Graph unit's heap management
routines. If your program does its own heap management, assign the
addresses of your allocation and deallocation routines to GraphGetMemPtr
and GraphFreeMemPtr respectively:

GraphGetMemPtr : pointer;
GraphFreeMemPtr : pointer;

{ Allows user to steal heap allocation }
{ Allows user to steal heap deal location }

Procedures

Arc

Bar

Bar3D

Circle

ClearDevice

ClearViewPort

CloseGraph

DetectGraph

DrawPoly

Ellipse

FillEllipse

FillPoly

148

Draws a circular arc from start angle to end angle,
using (x,y) as the center point.

Draws a bar using the current fill style and color.

Draws a 3-D bar using the current fill style and
color.

Draws a circle using (x,y) as the center point.

Clears the currently selected output device and
homes the current pointer.

Clears the current viewport.

Shuts down the graphics system.

Checks the hardware and determines which
graphics driver and mode to use.

Draws the outline of a polygon using the current
line style and color.

Draws an elliptical arc from start angle to end angle,
using (X,¥) as the center point.

Draws a filled ellipse using (X,Y) as a center point
and XRadius and YRadius as the horizontal and
vertical axes.

Fills a polygon, using the scan converter.

Turbo Pascal Reference Guide

FloodFill

GetArcCoords

GetAspectRatio

GetFillPattem

GetFillSettings

Getlmage

GetLineSettings

GetModeRange

GetPalette

GetTextSettings

GetViewSettings

GraphDe£aults

InitGraph

Line

LineRel

LineTo

MoveRel

MoveTo

OutText

Fills a bounded region using the current fill pattern
and fill color.

Allows the user to inquire about the coordinates of
the last Arc command.

Returns the effective resolution of the graphics
screen from which the aspect ratio (Xasp:Yasp) can
be computed.

Returns the last fill pattern set by a call to
SetFillPattern.

Allows the user to inquire about the current fill
pattern and color as set by SetFillStyle or
SetFillPattern.

Saves a bit image of the specified region into a
buffer.

Returns the current line style, line pattern, and line
thickness as set by SetLineStyle.

Returns the lowest and highest valid graphics mode
for a given driver.

Returns the current palette and its size.

Returns the current text font, direction, size, and
justification as set by SetTextStyle and SetTextJustify.

Allows the user to inquire about the current
viewport and clipping parameters.

Homes the current pointer (CP) and resets the
graphics system.

Initializes the graphics system and puts the
hardware into graphics mode.

Draws a line from the (xl, y1) to (x2, y2).

Draws a line to a point that is a relative distance
from the current pointer (CP).

Draws a line from the current pointer to (x,y).

Moves the current pointer (CP) a relative distance
from its current position.

Moves the current graphics pointer (CP) to (x,y).

Sends a string to the output device at the current
pointer.

Chapter 72, Standard Units 149

OutTextXY

Pie Slice

Putlmage

PutPixel

Rectangle

RestoreCrtMode

Sector

SetActivePage

SetAIlPalette

SetAspectRatio

SetBkColor

SetColor

SetFillPattem

SetFillStyle

SetGraphBufSize

SetGraphMode

SetLineStyle

SetPalette

SetRGBPalette

SetTextJustify

SetTextStyle

SetUserCharSize

SetViewPort

150

Sends a string to the output device.

Draws and fills a pie slice, using (X, Y) as the center
point and drawing from start angle to end angle.

Puts a bit image onto the screen.

Plots a pixel at x,y.

Draws a rectangle using the current line style and
color.

Restores the original screen mode before graphics is
initialized.

Draws and fills an elliptical sector.

Set the active page for graphics output.

Changes all palette colors as specified.

Changes the default aspect ratio.

Sets the current background color using the palette.

Sets the current drawing color using the palette.

Selects a user-defined fill pattern.

Sets the fill pattern and color.

Allows you to change the size of the buffer used for
scan and flood fills.

Sets the system to graphics mode and clears the
screen.

Sets the current line width and style.

Changes one palette color as specified by ColorNum
and Color.

Allows you to modify palette entries for the IBM
8514 and the VGA drivers.

Sets text justification values used by OutText and
OutTextXY.

Sets the current text font, style, and character
magnifica tion factor.

Lets you change the character width and height for
stroked fonts.

Sets the current output viewport or window for
graphics output.

Turbo Pascal Reference Guide

SetVisualPage

SetWriteMode

Functions

GetBkColor

GetColor

GetDefaultP alette

GetDriverName

GetGraphMode

GetMaxColor

GetMaxMode

GetMaxX

GetMaxY

GetModeName

GetPaletteSize

GetPixel

GetX

GetY

GraphErrorMsg

GraphResult

Image Size

Sets the visual graphics page number.

Sets the writing mode (copy or XOR) for lines drawn
by DrawPoly, Line, LineRel, LineTo, and Rectangle.

Returns the current background color.

Returns the current drawing color.

Returns the default hard ware palette in a record of
PaletteType.

Returns a string containing the name of the current
driver.

Returns the current graphics mode.

Returns the highest color that can be passed to
SetColor.

Returns the maximum mode number for the
currently loaded driver.

Returns the rightmost column (x resolution) of the
current graphics driver and mode.

Returns the bottommost row (y resolution) of the
current graphics driver and mode.

Returns a string containing the name of the specified
graphics mode.

Returns the size of the palette color lookup table.

Gets the pixel value at X,Y.

Returns the X coordinate of the current position
(CP).

Returns the Y coordinate of the current position
(CP).

Returns an error message string for the specified
ErrorCode.

Returns an error code for the last graphics
operation.

Returns the number of bytes required to store a
rectangular region of the screen.

Chapter 72, Standard Units 151

InstallUserDriver

InstallUserFont

RegisterBGldriver

RegisterBGIfont

TextHeight

TextWidth

Installs a vendor-added device driver to the BGI
device driver table.

Installs a new font file that is not built into the BGI
system.

Registers a valid BGI driver with the graphics
system.

Registers a valid BGI font with the graphics system.

Returns the height of a string in pixels.

Returns the width of a string in pixels.

For a detailed description of each procedure or function, refer to Chapter
16, "Turbo Pascal Reference Lookup."

The Turbo3 Unit

Every routine in this unit is duplicated or improved upon in other standard
units. The Turbo3 unit is provided for backward compatibility only. By
using Turbo3, you gain more 3.0-compatibility, but lose direct access to
important new features built into some of the standard routines duplicated
here. (Note that you can still call these standard routines by using the unit
override syntax; for example, Turbo3' s MemAvail calls the System.MemAvail
function even if you are using the Turbo3 unit in your program. For more
information about referring to routines with the same name in other units,
look at Chapter 4 in the User's Guide, "Units and Related Mysteries.")

Note: The routines that follow are not described in Chapter 16. For more
detailed information about Turbo3 routines, refer to your Turbo Pascal 3.0
reference manual.

Interface Section

Here's a look at the interface section of the Turbo3 unit:

unit Turbo3;
interface
us.s Crt;
var

Kbd : Text;
CBreak : boolean absolute CheckBreak;

function MemAvail: integer;
function MaxAvail: integer;
function LongFileSize(var F): real;

152 Turbo Pascal Reference Guide

function LongFilePos(var F): real;
procedure LongSeek(var F; Pos: real);
procedure HighVideo;
procedure NormVideo;
procedure LowVideo;
function IOResult : integer;

As you can see, there are two global variables, five functions, and four
procedures declared in the Turbo3 unit.

Kbd

This is provided for Turbo Pascal 3.0 programs that read from the keyboard
device; for example, Read(Kbd, CharVar). Note that there is now a function
in the Crt unit called ReadKey that should be used in place of Read(Kbd,
CharVar). Here are two programs that read a character and report whether
an extended key was typed (F1, F2, Left arrow, and so on):

In version 3.0:

program TestKbdi
u.e. Crt, Turbo3i

c : chari
begin

Read(Kbd, C)i
if (c = 127) and KeyPressed then
begin

Read (Kbd, C)i
Writeln('Extended key: " eli

end
elae

Writeln(c)i
end.

Notice that the Kbd device handler converts extended keys from (null +
character) to (ESC + second character). Since Esc (#27) is a perfectly valid
key to enter from the keyboard, a call to KeyPressed must be made to
determine whether the #27 is the first key from an extended key or an
actual Esc typed on the keyboard. If an Esc is typed, followed quickly by
another character before the program detected the Esc, the two keys would
be mistaken as an extended keystroke.

In version 5.0:

program TestReadKeYi
u.e. Crti
var

c : chari

Chapter 72. Standard Units 153

begin
c := ReadKeYi
if (c = to) than

Writeln{'Extended key: " ReadKeY)i
.1 ••

Writeln{c)i
and.

The code in 5.0 is smaller (and faster), and contains none of the ambiguity
about the leading character of an extended keystroke. (It is impossible to
generate a null character from the keyboard except when using the
extended keys.)

CBreak

CBreak has been renamed to CheckBreak in version 5.0. Backward
compatibility is achieved by giving CBreak the same address as CheckBreak,
which is declared in the Crt unit. The statement CBreak := False turns off
elrl-Break checking; CBreak := True turns it back on.

Procedures

HighVideo

LongSeek

LowVideo

NormVideo

Functions

IOResult

LongFilePos

LongFileSize

154

Sets the video attribute to yellow on black (color
systems) or white on black (black and white, mono
systems).

Moves the current position of a file to a specified
component. Uses a real number parameter to specify the
componentnumbe~

Sets the video attribute to LightGray on black.

Same as HighVideo. Sets the video attribute to yellow on
black (color systems) or white on black (black and white,
mono systems).

Returns an integer value that is the status of the last I/O
operation performed. The Turbo3 IOResult function
returns 3.0-compatible return codes wherever possible.

Returns the current file position of a file. The value
returned is a real number.

Returns the size of the file. The value returned is a real
number.

Turbo Pascal Reference Guide

MaxAvail

MemAvail

Returns the size of the largest contiguous free block in
the heap (in paragraphs).

Returns the number of free paragraphs of heap storage
available.

The Graph3 Unit

The Graph3 unit is a direct implementation of the turtlegraphics driver
provided by Turbo Pascal 3.0. In Turbo Pascal 3.0, the turtlegraphics driver
was made up of two files, GRAPH.P and GRAPH. BIN that supported the
IBM CGA and compatibles. GRAPH.P actually defines the external
machine code routines contained in GRAPH.BIN.

Graph3 combines Turbo Pascal 3.0's GRAPH.P and GRAPH.BIN into a
single unit, still retaining the same functionality. The only modification you
need to make to a Turbo Pascal 3.0 program that uses the turtlegraphics
driver is to remove the {$I GRAPH.P} compiler directive, replacing it with a
reference to Crt and Graph3 in your program's uses clause.

Note: The routines that follow are not described in Chapter 16. For more
detailed information about Graph3 routines, refer to your Turbo Pascal 3.0
reference manual.

Here are Graph3' s constants:

conat
North = 0;
East = 90;
South = 180;
West = 210;

Procedures

Arc

Back

Circle

ClearScreen

ColorTable

Draws an arc using the given parameters.

Moves the turtle backward by the given distance.
(Turtlegraphics)

Dra ws a circle.

Clears the active window and homes the turtle.
(Turtlegra phics)

Defines a color translation table that lets the cur­
rent color of any given point determine the new
color of that point when it is redrawn.

Chapter 72, Standard Units 155

Draw

FillPattern

FillScreen

FillShape

Forwd

GetDotColor

GetPic

GraphBackground

GraphColorMode

GraphMode

GraphWindow

Heading

HideTurtle

HiRes

HiResColor

Home

NoWrap

Palette

Pattern

PenDown

156

Draws a line between the specified endpoints and
in the specified color.

Fills a rectangular area with the current pattern
using the specified color.

Fills the entire active window with the indicated
color.

Fills an area of any shape with the specified color.

Moves the turtle forward by the given distance.
(Turtlegra phics)

Returns the color value of the dot at the indicated
location.

Copies the contents of an area on the screen into a
buffer; the contents can later be restored using
PutPic.

Sets background color of screen.

Sets you in 320x200 color graphics mode.

Sets you in 320x200 black-and-white graphics
mode.

Lets you define an area of the screen as the active
window in any of the graphics modes.

Returns the current heading of the turtle.
(Turtlegra phics)

Hides the turtle. (Turtlegraphics)

Sets screen in 640x200 high-resolution graphics
mode.

Selects the color used for drawing in high­
resolution graphics.

Puts the turtle in its home position. (Turtle­
graphics)

Disables "wrapping" for the turtle. (Turtle­
graphics)

Activates the color palette specified.

Defines an 8x8 pattern to be used by FillPattern.

Puts the turtle's pen "down" so that any move­
ment of the turtle results in drawing. (Turtle­
graphics)

Turbo Pascal Reference Guide

PenUp

Plot

PutPic

SetHeading

SetPenColor

SetPosition

ShowTurtle

TumLeft

TumRight

TurtleDelay

TurtleThere

TurtleWindow

Wrap

XCor

YCor

Puts the turtle's pen "up" so that the turtle can be
moved without drawing. (Turtlegraphics)

Plots a point at the specified coordinates and in the
specified color.

Copies the contents of a buffer.

Turns the turtle to the specified angle.
(Turtlegra phics)

Sets the color used for the turtle's pen. (Turtle­
graphics)

Moves the turtle to the given coordinates without
drawing a line. (Turtlegraphics)

Makes the turtle visible. (Turtlegraphics)

Turns the turtle's heading to the left (counter­
clockwise). (Turtlegraphics)

Turns the turtle's heading to the right (clockwise).
(Turtlegraphics)

Sets a delay between each step of the turtle.
(Turtlegraphics)

Tests if the turtle is visible and in the active
window. (Turtlegraphics)

Defines an area of the screen as the active turtle
graphics screen. (Turtlegraphics)

Forces wraparound when the turtle attempts to
move past the boundaries of the active window.
(Turtlegra phics)

Returns the current X-coordinate of the turtle.
(Turtlegraphics)

Returns the current Y-coordinate of the turtle.
(Turtlegraphics)

Chapter 12, Standard Units 157

158 Turbo Pascal Reference Guide

c H A p T E R

13

Overlays

Overlays are parts of a program that share a common memory area. Only
the parts of the program that are required for a given function reside in
memory at the same time; they can overwrite each other during execution.

Overlays can significantly reduce a program's total run-time memory
requirements. In fact, with overlays you can execute programs that are
much larger than the total available memory, since only parts of the pro­
gram reside in memory at any given time.

Turbo Pascal manages overlays at the unit level; this is the smallest part of
a program that can be made into an overlay. When an overlaid program is
compiled, Turbo Pascal generates an overlay file (extension .OVR) in
addition to the executable file (extension .EXE). The .EXE file contains the
static (non-overlaid) parts of the program, and the .OVR file contains all the
overlaid units that will be swapped in and out of memory during program
execution.

Except for a few programming rules, an overlaid unit is identical to a non­
overlaid unit. In fact, as long as you observe these rules, you don't even
need to recompile a unit to make it into an overlay. The decision of whether
or not a unit is overlaid is made by the program that uses the unit.

When an overlay is loaded into memory, it is placed in the overlay buffer,
which resides in memory between the stack segment and the heap. By
default, the size of the overlay buffer is as small as possible, but it may be
easily increased at run-time by allocating additional space from the heap.
Like the data segment and the minimum heap size, the default overlay
buffer size is allocated when the .EXE is loaded. If enough memory isn't
available, an error message will be displayed by DOS (Program too big to
fit in memory) or by the IDE (Not enough memory to run program).

Chapter 73, Overlays 159

One very important option of the overlay manager is the ability to load the
overlay file into expanded memory when sufficient space is available.
Turbo Pascal supports version 3.2 or later of the Lotus/Intel/Microsoft
Expanded Memory Specification (EMS) for this purpose. Once placed into
EMS, the overlay file is closed, and subsequent overlay loads are reduced to
fast in-memory transfers.

The Overlay Unit

Turbo Pascal's overlay manager is implemented by the Overlay standard
unit. The buffer management techniques used by the Overlay unit are very
advanced, and always guarantee optimal performance in the available
memory. For example, the overlay manager always keeps as many overlays
as possible in the overlay buffer, to reduce the chance of having to read an
overlay from disk. Once an overlay is loaded, a call to one of its routines
executes just as fast as a call to a non-overlaid routine. Furthermore, when
the overlay manager needs to dispose of an overlay to make room for
another, it attempts to first dispose of overlays that are inactive (ones that
have no active routines at that point in time).

To implement its advanced overlay management techniques, Turbo Pascal
requires that you observe two important rules when writing overlaid pro­
grams:

• All overlaid units must include a ($O+) directive, which causes the
compiler to ensure that the generated code can be overlaid .

• At any call to an overlaid procedure or function, you must guarantee that
all currently active procedures and functions use the FAR call model.

Both rules are explained further in a section entitled "Designing Overlaid
Programs," beginning on page 164. For now, just note that you can easily
satisfy these requirements by placing a ($O+,F+) compiler directive at the
beginning of all overlaid units, and a ($F+) compiler directive at the
beginning of all other units and the main program.

Note: Failing to observe the FAR call requirement in an overlaid program
will cause unpredictable and possibly catastrophic results when the pro­
gram is executed.

The ($0 unitname} compiler directive is used in a program to indicate which
units to overlay. This directive must be placed after the program's uses
clause, and the uses clause must name the Overlay standard unit before any
of the overlaid units. An example follows:

program Editor;

{$F+} { Force FAR calls for all procedures & functions }

160 Turbo Pascal Reference Guide

uses
Overlay,Crt,Dos, EdlnOut, EdFormat, EdPrint, EdFind, EdMain;

{SO EdInOutj
{SO EdFormatj
{SO EdPrintj
{SO EdFindj
{SO EdMainj

Note: The compiler reports an error if you attempt to overlay a unit that
wasn't compiled in the ($O+) state. Of the standard units, the only one that
can be overlaid is Dos; the other standard units, System, Overlay, Crt, Graph,
Turbo3, and Graph3, cannot be overlaid. In addition, programs containing
overlaid units must be compiled to disk; the compiler reports an error if
you attempt to compile such programs to memory.

Constants and Variables

The constants and variables defined by the Overlay unit are briefly dis­
cussed in this section.

The OvrResult Variable

Before returning, each of the procedures in the Overlay unit stores a result
code in the OvrResult variable.

var OvrResult: Integer;

The possible return codes are defined in the constant declaration in the next
section. In general, a value of zero indicates success.

The OvrResult variable resembles the IOResult standard function except that
OvrResult is not set to zero once it is accessed. Thus, there is no need to
copy OvrResult into a local variable before it is examined.

Result Codes

Errors in the Overlay unit are reported through the OvrResult variable. The
following result codes are defined:

Chapter 73, Overlays 161

conat
ovrOk = 0;
ovrError = -1;
ovrNotFound = -2;
ovrNoMemory = -3;
ovrIOError = -4;
ovrNoEMSDriver = -5;
ovrNoEMSMemory = -6;

Procedures and Functions

{ Success }
{ Overlay manager error }

{ Overlay file not found }
{ Not enough memory for overlay buffer }

{ Overlay file I/O error }
{ EMS driver not installed }

{ Not enough EMS memory }

The Overlay unit defines the procedures Ovrlnit, OvrlnitEMS, OvrSetBuf,
and OvrClearBuf, and the function OvrGetBuf. Here is a brief description of
each; for more detailed information, see Chapter 8, "Procedures and
Functions."

OvrInit

procedure Ovrlnit(FileName:atring);

Initializes the overlay manager and opens the overlay file. If the FileName
parameter does not specify a drive or a subdirectory, the overlay manager
searches for the file in the current directory, in the directory that contains
the .EXE file (if running under DOS 3.x), and in the directories specified in
the DOS PATH environment variable. Possible error return codes are
ovrError and ovrNotFound. In case of error, the overlay manager remains
uninstalled, and an attempt to call an overlaid routine will produce run­
time error 208.

Note: The Ovrlnit procedure must be called before any of the other overlay
manager procedures.

OvrInitEMS

procedure OvrlnitEMS;

If possible, loads the overlay file into EMS. If successful, the overlay file is
closed, and all subsequent overlay loads are reduced to fast in-memory
transfers. Possible error return codes are ovrError, ovrIOError,
ovrNoEMSDriver, and ovrNoEMSMemory. The overlay manager will
continue to function if OvrlnitEMS returns an error, but overlays will be
read from disk.

Note: Using OvrlnitEMS to place the overlay file in EMS does not eliminate
the need for an overlay buffer. Overlays still have to be copied from EMS

162 Turbo Pascal Reference Guide

into "normal" memory in the overlay buffer before they can be executed.
However, since such in-memory transfers are significantly faster than disk
reads, the need to increase the size of the overlay buffer becomes less
apparent.

OvrSetBuf

procedure OvrSetBuf(Size:longint);

Sets the size of the overlay buffer. The specified size must be larger than or
equal to the initial size of the overlay buffer, and less than or equal to
MemAvail plus the current size of the overlay buffer. If the specified size is
larger than the current size, additional space is allocated from the
beginning of the heap (thus decreasing the size of the heap). Likewise, if the
specified size is less than the current size, excess space is returned to the
heap. OvrSetBuf requires that the heap be empty; an error is returned if
dynamic variables have already been allocated using New or GetMem.
Possible error return codes are ovrError and ovrNoMemory. The overlay
manager will continue to function if OvrSetBuf returns an error, but the size
of the overlay buffer will remain unchanged.

OvrGetBuf

function OvrGetBuf:longint;

Returns the current size of the overlay buffer. Initially, the overlay buffer is
as small as possible, corresponding to the size of the largest overlay. A
buffer of this size is automatically allocated when an overlaid program is
executed. (Note: The initial buffer size may be larger than 64K, since it
includes both code and fix-up information for the largest overlay.)

OvrClearBuf

procedure OvrClearBuf;

Clears the overlay buffer. All currently loaded overlays are disposed from
the overlay buffer, forcing subsequent calls to overlaid routines to reload
the overlays from the overlay file (or from EMS). If OvrClearBuf is called
from an overlay, that overlay will immediately be reloaded upon return
from OvrClearBuf. The overlay manager never requires you to call
OvrClearBuf; in fact, doing so will decrease performance of your
application, since it forces overlays to be reloaded. OvrClearBuf is solely
intended for special use, such as temporarily reclaiming the memory
occupied by the overlay buffer.

Chapter 13, Overlays 163

Designing Overlaid Programs

This section provides some important information on designing programs
with overlays. Look it over carefully, since a number of the issues discussed
are vital to well-behaved overlaid applications.

Overlay Code Generation

Turbo Pascal only allows a unit to be overlaid if it was compiled with
($0+). In this state, the code generator takes special precautions when
passing string and set constant parameters from one overlaid procedure or
function to another. For example, if UnitA contains a procedure with the
following header:

procedure WriteStr(S: string);

and if UnitB contains the statement

WriteStr('Hello world ••• ');

then Turbo Pascal places the string constant 'Hello world ... ' in UnitB's code
segment, and passes a pointer to it to the WriteStr procedure. However, if
both units are overlaid, this would not work, since at the call to WriteStr,
UnitB's code segment may be overwritten by UnitA's, thus rendering the
string pointer invalid. The ($0+) directive is used to avoid such problems;
whenever Turbo Pascal detects a call from one unit compiled with ($0+) to
another unit compiled with ($0+), the compiler makes sure to copy all
code-segment-based constants into stack temporaries before passing
pointers to them.

The use of ($0+) in a unit does not force you to overlay that unit. It just
instructs Turbo Pascal to ensure that the unit can be overlaid, if so desired.
If you develop units that you plan to use in overlaid as well as non-overlaid
applications, then compiling them with ($0+) ensures that you can indeed
do both with just one version of the unit.

The FAR Call Requirement

As mentioned previously, at any call to an overlaid procedure or function
in another module, you must guarantee that all currently active procedures
or functions use the FAR call model.

This is best illustrated bv example: Assume that OvrA is a procedure in an
overlaid unit, and that MainB ;nd Maine are procedures itt the main pro­
gram. If the main program calls Maine, which calls MainB, which then calls
OvrA, then at the call to OvrA, MainB and Maine are active (they have not

164 Turbo Pascal Reference Guide

yet returned), and are thus required to use the FAR call model. Being
declared in the main program, MainB and Maine would normally use the
NEAR call model; in this case, though, a ($F+) compiler directive must be
used to force the FAR call model into effect.

The easiest way to satisfy the FAR call requirement is of course to place a
($F+) directive at the beginning of the main program and each unit.
Alternatively, you can change the default $F setting to ($F+) using a /$F+
command-line directive (TPC.EXE) or the Ole/Force Far Calls menu
command in the IDE. Compared to mixed NEAR and FAR calls, the added
cost of FAR calls exclusively is usually quite limited: One extra word of
stack space per active procedure, and one extra byte per call.

Initializing the Overlay Manager

Here we'll take a look at some examples of how to initialize the overlay
manager. The initialization code must be placed before the first call to an
overlaid routine, and would typically be done at the beginning of the pro­
gram's statement part.

The following piece of code shows just how little you need to initialize the
overlay manager:

begin
Ovrlnit('EDITOR.OVR');

and;

No error checks are made, so if there is not enough memory for the overlay
buffer or if the overlay file was not found, run-time error 208 (Overlay
manager not installed) will occur when you attempt to call an overlaid
routine.

Here's another simple example that expands on the previous one:

begin
Ovrlnit('EDITOR.OVR');
OvrlnitEMS;

end;

In this case, provided there is enough memory for the overlay buffer and
that the overlay file can be located, the overlay manager checks to see if
EMS memory is available and, if so, loads the overlay file into EMS.

As mentioned previously, the initial overlay buffer size is as small as
possible, or rather, just big enough to contain the largest overlay. This may
prove adequate for some applications, but imagine a situation where a
particular function of a program is implemented through two or more
units, each of which are overlaid. If the total size of those units is larger

Chapter 13, Overlays 165

than the largest overlay, a substantial amout of swapping will occur if the
units make frequent calls to each other.

Obviously, the solution is to increase the size of the overlay buffer so that
enough memory is available at any given time to contain all overlays that
make frequent calls to each other. The following code demonstrates the use
of OvrSetBuf to increase the overlay buffer size:

const
OvrMaxSize = 80000;

begin
Ovrlnit('EDITOR.OVR');
OvrlnitEMS;
OvrSetBuf(OvrMaxSize);

end;

There is no general formula for determining the ideal overlay buffer size.
Only an intimate knowledge of the application and a bit of experimenting
will provide a suitable value.

Note: Using OvrlnitEMS to place the overlay file in EMS does not eliminate
the need for an overlay buffer. Overlays must still be copied from EMS into
"normal" m~mory in the overlay buffer before they can be executed.
However, since as such in-memory transfers are significantly faster than
disk .reads, the need to increase the size of the overlay buffer becomes less
apparent.

Remember, OvrSetBuf will expand the overlay buffer by shrinking the heap.
Therefore, the heap must be empty or OvrSetBuf will have no effect. If you
are using the Graph unit, make sure you call OvrSetBuf before you call
InitGraph, which allocates memory on the heap.

Here's a rather elaborate example of overlay manager initialization with
full error-checking:

const
OvrMaxSize = 80000;

Tar
OvrName: string[79];
Size: Longlnt;

begin
OvrName:='EDITOR.OVR'i
repeat

Ovrlnit(OvrName);
if OvrResult=ovrNotFound then
begin

WriteLn('Overlay file not found: ',OvrName,' .')i
tlrite('Enter correct OVerlay file nwue: '} i
ReadLn(OvrName);

endi
until OvrResult<>ovrNotFoundi

166 Turbo Pascal Reference Guide

if OvrResult<>ovrOk then
begin

WriteLn('Overlay manager error.');
Halt (1);

end;
OvrInitEMS;
if OvrResult<>OvrOK than
begin

ca.8 OvrResult of
ovrIOError: Write('Overlay file I/O error');
ovrNoEMSDriver: Write('EMS driver not installed');
ovrNoEMSMemory: Write('Not enough EMS memory');

end;
Write('. Press Enter .•• ');
ReadLn;

8nd;
OvrSetBuf(OvrMaxSize);

end;

First, if the default overlay file name is not correct, the user is repeatedly
prompted for a correct file name.

Next, a check is made for other errors that might have occurred during
initialization. If an error is detected, the program halts, since errors in
Ovrlnit are fatal. (If they are ignored, a run-time error will occur upon the
first call to an overlaid routine.)

Assuming successful initialization, a call to OvrlnitEMS is made to load the
overlay file into EMS if possible. In case of error, a diagnostic message is
displayed, but the program is not halted. Instead, it will just continue to
read overlays from disk.

Finally, OvrSetBu/ is called to set the overlay buffer size to a suitable value,
determined through analysis and experimentation with the particular
application. Errors from OvrSetBu/ are ignored, although OvrResult might
return an error code of -3 (OvrNoMemory). If there is not enough memory,
the overlay manager will just continue to use the minimum buffer that was
allocated when the program started.

Initialization Sections in Overlaid Units

Like static units, overlaid units may have an initialization section. Although
overlaid initialization code is no different from normal overlaid code, the
overlay manager must be initialized first so it can load and execute overlaid
units.

Referring to the earlier Editor program, assume that the EdlnOut and
EdMain units have initialization code. This requires that Ovrlnit is called

Chapter 73, Overlays 167

before EdlnOut's initialization code, and the only way to do that is to create
an additional non-overlaid unit, which goes before EdlnOut and calls
Ovrlnit in its initialization section:

unit Edlnit;
interface
implementation
uses Overlay;
const

OvrMaxSize = 80000;
begin

Ovrlnit('EDITOR.OVR');
OvrlnitEMS;
OvrSetBuf(OvrMaxSize);

end.

The Edlnit unit must be listed in the program's uses clause before any of
the overlaid units:

program. Editor;

{$F+}

uses
Overlay,Crt,Dos,Edlnit, EdlnOut,EdForrnat, EdPrint,EdFind , EdMain;

{SO EdlnOut}
{SO EdForrnat}
{SO EdPrint}
{SO EdFind}
{SO EdMain}

In general, although initialization code in overlaid units is indeed possible,
it should be avoided for a number of reasons.

First, the initialization code, even though it is only executed once, is a part
of the overlay, and will occupy overlay buffer space whenever the overlay
is loaded. Second, if a number of overlaid units have initialization code,
each of them will have to be read into memory when the program starts.

A much better approach is to gather all the initialization code into an
overlaid initialization unit, which is called once at the beginnmg of the pro­
gram, and then never referenced again.

What Not to Overlay

Certain units cannot be overlaid. In particular, don't try to overlay the
f'nllnunno-·
-~~~ •• ~.t:I.

168 Turbo Pascal Reference Guide

• Units compiled in the {$O-} state. The compiler reports an error if you
attempt to overlay a unit that wasn't compiled with {$O+}. Such non­
overlay units include System, Overlay, Crt, Graph, Turbo3, and Graph3.

• Units that contain interrupt handlers. Due to the non-reentrant nature of
the DOS operating system, units that implement interrupt procedures
should not be overlaid. An example of such a unit is the Crt standard
unit, which implements a Ctrl-Breakinterrupt handler.

• BGI drivers or fonts registered with calls to RegisterBGldriver or
Register BGltont.

Calling overlaid routines via procedure pointers is fully supported by
Turbo Pascal's overlay manager. Examples of the use of procedure pointers
include exit procedures and text file device drivers.

Likewise, passing overlaid procedures and functions as procedural
parameters, and assigning overlaid procedures and functions to procedural
type variables is fully supported.

Debugging Overlays

Most debuggers have very limited overlay debugging capabilities, if any at
all. Not so with Turbo Pascal and Turbo Debugger. The integrated
debugger fully supports single-stepping and breakpoints in overlays in a
manner completely transparent to you. By using overlays, you can easily
engineer and debug huge applications-all from inside the IDE or by using
Turbo Debugger.

External Routines in Overlays

Like normal Pascal procedures and functions, external assembly language
routines must observe certain programming rules to work correctly with
the overlay manager.

If an assembly language routine makes calls to any overlaid procedures or
functions, the assembly language routine must use the FAR model, and it
must set up a stack frame using the BP register. For example, assuming that
OtherProc is an overlaid procedure in another unit, and that the assembly
language routine ExternProc calls it, then ExternProc must be FAR and set
up a stack frame as the following demonstrates:

ExternProc PROC FAR

PUSH bp
mov bp,sp
SUB sp,LocalSize

Chapter 73, Overlays

iSave BP
iSet up stack frame
iAllocate local variables

169

CALL OtherProc ;Call another overlaid unit

mov sp,bp ;Dispose local variables
pop bp ;Restore BP
RET ParamSize ; Return

ExternProc ENDP

where LocalSize is the size of the local variables, and ParamSize is the size of
the parameters. If LocalSize is zero, the two lines to allocate and dispose
local variables can be omitted.

These requirements are the same if ExternProc makes indirect references to
overlaid procedures or functions. For example, if Other Proc makes calls to
overlaid procedures or functions, but is not itself overlaid, ExternProc must
still use the FAR model and still has to set up a stack frame.

In the case where an assembly language routine doesn't make any direct or
indirect references to overlaid procedures or functions, there are no special
requirements; the assembly language routine is free to use the NEAR
model and it does not have to set up a stack frame.

Overlaid assembly language routines should not create variables in the
code segment, since any modifications made to an overlaid code segment
are lost when the overlay is disposed. Likewise, pointers to objects based in
an overlaid code segment cannot be expected to remain valid across calls to
other overlays, since the overlay manager freely moves around and
disposes overlaid code segments.

170 Turbo Pascal Reference Guide

c H A p T E R

14

Using the 8087

There are two kinds of numbers you can work with in Turbo Pascal:
integers (shortint, integer, longint, byte, word) and reals (real, single,
double, extended, comp). Reals are also known as floating-point numbers.
The 8086 processor is designed to easily handle integer values, but it takes
considerably more time and effort to handle reals. To improve floating­
point performance, the 8086 family of processors has a corresponding
family of math coprocessors, the 8087s.

The 8087 is a special hardware numeric processor that can be installed in
your PC. It executes floating-point instructions very quickly, so if you use
floating point a lot, you'll probably want a coprocessor.

Turbo Pascal provides optimal floating-point performance whether or not
you have an 8087 .

• For programs running on any PC, with or without an 8087, Turbo Pascal
provides the real type and an associated library of software routines that
handle floating-point operations. The real type occupies 6 bytes of
memory, providing a range of 2.9 x 10-39 to 1.7 X 1038 with 11 to 12
significant digits. The software floating-point library is optimized for
speed and size, trading in some of the fancier features provided by the
8087 processor .

• If you need the added precision and flexibility of the 8087, you can
instruct Turbo Pascal to produce code that uses the 8087 chip. This gives
you access to four additional real types (single, double, extended, and
comp), and an extended floating-point range of 3.4 x 10-4951 to 1.1 X 104932

with 19 to 20 significant digits.

You switch between the two different models of floating-point code
generation using the $N compiler directive or the Ole/Numeric

Chapter 14, Using the 8087 171

Processing command. The default state is {$N-}, and in this state, the
compiler uses the 6-byte floating-point library, allowing you to operate only
on variables of type real. In the {$N+} state, the compiler generates code for
the 8087, giving you increased precision and access to the four additional
real types.

Note: When compiling in numeric processing mode, {$N+}, the return
values of the floating-point routines in the System unit (Sqrt, Pi, Sin, and so
on) are of type extended instead of real:

{$N+}
begin

Writeln(Pi)i
end.

{$N-}
begin

Writeln (Pi)
end.

{ 3.14159265358979E+OOOO }

{ 3.1415926536E+OO }

Even if you don't have an 8087 in your machine, you can instruct Turbo
Pascal to include a run-time library that emulates the numeric coprocessor.
In that case, if an 8087 is present, it is used. If it's not present, it is emulated
by the run-time library, at the cost of running somewhat slower.

The $E compiler directive and the Ole/Emulation menu are used to
enable and disable 8087 emulation. The default state is ($E+), and in this
state, the full 8087 emulator is automatically included in programs that use
the 8087. In the {$E-} state, a substantially smaller floating-point library is
used, and the final .EXE file can only be run on machines with an 8087.

Note: The $E compiler directive has no effect if used in a unit; it only
applies to the compilation of a program. Furthermore, if the program is
compiled in the ($N-) state, and if all the units used by the program were
compiled with ($N-), then an 8087 run-time library is not required, and the
$E compiler directive is ignored.

The remainder of this chapter discusses special issues concerning Turbo
Pascal programs that use the 8087 coprocessor.

The 8087 Data Types

For programs that use the 8087, Turbo Pascal provides four floating-point
types in addition to the type real.

• The single type is the smallest format you can use with floating-point
numbers. It occupies 4 bytes of memory, providing a range of 1.5 x 10-45
to 3.4 x loJS with 7 to 8 significant digits.

172 Turbo Pascal Reference Guide

• The double type occupies 8 bytes of memory, providing a range of 5.0
x 10-324 to 1.7 X 1()308 with 15 to 16 significant digits.

• The extended type is the largest floating-point type supported by the
8087. It occupies 10 bytes of memory, providing a range of 3.4 x 10-4932 to
1.1 X 104932 with 19 to 20 significant digits. Any arithmetic involving real­
type values is performed with the range and precision of the extended
type.

• The comp type stores integral values in 8 bytes, providing a range of
-263+1 to 263-1, which is approximately -9.2 x 1018 to 9.2 X 1018. Comp
may be compared to a double-precision longint, but it is considered a
real type because all arithmetic done with comp uses the 8087
coprocessor. Comp is well suited for representing monetary values as
integral values of cents or mils <thousandths) in business applications.

Whether or not you have an 8087, the 6-byte real type is always available,
so you need not modify your source code when switching to the 8087, and
you can still read data files generated by programs that use software
floa ting point.

Note, however, that 8087 floating-point calculations on variables of type
real are slightly slower than on other types. This is because the 8087 cannot
directly process the real format-instead, calls must be made to library
routines to convert real values to extended before operating on them. If you
are concerned with optimum speed and never need to run on a system
without an 8087, you may want to use the single, double, extended, and
comp types exclusively.

Extended Range Arithmetic

The extended type is the basis of all floating-point computations with the
8087. Turbo Pascal uses the extended format to store all non-integer
numeric constants and evaluates all non-integer numeric expressions using
extended precision. The entire right side of the following assignment, for
instance, will be computed in extended before being converted to the type
on the left side:

{$N+}
var

X,A,B,C : real;
begin

X := (B + Sqrt(B * B - A * Cll / A;
end;

With no special effort by the programmer, Turbo Pascal performs compu­
tations using the precision and range of the extended type. The added

Chapter 74, Using the 8087 173

precision means smaller round-off errors, and the additional range means
overflow and underflow are less common.

You can go beyond Turbo Pascal's automatic extended capabilities. For
example, you can declare variables used for intermediate results to. be of
type extended. The following example computes a sum of products:

Tar

Sum : single;
X,Y : array[1 •• 100] of single;
I integer;
T : extended; { For intermediate results }

begin
T := 0.0;
for I := 1 to 100 do T := T + XlI] * Y[I);
Sum := T;

end;

Had T been declared single, the assignment to T would have caused a
round-off error at the limit of single precision at each loop entry. But
because T is extended, all round-off errors are at the limit of extended
precision, except for the one resulting from the assignment of T to Sum.
Fewer round-off errors mean more accurate results.

You can also declare formal value parameters and function results to be of
type extended. This avoids unnecessary conversions between numeric
types, which can result in loss of accuracy. For example,

function Area(Radius: extended): extended;
begin

Area := Pi * Radius * Radius;
end;

Comparing Reals

Because real-type values are approximations, the results of comparing
values of different real types are not always as expected. For example, if X
is a variable of type single and Y is a variable of type double, then the
following statements will output False:

x := 1/3;
Y := 1/3;
Writeln(X = Y);

The reason is that X is accurate only to 7 to 8 digits, where Y is accurate to
15 to 16 digits; and when both are converted to extended .. they will differ
after 7 to 8 digits. Similarly, the statements

x := 1/3;

174 Turbo Pascal Reference Guide

Writeln(X = 1/3);

will output False, since the result of 1/3 in the Writeln statement is
calculated with 20 significant digits.

The 8087 Evaluation Stack

The 8087 coprocessor has an internal evaluation stack that can be up to
eight levels deep. Accessing a value on the 8087 stack is much faster than
accessing a variable in memory; so to achieve the best possible perfor­
mance, Turbo Pascal uses the 8087's stack for storing temporary results.

In theory, very complicated real-type expressions can cause an 8087 stack
overflow. However, this is not likely to occur, since it would require the
expression to generate more than eight temporary results.

A more tangible danger lies in recursive function calls. If such constructs
are not coded correctly, they can very well cause an 8087 stack overflow.

Consider the following procedure that calculates Fibonacci numbers using
recursion:

function Fib(N: integer): extended;
begin

if N = 0 then
Fib := 0.0

elae
if N = 1 then

Fib := 1.0
elae

Fib := Fib(N-1) + Fib(N-2);
end;

A call to this version of Fib will cause an 8087 stack overflow for values of N
larger than 8. The reason is that the calculation of the last assignment
requires a temporary on the 8087 stack to store the result of Fib(N-1). Each
recursive invocation allocates one such temporary, causing an overflow the
ninth time. The correct construct in this case is

function Fib(N: integer): extended;
V&1:

F1,F2: extended;

begin
if N = 0 then

Fib := 0.0
elae

if N = 1 then
Fib := 1.0

elae

Chapter 74, Using the 8087 175

ad;

begin
Fl := Fib(N-l); F2 := Fib(N-2);
Fib := Fl + F2;

ad;

The temporary results are now stored in variables allocated on the 8086
stack. (The 8086 stack can of course also overflow, but this would typically
require significantly more recursive calls.)

Writing Reals with the 8087

In the {$N+} state, the Write and Writeln standard procedures output four
digits, not two, for the exponent in a floating-point decimal string to
provide for the extended numeric range. Likewise, the Str standard pro­
cedure returns a four-digit exponent when floating-point format is selected.

Units Using the 8087

Units that use the 8087 can only be used by other units or programs that are
compiled in the {$N+} state.

The fact that a unit uses the 8087 is determined by whether it contains 8087
instructions-not by the state of the $N compiler directive at the time of its
compilation. This makes the compiler more forgiving in cases where you
accidentally compile a unit (that doesn't use the 8087) in the {$N+} state.

Detecting the 8087

The Turbo Pascal 8087 run-time library built into your program (compiled
with ($N+)) includes startup code that automatically detects the presence of
an 8087 chip. If an 8087 is available, then the program will use it. If one is
not present, the program will use the emulation run-time library. If the
program was compiled in the {$E-} state, and an 8087 could not be detected
at startup, the program displays Numeric coprocessor required, and
termina tes.

There are some instances in which you might want to override this default
autodetection behavior. For example, your own system may have an 8087,
but you want to verify that your program will work as intended on systems
without a coprocessor. Or your program may need to run on a PC­
compatible system, but that particular system returns incorrect information

176 Turbo Pascal Reference Guide

to the autodetection logic (saying that an 8087 is present when it's not, or
vice versa).

Turbo Pascal provides an option for overriding the startup code's default
autodetection logic; this option is the 87 environment variable.

You set the 87 environment variable at the DOS prompt with the SET
command, like this:

SET 87=Y

or

SET 87=N

Setting the 87 environment variable to N (for no) tells the startup code that
you do not want to use the 8087, even though it might be present in the
system. Conversely, setting the 87 environment variable to Y (for yes)
means that the coprocessor is there, and you want the program to use it.
Beware: If you set 87=Y when, in fact, there is no 8087 available, your
program will either crash or hang!

If the 87 environment variable has been defined (to any value) but you
want to undefine it, enter

SET 87=

at the 005 prompt and then press Enter immediately.

If an 87=Y entry is present in the 005 environment, or if the auto detection
logic succeeds in detecting a coprocessor, the startup code executes further
checks to determine what kind of coprocessor it is (8087,80287, or 80387).
This is required so that Turbo Pascal can correctly handle certain incom­
patibilities that exist between the different coprocessors.

The result of the autodetection and the coprocessor classification is stored
in the Test8D87 variable (which is declared by the System unit). The
following values are defined:

o = No coprocessor detected
1 = 8087 detected
2 = 80287 detected
3 = 80387 detected

Your program may examine the Test8D87 variable to determine the
characteristics of the system it is running on. In particular, Test8D87 may be
examined to determine whether floating-point instructions are being
emulated or truly executed.

Chapter 14, Using the 8087 177

Using 8087 Emulation in Assembly Language

When linking in object files using {$L filename} directives, make sure that
these object files were compiled with the 8087 emulation enabled. For
example, if you are using 8087 instructions in assembly language external
procedures, make sure to enable emulation when you assemble the .ASM
files into .OBI files. Otherwise, the 8087 instructions cannot be emulated on
machines without an 8087. Use Turbo Assembler's IE command-line
switch to enable emulation.

178 Turbo Pascal Reference Guide

c H A p T E R

15

Inside Turbo Pascal

In this chapter, we provide technical information for advanced Turbo
Pascal programmers. We'll cover such topics as memory maps, the heap
manager, internal data formats, calling conventions, and more.

Figure 15.1 (on page 180) depicts the memory map of a Turbo Pascal
program.

The Program Segment Prefix (PSP) is a 256-byte area built by MS-DOS
when the .EXE file is loaded. The segment address of PSP is stored in the
predeclared word variable PrefixSeg.

Each module (which includes the main program and each unit) has its own
code segment. The main program occupies the first code segment; the code
segments that follow it are occupied by the units (in reverse order from
how they are listed in the uses clause), and the last code segment is
occupied by the run-time library (the System unit). The size of a single code
segment cannot exceed 64K, but the total size of the code is limited only by
the available memory.

Chapter 75, Inside Turbo Pascal 179

Top of DOS Memory

Free List (grows downward)

Free Ptr ___ - - - - - - - - - - - - - -l--------------
Free Memory

HeapPtr --- - - - - - - - - - - - - - - -f --------------
Heap (grows upward)

HeapOrg --. -------------+--OvrHeapEnd
Overlay Buffer t--------------...... -OvrHeapOrg

Stack (grows downward)

SSeg:Sptr __ - - - - -- - - - - - - - _L -------------
Free Stack

SSeg:OOOO -...+-------------1
Global Variables

-----------------------------.... ---.
Typed Constants

DSeg:OOOO -...-+-------------.....
System Unit Code Segment

First Unit Code Segment
.-----------------------------
",-- . ----

Last Unit Code Segment

Main Program Code Segment

Program Segment Prefix-(PSP)

PrefixSeg ___ ------------.........

Low Memory

Figure 15.1: Turbo Pascal Memory Map

Contents
of an

.EXE file
image

The data segment (addressed through D5) contains all typed constants
followed by all global variables. The D5 register is never changed during
program execution. The size of the data segment cannot exceed 64K.

On entry to the program, the stack segment register (55) and the stack
pointer (5P) are loaded so that 55:5P points to the first byte past the stack

180 Turbo Pascal Reference Guide

segment. The 55 register is never changed during program execution, but
5P can move downward until it reaches the bottom of the segment. The size
of the stack segment cannot exceed 64K; the default size is 16K, but this can
be changed with a $M compiler directive.

The overlay buffer is used by the Overlay standard unit to store overlaid
code. The default size of the overlay buffer corresponds to the size of the
largest overlay in the program; if the program has no overlays, the size of
the overlay buffer is zero. The size of the overlay buffer can be increased
through a call to the OvrSetBuf routine in the Overlay unit; in that case, the
size of the heap is decreased accordingly, by moving HeapOrg upwards.

The heap stores dynamic variables, that is, variables allocated through calls
to the New and GetMem standard procedures. It occupies all or some of the
free memory left when a program is executed. The actual size of the heap
depends on the minimum and maximum heap values, which can be set
with the $M compiler directive. Its size is guaranteed to be at least the
minimum heap size and never more than the maximum heap size. If the
minimum amount of memory is not available, the program will not
execute. The default heap minimum is 0 bytes, and the default heap
maximum is 640 Kb; this means that by default the heap will occupy all
remaining memory.

As you might expect, the heap manager (which is part of Turbo Pascal's
run-time library) manages the heap. It is described in detail in the following
section.

The Heap Manager

The heap is a stack-like structure that grows from low memory in the heap
segment. The bottom of the heap is stored in the variable HeapOrg, and the
top of the heap, corresponding to the bottom of free memory, is stored in
the variable HeapPtr. Each time a dynamic variable is allocated on the heap
(via New or GetMem), the heap manager moves HeapPtr upward by the size
of the variable, in effect stacking the dynamic variables on top of each other.

HeapPtr is always normalized after each operation, thus forcing the offset
part into the range $0000 to $OOOF. The maximum size of a single variable
that can be allocated on the heap is 65519 bytes (corresponding to $10000
minus $ooOF), since every variable must be completely contained in a single
segment.

Chapter 75, Inside Turbo Pascal 181

Disposal Methods

The dynamic variables stored on the heap are disposed of in one of two
ways: (1) through Dispose or FreeMem or (2) through Mark and Release. The
simplest scheme is that of Mark and Release; for example, if the following
statements are executed:

New(Ptrl)i
New(Ptr2);
Mark(P);
New(Ptr3);
New(Ptr4)i
New(Ptr5);

the layout of the heap will then look like Figure 15.2.

Ptr1 ~ Low
Contents of Ptr1"

Ptr2 ~
~ __________________________________ ~ Memo~

Contents of Ptr2"
Ptr3 ...

Contents of Ptr3"
Ptr4 ~

PtrS
Contents of Ptr4"

Contents of PtrS"
HeapPrt

High ____________________________________ ~ Memo~

Figure 15.2: Disposal Method Using Mark and Release

The Mark(P) statement marks the state of the heap just before Ptr3 is
allocated (by storing the current HeapPtr in P).1f the statement Release{P) is
executed, the heap layout becomes like that of Figure 15.3, effectively
disposing of all pointers allocated since the call to Mark.

182 Turbo Pascal Reference Guide

Ptr1 ~

Ptr2 ~

HeapPtr ~

Contents of Ptr1"

Contents of Ptr2"

Low
Memory

High
~ __________________________________ ~ Memory

Figure 15.3: Heap Layout with Release(P) Executed

Note: Executing Release(HeapOrg) completely disposes of the entire heap
because HeapOrg points to the bottom of the heap.

For applications that dispose of pointers in exactly the reverse order of
allocation, the Mark and Release procedures are very efficient. Yet most
programs tend to allocate and dispose of pointers in a more random
manner, requiring the more-sophisticated management technique imple­
mented by Dispose and FreeMem. These procedures allow an application to
dispose of any pointer at any time.

When a dynamic variable that is not the topmost variable on the heap is
disposed of through Dispose or FreeMem, the heap becomes fragmented.
Assuming that the same statement sequence has been executed, then after
executing Dispose(Ptr3), a "hole" is created in the middle of the heap (see
Figure 15.4).

Chapter 75, Ins/de Turbo Pascal 183

Ptr1 Low
Contents of Ptr1"

Ptr2 ,._I--------------------t Memory
Contents of Ptr2"

Ptr4 --
Contents of Ptr4"

PtrS .-~------------------------------------~
Contents of PtrS"

HeapPrt~~--------------------------------~

High
~ __________________________________ ~Memory

Figure 15.4: Creating a -Hole- In the Heap

If at this time New(Ptr3) has been executed, it would again occupy the same
memory area. On the other hand, executing Dispose(Ptr4) enlarges the free
block, since Ptr3 and Ptr4 were neighboring blocks (see Figure 15.5).

Ptr1 Low
Contents of Ptr1"

Ptr2 ,._ ~------------------------------1 Memory
Contents of Ptr2"

PtrS .-

Contents of PtrS"
HeapPrt~~--------------------------------~

High
~ __________________________________ ~ Memory

Figure 15.5: Enlarging the Free Block

Finally, executing Dispose(PtrS) first creates an even bigger free block, and
then lowers HeapPtr. This, in effect, releases the free block, since the last
valid pointer is now Ptr2 (see Figure 15.6).

184 Turbo Pascal Reference Guide

Ptr1 ,.....------------------....,
Contents of Ptr1"

Ptr2~

Contents of Ptr2"
HeapPtr --

Low
Memory

High
~ _________________________ ~ Memory

Figure 15.6: Releasing the Free Block

The heap is now in the same state as it would be after executing Release<P),
as shown in Figure 15.3. However, the free blocks created and destroyed in
the process were tracked for possible reuse.

