
BORLAND

Turbo Pascaf$J
Version 6.0

Library Reference

BORLAND INTERNATIONAL. INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001. SCOTTS VALLEY. CA 95067-0001

R2

Copyright © 1983, 1990 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2 1

c o N T

Introduction 1
What's in this manual 1

Chapter 1 The run-time library 3
Sample procedure. 3
Abs function 4
'Addr function 4
Append procedure 5
Arc procedure 6
ArcTan function 6
Assign procedure 7
AssignCrt procedure 8
Bar procedure 8
Bar3D procedure. .. 9
BlockRead procedure 10
BlockWrite procedure 11
ChDir procedure. 12
Chr function 13
Circle procedure .. 13
ClearDevice procedure 14
ClearViewPort procedure 14
Close procedure 15
CloseGraph procedure 16
ClrEol procedure 16
ClrScr procedure .. 17
Concat function 17
Copy function 18
Cos function 18
CSeg function 19
Dec procedure .. 19
Delay procedure .. 20
Delete procedure 20
DelLine procedure 20
DetectGraph procedure 21
DiskFree function 22
DiskSize function 22

E N T s

Dispose procedure 23
DosExitCode function 24
Dos Version function 24
DrawPoly procedure 25
DSeg function 26
Ellipse procedure 26
EnvCount function 27
EnvStr function 27
Eof function (text files) 28
Eof function (typed, untyped files) 28
Eoln function .. 29
Erase procedure 29
Exec procedure 30
Exit procedure .. 31
Exp function 32
FExpand function 32
FilePos function 33
FileSize function 33
FillChar procedure 34
FillEllipse procedure 34
FillPoly procedure 35
FindFirst procedure 36
FindNext procedure 37
FloodFill procedure 37
Flushprocedure 39
Frac function 39
FreeMem procedure 40
FSearch function .. 40
FSplit procedure 41
GetArcCoords procedure 42
GetAspectRatio procedure 43
GetBkColor function 44
GetCBreak procedure 45
GetColor function 45
GetDate procedure 46
GetDefaultPalette function 46

GetDir procedure 47
GetDriverName function. 48
GetEnv function 48
GetFAttr procedure 49
GetFillPattern procedure 50
GetFillSettings procedure 51
GetFTime procedure 52
GetGraphMode function 52
GetImage procedure. 54
GetIntVec procedure 55
GetLineSettings procedure 55
GetMaxColor function 56
GetMaxMode function 56
GetMaxX function 57
GetMaxY function 58
GetMem procedure 58
GetModeName function 59
GetModeRange procedure 60
GetPalette procedure 60
GetPaletteSize function 61
GetPixel function 62
GetTextSettings procedure 62
GetTime procedure 63
GetVerify procedure 64
GetViewSettings procedure 64
GetX function 65
GetY function 66
GotoXYprocedure 67
GraphDefaults procedure 67
GraphErrorMsg function. 68
GraphResult function. 68
Halt procedure 70
Hi function .. 70
High Video procedure 71
ImageSize function 71
Inc procedure 72
InitGraph procedure 73
Insert procedure 75
InsLine procedure. 75
InstallUserDriver function 76
InstallUserFont function 79
Int function 79
Intr procedure 80
IOResult function 80

ii

Keep procedure 81
Key Pressed function 82
Length function 82
Line procedure 83
LineRelprocedure 84
LineTo procedure 84
Ln function 85
Lo function 86
LowVideo procedure 86
Markprocedure 86
MaxAvail function 87
MemAvail function. 88
MkDir procedure 88
Move procedure 89
MoveRelprocedure 89
MoveTo procedure 90
MsDos procedure 91
New procedure 91
Norm Video procedure. 92
NoSound procedure 92
Odd function .. 92
Ofs function .. 93
Ord function 93
OutText procedure 93
OutTextXY procedure 95
OvrClearBuf procedure 96
OvrGetBuf function 97
OvrInit procedure. 97
OvrInitEMS procedure 98
OvrSetBuf procedure 99
PackTime procedure 100
ParamCount function 100
ParamStr function 101
Pi function 101
PieSlice procedure 102
Pos function. .. 102
Pred function .. 103
Ptr function 103
PutImage procedure 104
PutPixel procedure 106
Random function 107
Randomize procedure 107
Read procedure (text files) 108
Read procedure (typed files) 109

ReadKey function 109
Readlnprocedure 110
Rectangle procedure. 111
RegisterBGIdriver function 112
RegisterBGIfont function 113
Release procedure 116
Rename procedure 116
Reset procedure 117
RestoreCrtMode procedure. 118
Rewrite procedure 119
RmIJrrprocedure 120
Round function - 120
RunError procedure 121
Sector procedure 121
Seekprocedure 122
SeekEof function 123
SeekEoln function 123
Seg function 124
SetActivePage procedure 124
SetAllPalette procedure 125
SetAspectRatio procedure 126
SetBkColor procedure 127
SetCBreak procedure 128
SetColor procedure 129
SetIJate procedure 129
SetFAttr procedure 130
SetFillPattem procedure 130
SetFillStyle procedure 132
SetFfime procedure 133
SetGraphBufSize procedure 133
SetGraphMode procedure 134
SetIntVec procedure 136
SetLineStyle procedure 136
SetPalette procedure 137
SetRGBPalette procedure 139
SetTextBuf procedure 140
SetTextJustify procedure 142

iii

SetTextStyle procedure 143
SetTime procedure 144
SetUserCharSize procedure 145
SetVerify procedure 146
SetViewPort procedure 146
SetVisualPage procedure 148
SetWriteMode procedure 149
Sin function 150
SizeOf function 151
Sound procedure 151
SPtr function 152
Sqr function .. 152
Sqrt function 152
SSeg function .. 152
Str procedure. .. 153
Succ function .. 153
Swap function 154
SwapVectors procedure 154
TextBackground procedure 155
TextColor procedure 155
TextHeight function 156
TextMode procedure 157
TextWidth function 159
Trunc function 160
Truncate procedure 160
TypeOf function 160
UnpackTime procedure. 161
UpCase function 161
Val procedure 161
WhereX function. 162
Where Y function. 163
Window procedure 163
Write procedure (text files) 164
Write procedure (typed files) 166
Writeln procedure 166

Index 169

T A B L E s

1.1: Components of the output string ... 165 1.2: Components of the fixed-point
string 165

iv

N T R

The Users Guide tells you
how to use this product: the

Ubrary Reference and the
Programmers Guide focus

on Pascal and programming
issues.

o D u c T o

This manual contains definitions of all the Turbo Pascal library
routines, along with example program code to illustrate how to
use most of these procedures and functions.

N

If you are new to Pascal programming, you should first read the
User's Guide. The introduction to that book details the many
features of Turbo Pascal and summarizes the contents of all four
volumes in this manual set. In the User's Guide you'll also find
reference information on the IDE, the project manager, the editor,
and the command-line compilers.

The Programmer's Guide summarizes Turbo Pascal's implemen­
tation of the Pascal language and discusses some advanced pro­
gramming topics. Run-time and compile-time error messages are
in Appendix A, "Error messages."

What's in this manual

Introduction

Chapter 1: Run-time library is an alphabetical reference of all
Turbo Pascal library procedures and functions. Each entry gives
syntax, an operative description, return values if necessary,
together with a reference list of related routines and an example
that demonstrates how the routines are used.

2 Turbo Pascal Ubrary Reference

c H A p T E R

1

The run-time library

This chapter contains a detailed description of all the procedures
and functions in Turbo Pascal. The following sample library
lookup entry explains where to look for details about each Turbo
Pascal procedure and function.

Sample procedure Unit it occupies

Function What it does

Declaration How it's declared; italicized items are user-defined

Result type What it returns if it's a function

Remarks General information about the procedure or function

Restrictions Special requirements or items to watch for

See also Related procedures and functions

Example { Here you'll find a sample program that shows the use of the procedure
or function in that entry. }

Chapter 7, The run-time library 3

Abs function

Abs function

Function

Declaration

Result type

Remarks

Example

Returns the absolute value of the argument.

Abs (X)

Same type as parameter.

X is an integer-type or real-type expression. The result, of the same type
as X, is the absolute value of X.

var
r: Real;
i: Integer;

begin
r := Abs(-2.3);
i := Abs(-157);

end.

{ 2.3 }
{ 157 }

Addr function

4

Function

Declaration

Result type

Remarks

See also

Example

Returns the address of a specified object.

Addr (X)

Pointer

X is any variable, or a procedure or function identifier. The result is a
pointer that points to X. Like nil, the result of Addr is assignment
compatible with all pointer types.

The @ operator produces the same result as Addr.

Ols, Ptr, Seg

var
P: Pointer;

begin
P := Addr (P);

end.
{ Now points to itself }

Turbo Pascal Ubrary Reference

Append procedure I
Append procedure

Function Opens an existing file for appending.

Declaration Append(var F: Text)

Remarks F is a text-file variable that must have been associated with an external file
using Assign.

Append opens the existing external file with the name assigned to F. It is
an error if there is no existing external file of the given name. If F was
already open, it is first closed and then re-opened. The current file
position is set to the end of the file.

If a Ctrl-Z (ASCII 26) is present in the last 128-byte block of the file, the
current file position is set to overwrite the first Ctrl-Z in the block. In this
way, text can be appended to a file that terminates with a Ctrl-l.

If F was assigned an empty name, such as Assign(F, "), then, after the call
to Append, F will refer to the standard output file (standard handle
number 1).

After a call to Append, F becomes write-only, and the file pointer is at end­
of-file.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also Assign, Close, Reset, Rewrite

Example var F: Text;
begin

Assign(F, 'TEST.TXT');
Rewrite (F) ;
Writeln(F, 'original text');
Close(F);
Append(F);
Writeln(F, 'appended text');
Close(F);

end.

Chapter 7, The run-time library

{ Create new file }

{ Close file, save changes }
{ Add more text onto end }

{ Close file, save changes }

5

Arc procedure

Arc procedure Graph

Function Draws a circular arc from start angle to end angle, using (X, Y) as the
center point.

Declaration Arc (X, Y: Integer; StAngle, EnciAngle,' Radius: Word)

Remarks Draws a circular arc around (X, Y), with a radius of Radius. The Arc travels
from StAngle to EndAngle and is drawn in the current drawing color.

Each graphics driver contains an aspect ratio that is used by Circle, Arc,
and PieS lice. A start angle of 0 and an end angle of 360 will draw a
complete circle. The angles for Arc, Ellipse, and PieSlice are counter­
clockwise with 0 degrees at 3 o'clock, 90 degrees at 12 o'clock, and so on.
Information about the last call to Arc can be retrieved with a call to
GetArcCoords.

Restrictions Must be in graphics mode.

See also Circle, Ellipse, Fill Ellipse, GetArcCoords, GetAspectRatio, PieS lice, Sector,
SetAspectRatio

Example uses Graph;
var

Gd, Gm: Integer;
Radius: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
for Radius := 1 to 5 do

Arc(100, 100, 0, 90, Radius * 10);
Readln;
CloseGraph;

end.

ArcTan function

Function Returns the arctangent of the argument.

Declaration ArcTan (x: Real)

Result type Real

Remarks X is a real-type expression. The result is the principal value, in radians, of
the arctangent of X.

6 Turbo Pascal Library Reference

See also

Example

Cos, Sin

var
R: Real;

begin
R := ArcTan(Pi);

end.

ArcTan function

Assign procedure

Function Assigns the name of an external file to a file variable.

Declaration Assign (var F; Name: String)

Remarks F is a file variable of any file type, and Name is a string-type expression.
All further operations on F will operate on the external file with the file
name Name.

After a call to Assign, the association between F and the external file
continues to exist until another Assign is done on F.

A file name consists of a path of zero or more directory names separated
by backslashes, followed by the actual file name:

Drive:\DirName\ ... \DirName\FileName

If the path begins with a backslash, it starts in the root directory;
otherwise, it starts in the current directory.

Drive is a disk drive identifier (A-Z). If Drive and the colon are omitted,
the default drive is used. \DirName\ ... \DirName is the root directory and
subdirectory path to the file name. FileName consists of a name of up to
eight characters, optionally followed by a period and an extension of up to
three characters.

The maximum length of the entire file name is 79 characters.

A special case arises when Name is an empty string; that is, when
Length(Name) is zero. In that case, F becomes associated with the standard
input or standard output file. These special files allow a program to utilize
the I/O redirection feature of the DOS operating system. If assigned an
empty name, then after a call to Reset(F), F will refer to the standard input
file, and after a call to Rewrite(F), F will refer to the standard output file.

Restrictions Assign must never be used on an open file.

See also Append, Close, Reset, Rewrite

Chapter 7, The run-time library 7

I

Assign procedure

Example {Try redirecting this program from DOS to PRN, disk file, etc. }
var F: Text;
begin

Assign (F, ");
Rewrite (F) ;

{ Standard output }

Writeln(F, 'standard output ... ');
Close(F);

end.

AssignCrt procedure

Function Associates a text file with the CRT.

Declaration AssignCrt (var F: Text)

Crt

Remarks AssignCrt works exactly like the Assign standard procedure except that no
file name is specified. Instead, the text file is associated with the CRT.

This allows faster output (and input) than would normally be possible
using standard output (or input).

Example uses Crt;
var

F: Text;
begin

Write('Output to screen or printer (S, P]? ');
if UpCase(ReadKey) = 'P' then

Assign(F, 'PRN') { Output to printer
else

AssignCrt(F); { Output to screen, use fast CRT routines
Rewrite (F) ;
Writeln(F, 'Fast output via CRT routines ... ');
Close(F);

end.

Bar procedure

Function Draws a bar using the current fill style and color.

Declaration Bar (Xl, Yl, X2, Y2: Integer)

Graph

Remarks Draws a filled-in rectangle (used in bar charts, for example). Uses the
pattern and color defined by SetFillStyle or SetFillPattern. To draw an
outlined bar, call Bar3D with a depth of zero.

8 Turbo Pascal Ubrary Reference

Restrictions Must be in graphics mode.

See also Bar3D, GraphResult, SetFillSlyle, SetFillPattern, SetLineSlyle

Example uses Graph;
var

Gd, Gm: Integer;
I, Width: Integer;

begin
Gd := Detect;
InitGraph (Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Width := 10;
for I := 1 to 5 do

Bar(I * Width, I * 10, Succ(I) * Width, 200);
Readln;
CloseGraph;

end.

Bar3D procedure

Function Draws a 3-D bar using the current fill style and color.

Declaration Bar3D (Xl, Yl, X2, Y2: Integer; Depth: Word; Top: Boolean)

Bar procedure

Graph

Remarks Draws a filled-in, t~ree-dimensional bar. Uses the pattern and color
defined by SetFillSlyle or SetFillPattern. The 3-D outline of the bar is drawn
in the current line style and color as set by SetLineSlyle and SetColor. Depth
is the number of pixels deep of the 3-D outline. If Top Is True, a 3-D top is
put on the bar; if Top is False, no top is put on the bar (making it possible
to stack several bars on top one another).

A typical depth could be calculated by taking 25% of the width of the bar:

Bar3D (Xl, Yl, X2, Y2, (X2 - Xl + 1) div 4, TopOn);

The following constants are defined:

const
TopOn = True;
TopOff = False;

Restrictions Must be in graphics mode.

See also Bar, GraphResult, SetFillPattern, SetFillStyle, SetLineStyle

Chapter I, The run-time library 9

I

Bar30 procedure

Example uses Graph;
var

Gd, Gm: Integer;
YO, Y1, Y2, Xl, X2: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
YO := 10;
Y1 := 60;
Y2 := 110;
Xl := 10;
X2 := 50;
Bar3D(Xl, YO, X2, Y1, 10, TopOn);
Bar3D(X1, Y1, X2, Y2, 10, TopOff);
Readln;
CloseGraph;

end.

BlockRead procedure

10

Function Reads one or more records into a variable.

Declaration BlockRead(var F: file; var Buf; Count: Word [; var Result: Word]

Remarks F is an untyped file variable, But is any variable, Count is an expression of
type Word, and Result is a variable of type Word.

BlockRead reads Count or less records from the file F into memory, starting
at the first byte occupied by But. The actual number of complete records
read (less than or equal to Count) is returned in the optional parameter
Result. If Result is not specified, an 110 error will occur if the number read
is not equal to Count.

The entire block transferred occupies at most Count * RecSize bytes, where
RecSize is the record size specified when the file was opened (or 128 if it
was omitted). It's an error if Count * RecSize is greater than 65,535 (64K).

Result is an optional parameter. Here is how it works: If the entire block
was transferred, Result will be equal to Count on return. Otherwise, if
Result is less than Count, the end of the file was reached before the transfer
was completed. In that case, if the file's record size is greater than one,
Result returns the number of complete records read; that is, a possible last
partial record is not included in Result.

Turbo Pascal Ubrary Reference

BlockRead procedure

The current file position is advanced by Result records as an effect of the
BlockRead.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions File must be open.

See also BlockWrite

Example program CopyFile;
{ Simple, fast file copy program with NO error-checking }
var

FromF, ToF: file;
NumRead, NumWritten: Word;
Buf: array[1 .. 2048] of Char;

begin
Assign (FromF, ParamStr(l));
Reset (FromF, 1);
Assign (ToF, ParamStr(2));
Rewrite (ToF, 1);
Writeln('Copying " FileSize(FromF), ' bytes ... ');
repeat

BlockRead(FromF, Buf, SizeOf(Buf), NumRead);
BlockWrite(ToF, Buf, NumRead, NumWritten);

until (NumRead = 0) or (NumWritten <> NumRead);
Close (FromF) i
Close(ToF);

end.

BlockWrite procedure

Function Writes one or more records from a variable.

{ Open input file }
{ Record size = 1 }

{ Open output file }
{ Record size = 1 }

Declaration BlockWrite (BlockWrite (var F: file; var Buf; Count: Word [; var Result: Word])

Remarks F is an untyped file variable, But is any variable, Count is an expression of
type Word, and Result is a variable of type Word.

BlockWrite writes Count or less records to the file F from memory, starting
at the first byte occupied by But. The actual number of complete records
written (less than or equal to Count) is returned in the optional parameter
Result. If Result is not specified, an I/O error will occur if the number
written is not equal to Count.

Chapter 7, The run-time library 11

I

BlockWrite procedure

The entire block transferred occupies at most Count * RecSize bytes, where
RecSize is the r~cord size specified when the file was opened (or 128 if it
was omitted). It is an error if Count * RecSize is greater than 65,535 (64K).

Result is an optional parameter. Here is how it works: If the entire block
was transferred, Result will be equal to Count on return. Otherwise, if
Result is less than Count, the disk became full before the transfer was
completed. In that case, if the file's record size is greater than one, Result
returns the number of complete records written; that is, it's possible a
remaining partial record is not included in Result.

The current file position is advanced by Result records as an effect of the
BlockWrite.

With ($I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions File must be open.

See aiso BlockRead

Example See example for BlockRead.

ChDir procedure

12

Function Changes the current directory.

Deciaration ChDir (S: String)

Remarks 5 is a string-type expression. The current directory is changed to a path
specified by s. If 5 specifies a drive letter, the current drive is also
changed.

With ($I-}; IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also GetDir, MkDir, RmDir

Example begin
{$l-}
{ Get directory name from command line }
ChDir(ParamStr(l));
if lORe suIt <> 0 then

Writeln('Cannot find directory');
end.

Turbo Pascal Library Reference

Chr function

Chr function

Function Returns a character with a specified ordinal number.

Declaration Chr (X: Byte)

Result type Char

Remarks X is an integer-typ~ expression. The result is the character with an ordinal
value (ASCII value) of X.

See also Ord

Example uses Printer;
begin

Writeln(Lst, Chr(12));
end.

{ Send formfeed to printer }

Circle procedure Graph

Function Draws a circle using (X, Y) as the center point.

Declaration Circle (X, Y: Integer; Radius: Word)

Remarks The circle is drawn in the current color set by SetColor. Each graphics
driver contains an aspect ratio that is used by Circle, Arc, and PieSlice to
make circles.

Restrictions Must be in graphics mode.

See also Are, Ellipse, FillEllipse, GetArcCoords, GetAspectRatio, PieSIice, Sector,
SetAspectRatio

Example uses Graph;
var

Gd, Gm: Integer;
Radius: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
for Radius := 1 to 5 do

Circle (100, 100, Radius * 10);
Readln;

Chapter 7, The run-time library 13

I

Circle procedure

CloseGraph;
end.

ClearDevice procedure

Function Clea.rs the graphics screen and prepares it for output.

Declaration ClearDevice

Graph

Remarks ClearDevice moves the current pointer to (0, 0), clears the screen using the
background color set by SetBkColor, and prepares it for output.

Restrictions Must be in graphics mode.

See also ClearViewPort, Close Graph, GraphDefaults, InitGraph, RestoreCrtMode,
SetGraphMode

Example uses Crt, Graph;
var

Gd, Gm: Integer:
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Randomize;
repeat

LineTo(Random(200), Random(200));
until KeyPressed;
ClearDevice;
Readln;
CloseGraph;

end.

ClearViewPort procedure

Function Clears the current viewport.

Declaration ClearViewPort

Graph

Remarks Sets the fill color to the background color (Palette[O]), calls Bar, and moves
the current pointer to (0, 0).

Restrictions Must be in graphics mode.

See also Bar, ClearDevice, GetViewSettings, Set ViewPort

14 Turbo Pascal Library Reference

ClearViewPort procedure

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, "):
if GraphResult <> grOk then

Halt(1):
Rectangle (19, 19, GetMaxX - 19, GetMaxY - 19):
SetViewPort(20, 20, GetMaxX - 20, GetMaxY - 20, ClipOn):
OutTextXY(O, 0, '<ENTER> clears viewport:');
Readln:
ClearViewPort:
OutTextXY(O, 0, '<ENTER> to quit:'):
Readln;
CloseGraph:

end.

Close procedure

Function Closes an open file.

Declaration Close (var F)

Remarks F is a file variable of any file type that was previously opened with Reset,
Rewrite, or Append. The external file associated with F is completely
updated and then closed, and its DOS file handle is freed for reuse.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also Append, Assign, Reset, Rewrite

Example var F: file:
begin

Assign(F, '\AUTOEXEC.BAT'):
Reset (F, 1):
Writeln('File size = " FileSize(F));
Close(F):

end.

Chapter 1, The run-time library

{ Open file }

{ Close file }

15

I

CloseGraph procedure

CloseGraph procedure Graph

Function Shuts down the graphics system.

Declaration CloseGraph

Remarks CloseGraph restores the original screen mode before graphics was
initialized and frees the memory allocated on the heap for the graphics
scan buffer. CloseGraph also deallocates driver and font memory buffers if
they were allocated by calls to GraphGetMem and GraphFreeMem.

Restrictions Must be in graphics mode.

See also DetectGraph, GetGraphMode, InitGraph, RestoreCrtMode, SetGraphMode

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.
{ Shut down graphics }

ClrEol procedure

Function Clears all characters from the cursor position to the end of the line
without moving the cursor.

Declaration ClrEol

Crt

Remarks All character positions are set to blanks with the currently defined text
attributes. Thus, if TextBackground is not black, the column from the cursor
to the right edge of the screen becomes the background color.

This procedure is window-relative and will clear from the current cursor
position (1, 1) to the right edge of the active window (60, 1).

Window (1, 1, 60, 20);
ClrEol;

See also ClrScr, Window

16 Turbo Pascal Library Reference

ClrEol. procedure

Example uses Crt; I
begin

TextBackground(LightGray);
ClrEol; { Changes cleared columns to LightGray background }

end.

ClrScr procedure Crt

Function Clears the active window and places the cursor in the upper left-hand
corner.

Declaration ClrScr

Remarks All character positions are set to blanks with the currently defined text
attributes. Thus, if TextBackground is not black, the entire screen becomes
the background color. This also applies to characters cleared by ClrEol,
InsLine, and DelLine, as well as empty lines created by scrolling.

This procedure is window-relative and will clear a 60x20 rectangle
beginning at (1, 1).

Window (1, 1, 60, 20);
ClrScri

See also ClrEol, Window

Example uses Crt;
begin

TextBackground(LightGraY)i
ClrScr; { Changes entire window to LightGray background }

end.

Concat function

Function Concatenates a sequence of strings.

Declaration Concat (Sl [, S2, .•• , SN 1: String)

Result type String

Remarks Each parameter is a string-type expression. The result is the concatenation
of all the string parameters. If the resulting string is longer than 255
characters, it is truncated after the 255th character. Using the plus (+)
operator returns the same results as using the Concat function: .

S := 'ABC' + 'DEF';

Chapter 7, The run-time library 17

Concat function

See also Copy, Delete, Insert, Length, Pos

Example var

S: String;
begin

S := Concat (' ABC', 'DEF');
end.

Copy function

Function Returns a substring of a string.

Declaration Copy(s: String; Index: Integer; Count: Integer)

Result type String

{ 'ABCDEF' }

Remarks 5 is a string-type expression. Index and Count are integer-type expressions.
Copy returns a string containing Count characters starting with the Indexth
character in S. If Index is larger than the length of 5, an empty string is
returned. If Count specifies more characters than remain starting at the
Indexth position, only the remainder of the string is returned.

See also Concat, Delete, Insert, Length, Pos

Example var S: String;

begin
S := 'ABCDEF';
S := Copy(S, 2, 3)

end.

Cos function

Function Returns the cosine of the argument.

Declaration Cos (x: Real)

Result type Real

{ 'BCD' }

Remarks X is a real-type expression. The result is the cosine of X. X is assumed to
represent an angle in radians.

See also ArcTan, Sin

18 Turbo Pascal Ubrary Reference

Example var R: Real;
begin

R := Cos(Pi);
end.

CSeg function

Function Returns the current value of the CS register.

Declaration CSeg

Result type Word

Cos function

Remarks The result of type Word is the segment address of the code segment
within which CSeg was called.

See also DSeg, SSeg

Dec procedure

Function Decrements a variable.

Declaration Dec (var X [; N: Longint]

Remarks X is an ordinal-type variable, and N is an integer-type expression. X is
decremented by I, or by N if N is specified; that is, Dec(X) corresponds to
X := X - I, and Dec(X, N) corresponds to X := X - N.

Dec generates optimized code and is especially useful in a tight loop.

See also Inc, Pred, Succ

Example var
IntVar: Integer;
LongintVar: Longint;

begin
Dec (IntVar) ;
Dec (LonqintVar, 5);

end.

Chapter 7, The run-time library

{ IntVar := IntVar - 1 }
{ LongintVar := LongintVar - 5 }

19

I

Delay procedure

Delay procedure Crt

Function Delays a specified number of milliseconds.

Declaration Delay (Ms: Word)

Remarks Msspecifies the number of milliseconds to wait.

Delay is an approximation, so the delay period will not last exactly Ms
milliseconds.

Delete procedure

Function Deletes a substring from a string.

Declaration Delete(var s: String; Index: Integer; Count: Integer)

Remarks S is a string-type variable. Index and Count are integer-type expressions.
Delete deletes Count characters from S starting at the Indexth position. If
Index is larger than the length of S, no characters are deleted. If Count
specifies more characters than remain starting at the Indexth position, the
remainder of the string is deleted.

See also Concat, Copy, Insert, Length, Pos

DelLine procedure Crt

20

Function Deletes the line containing the cursor.

Declaration DelLine

Remarks The line containing the cursor is deleted, and all lines below are moved
one line up (using the BIOS scroll routine). A new line is added at the
bottom.

All character positions are set to blanks with the currently defined text
attributes. Thus, if TextBackground is not black, the new line becomes the
background color.

This procedure is window-relative and will delete the first line in the
window, which is the tenth line on the screen.

Window (1, 10, 60, 20);
DelLine;

Turbo Pascal Ubrary Reference

DelLine procedure

See also InsLine, Window

DetectGraph procedure Graph I
Function Checks the hardware and determines which graphics driver and mode to

use.

Declaration DetectGraph (var GraphDriver, GraphMode: Integer)

Remarks Returns the detected driver and mode value that can be passed to
InitGraph, which will then load the correct driver. If no graphics hardware
was detected, the GraphDriver parameter and GraphResult returns a value
of -2 (grNotDetected).

The following constants are defined:

const
Detect
CGA
MCGA

0;
1;
2;

{ Request autodetection }

EGA 3;
EGA64 4;
EGAMono 5;
IBM8514 6;
HercMono = 7;
ATT400 8;
VGA 9;
PC3270 = 10;

Unless instructed otherwise, InitGraph calls DetectGraph, finds and loads
the correct driver, and initializes the graphics system. The only reason to
call DetectGraph directly is to override the driver that DetectGraph recom­
mends. The example that follows identifies the system as a 64K or 256K
EGA, and loads the CGA driver instead. Note that when you pass
InitGraph a GraphDriver other than Detect, you must also pass in a valid
GraphMode for the driver requested.

