
T RB
PR FILER"

. . .

BORLAND

Turbo ProfilefID

Version 1.0

BORLAND INTERNATIONAL INC. 1800 GREEN HillS ROAD
P.O. BOX 660001. SCOTTS VAllEY. CA 95066-0001

Rl

Copyright © 1990 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
10 9 8

c o N T

Introduction 1
The difference between optimizing and
profiling 2

Hardware and software requirements 3
Installing Turbo Pro filer 3

The README file 3
Wha t's in this manual 4

A note on terminology 5
How to contact Borland 5

Chapter 1 A sample profiling session 7
Profiling a program (PRIMEO) 9

Setting up the profile options 10
Collecting data 11
Displaying statistics 12

Printing modules and statistics 14
Time and counts profile listing 14
Profile statistics report 16

Saving and restoring statistics 17
Analyzing the statistics 17

Viewing both source code and
statistics 18

Saving the window configuration ... 19
Measuring an area's efficiency 20

A modularized primes test (PRIMEl) 21
Modifying the program and reprofiling .. 22

Loading another program (PRIME2) .. 23
Reducing calls to a routine (PRIME3) .. 24
Still more efficiency (PRIME4) 24
Reducing I/O time (PRIMES) 26
Eliminating CR/LF pairs (PRIME6) ... 26

Where to now? 27

Chapter 2 Inside the profiler 29
Phantom tollbooths 30

Determining the overhead of routine
calls 31

E N T s

Who pays for loops? 32
Logging callers . 35

Sampling vs. counting 37
Profiler memory use 38

Chapter 3 Profiling strategies 39
Preparing to profile 40

Adjust your program 41
Compile your program 42
Set profile areas 42

What level of detail do you need? ... 44
What type of data do you need? 44
When should data collection start? .. 45
How do you want time data
grouped? 46
Which data do you want to look at? .46

Profiling your program 47
What are you trying to find out? 47

Testing algorithms 48
Verifying and testing programs 48
Timing execution and monitoring
performance 49
Studying unfamiliar code 50

Which analysis mode do you use? 50
Active analysis 51
Passive analysis 51
Some things to watch out for 51

Profiling object-oriented programs 52
How to speed up profiling 52
How to improve statistical accuracy ... 53

Insufficient data 53
Resonance 53

Some tips for profiling overlays 54
Interpreting and applying the profile
results 55

How to analyze profile data 55

Execution Profile window 55
Callers window 56
Overlays window 56
Interrupts window 56
Files window 56
How to filter collected data 56

Revise your program 57
Modify data structures 58
Store precomputed results 58
Cache frequently accessed data 59
Evaluate data as needed 59
Optimize existing code 59

Loops 59
Routines 60
Expressions 60

Wrapping it up 61

Chapter 4 The Turbo Profiler
environment 63

Part 1: The environment components 63
The menu bar and menus 63

Choosing menu commands from the
keyboard 64
Choosing menu commands with the
mouse 64

Shortcuts 65
Turbo Pro filer windows 65

Window management 67
The status line 68
Dialog boxes 68

Check boxes and radio buttons 69
Input boxes and lists 70

Part 2: The menu reference 71
:: menu (System) 71

Repaint Desktop 73
Restore Standard 73
About 73

File menu 73
Open 73

Using the File Name input box ... 74
Using the Files list box 75

Change Dir 75
New Directory dialog box
components 76

II

Get Info 76
DOS Shell 77
Quit 78

View menu 78
Module 79

Line 80
Search 00080
Next 0.0.0.00.0 •.•••.•• 0.00.0.081
Goto 0.000000.00000.00000000 .• 081
Add Areas 0 •• 0.000.0000.0081
Remove Areas 0 .•. 0 .. 0 0 ••• 0 0 .. 0 82
Opera tion . 0 0 . 0 0 . 0 0 0 • 0 • • • • • • • • . 82
Callers 0 ••••••••••••••••••••••• 83
Module 0 ••••••••••.• 084
File 0 0 0 ••• 00 85
Edit.o o 0 •••• 0 86

Execution Profile 0 •.. 0 •• 0 0 .•• 0 86
Display 0 •. 0 •• 0 .•• 88
Filter 0 .••.•••••••• ·.0 ••••. 00 89
Module 0 •. 0. 0 •••••• 0 •.•. 90
Remove 91

Callers 0 .•.•.• 0.0 ••••••••••• 0 ••• 0 91
Inspect (in left pane) 0 •• 94
Inspect (in right pane) .. 0 0 0 .• 0 0 0 . 94
Sort (in right pane) 94

Overlays 0 •••• 0 ••• 95
Display 0 •••••••••••• 95
Inspect 0 0 ••• 0 •••••••• 96

Interrupts 00.0 .•. 0 ••••••••••••.•• 96
Collection (in top pane) ... 0 •••••• 97
Subroutines (in top pane) 97
Add (in top pane) 0 0 • 97
Pick (in top pane) 98
Remove (in top pane) ... 0 0 • 0 •• 0 0 98
Delete All (in top pane) 98
Display (in bottom pane) . 0 0 ••.• 0 98

Files 98
Collection (in top pane) .0.0 ••• 0 • 100
Detail (in top pane) 0.0. 100
When Full (in top pane) 0 100
Display (in bottom pane) . 0 •• 0 • 0 100

Areas o. 0 .••.••• 0 .. 00 ••• 0 .. 101
Add Areas 0 102
Remove Areas 102

Inspect 102
Options 103
Sort 104

Routines 104
Local Module (in right pane) 105
Areas (in both panes) 106
Callers (in both panes) 106
Module (in both panes) 106
Profile (in both panes) 106

Disassembly (CPU) 106
Goto 108
Origin 108
Follow 108
Previous 109
View Source 109
Mixed 109

Run menu 110
Run 110
Program Reset 110
Arguments 110

Sta tis tics menu 111
Callers 112
Files 112
Interrupts 112
Overlays 113
Profiling Options 113
Accumulation 114

When you would disable
accumulation 115

Delete All 117
Save 117

Saving Files 118
Restore 118

Print menu 119
Statistics 119
Module 119

. Options 120
Options menu 121

Macros 121
Create (Alt=) 123
Stop Recording (Alt-) 123
Remove 123
Delete 123

Display Options 123

iii

Display Swapping 124
Screen Lines 124
Tab Size 124
Width of Names 124

Path for Source 125
Save Options 125
Restore 126

Window menu 127
Zoom 127
Next 127
Next Pane 127
Size/Move 127
Iconize/Restore 127
Close 128
Undo Close 128
User Screen . 128
The open window list 129

Help menu 129
Index 129
Previous Topic 129
Help on Help 130

Appendix A Turbo Profiler's
command-line options 131

The command -line options 132
Configuration file (-c) 133
Display update (-d) 133
Help (-h and -?) 133
Process ID switching (-i) 134
Modify heap size (-m) 134
Mouse support (-p) 134
Remote profiling (-r) 134
Source code and symbols (-s) 135
Video hardware (-v) 136
Overlay area size (-y) 136

Appendix B Customizing Turbo
Profiler 139

Running TFINST 140
Setting the screen colors 140

Customizing screen colors 140
Windows 140
Dialog boxes and menus 141
Screen 142

The default colors 142 When you're through 149
Setting Turbo Profiler display Saving changes 149
parameters 142 Save Configuration File 149

Display Swapping 142 Modify TPROF.EXE 149
Screen Lines 143 Exiting TFINST 150
Fast Screen Update 143
Permit 43/50 Lines 143
Full Graphics Saving 143
Tab Size 144
User Screen Updating 144

Turbo Pro filer options 145
The Directories dialog box 145
The User Input and Prompting dialog
box 145

History List Length 145
Beep on Error 145
Mouse Enabled 146

Appendix C Remote profiling 151
Remote hardware requirements 151
Installing TFREMOTE 152

Starting the remote link 153
Starting Turbo Profiler on the remote
link 153

Loading the program to the remote
system 154

TFREMOTE command-line options .. 154
Getting it all to work 155

TFREMOTE messages 156

Control Key Shortcuts 146
The Miscellaneous Options dialog
box 146

Printer Output 146
Use Expanded Memory 146
NMI Intercept 146

Appendix D Virtual profiling on the
80386 processor 159

Equipment required for virtual
profiling 159
Installing the virtual profiler device
driver 160

Ignore Case of Symbol 147
DOS Shell Swap Size (Kb) 147

Starting the virtual pro filer 160
Differences between normal and virtual

Remote Analyzing 147
Remote Link Port 147
Link Speed 147

Setting the mode for display 147
Default 147

profiling. 162
TF386 error messages 163
TDH386.SYS error messages 164

Appendix E Prompts and error
Color 147 messages 165
Black and White 148 Turbo Pro filer prompts 165
Monochrome 148 Turbo Pro filer error messages 169
LCD 148

Command-line options and TFINST
Index 179

equivalents 148

Iv

T A B L E s

3.1: Ways of using a pro filer 48 A.1: Turbo Profiler command-line
3.2: Local menu commands for filtering options . 132

collected statistics 56 B.1: Command-line options and TFINST
4.1: Manipulating windows 67 equivalents 148
4.2: Summary of Turbo Pro filer windows .78 C.1: TFREMOTE command-line options .154

v

F G

1.1: Turbo Pro filer with PRIMEO loaded .. 10
1.2: Program statistics, PRIM EO 11
1.3: The Display Options dialog box 12
1.4: Counts display in Execution Profile

window 13
1.5: Time and Counts in the Execution

Profile window 14
1.6: Time and count statistics, PRIMEI ... 22
1.7: Time and count statistics, PRIME4 ... 25
1.8: PRIME6's execution times and

counts 27
2.1: Execution time and count compartments

for PTOLL/PTOLLP AS 30
2.2: Memory map for Turbo Profiler 38
3.1: The Callers window 50
4.1: A typical window 66
4.2: A typical dialog box 69
4.3: The File Name history list 71
4.4: Turbo Pro filer's menu bar and global

menus 72
4.5: The Program Load dialog box 74
4.6: The New Directory dialog box 76
4.7: The Get Info text box 76
4.8: The Module window 79
4.9: The Area Options dialog box 83
4.10: The Stack Trace dialog box 84
4.11: The Pick a Module dialog box 85
4.12: The File dialog box 86
4.13: The Execution Profile window 87
4.14: The Display Options dialog box 88
4.15: The Callers window, showing calls in

CALLTEST 91
4.16: The Callers window local menus ... 93

u

vi

R E s

4.17: The Pick a Caller dialog box 94
4.18: The Overlays window 95
4.19: The Interrupts window 96
4.20: The Interrupt window local menus . 97
4.21: The Files window 99
4.22: The Files window local menus 99
4.23: The Display Options dialog box ... 101
4.24: The Areas window 101
4.25: The Area Options dialog box 103
4.26: Propagation of time 104
4.27: The Routines window 105
4.28: The Routines window local menus .105
4.29: The Pick a Module dialog box 106
4.30: The Disassembly (CPU) window .. 107
4.31: The Profiling Options dialog box .. 113
4.32: The Save dialog box 117
4.33: The Restore dialog box 118
4.34: The Pick a Module dialog box 119
4.35: Annotated source listing for

PRIMEO 120
4.36: The Printing Options dialog box .. 120
4.37: The Display Options dialog box ... 123
4.38: The Save Configuration dialog box .125
4.39: The Restore dialog box 126
4.40: Windows and window icons 128
A.1: Turbo Profiler DOS-level help 134
B.l: Customizing colors for windows ... 141
B.2: The Display Options dialog box 142
B.3: The User Input and Prompting dialog

box 145
B.4: The Miscellaneous Options dialog

box 146

N T R

Introduction

o D u c T o

Borland's Turbo Pro filer is the missing link in your software
development cycle. Once you have your code doing what you
want, Turbo Pro filer helps you do it faster and more efficiently.

So what is a pro filer? Pro filers (also known as performance
analyzers) are software tools that measure a program's
performance by finding its bottlenecks:

D where your program spends its time
a how many times a line executes
I:J how many times a routine is called, and by which routines
a what files your program accesses most and for how long

Profilers also monitor critical computer resources:

a processor time
m disk access
II keyboard input
m printer output
EJ interrupt activity

By monitoring vital activities and providing detailed statistical
reports on every part of your program's performance, Borland's
Turbo Pro filer enables you to fine-tune your programs. By
opening up the inside of your program and exposing its most
intricate operations-from execution times to statement counts,
from interrupt calls to file access activities-Turbo Pro filer helps
you polish your code and speed up your programs.

Turbo Pro filer surpasses other pro filers on the market both in
power and ease of use:

m Interactive profiling quickly reveals inefficient code in a
program.

II Profiles any size program that runs under DOS.

N

2

The difference
between

optimizing and
profiling

• Handles programs written in Turbo Pascal, Turbo C++, Turbo
C, and Turbo Assembler, as-well as programs compiled with
Microsoft C and MASM.

• Has an easy-to-use interface with multiple overlapping
windows, mouse support, and context-sensitive help.

• Reports execution time and execution count for routines and
indi vid uallines of a program.

• Tracks complete call path history for all routines. Analyzes
frequency of calls with complete call stack tracing.

• Monitors DOS file activities from the Files window by file
handle and time of open, close, read, or write. Event list logs
number of bytes read or written.

• Supports selective interrupt monitoring. Monitors all video,
keyboard, disk, and mouse interrupts, and custom interrupts.
Provides a complete event list or frequency monitoring. List of
common DOS calls by symbolic name lets you quickly identify
interrupts.

• Supports complete tracking of Turbo Pascal and Turbo C
overlays .

• 386 virtual machine profiling uses no RAM-leaves all of your
RAM available for your program.

• Allows remote profiling.
• Supports programs in C and assembler compatible with

Codeview .EXE format files.

• Profiles any program from any compiler if it's accompanied by
standard Microsoft format .MAP files.

By picking up where code optimizers leave off, Turbo Pro filer
directs you immediately to slow code, pointing out where to open
up bottlenecks and when to rework algorithms.

An optimizer makes your program run a little faster by replacing
time-consuming instructions with less expensive ones. But
optimizing can't fix inefficient code.

The profiler helps you to detect the part of your code that is least
efficient and helps point to algorithms which can be modified or
rewritten. Studies show that the largest performance improve­
ments in programs come from changing algorithms and data

Turbo Pro filer User's Guide

structures, rather than from optimizing small segments of
compiled code. Trying to find bottlenecks without a pro filer is like
trying to find bugs without a debugger; Turbo Pro filer reduces
both time and effort.

Hardware and software requirements

Turbo Pro filer runs on the IBM PC family of computers, including
XT, AT, the PS/2 series, and all true IBM compatibles. DOS 2.0 or
higher is required and at least 384K of RAM. Turbo Pro filer will
run on any 80-column monitor. We recommend a hard disk,
although it is possible to profile on a computer with two floppy
disk drives.

Turbo Pro filer does not require an 80x87 math coprocessor.

Installing Turbo Profiler

To install Turbo Pro filer on your system, run INST ALL.EXE, the
easy-to-use installation program on your distribution disks. This
program automatically copies files from the distribution disks to
your hard disk. Just insert the Install disk in your A drive, type
A: INSTALL, and press Enter. Then follow the instructions on the
screen.

The distribution disks are formatted for double-sided, double­
density disk drives and can be read by IBM PCs and close
compatibles. For a list of the files on your distribution disks, see
the README file on the Installation disk.

The README file

Introduction

¢ Take a look at the README file on the Install disk before you do
anything else with Turbo Pro filer. This file contains last-minute
information that might not be in the manual. It also lists every file
on the distribution disks, with a brief description of what each
one contains.

To access the README file, insert the Installation disk in drive A,
switch to drive A by typing A: and pressing Enter, then type README

and press Enter again. Once you are in README, use the I and J..
keys to scroll through the file. Press Esc to exit.

3

What's in this manual

4

Introduction (this section) tells you what pro filers are in general,
summarizes Turbo Profiler's features, and gets you ready to run
Turbo Pro filer on your system.

Chapter 1, A sample profiling session, is a tutorial that takes you
through a typical (albeit simple) profiling session. This chapter
starts with a "let's see what's going on" profile, then takes you
through interpreting the profile data collected, modifying and
refining the program based on insight gained from the profile,
and running additional profiles to gauge the effect of each
successive modification.

Chapter 2, Inside the profiler, uses analogy to explain how the
profiler gathers execution-time and execution-count data while
your program runs.

Chapter 3, Profiling strategies, provides general guidelines, along
with some tips, for conducting a fruitful profiling session.

Chapter 4, The Turbo Profiler environment, explains in detail each
menu item and dialog box option in the Turbo Pro filer
environment.

Appendix A, Turbo Profiler's command-line options, lists each
Turbo Pro filer command-line option and explains what the option
accomplishes.

Appendix B, Customizing Turbo Profiler, explains how to use
TFINST to change the configuration defaults of TPROF.

Appendix C, Remote profiling, describes how to profile with two
systems; you run your program on one and Turbo Profiler on the
other.

Appendix 0, Virtual profiling on the 80386 processor, explains
how to run the pro filer in 80386 extended memory, leaving the
full 640K of real memory for your program.

Appendix E, Prompts and error messages, lists all prompts and
error messages that can occur, with suggestions on how to
respond to them.

Turbo Pro filer User's GuIde

A note on
terminology For convenience and brevity, we use some terms in this manual in

slightly more generic ways than usual. These terms are module,
routine, and argument.

module A module in this manual refers to what is usually called a module
in C and in assembler, but also refers to what is called a unit in
Pascal.

routine Similarly, a routine in this manual refers to both a C function and
to what is known in Pascal as a subprogram (or routine), which
encompasses functions, procedures and object methods. In C, a
function can return a value (like a Pascal function) or not (like a
Pascal procedure). (When a C function doesn't return a value, it's
called a void function.) We use routine in a generic way to refer to
both C functions and Pascal functions and procedures.

argument Finally, the term argument is used interchangeably with parameter
in this manual. This applies to references to command-line
arguments used to invoke a program from DOS, as well as
arguments passed to routines.

How to contact Borland

Introduction

If, after reading this manual and using Turbo Pro filer, you would
like to contact Borland with comments, questions, or suggestions,
we suggest the following procedures:

• The best way is to log on to Borland's forum on CompuServe:
Type GO BPROGB at the main CompuServe menu and follow the
menus to Turbo Profiler. Leave your questions or comments
there for the support staff to process.

II If you prefer, write a letter detailing your problem and send it
to

Technical Support Department-Turbo Pro filer
Borland International
P.O. Box 660001
1800 Green Hills Drive
Scotts Valley, CA 95066-0001

a You can also telephone our Technical Support department
between 6 a.m. and 5 p.m. at (408) 438-5300. To help us handle

5

6

your problem as quickly as possible, have these items handy
before you call:

• product name (Turbo Profiler) and version number
• product serial number
• computer make and model number
• operating system and version number
• the contents of your CONFIG.SYS and AUTOEXEC.BA T files

If you're not familiar with Borland's No-Nonsense License
statement, now's the time to read the agreement included with
this package and mail in your completed product registration
card.

Turbo Pro filer User's GuIde

c H

We've based the examples in
thIs chapter on Jon Bentley's

·Programmlng Pearls·
column (July 1987) In

Communications of the
ACM.

All the tutorial examples
were run on a 286 machine

with a Hercules video
adapter.

A p T E R

1

A sample profiling session

Profiling is one of the least-understood yet most useful and vital
areas of good software development. Surveys indicate that only a
small fraction of professional programmers actually use pro filers
to improve their code. Other studies show that, most of the time,
even the best programmers guess wrong about where the bottle­
necks are in their programs.

What is the advantage to using this widely overlooked tool? For
one, profiling your program can increase its overall performance.
Second, profiling can augment your ability to produce efficient
code. The bottom line is that profiling, like debugging, can be a
cog in the wheel of the program development cycle.

In this chapter we show you an example of profiling put to good
use, and how-in the long run-profiling can save you hours of
hunting for that expensive line of code. You use Turbo Pro filer to

III see where your program spends its time
III create an annotated source listing and a profile statistics report

II save profile statistics, then start up again with saved statistics
II analyze profile statistics and source code in side-by-side

windows

The examples in this chapter are based on finding and printing all
prime numbers between 1 and 1,000. Recall that a number is
prime if it is divisible by only the integer 1 and itself; it must also
be odd, since any even number is divisible by 2 and therefore is
not prime. You can tell whether a particular number is prime by

Chapter 7 I A sample profiling session 7

checking to see if it is divisible by other, smaller primes, or by any
integer larger than the first two primes, 2 and 3.

The object of profiling the example programs is to speed up the
process of finding and printing the prime numbers. As you work
through the examples, you'll learn how to use Turbo Profiler to
test the efficiency of each example's structure.

The first program you'll look at is PRIMED. Once you've profiled
it and seen where to modify the code, all you need to do is load
and profile PRIMEl. With the exception of PRIMEl, each of the
programs covered in this chapter (PRIME2, PRIME3, PRIME4,
PRIMES, and PRIME6) is a variation on its predecessor.

Pascal users The PRIMEn. * programs are Turbo C programs. For Pascal
programmers, we've also supplied Turbo Pascal versions of them
on disk (PRIMEnP A.*) that you can run as you go through this
chapter. To each discussion of the C program's profile results,
we've added comments about what you'll see if you're running
the Pascal programs instead.

Make sure the files for all the example programs (PRIMEn.C and
PRIMEn.EXE or PRIMEnP A.PAS and PRIMEnPA.EXE) are in
your current directory.

For each of the examples we've provided both the source code
and the executable code; Turbo Profiler requires both to analyze a
program. Each of the examples was compiled with full symbolic
information, since the pro filer also requires this information.

r::> To ensure that your programs contain full symbolic information,
compile them with the appropriate compiler options turned on:

• Turbo C++: If you are compiling in the IDE, turn on Options I
Full Menus, then open the Debugger dialog box (choose
Options I Debugger), and set Source Debugging to Standalone.
If you are compiling from the command line, use the -v
command-line option.

• Turbo C: If you are compiling in the IDE, specify Standalone in
the Debug I Source Debugging option before you compile your
modules. If you are compiling from the command line, specify
the -v command-line option.

• Turbo Pascal: If you are compiling in the IDE, set the Options I
Debug Information and Debug I Stand-Alone Debugging
options to On. If you are compiling from the command line, use
the IV command-line option.

8 Turbo Pro filer User's GuIde

IJ Turbo Assembler: Use the lzi command-line option, then link
the program with TLINK, using the Iv option.

80x87 users While TPROF works with numeric coprocessors, if your system
has an 80x87 chip, you have to fool it temporarily into thinking
the 80x87 is unavailable so you'll get results similar to the ones
shown in this tutorial. (Otherwise, the statistics here won't even
approach what you'll see on your screen.) Just set an environment
variable at the DOS prompt with the command SET 87=N before
running the profiler. Of course, the statistics you get might still
vary from what appears in the figures in this adapter; this occurs
because of differences in individual systems (CPU speed, etc.).

Profiling a program (PRIMEO)

You profile and improve a program in four steps:

1. Set up the program before profiling it.

2. Collect data while the program runs.

3. Analyze the collected data.

4. Modify the program and recompile it.

After modifying your program, repeat Steps 1 through 3 to see if
the modifications have improved your program's performance.

PRIMEO uses Euclid's method of testing for prime numbers, a
straightforward integer test for a remainder after division. As
each prime number is found, it is stored in the array primes, and
each successive number is tested for "prime-ness" by being
divided by each of the numbers already stored in primes.

LOQvlng Turbo Pro filer at any Load PRIMEO into Turbo Pro filer by typing
time Is a simple, one-step

procedure:just choose File I TPROF PRIMED
Quit or press All-X.

and pressing Enter.

Pascal users If you want to profile the Turbo Pascal version of PRIMEO.C,
make sure PRIMEOP A.P AS and PRIMEOP A.EXE are in your
current directory, and enter

TPROF PRIMEDPA

The profiler comes up with two windows open: the Module
window (which displays PRIMEO's source code) and the

Chapter 1, A sample profiling session 9

Figure 1.1
Turbo Profller with PRIMEO

loaded

For a more detal/ed
description of the profiler's

environment, see Chapter 4.

10

Setting up the
profile options

Execution Profile window (which will display profile statistics
after you run PRIMED).

int j.
int lastprime. curprime.

xecution Profile
Total time: 0 sec
% of total: 100%

Runs: 0 of 1

Display: Time
Filter: All

Sort: Frequency

2

I-Menu - .

The Module and Execution Profile windows are concerned with
Steps 1 and 3 in the profiling process. You use the Module
window to determine what parts of the program to profile. Once
you run a program, the Execution Profile window displays the
information you need to analyze your program's behavior.

Before you begin to profile your program, you must specify the
areas you want to profile. An area is a location in your program
where you want to collect statistics: An area can be a single line, a
construct such as a loop, or an entire routine. For your first
profile, you want more information than Turbo Profiler's default
area settings provide.

To analyze a small number of short routines (like prime and main
in this program), you have to know how often each line executes
and how much time each line takes. To get this information, you
must mark every line in the program as an area.

1. Press Alt-F10 to open the Module window local menu.

2. Choose Add Areas from the local menu. This menu lists area
boundaries for you to choose from.

Turbo Pro filer User's GuIde

Collecting data

Figure 1.2
Program statistics. PRIMEO

3. Choose Every Line in Module. This sets area markers for all
lines in the module, then returns the cursor to the Module
window.

Notice that all executable lines inside the module are now tagged
with a marker symbol (=~).

Now you're ready for the second step in the profiling process.
Press F9 to run PRIMED under Turbo Profiler. The program prints
the prime numbers between 1 and 1,000 on the User screen. When
the program finishes, look at the information in the Execution
Profile window. These are your program statistics.

Zoom the Execution Profile window: Press F5 or choose Zoom
from the Window menu. T1:le Execution Profile window should
now look like this:

DM~~ifi1mil1ti I~@IM;I!!"READY
r=1 I =Executlon Pro 1 ~ [1]=

Total time: 6.6910 sec Display: Time
% of total: 99 % Filter: All

Runs: 1 of 1 Sort: Frequency

:,J:I:tl.,al, ,
I~PRIM~Q~?? Q.~Q~~ sec

<1%
..

IPRIMEOl17 0.0359 sec
IPRIMEOl18 0.0354 sec <1%
IPRIME0121 0.0071 sec <1%
IPRIMEOl28 0.0060 sec <1%
IPRIMEOl19 0.0059 sec <1%
IPRIMEOl24 0.0038 sec <1%
IPRIMEOl29 0.0031 sec <1%
IPRIMEOl26 0.0034 sec <1%
IPRIHEOl32 0.0019 sec <1%
IPRIMEOl33 0.0018 sec <1%
IPRIMEOl30 0.0011 sec <1%
main 0.0000 sec <1%

lPRIMEOl35 0.0000 sec <1%
IPRIMEOl14 0.0000 sec <1%
IPRIMEOl13 0.0000 sec <1%

Alt: Flt".lm .. Ilr!)!'iI1F2@;mui'TtjTiJA!FJ9&F5mmilF6&I!lF1ot!!WQM"i§,ji

The upper pane of the Execution Profile window displays the
program's total execution time, along with information about the
data in the lower pane. The lower pane has four entries on each
line:

lJ an area name

lJ the number of seconds spent in that area

a the percentage of total execution time spent in that area

lJ a magnitude bar proportional to the percentage

Chapter 7 I A sample prOfiling session 11

12

This line

iPRIMEOi31 6.2655 sec 93% 1======================================

tells you that the thirty-first line of code in module PRIMED
executed for about 6.3 seconds-which was 93% of the total
execution time for all marked areas. The magnitude bar
automatically shows Line 31's time full-scale (because Line 3D is
the most time-consuming of the marked areas).

Pascal users In PRIMEOP A, the corresponding line of code is line 42.

Displaying
statistics You can also display this program's collected data as execution

counts.

D1 spl ay •••
Filter All ~

Module
Remove

Figure 1.3
The Display Options dialog

box

1. Press Alt-F10 to bring up the local menu for the Execution
Profile window.

2. Choose Display on the local menu.

The Display Options dialog box lists five possible ways to
display data in the Execution Profile window.

• Time shows the total time spent in each marked area. (This
is the default.)

• Counts displays the number of times program control
entered each area.

• Both shows time and counts data on the same screen.
• Per Call displays the average amount of time per call.

• Longest shows the longest time spent in each area.

3. Choose Counts under Display in this dialog box. (Click Counts
with the mouse, or use the arrow keys to move to it and press
Enter, or press C, the hot key for this option.)

4. Choose OK (or press Enter).

Turbo Pro filer User's Guide

Figure 1.4
Counts display In Execution

Profile window

The Execution Profile window now displays PRIMED's statistics as
execution counts instead of execution times, as shown in this
figure:

1I[!~,.mwmDlffittjI«AII'(lllfjM1jtit.lm;X1III~READY
;=1 1 =Executlon Pro 1 e [1]=

Total time: 6.4478 sec Display: Counts
% of total: 99 % Fl1ter: All

Runs: 1 of 1 Sort: Frequency

:,I:':tl"I;(I, : III III III III III III III ..
'PRIMEO'19 ~gg ~: a
IPRIMEOl28 a
IPRIMEOl21 499 2% a
IPRIMEDI26 333 1%
IPRIMEDI29 333 1%
IPRIMEDI24 333 1%
IPRIMEDI31 166 <1%
IPRIMEOl32 166 <1%
IPRIMEDI33 166 <1%
IPRIMEDI30 166 <1%
main 1 <1%

IPRIMEDI18 1 <1%
IPRIMEDI17 1 <1%
IPRIMEDI15 1 <1%
IPRIMEDI14 1 <1%
IPRIMEOll2 1 <1%

FlmmJF2fl&lF3DmJ]F5ff&lF6§mSlF~Fl~~m' . ·~I.\,y "'0 '1 ' 'J ~J ' ,",\~M~~"t ,;t.!,: 'I "',·,,1

This display of PRIMED's statistics shows that line 22 is the most
often called line in PRIMED. (It's line 31 in PRIMEDPA.)

You can also see counts and times together. Bring up the Display
Options dialog box again (either press AIt-F10 and choose Display,
or press etrl-D).

Choose Both under Display, then choose OK or press Enter. (To
choose Both, either click it, or press -!, to get to it, then press Enter,
or press B, the hot key for this option.)

Now the Execution Profile window looks like this:

Chapter 7 I A sample profiling session 13

Figure 1.5
Time and Counts In the

Execution Profile window
.[!!~~ifi1m'ii.~' 2 READY
F[. =Executlon Pro 1 e [']=

Total time: 6.6910 sec Dis~laY: Time and counts
% of total: 99 % Fi ter: All

Runs: 1 of 1 Sort: Frequency

f,J:I:nil:U ..
ti.Zti55 sec ~

...
IPRlHEOIZ2 15122

0.3069 sec 4% ..
IPRIHEOll7 1 <1%

0.0359 sec <1%
IPRlHEOl18 1 <1%

0.0354 sec <1%
IPRIHEOl21 499 2% • 0.0071 sec <1%
IPRIHEOl28 499 2% • 0.0060 sec <1%
IPRlHEOll9 500 2% • 0.0059 sec <1%
IPRlHEOl24 333 1%

0.0038 sec <1%
IPRIHEOl29 333 1%

A 1 t: Fl!$Jt1l1tlJIiIF20;mWlT1jTiIiIGjlFJDImFsmmF6DIilFl00lttfli,,@"

When the Execution Profile window displays time and counts
together, the first entry for each area is execution counts, and the
second is execution time. Figure 1.5 shows that the area
PRIMEO#22 (line 22 in PRIMEO) was called 15,122 times
(execution counts) and took up 0.31 seconds of total execution
time.

Printing modules and statistics

14

Time and counts
profile listing

In this section, you print two things:

1. a profile source listing of the code that's in the Module
window, with time and counts data attached to each marked
area

2. the profile statistics displayed in the Execution Profile window

Before you print a time-and-counts profile listing to a file, you
must set the appropriate printing options.

1. Choose Print I Options.

2. In the Printing Options dialog box, choose the File radio
button (press Tab until the radio buttons become active, then
press J, to turn the setting to File).

Turbo Pro filer User's Guide

The times in your file probably
vary from these somewhat,

because each computer is a
little different.

3. Tab to the Destination File input box and type
PRIMEOSC.LST

4. Choose ASCII to use the standard ASCII character set (rather
than the IBM extended character set).

5. Choose OK (or press Enter).

The cursor returns to the active Execution Profile window.

Now, to print the listing file, choose Print I Module. In the Pick a
Module dialog box, press J.. to highlight the module name
PRIMED, then press Enter (or choose OK).

You can shell out to DOS to see the file PRIMEOSC.LST, which
prints to the current directory. Choose File I DOS shell and, at the
DOS prompt, type

TYPE PRIMEOSC.LST

This is what you see if you're profiling the Turbo C program,
PRIMED:

Turbo Profiler Version 1.0 Tue Feb 27 15:16:47 1990

Program: D:\TPROF\PRIMEO.EXE File primeO.c

Time Counts

method */

0.0000 1

0.0000 1
0.0000 1
0.0000 1
0.0000 1

0.0359 1
0.0354 1
0.0059 500

0.0071 499
0.3069 15122

/* Copyright (c) 1990, Borland International */
/* Program for generating prime numbers using Euclid's

int primes[lOOO]i
~define MAXPRIMES 1000

main ()
(

int ji
int lastprime, curprime;

primes [0] = 2;
primes [1] = 3;
lastprime = 1;
curprime = 3;

printf("prime %d = %d\n", 0, primes [0)) ;
printf("prime %d = %d\n", 1, primes[l]);
while(curprime < MAXPRIMES)
(

for(j = 0; j <= lastprime; j++)
if((curprime % primes[j]) == 0)

Chapter 1, A sample profiling session 15

16

Profile statistics

0.0038 333

0.0034 333

0.0060 499
0.0037 333
0.0017 166
6.2655 166
0.0019 166
0.0018 166

0.0000 1

curprime t= 2;

break;

if(j <= lastprime)
continue;

lastprime++;
printf (llprime %d = %d\n", lastprime, curprimel;
primes [lastprime] = curprime;
curprime t= 2;

This profile source listing is useful because it's a permanent record
that shows, for each area in your program, the execution time and
execution counts.

Now type EXIT at the DOS prompt and press Enter to return to
Turbo Profiler.

report You can also print a replica of the open Execution Profile
window's contents to your printer or to a disk file.

1. Choose Print I Options again.
. 2. Choose the Printer radio button.

3. Choose Graphics to include IBM semi-graphic characters in
the printed report. (If your printer does not support IBM high
ASCII characters, like rr and:!.!:, skip this step and proceed to
Step 4.)

4. Press Enter (or choose OK).

5. Choose Print I Statistics.

The resulting printout, like the profile source listing, is a
permanent record of your progress as you go through the steps of
profiling, modifying, recompiling, and repro filing in your quest
for the sleekest and most efficient code possible (and practical) for
your program.

Turbo Pro filer User's GuIde

Saving and restoring statistics

Before you go on, here's how to save PRIMEO's profile statistics to
a file, so you can quit Turbo Pro filer at any time without losing
the data. We also show you how to restore those statistics the next
time you start the profiler.

Choose Statistics I Save to save your program's profile statistics to
a.TFS (Turbo Profiler Statistics) file. Because PRIMEO is in the
Module window, the File Name input box lists PRIMEO.TFS as the
default. Choose OK to create this file.

All the statistical data from the current profile run of PRIMEO is
now saved in the file PRIMEO.TFS in the current directory, so you
can quit the pro filer at any time without losing any of that
information. Open PRIMEO in the profiler, and choose Statistics I
Restore. As before, the File Name input box lists PRIMEO.TFS as
the default. Press Enter to go to the Files list box, highlight
PRIMEO.TFS, and choose OK to recover the data from this file.

Analyzing the statistics

Pascal users

We cover modifications to
the prinff statement in

program PRIME5 and-for
you Pascal users­

Introduction of the uses CRT
statement In PRIME5PA.

In this section you learn how to analyze the statistics in the
Execution Profile window, so you can use what they reveal to
streamline your program.

First, though, take another look at the time and count statistics in
the Execution Profile window. Unzoom the Execution Profile
window (choose Zoom from the Window menu or press F5) and
look at the statistics for lines 22 and 31 (the If and prlnH
statements).

In PRIMEOPA it's line 31 (if) and line 42 (Writeln).