The Free List

The addresses and sizes of the free blocks generated by Dispose and
FreeMem operations are kept on a free list, which grows downward from
high memory in the heap segment. Whenever a dynamic variable is
allocated, the free list is checked before the heap is expanded. If a free block
of adequate size (greater than or equal to the size of the requested block
size) exists, it is used.

Note: The Release procedure always clears the free list, thus causing the
heap manager to "forget" about any free blocks that might exist below the
hea p pointer. If you mix calls to Mark and Release with calls to Dispose and
FreeMem, you must ensure that no such free blocks exist.

The free list pointer is stored in a variable called FreePtr. Although declared
to be of type pointer, FreePtr is actually a pointer to an array of free-list
records, as indicated by the FreeListP type:

type
FreeRec = record

OrgPtr,EndPtr: pointer;
end;

FreeList = array[O .. 8190] of FreeRec;

Chapter 75, Inside Turbo Pascal 185

FreeListP = ~FreeList;

The OrgPtr and EndPtr fields of each record define the origin and end of
each free block. (EndPtr is in fact a pointer to the first byte after the block.)
Both are normalized pointers. The number of entries in the FreeList array is
calculated from

FreeCount = (8192 - Ofs(FreePtr~) div 8) mod 8192

This means that there can be up to 8191 entries in the free list. When the
offset part of FreePtr is 0, the free list is empty. FreePtr can be compared to
the stack pointer in the sense that it grows downward, and that all bytes
from FreePtr to the end of the heap segment are part of the "free stack."

Note: Trying to dispose of a pointer when the free list is full causes a run­
time error. However, a full free list is a highly unlikely situation-it would
require 8191 completely noncontiguous blocks to be disposed of and not
reused.

FreePtr also serves to mark the top of free memory in the heap (the bottom
of which is pointed to by HeapPtr). Note, though, that when the offset part
of FreePtr is 0, $1000 must be added to the segment part to produce the true
top-of-heap pointer. (In fact, the segment part of FreePtr always contains the
segment address of top-of-memory minus $1000.)

When disposing of a range of noncontiguous pointers, the free list grows
(expands downward) to make room for an entry for each block. As long as
there is enough room between HeapPtr and FreePtr, this presents no
problem. However, when the heap is almost full, there may not be enough
room to cater to the larger free list, in which case a run-time error will
occur.

In particular, imagine that the free list is empty and that the heap is almost
full. In that situation, disposing of a range of pointers other than the
topmost pointer will cause a block expansion of the free list.

To prevent, or foresee, such problems, the heap manager provides a word
variable FreeMin that can be set to control the minimum allowable size of
the memory region between HeapPtr and FreePtr. You cannot use New or
GetMem to allocate a variable that would make the size of that region less
than FreeMin. Likewise, MemAvail and MaxAvail will subtract FreeMin from
the size of that region before returning their results.

The value stored in FreeMin is in bytes. To ensure room for a specific
number of free-list entries, multiply that number by 8 and store it in
FreeMin.

A final note on the free list concerns a potential problem with Hgranularity:~
The granularity of Turbo Pasca1's heap manager is 1 byte; that is, if you
allocate 1 byte, it will only occupy that 1 byte. In most situations, and

186 Turbo Pascal Reference Guide

especially when using Mark and Release or when not disposing of anything
at all, this guarantees optimum use of the memory available. However, it
can also be deceiving.

When randomly allocating and disposing of a lot of blocks of differing
sizes, such as line records in a text-processing program, a number of very
small free blocks can result and possibly cause the free list to overflow. As
an example, assume a block of 50 bytes is allocated and disposed of, thus
becoming an entry on the free list. If the next allocation request is for a
block of 49 bytes, that block will be reused, leaving a l-byte free block entry
on the free list. Until one of the neighboring blocks are disposed of (thereby
merging the l-byte block into a bigger block), the l-byte block is very
unlikely to become reallocated. Thus, it will occupy a free-list entry for a
long time, if not for the program's duration.

If a free list overflow occurs because of this, you can introduce a "resolution
factor" to round upward the size specified by each call to GetMem and
FreeMem to a factor of some number. In general, the higher the number, the
less likely unusable free blocks will occur. To do this you would write your
own GetMem and FreeMem routines that would modify the Size parameter
and then call System.GetMem or System.FreeMem:

procedure GetMem(var P : pointer; Size: word);
beqin

System.GetMem(P, (Size + 15) and $FFFO)i
end;

procedure FreeMem(var P : pointer; Size: word);
begin

System. FreeMem (P, (Size + 15) and $FFFO);
end;

The Heap E"or Function

{ 16 byte blocks }

{ 16 byte blocks }

The HeapError variable allows you to install a heap error function, which
gets called whenever the heap manager cannot complete an allocation
request. HeapError is a pointer that points to a function with the following
header:

{$F+} function HeapFunc(Size: word): integer; {$F-}

Note that the ($F+) compiler directive forces the heap error function to use
the FAR call model.

The heap error function is installed by assigning its address to the
HeapError variable:

HeapError:=@HeapFunc;

Chapter 75, Inside Turbo Pascal 187

The heap error function gets called whenever a call to New or GetMem
cannot complete the request. The Size parameter contains the size of the
block that could not be allocated, and the heap error function should
attempt to free a block of at least that size.

Depending on its success, the heap error function should return 0, 1, or 2. A
return of 0 indicates failure, causing a run-time error to occur i:rmriediately.
A return of 1 also indicates failure, but instead of a run-time error, it causes
New or GetMem to return a nil pointer. Finally, a return of 2 indicates
success and causes a retry (which could also cause another call to the heap
error function).

The standard heap error function always returns 0, thus causing a run-time
error whenever a call to New or GetMem cannot be completed. However, for
many applications, the simple heap error function that follows is more
appropria te:

{$F+} function HeapFunc(Size: word) : integer; {$F-}
begin

HeapFunc:=l;
ad;

When installed, this function causes New or GetMem to return nil when
they cannot complete the request, instead of aborting the program.

Internal Data Formats

Integer Types

The format selected to represent an integer-type variable depends on its
minimum and maximum bounds:

• If both bounds are within the range -128 . .127 (shortint), the variable is
stored as a signed byte.

• If both bounds are within the range 0 .. 255 (byte), the variable is stored as
an unsigned byte.

• If both bounds are within the range -32768 .. 32767 (integer), the variable
is stored as a signed word.

• If both bounds are within the range 0 .. 65535 (word), the variable is stored
as an unsigned word.

• Otherwise, the variable is stored as a signed double word (longint).

188 Turbo Pascal Reference Guide

Char Types

A char, or a subrange of a char type, is stored as an unsigned byte.

Boolean Types

A boolean type is stored as a byte that can assume the value of 0 (False) or 1
(True).

Enumerated Types

An enumerated type is stored as an unsigned byte if the enumeration has
256 or fewer values; otherwise, it is stored as an unsigned word.

Floating-Point Types

The floating-point types (real, single, double, extended, and comp) store the
binary representations of a sign (+ or -), an exponent, and a significand. A
represented number has the value

+/- significand x 2exponent

where the significand has a single bit to the left of the binary decimal point
(that is, 0 <= significand < 2).

Note: In the figures that follow, msb means most significant bit, and Isb
means least significant bit. The leftmost items are stored at the highest
addresses. For example, for a real-type value, e is stored in the first byte, f in
the following five bytes, and s in the most significant bit of the last byte.

The Real Type

A 6-byte (48-bit) Real number is divided into three fields:

Chapter 75, Inside Turbo Pascal 189

1 39 8 width

s f e

msb Isb msb Isb order

The value v of the number is determined by

if 0 < e <= 255, then v = (-1) 8 * 2 (e-129) * (1. f) •

if e = 0, then v = o.
Note: The real type cannot store denormals, NaNs, and infinities.
Denormals become zero when stored in a real, and NaNs and infinities
produce an overflow error if an attempt is made to store them in a real.

The Single Type

A 4-byte (32-bit) Single number is divided into three fields:

1 8 23 width

s e

msb Isb msb Isb order

The value v of the number is determined by

if 0 < e < 255, then v = (-1)8 * 2 (e-121) * (lof).
if e = 0 and f <> 0, then v = (-1)8 * 2(-126) * (O.f).
if e = 0 and f = 0, then v = (-1)8 * O.
if e = 255 and f = 0, then v = (-1)8 * Inf.
if e = 255 and f <> 0, then v is a NaN.

The Double Type

An 8-byte (64-bit) Double number is divided into three fields:

190 Turbo Pascal Reference Guide

1 11 52 width

s e f

msb 19b msb 19b order

The value v of the number is determined by

if 0 < e < 2047, then v = (-1)s * 2 (e-l023) * (lof).
if e = 0 and f <> 0, then v = (-1)s * 2(-1022) * (O.f).
if e = 0 and f = 0, then v = (-l)S * o.
if e = 2047 and f = 0, then v = (-l)S * Inf.
if e = 2047 and f <> 0, then v is a NaN.

The Extended Type

A lO-byte (SO-bit) Extended number is divided into four fields:

1 15 63 width

s e f

msb 19b msb 19b order

The value v of the number is determined by

if 0 <= e < 32767, thu v = (-l)S * 2 (e-16383) * (Lf).
if e = 32767 and f = 0, than v = (-l)S * Inf.
if e = 32767 and f <> 0, thu v is a NaN.

The Comp Type

An 8-byte (64-bit) Comp number is divided into two fields:

Chapter 75, Inside Turbo Pascal 191

1 63

s d

msb

The value v of the number is determined by

if s = 1 aDd d = 0, then v is a NaN

width

Isb order

Otherwise, v is the two's complement 64-bit value.

Pointer Types

A pointer type is stored as a double word, with the offset part in the low
word and the segment part in the high word. The pointer value nil is
stored as a double-word zero.

String Types

A string occupies as many bytes as its maximum length plus one. The first
byte contains the current dynamic length of the string, and the following
bytes contain the characters of the string. The length byte and the
characters are considered unsigned values. Maximum string length is 255
characters plus a length byte (string[255]).

Set Types

A set is a bit array, where each bit indicates whether an element is in the set
or not. The maximum number of elements in a set is 256, so a set never
occupies more than 32 bytes. The number of bytes occupied by a particular
set is calculated as

ByteSize = (Max div 8) - (Min div 8) + 1

where Min and Max are the lower and upper bounds of the base type of
that set. The byte nu...T.ber of a specific element E is

ByteNumber = (E div 8) - (Min div 8)

192 Turbo Pascal Reference Guide

and the bit number within that byte is

BitNumber = E mod 8

where E denotes the ordinal value of the element.

Array Types

An array is stored as a contiguous sequence of variables of the component
type of the array. The components with the lowest indexes are stored at the
lowest memory addresses. A multidimensional array is stored with the
rightmost dimension increasing first.

Record Types

The fields of a record are stored as a contiguous sequence of variables. The
first field is stored at the lowest memory address. If the record contains
variant parts, then each variant starts at the same memory address.

File Types

File types are represented as records. Typed files and untyped files occupy
128 bytes, which are laid out as follows:

type
FileRec = record

Handle : word;
Mode : word;
RecSize : word;
Private : array[1 •• 26] of byte;
UserData : array[1 •• 16] of byte;
Name : array[O •• 19] of char;

ud;

Text files occupy 256 bytes, which are laid out as follows:

type
TextBuf = array[O •• 121] of char;
TextRec = record

Handle : word;
Mode : word;
BufSize : word;
Private : word;
BufPos : word;
BufEnd : word;
BufPtr : "TextBuf;

Chapter 75. Inside Turbo Pascal 193

OpenFunc : pointer;
InOutFunc: pointer;
FlushFunc: pointer;
CloseFunc: pointer;
UserOata : array[1 •• 16] of byte;
Name : array[0 •• 79] of char;
Buffer : TextBuf;

end;

Handle contains the file's handle (when open) as returned by MS-DOS.

The Mode field can assume one of the following "magic" values:

con at
fmClosed = $07BO;
fmlnput = $07B1;
fmOutput = $07B2;
fmlnOut = $07B3;

fmClosed indicates that the file is closed. fmlnput and fmOutput indicate that
the file is a text file that has been reset (fmlnput) or rewritten (fmOutput).
fmlnOut indicates that the file variable is a typed or an untyped file that has
been reset or rewritten. Any other value indicates that the file variable has
not been assigned (and thereby not initialized).

The User Data field is never accessed by Turbo Pascal, and is free for user­
written routines to store data in.

Name contains the file name, which is a sequence of characters terminated
by a null character (#0).

For typed files and untyped files, RecSize contains the record length in
bytes, and the Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of BufSize bytes, BufPos is the
index of the next character in the buffer to read or write, and BufEnd is a
count of valid characters in the buffer. OpenFunc, InOutFunc, FlushFunc, and
CloseFunc are pointers to the I/O routines that control the file. The
upcoming section entitled ''Text File Device Drivers" provides information
on that subject.

Procedural Types

A procedural type is stored as a double word, with the offset part of the
referenced procedure in the low word and the segment part in the high
word.

194 Turbo Pascal Reference Guide

Calling Conventions

Parameters are transferred to procedures and functions via the stack.
Before calling a procedure or function, the parameters are pushed onto the
stack in their order of declaration. Before returning, the procedure or
function removes all parameters from the stack.

The skeleton code for a procedure or function call looks like this:

PUSH Paraml
PUSH Param2

PUSH PararnX
CALL ProcOrFunc

Parameters are passed either by reference or by value. When a parameter is
passed by reference, a pointer that points to the actual storage location is
pushed onto the stack. When a parameter is passed by value, the actual
value is pushed onto the stack.

Variable Parameters

Variable parameters (var parameters) are always passed by reference-a
pointer points to the actual storage location.

Value Parameters

Value parameters are passed by value or by reference depending on the
type and size of the parameter. In general, if the value parameter occupies
1, 2, or 4 bytes, the value is pushed directly onto the stack. Otherwise a
pointer to the value is pushed, and the procedure or function then copies
the value into a local storage location.

Note: The 8086 does not support byte-sized PUSH and POP instructions, so
byte-sized parameters are always transferred onto the stack as words. The
low-order byte of the word contains the value, and the high-order byte is
unused (and undefined).

An integer type or parameter is passed as a byte, a word, or a double word,
using the same format as an integer-type variable. (For double words, the
high-order word is pushed before the low-order word so that the low-order
word ends up at the lowest address.)

A char-type parameter is passed as an unsigned byte.

A boolean-type parameter is passed as a byte with the value 0 or 1.

Chapter 15, Inside Turbo Pascal 195

An enumerated-type parameter is passed as an unsigned byte if the
enumeration has 256 or fewer values; otherwise it is passed as an unsigned
word.

A real-type parameter (type real) is passed as 6 bytes on the stack, thus
being an exception to the rule that only 1, 2, and 4 byte values are passed
directly on the stack.

A floating-point type parameter (real, single, double, extended, and comp)
is passed as 4, 6, 8, or 10 bytes on the stack, thus being an exception to the
rule that only 1, 2, and 4-byte values are passed directly on the stack.

Note: Version 4.0 of Turbo Pascal passed 8087-type parameters (single,
double, extended, and comp) on the internal stack of the 8087 numeric
coprocessor. For reasons of compatibility with other languages, and to
avoid 8087 stack overflows, Version 5.0 uses the 8086 stack.

A pointer-type parameter is passed as a double word (the segment part is
pushed before the offset part so that the offset part ends up at the lowest
address).

A string-type parameter is passed as a pointer to the value.

A set-type parameter is passed as a pointer to an "unpacked" set that
occupies 32 bytes.

Arrays and records with 1, 2, or 4 bytes are passed directly onto the stack.
Other arrays and records are passed as pointers to the value.

Function Results

Ordinal-type function results (integer, char, boolean, and enumeration
types) are returned in the CPU registers: Bytes are returned in AL, words
are returned in AX, and double words are returned in DX:AX (high-order
word in OX, low-order word in AX).

Real-type function results (type real) are returned in the DX:BX:AX
registers (high-order word in OX, middle word in BX, low-order word in
AX).

8087-type function results (type single, double, extended, and comp) are
returned in the 8087 coprocessor's top-of-stack register (ST(O».

Pointer-type function results are returned in OX:AX (segment part in OX,
offset part in AX).

For a string-type function result, the caller pushes a pointer to a temporary
storage location before pushing any parameters, and the function returns a
string value in that temporary location. The function must not remove the
pointer.

196 Turbo Pascal Reference Guide

NEAR and FAR Calls

The 8086 CPU supports two kinds of call and return instructions: NEAR
and FAR. The NEAR instructions transfer control to another location
within the same code segment, and the FAR instructions allow a change of
code segment.

A NEAR CALL instruction pushes a 16-bit return address (offset only) onto
the stack, and a FAR CALL instruction pushes a 32-bit return address (both
segment and offset). The corresponding RET instructions pop only an
offset or both an offset and a segment.

Turbo Pascal will automatically select the correct call model based on the
procedure's declaration. Procedures declared in the interface section of a
unit are FAR-they can be called from other units. Procedures declared in a
program or in the implementation section of a unit are NEAR-they can
only be called from within that program or unit.

For some specific purposes, a procedure may be required to be FAR. For
example, in an overlaid application, all procedures and functions are
generally required to be FAR; likewise, if a procedure or function is to be
assigned to a procedural variable, it has to be FAR. The $F compiler
directive is used to override the compiler's automatic call model selection.
Procedures and functions compiled in the {$F+} state are always FAR; in
the {$F-} state, Turbo Pascal automatically selects the correct mode1. The
default state is {$F-}.

Nested Procedures and Functions

A procedure or function is said to be nested when it is declared within
another procedure or function. By default, nested procedures and functions
always use the NEAR call model, since they are only "visible" within a
specific procedure or function in the same code segment. However, in an
overlaid application, a {$F+} directive is generally used to force all proce­
dures and functions to be FAR, including those that are nested.

When calling a nested procedure or function, the compiler generates a
PUSH BP instruction just before the CALL, in effect passing the caller's BP
as an additional parameter. Once the called procedure has set up its own
BP, the caller's BP is accessible as a word stored at [BP+4], or at [BP+6] if
the procedure is FAR. Using this link at [BP+4] or [BP+6], the called
procedure can access the local variables in the caller's stack frame. If the
caller itself is also a nested procedure, it also has a link at [BP+4] or [BP+6],
and so on. The following example demonstrates how to access local
variables from an inline statement in a nested procedure:

Chapter 15, Inside Turbo Pascal 197

{$F-}
procedure PA;
var IntA: integer;
{$F+}
procedure B;
var IntB: integer;
{$F-}
procedure C;
var IntC: integer;
begin

inline(
$8B/$46/<IntC/
$8B/$5E/$04/
$36/$8B/$47/<IntB/
$8B/$5E/$04/
$36/$8B/$5F/$06/
$36/$8B/$47/<IntA);

end;
begin end;
begin end;

{ MOY AX, [BP+IntC] ;AX = IntC }
{ MOY BX, [BP+4] ;BX = B's stack frame
{ MOY AX, SS: [BX+IntB] ;AX = IntB }
{ MOY BX, [BP+4] ;BX = B's stack frame
{ MOY BX, SS: [BX+6] ;BX = A's stack frame
{ MOY AX, SS: [BX+IntA] ;AX = IntA }

Note: Nested procedures and functions cannot be declared with the
external directive, and they cannot be procedural parameters.

Entry and Exit Code

Each Pascal procedure and function begins and ends with standard entry
and exit code that creates and removes its activation.

The standard entry code is

push bp
mov bp,sp
sub sp,Localsize

;Save BP
;Set up stack frame
;Allocate local variables

where LocalSize is the size of the local variables. The SUB instruction is only
present if LocalSize is not O. If the procedure's call model is NEAR, the
parameters start at BP + 4; if it is FAR, they start at BP + 6.

The standard exit code is

mov sp,bp
pop bp
ret ParamSize

;Deallocate local variables
;Restore BP
;Remove parameters and return

where ParamSize is the size of the parameters. The RET instruction is either
a NEAR or a FAR return, depending on the procedure's call model.

198 Turbo Pascal Reference Guide

Register-Saving Conventions

Procedures and functions should preserve the BP, SP, 55, and OS registers.
All other registers may be modified.

Linking with Assembly Language

Procedures and functions written in assembly language can be linked with
Turbo Pascal programs or units using the $L compiler directive. The
assembly language source file must be assembled into an object file
(extension .OB]) using an assembler like Turbo Assembler. Multiple object
files can be linked with a program or unit through multiple $L directives.

Procedures and functions written in assembly language must be declared
as external in the Pascal program or unit, for example,

function LoCase(Ch: char): char; external;

In the corresponding assembly language source file, all procedures and
functions must appear in a segment named CODE, and the names of the
external procedures and functions must appear in PUBLIC directives.
(CSEG is also accepted as a segment name in place of CODE.)

You must ensure that an assembly language procedure or function matches
its Pascal definition with respect to call model (NEAR or FAR), number of
parameters, types of parameters, and result type.

An assembly language source file can declare variables in a segment named
DATA. Such variables are private to the assembly language source file and
cannot be referenced from the Pascal program or unit. However, they
reside in the same segment as the Pascal globals, and can be accessed
through the DS segment register. (DSEG is also accepted as a segment
name in place of DATA.)

All procedures, functions, and variables declared in the Pascal program or
unit, and the ones declared in the interface section of the used units, can be
referenced from the assembly language source file through EXTRN
directives. Again, it is up to you to supply the correct type in the EXTRN
definition.

When an object file appears in a $L directive, Turbo Pascal converts the file
from the Intel relocatable object module format (.OB]) to its own internal
relocatable format. This conversion is possible only if certain rules are
observed:

• All procedures and functions must be placed in a segment named CODE,
and all private variables must be placed in a segment named DATA. All
other segments are ignored, and so are GROUP directives. The segment

Chapter 75, Inside Turbo Pascal 199

definitions can specify BYTE or WORD alignment; when linked, they are
always word-aligned. The segment definitions can optionally specify
PUBLIC (which is ignored), but they should not specify a class name.
(CSEG is also accepted as a segment name in place of CODE, and DSEG
is accepted as a segment name in place of DATA.)

• When declaring variables in the DATA or DSEG segment, always use a
question mark (?) to specify the value, for instance:

Count DW ?
Buffer DB 128 DUP(?)

Turbo Pascal ignores any request to create initialized variables in the
DATA or DSEG segment.

• When referring to EXTRN procedures and functions, do not specify an
offset. For example, the following construct is not allowed:

EXTRN MyProc: NEAR
CALL MyProc + 8

Note that this restriction does not apply to EXTRN variables.
• Byte-sized references to EXTRN symbols are not allowed. For example,

this means that the assembly language HIGH and LOW operators cannot
be used with EXTRN symbols.

Turbo Assembler and Turbo Pascal

Turbo Assembler (TASM) makes it much easier to program routines in
assembly language and interface them into your Turbo Pascal programs.
Turbo Assembler provides simplified segmentation, memory model, and
language support for Turbo Pascal programmers.

Using TPASCAL with the .MODEL directive sets up Pascal calling
conventions, defines the segment names, does the PUSH BP and MOV
BP,SP, and it also sets up the return with POP BP and RET N (where N is
the number of parameter bytes).

The PROC directive lets you define your parameters in the same order as
they are defined in your Pascal program. If you are defining a function that
returns a string, notice that the PROC directive has a RETURNS option
that lets you access the temporary string pointer on the stack without
affecting the number of parameter bytes added to the RET statement.

Here's an example coded to use the .MODEL and PROC directives:

.MODEL TPASCAL
• CODE

MyProc PROC FAR i:BYTE,j:BYTE RETURNS result:DWORD
PUBLIC MyProc

200 Turbo Pascal Reference Guide

les di,result
mov al,i
mov bl,j

ret

;get address of temporary string
;get first parameter i
;get second parameter j

The Pascal function definition would look like this:

function MyProc(i,j : char) : .tring; external;

For more information about interfacing Turbo Assembler and Turbo Pascal,
refer to Chapter 7 of the Turbo Assembler User's Guide.

Examples of Assembly Language Routines

The following code is an example of a unit that implements two assembly
language string-handling routines. The UpperCase function converts all
characters in a string to uppercase, and the StringOf function returns a
string of characters of a specified length.

uit Strings;
interface
function UpperCase(S: .tring): .tring;
function StringOf(Ch: char; Count: byte): .tring;
1mplamutation
{$L STRS}
function UpperCase; external;
function StringOf; ezternal;
ad.

The assembly language file that implements the UpperCase and StringOf
routines is shown next. It must be assembled into a file called STRS.OBJ
before the Strings unit can be compiled. Note that the routines use the FAR
call model because they are declared in the interface section of the unit.

CODE SEGMENT BYTE PUBLIC
ASSUME CS:CODE
PUBLIC UpperCase,StringOf

; function UpperCase(S: .tring): string

Upper Res
UpperStr

EQU
EQU

DWORD PTR [BP+l0]
DWORD PTR [BP+6]

UpperCase PROC FAR

push bp
mov bp,sp
push ds
Ids si,UpperStr

Chapter 15. Inside Turbo Pascal

iMake them known

iSave BP
iSet up stack frame
;Save DS
;Load string address

201

U1:

U2:

U3:

les di,UpperRes
cld
lodsb
stosb
mov cl,al
xor
jcxz
lodsb
cmp
jb

ch,ch
U3

al,'a'
U2

cmp aI,' z,
ja U2
sub al,'a'-'a'
stosb
loop U1
pop ds
pop bp
ret 4

UpperCase ENDP

;Load result address
;Forward string-ops
;Load string length
;Copy to result
;String length to CX

;Skip if empty string
;Load character
;Skip if not 'a' .• 'z'

;Convert to uppercase
;Store in result
;Loop for all characters
;Restore DS
;Restore BP
;Remove parameter and return

; procedure StringOf(var S: .tring: Ch: char; Count: byte)

StrOfS
StrOfchar
StrOfCount

EQU
EQU
EQU

DWORD PTR [BP+10]
BYTE PTR [BP+8]
BYTE PTR [BP+6]

StringOf PROC FAR

push bp
mov bp,sp
les di,StrOfRes
mov al,StrOfCount
cld
stosb
mov cl,al
xor ch,ch
mov al,StrOfChar
rep STOSB
pop bp
ret 8

StringOf ENDP
CODE ENDS

END

; Save BP
;Set up stack frame
;Load result address
;Load count
;Forward string-ops
;Store length
;Count to CX

;Load character
;Store string of characters
;Restore BP
;Remove parameters and return

To assemble the example and compile the unit, use the following
commands:

TASM STRS
TPC strings

The next example shows how an assembly language routine can refer to
Pascal routines and variables. The Numbers program reads up to 100

202 Turbo Pascal Reference Guide

integer values, and then calls an assembly language procedure to check the
range of each of these values. If a value is out of range, the assembly
language procedure calls a Pascal procedure to print it.

program Numbers;
{$L CHECK}
Val:

Buffer: array[1 •• 100] of integer;
Count : integer;

procedure RangeError(N: integer)i
begin

Writeln('Range error: ',N)i
endi

procedure CheckRange(Min,Max: integer)i external;

begin
Count := Oi
while not Eof and (Count<100) do
begin
{ Ends when you type Ctrl-Z or after 100 iterations
Count := Countt1i Readln(Buffer[Count]);
end;
CheckRange(-10,10)i

and.

The assembly language file that implements the CheckRange procedure is
shown next. It must be assembled into a file called CHECK.OBI before the
Numbers program can be compiled. Note that the procedure uses the
NEAR call model because it is declared in a program.

DATA SEGMENT WORD PUBLIC
EXTRN Buffer:WORD,Count:WORD

DATA ENDS
CODE SEGMENT BYTE PUBLIC

ASSUME CS:CODE,DS:Buffer
EXTRN RangeError:NEAR
PUBLIC CheckRange

Check Range PROC NEAR

mov bx,sp
mov ax,ss: [BXt4]
mov dx, ss: [BXt2]
xor bx,bx
mov cx,count
jcxz SD4

SOl: cmp Buffer [BX],AX
jl SD2
cmp Buffer[BX],DX
jle SD3

SD2: push ax

Chapter 15, Inside Turbo Pascal

iPascal variables

ilmplemented in Pascal
ilmplemented here

iGet parameters pointer
iLoad Min
iLoad Max
;Clear Data index
iLoad Count
i Skip if zero
iToo small?
iYes, jump
iToo large?
iNo, jump
iSave registers

203

push
push
push
push
call
pop
pop
pop
pop

SD3: inc
inc
loop

SD4: ret

Check Range
CODE ENDS

END

bx
cx
dx
Buffer (BX]
RangeError
dx
cx
bx
ax
bx
bx
SDl
4

ENDP

iPass offending value to Pascal
iCall Pascal procedure
iRestore registers

iPoint to next element

iLoop for each item
iClean stack and return

Turbo Assembler Example

Here's a Turbo Assembler version of the previous assembly language
example that takes advantage of TASM's support for Turbo Pascal:

• MODEL TPASCAL iTurbo Pascal code model
LOCALS @@ iDefine local labels prefix
• DATA iData segment
EXTRN Buffer:WORD,Count:WORD iPascal variables

• CODE i Code segment
EXTRN RangeError:NEAR ilmplemented in Pascal
PUBLIC Check Range ilmplemented here

Check Range PROC NEAR Min:WORD,Max:WORD

mov ax,Min i Keep Min in AX
mov dx,Max i Keep Max in DX
xor bx,BX iClear Buffer index
mov cx,Count iLoad Count
jcxz @@4 iSkip if zero

@@l: cmp ax, Buffer (BX] iToo small?
jg @@2 iYes, goto CR2
cmp dx,Buffer(BX] iToo large?
jge @@3 iNo, goto CR3

@@2: push ax iSave registers
push bx
push cx
push dx
push Buffer (BX] iPass offending value to Pascal
call RangeError iCall Pascal procedure
pop dx i Restore registers
pop cx

204 Turbo Pascal Reference Guide

pop bx
pop ax

@@3: inc bx ;Point to next element
inc bx
loop @@l ;Loop for each item

@@4: ret ;Done

CheckRange ENDP

END

Notice that with .MODEL TP ASCAL Turbo Assembler automatically
generates entry code before the first instruction, and generates exit code
upon seeing the RET.

Inline Machine Code

For very short assembly language subroutines, Turbo Pascal's inline
statements and directives are very convenient. They allow you to insert
machine code instructions directly into the program or unit text instead of
through an object file.

Inline Statements

An inline statement consists of the reserved word inline followed by one
or more inline elements, separated by slashes and enclosed in parentheses:

inline(lO/S2345/Counttl/Data-Offset);

Here's the syntax of an inline statement:

inline
statement

Each inline element consists of an optional size specifier, < or >, and a
constant or a variable identifier, followed by zero or more offset specifiers
(see the syntax that follows). An offset specifier consists of a + or a -
followed by a constant.

Chapter 15, Inside Turbo Pascal 205

inline element

Each inline element generates 1 byte or one word of code. The value is
computed from the value of the first constant or the offset of the variable
identifier, to which is added or subtracted the value of each of the constants
that follow it.

An inline element generates 1 byte of code if it consists of constants only
and if its value is within the 8-bit range (0 .. 255). If the value is outside the
8-bit range or if the inline element refers to a variable, one word of code is
generated (least-significant byte first).

The < and> operators can be used to override the automatic size selection
we described earlier. If an inline element starts with a < operator, only the
least-significant byte of the value is coded, even if it is a 16-bit value. If an
inline element starts with a > operator, a word is always coded, even
though the most-significant byte is O. For example, the statement

inline«$1234/>$44);

generates 3 bytes of code: $34,$44,$00.

The value of a variable identifier in an inline element is the offset address of
the variable within its base segment. The base segment of global
variables-variables declared at the outermost level in a program or a
unit-and typed constants is the data segment, which is accessible through
the OS register. The base segment of local variables-variables, declared
within the current subprogram-is the stack segment. In this case the
variable offset is relative to the BP register, which automatically causes the
stack segment to be selected.

Note: Registers BP, 5P, 55, and D5 must be preserved by inline statements;
all other registers can be modified.

The following example of an inline statement generates machine code for
storing a specified number of words of data in a specified variable. When
called, procedure Filllt\brd stores Count words of the value Data in memory,
starting at the first byte occupied by Dest.

procedure FillWord(var Dest;Count,Data: word);
begin

206 Turbo Pascal Reference Guide

iDline(
$C4/$BE/Dest/
$8B/$8E/Count/
$8B/$86/Data/
$FC/
$F3/$AB);

end;

(LES DI,Dest[BP] }
(MaV CX,Count[BP] }
(MaV AX, Data [BP] }
(CLD }
(REP STOSW }

Inline statements can be freely mixed with other statements throughout the
statement part of a block.

Inline Directives

Inline directives let you write procedures and functions that expand into a
given sequence of machine code instructions whenever they are called.
These are comparable to macros in assembly language. The syntax for an
inline directive is the same as that of an inline statement:

inline directive ~I inline statement I

When a normal procedure or function is called (including one that contains
inline statements), the compiler generates code that pushes the parameters
(if any) onto the stack, and then generates a CALL instruction to call the
procedure or function. However, when you call an inline procedure or
function, the compiler generates code from the inline directive instead of
the CALL. Here's a short example of two inline procedures:

procedure Disablelnterrupts; inline($FA);
procedure Enablelnterrupts; iDline($FB);

(eLI }
(STI }

When Disablelnterrupts is called, it generates 1 byte of code-a CLI
instruction.

Procedures and functions declared with inline directives can have
parameters; however, the parameters cannot be referred to symbolically in
the inline directive (other variables can, though). Also, because such
procedures and functions are in fact macros, there is no automatic entry
and exit code, nor should there be any return instruction.

The following function multiplies two integer values, producing a longint
result:

function LongMul(X,Y : integer): longint;
inliDe(

$5A/
$58/
$F7/$EA);

Chapter 15, Inside Turbo Pascal

{ POP AX ;Pop X }
(POP DX ;Pop Y }
{ IMUL DX ;DX : AX = x*y }

207

Note the lack of entry and exit code and the missing return instruction.
These are not required, because the 4 bytes are inserted into the· instruction
stream when LongMul is called.

Inline directives are intended for very short (less than 10 bytes> procedures
and functions only.

Because of the macro-like nature of inline procedures and functions, they
cannot be used as arguments to the @ operator and the Addr, Ofs, and Seg
functions.

Direct Memory and Port Access

The Mem, Mem W, and MemL Arrays

Turbo Pascal implements three predefined arrays, Mem, Mem W, and MemL,
which are used to directly access memory. Each component of Mem is a
byte, each component of Mem W is a word, and each component of MemL is
a longint.

The Mem arrays use a special syntax for indexes: Two expressions of the
integer-type word, separated by a colon, are used to specify the segment
base and offset of the memory location to access. Some examples include

Mem[$0040:$0049] := 7;
Data := MemW[Seg(V) :Ofs(V)];
MemLong := MemL[64:3*4];

The first statement stores the value 7 in the byte at $0040:$0049. The second
statement moves the word value stored in the first 2 bytes of the variable V
into the variable Data. The third statement moves the longint value stored
at $0040:$000C into the variable MemLong.

The Port and PortW Arrays

For access to the 80x86 CPU data ports, Turbo Pascal implements two
predefined arrays, Port and PortW. Both are one-dimensional arrays, and
each element represents a data port, whose port address corresponds to its
index. The index type is the integer-type word. Components of the Port
array are of type byte, and components of the PortW array are of type word.

When a value is assigned to a component of Port or Port W, the value is
output to the selected port. When a component of Port or PortW is
referenced in an expression, its value is input from the selected port. Some
examples include:

208 Turbo Pascal Reference Guide

Port[$20] := $20;
Port [Base] := Port[Base] zor Mask;
while Port[$B2] and $80 = 0 do { Wait I;

Use of the Port and PortWarrays is restricted to assignment and reference
in expressions only" that is, components of Port and PortW cannot be used
as variable parameters. Furthermore, references to the entire Port or Port W
array (reference without index) are not allowed.

Interrupt Handling

The Turbo Pascal run-time library and the code generated by the compiler
are fully interruptible. Also, most of the run-time library is reentrant, which
allows you to write interrupt service routines in Turbo Pascal.

Writing Interrupt Procedures

Interrupt procedures are declared with the interrupt directive. Every
interrupt procedure must specify the following procedure header (or a
subset of it, as explained later):

procedure IntHandler(Flags,CS,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP: word);
interrupt;
begin

end;

As you can see, all the registers are passed as pseudo-parameters so you
can use and modify them in your code. You can omit some or all of the
parameters, starting with Flags and moving towards BP. It is an error to
declare more parameters than are listed in the preceding example or to
omit a specific parameter without also omitting the ones before it (although
no error is reported). For example:

procedure IntHandler(DI,ES,BP : word);
procedure IntHandler(SI,DI,DS,ES,BP : word);

{ Invalid call I
{ Valid call I

On entry, an interrupt procedure automatically saves all registers
(regardless of the procedure header) and initializes the OS register:

push ax
push bx
push cx
push dx
push si
push di

Chapter 75, Inside Turbo Pascal 209

push ds
push es
push bp
mov bp,sp
sub sp,LoealSize
mov ax,SEG DATA
mov ds,ax

Notice the lack of a STI instruction to enable further interrupts. You should
code this yourself (if required) using an inline statement. The exit code
restores the registers and executes an interrupt-return instruction:

mov sp,bp
pop bp
pop es
pop ds
pop di
pop si
pop dx
pop ex
pop bx
pop ax
iret

An interrupt procedure can modify its parameters. Changing the declared
parameters will modify the corresponding register when the interrupt
handler returns. This can be useful when you are using an in terru pt
handler as a user service, much like the DOS INT 21H services.

Interrupt procedures that handle hardware-generated interrupts should
refrain from using any of Turbo Pascal's input and output or dynamic
memory allocation routines, because they are not reentrant. Likewise, no
DOS functions can be used, because DOS is not reentrant.

Text File Device Drivers

As mentioned in Chapter 10, "Input and Output," Turbo Pascal allows you
to define your own text file device drivers. A text file device driver is a set of
four functions that completely implement an interface between Turbo
Pascal's file system and some device.

The four functions that define each device driver are Open, InOut, Flush,
and Close. The function header of each function is

function DevieeFune{var F: TextRee): integer;

where TextRec is the text file record type defined in the earlier section, "File
Types," on page 193. Each function must be compiled in the {$F+} state to
force it to use the FAR call model. The return value of a device interface

210 Turbo Pascal Reference Guide

function becomes the value returned by IOResult. The return value of 0
indicates a successful operation.

To associate the device interface functions with a specific file, you must
write a customized Assign procedure (like the AssignCrt procedure in the
Crt unit). The Assign procedure must assign the addresses of the four
device interface functions to the four function pointers in the text file
variable. In addition, it should store the fmClosed "magic" constant in the
Mode field, store the size of the text file buffer in BufSize, store a pointer to
the text file buffer in BufPtr, and clear the Name string.

Assuming, for example, that the four device interface functions are called
DevOpen, DevlnOut, DevFlush, and DevClose, the Assign procedure might
look like this:

procedure AssignDev(var F: Text);
begin

with TextRec(F) do
begin

Mode := fmClosed;
BufSize := SizeOf(Buffer);
BufPtr := @Buffer;
OpenFunc := @DevOpen;
InOutFunc := @DevInOut;
FlushFunc := @DevFlush;
CloseFunc := @DevClose;
Name [0] := to;

end;
end;

The device interface functions can use the UserData field in the file record to
store private information. This field is not modified by the Turbo Pascal file
system at any time.

The Open Function

The Open function is called by the Reset, Rewrite, and Append standard
procedures to open a text file associated with a device. On entry, the Mode
field contains fmlnput, fmOutput, or fmlnOut to indicate whether the Open
function was called from Reset, Rewrite, or Append.

The Open function prepares the file for input or output, according to the
Mode value. If Mode specified fmlnOut (indicating that Open was called from
Append), it must be changed to fmOutput before Open returns.

Open is always called before any of the other device interface functions. For
that reason, Assign only initializes the OpenFunc field, leaving initialization
of the remaining vectors up to Open. Based on Mode, Open can then install

Chapter 15, Inside Turbo Pascal 211

pointers to either input- or output-oriented functions. This saves the InOut,
Flush, and Close functions from determining the current mode.

The InOut Function

The InOut function is called by the Read, Readln, Write, Writeln, Eo/, Eoln,
SeekEo/, SeekEoln, and Close standard procedures and functions whenever
input or output from the device is required.

When Mode is fmlnput, the InOut function reads up to Bu/Size characters
into BufPtr", and returns the number of characters read in BufEnd. In
addition, it stores 0 in BufPos. If the InOut function returns 0 in BufEnd as a
result of an input request, Eo/becomes True for the file.

When Mode is fmOutput, the InOut function writes BufPos characters from
BufPtr", and returns 0 in BufPos.

The Flush Function

The Flush function is called at the end of each Read, Readln, Write, and
Writeln. It can optionally flush the text file buffer.

If Mode is fmlnput, the Flush function can store 0 in BufPos and BufEnd to
flush the remaining (un-read) characters in the buffer. This feature is
seldom used.

If Mode is fmOutput, the Flush function can write the contents of the buffer,
exactly like the InOut function, which ensures that text written to the device
appears on the device immediately. If Flush does nothing, the text will not
appear on the device until the buffer becomes full or the file is closed.

The Close Function

The Close function is called by the Close standard procedure to close a text
file associated with a device. (The Reset, Rewrite, and Append procedures
also call Close if the file they are opening is already open.) If Mode is
fmOutput, then before calling Close, Turbo Pascal's file system calls InOut to
ensure that all characters have been written to the device.

Examples o/Text File Device Drivers

The following unit implements a text file device driver for the
communication ports (serial ports) of an IBM PC:

212 Turbo Pascal Reference Guide

uit AuxlnOut;
interface
u.e. Dos;
procedure AssignAux(var F: Text; Port,Params: word);
1mpl8lll8Dtation
($R-,S-}
type

AuxRec = record
Port,Params: word;
Unused: array[l •• 12] of byte;

end;

procedure Auxlnit(Port,Params:
inline(

$58/
$5A/
$B4/$00/
$CD/$14) ;

word) ;

POP AX ;Pop parameters }
POP OX ;Pop port number }
MOV AR,O ;Code for initialize
INT 14R ;Call BIOS }

fuction AuxlnChar(Port:
inline(

word): char;

$5A/
$B4/$02/
$CD/$14);

procedure AuxOutChar(Port: word;
inline(

$58/
$5A/
$B4/$01/
$CD/$14) ;

(POP OX ;Pop port number }
(MOV AH,2 ;Code for input }
(INT 14R ;Call BIOS }

Ch: char);

(POP AX ;Pop character }
(POP OX ;Pop port number
(MOV AR,l ;Code for output
(INT 14R ;Call BIOS }

function AuxlnReady(Port:
inline(

word): boolean;

$ 5A/
$B4/$03/
$CD/$14/
$88/$EO/
$24/$01) ;

($F+}

(POP OX
(MOV AR,3
(INT 14H
{ MOV AL,AH
(AND AL,l

function Auxlnput(var F: TextRec): integer;
var

P: word;
begin

with F,AuxRec(UserData) do
begin

P := 0;
while AuxlnReady(Port) and (P<BufSize) do
beqin

BufPtrA[p] := AuxlnChar(Port); Inc(P);
end;

Chapter 75, Inside Turbo Pascal

;Pop port number
;Code for status
;Call BIOS}
;Get line status in AR
;Isolate Data Ready bit }

213

BufPos := 0; Bufend := P;
end;
AuxInput := 0;

ad;

function AuxOutput(var F: TextRec): integer;
var

P: word;
begin

with F,AuxRec(UserData) do
begin

P := 0;
while P<BufPos do
begin

AuxOutChar(Port,BufPtrA[P]); Inc(P);
end;
BufPos := 0;

end;
AuxOutput := 0;

end;

function AuxIgnore(var F: TextRec): integer;
begin

AuxIgnore := 0;
ad;

function AuxOpen(var F: TextRec): integer;
begin

with F,AuxRec(UserData) do
begin

AuxInit(Port,Params);
if Mode=fmInput tha
begin

InOutFunc := @AuxInput;
FlushFunc := @AuxIgnore;

end
alaa
begin

Mode := fmOutput;
InOutFunc := @AuxOutput;
FlushFunc := @AuxOutput;

ad;
CloseFunc := @AuxIgnore;

end;
AuxOpen := 0;

end;

{$F-}

procedure AssignAux;
begin

214

with TextRec(F) do
begin

Turbo Pascal Reference Guide

Handle := $FFFFi
Mode := fmClosed;
BufSize := Sizeof(Buffer);
BufPtr := @Buffer;
OpenFunc := @AuxOpen;
AuxRec(UserData) .Port := Port;
AuxRec(UserData) .Params := Params;
Name [0] := fOi

and;
ad;
ad.

The TextRec record is defined in the Dos unit. The first two words of the 16-
byte UserData array are used for storing the communications port number
and parameter byte. The remaining 12 bytes are not used. Note that the
AuxRec record is used only for typecasting.

The AuxInit procedure initializes a specified communications port
according to a specified parameter byte. The AuxInChar function reads a
character from the specified port. The AuxOutChar procedure outputs a
character to the specified port. The AuxInReady function returns True if a
character is ready to be read from the specified port. Notice the use of inline
directives to implement these procedures and functions. For further details
on the communication ports, refer to the IBM PC Technical Reference Manual.

AssignAux initializes a specified text file variable to refer to a specified
communication port with a specified parameter byte. Port numbers 0 and 1
correspond to COM1 and COM2. The parameter byte is described in the
IBM PC Technical Reference Manual.

AuxOpen initializes the selected communication port and sets up the
function pointers according to the Mode field. Note that for output,
FlushFunc is set to the same address as InOutFunc, causing the text file
buffer to be flushed after each Write or Writeln.

AuxInput inputs up to Bu/Size characters from the selected port, and
AuxOutput outputs the contents of the buffer to the selected port.

AuxIgnore is used in those cases where no special action is required, such as
for Close and for Flush (when in input mode).

The following short program uses the AuxInOut unit to write a string to
one of the communication ports. Through the AssignAux procedure, the
Com1 file is associated with the COM1 port using 1200 baud, no parity, 1
stop bit, and 8 data bits:

program TestAux;
u ••• AuxlnOut;
var

Coml: Text;
baqin

Chapter 75, Inside Turbo Pascal 215

AssignAux(Coml,O,$83);
Rewrite (Coml) ;
Writeln(Coml,'Device Drivers are fun!');
Close(Coml);

end.

Exit Procedures

By installing an exit procedure, you can gain control over a program's
termination process. This is useful when you want to make sure specific
actions are carried out before a program terminates; a typical example is
updating and closing files.

The ExitProc pointer variable allows you to install an exit procedure. The
exit procedure always gets called as a part of a program's termination,
whether it is a normal termination, a termination through a call to Halt, or a
termination due to a run-time error. .

An exit procedure takes no parameters, and must be compiled in the ($F+)
state to force it to use the FAR call model.

When implemented properly, an exit procedure actually becomes part of a
chain of exit procedures. This chain makes it possible for units as well as
programs to install exit procedures. Some units install an exit procedure as
part of their initialization code, and then rely on that specific procedure to
be called to clean up after the unit; for instance, to close files or to restore
interrupt vectors. The procedures on the exit chain get executed in reverse
order of installation. This ensures that the exit code of one unit does not get
executed before the exit code of any units that depend upon it.

To keep the exit chain intact, you must save the current contents of ExitProc
before changing it to the address of your own exit procedure. Furthermore,
the first statement in your exit procedure must reinstall the saved value of
ExitProc. The following program demonstrates a skeleton method of
implementing an exit procedure:

program Testexit;

ExitSave: pointer;

{$F+}
procedure MyExit;
begin

ExitProc := ExitSave;

end;
{$F-}

216

{ Always restore old vector first }

Turbo Pascal Reference Guide

begin
ExitSave := ExitProc;
ExitProc := @MyExit;

end.

On entry, the program saves the contents of ExitProc in ExitSave, and then
installs the MyExit exit procedure. After having been called as part of the
termination process, the first thing MyExit does is reinstall the previous exit
procedure.

The termination routine in the run-time library keeps calling exit
procedures until ExitProc becomes nil. To avoid infinite loops, ExitProc is
set to nil before every call, so the next exit procedure is called only if the
current exit procedure assigns an address to ExitProc. If an error occurs in
an exit procedure, it will not be called again.

An exit procedure may learn the cause of termination by examining the
ExitCode integer variable and the Error Addr pointer variable.

In case of normal termination, ExitCode is zero and Error Addr is nil. In case
of termination through a call to Halt, ExitCode contains the value passed to
Halt and Error Addr is nil. Finally, in case of termination due to a run-time
error, ExitCode contains the error code and Error Addr contains the address
of the statement in error.

The last exit procedure (the one installed by the run-time library> closes the
Input and Output files, and restores the interrupt vectors that were captured
by Turbo Pascal. In addition, if Error Addr is not nil, it outputs a run-time
error message.

If you wish to present run-time error messages yourself, install an exit
procedure that examines Error Addr and outputs a message if it is not nil. In
addition, before returning, make sure to set ErrorAddr to nil, so that the
error is not reported again by other exit procedures.

Once the run-time library has called all exit procedures, it returns to DOS,
passing as a return code the value stored in ExitCode.

Automatic Optimizations

Turbo Pascal performs several different types of code optimizations,
ranging from constant folding and short-circuit Boolean expression
evaluation all the way up to smart linking. The following sections describe
some of the types of optimizations performed.

Chapter 15, Inside Turbo Pascal 217

Constant Folding

If the operand(s) of an operator are constants, Turbo Pascal evaluates the
expression at compile time. For example, x : = 3 + 4 * 2 generates the same
code as x := 11, and S := 'In' + 'Out' generates the same code as S :=
, InOut' .

Likewise, if an operand of an Abs, Chr, Hi, Length, Lo, Odd, Ord, Pred, Ptr,
Round, Succ, Swap, or Trunc function call is a constant, the function is
evaluated at compile time.

If an array index expression is a constant, the address of the component is
evaluated at compile time. For example, accessing Data[5,5J is just as
efficient as accessing a simple variable.

Constant Merging

Using the same string constant two or more times in a statement part
generates only one copy of the constant. For example, two or more
Write('Done') statements in the same statement part will reference the same
copy of the string constant 'Done'.

Short-Circuit Evaluation

Turbo Pascal implements short-circuit Boolean evaluation, which means
that evaluation of a Boolean expression stops as soon as the result of the
entire expression becomes evident. This guarantees minimum execution
time, and usually minimum code size. Short-circuit evaluation also makes
possible the evaluation of constructs that would not otherwise be legal; for
instance:

while (I<=Length(S)) and (S[I]<>' ') do Inc(I);
while (P<>nil) and (ph.Value<>5) do P:=ph.Next;

In both cases, the second test is not evaluated if the first test is False.

The opposite of short-circuit evaluation is complete evaluation, which is
selected through a {$B+} compiler directive. In this state, every operand of a
Boolean expression is guaranteed to be evaluated.

218 Turbo Pascal Reference Guide

Order of Evaluation

As permitted by the Pascal standards, operands of an expression are
frequently evaluated differently from the left to right order in which they
are written. For example, the statement

I:=F(J) div G(J)i

where F and G are functions of type integer, causes G to be evaluated before
F, since this enables the compiler to produce better code. Because of this, it
is important that an expression never depend on any specific order of
evaluation of the embedded functions. Referring to the previous example, if
F must be called before G, use a temporary
variable:

T:=F(J)i I:=T div G(J);

Note: As an exception to this rule, when short-circuit evaluation is enabled
(the ($B-) state), boolean operands grouped with and or or are always
evaluated from left to right.

Range-Checking

Assignment of a constant to a variable and use of a constant as a value
parameter is range-checked at compile time; no run-time range-check code
is generated. For example, x:=999, where X is of type Byte, causes a
compile-time error.

Shift Instead of Multiply

The operation X" C, where C is a constant and a power of 2, is coded using
a Shl instruction.

Likewise, when the size of an array's components is a power of 2, a Shl
instruction (not a Mul instruction) is used to scale the index expression.

Automatic Word Alignment

By default, Turbo Pascal aligns all variables and typed constants larger
than 1 byte on a machine-word boundary. On all 16-bit 80x86 CPUs, word
alignment means faster execution, since word-sized items on even
addresses are accessed faster than words on odd addresses.

