Britton Lee Host Software

IDL REFERENCE MANUAL

(R3v5m2)

February 1988
Part Number 205-1235-003

Printed February 1988.
This document supersedes all previous documents. This edition is intended for use with software
release number 3.5 and future software releases, until further notice.

The information contained within this document is subject to change without notice. Britton Lee
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under license and may only be used or
copied by the terms of such license.

IDM, Intelligent Database Language, and IDL are trademarks of Britton Lee, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

COPYRIGHT © 1988
BRITTON LEE, INC.
ALL RIGHTS RESERVED
(Reproduction in any form is strictly prohibited)

Table of Contents

I: INTRODUCTION TO IDL s

Introduction to IDLccooviiiiiiieerereececcecceecceeesaeeesenens
Executing the IDL Program certeereeaeesntasenanens
Data Manipulation
Data Definition
Data Authorization SRRSO creeeaeas rreeereeereeeaas

II: IDL COMMANDScooervrmnnnee creereneiaeteneans e

Britton Lee

Introduction to IDL Commandscceuu....... eerrraeeeens
abort transactionccccceeeveeecieeereeeeroneniennes eeeennan.
append ceerennenes reeeeseeeseeerestaesrtaeaesenteestaeenaennnraann
BSSOCIALE ..cvevereereriernneeeeeennns tererrrseeaeeeeeeesenearensen ereeeeeereenannanes
BUAIL .eveeeinieeeeeereeeeree e see s e essaneeennes reerrnnaee reeeeeereeenenans
begin transactioncccccccceveerceerseesaessneseesuesssenseensasssansnens
Createocceveerveeennee eerveenreenaeens crreerresraeerarenbessnnnenne reerrveenanns
create database

create INAeXeeeevvvvereeeirinrieesrreeeecennnns rereeeseesessesssnssrnsnenes

create view
define ...
delete eereeerereeeerenennnnnes terereeesesnttaeessneteeesassteneeesesanranaaans .
deny ceeeene ceereenaes crereeeeneeennnes ceserereenresesnnteeasaneansnaees

B P P P T R P TR T T csesessesscccacsscrscnce

AEBLIOY .eoeereireeereeecreeesreesreeeeessneeseessessssasssessssasnssasassessnsenses

destroy database cerenenens teereeeaeeeas
destroy index : rerrereeennenas .

end transaction

executeeeeeee.

1)< | A cescescrececeesascrcorcecse

EXEENA ...oooeeeeireeeeceeeeeeceareeesrareees s asreeee s nssaraesesnnnaranaanes

extend database
open cerveeesnnaens
Permitcccoeevrrneeeeenennnns terserssscatetteneeeaaeaasassessarsnnnnnnnnnns

FANEE ..oooveineenienstereesscsstnssnsstessnosassasssseaasssssssssessesssensssans R

reconfigure ceeeenenenes verveeenaeenns

FEPLACE ..oiniiieiiicerceeecteesereceee st eereee st e e tnessaesenrreeaeesraeessraenne

TELrieVe ...eeeeveereerieecnnn. ereerererrrrsrennrennnnnnns .

1] N eereereeenesncns
1272+ LJE RO RRN cerneeeresestrnnsennnnes

BPUNCALE ioeieiiiiiiiiiiiiiiii it crecrneeeeerratesseeencsseesscsssssnsosossnssse

O W e

21
27

29
31
32
33
35
38
41
44
46
49
53
55
57
58

62
63
64
65
67
68
69
71
72
74
77
78
80
81
84
88
89
90

Table of Contents IDL Reference Manual
II: IDL GENERAL CONCEPTS rereeereeneeteeneenes 91
Introduction to IDL General Concepts Cessnins 93
AGETegatescooueevvnerinercncnrennreccneceans . . 94
Att_NaME ..ot snsens 102
Constantscoeceeveeereecnersennns eerereresnessrensesanes . 103
DbRamecoieiieeeeirereeee s neeesnneesnesens e s saa s seseesnnessensnns 105
EXPressionscceceeeeeeseerensersuesieessessessseeseesiensanes cerrensesarenees 106
Functions ... 108

Name 117
Object_Nameccccerevverurrruecnaen. cerveesnessanens cersreseneentsseneans 118
OPLIONScovnvrninniiiireinnnteniesreecesesssssseseessanas verveereraesassaens 119
Protect_Modesccocviirveenriererccrerrereeetecnneesareesaeeceeenanas 120
Qualifications ceesrsssenannenes 121
Query_Nameccovcevvirnniccrsrarannecnaa 126
Range_Var 127
-Rel_Name testeesreesneesseesnessnsraneasas rerereeneeareennannne reveenes 128
Target-Lists cerenesnesersesasansnas crveneeesnererarses 129

Types ..ccccecvvenene R, cesessessesasssrosane R creverssenense R 130

USEEScvveiceeiecnieeseeereeeerersrsnsessssacssssassssssanessnssaserssasssnnens 132

IV: IDL FRONT-END COMMANDScccoveeerereeceeeenees 133
Introduction to Front-End Commands 135
TBASSOCIALEcovereeerererereereseseseessesesesesesnesssssnassssssesnsesenes 136
%continuationceeceeerereuerennes vttt r e teaeaenns 137
TOAISPIAY ...ttt re et rene s ne e besens 138

DBEAIL ...eenveneeereerireeereee e sreresre st e b esbe b ersesssese s rennessebereenseans 139
TODEXPETIEIICEeoeveeverrervesoseecieseseisseseiensesssssssasesenesssssnennas 140

TOREID ..t e et s s e s s e ne s senanen 141
TBINPUL ..o ceresenaivenes ceneterererass st et ene s s rananes 142

TBIEAO ..o eterer st renerenes vreverens veenerererererererrens 143
%%showranges 144
%substitute 145

oBtraceccereeenernne 146

V: APPENDICES ..ottt ctsesseeteecteeesecneenseseenessnesnes 147
IDL Reserved Wordsccccocevieecircienciiecereeesreeceeeeseenenas 149

IDL GramInarcccoccceceeveeenreecieeenueeesseeseesesasensnsesssesssessssens 150

Britton Leq

Notational Conventions

Britton Lee

The following conventions are employed in the synopses throughout this

Words in boldface should be entered exactly as they appear.

Words in roman face should be replaced with a value of the
user’s choice.

Square brackets “[]” indicate optional elements.

Braces “{}” enclose lists from which the user must select an ele-
ment.

Vertical bars ‘| ” separate choices.

Parentheses ‘()" are to be entered literally.

13

Ellipses “...” indicate that the preceding items may be repeated
one or more times.

For a detailed description of the error messages generated by IDL, con-
sult the Message Summary (IDL Version).

Notational Conventions IDL Reference Manual

vi Britton Lee

PART I

INTRODUCTION TO IDL

Introduction to
IDL

Britton Lee

This part provides an introduction to IDL intended for data processing
professionals interested in learning to use IDL to access data stored on a
Britton Lee database server.

All Britton Lee database servers are designed to store and manipulate
databases built on the relational model, which means that the data in the
database is stored in tables or relations. A relation is organized horizon-
tally into tuples and vertically into attributes. The tuples represent indi-
vidual entities in the relation while the attributes describe characteristics
associated with those entities.

The first chapter in this part explains how to invoke and exit the idl
program. The rest of this part covers three general topics: manipulating,
defining, and controlling access to data stored in relations.

Data manipulation refers to the part of a query language which extracts
data from an existing relation and modifies existing relations by append-
ing new data, changing the values of data, and deleting data.

Data definition refers to the part of a query language which creates,
alters and deletes the structure of database objects such as relations,
views, and stored commands.

Data authorization refers to the part of a query language which author-
izes access to database objects for individual users and groups of users.

This part does not describe all the IDL commands, nor does it completely
describe the commands which it does cover. For a complete description
of every IDL command, consult Part II of this manual.

This part does not cover special features of IDL used for embedding IDL
in procedural programming languages such as C. The applications pro-
grammer who needs to use embedded IDL should consult the RIC User’s
Guide.

The examples in this section use a hypothetical database called “books”.
The relations in “books” database are listed below.

Introduction to IDL IDL Reference Manual

AUTHOR RELATION
" [authnum | first last

1 | alice adams
2 | herman | melville
38 | brian kernighan
4 | dennis ritchie
5 | dh lawrence
6 | william | shakespeare
7 | doug adams

TITLE RELATION
docnum | title onhand | pubnum
1 | moby dick 6
2 | the ¢ programming language 8
3 | macbeth 12
4 | superior women 3
6 | fantasia of the unconscious 6
6 | so long and thanks for all the fish 7
PUBLISHER RELATION
pubnum | name city phone
1 | penguin london 441-301-9898
2 | signet new york 212-755-8400
3 | prentice-hall | englewood cliffs | 201-254-8300
4 | south end boston 617-445-3223

AUTHTTL RELATION
authnum doecnum

Ok LNM
W OTNN

4 ‘ Britton Lee

IDL Reference Manual

Britton Lee

Introduction to IDL

PRICE RELATION
"[docnum [year | amount | distrib

1 87 2.95 | western

2 87 22.95 | berkeley technical
3 87 2.50 | cal-west

4 87 4.95 | cal-west

5 87 4.95 | bookpeople

6 87 2.50 | western

Executing the IDL

Program

ENTERING IDL

EXITING IDL

To invoke IDL enter

idl

On UNIX systems, IDL commands must be entered in lower case. On
most other systems, IDL commands are case-insensitive.

If you have successfully invoked IDL, you will see displayed a numeral
followed by a right parenthesis as in

1)
This is the IDL prompt.

In interactive IDL, all IDL commands or sequences of IDL commands
must be terminated by the keyword go or a semicolon (;). If you are
using IDL statements in one of the embedded query languages, terminate
all commands with a semicolon (;). If you are using IDMLIB subroutines
to query a database from within a program, use no command termina-
tors.

In order to execute any IDL commands other than a range or set state-
ment, you must first open a database. The following command opens
the “books” database.

1) open books;

To invoke IDL and open the “books” database with a single command,
enter

idl books

If the specified database does not exist or if you do not have permission
to open it, IDL displays this information and exits.

If the IDL prompt is displayed, you can exit IDL by entering
8) exit;
If the prompt is not currently displayed and you wish to exit, the

<BREAK> function on your system will usually produce the IDL
prompt.

Britton Lee

Data Manipulation

RANGE

Britton Lee

Data manipulation refers to the ability to examine the data in one or
more relations and to modify existing relations by appending new data,
deleting data, or changing the value of one or more attributes in specified
tuples.

The retrieve command is used to examine or query the database, the
append, delete, and replace commands to modify the database.

The range statement is used to associate a range variable with a rela-
tion. The retrieve, replace, and delete commands require that the
relations they manipulate be referenced through range variables.

The range statement associates a variable of the user’s choice with a
relation. The essential parts of a range statement are

e the variable name
e the relation to be associated with the variable name.

The following range statement associates the range variable ‘‘t’” with the
“title” relation.

1) range of t is title;

A range statement may specify an optional owner name, preceded by a
colon (:) to distinguish the relation being associated from other relations
of the same name belonging to other users. The command

1) range of t is title:susie;

associates “t” with the “title” relation which is owned by user ‘susie”.
If no owner name is specified, it is assumed that the range variable refers
to a relation owned by the user executing the command. If such an
object does not exist, it is assumed that the range variable refers to a
relation owned by the DBA.

A range variable is always associated with the most recent range state-
ment that defined it. The sequence

1) range of t is title;
1) range of t is author;
1) range of t is publisher;

leaves “t” associated with the ‘“publisher” relation. A range variable is
associated with its relation until it is used in another range statement or
until the idl session terminates.

Data Manipulation IDL Reference Manual

RETRIEVE

The retrieve command retrieves specified data from one or more rela-
tions. Used interactively, it displays its results in a relation consisting of
the requested tuples and attributes at the user’s terminal.

The essential part of any retrieve statement is the parenthesized target-
list which consists of specifications of the relation(s) to be accessed,
through use of a range variable, and the attributes to be displayed.

The order in which the targets are specified in the query determines the
order in which they will appear, from left to right, at the terminal.

Thus the basic form of the retrieve statement is
retrieve (target-list)

A specified target may have various forms. It may be

e an attribute name prefaced by a range variable,

e a “result domain name = attribute name” prefaced by
a range variable,

e the value returned by an aggregate or function,

e a ‘“result domain name = value” returned by an aggre-
gate or function,

e the keyword all,

e any arithmetic expression.

The object referenced by a range variable may be a relation or a view.!
The parentheses enclosing the target-list are mandatory.

The following query illustrates the simplest form of the retrieve state-
ment. It queries the database for the values of the attributes named
“first” and “last” in all the tuples in the “author” relation. The range
statement is necessary to establish the association between the range
variable “a” and the “author” relation, unless this association has been
established by a previous range statement.

Views are described in the chapter on data definition.

Britton Lee

IDL Reference Manual Data Manipulation

1) range of a is author
2) retrieve(a.first, a.last);

first last

alice adams
herman | melville
brian kernighan
dennis ritchie

dh lawrence
william | shakespeare
doug adams

The word all is used to specify all of the attributes in a relation. The
entire “author” relation consists of three attributes. The following com-
mand retrieves all of the attributes in the relation.

1) retrieve (a.all);

authnum | first last

1 | alice adams
2 | herman | melville
8 | brian kernighan
4 | dennis ritchie
6§ |dh lawrence
8 | william | shakespeare
7 | doug adams

It is also possible to specify result domain names which differ from the
original attribute names in the relation displaying the retrieved data.

- The following command retrieves data from the “last” attribute in the
“author” relation, but labels the selected domain ‘“surname” in the
result.

1) retrieve (surname = a.last);

surname

adams
melville
kernighan
ritchie
lawrence
shakespeare
adams

In addition to this basic format, there are several optional specifications
which can be added to control

Britton Lee 9

Data Manipulation IDL Reference Manual

Where Clause

e the restrictions to apply for retrieving tuples (the
qualification)

e the order in which the tuples should be displayed

e whether duplicate tuples should be ignored.

In order to specify that only some of the tuples in a relation should be
retrieved, the query must indicate the conditions governing the retrieval
of tuples. This set of conditions, called the gqualification, consists of one
or more comparisons between terms which evaluate to true or false.

Each comparison is expressed by one of the following relational opera-
tors.

Symbol Meaning

(equal to)

(not equal to)

(synonym for !=)
(greater than)

(greater than or equal to)
(less than)

(less than or equal to)

AAV VA
Y/

When a relational operator is applied to character data, the comparison
is governed by ASCII or EBCDIC order, depending on which character
set was specified when the database was created. Blanks at the ends of
character strings are ignored for comparison purposes.

The format for a where clause is the keyword where followed by the
conditions limiting the retrieval.

The following query requests tuples from the ‘“‘author” relation in which
the value of the “authnum” attribute is 2.

1) retrieve (a.all)
2) where a.authnum = 2;

authnum | first last
2 | herman | melville

The next query requests data from tuples in which the value of the
“last” attribute is ‘adams’. The constant value ‘adams’ must be enclosed
in single or double quotation marks because it is being compared to an

attribute of the type character string.?

2The types of attributes are discussed in more detail in the chapter on data definition.

10

Britton Lee

IDL Reference Manual Data Manipulation

1) retrieve (a.first, a.last)
2) where a.last = 'adams’;

first last

alice | adams
doug | adams

Unique The unique modifier is used to specify that only zero or ome tuple
should be retrieved, even if more tuples meet the conditions of the
qualsfication.

1) retrieve unique (a.last)
2) where a.last = 'adams’;

last
adams

The unique modifier applies to the entire target-ltst. The command

1) retrieve unique (a.first, a.last)
2) where a.last = 'adams’;

first last
alice | adams
doug | adams

retrieves two tuples from the “author” relation, not one, because there is
no duplication in the relation of the combined values for “first” and
“last”.

Multiple Conditions If the gualification governing the retrieve statement is based on more
than one condition, the relationship between the conditions can be
expressed using the and and or operators. The following query uses the
and operator to request all the tuples in which the value of the “last”
attribute is ‘adams’ and the value of the “first” attribute is not “alice”.
In order to be retrieved, a tuple must satisfy both of these conditions.

1) retrieve (a.all)
2) where a.last = 'adams’ and a.first != ‘alice’;

authnum | first last
7 | doug | adams

The same query could be expressed using the not keyword instead of the
{= relational operator.

Britton Lee 11

Data Manipulation IDL Reference Manual

12

1) retrieve (a.all)
2) where a.last = 'adams’ and not a.first = ‘alice’;

authnum | first last
7 | doug | adams

The next query uses the or operator to retrieve the tuples in which the
value of the “last” attribute is ‘adams’ or the value of the “first” attri-
bute is not ‘alice’. In this case, a tuple must satisfy only one of the con-
ditions, not both, in order to be retrieved.

1) retrieve (a.all)
2) where a.last = 'adams’ or a.first != 'alice’;

authnum | first last
1 | alice adams
2 | herman | melville
3 | brian kernighan
4 | dennis ritchie
5 | dh lawrence
6 | williamm | shakespeare
7 | doug adams

The or operator is useful when one is not certain of the precise value of
a field on which a condition is based.

1) retrieve (a.all)
2) where a.first = 'herman’ or a.first = ’'herbert’;

authnum | first last
2 | herman | melville

A query can combine several conditions in a single qualification. When
and and or are used in the same query, the and operator takes pre-
cedence over the or operator. Parentheses can be used to override this
precedence as illustrated below.

1) retrieve (a.all)
2) where (a.first = 'herman’ or a.first = 'herbert’)
4) and (a.last = 'melville’ or a.last = 'de melville');

authnum | first last
2 | herman | melville

Britton Lee

IDL Reference Manual Data Manipulation

Patterns Patterns are used to indicate a string value in which all of the characters
~-are not specified. The asterisk (*) is used in the character string to
represent a substring of zero or more characters. The question mark

character (?) is used to represent a single character.

The following query retrieves the “first” and “last” attributes for all
tuples in which the value of the first character in the “first” attribute is
(ld’)‘

1) retrieve (a.first, a.last)
2) where a.first = 'd*’;

first last
dennis | ritchie
dh lawrence
doug adams

The following query retrieves the tuple for a title in which two individual
letters are not specified.

1) range of t is title;
2) retrieve (t.all)
8) where title = 'm?by d?ck’;

docnum | title onhand | pubnum
1 | moby dick 6 2
Aggregates There are a number of aggregate operators which can be used in queries °

to aggregate values supplied as arguments. These values may be attri-
bute names or general arithmetic expressions. The following query
demonstrates the effects of the count, avg, max, min and sum aggre-
gates when applied to the “onhand” attribute of the “title” relation.

1) range of t is title;

1) retrieve

2) (count = count(t.onhand),
8) average = avg(t.onhand),

4) largest = max(t.onhand),

8) smallest = min(t.onhand),
68) total = sum(t.onhand));

count | average | largest | smallest | total
6 7 12 8 42

Britton Lee 13

Data Manipulation

Order By

14

IDL Reference Manual

Normally the tuples fetched by a retrieve statement appear in an order
determined by the database server software. The user can specify the
order in which tuples should be displayed with the order by clause.
The default order is ascending (lowest to highest), but descending
(highest to lowest) can be specified with a d preceded by a colon (:).
Both numeric and string type expressions can be used to order retrieved

data.

The following query specifies that the tuples be displayed in

ascending order based on the value of the “last” attribute.

1) retrieve (a.first, a.last)
2) order by a.last;

first last

alice adams

doug adams
brian kernighan
dh lawrence
herman | melville
dennis ritchie
william | shakespeare

The next query specifies that the retrieved tuples be displayed -in des-
cending order based on the value of the ‘“authnum” attribute.

1) retrieve (a.authnum, a.first, a.last)
2) order by a.authnum:d
8) where a.last !='a®*’;

authnum | first last
8 | william | shakespeare
5§ | dh lawrence
4 | dennis ritchie
3 | brian kernighan
2 | herman | melville

In the next query the order by clause is used in retrieving data from the
“title” relation to display the data ordered by the value of the “pub-
num” attribute, and within that ordering by the value of the “onhand”

attribute.

