
Britton Lee Host Software

IDL REFERENCE MANUAL

(R3v5m2)

February 1988
Part Number 205-1235-003

Printed February 1988.

This document supersedes all previous documents. Thia edition is intended for use with eoftware
release number 3.5 and future software releases, until further notice.

The information contained within this document is subject to change without notice. Britton Lee
assumes no responsibility Cor any erron t.hat. may appear in t.bis document.

The software described in this document is furnished under license and may only be used or
copied by t.he terms or such license.

IDM, Intelligent Database Language, and IDL are trademarks or Britton Lee, Inc.

UNlX is a, trademark or AT&T Bell Laboratories.

COPYRIGHT© 1988
BRITTON LEE, INC.

ALL RIGHTS RESERVED
(Reproduction in any Corm is strictly prohibited)

Table of Contents

I: INTRODUCTION TO IDL .. 1

Introduction to IDL ... 3

Executing the IDL Program ... 6

Data Manipulation 7
Data Definition .. 21

Data Authorization 27

D: IDL co~s .. 29

Introduction to IDL Commands ... 31

abort transaction 32

append.. 33

associate 35

audit ... 38

begin transaction 41

create .. 44

create database .. 46

create index .. 49

create view 53

define .. 55

delete .. 57

deny .. 58
destroy .. 60

destroy database 62

destroy index .. ~............................ 63

end transaction .. 64

execute .. 65

exit .. 67

extend ... 68

extend database ... 69

open .. 71

permit ..•...................... 72

range ... 74

reconfigure 77
replace .. 78

reset .. 80

retrieve ... 81

set ...•............... 84

sync .. 88

truncate 89

unset ... 90

Britton Lee iii

Table of Contents IDL Reference Manual

ill: IDL GENERAL CONCEPTS .. 91
Introduction to IDL General Concepts ;.................. 93
Aggregates 94
Att _Name .. 102
Constants•.......... .. . 103
Dbname .. 105
Expressions ... 106
Functions 108
Name .. 117
Object_Name .. 118
Options ... 119
Protect_Modes .. 120
Qualifications ... 121
Query _Name ... 126
Range_ Var ... 127

· Rel_Name .. 128
Target-Lists .. 129
Types .. 130
Users ... 132

IV: IDL FRONT-END COMMANDS .. 133
Introduction to Front-End Commands 135
%associate .. 136
%continuation ... 137
%display ... 138
%edit .. 139
%experience ... 140

%help ... 141

%input ;... 142

%redo ... 143
%showranges ... 144

o/osubstitute .. 145

%trace .. 146

V: APPENDICES .. 147
IDL Reserved Words ... 149
IDL Grammar .. 150

iv Britton Lee

Notational Conventions

Britton Lee

The following conventions are employed in the synopses throughout this
manual:

Words in boldface should be entered exactly as they appear.

Words in roman face should be replaced with a value of the
user's choice.

Square brackets "O" indicate optional elements.

Braces "{}" enclose lists from which the user must select an ele­
ment.

Vertical bars " I " separate choices.

Parentheses "()" are to be entered literally.

Ellipses " ... " indicate that the preceding items may be repeated
one or more times.

For a detailed description of the error messages generated by IDL, con­
sult the Meaaage Summar11 (IDL Veraion).

v

Notational Conventions IDL Reference Manual

vi Britton Lee

PART I

INTRODUCTION TO IDL

Introduction to
IDL

Britton Lee

This part provides an introduction to IDL intended for data processing
professionals interested in learning to use IDL to access data stored on a
Britton Lee database server.

All Britton Lee database servers are designed to store and manipulate
databases built on the relational model, which means that the data in the
database is stored in tables or relations. A relation is organized horizon­
tally into tuples and vertically into attributes. The tuples represent indi­
vidual entities in the relation while the attributes describe characteristics
associated with those entities.

The first chapter in this part explains how to invoke and exit the idl
program. The rest of this part covers three general topics: manipulating,
defining, and controlling access to data stored in relations.

Data manipulation refers to the part of a query language which extracts
data from an existing relation and modifies existing relations by append­
ing new data, changing the values of data, and deleting data.

Data definition refers to the part of a query language which creates,
alters and deletes the structure of database objects such as relations,
views, and stored commands.

Data authorization refers to the part of a query language which author­
izes access to database objects for individual users and groups of users.

This part does not describe all the IDL commands, nor does it completely
describe the commands which it does cover. For a complete description
of every IDL command, consult Part II of this manual.

This part does not cover special reatures of IDL used for embedding IDL
in procedural programming languages such as C. The applications pro­
grammer who needs to use embedded IDL should consult the RIC Uaer'a
Gt1ide.

The examples in this section use a hypothetical database called "books".
The relations in "books" database are listed below.

3

Introduction to IDL IDL Reference Manual

AUTHOR RELATION
authnum flnt lut

1 al lee ad am•
I herman me Iv Ille
a brlan kernighan

' dennla ritehle
5 dh lawrence
8 will tam llhakeepeare
7 doug &dame

TITLE RELATION
docnum title onhand pubnum

1 mob7 dick 8 2
2 the e programming language 8 3
a mac beth 12 1
4 superior women 3 2
5 fantuia of the unconecioua 8 1
8 IO long and thanb for all the fteh 7 1

PUBLISHER RELATION
pubnum name city phone

1 penguin Ion don 441-301-9898
2 signet new york 212-750-8400
3 prentice-hall englewood cliffs 201-254-8300
4 10uth end boston 817-440-3223

AUTHTTL RELATION
authnum docnum

1 4
I 1
a 2
4 2
5 5
8 3
7 8

Britton Lee

IDL Reference Manual Introduction to IDL

PRICE RELATION
docnum ye_ar amount di.st.rib

1 87 2.95 western
2 87 22.96 berkeley technical
8 87 2.60 cal-west

• 87 4.95 cal-west
5 87 4.96 bookpeople
8 87 2.60 western

Britton Lee 6

Executing the IDL
Program

ENTERINGIDL

EXITING IDL

8

To invoke IDL enter

idl

On UNIX systems, IDL commands must be entered in lower cue. On
most other systems, IDL commands are case-insensitive.

Ir you have successfully invoked IDL, you will see displayed a numeral
followed by a right parenthesis as in

1)

This is the IDL prompt.

In interactive IDL, all IDL commands or sequences or IDL commands
must be terminated by the keyword go or a semicolon (;). Ir you are
using IDL statements in one or the embedded query languages, terminate
all commands with a semicolon (;). Ir you are using IDMLm subroutines
to query a database from within a program, use no command iermina­
tors.

In order to execute any IDL commands other than a range or aet state­
ment, you must first open a database. The following command opens
the "books" database.

1) open books;

To invoke IDL and open the "books" database with a single command,
enter

idl books

Ir the specified database does not exist or if you do not have permission
to open it, IDL displays this information and exits.

Ir the IDL prompt is displayed, you can exit IDL by entering

3) exit;

Ir the prompt is not currently displayed and you wish to exit, the
<BREAK> function on your system will usually produce the IDL
prompt.

Britton Lee

Data Manipulation

RANGE

·.

Britton Lee

Data manipulation refers to the ability to examine the data in one or
more relations and to modify existing relations by appending new data,
deleting data, or changing the value of one or more attributes in specified
tuples.

The :retrieve command is used to examine or query the database, the
append, delete, and replace commands to modify the database.

The range statement is used to associate a range variable with a rela­
tion. The retrieve, replace, and delete commands require that the
relations they manipulate be referenced through range variables.

The range statement associates a variable of the user's choice with a
relation. The essential parts of a range statement are

• the variable name

• the relation to be associated with the variable name.

The following range statement associates the range variable "t" with the
"title" relation.

1) range oft la title;

A range statement may specify an optional owner name, preceded by a
colon (:) to distinguish the relation being associated from other relations
of the same name belonging to other users. The command

1) range oft la title:susie;

associates "t" with the ''title" relation which is owned by user "susie".
JC no owner name is specified, it is assumed that the range variable refers
to a relation owned by the user executing the command. JC such an
object does not exist, it is assumed that the range variable refers to a
relation owned by the DBA.

A range variable is always associated with the most recent range state­
ment that defined it. The sequence

1) range of t la title;
1) range of t la author;
1) range of t la publisher;

leaves "t" associated with the "publisher" relation. A range variable is
associated with its relation until it is used in another range statement or
until the idl session terminates.

7

Data Manipulation IDL Reference Manual

RETRIEVE The retrieve command retrieves specified data from one or more rela­
tions. Used interactively, it displays its results in a relation consisting of
the requested tuples and attributes at the user's terminal.

The essential part of any retrieve statement is the parenthesized target­
liat which consists of specifications of the relation(s) to be accessed,
through use of a range variable, and the attributes to be displayed.

The order in which the targeta are specified in the query determines the
order in which they will appear, Crom left to right, at the terminal.

Thus the basic form or the retrieve statement is

retrieve (target·liat)

A specified target may have various Corms. It may be

• an attribute name pref aced by a range variable,

• a "result domain name - attribute name" pref aced by
a range variable,

• the value returned by an aggregate or function,

• a "result domain name - value" returned by an aggre­
gate or function,

• the keyword all,

• any arithmetic expression.

The object referenced by a range variable may be a relation or a view .1

The parentheses enclosing the target-liat are mandatory.

The following query illustrates the simplest Corm of the retrieve state­
ment. It queries the database for the values of the attributes named
"first" and "last" in all the tuples in the "author" relation. The range
statement is necessary to establish the association between the range
variable "a" and the "author" relation, unless this association has been
established by a previous range statement.

1Views are descrill.d io the chapter on data definition.

8 Britton Lee

IDL Reference Manual

Bn.tton Lee

Data Manipulation

1) range of a la author
2) retrieve(a.fint, a.lut);

flnt last
alice ad ams
berm an melvllle
brian kernighan
dennis ritchie
dh lawrence
william ahakespeare
doug ad ams

The word all is used to specify all or the attributes in a relation. The
entire "author" relation consists or three attributes. The following com­
mand retrieves all or the attributes in the relation.

1) retrieve (a.all);

authnum flnt last
1 alice adams
2 herman melville
a brian kernighan

• dennis ritchie
5 dh lawrence
8 william ahakespeare
7 doug adams

It is also possible to specify result domain names which difJer Crom the
original attribute names in the relation displaying the retrieved data.
The following command retrieves data from the "last" attribute in the
"author" relation, but labels the selected domain "surname" in the
result.

1) retrieve (SUl'name = a.last);

SUl'name
adams
melville
kernighan
ritchie
lawrence
ahakespeare
adams

In addition to this basic format, there are several optional specifications
which can be added to control

g

Data Manipulation IDL Reference Manual

Where Clause

• the restrictions to apply for retrieving tuples (the
qualification)

• the order in which the tuples should be displayed

• whether duplicate tuples should be ignored.

In order to specify that only . some of the tuples in a relation should be
retrieved, the query must indicate the conditions governing the retrieval
of tuples. This set of conditions, called the qualification, consists of one
or more comparisons between terms which evaluate to true or false.
Each comparison is expressed by one of the following relational opera­
tors.

Svm6ol

!=
<>
>
>=
<
<=

Meaning

(equal to)
(not equal to)
(synonym for!=)
(greater than)
(greater than or equal to)
(less than)
(less than or equal to)

When a relational operator is applied to character data, the comparison
is governed by ASCil or EBCDIC order, depending on which character
set was specified when the database was created. Blanks at the ends of
character strings are ignored for comparison purposes.

The format for a where clause is the keyword where followed by the
conditions limiting the retrieval.

The following query requests tuples Crom the "author" relation in which
the value or the "authnum" attribute is 2.

1) retrieve (a.all)
2) where a.authnum = 2;

authnum flrst last
2 herman melville

The next query requests data Crom tuples in which the value of the
"last" attribute is 'adams'. The constant value 'adams' must be enclosed
in single or double quotation marks because it is being compared to an
attribute or the type character string.2

2The types of at.tributes are discussed in more detail in the chapter on dat.a definition.

10 Britton Lee

IDL Reference ManHI

Unique

Multiple Conditions

Britton Lee

Data Manipulation

1) retrieve (a.first, a.last)
2) where a.last = 'adams';

first last
alice adams
doug adams

The unique modifier is used to specify that only sero or one tuple
should be retrieved, even if more tuples meet the conditions or the
qualification.

1) retrieve unique (a.last)
2) where a.last = 'adams';

The unique modifier applies to the entire target-liat. The command

1) retrieve unique (a.first, a.last)
2) where a.last = 'adams';

first last
alice ad ams
doug adams

retrieves two tuples Crom the "author" relation, not one, becaW!e there is
no duplication in the relation or the combined values for "first" and
"last".

If the qualification governing the retrieve statement is based on more
than one condition, the relationship between the conditions can be
expressed Wling the and and or operators. The following query uses the
and operator to request all the tuples in which the value or the "last"
attribute is '&dams' and the value of the ''first" attribute is not "alice".
In order to be retrieved, a tuple mW!t satisry both or these conditions.

1) retrieve (a.all)
2) where a.last = 'adama' and a.first != 'alice';

The same query could be expressed using the not keyword instead or the
!= relational operator.

11

Data Manipulation IDL Referenee Manual

1) retrieve (a.all)
2) where a.lut =- 'adam•' and not a.Int =- 'alice';

The next query uses the or operator to retrieve the tuples in which the
value or the "last" attribute is '&dams' or the value or the "6rst" attri­
bute is not 'alice'. In this case, a tuple must satisfy only one or the con­
ditions, not both, in order to be retrieved.

1) retrieve (a.all)
2) where a.lut =- 'adama' or a.Int != 'alice';

authnum Int lut
1 al lee adama
2 herman melville
a brian kernlghan

' dennla rltchie
5 dh lawrence
e willlam shakeepeare
'I doug adama

The or operator is useful when one is not certain or the precise value or
a &eld on which a condition is based.

1) retrieve (a.all)
2) where a.Int-= 'herman' or a.ftnt = 'herbert';

authnum flnt lut
2 herman melville

A query can combine several conditions in a single qualifieation. When
and and or are used in the same query, the and operator takes pre­
cedence over the or operator. Parentheses can be used to override this
precedence as illustrated below.

1) retrieve (a.all)
2) where (a.Int - 'herman' or a.ftnt - 'herbert')
4) and (a.lut = 'melville' or a.lut =- 'de melvllle');

l authnum l flnt lut
[2 l herman melville

12 Britton Lee

IDL Reference Manual Data Manipulation

Patterns Patterns are used to indicate a string value in which all of the characters

Aggregates

Britton Lee

,·are not specified. The asterisk (*) is used in the character string to
represent a substring of zero or more characters. The question mark
character (?) is used to represent a single character.

The following query retrieves the "first" and "last" attributes for all
tuples in which the value or the first character in the "first" attribute is
"d,,.

1) retrieve (a.ftnt, a.last)
2) where a.first == 'd*';

first last
dennis ritchie
db lawrence
doug adams

The following query retrieves the tuple for a title in which two individual
letters are not specified.

1) range oft la title;
2) retrieve (t.all)
a) where title == 'm?by d?ck';

I docn~ I title I onhan: I pubnw;
. moby dick . .

There are a number of aggregate operators which can be used in queries
to aggregate values supplied as arguments. These values may be attri­
bute names or general arithmetic expressions. The following query
demonstrates the effects or the count, avg, max, min and llUJD aggre­
gates when applied to the "onhand" attribute or the "title" relation.

1) range oft is title;
1) retrieve
2) (count == count(t.onhand),
I) average== avg(t.onhand),
4) largest== max(t.onhand),
6) smallest== min(t.onhand),
8) total == 11WI1(t.onhand));

13

Data Manipulation IDL Reference Manual

Order By

14

Normally the tuples retched by a retrieve statement appear in an order
determined by the database server software. The user can specify the
order in which tuples should be displayed with the order by clause.
The default order is aacending {lowest to highest), but descending
{highest to lowest) can be specified with a d preceded by a colon (:).
Both numeric and string type expressions can be used to order retrieved
data. The Collowing query specifies that the tuples be displayed in
ascending order based OD the value o(the "last" attribute.

1) retrieve (a.ftnt, a.last)
2) order b7 a.Jut;

first last
allce adama
doug adam.a
brian kernighua
dh lawrence
he rm an melville
dennia ritchie
william shakespeare

The next query specifies that the retrieved tuples be displayed ·in des­
cending order based on the value of the "authnum" attribute.

1) retrieve (a.authnum, a.first, a.last)
2) order b7 a.authnum:d
3) where a.Jut !== 'a*';

authnum first Jut
8 william shakeepeare
0 dh lawrence
4 dennia ritchie
3 brlan kernlghua
2 herman melville

In the next query the order b7 clause is used in retrieving data Crom the
"title" relation to display the data ordered by the value or the "pub­
num" attribute, and within that ordering by the value or the "onhand"
attribute.

Britton Lee

IDL Reference Manual

Joins

Britton Lee

Data Manipulation

1) l'etrieve (t.pubnum, t.onhand, t.docnum)
2) order by t.pubnu.m, t.onhand;

pubnum onhand docnum
1 e &
1 '1 e
1 12 8
2 a ' 2 e 1
a 8 2

A join is a mechanism for relating data from multiple relations within a
single query. When relations are joined, the where clause specifies a
relationship, known as a "joining condition,', between the tuples from
which data is to be retrieved.

The following query retrieves data from the "title" and "onhand" attri­
butes in the "title" relation and from the "name" attribute in the "pub­
lisher" relation. T,he joining condition is

''where t.pubnum-= p.pubnum"

1) l'&nge or p la publiahel';
1) retrieve (t.title, p.name, t.onhand)
2) where t.onhand < '1
8) and t.pubnum == p.pubnum;

title name onhand
fantula or the UDCODKl0\18 penguin I
moby dick aignet e
auperior women aipet 8

The relation containing the joining condition need not be referenced in
the torget-liet. The next query retrieves data from the ''first" and "last''
attributes of the "author" relation and from the "title" attribute of the
"title" relation. The joining condition

''where l.authnum-= a.authnum and l.docnum-= t.docnum"

references a third relation, "autbttl", through its range variable "l".
The "authtttt' relation consists only of attributes corresponding to key
attributes in the "author" and "title" relations. This type of relation is
called an associative relation. Its function is to enable a join in which
the entities represented in two relations are related such that each tuple
in one relation may be related to any number of tuples in the other rela­
tion, and vice-versa. Its use is applicable here, where a single title may
be associated with multiple authors, and a single author may be

15

Data Manipulation IDL Reference Manual

By Clauae

APPEND

16

associated with several titles.

1) range of 1 is authttl;
1) retrieve (a.first, a.last, t.title)
2) where l.authnum = a.authnum
3) and l.docnum = t.docnum;

first last title
he rm an melville moby dick
brian kernighan the c programming language
dennla ritchie the c programming language
william shakespeare mac beth
alice adanut superior women
dh lawrence fantasia ot the unconscious
doug adam. 110 long and thanks tor all the fish

The by clause is used to retrieve multiple values Crom an aggregate, one
value Cor each group referenced in the by clause.

The following query uses the sum aggregate operator and the by clause
to retrieve the total number or books on band by publisher.

1) retrieve (total = sum(t.onhand by t.pubnum),
2) p.pubnum, p.name)
3) where p.pubnum = t.pubnum;

total pubnum name
25 1 penguin

g 2 signet
8 3 prentice-hall

This is to contrast with an aggregate which applies to the relation as a
whole as in

1) retrieve (total = sum(t.onhand);

The append command adds one or more tuples to a relation. This com­
mand can be used to append new data directly from the terminal or to
append data Crom another relation.

Britton Lee

IDL Re/erence Manual

Britton Lee

Data Manipulation

For entering literal data Crom the terminal, the essential parts or an
append command are specification or the relation to which the data is
to be appended, the attributes to be appended, and the values or the
attributes. The basic form or the append command is

append to relation name (attribute name" = t1alt1e-')

The following command appends a new tuple to the "author" relation.

1) append to author
2) (authnum = 8, flHt = 'charlea', last = 'dickens');

If the values for all of the attributes are not known, specify the attribute
names and values which are known. Unspecified attributes are assigned
zeros for numerics and blanks for character strings. These attributes can
later be modified with the replace command when the values are avail­
able.