Data alignment is controlled through the $A compiler directive. In the
default ($A+) state, variables and typed constants are aligned as described

Chapter 75, Inside Turbo Pascal 219

above. In the {$A-} state, no alignment measures are taken. For further
details, refer to Appendix B, "Compiler Directives".

Dead Code Removal

Statements that are known never to execute do not generate any code. For
example, these constructs don't generate any code:

if False then statement
while False do statement

Smart Linking

Turbo PascalS.O's built-in linker automatically removes unused code and
data when building an .EXE file. Procedures, functions, variables, and
typed constants that are part of the compilation, but never get referenced,
are removed in the .EXE file. The removal of unused code takes place on a
per procedure basis, and the removal of unused da~a takes place on a per
declaration section basis.

Consider the following program:

program SmartLink;

conat
H: array[O •• 15] of char = '0123456789ABCDEF';

var
I,J: integer;
X,Y: real;

var
s: Itring[79];

var
A: array[1 •• 10000] of integer;

procedure P 1;
begin

A[l] := 1;
end;

procedure P2;
begin

I := 1;
end;

220 Turbo Pascal Reference Guide

procedure P 3;
begin

S := 'Turbo Pascal';
P2;

end;

begin
P3;

end.

The main program calls P3, which calls P2, so both P2 and P3 are included
in the .EXE file; and since P2 references the first var declaration section, and
P3 references the second var declaration, I, J, X, Y, and S are also included
in the .EXE file. However, no references are made to Pl, and none of the
included procedures reference H and A, so these objects are removed.

Smart linking is especially valuable in connection with units that imple­
ment procedure/function libraries. An example of such a unit is the Dos
standard unit: It contains a number of procedures and functions, all of
which are seldom used by the same program. If a program uses only one or
two procedures from Dos, then only these procedures are included in the
final .EXE file, and the remaining ones are removed, greatly reducing the
size of the .EXE file.

Note: When compiling to memory, Turbo Pascal's smart linker is disabled.
This explains why some programs become smaller when compiled to disk.

Chapter 15, Inside Turbo Pascal 221

222 Turbo Pascal Reference Guide

c H A p T E R

16

Turbo Pascal Reference Lookup

This chapter describes all the procedures and functions of Turbo Pascal 5.0.
For your convenience, they're arranged alphabetically. For a list of what
procedures and functions are new and modified in Turbo Pascal 5.0, refer
to Appendix A in the User's Guide, "Differences Between Turbo Pascal 3.0,
4.0, and 5.0." Here's a sample layout so you can easily understand the
format of the lookup; note that only the relevant items are listed in each
entry.

Sample procedure What unit it occupies

Function

Declaration

Result type

Remarks

Restrictions

Differences

See also

Example

What it does

How it's declared; italicized items are user-defined

What it returns if it's a function

General information about the procedure or function

Things to be aware of

From 3.0 and 4.0

Related procedures/functions, and so on.

Sample program or code fragment

Note: When you compile in numeric processing mode «($N+}), the return
values of the floating-point routines in the System unit-Sqrt, Pi, Sin, and so
on-are of type extended instead of real.

Chapter 76, Turbo Pascal Reference Lookup 223

Abs function
Function

Declaration

Result type

Remarks

Example

Returns the absolute value of the argument.

Abs(x)

Same type as parameter.

x is an integer-type or real-type expression. The result,
of the same type as x, is the absolute value of x.

var
r: real;
i: integer;

begin
r :;::: Abs(-2.3);
i :;::: Abs(-157);

end.

{ 2.3 }
{ 157 }

Addr function
Function

Declaration

Result type

Remarks

See also

Example

224

Returns the address of a specified object.

Addr(x)

pointer

x is any variable, or a procedure or function identifier.
The result is a pointer that points to x. Like nil, the result
of Addr is assignment compatible with all pointer types.

Note: The @ operator produces the same result as Addr.

0/5, Ptr, Seg

var p: pointer;
begin

p :;::: Addr (p) ;

end.
{ Now points to itself }

Turbo Pascal Reference Guide

Append procedure

Append procedure
Function

Declaration

Remarks

See also

Example

Opens an existing file for appending.

Append(var f: text)

f is a text-file variable that must have been associated
with an external file using Assign.

Append opens the existing external file with the name
assigned to f. It is an error if there is no existing external
file of the given name. If f was already open, it is first
closed and then re-opened. The current file position is
set to the end of the file.

If a Ctrl-Z (ASCII 26) is present in the last 128-byte block
of the file, the current file position is set to overwrite the
first Ctrl-Z in the block. In this way, text can be appended
to a file that terminates with "a Ctrl-Z.

If f was assigned an empty name, such as Assign(f,"),
then, after the call to Append, f will refer to the standard
output file (standard handle number 1).

Mter a call to Append, f becomes write-only, and the file
pointer is at end-of-file.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Assign, Close, Reset, Rewrite

var f: text;
begin

Assign(f, 'TEST.TXT');
Rewrite (f) ;
Writeln(f, 'original text');
Close(f);
Append(f) ;
Writeln(f, 'appended text');
Close(f);

end.

{ Create new file }

{ Close file, save changes }
{ Add more text onto end }

{ Close file, save changes }

Chapter 16, Turbo Pascal Reference Lookup 225

Arc procedure

Arc procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Draws a circular arc from start angle to end angle, using
(x,y) as the center point.

Arc (X, Y: integer; StAngle, EndAngle, Radius: word)

Draws a circular arc around (x,y), with a radius of
Radius. The Arc travels from StAngle to EndAngle and is
drawn in the current drawing color.

Each graphics driver contains an aspect ratio that is used
by Circle, Arc, and PieS lice. A start angle of 0 and an end
angle of 360 will draw a complete circle. The angles for
Arc, Ellipse, and PieSlice are counterclockwise with 0
degrees at 3 o'clock, 90 degrees at 12 o'clock, and so on.
Information about the last call to Arc can be retrieved
with a call to GetArcCoords.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Circle, Ellipse, FiliEllipse, GetArcCoords, GetAspectRatio,
PieSlice, Sector, SetAspectRatio

uses Graph;
Tar

Gd, Gm: integer;
Radius: integer;

begill
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

for Radius := 1 to 5 do

Arc (100, 100, 0, 90, Radius*10);
Readln;
CloseGraph;

end.

ArcTan function
Function

Declaration

Result type

226

Rehrrns the arctangent of the ar~.L1l1ent.

ArcTan (x: real)

real

Turbo Pascal Reference Guide

Remarks

See also

Example

ArcTan function

x is a real-type expression. The result is the principal
value, in radians, of the arctangent of x.

Cos, Sin

var r: real;
begin

r := ArcTan(Pi);
and.

Assign procedure
Function

Declaration

Remarks

Assigns the name of an external file to a file variable.

Assign(var f; name: string)

f is a file variable of any file type, and name is a string­
type expression. All further operations on f will operate
on the external file with the file name name.

After a call to Assign, the association between f and the
external file continues to exist until another Assign is
doneonf·

A file name consists of a path of zero or more directory
names separated by backslashes, followed by the actual
file name:

Drive:\DirName\ ••• \DirName\FileName

If the path begins with a backslash, it starts in the root
directory; otherwise, it starts in the current directory.

Drive is a disk drive identifier (A-Z). If Drive and the
colon are omitted, the default drive is used. \DirName\
... \ DirName is the root directory and subdirectory path
to the file name. FileName consists of a name of up to
eight characters, optionally followed by a period and an
extension of up to three characters.

The maximum length of the entire file name is 79
characters.

A special case arises when name is an empty string; that
is, when Length(name) is zero. In that case, f becomes
associated with the standard input or standard output
file. These special files allow a program to utilize the I/O
redirection feature of the DOS operating system. If
assigned an empty name, then after a call to ReseUf), f

Chapter 76, Turbo Pascal Reference Lookup 227

Assign procedure

Restrictions

See also

Example

will refer to the standard input file, and after a call to
Rewrite(f), f will refer to the standard output file.

Assign must never be used on an open file.

Append, Close, Reset, Rewrite

{ Try redirecting this program from DOS
to PRN, disk file, etc. }

Tar f: texti
begin

Assign (f, ");
Rewrite(f)i
Writeln(f, 'standard output ••• ')i
Close(f)i

end.

{ Standard output }

AssignCrt procedure Crt
Function

Declaration

Remarks

Example

228

Associates a text file with the CRT.

AssignCrt(var f: Text)

AssignCrt works exactly like the Assign standard pro­
cedure except that no file name is specified. Instead, the
text file is associated with the CRT.

This allows faster output (and input) than would
normally be possible using standard output (or input).

u.e. Crti
var f: texti
begin

Write('Output to screen or printer [S, P]? ')i
if UpCase(ReadKey) = 'P' then

Assign(f, 'PRN') { Output to printer
elae

AssignCrt(f)i {Output to screen, use fast CRT routines
Rewrite (f) i
Writeln(f, 'Fast output via CRT routines ••• ')i
Close(f) ;

end.

Turbo Pascal Reference Guide

Bar procedure

Bar procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Draws a bar using the current fill style and color.

Bar(xl, yl, x2, y2: integer)

Draws a filled-in rectangle (used in bar charts, for
example). Uses the pattern and color defined by
SetFillStyle or SetFillPattern. To draw an outlined bar, call
Bar3D with a depth of zero.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Bar3D, GraphResult, SetFillStyle, SetFillPattern,
SetLineStyle

uses Graph;
var

Gd, Gm : integer;
I, Width: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Width := 10;
for I := 1 to 5 do

Bar(I*Width, 1*10, Succ(I)*Width, 200);
Readln;
CloseGraph;

end.

Bar3D procedure Graph
Function

Declaration

Remarks

Draws a 3-D bar using the current fill style and color.

Bar3D(xl, yl, x2, y2: integer; Depth: word; Top: boolean)

Draws a filled-in, three-dimensional bar. Uses the
pattern and color defined by SetFillStyle or SetFillPattern.
The 3-D outline of the bar is drawn in the current line
style and color as set by SetLineStyle and Set Color . Depth
is the number of pixels deep of the 3-D outline. If Top is
True, a 3-D top is put on the bar; if Top is False, no top is

Chapter 76, Turbo Pascal Reference Lookup 229

Bar30 procedure

Restrictions

See also

Example

put on the bar (making it possible to stack several bars
on top one another).

A typical depth could be calculated by taking 25% of the
width of the bar:

Bar3d(xl,yl,x2,y2, (x2-xl+1) div 4, TopOn);

The following constants are defined:

CODst

TopOn = True;
TopOff = False;

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Bar, GraphResult, SetFillPattern, SetFillStyle, SetLineStyle

uses Graph;
var

Gd, Gm: integer;
yO, yl, y2, xl, x2: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

yO := 10;
y1 := 60;
y2 := 110;
xl := 10;
x2 := 50;
Bar3D(xl, yO, x2, y1, 10, TopOn);
Bar3D(x1, yl, x2, y2, 10, TopOff);
Readln;
CloseGraph;

ud.

BlockRead procedure
Function

Declaration

Remarks

230

Reads one or more records into a variable.

BlockRead(var f: file; var buf; count: word
[; var result: word])

f is an untyped file variable, but is any variable, count is
an expression of type word, and result is a variable of
type word.

Turbo Pascal Reference Guide

Restrictions

Differences

See also

Example

BlockRead procedure

BlockRead reads count or less records from the file f into
memory, starting at the first byte occupied by buf. The
actual number of complete records read (less than or
equal to count) is returned in the optional parameter
result. If result is not specified, an I/O error will occur if
the number read is not equal to count.

The entire block transferred occupies at most count *
recsize bytes, where recsize is the record size specified
when the file was opened (or 128 if it was omitted). It's
an error if count * recsize is greater than 65535 (64 Kb).

result is an optional parameter. Here is how it works: If
the entire block was transferred, result will be equal to
count on return. Otherwise, if result is less than count, the
end of the file was reached before the transfer was
completed. In that case, if the file's record size is greater
than one, result returns the number of complete records
read; that is, a possible last partial record is not included
in result.

The current file position is advanced by result records as
an effect of the BlockRead.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

File must be open.

3.0 read partial records; 5.0 discards them

BlockWrite

program CopyFilei
{ Simple, fast file copy program with NO error-checking }
var

FromF, ToF: file;
NumRead, NumWritten: word;
buf: array[1 •• 2048] of char;

begin
Assign (FromF, ParamStr(l));
Reset(FromF, 1);
Assign(ToF, ParamStr(2));
Rewrite (ToF, 1);

{ Open input file }
{ Record size = 1 }

{ Open output file }
{ Record size = 1 }

Writeln('Copying " FileSize(FromF), , bytes ••. ');
repeat

BlockRead(FromF,buf,SizeOf(buf),NumRead);
BlockWrite(ToF,buf,NumRead,NumWritten);

until (NumRead = 0) or (NumWritten <> NumRead)i

Chapter 76, Turbo Pascal Reference Lookup 231

BlockWrite procedure

Close(FromF);
Close(ToF);

end.

BlockWrite procedure
Function

Declaration

Remarks·

Restrictions

Differences

See also

Example

232

Writes one or more records from a variable.

BlockWrite(BlockWrite(var f: file; var bUf; count: word
[; var result: word])

f is an untyped file variable, buf is any variable, count is
an expression of type word, and result is a variable of
type word.

Block Write writes count or less rec9rds to the file f from
memory, starting at the first byte occupied by buf. The
actual number of complete records written (less than or
equal to count) is returned in the optional parameter
result. If result is not specified, an I/O error will occur if
the number written is not equal to count.

The entire block transferred occupies at most count *
recsize bytes, where recsize is the record size specified
when the file was opened (or 128 if it was omitted). It is
an error if count * recsize is greater than 65535 (64K).

result is an optional parameter. Here is how it works: If
the entire block was transferred, result will be equal to
count on return. Otherwise, if result is less than count, the
disk became full before the transfer was completed. In
that case, if the file's record size is greater than one,
result returns the number of complete records written;
that is, it's possible a remaining partial record is not
included in result.

Tll~ current file position is advanced by result records as
an effect of the Block Write.

With {$l-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

File must be open.

3.0 read partial records; 5.0 discards them.

BlockRead

See example for BlockRead.

Turbo Pascal Reference Guide

ChOir procedure

ChDir procedure
Function

Declaration

Remarks

See also

Example

Changes the current directory.

ChDir(s: string)

5 is a string-type expression. The current directory is
changed to a path specified by s. If 5 specifies a drive
letter, the current drive is also changed.

With ($I-}, IOResult will return a 0 if the operation was
, successful; otherwise, it will return a nonzero error code.

GetDir, MkDir, RmDir

begin
{$I-}
{ Get directory name from command line }
ChDir(ParamStr(l));
if IOResult <> 0 than

Writeln('Cannot find directory');
and.

Chr function
Function

Declaration

Result type

Remarks

See also

Example

Returns a character with a specified ordinal number~

Chr(x: byte)

char

x is an integer-type expression. The result is the
character with an ordinal value (ASCII value) of x.

Ord

uses Printer;
begin

Writeln(Lst, Chr(12))i
end.

{ Send form feed to printer }

Chapter 16, Turbo Pascal Reference Lookup 233

Circle procedure

Circle procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Draws a circle using (X,¥) as the center point.

Circle(X f Y: integer; Radius: word)

The circle is drawn in the current color set by SetColor.
Each graphics driver contains an aspect ratio that is used
by Circle, Are, and PieS lice to make circles.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Are, Ellipse, FillEllipse, GetArcCoords, GetAspectRatio,
PieS lice, Sector, SetAspectRatio

u... Graph;
var

Gd, Gm: integer;
Radius: integer;

begin
Gd := Detect;
InitGraph(Gd, Gmf 'f);

if GraphResult <> grOk thaD
Halt (1) ;

for Radius := 1 to 5 do
Circle(100, 100, Radius*10);

Readln;
CloseGraph;

end.

ClearDevice procedure Graph
Function

Declaration

Remarks

Restrictions

See also

234

Clears the graphics screen and prepares it for output.

ClearDevice

Clear Device moves the current pointer to (0,0), clears the
screen using the background color set by SetBkColor, and
prepares it for output.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Clear ViewPort, CloseGraph, GraphDefaults, InitGraph,
RestoreCrtMode, SetGraphMode

Turbo Pascal Reference Guide

Example uses Crt, Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt(1);

Randomize;
repeat

ClearViewPorf procedure

LineTo(Random(200), Random(200));
until KeyPressed;
ClearDevice;
Readln;
CloseGraph;

end.

ClearViewPort procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Clears the current viewport.

ClearViewPort

Sets the fill color to the background color (Palette[O]),
calls Bar, and moves the current pointer to (0,0).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Bar, ClearDevice, GetViewSettings, Set ViewPort

use. Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt (1);

Rectangle (19, 19, GetMaxX-19, GetMaxY-19);
SetViewPort(20, 20, GetMaxX-20, GetMaxY-20, ClipOn);
OutTextXY(O, 0, '<ENTER> clears viewport:');
Readln;
ClearViewPort;
OutTextXY(O, 0, '<ENTER> to quit:');
Readln;
CloseGraph;

end.

Chapter 16, Turbo Pascal Reference Lookup 235

Close procedure

Close procedure
Function

Declaration

Remarks

See also

Example

Closes an open file.

Close (var f)

f is a file variable of any file type that was previously
opened with Reset, Rewrite, or Append. The external file
associated with f is completely updated and then closed,
and its DOS file handle is freed for reuse.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Append, Assign, Reset, Rewrite

var f: fil.;
begin

Assign(f, '\AUTOEXEC.BAT');
Reset(f, 1);
Writeln('File size = " FileSize(f));
Close (f);

end.

{ Open file}

{ Close file }

CloseGraph procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

236

Shuts down the graphics system.

CloseGraph

CloseGraph restores the original screen mode before
graphics was initialized and frees the memory allocated
on the heap for the graphics scan buffer. CloseGraph also
deallocates driver and font memory buffers if they were
allocated by calls to GraphGetMem and GraphFreeMem.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

DetectGraph, GetGraphMode, InitGraph, RestoreCrtMode,
SetGraphMode

us.s Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;

Turbo Pascal Reference Guide

InitGraph(Gd, Gm, ")i
if GraphResult <> grOk then

Halt (1) i

Line(O, 0, GetMaxX, GetMaxY)i
Readlni
CloseGraphi

end.

CloseGraph procedure

{ Shut down graphics }

ClrEol procedure Crt
Function

Declaration

Remarks

See also

Example

Clears all characters from the cursor position to the end
of the line without moving the cursor.

ClrEol

All character positions are set to blanks with the
currently defined text attributes. Thus, if TextBackground
is not black, the column from the cursor to the right
edge of the screen becomes the background color.

This procedure is window-relative:

Window(1,1,60,20);
ClrEoli

will clear from the current cursor position (1,1) to the
right edge of the active window (60,1).

ClrScr, Window

use. Crti
begin

TextBackground(LightGraY)i
ClrEoli {Changes cleared columns to LightGray background }

end.

ClrScr procedure Crt

Function

Declaration

Remarks

Clears the active window and places the cursor in the
upper left-hand corner.

ClrScr

All character positions are set to blanks with the cur­
rently defined text attributes. Thus, if TextBackground is

Chapter 16, Turbo Pascal Reference Lookup 237

ClrScr procedure

See also

Example

not black, the entire screen becomes the background
color. This also applies to characters cleared by ClrEol,
InsLine, and DelLine, as well as empty lines created by
scrolling.

This procedure is window-relative:

Window(1,1,60,20);
ClrScr;

will clear a 60 x 20 rectangle beginning at (1,1).

ClrEol, Window

uses Crt;
begin

TextBackground(LightGray);
ClrScr; { Changes entire window to LightGray background }

end.

Concat function
Function

Declaration

Result type

Remarks

See also

Example

Concatenates a sequence of strings.

Concat(sl [, s2, ••• , sn J: string)

string

Each parameter is a string-type expression. The result is
the concatenation of all the string parameters. If the
resulting string is longer than 255 characters, it is
truncated after the 255th character. Using the plus (+)
operator returns the same results as using the Concat
function:

S := 'ABC' + 'DEF';

Copy, Delete, Insert, Length, Pos

var s: string;
begin

s := Concat('ABC', 'DEF'); { 'ABCDEF' }
end.

238 Turbo Pascal Reference Guide

Copy function

Copy function
Function

Declaration

Result type

Remarks

See also

Example

Returns a substring of a string.

Copy(s: string; index: integer; count: integer)

string

s is a string-type expression. index and count are integer­
type expressions. Copy returns a string containing count
characters starting with the indexth character in s. If
index is larger than the length of s, an empty string is
returned. If count specifies more characters than remain
starting at the indexth position, only the remainder of the
string is returned.

Concat, Delete, Insert, Length, Pos

nr s: string;
begin

s := 'ABCDEF';
s := Copy(s, 2, 3)

end.
{ 'BCD' }

Cos function
Function

Declaration

Result type

Remarks

See also

Example

Returns the cosine of the argument.

Cos (x: real)

real

x is a real-type expression. The result is the cosine of x. x
is assumed to represent an angle in radians.

ArcTan, Sin

var r: real;
begin

r := Cos(Pi);
end.

Chapter 16, Turbo Pascal Reference Lookup 239

CSeg function

CSeg function
Function

Declaration

Result type

Remarks

See also

Returns the current value of the CS register.

CSeg

word

The result of type word is the segment address of the
code segment within which CSeg was called.

DSeg, SSeg

Dec procedure
Function

Declaration

Remarks

See also

Example

Decrements a variable.

Dec(var x [; n: longint])

X is an ordinal-type variable, and n is an integer-type
expression. x is decremented by 1, or by n if n is
specified; that is, Dec(x) corresponds to x := x-1, and
Dec(x,n) corresponds to x := x-no

Dec generates optimized code and is especially useful in
a tight loop.

Inc, Pred, Succ

var
IntVar: integer;
LongintVar: longint;

begin
Dec (IntVar) ;
Dec(LongintVar, 5);

end.

{ IntVar := IntVar - 1 }
{ LongintVar := LongintVar - 5 }

Delay procedure Crt

Function Delays a specified number of milliseconds.

Declaration Delay (ms: ll'ord)

Remarks ms specifies the number of milliseconds to wait.

240 Turbo Pascal Reference Guide

Delete procedure

Delay is an approximation, so the delay period will not
last exactly ms milliseconds.

Delete procedure
Function

Declaration

Remarks

See also

Deletes a substring from a string.

Delete(var s: string; index: integer; count: integer)

5 is a string-type variable. index and count are integer­
type expressions. Delete deletes count characters from 5

starting at the indexth position. If index is larger than the
length of 5, no characters are deleted. If count specifies
more characters than remain starting at the indexth
position, the remainder of the string is deleted.

Concat, Copy, Insert, Length, Pos

DelLine procedure Crt

Function

Declaration

Remarks

See also

Deletes the line containing the cursor.

DelLine

The line containing the cursor is deleted, and all lines
below are moved one line up (using the BIOS scroll
routine). A new line is added at the bottom.

All character positions are set to blanks with the
currently defined text attributes. Thus, if TextBackground
is not black, the new line becomes the background color.

This procedure is window-relative:

Window(1,lO,60,20);
DelLine;

will delete the first line in the window, which is the
ten th line on the screen.

Ins line, Window

Chapter 76, Turbo Pascal Reference Lookup 241

DetectGraph procedure

DetectGraph procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

242

Checks the hardware and determines which graphics
driver and mode to use.

DetectGraph(var GraphDriver, GraphMode: integer)

Returns the detected driver and mode value that can be
passed to InitGraph, which will then load the correct
driver. If no graphics hardware was detected, the
GraphDriver parameter and GraphResult will return a
value of -2 (grNotDetected).

The following constants are defined:

cout
Detect
CGA
MCGA
EGA
EGA64

0;
1;
2;
3;
4;
5; EGAMono

IBM8514 6;
HercMono = 7;
ATT400
VGA
PC3270

8;
9;

= 10;

{ Request autodetection }

Unless instructed otherwise, InitGraph calls DetectGraph,
finds and loads the correct driver, and initializes the
graphics system. The only reason to call DetectGraph
directly is to override the driver that DetectGraph
recommends. The example that follows identifies the
system as a 64K or 256K EGA, and loads the CGA driver
instead. Note that when you pass InitGraph a Graph­
Driver other than Detect, you must also pass in a valid
GraphMode for the driver requested.

A similar routine exists in Turbo C 2.0.

You should not use DetectGraph (or Detect with
InitGraph) with the IBM 8514 unless you want the
emulated VGA mode.

CloseGraph, GraphResult, InitGraph

us.s Graph;
var

GraphDriver, GraphMode: integer;
begin

Turbo Pascal Reference Guide

DetectGraph procedure

DetectGraph(GraphDriver, GraphMode);
if (GraphDriver = EGA) or

(GraphDriver = EGA64) than
begin

GraphDriver := CGA;
GraphMode := CGAHi;

and;
InitGraph(GraphDriver,GraphMode,");
if GraphResult <> grOk then

Halt (1);

Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

DiskFree function Dos
Function

Declaration

Result type

Remarks

See also

Example

Returns the number of free bytes on a specified disk
drive.

DiskFree(Drive: byte)

longint

A Drive of 0 indicates the default drive, 1 indicates drive
A, 2 indicates B, and so on. DiskFree returns -1 if the
drive number is invalid.

DiskSize, GetDir

usas Dos;
begin

Writeln(DiskFree(O) div 1024, ' k-bytes free ')i

end.

DiskSize function Dos
Function

Declaration

Result type

Remarks

Returns the total size in bytes on a specified disk drive.

DiskSize(Drive: byte)

longint

A Drive of 0 indicates the default drive, 1 indicates drive
A, 2 indicates B, and so on. DiskSize returns -1 if the
drive number is invalid.

Chapter 76, Turbo Pascal Reference·Lookup 243

DiskSize function

See also

Example

DiskFree, GetDir

us.s Dos;
begin

Writeln(DiskSize(O) div 1024, , k-bytes capacitY')i
end.

Dispose procedure
Function

Declaration

Remarks

Restrictions

See also

Example

Disposes a dynamic variable.

Dispose(var p: pointer)

P is a pointer variable of any pointer type that was pre­
viously assigned by the New procedure or was assigned
a meaningful value by an assignment statement. Dispose
destroys the variable referenced by p and returns its
memory region to the heap. After a call to Dispose, the
value of p becomes undefined, and it is an error to
subsequently reference p".

If P does not point to a memory region in the heap, a
run-time error occurs.

Dispose and FreeMem cannot be used interchangeably
with Mark and Release unless certain rules are observed.
For a complete discussion of this topic, refer to the
section liThe Heap Manager" on page 181.

FreeMem, GetMem, Mark, New, Release

type
Str18 = .tring[18];

p: "Str18;
begin

New(p)i
p" := 'Now you see it ••• ';
Dispose(p); { Now you don't ••• }

end.

244 Turbo Pascal Reference Guide

DosExitCode function

DosExitCode function Dos
Function

Declaration

Result type

Remarks

See also

Returns the exit code of a subprocess.

DosExitCode

word

The low byte is the code sent by the terminating process.
The high byte is set to

.0 for normal termination

• 1 if terminated by Ctrl-C

• 2 if terminated due to a device error
.3 if terminated by the Keep procedure

Exec, Keep

DosVersion function Dos
Function

Declaration

Result type

Remarks

Example

Returns the DOS version number.

DosVersion

word

Dos Version returns the DOS version number. The low
byte of the result is the major version number, and the
high byte is the minor version number. For example,
DOS 3.20 returns 3 in the low byte, and 20 in the high
byte.

u ••• Dos;
Tar

Ver: word;
begin

Ver:=DosVersion;
Writeln('This is DOS version' ,Lo(Ver),'.' ,Hi(Ver));

and.

Chapter 76, Turbo Pascal Reference Lookup 245

DrawPoly procedure

DrawPoly procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

246

Draws the outline of a polygon using the current line
style and color.

DrawPoly(NumPoints: word; var PolyPoints)

PolyPoints is an untyped parameter that contains the
coordinates of each intersection in the polygon.
NumPoints specifies the number of coordinates in
PolyPoints. A coordinate consists of two words, an x and
ayvalue.

DrawPoly uses the current line style and color. Use
SetWriteMode to determine whether the polygon is
copied to or XOR'd to the screen.

Note that in order to draw a closed figure with n
vertices, you must pass N + 1 coordinates to DrawPoly,
and where PolyPoints[n+l] = PolyPoints[1] (see the
example that follows). In order to draw a triangle, for
example, four coordinates must be passed to DrawPoly.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

FillPoly, GetLineSettings, GraphResult, SetColor,
SetLineStyle, Set WriteMode

11... Graph;
CODIt

Triangle: array[1 •• 4] of PointType = ((x: 50; y: 100),
(x: 100; y: 100),
(x: 150; y: 150),
(x: 50; y: 100));

vax
Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

DrawPoly (SizeOf (Triangle) div SizeOf(PointType),
Triangle) ; { 4 }

Readln;
CloseGraph;

end.

Turbo Pascal Reference Guide

DSeg function

DSeg function
Function

Declaration

Result type

Remarks

See also

Returns the current value of the DS register.

DSeg

word

The result of type word is the segment address of the
data segment.

CSeg, SSeg

Ellipse procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Draws an elliptical arc from start angle to end angle,
using (X,¥) as the center point.

Ellipse(X, Y: integer; StAngle, EndAngle: word;
XRadius, YRadius: word)

Draws an elliptical arc using (X,¥) as a center point, and
XRadius and YRadius as the horizontal and vertical axes.
The ellipse travels from StAngle to EndAngle and is
drawn in the current color.

A start angle of 0 and an end angle of 360 will draw a
complete oval. The angles for Arc, Ellipse, and PieS lice
are counterclockwise with 0 degrees at 3 o'clock, 90
degrees at 12 o'clock, and so on. Information about the
last call to Ellipse can be retrieved with a call to
GetArcCoords.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Arc, Circle, FillEllipse, GetArcCoords, GetAspectRatio,
PieS lice, Sector, SetAspectRatio

us.. Graph;
var

Gd, Gm: integer;
begin

Gd : = Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);

Chapter 76, Turbo Pascal Reference Lookup 247

Ellipse procedure

Ellipse(lOO,lOO,O,360,30,50);
Ellipse(lOO,lOO,O,180,50,30);
Readln;
CloseGraph;

end.

EnvCount function Dos
Function

Declaration

Result type

Remarks

See also

Example

Returns the number of strings contained in the DOS
environment.

EnvCount

integer

EnvCount returns the number of strings contained in the
DOS environment. Each environment string is of the
form VAR=VALUE. The strings can be examined with
the EnvStr function.

For more information about the DOS environment, refer
to your DOS manuals.

EnvStr, GetEnv

u ••• Dos;
var

I: integer;
begiD

for I := 1 to EnvCount do
Writeln(EnvStr(I));

end.

EnvStr function Dos
Function

Declaration

Result type

Remarks

248

Returns a specified environment string.

EnvStr(Index: integer)

string

EnvStr returns a specified string from the DOS environ­
ment. The string EnvStr returns is of the form
V AR= VALUE. The index of the first string is one. if Index
is less than one or greater than EnvCount, EnvStr returns
an empty string.

Turbo Pascal Reference Guide

See also

Eof function (text files)

For more information about the DOS environment, refer
to your DOS manuals.

EnvCount, GetEnv

Eof function (text files)
Function

Declaration

Result type

Remarks

See also

Example

Returns the end-of-file status of a text file.

Eof [(var f: text)

boolean

I, if specified, is a text-file variable. If I is omitted, the
standard file variable Input is assumed. Eol(l) returns
True if the current file position is beyond the last
character of the file or if the file contains no components;
otherwise, Eol(f) returns False.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Eoln, SeekEol

Tar

f : text;
ch: char;

begiD
{ Get file to read from command line }
Assign(f, ParamStr(l));
Reset(f);
while Dot Eof (f) do
begiD

Read(f,ch);
Write(ch);

ad;
ad.

{ Dump text file)

Eof function (typed, untyped files)
Function

Declaration

Result type

Returns the end-of-file status of a typed or untyped file.

Eof(var f)

boolean

Chapter 76, Turbo Pascal Reference Lookup 249

Eof function (typed, untyped files)

Remarks f is a file variable. Eof(f> returns True if the current file
position is beyond the last component of the file or if the
file contains no components; otherwise, Eof(f) returns
False.

With ($I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Eoln function
Function

Declaration

Result type

Remarks

See also

Returns the end-of-line status of a file.

Eoln [(var f: text)

boolean

f, if specified, is a text-file variable. If f is omitted, the
standard file variable Input is assumed. Eoln(f) returns
True if the current file position is at an end-of-line
marker or if Eof(f) is True; otherwise, Eoln(f) returns
False.

When checking Eoln on standard input that has not been
redirected, the following program will wait for a
carriage return to be entered before returning from the
call to Eoln:

begin
{ Tells program to wait for keyboard input
Writeln(Eoln);

end.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Eof, SeekEoln

Erase procedure
Function

Declaration

Remarks

250

Erases an external file.

Erase (var f)

f is a file variable of any file type. The external file
associated with f is erased.

Turbo Pascal Reference Guide

Restrictions

See also

Example

Erase procedure

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Erase must never be used on an open file.

Rename

var
f: file;
ch: char;

begin
{ Get file to delete from command line }
Assign(f, ParamStr(l));
{$I-}
Reset (f);
{$It}

if IOResult <> 0 then
Writeln('Cannot find " ParamStr(l))

elae
begin

Close(f);
Write('Erase " ParamStr(l), '1 'I;
Readln(ch);
if UpCase(ch) = 'y' then

Erase(f);
end;

end.

Exec procedure Dos
Function

Declaration

Remarks

Executes a specified program with a specified command
line.

Exec (Path, CmdLine: string)

The program name is given by the Path parameter, and
the command line is given by CmdLine. To execute a
DOS internal command, run COMMAND.COM; for
instance,

Exec('\COMMAND.COM','/C DIR *.PAS');

The IC in front of the command is a requirement of
COMMAND.COM (but not of other applications).
Errors are reported in DosError; possible error codes are
2, 8, 10, and 11. The exit code of any child process is
reported by the DosExitCode function.

Chapter 76. Turbo Pascal Reference Lookup 251

Exec procedure

Restrictions

See also

Example

252

It is recommended that SwapVectors be called just before
and just after the call to Exec. SwapVectors swaps the
contents of the SavelntXX pointers in the System unit
with the current contents of the interrupt vectors. This
ensures that the Exec'd process does not use any
interrupt handlers installed by the current process, and
vice versa.

Exec does not change the memory allocation state before
executing the program. Therefore, when compiling a
program that uses Exec, be sure to reduce the
"maximum" heap size; otherwise, there won't be
enough memory (DosError = 8).

Versions of the Novell Network system software earlier
than 2.01 or 2.02 do not support a 005 call used by Exec.
If you are using the integrated development environ­
ment to run a program that uses Exec, and you have
early Novell system software, set Compile/Destination
to Disk and run your program from DOS (you can use
the File/ OS Shell command to do this).

DosExitCode, SwapVectors

{$M $4000,0,0
us .. Dos;
var

{ 16K stack, no heap required or reserved }

ProgramName, CmdLine: string;
begin

Write('Program to Exec (include full path): ')i
Readln(ProgramName);
Write('Command line to pass to " ProgramName, ': ')i
Readln(CmdLine)i
Writeln('About to Exec ••• ');
SwapVectorsi
Exec (ProgramName, CmdLine)i
SwapVectorsi
Writeln(' ••• back from Exec');
if Dos Error <> ° then

Writeln('Dos error I', DosError)
elae

end.

Writeln('Exec successful. "
'Child process exit code = "
DosExitCode);

{ Error? }

Turbo Pascal Reference Guide

Exit procedure

Exit procedure
Function

Declaration

Remarks

See also

Example

Exits immediately from the current block.

Exit

When Exit is executed in a subroutine (procedure or
function), it causes the subroutine to return. When it is
executed in the statement part of a program, it causes
the program to terminate. A call to Exit is analogous to a
goto statement addressing a label just before the end of
a block.

Halt

u.e. Crt;
procedure WasteTime;
begin

repeat
if KeyPressed then Exit;
Write('Xx');

until False;
end;
begin

WasteTime;
end.

Exp function
Function

Declaration

Result type

Remarks

See also

Returns the exponential of the argument.

Exp(x: real)

real

x is a real-type expression. The result is the exponential
of x; that is, the value e raised to the power of x, where e
is the base of the natural logarithms.

Ln

Chapter 16, Turbo Pascal Reference Lookup 253

FExpand function

FExpand function 'Dos
Function

Declaration

Result type

Remarks

See also

Expands a file name into a fully qualified file name.

FExpand(Path: PathStr)

PathStr

Expands the file name in Path into a fully qualified file
name. The resulting name is converted to uppercase and
consists of a drive letter, a colon, a root relative directory
path, and a file name. Embedded '.' and ' .. ' directory
references are removed.

The PathStr type is defined in the Dos unit as string[79].

Assuming that the current drive and directory is C:\
SOURCE\PAS, the following FExpand calls would
produce these values:

FExpand('test.pas') = 'C:\SOURCE\PAS\TEST.PAS'
FExpand(' •• *.TPU') = 'C:\SOURCE*.TPU'
FExpand('c:\bin\turbo.exe') = 'C:\BIN\TURBO.EXE'

The FSplit procedure may be used to split the result of
FExpand into a drive/directory string, a file name string,
and an extension string.

FindFirst, FindNext, FSplit

FilePos function
Function

Declaration

Result type

Remarks

Restrictions

254

Returns the current file position of a file.

FilePos (var f)

longint

f is a file variable. If the current file position is at the
beginning of the file, FilePos(f) returns O. If the current
file position is at the end of the file-that is, if Eof(f) is
True-FilePos(f) is equal to FileSize(f).

With {$I-J, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Cannot be used on a text file. File must be open.

Turbo Pascal Reference Guide

Differences

See also

The result type in 3.0 was an integer.

FileSize, Seek

FileSize function

FileSize function
Function

Declaration

Result type

Remarks

Restrictions

Differences

See also

Example

Returns the current size of a file.

FileSize (var f)

longint

f is a file variable. FileSize(f) returns the number of
components in f. If the file is empty, FileSize(f> returns O.

With ($I-), IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Cannot be used on a text file. File must be open.

The result type in 3.0 was an integer.

FilePos

var
f: file of byte;

begin
{ Get file name from command line }
Assign(f, ParamStr(l));
Reset (f);

Writeln('File size in bytes: " FileSize(f));
Close(f);

end.

FillChar procedure
Function

Declaration

Remarks

Fills a specified number of contiguous bytes with a
specified value.

FillChar(var x; count: word; value)

x is a variable reference of any type. count is an expres­
sion of type word. value is any ordinal-type expression.
FillChar writes count contiguous bytes of memory into
value, starting at the first byte occupied by x. No range­
checking is performed, so be careful.

Chapter 16, Turbo Pascal Reference Lookup 255

FiliChar procedure

See also

Example

Whenever possible, use the SizeD! function to specify the
count parameter. When using FillChar on strings,
remember to set the length byte after the fill.

Move

Tar s: .tring[80];
begin

(Set a string to all spaces
FillChar(s, SizeOf(s), , ');
s [0] := f80;

end.
{ Set length byte }

FillEllipse procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

256

Draws a filled ellipse.

FiIIEllipse(X, Y: integer; XRadius, YRadius: word)

Draws a filled ellipse using (X,¥) as a center point, and
XRadius and YRadius as the horizontal and vertical axes.
The ellipse is filled with the current fill color and fill
style, and is bordered with the current color.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Arc, Circle, Ellipse, GetArcCoords, GetAspectRatio, PieS lice,
Sector, SetAspectRatio

uses
Graph;

con.t
R = 30;

var
Driver, Mode : integer;
Xasp, Yasp : word;

begin
Driver := Detect; { Put in graphics mode }
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt(l);
{ Draw ellipse }
FillEllipse(GetMaxX div 2, GetMaxY div 2, 50, 50);
GetAspectRatio(Xasp, Yasp);
{ Circular ellipse }
FiIIEllipse(R, R, R, R * LongInt(Xasp) div Yasp)i

Turbo Pascal Reference Guide

Readln;
Closegraph;

end.

FiliPoly procedure

FillPoly procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Draws and fills a polygon, using the scan converter.

FillPoly(NumPoints: word; var PolyPoints)

PolyPoints is an untyped parameter that contains the
coordinates of each intersection in the polygon.
NumPoints specifies the number of coordinates in
PolyPoints. A coordinate consists of two words, an x and
ayvalue.

FillPoly calculates all the horizontal intersections, and
then fills the polygon using the current fill style and
color defined by SetFillStyle or SetFillPattern. The outline
of the polygon is drawn in the current line style and
color as set by SetLineStyle.

If an error occurs while filling the polygon, GraphResult
will return a value, of --6 (grNoScanMem).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

DrawPoly, GetFillSettings, GetLineSettings, GraphResult,
SetFillPattern, SetFillStyle, SetLineStyle

uses Graph;
conat

Triangle: array[1 •• 3] of PointType = ((x: 50; y: 100),
(x: 100; y: 100),
(x: 150; y: 150));

var
Gd, Gm : integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
FillPoly(SizeOf(Triangle) div SizeOf(PointType), Triangle);

Chapter 76, Turbo Pascal Reference Lookup 257

FindFirst procedure

Readln;
CloseGraph;

end.

FindFirst procedure Dos
Function

Declaration

Remarks

See also

Example

258

Searches the specified (or current) directory for the first
entry matching the specified file name and set of
attributes.

FindFirst(Path: string; Attr: word; var S: SearchRec)

Path is the directory mask (for example, * . *). The Aftr
parameter specifies the special files to include (in
addition to all normal files). Here are the file attributes
as they are declared in the Dos unit:

const
ReadOnly
Hidden
SysFile
VolumeID

= $01;
= $02;
= $04;
= $08;

Directory = $10;
Archive = $20;
AnyFile = $3F;

The result of the directory search is returned in the
specified search record. SearchRec is declared in the Dos
unit:

type
SearchRec = record

Fill: array[1 •. 21] of byte;
Attr: byte;
Time: longint;
Size: longint;
Name: string[12];

end;

Errors are reported in DosError; possible error codes are
3 (Directory Not Found) and 18 (No More Files).

FExpand, FindNext

uses Dos;

DirInfo: SearchRec;
begin

FindFirst('*.PAS', Archive, DirInfo); {Same as DIR *.PAS }

Turbo Pascal Reference Guide

while Dos Error = 0 do
begin

Writeln(Dirlnfo.Name);
FindNext(Dirlnfo);

end;
end.

FindFirst procedure

FindNext procedure Dos
Function

Declaration

Remarks

See also

Example

Returns the next entry that matches the name and
attributes specified in a previous call to FindFirst.

FindNext(var s: SearchRec)

S must be the same one Passed to FindFirst (SearchRec is
declared in Dos unit; see FindFirst). Errors are reported
in DosError; the only possible error code is 18, which
indicates no more files.

FindFirst, FExpand

See the example for FindFirst.

FloodFil1 procedure Graph
Function

Declaration

Remarks

Fills a bounded region with the current fill pattern.

FloodFill(x, y: integer; Border: word)

This procedure is called to fill an enclosed area on
bitmap devices. (x,y) is a seed within the enclosed area
to be filled. The current fill pattern, as set by SetFillStyle
or SetFillPattern, is used to flood the area bounded by
Border color. If the seed point is within an enclosed area,
then the inside will be filled. If the seed is outside the
enclosed area, then the exterior will be filled.

If an error occurs while flooding a region, GraphResult
will return a value of -7 (grNoFloodMem).

Note that FloodFill stops after two blank lines have been
output. This can occur with a sparse fill pattern and a
small polygon. In the following program, the rectangle
is not completely filled:

Chapter 16, Turbo Pascal Reference Lookup 259

FlooclFili procedure

Restrictions

See also

Example

260

program StopFill;
us.. Graph;
var

Driver, Mode: integer;
begin

Driver := Detect;
InitGraph(Driver, Mode, 'c:\bgi');
if GraphResult <> grOk then

Ralt(1);
SetFiIIStyIe(LtSIashFill, GetMaxColor);
Rectangle (0, 0, 8, 20);
FloodFill(1, 1, GetMaxColor);
Readln;
CloseGraph;

end.

In this case, using a denser fill pattern like SlashFill will
completely fill the figure.

A similar routine exists in Turbo C 2.0.

Use FillPoly instead of FloodFill whenever possible so
that you can maintain code compatibility with future
versions. Must be in graphics mode. This procedure is
not available when using the IBM 8514 graphics driver
(lBM8514.BGI).

FillPoly, GraphResult, SetFillPattern, SetFillStyle

uses Graph;
var

Gd, Gm: integer;
begiD

Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk theD
RaIt(1);

SetColor(GetMaxColor);
Circle(50, 50, 20);
FloodFill(50,50,GetMaxColor);
Readln;
CIoseGraph;

end.

Turbo Pascal Reference Guide

Flush procedure

Flush procedure
Function

Declaration

Remarks

Flushes the buffer of a text file open for output.

Flush(var f: text)

f is a text-file variable.

When a text file has been opened for output using
Rewrite or Append, a call to Flush will empty the file's
buffer. This guarantees that all characters written to the
file at that time have actually been written to the
external file. Flush has no effect on files opened for
input.

With {$l-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Frac function
Function

Declaration

Result type

Remarks

See also

Example

Returns the fractional part of the argument.

Frac(x: real)

real

x is a real-type expression. The result is the fractional
part of x, that is, Frac(x) = x - Int(x).

Int

var r: real;
begin

r := Frac(123.456); {0.456}
r :=Frac(-123.456); {-0.456}

ad.

FreeMem procedure
Function

Declaration

Remarks

Disposes a dynamic variable of a given size.

FreeMem(var p: pointer; size: word)

P is a pointer variable of any pointer type that was
previously assigned by the GetMem procedure or was

Chapter 76, Turbo Pascal Reference Lookup 261

FreeMem procedure

Restrictions

Differences

See also

assigned a meaningful value by an assignment state­
ment. Size is an expression of type word, specifying the
size in bytes of the dynamic variable to dispose; it must
be exactly the number of bytes previously allocated to
that variable by GetMem. FreeMem destroys the variable
referenced by p and returns its memory region to the
heap. If p does not point to a memory region in the heap,
a run-time error occurs. After a call to FreeMem, the
value of p becomes undefined, and it is an error to
subsequently reference pA.

Dispose and FreeMem cannot be used interchangeably
with Mark and Release unless certain rules are observed.
For a complete discussion of this topic, refer to the
section liThe Heap Manager" on page 181.

In 3.0, size was an integer.

Dispose, GetMem, Mark, New, Release

FSearch function Dos
Function

Declaration

Result type

Remarks

262

Searches for a file in a list of directories.

FSearch(Path: PathStri DirList: string)

PathStr

Searches for the file given by Path in the list of direc­
tories given by DirList. The directories in DirList must be
separated by semicolons, just like the directories
specified in a PATH command in DOS. The search
always starts with the current directory of the current
drive. The returned value is a concatenation of one of
the directory paths and the file name, or an empty string
if the file could not be located.

The PathStr type is defined in the Dos unit as string[79].

To search the PATH used by DOS to locate executable
files, call GetEnv('P ATH') and pass the result to FSearch
as the DirList parameter.

The result of FSearch can be passed to FExpand to
convert it into a fully qualified file name, that is, an
uppercase file name that includes both a drive letter and
a root-relative directory path. In addition, you can use

Turbo Pascal Reference Guide

See also

Example

FSearch function

FSplit to split the file name into a drivel directory string,
a file name string, and an extension string.

FExpand, FSplit, GetEnv

uses DOSi

var
s: PathStri

begin
S := FSearch('TURBO.EXE',GetEnv('PATH'))i
if S = " then

Writeln('TURBO.EXE not found')
else

Writeln('Found as ' ,FExpand(S))i
end.

FSplit procedure Dos
Function

Declaration

Remarks

See also

Example

Splits a file name into its three components.

FSplit(Path: PathStri var Dir: DirStri
Tar Name: NameStr; var Ext: ExtStr)

Splits the file name specified by Path into its three
components. Dir is set to the drive and directory path
with any leading and trailing backslashes, Name is set to
the file name, and Ext is set to the extension with a
preceding dot. Each of the component strings may
possibly be empty, if Path contains no such component.

The PathStr, DirStr, NameStr, and ExtStr types are
defined in the Dos unit as follows:

type
PathStr = atring[79];
DirStr = string[67];
NameStr = strinq[8]i
ExtStr = string[4]i

FSplit never adds or removes characters when it splits
the file name, and the concatenation of the resulting Dir,
Name, and Ext will always equal the specified Path.

FExpand, FindFirst, FindNext

use. Dos;
var

P: PathStri
D: DirStr;

Chapter 16, Turbo Pascal Reference Lookup 263

FSplif procedure

N: NameStr;
E: ExtStr;

begin
Write('Filename (WORK.PAS): ');
ReadLn(P);
FSplit(P, D, N, E);
if N = II then N:='WORK';
if E = II then E:='.PAS';
P := D + N + E;
Writeln('Resulting name is " PI;

end.

GetArcCoords procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

264

Allows the user to inquire about the coordinates of the
last Arc command.

GetArcCoords(var ArcCoords: ArcCoordsType)

A similar routine exists in Turbo C 2.0.

GetArcCoords returns a variable of type ArcCoordsType.
ArcCoordsType is predeclared as follows:

type
ArcCoordsType = record

X, Y: integer;
Xs~art, Ystart: integer;
Xend, Yend: integer;

end;

GetArcCoords returns a variable containing the center
point (X, Y), the starting position (Xstart, Ystart), and the
ending position (Xend,Yend) of the last Arc or Ellipse
command. These values are useful if you need to
connect a line to the end of an ellipse.

Must be in graphics mode.

Arc, Circle, Ellipse, FillEllipse, PieS lice, PieSliceXY, Sector

use. Graph;
Tar

Gd, Gm : integer;
ArcCoords : ArcCoordsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Turbo Pascal Reference Guide

Halt (1) i
Arc(100,100,0,270,30);
GetArcCoords(ArcCoords);
with ArcCoords do

GetArcCoords procedure

Line (Xstart, Ystart, Xend, Yend);
Readln;
CloseGraph;

end.

GetAspectRatio procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Returns the effective resolution of the graphics screen
from which the aspect ratio (Xasp:Yasp) can be com­
puted.

GetAspectRatio(var Xasp, Yasp: word)

Each driver and graphics mode has an aspect ratio
associated with it (maximum y resolution divided by
maximum x resolution). This ratio can be computed by
making a call to GetAspectRatio and then dividing the
Xasp parameter by the Yasp parameter. This ratio is used
to make circles, arcs, and pie slices round.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Are, Circle, Ellipse, GetMaxX, GetMaxY, PieS lice,
SetAspectRatio

u.e. Graph;
var

Gd, Grn : integer;
Xasp, Yasp : word;
XSideLength, YSideLength : integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

GetAspectRatio(Xasp, Yasp)i
XSideLength := 20;

{ Adjust Y length for aspect ratio
YSideLength := Round((Xasp/Yasp) * XSideLength);

Chapter 16, Turbo Pascal Reference Lookup 265

GetBkColor function

{ Draw a "square" rectangle on the screen }
Rectangle (0, 0, XSideLength, YSideLength);
Readln;
CloseGraph;

and.

GetBkColor function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

266

Returns the index into the palette of the current back­
ground color.

GetBkColor

word

Background colors can range from 0 to 15, depending on
the current graphics driver and current graphics mode.

GetBkColor will return 0 if the Oth palette entry is
changed by a call to SetPalette or SetAllPalette.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetColor, GetPalette, InitGraph, SetAllPalette, SetBkColor,
SetColor, SetPalette

usas Crt, Graph;
var

Gd, Gm: integer;
Color: word;
Pal: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk than

Halt (1) ;

Randomize;
GetPalette(Pal);
if Pal.Size <> 1 then

bagin
repeat

Color := Succ(GetBkColor);
if Color> Pal.Size-l then

Color := 0;
SetBkColor(Color)i

{ Cycle through colors }

LineTo(Random(GetMaxX), Random(GetMaxY));
until KeyPressed;

Turbo Pascal Reference Guide

end
else

Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

GetBkColor function

GetCBreak procedure Dos
Function

Declaration

Remarks

See also

Returns the state of elrl-Break checking in 005.