Restrictions You should not use DetectGraph (or Detect with InitGraph) with the IBM
8514 unless you want the emulated VGA mode.

See also Close Graph, GraphResult, InitGraph

Example uses Graph;
var

GraphDriver, GraphMode: Integer;
begin

DetectGraph(GraphDriver, GraphMode);

Chapter 1, The run-time library 21

\.

DetectGraph procedure

if (GraphDriver = EGA) or
(GraphDriver = EGA64) then

begin
GraphDriver := CGA;
GraphMode := CGAHi;

end;
InitGraph(GraphDriver, GraphMode,");
if GraphResult <> grOk then

Halt(l);
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

DiskFree function

Function Returns the number of free bytes on a specified disk drive.

Declaration DiskFree (Drive: Byte)

Result type Longint

Dos

Remarks A Drive of 0 indicates the default drive, 1 indicates drive A, 2 indicates B,
and so on. DiskFree returns -1 if the drive number is invalid.

See also DiskSize, GetDir

Example uses Dos;
begin

Writeln(DiskFree(O) div 1024, , Kbytes free ');
end.

DiskSize function

Function Returns the total size in bytes on a specified disk drive.

Declaration DiskSize (Drive: Byte)

Result type Longint

Dos

Remarks A Drive of 0 indicates the default drive, 1 indicates drive A, 2 indicates B,
and so on. DiskSize returns -1 if the drive number is invalid.

See also DiskFree, GetDir

22 Turbo Pascal Library Reference

Example uses Dos;
begin

Writeln(DiskSize(O) div 1024, , Kbytes capacity');
end.

Dispose procedure

Function Disposes a dynamic variable.

Declaration Dispose (var P: Pointer [, Destructor]

DiskSize function

Remarks P is a pointer variable of any pointer type that was previously assigned by
the New procedure or was assigned a meaningful value by an assignment
statement. Dispose destroys the variable referenced by P and returns its
memory region to the heap. After a call to Dispose, the value of P becomes
undefined, and it is an error to subsequently reference PA.

Dispose has been extended to allow a destructor call as a second parame­
ter, for disposing a dynamic object type variable. In this case, P is a pointer
variable pointing to an object type, and Destruct is a call to the destructor
of that object type.

Restrictions If P does not point to a memory region in the heap, a run-time error
occurs.

Dispose and FreeMem cannot be used interchangeably with Mark and
Release unless certain rules are observed. For a complete discussion of this
topic, see "The heap manager" in Chapter 16 in the Programmer's Guide.

See also FreeMem, GetMem, Mark, New, Release

Example type
Str18 = string[18];

var
P: "Str18;

begin
New(P) ;
P" := 'Now you see it ... ';
Dispose(P):

end.

Chapter 7, The run-time library

{ Now you don't ... }

23

I

DosExitCode function

DosExitCode function Dos

Function Returns the exit code of a subprocess.

Declaration DosExitCode

Result type Word

Remarks The low byte is the code sent by the terminating process. The high byte is
set to

• 0 for normal termination

.1 if terminated by Ctrl-C

.2 if terminated due to a device error

• 3 if terminated by the Keep procedure

See also Exec, Keep

DosVersion function Dos

24

Function Returns the DOS version number.

Declaration DosVersion

Result type Word

Remarks Dos Version returns the DOS version number. The low byte of the result is
the major version number, and the high byte is the minor version number.
For example, DOS 3.20 returns 3 in the low byte, and 20 in the high byte.

Example uses Dos;
var

Ver: Word;
begin

Ver := DosVersion;
Writeln('This is DOS version', Lo(Ver),

end.

, , . , Hi(Ver));

Turbo Pascal Ubrary Reference

DrawPoly procedure

DrawPoly procedure Graph

Function Draws the outline of a polygon using the current line style and color.

Declaration DrawPoly(NumPoints: Word; var PolyPoints)

Remarks PolyPoints is an untyped parameter that contains the coordinates of each
intersection in the polygon. NumPoints specifies the number of coordi­
nates in PolyPoints. A coordinate consists of two words, an X and a Y
value.

DrawPoly uses the current line style and color. Use Set WriteMode to
determine whether the polygon is copied to or XOR' ed to the screen.

Note that in order to draw a closed figure with N vertices, you must pass
N + 1 coordinates to DrawPoly, where

PolyPoints[N + 1] = PolyPoints[1]

In order to draw a triangle, for example, four coordinates must be passed
to DrawPoly.

Restrictions Must be in graphics mode.

See also FillPoly, GetLineSettings, GraphResult, SetColor, SetLineStyle, SetWriteMode

Example uses Graph;
const

Triangle: array[1 .. 4] of PointType = ((X: 50; Y: 100), (X: 100; Y: 100),
(X: 150; Y: 150), (X: 50; Y: 100));

var
Gd, Gm: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
DrawPoly(SizeOf(Triangle) div SizeOf(PointType), Triangle);
Readln;
CloseGraph;

end.

Chapter 7, The run-time library

{ 4 }

25

DSeg function

DSeg function

Function Returns the current value of the DS register.

Declaration DSeg

Result type Word

Remarks The result of type Word is the segment address of the data segment.

See also CSeg, SSeg

Ellipse procedure Graph

26

Function Draws an elliptical arc from start angle to end angle, using (X, Y) as the
center point.

Declaration Ellipse (X, Y: Integer: StAngle, EndAngle: Word: XRadius, YRadius: Word)

Remarks Draws an elliptical arc using (X, Y) as a center point, and XRadius and
YRadius as the horizontal and vertical axes. The ellipse travels from
StAngle to EndAngle and is drawn in the current color.

A start angle of 0 and an end angle of 360 will draw a complete oval. The
angles for Are, Ellipse, and PieSlice are counterclockwise with 0 degrees at
3 o'clock, 90 degrees at 12 o'clock, and so on. Information about the last
call to Ellipse can be retrieved with a call to GetArcCoords.

Restrictions Must be in graphics mode.

See also Are, Circle, FillEllipse, GetArcCoords, GetAspectRatio, PieS lice, Sector,
SetAspectRatio

Example uses Graph:
var

Gd, Gm: Integer:
begin

Gd := Detect:
InitGraph(Gd, Gm, "):
if GraphResult <> grOk then

Halt(l):
Ellipse (100, 100, 0, 360, 30, 50);
Ellipse (100, 100, 0, 180, 50, 30);
Readln;
CloseGraph;

end.

Turbo Pascal Ubrary Reference

EnvCount function

EnvCount function Dos

Function Returns the number of strings contained in the DOS environment.

Declaration EnvCount

Result type Integer

Remarks EnvCount returns the number of strings contained in the DOS
environment. Each environment string is of the form V AR= VALUE. The
strings can be examined with the EnvStr function.

For more information about the DOS environment, refer to your DOS
manuals.

See also EnvStr, GetEnv

Example uses Dos;

var
I: Integer;

begin
for I := 1 to EnvCount do
Writeln(EnvStr(I));

end.

EnvStr function Dos

Function Returns a specified environment string.

Declaration EnvStr (Index: Integer)

Result type String

Remarks EnvStr returns a specified string from the DOS environment. The string
EnvStr returns is of the form VAR=VALUE. The index of the first string is
one. If Index is less than one or greater than EnvCount, EnvStr returns an
empty string.

For more information about the DOS environment, refer to your DOS
manuals.

See also EnvCount, GetEnv

Chapter 1, The run-time library 27

I

Eof function (text files)

Eof function (text files)

Function Returns the end-of-file status of a text file.

Declaration Eof [(var F: Text)

Result type Boolean

Remarks F, if specified, is a text-file variable. If F is omitted, the standard file
variable Input is assumed. Eof(F) returns True if the current file position is
beyond the last character of the file or if the file contains no components;
otherwise, Eof(F) returns False.

With {$I-J, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also Eoln, SeekEof

Example var
F: Text;
Ch: Char;

begin
{ Get file to read from command line }
Assign(F, ParamStr(l));
Reset(F};
while not Eof(F) do
begin

Read(F, Ch);
Write (Ch);

end;
end.

{ Dump text file)

Eof function (typed, untyped files)

28

Function Returns the end-of-file status of a typed or untyped file.

Declaration Eof (var F)

Result type Boolean

Remarks F is a file variable. Eof(F) returns True if the current file position is beyond
the last component of the file or if the file contains no components;
otherwise, Eof(F) returns False.

With {$I-J, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Turbo Pascal Ubrary Reference

Eoln function

Eoln function

Function Returns the end-of-line status of a file.

Declaration Eoln [(var F: Text) 1

Result type Boolean

Remarks F, if specified, is a text-file variable. If F is omitted, the standard file
variable Input is assumed. Eoln(F) returns True if the current file position
is at an end-of-line marker or if Eot(F) is True; otherwise, Eoln(F) returns
False.

When checking Eoln on standard input that has not been redirected, the
following program will wait for a carriage return to be entered before
returning from the call to Eoln:

begin
{ Tells program to wait for keyboard input }

Writeln(Eoln);
end.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also Eot, SeekEoln

Erase procedure

Function Erases an external file.

Declaration Erase (var F)

Remarks F is a file variable of any file type. The external file associated with F is
erased.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions

See also

Example

Erase must never be used on an open file.

Rename

var
F: file;
Ch: Char;

Chapter 7, The run-time library 29

II

Erase procedure

begin
{ Get file to delete from command line
Assign(F, ParamStr(l));
{$I-}
Reset(F);
{$I+}

if IOResult <> 0 then
Writeln('Cannot find', ParamStr(l))

else
begin

Close(F);
Write('Erase " ParamStr(l), '? ');
Readln(Ch);
if UpCase(ch) = 'y' then

Erase(F);
end;

end.

Exec procedure Dos

30

Function Executes a specified program with a specified command line.

Declaration Exec (Path, CmdLine: String)

Remarks The program name is given by the Path parameter, and the command line
is given by CmdLine. To execute a DOS internal command, run
COMMAND. COM; for instance,

Exec('\COMMAND.COM', ' Ic DIR *.PAS');

The Ie in front of the command is a requirement of COMMAND.COM
(but not of other applications). Errors are reported in DosError; possible
error codes are 2,8, 10, and 11. The exit code of any child process is
reported by the DosExitCode function.

It is recommended that Swap Vectors be called just before and just after the
call to Exec. SwapVectors swaps the contents of the SavelntXX pointers in
the System unit with the current contents of the interrupt vectors. This
ensures that the Exec'd process does not use any interrupt handlers
installed by the current process, and vice versa.

Exec does not change the memory allocation state before executing the
program. Therefore, when compiling a program that uses Exec, be sure to
reduce the "maximum" heap size; otherwise, there won't be enough
memory (DosError = 8).

Turbo Pascal Ubrary Reference

Exec procedure

Restrictions Versions of the Novell Network system software earlier than 2.01 or 2.02
do not support a DOS call used by Exec. If you are using the IDE to run a
program that uses Exec, and you have early Novell system software, set
Compile I Destination to Disk and run your program from DOS (you can
use the File I DOS Shell command to do this).

See also DosExitCode, SwapVectors

Example {$M $4000,0,0
uses Dos;

{ 16K stack, no heap required or reserved }

var
ProgramName, CmdLine: String;

begin
Write ('Program to Exec (include full path): ');
Readln(ProgramName);
Write ('Command line to pass to " ProgramName, ,. ');
Readln(CmdLine);
Writeln('About to Exec ... ');
SwapVectors;
Exec (ProgramName, CmdLine);
SwapVectors;
Writeln(' ... back from Exec');
if DosError <> ° then

Writeln('Dos error t', DosError)
else

Writeln('Exec successful. Child process exit code = " DosExitCode);
end.

Exit procedure

Function Exits immediately from the current block.

Declaration Exit

{ Error? }

Remarks When Exit is executed in a subroutine (procedure or function), it causes
the subroutine to return. When it is executed in the statement part of a
program, it causes the program to terminate. A call to Exit is analogous to
a goto statement addressing a label just before the end of a block.

See also Halt

Example uses Crt;
procedure WasteTime;
begin

repeat
if KeyPressed then Exit;
Write('Xx') ;

Chapter 7, The run-time library 31

I

Exit procedure

until False;
end;

begin
WasteTime;

end.

Exp function

Function Returns the exponential of the argument.

Declaration Exp (X: Real)

Result type Real

Remarks X is a real-type expression. The result is the exponential of X; that is, the
value e raised to the power of X, where e is the base of the natural
logarithms.

See also Ln

FExpand function

Function Expands a file name into a fully qualified file name.

Declaration FExpand(Path: PathStr)

Result type PathStr

Dos

Remarks Expands the file name in Path into a fully qualified file name. The
resulting name is converted to uppercase and consists of a drive letter, a
colon, a root relative directory path, and a file name. Embedded '.' and ' .. '
directory references are removed.

The PathStr type is defined in the Dos unit as string[79].

Assuming,that the current drive and directory is C:\SOURCE\PAS, the
following FExpand calls would produce these values:

FExpand('test.pas') = 'C:\SOURCE\PAS\TEST.PAS'
FExpand(' .. *.TPU') = 'C:\SOURCE*.TPU'
FExpand('c:\bin\turbo.exe') = 'C:\BIN\TURBO.EXE'

The FSpiit procedure may be used to split the result of FExpand into a
drivel directory string, a file-name string, and an extension string.

See also FindFirst, FindNext, FSpiit

32 Turbo Pascal Ubrary Reference

FilePos function

FilePos function

Function Returns the current file position of a file.

Declaration FilePos (var F)

Result type Longint

Remarks F is a file variable. If the current file position is at the beginning of the file,
FilePos(F) returns O. If the current file position is at the end of the file-that
is, if Eof(F) is True-FilePos(F) is equal to FileSize(F).

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions Cannot be used on a text file. File must be open.

See also FileSize, Seek

FileSize function

Function Returns the current size of a file.

Declaration FileSize (var F)

Result type Longint

Remarks F is a file variable. FileSize(F) returns the number of components in F. If .
the file is empty, FileSize(F) returns o.
With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions

See also

Example

Cannot be used on a text file. File must be open.

FilePos

var
F: file of Byte;

begin
{ Get file name from command line }
Assign(F, ParamStr(l));
Reset (F);
Writeln('File size in bytes: " FileSize(F));
Close(F);

end.

Chapter 1, The run-time library 33

I

FiliChar procedure

FiIIChar procedure

Function Fills a specified number of contiguous bytes with a specified value.

Declaration FillChar (var X; Count: Word; Value)

Remarks X is a variable reference of any type. Count is an expression of type Word.
Value is any ordinal-type expression. FillChar writes Count contiguous
bytes of memory into Value, starting at the first byte occupied by X. No
range-checking is performed, so be careful.

Whenever possible, use the SizeO! function to specify the count parameter.
When using FillChar on strings, remember to set the length byte after the
fill.

See also Move

Example var
s: string [80] ;

begin
{ Set a string to all spaces }
FillChar(S, SizeOf(S), ' ');
S [0] := #80;

end.
{ Set length byte }

FiliEllipse procedure Graph

34

Function

Declaration

Remarks

Restrictions

See also

Example

Draws a filled ellipse.

FillEllipse(X, Y: Integer; XRadius, YRadius: Word)

Draws a filled ellipse using (X, Y) as a center point, and XRadius and
YRadius as the horizontal and vertical axes. The ellipse is filled with the
current fill color and fill style, and is bordered with the current color.

Must be in graphics mode.

Are, Circle, Ellipse, GetArcCoords, GetAspectRatio, PieS lice, Sector,
SetAspectRatio

uses
Graph;

const
R = 30;

var
Driver, Mode: Integer;
Xasp, Yasp: Word;

Turbo Pascal Ubrary Reference

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt(l);
{ Draw ellipse }
FillEllipse(GetMaxX div 2, GetMaxY div 2, 50, 50);
GetAspectRatio(Xasp, Yasp);
{ Circular ellipse }
FillEllipse(R, R, R, R * Longint(Xasp) div Yasp);
Readln:
CloseGraph:

end.

FiliPoly procedure

Function Draws and fills a polygon, using the scan converter.

Declaration FillPoly (NumPoints: Word; var PolyPoints)

FiliEllipse procedure

{ Put in graphics mode }

Graph

Remarks PolyPoints is an untyped parameter that contains the coordinates of each
intersection in the polygon. NumPoints specifies the number of coordi­
nates in PolyPoints. A coordinate consists of two words, an X and a Y
value.

FillPoly calculates all the horizontal intersections, and then fills the
polygon using the current fill style and color defined by SetFillStyle or
SetFillPattern. The outline of the polygon is drawn in the current line style
and color as set by SetLineStyle.

If an error occurs while filling the polygon, GraphResult returns a value of
-6 (grNoScanMem).

Restrictions Must be in graphics mode.

See also DrawPoly, GetFillSettings, GetLineSettings, GraphResult, SetFillPattern,
SetFillStyle, SetLineStyle

Example uses Graph;
const

Triangle: array[1 .. 3) of PointType = ((X: 50: Y: 100),
(X: 100; Y: 100), (X: ISO: Y: ISO});

var
Gd, Gm: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, "):

Chapter 7, The run-time library 35

I

FiliPoly procedure

if GraphResult <> grOk then
Halt(1);

FillPoly (SizeOf (Triangle) div SizeOf(PointType), Triangle);
Readln;
CloseGraph;

end.

FindFirst procedure Dos

Function Searches the specified (or current) directory for the first entry matching
the specified file name and set of attributes.

Declaration FindFirst (Path: String; Attr: Word; var S: SearchRec)

Remarks Path is the directory mask (for example, * . *). The Attr parameter specifies
the special files to include (in addition to all normal files). Here are the
file attributes as they are declared in the Dos unit:

const
ReadOnly = $01;
Hidden = $02;
SysFile = $04;
VolumeID = $08;
Directory = $10;
Archive = $20;
AnyFile = $3F;

The result of the directory search is returned in the specified search
record. SearchRec is declared in the Dos unit:

type
SearchRec = record

Fill: array[1 .. 21] of Byte;
Attr: Byte;
Time: Longint;
Size: Longint;
Name: string[12];

end;

Errors are reported in DosError; possible error codes are 3 ("Directory Not
Found") and 18 ("No More Files").

See also FExpand, FindNext

36 Turbo Pascal Library Reference

Example uses Dos;
var

Dirlnfo: SearchRec;

begin
FindFirst('*.PAS', Archive, DirInfo);
while DosError = 0 do
begin

Writeln(DirInfo.Name);
FindNext(DirInfo);

end;
end.

FindNext procedure

FindFirst procedure

{ Same as DIR *.PAS }

Dos

Function Returns the next entry that matches the name and attributes specified in a
previous call to FindFirst.

Declaration FindNext (var s: SearchRec)

Remarks 5 must be the same one Passed to FindFirst (SearchRec is declared in Dos
unit; see FindFirst). Errors are reported in DosError; the only possible error
code is 18, which indicates no more files.

See also FindFirst, FExpand

Example See the example for FindFirst.

FloodFill procedure Graph

Function Fills a bounded region with the current fill pattern.

Declaration FloodFill (X, Y: Integer; Border: Word)

Remarks This procedure is called to fill an enclosed area on bitmap devices. (X, Y)
is a seed within the enclosed area to be filled. The current fill pattern, as
set by SetFillStyle or SetFillPattern, is usoo to flood the area bounded by
Border color. If the seed point is within an enclosed area, then the inside
will be filled. If the seed is outside the enclosed area, then the exterior will
be filled.

If an error occurs while flooding a region, GraphResult returns a value of
-7 (grNoFloodMem). .

Chapter 7, The run-time library 37

I

FloodFiII procedure

38

Note that FloodFill stops after two blank lines have been output. This can
occur with a sparse fill pattern and a small polygon. In the following
program, the rectangle is not completely filled:

program StopFill;
uses Graph;
var

Driver, Mode: Integer;
begin

Driver := Detect;
InitGraph(Driver, Mode, 'c:\bgi');
if GraphResult <> grOk then

Halt (1) ;
SetFillStyle(LtSlashFill, GetMaxColor);
Rectangle (0, 0, 8, 20);
FloodFill(l, 1, GetMaxColor);
Readln;
CloseGraph;

end.

In this case, using a denser fill pattern like SlashFill will completely fill the
figure.

Restrictions Use FillPoly instead of FloodFill whenever possible so that you can
maintain code compatibility with future versions. Must be in graphics
mode. This procedure is not available when using the IBM 8514 graphics
driver (IBM8514.BGI).

See also FillPoly, GraphResult, SetFillPattern, SetFillStyle

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt(l);

SetColor(GetMaxColor);
Circle (50, 50, 20);
FloodFill(50, 50, GetMaxColor);
Readln;
CloseGraph;

end.

Turbo Pascal Library Reference

Flush procedure

Flush procedure

Function Flushes the buffer of a text file open for output.

Declaration Flush (var F: Text)

Remarks F is a text-file variable.

When a text file has been opened for output using Rewrite or Append, a call
to Flush will empty the file's buffer. This guarantees that all characters
written to the file at that time have actually been written to the external
file. Flush has no effect on files opened for input.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Frac function

Function Returns the fractional part of the argument.

Declaration Frac (x: Real)

Result type Real

Remarks X is a real-type expression. The result is the fractional part of X, that is,
Frac(X) = X - Int(X).

See also Int

Example var

R: Real;
begin

R := Frac(123.456); {0.456}
R := Frac(-123.456); {-0.456}

end.

Chapter 7, The run-time library 39

I

FreeMem procedure

FreeMem procedure

Function Disposes a dynamic variable of a given size.

Declaration FreeMem (var P: Pointer; Size: Word)

Remarks P is a pointer variable of any pointer type that was previously assigned by
the GetMem procedure or was assigned a meaningful value by an assign­
ment statement. Size is an expression of type Word, specifying the size in
bytes of the dynamic variable to dispose; it must be exactly the number of
bytes previously allocated to that variable by GetMem. FreeMem destroys
the variable referenced by P and returns its memory region to the heap. If
P does not point to a memory region in the heap, a run-time error occurs.
After a call to FreeMem, the value of P becomes undefined, and it is an
error to subsequently reference PA.

Restrictions Dispose and FreeMem cannot be used interchangeably with Mark and
Release unless certain rules are observed. For a complete discussion of this
topic, see "The heap manager" in Chapter 16 of the Programmer's Guide.

See also Dispose, GetMem, Mark, New, Release

FSearch function Dos

40

Function Searches for a file in a list of directories.

Declaration FSearch (Path: PathStr; DirList: String)

Result type PathStr

Remarks Searches for the file given by Path in the list of directories given by DirList.
The directories in DirList must be separated by semicolons, just like the
directories specified in a PATH command in DOS. The search always
starts with the current directory of the current drive. The returned value is
a concatenation of one of the directory paths and the file name, or an
empty string if the file could not be located.

The PathStr type is defined in the Dos unit as string[79].

To search the PATH used by DOS to locate executable files, call
GetEnv('PATH') and pass the result to FSearch as the DirList parameter.

The result ofFSearch can be passed to FErpand to convert it into a fully
qualified file name, that is, an uppercase file name that includes both a
drive letter and a root-relative directory path. In addition, you can use

Turbo Pascal Ubrary Reference

FSearch function

FSplit to split the file name into a drivel directory string, a file-name
string, and an extension string.

See also FExpand, FSplit, GetEnv

Example uses Dos;
var

S: PathStr;
begin

S := FSearch('TURBO.EXE', GetEnv('PATH'));
if S = " then

Writeln('TURBO.EXE not found')
else

Writeln('Found as " FExpand(S));
end.

FSplit procedure

Function Splits a file name into its three components.

Declaration FSplit (Path: PathStr; var Dir: DirStr; Var Name: NameStr; var Ext: ExtStr)

Dos

Remarks Splits the file name specified by Path into its three components. Dir is set
to the drive and directory path with any leading and trailing backslashes,
Name is set to the file name, and Ext is set to the extension with a
preceding dot. Each of the component strings may possibly be empty, if
Path contains no such component.

The PathStr, DirStr, NameStr, and ExtStr types are defined in the Dos unit
as follows:

type
PathStr = string[79];
DirStr = string[67];
NameStr = string[8];
ExtStr = string[4];

FSplit never adds or removes characters when it splits the file name, and
the concatenation of the resulting Dir, Name, and Ext will always equal the
specified Path.

See also FExpand, FindFirst, FindNext

Example uses Dos;
var

P: PathStr;
D: DirStr;

Chapter 7, The run-time library 41

I

FSpiit procedure

N: NameStr;
E: ExtStr;

begin
Write('Filename (WORK.PAS): ');
Readln(P);
FSplit(P, D, N, E);
if N = " then

N := 'WORK';
if E = " then

E := , .PAS' ;
P := D + N + E;
Writeln('Resulting name is " P);

end.

GetArcCoords procedure Graph

42

Function Allows the user to inquire about the coordinates of the last Arc command.

Declaration GetArcCoords (var ArcCoords: ArcCoordsType)

Remarks GetArcCoords returns a variable of type ArcCoordsType. ArcCoordsType is
predeclared as follows:

type
ArcCoordsType = record

X, Y: Integer;
Xstart, Ystart: Integer;
Xend, Yend: Integer;

end;

GetArcCoords returns a variable containing the center point (X, y), the
starting position (Xstart, Ystart), and the ending position (Xend, Yend) of
the last Arc or Ellipse command. These values are useful if you need to
connect a line to the end of an ellipse.

Restrictions Must be in graphics mode.

See also Arc, Circle, Ellipse, FillEllipse, PieS lice, PieSliceXY, Sector

Example uses Graph;
var

Gd, Gm: Integer;
ArcCoords: ArcCoordsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(!);

Turbo Pascal Library Reference

GetArcCoords procedure

Arc (100, 100, 0, 270, 30) i

GetArcCoords(ArcCoords)i
with ArcCoords do

Line (Xstart, Ystart, Xend, Yend)i
Readlni
CloseGraphi

end.

GetAspectRatio procedure Graph I
Function Returns the effective resolution of the graphics screen from which the

aspect ratio (Xasp:Yasp) can be computed.

Declaration GetAspectRatio (var Xasp, Yasp: Word)

Remarks Each driver and graphics mode has an aspect ratio associated with it
(maximum Y resolution divided by maximum X resolution). This ratio
can be computed by making a call to GetAspectRatio and then dividing the
Xasp parameter by the Yasp parameter. This ratio is used to make circles,
arcs, and pie slices round.

Restrictions Must be in graphics mode.

See also Arc, Circle, Ellipse, GetMaxX, GetMaxY, PieS lice, SetAspectRatio

Example uses Graphi
var

Gd, Gm: Integeri
Xasp, Yasp: Wordi
XSideLength, YSideLength: Integeri

begin
Gd := Detecti
InitGraph(Gd, Gm, ")i
if GraphResult <> grOk then

Halt(l)i
GetAspectRatio(Xasp, Yasp)i
XSideLength := 20i

{ Adjust Y length for aspect ratio
YSideLength := Round((Xasp / Yasp) * XSideLength)i

{ Draw a "square" rectangle on the screen }
Rectangle (0, 0, XSideLength, YSideLength)i
Readlni
CloseGraphi

end.

Chapter 7 I The run-time library 43

GetBkColor function

GetBkColor function Graph

44

Function Returns the index into the palette of the current background color.

Declaration GetBkColor

Result type Word

Remarks Background colors can range from 0 to 15, depending on the current
graphics driver and current graphics mode.

GetBkColor retUrns 0 if the Oth palette entry is changed by a call to
SetPalette or SetAllPalette.

Restrictions Must be in graphics mode.

See also GetColor, GetPalette, InitGraph, SetAllPalette, SetBkColor, SetColor, SetPalette

Example uses Crt, Graph;
var

Gd, Gm: Integer;
Color: Word;
Pal: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt(l);

Randomize;
Getpalette (Pal) ;
if Pal.Size <> 1 then
begin

repeat
Color := Succ(GetBkColor);
if Color> Pal.Size-l then

Color := 0;
SetBkColor(Color);
LineTo(Random(GetMaxX), Random(GetMaxY));

until KeyPressed;
end
else

Line (0, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

{ Cycle through colors }

Turbo Pascal Library Reference

GetCBreak procedure

GetCBreak procedure Dos

Function Returns the state of Gtrl-Break checking in DOS.

Declaration GetCBreak (var Break: Boolean)

Remarks GetCBreak returns the state of Gtrl-Break checking in DOS. When off (False), I
DOS only checks for Gtrl-Break during I/O to console, printer, or communi-
cation devices. When on (True), checks are made at every system call.

See also SetCBreak

GetColor function Graph

Function Returns the color value passed to the previous successful call to SetColor.

Declaration GetColor

Result type Word

Remarks Drawing colors can range from 0 to 15, depending on the current graphics
driver and current graphics mode.

Restrictions Must be in graphics mode.

