IDM SYSTEM/UNIX
SOFTWARE SPECIFICATION

=EEIE
- ENEEBEEIGENEE
= EIAEABASES
= VEAE EEENE

N

Bl L O NS B] NG Gl B0 R eaae aie g

Britton Lee, Inc.

IDM SYSTEM/UNIX
SOFTWARE SPECIFICATION

FEBRUARY 1988
Part Number 205-1392-006

This document supercedes all previous documents. This edition is intended for use with software
release number 3.5 and future software releases, until further notice.

The information contained within this document is subject to change without notice. Britton Lee
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under license and may only be used or
copied by the terms of such license.

IDM, Intelligent Database Language, and IDL are trademarks of Britton Lee Inc.
UNIX, 3B2, 3B5 and 3B20 are trademarks of AT&T Bell Laboratories.

VAX and VMS are trademarks of Digital Equipment Corporation.

MVS is a trademark of International Business Machines.

PYRAMID is a trademark of Pyramid Technology Corporation.

COPYRIGHT © 1988
BRITTON LEE INC.
ALL RIGHT RESERVED
(Reproduction in any form is strictly prohibited)

COVERSHEET (01)

NAME

Britton Lee COVERSHEET (0I)

coversheet — a message to our readers

DESCRIPTION

This revision of the IDMLIB spec describes the final Product Release of Release 3.

I am somewhat embarrassed to realize that this spec uncovers so many internal aspects that it is
almost an internals document. The intent is that every attempt to use some facility should be
centralized in one routine (or family of routines). For example, itapeopts(3I) is intended for
minimal use, but all users of IDM tape options should use this routine.

NOTE: This is not a user document. It is intentionally terse to minimize
possible inconsistencies and to minimize the size of the document. Other
documents will be provided in the future directed for a user audience.

DEFICIENCIES

The following areas are known to be insufficiently addressed at the current time. They are
ranked in approximate priority order.

e A forms-based screen interface is a necessity.

e There should be some way of adjusting the output field format in the tdl(1I) and sql(1I) pro-

grams.
HISTORY

The following descriptions do not include sections that have changed because of minor editorial or

typographical changes.

3.5 PHI, UNIX/ULTRIX binary Product Release Version

intro(1I)

idmckload(1I)
idmcklog(1I)

idmconfig(1I)
idmcopy(1I)

idmdump(1I)
idmfcopy(1I)
idmload(1I)

idmxdbin(1I)
ric(1I)/rsc(11)

3.5-88/03/01-R3v5m8

Warning added that syntax errors in file specifications will cause the
remaining parameters to be ignored. More syntax checking has been
added to the Release 3.5 peztract(3I) routine.

New utility checks database and trasaction logs if running RDBMS
Software Release 3.5.

New utility checks transaction log time stamps and verifies they are com-
plete.

New menu-based IDM configuration utility.
Many new RDBMS Software Release 3.5 features supported.

Copy in accepts *.d (names ending with a “.d”) as the relation list for
convenience.

Page lock option avoids locking the whole relation during copy in.

Always send IDM tape error performance option to report soft tape
errors to user.

New 2 byte length variable length field syntax.
Page lock flag avoids locking the whole relation during copy in.

Always send IDM tape error' performance option to report soft tape
errors to user.

New DBA utility to kill a hung dbin.

New $cancel command to cancel commands on the database server.
New $fetch feature for execution of user stored commands.

Britton-Lee 1

COVERSHEET (0I)

iecontrol(3I)
iesetopt(3I)

irget(3I)
itgstmt(3I)

itxdbin(3I)
keylook(3I)
parsedate(3I)

params(5])

Britton Lee COVERSHEET (01)

New “mapcc” control to allow printing of control characters for Kanji.

Set options are now linked to the IDL/SQL command tree from the
environment when the tree is sent to the database server. Set options
are no longer linked into the command tree at parse time.

Add IP_DBIN field which returns dbin from idmrun structure.

New interface for fast tree building of query commands such as retrieve
or append.

Kill dbin tree builder for the idmxdbin(1I) utility.
New binary keyword lookup interface.

Now accepts IDM time specifications in the format "idmtime <days> |
<ticks> |” where days is an integer representing the number of days
since the epoch and ticks is an integer representing the number of 60ths
of a second since midnight.

- MAPCC now controls printing of control characters in tupprint. Multi-

ple hashed message files added for MESSAGES using a comma separated
list. IDMSYSLINE is obsolete along with the serial multi-user kernel
driver.

34 PHI, UNIX/ULTRIX binary Product Release Version

intro(1I)
idI(11)

idmdump(1I)
re(11), rie(11)
sql(1I)

bytetype(3I)

crackargv(3I)

Addition of IDM tape parameters verify and norewsnd.

Auto-association of stored command definitions has been added. New
%redo command to reexecute the complete log of the user session. It is
no longer required to quote immediate commands containing special char-
acters. Better syntax error reporting.

Removed -r flag. Added —or|mi(clock,waitcnt] flags for doing online
(read/write) dumps.

Renamed rc¢ to ric.

New %redo command to reexecute the complete log of the user session.
It is no longer required to quote immediate commands containing special
characters. Better syntax error reporting.

Add ISZWIDTH and ISKANGI for kangi language support. Add
ISPMATCH to check for IDM pattern matching characters.

Default flags added. The version (-V) flag is useful to customers needing
the version number of the host software.

getclock(3I), params(5I)

exc(3I)

New EPOCHOFFSET system parameter to change the IDMLIB epoch
(defaults to Jan 1, 1900).

A new handler excprbo was added which modifies the severity to “E”,
reraises the exception and backs out.

ifdump(3I), irdump(3I)

igeteot(3I)

iftscan(4I)

3.5-88/03/01-R3v5m8

New routines to dump IFILE and IDMRUN structures respectively.

Allow the “n!” (n is a digit) on IDM tape transport prompting. If a ‘!’ is
present then the tape volume name will not be verified.

added TK_INFO and giveinfo param to return token information. The
new “Of” (4 byte float) and “0d” (8 byte float) radix specifications have

Britton-Lee 2

COVERSHEET (0I)

Britton Lee COVERSHEET (01)

been added.

3.3 8B/Pyramid-Binary Product Release Version 1.

idl(11),sql(1I)
re(11)
igetdone(3I)

iftidm(4I) and
params(5])

Added new flag —p to turn off reading of profile files.

New -S flag to set the size of the symbol table. RC library librcrun.a
has been merged into libidmlib.a. To compile rc generated source files
use -lidmlib only.

IDM warning messages are not printed if there was an error on the data-
base server.

System parameter IDMDEV may now have the device name coded in
using a filespec syntax. On UNIX users may omit “/dev/” from the dev-
ice name.

3.2 UNIX/ULTRIX Product Release Version 1. Added A:IDMRUN.BADIDMRUN
and A:IDMRUN.RECOMPILE exceptions to all runtime interfaces (irx(3I)) to check
for valid structures and version ids.

id1(1I) Add the ? and ! help and shell commands. Mark the char to the con-
tinuation command as being optional. Add the silent flag —s. Document
the MAPCC map control character system parameter.

idmdump(1]) Added new flags —r and —w for no-read lock and wait options during the
dumping of a database.

re(1I) (New page) Relational C precompiler.

sql(1I) (New page) SQL parser.

crackargv(3l) Exceptions with severity U: now exit with the RETCODE RE_USAGE.

exc(3]) Added ezccleanup. Added exception handler setting routine ezcahandle.
This macro takes an argument to be passed to the handling functions.

fmtfloat(3I) Precision zero suppresses printing a decimal place. Useful for printing
BCD integers.

idlparse(3I) Input overflow for commands such as and no longer send data which
encountered a conversion overflow error.

iftloterm(4I) (New page) Low level machine dependent file type.

iftterm(4I) Additions for cursor motion characters. Opens the IftLoTerm machine
dependent file type.

irsql(3I) (New page) Runtime library interface to SQL.

istdio(3I) (New page) Standard 1/O compatability library.

sqlparse(3I) (Néw page) Build query tree’s from SQL program input.

params(5]) Removed parameter CLOCKTICKS. Add parameter MAPCC to map
control characters in the IDL and SQL. Add parameter IDMVERSION
for the version software running on the database server.

maketerm(8I) Add cursor motion definitions. —C flag may be used to generate a
language source file rather than the binary data file.

3.1 PHI Product Release Version 1. This revision includes many content-free changes in

the spec so that it will print nicely on our laser printer (yeah!!!).

3.5-88/03/01-R3v5m8

Britton-Lee 3

COVERSHEET (0I)

idi(11)
idmfcopy(1I)

exc(3I)
ifgetc(3I)
iferror(3I)
ifputc(3I)
ifscrack(3I)
intro(3I)
bedtoa(3l)

dba(3I)
dsc(3I)

fmtclock(3I)
fmtfloat(3I)
ftoa(3I)

getclock(3I)
igeteot(3I)
irclose(3I)
itcopy(3I)
itdefine(3I)
mapsym(3I)
parsedate(3I)
xalloc(3I)

iftidm(4I)

iftterm(4I)
params(5I)
symfile(5])

Britton Lee COVERSHEET (0I')

Add %display command.

Change syntax of floating point precision specification from
float.prec(len) to float(len,prec) for aesthetic reasons.

Removed onbackout

The ifgetc macro IFGETC added.

Macro names iferror and ifeor are now capitalized.
The ifputc macro IFPUTC added.

Remove insistence on a file name for some file types.
Document foldcase mode in level 3 interface.

Arguments changed for compatibility with ftoa(3I) and to clean up the
interface.

Retract foldcase changes; these are only in level 3.

Added. This describes internal routines to manipulate descriptor-based
types that must be implemented during porting.

Broken off from getelock(3I).
Broken off from ftoa(3I).

Arguments changed for compatibility with bcdtoa(3I) and to clean up the
interface.

Broken into three pages: fmtclock(3I), getclock(3I), and parsedate(3I).
Add ifp and env parameters to stapeload.

Return value defined.

Retract foldcase changes; these are only in level 3.

Retract foldcase changes; these are only in level 3.

Add ‘d’ tag for done status bits.

Split off from getelock(3I).

A primitive technique has been added to recover from out of memory
conditions. Zero and negative sizes are specified.

Prompting for wuser name/password is now controlled by the
GETHUNPW parameter.

Add ITG_BLOTCH.
GETHUNPW added.
Add ‘d’ tag for done status bits.

maketerm(8I) Add so and si sequences and gl-blotch character.

2.11 BetaC Prerelease. Updates for (hopefully) the final modifications before product
release. Most of this falls into the class of “tuning.”

intro(1I)
idi(11)

Allow specification of volume lists for tape files.

Semicolon is an alias for “go.” Z%continuation added. Profile files
added.

idmpasswd(1I) Added.

3.5-88/03/01-R3v5m8

Britton-Lee 4

COVERSHEET (0l)

anyprint(3I)
bedtoa(3])

bitset(3I)
dba(3])
exc(3I)
foldcase(3I)
ftoa(3I)

getclock(3I)
getpass(3I)
iecontrol(3I)
ieopen(3I)
iesetopt(3I)
irget(3I)
irset(3I)

itcopy(3I)
itdefine(3I)
makefname(3I)
operator(3I)

" sysshell(3I)

unsign(3I)
intro(4I)
iftidm(4I)
iftltape(4I)
iftscan(4I)
ienv(5I)

Britton Lee COVERSHEET (01)

Anyprint now actually prints the output; anyfmt has been added to pro-
vide (essentially) the old semantics.

Separated from ftoa(3l); ftoa is environment dependent, while bcdtoa is
not.

Name changed to be upper case to emphasize that it is a macro.
Upper to lower case folding added.

Add bocleanup.

Added.

Add documentation of fmtfloat; this routine can be used to simplify for-
mating. Bedtoa broken off to a separate page.

Fmtclock now takes a timezone argument.

Resurrected.

Added.

Params added.

Parameter order reversed for consistency.

IP_DMASK added. IP_TREE now gets the entire tree.

IP_DMASK added. IP_TREE now sets the entire tree. IP_CURSTMT
deleted.

Case folding added.
Case folding added.
Added.

Radically changed to support multiple language, multiple operators,
automatic tape loaders, different response characterstics, etc., etc.

Changed to not raise an exception if the exit status was not normal, but
rather to just pass it back to the calling program.

Name changed to be upper case to emphasize that it is a macro.
Changed semantics of _toerr routine and _ioerr ifcontrol call.
Added parameter to td_toerr routine.

Allow specification of volume lists.

TK_DPARAM added.

Ie_flags field added.

2.10 BetaB Prerelease. Support for different wording for different query languages in mes-
sages added (e.g., “relation” for IDL, “table” for SQL). Some changes as indicated by a
detailed code walkthrough.

intro(1I)
intro(3I)

anyprint(3I)
bintoa(3I)

3.5-88/03/01-R3v5m8

Document QRYLANG parameter.

Drop GDEF and GREF; these have been unused and do not have quite
the right semantics anyhow.

Added.

Add overflow exception.

Britton-Lee 5

COVERSHEET (0I)

bytetype(3I)
dba(3])
iesetopt(3I)
iesubst(31)
ifcontrol(3I)

igetdone(3I)

itcopy(3I)
itdefine(3I)
itxcmd(3I)
intro(4I)
ifthfile(41)
iftifile(4I)
iftkeyed(41I)
iftltape(4I)
iftmtext(4I)

messages(5I)

retcode(5I)
build msgs(8I)

Britton Lee COVERSHEET (0I)

Formerly ctype(3I); macro names are now upper case.
Add env parameter to all routines.

Added.

Now returns a RETCODE.

Truncate control changed to rewrite; dio changed to _dio (to
emphasize that it is reserved for internal use). Flushblock control
added for blocked files.

Restrict abortable errors from 128-191 (i.e., 192-255 are no longer front
end errors) so the IDM group has room for more user errors.

Pass env parameter.

Pass env parameter.

Pass env parameter.

Dio changed to _dio; truncate changed to rewrite; flushblock added.
Truncate changed to rewrite.

Truncate changed to rewrite.

Formerly IftHash(4I). Exception names changed for consistency.

Reset and rewrite controls now give an error if they are not supported.
Add language flags.

Change syntax to allow for language flags and clean up experience map-
ping.
RW_IGNORED added.

Allow for language flags.

2.9 Environments added to include the range and substitute tables for precompiler support.
Default exception handlers added. Support for IDM passwords added.

idi(11)
intro(3I)

exc(3I)
getpass(3I)
gethunpw(3I)
idlparse(3I)
ieopen(3I)
iesubst(3I)
ifcontrol(3I)

igetdone(3I)
igeteot(3I)
iputtree(3I)

3.5-88/03/01-R3v5m8

2%experience and Z%substitute commands added. -E flag changed to
—e; —E should be reserved for the experience level. -l flag added.

Stdtrc added. Added description of environments. Global variable
DoneMask deleted; DefEnv added.

Ezcdhandle added.

Deleted.

Added.

Env parameter added.

Added.

Renamed from stsubst(3I). Old tree parameter is now the env parameter.

Rbf parameter changed to _rbf to emphasize that it is not for use by
normal users.

Env parameter added.
Env parameter added.

Env parameter added. Exception E:IDMLIB.IDM.NOTSUB changed to
E:IDMLIB.IDM.SUB.NEEDVAL for consistency with other substitution

Britton-Lee 6

COVERSHEET (01)

irclose(3I)
irget(3I)
iropen(3I)
irset(3I)
irsubst(3I)
itlprint(3I)
itprint(3I)
itsubst(31)
tupprint(3I)

intro(4I)

iftidm(4I)
iftscan(4I)
ienv(5I)
retcode(5I)
vinodb(8I)

Britton Lee COVERSHEET (01)

message names. E:IDMLIB.IDM.SUB.TYPE and
E:IDMLIB.IDM.SUB.VAL now raised from tputtree instead of from
stsubst(3I). Special casing of open database command added.

Interaction with environment documented.

IP_ENV added.

Dbname parameter added. Interaction with environment documented.
IP_ENV added.

Change to interact with sesubst(3I) instead of stsubst(3I).

Added.

Prints on stdtrc instead of stdout.

Renamed to sesubst(3I).

Added env parameter to tupsetup to (someday) hold default print formats
for domains.

Rbf parameter renamed _rbf to emphasize that it is not for use by user
programs.

R:IDMLIB.IDM.GETHUNPW exception added.

TK_EOL token added for SQL ad hoc parser. Added TK_PSEUDO.
Added.

Dropped RW_NOSUB.

Dropped.

2.8 BetaA Prerelease. Minor updates to version 2.7

irparse(3I)

has been changed to irid](3I).

2.7 Update for the BetaA prerelease.

intro(1I)
idmfcopy(1I)
idmrollf(11)
inittape(1I)
beopy(3I)
bintoa(3I)
crackargv(3I)
dba(3I)

exc(3I)
getclock(3I)

helpsys(3I)
ifcontrol(3I)

3.5-88/03/01-R3v5m8

Default mode on tapes changed.

—w flag added. Use of type(text) specified.
The log is really in wdbname.

—i flag added.

STRUCTASGN added.

Atobin added.

Usage messages changed to U: severity.

Names of dump and load routines changed to fit on machines with six-
character external names.

U: severity added. Mappings between UNIX signals and exceptions
added.

IDMTOTICKS and TICKSTOIDM added. Dt_ticks field changed from a
long to a short. Correspondence to IDM time and date clarified.

Command syntax changed to be consistent with ¢di(1I).
Geterr control added.

Britton-Lee 7

COVERSHEET (0I)

ifclose(31)

iflush(3I)
ifopen(3I)
igeteot(3I)
irxcmd(3T)
itrange(3I)
onexit(3I)
sysedit(3I)
syserr(3I)

tf(31)
ifthfile(4I)
iftidm(4I)
iftifile(4I)
iftltape(4I)

iftscan(4I)
iftstring(4I)
iftterm(4I)
iftype(4I)
intro(5I)
retcode(5I)
symfile(5I)
intro(8I)
dumptape(8I)
inittape(8I)
maketerm(8I)
porting(8I)

Britton Lee COVERSHEET (0I)

The remove control changed to _delete to emphasize that it is for
internal use only.

Interaction with record-based files clarified.

Autoclose parameter added.

Itapeload added.

Added.

Dropped.

Restriction on number of calls removed.
Second parameter dropped.

Catastrophic versus recoverable syserr’s identified. Syntax of messages
specified.

DPRINTF added.

Delete control changed to _delete. Predisposition parameter added.
Semantics of td_reopen defined.

Delete changed to _delete.

Largely rewritten. Gen, gver, offset, expiration, and format parame-
ters added. Newfile control added. '

Mark control dropped.

Mark control dropped.
Converted to ANSI specifications.
renamed ¢ntro(4]); remove changed to _delete.
Added.

RW_NOSUB added.

User defined symbols specified.
Added.

Added.

Moved from section 1I.

Added.

Dropped.

Histories for versions prior to Beta release have been removed.

ASSISTANCE AND FEEDBACK
For assistance with the release, please contact Britton Lee Customer Support at (408) 378-7000.

3.10-87/12/01-R3v5m7

Britton-Lee 8

INTRODUCTION (0I) Britton Lee INTRODUCTION (0I)

NAME

Britton Lee Integrated Database Management Host Software Release 3 Introduction and Sum-
mary ,

DESCRIPTION

Section 1I documents commands, i.e., operations that the user can invoke directly, without the
use of a programming language or special interpreter. In this spec the pages are specific to
UNIX, although all commands run on all systems unless otherwise noted. Section 3I, describes
IDMLIB. File types are assigned to section 4I. Section 51 describes various file and data struc-
tures. Installation and operation information are relegated to section 8I.

References to other pages within this spec are given as name(nl), where name is the name of the
page and nl is the section in which it is found. References such as name(n) are to the UNIX
Programmer’s Manual.

PHILOSOPHY

BUGS

Several philosophical points will facilitate the understanding of IDMLIB and this document.

e IDMLIB contains a complete runtime environment. Modules that must be modified to move
to a new architecture or operating system are extremely limited; all other modules are
intended to be completely portable between environments. This environment attempts to
provide a reasonable set of primitives without becoming a superset of every operating sys-
tem.

e Essentially all functionality is located in the library. That is, Britton Lee-supplied utilities
are most often just calls to library routines, rather than being complex modules themselves.
This centralizes code at the cost of making the library quite large. Fortunately, no program
has to link the entire library.

e IDMLIB is layered. At the bottom layer are buffered I/O primitives; these will not be exten-
sively used by application programs. On top of this is an interface layer to the shared data-
base system. This defines basic data structures such as trees, target lists, etc, and is called
the “system interface.” It is used by most Britton Lee-supplied utilities. It is flexible but
requires considerable sophistication to use. Above the system interface is the “application
interface.” This level simplifies the interface for application software.

e Bindings are normally dynamic. Decisions are put ofl until quite late. For example, the
default size of an I/O buffer is determined at run time rather than compile time. This is
intended to maximize flexibility and portability.

The BUGS section describes quirks of the environment-independent implementation that cannot in
good conscience be called “features’” but which are not expected to change due to the high cost of
solution. However, these should not be relied on either. Britton Lee reserves the right to change
these semantics at any time without notice.

SEE ALSO

System Programmer’s Manual, Britton Lee part number 205-2088-rev, for a description of the
semantics of database server symbols, error codes, etc. This document is referred to as SPM in
the remainder of this spec.

IDL Primer (Britton Lee part number 205-1024-rev). A tutorial introduction to the IDL
language.

BL700 Installation Manual, Britton Lee part number 200-1077-rev. or BL300
Installation/Operation Manual Britton Lee part number 205-1568-rev.

BL700 Operation Manual Britton Lee part number 201-1078-rev.

3.10-87/12/01-R3v5m7 Britton-Lee 1

INTRODUCTION (0I) Britton Lee INTRODUCTION (oI)

Host Software Coding Standards for the Britton Lee coding standards for host software in this
release.

UNIX Programmer’s Manual for references of the form name(n). References such as name(nl)
refer to this spec.

Host Software Message Summary (IDL Version), Britton Lee part number 205-1432-rev, for a list
of error messages returned by the IDL query language.

Host Software Message Summary (SQL Version), Britton Lee part number 205-1421-rev, for a list
of error messages returned by the SQL query language.

A Guide to Writing an IDM Device Driver, Britton Lee part number 205-1150-rev.

3.2-86/09/09-R3v5m0 Britton-Lee 2

PTX (0I) Britton Lee PTX (0I)

NAME
ptx — permuted index
CONTENTS
R2toR3 - convert Release 2 source to Release 3 r2tor3(1i)
- convert Release 2 source to Release 3 R2toR3 r2tor3(1i)
Management (IDM)/ Introduction to Release 3 Britton Lee Integrated Database lintro(1i)
Database Management Host Software Release 3 Introduction and Summary /Lee Integrated Obinintro(0i)
— default .IR getparam (3I) parameter file /usr/lib/idm/params params(5i)
syserr — print a fatal system error and abort syserr(3i)
irdesc — get type and name information about a retrieved target-list element irdesc(3i)
idmhelp - access the IDM Help Subsystem idmhelp(1i)
Database Language) parser idl — Ad hoc interactive IDL (Intelligent idl(1i)
itaddopts — add options bytes to a tree itaddopts(3i)
itrollf — build trees for database administration functions /ittxload,cccccoueuuecee. dba(3i)
Commands and Procedures Introduction to Administrative and Machine-Dependent ... 8intro(8i)
freempool, showmpool — main memory allocator /xfree, newmpool, mergempoo,................ xalloc(3i)
bedtoa — BCD to alpha conversion bedtoa(3i)
bintoa, atobin — binary to alpha conversion bintoa(3i)
ftoa — floating-point to alpha conversion ftoa(3i)
atobcd — alpha to BCD conversion atobed(3i)
idmdate — set the date and/or time on the shared database system idmdate(1i)
ItLTape — ANSI labeled tape file type iftltape(4i)
ansitape — write files on an ANSI standard labelled tape ansitape(8i)
inittape — initialize ANSI standard labelled tape inittape(8i)
dumptape — report on contents of an ANSI tape dumptape(8i)
standard labelled tape ansitape — write files on an ANSI ansitape(8i)
anyprint, anyfmt — print or format any possible type for printingccccccecerecrruveaneens anyprint(3i)
type for printing anyprint, anyfmt — print or format any possible anyprint(3i)

poesible type for printing anyprint, anyfmt — print or format any ...
message crackargv, usage — take apart an argument vector or print a usage ...