The next command appends a new tuple to the "title" relation. The
value for the "docnum" attribute is an expression which evaluates to the
next consecutive number in the attribute. The "onhand" attribute is
omitted from the append command and is thus given a value of 0.

1) append to title
2) (docnum = max(a.docnum) + 1,
8) title = 'a tale of two cities',
4) pubnum = 1);

Data can also be appended from another relation. For example, assume
that there is a relation called "modernauthor" which has three attributes
named "fname" "lname" and "num". The following command appends
to the "modernauthor" relation the existing data from the "first" and
''last" attributes in the "author" relation. The value for the "authnum"
attribute in the "modernauthor" relation is not specified, so it is assigned
1eros in all the tuples.

17

Data Manipulation

18

IDL Reference Manual

1) range of a ia author;
1) append to modernauthor
2) (tname = a.flnt, lname ==a.last)
8) where a.authnum == 1
4) or a.authnum == 3
5) or a.authnum == 4
8) or a.authnum == '1;

1) range of m is modernauthor;
1) retrieve (m.all);

num fname lname
0 a lice adama
0 brian kernighan
0 dennia rltchle
0 doug adama

Britton Lee

IDL Reference Manual Data Manipulation

REPLACE The replace command changes the values of one or more attributes in
the specified tuples in the specified relation. The conditions qualifying
which tuples are to be replaced are specified in a where clause. If there
is DO where clause, all of the tuples in the relation are modified.

Britton Lee

The basic form of the replace command is

replace range variable (attribute namea == t1t1l.e1}
where apccifietl contlitiona

The following command changes the value of the "first" attribute of the
"author" relation from 'doug' to 'douglas'.

1) range or a ia author;
1) replace a (fint = 'douglu')
2) where a.fint = 'doug' and a.last = 'adams';

More than one attribute value can be replaced by a single replace com­
mand. The following command replaces two attributes in the ''title"
relation.

1) range or t ia title;
1) replace t (title == 'hamlet', on.hand == 8)
2) where t.docnum == 8;

The next command has no where clause. It increases by 5 the value of
the "onhand" attribute in all or the tuples or the "title" relation.

1) range or t is title;
1) replace t (onhand = t.onhand + 6);

It is possible to replace the values in a relation by !etching them Crom
another relation. The following command replaces the values of the
"authnum" attribute in the "modernauthor" relation with the values
that are used for equivalent tuples in the "author" relation.

Data Manipulation IDL Reference Manual

·DELETE

20

1) range of m ia modernauthor;
1) range of a 18 author;
2) replace m (num = a.authnum)
3) where a.flrst = m.fname and a.last= m.lname;

1) retrieve (m.all);

num fname lname
1 alice adama
3 brian kernighan
4 dennla ritchie

The delete command deletes entire tuples Crom the specified relation. It
should be used with extreme caution, because without a where clause,
the delete command deletes all or the tuples in a relation.

The basic form of the delete command is

delete range variable
where apecified condition•

The following command deletes all of the tuples in the "title" relation in
which the "onhand" attribute has a value less than 1.

1) range of t ia title;
1) delete t
2) where t.onhand < 1;

The next command deletes all of the tuples in the "title" relation. After
the command is executed, the relation would still exist, but it would have
no data in it.

1) delete t;

Britton Lee

IDL Reference Manual

Data Definition

CREATE

Britton Lee

Data Manipulation

Data definition re(ers to the ability to create, alter, or delete database
objects such as relations, views, or stored commands.

The examples in this section assume that the user has been granted the
necessary permissions to create database objects and indices in the
"books" database.

This section and the next contain references to certain system relations,
specifically to "descriptions", "relation", and "users". These are rela­
tions which are automatically created for every database by the system
in order to manage the database.

The cHate command creates a new relation in the open database. The
command specifies the name of the relation and the names and trpes of
its attributes, using the mnemonics indicated below.

The following mnemonic is used for character data.

c character strings, specify length

The following mnemonics are used for numeric data.

i4
12
ll
18
f 4
bed
bcdftt

four-byte integers
two-byte integers
one-byte integers
eight--byte Boating-point numbers
four-byte Boating-point numbers
binary-coded decimal integers, specify length
binary-coded decimal Boating point numbers, specify length

The following mnenomic is used £or binary data.

bin binary strings, specify length

The c, bed, bcdftt, and bin mnemonics must be followed by an integer
specifying the number or characters or bytes to allocate for the attribute,
as in clO for a character attribute with a maximum length or ten char­
acters or bcd8 for a bed attribute with a maximum length or 6 bytes.

The bin, bed, and bcdftt mnemonics may be prefixed with the character
u (for uncompressed) if leading and trailing zeros are to be retained.
The c mnemonic may be prefixed with the character u iI trailing blanks
are to be retained. If a u is not specified for these types, trailing blanks
and trailing and leading zeros are stripped.

The following command creates a new relation named "price", with four
attributes named "docnum", ''year", "amount", and "distrib". The
"docnum" attribute is a two-byte integer field; the ''year" attribute is a

Data Definition

CREATE INDEX

Clustered Index

Nonclustered Index

22

IDL Reference Manual

one-byte integer field; the "amount" attribute is a binary-coded decimal
floating point field with a maximum length or six digits; the "distrib"
attribute is a character field with a maximum length or twenty charac­
ters.

1) create price
2) (docnum == 12,
3) year== 11,
4) amount == bcdflt8,
5) distrib = c20);

A retrieve command on "price" shows the empty relation.

1) range of p ia price;
1) retrieve (p.all);

I docnum I year I amount distrib

An index is a directory which relates the physical location or each tuple
in a relation to the value or a specified attribute or group or attributes in
the relation. The purpose or an index is to provide a direct a.C~ path
to data when a query reCerences the attribute(s) specified in the create
index command. The creation or indices can greatly decrease access
time iC a relation is oCten searched on the basis or a pa.rticula.r attribute
or set or attributes, because indices eliminate the need to scan all the
data during a search.

There a.re two kinds or indices, clustered and nonclustered. If neither
kind is specified in the create index command, a nonclustered index is
created by deCault.

A clustered index oCten provides Caster access than a nonclustered
index but requires that the data be sorted on the value or the indexed
attribute(s). There can be only one clustered index Cor a single rela­
tion. That single index may, however, be on multiple attributes.

The following command creates an index on the "docnum" attribute of
the "title" relation.

1) create clustered index
2) on title (docnum);

A nonclustered index usually provides slower access than a clustered
index, though Caster access than a sequential scan or all the data. It
does not require that the data in the relation be sorted. Up to 250 non­
clustered indices can be created on a single relation.

Britton Lee

IDL Reference Manual

Unique Index

CREATE VIEW

Britton Lee

Data Definition

The following command creates a nonclustered index on the combined
"last" and "first" attributes of the "author" relation.

1) create nonclustered index
2) on author (last, first);

Both clustered and nonclustered indices can be specified as unique.
This prevents duplicate attribute values from being introduced into the
relation.

' The following command creates a unique nonclustered index on the
"authnum" attribute in the "author" relation.

1) create unique nonclustered index
2) on author (authnum);

After aeation oC this index, if a user tries to add a tuple in which the
value or the "authnum" attribute is the same as the value or the "auth­
num" attribute for a tuple which already exists in the relation, an error
message will be generated and the entire replace or append command
aborted.

A view is a virtual relation composed or parts oC one or more base rela­
tions or other views. The view itself does not actually contain data, but
it reflects the data contained in its underlying base relations. Views are
manipulated and protected like relations, except that they cannot be
modified unless the modification can unambiguously be applied to a base
relation. Views are useful for defining subsets or relations, based on a
selection oC attributes, tuples or both. They are also useful for restric~
ing access to certain parts oC a relation.

The create view command specifies the name oC the view and a target­
Uat consisting or attributes prefaced with the appropriate range variables
indicating the sources or the data to be accessed by the view.

The following command creates a view named "instock" consisting oC
data Crom the "title'', "author" and "price" relations.

1) range of t la title
2) range of a la author
8) range of p la price
4) range of l is authttl;
1) create view in.stock
2) (t.docnum, t.title, a.last, p.amount)
8) where l.docnum = t.docnum
4) and l.authnum = a.authnum
6) and t.docnum = p.docnum
8) and t.onhand > O;

The view can now be queried as though it were a relation. It is possible
to permit a user to query the "instock" view without permitting that

23

Data Definition

DEFINE and EXE­
CUTE

IDL Reference Manual

user to query all the attributes in the base relations.•

1) range of l 18 m.t.ock;
1) retrieve (I.all)
2) where I.author == 'lawrence'
a) and I.title == 'fantula*'J

docnum title lut amount
5 fantuia of the uncoD8Ciou lawrence 4.95

The define command creates an object called a stored command. A
stored command is a sequence or data manipulation commands, such as
retrieve, append, replace, or delet.e, which can be reCerenced collec­
tively by the stored command's name. Because the stored command
exists in a paned and partially processed Corm on the database server, it
is usually Caster to execute a stored command than to execute its consti­
tutent commands individually.

When a stored command is created, formal parameters are indicated by
the parameter name pref aced by a dollar sign (S). When the stored com­
mand is executed, real values are substituted Cor the Cormal parameters.

The following command creates a stored command named "addauthor"
which consists or an append command and a retrieve command. The
formal parameters for the first and last names are indicated by "SC" and
"$1".

1) r This adds an author'• name to the "author" relation •• I
2) define addauthor
3) range of a i. author
4) append to author /* add the name • /
5) (authnum == max(a.authnum) + 1, flnt == St, last== $1)
1) retrieve (a.all) /* confirm it is there • /
T) where a.authnum == max{a.authnum)
8) end define;

A stored command is executed using the execute command.

1) execute addauthor
2) with f == 'pat', I == 'barker';

8I>ermittiag acc:aa ia diac:uaaed in the c:hapter on data authorization.

24 Britton Lee

IDL Reference Manual Data Definition

DESTROY The c:le9troy command removes an object, such as a relation, view, or
stored command, from the database. If a view or stored command is
dependent upon the object being destroyed, that view or stored com­
mand must be destroyed first.

- DESTROY INDEX

The following command removes the "modernauthor" relation.

1) destroy modernauthor;

The next command removes the "instock" view.

1) destroy instock;

The dutroy index command removes an index from a relation. The
command identifies the index to be destroyed by its name and its charac­
teristics: whether it is clustered or nonclustered, and whether it is
unique.

The following command destroys the unique nonclustered index on
the "authnum" attribute in the "author" relation.

1) destroy unique nonclustered index
I) on author(authnum);

AUTO-ASSOCIATE When an object is created with the create, create view, or defln.e com­
mands, its name is automatically recorded in the system relation "rela­
tion" along with a unique identification number stored in the "relid"
attribute of this relation.

Britton Lee

The UBC>clate command is also automatically executed when an object is
created. This command records information about a relation or attribute
in the system relation "descriptions". The object being described is
identified by its unique "relid" which is uaociated with the object's name
as it was recorded in the "relation'' system relation. The text of the
command which created the object, including comments, is appended to
the "text" attribute of the "descriptions" eystem relation.

When an object is removed from the database with the dutroy com­
mand, references to it in the "relation" and "descriptions" relations are
also removed.

This automatic association feature makes it possible to retrieve informa­
tion about a.n object, such as the types of the attributes of a relation or
the constituent commands of a stored command, knowing only the name
of the object.

The following query requests a description of the "price" relation.

16

Data Definition

28

IDL Re/erenee Manual

1) range of d la deecriptiom;
1) retrieve (d.t.ext)
2) where d.relld == reLid("price");

create price
(docnum == 12,
year == il,
amount == bcdflt8,
distrib == c20)

The next query requests a description or "addauthor".

1) range of d la deecrlptiom;
1) retrieve (d.text)
2) where d.relld == reLld("addauthor");

text
/• Thia add. an author'• name to the "author" relation. • /
debe addauthor

range of a la author _. .
append to author r add the n&me • /
(authnum == max(authnum) + 1, Sf, SI)
retrteve (a.all) r confirm lt la there • /
where a.authnum == max(a.authnum)

end define

Britton Lee

Data Authorization

When a database object is created, it.a creator, who is also it.a owner,
automatically has permission to read, write to, and in the cue of a
stored command, execute, the object while all other uaen are automati­
cally denied these privileges. In order to make the object acceuible to
other users, the owner of the object must specifically permit access using
the permit command. Similarly, the owner of an object may deny cer­
tain users or all users specific types of access using the den)' command.

PROTECT MODES The types of access which can be permitted and denied a.re referred to as
protect_modes. The protect_modes which apply to the objects described
in this section are listed below. There is a complete list of
protect_modes under ''Protect_Mode" in the "General Concepts" sec­
tion.

PERMIT

Britton Lee

Protect_Mode

read
write
execute
create
create index

IDL Command
retrieve, create view
append, delete, replace
execute
create, define
create index

If, for example, a user is permitted read access or a relation, but not
write access, that user may issue retrieve commands on that relation,
but not append, replace, or delete commands.

The permit command gives access to an object to a user or group of
users. The user, or group of users, is identified by the name by which he
or she is known to the database server. These names are round in the
"users" system relation in the open database.

The permit command specifies the protect_mode being permitted, the
object name to which the privilege applies, and the uaer(s) to whom the
privilege is being given.

The following command gives write privileges on the "price" relation to
"susie". This permits her to modify this relation.

1) permit write
2) of price
8) to 11USie;

Access can be limited for certain attributes or an object. The following
command permits the "salesfolk" to read the "book" and "price" attri­
butes or the "instock" view. They are not permitted to read other attri­
butes in this view. The group "salesfolk" has been defined in the system
relation "users".

27

Data Authorization IDL Reference Manual

DENY

28

1) permit read
2) of instock (book, price)
3) to salesfolk;

The following command permits all users to read all attributes in the
"title" relation.

1) permit read
2) of title;

The deny command prevents access to objects. Its syntax is the same as
that for the permit command.

The following command denies read privileges on the "title" relation to
all users.

1) den7 read
2) of title;

The next command ensures that susie and jason are the only U$~rs who
can execute the "addauthor" stored command.

1) deny execute
2) ot addauthor;
1) permit execute
2) of addauthor
3) to eusie, juon;

Britton Lee

PARTD

IDL C01\1MANDS

Introduction to
IDL Commands

SEE ALSO

Britton Lee

This part is a reference for accessing Britton Lee's database servers using
IDL commands. It describes all of the IDL commands which can be exe­
cuted interactively by a user running the icll program on a host system.

All of the examples in this manual are given for interactive IDL. To
adapt the examples for embedded query languages such as RIC or for
writing programs which incorporate IDL statements using IDMLIB, con­
sult the appropriate User's Guide.

The idl program reads any system and user profile files which may exist
be(or~ ttading user IDL input. These profile files may contain any IDL
commands or fron1rend commands. They often are used to execute
front-end commands which configure IDL according to a particular set of
needs. See the host-specific reference material for IDL for information OD

creating user profile files in a pa:rticular host environment.

Comments enclosed by the characters /* and • / may be included any­
where in IDL input.

idl(ll) in Boat Software Specification (UNIX systems)
IDL in Command Svmmarr (other systems)

31

abort transaction

abort transaction

DESCRIPTION

EXAMPLE

MESSAGES

SEE ALSO

32

IDL Reference Manual

Abort tranaction abort.a the current tranaac:tion (atomic sequence of
IDL commands). All logical effect.a of the tranaac:tion are undone.

The abort tramaction in this example causes the delet.e command to
be backed out and the three tuples restored.

1) range of e ia empf
1) begin tramactionf
1) delete e where e.lutname =="Croft";

8 tupla deleted

1) abort tramaction;

illegal command (IDME45)
The user has not sent previously a begin transaction com­
mand.

begin tranaaction, end transaction

Britton Lee

IDL Reference Manual append

append [to) reLname (target-list) [where qualification)

DESCRIPTION

PERMISSIONS

EXAMPLES

Britton Lee

The append command adds new tuples to the relation or view refer­
enced by rel_ name. Each target in the target-lid contains an attribute
name and the value to be assigned to that attribute in the new tuple.

Although each new tuple is appended in its entirety, it is not necessary
to specify values for all of the attributes. Ir all of the attributes in the
relation are not specified in the torget-liat, default values are assigned for
the unspecified attributes. The default values are blanks for character
attributes and zeros for numeric attributes. To assign values other than
the default values to these attributes for tuples which have already been
appended, use the replace command.

The database server normally checks for overflow and division by zero in
a target-liat or qualification. A user may specify that checking should be
turned off, or duplicate tuples should be ignored, by using the 11et com­
mand.

To copy a large amount of data from a host data file to a relation, use
the host utility ldmf'copy.

The user must have write permission on all the attributes of a relation
in order to append to it.

Appending data directly from the terminal:

This command adds one tuple to the "parts" relation.

1) append to part. (name == "handle", quan = 10);

Appending data from another relation:

This command adds one tuple to the "newparts" relation for every tuple
in the "parts" relation, taking the value or the "name" attribute from
each tuple in the "parts" relation and assigning the value "10" to the
"quan" attribute or each tuple added to the "newparts" relation.

1) range or p la pa.rte;
1) append to newparte (name = p.part, quan = 10);

Appending with qualification and type conversion:

The following command appends one tuple to the "newparts" relation for
each tuple in the "parts" relation in which the value or the "number"
attribute is greater than 10. The value of "num" in the ''newparts"

83

append

MESSAGES

SEE ALSO

34

IDL Reference Manual

relation gets the value of "number" from the "parts" relation, but since .
"num" is a character attribute, and "number" is an integer attribute,
the value ot "number" is converted from integer to character using the
string function.

1) range of p is part.a
2) append to newparta (num =string(&, p.number))
3) where p.number > 10;

out ot space (IDM.E42)
No more tuples can be added because the database is out of free
space. The database should be extended, the transaction log
dumped, or relations within the database destroyed.

quota exceeded (IDM.E4)
When the relation was created a quota was given. The addition
of this tuple would cause the relation to exceed the quota.

not found (IDM.E6)
The named relation or attribute was not found.

wrong type specified for attribute (IDM.El2)
It a conversion from character to integer or numeric (~r vice­
versa) is necessary, it must be explicitly stated in the append
command.

tuple too large (IDM.E61)
A tuple is larger than the maximum size (2000 bytes). The tuple
is not appended.

view not updatable (IDM.E60)
User attempted to append to a view which is not updatable.

audit, delete, replace, retrieve, set
"Functions", "ReLName", "Qualifications", "Target-Lists"
idmfcopy(ll) in Hoat Software Specification
IDMFCOPY in Command Summary

Britton Lee

IDL Reference Manual associate

associate {object_name I range_var.att_name}
[(with J stringl [, string2 Jl

DESCRIPTION

Britton Lee

The uaociate command adds or replaces information in the system rela­
tion "descriptions". This relation is used to associate one or more tex­
tual descriptions with an object. The object_ name can ref er to a rela­
tion, view, file, or stored command. The range_tior.att_name refers to
an attribute through a range variable. An entry in the "descriptions"
relation might look like this:

attid relid key text
0 29033 11 Relation lillting all parts
3 29033 Attribute for quantity on hand

If only an object _name is specified, the entry in "descriptions" pertains
to the entire object. This is illustrated in the first tuple of the example
entry above. In this case, the "relid" in the "descriptions" relation gets
the value or the "relid" for that object as it is recorded in the system
relation "relation". The "attid" attribute in the "descriptions" relation
gets a value or zero.

If an attribute is specified by a range_ tiar. att_ name, the description
refers only to that attribute. This is illustrated in the second tuple of
the example entry above. In this case, the "attid" in the "descriptions"
relation gets the value of the "attid" for that attribute as it is recorded
in the system relation "attribute".

The 1tringl, it specified, is appended to the "text/' attribute of the
"descriptions" relation. The 1tringt, it specified, is appended to the
"key" attribute or the "descriptions" relation. If entries already exist for
"text" or "key", they are replaced by the new values. Both 1tringl and
1tringt must be entered 88 quoted character strings.

The function of the optional "key" attribute is user-defined. It is fre­
quently used 88 a sequential line number for descriptions in the "text"
attribute. For example, the following sequence of aaoclate commands
appends a four-tuple description or the "myrel" relation.