See also GetBkColor, GetPalette, InitGraph, SetAllPalette, SetColor, SetPalette

Example uses Graph;
var

Gd, Gm: Integer;
Color: Word;
Pal: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Randomize;
GetPalette(Pal);
repeat

Color := Succ(GetColor);
if Color> Pal.Size - 1 then

Color := 0;
SetColor(Color);

Chapter 7 I The run-time library 45

GetColor function

LineTo(Random(GetMaxX), Random(GetMaxY));
until KeyPressed;
CloseGraph;

end.

GetDate procedure Dos

Function Returns the current date set in the operating system.

Declaration GetDate (var Year, Month, Day, DayofWeek: Word)

Remarks Ranges of the values returned are Year 1980 .. 2099, Month 1 .. 12, Day 1 .. 31,
and DayOfWeek 0 .. 6 (where 0 corresponds to Sunday).

See also GetTime, SetDate, SetTime

GetDefaultPalette function Graph

46

Function Returns the palette definition record.

Declaration GetDefaultPalette (var Palette: PaletteType)

Resulttype PaletteType

Remarks GetDefaultPalette returns a PaletteType record, which contains the palette as
the driver initialized it during InitGraph:

const
MaxColors = 15;

type
PaletteType = record

Size: Byte;
Colors: array[O .. MaxColorsj of Shortint;

end;

Restrictions Must be in graphics mode.

See also InitGraph, GetPalette, SetAllPalette, SetPalette

Example uses Crt, Graph;
var

Driver, Mode, I: Integer;
MyPal, OldPal: PaletteType;

begin .
DirectVideo := False;
Randomize;
Driver := Detect; { Put in graphics mode }

Turbo Pascal Ubrary Reference

InitGraph(Driver, Mode, ");
if GraphResult < ° then

Halt (1) ;
GetDefaultPalette(OldPal);
MyPal := OldPal;
{ Display something }
for I := ° to MyPal.Size - 1 do
begin

SetColor(I);
OutTextXY(10, I * 10, , ... Press any key •.. ');

end;

GetDefaultPalette function

{ Preserve old one }
{ Duplicate and modify }

repeat { Change palette until a key is pressed }
with MyPal do

Colors[Random(Size)] := Random(Size + 1);
SetAllPalette(MyPal);

until KeyPressedi
SetAllPalette(OldPal); { Restore original palette}
ClearDevice;
OutTextXY(10, 10, 'Press <Return> ... ')i
Readlni
CloseGraphi

end.

GetDir procedure

Function Returns the current directory of a specified drive.

Declaration GetOir (0: Bytei var S: String)

Remarks D is an integer-type expression, and S is a string-type variable. The
current directory of the drive specified by D is returned in S. D = 0 indi­
cates the current drive, 1 indicates drive A, 2 indicates drive B, and so on.

GetDir performs no error-checking per se. If the drive specified by D is
invalid, S returns '\', as if it were the root directory of the invalid drive.

See also ChDir, DiskFree, DiskSize, MkDir, RmDir

Chapter 7 I The run-time library 47

I

GetDriverName function

GetDriverName function Graph

Function Returns a string containing the name of the current driver.

Declaration GetDriverName

Result type String

Remarks After a call to InitGraph, returns the name of the active driver.

Restrictions Must be in graphics mode.

See also GetModeName, InitGraph

Example uses Graph;
var

Driver, Mode: Integer;
begin

Driver := Detect;
InitGraph(Driver, Mode, "~I;

if GraphResult < ° then
Halt(l);

Out Text ('Using driver' + GetDriverName);
Readln;
CloseGraph;

end.

{ Put in graphics mode }

GetEnv function Dos

48

Function Returns the value of a specified environment variable.

Declaration GetEnv (EnvVar: String)

Result type String

Remarks GetEnv returns the value of a specified variable. The variable name can be
in either uppercase or lowercase, but it must not include the equal sign (=)
character. If the specified environment variable does not exist, GetEnv
returns an empty string.

For more information about the DOS environment, refer to your DOS
manuals.

See also EnvCount, EnvStr

Example {$M 8192,0, o}

uses Dos;

Turbo Pascal Ubrary Reference

GetEnv function

var
Command: string[79];

begin
Write('Enter DOS command: ');
Readln(Command);
if Command <> " then

Command := , Ic ' + Command;
SwapVectors;
Exec(GetEnv('COMSPEC'), Command):
SwapVectors;
if DosError <> 0 then

Writeln('Could not execute COMMAND.COM'):
end.

GetFAttr procedure Dos

Function Returns the attributes of a file.

Declaration GetFAttr (var F; var Attr: Word);

Remarks F must be a file variable (typed, untyped, or text file) that has been
assigned but not opened. The attributes are examined by anding them
with the file attribute masks defined as constants in the Dos unit:

const
ReadOnly = $01;
Hidden = $02;
SysFile = $04;
VolumeID = $08;
Directory = $10;
Archive = $20;
AnyFile = $3F;

Errors are reported in DosErrori possible error codes are

.3 (Invalid Path)

• 5 (File Access Denied)

Restrictions F cannot be open.

See also GetFTime, SetF Attr, SetFTime

Example uses Dos:
var

F: file;
Attr: Word;

Chapter 7, The run-time library 49

I

GetFAttr procedure

begin
{ Get file name from command line
Assign(F, ParamStr(l));
GetFAttr(F, Attr);
Writeln(ParamStr(l));
if DosError <> 0 then

Writeln('DOS error code = " DosError)
else
begin

Write('Attribute = " Attr);
{ Determine file attribute type using flags in Dos unit
if Attr and ReadOnly <> 0 then

Writeln('Read only file');
if Attr and Hidden <> 0 then

Writeln('Hidden file');
if Attr and SysFile <> 0 then

Writeln('System file');
if Attr and VolumelD <> 0 then

Writeln('Volume lD');
if Attr and Directory <> 0 then

Writeln('Directory name');
if Attr ~d Archive <> 0 then

Writeln('Archive (normal file)');
end; { else }

end.

GetFiliPattern procedure Graph

Function Returns the last fill pattern set by a previous call to SetFillPattern.

Declaration GetFillPattern (var FillPattern: FillPatternType);

Remarks FillPatternType is declared in the Graph unit:

type
FillPatternType = array[1 .• 8] of Byte;

If no user call has been made to SetFillPattern, GetFillPattern returns an
array filled with $FF.

Restrictions Must be in graphics mode.

See also GetFillSettings, SetFillPattern, SetFillStyle

50 Turbo Pascal Ubrary Reference

GefFiIISeHings procedure

GetFillSettings procedure Graph

Function Returns the last fill pattern and color set by a previous call to SetFillPattern
or SetFillStyle.

Declaration

. Remarks

GetFillSettings(var FillInfo: FillSettingsType)

GetFillSettings returns a variable of type FillSettingsType. FillSettingsType is
predeclared as follows:

type
FillSettingsType = record

Pattern: Word;
Color: Word;

end;

The Pattern field reports the current fill pattern selected. The Color field
reports the current fill color selected. Both the fill pattern and color can be
changed by calling the SetFillStyle or SetFillPattern procedure. If Pattern is
equal to UserFill, use GetFillPattern to get the user-defined fill pattern that
is selected.

Restrictions Must be in graphics mode.

See also FillPoly, GetFillPattern, SetFillPattern, SetFillStyle

Example uses Graph;
var

Gd, Gm: Integer;
FillInfo: FillSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
GetFiIISettings(FiIIInfo);
Bar (0, 0, 50, 50);
SetFillStyle(XHatchFill, GetMaxColor);
Bar (50, 0, 100, 50);
with FillInfo do

SetFillStyle(Pattern, Color);
Bar (100, 0, 150, 50);
Readln;
CloseGraph;

end.

Chapter 7, The run-time library

{ Save fill style and color }

{ New style }

{ Restore old fill style }

51

I

GetFTime procedure

GetFTime procedure Dos

Function Returns the date and time a file was last written.

Declaration GetFTime (var F; var Time: Longint)

Remarks F must be a file variable (typed, untyped, or text file) that has been
assigned and opened. The time returned in the Time parameter may be
unpacked through a call to UnpackTime. Errors are reported in DosError;
the only possible error code is 6 (Invalid File Handle).

Restrictions F must be open.

See also PackTime, SetFAttr, SetFTime, UnpackTime

GetGraphMode function Graph

52

Function Retunls the current graphics mode.

Declaration GetGrapbMode

Result type Integer

Remarks GetGraphMode returns the current graphics mode set by InitGraph or
SetGraphMode. The Mode value is an integer from 0 to 5, depending on the
current driver.

The following mode constants are defined:

Graphics
driver

CGA

MCGA

EGA

EGA64

Constant
name

CGACO
CGAC1
CGAC2
CGAC3
CGAHi

MCGACO
MCGAC1
MCGAC2
MCGAC3
MCGAMed
MCGAHi

EGALo
EGAHi

EGA64Lo
EGA64Hi

Value

0
1
2
3
4

0
1
2
3
4
5

0
1

0
1

Column
x row Palette Pages

320x200 CO 1
320x200 C1 1
320x200 C2 1
320x200 C3 1
640x200 2 color 1

320x200 CO 1
320x200 C1 1
320x200 C2 1
320x200 C3 1
640x200 2 color 1
640x480 2 color 1

640x200 16 color 4
640x350 16 color 2

640x200 16 color 1
640x350 4 color 1

Turbo Pascal Ubrary Reference

GetGraphMode function

Graphics Constant Column
driver name Value x row Palette Pages

EGA-MONO EGAMonoHi 3 640x350 2 color
EGAMonoHi 3 640x350 2 color

HERC HercMonoHi 0 720x348 2 color

ATI400 ATI400CO 0 320x200 CO
ATI400C1 1 320x200 C1
ATI400C2 2 320x200 C2
ATI400C3 3 320x200 C3
ATI400Med 4 640x200 2 color
ATI400Hi 5 640x400 2 color

VGA VGALo 0 640x200 16 color
VGAMed 1 640x350 16 color
VGAHi 2 640x480 16 color

PC3270 PC3270Hi 0 720x350 2 color

IBM8514 IBM8514Lo 0 640x480 256 color
IBM8514 IBM8514Hi 0 1024x768 256 color

* 64K on EGAMono card
** 256K on EGAMono card

Restrictions Must be in graphics mode.

See also ClearDevice, DetectGraph, InitGraph, RestoreCrtMode, SetGraphMode

Example uses Graph;
var

Gd, Gm: Integer;
Mode: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
OutText('<ENTER> to leave graphics:');
Readln;
RestoreCrtMode;
Writeln('Now in text mode');
Write ('<ENTER> to enter graphics mode:');
Readln;
SetGraphMode(GetGraphMode);
OutTextXY(O, 0, 'Back in graphics mode');
OutTextXY(O, TextHeight('H'), '<ENTER> to quit:');
Readln;
CloseGraph;

end.

Chapter 1, The run-time library

1*
2**

2

1
1
1
1
1
1

2
2
1

1

1
1

53

I

Getlmage procedure

Getlmage procedure Graph

54

Function Saves a bit image of the specified region into a buffer.

Declaration GetImage (Xl, Yl, X2, Y2: Integer; var BitMap)

Remarks Xl, YI, X2, and Y2 define a rectangular region on the screen. BitMap is an
untyped parameter that must be greater than or equal to 6 plus the
amount of area defined by the region. The first two words of BitMap store
the width and height of the region. The third word is reserved.

The remaining part of BitMap is used to save the bit image itself. Use the
ImageSize function to determine the size requirements of BitMap.

Restrictions Must be in graphics mode. The memory required to save the region must
be less than 64K.

See also ImageSize, PutImage

Example uses Graph;
var

Gd, Gm: Integer;
P: Pointer;
Size: Word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize (10, 20, 30, 40);
GetMem(P, Size);
Get Image (10, 20, 30, 40, PAl;
Readln;
ClearDevice;
Put Image (100, 100, pA, NormalPut);
Readln;
Close Graph;

end.

{ Allocate memory on heap }

Turbo Pascal Library Reference

GetlntVec procedure

GetlntVec procedure Dos

Function Returns the address stored in a specified interrupt vector.

Declaration GetIntVec (IntNo: Byte; var Vector: Pointer)

Remarks IntNo specifies the interrupt vector number (0 .. 255), and the address is
returned in Vector.

See also SetIntVec

GetLineSettings procedure Graph

Function Returns the current line style, line pattern, and line thickness as set by
SetLineStyle.

Declaration GetLineSettings (var LineInfo: LineSettingsType)

Remarks The following type and constants are defined:

type
LineSettingsType ~ record

LineStyle: Word;
Pattern: Word;
Thickness: Word;

end;
const

{ Line styles
SolidLn = 0;
DottedLn = 1;
CenterLn = 2;
DashedLn = 3;
UserBitLn = 4;
{ Line widths }
NormWidth = 1;
ThickWidth = 3;

{ User-defined line style }

Restrictions Must be in graphics mode.

See also DrawPoly, SetLineStyle

Example uses Graph;
var

Gd, Gm: Integer;
OldStyle: LineSettingsType;

Chapter 7, The run-time library 55

I

GetLineSeHings procedure

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Line (0, 0, 100, 0);
GetLineSettings(OldStyle);
SetLineStyle(DottedLn, 0, ThickWidth);
Line(O, 10, 100, 10);
with OldStyle do

SetLineStyle(LineStyle, Pattern, Thickness);
Line (0, 20, 100, 20);
Readln;
CloseGraph;

end.

GetMaxColor function

{ New style }

{ Restore old line style }

Graph

Function Returns the highest color that can be passed to the SetColor procedure.

Declaration GetMaxColor

Result type Word

Remarks As an example, on a 256K EGA, GetMaxColor will always return 15, which
means that any call to SetColor with a value from 0 .. 15 is valid. On a eGA
in high-resolution mode or on a Hercules monochrome adapter,
GetMaxColor returns a value of 1 because these adapters only support
draw colors of 0 or 1.

Restrictions Must be in graphics mode.

See also SetColor

GetMaxMode function Graph

Function Returns the maximum mode number for the currently loaded driver.

Declaration GetMaxMode

Result type Word

Remarks GetMaxMode lets you find out the maximum mode number for the current
driver, directly from the driver. (Formerly, GetModeRange was the only way
you COl1ld get this number; GetModeRange is still supported, but only for
the Borland drivers.)

56 Turbo Pascal Ubrary Reference

GetMoxMode function

The value returned by GetMaxMode is the maximum value that may be
passed to SetGraphMode. Every driver supports modes O .. GetMaxMode.

Restrictions Must be in graphics mode.

See also GetModeRange, SetGraphMode

Example uses Graph;
var

Driver, Mode: Integer;
I: Integer;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

(Put in graphics mode} I
Halt(1);

for I := 0 to GetMaxMode do { Display all mode names }
OutTextXY(10, 10 * Succ(I), GetModeName(I));

Readln;
CloseGraph;

end.

GetMaxX function Graph

Function Returns the rightmost column (x resolution) of the current graphics driver
and mode.

Declaration GetMaxX

Result type Integer

Remarks Returns the maximum X value for the current graphics driver and mode.
On a eGA in 320x200 mode; for example, GetMaxX returns 319.

GetMaxX and GetMaxY are invaluable for centering, determining the
boundaries of a region on the screen, and so on.

Restrictions Must be in graphics mode.

See also GetMaxY, GetX, GetY, MoveTo

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(1);

Chapter 7, The run-time library 57

GetMaxX function

Rectangle (0, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

GetMaxY function

{ Draw a full-screen box }

Graph

Function Returns the bottommost row (y resolution) of the current graphics driver
and mode.

Declaration GetMaxY

Result type Integer

Remarks Returns the maximum y value for the current graphics driver and mode.
On a CGA in 320x200 mode; for example, GetMaxY returns 199.

GetMaxX and GetMaxY are invaluable for centering, determining the
boundaries of a region on the screen, and so on.

Restrictions Must be in graphics mode.

See also GetMaxX, GetX, GetY, MoveTo

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Rectangle (0, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

GetMem procedure

{ Draw a full-screen box }

Function Creates a new dynamic variable of the specified size, and puts the address
of the block in a pointer variable.

Declaration GetMem (var P: Pointer; Size: Word)

58 Turbo Pascal Library Reference

Remarks

Restrictions

GetMem procedure

P is a pointer variable of any pointer type. Size is an expression of type
Word specifying the size in bytes of the dynamic variable to allocate. The
newly created variable can be referenced as pI\,

If there isn't enough free space in the heap to allocate the new variable, a
run-time error occurs. (It is possible to avoid a run-time error; see "The
HeapError variable" in Chapter 16 of the Programmer's Guide.)

The largest block that can be allocated on the heap at one time is 65,521
bytes (64K-$F). If the heap is not fragmented, for example at the beginning
of a program, successive calls to GetMem returns neighboring blocks of
memory.

See also Dispose, FreeMem, Mark, New, Release

GetModeName function Graph

Function Returns a string containing the name of the specified graphics mode.

Declaration GetModeName (ModeNumber: Integer)

Result type String

Remarks The mode names are embedded in each driver. The return values (320)<200
CGA P1, 640x200 CGA, etc.) are useful for building menus, display status,
and so forth.

Restrictions Must be in graphics mode.

See also GetDriverName, GetMaxMode, GetModeRange

Example uses Graph;
var

Driver, Mode: Integer;
I: Integer;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt(1);
for I := 0 to GetMaxMode do

OutTextXY(10, 10 * Succ(I) , GetModeName(I));
Readln;
CloseGraph;

end.

Chapter 7, The run-time library

{ Put in graphics mode }

{ Display all mode names }

59

I

GetModeRange procedure

GetModeRange procedure Graph

Function Returns the lowest and highest valid graphics mode for a given driver.

Declaration GetModeRange (GraphDri ver: Integer; var LoMode, HiMode: Integer);

Remarks The output from the following program will be Lowest = 0 and Highest = 1:

uses Graph;
var

Lowest, Highest: Integer;
begin

GetModeRange(EGA64, Lowest, Highest);
Write('Lowest = " Lowest);
Write(' Highest = " Highest);

end. .

If the value of GraphDriver is invalid, the return parameters are set to -1.

See also DetectGraph, GetGraphMode, InitGraph, SetGraphMode

GetPalette procedure Graph

Function Returns the current palette and its size.

Declaration GetPalette (var Palette: PaletteType)

Remarks Returns the current palette and its size in a variable of type PaletteType.
PaletteType is defined as follows:

const
MaxColors = 15;

type
PaletteType = record

Size: Byte;
Colors: array[O .. MaxColors] of Shortint;

end;

The size field reports the number of colors in the palette for the current
driver in the current mode. Colors contains the actual colors O .. Size -1.

Restrictions Must be in graphics mode, and can only be used with EGA, EGA 64, or
VGA (not the IBM 8514 or the VGA in 256-color mode).

See also GetDe/aultPalette, GetPaletteSize, SetAllPalette, SetPalette

60 Turbo Pascal Ubrary Reference

GetPalette procedure

Example uses Graph;
var

Gd, Gm: Integer;
Color: Word;
Palette: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
GetPalette(Palette);
if Palette.Size <> 1 then

for Color := ° to Pred(Palette.Size) do
begin

SetColor(Color):
Line(O, Color * 5, 100, Color * 5);

end
else

Line (0, 0, 100, 0);
Readln;
CloseGraph;

end.

GetPaletteSize function

Function Returns the the size of the palette color lookup table.

Declaration GetPaletteSize

Result type Integer

Graph

Remarks GetPaletteSize reports how many palette entries can be set for the current
graphics mode; for example, the EGA in color mode returns a value of 16.

Restrictions Must be in graphics mode.

See also GetDe/aultPalette, GetMaxColor, GetPalette, SetPalette

Chapter 7, The run-time library 61

I

GetPixel function

GetPixel function

Function Gets the pixel value at X, Y.

Declaration GetPixel (X, Y: Integer)

Result type Word

Remarks Gets the pixel color at (X, Y).

Restrictions Must be in graphics mode.

See also Getlmage, PutImage, PutPixel, Set WriteMode

Example uses Graph;
var

Gd, Gm: Integer;
PixelColor: Word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <>grOk then

Halt(l);
Pixel Color := GetPixel(10, 10);
if PixelColor = ° then

PutPixel(10, 10, GetMaxColor);
Readln;
CloseGraph;

end.

GetT extSettings procedure

Graph

Graph

Function Returns the current text font, direction, size, and justification as set by
SetTextStyle and SetTextJustify.

62

Declaration GetTextSettings (var TextInfo: TextSettingsType)

Remarks The following type and constants are defined:

type
TextSettingsType = record

Font: Word;
Direction: Word;
CharSize: Word;
Horiz: Word;
Vert: Wordi

end;
const

Turbo Pascal Library Reference

GetTextSeHings procedure

DefaultFont = 0;
TriplexFont = 1;
SmallFont = 2;
SansSerifFont = 3;
GothicFont = 4;
HorizDir
VertDir

= 0;
= 1;

Restrictions Must be in graphics mode.

8x8 bit-mapped font
{ Stroked fonts

{ Left to right
{ Bottom to top

See also InitGraph, SetTextJustify, SetTextStyle, TextHeight, Text Width

Example uses Graph;
var

Gd, Gm: Integer;
OldStyle: TextSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
GetTextSettings(OldStyle);
OutTextXY(O, 0, 'Old text style');
SetTextJustify(LeftText, CenterText);
SetTextStyle(TriplexFont, VertDir, 4);
OutTextXY(GetMaxX div 2, GetMaxY div 2, 'New Style');
with OldStyle do
begin { Restore old text style

SetTextJustify(Horiz, Vert);
SetTextStyle(Font, Direction, CharSize);

end;
OutTextXY(O, TextHeight('H'), 'Old style again');
Readln;
CloseGraph;

end.

GetTime procedure Dos

Function Returns the current time set in the operating system.

Declaration GetTime (var Hour, Minute, Second, Sec100: Word)

Remarks Ranges of the values returned are Hour 0 .. 23, Minute 0 .. 59, Second 0 .. 59,
and Sec100 (hundredths of seconds) 0 .. 99.

See also GetDate, SetDate, SetTime, UnpackTime

Chapter 7, The run-time library 63

I

GetVerify procedure

GetVerify procedure Dos

Function Returns the state of the verify flag in DOS.

Declaration GetVerify (var Verify: Boolean)

Remarks GetVerify returns the state of the verify flag in DOS. When off (False), disk
writes are not verified. When on (True), all disk writes are verified to
ensure proper writing.

See also SetVerify

GetViewSettings procedure Graph

64

Function Returns the current viewport and clipping parameters, as set by
SetViewPort.

Declaration GetViewSettings (var ViewPort: ViewPort Type)

Remarks GetViewSettings returns a variable of type ViewPortType.
ViewPortType is predeclared as follows:

type
ViewPortType = record

Xl, Yl, X2, Y2: Integer;
Clip: Boolean;

end;

The points (Xl, Yl) and (X2, Y2) are the dimensions of the active viewport
and are given in absolute screen coordinates. Clip is a Boolean variable
that controls whether clipping is active.

Restrictions Must be in graphics mode.

See also ClearViewPort, SetViewPort

Example uses Graph;
var

Gd, Gm: Integer;
ViewPort: ViewPortType;

begin
Gd := Detect;
InitGraph (Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
GetViewSettings(ViewPort);
with ViewPort do

Turbo Pascal Library Reference .

GefViewSeffings procedure

begin
Rectangle (0, 0, X2 - Xl, Y2 - YI);
if Clip then

OutText('Clipping is active.')
else

OutText('No clipping today.');
end;
Readln;
CloseGraph;

end.

GetX function

Function Returns the X coordinate of the current position (CP).

Declaration GetX

Result type Integer

Remarks GetX is viewport-relative. In the following example,

1. SetViewPort(O, 0, GetMaxX, GetMaxY, True);

2. MoveTo(5, 5);

3. SetViewPort(10, 10, 100, 100, True);

4. MoveTo(5, 5);

Graph

Line 1 moves CP to absolute (0, 0), and GetX would also return a value of
O. Line 2 moves CP to absolute (5, 5), and GetX would also return a value
of 5. Line 3 moves CP to absolute (10, 10), but GetX would return a value
of O. Line 4 moves CP to absolute (15, 15), but GetX would return a value
of 5.

Restrictions Must be in graphics mode.

See also GetViewSettings, GetY, InitGraph, MoveTo, Set ViewPort

Example uses Graph;
var

Gd, Gm: Integer;
X, Y: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
OutText('Starting here. ');

Chapter 7, The run-time library 65

I

GetX function

X := GetX;
Y := GetY;
OutTextXY(20, 10, 'Now over here ... ');
OutTextXY(X, Y, 'Now back over here.');
Readln;
CloseGraph;

end.

Gety function Graph

66

Function Returns the Y coordinate of the current position (CP).

Declaration GetY

Result type Integer

Remarks GetY is viewport-relative. In the following example,

1. SetViewPort(O, 0, GetMaxX, GetMaxY, True);

2. MoveTo (5, 5);

3. SetViewPort(10, 10, 100, 100, True);

4. MoveTo(5, 5);

Line 1 moves CP to absolute (0, 0), and GetY would also return a value of
o. Line 2 moves CP to absolute (5,5), and GetY would also return a value
of 5. Line 3 movesCP to absolute (10, 10), but GetY would return a value
of o. Line 4 moves CP to absolute (IS, IS), but GetY would return a value
of5.

Restrictions Must be in graphics mode.

See also GetViewSettings, GetX, InitGraph, MoveTo, SetViewPort

Example uses Graph;
var

Gd, Gm: Integer;
X, Y: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Out Text ('Starting here. ');
X := GetX;
Y := Gety;
OutTextXY(20, 10, 'Now over here ..• ');

Turbo Pascal Ubrary Reference

OutTextXY(X, Y, 'Now back over here.');
Readln;
CloseGraph;

end.

GotoXY procedure

Function Positions the cursor.

Declaration GotoXY(X, Y: Byte)

Gety function

Crt

Remarks The cursor is moved to the position within the current window specified
by X and Y (X is the column, Y is the row). The upper left comer is (1, 1).

This procedure is window-relative and will move the cursor to the upper
left corner of the active window {absolute coordinates (I, 10»:

Window(l, 10, 60, 20);
GotoXY(l, 1);

Restrictions If the coordinates are in any way invalid, the call to GataXY is ignored.

See also WhereX, WhereY, Window

GraphDefaults procedure Graph

Function Resets the graphics settings.

Declaration GraphDe fault s

Remarks Homes the current pointer (CP) and resets the graphics system to the
default values for

• viewport

• palette
• draw and background colors
• line style and line pattern

• fill style, fill color, and fill pattern
• active font, text style, text justification, and user Char size

Restrictions Must be in graphics mode.

See also InitGraph

Chapter 7, The run-time library 67

I

GraphErrorMsg function

GraphErrorMsg function Graph

Function Returns an error message string for the specified ErrorCode.

Declaration GraphErrorMsg (ErrorCode: Integer)

Result type String

Remarks This function returns a string containing an error message that
corresponds with the error codes in the graphics system. This makes it
easy for a user program to display a descriptive error message ("Device
driver not found" instead of "error code -3").

See also DetectGraph, GraphResult,InitGraph

Example uses Graph;
var

GraphDriver, GraphMode: Integer;
ErrorCode: Integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
Readln;
Halt (1);

end;
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

GraphResult function

Function Returns an error code for the last graphics operation.

Declaration GraphResult

Result type Integer

Graph

Remarks Returns an error code for the last graphics operation. The following error
return codes are defined:

68 Turbo Pascal Ubrary Reference

Error
code

o
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
-11
-12
-13
-14

Graphics error
constant

grOk
grNolnitGraph
grNotDetected
grFileNotFound
gr I nvalidDriver
grNoLoadMem
grNoScanMem
grNoFioodMem
grFontNotFound
grNoFontMem
grlnvalidMode
grError
grIOerror
grlnvalidFont
grlnvalidFontNum

GraphResult function

Corresponding
error message string

No error
(BGO graphics not installed (use InitGraph)
Graphics hardware not detected
Device driver file not found
Invalid device driver file
Not enough memory to load driver
Out of memory in scan fill
Out of memory in flood fill
Font file not found
Not enough memory to load font
Invalid graphics mode for selected driver
Graphics error
Graphics I/O error
Invalid font.file
Invalid font number

The following routines set GraphResuIt:

Bar GetGraphMode
Bar3D ImageSize
ClearViewPort InitGraph
CloseGraph InstallUserDriver
DetectGraph InstallUserFont
DrawPoly PieSlice
FillPoly RegisterBGldriver
FloodFill Regis terBGlfon t

SetAllPalette
SetFillPattern
SetFillStyle
SetGraphBufSize
SetGraphMode
SetLineStyle
SetPalette
SetTextJustify
SetTextStyle

Note that GraphResult is reset to zero after it has been called (similar to
IOResuIt). Therefore, the user should store the value of GraphResuIt into a
temporary variable and then test it.

A string function, GraphErrorMsg, is provided to return a string that
corresponds with each error code.