GetCBreak(var Break: boolean)

GetCBreak returns the state of elrl-Break checking in DOS.
When off (False), DOS only checks for elrl-Break during
I/O to console, printer, or communication devices.
When on (True), checks are made at every system call.

SetCBreak

GetColor function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

Returns the color value passed to the previous suc­
cessful call to SetColor.

GetColor

word

Drawing colors can range from 0 to 15, depending on
the current graphics driver and current graphics mode.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetBkColor, GetPalette, InitGraph, SetAllPalette, SetColor,
SetPalette

uses Graph;
var

Gd, Grn: integer;
Color: word;
Pal: PaletteType;

begin
Gd := Detect;

Chapter 76, Turbo Pascal Reference Lookup 267

GetCoior function

InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Randomize;
GetPalette(Pal);
repeat

Color := Succ(GetColor);
if Color> PaLSize-1 theD

Color := 0;
SetColor(Color);
LineTo(Random(GetMaxX), Random(GetMaxY));

until KeyPressed;
CloseGraph;

end.

GetDate procedure Dos
Function

Declaration

Remarks

See also

Returns the current date set in the operating system.

GetDate(var Year, Month, Day, DayofWeek: word)

Ranges of the values returned are Year 1980 .. 2099, Month
1..12, Day 1..31, and DayOfWeek 0 .. 6 (where 0
corresponds to Sunday).

Get Time, SetDate, SetTime

GetDefaultPalette function Graph
Function

Declaration

Result type

Remarks

268

Returns the palette definition record.

GetDefaultPalette (var Palette : PaletteType)

PaletteType

GetDefaultPalette returns a PaletteType record, which
contains the palette as the driver initialized it during
InitGraph:

CODlt

MaxColors = 15;
type

PaletteType = record
Size : byte;
Colors: array[O •• MaxColor] of shortint;

end;

Turbo Pascal Reference Guide

Restrictions

See also

Example

GetDefaultPaleHe function

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

InitGraph, GetPalette, SetAllPalette, SetPalette

uses
Crt, Graph;

var
Driver, Mode,
i : integer;
MyPal, OldPal : PaletteType;

begin
DirectVideo := false;
Randomize;
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1);

GetDefaultPalette(OldPal);
MyPal := OldPal;
{ Display something }
for i := 0 to MyPal.Size - 1 do
begin

SetColor(i);

{ Put in graphics mode }

{ Preserve old one
Duplicate and modify

OutTextXY(10, i * 10, , •.• Press any key ••. ');
end;

repeat { Change palette un~il a key is pressed
with MyPal do

Colors [Random(Size)] := Random(Size + 1);
SetAllPalette(MyPal);

until KeyPressed;
SetAllPalette(OldPal); { Restore original palette
ClearDevice;
OutTextXY(10, 10, 'Press <Return> .•• ');
Readln;
Closegraph;

end.

GetDir procedure
Function

Declaration

Remarks

Returns the current directory of a specified drive.

GetDir(d: byte; var s: string)

d is an integer-type expression, and 5 is a string-type
variable. The current directory of the drive specified by

Chapter 16, Turbo Pascal Reference Lookup 269

GetDir procedure

See also

d is returned in s. d = 0 indicates the current drive, 1
indicates drive A,2 indicates drive B, and so on.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

ChDir, DiskFree, DiskSize, MkDir, RmDir

GetDriverN arne function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

Returns a string containing the name of the current
driver.

GetDriverName

string

After a call to InitGraph, returns the name of the active
driver.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetModeName, InitGraph

uses
Graph;

Tar
Driver, Mode : integer;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1) ;

{ Put in graphics mode }

OutText('Using driver' + GetDriverName);
Readln;
Closegraph;

end.

GetEnv function Dos
Function

Declaration

Result type

270

Returns the value of a specified environment variable.

GetEnv(EnvVar: string)

string

Turbo Pascal Reference Guide

Remarks

See also

Example

GetEnv function

GetEnv returns the value of a specified variable. The
variable name can be in either uppercase or lowercase,
but it must not include the equal sign (=) character. If the
specified environment variable does not exist, GetEnv
returns an empty string.

For more information about the DOS environment, refer
to your DOS manuals.

EnvCount, EnvStr

{$M 8192,0,0}
us.s Dos;
var

Command: atring[79];
begin

Write{'Enter DOS command: ');
Readln(Command);
if Command <> " then

Command := 'IC ' + Command;
SwapVectors;
Exec{GetEnv{'COMSPEC'), Command);
SwapVectors;
if Dos Error <> 0 then

Writeln{'Could not execute COMMAND.COM');
end.

GetFAttr procedure Dos
Function

Declaration

Remarks

Returns the attributes of a file.

GetFAttr{var f; var Attr: word);

F must be a file variable (typed, untyped, or text file)
that has been assigned but not opened. The attributes
are examined by anding them with the file attribute
masks defined as constants in the Dos unit:

const
ReadOnly = $01;
Hidden = $02;
SysFile = $04;
VolumeID = $08;
Directory = $10;
Archive = $20;
AnyFile = $3F;

Chapter 76, Turbo Pascal Reference Lookup 271

GetFAHr procedure

Restrictions

See also

Example

Errors are reported in DosError; possible error codes are:

.3 (Invalid Path)

• 5 (File Access Denied)

f cannot be open.

GetFTime, SetFAttr, SetFTime

u.e. Dos;
Tar

f: file;
attr: word;

begin
{ Get file name from command line
Assign{f, ParamStr{l));
GetFAttr{f, attr);
Writeln{ParamStr{l));
if Dos Error <> 0 theD

Writeln{'Dos error code = " DosError)
elae
begiD

Write{'Attribute = I, attr, 'to:'to);
{ Determine file attribute type

using flags in Dos unit }
if attr aDd ReadOnly <> 0 theD

Writeln{/read only file');
if attr and Hidden <> 0 then

Writeln{'hidden file');
if attr aDd SysFile <> 0 theD

Writeln{'system file');
if attr aDd VolumeID <> 0 then

Writeln{'volume 10');
if attr aDd Directory <> 0 then

Writeln{'directory name');
if attr and Archive <> 0 then

Writeln{'archive (normal file)');
eDd; { else }

eDd.

GetFillPattem procedure Graph
Function

Declaration

Remarks

272

Returns the last fill pattern set by a previous call to
SetFillPattern.

GetFillPattern{var FillPattern: FillPatternType);

FillPatternType is declared in the Graph unit:

Turbo Pascal Reference Guide

Restrictions

See also

GetFiliPaHern procedure

type
FillPatternType = array[1 •• 8] of byte;

If no user call has been made to SetFillPattern,
GetFiliPattern will return an array filled with $FF.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetFiliSettings, SetFiliPattern, SetFillStyle

GetFillSettings procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Returns the last fill pattern and color set by a previous
call to SetFillPattern or SetFillStyle.

GetFillSettings(var Filllnfo: FillSettingsType)

GetFiliSettings returns a variable of type FillSettingsType.
FiliSettingsType is predeclared as follows:

type
FillSettingsType = record

Pattern: word;
Color: word;

end;

The Pattern field reports the current fill pattern selected.
The Color field reports the current fill color selected.
Both the fill pattern and color can be changed by calling
the SetFillStyle or SetFillPattern procedure. If Pattern is
equal to UserFill, use GetFillPattern to get the user­
defined fill pattern that is selected.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

FillPoly, GetFillPattern, SetFillPattern, SetFillStyle

U,., Graph;
var

Gd, Gm : integer;
Filllnfo: FillSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk than

Halt (1) ;

Chapter 76, Turbo Pascal Reference Lookup 273

GetFiliSettings procedure

GetFillSettings(Filllnfo); { Save fill style and color}
Bar (0, 0, 50, 50);
SetFillStyle(XHatchFill, GetMaxColor); { New style}
Bar(50, 0, 100, 50);
with Filllnfo do

SetFillStyle(Pattern, Color); {Restore old fill style}
Bar(100, 0, 150, 50);
Readln;
CloseGraph;

end.

GetFTime procedure Dos
Function

Declaration

Remarks

Restrictions

See also

Returns the date and time a file was last written.

GetFTime(var f; var Time: longint);

f must be a file variable (typed, untyped, or text file) that
has been assigned and opened. The time returned in the
Time parameter may be unpacked through a call to
UnpackTime. Errors are reported in DosError; the only
possible error code is 6 (Invalid File Handle).

f must be open.

PackTime, SetFAttr, SetFTime, UnpackTime

GetGraphMode function Graph
Function

Declaration

Result type

Remarks

274

Returns the current graphics mode.

GetGraphMode

integer

GetGraphMode returns the current graphics mode set by
InitGraph or SetGraphMode. The Mode value is an integer
from 0 to 5, depending on the current driver.

Turbo Pascal Reference Guide

GetGraphMode function

The following mode constants are defined:

Graphics Constant Column
Driver Name Value xRow Palette Pages

CGA CGACO 0 320x200 CO 1
CGACI 1 320x200 C1 1
CGAC2 2 320x200 C2 1
CGAC3 3 320x200 C3 1
CGAHi 4 640x200 2 color 1

MCGA MCGACO 0 320x200 CO 1
MCGACI 1 320x200 C1 1
MCGAC2 2 320x200 C2 1
MCGAC3 3 320x200 C3 1
MCGAMed 4 640x200 2 color 1
MCGAHi 5 640x480 2 color 1

EGA EGALo 0 640x200 16 color 4
EGAHi 1 640x350 16 color 2

EGA64 EGA64Lo 0 640x200 16 color 1
EGA64Hi 1 640x350 4 color 1

EGA- EGAMonoHi 3 640x350 2 color 1*
MONO EGAMonoHi 3 640x350 2 color 2**

HERC HercMonoHi 0 720x348 2 color 2

AIT400 AIT400CO 0 32Ox200 CO 1
AIT400Cl 1 320x200 Cl 1
AIT400C2 2 320x200 C2 1
AIT400C3 3 320x200 C3 1
AIT400Med 4 640x200 2 color 1
AIT400Hi 5 640x400 2 color 1

VGA VGALo 0 640x200 16 color 2
VGAMed 1 640x350 16 color 2
VGAHi 2 640x480 16 color 1

PC3270 PC3270Hi 0 720x350 2 color 1

8514 IBM8514Lo 0 640x480 256 color 1
8514 IBM8514Hi 0 1024x768 256 color 1

• 64K on EGAMono card
.. 256K on EGAMono card

A similar routine exists in Turbo C 2.0.

Restrictions Must be in graphics mode.

Chapter 76, Turbo Pascal Reference Lookup 275

GetGraphMode function

See also

Example

Clear Device, DetectGraph, InitGraph, RestoreCrtMode,
SetGraphMode

us.s Graph;
var

Gd, Gm: integer;
Mode : integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
OutText('<ENTER> to leave graphics:');
Readln;
RestoreCRTMode;
Writeln('Now in text mode');
Write('<ENTER> to enter graphics mode:');
Readln;
SetGraphMode(GetGraphMode);
OutTextXY(O, 0, 'Back in graphics mode');
OutTextXY(O, TextHeight('H'), '<ENTER> to quit:');
Readln;
CloseGraph;

end.

Getlmage procedure Graph
Function

Declaration

Remarks

Restrictions

See also

276

Saves a bit image of the specified region into a buffer.

Getlmage(xl, yl, x2, y2: integer; var BitMap);

xl, yl, x2, and y2 define a rectangular region on the
screen. BitMap is an untyped parameter that must be
greater than or equal to 6 plus the amount of area
defined by the region. The first two words of BitMap
store the width and height of the region. The third word
is reserved.

The remaining part of BitMap is used to save the bit
image itself. Use the ImageSize function to determine the
size requirements of BitMap.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode. The memory required to save
the region must be less than 64K. . -

ImageSize, Putlmage

Turbo Pascal Reference Guide

Example ulel Graph;
var

Gd, Gm : integer;
P : pointer;
Size : word;

begin
Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt (1) ;

Bar{O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10,20,30,40);

Getlmcge procedure

GetMem{P, Size); { Allocate memory on heap}
Getlmage{10,20,30,40,P A

);

Readln;
ClearDevice;
Putlmage(100, 100, pA, NormalPut);
Readln;
CloseGraph;

end.

GetlntVec procedure Dos
Function

Declaration

Remarks

See also

Returns the address stored in a specified interrupt
vector.

GetlntVec(IntNo: byte; var Vector: pointer)

IntNo specifies the interrupt vector number (0 .. 255), and
the address is returned in Vector.

Setln t Vee

GetLineSettings procedure Graph
Function

Declaration

Remarks

Returns the current line style, line pattern, and line
thickness as set by SetLineStyle.

GetLineSettings{var Linelnfo: LineSettingsType)

The following type and constants are defined:

type
LineSettingsType = record

LineStyle: word;
Pattern: word;

Chapter 76, Turbo Pascal Reference Lookup 277

GetLineSeHings procedure

Restrictions

See also

Example

Thickness: word;
end;

cout
{ Line styles
SolidLn = 0;
DottedLn = 1;
CenterLn = 2;
DashedLn = 3;
UserBitLn = 4;

{ Line widths }
NormWidth = 1;
ThickWidth = 3;

{ User-defined line style }

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

DrawPoly, SetLineStyle

u.e. Graph;
Val:

Gd, Gm : integer;
OldStyle: LineSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Line(O, 0, 100, 0);
GetLineSettings(OldStyle);
SetLineStyle(DottedLn, 0, ThickWidth); (New style
Line(O, 10, 100, 10);
with OldStyle do (Restore old line style

SetLineStyle(LineStyle, Pattern, Thickness);
Line(O, 20, 100, 20);
Readln;
CloseGraph;

end.

GetMaxColor function Graph
Function

Declaration

Result type

278

Returns the highest color that can be passed to the
SetColor procedure.

GetMaxColor

word

Turbo Pascal Reference Guide

Remarks

Restrictions

See also

GetMaxColor function

As an example, on a 256K EGA, GetMaxColor will always
return 15, which means that any call to SetColor with a
value from 0 . .15 is valid. On a eGA in high-resolution
mode or on a Hercules monochrome ada pter,
GetMaxColor returns a value of 1 because these adapters
only support draw colors of 0 or 1.

A similar routine exists in Turbo e 2.0.

Must be in graphics mode.

SetColor

GetMaxMode function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

Returns the maximum mode number for the currently
loaded driver.

GetMaxMode

word

GetMaxMode lets you find out the maximum mode
number for the current driver, directly from the driver.
(Formerly, GetModeRange was the only way you could
get this number; GetModeRange is still supported, but
only for the Borland drivers.)

The value returned by GetMaxMode is the maximum
value that may be passed to SetGraphMode. Every driver
supports modes O .. GetMaxMode.

A similar routine exists in Turbo e 2.0.

Must be in graphics mode.

GetModeRange, SetGraphMode

usas
Graph;

var
Driver, Mode : integer;
i : integer;

bagin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 than

Halt(l);
for i := 0 to GetMaxMode do

{ Put in graphics mode }

{ Display all mode names }

Chapter 76, Turbo Pascal Reference Lookup 279

GetMaxMode function

OutTextXY(10, 10 * Succ(i), GetModeName(i));
Readln;
Closegraph;

end.

GetMaxX function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

280

Returns the rightmost column (x resolution) of the
current graphics driver and mode.

GetMaxX

integer

Returns the maximum x value for the current graphics
driver and mode. On a eGA in 320x200 mode; for
example, GetMaxXwill return 319.

GetMaxX and GetMaxY are invaluable for centering, .
determining the boundries of a region on the screen, and
soon.

A similar routine exists in Turbo e 2.0.

Must be in graphics mode.

GetMaxY, GetX, GetY, MoveTo

uses Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Rectangle(O,O,GetMaxX,GetMaxY); {Draw a full-screen box I
Readln;
CloseGraph;

end.

Turbo Pascal Reference Guide

GetMaxV function

GetMaxY function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

Returns the bottommost row (y resolution) of the current
graphics driver and mode.

GetMaxY

integer

Returns the maximum y value for the current graphics
driver and mode. On a CGA in 320x200 mode; for
example, GetMaxY will return 199.

GetMaxX and GetMaxY are invaluable for centering,
determining the boundaries of a region on the screen,
and so on.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetMaxX, GetX, GetY,MoveTo

us.. Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Rectangle(O,O,GetMaxX,GetMaxY); {Draw a full-screen box}
Readln;
CloseGraph;

end.

GetMem procedure
Function

Declaration

Remarks

Creates a new dynamic variable of the specified size,
and puts the address of the block in a pointer variable.

GetMem(var p: pointer; size: word)

P is a pointer variable of any pointer type. Size is an
expression of type word specifying the size in bytes of
the dynamic variable to allocate. The newly created
variable can be referenced as p/\.

Chapter 76, Turbo Pascal Reference Lookup 281

GetMem procedure

Restrictions

Differences

See also

If there isn't enough free space in the heap to allocate the
new variable, a run-time error occurs. (It is possible to
avoid a run-time error; see "The Heap Error Function" ,
on page 187.)

The largest block that can be allocated on the heap at
one time is 65521 bytes (64I<b-$F). If the heap is not frag­
mented, for example at the beginning of a program,
successive calls to GetMem will return neighboring
blocks of memory.

In 3.0, size was an integer.

Dispose, FreeMem, Mark, New, Release

GetModeName function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

282

Returns a string containing the name of the specified
graphics mode.

GetModeName{ModeNumber integer)

string

The mode names are embedded in each driver. The
return values (320 x 200 CGA Pi, 640 x 200 CGA, etc.)
are useful for building menus, display status, etc.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetDriverName, GetMaxMode, GetModeRange

use.
Graph;

var
Driver, Mode : integer;
i : integer;

begin
Driver := Detect;
InitGraph{Driver, Mode, "~I;

if GraphResult < 0 then
Halt{l);

{ Put in graphics mode }

for i := 0 to GetMaxMode do { Display all mode names
OutTextXY(10, 10 * Succ(i), GetModeName{i));

Readln;
Closegraph;

end.

Turbo Pascal Reference Guide

GetModeRange procedure

GetModeRange procedure Graph
Function

Declaration

Remarks

See also

Returns the lowest and highest valid graphics mode for
a given driver.

GetModeRange(GraphDriver : integer;
var LoMode, HiMode: integer);

The output from the following program:

use. Graph;
var

Lowest, Highest : integer;
begin

GetModeRange(EGA64, Lowest, Highest);
Write('Lowest = " Lowest);
Write(' Highest = " Highest);

end.

will be Lowest = 0 and Highest = 1.

If the value of GraphDriver is invalid, the return param­
eters are set to -1.

A similar routine exists in Turbo C 2.0.

GetGraphMode, SetGraphMode, InitGraph, DetectGraph

GetPalette procedure Graph
Function

Declaration

Remarks

Returns the current palette and its size.

GetPalette(var Palette: PaletteType)

Returns the current palette and its size in a variable of
type PaletteType. PaletteType is defined as follows:

con.t
MaxColors = 15;

type
PaletteType = record

Size: byte;
Colors: array[O •• MaxColors] of shortint;

end;

The size field reports the number of colors in the palette
for the current driver in the current mode. Colors
contains the actual colors O .. Size-1.

Chapter 76, Turbo Pascal Reference Lookup 283

GetPaleHe procedure

Restrictions

See also

Example

A similar routine exists in Turbo C 2.0.

Must be in graphics mode, and can only be used with
EGA, EGA 64, or VGA (not the IBM 8514 or the VGA in
256-color mode).

GetDefaultPalette, GetPaletteSize, SetAllPalette, SetPalette

u.e. Graph;
var

Gd, Gm : integer;
Color : word;
Palette: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

GetPalette(Palette);
if Palette. Size <> 1 then

for Color := ° to Pred(Palette.Size) do
begin

SetColor(Color);
Line(O, Color*5, 100, Color*5);

end
elae

Line(O, 0, 100, 0);
Readln;
CloseGraph;

end.

GetPaletteSize function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

284

Returns the the size of the palette color lookup table.

GetPaletteSize

integer

GetPaletteSize reports how many palette entries can be
set for the current graphics mode; for example, the EGA
in color mode will return a value of 16.

A similar routine exists in Turbo C 2.0.

wfust be in graphics mode.

GetMaxColor, GetDefaultPalette, GetPalette, SetPalette

Turbo Pascal Reference Guide

GetPixel function

GetPixel function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

Gets the pixel value at X, Y.

GetPixel(X,Y: integer)

word

Gets the pixel color at (X,¥).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

PutPixel, Getlmage, Putlmage, SetWriteMode

u.e. Graph;
var

Gd, Gm : integer;
PixelColor: word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

PixelColor := GetPixel(lO,lO);
if PixelColor = 0 then

PutPixel(lO, 10, GetMaxColor);
Readln;
CloseGraph;

end.

GetTextSettings procedure Graph
Function

Declaration

Remarks

Returns the current text font, direction, size, and justifi­
cation as set by SetTextStyle and SetTextJustify.

GetTextSettings{var Textlnfo: TextSettingsType)

The following type and constants are defined:

type
TextSettingsType = record

Font: word;
Direction: word;
CharSize: word;
Horiz: word;
Vert: word;

end;

Chapter 16, Turbo Pascal Reference Lookup 285

GetTextSettings procedure

Restrictions

See also

Example

286

conlt
DefaultFont = 0;
TriplexFont = 1;
SmallFont = 2;
SansSerifFont = 3;
GothicFont = 4;

8x8 bit mapped font
{ "Stroked" fonts

HorizDir
VertDir

= 0;
= 1;

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Left to right
Bottom to top

InitGraph, SetText/ustify, SetTextStyle, TextHeight,
Text Width

ulel Graph;
var

Gd, Gm : integer;
OldStyle: TextSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

GetTextSettings(OldStyle);
OutTextXY(O, 0, 'Old text style');
SetTextJustify(LeftText, CenterText);
SetTextStyle(TriplexFont, VertDir, 4);
OutTextXY(GetMaxX div 2, GetMaxY div 2, 'New Style');
with OldStyle do
begin (Restore old text style

SetTextJustify(Horiz, Vert);
SetTextStyle(Font, Direction, CharSize);

end;
OutTextXY(O, TextHeight('H'), 'Old style again');
Readln;
CloseGraph;

end.

Turbo Pascal Reference Guide

GetVerify procedure

GetTime procedure Dos
Function

Declaration

Remarks

See also

Returns the current time set in the operating system.

GetTime(var Hour, Minute, Second, SeclOO: word)

Ranges of the values returned are Hour 0 .. 23, Minute
0 .. 59, Second 0 .. 59, and SeclOO (hundredths of seconds)
0 .. 99.

GetDate, SetDate, SetTime, UnpackTime

GetVerify procedure Dos
Function

Declaration

Remarks

See also

Returns the state of the verify flag in DOS.

GetVerify(var Verify: boolean)

GetVerify returns the state of the verify flag in DOS.
When off (False), disk writes are not verified. When on
(True), all disk writes are verified to ensure proper
writing.

SetVerify

GetViewSettings procedure Graph
Function

Declaration

Remarks

Returns the current viewport and clipping parameters,
as set by Set ViewPort.

GetViewSettings(var ViewPort: ViewPortType)

GetViewSettings returns a variable of type ViewPortType.
ViewPortType is predeclared as follows:

type
ViewPort Type = record

xl, yl, x2, y2: integer;
Clip: boolean;

end;

The points (xl, y1) and (x2, y2) are the dimensions of the
active viewport and are given in absolute screen
coordina tes. Clip is a Boolean variable that controls
whether clipping is active.

Chapter 16, Turbo Pascal Reference Lookup 287

GefViewSeftings procedure

Restrictions

See also

Example

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Clear ViewPort, Set ViewPort

uses Graph;
var

Gd, Gm : integer;
ViewPort: ViewPortType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
GetViewSettings(ViewPort)i
with ViewPort do
begin

Rectangle (0, 0, x2-xl, y2-yl);
if Clip then

OutText('Clipping is active.')
else

OutText('No clipping today.');
end;
Readlni
CloseGraphi

end.

GetX function Graph
Function

Declaration

Result type

Remarks

288

Returns the X coordinate of the current position (CP).

GetX

integer

GetX is viewport-relative. In the following example:

1 SetViewPort(O,O,GetMaxX,GetMaxY,True};
2 MoveTo(5,5};
3 SetViewPort(lO,lO,lOO,lOO,True};
4 MoveTo(5,S};

• Line 1 moves CP to absolute (0,0), and GetX would
also return a value of O .

• Line 2 moves CP to absolute (5,5), and GetX would
also return a value of 5.

Turbo Pascal Reference Guide

Restrictions

See also

Example

GetX function

• Line 3 moves CP to absolute (10,10), but GetX would
return a value of O.

• Line 4 moves CP to absolute (15,15), but GetX would
return a value of 5.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetViewSettings, GetY, InitGraph, MoveTo, Set ViewPort

U,., Graph;

Gd, Gm: integer;
X, Y: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

OutText('Starting here. ');
X := GetX;
Y := GetY;
OutTextXY(20, 10, 'Now over here ••• ');
OutTextXY(X, Y, 'Now back over here.');
Readln;
CloseGraph;

end.

GetY function Graph
Function

Declaration

Result type

Remarks

Returns the Y coordinate of the current position (CP).

GetY

integer

GetY is viewport-relative. In the following example:

1 SetViewPort(O,O,GetMaxX,GetMaxY,True);
2 MoveTo(S,S);
3 SetViewPort(lO,lO,lOO,lOO,True);
4 MoveTo(S,S);

• Line 1 moves CP to absolute (0,0), and GetY would
also return a value of o.

• Line 2 moves CP to absolute (5,5), and GetY would
also return a value of 5.

Chapter 76, Turbo Pascal Reference Lookup 289

GetV function

Restrictions

See also

Example

• Line 3 moves CP to absolute (10,10), but GetY would
return a value of O .

• Line 4 moves CP to absolute (15,15), but GetY would
return a value of 5.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetViewSettings, GetX, InitGraph, MoveTo, Set ViewPort

u... Graph;
var

Gd, Gm: integer;
X, Y: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
OutText('Starting here. ');
X := GetX;
Y := GetY;
OutTextXY(20, 10, 'Now over here ••. ');
OutTextXY(X, Y, 'Now back over here.');
Readln;
CloseGraph;

.nd.

GotoXY procedure Crt
Function

Declaration

Remarks

Restrictions

290

Positions the cursor.

Gotoxf(x, Y: byte)

The cursor is moved to the position within the current
window specified by X and Y (X is the column, Y is the
row). The upper left corner is (1,1).

This procedure is window-relative:

Window(1,10,60,20);
GotoXY (1,1) ;

and will move the cursor to the upper left corner of the
active window (absolute coordinates (1 .. 10».

If the coordinates are in any way invalid, the call to
GotoXY is ignored.

Turbo Pascal Reference Guide

GraphDefaults procedure

See also Window, WhereX, WhereY

GraphDefaults procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Resets the graphics settings.

GraphDefaults

Homes the current pointer (CP) and resets the graphics
system to the default values for

• viewport
• palette
• draw and background colors
• line style and line pattern
• fill style, fill color, and fill pattern
• active font, text style, text justification, and user char

size

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

InitGraph

GraphErrorMsg function Graph
Function

Declaration

Result type

Remarks

See also

Example

Returns an error message string for the specified
ErrorCode.

GraphErrorMsg(ErrorCode: integer)

string

This function returns a string containing an error
message that corresponds with the error codes in the
graphics system. This makes it easy for a user program
to display a descriptive error message ("Device driver
not found" instead of "error code -3").

A similar routine exists in Turbo C 2.0.

DetectGraph, GraphResult, InitGraph

us.s Graph;
var

GraphDriver, GraphMode: integer;

Chapter 76, Turbo Pascal Reference Lookup 291

GraphErrorMsg function

ErrorCode: integer;
begin

GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
Readln;
Halt (1);

end;
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

GraphResult function Graph
Function

Declaration

Result type

Remarks

292

Returns an error code for the last graphics operation.

GraphResult

integer

Returns an error code for the last graphics operation.
The following error return codes are defined:

Turbo Pascal Reference Guide

See also

GraphResult function

Error Graphics Error Corresponding
Code Constant Error Message String

0 grOk No error
-1 grNoInitGraph (BGI) graphics not installed

(use InitGraph)
-2 grNotDetected Graphics hardware not

detected
-3 grFileNotFound Device driver file not found
-4 grInvalidDriver Invalid device driver file
-5 grNoLoadMem Not enough memory to load

driver
-6 grNoScanMem Out of memory in scan fill
-7 grNoFloodMem Out of memory in flood fill
-8 grFontNotFound Font file not found
-9 grNoFontMem Not enough memory to load

font
-10 grInvalidMode Invalid graphics mode for

selected driver
-11 grError Graphics error
-12 grIOerror Graphics I/O error
-13 grInvalidFont Invalid font file
-14 grInvalidFontNum Invalid font number

The following routines set GraphResult:

Bar
Bar3D
Clear ViewPort
CloseGraph
DeteetGraph
DrawPoly
FillPoly
FloodFill
GetGraphMode

ImageSize
InitGraph
Ins tall User Driver
InstallUserFont
PieS lice
Register BGIdriver
Register BGIfont
SetAllPalette

SetFillPattern
SetFillStyle
SetGraphBufSize
SetGraphMode
SetLineStyle
SetPalette
SetTextJustify
SetTextStyle

Note that GraphResult is reset to zero after it has been
called (similar to IOResult). Therefore, the user should
store the value of GraphResult into a temporary variable
and then test it.

A string function, GraphErrorMsg, is provided to return
a string that corresponds with each error code.

A similar routine exists in Turbo C 2.0.

GraphErrorMsg

Chapter 76, Turbo Pascal Reference Lookup 293

GraphResult function

Example usas Graph;
var

ErrorCode: integer;
GrDriver, GrMode: integer;

begin
GrDriver := Detect;
InitGraph(GrDriver, GrMode, ");
ErrorCode := GraphResulti
if ErrorCode <> grOk than
begin

Writeln('Graphics error:');
Writeln(GraphErrorMsg(ErrorCode));
Writeln('Program aborted •.• ');
Halt (1);

and;

(Do some graphics .••
ClearDevice;
Rectangle (0, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

and.

{ Check for errors }

Halt procedure
Function

Declaration

Remarks

See also

294

Stops program execution and returns to the operating
system.

Halt [(exitcode: word)

exitcode is an optional expression of type word that
specifies the exit code of the program. Halt without a
parameter corresponds to Halt(O). The exit code can be
examined by a parent process using the DosExitCode
function in the Dos unit or through an ERRORLEVEL
test in a DOS batch file.

Note that Halt will initiate execution of any unit Exit
procedures (see Chapter 15).

Exit, Run Error

Turbo Pascal Reference Guide

Hi function

Hi function
Function

Declaration

Result type

Remarks

See also

Example

Returns the high-order byte of the argument.

Hi(x)

byte

x is an expression of type integer or word. Hi returns the
high-order byte of x as an unsigned value.

Lo, Swap

var w: word;
begin

w := Hi($1234); {$12}
end.

High Video procedure Crt
Function

Declaration

Remarks

Differences

See also

Example

Selects high-intensity characters.

HighVideo

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. HighVideo sets the high
intensity bit of TextAttr's foreground color, thus
mapping colors 0-7 onto colors 8-15.

In 3.0, HighVideo always selected yellow on black (white
on black in mono and BWBO video modes).

LowVideo, NormVideo, TextBackground, TextColor

uses Crt;
begin

TextAttr := LightGray;
HighVideo;

end.
{ Color is now white }

Chapter 76, Turbo Pascal Reference Lookup 295

ImageSize function

ImageSize function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

296

Returns the number of bytes required to store a
rectangular region of the screen.

ImageSize(x1, yl, x2, y2: integer)

word

xl, yl, x2, and y2 define a rectangular region on the
screen. ImageSize determines the number of bytes
necessary for GetImage to save the specified region of the
screen. The image size includes space for three words.
The first stores the width of the region, the second stores
the height, and the third is reserved.

If the memory required to save the region is greater than
or equal to 64K, a value of 0 is returned and GraphResult
will return -11 (grError).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetImage, PutImage

u ••• Graph;
var

Gd, Gm: integer;
P: pointer;
Size: word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10,20,30,40);
GetMem(P, Size); { Allocate memory on heap}
Getlmage(10,20,30,40,P A

);

Readln;
ClearDevice;
Putlmage(lOO, 100, pA

, NormalPut);
Readln;
CloseGraph;

.nd.

Turbo Pascal Reference Guide

Inc procedure

Inc procedure
Function

Declaration

Remarks

See also

Example

Increments a variable.

Inc(var x [; n: longint]

x is an ordinal-type variable, and n is an integer-type
expression. x is incremented by 1, or by n if n is
specified; that is, Inc (x) corresponds to x := x+l, and
Inc(x,n) corresponds to x := x+n.

Inc generates optimized code and is especially useful for
use in tight loops.

Dec, Pred, Succ

var
IntVar: integer;
LongintVar: longint;

begin
Inc(IntVar)i
Inc(LongintVar, 5);

end.

{ IntVar := IntVar + 1 }
{ LongintVar := LongintVar + 5 }

InitGraph procedure Graph
Function

Declaration

Remarks

Initializes the graphics system and puts the hardware
into graphics mode.

InitGraph(var GraphDriver: integer;
var GraphMode: integer; PathToDriver: string)

Both GraphDriver and GraphMode are var parameters.

If GraphDriver is equal to Detect (0), a call is made to any
user-defined autodetect routines (see InstallUserDriver)
and then DetectGraph. If graphics hardware is detected,
the appropriate graphics driver is initialized, and a
graphics mode is selected.

If GraphDriver is not equal to 0, the value of GraphDriver
is assumed to be a driver number; that driver is selected,
and the system is put into the mode specified by
GraphMode. If you override autodetection in this manner,
you must supply a valid GraphMode parameter for the
driver requested.

Chapter 76, Turbo Pascal Reference Lookup 297

InitGraph procedure

298

PathToDriver specifies the directory path where the
graphics drivers can be found. If PathToDriver is null, the
driver files must be in the current directory.

Normally, InitGraph loads a graphics driver by allocating
memory for the driver (through GraphGetMem), then
loads the appropriate .BCI file from disk. As an
alternative to this dynamic loading scheme, you can link
a graphics driver file (or several of them) directly into
your executable program file. You do this by first
converting the .BGI file to an .OBJ file (using the BINOBJ
utility), then placing calls to RegisterBGldriver in your
source code (before the call to InitGraph) to register the
graphics driver(s). When you build your program, you
must link the .OBJ files for the registered drivers. You
can also load a BCI driver onto the heap and then
register it using Register BGldriver.

If memory for the graphics driver is allocated on the
heap using GraphGetMem, that memory is released when
a call is made to CloseGraph.

After calling InitGraph, GraphDriver will be set to the
current graphics driver, and GraphMode will be set to the
current graphics mode.

If an error occurred, both GraphDriver and GraphResult (a
function) will return one of the following values:

-2 Cannot detect a graphics card
-3 Cannot find driver file
-4 Invalid driver
-5 Insufficient memory to load driver
-10 Invalid graphics mode for selected driver

InitGraph resets all graphiCS settings to their defaults
(current pointer, palette, color, viewport, etc.).

You can use InstallDriver to install a vendor-supplied
graphics driver (see InstallUserDriver for more
information).

Several useful constants are defined for each graphics
driver supported:

Turbo Pascal Reference Guide

Restrictions

See also

Example

InitGraph procedure

Error Graphics Error Corresponding
Code Constant Error Message String

0 grOk No error
-1 grNoInitGraph (BGI) graphics not installed

(use InitGraph)
-2 grNotDetected Graphics hardware not

detected
-3 grFileNotFound Device driver file not found
-4 grInvalidDriver Invalid device driver file
-5 grNoLoadMem Not enough memory to load

driver
--6 grNoScanMem Out of memory in scan fill
-7 grNoFloodMem Out of memory in flood fill
-8 grFontNotFound Font file not found
-9 grNoFontMem Not enough memory to load

font
-10 grInvalidMode Invalid graphics mode for

selected driver
-11 grError Graphics error
-12 grIOerror Graphics I/O error
-13 grInvalidFont Invalid font file
-14 grInvalidFontNum Invalid font number

A similar routine exists in Turbo C 2.0.

Must be in graphics mode. If you use the Borland
Graphics Interface (BGI) on a Zenith Z-449 card, Turbo
Pascal's autodetection code will always select the
640x480 enhanced EGA mode. If this mode isn't
compatible with your monitor, select a different mode in
the InitGraph call. Also, Turbo Pascal cannot autodetect
the IBM 8514 graphics card (the autodetection logic
recognizes it as VGA). Therefore, to use the IBM 8514
card, the GraphDriver variable must be assigned the
value IBM8514 (which is defined in the Graph unit)
when InitGraph is called. You should not use DetectGraph
(or Detect with InitGraph) with the IBM 8514 unless you
want the emulated VGA mode.

CloseGraph, DetectGraph, InstallUserDriver,
RestoreCrtMode, SetGraphMode, GraphResult,
SetGraphBufSize, RegisterBGldriver, RegisterBGlfont,
GraphDefaults

uses Graph;
var

Chapter 16, Turbo Pascal Reference Lookup 299

InitGraph procedure

grDriver: integer;
grMode : integer;
ErrCode : integer;

begin
grDriver := Detect;
InitGraph(grDriver,grMode,");
ErrCode := GraphResult;
if ErrCode = grOk than

begin {Do graphics }
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

and
alaa

Writeln('Graphics error:', GraphErrorMsg(ErrCode));
and.

Insert procedure
Function

Declaration

Remarks

See also

Example

Inserts a substring into a string.

Insert(source: string; vu s: string; index: integer)

source is a string-type expression. s is a string-type
variable of any length. index is an integer-type
expression. Insert inserts source into s at the indexth
position. If the resulting string is longer than 255
characters, it is truncated after the 255th character.

Delete, Copy, Concat, Length, Pos

var
s: string;

begin
s := 'Honest Lincoln';
Insert('Abe " s, 8);

and.
'Honest Abe Lincoln'

InsLine procedure Crt
Function

Declaration

300

Inserts an empty line at the cursor position.

InsLine

Turbo Pascal Reference Guide

Remarks

See also

InsLine procedure

All lines below the inserted line are moved down one
line, and the bottom line scrolls off the screen (using the
BIOS scroll routine).

All character positions are set to blanks with the cur­
rently defined text attributes. Thus, if TextBackground is
not black, the new line becomes the background color.

This procedure is window-relative:

Window(1,lO,60,20);
InsLine;

and will insert a line 60 columns wide at absolute
coordinates 0,10).

DelLine, Window

InstallUserDriver function Graph
Function

Declaration

Result type

Remarks

Installs a vendor-added device driver to the BGI device
driver table.

InstallUserDriver(Name : string;
AutoDetectPtr : pointer)

integer

InstallUserDriver allows you to use a vendor-added
device driver. The Name parameter is the file name of the
new device driver. AutoDetectPtr is a pointer to an op­
tional autodetect function that may accompany the new
driver. This autodetect function takes no parameters and
returns an integer value.

If the internal driver table is full, InstallUserDriver
returns a value of -11 (grError); otherwise
InstallUserDriver assigns and returns a driver number for
the new device driver.

There are two ways to use this vendor-supplied driver.
Let's assume you have a new video card called the
Spiffy Graphics Array (SGA) and that the SGA
manufacturer provided you with a BGI device driver
(SGA.BGI). The easiest way to use this driver is to install
it by calling InstallUserDriver and then passing the
return value (the assigned driver number) directly to
InitGraph:

Chapter 76, Turbo Pascal Reference Lookup 301

InstaliUserDriver function

302

var
Driver, Mode : integer;

begin
Driver := InstallUserDriver('SGA', Nil);
if Driver = grError then { Table full? }

Halt(l);
Mode := 0; { Every driver supports mode of 0 }
InitGraph(Driver, Mode, "); {Override autodetection }

{ Do graphics ••• }
end.

The nil value for the AutoDetectPtr parameter in the
InstallUserDriver call indicates there isn't an autodetect
function for the SGA.

The other, more general way to use this driver is to link
in an autodetect function that will be called by InitGraph
as part of its hardware-detection logic. Presumably, the
manufacturer of the SGA gave you an autodetect
function that looks something like
this:

{$F+}

function DetectSGA : integer;
var Found : boolean;
begin

DetectSGA := grError;
Found := •••
if not Found then

{ Assume it's not there}
{ Look for the hardware }

Exit; { Returns -11 }
DetectSGA := 3; Return recommended default video mode }

end;
{$F-}

DetectSGA's job is to look for the SGA hardware at run
time. If an SGA is not detected, DetectSGA returns a
value of -11 (grError); otherwise, the return value is the
default video mode for the SGA (usually the best mix of
color and resolution available on this hardware).

Note that this function takes no parameters, returns a
signed, integer-type value, and must be a far call. When
you install the driver (by calling InstallUserDriver), you
pass the address of DetectSGA along with the device
driver's file name:

Turbo Pascal Reference Guide

See also

Example

InstaliUserDriver function

'fU'

Driver, Mode : integer;
begin

Driver := InstallUserDriver('SGA',
if Driver = grError thaD

Halt(l);
Driver := Detect;

@DetectSGA) ;
{ Table full?

{ Discard SGA driver I; trust autodetection }
InitGraph(Driver, Mode, ");

w.
After you install the device driver file name and the
SGA autodetect function, you call InitGraph and let it go
through its normal autodetection process. Before
InitGraph calls its built-in autodetection function
(DetectGraph), it first calls DetectSGA. If DetedSGA
doesn't find the SGA hardware, it returns a value of -11
(grError) and InitGraph proceeds with its normal
hardware detection logic (which may include calling
any other vendor-supplied autodetection functions in
the order in which they were lIinstalled"). If, however,
DetectSGA determines that an SGA is present, it returns
a nonnegative mode number, and InitGraph locates and
loads SGA.BGI, puts the hardware into the default
graphics mode recommended by DetectSGA, and finally
returns control to your program.

A similar routine exists in Turbo C 2.0.

GraphResult, InitGraph, InstallUserFont, RegisterBGlfont,
RegisterBGldriver

us.s
Graph;

Driver, Mode,
TestDri ver,
ErrCode : integer;

{$F+}
function TestDetect : integer;
{ Autodetect function: assume hardware is always present;

return value = recommended default mode }
begin

TestDetect := 1; { Default mode = 1
ad;
{$F-}

begin
{ Install the driver }

Chapter 16, Turbo Pascal Reference Lookup 303

InstaliUserDriver function

TestDriver := InstallUserDriver('TEST', @TestDetect);
if GraphResult <> grOk than
begin

Writeln('Error installing TestDriver');
Halt (1) ;

and;
Driver := Detect; { Put in graphics mode }
InitGraph(Driver, Mode, ");
ErrCode := GraphResult;
if ErrCode <> grOk than
begin

Writeln('Error during Init: " ErrCode);
Halt (1);

and;
OutText('Installable drivers supported ••• ');
Readln;
Closegraph;

od.

InstallUserFont function Graph
Function

Declaration

Result type

Remarks

See also

Example

304

Installs a new font not built into the BGI system.

function InstallUserFont(FontFileName : .tring)

integer

FontFileName is the file name of a stroked font.
InstallUserFont returns the font ID number that can be
passed to SetTextStyle to select this font. If the internal
font table is full, a value of 0 (DefaultFont> will be
returned.

A similar routine exists in Turbo C 2.0.

InstallUserDriver, RegisterBGldriver, RegisterBGlfont,
SetTextStyle

u.a.
Graph;

var
Driver, Mode: integer;
TestFont : integer;

begin
TestFont := InstallUserFont('TEST'); { Install the font }
if GraphResult <> grOk tho
begin

Writeln('Error installing TestFont (using DefaultFont)');
Readln;

Turbo Pascal Reference Guide

end;
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult <> grOk then

Halt (l);

InstaliUserFont function

{ Put in graphics mode }

SetTextStyle(TestFont, HorizDir, 2); { Use new font)
OutText('Installable fonts supported ••. ');
Readln;
Closegraph;

end.

Int function
Function

Declaration

Result type

Remarks

See also

Example

Returns the integer part of the argument.

Int(x: real)

real

x is a real-type expression. The result is the integer part
of x, that is, x rounded toward zero.

Frac, Round, Trunc

var r: real;
begin

r := Int(123.456); {123.0
r := Int(-123.456); {-123.0

end.

Intr procedure Dos
Function

Declaration

Remarks

Executes a specified software interrupt.

Intr(IntNo: byte; var Regs: Registers)

IntNo is the software interrupt number (0 .. 255). Registers
is a record defined in DOS:

type
Registers = record ca.. integer of

end;

0: (AX,BX,CX,DX,BP,SI,DI,DS,ES,
Flags: word);

1: (AL,AH,BL,BH,CL,CH,DL,DH: byte);

Chapter 76. Turbo Pascal Reference Lookup 305

Intr procedure

Restrictions

Differences

See also

Before executing the specified software interrupt, Intr
loads the 8086 CPU's AX, BX, CX, DX, BP, SI, 01, DS,
and ES registers from the Regs record. When the
interrupt completes, the contents of the AX, BX, CX, DX,
BP, SI, DI, DS, ES, and Flags registers are stored back
into the Regs record.

For details on writing interrupt procedures, refer to the
section "Interrupt Handling" in Chapter 15, "Inside
Turbo Pascal."

Software interrupts that depend on specific values in SP
or SS on entry, or modify SP and SS on exit, cannot be
executed using this procedure.

In 3.0, the Registers variable passed to Intr was a user­
defined type. In 5.0, the Registers variable must be of
type Registers defined in the Dos unit.

MsDos

IOResult function
Function

Declaration

Result type

Remarks

Differences

Example

306 '

Returns an integer value that is the status of the last I/O
operation performed.

IOResult

word

I/O-checking must be off-{$I-}-in order to trap I/O
errors using IOResult. If an I/O error occurs and 1/0-
checking is off, all subsequent I/O operations are
ignored until a call is made to IOResult. A call to
IOResult clears its internal error flag.

The codes returned are summarized in Appendix D,
"Error Messages and Codes." A value of 0 reflects a
successful I/O operation.

In 3.0, return codes were mapped differently.

var f: file of byte;
begin

{ Get file name command line }
Assign(f, ParamStr(l));
{$I-}
Reset (f);

Turbo Pascal Reference Guide

IOResult function

{$It}

if IOResult = 0 then
Writeln('File size in bytes: " FileSize(f))

else
Writeln('File not found');

end.

Keep procedure Dos
Function

Declaration

Remarks

Restrictions

See also

Keep (or Terminate Stay Resident) terminates the
program and makes it stay in memory.

Keep (ExitCode: word)

The entire program stays in memory-including data
segment, stack segment, and heap-so be sure to specify
a maximum size for the heap using the $M compiler
directive. The ExitCode corresponds to the one passed to .
the Halt standard procedure.

Use with care! Terminate Stay Resident (TSR) programs
are complex and no other support for them is provided.
Refer to the M&-DOS technical documentation for more
information.

DosExifCode

KeyPressed function Crt

Function

Declaration

Result type

Remarks

Differences

See also

Returns True if a key has been pressed on the keyboard;
False otherwise.

KeyPressed

boolean

The character (or characters) is left in the keyboard
buffer. KeyPressed does not detect shift keys like Shift, Alt,
NumLock, and so on.

In 3.0, break-checking ($C-} had to be off; 5.0 has no such
restriction.

ReadKey

Chapter 76, Turbo Pascal Reference Lookup 307

Length function

Example ulel Crt;
begin

repeat
Write('Xx'); { Fill the screen until a key is typed}

until KeyPressed;
end.

Length function
Function

Declaration

Result type

Remarks

See also

Example

Returns the dynamic length of a string.

Length(s: Itring)

integer

s is a string-type expression. The result is the length of s.

Concat, Copy, Delete, Insert, Pos

var f: text; s: Itring;
begin

Assign(f, 'gary.pas');
Reset(f);
Readln(f, s);
Writeln (' '", s, , '")
Writeln('length = " length(s);

end.

Line procedure Graph
Function

Declaration

Remarks

308

Draws a line from the (xl, yl) to (x2, y2).

Line(xl, yl, x2, y2: integer)

Ora ws a line in the style and thickness defined by
SetLineStyle and uses the color set by SetColor. Use
Set WriteMode to determine whether the line is copied or
XOR'd to the screen.

Note that

MoveTo(lOO,lOO);
LineTo(200,200);

is equivalent to

Line(lOO,lOO,200,200);

Turbo Pascal Reference Guide

Restrictions

See also

Example

Une procedure

MoveTo(200,200);

Use LineTo when the current pointer is· at one endpoint
of the line. If you want the current pointer updated
automatically when the line is drawn, use LineRel to
draw a line a relative distance from the CPo Note that
Line doesn't update the current pointer.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode. Also, for drawing a hori­
zontalline, Bar is faster than Line.

GetLineStyle, LineRel, LineTo, MoveTo, Rectangle, SetColor,
SetLineStyle, Set WriteMode

uae. Crt, Graph;
Tar

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Randomize;
repeat

Line(Random(200),Random(200),Random(200),Random(200));
until KeyPressed;
Readln;
CloseGraph;

end.

LineRel procedure Graph
Function

Declaration

Remarks

Draws a line to a point that is a relative distance from
the current pointer (CP).

LineRel(Dx, Dy: integer);

LineRel will draw a line from the current pointer to a
point that is a relative (Dx,Dy) distance from the current
pointer. The current line style and pattern, as set by
SetLineStyle, are used for drawing the line and uses the
color set by Set Color . Relative move and line commands
are useful for drawing a shape on the screen whose
starting point can be changed to draw the same shape in
a different location on the screen. Use SetWriteMode to

Chapter 16, Turbo Pascal Reference Lookup 309

UneRel procedure

Restrictions

See also

Example

determine whether the line is copied or XOR'd to the
screen.

The current pointer is set to the last point drawn by
LineRel.

Must be in graphics mode.

A similar routine exists in Turbo C 2.0.

GetLineStyle, Line, LineTo, MoveRel, MoveTo, SetLineStyle,
SetWriteMode

u ... Graph;

Gd, Gm: integer;
begb

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
MoveTo(1,2);
LineRel(100, 100);
Readln;
CloseGraph;

end.

(Draw to the point (101,102) }

LineTo procedure Graph
Function

Declaration

Remarks

310

Draws a line from the current pointer to (x,y).

LineTo(x, y: integer)

Dra ws a line in the style and thickness defined by
SetLineStyle and uses the color set by SetColor. Use
SetWriteMode to determine whether the line is copied or
XOR'd to the screen.

Note that

MoveTo(100,100);
LineTo(200,200);

is equivalent to

Line(100,100,200,200);

The first method is slower and uses more code. Use
LineTo only when the current pointer is at one endpoint
of the line. Use LineRel to draw a line a relative distance

Turbo Pascal Reference Guide

Restrictions

See also

Example

LineTo procedure

from the CPo Note that the second method doesn't
change the value of the current pointer.

LineTo moves the current pointer to (x,y).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Line, LineRel, MoveTo, MoveRel, SetLineStyle, GetLineStyle,
SetWriteMode

u ... Crt, Graph;

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk than

Halt(l);
Randomize;
repeat

LineTo(Random(200),Random(200));
until KeyPressed;
Readln;
CloseGraph;

ud.

Ln function
Function

Declaration

Result type

Remarks

See Also

Returns the natural logarithm of the argument.

Ln(x: real)

real

x is a real-type expression. The result is the natural
logarithm of x.

Exp

Chapter 76, Turbo Pascal Reference Lookup 311

Lo function

Lo function
Function

Declaration

Result type

Remarks

See also

Example

Returns the low-order byte of the argument.

10(x)

byte

x is an expression of type integer or word. Lo returns the
low-order byte of x as an unsigned value.

Hi, Swap

var w: word;
begin

w := 10($1234); {$34}
end.

LowVideo procedure Crt
Function

Declaration

Remarks

Differences

See also

Example

312

Selects low-intensity characters.

10wVideo

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. LowVideo clears the
high-intensity bit of TextAttr's foreground color, thus
mapping colors 8-15 onto colors 0-7.

In 3.0, LowVideo always selected LightGray on black.

HighVideo, NormVideo, TextBackground, TextColor

u.e. Crt;
begb

TextAttr := White;
10wVideo;

end.
{ Color is now light gray }

Turbo Pascal Reference Guide

Mark procedure

Mark procedure
Function

Declaration

Remarks

Restrictions

See also

Records the state of the heap in a pointer variable.

