
Britton Lee Host Software 

SQL REFERENCE MANUAL 

(R3v5) 

March 1988 
Part Number 205-1344-003 



Printed February 1988. 

This document supersedes all previous documents. This edition is intended for use with eoftware 
release number 3.5 and future software releases, until further notice. · 

The information contained within this document is subject to change without notice. Britton Lee 
assumes no responsibility for any errors that may appear in this document. 

The software described in this document is furnished under license and may only be used or 
copied by the terms of such license. 

IDM is a trademark of Britton Lee, Inc. 

UNIX is a trademark of AT&T Bell Laboratories. 

COPYRIGHT© 1988 
BRITTON LEE, INC. 

ALL RIGHTS RESERVED 
(Reproduction in any form is strictly prohibited) 



Table of Contents 

Britton Lee 

I: INTRODUCTION TO SQL ......................................................... 1 

Introduction to SQL ............................................................ 3 

Executing the SQL Program ... ........................................... 6 

Data Manipulation ............................................................ .. 8 

Data Definition ..... ............................................................... 27 

Data Authorization 

II: SQL C0~1DS ...................................................................... . 
Introduction to SQL Commands ....................................... . 

alter database ..................................................................... . 

alter table ............................................................................ . 
audit .................................................................................... . 

comment on ........................................................................ . 
commit work ....................................................................... . 

create database ................................................................... . 

create index ......................................................................... . 
create table ......................................................................... . 
create view 

delete from .......................................................................... . 
drop ..................................................................................... . 
drop database ..................................................................... . 
drop index ........................................................................... . 
exit ....................................................................................... . 
grant .................................................................................... . 
ignore ................................................................................... . 

insert in to ............................................................................ . 

open ..................................................................................... . 

reconfigure ........................................................................... . 
revoke .................................................................................. . 

rollback work ...................................................................... . 

select .................................................................................... . 

set ........................................................................................ . 
start ............................................................... ~ ..................... . 

store ..................................................................................... . 

sync ..................................................................................... . 

truncate ............................................................................... . 

update ................................................................................. . 

Ill: GENERAL CONCEPTS ........................................................... . 

Introduction to General Concepts ..................................... . 

Aggregates ........................................................................... . 

33 

35 
37 

38 
39 
40 
43 

45 
46 
49 

52 
54 
56 
57 
58 

59 
60 
61 

63 

64 
66 
67 
68 

70 

71 
75 
80 

82 
84 
85 

86 

87 
89 

90 

iii 



Table of Contents SQL Reference Manual 

Constants ............................................................................. 96 
Expressions .. . . . . . ........ ... .. . .... ... .... . ... .......... ... . ... .. ...... .... •. . . .... .. 99 
Functions .............................................................................. 101 
Name .................................................................................... 107 
Object_ Name ...................................................................... 108 
Object_ Spec ......................................................................... 109 
Protect_Modes .................................................................... 111 
Qualifications ....................................................................... 112 
Target-Lists .......................................................................... 122 
Types .................................................................................... 125 
Users ..................................................................................... 127 

I\': FRONT-END COMMANDS ...................................................... 129 
Introduction to Front-End Commands .............................. 131 
%comment ........................................................................... 132 
%continuation ..................................................................... 133 
%display ......... .................................. .................................... 134 
%edit .................................................................................... 135 
%experience ......................................................................... 136 
%help ................................................................................ _,... . 137 
%input ................................................................................. 138 
%redo ................................................................................... 139 
%substitute .......................................................................... 140 
%trace .................................................................................. 141 

V: APPENDICES .............................................................................. 143 
SQL Reserved Words ........... ............................................... 145 
SQL Grammar .................................... ........................... ...... 146 

iv Britton Lee 

,'\ 



Notational Conventions 

Britton Lee 

The following conventions are employed in the synopses throughout this 
manual: 

Words in boldface should be entered exactly as they appear. 

Words in roman face should be replaced with a value of the 
user's choice. 

Square brackets "O" indicate optional elements. 

Braces "{}" enclose lists from which the user must select an ele­
ment. 

Vertical bars " I " separate choices. 

Parentheses "()" are to be entered literally. 

Ellipses " ... " indicate that the preceding items may be repeated 
one or more times. 

For a detailed description of the error messages generated by SQL, con­
sult the Hoat Software Meaaage Summary {SQL Veraion). 

v 





PART I 

INTRODUCTION TO SQL 





Introduction to 
SQL 

Britton Lee 

This part provides an introduction to SQL intended ror data processing 
professionals interested in learning to use SQL to access data stored on a 
Britton Lee database server. 

All Britton Lee database servers are designed to store and manipulate 
databases built on the relational model, which means that the data in the 
database is stored in tables. A table is organized horizontally into rows 
and vertically into columns. The rows represent individual entities in the 
table while the columns describe characteristics associated with those 
entities. 

In relational theory, the formal name Cor "table" is "relation;" the for­
mal name for "row" is "tuple" and the formal name for "column" is 
"attribute". 

The first chapter in this part explains how to invoke and exit the aql 
program. The rest or this part covers three general topics: manipulating, 
defining, and controlling access to data stored in tables. 

Data manipulation rerers to the part or a query language which extracts 
data Crom an existing table and modifies existing tables by inserting new 
data, changing the values or data, and deleting data. 

Data definition rerers to the part or a query language which creates, 
alters and deletes the structure or database objects such as tables, views, 
and stored commands. 

Data authorization rerers to the part or a query language which author­
izes access to database objects for individual users and groups of users. 

This part does not describe all the SQL commands, nor does it com­
pletely describe the commands which it does cover. For a complete 
description or every SQL command, consult Part Il or this manual. 

This part does not cover special features of SQL used for embedding 
SQL in procedural programming languages such as C or Fortran. The 
applications programmer who needs to use embedded SQL should consult 
the RSC Uaer'a Guide for SQL embedded in C, or the RSF Uaer'a Guide 
for SQL embedded in Fortran. 

The examples in this section use a hypothetical database called "books". 
The tables in "books" database are listed below. 

3 



Introduction to SQL SQL Reference Manual 

AUTHOR TABLE 
. authnum first Jut 

1 alice adama 
2 berm an melvllle 
a brian kernighan 
4 dennie ricbie 
5 dh lawrence 

• william ebakeepeare 
7 doug adama 
8 el doctorow 

TITLE TABLE 
docnum title onhand pubnum 

1 mob7 dick • 2 
2 the c programming language 8 3 
a mac beth 12 1 
4 superior women a 2 
5 fantasia of the unconscious • 1 
8 eo long and thanks for all the ftsh 7 1 
7 ragtime 4 5 

PUBLISHER TABLE 
pubnum name city phone 

1 penguin Ion don 441•301-9898 
2 signet new 7ork 212-755-8400 
8 prentice-hall englewood cliffs 201-264-8800 
4 eouth end boston 817-445-8223 
5 random houae new 7ork 212-288-1200 

AUTHTTLTABLE 
authnum docnum 

1 4 
2 1 
8 2 
4 2 
5 6 

• a 
'1 8 
8 '1 

4 Britton Lee 



SQL Reference Manual Introduction to SQL 

PRICE TABLE 
docnum year amount di8trib 

1 87 2.G5 western 
2 87 22.95 berk.eley technical 
s 87 2.50 cal-west 
4 87 4.G5 cal-west 
5 87 4,g5 book.people 
e 87 2.50 western 
7 87 3.Q5 book.people 

Britton Lee 5 



Executing the SQL 
Program 

ENTERING SQL 

6 

To invoke SQL enter 

aql 

In general, SQL commands are case-sensitive. Command names and key­
words should be entered as they are shown in the synopses. User-defined 
identifiers such as database names and table names should be treated 
consistently. The identifiers 

are different. 

books 
Books 

BOOKS 

Quoted strings are also case-sensitive, so that the following strings are all 
different: 

"books" 
"Books" 

"BOOKS" 

All SQL commands are terminated by a semicolon (;). Users who wish to 
emulate SQL-DS style input can do so by setting a continuation charac­
ter using the front-end command %continuation, described in Part IV 
of this manual. 

If you have successfully invoked SQL, you will see displayed a numeral 
followed by a right parenthesis as in: 

1) 

This is the SQL prompt. 

In order to execute any SQL commands, you must first open a database. 
The following command opens the "books" database. 

1) open books; 

To invoke SQL and open the "books" database with a single command, 
enter 

sql books 

If the specified database does not exist or if you do not have permission 
to open it, SQL displays this information and exits. 

Britton Lee 



SQL Referenee Manual Executing the SQL Program 

EXITING SQL If the SQL prompt is displayed, the user can exit SQL by entering 

Britton Lee 

8) exit; 

If the prompt is not currently displayed and you wish to exit, the 
<BREAK> function on your system will usually produce t!ie SQL 
prompt. 

7 



Data Manipulation 

SELECT 

Data manipulation refers to the ability to examine the data in one or 
more tables and to modify existing tables by inserting new data, deleting 
data, or changing the value of one or more columns in specified rows. 

The eelect command is used to examine or query the datab_ase, the 
insert, delete, and update commands to modify the database. 

The eelect command extracts specified data from one or more tables. 
Used interactively, it displays its results in a table consisting of the 
requested rows and columns at the user's terminal. 

The essential parts of any select statement are the specifications of 

• the table(s) to be accessed 

• the column{s) to be displayed (the targeta or target-liat). 

The order in which the targeta are specified in the query determines the 
order in which they will appear, from left to right, at the terminal: 

Thus the basic form of the Mlect statement is 

eelect apecified target(a) 
fl-om apecified table(a) 

A specified target may have various forms. It may be 

• a column name, 

• a result column title = column name, 

• the value returned by an aggregate or function, 

• a result column title = value returned by an aggregate 
or function, 

• an asterisk, 

• any arbitrary arithmetic expression. 

The specified table may be a table or a view .1 

The following query illustrates the simplest form of the eelect statement. 
It queries the database for the values of the columns named "first" and 

1Views a.re described in the chapter on data definition. 

8 ~ritton Lee 



SQL Reference Manual 

Britton Lee 

Data Manipulation 

"last" in all the rows in the "author" table. 

1) aelect first, last 
2) from author; 

first last 
a lice a dams 
herman melville 
brian kernighan 
dennis ritchie 
dh lawrence 
william ahakeapeare 
doug ad ams 
el doctorow 

The asterisk (*) is used to specify all of the columns in a table. The 
entire "author" table consists of three columns. The following command 
selects all of the data in the table. 

1) aelect • 
2) from author; 

authnum first last 

1 alice ad ams 
2 herman melville 
3 brian kernighan 

"' dennis ritchie 
6 dh lawrence 
e william ahakespeare 
7 doug adams 
8 el doctorow 

It is also possible to specify result column titles, which dift'er from the 
original column names, in the result table displaying the selected data. 
The following command selects data from the "last" column in the 
author table, but labels the selected column "surname" in the result. 



Data Manipulation SQL Reference MantttJI 

Where Clause 

10 

1) aelect llUJ'name == lut 
2) from author; 

SUl'name 
adams 
melville 
kernighan 
ritchie 
lawrence 
shakespeare 
ad ams 
doctorow 

In addition to this basic format, there are several optional specifications 
which can be added to control 

• the conditions to apply in selecting the data (the 
qualification) 

• the order in which the rows should be displayed 

• whether duplicate rows should be ignored. 

In order to specify that only some of the rows in a table should be 
selected, the query must indicate the conditions, or predicates, governing 
the selection of rows. This set of conditions, called the qualification, may 
consist of one or more comparisons between terms which evaluate to true 
or false. Each comparison is expressed by one of the following relational 
operators. 

Srm6ol 

== 
<> 
!= 
> 
>= 
< 
<= 

Meaning 

(equal to) 
(not equal to) 
(synonym for"<>") 
(greater than) 
(greater than or equal to) 
(less than) 
(less than or equal to) 

A qualification is specified by the keyword where followed by the condi­
tions limiting the selection. 

The following query requests rows from the "author" table in which the 
value or the "authnum" column is 2. 

Britton Lee 



SQL Reference Manual 

Distinct 

Data Manipulation 

1) eelect • 
2) from author 
8) where authnum = 2; 

authnum flJ'at last 
2 herman melville 

The next query requests data from rows in which the value of the "last" 
column is 'adams'. The constant value 'adams' must be enclosed in qucr 
tation marks because it is being compared to a column of the type char­
acter string.2 

1) eelect last 
2) from author 
8) where last = '&dams'; 

lut 
adams 
adama 

The distinct modifier is used to remove duplicate rows from the data 
returned by a query. 

1) 11elect distinct last 
2) from author 
8) where last = '&dams'; 

The distinct modifier applies to the entire target-liat. The command 

1) eelect distinct flJ'at, last 
2) from author 
a) where last = '&dams'; 

flJ'at last 
&lice &dams 
doug ad ams 

selects two rows from the "author" table, not one, because there is no 
duplication in the table of the combined values for "first" and "last". 

~he types or columns are discussed in more detail in the cha.pter on data. deftnition. 

Britton Lee 11 



Data Manipulation SQL Reference Manual 

Multiple Conditions 

12 

If the qualification governing the eelect statement is based on more than 
one condition, the relationship between the conditions can be expressed 
using the and and or operators. The following query uses the and 
operator to request all the rows in which the value of the "last" column 
is 'adams' and the value or the "first" column is not '&lice'. In order to 
be selected, a row must satisfy both of these conditions. 

1) eelect • 
2) from author 
3) where last = 'adam.s' and first < > 'alice'; 

I authnm; I first I last 
. doug adam.s 

The same query could be expressed using the not keyword instead of the 
< > relational operator. 

1) eelect • 
2) from author 
3) where last = 'adam.s' and not first = 'alice'; 

I authnm; I first I last 
. doug adams 

The next query uses the or operator to select the rows in which the 
value or the "last" column is 'adams' or the value or the "first" column 
is not 'alice'. In this case, a row must satisfy only one of the conditions, 
not both, in order to be selected. 

1) eelect • 
2) from author 
8) where last = 'adam.s' or first < > 'alice'; 

authnum first last 
1 alice ad ams 
2 her man melville 
8 brian kernighan 
4 dennis ritchie 
5 dh lawrence 
e william. shakespeare 
7 doug a dams 
8 el doctorow 

The or operator is useful when one is not certain of the precise value of 
a field on which a condition is based. 

Britton Lee 



SQL Reference Manual 

Between Predicate 

Britton Lee 

Data Manipulation 

1) eelect • 
2} from author 
8) where first = 'herman' or first = 'herbert'; 

authnum first last 
2 herman melville 

A query can combine severa.l conditions in a single qualification. When 
and and or are used in the same query, the and operator takes pre­
cedence over the or operator. Parentheses can be used to override this 
precedence as illustrated below. 

1) eelect • 
2) from author 
3) where (first = 'herman' or first = 'herbert') 
4) and (last = 'melville' or last = 'de melville'); 

authnum first last 
2 herman melville 

The between predicate is used to specify a field which Calls within a cer­
tain range or values. The not between predicate is also valid. The fol­
lowing query uses the between predicate to select the rows in which the 
value or the "authnum" column is between 3 and 6 inclusive. 

1) eelect • 
2) from author 
8) where authnum between 8 and 8; 

authnum first last 
8 brian kernighan 

' dennia ritchie 
6 dh lawrence 
8 wllliam ehakeepeare 

This query is equiva.lent to 

1) eelect • 
2) from author 
8) where authnum >= 8 and authnum <= &; 

The between predicate can also be applied to character data, in which 
case the comparison is governed by ASCil or EBCDIC order, depending 
on which character set was specified when the database was created. 
Blanks at the end or character strings are ignored. The following query 

13 



Data Manipulation SQL Reference Manual 

In Predicate 

Like Predicate 

14 

requests rows for all authors whose last names fall alphabetically between 
--'ftaubert' and 'tolstoy'. It is not necessary for the values indicating the 

range to be existing values in the table. 

1) aelect • 
2) from author 
8) where lut between •saubert• and •toa.toy•; 

authnum flnt Jut 
2 her man melvllle 
a brlan kernlghan 
4 dennbt rltchle 
6 dh lawrence 
8 william ahakespeare 

The in predicate is used to specify a field in a list of values. The predi­
cate is satisfied if the value being compared is equal (or not equal if not 
in is specified) to any value in the list. The following query selects the 
rows in which the value of the "authnum,, column is 4, 5, or 88. 

1) aelect • 
2) from author 
8) where authnum In (4, &, 88); 

authnum first lut 
4 dennla ritchie 
6 dh lawrence 

The in operator can also be used with character data, as illustrated 
below. 

1) aelect • 
2) from author 
8) where first in ('brian', 'dennbt'); 

authnum first lut 
8 brian kernighan 
4 dennia ritchie 

The like predicate is used to indicate a string value in which all of the 
characters are not specified. The not like predicate is also valid. The 
percent symbol (%) is used in the character string to represent a sub­
string of zero or more characters. The underscore character (_) is used 
to represent a single character. 

.f!ritton Lee 



SQL Reference Manual 

Aggregates 

Order By 

Britton Lee 

Data Manipulation 

The following query selects the "first" and "lMt" columns for all rows in 
which the value of the first character in the "first" column is 'd'. 

1) select first, last 
2) from author 
3) where first like 'd%'; 

first last 
dennis ritchie 
db lawrence 
doug ad ams 

The following query selects the row for a title in which two individual 
letters are not specified. 

1) eelect • from title 
2) where title like 'm_by d_ck'; 

docnum I title onhand pubnum J 
1 l moby dick 8 2] 

There are a number of aggregate operators which can be used in queries 
to aggregate values supplied as arguments. These values may be column 
names or general arithmetic expressions. The following query demon­
strates the effects of the count, avg, max, min and 8UDl aggregates 
when applied to the "onhand" column of the "title" table. 

1) 11elect 
2) count= count(onhand), 
I) average = avg( onhand), 
4) largest= max(onhand), 
6) smallest= min(onhand), 
8) total= 8U.Dl(onhand) 
'7) from title; 

average larg~ 1 mn•ll-; I to:a~ I 
8 

Normally the rows displayed by a 11elect statement appear in an order 
determined by the database server software. The user can specify the 
order in which rows should be displayed with the order by clause. The 
default order is ascending (lowest to highest), but descending (highest to 
lowest) can be specified with a d or desc. Both numeric and string type 
expressions can be used to order selected data. The following query 
specifies that the rows be displayed in ascending order based on the value 

15 



Data Manipulation SQL Reference Manual 

16 

of the "last" column. 

1) select first, last 
2) f'rom author 
3) order by last; 

first last 
alice adams 
doug a dams 
el doctorow 
brian kernighan 
db law:rence 
he rm an melviJJe 
dennia ritchie 
william shakespea:re 

The next query specifies that the selected rows be displayed in descending 
order based on the value of the "authnum" column. 

1) select authnum, first, last 
2) from author 
8) where last not like 'a%' 
4) order by authnum d; 

authnum first last 
8 el doc to row 
8 william shakespea:re 
5 db lawrence 

' dennis ritchie 
3 brian kernighan 
2 herman melville 

The order by clause is used below in selecting data from the "title" 
table to display the data ordered by the value of the "pubnum" column, 
and within that ordering by the value of the "onhand" column. 

Britton Lee 



SQL Reference Manual Data Manipulation 

1) .elect pubnum, on.hand, docnum 
2) from title 
1) order by pubnum, onhand; 

pubnum onhand docnum 
1 e 6 
1 7 e 
1 12 3 
2 3 ' 2 e 1 
s 8 2 
6 ' 7 

Britton Lee 17 



Data Manipulation SQL Reference Manual 

Joins 

18 

A join is a mechanism (or relating data from multiple tables within a sin­
gle query. All the tables being joined in the query are listed in the f'l'om 
clause. When ta.hies are joined, the where clause specifies a relationship, 
known as a "joining condition", between the rows from which data is to 
be selected. 

H the joining tables have column names which a.re not unique among all 
the tables referenced by the from clause, the query must qualif'y the 
non-unique column names by prefacing them with their table names or 
with table labels. 