1) uaociate myrel with "Thie ia my very own" ,"Ml";
1) uaociate myrel with "relation which hu" ,"M2";
1) ueociate myrel with "only two attribute."," MS" ;
1) uaociate myrel with "called num and D&me" ,"M4";

The description of the "myrel" relation can then by retrieved ordered by
the "key" attribute:

86

associate

1) range of d ia deecriptlom;
2) range of I" ia relatioDJ
8) retrieve(d.t.ext)
4) order by d.k.ey
&) where r.name == "myrel"
a) and r.relld == d.relidf

IDL Referenee Man•al

It neither 1trin11 nor 1trin1I is supplied, all of the tuples in the "descrip­
tions" relation which apply to the specified object or attribute are
deleted and nothing is added.

U the uaoclat.e command references a relation that, on all three keys, is
already in the data dictionary, the description is replaced; otherwise it is
appended.

It a string is longer than one line and wrap-around is not desired, pre­
cede each carriage return with a backslash.

The keyword with is optional.

AUTO..ASSOCIA TE The uaoclat.e command is automatically executed whenever a creat.e,
creat.e view, or define command is executed. The full text oE· the com­
mand, including any comments encbsed within the characters /• and • /
which precede or are contained within the command, is appended to the
"text" attribute or the "descriptions" relation. This feature provides
automatic documentation of relations, views, and stored commands.

38

It several objects are created in one command string (before a so or
semicolon is entered), all of the command texts are aasociated with the
first object created by the command string. For example, the command
string

1) creat.e x •••••••
2) creat.e y •••••••
8) creat.e • •••••••J

automatically aasociates the entire text with the "text" attribute in the
"descriptions" relation for the "relid" identifying relation "x". The com­
mands

1) creat.e x ••••••• ;
1) creat.e y ••••••• ;
1) creat.e • ;

on the other hand, associate each creat.e command with the "relid" of
the object it created.

Britton Lee

IDL Reference Manual

PERMISSIONS

EXAMPLES

MESSAGES

SEE ALSO

Britton Lee

associate

Ir the text of a command creating a relation, view or stored command
exceeds 4000 bytes in length, it will overflow the space allocated for it in
the "text" attribute of the "descriptions" relation. To prevent this from
occurring when entering long commands, the user can turn off the auto­
associate feature by invoking ldl with the -a or /noamoclate flag, or
turn auto-associate off and then on again using %U90Clate.

The user must be the owner of the object referenced in the command.

To associate a description with the "parts" relation:

1) ueociate part. "Relation Ii.ting all parts";

or

1) uaociate part. with "Relation Ii.ting all parts";

To add the information that the attribute "number" has an index:

1) range of p ia parts;
1) uaociate p.number
2) "Has a clustered index on number", "11";

"11" is a user-assigned key.

illegal command (IDM.E45)
Cannot be used in a transaction.

permission denied (IDM.E43)
Must be owner of object.

not found (IDM.E6)
The object or attribute does not exist.

range, retrieve
"Object_Name"
%uaociate

37

audit IDL Re/erenee ManHl

audit [(into) reLname) (target.list) [where qualification}

DESCRIPTION

38

The audlt command creates a human-readable audit report Crom the
transaction log or Crom a copy or it (i.e., the output or a dump tran­
eaction). It produces a Cormatted listing or the log in the order in which
modifications to the database took place.

A simple audlt command returns its output to the host, while an audit
Into command stores its output in a new relation specified by reL name.
For audlt Into, the name selected for reL name must be unique.

The qualification and target-liat are limited to the attributes listed below.

Attri6ute
time
date
user
xtid
re lid
number
type
value

Meaning
time or the update, in 60ths or a second since midnight
date or the update, in days Crom a date set by idmdate
user who made the modification
the "tid" or the tuple concerned
the id or the relation involved
internal transaction number
type or update
data that was changed

See the entry for "Target-Lists" for a description or how target-lid
values are bound to program variables.

The ''value" attribute is reserved for transaction logs. It may appear in
the target-liat but not in the qualification. It is used in the audit com­
mand to access all or the attributes or the relation whose modification is
recorded in the transaction log. When the target-lid is based on the
''value" attribute, only one relation may be audited.

Britton Lee

IDL Reference Manual

PERMISSIONS

EXAMPLES

Britton Lee

audit

The interpretation. or the "type" attribute is as follows:

Type Meaning

()() null
I2 atop update
I4 split
I6 begin query
17 replace begin
IS replace old
IQ replace duplicate
IA append duplicate
IC end query
ID abort query
IE checkpoint
IF aaCepoint
84 root
C3 append
C4 delete
C7 destroy
cs create index
CD permit
CE deny
DI tuple
D2 abort tranaaction
D4 begin tranaaction
D5 end transaction
El define
EB dump transaction
EE define program

For audit into, the user must have create permission in the open data­
base.

This query displays a report of all activity in the ''parts" relation during
the last two days. The audit report is generated from the transaction
log "transact".

1) range of t ia transact;
1) audit (t.type, t.date)
2) where t.relid == reLid("parta")
8) and t.date > getdate - 2;

The following command stores in the relation "inv _audit" a record of
the type, date, and value of all the changes that were made to the rela­
tion "inventory". The audit report is generated from "log5".

audit

MESSAGES

SEE ALSO

40

IDL Reference Manual

1) range of I 18 log&;
1) audit into inv _audit (I.type, I.date, I.value)
2) where l.relid == reLld("inventoey");

incorrect number or logs
Only one transaction log should be specified tor this operation.
One and only one variable can correspond to a log in the com­
mand.

incorrect use or value

bad log

The ''value" attribute can only appear in the target-liat and no
!unctions can be applied on it.

An attempt was made to access a transaction log with a log
Crom a different database.

permission denied
User must have read permission on all attributes.

illegal command
User must have create permission to use audit into COIJ.lm&nd.
The audit and audit into commands are illegal in a transac­
tion.

append, delete, replace, retrieve
"Qualifications", "Target-Lists"
idmdump(ll) in Boat Software Specification
IDMDUMP in Command Summary

Britton Lee

IDL Reference Manual

begin transaction

DESCRIPTION

Britton Lee

begin transaction

The begin transaction command introduces a sequence or IDL com­
mands which are to be treated as a single command.

When begin transaction is used, the commands following begin tran­
•ction do not take effect until an end tr&IUl&ction command has been
given.

Transactions are used to ensure consistency in a database. For example,
in a bank money can be moved from one account to another by sub­
tracting an amount from the balance of one account and adding it to
another. Ir, after the update was subtracted and before the update was
added, someone looked at the balances, it would appear as though money
were either spontaneously generated or spontaneously lost. Ir the system
went down between the two updates, the error could be made per­
manent.

This problem can. be solved with a transaction. Although a transaction
is composed or a sequence or commands, it is treated as an atomic opera­
tion; it is performed completely or not performed at all.

A transaction is also appropriate if the user wants to observe the effects
or the constituent commands before they are committed. Ir the com­
mands are put into a transaction and the user sees that the changes are
undesirable, the changes can be backed out with an abort tr&D8&Ction
command.

In interactive IDL, the begin tranaction command must be immedi- ·
ately followed by the control keyword go or a semicolon. The only com­
mands permitted within a transaction are: abort tranaction, append,
begin tranaction, delete, end tranaction, rans•. replace,
retrieve, and qnc.

Nested transactions are permitted, but all levels are considered to be part
or the parent transaction. An abort tranaaction in a nested sequence
will back out all changes back to the top level, as demonstrated below:

1) begin tr&D8&Ction;
1> append ••• ;
1 > end tranaactlon;
1) begin tramaction;
1> delete ••• ;
1 > begin transaction;
1 > replace ••• ;
1 > end tramaction;
1 > abort transaction;

/* start clean * /
/*level 1 * /
/* committed * /
/* start again •I
/*level 1 */
/*nested*/
/*level 2 */
/* not committed yet • /
/*back out everything since •start again" * /

41

begin transaction IDL Reference Manual

EXAMPLES Completed transaction:

42

1) range or c i. customers;
1) begin tramactiODJ
1 > replace c (c.balance - c.balance - 100)
2> where c.name - "debtor";

1 tuple affected

1 > replace c (c.balance - c.balance + 100)
2> where c.name - "credltor"J

1 tuple affected

1> end tramactlonJ
1)

For extra security, this sequence may be placed into a stored command
and p~rmission to write to the original balances may be denied, while
permission to execute the stored command may be granted.

Aborted transaction:

1) range or e i. employeea;
1) begin tranaactlon;
1> delete e where e.lutname - "Croft";

S tuples deleted

1 > abort transaction;
W ARNING1 line 1: Transaction aborted
1)

In this example, the user wanted to· delete a tuple in the "employees"
relation where the employee's last name was "Croft". The effects of the
delete command were displayed as "3 tuples deleted". The user was not
aware that there was more than one employee with the last name of
"Croft". To remove the change, the user issued the abort tramaction
command, which returned the data to its original state.

1) begin transaction;
1> delete e where e.lutname =-"Croft" and
2 > e.ftntname =- "Traci" 1

1 tuple deleted

1 > end transaction;
1)

Here, the user added another qualifier and observed that the effect of the
delete command was "1 tuple deleted". As this was the desired effect,
an end transaction command was given to commit the change in the
database.

Britton Lee

IDL Reference Manual begin transaction

MESSAGES must perform open first (IDM.E46}
The user must be in a database to sta.rt a begin tl'anaaction.

SEE ALSO abort tl'anaaction, define, end tl'anaaction

Britton Lee 43

create IDL Reference Manual

create reLna.me (att_name=type(, att_name=type ••.]) (with option_list]

create reLna.me ([partition_name] (att_name=type(, att_name=type ...])
(with option_list] [,(partition_name] (att_name=type

DESCRIPTION

OPTIONS

44

[, att_name=type ...]) [with option_list]] ...) [with option_list ...]

The creat.e command sets up an empty relation in the database which is
currently open.

The second Corm shown in the synopsis is given to provide compatibility
with future Britton Lee products.

The attributes comprising the new relation are specified in a list or one
or more att_ name - t11pe pairs.

A trpe is composed by concatenating a predefined mnemonic representing
the type or the data in the attribute with the maximum length or the
attribute, u in "c20" tor & character attribute or 20 characters or "i4"
lor an integer attribute or 4 bytes. The length is specified u number or
characters for character attributes and u number or bytes ror numeric
attributes. For a list of the predefined mnemonics and a detailed
description of the various trpes to which they refer, consult the section
"Types".

Once a relation has been created, its basic structure cannot be altered.
II it becomes desirable to change the structure or an existing relation, u
in adding or removing attributes or changing the type or an attribute, a
new relation must be created, and the data Crom the original relation
appended to it. The logging status or a relation can be changed with
the extend command.

The relation is initially created with no indices. II the relation is heavily
used, a clustered index should be created for it either as soon u it has
grown to several blocks or data or when the initial loading or data has
been completed.

When create is executed, the ueociate command is automatically exe­
cuted also, with the full text of the create command entered by the user
inserted as the "text" portion or the description entered by the -..oci­
ate command into the "descriptions,, relation. This feature provides
automated documentation or relations.

quota= n
The quota option specifies the maximum size, in 2048-byte data
blocks, that the relation may attain. II no quota is specified,
the relation will be allowed to grow until the database is run.

Iogging[={O 11}]
II set to 1, this option specifies that the transaction log "tran­
sact" is to be updated whenever the relation is modified. II set

Britton Lee

IDL Reference Manual

PERMISSIONS

EXAMPLE

MESSAGES

SEE ALSO

Britton Lee

create

to 0 the transaction log is not maintained, but changes to the
· ·- relation· are recorded in the temporarr· system relation "batch".

If the logging option is used but neither 0 nor 1 is specified, the
default is 1.

The user must have cNate permission in the database in which the rela­
tion is being created.

This command creates the "parts" relation with attributes ''name" (a
20-character field), "cost" (an 8-digit bed field), and "quan" (a tw~byte
integer field). It will be allowed to grow to a maximum size of 50 data
blocks. All changes to the relation will be recorded in the system rela­
tion "transact".

1) create part.a (name == c20, cOllt == bcd8,
2) quan = 12) with logging, quota= 60;

out or space on disk (IDM.E42)
The allocation could not be ma.de because the disk was full.

tuple too wide (IDM.E61)
A command tried to add a tuple which was wider than the max­
imum allowable tuple width or 2000 bytes.

illegal command (IDM.E45)
It is illegal to create relations inside a transaction or stored com­
mand. It is illegal to create relations without create permission.

a880ciate, create databaae, create index, create view, destroy,
extend
"Att_Name", "ReLName", "Types"

45

create database IDL Reference Manul

create database dbname [with options}

DESCRIPTION

PERMISSIONS

OPTIONS

46

The create database command creates a database which contains only
the system relations.

When a database is created, the system relation "host_ users" is initial­
ized with one tuple allowing access to the creator of the database. The
creator is therefore the owner and DBA of the database.

The create datab ... command must be executed from the "system"
database, and the user must have permission in the "system" database to
create a database.

demand - nblocb [onJ "diskname"
The demand option specifies the number of 2K blocks to allo­

. cate for the database. The nblocka must be an integer.

A zone is a group of cylinders, with the number of cylinders per
zone set when the disk is formatted. Zone sizes range from 128
to 254 blocks. The "bpz" attribute in the "clisb" in th~ "sys­
tem" database indicates the zone size for all disb attaehed to
the database server.

Since database allocations are only made in whole numbers of
zones, the program will round n61ock• up to the first whole
number or zones, allocate that number, and display the number
or blocks actually allocated at the user's terminal. .

The database will not be allowed to grow beyond the size allo­
cated. Ir the size which the database wu ·originally allocated is
insufficient, the user may incJ;"ease its size with the extend data­
b ... command.

Ir a "diskname" is specified, the allocation is made on the
specified disk; otherwise the allocation is made on any disk that
has sufficient space.

Ir no demand is specified, the default allocation is one zone size.

The demand option can be repeated many times to specify how
much of the database is to be placed on a given disk. The
phrase

with demand=lOOO OD "diskl", demand=260 OD "disk2"

requests that the database be allocated 1000 blocb on "diskl"
and 250 blocks on "disk2".

Britton Lee

IDL Reference Manual

EXAMPLES

Britton Lee

create database

- logblocb =; .. nblocks [on "diskname"l
This option specifies the number of blocks to allocate for the
transaction log. If no value is specified, the default ia one zone.
The number or blocks actually allocated is rounded up to the
first whole number or zones.

The number of blocks specified with this option ia in addition to
the demand for the rest of the database. A disk may be
specified.

disk = "diskname"

ucii

ebcdic

The diak option specifies the disk for the database or the tran-
1&etion log, depending on whether the disk allocation option is
immediately preceded by the demand or logblocb option.
The default is any disk which has sufficient space. The
specification

with demand == 8000, dlak -= "abc",
logblocb == 1000, diak -= "efg"

requests 3000 blocks on disk "abc" for the database and 1000
blocks on disk "efg" for the transaction log.

Portions or a database may be allocated to different disks by list­
ing several pairs or demand==n6/ock1, diak=name options
specifying how much of the database is to be located OD a given
disk.

The order of the options is significant. The order

with demand=-1000, cllak==" abc"

requests 1000 blocks on disk "abc" for the database whereas

with disk=" abc", demand=lOOO

requests one zone (the default demand) ·on disk "abc" and 1000
blocks on any available disk (the default disk).

This option specifies that the ASCII character set is to be used
to store character data in the database. This is the default.

This option specifies that the EBCDIC character set is to be used
to store character data in the database.

This command creates the database "documents" with a me limit of
7500 blocks. It will reside on "diskl ". If there are fewer than 7500
blocks of free space on "diskl ", the database will be creat.ed with as
much space as is available on "diskl ".

4'7

create database

MESSAGES

SEE ALSO

48

IDL Reference Manual

1) open qeteDaJ
- - ·- 1) create databue document.

2) with demand - T&OO on "diakl";

T&OO blocb allocated

This command creates a database with 1000 blocks, rounded up to the
nearest disk zone size, on any available disk(s). Character data in "db"
will be stored in the EBCDIC character set.

1) open system;
1) create databue db with demand == 1000, ebcdic;

1000 blocb allocated

The following command creates a database on the two disks "diska" and
"diskb''. U neither disk had any free space, the database would not be
created.

1) open 117.tem;
1) create databue test
2) with demand = 2&00 on "diaka",
8) demand= 2600 OD "diakb";

&000 blocks allocated

illegal command (IDM.E45)
The user must have permission to create a database, and must
have the "system" database open. This command cannot be
used in a stored command or in a transaction.

already exists (IDM.E2)
Database names must be unique.

den7, dutro7 databue, extend databue, permit
"Dbname", "Options"

Britton Lee

IDL Re/erenee Manual create index

create [unique) [nonclustered I clustered) index
(on) reLname (att_name[, att_name ...)) (with options)

DESCRIPTION Indices are used to provide fast access to data. If tuples in a relation are
often searched on the basis of a particular attribute, it ii appropriate to
create an index on that attribute to reduce access time. The index
specifies a particular attribute or set of attributes called keys on which a
relation will be searched. For example, if a relation represents a tele­
phone book, one could create an index on the attributes "lastname,
firstname". This would speed up the search when data in the telephone
book is accessed with a 9.a/ifieation based on the "lastname, fi.rstname"
attributes.

Britton Lee

Indices can be defined as clwatered or nonclwatered, and unique or
non-unique. If none or these are specified, the index is created as non­
clustered and non-unique by default.

A clustered index provides faster access than nonclustered, but
requires that the data in the relation be stored in an order governed by
the key to the index. On creation or a clwatered index, the data in the
relation is sorted according to the values or the attribute(•) specified for
the index, and a modified B*-tree index is built. Only one clustered
index is permitted for a single relation. When the index is created, all
existing indices on that relation are destroyed unless the NCN&te option
is specified. In addition, when the clustered badex is created, duplicate
tuples (identical in all attributes) are deleted. The maximum size for the
keys or a clustered badex is 252 bytes.

A nonclustered badex does not physically reorganize the data. Up to ·
.· 250 nonclustered indices may be created for a single relation. The max­

imum size for the keys or a nonclustered badex is 248 bytes.

A unique index can. be created for relations in which the indexed attri­
butes must be unique. For example, social security numbers are sup­
posed to be unique for all individuals. Ir a unique index has been
created for the "social security number" attribute, the user is not permit­
ted to assign to a tuple a social security number which already appears
in another tuple in the relation. A unique index may be clustered or
nonelustered.

When a unique index is being created, the create index command is
aborted if the databue server detects any duplicate values among the
indexed attributes. If a unique index already exists on a relation and a
user tries to modify the indexed relation such that the indexed attributes
would no longer be unique, the offending append, replace, or eofr in
command is aborted. The delete_dups option can be used to prevent
commands which introduce duplicate keys from aborting.

49

create index

OPTIONS

50

IDL Re/erence Manual

delete_ dupe
· It delete_dupe is specified for a unique clwrtered index, and

duplicate values on the indexed attributes are found in the rela­
tion while the data is being sorted, as many tuples as necessary
are deleted in order to make the index unique. A warning mes­
sage is displayed, but the create index command is not aborted.
This option has no effect on a unique noDclwrtered index at
the time that the index is being created.

However, if' a unique clwrtered index or a unique DOD•
clwrtered index was created with the delete_dups option, and
a user tries to modify the relation such that the indexed attri·
butes would no longer be unique, the modification does not occur
(i.e. the tuple in question is not added or modified). The user is
informed that the duplicate was not appended or replaced, but
the entire append or replace command is not aborted. This
effect can also be achieved by setting option 6 for the execution
or the modification, if the index was not originally created with
delete_dupe.

fillf actor == m
When a clustered index is sorted, the relation is written to
disk. The fllltactor value specifies the percentage or the.·blocks
to be filled when the relation is written to the disk in sorted
Corm. A fllltactor can range from 1 (1 % of the block is to be
filled) to 100 (the block is to be completely filled). The default
fllltactor is 100. Relations that are known to have a high
potential for growth should have a small fillfactor specified so
the data can be kept physically clustered for as long as possible.
It a relation has become scattered (blocks containing data which
should be in sort order are spread over several cylinders), I/O
time will become large with respect to average read time. When
this situation becomes apparent, the clwrtered index should be
created again (the old one is automatically destroyed) and a new
flllfactor specified.

skip== n
The skip option indicates the number or blank blocks to leave
between data blocks. This option can be used to provide room
for growth.

recreate
The recreate option deallocates empty pages which were all~
cated for the creation or a clwrtered index. It recreate is
specified, the data is not resorted and any nonclwrtered indices
on the relation are not destroyed. When the recreate option is
used, the keys must be the same as the keys or the original
index.