. anyprint(3i)
. crackargv(3i)

idmcklog - verify IDM transaction logs are complete and print their time stamps. idmcklog(1i)
isforegnd — are we in foreground (interactive)?cccoeueueune. isforegnd(3i)
crackargv, usage — take apart an argument vector or print a usage message crackargv(3i)
beddiv, bedmult, bedemp, bedround — BCD arithmetic bedadd, bedsub, bed(3i)
irxemd, irxprog, irxsetp — arrange to execute s stored commandccccuceuee. irxemd(3i)
with the system operator telloperator, askoperator, hasoperator — communicate operator(3i)
ASSERT — verify fixpoints in a program assert(3i)

atobcd — alpha to BCD conversionccceceeueecn. atobed(3i)
bintoa, atobin — binary to alpha conversion bintoa(3i)
to numbers atof, atos, atol — convert characters atof(3i)
atof, atos, atol — convert characters to numbers atof(3i)
numbers atof, atos, atol — convert characters tocccccueeeee.. stof(3i)
ifungetc — put a character back into input buffer ifungetc(3i)
procedures using idmdump, idmload, and/ backup - Shared database system backup backup(8i)
and/ backup — Shared database system backup procedures using idmdump, idmload, backup(8i)
beddiv, bedmult, bedemp, bedround — BCD arithmetic bedadd, bedsub,..............cceeenen..e. bed(3i)
atobed — alpha to BCD conversion atobed(3i)
bedftobed, bedtobedf — BCD conversion bedtobedf(3i)
bedtoa — BCD to alpha conversion bedtoa(3i)
bedtol, ltobcd — BCD to long integer conversioncceeeucececrnenee bedtol(3i)
bedround — BCD arithmetic bedadd, bedsub, beddiv, bedmult, bedemp, bed(3i)
bedadd, bedsub, beddiv, bedmult, bedemp, bedround — BCD arithmetic bed(3i)
arithmetic bedadd, bedsub, beddiv, bedmult, bedemp, bedround — BCD bed(3i)
bedftobed, bedtobedf — BCD conversion bedtobedf(3i)
arithmetic bedadd, bedsub, beddiv, bedmult, bedemp, bedround — BCD bed(3i)
bedadd, bedsub, beddiv, bedmult, bedemp, bedround — BCD arithmeticccccoceereenenen .. bed(3i)
— BCD arithmetic bedadd, bedsub, beddiv, bedmult, bedemp, bedround .. bed(3i)
bedtoa — BCD to alpha conversion bedtoa(3i)
bedftobed, bedtobedf — BCD conversioncccceeecercencennaecns bedtobedf(3i)
conversion bcdtol, Itobcd — BCD to long integer bedtol(3i)
set, or zero a block of memory beopy, bfill, bzero, STRUCTASGN — copy, beopy(3i)
idmeopy — copy relation(s) between the database server and the host idmeopy(1i)
idmread, idmwrite — read/write files between the host and the shared database/ idmread(1i)

3.2-86,/09/09-R3v5m0 Britton-Lee 1

PTX (0I) Britton Lee PTX (0I)
or zero a block of memory beopy, bfill, bzero, STRUCTASGN — copy, set,cc........ beopy(3i)
keylook, usage — perform binary search on a given tablecoceccvveervicnnecnnns keylook(3i)
bintoa, atobin — binary to alpha conversion bintoa(3i)
list elements irbind — bind program variables to retrieved target irbind(3i)
conversion bintoa, atobin — binary to alphaccececveevrvevennne bintoa(3i)
BITSET — test to see if a bit is set bitset(3i)
UNSIGN — remove sign-extension bits from a byte unsign(3i)
BITSET — test to see if a bit is set bitset(3i)
STRUCTASGN — copy, set, or zero a block of memory beopy, bfill, bzero,........................ beopy(3i)
ifread — read a block of memory ifread(3i)
ifwrite — write a block of memory ifwrite(3i)
igeteot, itapeload — get DONE blocks until end of IDM tape igeteot(3i)
/excalock, excaunlock, exccleanup, bocleanup — exception and message ha exc(3i)
IftScan, TK_PSEUDO — break an input stream up into tokens iftscan(4i)
— put a character back into input buffer ifungete ifungete(3i)
itgstmt — build a tree for a general query statement itgstmt(3i)
node itnode, itvar, itroot — build an IDM tree node, VAR node, or ROOT itnode(3i)
buildmsgs ~ build keyed message text file buildmsgs(8i)
idlparse, idifparse — build query trees from IDL program input idlparse(3i)
sqlparse, sqlfparse — build query trees from SQL program input sqlparse(3i)
itcopy — build tree for bulk copy functionccecerveremnence. itcopy(3i)
/ittxdump, itdbload, ittxload, itrollf — build trees for database administration/ dba(3i)
itxemd, itxprog, itxsetp — build trees to execute stored/cccccoevrevicvvenruenee itxemd(3i)
' buildmsgs — build keyed message text file buildmsgs(8i)
itcopy — build tree for bulk copy function itcopy(3i)
— remove sign-extension bits from a byte UNSIGN _.unsign(3i)
IFGETC, ifgete — get a byte from a file ifgete(3i)
° IFPUTC, ifputc — put a byte to a file ifpute(3i)
xdump — dump bytes in hexadecimal to standard trace xdump(3i)
itaddopts — add options bytes to a tree itaddopts(3i)
a block of memory bcopy, bfill, bzero, STRUCTASGN — copy, set, or zero beopy(3i)
ric — precompiler for embedding IDL in C . rie(1i)
rs¢ — precompiler for embedding SQL in C rse(1i)
sysedit — call system editor on a file sysedit(3i)
structure ircancel — cancel current operations on an IDMRUN ircancel(3i)
foldcase — fold upper to lower case in a string foldcase(3i)
Iftldm — IDM channel file type iftidm(4i)
ifungetc — put a character back into input bufferc..cccuvvuunnen. ifungetc(3i)
ISKANJI, TOCHAR, TOUPPER, TOLOWER — character classifica /ISPMATCH, ISZWIDTH, bytetype(3i)
atof, atos, atol — convert characters to numbers atof(3i)
irnext — check for next executed statementcccueuuee.. irnext(3i)
conversion typecnvt, cktypecnvt — generalized type typecnvt(3i)
TOCHAR, TOUPPER, TOLOWER — character classifica /ISPMATCH, ISZWIDTH, ISKANJI, bytetype(3i)
/RETWARNING, RETERROR — get, clear, set, classify, or interpret error codescccoveeeuereuncn. geterr(3i)
iesetopt, ieclropt — set or clear options iesetopt(3i)
/RETSUCCESS, RETWARNING, RETERROR — get, clear, set, classify, or interpret error/ geterr(3i)
Make - clever interface to make(1) make(8i)
IDMTOTICKS, TICKSTOIDM —/ getclock, clocktodate, datetoclock, diffclock,cceeneunee. getclock(3i)
ifclose — close a file ifclose(3i)
irclose — close an IDMRUN structure irclose(3i)
ieopen, ieclose — open and close IENV's (IDM environments)cccccoceerevenne ieopen(3i)
RETSUCCESS, RETWARNING, RETERROR/ geterr, clrerr, seterr, errstring, errclass,cccocccereennnee. geterr(3i)
retcode — return/status/error code retcode(5i)
clear, set, classify, or interpret error codes /RETWARNING, RETERROR — get,........ geterr(3i)
irflush — flush tuples for current command irflush(3i)
irxsetp — arrange to execute a stored command irxemd, irxprog, irxemd(3i)
itdefine — create tree for define command itdefine(3i)
sysshell — execute system command sysshell(3i)
Database Management (IDM) support commands /Release 3 Britton Lee Integrated......... lintro(1i)

to Administrative and Machine-Dependent Commands and Procedures Introduction

itxsetp — build trees to execute stored commands/programs itxemd, itxprog,
/askoperator, hasoperator — communicate with the system operator

idmtokens — values of IDM communication tokens

libistdio.a — standard I/O compatibility library

3.2-86/09/09-R3v5m0 Britton-Lee

... 8intro(8i)
. itxemd(3i)

operator(3i)
idmtokens(5i)
istdio(3i)

PTX (0I) Britton Lee PTX (0I)
maketerm — compile a terminal descriptorcocccveeevensennnee. maketerm(8i)
/- verify IDM transaction logs are complete and print their time stamps. idmeklog(1i)
makefname — make file name from component makefname(3i)
dumptape — report on contents of an ANSI tape dumptape(8i)
onexit, offexit — transfer control on exit onexit(3i)
iecontrol — perform control operations on environmentsccceeerareene iecontrol(3i)
ifcontrol — perform control operations on files ifeontrol(3i)
atobcd — alpha to BCD conversion atobed(3i)
bedtos — BCD to alpha conversion bedtoa(3i)
bedftobed, bedtobedf — BCD conversion bedtobedf(3i)
bedtol, Itobed — BCD to long integer conversion bedtol(3i)
bintos, atobin — binary to alpha conversion bintoa(3i)
ftoa — floating-point to alpha conversion ftoa(3i)
parsedate — free-format date/time conversion parsedate(3i)
sprintf, tprintf — formatted output conversion printf, ifprintf, printf(3i)
typecnvt, cktypeenvt — generalized type conversion .. typecnvt(3i)
— descriptor-based type (iDSC) conversion hooks _dsctoidm, _idmtodsc... o d8e(3i)
atof, atos, atol — convert characters to numbers atof(3i)
syntax to .ric (RIC/ Idel2ric — convert .idm (IDEL precompiler input) idel2ric(1i)
R2toR3 - convert Release 2 source to Release 3 r2tor3(1i)
representations itiutree, ituitree — convert to and from user tree (UTREE) utree(3i)
idmfcopy - format and copy data to or from a relationccccecreurnneee. idmfecopy(1i)
itcopy — build tree for bulk copy function itcopy(3i)
server and the host idmcopy — copy relation(s) between the database idmcopy(1i)
beopy, bfill, bzero, STRUCTASGN — copy, set, or zero a block of memory . beopy(3i)
coversheet — 3 message to our readers Ocover(0i)
ifscrack, ifstype — crack fille specification string ifscrack(3i)
argument vector or print a usage message crackargv, usage — take apart anccecceeenen. crackargv(3i)
tempname — create a unique file name tempname(3i)
itdefine — create tree for define commandcc.coevvueunnnnn. itdefine(3i)
irflush — flush tuples for current command irflush(3i)
ircancel — cancel current operations on an IDMRUN structure ircancel(3i)
idmidyd — IDM XNS identify daemon idmidyd(8i)
- verify database or transaction log data files idmckload idmckload(1i)
Introduction to file and data formats. Sintro(5i)
ITREE — IDM tree data structure itree(5i) -
idmfcopy — format and copy data to or from a relation idmfcopy(1i)
/ittxload, itrollf — build trees for database administration functionsccecvvureee. dba(3i)
idmdump - dump database and transaction log idmdump(1i)
idl - Ad hoc interactive IDL (Intelligent Database Language) parser idi(1i)
3 Introduction and/ Britton Lee Integrated Database Management Host Software Release Obinintro(0i)
/to Release 3 Britton Lee Integrated Database Management (IDM) support commands . lintro(li)
idmload - load database or transaction log idmload(1i)
idmckload - verify database or transaction log data files idmckload(1i)
ERROR, MEASURE, and DONE packets from the database server igetdone — read........cccceveevuerecnrnns igetdone(3i)
itlfree — read a target list from a database server igettl, igettl(3i)
iputtree — put a tree to the database server iputtree(3i)
— put a tuple from a target list to the database server iputtup iputtup(3i)
idmcopy — copy relation(s) between the database server and the host idmcopy(1i)
igettup — get a tuple from a database server into a target listcccccevveuvunnnc. igettup(3i)
— set the date and/or time on the shared database system idmdate idmdate(1i)
files between the host and the shared database system [idmwrite — read/write................. idmread(1i)
idmdump, idmload, and/ backup - Shared database system backup procedures using . backup(8i)
idmpasswd — set password in the shared database system login relation idmpasswd(1i)
system idmdate — set the date and/or time on the shared database idmdate(1i)
parsedate — free-format date/time conversion parsedate(3i)
dificlock, IDMTOTICKS, TICKSTOIDM — date /time manipulation /datetoclock,cecereereececss getelock(3i)
fmtclock, fmtdate, fmtintvl — date/time output formatting fmtclock(3i)
TICKSTOIDM —/ getclock, clocktodate, datetoclock, dificlock, IDMTOTICKS,ccvceurennne getclock(3i)
— dump an IDMLIB file pointer for debugging ifdump ifdump(3i)
irdump — dump an IDMRUN structure for debugging irdump(3i)
— print IDM target list (ITLIST) for debugging itlprint itlprint(3i)
itprint — print a tree for debugging itprint(3i)
/usr/lib /idm/params — default .IR getparam (3I) parameter file params(5i)
3.2-86 / 09/09-R3v5m0 Britton-Lee 3

PTX (0I) Britton Lee

IENV, DefEnv — IDM environment
itdefine — create tree for define command
IODEFS — Input/output flag definitions
ITLIST — IDM target list descriptor
maketerm - compile a terminal descriptor
hooks ..dsctoidm, _idmtodsc — descriptor-based type (iDSC) conversion
getclock, clocktodate, datetoclock, diffclock, IDMTOTICKS, TICKSTOIDM —/
string stredit — do sophisticated output editing of numeric
igeteot, itapeload — get DONE blocks until end of IDM tape
igetdone — read ERROR, MEASURE, and DONE packets from the database server
IDONE — IDM DONE token
tfset, tf, tlev, DPRINTF — trace package
type (iDSC) conversion hooks _dsctoidm, _idmtodsc — descriptor-based
ifdump — dump an IDMLIB file pointer for debugging
irdump — dump an IDMRUN structure for debugging
trace xdump — dump bytes in hexadecimal to standard
idmdump - dump database and transaction logccccecerereneen
tape dumptape - report on contents of an ANSI
stredit — do sophisticated output editing of numeric string
sysedit — call system editor on a file
information about a retrieved target-list element irdesc — get type and name
program variables to retrieved target list elements irbind — bind
ric — precompiler for embedding IDL in C
rsc — precompiler for embedding SQL in C
itapeload — get DONE blocks until end of IDM tape igeteot,
IENV, DefEnv — IDM environment
— perform control operations on environments iecontrol
ieclose — open and close IENV's (IDM environments) ieopen,
iesubst — perform substitutions in environments

............

..........

..........

PTX (0I)

ienv(5i)
itdefine(3i)
iodefs(5i)
itlist(5i)
maketerm(8i)
dse(3i)
getclock(3i)
stredit(3i)
igeteot(3i)
igetdone(3i)
idone(5i)
th(3i)

dsc(3i)
ifdump(3i)
irdump(3i)
xdump(3i)
idmdump(1i)
dumptape(8i)
stredit(3i)
sysedit(3i)
irdesc(3i)
irbind(3i)
rie(1i)

rse(1i)
igeteot(3i)

.ienv(5i)

iecontrol(3i)
ieopen(3i)
iesubst(3i)

—/ geterr, clrerr, seterr, errstring, errclass, RETSUCCESS, RETWARNING, RETERROR geterr(3i)

syserr — print a fatal system error and abortceccceveevecnirreennirnnenennieenneeeenens
get, clear, set, classify, or interpret error codes /RETWARNING, RETERROR —......

database server igetdone — read ERROR, MEASURE, and DONE packets from the

RETWARNING,/ geterr, clrerr, seterr, errstring, errclass, RETSUCCESS,
/excprint, excfprint, excbackout, excprbo, excabort, excalock, excaunlock,/
excvraise, excignore,/ exchandle, excahandle, excdhandle, excraise,
/excfprint, excbackout, excprbo, excabort, excalock, excaunlock, exccleanup,/
/excbackout, excprbo, excabort, excalock, excaunlock, exccleanup, bocleanup —/
/excvraise, excignore, excprint, excfprint, excbackout, excprbo, excabort, excalock,/ .
/excprbo, excabort, excalock, excaunlock, exccleanup, bocleanup — exception and/ ...
excignore,/ exchandle, excahandle, excdhandle, excraise, excvraise,
excaunlock, exccleanup, bocleanup — exception and message ha / ,
/excraise, excvraise, excignore, excprint, excfprint, excbackout, excprbo, excabort,/
excraise, excvraise, excignore, excprint,/ exchandle, excahandle, excdhandle,
/excdhandle, excraise, excvraise, excignore, excprint, exefprint,/
/excprint, excfprint, excbackout, excprbo, excabort, excalock, excaunlock,/ ..
excabort,/ /excraise, excvraise, excignore, excprint, excfprint, excbackout, excprbo, ...
exchandle, excahandle, excdhandle, excraise, excvraise, excignore, excprint,/ ...
/excahandle, excdhandle, excraise, excvraise, excignore, excprint, excfprint,/

irxemd, irxprog, irxsetp — arrange to execute a stored command
irexec — execute parsed IDL statementsc.ccceeeeceeeennnn
itxprog, itxsetp — build trees to execute stored commands/programs itxemd,

sysshell — execute system command

irnext — check for next executed statement

onexit, offexit — transfer control on exit
exit — terminate program

pextract — extract parameter value from list

syserr — print a fatal system error and abort

irfetch — fetch a retrieved tuple

buildmsgs — build keyed message text file
ifclose — close a file

ifflush — flush a file

IFGETC, ifgetc — get a byte from a file
ifgets — get a line from a text file

[

...........................

3.2-86,/09/09-R3v5m0 Britton-Lee

syserr(3i)

geterr(3i)
igetdone(3i)

geterr(3i)

exc(3i)
irxemd(3i)
irexec(3i)
itxemd(3i)
sysshell(3i)
irnext(3i)
onexit(3i)
exit(3i)
pextract(3i)
syserr(3i)
irfetch(3i)
buildmsgs(8i)
ifclose(3i)
ifflush(3i)
ifgete(3i)
ifgets(3i)

PTX (0I) Britton Lee PTX (0I)

ifopen — open a file . ifopen(3i)
IFPUTC, ifputc — put a byte to s file ifpute(3i)
ifputs — put a string on a text file ifputs(3i)
iputtl — write a target list to a filecccccecvrinnncncnnnnenn iputtl(3i)
— default .IR getparam (3I) parameter file /usr/lib/idm/params...... params(5i)
— symbol to integer value mapping file /usr/lib/idm/symfile symfile(5i)
sysedit — call system editor on a file sysedit(3i)
— XNS host name mapping file /usr/lib/idm/xnshosts xnshosts(5i)
Introduction to file and data formats.ccoverevrnreeeennennnes intro(5i)
IftHFile — host file file typecoovcemriciniiccceercccsccincacneaes ifthfile(4i)
IftIFile — IDM file file type . iftifile(4i)

messages — messages file format
tempname — create a unique file name

messages(5i)
tempname(3i)

makefname — make file name from components makefname(3i)
ifdump — dump an IDMLIB file pointer for debuggingcccceceevereererrrecereennenne ifdump(3i)
ifscrack, ifstype — crack file specification stringcccoccecveeuecercvevucnenns ifscrack(3i)
IFERROR, ifeof, IFEOR — file status inquiries iferror(3i)
IftHFile — host file file type . ifthfile(4i)
Iftldm — IDM channel file type iftidm(4i)
IftIFile — IDM file file type iftifile(4i)
IftKeyed — keyed host file type iftkeyed(4i)
IftLoTerm — physical terminal file typeccccoviniininrinciicerceecee e iftloterm(4i)
IftLTape — ANSI labeled tape file type iftitape(4i)
IftMText — Message-text file type iftmtext(4i)
IftString — in-core string file type iftstring(4i)
IftTerm — terminal file type iftterm(4i)
IDM file type introduction and implementation 4intro(4i)
— verify database or transaction log data flles idmckload idmekload(1i)
— perform control operations on files ifeontrol..........ccceveeerveurcvrceccenncnncne ifcontrol(3i)
macros for RIC and RSC precompiler source files /INITRSC, RCDEVICE, RCDBNAME —...... initre(3i)
— subroutine for RSC and RIC source files recount recount(3i)
database/ idmread, idmwrite — read/write files between the host and the shared idmread(1i)
ansitape — write files on an ANSI standard labelled tape ansitape(8i)
ASSERT — verify fixpoints in a program assert(3i)
IODEFS — Input/output flag definitions iodefs(5i)
fmtfloat — internal floating-point output formatting routine ... fmtfloat(3i)
ftoa — floating-point to alpha conversioncccuueuuene. ftoa(3i)
ifflush — flush a file ifflush(3i)
irflush — flush tuples for current command irflush(3i)
output formatting fmtclock, fmtdate, fmtintvl — date/time fmtelock(3i)

formatting fmtclock, fmtdate, fmtintvl — date/time output
output formatting routine fmtfloat — internal floating-point
fmtclock, fmtdate, fmtintvl — date/time output formatting
foldcase — fold upper to lower case in 8 string

... fmtclock(3i)
.... fmtfloat(3i)
<. fmtelock(3i)

. foldcase(3i)

s string foldcase — fold upper to lower case in foldcase(3i)
isforegnd — are we in foreground (interactive)? isforegnd(3i)
messages — messages file format messages(5i)
idmfcopy - format and copy data to or from a relation idmfcopy(1i)
anyprint, anyfmt — print or format any possible type for printing anyprint(3i)
Introduction to file and data formats. Sintro(5i)
printf, ifprintf, sprintf, tprintf — formatted output conversion printf(3i)
fmtdate, fmtintvl — date/time output formatting fmtclock, fmtclock(3i)
— internal floating-point output formatting routine fmtfloat fmtfloat(3i)
idmrollf - roll forward a transaction log idmrollf(1i)
itfree — free an ITREE itfree(3i)
parsedate — free-format date/time conversioncceceevceueunee parsedate(3i)
/[savestr, xfree, newmpool, mergempool, freempool, showmpool — main memory/ Xalloc(3i)
conversion ftoa — floating-point to alphacccceveeveecerccennene ftoa(3i)
itcopy — build tree for bulk copy function iteopy(3i)
build trees for database administration functions /ittxload, itrollf — dba(3i)
itgstmt — build a tree for a general query statement itgstmt(3i)
typecnvt, cktypecnvt — generalized type conversioncccccvcevnennracennes typecnvt(3i)
IFGETC, ifgetc — get a byte from a file . ifgetc(3i)
' ifgets — get a line from a text file ifgets(3i)

3.2-86,/09/09-R3v5m0 Britton-Lee 5

PTX (0I) Britton Lee PTX (0I)
target list igettup — get a tuple from a database server into & igettup(3i)
/RETSUCCESS, RETWARNING, RETERROR — get, clear, set, classify, or interpret/ geterr(3i)
igeteot, itapeload — get DONE blocks until end of IDM tape . .. igeteot(3i)
gethunpw — get host user name and password gethunpw(3i)
irget — get information from the IDMRUN structure . irget(3i)
getpass — get password securely from terminal getpass(3i)
getprompt — get string with a prompt getprompt(3i)
retrieved target-list element irdesc — get type and name information about a irdesc(3i)
username — get user name username(3i)
diffclock, IDMTOTICKS, TICKSTOIDM —/ getclock, clocktodate, datetoclock,ccocoeeruunnecne getclock(3i)
errclass, RETSUCCESS, RETWARNING,/ geterr, clrerr, seterr, errstring, geterr(3i)
password gethunpw — get host user name and gethunpw(3i)
/usr/lib/idm/params — default .IR getparam (3I) parameter file params(5i)
parameter getparam, setparam — get/set a system . getparam(3i)
terminal getpass — get password securely from getpass(3i)
getprompt — get string with a prompt getprompt(3i)
getparam, setparam — get/set a system parameter getparam(3i)
usage — perform binary search on a given table keylook, keylook(3i)
sgrep — structured grep sgrep(8i)
bocleanup — exception and message ha /excalock, excaunlock, e nup,...... . exc(3i)
system/ telloperator, askoperator, hasoperator — communicate with the operator(3i)
helpsys — interactive help subsystem helpsys(3i)
idmhelp — access the IDM Help Subsystem idmhelp(1i)
helpsys — interactive help subsystem helpsys(3i)
xdump — dump bytes in hexadecimal to standard trace xdump(3i)
descriptor-based type (iDSC) conversion hooks _dsctoidm, _idmtodse — dse(3i)
between the database server and the host idmcopy — copy relation(s).........ccceueeecrerrerecnee " idmeopy(1i)
/idmwrite - read/write files between the host and the shared database system idmread(1i)
IftHFile — host file file type ifthfile(4i)
IftKeyed — keyed host file type iftkeyed(4i)
/usr/lib/idm/xnshosts — XNS host name mapping file xnshosts(5i)
Britton Lee Integrated Database Management Host Software Release 3 Introduction and/ Obinintro(0i)
gethunpw — get host user name and passwordccccoeeeneencnnee. gethunpw(3i)
(RIC precompiler/ Idel2ric — convert .idm (IDEL precompiler input) syntax to .ric idel2ric(1i)
input) syntax to .ric (RIC precompiler/ Idel2ric — convert .idm (IDEL precompiler idel2ric(1i)
idmidyd — IDM XNS identify daemon idmidyd(8i)
. Database Language) parser idl — Ad hoc interactive IDL (Intelligent idi(1i)
ric — precompiler for embedding IDL in C rie(1i)
idl - Ad hoc interactive IDL (Intelligent Database Language) parser idl(1i)
idifparse — build query trees from IDL program input idlparse,cccccooeecrrcvenvecrennnne idlparse(3i)
irexec — execute parsed IDL statements irexec(3i)
iridl — parse IDL statements irid1(3i)
program input idlparse, idlfparse — build query trees from IDL idlparse(3i)
from IDL program input idlparse, idifparse — build query trees idlparse(3i)
Iftldm — IDM channel file type iftidm(4i)
idmtokens — values of IDM communication tokens idmtokens(5i)
IDONE — IDM DONE token idone(5i)
IENV, DefEnv — IDM environment ienv(5i)
ieopen, ieclose — open and close [ENV's (IDM environments) ieopen(3i)
IftIFile — IDM file file type iftifile(4i)
implementation IDM file type introduction andcccocucevrurucnncne 4dintro(4i)
idmhelp - access the IDM Help Subsystem idmhelp(1i)
ric (RIC precompiler/ Idel2ric — convert .idm (IDEL precompiler input) syntax to idel2ric(1i)
Britton Lee Integrated Database Management (IDM) support commands /to Release 3.................. lintro(li)
INITIDMLIB — initialize the IDM support libraryccucu.... initidmlib(3i)
INITIDMLIB IDM Support Library (IDMLIB) summary; 3intro(3i)
idmsymbol, idmwsymbol — return name of IDM symbol or WITH node idmsymbol(3i)
— get DONE blocks until end of IDM tape igeteot, itapeload igeteot(3i)
itapeopts — parse IDM tape options itapeopts(3i)
ITLIST — IDM target list descriptor itlist(5i)
itlprint — print IDM target list (ITLIST) for debugging itlprint(3i)
print their time/ idmcklog - verify IDM transaction logs are complete and idmeklog(1i)
ITREE — IDM tree data structure itree(5i)
itnode, itvar, itroot — build an IDM tree node, VAR node, or ROOT node itnode(3i)
3.2-86/09/09-R3v5m0 Britton-Lee 6

PTX (0I) Britton Lee PTX (0I)

idmidyd — IDM XNS identify daemon idmidyd(8i)
idmboot - load the IDM/RDBMS software idmboot(8i)
transaction log data files idmckload — verify database orccoceevevensrennncne idmckload(1i)
are complete and print their time stamps. idmecklog - verify IDM transaction logs idmecklog(1i)

database server and the host idmcopy — copy relation(s) between the idmeopy(1i)
shared database system idmdate — set the date and/or time on the idmdate(li)
log idmdump - dump database and transaction idmdump(1i)
database system backup procedures using idmdump, idmload, and idmrollf /- Shared............ backup(8i)
from a relation idmfcopy — format and copy data to or idmfcopy(1i)
idmhelp — access the IDM Help Subsystem idmhelp(1i)
idmidyd — IDM XNS identify daemon idmidyd(8i)
ifdump — dump an IDMLIB file pointer for debugging «ee. ifdump(3i)
IDM Support Library (IDMLIB) summary; INITIDMLIB 3intro(3i)
log idmload - load database or transaction «.. idmload(1i)
system backup procedures using idmdump, idmload, and idmrollf /- Shared database.... . backup(8i)

database system login relation idmpasswd — set password in the shued idmpasswd(1i)
idmboot — load the IDM/RDBMS software : idmboot(8i)
between the host and the shared database/ idmread, idmwrite — read/write files idmread(1i)
procedures using idmdump, idmload, and idmrollf /- Shared database system backup. backup(8i)
idmrollf - roll forward a transaction log idmrollf(1i)
— cancel current operations on an IDMRUN structure ircancel ircancel(3i)
irclose — close an IDMRUN structure irclose(3i)
irget — get information from the IDMRUN structure irget(3i)
irreopen — reopen an IDMRUN structure irreopen(3i)
irset — set values into the IDMRUN structure irset(3i)
irdump — dump an IDMRUN structure for debuggingcccccoerruruernes irdump(3i)
iropen — open an IDMRUN structure for use iropen(3i)
IDM symbol or WITH node idmsymbol, idmwsymbol — return name of idmsymbol(3i)
(iDSC) conversion hooks _dsctoidm, _idmtodsc — descriptor-based typecccuc..... dse(3i)
tokens idmtokens — values of IDM communication idmtokens(5i)
[clocktodate, datetoclock, dificlock, IDMTOTICKS, TICKSTOIDM — date/time/ getclock(3i)
host and the shared database/ idmread, idmwrite — read/write files between the idmread(1i)
or WITH node idmsymbol, idmwsymbol — return name of IDM symboal idmsymbol(3i)
IDONE — IDM DONE tokencocereccrenevcencen idone(5i)
—idmtodsc — descriptor-based type (iDSC) conversion hooks _dsctoidm,..... . dse(3i)

environments) ieopen, ieclose — open and close [ENV's (IDM . ieopen(3i)

iesetopt, ieclropt — set or clear options iesetopt(3i)
on environments iecontrol — perform control operations iecontrol(3i)
IENV, DefEnv — IDM environment ienv(5i)
ieopen, jeclose — open and close IENV’s (IDM environments) ieopen(3i)
(IDM environments) ieopen, ieclose — open and close IENV’s ieopen(3i)
options iesetopt, ieclropt — set or clear iesetopt(3i)
environments iesubst — perform substitutions inccccennen. iesubst(3i)
BITSET — test to see if a bit is set bitset(3i)
ifclose — close a file ifclose(3i)
on files ifcontrol — perform control operations ifcontrol(3i)
for debugging ifdump — dump an IDMLIB file pointer <o ifdump(3i)
IFERROR, ifeof, IFEOR — file status inquiries <. iferror(3i)
IFERROR, ifeof, IFEOR — file status inquiriesceceveeurrvruenne. iferror(3i)
inquiries IFERROR, ifeof, IFEOR — file status iferror(3i)
iflush — flush a file ifflush(3i)
IFGETC, ifgetc — get a byte from s file ifgete(3i)
IFGETC, ifgetc — get a byte from a file ifgete(3i)
ifgets — get a line from a text fileccccoueuenuee. ifgets(3i)
ifopen — open a file ifopen(3i)
output conversion printf, ifprintf, sprintf, tprintf — formattedccoeceuuen. printf(3i)
IFPUTC, ifputc — put a byte to a file ifpute(3i)
IFPUTC, ifputc — put a byte to a file ifpute(3i)
ifputs — put a string on a text file ifputs(3i)
ifread — read a block of memory ifread(3i)
specification string ifscrack, ifstype — crack file ifscrack(3i)
string ifscrack, ifstype — crack file specificationcceccveevruenenee. ifscrack(3i)
IftHFile — host file file type ifthfile(4i)
Iftldm — IDM channel file typeccooeervveerrvennene iftidm(4i)