A time and count profile like this tells a lot about a program. For
instance, you can see that line 22 in PRIMEO executes far more
frequently than any other statement. It makes sense that line 22
executes 15,122 times, since it tests every number between 4 and
1,000 against every number in the array primes, until there is even
division or the array is exhausted. That means a lot of numbers to
be tested. You can also see that line 31, the prlnH statement,
accounts for most of the program total execution time.

Chapter 1, A sample prOfiling session 17

Viewing both
source code and

statistics
The data in the Execution Profile window shows that the test in
line 22 is doing more work than it should. But you can't really get
the entire picture until you look at execution time and count data
and source code together.

What you need to do is compare time and count data in the
Execution Profile window and the corresponding source code in
the Module window.

Here's one way to display source code and profile statistics
simultaneously:

1. Resize and move the Execution Profile window so it occupies
the right half of your screen: Choose Window I Size/Move, or
press Ctrl-F5.

2. Follow the directions on the status line to

a. Resize the window to full-screen height and half-screen
width.

b. Move the resized window to the right.

When you've done steps a and b, press Enter.

3. Activate the Module window by pressing F6, then resize and
move it so it occupies the left half of the screen.

4. Go back to the Execution Profile window (press F6 again).

.... To resize a window with the mouse, drag the Resize box in the
lower right comer; to move the window, drag the title bar or any
double-line left or top border character (II or =).

18

There is an automatic link between the Execution Profile window
and the Module window, so that when you move through the
source code, the execution profile display tracks the cursor's
current line position. To see this tracking feature in action,

1. Activate the Execution Profile window (press F6), and move
the highlight bar to the first line (statistics for line 31 of
PRIMEO, line 42 of PRIMEOP A).

2. Open the local menu (press Alt-F10) and choose Module (or just
press Ctrl-M).

The pro filer pOSitions the cursor on line 31 in the Module
window.

Turbo Pro filer User's Guide

Saving the window
configuration

3. Use the arrow keys to move through the source code to line 22
(line 31 in PRIMEOPA).

This line is the second largest time consumer in PRIMEO. The
top two statistics lines in the Execution Profile window now
display the profile data for this If statement.

4. Move the cursor in the Module window to line 21 (line 29 of
PRIMEOP A) and note how the display in the Execution Profile
window tracks with it. The top lines in the Execution Profile
window are now the profile statistics for line 21.

5. Move the cursor to line 30 (line 42 of PRIMEOP A) and note the
display in the Execution Profile window.

Having the two windows synchronized this way makes it easy to
find the greatest resource hogs in your program. Once you get a
better feel for interpreting the data onscreen, you won't need to
rely as much on profile listings like the one on page 16.

This is a good time to save your customized version of Turbo
Profiler. If you don't save your customized window arrangement,
the windows will revert to their default size and placement the
next time you load a program into the profiler.

1. Choose Options I Save Options. This brings up the Save
Configuration dialog box.

2. By default, the Options check box is already checked. This
records settings (such as the Execution Profile window'S
display options) in the configuration file.

3. In the Save Configuration dialog box, tab to Layout and press
Spacebar. This causes your side-by-side window layout to be
saved in the configuration file.

4. By default, the configuration file to be saved is TFCONFIG.TF,
listed in the Save To input box. Choose OK, or press Enter, to
sa ve your options to this file in the current directory .

Wherever you start up Turbo Profiler, it looks for TFCONFIG.TF,
the default configuration file. When the pro filer finds that file, the
options and layout you've set will come up automatically.

Chapter 7, A sample profiling session 19

20

Measuring an
area's efficiency The ratio of execution time to execution counts is a good measure

of a line's or routine's overall efficiency. To see this ratio for the
areas in PRIMED, change the display option in the Execution
Profile window. Here's how:

1. From the Execution Profile window's local menu (press Alt-F10,
choose Display.

2. Under Display in the dialog box, choose Per Call.

3. Choose OK (or press Enter).

Now you can see that line 22 is much more efficient than line 31
(in PRIMEDPA, lines 3D and 41). It uses up a lot of execution time
because it executes so many times, but each individual call
averages much less than a millisecond. Line 31, on the other hand,
averages nearly 38 milliseconds per call (in PRIMEDP A, line 42
averages 28 milliseconds).

¢ The output from the pro filer points the way to improving the
execution time of PRIMED and making it structurally simple. The
task of improving the program can be divided into two strategies:

1. Reduce the amount of time spent in input/output.

2. Rewrite the looping structure to be more streamlined and
efficient.

The input/output problem can be partially resolved by reducing
the prlntf statement from its present form

printf{lIprime Jl%d = %d\n", lastprime, curprime)

to simply

printf{"%d\n", curprime).

Pascal users You can change the Writeln statement to

Writeln{CurPrimeli

Just this simple modification results in a considerable savings in
the execution time. However, you can't reduce the number of
times you call the output statement; for the given problem, there
will always be 168 primes to print out. And apart from this minor
improvement, there is not a great deal you can do to speed up the
execution of PRIMED. Its algorithm, which requires saving all the

Turbo Pro filer User's GuIde

previous results in an array and then using them to divide, is
thorough but virtually impossible to streamline. (It is also not
very memory-efficient, because the array requires an allocation of
memory equal to the number of primes being tested. Eventually
this imposes a limit on the number of primes that could be tested
without running out of memory.)

Fortunately, there is a better way to test for prime numbers: You
can change the algorithm itself. That's what happens in the next
example program, PRIME1.

A modularized primes test (PRIME 1)

Pascal users: Load PRIMEIPA. You're finished with PRIMED now, so load PRIMEl (Pascal users:
PRIMElPA), the next version of the prime number program, into
the Module window and look at the code.

1. Choose File I Open.

2. By default, the File Name input box is activated and contains
the file-name mask *.EXE. Press Enter.

3. In the Files list box, use the t and ~ keys to highlight
PRIMEl.EXE (PRIME1P A.EXE).

4. Press Enter. Turbo Pro filer loads PRIMEl (PRIMElP A) into the
Module window.

S. Zoom the Module window (press F5). Note the added prime
(Prime) routine on line 4.

You can see right away that two major changes have occurred:

• The array primes is gone. This program does not test by
dividing each number by all smaller primes; it simply uses a
loop to divide by all the odd numbers up to but not including
the suspected prime. Initially this algorithm results in more
iterations, but we will see that it eventually can be refined into a
more streamlined and readable program.

II The prime number test itself has been placed in a separate
routine that is called from the main program.

Set your areas (choose Add Areas I Every Line in Module from the
Module window local menu), press Enter, then run (F9) PRIME1 in
Turbo Pro filer and look at the statistics. Then choose Display from
the Execution Profile window local menu to open the Display

Chapter 7, A sample profiling session 21

Figure 1.6
Time and count statistics,

PRIMEl

Options dialog box and turn on the Both radio button. Press Enter,
then zoom the Execution Profile window (F5).

1.~rwnl4;.~mmlll.~' 1 READY
• c£xecut, on Pro e U]=

Total time: 4.5675 sec DiS~lay: Time and counts
% of total: 99 % Fi ter: All

Runs: 1 of 1 Sort: Frequency
,.

t.

3.1294 sec bM
IPRlMEl19 78022 93%

1.3470 sec 29%
IPRIMEl120 999 1%

0.0299 sec <1%
IPRIME1I8 999 1%

0.0142 sec <1%
IPRIMEl112 999 1%

0.0126 sec <1%
."prime 999 1%

0.0115 sec <1%
IPRlMEl110 831 <1%

0.0098 sec <1%
IPRlMEl111 168 <1%

0.0019 sec <1%
IPRIMEl119 1 <1%

Al t: FlOW':QliWze;mWmUtmllf39mDlFsalmFcnm:tilF1OOrmmi,,[M

You can see that the execution time has improved somewhat (this
is due in part to the fact that PRIME1 prints out less information
than PRIMEO). The main bottleneck is still the printf statement
(now line 21). (In PRIME1P A it's the Writeln statement, line 24.)

Notice in particular that the test for prime numbers (line 9 in
PRIMED, line 12 in PRIMEOP A) now executes 78,022 times instead
of 15,122. This looks impressive at first, but notice that it only
increases execution time for this line by about 1 second; we have
already seen that this statement is very time-efficient.

One obvious way to improve efficiency, now that we have
isolated the test loop in a separate routine, is to cut down on the
number of calls to the routine. There are ways of limiting the
number of integers that have to be passed to the routine for
testing; the more you can eliminate at the main program level, the
fewer calls you have to make and the faster your program
executes. That is the strategy we employ in the next several
sample programs.

Modifying the program and reprofiling

22

Bentley points out that instead of testing for all factors between 1
and n in the modulus statement, you can set the upper limit of the

Turbo Pro filer User's GuIde

Loading another
program (PRIME2)

Pascal users

test to the square root of the number you're testing. That's what
we've done in program PRIME2 (PRIME2P A).

Go ahead and load PRIME2, the next version of the sample
program, into the Module window. In program PRIME2, we've
added a root (Root) routine that calls a square root library routine
and returns an integer result.

Load PRIME2PA into the Module window.

You need to set areas for all lines in the module, so bring up the
local menu and choose Add Areas I Every Line in Module, then
press Enter.

Press F9 to start the profile. Once again, you'll see the primes
between 1 and 1,000 print to the User screen.

When the program finishes running, open the Display Options
dialog box (choose Display from the Execution Profile local menu)
and set Display to Both. Press OK. Despite decreasing the number
of calls to line 15 (from 78,022 to 5,288) and reducing the time
spent in the same statement, there's still a substantial increase in
overall execution time.

The problem with PRIME2 (and PRIME2P A) is the expense of the
new root routine. Line 7 inside the routine executes 5,456 times
and consumes almost 5 seconds. At approximately 1 millisecond
per call, you can't afford too many passes through this routine. (In
PRIME2PA it's line 9.)

When the Execution Profile window shows both time and count
information, certain patterns are worth looking for. In inefficient
routines, the second line (time data) is much longer than the first
line (count data), which means the ratio of time to counts is high.
This is the case for line 27, the printf statement (in the Pascal
program, it's line 28).

When the routine's time:count ratio is high, the best thing to do is
substitute another routine.

However, the return statement in the root routine (line 7),
presents a different problem. It accounts for the largest number of
calls and the largest amount of time. Two other lines (line 5 and
line 8) have 5,456 calls, but the histogram bar for each of these
cases shows small execution times. This is good: It means the

Chapter 7, A sample profiling session 23

Reducing calls to
a routine
(PRIME3)

24

Pascal users

Pascal users

Still more
efficiency

(PRIME4)

Pascal users

statements are fast. So the biggest problem right now is the
number of calls made to the root routine.

The problem now is to reduce the number of calls to the root
routine. Load PRIME3 into the Module window, then zoom the
Module window and take a look at the source code.

Load PRIME3P A into the Module window.

In PRIME3, the only routine modified is prime. We've added a
new integer variable, limit, and set limit equal to root(n) before
entering the for loop. The test in the for loop is based on limit.

In PRIME3P A, we've added the integer variable Limit and set it
equal to the root of n before entering the for loop. The test in the
for loop is based on Limit.

In the Module window local menu, set areas to Every Line in
Module. When you profile the program this time (choose Run I
Run or press F9), the program runs quite a bit faster. PRIME3
shows an almost 50% decrease in total execution time.

The printf routine is now the major resource consumer, eating up
over half the execution time. By reducing the number of calls to
the square root routine in root (from 5,456 to 999), we've
decreased computational time substantially.

There are still more ways to increase the efficiency of the prime
routine. Load PRIME4 into the Module window now, then
examine lines 8 through 17 of the source code.

Load PRIME4P A and examine lines 11 through 32.

/****** PRlME4.C ******/

if (n % 2 == 0)

:r:etu:r:n (n==2)i

if (n % 3 == 0)

:r:etu:r:n (n==3);

{****** PRIME4PA.PAS ******}

if (N MOD 2 = 0) than
begin

Prime := N = 2;
exit;

end;
if (n MOD 3 = 0) than
begin

Prime := N = 3;
G%it;

Turbo Pro filer User's GuIde

Figure 1.7
Time and count statistics,

PRIME4

if (n % 5 == 0)

return (n==5);

for (i=7; i*i <= n; i+=2)
if (n % i == 0)

return 0;

return 1;

and;
if (N mod 5 = 0) than
bogin

Prime := N = 5;
oxit;

ond;
for I := 7 to N-1 do

if (N mod I = 0) then
begin

Prime := False;
exit;

end;
Prime := True;

There are a number of improvements here.

D The three if statements in the prime routine weed out factors
that are multiples of 2,3, and 5, respectively. !fyou can't throw
out a number n based on one of these tests, you must test the
remaining numbers, up to the root of n. You can start at the
value 7-the if statements have eliminated all possibilities
below this number.

D The for loop now increments by two on each iteration, because
there's no point in testing even numbers.

III The test i * i <= n has replaced the more expensive test
involving the root routine.

The net result is that we've shaved more than one second off the
execution time. The count data in Figure 1.7 shows that prinH now
consumes 96% of run time.

~~if\1mmindtWi1DA!lmmi.Mlimil~lpmW'ijfi'-READy
"iF[iJ=ExecutlOill'ro 1 e [t]

Total time: 3.2654 sec Display: Time and counts
% of total: 99 % Filter: All

Runs: 1 of 1 Sort: Frequency

sec ...
IPRIHE4126 999 12% aIIIIIII:I

0.0299 sec <1%
IPRlHE4115 1530 19%

0.0278 sec <1%
IPRlHE418 999 12% II:I:I:IIi:CiCI

0.0145 sec <1%
IPRlHE4118 999 12% --0.0138 sec <1%
"prime 999 12% EIiIIIIICI

0.0124 sec <1%
IPRIME4110 499 6% m

0.0075 sec <1%
IPRIHE419 500 6% 1m

0.0066 sec <1%
IPRlHE4112 332 4% a

Chapter 7, A sample profiling session 25

Reducing I/O
time (PRIMES) This change in the amount of time consumed by prlntf shows that

the program is now I/O bound, rather than computationally
bound. Perhaps that's acceptable. But just for fun let's try to
squeeze a little more blood out of the I/ a turnip.

Pascal users load PRIME5PA Load PRIMES into the Module window and look at line 28 (line 3
in the Pascal version).

Turbo C has a fast version of printf called cprintf, which is
PRIMES's only statement change from program PRIME4. cprlntf
handles newlines differently than printf does; in cprintf, an
explicit carriage-retum/linefeed pair, \r\n, replaces the single
newline character of prlntf.

Pascal users Turbo Pascal also has a fast version of Writeln in the Crt unit. We
tell PRIM ESP A to use this fast version by including the uses Crt
statement at the beginning of the program. This is the only change
to PRIMESP A.

Eliminating CR/LF

Call up the Module window's local menu and set areas for every
line in PRIMES's source module. Run PRIMES, then examine the
profile count data for line 28 in PRIMES (or line 3 in PRIMESP A).

The faster print routine saves almost a second in 168 calls.

pairs (PRIME6) Here's one last change. Instead of printing a carriage-return/line­
feed pair after each prime number, try printing just a space. This
is the only change made in program PRIME6.

Load PRIME6 (Pascal users load PRIME6P A), set areas for every
line, then run it.

Surprise! Eliminating the carriage retum/linefeed pair cuts
execution time by a factor of almost 7. Apparently, printing new
lines is expensive. The distribution of profiles is fairly even for
execution times and counts (Figure 1.8). We'd be hard pressed to
squeeze more out of this program without substantially changing
the algorithm.