Britton Lee

IDL Reference Manual

Joins

Britton Lee

Data Manipulation

1) retrieve (t.pubnum, t.onhand, t.docnum)
2) order by t.pubnum, t.onhand;

pubnum | onhand | docnum
1 (] 5
1 7]
1 12 8
2 8 4
2] 1
3 8 2

A join is a mechanism for relating data from multiple relations within a
single query. When relations are joined, the where clause specifies a
relationship, known as a “joining condition”, between the tuples from
which data is to be retrieved.

The following query retrieves data from the “title’” and ‘“‘onhand” attri-
butes in the ‘“title” relation and from the “name” attribute in the “pub-
lisher” relation. The joining condition is

“where t.pubnum = p.pubnum”

1) range of p is publisher;

1) retrieve (t.title, p.name, t.onhand)
2) where t.onhand < 7

8) and t.pubnum = p.pubnum;

title name onhand
fantasia of the unconscious | penguin (]
moby dick signet]
superior women signet 3

The relation containing the joining condition need not be referenced in
the target-list. The next query retrieves data from the “first” and “last”
attributes of the “author” relation and from the ‘title” attribute of the
“title” relation. The joining condition

“where l.authnum = a.authnum and l.docnum = t.docnum”

references a third relation, “authttl”, through its range variable “1”.
The “authttl” relation consists only of attributes corresponding to key
attributes in the “author” and “title” relations. This type of relation is
called an associative relation. Its function is to enable a join in which
the entities represented in two relations are related such that each tuple
in one relation may be related to any number of tuples in the other rela-
tion, and vice-versa. Its use is applicable here, where a single title may
be associated with multiple authors, and a single author may be

15

Data Manipulation IDL Reference Manual

associated with several titles.

1) range of | is authttl;

1) retrieve (a.first, a.last, t.title)
2) where l.authnum = a.authnum
3) and l.docnum = t.docnum;

first last title

herman | melville moby dick

brian kernighan the ¢ programming language

dennis ritchie the ¢ programming language

william | shakespeare | macbeth

alice adams superior women

dh lawrence fantasia of the unconscious

doug adams so long and thanks for all the fish
By Clause The by clause is used to retrieve multiple values from an aggregate, one

value for each group referenced in the by clause.

The following query uses the sum aggregate operator and the by clause
to retrieve the total number of books on hand by publisher.

1) retrieve (total = sum(t.onhand by t.pubnum),
2) p.pubnum, p.name)
3) where p.pubnum = t.pubnum;

total | pubnum | name
25 1 | penguin
9 2 | signet
8 3 | prentice-hall

This is to contrast with an aggregate which applies to the relation as a
whole as in

1) retrieve (total = sum(t.onhand);

total
42

APPEND The append command adds one or more tuples to a relation. This com-
mand can be used to append new data directly from the terminal or to
append data from another relation.

16 Britton Lee

IDL Reference Manual

Britton Lee

Data Manipulation

For entering literal data from the terminal, the essential parts of an
append command are specification of the relation to which the data is
to be appended, the attributes to be appended, and the values of the
attributes. The basic form of the append command is

append to relation name (attribute names = values)

The following command appends a new tuple to the “author” relation.

1) append to author
2) (authnum = 8, first = ’charles’, last = 'dickens’);

If the values for all of the attributes are not known, specify the attribute
names and values which are known. Unspecified attributes are assigned
zeros for numerics and blanks for character strings. These attributes can

later be modified with the replace command when the values are avail-
able.

The next command appends a new tuple to the “title” relation. The
value for the “docnum” attribute is an expression which evaluates to the
next consecutive number in the attribute. The “onhand” attribute is
omitted from the append command and is thus given a value of 0.

1) append to title

2) (docnum = max(a.docnum) + 1,
8) title = ’a tale of two cities’,

4) pubnum = 1);

Data can also be appended from another relation. For example, assume
that there is a relation called “modernauthor” which has three attributes
named “fname” “Iname” and “num”. The following command appends
to the “modernauthor” relation the existing data from the “first” and
“last” attributes in the ‘“author” relation. The value for the “authnum”
attribute in the “modernauthor” relation is not specified, so it is assigned
geros in all the tuples.

17

Data Manipulation

18

1) range of a is author;
1) append to modernauthor

2) (fname = a.first, Iname = a.last)

8) where a.authnum = 1
4) or a.authnum = 3
§) or a.authnum = 4
6) or a.authnum = 7;

1) range of m is modernauthor;

1) retrieve (m.all);

num | fname | Iname
1] alice adams
0 brian kernighan
1] dennis | ritchie
0 doug adams

IDL Reference Manual

Britton Lee

IDL Reference Manual

REPLACE

Britton Lee

Data Manipulation

The replace command changes the values of one or more attributes in
the specified tuples in the specified relation. The conditions qualifying
which tuples are to be replaced are specified in a where clause. If there
is no where clause, all of the tuples in the relation are modified.

The basic form of the replace command is

replace range variable (attribute names = values)
where specified conditions

The following command changes the value of the ‘“first” attribute of the
“author” relation from ‘doug’ to ‘douglas’.

1) range of a is author;
1) replace a (first = 'douglas’)
2) where a. == 'doug’ and a.last = ’adams’;

More than one attribute value can be replaced by a single replace com-
mand. The following command replaces two attributes in the “title”
relation.

1) range of t is title;
1) replace t (title = 'hamlet’, onhand = 8)
2) where t.docnum = 8;

The next command has no where clause. It increases by 5 the value of
the “onhand” attribute in all of the tuples of the “title” relation.

1) range of t is title;
1) replace t (onband = t.onhand + 8);

It is possible to replace the values in a relation by fetching them from
another relation. The following command replaces the values of the
“authnum” attribute in the ‘“modernauthor” relation with the values
that are used for equivalent tuples in the “author” relation.

19

Data Manipulation IDL Reference Manual

-DELETE

20

1) range of m is modernauthor;

1) range of a is author;

2) replace m (num = a.authnum)

3) where a.first = m.fname and a.last = m.lname;

1) retrieve (m.all);

num | fname | Iname
alice adams
brian kernighan
dennis | ritchie

W

The delete command deletes entire tuples from the specified relation. It
should be used with extreme caution, because without a where clause,
the delete command deletes all of the tuples in a relation.

The basic form of the delete command is

delete range variable

where specified conditions
The following command deletes all of the tuples in the “title” relation in
which the “onhand” attribute has a value less than 1.

1) range of t is title;

1) delete t
2) where t.onhand < 1;

The next command deletes all of the tuples in the “title” relation. After
the command is executed, the relation would still exist, but it would have
no data in it.

1) delete t;

Britton Lee

IDL Reference Manual Data Manipulation

Data Definition

Data definition refers to the ability to create, alter, or delete database
objects such as relations, views, or stored commands.

The examples in this section assume that the user has been granted the
necessary permissions to create database objects and indices in the
“books’ database.

This section and the next contain references to certain system relations,
specifically to ‘“descriptions”, ‘“relation”, and ‘‘users”. These are rela-
tions which are automatically created for every database by the system
in order to manage the database.

CREATE The create command creates a new relation in the open database. The
command specifies the name of the relation and the names and types of
its attributes, using the mnemonics indicated below.

The following mnemonic is used for character data.

c character strings, specify length

The following mnemonics are used for numeric data.

i4 four-byte integers
i2 two-byte integers
i1 one-byte integers
f8 eight-byte floating-point numbers
f4 four-byte floating-point numbers

bed binary-coded decimal integers, specify length
bedfit binary-coded decimal floating point numbers, specify length

The following mnenomic is used for binary data.

bin binary strings, specify length

The ¢, bed, bedfit, and bin mnemonics must be followed by an integer
specifying the number of characters or bytes to allocate for the attribute,
as in ¢10 for a character attribute with a maximum length of ten char-
acters or bed8 for a bed attribute with a maximum length of 6 bytes.

The bin, bed, and bedfit mnemonics may be prefixed with the character
u (for uncompressed) if leading and trailing geros are to be retained.
The ¢ mnemonic may be prefixed with the character u if trailing blanks
are to be retained. If a u is not specified for these types, trailing blanks
and trailing and leading zeros are stripped.

The following command creates a new relation named “price”, with four

attributes named ‘“docnum”, “year”, “amount”, and “distrib”. The
“docnum” attribute is a two-byte integer field; the ‘“‘year” attribute is a

Britton Lee 21

Data Definition

CREATE INDEX

Clustered Index

Nonclustered Index

22

IDL Reference Manual

one-byte integer field; the “amount” attribute is a binary-coded decimal
floating point field with a maximum length of six digits; the “distrib”
attribute is a character field with a maximum length of twenty charac-
ters.

1) create price

2) (docnum = i2,

3) year= i1,

4) amount = bcdfits,
8) distrib = ¢20);

A retrieve command on ‘“price” shows the empty relation.

1) range of p is price;
1) retrieve (p.all);

docnum | year | amount | distrib

An index is a directory which relates the physical location of each tuple
in a relation to the value of a specified attribute or group of attributes in
the relation. The purpose of an index is to provide a direct access path
to data when a query references the attribute(s) specified in the create
index command. The creation of indices can greatly decrease access
time if a relation is often searched on the basis of a particular attribute
or set of attributes, because indices eliminate the need to scan all the
data during a search.

There are two kinds of indices, clustered and nonclustered. If neither
kind is specified in the create index command, a nonclustered index is
created by default.

A clustered index often provides faster access than a nonclustered
index but requires that the data be sorted on the value of the indexed
attribute(s). There can be only one clustered index for a single rela-
tion. That single index may, however, be on multiple attributes.

The following command creates an index on the “docnum” attribute of
the “title” relation.

1) create clustered index
2) on title (docnum);

A nonclustered index usually provides slower access than a clustered
index, though faster access than a sequential scan of all the data. It
does not require that the data in the relation be sorted. Up to 250 non-
clustered indices can be created on a single relation.

Britton Lee

IDL Reference Manual

Unique Index

CREATE VIEW

Britton Lee

Data Definition

The following command creates a nonclustered index on the combined
“last” and “first” attributes of the “author” relation.

1) create nonclustered index
2) on author (last, first);

Both clustered and nonclustered indices can be specified as unique.
This prevents duplicate attribute values from being introduced into the
relation.

#
The following command creates a unique nonclustered index on the
“authnum” attribute in the “author” relation.

1) create unique nonclustered index
2) on author (authnum);

After creation of this index, if a user tries to add a tuple in which the
value of the “authnum” attribute is the same as the value of the ‘“auth-
num” attribute for a tuple which already exists in the relation, an error
message will be generated and the entire replace or append command
aborted. :

A view is a virtual relation composed of parts of one or more base rela-
tions or other views. The view itsell does not actually contain data, but
it reflects the data contained in its underlying base relations. Views are
manipulated and protected like relations, except that they cannot be
modified unless the modification can unambiguously be applied to a base
relation. Views are useful for defining subsets of relations, based on a
selection of attributes, tuples or both. They are also useful for restrict-
ing access to certain parts of a relation.

The create view command specifies the name of the view and a target-
list consisting of attributes prefaced with the appropriate range variables
indicating the sources of the data to be accessed by the view.

The following command creates a view named “instock” consisting of
data from the “title”, “author” and “price” relations.

1) range of t is title

2) range of a is author

8) range of p is price

4) range of | is authttl;

1) create view instock

2) (t.docnum, t.title, a.last, p.amount)

3) where l.docnum = t.docnum
4) and l.authnum = a.authnum
5) and t.docnum = p.docnum

6) and t.onhand > 0;

The view can now be queried as though it were a relation. It is possible
to permit a user to query the “instock” view without permitting that

23

Data Definition IDL Referehcc Manual

user to query all the attributes in the base relations.’

1) range of i is instock;

1) retrieve (i.all)

2) where i.author = 'lawrence’
3) and i.title = 'fantasia®’;

docnum | title ’ last amount
5 | fantasia of the unconscious | lawrence 4.95

3

DEFINE and EXE- The define command creates an object called a stored command. A

CUTE stored command is a sequence of data manipulation commands, such as
retrieve, append, replace, or delete, which can be referenced collec-
tively by the stored command’s name. Because the stored command
exists in a parsed and partially processed form on the database server, it
is usually faster to execute a stored command than to execute its consti-
tutent commands individually.

When a stored command is created, formal parameters are indicated by
the parameter name prefaced by a dollar sign (§). When the stored com-
mand is executed, real values are substituted for the formal paramieters.

The following command creates a stored command named “addauthor”
which consists of an append command and a retrieve command. The
formal parameters for the first and last names are indicated by “$f” and

“sl”.

1) /* This adds an author’s name to the "author” relation. */
2) define addauthor

8) range of a is author

4) append to author /* add the name */
5) (authnum = max(s.authnum) + 1, first = $f, last = $I)
6) retrieve (a.all) /® confirm it is there */

7) where a.authnum = max(a.authnum)

8) end define;
A stored command is executed using the execute command.

1) execute addauthor
2) with f = ’'pat’, | = ’barker’;

authnum | first | last
8 | pat | barker

3Permitting access is discussed in the chapter on data authorization.

24 Britton Lee

IDL Reference Manual

DESTROY

DESTROY INDEX

AUTO-ASSOCIATE

Britton Lee

Data Definition

The destroy command removes an object, such as a relation, view, or
stored command, from the database. If a view or stored command is
dependent upon the object being destroyed, that view or stored com-
mand must be destroyed first.

The following command removes the “modernauthor” relation.

1) destroy modernauthor;

The next command removes the “instock” view.

1) destroy instock;

The destroy index command removes an index from a relation. The
command identifies the index to be destroyed by its name and its charac-
teristics: whether it is clustered or monclustered, and whether it is
unique.

The following command destroys the unique nonclustered index on
the “authnum” attribute in the “author” relation.

1) destroy unique nonclustered index
2) on author(authnum);

When an object is created with the create, create view, or define com-
mands, its name is automatically recorded in the system relation ‘rela-
tion” along with a unique identification number stored in the “relid”
attribute of this relation.

The associate command is also automatically executed when an object is
created. This command records information about a relation or attribute
in the system relation ‘“descriptions”. The object being described is
identified by its unique “relid” which is associated with the object’s name
as it was recorded in the ‘relation” system relation. The text of the
command which created the object, including comments, is appended to
the “text” attribute of the “descriptions” system relation.

When an object is removed from the database with the destroy com-
mand, references to it in the “relation” and ‘‘descriptions” relations are
also removed.

This automatic association feature makes it possible to retrieve informa-
tion about an object, such as the types of the attributes of a relation or

the constituent commands of a stored command, knowing only the name
of the object.

The following query requests a description of the “price” relation.

25

Data Definition IDL Reference Manual

1) range of d is descriptions;
1) retrieve (d.text)
2) where d.relid = rel_id("price”);

text

create price
(docnum = i2,
year = il,
amount = bcdfits,
distrib = ¢20)

The next query requests a description of “addauthor”.

1) range of d is descriptions;
1) retrieve (d.text)
2) where d.relid = rel_id("addauthor”);

text

/* This adds an author’s name to the "author” relation. */
define addauthor

range of a is author

append to author /* add the name */
(suthnum == max(authnum) + 1, $f, $1)
retrieve (a.all) /* confirm it is there */
where a.authnum = max(a.authnum)
end define

26 Britton Lee

Data Authorization

PROTECT MODES

PERMIT

Britton Lee

When a database object is created, its creator, who is also its owner,
automatically has permission to read, write to, and in the case of a
stored command, execute, the object while all other users are automati-
cally denied these privileges. In order to make the object accessible to
other users, the owner of the object must specifically permit access using
the permit command. Similarly, the owner of an object may deny cer-
tain users or all users specific types of access using the deny command.

The types of access which can be permitted and denied are referred to as
protect_modes. The protect_modes which apply to the objects described
in this section are listed below. There is a complete list of
protect_modes under ‘“Protect_Mode” in the “General Concepts” sec-
tion.

Protect_Mode IDL Command

read retrieve, create view
write append, delete, replace
execute execute

create create, define

create index create index

If, for example, a user is permitted read access of a relation, but not
write access, that user may issue retrieve commands on that relation,
but not append, replace, or delete commands.

The permit command gives access to an object to a user or group of
users. The user, or group of users, is identified by the name by which he
or she is known to the database server. These names are found in the
‘“‘users” system relation in the open database.

The permit command specifies the protect_mode being permitted, the
object name to which the privilege applies, and the user(s) to whom the
privilege is being given.

The following command gives write privileges on the ‘“price” relation to
“susie”. This permits her to modify this relation.

1) permit write
2) of price
8) to susie;

Access can be limited for certain attributes of an object. The following
command permits the “salesfolk” to read the “book” and “price” attri-
butes of the “instock” view. They are not permitted to read other attri-
butes in this view. The group ‘salesfolk” has been defined in the system
relation ‘“users”.

27

Data Authorization IDL Reference Manual

DENY

28

1) permit read
2) of instock (book, price)
3) to salesfolk;

The following command permits all users to read all attributes in the
“title”” relation.

1) permit read
2) of title;

The deny command prevents access to objects. Its syntax is the same as
that for the permit command.

The following command denies read privileges on the “title” relation to
all users.

1) deny read
2) of title;

The next command ensures that susie and jason are the only users who
can execute the “addauthor” stored command. '

1) deny execute
2) of addauthor;
1) permit execute
2) of addauthor
8) to susie, jason;

Britton Lee

PART II

IDL COMMANDS

Introduction to

IDL Commands

SEE ALSO

Britton Lee

This part is a reference for accessing Britton Lee’s database servers using
IDL commands. It describes all of the IDL commands which can be exe-
cuted interactively by a user running the idl program on a hoet system.

All of the examples in this manual are given for interactive IDL. To
adapt the examples for embedded query languages such as RIC or for
writing programs which incorporate IDL statements using IDMLIB, con-
sult the appropriate User’s Guide.

The idl program reads any system and user profile files which may exist
before reading user IDL input. These profile files may contain any IDL
commands or front-end commands. They often are used to execute
front-end commands which configure IDL according to a particular set of
pneeds. See the bost-specific reference material for IDL for information on
creating user profile files in a particular host environment.

Comments enclosed by the characters /* and */ may be included any-
where in IDL input.

idI(1]) in Host Software Specification (UNIX systems)
IDL in Command Summary (other systems)

31

abort transaction IDL Reference Manual

abort transaction

DESCRIPTION Abort transaction aborts the current transaction (atomic sequence of
IDL commands). All logical effects of the transaction are undone.

EXAMPLE The abort transaction in this example causes the delete command to
be backed out and the three tuples restored.

1) range of e is emp;

1) begin transaction;

1) delete e where e.lastname = " Croft”;
3 tuples deleted

1) abort transaction;

MESSAGES illegal command (IDM.E45)
The user has not sent previously a begin transaction com-
mand.

SEE ALSO begin transaction, end transaction

32 Britton Lee

IDL Reference Manual append

append [to] rel_name (target-list) [where qualification]

DESCRIPTION The append command adds new tuples to the relation or view refer-
enced by rel_name. Each target in the target-list contains an attribute
name and the value to be assigned to that attribute in the new tuple.

Although each new tuple is appended in its entirety, it is not necessary
to specify values for all of the attributes. If all of the attributes in the
relation are not specified in the target-list, default values are assigned for
the unspecified attributes. The default values are blanks for character
attributes and zeros for numeric attributes. To assign values other than
the default values to these attributes for tuples which have already been
appended, use the replace command.

The database server normally checks for overflow and division by zero in
a target-list or qualification. A user may specify that checking should be

turned off, or duplicate tuples should be ignored, by using the set com-
mand.

To copy a large amount of data from a host data file to a relation, use
the host utility idmfcopy.

PERMISSIONS The user must have write permission on all the attributes of a relation
in order to append to it.

EXAMPLES Appending data directly from the terminal:
This command adds one tuple to the “parts” relation.

1) append to parts (name = ‘“handle’’, quan = 10);

Appending data from another relation:

This command adds one tuple to the “newparts” relation for every tuple
in the “parts” relation, taking the value of the “name” attribute from
each tuple in the “parts” relation and assigning the value “10” to the
‘“‘quan” attribute of each tuple added to the “newparts” relation.

1) range of p is parts;
1) append to newparts (name = p.part, quan = 10);

Appending with gualification and type conversion:
The following command appends one tuple to the “newparts” relation for

each tuple in the “parts” relation in which the value of the ‘“number”
attribute is greater than 10. The value of “num” in the “newparts”

Britton Lee 33

append

MESSAGES

SEE ALSO

34

IDL Reference Manual

relation gets the value of “number” from the “parts’ relation, but since _
“num” is a character attribute, and “number” is an integer attribute,
the value of “number” is converted from integer to character using the
string function.