3.2-86/09/09-R3v5m0 Britton-Lee 7

PTX (0I) Britton Lee PTX (0I)

IftIFile — IDM file file type iftifile(4i)
IftKeyed — keyed host file typeccccoecvcucunnnnes iftkeyed(4i)
IftLoTerm — physical terminal file type iftloterm(4i)
ILTape — ANSI labeled tape file type iftitape(4i)
IftMText — Message-text file type iftmtext(4i)

stream up into tokens IftScan, TK_PSEUDO — break an input ..
IftString — in-core string file type

iftscan(4i)
. iftstring(4i)

IftTerm — terminal file type iftterm(4i)
input buffer ifungetc — put a character back into .. «.. ifungetc(3i)
ifwrite — write a block of memory « ifwrite(3i)
DONE packets from the database server igetdone — read ERROR, MEASURE, and igetdone(3i)
until end of IDM tape igeteot, itapeload — get DONE blocks igeteot(3i)
from a database server igettl, itifree — read a target list wee igettl(3i)
server into a target list igettup — get a tuple from a database igettup(3i)
IDM file type introduction and implementation 4intro(4i)
IftString — in-core string file type iftatring(4i)
ptx — permuted index 1binptx(0i)
element irdesc — get type and name information about a retrieved target-list irdesc(3i)
irget — get information from the IDMRUN structure irget(3i)
inittape — initialize ANSI standard labelled tape inittape(8i)
INITIDMLIB — initialize the IDM support libraryccccuee.n... initidmlib(3i)
IDM Support Library (IDMLIB) summary; INITIDMLIB 3intro(3i)
library INITIDMLIB — initialize the IDM support initidmlib(3i)
RCDBNAME — macros for RIC and RSC/ INITRC, INITRIC, INITRSC, RCDEVICE, initre(3i)

macros for RIC and RSC/ INITRC, INITRIC, INITRSC, RCDEVICE, RCDBNAME — initre(3i)
for RIC and RSC/ INITRC, INITRIC, INITRSC, RCDEVICE, RCDBNAME — macros .. _initre(3i)

labelled tape inittape — initialize ANSI standardcccceunene. inittape(8i)
— build query trees from IDL program input idlparse, idifparse idlparse(3i)
— build query trees from SQL program input sqlparse, sqlfparse sqlparse(3i)
ifungetc — put a character back into input buffer ifungete(3i)
IftScan, TK_PSEUDO — break an input stream up into tokens iftscan(4i)
input) syntax to .ric (RIC precompiler input) syntax /.idm (IDEL precompiler................... idel2ric(1i)
Idel2ric — convert .idm (IDEL precompiler input) syntax to .ric (RIC precompiler/ idel2ric(1i)
IODEFS — Input/output flag definitions iodefs(5i)
IFERROR, ifeof, IFEOR — file status inquiries iferror(3i)
bedtol, Itobed — BCD to long integer conversion .- bedtol(3i)
mapsym — translate symbol name into integer value mapsym(3i)
/Jusr/lib/idm/symfile — symbol to integer value mapping file symfile(5i)
Software Release 3/ Britton Lee Integrated Database Management Host Obinintro(0i)
Introduction to Release 3 Britton Lee Integrated Database Management (IDM)/ . . lintro(1i)
idl - Ad hoc interactive IDL (Intelligent Database Language) parser idl(1i)
isforegnd — are we in foreground (interactive)? isforegnd(3i)
helpsys — interactive help subsystem helpsys(3i)
Language) parser idl — Ad hoc interactive IDL (Intelligent Database idi(1i)
sql - Interactive/SQL parser sql(1i)
Make — clever interface to make(1) make(8i)
routine fmtfloat — internal floating-point output formatting fmtfloat(3i)
— get, clear, set, classify, or interpret error codes /RETERROR geterr(3i)
isleep — sleep for a real-time interval isleep(3i)
IDM file type introduction and implementationccceeerervnee 4intro(4i)
Management Host Software Release 3 Introduction and Summary /Database Obinintro(0i)
Machine-Dependent Commands and Procedures Introduction to Administrative and 8intro(8i)
) Introduction to file and data formats. Sintro(5i)
Integrated Database Management (IDM)/ Introduction to Release 3 Britton Lee lintro(1i)
libistdio.a — standard I/O compatibility library istdio(3i)
' IODEFS — Input/output flag definitions iodefs(5i)
iputtl — write a target list to a file iputtl(3i)
server iputtree — put a tree to the database iputtree(3i)
list to the database server iputtup — put a tuple from a targetccceunue. iputtup(3i)
retrieved target list elements irbind — bind program variables toc.ccccoveuuenes irbind(3i)
an IDMRUN structure ircancel — cancel current operations on ireancel(3i)
irclose — close an IDMRUN structure irclose(3i)
about a retrieved target-list element irdesc — get type and name information irdesc(3i)
debugging irdump — dump an IDMRUN structure for irdump(3i)

3.2-86/09/09-R3v5m0 Britton-Lee ' 8

PTX (0I) Britton Lee PTX (0I)

irexec — execute parsed IDL statements irexec(3i)
irfetch — fetch s retrieved tuple irfetch(3i)
command irflush — flush tuples for current irflush(3i)
structure irget — get information from the IDMRUN irget(3i)
iridl — parse IDL statementscceeueunene. ... irid)(3i)
statement irnext — check for next executed irnext(3i)
use iropen — open an IDMRUN structure for iropen(3i)
irreopen — reopen an IDMRUN structure irreopen(3i)
structure irset — set values into the IDMRUNc....... irset(3i)
irsqgl — parse SQL statementsccceevveccrenrncenns irsql(3i)
trees irsubst — perform substitutions in irsubst(3i)
execute a stored command irxcmd, irxprog, irxsetp — arrange tocceceeeeeen irxemd(3i)
stored command irxemd, irxprog, irxsetp — arrange to execute a .. . irxemd(3i)
command irxemd, irxprog, irxsetp — arrange to execute a stored irxemd(3i)
/ISUPPER, ISLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT, ISPRINT,/ bytetype(3i)
ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT,/ ISALPHA, ISUPPER, ISLOWER, ISDIGIT, bytetype(3i)

J/ISPUNCT, ISPRINT, ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, ISKANJI,/ bytetype(3i)
/ISSPACE, ISPUNCT, ISPRINT, ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH,/ .. bytetype(3i)
ISPUNCT,/ ISALPHA, ISUPPER, ISLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, bytetype(3i)
(interactive)? isforegnd — are we in foregroundcccceueueneee. isforegnd(3i)

J/ISALNUM, ISSPACE, ISPUNCT, ISPRINT, ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH,/ bytetype(3i)
/ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, ISKANJI, TOCHAR, TOUPPER, TOLOWER —/ bytetype(3i)

isleep — sleep for a real-time interval isleep(3i)
ISSPACE, ISPUNCT,/ ISALPHA, ISUPPER, ISLOWER, ISDIGIT, ISXDIGIT, ISALNUM, bytetype(3i)
/ISPRINT, ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, ISKANJI, TOCHAR,/ .. bytetype(3i)
/ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT, ISPRINT, ISGRAPH, ISCNTRL, ISCHAR,/ bytetype(3i)

/ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT, ISPRINT, ISGRAPH, ISCNTRL,/ bytetype(3i)
/ISLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT, ISPRINT, ISGRAPH,/ bytetype(3i)
ISALNUM, ISSPACE, ISPUNCT,/ ISALPHA, ISUPPER, ISLOWER, ISDIGIT, ISXDIGIT, bytetype(3i)

ISALPHA, ISUPPER, ISLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT,/ bytetype(3i)
/ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, ISKANJI, TOCHAR, TOUPPER,/ ... bytetype(3i)
itaddopts — add options bytes to a tree itaddopts(3i)
of IDM tape igeteot, itapeload — get DONE blocks until end igeteot(3i)
itapeopts — parse IDM tape options itapeopts(3i)
function itcopy — build tree for bulk copy iteopy(3i)
itrollf — build trees for database/ itdbdump, ittxdump, itdbload, ittxload, . . dba(3i)

trees for database/ itdbdump, ittxdump, itdbload, ittxload, itrollf — buildccccceeveecennnc. dba(3i)
command itdefine — create tree for definecceueueunecn. itdefine(3i)
itfree — free an ITREE itfree(3i)
from user tree (UTREE) representations itiutree, ituitree — convert to and utree(3i)
database server igettl, itifree — read a target list from a igettl(3i)
ITLIST — IDM target list descriptor itlist(5i)
itlprint — print IDM target list (ITLIST) for debugging itlprint(3i)
(ITLIST) for debugging itlprint — print IDM target listccccocecvueecnnnn. itlprint(3i)
tree node, VAR node, or ROOT node itnode, itvar, itroot — build an IDM itnode(3i)
itprint — print a tree for debuggingcoueuueee. itprint(3i)
query statement itgstmt — build a tree for a generalccneee. itgetmt(3i)
itfree — free an ITREE itfree(3i)
ITREE — IDM tree data structureccoceueuene. itree(5i)
itdbdump, ittxdump, itdbload, ittxload, itrollf — build trees for database/ dba(3i)
node, or ROOT node itnode, itvar, itroot — build an IDM tree node, VAR itnode(3i)
build trees for database/ itdbdump, ittxdump, itdbload, ittxload, itrollf — dba(3i)
database/ itdbdump, ittxdump, itdbload, ittxload, itrollf — build trees for dba(3i)
tree (UTREE) representations itiutree, ituitree — convert to and from user utree(3i)
VAR node, or ROOT node itnode, itvar, itroot — build an IDM tree node, itnode(3i)
to execute stored commands/programs itxcmd, itxprog, itxsetp — build trees itxemd(3i)
execute stored commands/programs itxemd, itxprog, itxsetp — build trees to itxemd(3i)
commands/programs itxemd, itxprog, itxsetp — build trees to execute stored itxemd(3i)
IftKeyed — keyed host file type iftkeyed(4i)
buildmsgs — build keyed message text file buildmsgs(8i)
on a given table keylook, usage — perform binary search keylook(3i)
IftLTape — ANSI labeled tape file type iftltape(4i)
— write files on an ANSI standard labelled tape ansitape ansitape(8i)
inittape — initialize ANSI standard labelled tape inittape(8i)

3.2-86,/09/09-R3v5m0 Britton-Lee 9

PTX (0I) Britton Lee PTX (0I)

hoc interactive IDL (Intelligent Database Language) parser idl — Ad idl(1i)
compatibility library libistdio.a — standard 1/0 istdio(3i)
INITIDMLIB — initialize the IDM support library initidmlib(3i)
— standard I/O compatibility library libistdio.a istdio(3i)
IDM Support Library (IDMLIB) summary; INITIDMLIB 3intro(3i)
ifgets — get a line from a text file ifgets(3i)
tuple from a database server into a target list igettup — get a igettup(3i)
pextract — extract parameter value from list pextract(3i)
ITLIST — IDM target list descriptor itlist(5i)
bind program variables to retrieved target list elements irbind — irbind(3i)
igettl, itifree — read a target list from a database server igettl(3i)
itlprint — print IDM target list (ITLIST) for debugging itlprint(3i)
iputtl — write a target list to a file iputtl(3i)
iputtup — put a tuple from a target list to the database server iputtup(3i)
idmload - load database or transaction logccoeeururuencnens idmload(1i)
idmboot ~ load the IDM/RDBMS softwareccceveveueuenene idmboot(8i)
idmdump - dump database and transaction log idmdump(1i)
idmload - load database or transaction log idmioad(1i)
idmrollf - roll forward a transaction log idmrollf(1i)
- verify database or transaction log data files idmckload idmekload(1i)
set password in the shared database system login relation idmpasswd - idmpasswd(1i)
idmecklog — verify IDM transaction logs are complete and print their time/ idmeklog(1i)
bedtol, Itobed — BCD to long integer conversion bedtol(3i)
foldcase — fold upper to lower case in a string foldcase(3i)
bedtol, Itobed — BCD to long integer conversion bedtol(3i)

Introduction to Administrative and Machine-Dependent Commands and Procedures ... 8intro(8i)
/INITRIC, INITRSC, RCDEVICE, RCDBNAME — macros for RIC and RSC precompiler source/ " initre(3i)

mergempool, freempool, showmpool — main memory allocator /xfree, newmpool, xalloe(3i)
Make - clever interface to make(1) ... make(8i)
makefname — make file name from componentscccceueeeeennne makefname(3i)
Make — clever interface to make(1) make(8i)
components makefname — make file name fromccu..... makefname(3i)
maketerm — compile a terminal descriptor maketerm(8i)
Britton Lee Integrated Database Management Hoet Software Release 3/ Obinintro(0i)
Release 3 Britton Lee Integrated Database Management (IDM) support commands /to lintro(1i)
IDMTOTICKS, TICKSTOIDM — date/time manipulation /datetoclock, diffclock, «.. getelock(3i)
— symbol to integer value mapping file /usr/lib/idm/symfleccec.c.... symfile(5i)
/usr/lib /idm /xnshosts — XNS host name mapping file xnshosts(5i)
integer value mapsym — translate symbol name into mapsym(3i)
pmatch — text pattern matching pmatch(3i)
database server igetdone — read ERROR, MEASURE, and DONE packets from the igetdone(3i)
— copy, set, or zero a block of memory beopy, bfill, bzero, STRUCTASGN........... beopy(3i)
ifread — read a block of memory ifread(3i)
ifwrite — write a block of memory ifwrite(3i)
mergempool, freempool, showmpool — main memory allocator /xfree, newmpool,cccccueecee. xalloc(3i)
xalloe, zalloe, savestr, xfree, newmpool, mergempool, freempool, showmpool — mun/ xalloc(3i)
apart an argument vector or print a usage message crackargv, usage — take....... ... crackargv(3i)
exccleanup, bocleanup — exception and message ha /excalock, excaunlock,cccevvreneucnnc. exc(3i)
buildmsgs — build keyed message text file buildmsgs(8i)
coversheet — a message to our readers . Ocover(0i)
messages — messages file formatcocceeueeeene, messages(5i)
messages — messages file format messages(5i)
IftMText — Message-text file type iftmtext(4i)
tempname — create a unique file name tempname(3i)
USETNAME — Gl UBER DAIMEcccoeerememererranssenssencsasnsessssessssssssesassssssenssessans username(3i)
gethunpw — get host user name and password gethunpw(3i)
makefname — make flle name from components makefname(3i)
target-list/ irdesc — get type and name information about a retrievedccccuvencee. irdesc(3i)
mapsym — translate symbol name into integer value mapsym(3i)
/usr/lib/idm/xnshosts — XNS host name mapping file xnshosts(5i)
idmsymbol, idmwsymbol — return name of IDM symbol or WITH nodec...... idmsymbol(3i)
— main/ xalloc, zalloc, savestr, xfree, newmpool, mergempool, freempool, showmpool xalloc(3i)
irnext — check for next executed statement irnext(3i)
— return name of IDM symbol or WITH node idmsymbol, idmwsymbol..........ccccerveevirivunncns idmsymbol(3i)

3.2-86/09/09-R3v5m0 Britton-Lee 10

PTX (01) Britton Lee PTX (0I)

build an IDM tree node, VAR node, or ROOT node itnode, itvar, itroot — itnode(3i)
itroot — build an IDM tree node, VAR node, or ROOT node itnode, itvar,cccccevneecnnces itnode(3i)
itvar, itroot — build an IDM tree node, VAR node, or ROOT node itnode,................ itnode(3i)
atos, atol — convert characters to numbers atof, atof(3i)
— do sophisticated output editing of numeric string stredit stredit(3i)
onexit, offexit — transfer control on exitcceeeerueucnene. onexit(3i)
exit onexit, offexit — transfer control oncevcenenee onexit(3i)
ifopen — open a file ifopen(3i)
iropen — open an IDMRUN structure for useccoceennenee iropen(3i)
ieopen, ieclose — open and close IENV's (IDM environments) . ieopen(3i)
strien, strchr, strrchr — string operations /strepy, strncpy, strmepy,.......... . string(3i)
ircancel — cancel current operations on an IDMRUN structurecec.cu... ircancel(3i)
iecontrol — perform control operations on environments iecontrol(3i)
ifcontrol — perform control operations on files ifcontrol(3i)
— communicate with the system operator /askoperator, hasoperator.............ccccerruenene operator(3i)
iesetopt, ieclropt — set or clear options iesetopt(3i)
itapeopts — parse IDM tape options itapeopts(3i)
itaddopts — add options bytes to a tree itaddopts(3i)
coversheet — a message to our readers Ocover(0i)
ifprintf, sprintf, tprintf — formatted output conversion printf, printf(3i)
stredit — do sophisticated output editing of numeric stringcecevevenee.eeen. stredit(3i)
fmtclock, fmtdate, fmtintvl — date/time output formatting fmtclock(3i)
fmtfloat — internal floating-point output formatting routine fmtfloat(3i)
tfset, tf, tlev, DPRINTF — trace package t1(3i)
— read ERROR, MEASURE, and DONE packets from the database server igetdone igetdone(3i)
getparam, setparam — get/set a system parameter getparam(3i)
— default .IR getparam (3I) parameter file /usr/lib/idm/params..........ccccoovuec.. params(5i)
pextract — extract parameter value from list pextract(3i)
iridl — parse IDL statements irid(3i)
itapeopts — parse IDM tape options itapeopts(3i)
irsql — parse SQL statements irsql(3i)
irexec — execute parsed IDL statements irexec(3i)
conversion parsedate — free-format date/timecce.u.... parsedate(3i)
IDL (Intelligent Database Language) parser idl — Ad hoc interactivecccceoereruruccececnes idi(1i)
sql — Interactive/SQL parser sqi(1i)
gethunpw — get host user name and password gethunpw(3i)
login relation idmpasswd — set password in the shared database system idmpasswd(1i)
getpass — get password securely from terminal getpass(3i)
pmatch — text pattern matching pmatch(3i)
keylook, usage — perform binary search on a given table keylook(3i)
iecontrol — perform control operations on environments . iecontrol(3i)

ifcontrol — perform control operations on filescccccoruneee. ifcontrol(3i)
iesubst — perform substitutions in environments iesubst(3i)
irsubst — perform substitutions in treescoeeuennenenen. irsubst(3i)
ptx — permuted index 1binptx(0i)
list pextract — extract parameter value from pextract(3i)
IftLoTerm — physical terminal file type iftloterm(4i)
pmatch — text pattern matchingccooeevveverennee pmatch(3i)
ifdump — dump an IDMLIB file pointer for debugging ifdump(3i)
anyprint, anyfmt — print or format any possible type for printing anyprint(3i)
ric - precompiler for embedding IDL in Cceeeveunee ric(1i)
rac — precompiler for embedding SQL in C rac(1i)
precompiler input) syntax to .ric (RIC precompiler input) syntax /.idm (IDEL... idel2ric(1i)
Idel2ric — convert .idm (IDEL precompiler input) syntax to .ric (RIC/ . idel2ric(1i)
RCDBNAME — macros for RIC and RSC precompiler source files /RCDEVICE, ... initre(3i)
syserr — print a fatal system error and abort syserr(3i)
itprint — print a tree for debugging itprint(3i)
— take apart an argument vector or print a usage message crackargv, usage........ccceeueen. erackargv(3i)
debugging itlprint — print IDM target list (ITLIST) forcccoeurceusenee . itlprint(3i)

printing anyprint, anyfmt — print or format any possible type for anyprint(3i)

IDM transaction logs are complete and print their time stamps. [~ Verifyc.cccceveercerrenese idmeklog(1i)

tupsetup, tupsep, tuphead, tupprint — print tuples tupprint(3i)
formatted output conversion printf, ifprintf, sprintf, tprintf —ccrvrveeurnnns printf(3i)

— print or format any possible type for printing anyprint, anyfmt anyprint(3i)

3.2-86/09/09-R3v5m0 Britton-Lee 11

PTX (0I) Britton Lee PTX (0I)
and Machine-Dependent Commands and Procedures Introduction to Administrative............. 8intro(8i)
backup —~ Shared database system backup procedures using idmdump, idmioad, and/ backup(8i)
ASSERT — verify fixpoints in a program assert(3i)
exit — terminate program exit(3i)
idlfparse — build query trees from IDL program input idlparse, idlparse(3i)
sqlfparse — build query trees from SQL program input sqlparse, sqlparse(3i)
elements irbind — bind program variables to retrieved target list irbind(3i)
getprompt — get string with a prompt getprompt(3i)
IFPUTC, ifpute — put a byte to a file ifpute(3i)
ifungete — put a character back into input buffer ifungete(3i)
ifputs — put a string on a text file ifputs(3i)
iputtree — put a tree to the database serverccceceeuennen. iputtree(3i)
database server iputtup — put a tuple from a target list to the iputtup(3i)
itgstmt — build a tree for a general query statement itgstmt(3i)
idlparse, idlfparse — build query trees from IDL program input idlparse(3i)
sqlparse, sqlfparse — build query trees from SQL program input sqlparse(3i)
Release 3 R2toR3 - convert Release 2 source to .. . r2tor3(1i)
source files rccount — subroutine for RSC and RIC recount(3i)
INITRC, lN]TRIC INITRSC, RCDEVICE, RCDBNAME — macroe for RIC and RSC/ initre(3i)
RSC precompiler/ INITRC, INITRIC, INITRSC, RCDEVICE, RCDBNAME — macros for RIC and initre(3i)
ifread — read a block of memory ifread(3i)
igettl, itifree — read a target list from a database server igettl(3i)
the database server igetdone — read ERROR, MEASURE, and DONE packets from igetdone(3i)
coversheet — 8 message to our readers Ocover(0i)
shared database/ idmread, idmwrite — read/write files between the host and the idmread(1i)
isleep — sleep for a real-time interval isleep(3i)
- format and copy data to or from a relation idmfcopy “idmfeopy(1i)
in the shared database system login relation idmpasswd - set password...............cocu...... idmpasswd(1i)
and the host idmcopy - copy relation(s) between the database server idmeopy(1i)
UNSIGN — remove sign-extension bits from a byte unsign(3i)

irreopen — reopen an IDMRUN structure

dumptape - report on contents of an ANSI tape ...

— convert to and from user tree (UTREE) representations itiutree, ituitree
retcode — return/status/error code

or/ /errclass, RETSUCCESS, RETWARNING, RETERROR — get, clear, set, classify,
irbind — bind program variables to retrieved target list elements

— get type and name information about a retrieved target-list element irdesc
irfetch — fetch a retrieved tuple

.. irreopen(3i)
.. dumptape(8i)
.. utree(3i)

. retcode(5i)

geterr(3i)
irbind(3i)
irdesc(3i)
irfetch(3i)

[clrerr, seterr, errstring, errclass, RETSUCCESS, RETWARNING, RETERROR — get,/ geterr(3i)

idmsymbol, idmwsymbol — return name of IDM symbol or WITH node

retcode — return/status/error code

/seterr, errstring, errclass, RETSUCCESS, RETWARNING, RETERROR — get, clear, set,/
ric - precompiler for embedding IDL in C

/RCDEVICE, RCDBNAME — macros for RIC and RSC precompiler source files
(IDEL precompiler input) syntax to .ric (RIC precompiler input) syntax /.idm....
/.idm (IDEL precompiler input) syntax to .ric (RIC precompiler input) syntax
rccount — subroutine for RSC and RIC source files
idmrollf - roll forward a transaction 10gccceeeveevuecuenneneen

— build an IDM tree node, VAR node, or ROOT node itnode, itvar, itroot
internal floating-point output formatting routine fmtfloat —
rsc — precompiler for embedding SQL in C

rccount — subroutine for RSC and RIC source files

RCDEVICE, RCDBNAME — macros for RIC and RSC precompiler source files /INITRSC
freempool, showmpool —/ xalloc, zalloc, savestr, xfree, newmpool, mergempool
keylook, usage — perform binary search on a given table

getpass — get password securely from terminal

BITSET — test to see if a bit is set

and DONE packets from the database server igetdone — read ERROR, MEASURE

— read a target list from a database server igettl, itlfree
iputtree — put a tree to the database server

a tuple from a target list to the database server iputtup — put
- copy relation(s) between the database server and the host idmcopy
igettup — get a tuple from a database server into a target list
BITSET — test to see if a bit is set

.................