26 Turbo Pro filer User's Guide

Figure 1.B
PRIME6's execution times and

counts

Where to now?

~~~m~.~fla:ugI~~::~~~~~::~::::= ~y r,[iJ=ExecutTOnProfi le..: 1=[1] 
Total time: 0.5264 sec Display: Time and counts 
% of total: 97 % Filter: All 

Runs: 1 of 1 Sort: Frequency 

PRIME6N28,,. ",168' 2% 

IPRlME6127 

IPRIHE61l6 

IPRIHE619 

IPRlME61l9 

yrime 

IPRlME6111 

IPRlHE61l0 

IPRlHE61lJ 

0.3864 sec 75% 
999 12% 

0.0299 sec 5% -1530 19% I~ __ 
0.0277 sec 5% 

999 12% -0.0144 sec 2% 
999 12% 

0.0133 sec 2% -999 12% 
0.0124 sec 2% -499 6%_ 
0.0073 sec 1% 

500 6% I:m 
0.0066 sec 1% 

332 4% Eel 

We've taken you through the basics of profiling in this tutorial. By 
now, you should be familiar with using Turbo Profiler: loading 
and profiling programs, printing the contents of various win­
dows, saving and restoring profile statistics, and rearranging the 
windows so you can analyze the statistics. 

Go ahead and quit the pro filer now (choose File I Quit, or press 
Alt-JO. 

For more information about Turbo Pro filer's environment, as well 
as details about parts of the profiler not mentioned here, refer to 
Chapter 4, the complete Turbo Profiler environment reference. 

If you want more challenges than we've given in this tutorial, try 
these: 

13 Profile for primes less than 

02,500 
05,000 
o 7,500 
o 10,000 

1:1 Set the profile mode (choose Statistics I Profiling Options to 
bring up the Profiling Options dialog box) to Passive analysis. 
What does this do to profiler overhead? What kinds of 

Chapter 7, A sample profiling session 27 



28 

infonnation do you lose in passive analysis? (See Chapter 3 for 
infonnation on passive profiling.) 

• Find out what kind of performance improvement you get by 
implementing the Sieve of Eratosthenes to compute primes up 
to 10,000 . 

• Compare the cost of printing new lines with calls to position the 
cursor. 

There are a number of articles on the subject of profiling, but not 
many books. Jon Bentley's book, Writing Efficient Programs, 
provides a summary of rules for designing efficient code, suggests 
a comprehensive methodology for profiling, and contains an 
extensive bibliography. 

Turbo Profiler User's Guide 



c H 

Chapter 2, Inside the pro filer 

A p T E R 

2 

Inside the profiler 

!fyou want to use Turbo Profiler to your best advantage, you 
need to understand its inner workings. Knowing what the pro filer 
does when it encounters an area marker or what happens each 
time the profiler interrupts program execution allows you to fine 
tune your techniques for specifying the type of information to 
collect and for interpreting the resulting reports. 

Consider the source code in PTOLL and PTOLLP AS: 

/* ****** PTOLL.C ***** */ 

#include <stdio.h> 
#include <dos.h> 

void main() 
( 

printf("Entering main\n") i 
route66 () ; 
printf("Back in main\n"); 
delay (1000) ; 
highway80(); 
printf("Back in main\n"); 
delay(lOOO); 
printf("Leaving main\n\n"); 

route66 () 
( 

printf("Entering Route 66\n"): 
delay(2000); 

{****** PTOLLPAS.PAS ******} 

Uses Crt: 

procedure Route66: 
begin 

Writeln( 'Entering Route 66' ): 
Delay(2000): 
Writeln( 'Leaving Route 66' )i 

endi 

procedure Highway80: 
begin 

Writeln( 'Entering Highway 80' )i 
Delay(2000)i 
Writeln( 'Leaving Highway 80' ); 

end: 

begin 

29 



Figure 2.1 
Execution time and count 
compartments for PTOll! 

PTOllPAS 

printf(IILeaving Route 66\n")i 

h1ghway80 ( ) 
{ 

printf(IIEntering Highway 80\n"l; 
delay(20001; 
printf(IILeaving Highway 80\n"); 

Writeln( 'Entering main' )i 
Route66i 
Writeln( 'back in main' Ii 
Delay (1000) ; 
Highway80i 
Writeln( 'back in main' Ii 
Delay(lOO)i 
Writeln( 'Leaving main' Ii 

end. 

Setting the areas to All Routines in Module effectively sets up 
four time-collection compartments and four count-collection 
compartments. 

Total 

ma1n() 

route66() 

hi ghwayBO() 

Execution 
Time 

o 
o 
o 
o 

Execution 
Counts 

o 
o 
o 
o 

Phantom tollbooths 

30 

In this section, you follow program execution and see what 
happens as it passes each area marker. Think of this process as 
going through a series of toll booths. When you pass a toll booth, 
you're on a section of road associated with that toll booth until 
you come to another toll booth. 

You're in free space before you pass the first toll booth and after 
you leave the last toll booth. Each toll booth knows how long you 
spend on its road; it also keeps track of how many times you pass 
by. The only weird thing about this highway is that you can only 
go one direction down the road: Loops and jumps are like airlifts 
that take you back to some previous position on the road. As you 
move down the highway in program PTOLL, think of each area as 
a stretch of highway with an imaginary toll booth at each end. 

Here's how time and count collection works for a typical C or 
Pascal program. 

Before you enter the main program block, C startup code is 
executed. This is no man's land. Any timer ticks encountered here 

Turbo Pro filer User's GuIde 



Determining the 
overhead of 
routine calls 

Chapter 2, Inside the profiler 

are thrown away, unless you have explicitly set an area in the 
startup code. 

As soon as you pass the area marker (toll booth) at main, the 
count associated with main increments by 1. Any timer tick that 
occurs between the time you enter main and the time when 
route66 is called goes into main's timer compartment. 

Next, main calls route66 and you enter a new stretch of highway. 
The moment execution passes through the area marker (toll 
booth) at route66, several things happen: 

t1 The current area is set to route66. 
tI The compartment for the caller (main, in this case) goes on a 

stack. 

[] The count-collection compartment associated with route66 
increments by 1. 

Any timer tick that occurs between now and the time you return 
from route66 automatically increments route66's time-collection 
compartment. The global program time-collector also continues to 
increment with each timer tick. 

As soon as execution passes through a return point for route66, 
the profiler pops the caller's compartment from a stack. The 
caller's count compartment is not incremented on a return. 
However, any timer ticks that occur between now and the call to 
hlghway80 are added to the time-collection compartment for main 
as well as to the program's global compartment. To verify this, try 
turning off route66's area marker and comparing the result with a 
profile for which that area marker was set. You should see 
essentially the same total execution time. However, main's 
execution time should increase by the amount of time it formerly 
took to execute route66. 

You might want to measure the time consumed by calling a 
routine (for example, route66) and ignore the time spent inside the 
routine. The easiest way to get there from here is to disable 
collection of information at the entry point for route66, and then 
to reenable collection upon return from route66.{You can also get 
this kind of information using passive analysis, which we discuss in 
Chapter 3). For now, position the cursor on the first line of 
route66, then choose Operation from the Module window local 

31 



32 

Who pays for 
loops? 

menu to open the Area Options dialog box. Set Operation to 
Disable. Press Enter. 

When you disable collection on entry to route66, returning from it 
doesn't automatically reenable collection. You must set an area 
marker at the closing brace for route66, and set the area operation 
for that area marker to Enable again (in the Area Operations 
dialog box). 

The toll booth analogy helps explain why passing through an area 
marker and jumping back to an address that precedes that marker 
(using a loop or a goto statement) doesn't change the current area. 
Even though you are lexically outside the scope of the marker, 
you haven't passed through any new markers. Any timer ticks 
that occur will still be associated with the most recently tripped 
marker. 

1* ****** PLOST.C ****** *1 

iinclude <stdio.h> 
iinclude <dos.h> 
lost_in _town () ; 

=>void main () 
( 

printf("Entering main\n"); 
loat _in_town () ; 
delay(lOOO); 
printf("Leaving main\n\n"); 
delay (1000) ; 

=>lost _in_town () 
( 

int i; 

{****** PLOSTPAS.PAS ******} 

uses Crt; 

=> procedure Lost_in_town; 
var 

I : Integer; 
begin 

Writeln( 'Looking for highway 
Delay (100) i 
for I := 0 to 9 do 
begin 

WriteIn( 'Ask for direction 
=> Writeln( 'Wrong turn' )i 

Writeln; 
Delay(1000); 

and; 

printf(IILooking for highway .•• \n"); 
Write In ( 'on the road again' 

and; 
delay (100) ; 
for (i=O; i<10; itt) 
( 

printf(IIAsk for directions\n"); 
=> printf(IIWrong turn\n\n"); 

delay (1000) ; 

printf(1I0n the road again\n"); 

=> begin 
Writeln( 'Entering Main' ); 
Lost_in_town; 
Delay (l000) i 
WriteIn( 'Leaving main' ); 
Writeln; 
Delay(1000); 

end. 

Turbo Pro filer User's Guide 



Chapter 2, Ins/de the profiler 

In program plost, we've complicated the routine lost_ln_town by 
using a compound statement inside a loop. Assume that three 
markers have been set: one for main, one for lost_in_town, and a 
line marker for the statement that prints Wrong turn. 

Things get tricky when you get into lost_in_town. When you first 
enter the routine, lost_in_town becomes the current area. The 
time associated with printing Looking for highway is associated 
with this marker. 

Time for executing the loop statement is still associated with the 
routine marker, and the first time you "Ask for directions," the 
time is associated with the routine marker. However, once you 
trip the line marker for "Wrong tum," the remainder of the time 
spent in the routine is associated with that line marker. 

Just because you pass into an area that was previously associated 
with another marker doesn't mean the current area changes. The 
current area only changes when you trip an area marker. This can 
produce unexpected results. 

For instance, if you set the three markers for program plost as 
we've already described (one each for the main program block, 
lost_in_town, and the Wrong Turn statement), approximately 84% 
of program time will be associated with printing "Wrong turn," 
while only 1 % of execution time will be associated with 
lost_In_town. This is because nine out of ten calls to "Ask for 
directions," plus all calls to the subsequent delay statement, are 
associated with the Wrong Turn marker. 

If you toggle off the area marker for "Wrong turn," 84% of the 
remaining execution time will be logged to the routine 
lost_in_town. 

Consider the following code: 

main 

while (!kbhit () 
{ 

funcl()i 
statementl; 
statement2; 
func2 () i 

33 



34 

funcl() 
{ 

} 

func2 () 
{ 

} 

Assume that areas are set for all routines in the module. The 
routines main, func1, and func2 each mark the beginning of an 
area, and the interrupt timer is ticking away at 100 times a second. 
(Pretend that 1/100 second is a long time, so you can see what's 
going on.) 

You enter main, which trips main's area marker. When this 
happens, Turbo Pro filer internally encounters a breakpoint. This 
encounter sets a variable indicating that, until you trip another 
breakpoint, main is the current area. This encounter also 
increments a variable associated with execution counts for main 
by 1. 

The scope of these areas is dynamic rather than lexical. That is, 
main is the current area until func1 is called. As soon as you enter 
func1, you're in a new area until you encounter another function 
call or until you return from func1. This means that the profiler 
puts the caller (main, in this case) on a stack. 

When you exit from func1, you trip a return marker that the 
profiler set up when it entered func1. The routine main becomes 
the current area again. Any timer ticks that occur while the 
program is executing statementl or statement2 will update the 
timer for the area associated with main. 

Two things are going on here: 

1. Every time you encounter an area, the pro filer calls an internal 
routine that adjusts variables and updates a routine call stack. 
Two variables are associated with each area: execution counts 
and execution time. Each time you enter an area, the execution 
count associated with that area increments. 

2. Every time a timer tick occurs, the pro filer calls another 
internal routine that checks to see what area is current, then 
increments the timer variable associated with that area by the 
appropriate amount of time. 

Turbo Pro filer User's Guide 



SomethIng to keep In mInd 
about return poInts. 

Logging callers 

Chapter 2, Inside the profiler 

When the program terminates, Turbo Pro filer converts the counts 
variable for each area to an actual time (based on the total number 
of timer ticks that occurred for the entire program). 

When you disable collection on entry to routine func1, returning 
from func1 does not automatically reenable collection. You must 
explicitly reenable collection at func1's return point. 

What do you do about multiple return statements? The answer is 
related to the implicit return points at the end of routines. 

Even though you might have several explicit return points in your 
program, Turbo C actually turns all returns into jumps to a single 
exit point at the end of the routine. The line that receives the area 
marking for a return statement is the line associated with the 
closing brace for the routine. This is the actual assembly language 
return statement to which all other return statements in the 
routine are vectored. 

To disable collection for a routine, set an area marker with a 
disable operation at the first line of the function and an enable on 
the line after the call to the function. 

If you want to throw out the time spent in func1 but continue 
collection upon return from func1, you must set an area marker at 
func1's return statement. If no explicit return statement exists, 
mark the closing curly brace associated with the end of the 
routine. 

An active routine is a routine currently on the profiler's routine 
call stack. In active analysis, (that is, with the profiler collecting 
call histories and other data not related to times) Turbo Pro filer 
maintains its own routine call stack. This stack is similar to the 
stack found in any DOS program. However, the pro filer's stack is 
separate from the user's program stack and is used strictly to 
retain information about routine calls for which a return 
statement has not yet been executed. 

In order to maintain an active routine stack, Turbo Profiler 
recognizes two types of area markers: 

[J Routine-entry area markers (routine markers) 

[J Normal area markers (label markers) 

35 



36 

When the pro filer encounters a routine-entry area marker, it 
pushes the currently active routine (the last encountered routine­
entry marker) onto its active routine stack. The newly 
encountered routine marker then becomes the active routine 
marker. 

Now, if a normal area marker trips, this encounter will have no 
effect on the current routine or on the active routine stack. When a 
normal area marker trips, it simply becomes the active area, which 
means that the pro filer forgets the previously active area. The 
currently active routine, however, remains on the stack until the 
pro filer encounters a return statement. 

When a return is issued within an active routine, the area marker 
associated with that routine becomes inactive. The routine on top 
of the pro filer's active routine stack pops off the stack and 
becomes the active routine, until a return statement executes 
within that routine, or until another routine-entry area marker is 
tripped. 

Thus the profiler can maintain a complete call history for every 
marked routine. If you have enabled Statistics I Callers for all 
marked routines, then each time a routine-entry area marker is 
tripped, the profiler saves the entire profiler call stack in a buffer 
linked directly to the routine-entry marker. 

If that call stack is identical to a call stack that was saved for a 
prior entry to this routine, the profiler increments a counter, 
rather than saving the call stack again. If, however, the call stack is 
different, the pro filer allocates a new buffer and logs the pro filer 
call stack to that new buffer. This makes it possible to maintain a 
record of every call path to a routine and the number of times 
each call path is traversed. 

The profiler's active routine stack is related to two menu settings: 

• Statistics I Callers (set to either Enabled or Disabled) 

• the Callers option for each marked area in the Areas window 

You gain finer control over logging call paths by using the local 
menus of the Module and the Areas windows. You can set the 
Callers option for each of the marked areas separately. Both the 
Callers command on the Module local menu and the Options 
command on the Areas local menu lead to a dialog box where you 
can specify Callers as All Callers, Immediate Caller, or None. 

Turbo Pro filer User's Guide 



Sampling vs. 
counting 

ThIs happens only in passive 
mode. 

Chapter 2, Inside the profiler 

• All Callers means log the entire routine call stack each time the 
entry point is tripped. 

II Immediate Caller means log only the top entry on the routine 
call stack when the entry point is tripped . 

• None means don't log any routine stack information when this 
routine-entry marker is tripped. 

By default, when you first profile a program, the Callers option 
for all routine-entry area marks is set to None. 

Enabling Statistics I Callers from the main menu is the same as 
setting the Callers option to All Callers for each area marker listed 
in the Areas window. However, once you've hand-set any of the 
Callers options in the Areas window, setting Statistics I Callers to 
Enable won't change the value of the Callers options for any of 
the areas. 

Disabling the Statistics I Callers option at this point tells the. 
profiler not to log any stack information, but doesn't change the 
Caller settings in the Areas window. Neither does setting 
Statistics I Caller.) 

The profiler does not actually measure time: It comes up with a 
very accurate estimate of time based on information from timer 
tick counts. This is a form of statistical sampling. By taking regular 
periodic samples of the current area, and by keeping a count for 
each area (which increments each time that area is active when 
the timer interrupts), the pro filer can estimate the time spent in a 
given area. 

The profiler knows the total time taken to run the program. It also 
knows the total number of times the timer interrupted the 
program. The time spent in a given area can be calculated as 

timearetl = timer total * countsaretl / countStotal 

This is not the true time spent in an area. !fyour program iterates 
over some routine at a frequency that is a multiple of the timer 
frequency (for example, a routine that generates a steady sound 
tone), the execution of a particular line (or area) might exactly 
coincide with most of the timer interrupts. This resonance could 
occur even though that line is not where the program is spending 
most of its time. This is rare, but possible. 

37 



If you suspect this sort of frequency collision, change the 
Statistics I Profiling Options I Clock speed value and compare the 
resulting profile to the previous one. 

Profiler memory use 

The following figure maps memory usage when Turbo Profiler is 
running a program. 

Figure 2.2 Low memo roy 
code .. Turbo Profiler program Memory map for Turbo 

Profiler -Turbo 
Profile r 

H1gh memo ry 

data 

far heap 

user program 

.. 
.. 
.. 

symbol names 

area marker var1ables & buffers 

program be1ng profl1ed 

The profiler allocates memory for area information on the far 
heap. If you add areas while the program is running, the far heap 
will expand into the user program area to make room for new 

¢ area variables and buffers. This is why, if you modify areas 
during a run, you should always reset the program with Run I 
Program Reset. If you don't, the results of a profile might be 
unpredictable; you could hang your computer. 

38 Turbo Pro filer User's Guide 



c H A p T E R 

3 

Profiling strategies 

Improving your program's performance through profiling is not a 
simple linear process; you don't just profile the program, modify 
the source code, and call it a day. Profiling for improved 
performance with Turbo Pro filer is dynamic and interactive. You 
collect statistics, analyze the results in a variety of windows, 
perhaps change the profiling parameters so you'll get different 
statistics, profile again, analyze again, modify the source code and 
recompile, profile again, analyze again, and so on. 

If you're not sure at first where the bottlenecks in your program 
are, go ahead and profile using Turbo Profiler's default settings. 
When you look at the results in the Execution Profile window, you 
get an idea of which routines in your program consume the most 
overall time. By looking at time and count data together, you find 
out which parts of the program are most expensive in terms of 
time per call. Armed with that knowledge, you can start zeroing in 
on your program's problem areas. 

Turbo Pro filer provides several different report windows for 
analyzing the collected data; you can also print report window 
contents to paper or disk for a running account of performance 
improvements. In the report windows, you can look at your 
program's execution times and counts, file-access activity, DOS 
interrupts, and overlay activity, along with call histories for 
routines. 

Chapter 3, Profiling strategies 39 



For extensive coverage of 
profiling In general, there are 
many artIcles and books you 

can refer to. 

It~ a good Idea to save the 
results of a profile that takes 

a long time to run, in case 
you want to come back and 

study the results later. 

What do you do with all this power and flexibility? How do you 
use Turbo Profiler for efficient and effective profiling? And what 
are the tricks of the profiling trade? Obviously, we can't answer 
all of these questions in this chapter. We do, however, provide 
some general guidelines, techniques, and strategies to get you 
moving. 

The first time you run Turbo Pro filer on a program, it 

• automatically scans through your .EXE file to find the main 
program module 

• sets area markers for the program 
• determines what source module contains the main part of your 

program 
• loads that main module into the Module window 

• positions the cursor at the main module's starting point 

The main module is the one that contains the first source line to be 
executed in your program. Area markers are "trip points" that 
mark the locations where you want to gather statistics; the 
number of markers set depends on the number of symbols found 
in your program's debug information. 

Whenever you exit Turbo Pro filer, it saves information about the 
areas you set up for the currently loaded program in an area file 
named filename.TFA, where filename is the name of your program. 
Each time you load a program to profile, Turbo Profiler looks for 
a corresponding .TF A file. If it finds one, it automatically uses the 
area settings in that file. 

You can also save the results of a profile to a .TFS file with the 
Statistics I Save command. By default, the file name assigned to a 
statistics file is filename.TFS. You can use the default or change the 
name (in case you want to save more than one set of statistics for 
a single program). 

Preparing to profile 

40 

The examples in Chapter 1 are small and simple; we designed 
them to show the general process of profiling. The problem in that 
chapter was to optimize the routine prime, rather than to identify 
specific program bottlenecks. 

Turbo Pro filer User's Guide 



Adjust your 
program 

Selecting input data is 
important. 

However, you actually need a pro filer more when you're writing 
very large programs, rather than small ones, because you must 
identify which program fragments are bottlenecks before you can 
figure out how to optimize any given fragment. In many ways, it's 
easier to find the bottlenecks than it is to figure out what to do 
about them. 

Before profiling your program, adjust your source code so the 
profile statistics gathered are useful and sufficient. Once the 
source code is modified (or if it doesn't need to be), compile the 
program with debug information turned on. Then set the markers 
that tell the profiler where to collect statistics and what kind of 
statistics to collect. 

The first thing to do is set up your program in a way that lets you 
find out what you need to know from the profile. For example, if 
you're writing an interactive program that gets a lot of input from 
the keyboard, you don't need to find out that most of your time is 
spent waiting for the user to press a key. 

Here are some basic techniques for finding bottlenecks in large 
programs: 

c Select data sets large enough to give you a useful profile. 
A string search program on a three-line file won't tell you very 
much. Likewise, searching for a short string found in nearly 
every line of a 10,000-line file will give a different kind of 
profile than searching for a long string found only once in 
10,000 lines. 

c If you know your program runs quickly, set the profiler to 
collect statistics over several runs. (Modify the Run Count 
setting in the Profiling Options dialog box.) 

e Modify the program to work independent of keyboard input, or 
remove any areas that have code doing keyboard input. 
Read data numbers from a file or use a random number 
generator to stuff numbers in an array. The main idea is to 
select data that's typical of the real-world data the module 
operates on. 

e Isolate the modules of the program you know need 
improvement. 

Chapter 3, PrOfiling strategies 41 



Compile your 
program 

Rles that you've compiled for 
debuggIng with Turbo 

Debugger can be handled 
by Turbo Pro filer without 

recompllatlon. 

Set profile areas 

42 

After you've adjusted your program so that the profiling session 
won't become a wild goose chase, compile it again with debug 
information turned on. 

To use Turbo Pro filer with Borland products, you must have 
Turbo Pascal 5.0 or later, Turbo C 2.0, Turbo C++, or Turbo 
Assembler 1.0 or later. You must compile your source code with 
full symbolic debugging information turned on. 

• Turbo Pascal: Standalone Debugging and Debug Information 
must be set to On. 

• Turbo c++: The Standalone radio button must be selected. 

• Turbo C: Standalone must be specified in Debug I Source 
Debugging. 

• Turbo Assembler: Source code must be assembled with the Izi 
command-line option and linked with TLINK, using the Iv 
option. 

You can also run Turbo Pro filer programs compiled with a 
Microsoft C compiler or assembled with MASM, if you convert 
them with TDCONVRT or TDMAP. (See documentation for 
Turbo Debugger utilities included in the MANUAL.DOC file on 
disk.) 

To run Turbo Pro filer, you need both the .EXE file and the original 
source files. Turbo Profiler searches for the source files in these 
directories, in this order: 

1. in the directory in which they were found at compile time (this 
information is included in the executable file.) 

2. in the directory specified with the Options I Path for Source 
command 

3. in the current directory 

4. in the directory containing the .EXE program being profiled 

Once you've adjusted your program so you can concentrate on the 
troublesome areas and compiled it with debug information 
turned on, you're ready to run it through the profiler and collect 
statistics for individual areas. You can start out by profiling your 

Turbo Pro filer User's Guide 



whole program in general, then focus in more and more detail as 
you find the trouble spots. Start by accepting the default area 
settings-Turbo Pro filer sets default areas based on the density of 
the symbols it finds appended to the executable file. 

An area, remember, is a location in your program where you want 
to collect statistics: An area can be a single line, a construct such 
as a loop, or an entire routine. An area marker sets an internal 
breakpoint. Whenever the profiler encounters one of these 
breakpoints, it executes a certain set of code-depending on the 
options that you've set for the area in question. This profiling code 
could be a bookkeeping routine or a simple command to stop 
program execution. 

These are the actions the profiler can perform when execution 
enters an area: 

Operation 

Normal 

Enable 

What it does 

Activates the default counting behavior (collects 
execution time and counts for all marked areas). 

Turns on the collection of statistics (if they've been 
previously disabled). 

Disable Turns off the collection of statistics, but lets your 
program keep running. When your program enters an 
area where the action is set to Enable, the profiler 
resumes data collection. 

Stop Stops the program, and returns control to the Turbo 
Pro filer environment. At that point, you can examine 
the collected statistics, then resume execution. 

By default, Turbo Profiler counts the number of times execution 
enters an area and how long it stays there. You can change what 
the profiler does when an area executes by setting the Operation 
option in the Area Options dialog box-accessed through the 
Module or Areas window local menus. 

When you're setting areas in your program before running a 
profile, you should consider these questions: 

Chapter 3, Profiling strategies 

IJ How many areas should statistics be collected for? 
m Which parts of the program should be profiled? 

fl What should happen at each marked area? 

43 



What level of detail do 
you need? 

You must first decide how much information you want. Keep in 
mind how large your program is and how long it takes to run. 

• For a small program, you probably want statistics for every 
executable line-the maximum level of detail. 

• For large programs, you need less detail; just profiling the 
amount of time spent in each routine is probably enough. 

"Large" is a bit vague: You need to take into account the number 
of modules of source code, the number of routines, and the 
number of lines. 

If your source consists of 10,000 lines in ten modules, you should 
probably analyze only one module at a time in active analysis. 
(Your program is factored into discrete functional modules, 
right?) 

On the other hand, if your program is less than 100 lines and you 
need detailed analysis, you probably want to collect statistics for 
all lines. 

If your program runs in less than five seconds, you'll get more 
accurate profile results if you set up multiple runs with averaged 
results. (Set the number of runs with the Statistics I Profiling 
command.) If the program takes an hour to run (not counting 
pro filer overhead), be careful not to set so many areas that you 
slow down execution to an unacceptable crawl. 

You divide your program into a number of areas by selecting Add 
Areas from the Module window's local menu, then run your 
program to accumulate statistics for each area. 

If you don't tell Turbo Profiler how to divide your program, it 
uses a default scheme to intelligently select appropriate areas in 
your program. Based on information it finds in a program's 
symbol tables, Turbo Pro filer selects one of several default options 
for setting areas in a program. 

• If there are few symbols in the table, and there is a single 
module, Turbo Pro filer selects Every Line in Module as the 
default area setting. 

• If there are many symbols and several modules, Turbo Pro filer 
selects All Routines as the default area setting. 

SUggestion If your program is very large, profile it first in passive mode to get 
the big picture, then select areas for more detailed analysis. 

44 Turbo Pro filer User's GuIde 



What type of data do 
you need? 

When should data 
collection start? 

For each area in your program, Turbo Pro filer accumulates the 
following default information: 

t1 the number of calls to the area 
EJ how much time was spent in the area (active mode) 
13 how many clock ticks occurred while the area executed (passive 

mode) 

You can also collect more extensive information during the 
profiling session. 

EJ By enabling Statistics I Callers and setting Call Stack options in 
the Area Options dialog box, you can track which routines call 
a marked routine-how often and through what pathway. 

£] With the Statistics I Files option enabled, you can monitor your 
program's file-access activity. 

t1 The Statistics I Interrupts option, when it is enabled, records 
your program's interrupts. 

IJ You can monitor your program's overlay file activity by 
enabling the Statistics I Overlays option. 

Once you've enabled the appropriate Statistics menu options, you 
can open the corresponding profile report windows (through the 
View menu), then call up each window's local menu to specify 
details about how you want the data collected. 

Remember, to get the Turbo Profiler reports you want, you need 
to set options before you run the program. 

Often, you only want to collect timing information when a certain 
portion of a program is running. To do this, start the program 
executing without collecting any information; set the Statistics I 
Accumulation option to Disabled. You can determine the 
Accumulation option's setting at any time by bringing up the 
File I Get Info box and checking the status of Collection. 

With Accumulation disabled, you must set an area marker to 
Enable for the area where you want data collection to start, then 
set another marker to Disable for the area where you want data 
collection to stop. The actual number of start and stop points you 
set is determined by the amount of available memory; generally, 
you can set as many as you need. 

Chapter 3, Profiling strategies 45 



How do you want time 
data grouped? 

46 

Which data do you 
want to look at? 

The profiler can keep each routine's execution-time statistics 
separate from others, or it can combine routines' times with those 
of the routines calling them. 

By default, as soon as an active routine calls a routine that has an 
area marker, the profiler puts the calling routine on the call stack 
and makes it inactive. The profiler associates any timer counts 
made while program control is in the routine with that routine 
only, not with the caller. 

However, if you specify that the caller should use a combined 
clock (rather than a separate clock), the pro filer associates timer 
ticks that occur while control is in the routine with both the 
routine and the caller. 

• If routine A makes no routine calls to other routines, it (routine 
A) won't appear as an area in the Execution Profile window. 
Instead, the routine that called A appears with a time 
equivalent to its own execution time plus the time of routine A. 

• If routine A does call other routines, it (routine A) appears as an 
entry in the Execution Profile window. The time associated 
with routine A is the time required to execute A's routines, but 
not A's self time (the time spent in its own execution). 

Turbo Pro filer's default analysis mode uses a separate timer for 
each marked routine. So normally, the time spent in a routine is 
measured exclusive of calls to routines. If you want a routine's 
time data to include time spent in routines, choose Combined 
under Timing in the Areas window's (Options) dialog box. 

It's important to know how to control the amount of information 
Turbo Pro filer collects and subsequently displays, particularly if 
you want detailed information about just part of a large program. 
Turbo Pro filer provides two ways to control how much 
information you view about your program: 

• Before you profile, you can limit the collection to specific areas 
and types of data by setting options and parameters. 

• After the profile, you can filter the collected statistics (without 
erasing any) and display only the data you're currently 
interested in. 

In the Module, Areas, and Interrupt windows, you can specify 
which parts of your program you want Turbo Pro filer to collect 

Turbo Pro filer User's Guide 



information about, and how much information to collect. You can 
choose to make data collection as coarse as all routines in a 
module or as fine as a single statement. You can choose to collect 
time-related data only (by setting the analysis mode to Passive), or 
you can choose to collect the full gamut of data, including 
complete call-stack histories, all file-access and overlay activities, 
and all DOS interrupt calls. You can slow down or speed up the 
profiler's timer, thus decreasing or increasing the resolution of 
data collected (passive mode only). 

¢ There's a basic tradeoff in how much data you choose to collect: 
The more information Turbo Profiler collects, the slower your 
program runs and the more memory it needs to store the collected 
statistics. 

Once you've collected the data, you can use commands in the 
profile report windows to temporarily exclude the data you don't 
want to look at from the displayed statistics. (See page 56 for 
more information about filtering displayed statistics.) 

Profiling your program 

You might not know if a 
profile Is worth saving until 

you look at several Execution 
Profile windows. 

What are you 
trying to find out? 

Once you've selected the areas, run the profile. You can save the 
resulting profile with the Statistics I Save ... command. This 
command saves the statistics to a .TFS (Turbo Profiler Statistics) 
file. If you plan to save several different profile results, use some 
file-naming convention that uniquely identifies each of the runs 
(for example, RUN1.TFS, RUN2.TFS, and so on). This simplifies 
your task of comparing them later. 

After you save the .TFS file, you can study the profile's results in 
the profile report windows, sorting and filtering the displayed 
data as you explore their meanings. You won't ~ose any area 
markers or statistical reports, because all this information can be 
reproduced (simply restore the profile from the .TFS file). In 
general, if a profile took a long time to create, save it unless you're 
absolutely sure you won't need it. 

Normally, programmers use a pro filer to get answers to one or 
more of these questions: 

II How efficient is this algorithm? (Algorithm testing) 

Chapter 3, PrOfiling strategies 47 



48 

Table 3.1 
Ways of using a profiler 

• Is this program doing what I think it is? Is all of it running? 
(Verification and testing) 

• How long does each routine run? How much time does the 
program spend using various resources? (Execution timing and 
resource monitoring) 

• What's the structure of this code? (Code structure) 

The following table relates why you're profiling to the type of 
information you're likely to gather. 

Purpose of profile 

Algorithm testing 

Program testing 
and verification 

Execution timing 
and resource 
monitoring 

Program structure 
analysis 

Type of information gathered 

Line-count information 
Dynamic call history 

Execution-count at the routine level 
(possibly at line level) 
Dynamic call history 

Execution time 
Execution counts 
Interrupt activity 
File-access activity 
Overlay activity 

Dynamic call history 
File-access activity 
Execution profile (time and counts) 
Interrupt activity 
Overlay activity 

Testing algorithms If you're analyzing an algorithm, you'll probably concentrate on a 
small number of routines, so line count information matters more 
than execution times do. You need to do the following: 

Verifying and testing 
programs 

1. Isolate the algorithm and its supporting routines by marking 
them as an area. 

2. Make sure you've set area markers for all lines in all routines 
that implement the algorithm in question. 

The examples in Chapter 1 demonstrate algorithm analysis, 
especially as it relates to execution time statistics. 

In program verification and testing, line-count information is more 
pertinent than execution times. But since the verification and 
testing process looks at the program as a whole, you want to see 
how everything works together in an integrated system. 

Turbo Pro filer User's GuIde 



Timing execution and 
monitoring 

performance 

Profiling a program while you run it through standard tests can 
point out areas of the program that execute very little or not at all. 
For example, by studying call paths in the Callers window and 
printing out a source-code listing (annotated with execution 
counts) from the Module window, you can verify that every 
statement in your source code has actually executed. 

Because you deal with large pieces of code when you test and 
verify programs, you don't need as much detail as you do for 
algorithm analysis. However, it's still useful to know how many 
times a routine has been called. And, if you want to organize the 
test down to groups of routines that constitute some hierarchy, the 
execution-count information can help prove that every path in a 
switch statement or a conditional branch has executed at least once. 

For timing a large program to see where it's slow, you rarely need 
information at the line-count level. In execution timing, you need 
to know two things: 

1. how much time is spent in individual routines 

2. what times propagate from low-level routines to higher-level 
routines 

Before timing a program's execution, you need to set areas for all 
routines with source code. In very large programs, limit your 
selection of area markers to a single module. 

Once you've set the area markers in a single module, profiling 
becomes a matter of successive grouping and refinement. These are 
techniques you use to refine the profiling process: 

• Use filters to temporarily mask out unwanted information (with 
the Execution Profile window's local Filter command). 

• Unmark routines whose statistics you don't want (with the local 
Remove command in the Module, Execution Profile, and Areas 
windows). 

• Combine the timer counts for specified routines (with the Timer 
option, which you set from either the Statistics I Profiling 
Options ... command or the Areas window's local Options ... 
command). 

If you're not completely familiar with the program you're 
profiling, you can use execution timing and performance 
monitoring in conjunction with studying the unfamiliar code. 

Chapter 3, Profiling strategies 49 



50 

Studying unfamiliar 
code 

Figure 3.1 
The Callers window 

Which analysis 
mode do you 

use? 

One of the best ways of studying code you don't know is to 
analyze the dynamic call history that Turbo Profiler generates in 
the Callers window. This history shows the program's structural 
hierarchy. Although you can see only one routine's call paths at a 
time in the Callers window, you can print all recorded call paths by 
choosing Print I Statistics with the Callers window open. 

1 main 
100 _main _a , 

By noting a program's called routines; their callers, and the number 
of times the program traverses each call path, you can see which 
routines are most important. You can also predict which higher­
level routines will be affected by changes you make to lower-level 
routines. 

By looking at execution times and counts, you can get a sense of 
the program's important routines. File and overlay monitoring 
reveal any temporary files opened and closed during program 
execution as well as any overlays swapped into memory. This 
information is harder to find through lexical program analysis. 

The profiler's link between the Execution Profile, Module, and 
Areas windows enables you to move back and forth quickly to 
specified symbols, thus revealing the connections between 
functionally related but physically separated pieces of source code. 

One important consideration when you're profiling is whether to 
use active or passive analysis. You set the mode under Profile 
Mode in the Profiling Options dialog box (choose Statistics I 
Profiling Options). Turbo Profiler's default mode is active analysis; 
it collects execution times and execution counts automatically, as 
well as any other data (such as call histories or DOS interrupts) 
that you've enabled in the Statistics menu. If your program runs 
very slowly and you can do without execution counts and call 
histories, use passive analysis; in passive mode, the pro filer collects 
only time-related statistics for areas (such as execution times, 

Turbo Pro filer User's GuIde 



interrupt calls, and file activity), and your program runs much 
faster. 

Active analysis When you profile in active mode, it matters how frequently 
program execution trips area markers. For instance, you can mark 

See the section -How to every line in a program except a loop statement, but if the program 
speed up profiling" below for spends 95% of its time inside that loop, the number of areas set 

other ways to make your won't slow the program much. 
profiling go faster. 

The profiler slows down program execution if it must perform a lot 
of bookkeeping every time it executes a source statement. If that 
happens, you can always switch to passive analysis, which turns 
off all automatic calls to expensive bookkeeping code the pro filer 
normally makes each time program execution trips an area marker. 

Passive analysis In passive analysis, Turbo Pro filer interrupts your program's 
execution at regular intervals to sample the value of the program 