Mark(var p: pointer)

p is a pointer variable of any pointer type. The current
value of the heap pointer is recorded in p, and can later
be used as an argument to Release.

Mark and Release cannot be used interchangeably with
Dispose and FreeMem unless certain rules are observed.
For a complete discussion of this topic, refer to the
section liThe Heap Manager" on page 181.

Dispose, FreeMem, GetMem, New, Release

MaxAvail function
Function

Declaration

Result type

Remarks

Differences

See also

Example

Returns the size of the largest contiguous free block in
the heap, corresponding to the size of the largest
dynamic variable that can be allocated at that time.

MaxAvail

longint

This number is calculated by comparing the sizes of all
free blocks below the heap pointer to the size of free
memory above the heap pointer. To find the total
amount of free memory on the heap, call MemAvail. Your
program can specify minimum and maximum heap
requirements using the $M compiler directive (see
Appendix B, "Compiler Directives").

In 3.0, the returned value was an integer that repre­
sented the size of the largest free block in paragraphs.

MemAvail

type
FriendRec = ~eco~d

var
p: pointer;

Name: .tring[30);
Age : byte;

end;

Chapter 76, Turbo Pascal Reference Lookup 313

MaxAvaii function

bagin
if MaxAvail < SizeOf(FriendRec) than

Writeln('Not enough memory')
alaa
begin

{ Allocate memory on heap }
GetMem(p, SizeOf(FriendRec));

and;
and.

MemAvail function
Function

Declaration

Result type

Remarks

Differences

See also

Example

Returns the sum of all free blocks in the heap.

MemAvail

longint

This number is calculated by adding the sizes of all free
blocks below the heap pointer to the size of free memory
above the heap pointer. Note that unless Dispose and
FreeMem were never called, a block of storage the size of
the returned value is unlikely to be available due to
fragmentation of the heap. To find the largest free block,
call MaxAvail. Your program can specify minimum and
maximum heap requirements using the $M compiler
directive (see Appendix B, "Compiler Directives").

In 3.0, the returned value was an integer that
represented the number of free paragraphs.

MaxAvail

begin
Writeln(MemAvail, , bytes available');
Writeln('Largest free block is " MaxAvail, ' bytes');

and.

MkDir procedure
Function

Declaration

314

Creates a subdirectory.

MkDir(s: string)

Turbo Pascal Reference Guide

Remarks

See also

Example

MkDir procedure

s is a string-type expression. A new subdirectory with
the path specified by s is created. The last item in the
path cannot be an existing file name.

With {$I-}, IDResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

RmDir, ChDir, GetDir

begin
{$I-}
{ Get directory name from command line }
MkDir(ParamStr(l));
if IOResult <> 0 then

Writeln('Cannot create directory')
else

Writeln('New directory created');
end.

Move procedure
Function

Declaration

Remarks

See also

Copies a specified number of contiguous bytes from a
source range to a destination range.

Move(var source, dest; count: word)

source and dest are variable references of any type. count
is an expression of type word. Move copies a block of
count bytes from the first byte occupied by source to the
first byte occupied by dest. No checking is performed, so
be careful with this procedure.

Note: When source and dest are in the same segment, that
is, when the segment parts of their addresses are equal,
Move automatically detects and compensates for any
overlap. Intrasegment overlaps never occur on statically
and dynamically allocated variables (unless they are
deliberately forced), and they are therefore not detected.

Whenever possible, use the SizeD! function to determine
the count.

FillChar

Chapter 16, Turbo Pascal Reference Lookup 315

MoveRel procedure

Example var
a: array[1 •• 4] of char;
b: longint;

begin
Move (a, b, SizeOf(a));

end.
{ SizeOf = safety! }

MoveRel procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

316

Moves the current pointer (CP) a relative distance from
its current location.

MoveRel(Dx, Dy: integer)

MoveRel moves the current pointer (CP) to a point that is
a relative (Dx,Dy) distance from the current pointer.
Relative move and line commands are useful for
drawing a shape on the screen whose starting point can
be changed to draw the same shape in a different
location on the screen.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetMaxX, GetMaxY, GetX, GetY, LineRel, LineTo, MoveTo

UI •• Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
MoveTo(1,2) ;
MoveRel (10, 10) ; { Move to the point (11, 12) }
PutPixel(GetX, GetY, GetMaxColor);
Readln;
CloseGraph;

end.

Turbo Pascal Reference Guide

MoveTo procedure

MoveTo procedure Graph
Function

Declaration

Remarks

See also

Example

Moves the current pointer (CP) to (x,y).

MoveTo(x, y: integer)

The CP is similar to a text mode cursor except that the
CP is not visible. The following routines move the CP:

ClearDevice MoveReI
Clear ViewPort MoveTo
GraphDefaults OutText
InitGraph SetGraphMode
LineRel Set ViewPort
LineTo

If a viewport is active, the CP will be viewport-relative
(the x and y values will be added to the viewport's xl
and yl values). The CP is never clipped at the current
viewport's boundaries.

A similar routine exists in Turbo C 2.0.

GetMaxX, GetMaxY, GetX, GetY, MoveRel

11... Graph;

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk thaD

Halt (1);

MoveTo(O,O); { Upper left corner of viewport
LineTo(GetMaxX, GetMaKY);
Readln;
CloseGraph;

ad.

Chapter 16, Turbo Pascal Reference Lookup 317

MsDos procedure

MsDos procedure Dos
Function

Declaration

Remarks

Restrictions

Differences

See also

Executes a DOS function call.

MsDos(var Regs: Registers)

The effect of a call to MsDos is the same as a call to Intr
with an IntNo of $21. Registers is a record declared in the
Dos unit:

type
Registers = record

ca.. integer of
0: (AX,BX,CX,DX,BP,SI,OI,OS,ES,

Flags: word);
1: (AL,AH,BL,BH,CL,CH,OL,DH: byte);

ud;

Software interrupts that depend on specific calls in 5P or
55 on entry or modify 5P and 55 on exit cannot be
executed using this procedure.

In 3.0, no type-checking was performed on the Registers
parameter.

Intr

New procedure
Function

Declaration

Remarks

See also

318

Creates a new dynamic variable and sets a pointer
variable to point to it.

New(var p: pointer)

p is a pointer variable of any pointer type. The size of the
allocated memory block corresponds to the size of the
type that p points to. The newly created variable can be
referenced as pA. If there isn't enough free space in the
heap to allocate the new variable, a run-time error
occurs. (It is possible to avoid a run-time error in this
case; see ''The Heap Error Function" on page 187.)

Dispose, FreeMem, GetMem, Release

Turbo Pascal Reference Guide

NormVideo procedure

NormVideo procedure Crt
Function

Declaration

Remarks

Differences

See also

Selects the original text a ttribute read from the cursor
location at startup.

NormVideo

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. NormVideo restores
TextAttr to the value it had when the program was
started.

In 3.0, NormVideo and HighVideo were identical; see
High Video.

HighVideo, LowVideo, TextColor, TextBackground

NoSound procedure Crt
Function

Declaration

Remarks

See also

Turns off the internal speaker.

NoSound

The following program fragment emits a 440-hertz tone
for half a second:

Sound(440)i Delay(SOO)i NoSoundi

Sound

Odd function
Function

Declaration

Result type

Remarks

Tests if the argument is an odd number.

Odd(x: longint)

boolean

x is a longint-type expression. The result is True if x is an
odd number, and False if x is an even number.

Chapter 76, Turbo Pascal Reference Lookup 319

Ofs function

Ofs function
Function

Declaration

Result type

Remarks

See also

Returns the offset of a specified object.

Ofs(x)

word

x is any variable, or a procedure or function identifier.
The result of type word is the offset part of the address
ofx.

Addr, Seg

Ord function
Function

Declaration

Result type

Remarks

See also

Returns the ordinal number of an ordinal-type value.

Ord(x)

longint

x is an ordinal-type expression. The result is of type
longint and its value is the ordinality of x.

Chr

OutText procedure Graph
Function

Declaration

Remarks

320

Sends a string to the output device at the current
pointer.

OutText(TextString: string)

TextString is output at the current pointer using the
current justification settings. TextString is always
truncated at the viewport border if it is too long. If one
of the stroked fonts is active, TextString is truncated at
the screen boundary if it is too long. If the default (bit­
mapped) font is active and the string is too long to fit on
the screen, no text is displayed.

OutText uses the font set by SetTextStyle. In order to
maintain code compatibility when using several fonts,

Turbo Pascal Reference Guide

OutText procedure

use the TextWidth and TextHeight calls to determine the
dimensions of the string.

OutText uses the output options set by SetTextJustify
(justify, center, rotate 90 degrees, and so on).

The current pointer (CP) is only updated by OutText if
the direction is horizontal, and the horizontal
justification is left. Text output direction is set by
SetTextStyle (horizontal or vertical); text justification is
set by SetTextJustify (CP at the left of the string, centered
around CP, or CP at the right of the string-written
above CP, below CP, or centered around CP). In the
following example, block #1 outputs ABCDEF and
moves CP (text is both horizontally output and left­
justified); block #2 outputs ABC with DEF written right
on top of it because text is right-justified; similarly, block
#3 outputs ABC with DEF written right on top of it
because text is written vertically.

program CPupdate;
us. Graph;
var

Driver, Mode: integer;
begin

Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 than

Halt (1) ;

{U}

MoveTo(O, 0);
SetTextStyle(DefaultFont, HorizDir, 1);
SetTextJustify(LeftText, TopText);
OutText('ABC');
OutText('DEF');
{ #2 }
MoveTo(100, 50);
SetTextStyle(DefaultFont, HorizDir, 1);
SetTextJustify(RightText, TopText);
Out Text (' ABC') ;
OutText('DEF');
{ f3 }
MoveTo(100, 100);
SetTextStyle(DefaultFont, VertDir, 1);
SetTextJustify(LeftText, TopText);
Out Text (' ABC');
OutText('DEF');
Readln;
CloseGraph;

end.

Chapter 76, Turbo Pascal Reference Lookup

{ CharSize = 1 }

{ CP is updated }
{ CP is updated }

{ CharSize = 1 }

{ CP is updated }
{ CP is updated }

{ CharSize = 1 }

{ CP is NOT updated }
{ CP is NOT updated }

321

OutText procedure

Restrictions

See also

Example

The CP is never updated by OutTextXY.

The default font (8x8 bit-mapped) is not clipped at the
screen edge. Instead, if any part of the string would go
off the screen, no text is output. For example, the
following statements would have no effect:

SetViewPort(O, 0, GetMaxX, GetMaxY, ClipOn);
SetTextJustify(LeftText, TopText);
OutTextXY(-S, 0); { -5,0 not on screen
OutTextXY(GetMaxX - 1,0, 'ABC'); { Part of 'A',

{ All of 'BC' off screen

The "stroked" fonts are clipped at the screen edge,
however.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

OutTextXY, SetTextStyle, SetTextJustify, GetTextSettings,
TextHeight, TextWidth, SetUserCharSize

uses Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Out Text ('Easy to use');
Readln;
CloseGraph;

end.

OutTextXY procedure Graph
Function

Declaration

Remarks

322

Sends a string to the output device.

OutTextXY(X,Y: integer; TextString: string)

TextString is output at (X,Y). TextString is always
truncated at the viewport border if it is too long. If one
of the stroked fonts is active, TextString is truncated at
the screen boundary if it is too long. If the default (bit­
mapped) font is active and the string is too long to fit on
the screen, no text is displayed.

Turbo Pascal Reference Guide

Restrictions

See also

Example

OutTextXY procedure

Use OutText to output text at the current pointer; use
OutTextXY to output text elsewhere on the screen.

OutTextXY uses the font set by SetTextStyle. In order to
maintain code compatibility when using several fonts,
use the TextWidth and TextHeight calls to determine the
dimensions of the string.

OutTextXY uses the output options set by SetTextJustify
(justify, center, rotate 90 degrees, and so forth).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

OutText, SetTextStyle, SetTextJustify, GetTextSetting,
TextHeight, TextWidth, SetUserCharSize

uses Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
MoveTo(O, 0);
OutText('Inefficient');
Readln;
OutTextXY(GetX, GetY, 'Also inefficient');
Readln;
ClearDevice;
OutTextXY(O, 0, 'Perfect!');
Readln;
CloseGraph;

end.

{ Replaces above }

OvrClearBuf procedure Overlay
Function

Declaration

Remarks

Clears the overlay buffer.

OvrClearBuf

Upon a call to OvrClearBuf, all currently loaded overlays
are disposed from the overlay buffer. This forces
subsequent calls to overlaid routines to reload the
overlays from the overlay file (or from EMS). If
OvrClearBuf is called from an overlay, that overlay will

Chapter 16, Turbo Pascal Reference Lookup 323

OvrClearBuf procedure

See also

immediately be reloaded upon return from OvrClearBuf.
The overlay manager never requires you to call
OvrClear Buf; in fact, doing so will decrease performance
of your application, since it forces overlays to be
reloaded. OvrClearBuf is solely intended for special use,
such as temporarily reclaiming the memory occupied by
the overlay buffer.

OvrGetBuf, OvrSetBuf

OvrGetBuf function Overlay
Function

Declaration

Result type

Remarks

See also

Example

324

Returns the current size of the overlay buffer.

OvrGetBuf

longint

The size of the overlay buffer is set through a call to
OvrSetBuf. Initially, the overlay buffer is as small as
possible, corresponding to the size of the largest overlay.
A buffer of this size is automatically allocated when an
overlaid program is executed. (Note: The initial buffer
size may be larger than 64K, since it includes both code
and fix-up information for the largest overlay.)

Ovrlnit, OvrlnitEMS, OvrSetBu/

{$M 16384,65536,655360}
us .. Overlay;
conat

ExtraSize = 49152; {48K}
begin

Ovrlnit('EDITOR.OVR');
Writeln('Initial size of overlay buffer is "

OvrGetBuf,' bytes.');
OvrSetBuf(OvrGetBuf+ExtraSize);
Writeln('Overlay buffer now increased to "

OvrGetBuf,' bytes.');
end.

Turbo Pascal Reference Guide

Ovrlnit procedure

Ovrlnit procedure Overlay
Function

Declaration

Remarks

See also

Example

Initializes the overlay manager and opens the overlay
file.

OvrInit(FileName: string)

If the file name parameter does not specify a drive or a
subdirectory, the overlay manager searches for the file in
the current directory, in the directory that contains the
.EXE file (if running under DOS 3.x), and in the
directories specified in the PATH environment variable.

Errors are reported in the OvrResult variable. ovrOk
indicates success. ovrError means that the overlay file is
of an incorrect format, or that the program has no
overlays. ovrNotFound means that the overlay file could
not be located.

In case of error, the overlay manager remains
uninstalled, and an attempt to call an overlaid routine
will produce run-time error 208 (Overlay manager not
installed).

Ovrlnit must be called before any of the other overlay
manager procedures.

OvrGetBuf, OvrlnitEMS, OvrSetBuf

use. Overlay;
begin

OvrInit('EDITOR.OVR');
if OvrResult<>ovrOk then
begin

case OvrResult of
ovrError: Writeln('Program has no overlays.')i
ovrNotFound: Writeln('Overlay file not found.');

end;
Halt(l)i

end;
end.

OvrlnitEMS procedure Overlay
Function

Declaration

Loads the overlay file into EMS if possible.

OvrInitEMS

Chapter 76, Turbo Pascal Reference Lookup 325

OvrlnitEMS procedure

Remarks

See also

Example

326

If an EMS driver can be detected and if enough EMS
memory is available, OvrlnitEMS loads all overlays into
EMS and closes the overlay file. Subsequent overlay
loads are reduced to fast in-memory transfers.
OvrlnitEMS installs an exit procedure, which
automatically deallocates EMS memory upon termina­
tion of the program.

Errors are reported in the OvrResult variable. ovrOk
indicates success. ovrError means that Ovrlnit failed or
was not called. ovrIOError means that an I/O error
occurred while reading the overlay file. ovrNoEMSDriver
means that an EMS driver could not be detected.
ovrNoEMSMemory means that there is not enough free
EMS memory available to load the overlay file.

In case of error, the overlay manager will continue to
function, but overlays will be read from disk.

The EMS driver must conform to the Lotus/lntel/
Microsoft Expanded Memory Specification (EMS). If you
are using an EMS-based RAM disk, make sure that the
command in the CONFIG.SYS file that loads the RAM­
disk driver leaves some unallocated EMS memory for
your overlaid applications.

OvrGetBuf, Ovrlnit, OvrSetBuf

uses Overlay;
begin

Ovrlnit('EDITOR.OVR');
if OvrResult<>ovrOk then
begin

Writeln('Overlay manager initialization failed.');
Halt (1) ;

end;
OvrlnitEMS;
case OvrResult of

ovrIOError: Writeln('Overlay file I/O error.');
ovrNoEMSDriver: Writeln('EMS driver not installed.');
ovrNoEMSMemory: Writeln('Not enough EMS memory.');

else
Writeln('Using EMS for faster overlay swapping.');

end;
end;

Turbo Pascal Reference Guide

OvrSetBuf procedure

OvrSetBuf procedure Overlay
Function

Declaration

Remarks

See also

Example

Sets the size of the overlay buffer.

OvrSetBuf(BufSize: longint)

BufSize must be larger than or equal to the initial size of
the overlay buffer, and less than or equal to MemAvail +
OvrGetBuf. The initial size of the overlay buffer is the
size returned by OvrGetBufbefore any calls to OvrSetBuf.

If the specified size is larger than the current size,
additional space is allocated from the beginning of the
heap, thus decreasing the size of the heap. Likewise, if
the specified size is less than the current size, excess
space is returned to the heap.

OvrSetBuf requires that the heap be empty; an error is
returned if dynamic variables have already been allo­
cated using New or GetMem. For this reason, make sure
to call OvrSetBuf before the Graph unit's InitGraph
procedure; InitGraph allocates memory on the heap
and-once it has done so-all calls to OvrSetBuf will be
ignored.

If you are using OvrSetBuf to increase the size of the
overlay buffer, you should also include a $M compiler
directive in your program to increase the minimum size
of the heap accordingly.

Errors are reported in the OvrResult variable. ovrOk
indicates success. ovrError means that Ovrlnit failed or
was not called, that BufSize is too small, or that the heap
is not empty. ovrNoMemory means that there is not
enough heap memory to increase the size of the overlay
buffer.

OvrGetBuf, Ovrlnit, OvrlnitEMS

{$M 16384,65536,655360}
uses Overlay;
const

ExtraSize = 49152; {48K}
begin

Ovrlnit('EDITOR.OVR');
OvrSetBuf(OvrGetBuf+ExtraSize);

end.

Chapter 76, Turbo Pascal Reference Lookup 327

PackTime procedure

PackTime procedure Dos
Function

Declaration

Remarks

See also

Converts a DateTime record into a 4-byte, packed date­
and-time longint used by SetFTime.

PackTime(var DT: DateTime; var Time: longint)

DateTime is a record declared in the Dos unit:

DateTime = record
Year, Month, Day, Hour, Min, Sec: word;

end;

The fields of the DateTime record are not range-checked.

UnpackTime, GetFTime, SetFTime, GetTime, SetTime

ParamCount function
Function

Declaration

Result type

Remarks

See also

Example

Returns the number of parameters passed to the pro­
gram on the command line.

ParamCount

word

Blanks and tabs serve as separators.

ParamStr

begin
if ParamCount < 1 then

Writeln('No parameters on command line')
elle

Writeln(ParamCount, , parameter(s)');
end.

ParamStr function
Function

Declaration

Resuittype

328

Returns a specified command-line parameter.

ParamStr (index)

string

Turbo Pascal Reference Guide

Remarks

See also

Example

Pi function
Function

Declaration

Result type

Remarks

Differences

ParamStr function

index is an expression of type word. ParamStr returns the
indexth parameter from the command line, or an empty
string if index is zero or greater than ParamCount. With
DOS 3.0 or later, ParamStr(O) returns the path and file
name of the executing program (for example, C: \ TP\
MYPROG.EXE).

ParamCount

var i: word;
begin

for i := 1 to ParamCount do
Writeln(ParamStr(i));

end.

Returns the value of Pi (3.1415926535897932385).

Pi

real

Precision varies, depending on whether the compiler is
in 8087 (80287, 80387) or software-only mode.

In 3.0, Pi was a constant.

PieSlice procedure Graph
Function

Declaration

Remarks

Draws and fills a pie slice, using (X,Y) as the center
point and drawing from start angle to end angle.

PieSlice(x, y: integer; StAngle, EndAngle, Radius: word)

The pie slice is outlined using the current color, and
filled using the pattern and color defined by SefFillStyle
or SetFillPattern.

Each graphics driver contains an aspect ratio that is used
by Circle, Are, and Pieslice. A start angle of 0 and an end
angle of 360 will draw and fill a complete circle. The
angles for Are, Ellipse, and PieS lice are counterclockwise
with 0 degrees at 3 o'clock, 90 degrees at 12 o'clock, and
soon.

Chapter 76, Turbo Pascal Reference Lookup 329

PieSlice procedure

Restrictions

See also

Example

If an error occurs while filling the pie slice, GraphResult
will return a value of -6 (grNoScanMem).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Arc, Circle, Ellipse, FillEllipse, GetArcCoords,
GetAspectRatio, Sector, SetFillStyle, SetFillPattern,
SetGraphBu/Size

uses Graph;
const

Radius = 30;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

PieSlice(100, 100, 0, 270, Radius);
Readln;
CloseGraph;

end.

Pos function
Function

Declaration

Result type

Remarks

See also

Example

330

Searches for a substring in a string.

Pos(substr, s: string)

byte

substr and 5 are string-type expressions. Pos searches for
substr within 5, and returns an integer value that is the
index of the first character of substr within 5. If substr is
not found, Pos returns zero.

Concat, Copy, Delete, Insert, Length

var s: string;
begin

s :=' 123.5';
{ Convert spaces to zeroes
while Pos(' " s) > 0 do

s[Pos(' " s)] := '0';
end.

Turbo Pascal Reference Guide

Pred function

Pred function
Function

Declaration

Resu}ttype

Remarks

See also

Returns the predecessor of the argument.

Pred(x)

Same type as parameter.

x is an ordinal-type expression. The result, of the same
type as x, is the predecessor of x.

Succ, Dec, Inc

Ptr function
Function

Declaration

Result type

Remarks

See also

Example

Converts a segment base and an offset address to a
pointer-type value.

Ptr(Seg, Ofs: word)

pointer

Seg and Dis are expressions of type word. The result is a
pointer that points to the address given by Seg and Ofs.
Like nil, the result of Ptr is assignment-compatible with
all po in ter types.

The function result may be dereferenced and typecast:

if Byte(Ptr($40, $49)A) = 7 then
Writeln('Video mode = mono');

Addr, Dis, Seg

var p: "byte;
begin

p := Ptr($40, $49);
Writeln('Current video mode is " pAl;

end.

PutImage procedure Graph
Function

Declaration

Puts a bit image onto the screen.

Putlmage(x, y: integer; var BitMap; BitBlt: word)

Chapter 76, Turbo Pascal Reference Lookup 331

Putlmage procedure

Remarks (x,y) is the upper left corner of a rectangular region on
the screen. BitMap is an untyped parameter that contains
the height and width of the region, and the bit image
that will be put onto the screen. BitBlt specifies which
binary operator will be used to put the bit image onto
the screen.

The following constants are defined:

const
CopyPut = 0; { MOV }
XORPut = 1; { XOR }
OrPut = 2; { OR }

AndPut = 3; { AND }
NotPut = 4; { NOT }

Each constant corresponds to a binary operation. For
example, PutImage(x,y,BitMap,NormalPut) puts the image
stored in BitMap at (x,y) using the assembly language
MOV instruction for each byte in the image.

Similarly, PutImage(x,y,BitMap,XORPut) puts the image
stored in BitMap at (x,y) using the assembly language
XOR instruction for each byte in the image. This is an
often-used animation technique for "dragging" an
image around the screen.

PutImage(x,y,Bitmap,NotPut) inverts the bits in BitMap
and then puts the image stored in BitMap at (x, y) using
the assembly language MOV for each byte in the image.
Thus, the image appears in inverse video of the original
BitMap.

Note that Putlmage is never clipped to the viewport
boundary. Moreover-with one exception-it is not
actually clipped at the screen edge either. Instead, if any
part of the image would go off the screen, no image is
output. In the following example, the first image would
be output, but the middle three Putlmage statements
would have no effect:

program NoClip;
us.. graph;
var

Driver, Mode: integer;
p: pointer;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 thaD

332 Turbo Pascal Reference Guide

Restrictions

See also

Example

Putlmage procedure

Halt(l);
SetViewPort(O, 0, GetMaxX, GetMaxY, clipon);
GetMem(p, ImageSize(O, 0, 99, 49));
PieSlice(50, 25, 0, 360, 45);
Get Image (0, 0, 99, 49, pAl; Width = 100, height = 50
ClearDevice;
PutImage(GetMaxX - 99, 0, (Will barely fit

pA, NormalPut);
PutImage(GetMaxX - 98, 0, x + height> GetMaxX

pA, NormalPut);
Put Image (-1, 0, -1,0 not on screen

pA, NormalPut)i
PutImage(O, -1, 0,-1 not on screen

pA, NormalPut);
PutImage(O, GetMaxY - 30, Will output 31 "lines"

pA, NormalPut)i
Readln;
CloseGraph;

end.

In the last PutImage statement, the height is dipped at
the lower screen edge, and a partial image is displayed.
This is the only time any clipping is performed on
Putlmage output.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetImage, ImageSize

u.e. Graph;
var

Gd, Gm: integer;
P: pointer;
Size: word;

begin
Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt (1);

Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10,20,30,40);
GetMem(P, Size); { Allocate memory on heap}
GetIrnage(10,20,30,40,PA);
Readln;
ClearDevice;
Putlrnage(lOO, 100, pA, NormalPut);
Readln;
CloseGraph;

end.

Chapter 76, Turbo Pascal Reference Lookup 333

Put Pixel procedure

PutPixel procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Plots a pixel at x,y.

PutPixel(x, y: integer; Pixel: word)

Plots a point in the color defined by Pixel at (x,y).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Getlmage, GetPixel, Putlmage

u.e. Crt, Graph;
var

Gd, Gm: integer;
Color : word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
Color := GetMaxColor;
Randomize;
repeat

PutPixel (Random (100) , Random (100) ,Color); {Plot "stars" }
Delay (10);

until KeyPressed;
Readln;
CloseGraph;

ud.

Random function
Function

Declaration

Result type

Remarks

334

Returns a random number.

Random [(range: word)]

real or word, depending on the parameter

If range is not specified, the result is a Real random
number within the range 0 <= x < 1. If range is specified,
it must be an expression of type integer, and the result is
a word random number within the range 0 <= x < range.
If range equals 0, a value of 0 \vill be returned.

Turbo Pascal Reference Guide

See also

Example

Random function

The Random number generator should be initialized by
making a call to Randomize, or by assigning a value to
RandSeed.

Randomize

use. Crt;
begin

Randomize;
repeat

(Write text in random colors }
TextAttr := Random(256);
Write('!') ;

until KeyPressed;
od.

Randomize procedure
Function

Declaration

Remarks

See also

Initializes the built-in random generator with a random
value.

Randomize

The random value is obtained from the system clock.

Note: The random-number generator's seed is stored in
a predeclared longint variable called RandSeed. By
assigning a specific value to RandSeed, a specific
sequence of random numbers can be generated over and
over. This is particularly useful in applications that use
data encryption.

Random

Read procedure (text files)
Function

Declaration

Remarks

Reads one or more values from a text file into one or
more variables.

Read ([var f: text;] vl [, v2, ••• ,vn])

I, if specified, is a text-file variable. If I is omitted, the
standard file variable Input is assumed. Each v is a
variable of type char, integer, real, or string.

Chapter 76, Turbo Pascal Reference Lookup 335

Read procedure (text files)

336

With a type char variable, Read reads one character from
the file and assigns that character to the variable. If Eof(t>
was True before Read was executed, the value Chr(26) (a
Ctrl-Z character) is assigned to the variable. If Eoln(t> was
True, the value Chr(13) (a carriage-return character) is
assigned to the variable. The next Read will start with the
next character in the file.

With a type integer variable, Read expects a sequence of
characters that form a signed number, according to the
syntax shown in the section "Numbers" in Chapter 1,
"Tokens and Constants." Any blanks, tabs, or end-of­
line markers preceding the numeric string are skipped.
Reading ceases at the first blank, tab, or end-of-line
marker following the numeric string or if Eoftf) becomes
True. If the numeric string does not conform to the
expected format, an I/O error occurs; otherwise, the
value is assigned to the variable. If Eof(f) was True
before Read was executed or if Eoftf) becomes True while
skipping initial blanks, tabs, and end-of-line markers,
the value 0 is assigned to the variable. The next Read will
start with the blank, tab, or end-of-line marker that
terminated the numeric string.

With a type real variable, Read expects a sequence of
characters that form a signed whole number, according
to the syntax shown in the section "Numbers" in
Chapter 1, "Tokens and Constants" (except that
hexadecimal notation is not allowed). Any blanks, tabs,
or end-of-line markers preceding the numeric string are
skipped. Reading ceases at the first blank, tab, or end­
of-line marker following the numeric string or if Eof(f)
becomes True. If the numeric string does not conform to
the expected format, an I/O error occurs; otherwise, the
value is assigned to the variable. If Eof(t> was True
before Read was executed, or if Eof(f) becomes True
while skipping initial blanks, tabs, and end-of-line
markers, the value 0 is assigned to the variable. The next
Read will start with the blank, tab, or end-of-line marker
that terminated the numeric string.

With a type string variable, Read reads all characters up
to, but not including, the next end-of-line marker or
until Eo/(ft becomes Tru.e. The resulting character Stri21g
is assigned to the variable. If the resulting string is
longer than the maximum length of the string variable, it

Turbo Pascal Reference Guide

Restrictions

Differences

See also

Read procedure (text files)

is truncated. The next Read will start with the end-of-line
marker that terminated the string.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Read with a type string variable does not skip to the next
line after reading. For this reason, you cannot use
successive Read calls to read a sequence of strings, since
you will never get past the first line; after the first Read,
each subsequent Read will see the end-of-line marker
and return a zero-length string. Instead, use multiple
Readln calls to read successive string values.

See Appendix A in the User's Guide, "Differences
between Turbo Pascal 3.0, 4.0, and 5.0."

Readln, ReadKey, Write, Writeln

Read procedure (typed files)
Function

Declaration

Remarks

Restrictions

See also

Reads a file component into a variable.

Read (f , vl [, v2, ••• , vn])

f is a file variable of any type except text, and each v is a
variable of the same type as the component type of f. For
each variable read, the current file position is advanced
to the next component. It's an error to attempt to read
from a file when the current file position is at the end of
the file, that is, when Eof(fi is True.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

File must be open.

Write

ReadKey function Crt
Function

Declaration

Result type

Reads a character from the keyboard.

ReadKey

char

Chapter 16, Turbo Pascal Reference Lookup 337

ReadKey function

Remarks

See also

The character read is not echoed to the screen. If
KeyPressed was True before the call to ReadKey, the
character is returned immediately. Otherwise, ReadKey
waits for a key to be typed.

The special keys on the PC keyboard generate extended
scan codes. (The extended scan codes are summarized in
Appendix C.) Special keys are the function keys, the
cursor control keys, Alt keys, and so on. When a special
key is pressed, ReadKey first returns a null character (#0),
and then returns the extended scan code. Null characters
cannot be generated in any other way, so you are
guaranteed the next character will be an extended scan
code.

The following program fragment reads a character or an
extended scan code into a variable called Ch and sets a
Boolean variable called FuncKey to True if the character
is a special key:

Ch :::: ReadKey;
if Ch <> fO than FuncKey :::: False el.e
begin

FuncKey :::: True;
Ch := ReadKey;

end;

The CheckBreak variable controls whether Ctr/-Break
should abort the program or be returned like any other
key. When CheckBreak is False, ReadKey returns a Ctr/-C
(#3) for Ctr/-Break.

KeyPressed

Readln procedure
Function

Declaration

Remarks

338

Executes the Read procedure then skips to the next line
of the file.

Readln([var f: text;] vl I, v2, ... ,vn])

Readln is an extension to Read, as it is defined on text
files. After executing the Read, Readln skips to the
begi-llning of the next line of the file.

Readln(f) with no parameters causes the current file
position to advance to the beginning of the next line (if

Turbo Pascal Reference Guide

Restrictions

See also

Readln procedure

there is one; otherwise, it goes to the end of the file).
Readln with no parameter list altogether corresponds to
Readln(Input).

With ($I-J, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Works only on text files, including standard input. File
must be open for input.

Read

Rectangle procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Draws a rectangle using the current line style and color.

Rectangle (xl, yl, x2, y2: integer)

(xl, y1) define the upper left comer of the rectangle, and
(x2, y2) define the lower right corner (0 <= xl < x2
<= GetMaxX, and 0 <= yl < y2 <= GetMaxY).

The rectangle will be drawn in the current line style and
color, as set by SetLineStyle and SetColor. Use
SetWriteMode to determine whether the rectangle is
copied or XOR'd to the screen.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Bar, Bar3D, GetViewSettings, InitGraph, SetColor,
SetLineStyle, Set ViewPort, SetWriteMode

uses Crt, Graph;
var

GraphDriver, GraphMode: integer;
xl, yl, x2, y2: integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver,GraphMode,");
if GraphResult<> grOk then

Halt (1) ;

Randomize;
repeat

xl := Random(GetMaxX);
yl := Random(GetMaxY);
x2 := Random(GetMaxX-xl) + xl;
y2 := Random (GetMaxY-yl) + yl;

Chapter 16, Turbo Pascal Reference Lookup 339

Rectangle procedure

Rectangle(xl, yl, x2, y2);
until KeyPressed;
CloseGraph;

ad.

RegisterBGIdriver function Graph
Function

Declaration

Remarks

340

Registers a user-loaded or linked-in BGI driver with the
graphics system.

RegisterBGldriver(driver: pointer) : integer;

If an error occurs, the return value is less than 0;
otherwise, the internal driver number is returned. This
routine enables a user to load a driver file and "register"
the driver by passing its memory location to
RegisterBGldriver. When that driver is used by InitGraph,
the registered driver will be used (instead of being
loaded from disk by the Graph unit). A user-registered
driver can be loaded from disk onto the heap, or
converted to an .OBJ file (using BINOBJ .EXE) and linked
into the .EXE.

grlnvalidDriver is a possible error return, where the error
code equals -4 and the driver header is not recognized.

The following program loads the eGA driver onto the
heap, registers it with the graphics system, and calls
InitGraph:

program LoadDriv;
uses Graph;
var

Driver, Mode: integer;
DriverF: file;
DriverP: pointer;

begin
{ Open driver file, read into memory, register it }
Assign(DriverF, 'CGA.BGI');
Reset(DriverF, 1);
GetMem(DriverP, FileSize(DriverF));
BlockRead(DriverF, DriverP A

, FileSlze(DriverF));
if RegisterBGldriver(DriverP) < 0 then
begin

Writeln{'Error registering driver: ;,
GraphErrorMsg(GraphResult));

Halt (1);

Turbo Pascal Reference Guide

Restrictions

See also

end;
{ Init graphics }
Dri ver := eGA;
Mode := CGAHi;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt(l);

RegisferBGldriver function

OutText('Driver loaded by user program');
Readln;
CloseGraph;

end.

The program begins by loading the eGA driver file from
disk and registering it with the Graph unit. Then a call is
made to InifGraph to initialize the graphics system. You
may wish to incorporate one or more driver files directly
into your .EXE file. In this way, the graphics drivers that
your program needs will be built-in and only the .EXE
will be needed in order to run. The process for
incorporating a driver file into your .EXE is straight­
forward:

1. Run BINOBJ on the driver file(s).

2. Link the resulting .OBJ file(s) into your program.
3. Register the linked-in driver file(s) before calling

InitGraph.

For a detailed explanation and example of the
preceding, refer to the comments at the top of the
GRLINK.PAS example program on the distribution
disks. For information on the BINOBJ utility, refer to
Appendix e of the User's Guide, "Turbo Pascal Utilities."

It is also possible to register font files; refer to the
description of RegisterBGlfont.

A similar routine exists in Turbo e 2.0.

Note that the driver must be registered before the call to
InitGraph. If a call is made to RegisterBGldriver once
graphics have been activated, a value of -11 (grError)
will be returned.

InifGraph, InstallUserDriver, RegisterBGlfont

Chapter 76, Turbo Pascal Reference Lookup 341

RegisterBGlfont function

RegisterBGlfont function Graph
Function

Declaration

Remarks

342

Registers a user-loaded or linked-in BGI font with the
graphics system.

RegisterBGlfont(font: pointer) : integer;

The return value is less than 0 if an error occurs;
otherwise, the internal font number is returned. This
routine enables a user to load a font file and "register"
the font by passing its memory location to
RegisterBGlfont. When that font is selected with a call to
SetTextStyle, the registered font will be used (instead of
being loaded from disk by the Graph unit). A user­
registered font can be loaded from disk onto the heap, or
converted to an .OBI file (using BINOBI.EXE) and linked
into the .EXE.

Here are some possible error returns:

Error Error
Code Identifier Comments

-11 grError There is no room in the font
table to register another font.
(The font table holds up to 10
fonts, and only 4 are pro-
vided, so this error should
not occur.)

-13 grlnvalidFont The font header is not
recognized.

-14 grlnvalidFontNum The font number in the font
header is not recognized.

The following program loads the triplex font onto the
heap, registers it with the graphics system, and then
alternates between using triplex and another stroked
font that Graph loads from disk (SansSerifFont):

program LoadFont;
U... Graph;
var

Driver, Mode: integer;
FontF: file;
FontP: pointer;

begin

Turbo Pascal Reference Guide

RegisterBGlfont function

{ Open font file, read into memory, register it }
Assign (FontF, 'TRIP.CHR');
Reset (FontF, 1);
GetMem(FontP, FileSize(FontF));
BlockRead(FontF, FontP~, FileSize(FontF));
if RegisterBGIfont(FontP) < 0 than
bagin

Writeln('Error registering font: "
GraphErrorMsg(GraphResult));

Halt (1) ;

and;
{ Init graphics
Driver := Detect;
InitGraph(Driver, Mode, , •• \');
if GraphResult < 0 than

Halt (1) ;

Readln;
{ Select registered font
SetTextStyle(TriplexFont, HorizDir, 4);
OutText('Triplex loaded by user program');
MoveTo(O, TextHeight('a'));
Readln;
{ Select font that must be loaded from disk
SetTextStyle(SansSerifFont, HorizDir, 4);
Out Text ('Your disk should be spinning .•• ');
MoveTo(O, GetY + TextHeight('a'));
Readln;
{ Re-select registered font (already in memory)
SetTextStyle(TriplexFont, HorizDir, 4);
OutText('Back to Triplex');
Readln;
CloseGraph;

and.

The program begins by loading the triplex font file from
disk and registering it with the Graph unit. Then a call to
InitGraph is made to initialize the graphics system.
Watch the disk drive indicator and press Enter. Because
the triplex font is already loaded into memory and
registered, Graph does not have to load it from disk (and
therefore your disk drive should not spin). Next, the
program will activate the sans serif font by loading it
from disk (it is unregistered). Press Enter again and
watch the drive spin. Finally, the triplex font is selected
again. Since it is in memory and already registered, the
drive will not spin when you press Enter.

There are several reasons to load and register font files.
First, Graph only keeps one stroked font in memory at a

Chapter 76, Turbo Pascal Reference Lookup 343

RegisterBGlfont function

See also

time. If you have a program that needs to quickly
alternate between stroked fonts, you may want to load
and register the fonts yourself at the beginning of your
program. Then Graph will not load and unload the fonts
each time a call to SetTextStyle is made.

Second, you may wish to incorporate the font files
directly into your .EXE file. This way, the font files that
your program needs will be built-in, and only the .EXE
and driver files will be needed in order to run. The
process for incorporating a font file into your .EXE is
straightforward:

1. Run BINOBJ on the font file(s).
2. Link the resulting .OBJ file(s) into your program.
3. Register the linked-in font file(s) before calling

InitGraph.

For a detailed explanation and example of the
preceding, refer to the comments at the top of the
GRLINK.P AS example program on the distribution
disks. Documentation on the BINOBJ utility is available
in Appendix C of the User's Guide.

Note that the default (8x8 bit-mapped) font is built into
GRAPH.TPU, and thus is always in memory. Once a
stroked font has been loaded, your program can
alternate between the default font and the stroked font
without having to reload either one of them.

It is also possible to register driver files; refer to the
description of RegisterBGldriver.

A similar routine exists in Turbo C 2.0.

InitGraph, InstallUserDriver, InstallUserFont,
RegisterBGlfont, SetTextStyle

Release procedure
Function

Declaration

Remarks

344

Returns the heap to a given state.

Release(var p: pointer)

P is a pointer variable of any pointer type that was
previously assigned by the Mark procedure. Release

Turbo Pascal Reference Guide

Restrictions

See also

Release procedure

disposes all dynamic variables that were allocated by
New or GetMem since p was assigned by Mark.

Mark and Release cannot be used interchangeably with
Dispose and FreeMem unless certain rules are observed.
For a complete discussion of this topic, refer to the
section "The Heap Manager" on page 181.

Dispose, FreeMem, GetMem, Mark, New

Rename procedure
Function

Declaration

Remarks

Restrictions

See also

Renames an external file.

Rename(var f; newname: string)

I is a file variable of any file type. newname is a string­
type expression. The external file associated with I is
renamed to newname. Further operations on I will
operate on the external file with the new name.

With ($I-), IOResult will return 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Rename must never be used on an open file.

Erase

Reset procedure
Function

Declaration

Remarks

Opens an existing file.

Reset(var f [: fi18; recsize: word]

I is a file variable of any file type, which must have been
associated with an external file using Assign. recsize is an
optional expression of type word, which can only be
specified if lis an untyped file.

Reset opens the existing external file with the name
assigned to I. It's an error if no existing external file of
the given name exists. If I was already open, it is first
closed and then re-opened. The current file position is
set to the beginning of the file.

Chapter 76, Turbo Pascal Reference Lookup 345

Reset procedure

Differences

See also

Example

If f was assigned an empty name, such as Ass ign(f,"),
then after the call to Reset, f will refer to the standard
input file (standard handle number 0).

If f is a text file, fbecomes read-only. After a call to Reset,
Eof(f) is True if the file is empty; otherwise, Eo!!> is False.

If f is an untyped file, recsize specifies the record size to
be used in data transfers. If recsize is omitted, a default
record size of 128 bytes is assumed.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

In 3.0, an empty file name was invalid.

Append, Assign, Close, Rewrite, Truncate

function FileExists(FileName: string): boolean;
{ Boolean function that returns True if the file exists;

otherwise, it returns False. Closes the file if it exists.
var

f: file;
begin

{SI-}
Assign(f, FileName);
Reset (f);
Close (f);
{SIt}

FileExists := (IOResult = 0) and (FileName <> ");
end; {FileExists}

begin
if FileExists(ParamStr(l)) then { Get file name from command

line}
Writeln('File exists')

a1 ••
Writeln('File not found');

end.

RestoreCrtMode procedure Graph
Function

Declaration

346

Restores the screen mode to its original state before
graphics was initialized.

RestoreCrtMode

Turbo Pascal Reference Guide

Remarks

Restrictions

See also

Example

RestoreCrtMode procedure

Restores the original video mode detected by InitGraph.
Can be used in conjunction with SetGraphMode to switch
back and forth between text and graphics modes.

Must be in graphics mode.

A similar routine exists in Turbo C 2.0.

CloseGraph, DetectGraph, GetGraphMode,lnitGraph,
SetGraphMode

uses Graph;
var

Gd, Gm: integer;
Mode : integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

OutText('<ENTER> to leave graphics:');
Readln;
RestoreCRTMode;
Writeln('Now in text mode');
Write('<ENTER> to enter graphics mode:');
Readln;
SetGraphMode(GetGraphMode);
OutTextXY(O, 0, 'Back in graphics mode');
OutTextXY(O, TextHeight('H'), '<ENTER> to quit:');
Readln;
CloseGraph;

end.

Rewrite procedure
Function

Declaration

Remarks

Creates and opens a new file.

Rewrite(var f [: file; recsize: word]

f is a file variable of any file type, which must have been
associated with an external file using Assign. recsize is an
optional expression of type word, which can only be
specified iff is an untyped file.

Rewrite creates a new external file with the name
assigned to f. If an external file with the same name
already exists, it is deleted and a new empty file is

Chapter 16, Turbo Pascal Reference Lookup 347

Rewrite procedure

Differences

See also

Example

created in its place. If f was already open, Rewrite closes
and recreates it. The current file position is set to the
beginning of the empty file.

If f was assigned an empty name, such as Assign (f,"),
then after the call to Rewrite, f will refer to the standard
output file (standard handle number 1).

If f is a text file, f becomes write-only. After a call to
Rewrite, Eoftf) is always True.

If f is an untyped file, recsize specifies the record size to
be used in data transfers. If recsize is omitted, a default
record size of 128 bytes is assumed.

With ($1-), 10Result will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

In 3.0, an empty file name was invalid.

Append, Assign, Reset, Truncate

VIr f: text;
begin

Assign(f, 'NEWFILE.$$$');
Rewrite(f)i
Writeln(f,'Just created file with this text in it ••• ');
Close (f);

end.

RmDir procedure
Function

Declaration

Remarks

See also

Example

348

Removes an empty subdirectory.

RmDir(s: .tring)

s is a string-type expression. The subdirectory with the
path specified by s is removed. If the path does not exist,
is non-empty, or is the currently logged directory, an
I/O error will occur.

With ($1-), 10Result will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

MkDir, ChDir, GetDir

baqin
{$I-}
RmDir(ParamStr(l))i { Get directory name from command line}

Turbo Pascal Reference Guide

if IOResult <> 0 then
Writeln('Cannot remove directory')

elae
Writeln('directory removed');

end.

RmDir procedure

Round function
Function

Declaration

Result type

Remarks

Differences

See also

Rounds a real-type value to an integer-type value.

Round(x: real)

longint

X is a real-type expression. Round returns a longint value
that is the value of x rounded to the nearest whole
number. If x is exactly halfway between two whole
numbers, the result is the number with the greatest
absolute magnitude. A run-time error occurs if the
rounded value of x is not within the longint range.

In 3.0, Round returned an integer value.

Int, Trunc

RunError procedure
Function

Declaration

Remarks

See also

Stops program execution and generates a run-time error.

RunError [(ErrorCode : word)]

The RunError procedure corresponds to the Halt
procedure except that in addition to stopping the
program, it generates a run-time error at the current
statement. ErrorCode is the run-time error number (0 if
omitted). If the current module is compiled with Debug
Information set to On and you're running the program
from the IDE, Turbo Pascal automatically takes you to
the RunError call, just as if an ordinary run-time error
had occurred.

Exit, Halt

Chapter 16, Turbo Pascal Reference Lookup 349

Sector procedure

Example {$IFDEF Debug}
if P = nil than RunError(204);

{$ENDIF}

Sector procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

350

Draws and fills an elliptical sector.

Sector (x, y: integer; StAngle, EndAngle,
XRadius, YRadius: word)

Using (X, Y) as the center point, XRadius and YRadius
specify the horizontal and vertical radii, respectively;
Sector draws from StAngle to EndAngle. The sector is
outlined using the current color, and filled using the
pattern and color defined by SetFillStyle or SetFillPattern.

A start angle of 0 and an end angle of 360 will draw and
fill a complete ellipse. The angles for Are, Ellipse,
FillEllipse, PieS lice, and Sector are counterclockwise with
o degrees at 3 o'clock, 90 degrees at 12 o'clock, and so
on.

If an error occurs while filling the sector, GraphResult
will return a value of -6 (grNoScanMem).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Are, Circle, Ellipse, FillEllipse, GetArcCoords,
GetAspectRatio, PieS lice, SetFillStyle, SetFillPattern,
SetGraphBu/Size

usas
Graph;

const
R = 50;

var
Driver, Mode : integer;
Xasp, Yasp : word;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 than

Halt (1) ;

{ Put in graphics mode }

Sector(GetMaxX div 2, GetMaxY div 2, 0, 45, R, R);
GetAspectRatio(Xasp, Yasp); { Draw circular sector

Turbo Pascal Reference Guide

Sector procedure

Sector(GetMaxX div 2, GetMaxY div 2, { Center point}

Readlni
Closegraphi

end.

180, 135, { Mirror angle above }
R, R * Longlnt(Xasp) div Yasp)i { Circular}

Seek procedure
Function

Declaration

Remarks

Restrictions

Differences

See also

Moves the current position of a file to a specified
component.

Seek(var fi n: longint)

f is any file variable type except text, and n is an
expression of type longint. The current file position of f
is moved to component number n. The number of the
first component of a file is O. In order to expand a file, it
is possible to seek one component beyond the last
component; that is, the statement Seek(f,FileSize(f» moves
the current file position to the end of the file.

With ($I-), IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Cannot be used on text files. File must be open.

In 3.0, n was an integer; LongSeek took a real number
value forn.

FilePos

SeekEof function
Function

Declaration

Result type

Remarks

Returns the end-of-file status of a file.

SeekEof [(var f: text)]

boolean

SeekEof corresponds to Eof except that it skips all blanks,
tabs, and end-of-line markers before returning the end­
of-file status. This is useful when reading numeric
values from a text file.

Chapter 76, Turbo Pascal Reference Lookup 351

SeekEof function

Restrictions

See also

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Can only be used on text files. File must be open.

Eo!, SeekEoln

SeekEoln function
Function

Declaration

Result type

Remarks

Restrictions

See also

Returns the end-of-line status of a file.

SeekEoln [(var f: text)]

boolean

SeekEoln corresponds to Eoln except that it skips all
blanks and tabs before returning the end-of-line status.
This is useful when reading numeric values from a text
file.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Can only be used on text files. File must be open.

Eoln, SeekEo!

Seg function
Function

Declaration

Result type

Remarks

See also

352

Returns the segment of a specified object.

Seg(x)

word

x is any variable, or a procedure or function identifier.
The result, of type word, is the segment part of the
address of x.

Addr,O!s

Turbo Pascal Reference Guide

SetActivePage procedure

SetActivePage procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Set the active page for graphics output.

SetActivePage(Page: word)

Makes Page the active graphics page. All graphics
output will now be directed to Page.

Multiple pages are only supported by the EGA (256K),
VGA, and Hercules graphics cards. With multiple
graphics pages, a program can direct graphics output to
an off-screen page, then quickly display the off-screen
image by changing the visual page with the
SetVisualPage procedure. This technique is especially
useful for animation.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Set Vis ua lPage

u... Graph;

Gd, Gm: integer;
begin

Gd :== Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

if (Gd==HercMono) or (Gd==EGA) or
(Gd==EGA64) or (Gd==VGA) then

begin
SetVisualPage(O);
SetActivePage(l);
Rectangle (10, 20, 30, 40);
SetVisualPage(l);

end .la.
OutText('No paging supported.');

Readln;
CloseGraphi

end.

Chapter 16, Turbo Pascal Reference Lookup 353

SetAIiPaieHe procedure

SetAIIPalette procedure Graph
Function

Declaration

Remarks

Changes all palette colors as specified.

SetAllPalette(var Palette)

Palette is an untyped parameter. The first byte is the
length of the palette. The next n bytes will replace the
current palette colors. Each color may range from -1 to
15. A value of -1 will not change the previous entry's
value.

Note that valid colors depend on the current graphics
driver and current graphics mode.

If invalid input is passed to SetAllPalette, GraphResult
will return a value of -11 (grError), and no changes to
the palette settings will occur.

Changes made to the palette are seen immediately on
the screen. In the example listed here, several lines are
drawn on the screen, then the palette is changed. Each
time a palette color is changed, all occurrences of that
color on the screen will be changed to the new color
value.

The following types and constants are defined:

cout
Black 0;
Blue 1;
Green 2;
Cyan 3;
Red 4;
Magenta 5;
Brown 6;
LightGray 7;
DarkGray 8;
LightBlue 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;
MaxColors = 15;

354 Turbo Pascal Reference Guide

Restrictions

See also

Example

SetAIiPaieHe procedure

type
PaletteType = record

Size: byte;
Colors: array[O •.• MaxColors] of shortint;

end;

A similar routine exists in Turbo C 2.0.