3.2-86/09/09-R3v5m0 Britton-Lee

idmsymbol(3i)
retcode(5i)
geterr(3i)
rie(1i)
initre(3i)

. idel2rie(1i)

idel2ric(1i)
recount(3i)
idmrollf(1i)
itnode(3i)
fmtfloat(3i)
rse(li)
recount(3i)
initre(3i)
xalloe(3i)
keylook(3i)
getpass(3i)
bitset(3i)
igetdone(3i)
igett](3i)
iputtree(3i)
iputtup(3i)
idmeopy(1i)
igettup(3i)
bitset(3i)

12

PTX (0I) Britton Lee PTX (0I)

/RETWARNING, RETERROR — get, clear, set, classify, or interpret error codes geterr(3i)
iesetopt, ieclropt — set or clear options iesetopt(3i)
beopy, bfill, bzero, STRUCTASGN — copy, set, or zero a block of memoryccecerereeccrnencne beopy(3i)
login relation idmpasswd — set password in the shared database system idmpasswd(1i)
database system idmdate - set the date and/or time on the shared idmdate(1i)
irset — set values into the IDMRUN structure ... irset(3i)
RETWARNING, RETERROR —/ geterr, clrerr, seterr, errstring, errclass, RETSUCCESS, geterr(3i)
getparam, setparam — get/set a system parameter getparam(3i)
sgrep — structured grep sgrep(8i)
idmdate — set the date and/or time on the shared database system idmdate(1i)
read/write files between the host and the shared database system /idmwrite —............. ... idmread(1i)
using idmdump, idmload, and/ backup — Shared database system backup procedures backup(8i)
idmpasswd - set password in the shared database system login relation idmpasswd(1i)
/xfree, newmpool, mergempool, freempool, showmpool — main memory allocator xalloc(3i)
UNSIGN — remove sign-extension bits from a bytec................ unsign(3i)
isleep — sleep for a real-time interval isleep(3i)
string stredit — do sophisticated output editing of numeric stredit(3i)
— macros for RIC and RSC precompiler source files /INITRSC, RCDEVICE, RCDBNAME initre(3i)
rccount — subroutine for RSC and RIC source files recount(3i)
R2toR3 - convert Release 2 source to Release 3 r2tor3(1i)
ifscrack, ifstype — crack file specification string ifscrack(3i)
conversion printf, ifprintf, sprintf, tprintf — formatted output printf(3i)
sql - Interactive /SQL parser sql(1i)
rsc — precompiler for embedding SQL in C rac(1i)
sqlfparse — build query trees from SQL program input sqlparse, sqlparse(3i)
' irsql — parse SQL statements irsql(3i)
program input sqlparse, sqlfparse — build query trees from SQL sqlparse(3i)
from SQL program input sqlparse, sqlfparse — build query trees sqlparse(3i)

logs are complete and print their time stamps. /- verify IDM transaction . idmcklog(1i)

libistdio.s — standard I/O compatibility library istdio(3i)
ansitape - write files on an ANSI standard labelled tape ansitape(8i)
inittape - initialize ANSI standard labelled tape: inittape(8i)
xdump — dump bytes in hexadecimal to standard trace xdump(3i)
irnext — check for next executed statement irnext(3i)
— build a tree for a general query statement itgstmt itqetmt(3i)
irexec — execute parsed IDL statements irexec(3i)
iridl — parse IDL statements iridi(3i)
irsql — parse SQL statements irsql(3i)
IFERROR, ifeof, IFEOR — file status inquiries iferror(3i)
irxprog, irxsetp — arrange to execute a stored command irxemd, irxemd(3i)
itxsetp — build trees to execute stored commands/programs itxemd, itxprog, itxemd(3i)
strocpy, strmepy, strien, strchr, strrchr/ streat, strncat, stremp, strocmp, strepy, string(3i)
/strncmp, strepy, strocpy, strmepy, strien, strehr, strrchr — string operations string(3i)
strlen, strchr, strrchr/ streat, strncat, stremp, strncmp, strepy, strnepy, strmepy, ... string(3i)
strrchr/ streat, strncat, stremp, strnemp, strepy, strnepy, strmepy, strien, strehr, string(3i)
IftScan, TK_PSEUDO — break an input stream up into tokens iftscan(4i)
editing of numeric string stredit — do sophisticated outputcoceueueenee stredit(3i)
— fold upper to lower case in a string foldcase foldease(3i)
ifstype — crack file specification string ifscrack, ifscrack(3i)
do sophisticated output editing of numeric string stredit — stredit(3i)
IftString — in-core string file type iftstring(4i)
ifputs — put a string on a text file ifputs(3i)
strmepy, strlen, strchr, strrchr — string operations /strepy, strnepy,.......cccceeereverenenns string(3i)
getprompt — get string with a prompt getprompt(3i)
/stremp, strncmp, strepy, strocpy, strmepy, strien, strchr, strrchr — string/cccovcveecuenennncnn. string(3i)
/strncat, stremp, strnemp, strepy, strocpy, strmepy, strlen, strchr, strrchr —/ e ... string(3i)
strmepy, strlen, strchr, strrchr/ streat, stroncat, stremp, strncmp, strepy, stracpy, string(3i)
strchr, strrehr/ streat, strncat, stremp, stracmp, strepy, stracpy, strmepy, strlen, .. . string(3i)

streat, strncat, stremp, strncmp, strepy, strocpy, strmepy, strien, strehr, strrehr/ string(3i)

strcpy, strncpy, strmcepy, strlen, strchr, strrchr — string operations /strocmp,ccocccecremence. string(3i)
of memory beopy, bfill, bzero, STRUCTASGN — copy, set, or zero a block beopy(3i)
cancel current operations on an IDMRUN structure ir 1 — ircancel(3i)
irclose — close an IDMRUN structure irclose(3i)
irget — get information from the IDMRUN structure irget(3i)

3.2-86/09/09-R3v5m0 Britton-Lee 13

PTX (0I)

3.2-86/09/09-R3v5m0

irreopen — reopen an IDMRUN structure
irgset — set values into the IDMRUN structure
ITREE — IDM tree data structure
irdump — dump an IDMRUN structure for debugging
iropen — open an IDMRUN structure for use

~ sgrep - structured grep
rccount — subroutine for RSC and RIC source files
iesubst — perform substitutions in environments
irsubst — perform substitutions in trees
helpsys — interactive help subsystem
idmhelp — access the IDM Help Subsystem
Host Software Release 3 Introduction and Summary /Integrated Database Management
IDM Support Library (IDMLIB) summary; INITIDMLIB
Lee Integrated Database Management (IDM) support commands /to Release 3 Britton
INITIDMLIB — initialize the IDM support library
INITIDMLIB IDM Support Library (IDMLIB) summary;
mapsym — translate symbol name into integer value
idmwsymbol — return name of IDM symbol or WITH node idmsymbol,
/usr/libfidm/symfile — symbol to integer value mapping file ..
syntax to .ric (RIC precompiler input) syntax /.idm (IDEL precompiler input)...................
/- convert .idm (IDEL precompiler input) syntax to .ric (RIC precompiler input)/ ..
sysedit — call system editor on a file
abort syserr — print a fatal system error and

getpass — get password securely from terminal
maketerm — compile a terminal descriptor
IftLoTerm — physical terminal file type
IftTerm — terminal file type
exit — terminate program
BITSET — test to see if a bit is set
buildmsgs — build keyed message text file
ifgets — get a line from a text file
ifputs — put a string on a text file
pmatch — text pattern matching
tfset, tf, tflev, DPRINTF — trace package
tfset, tf, tlev, DPRINTF — trace package
package tfset, tf, tievy, DPRINTF — trace

Britton Lee

.................................

.........

................

sysshell — execute system command

date and/or time on the shared database system idmdate — set the.
between the host and the shared database system /idmwrite — read/write files
idmload, and/ backup — Shared database system backup procedures using idmdump,
sysshell — execute system command

sysedit — call system editor on a file

syserr — print a fatal system error and abort

- set password in the shared database system login relation idmpasswd
hasoperator — communicate with the system operator /askoperator,
getparam, setparam — get/set a system parameter

— perform binary search on a given table keylook, usage
usage message crackargy, usage — take apart an argument vector or print a

write flles on an ANSI standard labelled tape ansitape -
dumptape — report on contents of an ANSI tape

........................

— get DONE blocks until end of IDM tape igeteot, itapeload
- initialize ANSI standard labelled tape inittape

IftLTape — ANSI labeled tape file type
itapeopts — parse IDM tape options

get a tuple from a database server into a target list igettup —

' ITLIST — IDM target list descriptor

— bind program variables to retrieved target list elements irbind
igettl, itlfree — read a target list from a database server

itlprint — print IDM target list (ITLIST) for debugging

iputtl — write a target list to a file

iputtup — put a tuple from a target list to the database server

and name information about a retrieved target-list element irdesc — get type...
— communicate with the system operator telloperator, askoperator, hasoperator

..........................

tempname — create a unique file name

Britton-Lee

.........................

PTX (0I)

irreopen(3i)
irset(3i)
itree(5i)
irdump(3i)
iropen(3i)
sgrep(8i)
recount(3i)
iesubst(3i)
irsubst(3i)
helpsys(3i)
idmhelp(1i)
Obinintro(0i)
3intro(3i)
lintro(1i)
initidmlib(3i)
3intro(3i)
mapsym(3i)
idmsymbol(3i)
symfile(5i)
idel2ric(1i)
idel2ric(1i)
sysedit(3i)
syserr(3i)
sysshell(3i)
idmdate(1i)

idmread(1i)

backup(8i)
sysshell(3i)
sysedit(3i)
syserr(3i)
idmpasswd(1i)
operator(3i)
getparam(3i)
keylook(3i)
crackargv(3i)
ansitape(8i)
dumptape(8i)
igeteot(3i)
inittape(8i)
iftitape(4i)
itapeopts(3i)
igettup(3i)
itlist(5i)
irbind(3i)
igettl(3i)
itlprint(3i)
iputtl(3i)
iputtup(3i)
irdesc(3i)
operator(3i)
tempname(3i)
getpass(3i)
maketerm(8i)
iftloterm(4i)
iftterm(4i)
exit(3i)
bitset(3i)
buildmsgs(8i)
ifgets(3i)
ifputs(3i)
pmatch(3i)

14

PTX (0I) Britton Lee PTX (0I)

transaction logs are complete and print their time stamps. idmcklog - verify IDM............... idmecklog(1i)
/datetoclock, diffclock, IDMTOTICKS, TICKSTOIDM — date/time manipulation . getclock(3i)
idmdate — set the date and/or time on the shared database system idmdate(1i)
logs are complete and print their time stamps. /- verify IDM transaction....... ... idmcklog(1i)
into tokens IftScan, TK_PSEUDO — break an input stream wp iftscan(4i)
/ISCHAR, ISPMATCH, ISZWIDTH, ISKANJI, TOCHAR, TOUPPER, TOLOWER — character/ bytetype(3i)
IDONE — IDM DONE token idone(5i)
idmtokens — values of IDM communication tokens idmtokens(5i)
— break an input stream up into tokens IftScan, TK_PSEUDO............ ceereressssinaaes iftscan(4i)
/ISZWIDTH, ISKANJI, TOCHAR, TOUPPER, TOLOWER — character classificacccco....... bytetype(3i)
/ISPMATCH, ISZWIDTH, ISKANIJI, TOCHAR, TOUPPER, TOLOWER — character classifica bytetype(3i)
printf, ifprintf, sprintf, tprintf — formatted output conversion printf(3i)
— dump bytes in hexadecimal to standard trace xdump xdump(3i)
tfset, tf, tflev, DPRINTF — trace package t1(3i)
idmdump - dump database and transaction log idmdump(1i)
idmload - load database or transaction log idmload(1i)
idmrollf - roll forward a transaction log idmrollf(1i)
idmckload - verify database or transaction log data files idmckload(1i)
their time stamps. idmcklog ~ verify IDM transaction logs are complete and print idmeklog(1i)
onexit, offexit — transfer control on exit onexit(3i)
mapsym — translate symbol name into integer value mapsym(3i)
itaddopts — add options bytes to a tree itaddopts(3i)
ITREE — IDM tree data structure itree(5i)
itgstmt — build a tree for a general query statement itgstmt(3i)
itcopy — build tree for bulk copy function itcopy(3i)
itprint — print a tree for debugging itprint(3i)
itdefine — create tree for define command itdefine(3i)
itnode, itvar, itroot — build an IDM tree node, VAR node, or ROOT node itnode(3i)
iputtree — put a tree to the database server iputtree(3i)
ituitree — convert to and from user tree (UTREE) representations itiutree, utree(3i)
irsubst — perform substitutions in trees . irsubst(3i)
/itdbload, ittxload, itrollf — build trees for database administration/c..ceeeerunens dba(3i)
idlparse, idifparse — build query trees from IDL program input idlparse(3i)
sqlparse, sqlfparse — build query trees from SQL program input sqlparse(3i)
itxernd, itxprog, itxsetp — build trees to execute stored commands/programs itxemd(3i)
tupsetup, tupsep, tuphead, tupprint — print tuplescccceeueenenen.. tupprint(3i)
irfetch — fetch a retrieved tuple irfetch(3i)
list igettup — get a tuple from a database server into a target igettup(3i)
server iputtup — put a tuple from a target list to the database iputtup(3i)
tupsep, tuphead, tupprint — print tuples tupsetup, tupprint(3i)
irflush — flush tuples for current command irflush(3i)
tupsetup, tupsep, tuphead, tupprint — print tuples tupprint(3i)
tuples tupsetup, tupsep, tuphead, tupprint — printcccccereeuenenee. tupprint(3i)
print tuples tupsetup, tupsep, tuphead, tupprint — tupprint(3i)
IftHFile — host file file type ifthfile(4i)
Iftldm — IDM channel file type iftidm(4i)
IftIFile — IDM file file type iftifile(4i)
IftKeyed — keyed host file type iftkeyed(4i)
IftLoTerm — physical terminal file type . iftloterm(4i)
IftLTape — ANSI labeled tape file type iftitape(4i)
IftMText — Message-text file type iftmtext(4i)
IftString — in-core string file type iftstring(4i)
IftTerm — terminal file type iftterm(4i)
retrieved target-list/ irdesc — get type and name information sbout accccuuene. irdesc(3i)
typecnvt, cktypecnvt — generalized type conversion typecnvt(3i)
anyfmt — print or format any possible type for printing anyprint, anyprint(3i)
—dsctoidm, _idmtodsc — descriptor-based type (iDSC) conversion hooksccceeereneen S dsc(3i)
IDM file type introduction and implementation 4intro(4i)
conversion typecnvt, cktypecnvt — generalized type typecnvt(3i)
tempname — create a unique file name tempname(3i)
from & byte UNSIGN — remove sign-extension bitscceen.. unsign(3i)
igeteot, itapeload — get DONE blocks until end of IDM tape igeteot(3i)
TK_PSEUDO — break an input stream up into tokens IftScan, iftscan(4i)
foldcase — fold upper to lower case in 8 8tringcccoceeeeecnennanen. foldcase(3i)

3.2-86/09/09-R3v5m0 Britton-Lee 15

PTX (0I) Britton Lee PTX (0I)
given table keylook, usage — perform binary search on a keylook(3i)
or print a usage message crackargv, usage — take apart an argument vector crackargv(3i)
take apart an argument vector or print a usage message crackargv, usage —..........ccceceeeruenes crackargv(3i)
iropen — open an IDMRUN structure for use iropen(3i)
username — get user name username(3i)
gethunpw — get host user name and password gethunpw(3i)
/ituitree — convert to and from user tree (UTREE) representationscccccoue.e.. utree(3i)
username — get user name username(3i)
Shared database system backup procedures using idmdump, idmload, and idmrollf /-............... backup(8i)
getparam (3I) parameter file /usr/lib/idm/params — default .IR ... params(5i)
integer value mapping file /usr/lib/idm/symfile — symbol toccceervurureunee symfile(5i)
mapping file /usr/lib/idm/xnshosts — XNS host name xnshosts(5i)
— convert to and from user tree (UTREE) representations /ituitree..............ccccuucu... utree(3i)
— translate symbol name into integer value mapsym mapsym(3i)
pextract — extract parameter value from list pextract(3i)
— symbol to integer value mapping file /usr/lib/idm/symfile.................. symfile(5i)
irset — set values into the IDMRUN structure irset(3i)

idmtokens — values of IDM communication tokens ..
itvar, itroot — build an IDM tree node, VAR node, or ROOT node itnode,....
elements irbind — bind program variables to retrieved target list

... idmtokens(5i)
... itnode(3i)
. irbind(3i)

/usage — take apart an argument vector or print a usage message crackargv(3i)
files idmckload — verify database or transaction log dats idmekload(1i)
ASSERT — verify fixpoints in s program assert(3i)
and print their time stamps. idmcklog — verify IDM transaction logs are complete idmcklog(1i)
isforegnd — are we in foreground (interactive)?cccocvenrrvcnncnee isforegnd(3i)
ifwrite — write a block of memory ifwrite(3i)
iputtl — write a target list to s file iputtl(3i)
tape ansitape — write files on an ANSI standard labelled ansitape(8i)
mergempool, freempool, showmpool —/ xalloe, zalloc, savestr, xfree, newmpool, xalloc(3i)
standard trace xdump — dump bytes in hexadecimal to xdump(3i)
showmpool —/ xalloc, zalloc, savestr, xfree, newmpool, mergempool, freempool, xalloc(3i)
/usr/lib/idm /xnshosts — XNS host name mapping file xnshosts(5i)
idmidyd — IDM XNS identify daemon idmidyd(8i)

mergempool, freempool, showmpool/ xalloc, zalloc, savestr, xfree, newmpool,
bzero, STRUCTASGN — copy, set, or zero a block of memory bcopy, bfill,

3.2-86/09/09-R3v5m0 Britton-Lee

xalloc(3i)
beopy(3i)

16

INTRODUCTION (11) Britton Lee INTRODUCTION (1I)

NAME
Introduction to Release 3 Britton Lee Integrated Database Management (IDM) support commands

DESCRIPTION
Section 1J describes the UNIX command line syntax for the Release 3 Britton Lee IDM support
commands. These commands provide direct access to the IDL and SQL languages and database
administrator utilities.

PARAMETERS
A number of system parameters can be set in the environment. For example, the command:
setenv IDMDEV /dev /testidm (csh)
- Or -
IDMDEV=/dev /testidm; export IDMDEV (sh)

will set the parameter IDMDEV to have the value ‘“/dev/testidm” for all subsequent commands.
Parameters without an explicit setting are given a default. See params(5i) for a complete descrip-
tion of the following parameters. Useful parameters (and their usual default value, shown in
square brackets) are:

EXPERIENCE |beginner] The experience level of the user, chosen from “beginner,” “able,” or
‘“expert,” with case ignored. Only the first character is checked, so “expert,”
“Expert,” “e,” and “Excalibur” are the same.

IDMDRIVER [0} An index into a driver table for the database server. Driver zero is the stan-
dard driver. On most systems, driver one is the standalone serial driver.
Drivers other than zero are normally used for experimental protocols. Consult
your site manager for details.

IDMDEV [/dev/idm] The name of the file used to connect to the database server. If
IDMDRIVER is not zero, this parameter may be interpreted differently or
ignored.

TERM [dumb] The type of the terminal being used. On most UNIX systems, this is set
automatically when you log in. On Berkeley UNIX systems, see tset(1) for
details.

QRYLANG [xdl] The query language you normally use: “idl” or “sql.” This affects the word-
ing of messages. The sdl(1I) program always sets this to “idl;” sql(1I) always
sets this to “sql.” The setting of this vanable in no way limits the query
language you can use.

FLAGS
Flags that have values may or may not have a space between the flag and the value as con-
venient.

Several flags are available on almost all commands as noted in the individual command descrip-
tions:

-Bdevice The IDMDEV setting. For example, “idl -B /dev/newidm” runs tdl using
“/dev/newidm” as the interface to the database server, regardless of the setting
of the IDMDEYV variable.

~Ttraceflags Trace flag settings; see f{3I) for details.
-P Turn on performance monitoring. This turns on the following IDM system

options:

33 ORESP Response time
34 oCPU Database server CPU use
37 oINP Input wait

3.20-88/03/02-R3v5m9 Britton Lee 1

INTRODUCTION (1I) Britton Lee INTRODUCTION (1I)

38 oMEM Database server memory wait
39 oCPUW Database server CPU wait
40 oDISK Database server disk wait
41 oTAPE Database server tape wait
42 oOUTW Output wait
43 oBLOCK Blocked wait (for locks)
44 oDAC Database Accelerator use
45 oOUTC Output buffer wait
46 oHITS Database server disk cache hits
47 oREADS Database server disk reads
48 OTPERRS Soft tape errors
. 49 oQRYBUF Bytes of query buffer used
60 oPLAN Decomposition plans

FILE SPECS

Names of files on many commands can be given using a file spec, that is, a combined file name,
type, and parameter indication. The syntax:

filename%%type,params

specifies the given filename of the selected type modified by the params. Type can be selected
from hfile (host file, see ifthfile(41)), ifile (IDM file, see iftifile(4])), htape (host [ANSI] tape, see
tftitape(4])), and itape (IDM tape, see stapeopts(3I)). If a type is not given, hfile is assumed. See
tfscrack(3I) for details. Filename for IDM files containing a ‘:’ specify filename:owner. Filename
is unused on IDM tape.

Parameters are specified using a comma-separated list of name(value) pairs. Valid parameters are
documented in ¢fcontrol(3I), ifopen(3I) and section 4I.

If the required commas are omitted between each parameter, parameters after the missing comma
will be ignored and default values used instead. Be sure to put a comma after the file type and
before the params when specifying parameters.

Tape parameters are chosen from the list:

mode(M) I/O mode; M may be ‘r’ (read), ‘W’ (overwrite), or ‘a’ (append). Britton Lee
utilities that read tapes (e.g., <dmload(1I)) default to ‘r’; utilities that write tapes
(e.g., tdmdump(1I)) default to ‘a’ on host tape (i.e., create a new file on the end
of the tape) and ‘w’ on IDM tape (overwrite).

volume(VL) A comma-separated list of the names of the volumes in this set. If specified, the
header of each tape is read and verified before the tape is used. If not specified
any volume is accepted. Only the first volume is checked on IDM tape. Tape
reads will always check volume names on tapes 2-n (but not 1).

fileset(FS) The name of the fileset to check. Host tape only. If not specified, the fileset
name is not checked.

newname(V) The new volume name to write on the tape to replace the existing name. Can
only be used in ‘W’ mode. If not specified, the volume name is unchanged. New
IDM tapes (tapes not previously written by the IDM/RDMBS software) must be
given a new name. IDM tape only.

fileno(N) The file number to access. Only used in read mode on IDM tape. If not
specified file zero is assumed on IDM tape, or the filename is used on host tape.
Note that files are numbered from zero on IDM tape and one on host tape. The
fileno and filename must match if both are specified on host tape. This option
is ignored when writing an IDM tape.

3.20-88/03/02-R3v5m9 Britton Lee 2

INTRODUCTION (11)

unit(N)
density(D)

length(L)

bs(N)

format(F)

erase

xlate(X)

norewind

verify(B)

AUTHENTICATION

Britton Lee INTRODUCTION (11)

The unit number to access. Zero by default.

The tape density in BP1. Host tape only (on IDM tape this is determined from
the “configure” relation). If not specified, a system default is used.

The length of the tape in feet. Host tape only. Ignored on some systems. The
UNIX implementation of tnittape(8I) writes the tape length into a UVL1 label,
which will override this parameter. The tape length is reduced by approxi-
mately 4% to allow for possible tape errors and variations in interrecord gap
size.

The (maximum) block size. Ignored in read mode if it can be determined from
the tape header. Host tape only. If not specified, 2048 is used. Block sizes
larger than 2048 exceed ANSI Standards X3.22-1978 and X3.39-1973 and hence
may be incompatible with other systems.

The format of this file. Supported formats are ‘F’ for fixed length records and
‘D’ for variable length records. UNIX also supports ‘U’ for undefined; this for-
mat roughly resembles a stream. Idmfcopy(1l) defaults to format ‘D’ and
tdmdump(1I), sdmload(1]) and fdmcopy(1I) default to ‘U’ on UNIX.

Perform a “security erase” of the tape before writing. Only supported on some
drives. Mode ‘w’ must be specified. IDM tape only.

Perform the requested translation of data on the tape. This may be one of
“none” (no translation), “ascii” (translate to ASCII), ‘“ebcdic” (translate to
EBCDIC), “host” (do host translation). The default is “none.” IDM tape only.
Host tape is always host translated.

Do not rewind tape between writing files. Default is to rewind. IDM tape only.
Norewind is available for writes only in IDM Software Releases 35 and 40.
Norewind applies to both reads and writes in RDBMS Software Release 3.5 and
future RDBMS releases.

Turn on (B = 1) or off (B = 0) tape sequence number verification. Default is
not to verify. This parameter should only be used on tapes previously written
by the IDM/RDBMS software on the database server. Like volume, tape reads
will automatically verify the sequence numbers on tapes 2-n. IDM tape only.

If your shared database system is configured to require user authentication, you may be
prompted for a password the first time the database is opened. The password can be set or
changed using tdmpasswd(1I).

On some systems it may be possible to set a default password. This will only be permitted if the
password can be securely stored on the host.

NOTE

System V Release 2.0 (running on 3B series) does not provide access to basic tape operations.
Therefore support of ANSI labeled tape (htape) is unavailable at this time.

SEE ALSO

idmpasswd(11), getparam(3I), ifscrack(3I), itapeopts(3I), tf(3I), ifthfile(4I), iftifile(4I), iftltape(4I),
esh(1), sh(1), tset(1)

3.24-88/02/29-R3v5m8

Britton Lee 3

IDL (1I) Britton Lee IDL (1I)

NAME
idl - Ad hoc interactive IDL (Intelligent Database Language) parser

SYNOPSIS
idl [-B device | [-P | [—e | [—a] [T infile] [-] linesperpage] [-n] [—p] [-8] [dbname |
ARGUMENTS

~Bdevice Use device as the connection to the database server.

-P Turn on performance monitoring. Individual performance options can be set
using the set pseudo-IDL command.

-a Turn off auto-association. See %associate below.

—e Echo every command as read. This can be useful when redirecting the input of

the parser. In this case, the input commands as well as the replies will go into
the output file.

—finfile Input file name. If not specified, read the standard input in interactive mode.

—llinesperpage Set the number of lines per page for output formatting. When data is being
retrieved, a new header will be printed sufficiently frequently to insure that
column labels are always visible. If linesperpage is zero, only the initial header
will be printed. If not specifed, the terminal driver (IftTerm(4])) is queried.

-n Parse commands but don’t execute them. The connection to the database server
will not be opened. Front-end commands (e.g., %input) and range statements
will still be executed. This can be used to verify an input script that is to be

run later. '
-p Disable the reading of user and system profile (or startup) files.
-8 Run the parser in silent mode. Turns off prompting, printing of IDL banner and
elaborate printing of syntax errors.
, dbname The name of the initial database to open.
DESCRIPTION

Idl implements the IDL query language. Queries typed at a terminal are translated, processed by
the shared database system, and results are formatted and printed.

If the —f flag is specified, input is read from the named file rather than the standard input. File
input is non-interactive, that is, special functions of interest only to the interactive user are dis-
abled and input will be faster.

If the —p is not specifed, system and user profile files are read before user input begins. On
UNIX, these are “/usr/lib/idm/idlpro.idl” and “”/.idlpro.idl” respectively.

The system parameter MAPCC may be used to pass control characters through the IDL front
end. The default is to map control characters to blanks. See params(5I).

Auto association of stored command, relation, and view creation will place the user text into the
descriptions relation of the current database using the associate command. Text starting at the
end of the previous command up to and including the end define or command terminater (i.e.,
“go” or semi-colon) is stored in the tezt field, including comments and newlines, as it appears in
the input. The key field of the relation has a value of iX where X ranges from 0 to 9 and a to Z
to insure the sorting order of the text in the descriptions relation.

See the discussion of the —a flag, above, or the description of the %associate command, below.
See BUGS section for warning about creating many objects within one “go”.