Britton Lee

IDL Re/err.nee Manual

PERMISSIONS

EXAMPLES

Britton Lee

noaort

create index

This option specifies that a clustered index is to be created on
data which is already sorted by the index keys. This option
greatly increases the speed with which an index can be created
for sorted data. If the D080rt option is specified and the data is
not sorted, an error message is displayed and the index is not
created. The user must then create the index without the
noeort option.

The user must have create index permission for the relation and be the
owner or the relation.

This command causes the "parts" relation to be sorted on (name,
number), written on the disk in blocks 40% run, and a B*-tree index
created for the (name, number) pairs. When a query specifies (name) or
(name, number), only the index and the exact blocks needed are read,
not the entire relation.

1) create clustered index on parts (name, number)
2) with ftllfactor = 40;

The "parts" relation already bas a clustered index (Crom the example
above). The next command creates a nonclustered index on "number"
to simplify access to the "parts" relation when ''number" alone is
specified. It is a unique index to enforce the requirement that no two
part numbers may ever be the same. If a user tries to modify the rela­
tion so that the uniqueness or the "number" attribute were not
preserved, the entire append or replace command is aborted.

1) create unique nonclU8tered index on
2) parts (number);

The next command creates the same type or index as the preceding one.
The difference is that if a user tries to modify the relation eo that the
uniqueness or the ''number" attribute were not preserved, the
modification would not occur, but the entire command would not be
aborted. Instead, a message would inform the user or t.he modification
which was not executed.

1) create unique nonclustered index on
2) parts (number)
8) with delete_dups;

The next command deallocates any unused data pages in the "parts"
relation and resets any pointers in the index that point to the deallocated
pages. The data is not resorted and the nonclustered index on
"number" is not destroyed.

1) create clustered index on parts (name, number)
2) with recreate;

61

create index

MESSAGES

SEE ALSO

52

IDL Reference Manual

illegal command (IDM.E45) ·
Only the user who created the relation can create an index on it.
The user must have create index permission. This command
cannot be used in a transaction.

index exists (IDM.E29)
An index with exactly the same characteristics exists.

out of space (IDM.E42)
The space for the index is counted in the space !or the database.

index too large (IDM.E66)
The size or an index exceeds the maximum size allowed.

illegal nosort (IDM.E209)
Unordered data was round in a command specifying the DO.Ort

option. When the DO.Ort option is specified, the tuples must
already be ordered by the index keys. This index may be
created by not using the DO.Ort option.

create, deatroy index, Mt
"Att_Name", "Options", "Rel_Name"

Britton Lee

IDL Reference Manual create view

create view object_name (target-list) (where qualification)

DESCRIPTION

PERMISSIONS

Britton Lee

The create view command sets up a virtual relation, one that is not a
physical entity, but is composed of attributes from one or more relations
(called base relations) or other views. A view looks like a relation when
it is accessed, but in actuality it never has any data stored in it. It is
similar to a temporary relation which is built from its base relations
whenever it is accessed. For this reason, when the base relations from
which the view is constructed are modified, the modification is reflected
in the view. Thus, views are automatically updated.

Ir the target-lid is not specified, the attributes in the view will have the
same names as the attributes in the base relations. The target-liat need
not be specified unless an attribute in the view is derived from a value
more complex than a simple attribute, or the resulting view would have
more than one attribute with the same name, or the user wishes to
assign new names to the attributes in the view.

A view is often created to access data from multiple relations, to access
just a subset of a relation, or to restrict access to certain attributes in a
relation. A user can be denied access to a base relation but permitted
access to a view built from selected attributes from that base relation.

Views are similar to relations in some aspects. A view may be protected,
retrieved, and destroyed in the same manner as a relation. Because a
view does not actually contain any data, generally speaking, a view can­
not be modified by the append, replace, and delete commands unless
the attributes or the view are all simple copies or the attributes or a sin­
gle base relation. Ir this is the case, the updates to the view will be ·
reflected in the base relation as well.

Views are recorded in the system relation "query". Since a view is
dependent on its base relations, a user cannot destroy a base relation
without first destroying any views that refer to it. View definitions may
not be "copied" to another database, such that an equivalent view would
exist on the other database, referencing similar base relation. Ir it is
desirable to use a single view definition in more than one database, save
the view definition in a text file on the host system and use the IDL
pseudo-command %input to create it in both databases.

When create view is executed, the uaoclate command is automatically
executed also, with the run text or the create view command entered by
the user inserted as the "text" portion or the description entered by the
&880ciate command into the "descriptions" relation. This feature pro­
vides automated documentation or views.

The creator of the view must have read permission on the base relations
used to create the view.

53

create view

EXAMPLE

MESSAGES

SEE ALSO

54

IDL Reference Man•a.I

Thia command creates a view of pa.rte which need to be reordered. It is
composed of two attributes from the "parts" relation and two attributes
from the ''vendors" relation.

1) range of p la part.
2) range of v la vendora
8) create view reorder (p.num, p.name, v.vendor, v.addreas)
4) where p.num = v.num and p.qty < lOJ

permmion denied (IDM.E43)
The user does not have access rights to the view.

illegal command (IDM.45)
This command cannot be used inside a transaction.

· . ueoclate, create, deey, de.troy, permit, retrieve
"Object_Name", "Qualfication.s", "Target-Lista"

Britton Lee

IDL Reference Manual define

define query _name command (command ...] end define

DESCRIPTION

Britton Lee

The define command creates a stored command (also called a stored
query). A stored command is a sequence or one or more IDL commands
which can be referenced collectively by the que,.,_name.

If a sequence or IDL commands is often executed, it is advisable to
define a stored command for that sequence. Because a stored command
is kept in a parsed and partially processed Corm, it will run Caster than
would the constituent commands executed individually.

A stored command should also be created if it is desirable to impose
protect-motlea for the stored command which differ from those OD the
constituent commands. A user c&n be granted permission to execute a
stored command without permission to execute all or the consitutent
commands individually.

Only certain commands can be UBed in a stored command. They are:

append
abort transaction
begin transaction
delete
end transaction
range
replace
retrieve
eet

Options 1 through 17 are legal inside a stored command. If any or these
are 11et inside the stored command, option 15 (use) must have been set
prior to defining the stored command which contains the 11et options.

The keyword go and the semicolon may never be used in the body or a
stored command.

When a stored command is defined, formal parameters can be used in
place of constants. A formal parameter has the syntax of a name
prefixed with a dollar sign ($). Later, when the stored command is exe­
cuted, the user supplies the values to be substituted for the formal
parameters. The order in which the parameters are sorted is discussed in
the entry for the execute command.

A stored command, once defined, cannot be modified. If a change in the
command is desired, a new stored command must be defined.

66

define

EXAMPLE

MESSAGES

SEE ALSO

58

IDL Re/erence ManHl

When deftne is executed, the a.ociate command is automatically exe-
. cuted also, with the Cull text or the deflne command entered by the user
inserted aa the "text" portion of the description entered by the ueoei­
ate command into the "descriptions" relation. This Ceature provides
automated documentation or stored commands.

To deftne a stored command:

1) deflne additem
2) range of i la items
8) append t.o ltelDfl{salesman ==$name, amt== $amount)
4) retrleve(l.ealesman, i.amt) where I.amt== $amount
5) end define;

To execute this stored command:

1) additem with name== "barbara",
2) amount== 47;

or

1) additem(47, "barbara");

or

1) execute additem(47, "barbara");

In the laat two examples, the value 47 is substituted for the "amount"
parameter and the value "barbara" is substituted (or the "name" param­
eter. When the attribute name is not explicitly stated in the execute
command, the values must be listed in this order because of the alpha­
betical ordering or the parameter names ("a" before "n").

already exists (IDM.E2)
A relation, file, view, or stored command baa the qse,.,_ name
given. All named objects must be unique for each user.

stored command or program too big (IDM.E65)
The internal representation or the stored command occupies
more than 14KB.

illegal command (IDM.E45)
This command cannot be perCormed in a transaction.

may not be used in a stored command (IDM.E41)
The specified command may not be used in a stored command.

&11110ciate, destroy, execute, aet
"Query-Name"

Bn'tton Lee

IDL Reference Manual delete

delete range_ var [where qualification)

DESCRIPTION

PERMISSIONS

EXAMPLES

MESSAGES

SEE ALSO

Britton Lee

The delete command removes one or more tuples Crom a relation. If
there is no qualification specified, all of the tuples in the relation are
removed.

The user must have write permission for all the attributes of the rela­
tion.

This command deletes all the tuples in the "parts" relation in which the
value of the "qty" attribute is less than 1.

1) range of p la part.a
2) delete p where p.qty < 1;

The delete command can be extremely powerful. This command deletes
every tuple in the "parts" relation.

1) range of p la part.a
2) delete p;

permission denied (IDM.E43)
The user does not have write permission for all attributes of the
relation.

view not updatable (IDME60)
The relation is really a view and the view is not updatable.

append
"Qualifications", ''Range_ Var"

67

deny IDL Re/erenec Manual

deny protect_mode [of object_ name) [to user[, user ••• J]

deny protect_mode of reLname (att_name[, att_name •••])
(to user[, user •••] J

DESCRIPTION

PERMISSIONS

EXAMPLES

58

The dell)' com~and denies a specified type of access to a specified object
to a specified uer or group of uaen. Protections imposed with the deny
command are recorded in the system relation "protect".

The aacr may be a user name or a group name. A group is any entry in
the system relation "users" for which the "uid" is equal to the "gid". If
no aaen are specified, the protection applies to all aacn.

· When an object is first created, the protcet_modca are set so that the
creator of the object is permitted all types of access while other aaen are
denied .all types or access.

The o6jcct_ name for which access is being denied may be a relation,
view, file, or stored command. If no object is specified, the protection
applies to all objects.

A deny command overrides any previous permit commands which con­
tradict it.

The OBA may also deny permission to use the create, create data.­
hue, and create index commands and to use database server tape.

The protect_ mod ea which may be denied are listed under
"Protect_Modes" in Part m of this manual.

Only the owner of an object or the OBA may deny access.

Thia command specifies that everyone may read the data in the "parts"
relation except "george", "harvey" and "mary".

1) permit read ot part.;
1) deny read ot part. to george, harvey, maey;

Thia command denies write permission on the "descript" attribute of the
"parts" relation to the entire group "clerks". The "clerks" have been
previously defined aa a group in the system relation "users". Other
attributes of the "parts" relation may still be writeable by "clerks".

1) deny write ot part. (descrlpt) to clerks;

Britton Lee

IDL Reference Manual deny

MESSAGES user not found (IDM.E6)

SEE ALSO

Britton Lee

- The ••er specified is not in the "users" relation for this database.

bad protection mode (IDM.E73)
The protection mode does not make sense with the rest of the
command.

not owner (IDM.E44)
Only the owner of an object or the DBA may deny permissions
on it. For a view or stored command, the user must be the
owner of the relations affected to deny permissions.

illegal command (IDM.E45)
Cannot be in transaction. The protection mode does not make
sense with the rest of the command.

create, create view, define, permit
"Att_Name", "Protect_Modes", ''Rel_Name", ''Users"

59

destroy IDL Reference Manual

destroy object_name[, object_name ...]

destroy (target-list) [where qualification)

DESCRIPTION

PERMISSIONS

EXAMPLES

MESSAGES

60

The destroy command eliminates relations, views, files, and stored com­
mands. It removes the entire object Crom the database, and Crees its
space for use by another object within the database.

Ir there are views or stored commands that depend on the relation or
view to be destroyed, they must be destroyed first.

The first form or the destroy command is used when an entire object is
to be destroyed with no qualification.

The second form requires a range variable and can take a qualification or
the objects to be destroyed.

Only the owner or the object or the database administrator can destroy
an object.

This command destroys the "parts" and "products" relations.

1) destroy parts, product.a;

This command makes use or the system relation "relation". The "rela­
tion" relation contains information a.bout each relation in the database,
including the relation names and owners. This use of the destroy com­
mand destroys all relations owned by the user.

1) range or r is relation;
1) destroy (r.name) where (r.owner = uaerid);

not owner (IDM.E44)
Only the owner or OBA may destroy an object.

has dependencies (IDM.E72)
There are dependent objects that must be destroyed first.

is open (IDM.E5)
An object that is being accessed may not be destroyed.

not found (IDM.E6)
The object could not be found.

illegal command (IDM.E45)
This command cannot be issued from within a transaction.

Britton Lee

IDL Reference Manual destroy

SEE ALSO create, create view, deftne, destl'o;y databue
"Object.::Name", .. Qualifications", ''Range_ Var", "Target-Lists"

Britton Lee 81

destroy database IDL Reference Manual

destroy database dbname[, dbname ...]

DESCRIPTION

PERMISSIONS

EXAMPLE

MESSAGES

SEE ALSO

62

The de.troy database command removes the specified databases Crom
the system and frees the space that was allocated tor them. It destroys
all relations and files in the specified database(s).

The database to be destroyed cannot be open at the time that the d...,
troy database command is executed. The command must be executed
from the "system" database.

The "system" database cannot be destroyed with the datroy database
command.

To destroy a database, the user must be the owner or the database (as
specified in the "system" database relation "databases") or the owner or
the "system" database.

This command destroys the database "inventory" and frees all disk space
which was allocated to it.

1) de.troy database inventory;

not owner (IDM.E44)
Only the owner or the database, or the owner or the "system"
database, can destroy the database.

is open {IDM.ES)
Someone is using the database.

illegal command (IDM.E45)
Cannot use in transaction. The command must be executed
from the "system" database.

create database, destroy
"Dbname"

Britton Lee

IDL Re/erenee Manual destroy index

destroy [unique] [nonclustered I clustered] index

DESCRIPTION

PERMISSIONS

EXAMPLES

MESSAGES_-·

SEE ALSO

Britton Lee

[on] reLname (att_name[, att_name ...])

The dMtroy Index command removes an index Crom a relation. This
might be desirable if the index is seldom used to Cree the apace occupied
by its B*-tree for other applications and to eliminate the overhead or
updating it whenever the tuple attributes that it indexes are updated.

The index is identified by its description: whether it is unique,
clustered or nonclustered, and by the attributes that it indexes.

The user must be the owner or the relation.

This command destroys the index on (name, number) for the "parts"
relation. Initially the relation remains aorted on (name, number) as it
was when it had its indices, but subsequent to the destruction or the
indices, new data is appended at the end or the relation.

1) destroy clustered Index
2) oli pa.rte (name, number);

This command destroys the unique nonclustered index on the
"number" attribute or the "parts" relation.

1) destroy unique nonclustered index
2) on pa.rte (number);

not owner (IDM.E44)
The user must be the creator or the relation.

illegal command (IDM.E45)
Cannot use in transaction.

not found (IDM.E6)
The named relation or attributes were not round.

index does not exist (IDM.E30)
The index does not exist as specified (the clustering or the
arrangement or attributes is incorrect).

create index
"Att_Name", "ReLName"

83

end transaction

end transaction

DESCRIPTION

EXAMPLES

MESSAGES

SEE ALSO

64

IDL Reference Man.al

The end tramaction command ends an atomic sequence of commands
that that was initiated with a begin transaction. The results of the
transaction are made permanent.

See begin transaction.

illegal command (IDM.E45)
Must be used after a begin transaction command.

abort tramaction, begin transaction

Bn'tton Lee

IDL Reference Manual execute

, [execute] query _name [with] (name = constant(, name = constant •..])

(execute] query _name (with] (constant[, constant •..]]

DESCRIPTION

PERMISSIONS

Britton Lee

The execute command executes the stored command q.err- ••me, which
was previously created with the define command.

The keyword execute may be omitted, provided that querJ_ name does
not conflict with the name of any IDL command.

The conatanfs specify values to be substituted for the formal parameters
supplied in the definition of the stored command.

If the name == eonatant form is used, the name must correspond to the
name of a formal parameter u it was specifed in the define command.
The name = eonatant assignments may be given in any order.

For example, if' a stored command "mycommand" were defined as

1} define mycommand
2) append to empe(name = Sempname,
8} num == Sempnum, dept = Sdeptnum)
4) end define;

an execute command could look like

1) execute mycommand with empname ==Smith,
2) empnum == 2450, deptnum == 102;

If the conatant form (no explicit name) is used, values are assigned based
on the alphabetic order of the names of the formal parameters. For
example, to execute "mycomma.nd" using this form and obtain the same
results as in the example above, "mycommand" would have to be
invoked as

1) execute mycommand 102, Smith, 2458;

When this form is used, the order in which the values are listed is cru­
cial, because the mapping of values to formal parameters is determined
by the alphabetic ordering of parameter names. The digits in parameter
names are considered characters, not numbers, so the parameters Sl, $2,
$3, $10, $20 sort as $1, $10, $2, $20, $3.

It is not necessary to enclose string constants in quotation marks if' they
contain only alphabetic, numeric, and underbar characters.

The user needs only execute permission for the stored command, if the
creator of the stored command owns all of the objects referenced by the
stored command.

85

execute

EXAMPLES

MESSAGES

SEE ALSO

86

IDL Reference Manual

Assume that the stored command "update" baa been defined aa follows:

1) define update
2) append to expend (salesman - $name,
3) amt= $amount, time - gettime,
4) date = getdate)
5) end define;

This stored command can be executed as follows:

1) execute update with name= "mike",
2) amount= 44;

or

1) update 44, "mike";

In the second example, the arguments must be given in this order
because the alphabetic ordering of the parameters is "$amount",
"$name". The keyword execute is optional becauae "update" does not
conflict with any IDL command.

not round (IDM.E6)
The command was not found in the current database.

missing parameter (IDM.E23)
The user has tried to execute a stored command without enter­
ing required parameters. A parameter was sent that was not in
the stored command.

too many parameters (IDM.E36)
Exceeded number of parameters in the stored command.

permission denied (IDM.E43)
The user must have execute permission on the stored command
and appropriate permissions Cor the commands comprising the
stored command.

other messages

define

Since executing the stored command causes other commands to
be executed, they may give error messages. Consult the MES­
SAGES section under the appropriate command.

"Constants", "Query-Name"

Britton Lee

IDL Reference Manual

exit

DESCRIPTION

Britton Lee

exit

The exit command exits the IDL parser. The exit command may be
used anywhere in a command.

li the exit is issued inside a transaction, the user is warned that the
transaction has been interrupted and all pending commands have been
aborted.

87

extend IDL Reference Manual

extend reLname (with logging [= {O 11}]]

DESCRIPTION

PERMISSIONS

EXAMPLE

MESSAGE

SEE ALSO

68

The extend command controls transaction logging or the relation
rel_ name.

U loalna is set to to 1, the transaction log "transact" is to be updated
whenever the relation is updated. U loalna is set to O, "transact" is
not maintained, and updates are recorded in the system relation "batch".
Uthe loalns option is used but neither 0 nor 1 is specified, the default
is 1.

The user must be the owner or the relation.

1) extend unimportant with loaina == O;

not relation (IDME70)
Only relations can be extended.

permission denied (IDME43)
Only the DBA can turn logging on.

can't extend system relation: o/os (IDME81)
System relations cannot be extended.

create
"Options", "ReLName"

Britton Lee

IDL Reference Manual extend database

extend database dbname (with options)

DESCRIPTION

OPTIONS

PERMISSIONS

EXAMPLES

Britton Lee

The extend databue command increases or decreases the allocation for
the database dbname. Since allocation is made by whole sones only, the
number or blocks actually allocated is rounded up to the next multiple of
the number or blocks per zone.

The optioM are the same as for the create databaae command except
that the demand may be negative if deallocation is desired. Only
entirely freeable zones, those containing no pages which are either used
or demanded, are removed from the database. Ir a disk option is
specified with a negative demand option, storage is deallocated only
from freeable zones on the specified disk(s). Ir no disk option is

· ·specified, deallocation is from zones belonging to the database which
reside on any disk(s).

The actual number of blocks allocated or deallocated is displayed at the
terminal.

If both positive and negative demands are made in the same extend
databue command, the negative demands are processed first.

A database may be extended while others are using it.