1) range of p is parts
2) append to newparts (num = string(6, p.number))
38) where p.number > 10;

out of space (IDM.E42)
No more tuples can be added because the database is out of free
space. The database should be extended, the transaction log
dumped, or relations within the database destroyed.

quota exceeded (IDM.E4)
When the relation was created a quota was given. The addition
of this tuple would cause the relation to exceed the quota.

not found (IDM.ES)
The named relation or attribute was not found.

wrong type specified for attribute (IDM.E12)
If a conversion from character to integer or numeric. (or vice-
versa) is necessary, it must be explicitly stated in the append
command.

tuple too large (IDM.E61)
A tuple is larger than the maximum size (2000 bytes). The tuple
is not appended.

view not updatable (IDM.E60)
User attempted to append to a view which is not updatable.

audit, delete, replace, retrieve, set

“Functions”, “Rel_Name”, “Qualifications”, *“Target-Lists”
idmfcopy(1I) in Host Software Specification
IDMFCOPY in Command Summary

Britton Lee

IDL Reference Manual associate

associate {object_name | range_var.att_name}
[[with] stringl[, string2]]

DESCRIPTION The associate command adds or replaces information in the system rela-
tion “descriptions”. This relation is used to associate one or more tex-
tual descriptions with an object. The object_name can refer to a rela-
tion, view, file, or stored command. The range_var.att_name refers to
an attribute through a range variable. An entry in the ‘“descriptions”
relation might look like this:

attid | relid key | text

0 290033 I1 | Relation listing all parts
8 29033 Attribute for quantity on hand

If only an object _name is specified, the entry in “descriptions” pertains
to the entire object. This is illustrated in the first tuple of the example
entry above. In this case, the ‘“relid” in the “descriptions” relation gets
the value of the “relid” for that object as it is recorded in the system
relation “relation”. The “attid” attribute in the ‘“descriptions” relation
gets a value of zero.

If an attribute is specified by a range_var.att_naeme, the description
refers only to that attribute. This is illustrated in the second tuple of
the example entry above. In this case, the “attid” in the ‘‘descriptions”
relation gets the value of the “attid” for that attribute as it is recorded
in the system relation “attribute”.

The stringl, if specified, is appended to the “text” attribute of the
‘“descriptions” relation. The string2, if specified, is appended to the
“key” attribute of the ‘““descriptions” relation. If entries already exist for
“text” or “key”, they are replaced by the new values. Both string! and
string®? must be entered as quoted character strings.

The function of the optional “key” attribute is user-defined. It is fre-
quently used as a sequential line number for descriptions in the “text”
attribute. For example, the following sequence of associate commands
appends a four-tuple description of the “myrel” relation.

1) associate myrel with " This is my very own","M1";
1) associate myrel with "relation which has” ,"M2";

1) associate myrel with "only two attributes”,”"M3";
1) associate myrel with "called num and name”,"M4";

The description of the “myrel” relation can then by retrieved ordered by
the “key” attribute:

Britton Lee ‘ 1

associate

AUTO-ASSOCIATE

36

IDL Reference Manual

1) range of d is descriptions;
2) range of r is relation;

8) retrieve(d.text)

4) order by d.key

§) where r.name = "myrel”
6) and r.relid = d.relid;

If neither stringl nor string2 is supplied, all of the tuples in the “descrip-
tions” relation which apply to the specified object or attribute are
deleted and nothing is added.

If the associate command references a relation that, on all three keys, is
already in the data dictionary, the description is replaced; otherwise it is
appended.

If a string is longer than one line and wrap-around is not desired, pre-
cede each carriage return with a backslash.

The keyword with is optional.

The associate command is automatically executed whenever a create,
create view, or define command is executed. The full text of the com-
mand, including any comments enclosed within the characters /® and */
which precede or are contained within the command, is appended to the
“text” attribute of the ‘“descriptions” relation. This feature provides
automatic documentation of relations, views, and stored commands.

If several objects are created in one command string (before a go or
semicolon is entered), all of the command texts are associated with the
first object created by the command string. For example, the command
string

1) create x
2) create y
8) create s;

automatically associates the entire text with the ‘“text” attribute in the
“/descriptions” relation for the ‘“relid” identifying relation ‘“x”. The com-
mands

1) create X;
1) create y;
1) create s;

on the other hand, associate each create command with the ‘“relid” of
the object it created.

Britton Lee

IDL Reference Manual associate

If the text of a command creating a relation, view or stored command

exceeds 4000 bytes in length, it will overflow the space allocated for it in

the “text” attribute of the “descriptions” relation. To prevent this from

occurring when entering long commands, the user can turn off the auto-

associate feature by invoking idl with the —a or /noassociate flag, or

turn auto-associate off and then on again using Z5associate.
PERMISSIONS The user must be the owner of the object referenced in the command.
EXAMPLES To associate a description with the ‘“‘parts” relation:

1) associate parts “Relation listing all parts’’;

or

1) associate parts with ‘‘Relation listing all parts’’;

To add the information that the attribute “number” has an index:

1) range of p is parts;
1) associate p.number
2) "Has a clustered index on number”, "I1";

“I1” is a user-assigned key.

MESSAGES illegal command (IDM.E45)
Cannot be used in a transaction.

permission denied (IDM.E43)
Must be owner of object.

not found (IDM.E6)
The object or attribute does not exist.

SEE ALSO range, retrieve

“Object_Name”
Z%associate

Britton Lee 87

audit

IDL Reference Manual

audit [[into] rel_name] (target-list) [where qualification)]

DESCRIPTION

38

The audit command creates a human-readable audit report from the
transaction log or from a copy of it (i.e., the output of a dump tran-
saction). It produces a formatted listing of the log in the order in which
modifications to the database took place.

A simple audit command returns its output to the host, while an audit
into command stores its output in a new relation specified by rel_name.

For audit into, the name selected for rel_name must be unique.

The qualification and target-list are limited to the attributes listed below.

Attribute Meaning

time time of the update, in 60ths of a second since midnight
date date of the update, in days from a date set by idmdate
user user who made the modification

xtid the “tid” of the tuple concerned

relid the id of the relation involved

number internal transaction number

type type of update

value data that was changed

See the entry for “Target-Lists” for a description of how target-list
values are bound to program variables.

The “value” attribute is reserved for transaction logs. It may appear in
the target-list but not in the gualification. It is used in the audit com-
mand to access all of the attributes of the relation whose modification is
recorded in the transaction log. When the target-list is based on the
“value” attribute, only one relation may be audited.

Britton Lee

IDL Reference Manual

PERMISSIONS"

EXAMPLES

Britton Lee

audit

The interpretation of the “type’ attribute is as follows:

Type Meaning

00 null

12 stop update

14 split

16 begin query

17 replace begin

18 replace old

19 replace duplicate

1A append duplicate
1C end query

1D abort query

1E checkpoint

1F safepoint

B4 root

C3 append

C4 delete

C7 destroy

Cs create index

CcDh permit

CE deny

D1 tuple

D2 abort transaction
D4 begin transaction
D5 end transaction
El define

EB - dump transaction

EE define program

For audit into, the user must have create permission in the open data-
base.

This query displays a report of all activity in the “parts” relation during
the last two days. The audit report is generated from the transaction
log “transact”.

1) range of t is transact;

1) audit (t.type, t.date)

2) where t.relid = rel_id("parts”)
3) and t.date > getdate — 2;

The following command stores in the relation “inv_audit” a record of
the type, date, and value of all the changes that were made to the rela-
tion “inventory”. The audit report is generated from “log5”.

audit

MESSAGES

SEE ALSO

40

IDL Reference Manual

1) range of | is log5;)
1) audit into inv_audit (l.type, l.date, L.value)
2) where lL.relid = rel_id("inventory”);

incorrect number of logs
Only one transaction log should be specified for this operation.

One and only one variable can correspond to a log in the com-
mand.

incorrect use of value

The “value” attribute can only appear in the target-list and no
functions can be applied on it.

bad log

An attempt was made to access a transaction log with a log
from a different database.

permission denied
User must have read permission on all attributes.

illegal command
User must have create permission to use audit into command.

The audit and audit into commands are illegal in a transac-
tion.

append, delete, replace, retrieve
“Qualifications”’, “Target-Lists”
idmdump(1]) in Host Software Specification
IDMDUMP in Command Summary

Britton Lee

IDL Reference Manual begin transaction

begin transaction

DESCRIPTION The begin transaction command introduces a sequence of IDL com-
mands which are to be treated as a single command.

When begin transaction is used, the commands following begin tran-
saction do not take effect until an end transaction command has been
given.

Transactions are used to ensure consistency in a database. For example,
in a bank money can be moved from one account to another by sub-
tracting an amount from the balance of one account and adding it to
another. If, after the update was subtracted and before the update was
added, someone looked at the balances, it would appear as though money
were either spontaneously generated or spontaneously lost. If the system
went down between the two updates, the error could be made per-
manent.

This problem can. be solved with a transaction. Although a transaction
is composed of a sequence of commands, it is treated as an atomic opera-
tion; it is performed completely or not performed at all.

A transaction is also appropriate if the user wants to observe the effects
of the constituent commands before they are committed. If the com-
mands are put into a transaction and the user sees that the changes are
undesirable, the changes can be backed out with an abort transaction
command.

In interactive IDL, the begin transaction command must be immedi- -
ately followed by the control keyword go or a semicolon. The only com-
mands permitted within a transaction are: abort transaction, append,
begin transaction, delete, end transaction, range, replace,
retrieve, and sync.

Nested transactions are permitted, but all levels are considered to be part
of the parent transaction. An abort transaction in a nested sequence
will back out all changes back to the top level, as demonstrated below:

1) begin transaction; /* start clean */
1> append ..;; /* level 1 */

1> end transaction; /* committed */
1) begin transaction; /* start again */

1> delete ..;; /* level 1 */
1> begin transaction; /* nested */
1> replace ...; /¥ level 2 */

1> end transaction; /* not committed yet */
1> abort transaction; /* back out everything since "start again” */

Britton Lee 41

. begin transaction IDL Reference Manual

EXAMPLES Completed transaction:

1) range of ¢ is customers;

1) begin transaction;

1> replace ¢ (c.balance = c.balance - 100)
2> where c.name = "debtor”;

1 tuple affected

1> replace c (c.balance = c.balance 4 100)
2> where c.name = "creditor”;

1 tuple affected

1> end transaction;

1)

For extra security, this sequence may be placed into a stored command
and permission to write to the original balances may be denied, while
permission to execute the stored command may be granted.

Aborted transaction:

1) range of e is employees;
1) begin transaction;
1> delete e where e.lastname = "Croft”;

3 tuples deleted

1> abort transaction;
WARNING: line 1: Transaction aborted

1)

In this example, the user wanted to delete a tuple in the “employees”
relation where the employee’s last name was “Croft”. The effects of the
delete command were displayed as “3 tuples deleted”. The user was not
aware that there was more than one employee with the last name of
“Croft”. To remove the change, the user issued the abort transaction
command, which returned the data to its original state.

1) begin transaction;
1> delete e where e.lastname = "Croft” and
2> e.firstname = " Traci";

1 tuple deleted

1> end transaction;

1)

Here, the user added another qualifier and observed that the effect of the
delete command was “1 tuple deleted”. As this was the desired effect,
an end transaction command was given to commit the change in the
database.

42 Britton Lee

IDL Reference Manual

MESSAGES

SEE ALSO

Britton Lee

begin transaction
must perform open first (IDM.E46)
The user must be in a database to start a begin transaction.

abort transaction, define, end transaction

43

create

IDL Reference Manual

create rel_name (att_name=type[, att_name=type ... |) [with option_list]

create rel_name ([partition_name] (att_name=type|, att_name=type ...])

[with option_list] [,[partition_name] (att_name=type
[, att_name=type ...]) [with option_list]] ...) [with option_list ...]

DESCRIPTION

OPTIONS

44

The create command sets up an empty relation in the database which is
currently open.

The second form shown in the synopsis is given to provide compatibility
with future Britton Lee products.

The attributes comprising the new relation are specified in a list of one
or more alt_name = type pairs.

A type is composed by concatenating a predefined mnemonic representing
the type of the data in the attribute with the maximum length of the
attribute, as in “c20” for a character attribute of 20 characters or “i4”
for an integer attribute of 4 bytes. The length is specified as number of
characters for character attributes and as number of bytes for numeric
attributes. For a list of the predefined mnemonics and a detailed
description of the various types to which they refer, consult the section
“Typu”.

Once a relation has been created, its basic structure cannot be altered.
If it becomes desirable to change the structure of an existing relation, as
in adding or removing attributes or changing the type of an attribute, a
new relation must be created, and the data from the original relation
appended to it. The logging status of a relation can be changed with
the extend command.

The relation is initially created with no indices. If the relation is heavily
used, a clustered index should be created for it either as soon as it has
grown to several blocks of data or when the initial loading of data has
been completed.

When create is executed, the associate command is automatically exe-
cuted also, with the full text of the create command entered by the user
inserted as the “text” portion of the description entered by the associ-
ate command into the ‘“descriptions” relation. This feature provides
automated documentation of relations.

quota = n
The quota option specifies the maximum size, in 2048-byte data
blocks, that the relation may attain. If no quota is specified,
the relation will be allowed to grow until the database is full.

logging (= {0 11}]

If set to 1, this option specifies that the transaction log “tran-
sact” is to be updated whenever the relation is modified. If set

Britton Lee

IDL Reference Manual

PERMISSIONS

-EXAMPLE

MESSAGES

SEE ALSO

Britton Lee

create

to 0 the transaction log is not maintained, but changes to the

-~ relation are recorded in the temporary system relation “batch”.
If the logging option is used but neither O nor 1 is specified, the
default is 1.

The user must have ereate permission in the database in which the rela-
tion is being created.

This command creates the ‘“parts” relation with attributes “name” (a
20-character field), “cost” (an 8-digit bed field), and “quan” (a two-byte
integer field). It will be allowed to grow to a maximum size of 50 data
blocks. All changes to the relation will be recorded in the system rela-
tion “transact”.

1) create parts (name = ¢20, cost = bed8,
2) quan = i2) with logging, quota = 50;

out of space on disk (IDM.E42)
The allocation could not be made because the disk was full.

tuple too wide (IDM.E61)
A command tried to add a tuple which was wider than the max-
imum allowable tuple width of 2000 bytes.

illegal command (IDM.E45)
It is illegal to create relations inside a transaction or stored com-
mand. It is illegal to create relations without create permission.

associate, create database, create index, create view, destroy,

extend
“Att_Name”, “Rel_Name”, “Types”

45

create database

IDL Reference Manual

create database dbname [with options]

DESCRIPTION

PERMISSIONS

OPTIONS

46

The create database command creates a database which contains only
the system relations.

When a database is created, the system relation ‘“host_users’ is initial-
ized with one tuple allowing access to the creator of the database. The
creator is therefore the owner and DBA of the database.

The create database command must be executed from the ‘“‘system”
database, and the user must have permission in the “system’ database to
create a database.

demand = nblocks [on] “diskname”

The demand option specifies the number of 2K blocks to allo-

. cate for the database. The nblocks must be an integer.

A zone is a group of cylinders, with the number of cylinders per
zone set when the disk is formatted. Zone sizes range from 128
to 254 blocks. The “bps” attribute in the ‘“disks” in the “sys-
tem” database indicates the zone size for all disks attached to
the database server.

Since database allocations are only made in whole numbers of
zones, the program will round nblocks up to the first whole
number of zones, allocate that number, and display the number
of blocks actually allocated at the user’s terminal.

The database will not be allowed to grow beyond the size allo-
cated. If the size which the database was originally allocated is
insufficient, the user may increase its size with the extend data-
base command.

If a “diskname” is specified, the allocation is made on the
specified disk; otherwise the allocation is made on any disk that
has sufficient space. .
If no demand is specified, the default allocation is one zone size.
The demand option can be repeated many times to specify how
much of the database is to be placed on a given disk. The
phrase

with demand=—1000 on "disk1”, demand=—250 on

requests that the database be allocated 1000 blocks on ‘diskl”
and 250 blocks on “disk2”.

Britton Lee

" disk2”

IDL Reference Manual create database

- logblocks = nblocks [on “diskname”} .
This option specifies the number of blocks w allocate for the
transaction log. If no value is specified, the default is one zone.
The number of blocks actually allocated is rounded up to the
first whole number of zones.

The number of blocks specified with this option is in addition to
the demand for the rest of the database. A disk may be
specified.

disk = “diskname”
The disk option specifies the disk for the database or the tran-
saction log, depending on whether the disk allocation option is
immediately preceded by the demand or logblocks option.
The default is any disk which has sufficient space. The
specification

with demand = 8000, disk = "abc”,
logblocks = 1000, disk = "efg”

requests 3000 blocks on disk “abc” for the database and 1000
blocks on disk ‘“‘efg” for the transaction log.

Portions of a database may be allocated to different disks by list-

ing several pairs of demand=nblocks, disk—=name options
specifying how much of the database is to be located on a given
disk.

The order of the options is significant. The order
with demand=1000, disk="abc”

requests 1000 blocks on disk “abc” for the database whereas
with disk="abc¢”, demand=1000

requests one zone (the default demand) on disk “abc” and 1000
blocks on any available disk (the default disk).

This option specifies that the ASCII character set is to be used
to store character data in the database. This is the default.

ebedic
This option specifies that the EBCDIC character set is to be used
to store character data in the database.

EXAMPLES This command creates the database ‘“‘documents” with a size limit of
7500 blocks. It will reside on ‘“diskl”. If there are fewer than 7500
blocks of free space on “disk1”, the database will be created with as
much space as is available on “disk1”.

Britton Lee 47

create database IDL Reference Manual

1) open system; _
~ - --1) create database documents
2) with demand = 7500 on "disk1";

7500 blocks allocated

This command creates a database with 1000 blocks, rounded up to the
nearest disk zone size, on any available disk(s). Character data in “db”
will be stored in the EBCDIC character set.

1) open system;
1) create database db with demand = 1000, ebcdic;

1000 blocks allocated

. The following command creates a database on the two disks ‘“diska” and
“diskb”. If neither disk had any free space, the database would not be
created.

1) open system;

1) create database test

2) with demand = 2500 on "diska”,
8) demand = 2500 on "diskb”;

5000 blocks allocated

MESSAGES illegal command (IDM.E45)
The user must have permission to create a database, and must
have the ‘“system” database open. This command cannot be
used in a stored command or in a transaction.

already exists (IDM.E2)
Database names must be unique.

SEE ALSO deny, destroy database, extend database, permit

“Dbname”, “Options”

48 Britton Lee

IDL Reference Manual create index

create [unique] [nonclustered | clustered] index
[on] rel_name (att_name|, att_name ...]) [with options]

DESCRIPTION Indices are used to provide fast access to data. If tuples in a relation are
often searched on the basis of a particular attribute, it is appropriate to
create an index on that attribute to reduce access time. The index
specifies a particular attribute or set of attributes called keys on which a
relation will be searched. For example, if a relation represents a tele-
phone book, one could create an index on the attributes ‘“lastname,
firstname”. This would speed up the search when data in the telephone
book is accessed with a gualification based on the “lastname, firstname”
attributes.

Indices can be defined as clustered or monclustered, and unique or
non-unique. If none of these are specified, the index is created as mon-
clustered and non-unique by default.

A clustered index provides faster access than mnonclustered, but
requires that the data in the relation be stored in an order governed by
the key to the index. On creation of a clustered index, the data in the
relation is sorted according to the values of the attribute(s) specified for
the index, and a modified B*-tree index is built. Only one clustered
index is permitted for a single relation. When the index is created, all
existing indices on that relation are destroyed unless the recreate option
is specified. In addition, when the clustered index is created, duplicate
tuples (identical in all attributes) are deleted. The maximum size for the
keys of a clustered index is 252 bytes.

A nonclustered index does not physically reorganize the data. Up to
250 nonclustered indices may be created for a single relation. The max-
imum size for the keys of a nonclustered index is 248 bytes.

A unique index can be created for relations in which the indexed attri-
butes must be unique. For example, social security numbers are sup-
posed to be unique for all individuals. If a unique index has been
created for the “social security number” attribute, the user is not permit-
ted to assign to a tuple a social security number which already appears
in another tuple in the relation. A unique index may be clustered or
nonclustered. .