See also GraphErrorMsg

Example uses Graph;
var

ErrorCode: Integer;
GrDriver, GrMode: Integer;

begin
GrDriver := Detect;
InitGraph(GrDriver, GrMode , ");
ErrorCode := GraphResult; { Check for errors }
if ErrorCode <> grOk then
begin

Chapter 7, The run-time library 69

I

GraphResult function

Writeln('Graphics error:')i
Writeln(GraphErrorMsg(ErrorCode))i
Writeln('Program aborted ... ')i
Halt(1)i

endi
{ Do some graphics ...
ClearDevicei
Rectangle (0, 0, GetMaxX, GetMaxY)i
Readlni
CloseGraphi

end.

Halt procedure

Function Stops program execution and returns to the operating system.

Declaration Halt [(ExitCode: Word) 1

Remarks ExitCode is an optional expression of type Word that specifies the exit code
of the program. Halt without a parameter corresponds to Halt(O). The exit
code can be examined by a parent process using the DosExitCode function
in the Dos unit or through an ERRORLEVEL test in a DOS batch file.

Note that Halt will initiate execution of any unit Exit procedures (see
Chapter 18 in the Programmer's Guide).

See also Exit, RunError

Hi function

70

Function Returns the high-order byte of the argument.

Declaration Hi (X)

Result type Byte

Remarks X is an expression of type Integer or Word. Hi returns the high-order byte
of X as an unsigned value.

See also Lo, Swap

Example var W: Wordi
begin

W := Hi($1234)i {$12}
end.

Turbo Pascal Library Reference

HighVideo procedure

HighVideo procedure Crt

Function Selects high-intensity characters.

Declaration HighVideo

Remarks There is a Byte variable in Crt-TextAttr-that is used to hold the current
video attribute. HighVideo sets the high intensity bit of TextAttr's fore­
ground color, thus mapping colors 0-7 onto colors 8-15.

See also

Example

LowVideo, NormVideo, TextBackground, TextColor

uses Crt;
begin

TextAttr := LightGray;
HighVideo; { Color is now white }

end.

ImageSize function Graph

Function Returns the number of bytes required to store a rectangular region of the
screen.

Declaration ImageSize (Xl, Yl, X2, Y2: Integer)

Result type Word

Remarks Xl, Yl, X2, and Y2 define a rectangular region on the screen. ImageSize
determines the number of bytes necessary for GetImage to save the
specified region of the screen. The image size includes space for three
words. The first stores the width of the region, the second stores the
height, and the third is reserved.

If the memory required to save the region is greater than or equal to 64K,
a value of 0 is returned and GraphResult returns -11 (grError).

Restrictions Must be in graphics mode.

See also GetImage, PutImage

Example uses Graph;
var

Gd, Gm: Integer;
P: Pointer;
Size: Word;

Chapter 7 I The run-time library 71

II

ImageSize function

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10, 20, 30, 40);
GetMem (P, Size);
GetImage(lO, 20, 30, 40, pAl;
Readln;
ClearDevice;
Put Image (100, 100, pA, NormalPut);
Readln;
CloseGraph;

end.

{ Allocate memory on heap }

Inc procedure

72

Function Increments a variable.

Declaration Inc (var X [; N: Longint 1

Remarks X is an ordinal-type variable, and N is an integer-type expression. X is
incremented by I, or by N if N is specified; that is, Inc(X) corresponds to X
:= X + I, and Inc(X, N) corresponds to X := X + N.

Inc generates optimized code and is especially useful for use in tight
loops.

See also Dec, Pred, Succ

Example var
IntVar: Integer;
LongintVar: Longint;

begin
Inc(IntVar);
Inc (LongintVar, 5);

end.

{ IntVar := IntVar + 1
LongintVar := LongintVar + 5

Turbo Pascal Ubrary Reference

InitGraph procedure

InitGraph procedure Graph

Function Initializes the graphics system and puts the hardware into graphics mode.

Declaration InitGraph(var GraphDriver: Integer; var GraphMode: Integer; PathToDriver: String)

Remarks Both GraphDriver and GraphMode are var parameters.

If GraphDriver is equal to Detect(O), a call is made to any user-defined
autodetect routines (see InstallUserDriver) and then DetectGraph. If
graphics hardware is detected, the appropriate graphics driver is
initialized, and a graphics mode is selected.

If GraphDriver is not equal to 0, the value of GraphDriver is assumed to be
a driver number; that driver is selected, and the system is put into the
mode specified by GraphMode. If you override autodetection in this
manner, you must supply a valid GraphMode parameter for the driver
requested.

PathToDriver specifies the directory path where the graphics drivers can
be found. If PathToDriver is null, the driver files must be in the current
directory.

Normally, InitGraph loads a graphics driver by allocating memory for the
driver (through GraphGetMem), then loads the appropriate .BGI file from
disk. As an alternative to this dynamic loading scheme, you can link a
graphics driver file (or several of them) directly into your executable
program file. You do this by first converting the .BGI file to an .OBI file
(using the BINOBI utility), then placing calls to RegisterBGldriver in your
source code (before the call to InitGraph) to register the graphics driver(s).
When you build your program, you must link the .OB] files for the
registered drivers. You can also load a BGI driver onto the heap and then
register it using RegisterBGldriver.

If memory for the graphics driver is allocated on the heap using
GraphGetMem, that memory is released when a call is made to CloseGraph.

After calling InitGraph, GraphDriver will be set to the current graphics
driver, and GraphMode will be set to the current graphics mode.

If an error occurred, both GraphDriver and GraphResult (a function) returns
one of the following values:

-2 Cannot detect a graphics card
-3 Cannot find driver file
-4 Invalid driver

Chapter 7, The run-time library 73

I

InitGraph procedure

74

-5 Insufficient memory to load driver
-10 Invalid graphics mode for selected driver

InitGraph resets all graphics settings to their defaults (current pointer,
palette, color, viewport, etc.).

You can use InstallDriver to install a vendor-supplied graphics driver (see
InstallUserDriver for more information).

Several useful constants are defined for each graphics driver supported:

Error
code

o
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
-11
-12
-13
-14

Graphics error
constant

grOk
grNolnitGraph
grNotDetected
grFileNotFound
grlnvalidDriver
grNoLoadMem
grNoScanMem
grNoFloodMem
grFontNotFound
grNoFontMem
grlnvalidMode
grError
grIOerror
grlnvalidFont
grlnvalidFontNum

Corresponding
error message string

No error
(BCl) graphics not installed (use InitGraph)
Graphics hardware not detected
Device driver file not found
Invalid device driver file
Not enough memory to load driver
Out of memory in scan fill
Out of memory in flood fill
Font file not found
Not enough memory to load font
Invalid graphics mode for selected driver
Graphics error
Graphics I/O error
Invalid font file
Invalid font number

Restrictions Must be in graphics mode. If you use the Borland Graphics Interface (BGI)
on a Zenith Z-449 card, Turbo Pascal's auto detection code will always
select the 640x480 enhanced EGA mode. If this mode isn't compatible
with your monitor, select a different mode in the InitGraph call. Also,
Turbo Pascal cannot autodetect the IBM 8514 graphics card (the
auto detection logic recognizes it as VGA). Therefore, to use the IBM 8514
card, the GraphDriver variable must be assigned the value IBM8514 (which
is defined in the Graph unit) when InitGraph is called. You should not use
DetectGraph (or Detect with InitGraph) with the IBM 8514 unless you want
the emulated VGA mode.

See also CloseGraph, DetectGraph, GraphDefaults, GraphResult, InstallUserDriver,
RegisterBGldriver, RegisterBGlfont, RestoreCrtMode, SetGraphBufSize,
SetGraphMode

Example uses Graph;
var

grDriver: Integer;
grMode: Integer;
ErrCode: Integer;

Turbo Pascal Library Reference

begin
grDriver := Detect;
InitGraph(grDriver, grMode,");
ErrCode := GraphResult;
if ErrCode = grOk then
begin

Line (0, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end
else

Writeln('Graphics error:', GraphErrorMsg(ErrCode));
end.

Insert procedure

Inserts a substring into a string.

Insert (Source: String; var S: String; Index: Integer)

InitGraph procedure

{ Do graphics }

Function

Declaration

Remarks Source is a string-type expression. S is a string-type variable of any length.
Index is an integer-type expression. Insert inserts Source into S at the
Indexth position. If the resulting string is longer than 255 characters, it is
truncated after the 255th character.

See also

Example

Concat, Copy, Delete, Length, Pos

var
s: String;

begin
S := 'Honest Lincoln';
Insert (' Abe " S, 8);

end.

InsLine procedure

Function Inserts an empty line at the cursor position.

Declaration Ins Line

{ 'Honest Abe Lincoln' }

Crt

Remarks All lines below the inserted line are moved down one line, and the bottom
line scrolls off the screen (using the BIOS scroll routine).

Chapter 7, The run-time library 75

I

InsLine procedure

All character positions are set to blanks with the currently defined text
attributes. Thus, if TextBackground is not black, the new line becomes the
background color.

This procedure is window-relative and will insert a line 60 columns wide
at absolute coordinates (1, 10):

Window(l, 10, 60, 20);
InsLine;

See also DelLine, Window

InstaliUserDriver function Graph

76

Function Installs a vendor-added device driver to the BGI device driver table.

Declaration InstallUserDri ver (Name: String; AutoDetectptr: Pointer)

Result type Integer

Remarks InstallUserDriver allows you to use a vendor-added device driver. The
Name parameter is the file name of the new device driver. AutoDetectPtr is
a pointer to an optional autodetect function that may accompany the new
driver. This autodetect function takes no parameters and returns an
integer value.

If the internal driver table is full, InstallUserDriver returns a value of -11
(grError); otherwise InstallUserDriver assigns and returns a driver number
for the new device driver.

There are two ways to use this vendor-supplied driver. Let's assume you
have a new video card called the Spiffy Graphics Array (SGA) and tHat
the SGA manufacturer provided you with a BGI device driver (SGA.BGI).
The easiest way to use this driver is to install it by calling InstallUserDriver
and then passing the return value (the assigned driver number) directly to
InitGraph:

var
Driver, Mode: Integer;

begin
Driver := InstallUserDriver('SGA', Nil);
if Driver = grError then { Table full? }

Halt (1);

Mode := 0; { Every driver supports mode of 0 }
InitGraph(Driver, Mode, "); { Override autodetection }

{ Do graphics ... }
end.

Turbo Pascal Ubrary Reference

InstaliUserDriver function

The nil value for the AutoDetectPtr parameter in the InstallUserDriver call
indicates there isn't an autodetect function for the SGA.

The other, more general way to use this driver is to link in an auto detect
function that will be called by InitGraph as part of its hardware-detection
logic. Presumably, the manufacturer of the SGA gave you an autodetect
function that looks something like this:

{$F+}
function DetectSGA: Integer:
var Found: Boolean:
begin

DetectSGA := grError:
Found := ...
if not Found then

Exit:

{ Assume it's not there}
{ Look for the hardware }

{ Returns -11 }
DetectSGA := 3: { Return recommended default video mode }

end:
{$F-}

DetectSGA's job is to look for the SGA hardware at run time. If an SGA is
not detected, DetectSGA returns a value of -11 (grError); otherwise, the
return value is the default video mode for the SGA (usually the best mix
of color and resolution available on this hardware).

Note that this function takes no parameters, returns a signed, integer-type
value, and must be a far call. When you install the driver (by calling
InstallUserDriver), you pass the address of DetectSGA along with the
device driver's file name:

var
Driver, Mode: Integer:
begin

end.

Driver := InstallUserDriver('SGA', @DetectSGA}:
if Driver = grError then

Halt (1):

Driver := Detect:
{ Discard SGA driver #: trust autodetection }
InitGraph(Driver, Mode, ");

{ Table full? }

After you install the device driver file name and the SGA autodetect
function, you call InitGraph and let it go through its normal auto detection
process. Before InitGraph calls its built-in autodetection function
(DetectGraph), it first calls DetectSGA. If DetectSGA doesn't find the SGA
hardware, it returns a value of -11 (grError) and InitGraph proceeds with
its normal hardware detection logic (which may include calling any other

Chapter 7, The run-time library 77

I

InstaliUserDriver function

78

vendor-supplied autodetection functions in the order in which they were
"installed"). If, however, DetectSGA determines that an SGA is present, it
returns a nonnegative mode number, and InitGraph locates and loads
SGA.BGI, puts the hardware into the default graphics mode recom­
mended by DetectSGA, and finally returns control to your program.

See also GraphResult, InitGraph, InstallUserFont, RegisterBGldriver, RegisterBGlfont

Example uses Graph;
var

Driver, Mode,
TestDri ver,
ErrCode: Integer;

{$F+}
function TestDetect: Integer;
{ Autodetect function: assume hardware is always present; return value =

recommended default mode }
begin

TestDetect := 1;
end;
{$F-}
begin

{ Install the driver
TestDriver := InstallUserDriver('TEST', @TestDetect);
if GraphResult <> grOk then
begin

Writeln('Error installing TestDriver');
Halt (1) ;

end;

{ Default mode = 1 }

Driver := Detect; { Put in graphics mode }
InitGraph(Driver, Mode, ");
ErrCode := GraphResult;
if ErrCode <> grOk then

begin
Writeln('Error during Init: " ErrCode)i
Halt(l);

end;
OutText('Installable drivers supported ... ');
Readlni
CloseGraph;

end.

Turbo Pascal Library Reference

InstcllUserFont function

InstaliUserFont function Graph

Function Installs a new font not built into the BGI system.

Declaration function InstallUserFont (FontFileName: String)

Result type Integer

Remarks FontFileName is the file name of a stroked font. InstallUserFont returns the
font ID number that can be passed to SetTextStyle to select this font. If the
internal font table is full, a value of 0 (DefaultFont) will be returned.

See also InstallUserDriver, RegisterBGldriver, RegisterBG1font, SetTextStyle

Example uses Graph;
var

Driver, Mode: Integer;
TestFont: Integer;

begin
TestFont := InstallUserFont('TEST'); { Install the font}
if GraphResult <> grOk then
begin

Writeln('Error installing TestFont (using DefaultFont)');
Readln;

end;
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult <> grOk then

{ Put in graphics mode }

Halt(l);
SetTextStyle(TestFont, HorizDir, 2): { Use new font }

Int function

OutText('Installable fonts supported ... ');
Readln;
CloseGraph;

end.

Function Returns the integer part of the argument.

Declaration Int (X: Real)

Result type Real

Remarks X is a real-type expression. The result is the integer part of X, that is, X
rounded toward zero.

Chapter 7, The run-time library 79

I

Int function

See also Frac, Round, Trunc

Example var R: Real;
begin

R := Int(123.456);
R := Int(-123.456);

end.

Intr procedure

{ 123.0 }
{ -123.0 }

Function Executes a specified software interrupt.

Declaration Intr (IntNo: Byte; var Regs: Registers)

Remarks IntNo is the software interrupt number (0 .. 255). Registers is a record
defined in DOS:

type
Registers = record

case Integer of
0: (AX, BX, CX, OX, BP, SI, 01, OS, ES, Flags: Word);
1: (AL, AH, BL, BH, CL, CH, OL, OH: Byte);

end;

Dos

Before executing the specified software interrupt, Intr loads the 8086
CPU's AX, BX, CX, DX, BP, SI, DI, DS, and ES registers from the Regs
record. When the interrupt completes, the contents of the AX, BX, CX, DX,
BP, SI, DI, DS, ES, and Flags registers are stored back into the Regs record.

For details on writing interrupt procedures, refer to the section "Interrupt
handling" in Chapter 18 in the Programmer's Guide.

Restrictions Software interrupts that depend on specific values in SP or SS on entry, or
modify SP and SS on exit, cannot be executed using this procedure.

See also MsDos

,

IOResult function

Function Returns an integer value that is the status of the last I/O operation
performed.

Declaration IOResult

Result type Word

80 Turbo Pascal Ubrary Reference

IOResult function

Remarks I/O-checking must be off-{$I-}-in order to trap I/O errors using
IOResult. If an I/O error occurs and I/O-checking is off, all subsequent
I/O operations are ignored until a call is made to IOResult. A call to
IOResult clears its internal error flag.

The codes returned are summarized in Appendix A in the Programmer's
Guide. A value of 0 reflects a successful I/O operation.

Example var F: file of Byte;
begin

{ Get file name command line }
Assign(F, ParamStr(l));
{$I-}
Reset (F);
{$I+}

if IOResult ~ 0 then
Writeln('File size in bytes: " FileSize(F))

else
Writeln('File not found');

end.

Keep procedure Dos

Function Keep (or terminate and stay resident) terminates the program and makes it
stay in memory.

Declaration Keep(ExitCode: Word)

Remarks The entire program stays in memory-including data segment, stack
segment, and heap-so be sure to specify a maximum size for the heap
using the $M compiler directive. The ExitCode corresponds to the one
passed to the Halt standard procedure.

Restrictions Use with care! Terminate-and-stay-resident (TSR) programs are complex
and no other support for them is provided. Refer to the MS-DOS technical
documentation for more information.

See also DosExitCode

Chapter 7, The run-time library 81

I

KeyPressed function

KeyPressed function Crt

Function Returns True if a key has been pressed on the keyboard; False otherwise.

Declaration KeyPressed

Result type Boolean

Remarks The character (or characters) is left in the keyboard buffer. KeyPressed does
not detect shift keys like Shift, All, NumLock, and so on.

See also ReadKey

Example uses Crt;
begin

repeat
Write (' Xx');

until KeyPressed;
end.

{ Fill the screen until a key is typed }

Length function

82

Function

Declaration

Result type

Remarks

See also

Example

Returns the dynamic length of a string.

Length(S: String)

Integer

5 is a string-type expression. The result is the length of S.

Concat, Copy, Delete, Insert, Pos

var
F: Text;
S: String;

begin
Assign(F, 'GARY.PAS');
Reset(F);
Readln(F, S);
Writeln('"', S, '"')
Writeln('length = " Length(S));

end.

Turbo Pascal Ubrary Reference

Line. procedure

Line procedure Graph

Function Draws a line from the (Xl, YI) to (X2, Y2).

Declaration Line (Xl, Yl, X2, Y2: Integer)

Remarks Draws a line in the style and thickness defined by SetLineStyle and uses
the color set by SetColor. Use SetWriteMode to determine whether the line
is copied or XOR'd to the screen.

Note that

MoveTo(100, 100);
LineTo(200, 200);

is equivalent to

Line(100, 100, 200, 200);
MoveTo(200, 200);

Use LineTo when the current pointer is at one endpoint of the line. If you
want the current pointer updated automatically when the line is drawn,
use LineRel to draw a line a relative distance from the CPo Note that Line
doesn't update the current pointer.

Restrictions Must be in graphics mode. Also, for drawing a horizontal line, Bar is faster
than Line.

See also GetLineStyle, LineRel, LineTo, MoveTo, Rectangle, SetColor, SetLineStyle,
Set WriteMode

Example uses Crt, Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
Randomize;
repeat

Line(Random(200), Random(200), Random(200), Random(200));
until KeyPressed;
Readln;
CloseGraph;

end.

Chapter 7, The run-time library 83

LineRel procedure

LineRel procedure Graph

Function Draws a line to a point that is a relative distance from the current pointer
(CP).

Declaration LineRel (Ox, Dy: Integer);

Remarks LineReI will draw a line from the current pointer to a point that is a
relative (Dx, Dy) distance from the current pointer. The current line style
and pattern, as set by SetLineStyle, are used for drawing the line and uses
the color set by SetColor. Relative move and line commands are useful for
drawing a shape on the screen whose starting point can be changed to
draw the same shape in a different location on the screen. Use
Set WriteMode to determine whether the line is copied or XOR'd to the
screen.

The current pointer is set to the last point drawn by LineRel.

Restrictions Must be in graphics mode.

See also GetLineStyle, Line, LineTo, MoveRel, MoveTo, SetLineStyle, SetWriteMode

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
MoveTo(l, 2);
LineRel(100, 100);
Readln;
CloseGraph;

end.

LineTo procedure

{ Draw to the point (101,102) }

Graph

Function Draws a line from the current pointer to (X, Y).

Declaration LineTo (X, Y: Integer)

Remarks Draws a line in the style and thickness defined by SetLineStyle and uses
the color set by SetColor. Use SetWriteMode to determine whether the line
is copied or XOR'd to the screen.

84 Turbo Pascal Library Reference

LineTo procedure

Note that

MoveTo(100, 100);
LineTo(200, 200);

is equivalent to

Line (100, 100, 200, 200);

The first method is slower and uses more code. Use LineTo only when the
current pointer is at one endpoint of the line. Use LineRel to draw a line a
relative distance from the CPo Note that the second method doesn't
change the value of the current pointer.

LineTo moves the current pointer to (X, Y).

Restrictions Must be in graphics mode.

See also GetLineStyle, Line, LineRel, MoveRel, MoveTo, SetLineStyle, SetWriteMode

Example uses Crt, Graph;

Ln function

var
Gd, Gm: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Randomize;
repeat

LineTo(Random(200), Random(200));
until KeyPressed;
Readln;
CloseGraph;

end.

Function Returns the natural logarithm of the argument.

Declaration Ln (X: Real)

Result type Real

Remarks X is a real-type expression. The result is the natural logarithm of X.

See also Exp

Chapter 7, The run-time library 85

Lo function

Lo function

Function Returns the low-order byte of the argument.

Declaration La (X)

Result type Byte

Remarks X is an expression of type Integer or Word. Lo returns the low-order byte
of X as an unsigned value.

See also Hi, Swap

Example var W: Word;
begin

W := Lo($1234); {$34}
end.

LowVideo procedure

Function Selects low-intensity characters.

Declaration LowVideo

Crt

Remarks There is a Byte variable in Crt-TextAttr-that is used to hold the current
video attribute. LowVideo clears the high-intensity bit of TextAttr's fore­
ground color, thus mapping colors 8 to 15 onto colors 0 to 7.

See also HighVideo, NormVideo, TextBackground, TextColor

Example uses Crt;
begin

TextAttr := White;
LowVideo;

end.

Mark procedure

Function Records the state of the heap in a pointer variable.

Declaration Mark (var P: Pointer)

{ Color is now light gray }

Remarks P is a pointer variable of any pointer type. The current value of the heap
pointer is recorded in P, and can later be used as an argument to Release.

86 Turbo Pascal Ubrary Reference

Mark procedure

Restrictions Mark and Release cannot be used interchangeably with Dispose and
FreeMem unless certain rules are observed. For a complete discussion of
this topic, see ''The heap manager" in Chapter 16 of the Programmer's
Guide.

See also Dispose, FreeMem, GetMem, New, Release

MaxAvail function

Function Returns the size of the largest contiguous free block in the heap,
corresponding to the size of the largest dynamic variable that can be
allocated at that time.

Declaration MaxAvail

Result type Longint

Remarks This number is calculated by comparing the sizes of all free blocks below
the heap pointer to the size of free memory above the heap pointer. To
find the total amount of free memory on the heap, call MemAvail. Your
program can specify minimum and maximum heap requirements using
the $M compiler directive (see Chapter 21 in the Programmer's Guide).

See also MemAvail

Example type
FriendRec = record

Name: string[30);
Age: Byte;

end;
var

P: Pointer;
begin

if MaxAvail < SizeOf(FriendRec) then
Writeln('Not enough memory')

else
begin

{ Allocate memory on heap }
GetMem(P, SizeOf(FriendRec));

end;
end.

Chapter 1, The run-time library 87

I

MemAvail function

MemAvail function

Function Returns the sum of all free blocks in the heap.

Declaration MemAvail

Result type Longint

Remarks This number is calculated by adding the sizes of all free blocks below the
heap pointer to the size of free memory above the heap pointer. Note that
unless Dispose and FreeMem were never called, a block of storage the size
of the returned value is unlikely to be available due to fragmentation of
the heap. To find the largest free block, call MaxAvail. Your program can
specify minimum and maximum heap requirements using the $M com­
piler directive (see Chapter 21 in the Programmer's Guide).

See also MaxAvail

Example begin
Writeln(MemAvail, , bytes available');
Writeln('Largest free block is " MaxAvail, , bytes');

end.

MkDir procedure

88

Function Creates a subdirectory.

Declaration MkDir (S: String)

Remarks S is a string-type expression. A new subdirectory with the path specified
by S is created. The last item in the path cannot be an existing file name.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also ChDir, GetDir, RmDir

Example begin
{$I-}
{ Get directory name from command line
MkDir(ParamStr(l));
if IOResult <> 0 then

Writeln('Cannot create directory')
else

Writeln('New directory created');
end.

Turbo Pascal Library Reference

Move procedure

Move procedure

Function Copies a specified number of contiguous bytes from a source range to a
destination range.

Declaration Move (var Source, Oest; Count: Word)

Remarks Source and Dest are variable references of any type. Count is an expression
of type Word. Move copies a block of Count bytes from the first byte
occupied by Source to the first byte occupied by Dest. No checking is
performed, so be careful with this procedure.

¢ When Source and Dest are in the same segment, that is, when the segment
parts of their addresses are equal, Move automatically detects and
compensates for any overlap. Intrasegment overlaps never occur on
statically and dynamically allocated variables (unless they are deliberately
forced), and they are therefore not detected.

Whenever possible, use the SizeD! function to determine the Count.

See also FillChar

Example var
A: array[l •. 4] of Char;
B: Longint;

begin
Move (A, B, SizeOf(A));

end.
{ SizeOf = safety! }

MoveRel procedure Graph

F,unction Moves the current pointer (CP) a relative distance from its current
location.

Declaration MoveRel (Ox, Oy: Integer)

Remarks MoveRel moves the current pointer (CP) to a point that is a relative
(Dx, Dy) distance from the current pointer. Relative move and line
commands are useful for drawing a shape on the screen whose starting
point can be changed to draw the same shape in a different location on the
screen.

Restrictions Must be in graphics mode.

See also GetMaxX, GetMaxY, GetX, GetY, LineRel, LineTo, MoveTo

Chapter 7, The run-time library 89

I

MoveRel procedure

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph{Gd, Gm, ");
if GraphResult <> grOk then

Halt{l);
MoveTo{l , 2):
MoveRel{10 , 10);
PutPixel{GetX, GetY, GetMaxCo1or);
Readln:
CloseGraph:

end.

{ Move to the point (II, 12) }

MoveTo procedure Graph

90

Function Moves the current pointer (CP) to (X, Y).

Declaration MoveTo (X, Y: Integer)

Remarks The CP is similar to a text mode cursor except that the CP is not visible.
The following routines move the CP:

ClearDevice LineRel OutText
Clear ViewPort Line To SetGraphMode
GraphDefaults MoveRel SetViewPort
InitGraph MoveTo

If a viewport is active, the CP will be viewport-relative (the X and Y
values will be added to the viewport's Xl and Yl values). The CP is never
clipped at the current viewport's boundaries.

See also GetMaxX, GetMaxY, GetX, GetY, MoveRel

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, "):
if GraphResult <> grOk then

Halt (I) ;
MoveTo{O, 0):
LineTo{GetMaxX, GetMaxY):
Readln:

{ Upper left corner of viewport }

Turbo Pascal Ubrary Reference

MsDos procedure

CloseGraph:
end.

MsDos procedure Dos

Function Executes a DOS function call.

Declaration MsOos (var Regs: Registers)

Remarks The effect of a call to MsDos is the same as a call to Intr with an IntNo of
$21. Registers is a record declared in the Dos unit:

type
Registers = record

case Integer of
0: (AX, BX, CX, OX, BP, SI, 01, OS, ES, Flags: Word):
1: (AL, AH, BL, BH, CL, CH, OL, DR: Byte):

end;

Restrictions Software interrupts that depend on specific calls in SP or SS on entry or
modify SP and SS on exit cannot be executed using this procedure.

See also Intr

New procedure

Function Creates a new dynamic variable and sets a pointer variable to point to it.

Declaration New (var P: Pointer [, Init: Constructor 1)

, Remarks P is a pointer variable of any pointer type. The size of the allocated
memory block corresponds to the size of the type that P points to. The
newly created variable can be referenced as PA. If there isn't enough free
space in the heap to allocate the new variable, a run-time error occurs. (It
is possible to avoid a run-time error in this case; see ''fhe HeapError
variable" in Chapter 16 of the Programmer's Guide.)

New has been extended to allow a constructor call as a second parameter
for allocating a dynamic object type variable. P is a pointer variable,
pointing to an object type, and Construct is a call to the constructor of that
object type.

An additional extension allows New to be used as a function, which
allocates and returns a dynamic variable of a specified type. If the call is of
the form New(P), P can be any pointer type. If the call is of the form

Chapter 7, The run-time library 91

I

New procedure

New(P, Init), P must point to an object type, and Init must be a call to the
constructor of that object type. In both cases, the type of the function
result is P.

See also Dispose, FreeMem, GetMem, Release

NormVideo procedure Crt

Function Selects the original text attribute read from the cursor location at startup.