Must be in graphics mode, and can only be used with
EGA, EGA 64, or VGA (not the IBM 8514 or the VGA in
256-color mode).

GetBkColor, GetColor, GetPalette, GraphResult, SetBkColor,
SetColor, SetPalette, SetRGBPalette

uses Graph;
var

Gd, Gm : integer;
Palette: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Line(O, 0, GetMaxX, GetMaxY);
with Palette do
begin

Size := 4;
Colors [0] := 5;
Colors [1] := 3;
Colors [2] := 1;
Colors [3] := 2;
SetAllPalette(Palette);

end;
Readln;
CloseGraph;

end.

SetAspectRatio procedure Graph
Function

Declaration

Result type

Remarks

Changes the default aspect-ratio correction factor.

SetAspectRatio(Xasp, Yasp : word)

word

SetAspectRatio is used to change the default aspect ratio
of the current graphics mode. The aspect ratio is used to

Chapter 76, Turbo Pascal Reference Lookup 355

SetAspectRatio procedure

Restrictions

See also

Example

draw round circles. If circles appear elliptical, the
monitor is not aligned properly. This can be corrected in
the hardware by realigning the monitor, or can be
corrected in the software by changing the aspect ratio
using SetAspectRatio. To read the current aspect ratio
from the system, use GetAspectRatio.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetAspectRatio

ule.
Crt, Graph;

conlt
R = 50;

var
Driver, Mode : integer;
Xasp, Yasp : word;

begin
DirectVideo := false;
Driver := Detect; { Put in graphics mode }
InitGraph(Driver, Mode, "~Ii

if GraphResult < 0 then
Halt(l);

GetAspectRatio(Xasp, Yasp); { Get default aspect ratio}
(Adjust for VGA and 8514. They have 1:1 aspect
if Xasp = Yasp then

Yasp := 5 * Xasp;
{ Keep modifying aspect ratio until 1:1 or key is pressed}
while (Xasp < Yasp) and not KeyPressed do
begin

SetAspectRatio(Xasp, Yasp);
Circle(GetMaxX div 2, GetMaxY div 2, R);
Inc(Xasp, 20);

end;
SetTextJustify(CenterText, CenterText);
OutTextXY(GetMaxX div 2, GetMaxY div 2, 'Done!');
Readln;
Closegraph;

end.

SetBkColor procedure Graph
Function

Declaration

356

Sets the current background color using the palette.

SetBkColor(ColorNum: word)

Turbo Pascal Reference Guide

Remarks

Restrictions

See also

Example

SetBkColor procedure

Background colors may range from 0 to 15, depending
on the current graphics driver and current graphics
mode. On a CGA, SetBkColor sets the flood overscan
color.

SetBkColor(N) makes the Nth color in the palette the new
background color. The only exception is SetBkColor(O),
which always sets the background color to black.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetBkColor, GetColor, GetPalette, SetAllPalette, Set Color,
SetPalette, SetRGBPalette

use. Crt, Graph;
var

GraphDriver, GraphMode: integer;
Palette: PaletteType;

begin
GraphDriver := Detect;
InitGraph(GraphDriver,GraphMode,");
Randomize;
if GraphResult <> grOk then

Halt(l);
GetPalette(Palette);
repeat

if Palette. Size <> 1 then
SetBkColor(Random(Palette.Size));

LineTo(Random(GetMaxX),Random(GetMaxY));
until KeyPressed;
CloseGraph;

end.

SetCBreak procedure Dos
Function

Declaration

Remarks

See also

Sets the state of etrl-Break checking in 005.

SetCBreak(Break: boolean)

SetCBreak sets the state of etrl-Break checking in DOS.
When off (False), 005 only checks for etrl-Break during
I/O to console, printer, or communication devices.
When on (True), checks are made at every system call.

GetCBreak

Chapter 76, Turbo Pascal Reference Lookup 357

Seteolor procedure

SetColor procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Sets the current drawing color using the palette.

SetColor(Color: word)

SetColor(5) makes the fifth color in the palette the current
drawing color. Drawing colors may range from 0 to 15,
depending on the current graphics driver and current
graphics mode.

GetMaxColor returns the highest valid color for the
current driver and mode.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

DrawPoly, GetBkColor, GetColor, GetMaxColor, GetPalette,
GraphResult, SetAllPalette, SetBkColor, SetPalette,
SetRGBPalette

use. Crt, Graph;
Tar

GraphDriver, GraphMode: integer;
begi ..

GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk the ..

Halt (1);

Randomize;
repeat

SetColor(Random(GetMaxColor)+l);
LineTo(Random(GetMaxX),Random(GetMaxY));

until KeyPressed;
end.

SetDate procedure Dos
Function

Declaration

Remarks

358

Sets the current date in the operating system.

SetDate(Year, Month, Day : word)

Valid parameter ranges are Year 1980,,2099, Month 1,,12,
and Day 1,,31. If the date is invalid, the request is
ignored.

Turbo Pascal Reference Guide

SetFAttr procedure

See also GetDate, GetTime, SetTime

SetF Attr procedure Dos
Function

Declaration

Remarks

Restrictions

See also

Example

Sets the attributes of a file.

SetFAttr(var f; Attr: word)

f must be a file variable (typed, untyped, or text file) that
has been assigned but not opened. The attribute value is
formed by adding the appropriate attribute masks
defined as constants in the Dos unit.

const
ReadOnly = $01;
Hidden = $02;
SysFile = $04;
VolumeID = $08;
Directory = $10;
Archive = $20;

Errors are reported in DosError; possible error codes are
3 (Invalid Path) and 5 (File Access Denied).

f cannot be open.

GetFAttr, GetFTime, SetFTime

u ••• Dos;
var

f: file;
begin

Assign(f, 'C:\AUTOEXEC.BAT');
SetFAttr(f, Hidden);
Readln;
SetFAttr(f, Archive);

.nd.

{Uh-oh}

{ Whew!}

SetFillPattern procedure Graph
Function

Declaration

Selects a user-defined fill pattern.

SetFillPattern(Pattern: FillPatternType; Color: word)

Chapter 76, Turbo Pascal Reference Lookup 359

SetFiliPaHern procedure

Remarks

Restrictions

See also

360

Sets the pattern and color for all filling done by FillPoly,
FloodFill, Bar, Bar3D, and PieSlice to the bit pattern
specified in Pattern and the color specified by Color. If
invalid input is passed to SetFillPattern, GraphResult will
return a value of -11 (grError), and the current fill
settings will be unchanged. FillPatternType is predefined
as follows:

type
FillPatternType = array[1 •• 8] of byte;

The fill pattern is based on the underlying byte values
contained in the Pattern array. The pattern array is 8
bytes long with each byte corresponding to 8 pixels in
the pattern. Whenever a bit in a pattern byte is valued at
1, a pixel will be plotted. For example, the following
pattern represents a checkerboard (SO % gray scale):

Binary Hex

10101010 = $AA (lst byte>
01010101 = $55 (2nd byte>
10101010 = $AA (3rd byte)
01010101 $55 (4th byte)
10101010 = $AA (5th byte)
01010101 = $55 (6th byte)
10101010 = $AA (7th byte)
01010101 = $55 (8th byte)

User-defined fill patterns enable you to create patterns
different from the predefined fill patterns that can be
selected with the SetFillStyle procedure. Whenever you
select a new fill pattern with SetFillPattern or SetFillStyle,
all fill opera tions will use that fill pattern. Calling
SetFillStyle (UserField, SomeColor) will always select the
user-defined pattern. This lets you define and use a new
pa ttern using SetFillPattern, then switch between your
pattern and the built-ins by making calls to SetTextStyle.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Bar, Bar3D, FillPoly, GetFillPattern, GetFillSettings,
GraphResult, PieS lice

Turbo Pascal Reference Guide

Example u... Graph;
cout

SetFiliStyle procedure

Gray50: FillPatternType = ($AA,$55,$AA,$55,
$AA,$55,$AA,$55);

var
Gd, Gm: integer;

begin
Gd := Detect;
InitGraph (Gd, Gm, ");
if GraphResult <> grOk th.n

Halt (1);

SetFillPattern(Gray50, White);
Bar(O, 0, 100, 100); { Draw a bar in a 50% gray scale
Readln;
CloseGraph;

od.

SetFillStyle procedure Graph
Function

Declaration

Remarks

Sets the fill pattern and color.

SetFiIIStyle(Pattern: word; Color: word)

Sets the pa ttem and color for all filling done by FillPoly,
Bar, Bar3D, and PieS lice. A variety of fill patterns are
available. The default pattern is solid, and the default
color is the maximum color in the palette. If invalid
input is passed to SetFillStyle, GraphResult will return a
value of-II (grError), and the current fill settings will be
unchanged. The following constants are defined:

con.t
{ Fill patterns for Get/SetFillStyle: }
EmptyFill = 0; { Fills area in background color
SolidFill = 1; { Fills area in solid fill color }
LineFill = 2; { --- fill }
LtSlashFill = 3; { I I I fill }
SlashFill = 4; III fill with thick lines}
BkSlashFill = 5; \\\ fill with thick lines}
LtBkSlashFill = 6; { \\\ fill}
HatchFill = 7; { Light hatch fill }
XHatchFill = B; Heavy cross hatch fill }
InterleaveFill = 9; Interleaving line fill }
WideDotFill = 10; { Widely spaced dot fill }
CloseDotFill = 11; { Closely spaced dot fill }
UserFill = 12; { User-defined fill }

Chapter 76, Turbo Pascal Reference Lookup 361

SetFiliStyle procedure

Restrictions

See also

Example

If Pattern equals UserFill, the user-defined pattern (set by
a call to SetFillPattern) becomes the active pattern.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Bar, Bar3D, FillPoly, GetFillSettings, PieS lice, GetMaxColor,
GraphResult

u.a. Graph;
var

Gm, Gd : integer;
bagin

Gd := Detect;
InitGraph(Gd, Gm, ");
SetFillStyle(SolidFill,O);
Bar(O, 0, 50, 50)i
SetFillStyle(XHatchFill,l);
Bar(60, 0, 110, 50);
Readln;
CloseGraph;

and.

SetFTime procedure Dos
Function

Declaration

Remarks

Restrictions

See also

Sets the date and time a file was last written.

SetFTime(var f; Time: longint)

f must be a file variable (typed, untyped, or text file) that
has been assigned and opened. The Time parameter can
be created through a call to PackTime. Errors are
reported in Dos Error; the only possible error code is 6
(Invalid File Handle).

f must be open.

GetFTime, PackTime, SetFAttr, UnpackTime

SetGraphBufSize procedure Graph
Function

Declaration

362

Allows you to change the size of the bulfer used for scan
and flood fills.

SetGraphBufSize(BufSize: word);

Turbo Pascal Reference Guide

Remarks

Restrictions

See also

SetGraphBufSize procedure

The internal buffer size is set to Bu/Size, and a buffer is
allocated on the heap when a call is made to InitGraph.

The default buffer size is 4K, which is large enough to
fill a polygon with about 650 vertices. Under rare
circumstances, enlarging the buffer may be necessary in
order to avoid a buffer overflow.

A similar routine exists in Turbo C 2.0.

Note that once a call to InitGraph has been made, calls to
SetGraphBu/Size are ignored.

FloodFill, FillPoly, InitGraph

SetGraphMode procedure Graph
Function

Declaration

Remarks

Sets the system to graphics mode and clears the screen.

SetGraphMode(Mode: integer)

Mode must be a valid mode for the current device driver.
SetGraphMode is used to select a graphics mode different
than the default one set by InitGraph.

SetGraphMode can also be used in conjunction with
RestoreCrtMode to switch back and forth between text
and graphics modes.

SetGraphMode resets all graphics settings to their
defaults (current pointer, palette, color, viewport, and so
forth).

GetModeRange returns the lowest and highest valid
modes for the current driver.

If an attempt is made to select an invalid mode for the
current device driver, GraphResult will return a value of
-10 (grlnvalidMode).

Chapter 16, Turbo Pascal Reference Lookup 363

SetGraphMode procedure

The following constants are defined:

Graphics Graphics Column
Driver Modes Value xRow Palette Pages

CGA CGACO 0 320x200 CO 1
CGACl 1 320x200 Cl 1
CGAC2 2 320x200 C2 1
CGAC3 3 320x200 C3 1
CGAHi 4 640x200 2 color 1

MCGA MCGACO 0 320x200 CO 1
MCGACl 1 320x200 Cl 1
MCGAC2 2 320x200 C2 1
MCGAC3 3 320x200 C3 1
MCGAMed 4 640x200 2 color 1
MCGAHi 5 640x480 2 color 1

EGA EGALo 0 640x200 16 color 4
EGAHi 1 640x350 16 color 2

EGA64 EGA64Lo 0 640x200 16 color 1
EGA64Hi 1 640x350 4 color 1

EGA- EGAMonoHi 3 640x350 2 color 1*
MONO EGAMonoHi 3 640x350 2 color 2**

HERC HercMonoHi 0 720x348 2 color 2

AIT400 AIT400CO 0 32Ox200 CO 1
AIT400Cl 1 320x200 Cl 1
AIT400C2 2 320x200 C2 1
AIT400C3 3 320x200 C3 1
AIT400Med 4 640x200 2 color 1
AIT400Hi 5 640x400 2 color 1

VGA VGALo 0 640x200 16 color 2
VGAMed 1 640x350 16 color 2
VGAHi 2 640x480 16 color 1

PC3270 PC3270Hi 0 720x350 2 color 1

8514 IBM8514Lo 0 64Ox480 256 color 1
8514 IBM8514Hi 0 1024x768 256 color 1

• 64K on EGAMono card
•• 256K on EGAMono card

A similar routine exists in Turbo C 2.0.

Restrictions A successful call to InitGraph must have been made
before calling this routine.

364 Turbo Pascal Reference Guide

See also

Example

SetGraphMode procedure

ClearDevice, CloseGraph, DetectGraph, GetGraphMode,
InitGraph, RestoreCrtMode, GraphResult, GetModeRange

u... Graph;
var

GraphDriver: integer;
GraphMode integer;
LowMode integer;
HighMode integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk thaD

Halt (1) ;

GetModeRange(GraphDriver, LowMode, HighMode);
SetGraphMode(LowMode); { Select low-resolution mode
Line(O, 0, GetMaxX, GetMaxY)i
Readln;
CloseGraph;

end.

SetlntVec procedure Dos
Function

Declaration

Remarks

See also

Sets a specified interrupt vector to a specified address.

Set I ntVec (IntNo: byte; Vector: pointer)

IntNo specifies the interrupt vector number (0 .. 255), and
Vector specifies the address. Vector is often constructed
with the @ operator to produce the address of an inter­
rupt procedure. Assuming Intl BSave is a variable of type
pointer, and IntlBHandler is an interrupt procedure
identifier, the following statement sequence installs a
new interrupt $lB handler and later restores the original
handler:

GetlntVec($lB,IntlBSave);
SetlntVec($lB,@IntlBHandler);

SetlntVec($lB,IntlBSave);

GetlntVec

Chapter 76, Turbo Pascal Reference Lookup 365

SetLineStyle procedure

SetLineStyle procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

366

Sets the current line width and style.

SetLineStyle(LineStyle: word; Pattern: word; Thickness: word)

Affects al1lines drawn by Line, LineTo, Rectangle,
DrawPoly, Arc, and so on. Lines can be drawn solid,
dotted, centerline, or dashed. If invalid input is passed
to SetLineStyle, GraphResult will return a value of -11
(grError), and the current line settings will be
unchanged. The following constants are declared:

const
SolidLn = 0;
DottedLn = 1;
CenterLn = 2;
DashedLn = 3;
UserBitLn = 4;
NormWidth = 1;
ThickWidth :;: 3;

{ User-defined line style }

LineStyle is a value from SolidLn to UserBitLn(O . .4),
Pattern is ignored unless LineStyle equals UserBitLn, and
Thickness is NormWidth or ThickWidth. When LineStyle
equals UserBitLn, the line is output using the 16-bit
pattern defined by the Pattern parameter. For example, if
Pattern = $AAAA, then the 16-bit pattern looks like this:

1010101010101010

1010101010101010
1010101010101010
1010101010101010

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

{ NormWidth }

{ ThickWidth }

DrawPoly, GetLineSettings, Line, LineRel, LineTo,
GraphResult, Set WriteMode

usa. Graph;
var

Gd, Gm: integer;
xl, y1, x2, y2: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk than

Halt (1) ;

Turbo Pascal Reference Guide

xl := 10;
y1 := 10;
x2 := 200;
y2 := 150;

SetLineStyle procedure

SetLineStyle(DottedLn, 0, NormWidth);
Rectangle (xl, y1, x2, y2);
SetLineStyle(UserBitLn, $C3, ThickWidth);
Rectangle(Pred(xl), Pred(yl), Succ(x2), Succ(y2));
Readln;
CloseGraph;

end.

SetPalette procedure Graph
Function

Declaration

Remarks

Changes one palette color as specified by ColorNum
and Color.

SetPalette(ColorNum: word; Color: shortint)

Changes the ColorNum entry 'in the palette to Color.
SetPalette(O,LightCyan) makes the first color in the palette
light cyan. ColorNum may range from 0 to 15, depending
on the current graphics driver and current graphics
mode. If invalid input is passed to SetPalette, GraphResult
will return a value of -11 (grError), and the palette will
be unchanged.

Changes made to the palette are seen immediately on
the screen. In the example here, several lines are drawn
on the screen, then the palette is changed randomly.
Each time a palette color is changed, all occurrences of
that color on the screen will be changed to the new color
value.

The following constants are defined:

con.t
Black 0;
Blue 1;
Green 2;
Cyan 3;
Red 4;
Magenta 5;
Brown 6;
LightGray 1;
DarkGray 8;
LightBlue 9;

Chapter 76, Turbo Pascal Reference Lookup 367

SetPaleHe procedure

Restrictions

See also

Example

368

LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

A similar routine exists in Turbo C 2.0.

Must be in graphics mode, and can only be used with
EGA, EGA 64, or VGA (not the IBM 8514 or the VGA in
256-color mode).

GetBkColor, GetColor, GetPalette, GraphResult,
SetAllPalette, SetBkColor, SetColor, SetRGBPalette

u.e. Crt, Graph;
var

GraphDriver, GraphMode: integer;
Color: word;
Palette: PaletteType;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk than

Halt (1);

GetPalette(Palette);
if Palette.Size <> 1 then

begin
for Color := 0 to Pred(Palette.Size) do
begin

SetColor(Color);
Line(O, Color*5, 100, Color*5);

end;
Randomize;
repeat

SetPalette(Random(Palette.Size),Random(Palette.Size));
until KeyPressed;

end
else

Line (0, 0, 100, 0);
Readln;
CloseGraph;

end.

Turbo Pascal Reference Guide

SetRGBPaleHe procedure

SetRGBPalette procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Modifies palette entries for the IBM 8514 and VGA
drivers.

SetRGBPalette(ColorNum, RedValue,
GreenValue, BlueValue: integer)

ColorNum defines the palette entry to be loaded, while
RedValue, GreenValue, and BlueValue define the
component colors of the palette entry.

For the IBM 8514 display, ColorNum is in the range
0 .. 255. For the VGA in 256K color mode, ColorNum is the
range 0 .. 15. Only the lower byte of RedValue, GreenValue
or BlueValue is used, and out of this byte, only the 6
most-significant bits are loaded in the palette.

Note: For compatibility with other IBM graphics
adapters, the BGI driver defines the first 16 palette
entries of the IBM 8514 to the default colors of the EGA/
VGA. These values can be used as is, or they can be
changed by using SetRGBPalette.

A similar routine exists in Turbo C 2.0.

SetRGBPalette can only be used with the IBM 8514 driver
and theVGA.

GetBkColor, GetColor, GetPalette, GraphResult,
SetAllPalette, SetBkColor, SetColor, SetPalette

u •••
Graph;

type
RGBRec = record

RedVal, GreenVal, BlueVal integer;
end;

cOlllt
EGAColors : array[O •• MaxColors] of RGBRec =

({NAME
(RedVal:$OO;GreenVal:$OO;BlueVal:$OO),{Black
(RedVal:$OO;GreenVal:$OO;BlueVal:$FC),{Blue
(RedVal:$24;GreenVal:$fc;BlueVal:$24),{Green
(RedVal:$OO;GreenVal:$fc;BlueVal:$FC),{Cyan
(RedVal:$FC;GreenVal:$14;BlueVal:$14),{Red
(RedVal:$BO;GreenVal:$OO;BlueVal:$FC),{Magenta
(RedVal:$70;GreenVal:$48;BlueVal:$OO),{Brown
(RedVal:$C4;GreenVal:$C4;BlueVal:$C4),{White
(RedVal:$34;GreenVal:$34;BlueVal:$34),{Gray

COLOR}
EGA O}
EGA I}
EGA 2}
EGA 3}
EGA 4}
EGA 5}
EGA 20}
EGA 7}
EGA 56}

Chapter 16, Turbo Pascal Reference Lookup 369

SetRGBPaleHe procedure

(RedVal:$OO;GreenVal:$OO;BlueVal:$70),{Lt Blue EGA 57}
(RedVal:$OO;GreenVal:$70;BlueVal:$OO),{Lt Green EGA 58}
(RedVal:$OOiGreenVal:$70iBlueVal:$70),{Lt Cyan EGA 59}
(RedVal:$70;GreenVal:$OO;BlueVal:$OO),{Lt Red EGA GO}
(RedVal:$70;GreenVal:$OO;BlueVal:$70),{Lt Magenta EGA G1}
(RedVal:$FC;GreenVal:$fc;BlueVal:$24) ,{Yellow EGA G2}
(RedVal:$FC;GreenVal:$fc;BlueVal:$FC) {Br. White EGA G3}
) ;

var
Driver, Mode,
i : integer;

begin
Driver := IBM8514;
Mode := IBM8514Hi;
InitGraph(Driver, Mode, "~I;

if GraphResult < 0 then
Halt (1);

{ Override detection

Put in graphics mode

{ Zero palette, make all graphics output invisible
for i := 0 to MaxColors do

with EGAColors[i] do
SetRGBPalette(i, 0, 0, 0);

{ Display something }
{ Change 1st 1G 8514 palette entries
for i := 1 to MaxColors do
begin

SetColor(i);
OutTextXY(10, i * 10, ' •• Press any key .• 'I;

eDd;
(Restore default EGA colors to 8514 palette
for i := ° to MaxColors do

with EGAColors[i] do
SetRGBPalette(i, RedVal, GreenVal, BlueVal)i

Readln;
Closegraph;

end.

SetTextBuf procedure
Function

Declaration

Remarks

370

Assigns an 110 buffer to a text file.

SetTextBuf(var f: text; var buf [; size: word 1)

t is a text-file variable, but is any variable, and Size is an
optional expression of type word.

Each text-file variable has an internal 128-byte buffer
that, by default, is used to buffer Read and Write

Turbo Pascal Reference Guide

Restrictions

Differences

Example

SetTextBuf procedure

operations. This buffer is adequate for most appli­
cations. However, heavily I/O-bound programs, such as
applications that copy or convert text files, will benefit
from a larger buffer, because it reduces disk head
movement and file system overhead.

SetTextBuf changes the text file f to use the buffer
specified by buf instead of f's internal buffer. Size
specifies the size of the buffer in bytes. If Size is omitted,
SizeOf(buf) is assumed; that is, by default, the entire
memory region occupied by buf is used as a buffer. The
new buffer remains in effect until f is next passed to
Assign.

SetTextBuf should never be applied to an open file,
although it can be called immediately after Reset,
Rewrite, and Append. Calling SetTextBuf on an open file
once I/O operations has taken place can cause loss of
data because of the change of buffer.

Turbo Pascal doesn't ensure that the buffer exists for the
entire duration of I/O operations on the file. In
particular, a common error is to install a local variable as
a buffer, and then use the file outside the procedure that
declared the buffer.

Alternative to 3.0's syntax: var f :text [2048].

var
f : text;
ch : char;
buf: array[1 •• 10240] of char;

begin
{ Get file to read from command line }
Assign(f, ParamStr(l));
{ Bigger buffer for faster reads }
SetTextBuf(f, buf);
Reset (f);
{ Dump text file onto screen }
while Dot Eof(f) do
begin

Read(f, ch);
Write (ch) ;

od;
od.

{ 10K buffer }

Chapter 76. Turbo Pascal Reference Lookup 371

SetTextJustify procedure

SetTextJustify procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

372

Sets text justification values used by OutText and
OutTextXY.

SetTextJustify(Horiz, Vert: word)

Text output after a SetTextJustify will be justified around
the current pointer in the manner specified. Given the
following:

SetTextJustify(CenterText, CenterText);
OutTextXY(100, 100, 'ABC');

The point(100,100) will appear in the middle of the letter
B. The default justification settings can be restored by
SetTextJustify(LeftText, TopText). If invalid input is passed
to SetTextJustify, GraphResult will return a value of -11
(grError), and the current text justification settings will
be unchanged.

The following constants are defined:

con.t
{ Horizontal justification
LeftText = 0;
CenterText = 1;
RightText = 2;
{ Vertical justification }
BottomText = 0;
CenterText = 1;
TopText = 2;

{ Not declared twice }

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetTextSettings, GraphResult, OutText, OutTextXY,
SetLineStyle, SetUserCharSize, TextHeight, TextWidth

us.. Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

{ Center text onscreen }
SetTextJustify(CenterText, CenterText);

Turbo Pascal Reference Guide

OutTextXY(Succ(GetMaxX)
div 2, Succ(GetMaxY)
div 2, 'Easily Centered');

Readln;
CloseGraph;

end.

SetTextJustify procedure

SetTextStyle procedure Graph
Function

Declaration

Remarks

Sets the current text font, style, and character magnifi­
cation factor.

SetTextStyle(Font: word; Direction: word; CharSize: word)

Affects all text output by OutText and OutTextXY. One
8x8 bit-mapped font and several IIstroked" fonts are
available. Font directions supported are normal (left to
right) and vertical (90 degrees to normal text, starts at
the bottom and goes up). The size of each character can
be magnified using the CharSize factor. A CharSize value
of one will display the 8x8 bit-mapped font in an 8x8
pixel rectangle on the screen, a CharSize value equal to 2
will display the 8x8 bit-mapped font in a 16x16 pixel
rectangle and so on (up to a limit of 10 times the normal
size). Always use TextHeight and TextWidth to determine
the actual dimensions of the text.

The normal size values for text are 1 for the default font
and 4 for a stroked font. These are the values that should
be passed as the Char Size parameter to SetTextStyle.
SetUserCharSize can be used to customize the dimen­
sions of stroked font text.

Normally, stroked fonts are loaded from disk onto the
heap when a call is made to SetTextStyle. However, you
can load the fonts yourself or link them directly to your
.EXE file. In either case, use RegisterBGlfont to register
the font with the Graph unit.

When IIstroked" fonts are loaded from disk, errors can
occur when trying to load them. If an error occurs,
GraphResult will return one of the following values:

-8 Font file not found
-9 Not enough memory to load the font selected
-11 Graphics error

Chapter 76, Turbo Pascal Reference Lookup 373

SetTextStyle procedure

Restrictions

See also

Example

-12 Graphics I/O error
-13 Invalid font file
-14 Invalid font number

The following type and constants are declared:

aonst
DefaultFont = 0;
TriplexFont = 1;
SmallFont = 2;
SansSerifFont = 3;
GothicFont = 4;

HorizDir = 0;
VertDir = 1;

8x8 bit mapped font
{ "Stroked" fonts

{ Left to right
{ Bottom to top

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

GetTextSettings, GraphResult, OutText, OutTextXY,
RegisterBGlfont, SetText]ustify, SetUserCharSize,
TextHeight, TextWidth

uses Graph;
Tar

Gd, Gm : integer;
Y, Size: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Y := 0;
for Size := 1 to 4 do
begin

SetTextStyle(DefaultFont, HorizDir, Size);
OutTextXY(O, Y, 'Size = , t Chr(Sizet48));
Inc(Y, TextHeight('H') t 1);

end;
Readln;
CloseGraph;

end.

SetTime procedure Dos
Function

Declaration

374

Sets the current time in the operating system.

SetTime(Hour, Minute, Second, Sec100: word)

Turbo Pascal Reference Guide

Remarks

See also

SetTIme procedure

Valid parameter ranges are Hour 0 .. 23, Minute 0 . .59,
Second 0 .. 59, and Sec100 (hundredths of seconds) 0-99. If
the time is not valid, the request is ignored.

GetDate, Get Time, PackTime, SetDate, UnpackTime

SetUserCharSize procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

Allows the user to vary the character width and height
for stroked fonts.

SetUserCharSize(MultX, DivX, MultY, DivY: word)

MultX:DivX is the ratio multiplied by the normal width
for the active font; MultY:DivY is the ratio multiplied by
the normal height for the active font. In order to make
text twice as wide, for example, use a MultX value of 2,
and set DivX equal to 1 (2 div 1 = 2).

You don't have to call SetTextStyle immediately after
calling SetUserCharSize to make that character size take
effect. Calling SetUserCharSize sets the current character
size to the values given.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

SetTextStyle, OutText, OutTextXY, TextHeight, TextWidth

The following program shows how to change the height
and width of text:

uses Graph;
var

Driver, Mode : integer;
begin

Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult <> grOK then

Halt (1) ;

{ Showoff }
SetTextStyle(TriplexFont, Horizdir, 4);
OutText('Norm');
SetUserCharSize(l, 3, 1, 1);

OutText('Short ');
SetUserCharSize(3, 1, 1, 1);
OutText('Wide');

Chapter 76, Turbo Pascal Reference Lookup 375

SetVerify procedure

Readlni
CloseGraph;

end.

SetVerify procedure Dos
Function

Declaration

Remarks

See also

Sets the state of the verify flag in DOS.

SetVerify(Verify: boolean)

SetVerify sets the state of the verify flag in DOS. When
off (False), disk writes are not verified. When on (True),
all disk writes are verified to ensure proper writing.

Get Verify

SetViewPort procedure Graph
Function

Declaration

Remarks

376

Sets the current output viewport or window for graphics
output.

SetViewPort(xl, yl, x2, y2: integer; Clip: boolean)

(x1, y1) define the upper left comer of the viewport, and
(x2, y2) define the lower right comer (0 <= xl < x2 and 0
<= yl < y2). The upper left comer of a viewport is (0,0).

The Boolean variable Clip determines whether drawings
are clipped at the current viewport boundaries.
SetViewPort(O, 0, GetMaxX, GetMaxY, True) always sets
the viewport to the entire graphics screen. If invalid
input is parsed to SetViewPort, GraphResult will return
-11 (grError), and the current view settings will be
unchanged. The following constants are defined:

const
ClipOn = True;
ClipOff = False;

All graphics commands (for example, GetX, OutText,
Rectangle, MoveTo, and so on) are viewport-relative. In
the example, note that MoveTo moves the current pointer
to (5,5) inside the viewport (the absolute coordinates
would be (15,25».

Turbo Pascal Reference Guide

Restrictions

See also

5etViewPort procedure

(0,0) (GetMaxX,O)

[J
(O,Get MaxY) (GetMaxX, GetMaxY)

If the Boolean variable Clip is set to True when a call to
Set ViewPort is made, all drawings will be clipped to the
current viewport. Note that the IIcurrent pointer" is
never clipped. The following will not draw the complete
line requested because the line will be clipped to the
current viewport:

SetViewPort(10, 10, 20, 20, ClipOn);
Line(O, 5, 15, 5);

The line would start at absolute coordinates (10,15) and
terminate at absolute coordinates (25,15) if no clippmg
was performed. But since clipping was performed, the
actual line that would be drawn would start at absolute
coordinates (10,15) and terminate at coordinates (20,15).

InitGraph, GraphDefaults, and SetGraphMode all reset the
viewport to the entire graphics screen. The current
viewport settings are available by calling the procedure
GetViewSettings, which accepts a parameter of the
following global type:

type
ViewPortType = record

xl, yl, x2, y2: integer;
Clip: boolean;

end;

Set ViewPort moves the current pointer to (0,0).

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

Clear ViewPort, GetViewSettings, GraphResult

Chapter 76, Turbo Pascal Reference Lookup 377

SefViewPorf procedure

Example u... Graph;
var

Gd, Gm: integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

if (Gd = HercMono)
or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) than
bagin

SetVisualPage(O);
SetActivePage(l);
Rectangle(lO, 20, 30, 40);
SetVisualPage(l)i

and
alaa

OutText('No paging supported.');
Readln;
CloseGraph;

end.

SetVisualPage procedure Graph
Function

Declaration

Remarks

Restrictions

See also

Example

378

Sets the visual graphics page number.

SetVisualPage(Page: word)

Makes Page the visual graphics page.

Multiple pages are only supported by the EGA (256K),
VGA, and Hercules graphics cards. With multiple
graphics pages, a program can direct graphics output to
an off-screen page, then quickly display the off-screen
image by changing the visual page with the
SetVisualPage procedure. This technique is especially
useful for animation.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

SetActivePage

usa. Graph;

Gd, Gm: integer;
begin

Gd := Detect;

Turbo Pascal Reference Guide

InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt (1);

if (Gd = HercMono)

SefVisualPage procedure

or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) then
begin

SetVisualPage(O);
SetActivePage(l);
Rectangle(10, 20, 30, 40);
SetVisualPage(l);

ad
else

OutText('No paging supported.');
Readln;
CloseGraph;

end.

SetWriteMode procedure Graph
Function

Declaration

Remarks

See also

Example

Sets the writing mode for line drawing.

SetWriteMode(WriteMode : integer)

The following constants are defined:

cout
CopyPut = 0;
XORPut = 1;

{ MOV }
{ XOR }

Each constant corresponds to a binary operation
between each byte in the line and the corresponding
bytes on the screen. CopyPut uses the assembly language
MOV instruction, overwriting with the line whatever is
on the screen. XORPut uses the XOR command to
combine the line with the screen. Two successive XOR
commands will erase the line and restore the screen to
its original appearance.

Note: SetWriteMode only affects calls to the following
routines: DrawPoly, Line, LineRel, LineTo, and Rectangle.

A similar routine exists in Turbo C 2.0.

Line, LineTo, PutImage, SetLineStyle

use.
Crt, Graph;

var
Driver, Mode,

Chapter 76, Turbo Pascal Reference Lookup 379

SetWriteMode procedure

i : integer;
xl, yl, dx, dy : integer;
FillInfo : FillSettingsType;

begin
DirectVideo := false;
Randomize; .

{ Turn off screen write

Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 than

{ Put in graphics mode

Halt (1);

{ Fill screen with background pattern
GetFilISettings(FillInfo); { Get current settings
SetFilIStyle(WideDotFill, FillInfo.Color);
Bar(O, 0, GetMaxX, GetMaxY);
dx := GetMaxX div 4; { Determine rectangle's dimensions
dy := GetMaxY div 4;
SetLineStyle(SolidLn, 0, ThickWidth)i
SetWriteMode(XORput); { XOR mode for rectangle
repeat Draw until a key is pressed }

xl := Random(GetMaxX - dx);
yl := Random(GetMaxY - dy);
Rectangle (xl, yl, xl + dx, yl + dy);
Delay(lO);
Rectangle (xl, yl, xl + dx, yl + dy);

antil KeyPressed;
Readlni
Closegraph;

and.

{ Draw it
Pause briefly

{ Erase it

Sin function
Function

Declaration

Result type

Remarks

See also

Example

380

Returns the sine of the argument.

Sin(x: real)

real

x is a real-type expression. The result is the sine of x. x is
assumed to represent an angle in radians.

ArcTan, Cos

var
r: real;

begin
1"" .~ C~ ""' IO~ , •
.&... V.LU\.L..L.I'

eDd.

Turbo Pascal Reference Guide

SizeOf function

SizeOf function
Function

Declaration

Result type

Remarks

Returns the number of bytes occupied by the argument.

SizeOf(x)

word

x is either a variable reference or a type identifier. SizeO!
returns the number of bytes of memory occupied by x.

SizeOf should always be used when passing values to
FillChar, Move, GetMem, and so on:

FillChar(s, SizeOf(s), 0);
GetMem(p, SizeOf(RecordType));

Example type
CustRec = record

Name : .tring[30];
Phone: .tring[14];

end;

p: "CustRec;
begin

GetMem(p, SizeOf(CustRec));
end.

Sound procedure Crt
Function

Declaration

Remarks

See also

Example

Starts the internal speaker.

Sound (Hz: word)

Hz specifies the frequency of the emitted sound in hertz.
The speaker continues until explicitly turned off by a
call to NoSound.

NoSound

u ••• Crt;
begin

Sound(220);
Delay(200);
NoSound;

end.

{ Beep }
{ Pause }

{ Relief! }

Chapter 76, Turbo Pascal Reference Lookup 381

SPir function

SPtr function
Function

Declaration

Result type

Remarks

See also

Returns the current value of the SP register.

SPtr

word

The result, of type word, is the offset of the stack pointer
within the stack segment.

SSeg

Sqr function
Function

Declaration

Result type

Remarks

Returns the square of the argument.

Sqr(x)

Same type as parameter.

x is an integer-type or real-type expression. The result,
of the same type as x, is the square of x, or x * x.

Sqrt function
Function

Declaration

Result type

Remarks

Returns the square root of the argument.

Sqrt (x: real)

real

x is a real-type expression. The result is the square root
ofx.

SSeg function
Function Returns the current value of the 55 register.

Declaration SSeg

Result type word

382 Turbo Pascal Reference Guide

Remarks

See also

SSeg function

The result, of type word, is the segment address of the
stack segment.

SPtr, CSeg, DSeg

Str procedure
Function

Declaration

Remarks

See also

Example

Converts a numeric value to its string representation.

Str(x [: width [: decimals]]; var s: string)

X is an integer-type or real-type expression. width and
decimals are integer-type expressions. s is a string-type
variable. Str converts x to its string representation,
according to the width and decimals formatting
parameters. The effect is exactly the same as a call to the
Write standard procedure with the same parameters,
except that the resulting string is stored in 5 instead of
being written to a text file.

Val, Write

function IntToStr(i: longint): string;
{ Convert any integer type to a string }
var

s: string [11] ;

begin
Str (i, s);
IntToStr := s;

ad;

begin
Writeln(IntToStr(-5322));

ad.

Succ function
Function

Declaration

Result type

Remarks

Returns the successor of the argument.

Succ(x)

Same type as parameter.

x is an ordinal-type expression. The result, of the same
type as x, is the successor of x.

Chapter 76, Turbo Pascal Reference Lookup 383

Swap function

See also Inc, Pred

Swap function
Function

Declaration

Result type

Remarks

See also

Example

Swaps the high- and low-order bytes of the argument.

Swap (x)

Same type as parameter.

x is an expression of type integer or word.

Hi,Lo

var
x: word;

begin
x := Swap($1234); {$3412}

end.

SwapVectors procedure Dos
Function

Declaration

Remarks

See also

Example

384

Swaps interrupt vectors.

SwapVectors

Swaps the contents of the SavelnfXX pointers in the
System unit with the current contents of the interrupt
vectors. Swap Vectors is typically called just before and
just after a call to Exec. This ensures that the Exec'd
process does not use any interrupt handlers installed by
the current process and vice versa.

Exec

{$M 8192,O,O}
u ••• Dos;
var

Command: .tring[79];
begin

Write('Enter DOS command: ');
ReadLn(Command);

Turbo Pascal Reference Guide

TextBackground procedure

if Command <> " then
Command := 'IC ' + Command;

SwapVectors;
Exec(GetEnv('COMSPEC'), Command);
SwapVectors;
if Dos Error <> 0 then

Writeln('Could not execute COMMAND.COM');
end.

TextBackground procedure Crt
Function

Declaration

Remarks

See also

Selects the background color.

TextBackground(Color: byte);

Color is an integer expression in the range 0 .. 7, corres­
ponding to one of the first eight color constants:

COD.t

Black = 0;
Blue = 1;
Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. TextBackground sets bits
4-6 of TextAttr to Color.

The background of all characters subsequently written
will be in the specified color.

TextColor, HighVideo, NormVideo, LowVideo

TextColor procedure Crt
Function

Declaration

Remarks

Selects the foreground character color.

TextColor(Color: byte)

Color is an integer expression in the range 0 . .15, corres­
ponding to one of the color constants defined in Crt:

Chapter 76, Turbo Pascal Reference Lookup 385

TextColor procedure

Differences

See also

Example

const
Black = 0;
Blue = 1;
Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;
DarkGray = 8;
LightBlue = 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. TextColor sets bits 0-3 to
Color. If Color is greater than 15, the blink bit (bit 7) is
also set; otherwise, it is cleared.

You can make characters blink by adding 128 to the color
value. The Blink constant is defined for that purpose; in
fact, for compatibility with Turbo Pascal 3.0, any Color
value above 15 causes the characters to blink. The
foregound of all characters subsequently written will be
in the specified color.

In 3.0, Blink was equal to 16.

TextBackground, HighVideo, NormVideo, LowVideo

TextColor(Green);
TextColor(LightRed+Blink);
TextColor (14) ;

{ green characters
{ blinking light-red characters }

{ yellow characters }

TextHeight function Graph
Function

Declaration

Result type

Remarks

386

Returns the height of a string in pixels.

TextHeight(TextString: string)

Takes the current font size and multiplication factor, and
determines the height of TextString in pixels. This is

Turbo Pascal Reference Guide

Restrictions

See also

Example

TextHeight function

useful for adjusting the spacing between lines,
computing viewport heights, sizing a title to make it fit
on a graph or in a box, and more.

For example, with the 8x8 bit-mapped font and a
multiplication factor of 1 (set by SetTextStyle), the string
Turbo is 8 pixels high.

It is important to use TextHeight to compute the height of
strings, instead of doing the computation manually. In
that way, no source code modifications have to be made
when different fonts are selected.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

OutText, OutTextXY, SetTextStyle, TextWidth,
SetUserCharSize

uses Graph;
Va%:

Gd, Gm : integer;
Y, Size: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, "~I;

if Gra"phResult <> grOk then
Halt (1);

Y := 0;
for Size := 1 to 5 do
begin

SetTextStyle(DefaultFont, HorizDir, Size);
OutTextXY(O, Y, 'Turbo Graphics');
Inc(Y, TextHeight('Turbo Graphics'));

end;
Readln;
CloseGraph;

end.

TextMode procedure Crt
Function

Declaration

Remarks

Selects a specific text mode.

TextMode(Mode: word)

The following constants are defined:

Chapter 76, Turbo Pascal Reference Lookup 387

TextMode procedure

388

COIl.t
BW40 0;
BW80 2;
Mono 7;
C040 1;
C080 3;
Font8x8 = 256;
C40 = C040;
C80 = C080;

{ 40x25 B/W on color adapter }
{ 80x25 B/W on color adapter }

{ 80x25 B/W on monochrome adapter }
{ 40x25 color on color adapter }
{ 80x25 color on color adapter }

{ For EGA/VGA 43 and 50 line }
{ For 3.0 compatibility }
{ For 3.0 compatibility }

Other values cause TextMode to assume e80.

When TextMode is called, the current window is reset to
the entire screen, DirectVideo is set to True, CheckS now is
set to True if a color mode was selected, the current text
attribute is reset to normal corresponding to a call to
NormVideo, and the current video is stored in LastMode.
In addition, LastMode is initialized at program startup to
the then-active video mode.

Specifying TextMode(LastMode) causes the last active text
mode to be re-selected. This is useful when you want to
return to text mode after using a graphics package, such
as Graph or Graph3.

The following call to TextMode:

TextMode(cBO + FontBxB)

will reset the display into 43 lines and 80 columns on an
EGA, or 50 lines and 80 columns on a VGA with a color
monitor. / TextMode(Lo(LastMode» always turns off 43- or
50-line mode and resets the display (although it leaves
the video mode unchanged); while

TextMode(Lo(LastMode) + Font8x8)

will keep the video mode the same, but reset the display
into 43 or 50 lines.

If your system is in 43- or 50-line mode when you load a
Turbo Pascal program, the mode will be preserved by
the Crt startup code, and the window variable that
keeps track of the maximum number of lines on the
screen (WindMax) will be initialized correctly.

Here's how to write a "well-behaved" program that will
restore the video mode to its original state:

program Video;
U,., Crt;

Turbo Pascal Reference Guide

Differences

See also

var
OrigMode: integer;

begin
OrigMode := LastMode;

TextMode(OrigMode);
end.

TextMode procedure

{ Remember original mode }

Note that TextMode does not support graphics modes,
and therefore TextMode(OrigMode) will only restore
those modes supported by TextMode.

In 3.0, a call to TextMode with no parameters is now
done by calling TextMode(LastMode).

RestoreCrtMode

TextWidth function Graph
Function

Declaration

Result type

Remarks

Restrictions

See also

Example

Returns the width of a string in pixels.

TextWidth(TextString: string)

word

Takes the string length, current font size, and
multiplication factor, and determines the width of
TextString in pixels. This is useful for computing view­
port widths, sizing a title to make it fit on a graph or in a
box, and so on.

For example, with the 8x8 bit-mapped font and a
multiplication factor of 1 (set by SetTextStyle), the string
Turbo is 40 pixels wide.

It is important to use TextWidth to compute the width of
strings, instead of doing the computation manually. In
that way, no source code modifications have to be made
when different fonts are selected.

A similar routine exists in Turbo C 2.0.

Must be in graphics mode.

OutText, OutTextXY, SetTextStyle, TextHeight,
Set UserCharSize

usas Graph;
var

Gd, Gm: integer;

Chapter 76, Turbo Pascal Reference Lookup 389

TextWidth function

Row : integer;
Title : .tring;
Size : integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Row := 0;
Title := 'Turbo Graphics';
Size := 1;
while TextWidth(Title) < GetMaxX do
begin

OutTextXY(O, Row, Title);
Inc (Row, TextHeight('M'));
Inc(Size);
SetTextStyle(DefaultFont, HorizDir, Size);

end;
Readlni
CloseGraph;

end.

Trunc function
Function

Declaration

Result type

Remarks

Restrictions

Differences

See also

390

Truncates a real-type value to an integer-type value.

Trunc (x: real)

longint

X is a real-type expression. Trunc returns a longint value
that is the value of x rounded toward zero.

A run-time error occurs if the truncated value of x is not
within the longint range.

In 3.0, the result type was an integer.

Round,lnt

Turbo Pascal Reference Guide

Truncate procedure

Truncate procedure
Function

Declaration

Remarks

Restrictions

See also

Truncates the file size at the current file position.

Truncate (var f)

I is a file variable of any type. All records past I are
deleted and the current file position also becomes end­
of-file (Eol(l) is True).

If I/O-checking is off, the IOResult function will return a
nonzero value if an error occurs. -

I m~st be open. Truncate does not work on text files.

Seek, Reset, Rewrite

UnpackTime procedure Dos
Function

Declaration

Remarks

See also

Converts a 4-byte, packed date-and-time longint
returned by GetFTime, FindFirst, or FindNext into an
unpacked DateTime record.

UnpackTime(Time: longint; var DT: DateTime)

DateTime is a record declared in the Dos unit:

DateTime = record
Year, Month, Day, Hour,
Min, Sec: word

end;

The fields of the Time record are not range-checked.

PackTime, GetFTime, SetFTime, GetTime, SetTime

UpCase function
Function

Declaration

Result type

Converts a character to uppercase.

UpCase(ch: char)

char

Chapter 76, Turbo Pascal Reference Lookup 391

Val procedure

Remarks ch is an expression of type char. The result of type char is
ch converted to uppercase. Character values not in the
range a .. z are unaffected.

Val procedure
Function

Declaration

Remarks

392

Converts the string value to its numeric representation.

Val(s: string; var v; var code: integer)

5 is a string-type expression. v is an integer-type or real­
type variable. code is a variable of type integer. 5 must be
a sequence of characters that form a signed whole
number according to the syntax shown in the section
'Numbers" in Chapter 1. Val converts 5 to its numeric
representation and stores the result in v. If the string is
somehow invalid, the index of the offending character is
stored in code; otherwise, code is set to zero.

Val performs range-checking differently depending on
the state of {$R} and the type of the parameter v.

With range-checking on, {$R+}, an out-of-range value
always generates a run-time error. With range-checking
off, {$R-}, the values for an out-of-range value vary
depending upon the data type of v. If v is a real or
longint type, the value of v is undefined and code returns
a nonzero value. For any other numeric type, code
returns a value of zero, and v will contain the results of
an overflow calculation (assuming the string value is
within the long integer range).

Therefore, you should pass Val a longint variable and
perform range-checking before making an assignment of
the returned value:

{$R-}
Val('65536', LonglntVar, Code)
if (Code <> 0) or

(LonglntVar < 0) or (LonglntVar > 65535) than

alaa
WordVar := LonglntVari

{ Error }

In this example, LonglntVar would be set to 65536, and
Code would equal O. Because 65536 is out of range for a
word variable, an error would be reported.

Turbo Pascal Reference Guide

Restrictions

See also

Example

Trailing spaces must be deleted.

Sfr

var i, code: integer;
begin

{ Get text from command line }
Val{ParamStr{l), i , code);
(Error during conversion to integer?
if code <> 0 then

Writeln{'Error at position: I I code)
else

Writeln{'Value = " i)i
ad.

Val procedure

WhereX function Crt
Function

Declaration

Result type

See also

Returns the X-coordinate of the current cursor position,
relative to the current window.

WhereX

byte

Where Y, GotoXY, Window

Where Y function Crt
Function

Declaration

Result type

See also

Returns the Y-coordinate of the current cursor position,
relative to the current window.

WhereY

byte

WhereX, GotoXY, Window

Chapter 76, Turbo Pascal Reference Lookup 393

Window procedure

Window procedure Crt
Function

Declaration

Remarks

See also

Example

394

Defines a text window on the screen.

Window(Xl, Yl, X2, Y2: byte)

Xl and Y1 are the coordinates of the upper left comer of
the window, and X2 and Y2 are the coordinates of the
lower right corner. The upper left corner of the screen
corresponds to (1,1). The minimum size of a text
window is one column by one line. If the coordinates are
in any way invalid, the call to Window is ignored.

The default window is (1,1,80,25) in 25-line mode, and
(1,1,80,43) in 43-line mode, corresponding to the entire
screen.

All screen coordinates (except the window coordinates
themselves) are relative to the current window. For
instance, GotoXY(1,1) will always position the cursor in
the upper left comer of the current window.

Many Crt procedures and functions are window­
relative, including ClrEol, ClrSer, DelLine, GotoXY,
Insline, WhereX, WhereY, Read, Readln, Write, Writeln.

WindMin and WindMax store the current window
definition (refer to the "WindMin and WindMax"
section on page 131).

A call to the Window procedure always moves the cursor
to (1,1).

ClrEol, ClrScr, DelLine, GotoXY, WhereX, WhereY

u ... Crt;
var

x, y: byte;
begin

TextBackground(Black); { Clear screen}
ClrScr;
repeat

x := Succ(Random(80)); (Draw random windows
y := Succ(Random(25));
Window(x, y, x + Random (10) , y + Random(8));
TextBackground(Random(16)); { In random colors
ClrScr;

until KeyPressed;
end.

Turbo Pascal Reference Guide

Write procedure (text files)

Write procedure (text files)
Function

Declaration

Remarks

Writes one or more values to a text file.

Write (I var f: text;] vl I, v2, ••• ,vn])

I, if specified, is a text-file variable. If I is omitted, the
standard file variable Output is assumed. Each p is a
write parameter. Each write parameter includes an
output expression whose value is to be written to the
file. A write parameter can also contain the specifi­
cations of a field width and a number of decimal places.
Each output expression must be of a type char, integer,
real, string, packed string, or boolean.

A write parameter has the form

OutExpr I : MinWidth I : DecPlaces]

where OutExpr is an output expression. MinWidth and
DecPlaces are type integer expressions.

Min Width specifies the minimum field width, which
must be greater than O. Exactly MinWidth characters are
written (using leading blanks if necessary) except when
OutExpr has a value that must be represented in more
than MinWidth characters. In that case, enough
characters are written to represent the value of OutExpr.
Likewise, if MinWidth is omitted, then the necessary
number of characters are written to represent the value
ofOutExpr.

DecPlaces specifies the number of decimal places in a
fixed-point representation of a type real value. It can be
specified only if OutExpr is of type real, and if Min Width
is also specified. When Min Width is specified, it must be
greater than or equal to O.