When a unique index is being created, the create index command is
aborted if the database server detects any duplicate values among the
indexed attributes. If a unique index already exists on a relation and a
user tries to modify the indexed relation such that the indexed attributes
would no longer be unique, the offending append, replace, or copy in
command is aborted. The delete_dups option can be used to prevent
commands which introduce duplicate keys from aborting.

Britton Lee 49

create index

OPTIONS

50

IDL Reference Manual

_delete_dups

If delete_dups is specified for a unique clustered index, and
duplicate values on the indexed attributes are found in the rela-
tion while the data is being sorted, as many tuples as necessary
are deleted in order to make the index unique. A warning mes-
sage is displayed, but the create index command is not aborted.
This option has no effect on a unique nonclustered index at
the time that the index is being created.

However, if a unique clustered index or a unique non-
clustered index was created with the delete_dups option, and
a user tries to modify the relation such that the indexed attri-
butes would no longer be unique, the modification does not occur
(i.e. the tuple in question is not added or modified). The user is
informed that the duplicate was not appended or replaced, but
the entire append or replace command is not aborted. This
effect can also be achieved by setting option 6 for the execution
of the modification, if the index was not originally created with
delete_dups.

fillfactor = m

When a clustered index is sorted, the relation is written to
disk. The fillfactor value specifies the percentage of the-blocks
to be filled when the relation is written to the disk in sorted
form. A fillfactor can range from 1 (1% of the block is to be
filled) to 100 (the block is to be completely filled). The default
fillfactor is 100. Relations that are known to have a high
potential for growth should have a small fillfactor specified so
the data can be kept physically clustered for as long as possible.
If a relation has become scattered (blocks containing data which
should be in sort order are spread over several cylinders), 1/O
time will become large with respect to average read time. When
this situation becomes apparent, the clustered index should be
created again (the old one is automatically destroyed) and a new
fillfactor specified.

skip =n

The skip option indicates the number of blank blocks to leave
between data blocks. This option can be used to provide room
for growth.

recreate

The recreate option deallocates empty pages which were allo-
cated for the creation of a clustered index. If recreate is
specified, the data is not resorted and any nonclustered indices
on the relation are not destroyed. When the recreate option is
used, the keys must be the same as the keys of the original
index.

Britton Lee

IDL Reference Manual create index

nosort

This option specifies that a clustered index is to be created on
data which is already sorted by the index keys. This option
greatly increases the speed with which an index can be created
for sorted data. If the nosort option is specified and the data is
not sorted, an error message is displayed and the index is not
created. The user must then create the index without the
nosort option.

PERMISSIONS The user must have create index permission for the relation and be the
owner of the relation.

EXAMPLES This command causes the “parts” relation to be sorted on (name,
number), written on the disk in blocks 40% full, and a B*-tree index
created for the (name, number) pairs. When a query specifies (name) or
(name, number), only the index and the exact blocks needed are read,
not the entire relation.

1) create clustered index on parts (name, number)
2) with fillfactor = 40;

The “parts” relation already has a elustered index (from the example
above). The next command creates a nonclustered index on “number”
to simplify access to the “parts” relation when “number” alone is
specified. It is a unique index to enforce the requirement that no two
part numbers may ever be the same. If a user tries to modify the rela-
tion so that the uniqueness of the “number” attribute were not
preserved, the entire append or replace command is aborted.

1) create unique nonclustered index on
2) parts (number);

The next command creates the same type of index as the preceding one.
The difference is that if a user tries to modify the relation so that the
uniqueness of the “number” attribute were not preserved, the
modification would not occur, but the entire command would not be
aborted. Instead, a message would inform the user of the modification
which was not executed.

1) create unique nonclustered index on
2) parts (number)
8) with delete_dups;

The next command deallocates any unused data pages in the “parts”
relation and resets any pointers in the index that point to the deallocated
pages. The data is not resorted and the mnonclustered index on
“pumber” is not destroyed.

1) create clustered index on parts (name, number)
2) with recreate;

Britton Lee 51

create index

MESSAGES

SEE ALSO

52

IDL Reference Manual

illegal command (IDM.E45) -
Only the user who created the relation can create an index on it.
The user must have create index permission. This command
cannot be used in a transaction.

index exists (IDM.E29)
An index with exactly the same characteristics exists.

out of space (IDM.E42)
The space for the index is counted in the space for the database.

index too large (IDM.E66)
The size of an index exceeds the maximum size allowed.

illegal nosort (IDM.E209)
Unordered data was found in a command specifying the nosort
option. When the nosort option is specified, the tuples must
already be ordered by the index keys. This index may be
created by not using the nosort option.

create, destroy index, set
“Att_Name”, “Options”, “Rel_Name”

Britton Lee

IDL Reference Manual create view

create view object_name (target-list) [where qualification]

DESCRIPTION The create view command sets up a virtual relation, one that is not a
physical entity, but is composed of attributes from one or more relations
(called base relations) or other views. A view looks like a relation when
it is accessed, but in actuality it never has any data stored in it. It is
similar to a temporary relation which is built from its base relations
whenever it is accessed. For this reason, when the base relations from
which the view is constructed are modified, the modification is reflected
in the view. Thus, views are automatically updated.

If the target-list is not specified, the attributes in the view will have the
same names as the attributes in the base relations. The target-lsst need
pot be specified unless an attribute in the view is derived from a value
more complex than a simple attribute, or the resulting view would have
more than one attribute with the same name, or the user wishes to
assign new names to the attributes in the view.

A view is often created to access data from multiple relations, to access
just a subset of a relation, or to restrict access to certain attributes in a
relation. A user can be denied access to a base relation but permitted
access to a view built from selected attributes from that base relation.

Views are similar to relations in some aspects. A view may be protected,
retrieved, and destroyed in the same manner as a relation. Because a
view does not actually contain any data, generally speaking, a view can-
not be modified by the append, replace, and delete commands unless
the attributes of the view are all simple copies of the attributes of a sin-
gle base relation. If this is the case, the updates to the view will be
reflected in the base relation as well.

Views are recorded in the system relation ‘“query”. Since a view is
dependent on its base relations, a user cannot destroy a base relation
without first destroying any views that refer to it. View definitions may
not be “copied” to another database, such that an equivalent view would
exist on the other database, referencing similar base relation. If it is
desirable to use a single view definition in more than one database, save
the view definition in a text file on the host system and use the IDL
pseudo-command Zinput to create it in both databases.

When create view is executed, the associate command is automatically
executed also, with the full text of the create view command entered by
the user inserted as the “text” portion of the description entered by the
associate command into the “descriptions” relation. This feature pro-
vides automated documentation of views.

PERMISSIONS The creator of the view must have read permission on the base relations
used to create the view.

Britton Lee 58

create view

EXAMPLE

MESSAGES

SEE ALSO

54

IDL Reference Manual

_This command creates a view of parts which need to be reordered. It is - .
composed of two attributes from the “parts’ relation and two attributes

from the ‘“vendors’ relation.

1) range of p is parts

2) range of v is vendors

8) create view reorder (p.num, p.name, v.vendor, v.address)
4) where p.num = v.num and p.qty < 10;

permission denied (IDM.E43)
The user does not have access rights to the view.

illegal command (IDM.45)
This command cannot be used inside a transaction.

- associate, create, deny, destroy, permit, retrieve

“Object_Name”, “Qualfications”, “Target-Lists”

Britton Lee

IDL Reference Manual

define

define query_name command [command ... | end define

DESCRIPTION

Britton Lee

The define command creates a stored command (also called a stored
query). A stored command is a sequence of one or more IDL commands
which can be referenced collectively by the gquery_name.

If a sequence of IDL commands is often executed, it is advisable to
define a stored command for that sequence. Because a stored command
is kept in a parsed and partially processed form, it will run faster than
would the constituent commands executed individually.

A stored command should also be created if it is desirable to impose
protect-modes for the stored command which differ from those on the
constituent commands. A user can be granted permission to execute a
stored command without permission to execute all of the conmsitutent
commands individually.

Only certain commands can be used in a stored command. They are:

append

abort transaction
begin transaction
delete

end transaction
range

replace

retrieve

set

Options 1 through 17 are legal inside a stored command. If any of these
are set inside the stored command, option 15 (use) must have been set
prior to defining the stored command which contains the set options.

The keyword go and the semicolon may never be used in the body of a
stored command.

When a stored command is defined, formal parameters can be used in
place of constants. A formal parameter has the syntax of a name
prefixed with a dollar sign ($). Later, when the stored command is exe-
cuted, the user supplies the values to be substituted for the formal
parameters. The order in which the parameters are sorted is discussed in
the entry for the execute command.

A stored command, once defined, cannot be modified. If a change in the
command is desired, a new stored command must be defined.

55

define

EXAMPLE

MESSAGES

SEE ALSO

58

IDL Reference Manual

When deflne is executed, the associate command is automatically exe-

“cuted also, with the full text of the define command entered by the user

inserted as the “text” portion of the description entered by the associ-
ate command into the ‘“descriptions” relation. This feature provides
automated documentation of stored commands.

To define a stored command:

1) define additem
2) range of i is items
8) append to items(salesman = $name, amt = $amount)

4) retrieve(i.salesman, i.amt) where i.amt = $amount
5) end define;

To execute this stored command:

1) additem with name = "barbara”,
2) amount = 47;

or
1) additem(47, "barbara”);
or
1) execute additem(47, "barbara”);

In the last two examples, the value 47 is substituted for the ‘“amount”
parameter and the value “barbara” is substituted for the “name” param-
eter. When the attribute name is not explicitly stated in the execute
command, the values must be listed in this order because of the alpha-
betical ordering of the parameter names (“a” before “n”).

already exists (IDM.E2)
A relation, file, view, or stored command has the guery_name
given. All named objects must be unique for each user.

stored command or program too big (IDM.E85)
The internal representation of the stored command occupies
more than 14KB.

illegal command (IDM.E45)
This command cannot be performed in a transaction.

may not be used in a stored command (IDM.E41)
The specified command may not be used in a stored command.

associate, destroy, execute, set
“Query-Name”

Britton Lee

IDL Reference Manual delete

delete range_var [where qualification)

DESCRIPTION The delete command removes one or more tuples from a relation. If
there is no qualification specified, all of the tuples in the relation are
removed.

PERMISSIONS The user must have write permission for all the attributes of the rela-
tion.

EXAMPLES This command deletes all the tuples in the ‘“parts” relation in which the

value of the “qty” attribute is less than 1.

1) range of p is parts
2) delete p where p.qty < 1;

The delete command can be extremely powerful. This command deletes
every tuple in the “parts” relation.

1) range of p is parts
2) delete p;

MESSAGES permission denied (IDM.E43)
The user does not have write permission for all attributes of the
relation.

view not updatable (IDM.E60)
The relation is really a view and the view is not updatable.

SEE ALSO append
C “Qualifications”, “Range_Var”

Britton Lee 87

deny

IDL Reference Manual

deny protect_mode [of object _name] [to user]|, user ... |]

deny protect_mode of rel_name (att_name|, att_name ... |)

[to user], user ... |]

DESCRIPTION

PERMISSIONS

EXAMPLES

58

The deny command denies a specified type of access to a specified object
to a specified user or group of users. Protections imposed with the deny
command are recorded in the system relation “protect”.

The user may be a user name or a group name. A group is any entry in
the system relation ‘“‘users” for which the “uid” is equal to the “gid”. If
no users are specified, the protection applies to all users.

“ When an object is first created, the protect_modes are set so that the

creator of the object is permitted all types of access while other users are
denied all types of access.

The object_name for which access is being denied may be a relation,
view, file, or stored command. If no object is specified, the protectlon
applies to all objects. -

A deny command overrides any previous permit commands which con-
tradict it.

The DBA may also deny permission to use the create, create data-
base, and create index commands and to use database server tape.

The protect_modes which may be denied are listed wunder
“Protect_Modes” in Part III of this manual.

Only the owner of an object or the DBA may deny access.

This command speciﬁes that everyone may read the data in the ‘“parts”
relation except ‘“george”, “harvey’” and “mary”.

1) permit read of parts;
1) deny read of parts to george, harvey, mary;

This command denies write permission on the ‘“descript” attribute of the
“parts” relation to the entire group ‘“clerks”. The ‘“clerks” have been
previously defined as a group in the system relation ‘users”. Other
attributes of the “parts” relation may still be writeable by “clerks”.

1) deny write of parts (descript) to clerks;

Britton Lee

IDL Reference Manual

MESSAGES

SEE ALSO

Britton Lee

deny

user not found (IDM.ES6)
- The user specified is not in the ‘“‘users” relation for this database.

bad protection mode (IDM.E73)

The protection mode does not make sense with the rest of the
command.

not owner (IDM.E44)
Only the owner of an object or the DBA may deny permissions
on it. For a view or stored command, the user must be the
owner of the relations affected to deny permissions.

illegal command (IDM.E45)
Cannot be in transaction. The protection mode does not make
sense with the rest of the command.

create, create view, define, permit
“Att_Name”, “Protect_Modes”, “Rel_Name”, ‘“Users”

59

destroy

IDL Reference Manual

=

destroy object_name|, object _name ...]

destroy (target-list) [where qualification]

DESCRIPTION

PERMISSIONS

EXAMPLES

MESSAGES

60

The destroy command eliminates relations, views, files, and stored com-
mands. It removes the entire object from the database, and frees its
space for use by another object within the database.

If there are views or stored commands that depend on the relation or
view to be destroyed, they must be destroyed first.

The first form of the destroy command is used when an entire object is
to be destroyed with no qualification.

The second form requires a range variable and can take a gualification of
the objects to be destroyed.

Only the owner of the object or the database administrator can destroy
an object.

This command destroys the “parts” and “products” relations. 7

1) destroy parts, products;

This command makes use of the system relation ‘“relation”. The “rela-
tion” relation contains information about each relation in the database,
including the relation names and owners. This use of the destroy com-
mand destroys all relations owned by the user.

1) range of r is relation; -
1) destroy (r.name) where (r.owner = userid);

not owner (IDM.E44)
Only the owner or DBA may destroy an object.

has dependencies (IDM.E72)
There are dependent objects that must be destroyed first.

is open (IDM.ES5)
An object that is being accessed may not be destroyed.

not found (IDM.E6)
The object could not be found.

illegal command (IDM.E45)
This command cannot be issued from within a transaction.

Britton Lee

IDL Reference Manual

SEE ALSO

Britton Lee

create, create view, define, destroy database
. %“Object 2Name”, “Qualifications”, “Range_Var”, *

destroy

Target-Lists”

61

destroy database

IDL Reference Manual

destroy database‘dbname[, dbname ...]

DESCRIPTION

PERMISSIONS

EXAMPLE

MESSAGES

SEE ALSO

62

The destroy database command removes the specified databases from
the system and frees the space that was allocated for them. It destroys
all relations and files in the specified database(s).

The database to be destroyed cannot be open at the time that the des-
troy database command is executed. The command must be executed
from the “system database.

The “system” database cannot be destroyed with the destroy database
command.

To destroy a database, the user must be the owner of the database (as

specified in the “system” database relation ‘“databases”) or the owner of
the “system’ database.

This command destroys the database “inventory” and frees all disk space
which was allocated to it.

1) destroy database inventory;

not owner (IDM.E44)
Only the owner of the database, or the owner of the “system”
database, can destroy the database.

is open (IDM.ES5)
Someone is using the database.

illegal command (IDM.E45)
Cannot use in transaction. The command must be executed
from the “system” database.

create database, destroy
“Dbname”

Britton Lee

IDL Reference Manual destroy index

destroy [unique] [nonclustered | clustered] index
[on] rel_name (att_name|, att_name ...])

DESCRIPTION The destroy index command removes an index from a relation. This
might be desirable if the index is seldom used to free the space occupied
by its B*~tree for other applications and to eliminate the overhead of
updating it whenever the tuple attributes that it indexes are updated.

The index is identified by its description: whether it is wunique,
clustered or nonclustered, and by the attributes that it indexes.

PERMISSIONS The user must be the owner of the relation.

EXAMPLES This command destroys the index on (name, number) for the “parts”
relation. Initially the relation remains sorted on (name, number) as it
was when it had its indices, but subsequent to the destruction of the
indices, new data is appended at the end of the relation.

1) destroy clustered index
2) on parts (name, number);

This command destroys the unique nonclustered index on the
“number” attribute of the “parts” relation.

1) destroy unique nonclustered index
2) on parts (number);

MESSAGES - not owner (IDM.E44)
The user must be the creator of the relation.

illegal command (IDM.E45)
Cannot use in transaction.

not found (IDM.E6)
The named relation or attributes were not found.

index does not exist (IDM.E30)
The index does not exist as specified (the clustering or the
arrangement of attributes is incorrect).

SEE ALSO create index
“Att_Name”, “Rel_Name”

Britton Lee 63

end transaction

IDL Reference Manual

end transaction

DESCRIPTION

EXAMPLES

MESSAGES

SEE ALSO

64

The end transaction command ends an atomic sequence of commands
that that was initiated with a begin transaction. The results of the
transaction are made permanent.

See begin transaction.

illegal command (IDM.E45)
Must be used after a begin transaction command.

abort transaction, begin transaction

Britton Lee

IDL Reference Manual execute

_[execute] query_name [with] [name = constant|, name = constant ...]}

[execute] query_name [with] [constant], constant ...]]

DESCRIPTION The execute command executes the stored command guery_same, which
was previously created with the define command.

The keyword execute may be omitted, provided that gquery_name does
not conflict with the name of any IDL command.

The constants specify values to be substituted for the formal parameters
supplied in the definition of the stored command.

If the name = constant form is used, the name must correspond to the
name of a formal parameter as it was specifed in the define command.
The name = constant assignments may be given in any order.

For example, if a stored command “mycommand” were defined as

1) define mycommand

2) append to emps(name = $empname,
8) num = $empnum, dept = $deptnum)
4) end define;

an execute command could look like

1) execute mycommand with empname = Smith,
2) empnum = 2450, deptnum = 102;

If the constant form (no explicit name) is used, values are assigned based
on the alphabetic order of the names of the formal parameters. For
example, to execute “mycommand” using this form and obtain the same
results as in the example above, “mycommand” would have to be
invoked as

1) execute mycommand 102, Smith, 2456;

When this form is used, the order in which the values are listed is cru-
cial, because the mapping of values to formal parameters is determined
by the alphabetic ordering of parameter names. The digits in parameter
names are considered characters, not numbers, so the parameters $1, $2,
$3, $10, $20 sort as $1, $10, $2, $20, $3.

It is not necessary to enclose string constants in quotation marks if they
contain only alphabetic, numeric, and underbar characters.

PERMISSIONS The user needs only execute permission for the stored command, if the

creator of the stored command owns all of the objects referenced by the
stored command.

Britton Lee 65

execute

EXAMPLES

MESSAGES

SEE ALSO

66

IDL Reference Manual

‘Assume that the stored command “update” has been defined as follows:

1) define update

2) append to expend (salesman = $name,
3) amt = $amount, time = gettime,
4) date = getdate)

5) end define;

This stored command can be executed as follows:

1) execute update with name = "mike”",
2) amount = 44;

or
1) update 44, "mike”;

In the second example, the arguments must be given in this order
because the alphabetic ordering of the parameters is “$amount”,
“$name”. The keyword execute is optional because ‘“update” does not
conflict with any IDL command.

not found (IDM.ES)
The command was not found in the current database.

missing parameter (IDM.E23)
The user has tried to execute a stored command without enter-
ing required parameters. A parameter was sent that was not in
the stored command.

too many parameters (IDM.E36)
Exceeded number of parameters in the stored command.

permission denied (IDM.E43)
The user must have execute permission on the stored command
and appropriate permissions for the commands comprising the
stored command.

other messages
Since executing the stored command causes other commands to
be executed, they may give error messages. Consult the MES-
SAGES section under the appropriate command.

define
“Constants”, “Query-Name”

Britton Lee

IDL Reference Manual

exit

exit

DESCRIPTION

Britton Lee

The exit command exits the IDL parser. The exit command may be
used anywhere in a command.

If the exit is issued inside a transaction, the user is warned that the

transaction has been interrupted and all pending commands have been
aborted.