The following query selects data from the "title" and "onhand" columns 
in the "title" table and from the "name" column in the "publisher" 
table. The joining condition is 

"where title.pubnum = publisher.pubnum" 

1) select title, name, onhand 
2) from title, publisher 
8) where onhand < 7 
4) and title.pubnum. == publisher.pubnum; 

title name 
fantasia of the unconacioua penguin 
moby dick signet 
auperior women aignet 
ragtime random houae 

on.hand 
8 
8 
8 
4 

The next query selects data from the "first" and "last" columns of the 
"author" table and from the "title" column of the "title" table. The 
joining condition 

"where authttl.authnum = a.uthor.authnum 
and authttl.docnum = title.docnum" 

references a third table, "authttl", which consists only of columns 
corresponding to columns in the "author" and "title" tables. This type 
of table is called an associative table. Its function is to enable a join in 
which the entities represented in two tables are related such that each 
row in one table may be related to any number of rows in the other 
table, and vice-versa. Its use is applicable here, where a single title may 
be associated with multiple authors, and a single author may be associ­
ated with several titles. 

Britton Lee 



SQL Reference Manual 

Group By Clause 

Britton Lee 

Data Manipulation 

1) eelect first, last, title 
2) from author, title, authttl 
8) where authttl.authnum = author.authnum 
4) and authttl.docnum = title.docnum; 

flnt last title 
herman melville moby dick 
brian kernighan the c programming language 
dennia ritchie the c programming language 
william llhakeapeare mac beth 
alice adama wperior women 
dh lawrence fantaaia of the unconacioua 
doug adama eo long and thanke for all the fish 
el doctorow ragtime 

The group by clause is used to apply an aggregate to a group of rows 
rather than to the table as a whole. The following query selects the total 
number of books on hand for each publisher. 

1) melect. aum( onhand), pubnum 
2) from title 
8) group by pubnum; 

aum(onhand) pubnum. 
25 1 

9 2 
8 8 
4 5 

This is to contrast with an aggregate which applies to the table as a 
whole as in 

1) eelect aum(onhand) 
2) from title; 

When a group by clause is used, an optional having clause may be 
added to specify conditions to be met by the groups to be considered by 
the aggregate. The having and group by clauses are discussed in more 
detail in Part ill under "Aggregates". 



Data Manipulation SQL Reference Manual 

Subqueries A qualification may ref er to a value or set of values returned by a nested 
· eelect statement, or subquery. Subqueriea may be nested to any depth. 

They are usually used in the qualification or a where or having clause. 

A subquery may be used on the right side or a relational operator in any 
qualification. The subquery, which is always enclosed in parentheses, is 
performed first, and its result is returned for use by the outer query. A 
simple subquery, with no modifier, returns a single result. 

In the following query, the subquery first computes the average or the 
"onhand" column. This result is then used in the comparison in the 
where clause of the outer query. The entire query selects data from 
rows in which the "onhand" value is greater than the average of all the 
"onhand" values in the "title" table. 

1) eelect title, pubnum, onhand 
2) from title 
3) where onhand > 
4) (select avg(onhand) from title); 

title pubnum onhand 
the c programming language 3 8 
mac beth 1 12 
80 long and thanks for all the fish 1 7 

A similar query could reference the "publisher" table in addition to the 
"title" table to supply the names of the publishers instead of the 
numbers. This requires a join of the two tables in the outer query. 

1) aelect title, name, onhand 
2) from title, publisher 
3) where title.pubnum == publiaher.pubnum 
4) and onhand > 
6) (select avg(onhand) from title); 

title name onhand 

20 

the c programming language prentice hall 
mac beth penguin 
80 long and thanks for all the ftah penguin 

Ir a qualification is modified by the keywords any, all or in, the 
subquery may return a set of values. If all is used, the condition is 
satisfied if the expression on the left side of the relational operator is true 
for all the values returned by the subquery. If any is used, the condition 
is satisfied if the expression on the left side of the relational operator is 
true for any or the values returned by the subquery. The keyword in is 
functionally equivalent to = any. 

Britton Lee 

8 
12 

7 



SQL Reference Manual 

Correlated 
Subqueriee 

Britton Lee 

Data Manipulation 

The following query uses a subquery with the any keyword to select 
.data from any rows in the "publisher" table for publishers located in the 
same city as "signet". 

1) aelect name, city 
2) from publisher 
4) where city = any 
6) (aelect city from publisher 
8) where name = 'aignet'); 

name city 
aignet new york 
random house new :york 

A correlated subquery is a subquery which needs to reference a specific 
value in the row being examined in the outer query. It requires a corre­
lation variable to establish the relationship between the tables in the 
inner and outer queries. The correlation variable signals the query to 
reevaluate the subquery once for every row in the outer query. 

A correlation variable is a column name prefaced by a table label or a 
table name. A table label is a string which has been defined as an alias 
for a specific table at a different level of the query from that in which 
the correlation variable is used. 

The following query defines 't' as a table label for the "title" table in the 
outer query. The correlation variable in the subquery is 't.pubnum'. For 
each row selected in the outer query, the subquery executes to establish 
whether the "onhand" value for the row selected in the outer query is 
greater than the average "onhand" value for titles by the publisher 
represented by the "pubnum" in the row currently being examined in the 
outer query. 

1) .elect title, pubnum, onhand 
2) from title t 
8) where onhand > 
4) (.elect avg(onhand) from title 
6) where pubnum = t.pubnum); 

title pubnum onhand 

mac beth 1 12 
moby dick 2 e 

A similar query could reference the "name" attribute in the "publisher" 
table by joining the "publisher" and "title" tables in the outer query. 

21 



Data Manipulation SQL Reference Manual 

Exists Predicate 

INSERT 

22 

1) aelect title, name, onhand 
2) from title t, publlsher 
8) where t.pubnum = publisher.pubnum 
4) and onhand > 
4) {select avg(onhand) from title 
6) where pubnum = t.pubnum); 

title name onhand 
mac beth penguin 12 
moby dick signet 8 

The exist.a predicate tests Cor the existence of a row which satisfies a 
condition of a correlated subquery. The not exist.a predicate is also 

··· ·valid. When this predicate is used, the subquery returns only a value of 
true or false, true if at least one row is selected, false if no rows satisfy­
ing the subquery are selected. 

The following query requests rows from the "publisher" table Cor which 
no corresponding "pubnum" exists in the "title" table. 

1) aelect •from publisher p 
2) where not exist.a 
8) (aelect •from title where pubnum = p.pubnum); 

pubnum name city phone 

4 south end boaton 817-445-3223 

The inaert command adds one or more rows to a table. This command 
can be used to insert new data directly from the terminal to an existing 
table, or to insert data from another table using a aelect statement. 

For entering literal data from the terminal, the essential parts of an 
insert command are specification of the table to which the data is to be 
added and the values of the various fields. The basic form of the lneert 
command is 

lneert into apecified table 
(optional column namea) 
values ( e:ipreaaiona) 

Specification of the column names is optional, but often provided Cor 
clarity. When column names are specified, there must be one value in 
the values clause Cor every column name listed, but all of the column 
names in the table need not be listed. Unlisted columns are assigned 
zeros for numerics and blanks for character strings. These columns can 
later be modified with the update command when the values are avail­
able. 

Britton Lee 



SQL Reference Manual Data Manipulation 

If the optional column names are omitted, values for all of the columns 
in the table must be given. The values are inserted in the order in which 
the columns were specified when the table was originally created, in other 
words, the first value is assumed to apply to the first column, the second 
value to the second column, etc.8 The examples here always specify the 
column names. 

The following command inserts a new row into the "author" table. 

1) insert into author 
2) (authnum, first, last) 
8) values {8, 'charles', 'dickens'); 

The next command inserts a new row into the "title" table. The value 
for the "docnum" column is an expression which evaluates to the next 
consecutive number in the column. The "onhand" column is omitted 
from the insert command and will thus be given a value of 0. 

1) insert into title 
2) (docnum, title, pubnum) 
8) values (max{docnum) + 1, 'a tale of two cities', 1); 

For entering multiple rows from one table into another use the form of 
the insert command which contains a eelect statement. The form of 
this version of the insert command is 

insert into apecified table 
(column namea) 
•lect apecified eolwmna from apecified tab/ea 
where apecified conditiona 

Assume that there is a table called "modernauthor" which has three 
columns named "fname" "lname" and "num". The following command 
inserts into the "modernauthor" table the selected data from the 
"author" table. 

8see the sections on the create table command in the cha.pter on da.ta. definition. 

Britton Lee 23 



Data Manipulation SQL Reference Manual 

1) insert into modernauthor 
2) (fname, lname) 
3) select first, last 
4) from author 
6) where authnum in (1, 3, 4, 7); 

4 rows affected 

1) select• 
2) from modernauthor; 

num fname lname 
0 a lice a dams 
0 brian kernighan 
0 dennis ritchie 
0 doug adams 

24 Britton Lee 



SQL Reference Manual Data Manipulation 

UPDATE The update command changes the values of one or more columns in the 
specified rows in the specified table. The conditions qualifying which 
rows are to be updated are specified in a where clause. If there is no 
where clause, all of the rows in the table are modified. 

Britton Lee 

The basic form of the update command is 

update specified table 
set column name = e:rpreaaion 
where specified conditions 

The following command changes the value of the "first" column of the 
"author" table from 'doug' to 'douglas'. 

1) update author 
2) set first = 'douglas' 
3) where first = 'doug' and last = 'adams'; 

More than one column value can be updated by a single update com­
mand. The following command updates two columns in the "title" table. 

1) update title 
2) set title = 'hamlet', onhand = 8 
3) where docnum = S; 

The next command has no where clause. It increases by 5 the value of 
the "onhand" column in all of the rows of the "title" table. 

1) update title 
2) set onhand = onhand + 6; 

It is possible to update the values in a table by fetching them from 
another table using an optional from clause specifying the table from 
which the new values are to be taken. The following command updates 
the "num" column in the "modernauthor" table with the values that are 
used for equivalent rows in the "author" table. 

1) update modernauthor 
2) from author 
3) set num = authnum 
4) where first= fname and last= lname; 

25 



Data Manipulation SQL Re/erence Manual 

DELETE 

26 

The delete command deletes entire rows Crom the specified table. It 
should be used with extreme caution, because without a where clause, 
the delete command deletes all or the rows in a table. 

The basic Corm of the delete command is 

delete from specified table 
where specified conditions 

The following command deletes all of the rows in the "title" table in 
which the "onhand" column has a value less than 1. 

1) delete from title 
2} where onhand < 1; 

The next command deletes all of the rows in the "title" table. After the 
command is executed, the table still exists, but it has no data in it: 

1) delete from title; 

J;Jritton Lee 



Data Definition 

CREATE TABLE 

Britton Lee 

Data definition refers to the ability to create, alter, or delete database 
objects such as tables, views, or stored commands. 

The examples in this section assume that the user has been granted the 
necessary permissions to create database objects and indexes in the 
"books" database. 

This section and the next contain references to certain system tables 
which exist in every database, specifically to "batch", "transact", 
"descriptions", "relation", and "users". These are tables which are 
automatically created by the system in order to manage the database. 
For more information concerning the system tables, consult the Databaae 
Adminiatrator 'a Manual. 

The create table command creates a new table in the open database. 
The command specifies the name of the table and the names and types of 
its columns. 

The following type is used for character data. 

char(len) character strings 

The following types are used for numeric data. 

integer 
amallint 
tinyint 
Boat 
amallfloat 
bcd(len) 
bcdflt(len) 

four-byte integers 
two-byte integers 
one-byte integers 
eight-byte floating-point numbers 
four-byte floating-point numbers 
binary-coded decimal integers 
binary-coded decimal floating point numbers 

The following type is used for binary data. 

binary( len) binary strings 

The binary, bed, and bcdflt keywords may be prefixed with the word 
fixed if leading and trailing zeros are to be retained. The char keyword 
may be prefixed with the word fixed if trailing blanks are to be retained. 
Jr fixed is not specified for these types, trailing blanks and trailing and 
leading zeros are stripped. 

The following command creates a new table named "price", with four 
columns named "docnum", "year", "amount", and "distrib". The "doc­
num" column is a two-byte integer field; the "year" column is a one-byte 
integer field; the "amount" column is a binary-coded decimal floating 
point field with a maximum length of six digits; the "distrib" column is a 
character field with a maximum length of twenty characters. 

27 



Data Definition 

CREATE INDEX 

Clustered Index 

Noncluatered Index 

28 

SQL Reference Manual 

1) create table price 
2) (docnum smallint, 
8) year tinyint, 
4) amount bcdflt(8), 
5) distrib char(20)}; 

A select command on "price" shows the empty table. 

1) select• 
2) from price; 

I docnum I year l amount distrib 

An index is a directory which relates the physical location of each row in 
a table to the value or a specified column or group or columns in the 
table. The purpose of an index is to provide a direct access path to data 
when a query references the column(s) specified in the create index 
command. 

The creation of indices can greatly decrease access time it a table is often 
searched on the basis or a particular column or set or columns, because 
indices eliminate the need to scan all the data during a search. 

There are two kinds or indices, clustered and noncJustered. Ir neither 
kind is specified in the create index command, a nonclustered index is · 
created by default. 

A clustered index often provides Caster access, but requires that the 
data be sorted on the value or the colum.n(s) specified in the create 
index command. There can be only one clustered index for a single 
table. That single index may, however, be on multiple columns. 

The following command creates an index on the "docnum" column of the 
"title" table. 

1) create clustered index 
2) on title (docnum); 

A nonclustered index usually provides slower access than a clustered 
index, though Caster access than a sequential scan or all or the data. It 
does not require that the data in the table be sorted. Up to 250 non­
clustered indices can be created on a single table. 

The following command creates a nonclustered index on the combined 
"last" and "first" columns or the "author" table. 

Britton Lee 



SQL Reference Manual 

Unique Index 

CREATE VIEW 

Data Definition 

1) create nonclustered index 
2) on author (lut, flnt); 

Both clustered and nonclustered indices can be specified u unique. 
This prevents duplicate column values Crom being introduced into the 
table. 

The following command creates a unique nonclustered index on the 
"authnum" column in the "author" table. 

1) create unique nonclustered index 
2) on author (authnum); 

After creation of this index, if a user tries to add a row in which the 
value or the "authnum" column is the same as the value or the "auth­
num" column for a row which already exists in the table, an error mes-­
sage is generated and the entire update or ln.ert command aborted. 

A view is a virtual table composed of parts or one or more base tables or 
other views. The view itself does not actually contain data, but it 
reftects the data contained in its underlying base tables. Views are mani­
pulated and protected like tables, except that they cannot be modified 
unless the modification can unambiguously be applied to a base table. 
Views are useful for defining subsets or tables, based OD a selection or 
columns, rows or both. They are also useful for restricting access to cer­
tain parts or a table. 

The create view command specifies the name or the view, the names of 
its columns, and a description of the data in the view as a 11elect state­
ment. 

The following command creates a view named "instock" consisting of 
data from the "title", "author" and "price" tables. 

1) create view in.stock 
2) (docnum, book, author, price) aa 
8) Mlect tltle.docnum, title, lut, amount 
4} from title, author, price 
6} where authttl.docnum == title.docnum 
8) and authttl.authnum == author.authnum 
7) 
8} 

and title.docnum. == price.docnum 
and onhand > O; 

The view can now be queried as though it were a table. It is possible to 
grant a user permission to query the "instock" view, without granting 
that user permission to query the base tables.4 

4Gra.nting permission is discussed in the cba.pter on data. a.uthorization. 

Britton Lee 29 



Data Definition SQL Reference Manual 

1) select• 
2) from in.stock 
3) where author = 'lawrence' 
4) and title like 'fantasia%'; 

docnum book author price 
5 fantasia or the unconscioua lawrence 4.05 

STORE and START The store command creates an object called a stored command. A 
stored command is a sequence or data manipulation commands, such as 
select, insert, update, or delete, which can be referenced collectively 
by the stored command's name. Because the stored command exists in a 
parsed and partially processed form on the database server, it is usually 
(aster to execute a stored command than to execute its constitutent com­
mands individually. 

30 

When a stored command is created, formal parameters are indicated by 
the parameter name prefaced by an ampersand (&). When the stored 
command is executed, real values are substituted for the formal parame­
ters. 

The following command creates a stored command named "addauthor" 
which consists or an insert command and a select command. The for­
mal parameters for the first and last names are indicated by "&f" and 
"&I". 

1) r This adds an author's name to the "author" table •• I 
2) store addauthor 
s) insert into author r add the name • / 
4) (authnum, first, last) 
5) values{max(authnum) + 1, Id, &-.1) 
8) aelect • from author /* make sure it is there • / 
7) where authnum = (aelect max(authnum) from author) 
8) end store; 

A stored command is executed using the start command. 

1) start addauthor 
2) (f = 'pat', 1 = 'barker'); 

I authnw: I first I last 
. pat barker 

Britton Lee 



SQL Reference Manual Data Definition 

DROP The drop command removes an object, such as a table, view, or stored 
command, Crom the database. If a view or stored command is dependent 
upon the object being dropped, that view or stored command must be 
dropped first. 

DROP INDEX 

AUTO-COMMENT 

Britton Lee 

The following command removes the "modernauthor" table. 

1) drop modernauthor; 

The next command removes the "instock" view. 

1) drop instock; 

The drop index command removes an index Crom a table. The com­
mand identifies the index to be dropped by its name and its characteris­
tics: whether it is clustered or nonclwrtered, and whether it is unique. 

The following command destroys the unique nonclwrtered index on 
the "authnum" column in the "author" table. 

1) drop unique nonclwrtered index 
2) on author(authnwn); 

When an object is created with the create table, create view, or lltore 
commands, its name is automatically recorded in the system table "rela­
tion" along with a unique identification number stored in the "relid" 
column or this table. 

The comment on command is also a.utomatically executed when an 
object is created. This command records information a.bout a table or 
column in the system table "descriptions". The object being described is 
identified by its unique "relid" which is associated with the object's name 
as it was recorded in the "relation" system table. The text of the com­
mand which created the object, including comments, is inserted into the 
"text" column or the "descriptions" system table. 

When an object is removed Crom the database with the drop command, 
references to it in the "relation" and "descriptions" tables are also 
removed. 

This automatic comment feature makes it possible to retrieve informa­
tion about an object, such as the types of the columns of a table or the 
constituent commands of a stored command, knowing only the name of 
the object. 

The following query requests a description of the "price" t.able. 

31 



Data Definition 

32 

SQL Reference Manual 

1) aelect t.ext 
2) from deecriptlom 
8) where relid - table_id('price'); 

text 
create table price 

( docnum amallint, 
year tinyint, 
amount bcdflt(8), 
dlstrib char(20)) 

The next query requests a description or "addauthor,,. 

1) Mlect text 
2) from deacriptlom 
a) where relid - table_td('addauthor'); 

text 
r Thia adds an author'• name to the "author" table •• I 
atore addauthor 

inaert into author ;• add the name • / 
(authnum, flnt, lut) 
valuee(max(autbnum) + 1, &;f, &;I) 
aelect • from author r make sure it is there • / 
where authnum == (eelect max(authnum) from author) 

end atore 

~ritton Lee 



Data Authorization 

When a database object is created, its creator, who ia also its owner, 
automatically has permission to read, write to, and in the cue or a 
stored command, execute the object, while all other uaen are automati­
cally denied these privileges. In order to make the object accessible to 
other users, the owner or the object must specifically grant these 
privileges using the grant command. Similarly, the owner, or an object 
may deny certain users or all users specific types or access using the 
revoke command. 

PROTECT MODES The types or access which can be granted and revoked are referred to as 
protecLmodes. The protect_modes which apply to the objects described 
in this section are listed below. 

GRANT 

Britton Lee 

Protect_ Mode 

read 
write 
start 
create 
create index 

SQL Command 

melect, create view 
i.mert, delete, update 
.tart 
create table, store 
create index 

Ir, for example, a user is granted read access on a table, but not write 
access, that user may issue melect commands on that table, but not 
i.mert, update, or delete commands. 

The grant command permits access to an object to a user or group or 
users. The user, or group of users, ia identified by the name by which he 
or she is known to the database server. These names are round in the 
"users" system table in the open database. The keyword public 
represents all users. 

The grant command specifies the protect_mode being granted, the 
object name to which the privilege applies, and the user(s) to whom the 
privilege is being granted. 

The lollowing command grants write privileges on the "price" table to 
"susie". This permits her to modify this table. 

1) grant write 
2) on price 
8) to 11USie; 

Access can be limited for certain columns of an object. The following 
command grants the "salesColk" read permission on the "book" and 
"price" columns or the "instock" view. They are not permitted to read 
other columns in this view. The group, "salesColk" has been defined in 
the system table "users". 