3.24-88/02/29-R3v5m8 Britton Lee 1

IDL (1I) Britton Lee IDL (11)

The following list describes features of Britton Lee’s IDL implementation.

e A “go” or a semicolon terminates all commands and sends them to the IDM/RDBMS
software if no continuation character is set. If a continuation character is set (using the
%continuation command — see below) then each line without a continuation character is sent
immediately to the database server.

e The ‘“‘exit” command exits idl.

e The “reset” command resets the command buffer like the ‘“go” command but does not send
the buffered commands to the database server.

e The “? [topic]” command invokes the help subsystem. See helpsys(3I).
e The “! [shcomm]” command invokes the system shell. See sysshell(3I).

e The commands close, copy, dump database, dump transaction, load database, load
transaction, open file, read file, write file, close file, roll forward, setdate, and set-
time are not implemented here. Separate utilities provide these functions. See tdlparse(3I)
for details.

e The interrupt character (normally delete (a.k.a. rubout) or control-C on UNIX) can be used
to interrupt a command.

e BCD numbers are preceeded by the ‘#’ sign. (eg. “#1234.1234E—10"). BCD’s may have 31
digits total with a decimal point embedded anywhere within the digits These digits are
optionally followed by an ‘E’ or ‘e’ and an exponent from 1022 to —1023.

e Floating point constants must begin with a digit. For example, use “0.1” instead of “.1”.

e The command set option causes the specified IDM system option to be set on all future com-
mands. For example, “set 11” or “set CPU” causes database server CPU time to be
returned. The unset command turns off options.

Commands
A number of front-end specific commands are available. These are all introduced with a percent
sign at the beginning of a line and take effect immediately (i.e., are not buffered to a “go” com-
mand). Abbreviations are allowed for convenience.

%associate [on | off] If there is no argument or if the argument is on auto-association
is enabled, so that the text description of stored commands is
automatically entered into the database (using the associate
command of IDL). If the argument is off then auto-association
is disabled. Auto-association is normally on. See also the -a
flag.

%continuation [char] Set the continuation character to char. Lines ending with the
specified character are not sent directly to the parser. If this
mode is set, the “go” command is not recognized; instead, the
first line that does not end with the continuation character ter-
minates the command. If the char parameter is omitted the
“‘go” mode is reinstated.

Britton Lee strongly discourages use of the continuation charac-
ter. Inadvertently typing a carriage return before a command is
complete may destroy data. You should use the default (“go” or
semicolon) input mode.

%display text Output the tezt to the standard output. This is normally used
in system profile files to provide informational messages to users.

3.24-88/02/29-R3v5m8 Britton Lee 2

IDL (1I) Britton Lee IDL (1I)

%edit [filename] Edit the transcript of the IDL session (or filename if given).
When the editor returns, the file is submitted as input to IDL.
The editor used is defined by the EDITOR parameter. See

params(5I)
%experience level Set the experience to level.
%help Print all immediate commands.
%input [filename] Read the specified filename for IDL commands. When the file

ends (or an “exit” command is encountered) control returns to
the standard input. If filename is not specified, the standard

input is read.
%redo Resubmit the transcript of the IDL session as input to IDL.
Tbshowranges Show the currently defined range variables.
%%substitute name value Assign the name to have the specified value. The “%name” syn-

tax can be used to interpolate the value. This is a substitution,
not a macro, so there are restrictions on where this substitution
can occur. See sdiparse(3]) for details. The value is typed as an
iINT2 if the name begins with a digit, otherwise the value is
typed as an iSTRING (iCHAR).

%trace tracespec Send the tracespec to tfset(3I).
%? Same as Zhelp.

In addition to these commands, two special characters are recognized in the first position of a
line. “?” invokes a help subsystem. It may be followed by a help topic, so “? idl append”
describes the append command. A line beginning with the !’ character passes the remainder of
the line to the UNIX shell.

EXAMPLE

idl -B /dev/gpib hostdb
Invokes IDL on the GPIB interface, database hostdb.

SEE ALSO

BUGS

idlparse(3i), iftterm(4I), IDL Reference Manual, Britton Lee part number 205-1235-rev.

If more than one create and/or define command is submitted to the parser at once, they are all
auto-associated under the relation id of the first object.

There should be some way of controlling the format of the output. A %format command will
probably be added to do this.

The output format should be better adapted to the terminal. For example, output lines that
exceed the terminal width are not wrapped nicely. In particular, the current interface does not
adapt nicely to IBM 3270-style interactions.

It should be possible to write scripts at this level that include looping based on return data so
that simple applications can be prototyped easily.

In general, there should be a very sexy applications development tool available that would include
report capabilities, simple applications generators, etc.

3.4-87/02/03-R3v5m0 Britton Lee 3

IDEL2RIC (11) Britton Lee IDEL2RIC (11)

NAME

Idel2ric — convert .idm (IDEL precompiler input) syntax to .ric (RIC precompiler input) syntax
SYNOPSIS

idel2ric [—r] pgm.idm...

DESCRIPTION
Idel2ric converts files that were written in the dialect used by the old tdel precompiler into the
dialect used by the current ric precompiler. For each sdel source file pgm.tdm a corresponding
pgm.ric file is generated.

If an argument of -r is given, the generated files will have the suffix .r¢, rather than the suffix
.ric. These files can be precompiled by the rc¢ precompiler, a predecessor of ric. The option has no
effect on the contents of the generated files.

The source .tdm files should not provoke any diagnostics from tdel. Idel2ric assumes its inputs
are valid tdel files, and is relatively weak at recovering from syntax errors.

The changes made are the following:
e Semicolons are added to query language statements;
e C variables embedded in database statements get a dollar-sign (“‘$”) prefix;

e Leading dollar signs (“$”) are stripped from continuation lines and lines containing
only curly brackets.

The generated files will need further work before they are ready to run. In particular, you should
edit them to make sure that the first executable statement in the program is INITRIC
("yourprogname”) and that the last executable statement in the main procedure is an

exit{RS_NORM,).
For a more complete conversion from Release 2 1/O and Standard I/O to Release 3 I/O R2toR$
may be used instead of tdel2ric. R2toRS8 will call 1del2ric (without the -r flag).

EXAMPLES
To convert an tdel program myguy.tdm use the command
© idel2ric myguy.idm
Edit the file myguy.ric to make sure the INITRIC and exit are in place and checking out any
lines containing the string %%%.

SEE ALSO
r2tor3(1i)

DIAGNOSTICS
Some tdel syntax errors are diagnosed, but the effort made is pretty feeble.

BUGS/DEFICIENCES
Lines with detected tdel syntax errors evaporate, rather than being passed on to the output file.

User variables used in order by clauses are not converted to the correct relation domain. This is
left for the user to correct by hand.

3.4-87/12/04-R3v5m7 Britton-Lee, Inc. 1

IDMCKLOAD (1I) Britton Lee IDMCKLOAD (1I')

NAME
idmckload — verify database or transaction log data files
SYNOPSIS
idmckload [-B device | [—P | [-1] wdbname srcspec
ARGUMENTS
-Bdevice Use device as the database server connection. See intro(1I) for details.
-P Turn on performance monitoring.
-1 If specified, a transaction log file is verified; otherwise, a database file is verified.
wdbname The working database. If an IDM file is specified in srcspec it will be found in
this database.
srcspec The specification of the input file (see intro(1I)).
DESCRIPTION

Idmckload verifies a database or a transaction log as previously dumped by idmdump(1I).

WARNING
This utility uses with option 28 to the command. If the error ‘“bad with option option: 28” is
returned, then the database server does not have code to support this utility. The mimimum
requirement is D3.5 RDBMS software.

EXAMPLES
idmckload system %itape
Verifies a database data file from IDM tape file 0.
idmckload system ”%itape,fileno(1)”
Verifies a database data file from IDM tape file 1. Since IDM tape files are numbered
sequentially from zero, this is actually the second file on the tape.
idmckload -1 system tuesday.log
Verify transaction log from the host file “tuesday.log.”
SEE ALSO

intro(1I), idmcklog(1I), idmload(1I), idmdump(1I), idmrollf(1I), backup(8I), The section ‘“Backup
and Restore” in the Database Adminsstrator’s Manual

3.3-87/09/25-R3v5m4 Britton Lee 1

IDMCKLOG (11) Britton Lee IDMCKLOG (11)

NAME
idmcklog — verify IDM transaction logs are complete and print their time stamps.
SYNOPSIS
idmcklog | —B device | [—d dbname] loglist
ARGUMENTS
—Bdevice Use device as the database server connection.
—d dbname If set, will print the current time stamp for database dbname.
loglist List of log file specifications to check.
DESCRIPTION

Idmecklog outputs the timestamps found in the headers of the specified transaction logs and reads
the complete log to verify that the last page is present. Logs that are missing the last page
(which may have occured from a user interrupt, host system crash, or database server crash) will
generate an Error exception.

If the —d flag is given, the system database is queried for the current time stamp (found in the
databases relation) for dbname. The ending stamp for the last transaction log dumped should
match this value. Read permission of the system database is required to use this option. Idmck-
log requires one or more transaction log file specs (see ¢ntro(1I) for file specs) which may be host
file or tape specifications.

Currently transaction logs on the database server (IDM files and IDM tape) cannot be checked.
The log could be dumped to host file or host tape and then tdmcklog run on the host copy of the
log.

EXAMPLES

idmcklog —d mydb logl log2 log3%htape
Check transaction logs logl, log2, and log8 (on host labelled tape). The time stamp for
database mydb will be printed out along with the time stamps for the three logs.

SEE ALSO

intro(1I), idmdump(1I).

3.11-87/12/04-R3v5m7 Britton Lee 1

IDMCOPY (11) Britton Lee IDMCOPY (1I)

NAME
idmcopy — copy relation(s) between the database server and the host
SYNOPSIS
idmcopy in|out [—B device | [-P | [—f filespec | [-w wdbname | [-1] [-n] [=p | dbname |
reln ...]
ARGUMENTS
in/out . Copy direction relative to the database: in means to copy into relations; out
means to copy out of relations.
—Bdevice Use device as the database server connection.
-P Turn on performance monitoring.
—f filespec Copy all relations to or from the given filespec (see sntro(11)). IDM files are not

supported. If not specified, host files named reln.d are used.

—~w wdbname Use wdbname as the working database. Currently the main purpose for this is
to use a different IDM tape permission.

-1 Rather than locking the entire relation during copy in, only lock the page being
modified.
-n Do not verify pages as they are copied in. Verification is performed only when

copying in data pages.

. -p Copy out the data in IDM system internal page format. This is more efficient
than the standard (tuple) format. Copy in does not require this flag. the
IDM/RDBMS software will recognize the format as the data is written to the
database server.

dbname The name of the database in which to find the relations to be copied. If —w is
not specified, this is also the working databse.
reln... The list of relations to be copied. If not specified, all user relations are copied.
DESCRIPTION

Idmcopy copies relations in or out of the shared database system. If any relns are listed, then
they are copied; otherwise, all user relations (i.e., objects of type ‘U’) in the database are copied.
If the —f flag is specified, the relations are all copied to or from the named file. Otherwise, host
files named reln.d are used. Note that for tdmcopy in the reln names may contain the trailing .d
so that pattern matching (*.d) can be used (see example below).

If tdmcopy tn is specified, data is copied from filespec or reln.d files to the shared database sys-
tem relations. The relations will be created in the database if they do not already exist. The
reln must match the name of the relation copied out. Idmcopy out copies data from shared data-
base system relations to the named filespec or reln.d files in standard copy (tuple) format. If the
—p option is specified then data is copied in IDM system internal page format. A “:«ser” may be
used on relation names. If so, this tag is removed before the “.d” is appended. For example, a
relation spec of “parts:user” references host file “parts.d.”

Idmecopy to or from IDM files is not supported at this time. To copy IDM files, use idmread or
tdmuwrite (see idmread(1])).
EXAMPLE '

idmcopy out —p —f backup hostdb

Make a copy of all user relations in hostdb in the host file backup formatted as IDM sys-
tem internal pages.

3.11-87/12/04-R3v5m7 Britton Lee 1

IDMCOPY (11) Britton Lee IDMCOPY (11)

idmcopy in hostdb wines stores
Copy host files wines.d and stores.d into relations wines and stores, respectively.

idmcopy in mydb *.d
Copy all files ending with .d in the current directory into the database mydb.

BUGS
Idmcopy out of two relations with the same name but different owners will use the same host file;
the second will override.

SEE ALSO
intro(1I), idmfcopy(11), idmread(11), System Adminsstrator’s Manual

3.7-87/12/04-R3v5m?7 Britton Lee 2

IDMDATE (1I) Britton Lee IDMDATE (11)

NAME
idmdate — set the date and/or time on the shared database system
SYNOPSIS
idmdate | -B device | [-P] [-d] [=t | [daytime]
ARGUMENTS
. -B device Use device as the database server connection.
-P Turn on performance monitoring.
-d Do not set the date.
-t Do not set the time.
daytime The date and time in free format. The syntax is described in parsedate(3I). If
not specified, the host date and time are used. This must be a single parameter,
so it will have to be quoted if it contains spaces.
DESCRIPTION

Idmdate sets the date and time for the shared database management system. If no daytime is
given the date and time are collected from the host.

If —d and ~t are both given, {dmdate does nothing.
Only the DBA of the system database may use this command.

EXAMPLES
idmdate
Set the date and time on the shared database system to the current date and time on the
host.
idmdate —d 5:32pm
Set the time on the IDM to 5:32 P.M.; do not change the date.

BUGS
Since dates are represented in GMT, the “day” as represent.ed by the IDL getdate function can
wrap at strange times (e.g., 4 P.M. on the West coast).

SEE ALSO
parsedate(3I)

3.24-88/02/29-R3v5m8 Britton Lee 1

IDMDUMP (11) Britton Lee IDMDUMP (1I)

NAME
idmdump — dump database and transaction log

SYNOPSIS
idmdump [=B device | [-P | [-1 logname] [=w] [-m mode [clock,waitent] | [—d dbspec | -t
logspec dbname wdbname

ARGUMENTS

~Bdevice Use device as the database server connection.

-P Turn on performance monitoring.

—llogname Specify the name of the transaction log on the shared database system. The
default is “transact”. This argument has no effect if the —d flag is specified,
since only transact can be dumped during a full database dump.

—d dbspec Set the database destination file specification (see sntro(1I)).

—m mode Set the dump mode, only when dumping both the transaction log and the data-
base. Legal modes are r read only and o online or read/write dump. The o
mode will reverse the order in which files are written (see below).

-w Wait until the database is accessible to commit updates, rather than returning
errors to the updating program. Ignored when using the online dump flag.

—tlogspec Set the transaction destination file specification. (see sntro(1I)).

dbname The name of the database to dump.

wdbname Destination database to dump into if dumping within the database server (IDM
file or IDM tape); wdbname must be different from dbname. Wdbname may be
the same as dbname unless the user is dumping to IDM file.

DESCRIPTION

Idmdump dumps the transaction log of database dbname to an IDM file, a host file, IDM tape, or
host ANSI labelled tape. The database may also optionally be dumped.

The database to be dumped is specified as dbname. A “working database” wdbname must also be
specified; it must not be the same database as dbname if dumping to an IDM file. IDM files will
be created in the working database.

The transaction and database destinations are controlled using the —t and —d flags, respectively.
The —t flag must be specified since the transaction log must always be dumped; the database
dump (—d flag) is optional.

Idmdump without a —d flag causes only the transaction log from the database dbname to be
dumped into the file given in logspec. The log name is assumed to be ‘“‘transact” unless specified
by the -1 flag.

If a —d flag is also specified, then the transaction log is dumped as above, followed by the data-
base. The database is dumped to the file specified in dbspec. Note that if the —mo flag is
specified the database is dumped first. The database is locked during the dump (unless using the
—mo option), that is, no other users may update the database during the dump.

If either the log or database is going to IDM tape, then the other cannot be going to the host.
An error will be reported if this is attempted. If both the log and the database are going to IDM
tape, then the tape parameters must be put on the —t flag.

The mode flag —m sets either the read only (—mr) or the online (~mo) dump options available in
Release 40 or newer RDBMS software. Online dump writes pages that are not being modified,
keeping track of those marked as “dirty”. Successive passes are made to write all dirty pages.
The number of these passes and their frequency are user-definable as described below.

3.24-88/02/29-R3v5m8 Britton Lee 1

IDMDUMP (1I) Britton Lee IDMDUMP (11)

The online mode will accept optional clock time and wait count to be used by the database server
in checking for updates not yet complete in the database. The syntax is two comma-separated
integers: <clock>[, <waitent>).

The clock value for an online dump specifies the number of seconds which sdmd¥mp should wait
between passes over the database. The clock value may range between 1-540 seconds and
defaults to 80 seconds.

The wait count is the number of passes to make over the database before new updates are locked
out and may range from 1-20 passes. The default is to make 5 passes.

A warning message is issued when using these options on a transaction only dump. For more
detailed information read the IDM System Status Document for IDM Release 40.

NOTE: the order in which the files are written are reversed. This could create a prob-
lem when loading the database from host or IDM tape if the user is not aware that the
database is now the first file on the tape. If both the log and the database are to idm or
host tape then the first file written to tape is the database followed by the transaction
log.
Idmdump —w will suspend the database dump until all updates active in the database to be
dumped have finished. Normally, if there are updates active, the dump will exit and print an

error message. This flag is ignored if using online dump (—m) or when dumping the transaction
log only.

The —m and —w options are legal only when dumping the database.

A dbspec or logspec specifying an IDM file creates an object of type “T” for the log and type “F”
for the database. These can only be read by idmload(1l), sdmckload(1l), idmrollf(1I), or the
audit command. In particular, the {dmread(1I) command cannot be used to read a dumped tran-
saction log.

EXAMPLES
idmdump —d dbdest -t /dev/null parts system
Dump database “parts” to the host file “dbdest”. The transaction log is not saved.

idmdump -t log%hfile -d db%ifile -mo80,10 parts system
The transaction log is dumped to the host file and the database to IDM file with the online
option set. The clock value is 80 and the waitcnt 10.

idmdump -t log%hfile -d db%ifile -mo80 parts system
The transaction log is dumped to the host file and the database to IDM file with the online
option set. The clock value is 80. The waitcnt defaults to 10.

idmdump -t logsave parts system
The transaction log is dumped to the host file “logsave”.

idmdump -t logsave%ifile -1 logl parts backup
The transaction log is dumped to the IDM file “logsave” in database ‘“backup’ from
IDM file “logl” in database ‘“‘parts”.

idmdump -d %htape -t partslog%ifile -B /dev/gpib parts system
Dump database “parts” using GPIB parallel driver to host tape. The transaction log
is saved in IDM file “partslog” in the system database.

idmdump -t tr%ifile ~d *%htape,bs(8192),density(1600)” parts backup
Dump transaction log to IDM file “tr” in the database “backup” and dump database
“parts” to host tape where the tape block size is 8K and density is 1600 bpi. (Note:
block sizes exceeding 2048 may not be available on all systems.)

3.24-88/02/29-R3v5m8 Britton Lee 2

IDMDUMP (11) Britton Lee IDMDUMP (11)

idmdump -t *%itape,volume(old),newname(new)” —d %itape employees system
Dump database “employees” and the transaction log on IDM tape. Check the name
on the tape first and make sure that it is equal to ‘‘old” then replace it with “new.”
Note that when using IDM tape the database destination name is not needed.

idmdump -t ”elog%ifile,newname(new),mode(a)” —d %itape employees system
Dump database “employees” to the end of IDM tape with the transaction log to IDM
file “elog™.
BUGS
If the dump is suspended when using the —w flag and updates are not yet complete, the user does
not receive error messages until the dump resumes.
SEE ALSO

intro(1I), idmcklog(1I), idmckload(1I), idmload(1I), backup(8I), The section “Backup and }: estore”
in the Database Administrator’s Manual

3.14-88/02/29-R3v5m8 Britton Lee 3

IDMFCOPY (1I)

NAME

Britton Lee IDMFCOPY (11)

idmfcopy — format and copy data to or from a relation

SYNOPSIS

idmfeopy in | -B devname | [-P | [-bN | [—d dataspec | [—eN | [f formfile | [-1 | [-n | |
—r rejectfile | [—eN] [—v] [=w] [dbname [relname | formdesc] |]

idmfcopy out | -B devname | [-P | [—d dataspec | [—eN | [—f formfile | [=v | [—-w] |

dbname [relname | formdesc |]]

ARGUMENTS
in|out

—~Bdevsce
-P
« -bN

—d dataspec

—eN
~fformfile
-1

—rrejectfile

-sN

-V

-w

dbname

relname

3.14-88/02/29-R3v5m8

If in, data is copied from the host to the shared database system. If out, data
is copied from the shared database system to the host.

Use device as the connection to the database server.
Turn on performance monitoring.

Copy records in batches of N records, and commit the copy of each batch
automatically. If the system crashes during a long copy, records that were com-
mitted can be skipped (using the —s flag). If —b is not specified, records will be
committed in batches of 5000. Idmfcopy in only.

The specification of the host data file. Host files or host tapes may be specified.
If not specified, a file statement in the specification is used. If that does not
exist either, then by default standard input is used on copy in and standard out-
put is used on copy out.

Stop processing after N errors have been encountered. The default is to never
stop on error. ldmfcopy in only.

The name of a host file containing a description of the format of data in
dataspec. '

Rather than locking the entire relation during copy in, only lock the page being
modified.

Check data, but do not copy it. Data format descriptions and input records are
checked, but no data is transferred to the shared database system. This option
is useful for debugging file descriptions and cleaning up input data. Idmfcopy tn
only.

The name of a host file to receive copies of records from the dataspec that do
not match the format specification. Duplicate records deleted by the
IDM/RDBMS software will not be included in rejectfile. This option applies to
tdmfeopy in only.

Skip the first N input records. Idmjfcopy in only.

Verbose mode. Data transferred to or from the relation is formated as a table
and written to standard error. This can be useful for debugging file descrip-
tions.

Ignore warnings. Records that have warnings instead of errors (e.g., conversiop
overflows) will be copied into the database; otherwise, the record will be rejected
to the reject file and included in the error count. Idmfecopy n only.

The name of the database containing the relation to copy. Overrides a data-
base statement in the specification.

The name of an existing relation. The relation name on the command line over-
rides a relation statement in a formfile.

Britton Lee 1

IDMFCOPY (1I) Britton Lee IDMFCOPY (11)

formdesc The description of the format of data, if not specified by a formfile. Must be
quoted on most systems.

DESCRIPTION
Idmfeopy converts and copies data to or from an external form described by formfile or a
Jormdesc. Only the fields in the format description will be copied; it is not necessary to copy all
fields in the relation. Those fields not copied are filled with the appropriate NULL value depend-
ing on the type of the field.

Idmfcopy in reads records from a host file, converts to internal (IDM system) format, and loads
the database server.

Idmfeopy out reads tuples from the shared database system, converts them to external format,
and writes records to a host file.

External (host) records are defined in one of three ways:

e Physical records are defined by the underlying file system. This includes fixed length records
on stream-based files and operating-system defined variable length records.

o Delimited records terminate at a specific record delimiter character. For example, data for-
mated as lines of text on UNIX terminate at a newline character.

o Field-driven records simply gather enough data to fill all the component fields. The use of this
record type is strongly discouraged, as it is inefficient and reduces error recovery dramatically.

Records may not exceed 4096 bytes in length.
Records are composed of fields. Fields are defined in one of the following ways:
o Fized length fields consume a predetermined number of bytes. The data may be text or binary.

® Declimited fields consume bytes until a specified delimiter character. The delimiter is consumed,
but is not sent to the shared database system. The data is always text.

o Counted fields begin with either a single byte or two bytes that is interpreted as a binary
length followed by that many bytes of data. This is normally used only for special IDM system
types such as BCD.

If all fields are text types the file will be opened with type(text) by default (this can be overrid-
den by specifying type(binary) in the file spec).

The external format is defined in formfile or on the command line using the formdesc parameter.
The syntax is as follows:

<description> := { <statement> }+
The description is a sequence of statements.
<statement> := database <name> ;

The name of the database to access. A database on the command line overrides
’ this statement.

<statement> := relation <name> ;
The name of the relation in the database server to be copied. A relname on the
command line overrides this statement.

<statement> := file <filespec> ;

< filespec > 1= <name>
The specification of the host file in ifscrack(3I) format. The specification will
normally need to be quoted. A filespec parameter on the command line over-
rides this statement.

3.14-88/02/29-R3v5m8 Britton Lee 2

IDMFCOPY (11)

<statement >

<statement>

<statement >

< fieldspec >

<attname>

<typespec>

<binspec>
<fixedbinspec >
< varbinspec >

< textspec>

<texttype>
<inttype>
<floattype>

<extent>
<length>
< precision >

3.14-88/02/29-R3v5m8

Britton Lee IDMFCOPY (11)

:== delimiters <delims> ;
The default set of field delumters If not speclﬁed tab, comma, and newline are
the default field delimiters.

::= verbose ;
Turns on verbose mode (i.e., the same as the —v flag).

u= record <extent> { <fieldspec> ; }+ end
This statement describes the internal structure of a record. It consists of a
definition of the record followed by an ordered sequence of field specifications.

== <attname> <typespec> [= <value>]
Every field has a name, a type (describing the type in the external file, not in
the database), and an optional initial value.

= <name> | all | -
A name may be specified explicitly, which matches the attribute of the same
name in the relation, specified as the keyword all to indicate all domains in the
relation, or specified as dash for dummy fields. On t{dmfeopy in dummy fields
are discarded; on sdmfcopy out dummy fields are created.

= <binspec> | <textspec>

u= <fixedbinspec> | <varbinspec>

u=1i1 112 | i4 | f4 | f8

= bed <length> | bedfit <length> | bin <length>

Binary specifications represent data that is stored in IDM system internal for-
mat. These are not recommended for use in interchange. Types bed, bedfit,
and bin require a length specification (see below). The length on bed and
bedfit is in bytes, not digits, and the data stored does not include a type or
length byte.

= <texttype> <extent>

Text types describe representations that have been rendered into the printable
character set. These are in general usable for interchange with other operating
systems and database systems. The <extent>> field defines the size of the field.

u= text | <inttype> | <floattype>

::== [unsigned | decimal | octal | hex

u= float | sci

For character domains text represents a byte-by-byte copy. For integer
numeric domains text is equivalent to signed decimal. For floating numeric
domains text is equivalent to float. The <inttype>s must match an integer
domain (il, i2, or i4) and force interpretation in the indicated radix. The
<floattype >s must match a floating point domain (f4, f8, bed, or bedfit). On
output, type sci causes output in exponential notation. On input, types float
and sci are identical.

floating point numbers at the maximum representable value may give a float
point overflow error when copied in. To avoid this, reduce the precision on out-
put to ensure that the number will correctly convert during copy in.

i= [<length> | to <delims>]

:= (<integer> [, <precision>]) | (%) | (var)

1= <integer>

A length specifies the total number of bytes consumed by a record or field. If
an integer is specified, the field or record is fixed length, consuming or producing
the number of bytes specified. The asterisk syntax indicates counted field

Britton Lee 3

IDMFCOPY (11)

<delims>
< delimiter >

<value>

<name>

The following is

Britton Lee IDMFCOPY (1I)

format is used for fields. The first byte of the data describes the width of the
field. The var syntax indicates counted field format with two bytes of data
describing the width of the field. The byte ordering is most significant followed
by least significant.

An optionﬂ <precision> specifies the number of digits after the decimal point
for float or sci output; in other contexts it is either ignored or illegal.

A delimiter list specifies delimiter characters that will cause input to end. On
tdmfcopy out the first delimiter specified is used to terminate the field. If neither
length nor delims are specified, then a variable length string delimited by a
default set of delimiters is assumed for fields. The rules for records are
described below. On output the first delimiter specified is used.