The extend databaae command must be executed from the "system"
database.

Ir the options are omitted, extend clatab&N increases the value or the
demand option by one zone on any available disk.

See create databue.

The user must be the owner or the database being extended.

This command increases the size of the "accounts" database by 2000
blocks.

1) open system;
1) extend database accounts
2) with demand = 2000;

This command removes from the "accounts" database a total of 3500
blocks from "diska" and "diskb" and allocates 1500 blocks on "diskc".

1) open system;
1) extend databue accounts
2) with demand= -8500, diek = "cilaka", disk== "diskb",
S) demand == 1600, disk = "diskc";

89

extend database IDL Reference Man•al

MESSAGES illegal command (IDM.E45)

SEE ALSO

70

Must be in "system" database. Must not be in transaction.
Must have create databue permission.

permission denied (IDM.E43)
Must be owner of database.

out of space on disk (IDM.E42}
There is no more room to extend the database on the specified
disk.

create datab .. , destroy databaae
"Dbname", "Options"

.·

Bn'tton Lee

IDL Reference Manual

open dbname

DESCRIPTION

PERMISSIONS

EXAMPLE

MESSAGES

SEE ALSO

Britton Lee

open

The open command opens a database for activity. The opened database
will remain open until the user enters another open command IJ>ecifying
a different database, or until the IDL session is terminated.

To execute any IDL commands other than range or •t, a database
must first be opened.

There must be an entry for the user's host id in the database's system
relation "host_users".

1) open vino;
1) append to kinds
2) (type = "chardonnay", color= "white");

not found (IDM.E6)
The database does not exist.

permission denied (IDM.E43)
The user does not have an entry in the system relation
"host_ users".

database is locked (IDM.E53)
The administrator is temporarily locking out users to do mainte­
nance.

create databaae, retrieve
''Dbname"

71

permit IDL Reference Manual

permit protect_mode (of object_ name) [to user[, user •..)]

permit protect_mode of reLname {att_name[, att_name •..])
(to user(, user ..•))

DESCRIPTION

PERMISSIONS

EXAMPLES

72

The permit command permits access to an object to a specific •Hr or a
group of •Hrs. The uaer may be a user name or a group name. A
group is any entry in the system relation "users" for which the "uid" is
equal to the "gid". If no uaer is specified, the permission applies to all
uaers.

By default, accesa is permitted to the owner of an object and denied to
other aers when the object is created. To allow other ••ers access to an
object, the owner must explicitly permit such access. The o6jeet_ name
may refer to a relation, view, file, or stored command.

The OBA may also permit use of the create, create databue, and
create Index commands and of database server tape.

Accesa to a view or stored command implies access to all objects that the
view or stored command references only if the owner of thoee objects
and the view or stored command is the same.

The ,roteet_ mode. permitted are listed under ''Protect_Modes". A per­
mit command supersedes any previous dellJ' commands which contrad­
ict it.

The user must be the owner of a relation, view, or stored command in
order to control permission over it. If permission is granted for a data­
base, the user must be the OBA or owner of the database.

Permit on a relation:

The uaer "george" can read the "parts" relation.

1) permit read of parte to george;

Permit on an attribute:

The uaers "bill" and "sharon" can write to the "quan" attribute of the
"parts" relation.

1) permit write of parts (quan)
2) to bill, sharon;

Bn'tton Lee

IDL Reference Manual

MESSAGES

SEE ALSO

Britton Lee

permit

Permit of a stored command:

The ••er "dave" and all •aers in the group "managers" are the only
•aers permitted to execute the stored command "get.sum".

1) deny execute of get.wn;
1) permit execute of get.wn to managers;
1) permit execute of get.wn to clave;

Permit with no object specified:

The uaer "gloria" may create relations in the open database.

1) permit create to "gloria";

Permit for all ••ers:

When DO •aer is specified, all •aers of the open database are permitted to
create relations.

1) permit create;

unknown user (IDM.E6)
The system relation "users" for the currently open database
must include the •aer (or group) specified.

not owner (IDM.E44)
Only the owner or the DBA may grant permissions on an object.

not found (IDM.E6).
The object or attribute specified was not found.

illegal command (IDM.E45)
Cannot be done from transaction. Wegal protection mode for an
object.

bad protection mode (IDM.E73)
The protection mode does not make 1ense for the object.

result variable does not exist
Object was not specified where it was needed.

create,deflne,deny
"Att_Name", "Object_Name", "ReLName't, "Users"

73

range IDL Reference Manual

range of range_ var is reLname [with options)

DESCRIPTION

OPTIONS

EXAMPLES

74

The range statement associates a variable name supplied by the user
with the name of a relation or view. Several commands require that a
relation be referenced through a range variable rather than the relation
name. The retrieve, replace, and delete commands all require a range
variable while append and truncate require the relation name.

The user may use up to sixteen range variables in a single query.

minlock
This option specifies mm1mum locking, in which data may be
retrieved from the relation identified by range_ var while another
user is modifying the relation. This may result in the retrieval or
some tuples that have been affected by a command and some
that have not. The mlnlock option is useful in situations in
which this type of inconsistency is not a problem and where
other users• activities would interfere with simple retrievals were
the option not used.

fulllock
This option specifies a full locking. It guarantees that any data
retrieved with the specified range variable will reflect either com­
pletely or not at all the effects or other users• transactions. The
fulllock option is the default if no options are specified.

dindex = n
This option specifies that the relation or view is to be accessed
using the specified index. The clustered index is always index
0, and others are numbered from 1 to 15. The numbers of the
indices correspond to the "indid" attribute or the "indices,, rela­
tion for the database. If the dindex option is used, the dorder
option is also required. If the dindex is omitted, the database
server decides which index would be most efficient. Unless the
join is extremely complicated (involves four or more relations), it
is usually preferable to let the database server choose the index.

dorder = n
This option is used to specify the order in which relations should
be processed when two or more relations are joined in a
qualification. When the dorder option is omitted, the database
server decides in which order to process relations. Unless the join
is extremely complicated (involves four or more relations), it is
usually preferable to let the database server choose the order.

The range statement below associates the range variable "p'' with the
relation "products". The retrieve command uses the range variable
"p".

Britton Lee

IDL Re/erenee Manual

1) range of p ia product.a;
1) retrieve (p.name);

range

The next statement associates the variable "p" with the relation "pr~
ducts" which is owned by user "bill". This is to distinguish the relation
from other relations called "products" which may be owned by other
users. Several users may own completely difJerent relations with the
same name in the same database. If the owner's name is not specified
then the object is presumed to be owned by the current user or by the
DBA.

1) range of p ia producta:bill;

A range variable is associated with the relation in the last range state­
ment defining it. Here the variable "t" is bound to the relation "parts"
at the end or this sequence.

1) range oft la temp;
1) range oft is newtemp;
1) range of t is part.a;

The following query uses the dindex and dorder options to establish a
plan for accessing the "small", "medium", and "large" relations.

1) range of• la small with dlndex = O, dorder = 1;
1) range of mis medium with dindex = O, dorder = 2;
1) range of I is large with dindex = 4, dorder = 8;
1) retrieve (a.deac, m.name, l.quan)
2) where a.poe < 10
1) and a.num = m.num
4) and m.type = I.type;

This means:

(1) First, go through "am.all", searching for tuples in which the
"pos" attribute is less than 10. Access "am.all" through its
clustered Index, which is on "pos".

(2) Second, from among those tuples retrieved above, go through
"medium" searching for matches between "m.num" and
"a.num". Access "medium" through its clustered Index, which
is on "num".

(3) Among those tuples retrieved above (in which "s.pos" is less than
10 and "s.num" equals "m.num") go through "large" looking ror
matches between "m.type" and "I.type". Access "large" through
its fourth nonclwrtered index which is on ''type".

Britton Lee '75

range IDL Reference Manual

MESSAGES None.

SEE ALSO delete, replace, retrieve
"Options", "Range_ Var", "ReLName"

78 Britton Let:

IDL Ref erenee Manual

reconfigure

DESCRIPTION

PERMISSIONS

MESSAGES

SEE ALSO

Britton Lee

reconfigure

The reconftgUl'e command updates the configuration or the database
server according to the contents or the "system" database relation
"configure".

This command may only be issued from the "system" database.

The user must be the DBA or the "system" database.

illegal command (IDM.E45)
The user was not in the "system" database or the user is not the
DBA or the "system" database.

IDM ln1tallation Guide
id.mconfig(li) in Hoit Software Specification
IDMCONFIG in Command Summary

77

replace IDL Reference Manual

replace range_ var (target-list) [where qualification)

DESCRIPTION

PERMISSIONS

EXAMPLES

MESSAGES

78

The replace command replaces the value of one or more attributes in
zero or more tuples of a relation.

The target-liat may reference literal values or values in attributes in
other relations.

The user must have write permission on the attributes to be replaced.

Qualification involving a single relation:

The following commands change the "name" attributes for all tuples in
the relation "parts" for which the "name" fields begin with a "t" to the
value "electronic".

1) range of p le partaJ
1) replace p (name ="electronic")
2} where p.name = "t*"J

Qualification involving multiple relations:

This command changes the value of the "cost" attribute for each tuple
in the "parts" relation in which the following conditions prevail: (1) the
value or the "name" attribute in the "parts" relation equals the value or
the "part" attribute in a tuple in the "products" relation and (2) the
"name" attribute in that tuple in the "products" relation has the value
"TV". The purpose or this command is to increase by 10% the cost or
each part that is used in manufacturing a TV. No modification is made
to the "products" relation.

1) range of p la parts;
1) range of pr ia productsJ
1) replace p (cost = p.c08t + p.cotrt / 10}
2) where p.name = pr.part and pr.name= "TV";

permission denied (IDM.E43)
User must have write permission on the relation.

not found (IDM.E6)
The specified relation or attribute was not found.

wrong type attribute (IDM.El9)
An expression that the user specified for a target could not be
converted to the type or the requested attribute.

view not updatable (IDM.E60)
The view cannot be updated because the result or such an
update could not be unambiguously resolved.

Britton Lee

IDL Reference Manual replace

SEE ALSO append, audit, delete, pattern, range
"Qualifications'', "Range_ Var'', "Target-Lists"

Britton Lee 'TV

reset

reset

DESCRIPTION

EXAMPLE

80

IDL Reference Manual

The raet command reset.a the command buffer without sending anything
to the database server. It is useful for throwing away erroneous com­
mands.

The raet command may be entered anywhere in a command.

1) range of c la coump
2) retrieve (c.all)
3) where c.sal&l')" > 2000 and reeet
1)

Here the user has typed three lines before realizing that "count" is
misspelled. Entering raet causes the input to be ignored and the line
number to be reset to 1.

Britton Lee

IDL Re/erenee Manual retrieve

retrieve [unique] [[into] reLname} (target-list)

DESCRIPTION

Order By

Britton Lee

(order by order _spec[, order _spec •..]] (where qualification]

The retrieve command is used for £etching data from the database
server. The simple retrieve returns the data to the host. The retrieve
into command sends data to a newly created relation containing the
attributes specified in the target-liat. It is an error to retrieve into an
existing relation.

The user can reference up to 15 relations in one retrieve command, if
the relations are all in the same database.

Ir a target-liat is used, it is necessary to use a range_ t1ar to specify tar­
geta.

The unique option specifies that duplicate tuples are to be removed in
the result. Duplicate tuples are defined here as tuples that are equal in
all attributes.

The optional order by clause specifies the order in which the returned
tuples are sorted. The direction or the ordering can be specified with a
or uc for ascending and d or dac for descending. The default is
ascending order. The order _apee can be either

target [:direction]

or

expression [:direction]

Ir the e:rpreuion is an integer i, the output are sorted by the ith item in
the target-liat. The query

1) retrieve (x.num, x.name, x.quan)
2) order by 8;

displays its results ordered by the value or the "quan" attribute, the 3rd
element in the target-list.

The attribute(s) by which data is to be ordered m\ist be referenced with
a range variable if the attribute is not explicitly used in the target-liat.
For example,

1) retrieve (x.name, c.cost)
2) order by name;

will work because "name" is in the target-lid as ''x.name" but

81

retrieve

PERMISSIONS

EXAMPLES

82

IDL Reference Manual

1) retrieve (x.all}
2) order by name;

will not work because "name" is not explicitly referenced in the target­
liat. In this case, the specification must be

1) retrieve (x.all)
2) order by x.name;

To copy a large amount or data from a relation on the database server
to a host file, use the host utility idmfcopy.

For a retrieve, the user must have permission to read all the domains
in the query. For a retrieve into, the user must also have create per­
mission.

Retrieve ordered by target-name:

In the following example, the database server first calculates the average
value or the "cost" field in the relation "parts". Then the database
server accumulates the "name" and "cost" attributes or the tuples that
contained a "cost" greater than the average. These are sorted_. by the
value in the "cost" attribute, largest value first, and sent to -the host
where the data is displayed at the terminal.

1) range of p is part.a;
1) retrieve (p.name, p.cost}
2) order by cost:d
3) where p.cost > avg (p.cost);

Retrieve ordered by e:rpreaaion:

This command retrieves all the attributes in the "accounts" relation,
sorting them in descending order by the value or the difference between
the "assets" attribute and the "liabilities" attribute. Duplicate tuples are
not displayed in the result.

1) range of a is account.;
1) retrieve unique (a.all)
2) order by (a.asset. - a.liablities):d;

Retrieve ordered by target specified by position in target-liat:

This command retrieves four attributes from the "parts" relation,
ordered by the "name" attribute (the second element in the target-liat).

1) range of pis part.a;
1) retrieve (p.num, p.name, p.cost, p.quan)
2) order by 2;

Britton Lee

IDL Reference Manual

MESSAGES

SEE ALSO

Britton Lee

retrieve

Retrieve into:

This creates a new relation "exp_parts" in the open database composed
or the "name" and "cost" attributes from the "parts" relation. The
data from those attributes is copied into the new relation from every
tuple in which the value or the "cost" attribute exceeds the average cost
or all the parts in the relation.

1) range or p is parts;
1) retrieve into exp_parts(p.name, p.cost)
2) order by cost:d
3) where p.cost > avg (p.cost);

Ordering by more than one attribute:

In this example, the data is sorted by "group" and within each group it
is sorted by "name".

1) retrieve (b.all)
2) order by b.group, b.name;

permission denied (IDM.E43}
The user must have read permission on all domains in the
query.

not round (IDM.E6}
The named attribute or relation was not found.

append, audit, create, range
"Qualifications", "ReLName", "T&J~et-Lists"
ldmfcopy(ll} in Boat Software Specification
IDMFCOPY in Command S•mmorr

83

set IDL Reference Manual

set {option-number I option-name} [, {option-number I option-name} ... }

DESCRIPTION

84

This command enables certain options for IDL commands. The option­
num6er or option-name must be chosen from the following list. Option­
namea may be in upper or lower case.

1 format
Set format before query. This option is set by database server
software and cannot be unset.

2 namea
Send result names. This option is aet by database server
software and cannot be unset.

3 overflow
Ignore overflow and use largest number instead.

4 divaero
Ignore division by zero and use largest number instead.

5 perform
Send elapsed execution time (wall clock). Do not set 5 if 11 ia
set.

8 duplicate
Delete tuples with duplicate keys which are generated by
modifications to the relation.

7 round
Abort on rounding of bcdftt.

8 underflow
Ignore exponent underflow and use zero instead.

9 badbcd
Ignore bad bed data Crom host or file and use zero instead.

11 time
Return dedicated time (database server CPU time). Do not set
11 if 5 is set.

12 nocount
Supress count of tuples effected when displaying query results.

13 "tape"
Use database server tape. Ir the option-name is used here, it
must be quoted. This option can not be set from a user pro­
gram.

Britton Lee

IDL Reference Manual

Britton Lee

set

14 protect

lo me

Allow DBA or the "system" database to access any database as

DBA.

This is for options 11et within a stored command. To enable
options at execution time, option 15 must be set prior to defining
the stored command. Then, the options are enabled when the
stored command is executed.

H dumpwait
Wait for execution or command while a read-only dump is in
progress.

17 futagg
Process aggregates using faster method, with possible loss of
accuracy in the result. Ir this option is 11et, queries may return
inconsistent results.

18 croesjoin
Process joins using an older method. This may improve perf or­
ma.nce for certain queries which (1) join several small relations
with one large relation, (2) but do not join the am.all relations
with each other, (3) and have very few qualifying tuples in each
small relation, (4) and can use a selective index to access the
large relation.

83 resp

84 cpu

87 inp

Return response time (in 60ths or a second) from when the DBP
gets the command to when it sends the last or the results.

Return CPU use (in 60ths of a second).

Return the time the dbin spent waiting for input from the start
of the command (in 60ths of a second}.

88mem
Return the time the dbin spent waiting for memory after receiv­
ing a command (in 60ths of a second).

89 cpuw

40 disk

Return the time the dbin spent waiting for the DBP or DAC
when it ha.d CPU work to do (in 60ths of a second).

Return the time spent waiting for the disk (in 60ths of a second).

41 tapew
Return the time spent waiting for the tape (in eoths or a
second).

86

set

EXAMPLE

88

IDL Reference Manual

42 outw
Return. the time spent waiting Cor the host to read its output (in
60ths or a second).

43 block

44 dac

Return the time spent blocked on another dbin (in 60ths or a
second).

Return the time spent in the DAC or the simulation routines iC
there is no DAC in the system (in 60ths or a second).

46 outc
Return the time spent waiting Cor an output buffer (in 60ths or a
second).

48 hit.
Return the number of times a disk page was found in memory.

4'1 read.
Return the number or disk reads performed by this dbin.

48 tpel'l'll
Return the number or soft tape errors.

49 qeybuf
Return the number or bytes or query buffer used.

eo plan
Return the query processing plan.

The following command causes execution time to be displayed at the
user's terminal Collowing each IDL command.

1) eet perform;
1) range of k is kinda;
1) retrieve (k.all) where k.body =="full";

type color
sinfandel red
port red

2 tuples affected
- 860ma-

flavor body
dry full
sweet full

Britton Lee

IDL Re/erence Manual set

MESSAGES option already set

SEE ALSO

Britton Lee

The option was already 11et by default or by a previous 11et com­
mand.

cannot set/unset "tape" option

uneet

The database server tape option may not be set in &.his context.
To set this option from a user program, use the itaddopts or ita­
peopts interface instead.

87

sync

sync

DESCRIPTION

EXAMPLE

88

IDL Reference Manual

This command creates a checkpoint in the open database or, if no data­
bases are open, a checkpoint in all databases which are currently active.
Any disk blocks that may have temporarily been kept in volatile RAM
are written out to disk.

1) sync;

Britton Lee

IDL Reference Manual truncate

truncate reLname[, reLname ...]

DESCRIPTION

PERMISSIONS

EXAMPLE

MESSAGES

SEE ALSO

Britton Lee

The truncate command deletes all tuples from a relation. It takes a
relation name, rather than a range variable, as its argument.

This command is the functional equivalent of the delete command
except that truncate can empty aeveral relations with a single com­
mand. The deleted tuples are not recorded in a. transaction log, so it is
not possible to audit the tuples which were removed.

The truncate command may be executed from within a. stored com­
mand, but it may not be used inside a transaction because it is not possi­
ble to back out the deletions.

Only the owner of the relation being truncated or DBA may issue this
command.

1) truncate oldparta. oldinvoicea;

not owner (IDM.E44)
User is not the owner of the relation or the DBA.

not relation (IDM.E70)
Only relations can be truncated.

illegal command (IDM.E45)
The command cannot be executed inside a transaction.

relation is unavailable (IDM.E26)
Another user is accessing the relation.

system relation (IDM.E57)
System relations cannot be truncated.

delete
"ReLName"

89

unset IDL Ref erenee Manual

unset {option-number I option-name} [, {option-number I option-name} ...]

DESCRIPTION

EXAMPLE

MESSAGES

SEE ALSO

90

This command disables options previously implemented with a .et com­
mand. For a list or the option·num6era and option-nam• for options
which can be UD8et, consult the entry for Mt.

1) umet perform;

IDL commands will no longer display the time they have taken to exe­
cute on the database server.

option does not exist (IDM.E78)
The specified option is already unset by default or by a previous
unaet command.

cannoi set/unset "tape" option
The database server tape option may not be set in this constext.
To set this option Crom a user program, use the itaddopts or ita­
peopts interface instead.