83 



Data Authorization SQL Reference Manual 

REVOKE 

34 

1) grant read 
2) (book, price) 
8) on inatock 
4) to salesf'olk; 

The following command grants read privileges on all columns in the 
"title" table to all users. 

1) grant read 
2) on title 
8) to public; 

The revoke command prevents access to objects. Its syntax is the same 
as that for the grant command. 

The following command revokes read privileges on the "title" table from 
all users. 

1) revoke read 
2) OD title 
8) from public; 

The next command ensures that susie and jason are the only users who 
can execute the "addauthor" stored command. 

1) revoke start 
2) on addauthor 
8) from public; 
1) grant start 
2) on addauthor 
8) to eusie, Juon; 

Britton Let 



PARTll 

SQL COMMANDS 





Introduction to 
SQL Commands 

SEE ALSO 

Britton Lee 

This part is a reference for accessing Britton Lee's database 1erver using 
SQL commands. It describes all of the SQL commands which can be exe­
cuted interactively by a user running the 8ql program on a host system. 

All of the examples in this manual are given for interactive SQL. To 
adapt the examples for embedded query languages, such as RSC and 
RSF, or for writing programs which incorporate SQL commands using 
IDMLffi, consult the appropriate User's Guide. 

The 8ql program reads any system and user profile files which may exist 
before reading user SQL input. These profile files may contain any SQL 
commands or front-end commands. They often are used to execute 
front-end commands, such as %continuation, which configure SQL 
according to a particular set of needs. See the host-specific reference 
material for SQL for information on creating user profile files in a partic­
ular host environment. 

Comments enclosed by the characters /* and • / may be included any­
where any SQL input. 

11ql(ll) in Hoat Software Specification (UNIX systems) 
SQL in Command Summary (other systems) 

87 



alter database SQL Reference Manual 

alter database db_name [with option_list) 

DESCRIPTION 

OPTIONS 

EXAMPLE 

SEE ALSO 

38 

The alter database command increases or decreases the diak allocation 
for a database. The demand, logblocb, and dialas options are the 
same as Cor the create database command except that delJ)and or 
logblocka may be assigned a negative number. 

A disk allocation may be increased while others are accessing the data­
base. 

IC the options are omitted, alter database increases the allocation by 
one zone on any available disk. 

disk = "diskname" 
Specifies the disk on which zones should be allocated or deallo­
cated. The quotation marks are mandatory. 

demand= nblocks [on "diskname"] 
Specifies the number of 2K blocks to allocate (if nblocka is posi­
tive) or deallocate (if nblocka is negative). The number is 
rounded (away Crom zero) to the next zone size. 

Only Creeable zones are removed on deallocation. IC the database 
is fragmented, few zones may be Creed. 

logblocka = nblocks [on "diskname"J 
Specifies the number of blocks to allocate for the transaction log. 
IC the optional diskname is specified and it differs Crom the previ­
ous disk, the old disk will continue to be used until the old tran­
saction log is dumped. Arter the old transaction log has been 
dumped, the disk specified in the alter database command will 
be used for the new transaction log. 

This command decreases the allocation for the "payroll" database by 20 
blocks. 

1) alter databaae payroll with demand= -20; 

create database 

Britton Lee 



SQL Reference Manual alter table 

alter table table_name !with logging [ = {O 11} ]) 

DESCRIPTION 

OPTIONS 

EXAMPLE 

SEE ALSO 

Britton Lee 

The alter table command changes the transaction logging status of a 
table. 

logging [ = { 0 I 1 } ] 
If set to 1, this option specifies that the transaction log "tran­
sact" is to be updated whenever the tabl~ is updated. If set to 
0, "transact" is not maintained, and updates are recorded in the 
system table "batch". If the logging option is used but neither 
0 nor 1 is specified, the default is 1. 

This command cancels transaction logging of the "unimportant" table. 

1) alter table unimportant with logging= O; 

create table 

89 



audit SQL Reference Manual 

audit [into table_name] { * I target-list} 

DESCRIPTION 

40 

[from object_spec[, object_spec ... ] ] 
[where qualification] 

The audit command creates a human-readable audit report Crom the 
transaction log or from a copy of it (i.e., the output of a dump tran­
aaction). It produces a formatted listing of the log in the order in which 
modifications to the database took place. A simple audit command 
returns its output to the host, while an audit into command stores its 
output in a new table specified by table_ name. The qualification and 
target-fiat can only refer to the columns listed below. 

Column 

time 
date 
user 
xtid 
re lid 
number 
type 
value 

Meaning 

time of the update, in 60ths of a second since midnight 
date of the update, in days from a date set by idmdate 
user who made the modification 
the row id of the row concerned 
the table id of the table involved 
internal transaction number 
type of update (see table below) 
data that was changed 

The "value" column is reserved for transaction logs. It may appear in 
the target-fiat, but not in the qualification. It is used in the audit com­
mand to access all of the columns of the table whose modification is 
recorded in the transaction log. Only one object_apec may be specified if 
the "value" field appears in the target-liat. 

The user must have read permission on all columns in the target-liat. 
For the audit into command, the user must have create permission, 
and the name selected for table_ name must be unique. 

Britton Lee 



SQL Reference Manual 

EXAMPLES 

Britton Lee 

audit 

The values in the "type" column are interpreted as follows: 

Type Meaning 

()() null 
16 begin query 
18 replace old 
19 replace duplicate 

lA append duplicate 
IC end query 
10 abort query 
lE checkpoint 
lF safepoint 

C3 insert 
C4 delete 
C5 update 
C6 create 
C7 drop 
C8 create index 
CD grant 
CE revoke 

04 begin transaction 
05 end transaction 

El store 
EB dump transaction 

This query displays a report of activity in the "parts" table during the 
last two days. The audit report is generated from the transaction log 
"transact". 

1} audit type, date 
2} from transact 
a) where relid - table_ld('parts') 
4) and date > getdate - 2; 

This command stores, in the table "inv _audit", the changes that were 
made to the table "inventory". The audit report is generated from 
"log5". 

1) audit into inv _audit type, date 
2) from log5 
8) where relid = table_id('inventory'); 

41 



audit 

SEE ALSO 

42 

SQL Re/erenee Manual 

create table 
"Object_Name", "Object_Spec", "Qualifications", "Target-Lists" 
idmdump(ll) in Hoat Software Specification 
IDMDUMP in Command Summary 

Britton Lee 



SQL Reference Manual comment on 

comment on [table] object_name 
[is string![, string2]] 

comment on column object_ name. column_name 
[is string![, string2]] 

DESCRIPTION 

Britton Lee 

The comment command adds or replaces information in the system 
table "descriptions". This table is used to associate one or more textual 
descriptions with an object. The object is described in the table as a 
table-id/column-id pair. The "descriptions" table uses the IDL terminol­
ogy "attid" for "column-id" and "relid" for "table-id". 

Two rows in the "descriptions" table might look like this: 

attid relid key text 

0 29033 11 table listing all parts 
8 29033 column for quantity on hand 

H the comment on table version of the command is given, the entry in 
"descriptions" pertains to the named object. This object can be a table, 
view, stored command, or file. In this case, the "relid" in the "descrip­
tions" table gets the value of the "relid" for that object as it is recorded 
in the system table "relation''. The "attid" in the "descriptions" table 
gets a value of zero (0). 

H the comment on column version of the command is given, the 
description refers only to the named column in the named object. In this 
case, the "attid" in the "descriptions" table gets the value of the "attid" 
for that column as it is recorded in the system table "attribute". 

The 1tringl, if specified, is inserted into the "text" column. The 1tringe, 
if specified, is inserted into the "key" column. H entries already exist for 
"text" or "key", they are replaced by the new values. Both 1tn'ngl and 
dring£, if specified, must be entered as quoted character strings. 

The function of the optional "key" column is user-defined. It is fre­
quently used as a sequential line number for descriptions in the "text" 
column. For example, the following sequence of comment commands 
appends a four-row description or the "mytable" table. 

1) comment on table mytable is 'This is my Tel')' own','Ml'; 
1) comment on table mytable is 'table which bu','M2'; 
1) comment on table mytable is 'only two columm','M3'; 
1) comment on table mytable is 'called num and name','M4'; 

43 



comment on 

AUTO-COMMENT 

EXAMPLES 

SEE ALSO 

44 

SQL Reference Manual 

The description of "mytable" can then be selected ordered by the "key" 
column: 

1) select t.ext 
2) from descriptions 
3) where relid = table_id('mytable') 
4) order by key; 

Ir the is clause is omitted, any existing comment for the named object is 
removed. 

The user must be the owner of the specified object. 

The comment command is automatically executed whenever a creat.e 
table, creat.e view, or .tore command is executed. The full text of the 
command, including any comments enclosed within the characters /* and 
• / which precede or are contained within the command, is inserted into 
the "text" column or the "descriptions" table. This feature provides 
automatic documentation or tables, views and stored commands. 

Ir the text of a command creating a table, view or stored command 
exceeds 4000 bytes in length, it will overflow the space allocated for it in 
the "text" column of the "descriptions" table. To prevent·· this from 
occurring when entering long commands, the user can turn off the auto­
comment feature by invoking eql with the -c or /nocomment flag, or 
turn auto-comment off and then on again by using the front-end com­
mand %comment. 

To comment on the "parts" table: 

1) comment on table part.a i. 'table Ii.ting all part.a'; 

To add the information that there iS an index on the "number" column 
with the user-assigned key "11 ": 

1) comment on table parte is 
2) 'bu a clustered index on number', '11'; 

To provide a verbal description of a view called "partview": 

1) comment on partview is 
2) 'aelect •from part.a where pnum < 20', 'V'; 

To remove all descriptive text pertaining to the "parts" table: 

1) comment on parts; 

creat.e table, creat.e view, drop, .tore 
%comment 

Britton Lee 



SQL Reference Manual 

commit [work] 

DESCRIPTION 

EXAMPLE 

SEE ALSO 

Britton Lee 

commit work 

The commit work command ends the current transaction. A transac­
tion is a logical sequence of SQL commands which are to be treated as a 
single command. All commands in a transaction are either executed, if a 
commit work command is issued, or not executed at all, if a rollback 
work command is issued. The commit work command commits all 
changes made to a database since the last commlt work, rollback 
work, or, if neither has previously been issued, since the autocommit 
option was turned oft. 

If the commit work command is issued when autocommit is on, an 
error is reported and autocommit is then turned off. If autocommit 
is desired, be sure to •tit on again. 

1) set autocommit off 
1 > delete from stores 
2> where lltorenum <= O; 

2 rows deleted 

1 > commit work; 

In this example, the rows are not actually deleted until the commit 
work command is issued. If the user bad decided that the delete was 
not desirable, a rollback work command would have undone the 
delete. 

rollback work, set 

45 



create database SQL Reference Manual 

create database dbname [with option_ list} 

DESCRIPTION 

OPTIONS 

48 

The ereate databue command creates a new database that is empty 
except for the system tables. 

On creation of a database, the system table "host_users" is initialized 
with one row allowing access only to the creator. The creator of a data­
base is therefore the owner and DBA (database administrator) of the 
database. 

The ereate databue command is executable only from the "system" 
database. The user must have ereate databue permission in the "sys­
tem" database. 

Options, if specified, are separated by commas. The following options 
are available: 

demand - nblocks [on "diskname") 
This option specifies the the number of 2K blocks assigned to the 
database. The nbloeia must be an integer. 

A zone is a group of cylinders, the precise number or cylinders 
per zone varying from disk to disk. The number of cylinders per 
zone is specified when the disk is formatted; zone sizes range 
from 128 to 254 blocks. The "bpz" column in the system table 
"disks" in the "system" database indicates the zone size for any 
disks attached to the database server. 

Since database allocations are only made in whole numbers or 
zones, the number of blocks specified is rounded up to the first 
whole number or zones, the ·allocation made, and the number or 
blocks actually allocated displayed at the user's terminal. 

The database is not allowed to grow beyond the size allocated. 
An error is reported if the database attempts to grow beyond 
this size. Use the alter databue command to change the alJ.o.. 
cation for an existing database. 

Ir a "diskname" is specified, the allocation is made on that disk; 
otherwise, the allocation is made on any disk which has sufficient 
space. 

Ir no demand is specified, the default allocation is one zone size. 

The demand option can be repeated many times to specify how 
much or the database is to be placed on a given disk. The 
phrase 

Britton Lee 



SQL Reference Manual 

Britton Lee 

create database 

with demand=1000 on "diakl", 
demand=250 on "diak2" 

requests that the database be allocated 1000 blocks on "disk I" 
and 250 blocks on "disk2". 

logblocka = nblocks [on "diskname"] 
The logblocka option specifies the number of blocks to allocate 
for the transaction log. The number of blocks actually allocated 
is rounded up to the first whole number of zones. If no value is 
specified, the default is one zone. 

The number of blocks specified with this option is in addition to 
the demand for the rest of the database. A disk may be 
specified. 

diak = "diskname" 

ascii 

ebcdic 

This option specifies the disk for the database or the tra.nsaction 
log, depending on whether the disk allocation option is immedi­
ately preceded by the demand or logblocka option. The 
default is any disk that bas sufficient space. The "diskname" 
must be entered as a quoted character string. The specification 

with demand== 1000, diak == "diakl", 
logblocka == 1000, diak = "diak.2" 

requests 3000 blocks on "diskl" for the database and 1000 
blocks on "disk2" for the transaction log. 

Portions of a database may be allocated to different disks by list­
ing several pairs of demand=nblocka, diak=name options 
specifying how much of the database is to be located on a given 
disk. 

The order of the options is significant. The order 

with demand=lOOO, disk=" abc" 

requests 1000 blocks on disk "abc" for the database whereas 

with disk=" abc", demand=lOOO 

requests one zone (the default demand) on disk "abc" and 1000 
blocks on any available disk (the default disk). 

This option specifies that the ASCII character set is to be used 
to store character data in the database. This is the default. 

This option specifies that the EBCDIC character set is to be used 
to store character data in the database. 

47 



create database SQL Reference Manual 

EXAMPLES The commands 

SEE ALSO 

48 

1) create database aoo with demand= 8000 on "diak.1"; 

and 

1) create database aoo with demand - 8000, c:llalt == "diakl"; 

are equivalent. They create a database or 3000 blocks on "disk!". 

The following command creates a database on "disk!" with a default 
demand or one zone. All character data in this database is stored in the 
EBCDIC character set. 

1) create database aoo with diak. = "diskl", ebcdic; 

alter database, drop database, grant, revoke 

Britton Lee 



SQL Reference Manual create index 

create (unique) (clustered I nonclustered] index 

DESCRIPTION 

Britton Lee 

on object_name (column_name[, column_name ••. ) ) 
[with option_list] 

Indices are used to provide fast access to data. If rows in a table are 
often searched on the basis of a particular column, it is appropriate to 
create an index on that column to reduce access time. 

An index specifies a particular column or set of columns called keys on 
which a table is searched. For example, if a table represents a telephone 
book, one could create an index on the columns "lastname, firstname". 
This would speed up the search when data in the phone book is accessed 
with a qualification based on the "lastname" and "firstname" columns. 

Indices can be defined as clwstered or nonclwstered, and unique or 
non-unique. If none of these are specified, the index is created as non­
clwstered and non-unique by default. 

A clwstered Index provides faster access than nonclwstered, but 
requires that the data in the table be stored in an order governed by the 
key to the index. On creation of a clwstered Index, the data in the 
table is sorted according to the values of the column(s) specified for the 
index, and a modified B*-tree index is built. Only one clwstered Index 
is permitted for a single table. When the index is created, all existing 
indices on that table are destroyed unless the recreat.e option is 
specified. In addition, when the clwstered Index is created, duplicate 
rows (identical in all columns) are deleted. The maximum size for the 
keys of a clutered Index is 252 bytes. 

A nonclutered Index does not physically reorganize the data. Up to 
250 nonclwstered indices may be created for a single table. Attempting 
to create a nonclwstered Index which already exists is an error. The 
maximum size for the keys of a nonclutered Index is 248 bytes. 

A unique Index can be created for tables in which values of all of the 
columns of the index must be unique. For example, social security 
numbers are supposed to be unique for all individuals. If a unique 
Index has been created for the "social security number" column, the user 
is not permitted to assign to a row a social security number which 
already appears in another row in the table. A unique index may be 
clustered or nonclwstered. 

When a unique Index is being created, the creat.e Index command is 
by default aborted if the database server detects any duplicate values in 
the indexed columns. If a unique Index exists on a table and a user 
tries to modify the table such that the indexed columns would no longer 
be unique, the offending imert, updat.e, or eopr in command ia aborted. 
The delete_dups option can be used to prevent commands which intro­
duce duplicate keys from aborting. 

49 



create index 

OPTIONS 

50 

SQL Re/erence Manual 

The user must have create index permission and be the owner or the 
·table. 

delete_ dupe 
Ir delete_dupa is specified for a unique clU8tel"ecl index, and 
duplicate values on the indexed columns are round in the table 
while the data is being sorted, as many rows as necesaary are 
deleted in order to make the index unique. A warning milaage is 
displayed, but the create index command is not aborted. This 
option has no effect on a unique nonclutered index at the 
time that the index is being created. 

However, u a unique clutered index or a unique non­
clutered index was created with the delete-dupe option, and 
a user tries to modify the table such that the indexed columns 
would no longer be unique, the modification does not occur (i.e. 
the row in question is not added or modified). The user is 
informed that the duplicate was not inserted or updated, but the 
entire 1D8ert or update command is not aborted. This efl'ect 
can also be achieved by setting option 6 for the execution of the 
modification, if the index was not originally created with 
delete_dupa. 

fillfactor == m 
When a clutered index is sorted, the table is written to disk. 
The fillf'actor value specifies the percentage or each block to be 
filled when the table is written to the disk in sorted form. A 
fillf'actor can range from 1 (1% or the block is to be filled) to 
100 (the block is to be completely filled). The default fillfactor 
is 100. Tables that are known to have a high potential for 
growth should have a small fillfactor specified so the data can 
be kept physically clustered for 88 long 88 possible. Ir a table 
has become scattered (meaning that blocks containing data 
which should be in sort order are spread over several cylinders), 
1/0 time will increase significantly. When this situation becomes 
apparent, the clutered index should be created again (the old 
one is automatically destroyed) and a new fillfactor specified. 

akip === n 
The akip option indicates the number or blank blocks to leave 
between data blocks when building a sorted table for creation or 
a clustered index. This option can be used to provide room 
for growth. 

recreate 
The recreate option deallocates empty pages which were allo­
cated for the creation or a clutered index. Ir recreate is 
specified, the data is not resorted and any nonclutered indices 
on the table are not destroyed. When the recreate option is 
used, the keys must be the same 88 the keys of the original 
index. 

Britton Lee 



SQL Reference Manual 

EXAMPLES 

SEE ALSO 

Britton Lee 

noeort 

create index 

This option specifies that a clwrtered index is to be created on 
data which is already sorted by the index keys. This option 
greatly increases the speed with which an index can be created 
for sorted data. Ir the DOllOrt option is specified and the data is 
not sorted, an error message is displayed a.nd the index is not 
created. The user must then create the index without the 
noeort option. 

The following command causes the "parts" table to be sorted on (name, 
number), written to the disk in blocks 40% full, and a B*-tree index to 
be created for the (name, number) pairs. When the table is accessed 
with the "name, number" columns specified, the access is direct; only the 
index and the exact blocks needed are read, not the entire table. 

1) create clwrtered index on 
2) parts (name, number) 
8) with fillfactor = 40; 

The "parts" table already has a clwrtered index (from the previous 
example). The next command creates a nonclwrtered index on 
"number" to simplify access to the "parts" table when "number" alone is 
specified. It is a unique index to enforce the requirement that no two 
part numbers may ever be the same. Ir a user tries to modify the table 
so that the uniqueness or the "number" column were not preserved, the 
entire insert or update command is aborted. 

1) create unique nonclwrtered index on 
2) part.a (number); 

The next command creates the same type or index as the preceding one. 
The dift'erence is that iC a user tries to modify the table so that the 
uniqueness or the "number" column were not preserved, the modification 
would not occur, but the entire command would not be aborted. 
Instead, a message would inform the user or the modification which was 
not executed. 