Declaration NormVideo

Remarks There is a Byte variable in Crt-TextAttr-that is used to hold the current
video attribute. NormVideo restores TextAttr to the value it had when the
program was started.

See also HighVideo, LowVideo, TextBackground, TextColor

NoSound procedure Crt

Function Turns off the internal speaker.

Declaration NOSound

Remarks The following program fragment emits a 440-hertz tone for half a second:

Sound(440) ;
Delay(500);
NoSound;

See also Sound

Odd function

Function Tests if the argument is an odd number.

Declaration Odd (X: Longint)

Result type Boolean

Remarks X is a Longint-type expression. The result is True if X is an odd number,
and False if X is an even number.

92 Turbo Pascal Ubrary Reference

Ofs function

Function Returns the offset of a specified object.

Declaration Ofs (X)

Result type Word

afs function

Remarks X is any variable, or a procedure or function identifier. The result of type
Word is the offset part of the address of X.

See also Addr, Seg

Ord function

Function Returns the ordinal number of an ordinal-type value.

Declaration Ord (X)

Result type Longint

Remarks X is an ordinal-type expression. The result is of type Longint and its value
is the ordinality of X. _,

See also Chr IIiI
OutText procedure Graph

Function Sends a string to the output device at the current pointer.

Declaration OutText (TextString: String)

Remarks TextString is output at the current pointer using the current justification
settings. TextString is always truncated at the viewport border if it is too
long. If one of the stroked fonts is active, TextString is truncated at the
screen boundary if it is too long. If the default (bit-mapped) font is active
and the string is too long to fit on the screen, no text is displayed.

OutText uses the font set by SetTextStyle. In order to maintain code com­
patibility when using several fonts, use the TextWidth and TextHeight calls
to determine the dimensions of the string.

OutText uses the output options set by SetTextJustify (justify, center, rotate
90 degrees, and so on).

Chapter 1, The run-time library 93

OutText procedure

94

The current pointer (CP) is only updated by OutText if the direction is
horizontal, and the horizontal justification is left. Text output direction is
set by SetTextStyle (horizontal or vertical); text justification is set by
SetTextJustify (CP at the left of the string, centered around CP, or CP at the
right of the string-written above CP, below CP, or centered around CP).
In the following example, block #1 outputs ABCDEF and moves CP (text
is both horizontally output and left-justified); block #2 outputs ABC with
DEF written right on top of it because text is right-justified; similarly,
block #3 outputs ABC with DEF written right on top of it because text is
written vertically.

program CPupdate;
uses Graph;
var

Driver, Mode: Integer;
begin

Driver := Detect:
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1) :
{ #1 }
MoveTo(O, 0):
SetTextStyle(DefaultFont, HorizDir, 1):
SetTextJustify(LeftText, TopText):
Out Text (' ABC') :
OutText('DEF');
{ #2 }
MoveTo(100, 50);
SetTextStyle(DefaultFont, HorizDir, 1):
SetTextJustify(RightText, TopText):
Out Text (' ABC');
OutText('DEF'):
{ #3 }
MoveTo(100, 100);
SetTextStyle(DefaultFont, VertDir, 1):
SetTextJustify(LeftText, TopText):
OutText('ABC');
OutText('DEF');
Readln;
CloseGraph:

end.

The CP is never updated by OutTextXY.

{ CharSize = 1 }

{ CP is updated }
{ CP is updated }

{ CharSize = 1 }

{ CP is updated }
{ CP is updated }

{ CharSize = 1 }

{ CP is NOT updated }
{ CP is NOT updated }

The default font (8x8) is not clipped at the screen edge. Instead, if any part
of the string would go off the screen, no text is output. For example, the
following statements would have no effect:

Turbo Pascal Library Reference

OutText procedure

SetViewPort(O, 0, GetMaxX, GetMaxY, ClipOn)i
SetTextJustify(LeftText, TopText);
OutTextXY(-5, O)i
OutTextXY(GetMaxX - 1, 0, 'ABC');

{ -5,0 not onscreen }
{ Part of ' A', }

{ All of 'Be' off screen}

The stroked fonts are clipped at the screen edge, however.

Restrictions Must be in graphics mode.

See also GetTextSettings, OutTextXY, SetTextJustify, SetTextStyle, SetUserCluzrSize,
TextHeight, Text Width

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph (Gd, Gm, ") i
if GraphResult <> grOk then

Halt (1) i

Out Text ('Easy to use')i
Readlni
CloseGraphi

end.

OutTextXy procedure

Function Sends a string to the output device.

Declaration OutTextXY (X, Y: Integeri TextString: String)

Graph II
Remarks TextString is output at (X, Y). TextString is always truncated at the

viewport border if it is too long. If one of the stroked fonts is active,
TextString is truncated at the screen boundary if it is too long. If the
default (bit-mapped) font is active and the string is too long to fit on the
screen, no text is displayed.

Use OutText to output text at the current pointer; use OutTextXY to output
text elsewhere on the screen.

OutTextXY uses the font set by SetTextStyle. In order to maintain code
compatibility when using several fonts, use the TextWidth and TextHeight
calls to determine the dimensions of the string.

OutTextXYuses the output options set by SetTextJustify (justify, center,
rotate 90 degrees, and so forth).

Chapter 7, The run-time library 95

OutTextXY procedure

Restrictions Must be in graphics mode.

See also GetTextSettings, OutText, SetTexqustify, SetTextStyle, SetUserCharSize,
TextHeight, Text Width

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
MoveTo(O, 0);
OutText('Inefficient');
Readln;
OutTextXY(GetX, GetY, 'Also inefficient');
Readln;
ClearDevice;
OutTextXY(O, 0, 'Perfect!');
Readln;
CloseGraph;

end.

OvrClearBuf procedure

Function Clears the overlay buffer.

Declaration OvrClearBuf

{ Replaces above }

Overlay

Remarks Upon a call to OvrClearBuf, all currently loaded overlays are disposed
from the overlay buffer. This forces subsequent calls to overlaid routines
to reload the overlays from the overlay file (or from EMS). If OvrClearBuf
is called from an overlay, that overlay will immediately be reloaded upon
return from OvrClearBuf. The overlay manager never requires you to call
OvrClearBuf; in fact, doing so will decrease performance of your appli­
cation, since it forces overlays to be reloaded. OvrClearBuf is solely
intended for special use, such as temporarily reclaiming the memory
occupied by the overlay buffer.

See also OvrGetBuf, OvrSetBuf

96 Turbo Pascal Ubrary Reference

OvrGetBuf function

OvrGetBuf function Overlay

Function Returns the current size of the overlay buffer.

Declaration OvrGetBuf

Result type Longint

Remarks The size of the overlay buffer is set through a call to OvrSetBuf. Initially,
the overlay buffer is as small as possible, corresponding to the size of the
largest overlay. A buffer of this size is automatically allocated when an
overlaid program is executed. (Note: The initial buffer size may be larger
than 64K, since it includes both code and fix-up information for the largest
overlay.)

See also Ovrlnit, OvrlnitEMS, OvrSetBuf

Example {$M 16384,65536,655360}
uses Overlay;
const

ExtraSize = 49152; {48K}
begin

Ovrlnit('EDITOR.OVR');
Writeln('Initial size of overlay buffer is " OvrGetBuf,' bytes.');
OvrSetBuf(OvrGetBuf+ExtraSize);
Writeln('Overlay buffer now increased to " OvrGetBuf,' bytes.');

end.

Ovrlnit procedure Overlay

Function Initializes the overlay manager and opens the overlay file.

Declaration Ovrlnit (FileName: String)

Remarks If the file-name parameter does not specify a drive or a subdirectory, the
overlay manager searches for the file in the current directory, in the
directory that contains the .EXE file (if running under DOS 3.x), and in the
directories specified in the PATH environment variable.

Errors are reported in the OvrResult variable. ovrOk indicates success.
ovrError means that the overlay file is of an incorrect format, or that the
program has no overlays. ovrNotFound means that the overlay file could
not be located.

Chapter 7 I The run-time library 97

I

Ovrlnit procedure

In case of error, the overlay manager remains uninstalled, and an attempt
to call an overlaid routine will produce run-time error 208 ("Overlay
manager not installed").

Ovrlnit must be called before any of the other overlay manager
procedures.

See also OvrGetBuf, OvrlnitEMS, OvrSetBuf

Example uses Overlay;
begin

Ovrlnit('EDITOR.OVR');
if OvrResult<>ovrOk then
begin

case OvrResult of
ovrError: Writeln('Program has no overlays.');
ovrNotFound: Writeln('Overlay file not found.');

end;
Halt (1) ;

end;
end.

OvrlnitEMS procedure Overlay

98

Function Loads the overlay file into EMS if possible.

Declaration OvrlnitEMS

Remarks If an EMS driver can be detected and if enough EMS memory is available,
OvrlnitEMS loads all overlays into EMS and closes the overlay file.
Subsequent overlay loads are reduced to fast in-memory transfers.
OvrlnitEMS installs an exit procedure, which automatically deallocates
EMS memory upon termination of the program.

Errors are reported in the OvrResult variable. ovrOk indicates success.
ovrError means that Ovrlnit failed or was not called. ovrIOError means that
an I/O error occurred while reading the overlay file. ovrNoEMSDriver
means that an EMS driver could not be detected. ovrNoEMSMemory
means that there is not enough free EMS memory available to load the
overlay file.

In case of error, the overlay manager will continue to function, but
overlays will be read from disk.

The EMS driver must conform to the Lotus/Intel/Microsoft Expanded
Memory Specification (EMS). If you are using an EMS-based RAM disk,
make sure that the command in the CONFIG.SYS file that loads the

Turbo Pascal Ubrary Reference

OvrlnitEMS procedure

RAM-disk driver leaves some unallocated EMS memory for your overlaid
applications.

See also OvrGetBuf, Ovrlnit, OvrSetBuf

Example uses Overlay;
begin

Ovrlnit('EDITOR.OVR');
if OvrResult<>ovrOk then
begin

Writeln('Overlay manager initialization failed.');
Halt (1);

end;
OvrlnitEMS;
case OvrResult of

ovrIOError: Writeln('Overlay file I/O error.');
ovrNoEMSDriver: Writeln('EMS driver not installed.');
ovrNoEMSMemory: Writeln('Not enough EMS memory.');

else Writeln('Using EMS for faster overlay swapping.');
end;

end;

OvrSetBuf procedure Overlay

Function Sets the size of the overlay buffer.

Declaration OvrSetBuf (BufSize: Longint)

Remarks BufSize must be larger than or equal to the initial size of the overlay buffer,
and less than or equal to MemAvaii + OvrGetBuf. The initial size of the
overlay buffer is the size returned by OvrGetBufbefore any calls to
OvrSetBuf·

If the specified size is larger than the current size, additional space is
allocated from the beginning of the heap, thus decreasing the size of the
heap. Likewise, if the specified size is less than the current size, excess
space is returned to the heap.

OvrSetBuf requires that the heap be empty; an error is returned if dynamic
variables have already been allocated using New or GetMem. For this
reason, make sure to call OvrSetBufbefore the Graph unit's InitGraph
procedure; InitGraph allocates memory on the heap and-once it has done
so-all calls to OvrSetBuf will be ignored.

Chapter 7, The run-time library 99

I

OvrSetBuf procedure

If you are using OvrSetBuf to increase the size of the overlay buffer, you
should also include a $M compiler directive in your program to increase
the minimum size of the heap accordingly.

Errors are reported in the OvrResult variable. ovrOk indicates success.
ovrError means that Ovrlnit failed or was not called, that BufSize is too
small, or that the heap is not empty. ovrNoMemory means that there is not
enough heap memory to increase the size of the overlay buffer.

See also OvrGetBuf, Ovrlnit, OvrlnitEMS

Example {$M 16384,65536, 655360}
uses Overlay;
const

ExtraSize = 49152; {48K}
begin

Ovrlnit('EDITOR.OVR');
OvrSetBuf(OvrGetBuf + ExtraSize);

end.

PackTime procedure Dos

Function Converts a DateTime record into a 4-byte, packed date-and-time Longint
used by SetFTime.

Declaration PackTime (var DT: DateTime; var Time: Longint)

Remarks DateTime is a record declared in the Dos unit:

DateTime = record
Year, Month, Day, Hour, Min, Sec: Word;

end;

The fields of the DateTime record are not range-checked.

See also GetFTime, GetTime, SetFTime, SetTime, UnpackTime

ParamCount function

Function Returns the number of parameters passed to the program on the
command line.

Declaration ParamCount

Result type Word

Remarks Blanks and tabs serve as separators.

100 Turbo Pascal Ubrary Reference

ParamCount function

See also ParamStr

Example begin
if ParamCount < 1 then

Writeln('No parameters on command line')
else

Writeln(ParamCount, , parameter(s)')i
end.

ParamStr function

Function Returns a specified command-line parameter.

Declaration ParamStr (Index)

Result type String

Remarks Index is an expression of type Word. ParamStr returns the Indexth
parameter from the command line, or an empty string if Index is zero or
greater than ParamCount. With DOS 3.0 or later, ParamStr(O) returns the
path and file name of the executing program (for example, C: \ TP\
MYPROG.EXE).

See also ParamCount

Example var I: Wordi
begin

Pi function

for I := 1 to ParamCount do
Writeln(ParamStr(I))i

end.

Function Returns the value of Pi (3.1415926535897932385).

Declaration Pi

Result type Real

Remarks Precision varies, depending on whether the compiler is in 8087 (80287,
80387) or software-only mode.

Chapter 7, The run-time library 101

I

PieSlice procedure

PieSlice procedure Graph

Function Draws and fills a pie slice, using (X, Y) as the center point and drawing
from start angle to end angle.

Declaration PieSlice(X, Y: Integer; StAngle, EnciAngle, Radius: Word)

Remarks The pie slice is outlined using the current color, and filled using the
pattern and color defined by SetFillStyle or SetFillPattern.

Each graphics driver contains an aspect ratio that is used by Circle, Arc,
and PieS lice. A start angle of 0 and an end angle of 360 will draw and fill a
complete circle. The angles for Arc, Ellipse, and PieSlice are counterclock­
wise with 0 degrees at 3 0' clock, 90 degrees at 12 0' clock, and so on.

If an error occurs while filling the pie slice, GraphResult returns a value of
-6 (grNoScanMem).

Restrictions Must be in graphics mode.

See also Arc, Circle, Ellipse, FillEllipse, GetArcCoords, GetAspectRatio, Sector,
SetFillStyle, SetFillPattern, SetGraphBufSize

Example uses Graph;
const

Radius = 30;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
PieSlice(lOO, 100, 0, 270, Radius);
Readln;
CloseGraph;

end.

Pos function

Function Searches for a substring in a string.

Declaration Pos (Substr, S: String)

Result type Byte

102 Turbo Pascal Ubrary Reference

Pos function

Remarks Substr and S are string-type expressions. Pos searches for Substr within S,
and returns an integer value that is the index of the first character of
Substr within S. If Substr is not found, Pos returns zero.

See also Concat, Copy, Delete, Insert, Length

Example var S: String;
begin

S :=' 123.5';
{ Convert spaces to zeroes
while Pos(' " S) > 0 do

S[Pos(' " S)] := '0';
end.

Pred function

Function Returns the predecessor of the argument.

Declaration Pred (X)

Result type Same type as parameter.

Remarks X is an ordinal-type expression. The result, of the same type as X, is the
predecessor of X.

See also Dec, Inc, Succ

Ptr function

Function Converts a segment base and an offset address to a pointer-type value.

Declaration Ptr (Seg, Ofs: Word)

Result type Pointer

Remarks Seg and Ofs are expressions of type Word. The result is a pointer that
points to the address given by Seg and Ofs. Like nil, the result of Ptr is
assignment-compatible with all pointer types.

The function result may be dereferenced and typecast:

if Byte (Ptr($40, $49)A) = 7 then
Writeln('Video mode = mono');

See also Addr, Ofs, Seg

Chapter 7, The run-time library 103

I

Pfr function

Example var P: ilByte;
begin

P := Ptr{$40, $49);
Writeln{'Current video mode is " PiI);

end.

Putlmage procedure Graph

104

Function Puts a bit image onto the screen.

Declaration PutImage (X, Y: Integer; var BitMap; BitBlt: Word)

Remarks (X, Y) is the upper left corner of a rectangular region on the screen. BitMap
is an untyped parameter that contains the height and width of the region,
and the bit image that will be put onto the screen. BitBIt specifies which
binary operator will be used to put the bit image onto the screen.

The following constants are defined:

const
CopyPut = 0; { MOV }
XORPut = 1; { XOR }
OrPut = 2; { OR }

AndPut = 3; { AND }
NotPut = 4; { NOT }

Each constant corresponds to a binary operation. For example,
PutImage(X, Y, BitMap, NormalPut) puts the image stored in BitMap at (X,
Y) using the assembly language MOV instruction for each byte in the
image.

Similarly, PutImage(X, Y, BitMap, XORPut) puts the image stored in
BitMap at (X, Y) using the assembly language XOR instruction for each
byte in the image. This is an often-used animation technique for
/I dragging" an image around the screen.

PutImage(X, Y, BitMap, NotPut) inverts the bits in BitMap and then puts
the image stored in BitMap at (X, Y) using the assembly language MOV for
each byte in the image. Thus, the image appears in inverse video of the
original BitMap.

Note that PutImage is never clipped to the viewport boundary.
Moreover-with one exception-it is not actually clipped at the screen
edge either. Instead, if any part of the image would go off the screen, no
image is output. In the following example, the first image would be
output, but the middle three PutImage statements would have no effect:

Turbo Pascal Ubrary Reference

program NoClipi
uses Graph;
var

Driver, Mode: Integer;
P: Pointer;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < ° then

Halt(l);
SetViewPort(O, 0, GetMaxX, GetMaxY, ClipOn)i
GetMem(p, ImageSize (0, 0, 99, 49));
PieSlice(50, 25, 0, 360, 45);
Get Image (0, 0, 99, 49, PA);
ClearDevice;
PutImage(GetMaxX - 99, 0,

pA, NormalPut);
PutImage(GetMaxX - 98, 0,

pA, NormalPut);
PutImage (-1, 0,

pA, NormalPut);
PutImage (0, -1,

pA, NormalPut);
Put Image (0, GetMaxY - 30,

pA, NormalPut);
Readln;
CloseGraph;

end.

Putlmage procedure

{ Width = 100, height = 50

{ Will barely fit

x + Height > GetMaxX

-1,0 not onscreen

0,-1 not onscreen

{ Will output 31 "lines"

In the last Putlmage statement, the height is clipped at the lowe,r screen
edge, and a partial image is displayed. This is the only time any clipping
is performed on PutImage output.

Restrictions Must be in graphics mode.

See also Getlmage, ImageSize

Example uses Graph;
var

Gd, Gm: Integer;
P: Pointer;
Size: Word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10, 20, 30, 40);

Chapter 7 I The run-time library lOS

Putlmage procedure

GetMem(P, Size);
Get Image (10, 20, 30, 40, PAl;
Readln;
ClearDevice;
Put Image (100, 100, pA, NormalPut);
Readlni
CloseGraph;

end.

PutPixel procedure

Function Plots a pixel at X, Y.

Declaration PutPixel (X, Y: Integer; Pixel: Word)

{ Allocate memory on heap }

Graph

Remarks Plots a point in the color defined by Pixel at (X, Y).

106

Restrictions Must be in graphics mode.

See also Getlmage, GetPixel, PutImage

Example uses Crt, Graph;
var

Gd, Gm: Integer;
Color: Word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
Color := GetMaxColor;
Randomize;
repeat

PutPixel(Random(100), Random(100), Color);
Delay(10);

until KeyPressed;
Readln;
CloseGraph;

end.

{ Plot "stars" }

Turbo Pascal Library Reference

Random function

Random function

Function Returns a random number.

Declaration Random [(Range: Word) 1

Result type Real or Word, depending on the parameter

Remarks If Range is not specified, the result is a Real random number within the
range 0 <= X < 1. If Range is specified, it must be an expression of type
Integer, and the result is a Word random number within the range 0 <= X
< Range. If Range equals 0, a value of 0 will be returned.

The Random number generator should be initialized by making a call to
Randomize, or by assigning a value to RandSeed.

See also Randomize

Example uses Crt;
begin

Randomize;
repeat

{ Write text in random colors }
TextAttr := Random(256);
Write(' !');

until KeyPressed;
end.

Randomize procedure

Function Initializes the built-in random generator with a random value.

Declaration Randomize

Remarks The random value is obtained from the system clock.

-=:> The random-number generator's seed is stored in a predeclared Longint
variable called RandSeed. By assigning a specific value to RandSeed, a
specific sequence of random numbers can be generated over and over.
This is particularly useful in applications that use data encryption.

See also Random

Chapter 7, The run-time library 107

I

Read procedure (text files)

Read procedure (text files)

108

Function Reads one or more values from a text file into one or more variables.

Declaration Read ([var F: Text; 1 VI [, V2, .•. , VN 1)

Remarks F, if specified, is a text-file variable. If F is omitted, the standard file
variable Input is assumed. Each V is a variable of type Char, Integer, Real,
or String.

With a type Char variable, Read reads one character from the file and
assigns that character to the variable. If Eof(F) was True before Read was
executed, the value Chr(26) (a Ctrl-Z character) is assigned to the variable. If
Eoln(F) was True, the value Chr(13) (a carriage-return character) is
assigned to the variable. The next Read will start with the next character in
the file.

With a type integer variable, Read expects a sequence of characters that
form a signed number, according to the syntax shown in the section
"Numbers" in Chapter 1 of the Programmer's Guide. Any blanks, tabS, or
end-of-line markers preceding the numeric string are skipped. Reading
ceases at the first blank, tab, or end-of-line marker following the numeric
string or if Eof(F) becomes True. If the numeric string does not conform to
the expected format, an I/O error occurs; otherwise,. the value is assigned
to the variable. If Eof(F) was True before Read was executed or if Eof(F)
becomes True while skipping initial blanks, tabs, and end-of-line markers,
the value 0 is assigned to the variable. The next Read will start with the
blank, tab, or end-of-line marker that terminated the numeric string.

With a type real variable, Read expects a sequence of characters that form
a signed whole number, according to the syntax shown in the section
"Numbers" in Chapter 1 of the Programmer's Guide (except that
hexadecimal notation is not allowed). Any blanks, tabs, or end-of-line
markers preceding the numeric string are skipped. Reading ceases at the
first blank, tab, or end-of-line marker following the numeric string or if
Eof(F) becomes True. If the numeric string does not conform to the
expected format, an I/O error occurs; otherwise, the value is assigned to
the variable. If Eof(F) was True before Read was executed, or if Eof(F)
becomes True while skipping initial blanks, tabs, and end-of-line markers,
the value 0 is assigned to the variable. The next Read will start with the
blank, tab, or end-of-line marker that terminated the numeric string.

With a type string variable, Read reads all characters up to, but not
including, the next end-of-line marker or until Eof(F) becomes True. The
resulting character string is assigned to the variable. If the resulting string

Turbo Pascal Ubrary Reference

Read procedure (text files)

is longer than the maximum length of the string variable, it is truncated.
The next Read will start with the end-of-line marker that terminated the
string.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions Read with a type string variable does not skip to the next line after
reading. For this reason, you cannot use successive Read calls to read a
sequence of strings, since you will never get past the first line; after the
first Read, each subsequent Read will see the end-of-line marker and return
a zero-length string. Instead, use multiple Readln calls to read successive
string values.

See also Readln, ReadKey, Write, Writeln

Read procedure (typed files)

Function Reads a file component into a variable.

Declaration Read (F, VI [, V2, ••• , VN 1)

Remarks F is a file variable of any type except text, and each V is a variable of the
same type as the component type of F. For each variable read, the current
file position is advanced to the next component. It's an error to attempt to
read from a file when the current file position is at the end of the file, that
is, when Eo/(F) is True.

With {$I-}, IOResuIt returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions File must be open.

See also Write

ReadKey function

Function Reads a character from the keyboard.

Declaration ReadKey

Result type Char

Remarks The character read is not echoed to the screen. If KeyPressed was True
before the call to ReadKey, the character is returned immediately.
Otherwise, ReadKey waits for a key to be typed.

Chapter 7, The run-time library

Crt

109

ReadKey function

The special keys on the PC keyboard generate extended scan codes. (The
extended scan codes are summarized in Appendix B of the Programmer's
Guide.) Special keys are the function keys, the cursor control keys, Alt keys,
and so on. When a special key is pressed, ReadKey first returns a null
character (#0), and then returns the extended scan code. Null characters
cannot be generated in any other way, so you are guaranteed the next
character will be an extended scan code.

The following program fragment reads a character or an extended scan
code into a variable called Ch and sets a Boolean variable called FuncKey
to True if the character is a special key:

Ch := ReadKeYi
if Ch <> #0 then FuncKey := False else
begin

FuncKey := Truei
Ch := ReadKeYi

endi

The CheckBreak variable controls whether Gtr/-Break should abort the
program or be returned like any other key. When CheckBreak is False,
ReadKey returns a Gtrl-G (#3) for Gtrl-Break.

See also KeyPressed

Readln procedure

Function Executes the Read procedure then skips to the next line of the file.

Declaration Readln ([var F: Text i 1 Vl [, V2, ... , VN 1)

Remarks Readln is an extension to Read, as it is defined on text files. After executing
the Read, Readln skips to the beginning of the next line of the file.

Readln(F) with no parameters causes the current file position to advance to
the beginning of the next line (if there is one; otherwise, it goes to the end
of the file). Readln with no parameter list altogether corresponds to
Readln(Input).

With {$I-}, IOResuIt returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions Works only on text files, including standard input. File must be open for
input.

See also Read

110 Turbo Pascal Ubrary Reference

Rectangle procedure

Rectangle procedure Graph

Function Draws a rectangle using the current line style and color.

Declaration Rectangle (Xl, Yl, X2, Y2: Integer)

Remarks (Xl, Yl) define the upper left corner of the rectangle, and (X2, Y2) define
the lower right corner (0 <= Xl < X2 <= GetMaxX, and 0 <= Yl < Y2 <=
GetMaxY).

The rectangle will be drawn in the current line style and color, as set by
SetLineStyle and SetColor. Use Set WriteMode to determine whether the
rectangle is copied or XOR'd to the screen.

Restrictions Must be in graphics mode.

See also Bar, Bar3D, GetViewSettings, InitGraph, SetColor, SetLineStyle, SetViewPort,
Set WriteMode

Example uses Crt, Graph;
var

GraphDriver, GraphMode: Integer;
Xl, Yl, X2, Y2: Integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult<> grOk then

Halt(l);
Randomize;
repeat

Xl := Random(GetMaxX);
Yl := Random(GetMaxY);
X2 := Random(GetMaxX - Xl) + Xl;
Y2 := Random(GetMaxY - Yl) + Yl;
Rectangle (Xl, Yl, X2, Y2);

until KeyPressed;
CloseGraph;

end.

Chapter 7, The run-time library 111

RegisferBGldriver function

RegisterBGldriver function Graph

112

Function Registers a user-loaded or linked-in BGI driver with the graphics system.

Declaration RegisterBGIdriver (Driver: Pointer): Integer;

Remarks If an error occurs, the return value is less than 0; otherwise, the internal
driver number is returned.

This routine enables a user to load a driver file and "register" the driver
by passing its memory location to RegisterBGldriver. When that driver is
used by InitGraph, the registered driver will be used (instead of being
loaded from disk by the Graph unit). A user-registered driver can be
loaded from disk onto the heap, or converted to an .OBI file (using
BINOBI.EXE) and linked into the .EXE.

grlnvalidDriver is a possible error return, where the error code equals -4
and the driver header is not recognized.

The following program loads the eGA driver onto the heap, registers it
with the graphics system, and calls InitGraph:

program LoadDriv;
uses Graph;
var

Driver, Mode: Integer;
DriverF: file;
DriverP: Pointer;

begin
{ Open driver file, read into memory, register it }
Assign (DriverF, 'CGA.BGI');
Reset (DriverF, 1);
GetMem(DriverP, FileSize(DriverF));
BlockRead(DriverF, DriverP A

, FileSize(DriverF));
if RegisterBGIdriver(DriverP) < 0 then
begin

Writeln('Error registering driver: "
GraphErrorMsg(GraphResult));

Halt(1);
end;
{ Init graphics
Driver := CGA;
Mode := CGAHi;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1) ;
Out Text ('Driver loaded by user program');
Readln;

Turbo Pascal Library Reference

RegisterBGldriver function

CloseGraph;
end.