.·

Britton Lee

PART ID

IDL GENER.AL CONCEPTS

Introduction to IDL
General Concepts

Britton Lee

This pa.rt or the ma.nua.l describes various components or an IDL com­
mand, such a.s tzpreaaion or qualification, which ma.y appear u argu­
ments in a number or different IDL commands. The definition and use
or these components are described here.

gs

Aggregates

94

An aggregate has the following syntax:

aggregate_operator (expression
[by expression! [, expression2 ... J J
[where qualification})

The aggregate operators in IDL are:

Aggregate Operator

awn()
awn unique()
awnu()
count()
count unique()
countu()
avg()

Return•

sum of all elements
sum of all unique elements
same as sum unique
count of elements
count of unique elements
same as count unique
average of elements
average of unique elements
same as avg unique

avg unique()
avgu()
once() returns one and only one value;

if more or less than one value iS
found, then an error results

once unique()
onceu()
any()

max()
min()

once of unique elements
same as once unique
0 if no elements; 1 it one or
more elements
maximum of elements
minimum of elements

The awn, avg, sum unique, and avg unique aggregate operators are
available only with those data types that have addition (integer, bed, or
bcdftt). The other aggregate operators are available on all data types.

A simple aggregate with no b7 clause returns a single value as in

1) range of p is pricings;
1) retrieve (avgprice = avg(p.price));

avgprice
7.58

which computes a single tuple with one domain called "avgprice", the
value of which is the average price of all of the wines in the "pricings"
relation. This type of aggregate can be modified with an optional where
clause:

Britton Lee

IDL Reference Manual

·.

EXAMPLES

Britton Lee

1) range of p la pricing•;
1) retrieve (avgprice == avg(p.price
2) where p.year -= 1182));

avgprice
8.02

Aggregates

This computes the average price of the 1982 wines in "pricings" relation.

An aggregate with an optional by clause, returns multiple values, one for
each group identified by the by clause. This query yields a separate
count value or each type or wine in the "wines" relation.

1) range or w la wines
2) retrieve (num == count(w.onhand by w.type), w.type);

num type
1 beauclair
2 burgundy
& cabernet •uvlgnon
1 chablia

' chardonnay

' chenin blanc
8 fume blanc
1 gamay beauJolaie
1 grenacbe J"oee

'1 Jobannisberg rleeling
1 petite mah
1 pinot chardonnay
1 8Cbeurebe
8 sinf'andel

The sum aggregate adds the attributes or several tuples and returns the
result.

The "wines" relation in the "vino" database has an attribute named
"onhand", which contains the number of cases of each wine available.
The following query uses the .um aggregate operator to find the total
number or cases on hand.

95

Aggregates

98

IDL Re/erence Manual

1) open vinos
1) range of w la wlnea;
1) retrieve (total - sum.(w.onhand));

The following query retrieves only the tuples in which the "vintage"
attribute is 1980 for calculation by the aggregate. This is done by
including a qualification inside the parentheses.

1) retrieve (total80 =
2) eum (w.onhand where w.vintage = 1980));

The next query specifies a breakdown or how the information should be
computed and displayed using the b7 clauae. It retrieves the sum of the
onhand attributes for each area.

1) retrieve (total =
2) sum(w.onhand by w.area), w.area);

total area
11 amador
42 calitornia
a lake

18 mendocino
11 monterey

189 napa valley
12 ll&D. benito
28 aonoma

The following query uses both the by and where clauses.

Britton Lee

IDL Referenee Manual

Britton Lee

Aggregates

1) retrieve (tot&180 =
2) 8U1D(w.onhand by w.area where w.vlntage = 1980),
8) w.area);

total area
0 amador

18 california
0 lake

' mendoclno
11 monterey
40 napa valley
12 un benito

G 80noma

Queries containing aggregates can become quite complex. The following
query retrieves the number, type, and total cost of all the wines
displayed where the total cost of a wine ia greater than the average or
the total costs or all the wines:

1) range of w la wines;
2) range of p la prlcings;
1) retrieve (w.winenum, w.type, total ==
2) 8U1D(p.price • w.onhand by w.wlnenum
8) where p.wlnenum = w.wlnenum))
4) where sum (p.price • w.onhand by w.winenum
&) where p.wlnenum = w.wlnenum)
e) > avg (sum (p.price • w.onhand by
'7) w.wlnenum where p.winenum = w.winenum));

wlnenum type total
1 Johanniaberg rlesling 22.&0
8 grenache ro11e ,2.00
& beauclair 40.00
e Johanni•berg ri•ling 102.00
'7 chardonnay 12.00
0 gamay beauJolals ,&.00

10 burgundy 10.00
11 Jobannlaberg riesling &&.00
15 sinfandel &'7.00
23 cabernet uuvignon 6'7.00
26 chardonnay 88.&0
28 chardonnay 28'7.60
81 pinot chardonnay 28.'70
83 Johanniaberg riesling 88.'7&

9'7

Aggregates

98

IDL Re/erenee Manual

There may be more than one eqreaaion in the by clause, in which caae
' separate aggregates are calculated ror each combination or values in the
by clause.

An aggregate with by clauses can be powerCul and also extremely conrus­
ing. There is one important item to remember: the database server
optimizes its queries heavily. Since duplicate tuples and tuple order are
irrelevant, slightly difl'erent queries may produce different looking results
simply because some algorithms the database server chooses cause dupli­
cates to be deleted. The user can introduce some consistency by having
tuples ordered and by using retrieve unique when retrieving aggregates.

Each aggregate operator available in IDL is briefly described on the fol­
lowing pages.

Britton Lee

IDL Reference Manual

Britton Lee

any()

Aggregates

·The any operator returns 0 if none of the elements in its argu­
ment exist, 1 if at least one element exists. The choice of attri­
butes among those comprising the relation being accessed is
irrelevant.

In order to find out if any wines in the database date from
before 1970:

1) retrieve (old= any(w.winenum
2) where w.vintage < H70));

avg(), avg unique()
The avg operator returns the average of all elements of its argu­
ment. All or the elements being averaged must be or type
integer, bed, or bcdftt. The avg unique operator returns the
average of all of the unique elements of its argument.

For example, to find the winenumbers and cases on hand for all
sinf andels where the number of cues on hand is less than the
average number on hand for sinfandels:

1) retrieve(w.winenum, w.onhand)
2) where w.t)"pe - "alntandel" and
I) w.onhand < avg(w.onhand where w.type-= "aintandel");

winenum onhand

' 1
18 a

count(), count unique()
The count operator returns the number of tuples in which its
argument occurs. The count unique operator returns the
number or tuples in which its argument occurs, excluding dupli­
cate occurences of the element(s) being counted. For the count
aggregate (but not the count unique), the choice of attributes
among those comprising the relation being accessed is irrlevant.

This example counts all of the tuples in which the ''vintage"
attribute has a value of 1980:

19

Aggregates

max()

min()

100

IDL Rc/erence Manual

1) retrieve(vlntage80 == count(w.type
I) where w.vbitage == 1180));

vlntage80
15

The Collowing query count.a all of the tuples in which the ''vin­
tage" attribute is 1980 but count.a only once for each "type".
For instance, for the three wines of 1980 vintage in which the
"type" attribute has a value or "johannisberg riesling", there will
be only one count. This is because the count unique is based
on the "type" attribute.

1) retrieve(vlntage80 ==count unlque(w.type
I) where w.vlntage == 1980));

vintage BO

'

The max operator returns the element with the maximum value.
It the element.a are character data types, the maximum is calcu­
lated on ASCII or EBCDIC order, depending on the character
set associated with the database when it was created.

For example, to find the wine of which the greatest number of
cases are in stock:

1) retrieve (w.wlnenum, w.type, w.onhand)
2) where w.onhand == max(w.onhand);

winenum type onhand
28 chardonnay 13

The min operator returns the element with the minimum value.
It the element.a are character data types, the minimum is calcu­
lated on ASCII or EBCDIC order, depending on the character
set associated with the database when it was created.

For example, to find the lea.st expensive wine in the database:

Britton Lee

IDL Reference Manual

SEE ALSO

Britton Lee

Aggregates

1) retrieve (p.wlnenum, p.prlce, w.type)
2) where p.price = mln(p.price)
8) and p.winenum = w.wlnenum;

winenum price type
.t 4. slnfandel

once(), once unique()
The once operator returns one value if one occurrence or its
argument exists. Otherwise it generates an error message. The
once unique operator returns one value for one occurrence or a
unique element.

1) retrieve (old_cab = once(w.winenum where
2) w.vlntage < 1078 and
8) w.type = "cabernet aauvignon"));

ERROR line 2: ONCE or ONCEU retUl'Jled two values.

1) retrieve(old_napa_cab = once(w.wlnenum where
2) w.vtntage < 1078 and
a) w.type = "cabernet aauvignon" and
4) w.area = "napa valley"));

old_napa_cab
84

awn(), aum unique()
The 11U1D operator returns the sum or all elements or its argu­
ment. All or the elements being summed must be or type integer'
bed, or bcdftt. The awn unique returns the sum or all or the
unique elements or its argument.

''Expressions", "Functions'', "Qualifications'', ''Range_ Var"

101

Att Name

SEE ALSO

102

An att _namt refers to an attribute of a relation. An att _namt has the
syntax of a name.

All the att_namei in a database are listed in the system relation "attri­
bute".

create, create index, deny, destroy index, permit
"Name", "Target-Lists"

Bn"tton Lee

Constants

Britton Lee

A conatant is a value that remains unchanged throughout the execution
of a command. Oonatants are used in ezpre11ions and u arguments to
the execute command. There are eight different types or c:outant.s:

Integer Constant
An integer constant is a sequence or decimal or hexadecimal
digits. It may be preceded by ''Oo" or "Ox" to indicate octal or
hexadecimal values:

4
43

Character Constant

Oo777
Ox4E

A character constant is a sequence or characters enclosed in sin­
gle or double quotation marks:

"Henry"
'x'

"a,b,c"
'123'

To include a single quotation mark (apostrophe) inside a charac­
ter constant, either place the entire character constant in single
quotation marks, and double the single quotation mark which is
to appear inside the constant

'Britton Lee"• 110ftware1

or use double quotation marks around the character constant
and a single quotation mark where it is to appear in the con­
stant

"Britton Lee'• 110ftware"

To include double quotation marks inside a character constant,
either place the entire character constant in double quotation
marks, and double the double quotation mark which is to appear
inside the constant

"The word ""word"" ia in double quotation marks."

or use single quotation marks around the character constant and
double quotation marks around the part to be quoted

'The word "word" ia in double quotation marks.'

103

Constants

SEE ALSO

104

IDL Reference ManHI

BCD Constant
A BCD constant. ia a signed integer constant preceded by t.he
character'*':

*1
#-4"1

BCDFL T Constant

*104392884
#-4091

A BCDFL T constant is a Boating constant preceded by the char­
acter'*':

*1.0 *-98.1'9--4"1

1-1. *°·
Parameter Constant

A parameter constant ia a name preceded by a dollar sign (8). It
can only be used inside an IDL define command. The parame­
ter constant ia replaced by a value when the stored command ia
executed. Its type is unspecified until execution time. Even
though the value or a parameter constant can change, it ia con­
sidered a constant because its value remains the- same
throughout the execution or a command.

Floating Constant.
A Boating constant is a signed integer constant followed by
either a decimal point and digits, or by an 'E' or 'e' and a signed
integer constant, or both. It may be preceded by "Of" for FL T4
or "Od" for FL TS. The magnitude and precision of a floating
constant is system dependent.

24.4 -Od8e100 Of'l.0211

Binary Constant
A binary constant is represent.ed by "Ob" followed by a pair of
hexadecimal digits:

ObA8 Ob88

Substitute Constant
A substitute constant is a percent sign (%) followed by either a
name or an integer. Substitute constants are used primarily as
an intermediary form in the precompilation or embedded query
languages, such as RIC, and hardly ever used in interactive IDL.
They are used to substitute the value or a programming
language variable into an IDL command.

execute
"Expressions", "Qualifications", "Types"

Britton Lee

Dbname

SEE ALSO

Britton Lee

A dbname is the name of a database. It is listed in the "system" relation
"databases" in the "system" database. A dbname bas the syntax of a
name.

All the data in a database server is contained in databases. The "sys­
tem" database is a permanent database which contains data-dictionary
relations that store information about all or the databases in the data­
base server.

create database, destroy datab1U1e, extend database, open
"Name"

105

Expressions

108

An e:rpre11ion yields upon evaluation a value or set or values. For exam­
ple, the e:rpre11ion "43" or "a * b / c" yields a single value, while the
e:rpre11ion "r .name" yields a set or values, one for each tuple in the rela­
tion described by the range variable "r". The set may contain no values
at all.

An ezpreaaion may be any or the following:

aggregate
range_ var.att_name
constant
function
(expression)
- expression
expression + expression
expression - expression
expression • expression
expression / expression

(integer, bed, bcdftt types only)
(integer, bed, bcdftt types only)
(integer, bed, bcdtlt types only)
(integer, bed, bcdftt types only)
(integer, bed, bcdftt types only)

Floating-point arithmetic is not supported in IDL. Multiplication and
division have precedence over addition and subtraction, for example:

A + B * C = A + (B * C)

Every ezpre11ion has an implied value type. The type or a constant
ezpre11ion is implied by the type of the constant. The type or an attri­
bute is set when the relation is created. The type of a function or aggre­
gate depends upon the particular function or aggregate.

The type of the result of a numeric ezpre11ion involving more than one
operand can be found in the table on the following page.

Britton Lee

IDL Reference Manual Expressions

Type of One Operand

il i2 i4 bcd31 bcdflt

il il i2 i4 bcd31 bcdflt31

Type i2 i2 i2 i4 bcd31 bcdflt31

of

Other i4 i4 i4 i4 bcd31 bcdflt31

Operand

SEE ALSO

Britton Lee

bed bcd31 bcd31 bcd31 bcd31 bcdflt31

bcdlft31 bcdflt31 bcdftt31 bcdflt31 bcdftt31 bcdftt31

The result of all bed arithmetic is the full precision (31 digits). If any
number in a calculation is bcdftt, the entire calculation will be performed
to 31-digit precision. For example,

1) retrieve (a = r#l./7);

returns

a
.1428571428571428571428571428571

"Aggregates'', "Qualifications'', "Targe~Lists", "Types"

107

Functions

108

The database server provides several predefined (unctions. These (unc­
tions are divided into rour categories:

• Arithmetic (aba, mod, etc.)

• String (concat, substring, etc.)

• Type conversion (unctions (binary, lltl'lng, etc.)

• Database server (unctions (reLname, getdate, etc.)

The syntax or an IDL Cunction call is similar to that or traditional com­
puter languages, except that the parentheses are omitted when there are
no arguments:

no arguments:
one argument:
two arguments:
three arguments:

runcname
Cuncname(arg)
Cuncname(argl, arg2)
Cuncname(argl, arg2, arg3)

Most function arguments can be expressions or any appropriate type,
except when the argument refers to a specific number of digits, charac­
ters, or bytes, in which case the argument must be an integer.

The predefined functions available in IDL are summarized on the next
page, followed by a brier description or each Cunction.

Britton Lee

IDL Reference Manual Functions

SUMMARY OF FUNCTIONS ON THE DATABASE MACIDNE

OategorJI Function Return Value

arithmetic abs(n) absolute value
mod(n,d) remainder of n divided by d

string concat(a,b) concatenation of a and b
or binary substr(pos ,len ,str) substring of atr

substring(pos,len,str) same as substr

conversion intl(n) 1-byte integer
int2(n) 2-byte integer
int4(n) 4-byte integer
!fixed] binary(n) binary type
fbinar::r(n) same as fixed binary(n)
[fixed] bcd(len,n) [u] bed type
fbcd(len,n) same as fixed bcd(Jen,n)
!fixed] bcc:lflt(Jen,n) [u] bcdflt type
fbcc:lflt(Jen,n) same as fixed bcc:lflt(Jen,n)
(fixed] bcc:lfloat(len,n} same as bcc:lflt(len,n)
[fixed] string(Jen,n) [u] c type
fstring(len,n) same as fixed string(len,n)
fchar(len,n) same as fixed string(Jen,n)
(fixed] char(Jen,n) same as string(len,n)
bcdflxed(prec ,Crac ,n) bcdflt type (rounded}
float4(n) 4-byte float
flt4(n} same as float4(n)
float8(n} 8-byte float
flt8(n) same as float8(n)

idm uaerid current user id in this database
dba user id of DBA in this database
host host id
gettime time (i4}
getdate date (i4)
databuename name or open database
reLname(relid) relation name
reLld(reLname) relation relid
att_name(relid ,attid) attribute name

Britton Lee 109

Functions

110

aba(n)

IDL Reference Manual

The abe function returns the absolute value of its argument.
The argument must be of type integer, bed, or bcdftt. The
result is of the same length aa the argument for integers and 31
digits long for bed and bcdflt.

att_name (relid,attid}
The att_D&me function returns the attribute name of the
specified attribute. Each attribute in a database is uniquely
identified by its attid and by the relid of the relation in which it
occurs. These are listed in the system relation "attribute". The
att_ll&llle function always returns a cl2 value. U there is no
attribute with the specified attid and relid, att_name returns
blanks.

bcd(len,expr)
The bed function converts e:rpr to a bed integer and returns a
bed number /en digits long. The expression may be integer,
character, bed or bcdflt. Uthe expression is a bcdflt number, it
is truncated toward zero (e.g., 6.6 becomes 6 and -6.6 becomes
-6). The /en must be an integer constant. For example,

1) retrieve {x ,_ bed{&, "123"));

returns

and

1) retrieve (x ,_ bed(4, "1234.58"));

returns

The query

1) retrieve (x ,_ bcd(3, "12345"));

Britton Lee

IDL Reference Manual

Britton Lee

Functions

generates the error message "Numeric overflow".

If len is zero, the following lengths (in digits) are used:

Argument Tr1>e Reeult Lengtla
il 3
i2 4
i4 7

bed (n) n
bcdftt (n) n
char (n) n/2 + 2
bin (n) n

beclfixed(prec ,rrac ,n)
The bed.fixed function returns a bcdflt value prec digits long
and a maximum or /roe digits to the right or the decimal point.
The value or n is rounded toward even last digits. The /rac and
prec must be integer constants and prec cannot be smaller than
/rac; the numbers cannot be BO large that there are not /rac
decimal places to round oft'. If prec is zero, a value for prec is
determined from the n passed in. The n argument may be
integer, character, bed, or bcdftt.

bedflt(len,expr)

bed.fixed (5,2,*.123)
bed.fixed (5,2,*.127)
bed.fixed (5,2,*.125)
bed.fixed (5,2,*.135)
bed.fixed (2,3,anything)
bed.fixed (3,3,*6./7)
bed.fixed (3,3,*7 ./7)
bed.fixed (0,3," .1234")
bed.fixed (5,2,"768.534")
bcdflxed (4,3," 123.45")
bedfixed (8,2,"35.478")
bedfixed (7 ,3,100)
bedfixed (5,2,*.1251)

- .12000
- .13000
- .12000
-.14000
-=illegal
- .857
- overflow
- .12300
- 788.534
-= overflow
- 35.48
-100.0000
;.... .13000

The bedftt function returns a bcdflt value len digits long. The
expression may be integer, bed, bcdflt, or character. Numbers are
rounded if necessary.

111

Functions

112

IDL Reference Manual

1) retrieve (x = bcdflt(4, "123.45"));

returns

and

1) retrieve (x = bcdflt(o, "1234587 .89"));

returns

It len is zero, the following lengths are used:

Argument T11pe Re,./t Lengtla

il 3
i2 4
i4 7

bcd(n) n
bcdftt(n) n
char(n) n/2 + 2
bin(n) n

binary(expr)
This function converts ezpr to type binary. The result is a
binary value that is the internal representation or the ezpr
passed in, whatever its type. This is, in effect, a relabeling or the
argument data. All types may be passed in. The resulting
length is the same as that or the argument passed in. When
retrieved using IDL, binary targets are displayed in hexadecimal
format.