1) create unique nonclwrtered index on 
2) part.a (number) 
a) with delete_dups; 

The next command deallocates any unused data pages in the "parts" 
table and resets any pointers in the index that point to the deallocated 
pages. The data is not resorted and the nonclwrtered index on 
"number" is not destroyed. 

1) create clwrtered index on 
2) parts (name, number) 
8) with recreate; 

create table, drop index, eet 

01 



create table SQL Reference Manual 

create table table:... name (name type!, name type ... ] ) !with option_list} 

create table table_name ([partition_name)(name type[, name type ... ]) 
(with option_list) [,fpartition_name) (name type 

DESCRIPTION 

OPTIONS 

52 

!, name type ... ]) [with option_list]] ... ) [with option·_Iist] 

The create table command creates an empty table in the open data­
base. 

The second form shown in the synopsis is given to provide compatibility 
with future Britton Lee products. 

A type is a mnemonic for a data type for a particular column. Please 
refer to the section "Types" in this manual for a list of the predefined 
mnemonics and a detailed description of the various types to which they 
refer. 

Once a table has been created, its basic structure cannot be altered. If it 
becomes desirable to change the structure or an existing table, as in 
adding or removing columns or changing the type of a column~ a new 
table must be created and the data from the original table inserted into 
it. The logging status of a table can be changed with the alter table 
command. 

When the table is created, it is empty, and no indices exist for it. If the 
table is heavily used, a clustered index should be created for it as soon 
as it has grown to several blocks of data or when the initial loading of 
data has been completed. 

When create table is executed, the comment command is automati­
cally executed also, with the full text of the create table command 
entered by the user inserted as the "text" portion of the description 
entered by the comment command into the "descriptions" table. This 
feature provides automated documentation of tables. 

The user must have create permission to use this command. 

quota= n 
This specifies the maximum size of the table in 2048-byte data 
blocks, excluding the index blocks. If no quota is specified, the 
table will be allowed to grow until it fills the databa.se. 

logging [ = { 0 I 1 } ] 
If set to 1, this option specifies that the transaction log "tran­
sact" is to be updated whenever the table is updated. If set to 
0, the transaction log is not maintained, but changes to the table 
are recorded in the temporary the system table "batch',. If the 
logging option is used but neither 0 nor 1 is specified, the 
default is 1. 

Britton Lee 



SQL Reference Manual create table 

EXAMPLE 

SEE ALSO 

Britton Lee 

This command creates a table named "parts" with columns "pname" (a 
· • 20-cha.racter field), and ·"quan'.'. (an integer· field). It may grow to a size 

of 50 data blocks, after which point an error message is displayed if 
further additions are attempted. The logging option causes all changes 
to the table to be recorded in the system table "transact". 

1) create table parts 
2) {pname char{20), quan integer) 
8) with logging = 1, quota = 60; 

alter table, audit, comment, create index, drop, grant, revoke 
"Types" ·--· f' / 2 ~· 
%comment 

63 



create view SQL Reference Manual 

create view view _name I (coLname[, coLname ... ] ) ] as seleet_statement 

DESCRIPTION 

54 

The create view command sets up a virtual table which ia composed of 
parts or one or more tables (called the base tables) or other views. The 
aelecLatatement portion or the command selects data to be accessed by 
the view. 

H the column names are not specified, the columns in the view will have 
the same names as the columns in the base tables. The column names 
need not be specified unless the resulting view would have more than one 
column with the same name, or the creator of the view wishes to assign 
different names to the view columns. 

Views may be protected and destroyed in the same manner as tables; 
they may be updated if the update can unambiguously be applied to a 
base table. Ir a view is an exact copy oC a base table, it can be modified 
with delete, insert, and update commands with the net result of modi­
fying the base table. 

A view should be created when it is desirable to access data from more 
than one table collectively, or to restrict access to certain p~ts of a 
table. 

Views are recorded in the system table "query". Since a view is depen­
dent on its base tables, a user cannot destroy a base table without first 
destroying any views that refer to it. View definitions may not be 
"copied" to another database, such that an equivalent view would exist 
on the other database, referencing similar base tables. H it is desirable 
to use a single view definition in more than one database, save the view 
definition in a text file on the host system and use the SQL pseudo­
command %input to create it in both databases. 

When create view is executed, the comment command is automatically 
executed also, with the full text of the create view command entered by 
the user inserted as the "text" portion or the description entered by the 
comment command into the "descriptions" table. This feature provides 
automated documentation or views. 

The user needs read permission on all the columns referenced to create a 
view, but not create permission. 

Ir the creator or the view has access to the system tables "host_users" 
and "users" but is not the DBA, (s)he cannot grant access to the view to 
another user. This prohibition is to prevent uncontrolled proliferation of 
permission. Similar rules hold for stored commands. 

Britton Lee 



SQL Reference Manual create view 

. EXAMPLES This command creates a vie"7 "vparts" which ressem'bles a table with 
two columns, even though "parts" may have many more columns. Only 
rows in which "num" is greater than 20 are included in the view. The 
view has the same column names as the columns in the ''parts" table 
from which they were derived. 

SEE ALSO 

Britton Lee 

1) create view vparte as 
2) 8elect num, name 
3) from parts 
4) where num > 20; 

This view is useful for seeing which indices exist in a database: 

1) create view indexes 
2) (inum, tab_name, coLcount, uniq, del_dupa) as 
3) 8elect indid, table_name(relid), attcnt, 
4) aba(mod(stat, 2}), aba(mod(stat/4, 2)) 
o) from indices; 

comment, create table, drop, grant, revoke, 8elect 
"Aggregates", "Qualifications" 
%comment, %input 

55 



delete from SQL Reference Manual 

delete from object_spec [label] [where qualification] 

DESCRIPTION 

EXAMPLES 

SEE ALSO 

56 

The delete command removes one or more rows from a table. The user 
must have write permission for all the columns oC the table. Ir the 
qualification is omitted, all rows are deleted Crom the table. 

The label is specified only if a correlated subquery is used in the 
qualification. Correlated subqueries are described under "Qualifications". 

To delete all rows in the "parts" table in which the "name" column has 
the value "TV": 

1) delete from parts where name= 'TV'; 

To delete all rows from the "parts" table for which there are no parts on 
hand and no corresponding entry in the "suppliers" table: 

1) delete from parts p 
2) where onhand < 1 
3) and not exists 
4) (select• 
5) from suppliers 
6) where pnum = p.nwn); 

To delete every row in the "parts" table: 

1) delete from parts; 

drop, grant, revoke, truncate 
"Qualifications" 

Britton Lee 



SQL Reference Manual drop 

drop object_name[, object_name, ... ] 

DESCRIPTION 

EXAMPLE 

SEE ALSO 

Britton Lee 

The drop command eliminates tables, files, views, and stored commands 
from the database server. The entire object is removed from the data­
base, and its space is freed for use within the current database. Only the 
owner of the object or the DBA can drop an object. If there are views 
or stored commands that depend on the table or view to be dropped, 
they must be dropped first. Appropriate entries in the system table 
"descriptions" are deleted when this command is invoked. 

This command destroys the objects "parts" and "products". 

1) drop parts, products; 

comment 
"Object_Name" 

57 



drop database SQL Reference Manual 

drop database dbname(, dbname, ... J 

DESCRIPTION 

EXAMPLE 

SEE ALSO 

58 

The specified databases are eliminated Crom the database server, and the 
space is Creed Cor use by other databases. All tables and files in the 
dropped database are destroyed. The user must be the owner or the 
database or DBA or the "system" database to drop a database. The 
database to be dropped cannot be open at the time or the command. 

The "system" database cannot be destroyed with the drop databue 
command. 

This command destroys the "inventory" database and Crees disk space 
which was previously allocated to it. 

1) drop databue inventory; 

create databue 

Britton Lee 



SQL Reference Manual drop index 

drop [unique J [clustered I nonclustered] index 

DESCRIPTION 

EXAMPLES 

SEE ALSO 

Britton Lee 

on object_name (column_name[, column_name, ••• ]) 

The drop index command removes an index from a table. This might 
be desirable if the index is seldom used, to free the space occupied by its 
B*-tree for other applications and to eliminate the overhead of updating 
it whenever the row fields that it indexes are updated. 

The index is identified by its description: whether it is unique, 
clustered or nonclustered, and by the columns that it indexes. 

The user must be the owner of the table, and the specified index must 
exist. 

This command destroys the clustered index on (name, number). Ini­
tially the table remains sorted on (name, number). New data is 
appended to the end or the table. 

1) drop clustered index on 
2) parts (name, number); 

This command destroys the nonclustered index on the "number" 
column or the "parts" table. 

1) drop nonclustered index on parts (number); 

create index 

59 



exit 

exit 

DESCRIPTION 

60 

SQL Reference Manual 

The exit command exits the SQL parser. The exit command may be 
used anywhere in a command. 

H the autocommit option is off and exit is issued, the user is warned 
that the transaction has been interrupted and all pending commands 
have been aborted. 

Britton Lee 



SQL Reference Manual grant 

grant protect_mode (on object_name] 
to { user (, user ... ] I public } 

grant protect_mode [ (coLname[, coLname ... ]} ] 

DESCRIPTION 

EXAMPLES 

Britton Lee 

on object_name to { user [, user ... ] I public } 

The grant command permits access to an object to a specific ..,er or a 
group of uaers. The uer may be a user name, a group name, or the 
keyword public. A group is any entry in the system table "users" for 
which the "uid" is equal to the "gid". The keyword public designates 
all uaen>. 

By default, access is permitted to the owner of an object and denied to 
other uaers when the object is created. To allow other •aers a.ccess to an 
object, the owner must explicitly grant such access. 

The objecLname may represent a table, view, file, or stored command. 

The protect_ modes which may be granted are listed in the section 
"Protect_Modes" under "General Concepts". 

A grant command supersedes any previous revoke commands which 
contradict it. 

The user of the grant command must be the owner of an object to 
grant access to it. The DBA may also grant permission to use the 
create, create database, and create index commands and to use 
datab~e server tape. 

Access to a view or stored command implies a.ccess to all objects that the 
view or stored command references only if the owners of those objects 
and of the view or stored command are the same. 

The following command permits "george" to read the "parts" table. 

1) grant read on parts to george; 

The following commands permit only the uaers in the "managers" group 
and "dave" to start the stored command "getsum". 

1) revoke start on get.awn from public; 
1) grant start on get.awn to managers; 
1) grant start on get.awn to dave; 

The next command grants "bill" and "sharon" permission to write on 
the "quan" column of the "parts" table, but on no other attributes in 
this table. 

81 



grant 

NOTE 

SEE AJ...SO 

62 

SQL Reference Manual 

1) grant write (quan) on parts 
· 2) to bill, sharon; 

To allow uaer "gloria" to create tables in the current database the OBA 
must issue 

1) grant create to gloria; 

To allow all uaers to create tables the OBA would issue 

1) grant create to public; 

There is an earlier version of this command, with somewhat different 
syntax, which is still recognized for reasons of backward compatibility. 
However, with Host Software Release 3.6, the syntax described above will 
be the only syntax supported. 

create databaae, create index, create table, revoke 
"Protect_Modes", "Users" 

Britton Lee 



SQL Reference Manual 

ignore 

DESCRIPTION 

EXAMPLE 

Britton Lee 

ignore 

The ignore command resets the command buffer without eending any­
thing to the database server. It is useful for throwing away erroneous 
commands. 

The ignore command may be entered anywhere in a command. 

1) 11elect coump(*) 
2) from employees 
3) where salary > 2000 and ignore 
l} 

Here the user bas typed three lines before realizing that "count" is 
misspelled. Entering ignore causes the input to be ignored. The line 
number is reset to 1. 



insert into SQL Reference Manual 

insert into object_name [(column_ name[, column_name ... ] ) ] 
values (expression[, expression ... ] ) 

insert into object_name [ (column_name[, column_name ... ) ) ] 
select_statement 

DESCRIPTION 

EXAMPLES 

64 

The iruiert command adds one or more rows to a table or view. 

When the values form is used, if' the column_ nomea are specified, the 
data is inserted into those columns. If the column_ namea are specified, 
there must be one column_ name for each .element of the values list. If 
column_ namea are not specified, the data is inserted into the columns in 
the named object in the order in which the columns are displayed from 
left to right when all of the columns or the table are selected. This 
reftects the order in which the columns were specified when the table was 
originally created. 

If the aelecL1tatement form is used, data to be inserted is specified by 
the 1elect_1tatement. Data may be selected from the object represented 
by object_ name or from other objects. The number of valu~ eelected 
by the 1elecL1tatement must be the same as the number of ·columns 
named (if any are specifically named) or the same as the total number of 
columns in the target object. 

Options may be eet to turn off certain forms of error checking and to 
ignore duplicates. See the eet command for the list of options. 

To copy a large amount of data from a host file to a table, use the util­
ity idmf copy. 

This command uses the values form with column_ namea to insert a row 
into the "parts" table. In the new row, the "name" column has the 
value "tube'', and the "quan" column has the value 24. 

1) iruiert into part.a 
2) (name, quan) 
8) valuea ('tube', 24); 

The following command uses the valuee clause without column_namea 
to insert a row into the "parts" table, setting the first column to the 
value "tube" and the second column to the value 24. 

1) insert into parts 
2) values ('tube', 24); 

Britton Lee 



SQL Reference Man.al 

SEE ALSO 

Britton Lee 

insert into 

This command uses the aelect_atatement with column_namea. For 
every row in "parts", it adds a new row to "newparts", setting the 
"name" column to the value or "part" and the "quan" column to the 
value or "onhand". "Part" and "onhand" are columns in the "parts" 
table; "name" and "quan" are columns in the "newparts" table. 

1) inaert into newparts 
2) (name, quan) 
8) 11elect part, onhand 
4) from parts; 

This command uses the aelect_atatement without column_namea. For 
every row in "oldparts", it adds a new row to "newparts", setting the 
first column in "newparts" to the value or "name" in "oldparts" and the 
second column in "newparts" to the value or "onhand" in "oldparts". 

1) inaert into newparta 
2) 11elect name, onhand 
8) from old parts; 

•lect, 11et 
"Object_ Name" 
lchnfcopy(ll) in Hoat Software Specification 
IDMFCOPY in Command Summary 

85 



open 

open name 

DESCRIPTION 

EXAMPLE 

66 

SQL Reference Manual 

The open command opens the specified da.ta.base for activity. A da.ta­
base must be open before any SQL commands a.re executed. The data­
base remains open until the user opens a. different databa.se, or ~til SQL 
terminates. 

The user is allowed to open a data.ba.se if its system table "host_users" 
is empty, or if it contains a "guest" row, or if it contains a. row that 
exactly matches the user's host id and host-users id. 

1) open books; 

Britton Lee 



SQL Reference Manual 

reconfigure 

DESCRIPTION 

SEE ALSO 

Britton Lee 

reconfigure 

The reconfigure command updates the configuration or the database 
server according to the contents or the system table "configure" in the 
"system" database. The user must be the DBA or the "system" data­
base, and the command may only be issued from the "system" database. 

IDM !n8tallation Guide 
idmconfig(li) in Ho8t Software Specification 
IDMCONFIG in Command Summary 

87 



revoke SQL Reference Manual 

revoke protect_mode (on object_name) 
from { user [, user ... ) I public } 

revoke protect_mode [ (coLname[, coLname ••• ) ) ] 

DESCRIPTION 

EXAMPLES 

88 

on object_name from { user [, user •.. ] I public } -

The revoke command denies a specified uaer or group of uaers access to 
a specified object. Protections imposed with the revoke command are 
recorded in the system table "protect". 

The uaer may be a user name, a group name, or the keyword public. A 
group is any entry in the system table "users" for which the "uid" is 
equal to the "gid". The keyword public designates all uaers. 

When an object is first created, the proteet-motletJ are set so that the 
creator or the object is granted all types or acceaa while other •aers are 
denied all types or access. 

The o6jecLnome may be a table, view, file, or stored command. Ir no 
object is specified, the protection applies to all objects. 

The protect_ modes which may be revoked are listed in the section 
''Protect_Modes" under "General Concepts". 

A revoke command overrides any previous grant commands which con­
tradict it. 

The DBA may also revoke permission to use the create table, create 
database, and create index commands and to use database server 
tape. 

Only the owner or an object or the DBA may revoke permissions. 

This command specifies that everyone may read the data in the "parts" 
table except "george", "harvey", and "mary". 

1) grant read on part.a t.o public; 
1) revoke read on part.a from george, harvey, mary; 

The Collowing command denies entire group "clerks" write permission on 
the "descript" and "pnum" columns or the "parts" table. The "clerks" 
has been previously defined as a group in the system table "users". 
They may still write to other columns in the "parts" table. 

1) revoke write (pnum, descript) on part.a from clerks; 

Britton Lee 



SQL Reference Manual revoke 

NOTE There is an earlier version of this comma.nd, with somewhat different 
)yntax, which is still recognized for reasons or backward compatibility. 
However, with Host Software Release 3.6, the syntax described above will 
be the only syntax supported. 

SEE ALSO create table, grant 
"Protect_Modes", "Users" 

Britton Lee 89 



rollback work 

[rollback [work] 

DESCRIPTION 

EXAMPLE 

SEE ALSO 

70 

SQL Reference Manual 

The command rollback work aborts the current transaction. A tran­
saction is an atomic sequence of SQL commands initiated by a aet auto­
commit off. The rollback work command restores the datab¥e to its 
state prior to the last commit work command, if one has been issued, 
or since the autocommit option was turned off. 

The user is informed when a rollback work command causes commands 
to be aborted. 

If the rollback work command is issued when autocommit is on, an 
error is reported and autocommit is then turned off. If autocommit 
is desired, be sure to aet it on again. 

1) eet autocommit off; 
1 > delete from stores 
2> where storenum < 3; 

2 row• deleted. 

1 > rollback work; 
••• Warning: Work rolled back 

The user decided that the delete was not desirable. The rollback work 
caused the deletion to be annulled. After the rollback work command 
has been issued, it is as if the delete command had never been issued. If 
the user had decided to allow the delete, a commit work command 
would have made the delete permanent. 

commit work, eet 

Britton Lee 



SQL Reference Manual select 

select [ distinct I all ] [into table _name] { * I target-list} 
[from object_spec[, object_spec, ... ] J 
[where qualification] 
[group by column_ name [having qualification]] 
[order by order _spec[, order _spec ... ] J 

DESCRIPTION The eelect command is used for extracting data from the database 
server from one or more tables or views. The eelect Into command 
sends data to a newly created table containing the columns specified in 
the target-liat. It is an error to .elect Into an existing table. 

Duplicate Rows Duplicate rows are ignored if distinct is specified; they are selected if all 
is specified. If neither is specified, the default is all. 

Specifying Columns The user must specify the data to be selected from the tables. If an 
asterisk (*) is specified, all columns in the table are selected. If a target­
liat is used, only the specified targets are selected. The formats for a 
target-liat are listed under "Target-Lists". 

Specifying Tables 

Britton Lee 

When data is selected from an existing table Into a new table, and the 
"domain_ name = ezpreaaion" form is used to specify the target, the 
domain_ namea (such as "name" and "date" in the query below) become 
the co/umn_names in the new table. Column_namea longer than 12 
characters are truncated. If only a column_ name is specified as the tar­
get, the column_ name of the column in the new table is the same as that 
in the old table. 

In the following query, the data for the "name" and "hiredate" columns 
is taken Crom the "employees" table; the data for the "date" and "get­
time" columns is calculated by predefined database server functions 
which return the current date and time. 

1) aelect into newhires 
2) name = lname, date = setdate, 
a) gettime, hiredate from employees 
4) where hiredate > getdate - 10; 

The resulting table, "newhires", bas four columns (although "employees" 
may have more). 

The most common way to identify tables or views from which data is to 
be selected is to use a from clause. 

The following query specifies a table using a from clause. 

1) eelect name, number 
2) from stores; 

Multiple tables may be listed in a from clause. When this method is 
used, the database server searches all the listed tables for the columns 

'11 



select 

72 

SQL Reference Manual 

named in the target·liat. The following query selects columns Crom the 
"'.''stores", "items", and "prices" tables. It assumes that the 

column_namea in the target-liat are unique among the specified tables. 