The program begins by loading the eGA driver file from disk and
registering it with the Graph unit. Then a call is made to InitGraph to
initialize the graphics system. You may wish to incorporate one Of more
driver files directly into your .EXE file. In this way, the graphics drivers
that your program needs will be built-in and only the .EXE will be needed
in order to run. The process for incorporating a driver file into your .EXE
is straightforward:

1. Run BINOBJ on the driver file(s).

2. Link the resulting .OBJ file(s) into your program.

3. Register the linked-in driver file(s) before calling InitGraph.

For a detailed explanation and example of the preceding, refer to the
comments at the top of the BGILINK.P AS example program on the
distribution disks. For information on the BINOBJ utility, refer to the file
UTIL.DOC (in ONLINE.ZIP) on your distribution disks.

It is also possible to register font files; refer to the description of
RegisterBGlfont.

Restrictions Note that the driver must be registered before the call to InitGraph. If a call
is made to RegisterBGldriver once graphics have been activated, a value of
-11 (grError) will be returned. If you want to register a user-provided
driver, you must first call InstallUserDriver, then proceed as described in
the previous example.

See also InitGraph, InstallUserDriver, RegisterBGlfont

RegisterBGlfont function Graph

Function Registers a user-loaded or linked-in BGI font with the graphics system.

Declaration RegisterBGIfont (Font: Pointer): Integer:

Remarks The return value is less than 0 if an error occurs; otherwise, the internal
font number is returned. This routine enables a user to load a font file and
"register" the font by passing its memory location to RegisterBGlfont.
When that font is selected with a call to SetTextStyle, the registered font
will be used (instead of being loaded from disk by the Graph unit). A
user-registered font can be loaded from disk onto the heap, or converted
to an .OBJ file (using BINOBJ.EXE) and linked into the .EXE.

Chapter 71 The run-time library 113

I

RegisterBGlfont function

114

Here are some possible error returns:

Error Error
code identifier Comments

-11 grError There is no room in the font table to
register another font. (The font table holds
up to 10 fonts, and onlr~4 are provided, so
this error should not occur.)

-13 grlnvalidFont The font header is not recognized.

-14 grlnvalidFontNum The font number in the font header is not
recognized.

The following program loads the triplex font onto the heap, registers it
with the graphics system, and then alternates between using triplex and
another stroked font that Graph loads from disk (SansSerifFont):

program LoadFont;
uses Graph;
var

Driver, Mode: Integer;
FontF: file;
FontP: Pointer;

begin
{ Open font file, read into memory, register it }
Assign {FontF, 'TRIP.CHR');
Reset {FontF, 1);
GetMem{FontP, FileSize{FontF));
BlockRead{FontF, Fontp A

, FileSize{FontF));
if RegisterBGIfont{FontP) < 0 then
begin

Writeln{'Error registering font: " GraphErrorMsg{GraphResult));
Halt(1);

end;
. { Init graphics
Driver := Detect;
InitGraph{Driver, Mode, , .. \');
if GraphResult < 0 then

Halt(1);
Readln;
{ Select registered font
SetTextStyle(TriplexFont, HorizDir, 4);
Out Text ('Triplex loaded by user program');
MoveTo{O, TextHeight{'a'));
Readln;
{ Select font that must be loaded from disk
SetTextStyle{SansSerifFont, HorizDir, 4);
OutText{'Your disk should be spinning ... ');

Turbo Pascal Ubrary Reference

RegisterBGlfont function

MoveTo(O, Gety + TextHeight('a'));
Readln;
{ Re-select registered font (already in memory)
SetTextStyle(TriplexFont, HorizDir, 4);
Out Text ('Back to Triplex');
Readln;
CloseGraph;

end.

The program begins by loading the triplex font file from disk and
registering it with the Graph unit. Then a call to InitGraph is made to
initialize the graphics system. Watch the disk drive indicator and press
Enter. Because the triplex font is already loaded into memory and regis­
tered, Graph does not have to load it from disk (and therefore your disk
drive should not spin). Next, the program will activate the sans serif font
by loading it from disk (it is unregistered). Press Enter again and watch the
drive spin. Finally, the triplex font is selected again. Since it is in memory
and already registered, the drive will not spin when you press Enter.

There are several reasons to load and register font files. First, Graph only
keeps one stroked font in memory at a time. If you have a program that
needs to quickly alternate between stroked fonts, you may want to load
and register the fonts yourself at the beginning of your program. Then
Graph will not load and unload the fonts each time a call to SetTextStyle is
made.

Second, you may wish to incorporate the font files directly into your .EXE
file. This way, the font files that your program needs will be built-in, and
only the .EXE and driver files will be needed in order to run. The process
for incorporating a font file into your .EXE is straightforward:

1. Run BINOBJ on the font file(s).

2. Link the resulting .OBJ file(s) into your program.
3. Register the linked-in font file(s) before calling InitGraph.

For a detailed explanation and example of the preceding, refer to the
comments at the top of the BGILINK.P AS example program on the distri­
bution disks. Documentation on the BINOBJ utility is available in the file
UTIL.DOC (in ONLINE.ZIP) on your distribution disks.

Note that the default (8x8 bit-mapped) font is built into GRAPH.TPU, and
thus is always in memory. Once a stroked font has been loaded, your
program can alternate between the default font and the stroked font
without having to reload either one of them.

Chapter 7, The run-time library 115

I

RegisterBGlfont function

It is also possible to register driver files; refer to the description of
Regis terB Gldriver.

See also InitGraph, InstallUserDriver, InstallUserFont, RegisterBGI/ont, SetTextStyle

Release procedure

Function Returns the heap to a given state.

Declaration Release (var P: Pointer)

Remarks P is a pointer variable of any pointer type that was previously assigned by
the Mark procedure. Release disposes all dynamic variables that were
allocated by New or GetMem since P was assigned by Mark.

Restrictions Mark and Release cannot be used interchangeably with Dispose and
FreeMem unless certain rules are observed. For a complete discussion of
this topic, refer to the section liThe heap manager" in Chapter 16 of the
Programmer's Guide.

See also Dispose, FreeMem, GetMem, Mark, New

Rename procedure

Function Renames an external file.

Declaration Rename (var F; Newname: String)

Remarks F is a file variable of any file type. Newname is a string-type expression.
The external file associated with F is renamed to Newname. Further
operations on F will operate on the external file with the new name.

With {$I-J, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions Rename must never be used on an open file.

See also Erase

116 Turbo Pascal Ubrary Reference

Reset procedure

Reset procedure

Function Opens an existing file.

Declaration Reset (var F [: file; RecSize: Word)

Remarks F is a file variable of any file type, which must have been associated with
an external file using Assign. RecSize is an optional expression of type
Word, which can only be specified if F is an untyped file.

Reset opens the existing external file with the name assigned to F. It's an
error if no existing external file of the given name exists. If F was already
open, it is first closed and then re-opened. The current file position is set
to the beginning of the file.

If F was assigned an empty name, such as Assign(F, "), then after the call
to Reset, F will refer to the standard input file (standard handle number 0).

If F is a text file, F becomes read-only. After a call to Reset, Eof(F) is True if
the file is empty; otherwise, Eof(F) is False.

If F is an untyped file, RecSize specifies the record size to be used in data
transfers. If RecSize is omitted, a default record size of 128 bytes is
assumed.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also Append, Assign, Close, Rewrite, Truncate

Example function FileExists (FileName: String): Boolean;
{ Boolean function that returns True if the file exists; otherwise, it returns

False. Closes the file if it exists. }
var

F: file;
begin

{$I-}
Assign(F, FileName);
Reset(F);
Close(F);
{$I+}

FileExists := (IOResult = 0) and (FileName <> ");
end; {FileExists}

begin
if FileExists(ParamStr(l)) then { Get file name from command line }

Writeln('File exists')

Chapter 7, The run-time library 117

I

Reset procedure

else
Writeln('File not found');

end.

RestoreCrtMode procedure Graph

118

Function Restores the screen mode to its original state before graphics was
initialized.

Declaration RestoreCrtMode

Remarks Restores the original video mode detected by InitGraph. Can be used in
conjunction with SetGraphMode to switch back and forth between text and
graphics modes.

Restrictions Must be in graphics mode.

See also Close Graph, DetectGraph, GetGraphMode, InitGraph, SetGraphMode

Example uses Graph;
var

Gd, Gm: Integer;
Mode: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
OutText('<ENTER> to leave graphics:');
Readln;
RestoreCrtMode;
Writeln('Now in text mode');
Write ('<ENTER> to enter graphics mode:');
Readln;
SetGraphMode(GetGraphMode);
OutTextXY(O, 0, 'Back in graphics mode');
OutTextXY(O, TextHeight('H'), '<ENTER> to quit:');
Readln;
CloseGraph;

end.

Turbo Pascal Ubrary Reference

Rewrite procedure

Rewrite procedure

Function Creates and opens a new file.

Declaration Rewrite (var F [: file; RecSize: Word]

Remarks F is a file variable of any file type, which must have been associated with
an external file using Assign. RecSize is an optional expression of type
Word, which can only be specified if F is an untyped file.

Rewrite creates a new external file with the name assigned to F. If an
external file with the same name already exists, it is deleted and a new
empty file is created in its place. If F was already open, it is first closed
and then re-created. The current file position is set to the beginning of the
empty file.

If F was assigned an empty name, such as Assign(F, "), then after the call
to Rewrite, F will refer to the standard output file (standard handle
number 1).

If F is a text file, F becomes write-only. After a call to Rewrite, Eo/(F) is
always True.

If F is an untyped file, RecSize specifies the record size to be used in data
transfers. If RecSize is omitted, a default record size of 128 bytes is
assumed.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also Append, Assign, Reset, Truncate

Example var F: Text;
begin

Assign(F, 'NEWFILE.$$$');
Rewrite (F) ;
Writeln(F, 'Just created file with this text in it ... ');
Close(F);

end.

Chapter 7, The run-time library 119

I

RmDir procedure

RmDir procedure

Function Removes an empty subdirectory.

Declaration RrnDir (S: String)

Remarks S is a string-type expression. The subdirectory with the path specified by
S is removed. If the path does not exist, is non-empty, or is the currently
logged directory, an 110 error will occur.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also MkDir, ChDir, GetDir

Example begin
{$I-}
{ Get directory name from command line }
RmDir(ParamStr(l));
if lORe suit <> 0 then

Writeln('Cannot remove directory')
else

Writeln('directory removed');
end.

Round function

Function Rounds a real-type value to an integer-type value.

Declaration Round (X: Real)

Result type Longint

Remarks X is a real-type expression. Round returns a Longint value that is the value
of X rounded to the nearest whole number. If X is exactly halfway
between two whole numbers, the result is the number with the greatest
absolute magnitude. A run-time error occurs if the rounded value of X is
not within the Longint range.

See also Int, Trunc

120 Turbo Pascal Ubrary Reference

Run Error procedure

RunError procedure

Function Stops program execution and generates a run-time error.

Declaration RunError [(ErrorCode: Byte) 1

Remarks The RunError procedure corresponds to the Halt procedure except that in
addition to stopping the program, it generates a run-time error at the
current statement. ErrorCode is the run-time error number (0 if omitted). If
the current module is compiled with Debug Information checked (turn~d
on), and you're running the program from the IDE, Turbo Pascal auto­
matically takes you to the RunError call, just as if an ordinary run-time
error had occurred.

See also Exit, Halt

Example {$IFDEF Debug}

if P = nil then
RunError(204);

{$ENDIF}

Sector procedure Graph

Function Draws and fills an elliptical sector.

Declaration Sector (X, Y: Integer; StAngle, EndAngle, XRadius, YRadius: Word)

Remarks Using (X, Y) as the center point, XRadius and YRadius specify the
horizontal and vertical radii, respectively; Sector draws from StAngle to
EndAngle. The sector is outlined using the current color, and filled using
the pattern and color defined by SetFillStyle or SetFillPattern.

A start angle of 0 and an end angle of 360 will draw and fill a complete
ellipse. The angles for Arc, Ellipse, FillEllipse, PieSlice, and Sector are
counterclockwise with 0 degrees at 3 o'clock, 90 degrees at 12 o'clock, and
soon.

If an error occurs while filling the sector, GraphResult returns a value of -6
(grNoScanMem).

Restrictions Must be in graphics mode.

See also Arc, Circle, Ellipse, FillEllipse, GetArcCoords, GetAspectRatio, PieS lice,
SetFillStyle, SetFillPattern, SetGraphBufSize

Chapter 7, The run-time library 121

Sector procedure

Example uses Graph:
const

R = 50;
var

Driver, Mode: Integer:
Xasp, Yasp: Word:

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
~f GraphResult < 0 then

Halt(l):
Sector(GetMaxX div 2, GetMaxY div 2, 0, 45, R, R):
GetAspectRatio(Xasp, Yasp):
Sector(GetMaxX div 2, GetMaxY div 2,

180, 135,
R, R * Longint(Xasp) div Yasp);

Readln;
CloseGraph:

end.

Seek procedure

{ Put in graphics mode

{ Draw circular sector }
{ Center point }

{ Mirror angle above }
{ Circular }

Function Moves the current position of a file to a specified component.

Declaration Seek (var F; N: Longint)

Remarks F is any file variable type except text, and N is an expression of type
Longint. The current file position of F is moved to component number N.
The number of the first component of a file is O. In order to expand a file, it
is possible to seek one component beyond the last component;"that is, the
statement Seek(F, FileSize(F» moves the current file position to the end of
the file.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions Cannot be used on text files. File must be open.

See also FilePos

122 Turbo Pascal Ubrary Reference

SeekEof function

SeekEof function

Function Returns the end-of-file status of a file.

Declaration SeekEof [(var F: Text)

Result type Boolean

Remarks SeekEof corresponds to Eof except that it skips all blanks, tabs, and end-of­
line markers before returning the end-of-file status. This is useful when
reading numeric values from a text file.

With {$t-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions Can only be used on text files. File must be open.

See al~o Eof, SeekEoln

SeekEoln function

Function Returns the end-of-line status of a file.

Declaration SeekEoln [(var F: Text) 1

Result type Boolean

Remarks SeekEoln corresponds to Eoln except that it skips all blanks and tabs before
returning the end-of-line status. This is useful when reading numeric
values from a text file.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions Can only be used on text files. File must be open.

See also Eoln, SeekEof

Chapter 7, The run-time library 123

•

Seg function

Seg function

Function Returns the segment of a specified object.

Declaration Seg (X)

Result type Word

Remarks X is any variable, or a procedure or function identifier. The result, of type
Word, is the segment part of the address of X.

See also Ad,dr, DIs

SetActivePage procedure Graph

124

Function Set the active page for graphics output.

Declaration SetActivePage (Page: Word)

Remarks Makes Page the active graphics page. Allgraphics output will now be
directe4 to Page.

Multiple pages are only supported by the EGA (256K), VGA, and
Hercules graphics cards. With multiple graphics pages, a program can
direct graphics output to an off-screen page, then quickly display the off­
screen image by changing the visual page with the SetVisualPage
procedure. This technique is especially useful for animation.

Restrictions Must be in graphics mode.

See also SetVisualPage

Example uses Graph;
var

'Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph{Gd, Gm, ");
if GraphResult <> grOk then

Halt{l);
if (Gd = HercMono) or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) then
begin

SetVisualPage{O);
SetActivePage{l);
Rectangle{lO, 20, 30, 40);
SetVisualPage{l);

end

Turbo Pascal Ubrary Reference

SetActivePage procedure

else
OutText('No paging supported.');

Readln;
CloseGraph;

end.

SetAIlPalette procedure Graph

Function Changes all palette colors as specified.

Declaration SetAllPalette (var Palette)

Remarks Palette is an untyped parameter. The first byte is the length of the palette.
The next n bytes will replace the current palette colors. Each color may
range from -1 to 15. A value of -1 will not change the previous entry's
value.

Note that valid colors depend on the current graphics driver and current
graphics mode.

If invalid input is passed to SetAllPalette, GraphResult returns a value of
-11 (grError), and no changes to the palette settings will occur.

Changes made to the palette are seen immediately on the screen. In the
example listed here, several lines are drawn on the screen, then the palette
is changed. Each time a palette color is changed, all occurrences of that
color on the screen will be changed to the new color value.

The following types and constants are defined:

const
Black 0;
Blue 1;
Green 2;
Cyan 3;
Red 4;
Magenta 5;
Brown 6;
LightGray 7;
DarkGray 8;
LightBlue 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

Chapter 7, The run-time library 125

I

SetAIiPalette procedure

MaxColors = 15;
type

PaletteType = record
Size: Byte;
Colors: array[O ... MaxColors] of Shortint;

end;

Restrictions Must be in graphics mode, and can only be used with EGA, EGA 64, or
VGA (not the IBM 8514 or the VGA in 256-color mode).

See also GetBkColor, GetColor, GetPalette, GraphResult, SetBkColor, SetColor,
SetPalette,SetRGBPalette

Example uses Graph;
var

Gd, Gm: Integer:
Palette: PaletteType;

begin
Gd := Detect:
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) :

Line(O, 0, GetMaxX, GetMaxY):
with Palette do
begin

Size := 4;
Colors [0] := 5;
Colors [1] := 3;
Colors [2] := 1;
Colors [3] := 2:
SetAllPalette(Palette):

end;
Readln;
CloseGraph:

end.

SetAspectRatio procedure

Function Changes the default aspect-ratio correction factor.

Declaration SetAspectRatio(Xasp, Yasp: Word)

Result type Word

Graph

Remarks SetAspectRatio is used to change the default aspect ratio of the current
graphics mode. The aspect ratio is used to draw round circles. If circles
appear elliptical, the monitor is not aligned properly. This can be

126 Turbo Pascal Library Reference

SetAspectRatio procedure

corrected in the hardware by realigning the monitor, or can be corrected
in the software by changing the aspect ratio using SetAspectRatio. To read
the current aspect ratio from the system, use GetAspectRatio.

Restrictions Must be in graphics mode.

See also GetAspectRatio

Example uses Crt, Graph;
const

R = 50;
var

Driver, Mode: Integer;
Xasp, Yasp: Word;

begin
DirectVideo := False;
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

{ Put in graphics mode }

Halt (1) ;

GetAspectRatio(Xasp, Yasp); { Get default aspect ratio}
if Xasp = Yasp then
{ Adjust for VGA and 8514. They have 1:1 aspect

Yasp := 5 * Xasp;
while (Xasp < Yasp) and not KeyPressed do
{ Keep modifying aspect ratio until 1:1 or key is pressed}
begin

SetAspectRatio(Xasp, Yasp);
Circle (GetMaxX div 2, GetMaxY div 2, R);
Inc (Xasp, 20);

end;
SetTextJustify(CenterText, CenterText);
OutTextXY(GetMaxX div 2, GetMaxY div 2, 'Done!');
Readln;
CloseGraph;

end.

SetBkColor procedure

Function Sets the current background color using the palette.

Declaration SetBkColor (ColorNum: Word)

Graph I
Remarks Background colors may range from 0 to 15, depending on the current

graphics driver and current graphics mode. On a eGA, SetBkColor sets the
flood overscan color.

Chapter 7, The run-time library 127

SetBkColor procedure

SetBkColor(N) makes the Nth color in the palette the new background
color. The only exception is SetBkColor(O), which always sets the
background color to black.

Restrictions Must be in graphics mode.

See also GetBkColor, GetColor, GetPalette, SetAllPaiette, SetColor, SetPalette,
SetRGBPalette

Example uses Crt, Graph;
var

GraphDriver, GraphMode: Integer;
Palette: PaletteType;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode,");
Randomize;
if GraphResult <> grOk then

Halt (1) ;
GetPalette(Palettelj
repeat

if Palette.Size <> 1 then
SetBkColor(Random(Palette.Size));

LineTo(Random(GetMaxX),Random(GetMaxY));
until KeyPressedj
CloseGraph;

end.

SetCBreak procedure

Function Sets the state of Gtrl-Break checking in DOS.

Declaration SetCBreak (Break: Boolean)

Dos

Remarks SetCBreak sets the state of Gtrl-Breakchecking in DOS. When off (False),
DOS only checks for Gtrl-Break during 110 to console, printer, or communi­
cation devices. When on (True), checks are made at every system call.

See also GetCBreak

128 Turbo Pascal Ubrary Reference

Seteolor procedure

SetColor procedure Graph

Function Sets the current drawing color using the palette.

Declaration SetColor (Color: Word)

Remarks SetColor(5) makes the fifth color in the palette the current drawing color.
Drawing colors may range from 0 to 15, depending on the current
graphics driver and current graphics mode.

GetMaxColor returns the highest valid color for the current driver and
mode.

Restrictions Must be in graphics mode.

See also DrawPoly, GetBkColor, GetColor, GetMaxColor, GetPalette, GraphResuIt,
SetAlIPalette, SetBkColor, SetPalette, SetRGBPalette

Example uses Crt, Graph;
var

GraphDriver, GraphMode: Integer;
begin

GraphDriver := Detect;
InitGraph{GraphDriver, GraphMode, ");
if GraphResult <> grOk then

Halt (1);

Randomize;
repeat

SetColor{Random{GetMaxColor) + 1);
LineTo{Random{GetMaxX), Random{GetMaxY));

until KeyPressed;
end.

SetDate procedure Dos

Function Sets the current date in the operating system.

Declaration SetDate (Year, Month, Day: Word)

Remarks Valid parameter ranges are Year 1980 .. 2099, Month 1 .. 12, and Day 1 .. 31.1£
the date is invalid, the request is ignored.

See also GetDate, GetTime, SetTime

Chapter 7, The run-time library 129

I

SetFAttr procedure

SetFAttr procedure Dos

Function Sets the attributes of a file.

Declaration SetFAttr (var F; Attr: Word)

Remarks F must be a file variable (typed, untyped, or text file) that has been
assigned but not opened. The attribute value is formed by adding the
appropriate attribute masks defined as constants in the Dos unit.

const
ReadOnly = $01;
Hidden = $02;
SysFile = $04;
VolumeID = $08;
Directory = $10;
Archive = $20;

Errors are reported in DosError; possible error codes are 3 (Invalid Path)
and 5 (File Access Denied).

Restrictions F cannot be open.

See also GetF Attr, GetFTime, SetFTime

Example uses Dos;
var

F: file;
begin

Assign(F, 'C:\AUTOEXEC.BAT');
SetFAttr(F, Hidden);
Readln;
SetFAttr(F, Archive);

end.

SetFiliPattern procedure

Function Selects a user-defined fill pattern.

Declaration SetFillPattern (Pattern: FillPatternType; Color: Word)

{ Uh-oh }

{ Whew! }

Graph

Remarks Sets the pattern and color for all filling done by FillPoly, FloodFill, Bar,
Bar3D, and PieSlice to the bit pattern specified in Pattern and the color
specified by Color. If invalid input is passed to SetFillPattern, GraphResult
returns a value of -11 (grError), and the current fill settings will be
unchanged. FillPatternType is predefined as follows:

130 Turbo Pascal Ubrary Reference

SetFiIIPaHern procedure

type
FillPatternType = array[1 .. 8] of Byte;

The fill pattern is based on the underlying Byte values contained in the
Pattern array. The pattern array is 8 bytes long with each byte corre­
sponding to 8 pixels in the pattern. Whenever a bit in a pattern byte is
valued at 1, a pixel will be plotted. For example, the following pattern
represents a checkerboard (50% gray scale):

Binary Hex

10101010 = $AA (lstbr.te)
01010101 $55 (2nd b~T.te)
10101010 $AA (3rd b~T.te)
01010101 = $55 (4th br.te)
10101010 $AA (5th b~T.te)
01010101 $55 (6th b~T.te)
10101010 $AA (7th br.te)
01010101 $55 (8th b~T.te)

User-defined fill patterns enable you to create patterns different from the
predefined fill patterns that can be selected with the SetFillStyle
procedure. Whenever you select a new fill pattern with SetFillPattern or
SetFillStyle, all fill operations will use that fill pattern. Calling SetFillStyle
(UserField, SomeColor) will always select the user-defined pattern. This lets
you define and use a new pattern using SetFillPattern, then switch
between your pattern and the built-ins by making calls to SetTextStyle.

Restrictions Must be in graphics mode.

See also Bar, Bar3D, FillPoly, GetFillPattern, GetFillSettings, GraphResult, PieSlice

Example uses Graph;
const

Gray50: FillPatternType = ($AA, $55, $AA, $55, $AA, $55, $AA, $55);
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) i

SetFillPattern(Gray50, White);
Bar (0, 0, 100, 100); { Draw a bar in a 50% gray scale }
Readln;
CloseGraph;

end.

Chapter 7, The run-time library 131

SetFiliStyle procedure

SetFiliStyle procedure Graph

132

Function Sets the fill pattern and color.

Declaration SetFillStyle (Pattern: Word; Color: Word)

Remarks Sets the pattern and color for all filling done by FillPoly, Bar, Bar3D, and
PieS lice. A variety of fill patterns are available. The default pattern is solid,
and the default color is the maximum color in the palette. If invalid input
is passed to SetFillStyle, GraphResult returns a value of -11 (grError), and
the current fill settings will be unchanged. The following constants are
defined:

const
{ Fill patterns for Get/SetFillStyle:
EmptyFil1 = 0;
SolidFil1 = 1;
LineFil1 = 2;
LtSlashFil1 = 3;
SlashFil1 = 4;
BkSlashFil1 = 5;
LtBkSlashFil1 = 6;
HatchFil1 = 7;
XHatchFil1 = 8;
InterleaveFil1 = 9;
WideDotFil1 = 10;
CloseDotFil1 = 11;
UserFil1 = 12;

{ Fills area in background color }
{ Fills area in solid fill color }

{ --- fill }
{ I I I fill }

III fill with thick lines}
{ \\\ fill with thick lines}

{ \ \ \ fill }
{ Light hatch fill }

{ Heavy cross hatch fill }
{ Interleaving line fill }
{ Widely spaced dot fill }

{ Closely spaced dot fill }
{ User-defined fill }

If Pattern equals UserFill, the user-defined pattern (set by a call to
SetFillPattern) becomes the active pattern.

Restrictions Must be in graphics mode.

See also Bar, Bar3D, FillPoly, GetFillSettings, PieSlice, GetMaxColor, GraphResult

Example uses Graph;
var

Gm, Gd: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
SetFiIIStyle(SolidFill, 0);
Bar(O, 0, 50, 50);
SetFiIIStyle(XHatchFill, 1);
Bar(60, 0, 110, 50);
Readln;

Turbo Pascal Ubrary Reference

CloseGraphi
end.

SetFTime procedure

Function Sets the date and time a file was last written.

Declaration SetFTime (var Fi Time: Longint)

SetFTime procedure

Dos

Remarks F must be a file variable (typed, untyped, or text file) that has been
assigned and opened. The Time parameter can be created through a call to
PackTime. Errors are reported in DosError; the only possible error code is 6
(Invalid File Handle).

Restrictions F must be open.

See also GetFTime, PackTime, SetFAttr, UnpackTime

SetGraphBufSize procedure Graph

Function Allows you to change the size of the buffer used for scan and flood fills.

Declaration SetGraphBufSize (BufSize: Word);

Remarks The internal buffer size is set to BufSize, and a buffer is allocated on the
heap when a call is made to InitGraph.

The default buffer size is 4K, which is large enough to fill a polygon with
about 650 vertices. Under rare circumstances, enlarging the buffer may be
necessary in order to avoid a buffer overflow.

Restrictions Note that once a call to InitGraph has been made, calls to SetGraphBufSize
are ignored.

See also FloodFill, FillPoly, InitGraph

Chapter 7, The run-time library 133

I

SetGraphMode procedure

SetGraphMode procedure Graph

134

Function Sets the system to graphics mode and clears the screen.

Declaration SetGraphMode (Mode: Integer)

Remarks Mode must be a valid mode for the current device driver. SetGraphMode is
used to select a graphics mode different than the default one set by
InitGraph.

SetGraphMode can also be used in conjunction with RestoreCrtMode to
switch back and forth between text and graphics modes.

SetGraphMode resets all graphics settings to their defaults (current pointer,
palette, color, viewport, and so forth).

GetModeRange returns the lowest and highest valid modes for the current
driver.

If an attempt is made to select an invalid mode for the current device
driver, GraphResult returns a value of -10 (grlnvalidMode).