Write with a type char value: If Min Width is omitted,
the character value of OutExpr is written to the file.
Otherwise, Min Width -1 blanks followed by the
character value of OutExpr is written.

Write with a type integer value: If Min Width is omitted,
the decimal representation of OutExpr is written to the
file with no preceding blanks. If Min Width is specified
and its value is larger than the length of the decimal
string, enough blanks are written before the decimal
string to make the field width Min Width.

Chapter 16. Turbo Pascal Reference Lookup 395

Write procedure (text flies)

396

Write with a type real value: If OutExpr has a type real
value, its decimal representation is written to the file.
The format of the representation depends on the
presence or absence of DecPlaces.

If DecPlaces is omitted (or if it is present, but has a
negative value), a floating-point decimal string is
written. If Min Width is also omitted, a default Min Width
of 17 is assumed; otherwise, if Min Width is less than 8, it
is assumed to be 8. The format of the floating-point
string is

I -] <digit> • <decimals> E [+ I -] <exponent>

The components of the output string are shown in Table
16.1:

Table 16.1: Components of the Output String

[I -]

<digit>

<decimals>

E

[+ 1-]

<exponent>

" " or "-", according to the sign of OutExpr

Single digit, "0" only if OutExpr is 0

Digit string of MinWidth-7 (but at most 10)
digits

Uppercase [E) character

According to sign of exponent

Two-digit decimal exponent

If DecPlaces is present, a fixed-point decimal string is
written. If DecPlaces is larger than 11, it is assumed to be
11. The format of the fixed-point string follows:

[<blanks>] [-] <digits> [• <decimals>]

The components of the fixed-point string are shown in
Table 16.2:

Table 16.2: Components of the Fixed-Point string

[<blanks>]

[-]
<digits>
[. <decimals>]

Blanks to satisfy Min Width

If OutExpr is negative

At least one digit, but no leading zeros
Decimals if DecPlaces > 0

Write with a string-type value: If Min Width is omitted,
the string value of OutExpr is written to the file with no
leading blanks. If Min Width is specified, and its value is

Turbo Pascal Reference Guide

Restrictions

Differences

See also

Write procedure (text files)

larger than the length of OutExpr, enough blanks are
written before the decimal string to make the field width
Min Width.

Write with a packed string type value: If OutExpr is of
packed string type, the effect is the same as writing a
string whose length is the number of elements in the
packed string type.

Write with a Boolean value: If OutExpr is of type
boolean, the effect is the same as writing the strings True
or False, depending on the value of OutExpr.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

File must be open for output.

See Appendix A in the User's Guide, "Differences
Between Turbo Pascal 3.0, 4.0, and 5.0."

Read, Readln, Writeln

Write procedure (typed files)
Function

Declaration

Remarks

See also

Writes a variable into a file component.

Write(f, vI [, v2, ••• ,vn])

f is a file variable, and each v is a variable of the same
type as the component type of f. For each variable
written, the current file position is advanced to the next
component. If the current file position is at the end of the
file-that is, if Eoftf) is True-the file is expanded.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Writeln

Writeln procedure
Function

Declaration

Executes the Write procedure, then outputs an end-of­
line marker to the file.

Writeln ([var f: text;] vI [, v2, ..• , vn])

Chapter 16, Turbo Pascal Reference Lookup 397

Writeln procedure

Remarks

Restrictions

Differences

See also

398

Writeln procedure is an extension to the Write proce
dure, as it is defined for text files. After executing the
Write, Writeln writes an end-of-line marker (carriage­
return/line-feed) to the file.

Writeln(f) with no parameters writes an end-of-line
marker to the file. (Writeln with no parameter list
altogether corresponds to Writeln(Output).)

File must be open for output.

See Appendix A in the User's Guide, IIDifferences
Between Turbo Pascal 3.0, 4.0, and 5.0." .

Write

Turbo Pascal Reference Guide

p A R T

2

Appendices

399

400 Turbo Pascal Reference Guide

A p p E N D

Comparing Turbo Pascal 5.0 with
ANSI Pascal

x

A

This appendix compares Turbo Pascal to ANSI Pascal as defined by ANSI/
IEEE770X3.97-1983 in the book American National Standard Pascal Computer
Programming Language (ISBN 0-471-88944-X, published by The Institute of
Electrical and Electronics Engineers in New York).

Exceptions to ANSI Pascal Requirements

Turbo Pascal complies with the requirements of ANSI/IEEE770X3.97-1983
with the following exceptions:

• In ANSI Pascal, an identifier can be of any length and all characters are
significant. In Turbo Pascal, an identifier can be of any length, but only
the first 63 characters are significant.

• In ANSI Pascal, the @ symbol is an alternative for the A symbol. In Turbo
Pascal, the @ symbol is an operator, which is never treated identically
with the A symbol.

• In ANSI Pascal, a comment can begin with (and end with *), or begin
with (* and end with}. In Turbo Pascal, comments must begin and end
with the same set of symbols.

• In ANSI Pascal, each possible value of the tag type in a variant part must
appear once. In Turbo Pascal, this requirement is not enforced.

• In ANSI Pascal, the component type of a file type cannot be a structured
type having a component of a file type. In Turbo Pascal, this requirement
is not enforced.

Appendix A, Comparing Turbo PascalS.O with ANSI Pascal 401

• In ANSI Pascal, a file variable has an associated buffer variable, which is
referenced by writing the 1\ symbol after the file variable. In Turbo
Pascal, a file variable does not have an associated buffer variable, and
writing the 1\ symbol after a file variable is an error.

• In ANSI Pascal, the statement part of a function must contain at least one
assignment to the function identifier. In Turbo Pascal, this requirement is
not enforced.

• In ANSI Pascal, a field that is the selector of a variant part cannot be an
actual variable parameter. In Turbo Pascal, this requirement is not
enforced.

• In ANSI Pascal, a component of a variable of a packed type cannot be an
actual variable parameter. In Turbo Pascal, this requirement is not
enforced.

• In ANSI Pascal, a procedural or functional parameter is declared by
writing a procedure or function heading in the formal parameter list. In
Turbo Pascal, the declaration of a procedural or functional parameter is
achieved through a procedural or functional type, and uses the same
syntax as the declaration of other types of parameters.

• In ANSI Pascal, the standard procedures Reset and Rewrite do not require
pre-initialization of file variables. In Turbo Pascal, file variables must be
assigned the name of an external file using the Assign procedure before
they are passed to Reset or Rewrite.

• ANSI Pascal defines the standard procedures Get and Put, which are
used to read from and write to files. These procedures are not defined in
Turbo Pascal.

• In ANSI Pascal, the syntax New(p,cl, ... ,cn) creates a dynamic variable
with a specific active variant. In Turbo Pascal, this syntax is not allowed.

• In ANSI Pascal, the syntax Dispose(q,kl, ... ,km) removes a dynamic
variable with a specific active variant. In Turbo Pascal, this syntax is not
allowed.

• ANSI Pascal defines the standard procedures Pack and Unpack, which are
used to "pack" and "unpack" packed variables. These procedures are not
defined in Turbo Pascal.

• In ANSI Pascal, the term i mod j always computes a positive value, and it
is an error if j is zero or negative. In Turbo Pascal, i mod j is computed as
i - (i div j) * j, and it is not an error if j is negative.

• In ANSI Pascal, a goto statement within a block can refer to a label in an
enclosing block. In Turbo Pascal, this is an error.

• In ANSI Pascal, it is an error if the value of the selector in a case
statement is not equal to any of the case constants. In Turbo Pascal, this is
not an error; instead, the case statement is ignored unless it contains an
else clause.

402 Turbo Pascal Reference Guide

• In ANSI Pascal, statements that threaten the control variable of a for
statement are not allowed. In Turbo Pascal, this requirement is not
enforced.

• In ANSI Pascal, a Read from a text file with a char-type variable assigns a
blank to the variable if Eoln was True before the Read. In Turbo Pascal, a
carriage return character (ASCII 13) is assigned to the variable in this
situation.

• In ANSI Pascal, a Read from a text file with an integer-type or real-type
variable ceases as soon as the next character in the file is not part of a
signed integer or a signed number. In Turbo Pascal, reading ceases when
the next character in the file is a blank or a control character (including
the end-of-line marker).

• In ANSI Pascal, a Write to a text file with a packed. string-type value
causes the string to be truncated if the specified field width is less than
the length of the string. In Turbo Pascal, the string is always written in
full, even if it is longer than the specified field width.

• ANSI Pascal defines the standard procedure Page, which causes all
subsequent output to a specific text file to be written on a new page. This
procedure is not defined in Turbo Pascal. However, the typical
equivalent of Page(F) is Write(F,Chr(12».

Note: Turbo Pascal is unable to detect whether a program violates any of
the exceptions listed here.

Extensions to ANSI Pascal

The following Turbo Pascal features are extensions to Pascal as specified by
ANSI/IEEE 770X3.97 -1983.

• The following are reserved words in Turbo Pascal:
absolute interface string
external interrupt unit
implementation shl uses
inline shr xor

• An identifier can contain underscore characters (_).
• Integer constants can be written in hexadecimal notation; such constants

are prefixed by a $.
• Identifiers can serve as labels.
• String constants are compatible with the Turbo Pascal string types, and

can contain control characters and other nonprintable characters.

• Label, constant, type, variable, procedure, and function declarations can
occur any number of times in any order in a block.

Appendix AI Comparing Turbo Pascal 5.0 with ANSI Pascal 403

• Wherever the syntax of ANSI Pascal requires a simple constant, Turbo
Pascal allows the use of a constant expression (also known as a computed
constant).

• Turbo Pascal implements the additional integer types shortint, longint,
byte, and word, and the additional real types single, double, extended,
andcomp.

• Turbo Pascal implements string types, which differ from the packed
string types defined by ANSI Pascal in that they include a dynamic­
length attribute that can vary during execution.

• Turbo Pascal implements procedural and functional types. In addition to
procedural and functional parameters, these types make possible the
declaration and use of procedural and functional variables.

• The type compatibility rules are extended to make char types and packed
string types compatible with string types.

• Variables can be declared at absolute memory addresses using an
absolute clause.

• A variable reference can contain a call to a pointer-type function, the
result of which is then dereferenced to denote a dynamic variable.

• String-type variables can be indexed as arrays to access individual
characters in a string.

• The type of a variable reference can be changed to another type through
a variable typecast.

• Turbo Pascal implements typed constants, which can be used to declare
initialized variables of all types except file types.

• Turbo Pascal implements three new logical operators: xor, shl, and shr.
• The not, and, or, and xor operators can be used with integer-type

operands to perform bitwise logical operations.

• The + operator can be used to concatenate strings.
• The relational operators can be used to compare strings.
• Turbo Pascal implements the @ operator, which is used to obtain the

address of a variable or a procedure or function.

• The type of an expression can be changed to another type through a
value typecast.

• The case statement allows constant ranges in case label lists, and
provides an optional else part.

• Procedures and functions can be declared with external, inline, and
interrupt directives to support assembly language subroutines, inline
machine code, and interrupt procedures.

• A variable parameter can be untyped (typeless), in which case any
variable reference can serve as the actual parameter.

404 Turbo Pascal Reference Guide

• Turbo Pascal implements units to facilitate modular programming and
separate compilation.

• Turbo Pascal implements the following file-handling procedures and
functions, which are not available in ANSI Pascal:

Append Close Flush RmDir
BlockRead Erase GetDir Seek
Block Write FilePos MkDir SeekEof
ChDir FileSize Rename SeekEoln

• String-type values can be input and output with the Read, Readln, Write,
and Writeln standard procedures.

• Turbo Pascal implements the following standard procedures and
functions, which are not found in ANSI Pascal:

Addr GetMem MemAvail Release
Concat Halt Move RunError
Copy Hi Dfs SPtr
CSeg Inc ParamCount Seg
DSeg Insert ParamStr SizeDf
Dec Int Pi SSeg
Delete Length Pos Str
Exit Lo Ptr Swap
FillChar Mark Random UpCase
Frac MaxAvail Randomize Val
FreeMem

• Turbo Pascal implements further standard constants, types, variables,
procedures, and functions through standard units.

Note: Turbo Pascal is unable to detect whether a program uses any of the
extensions listed here.

Implementation-Dependent Features

The effect of using an implementation-dependent feature of Pascal, as
defined by ANSI/IEEE770X3.97-1983, is unspecified. Programs should not
depend on any specific pa th being taken in cases where an
implementation-dependent feature is being used. Implementation­
dependent features include:

• the order of evaluation of index expressions in a variable reference
• the order of evaluation of expressions in a set constructor
• the order of evaluation of operands of a binary operator
• the order of evaluation of actual parameters in a function call
• the order of evaluation of the left and right sides of an assignment

Appendix A, Comparing Turbo Pascal5.D with ANSI Pascal 405

• the order of evaluation of actual parameters in a procedure statement
• the effect of reading a text file to which the procedure Page was applied

during its creation
• the binding of variables denoted by the program parameters to entities

external to the program

Treatment of Errors

This section lists those errors from Appendix D of the ANSI Pascal
Standard that are not automatically detected by Turbo Pascal. The numbers
referred to here are the numbers used in the ANSI Pascal Standard. Errors
6, 19-22, and 25-31 are not detected because they are not applicable to
Turbo Pascal.

2. If t is a tag field in a variant part and f is a field within the active
variant of that variant part, it is an error to alter the value of t while
a reference to f exists. This error is not detected.

3. If P is a pointer variable, it is an error to reference pA if P is nil. This
error is not detected.

4. If P is a pointer variable, it is an error to reference pA if P is
undefined. This error is not detected.

5. If P is a pointer variable, it is an error to alter the value of p while a
reference to pA exists. This error is not detected.

42. The function call Eoln(f) is an error if Eof(f) is True. In Turbo Pascal
this is not an error, and Eoln(f) is True when Eof(f) is True.

43. It is an error to reference a variable in an expression if the value of
that variable is undefined. This error is not detected.

46. A term of the form i mod j is an error if j is zero or negative. In
Turbo Pascal, it is not an error if j is negative.

48. It is an error if a function does not assign a result value to the
function identifier. This error is not detected.

51. It is an error if the value of the selector in a case statement is not
equal to any of the case constants. In Turbo Pascal, this is not an
error; instead, the case statement is ignored unless it contains an
else clause.

406 Turbo Pascal Reference Guide

A p p E N D x

B

Compiler Directives

Some of the Turbo Pascal compiler's features are controlled through
compiler directives. A compiler directive is a comment with a special syntax.
Turbo Pascal allows compiler directives wherever comments are allowed.

A compiler directive starts with a $ as the first character after the opening
comment delimiter, and is immediately followed by a name (one or more
letters) that designates the particular directive. There are three types of
directives:

• Switch directives. These directives turn particular compiler features on
or off by specifying + or - immediately after the directive name.

• Parameter directives. These directives specify parameters that affect the
compilation, such as file names and memory sizes.

• Conditional directives. These directives control conditional compilation
of parts of the source text, based on user-definable conditional symbols.

All directives, except switch directives, must have at least one blank
between the directive name and the parameters. Here are some examples of
compiler directives:

{$Bt}
{$R- Turn off range-checking}
{$I TYPES. INC}
{SO EdFormat}
{$M 65520,8192,655360}
{$DEFINE Debug}
{$IFDEF Debug}
{$ENDIF}

You can put compiler directives directly into your source code. You can also
change the default directives for both the command-line compiler

Appendix 8, Compiler Directives 407

(TPC.EXE) and the IDE (TURBO.EXE). The Options/Compiler menu
contains all the compiler directives; any changes you make to the settings
there will affect all subsequent compilations (see Chapter 7 of the User's
Guide for details). When using the command-line compiler, you can specify
compiler directives on the command line (for example, TPC /$Rt MYPROG), or
you can place directives in a configuration file (TPC.CFG-refer to Chapter
8 of the User's Guide for information). Compiler directives in the source
code always override the default values in both the command-line compiler
and the IDE.

Switch Directives

Switch directives are either global or local. Global directives affect the entire
compilation, whereas local directives affect only the part of the compilation
that extends from the directive until the next occurrence of the same
directive.

Global directives must appear before the declaration part of the program or
the unit being compiled, that is, before the first uses, label, const, type,
procedure, function, or begin keyword. Local directives, on the other
hand, can appear anywhere in the program or unit.

Multiple switch directives can be grouped in a single compiler directive
comment by separating them with commas; for example,

{$B+,R-,S-}

There can be no spaces between the directives in this case.

Align Data

Syntax: {$At} or {$A-}

Default: {$At}

Type: Global

Menu equivalent: Options/Compiler/Align Data

This directive switches between byte and word alignment of variables and
typed constants. Word alignment has no effect on the 8088 CPU. However,
on all 80x86 CPUs, word alignment means faster execution, since word­
sized items on even addresses are accessed in one memory cycle, in
comparison to two memory cycles for words on odd addresses.

In the {$A+} state, all variables and typed constants larger than one byte are
aligned on a machine-word boundary (an even-numbered address). If
required, unused bytes are inserted between variables to achieve word

408 Turbo Pascal Reference Guide

alignment. The ($A+) directive does not affect byte-sized variables; neither
does it affect fields of record structures and elements of arrays. A field in a
record will align on word boundary only if the total size of all fields before
it is even. Likewise, for every element of an array to align on a word
boundary, the size of the elements must be even.

In the ($A-) state, no alignment measures are taken. Variables and typed
constants are simply placed at the next available address, regardless of
their size. If you are recompiling programs using the Turbo Pascal Editor
Toolbox, make sure to compile all programs that use the toolbox with ($A-).

Note: Regardless of the state of the $A directive, each global var and const
declaration section always starts at a word boundary. Likewise, the
compiler always attempts to keep the stack pointer (SP) word aligned, by
allocating an extra unused byte in a procedure's stack frame if required.

Also note: The $A compiler directive is equivalent to the Options/
Compiler/ Align Data command in the integrated environment; the
command-line compiler equivalent is the /$A option.

Boolean Evaluation

Syntax: {$B+} or {$B-}

Default {$B-}

Type: Local

Menu equivalent Options/ Compiler /Boolean Evaluation

Boolean Evaluation switches between the two different models of code
generation for the and and or Boolean operators.

In the ($B+) state, the compiler generates code for complete Boolean
expression evaluation. This means that every operand of a Boolean
expression, built from the and and or operators, is guaranteed to be
evaluated, even when the result of the entire expression is already known.

In the ($B-) state, the compiler generates code for short-circuit Boolean
expression evaluation, which means that evaluation stops as soon as the
result of the entire expression becomes evident.

For further details, refer to the section "Boolean Operators" in Chapter 6,
"Expressions. "

Appendix 8, Complier Directives 409

Debug Information

Syntax: {$o+} or {$O-}

Default: {$o+}

Type: Global

Menu equivalent Options/Compiler/Debug Information

Debug Information enables or disables the generation of debug informa­
tion. This information consists of a line-number table for each procedure,
which maps object code addresses into source text line numbers.

When Debug Information is turned on for a given program or unit, Turbo
Pascal's integrated debugger allows you to single-step and set breakpoints
in that module. Furthermore, when a run-time error occurs in a program or
unit compiled with {$D+}, Turbo Pascal can automatically take you to the
statement that caused the error with Compile/Find Error.

The Debug/Stand-alone Debugging and Options/Linker/Map File
switches produce complete information for a given module only if you've
compiled that module in the {$D+} state.

For units, the debug information is recorded in the .TPU file along with the
unit's object code. Debug information increases the size of .TPU files, and
takes up additional room when compiling programs that use the unit, but it
does not affect the size or speed of the executable program.

The debug information switch is usually used in conjunction with the Local
Symbols switch, which enables and disables the generation of local symbol
information for debugging.

Note: If you want to use the Turbo Debugger to debug your program, set
Compile/Destination to Disk and Debug/Stand-alone Debugging to On.

Emulation

Syntax: {$E+} or {$E-}

Default: {$E+}

Type: Global

Menu equivalent: Options/Compiler/Emulation

Emulation enables or disables linking with a run-time library that will
emulate the 8087 numeric coprocessor if it is not present.

When you compile a program in the {$N+,E+} state, Turbo Pascal links with
the full 8087 emulator. The resulting .EXE file can be used on any machine,

410 Turbo Pascal Reference Guide

regardless of whether an 8087 is present. If one is found, Turbo Pascal will
use it; otherwise, the run~time library emulates it.

In the ($N+,E-) state, Turbo Pascal links with a substantially smaller
floating-point library, which can only be used if an 8087 is present.

The 8087 emulation switch has no effect if used in a unit; it applies only to
the compilation of a program. Furthermore, if the program is compiled in
the ($N-) state, and if all the units used by the program were compiled with
($N-), then an 8087 run-time library is not required, and the 8087 emulation
switch is ignored.

Force FAR Calls

Syntax: {$F+} or {$F-}

Default: {$F-}

Type: Local

Menu equivalent Options/ Compiler /Force Far Calls

Force Far Calls controls which call model to use for subsequently compiled
procedures and functions. Procedures and functions compiled in the ($F+)
state always use the FAR call model. In the ($F-) state, Turbo Pascal
automatically selects the appropriate model: FAR if the procedure or
function is declared in the interface section of a unit; NEAR otherwise.

The NEAR and FAR call models are described in full in Chapter 15, "Inside
Turbo Pascal."

Note: For programs that use overlays, we suggest that you place a ($F+)
directive at the beginning of the program and each unit, in order to satisfy
the FAR call requirement. For more discussion, refer to Chapter 13,
"Overlays." For programs that use procedural variables, all such proce­
dures must use the FAR code model. For more discussion, refer to
"Procedural Variables" on page 85.

Input/Output-Checking

Syntax: {$1+} or {$1 -}

Default: {$ I + }

Type: Local

Menu equivalent Options/Compiler/I/O-Checking

Appendix B, Compiler Directives 411

I/O-checking enables or disables the automatic code generation that checks
the result of a call to an I/O procedure. I/O procedures are described in
Chapter 10, "Input and Output." If an I/O procedure returns a nonzero
I/O result when this switch is on, the program terminates, displaying a
run-time error message. When this switch is off, you must check for I/O
errors by using the IOResult function.

Local Symbol Information

Syntax: {$L+} or {$L-}

Default: {$L+}

Type: Global

Menu equivalent Options/ Compiler /Local Symbols

Local Symbols enables or disables the generation of local symbol
information. Local symbol information consists of the names and types of
all local variables and constants in a module, that is, the symbols in the
module's implementation part, and the symbols within the module's
procedures and functions.

When local symbols are on for a given program or unit, Turbo Pascal's
integrated debugger allows you to examine and modify the module's local
variables. Furthermore, calls to the module's procedures and functions can
be examined via the Debug/Call Stack menu.

The Options/Linker/Map File and Debug/Stand-alone Debugging
switches produce local symbol information for a given module only if that
module was compiled in the {$L+} state.

For units, the local symbol information is recorded in the .TPU file along
with the unit's object code. Local symbol information increases the size of
.TPU files, and takes up additional room when compiling programs that
use the unit, but it does not affect the size or speed of the executable
program.

The Local Symbol information switch is usually used in conjunction with
the Debug Information switch, which enables and disables the generation
of line-number tables for debugging. Note that the $L directive is ignored if
Debug Information is set to Off {$D-}.

Numeric Processing

Syntax: {$N+} or {$N-}

Default: {$N-}

412 Turbo Pascal Reference Guide

Type: Global

Menu equivalent Options/ Compiler /Numeric Processing

Numeric Processing switches between the two different models of
floating-point code generation supported by Turbo Pascal. In the ($N-)
state, code is generated to perform all real-type calculations in software by
calling run-time library routines. In the ($N+) state, code is generated to
perform all real-type calculations using the 8087 numeric coprocessor.

Note that you can also use the ($E+) directive to emulate the 8087. This
gives you access to the IEEE floating-point types without requiring that you
install an 8087 chip.

Overlay Code Generation

Syntax: {$O+} or {$O-}

Default {$O-})

Type: Global

Menu equivalent Options/ Compiler / Overlays Allowed

The $0 directive enables or disables overlay code generation. Turbo Pascal
allows a unit to be overlaid only if it was compiled with ($O+). In this state,
the code generator takes special precautions when passing string and set
constant parameters from one overlaid procedure or function to another.

The use of ($O+) in a unit does not force you to overlay that unit. It just
instructs Turbo Pascal to ensure that the unit can be overlaid, if so desired.
If you develop units that you plan to use in overlaid as well as non-overlaid
applications, then compiling them with ($O+) ensures that you can indeed
do both with just one version of the unit.

Note: A ($O+) compiler directive is almost always used in conjunction with
a {$F+} directive to satisfy the overlay manager's FAR call requirement.

For further details on overla,y code generation, refer to Chapter 13,
"Overlays."

Range-Checking

Syntax: {$R+} or {$R-}

Default {$R-}

Type: Local

Menu equivalent Options/ Compiler /Range-Checking

Appendix 8, Compiler Directives 413

Range-Checking enables or disables the generation of range-checking code.
In the ($R+) state, all array and string-indexing expressions are verified as
being within the defined bounds, and all assignments to scalar and sub­
range variables are checked to be within range. If a range check fails, the
program terminates and displays a run-time error message. Enabling
range-checking slows down your program and makes it larger. Use this
option when debugging, then turn it off once the program is bug-free.

Stack-Overflow Checking

Syntax: {$S+} or {$S-}

Default: {$S+}

Type: Local

Menu equivalent Options/CompilerlStack-Checking

Stack-Checking enables or disables the generation of stack-overflow
checking code. In the ($5+) state, the compiler generates code at the
beginning of each procedure or function that checks whether there is
sufficient stack space for the local variables and other temporary storage.
When there is not enough stack space, a call to a procedure or function
compiled with ($5+) causes the program to terminate and display a run­
time error message. In the ($5-) state, such a call is most likely to cause a
system crash.

Var-String Checking

Syntax: {$V+} or {$V-}

Default: {$v+}

Type: Local

Menu equivalent Options I Compiler IVar-String Checking

Var-String Checking controls type-checking on strings passed as variable
parameters. In the ($V+) state, strict type-checking is performed, requiring
the formal and actual parameters to be of identical string types. In the ($V-)
state, any string type variable is allowed as an actual parameter, even if the
declared maximum length is not the same as that of the formal parameter.

414 Turbo Pascal Reference Guide

Parameter Directives

Include File

Syntax: {$ I filename}

Type: Local

Menu equivalent Options/Directories /Include Directories
Include Directories instructs the compiler to include the named file in the
compilation. In effect, the file is inserted in the compiled text right after the
($1 filename) directive. The default extension for filename is .P AS. If filename
does not specify a directory, then, in addition to searching for the file in the
current directory, Turbo Pascal searches in the directories specified in the
Options/Directories/Include directories menu (or in the directories
specified in the /1 option on the TPC command line).

You can nest Include files up to 15 levels deep.

There is one restriction to the use of Include files: An Include file cannot be
specified in the middle of a statement part. In fact, all statements between
the begin and end of a statement part must reside in the same source file.

Link Object File

Syntax: {$L filename}

Type: Local

Menu equivalent Options/Directories/Object Directories

Object Directories instructs the compiler to link the named file with the
program or unit being compiled. The $L directive is used to link with code
written in assembly language for subprograms declared to be external. The
named file must be an Intel relocatable object file (.OBI file). The default
extension for filename is .OBI. If filename does not specify a directory, then,
in addition to searching for the file in the current directory, Turbo Pascal
searches in the directories specified in the Options/Directories/Object
Directories menu (or in the directories specified in the /0 option on the
TPC command line).

For further details about linking with assembly language, refer to Chapter
15, ''Inside Turbo Pasca1."

Appendix B, Compiler Directives 415

Memory Allocation Sizes

Syntax: {$M stacksize,heapmin,heapmax}

Default: {$M 16384,O,655360}

Type: Global

Menu equivalent Options/ Compiler /Memory Sizes

Memory Sizes specifies a program's memory allocation parameters.
stacksize must be an integer number in the range 1024 to 65520, which
specifies the size of the stack segment. heapmin must be in the range 0 to
655360, and heapmax must be in the range heapmin to 655360. heapmin and
heapmax specify the minimum and maximum sizes of the heap, respectively.

The stack segment and the heap are further discussed in Chapter 4,
"Variables," and Chapter 15, "Inside Turbo Pascal."

Note: The $M directive has no effect when used in a unit.

Overlay Unit Name

Syntax: {$O unit name }

Type: Local

Menu equivalent none

Overlay Unit Name turns a unit into an overlay.

The ($O unitname) directive has no effect if used in a unit; when compiling
a program, it specifies which of the units used by the program should be
placed in an .OVR file instead of in the .EXE file.

($O unitname) directives must be placed after the program's uses clause.
Turbo Pascal reports an error if you attempt to overlay a unit that wasn't
compiled in the ($O+) state. Any unit named in a {$O unitname} directive
must have been compiled with Overlays Allowed set to On in the IDE (the
equivalent of the ($O+) compiler directive).

For further details on overlays, refer to Chapter 13, "Overlays."

Conditional Compilation

Turbo Pascal's conditional compilation directives allow you to produce
different code from the same source text, based on conditional symbols.

416 Turbo Pascal Reference Guide

There are two basic conditional compilation constructs, which closely
resemble Pascal's if statement. The first construct

{$IFxxx} ••• {$ENDIF}

causes the source text between ($IFxxx} and ($ENDIF) to be compiled only
if the condition specified in ($IFxxx} is True; if the condition is False, the
source text between the two directives is ignored.

The second conditional compilation construct

{$IFxxx} ••• {$ELSE} ••• {$ENDIF}

causes either the source text between ($IFxxx} and ($ELSE} or the source
text between ($ELSE} and ($ENDIF} to be compiled, based on the condition
specified by the ($IFxxx}.

Here are some examples of conditional compilation constructs:

{$IFDEF Debug}
Writeln('X = , ,X);

{$ENDIF}

{$IFDEF CPU87}
{$N+}
type

real = double;
{$ELSE}

{$N-}
type

single = real;
double = real;
extended = real;
comp = real;

{$ENDIF}

You can nest conditional compilation constructs up 16 levels deep. For
every ($IFxxx}, the corresponding ($ENDIF} must be found within the same
source file-which means there must be an equal number of ($IFxxx}'s and
($ENDIF)' s in every source file.

Conditional Symbols

Conditional compilation is based on the evaluation of conditional symbols.
Conditional symbols are defined and undefined (forgotten) using the
directives

{$DEFINE name}
{$UNDEF name}

Appendix B, Complier Directives 417

You can also use the /D switch in the command-line compiler (or the menu
command O/C/Conditional Defines from within the integrated environ­
ment).

Conditional symbols are best compared to Boolean variables: They are
either True (defined) or False (undefined). The {$DEFINE} directive sets a
given symbol to True, and the {$UNDEF} directive sets it to False.

Conditional symbols follow the exact same rules as Pascal identifiers: They
must start with a letter, followed by any combination of letters, digits, and
underscores. They can be of any length, but only the first 63 characters are
significant.

Note: Conditional symbols and Pascal identifiers have no correlation
whatsoever. Conditional symbols cannot be referenced in the actual
program, and the program's identifiers cannot be referenced in conditional
directives. For example, the construct

conat
Debug = True;

begin
{$IFDEF Debug}
Writeln('Debug is on');

{$ENDIF}
end;

will not compile the Writeln statement. Likewise, the construct

{$DEFINE Debug}
begin

if Debug then
Writeln('Debug is on');

end;

will result in an unknown identifier error in the if statement.

Turbo Pascal defines the following standard conditional symbols:

VERSO Always defined, indicating that this is version 5.0 of Turbo
Pascal. Other versions (starting with 4.0) define their
corresponding version symbol; for instance, VER40 for version
4.0, and so on.

MSDOS Always defined, indicating that the operating system is MS­
DOS or PC-DOS. Versions of Turbo Pascal for other operating
systems will instead define a symbolic name for that particular
operating system.

CPU86 Alwavs defined, indicating that the CPU belongs to the 80x86
family of proce~sors. Versions of Turbo Pascal for other CPUs
will instead define a symbolic name for that particular CPU.

418 Turbo Pascal Reference Guide

CPU87 Defined if an 8087 numeric coprocessor is present at compile
time. If the construct

{$IFDEF CPU87} {$N+} {$ELSE} {$N-} {$ENDIF}

appears at the beginning of a compilation, Turbo Pascal
automatically selects the appropriate model of floating-point
code generation for that particular computer.

Other conditional symbols can be defined before a compilation using the
Ole/Conditional Defines menu, or the /D command-line option if you are
usingTPC.

The DEFINE Directive

Syntax: {$DEFINE name}

Defines a conditional symbol of name. The symbol is recognized for the
remainder of the compilation of the current module in which the symbol is
declared, or until it appears in an {$UNDEF name} directive. The {$DEFINE
name} directive has no effect if name is already defined.

The UNDEF Directive

Syntax: {$ UNDEF name}

Undefines a previously defined conditional symbol. The symbol is
forgotten for the remainder of the compilation or until it reappears in a
($DEFINE name) directive. The {$UNDEF name} directive has no effect if
name is already undefined.

The IFDEF Directive

Syntax: {$ IFDEF name}

Compiles the source text that follows it if name is defined.

The IFNDEF Directive

Syntax: {$ IFNDEF name}

Compiles the source text that follows it if name is not defined.

Appendix B, Compiler Directives 419

The IFOPT Directive

Syntax: {$IFOPT switch}

Compiles the source text that follows it if switch is currently in the specified
state. switch consists of the name of a switch option, followed by a + or a -
symbol. For example, the construct

{$IFOPT Nt}
type real : extended;

{$ENDIF}

will compile the type declaration if the $N option is currently active.

The ELSE Directive

Syntax: {$ELSE}

Switches between compiling and ignoring the source text delimited by the
last {$IFxxx} and the next {$ENDIF}.

The ENDIF Directive

Syntax: {$ENDIF}

Ends the conditional compilation initiated by the last {$IFxxx} directive.

420 Turbo Pascal Reference Guide

A p p E N D x

c
Reference Materials

This chapter is devoted to certain reference materials, including an ASCII
table, keyboard scan codes, and extended codes.

ASCII Codes

The American Standard Code for Information Interchange (ASCII) is a
code that translates alphabetic and numeric characters and symbols and
control instructions into 7-bit binary code. Table Col shows both printable
characters and control characters.

Appendix C, Reference Materials 421

Table C.l: ASCII Table

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

0 0 32 20 64 40 @ 96 60 .
1 1 @ 33 21 ! 65 41 A 97 61 a
2 2 • 34 22 " 66 42 B 98 62 b

3 3 • 35 23 # 67 43 C 99 63 c

4 4 • 36 24 $ 68 44 D 100 64 d

5 5 ... 37 25 % 69 45 E 101 65 e
6 6 • 38 26 & 70 46 F 102 66 f
7 7 • 39 27

,
71 47 G 103 67 g

8 8 a 40 28 (72 48 H 104 68 h
9 9 0 41 29) 73 49 I 105 69 i
10 A I 42 2A * 74 4A J 106 6A j

11 8 cr 43 28 + 75 48 K 107 68 k
12 C 9 44 2C , 76 4C L 108 6C 1
13 0 jI 45 20 - 77 40 M 109 60 m

14 E ~ 46 2E 78 4E N 110 6E n
15 F 0 47 2F / 79 4F 0 111 6F 0

16 10 ~ 48 30 0 80 50 P 112 70 P
17 11 ~ 49 31 1 81 51 Q 113 71 q
18 12 ! 50 32 2 82 52 R 114 72 r
19 13 !! 51 33 3 83 53 S 115 73 s
20 14 ~ 52 34 4 84 ·54 T 116 74 t
21 15 § 53 35 5 85 55 U 117 75 u
22 16 • 54 36 6 86 56 V 118 76 v
23 17 1 55 37 7 87 57 W 119 77 w

24 18 T 56 38 8 88 58 X 120 78 x
25 19 1 57 39 9 89 59 Y 121 79 Y
26 1A -t 58 3A 90 5A Z 122 7A z
27 18 +- 59 38 , 91 58 [123 78 {

28 1C L 60 3C < 92 5C \ 124 7C I
29 10 ... 61 3D = 93 50] 125 70 }

30 1E .. 62 3E > 94 5E A

126 7E -
31 1F ..- 63 3F ? 95 5F 127 7F ~ -

422 Turbo Pascal Reference Guide

Table C.l: ASCII Table (continued)

DEC HEX CHAR

128 80 <;;
129 81 U

130 82 e
131 83 a
132 84

133 85

134 86

135 87

136 88

137 89

138 8A

139 8B

140 8C

141 80

142 8E

143 8F

144 90

145 91

146 92

147 93

148 94

149 95

150 96

151 97

152 98

153 99

154 9A

155 9B

156 9C

157 90

158 9E

159 9F

a
a
a
<;
e
e
e
i

1

i

A
A
E
CE

If.

o
o
o
u
u
y
6
ti
¢
£

¥
R-

f

DEC HEX CHAR

160 AO a
161 A1 i

162 A2 6

163 A3 U

164 A4

165 A5

166 A6

167 A7

168 A8

169 A9

170 AA

171 AB

172 AC

173 AD

174 AE

175 AF

176 BO

177 B1

178 B2

179 B3

180 B4

181 B5

182 B6

183 B7

184 B8

185 B9

186 BA

187 BB

188 BC

189 BO

190 BE

191 BF

Ii

N

Q

«
»

I • I
1
~
11
TI

=j

~I
II

11
:!J
lJ

:::I

l

Appendix C, Reference Materials

DEC HEX CHAR

192 CO

193 C1

194 C2

195 C3

196 C4

197 C5

198 C6

199 C7

200 C8

201 C9

202 CA

203 CB

204 CC

205 CD

206 CE

207 CF

208 DO

209 01

210 02

211 03

212 04

213 05

214 06

215 07

216 08

217 09

218 OA

219 DB

220 DC

221 DO

222 DE

223 OF

L

...L

T

~

+
F
I~
l!:

rr
JL

lr
If

JL lr
..L

II

T

1f
LL

b:

F
rr
1~
..L
T
J

r • •
I
I
•

DEC HEX CHAR

224 EO ex

225 E1 ~

226 E2 r
227 E3 "IT

228 E4

229 E5

230 E6

231 E7

232 E8

233 E9

234 EA

235 EB

236 EC

237 ED

238 EE

239 EF

240 FO

241 F1

242 F2

243 F3

244 F4

245 F5

246 F6

247 F7

248 F8

249 F9

250 FA

251 FB

252 FC

253 FD

254 FE

255 FF

cr

T

q>

8

D

o
00

E

n

r
J

423

Extended Key Codes

Extended key codes are returned by those keys or key combinations that
cannot be represented by the standard ASCII codes listed in Table Col. (See
ReadKey in Chapter 16 for a description about how to determine if an
extended key has been pressed.)

Table C.2 shows the second code and what it means.

Second Code

424

3
15
16-25
30-38
44-50
59-68
71
72
73
75
77
79
80
81
82
83
84-93
94-103
104-113
114
115
116
117
118
119
120-131
132
133
134
135
136
137
138
139
140

Table C.2: Extended Key Codes

Meaning

NUL (null character)
Shift Tab (-<vv)
Alt-Q/W/ E/R/T/Y/U/ I/O/P
Alt-A/ S/ D/ F / G/ H/ 1/ J/ K/ L
Alt-Z/ x/ C/ V / B/ N/ M
Keys F1-F10 (disabled as softkeys)
Home
Uparrow
PgUp
Left arrow
Right arrow
End
Down arrow
PgDn
Ins
Del
F11-F20 (Shift-F1 to Shift-F10)
F21-F30 (Ctrl-F1 through F10)
F31-F40 (Alt-F1 througn F10)
Ctrl-PrlSe
Ctrl-Left arrow
Ctrl-Right arrow
Ctrl-End
Ctrl-PgDn
Ctrl-Home
AIt-1 /2/3/4/5/6/7/8/9/0/ -/=
Ctrl-PgUp
F11
F12
Shift-F11
Shift-F12
Ctrl-F11
Ctrl-F12
Alt-F11
A/t-F12

Turbo Pascal Reference Guide

Keyboard Scan Codes

Keyboard scan codes are the codes returned from the keys on the IBM PC
keyboard, as they are seen by Turbo Pascal. These keys are useful when
you're working at the assembly language level. Note that the keyboard
scan codes displayed in Table C.3 on page 426 are in hexadecimal values.

Appendix C, Reference Materials 425

Table C.3: Keyboard Scan Codes

Scan Code Scan Code
Key in Hex Key in Hex

Esc 01 Left/ Right arrow OF
! 1 02 Q 10
@2 03 W 11
#3 04 E 12
$4 05 R 13
%5 06 T 14
A6 07 Y 15
&7 08 U 16
*8 09 I 17
(9 OA 0 18
)0 OB P 19
- OC {[lA
+= OD J] IB
Backspace OE Return lC
Ctrl ID /1 2B
A IE Z 2C
S IF X 2D
D 20 C 2E
F 21 V 2F
G 22 B 30
H 23 N 31
J 24 M 32
K 25 <, 33
L 26 >. 34 .. 27 ?/ 35 . ,
", 28 RightShift 36
""I 29 PrtSc* 37
LeftShift 2A Alt 38
SpaceBar 39 7 Home 47
Caps Lock 3A 8 Uparrow 48
F1 3B 9PgUp 49
F2 3C Minus sign 4A
F3 3D 4 Left arrow 4B
F4 3E 5 4C
F5 3F 6 Right arrow 4D
F6 40 + 4E
F7 41 1 End 4F
F8 42 2 Down arrow 50
F9 43 3PgOn 51
F10 44 o Ins 52
F11 D9 Del 53
F12 DA NumLock 45
Scroll Lock 46

426 Turbo Pascal Reference Guide

A p p E N D x

D

Error Messages and Codes

Compiler Error Messages

The following lists the possible error messages you can get from the
compiler during program development. Whenever possible, the compiler
will display additional diagnostic information in the form of an identifier or
a file name, for example:

Error 15: File not found (WINDOW.TPUl.

When an error is detected, Turbo Pascal (in the integrated environment)
automatically loads the source file and places the cursor at the error. The
command-line compiler displays the error message and number and the
source line, and uses a caret (A) to indicate where the error occurred. Note,
however, that some errors are not detected until a little later in the source
text. For example, a type mismatch in an assignment statement cannot be
detected un til the en tire expression after the := has been evaluated. In such
cases, look for the error to the left of or above the cursor.

lOut of memory.

This error occurs when the compiler has run out of memory. There are a
number of possible solutions to this problem:

• If Compile/Destination is set to Memory, set it to Disk in the integrated
environment.

• If Options/Linker/Link Buffer in the integrated environment is set to
Memory, set it to Disk. Use the / L option to link to disk in the
command-line compiler.

• If you are using any memory-resident utilities, such as SideKick and
SuperKey, remove them from memory.

Appendix 0, Error Messages and Codes 427

• If you are using TURBO.EXE, try using TPC.EXE instead-it takes up less
memory.

If none of these suggestions help, your program or unit may simply be too
large to compile in the amount of memory available, and you may have to
break it into two or more smaller units.

2 Identifier expected.

An identifier was expected at this point. You may be trying to redeclare a
reserved word.

3 Unknown identifier.

This identifier has not been declared, or may not be visible within the
current scope.

4 Duplicate identifier.

The identifier has already been used within the current block.

5 Syntax error.

An illegal character was found in the source text. You may have forgotten
the quotes around a string constant.

6 Error in real constant

The syntax of real-type constants is defined in Chapter 1, "Tokens and
Constants."

7 Error in integer constant

The syntax of integer-type constants is defined in Chapter 1, "'Tokens and
Constants." Note that whole real numbers outside the maximum integer
range must be followed by a decimal point and a zero; for example,
12345678912.0.

8 String constant exceeds line.

You have most likely forgotten the ending quote in a string constant.

9 Too many nested files.

The compiler allows no nlore than 15 nested source files. !\tfost likely you
have more than four nested Include files.

428 Turbo Pascal Reference Guide

10 Unexpected end of file.
You might have gotten this error message because of one of the following:

• Your source file ends before the final end of the main statement part.
Most likely, your begins and ends are unbalanced.

• An Include file ends in the middle of a statement part. Every statement
part must be entirely contained in one file.

• You didn't close a comment.

11 Line too long.

The maximum line length is 126 characters.

12 Type identifier expected.

The identifier does not denote a type as it should.

13 Too many open files. ,

If this error occurs, your CONFIG.SYS file does not include a FILES=xx
entry or the entry specifies too few files. Increase the number to some
suitable value, for instance, 20.

14 Invalid file name.

The file name is invalid or specifies a nonexistent path.

15 File not found.

The file could not be found in the current directory or in any of the search
directories that apply to this type of file.

16 Disk full.

Delete some files or use a new disk.

17 Invalid compiler directive.

The compiler directive letter is unknown, one of the compiler directive
parameters is invalid, or you are using a global compiler directive when
compilation of the body of the program has begun.

Appendix D, Error Messages and Codes 429

18 Too many files.

There are too many files involved in the compilation of the program or
unit. Try not to use that many files, for instance, by merging Include files or
making the file names shorter.

19 Undefined type in pointer definition.

The type was referenced in a pointer-type declaration previously, but it was
never declared.

20 Variable identifier expected.

The identifier does not denote a variable as it should.

21 Error in type.

This symbol cannot start a type definition.

22 Structure too large.

The maximum allowable size of a structured type is 65520 bytes.

23 Set base type out of range.

The base type of a set must be a subrange with bounds in the range 0 .. 255
or an enumerated type with no more than 256 possible values.

24 File components may not be files.

file of file constructs are not allowed.

25 Invalid string length.

The declared maximum length of a string must be in the range 1..255.

26 Type mismatch.

This is due to one of the following:

• incompatible types of the variable and the expression in an assignment
statement

• incompatible types of the actual and formal parameter in a call to a
procedure or function

• an expression type that is incompatible with index type in array indexing
• incompatible types of operands in an expression

430 Turbo Pascal Reference Guide

27 Invalid subrange base type.

All ordinal types are valid base types.

28 Lower bound greater than upper bound.

The declaration of a subrange type specifies a lower bound greater than the
upper bound.

29 Ordinal type expected.

Real types, string types, structured types, and pointer types are not allowed
here.

30 Integer constant expected.

31 Constant expected.

32 Integer or real constant expected.

33 Type identifier expected.

The identifier does not denote a type as it should.

34 Invalid function result type.

Valid function result types are all simple types, string types, and pointer
types.

35 Label identifier expected.

The identifier does not denote a label as it should.

36 BEGIN expected.

A begin is expected here, or there is an error in the block structure of the
unit or program.

37 END expected.

An end is expected here, or there is an error in the block structure of the
unit or program.

38 Integer expression expected.

The preceding expression must be of an integer type.

Appendix D, Error Messages and Codes 431

39 Ordinal expression expected.

The preceding expression must be of an ordinal type.

40 Boolean expression expected.

The preceding expression must be of type boolean.

41 Operand types do not match operator.

The operator cannot be applied to operands of this type, for example, 'A'
div'2'.

42 Error in expression.

This symbol cannot participate in an expression in the way it does. You
may have forgotten to write an operator between two operands.

43 Illegal assignment

• Files and untyped variables cannot be assigned values .

• A function identifier can only be assigned values within the statement
part of the function.

44 Field identifier expected.

The identifier does not denote a field in the preceding record variable.

45 Object file too large.

Turbo Pascal cannot link in .OBI files larger than 64K.

46 Undefined external.

The external procedure or function did not have a matching PUBLIC
definition in an object file. Make sure you have specified all object files in
{$L filename} directives, and check the spelling of the procedure or function
identifier in the .ASM file.

47 Invalid object file record.

The .OBI file contains an invalid object record; make sure the file is in fact
an .OBI file.

432 Turbo Pascal Reference Guide

48 Code segment too large.

The maximum size of the code of a program or unit is 65520 bytes. If you
are compiling a program, move some procedures or functions into a unit. If
you are compiling a unit, break it into two or more units.

49 Data segment too large.

The maximum size of a program's data segment is 65520 bytes, including
data declared by the used units. If you need more global data than this,
declare the larger structures as pointers, and allocate them dynamically
using the New procedure.

50 DO expected.

The reserved word do does not appear where it should.

51 Invalid PUBLIC definition.

• The identifier was made public through a PUBLIC directive in assembly
language, but is has no matching external declaration in the Pascal
program or unit.

• Two or more PUBLIC directives in assembly language define the same
identifier.

• The .OB} file defines PUBLIC symbols that do not reside in the CODE
segment.

52 Invalid EXTRN definition.

• The identifier was referred to through an EXTRN directive in assembly
language, but it is not declared in the Pascal program or unit, nor in the
interface part of any of the used units.

• The identifier denotes an absolute variable.
• The identifier denotes an inline procedure or function.

53 Too many EXTRN definitions.

Turbo Pascal cannot handle .OB} files with more than 256 EXTRN
definitions.

54 OF expected.

The reserved word of does not appear where it should.

Appendix D, Error Messages and Codes 433

55 INTERFACE expected.

The reserved word interface does not appear where it should.

56 Invalid relocatable reference.

• The .OBI file contains data and relocatable references in segments other
than CODE. For example, you are attempting to declare initialized vari­
ables in the DATA segment.

• The .OBI file contains byte-sized references to relocatable symbols. This
error occurs if you use the HIGH and LOW operators with relocatable
symbols or if you refer to relocatable symbols in DB directives.

• An operand refers to a relocatable symbol that was not defined in the
CODE segment or in the DATA segment.

• An operand refers to an EXTRN procedure or function with an offset, for
example, CALL SortProc+8.

57 THEN expected.

The reserved word then does not appear where it should.

58 TO or DOWNTO expected.

The reserved word to or downto does not appear where it should.

59 Undefined forward.

• The procedure or function was declared in the interface part of a unit,
but its definition never occurred in the implementation part.

• The procedure or function was declared with forward, but its definition
was never found.

60 Too many procedures.

Turbo Pascal does not allow more than 512 procedures or functions per
module. If you are compiling a program, move some procedures or
functions into a unit. If you are compiling a unit, break it into two or more
units.

61 Invalid typecast.

• The sizes of the variable reference and the destination type differ in a
variable typecast.

• You are attempting to typecast an expression where only a variable
reference is allowed.

434 Turbo Pascal Reference Guide

62 Division by zero.

The preceding operand attempts to divide by zero.

63 Invalid file type.

The file type is not supported by the file-handling procedure; for example,
Readln with a typed file or Seek with a text file.

64 Cannot Read or Write variables of this type .

• Read and Readln can input variables of char, integer, real, and string
types .

• Write and Writeln can output variables of char, integer, real, string, and
boolean types.

65 Pointer variable expected.

The preceding variable must be of a pointer type.

66 String variable expected.

The preceding variable must be of a string type.

67 String expression expected.

The preceding expression must be of a string type.

68 Circular unit reference.

Two units are not allowed to use each other:

unit Uli
us as U2i

unit U2i
usas Ul;

In this example, doing a Make on either unit will generate error 68.

69 Unit name mismatch.

The name of the unit found in the .TPU file does not match the name
specified in the uses clause.

70 Unit version mismatch.

One or more of the units used by this unit have been changed since the unit
was compiled. Use Compile/Make or Compile/Build in the integrated
environment and / M or /B options in the command-line compiler to
automatically compile units that need recompilation.

Appendix D, Error Messages and Codes 435

71 Duplicate unit name.

You have already named this unit in the uses clause.

72 Unit file format error.

The .TPU file is somehow invalid; make sure it is in fact a .TPU file.

73 IMPLEMENTATION expected.

The reserved word implementation does not appear where it should.

74 Constant and case types do not match.

The type of the case constant is incompatible with the case statement's
selector expression.

75 Record variable expected.

The preceding variable must be of a record type.

76 Constant out of range.

You are trying to:

• index an array with an out-of-range constant

• assign an out-of-range constant to a variable
• pass an out-of-range constant as a parameter to a procedure or function

77 File variable expected.

The preceding variable must be of a file type.

78 Pointer expression expected.

The preceding expression must be of a pointer type.

79 Integer or real expression expected.

The preceding expression must be of an integer or a real type.

80 Label not within current block.

A goto statement cannot reference a label outside the current block.

436 Turbo Pascal Reference Guide

81 Label already defined.

The label already marks a statement.

82 Undefined label in preceding statement part

The label was declared and referenced in the preceding statement part, but
it was never defined.