67

extend

IDL Reference Manual

extend rel_name [with logging [= {01}]]

DESCRIPTION

PERMISSIONS

EXAMPLE

MESSAGE

SEE ALSO

68

The extend command controls transaction logging of the relation
rel_name.

If logging is set to to 1, the transaction log “transact” is to be updated
whenever the relation is updated. If logging is set to 0, “transact” is
not maintained, and updates are recorded in the system relation “batch”.
If the logging option is used but neither O nor 1 is specified, the default
is 1.

The user must be the owner of the relation.

- 1) extend unimportant with logging = 0;

not relation (IDM.E70)
Only relations can be extended.

permission denied (IDM.E43)
Only the DBA can turn logging on.

can’t extend system relation: %s (IDM.E81)
System relations cannot be extended.

create
“Options”, “Rel_Name”

Britton Lee

IDL Reference Manual extend database

extend database dbname (with options]

DESCRIPTION The extend database command increases or decreases the allocation for
the database dbname. Since allocation is made by whole sones only, the
number of blocks actually allocated is rounded up to the next multiple of
the number of blocks per zone.

The options are the same as for the create database command except
that the demand may be negative if deallocation is desired. Only
entirely freeable zones, those containing no pages which are either used
or demanded, are removed from the database. If a disk option is
specified with a negative demand option, storage is deallocated only
from freeable zones on the specified disk(s). If no disk option is

- -specified, deallocation is from zones belonging to the database which
reside on any disk(s).

The actual number of blocks allocated or deallocated is displayed at the
terminal.

If both positive and negative demands are made in the same extend
database command, the negative demands are processed first.

A database may be extended while others are using it.

The extend database command must be executed from the “system”
database.

If the options are omitted, extend database increases the value of the
demand option by one zone on any available disk.

OPTIONS See create database.

PERMISSIONS The user must be the owner of the database being extended.
EXAMPLES This command increases the size of the “accounts” database by 2000
blocks.

1) open system;
1) extend database accounts
2) with demand = 2000;

This command removes from the “accounts” database a total of 3500
blocks from “diska’ and “diskb” and allocates 1500 blocks on “diskc”.

1) open system;

1) extend database accounts

2) with demand = -38500, disk = ‘‘diska", disk = ‘‘diskb”’,
8) demand = 1500, disk = ‘‘diske’’;

Britton Lee 69

extend database IDL Reference Manual

MESSAGES illegal command (IDM.E45)
- Must be in “system” database. Must not be in transaction.
Must have create database permission.

permission denied (IDM.E43)
Must be owner of database.

out of space on disk (IDM.E42)
There is no more room to extend the database on the specified
disk.

SEE ALSO create database, destroy database
“Dbname”, “Options”

70 Britton Lee

IDL Reference Manual

open

open dbname

DESCRIPTION

PERMISSIONS

EXAMPLE

MESSAGES

SEE ALSO

Britton Lee

The open command opens a database for activity. The opened database
will remain open until the user enters another open command specifying
a different database, or until the IDL session is terminated.

To execute any IDL commands other than range or set, a database
must first be opened.

There must be an entry for the user’s host id in the database’s system
relation “host_users”.

1) open vino;
1) append to kinds
2) (type = "chardonnay”, color = "white");

not found (IDM.E6)
The database does not exist.

permission denied (IDM.E43)
The user does not have an entry in the system relation
“host_users’.

database is locked (IDM.E53)

The administrator is temporarily locking out users to do mainte-
nance.

create database, retrieve
“Dbname”

71

permit

IDL Reference Manual

permit protect_mode [of object_name] [to user|, user ...]]

permit protect_mode of rel_name (att_name|, att_name ... |)

[to user|, user ...]]

DESCRIPTION

PERMISSIONS

EXAMPLES

72

The permit command permits access to an object to a specific user or a
group of users. The user may be a user name or a group name. A
group is any entry in the system relation ‘“‘users” for which the ‘“uid” is
equal to the “gid”. If no user is specified, the permission applies to all
users.

By default, access is permitted to the owner of an object and denied to
other users when the object is created. To allow other users access to an
object, the owner must explicitly permit such access. The object_name
may refer to a relation, view, file, or stored command.

The DBA may also permit use of the create, create database, and
create index commands and of database server tape.

Access to a view or stored command implies access to all objects that the
view or stored command references only if the owner of those objects
and the view or stored command is the same.

The protect_modes permitted are listed under ‘“Protect_Modes”. A per-
mit command supersedes any previous deny commands which contrad-
ict it.

The user must be the owner of a relation, view, or stored command in
order to control permission over it. If permission is granted for a data-
base, the user must be the DBA or owner of the database.

Permit on a relation:

The user “george” can read the “parts” relation.

1) permit read of parts to george;

Permit on an attribute:

The users “bill” and “sharon” can write to the “quan” attribute of the
“parts” relation.

1) permit write of parts (quan)
2) to bill, sharon;

Britton Lee

IDL Reference Manual permit

Permit of a stored command:

The wuser ‘“dave” and all wsers in the group “managers” are the only
ssers permitted to execute the stored command “‘getsum”.

1) deny execute of getsum;
1) permit execute of getsum to managers;
1) permit execute of getsum to dave;

Permit with no object specified:
The user ‘“‘gloria” may create relations in the open database.

1) permit create to "gloria”;

Permit for all users:

When no sser is specified, all users of the open database are permitted to
create relations.

1) perrdit create;

MESSAGES unknown user (IDM.E6)
The system relation ‘“users” for the currently open database
must include the wser (or group) specified.

not owner (IDM.E44)
Only the owner or the DBA may grant permissions on an object.

not found (IDM.ES6)
The object or attribute specified was not found.

illegal command (IDM.E45)
Cannot be done from transaction. Illegal protection mode for an
object.

bad protection mode (IDM.E73)
The protection mode does not make sense for the object.

result variable does not exist '
Object was not specified where it was needed.

SEE ALSO create, define, deny
“Att_Name”, “Object_Name”, “Rel_Name”, “Users”

Britton Lee 73

range IDL Reference Manual

range of range_var is rel_name [with options]

DESCRIPTION The range statement associates a variable name supplied by the user
with the name of a relation or view. Several commands require that a
relation be referenced through a range variable rather than the relation
name. The retrieve, replace, and delete commands all require a range
variable while append and truncate require the relation name.

The user may use up to sixteen range variables in a single query.

OPTIONS minlock

This option specifies minimum locking, in which data may be
retrieved from the relation identified by range_var while another
user is modifying the relation. This may result in the retrieval of
some tuples that have been affected by a command and some
that have not. The minlock option is useful in situations in
which this type of inconsistency is not a problem and where
other users’ activities would interfere with simple retrievals were
the option not used.

fulllock s
This option specifies a full locking. It guarantees that any data
retrieved with the specified range variable will reflect either com-
pletely or not at all the effects of other users’ transactions. The
fulllock option is the default if no options are specified.

dindex = n

This option specifies that the relation or view is to be accessed
using the specified index. The clustered index is always index
0, and others are numbered from 1 to 15. The numbers of the
indices correspond to the “indid” attribute of the “indices” rela-
tion for the database. If the dindex option is used, the dorder
option is also required. If the dindex is omitted, the database
server decides which index would be most efficient. Unless the
join is extremely complicated (involves four or more relations), it
is usually preferable to let the database server choose the index.

dorder = =n
This option is used to specify the order in which relations should
be processed when two or more relations are joined in a
qualification. When the dorder option is omitted, the database
server decides in which order to process relations. Unless the join
is extremely complicated (involves four or more relations), it is
usually preferable to let the database server choose the order.

EXAMPLES The range statement below associates the range variable “p” with the
relation “products”. The retrieve command uses the range variable
({3}
p”.

74 Britton Lee

IDL Reference Manual

Britton Lee

range

1) range of p is products;
1) retrieve (p.name);

The next statement associates the variable “p” with the relation “pro-
ducts” which is owned by user “bill”’. This is to distinguish the relation
from other relations called “products” which may be owned by other
users. Several users may own completely different relations with the
same name in the same database. If the owner’s name is not specified

then the object is presumed to be owned by the current user or by the
DBA.

1) range of p is products:bill;

A range variable is associated with the relation in the last range state-
ment defining it. Here the variable “t” is bound to the relation “parts”
at the end of this sequence.

1) range of t is temp;
1) range of t is newtemp;
1) range of t is parts;

The following query uses the dindex and dorder options to establish a
plan for accessing the “small”, “medium”, and “large” relations.

1) range of s is small with dindex = 0, dorder = 1;

1) range of m is medium with dindex = 0, dorder = 2;
1) range of | is large with dindex = 4, dorder = 8;

1) retrieve (s.desc, m.name, l.quan)

2) where s.pos < 10

8) and s.num = m.num

4) and m.type = . :

This means:

(1) First, go through ‘“small”, searching for tuples in which the
“pos” attribute is less than 10. Access “small” through its
clustered index, which is on “pos”.

(2) Second, from among those tuples retrieved above, go through
“medium” searching for matches between “m.num” and
“s.num”. Access ‘“medium” through its clustered index, which
is on “num”.

(3) Among those tuples retrieved above (in which “s.pos’ is less than
10 and “s.num” equals “m.num”) go through “large” looking for
matches between “m.type” and “ltype”. Access “large” through
its fourth nonclustered index which is on “type”.

75

range IDL Reference Manual

MESSAGES None.

SEE ALSO delete, replace, retrieve
“Options”, “Range_Var”, “Rel _Name”

76. Britton Lee

IDL Reference Manual

reconfigure

reconfigure
DESCRIPTION The reconfigure command updates the configuration of the database
server according to the contents of the “system” database relation
“configure”.
This command may only be issued from the ‘“system’” database.
PERMISSIONS The user must be the DBA of the “system” database.
MESSAGES illegal command (IDM.E45)
The user was not in the “system” database or the user is not the
DBA of the “system” database.
SEE ALSO IDM Installation Guide

Britton Lee

idmeconfig(1i) in Host Software Specification
IDMCONTFIG in Command Summary

77

replace

IDL Reference Manual

replace range_var (target-list) [where qualification]

DESCRIPTION

PERMISSIONS

EXAMPLES

MESSAGES

78

The replace command replaces the value of one or more attributes in
zero or more tuples of a relation.

The target-list may reference literal values or values in attributes in
other relations.

The user must have write permission on the attributes to be replaced.
Qualification involving a single relation:

The following commands change the “name” attributes for all tuples in
the relation ‘“parts’ for which the “name” fields begin with a “t” to the
value “electronic”.

1) range of p is parts;
1) replace p (name = "electronic”)
2) where p.name = ‘“t*%;

Qualification involving multiple relations:

This command changes the value of the ‘“cost” attribute for each tuple
in the “parts” relation in which the following conditions prevail: (1) the
value of the “name” attribute in the “parts” relation equals the value of
the “part” attribute in a tuple in the “products” relation and (2) the
“name” attribute in that tuple in the “products” relation has the value
“TV”. The purpose of this command is to increase by 10% the cost of
each part that is used in manufacturing a TV. No modification is made
to the “products” relation.

1) range of p is parts;

1) range of pr is products;

1) replace p (cost = p.cost + p.cost / 10)

2) where p.name = pr.part and pr.name = "TV";

permission denied (IDM.E43)
User must have write permission on the relation.

not found (IDM.E6)
The specified relation or attribute was not found.

wrong type attribute (IDM.E19)
An expression that the user specified for a target could not be
converted to the type of the requested attribute.

view not updatable (IDM.E60)

- The view cannot be updated because the result of such an
update could not be unambiguously resolved.

Britton Lee

IDL Reference Manual

SEE ALSO

Britton Lee

append, audit, delete, pattern, range -

“Qualifications”, ¢

Range_Var

" ¢«
’

Target-Lists”

replace

79

reset

IDL Reference Manual

reset
DESCRIPTION The reset command resets the command buffer without sending anything
to the database server. It is useful for throwing away erroneous com-
mands.
The reset command may be entered anywhere in a command.
EXAMPLE 1) range of ¢ is coump
2) retrieve (c.all)
8) where c.salary > 2000 and reset
1)
Here the user has typed three lines before realizing that “count” is
misspelled. Entering reset causes the input to be ignored and the line
number to be reset to 1.
80

Britton Lee

IDL Reference Manual

retrieve

retrieve [unique] [[into] rel_name| (target-list)

[order by order_spec|, order_spec ...]] [where qualification]

DESCRIPTION

Order By

Britton Lee

The retrieve command is used for fetching data from the database
server. The simple retrieve returns the data to the host. The retrieve
into command sends data to a newly created relation containing the
attributes specified in the target-ltst. It is an error to retrieve into an
existing relation.

The user can reference up to 15 relations in one retrieve command, if
the relations are all in the same database.

If a target-list is used, it is necessary to use a range_var to specify tar-
gets.

The unique option specifies that duplicate tuples are to be removed in
the result. Duplicate tuples are defined here as tuples that are equal in
all attributes.
The optional ordér by clause specifies the order in which the returned
tuples are sorted. The direction of the ordering can be specified with a
or asc for ascending and d or desc for descending. The default is
ascending order. The order_spec can be either

target|:direction]

or

expression:direction]

If the ezpression is an integer s, the output are sorted by the sth item in
the target-list. The query

1) retrieve (x.num, x.name, x.quan)
2) order by 8;

displays its results ordered by the value of the “quan” attribute, the 3rd
element in the target-list.

The attribute(s) by which data is to be ordered must be referenced with
a range variable if the attribute is not explicitly used in the target-lsst.
For example,

1) retrieve (x.name, c.cost)
2) order by name;

will work because “name” is in the target-list as ‘“x.name” but

81

retrieve

PERMISSIONS

EXAMPLES

82

IDL Reference Manual

1) retrieve (x.all)
2) order by name;

will not work because “name” is not explicitly referenced in the target-
list. In this case, the specification must be

1) retrieve (x.all)
2) order by x.name;

To copy a large amount of data from a relation on the database server
to a host file, use the host utility idmfecopy.

For a retrieve, the user must have permission to read all the domains
in the query. For a retrieve into, the user must also have create per-
mission.

Retrieve ordered by target-name:

In the following example, the database server first calculates the average
value of the ‘“cost” field in the relation “parts”. Then the database
server accumulates the “name” and ‘“‘cost” attributes of the tuples that
contained a “cost” greater than the average. These are sorted.by the
value in the “cost” attribute, largest value first, and sent to the host
where the data is displayed at the terminal.

1) range of p is parts;

1) retrieve (p.name, p.cost)

2) order by cost:d

3) where p.cost > avg (p.cost);

Retrieve ordered by ezpression:

This command retrieves all the attributes in the “accounts’ relation,
sorting them in descending order by the value of the difference between
the ‘“‘assets’” attribute and the “liabilities” attribute. Duplicate tuples are
not displayed in the result.

1) range of a is accounts;
1) retrieve unique (a.all)
2) order by (a.assets — a.liablities):d;

Retrieve ordered by target specified by position in target-list:

This command retrieves four attributes from the “parts” relation,
ordered by the “name” attribute (the second element in the target-list).

1) range of p is parts;

1) retrieve (p.num, p.name, p.cost, p.quan)
2) order by 2;

Britton Lee

IDL Reference Manual

MESSAGES

SEE ALSO

Britton Lee

retrieve

Retrieve into:

This creates a new relation “exp_parts” in the open database composed
of the “name” and “cost” attributes from the ‘“parts” relation. The
data from those attributes is copied into the new relation from every
tuple in which the value of the “cost” attribute exceeds the average cost
of all the parts in the relation.

1) range of p is parts;

1) retrieve into exp_parts(p.name, p.cost)
2) order by cost:d

8) where p.cost > avg (p.cost);

Ordering by more than one attribute:

In this example, the data is sorted by “group” and within each group it
is sorted by “name”.

1) retrieve (b.all)
2) order by b.group, b.name;

permission denied (IDM.E43)
The user must have read permission on all domains in the
query.

not found (IDM.EG)
The named attribute or relation was not found.

append, audit, create, range
“Qualifications”, “Rel_Name”, “Taiget-Lists”
idmfcopy(1]) in Host Software Specification
IDMFCOPY in Command Symmary

83

set IDL Reference Manual

set {option-number | option-name} [, {option-number | option-name} ...]

DESCRIPTION This command enables certain options for IDL commands. The option-
number or option-name must be chosen from the following list. Option-
nemes may be in upper or lower case.

1 format
Set format before query. This option is set by database server
software and cannot be unset.

2 names
Send result names. This option is set by database server
software and cannot be unset.

3 overflow
Ignore overflow and use largest number instead.

4 divsero
Ignore division by zero and use largest number instead.

5 perform :
Send elapsed execution time (wall clock). Do not set 5 if 11 is
set.

68 duplicate
Delete tuples with duplicate keys which are generated by
modifications to the relation.

7 round
Abort on rounding of bedfit.

8 underflow
Ignore exponent underflow and use zero instead.

9 badbed
Ignore bad bed data from host or file and use zero instead.
11 time
Return dedicated time (database server CPU time). Do not set
11 if 5 is set.

12 nocount
Supress count of tuples effected when displaying query results.

13 “tape"
Use database server tape. If the option-name is used here, it
must be quoted. This option can not be set from a user pro-
gram.

84 Britton Lee

IDL Reference Manual

Britton Lee

set
14 protect
Allow DBA of the “system” database to access any database as
DBA.
15 use

This is for options set within a stored command. To enable
options at execution time, option 15 must be set prior to defining
the stored command. Then, the options are enabled when the
stored command is executed.

16 dumpwait
Wait for execution of command while a read-only dump is in
progress.

17 fastagg
Process aggregates using faster method, with possible loss of
accuracy in the result. If this option is set, queries may return
inconsistent results.

18 crossjoin
Process joins using an older method. This may improve perfor-
mance for certain queries which (1) join several small relations
with one large relation, (2) but do not join the small relations
with each other, (3) and have very few qualifying tuples in each
small relation, (4) and can use a selective index to access the
large relation.

83 resp
Return response time (in 60ths of a second) from when the DBP
gets the command to when it sends the last of the results.

84 cpu
Return CPU use (in 80ths of a second).

87 inp
Return the time the dbin spent waiting for input from the start
of the command (in 60ths of a second).

88 mem
Return the time the dbin spent waiting for memory after receiv-
ing a command (in 60ths of a second).

89 cpuw
Return the time the dbin spent waiting for the DBP or DAC
when it had CPU work to do (in 60ths of a second).

40 disk
Return the time spent waiting for the disk (in 60ths of a second).

41 tapew

Return the time spent waiting for the tape (in 60ths of a
second).

85

set

EXAMPLE

86

42 outw

IDL Reference Manual

Return the time spent waiting for the host to read its output (in

60ths of a second).

43 block

Return the time spent blocked on another dbin (in 60ths of a

second).

44 dac

Return the time spent in the DAC or the simulation routines if

there is no DAC in the system (in 60ths of a second).

45 oute

Return the time spent waiting for an output buffer (in 60ths of a

second).

406 hits

Return the number of times a disk page was found in memory.

47 reads

Return the number of disk reads performed by this dbin.

48 tperrs

Return the number of soft tape errors.

49 qrybuf

Return the number of bytes of query buffer used.

60 plan

Return the query processing plan.

The following command causes execution time to be displayed at the
user’s terminal following each IDL command.

1) set perform;

1) range of k is kinds;

1) retrieve (k.all) where k.body = "full”;

type color | flavor | body
zinfandel | red dry full
port red sweet | full

2 tuples affected
- 850 ms -

Britton Lee

IDL Reference Manual

MESSAGES

SEE ALSO

Britton Lee

set

option already set
The option was already set by default or by a previous set com-
mand.

cannot set/unset “tape’ option
The database server tape option may not be set in this context.
To set this option from a user program, use the itaddopts or ita-
peopts interface instead.

unset

87

sync IDL Reference Manual

sync

DESCRIPTION This command creates a checkpoint in the open database or, if no data-
bases are open, a checkpoint in all databases which are currently active.
Any disk blocks that may have temporarily been kept in volatile RAM
are written out to disk.

EXAMPLE 1) sync;

88 Britton Lee

IDL Reference Manual

truncate

truncate rel_name[, rel_name ...]

DESCRIPTION

PERMISSIONS

EXAMPLE

MESSAGES

SEE ALSO

Britton Lee

The truncate command deletes all tuples from a relation. It takes a
relation name, rather than a range variable, as its argument.