counter, CS:IP. If the sampled value points to an address inside an 
area that you're monitoring (a marked area), the profiler 
increments the ticks in that area's timer compartment. If the value 
in the CS:IP does not point to an address inside a marked area (for 
example, it points to an address within a DOS interrupt or BIOS 
call), the profiler throws out that timer tick. 

Passive analysis doesn't add 
noticeable overhead to 

program run time, but It does 
sacrifice some detail In the 

resulting reports. 

It's hard to interpret the results of passive analysis unless your 
program runs a long time, or unless you accumulate timing 
statistics over many runs. Some areas of your code might never 
show up even though they execute, because they're never being 
executed at the time the pro filer interrupts the program's 
execution. 

When you set passive analysis, there is no noticeable slowdown in 
program execution. However, you might not be able to get all the 
information you require. You can't get count information or callers 
information, but you can monitor interrupt calls and file activity. 

When you're profiling in passive mode, you'll get greater statistical 
accuracy by running your program several times (set Run Count in 
the Profiling Options dialog box to a value greater than 1). 

Some things to watch Some of the data you collect under passive analysis might be 
out for misleading if you don't take these points into consideration when 

you analyze the results: 

Chapter 3, Profiling strategies 51 



Profiling object­
oriented 

programs 

How to speed up 
profiling 

52 

Even if your program runs 
slower. Turbo Pro filer stili 

keeps track of timing 
information properly. 

II If your program does disk I/O, the pro filer attributes file-access 
time to the calling routine under active mode, but not under 
passive mode . 

• If your program calls an interrupt that's not marked as an area, 
the pro filer attributes the interrupt's time to the calling routine in 
active mode, but tosses out the interrupt's time in passive mode. 

In general, profiling object-oriented programs is not much different 
from conventional profiling. You can treat them just like ordinary 
programs and consider each method to be just like a call to a 
routine. 

Each time your program enters a routine that you have defined as 
a data-collection area, Turbo Profiler must perform certain 
processing ('1Jookkeeping" code). The execution speed of a 
program under the control of Turbo Pro filer depends on how 
frequently area markers are tripped and on the kind of information 
being collected for the most frequently tripped areas. The greater 
the level of information being collected (particularly call stack 
history), the longer it takes to execute bookkeeping code associated 
with an area. 

Sometimes your program speed might be unacceptably slow under 
Turbo Pro filer. That might be because your program is frequently 
calling a deeply nested routine with call-stack tracing set to All 
Callers for All Areas. If you've defined this deeply-nested routine as 
an area, Turbo Pro filer will spend a lot of time keeping track of the 
calls to it. 

To determine if your program is frequently calling a low-level 
routine, switch to the Execution Profile window and display the 
areas by execution counts. (Set the local menu Display option to 
Counts.) This displays an execution-count histogram sorted by the 
number of times each area is executed. 

If the program calls one or more routines much more frequently 
than the rest, you can exclude them from the list of displayed areas 
with the Execution Profile window's local Filter I Current 
command. You can also unmark areas with the local Remove 
command in the Module, Areas, and Execution Profile windows. 

Turbo Pro filer User's Guide 



How to improve 
statistical 

accuracy 
If you don't collect enough data (because your program runs too 
fast for the profiler to gather a statistically significant number of 
data points) or if you collect a skewed data set (because of 
resonance; the profiler's timer-tick frequency coincided with the 
execution frequency of some part of your program), you won't be 
able to make informed decisions about the changes needed in your 
source code. Here's what to do if either of these problems should 
occur. 

Insufficient data To improve the accuracy of timing statistics and to get a 
statistically significant average, run your program more than once, 
using the Run Count option of the Profiling Options dialog box. 
When your program terminates and you run it again, the profiler 
adds the times for the new run to times accumulated for previous 
runs. This continues until you've run your program the number of 
times specified in the Run Count option. 

Resonance If resonance is causing the pro filer to return inaccurate data, use 
the Clock Speed setting in the Profiling Options dialog box to set 
the profiler's clock tick speed anywhere between 18 and 1,000 ticks 
per second. Choose a speed that is not an integral multiple or 
fraction of the speed that is causing the resonance. For example, if 
your program exhibits resonance at 100 ticks per second, try 70 or 
130 ticks per second. (If you suspect that resonance is causing 
biased statistics, try different clock speeds that are not integral 
multiples, and compare the collected statistics. If resonance is the 
problem, the various sets of statistics will vary conSiderably.) 

Changing the clock speed 
can only be done in passive 
mode; active mode doesn't 

use clock ticks. 

The faster the clock speed, the more accurately Turbo Pro filer can 
determine where your program spends its time. 

Will setting the clock speed to 1000 ticks per second produce 
incredibly accurate timing information? Not necessarily. The faster 
you set the clock speed, the slower your program will run (because 
Turbo Pro filer must perform certain lookup operations each time a 
clock tick occurs). So if you want greater accuracy than the default 
100 ticks per second, increase the clock speed until you reach an 
acceptable compromise between accuracy and execution speed. 

Chapter 3, Profiling strategies 53 



Some tips for 
profiling overlays 

54 

Overlays allow large programs to run in limited memory by 
storing portions of the code on disk, and loading that code only as 
needed. If you use overlays, the program's modules share the same 
memory-thereby reducing total RAM requirements. 

Unfortunately, swapping code in and out of memory can lead to 
slow program execution because it wastes time accessing disk 
drives. Because even a fast disk drive is still the slowest storage 
device in most PCs, improper overlay management can 
dramatically reduce performance. To make a difficult situation 
worse, the overlay manager code in the compiled program is 
normally hidden. Turbo Pro filer brings overlay management code 
out in the open so you can adjust your program's overlay behavior. 

To fine-tune overlay performance, you need to choose the right 
overlay buffer size, select algorithms for managing overlays in the 
buffer, and set other parameters that can help keep the most 
frequently-used overlay modules in memory for longer periods of 
time. You can reduce "thrashing", which results from too many 
disk accesses as the program reads overlay files, by keeping 
frequently used overlays in memory longer. 

Statistics displayed in the profiler's Overlay window include 

• the number of times your program loads each overlay from disk 

• the time-ordered event sequence in which your program loads 
overlays 

The load-count and execution-time information is useful for 
determining which overlays should stay in RAM longer. By 
comparing this data with a profile of non-overlay routines, you can 
decide which modules should be overlays and which shouldn't. 

With the overlay event history, you can choose optimal algorithms 
for overlay buffer management. By examining a list of overlays and 
seeing when and how often each was loaded, you can decide 
which main program modules might work better as overlays, and 
which overlays might benefit from being made part of your main 
program. 

Turbo Profiler User's Guide 



Interpreting and applying the profile results 

How to analyze 
profile data 

OK, so you've decided what profile statistics you want to collect, 
adjusted your program accordingly, and run it enough times to 
gather a statistically significant (if not downright daunting) set of 
data. Now what? 

Now comes the fun part. First you analyze the data to figure out 
what the profiler is telling you, then you apply that new-found 
knowledge to your source code to make your program faster and 
more efficient than ever. 

The Turbo Profiler windows you'll use to study the collected 
statistics fall into two categories: program source windows and 
profile report windows. 

Turbo Profiler's program source windows are the Module, Areas, 
Routines, and Disassembly (CPU) windows. Before running the 
profile, you mainly use source windows to set areas and to specify 
profiling actions at the marked areas. After you examine the profile 
statistics (in one or more report windows), you use source 
windows again to analyze your program's source code. 

Turbo Profiler's report windows are the Execution Profile, Callers, 
Overlays, Interrupts, and Files windows. You use report windows 
to display profile statistics gathered from your running program, 
so you can evaluate the collected data and determine where 
changes in the source code might improve your program's 
performance. 

Execution Profile This window will be your primary focus for improving the 
window performance of your program. In general you will want to examine 

those lines of source code which account for most of the program 
execution time. Next, look for lines (or routines) which have a high 
ratio of execution time to execution count. And finally, it is always 
good form to check on the routines which account for the most 
"per call" execution time. 

Chapter 3, PrOfiling strategies 55 



Callers window 

Overlays window 

Interrupts window 

Files window 

How to filter collected 
data 

Table 3.2 
Local menu commands for 
filtering collected statistics 

56 

Once you have isolated a routine that you wish to improve, use the 
Callers window to locate all of the areas in your program which 
call the selected routine. The Callers window displays the number 
of times the routine was called, and the source of those calls (the 
caller). 

The Overlays window will allow you to detect excessive overlay 
calls which will then become candidates for placement into a non­
overlaid module (unit). 

The Interrupts window will reveal all of the (selected) interrupts 
made by your program. This revelation may prompt you to 
combine video output for some lines of code. Or for file-intensive 
programs, suggest that disk I/O be buffered. 

The Files window quickly discloses the number of reads and writes 
performed to the files manipulated by your program. In I/O 
intensive applications this window will point out very quickly 
which files deserve your attention. 

The Execution profile report window provides local menu com­
mands for temporarily or permanently filtering data out of the 
current display. Here's a table summarizing the pro filer's filtering 
options: 

Window Local menu 
command 

Execution Filter 
Profile 

Remove 

What it does for you 

Temporarily removes the current 
area's statistics, or shows only the 
current module's statistics, or 
restores all collected statistics to the 
window. (You choose Current, 
Module, or All from the Filter 
menu.) 

Permanently erases the current 
area's statistics from the collected 
data. Use with caution! 

Files Collection (top pane) Disabled, disables file statistics 
collection. 

Turbo Pro filer User's GuIde 



Revise your 
program 

Table 3.2: Local menu commands for filtering collected statistics 
(continued) 

Detail (top pane) 

Display ... 

Disabledl displays only file open 
and close activities. Enabled, also 
displays file read and write 
activities. 

Displays each event either as a bar 
graph element, or as text showing 
the exact time and duration of the 
event. 

Interrupts Remove (top pane) Removes the currently selected 
interrupt from the top pane. 

Display (bottom 
pane) 

Overlays Display 

Displays an interrupes statistics as 
either (1) summary histograms of 
timel calls, or both, or (2) a detailed 
sequence of events. 

Displays each overlay's profile 
statistics as either (1) Count, a 
summary of memory consumed 
and times loaded, or (2) History, a 
detailed sequence of events, with a 
line of data for every time the 
overlay loaded. 

When you choose Remove from the Execution Profile1s local menu 
to permanently filter out an area's statistics, the pro filer 

II adjusts the report by discounting time spent in that area 

• adjusts the percentages of remaining areas by calculating them 
as percentages of the revised total time 

(revised total time = total profile time - time for the removed area) 

iii unmarks that area in the Module window 
II removes the area from the areas list in the Areas window 

Here is a general plan of attack for finding routines where simple 
changes in control constructs can improve your program's 
performance. 

1. Look for large routines with a disproportionate share of 
execution time, or for routines with a large number of calls. 
Working from the highest level of your program, follow flow of 
control through successive levels of calls, looking for places to 

Chapter 3, Profiling strategies 57 



optimize by reducing or eliminating excessive calls and 
operations. 

2. Look for statements and routines that have a high ratio of time 
to count. From the Execution Profile window's local menu, set 
Display to Both or Per Call. Then look for those areas that show 
a long time magnitude bar and a short count magnitude bar. 
Statements and routines of this sort usually represent an 
inefficient segment of code. Recode them to produce the same 
result in a more efficient way. 

3. As a last resort, you can optimize the program's innermost 
loops; here are some techniques: 

• unroll loops 
• cache temporary results calculated on each iteration 
• put calculations for which results don't change outside loops. 
• hand -code assembly language 

Usually you'll see less improvement with inner-loop optimization 
than you'll see if you modify control constructs, algorithms, or data 
structures. 

Besides these three general procedures, here are some specific 
things you can do to improve your program's performance: 

• Modify data structures and algorithms 

• Store precomputed results 
• Cache frequently accessed data 

• Evaluate data only as needed 

• Optimize loops, procedures, and expressions 

Modify data structures Use more sophisticated data structures or algorithms. A QuickSort 
routine will generally operate faster than a bubble sort for a 
random distribution of key values. Consult a book on data 
structures and algorithms for other examples. 

58 

Switch from real numbers to integers for fast calculations, such as 
window and string management for screen I/O and graphics 
routines. Use long integers for data manipulation or any other 
value that does not require floating point precision. 

Instead of sorting an array of lines of text, add an array of pointers 
into the text array. All text access occurs via the pointers. To sort or 
insert a new line of text, you only need to reorder the pointers, 
rather than entire lines of text. 

Turbo Pro filer User's GuIde 



Store precomputed 
results 

Cache frequently 
accessed data 

Evaluate data as 
needed 

Build a precomputed sine table, then look up sine as a function of 
degrees based on an integer index. 

C buffers low-level character input from files. The gate routine 
reads a whole sector of bytes from the disk into a buffer, but 
returns only the first character read. The next call to gate returns 
the next character in the buffer, and so on until the buffer is empty, 
in which case gete reads another sector in from disk. The Read 
routine does exactly the same thing in Pascal. 

Turbo Pascal has the SetTextBuff routine, which can also help to 
reduce disk accesses. By use of this routine to allocate a large text 
buffer on the heap, you can reduce disk file access for text. 

In an interactive editor or file-dump utility, you can keep a number 
of buffers that are updated while the program waits for user input. 
You might have two buffers that always contain screenfuls of 
information read from the beginning and the end of the file. 
Another two buffers can keep the previous and next screenful of 
bytes in the disk file relative to the position currently onscreen. 
This way, for those file-navigation commands the user is most 
likely to select, your interactive program can update the screen 
without disk access. 

Structure the order of conditional tests and switches so that those 
most likely to yield true results are evaluated first. 

For a large table of lookup information, evaluate entries only as 
you need them, and use a supplemental array to track entries that 
have already been computed. 

You might only need to calculate the length of a line when you 
need to reformat output-not each time a new line is read from a 
file. 

Optimize existing code Loops, procedures, and expressions all offer potential for 
improvement. 

Loops 

Chapter 3, PrOfiling strategies 

I!I Whenever possible, move calculations outside of loops. 
Repeatedly calculating the same value inside a loop is both 
time-consuming and unnecessary. 

59 



60 

• Store the results of expensive calculations (use Statistics I Save 
Option). 

For example, an insertion sort routine doesn't need to swap 
every pair of numbers as it works up an array. If you save the 
value of the starting element, the inner loop only needs to move 
the successive element down as long as that element is less than 
the starting one. When this test fails, you insert the stored value 
at the current position. This process replaces the expensive swap 
operation for each element called for in the traditional insertion 
sort algorithm. 

• If two loops perform similar operations over the same set of 
data, combine them into a single loop. 

• Reduce two or more conditional tests in a loop to a single test, if 
possible. 
For example, add an extra element to an array and initialize it to 
some sentinel value that will cause the loop test to fail. (This is 
how C handles text strings.) 

• Unroll loops. 
For example, replace this 

for (x = 0; x < 4; xtt) 
y t= items[x]; 

with this 

Y t= items[O]; 
y t= it ems [ 1] ; 
y t= items[2]; 
y t= items[3]; 

Routines 

• Rewrite frequently called routines as inline routines, or replace 
their definitions with inline macros. 

• Use coroutines for multipass algorithms that operate on large 
data files. (See the setjmp and longjmp routines in C.) (In Pascal, 
investigate procedural types that allow you to use procedures and 
functions much like variables to execute coroutines.) 

• Recode recursive routines to use an explicitly managed data 
stack. 

Expressions 

• Use compile-time initialization. 

Turbo Pro filer User's Guide 



Wrapping it up 

• Combine returned results in a single call. 

For example, write routines that return sine/cosine, quotient and 
remainder, or x-y screen coordinates as a pair . 

• Replace indexed array access with pointer indirection. 

In this chapter, we've covered most of the things you need to 
consider before, during, and after a profiling session. We've 
explained how to prepare your program, and yourself, for the 
profile; we've given you some hints and caveats about the process 
of profiling; and we've given you some ideas about how to apply 
the results after you've run the profile. In the next chapter, we 
describe each menu item and dialog box option in the Turbo 
Profiler environment. 

Chapter 3, PrOfiling strategies 61 



62 Turbo Pro filer User's Guide 



c H A p T E R 

4 

The Turbo Profiler environment 

Turbo Pro filer makes it as easy and efficient as possible for you to 
profile your programs. When you start Turbo Profiler, everything 
you need is literally at your fingertips. That's what an environment 
is all about. 

The Turbo Pro filer environment also boasts these extras to make 
program profiling smooth: 

c multiple, movable, resizable windows 

Il mouse support for any mouse compatible with the Microsoft 
mouse version 6.1 

c dialog boxes to replace multilevel menus 

Part 1: The environment components 

The menu bar 

There are three visible components to the integrated environment: 
the menu bar at the top, the window area in the middle, and the 
status line at the bottom. Many menu items also offer dialog boxes. 
Before we discuss each menu item in the environment, we'll 
describe these more generic components. 

and menus Turbo Pro filer has global and local menus. Global menus are ones 
you access via the menu bar, and local menus are ones you access 
from within a window. 

Chapter 4, The Turbo Profiler environment 63 



64 

Choosing menu 
commands from the 

keyboard 

To cancel an action, press 
Esc. 

The menu bar is your primary access to all the global menu 
commands. In addition, it displays a program activity indicator 
on the right side that tells, for example, whether the pro filer is 
READY for you to do something, RUNNING your program, or WAITing 
while it processes a processor-intensive task. The only time the 
menu bar is not visible is when you're viewing your program's 
output in the user screen. 

Here is how to execute global menu commands using just the 
keyboard: 

1. Press F10. This makes the menu bar active, which means the 
next thing you type pertains to it, and not to any other 
component of the environment. 
You see a highlighted menu title when the menu bar is active. 
The menu title that's highlighted is the currently selected menu. 

2. Use the arrow keys to select the menu you want to display. 
Then press Enter. 
As a shortcut for this step, just press the initial letter of the 
menu title. (For example, press F to display the Files menu.) 
If an ellipsis ( ... ), follows a menu command, choosing the 
command displays a dialog box. If an arrow (~) follo.ws the 
command, the command leads to another menu. 

3. If the command opens another menu, use the arrow keys 
again to select the command you want. Then press Enter. 
Again, as a shortcut, you can just press the highlighted letter 
of a command to choose it, once the menu is displayed. 

At this point, Turbo Profiler either carries out the command, 
displays a dialog box, or displays another menu. 

In addition to the global menus that you access through the menu 
bar, each of Turbo Pro filer's windows has its own unique local 
menu (or menus). When you're in a window, press Alt-F10 to bring 
up the local menu. 

When the local menu pops up, use the arrow keys to select the 
command you want and press Enter, or press the highlighted 
letter. Once you choose a local menu command, Turbo Pro filer 
either carries it out, displays a dialog box, or displays another 
menu. To activate a local menu item directly (without bringing up 
the menu), press the Alt-(Ietter) hot key, where letter is the menu 
item's highlighted letter. 

Turbo Pro filer User's Guide 



Choosing menu 
commands with the 

mouse 

Shortcuts 

Turbo Profiler 

To choose commands from global menus with the mouse, click 
the desired title on the menu bar to display the menu, then click 
the desired menu command. You can also drag straight from the 
menu title down to the menu command. Release the mouse 
button on the command you want. (If you change your mind, just 
drag off the menu; no command will be chosen.) 

To choose the active window's local menu commands, click the 
mouse's right button to pop up the local menu, then click the 
desired menu command. 

Turbo Pro filer offers many quick ways to choose menu 
commands. For example, with a mouse you can combine the 
two-step process into one: Drag from the menu title down to the 
menu commands, then release the mouse button when the 
command you want is selected. 

From the keyboard, you can use keyboard shortcuts (or hot keys) 
to access the menu bar and choose commands. Here's a list of the 
shortcuts available: 

Press this shortcut ... 

Ctrl and the highlighted 
letter of the local menu 
command 

Aft plus the highlighted 
letter of the menu command 

The highlighted 
letter of the dialog box 
component 

The hot key combination 
listed next to a menu command. 

To accomplish this ... 

Carry out the local menu command 

Display a menu from the menu bar 

Execute that menu command or 
select that dialog box component 

Carry out the menu command 

windows Most of what you see and do in the Turbo Pro filer environment 
happens in a window. A window is an area of the screen that you 
can move, resize, zoom, layer, close, and open. 

You can have many windows open in Turbo Pro filer (memory 
allowing), but only one window can be active at any time. The 

Chapter 4, The Turbo Pro filer environment 65 



66 

Figure 4.1 
A typical window 

active window is the one that you're currently working in. Any 
command you choose or text you type applies only to the active 
window. 

Turbo Pro filer makes it easy to spot the active window by placing 
a double-lined border around it. The active window always has a 
close box. If your windows are overlapping, the active window is 
also the one on top of all the others (the front most one). 

There are several types of windows, but most of them have these 
seven things in common: a title bar, a close box, two scroll bars, a 
resize comer, a zoom box, an iconize box, and a window number 
(1 to 9). 

This is what a typical Turbo Profiler window looks like: 

You click the 
~to 
~lose 
the window 

I 

The ~ contains 
the ~he window 

The Ii%ldii~ has 
an icon you c ck to 
shrink the window to 
an icon. 

The ~ contains 
an icon you click to 
either enlarge or 
shrink the window 

'" '" '" '" [.]======= Window Title ====== 3 ",,[t1 [.11 
A A 

You use the P"lEE 
wi th a mouse to scrol'Fthe I-----~ 
contents of the wi ndow 

-:====:==:::=====:a=:=:E=============::J 
You drag the ii4Y"ii3tla,@ to 
make the window arger or smaller 

A 

Turbo Pro filer User's Guide 



Window management Some windows are divided into two or more panes for displaying 
different kinds of information. Individual panes often have their 
own local menu. 

Table 4.1: ManIpulatIng windows 

To accomplish this ... 

Open a window 

Close a window 

Activate a window 

The following table provides a quick rundown of how to handle 
windows in Turbo Profiler. You can perform these actions with a 
mouse or the keyboard. 

Use one of these methods ... 

Choose View to open a profiler window that's not already open. 

Choose Close from the Window menu or press Aft-F3, or Click the 
window's close box. 

Click anywhere in the window, or 

Press Alt plus the window number (1 to 9, in the upper right border of 
the window), or 

Choose Window and select the window from the list at the bottom of 
the menu, or 

Choose Next from the Window menu (or press F6) to make the next 
window active (next in the order you first opened them). 

View the window's contents Use the cursor keys to scroll the window up and down or left and right, 
or 

Move the active window 

Resize the active window 

Zoom the active window 

Use the mouse to operate the scroll bars: 

• Click the direction arrows at the ends of the bar to move one line or 
one character in the indicated direction. 

• Click the gray area in the middle of the bar to move one window size 
in the indicated direction. 

• Drag the scroll box to move as much as you want in the direction you 
want. 

Drag its title bar, or any border character (=)s that is not a scroll bar. 

Choose Size/Move from the Window menu (or press Ctrl-F5), use the 
arrow keys to place the window where you want it, then press Enter. 

Drag the resize corner. 

Choose Size/Move from the Window menu (or press Ctrl-FS), press 
Shift-(arrow key) to change the size of the window, then press Enter, or 

Drag the right or bottom border to resize the window in that direction 
only. 

Click the zoom box, or 

Double-click the window's title bar, or 

Chapter 4, The Turbo Pro filer environment 67 



Table 4.1: Manipulating windows (continued) 

Choose Zoom from the Window menu, or press F5. 

Iconize the active window Click the iconize box, or 

Choose Iconize/Restore from the Window menu. 

When a window is fully zoomed, it has only an iconize box.([.]) When it 
is iconized, it has only a zoom box ([ t D. 

Move from pane to pane Press Tab or Shift-Tab, or 

Choose Window I Next Pane. 

The status line 

The only time the status line is 
unavailable Is when a dialog 

box or menu Is open. You 
must close the dialog box or 

menu before doing anything 
else. 

Dialog boxes 

68 

The status line at the bottom of the Turbo Profiler screen provides 
the following information: 

.It reminds you of basic keystrokes and shortcuts applicable at 
that moment in the active window. (You will see that the status 
bar changes if you hold down Alf or Cfrl.) 

• It provides on-screen shortcuts you can click to carry out the 
action (instead of choosing the command from the menu or 
pressing the hot key on the keyboard) . 

• It offers one-line information on any selected menu command 
or dialog box item. 

The status line changes as you switch windows or activities. You 
can click any of the shortcuts to carry out the command. 

When you've selected a menu command, the status line changes 
to display a one-line summary of the routine of the selected item. 
For example, if the Options menu title is selected (highlighted), 
the status line displays the currently selected item in the Options 
menu. 

If a menu command has an ellipsis after it ( ... ), the command 
opens a dialog box. A dialog box is a convenient way to view and 
set multiple options. 

When you're making settings in dialog boxes, you work with five 
basic types of controls: radio buttons, check boxes, action buttons, 
text boxes, and list boxes. Here's a typical dialog box that 
illustrates some of these items: 

Turbo Pro filer User's Guide 



Figure 4.2 
A typical dialog box 

If you have a color monitor, 
Turbo Profiler will use different 
colors for various elements of 

the dialog box. 

You can select another 
button with Tab: press Enter to 

choose that button. 

Check boxes and 
radio buttons 

This dialog box has three standard buttons: OK, Cancel, and Help. 
If you choose OK, the choices in the dialog box are recorded in 
Turbo Pro filer; if you choose Cancel, nothing changes and no 
action is made, but the dialog box is put away. Choose Help to 
open a Help window about this dialog box. Esc is always a 
keyboard shortcut for Canc,el (even if no Cancel button appears). 

If you're using a mouse, just click the button on the item you 
want. If you're using the keyboard, press Tab or Shift-Tab to move 
from section to section; each section highlights when it becomes 
the active one. 

Note that the OK button has a special look. It has a special color 
(in monochrome systems, arrows point to it .. like thisfo). This 
indicates that OK is the default button, which means you need only 
press Enterto choose that button. Be aware that tabbing to a button 
makes that button the default. 

To choose a button with a mouse, click it. From the keyboard, you 
choose a button by pressing Tab until the button is highlighted, 
and then pressing Enter. (Once you've tabbed past the buttons, 
pressing Enter chooses only the preset default button.) You can 
also press the highlighted letter associated with the button (K for 
OK). 

The dialog box also has check boxes. When you select a check box, 
an X appears in it to show that it's on; an empty box indicates it's 
off. To check a check box (set it to on), click it or its text, press Tab 
until the check box is highlighted and then press Spacebar, or press 
Alt and the highlighted letter. You can have any number of the 
check boxes checked at any time. 

If several check boxes apply to a topic, they appear as a group. 

Chapter 4, The Turbo Profiler environment 69 



On monochrome monitors, Turbo Profiler indicates the active 
check box by placing a chevron symbol (») next to it. When you 
press Tab, the chevron moves to the next check box. 

Radio buttons are so cal/ed 
because they act just like the 

group of buttons on a car 
radio. There Is always one­

and only one-button 
pushed In at a time. 

The dialog box also has radio buttons. Radio buttons differ from 
check boxes in that they present mutually exclusive choices. For 
this reason, radio buttons always come in groups, and only one 
radio button can be on in anyone group at anyone time. 

To choose a radio button, click it or its text. From the keyboard, 
press Tab until the group is highlighted, then use the arrow keys 
to choose a particular radio button. Press Tab (or Shift-Tab) again to 
leave the group with the new radio button chosen. 

70 

Here's what check boxes and radio buttons look like on and off: 

Check boxes 

~ ~ 
Options 

X Layout 
X Macros 

Radio buttons 

{ } 
None 

• Immediate Callers 
All Callers 

Input boxes and lists Dialog boxes can also contain input boxes. These boxes allow you 
to type in text. All the regular text-editing keys work in the input 
box (for example, arrow keys, Home, and End). If you continue to 
type once you reach the end of the box, the contents automatically 
scroll. If there's more text than what shows in the box, arrowheads 
appear at the end (~and ~). You can click the arrowheads to scroll 
or drag the text. 

If an input box has a D icon to its right, there is a history list 
associated with that input box. This history list lists the text you 
typed into this box the last few times you used this dialog. The 
Search box, for example, has a such a history list, which keeps 
track of the text you searched for previously. 

If you want to reenter text that you already entered, press J, or 
click the D icon. Y ou can edit an entry in the history list directly. 
Press Esc to remove the history list without making a selection. 

Here is what a history list for the File Name input box might look 
like if you had already used it four times: 

Turbo Pro filer User's GuIde 



Figure 4.3 
The File Name history list 

Many dialog boxes also have a list box. You use a list box to scroll 
through long lists without leaving the dialog box. Turbo Pro filer 
typically uses list boxes to display file names in dialog boxes. 

To display a list box, you click it, or press Tab until it's highlighted 
and then press Enter. To move through the list once the list box is 
displayed, you can use the scroll box or press t or i from the 
keyboard. 

Part 2: The menu reference 

== menu (System) 

Repaint desktop 
Restore standard 

About ••• 

This section gives you an item-by-item description of each menu 
command and dialog box option in the Turbo Pro filer 
environment. The figure on page 72 is a "road map" to the 
profiler's global menus (the menus that are called from the menu 
bar). 

The:: menu (called the System menu) appears on the far left of the 
menu bar. To activate the:: menu, either (1) press Alt Spacebar, or 
(2) press F10, then use -7 or f- to go to the:: symbol and press 
Enter. 

With the commands in the:: menu, you can 

• repaint the screen 
• restore your original window configuration 

• activate a Turbo Profiler information box 

Chapter 4, The Turbo Profiler environment 71 



Figure 4.4: Turbo Profller's menu bar and global menus 

II DIll IiI'D 1m .,iQmug mmI Imm ImimiD 1ImI.1 
I I I 

I (System) Run Opt10ns 

Repa1nt desktop Run F9 Hacros .. ,..-
Restore standard Program reset Ctrl-F2 Dfsplay opt10ns ••• 

ArgLlJlents Path for source ••• 
About ••• Save opt10ns ••• 

Restore opt1 ons ••• 

I 

Create ••• Alt • 
Stop record1 ng Alt -
Remove 
Delete all 

I I I 
Fl1e Statist1cs W1ndow 

Open ••• Callers Enabled Zoom F5 
Change d1r ••• Fl1es Enabled Next F6 
Get 1nfo ••• Interrupts Enabled Next pane Tab 
DOS shell Overlays Dfsabled S1ze/move Ctrl-F5 
Qu1t Alt-X Icon1 ze/restore 

Proffl1ng optfons ••• Close Alt-F3 
Accunulation Enabled Undo close Alt-F6 
Delete all 

User screen Alt-F5 
Save ••• I Hodule PRIMEO 
Restore ••• 2 Proffle 

I I I 
Vfew Prfnt Help 

Module F3 Statfstics Index Shfft-FI 
Executf on Proff I e Module ••• Prevfous topfc Alt-Fl 
Callers Help on help 
Overlays Optfons ••• 
Interrupts 
Ffles 
Areas 
Routfnes 
Of sassembly 

72 Turbo Pro filer User's Guide 



Repaint Desktop Choose Repaint Desktop when you want Turbo Pro filer to redraw 
the screen. You might need to do this, for example, if a memory­
resident program has left stray characters on the screen, or 
possibly if you have display swapping turned off. 

Restore Standard When you start up Turbo Profiler, it sets the environment 
windows' size, status (open or closed), and placement according 
to information stored in the configuration file, TFCONFIG.TF. 
Once Turbo Pro filer is onscreen, you can move and resize the 
windows, close some and open others, and generally make a real 
mess of your screen. The Restore Standard command provides a 
quick way to rectify such a situation. 

When you choose Restore Standard, Turbo Pro filer puts all the 
windows back the way they were when you first started up the 
profiler. 

About When you choose About from the:: menu, the About box pops 
up. This box lists the Turbo Pro filer version number and other 
interesting facts. Press Enter or choose OK to close the box. 

File menu 

Open ••• 
Change Dir ••• 
Get Info ••• 
DOS Shell 
Quit Alt-X 

The File menu contains commands for 

IJ opening and loading a program to be profiled 

III changing the current directory 

D obtaining information about your program and system memory 
allocation 

Il shelling out to the operating system 

Il quitting the pro filer 

Open The File I Open command opens the Program Load dialog box, 
shown here: 

Chapter 4, The Turbo Profiler environment 73 



74 

Figure 4.5 
The Program Load dialog 

box 

daytime.exe 
dice.exe 
install.exe 
map.exe 
modl.exe 
ovrdemo.exe 
pl.exe 
p2.exe 
p3.exe 
p4.exe 
5.exe 

With this dialog box, you can do any of the following: 

• load an explicit file into the Module window 

• use wildcards to filter the file list to match your specifications 

• choose a file from a history list of previously-entered file names 

• view the contents of different directories or drives 

There are three ways to load a file from this dialog box: 

1. Type in the file name, then choose OK (or press Enter). 
2. Press Enter or Tab to activate the files list box. Select (highlight) 

the file name you want, then choose OK or press Enter. 
... 3. Double-click the file name. 

You'll get an error message if you attempt to load a non-existent 
file or a file that isn't an .EXE file or that doesn't have debug 
information. 

Choose Cancel to leave the Program Load dialog box without 
loading a file. 

Using the File Name Input box 

When the File Name input box is active (the cursor is blinking in 
the box), you can do any of the following: 

• Load an explicit file: Type in a full executable file name 
(including disk drive and relative or absolute path, if you want; 
you don't have to type the extension). Then choose OK (or 

Turbo Pro filer User's Guide 



A history list shOINS the last 
eight file names you've 

entered. 

press Enter) to load that executable file's main source file into the 
Module window. 

II Filter the file list: Type in a file name (including disk drive and 
relative or absolute path) with DOS wildcards (? and *). Then 
move to the Files list box of matching file names to choose the 
file you want, or to the Directory list box to change to a 
different directory. 

II Choose from a history list: Press J, to make a history list drop 
down below the Name input box. To choose a file from the 
history list, double-click the file name, or select it with an arrow 
key and press Enter. 

Using the Flies list box 

By default, the Files list box displays all file names in the current 
directory that match the specifications in the Name input box as 
well as the names of directories you can move to from the current 
directory. If the Name input box specification includes a drive or 
path name, the list box displays all matching file names in the 
specified drive and directory. 

To load a file from the Files list box, 

1. Click the list box (or press Tab until the list box name is 
highlighted) . 

2. When the name is highlighted, either press J, or i to select a 
file name (then press Enter), or double-click the file name. 

You can scroll the list box, if necessary, to see all the file names. 

If the file you want is in another directory, tab to the Directories 
list box and select the directory you want to move into. (To access 
the parent directory of the one you are currently in, type .. \ * . exe 
and press Enter. 

If you need to load your program with some command-line 
arguments, refer to the description of the Run I Arguments input 
box on page 110. 

Change Dir The File I Change Dir command brings up the New Directory 
dialog box. 

Chapter 4, The Turbo Profiler environment 75 



Figure 4.6 
The New Directory dialog 

box 

You'll get an error message If 
the new directory can 't be 

found. 

76 

Get Info 

Figure 4.7 
The Get Info text box 

From this dialog box, you can log to a different current directory. 
(The current directory is where Turbo Pro filer saves and looks for 
files.) 

New Directory dialog box components 

The New Directory dialog box contains an input box in which you 
type the path to the directory you want to access. When you have 
done so, choose OK to change directories, or Cancel to remain in 
your present one. 

The File I Get Info command displays a text box with information 
about the program being profiled and your system's current 
memory configuration. 

Program: C:\TPROFILE\PRIHE1.EXE 
Status : Loaded 
Hode: Active 
Collection: Enabled 

-HelllOry-
DOS : 226Kb 
Profi 1 er : 282Kb 
Symbols : 8Kb 
Program : 196Kb 
Available: OKb 

-BHS-
DOS : 112Kb 
Profiler : 240Kb 
Program : OKb 
Available: 32Kb 

DOS version: 3.20 

6-14-1989 5: 27pm 

~ 

The information in the Get Info box is for display only; you can't 
change any settings from this box. Here's what the categories in 
this information box represent: 

• Program is the program being profiled; you determine which 
file to profile with the File I Open command . 

• Status is the reason why Turbo Profile gained control: it can be 
anyone of these loaded messages: 

Turbo Profiler User's Guide 



No program loaded 
Control-Break 
Terminated, exit code XX 
Stopped by area 
NMI Interrupt 
Exception XX 
Divide by zero 

• Mode is the profiling mode (active or passive); you specify the 
profiling mode with the Profile Mode radio button in the 
Profiling Options dialog box (accessed by choosing Statistics I 
Profiling Options). 

• Collection tells whether automatic data collection is enabled or 
disabled; you specify the data-collection setting with the 
Statistics I Accumulation command. 

• Memory tells 

• DOS: Memory occupied by DOS and/or various device 
drivers. 

• Profiler: Total memory used by the profiler. 
• Symbols: Memory allocated for the program's symbol table. 

• Program: Memory allocated to the current program being 
profiled. 

• Available: Amount of remaining available memory. 

• EMS shows use of expanded memory by DOS, Turbo Profiler, 
the program's symbol table, the program being profiled, and 
available memory, like the base memory display. EMS appears 
only if expanded memory is present. 

• DOS version shows the current DOS version on your system. 

• Current date and time shows today's date and the time of day. 

After reviewing the information in the Get Info box, click OK or 
press Enterto return to the current window. 

DOS Shell The File I DOS Shell command steps you out of Turbo Profiler and 
back to the DOS prompt, so you can enter a DOS command or 
program. 

To return to Turbo Profiler, type EXIT at the DOS prompt. 

-=:> In remote profiling mode, the DOS command line appears on the 
Turbo Pro filer screen rather than on the User screen; this allows 
you to switch to DOS without disturbing your program's output. 
Because your program's output is always available on one 

Chapter 4, The Turbo Profiler environment 77 



Quit 

0000 

View menu 

Table 4.2 
Summary of Turbo Profller 

windows 

Module... F3 
Execution Profile 
Callers 
OVerlays 
lnterrupts 
Files 
Areas 
Routines 
Disassembly 

monitor in the system, Window I User Screen and Alt-F5 are 
disabled. {See Appendix C for details about remote profiling.} 

The File I Quit command exits Turbo Profiler, removes it from 
memory, and returns to the DOS command line. Each time you 
exit Turbo Profiler, it remembers the areas you set up for the 
current program. 

If you have any profile data or setup parameters that you want to 
keep (such as the profile statistics, profiling and display options, 
and screen layout options), save them with Statistics I Save and 
Options I Save before exiting. Otherwise, you will lose the options 
you've set. 

The View menu lets you open several kinds of windows in which 
you can examine information about your program's performance. 

Window name 

Module 

Execution Profile 

Callers 

Overlays 