The following constants are defined:

Graphics
driver

CGA

MCGA

EGA

EGA64

EGA-MONO

HERC

ATT400

Graphics
modes

CGACO
CGACI
CGAC2
CGAC3
CGAHi

MCGACO
MCGACI
MCGAC2
MCGAC3
MCGAMed
MCGAHi

EGALo
EGAHi

EGA64Lo
EGA64Hi

EGAMonoHi
EGAMonoHi

HercMonoHi

ATT400CO
ATT400C1
ATT400C2

Value

0
1
2
3
4

0
1
2
3
4
5

0
1

0
1

3
3

0

0
1
2

Column
x row Palette Pages

320x200 CO 1
320x200 Cl 1
320x200 C2 1
320x200 C3 1
640x200 2 color 1

320x200 CO 1
320x200 Cl 1
320x200 C2 1
320x200 C3 1
640x200 2 color 1
640x480 2 color 1

640x200 16 color 4
640x350 16 color 2

640x200 16 color 1
640x350 4 color 1

640x350 2 color 1*
640x350 2 color 2**

720x348 2 color 2

320x200 CO 1
320x200 Cl 1
320x200 C2 1

Turbo Pascal Ubrary Reference

SetGraphMode procedure

Graphics Column Graphics
driver modes Value x row Palette Pages

VGA

PC3270

514
8514

ATT400C3
ATT400Med
ATT400Hi

VGALo
VGAMed
VGAHi

PC3270Hi

IBM8514Lo
IBM8514Hi

* 64K on EGAMono card
** 256K on EGAMono card

3
4
5

0
1
2

0

0
0

320x200 C3 1
640x200 2 color 1
640x400 2 color 1

640x200 16 color 2
640x350 16 color 2
640x480 16 color 1

720x350 2 color 1

640x480 256 color 1
1024x768 256 color 1

Restrictions A successful call to InitGraph must have been made before calling this
routine.

See also ClearDevice, CloseGraph, DetectGraph, GetGraphMode, GetModeRange,
GraphResult, InitGraph, RestoreCrtMode

Example uses Graph;
var

GraphDriver: Integer;
GraphMode: Integer;
LowMode: Integer;
HighMode: Integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk then

Halt(l);
GetModeRange(GraphDriver, LowMode, HighMode);
SetGraphMode(LowMode)i { Select low-resolution mode }
Line(O, 0, GetMaxX, GetMaxY);
Readlni
CloseGraphi

end.

Chapter 7, The run-time library 135

SetlntVec procedure

SetlntVec procedure Dos

Function Sets a specified interrupt vector to a specified 'address.

Declaration SetIntVec (IntNo: Byte; Vector: Pointer)

Remarks IntNo specifies the interrupt vector number (0 .. 255), and Vector specifies
the address. Vector is often constructed with the @operatorto produce the
address of an interrupt procedure. Assuming Int1BSave is a variable of
type Pointer, and Int1BHandler is an interrupt procedure identifier, the
following statement sequence installs a new interrupt $IB handler and
later restores the original handler:

GetIntVec($1B, Int1BSave);
SetIntVec($1B, @Int1BHandler);

SetIntVec($1B, Int1BSave);

See also GetIntVec

SetLineStyle procedure Graph

136

Function Sets the current line width and style.

Declaration SetLineStyle (LineStyle: Word; Pattern: Word; Thickness: Word)

Remarks Affects allIines drawn by Line, LineTo, Rectangle, DrawPoly, Arc, and so on.
Lines can be drawn solid, dotted, centerline, or dashed. If invalid input is
passed to SetLineStyle, GraphResult returns a value of -11 (grError), and the
current line settings will be unchanged. The following constants are
declared:

const
SolidLn = 0;
DottedLn = 1;
CenterLn = 2;
DashedLn "" 3;
UserBitLn = 4;
NormWidth = 1;
ThickWidth = 3;

{ User-defined line style }

LineStyle is a value from SolidLn to UserBitLn(O . .4), Pattern is ignored
unless LineStyle equals UserBitLn, and Thickness is NormWidth or
ThickWidth. When LineStyle equals UserBitLn, the line is output using the
16-bit pattern defined by the Pattern parameter. For example, if Pattern =
$AAAA, then the 16-bit pattern looks like this:

Turbo Pascal library Reference

SetLineStyle procedure

1010101010101010

1010101010101010
1010101010101010
1010101010101010

Restrictions Must be in graphics mode.

{ NormWidth }

{ ThickWidth }

See also DrawPoly, GetLineSettings, GraphResult, Line, LineRel, LineTo, SetWriteMode

Example uses Graph;
var

Gd, Gm: Integer;
Xl, Y1, X2, Y2: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Xl .= 10;
Y1 .= 10;
X2 .= 200;
Y2 .= 150;
Set Line Style (DottedLn, 0, NormWidth);
Rectangle (Xl, Y1, X2, Y2);
SetLineStyle(UserBitLn, $C3, ThickWidth);
Rectangle (Pred(X1), Pred(Y1), Succ(X2), Succ(Y2));
Readln;
CloseGraph;

end.

SetPalette procedure

Function Changes one palette color as specified by ColorNum and Color.

Declaration Setpalette (ColorNum: Word; Color: Shortint)

Graph

Remarks Changes the ColorNum entry in the palette to Color. SetPalette(O, LightCyan)
makes the first color in the palette light cyan. ColorNum may range from 0 I
to 15, depending on the current graphics driver and current graphics
mode. If invalid input is passed to SetPalette, GraphResult returns a value
of -11 (grError), and the palette will be unchanged.

Changes made to the palette are seen immediately on the screen. In the
example here, several lines are drawn on the screen, then the palette is
changed randomly. Each time a palette color is changed, all occurrences of
that color on the screen will be changed to the new color value.

Chapter I, The run-time library 137

SetPaleHe procedure

138

The following constants are defined:

const
Black
Blue
Green
Cyan
Red

0;
1;
2;
3;
4;

Magenta 5;
Brown 6;
LightGray 7;
DarkGray 8;
LightBlue 9;

. LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

Restrictions Must be in graphics mode, and can only be used with EGA, EGA 64, or
VGA (not the IBM 8514 or the VGA in 256-color mode).

See also GetBkColor, GetColor, GetPalette, GraphResuIt, SetAIlPalette, SetBkColor,
SetColor,SetRGBPalette

Example uses Crt, Graph;
var

GraphDriver, GraphMode: Integer;
Color: Word;
Palette: PaletteType;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk then

Halt(l);
GetPalette(Palette);
if Palette.Size <> 1 then
begin

for Color := 0 to Pred(Palette.Size) do
begin

SetColor(Color);
Line(O, Color * 5, 100, Color * 5);

end;
Randomize;
repeat

SetPalette(Random(Palette.Size),Random(Palette.Size));
until KeyPressed;

end

Turbo Pascal Ubrary Reference

SetPalette procedure

else
Line (0, 0, 100, 0) i

Readlni
CloseGraph;

end.

SetRGBPalette procedure Graph

Function Modifies palette entries for the IBM 8514 and VGA drivers.

Declaration SetRGBPalette (ColorNum, RedValue, GreenValue, BlueValue: Integer)

Remarks ColorNum defines the palette entry to be loaded, while RedValue,
GreenValue, and BlueValue define the component colors of the palette
entry.

For the IBM 8514 display, ColorNum is in the range 0 .. 255. For the VGA in
256K color mode, ColorNum is the range 0 .. 15. Only the lower byte of
RedValue, GreenValue or BlueValue is used, and out of this byte, only the 6
most-significant bits are loaded in the palette.

¢ For compatibility with other IBM graphics adapters, the BGI driver
defines the first 16 palette entries of the IBM 8514 to the default colors of
the EGAjVGA. These values can be used as is, or they can be changed by
using SetRGBPalette.

Restrictions SetRGBPalette can only be used with the IBM 8514 driver and the VGA.

See also GetBkColor, GetColor, GetPalette, GraphResult, SetAllPalette, SetBkColor,
SetColor, SetPalette

Example uses Graphi
type

RGBRec = record
RedVal, GreenVal, BlueVal: Integer;

end;
const

EGAColors: array[O .. MaxColorsj of RGBRec =

({NAME
(RedVal:$OOiGreenVal:$OO;BlueVal:$OO),{Black
(RedVal:$OOiGreenVal:$OOiBlueVal:$FC),{Blue
(RedVal:$24iGreenVal:$fciBlueVal:$24),{Green
(RedVal:$OO;GreenVal:$fciBlueVal:$FC),{Cyan
(RedVal:$FC;GreenVal:$14;BlueVal:$14),{Red
(RedVal:$BOiGreenVal:$OOiBlueVal:$FC),{Magenta
(RedVal:$70iGreenVal:$48;BlueVal:$OO),{Brown
(RedVal:$C4;GreenVal:$C4;BlueVal:$C4),{White

Chapter 1, The run-time library

COLOR)
EGA O}
EGA l}
EGA 2}
EGA 3}
EGA 4}
EGA 5}
EGA 20}
EGA 7}

139

SetRGBPaleHe procedure

(RedVal:$34iGreenVal:$34iBlueVal:$34),{Gray EGA 56}
(RedVal:$OOiGreenVal:$00iBlueVal:$70);{Lt Blue EGA 57}
(RedVal:$OOiGreenVal:$70iBlueVal:$00),{Lt Green EGA 58}
(RedVal:$00iGreenVal:$70iBlueVal:$70),{Lt Cyan EGA 59}
(RedVal:$70iGreenVal:$00iBlueVal:$00), {Lt Red EGA 60}
(RedVal:$70iGreenVal:$00iBlueVal:$70),{Lt Magenta EGA 61}
(RedVal:$FCiGreenVal:$fciBlueVal:$24) , {Yellow EGA 62}
(RedVal:$FCiGreenVal:$fciBlueVal:$FC) {Br. White EGA 63}
);

var
Driver, Mode, I: Integer;

begin
Driver := IBM8514;
Mode := IBM8514Hi;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt(l);
{ Zero palette, make all graphics output invisible
for I := 0 to MaxColors do

with EGAColors[I] do
SetRGBPalette (I, 0, 0, 0);

{ Display something }
{ Change first 16 8514 palette entries
for I := 1 to MaxColors do
begin

SetColor(I);
OutTextXY(10, I * 10, ' .. Press any key .. ')i

end;
{ Restore default EGA colors to 8514 palette
for I := 0 to MaxColors do

with EGAColors[I] do
SetRGBPalette(I, RedVal, GreenVal, BlueVal);

Readln;
CloseGraph;

end.

SetTextBuf procedure

Function Assigns an 110 buffer to a text file.

Declaration SetTextBuf(var F: Text; var Buf [; Size: Word])

{ Override detection

{ Put in graphics mode

Remarks F is a text-file variable, But is any variable, and Size is an optional
expression of type Word.

Each text-file variable has an intemal128-byte buffer that, by default, is
used to buffer Read and Write operations. This buffer is adequate for most

140 Turbo Pascal Ubrary Reference

SetTextBuf procedure

applications. However, heavily I/O-bound programs, such as applications
that copy or convert text files, will benefit from a larger buffer, because it
reduces disk head movement and file system overhead.

SetTextBut changes the text file F to use the buffer specified by But instead
of F's internal buffer. Size specifies the size of the buffer in bytes. If Size is
omitted, SizeOt(Buf) is assumed; that is, by default, the entire memory
region occupied by But is used as a buffer. The new buffer remains in
effect until F is next passed to Assign.

Restrictions SetTextBut should never be applied to an open file, although it can be
called immediately after Reset, Rewrite, and Append. Calling SetTextBut on
an open file once I/O operations has taken place can cause loss of data
because of the change of buffer.

Example

Turbo Pascal doesn't ensure that the buffer exists for the entire duration of
I/O operations on the file. In particular, a common error is to install a
local variable as a buffer, and then use the file outside the procedure that
declared the buffer.

var
F: Text;
Ch: Char;
Buf: array[1 .. 10240] of Char;

begin
{ Get file to read from command line }
Assign(F, ParamStr(1));
{ Bigger buffer for faster reads }
SetTextBuf(F, Buf};
Reset(F):
{ Dump text file onto screen }
while not Eof (f) do
begin

Read(F, Ch);
Write (Ch) ;

end;
end.

{ 10K buffer }

Chapter 7, The run-time library 141

SetTextJustify procedure

SetTextJustify procedure Graph

142

Function Sets text justification values used by OutText and OutTextXY.

Declaration SetTextJustify (Horiz, Vert: Word)

Remarks Text output after a SetTextJustify will be justified around the current
pointer in the manner specified. Given the following:

SetTextJustify(CenterText, CenterText);
OutTextXY(100, 100, 'ABC');

The point(100, 100) will appear in the middle of the letter B. The default
justification settings can be restored by SetText/ustify(LeftText, TopText). If
invalid input is passed to SetTextJustify, GraphResult returns a value of -11
(grError), and the current text justification settings will be unchanged.

The following constants are defined:

const
LeftText = 0;
CenterText = 1;
RightText = 2;
BottomText = 0;
CenterText = 1;
TopText = 2;

Restrictions Must be in graphics mode.

{ Horizontal justification }

{ Vertical justification }
{ Not declared twice }

See also GetTextSettings, GraphResult, OutText, OutTextXY, SetLineStyle,
SetUserCharSize, TextHeight, Text Width

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
{ Center text onscreen }
SetTextJustify(CenterText, CenterText)i
OutTextXY(Succ(GetMaxX) div 2, Succ(GetMaxY) di~ 2, 'Easily Centered');
Readln;
CloseGraphi

end.

Turbo Pascal Library Reference

SetTextStyle procedure

SetT extStyle procedure Graph

Function Sets the current text font, style, and character magnification factor.

Declaration SetTextStyle (Font: Word; Direction: Word; CharSize: Word)

Remarks Affects all text output by OutText and OutTextXY. One 8x8 bit-mapped
font and several stroked fonts are available. Font directions supported are
normal (left to right) and vertical (90 degrees to normal text, starts at the
bottom and goes up). The size of each character can be magnified using
the CharSize factor. A CharSize value of one will display the 8x8 bit­
mapped font in an 8x8 pixel rectangle on the screen, a Char Size value
equal to 2 will display the 8x8 bit-mapped font in a 16x16 pixel rectangle
and so on (up to a limit of 10 times the normal size). Always use
TextHeight and TexJ Width to determine the actual dimensions of the text.

The normal size values for text are 1 for the default font and 4 for a
stroked font. These are the values that should be passed as the Char Size
parameter to SetTextStyle. SetUserCharSize can be used to customize the
dimensions of stroked font text.

Normally, stroked fonts are loaded from disk onto the heap when a call is
made to SetTextStyle. However, you can load the fonts yourself or link
them directly to your .EXE file. In either case, use RegisterBGlfont to
register the font with the Graph unit.

When stroked fonts are loaded from disk, errors can occur when trying to
load them. If an error occurs, GraphResult returns one of the following
values:

-8 Font file not found
-9 Not enough memory to load the font selected

-11 Graphics error
-12 Graphics IIO error
-13 Invalid font file
-14 Invalid font number

The following type and constants are declared:

const
DefaultFont = 0;
TriplexFont = 1;
SmallFont = 2;
SansSerifFont = 3;
GothicFont = 4;

Chapter 7, The run-time library

8x8 bit-mapped font
{ Stroked fonts

143

SetTextStyle procedure

HorizDir
VertDir

= 0;
= 1;

Restrictions Must be in graphics mode.

{ Left to right }
{ Bottom to top }

See also GetTextSettings, GraphResult, OutText, OutTextXY, RegisterBGlfont,
SetText]ustify, SetUserCharSize, TextHeight, TextWidth

Example uses Graph;
var

Gd, Gm: Integer;
Y, Size: Integer;

begin
Gd := Detect;
InitGraph{Gd, Gm, ");
if GraphResult <> grOk then

Halt{I);
Y := 0;
for Size := 1 to 4 do
begin

SetTextStyle{DefaultFont, HorizDir, Size);
OutTextXY{O, Y, 'Size = ' + Chr{Size + 48));
Inc{Y, TextHeight{'H') + 1);

end;
Readln;
CloseGraph;

end.

SetTime procedure

Function Sets the current time in the operating system.

Declaration SetTime (Hour, Minute, Second, Secl00: Word)

Dos

Remarks Valid parameter ranges are Hour 0 .. 23, Minute 0 . .59, Second 0 .. 59, and
Sec100 (hundredths of seconds) 0 .. 99. If the time is not valid, the request is
ignored.

See also GetDate, GetTime, PackTime, SetDate, UnpackTime

144 Turbo Pascal library Reference

SefUserCharSize procedure

SetUserCharSize procedure Graph

Function Allows the user to vary the character width and height for stroked fonts.

Declaration SetUserCharSize (MultX, DivX, MultY, DivY: Word)

Remarks MultX:DivX is the ratio multiplied by the normal width for the active font;
MultY:DivY is the ratio multiplied by the normal height for the active font.
In order to make text twice as wide, for example, use a MultX value of 2,
and set DivX equal to 1 (2 div 1 = 2).

You don't have to call SetTextStyle immediately after calling
SetUserCharSize to make that character size take effect. Calling
SetUserCharSize sets the current character size to the values given.

Restrictions Must be in graphics mode.

See also SetTextStyle, OutText, OutTextXY, TextHeight, TextWidth

Example The following program shows how to change the height and width of text:

uses Graph;
var

Driver, Mode: Integer;
begin

Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult <> grOk then

Halt(1):
{ Showoff }
SetTextStyle(TriplexFont, HorizDir, 4);
OutText ('Norm');
SetUserCharSize(1, 3, 1, 1);
OutText('Short ');
SetUserCharSize(3, 1, 1, 1);
OutText ('Wide');
Readln;
CloseGraph;

end.

Chapter 7, The run-time library 145

I

SetVerify procedure

SetVerify procedure Dos

Function Sets the state of the verify flag in DOS.

Declaration SetVerify (Verify: Boolean)

Remarks SetVerify sets the state of the verify flag in DOS. When off (False), disk
writes are not verified. When on (True), all disk writes are verified to
ensure proper writing.

See also GetVerify

SetViewPort procedure Graph

146

Function Sets the current output viewport or window for graphics output.

Declaration SetViewPort (Xl, Yl, X2, Y2: Integer; Clip: Boolean)

Remarks (Xl, YI) define the upper left corner of the viewport, and (X2, Y2) define
the lower right corner (0 <= Xl < X2 and 0 <= YI < Y2). The upper left
corner of a viewport is (0, 0).

The Boolean variable Clip determines whether drawings are clipped at the
current viewport boundaries. SetViewPort(O, 0, GetMaxX, GetMaxY, True)
always sets the viewport to the entire graphics screen. If invalid input is
parsed to SetViewPort, GraphResult returns -11 (grError), and the current
view settings will be unchanged. The following constants are defined:

const
ClipOn = True;
ClipOff = False;

All graphics commands (for example, GetX, OutText, Rectangle, MoveTo,
and so on) are viewport-relative. In the example, note that MoveTo moves
the current pointer to (5,5) inside the viewport (the absolute coordinates
would be (15, 25».

Turbo Pascal Ubrary Reference

SetViewPort procedure

(0,0) (GetMaxX,O)

[]
(O,Get MaxY) (GetMaxX, GetMaxY)

If the Boolean variable Clip is set to True when a call to Set ViewPort is
made, all drawings will be clipped to the current viewport. Note that the
"current pointer" is never clipped. The following will not draw the
complete line requested because the line will be clipped to the current
viewport:

SetViewPort(10, 10, 20, 20, ClipOn);
Line (0, 5, 15, 5);

The line would start at absolute coordinates (10,15) and terminate at
absolute coordinates (25, 15) if no clipping was performed. But since
clipping was performed, the actual line that would be drawn would start
at absolute coordinates (10, 15) and terminate at coordinates (20, 15).

InitGraph, GraphDefaults, and SetGraphMode all reset the viewport to the
entire graphics screen. The current viewport settings are available by
calling the procedure GetViewSettings, which accepts a parameter of the
following global type:

type
ViewPort Type = record

Xl, Y1, X2, Y2: Integer;
Clip: Boolean;

end;

SetViewPort moves the current pointer to (0, 0).

Restrictions Must be in graphics mode.

See also Clear ViewPort, GetViewSettings, GraphResult

Chapter 1, The run-time library 147

I

SefViewPort procedure

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(1);
if (Gd = HercMono) or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) then
begin

SetVisualPage(O);
SetActivePage(1);
Rectangle (10, 20, 30, 40);
SetVisualPage(l);

end
else

OutText('No paging supported.');
Readln; C

CloseGraph;
end.

SetVisualPage procedure Graph

148

Function Sets the visual graphics page number.

Declaration SetVisualPage (Page: Word)

Remarks Makes Page the visual graphics page.

Multiple pages are only supported by the EGA (256K), VGA, and
Hercules graphics cards. With multiple graphics pages, a program can
direct graphics output to an off-screen page, then quickly display the off­
screen image by changing the visual page with the SetVisualPage
procedure. This technique is especially useful for animation.

Restrictions Must be in graphics mode.

See also SetActivePage

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Turbo Pascal library Reference

SefVisualPage procedure

if (Gd = HercMono) or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) then
begin

SetVisualPage{O);
SetActivePage (I); .
Rectangle {10, 20, 30, 40);
SetVisualPage{l);

end
else

OutText{'No paging supported.');
Readln;
CloseGraph;

end.

SetWriteMode procedure

Function Sets the writing mode for line drawing.

Declaration SetWriteMode (WriteMode: Integer)

Remarks The following constants are defined:

const
CopyPut = Oi
XORPut = 1;

{ MOV }
{ XOR }

Graph

Each constant corresponds to a binary operation between each byte in the
line and the corresponding bytes on the screen. CopyPut uses the assembly
language MOV instruction, overwriting with the line whatever is on the
screen. XORPut uses the XOR command to combine the line with the
screen. Two successive XOR commands will erase the line and restore the
screen to its original appearance.

SetWriteMode affects calls only to the following routines: DrawPoly, Line,
LineRe1, LineTo, and Rectangle.'

See also Line, Line To, PutImage, SetLineStyle

Example uses Crt, Graph;
var

Driver, Mode, I: Integer;
Xl, Y1, Dx, Dy: Integer;
FillInfo: FillSettingsType;

begin
DirectVideo := False;
Randomize;
Driver := Detect;
InitGraph{Driver, Mode, ");

Chapter 7, The run-time library

{ Turn off screen write }

{ Put in graphics mode }

149

I

SetWrifeMode procedure

Sin function

if GraphResult < ° then
Halt(l);

{ Fill screen with background pattern
GetFillSettings(Filllnfo);
SetFillStyle(WideDotFill, Filllnfo.Color);
Bar(O, 0, GetMaxX, GetMaxY);
Ox := GetMaxX div 4;
Dy := GetMaxY div 4;
SetLineStyle(SolidLn, 0, ThickWidth);
SetWriteMode(XORPut);
repeat

Xl := Random(GetMaxX - Ox);
Y1 := Random(GetMaxY - Dy);
Rectangle (Xl, Y1, Xl + Ox, Y1 + Dy);
Delay(10) ;
Rectangle (Xl, Y1, Xl + Ox, Y1 + Dy);

until KeyPressed;
Readln;
CloseGraph;

end.

Function Returns the sine of the argument.

Declaration Sin (X: Real)

Result type Real

{ Get current settings }

{ Determine rectangle's dimensions}

{ XOR mode for rectangle
Draw until a key is pressed

{ Draw it }
Pause briefly }

{ Erase it }

Remarks X is a real-type expression. The result is the sfne of X. X is assumed to
represent an angle in radians.

150

See also ArcTan, Cos

Example var

R: Reali
begin

R := Sin(Pi);
end.

Turbo Pascal Library Reference

SizeOf function

SizeOf function

Function Returns the number of bytes occupied by the argument.

Declaration SizeOf (X)

Result type Word

Remarks X is either a variable reference or a type identifier. SizeD! returns the
number of bytes of memory occupied by X.

SizeD! should always be used when passing values to FillChar, Move,
GetMem, and so on:

FillChar(S, SizeOf(S), 0);
GetMem(P, SizeOf(RecordType));

Example type
CustRec = record

Name: string[30];
Phone: string[14];

end;
var

P: "CustRec;
begin

GetMem(P, SizeOf(CustRec));
end.

Sound procedure

Function Starts the internal speaker.

Declaration Sound (Hz: Word)

Remarks

See also

Example

Hz specifies the frequency of the emitted sound in hertz. The speaker
continues until explicitly turned off by a call to NoSound.

NoSound

Crt

uses Crt;
begin

Sound(220);
Delay(200);
NoSound;

{ Beep }
{ Pause }

{ Relief! }
end.

Chapter 1, The run-time library 151

I

SPtr function

SPtr function

Function Returns the current value of the SP register.

Declaration SPtr

Result type Word

Remarks The result, of type Word, is the offset of the stack pointer within the stack
segment.

See also SSeg

Sqr function

Function Returns the square of the argument.

Declaration Sqr (X)

Result type Same type as parameter.

Remarks X is an integer-type or real-type expression. The result, of the same type
as X, is the square of X, or X * X.

Sqrt function

Function Returns the square root of the argument.

Declaration Sqrt (X: Real)

Result type Real

Remarks X is a real-type expression. The result is the square root of X.

SSeg function

Function Returns the current value of the SS register.

Declaration SSeg

Result type Word

Remarks The result, of type Word, is the segment address of the stack segment.

See also SPtr, CSeg, DSeg

152 Turbo Pascal Library Reference

Str proce~ure

Str procedure

Function Converts a numeric value to its string representation.

Declaration Str (X [: Width [: Decimals]]; var S: String)

Remarks X is an integer-type or real-type expression. Width and Decimals are
integer-type expressions. S is a string-type variable. Str converts X to its
string representation, according to the Width and Decimals formatting
parameters. The effect is exactly the same as a call to the Write standard
procedure with the same parameters, except that the resulting string is'
stored in S instead of being written to a text file.

See also Val, Write

Example function IntToStr (I: Longint): String;
{ Convert any integer type to a string }
var

S: string [11] ;
begin

Str (I, S);
IntToStr := S;

end;
begin

Writeln(IntToStr(-5322));
end.

Succ function

Function Returns the successor of the argument.

Declaration Suee (X)

Result type Same type as parameter.

Remarks X is an ordinal-type expression. The result, of the same type as X, is the
successor of X.

See also Inc, Pred

Chapter 7, The run-time library 153

I

Swap function

Swap function

Function Swaps the high- and low-order bytes of the argument.

Declaration Swap (X)

Result type Same type as parameter.

Remarks X is an expression of type Integer or Word.

See also Hi, Lo

Example var
x: Word;

begin
X := Swap($1234); {$3412}

end.

SwapVectors procedure Dos

154

Function Swaps interrupt vectors.

Declaration SwapVectors

Remarks Swaps the contents of the SaveIntXX pointers in the System unit with the
current contents of the interrupt vectors. Swap Vectors is typically called
just before and just after a call to Exec. This ensures that the Exec'd process
does not use any interrupt handlers installed by the current process and
vice versa.

See also Exec

Example {$M 8192,O,O}
uses Dos;
var

Command: string[79];
begin

Write ('Enter DOS command: ');
Readln(Command) ;
if Command <> " then

Command:= 'Ic ' + Command;
SwapVectors;
Exec(GetEnv('COMSPEC'), Command);
SwapVectors;
if DosError <> ° then

Writeln('Could not execute COMMAND.COM');
end.

Turbo Pascal Library Reference

TextBackground procedure

TextBackground procedure Crt

Function Selects the background color.

Declaration TextBackground (Color: Byte);

Remarks Color is an integer expression in the range 0 .. 7, corresponding to one of the
first eight color constants:

const
Black = 0;
Blue = 1;
Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;

There is a byte variable in Crt-TextAttr-that is used to hold the current
video attribute. TextBackground sets bits 4-6 of TextAttr to Color.

The background of all characters subsequently written will be in the
specified color.

See also HighVideo, LowVideo, NormVideo, TextColor

TextColor procedure

Function Selects the foreground character color.

Declaration TextColor (Color: Byte)

Crt

Remarks Color is an integer expression in the range 0 .. 15, corresponding to one of
the color constants defined in Crt:

const
Black = 0;
Blue = 1;
Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;
DarkGray = 8;
LightBlue = 9;

Chapter 1, The run-time library 155

I

TextColor procedure

LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

There is a byte variable in Crt-TextAttr-that is used to hold the current
video attribute. TextColor sets bits 0-3 to Color. If Color is greater than 15,
the blink bit (bit 7) is also set; otherwise, it is cleared.

You can make characters blink by adding 128 to the color value. The Blink
constant is defined for that purpose; in fact, for compatibility with Turbo
Pascal 3.0, any Color value above 15 causes the characters to blink. The
foreground of all characters subsequently written will be in the specified
color.

See also HighVideo, LowVideo, NonnVideo, TextBackground

Example TextColor (Green) ;
TextColor(LightRed + Blink);
TextColor(14);

TextHeight function

Function Returns the height of a string in pixels.

Declaration TextHeight (TextString: String)

Result type Word

{ Green characters }
{ Blinking light-red characters }

{ Yellow characters }

Graph

Remarks Takes the current font size and multiplication factor, and determines the
height of TextString in pixels. This is useful for adjusting the spacing
between lines, computing viewport heights, sizing a title to make it fit on
a graph or in a box, and more.

For example, with the 8x8 bit-mapped font and a multiplication factor of 1
(set by SetTextStyle), the string Turbo is 8 pixels high.

It is important to use TextHeight to compute the height of strings, instead
of doing the computation manually. In that way, no source code modifi­
cations have to be made when different fonts are selected.

Restrictions Must be in graphics mode.