Britton Lee

IDL Reference Manual

Britton Lee

Functions

concat(stra,strb)
The concat function returns the concatenation of the two
strings passed in. It takes two character strings, strips all trail­
ing blanks from the first string (all but one, if ihe string is all
blank), strips all trailing blanks from the aecond string, and
appends the second to the first. The concat function performs
the same functions for binary strings, except trailing sero bytes
are stripped instead or trailing blanks.

For instance,

1) retrieve (name == concat(emp.Snt,emp.lut))

returns an employee's first and last names concatenated in the
domain "name". Both strings must be character or both must
be binary.

databaaename

dba

The databuename (unction returns the name of the currently
open database, always a c12 value.

The dba function returns an integer equal to the uid of the
currently open database, as an i2 value. This is always the
owner of the system relation "relation". The dba function
always returns 1 in the "system" database.

flxed bcd(len,expr)
flxed bcdflt(len,expr)
flxed atring(len,expr)
flxed binary(expr)

These are equivalent to bed, bdcflt, atrin&, and binary, except
that the results are uncoJLpressed. This difference is usually not
significant. For example,

1) retrieve (fb==flxed bcdflt(&," .a"),
2) b==bcdflt(&," .a"));

returns

Laoo: I .~ I

113

Functions

114

IDL Reference Manual

ftoat4(n)
-ftoat8(n)

These functions convert a ftt4 to a ftt8 and vice-versa. They
cannot be used on any other type.

getdate
This function returns the number or days from an initial date.
This initial date can be set to any value by the IDMDATE util­
ity. When the time (reported by the gettime function) reaches
the number of 60ths of a second in 24 hours, the time is reset to
zero and the date (reported by getdate) is incremented by one.
The date returned by getdate is represented in GMT.

gettime

host

The gettime function returns the time as the number of 60ths
of a second since midnight as an i4 value. The following exam­
ple provides the time in hours and minutes.

1) retrieve {houn = gettime/218000,
2) minutea = mod{gettime,3800));

The time value is always retched once for a command;. it does
not change over the course or a long retrieve.

The host function returns the host-id o(the host through which
the user is presently accessing the database server. It is only
useful it there are multiple hosts connected to the database
server.

intl(expr)
int2(expr)
int4(expr)

These functions convert their arguments to integers and return
a value of il, i2, or i4 type, respectively. The argument may be
integer, character, bed, or bcdftt.

Britton Lee

IDL Reference Manual

Britton Lee

Functions

mod(exprl ,expr2)
The mod function returns the remainder when the first argu­
ment is divided by the second. It can only be used on integer or
bed expressions. For example,

1) replace emp (num_chllclren ==
2) mod(emp.num_ehllclren,12)

takes the number or children an employee has (as specified in the
relation "emp"), divides that number by 12, and stores the
remainder in "num_children". The call mod(n,O) is defined to
be equal to n. The sign of the first argument is the sign or the
result. The sign or the second argument is ignored.

reLld(object_ name)
The reLld function returns the relation identifier corresponding
to the specified o6jeeL name. The object_ name must be a char­
acter string.

The object_ name may be followed by a colon followed by a user
name to s:pecify an object owned by another user (i.e. other than
the user submitting the command). If the o6ject_name is
invalid, a aero is returned.

reLname(relid)
The reLname function returns the relation name corresponding
to the relation identifier relid. -Every relation in a database is
uniquely identified by its relid. The definitions a.re listed in the
"relation" relation in the system database. A value of type c12
is returned. If no relation with the specified relid exists, blanks
are returned.

lltring{len,expr)
The lltring function converts eqr to type character and returns
a character string of length len. The eqr can be of any type
except float. If len is aero, a length is used based on eqr:

Trpe of Eqr Length of Reault
il 4
i2 6
i4 11

bed (n) 2n - 3
bcdftt (n) 2n - 3
char (n) D

bin (n) n

115

Functions

SEE ALSO

118

IDL Reference Manual

aubatring(pos,len,str)

wierid

The .ubatriq function extracts a string Crom a character or
binary string expression. The result ia a character or binary
string or length len, containing the characters or bytes or air
starting Crom position poi. The position or the first character oC
the string ia 1. U the substring extends beyond the end or the
1tr, the result is padded with blanks (for character) or zero bytes
(for binary). For example,

1) retrieve (c-1111h.tring{3,4,"abcdetghi"),
2) b=aubatriq(3,4,binaey(1234S878)));

returns

The uaerid function returns u an i2 value the database server
user id or the current user. The user ids are recorded in the sy&­
tem relations "host_ users" and "users" in the open database.

"Expressions"

Britton Lee

Name

SEE ALSO

Britton Lee

A name is a sequence of one to twelve characters. The first character
must be alphabetic and the remainder may be alphabetic, numeric
and/or underbars. A name may or may not be case-sensitive, depending
on the host environment. Valid names are:

host_ users
uaers
tx0174

Invalid names are:

sys$list

Keywords
keywords
RS_232C

rubber _cement
821208
o_dec_82

"Att_Name", "Dbname", "Object_Name", "Query-Name", "ReLName"

117

Object_Name

SEE ALSO

118

An o6ject_ name is the name of an object in a database. The objects in
a database are listed in its system relation "relation". There are seven
types or objects:

U - user relation
S - system relation
T - transaction log
C - stored command
P - stored program
V- view
F - file

The syntax or an o6jecL name is

name[:owner]

where name is the name or the object and owner is the name or its
owner, as stored in the system relation "users". IC owner is not specified,
the default owner is the current user. IC no object belonging to the
current user is found, the default is an object owned by the DBA/

An object_ name may be a quoted string.

&880ciate, create view, deny, destroy
"Dbname", "Name", "Query _Name", "Rel_Name"

Britton Lee

Options

SEE ALSO

Britton Lee

There are two kinds of options in IDL, those represented by an option·
number or an option-name in the 11et and wu1et commands, and those
designated by the with optiona syntax in the create, create database,
create index, extend database, and range commands.

The options for 11et and unset a.re listed in the description of the 11et
command.

The options preceded by the keyword with designate specific optional
features with which a command may be invoked. Some options require a
value that is a quoted string or an integer. The specific values which an
option can take depend on the individual command and are described in
the command descriptions.

create, create database, create index, extend database, range, 11et,
UJUlet

119

Protect_Modes

SEE ALSO

120

A protect_ mode represents the type or access which can be permitted or
denied a user for a particular object. Some protect_ modea are applicable
to relations, views, files, and attributes, others to stored commands and
stored programs, and others to databases.

A privilege defined by a protect_ mode is permitted or denied using its
name, such as read or create, but it is identified in the "access" attri­
bute or the system relation "protect" by a numeric value.

The Collowing table maps the names and numeric values or
protect_modes. The numbers in the IDL column or the table are the
results or idl's conversion or database server values to signed 1-byte
integers. These are the values displayed in a retrieve on the "protect"
relation.

Mode Octal

read 0001

write 0002
all (read, write) 0003
execute 0340

create 0306
create index 0310

create database 0313

read tape 0004
write tape 0010

aJI tape OOH
dump 0344

deny, permit
"Users"

Hu

OxOl

Ox02

Ox03
OxeO

Oxc6

Oxc8

Oxcb

Ox04

Ox08

OxOc

Oxe4

IDL Appliu To

1 relatioaa, Yiews, ftlea, attributes

2 relation•, view1, ftles, attributes

3 relatioaa, Yiewa, ftlea, attri bu tea

~ stored commands, 1tored programa

-58 this databue (do not specify object)

-.58 this databue (do not specify object)

-53 system databue (do not specify object)

4 this database (do not specify object)

8 this database (do not specify object)

12 this d&t.abue (do not specify object)

this d&t.abaae and transaction log (do not specify object)

Britton Lee

Qualifications

· ..

Britton Lee

A qualification is a boolean expression used to specify tuples which meet
certain criteria. It is that part or an IDL command that determines
which particular tuples ot a relation are to be affected by the command.

A qualification is may be used with a target-lilt to build a new relation
Crom an existing relation.

A qualification is preceded by the keyword where and has one or the
following Corms:

(qualification)
not qualification
qualification or qualification
qualification and qualification
expression > expression
expression < expression
expression > == expression
expression < == expression
expression == expression
expression !== expression
expression == pattern
expression !== pattern
pattern == expression
pattern !== expression

Relational operators (>, <, >=, <=, =, I=, < >) are supported by
the database server tor all data types. If the terms being compared con­
tain characters, the comparison is governed by ASCII or EBCDIC order,
depending on which character set was specified when the database was
created. Blanks at the end or character strings are ignored for com­
parison purposes.

The command

1) range of e la employees
I) delete e where e.ealaey > 14000;

deletes from the employees relation all tuples representing employees with
salaries over 24000. The clause "e.salary > 24000" is the qualification.

If the condition expressed by the qualification is never true (e.g., "1=2"),
no tuples will be afl'ected by the command. If the condition expressed by
the qualification is always true, all or the tuples in the relation will be
affected. This is the default, when no qualification is specified.

121

Qualifications

PATTERNS

122

IDL Reference Manual

A pattern-matching string may be used in a qualification to match a
wide variety or character strings.

Pattern-matching strings can be rormed using special characters which
match characters other than themselves. Trailing blanks in
uncompressed character attributes are not considered characters which
can be matched.

These special characters are:

*
1
[

I
\
- (dash)

matches zero or more characters
matches any one character
begins a group or characters any one or which
may be matched
ends the group or characters
escapes any or the above
specifies, within brackets "[J,,, a range or
characters to match

Pattern-matching strings may appear only in the qualification or a com­
mand.

.·
For example, to find the salary or all employees whose name starts with
"J,,, use the command

retrieve (e.aalaey) where e.name==" J*"

A:ny character string that contains an asterisk (*), question mark (7), or
either bracket ([)) is considered a pattern, unless the special character is
escaped with a backslash (\). Ir a user wants to specify a literal asterisk,
ror example, the asterisk must be preceded with a backslash so that it
will not be interpreted as a special character.

The table on the rollowing page suggests, through the use or examples,
the kinds or results produced by pattern-matching strings.

Britton Lee

IDL Reference Manual

JOINS

Britton Lee

Qualifications

Thia will match 6ut not
pattern theae atringa tlaeae 1tringa

"a*e" "ae" "Ae"
"ace" "aE"
"a3e" "bae"

"abcde"
"a2X.(#e"

"a?e" "ace" "ae"
"aQe" "abce"
"ar/fe"

"a[bcd]e" "abe" "aee"
"ace" "aae"
"ade" "abde"

"a[b-m]e" "abe" "aae"
"ace" "ane"
"ade" "aBe"
"ame" "&-e"

•a*e" "a*e" "a\be"
"abe"
"ae"

The last example not a true pattern because the character '*' is to be
interpreted as a literal asterisk, not as a special character specifying a
match or aero or more characters; this ia indicated by the backslash.
The string is really a three-character constant consisting or the charac­
ters 'a', '*', and 'e'.

A join is a mechanism Cor relating data Crom multiple objects in a single
query. The q.alification in the Collowing query represents a join oC the
''x" and ''y" relations.

1) range or x la x;
1) range or 'T la y;
1) retrieve (x.name, x.num, 7.quan)
2) where x.num - y.num;

In this query, data Crom the "x" and "y" relations is retrieved only Crom
those tuples in which the "num" attribute in ''x" equals the "num" attri­
bute in "y". Ir the "x" relation consists of:

123

Qualifications

124

IDL Re/erence Manual

x relation
num name
1 zinrandel
2 riesling
3 cabernet
4 chardonnay

and the "y" relation consists of

y relation
num quan
1 50
2 70
5 35
6 60

the query retrieves only

name DUID quan
sinfandel 1 60
riealing 2 '70

A one-way outer join requests all the specified data from one relation,
regardless of the whether the condition joining the other relation is true.
Non-matching data from the other relation is assigned a default value or
zero (0) for numeric data and blanks ror character data.

A one-way outer join is indicated by an asterisk (*) attached to any or
the allowable relational operators for a qualification. The asterisk is
placed on the the same side or the relational operator as the relation
from which all specified data is to be retrieved. Thus the query

1) retrieve (x.name, x.num, 7.quan)
2) where x.num •- 7.num;

retrieves all or the specified data from "x" and only the matching data
from ''y":

Britton Lee

IDL Reference Manual

SEE ALSO

Britton Lee

Qualifications

name num quan
ainfandel 1 60
riesling 2 '10
cabernet 8 0
chardonnay 4 0

while

1) retrieve (x.name, y.num, y.quan)
2) where x.num ==• y.num;

retrieves all or the specified data from "y" and only the matching data
from "x":

name num quan
ainfandel 1 60
riealing 2 '10

6 I&
e eo

The database server does not support two-way outer joins.

•ppend, audit, create view, delete, de8troy, replace, retrieve
"Constants", "Target-Lists"

125

Query_Name

SEE ALSO

128

A que,.,_ name is the name or a stored command which is referenced by
the define and execute commands.

The syntax or a qve,.,_ name is

name[:owner}

define, execute

Britton Lee

Range_ Var

SEE ALSO

Britton Lee

A range variable or range_ var represents one or more tuples in a rela­
tion. It has the syntax or a name. A range_ var is considered a variable
because the tuple it represents changes when the command is executed.
Several IDL commands require that relations be acceeeed through a
range_ var rather than through the relation name. A r•nge_ Hr is
declared in a range statement.

A specific attribute can be referenced by appending a period and the
attribute name to the range_ var.

The psued"attribute all can be appended to reference all attributes.

Ir a range_ var "e" is declared as

1) range of e ia employeee;

then

1) retrieve (e.all);

accesses all or the tuples in the "employees" relation and

1) retrieve (e.num) where e.lut.name == "Jonea";

accesses all or the employee numbers in the "employees" relation for
those employees whose last name is "Jones".

aaeociate, delete, range, replace, retrieve
"Name"

127

Rel_ Name

SEE ALSO

128

A reL name is an object_ name which refers to a relation, view, or tran­
saction log.

The syntax of reL name is the same as that of o6jed_ name.

A relation can be conceptualized as a table with rows and columns. The
rows are called tuples (or records) and the columns are called attributes
(domains or fields). Every attribute has a name and a declared data
type (e.g., integer, character, etc.) and all values in the attribute must be
of this type.

The order in which tuples are stored in the relation is arbitrary.

append, audit, aeate, create Index, deny, d..troy, extend, pe.,_
mlt, range, retrieve into, truncate
"Att_Name", "Object_Name", "Qualification", "Target-Lista, "Types"

Britton Lee

Target-Lists

SEE ALSO

Britton Lee

A target-liat is a list of targeta separated by commu and enclosed in
parentheses. The targeta can have the following forms:

domain_ name = ezpreaaion
The name and value of the domain is explicitly stated as in

1) retrieve (total = 11WD(w.onhand));

range_ var. att_ name
Multiple values are accessed for each instance of the attribute
referenced by att_ name in the relation referenced by range_ var:

1) range of e ls employees
2) retrieve (e.name, e.phone);

range_ var.all
The pseudo-attribute all yields all of the attributes of the refer­
enced relation in the order in which they were created.

1) range of els employees
2) retrieve (e.all) where t.name = "Smith";

When multiple targets are specified in a target-lilt, the target-lilt values
are bound to associated program variables as illustrated below. If the
relation indicated by "y" has three domains "y.q", "y.r", and "y.s", and
the command is

retrieve (x.a, y.all, x.b)

the following bindings apply:

Target-Liat Poaition Value of Target

1 x.a
2 y.q
3 y.r
4 y.s
5 x.b

append, audit, create view, destroy, retrieve
"Att_Name", "Expressions", "Qualifications", ''Range_ Var",
"Rel_Name", "Types"

120

Types

INTEGER

FLOAT

CHARACTER

BINARY

130

Every attribute in a relation has a fJPe which is set when the relation is
created. The type or an attribute determines the values that the attri­
bute can assume.

There are six value types available on the database server and each or
these types can have a variety or lengths. The types are:

Name of Type Mnemonic "Type" in
"Attri6ute" Relation

4-byte integer i4 56
2-byte integer i2 52
1-byte integer i1 48
8-byte float t8 60
4-byte float £4 57
character c 47
binary bin 45
integer bed bed 46
floating bed bcdflt 35

Integer attributes are stored as binary two's complement integers in one
byte (-128 to +127), two bytes (-32,768 to +32,767), or four bytes
(-2,147,483,648 to +2,147,483,647). Full four-function arithmetic and
modulus and absolute value functions are supported for integer types.

Floating-point attributes are stored either as four bytes (C4) or eight
bytes (ts). No arithmetic functions are available for them. The only com­
parison operations available are - and I-=. Floating-point numbers may
be stored and retrieved OD the same machine; however, floating-point
numbers written OD one machine and read on another will probably not
give predictable results.

Character attributes are either compressed or uncompressed. Character
compression is performed by deleting trailing blanks. For example, "clO"
signifies a compressed character a.ttribute that is a maximum of 10 char·
acters long, and "uc19" signifies an uncompressed character attribute
which is to be always stored as 19 characters (even if they are all
blanks). The maximum length for a character attribute is 255 characters.

A binary attribute is a binary string that is stored in the Corm in which
it was received Crom the host system. Uncompressed binary strings are
zero-filled to the length specified when the data is received Crom the host.
Compressed binary strings have trailing zero bytes deleted. For example,
"ubin5" means an uncompressed binary string or 5 bytes and "bin200"
means a binary string with a maximum length or 200 bytes. The max­
imum length or a binary attribute is 255 bytes.

Britton Lee

IDL Reference Manual

INTEGER AND
FLOATING BCD

SEE ALSO

Britton Lee

Types

Integer and Boating-point bed attributes also are either compressed
(variable-length) or uncompressed (fixed-length). The length is specified in
number of digits. Ir an even number of digits is specified, the number is
incremented by 1 so that the length is always odd. Compressed bed
attributes consume less storage than uncompressed because trailing zeros
are dropped. Trailing zeros are left alone in uncompresaed bed attri­
butes. The maximum length of a bed or bcdftt is 31 digit.a. Bed and
bcdftt types can participate in arithmetic as if they were integers. The
results of bed arithmetic are always to a precision of 31 digits.

When a relation is created, each attribute IJPe is declared by its
mnemonic followed by its length, as in

1) create myrel (n.ame=clO, coun.t=l4, floactlon.=bcclflt8);

Every attribute of every relation in a da.tabue is listed in the system
relation "a.ttribute". The "name" a.ttribute in this relation conta.ins the
attribute's name, the "type" attribute contains a numeric code represent­
ing its tVPe, and the "length" attribute conta.ins its length as an unsigned
number. Ir tuples are retrieved from the "attribute" relation and the
length appears to, be a negative number, add 256 to get the correct
length. For bed and bcdftt, the recorded length represents the number of
bytes (2 through 17) not the number or digits (1 through 31).

create
"Constants", "Expressions"

131

Users

EXAMPLE

SEE ALSO

132

A tmsr is an individual or group or individuala with accese to the data­
base server. A •aer communicates with the database server through the
intermediary or a host computer.

All -.era are identified through two identification numben, a host-id and
a host-user-id, which are provided by the host system. In the database
server, the system relation "host_users" maps the host-id and the host.­
user-id into a single user-id. The system relation "users" maps the user­
id to a user name and group.

The DBA assigns general accese to new uaers by entering their
identification data in the "host-users" and "users" relations. After a new
uaer has been identified in these two relations, the DBA can assign
specific access right.a by user name or group name through use or the
permit and den:r commands.

We will add a new uer, "karen", and assign her to group number 20.
Assume that the host-id or the system "karen" worlcs on is 3, and her
host-user-id on that system is 301.

1) open ll)'stem;
1) range ot u ls users;
1) append to ueen (
2) name == "karen",
8) gid = 20,
4) id == max(u.id) + 1);
1) retrieve (u.stat, u.id, u.gid, u.name)
2) where u.name = "karen";

stat Id gid name
0 karen

1) append to host_usen (
2) hid== a,
a) huid =- 301,
4) uld =- u.ld)J
1) range of h ls host_1111en;
1) retrieve (h.all)
2) where u.name == "karen"
8) and u.ld =- h.uid;

al hid huid uid
0 a 301 321

deny, permit

Britton Lee

PART IV

IDL FRONT-END COMMANDS

Introduction to Front-End
Commands

Britton Lee

The IDL query language provides a set of front-end commanda which can
be invoked to govern certain aspects or an IDL session. Theee commands
take effect immediately after they are invoked; unlike regular IDL com­
mands, they are not buffered to a go or a semicolon.