= <delimiter> { , <delimiter> }+

= <identifier> | <integer> | <string>

Delimiters may be represented as a symbolic name, as a numeric value, or as a
string. For example, the specifiers comma, ”,”, 0054, and 0x2c all represent the
same delimiter on ASCIl-based machines. See below for a list of the symbolic
names.

u= <integer> | <string>

Values specify verification or initialization of external fields. On tdmfcopy out
the <attname> must be -’ and the resultant output field contains the specified
value. On tdmfcopy tn the input field must exactly match the specified value.

= <identifier> | <string >
Names that have no special characters may be given directly. If necessary,
names can be quoted to hide special characters.

a list of reserved words that must be quoted if they are to be used as names of

fields in a database server relation:

all bin bed
bedfit database decimal
delimiters end file
float f4 f8

hex il i2

i4 octal record
relation sci text

to unsigned var
verbose

Comments begin

with ¢/#’ and end with ‘/’ as in C or PL/L

Record formats are defined as follows:

record (<integer >)

Opens the underlying host file with the rbp (record-based presentation)
parameter and the specified record length. On physically record-based
files, this may specify a variable-length file. On physically stream-based
files, this specifies fixed-length records.

record to <delimiter>

record

3.14-88/02/29-R3v5m8

Opens the file as a stream. Data will be scanned for the specified delim-
iter.

If the underlying file is record based or if all fields in the record are
fixed length, acts like “record(N),” that is, opens the file with rbp
(record based presentation). The record length is the sum of the field

Britton Lee 4

IDMFCOPY (11) Britton Lee IDMFCOPY (11)

lengths if all are fixed lengths, or otherwise is a system default. Other-
wise (on stream based files with variable length fields) acts like “record
to nl.”

record (*) Opens the file as a stream. Fields are read or written piecemeal.
Efficiency is lost, and error recovery is reduced. The rejectfile option is
disabled with this mode.

For example, the input:

/* address records */

record (60)
name text (20);
address text(40);
end

specifies a file containing a collection of fixed length records, sixty bytes in length, containing
names and addresses.

Offsets in the host file are implied by the order of the specifications. For example, in the above
example, attribute ‘name’ is loaded from the data in positions zero through nineteen, and
‘address’ is loaded from positions twenty through fifty-nine.

Symbolic delimiters may be selected from the following list:
Name Graphie ASCII EBCDIC Meaning

null 000 00 Null

tab \t 011 05 Horizontal Tab

nl \n 012 15 Newline

If 012 25 Line Feed

ff \f 014 0C Form Feed/New Page
cr \r 015 0D Carriage Return

fs 034 22 Field Separator

gs 035 Group Separator

rs 036 35 Record Separator

us 037 Unit Separator

space (space) 040 40 Space

comma |, 054 6B Comma

dash - 055 60 Dash/Hyphen/Minus
dot . 056 4B Dot /Period/Decimal Point
slash / 057 61 Slash

colon 072 7A Colon

semi ; 073 SE Semicolon

TYPE CONVERSION
Corresponding attributes in the relation and the host file do not have to be of the same type or
length. Idmfcopy uses typecnvt(3I) to convert as necessary. Britton Lee’s IDM/RDBMS software
does not convert floating point numbers to a standard representation. Floating point numbers
generated on one machine may not be meaningful if read on a machine of a different type.

Dummy fields, denoted by a name of -, are not transferred to or from the shared database sys-
tem. Idmfeopy out will write an empty field or a value (eg. = <value>) if specified. Idmfcopy
in will read but discard dummy fields.

Idmfcopy in
When the direction is in, tdmfcopy appends data into the relation from the host file. Domains in
the relation which are not assigned values from the host file are assigned the default value of zero
for numeric attributes, and blank for character attributes. When copying in this direction the

3.14-88/02/29-R3v5m8 Britton Lee 5

IDMFCOPY (1I) Britton Lee IDMFCOPY (11)

following special meanings apply:

text The data is a variable length character string terminated by any field del-
imiter character (comma, tab, or newline if not specified with the delim-
iter command). The delimiter is thrown away.

text to <delims>
The data in the host file is a variable length character string terminated
by the delimiter deltm. If more than one deltm character is specified, any
of the characters will terminate the string.

text (<integer>)
The data in the host file is exactly tnteger bytes long.

text (*) The data in the host file begins with a single byte that contains the
number of bytes of data when interpreted as a binary number. The count
field does not include itself. Usage of this field type should be with fixed
length records. Record delimiters with the same binary representation as a
count byte will cause the record to be prematurely terminated.

text (var) The data is the host file begins with two bytes that contain the number of
bytes of data when interpreted as a binary number (most significant byte
first). The count field does not include itself. Usage of this field type
should be with fixed length records. Record delimiters with the same
binary representation as a count byte will cause the record to be prema-
turely terminated.

For example:

pnum text; A variable length string ending in the field delimiter character (tab,
comma, or newline if not set with the field-delim option) is read from the
host file. The delimiter is discarded and the string is converted to an
integer and copied into the pnum attribute.

pnum text to ”,”;

A variable length string ending in comma is read. It is converted and
copied into the pnum attribute.

pnum text to ”\\”;
A variable length string ending in the character ¢\’ is read. It is converted
and copied into the prnum attribute.

pnum decimal to ”,”, " /”;
A variable length string ending in comma or slash is read. All characters

in the string must be decimal digits or spaces. The string is then con-
verted and copied into the pnum attribute.

all text; all attributes of the relation appear in the input file as variable length
strings ending in comma, tab, or newline.

- text; a variable length string ending in comma, tab, or newline appears in the
record, but is not transferred to the shared database system.

Idmfcopy out
When the direction is out, sdmfcopy transfers data from the relation into the host file. Any field
in the host file which is not assigned a value (the attname is -, and no literal field-value is
specified), is assigned the default value of zero for numeric attributes, and blank for character
attributes. When copying in this direction, the following special meanings apply:

3.14-88/02/29-R3v5m8 Britton Lee 6

IDMFCOPY (11) Britton Lee IDMFCOPY (11)

'

text The attribute value is converted to a character string and written into the
host file. For character attributes, the length will be the same as the attri-
bute length as defined when the relation was created. Integer and bed
attributes are converted to decimal, and f4, {8, and bedfioat attributes are
converted to scientific notation. A comma (or the first field delimiter
specified with the delimiter statement) is written after the field.

text to <delimiter>
The attribute will be converted according to the rules for text above. The
one character delimiter will be inserted immediately after the attribute. If
the record type is “to <delimiter>>" and the field delimiter matches the
record delimiter in the last field of the record, the field delimiter will be
suppressed so that only one copy of the delimiter will be output to the
record. :

text (<integer>)
Exactly tnteger bytes are written to the output file. The field is padded
with spaces or truncated as necessary to fit.

text (*) A byte is written giving the length of the field, followed by the field itself.
The count byte does not include itself. Usage of this field type should be
with fixed length records. Record delimiters with the same binary
representation as a count byte will cause the record to be prematurely ter-
minated on idmfcopy in . '

text (var) Two bytes are written giving the length of the field, followed by the field
itself. The count bytes do not include the two bytes of count. Usage of
this field type should be with fixed length records. Record delimiters with
the same binary representation as a count byte will cause the record to be
prematurely terminated on sdmfcopy in .

text = <string>

String is written to the output file. A tab (or the first field delimiter
specified with the delimiter statement) is written after the field.

Numeric fields represented in text fields are generated as specified in ANSI standard X3.42-1975.

For example:

EXAMPLES

pnum text; The integer in pnum is converted to a character string in decimal notation
and written to the host file. The field delimiter character (tab if not set
with the field-delim option) is written after the string.

pnum decimal; This is identical to the above example.

pcost text; The bed float in the pcost attribute is converted to a character string in
scientific notation. The field delimiter character is written after the string.

pcost float; The bed float in the pcost attribute is converted to a character string in
floating point decimal format. The field delimiter character is written
after the string.

pnum text to ”,”;
The integer in pnum is converted to a character string in decimal notation
and written to the host file. A comma is written after the string.

Example 1:
idmfcopy in —f empl.fmt

3.14-88/02/29-R3v5m8 Britton Lee 7

IDMFCOPY (11) Britton Lee IDMFCOPY (11)

empl.fmt:
database demo;
relation emp;

file myfile;

record
name text(10);
sal 14,
date 1i2;
mgr text(10);
- text (1);

end

copies data into the “emp” relation in the ‘“demo” database from ‘“myfile” on the host. “Myfile”
contains a string field, a float field, a two byte integer field, a string field, and a one character
field that is ignored.

Example 2:
idmfcopy out —f emp2.fmt demo emp

emp2.fmt:
file outfile;
record to nl
name text to ”:”;
sal decimal to nl;
end

copies employee names and their salaries to standard output. The name field is followed by a
colon. Records are terminated by newlines. For example, the output may look like:
Fred:10000

Joe:12000
Sam:52000

Outfile will be opened with type(text).

Example 3:
idmfcopy in demo —f parts.fmt

parts.fmt:
relation parts;
file "xyzdata%htape,unit(1)”;
record (80)
pnum text(5);
pname text (20);
end "

Reads data from host ANSI tape on unit 1 into the parts relation. The pnum domain comes
from the first five bytes of each eighty-byte record; the pname domain comes from the next
twenty bytes. The remaining fifty-five bytes are ignored.

Example 4:
idmfcopy in demo parts ‘record to nl all text; end”’

Reads records from the standard input into the “parts” relation in database “demo”’; each record
is on one line in the external file, with fields separated by commas or tabs.

SEE ALSO
intro(1I), idmcopy(1I), typecnvt(3I), ANSI X3.42-1975, Idmfcopy User’s Guide, American National
Standard Representation of Numeric Values tn Character Strings for Information Interchange.

3.14-88/02/29-R3v5m8 Britton Lee 8

IDMFCOPY (1I) Britton Lee IDMFCOPY (11)

BUGS
The reject file is always opened as a stream with default parameters.

3.4-87/09/25-R3v5m4 Britton Lee 9

IDMHELP (11) Britton Lee IDMHELP (11)

NAME
idmhelp — access the IDM Help Subsystem

SYNOPSIS
idmbhelp | topic |
ARGUMENTS
topic The topic for which help is desired. If not specified, the user is placed at the top of the
help tree.
DESCRIPTION

Idmhelp is a menu-based help facility for users of Britton Lee’s Shared Database System. It

shows proper command syntax, gives the meaning of command-line arguments, and describes
available features.

The help system is a tree-structured collection of topics. Each topic has some explanat~r-v text
and zero or more children associated with it. The user is shown the text for the current topic,
and presented with a list of subtopics.

The user may ask for information on a subtopic by typing its name. The following commands
are also recognized:

%EXIT
Exit sdmbhelp.

%UP Move up the help tree to the topic immediately above the current one.
%TOP '

Move directly to the top of the help tree.
Commands and topic names may be entered in either upper or lower case.

EXAMPLE
idmhelp idl.append
Enter the help system, starting with the description of the IDL append command.
SEE ALSO
helpsys(3I)

3.10-87/12/04-R3v5m7 Britton Lee 1

IDMLOAD (11) Britton Lee IDMLOAD (11)

NAME
idmload — load database or transaction log
SYNOPSIS
idmload [—-B device | [-P] [-1 logname | dbname wdbname srcspec
ARGUMENTS
-Bdevice Use device as the connection to the database server. See intro(1I) for details.
-P Turn on performance monitoring.
~llogname The name of the transaction log in dbname. I specified, a transaction log is
loaded; otherwise, an entire database is loaded.
dbname The name of the database to be loaded (if —I is not specified) or the database in
which to place the loaded transaction log.
wdbname The working database. If an IDM file is specified in srcspec it will be found in
this database. Wdbname must be specified and differ from dbname.
srcspec The specification of the input file (see intro(1I)).
DESCRIPTION

Idmload loads a database or a transaction log as previously dumped by tdmdump(1I). If -l is
specified a transaction log is loaded, otherwise a database is loaded.

After a transaction log is loaded into a database it can be applied using ¢dmrollf{1I), that is, the
updates described by the log can be run again. If this is intended the log must be loaded into a
different database than that which is to be rolled forward.

EXAMPLES
idmload db system %itape
Load database “db” from IDM tape file 0.

idmload db system ”%itape,fileno(1)”
Load database “db” from IDM tape file 1. Note that IDM tape files are numbered
sequentially from zero, so tape file one is the second file on the tape.

idmload -1 newlog db system tuesday.log
Load log “newlog” into database “db” from the host file “tuesday.log.” The usual next
step would be the command “idmrollf targetdb db newlog” to roll forward “targetdb”
from newlog.

WARNING

Using the online option to sdmdump will cause the order of the files written to be reversed. The
database is written as the first file and the transaction log is written as the second file. This is
most significant when using host or IDM tape.

SEE ALSO

intro(1I), idmckload(1I), idmcklog(1I), idmdump(1I), idmrollf(1I), backup(8I), The section “Backup
and Restore” in the Database Administrator’s Manual

3.4-87/12/04-R3v5m7 Britton Lee 1

IDMPASSWD (11) Britton Lee IDMPASSWD (11)

NAME
idmpasswd — set password in the shared database system login relation
SYNOPSIS
idmpasswd [-B device |
ARGUMENTS
—Bdevice Use device as the connection to the database server. See sntro(1I) for details.
DESCRIPTION

Idmpasswd resets the password for the current user as stored in the login relation in the system
database. The user must specify both old and new passwords.

SEE ALSO
intro(11), The section ‘“System Level Security” in the System Administrator’s Manual

3.9-88/02/29-R3v5m8 Britton Lee 1

IDMREAD (11) Britton Lee IDMREAD (11)

NAME
idmread, idmwrite — read/write files between the host and the shared database system

SYNOPSIS
idmread [—-B device | [—¢ count | [—o offset | database idmfile [destspec]

idmwrite [—B device | [—c count] [—o offset] database idmfile | srcspec |
ARGUMENTS

~Bdevice Use the specified IDM device, instead of the default, to connect to the database
server.

—c count A maximum of count bytes will be copied. If omitted, the entire file will be
copied.

—ooffset Start copying from the byte offset in the IDM file. The host offset is always
zero. Gaps in the IDM file caused by offsets have undefined values.

database The database name to operate in.

tdmfile The name of the IDM file to access.

srcspec The specification of the source of an idmwrite (see tntro(1I)).

destspec The specification of the destination of an idmread.

DESCRIPTION

Idmread reads the file IDM file tdmfile in database to destspec. If destspec is not sbeciﬁed, the file
is written to the standard output.

Idmwrite writes srespec (or the standard input if not specified) to file ¢dmfile in the specified data-
base.

The sense of “read” and “write” is always with respect to the IDM file.

Neither srcspec nor destspec may specify an IDM file.

EXAMPLES
idmwrite —c 10000 db igetdone igetdone.c
Write the first ten thousand bytes of host file “igetdone.c”” into the IDM file “igetdone”
in database “db.”
idmread db igetdone %itape
Read the IDM file “igetdone” in database “db” and write to IDM tape.
SEE ALSO
intro(11), iftifile(4I), System Programmer’s Manual

3.7-87/12/04-R3v5m7 Britton Lee 1

IDMROLLF (11) Britton Lee IDMROLLF (11)

NAME
idmrollf - roll forward a transaction log

SYNOPSIS
idmrollf | -B device | [=P] [—d enddate | | —=v] dbname wdbname logname

ARGUMENTS

—Bdevice Use device as the connection to the database server. See intro(1]) for details.
-P Turn on performance monitoring.
—d enddate Do not run any updates in the transaction log dated after enddate. This essen-

tially leaves all logged relations in database déname in at the same state they
were in at enddate. Enddate can be entered in free format (see parsedate(3])).

-v Print more information during rollforward. Useful when a date is specifi:d and
the user wants to check the idm day and ticks value after conversion.

dbname The database to roll forward.

wdbname The working database. This must not match dbname.

logname The name of the transaction log in wdbname. Logname must have previously

been created by sdmdump(1]) or sdmload(1I).
DESCRIPTION
Idmrollf applies the transaction log logname to database dbname. All updates logged in logname
(created by an idmload —Il) are re-executed against the database dbname.
Times as represented by the shared database system in the audit command may be input
directly using the sdmtime(idmdate,idmticks) syntax for enddate.
EXAMPLES
idmrollf vino system vinolog
Roll forward database vino using the tranaction log vinolog in the database system.
idmrollf -v —d ”idmtime(31480,60000)” vino system vinolog
Roll forward database vino using the tranaction log vinolog in the database system up to

IDM day 31480 at IDM time 60000. This date translates to Mon March 10, 16:16:40
1986.

SEE ALSO

intro(1I), idmdump(1I), idmload(11), parsedate(3I), backup(8I), The section “Backup and Restore”
in the Database Admsnsstrator’s Manual

3.4-87/02/08-R3v5m0 Britton Lee 1

R2TORS3 (11) Britton Lee R2TORS (11)

NAME
R2toR3 — convert Release 2 source to Release 3

SYNOPSIS
R2toRS

DESCRIPTION
R2toRS is a shell script which converts release 2 source files to release 3 source files.

Directories NEW and OLD are created in the directory where R2toRS is invoked. Converted
copies of all *.¢, *.y, *.1dm, *.ric, and *.rc files are put into NEW and the originals are copied to
OLD. RZ2toRS8 will run tdelfric on any .t1dm files first. This will create an output file ending with
.ric. The .ric file will be copied to NEW and the original file will be copied to OLD.

The changes applied to the source files are as follows:

e Release 3 #include files are added to the beginning of each file. If the file is yacc source,
move these #sncludes to their proper place in the file.

e Release 2 and system dependent include files are deleted or modified. These are:

bed.h <deleted >
ctype.h — bytetype.h
done.h — idmdone.h

idmio.h <deleted >
options.h <deleted >
setexit.h <deleted >
setymph <deleted >
stdio.h <deleted >
symbolh — idmsymbol.h
useful.h <deleted >

e Runtime system calls (eg. fetch) are renamed according to Release 3 (eg. irfetch).
e Standard I/O and Release 2 I/O calls are replaced with calls to Release 3 I/O routines.

e Signals, setexit, setjmp and longjmp are replaced by an exception raise or the setting of an
exception handler. See exe(3I) for more information on the exception facility.

Only Release 2 oriented setjmps and longjmps are converted to exceptions.

Signals are converted as:

signal(SIGINT, SIG_IGN) — exchandle(” T:IDMLIB.ASYNC.INT”, excignore)
signal(SIGINT, handle) — exchandle(” T:IDMLIB.ASYNC.INT”, handle)
signal(SIGHUP, handle) — exchandle(” T:IDMLIB.ASYNC.INT”, handle)
signal(SIGTERM, handle) — exchandle(” T:IDMLIB.ASYNC.TERM”, handle)
signal(SIGALRM, handle) — exchandle(” T:IDMLIB.ASYNC.ALARM”, handle)

All other signals, setjmps and longjmps are commented out with a 96%% in the comment
for later correction.

e A line of the form INITIDMLIB(”%%%progname%%%"); will be added if a call to
crackargv() already exists. If not, add this call by hand, replacing the %% %prog-
name%%% with the name of your program. This must be the first executable statement
in the program.

e Check that exit is called when leaving your program so that output will be flushed.

e Release 2 defined constants are replaced with Release 3 semantically equivalent constants.
This includes defines such as token types (INT4 — iINT4) and done status bits

3.4-87/02/08-R3v5m0 : Britton-Lee, Inc. 1

R2TORS3 (11) Britton Lee R2TORS3 (11)

(DONE_CONTINUE — ID_CONTINUE).
e Release 2 structures and field names are converted to their equivalent in Release 3.
e Ctype macros (e.g. isalpha) are converted to bytetype macros (e.g. ISALPHA).

The converted files in NEW may need further work before they are ready to be compiled. In
particular, you should edit the files to make sure that the first executable statement in the pro-
gram is INITIDMLIB(”yourprogname”) and that the last executable statement in the main
procedure is an exit{RS_NORM). Also check out any lines containing the string %%% in a
comment; they mark changes which may require more work.

Makefiles will have to modified if they used ¢del.

SEE ALSO
idel2ric(1i)

3.19.1.3-88/02/29-R3v5m8 Britton-Lee, Inc. 2

RIC (1I) Britton Lee RIC (1I)

NAME

ric — precompiler for embedding IDL in C
SYNOPSIS

ric [—d database [-B device | [—n progname | | [—S symtabsize | [-1] [—q] [=V] [file.ric ..]
ARGUMENTS

—d database Database to use.

—Bdevice Use device as the database server connection. If not specified, the IDMDEV
parameter is consulted. Database must also be specified.

—nprogname Use stored programs. Associate stored programs under progname. Database
must also be specified.

—Ssymtabsize Make the symbol table symtabsize elements large. The default size is 100 sym-
bols.

-1, —q Normally, the #line directives that ric writes look like this: #line 8 ‘‘file.ric’’.
If -l is specified, they will look like # 8 ‘‘file.ric’’; if -q, like #line 8 file.ric; if
both, like # & file.ric. See the RIC User’s Guide.

-V Prints the version number of the precompiler and the version number of
IDMLIB used to make it on stderr.
file.ric ... The file(s) to be precompiled.
DESCRIPTION

The precompiler ric takes file(s) with IDL commands embedded in C code and generates file(s)
containing pure C. The embedded IDL is translated to appropriate calls into the Britton Lee
library IDMLIB. After precompilation, there will be a file generated with the same name as the
.ric source file, but with a .e suffix. This file is ready for compilation by the C compiler.

An input file name must either have a suffix of .ric or (for backward compatibility) a suffix of .rc
or else have no suffix. A file name with no suffix is taken literally. If a directory contains the
files p and p.ric, the command ric p will precompile p and not p.ric. If there are two input files
named z.ric and y, then the two output files produced will be named z.c and y.c. If an input file
name of — (a single minus) is given, then stdin is read and stdout is written. This allows ric to be
used in pipelines.

The precompiled query language commands either may be kept within the object module (the
default case) or stored in the database (if the —n flag is given). Storing commands in the data-
base is much more efficient at execution time, but requires that the database schema not change
during the program’s lifetime. See the RIC User’s Guide for a more complete discussion.

Programs that are precompiled with ric must link in the runtime library idmlib. See the exam-
ples below.

Example of precompiler source code:
main()
$int num;

INITRIC(” demo”);
$range of a is arelation;

$retrieve($num=a.number) where a.name = ”animal”

printf(”%d\n”, num);

3.19.1.3-88/02/29-R3v5m8 Britton Lee 1

RIC (1I) Britton Lee RIC (1I)

exit(0);

To precompile:

ric —.d mydb —n Xprog prog.ric
To compile:

cc —o prog prog.c —-lidmlib

LANGUAGE SYNOPSIS
The following is a short synopsis of those IDL queries that may be used with ric.

$ abort transaction ;

$ append | to | object_name (target-list) [where qualification | ;

$ associate { object-name | range . att_name } [with | string [, string | ;
$ audit [into relation | (target-list) [where qualification | ;

$ begin [new | nest n | transaction ;
Note that the modifiers new and nest are not part of interactive idl. They may only be
used in embedded idl.

$ create relation (att_name = type ,...) [with options | ;
$ create database dbname | with options | ;

$ create [unique | [nonclustered | clustered | index [on | relation (att_name ,...) [with
options | ;

$ create view object-name (target-list) [where qualification] ;

$ define queryname command ... end define ;

$ delete range | where qualification] ;

$ deny protect mode [of | on] object-name [(att_name ,...)] [to user ,... ;
$ destroy object-name ,... ;

$ destroy (target-list) [where qualification | ;

$ destroy database dbname ,... ;

$ destroy | nonclustered | clustered | index | on | relation (att_name ,...);
$ end transaction ;

$ [execute | [program] query-name [[with | [(] [name =] value ,.. [)]] { { | 5}
The sole purpose of following an execute with a bracketed series of statements is to associ-
ate it with one or more obtain commands (see below).

$ extend database dbname | with options] ;

$ open dbname ;

$ permit protect-mode [of | on | object-name | (att_name ,...)] [to user ,...];
$ range of range is relation [with options] ;

$ reconfigure ;

$ replace range (target-list) [where qualification | ;

3.19.1.3-88/02/29-R3v5m8 Britton Lee 2

RIC (1I) Britton Lee RIC (11)

$ retrieve [unique] | into relation | (target-list) [order [by] order ,.. | [where
qualification] { { | 5 }

$ set option_number ,... ;

$ sync ;

$ trace [on | delete | flag ;

$ truncate object_name ,... ;

$ unset option_number ,... ;

Two statements have been added that do not exist in interactive IDL.

An $ obtain statement has been added to allow the assignment of items retrieved by retrieve
statements that are part of stored commands to be assigned to C variables. Its syntax is

$obtain [(|$C,..[)]{ {3}

$C is defined below.

For instance, if a stored command named foo contained a retrieve statement that returned
three items, then we might invoke it via the statements

$execute foo
$obtain ($a, $b, $c)
printf("From foo -- %d %d %d.\n”, a, b, ¢);
}

Obtain is a loop-controlling command, like retrieve. If an obtain is simply followed by a semi-
colon (“;”) rather than a bracketed sequence of statements, it still cycles through all the tuples
returned by the retrieve statement, assigning them to the targets in turn, rather than just
returning one tuple like the singleton retrieve. Thus a statement like

$ obtain ($(*p++)) ;

can be used to fill an array.
The new statement
$ cancel ;
cancels all activity in the shared database system on the current dbin and any dbins that are
related to the current one as parent or child in a chain of reopens. Programs using cancel must

be careful to exit any retrieve loop with break immediately:

$range of t is threeatt;
$retrieve ($attl=t.attl, $att2=t.att2, $att3=t.att3)

ifprintf(stdout, ”\t%d\t%s\t%f0, attl, att2, att3);
if (attl = 3)

$ cancel;
ifprintf(stdout, "loop cancelled.”);

3.19.1.3-88/02/29-R3v5m8 Britton Lee 3

RIC (11) Britton Lee RIC (1I)

/* must terminate loop after cancel */
break;

}

The following synopsis shows those places in the above sentence types where C variables or
expressions may be embedded within the IDL statements. "$C indicates that a $-prepended C
variable name or parenthesized C expression may appear at the indicated location in the state-
ment. All C variables must have been correctly declared in a statement with a prepended $.

For the syntax of an ezpression, see the IDL Language Reference section “EXPRESSION”. For
the syntax of a qualification, see the section “QUALIFICATION”. Any place a numeric or
character-string constant can appear in these, a $—prefaced C variable name or expression of the
appropriate type may also appear.

$ append | to] $C (attribute = expression ,...) [where qualification | ;
Thus the following program fragment precompiles:
$ append $animal (name = $name, type = $type);

$ associate $C [with ...] ;
Unfortunately, C strings cannot be used for the assoctate comment strings.

$ audit into $C ... | where qualification | ;
It would be nice if audit was a loop-controlling command like retrieve and could store its
results into variables, but currently it can’t.

$ create [database | $C ... ;
$ { create | destroy } ... index [on] $C ... ;

Thus the following work:
$ create index on $rel (type);
$ destroy clustered index on $rel (name);

$ create view $C ... [where qualification] ;
$ delete range [where qualification | 3

$ { permit | deny } protect-mode of relation ($C ,...) ... 3
The name of the attribute to which access is being permitted or denied can be given in a C
string. The following are equivalent:
$ permit read on animal (name) to edwin;
$ permit read on animal ($("name”)) to edwin;
This is the only place in these two statements that C expressions can be used.