1) select name, address, item, price 
2) from stores, items, prices; 

II the column_ names are not unique, the resulting ambiguity must be 
resolved using another format. The following queries could be used to 
speciCy the "name" column Crom the "stores" table iC more than one or 
the specified tables had a "name" column. 

1) select stores.name, address, item, price 
2) from stores, items, prices; 

or 

1) select st.name, addresa, item, price 
2) from stores st, items, prices; 

These two queries are equivalent. In the first example, the "name" to be 
selected is specified to be a column in the "stores" table by prepending 
the table_ name to the column_ name in the target-lid. II th.ere is a 
"name" column in the "items" table, it is ignored. In the second exam­
ple, a table_label "st" is defined in the from clause and used to identiCy 
the "name" column in the target·liat. 

Table_labela provide a useful way to join a table with itselt. The Collow­
ing query selects stores and prices or pink tub-and-sink combinations 
Crom all dealers in the "pricings" table. 

1) select a.storenum, a.price + b.price 
2) from pricing• a, pricing• b 
8) where a.storenum === b.storenum 
4) and a.part === 'tub' 
&) and b.part === 'sink' 
8) and a.color === 'pink' 
7) and b.color === 'pink'; 

For more information about table_labela, reCer to "Target-Lists" and to 
the discussion of correlated subqueries under "Qualifications". 

Queries that do not access tables do not, obviously, need to specify 
tables. The query 

1) select 'date', getdate; 

simply returns the character string "date" and the current date. 

Britton Lee 



SQL Reference Manual select 

Options Each object specification in the from clause may be followed by a 
· comma-separated list or special processing options. The entire list is 

enclosed in parentheses. The options are discussed under "Object_Spec". 

Qualifications The where clause specifies one or more conditions to apply in selecting 
data. Ir the where clause is omitted, all rows in the source object(s) are 
selected. See "Qualifications" ror a detailed discussion or the. where 
clause. 

Special Clauses 

Sorting Output 

EXAMPLES 

Britton Lee 

The group by and having clauses are usually used with aggregatea. 
See "Aggregates" for a detailed discussion or these special clauses. 

The order by clause causes the selected rows to be sorted by value or a 
specified expression. The syntax or an order _apee is: 

{ column_name I column_number I expression } 
!alucldldeac) 

The direction specifiers a and uc specify that the rows are to be sorted 
in ascending order, while d and deac specify descending order. Ir no 
direction is specified, the derault order is ascending. 

If a column_ name is specified, the results are sorted by the values in 
that column. 

1) eelect name, quan 
2) from parts 
8) order by partnum; 

The named column does not have to be in the target-fiat. 

Ir a column number i is used, output is sorted by the ith element in the 
target-list. Ir • is specified, it is sorted by the ith column which was 
specified when the table was created. 

1) eelect num, name, quan from parts 
2) order by 3; 

Finally, any arbitrarily complex numeric expression may be used to order 
output: 

1) aelect • 
2) from accounts 
a) order by ( usets - liabilities) d; 

The following query displays all the rows or the "stores" table in which 
the "city" field has the value "berkeley". The results are sorted by the 
"storenum" field in ascending order. Minimum locking allows the query 
to be processed although other users may be accessing the "stores" table. 

73 



select 

SEE ALSO 

74 

SQL Reference Manni 

1) aelect • 
I) fr.om stor• (minlock)· 
8) where city- 'berkeley' 
8) order b7 storenum; 

The following query creates a new table named "newparta'' with columns 
named "name", "num", "price", and "date". The values for these rows 
are selected from the "prices" and "parts" tables. Columns named 
"name" exist in both the "parts" and "prices" tables, so a ta6le_la6el 
"pa" is used to specify that the reference is to the "name" column in the 
"parts" table. This query uses the system-supplied function getdate, 
which returns the date. 

1) aelect into newpal'ta 
2) pa.name, num, prices, date = anival 
a) fr.om pal'ta pa, prices 
4) where num = parinum 
6) and arrival > getdate - 2; 

create view, insert, update 
"Aggregates", "Functions", 
"Qualifications", "Target-Lists" 

"Object_Name", "Object_Spec", 

Britton Lee 



SQL Reference Manual set 

set { option-name I option-number } (on I off] 

DESCRIPTION The aet command enables certain options for SQL commands. The 
option can be specified by a name or a number. If neither OD nor off is 
specified, the option is set on. Valid options are discussed below: 

Autocommit Option The autocommit option is used to specify whether commands are to be 
committed automatically. If autocommit is set on, changes to tables 
caused by SQL commands are processed or committed as soon as they 
are entered. When SQL starts up, this option is turned on 
automatically. 

Britton Lee 

If autocommit is set off, commands are bundled into logical units of 
work called transactions. Multiple SQL commands are then handled as a 
single command or transaction. 

When autocommit is off (a transa.ction is being built) the only legal 
SQL commands are 

commit work 
delete 
lnaert 
rollback work 
11elect 
.ta.rt 
update 

A transaction begins when the user sets autocommit off, or after a 
commit work or rollback work command is issued. A transaction 
ends when a commit work or rollback work command is issued, or 
when autocommit is set on again. The work in the current transaction 
is not committed to a database until a commit work command is 
issued. All work in the current transa.ction is &borted if a rollback 
work command is issued. 

The following sequence produces three transactions. 

1) 11et autocommit off; 
1> update .•••••• 
2> eelect ........ 
8> commit work; 

1 > imert .. .. 
2> aelect .... . 
8 > rollback work; 

1> eelect ... .. 
2> delete .. .. 
8 > imert ... .. 

r begins i.t tranaactton • / 

;• com.mite 1st transaction, 
begins 2nd transaction • / 

r abort. 2nd tranaaction, 
begins 3rd tramaetion • / 

'16 



set 

OTHER OPTIONS 

76 

SQL Reference Manual 

4> commit work; 
1 > aet autocommit on; 

r commits third tramaction • / 
/* gets out of transaction mode • / 

1) 

Tra.nsactions are used to ensure consistency in a database. For example, 
in a ba.nk, money can be moved from one account to another by 
subtracting a.n amount from one account a.nd adding it to another. If, 
after the update was subtracted and before the update was added, 
someone looked at the bala.nces, it would appear as though money were 
either spontaneously generated or spontaneously lost. If the system went 
down between the two updates, the error could be made permanent. 

This problem can be solved with a transaction. Although a transaction 
is ·composed of a sequence of commands, it is treated as an atomic 
operation; it is performed completely or not at all. 

A transaction is also appropriate if the user wants to observe the effects 
of the constituent commands before they are committed. If the 
commands are put into a transaction and the user sees that the changes 
are undesirable, the changes can be backed out with a rollback work 
command. 

1) aet autocommit off; 
1 > update cuatomeH 
2 > aet balance = balance - 100 
3> where name = 'debtor'; 

1 row affected 

1 > update customeH 
2 > aet balance = balance + 100 
3> where name = 'creditor'; 

1 row affected 

4 > commit work; 
1 > 11et autocommit on; 
1) 

A number of other options can be aet, using either the option-name or 
option-number. They are listed following: 

1 format 
Set format before query. 

2 names 
Send result names. 

3 ove:rftow 
Ignore overflow and use largest number instead. 

4 divzero 
Ignore division by zero and use largest number instead. 

Britton Lee 



SQL Reference Manual 

Britton Lee 

set 

& perform 
Send elapsed execution time (wall clock). Do not set 5 if 11 is 
set. 

G duplicate 
Delete rows with duplicate keys which are generated by 
modifications to the table. 

'1 round 
Abort on rounding of bcdflt. 

8 underflow 
Ignore exponent underflow and use zero instead. 

U badbcd 
Ignore bad bed data Crom host or file and use zero instead. 

11 time 
Return dedicated time (database server CPU time). Do not set 
11 if 5 is set. 

12 nocount 
Supress count of rows affected when displaying query results. 

13 "tape" 
Use database server tape. IC the option-name is used here, it 
must be quoted. This option can not be aet from a user 
program. 

14 protect 

16 use 

Allow DBA of the "system" database to access any databa.<.e as 
DBA. 

This is for options aet within a stored command. To enable 
options at execution time, option 15 must be set prior to defining 
the stored command. Then, the options are enabled when the 
stored command is executed. 

H dumpwait 
Wait for execution of command while a read-only dump is in 
progress. 

l '1 f a.stagg 
Process aggregates using faster method, with ~ible loss of 
accuracy in the result. IC this option is aet, queries may return 
inconsistent results. 

18 croasjoin 
Process Joins using an older method. This may improve 
performance for certain queries which (1) join eeveral small 
tables with one large table, (2) but do not join the small tables 
with each other, (3) and have very few qualifying rows in each 

77 



set 

78 

33 resp 

34 cpu 

37 inp 

SQL Re/erence Manual 

small table, (4) and can use a selective index to access the large 
table. 

Return response time (in 60ths of a second) from when the DBP 
gets the command to when it sends the last or the results. 

Return CPU use {in 60ths of a second). 

Return the time the dbin spent waiting for input from the start 
of the command (in 60ths of a second). 

38 mem 
Return the time the dbin spent waiting for memory after 
receiving a command (in 60ths of a second). 

39 cpuw 

40 disk 

Return the time the dbin spent waiting for the DBP or DAC 
when it had CPU work to do (in 60ths of a second). 

Return the time spent waiting for the disk (in 60ths ofa second). 

41 tapew 
Return the time spent waiting for the tape (in 60ths of a 
second). 

42 outw 
Return the time spent waiting for the host to read its output (in 
60ths of a second). 

43 block 

44 dac 

Return the time spent blocked on another dbin (in 60ths of a 
second). 

Return the time spent in the DAC or the simulation routines if 
there is no DAC in the system (in 60tbs of a second). 

45 outc 

48 hits 

Return the time spent waiting for an output buffer (in 60ths of a 
second). 

Return the number of times a disk page was found in memory. 

47 reads 
Return the number of disk reads performed by this dbin. 

48 tperrs 
Return the number of soft tape errors. 

Britton Lee 



SQL Reference Manual 

EXAMPLE 

SEE ALSO 

Britton Lee 

set 

.(g qrybuf 
Return the number of bytes of query buffer used. 

GO plan 
Return the query processing plan. 

This command causes SQL to suppress the "Rows afl'eeted" messages 
that are usually displayed with query results. 

1) set nocount on; 

commit work, rollback work 

7g 



start SQL Reference Manual 

start qname[ (name:= constant[, name = constant ••. ]) ] 

start qname( (constant[, constant ... ]) ] 

DESCRIPTION 

80 

The start command executes the stored command qname, which was 
previously created with the store command. 

The conatants specify values to be substituted for the formal parameters 
in the definition or the stored command. 

Ir the name == conatant form is used, the name must correspond to the 
name or a formal parameter as it was specifed in the store command. 
For example, if a stored command "mycommand" were defined as 

1) store mycommand 
2) imert into emp.(name, num, dept) 
8) values(lcempname, lcempnum, lcdeptnum) 
4) end store; 

a start command could look like 

1) start mycommand 
2) (empname = 'Smith', empnum = 2458, deptnum = 102); 

The name == conatant assignments may be given in any order. 

Ir the conatant form (no explicit na~e) is used, values are assigned based 
OD the alphabetic order or the names or the formal parameters. For 
example, to execute "mycommand" using this form and obtain the same 
results as in the example above, "mycommand" would have to be 
invoked as 

1) start mycommand (102, 'Smith', 2458); 

When this form is used, the order in which the values are listed is cru­
cial, because the mapping or values to formal parameters is determined 
by the alphabetic ordering of parameter names. The digits in parameter 
names are considered characters, not numbers, so the parameters $1, $2, 
$3, $10, $20 sort as SI, $10, $2, $20, $3. 

Britton Lee 



SQL Reference Manual 

EXAMPLE 

SEE ALSO 

Britton Lee 

start 

A parameter to a stored command may be a pattern st.ring as described 
in ''PATTERNS" under "Qualifications". In such cases, the like predi­
cate is used to specify the parameter, both in the the .tore command 
which creates the stored command and in the start command which exe­
cutes it. For example, assume a stored command defined as 

1) store aearch 
2) aelect •from employees where name like lcname 
I) end store; 

To invoke this stored command to find all employees whose names begin 
with the letter 'J', use 

1) start aearch (like 'J%'); 

or 

1) start aearch (name like 'J%'); 

Assume that the stored command "newitem" has been defined as follows: 

1) store newitem 
2) inaert into expend(•leeman, amt, time, date) 
8) values ( lcname, lcamount, gettime, getdate) 
4) end store; 

This stored command can be executed with 

1) start newitem (name=='mike', amount==44); 

or 

1) start newitem (44, 'mike'); 

In the last example, the value 44 is substituted for the "amount" param­
eter and the value "mike" is substituted for the "name" parameter. 
The values must be listed in this order because or the alphabetic ordering 
or the parameter names ("a" before "n"). 

comment, drop, .tore 
"Constants", "Qualifica.tions" 

81 



store SQL Reference Manval 

store qname command [command .•. ] end store 

DESCRIPTION 

82 

The store command creates a stored command (also called a "stored 
query") in the database server. A stored command is a MqUence of one 
or more SQL commands which can be· referenced collectively- by the 
qname. 

The commands used in the stored command may include 

commit work 
delete 
imert 
rollback work 
aelect 
aet 
update 

The command aet aut.ocommlt is legal inside a stored command. 
Options 1 through 17 are legal inside a stored command. Ir any options 
other than autocommit are Mt inside the stored command,.option 15 
(use) must have been set prior to defining the stored command which 
contains the eet options. 

When a stored command is defined, formal parameters can be used in 
place of constants. A formal parameter has the syntax oC a name 
prefixed with an ampersand ('&'). Later, when the stored command is 
executed by the start command, the user supplies the values to be sub­
stituted for the parameters. 

Create permission is not required to define a stored command, but the 
creator of the stored command does need the permissions necessary for 
each command as though each constituent command were being entered 
manually. 

A stored command, once defined, cannot be modified. Ir a change in the 
command is desired, a new stored command must be defined. 

When store is executed, the comment command is automatically exe­
cuted also, with the full text of the store command entered by the user 
inserted as the "text" portion of the description entered by the com­
ment command into the "descriptions" table. This feature provides 
automated documentation of stored commands. 

Britton Lee 



SQL Reference Manual store 

EXAMPLES This command creates a stored command named "additem". 

SEE ALSO 

Britton Lee 

1) store additem 
2) inHrt into item• (iname, number) 
8) values (&name, &num) 
4) 11e)ect (count = count(number)) 
6) from items 
8) where number = &num) 
'1) end store; 

The stored command "additem" could be invoked as follows: 

1) start additem ('bertha', 48); 

or 

1) start add item 
2) (name = 'bertha', nwn = 48); 

comment, drop, grant, revoke,11et, start 
"Constants" 
%comment, %input 

83 



sync 

sync 

DESCRIPTION 

84 

SQL Reference Manual 

The sync command initiates a checkpoint in the open database. Any 
disk blocks that may have (temporarily) been kept in volatile database 
server memory are written out to disk. 

Britton Lee 



SQL Reference Manual truncate 

truncate table_name[, table_name ... ] 

DESCRIPTION 

EXAMPLE 

SEE ALSO 

Britton Lee 

The truncate command deletes all rows Crom the named tables. The 
tables continue to exist, but they contain no data, as is the cue when a 
table is first created. This command is the functional equivalent of 
delete from table_ name, except that truncate can empty several tables 
with a single command. 

1) truncate invoices; 

This command removes all rows from the "invoices" table. 

delete 

85 



update SQL Reference Manual 

update object_name [label} 

DESCRIPTION 

EXAMPLES 

SEE ALSO 

86 

[from object_spec[, object_spec ... J] 
set coLname = expression[, coLname = expression ... } 
[where qualification] 

The update command is used to change the values of one or more fields 
in one or more rows of a table or view. See create view for restrictions 
on updating views. 

The c:rpreaaion may refer to values from other tables in which case the 
other tables involved are named in the from clause. 

Columns that are to be updated must be explicitly named in the aet 
clause. Columns that are not named are not changed. 

The optional where clause may refer to the object being updated or to 
the objects listed in the from clause. The where clause may be used to 
select the rows to be updated, or to select data from other tables. Ir no 
where clause is specified, all rows in the table are updated. 

This query changes the value of the "name" column for all rows in the 
"parts" table for which "name" has the value "transistor" to the value 
"electronic". 

1) update parts 
2) set name = 'electronic' 
3) where name = 'transistor'; 

This query sets a new value n the "price" column in all rows in the 
"products" table in which the fcl!owing conditions prevail: (I) the value • 
or the "name" column in the "i:roducts" table equals the value of the 
"name" value in the "parts" tal::le and (2) the value of the "name" 
column is "tube". The purpose of t!!is command is to set the price of all 
tubes to be 10% higher than the pu1chase cost as reflected in the "cost" 
column of the "parts" table. 

1} update products pr 
2} from parts pa 
3} set price = cost + cost/10 
4} where pr.name = pa.name 
5) and pa.name = 'tube'; 

create view, insert, select 
"Object_Name", "Object_Spec", "Qualifications·' 

Britton Lee 



PART III 

GENERAL CONCEPTS 





Introduction to 
General Concepts 

Britton Lee 

This part describes various components of an SQL command, such as 
expression or qualification, which may appear in a number of different 
SQL commands. 

Some of these components are defined in terms of other components, all 
of which are described in this part. 

89 



Aggregates 

WHERE 

90 

Aggregates are used in queries and subqueries. The aggregate operators 
available in SQL are 

Aggregate 

sum(arg) 
sum( distinct arg) 
count(arg) 
count( distinct arg) 
avg{arg) 
avg( distinct arg) 
once(arg) 

once( distinct arg) 
any(arg) 

max(arg) 
min(arg) 

Returns 

sum of all elements 
sum of all distinct elements 
count of elements 
count of distinct elements 
average of elements 
average of distinct elements 
returns one and only one value; 
if more or less than one value is 
found, returns an error 
once of distinct elements 
0 if no elements exist, 1 if one 
or more elements exist 
maximum of elements 
minimum of elements 

The sum and avg aggregate operators are available only with those 
data types that support addition (integer, bed or bcdftt). The other 
aggregate operators are available for all data types. 

This query displays the average salary earned by employees in the toy 
department: 

1) select avg(salary) 
2) from employees 
3) where dept = 'toy'; 

An aggregate can be modified by the addition of where, group by, and 
having clauses, all of which are discussed below. When the group by 
clause is used, the aggregate returns a result for each group. 

When an aggregate appears in a query, the where clause specifies the 
data to be treated by the aggregate. See the "Qualifications" section for 
a detailed description of the where clause. 

An aggregate may appear inside a qualification only in a subquery. An 
aggregate in a subquery is illustrated below, in a query which selects the 
employees, other than John Smith, who make less than the average 
salary of all employees. The avg is the average of all salaries, including 
John Smith's: 

Britton Lee 



SQL Reference Manual 

GROUP BY 

HAVING 

Britton Lee 

Aggregates 

1) select • from employees 
2) where name < > 'smith, john' 
3) and salary < 
4) (select avg(salary) 
5) from employees); 

Use the group by clause to apply an aggregate to groups of rows rather 
than to a table as a whole. The following query selects, for each depart­
ment, the number of employees over 30 and the department name. 

1) select count(•), dept 
2) from employees 
3} where age > 30 
4) group by dept; 

The having clause is an optional qualification of the groups to be con­
sidered by the aggregate in a query which has a group by clause. For 
general information about qualifications see "Qualifications". 

This query selects the department name, the average employee salary, 
and the number of employees in every department in which the average 
employee salary is higher than 2000: 

1) select avg(salary), dept, howmany = count(•) 
2) from employees 
3) group by dept 
3) having avg(salary) > 2000; 

This query selects the department and average salary for the department 
with the highest average salary for its employees. 

1) select dept, avg(aalary) 
2) from employees 
3) group by dept 
4} having avg(salary) >= all 
5) (select avg(aalary) 
8) from employees 
7) group by dept); 

The following query uses group by and having clauses even though 
there is no aggregate in the target-list. It selects the employees that 
belong to the department that has the highest average salary: 

91 



Aggregates 

92 

SQL Reference Manual 

1) select name, u.laey, dept 
2) from employees 
3) group by dept 
4) having avg(salaey) >=all 
5) (select avg( salary) 
6) from employees 
7) group by dept); 

A short description of each aggregate operator is given below. 

any(expr) 
Any returns 1 if at least one of the elements of its argument 
exists, nothing if none of the elements exist. The choice of the 
column specified in the target-lid is irrelevant. 