What this window displays 

Source code for the program being profiled 

Statistical information about a program after 
the program has run 

Information about how often a routine is called 
and which routines call it 

Information about overlays for Turbo Pascal, 
Turbo C, and Turbo Assembler 

Interrupts Information about interrupt calls made by the 
program 

Files Information about file activity 

Areas Detailed information about data-collection 
activities at the places marked in your source 
code 

Routines All routines that can be used as profile area 
markers 

Disassembly (CPU) The current profile area in the Module window, 
as disassembled source code 

78 Turbo ProfiJer User's Guide 



Module When you choose Module, a dialog box appears in which you 
type the name of the module you want to open. Press OK to 
display this module in the Module window. The Module window 
displays source code for the program being profiled. In the 
Module window, you can exaniine code and set areas to be 
profiled. Special hot keys and window links connect the code in 
this window to data and statistics in the other windows. 

Figure 4.8 
The Module window 

[1]=Module: PRIMEO File: primeO.e (modified) 7======1=[1]91 
/* Copyright (e) 1990. Borland International */ A 

/* Program for generating prime numbers using Euelidls method */ I 

int primes [1000]. 
'define MAXPRIMES 1000 

•• main(} 
( 

.. .. .. .. 

int j. 
int lastprime. eurprime; 

primes[O] • 2 • 
primes[l] • 3; 
lastprime • 1 • 
eurprime • 3; 

.. printf(Uprime %d • %d\n u
• O. primes [0]); 

•• printf(Uprime %d • %d\n u
• 1. primes [1]) ; 

•• whi le(eurpr1me < HAXPRIMES) 
( 

•• for(j_=._QLL~.: .. J~~~p'!,.!~e. j++) Y 

IE.~ iIIIIilIIIIfIifllil1B ' 

When you run the pro filer, you'll need both the .EXE file and the 
original source file available. Turbo Pro filer looks for your 
program's source code in these places, in this order: 

1. In the directory where the program was originally compiled 
2. In the directories (if any) you've listed under Options I Path for 

Source 
3. In the current directory 
4. In the directory that contains the program you're profiling 

(The name of the directory where the program was originally 
compiled is contained in .EXE and .OBI files if you compiled your 
program with symbolic debugging information turned on.) 

Chapter 4, The Turbo Pro filer environment 79 



80 

Line ••• 
Search ••• 
Next 
Goto ••• 

Add areas ~ 

Remove areas ~ 
Operation ••• 
Callers ••• 

Module ••• 
File ••• 
Edit 

Press AIt-F10 or click the right mouse button to bring up the 
Module window's local menu. With the local menu commands, 
you can perform these actions: 

• move the cursor to a specific line or code label 

• search for text in the source code 

• add and remove profile areas 
• set the profiling action that will occur for a given area 

• specify the level of call-path recording for a given routine 
• load another module or another source file of the current 

module into the Module window 

• invoke the editor of your choice 

To activate a local menu item directly (without bringing up the 
menu), press the Ctrl-(Ietter) hot key, where letter is the menu item's 
highlighted letter. 

@liO[I] Une 

To move swiftly to a particular line of code in the Module 
window, choose Line from the local menu. The dialog box that 
pops up requests the line number you seek; type in the new line 
number to go to, then choose OK (or press Enter). If you enter a 
line number after the last line in the file, you will be positioned at 
the last line in the file. 

@liO[!] Search 

To search for a character string in the current module, choose 
Search from the Module window's local menu. The prompt box 
that pops up requests the string to search for; type in the string, 
then choose OK (or press Enter). 

If the cursor is positioned over text that looks like a variable 
name, the prompt box comes up initialized to that name. If you 
mark a block in the file, the profiler uses that block to initialize the 
search prompt. This saves you from extraneous typing if the text 
you want to search for is a string already in the Module window. 

You can use the standard DOS wildcards (? and *): The? indicates 
a match on any single character, and * matches 0 or more 
characters. 

Turbo Pro filer User's GuIde 



The search does not wrap around from the end of the file to the 
beginning. To search the entire file, start at the first line. 

@EOrnJ Next 

@EO@] 
Use the hex format of 

whichever language your 
program:S In. 

All rout i nes 
Modules with source 
Routines in module 
Every line in module 
Lines in routine 
Current routine Alt-F2 
This line F2 

Once you've defined a search string with the Module window's 
local Search command, you can search for successive occurrences 
of that string with the Next command. Choose Next from the local 
menu, or press the shortcut, elrl-N. You can only use Next after 
issuing a Search command. 

Goto 

To position the Module window's cursor on a particular routine or 
other code label in your program's source code, choose Goto. The 
prompt box that pops up requests the address you want to 
examine. Type in a line number, a routine name, or a hex address, 
then choose OK (or press Enter). 

For information on address syntax, see the chapter "Expressions" 
in the Turbo Debugger User's Guide. 

Add Areas 

Add Areas on the Module window's local menu leads to the menu 
shown here. 

a All Areas adds area markers for all routines in the program 
being profiled, including routines for which source code is 
unavailable (such as library routines linked in as object 
modules from library files). 

II Modules with Source adds area markers for all routines in 
modules whose source code is available. 

a Routines in Module adds area markers for all routines in the 
current module (the one in the Module window). 

a Every Line in Module adds area markers for all lines in the 
current module. 

13 Lines in Routine adds area markers for all lines in the current 
routine (whichever routine the cursor is on in the Module 
window). 

III Current Routine adds an area marker for whichever routine the 
cursor is on in the Module window. 

Chapter 4, The Turbo Profiler environment 81 



All areas 
Modules with source 
Routines in module 
Every line in module 
Lines in routine 
Current routine Alt-F2 
This line F2 

• This Line adds an area marker for the line the cursor is on in the 
Module window. 

Remove Areas 

Remove Areas on the Module window's local menu leads to the 
menu shown here. 

• All Areas removes area markers for all routines in the program 
being profiled, including routines for which source code is 
unavailable (such as library routines linked in as object 
modules from library files). 

• Modules with Source removes area markers for all routines in 
modules whose source code is available. 

• Routines in Module removes area markers for all routines in 
the current module (the one in the Module window). 

• Every Line in Module removes area markers for all lines in the 
current module. 

• Lines in Routine removes area markers for all lines in the 
current routine (whichever routine the cursor is on in the 
Module window). 

• Current Routine removes the area marker for whichever 
routine the cursor is on in the Module window. 

• This Line removes the area marker for the line the cursor is on 
in the Module window. 

@ill@] Operation 

The Operation command opens the Area Options dialog box, 
which contains settings for the current area (the one where the 
cursor is in the Module window). 

82 Turbo Profiler User's Guide 



Figure 4.9 
The Area Options dialog box 

You can specify two options from this dialog box: Operation and 
Timing. When you mark an area, a marker symbol signifying the 
chosen operation appears to the left of that area. 

D Operation specifies what profiling action will occur for the 
current area. 
Normal collects profile statistics for this area as specified in the 
Statistics menu (callers, file activity, interrupts, overlays, etc.) 
and Area Operations dialog box, which you reach through the 
local menus of the Module and Areas windows. 

Stop stops program execution at this marker. 
Enable turns on the collection of statistics at this point in the 
program. 
Disable temporarily turns off the collection of statistics at this 
point in the program. 

a Timing specifies whether the pro filer will add the current area's 
execution time to a higher-level area or keep it separate. 

Separate adds any timer ticks occurring while program control 
is in the marked area to that area's timer-tick compartment only, 
not to the caller's compartment. 

Combined adds timer ticks that occur while control is in the 
marked area to the area's timer-tick compartment and to the 
caller's compartment. 

The Areas window displays operation and timer information for 
all marked areas. 

@ill@] Callers 

The Callers command on the local menu leads to the Stack Trace 
dialog box. 

Chapter 4, The Turbo Profiler environment 83 



Figure 4.10 
The stack Trace dialog box 

You can specify two options from this dialog box, Areas and 
Stack. 

• Areas specifies which areas you want call paths recorded for. 
This Routine records call-path information for the current 
routine (the one the cursor is on in the Module window). 

This Module records call-path information for all marked 
routines in the current module (the one in the Module 
window). 

All Routines records call-path information for all routines in all 
modules in the program . 

• Stack specifies how extensive ("deep") the recorded call stack 
should be. 
All Callers records all available call stack information for the 
routine(s) you've specified with the Areas option. 

Immediate Callers records only "parent" information for the 
routine(s) you've specified with the Areas option. 

None turns off call stack information for the routine(s) you've 
specified with the Areas option. 

[]IJ[!ill Module 

84 

The Module command on the local menu leads to the Pick a 
Module dialog box that lists all your program's modules for 
which source is available. 

Turbo Pro filer User's GuIde 



Flgure4.11 
The Pick a Module dialog 

box 

Most modules only have a single source code file; other files 
included in a module (such as C header files) usually define only 
constants and data structures. Use this command to open a 
different module in the Module window. 

This option displays only modules for which source code exists, if 
they are associated with the program being profiled. It allows you 
to move rapidly from one module to another without having to 
search your source directory explicitly. 

The Module command searches for the source code in the 
following places, in the order listed: 

1. in the directory where the program was originally compiled 
2. in the directories (if any) you've listed under Options I Path for 

Source 

3. in the directory that contains the program you're profiling 
4. in the current directory 

@ill(f] File 

The File command on the local menu leads to a dialog box that 
lists all the source files used to compile the current module. Use 
this command if your module has source code in more than one 
file and the file you want is not displayed in the module window. 

Chapter 4, The Turbo Profiler environment 85 



Figure 4.12 
The File dialog box 

The File command searches for the source code in the following 
places, in the order listed: 

1. in the directory where the program was originally compiled 
2. in the directories (if any) you've listed under Options I Path for 

Source 

3. in the directory that contains the program you're profiling 
4. in the current directory 

@ill[]] Edit 

Although Turbo Pro filer does not have a built-in editor, you can 
specify your own favorite editor as an option when you 
customize the profiler with the Turbo Profiler installation 
program, TFINST. See Appendix B for information about TFINST. 

Once you've installed an editor via TFINST, whenever you choose 
Edit from the Module window's local menu, Turbo Pro filer 
automatically shells out to DOS and invokes your editor. To 
return to the profiler from your editor, simply quit the editor. 

Execution Profile The Execution Profile window is where Turbo Profiler displays 
your program's profile statistics (after you've set areas and run the 
program under control of the profiler). 

86 Turbo Pro filer User's GuIde 



Figure 4.13 
The Execution Profile window Total time: 13.020 sec Display: Time . 

.% of total: 99 % Filter: All 
Runs: 1 of 1 Sort: Frequency 

The Execution Profile window consists of one pane, divided into 
two display areas (top and bottom). The top display area lists 

.. Total Time: your program's total execution time 
iii % of Total: how much of that total (a percentage) is represented 

by the statistics currently displayed in the bottom area of the 
window 

a Runs: the current profile run (if you're collecting and averaging 
statistics from more than one run) 

III the options you've chosen from the local menu (display format, 
filter status, sort order) 

The bottom display area lists one or two lines of profile data for 
each area you've marked. The information shown in this display 
area can include each area's name or line number, the execution 
counts for each marked area, the time spent in each marked area, 
the average time per pass for each marked area, and the most time 
spent in a marked area on a single pass. 

!fyou have a Module window and an Execution Profile window 
onscreen at the same time, the Execution Profile window is 
positioned automatically to show the statistics for the area the 
cursor is on in the Module window. 

Chapter 4, The Turbo Profiler environment 87 



88 

D1splay ••• 
Filter All ~ 

Module 
Reroove 

To specify how the Execution Profile window displays your 
program's statistics, activate the local menu (press Alt-F10). 
Through this local menu, you can 

• choose anyone of five different ways to display profile statistics 
in the Execution Profile window 

• sort the displayed statistics 
• temporarily remove one or more areas' statistics from the 

display 

• examine the source code for an area 

• delete an area's statistics from memory 

To activate a local menu command directly (without bringing up 
the menu), press the Ctrl-(Ietter) hot key, where letter is the menu 
item's highlighted letter. 

@E[)[Q] Display 

Figure 4.14 
The Display Options dialog 

box 

When you choose Display from the Execution Profile window's 
local menu, this Display Options dialog box comes up. 

You can specify two options from this dialog box, Display and 
Sort. 

• Display specifies what form the data will be displayed in. 

• Time displays the profile statistics for each area as the time 
(in milliseconds) program control was in that area. 

• Counts displays profile statistics for each area as pass counts: 
how many times program control entered that area. 

• Both displays the statistics for each area as both time (the top 
line) and counts. This provides a graphic measure of a 
routine's efficiency. 

• Per Call displays each area's statistics as the Time: Counts 
ratio. This provides the average time spent in each call to the 
routine. 

Turbo Pro filer User's GuIde 



• Longest displays, for each area, the longest single time 
program control was in that area. 

III Sort specifies what order the data will be sorted in. 

o Name sorts the profile statistics by area name, in 
alphanumeric order. 

o Address sorts profile statistics by memory location, starting 
with the lowest address . 

• Frequency sorts the statistics numerically, with the highest 
frequency at the top. 

The top display area of the Execution Profile window lists the 
current display and sort options. 

@WJ[£J Filter 

All 
Module ••• 
Current 

The Filter command on the local menu leads to the three-item 
menu shown here. 

I] All restores all collected statistics for the current program to the 
Execution Profile window. 

After you've filtered out certain statistics from the Execution 
Profile window (with Filter I Module or Filter I Current), choose 
Filter I All to restore all profile statistics to the window. 

II Module filters out all but one module's statistics. 
This command leads to the Pick a Module dialog box, which 
lists all modules for the current program. Use the i and J, arrow 
keys to highlight one module in the list, then press Enter. Only 
the areas in the chosen module show up in the Execution 
Profile window. 

III Current temporarily removes the current routine's statistics 
from the Execution Profile window. 

Choose Filter I Current if you want to throw out one routine's 
statistics and see what happens to the remaining percentages. 
The Current command is a temporary filter that hides report 
information from sight without deleting any information; it 
does the following: 

1. Removes the current area's statistics from the Execution 
Profile window. 

2. Calculates original total execution time minus the time of 
the removed area. 

Chapter 4, The Turbo Profiler environment 89 



Don't confuse Filter I Current 
with the Remove command 

on the ExecutIon Profile 
window's local menu. 

90 

3. Recalculates the remaining areas' percentages as fractions of 
the newly calculated total execution time. 

When you filter one or more areas' statistics from the Execution 
Profile window, the profiler calculates a new total execution time 
based on the statistics displayed in the window, but the Total 
Time value shown in the top of the window does not change. 

When you use Filter I Current, the original total execution time for 
the entire program remains displayed in the Execution Profile 
window's top display area. 

Filter I Current is a temporary filter that hides report information 
from sight; Remove actually affects area marker settings by 
removing them in both the Module and Areas windows. 

Module 

The Module command on the local menu takes you to the line of 
source code in the Module window for which the statistics are 
highlighted in the Execution Profile Window. 

For instance, suppose you highlight the statistics for routine fred 
in the Execution Profile window, then choose Module from the 
local menu to activate the link. Turbo Pro filer activates the 
Module window and places the cursor on the first line of fred in 
the source code. After that, you move the cursor to line 25 in the 
Module window (line 25 has an area marker). Automatically, the 
Execution Profile window's contents scroll so that the statistics for 
line 25 show at the top of the statistics display area. 

The link is one-directional: If you go back to the Execution Profile 
window (after going to the Module window) and move the 
highlight bar, the source code in the Module window does not 
scroll or track the highlight bar's position. (If it did, you could get 
very frustrated.) 

When you choose the Module command from the Execution 
Profile window's local menu, if source code for the highlighted 
line is unavailable, the link goes to the corresponding line of code 
in the Disassembly (CPU) window. This happens, for example, if 
you've marked areas for All Routines and the highlighted line is a 
library routine. (See page 106 for details about the Disassembly 
window.) 

Turbo Pro filer User's Guide 



Attention/ The Remove 
command erases statistical 
data. Use It with discretion. 

Remove 

The Remove command removes area marker settings for the 
highlighted line from the Module and Areas windows. 

Once you remove the line's area markers with the Remove 
command, the statistics you had gathered for that line are erased 
and no more statistics are gathered for that line of code. To undo a 
Remove action, you must 

1. Activate the Module window and bring up its local menu. 
2. Place the cursor on the line whose marker you removed. 
3. Choose Add Areas I This line. 
4. Run the program again (collecting a new set of statistics). 

Callers The Callers window is where Turbo Profiler displays the call 
paths for each marked routine in your program. You must set the 
Statistics I Callers menu item to Enabled before the pro filer will 
record any call-path information. 

Figure 4.15 
The Callers window, showing 

calls In CALLTEST 

An underscore precedes the 
Identifier names In this Callers 

window because Turbo C 
adds the underscore to aI/ 

symbol names that appear In 
.OBJ files and In symbolic 
debugging Information. 

I main 
77 - main b2 
33 main bi 

7700 main a b2 
33 -main -a bi 

The left pane in the Callers window lists each marked routine by 
name. When you highlight a routine name in the left pane, the 
right pane displays each unique call path for that routine. If a call 
path is wider than the right pane, you can zoom the window or 
switch to the right pane and scroll left and right through the path. 

Although the Callers window displays the call-path information, 
you specify what type of call-path recording you want through 
either the Module window or the Areas window. 

In the Module window, you can set callers options for whole 
groups of routines. 

1. With the cursor on a marked routine in the Module window, 
press Alt-F10 to bring up the local menu. 

2. Choose Callers to see the Stack Trace dialog box. 

Chapter 4, The Turbo Profiler environment 91 



92 

3. Set the Areas option. You can choose to record call paths for 
the current routine, all routines in the current module, or all 
routines in the program (including library routines). 

4. Set the Stack option. You can choose to record all callers for 
the chosen routine(s), immediate callers (the routines' parents, 
only), or no callers at all. 

5. Press Enter or choose OK to go back to the Module window. 

In the Areas window, you can set callers options for individual 
marked routines. (See page 101 for more information about the 
Areas window.) 

1. In the Areas window, place the highlight bar on the routine 
you want to set call-path options for, then press Alt-F10 to bring 
up the local menu. 

2. Choose Options to see the Area Options dialog box. 

3. Set the Areas option. You can choose to record call paths for 
the current routine, all routines in the current module, or all 
routines in the program (including library routines). 

4. Set the Callers option. You can choose to record all callers for 
the chosen routine(s), immediate callers (the routines' parents, 
only), or no callers at all. 

5. Press Enter or choose OK to go back to the Areas window. 

Figure 4.15 shows routine c highlighted in the left pane of the 
Callers window, after a profile run of this program, CALL TEST: 

/* Program CALLTEST */ 
/* Copyright (e) 1990, Borland International */ 
#inelude <stdio.h> 

main() 
( 

a() 

{ 

co; 
b2 (); 
bl(); 
a(); 

int i; 

for (1 = 0; 1 < 100; itt) 
b20 ; 

bl(); 

Turbo Profiler User's Guide 



Figure 4.16 
The Callers window local 

menus 

bl () 
{ 

int i; 

for (i = 0; i < 33; iff) 
C()i 

b20 
{ 

int i; 

for (i = 0; i < 77i i++) 
COi 

cO 
{ 

int ii 

for (i = 0; i < 3; i++) 

The Callers window's right pane lists each unique call path for 
routine c: 

II 1 call from main to c 
II 7,700 calls from main to a to b2 to c 
II 33 calls from main to a to b1 to c 
m 33 calls from main to b1 to c 

II 77 calls from main to b2 to c 

You'll find the Callers window useful when you must make 
decisions about restructuring code, especially when it's possible to 
reach a routine through several different call paths. 

Both panes of the Callers window have local menus. In the Callers 
window's right pane, both local menu items bring up subsequent 
menus, as shown here: 

left pane 
local menu 

I Inspect I 

Pick a caller 

Chapter 4, The Turbo Profiler environment 93 



To activate the local menu from the current pane, press AIt-F10. To 
alternate between the window's panes, press Tab. To activate a 
local menu item directly (without bringing up the menu), press 
the Ctrl-(Ietter) hot key, where letter is the menu item's highlighted 
letter. 

@!DO] Inspect (In left pane) 

When the highlight bar is on a routine name in the left pane, 
choose Inspect (or press its shortcut, Ctrl-/) to view the source code 
for that routine in the Module window. 

@!DO] Inspect (In right pane) 

When the highlight bar is on a call path in the right pane of the 
Callers window, you can "inspect" (view information about) 
elements in that call path in one of three other windows. 

1. Choose Inspect to bring up a list of those other windows. 
2. Choose the window you're interested in (Areas, Module, or 

Profile) from the list. This brings up the Pick a Caller dialog 
box, which lists all callers on the current call path. 

Figure 4.17 [1]=Pick a caller======;J 

The Pick a Caller dialog box 

94 

3. In the dialog box, highlight the caller in question (use the 
arrow keys or a mouse click), then choose OK or press Enter. If 
the window you choose to inspect in isn't already open, the 
profiler opens it automatically, then goes to the caller's location 
in that window. 

@!D~ Sort (in right pane) 

With the local Sort command in the Callers window's right pane, 
you can sort the list of call paths in two ways: 

• Called sorts the call paths in the same order that program 
control traversed them at run time . 

• Frequency sorts the call paths by how often program control 
traversed each path, with the most-used path at the top of the 
list. 

Turbo Pro filer User's Guide 



Overlays The Overlays window is where Turbo Pro filer displays 
infonnation about overlay activity for Turbo Pascal, Turbo C, and 
Turbo Assembler programs. You must set the Statistics I Overlays 
menu item to Enabled before the pro filer will record any overlay 
infonna tion. 

Figure 4.18 
The Overlays window 

Dtsplay 
Inspect 

Count 

The information listed in this window can include 

Il how many times your program loads each overlay into memory 
[J how long it takes to load each overlay 

IJ the sequence in which your program loads the overlays 
[l the size of the overlap 

Like the Execution Profile window, the Overlays window is 
divided into two display areas, top and bottom. The top display 
area lists total execution time for your program and the current 
display option for overlay statistics. The bottom display area lists 
the overlay statistics as either a histogram or a list of events. 

For a live demonstration of how the Overlays window works, 
load the Turbo Pascal demonstration program OVRDEMO into 
the profiler. Then set area markers for every line in the module 
OVRDEMO, enable Statistics I Overlays, and run the program. 
(You'll need the files OVRDEMO.PAS, OVRDEMOl.PAS, 
OVRDEM02.P AS, and OVRDEMO.EXE to profile this program.) 

The Overlays window's local menu provides two commands, 
shown here. To activate the local menu from the Overlays 
window, press Ctrl-F10. To activate a local menu item directly 
(without bringing up the menu), press the Ctrl-(Ietter) hot key, 
where letter is the menu item's highlighted letter. 

@0JlQ] Display 

Display specifies how the data will appear; you toggle between 
Count and History by pressing Enter. 

Chapter 4, The Turbo Profiler environment 95 



96 

Count produces a histogram that shows, for each overlay, how 
much memory that overlay consumes and how many times your 
program loaded the overlay into memory. 

History lists your program's overlay activity as a sequence of 
events; each line names the overlay and specifies when, in the 
course of program events, that overlay was loaded. 

[9illOJ Inspect 

Inspect goes automatically to the Module window (opening it, if 
necessary) and places the cursor on the source code for the 
highlighted overlay. 

Interrupts The Interrupts window is where Turbo Profiler displays 
information about the video, disk, keyboard, DOS, and mouse 
interrupt events in your program. The Statistics I Interrupts menu 
item must be Enabled before the pro filer will record any 
interrupt-call information. 

Figure 4.19 
The Interrupts window Collection enabled 

Subfunctions enabled 
Display: Calls 
6Z calls, 0.9876 sec 

The Interrupts window is divided into three panes: top left, top 
right, and bottom. 

• The top left pane displays the specific interrupts called by your 
program (by INT number and name). 

• The top right pane lists information about the display mode 
and the current interrupt (the one highlighted in the top left 
pane), number of calls, and execution time. You cannot tab to 
the top right pane; it only displays information. 

• In the bottom pane, you see a profile of data for each interrupt, 
shown as a histogram or as start time and duration. 

Both active panes of the Interrupts window have local menus. 

Turbo Pro filer User's GuIde 



Figure 4.20 
The Interrupt window local 

menus 

Top left pane 
local menu 

Collection 
Subroutines 

Add ••• 
Pick ••• 
Remove 
Delete all 

Bottom pane 
local menu 

Dl'Play~ 

Time 
Calls 
Both nme and Calls 

Events 

To activate the local menu from the current pane, press Alt-F10. To 
alternate between the window's panes, press Tab. To activate a 
local menu item directly (without bringing up the menu), press 
the Ctrl-(Ietter) hot key, where letter is the menu item's highlighted 
letter. 

Each entry in the bottom pane of the Interrupt window can list 

tI the interrupt by name or !NT number (or both) 
tI the number of calls to that interrupt (as an absolute number and 

as a percentage) 
Il the total amount of execution time spent in that interrupt (as an 

absolute number and as a percentage) 

@@@] Collection (in top pane) 

The Collection command enables or disables collection of statistics 
for the current interrupt (the one highlighted in the left display 
area of the top pane). 

@@@] Subroutines (in top pane) 

The Subroutines command enables or disables collection of 
statistics for subroutines of the current interrupt (particularly 
useful for DOS !NT 21H calls). Subroutine numbers are 
determined from the value in the AH register when the interrupt 
is called. 

Add (in top pane) 

The Add command adds an interrupt, by number, to the list in the 
pane's left display area. (You type in the !NT number in decimal 
notation: 33, not 21H.) 

Chapter 4, The Turbo Pro filer environment 97 



C2I!0(f] Pick (in top pane) 

The Pick command displays a predetermined list of interrupts, so 
you can pick one to add to the list in the left display area. 

C2I!0ffi] Remove (in top pane) 

The Remove command removes the current highlighted interrupt 
from the list in the pane's left display area. 

C2I!0[QJ Delete All (In top pane) 

The Delete All command removes all the listed interrupts in the 
pane's left display area. 

C2I!0[Q] Display (In bottom pane) 

The Interrupt window's bottom pane has a one-item local menu; 
its command, Display, leads to a subsequent menu. From this 
second menu, you can choose to display interrupt statistics in one 
of four different formats: 

Time 

Calls 

Both Time and Calls 

Events 

Displays the amount of time spent in 
each interrupt and its subfunctions. 

Displays the number of times each 
interrupt and its subfunctions were 
called. 

Displays both the amount of time and 
the number of times that each 
interrupt and its subfunctions were 
called. 

Displays a time ordered list of 
interrupt calls. 

Files The Files window is where Turbo Pro filer displays information 
about file activity that occurred during your program's run. 
Statistics I Files must be set to Enabled (the default), so the pro filer 
will record any file-activity information, such as read, write, open, 
or close. 

98 Turbo Pro filer User's Guide 



Figure 4.21 
The Flies window 

Figure 4.22 
The Flies window local menus 

Handle 5 
Opened at 0.1224 sec for 11? 
Open took 0.0235 sec 
161 reads, 4566 bytes, 0.0642 ,sec 
o writes. 0 bytes. 0 sec 

.. _ .. _ .. - .. - .. _ .. .. _ .. - .. _ .. - ... 
The Files window is divided into three panes: top left, top right, 
and bottom. 

The top left pane lists files by name, including STOIN and 
STDOUT. As you move the highlight bar over the file name 
you're interested in, the top right pane shows, for that file, 

II the handle number 
13 the time when the file was opened 

D how long the file was open 
[] the number of reads and writes from and to the file 

[] the total number of bytes read and written 

Il the time for all reads from and writes to the file 

[] the time required to close the file 

The top right pane only displays information. You can't tab to it, 
and it does not have a local menu. 

The lower pane displays file activity statistics (reads, writes, 
opens, and closes) as individual entries, rather than as statistical 
totals associated with a single file-name entry. Each entry 
provides information about a given file activity. 

Both active panes of the Files window have local menus. 
Top left pane 
local menu 

Bottom pane 
local menu 

I Display 

To alternate between the window's panes, press Tab. To activate 
the current pane's local menu, press Glrl-F10. To activate a local 
menu item directly (without bringing up the menu), press the 
Glrl-(Ietter) hot key, where letter is the menu item's highlighted letter. 

Chapter 4, The Turbo Profiler environment 99 



100 

@liD@] Collection (in top pane) 

The Collection command enables or disables the collection of file 
activity statistics for the current file (the one highlighted in the left 
display area of the top pane). 

Each entry in the bottom pane of the Files window provides 
infonnation about a given file activity. 

@liD[Q] Detail (in top pane) 

The Detail command enables or disables a detailed listing of file­
activity statistics. A detailed listing logs each file read and write 
activity separately, with the time from the program start the 
activity occurred and the number of bytes transferred. When 
Detail is disabled, only file open and close activities are logged 
individually; reads and writes are summarized. 

@liD~ When Full (In top pane) 

The When Full command specifies what happens when the 
memory set aside for file-activity statistics fills up. 

Wrap means that the newest file-activity statistics will overwrite 
the oldest ones when the memory area fills up. 

Stop means that file-activity statistics gathering will stop when the 
memory area fills up. 

@liD[QJ Display (in bottom pane) 

In the Files window's bottom pane, you can choose one menu 
item, Display, which leads to the Display Options dialog box, 
shown here. 

Turbo Pro filer User's Guide 



Figure 4.23 
The Display Options dialog 

box 

You can specify two options from this dialog box: Display and 
Sort. 

a Display specifies how you want file-activity statistics to appear 
in the bottom pane. 

Graph displays each activity's total time as a bar graph. 
Detail displays each activity's exact time in seconds. 

II Sort specifies the order in which Turbo Profiler sorts the 
displayed statistics. 
Start Time sorts the files' statistics by sequential order of 
occurrence. 

Duration sorts the files' statistics by how long the open, read, 
write, or close operation took. 

Areas The Areas window is where Turbo Pro filer displays detailed 
information about your program's marked profile areas. Use it to 
verify that the point and shoot Add/Remove Areas commands in 
the Module window local menu have set or cleared the desired 
area, and to adjust the behavior of individual areas. 

Figure 4.24 
The Areas window 

By default, the Areas window lists each area in alphabetical order. 
For typical programs, these areas are designated by the names of 
the routines to which they correspond. However, if you mark 
each line in a routine, the area name is (generically) 

ModName.FileName.NN 

The file name appears only if where ModName is the module name, FileName is the file name, 
the module is made up of and NN is the line number. If you mark a line associated with a 

more than one file. 
label (for example, a routine name), the pro filer uses the label as 
the area name. 

Chapter 4, The Turbo Pro filer environment 101 



Add areas ~ 
Remove areas ~ 
Inspect 

Options ••• 
Sort Name ~ 

The Areas window shows the following information associated 
with each marked area: 

• Start: starting address in hexadecimal 
• Length: length in bytes, as a hexadecimal number 
• Clock: whether the area uses a separate or combined clock in 

timing descendent areas 
• Action: the area operation (what Turbo Pro filer should do when 

it enters or leaves that area) 

• Callers: whether the profiler tracks the area's immediate caller 
only, all callers, or no callers 

The Areas window is more than a source window for static 
display of information. With the local menu, you can 

• add or remove areas 

• inspect areas 
• change options for individual areas 
• sort the displayed information 

To activate the window's local menu, press Alt-F10. To activate a 
local menu item directly (without bringing up the menu), press 
the Ctrl-(Ietter) hot key, where letter is the menu item's highlighted 
letter. 

@liD[K] Add Areas 

Choose Add Areas to specify all routines in your module as a 
specific routine or module that you want marked as an area. This 
command resembles the Module window's local Add Areas 
command. 

@liDffi] Remove Areas 

The Remove command removes all information displayed for an 
area and removes that area's markers. 

@liDO] Inspect 

When you choose Inspect, the profiler switches to the Module 
window and places the cursor on the first line of source code 
corresponding to the current area (the one highlighted in the 
Areas window). 

102 Turbo Pro filer User's Guide 



@!!O[QJ Options 

Figure 4.25 
The Area Options dialog box 

When you choose Options from the Areas window's local menu, 
the Area Options dialog box comes up. 

You can specify three options from this dialog box: Operation, 
Callers, and Timing . 

.. Operation specifies what profiling action will occur for the 
current area. 
Normal collects profile statistics for this area. 
Stop stops program execution at this marker. 

Enable turns on the collection of statistics at this area marker. 

Disable turns off the collection of statistics at this marker. Data 
collection resumes once program control passes an enabled 
marker . 

.. Callers specifies which level of callers the profiler will track. 

All Callers records all available call-path information for the 
current routine. 
Immediate Callers records only IIparent" information for the 
current routine. 

None turns off call-path information for the current routine . 

.. Timing specifies whether the pro filer will add the current area's 
execution time to a higher-level area or keep it separate. 

Separate adds any timer ticks occurring while program control 
is in this marked area to the area's timer-tick compartment only, 
not to the caller's compartment. 

Combined adds timer ticks that occur while control is in this 
marked area to the area's timer-tick compartment and to the 
caller's compartment. You can specify combined time for an 
area only if that area's Callers setting is Immediate or All. 

Chapter 4, The Turbo Profiler environment 103 



104 

Figure 4.26 
Propagation of time 

The following figure illustrates how time propagates from called 
routines to the calling routines when the caller's clock is set to 
Combined. 

Clock 
Combined 

Clock 
Combined 

Clock 
Separate 

In this figure, b1 's clock is combined and b1 calls c1, so c1's time is 
combined with b1's time. Part of c1 's time is actually d1's time, 
because c1 's clock is combined. 

Both b1 and b2 call routine c2 . 

• Routine c2's time from when b1 calls it-which includes all of 
d2's time-is combined with b1's time, because b1's clock is 
combined . 

• But c2's time from when b2 calls it is not combined with b2's 
time, because b2's clock is separate. 

~@] Sort 

The Sort command rearranges the information displayed in the 
Areas window. You can sort alphabetically (by Name) or 
numerically (by Address). Sorting by Address lists the areas in an 
order more consistent with the order in which they appear in 
your source code. 

Routines The Routines window is where Turbo Pro filer displays a list of all 
routines that you can use as area markers. Use it when you can't 
remember the name of a routine, or to see which routines have 
areas set on them. You can use the Inspect command to go to 
other modules by "inspecting" a routine in a particular module. 

This menu option gives you easy access to information related to 
a symbol. 

Turbo Pro filer User's Guide 



Figure 4.27 
The Routines window 

Figure 4.28 
The Routines window local 

menus 

The information displayed is basically a list of all global symbols 
available from debug information included in the executable file. 
These symbols include all routine and procedure names in 
standard libraries for Turbo C and Turbo Pascal, as well as the 
names of routines in any third-party libraries you might be using 
(provided you link to those libraries with symbolic debug 
information turned on). 

The Routines window is divided into two panes, left and right. 
The left pane lists routines global to your whole profiled program, 
and the right pane lists routines that are local to the current 
module of the program you're profiling. 

Local routines include nested routines and procedures in Pascal 
and static routines in C. Global routines with source code 
available appear highlighted in the right pane. (By default, an 
underscore (_) precedes all global variables in Turbo C 
programs.) 

Both panes of the Routines window have local menus. 
Left pane 
local menu 

Areas 
Callers 
Module 
Profile 

Right pane 
local menu 

Local Module 

Areas 
Callers 
Module 
Profile 

To alternate between the window's panes, press Tab. To activate 
the current pane's local menu, press AIt-F10. To activate a local 
menu item directly (without bringing up the menu), press the 
Ctfl-(Ietter) hot key, where letter is the menu item's highlighted letter. 

@E[)[g Local Module (in right pane) 

When you choose Local Module in the Global Routines pane (the 
right pane), this Pick a Module dialog box pops up, listing all 
modules in your program. 

Chapter 4, The Turbo Profiler environment 105 



Figure 4.29 
The Pick a Module dialog 

box 

After you highlight a module and choose OK, the pro filer 
displays that module's local symbols in the right pane of the 
Routines window. 

~0 Areas (in both panes) 

The Areas command opens an Areas window and positions that 
window's highlight bar on the current routine (the one that's 
highlighted in the Routines window). 

~@] Callers (in both panes) 

The Callers command opens a Callers window and shows the 
curren t routine's callers. 

~(0 Module (in both panes) 

The Module command opens a Module window and shows the 
source code for the current routine. 

~@] Profile (in both panes) 

The Profile command opens the Execution Profile window and 
shows the profile statistics for the current routine. 

Disassembly (CPU) The Disassembly window (labeled "CPU" when it's on the screen) 
displays the current area in the Module window as disassembled 
source code. You use the Disassembly (CPU) window to help 
determine if you want to rewrite parts of your program in 
assembly language. 

106 Turbo Pro filer User's GuIde 



Figure 4.30 
The Disassembly (CPU) 

window 

Goto ••• 
Origin 
Follow 
Previous 
View source 
Mixed Yes 

[I]=CPU 80286 3 [t] [U, 
OVRDEMO.49: Writel; ... 

·.7EB6:0076 9A2500C37E call far OVRDEM01.WRITEl I 

OVRDEMO.50: Write2. I ·.7EB6:007B 9A2500C07E call far OVRDEM02.WRITE2 
OVRDEMO.51: until KeyPressedi 

·.7EB6:00SO 9AFA02C67E call far CRT .KEYPRESSEO 
7EB6:0085 oseo or al.al 
7EB6:0087 74EO je OVRDEMO.49 (0076) 
OVRDEMO.52: end. 

·.7EB6:0089 89EC mov sp.bp 
7 EB6: 008B 50 pop bp 
7EB6:00SC 3ICO xor ax.ax ... 

IIIl1I.IIlfIIIflIIIIII _ailllU_lIIIIIIII1IIIII _11l1li I 

The left part of each disassembled line shows the instruction's 
address, either as a hexadecimal Segment:Offset value or, if the 
segment value is the same as the current CS register, as a CS:Offset 
value. If the window is wide enough (zoomed or resized), it also 
displays the bytes that make up the instruction. The disassembled 
instruction appears to the right of each line. 

In the Disassembly (CPU) window, global symbols appear simply 
as the symbol name. Static symbols appear (generically) as 

ModName.SymbolName 

ModNameiSymbolName 

/* Turbo C */ 

{ Turbo Pascal 

where ModName is the module name and SymbolName is the static 
symbol name. Line numbers appear (also generically) as 

ModName.LineNumber 

ModNameiLineNumber 

/* Turbo C */ 

{ Turbo Pascal 

where ModName is the module name and LineNumber is the 
decimal line number. 

In the Disassembly (CPU) window, you can use the F2 function 
key to set area markers for each machine instruction you want to 
monitor. Any instructions marked in this fashion that have no 
symbol name appear in the Areas window as hex addresses in 
Segment:Offset form. 

With the Disassembly (CPU) window's local menu commands, 
you can go immediately to any of these locations: 

• a specified address, to examine code 
• the current program location (CS:IP) 
111 the destination address of the current instruction 

• the previous instruction pointer address 

• the address in the source code 

Chapter 4, The Turbo Pro filer environment 107 



108 

You can also choose a local menu item to activate the Module 
window and move its cursor to the source for the current 