$ destroy [database | $C ,... ;

$ destroy ... [where qualification] ;

$ execute queryname [with | [(| [name =] $C ,..[)];
$ extend | database | $C ... ;

$ open $C ;

$ range of dynamic_range is $C [with options | ;

$ replace range (attribute = expression ,...) [where qualification] ;

3.19.1.3-88/02/29-R3v5m8 Britton Lee 4

RIC (1I) Britton Lee RIC(1I)

$ retrieve [unique | ({ [$C =] expression | range.attribute } ,...) [order [by | expression
... | [where qualification] ;

$ retrieve | unique | [into | $C (attribute = expression ,...) ... [where qualification | ;

For a retrieve that is not a retrieve snto, the retrieved values are always placed in C vari-
ables. if the name of the C variable is not given explicitly, the value is stored in the C vari-
able that has the same name as the attribute given. Thus the following two statements are
exactly equivalent:

$ retrieve (a.x, a.y) { ...

$ retrieve ($x = ax, §y = ay) { ...
If an expression more complicated than a simple range.attridbute pair is given, then this must
be explicitly assigned to a C variable or expression. Thus the following is valid:

$ retrieve ($(+i) = int4 (a.string));

$ truncate $C ;

Note that the truncate command is not documented in the IDL Language Reference. It is

present in the grammar, however, and does compile and execute correctly when a C string
expression is given as its argument:

$ truncate $animal ;

C expressions can be used as arguments to IDL functions almost anywhere integer or character-
string literals may be used. This is not true for arguments that are digit, character, or byte
counts; these may only be integer constants.

We give a list of IDL functions with their argument names as given in the IDL Language Refer-

ence Manual, with a dollar sign (“$”) prepended to the names of those arguments which may be
C expressions.

abs ($n)

mod ($n, $d)

concat ($a, $b)

substr (pos, len, $str)
substring (pos, len, $str)
int1 ($n)

tinying ($n)

int2 ($n)

smallint ($n)

int4 ($n)

integer ($n)

[fixed] binary ($n)
fbinary ($n)

[fixed] bed (1, $n)
fbed (1, $n)

[fixed | bedfit (1, $n)
fbedflt (1, $n)

| fixed] bedfloat (1, $n)
[fixed | string (1, $n)
fstring (1, $n)

fchar (1, $n)

[fixed | char (1, $n)
bedfixed (prec, frac, $n)
float4 ($n)

fit4 ($n)

3.19.1.3-88/02/29-R3v5m8 Britton Lee 5

RIC (1I) Britton Lee RIC (1I)

smalifioat ($n)
float8 ($n)
fit8 ($n)
EXAMPLES
ric prog.ric
Generate a file named prog.c, and do not use stored commands. It is the program’s
responsibility at runtime to determine which database it uses by assigning the appropiate
value to the (char *) variable ReCDB before the execution of the INITRIC code.
ric —d hostdb file.ric

Generate a file named file.c. The code will not use stored commands, but the program
will use the database hostdb by default. The program can override the defaul: ‘:+ assign-
ing a value to RcCDB before INITRIC is executed.

ric —d hostdb —n stprog phyle.ric

The file phyle.c will execute stored programs in the database when possible. Tne stored
programs will be stored under the name stprog.

BUGS
Does not allow substitution of attribute names like IIDEL did.

User-level substitutions not supported yet.

SEE ALSO
tnitrc(31) ‘
RIC User’s Gutde, BLI part number 205-1393-rev.
IDL Reference Manual, BLI part number 205-1235-rev.

3.16.1.4-87/12/23-R3v5m7 Britton Lee 6

RSC (1I) Britton Lee RSC(1I)

NAME

rsc — precompiler for embedding SQL in C

SYNOPSIS

rsc [—d database | B device | [—n progname | | [—S symtabsize | [1] [—q] [-V] [file.rsc ..]

ARGUMENTS

~d database Database to use.

—Bdevice Use device as the connection to the database server. If not specified, the
IDMDEYV parameter is consulted. Only used if database is specified.

—n progname Use stored programs. Associate stored programs under progname. Database
must be specified.

—Ssymtabsize Make the symbol table symtabsize elements large. The default size is 100 sym-
bols.

-1, —q Normally, the #line directives that rsc writes look like this: #line 8 “‘file.rsc”’.
If -1 is specified, they will look like # 8 ‘‘file.rac’’; if -q, like #line 8 file.rsc; if
both, like # 8 file.rsc. See the RSC User’s Guide.

-V Prints the version number of the precompiler and the version of IDMLIB it uses
on stderr.

file.rsc ... The file(s) to be precompiled. An input file name must either have a suffix of
. .rsc or else have no suffix. A file name with no suffix is taken literally; that is, if
a directory contains the files p and p.rsc and the command rse p is given, then it
is p and not p.rsc that is precompiled. If an input file name of — (a single
minus) is given, then stdin is read and stdout is written. This allows rsc to be
used in pipelines.

DESCRIPTION

The precompiler rsc takes file(s) with SQL commands embedded in C code and generates file(s)
containing pure C. The embedded SQL statements have a dollar-sign (“$”) prefix and are ter-
minated by either a semi-colon (“;”) or an open-curly bracket (“{””). The SQL commmands are
translated to appropriate calls into the Britton Lee library IDMLIB. After precompilation, there
will be a file generated with the same name as the .rsc source file, but with a .c suffix. This file
is ready for compilation by the C compiler.

Input files must either have a suffix of .rsc or else have no suffix. If there are two input files
named z.rsc and y, then the two output files produced will be named z.c and y.c.

The precompiled query-language commands either may be kept within the object module (the
default case) or stored in the database (if the —n flag is given). Storing commands in the data-
base is much more efficient at execution time, but requires that the database schema not change
during the program’s lifetime. See the RSC User’s Guide for a more complete discussion.

Programs that are precompiled with rsc must link in the runtime library IDMLIB. See the exam-
ples below.

Example of precompiler source code:
main()
$§int num;

INITRSC(”dummy”);
$select $num=number from arelation where name = ”animal”

{

3.16.1.4-87/12/23-R3v5m7 Britton Lee 1

RSC (1I) Britton Lee RSC (1I)

printf(”%d\n”, num);

exit(0);

To precompile:

rs¢ —d mydb -n Xprog prog.rsc
To compile:

cc —o prog prog.c —lidmlib

LANGUAGE SYNOPSIS
The following is a quick synopsis of those SQL statements that are acceptable to rsc when they
contain no embedded C expressions.

$ alter db_name | with options | ;

$ audit | into table_name] target_list [from object_name ,...] [where qualification | ;
$ comment on object_name | . column_name | | is string_1 [, string_2 | | ;

$ create database dbname | with option_list | ;

$ create | unique | [clustered | nonclustered | index on object_name (column_name ,...)
[with option_list | ;

$ create table table_name (name type ,...) [with option_list ! ;
$ create view view_name | (col_name ,...)| as select_statement ;
$ delete from object_name [label | [where qualification | ;

$ drop object_name ,... ;

$ drop database dbname ,... ;

$ drop | unique | | clustered | nonclustered | index | on | object_name (column_name ,...
H

$ grant protect_mode [on object_name | (col_name ,...)]][to user ,...];

$ insert into object_name | (column_name ,..)] { values (expression ,..) |
select _statement } ;

$ open dbname ;

$ reconfigure ;

$ revoke protect_mode | on object_name [(column_name ,...)]] [from user ,..];

$ select | distinct | [into table_name] target ,.. [from object_name ,.. | [where
qualification] [group by column_name [having qualification | | [order by order_spec ,... | {

{13}
$ set option [on | off] ;

$ start { name | program number } [[name = | constant ,... | { { | 5}
The sole purpose of following a start with a bracketed series of statements is to associate it
with one or more obtain commands (see below).

$ store [program] object_name command | command , ...] end store ;

$ sync ;

3.16.1.4-87/12/23-R3v5m7 Britton Lee 2

RSC (1I) Britton Lee RSC (1I)

$ truncate table_name ,... ;

$ update object_name [label | [from from_name ,...] set col_name = expression ,... | where
qualification | ;

The SQL statements commit work and rollback work are not accepted by rsc. Instead, the
three transaction control statements from the IDL language are used. These are

$ begin transaction ;

$ end transaction ;

$ abort transaction ;

See the RSC User’s Guide .

Two statements have been added that do not exist in interactive SQL.

An $ obtain statement has been added to allow the assignment of items selected by select state-

ments that are part of stored commands to be assigned to C variables. Its syntax is
$obtain [(|$C,..[)]{{!;}

$C is defined below.

For instance, if a stored command named foo contained a select statement that returned three
items, then we might invoke it via the statements

$start foo
$obtain $a, $b, $¢
printf("From foo - %d %d %d.\n", a, b, c);
}

Obtain is a loop-controlling command, like select. If an obtain is simply followed by a semi-
colon (“;”) rather than a bracketed sequence of statements, it still cycles through all the tuples
returned by the select statement, assigning them to the targets in turn, rather than just return-
ing one tuple like the singleton select. Thus a statement like

$ obtain $(+p++) ;

can be used to fill an array.

The new statement

$ cancel ;
cancels all activity in the shared database system on the current dbin and any dbins that are
related to the current one as parent or child in a chain of reopens. Programs using $cancel must
be careful to exit any retrieve loop with break immediately:

$ range of t is threeatt;
$ retrieve ($attl=t.attl, $att2=t.att2, $att3=t.att3)

ifprintf(stdout, *\t%d\t%s\t%f0, attl, att2, att3);
if (attl = 3)

$ cancel;
ifprintf(stdout, ”loop cancelled.”);

3.16.1.4-87/12/23-R3v5m7 Britton Lee 3

RSC (1I) Britton Lee RSC (11I)

/* must terminate loop after cancel */
break;

The following synopsis shows those places where C variables or expressions may be embedded
within SQL statements. C variables or expressions may appear as syntactic elements of tnsert
and select statements. They may also appear in other statements as part of a qualification or an
ezpression.

For the syntax of an ezpression, see the SQL Language Reference Manual, section “EXPRES-
SION”. For the syntax of a gqualification, see the section “QUALIFICATION”. Any place a
numeric or character-string constant may appear in these, a $-prefaced C variable name or
expression of the appropriate type may also appear.

The syntax of a nested_select is approximately that of the select statement. See the SQL
Language Reference Manual, “SUBQUERIES” and “CORRELATED SUBQUERIES”, for exact
details. C variables and expressions may be used in qualifications in nested_selects just as they
can be in the select statement itself, including clauses controlled by all, any, or tn.

Rsc does not disallow assignments to C variables within a nested_select target list, but these
attempted assignments have no effect at execution time. For example, the statement

create view vyu as select $t = type from animal;

compiles and executes and creates the view, but the C variable ¢ remains unchanged by the exe-
cution of the statement. The effect is exactly as if the phrase “$¢=" had been left out of the
statement. This is neither a bug nor a feature, simply a curiosity.

Synopsis of where C variables or expressions, and qualifications and ezpressions containing them,
may appear in embedded SQL statements:

$ audit ... where qualification ;
Tt would be nice if audit were a loop-controlling command like select and could store its
results into C variables, but currently it cannot.

$ create view ... as nested_select ;
$ delete ... where qualification ;
$ insert into $ obectname ... { values (expression ,...) | nested_select } ;

$ select from $ objectname ... [$C-variable =] name ,... [where qualification] | group by
... | having qualification] | { { | 5}

If only name appears, this is equivalent to saying $name = name.
$ start queryname [name = | $§C ,... ;
$ update ... set column = expression ,... where qualification ;

C expressions can be used as arguments to SQL functions in most places that an integer or
character-string literal may be used. The one exception is those arguments that are a count of
digits, characters, or bytes; i.e., those identified by the words precision, pos(ition), or len(gth) in
the section “FUNCTION DESCRIPTIONS” in the SQL Language Reference Mansal. The fol-
lowing is a list of the SQL functions that take arguments, with the names of the arguments as
given in the SQL Language Reference Manual. The arguments prepended with a dollar sign (“$”)
may be C expressions. ‘ :

table_id ($name)

3.16.1.4-87/12/23-R3v5m7 Britton Lee 4

RSC (11) Britton Lee RSC (1I)

table_name ($id)

abs ($num)

binary ($arg)

[fixed] bed (precision, $expression)
{ fixed | bedfit (precision, $expression)
[fixed | char (len, $expression)
mod ($exprl, $expr2)

concat ($strl, $str2)

col_name ($table_id, $col_id)
substring (pos, len, $str)

char (1, $n)

bedfixed (position, fraction, $expr)
integer ($n)

smallint ($n)
tinyint ($n)
float ($n)
smallfloat ($n)
EXAMPLES
TSC prog.rsc

Generate a file named prog.c, and do not use stored commands. It is' the program’s
responsibility at runtime to determine which database it uses by assigning the appropri-
ate value to the (char %) variable ReCDB, before the execution of INITRSC.

rsc —d hostdb file.rsc
Generate a file named file.c. The code will not use stored commands, but the program
will reference the database hostdb by default. The program can override the default by
assigning a value to Re¢CDB before INITRSC is executed.

rsc —d hostdb —n stprog phyle.rsc

The file phyle.c will execute stored programs in the database when possible. The stored
programs will be stored under the name stprog.

BUGS
Does not allow substitution of attribute names like JIDEL did.

User level substitutions not supported yet.
SEE ALSO
tnitre(3%)
The RSC User’s Guide, BLI part number 205-1575-rev.
Portable Host Interface Software Specification, BLI part number 205-1190-rev.
SQ@L Reference Manual, BLI part number 205-1344-rev.

3.21-88/01/29-R3v5m8 Britton Lee 5

SQL (1I) Britton Lee SQL (11)

NAME
sql — Interactive/SQL parser
SYNOPSIS
sql [-B device | [-P] [finfile] [—c | [—e] [-] linesperpage | [-n | [-p] [-8] [=x
contchar] [dbname]

ARGUMENTS
B devsce Use device as the connection to the database server.

-P Turn on performance monitoring. Individual performance options can be set using
the set SQL command.

—c Turn off auto-commenting (auto-association). See Auto Commenting below and the
%comment pseudo command.

—e Echo every command as read. This can be useful when redirecting the iny.ut of the
parser. In this case, the input commands as well as the replies will go intc the out-
put file.

—finfile Input file name. If not specified, read the standard input in interactive mode.

—liinesperpage

For rudimentary output formatting. Lsnesperpage specifies the number of lines
displayed before re-displaying the header. When data is being retrieved, a new
header will be printed sufficiently frequently to insure that column labels are always
visible. If linesperpage is zero, only the initial header will be printed. If not
specifed, the terminal driver (IftTerm(4])) is queried.

-n Parse commands, but don’t execute them. The connection to the database server
will not be opened. Front-end commands (e.g., “%tnput”) will still be executed.
This can be used to verify an input script that is to be run later.

-p Disable the reading of user and system profile (or startup) files.

- Run the parser in silent mode. Turns off prompting, printing of SQL banner, and
elaborate printing of syntax errors.

—x contchar Set contchar to be the continuation character. See Continuation Characters below,
and see the %continuation pseudo command.

dbname . The name of the initial database to open.

DESCRIPTION

Sql implements the SQL relational query language. Queries typed at a terminal are translated
and sent to the shared database system, and results are formatted and printed.

If the —f flag is specified, input is read from the named file rather than the standard input. File
input is non-interactive. Special functions of interest only to the interactive user are disabled and
input is faster.

Continuation Characters
There are several forms of input recognized by Britton Lee Interactive/SQL. The user may
choose the input format that is most familiar or comfortable.

The default is similar to that of DB2. Input is buffered, and not executed until a semicolon (“;”)
is entered. This guarantees that incomplete input lines will not destroy data.

The user may also set the line-continuation character to any non-alphanumeric character. In this
case, any line not terminated with the continuation character is executed immediately. This con-
vention is similar to that of SQL/DS.

3.21-88/01/29-R3v5m8 Britton Lee 1

SQL (1I) Britton Lee SQL (11)

Britton Lee strongly discourages the use of line continuation characters. Inadvertently typing a
carriage return before a command is complete may destroy data. Britton Lee recommends that
customers use the semxcolon to terminate commands, and leave the continuation character at its
default value.

For more information, see the —x argument above and the %continuation pseudo-command,
below.

Auto Commenting

Auto comment of stored commands or table and view creation will place the user text into the
descriptions relation of the current database using the comment command. Text starting at the
end of the previous command up to and including the end store or command termination is
stored in the tezt field, including comments and newlines, as it appears in the input. The key
field of the relation has a value of 8X where X ranges from O to 9 and a to Z to insure the sort-
ing order of the text in the descriptions relation. See also the discussions of % comment, below,
and the —c flag, above. See BUGS section for warning about submitting many create statments
to the parser at once.

User Profiles
If the —p flag is not specifed, SQL reads system and user profile files before user input begins.
These files may contain any valid SQL commands. Particularly useful may be the pseudo-
commands, which cause the profile file to configure SQL according to the user’s individual prefer-
ence. On UNIX, the proﬁle files may be *“/usr/lib/idm/sqlpro.sql” (for a systenrwxde profile) or
"/ sqlpro.sql” (for a user’s individual profile).

User Interrupts

The interrupt character (normally delete (a.k.a. rubout) or control-C on UNIX) can be used to
interrupt processing at any time.

Control Character Mapping

The system parameter MAPCC may be used to pass control characters through the SQL front
end. The default is to map control characters to blanks. See params(5I).

Special SQL commands

. The special keyword ‘“ignore” may be used anywhere in a command to cancel the entire
current command and reset the line number to 1 (one).
° The “exit” command immediately exits SQL.
Pseudo-Commands

There are a number of commands do not process data but instead control the actions of the
parser itself. These are all introduced with a percent sign at the beginning of a line and take
effect immediately (i.e., the line cannot be extended by the line-continuation character). Pseudo-
commands may be abbreviated to any length.

%comment [on | off) If no argument is present or the argument is om, then auto-
commenting is enabled. Text description of stored commands
are automatically entered into the database (using the comment
command of SQL). If the argument is off then auto-commenting
is disabled. Auto-commenting is normally on. See also the —¢
flag.

%continuation [char] By default, all Britton Lee Interactive/SQL commands must be
terminated with a semicolon (*;’). The %continuation pseudo-
command allows users to set the line-continuation character to
any non-alphanumeric char.

3.21-88/01/29-R3v5m8 Britton Lee 2

SQL (11) - Britton Lee SQL (1I)

If the continuation character is set, input lines ending in a car-
riage return without the continuation character are executed
immediately. Commands may extend over more than one line, if
each line is terminated with the specified continuation character.

Use of the continuation character is strongly discouraged. If
char is omitted, the input style reverts to the default.

%display text Output tezt to the standard output. This is normally used in
system profile files to provide informational messages to users.
%edit [filename] Edit the transcript of the SQL session (or filename if given).

When the editor returns, the file is submitted as input to SQL
The editor used is defined by the EDITOR parameter.

%experience level Set the user’s experience level to level. Level can be “Beginner”,
“Able”, or “Expert”.
%input [filename) Read the specified filename for SQL commands. When the file

ends (or an “exit” command is encountered) control returns to
the standard input. If filename is not specified, the standard
input is read.

%bhelp Print all immediate commands.
%%redo Resubmit the transcript of the SQL session as input to SQL.
%substitute name value Assign the name to have the specified value. The “%name” syn-

tax (within SQL commands) can be used to interpolate the value.
This is a substitution, not a macro, so there are restrictions on
where this substitution can occur. See sglparse(3I) for details.
The value is typed as an iINT2 if the name begins with a dlgxt
otherwise the value is typed as an iSTRING (iCHAR).

otrace tracespec Send the tracespec to the tfset(3I) routine. This turns on host
software tracing, and should not be used in normal operation.
%? v Equivalent to “%help”

In addition to these commands, two special characters are recognized in the first position of a
line. “?” invokes a help subsystem. It may be followed by a help topic, so “? sql insert”
describes the insert command. A line beginning with the “!” character passes the remainder of
the line to the operating system.

EXAMPLE
sql -B /dev/gpib hostdb
Invokes SQL on the GPIB interface, opening the database hostdb.
BUGS
If more than one create and/or store command is submitted to the parser at once, they are all
auto-assoctated under the table id of the first object.

There should be some way of controlling the format of the output. A “%format” command will
probably be added to do this.

The output format should be better adapted to the terminal. For example, output lines that
exceed the terminal width are not wrapped nicely. In particular, the current interface does not
adapt nicely to IBM 3270-style interactions.

It should be possible to write scripts at this level that include looping based on return data so
that simple applications can be prototyped easily.

3.21-88/01/29-R3v5m8 Britton Lee 3

SQL (11) Britton Lee SQL (1I)

In general, there should be a very sexy applications development tool available that would include
report capabilities, simple applications generators, etc.

3.21-88/01/29-R3v5m8 Britton Lee 4

INTRODUCTION (3I) Britton Lee INTRODUCTION (31)

NAME
IDM Support Library (IDMLIB) summary; INITIDMLIB

SYNOPSIS
#include <idmlib.h>

INITIDMLIB(progname);
cc —i ~lidmlib

DESCRIPTION
The IDM Support Library (IDMLIB) contains a set of routines that may be ported to a number
of different host machines and operating systems. Some of these routines are machine-
independent, but others are highly machine-dependent and have to be modified or completely re-
written to port to a new environment.

Given only an acceptable C compiler and an IDMLIB, our “generic code” should be able to run
happily in a large number of environments.

GENERAL INFORMATION
In order to use the capabilities of IDMLIB, all source files must include the file sdmlsb.h.

The main program must use INITIDMLIB(progname) as the first IDMLIB operation. This will
initialize IDMLIB and set the name of this program for use by error messages, etc. This must be
called from masn() to insure machine-independence.

In addition, the IDM support library (-lidmlib on UNIX) must be loaded. Sixteen-bit machines
require the use of separated instruction and data space (the —i flag on UNIX).

Warning: Variable names and structure field names which start with an underscore (‘_’) are
non-public unless otherwise documented. Usage of these hidden values may result in unexpected
errors.

In general, any arguments passed into IDMLIB that are saved internally are copied. Thus, the
space used by the argument may be reused immediately.

TYPES
The following basic types are defined either by the C language or by IDMLIB:
int An integer in the basic size of the language. It is not fair game to assume that

a pointer fits into an int. Also, there is no guarantee that a long is always the
same size as an int, even though this is true on VAXes.

char A character in the native character set.

BYTE An eight-bit byte.

short A two-byte integer.

long A four-byte integer.

BOOL A Boolean (TRUE/FALSE) value.

BCDNO A BCD number. Direct access to fields in a BCDNO should not be attempted.

This format is specific to the RDBMS system software and does not correspond
to the “packed decimal” format of most hosts.

ANYTYPE A union consisting of a large number of types. The symbols in parentheses are
the associated IDM symbol. The types are:
iltype — a one-byte integer (iIINT1)
i2type — a two-byte integer (iINT2)
idtype — a four-byte integer (iINT4)
inttype — an integer in the native size
f4type — a four-byte float (iFLT4)

3.29-88/03/02-R3v5m9 Britton Lee 1

INTRODUCTION (3I) Britton Lee INTRODUCTION (3I)

f8type — an eight-byte float (iFLT8)
chartype — a one-byte character
cvtype — a vector of characters (iCHAR)
cptype — a pointer to characters (iCHAR)
cpptype - a pointer to a pointer to characters
bvtype - a vector of BYTEs (iBIN)
bptype — a pointer to BYTEs (iBIN)
iptype — a pointer to integers
booltype — a BOOL
bedtype — a BCDNO (iBCD, iBCDFLT)
anyptype — a pointer to another ANYTYPE
IFILE An IDMLIB file descriptor.
FUNCP A pointer to a function.
RETCODE Return status code.

“Quote bits” (the 0200 bit) cannot be safely used in characters since EBCDIC and other charac-
ter representations are eight-bit codes.

The >> and << (shift) operators should be kept under close control. Although << is
guaranteed to shift zero bits in to the right, > > is not guaranteed to sign-extend.

The defined constant STATIC is the null string if debugging is turned on (i.e., DEBUG is
defined); ‘“‘static” otherwise. L
The defined constant READONLY is defined to be the null string on most compilers. If your
compiler supports read-only shared data, this will be the appropriate keyword to get these seman-
tics (usually “readonly”). The usage is as a storage class, e.g.,

READONLY struct foo[] = ...

The macro INITZERO car' be used on global declarations to cause zero-initialization. For exam-
ple:

int LineNumber INITZERO;

This is necessary because some compilers (e.g., Whitesmith’s) require all declarations to be initial-
ized. Other compilers (e.g., the UNIX PCC) are less efficient if unnecessary initialization is used,
especially for large arrays. INITZERO is either the null string or “= 0 as appropriate for the
particular compiler.

The macro “_ _” (two underscores) acts as a cast to a pointer to BYTE; this is used in initializa-
tions and for routines that take an arbitrary type.

The following constants are used to identify data types when necessary. The type name, length,
and corresponding C type are shown:

Type Name Length C Type Fetched

iINT1 1 char
iINT2 2 short
iINT4 4 long
iFLT4 4 float
iFLTS8 8 double
iCHAR variable char *
iFCHAR variable char #*
iSTRING variable char =
iBCD variable BCDNO
iBCDFLT variable BCDNO

3.29-88/03/02-R3v5m9 Britton Lee 2

INTRODUCTION (3I) Britton Lee INTRODUCTION (3I)

iBINARY variable BYTE »
IFBINARY variable BYTE =

For the STRING type the string is terminated by a null byte (“\0”) so the bind length must be
one byte larger than the maximum anticipated return string or truncation may result.

1/0 INTERFACE (LEVEL ONE)
IDMLIB includes a buffered 1/O interface. The I/O interface gives a uniform view of the file
capabilities available.

A file with associated buffering is called a sfp (IDMLIB file pointer), and is declared to be a
pointer to a defined type IFILE. Ifopen creates certain descriptive data for a file and returns a
pointer to designate the file in all further transactions.

A constant “pointer” IFNULL designates no ifp at all.

An integer constant EOF is returned upon end-of-file by integer functions that deal with files.
This may also be returned for certain error indications.

There are four normally open files with constant pointers declared in the include file and associ-
ated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file
stdtrc standard trace file

Standard output, standard error, and standard trace are normally line-buffered, so that no actual
output will occur until a newline is output. Standard trace normally refers to the same file as
stdout, so closing either will close the other implicitly.

By default, files are presented to the application as a stream, that is, as a continuous stream of
bytes with no inherent delimiters except the beginning and end of the file. An application may
also request a record-based presentation, which limits access to the record-at-a-time primitives.

All operations (in particular, IFGETC, IFPUTC, ifungetc, ifread, and ifwrite) are available on
stream-based presentations. Ifread and sfwrite are logically equivalent to sequences of IFGETCs
and IFPUTOs respectively, although the actual implementation allows performance improve-
ments.

Record-based presentation may be requested by the application by specifying the rbp parameter
in an sfopen or ifcontrol call. The only I/O operations available to a file with record-based
presentation are sfread and sfwrste to read and write one record respectively. All other operations
are undefined and must not be used. Record-based presentations are best suited to files contain-
ing fixed-format data, or where record boundaries may be confused with byte values of 012 (the
C “newline” character).