See also OutText, OutTextXY, SetTextStyle, SetUserCharSize, TextWidth

156 Turbo Pascal Ubrary Reference

Example uses Graph;
var

Gd, Gm: Integer;
Y, Size: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Ha1t(I);
Y := 0;
for Size := 1 to 5 do

begin
SetTextStyle(DefaultFont, HorizDir, Size);
OutTextXY(O, Y, 'Turbo Graphics');
Inc(Y, TextHeight('Turbo Graphics'));

end;
Readln;
CloseGraph;

end.

T extMode procedure

Function Selects a specific text mode.

Declaration TextMode (Mode: Word)

Remarks The following constants are defined:

const
BW40 0;
BW80 2:
Mono 7:
C040 I:
C080 3:
Font8x8 = 256:
C40 = C040;
C80 = C080;

Other values cause TextMode to assume e80.

TextHeight function

Crt

{ 40x25 B/w on color adapter }
{ 80x25 B/w on color adapter }

80x25 B/w on monochrome adapter }
{ 40x25 color on color adapter }
{ 80x25 color on color adapter }

{ For EGA/VGA 43 and 50 line }
{ For 3.0 compatibility}
{ For 3.0 compatibility}

When TextMode is called, the current window is reset to the entire screen,
DirectVideo is set to True, CheckSnow is set to True if a color mode was
selected, the current text attribute is reset to normal corresponding to a I
call to NormVideo, and the current video is stored in LastMode. In addition,
LastMode is initialized at program startup to the then-active video mode.

Chapter 7, The run-time library 157

TextMode procedure

Specifying TextMode(LastMode) causes the last active text mode to be re­
selected. This is useful when you want to return to text mode after using a
graphics package, such as Graph or Graph3.

The following call to TextMode:

TextMode(C80 + Font8x8)

will reset the display into 43 lines and 80 columns on an EGA, or 50 lines
and 80 columns on a VGA with a color monitor. TextMode(Lo(LastMode»
always turns off 43- or 50-line mode and resets the display (although it
leaves the video mode unchanged); while

TextMode (Lo (LastMode) + Font8x8)

will keep the video mode the same, but reset the display into 43 or 50
lines.

If your system is in 43-line mode when you load a Turbo Pascal program,
the mode will be preserved by the Crt startup code, and the window
variable that keeps track of the maximum number of lines on the screen
(WindMax) will be initialized correctly.

Here's how to write a "well-behaved" program that will restore the video
mode to its original state:

program Video;
uses Crt;
var

OrigMode: Integer;
begin

OrigMode := LastMode;

TextMode(OrigMode);
end.

{ Remember original mode }

Note that TextMode does not support graphics modes, and therefore
TextMode(OrigMode) will only restore those modes supported by
TextMode.

See also RestoreCrtMode

158 Turbo Pascal Library Reference

TextWidth function

T extWidth function

Function Returns the width of a string in pixels.

Declaration TextWidth (TextString: String)

Result type Word

Graph

Remarks Takes the string length, current font size, and multiplication factor, and
determines the width of TextString in pixels. This is useful for computing
viewport widths, sizing a title to make it fit on a graph or in a box, and so
on.

For example, with the 8x8 bit-mapped font and a multiplication factor of 1
(set by SetTextStyle), the string Turbo is 40 pixels wide.

It is important to use TextWidth to compute the width of strings, instead of
doing the computation manually. In that way, no source code
modifications have to be made when different fonts are selected.

Restrictions Must be in graphics mode.

See also OutText, OutTextXY, SetTextStyle, SetUserCharSize, TextHeight

Example uses Graph;
var

Gd, Gm: Integer;
Row: Integer;
Title: String;
Size: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
Row := 0:
Title := 'Turbo Graphics' ;
Size := 1;
while TextWidth(Title) < GetMaxX do
begin

OutTextXY(O, Row, Title);
Inc (Row, TextHeight('M'));
Inc(Size):
SetTextStyle(DefaultFont, HorizDir, Size);

end:
Readln;

Chapter 7 I The run-time library 159

II

Trunc function

CloseGraph;
end.

Trunc function

Function Truncates a real-type value to an integer-type value.

Declaration Trunc (X: Real)

Result type Longint

Remarks X is a real-type expression. Trunc returns a Longint value that is the value
of X rounded toward zero.

Restrictions A run-time error occurs if the truncated value of X is not within the
Longint range.

See also Round, Int

Truncate procedure

Function Truncates the file size at the current file position.

Declaration Truncate (var F)

Remarks F is a file variable of any type. All records past F are deleted and the
current file position also becomes end-of-file (Eo/(F) is True).

If I/O-checking is off, the IOResult function returns a nonzero value if an
error occurs.

Restrictions F must be open. Truncate does not work on text files.

See also Reset, Rewrite, Seek

TypeOf function

Function Returns a pointer to an object's virtual method table.

Declaration TypeOf (X: object)

Result type Pointer

Remarks X is any object type that declares or inherits virtual methods.

Restrictions If X has no virutal methods, a compiler error occurs.

160 Turbo Pascal Library Reference

UnpackTime procedure

UnpackTime procedure Dos

Function Converts a 4-byte, packed date-and-time Longint returned by GetFTime,
FindFirst, or FindNext into an unpacked DateTime record.

Declaration UnpackTime (Time: Longint; var DT: DateTime)

Remarks DateTime is a record declared in the Dos unit:

DateTime ~ record
Year, Month, Day, Hour, Min, Sec: Word

end;

The fields of the Time record are not range-checked.

See also GetFTime, GetTime, PackTime, SetFTime, SetTime

UpCase function

Function Converts a character to uppercase.

Declaration UpCase(Ch: Char)

Result type Char

Remarks Ch is an expression of type Char. The result of type Char is Ch converted
to uppercase. Character values not in the range a .. z are unaffected.

Val procedure

Function Converts the string value to its numeric representation.

Declaration Val (S: String; var V; var Code: Integer)

Remarks S is a string-type expression. V is an integer-type or real-type variable.
Code is a variable of type Integer. S must be a sequence of characters that
form a signed whole number according to the syntax shown in the section
"Numbers" in Chapter 1 of the Programmer's Guide. Val converts S to its
numeric representation and stores the result in V. If the string is somehow
invalid, the index of the offending character is stored in Code; otherwise,
Code is set to zero.

Val performs range-checking differently depending on the state of {$R}
and the type of the parameter V.

Chapter 7, The run-time library 161

I

Val procedure

With range-checking on, {$R+}, an out-of-range value always generates a
run-time error. With range-checking off, {$R-}, the values for an out-of­
range value vary depending upon the data type of V. If V is a Real or
Longint type, the value of V is undefined and Code returns a nonzero
value. For any other numeric type, Code returns a value of zero, and V will
contain the results of an overflow calculation (assuming the string value is
within the long integer range).

Therefore, you should pass Val a Longint variable and perform range­
checking before making an assignment of the returned value:

{$R-}
Val(165536 ' I LongIntVar, Code)
if (Code <> 0) or LongIntVar < 0) or (LongIntVar > 65535) then

{ Error }
else

WordVar := LongIntVar;

In this example, LonglntVar would be set to 65,536, and Code would equal
o. Because 65,536 is out of range for a Word variable, an error would be
reported.

Restrictions Trailing spaces must be deleted.

See also Str

Example var I I Code: Integer;
begin
{ Get text from command line

Val (ParamStr(l) I I, Code);
{ Error during conversion to integer?
if code <> 0 then

Writeln('Error at position: I I Code)
else

Writeln('Value = I I I);
end.

WhereX function Crt

Function Returns the X-coordinate of the current cursor position, relative to the
current window.

Declaration WhereX

Result type Byte

See also GotoXY, WhereY, Window

162 Turbo Pascal Ubrary Reference

WhereY function

Where Y function Crt

Function Returns the Y-coordinate of the current cursor position, relative to the
current window.

Declaration WhereY

Result type Byte

See also GotoXY, WhereX, Window

Window procedure Crt

Function Defines a text window on the screen.

Declaration Window (Xl, Yl, X2, Y2: Byte)

Remarks Xl and YI are the coordinates of the upper left corner of the window, and
X2 and Y2 are the coordinates of the lower right corner. The upper left
corner of the screen corresponds to (1, 1). The minimum size of a text
window is one column by one line. If the coordinates are in any way
invalid, the call to Window is ignored.

The default window is (1, 1, 80, 25) in 25-line mode, and (1, 1, 80, 43) in
43-line mode, corresponding to the entire screen.

All screen coordinates (except the window coordinates themselves) are
relative to the current window. For instance, GotoXY(I, 1) will always
position the cursor in the upper left corner of the current window.

Many Crt procedures and functions are window-relative, including CirEoI,
CirScr, DelLine, GotoXY, InsLine, WhereX, WhereY, Read, ReadIn, Write,
Writeln.

WindMin and WindMax store the current window definition (refer to the
"WindMin and WindMax" section in Chapter 15 of the Programmer's
Guide). A call to the Window procedure always moves the cursor to (1, 1).

See also ClrEol, ClrScr, DelLine, GotoXY, WhereX, WhereY

Example uses Crt;,
var

X, Y: Byte;
begin

TextBackground(Black);

Chapter 7, The run-time library

{ Clear screen }

163

I

Window procedure

ClrScr;
repeat

X := Succ(Random(80));
Y := Succ(Random(25));
Window (X, Y, X + Random(IO), Y + Random(8));
TextBackground(Random(16));
ClrScr;

until KeyPressed;
end.

{ Draw random windows }

{ In random colors }

Write procedure (text files)

164

Function Writes one or more values to a text file.

Declaration Write ([var F: Text; 1 VI [, V2, ... , VN 1)

Remarks F, if specified, is a text-file variable. If F is omitted, the standard file
variable Output is assumed. Each P is a write parameter. Each write
parameter includes an output expression whose value is to be written to
the file. A write parameter can also contain the specifications of a field
width and a number of decimal places. Each output expression must be of
a type Char, Integer, Real, string, packed string, or Boolean.

A write parameter has the form

OutExpr [: MinWidth [: DecPlaces 1

where OutExpr is an output expression. Min Width and DecPlaces are type
integer expressions.

Min Width specifies the minimum field width, which must be greater than
o. Exactly Min Width characters are written (using leading blanks if neces­
sary) except when OutExpr has a value that must be represented in more
than Min Width characters. In that case, enough characters are written to
represent the value of OutExpr. Likewise, if Min Width is omitted, then the
necessary number of characters are written to represent the value of
OutExpr.

DecPlaces specifies the number of decimal places in a fixed-point represen­
tation of a type Real value. It can be specified only if OutExpr is of type
Real, and if Min Width is also specified. When Min Width is specified, it
must be greater than or equal to O.

Write with a type Char value: If Min Width is omitted, the character value
of OutExpr is written to the file. Otherwise, Min Width - 1 blanks followed
by the character value of OutExpr is written.

Turbo Pascal Ubrary Reference

Table 1.1
Components of the

output string

Table 1.2
Components of the

fixed-point string

Write procedure (text files)

Write with a type integer value: If Min Width is omitted, the decimal
representation of OutExpr is written to the file with no preceding blanks.
If Min Width is specified and its value is larger than the length of the
decimal string, enough blanks are written before the decimal string to
make the field width Min Width.

Write with a type real value: If OutExpr has a type real value, its decimal
representation is written to the file. The format of the representation
depends on the presence or absence of DecPlaces.

If DecPlaces is omitted (or if it is present, but has a negative value), a
floating-point decimal string is written. If Min Width is also omitted, a
default Min Width of 17 is assumed; otherwise, if Min Width is less than 8, it
is assumed to be 8. The format of the floating-point string is

I - 1 <digit> . <decimals> E [+ I - 1 <exponent>

The components of the output string are shown in Table 1.1:

[I -] " "or "-", according to the sign of OutExpr

<digit> Single digit, "0" onl1~if OutExpr is 0

<decimals> Digit string of Min Width-7 (but at most 10) digits

E Uppercase [E] character

[+ I -] According to sign of exponent

<exponent> Two-digit decimal exponent

If DecPlaces is present, a fixed-point decimal string is written. If DecPlaces
is larger than 11, it is assumed to be 11. The format of the fixed-point
string follows:

[<blanks> 1 [- 1 <digits> [• <decimals> 1

The components of the fixed-point string are shown in Table 1.2:

[<blanks>]

[-]

<digits>

[. <decimals> 1

Blanks to satisfr~Min Width

If OutExpr is negative

At least one digit, but no leading zeros

Decimals if DecPlaces > 0

Write with a string-type value: If Min Width is omitted, the string value of
OutExpr is written to the file with no leading blanks. If Min Width is
specified, and its value is larger than the length of OutExpr, enough
blanks are written before the decimal string to make the field width
Min Width.

Chapter 1, The run-time library 165

I

Write procedure (text files)

Write with a packed string-type value: If OutExpr is of packed string type,
the effect is the same as writing a string whose length is the number of
elements in the packed string type.

Write with a Boolean value: If OutExpr is of type Boolean, the effect is the
same as writing the strings True or False, depending on the value of
OutExpr.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

Restrictions File must be open for output.

See also Read, Readln, Writeln

Write procedure (typed files)

Function Writes a variable into a file component.

Declaration Write (F, VI [, V2, ... , VN 1)

Remarks F is a file variable, and each V is a variable of the same type as the
component type of F. For each variable written, the current file position is
advanced to the next component. If the current file position is at the end
of the file-that is, if Eo/(F) is True-the file is expanded.

With {$I-}, IOResult returns a 0 if the operation was successful; otherwise,
it returns a nonzero error code.

See also Writeln

Writeln procedure

166

Function Executes the Write procedure, then outputs an end-of-line marker to the
file.

Declaration writeln([var F: Text; 1 VI [, V2, .. . ,VN 1)

Remarks Writeln procedure is an extension to the Write procedure, as it is defined
for text files. After executing the Write, Writeln writes an end-of-line
marker (carriage-return I line-feed) to the file.

Writeln(F) with no parameters writes an end-of-line marker to the file.
(Writeln with no parameter list altogether corresponds to Writeln(Output).)

Turbo Pascal Library Reference

Writeln procedure

Restrictions File must be open for output.

See also Write

I
Chapter 7, The run-time library 167

168 Turbo Pascal Library Reference

N

$ See compiler directives
@ (address-of) operator See address-of (@)

operator

A
Abs function 4
Addr function 4
address-of (@) operator

versus Addr 4
AndPut constant 104
Append procedure 5
Arc procedure 6
ArcTan function 6
aspect ratio 43

correction factor, changing 126
Assign procedure 7
AssignCrt procedure 8

B
Bar3D procedure 9
Bar procedure 8
BGI, Zenith Z-449 and 74
BINOB] 112, 113
bit images 54
BitBlt operations 104
BlockRead procedure 10
BlockWrite procedure 11
buffers, flushing 39

c
ChDir procedure 12
Chr function 13
Circle procedure 13
ClearDevice procedure 14
clearing the overlay buffer 96
ClearViewPort procedure 14
clipping parameters 64

Index

D E

Close procedure 15
CloseGraph procedure 16
ClrEol procedure 16
ClrScr procedure 17
colors 50, 51

background 44
drawing 45

command-line parameters 101
compiler directives

$181
$M 81, 87, 88, 100

Concat function 17
CONFIG.SYS 98
Copy function 18
Cos function 18
Crt unit

AssignCrt procedure 8
ClrEol procedure 16
ClrScr procedure 17
Delay procedure 20
DelLine procedure 20
GotoXY procedure 67
High Video procedure 71
InsLine procedure 75
KeyPressed function 82
LowVideo procedure 86
Norm Video procedure 92
NoSound procedure 92
ReadKey function 109
Sound procedure 151
TextBackground procedure 155
TextColor procedure 155
TextMode procedure 157
WhereX function 162
Where Y function 163
Window procedure 163

CS register 19
CSeg function 19

x

169

cursor position
reading 162, 163
setting 67

D
date and time procedures

GetDate 46
GetFfime 52
GetTime 63
SetDate 129
SetFfime 133
SetTime 144

Dec procedure 19
Delay procedure 20
Delete procedure 20
DelLine procedure 20
DetectGraph procedure 21
devices 14

drivers, installing 76
directives See compiler, directives
directories 47

changing 12
procedures 120
searching 36, 40

DiskFree function 22
disks, space 22
DiskSize function 22
Dispose procedure 23
DOS

Pascal functions for 91
verify flag 64

setting 146
Dos unit

DiskFree function 22
DiskSize function 22
DosExitCode function 24
Dos Version function 24
EnvCount function 27
EnvStr function 27
Exec procedure 30
FExpand function 32
FindFirst procedure 36
FindNext procedure 37
FSearch function 40
FSplit procedure 41
GetCBreak procedure 45
GetDate procedure 46

170

GetEnv function 48
GetF Attr procedure 49
GetFfime procedure 52
GetIntVec procedure 55
GetTime procedure 63
GetVerify procedure 64
Intr procedure 80
Keep procedure 81
MsDos procedure 91
PackTime procedure 100
SetCBreak procedure 128
SetFfime procedure 133
SetIntVec procedure 136
SetTime procedure 144
SetVerify 146
SwapVectors procedure 154
UnpackTime procedure 161

DosError variable 30, 36, 37, 49, 52, 130, 133
DosExitCode function 24
Dos Version function 24
DrawPoly procedure 25
drivers

active, returning
maximum mode number 56
name 48

DS register 26
DSeg function 26

E
ellipse, drawing 34
Ellipse procedure 26
elliptical sector, drawing and filling 121
end of file status 28
EnvCount function 27
EnvStr function 27
Eof function 28
Eoln function 29
Erase procedure 29
errors

codes for graphics operations 68
messages 68
run-time See run-time, errors

Exec procedure 30
exit

codes 24
procedures 31

Exp function 32

Turbo Pascal Library Reference

F
FExpand function 32
file-handling procedures

Rename 116
Reset 117
Rewrite 119
Seek 122
SetFAttr 130
Truncate 160

FilePos function 33
files

Assign procedure 7
attributes 49
closing 15
erasing 29
untyped, variable 10, 11

FileSize function 33
fill patterns 50
FillChar procedure 34
FillEllipse procedure 34
filling areas 37
FillPoly procedure 35
FindFirst procedure 36
FindNext procedure 37
FloodFill procedure 37
Flush procedure 39
Font8x8 variable 157, 158
fonts

installing 79
stroked 145

Frac function 39
fractions, returning 39
FreeMem procedure 40
FSearch function 40
FSplit procedure 32, 41
functions See specific function

G
GetArcCoords procedure 42
GetAspectRatio procedure 43
GetBkColor function 44
GetCBreak procedure 45
GetColor function 45
GetDate procedure 46
GetDefaultPalette function 46
GetDir procedure 47

Index

GetDriverName function 48
GetEnv function 48
GetFAttr procedure 49
GetFillPattern procedure 50
GetFillSettings procedure 51
GetFTime procedure 52
GetGraphMode function 52
GetImage procedure 54
GetIntVec procedure 55
GetLineSettings procedure 55
GetMaxColor function 56
GetMaxMode-funcHon 56
GetMaxX function 57
GetMax Y function 58
GetMem procedure 58
GetModeName function 59
GetModeRange procedure 60
GetPalette procedure 60

IBM 8514 and 60
GetPaletteSize function 61
GetPixel function 62
GetTextSettings procedure 62
GetTime procedure 63
GetVerify procedure 64
GetViewSettings procedure 64
GetX function 65
GetY function 66
GotoXY procedure 67
Graph unit

Arc procedure 6
Bar3D procedure 9
Bar procedure 8
Circle procedure 13
ClearDevice procedure 14
ClearViewPort procedure 14
CloseGraph procedure 16
DetectGraph procedure 21
DrawPoly procedure 25
Ellipse procedure 26
FillEllipse procedure 34
FillPoly procedure 35
FloodFill procedure 37
GetArcCoords procedure 42
GetAspectRatio procedure 43
GetBkColor function 44
GetColor function 45
GetDefaultPalette function 46

171

GetDriverN arne function 48
GetFillPattem procedure 50
GetFillSettings procedure 51
GetGraphMode function 52
GetImage procedure 54
GetLineSettings procedure 55
GetMaxColor function 56
GetMaxMode function 56
GetMaxX function 57
GetMaxY function 58
GetModeName function 59
GetModeRange procedure 60
GetPalette procedure 60
GetPaletteSize function 61
GetPixel function 62
GetTextSettings procedure 62
GetViewSettings procedure 64
GetX function 65
GetY function 66
GraphDefaults procedure 67
GraphErrorMsg function 68
GraphResult function 68
ImageSize function 71
InitGraph procedure 73
InstallUserDriver function 76
InstallUserFont function 79
Line procedure 83
LineRel procedure 84
LineTo procedure 84
MoveRel procedure 89
MoveTo procedure 90
OutText procedure 93
OutTextXY procedure 95
PieSlice procedure 102
Putlmage procedure 104
PutPixel procedure 106
Rectangle procedure 111
RegisterBGIdriver function 112
RegisterBGIfont function 113
RestoreCrtMode procedure 118
Sector procedure 121
SetActivePage procedure 124
SetAlIPalette procedure 125
SetAspectRatio procedure 126
SetBkColor procedure 127
SetColor procedure 129
SetFillPattern procedure 130

172

SetFillStyle procedure 132
SetGraphBufSize procedure 133
SetGraphMode procedure 134
SetLineStyle procedure 136
SetPalette procedure 137
SetRGBPalette procedure 139
SetTextJustify procedure 142
SetTextStyle procedure 143
SetUserCharSize procedure 145
SetViewPort procedure 146
SetVisualPage procedure 148
SetWriteMode 149
TextHeight function 156
TextWidth function 159

GraphDefaults procedure 67
GraphDriver variable

IBM 8514 and 74
GraphErrorMsg function 68
graphics

bit-image operations 104
cards 21,73
drawing operations 83, 84, 102, 111, 136
drivers 73
fill operations 130, 132
mode 52, 73, 83, 84, 85
page operations 124, 148
palette operations 125, 127, 129, 137
plotting operations 106
pointer operations 90
polygons, drawing 25
resolution 43
system operations 134
text operations 93, 95, 142, 156
video mode operations 118
viewport operations 146

GraphMode procedure 73
GraphResult function 68

error codes 68
grError 69
grInvalidFont 69
grInvalidFontNum 69
grIOerror 69

H
Halt procedure 70
handles, DOS 7
heap management procedures 116

Turbo Pascal Ubrary Reference

Hi function 70
high

intensity characters 71
order bytes 70

High Video procedure 71

$1 compiler directive 81
I/O

checking 81
DOS standard 7

IBM 8514
GetPalette procedure and 60
GraphDriver variable and 74
lnitGraph procedure and 74
palette entries, modifying 139
SetAllPalette procedure and 126
SetPalette procedure and 138

ImageSize function 71
Inc procedure 72
InitGraph procedure 73

SetGraphMode and 134
input, DOS standard 7
Insert procedure 75
inserting

lines 75
strings 75

Ins Line procedure 75
InstallUserDriver function 76
InstallUserFont function 79
Int function 79
interrupt

procedures 136
vectors 55

swapping 154
Intr procedure 80
IOResult function 80

J
justification, font 62

K
Keep procedure 81
keyboard operations 82, 109
KeyPressed function 82

Index

L
Length function 82
line

drawing, setting writing mode for 149
settings 55

Line procedure 83
LineRel procedure 84
LineTo procedure 84
Ln function 85
Lo function 86
LowVideo procedure 86

M
$M compiler directive 81, 87, 88, 100
Mark procedure 86
MaxAvail function 87
MemAvail function 88
memory 40, 58
MkDir procedure 88
Move procedure 89
MoveRel procedure 89
MoveTo procedure 90
MsDos procedure 91

N
New procedure 91

extended syntax
constructor passed as parameter 91

NormalPut constant 104
Norm Video procedure 92
NoSound procedure 92
NotPut constant 104

o
Odd function 92
Ofs function 93
Ord function 93
OrPut constant 104
output, DOS standard 7
OutText procedure 93
OutTextXY procedure 95
Overlay unit

OvrClearBuf procedure 96
OvrGetBuf function 97
OvrInit procedure 97

173

OvrInitEMS procedure 98
OvrSetBuf procedure 99

overlays
buffers

clearing 96
size

returning 97
setting 99

files
loading into EMS 98
opening 97

manager, initializing 97
OvrClearBuf procedure 96
OvrGetBuf function 97
OvrInit procedure 97
OvrInitEMS procedure 98
OvrSetBuf procedure 99

p
PackTime procedure 100
palette

color lookup table, returning size 61
definition record 46

ParamCount function 100
parameters, command-line 101
PararilStr function 101
Pi function 101
PieSlice procedure 102
pixel values 62
polygons, drawing 25
Pos function 102
Pred function 103
procedures See specific procedure
process-handling routines 81
programs

execution, stopping 121
halting 70

Ptr function 103
PutImage procedure 104
PutPixel procedure 106

R
Random function 107
Randomize procedure 107
range-checking, Val and 161

174

Read procedure
text files 108
typed files 109

reading records 10
ReadKey function 109
Readln procedure 110
Rectangle procedure 111
RegisterBGIdriver function 112
RegisterBGIfont function 113
registers, CS 19
Release procedure 116
Rename procedure 116
Reset procedure 117
resolution, graphics 43
RestoreCrtMode procedure 118
Rewrite procedure 119
RmDir procedure 120
Round function 120
run-time errors, generating 121
RunError procedure 121

5
searching directories 36
Sector procedure 121
Seek procedure 122
SeekEof function 123
SeekEoln function 123
Seg function 124
SetActivePage procedure 124
SetAllPalette procedure 125

IBM 8514 and 126
SetAspectRatio procedure 126
SetBkColor procedure 127
SetCBreak procedure 128
SetColor procedure 129
SetDate procedure 129
SetFAttr procedure 130
SetFillPattem procedure 130
SetFillStyle procedure 132
SetFTime procedure 133
SetGraphBufSize procedure 133
SetGraphMode procedure 134
SetIntVec procedure 136
SetLineStyle procedure 136
SetPalette procedure 137

IBM 8514 and 138
SetRGBPalette procedure 139

Turbo Pascal Library Reference

SetTextBuf procedure 140
SetTextJustify procedure 142
SetTextStyle procedure 143

OutText and 93
OutTextXY and 95

SetTime procedure 144
SetUserCharSize procedure 145
SetVerify procedure 146
SetViewPort procedure 146
SetVisualPage procedure 148
SetWriteMode procedure 149
Sin function 150
SizeOf function 34, 151
software interrupts 80
sound operations

NoSound 92
Sound 151

Sound procedure 151
SPtr function 152
Sqr function 152
Sqrt function 152
SSeg function 152
Str procedure 153
strings

concatenation 17
construction 17
deletion 20
initializing 34
length byte 34
procedures 75, 153, 161

stroked fonts 145
substrings

copying 18
deleting 20
inserting 75
position 102

Succ function 153
Swap function 154
SwapVectors procedure 154

T
terminating a program 31
text

attributes 62
files 28

TextAttr variable
ClrEol and 16

Index

ClrScr and 17
High Video and 71
LowVideo and 86
NormVideo and 92
TextBackground and 155
TextColor and 156

TextBackground procedure 155
TextColor procedure 155
TextHeight function 156
TextMode procedure 157
TextWidth function 159
time procedures

GetFTime 52
GetTime 63
SetFTime 133
SetTime 144

Trunc function 160
Truncate procedure 160
Turbo Pascal 3.0

conversion, chaining 161
TypeOf function 160

u
UnpackTime procedure 161
untyped files, variable 10, 11
UpCase function 161

V
Val procedure 161
variables

disposing of 23, 40
DosError 30,·36,37, 49,52, 130, 133
increasing 72
untyped file 10, 11

VGA
driver, modifying palette entries for 139
modes 21

emulated 74
VGAHi 53, 135
VGALo 53, 135
VGAMed 53, 135
video operations

AssignCrt 8
CirEol16
ClrScr 17
DelLine procedure 20

175

GotoXY 67
High Video 71
InsLine 75
LowVideo 86
NormVideo 92
RestoreCrtMode 118
TextBackground 155
TextColor 155
WhereX 162
WhereY 163
Window 163
Write (text) 164
Write (typed) 166
Writeln 166

viewports 14
parameter 64

176

w
WhereX function 162
Where Y function 163
Window procedure 163
Write procedure

text files 164
typed files 166

write statements, DOS 7
Writeln procedure 166
writing records 11

x
XORPut constant 104

Z
Zenith Z-449, BGI and 74

Turbo Pascal Ubrary Reference

B o R L A N D

Corpo<ltl HlldqUlrt ... : 1100 Gral. Hilli Roed, P.O. 101110001 , Scotti VllllY, CA '5017 ·00~ , (401, 431·5300
O"lul l. : A.ltre lll , DI.mlrlt , E.,llnd, frtncl , GfnnI.y, lilly, JI". Ind SWlde • • Plrt. 11MN·PAS03·10 . lOR 1152