In order to find out if any wines in the database date from 
before 1986: 

1) select old = any(winenum) 
2) from wines 
3) where vintage < 1986; 

old 
1 

avg( arg), avg( distinct arg) 
Avg returns the average of all elements of its argument. All of 
the elements being averaged. must be of type integer, bed, or 
bcdftt. Avg distinct returns the average of all of the distinct 
elements of its argument. 

For example, to find the winenumbers and cases on hand for all 
zinfandels where the number of cases on hand is less than the 
average number on hand: 

1) select winenum, onhand 
2) from wines 
3) where type = 'sinfandel' 
4) and onhand < 
5) (select avg(onhand) from wines); 

winenum onhand 
4 1 

38 3 

Britton Lee 



SQL Reference Manual 

Britton Lee 

Aggregates 

count(arg), count(distinct arg) 
Count returns the number of rows in which its argument 
occurs. Count distinct returns the number of rows in which its 
argument occurs, excluding duplicate oecurenees of the element(s) 
being counted. For the count aggregate (but not the count dis­
tinct), the choice of the column specified in the larget-list is 
irrelevant. 

The count aggregate may be called with the asterisk (*) as the 
argument to count all the rows in the table. If multiple tables 
are being accessed in the query, the asterisk may be modified by 
a table_ name or a table_ label. The following queries both return 
the count of the rows in "stores": 

1) select count(*) from stores; 

1) select count(st.*) from stores st; 

Count (distinct *) is not permitted. Distinct rows could be 
counted by using the select command, with the distinct 
modifier, to display the table followed by a count of the rows. 

This query counts all of the rows in which the "vintage" field 
has a value of 1980: 

1) select Vin80 = count( type) 
2) from wines 
3) where vintage = 1980; 

Vin80 
15 

The following query counts all of the rows in which the "vin· 
tage" field is 1980 but counts only once for each "type". For 
instance, for the three wines of 1980 vintage in which the "type" 
field has a value of "johannisberg riesling", there will be only one 
count. This is because the count distinct is based on the 
"type" column. 

1) select Vin80 = count (distinct type) 
2) from wines 
8) where vintage = 1980; 

Vin80 

The count aggregate cannot count empty sets. The following 
query returns no rows at all, since there are no wines in the 

93 



Aggregates 

94 

SQL Reference Manual 

database of vintage 1999. 

1) select Vin99 = count( winenum) 
2) from wines 
3) where vintage = 1999; 

max(arg) 
Max returns the element with the maximum value. If the ele­
ments are character data types, the maximum is calculated on 
ASCII or EBCDIC order, depending on the character set associ­
ated with the database when it was created. 

For example, to find the wine of which the greatest number of 
cases are in stock: 

1) select winenum, type, onhand from wines 
2) where onhand = 
3) (select max(onhand) from wines); 

winenum type onhand 
28 chardonnay 23 

min(arg) 
Min returns the element with the minimum value. If the ele­
ments are character data types, the minimum is calculated on 
ASCII or EBCDIC order, depending on the character set associ­
ated with the database when it was created. 

For example, to find the least expensive wine in the database 
from the "pricings" relation, which gives the prices for all the 
wines in the database: 

1) select p.winenum, p.price, w.type 
2) from pricings p, wines w 
3) where p.winenum = w.winenum and 
4) p.price = 
5) (select min(price) from pricings}; 

[winenum price I type 

l 4 4. 1 zinfandel 

Britton Lee 



SQL Reference Manual 

SEE ALSO 

Britton Lee 

Aggregates 

once(arg), once(distinct arg) 
Once returns one value if one occurence of its argument exists. 
Otherwise it generates an error message. Once ddt.inct returns 
one value for one occurence of a distinct element. 

1) select Cab78 = once(winenum) 
2) from wines 
3) where vintage < 1978 and 
4) type = 'cabernet aauvignon'; 

ERROR line 2: ONCE or ONCE DISTINCT returned two values. 

1) select NapCab78 = once(winenum) 
2) from wines 
3) where vintage < 1978 and 
4) type= 'cabernet aauvignon' and 
o) area = 'napa valley'; 

NapCab78 
34 

sum(arg), sum(distinct arg) 
Sum returns the sum of all elements or its argument. All of the 
elements being summed must be of type integer, bed or bcdflt. 
Sum distinct returns the sum of all or the distinct. elements of 
its argument. 

1) select sum( onhand) from wines; 

sum (onhand) 
190 

audit, create database, create view, insert, select, update 
"Functions", "Qualifications" 

05 



Constants 

96 

A constant is a value that remains unchanged. Constants are used in 
expressions and as arguments to the stut command. There are eight 
different types of constants: 

Integer Constant 
An integer constant is a sequence of decimal or hexadecimal 
digits. It may be preceded by "Oo" or "Ox" to indicate octal or 
hexadecimal values: 

4 
43 
Oo777 
Ox4E 

Character Constant 
A character constant is a sequence of characters enclosed in sin­
gle or double quotation marks: 

"Henry" 
"a,b,c" 
'x' 
'123' 

To include a single quotation mark (apostrophe) inside a charac­
ter constant, either place the entire character constant in single 
quotation marks, and double the single quotation mark which is 
to appear inside the constant 

'Britton Lee"s database server' 

or use double quotation marks around the character constant 
and a single quotation mark where it is to appear in the con­
stant 

"Britton Lee's database server" 

To include double quotation marks inside a character constant, 
either place the entire character constant in double quotation 
marks, and double the double quotation mark which is to appear 
inside the constaJ;t 

"The word '"'word"" is in double quotation marks." 

or use single quotation marks around the character constant and 
double quotation marks around the part to be quoted 

'The word "word" is in double quotation marks.' 

Britton Lee 



SQL Reference Manual 

Britton Lee 

Constants 

BCD Constant 
A bed constant is a signed integer constant preceded by the 
character "#": 

#1 
#104392684 
#-47 
#-4096 

BCD FLT Constant 
A bcdflt constant is a floating constant preceded by the charac­
ter "# ": 

#1.0 
#-3.14e-47 
#-1.0 
#0. 

Parameter Constant 
A parameter constant is a name preceded by an ampersand "&". 
Such a constant can only be used inside a store command. The 
parameter constant is replaced by a value named in a start 
command. The parameter constant is similar to an argument to 
a subroutine. Its type is unspecified until execution time. Even 
though the value of a parameter constant can change, it is con­
sidered a constant because its value remains the same 
throughout the execution of a command. 

Floating Constant 
A floating constant is a signed integer constant followed by 
either a decimal point and digits, or by an "E" or "e" and a 
signed integer constant, or both. It may be preceded by "Of" for 
FLT4 (4-byte float) or "Od" for FLT8 (8-byte float). It may not 
begin with a decimal point. 

24.4 
-3el00 
Of6.0211 
0.333 

The magnitude and precision of a floating constant are system 
dependent. 

Binary Constant 
A binary constant is represented by "Ob" followed by a string of 
hexadecimal digits: 

ObA6 
Obe0a6ff 

97 



Constants 

SEE ALSO 

98 

SQL Reference Manual 

Substitute Constant 
A substitute constant is a percent sign "%" followed by either a 
name or an integer. Substitute constants are used primarily as 
an intermediary form in the precompilation of embedded query 
languages, such as RSF and RSC, and hardly ever used in 
interactive SQL. They are used to substitute the value of a pro­
gramming language variable into an SQL command. 

"Expressions", "Types" 

Britton Lee 



Expressions 

Britton Lee 

An expression yields a value or set of values. EzpreHions such as "43'' 
or "a * b / c" yield a single value, while the ezpres&ion "r.name" yields a 
set of values, one for each row in the table referenced by the table_label 
"r". The set may contain no values at all. 

An erpression may be any of the following: 

aggregate 
eolurnn_name 
table_name.colunm_name 
table_ label.column_ name 
constant 
function 
(expression) 
- expression 
expression + expression 
expression - expression 
expression * expression 
expression / expression 

(integer, bed, bcdflt types only) 
(integer, bed, bcdflt types only) 
(integer, bed, bcdflt types only) 
(integer, bed, bcdflt types only) 
(integer, bed, bcdflt types only) 

Floating-point arithmetic is not supported in SQL. Addition, subtrac­
tion, multiplication, division and negation may be used with integer, bed 
and bcdflt types. Multiplication and division have precedence over addi­
tion and subtraction, for example: 

A + B * C = A + (B * C) 

Precedence may be forced by the use of parentheses. 

Every ezprea&ion has an implied value type. The type of a constant 
ezpre&aion is implied by the type of the constant. The type of a column 
is set when a table is created. The type of a function or aggregate 
depends upon the particular function or aggregate. 

The type of the result of an ezpreHion involving more than one operand 
can be found on the graph on the following page: 

gg 



Expressions 

SEE ALSO 

100 

SQL Reference Manual 

il 

il il 

Type '') lw 

or 

Other i4 i4 

Operand 

bed bcd31 

bcdlft31 bcdflt31 

Type of One Operand 

'') lw 

'') lw 

. ') 
lw 

i4 

bcd31 

bcdflt31 

i4 bcd31 

i4 bcd31 

i4 bcd31 

i4 bcd31 

bcd31 bcd31 

bcdflt31 bcdftt31 

The result of all bed arithmetic is the full precision (31 digits). -

bed flt 

bcdflt31 

bcdflt31 

bcdflt31 

bcdflt31 

bcdflt31 

If any number in a calculation is bcdflt, the entire calculation will be per­
formed to 31-digit precision. For example 

1) select (a = #1./7); 

returns 

a 
.1428571428571428571428571428571 

SQL prints a warning when a number has been rounded and some preci­
sion lost. 

create table, select 
"Aggregates", "Functions", "Types" 

Britton Lee 



Functions 

SUMMAR}" OF FUNCTIONS ON THE DATABASE MACHINE 

Category Function Return Value 

arithmetic abs(n) absolute value 
mod(n,d) remainder of n/ d 

string concat(a,b) concatenation of a and b 
substring(p,l,s) substring of 8 

conversion integer(n) n, converted to integer 
smallint(n) n, converted to smallint 
tinyint(n) n, converted to tinyint 
binary(n) n, converted to binary 
[fixed] bcd(l,n) n, converted to bed 
[fixed] bcd.ftt(l,n) n, converted to bcdflt 
[fixed] char(l,n) n, converted to char 
bcdfixed(p,f,n) n, converted to bcdflt 

(rounded) 
float(n) n, converted to float 
double(n) same as ftoat(n) 
sm allfloa t( n) n, converted to smallfioat 
real(n) same as smallftoat(n) 
string(n) n, converted to string 

database serYer user id current user-id 
dba user-id of database DBA 
host id of host computer 
gettime database sen-er time (integer) 
getdate database server date (integer) 
databasename name of open database 
table_name(r) name of table 
table_id(s) id of table 
coLname(r,a) name of column 

Britton Lee 101 



Functions 

FUNCTION 
DESCRIPTIONS 

102 

user id 

dba 

host 

SQL Reference Manual 

Returns the database server user-id for the current user, as a 
value of t.ype smallint. 

Returns the database server user-id for the database administra­
tor for the currently open database, as a value of type smallint. 

Returns the database server host-id originating the current com­
mand, as a value of type smallint. 

get time 
Returns the number of 60ths of a second since midnight. The 

· value will initially be wrong after the database server has been 
brought on line. The time can be set with the utility program 
IDMDATE. 

getdate 
Returns the number of days from an initial value. This value 
can be initialized to any value by the IDMDATE utility. When 
the time (reported by the gettime function) reaches the number 
of 60ths of a second in 24 hours, the time is reset to zero and 
the date (reported by getdate) is incremented by one. The date 
returned by getdate is represented in GMT. 

databasename 
Returns the name of the currently open database. 

table_id (name) 
Expects a quoted character string (for name) as its argument. 
The return value is the id number of the object. 

table_name (id) 
Expects an id number of an object and returns its name. 

abs (num) 
Returns the absolute value of its argument. 

[fixed] binary ( arg) 
Converts arg to binary type. The arg can be of any type. Does 
not change the value of arg in any way. 

integer (arg) 
Converts its argument to a four-byte integer. 

smallint (arg) 
Converts its argument to a two-byte integer. 

tinyint (arg) 
Converts its argument to a one-byte integer. 

Britton Lee 



SQL Reference Manual 

Britton Lee 

Functions 

float (arg) 
Converts a four-byte floating point number to an eight-byte 
floating point number. 

smallfloat (arg) 
Converts an eight-byte floating point number to a four-byte 
floating point number. 

[fixedj bed (precision ,expression) 
Converts expression to a bed value with the specified precision. 
For example 

1) select x = bcd(5, "123" ); 

returns 

and 

1) select x = bed( 4, "1234.56" ); 

ret,urns 

The query 

1) select x = bcd(3, "12345"); 

generates the error message "Numeric overflow". 

103 



Functions 

104 

SQL Reference Manual 

[fixed] bcdflt (precision,expression) 
Converts expression to a bcdflt value with the specified preci­
sion. The query 

1) select x = bcdftt( 4, "123.45" ); 

returns 

and 

1) select x = bcdftt(5, "1234567 .89"); 

returns 

[fixed] char (len,expression) 
Converts expression to a char variable of length len. If Jen is 
zero, the length of the result will depend on the data type of 
expression. If fixed is specified, the result is blank-padded to 
the given length. Otherwise len is simply the maximum allow­
able length of the result. 

string (Jen ,expression) 
Converts expression to a character string of length len. The 
expression can be of any type except float. If Jen is zero, a 
length is used based on the type of the expression as indicated 
below. 

Type of Expression Length of Result (in bytes) 

il 4 
. ') 
I. 6 
i4 11 
bcd(n) 2n - 3 
bcdflt(n) 2n - 3 
char(n) n 
bin(n) n 

mod (ex pr l ,expr2) 
Returns the remainder when the expr1 is divided by expr!!. The 
mod function can only be used on integer or bed expressions. 

Britton Lee 



SQL Reference Manual 

Britton Lee 

Functions 

concat (strl ,str2) 
Takes the character strings atr 1 and atr2, strips all trailing 
blanks from both strings, and appends atr2 to drl. Also works 
for binary data, stripping zero-bytes instead of blanks. 

coLname (table_id,coLid) 
Returns the name of a column when given an id number for the 
table and for the column. 

substring (pos,len,str) 
Extracts a string from a character or binary string expression. 
The result is a character or binary string of length /en, contain­
ing the characters or bytes of str starting from the position pos. 
For instance, 

substring(3, 4,'abcdefghi') 

returns 

cdef 

bcdfixed (precision.fraction ,expr) 
Converts ezpr to a bcdflt number with a maximum of precision 
digits and a maximum of fraction significant fractional digits, 
rounding the value if necessary. For example, 

1) select x = bcdfixed(5, 2, "768.534"}; 

returns 

and 

1) select x == bcdfixed(8, 2 1 "35.478"}; 

returns 

The query 

1) select x == bcdfixed( 4, 3, "123.45" ); 

generates the error message "Numeric overflow". 

105 



Functions 

SEE ALSO 

106 

audit, create view, insert, select, update 
"Qualifications'', "Types" 

SQL Reference Manual 

Britton Lee 



Name 

SEE ALSO 

Britton Lee 

A name is a sequence of one to twelve characters. The first character 
must be alphabetic and the remainder may be alphabetic, numeric 
and/or underbars. A name may or may not be case-sensitive, depending 
on the host enYironment. \'alid names are: 

Im·alid names are: 

"Object_Name" 

host_users 
users 
tx01i4 

Keywords 
keywords 
RS_232C 

sys$1ist 821206 
rubber _cement 6_dec_82 

107 



Object_ Name 

SEE ALSO 

108 

An object_ name is the name of an object in a database. The objects in 
a database are listed in its system table "relation". There are seven 
types of objects: 

U - user table 
S - system table 
T - transaction log 
C - stored command 
P - stored program 
V - view 
F - file 

The syntax of an object_ name is 

[<owner>.] <name> 

where name is the name of the object and owner is the name of its 
owner, as stored in the system table "users". If owner is not specified, 
the default is the current user. If no object belonging to the current user 
is found, the default is an object owned by the DBA. 

A table_ name and a view_ name are subsets of object_ name. 

comment, drop. drop index, grant 
"l\'ame", "Object_Spec" 

Britton Lee 



Object_ Spec 

Britton Lee 

An objecLl!pee specifies the object of a from clause in an audit, 11elect, 
or update command. 

It has the following syntax: 

object._name [table_label] [options_list] 

The object_name may refer to a table, view, or transaction log. Refer to 
"Object_l\'ame" for the syntax of an object_ name. 

A table_label is used to specify a particular table when multiple tables 
are referenced in a query and a column reference is ambiguous, to join a 
table with itself, or to express a correlated subquery. The use of 
tab/e_/abels is demonstrated under the 11elect command, in the discussion 
of correlated subqueries under "Qualifications" and under "Target-Lists". 

Each object named in the from clause may be followed by a comma­
separat.ed list of special processing options enclosed in parentheses. The 
available options are: 

minlock 
This specifies minimum locking, in which data in the table may 
be accessed while the table is being accessed by another user. 
This may result in the access of some rows that have been 
affected by a command and some that have not. The minlock 
option is useful in situations in which this type of inconsistency 
is not a problem and where other users' activities would interfere 
with simple queries were the option not used. 

fulllock 
This option specifies a full locking. It guarantees that any data 
accessed will reflect either completely, or not at all, the effects of 
other users' transactions. The fulllock option is the default if 
no options are specified. 

dindex = n 
This option specifies that the table is to be accessed using the 
specified index. The clustered index is always index 0, and 
others are numbered from 1 to 15. The numbers of the indices 
correspond to the "indid" column of the "indices" table for the 
database. If the dindex option is used, the dorder option is 
also required. If the dindex is omitted, the database server 
decides which index would be most efficient. Unless the join is 
extremely complicated (involves four or more tables), it is usually 
preferable to let the database server choose the index. 

dorder = n 
This opt.ion is used to specify a plan for the order in which 
tables should be processed when two or more tables are joined in 
a qualification. When the dorder opt.ion is omitted, the 



Object_Spec 

SEE ALSO 

110 

SQL Reference Manual 

database server decides in which order to process the tables. 
Unless the join is extremely complicated (involves four or more 
tables), it is usually preferable to let the database server choose 
the order. 

The following query permits the user to select data from the "parts" 
table while other users may be updating it. 

1) select partnum, putname, quan 
2) from parts (minlock) 
3) where quan > 10; 

The following query uses the dindex and dorder options to establish a 
plan for accessing the "small", "medium", and "large" tables. 

1) select desc, name, quan 
2) from small (dindex = O, dorder = 1), 
3) medium (dindex = o, dorder = 2), 
4) large (dindex = 4, dorder = 3) 
5) where small.po• < 10 
8) and medium.num = emall.num 
1) and medium.type = large.type; 

This means: 

(1) First, go through "small", searching for rows in which the "pos" 
column is less than 10. Access "small" through its clustered 
index, which is on "pos". 

(2) Second, from among those rows selected above, go through 
"medium" searching for matches between "medium.num" and 
"small.num". Access "medi.um" through its clustered index, 
which is on "num". 

(3) Among those rows selected above (in which "small.pas" is less 
than IO and "small.num" equals "medium.num") go through 
"large" looking for matches between "medium.type" and 
"large.type". Access "large" through its fourth nonclustered 
index which is on "type". 

audit, select, update 
"Object_ Name" 

Britton Lee 



Protect_ Modes 

SEE ALSO 

Britton Lee 

A protect_ mode represents the type of access which can be granted to or 
revoked from a U.!er for a particular object. Some protecLmodee are 
applicable to tables. views, files, and columns, others to stored commands 
and stored programs, and others to databases. 

A protect_mode is granted or revoked using its name, such as read or 
create, but it is identified in the "access" column of the system table 
"protect" by a numeric value. 

The following table maps the names and numeric values of each 
protect_ mode. The numbers in the SQL column of the table are the 
results of sql's conversion of database server values to signed 1-byte 
integers. These are the values displayed in a select on the "protect" 
table. 