instruction, or to display disassembled instructions and source 
code three different ways. 

To activate the window's local menu, press Alt-F10. To activate a 
local menu item directly (without bringing up the menu), press 
the etrl-(Ietter) hot key, where letter is the menu item's highlighted 
letter. 

@!ill@] Goto 

When you choose Goto, a dialog box pops up and requests the 
address you want to go to. Enter a hexadecimal address, using the 
hex format of the language your program is in. 

You can enter addresses outside of your program to examine code 
in the BIOS ROM, inside DOS, and in resident utilities. 

The Previous command restores the Disassembly (CPU) window 
to the position it had before you chose Goto. 

@!ill@] Origin 

You choose Origin to position the window's highlight bar at the 
current program location as indicated by the CS:IP register pair. 
This command is useful when you have been looking at your code 
and want to get back to the address of the current instruction 
pOinter (CS:IP), where your program is stopped. 

The Previous command restores the Disassembly (CPU) window 
to the position it had before you chose Origin. 

@!illm Follow 

The Follow command positions the Disassembly (CPU) window's 
highlight bar at the destination address of the currently 
highlighted instruction. The window scrolls to display the code at 
the address where the currently highlighted instruction will 
transfer control. For conditional jumps, the window shows the 
address as if the jump occurred. 

You can use this command with CALL, JMP, conditional jump 
(JZ, }NE, LOOP, JCXZ, etc.) and !NT instructions. 

Turbo Pro filer User's GuIde 



The Previous command restores the Disassembly (CPU) window 
to the position it had before you chose Follow. 

@ill (£] Previous 

When you issue a command that changes the instruction pointer 
address (such as Goto, Origin, or Follow), the Previous command 
goes back to the address displayed before you issued that 
address-changing command. If you move around with the arrow 
keys and the PgUp and PgDn keys, the profiler does not remember 
the window's position, but you can always return to the origin, 
which is the current CS:IP. 

Repeated use of the Previous command switches the Disassembly 
(CPU) window back and forth between two addresses. 

@ill[SZ] View Source 

The View Source command opens a Module window and shows 
the source code for the current routine. 

@ill[0 Mixed 

There are three ways to display disassembled instructions and 
source code in the Disassembly (CPU) window. You choose the 
window's display format with the local menu's Mixed command, 
which toggles between three choices: No, Yes, and Both. 

tI No means that no source code is displayed, only disassembled 
instructions. 

In No mode, global label names are still used in place of 
addresses for calls, jumps, and references to data items. 

1:1 Yes means that source code lines appear before the first 
disassembled instruction for that source line. 

The pro filer automatically sets the window to Yes if your 
current module is a high-level language source module. 

c Both means that source code lines replace disassembled lines for 
those lines that have corresponding source code; otherwise, the 
disassembled instruction appears. 
The pro filer sets the window to Both if your current module is 
an assembler source module. 

Chapter 4, The Turbo Profiler environment 109 



110 

Run menu 

Run F9 
Program reset Ctrl-F2 
Arguments ••• 

Run 

Use Both if you're profiling an assembler module and want to 
see the original source code line, instead of the corresponding 
disassembled instruction. 

The Run menu provides three commands for running your 
program: Run, Program Reset, and Arguments. Control returns to 
the pro filer when one of the following events occurs: 

• Your program finishes running. 
• Your program encounters an area marker whose operation is 

Stop. 

• You interrupt execution with the interrupt key. 

(Usually, the interrupt key is the etr/-Break key combination; you 
can change this to another key with TFINST, the profiler 
installation program. See Appendix B for details.) 

You can run your program even if the Module window is closed 
(as long as there's a program loaded into Turbo Profiler). 

When you choose Run I Run or Run I Program Reset, any statistics 
collected for a previous execution are reset. If you want to save a 
set of statistics, use Statistics I Save before you run or reset. 

The Run command runs your program and collects performance 
statistics. 

If you set the Display Swapping option in the Display Options 
dialog box to Always, your program's output replaces the Turbo 
Profiler environment screen until the program finishes or you 
interrupt it. 

If you set Display Swapping to None, the Turbo Pro filer 
environment stays on screen while your program runs, but the 
word RUNNING appears in the upper right comer of the screen. 

Program Reset The Run I Program Reset command reloads your program from 
disk. Use this command if you've run your program too far 

[QliOmJ during a profiling session and need to restart execution at the 
start of the program. 

If you select Run I Program Reset when the Module or 
Disassembly (CPU) window is active, the display in that window 
won't return to the start of the program. Instead, the cursor stays 
exactly where it was when you chose Program Reset. 

Turbo Pro filer User's Guide 



Arguments The program you're profiling might expect command-line 
arguments. With Run I Arguments, you can store your program's 
command-line arguments within Turbo Profiler. Then, when you 
choose Run I Run or Run I Program Reset, the pro filer passes the 
arguments to your program just as if you had typed them in at the 
command line. You can change these arguments from within 
Turbo Pro filer and rerun your program. 

Enter the arguments exactly as you would at the DOS command 
line. (Do not enter the program name.) 

Statistics menu 

Callers Disabled 
Files Enabled 
Interrupts Disabled 
Overlays Disabled 

Profiling Options ••• 
Accumulation Enabled 
Delete All 

Save ... 
Restore ••• 

The Statistics menu contains commands to 

II specify the type of data the profiler will collect (callers, files, 
interrupts, overlays) 

Il set the profile mode to active or passive 
1] determine the number of program runs and areas 
fl turn automatic data collection on and off 
El erase profile statistics 

13 save profile statistics to a file 

m restore previously saved statistics 

You can save all statistical information from the current profile to 
a.TFS file. Then, whenever you want to study the profile results, 
you can load that .TFS file-recovering all the saved statistics 
without having to rerun the profile. 

This feature is most useful if your programs take a long time to 
run or profile. You can save multiple versions of profiles under 
different conditions, then restore each of the resulting profiles for 
quick comparison at a later date. Or, you can write a macro to 
automatically run five profiles with different options or area 
markers, then save the results in five different .TPS files. 

You can then run the macro overnight and come back to your 
results in the morning. 

Chapter 4. The Turbo Pro filer environment 111 



Callers 

You must run your program 
and accumulate some 

statIstics before these 
wlndo\N'S show any 

Information. 

When you enable the Callers option, the pro filer gathers statistics 
about which routines call other routines. To specify which 
routines you want call histories for, you choose the Callers 
command on the Module window's local menu or the Options 
command on the Areas window's local menu, then select the 
appropriate radio buttons under Callers and Areas. 

112 

After running your program and gathering the profile 
information, use the Callers window to look at the call-history 
statistics. 

Gathering caller information consumes memory and slows down 
your program's run speed. If you don't need caller information, 
set Callers to Disabled. 

Files When you enable the Files option, the profiler gathers statistics 
about which files your program opens, and which read and write 
operations take place. 

After running your program and gathering the profile 
information, use the Files window to look at your program's file 
activity. 

Gathering file-activity information consumes memory and slows 
down your program's run speed. If you don't need file-activity 
information, set Files to Disabled. 

Interrupts When you enable the Interrupts option, the pro filer collects 
statistics about which interrupts your program calls. The pro filer 
keeps separate statistics for DOS, Video, Disk BIOS and Keyboard 
interrupts. 

After running your program and gathering the profile 
information, use the Interrupts window to look at which 
interrupts your program called. 

Gathering interrupt information consumes memory and slows 
down your program's run speed. If you don't need interrupts 
information, set Interrupts to Disabled. 

Turbo Pro filer User's Guide 



Overlays The Overlays option toggles whether statistics are collected for 
the overlays your program loads. 

If your program does not contain overlays, an error message is 
displayed and the option remains disabled. 

Gathering overlay information consumes memory and slows 
down the speed at which your program runs. If you don't need 
overlay information, you should disable this option. 

Profiling Options The Statistics I Profiling Options command opens the Profiling 
Options dialog box, shown here: 

Figure 4.31 
The Profiling Options dialog 

box 

With the Profiling Options dialog box, you can set any of the 
following options: 

• Profile Mode specifies which type of analysis the profiler will 
perfonn. The default is Active. 
Active analysis means the profiler will collect full statistical 
infonnation for each marked routine: basic clock timing 
infonnation, how many times it was called, and which routines 
called it. 

Passive analysis means the profiler will only collect basic clock 
timing information for each marked routine. 

II Run Count sets how many times your program will run while 
the pro filer collects statistics. The default is 1. 

• Maximum Areas specifies the maximum number of areas you 
can divide the current program into. The default is twice the 
number of routines in the program being profiled. 

• Clock Speed defines the speed of the timing clock, in ticks per 
second. The default is 100 ticks per second. Clock speed is 
available only in passive mode, not in active mode. 

Chapter 4, The Turbo Profiler environment 113 



114 

With the options in this dialog box, you can tailor the profiling 
session to meet your unique programming needs. 

Active analysis mode provides the most detailed analysis of your 
program at the cost of slowing program execution speed. On the 
,other hand, passive mode allows your program to run at almost 
full speed, but does not provide any information about how many 
times a routine was called or which routines called it. 

If there are not many clock ticks during the time your profiled 
program runs, the data collected might not accurately reflect the 
time spent in various parts of the program. Running the program 
several times helps improve the accuracy by increasing the total 
number of data pOints collected. Speeding up the clock is another 
way to increase the total number of data points; this increases the 
accuracy of the timing statistics for each region at the expense of 
slowing down program execution speed. 

-=:> The profiler doesn't actually time each area, but uses the interrupt 
timer to increment a timer count. When the program terminates, 
the profiler converts the values in the timer counts to execution 
times, based on the current setting of the Clock Speed option in 
the Profiling Options dialog box. 

Accumulation The Statistics I Accumulation option turns automatic data 
collection on and off, which means you can (1) collect data for a 
subset of all marked areas without removing any area markers 
and (2) manually turn data collection on after your program 
begins running. 

To collect data for a subset of all marked areas, do this: 

1. In the Areas window's local menu, choose Options to open the 
Area Options dialog box. 

2. For those areas whose statistics you want, change the area 
marker from Normal to Enable (to start data collection) or to 
Disable (to stop data collection). 

3. Set Statistics I Accumulation to Disabled. 
4. Run your program. The pro filer will not start collecting data 

until it trips an area marker that's set to Enable. 

To turn on data collection manually after your program has 
started running, do this: 

1. Set area markers. 

Turbo Pro filer User's Guide 



2. Set Statistics I Accumulation to Disabled. 
3. Run your program from the profiler (press F9). 

4. When the program is in the appropriate run-time state, 
interrupt it. 

5. Enable the collection of profile data (set Statistics I 
Accumulation to Enabled). 

6. Resume program execution (press F9 again). 

Turbo Pro filer starts accumulating statistics immediately for the 
marked areas. 

When you would disable accumulation 

Sometimes, when many different places in your program call a 
routine or family of routines, you want to know only the time 
spent in the routine, when a specific part of your code calls it or 
the time spent in the routine after a specific event. 

To monitor only certain calls to a routine, use Statistics I 
Accumulation to disable data-collection at the start. Mark an area 
that enables collection just before the call to the routine that you 
want to collect statistics for (set the area marker to Enable. Mark, 
another area that disables collection after the routine returns. You 
can also set Enable and Disable areas in unrelated parts of the 
code; do this when you want to collect statistics only after a 
certain event. 

Example #1: Collecting only for a specific call to a routine 

Suppose that you're only interested in calls to abc when it is 
called from xyz, but not at any other time. 

=> main() /* normal area marker at routine */ 
( 

abc () i /* don't want to collect statistics for this call 
*/ 

xyz () i 

=> xyz() /* normal area marker at routine */ 
{ 

e> abc () i /* want to collect statistics for this call */ 
d> 

Chapter 4, The Turbo Profiler environment 115 



116 

=> abc 0 
{ 

1* normal area marker at routine *1 

Notice the e> that enables collection and the d> that disables 
collection. You must disable Statistics I Accumulation before 
running your program, or the profiler will erroneously collect 
statistics for the first call to abc in main. 

Example #2: Collecting after a certain event has occurred 

Suppose that routine xyz behaves differently depending on some 
global state information controlled by the two routines bufferon 
and bufferoff. You are only interested in the time spent in xyz 
when bufferflag equals 1. 

=> main() 1* normal area marker at routine *1 
{ 

xyz 0 ; 1* no statistics collected here *1 

bufferon()i 

xyz 0 ; 1* will collect statistics for this call *1 

bufferoff(); 

xyz () i 1* no statistics collected here *1 

=> bufferon() 1* normal area marker at routine *1 
{ 

bufferflag = 1i 
e> 

d> bufferoff ( ) 1* normal area marker at routine *1 
{ 

bufferflag = 0; 

=> xyz() 1* normal area marker at routine *1 
{ 

Turbo Pro filer User's Guide 



Notice that the e> to enable collection and the d> to disable 
collection are not near the calls to xyz. Once again, you must 
disable data-collection at the start (by setting Statistics I 
Accumulation to Disabled), or the first call to xyz will erroneously 
contribute to the collected statistics. 

Delete All The Statistics I Delete All command erases all statistics collected 
for the current profiling session-essentially wiping the data slate 
clean so you can start afresh. Delete All removes all profile data 
from the open profile report windows (Execution Profile, Callers, 
Interrupts, Files, and Overlays), but it does not delete the profiling 
options you've set. 

Save The Statistics I Save command saves the following data, settings, 
and options: 

Figure 4.32 
The Save dialog box 

II all statistics for which collection was enabled when you ran the 
current profile (execution times and counts, callers, file activity, 
interrupts, overlays) 

EI all area information (area names, operations, callers, separate 
versus combined timing) displayed in the Execution Profile 
window 

Once you've saved statistics to a file, you can recover them at any 
time with the Statistics I Restore command. 

When you choose Statistics I Save, this dialog box comes up: 

The Name input box lists a default .TPS file name (progname.TFS, 
where progname is the current program's name). 

Chapter 4, The Turbo Profiler environment 117 



118 

Saving Flies 

To save the current profile statistics to the default file, choose OK. 

To save them to a different file, 

1. Activate the File I Name input box. 

2. Type in the different file name (including disk drive and path, 
if you so choose). 

3. Choose OK (or press Enter). 

If the .TFS file already exists, a message box asks if it's all right to 
overwrite the file. 

Restore When you choose Statistics I Restore, this dialog box comes up: 

Figure 4.33 
The Restore dialog box 

The Restore dialog box works just like the profiler's other file­
loading dialog boxes. You can 

• enter a file name or a specification (with DOS wildcards) in the 
File Name input box 

• choose a different disk drive or directory from the directory tree 

• choose a file name from the Files list box 
• choose OK to complete the transaction (or choose Cancel to 

leave the dialog box without loading a file) 

• choose Help to open a window of information about how to use 
the dialog box 

After you type in or choose a.TFS file name and load that file, 
Turbo Pro filer restores all the saved options, settings, and 
resulting statistical information to the environment screen. 

Turbo Pro filer User's Guide 



Print menu 

Statistics 
Module ••• 

Options ••• 

Statistics 

Append 
Overwrite 
Cancel 

Module 

Figure 4.34 
The Pick a Module dialog 

box 

Turbo Profiler's Print menu enables you to print the contents of 
any open profiler window to a new or existing disk file, or 
directly to the printer. 

The Print I Statistics command prints the contents of all open 
pro filer windows (except the Module window) to the printer, or to 
the destination file named in the Printing Options dialog box. 

Before you choose Print I Statistics, open the Printing Options 
dialog box (choose Print I Options) and verify that the current 
printing options (dimensions, output location, character set used, 
and-if you're printing to a file---destination file name) are what 
you want. 

If you choose to print statistics to an existing disk file, a menu 
pops up so you can choose whether to append the existing file, 
overwrite it, or cancel the printing operation. 

From the Pick a Module dialog box accessed by choosing Print I 
Module, you specify which of your program's modules you want 
printed to the printer or to the disk file named in the Printing 
Options dialog box. 

When you choose Module, this Pick a Module dialog box comes 
up: 

You can choose a specific module by name, or choose All Modules 
to print all your program's available source code. When the 
pro filer prints a module, it produces an annotated source listing­
which lists execution time and counts data next to each source 
line or routine you've marked as an area, as shown in the 
following figure. 

Chapter 4, The Turbo Profiler environment 119 



Figure 4.35 
Annotated source listing for 

PRIMEl 
Program: C:\TPROFILE\PRlHE1.EXE File PRlHE1.C 

Time Counts 
linclude <stdio.h> 

0.0090 999 pr1me(int n) 
( 

0.0117 999 
1.1456 78022 
O.OOSO 831 
0.0017 168 
0.0101 999 

0.0000 1 

0.0000 1 
0.0000 1 
0.0255 999 
4.1670 168 
0.0000 1 

main() 
( 

int i; 

for (i-2. i<n. ii+) 
if (n % i -- 0) 

return 0. 
return h 

int i. n; 

n - 1000. 
for (1-2; i<-n; 1++) 

if (pr1me(;» 
pnntf(U%d\n u • ih 

Options When you choose Options from the Print menu, this Printing 
Options dialog box comes up: 

Figure 4.36 
The Printing Options dialog 

box 

120 

• Width is the number of characters printed per line (default = 
80). 

• Height is the total number of lines per page (default = 66). 
• The Printer/File radio buttons let you choose between sending 

the printed statistics to the current printer or to a file. The 
default is Printer. 

• The Graphics/ASCII radio buttons let you toggle between 
printing characters from the IBM extended character set 
(including semigraphic characters) and printing only ASCII 
characters. The default is ASCII. 

• Destination File is the disk drive (optional), path name 
(optional), and file name (required) of the printed disk file. 

Turbo Pro filer User's Guide 



Options menu 

Macros ~ 
DfsplQY options ••• 
Path for source ••• 
Save opt1ons ••• 
Restore options ••• 

Macros 

Create... Alt a 

Stop recording Alt­
Remove 
Delete all 

With the Options menu, you can 

.. record a menu-command macro 

II remove one or all menu-command macros 

III set display options that control Turbo Profiler's overall 
appearance and operation 

• specify directories (other than the current one) where Turbo 
Profiler will search for source code 

£I save your window layout, macros, options set in other menus, 
and some other miscellaneous options to a configuration file 

D restore the settings and options previously saved in a 
configuration file 

The Options I Macro command leads to another menu, shown 
here. 

With the commands on this Macro menu, you can define new 
macros or delete ones you've already assigned to a key. Mouse 
actions are not included in a macro. 

To begin a macro recording session, 

1. Choose Options I Macro I Create. 

A prompt asks for which key to assign the macro to. Type in a 
keystroke or combination of keys (for example, Alt-W. The 
message RECORDING appears in the upper right corner of the 
screen while you record the macro. 

2. Type the keystrokes you want to record. The profiler responds 
normally to these keystrokes and mouse actions, as if you 
weren't recording a macro. 

When you finish recording keystrokes, choose Options I 
Macros I Stop Recording (or press the key you assigned the 
macro to-Alt-M in this example) to stop the recording session. 

How macro recording and playback works 

With the profiler's macro recording facility, you can record your 
frequently used keystroke sequences. During profiling, for 
example, you often repeat the same sequence of commands to get 
to a certain place in your program. This can be very tedious. 

Chapter 4. The Turbo Profiler environment 121 



122 

But, with Options I Macro, you can define a macro that records all 
the keys you press from the moment you first start the pro filer 
until you have your program in the desired state. At that point, 
you can stop recording. If you must get back to the same place in 
your program, simply replay the macro. 

You can't use Options I Macro to record keystrokes that must be 
typed as input to your program. You can only record Turbo 
Profiler commands. 

To record your entire profiling session, 

1. Start Turbo Pro filer from DOS. 
2. Choose Options I Macros I Create (or press Alt=) to define the 

macro. A prompt appears, asking which key you want the 
macro assigned to. 

3. Choose a key that hasn't been assigned to a routine yet, such 
as Shift and a routine key (Shift-F10, for example). 

4. Load your program. Turbo Pro filer will automatically restore 
area settings from your program's. TF A file. 

5. If you want to use a configuration different from the default, 
load the appropriate config file (choose Options I Restore). 

6. Run your program: Stop execution if necessary. 

7. Stop recording the macro: Choose Options I Macros I Stop 
Recording (or press A1t-). 

8. Save the macro to a configuration file: Choose Options I Save 
Options, choose Macros in the Save Configuration dialog box, 
type the name of the corresponding configuration file (if you 
don't want to use the one listed in the dialog box), then choose 
OK or press Enter. 

9. Continue running your program. 

If your program requires you to type things to get to the next part 
of the recorded command sequence, you still must enter those 
keystrokes manually (you can do this while the macro is running). 
For programs that don't require any input, this command­
recording mechanism can completely automate the restart 
procedure, saving many keystrokes. 

When you save a macro to a configuration file, the profiler saves 
the total environment configuration, including opened and 
zoomed windows. So, if you record a macro that opens a window, 
and you don't close the window before saving the macro, the next 

Turbo Pro filer User's GuIde 



time you restore that configuration file, the window opens 
automatically-even if you don't execute the macro. 

Create (Alt=) 

The Create command starts recording keystrokes that you want 
assigned to a macro key. Alt= is the hot key for Create. 

Stop Recording (Alt-) 

The Stop Recording command stops recording the keystrokes 
you're assigning to a macro key. Use this command after choosing 
Options I Macros I Create. Alt- is the hot key for Stop recording. 

Remove 

The Remove command removes a macro assigned to a single key. 
A prompt asks you to press the key of the macro you want 
removed. 

Delete 

The Delete command removes all keystroke macro definitions and 
restores all keys to their original (default) meanings. 

Display Options The Options I Display Options command opens the Display 
Options dialog box, shown here. 

Figure 4.37 
The Display Options dialog 

box 

With the Display Options dialog box, you can do any of the 
following: 

• specify whether Turbo Pro filer will swap screens while your 
program runs 

• set how many columns each tab stop occupies in the Module 
window 

• set the Turbo Pro filer screen to 25-line or 43/50-line mode 

Chapter 4, The Turbo Pro filer environment 123 



124 

• specify how wide your program's routine names display in the 
Execution Profile and Areas windows. 

Display Swapping 

The Display Swapping radio buttons provide two options for how 
Turbo Pro filer swaps the User screen back and forth with the 
Turbo Profiler environment: None, and Always. 

• None means don't swap between the two screens. 
Use this option if you're profiling a program that does not send 
any output to the User Screen. 

• Always means swap to the User Screen every time your pro­
gram runs. 
Use this option if your program does writing to the screen. 

Screen Lines 

You use Screen Lines to specify whether Turbo Profiler's screen 
uses the normal 25-line display or the 43- or 50-line display 
available on EGA and VGA display adapters. 

One or both of these buttons will be available, depending on the 
type of video adapter in your PC. The 25-line mode is the only 
screen size available to systems with a monochrome display or 
Color Graphics Adapter (eGA). 

Tab Size 

With the Tab Size input box, you set how many columns each tab 
stop occupies, from 1 to 32 columns. You can reduce the tab 
column width to see more text in source files with a lot of tab­
indented code. 

Width of Names 

The Width of Names input box is where you specify how wide 
routine names display in the Execution Profile, Callers, and Areas 
windows. 

Turbo Pro filer User's GuIde 



Path for Source By default, Turbo Profiler looks for your program's source code in 
these places, in this order: 

1. In the directory where the original compiler found the source 
files 

2. In the current directory 

3. In the directory that contains the program you're profiling 

With the Options I Path for Source command, you can add a list of 
directories that Turbo Pro filer searches before it searches in the 
curren t directory. 

Enter the new to-be-searched directories in this format: 

Directory; Directory; Directory 

For example, 

C:\Borland\TC; C:\Borland\TASM 

Save Options With Options I Save Options, you can save all your current 

Figure 4.38 
The Save Configuration 

dialog box 

pro filer options to a configuration file on disk. Then, whenever 
you want to reset the pro filer options to those saved settings, you 
can load that configuration file with Options I Restore Options. 

When you choose Options I Save Options, the following Save 
Configuration dialog box comes up: 

With this dialog box, you can save your current pro filer setup's 
options, layout, and macros. Options, Layout, and Macros are 
check boxes; you can save one, two, or all three types of 
information to a configuration file. 

11 Options are menu options not saved in a .TFA or .TFS file (such 
as Options I Path for Source, command-line options, and 
settings in the Display Options dialog box). 

II Layout includes which windows are currently open, plus their 
order, position, and size. 

Chapter 4, The Turbo Profiler environment 125 



126 

• Macros are all keystroke macros currently defined. 

• Save To lists the default configuration file, TFCONFIG.TF. To 
save your options there, choose OK (or press Enter). 
To save them to a different file, type in the different file's name 
(including disk drive and path, if you want), then choose OK 
(or press Enter). 

Once you've saved options to a configuration file, you can recover 
them at any time with Options I Restore. 

Restore Options I Restore restores your profiling options from a disk file. 

Figure 4.39 
The Restore dialog box 

You can have multiple configuration files, containing different 
macros, window layouts, and so on. 

When you choose Options I Restore, this dialog box comes up: 

The Restore dialog box works just like the profiler's other file­
loading dialog boxes. You can 

• enter a file name or a specification (with DOS wildcards) in the 
File name input box 

• choose a different disk drive or directory from the directory tree 

• choose a file name from the Files list box 
• choose OK to complete the transaction (or choose Cancel to 

leave the dialog box without loading a file) 

• choose Help to open a window of information about how to use 
the dialog box 

After you type in or choose a configuration file name and load 
that file, Turbo Pro filer restores all the saved options, settings, 
layout, and macros to the current Turbo Profiler environment. 

Turbo Pro filer User's Guide 



(You can only restore a configuration file that was created by the 
Options I Save Options command.) 

Window menu 
Zoom F5 The Window menu contains commands to 

II manipulate Turbo Pro filer's windows Next F6 
Next pane Tab 
Size/move Ctrl-F5 
Icon1ze/restore • navigate within and through the windows 

II toggle windows to icons, and vice versa Close Alt-F3 
Undo close Alt-F6 

User screen 
1 Module 
2 Profile 

Alt-F5 a close and reopen windows 

• go to your program's output screen 
• make an open window active 

The commands in the top portion of the Window menu are for 
moving about within the profiler's windowed environment and 
for rearranging the windows to your satisfaction. Most Turbo 
Pro filer windows have all the standard window elements (scroll 
bars, a close box, zoom icons, and so on). Refer to page 65 for 
information on these elements and how to use them. 

Zoom The Zoom command zooms the active window (the one with a 
double-line border) to full-screen. 

Next The Next command activates the window whose number succeeds 
the number of the current window. 

Next Pane In windows with multiple panes,the Next Pane command moves 
the cursor to the next pane. 

Size/Move The Size/Move command activates Turbo Profiler's window­
arranging mode. You move the current window with (-, ~, i and 
J, arrow keys. Shifted arrow keys expand or contract the window. 
The legend in the status line explains which key combinations do 
which action. The hot key for this command is Ctrl-F5. 

Iconize/Restore The Iconize/Restore command shrinks the active window to an 
icon or restores the active icon to a window. Figure 4.40 shows 
windows and icons on the Turbo Pro filer screen. 

Turbo Pro filer's iconize feature is a handy tool for keeping several 
windows open without cluttering up the screen. A window icon is 

Chapter 4. The Turbo Pro filer environment 127 



Figure 4.40 

a small representation of an open window, as shown in the 
following figure. 

."~Riillib~mj'f.!~' Windows and window Icons -+iOduIe'iPiITMElr11*e: pr me.C{iiiOcIif1e(1J1~ 
/* Copyright (c) 1990. Borland International */ 

READY 

/* Program for generating prime numbers using Euclid's method */ 

int primes [1000] ; 
Idefi ne MAXPRIMES 1000 

•• main(} 
{ 

int j; 
int lastprime. curprime; 

To make a window into its icon, choose Iconize/Restore from the 
Window menu, or click the iconize box in the window's top frame. 
To restore an icon to its previous size, choose Iconize/Restore 
again, or click in the icon's zoom box. 

Close The Close command temporarily removes the current window 
from the Turbo Pro filer screen. To redisplay the window just as it 
was, choose Undo Close. 

Undo Close The Undo Close command reopens the most recently closed 
window and makes it the active window. 

To go to one of the open windows listed in the bottom portion of 
the Window menu, choose the window from the list (click it or 
press the listed number). For a full explanation of how to manage 
windows, see page 67. 

User Screen Choose Window I User Screen (or press Alt-F5) to view your 
program's full-screen output. 

rn!][£[] Press any key to return to the windowed environment. 

128 Turbo Pro filer User's Guide 



The open window list At the bottom of the Window menu is a numbered list of open 
windows. Press the number corresponding to one of these 
windows to make it the active window. 

Help menu 
Index Shift-Fl 
Previous topic Alt-Fl 
Help on help 

Index 

I Shift l[ill 
Previous Topic 

The Help menu gives you access to online help in a special 
window. There is help information on virtually all aspects of the 
environment and Turbo Profiler. (Also, one-line menu and dialog 
hints appear on the status line whenever you select a command.) 

To open the Help window, do one of these actions: 

IJ Press F1 or AIt-F1 at any time (including from any dialog box or 
when any menu command is selected). 

[J Click Help whenever it appears on the status line or in a dialog 
box. 

To close the Help window, press Esc, click the close box, or choose 
Window I Close. 

Help screens often contain keywords (highlighted text) that you 
can choose to get more information. Press the arrow keys to move 
to any keyword; then press Enter to get more detailed help on the 
chosen keyword. (As an alternative, use the arrow keys to move 
to any keyword, then press Enter to choose it). You can press Home 
and End to go to the first and last keywords on the screen, 
respectively. With a mouse, you can click any keyword to open 
the help text for it. 

The Help I Index command opens a dialog box displaying a full list 
of help keywords (the special higlighted text in help screens that 
let you quickly move to a related screen). 

You can page down through the list. When you find a keyword 
that interests you, choose it by using the arrow keys to move to it 
and press Enter. (You can also double-click it.) 

The hot key for Help I Index is Shift-F1. 

The Help I Previous Topic command opens the Help window and 
redisplays the text you last viewed. 

Turbo Pro filer lets you back up through 20 previous help screens. 
You can also click the PgUp command in the status line to view the 
last help screen displayed. 

Chapter 4, The Turbo Pro filer environment 129 



[]I][ill Alt-F1 is the hot key for Help I Previous Topic. 

Help on Help The Help I Help on Help command opens up a text screen that 
explains how to use the Turbo Profiler help system. 

130 Turbo Pro filer User's Guide 



A p p E N D x 

A 

Turbo Profiler~ command-line options 

This is the generic command-line format for running Turbo 
Profiler: 

TPROF [tprof_options] [progname [program_args]] 

where tprof_options is a list of one or more command-line options 
for the profiler (see Table A.l). progname is the name of the 
program you want to profile. program_args is a list of one or more 
command-line arguments for the profiled program. 

You can type TPROF without a program name or any arguments; if 
you do, you must then load the program you want to profile with 
Turbo Profiler's environment. 

Here are some example Turbo Pro filer command lines: 

tprof -sc progl a b Starts the profiler with the -sc option and 
loads program PROGI with two command­
line arguments, a and b. 

tprof prog2 -x Starts the pro filer with default options and 
loads program PROG2 with one argument, 
-x. 

Appendix A, Turbo Profiler's command-line options 131 



The command-line options 

TableA.l 
Turbo Profiler command-line 

options 

132 

All of Turbo Pro filer's command-line options start with a hyphen 
(-). At least one space or tab separates each option from the 
TPROF command and any other command-line components. 

To turn an option off at the command line, type a hyphen after the 
option. For example, -vg- explicitly turns the graphics save option 
off. Normally you'll only turn an option off if it's permanently 
enabled in the profiler's configuration file, TFCONFIG.TF. (You 
can modify the configuration file with the TFINST installation 
program described in the Introduction to this manual.) 

Table A.1 summarizes Turbo Pro filer's command-line options; we 
cover these options in greater detail in the following pages. 

Option What it does 

-cflle Reads in configuration file file. 

-clo Runs the profiler on a secondary display. 

-clp Shows the pro filer on one display page, the output of the 
profiled program on another. 

-cis Maintains separate screen images for the profiler and the 
program being p"rofiled. 

-h Displays a help screen. 

-? Also displays a help screen. 

-i Enables process ID switching. 

-rnN Sets the working heap size to N kilobytes. 

-p Enables mouse support. 

-r Enables profiling on a remote system over a serial link. 

-rpN Sets the remote link port to port N. 

-rsN Sets the remote link speed. 

-sc Ignores case when you enter symbol names. 

-sd Sets one or more source directories to scan for source files. 

-vg Saves complete graphics image on program screen. 

-vn Disables 43/50 line display. 

-vp Enables EGA palette save for program output screen. 

-yN Sets overlay area size to N kilobytes. 

-yeN Sets EMS overlay area size to N 16K pages. 

Turbo Pro filer User's Guide 



Configuration file 
(-c) 

Display update 
(-d) 

Help (-h and -?) 

This option tells Turbo Profiler to use the indicated configuration 
file. The default is TFCONVIG.TF; if you want to load a different 
one, you must use -c, followed immediately (no space) by the 
name of the configuration file you want to use. 

All-d options affect the way Turbo Pro filer updates the display. 

-do Runs the profiler on a secondary display. You can view 
the program's screen on the primary display while 
Turbo Pro filer runs on the secondary display. 

-dp This is the default option for color displays. Shows the 
pro filer on one display page, and the output of the 
program being profiled on another. 

Using two display pages minimizes the time it takes to 
swap between two screens. You can only use this 
option on a color display, because only color displays 
have multiple display pages. You can't use this option 
if the profiled program uses multiple display pages. 

-ds This is the default option for monochrome displays. 
Maintains separate screen images for the profiler and 
the program being profiled. 

Each time you run the program or reenter the profiler, 
Turbo Pro filer loads an entire screen from memory. 
This is the most time-consuming method of displaying 
the two screen images, but it works on any display and 
with programs that do unusual things to the display. 

Both of these options display Turbo Pro filer's command-line 
syntax and options. 

Appendix AI Turbo Pro filer's command-line options 133 



Figure A.l 
Turbo Profiler DOS-level help 

Process ID 

Syntax: TA [options] [progrlll1l [Ilrgumentsll -x- - tum option x off 

-c<file> 
-do.-dp.-ds 
-h.-? 
-i 
-m<I> 
-p 
-r 
-rp<l> 
-rs<l> 
-sc 
-sd<dir> 
-vg 
-vn 
-vp 
-y<l> 
-ye<l> 

Use configuration file <file> 
Screen updating: do-Other display. dp-Page flip. ds-Screen swap 
Di spl ay this hel p screen 
Allow process id switching 
Set heap si ze to I kbytes 
Use mouse 
Use remote analysis 
Set COM 1 port for remote link 
Remote link speed: I-slow. 2-roedium. 3-fast 
No case checking on symbols 
Source file directory <dir> 
Complete graphics screen save 
43/50 line display not allowed 
Enable EGA!VGA palette save 
Set overlay area size in Kb 
Set EMS overlay area size to 1 16Kb pages 

switching (-i) Use this option to enable process ID switching. 

Modify heap size 
(-m) This option sets the working heap to N Kbytes; the syntax is 

Mouse support 

-roN 

The default working heap size is 40K; the high boundary is 64K. If 
your program needs memory, use -m to reduce the amount of 
heap Turbo Pro filer uses. You can also use -m to increase the 
amount of heap when profiling small programs. This option lets 
Turbo Pro filer store transient information, such as command 
history lists, in the high end of the heap. 

If TPROF runs out of memory, you get an error message 
whenever you try to open windows or perform other memory­
consuming tasks. Statistics such as Callers may also be truncated. 

(-p) This option enables mouse support. 

Remote profiling 

134 

( -r) All-r options affect Turbo Profiler's remote profiling link. 

-r Enables profiling on a remote system over a seriallink. 
Uses the default serial port (COMl) and speed (115 

Turbo Pro filer User's Guide 



Source code and 
symbols (-s) 

Like this, with no space 
between -sci and the 

directory name. 

Kbaud), unless these have been changed using 
TFINST. 

-rpN Sets the remote link port to port N. Set N = 1 for 
COM1; N = 2 for COM2. 

-rsN Sets the remote link speed to the value associated with 
N, as shown here: 

N Speed 

1 9600 baud 
2 40 Kbaud 
3 115 Kbaud 

All-s options affect the way Turbo Pro filer handles source code 
and program symbols. 

-sc Ignores case when you enter symbol names, even if 
your program has been linked with case-sensitivity 
enabled. 

-sd 

Without the -sc option, Turbo Profiler ignores case 
only if you've linked your program with the U case 
ignore" option enabled. 

Note: The -sc option has no effect if you're profiling a 
Turbo Pascal program. Turbo Pascal is not case­
sensitive. 

Sets one or more source directories to scan for source 
files; the syntax is 

-sddirname 

dirname can be a relative or absolute path and can 
include a disk letter. To set multiple directories, use the 
-sd option for each one. (You can only specify one 
directory name with each -sd option.) Turbo Pro filer 
searches directories in the order specified. 

If the configuration file specifies a directory list, the 
pro filer appends the ones specified by the -sd option 
to that list. 

Appendix A, Turbo Profiler's command-line options 135 



Video hardware 
(-v) 

Overlay area size 
(-y) 

136 

All-v options affect how Turbo Pro filer handles the video 
hardware. 

-vg Saves the program screen's complete graphics image. 
Requires an extra 8K of memory, but allows you to 
profile programs that use special graphics display 
modes. Try this option if your program's graphics 
screen becomes corrupted when running under Turbo 
Profiler. 

-vn Disables the 43/50 line display mode. Specify this 
option to save some memory. Use -vn if you're 
running on an EGA or VGA and know you won't 
switch into 43- or 50-line mode once Turbo Profiler is 
running. 

-vp Enables you to save the EGA/VGA palette for the 
program output screen. Use this option for programs 
that output to special EGA/VGA graphics modes. 

The -y options are used to set the size of the overlay area size, 
either in main memory or in EMS memory. 

-yN This option sets the overlay area size in main memory. 
The syntax is as follows, where N is the number of 
kilobytes you want to reserve: 

-yN 

Normally, Turbo Pro filer uses a 80K code area size. The 
smallest area size that you can set is 20K. The largest is 
250K. 

Use this option if you do not have enough memory to 
load your program under Turbo Pro filer, or if you are 
debugging small programs and want to improve Turbo 
Profiler's performance. The smaller the code area size, 
the more often Turbo Profiler loads program overlays 
from disk, and the slower it responds. With a larger 
code area, there is less memory available for the 
program you are profiling, but Turbo Pro filer runs 
faster. 

Turbo Pro filer User's Guide 



-yeN This option sets the overlay area size in EMS memory. 
Use this option if you need to free up some EMS 
memory for the program you are profiling. The syntax 
is as follows, where N is the number of 16K EMS pages 
you want to reserve: 

-yN 

For example, -ye4 sets the overlay area to four pages. 
The default is twelve 16K EMS pages. 

Appendix A, Turbo Profilers command-line options 137 



138 Turbo Pro filer User's Guide 



A p p E N D x 

B 

Customizing Turbo Profiler 

Turbo Pro filer is ready to run as soon as you make working 