83 Invalid @ argument.

Valid arguments are variable references and procedure or function
identifiers.

84 UNIT expected.

The reserved word unit does not appear where it should.

85 ";" expected.

A semicolon does not appear where it should.

86 II:" expected.

A colon does not appear where it should.

87 11/' expected.

A comma does not appear where it should.

88 11{l1 expected.

An opening parenthesis does not appear where it should.

89 II)" expected.

A closing parenthesis does not appear where it should.

90 11=" expected.

An equal sign does not appear where it should.

91 11:=1' expected.

An assignment operator does not appear where it should.

Appendix 0, Error Messages and Codes 437

92 1/[" or 1/(." expected.

A left bracket does not appear where it should.

93 1/]" or II.)" expected.

A right bracket does not appear where it should.

94 11/' expected.

A period does not appear where it should.

95 II •• " expected.

A subrange does not appear where it should.

96 Too many variables .

• The total size of the global variables declared within a program or unit
cannot exceed 64K .

• The total size of the local variables declared within a procedure or
function cannot exceed 64K.

97 Invalid FOR control variable.

The for statement control variable must be a simple variable defined in the
declaration part of the current subprogram.

98 Integer variable expected.

The preceding variable must be of an integer type.

99 Files are not allowed here.

A typed constant cannot be of a file type.

100 String length mismatch.

The length of the string constant does not match the number of components
in the character array.

101 Invalid ordering of fields.

The fields of a record-type constant must be written in the order of
declaration.

438 Turbo Pascal Reference Guide

102 String constant expected.

A string constant does not appear where it should.

103 Integer or real variable expected.

The preceding variable must be of an integer or real type.

104 Ordinal variable expected.

The preceding variable must be of an ordinal type.

105 INLINE error.

The < operator is not allowed in conjunction with relocatable references to
variables-such references are always word-sized.

106 Character expression expected.

The preceding expression must be of a char type.

107 Too many relocation items.

The size of the relocation table part of the .EXE file exceeds 64K, which is
Turbo Pascal's upper Ihnit. If you encounter this error, your program is
simply too big for Turbo Pascal's linker to handle. It is probably also too big
for DOS to execute. You will have to split the program into a "main" part
that executes two or more "subprogram" parts using the Exec procedure in
the Dos unit.

112 CASE constant out of range.

For integer type case statements, the constants must be within the range
-32768 .. 32767.

113 Error in statement

This symbol cannot start a statement.

114 Cannot call an interrupt procedure.

You cannot directly call an interrupt procedure.

Appendix 0, Error Messages and Codes' 439

116 Must be in 8087 mode to compile this.

This construct can only be compiled in the ($N+) state. Operations on the
8087 real types, single, double, extended, and comp, are not allowed in the
($N-) state.

117 Target address not found.

The Compile/Find error command in the integrated environment or the /F
option in the command-line version could not locate a statement that
corresponds to the specified address.

118 Include files are not allowed here.

Every statement part must be entirely contained in one file.

120 NIL expected.

Typed constants of pointer types may only be initialized to the value nil.

121 Invalid qualifier.

You are trying to do one of the following:

• index a variable tha t is not an array
• specify fields in a variable that is not a record
• dereference a variable that is not a pointer

122 Invalid variable reference.

The preceding construct follows the syntax of a variable reference, but it
does not denote a memory location. Most likely, you are calling a pointer
function, but forgetting to dereference the result.

123 Too many symbols.

The program or unit declares more than 64K of symbols. If you are
compiling with ($D+), try turning it off-note, however, that this will
prevent you from finding run-time errors in that module. Otherwise, you
could try moving some declarations into a separate unit.

124 Statement part too large.

Turbo Pascal limits the size of a statement part to about 24K. If you
encounter this error, InO,le sections of the statcrrtent part into one or nlore
procedures. In any case, with a statement part of that size, it's worth the
effort to clarify the structure of your program.

440 Turbo Pascal Reference Guide

126 Files must be var parameters.

You are attempting to declare a file type value parameter. File type
parameters must be var parameters.

127 Too many conditional symbols.

There is not enough room to define further conditional symbols. Try to
eliminate some symbols, or shorten some of the symbolic names.

128 Misplaced conditional directive.

The compiler encountered an ($ELSE) or ($ENDIF) directive without a
matching ($IFDEF), ($IFNDEF), or ($IFOPT) directive.

129 END IF directive missing.

The source file ended within a conditional compilation construct. There
must be an equal number of ($IFxxx}s and ($ENDIF}s in a source file.

130 Error in initial conditional defines.

The initial conditional symbols specified in Options / Compiler / Condi­
tional Defines (with the IDE) or in a /D directive (with the command-line
compiler) are invalid. Turbo Pascal expects zero or more identifiers
separated by blanks, commas, or semicolons.

131 Header does not match previous definition.

The procedure or function header specified in the interface part or forward
declaration does not match this header.

132 Critical disk error.

A critical error occurred during compilation (for example, drive not ready
error).

133 Cannot evaluate this expression.

You are attempting to use a non-supported feature in a constant expression
or in a debug expression. For example, you are attempting to use the Sin
function in a const declaration, or you are attempting to call a user-defined
function in a debug expression. For a description of the allowed syntax of
constant expressions, please refer to Chapter 1, "Tokens and Constants."
For a description of the allowed syntax of debug expressions, please refer to
Chapter 6 in the User's Guide, "Debugging Your Turbo Pascal Programs."

Appendix D, Error Messages and Codes 441

134 Expression incorrectly terminated.

Turbo Pascal expects either an operator or the end of the expression at this
point, but neither was found.

135 Invalid format specifier.

You are using an invalid format specifier, or the numeric argument of a
format specifier is out of range. For a list of valid format specifiers, refer to
Chapter 6 in the User's Guide, "Debugging Your Turbo Pascal Programs"

136 Invalid indirect reference.

The statement attempts to make an invalid indirect reference. For example,
you are using an absolute variable whose base variable is not known in the
current module, or you are using an inline routine that references a
variable not known in the current module.

137 Structured variables are not allowed here.

You are attempting to perform a non-supported operation on a structured
variable. For example, you are trying to multiply two records.

138 Cannot evaluate without System unit.

Your TURBO.1PL library must contain the System unit for the debugger to
be able to evaluate expressions.

139 Cannot access this symbol.

A program's entire set of symbols is available as soon as you have com­
piled the program. However, certain symbols, such as variables, cannot be
accessed until you actually run the program.

140 Invalid floating-point operation.

An operation on two real type values produced an overflow or a division
by zero.

141 Cannot compile overlays to memory.

A program that uses overlays must be compiled to disk.

142 Procedural 01' function variable expected.

In this context, the address operator (@) can only be used with a procedural
or function variable.

442 Turbo Pascal Reference Guide

143 Invalid procedure or function reference .

• You are attempting to call a procedure in an expression .
• If you are going to assign a procedure or function to a procedural

variable, it must be compiled in the ($F+) state and cannot be declared
with inline or interrupt.

144 Cannot overlay this unit

You are attempting to overlay a unit that wasn't compiled in the ($O+)
state.

145 Too many nested scopes.

Your program has too many nested scopes. Each project can have no more
than 512 nested scopes with no more than 128 nested scopes in each
module. Each unit in a uses clause, each nested record type declaration,
and each nested with context count toward the total number of nested
scopes.

Run-time Errors

Certain errors at run time cause the program to display an error message
and terminate:

Run-time error nnn at xxxx:yyyy,

where nnn is the run-time error number, and xxxx:yyyy is the run-time error
address (segment and offset).

The run-time errors are divided into four categories: 005 errors 1-99; I/O
errors, 100-149; critical errors, 150-199; and fatal errors, 200-255.

DOSE"ors

1 Invalid function number.

You made a call to a nonexistent DOS function.

2 File not found.

Reported by Reset, Append, Rename, or Erase if the name assigned to the file
variable does not specify an existing file.

Appendix D, Error Messages and Codes 443

3 Path not found.

• Reported by Reset, Rewrite, Append, Rename, or Erase if the name assigned
to the file variable is invalid or specifies a nonexistent subdirectory.

• Reported by ChDir, MkDir, or RmDir if the path is invalid or specifies a
nonexistent subdirectory.

4 Too many open files.

Reported by Reset, Rewrite, or Append if the program has too many open
files. DOS never allows more than 15 open files per process. If you get this
error with less than 15 open files, it may indicate that the CONFIG.SYS file
does not include a FILES=xx entry or that the entry specifies too few files.
Increase the number to some suitable value, for instance, 20.

5 File access denied.

• Reported by Reset or Append if FileMode allows writing and the name
assigned to the file variable specifies a directory or a read-only file.

• Reported by Rewrite if the directory is full or if the name assigned to the
file variable specifies a directory or an existing read-only file.

• Reported by Rename if the name assigned to the file variable specifies a
directory or if the new name specifies an existing file.

• Reported by Erase if the name assigned to the file variable specifies a
directory or a read-only file.

• Reported by MkDir if a file with the same name exists in the parent
directory, if there is no room in the parent directory, or if the path
specifies a device.

• Reported by RmDir if the directory isn't empty, if the path doesn't specify
a directory, or if the path specifies the root directory.

• Reported by Read or BlockRead on a typed or untyped file if the file is not
open for reading.

• Reported by Write or BlockWrite on a typed or untyped file if the file is
not open for writing.

6 Invalid file handle.

This error is reported if an invalid file handle is passed to a DOS system
call. It should never occur; if it does, it is an indication that the file variable
is somehow trashed.

444 Turbo Pascal Reference Guide

12 Invalid file access code.

Reported by Reset or Append on a typed or untyped file if the value of
FileMode is invalid.

15 Invalid drive number.

Reported by GetDir or ChDir if the drive number is invalid.

16 Cannot remove current directory.

Reported by RmDir if the path specifies the current directory.

17 Cannot rename across drives.

Reported by Rename if both names are not on the same drive.

IIOE"ors

These errors cause termination if the particular statement was compiled in
the {$I+} state. In the {$I-} state, the program continues to execute, and the
error is reported by the IOResult function.

100 Disk read error.

Reported by Read on a typed file if you attempt to read past the end of the
file.

101 Disk write error.

Reported by Close, Write, Writeln, Flush, or Page if the disk becomes full.

102 File not assigned.

Reported by Reset, Rewrite, Append, Rename, and Erase if the file variable has
not been assigned a name through a call to Assign.

103 File not open.

Reported by Close, Read, Write, Seek, Eof, FilePos, FileSize, Flush, BlockRead, or
Block Write if the file is not open.

104 File not open for input.

Reported by Read, Readln, Eof, Eoln, SeekEof, or SeekEoln on a text file if the
file is not open for input.

Appendix D, Error Messages and Codes 445

105 File not open for output.

Reported by Write and Writeln on a text file if the file is not open for output.

106 Invalid numeric format.

Reported by Read or Readln if a numeric value read from a text file does not
conform to the proper numeric format.

Critical Errors

150 Disk is write-protected.

151 Unknown unit.

152 Drive not ready.

153 Unknown command.

154 CRC error in data.

155 Bad drive request structure length.

156 Disk seek error.

157 Unknown media type.

158 Sector not found.

159 Printer out of paper.

160 Device write fault.

161 Device read fault.

162 Hardware failure.

Refer to your DOS programmer's reference manual for more information
about critical errors.

446 Turbo Pascal Reference Guide

Fatal Errors

These errors always immediately terminate the program.

200 Division by zero.

The program attempted to divide a number by zero during a /, mod, or div
operation.

201 Range check error.

This error is reported by statements compiled in the ($R+) state when one
of the following situations arises:

• The index expression of an array qualifier was out of range.
• You attempted to assign an out-of-range value to a variable.
• You attempted to assign an out-of-range value as a parameter to a proce­

dure or function.

202 Stack overflow error.

This error is reported on entry to a procedure or function compiled in the
($S+) state when there is not enough stack space to allocate the sub­
program's local variables. Increase the size of the stack by using the $M
compiler directive.

This error may also be caused by infinite recursion, or by an assembly
language procedure that does not maintain the stack project.

203 Heap overflow error.

This error is reported by New or GetMem when there is not enough free
space in the heap to allocate a block of the requested size.

For a complete discussion of the heap manager, refer to Chapter 15, HInside
Turbo Pascal."

204 Invalid pointer operation.

This error is reported by Dispose or FreeMem if the pointer is nil or points to
a location outside the heap, or if the free list cannot be expanded due to a
full free list or to HeapPtr being too close to the bottom of the free list.

205 Floating point overflow.

A floating-point operation produced a number too large for Turbo Pascal or
the numeric coprocessor (if any) to handle.

Appendix D, Error Messages and Codes 447

206 Floating point underflow

A floating-point operation produced an underflow. This error is only
reported if you are using the 8087 numeric coprocessor with a control word
that unmasks underflow exceptions. By default, an underflow causes a
result of zero to be returned.

207 Invalid floating point operation

• The real value passed to Trunc or Round could not be converted to an
integer within the longint range (-2147483648 to 2147483647).

• The argument passed to the Sqrt function was negative.
• The argument passed to the Ln function was zero or negative.
• An 8087 stack overflow occurred. For further details on correctly

programming the 8087, refer to Chapter 14, "Using the 8087."

208 Overlay manager not installed

Your program is calling an overlaid procedure or function, but the overlay
manager is not installed. Most likely, you are not calling Ovrlnit, or the call
to Ovrlnit failed. Note that, if you have initialization code in any of your
overlaid units, you must create an additional non-overlaid unit which calls
Ovrlnit, and use that unit before any of the overlaid units. For a complete
description of the overlay manager, refer to Chapter 13, "Overlays."

209 Overlay file read error

A read error occurred when the overlay manager tried to read an overlay
from the overlay file.

448 Turbo Pascal Reference Guide

Index

Index 449

$ See compiler, directives
8087/&)287/80387 coprocessor See

numeric coprocessor
256-color mode 134
@ (address-of) operator See address­

of (@) operator
/\ (pointer) symbol 32, 42
(pound) character 14

A
$A compiler directive 219, 408
Abs function 111, 218, 224
absolute clause 39
actual parameters 62, 66
Addr function 112,224
address-of (@) operator 32, 42, 61, 90

double 90
versus /\ (pointer) symbol 401
versus Addr 224

Align Data command 408
aligning data 408
and operator 56, 137
AndPut constant 332
ANSI Pascal 401

errors in 406
Append procedure 101, 104, 225
.ARC files 2
Arc procedure 147, 148, 155, 226
ArcTan function 111, 226
arithmetic

functions 110
operators 54

array-type constants 47
arrays 28, 41, 47

types 28, 193
variables 41

ASCII codes 421
.ASM files 178
aspect ratio 265

correction factor, changing 355
assembly language 199, 415

&)87 emulation and 178
examples 201
inline

directives 207
statements 205

interfacing program routines with
200

450

routines, overlays and 169
Assign procedure 101, 102, 211, 227
AssignCrt procedure 132, 211, 228
assignment statements 66
automatic

call model selection, overriding
197
word alignment 219

Aux (version 3.0) 212
AUXINOUT.PAS 212
AX register 196, 207

B
$B compiler directive 409
Back procedure 155
Bar3D procedure 133, 145, 148,229
Bar procedure 148, 229
BGI, Zenith Z-449 and 299
.BGI files 133
BINOB] 3,340,342
BIOS 126, 130
bit images 137, 276
bit-mapped fonts 136
bit-oriented routines 133
BitBlt

operations 137, 332
operators 146

bitwise operators 56
BlockRead procedure 105, 230
blocks, program 17
BlockWrite procedure 105, 232
Boolean

evaluation, compiler switch 409
operators 56
type 24, 189
values 24

Boolean Evaluation command 409
BP register 169, 199,206,209
brackets, in expressions 63
buffers, flushing 261
BX register 196, 209
byte data type 23

c
calling conventions 19.5
case statements 69
CBreak variable 154

Turbo Pascal Reference Guide

CGA 128, 133
Check5now and 130

char data type 24,189
characters

special 127
strings 14

ChDir procedure 102, 233
CheckBreak variable 129
CheckEOF variable 130
Check5now variable 130
.CHR files 133
Chr function 110, 218, 233
Circle procedure 133,148,155,234
circular unit references 97
ClearDevice procedure 148, 234
clearing the overlay buffer 323
ClearScreen procedure 155
ClearViewPort procedure 148, 235
clipping parameters 287
Close function 212
Close procedure 102, 210, 236
CloseGraph procedure 133, 148,236
ClrEol procedure 132, 237
ClrScr procedure 132, 237
CODE 199
colors 272, 273

background 266
drawing 267

ColorTable procedure 155
COM devices 107, 212
command-line compiler 3
command-line parameters 113, 328
comments, program 16
common type 23
communications, serial 212
comp floating-point type 173, 191
comparing values of real types 174
compilation, conditiona1416
compiler

command -line 3
directives 16, 407-420

$A 219, 408
$B409
Boolean evaluation 409
conditional 407, 416-420
$D410
$DEFINE 417, 419
$E 172,410
$EL5E420

Index

$ENDIF420
$F 86, 165, 197, 411
$1 102, 119, 306, 411, 415
$IFDEF419
$IFNDEF 419
$IFOPT420
$L 199, 412, 415
local symbol 412
$M 38, 181,307, 313, 314, 327,
416
$N 26, 171, 223, 412
$0 164, 413, 416

non-overlay units and 168
parameter 407, 415-416
$R413
$538,414
switch 407, 408-414
$UNDEF 417, 419
$V 414

error messages 427
integrated environment 1

compound statements 67
CON device 107
Concat function 112, 238
concatenation 58
conditional

compilation 416
statements 68
symbols 417

CONFIG.5YS 326
constant expressions 15

restrictions 15
type definition 26

constants 120
array-type 47
Crt mode 128
declaration part 18
declarations 15
defined by Overlay unit 161
file attribute 121
folding 218
Graph3 unit 155
Graph unit 142
merging 218
pointer-type 49
record-type 48
set-type 48
simple 15
simple-type 46

451

string-type 46
structured-type 46
text color 128
typed 45

control characters 14, 421
Copy function 112, 239
Cos function 111, 239
CPU symbols 418, 419
critical errors

messages 446
trapping 118

Crt unit 103, 108, 115, 116, 126, 153
AssignCrt procedure 228
ClrEol procedure 237
ClrScr procedure 237
constants 128
Delay procedure 240
DeIUne procedure 241
functions 132
GotoXY procedure 290
HighVideo procedure 295
InsLine procedure 300
KeyPressed function 307
line input 127
LowVideo procedure 312
mode constants 128
NormVideo procedure 319
NoSound procedure 319
procedures 132
ReadKey function 337
Sound procedure 381
special characters 127
text color 128
TextBackground procedure 385
TextColor procedure 385
TextMode procedure 387
variables 129
WhereX function 393
Where Y function 393
Window procedure 394

CS register 209,240
CSEG 199, 200
cSeg function 112, 199,200,240
current pointer 135
cursor position

reading 393
setting 290

customizing Turbo Pascal 3
CX register 209

452

D
$D compiler directive 410
DATA 199
data

alignment 408
encryption 118
ports 208
segment 38
types See types

date and time procedures 124
GetDate268
GetFfime 274
GetTime287
SetDate358
SetFfime 362
SetTime374

DateTime type 122
dead code removal 220
Debug Information command 410
debugging

information switch 410
overlays 169
range-checking switch 413
run-time error messages 443
stack overflow switch 414

Dec procedure 111, 240
decimal notation 13
declaration part, block 17
$DEFINE compiler directive 417, 419
Delay procedure 132, 240
Delete procedure 112, 241
DeIUne procedure 132, 241
DetectGraph procedure 143, 148,242
devices 106, 234

drivers 210
installing 301

handlers 153, 209, 210
01 register 209
direct memory 208
directives See compiler, directives
directories 269

changing 233
procedures 348
scan procedures for 122
searching 258, 262

Direct Video variable 130
OiskFree function 124, 243
disks

distribution 1

Turbo Pascal Reference Guide

space 243
status functions 124

DiskSize function 124, 243
Dispose procedure 110, 182, 183, 185,

244
distribution disks 1
div operator 55
DOS

device handling 210
devices 106
environment 179
error level 217
exit code 216
operating system routines 119
Pascal functions for 318
registers and 122
verify flag 287

setting 376
Dos unit 115, 119

constants 120
date and time procedures 124
disk status functions 124
DiskFree function 243
DiskSize function 243
DosError in 123
DosExitCode function 245
DosVersion function 245
EnvCount function 248
environment-handling functions
125
EnvStr function 248
Exec procedure 251
FExpand function 254
file-handling procedures and
functions 124
Find First procedure 258
Find Next procedure 259
FSearch function 262
FSplit procedure 263
GetCBreak procedure 267
GetDate procedure 268
GetEnv function 270
GetFAttr procedure 271
GetFTime procedure 274
GetIntVec procedure 277
GetTime procedure 287
GetVerify procedure 287
interrupt support procedures 123
Intr procedure 305

Index

Keep procedure 307
miscellaneous procedures and
functions 125
MsDos procedure 318
PackTime procedure 328
process-handling procedures and
functions 125
SetCBreak procedure 357
SetFTime procedure 362
SetlntVec procedure 365
SetTime procedure 374
SetVerify 376
SwapVectors procedure 384
types 120
UnpackTime procedure 391

DosError variable 123, 251, 258,259,
271,274,359,362

DosExitCode function 125,245
DosVersion function 126, 245
double floating-point type 172, 190
Draw procedure 156
DrawPoly procedure 133,148,246
drivers

active, returning
maximum mode number 279
name 270

graphics 133
OS register 199, 206, 209, 247
DSEG 199,200
DSeg function 112, 199, 200, 247
OX register 196, 209
dynamic

E

memory allocation 116
functions 109

variables 32, 38, 42, 181

$E compiler directive 172,410
East constant 155
EGA, CheckSnow and 130
ellipse, drawing 256
Ellipse procedure 147, 148,247
elliptical sector, drawing and filling

350
$ELSE compiler directive 420
empty set 31
EMS memory, overlay files and 159,

165

453

emulating numeric coprocessor
(8087) 27
compiler switch 410

Emulation command 410
end of file

error messages 429
status 249

$ENDIF compiler directive 420
entry code, procedures and functions

198
enumerated type 24, 189
EnvCount function 125, 248
EnvStr function 125, 248
Eof function 103, 249
Eoln function 104, 250
Erase procedure 102, 250
ErrorAddr variable 118, 217
errors

ANSI Pascal 406
codes for graphics operations 291,
292
critical 446
fatal, in OvrInit 167
handling 137
messages 291,427

critical 446
fatal 447

range 413
reporting 216
run-time See run-time, errors

ES register 209
.EXE files 159

building 220
Exec procedure 125,251
exit

codes 245
functions 198
procedures 198,216,253

implementing 118
Exit procedure 109
ExitCode variable 118, 217
exiting a program 216
ExitProc variable 118, 216
Exp function 111,253
Expanded Memory Specification See

EMS memory
exponents 189
expressions 51

constant 15

454

examples 54
extended

floating-point type 173
key codes 126, 424
memory support See EMS
memory
range arithmetic 173

extended floating-point type 191
extensions, ANSI Pascal 403
external

declarations 79, 199, 415
procedure errors 432

ExternProc 169
EXTRN definition errors 199, 200, 433

F
$F compiler directive 86, 165, 197, 411
factor (syntax) 52
FAR calls 197

model 164
forcing use of 216, 411

requirement 160
fatal run-time errors 447
FExpand function 125, 254
Fibonacci numbers 175
field

designators 41
list (of records) 29

file-handling procedures 124, 405
Rename 345
Reset 345
Rewrite 347
routines 119
Seek 351
SetFAttr 359
Truncate 391

FileMode variable 105, 118
FilePos function 105,254
FileRec 120, 193
files

access, read-only 105
access-denied error 444
.ASM178
Assign procedure 227
attributes 271

constants 121
.BG1133
buffer 194

Turbo Pascal Reference Guide

.CHR 133
closing 236
erasing 250
.EXE 159

building 220
handles 193, 194
I/O 116,126
modes 193, 194

constants 120
.OB} 199

linking with 415
.OVR 159
record types 120
text 103
typed 118, 193
types 31, 193
untyped 105, 118, 193

variable 230, 232
FileSize function 105, 255
fill patterns 272
FillChar procedure 112, 255
FillEllipse procedure 148,256
filling areas 259
FillPattern procedure 156
FillPoly procedure 137, 148, 257
FillScreen procedure 156
FillShape procedure 156
FindFirst procedure 121, 124, 258

SearchRec and 122
FindNext procedure 121, 124, 259

SearchRec and 122
fixed part (of records) 29
flags constants 120
floating-point

calculations, type real and 173
code generation, switching 171
errors 447
numbers 171
numeric coprocessor (8087) 27
parameters 196
routines 116
software 26
types See types, floating-point

FloodFill procedure 134, 137, 149, 259
Flush function 212
Flush procedure 104, 261
Font8x8 variable 128, 387, 388
fonts

files 141

Index

installing 304
stroked 375

for statements, syntax 72
Force Far Calls command 86, 165, 411
force FAR calls compiler switch 411
formal parameters 66, 82
forward declarations 78
Forwd procedure 156
Frac function 111, 261
fractions, returning 261
free list 185

overflow 187
FreeMem procedure 110, 182, 183,

185,187,261
FreeMin variable 118, 186
FreePtr variable 118, 185
FSearch function 125, 262
FSplit procedure 124, 254, 263
functions 77

address 112
arithmetic 11 0
body SO
calls 62, 195
Crt unit 132
declarations SO
disk status 124
dynamic allocation 109
file-handling 124
Graph unit 151
headings SO
nested 86
non-ANSI 405
ordinal 111
pointer 112
results 196
standard 109
string 112
transfer 110
Turb03 unit 154

G
GetArcCoords procedure 147, 149,

264
GetAspectRatio procedure 149, 265
GetBkColor function 151, 266
GetCBreak procedure 125, 267
GetColor function 151, 267
GetDate procedure 124, 268

455

GetDefaultPalette function 146, 151,
268

GetDir procedure 102, 269
GetDotColor procedure 156
GetDriverName function 151, 270
GetEnv function 125, 270
GetFAttr procedure 121, 125,271
GetFillPattern procedure 147, 149,

272
GetFillSettings procedure 145, 147,

149,273
GetFfime procedure 124, 274
GetGraphMode function 151, 274
Getlmage procedure 133,149,276
GetIntVec procedure 123, 277
GetLineSettings procedure 145, 146,

149,277
GetMaxColor function 151, 278
GetMaxMode function 151,279
GetMaxX function 151, 280
GetMaxY function 151, 281
GetMem procedure 110, 186, 187,

188,281
GetModeName function 151, 282
GetModeRange procedure 143, 149,

283
GetPalette procedure 146,149,283

IBM 8514 and 284
GetPaletteSize function 151, 284
GetPic procedure 156
GetPixel function 137, 151, 285
GetTextSettings procedure 136, 145,

147, 149,285
GetTime procedure 124, 287
GetVerify procedure 126, 287
GetViewSettings procedure 147, 149,

287
GetX function 151,288
GetY function 151,289
goto statements 67
GotoXY procedure 132, 290
GRAPH3.TPU 3
Graph3 unit 115, 116, 155

constants 155
proced ures 155

GRAPH.BIN 155
GRAPH.P155
GRAPH.TPU 2, 134
Graph unit 115, 133, 166

456

Arc procedure 226
Bar3D proced ure 229
Bar procedure 229
bit images in 137
Circle procedure 234
ClearDevice procedure 234
ClearViewPort procedure 235
CloseGraph procedure 236
colors 137
constants 142
DetectGraph procedure 242
DrawPoly procedure 246
Ellipse procedure 247
error-handling 137
figures and styles in 136
FillElli pse procedure 256
FillPoly procedure 257
FloodFill procedure 259
functions 151
GetArcCoords procedure 264
GetAspectRatio procedure 265
GetBkColor function 266
GetColor function 267
GetDefaultPalette function 268
GetDriverName function 270
GetFillPattern procedure 272
GetFillSettings procedure 273
GetGraphMode function 274
GetImage procedure 276
GetLineSettings procedure 277
GetMaxColor function 278
GetMaxMode function 279
GetMaxX function 280
GetMaxY function 281
GetModeName function 282
GetModeRange procedure 283
GetPalette procedure 283
GetPaletteSize function 284
GetPixel function 285
GetTextSettings procedure 285
GetViewSettings procedure 287
GetX function 288
Get Y function 289
GraphDefaults procedure 291
GraphErrorMsg function 291
GraphResult function 292
heap management routines 140
ImageSize function 296
InitGraph procedure 297

Turbo Pascal Reference Guide

InstallUserDriver function 301
InstallUserFont function 304
Line procedure 308
LineRel procedure 309
LineTo procedure 310
~oveRelpnJcedure316

~oveTo procedure 317
OutText procedure 320
OutTextXY procedure 322
paging 137
PieSlice procedure 329
procedures 148
PutImage procedure 331
PutPixel procedure 334
Rectangle procedure 339
RegisterBGIdriver function 340
RegisterBGIfont function 342
RestoreCrt~ode procedure 346
sample program 138, 139
Sector procedure 350
SetActivePage procedure 353
SetAllPalette procedure 354
SetAspectRatio procedure 355
SetBkColor procedure 356
SetColor pnJcedure 358
SetFillPattern procedure 359
SetFillStyle pnJcedure 361
SetGraphBufSize procedure 362
SetGraphMode procedure 363
SetLineStyle pnJcedure 366
SetPalette procedure 367
SetRGBPalette pnJcedure 369
SetTextJustify procedure 372
SetTextStyle procedure 373
SetUsetCharSize pnJcedure 375
SetViewPort procedure 376
Set VisualPage procedure 378
SetWriteMode 379
text in 136
TextHeight function 386
TextWidth function 389
types 146
variables 148
viewports in 137

GraphBackgnJund procedure 156
GraphColorMode procedure 156
GraphDefaults procedure 149, 291
GraphDriver variable
IB~ 8514 and 134, 299

Index

GraphErrorMsg function 151, 291
GraphFreeMem pnJcedure 140
GraphFreeMemPtr variable 148
GraphGet~em procedure 140
GraphGet~emPtr variable 148
graphics

bit-image operations 331
cards 242, 298
CloseGraph 133
current pointer in 135
drawing operations 308, 309, 310,
329,339,366
drivers 133, 297
figures and styles 136
fill operations 359, 361
InitGraph in 133
mode 274, 297, 309, 310, 311
page operations 353, 378
palette operations 354, 356, 358,
367
plotting operations 334
pointer operations 317
polygons, drawing 246
resolution 265
sample program 138, 139
system operations 363
text operations 320, 322, 372, 386
turtlegraphics 155
video mode operations 346
viewport operations 376

Graph~ode procedure 156, 297
GraphResult function 137, 138, 142,

151,292
error codes 292

GraphWindow procedure 156
GREP.COM3
grError293
grinvalidFont 293
grinvalidFontNum 293
griOernJr 293
GROUP directives 199

H
Halt procedure 109, 216, 294
handles

005227
file 193, 194

~ardware, interrupts 209

457

Heading procedure 156
heap management 179,181

allocating 181, 182, 185, 187
deallocating 182
dynamic memory allocation 118
fragmenting 181
free list 185
granularity 186
map 179
pointers 180
procedures 344
routines 140
sizes 416

HeapError variable 118, 187
HeapOrg variable 118, 181, 183
HeapPtr variable 118, 181, 186
HELPMELDOC 1
hexadecimal constants 13
Hi function 113, 218, 295
HideTurtle procedure 156
high

intensity characters 295
order bytes 295
resolution graphics 134

High Video proced ure 132, 154, 295
HiRes procedure 156
HiResColor procedure 156
Home procedure 156
host type 25

I
$1 compiler directive 102, 119,306,

411,415
I/O 101

checking 306
devices 211
DOS standard 227
error-checking 102, 411
errors 445
files 116, 126

standard 118
redirection 126
variables 101

I/O-Checking command 411
IBM8514133

driver support 134-134
GetPalette procedure and 284
GraphDriver variable and 134, 299

458

InitGraph procedure and 134, 299
palette entries, modifying 369
SetAllPalette procedure and 355
SetPalette procedure and 368
SetRGBPaiette and 134

IBM8514.BGI 134
IBM8514HI mode 134
IBM8514LO mode 134
identifiers 11
if statements 68
$IFDEF compiler directive 419
$IFNDEF compiler directive 419
$IFOPf compiler directive 420
ImageSize function 151,296
implementation

dependent features, Pascal 405
part (program) 95, 197
sections 99

in operator 58, 60
Inc procedure 111, 297
Include Directories command 415
include directories command-line

option 415
Include files 415

nesting 415
index expressions 41
indirect unit references 96
InitGraph procedure 133, 143, 149,

297
SetGraphMode and 363

initialization part (program) 96
initialized variables 45
inline

declarations 80
directives 207
machine code 205
statements 205

InOut function 212
InOutRes variable 118
input

DOS standard 227
files 101, 118

Input standard file 118
Insert procedure 112, 300
inserting

lines 300
strings 300

InsLine procedure 132,300
INSTALL.EXE 2, 4

Turbo Pascal Reference Guide

INSfALL utility 2
installation, Turbo Pascal 2, 4
InstallUserDriver function 152, 301
InstallUserFont function 152, 304
INT 24 handler 118
Int function 111, 305
integer data type 23, 188
integrated environment, using 1
interface section (program) 95, 100,

152, 197, 199
interfacing Turbo Pascal with Turbo

Assembler 200
internal data formats 179, 188
interrupt

directives 78
handlers 209

units and 169
handling routines 118, 209
procedures 365
service routines (ISRs) 209
support procedures 123
vectors 118, 119, 277

swapping 384
Intr procedure 123, 305

registers and 122
invalid typecasting errors 434
IOResult function 103, 118, 154, 306
IP flag 209
ISRs (interrupt service routines) 209

J
justification, font 285

K
Kbd 153
Keep procedure 125, 307
key codes 424
keyboard

operations 307,337
scan codes 425
status 128

KeyPressed function 128, 132, 307

L
$L compiler directive 199, 412, 415
labels 12

declaration part 17

Index

LastMode variable 131
Length function 112, 218, 308
line

drawing, setting writing mode for
379
input, Crt 127
settings 277

Line procedure 149, 308
LineRel procedure 149,309
LineTo procedure 149, 310
linking

assembly language 199
object files 415
smart 220

Ln function 111,311
Lo function 113, 218, 312
local symbol information switch 412
Local Symbols commarid 412
logical operators 56
LongFilePos function 154
LongFileSize function 154
longint data type 23
LongSeek procedure 154
LowVideo procedure 132, 154,312
LPf devices 107, 119
Lst variable 119

M
$M compiler directive 38, 181, 307,

313,314,327,416
machine code 205
macros, inline 207
MAKE utility 3
Mark procedure 110, 182, 313
math coprocessor See numeric

coprocessor
MaxAvail function 110, 155, 186,313
Mem array 208
MemAvail function 110, 152, 155, 186,

314
MemL array 208
memory 261, 281

allocation 166
compiler directive 416

DirectVideo and 130
error messages 427
map 179
size 416

459

Memory Sizes command 416
Mem W array 208
MicroCa1c2
MkDir procedure 102,314
mod operator 55
.MODEL directive

setting up calling conventions with
200

modular programming 94
monochrome adapters, CheckSnow and

130
Move procedure 113,315
MoveRel procedure 149,316
MoveTo procedure 149,317
MsDos procedure 124, 318
MSDOSsymbol418

N
$N compiler directive 26, 171, 223,

412
NEAR calls 197
nested scopes 443
nesting

files 415
procedures and functions 197

network file access, read-only 105
New procedure 32, 110, 181, 186, 188,

318
nil 32, 42
NormalPut constant 332
Norm Video procedure 132, 154, 319
North constant 155
NoSound procedure 132, 319
not operator 56, 137
NotPut constant 332
NoWrap procedure 156
NUL device 107
null strings 14, 27
numbers, counting 13, 188
numeric coprocessor

compiler switch 412
detecting 176
emulating 27, 116, 172

assembly language and 178
evaluation stack 175
floating-point 27
mode 440
numeric processing option 27

460

using 171-178
Numeric Processing command 172,

413

o
$0 compiler directive 164, 413, 416

non-overlay units and 168
.OBJ files 199

linking with 415
object

directories, compiler directive 415
files 199

linking with 415
Object Directories command 415
Odd function 111, 218, 319
Ofs function 112, 320
op code 205
Open function 211
operands 51
operators 10,51,54

@ (address-of) 32, 42
versus 1\ (pointer) symbol 401

address-of (@) 90
and 56,137
arithmetic 54
Bit Bit 146
bitwise 56
Boolean 56
div55
logical 56
mod 55
not 56, 137
or 56, 137
precedence of 51, 55
relational 58
set 58
shl56
shr56
string 57
xor56,137

optimization of code 217
or operator 56, 137
Ord function 22, 25, 110, 218, 320
order of evaluation 219
ordinal

functions 111
procedures 111
types 22

Turbo Pascal Reference Guide

OrPut constant 332
out-of-memory errors 427
output

DOS standard 227
files 101, 118

Output standard file 118
OutText procedure 136, 149, 320
OutTextXY procedure 136, 150, 322
overlaid

code, storing 181
initialization code 167
programs

designing 164
writing 160

routines, calling via procedure pointers
169

Overlay unit 115, 117, 160
name option 416
OvrClearBuf procedure 163, 323
OvrGetBuf function 163, 324
OvrInit procedure 162, 325
OvrlnitEMS procedure 162, 325
OvrResult variable 161
OvrSetBuf procedure 163, 327

overlays 159, 159-170
assembly language routines and
169
BP register and 169
buffers

clearing 163, 323
size

default 181
increasing 118

with OvrSetBuf 181
returning 163, 324
setting 163,327

cautions 168
code generation, compiler switch

413
debugging 169
files

loading into EMS 165, 325
opening 325

loading
into EMS 162
into memory 159

manager 116
implementing 117
initializing 162, 165, 167, 325

Index

Overlays Allowed command 413
.OVR files 159
OvrClearBuf procedure 163,323
OvrCodeList variable 117
OvrDebugPtr variable 117
OvrDosHandle variable 117
OvrEmsHandle variable 117
OvrGetBuf function 163, 324
OvrHeapEnd variable 117
OvrHeapOrg variable 117
OvrHeapPtr variable 117
OvrHeapSize variable 117
OvrInit procedure 162, 325
OvrInitEMS procedure 162,166,325
OvrLoadList variable 117
OvrResult variable 161
OvrSetBuf procedure 118, 163, 166,

327
OvrSetBuf routine, increasing size of overlay

buffer with 181

p
Pack procedure 110
packed (reserved word) 28
Pack Time procedure 124, 328

DateTime and 122
palette

color lookup table, returning size
284
definition record 268
manipulation routines 134

Palette procedure 156
ParamCount function 113, 328
parameter directives See compiler,

directives, parameter
parameters

actual 66
command-line 113, 328
floating-point 196
formal 66, 82
passing 66, 195
procedural type 87
value 82, 195
variable 83

untyped 83
ParamStr function 113, 328
.PAS files 2
Pattern procedure 156

461

PenDown procedure 156
PenUp procedure 157
Pi function 111, 329
PieSlice procedure 150, 329
pixel values 285
Plot procedure 157
pointer (A) symbol 32, 42
pointer and address functions 112
pointer-type constants 49
pointers

comparing 60
types 32, 192
values 42
variables 42, 61

polygons, drawing 246
port access 208
Port array 208
PortW array 208
Pos function 112, 330
pound (#) character 14
precedence of operators 51, 55
Pred function 22, 111, 218, 331
PreFixSeg variable 179
PrefixSeg variable 118
printer devices 107
Printer unit 115, 119
PRN107
PROC directive, defining parameters with

200
procedural

types 33, 84, 84-91
declarations 84
in expressions 89
in statements 89
variable declaration 85
variable typecasts and 90

values, assigning 85
variables 85

restrictions 86
using standard procedures and
functions with 86

procedural type parameters 87
procedure and function declaration

part (program) 18
procedures 77

body 77
declarations 77
dynamic allocation 109
Exit 109

462

file-handling 124
Graph3 unit 155
Graph unit 148
Halt 109
headings 78
nesting 86, 197
non-ANSI 405
ordinal 111
pointers, calling overlaid routines
169
standard 109
statements 66
string 112
Turbo3 unit 154

process-handling routines 125, 307
Program Segment Prefix (PSP) 118,

179
programs

execution, stopping 349
halting 294
headings 93
lines 16
parameters 93
syntax 93
termination 216

Ptr function 32, 112, 218, 331
PUBLIC 199

definition errors 433
PutImage procedure 133, 137, 146,

150,331
PutPic procedure 157
PutPixel procedure 137, 150, 334

Q
qualified identifiers II, 19

R
$R compiler directive 413
Random function 113, 118, 334
random number generator 118
Randomize procedure 113, 335
RandSeed function 118
range-checking

compile time 219
compiler S"l·litch 413
Val and 392

Range-Checking command 413
read-only file access 105

Turbo Pascal Reference Guide

Read procedure
text files 102, 104,335
typed files 337

reading records 230
Read Key function 128, 132, 153, 337
Readln procedure 104, 338
README 1
README.COM 3
real

numbers 26, 171, 189
types 26

record-type constants 48
records 29, 41, 48, 193
Rectangle procedure 150, 339
redeclaration 19, 37
redirection 126
reentrant code 209, 210
referencing errors 440
register-saving conventions 199
RegisterBGIdriver function 133 141

152, 169, 340 ' ,
RegisterBGIfont function 141, 152,

169,342
registers

AX 196,207
BP 199, 206, 209

overlays and 169
BX 196, 209
C5209,240
CX209
01209
OS 199, 206, 209
OX 196, 209
E5209
51209
5P 118, 199
55199
using 196, 199, 206, 209

Registers type 122
relational operators 58
relaxed string parameter-checking

414
Release procedure 110,182,344
relocatable reference errors 434
Rename procedure 102, 345
repeat statements 70
repetitive statements 70
reserved words 10, 403
Reset procedure 101, 103, 118, 345

Index

resolution, graphics 265
RestoreCrtMode procedure 133, 150,

346
result codes 161
Rewrite procedure 101, 103,347
RmDir procedure 103, 348
Round function 110, 218, 349
round -off errors, minimizing 174
routines, operating system 125
rules, scope 19
run-time

errors 216, 443
fatal 447
generating 349

support routines 116
RunError procedure 349

S
$5 compiler directive 38,414
5aveInitXX variables 118
SaveInt24119
scale factor 13
scan codes, keyboard 425
scope (of declaration) 19
scopes, nested 443
screen

mode control 126
output operations 126

search utility 3
searching directories 258
SearchRec type 122
Sector procedure 150, 350
Seek procedure 102,105,351
SeekEof function 104, 351
SeekEoln function 104, 352
Seg function 352
Seq function 112
serial communications port 212
set-type constants 48
set types 31, 192
5etActivePage procedure 150, 353
SetAllPalette procedure 144, 146, 150,

354
IBM 8514 and 355

SetAspectRatio procedure 150, 355
SetBkColor procedure 150,356
SetCBreak procedure 126,357
SetColor procedure 150, 358

463

SetDate procedure 124, 358
SetFAttr procedure 121, 125,359
SetFillPattern procedure 137, 145,

147, 150, 359
SetFillStyle procedure 137, 145, 150,

361
SetFTime procedure 124, 362
SetGraphBufSize procedure 141, 150,

362
SetGraphMode procedure 133, 150,

363
SetHeading procedure 157
SetlntVec procedure 124,365
SetLineStyle procedure 137, 145, 150,

366
SetPalette procedure 144,150,367

IBM 8514 and 368
SetPenColor procedure 157
SetPosition procedure 157
SetRGBPalette procedure 144, 150,

369
IBM 8514 and 134

SetRGBPaiette routine 134
sets

comparing 60
constructors 52, 63
membership 60
operators 58

SetTextBuf procedure 104, 370
SetTextJustify procedure 136, 145,

150,372
SetTextStyle procedure 136, 145, ISO,

373
OutText and 320
OutTextXY and 323

SetTime procedure 124, 374
SetUserCharSize procedure 136, 150,

375
SetVerify procedur.e 126, 376
SetViewPort procedure 133, 145, 150,

376
SetVisualPage procedure 151,378
SetWriteMode procedure 146, 151,

379
shl operator 56
short-circuit Boolean evaluation 218:

409
shortint data type 23
ShowTurtle procedure 157

464

shr operator 56
51 register 209
signed number (syntax) 14
significand 189
simple

statements 65
types 22

simple-type constants 46
Sin function 111, 380
single floating-point type 172, 190
SizeOf function 113, 256, 381
smart linking 220
snow-checking 130
software

floating-point 26
interrupts 209, 305
numeric processing See numeric
coprocessor, emulating

sound operations
NoSound 132,319
Sound 132, 381

Sound procedure 132, 381
source debugging compiler switch

410
South constant 155
SP register 118, 199,206
space characters 9
SPtr function 112, 382
Sqr function 111, 382
Sqrt function 111,382
55 register 199, 206
sSeg function 112, 382
stack

8087175
checking switch directive 414
overflow 38

switch directive 414
segment 38
size 416

Stack-Checking command 414
StackLimit variable 118
standard

functions, constant expressions and
16
Pascal 401
units See units; standard

statement part (program) 18
statements 65

assignment 66

Turbo Pascal Reference Guide

case 69
compound 67
conditional 68
for 72
goto 67
if 68
proced ure 66
repeat 70
repetitive 70
simple 65
structured 67
uses 93
while 71
with 74

storing overlaid code 181
Str procedure 112, 383
string-type constants 46
strings 46

character 14
comparing 59, 60
concatenation 58, 238
construction 238
deletion 241
functions 112
handling 116
initializing 255
length byte 192, 255
maximum length 192
null 27
operators 57
procedures 112, 300, 383, 392
relaxed parameter-checking 414
types 27, 192
variables 41

stroked fonts 133, 136, 375
structured

statements 67
types 28

declaring 87
structured-type constants 46
subrange type 25
substrings

copying 239
deleting 241
inserting 300
position 330

Succ function 22, 111, 218, 383
Swap function 113, 218, 384
SwapVectors procedure 119, 125,384

Index

switch compiler directives 407,
408-414

symbols 9
conditional 417
CPU 418
local information 412

syntax diagrams, reading 9
System unit 94, 115, 116, 223

floating-point routines 172

T

interrupt vectors and 118
trapping critical errors 118
variables in 116-119

tag field (of records) 30
technical support 5
terminating a program 216, 253
terms (syntax) 53
Test8087 variable 118
text 136

attributes 285
color constants 128
files 103, 249

devices 108
drivers 210

records 194
TextAttr variable 131

ClrEol and 237
ClrScr and 237
High Video and 295
LowVideo and 312
Norm Video and 319
TextBackground and 385
TextColor and 386

TextBackground procedure 128,132,
385

TextColor procedure 128, 132,385
TextHeight function 152, 386
TextMode procedure 128, 132, 387
TextRecrecords120,193,210
TextWidth function 152, 389
THELP.COM2
THELP utility 2
time procedures

GetFfime 274
GetTime287
SetFfime 362
SetTime374

465

TINsr2
TINsrxFR.EXE 3
TINsrxFR utility 3
tokens 9
TOUCH 3
TPC.EXE2
TPCONFIG.EXE 3
TPUMOVER.EXE 2, 116
uansferfunctionsll0
trapping

critical errors 118
critical errors, System unit and 118
I/O errors 411
interrupts 209

Trunc function 110, 218,390
Truncate procedure 105, 391
TURB03.TPU 3
Turbo3 unit 115, 116, 152

CBreak 154
functions 154
interface section 152
Kbd in 153
procedures 154

Turbo Assembler 199, 200
8087 emulation and 178
example program 204

TURBO.EXEl
TURBO.HLP2
Turbo Pascal 3.0 3

compatibility with 5.0 115
conversion

ANSI compatibility 401
chaining 392

versus 5.0 306, 307, 313, 314
Turbo Pascal, installing 2
Turbo Pascal Editor Toolbox 409
TURBO.TPL 1, 116
TumLeft procedure 157
TumRight procedure 157
TurtleDelay proced ure 157
turtlegraphics 155
TurtleThere procedure 157
TurtleWindow procedure 157
type-checking, strings and 414
typecasting, invalid 434
typed

-constants 45
files 118, 193

types 21

466

array 28, 193
boolean 24,189
byte 23
char 24,189
common 23
compatibility 34
declaration 21

part 18,35
definition, constant expressions and

26
enumerated 24, 189
file 31
floating-point 172, 189

comp 26, 173, 191
comparing values of 174
double 26, 172,190
extended 26, 173, 191
single 26, 172, 190

Graph unit 146
host 25
identity 33
integer 23, 188
longint23
mismatches, error messages 430
ordinal 22
pointer 32, 192
procedural 33,84,89
real 26
real numbers 189
record 29,193
set 31,192
shortint 23
simple 22
string 27, 192
structured 28
subrange25
word 23

U
$UNDEF compiler directive 417, 419
units 1

8087 coprocessor and 176
circular references 97
dependencies 116
heading 95
identifiers 11
indirect references 96
initialization code 167

Turbo Pascal Reference Guide

non-overlay 168
scope of 19
standard 115

Crt 103, 108, 126
Dos 119
Graph 133
Graph3155
Overlay 160
overlays and 161
Printer 119
System 116
system 94
Turbo3152

syntax 94
version

mismatch errors 435
number 97

Unpack procedure 110
UnpackTime procedure 124, 391

DateTime and 122
unsigned

constant 52
integer 13
number 13
real 13

untyped
files 105, 118, 193

variable 230, 232
var parameters 83

upCase function 113, 391
UPGRADE.DTA 3
UPGRADE.EXE 3
uses statement 93, 116
utilites

INSTALL 2
utilities

GREP3
MAKE 3
THELP2
TINST3
TINSTXFR3
TOUCH 3
TPC2
TPCONFIG3
TPUMOVER2
UPGRADE 3

Index

V
$V compiler directive 414
Val procedure 112, 392
value

parameters 82, 195
typecasts 64

var
declaration section 221
parameters 83, 195

untyped 83
string checking, compiler switch

414
Var-String Checking command 414
variables 37

absolute 39
arrays 41
CBreak 154
CheckBreak 129
CheckEOF 130
CheckSnow 130
Crt 129
declaration part 18
declarations 37
defined by Overlay unit 161
DirectVideo 130
disposing of 244, 261
DosError 123, 251, 258, 259, 271,
274,359,362
dynamic 32, 42, 181
FileMode 105
global 38
Graph unit 148
1/0101
increasing 297
initializing 45
LastMode 131
local 38
Lst 119
parameters 195
pointer 42,61
procedural 85

restrictions 86
record 41
references 39
strings 41
TextAttr 131
typecasts 42, 90
Wind Max 131

467

WindMin 131
variant part (syntax) 30
VERSO symbol 418
VGA

driver, modifying palette entries for
369
modes 242, 275,364

emulated 134, 299
VGAHi 275, 364
VGALo 275, 364
VGAMed 275, 364
video

memory 126
operations

AssignCrt 228
CirEol237
CirScr237
DeILine procedure 241
GotoXY290
High Video 295
InsLine300
LowVideo 312
Norm Video 319
RestoreCrtMode 346
TextBackground 385
TextColor 385
WhereX393
WhereY393
Window 394
Write (text) 395
Write (typed) 397
Writeln397

viewports 137,235
parameter 287

W
West constant 155
WhereX function 132, 393
Where Y function 132, 393

468

while statements (syntax) 71
Wind Max variable 131
WindMin variable 131
Window procedure 126, 132, 394

current coordinates 131
windows 126
with statements 74
word

alignment 200
automatic 219

data type 23
Wrap procedure 157
write

procedures 101
statements

8087 coprocessor and 176
AUX devices and 212
BI05130
DirectVideo and 130
005227

Write procedure 104
text files 395
typed files 397

Writeln procedure 104, 397
8087 coprocessor and 176
DirectVideo and 130

writing records 232

X
XCor procedure 157
xor operator 56, 137
XORPut constant 332

y
YCor procedure 157

Z
Zenith Z-449, BGI and 299

Turbo Pascal Reference Guide

BORLAND

BORLAND INTERNATIONAL, INC., 1800 GREEN HILLS ROAO, P.O. BOX 660001 , scons VALLEY, CA 95066-0001 PAm 11 MN-PAS02-50 BOR 0866