Mode Octal 

read 0001 

write 000::? 

all !privileges J 0003 

start 0340 

create 0306 

create index 0310 

create database 0313 

read tape 0004 

write tape ()())0 

all tape 0014 

dump 0344 

grant, revoke 
"Users" 

Hez SQL Applie1 To 

·0xo1 tables, views, files, columns 

OxO::? 2 tables, views, files, columns 

Ox03 3 tables, views, files, columns 

OxeO -3::? stored commands, stored programs 

Oxc6 -58 this database (do not specify object) 

Oxc8 -56 this database (do not specify object) 

Oxcb -53 system database (do not specify object) 

Ox04 4 this database (do not specify object) 

Ox08 8 this database (do not specify object) 

OxOc 12 this database (do not specify object) 

Oxe4 this database and transaction log (do not specify object) 

111 



Qualifications 

SIMPLE 
CONDITIONS 

112 

The conditional selection of data in the select, update, create view, 
insert, delete, and audit commands is controlled by an optional clause 
in one of the following formats: 

where qualification 

or 

having qualification 

The having form is used only for a qualification that selects groups of 
rov•s, defined by a group by clause, which are to be considered for cal­
culation by an aggregate. 

A qualification is one or more boolean conditions consisting of comparis­
ons between terms which evaluate to true or false. The terms may be 
made up of column names, constants, arithmetic expressions, functions, 
and nested select_statements. The following query contains a simple 
qualification: 

1) select • from parts 
2) where pnum = 132; 

This displays every row in the "parts" table where the value of the 
"pnum" field is I32. "pnum = 132" is the qualification. 

The allowable relational operators in a qualification are 

Symbol 

<> 
!= 

> 
>= 
< 
<= 

Meaning 

(equal to) 
(not equal to) 
(synonym for "< > ") 
(greater than) 
(greater than or equal to) 
(less than) 
(less than or equal to) 

Any of these relational operators can be modified by an asterisk (*), 
which is the outer join operator. The meaning of this operator is 
described below in the sub-section labeled "JOINS". 

If the terms being compared contain characters, the comparison is 
governed by ASCII or EBCDIC order, depending on which character set 
was specified when the database was created. Blanks at the end of char­
acter strings are ignored for comparison purposes. 

Britton Lee 



SQL Reference .Manual Qualifications 

MULTIPLE CONDI- Multiple conditions may be linked with the keywords and and or. 
TIO NS 

SPECIAL OPERA­
TORS 

Britton Lee 

The following query displays the rows from the "wines" table for 1980 
pinot noirs. 

1) select• from wines 
2) where type = 'pinot noir' 
8) and vintage = U~80; 

The following query selects all Cabernet sauvignons or vintages 1980 and 
1981. Parentheses may be used to group conditions. The and operator 
has a higher precedence than the or operator, so the parentheses are 
necessary here. 

1) Hlect • from wines 
2) where (vintage = 1980 or vintage = 1981) 
8) and type= 'cabernet aauvignon'; 

The keyword not can be used to negate any condition. This query 
selects all wines in the "wines" table except the 1980 merlots. 

1) select• from wines 
2) where not (type = 'merlot' 
8) and vintage = 1980); 

The special operator between can be used to determine whether a value 
Calls within a given range. 

1) select • from wines 
2) where vintage between 1980 and 1985; 

An equivalent query would be: 

1) select • from wines 
2) where vintage > = 1980 
8) and vintage <= 1985; 

Another special operator, in, determines whether a value appears m a 
given set or literal values: 

1) select • from wines 
2) where type in ('merlot', 'ainfandel', 'pinot noir'}; 

An equivalent query is: 

113 



Qualifications 

JOINS 

114 

SQL Reference Manual 

1) aelect •from wines 
2) where type = 'merlot' 
3) or type = 'zintandel' 
4) or type = 'pinot noir'; 

A join usually exists when more than one table is referenced in a condi­
tion, although there are cases involving self-joins of columns within a sin­
gle table. The discussion of pink tub-and-sink in the "select" entry illus­
trates a use of a self-join. 

The qualification in the following query represents a simple join of the 
"redwines" and "redquans" tables. 

1) select name, redwines.num, quan 
2) from redwines, redquans 
3) where redwines.num = redquans.num; 

In this query, data from the "redwines" and "redquans" tables is selected 
only from those rows in which the "num" column in "redwines" equals 
the "num" column in "redquans". If the "redwines" table consists of: 

redwines table 
num name 
1 zinfandel 
2 mer lot 
3 cabernet 
4 pinot noir 

and the "redquans" table consists of 

red_g_uans table 
num quan 
1 50 
2 70 
5 35 
6 60 

the query selects only 

name num quan 
zinfandel 1 50 
mer lot 2 70 

Britton Lee 



SQL Reference Manual 

Britton Lee 

Qualifications 

A one-way outer join requests all the specified data from one table, 
regardless or the whether the condition joining the other table is true. 
Non-matching data Crom the other table is assigned a default value of 
zero (0) for numeric data and blanks for character data. 

115 



Qualifications 

_PATTERNS 

116 

SQL Reference Manual 

A one-way outer join is indicated by an asterisk (*) attached to any of 
the allowable relational operators for a qualification. The asterisk is 
placed on the same side of the relational operator as the table from 
which all specified data is to be reported. Thus the query 

1) select name, redwines.num, quan 
2) from redwines, redquans 
3) where redwines.num *= redquans.num; 

selects all of the specified data from "redwines" and only the matching 
data from "redquans": 

name num quan 

zinfandel 1 50 
mer lot 2 70 
cabernet 3 0 
pinot noir 4 0 

while 

1) select name, redquans.num, quan 
2) from redquans, redwines 
3) where redwines.num =* redquans.num; 

selects all of the specified data from "redquans" and only the matching 
data from "redwines": 

name num quan 

zinfandel 1 50 
mer lot 2 70 

5 35 
6 60 

The database server does not support two-way outer joins. 

A pattern is a special class of character constant which can be used in a 
qualification involving string comparisons. A pattern differs from a regu­
lar character constant in that it contains special characters, called meta­
characters, which match characters other than themselves. Trailing 
blanks in fixed character fields are not considered characters which can 
be matched. 

The meta-characters are 

% 
?\fatches any single character. 
Matches zero or more characters. 

Britton Lee 



SQL Reference Manual 

Britton Lee 

Qualifications 

The like operator is used to express a boolean condition in which one of 
the expressions being compared is a pattern. The syntax for a 
qualification containing a pattern is 

column_name [not] like pattern [escape escape_character ] 

The optional escape clause is for specifying an eacape_character which 
can be used in front of a meta-character to indicate that the meta­
character should be interpreted literally. The escape_ character must be 
a single character and may not be a backslash. 

Both the pattern and the escape_character must be quoted. 

This query selects the salaries of all employees whose names start with 
"J": 

1) select name, salary 
2) from employees 
3) where name like 'J%'; 

This query uses a pattern to select all the part names which have under­
bar characters in them. The exclamation point is declared as the 
escape_ character and is used here to indicate that the underbar is to be 
interpreted literally, not as a meta-character. 

1) select name 
2) from parts 
8) where name like '%!_ %' escape '!'; 

This query selects the names and salaries of all employees whose names 
do not contain the percent character ('%'). It uses 'I' as the escape 
chararacter: 

1) select name, salary 
2) from employees 
8) where name not like '%I%%' escape ' I'; 

The table on the following page is provided to suggest, through the use 
of examples, the kinds of results produced by various uses of the meta­
characters. 

117 



Qualifications 

SUBQUERIES 

SQL Reference Manual 

This table assumes that the tilde r> has been specified as the 
eacape_ character. 

This will match but not 
pattern these strings these atringa 

"a%e" "ae" "Ae" 
"ace" "aE" 
"a3e" "bae" 

"abcde" 
"a2X.(#e" · 

"a_e" "ace" "ae" 
"aQe" "abce" 
"a#e" 

"a%_e" "ace" "ae" 
"axQe" "bee" 
"a#e" 

"a-%e" "a%e" "a-be" 
"abe" 
"ae" 

The last example is not a true pattern because it contains no meta­
characters. The character "%" is to be interpreted as a literal percent 
character, not as a meta-character; this is indicated by the 
eacape_character preceding it. The string is really a three-character con­
stant consisting of an "a", a percent character, and an "e". 

A qualification may contain a nested subquery. One value may be 
compared to another value returned by a nested aelect_atatement. 
Subqueries may be nested to any depth. Subqueries must be enclosed in 
parentheses. Subqueries may not contain order by clauses. 

A simple, unmodified subquery is a aelect_atatement which returns a 
single value which can then be compared with an expression supplied by 
the outer query. 

This query selects all the stores that sell part 10. An error message is 
displayed if more than one "storeid" is returned by the subquery. 

1) select • from stores 
2) where number= 
3) (select storeid 
4) from pricings 
5) where partnum = 10); 

118 Britton Lee 



SQL Reference Manual 

Britton Lee 

Qualifications 

As in a non-nested aelect command, all or distinct may be specified in 
a subquery. The specification of distinct removes duplicate rows from 
the result. If neither is specified, the default is all. The query 

1) .elect • from emps 
2) where name= 
S) (select ename from dept 
4) where dname = 'toy'); 

produces an error message if more than one row satisfies the subquery, 
even if the values returned for "ename" are identical. If the subquery is 
stated with the "distinct" modifier, 

1) select • from emps 
2) where name = 
3) (select distinct ename from dept 
4) where dname = 'toy'); 

and there are duplicate rows which satisfy the subquery, only one row is 
returned to the outer query and no error message is produced. If, 
however, more than one row satisfies the subquery but those rows are 
not duplicates, which would be the case if there were several different 
"enames" associated with the toy department, the error message is 
displayed. 

Modified subqueries may return more than one result. The keyword in 
is used for subqueries which return more than one value. The condition 
evaluates to true if it is true for any of the values returned by the 
subquery. 

This query selects information for all parts used in making televisions 
where there are fewer than 5 of those parts on hand. 

1) select • from parts 
2) where pnum in 
3) (select partnum 
4) from products 
5) where name= 'TV' 
8) and onhand < 5); 

Another way to build a subquery which returns more than one value is 
to modify the relational operator with the keywords any or all. The 
modifier some is a synonym for all. These modifiers behave as follows: 

expression > all (subquery) 
The subquery may return more than one value. The 
condition is true if the e:rpreaBion is greater than every 
value returned by the subquery. In other words, the 
condit.ion is true if the ezpreaaion is greater than the 
maximum \•alue returned by the subquery. 

110 



Qualifications 

CORRELATED 
SUB QUERIES 

120 

SQL Reference Manual 

expression = all (subquery) 
The condition is true if every value returned by the 
subquery is equal to the value of erpreuion. The 
condition is false if the subquery returns any value that 
doesn't equal the value or the expression. 

expression > any (subquery) 
The subquery may return more than one value. The 
condition is true if the expression is greater than any of 
the values returned by the subquery. In other words, 
the condition is true if the expression is greater than the 
minimum value returned by the subquery. 

expression = any (subquery) 
This is equivalent to: expression in ( subquery) 

Correlated subqueries return one value for every row considered in the 
outer query in situations in which the same table is referenced at 
different levels of the query. A correlation must be established between 
the inner and outer queries with a "correlation variable", which is a 
variable with a table_label. The table_label is defined at a different level 
of the subquery from the level in which the correlation variable is used. 

The query below lists the employees who make more than the average 
salary in their departments. The entire query considers each employee, 
one at a time, and for each employee calculates the average salary in 
that employee's department through the subquery. 

The table_label "e" is defined in the outer query to represent the 
"employees" table. It is then used in the correlation variable "e.dept" 
which correlates the outer query with the subquery. 

1) select • from employees e 
2) where salary > 
3) (select avg(salary) 
4) from employees 
5) where dept = e.dept ); 

This query describes as "overpaid" the highest--paid employee in each 
department. It uses the correlation variable "emp.dept" to correlate the 
"employees" table in the outer query with the table being accessed by 
the qualification in the subquery. 

1) update employees emp 
2) set descrip = 'overpaid' 
3) where salary = 
4) (select max(salary) 
5) from employees 
6) where dept = emp.dept); 

Britton Lee 



SQL Reference Manual 

EXJSTS 

SEE ALSO 

Britt on Lee 

Qualifications 

A correlated subquery may also be used in a having clause, as 
demonstrated below. 

This query selects the department with the highest average salary. The 
average salary is compared to the averages of all other departments in 
the table for each department in the out.er query. The all modifier 
allows the subquery to return more than one value for each group in the 
outer query. 

1) select dept, avg(salary) from employees e 
2) group by dept 
3) having avg(salary) > all 
4) (select avg(salary) 
5) from employees 
8) group by dept 
7) having dept < > e.dept); 

A special form of subquery predicate is the exists subquery. The 
qualification format is 

where [not] exists (subquery) 

The condition is true if one or more of the specified rows exists. If the 
not keyword is used, the condition is true if none of the specified rows 
exist. 

The exists predicate is useful only when the subquery is correlated. 

This query selects all salesmen for whom there are no sales records. 

1) select • from salesmen s 
2) where not exists 
3) {select • 
4) from salesrec 
6) where snum = s.empnum); 

audit, create view, delete, insert, select, update 
"Aggregates", "Expressions", "Functions" 

121 



Target-Lists 

122 

A target-list is a list of targets separated by commas. The targets can 
have the following forms: 

expression 
A target may be an expression: 

1) select 2345 • 978 / 24; 

or 

1) select salary + integer(#0.10 • salary) 
2) from employees; 

domain_ name = expression 
The name and value of the domains to be selected can be expli-
citly stated as in · 

1) select sinfs = wines.winenum 
2) where wines.type = 'sinfandel'; 

The name "zinfs" will be the title of the display of all of the 
values described by the qualified expression "wines.winenum 
where wines.type = 'zinfandel'". 

The expression in a target can take any of the forms described 
under "Expressions", but usually a target references a database 
object, such as a column. Below are some examples of targets 
which specify database objects: 

column_ name 
\Vhen targets are specified by column_ name alone, the target-list 
must be followed by a from clause which indicates the tables 
from which the columns are to be accessed: 

1) select name, number, qty 
2) from items; 

If multiple tables are being accessed using this method. the 
column_ names in the target-list must be unique. For example, 
the query 

1) select name, number, qty, cost 
2) from items, prices; 

will work only if "name", "number", "qty" and "cost" each 
appear in only one of the tables "items" or "prices", but not 
both. If column_names in the target-list are not unique, it is 
necessary to use another format for specifiying targets. 

Britton Lee 



SQL Reference .Manual 

Britton Lee 

Target-Lists 

table_ name. column_ name 
The values are accessed for the columns referenced by 
column_ name from the table referenced by table_ name: 

1) select items.number, items.name, stores.name 
2) from items, stores; 

table_ label. column_ name 
A tab/e_/abel is a character string which is defined to represent a 
table: 

1) select pr.cost, pr.num 
2) from prices pr; 

The clause "prices pr" is the definition of the table_/abel "pr", 
which is defined as a label for the relation "prices". Table_labels 
are commonly used in specifying targets for queries qualified by 
correlated subqueries and self-joins. Correlated subqueries are 
discussed at greater length under "Qualifications", and self-joins 
are discussed under .elect. 

table_ name.• 
. table_ label.• 
• 

• is a pseudo-domain which yields all of the columns of the refer­
enced table. 

1) select • from employees 
2) where name = 'Smith'; 

\\'hen multiple targets are specified in a target-list, the target-list values 
are bound to associated program variables as illustrated below. If the 
table indicated by "y" has three domains "y.q", "y.r", and "y.s", and 
the command is 

select x.a, ;y. •, x. b 
from x, ;y 

the following bindings apply: 

Target-List Position 

1 
2 
3 
4 
5 

Value of Target 

x.a 
y.q 
y.r 
y.s 
x.b 

123 



Target-Lists 

SEE ALSO 

124 

audit, create view, select 
"Expressions", "Qualifications" 

SQL Reference Manual 

Britton Lee 



Types 

Britton Lee 

The following data types are supported on the database server. The 
names given for each type are those which should be used in specifying 
the types of columns in the create table command. 

For converting data of various types refer to the data-conversion routines 
described in the "Functions" section. 

integer 
Four-byte integer, stored in binary two's-complement format. 

smallint 
Two-byte integer, stored in binary two's-complement format. 

tinyint 
One-byte integer, stored in binary two's-complement format. 

[ fixed J char [ ( Jen ) ] 
Character string. Ir fixed is specified, blank-padding takes place, 
and the string is always stored with the specified length. Other­
wise, trailing blanks are stripped and the specified length is 
regarded as a maximum. The maximum length for a char value 
is 255 characters. If no length is specified, a length of 1 (one) is 
assumed. 

[ fixed J binary ( Jen ) 
Binary data consists of binary strings that are stored as they are 
received from the host computer. If fixed is specified, zero­
padding takes place, and the string is always stored with the 
specified length. Otherwise, trailing zeros are stripped and the 
specified length is regarded as a maximum. The maximum 
length for a binary value is 255 bytes. 

I fixed ) bed ( len ) 
Binary Coded Decimal. The length specified is the number of 
digits, so the real length in bytes is (/en/2)+2. Ir fixed is not 
specified, trailing zeros are stripped. If a literal bed is being 
used in a command, it must be prefaced by a score (#). 

[ fixed ] bcdflt ( len ) 
Binary Coded Decimal Floating-Point. The length specified is 
the number of digits, so the real length in bytes is (/en/2)+2. 
The /en determines the precision. Trailing zeros are stripped if 
flXed is not specified. If a literal bcdftt is being used in a com­
mand, it. must. be prefaced by a score(#); for example, 

1) update pr icings 
2) set price == #2.95 
3) where price == #2.50; 

125 



Types 

SEE ALSO 

126 

real 

SQL Reference Manual 

Four-byte floating-point number. The database server can only 
store and retrieve floating-point numbers; it does no floating­
point arithmetic. 

smallftoat 

double 

float 

This is a synonym for real. 

Eight-byte floating-point number. The database server can only 
store and retrieve floating-point numbers; it does no floating­
point arithmetic. 

This is a synonym for double. 

Every column in every table in a database is listed in the system table 
"attribute". The "name" column in this table contains the column's 
name, the "type" column contains a numeric code for the type, and the 
"length" column contains its length as an unsigned number. If rows are 
selected from the "attribute" table and the length appears to be a nega­
tive number, add 256 to get the correct length. For bed and bcdflt, the 
recorded length represents the number of bytes (2 through 1_7) not the 
number of digits (1 through 31). · 

The table below maps the numeric codes for the "type" column in the 
"attribute" table to their respective types. 

Code 

56 
52 
48 
47 
45 
46 
35 
57 
60 

create table 
"Constants", "Functions" 

Type 

integer 
smallint 
tinyint 
char 
binary 
bed 
bcdflt 
real or smallfloat 
double or float 

Britton Lee 



Users 

EXAMPLE 

SEE ALSO 

Britton Lee 

A user is an individual or group of individuals with access to the data­
base server. Users communicate with the database server through the 
intermediary of a host computer. 

All users are identified through two identification numbers, a '~host-id'' 

and a "host-user-id" which are provided by the host system. In the 
database server, the system table "host_users" maps the "host-id" and 
the "host-user-id'' for each user into a single "user-id". The "users'' 
table is the system table which maps the "user-id" to a user name and 
group. 

The DBA assigns general access to new users by entering their 
identification data in the "host-users" and "users" tables. After a new 
user has been identified in these two tables, the DBA can assign specific 
access rights by user name or group name through use of the grant and 
revoke commands. 

The following commands add a new u&er "karen" and assign her to 
group number 20. Assume that the host-id of the system "karen" works 
on is 3, and her host-user-id on that system is 301. 

1) open system; 
1) insert into users (name, gid, id) 
2) values ('karen', 20, max(users.id) + l); 
1) select • 
2) from users 
3) where name = 'karen'; 

stat id gid name passwd 
0 321 20 karen 

1) insert into host_users (hid, huid, uid) 
2) eelect 3, 301, id 
3) from users 
4) where name = 'karen'; 
1) select hu. • 
2) from host_users hu, users 
3) where hu.uid = users.id 
4) and users.name = 'karen'; 

sl hid huid uid 

0 3 301 321 

grant, revoke 

127 



Users SQL Reference Manual 

128 Britton Lee 



PART IV 

FRONT-END COMMANDS 



Introduction t<>"'Front-End 
Commands 

SEE ALSO 

Britton Lee 

The SQL query language provides a set of front-end commands which 
can be invoked to govern certain aspects of an SQL session. 