This command is the functional equivalent of the delete command
except that truncate can empty several relations with a single com-
mand. The deleted tuples are not recorded in a transaction log, so it is
not possible to audit the tuples which were removed.

The truncate command may be executed from within a stored com-
mand, but it may not be used inside a transaction because it is not possi-
ble to back out the deletions.

Only the owner of the relation being truncated or DBA may issue this
command.

1) truncate oldparts, oldinvoices;

not owner (IDM.E44)
User is not the owner of the relation or the DBA.

not relation (IDM.E70)
Only relations can be truncated.

illegal command (IDM.E45)
The command cannot be executed inside a transaction.

relation is unavailable (IDM.E26)
Another user is accessing the relation.

system relation (IDM.E57)
System relations cannot be truncated.

delete
“Rel_Name”

89

unset

IDL Reference Manual

unset {option-number | option-name} [, {option-number | option-name} ...]

DESCRIPTION

EXAMPLE

MESSAGES

SEE ALSO

90

This command disables options previously implemented with a set com-
mand. For a list of the option-numbers and option-names for options
which can be unset, consult the entry for set.

1) unset perform;

IDL commands will no longer display the time they have taken to exe-
cute on the database server.

option does not exist (IDM.E78)
The specified option is already unset by default or by a previous
unset command.

cannot set/unset ‘“tape” option ,
The database server tape option may not be set in this constext.
To set this option from a user program, use the itaddopts or ita-
peopts interface instead.

set

Britton Lee

PART II

IDL GENERAL CONCEPTS

Introduction to IDL

General Concepts
This part of the manual describes various components of an IDL com-
mand, such as ezpression or qualification, which may appear as argu-

ments in a number of different IDL commands. The definition and use
of these components are described here.

Britton Lee 93

Aggregates

94

An aggregate has the following syntax:
aggregate_operator (expr%sion
[by expressionl |, expression2 ... |]
(where qualification])

The aggregate operators in IDL are:

Aggregate Operator Returns
sum() sum of all elements

sum unique() sum of all unique elements
sumuy() same as sum unique
count() count of elements

count unique() count of unique elements
countu() same as count unique
avg() average of elements

avg unique() average of unique elements
avgu() same as avg unique

once() returns one and only one value;

if more or less than one value is :-
found, then an error results

once unique() once of unique elements

onceu() same as once unique

any() 0 if no elements; 1 if one or
more elements

max() maximum of elements

min() minimum of elements

The sum, avg, sum unique, and avg unique aggregate operators are
available only with those data types that have addition (integer, bed, or
bedfit). The other aggregate operators are available on all data types.

A simple aggregate with no by clause returns a single value as in

1) range of p is pricings;
1) retrieve (avgprice = avg(p.price));

avgprice
7.56

which computes a single tuple with one domain called “avgprice”, the
value of which is the average price of all of the wines in the “pricings”
relation. This type of aggregate can be modified with an optional where
clause:

Britton Lee

IDL Reference Manual Aggregates

1) range of p is pricings;
1) retrieve (avgprice = avg(p.price
2) where p.year = 1982));

avgprice
8.02

This computes the average price of the 1982 wines in ‘““pricings” relation.

An aggregate with an optional by clause, returns multiple values, one for
each group identified by the by clause. This query yields a separate
count value of each type of wine in the ‘“wines” relation.

1) range of w is wines
2) retrieve (num = count(w.onhand by w.type), w.type);

E

type

beauclair
burgundy

cabernet sauvignon
chablis
chardonnay

chenin blanc

fume blanc

gamay beaujolais
grenache rose
johannisberg riesling
petite sirah

pinot chardonnay
scheurebe
sinfandel

O fub bk bt o it bt 0O o A b OV D M

EXAMPLES The sum aggregate adds the attributes of several tuples and returns the
result.

The “wines” relation in the ‘“vino” database has an attribute named
“onhand”, which contains the number of cases of each wine available.

The following query uses the sum aggregate operator to find the total
number of cases on hand.

Britton Lee 95

Aggregates

g6

1) open vino;

1) range of w is wines;

IDL Reference Manual

1) retrieve (total = sum(w.onhand));

total
287

The following query retrieves only the tuples in which the ‘“vintage”
attribute is 1980 for calculation by the aggregate. This is done by

including a qualification inside the parentheses.

1) retrieve (total80 =

2) sum (w.onhand where w.vintage = 1980));

total80

82

The next query specifies a breakdown of how the information should be
computed and displayed using the by clause. It retrieves the sum of the

onhand attributes for each area.

1) retrieve (total =

2) sum(w.onhand by w.area), w.area);
total | area
11 | amador
42 | california
3 | lake
13 | mendocino
11 | monterey
169 | napa valley
12 | san benito
26 | sonoma

The following query uses both the by and where clauses.

Britton Lee

IDL Reference Manual Aggregates

1) retrieve (total80 =
2) sum(w.onhand by w.area where w.vintage = 1980),
38) w.area);

total | area

0 | amador
18 | california

0 | lake

4 | mendocino
11 | monterey
40 | napa valley
12 | san benito

9 | sonoma

Queries containing aggregates can become quite complex. The following
query retrieves the number, type, and total cost of all the wines
displayed where the total cost of a wine is greater than the average of
the total costs of all the wines:

1) range of w is wines;

2) range of p is pricings;

1) retrieve (w.winenum, w.type, total =

2) sum(p.price * w.onhand by w.winenum

3) where p.winenum = w.winenum))
4) where sum (p.price ®* w.onhand by w.winenum
5) where p.winenum = w.winenum)

)] > avg (sum (p.price ®* w.onhand by
7) w.winenum where p.winenum = w.winenum));

winenum | type : total

1 | johannisberg riesling 22.50

8 | grenache rose 42.00

5 | beauclair 49.00

6 | johannisberg riesling | 102.00

7 | chardonnay 12.00

9 | gamay beaujolais 45.00

10 | burgundy 90.00

11 | johannisberg riesling 65.00

15 | sinfandel 57.00

23 | cabernet sauvignon 57.00

26 | chardonnay 93.50

28 | chardonnay 287.50

381 | pinot chardonnay 29.70

33 | johannisberg riesling 88.75

Britton Lee 97

Aggregates

98

IDL Reference Manual

There may be more than one ezpression in the by clause, in which case

.separate aggregates are calculated for each combination of values in the

by clause.

An aggregate with by clauses can be powerful and also extremely confus-
ing. There is one important item to remember: the database server
optimizes its queries heavily. Since duplicate tuples and tuple order are
irrelevant, slightly different queries may produce different looking results
simply because some algorithms the database server chooses cause dupli-
cates to be deleted. The user can introduce some consistency by having
tuples ordered and by using retrieve unique when retrieving aggregates.

Each aggregate operator available in IDL is briefly described on the fol-
lowing pages.

Britton Lee

IDL Reference Manual Aggregates

any()

- -*The any operator returns 0 if none of the elements in its argu-
ment exist, 1 if at least one element exists. The choice of attri-
butes among those comprising the relation being accessed is
irrelevant.

In order to find out if any wines in the database date from
before 1970:

1) retrieve (old = any(w.winenum
2) where w.vintage < 1970));

old
0

avg(), avg unique()
The avg operator returns the average of all elements of its argu-
ment. All of the elements being averaged must be of type
integer, bed, or becdfit. The avg unique operator returns the
average of all of the unique elements of its argument.

For example, to find the winenumbers and cases on hand for all
sinfandels where the number of cases on hand is less than the
average number on hand for zinfandels:

1) retrieve(w.winenum, w.onhand)
2) where w.type = "sinfandel” and
8) w.onhand < avg(w.onhand where w.type = "sinfandel”);

winenum | onhand

4 1
38 3

count(), count unique()
The eount operator returns the number of tuples in which its
argument occurs. The ecount unique operator returns the
number of tuples in which its argument occurs, excluding dupli-
cate occurences of the element(s) being counted. For the eount
aggregate (but not the eount unique), the choice of attributes
among those comprising the relation being accessed is irrlevant.

This example counts all of the tuples in which the ‘“vintage”
attribute has a value of 1980:

Britton Lee 99

Aggregates IDL Reference Manual

1) retrieve(vintage80 = count(w.type
2) where w.vintage = 1980));

vintaEeSO
15

The following query counts all of the tuples in which the ‘“vin-
tage” attribute is 1980 but counts only once for each “type”.
For instance, for the three wines of 1980 vintage in which the
“type” attribute has a value of ‘“johannisberg riesling”, there will
be only one count. This is because the count unique is based
on the “type” attribute.

1) retrieve(vintage80 = count unique(w.type
2) where w.vintage = 1980));

vintage80
9

The max operator returns the element with the maximum value.
If the elements are character data types, the maximum is calcu-
lated on ASCII or EBCDIC order, depending on the character
set associated with the database when it was created.

For example, to find the wine of which the greatest number of
cases are in stock:

1) retrieve (w.winenum, w.type, w.onhand)
2) where w.onhand = max(w.onhand);

winenum | type onhand
28 | chardonnay 23

min()
The min operator returns the element with the minimum value.
If the elements are character data types, the minimum is calcu-
lated on ASCII or EBCDIC order, depending on the character
set associated with the database when it was created.

For example, to find the least expensive wine in the database:

100 Britton Lee

IDL Reference Manual Aggregates

1) retrieve (p.winenum, p.price, w.type)
2) where p.price = min(p.price)
8) and p.winenum = w.winenum;

winenum | price | type
4 4. | sinfandel

once(), once unique()
The once operator returns one value if one occurrence of its
argument exists. Otherwise it generates an error message. The
once unique operator returns one value for one occurrence of a
unique element.

1) retrieve (old_cab = once(w.winenum where
2) w.vintage < 1978 and
8) w.type = "cabernet sauvignon”));

old_cab

ERROR line 2: ONCE or ONCEU returned two values.

1) retrieve(old_napa_cab = once(w.winenum where
2) w.vintage < 1978 and

8) w.type = "cabernet sauvignon” and

4) w.area = "napa valley"));

old_napa_cab
84

sum(), sum unique()
The sum operator returns the sum of all elements of its argu-
ment. All of the elements being summed must be of type integer,
bed, or bedfit. The sum unique returns the sum of all of the
unique elements of its argument.

SEE ALSO “Expressions”, “Functions”, “Qualifications”, ‘“Range_Var”

Britton Lee 101

Att_Name

An att_name refers to an attribute of a relation. An att_name has the
syntax of a name.

All the att_names in a database are listed in the system relation “attri-
bute”.

SEE ALSO create, create index, deny, destroy index, permit
“Name”, “Target-Lists” '

102 Britton Lee

Constants

A constant is a value that remains unchanged throughout the execution
of a command. Constants are used in ezxpressions and as arguments to
the execute command. There are eight different types of constants:

Integer Constant
An integer constant is a sequence of decimal or hexadecimal
digits. It may be preceded by “0o” or “Ox” to indicate octal or
hexadecimal values:

4 00777
43 Ox4E

Character Constant

A character constant is a sequence of characters enclosed in sin-
gle or double quotation marks:

"Henry” "a,b,c”

!x’ ’1239

To include a single quotation mark (apostrophe) inside a charac-
ter constant, either place the entire character constant in single
quotation marks, and double the single quotation mark which is
to appear inside the constant

'Britton Lee'’s software’

or use double quotation marks around the character constant
and a single quotation mark where it is to appear in the con-
stant

" Britton Lee's software”
To include double quotation marks inside a character constant,
either place the entire character constant in double quotation
marks, and double the double quotation mark which is to appear
inside the constant

" The word ""word”” is in double quotation marks.”

or use single quotation marks around the character constant and
double quotation marks around the part to be quoted

*The word "word” is in double quotation marks.’

Britton Lee : 103

Constants

SEE ALSO

104

IDL Reference Manual
BCD Constant
A BCD constant is a signed integer constant preceded by the
character ‘#’:
#1 #104392684
#—-47 #-4096
BCDFLT Constant
A BCDFLT constant is a floating constant preceded by the char-
acter ‘#"

#1.0 #-3.14e-47
#-1. #O0.

Parameter Constant

A parameter constant is a name preceded by a dollar sign ($). It
can only be used inside an IDL define command. The parame-
ter constant is replaced by a value when the stored command is
executed. Its type is unspecified until execution time. Even
though the value of a parameter constant can change, it is con-
sidered a constant because its value remains the same
throughout the execution of a command.

Floating Constant
A floating constant is a signed integer constant followed by
either a decimal point and digits, or by an ‘E’ or ‘e’ and a signed
integer constant, or both. It may be preceded by “Of” for FLT4
or “0d” for FLT8. The magnitude and precision of a floating
constant is system dependent.

24.4 —0d3e100 0f8.0211

Binary Constant

A binary constant is represented by ‘“Ob” followed by a pair of
hexadecimal digits:

ObAS 0bSS

Substitute Constant
A substitute constant is a percent sign (%) followed by either a
name or an integer. Substitute constants are used primarily as
an intermediary form in the precompilation of embedded query
languages, such as RIC, and hardly ever used in interactive IDL.
They are used to substitute the value of a programming
language variable into an IDL command.

execute
“Expressions”, “Qualifications”, “Types”

Brstton Lee

Dbname

SEE ALSO

Britton Lee

A dbname is the name of a database. It is listed in the “system’ relation
“databases” in the ‘“system” database. A dbnamec has the syntax of a
name.

All the data in a database server is contained in databases. The ‘“sys-
tem” database is a permanent database which contains data-dictionary
relations that store information about all of the databases in the data-
base server.

create database, destroy database, extend database, open
“Name”

105

Expressions

108

An ezpression yields upon evaluation a value or set of values. For exam-
ple, the ezpression “43” or “a * b / ¢” yields a single value, while the
ezpression ‘“r.name’”’ yields a set of values, one for each tuple in the rela-
tion described by the range variable “r””. The set may contain no values
at all.

An ezpression may be any of the following:

aggregate

range._var.att_name

constant

function

(expression)

— expression (integer, bed, bedfit types only)
expression < expression (integer, bed, bedfit types only)
expression — expression (integer, bed, bedfit types only)
expression * expression (integer, bed, bedfit types only)
expression / expression (integer, bed, bedfit types only)

Floating-point arithmetic is not supported in IDL. Multiplication and
division have precedence over addition and subtraction, for example:

A+B*C=A+(B*C)
Every czpression has an implied value type. The type of a constant
ezpression is implied by the type of the constant. The type of an attri-

bute is set when the relation is created. The type of a function or aggre-
gate depends upon the particular function or aggregate.

The type of the result of a numeric "ezprcut’on involving more than one
operand can be found in the table on the following page.

Britton Lee

IDL Reference Manual

il
Type i2
of
Other i4
Operand
bed
bedlft31

Expressions

Type of One Operand

il i2 i4 bed31 bedfit
il i2 14 bed31 bedfit31
i2 i2 4 bed31 bedfit31
i4 4 4 bed31 bedfit31
bed31 bed31 bed31 bed31 bedfit31
bedfit3l | bedfit3l | bedfit3l | bedfit31 | bedfit3l

The result of all bed arithmetic is the full precision (31 digits). If any
number in a calculation is bedfit, the entire calculation will be performed
to 31-digit precision. For example,

1) retrieve (a = #1./7);

returns

.1428571428571428571428571428571

SEE ALSO “Aggregates”, “Qualifications

Britton Lee

&

Target-Lists”, “Types”

107

Functions

108

The database server provides several predefined functions. These func-
tions are divided into four categories:

. Arithmetic (abs, mod, etc.)

) String (conecat, substring, etc.)

) Type conversion functions (binary, string, etc.)

° Database server functions (rel_name, getdate, etc.)

The syntax of an IDL function call is similar to that of traditional com-

puter languages, except that the parentheses are omitted when there are
no arguments:

no arguments: funcname
one argument: funcname(arg)
two arguments: funcname(argl, arg?)

three arguments: funcname(argl, arg2, arg3)

Most function arguments can be expressions of any appropriate type,
except when the argument refers to a specific number of digits, charac-
ters, or bytes, in which case the argument must be an integer.

The predefined functions available in IDL are summarized on the next
page, followed by a brief description of each function.

Britton Lee

IDL Reference Manual

Britton Lee

Functions

SUMMARY OF FUNCTIONS ON THE DATABASE MACHINE

Category Function Return Value
arithmetic | abs(n) absolute value
mod(n,d) remainder of n divided by d
string concat(a,b) concatenation of a and b
or binary substr(pos,len str) substring of str
substring(pos,len,str) same as substr
conversion | intl(n) 1-byte integer
int2(n) 2-byte integer
int4(n) 4-byte integer
[fixed] binary(n) binary type
fbinary(n) same as fixed binary(n)
[fixed] bed(len,n) [u] bed type
fbed(len,n) same as fixed bed(len,n)
[fixed] bedfit(len,n) [u] bedfit type
fbedfit(len,n) same as fixed bedfit(len,n)
[fixed] bedfloat(len,n) | same as bedfit(len,n)
[fixed] string(len,n) fu] ¢ type
fstring(len,n) same as fixed string(len,n)
fchar(len,n) same as fixed string(len,n)
(fixed] char(len,n) same as string(len,n)
bedfixed(prec,frac,n) bedfit type (rounded)
float4(n) 4-byte float
fit4(n) same as float4(n)
float8(n) 8-byte float
fit8(n) same as float8(n)
idm userid current user id in this database
dba user id of DBA in this database
host host id
gettime time (i4)
getdate date (i4)
databasename name of open database

rel_name(relid)
rel_id(rel_name)
att_name(relid,attid)

relation name
relation relid
attribute name

109

Functions

110

abs(n)

IDL Reference Manual

The abs function returns the absolute value of its argument.
The argument must be of type integer, bed, or bedfit. The
result is of the same length as the argument for integers and 31
digits long for bed and bcdfit.

att_name (relid,attid)

The att_name function returns the attribute name of the
specified attribute. Each attribute in a database is uniquely
identified by its attid and by the relid of the relation in which it
occurs. These are listed in the system relation ‘“attribute”. The
att_name function always returns a ¢12 value. If there is no
attribute with the specified attid and relid, att_name returns
blanks.

bed(len,expr)

The bed function converts ezpr to a bed integer and returns a
bed number len digits long. The expression may be integer,
character, bed or bedfit. If the expression is a bedfit number, it
is truncated toward zero (e.g., 6.6 becomes 8 and —8.6 becomes
—8). The len must be an integer constant. For example,

1) retrieve (x = bed(5, "123"));

returns

123

and

1) retrieve (x = bed(4, "1234.56"));

returns

1234

The query

1) retrieve (x = bed(3, ”12345”))$

Britton Lee

IDL Reference Manual Functions

generates the error message “Numeric overflow”.

If len is zero, the following lengths (in digits) are used:

Argument Type | Result Length

il 3
i2 4
4 7
bed (n) n
bedfit (n) n

char (n) n/2 + 2
bin (n) n

bedfixed(prec,frac,n)

The bedfixed function returns a bedflt value prec digits long
and a maximum of frac digits to the right of the decimal point.
The value of n is rounded toward even last digits. The frac and
prec must be integer constants and prec cannot be smaller than
frac; the numbers cannot be so large that there are not frac
decimal places to round off. If prec is zero, a value for prec is
determined from the n passed in. The n argument may be
integer, character, bed, or bedfit.

bedfixed (5,2,#.123) = .12000
bedfixed (5,2,#.127) = .13000
bedfixed (5,2,#.125) = .12000
bedfixed (5,2,#.135) = .14000
bedfixed (2,3,anything) = illegal
bedfixed (3,3,#6./7) = 857
bedfixed (3,3,#7./7) = overflow
bedfixed (0,3,7.1234") = .12300
bedfixed (5,2,°768.534”) = 768.534
bedfixed (4,3,”123.45”) = overflow
bedfixed (8,2,°35.478") = 85.48
bedfixed (7,3,100) = 100.0000
bedfixed (5,2,#.1251) = .13000

bedfit(len,expr)
The bedfit function returns a bedfit value len digits long. The
expression may be integer, bed, bedfit, or character. Numbers are
rounded if necessary.