copies of the files on the distribution disk. However, you can 
change many of the default settings by running the customization 
program called TFINST. You also can change some of the options 
using command-line options when you start Turbo Pro filer from 
DOS. If you find yourself frequently specifying the same com­
mand-line options over and over, you can make those options 
permanent by running the customization program. 

The customization program lets you set the following items: 

• Window and screen colors and patterns 
• Display parameters: screen swapping mode, integer display 

format, beginning display (source or assembler code), screen 
lines, tab column width, maximum tiled Watches size, fast 
screen update, 43-/50-line mode, full graphics saving, User 
screen updating, and log list length 

• Your editor startup command and directories to search for 
source files and the Turbo Pro filer help and configuration files 

• User input and prompting parameters: history list length, beep 
on error, mouse, keystroke recording, and control-key shortcuts 

• Source profiling: language options and case sensitivity 
• NMI intercept, DOS process ID switching, expanded memory 

specification (EMS) for symbol table, and remote profiling 

• Display mode 

Appendix B. Customizing Turbo Pro filer 139 



Running TFINST 

Colors ~ 
Display ••• 
Options ~ 
Mode for display ~ 
Save ~ 
Quit 

Getting out 

To run the customization program, enter TFINST at the DOS 
prompt. As soon as TFINST comes up, it displays its main menu. 
You can either press the highlighted first letter of a menu option 
or use the l' and J, keys to move to the item you want and then 
press Enter. For instance, press D to change the display settings. 
Use this same technique for choosing from the other menus in the 
installation utility. To return to a previous menu, press Esc. You 
may have to press Esc several times to get back to the main menu. 

Choose File I Quit (AIt-X) at the menu bar to exit TFINST. 

Setting the screen colors 

Customizing 

Choose Colors from the main menu to bring up the Colors menu. 
It offers you two choices: Customize and Default Color Set. 

screen colors If you choose Customize, a third menu appears, with options for 
customizing windows, dialog boxes, menus, and screens. 

Windows To customize windows, choose the Windows command. This 
opens a fourth menu, from which you can choose the kind of 
window you want to customize: Text, Statistics, and Disassembly 
(the CPU window). Choosing one of these options brings up yet 
another menu listing the window elements, together with a pair 
of sample windows (one active, one inactive) in which you can 
test various color combinations. The screen looks like this: 

140 Turbo Pro filer User's Guide 



Figure 8.1 
Customizlng colors for 

windows 

Dialog boxes and 
menus 

When you select an item you want to change, a palette box pops 
up over the menu. Use the arrow keys to move around in the 
palette box. As you move the selection box through the various 
color choices, the window element whose color you are changing 
is updated to show the current selection. When you find the color 
you like, press Enter to accept it. 

Turbo Pro filer maintains three color tables: one for color, one for 
black and white, and one for monochrome. You can only change 
one set of colors at a time, based on your current video mode and 
display hardware. So, if you are running on a color display and 
want to adjust the black-and-white table, first set your video 
mode to black and white by typing MODE BW80 at the DOS prompt, 
and then run TFINST. 

If you choose Dialogs or Menus from the Customize menu, a 
screen appears with a menu listing dialog box or menu elements, 
and a sample dialog box or menu for you to experiment with. 

As with the Windows menu, choosing an item from the current 
menu opens a palette from which you can choose the color for 
that item. 

Appendix B, Customizing Turbo Pro filer 141 



Screen 
Pattern for background ~ 

Pattern background 
Pattern foreground 
Window move background 

Window move foreground 

The default colors 

Choosing Screen from the Customize menu opens a menu from 
which you can access another menu with screen patterns and 
palettes for screen elements, as well as a sample screen back­
ground on which to test them. 

If you choose Default Color Set from the Colors menu, facsimiles 
of an active text window and an inactive window appear 
onscreen, which show you the default colors for their elements. A 
dialog box lets you select text, statistics, or low-level windows to 
view. 

Setting Turbo Profiler display parameters 

Choose Display from the main menu to bring up the Display 
Options dialog box. 

Figure B.2 
The Display Options dialog 

box 

¢ These display options include some you can set from the DOS 
command line when you start up Turbo Profiler, as well as some 
you can set only with TFINST. See page 148 for a table of Turbo 
Profiler command-line options and corresponding TFINST 
settings. 

Display Swapping 

142 

You use the Display Swapping radio buttons to control how 
Turbo Pro filer switches between its own display and the output of 
the program you're profiling. You can toggle between the 
following settings: 

Turbo Pro filer User's GuIde 



Screen Lines 

None Don't swap between the two screens. Use this option if 
you're profiling a program that does not output to the 
User screen. 

Always Swap to the User screen every time the user program 
runs. Use this option if your program writes to the 
User screen. 

This is the default option. 

Use these radio buttons to toggle whether Turbo Profiler should 
start up with a display screen of 25 lines or a display screen of 43 
or 50 lines. 

¢ Only the EGA and VGA can display more than 25 lines. 

Fast Screen 
Update The Fast Screen Update check box lets you toggle whether your 

displays will be updated quickly. Toggle this option off if you get 
"snow" on your display with fast updating enabled. You need to 
disable this option only if the "snow" annoys you. (Some people 
prefer the snowy screen because it gets updated more quickly.) 

Permit 43/50 Lines 

Full Graphics 

Turning this check box on allows big (43-ISO-line) display modes. 
If you turn it off, you save approximately 8K, since the large 
screen modes need more window buffer space in Turbo Profiler. 
This may be helpful if you are profiling a very large program that 
needs as much memory as possible to execute in. When the option 
is disabled, you will not be able to switch the display into 43-/50-
line mode even if your system is capable of handling it. 

Saving Turning this check box on causes the entire graphics display 
buffer to be saved whenever there is a switch between the Turbo 
Profiler screen and the User screen. If you turn it off, you can save 
approximately 12K of memory. This is helpful if you a~e profiling 
a very large program that needs as much memory as possible to 
execute. Generally the only drawback to disabling this option is a 

Appendix B, Customizing Turbo Profiler 143 



144 

Tab Size 

User Screen 
Updating 

small number of corrupted locations on the User screen that don't 
usually interfere with profiling. 

In this input box, you can set the number of columns between tab 
stops in a text or source file display. You are prompted for the 
number of columns (a number from 1 to 32); the default is 8. 

The User Screen Updating radio buttons set how the User screen 
is updated when Turbo Profiler switches between its screen and 
your program's User screen. There are three settings: 

Other Display Runs Turbo Pro filer on the other display in 
your system. If you have both a color and 
monochrome display adapter, this option lets 
you view your program's screen on one 
display and Turbo Pro filer's on the other. 

Flip Pages 

Swap 

Puts Turbo Pro filer's screen on a separate 
display page. This option works only if your 
display adapter has multiple display pages, 
like a eGA, EGA, or VGA. You can't use this 
option on a monochrome display. This option 
works for the majority of profiling situations; it 
is fast and disturbs only the operation of pro­
grams that use multiple display pages-which 
are few and far between. 

Uses a single display adapter and display 
page, and swaps the contents of the User and 
Turbo Pro filer screens in software. This is the 
slowest method of display swapping, but it is 
the most protective and least disruptive. If you 
are profiling a program that uses multiple 
display pages, use this option. Also use the 
Swap option if you shell to DOS and run other 
utilities or if you are using a TSR (such as 
SideKick Plus) and want to keep the current 
Turbo Pro filer screen as well. 

Turbo Pro filer User's GuIde 



Turbo Profiler options 

Directories ••• 
Input & prompting ••• 
Hi sce 11 aneous ••• 

The Directories 
dialog box 

The User Input 
and Prompting 

dialog box 

Figure B.3 
The User Input and Prompting 

dialog box 

The Options command in the main menu opens a menu of 
options, which in turn open dialog boxes for you. 

This dialog box contains input boxes in which you can enter: 

Editor program name Specifies the DOS command that starts 
your editor. This lets Turbo Pro filer start 
up your favorite editor when you are 
profiling and want to change something 
in a file. Turbo Profiler adds to the end of 
this command the name of the file that it 
wants to edit, separated by a space. 

Source directories 

Turbo directory 

Sets the list of directories Turbo Profiler 
searches for source files. 

Sets the directory that Turbo Profiler 
searches for its help and configuration 
files. 

This dialog box lets you set options that control how you input 
information to Turbo Profiler, and how Turbo Pro filer prompts 
you for information: 

History List Length This input box lets you specify how many earlier entries are to be 
saved in the history list of an input box. 

Beep on Error By default, Turbo Pro filer gives a warning beep when you press 
an invalid key or do something that generates an error message. 
The Beep on Error check box lets you change this default. 

Appendix 8, Customizing Turbo Pro filer 145 



Mouse Enabled 

Control Key Shortcuts 

The Miscellaneous 
Options dialog 

box 

Figure B.4 
The Miscellaneous Options 

dialog box 

This check box controls whether Turbo Pro filer defaults to mouse 
support. 

This check box enables or disables the control-key shortcuts. 
When control-key shortcuts are enabled, you can invoke any local 
menu command directly by pressing the elrl key in combination 
with the first letter of the menu item. However, in that case, you 
can't use those control keys as WordStar-style cursor-movement 
commands. 

The Miscellaneous Options dialog box contains options control­
ling interrupts, EMS memory, DOS shell swapping, and remote 
profiling. 

Printer Output This option lets you toggle whether to print both high and 
standard ASCII characters, or just the straight standard ASCII 
character set. 

Use Expanded Memory Use this check box to toggle whether Turbo Pro filer uses EMS 
memory for symbol tables. You can enable this option even if 
your program uses EMS as well. 

NMI Intercept If your computer is a Tandy 1000A, IBM PC Convertible, or NEC 
MultiSpeed, or if Turbo Pro filer hangs loading your system, run 
TFINST and turn off the NMI Intercept check box. Some 
computers use the NMI (nonmaskable interrupt) in ways that 

146 Turbo Pro filer User's Guide 



Ignore Case of Symbol 

DOS Shell Swap Size 
(Kb) 

Remote Analyzing 

Warning! 

Remote Link Port 

Link Speed 

conflict with Turbo Profiler, so you must disable Turbo Profiler's 
use of this interrupt in order to run the program. 

If this check box is turned on, Turbo Profiler defaults to treating 
uppercase and lowercase the same. If it is off, case sensitivity is in 
effect. 

In this input box you can set the number of kilobytes for to 
increase the amount of memory set aside, so you can use the File I 
DOS Shell command even when a large program is loaded. 

This check box lets you toggle between enabling and disabling the 
remote link. 

Usually you won't want to turn this check box on, since that will 
mean that Turbo Pro filer will start up every time using the remote 
link. 

The Remote Link Port radio buttons let you choose between using 
the COM1 or COM2 serial port for the remote link. 

The Link Speed radio buttons let you choose one of the three 
speeds that are available for the remote link: 9600 baud, 40,000 
baud, or 115,000 baud. 

Setting the mode for display 

Default 
Color 
Black and white 
Monochrome 
LCP 

Choosing Mode for Display from the main menu opens a menu 
from which you can select the display mode for your system. 

Default 

Turbo Pro filer detects the kind of graphics adapter on your 
system and selects the display mode appropriate for it. 

Color 

If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter 
and choose this as your default, the display will be in color. 

Appendix B. Customizing Turbo Pro filer 147 



Black and White 

If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter 
and choose this as your default, the display will be in black and 
white. 

Monochrome 

Choose this if you are using a color monitor with a Hercules or 
monochrome text-only adapter. 

LCD 

Choosing this instead of Black and White if you have an LCD 
monitor makes your display much easier to read. 

Command-line options and TFINST equivalents 

Some of the options described in the previous section can be over­
ridden when you start Turbo Profiler from DOS. The following 
table shows the correspondence between Turbo Pro filer com­
mand-line options and the TFINST program command that 
permanently sets that option. 

Table B.l 
Command-line options and Option TFINST menu path and dialog box 

148 

TFINST equivalents -------------------------

-do 
-dp 
-ds 

-p 
-p-

-r 
-r-

-rpl 
-rp2 

-rsl 
-rs2 

Display I Display Options 
(t) Other Display 
( t) Flip Pages 
(t) Swap 

Options I Input and Prompting I User Input and 
Prompting 

[Xl Mouse Enabled 
[ ] Mouse Enabled 

Options I Miscellaneous I Miscellaneous Options 
[Xl Remote Profiling 
[ ] Remote Profiling 

Options I Miscellaneous I Miscellaneous Options 
(t) COMl 
(t) COM2 

Options I Miscellaneous I Miscellaneous Options 
(t) 9600 Baud 
(t) 40 KBaud 

Turbo Pro filer User's Guide 



Table B.1: Command-line options and TFINST equivalents (continued) 

-rs3 (.) 115 KBaud 

Options I Miscellaneous I Miscellaneous Options 
-sc [X] Ignore Case of Symbol 
-sc- [ ] Ignore Case of Symbol 

-sd Options I Directories I Directories 
Source Directories 

Display I Display Options 
-vn [ ] Permit 43/50 Lines 
-vn- [X] Permit 43/50 Lines 

¢ For a list of all the command-line options available for 
TFINST.EXE, enter the program name followed by -h: 

When you're through ... 

Saving changes 

Save configuration file ••• 
Mod1fy TPROF.EXE 

Save Configuration File 

When you have all your Turbo Pro filer options set the way you 
want, choose Save from the main menu to determine how you 
want them saved. 

If you choose Save Configuration File, a dialog box opens, initial­
ized to the default configuration file TFCONFIG.TF. You can 
accept this name by pressing Enter, or you can type a new 
configuration file name. If you specify a different file name, you 
can load that configuration by using the -c command-line option 
when you start Turbo Profiler. For example, 

tprof -cmycfg myprog 

You can also use the Turbo Profiler Options I Restore Configu­
ration command to load a configuration once you have started 
Turbo Pro filer. 

Modify TPROF.EXE If you choose Modify TPROF.EXE, any changes that you have 
made to the configuration are saved directly into the Turbo 
Profiler executable program file TPROF.EXE. The next time you 
enter Turbo Profiler, those settings will be your defaults. 

¢ If at any time, you want to return to the default configuration that 
Turbo Pro filer is shipped with, copy TPROF.EXE from your 

Appendix B. Customizing Turbo Profiler 149 



Exiting TFINST 

150 

master disk onto your working system disk, overwriting the 
TPROF.EXE file that you modified. 

To get out of TFINST at any time, choose Quit from the main 
menu. 

Turbo Pro filer User's Guide 



A p 

Before resorting to remote 
profiling, you might see If 

Turbo Profiler is taking 
advantage of any EMS 

memory Installed on your 
system. 

p E N D x 

c 

Remote profiling 

If your program requires a lot of memory, you may not be able to 
run both Turbo Profiler and your program on the same computer. 
Turbo Profiler's TFREMOTE utility solves this problem by letting 
you run Turbo Profiler on one system and the program you're 
profiling on another system. 

Here are some examples of when you'd use remote profiling: 

III When you attempt to load your program, Turbo Profiler gives 
one of these error messages: 

o ''Not enough memory to load symbol table" 
o ''Not enough memory" 

EI Your program loads properly under Turbo Profiler, but there's 
not enough memory left for it to operate properly. 

In this appendix, you'll see how to profile very large programs by 
using a second PC connected to your main PC. 

Remote hardware requirements 

To use remote profiling, you need the following equipment: 

III a development system with a serial port (this is the local system, 
where you'll run Turbo Profiler) 

Appendix C, Remote profiling 151 



• another PC with a serial port and enough memory and disk . 
space to hold the program you want to profile (this is your 
remote system) 

• a null modem or serial printer cable to connect the two systems 

Make sure that the cable connecting the two systems is set up 
properly: You can't use a straight-through extension-type cable. 
At the very least, the cable must swap the transmit and receive 
data lines (lines 2 and 3 on a 25-pin cable). 

Use the cable to connect the two serial ports. 

Installing TFREMOTE 

152 

Copy TFREMOTE.EXE onto the remote system. Put any files 
required by the profiled program on the remote system. (This 
includes data-input files, configuration files, help files, and so on.) 

To put files on the remote system, you can use floppy disks or the 
TDRF Remote File Transfer Utility on the Turbo Debugger disks. 
(It's described in the MANUAL.DOC file for Turbo Debugger.) 

If you want, you can put a copy of the program you want to 
profile onto the remote system. This is not essential: Turbo 
Profiler sends it over the remote link if necessary . 

Once you start TFREMOTE and TPROF in remote mode, the 
Turbo Pro filer commands work exactly the same as on a single 
system; there is nothing new to learn. 

Because the program you're profiling is actually running on the 
remote system, any screen output or keyboard input to that pro­
gram happens on the remote system. The Window I User Screen 
command has no effect when you're running on the remote link. 

The remote system's CPU type appears as part of the CPU 
window title, with the word REMOTE before it. 

To send files over to the remote system while running Turbo 
Profiler, go to DOS (choose File I DOS Shell) and then use TDRF to 
perform file-maintenance activities on the remote system. 

To return to Turbo Profiler, type EXIT at the DOS prompt and 
continue profiling your program. 

Turbo Pro filer User's Guide 



Starting the 
remote link Before you start TFREMOTE on the remote system, set the current 

directory (the remote system's) where you want it. This is 
important because TFREMOTE puts the program to be profiled 
into the directory that is current when you start TFREMOTE. 

Starting Turbo 

If the remote system's serial port is set up as COM1, type 

TFREMOTE -rpl -rs3 

to start TFREMOTE. 

If the remote system's serial port is set up as COM2, type 

TFREMOTE -rp2 -rs3 

to start TFREMOTE. 

Both of these commands start the link at its maximum speed (115 
Kbaud). This speed works with most PCs and cable setups. (See 
page 154 for how to start the link at a slower speed if you 
experience communication difficulties.) Use the command-line 
option -rsl on a PS/2. 

TFREMOTE signs on with a copyright message, then indica tcs 
that it is waiting for you to start Turbo Pro filer on the other end of 
the link. To stop and return to DOS, press Clfl-Break. 

Profiler on the To start Turbo Pro filer on the remote link, use one of the 
remote link following DOS command lines: 

II serial port COMl: tprof -rpl -rs3 filename 

• serial port COM2: tprof -rp2 -rs3 filename 

When the link starts successfully, the message "Waiting for 
handshake" appears on the remote system, and the activity 
indicator on the local system displays READY. Turbo Pro filer's 
normal display then follows on the local system. Use the 
command-line option -rsl on a PS/2. 

TPROF and TFREMOTE use the same command-line options to 
set the speed and serial port: For them to work properly, you 
must set them both to the same speed (with the -rs option). 

Turbo Pro filer also has the -r command-line option, which starts 
the remote link using the default speed and serial port. Unless 

Appendix C, Remote prof/ling 153 



Loading the program 
to the remote system 

154 

TFREMOTE 
command-line 

options 
Table C.l 

TFREMOTE command-line 
options 

you've changed the defaults using TFINST, -r specifies COMl at 
115 Kbaud (the fastest baud speed~) 

Here's a typical Turbo Profiler command line to start the remote 
link: 

tp -rs3 myprog 

This begins the link on the default serial port (usually COM1) at 
link speed 3 (115 Kbaud), and loads the program MYPROG into 
the remote system (if it's not already there). 

Turbo Pro filer is smart about loading the to-be-profiled program 
onto the remote disk. It looks at the date and time of the copy of 
the program on the local system and the remote system. If the 
local copy is later (newer) than the remote copy, Turbo Pro filer 
presumes you've recompiled or relinked the program and sends it 
over the link. At the highest link speed, this happens at a rate of 
about 11K per second. A typical 60K program takes about six 
seconds to transfer, so don't be alarmed if there's a delay when 
you want to load a new program. 

To indicate that something's happening, the screen on the remote 
system adds up the bytes of the file as Turbo Profiler transfers 
them. 

Here are the TFREMOTE command-line options. You can start an 
option with either a hyphen (-) or a slash (I). 

Option What it does 

-1 Displays a help screen 

-h Displays a help screen 

-rs1 Slow speed, 9600 baud 

-rs2 Medium speed, 40 Kbaud 

-rs3 High speed, 115 Kbaud (default) 

-rp1 Port 1, (COMl) (default) 

-rp2 Port 2, (COM2) 

-w Writes options to executable program file 

Started with no command-line options, TFREMOTE uses the 
default port and speed built into the executable program file 

Turbo Pro filer User's Guide 



(COMI and 115 Kbaud), unless you've changed them with the -w 
option. 

You can make TFREMOTE's command-line options permanent by 
writing them back into the TFREMOTE executable program 
image on disk. To do this, specify -w, along with the other 
options you want to make permanent, on the command line. 
TFREMOTE prompts for the name of the executable program to 
write to; when you enter a new (nonexistent) executable file name, 
TFREMOTE then creates the file. If you press Enter, it overwrites 
the currently running program (TFREMOTE). 

Here's an example. If you type this command line at the DOS 
prompt, 

tfremote -w -rs2 -rp2 

Enter the name of the program to modify: tfrrnt40k. exe. 
TFREMOTE will create a copy of TFREMOTE.EXE named 
TFRMT40K.EXE, where the default speed is 40 Kbaud (-rs2) and 
the default port is COM2(-rp2). 

For a list of all TFREMOTE.EXE command-line options available, 
type this at the DOS command line: 

TFREMOTE -h 

If you are running on DOS version 3.0 or later, the prompt 
indicates the path and file name from which you executed 
TFREMOTE. You can accept this name (press Enter), or enter a 
new executable file name. 

If you're using DOS 2.xx, you must supply the full path and file 
name of the executable program. 

Getting it all to work 

Because the remote profiling setup involves two different 
computers and a cable between them, you might run into 
difficulty getting everything to work together. 

If you experience problems, try these troubleshooting techniques: 

1. Check your cable hookups. 
2. Try running the link at the slowest speed (use the -rs1 

command-line option when starting up both TFREMOTE and 
TPROF). 

Appendix C. Remote profiling 155 



156 

TFREMOTE 

3. If it works OK using -rs1, go on to try -rs2 (the middle 
speed). 

Some hardware and cable combinations don't always work 
properly at the highest speed. If you can only get remote profiling 
to work at a lower speed, consider trying a different cable or 
different computers. 

messages Here is a list of the messages you might receive when you're 
working with TFREMOTE. 

nn bytes downloaded 
TFREMOTE is sending a file to the remote system. This message 
shows the progress of the file transfer. At the highest link speed 
(115 Kbaud), transfer speed is about 11K per second. 

Can't create file 
TFREMOTE can't create a file on the remote system. This can 
happen if there isn't enough room on the remote disk to transfer 
the executable program across the link. 

Can't modify exe file 
You specified a file name to modify that is not a valid copy of the 
TFREMOTE utility. You can only modify a copy of the 
TFREMOTE utility with the -w option. 

Can't open exe file to modify 
TFREMOTE can't open the file name you specified to be modified. 
You have probably entered an invalid or nonexistent file name. 

Download complete 
Your file has been successfully sent to TFREMOTE. 

Download failed, write error on disk 
TFREMOTE can't write part of a received file to disk. This usually 
happens when the disk fills up. You must delete some files before 
TFREMOTE can successfully download the file. 

Turbo Pro filer User's Guide 



Enter program file name to modify 
If you are running on DOS version 3.0 or later, the prompt 
indicates the path and file name from which you executed 
TFREMOTE. You can accept this name (press Enter), or enter a 
new executable file name. 

If you're running DOS version 2.xx, you must supply the full path 
and file name of the executable program. 

Interrupted 
You pressed etrl-Break while waiting for communications to be 
established with the other system. 

Invalid command line option 
You gave an invalid command line option when you started 
TDRF from the DOS command line. 

Link broken 
The program communicating with TFREMOTE has stopped and 
returned to DOS. 

Link established 
A program on the other system has just started to communicate 
with TFREMOTE. 

Loading program name from disk 
Turbo Pro filer has told TFREMOTE to load a program from disk 
into memory in preparation for profiling. 

Program load failed, EXEC failure 
DOS could not load the program into memory. This can happen if 
the program has become corrupted or truncated. Delete the pro­
gram file from the remote system's disk: This forces Turbo Pro filer 
to send a new copy over the link. If this message happens again 
after deleting the file, you should relink your program using 
TLINK on the local system and try again. 

Program load failed; not enough memory 
The remote system doesn't have enough free memory to load the 
program you want to profile. This only happens with very large 
programs, because TFREMOTE only takes about 15K of memory. 

Appendix C, Remote profiling 157 



158 

Program load failed; program not found 
TFREMOTE could not find the program on its disk. This should 
never happen since Turbo Profiler downloads the program to the 
remote system if TFREMOTE can't find it. 

Program load successful 
TFREMOTE has finished loading the program Turbo Pro filer 
wants to profile. 

Reading file name from Turbo Profiler 
This appears on your remote screen so that you know when a 
remote file is being sent to Turbo Pro filer. 

Unknown request: message 
TFREMOTE has received an invalid request from the local system 
(where you're running Turbo Profiler). If you get this message, 
check that the link cable is in good working order. If you keep 
getting this error, try reducing the link speed (use the -rs 
command-line option). 

Waiting for handshake (press Ctrl-Break to quit) 
TFREMOTE has started and is waiting for a program on the local 
system to start talking to it. To return to DOS before the other 
system initiates communication, press GIrl-Break. 

Turbo Pro filer User's Guide 



A p p E N D x 

D 

Virtual profiling on the 80386 processor 

Turbo Pro filer lets you use the full power of systems that have the 
80386 processor. Virtual profiling lets the program you're 
profiling use the full address space below 640K, just as if no 
pro filer were loaded. (Turbo Pro filer is loaded into extended 
memory, above the 1MB address point.) 

You profile exactly as you would normally use Turbo Profiler, 
except that your program loads and runs at exactly the same 
address that it does when it's not being profiled. This is extremely 
useful both for profiling programs that are large, and for finding 
bugs that go away if the program is loaded higher in memory, as 
it is when it is being profiled normally. 

Virtual profiling also lets you watch for reads or writes to arbi­
trary memory or I/O locations, all at full or nearly full processor 
speed. This gives you some of the power of a hardware profiler at 
no additional cost. 

Equipment required for virtual profiling 

You must have a computer based on the 80386 or 80486 processor 
in order to use the virtual pro filer. You must also have 700K of 
available extended memory. !fyou have used up your extended 
memory for RAM disks, caches, and so forth, you may want to 
make a special CONFIG.SYS or AUTOEXEC.BA T file that 

Appendix O. Virtual profiling on the 80386 processor 159 



removes some of these programs when you want to use virtual 
profiling. 

Installing the virtual profiler device driver 

Before starting the virtual pro filer, you must make sure that you 
have installed its device driver, TDH386, in your CONFIG.SYS 
file. (TDH386 is included in the Turbo Debugger package.) Do this 
by including a line similar to the following in CONFIG.SYS: 

DEVICE = TDH386.SYS 

If you have placed the TDH386.SYS device driver somewhere 
other than in the root directory, make sure that you include that 
directory path as part of the device driver file name. 

Normally, the virtual pro filer lets you have up to 256 bytes of 
DOS environment strings. If this is not enough, or if you don't 
need that much and would like to conserve as much memory as 
possible, use the -e option in CONFIG.SYS to set the number of 
bytes of environment. For example, 

DEVICE = TDH3B6.SYS -e2000 

reserves 2000 bytes for your DOS environment variables. 

Starting the virtual profiler 

160 

You start the virtual pro filer much as you would normally start 
Turbo Profiler, with a command line like this: 

TF386 [options] program [program options] 

In other words, you simply enter TF3 8 6 instead of TPROF. TF386 
then takes care of finding the Turbo Pro filer executable program 
and loading it into extended memory. 

If you have other programs or device drivers that use extended 
memory, such as RAM disks, caches, or whatever, you must tell 
TF386 how much extended memory to set aside for these other 
programs. Do this by using the -e command-line option. Follow 
the -e with the number of kilobytes (K) of extended memory used 
by other programs. For example, 

TF386 -e512 myprog 

Turbo Pro filer User's Guide 



This command line informs TF386 that you want to reserve the 
first 512K of extended memory for other programs. (It isn't neces­
sary to do this if your machine supports the XMS standard; TF386 
allocates memory from the XMS device driver if one is present.) 

Since you probably always reserve the same amount of extended 
memory for other programs, TF386 gives you a way to perma­
nently set the amount of extended memory to reserve. Use the -w 
option with the -e option to specify that you want the -e value to 
be permanently set in the TF386 executable program file. 

You'll then be prompted for the name of the executable program. 
If you are running on DOS 3.0 or later, the prompt indicates the 
path and file name that you executed TF386 from. You can accept 
this name by pressing Enter, or you can enter a new executable file 
name. The new name must already exist and be a copy of the 
TF386 program that you have already made. 

If you are running on version 2.x of DOS, you will have to supply 
the full path and file name of the TF386 executable program. 

Here is a complete list of command-line options for TF386.EXE: 

-? Accesses help on TF386. 

-8#### Specifies the number of kilobytes of extended 
memory being used by other programs or by the 
program you're profiling. (You don't need this 
option if your system supports the XMS 
standard.) 

-f#### Enables EMS emulation through paging (in 
extended memory) and sets the page frame 
segment to #### (in hex). The last three digits 
must be 000 (like COOO or EOOO). Note that this 
option only applies to Turbo Profiler's EMS calls. 
If you don't use this option when you load TF386, 
TF386 will not be able to use EMS. 

-f- Disables EMS emulation (presumably to override 
a previous command-line option). 

-w Modifies TF386.EXE with the new default value 
of -e or -f. You can enter a new executable file 
name that does not already exist, and TF386 will 
create the new executable file. 

Appendix D, Virtual profiling on the 80386 processor 161 



Note that TF386.EXE options must appear first in the 
command line before any Turbo Profiler options or the 
program name. For example, 

TF386 -el024 -fDOOO -w 

reserves 1024K of extended memory, enables EMS 
emulation with a page frame of DOOO, and modifies 
TF386.EXE with these values. 

For a list of all the command-line options available for 
TF386.EXE, just type TF386 -? or TF386 -h and press Enter. 

Note: If you have an 80386-based machine and want to read 
the command-line options for TF386.EXE, TDH386.SYS 
must be loaded. 

Differences between normal and virtual profiling 

162 

Most things work exactly the same whether you are 
profiling normally or using the 80386 virtual profiling 
capability. The following items behave differently: 

• When you use the File I DOS Shell command to run a DOS 
command, the program you're profiling is never swapped 
to disk. This means you may not always have enough 
memory to run other programs from the DOS prompt. 

• Your program can use nearly all of the 80386 instructions, 
with the exception of the privileged protected-mode 
instructions: elTS, lMSW, lTR, lGDT, LlDT, llDT. 

• Even though you can use all the 80386 extended address­
ing modes and 32-bit registers during virtual profiling, 
you can't access memory above the 1MB point. If you try 
to do so, an exception interrupt will be generated, and 
Turbo Pro filer will regain control. 

• You can't use virtual profiling if you're already running a 
program or device driver that uses the virtual and 
protected modes of the 80386 processor. This includes pro­
grams such as: 

• DesqView operating environment 
• Microsoft Windows-386 operating environment 

• QEMM.SYS, the QuarterDeck EMS simulator 

• CEMM.SYS Compaq EMS simulator 

Turbo Pro filer User's Guide 



.386"MAX 

If you normally use one of these or similar programs, you 
will have to stop them or unload them before using TF386. 

TF386 error messages 

TF386 generates one of the following messages when it can't 
start, and then returns to the DOS prompt. You must correct 
the condition before you can start TF386 successfully. 

TF386 error: 80386 device driver missing or wrong version 
You must install the TFH386.SYS device driver in your 
CONFIG.SYS file before you invoke TF386 from the DOS 
command line. 

TF386 error: Can't enable the A20 address line 
TF386 can't access the memory above 1MB. This may 
happen if you're running on a system that is not exactly IBM 
compatible. 

TF386 error: Can't find TPROF.EXE 
TF386 could not find T.EXE. 

TF386 error: Couldn't execute TPROF.EXE 
TF386 could not run TPROF.EXE. 

TF386 error: Environment too long; use -e#### switch with 
TFH386.SYS 
You need to change the -e option as described on page 160. 

TF386 error: Not enough Extended Memory available 
TF386 ran out of memory. You need to get more memory for 
your machine or free up memory (by reducing a RAM disk, 
for example). 

TF386 error: Wrong CPU type (not an 80386) 
You are not running on a system with an 80386 or 80486 
processor. 

The following errors might occur if you're trying to modify 
TF386 with the -w option: 

TF386 error: Cannot open program file 

TF386 error: Cannot read program file 

Appendix D, Virtual profiling on the 80386 processor 163 



TF386 error: Cannot write program file 

TF386 error: Program file corrupted or wrong version 

TDH386.SYS error messages 

164 

There are only two possible error messages associated with 
the TFH386.SYS driver: 

Wrong CPU type: TDH386 driver not Installed 

Invalid command line: TDH386 driver not Installed 

Turbo Pro filer User's Guide 



A p p E N D x 

E 

Prompts and error messages 
Turbo Pro filer displays messages and prompts at the current 
cursor location. This chapter describes the prompts and error and 
information messages Turbo Pro filer generates. 

We tell you how to respond to both prompts and error messages. 
All the prompts and error messages are listed in alphabetical 
order, with a description provided for each one. 

Turbo Profiler prompts 

Turbo Pro filer displays a prompt in a dialog box when you must 
supply additional information to complete a command. The 
prompt describes the information that's needed. The contents may 
show a history list (previous responses) that you have given. 

You can respond to a prompt in one of two ways: 

II Enter a response and accept it by pressing Enter . 
• Press Esc to cancel the dialog and return to the menu command 

that opened it. 

Some prompts only present a choice between two items (like 
Yes/No). You can use Tab to select the choice you want and then 
press Enter, or press Yor N directly. Cancel the command by press­
ing Esc. 

For a more complete discussion of the keystroke commands to use 
when a dialog box is active, refer to Chapter 4. 

Appendix E, Prompts and error messages 165 



166 

Here's an alphabetical list of all the prompts and messages 
generated by dialog boxes: 

Enter code label to position to 
Enter the address you wish to examine in the Code pane. The 
Code pane shows the disassembled instructions at the specified 
address. 

Enter command line arguments 
Enter the command-line arguments for the program you're 
profiling. You can modify the current command -line arguments 
or enter a new set. 

You will then be prompted whether you want to reload your 
program from disk. Some languages or programs, such as 
programs written in C, require you to reload the program before 
the arguments take effect. 

Enter file name to restore areas from 
Enter the name of the file to restore areas from. If you specify an 
extension to the file name, it will be used. Otherwise the 
extension .TF A will be used. 

Enter file name to restore from 
Enter the name of the file to restore the statistics to. If you specify 
an extension to the file name, it will be used. Otherwise the 
extension .TFS will be used. 

Enter file name to save areas to 
Enter the name of the file to save the current areas to. If you 
specify an extension to the file name, it will be used. Otherwise 
the extension .TFA will be used. 

Enter file name to save to 
Enter the name of the file to save the current statistics to. If you 
specify an extension to the file name, it will be used. Otherwise 
the extension .TFS will be used. 

Enter file name to write to 
Enter the name of a file to send the report to. If the file already 
exists, it will be overwritten. 

Enter name of configuration file 
Enter the name of a configuration file to read or write. If you are 
reading from a configuration file, you can enter a wildcard mask 
and get a list of matching files. 

Turbo Pro filer User's Guide 



Enter maximum number of areas 
Enter the maximum number of areas that you wish to divide the 
program into. Since each area takes up some memory, try to set 
the maximum to as Iowa value as is reasonable. 

Enter maximum symbol width to display 
Enter the width for symbol names on reports and for symbol 
names displayed in windows. 

Enter new directory 
Enter the new drive and/or directory name that you want to 
become the current drive and directory. 

Enter new line number 
Enter a new line number to position the text file to. The first line 
in the file is line 1. If you specify a line number that is greater than 
the last line in the file, the file is positioned to the last line. 

Enter new page height 
Enter the number of lines on a page to be sent to the printer or a 
disk file. A normal II-inch sheet of paper has 66 lines. 

Enter new page width 
Enter the width of the page for reports sent to the printer or a disk 
file. A normal sheet of paper has 80 columns. 

Enter program name to load 
Enter the name of the program to load. If the program has the 
.EXE extension, you don't have to specify it; if the program has 
any other extension, you must supply it. 

If you supply a wildcard specification or accept the default *.EXE, 
a list of matching files is displayed for you to select from. 

Enter program run count 
Enter the number of times that you want to run the program and 
accumulate performance statistics. The more times you run your 
program, the more accurate the clock timings will be. 

Enter routine name to add 
Enter the name of the function you wish to include, exclude, or 
set. 

Enter search string 
Enter a character string to search for. You can use a simple wild­
card matching facility to specify an inexact search string; for 
example, use * to match zero or more of any characters, and? to 
match any single character. 

Appendix E, Prompts and error messages 167 



168 

Enter source directory list 
Enter the directory or directories to search for source files. 

!fyou want to enter more than one directory, separate the 
different directory paths with a space or a semicolon (;). These 
directories will be searched, in the order that they appear in this 
list, for your source files. 

Enter tab column spacing 
Enter a number between 1 and 32 that specifies how far apart tab 
columns will be when Turbo Pro filer displays files in a Module 
window. 

Usually, you use tabs for each level of control-structure nesting in 
your source code. If your source code has deeply nested control 
structures, you can use a small tab value (like 2 or 3) so that your 
source doesn't disappear off the right side of Module windows. 

Pick a caller 
Pick a routine from the list of callers. You will then be positioned 
to that routine in the window that you picked from the previous 
menu. 

Pick a method name 
You have specified a routine name that can refer to more than one 
method in an object. Pick the correct one from the list presented, 
with the arguments you want. 

Pick a module 
Select a module name to view in the Module window. You are 
presented with a list of all the modules in your program. Either 
use the cursor keys to move to the desired module, or start typing 
the name of the module. As you type the module name, the 
highlight bar will move to the first module that matches the 
letters you typed. When the highlight bar is on the desired 
module, press Enter. 

Pick a source file 
Pick a new source file to display in the Module window. The list 
shows all the source files that make up the module. 

Pick a symbol name 
Pick a symbol from the list of displayed symbols. You can start to 
type a name, and you will be positioned to the first symbol, start­
ing with what you have typed so far. 

Turbo Pro filer User's GuIde 



Pick a window 
Pick the window you want to make the active window by moving 
the highlight bar to it and pressing Enter or choosing the OK 
button. 

You can close a window by moving the highlight bar to that 
window name and pressing the Del or Ctrl-Y. 

Pick Interrupt 
Pick an interrupt from the list of interrupts built in to Turbo 
Profiler. 

Turbo Profiler error messages 

Turbo Pro filer uses error messages to tell you about things you 
haven't quite expected. Sometimes the command you have issued 
cannot be processed. At other times the message warns that 
things didn't go exactly as you wanted. 

Error messages are normally accompanied by a beep. You can 
turn off the beep in the customization program, TFINST. 

Already recording, do you want to abort? 
You are already recording a keystroke macro. You can't start 
recording another keystroke macro until you finish the current 
one. Press Y to stop recording the macro; N to continue recording 
the macro. 

Ambiguous symbol symbol name 
You have entered a member function or data item name and 
Turbo Pro filer can't tell which of the multiple instances of this 
member you mean. 

This can happen when a member name is duplicated in two 
multiply inherited classes. Use the classname:: override to name 
explicitly the member you want. 

Bad configuration file name 
You have specified a nonexistent file name with the-c 