All of the front.-end commands must be invoked at the beginning of a 
line. All of the front-end commands begin with a percent symbol "%". 
All of the front-end commands may be abbreviated to any length, pro­
vided that the abbreviation results in an unambiguous command name. 

This section describes the basic front-end commands which are available 
on all systems supported by Britton Lee host software. Some systems 
have an extended set of front-end commands which is not described here. 
Consult the host software documentation for your particular environ­
ment for information concerning additional front-end commands which 
may be available on your system. 

The front-end command %? displays a list of all of the front-end com­
mands described in this section. 

Britton Lee Boat Software - IBM VM/CMS: SQL Termin_~I .Uaer'a 
Guide 

131 



) 

%comment SQL Reference Manual 

%comment [on I off] 

DESCRIPTION 

EXAMPLE 

SEE ALSO 

132 

%comment is used to turn the au~comment feature on and oft'. The 
auto-comment feat.ure aut.omatically executes the comment command 
whenever a create table, create view or store command is ri:ecuted. 
It provides this aut.omatic documentation of database objects unless the 
aql program was invoked with the -c or /nocomment Hag for the ses­
sion in which the object was creat.ed. 

The %comment· command may be used to suspend the automatic exe­
cution of the comment command for the remainder of the sql session or 
until the user wishes to turn aut.o-comment on again. This may be desir­
able if the command creating the object exceeds 4000 bytes, which is too 
large to fit into the command buffer. 

If neither on nor off is specified, %comment turns auto-comment on. 

1) %comment off 
2) create table mytable 
3) ( 
4) 

97) ); 
1) %comment on 

comment 

r turn auto-comment off • / r create a table • / 

/* turn auto-comment on again • / 

Britton Lee 



SQL Reference .Manual %continuation 

%continuation [character] 

DESCRIPTION 

EXAMPLE 

Britton Lee 

This sets the continuation character to the value indicated by character. 
Lines ending with this continuation character are not sent directly to the 
parser. 

If continuation mode has been set using %continuation, the semicolon 
(;) is not recognized as the SQL command terminator. Instead, the first 
line of input which does not terminate with the specified continuation 
character terminates the command. 

The value of character may not be a letter or digit. Valid continuation 
characters are: 

{}/?<>,. 

Any continuation character may be unset by invoking %continuation 
with no argument. If this is done, all lines are saved and the user must 
enter a semicolon ( ;) to indicate that the lines are to be submitted to the 
parser. 

1) %continuation - /* set continuation character to - * / 
1) insert into parts(name, quan) -
2) values ('washer', 24) -
3) select parts.name, parts.quan -
4) where parts.name = 'washer' /* command ends here • / 

name quan 
washer 20 

1) %continuation /* unset continuation character • / 
2) delete from parts 
3) where quan < l; /* ; reinstated as terminator * / 

133 



%display 

%display text 

DESCRIPTION 

EXAMPLE 

134 

%display sends text to standard output. 

1) %display "Good Morning" 
Good Morning 
2) 

SQL Re/err.nee Manual 

Britto11 Lee 



SQL Reference Manual 

%edit [filename) 

DESCRIPTION 

EXAMPLE 

SEE ALSO 

Britton Lee 

%edit 

.. =· 

%edit with no argument edits the transcript or the SQL session. This is 
a useful tool for changing and resubmitting a series of commands. With 
a filename, it edits the specified file. Upon return to SQL from "the edi­
tor, %edit submits the file it has just edited as input to SQL. 

The editor which is called is specified by the EDITOR parameter in the 
"params" file on the host system. 

With a filename: 

1) %edit cmd.file 

Now '.'cmd.file" can be edited. The contents of "cmd.file" will be exe­
cuted when the user leaves the editor. 

Without a filename: 

1) insert into parts 
2) (name, quan) 
3) %edit 

This places the user in the editor editing a temporary file which looks 
like this: 

insert into parts 
(name, quan) 

The contents of this file will be executed when the user leaves the editor. 

params(SI} in Host Software Specification 
params in C Run· Time Library Reference 

135 



%experience 

%experience leYel 

DESCRIPTION 

EXAMPLE 

136 

SQL Reference Manual 

%experience sets the user's experience level to the level specified. The 
value of level controls the amount of detail which will be given in SQL 
error messages; the more elementary the level, the more detailed the mes­
sage. 

Values for level can be "beginner", "able", or "expert". These values 
can be abbreviated and are not case sensitive. Any other value will be 
interpreted as "beginner". 

1) %experience beginner 

Britton Lee 



SQL Reference ~Manual 

%help 

DESCRIPTION 

EXAMPLE 

Britton Lee 

%help 

%help lists all of the available front-end commands. %! is a synonym 
for %help. 

1) %help 
HELP: Immediate Commands: 

comment - auto-comment on (1) or oft' (0) 
continuation -- set continuation char 
display -- display user arguments 
edit -- edit session Jog or file 
experience - change experience level 
! -- print this list 
help •• print this list 
input -- input command file 
redo - re-execute session log 
substitute -- set value x for %x usage 
trace -- set internal trace flag 

137 



%input 

%input [filename] 

DESCRIPTION 

EXAMPLE 

138 

SQL Reference Manual 

%input specifies a file from which SQL can read its input. 

If a filename is specified, commands are read and executed until an exit 
or end-of-file is read. at which point SQL will read from standard input. 

If a filename is not specified, the commands are read from standard 
input. 

The input file may contain comments begun with the characters /* and 
terminated with the characters • /. The SQL parser ignores all of the 
text between the /* • / pairs. The following is valid input to SQL: 

1• this is a comment •I 
select name, quan from parts 1• another comment • / 
where 1• yet another comment• I quan < 4; 

1) %input cmd.flle 

Britton Lee 



SQL Ref ere nee Manual %redo 

%redo I 
DESCRIPTION %redo resubmits the current SQL session as input to SQL. 

EXAMPLE 1) select partnum, onhand 
2) from parts; 

partnum onhand 
1 25 
2 30 
3 48 

3 rows affected. 

1) %redo 

partnum onhand 

1 25 
2 30 
3 48 

3 rows affected. 

Britton Lee 139 



%substitute SQL Reference Manual 

%substitute name value 

DESCRIPTION 

EXAMPLES 

SEE ALSO 

140 

%substitute assigns a specific value to name. Substitutions put place 
holders into an ITREE using the %name syntax in aqlparae. Values may 
later be substituted int.o the tree without reparsing. The value argument 
may be quoted. 

Since this command sets up a substitution, rather than a macro, there 
are restrictions on where the substitution can occur. Generally, substitu­
tions can be used 

• \\'hereYer an e:rp ression can occur. 

• As a column_name, provided that the substitution is a character 
type. 

• As an object_name, provided that the substitution is a character 
type. 

• As the is part of a comment command. 

%substitute can set character arguments to be used in pattern­
matching strings, if the pat.tern-matching string is not used in a target­
list. 

To disable interpretation of a string containing a special character as a 
pattern-matching string, either precede the special character with a 
backslash as in 

1) %substitute a "a\_b" 

or follow the "value" argument with the word char, as in 

1) %substitute a "a_ b" char 

1) %substitute al "hubcap" 
2) %substitute a2 20 
3) %substitute rel "parts" 
4) insert into %rel 
6) values(%al, %a2); 

aqlparse(31), iesubst(3I) in Hoat Software Specification 
sqlparse, iesubst in C Run-Time Library Reference 

Britton Lee 



SQL Reference Manual 

%trace tracespec 

DESCRIPTION 

EXAMPLE 

SEE ALSO 

Britton Lee 

%trace invokes tfset(), with traceapec as its argument. 

1) %trace IOTRAFFIC.10 

tf(31) in Host Software Specification (UNIX systems) 
tf in 0 Run-Time Library Reference (other systems) 

%trace 

141 



%trace SQL Reference Manual 

142 Britton Lee 



PARTV 

APPENDICES 



SQL Reserved 
Words 

Britton Lee 

The following words are SQL reserved words, and may not be used oth­
erwise in SQL commands. 

all alter and 
as audit between 
by clustered column 
comment commit create 
database delete distinct 
drop end exists 
fixed from grant 
group having in 
index insert into 
is like non clustered 
not off on 
open or order 
program reconfigure revoke 
rollback select eet 
start store sync 
table tape to 
trace truncate unique 
update values view 
where with 

145 



SQL Grammar 

146 

The following pages contain a formal description of the version of SQL 
supported by Britton Lee Host Software. The notational conventions fol­
low those in the rest of this manual except for the following: 

Curly braces are used for grouping, so 

A{BICD}E 

matches A B E or A C D E. 

The plus sign is used to indicate one or more of the elements in 
curly braces, so 

{ x },+ 

means one or more Xs separated by commas. 

The asterisk is used to indicate zero or more of the elements in 
curly braces, so 

{ x },* 

means zero or more Xs separated by commas. 

Britton Lee 



SQL Reference Manual 

Britton Lee 

SQL Grammar 

SQL_program: 
{statement }* 

statement: 
alter database dbname 

[ with option_list ] 

statement: 
alter table object_name 

[ with option_list ] 

statement: 
audit [ into object_name ] target_list [ from from_list ] 

[ where booL ex pr ] 

statement: 
comment on [ table ] object_name [ is comment_strings 1 

comment on column qualified_column_spec 
[ is comment_strings ] 

statement: 
commit [ work ] 

statement: 
create database database_name [with option_list ] 

statement: 
create [ unique ] [ clustered I nonclustered ] 

index on object_name ( column_name_list ) 
[ with option_list ] 

statement: 
create table object_name ( format_list ) 

[ with option_list ] 

statement: 
create table object_name ([partition_name]( format_list ) 

[with option_list ] 
[ ,[partition_name](format_list) [with option_list ]j *) 

statement: 
create view object_name [ ( column_name_list ) J 

as subquery 

statement: 
delete from object_declaration [where booLexpr J 

statement: 
drop { object_name },+ 

statement: 
drop database { database_name },+ 

147 



SQL Grammar 

148 

SQL Reference Manual 

statement: 
drop [ unique ] [ clustered I nonclustered ] 

index on object_name ( column_name_list ) 

statement: 
grant protect_mode [ [ ( column_list ) ] on object_name : 

to {user_ list I public} 

statement: 
insert into object_name [ ( column_name_list ) ] 

values ( expr _list ) 
insert into object_name [ ( column_name_list ) ] subquery 

statement: 
open database_name 

statement: 
reconfigure 

statement: 
revoke protect_mode [ [ ( column_list ) ] on object_name ] 

from {user _list I public} 

statement: 
rollback [work ] 

statement: 
select [ distinct I all ] [ into object_name ] target_list 

[from from_list] 

statement: 

[where booLexpr] 
[ group by expr _list J 
[ having booLexpr ] 
[ order by order _list J 

set { name I constant } [ on I off J 

statement: 
start query _name [ ( { value_spec } ,+ ) ] 

statement: 
store query _name statement_ list end store 

statement: 
sync 

statement: 
trace constant [ on I off] 

statement: 
truncate { object_ name } ,+ 

Britton Lee 



SQL Reference Manual 

Bn.tton Lee 

SQL Grammar 

statement: 
update object_declaration [ f'rom from_list J 

set target_list [where booLexpr J 

aggname: 
any 
avg 
count 
max 
min 
once 
sum 

booLexpr: 
( booLexpr) 
not booL ex pr 
booLexpr and booLexpr 
booLexpr or booLexpr 
expression relop expression 
expression relop [ all I any I eome J ( subquery ) 
exists ( subquery ) 
expression [ not J in ( subquery ) 
expression [ not ] in ( { expression } ,+ ) 
expression [ not ] between expression and expression 
expression [ not ] Iike_predicate 

column_name_Jist: 
{ column_name },+ 

comment_ strings: 
string [, string J 

constant: 
LEXCONSTANT 
substitution 

database_name: 
name 
substitution 

expr _list: 
{ expression } ,+ 

149 



SQL Grammar 

150 

SQL Reference Manual 

expression: 
constant 
parameter 
qualified_column_spec 
column_name 
- expression 
+ expression 
( expression ) 
expression + expression 
expression - expression 
expression • expression 
expression / expression 
{ count I any } ( • ) 
aggname ( [distinct I all ] { expression },+ ) 
[ fixed ] funcname ( { expression },+ ) 

format_list: 
{ name [ fixed ] format_type [ ( length ) J },+ 

format_ type: 
integer 
smallint 
tiny int 
char 
binary 
bed 
bcdftt 
float 
real 
smallftoat 
double 

from_ list: 
{ object_declaration }, + 

• 

Britton Lee 



SQL Reference Manual 

Britton Lee 

SQL Grammar 

funcname: 
abs 
mod 
cone at 
substring 
integer 
amallint 
tiny int 
binary 
bed 
bcdflt 
char 
string 
bcdfixed 
float 
smallfloat 
user id 
dba 
host 
get time 
getdate 
databasename 
table_name 
table_id 
coLname 
double 
real 

like_predicate: 

name: 

like string [ escape char ] 
like parameter 

LEXNAME 

object_ declaration: 
object_name [ ( option_list ) ] 
object_ name object_ tag [ ( option_list ) ] 

object_name: 
name 
owner.name 
substitution 

object_ tag: 
name 

option_list: 
{ name [ = expression ] [on string ] },+ 

151 



SQL Grammar 

152 

SQL Reference Manual 

order _list: 
{ expression [ ascending I descending I asc I desc 

I a Id]},+ 

parameter: 
{ & I $ } LEXNAME 

protect_mode: 
{ read I write I all } [ tape ] 
create 
create { database I index } 
start 
all [ privileges ] 

query _name: 
name 
owner.name 

qualified _column_spec: 

relop: 

object_name • { column_name I • } 
object_tag.{ column_name I • } 

= I >= I > I <= I < I != 
*= I =• I *< I >* I *>= I >=* 
*< I <* I *<= I <=* I *!= I !=• 

string: 
substitution 
" { character } * " 
' { character }* ' 

subquery: 
select [ distinct I all ] { expression I • } 

[ from from_list ] 

substitution: 

[where booLexpr] 
[ group by expr _list ] 
[having booLexpr] 

% { LEXNAME I integer } 

target_ list: 
{ target_resattr },+ 

target_ resat.tr: 
name = expression 
substitution = expression 
expression 
• 

Britton Lee 



SQL Reference Manual 

Britton Lee 

SQL Grammar 

user _list: 
{ user _name },+ 

value_spec: 
[ name = J expression 
[ name ] like_predicate 

LEXCONSTA. "'\T: 
string 
& name 
[ # I Oo I Ox I Ob ] { digit } ,+ [ . { digit } ,+ 
l # I Of I Od ] { digit } ,+ [ . I e ] { digits } , + 

153 



%comment: 132 

%continuation: 133 

%display: 134 

%edit: 135 

%experience: 136 

%help: 137 

%input: 138 

%redo: 139 

%substitute: 140 

%trace: 141 

abs: 101, 102 

access: 111 

aggregate: 8, 15, 90 

all: 91, 119 

alter database: 38 

alter table: 39 

and: 12-13, 113 

any: 90, 92, 120 

ascending: 73 

ascii: 47 

associative table: 18 

"attribute" table: 126 

audit: 40 

audit into: 40 

auto-comment: 31-32, 132 

autocommit: 45, 75 

avg: 90, 92 

avg distinct: 90, 92 

badbcd: 77 

bed: 101, 103, 125 

bed constant: 97 

bcdfixed: 101, 105 

bcdflt: 101, 104, 125 

bcdflt constant: 97 

between: 13-14, 113 

Index of Terms 

binary: 101, 102, 125 

binary constant: 97 

block: 78 

case: 6 

char: 101, 104, 125 

character constant: 96 

clustered index: 28, 49, 51 

coLname: 101, 105 

column: 3 

comment: 43, 52, 54, 82 

comment on: 31-32 

comments: 37, 138 

commit work: 45, 75 

concat: 101, 105 

"configure" table: 67 

constant: 96 

continuation character: 133 

correlat.ed subquery: 21-22, 56, 120 

correlation variable: 21, 120 

count: 90, 93 

count distinct: 90, 93 

cpu: 78 

cpuw: 78 

create database: 46 

create index: 28-29, 49 

create table: 27-28, 52 

create view: 29-30, 54 

dac: 78 

data authorization: 3, 33-34 

data definition: 3, 27-32 

data manipulation: 3, 8-26 

databasename: 101, 102 

dba: 101, 102 

delete: 26, 56 

delete_dups: 50 



demand: 38, 48 

descending: 73 

"descriptions" table: 31, 43, 57 

dindex: 109, 110 

disk: 38, 47, 78 

distinct: 11, 71, 119 

divzero: 76 

dorder: 109, 110 

double: 101, 103, 125 

drop: 31, 57 

drop database: 58 

drop index: 31, 59 

dumpwait: 77 

duplicate: 50, 71. 77 

ebcdic: 47 

end store: 82 

escape: 117 

escape_character: 117 

exists: 22, 121 

exit: 80 

expression: 8 

fillfactor: 50, 51 

fixed: 101 

fixed bed: 103, 125 

fixed bcdflt: 104, 125 

fixed binary: 125 

fixed char: 104, 125 

float: 101, 103, 125 

floating constant: 97 

format: 76 

from: 7L 109 

fulllock: 109 

function: 8 

functions: 101 

getdate: 101, 102 

gettime: 101, 102 

grant: 33-34, 61, 127 

group by: 19, 91 

having: 91, 112, 121 

hits: 78 

host: 101, 102 

"host_users" table: 127 

ignore: 83 

in: 14, 113, 119 

index: 28 

inp: 78 

insert: 22-24, 84 

integer: 101, 102, 125 

integer constant: 98 

join: 18-19, 77, 114 

joining condition: 18 

like: 14-15, 81, 117 

locking: 109 

logblocks: 38, 47 

logging: 39, 52 

max: 90, 94 

mem: 78 

meta-character: 116 

min: 90, 94 

minlock: 109, 110 

mod: 101, 104 

name: 107 

names: 76 

nocount: 77 

nonclustered index: 28-29, 49, 51 

not: 12, 113 

object_name: 43, 61, 64, 68, 108 

object_spec: 86, 109 

once: 90, 95 

once distinct: 90, 95 

open: 68 

option-name: 75, 76 

option-number: 75, 76 

or: 12-13, 113 



order by: 15-17, 73 

outc: 78 

outer join: 11& 

outw: 78 

overflow: 76 

owner: 108 

parameter: 80, 82 

parameter constant: 97 

pattern: 81, 116 

percent symbol: 14 

perform: 77 

plan: 79, 109 

predicate: 10 

profile files: 37 

protect: 77 

"protect" table: 68, 111 

protect_mode: 33, 61, 68, 111 

public: 61, 68 

qname: 80, 82 

qrybuf: 79 

qualification: 10-15, 112 

query: 8, 54 

quota: 52 

reads: 78 

real: 101, 103, 125 

reconfigure: 67 

recreate: 50, 51 

"relation" table: 31, 108 

resp: 78 

revoke: 34, 68, 127 

rollback work: 70, 75 

round: 77 

row: 3 

select: 8-22, 71 

select into: 71 

select_statement: 64, 118 

set: 64, 75, 76 

skip: 50 

smallfloat: 101, 103, 125 

smallint: 101, 102, 125 

some: 119 

start: 30, 80, 83 

store: 30, 80, 82 

stored command: 30, 82 

string: 101, 104 

subquery: 20-22, 118 

substitute constant: 98 

substring: 101, 105 

sum: 90, 95 

sum distinct: 90, 95 

sync: 84 

system database: 46 

table: 3 

table label: 21 

table_id: 101, 102 

table_label: 56, 72, 120 

table_name: 71, 101, 102, 108 

tape: 77, 78 

target: 8, 122 

target-list: 8, 71, 122 

tid: 122 

time: 77 

tinyint: 101, 102, 125 

tperrs: 78 

transaction: 45, 70, 75 

transaction log: 40 

truncate: 85 

type: 52, 125 

underflow: 77 

underscore: 14 

unique index: 29, 49, 51 

update: 25, 86 

use: 77 

user: 61, 68, 127 

userid: 101, 102 

"users" table: 61, 68, 127 

value: 122 





values: 64 

view: 29, 54 

view _name: 108 

where: 90, 112 

zone: 38, 46 