Britton Lee 111

Functions

112

1) retrieve (x = becdfit(4, "123.457));

returns

x
123.40

and

IDL Reference Manual

1) retrieve (x = becdfit(5, " 1234567.89"));

returns

X
1234600

If len is zero, the following lengths are used:

binary(expr)

Argument Type

Result Length

il
i2
i4
bed(n)
bedfit(n)
char(n)
bin(n)

B P ew

n/2 + 2

-]

This function converts ezpr to type binary. The result is a
binary value that is the internal representation of the ezpr
passed in, whatever its type. This is, in effect, a relabeling of the

argument data.

All types may be passed in. The resulting

length is the same as that of the argument passed in. When
retrieved using IDL, binary targets are displayed in hexadecimal

format.

Britton Lee

IDL Reference Manual Functions

concat(stra,strb)

The coneat function returns the concatenation of the two
strings passed in. It takes two character strings, strips all trail-
ing blanks from the first string (all but one, if the string is all
blank), strips all trailing blanks from the second string, and
appends the second to the first. The concat function performs
the same functions for binary strings, except trailing sero bytes
are stripped instead of trailing blanks.

For instance,

1) retrieve (name = concat{emp.first,emp.last))

returns an employee’s first and last names concatenated in the
domain “name”. Both strings must be character or both must
be binary.

databasename
The databasename function returns the name of the currently
open database, always a c12 value.

dba
The dba function returns an integer equal to the uid of the
currently open database, as an i2 value. This is always the
owner of the system relation “relation”. The dba function
always returns 1 in the “system” database.

fixed bed(len,expr)

fixed bedfit(len,expr)

fixed string(len,expr)

fixed binary(expr)
These are equivalent to bed, bdefit, string, and binary, except
that the results are uncompressed. This difference is usually not
significant. For example,

1) retrieve (fb=fixed bedfit(5,”.3"),
2) b=bcdfit(5,"”.8"));

returns

.30000 | .3

Britton Lee 113

Functions IDL Reference Manual

float4(n)

-float8(n)
These functions convert a flt4 to a fit8 and vice-versa. They
cannot be used on any other type.

getdate
This function returns the number of days from an initial date.
This initial date can be set to any value by the IDMDATE util-
ity. When the time (reported by the gettime function) reaches
the number of 60ths of a second in 24 hours, the time is reset to
zero and the date (reported by getdate) is incremented by one.
The date returned by getdate is represented in GMT.

gettime
The gettime function returns the time as the number of 60ths
of a second since midnight as an i4 value. The following exam-
ple provides the time in hours and minutes.

1) retrieve (hours = gettime/216000,
2) minutes = mod(gettime,3600));

The time value is always fetched once for a command; it does
not change over the course of a long retrieve.

host
The host function returns the host-id of the host through which
the user is presently accessing the database server. It is only
useful if there are multiple hosts connected to the database
server.

int1(expr)

int2(expr)

_ int4(expr)

These functions convert their arguments to integers and return
a value of il, i2, or i4 type, respectively. The argument may be
integer, character, bed, or bedfit.

114 Britton Lee

IDL Reference Manual Functions

mod(exprl,expr2)
The mod function returns the remainder when the first argu-
ment is divided by the second. It can only be used on integer or
bed expressions. For example,

1) replace emp (num_children =
2) mod(emp.num _children,12)

takes the number of children an employee has (as specified in the
relation ‘“emp”), divides that number by 12, and stores the
remainder in “num_children”. The call mod(n,0) is defined to
be equal to n. The sign of the first argument is the sign of the
result. The sign of the second argument is ignored.

rel_id(object _name)
The rel_id function returns the relation identifier corresponding
to the specified object_name. The object_name must be a char-
acter string.

The object_name may be followed by a colon followed by a user
name to specify an object owned by another user (i.e. other than
the user submitting the command). If the object_name is
invalid, a gero is returned.

rel_name(relid)
The rel_name function returns the relation name corresponding
to the relation identifier relid. - Every relation in a database is
uniquely identified by its relid. The definitions are listed in the
“relation” relation in the system database. A value of type c12
is returned. If no relation with the specified relid exists, blanks
are returned.

string(len,expr)
The string function converts ezpr to type character and returns
a character string of length len. The ezpr can be of any type
except float. If len is zero, a length is used based on expr:

Type of Ezpr | Length of Result

il 4
i2 6
4 11

bed (n) 2n-3

bedfit (n) 2n -3
char (n) n
bin (n) n

Britton Lee 115

Functions IDL Reference Manual

substring(pos,len,str)

The substring function extracts a string from a character or
binary string expression. The result is a character or binary
string of length len, containing the characters of bytes of str
starting from position pos. The position of the first character of
the string is 1. If the substring extends beyond the end of the
str, the result is padded with blanks (for character) or zero bytes
(for binary). For example,

1) retrieve (c=substring(8,4,” abcdefghi”),
2) b=substring(3,4,binary(123456878)));

returns

c b
cdef | 614E0000

userid
The userid function returns as an i2 value the database server
user id of the current user. The user ids are recorded in the sys-
tem relations “host_users” and ‘“users” in the open database.

-

SEE ALSO “Expressions”

116 Britton Lee

Name

SEE ALSO

Britton Lee

A name is a sequence of one to twelve characters. The first character
must be alphabetic and the remainder may be alphabetic, numeric
and/or underbars. A neme may or may not be case-sensitive, depending

on the host environment. Valid names are:

host_users Keywords

users keywords

tx0174 RS_232C
Invalid names are:

sys$list 8212068

rubber_cement 6_dec_82

“Att_Name”, “Dbname”, “Object_Name”, ¢

Query-Name”, “Rel_Name”

117

Object _Name

An object_name is the name of an object in a database. The objects in
a database are listed in its system relation “relation”. There are seven
types of objects:

U - user relation

S - system relation
T - transaction log
C - stored command
P - stored program
V - view

F - file
The syntax of an object_name is

name[:owner]
where name is the name of the object and owner is the name of its
owner, as stored in the system relation ‘“‘users”. If owner is not specified,
the default owner is the current user. If no object belonging to the
current user is found, the default is an object owned by the DBA.~

An object_name may be a quoted string.

SEE ALSO associate, create view, deny, destroy
“Dbname”, “Name”, “Query_Name”, “Rel_Name”

118 Britton Lee

Options

SEE ALSO

Britton Lee

There are two kinds of options in IDL, those represented by an option-
number or an option-name in the set and unset commands, and those
designated by the with options syntax in the create, create database,
create index, extend database, and range commands.

The options for set and unset are listed in the description of the set
command.

The options preceded by the keyword with designate specific optional
features with which a command may be invoked. Some options require a
value that is a quoted string or an integer. The specific values which an
option can take depend on the individual command and are described in
the command descriptions.

create, create database, create index, extend database, range, set,
unset

119

Protect _Modes

A protect_mode represents the type of access which can be permitted or
denied a user for a particular object. Some protect_modes are applicable
to relations, views, files, and attributes, others to stored commands and
stored programs, and others to databases.

A privilege defined by a protect_mode is permitted or denied using its
name, such as read or create, but it is identified in the ‘““access’ attri-
bute of the system relation “protect” by a numeric value.

The following table maps the names and numeric values of
protect_modes. The numbers in the /DL column of the table are the
results of idl’s conversion of database server values to signed 1-byte
integers. These are the values displayed in a retrieve on the “protect”
relation.

Mode Octal Hes IDL Applies To

read 0001 0x01 1 relations, views, flies, attributes

write 0002 0x02 2 relations, views, files, attributes

all (read, write) 0003 0x03 3 relations, views, files, attributes
execute 0340 Oxe0 -32 stored commands, stored programs
create 0306 Oxc6 -58 this database (do not specify object)
create index 0310 Oxc8 -56 this database (do mot specify object)
create database 0313 Oxcb 53 system database (do not specify object)
read tape 0004 O0x04 4 this database (do not specify object)
write tape 0010 0x08 8 this database (do not specify object)

all tape 0014 OxOc 12 this database (do not specify object)
dump 0344 Oxed this database and transaction log (do not specify object)

SEE ALSO

120

deny, permit
4 ‘Users ”

Britton Lee

Qualifications

Britton Lee

A gualification is a boolean expression used to specify tuples which meet
certain criteria. It is that part of an IDL command that determines
which particular tuples of a relation are to be affected by the command.

A gqualification is may be used with a target-list to build a new relation
from an existing relation.

A qualification is preceded by the keyword where and has one of the
following forms:

(qualification)

not qualification
qualification or qualification
qualification and qualification
expression > expression
expression < expression
expression >>== expression
expression < == expression
expression == expression
expression == expression
expression == pattern
expression == pattern
pattern = expression
pattern != expression

Relational operators (>, <, >=, <=, =, =, <>) are supported by
the database server for all data types. If the terms being compared con-
tain characters, the comparison is governed by ASCIl or EBCDIC order,
depending on which character set was specified when the database was
created. Blanks at the end of character strings are ignored for com-
parison purposes.

The command

1) range of e is employees
2) delete e where e.salary > 24000;

deletes from the employees relation all tuples representing employees with
salaries over 24000. The clause “e.salary > 24000” is the gualification.

If the condition expressed by the gualification is never true (e.g., “1=2"),
no tuples will be affected by the command. If the condition expressed by
the qualification is always true, all of the tuples in the relation will be
affected. This is the default, when no qualification is specified.

121

Qualifications

PATTERNS

122

IDL Reference Manual

A pattern-matching string may be used in a gualification to match a
wide variety of character strings.

Pattern-matching strings can be formed using special characters which
match characters other than themselves. Trailing blanks in
uncompressed character attributes are not considered characters which
can be matched.

These special characters are:
* matches zero or more characters

? matches any one character

[begins a group of characters any one of which
may be matched

] ends the group of characters
escapes any of the above

- (dash) specifies, within brackets “[|”’, a range of
characters to match

Pattern-matching strings may appear only in the gqualification of a com-
mand.

For example, to find the salary of all employees whose name starts with
“J”, use the command

retrieve (e.salary) where e.name="J*"

Any character string that contains an asterisk (*), question mark (?), or
either bracket ([]) is considered a pattern, unless the special character is
escaped with a backslash (\). If a user wants to specify a literal asterisk,
for example, the asterisk must be preceded with a backslash so that it
will not be interpreted as a special character.

The table on the following page suggests, through the use of examples,
the kinds of results produced by pattern-matching strings.

Britton Lee

IDL Reference Manual

JOINS

Britton Lee

Qualifications

This will matech but not
pattern these strings these strings

» a*eﬂ ” ae” ”Ae”

» ace” ” aE”

”a3e” "bae”

"abcde”
?a2X . (#e”

"ale” "ace” >ae”

”aQe” ”abce”
”a#e”

"a[bed]e” "abe” ?aee”

"ace” "aae”
"ade” ”abde”

”a[b-m]e” "abe” ®aae”

"ace” ®ane”

"ade” ”aBe”

?ame” >a-¢”
"a*e” *a*e” *a\be”

?abe”

”ae”

The last example not a true pattern because the character ‘*’ is to be
interpreted as a literal asterisk, not as a special character specifying a
match of zero or more characters; this is indicated by the backslash.
The string is really a three-character constant consisting of the charac-
ters ‘a’, ‘*’, and ‘e’.

A jotn is a mechanism for relating data from multiple objects in a single
query. The gualification in the following query represents a join of the
“x” and “y” relations.

1) range of x is x;

1) range of y is y;

1) retrieve (x.name, x.num, y.quan)
2) where x.num = y.num;

In this query, data from the “x” and “y” relations is retrieved only from

those tuples in which the “num?” attribute in “x” equals the “num” attri-
bute in “y”. If the “x” relation consists of:

123

Qualifications

124

IDL Reference Manual

x relation
num | name
1 zinfandel
2 riesling
3 cabernet
4 chardonnay
and the “y” relation consists of
y relation
num | quan
1 50
2 70
5 35
] 60
the query retrieves only
name num | quan
rzinfandel | 1 50
riesling 2 70

A one-way outer join requests all the specified data from one relation,
regardless of the whether the condition joining the other relation is true.
Non-matching data from the other relation is assigned a default value of
zero (0) for numeric data and blanks for character data.

A one-way outer join is indicated by an asterisk (*) attached to any of
the allowable relational operators for a qualification. The asterisk is
placed on the the same side of the relational operator as the relation
from which all specified data is to be retrieved. Thus the query

1) retrieve (x.name, x.num, y.quan)
2) where x.num *= y.num;

retrieves all of the specified data from ‘“x” and only the matching data
from ‘“y”:

Britton Lee

IDL Reference Manual
name num | quan
ginfandel 1 50
riesling 2 70
cabernet 8 (1]
chardonnay | 4 0

while

1) retrieve (x.name, y.num, y.quan)
2) where x.num =* y.num;

retrieves all of the specified data from “y”

from “x’:

Qualifications

and only the matching data

name num | quan
sinfandel | 1 50
riesling 2 70

3 35

6 60

The database server does not support two-way outer joins.

SEE ALSO append, audit, create view, delete, destroy, replace, retrieve

“Constants”, “Target-Lists”

Britton Lee

125

Query_Name

A query_name is the name of a stored command which is referenced by
the define and execute commands.

The syntax of a query_name is

name[:owner)

SEE ALSO define, execute

126 Britton Lee

Range_Var

A range variable or range_var represents one or more tuples in a rela-
tion. It has the syntax of a name. A range_var is considered a variable
because the tuple it represents changes when the command is executed.
Several IDL commands require that relations be accessed through a
range_var rather than through the relation name. A renge_var is
declared in a range statement.

A specific attribute can be referenced by appending a period and the
attribute name to the range_var.

The psuedo-attribute all can be appended to reference all attributes.
If a range_var “e” is declared as
1) range of e is employees;
then
1) retrieve (e.all);
accesses all of the tuples in the “employees” relation and
1) retrieve (e.num) where e.lastname = "Jones”;

accesses all of the employee numbers in the “employees” relation for
those employees whose last name is “Jones”.

SEE ALSO associate, delete, range, replace, retrieve
‘lNameQ’

Britton Lee 127

Rel _Name

A rel_name is an object_name which refers to a relation, view, or tran-
saction log.

The syntax of rel_name is the same as that of object_name.

A relation can be conceptualized as a table with rows and columns. The
rows are called tuples (or records) and the columns are called attributes
(domains or fields). Every attribute has a name and a declared data
type (e.g., integer, character, etc.) and all values in the attribute must be
of this type.

The order in which tuples are stored in the relation is arbitrary.
SEE ALSO append, audit, create, create index, deny, destroy, extend, per-

mit, range, retrieve into, truncate
“Att_Name”, “Object_Name”, “Qualification”, “Target-Lists, “Types”

128 Britton Lee

Target-Lists

A target-list is a list of targets separated by commas and enclosed in
parentheses. The targets can have the following forms:

domain_name = ezpression
The name and value of the domain is explicitly stated as in

1) retrieve (total = sum(w.onhand));

range_var.att_name
Multiple values are accessed for each instance of the attribute
referenced by att_name in the relation referenced by range_var:

1) range of e is employees
2) retrieve (e.name, e.phone);

range_var.all
The pseudo-attribute all yields all of the attributes of the refer-
enced relation in the order in which they were created.

1) range of e is employees

2) retrieve (e.all) where t.name = " Smith";

When multiple targets are specified in a target-list, the target-list values
are bound to associated program variables as illustrated below. If the
relation indicated by ‘“‘y” has three domains “y.q”, “y.r”, and “y.s”, and
the command is

retrieve (x.s, y.all, x.b)

the following bindings apply:

Target-List Position Value of Target
x.a
yYq
y.r

y.s
x.b

OV W N

SEE ALSO append, audit, create view, destroy, retrieve
“Att_Name”, “Expressions”, “Qualifications”, “Range_Var”,
“Rel_Name”, “Types”

Britton Lee 129

Types

INTEGER

FLOAT

CHARACTER

BINARY

130

Every attribute in a relation has a type which is set when the relation is
created. The type of an attribute determines the values that the attri-
bute can assume.

There are six value types available on the database server and each of
these types can have a variety of lengths. The types are:

Name of Type | Mnemonic “Type'’ in
“Attribute’’ Relation
4-byte integer | i4 56
2-byte integer | 12 52
1-byte integer | il 48
8-byte float f8 60
4-byte float f4 57
character c 47
binary bin 45
integer bed bed 46
floating bed bedfit 35

Integer attributes are stored as binary two’s complement integers in one
byte (-128 to +127), two bytes (-32,768 to +32,767), or four bytes
(-2,147,483,648 to +2,147,483,647). Full four-function arithmetic and
modulus and absolute value functions are supported for integer types.

Floating-point attributes are stored either as four bytes (f4) or eight
bytes (f8). No arithmetic functions are available for them. The only com-
parison operations available are = and !==. Floating-point numbers may
be stored and retrieved on the same machine; however, floating-point
numbers written on one machine and read on another will probably not
give predictable results. ;

Character attributes are either compressed or uncompressed. Character
compression is performed by deleting trailing blanks. For example, “c10”
signifies a compressed character attribute that is a maximum of 10 char-
acters long, and “ucl9” signifies an uncompressed character attribute
which is to be always stored as 19 characters (even if they are all
blanks). The maximum length for a character attribute is 255 characters.

A binary attribute is a binary string that is stored in the form in which
it was received from the host system. Uncompressed binary strings are
zero-filled to the length specified when the data is received from the host.
Compressed binary strings have trailing zero bytes deleted. For example,
“ubin5” means an uncompressed binary string of 5 bytes and “bin200”
means a binary string with a maximum length of 200 bytes. The max-
imum length of a binary attribute is 255 bytes.

Britton Lee

IDL Reference Manual

INTEGER AND
FLOATING BCD

SEE ALSO

Britton Lee

Types

Integer and floating-point bcd attributes also are either compressed
(variable-length) or uncompressed (fixed-length). The length is specified in
number of digits. If an even number of digits is specified, the number is
incremented by 1 so that the length is always odd. Compressed bcd
attributes consume less storage than uncompressed because trailing zeros
are dropped. Trailing zeros are left alone in uncompressed becd attri-
butes. The maximum length of a bed or bedfit is 31 digits. Bed and
bedfit types can participate in arithmetic as if they were integers. The
results of bed arithmetic are always to a precision of 31 digits.

When a relation is created, each attribute type is declared by its
mnemonic followed by its length, as in

1) create myrel (name=¢c10, count=i4, fraction=becdfit8);

Every attribute of every relation in a database is listed in the system
relation “attribute”. The “name” attribute in this relation contains the
attribute’s name, the “type’ attribute contains a numeric code represent-
ing its type, and the “length” attribute contains its length as an unsigned
number. If tuples are retrieved from the “attribute” relation and the
length appears to be a negative number, add 256 to get the correct
length. For bcd and bedfit, the recorded length represents the number of
bytes (2 through 17) not the number of digits (1 through 31).

create
“Constants”, “Expressions”

131

Users

EXAMPLE

SEE ALSO

132

A user is an individual or group of individuals with access to the data-
base server. A user communicates with the database server through the
intermediary of a host computer.

All users are identified through two identification numbers, a host-id and
a host-user-id, which are provided by the host system. In the database
server, the system relation “host_users” maps the host-id and the host-
user-id into a single user-id. The system relation ‘“users” maps the user-
id to a user name and group.

The DBA assigns general access to new users by entering their
identification data in the “host-users” and ‘“‘users” relations. After a new
user has been identified in these two relations, the DBA can assign
specific access rights by user name or group name through use of the
permit and deny commands.

We will add a new user, “‘karen”, and assign her to group number 20.
Assume that the host-id of the system ‘“karen” works on is 3, and her
host-user-id on that system is 301.

1) open system;

1) range of u is users;

1) append to users (

2) name = "karen”,

8) gid = 20,

4) id = max(u.id) + 1);

1) retrieve (u.stat, u.id, u.gid, u.name)
2) where u.name = "karen";

stat id | gid | name
0 | 321 20 | karen

1) append to host_users (

2) hid =3,

3) huid = 301,

4) uid = u.id);

1) range of h is host_users;
1) retrieve (h.all)

2) where u.name = "karen”

3) and u.id = h.uid;

sl | hid | huid | uid
1] 3 301 | 321

deny, permit

Britton Lee

PART IV

IDL FRONT-END COMMANDS

Introduction to Front-End

Commands

Britton Lee

The IDL query language provides a set of front-end commands which can
be invoked to govern certain aspects of an IDL session. These commands
take effect immediately after they are invoked; unlike regular IDL com-
mands, they are not buffered to a go or a semicolon.