command-line option when you started Turbo Profiler. The built­
in default configuration values are used instead. 

Bad Interrupt number entered 
You have entered an invalid interrupt number. Valid interrupt 
numbers are 9 to FF. 

Appendix E, Prompts and error messages 169 



170 

Bad line number line number 
The line number that you have entered does not exist or does not 
correspond to a line of source code. 

You can specify only source line numbers that are in functions, 
not those outside functions. 

Bad module name module name 
The module name that you have entered does not exist. 

Can't execute DOS command processor 
Either there was not enough memory to execute the DOS 
command processor, or the command processor could not be 
found (the COMSPEC environment variable is either absent or 
incorrect). Make sure that the COMSPEC environment variable 
correctly specifies where to find the DOS command processor. 

Can't open printer 
There was an error sending to the printer. Check that the printer 
is online and not out of paper. 

Can't swap user program to disk 
The program being profiled could not be swapped to disk. There 
is probably not enough room on the disk to swap the program. 
You will not be able to edit any files or execute DOS commands 
until some more room is made available. 

Clear all existing statistics 
When you change the clock tick rate, all existing statistics become 
meaningless and must be cleared. If you do not confirm the 
statistics clear, the clock speed will not be changed. 

Edit program not specified 
You tried to use the Edit local menu command from a Module or 
Disk File window, but you cannot edit the file because Turbo 
Profiler does not know how to start your editor. 

Use the configuration program TFINST to specify an editor. 

Error reading areas file 
An error occurred while you were restoring the areas. Make sure 
that the disk is ready. 

Error reading statistics file 
An error occurred while you were restoring the collected 
statistics. Make sure that the disk is ready. 

Turbo Pro filer User's Guide 



Error saving configuration 
Your configuration could not be saved to disk. The disk might be 
full, or there might be no more free directory entries in the root 
directory. 

You can use the File I DOS Shell command to go to DOS and 
delete a file or two to make room for the configuration file. 

Error swapping in user program, program reloaded 
An error occurred while you were reloading your program that 
was swapped to disk. This usually means that the swap file was 
accidentally deleted. 

You will have to reload your program using the Run I Program 
Reset command before you can continue profiling. 

Error writing areas file 
An error occurred while you were writing to the area file that 
stores information on marked areas in your program. Your disk is 
probably full. 

Make sure that the disk is ready and that there is enough room on 
the disk. 

Error writing statistics file 
An error occurred while you were writing to the statistics file that 
stores your program statistics. Your disk is probably full. 

Make sure that the disk is ready and that there is enough room on 
the disk. 

Help file TFHELP.TFH not found 
You asked for help but the disk file that contains the help screens 
could not be found. Make sure that the help file is in the same 
directory as Turbo Profiler. 

Invalid areas file 
The file name you specified to restore areas from is not formatted 
correctly. Make sure you specified a file name that was created by 
Turbo Profiler. 

Invalid statistics file 
The file you specified to restore statistics from has an invalid 
format. Make sure the file name you specified was created using 
the Statistics I Save command. 

Appendix E Prompts and error messages 171 



172 

Maximum number of areas has been reached 
There is no more room to add areas. Use the Options I Number of 
Areas command to increase the amount of memory set aside for 
areas. 

Maximum number of Interrupts being monitored 
You can't watch any more interrupts; you have already told 
Turbo Pro filer to watch as many interrupts as it is capable of 
doing. You will have to use the local menu Remove command to 
remove an existing interrupt before you can add any more. 

No help for this context 
You pressed F1 to get help, but Turbo Profiler could not find a 
relevant help screen. Please report this to Borland technical 
support. 

No caller information for this function 
The highlighted line is in a function for which no caller 
information was collected. Caller information is collected only if 
it is explicitly requested. 

No file name was given 
You have indicated that you wish to output a file, but you have 
not specified a file name. You must either specify a file name or 
switch to another output location before you can leave the dialog. 

No modules with statistics 
There are no modules with any statistics collected, so there is 
nothing to print. 

No previous search expression 
You have used the Next command from the local menu of a text 
pane, without previously issuing a Search command. First use 
Search to specify what to search for, then use Next to look for 
subsequent instances. 

No program loaded 
You tried to issue a command that requires a program to be 
loaded. There are many commands that can only be issued when 
a program is loaded, for example, the commands in the Run 
menu. Use the File I Open command to load a program before 
issuing these commands. 

No source file for module module name 
The source file cannot be found for the module that you wish to 
view. The source file is searched for first in the current directory, 
and then in any directories specified in the configuration file and 
then in any directories specified by the command line -sd option. 

Turbo Profiler User's GuIde 



Not a code address 
You have entered an address that is not a code address in your 
program. You can only set profiling areas on code addresses. 

Not enough memory for selected operation 
You issued a command that has to create a window, but there is 
not enough memory left for the new window. You must first 
remove or reduce the size of some of your windows before you 
can reissue the command. 

Not enough memory to load program 
Your program's symbol table has been successfully loaded into 
memory, but there is not enough memory left to load your pro­
gram. If your system has EMS memory, make sure that Turbo 
Profiler is set to use it for the symbol table. You can use TFINST to 
set this option. 

If you don't have EMS or your program doesn't load even with 
EMS, you can hook two systems together and run Turbo Profiler 
on one system and the program you're analyzing on the other. See 
Appendix C for more information on how to do this. 

Not enough memory to load symbol table 
There is not enough room to load your program's symbol table 
into memory. The symbol table contains the infonnation that 
Turbo Profiler uses to show you your source code and program 
variables. If you have any resident utilities consuming memory, 
you may want to remove them and then restart Turbo Pro filer. 
You can also try making the symbol table smaller by having the 
compiler generate debug symbol information only for those 
modules you are interested in analyzing. 

When this message is issued, your program itself has not yet been 
loaded. This means you must free enough memory for both the 
symbol table and your program. 

Overlay not loaded 
You have attempted to examine code in an overlay that is not 
loaded into memory. You can only examine code for overlays that 
are already in memory. 

However, you can still look at the source code for a module in a 
Module window. 

Overwrite existing macro on selected key 
You have pressed a key to record a macro, and that key already 
has a macro assigned to it. If you want to overwrite the existing 
macro, press Y; otherwise, press N to cancel the command. 

Appendix E, Prompts and error messages 173 



174 

Overwrite file name? 
You have specified a file name to write to that already exists. You 
can choose by entering Y to overwrite the file, replacing its 
previous contents, or you can cancel the command by entering N 
and leave the previous file unchanged. 

Path not found 
You entered a drive and directory combination that does not exist. 
Check that you have specified the correct drive and that the direc­
tory path is spelled correctly. 

The current drive and directory are left as they were before you 
issued the command. 

Path or file not found 
You specified a non-existent or invalid file name or path when 
you were prompted for a file name to load. If you do not know 
the exact name of the file you want to load, you can pick the file 
name from a list by pressing Enter when the dialog box first 
appears. 

Possibly you entered wildcard specification that is not valid. Only 
the normal DOS wildcard characters * and? can be used. 

Premature end of string In symbol name 
The symbol name that you have entered is incomplete. If you 
specify a module name, it must be followed by either a line 
number or local symbol name. 

Press key to assign macro to . 
Press the key that you want to assign the macro to. Then, press 
the keys to do the command sequence that you want to assign to 
the macro key. The command sequence will actually be per­
formed as you type it. To end the macro recording sequence, 
press the key you assigned the macro to. This macro will be 
recorded on disk along with any other keystroke macros. 

Press key to delete macro from 
Press the key for the macro that you want to delete. The key will 
then be returned to its original pre-macro function. 

Program already terminated, Reload? 
You have attempted to run or step your program after it has 
already terminated. If you choose Y, your program will be 
reloaded. If you choose N, your program will not be reloaded, and 
your run or step command will not be executed. 

Turbo Pro filer User's Guide 



Program does not have overlays 
The program you are profiling does not have any overlays, so you 
can't open an Overlay window. 

Program has Invalid symbol table 
The program that you wish to load has a symbol table with an 
invalid format. Re-create your.EXE file and reload it. 

Program has no symbol table 
The program you want to analyze has been successfully loaded, 
but it does not contain any debug symbol information. Relink the 
program so that it has a symbol table. 

Program linked with wrong linker version 
The program you wish to load was linked with an old version of 
the linker. You must use the latest version of the linker for 
profiling programs. 

Program not found 
The program you wish to load does not exist. Check that the 
name you supplied to the File I Open command is correct and that 
you supplied a file name extension if it is different from .EXE. 

Program out of date on remote, send over link? 
You have specified a program to analyze on the remote system, 
but it either does not exist on the remote, or the file is newer on 
the local system than on the remote system. 

If you press Y, the program is sent across the link. If you press N, 
the program is not sent, and the File I Open command is aborted. 

You'll usually respond with Y. If you are running the link at the 
slowest speed (using the -rsl command-line option), you might 
want to abort the command with N and transfer the file to the 
remote system using a floppy disk. 

Reload program so arguments take effect? 
With most programs, you must reload after changing their 
arguments. Always press Yat this prompt, unless you know what 
you're doing. 

When you press Y, a Run I Program Reset command is 
automatically performed for you. 

Reload program so new area count takes effect? 
In order for Turbo Profiler to reallocate the memory used for 
statistics areas, your program must be unloaded from memory 
and then reloaded and executed from the beginning again. 

Appendix E, Prompts and error messages 175 



176 

Press Y to make this happen, or press N if you can wait for the 
next manual program load for the new area size to take effect. 

Run out of space for keystroke macros 
There is not enough memory to record all your keystroke macro. 

Search expression not found 
The specified text string or byte list is not present in the file. Since 
the search proceeds forward from the current cursor position, you 
should return to the top of the file via the Ctrl-PgUp hot key, then 
repeat the search. 

Symbol name not found 
The symbol name that you supplied is not a valid symbol name. 

Symbol not a routine name 
The symbol name that you supplied is not a valid name of a 
routine. 

Symbol not found 
You have entered an expression containing an invalid symbol 
name. A valid symbol name consists of either: 

1) a global symbol name. 

2) a module name, followed by #, followed by a local symbol 
name. 

3) a module name, followed by a #, followed by a decimal line 
number. 

Symbol SymbolName Is a data symbol 
The program symbol name that you have entered refers to data in 
the program, and not to code. You can only specify code 
addresses to be profiled. 

Syntax error in symbol SymbolName 
You have entered an invalid symbol name. A valid symbol name 
consists of either: 

1) a global symbol name. 

2) a module name, followed by a #, followed by a local symbol 
name. 

3) a module name followed by a # followed by a decimal line 
number. 

Tab width must be between 1 and 32 
You have entered an invalid value for the tab width. Tab columns 
must be at least 1 column wide, but no more than 32 columns. 

Turbo Pro filer User's GuIde 



Too many files match wildcard mask 
You specified a wildcard file mask that included more than 100 
files. Only the first 100 file names are displayed. 

Video mode switched while flipping pages 
You have started Turbo Pro filer with a display updating mode 
that does not allow display pages to be saved, and the program 
that you are profiling has switched into a graphics mode. 

Turbo Pro filer has changed the display mode back to text display, 
so the screen contents of the program you are profiling have been 
lost. 

To avoid this, start Turbo Profiler with display-swapping enabled 
(-ds command-line option). 

Appendix E Prompts and error messages 177 



178 Turbo Pro filer User's Guide 



N 

43/50-line mode 
disabling 136 

8514 graphics adapter 147 
43- and 50-line displays 124 
386I\MAX 162 
.. (asterisk) 

search wildcard 80 
» in dialog boxes 70 
-? option (display help) 133 

TF386 virtual profiler 161, 162 
? (search wildcard) 80 
80x87 numeric coprocessors See numeric 

coprocessros 
80386 processor 

extended address modes 162 
instructions 

TF386 virtual profiler and 162 
profiling 159-164 

device driver 160 
registers 162 

;: (System) menu 71 
-+ (arrows) in dialog boxes 69 

A 
About Turbo Profiler command 73 
Accumulation option 114 

partial statistics and 45 
start and stop points 

maximum 45 
status of 45 

activating 
menu bar 64 

active 
analysis See also passive analysis; profiling, 
analysis modes 
functions See functions, active 
windows See windows, active 

Index 

D E 

active analysis 
area markers and 51 
disk I/O and 51 
passive analysis vs. 51 
setting 50 

adapters 
video See video adapters 

Add Areas command 10,81, 102 
Module window 81 

Add command 97 
Address option 89 
addresses 

jumping to 81, 108 
addressing modes, 80386 processor 162 
algorithms 

analysis 
line-count information and 48 
statistics for 48 

multipass 60 
All Areas command 

Remove Areas 82 
All Callers option 

Area Options dialog box 103 
Stack Trace dialog box 84 

All option 89 
All Routines command 84 

Add Areas 81 
area files 

writing to, problems with 171 
area markers See also areas 

active analysis and 51 
defined 43 
lines 

all 81 
current 81 
in current routine 81 
removing 82 

normal 
defined 35 

x 

179 



program execution speed and 52 
removing 91 
removing all 82 
return statements and 35 
routine entry 

defined 35 
routines 78 

all 81 
current 81 
current module 81 
removing 82 

Area Options dialog box 103 
areas See also area markers 

adding 102 
call paths for 84 
current 

as disassembled source code 78 
changing 33 
settings for 82 
specifying profiling action 83 
statistics 56 

erasing 56, 57 
default 43 
default statistics 43 
defined 43 
execution counts and times and 34 
function-entry markers See area markers, 

function entry 
how they work 30 
isnpecting 102 
markers See area markers 
maximum 113 
measuring efficiency 20 
names 101 
normal markers See area markers, normal 
pro filer behavior when entering 34 
program size and 44 
removing 82, 102 
settings 

considerations 43 
creating 10 
default 44 
saving 40 

statistics 78, See statistics 
.TF A files and 40 

Areas command 84 
Routines window 106 

180 

Areas window 78, 101 
area markers 

removing 91 
Callers option and 92 

arguments 
command-line options 175 
defined 5 
program 

setting 110 
Arguments command 110 
arrays 

accessing for optimimum speed 58, 61 
sorting 58 

arrows ( ... ) in dialog boxes 69 
ASCII 

high 
printing 16 

high versus standard, printing 146 
assembler 

instructions 
protected-mode 162 

assembly language 
assessing value of 106 

asterisk (*) 

search wildcard 80 
AUTOEXEC.BAT 

virtual profiling and 160 

B 
bar 

magnitude 12 
title 66 

beep on error, setting 145 
Beep on Error check box (TFINST) 145 
Bentley, John 7, 28 
Borland compilers 

Turbo Profiler and 42 
Both option 88 

Disassembly (CPU) window 109 
bubble sort 

quicksort vs. 58 
buffers 

data 59 
overlays See overlays, buffers 

bugs 
finding 

memory allocation and 159 

Turbo Pro filer User's Guide 



buttons 
choosing 69 
in dialog boxes 69 
radio 70 

bytes 
searching for, problems with 176 

c 
C 

functions 
terminology 5 

profiling 8 
C+t See object-oriented programs 
C+t programs 

expressions, problems with 169 
-c option (load configuration file) 133 

problems with 169 
cable 

null modem 
remote profiling and 152 

call history 
dynamic 

algorithm analysis and 48 
program structure analysis and 48 
program testing and verification and 48 

call paths 
sorting 94 

call stack 
active routines and 35 
setting 45 
size 84 

Call Stack option 45 
Called option 94 
Callers command 83 

call stack and 45 
logging call paths and 36 
Routines window 106 

Callers option 
Area Options dialog box 103 
Areas window and 92 
setting 92 
Statistics window 112 

Callers window 56, 78, 91 
restructuring programs and 93 

calls 
information on 

passive analysis and 51 

Index 

overhead 31 
Cancel button 69 
case and switch statements 

verifying 49 
case sensitivity 

enabling 147 
option 135 

Change Dir command 75 
Change Dir dialog box 75 
character strings 

searching for 167 
characters 

graphic 
printing 16 

high versus standard ASCII, printing 146 
check boxes 

Beep on Error (TFINST) 145 
choosing 69 
Control Key (TFINST) 146 
Fast Screen (TFINST) 143 
Full Graphics Saving (TFINST) 143 
Ignore Case of Symbol (TFINST) 147 
Mouse Enabled (TFINST) 146 
NMI Intercept (TFINST) 146 
Permit 43/50 Lines (TFINST) 143 
Remote Analyzing (TFINST) 147 
Use Expanded Memory (TFINST) 146 

chevron symbol (») 70 
clock 

combined and separate 46, 83 
Clock Speed command 113 
close boxes 66 
Close command 128 
code 

area size, setting 136 
Collection command 56 

file activity 100 
interrupts 97 

color monitors 
customizing 140-142 

color tables 141 
Colors menu (TFINST) 140 
combined clock 

timer data and 46, 83 
Combined option 

Area Options dialog box 103 

181 



command line 
options 131-137 

configuration file (-c) 133 
display update (-d) 133 
help (-h and -?) 133, 155 
modify heap (-m) 134 
mouse support (-p) 134 
overlays (-'I') 136 
process 10 switching (-i) 134 
remote profiling (-p) 134, 153 
saving (-co) 154, 155 
source code and symbols (-cr) 135 
syntax 131 
table 132 
TFREMOTE 153, 154, 155 
toggling 132 
video hardware (-ro) 136 

remote profiling 154 
viewing from IDE 128 

command-line arguments 
passing to your program 110 

command-line options 131-137 
arguments 175 
overriding 148 
saving 139 
TF386 virtual profiler 161 

help with 162 
TFlNST vs. 148-149 

commands See also specific command names 
choosing with a mouse 64 
choosing with keyboard 64 
prompts and 165 

communications, remote systems 147 
Compaq EMS simulator 162 
compatibility 3 
compiling 

for profiling 42 
COMSPEC environment variable (DOS) 170 
configuration files 

changing default name 149 
creating 19 
directory paths 

setting 145 
loading 133, 166 
problems with 169 
saving 149 

problems with 171 

182 

saving macros to 122, 125 
saving options to 125 
virtual profiling and 160 

Control Key check box (TFINST) 146 
control-key shortcuts 

enabling 146 
coprocessors See numeric coprocessors 
copyright information 73 
Count option 95 
counting 

sampling vs. 37 
Counts option 88 
CPU window See Disassembly (CPU) window 
Create command 121, 123 
current instruction pointer 

returning to 108 
Current option 89 
Current Routine command 

Add Areas 81 
Remove Areas 82 

cursor 
moving 80 

customizing Turbo Pro filer 139-150 

D 
-d option (display update) 133 
data 

caching 59 
collecting and displaying See statistics 
evaluation order 59 
sets 

size and profiling 41 
structures 

optimizing 58 
debugging 

information 
global symbols 104 
profiling and 42 
Turbo C identifiers and 91 

default buttons 69 
Default Color Set command (TFINST) 142 
default settings 139 

restoring 149 
Delete All command 

interrupts 98 
Macros menu 123 
statistics 117 

Turbo Pro filer User's Guide 



Desq View 162 
Detail command 57, 100 
Detail option 

Display Options dialog box 101 
device drivers 

TDH386.SYS 
installing 160 

TFH386.SYS 
error messages 164 

virtual profiling and 162 
XMS 161 

dialog boxes 68, See also specific dialog box 
names 
Accept Color Set (TFINST) 142 
arrows in 69 
Change Dir 75 
check boxes in 69 
customizing 141 
Directories (TFINSn 145 
Display Options 

TFINST 142 
entering text 70 
escaping out of 165 
hot keys 65 
Miscellaneous Options (TFINST) 146 
prompts in 165-169 

Dialogs command (TFINST) 141 
directories 

changing 75 
default 145 
how searched 42 
new 76 
paths 

problems with 174 
setting 168 

source files 79, 85, 125, 135 
Directories dialog box (TFINST) 145 
Disable option 103 
disabling statistics collection 83 
Disassembly (CPU) window 78, 106 

restoring 108 
disks 

distribution 3 
writing to, problems with 170, 171 

display 
options 142-144 

Display command 57 

Index 

Display Options dialog box 101 
Execution Profile window 88 
Interrupts window 98 
Overlays window 95 

Display menu (TFINST) 142 
Display option 101 
Display Options command 

Options menu 123 
Display Options dialog box 12,88, 101, 123 

TFINST 142 
Display Swapping options 124 
Display Swapping radio buttons 

TFINST 142 
displays See also screens 

43 and 50 lines 124 
buffer, saving 143 
color 148 
customizing 

color tables 141 
dual 77 
EGA and VGA 124 
modes 141 

defaults, setting 147 
problems with 177 

options 147 
colors 140-142 

pages 144 
problems with 148 
swapping 144 
updating 143 

distribution disks 
copying 3 

DOS ' 
command processor, problems with 170 
COMSPEC environment variable 170 
output 

viewing from IDE 128 
running programs from 

TF386 virtual profiler and 160, 162 
shelling to, 

display swapping and 144 
versions 

TF386 virtual pro filer and 161 
wildcards 75 

DOS Shell command 77, 170 
DOS Shell Swap Size input box (TFINST) 147 

183 



dual monitors 
DOS command line and 77 

dual screens 133 
Duration option 101 

E 
-e option (TF386 virtual pro filer) 161 
Edit command 170 

problems with 170 
editor 

installing 86 
efficiency 

measuring 20 
EGA See Enhanced Graphics Adapter 
ellipsis mark ( ... ) 64, 68 
EMS 

emulation and TF386 virtual profiler 161 
enabling 146 
simulators 162 
usage 77 

Enable option 103 
enabling statistics collection 83 
Enhanced Graphics Adapter (EGA) See also 

graphics; video adapters 
43-1ine mode 

disabling 136 
line display 143 
palette 

saving 136 
screen 124 

Eratosthenes 
Sieve of 28 

errors 
messages 169-177 

beep, enabling 145 
memory 151 
TF386 virtual profiler 163-164 
TFREMOTE 156-158 

Esc hot key 69 
Every Line command 10 
Every Line in Module command 

Add Areas 81 
Remove Areas 82 

example programs 
PLOST*.* 32 

execution counts and times 
areas and 34 

184 

conditional statements and 49 
default behavior 43 
passive analysis and 51 
program structure analysis and 48 
program testing and verification and 48 
resource monitoring and 48 

Execution Profile window 55, 78, 86 
description 11 
displaying data in 12 
Module window and 87 

execution timing 
statistics for 48 

exiting 
TFINST 150 

expressions 
entering 

problems with 
invalid variables and 176 

optimizing 60 
extended memory 159 

F 

TF386 virtual profiler and 159, 160 
problems with 163 

-f option (TF386 virtual profiler) 161 
far heap 

profiling and 38 
Fast Screen Update check box (TFINST) 143 
features 1 

environment 63 
File 

command 85, 86 
dialog box 86 
menu 73 

files 
access 

monitoring 45 
profiling purposes and 48 
tracking 78 

activities 
displaying 57 

area 
problems with 171 

AUTOEXEC.BAT 
virtual profiling and 160 

Turbo Pro filer User's Guide 



configuration See configuration files 
disk 

problems with 171 
disks 

problems with 170 
distribution 

list of 3 
executable program 167 

TF386 virtual pro filer and 161 
HELPME!.DOC 145 
information on 76 
loading 21 

cancelling 74 
opening 

problems with 136, 174 
wildcard masks and 177 

opening and loading 73 
overwriting 174 
README 3 
source 

current routine 106 
directories 85, 125 
inspecting 94 
list of 85 
loading 168 

problems with 172 
options 135 
setting directory path 145 
viewing 88 
viewing with statistics 18 
w here searched for 42 

statistics See statistics 
SWAP.$$$ 171 
TDH386.SYS 160, 162 
.TFA See .TFA files 
.TFS See .TFS files 
TPROF.EXE 149 

Files option 45 
Statistics menu 112 

Files window 56, 78, 98, 99 
Filter command 49, 56, 89 
filters See statistics 
Follow command 

Disassembly (CPU) window 108 
43/50-line mode 

disabling 136 
43- and 50-line displays 124 

Index 

frequency collisions 
solving 37 

Frequency option 89, 94 
Full Graphics Saving check box (TFINST) 143 
function-entry area markers See area markers 

function ' 
functions See also routines 

C and Pascal 
terminology 5 

G 
Get Info command 76 
global menus See menus 
global symbols 

list of available 104 
Goi:o command 

Disassembly (CPU) window 108 
Module window 81 

Graph option 101 
graphics See also graphicS adapters 

color tables 141 
display buffer, saving 143 
image 

saving 136 
palette 

EGA 
saving 136 

problems with 
snow 143 

graphics adapters 147, See also graphics 
display options 148 
display pages 144 
EGA 143 
Hercules 148 
monochrome text-only 148 
VGA 143 

graphs 
file activity 101 

H 
-h option (help) 133, 155 
hardware 

adapters 
display options 

setting 143 

185 



requirements 
TF386 virtual pro filer 159 

hardware requirements 3 
heap See also memory 

far 
profiling and 38 

modifying 134 
size 

default 134 
Help 

button 69 
menu 129 
window 

help 

closing 129 
keywords in 129 
opening 129 

accessing 129 
problems with 171, 172 

command-line options 
TF386 virtual profiler 162 
TFINST 149 

help on help 130 
index 129 
keywords 129 
option 133 
previous topic 129 
status line 68 
TFREMOTE 155 

Help on Help command 130 
HELPME!.DOC 

setting directory path for 145 
Hercules graphics adapter 148 
History List Length input box (TFINSf) 145 
history lists 70 

choosing from 75 
length, setting 145 

History option 96 
hot keys 

dialog boxes 65 
enabling 146 
Esc 69 
menus 65 
using 65 

-i option (process ID switching) 134 

186 

I/O 
disk 

active analysis and 51 
passive analysis and 51 

keyboard 
profiling and 41 

IBM 
graphic characters 

printing 16 
IBM PC Convertible and NMI 146 
Iconize/Restore command 127 
icons 

restoring 127 
identifiers 

Turbo C 91 
underscores and 91 

Ignore Case of Symbol check box (TFINST) 147 
Immediate Callers option 

Area Options dialog box 103 
Stack Trace dialog box 84 

Index command 129 
input boxes 

DOS Shell Swap Size (TFINST) 147 
History List Length (TFINST) 145 
Tab Size 

TFINST 144 
Inspect Areas command 102 
Inspect command 94, 96 
INSf ALL.EXE 3 
installation 3 

TDH386.SYS device driver 160 
TF386 virtual pro filer 159 
TFREMOTE (remote profiling utility) 152 

instructions 
current 

pointer 
returning to 108 

displaying 109 
pointer 

address of 109 
integrated environment 63-130 

DOS screen and 128 
interrupts 

adding to statistics collection 97 
amount of time in 97 
display formatting options 98 
exception, TF386 virtual profiler and 162 

Turbo Pro filer User's Guide 



execution timing and resource monitoring 
and 48 
monitoring 45 
names 97 
NMI 146 
number of calls to 97 
passive analysis and 51, 52 
pick list 98 
removing from statistics collection 98 
removing from window 57 
statistics 97 
subroutines 97 

Interrupts option 45 
Statistics menu 112 

Interrupts window 56, 78, 96 
I/O 

options 145 
watching, TF386 virtual profiler and 159 

K 
keyboard 

choosing buttons with 69 
choosing commands with 64 
input 

profiling and 41 
keys 

cursor-movement 
TFINST 14D 

keystrokes 
recording 176 

problems with 169 
keywords 

Help windows 129 

L 
labels 

moving cursor to 8D 
LCD screens 148 
Line command 8D 
line counts 

algorithm analysis and 48 
program verification and testing and 48 

line numbers 167 
lines 

jumping to 81 
marking 1 D, See area markers 

Index 

moving cursor to 8D 
Lines in Routine command 

Add Areas 81 
Remove Areas 82 

link 
remote 

speed 135 
Link Speed radio buttons (fFINST) 147 
list boxes 71 

file names 75 
searching incrementally 129 

Load command 
cancelling 74 

local menus See menus 
Local Module option 1D5 
local system 

remote profiling and 151 
Longest option 88 
loops 

optimizing 58, 59 

M 
-m option (modify heap) 134 
macros 121, 121-123 

creating 121, 123 
deleting 123 
recording 

problems with 173, 176 
removing 123 
saving 122 
stop recording 123 

Macros command 121 
magnitude bar 12 
maps 

memory 
profiler use 38 

markers 
area See area markers 

math coprocessors See numeric coprocessors 
Maximum Areas command 113 
memory 136, 143, See also heap 

accessing 
TF386 virtual profiler and 162 

addresses 
high 159 

allocation 
problems with 173 

187 



TF386 virtual profiler and 160 
EMS See EMS 
error messages 151 
heap 

size 134 
overlays and 95 
problems with 173 
profiler use of 38 
stop and start points and 45 
usage 77 
watching 

TF386 virtual pro filer and 159 
menu bar See menus 
menus 

accessing 63 
customizing 141 
hot keys 65 
local See menus, pop-up 
opening 64 
Options 121-127 
pop-up 64 
TFINST 140 
with arrows (~) 64 
with ellipsis marks ( ... ) 64, 68 

Menus command (TFINST) 141 
Microsoft 

Windows 162 
Microsoft mouse 

compatibility 63 
Miscellaneous Options dialog box (TFINST) 146 
Mixed command 

Disassembly (CPU) window 109 
Mode for Display menu (TFINST) 147 
modem 

remote profiling and 152 
Modify TPROF.EXE command (TFINST) 149 
Module command 84, 90 

Print menu 119 
Routines window 106 

Mod ule option 89 
Module window 78, 79 

area markers 
removing 91 

Execution Profile window and 87 
printing from 14 
source code and 

inspecting 94 

188 

modules 
current 

statistics 56 
defined 5 
loading 168 
viewing 

problems with 172 
source code in 167 

Modules with Source command 
Add Areas 81 
Remove Areas 82 

monitors See displays 
mouse 

choosing buttons with 69 
choosing commands with 64 
support 63 

disabling/enabling 134, 146 
Mouse Enabled check box (TFINST) 146 

N 
Name input box 74 
Name option 89 
NEC MultiSpeed and NMI 146 
New Directory dialog box 76 
Next command 81, 127 

problems with 172 
Next Pane command 127 
NMI, systems using 146 
NMI Intercept check box (TFINST) 146 
No option 

Disassembly (CPU) window 109 
None option 

Area Options dialog box 103 
Stack Trace dialog box 84 

normal area markers See area markers, normal 
Normal option 103 
null modem cable 

remote profiling and 152 
numeric coprocessors 

profiling tutorial and 9 

o 
.OBJ files 

Turbo C and 91 
object-oriented programs 

expressions, problems with 169 

Turbo Pro filer User's Guide 



profiling 52 
OK button 69 
OOP See object-oriented programs 
Open command 73 
Operation 

command 82, 83 
option 103 

optimizers 
profiling and 2 

options 145 
customizing 139 
display 142-144 

swapping 142 
input 145 
restoring 118, 126 
restoring defaults 149 
saving 125 
setting 10 

Options command 
Areas window 103 
Print menu 120 

Options menu 121, 121-127 
TFINST 145 

Origin command 
Disassembly (CPU) window 108 

OS Shell command 
TF386 virtual profiler and 162 

output 
to DOS 

viewing from IDE 128 
user 128 

overhead 
calculating 31 

Overlay command 57 
Overlay window 54 
overlays 

area size 136 
buffer management 

overlay event history and 54 
demonstration 95 
execution timing and resource monitoring 

and 48 
history 96 
memory and 95 
monitoring 45 
problems with 173 

Index 

profiling 
tips and techniques 54 

statistics 95 
demonstration 95 

Overlays option 45 
Statistics window 113 

Overlays window 56, 78, 95 
demonstration 95 

p 
-p option (mouse support) 134 
palette See graphics 
panes 

next 127 
parameters See arguments 
Pascal 

functions 
terminology 5 

procedures 
terminology 5 

profiling 8 
passive analysis See also active analysis; 

profiling, analysis modes 
active analysis vs. 51 
caller information and 51 
disk I/O and 51 
execution counts and 51 
interrupts and 51, 52 
program execution time and 51 
setting 50 

Path for Source command 125 
paths 

call 
logging 36 
sorting 94 

setting 135 
Per Call option 88 
performance analyzer See profilers 
Permit 43/50 Lines check box (TFINST) 143 
Pick a Caller dialog box 94 
Pick a Module dialog box 85, 89, 106, 119 
Pick command 98 
PLOST.C and PLOSTPAS.PAS 32 
pointers 

arrays and 58, 61 
instruction 

address of 109 

189 



current 
returning to 108 

pop-up menus See menus 
ports 

remote 
setting 135 

serial 147 
Previous command 

Disassembly (CPU) window 108, 109 
Previous Topic command 129 
PRIME4*.* 

listing 24 
PRIMEn*.* (example program) 8 
Print menu 119 
Printer Options radio buttons (TFINST) 146 
printing 

high versus standard ASCII 146 
Module window contents 14 

Printing Options dialog box 120 
proced ures See functions 

Pascal 
terminology 5 

process 10 switching 134 
Profile command 

Routines window 106 
Profile mode command 113 
profile report windows See windows, profile 

report 
profiling 

80386 processors 159-164 
analysis modes See also active analysis; 
passive analysis 

active 113 
choosing 48, 50 
compared 114 
current 77 
default 113 
passive 113 

control 
TF386 virtual profiler and 162 

defined 1 
end results 47 

type of statistics to collect for 48 
far heap and 38 
large programs 151, 159 

display modes and 143, 144 
object-oriented programs 52 

190 

optimizers and 2 
passes 113 
preparing programs for 41 
program speed and 52 
refining the process 49 
remote 134, 151-158 

commands 152 
DOS version and 155 
hardware requirements 151 
local system 151 
remote system 151 
remote systems 

defaults, setting 147 
starting 154 
troubleshooting 155 
User Screen window and 152 
when to do 151 

resetting program 110 
sampler screen 15 
saving profiles 47 
slow programs and 52 
small programs 136 
speeding up 52 
starting 110 
steps 9, 40 

Profiling Options dialog box 50, 113 
program execution 

stopping 83 
Program Reset command 110 
program source windows See windows, 

program source 
Programming Pearls 7 
programs 144 

compiling 
for profiling 42 

current 76 
example 8 
execution speed 

profiling and 52 
execution time 

passive analysis and 51 
file access 

monitoring 45 
keyboard input 

profiling and 41 
loading 159, 167 

problems with 136, 172, 175 

Turbo Pro filer User's Guide 



symbol tables and 173 
object oriented See object-oriented programs 
optimizing 57 
preparing for proffiing 41 
profiling 

starting a run 110 
with no debug symbol information 175 
with out-of-date debug symbol 
information 175 

reloading 
problems with 171 

restructuring 
Callers window and 93 

running 
from DOS 162 
nonmaskable interrupts and 147 

size 
areas and 44 

slow 52 
source 

location 85 
viewing 78, 79 

speed 
statistics collection and 47 

stopping during a proffiing session 43 
structure analysis 

statistics for 48 
swapping to disk 

problems with 170 
testing and verifying 

line-count information and 48 
statistics for 48 

timing 
statistics for 48 

unfamiliar 
studying 50 

prompts 
commands and 165 
dialog boxes 165-169 
responding to 165 
setting 145 

propagation of time 104 

Q 
QuarterDeck EMS simulator 162 
question mark (?) search wildcard 80 

Index 

quicksort 
bubble sort vs. 58 

Quit command 78 
TFINST 150 

R 
-r option (remote profiling) 134, 153 
radio buttons 70 

Display Swapping 
TFINST 142 

Link Speed (TFINST) 147 
Printer Output (TFINST) 146 
Remote Link Port (TFINST) 147 
Screen Lines 

TFINST 143 
User Screen Updating (TFINST) 144 

README file 3 
recursive routines 

when to use 60 
Refresh Desktop command 73 
registers 

80386 processor, virtual profiling and 162 
Remote Analyzing check box (TFINST) 147 
Remote Link Port radio buttons (TFINST) 147 
remote links 

defaults, setting 147 
problems with 175 

remote proffiing See profiling, remote 
remote system 

remote profiling and 151 
Remove Areas command 82 102 
Remove command 57, 91, 98 

current areas 56, 57 
interrupts 57 
Macros menu 123 
undoing 91 

report windows 
summary 39 

requirements 
hardware 3 
software 42 

resizing windows 18 
resonance 53 
resources 

monitoring 
statistics for 48 

Restore command 118 

191 



Restore dialog box 126 
Restore Options command 126 
Restore Standard command 73 
return points 

caution 35 
return statements 

area markers and 35 
Routine window 78 
routines See also functions 

accessing 
problems with 168 

active 
call stack and 35 

available 78 
calling other routines 

tracking 45 
calling sequence 78, 112 
combined clock and 46 
defined 5 
jumping to 81 
marking See area markers 
optimizing 57, 60 
overhead 31 
recursive 

w hen to use 60 
reducing calls to 24 
timer data 46 

Routines in Module command 
Add Areas 81 

Routines in Modules command 
Remove Areas 82 

Routines window 104 
Run command 110 
Run Count command 113 
Run menu 110 
running 

5 

TF386 virtual pro filer 159-164 
TFINST 139-150 

-s option (source code and symbols) 135 
sample programs 

PRlMEn*.* 8 
sampling 

counting vs. 37 
Save command 117 

192 

Save Configuration dialog box 19, 125 
Save Configuration File command (TFINs[) 

149 
Save dialog box 117 
Save menu (TFINST) 149 
Save Options command 125 
Screen command (TFINs[) 142 
Screen Lines command 124 
Screen Lines radio buttons 

TFINST 143 
screens See also displays 

background, customizing 142 
color 

using 133 
colors, customizing 140-142 
dual 133 
EGA/VGA 124 
LCD 148 
lines per, setting 143 
monochrome 

using 133 
problems with 

snow 143 
repainting 143 
swapping 133, 142, 144 

problems with 162 
two 77 
updating 144 

scroll bars 66 
searches 

for text 80 
in list boxes 129 
repeat 81 
wildcards 80 

separate clock 
timer data and 83 

Separate option 
Area Options dialog box 103 

serial links, remote 147 
shortcuts See hot keys 
Sieve of Eratosthenes 28 
Size/Move command 127 
snow 143 
Sort command 89, 94 

Areas window 104 
Sort option 

Display Options dialog box 101 

Turbo Pro filer User's Guide 



sorts 
bubble vs. quicksort 58 

source code See files, source; programs 
stack 

call 
size 84 

Stack command 84 
Start Time option 101 
starting Turbo Pro filer 

on remote systems 
problems with 147 

startup information 3 
statements 

execution 
verifying 49 

return See return statements 
statistics 

accumulation 
disabling 115 

accuracy 53 
areas 102 
automatic collection 

turning on and off 114 
collecting 56 
collection 11,43,45 

automatic 77 
disabling 43, 83 
enabling 83 
normal 83 
program speed and 47 
type to collect 48 

collection options 103 
current 

removing 89 
current area 56 
current routine 106 
default 43 
displaying 12 

filtering display 47 
erasing 91, 117 
file activity 99 

graph view 101 
time in seconds 101 

files 
writing to, problems with 171 

filtering 46, 49, 56, 89 
tern porary 90 

Index 

how taken 37 
interrupts See interrupts 
limiting 46 
overlays 95 

demonstration 95 
partial 45 
printing 16, 119 
problems with 171 
program execution speed and 52 
removing 88 
restoring 118 
saving 17, 117 
sorting 88, 89 
start and stop points 

maximum 45 
time 

average 88 
filters and 89 
longest 88 

types of 45 
viewing 78, 87, 88 

choices 88 
number of passes 88 
time 88 
with source code 18 

Statistics command 119 
Statistics menu 111 
status line 68 
Stop option 

Areas Options dialog box 103 
Files window 100 

Stop Recording command 123 
strings 

character 
searching for 167 

structure analysis 
statistics for 48 

Subroutines command 97 
support 

technical 5 
switch statements See case and switch 

statements 
symbol names, problems with 169 
symbol tables 175 

invalid 175 
loading 

problems with 173 

193 



memory allocation 146 
symbols 

accessing 168 
disassembled 107 
problems with 176 

System menu See == (System) menu 

T 
Tab Size input box 124 

TFINST 144 
tabs 

setting 124 
tabs, setting 144 

problems with 176 
Tandy lOOOAand NMI 146 
TD286 protected-mode pro filer 

instructions 162 
TDH386.SYS 160, 162 
TDREMOTE 

running 
problems with 175 

TDRF (remote file transfer utility) 152 
technical support 5 
terminology 5 
text 

boxes 70 
Get Info 76 

editors 145 
problems with 170 

entering in dialog boxes 70 
searching for 80 

problems with 176 
TF386 virtual profiler 159-164 

command-line options 161 
syntax 162 

error messages 163-164 
installation 

device driver 160 
system requirements 159 

problems with 162 
starting 160 

problems with 163 
.TFA files 

areas and 40 
TFCONFIG.TF 19 
TFH386.SYS 

error messages 164 

194 

TFINSf 139-150 
command-line options vs. 148-149 
exiting 150 
main menu 140 
options, saving 149 

TFREMOTE (remote profiling utility) 151 
customizing 155 
error messages 156-158 
installing 152 
options See command line, options 
startiilg 153 

.TFS file 
saving to 111 

.TFS files 
creating 17, 117 

This Line command 
Add Areas 81 
Remove Areas 82 

This Module command 84 
This Routine command 84 
time 

propagation 104 
time-and-counts profile listing 14 
Time option 88; 98 
timer 

combined clock 46, 83 
data 

grouping 46 
inaccurate results and 37 
separate clock 83 
setting 113 
sound routines and 37 

Timer command 83 
Timing option 

Area Options dialog box 103 
title bars 66 
TPROF.EXE 149 
TSR programs 

display swapping and 144 
TurboC 

identifiers 91 
Turbo language products 

Turbo Profiler and 42 
Turbo Pro filer 

leaving 77, 78 
Turbo Profiler Statistics file See .TFS files 

Turbo Pro filer User's Guide 



tutorial 7-28 
numeric coprocessors and 9 

u 
underbars See underscores 
underscores 

identifiers and 91 
Turbo C identifiers and 91 

Undo Close command 128 
Use Expanded Memory check box (TFINST) 

146 
User Screen 

swapping 124 
User screen 

display buffer 143 
updating 144 

User Screen command 128 
User Screen Updating radio buttons (TFINST) 

144 
User Screen window 

remote profiling and 152 
utilities 

TDRF 152 

v 

TFREMOTE See TFREMOTE (remote 
profiling utility) 

-v option (video hardware) 136 
version number information 73 
VGA See Video Graphics Array Adapter 
video adapters 147, See also Enhanced Graphics 

Adapter; graphics drivers; Video Graphics 
Array Adapter 
display pages 144 
options 136 

Video Graphics Array Adapter (YGA) See also 
graphics; video adapters 
50-line mode 

disabling 136 
line display 143 
screen 124 

View Source command 109 

w 
-w option (save option settings) 154, 155 

Index 

TF386 virtual pro filer 161, 163 
warning beeps, enabling 145 
When Full command 100 
Width of Names input box 124 
wildcards 

DOS 75, 177 
in searches 80 

Window menu 127 
windows 

active 67 
defined 65 
shrinking 127 
zooming 127 

Areas 101 
Callers option and 92 

Callers 91 
closing 66, 67, 128 
customizing 140 
Disassembly (CPU) 106 
Execution Profile 86 

Module window and 87 
Files 98, 99 
Help 129 
Interrupts 96 
linking 18 
Module 

Execution Profile and 87 
moving 67, 127 
next 127 
next pane 127 
open 

list of 129 
opening 67, 128 
Overlays 95 

demonstration 95 
printing contents of 119 
problems with 173 
profile report 55, 56 
program report 55 
program source 55 
report See report windows 
resizing 18, 67 
restoring 73 
Routine 104 
saving configuration 19 
scrolling 66 
sizing 127 

195 



User screen 128 
zooming 11, 66,67, 127 

Windows command (TFINSf) 140 
WordStar-style cursor-movement commands 

146 
Wrap option 100 

X 
XMS standard 161 

196 

v 
-y option (set overlay area size) 136 
Yes option 

Disassembly (CPU) window 109 

Z 
Zoom command 11, 127 
zoom icon 66, 67 

Turbo Pro filer User's Guide 













TURB 
PR FILER'· 

BORLAND 

1800 GREEN HILLS ROAD, P.O. BOX 660001, scons VALLEY, CA 95067-0001, (408) 438-5300 • PART II 15MN-PFL01-0l • BOR 1483 
UNIT 8 PAVILIONS, RUSCOMBE BUSINESS PARK, TWYFORD, BERKSHIRE RG10 9NN, ENGLAND 
43 AVENUE DE L'EUROPE-BP 6, 78141 VELIZY VILLACOUBLAY CEDEX FRANCE 