All of the front-end commands must be invoked at the beginning or a
line. AU oC the front-end commands begin with a percent symbol (%).
All of the front-end commands may be abbreviated to any length, pro­
vided that the abbreviation results in an unambiguous command name.

This section describes the basic front-end commands which are available
on all systems supported by Britton Lee host software. Some systems
have an extended set of front-end commands. Consult the host software
documentation Cor your particular environment for information concern­
ing additional front-end commands which may be available on your sys­
tem.

The front-end command %! lists all of the front-end commands
described in this section.

185

%associate IDL Re/erenee Manual

%associate (on I oftj

DESCRIPTION

EXAMPLE

SEE ALSO

138

%aaoctate is used to turn the auto-associate reature on and off. The
auto-aseoc:iate reature automatically executes the aaociate command
whenever a. create, create view or define command is executed. It
provides this automatic documentation or database objects unless the ic:ll
program was invoked with the -a or /nouaociate ftag for the session
in which the object was created.

The %aaoclate command may be used to suspend the automatic execu­
tion or the aaoclate command for the remainder or the tell session or
until the user wishes to turn it on again. This may be desirable it the
command creating the object exceeds 4000 bytes, which would make it
too large to &t into the command buffer.

Ir neither on nor off is specified, %...oclate turns auto-aseoc:iate on.

1) %auociate off
2) create myrel (
8)
•)

0'7));
1) %uaociate on

uaociate

r turn auto-amoctate off •I
/* create a relation • /

/* turn auto-U110clate on again • /

Britton Lee

\
!

IDL Reference Manual %continuation

%continuation [character]

DESCRIPTION

EXAMPLE

Britton Lee

This sets the continuation character t.o the value indicated by elaeracter.
Lines ending with this continuation character are not sent directly t.o the
parser.

If continuation mode has been set using %continuation, the go or
semicolon is not recognized as an IDL command terminator. Instead, the
first line or input which does not terminate with the continuation charac­
ter terminates the command.

The value or character may not be a letter or digit. Valid continuation
characters are:

!@%"*()+-==-'I {}/T<>,.

Any continuation character may be unset by invoking %continuation
with no argument. Ir this is done, all lines are saved and the user must
enter a semicolon {;) or the keyword go t.o indicate that the lines are t.o
be submitted t.o the parser.

1) %continuation + r met continuation chal"acter • /
2) range of p is parts +
1) append to parta(name == "tube", quan == 10) +
4) retrieve(p.name, p.quan) +
6) where p.name == "tube" /* command ends here • /

name quanJ
tube 20 J

1) %continuation
I) delete p where p.quan < 1;

/* mwet continuation chal"acter • /
/* go and 11emlcolon relmtated • /

137

%display

1. %dlspl~ text

DESCRIPTION

EXAMPLE

138

%cilaplay sends te:rt to standard output.

1) %display "Good Morning"
Good Morning
2)

IDL Reference Manual

Britton Lee

IDL Reference Manual

%edit (filename]

DESCRIPTION

EXAMPLES

SEE ALSO

Britton Lee

%edit

%edlt with no argument edits the transcript or the D>L .-ion. This is
a useful tool for making a change in a series or D>L commands which
have not yet been executed without having to re-enter the whole Hries or
commands from the beginning. With a filename, 9'ecllt edits the
specified file. Upon return to ldl, ,,.oedit submits the file it has just
edited as input.

The editor which is called is specified by the EDITOR parameter in the
"params" file on the host system.

With a filename:

1) ,,.oedit cmd.flle

Now "cmd.file" can be edited. The contents or "cmd.file" will be exe­
cuted when the user leaves the editor.

Without a filename:

1) range of pis parts
I) append to part.a (name =
8) %edit

This places the user in the editor editing a temporary file which looks
like this:

range or p is parts
append to parts (name=

The contents or this file will be executed when the user leaves the editor.

parama(SI) in Boat Software Specification
par ams in C Run-Time Li6rarJ Ref erenee

189

%experience

%experience level

DESCRIPTION

EXAMPLE

140

IDL Re/erenee Manual

%experience sets the user's experience level to let1el. The value of let1el
controls the amount of detail which will be given in IDL error messages;
the more elementary the level, the more detailed the message.

Values for let1el can be "beginner", "able", or "expert". Any other value
is interpreted as "beginner". Values for let1el may be abbreviated and
are not case-sensitive.

%experience beginner

Britton Lee

IDL Reference Manual

%help

DESCRIPTION

EXAMPLE

Britton Lee

%help

%help lists all of the available fron~end commands. %? ia a synonym
for %help.

1) %help
HELP: Immediate Commands:

auociate - auto-auociate on (1) or off (0)
continuation - eet continuation char
display - display uaer arguments
edit - edit ••ion log or flle
experience - change experience level
r - print this list
help - print thia liat
input - Input command fl.le
ndo - re-execute ion log
substitute - eet value x for %x uaage
ahowrangee - show CUJ'l'ent range variables
trace - eet internal trace flag

141

%input

%input [filename)

DESCRIPTION

EXAMPLE

142

IDL Reference Manual

%input specifies a command file Crom which ldl can read its input. If
the filename is not specified, the commands are read Crom standard
input.

If a filename is specified, commands are read and executed until an exit
or end-of-file is read, at which point ldl reads Crom standard input.

The input file may contain comments enclosed by the characters /* and
• I. The IDL parser ignores all or the text between the /* • I pairs. The
Collowing is valid input to ldl:

r this u. a comment • ,
range of p U. part.
retrieve (p.name, r here u. another comment • , p.quan);

%input "cmd.flle"

Britton Lee

IDL Reference Manual %redo

%redo

DESCRIPTION %redo resubmits the current idl session as input to ldl.

EXAMPLE 1) range of p ia parts;
1) retrieve (p.partnum, p.onhand);

partnum onhand

1 25
2 so
s 48

a tuples affected.

1) %redo

partnum onhand
1 25
2 80
3 48

8 tuplea affected.

Britton Lee 143

%showranges

%showranges

DESCRIPTION

EXAMPLE

144

IDL Reference Manual

%ahowrangea displays the currently defined range variables.

1) range of p is parts;
1) range of pr la products;
1) %ahowrangea

range of p la parts
range of pr is products
(2 range variables declared)

2)

Britton Lee

IDL Reference Manual %substitute

%substitute name value

DESCRIPTION

EXAMPLES

SEE ALSO

Britton Lee

%substitute assigns a specific value to name. Substitutions put place
holders into an ITREE using the %name syntax in ldlpane. Values
may later be substituted into the tree without reparsing. The tuu•e may
be quoted.

Since this command sets up a substitution, rather than a macro, there
are restrictions on where the substitution can occur. Generally, substitu­
tions can be used

• Wherever an e:rpreaeion can occur.

• As an att_ name or object_ name on the left side of an equals
sign provided that the substitution is a character type.

• As the with part of an amociate command.

%substitute can set character arguments to be used in pattern­
matching strings, as long as the pattern-matching string is not used in a
targtt-liet.

To disable interpretation of a string containing a special character as a
pattern-matching string, either precede the special character with a
backslash as in

1) %substitute a "a*b"

or follow the value argument with the word char, as in

1) %aubstitute a "a*b" char

1) ,..oaubstitute al "hubcap"
2) %substitute a2 "20"
a) %substitute rel "pa.rill"
4) append to %rel (name= %al, quan-= %a2);

ldlpane(31), iuubat(31) in Boat Software Speeifieation
idlparae, iesubst in C Run- Time Librarr Ref erenee

145

%trace

%trace tracespec

DESCRIPTION

EXAMPLE

SEE ALSO

146

IDL Reference Manual

%trace invokes t/aet(J, with traceapec as its argument.

1) %trace IOTRAFFIC.10

ti (31), mapsym(31), symflle(51) in Hoat Software Specification
ti, maPS)"m, symflle in 0 Run-Time Librarg Reference

Britton Lee

PARTY

APPENDICES

IDL Reserved
Words

Britton Lee

The following words are IDL reserved words, and may not be used other­
wise in IDL commands unless they are quoted.

abort and append
associate audit begin
by clustered create
define databue delete
deny destroy end
execute extend fixed
index into ia
nonclustered of OD

open or order
permit range reconfigure
replace retrieve set
ll)"DC tape to
trace tranaaction truncate
unique unset view
where with :

149

IDL Grammar

150

The following pages contain a formal description of the Intelligent Data­
ba.se Language (IDL) supported by Britton Lee Host Software.

IDL_program:
statement_list
execute_statement
execute _statement statement_ list r null statement • /

statement_ list:
statement
statement_list statement

statement:
stmt

st mt:

stmt:

st mt:

stmt:

stmt:

abort transaction

append opt_ TO subs_object_name (targets) opt_qualification

ueociate subs_object_name
ueociate attribute
-..ociate subs_object_name opt_ WITH string_constant
-..ociate attribute opt_ WITH string_constant
U80ciate subs_object_name opt_ WITH string_constant

LCOMMA string_constant
ueociate attribute opt_ WITH string_constant LCOMMA

string_ constant

audit (targets) opt_qualification
audit opt_INTO subs_object_name (targets) opt_qualification

begin transaction

Britton Lee

IDL Re/erence Manual

stmt:

stmt:

st mt:

stmt: ·

stmt:

st mt:

st mt:

stmt:

st mt:

stmt:

st mt:

Britton Lee

IDL Grammar

create subs_object_name
(

opt_name (Cormat_list) opt_with_clauae
[, opt_name (Cormat_list) opt_witb_clauae]

) opt_ with_ clause

create databue subs_object_name opt_ with_clause

create opt_UNIQUE opt_CLUSTERED_or_NONCLUSTERED
index opt_ON subs_object_name
(attribute_NAMEs) opt_ with_clause

create view subs_object_name (target.a)
opt_quali&cation

deflne object_name statement_list end deflne

delete name opt_qualification

deny protect_mode protect_object protect_attrs opt_user _list

destroy object_names
destroy (target.a) opt_qualification

destroy databue object_names

destroy opt_UNIQUE opt_CLUSTERED_or_NONCLUSTERED
index opt_ON subs_object_name (attribute_NAMEs)

end transaction

151

IDL Grammar

stmt:

stmt:

stmt:

stmt:

stmt:

st mt:

stmt:

1tmt:

stmt:

stmt:

stmt:

stmt:

102

IDL Reference Manual

execute execute_statement

extend subs_object_name opt_ witb_clause

extend database subs_object_name opt_ witb_clause

open subs_object_name

permit protect_mode protect_object protect_attrs opt_user _list

range of ;name 18 rangeis opt_ witb_clause

reconfigure

replace name (targets) opt_qualification

retrieve opt_UNIQUE (targets) opt_order_list opt_qualification
retrieve opt_UNIQUE opt_INTO subs_object_name (targets)

opt_order _list opt_ qualification

•t LCONSTANT _list

qnc

trace tracetype constant

Britton Lee

IDL Reference Manual

Britton Lee

st mt:
truncat.e object_names

st mt:
unaet LCONSTANT_list

attribute:
name LPERIOD name

attribute_ NAME:
name

attribute_NAMEs:
attribute_NAME_list

attribute_NAME_list:
attribute_ NAME

IDL Grammar

attribute_NAME_list LCOMMA attribute_NAME

boolean_expression:

by_list:

(boolean_expression)
not boolean_expression
boolean_expression and boolean_expression
boolean_expression or boolean_expression
expression relop expression

expression
by _list LCOMMA expression

comma_ with_ option:
LCOMMA with_option

constant:
LLEXCONSTANT
substitution

const_term:
constant
LLEXNAME

153

IDL Grammar

154

execute_statement:
object-name param_list

expression:
constant
name
parameter
attribute
- expression
+ expression
(expression)
expression + expression
expression - expression
expression • expression
expression / expression

%prec unary
%prec unary

IDL Reference Manual

name opLUNlQUE (expression_list opt_by_clause opt_qualification)
LFIXED name (expression_list opLqualification)

expr _list:
expression
expr _list LCOM:MA expression

expression_ list:
expr_list

format_list:
simple_format_list
partitioned_ format_ list

f orma.t_spec:
name LEQ name

LCONSTANT _list:
const_term
LCONSTANT_list LCOMMA const_term

name:
LLEXNAME

named_param:
name LEQ expression

Britton Lee

IDL Reference Manual

Britton Lee

object_name:
qname
qname LCOLON qname

object_ names:
object_name_list

object_name_list:
object_name_resdom

IDL Grammar

object_name_list l_COMMA object_name_resdom

object_name_resdom:
subs_object_name

opt_BY:
/*empty*/
by

opt_ by_ clause:
/*empty*/
LBY by_list

opt_CLUSTERED_or_NONCLUSTERED:
/*empty*/
clustered
nonclustered

opt_ direction:
/*empty*/
LCOLON name

opt_ INTO:
/*empty*/
into

opt_name:
/*empty*/
name

155

IDL Grammar

158

opt_ ON:
/*empty*/
OD

opt_order _list:
/*empty*/
order _list

opt_ qualification:
I where boolean_expression

opt_ TO:
/*empty*/
to

opt_UNlQUE:
r empty·;
unique

opt_ user _list:
r empty•;
LTO user _list

opt_ WITH:
r empty•;
with

opt_ with_clause:
r empty•;
with with_list

order _list:
order opt_BY expression opt_direction

IDL Reference Manual

order _list LCOMMA expression opt_direction

parameter:
LLEXPAR.AM

Bn'tton Lee

IDL Reference Manual

Britton Lee

param_list:
opt_ WITH (value_Iist)
opt_ WITH value_list
opt_ WITH (named_param)
opt_ WITH value_spec
/*empty*/

partition:
(simple_f ormat_list) opt_ with_clause

partitioned_format_list:
partition
partitioned_format_list LCOMMA partition

protect_ attrs:
(object_name_list)
/*empty*/

protect_mode:
read
write
all
read tape
write tape
all tape
create
create databue
create index
execute

protect_object:

qname:

rangeis:

LON subs_object_name
LOF subs_object_name
subs_object_name
/*empty*/

LLEXNAME
LLEXCONSTANT

subs_object_name

IDL Grammar

157

IDL Grammar

158

relop:
LLOUT
LROUT
LLGTOUT
LRGTOUT
LLGEOUT
LRGEOUT
LLLTOUT
LRLTOUT
LLLEOUT
LRLEOUT
LLNEOUT
LRNEOUT
LEQ
LGE
LGT
LLE
LLT
LNE

simple_format_list:
rormat_spec

%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest

format_list LCOMMA format_spec

string_constant:
constant

substitution:
%name
% LLEXCONSTANT

subs_object_name:
object_ name
substitution

target:

targets:

name LEQ expression
substitution LEQ expression
attribute

target_ list

IDL Reference Manual

Britton Lee

IDL Reference Manual

Britton Lee

target_ list:
target
target_list LCOMMA target

tracetype:
/*empty*/
LON
LDELETE

user _list:
user_name
user _list LCOMMA user _name

user_name:
qname

value_list:
value_spec LCOMMA value_spec
value_list LCOMMA value_spec

value_ spec:
named_param
expression

with_ list:
with_option
with_list comma_ with_option
with_list LON string_constant

with_option:
name
name with expression

IDL Grammar

159

%associate: 136

%continuation: 137

%display: 138

%edit: 139

%experience: 140

%help: 141

%input: 142

%redo: 143

%showranges: 144

%substitute: 146

%trace: 146

abort: 32

abort transaction: 82, 41, 42

abs: 109, 110

aggregate: 8, 13-14, 16, 04

all: 129

and: 11-13

any: 94, 90

append: 16-18, 83

ascii: 47

usociate: 25~26, 86, 44, 53, 56

aasociative relation: 15

asterisk: 13

att_name: 102, 109

att_name (function): 110

attribute: a, 128

"attribute" relation: 35, 102, 110, 131

audit: 88

audit into: 88

auto-associate: 25-26, 86, 136

avg: 94, 99

avg unique: 94, gg

badbcd: 84

base relation: 53

bed: 109, 131

Index of' Terms

bed (function): 110

BCD constant: 104

bcdfixed: 109, 111

bcdflt: 109

bcdftt (function): 111

BCDFLT constant: 104

begin: 41

begin transaction: 41-43

binary: 109, 112, 130

binary constant: 104

block: 86

by clause: 16, 95, 98

char: 109

character: 130

character constant: 103

clustered index: 22, 40, 50, 51

column: 128

comments: 81, 142

concat: 109, 113

"configure" relation: 77

continuation character: 137

count: 94, 09

count unique: 94, 10

cpu: 85

cpuw: 85

create: 21-22, 44, 119

create database: 46, 119

create index: 22-23, 40, 119

create view: 23-24, 63

crossjoin: 85

dac: 86
data: 3

data authorization: 27-28

data definition: 3, 21-26

data manipulation: 3, 7-21

databasename: 109, 118

"databases" relation: 62, 105

dba: 109, 118

dbname: 106

define: 24--25, 65,65, 104, 126

delete: 20-21, 67

delete_dups: 50

demand: 48

deny: 28, 68, 72, 132

"descriptions" relation: 25, 35, 44, 53, 56

destroy: 25, 80

destroy database: 82

destroy index: 25, 88

dindex: 74, 75

disk: 41, 85

"disks" relation: 46

divzero: 84

dorder: 7 4, 75

dumpwait: 85

duplicate: 84

ebcdic: 47

end transaction: 41, 42, 84

execute: 24--25, 55, 85, 126

expression: 8, 108

extend: 88
extend database: 80, 119

rastagg: 85

fill!actor: 50

fixed bed: 109, 118

fixed bcdftt: 109, 113

fixed binary: 109, 113

fixed char: 109

fixed string: 109, 118

float: 130

float4: 109, 114

8oat8: 109, 114

floating bed: 131

floating constant: UM

8t4: 109

ftt8: 109

format: 84

rulllock: 7 4

function: 8

getdate: 109, 114

gettime: 109, 114

group: 58

hits: 86

host: 109, 114

"host_users" relation: 46, 71, 116, 132

index: 49

"indices" relation: 74

inp: 85

inti: 109, 114

int2: 109, 114

int4: 109, 114

integer: 130

integer bed: 131

integer constant: 108

join: 15--16, 85, 128

joining condition: 15

key: 49

logblocks: 41

logging: 44

max: 94, 100

mem: 85

min: 94, 100

minlock: 74

mod: 109, 115

name: 117

names: 84

nocount: 84

nonclustered index: 22-23, 49, 51

not: 11

objecLname: 118

once: 94, 101

once unique: 94, 101

open: 71

options: lUI

or: 11-13

order by: 14-15, 81

outc: 86

outer join: 124

outw: 86

overflow: 84

owner: 118

parameter: 55, 65

parameter constant: 104

pattern: 13, 122

perform: 84

permit: 27-28, 58, 72, 132

plan: 86

profile files: 31

protect: 85

"protect" relation: 58

protect_mode: 27, 58, 72, 120

qrybuf: 86

qualification::1~13, 121

query: 7

query _name: 128

question mark: 13

quota: 44

range: 74, 119, 127

range variable: 7 4, 127, 144

range_ var: 127

reads: 86

reconfigure: 77

recreate: 50, 51

reLid: 109, 115

reLname: 109, 128

relation: 3, 128

"relation" relation: 25, 35, 113, 118

replace: 19-20, 78

resp: 85

retrieve: 8-16, 81

retrieve into: 81

retrieve unique: 98

round: 84

row: 128

set: 84, 119

set options: 84

skip: 50

stored command: 24, 65

stored query: 55

string: 109, 115

substitute constant: 104

substr: 109

substring: 109, 118

sum: 94, 101

sum unique: 94, 101

sync: 88

"system" database: 46, 62, 105

system relations: 46

table: 128

tape: 84

tapew: 85

target-list: 8, 12V

tfset: 146

time: 84

tperrs: 86

tracespec: 146

''transact" relation: 44

transaction: 41, 64

transaction log: 44, 47, 68

truncate: IV

tuple: 8, 128

type: 21, 106, 128, 130

underflow: 84

unique: 11, 81

unique index: 23, 49, 51

unset: VO, 119

use: 85

user: 58, 72

userid: 109, 118

users: 132

"users" relation: 58, 116, 118, 132

view: 23, 53

where: 121