All of the front-end commands must be invoked at the beginning of a
line. All of the front-end commands begin with a percent symbol (%).
All of the front-end commands may be abbreviated to any length, pro-
vided that the abbreviation results in an unambiguous command name.

This section describes the basic front-end commands which are available
on all systems supported by Britton Lee host software. Some systems
have an extended set of front-end commands. Consult the host software
documentation for your particular environment for information concern-
ing additional front-end commands which may be available on your sys-
tem.

The front-end command %? lists all of the front-end commands
described in this section.

135

C%associate IDL Reference Manual

%%associate [on | off]

DESCRIPTION Z%associate is used to turn the auto-associate feature on and off. The
auto-associate feature automatically executes the associate command
whenever a create, create view or define command is executed. It
provides this automatic documentation of database objects unless the idl
program was invoked with the —a or /noassociate flag for the session
in which the object was created.

The Z%associate command may be used to suspend the automatic execu-
tion of the associate command for the remainder of the idl session or
until the user wishes to turn it on again. This may be desirable if the
command creating the object exceeds 4000 bytes, which would make it
too large to fit into the command buffer.

If neither on nor off is specified, Z0associate turns auto-associate on.

EXAMPLE 1) Zcassociate off /® turn auto-associate off */

2) create myrel (/® create a relation */

3) . . .

4) . .

97));

1) %%associate on /*® turn auto-associate on again */
SEE ALSO associate

138 Britton Lee

IDL Reference Manual Cocontinuation

%continuation [character]

DESCRIPTION This sets the continuation character to the value indicated by character.

Lines ending with this continuation character are not sent directly to the
parser.

If continuation mode has been set using Yocontinuation, the go or
semicolon is not recognized as an IDL command terminator. Instead, the
first line of input which does not terminate with the continuation charac-
ter terminates the command.

The value of character may not be a letter or digit. Valid continuation
characters are:

te% " *()+-="*"1 {}/1t< >,.

Any continuation character may be unset by invoking Zcontinuation
with no argument. If this is done, all lines are saved and the user must
enter a semicolon (;) or the keyword go to indicate that the lines are to
be submitted to the parser.

EXAMPLE 1) %continustion + /* set continuation character */
2) range of p is parts +
8) append to parts(name = "tube”, quan = 20) +
4) retrieve(p.name, p.quan) +
8) where p.name = "tube” /® command ends here */

name | quan

tube 20
1) %continuation /* unset continuation character */
2) delete p where p.quan < 1; /* go and semicolon reinstated */

Britton Lee 137

%display IDL Reference Manual

%display text

e

DESCRIPTION %%display sends tert to standard output.
EXAMPLE 1) %display " Good Morning”

Good Morning

2)

138 Britton Lee

IDL Reference Manual

%%edit

%%edit [filename]

DESCRIPTION

EXAMPLES

SEE ALSO

Britton Lee

%%edit with no argument edits the transcript of the IDL session. This is
a useful tool for making a change in a series of IDL commands which
have not yet been executed without having to re-enter the whole series of
commands from the beginning. With a filename, %bedit edits the
specified file. Upon return to idl, %edit submits the file it has just
edited as input.

The editor which is called is specified by the EDITOR parameter in the
“params” file on the host system.

With a filename:
1) %edit cmd.file
Now “cmd.file” can be edited. The contents of “cmd.file” will be exe-
cuted when the user leaves the editor.
Without a filename:
1) range of p is parts

2) append to parts (name =
8) %edit

This places the user in the editor editing a temporary file which looks
like this:

range of p is parts
append to parts (name =

The contents of this file will be executed when the user leaves the editor.

params(5]) in Host Software Specification
params in C Run-Time Library Reference

139

%%experience IDL Reference Manual

%experience level

DESCRIPTION Z%experience sets the user’s experience level to level. The value of level
controls the amount of detail which will be given in IDL error messages;
the more elementary the level, the more detailed the message.

Values for level can be “beginner”, “able”, or “expert”. Any other value

is interpreted as “beginner”. Values for level may be abbreviated and
are not case-sensitive.

EXAMPLE %%experience beginner

140 Britton Lee

IDL Reference Manual

%%help

%help

DESCRIPTION Z%help lists all of the available front-end commands. %? is a synonym
for Zohelp.

EXAMPLE 1) %%help

HELP: Immediate Commands:
associate -—- auto-associate on (1) or off (0)
continuation — set continuation char
display — display user arguments
edit -- edit session log or file
experience — change experience level
? — print this list
help — print this list
input - input command file
redo — re-execute session log
substitute — set value x for %x usage
showranges — show current range variables
trace — set internal trace flag

Britton Lee

141

%%input

IDL Reference Manual

%%input [filename]

DESCRIPTION

EXAMPLE

142

Z%input specifies a command file from which idl can read its input. If
the filename is not specified, the commands are read from standard
input.

If a filename is specified, commands are read and executed until an exit
or end-of-file is read, at which point idl reads from standard input.

The input file may contain comments enclosed by the characters /* and
/. The IDL parser ignores all of the text between the / */ pairs. The
following is valid input to idl:

/* this is a comment */

range of p is parts

retrieve (p.name, /* here is another comment */ p.quan);

%input “cmd.file”

Britton Lee

IDL Reference Manual

%%redo

%%redo
DESCRIPTION %oredo resubmits the current idl session as input to idl.
EXAMPLE 1) range of p is parts;

Britton Lee

1) retrieve (p.partnum, p.onhand);

partnum | onhand
1 25
2 30
3 48

8 tuples affected.

1) %redo
partnum | onhand
1 25
2 80
8 48

8 tuples affected.

143

%%showranges

IDL Reference Manual

%showranges
DESCRIPTION Z%showranges displays the currently defined range variables.
EXAMPLE 1) range of p is parts;

144

1) range of pr is products;
1) Zeshowranges

range of p is parts

range of pr is products
(2 range variables declared)

2)

Britton Lee

IDL Reference Manual

%%substitute

%substitute name value

DESCRIPTION

EXAMPLES

SEE ALSO

Britton Lee

Z%substitute assigns a specific value to name. Substitutions put place
holders into an ITREE using the %name syntax in idlparse. Values
may later be substituted into the tree without reparsing. The velue may
be quoted.

Since this command sets up a substitution, rather than a macro, there
are restrictions on where the substitution can occur. Generally, substitu-
tions can be used

e Wherever an ezpression can occur.

e As an att_name or object_name on the left side of an equals
sign provided that the substitution is a character type.

e As the with part of an associate command.

%%substitute can set character arguments to be used in pattern-
matching strings, as long as the pattern-matching string is not used in a
target-lyst.

To disable interpretation of a string containing a special character as a

pattern-matching string, either precede the special character with a
backslash as in

1) Zsubstitute a "a*b"

or follow the value argument with the word char, as in
1) Zsubstitute a "a*b” char

1) %substitute al "hubcap”

2) Z%substitute a2 " 20"

8) %substitute rel "parts”

4) append to %rel (name = %al, quan = %a2);

idlparse(3I), iesubst(3]) in Host Software Specification
idiparse, iesubst in C Run-Time Library Reference

145

Z%trace ‘ IDL Reference Manual

Z%trace tracespec

DESCRIPTION Z%trace invokes tfscf(), with tracespec as its argument.
EXAMPLE 1) P%trace IOTRAFFIC.10
SEE ALSO tf (3I), mapsym(3I), symfile(5I) in Host Software Specification

tf, mapsym, symflle in C Run-Time Library Reference

146 Britton Lee

PART V

APPENDICES

IDL Reserved

Words

Britton Lee

abort
associate

by

define

deny

execute
index
nonclustered
open

permit
replace

sync

trace

unique unset
where with

and
audit
clustered
database
destroy
extend
into

of

or

range
retrieve
tape
transaction
view

append
begin
create
delete
end
fixed

is

on

order
reconfigure
set

to
truncate

The following words are IDL reserved words, and may not be used other-
wise in IDL commands unless they are quoted.

149

IDL Grammar

150

The following pages contain a formal description of the Intelligent Data-
base Language (IDL) supported by Britton Lee Host Software.

IDL _program:
statement_list
| execute_statement
| execute_statement statement_list
| /* null statement */

’

statement_list:
statement
| statement_list statement

.
1

statement:
stmt

stmt:
abort transaction

stmt:
append opt_TO subs_object_name (targets) opt_qualification

stmt:

associate subs_object_name

associate attribute

associate subs_object_name opt_WITH string_constant

associate attribute opt_WITH string_constant

associate subs_object_name opt_WITH string_constant
I_COMMA string._ constant

| associate attribute opt_ WITH string_constant I_COMMA

string_ constant

audit (targets) opt_qualification
| audit opt_INTO subs_object_name (targets) opt._qualification

stmt:
begin transaction

Britton Lee

IDL Reference Manual

Britton Lee

stmt:

stmt:

stmt:

stmt: -

stmt:

stmt:

stmt:

stmt:

stmt:

stmt:

stmt:

IDL Grammar

create subs_object_name

(

opt_name (format_list) opt_with_clause

[, opt_name (format_list) opt_with_clause]
) opt_with_clause

create database subs_object_name opt_with_clause

create opt _UNIQUE opt_CLUSTERED _or _.NONCLUSTERED
index opt_ON subs_object _name
(attribute_NAMEs) opt_with_clause

create view subs_object_name (targets)
opt_qualification

define object_name statement_list end define

delete name opt._qualification

deny protect_mode protect_object protect_attrs opt_user_list

destroy object _names
destroy (targets) opt_qualification

destroy database object_names

destroy opt _UNIQUE opt_CLUSTERED _or_NONCLUSTERED
index opt_ON subs_object_name (attribute_NAMEs)

end transaction

151

IDL Grammar IDL Reference Manual

stmt:
execute execute_statement
stmt:
extend subs_object_name opt_with_clause
;
stmt:
extend database subs_object_name opt_with_clause
stmt:
open subs_object_name
’
stmt:
permit protect_mode protect_object protect_attrs opt_user_list
stmt:
range of name is rangeis opt_with_clause
)
stmt:
reconfigure
’
stmt:
replace name (targets) opt_qualification
’
stmt:
retrieve opt _UNIQUE (targets) opt_order_list opt_qualification
| retrieve opt_UNIQUE opt_INTO subs_object_name (targets)
opt_order_list opt_qualification
’
stmt:
set I_CONSTANT _list
H
stmt:
sync
’
stmt:

trace tracetype constant

152 Britton Lee

IDL Reference Manual IDL Grammar

stmt:
truncate object_names

.
?

stmt:
unset] _CONSTANT _list

.
’

attribute:
name I_PERIOD name

.
’

attribute_NAME:
name

attribute_NAMEs:
attribute_NAME _list

.
’

attribute_NAME _list:
attribute _NAME
| attribute_ZNAME_list I_COMMA attribute_NAME

boolean__expression:
(boolean _expression)
| not boolean_expression
| boolean_expression and boolean_expression
| boolean_expression or boolean_expression
| expression relop expression

’

by _list:
expression
| by._list I_COMMA expression

comma_with_option:
I_COMMA with_option

’

constant:
I_LEXCONSTANT
| substitution

.
’

const_term:
constant
| I_LEXNAME

)

Britton Lee 153

IDL Grammar IDL Reference Manual

execute_statement.:
object_name param_list

.
’

expression:

constant

name

parameter

attribute

- expression %prec unary

+ expression %prec unary

(expression)

expression + expression

expression - expression

expression * expression

expression / expression

name opt_UNIQUE (expression_list opt_by _clause opt._qualification)
I_FIXED name (expression_list opt_qualification)

P o o — —— — —— — — — — —

’

expr_list:
expression
| expr_list _COMMA expression
expression _list:
expr_list
format_list:

simple_format _list
| partitioned _format_list

.
?

format_spec:
name I_EQ name

.
’

I_CONSTANT_list:
const_term

| I_CONSTANT_list I_COMMA const_term

name:

I_LEXNAME

’

named._param:
name I_EQ expression

154 Britton Lee

IDL Reference Manual IDL Grammar

object_name:
gname
| gqname I_COLON gname

’

object_names:
object_name_list

object_name_list:
object_name_resdom
| object_name_list I_COMMA object _name_resdom

.
?

object_name_resdom:
subs_object_name

.
’

opt_BY:
/* empty */
| by

.
b

opt_by_clause:
/* empty */
| I_BY by_list

’

opt_CLUSTERED _or _NONCLUSTERED:
/* empty */
| clustered
| nonclustered

’

opt_direction:

/* empty */
| I_COLON name

.
’

opt . INTO:
/* empty */
| into

.
y

opt_name:
/* empty */
| name

.
?

Britton Lee 1586

IDL Grammar IDL Reference Manual

opt_ON:
/* empty */
| on

.
’

opt_order_list:
/* empty */
| order_list

>
opt._qualification:

| where boolean_expression

opt_TO:
/* empty */
| to

1

opt _UNIQUE:
/* empty */
| unique
’
opt_user_list:

/* empty */
| I_TO user_list

opt_WITH:
/* empty */
| with

’

opt_with_clause:

/* empty */
| with with_list
order_list:

order opt_BY expression opt_direction
| order_list I_COMMA expression opt_direction

’

parameter:
I_LEXPARAM

158 Britton Lee

IDL Reference Manual

param_

?

IDL Grammar

list:

opt_WITH (value_list)

opt _WITH value_list
opt_WITH (named_param)
opt_WITH value_spec

/* empty */

partition:

.
?

(simple_format_list) opt_with_clause

partitioned _format_list:

.
H

protect_

.
?

protect _

P e — —— e — — —— — t——

?

protect_

;
qname:

’

rangeis:

Britton Lee

partition
partitioned _format_list I_COMMA partition

attrs:
(object_name_list)
/* empty */

mode:

read

write

all

read tape
write tape
all tape
create
create database
create index
execute

object:

I_ON subs_object__name
I_OF subs_object_name
subs_object _name

/* empty */

I_LEXNAME
I_LEXCONSTANT

subs_object _name

157

IDL Grammar

158

relop:

?

I_LOUT
I_ROUT
1_LGTOUT
I_RGTOUT
I_LGEOUT
I_RGEOUT
I_LLTOUT
I_RLTOUT
I_LLEOUT
I_RLEOUT
I_LNEOUT
I_RNEOUT
1_EQ

I_GE

I_GT

I_LE
I_LT
I_NE

simple_format_list:

format_spec

format_list I_COMMA format_spec

string_constant:

.
’

constant

substitution:

?

% name

%%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%prec highest
%%prec highest
%prec highest
%prec highest
%prec highest

% I_LEXCONSTANT

subs_object_name:

’
target:

?

targets:

object _name
substitution

name [_EQ expression
substitution I_EQ expression

attribute

target_list

IDL Reference Manual

Britton Lee

IDL Reference Manual

Britton Lee

IDL Grammar

target_list:
target
| target_list I_COMMA target

.
H

tracetype:
/* empty */
| I_ON
| I_DELETE

’

user_list:
user_name

| user_list I_COMMA user_name
’
user_name:
qname
H
value_list:

value_spec I_COMMA value_spec
| value_list _.COMMA value_spec

’

value_spec:
named_param
| expression
with _list:

with_option
| with_list comma_with_option
| with_list I_ON string_constant

.
)

with_option:
name
| name with expression

’

159

%associate: 136
%%continuation: 187
%display: 188
%edit: 139
%%experience: 140
%help: 141
%input: 142
%redo: 143
%showranges: 144
Zesubstitute: 145
%trace: 146

abort: 32

abort transaction: 82, 41, 42
abs: 109, 110

aggregate: 8, 13—14, 16, 94
all: 129

and: 11—13

any: 94, 99

append: 16—18, 83

ascii: 47

associate: 25-—-26, 85, 44, 53, 56
associative relation: 15
asterisk: 13

att_name: 102, 109

att_name (function): 110
attribute: 8, 128

“attribute” relation: 35, 102, 110, 131
audit: 88

audit into: 88

auto-associate: 25—26, 86, 136
avg: 94, 99

avg unique: 94, 99

badbed: 84
base relation: 53
bed: 109, 131

Index of Terms

bed (function): 110
BCD constant: 104
bedfixed: 109, 111
bedfit: 109

bedfit (function): 111
BCDFLT constant: 104
begin: 41

begin transaction: 41—43
binary: 109, 112, 130
binary constant: 104
block: 86

by clause: 16, 95, 98

char: 109

character: 130

character constant: 103
clustered index: 22, 49, 50, 51
column: 128

comments: 31, 142

concat: 109, 113

“configure” relation: 77
continuation character: 137
count: 94, 99

count unique: 94, 99

cpu: 85

cpuw: 85

create: 21—22, 44, 119
create database: 46, 119
create index: 22—23, 49, 119
create view: 23—24, 53
crossjoin: 85

dac: 86

data: 3

data authorization: 27—28
data definition: 3, 21—26
data manipulation: 3, 7—21

databasename: 109, 113
“databases” relation: 62, 105
dba: 109, 113

dbname: 106

define: 24—25, 68, 65, 104, 126
delete: 20—21, 67

delete_dups: 50

demand: 46

deny: 28, 58, 72, 132
“descriptions’ relation: 25, 35, 44, 53, 56
destroy: 25, 60

destroy database: 62

destroy index: 25, 63

dindex: 74, 75

disk: 47, 85

“disks” relation: 46

divzero: 84

dorder: 74, 75

dumpwait: 85

duplicate: 84

ebcdic: 47

end transaction: 41, 42, 64
execute: 24—25, 55, 65, 126
expression: 8, 106

extend: 68

extend database: 69, 119

fastagg: 85

fillfactor: 50

fixed bed: 109, 113
fixed bedfit: 109, 113
fixed binary: 109, 113
fixed char: 109

fixed string: 109, 113
float: 130

float4: 109, 114
float8: 109, 114
floating bed: 131
floating constant: 104
fit4: 109

fit8: 109

format: 84
fulllock: 74
function: 8

getdate: 109, 114
gettime: 109, 114
group: 58

hits: 86
host: 109, 114

“host_users’ relation: 46, 71, 116, 132

index: 49

“indices” relation: 74
inp: 85

intl: 109, 114

int2: 109, 114

int4: 109, 114
integer: 130

integer bed: 131
integer constant: 103

join: 15—186, 85, 123
joining condition: 15

key: 49

logblocks: 47
logging: 44

max: 94, 100
mem: 85

min: 94, 100
minlock: 74
mod: 109, 115

name: 117
names: 84
nocount: 84

nonclustered index: 22—23, 49, 51

not: 11

object_name: 118
once: 94, 101

once unique: 94, 101
open: 71

options: 119

or: 11—13

order by: 14—15, 81
outc: 86

outer join: 124
outw: 86

overflow: 84

owner: 118

parameter: 55, 65

parameter constant: 104
pattern: 13, 122

perform: 84

permit: 27—28, 58, 72, 132
plan: 86

profile files: 31

protect: 85

“protect’ relation: 58
protect_mode: 27, 58, 72, 120

qrybuf: 86
qualiﬁca.tion:"io——IS, 121
query: 7

query_name: 1268
question mark: 13

quota: 44

range: 74, 119, 127

range variable: 74, 127, 144
range_var: 127

reads: 86

reconfigure: 77

recreate: 50, 51

rel_id: 109, 115

rel_name: 109, 128
relation: 8, 128

“relation” relation: 25, 35, 113, 118

replace: 19—20, 78

resp: 85

retrieve: 8—16, 81
retrieve into: 81
retrieve unique: 98
round: 84

row: 128

set: 84, 119

set options: 84

skip: 50

stored command: 24, 85
stored query: 55

string: 109, 118
substitute constant: 104
substr: 109

substring: 109, 116
sum: 84, 101

sum unique: 84, 101
sync: 88

“system” database: 46, 62, 105
system relations: 46

table: 128

tape: 84

tapew: 85

target-list: 8, 129
tfset: 146

time: 84

tperrs: 86

tracespec: 146
“transact’ relation: 44
transaction: 41, 64
transaction log: 44, 47, 68
truncate: 89

tuple: 8, 128

type: 21, 106, 128, 180

underflow: 84

unique: 11, 81

unique index: 23, 49, 51
unset: 90, 119

use: 85

user: 58, 72

userid: 109, 116

users: 132

‘“users” relation: 58, 116, 118, 132

view: 23, 53

where: 121