High-level operations (e.g., ffgets, ifprintf, igetdone) are built on top of ifgetc/ifputc and hence are
limited to streams. By default all files are presented as streams.

Files also have an inherent physical structure that cannot be changed. This structure depends on
the operating system, the media, and the file format. For example, labelled tape is always physi-
cally record-based. On UNIX, all disk files are stream-based from the point of view of a user pro-
cess. VMS has both record- and stream-based files.

IDMLIB permits a record-based file to be presented as a stream and vice versa, with a few obvi-
ous constraints. Stream-based presentation of a record-based file removes record boundaries on
input, placing newline characters in their place for text-type files, or ignoring record boundaries
for binary-type files. On output, records are assumed to end at newline characters for text files.
For binary files, one call to ifwrite() results in one record. Record-based presentation of stream-
based files only accomodates fixed-length records, that is, one fixed-length record is presented to

3.29-88/03/02-R3v5m9 Britton Lee 3

INTRODUCTION (3I) Britton Lee INTRODUCTION (31)

the application at a time on input, and on output the application must give a complete record to
tfwrite.

Not all differences will be hidden. For example, the format of file names will not be standardized
across operating systems. However, makefname(3I) will build default file names as needed.

The constants (e.g., EOF) and many of the “functions” (such as [FPUTC) are implemented as
macros.

IDM INTERFACE (LEVEL TWO)
The level-two IDM interface routines operate on data structures specific to the RDBMS system
software. A family of routines create and manipulate trees that represent queries. Another fam-
ily of routines interacts with the database server itself.

Trees can be created using tdlparse(3l), stzemd(3I), itcopy(3I), or one of the DBA routines
described in dba(31). Idlparse parses an IDL string. Itzemd creates a tree for an execute com-
mand. The others create trees to perform DBA commands.

Once a tree is created, sputtree(3I) sends it to the database server. Igett!(3I) reads the target list
for commands that return data. Retrieved tuples can be read back by successive calls to
igettup(3I). The DONE token is read by sgetdone(3]), as well as ERROR or other trailing data.

Iputtl(3I) and sputtup(3I) send target-list descriptions and tuple data respectively to a file, nor-
mally used by routines doing bulk copies.

When a tree is no longer needed, it must be explicitly deallocated using ¢tfree(3I). Similarly,
when a target list is no longer needed, it must be explicitly deallocated using stifree (see igetti(3I)).

Many of these routines use an environment that maintains miscellaneous control and state infor-
mation. In most cases, passing an environment of IENVNULL will default to a system global
environment. Environments are stacked. New environments are created using feopen(3I) and
destroyed using seclose(3I).

The level-two routines are suited to system program interfaces. Application programs will typi-
cally find the level-three interface more convenient.

IDMRUN INTERFACE (LEVEL THREE)
The IDMRUN subsystem provides a high-level programming-language interface to the shared
database system. Most of the details of data structures and operations are hidden. This inter-
face is appropriate for the application programmer. All modules using the IDMRUN interface
must include the file <idmrun.h> after <idmlib.h>:

#include <idmlib.h>
#include <idmrun.h>

Any modules that include level-two include files (e.g., <idmtrce.h>) must include these before
<tdmrun.h>.

All character strings passed into these routines that do not refer to data (e.g., object or parame-
ter names) have all uppercase letters folded to lowercase if foldcase mode is set in the underlying
environment; see irget(3I) and secontrol(3I) for details. The default setting of this mode depends
on the local system convenf,ions: on for VMS, off for UNIX, etc.

The IDMRUN Structure
The IDMRUN structure contains all of the state information necessary for the run-time system to
determine the legality of operations. An IDMRUN structure has the following characteristics:

e An IDMRUN structure is associated with a single database server.

o IDMRUN structures can only have one parsed IDL statement list associated with them at a
time. Every time new statements are created, the previously parsed statements are discarded
and the newly parsed statements take their place.

3.29-88/03/02-R3v5m9 - Britton Lee : 4

INTRODUCTION (3I) Britton Lee INTRODUCTION (31)

e The IDMRUN structure contains the return status from the shared database system. After a
command is executed, all of the return data must be processed. An attempt to create another
set of statements before this is done will result in an error.

Iropen(3I) returns an IDMRUN structure. If the database name is known in advance, it can be
" specified in this command. If not, a database can be opened later.

Upon completion of the use of the IDMRUN structure, it should be closed via srelose.
All use of the IDMRUN structure must follow in the strict order:

(1) Select a statement to process using fridl(3I), sragl(3I), srzemd(3I), or trzprog, or by setting
a command tree using trsct(3I) with the IP_TREE option.

(2) Send the tree to the IDM/RDBMS software using srezee(3I).

(3) Retrieve results (if appropriate) using trfetch(3I). Results can be described using
srdesc(3I) and bound to programming-language variables using trbind(3I).

(4) Proceed to the next set of commands and/or results using srnezt(3I). This step is neces-
sary since several trees can be in an IDMRUN structure at the same time — even a tree
created with srzemd can reference a stored command that contains several primitive com-
mands, so that multiple batches of data can be returned. The program should then cycle
back to step three.:

(1) Selecting a Command
IDL statements in text form are parsed and associated with an IDMRUN structure using ¢ridl(3])
or srsql(3I). This is the usual way of inputting statements. Special trees to execute stored com-
mands (or programs) can be created quickly using srzemd(3I) or irzprog (documented in the same
section). Parameters are added incrementally using srzsetp (also documented in trzemd(3I)).

(2) Starting Execution :
Successfully parsed statements can be executed using srezec(3I). This sends the first command in
a list to the IDM/RDBMS software. Irezec “peeks ahead” at the results coming back from the
IDM/RDBMS software — if data is returned it determines the type of the fields; if no data is
returned it reads and processes the status information.

(3) Reading Results
If the statement returns tuple values the program can bind program variables to receive the
retrieved target-list elements with srbind(3I). Descriptions of the types of the retrieved target-list
elements can be requested to aid in the binding process by calls to srdesc(3I). Irbind causes
conversion from any of the numeric IDM types to any of the numeric types and from any of the
IDM types to STRING. Np other automatic conversions are guaranteed.

Each call to srfetch(3I) reads the next tuple into the bound programming-language variables.
Any target-list element values which have not been bound to programming variables are dis-
carded. Automatic type conversion from the type of the target-list element as stored on the
database server to the type of the bound programming variable is performed. If the program
decides not to process all of the retrieved tuples (e.g., by exiting a retrieve loop early) then
trflush(3I) can be called to remove the remaining tuples by reading them all and throwing the
results away. Ircancel(31) will flush the remaining tuples without reading them but it will also
cancel any pending commands to be executed on the database server as well as any return infor-
mation. Ircancel can also be called to stop the current executing command on the database
server (this is useful when responding to interrupts). In general, ¢rflush should be used when
responding to normal conditions where the data is no longer of interest, while srcancel should be
used to do a full abort.

(4) The Next Command
When a command stream contains more than one executable statement, due either to parsing
several statements in a single call to sridl or srsql or to executing a stored command containing

3.29-88/03/02-R3v5m9 : Britton Lee 5

INTRODUCTION (81) Britton Lee INTRODUCTION (31)

several commands, the routine srnezt(3I) must be called for each primitive command. Irnezt
moves on to the next command in the stream and otherwise acts like frezee.

All data must be processed before processing can continue. Irflush will discard all of the return
information for the next statement. However, if there was more than one executable IDL state-
ment parsed (or if there was an IDL ¢rezec of a stored command which contained more than one
executable statement), an irflush must be performed for each command which returns data (i.e.,
after every call to frnezt). Alternatively a single call to ircancel will clear all of the return infor-
mation.

Status
All error tokens and done packets are handled automatically by the run-time system. Done
packet information is known immediately upon executing commands which do not return data,
i.e., srezec will read in the done packet information for the first command unless there is tuple
data to be processed. For commands returning data the done packet information is returned
automatically when all of the data has been read or a flush has been performed. Irnezt reads in
the done packet for a statement if there is no data to be returned.

Return Values
Some routines return only a status code (typed as RETCODE). The status code can be
RS_NORM to indicate successful, normal completion, RE_FAILURE to indicate failure, or a
warning status. If the status is RE_FAILURE, an exception will be raised giving more detail.

Warning returns will typically not have an associated exception raised. See retcode(5I) for
details. S

Types
In addition to the types supported in level two, the type iDSC may be used at this level. This
type is intended to be a “descriptor-based” type defined by the host architecture and operating
system. Most commonly this will be used for scaled types, decimal types, etc.
Type iDSC may be passed to irsubst(3I) and srbind(3I).
The routines used to manipulate descriptors are described in dsc(3I).
Programs using descriptors are inherently non-portable.

EXCEPTIONS
The exception package helps formalize the handling of special conditions that require abnormal
flow of control. When a procedure “raises an exception” a search is made backward through the
invocation stack until a “handler” is found for this exception. The handler is then called; it can
perform any necessary cleanup operations and can then ignore the exception, back out (i.e., abort
the procedure that raised the exception), or re-raise the exception to start the process over again.
See eze(3I) for details.

Routines that raise exceptions list the exceptions and the semantics of the parameters to the
exception.

The following exceptions can occur from a number of places:

W:IDMLIB.ARITH.OVERFLOW
Arithmetic overflow occurred.

W:IDMLIB.ARITH.UNDERFLOW
Arithmetic underflow occurred.

W:IDMLIB.ARITH.DIVZERO

Division by zero occurred.

W:IDMLIB ARITH.PRECISION
Precision was lost during a conversion operation.

3.29-88/03/02-R3v5m9 Britton Lee 6

INTRODUCTION (3I) Britton Lee INTRODUCTION (3I)

T:IDMLIB.ASYNC.INT
A terminal interrupt occurred.

T:IDMLIBASYNC.TERM
A terminate signal occurred.

A:IDMLIB.ASYNC.NOFP
The program attempted to use floating-point with no floating-point hardware or software
emulation.

A:IDMLIB.IO .BADIFP(detail)
The ifp passed to some routine was determined to be bad.

A:IDMLIB.IO.IOERR(filetype, filename, detail)
An I/O error occurred during some operation. This typically indicates some sort of
hardware problem.

A:IDMLIB.RECOMPILE
The program is out of date with respect to the library.

This document does not list all IDMLIB exceptions. For a complete list, see the IDL Message
Summary and SQL Mecssage Summary for your host system.

GLOBALS
The following globals are used by IDMLIB for communication with the application:

CnvtCount Set to the count of the number of characters converted by atof, atot, and atol.
See atof(3I).

ProgName The name of this program; used by routines that print messages.

FileName This may be set to the current input file name for printing with error messages.

LineNumber If this variable is greater than zero, it will be printed with error messages.
IftScan will increment the LineNumber if requested.

DefEnv The default environment for use by the IDM routines.

DefMpool The default memory pool for zalloc(3I), et. al.

SysMpool The global memory pool.

COMPILATION FLAGS
The following flags are defined to handle exceptional cases. Their use should be kept to an abso-
lute minimum.

One of the following flags is set to tell what hardware we are running on:

IBM370 This is an IBM 370-architecture processor (this includes the 43xx and 30xx
series).

M68K This is a 68000-based processor.

MV This is a Data General MV processor.

PDP This is a PDP-11 processor.

PYRAMID This is a RISC processor.

VAX This is a VAX processor.

U3B2 This is a Western Electric 3B2 series processor.

U3B5 This is a Western Electric 3B5 series processor.

U3B20S This is a Western Electric 3B20S series processor.

3.29-88,/03/02-R3v5m9 Britton Lee 7

INTRODUCTION (3I) Britton Lee INTRODUCTION (3I)

U3B20AP This is a Western Electric 3B20AP series processor.

One of these flags is set to define the operating system being run:

UNIX We are running 4.2 BSD UNIX.

UNIX5 We are running UNIX System V.

VMS We are running DEC VMS.

CMS We are running IBM CMS.

MVS We are running IBM MVS,

MSDOS We are running MS-DOS.

AOS_VS We are running Data General AOS/VS.

The native character set of the machine is defined using one of the following:

ASCII This machine uses the ASCII character set, as defined by ANSI standard X3.4-
1977, American National Standard Code for Information Interchange.

EBCDIC This machine uses the EBCDIC character set.

The following constants are always defined; their value describes certain parameters of the
hardware and the underlying system:

WORDBITS The size of an integer, normally 16 or 32.

ADDRBITS Set to the number of bits of address space available for user pfoérams, normally
16, 17, 24, 31, or 32.

The following constants may be defined to enable special features.
NOFP This machine may not have floating-point hardware. -
DEBUG Compile in debugging flags.

WHITESMITHS The Whitesmith’s pseudo-compiler is being used.

IMPLEMENTATION NOTES
This spec is both a functional spec for users of IDMLIB and an implementation spec. Implemen-
tation notes are broken out into a special section.

Where necessary to rename an IDMLIB routine to avoid conflict with a system routine,
“#define”s can be used. Routine names with leading underscores should not be used in regular
programs to provide a namespace that can be used freely by the IDMLIB implementor.

Since IDMLIB can be linked with user programs, it will be important for IDMLIB to coexist with
the host run-time library. However, it should be possible to link IDMLIB without linking in
unused portions of the system run-time library.

3.6-87/09/28-R3v5m5 Britton Lee 8

ANYPRINT (31) Britton Lee ANYPRINT (31)

NAME
anyprint, anyfmt — print or format any possible type for printing

SYNOPSIS
anyprint(type, length, value, ifp)
int type;
int length;
BYTE #value;
IFILE =ifp;

char *anyfmt(type, length, value)
int type;

int length;

BYTE =*value;

DESCRIPTION
Anyprint prints any type and length datum pointed to by value onto the file ifp. Regular data

types (e.g., iINT1 etc.) are stored as a direct conversion. Certain IDM/RDBMS nodes (such as
iRANGE et al.) are formatted with labels. Other types are converted to a hexadecimal string.

Anyfmt formats the result and returns a pointer to the converted string. The string will be des-
troyed on the next call.

The format of the following “vanilla” types (basic user data types) are guaranteed suitable for
normal user consumption:

iINT1 iINT2 iINT4

iFLT4 iFLTS8 iBINARY iFBINARY

iCHAR iFCHAR iSTRING iSUBSTITUTE

iBCD iBCDFLT iFBCD iFBCDFLT
The formats of more obscure types are for gurus only.

SEE ALSO
intro(31), itlprint(3I), itprint(3I), printf(3I), typecnvt(3I)

3.4-86/09/26-R3v5m0 Britton Lee 1

ASSERT (3I) Britton Lee ASSERT (3I)

NAME

ASSERT — verify fixpoints in a program
SYNOPSIS

ASSERT(expression)
DESCRIPTION

ASSERT indicates that ezpression is expected to be true at this point in the program. It syserrs
with a diagnostic comment when ezpression is FALSE.

DIAGNOSTICS
Some message will be given containing sufficient information to find the problem in the source
code. It is not intended that a naive user be able to understand the message. For example:
“Assertion failed: file f line n.” F is the source file and n the source line number of the ASSERT
statement.

SEE ALSO
syserr(3I)

IMPLEMENTATION NOTES

Some C compilers define the pseudo-macros “_ _FILE_ _” and “_ _LINE_ _” to describe the
current file and line number. These should be used if available.

3.7-87/12/04-R3v5m7 Britton Lee 1

ATOBCD (3I) Britton Lee ATOBCD (3I)

NAME
atobcd — alpha to BCD conversion

SYNOPSIS
#include <bed.h>

BCDNO =atobed(buf, res)
char *buf}
BCDNO =res;

DESCRIPTION
Atobed converts a character string to BCD and stores the result in res.

EXCEPTIONS
W:IDMLIB.BCD.OVERFLOW
An overflow occurred.

W:IDMLIB.BCD.UNDERFLOW
An underflow occurred.

SEE ALSO
intro(3I), bed(3I), System Programmer’s Manual (SPM) for BCD representations and semantics.

3.5-86/06/26-R3v5m0 Britton Lee 1

ATOF (3I) Britton Lee ATOF (3I)

NAME

atof, atos, atol — convert characters to numbers

SYNOPSIS

double atof(nptr)
char *nptr;

atos(nptr)
char *nptr;

long atol(nptr)
char *nptr;

DESCRIPTION

These functions convert a character string pointed to by nptr to double precision floating point,
short integer, and long integer representation respectively. The first unrecognized character ends
the string.

Atof recognizes an optional string of tabs and spaces, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional ‘e’ or ‘E’ followed by an optionally signed
integer.

Atos and atol recognize an optional string of tabs and spaces, then an optional sign, an optional
“0x” to force hexadecimal radix interpretation or “0o” to force octal radix interpretation, then a
string of digits.

GLOBALS

CavtCount Set to the number of bytes consumed from nptr.

EXCEPTIONS

W:IDMLIB.CNVT.OVERFLOW(nptr, limit)

An arithmetic error occurred during processing.

IMPLEMENTATION NOTES

BUGS

Environment-independent versions of atos and atol exist. An environment-dependent version of
atof must be supplied by the OEM.

Atot is not defined in IDMLIB. If the system C runtime library does not define an atot then the
machine dependent header file machdep.h can add the appropriate #define line depending on the
system integer size.

#define atoi(p) (int) atos(p)
#tdefine atoi(p) (int) atol(p)

Atof neither sets CnvtCount nor detects overflow, and is unlikely to in the near future.
Atos fails on the value —32768; atol fails on —2147483648.

These routines do not understand unsigned numbers; they will cause overflow exceptions.

3.8-87/12/04-R3v5m7 Britton Lee 1

BCD (31) Britton Lee BCD (3I)

NAME
bcdadd, bedsub, beddiv, bedmult, bedemp, bedround — BCD arithmetic

SYNOPSIS
#include <bed.h>

BCDNO #becdadd(srca, srcb, res)
BCDNO #srca;

BCDNO *srcb;

BCDNO sres;

BCDNO *bedsub(srea, srcb, res)
BCDNO xsrca;

BCDNO =srcb;

BCDNO s*res;

BCDNO *bcdmult(srca, srcb, res)
BCDNO s#srca;

BCDNO s#srcb;

BCDNO sres;

BCDNO sbeddiv(srea, srcb, res, domod)
BCDNO =*srca;

BCDNO #srcb;

BCDNO s#res;

BOOL domod;

bedemp(srea, sreb)
BCDNO sxsrca;
BCDNO #srcb;

bedround(bednum, prec)
BCDNO *bcdnum;
int prec;
WARNING
These routines are not supported at this time.

DESCRIPTION
Bedadd, bedsudb, bedmult, and bcddiv each perform an arithmetic operation between the two
source operands srca and srcb and place the result in res. The type of the result will be BCDFLT
if either of the source operands are BCDFLT and will be BCD otherwise. If domod is true when

beddsv is called then the modulo operation is performed. Modulo operations are not defined for
BCDFLTs.

BCD and BCDFLT comparisons can be done with bcdemp. It returns a negative, zero, or positive
number depending on whether the first operand is less than, equal to, or greater than the second
operand, respectively.

A BCDFLT number can be rounded to a specified precision or a BCD number can be truncated
using bedround. The specified bednum is left with at most prec digits right of the decimal point in
the case of BCDFLT, or prec digits altogether in the case of a BCD number.

EXCEPTIONS
W:IDMLIB.BCD.OVERFLOW
An overflow occurred during BCD arithmetic.

W:IDMLIB.BCD.UNDERFLOW
An underflow occurred during BCD arithmetic.

3.8-87/12/04-R3v5m7 Britton Lee 1

BCD (3I) Britton Lee BCD (3I)

W:IDMLIB.BCD.DIVZERO
An attempt was made to divide by zero.

W:IDMLIB.BCD.PRECISION
Precision was lost during a conversion operation.

BUGS
Bedemp fails on zero value comparisons if one BCD was retrieved from the database and the
other created via atobed. This is due to the many possible representations of a zero BCD.

SEE ALSO :

intro(3I), atobed(3I), bedtobedf(3I), bedtol(3I), ftoa(3I), SPM for BCD representations and seman-
tics.

3.7-87/12/04-R3v5m7 Britton Lee 2

BCDTOA (31) Britton Lee BCDTOA (31)

NAME
bedtoa — BCD to alpha conversion
SYNOPSIS
#tinclude <bed.h>
char *bedtoa(bed, buf, width, fmt, scale, prec)
BCDNO =*bed;
char *buf;
int width;
char fmt;
int scale;
int prec;
DESCRIPTION
Bedtoa converts the BCD number bed into a string stored in buf of length at most wedth. There
will be at most prec digits after the decimal point. Six formats are defined by fmt. These are:
F Regular floating-point.
Exponential format.
E or F format, whichever produces the smallest number of characters.

E or F as appropriate to fit, with F preferred.

o o«

Like H, but with decimal points aligned on F’s. Alignment is done only within E and F for-
mats, that is, E format align with E format, F format with F formats, but E and F format
do not align.

P Like F, but with the number padded out to prec digits after the decimal point even if they
are not present in the input.

If the number is output in E format, scale digits will be placed before the decimal point.
SEE ALSO
atobed(3I), fmtfloat(31), ftoa(3I), SPM for BCD representations and semantics.

3.5-87/12/04-R3v5m7 Britton Lee 1

BCDTOBCDF (3I) Britton Lee BCDTOBCDF (3I)

NAME
bedftobed, bedtobedf — BCD conversion

SYNOPSIS
#include <bed.h>
BCDNO sbedftobed(bednum, res)
BCDNO *bcdnum;
BCDNO s#res;

BCDNO *bcdtobedf(bednum, res)
BCDNO *bednum;
BCDNO =*res;

DESCRIPTION
Conversions between BCD and BCDFLT can be performed using bcdftobed and bedtobedf. The
former operation can cause an OVERFLOW exception, but the second is guaranteed to succeed.

EXCEPTIONS
W:IDMLIB.BCD.OVERFLOW
An overflow occurred.

SEE ALSO
intro(3I), bed(3I), System Programmer’s Manual for BCD representations and semantics.

3.8-87/12/04-R3v5m7 Britton Lee 1

BCDTOL (31) Britton Lee BCDTOL (31)

NAME
bedtol, Itobcd — BCD to long integer conversion

SYNOPSIS
#include <bed.h>

long bedtol(src, res)
BCDNO =xsrc;
long *res;

BCDNO xltobed(sre, res, restype)
long *src;

BCDNO xres;

BYTE restype;

DESCRIPTION
Bedtol Converts a BCD or BCDFLT number to a long integer.

Ltobed Converts a long integer to the desired restype bcd. Restype may be either iBCD or
iBCDFLT.

EXCEPTIONS

W:IDMLIB.BCD.OVERFLOW
An overflow occurred.

W:IDMLIB.BCD .UNDERFLOW
An underflow occurred.

W:IDMLIB.BCD.PRECISION
Precision was lost during conversion.

SEE ALSO
intro(3I), bed(3I), System Programmer’s Manual for BCD representations and semantics.

3.3-86/09/26-R3v5m0 Britton Lee 1

BCOPY (31) Britton Lee BCOPY (31)

NAME

beopy, bfill, bzero, STRUCTASGN — copy, set, or zero a block of memory
SYNOPSIS

beopy(from, to, sise)

BYTE *from, *to;

int sise;

bfill(to, sise, ch)

BYTE «to;

int size;

BYTE ch;

bsero(to, sise)

BYTE =to;

int sise;

STRUCTASGN(dst, src)

struct ??? dst;
struct ?? src;

DESCRIPTION
Beopy copies size bytes fro:P from to the block of memory at to.

Bfill fills size bytes of memory at to with copies of the given character ch. Bzero acts like bfill
except that the character is the zero byte.

STRUCTASGN is a macro that copies the struct src to dst (note: these are not pointers to the
structs, but the structs themselves); src and dst must be compatible structures. On compilers
supporting structure assignment this macro expands to “dst = src”’; otherwise it is a bcopy.

LIMITATIONS

The from and to areas in bcopy should not overlap in any way to allow most efficient implemen-
tation on any machine. Specifically, left-to-right copy is not guaranteed.

Size should never exceed 65535. This also limits the size of the structures in STRUCTASGN.

IMPLEMENTATION NOTES
Although environment-independent implementations exist, these may be implemented as an in-line
macro instruction using an assembly language massager.

The “size == 0" case must be handled properly.

Bfil and bzero are provided as separate commands because zeroing memory is typically less
expensive than filling it with an arbitrary byte.

SEE ALSO '
string(3I)

3.3-86/09/26-R3v5m0 Britton Lee 1

BINTOA (31) Britton Lee BINTOA (31)

NAME
bintoa, atobin — binary to alpha conversion

SYNOPSIS
bintoa(inptr, inlen, outptr, outlen)
BYTE =inptr;
int inlen;
char *outptr;
int outlen;
atobin(inptr, inlen, outptr, outlen)
char xinptr;
int inlen;
BYTE =*outptr;
int outlen;

DESCRIPTION

Bintoa converts a string of bytes of length ¢nlen starting at inptr to a character string stored into
outptr. There are outlen bytes available at outptr for data storage.

Each input byte is converted to two output characters representing the hexadecimal value of that
byte. For example, the input byte with value 31 (decimal) is converted to the characters “1F” on
output.

A trailing null byte is added.

If outlen is not large enough to store all the bytes from the input, input bytes are truncated on
the right. Note that binaries represent byte strings rather than integers: leading zeros are
significant, while trailing zeros are insignificant.

Atobin performs the inverse operation.

EXCEPTIONS
W:IDMLIB.CNVT.OVERFLOW(input, limits)
The output overflowed.
W:IDMLIB.CNVT ATOBIN(char)
The specified character is not a valid hexadecimal character (0-9, a—f, A-F).

SEE ALSO
typecnvt(3I), xdump(3I)

3.4-86/06/26-R3v5m0 Britton Lee 1

BITSET (31) Britton Lee BITSET (31)

NAME

BITSET — test to see if a bit is set
SYNOPSIS

BOOL BITSET(bits, word)

int bits;

int word;
DESCRIPTION

BITSET returns TRUE if any of the bits are set in word. For example, typical usage might be:
if (BITSET(ID_ERROR, dp—id_stat))

To set one or more bsts, use
word |= bits;
To clear one or more bits, use
word &= Tbits;
BITSET is implemented as a macro.

DISCLAIMER
BITSET actually returns an int, not a BOOL (or char).

3.6-86/09/26-R3v5m0 Britton Lee 1

BYTETYPE (31) Britton Lee BYTETYPE (31)

NAME
ISALPHA, ISUPPER, ISLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT,
ISPRINT, ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, ISKANJI, TOCHAR,
TOUPPER, TOLOWER — character classification and conversion

SYNOPSIS
#include <bytetype.h>

ISALPHA(c)

DESCRIPTION
The ISxxx macros classify character-coded integer values by table lookup. Each is a predicate
returning TRUE if the indicated condition is satisfied. The TOxxx macros do character-specific
conversions.

ISCHAR is defined on all integer values; the rest are defined only where ISCHAR is true and on
the single out-of-band value EOF (see tntro(3I)).

ISALPHA ¢ is a letter [a-z, A-Z|

ISUPPER ¢ is an uppercase letter [A-Z]

ISLOWER ¢ is a lowercase letter [a-z]

ISDIGIT ¢ is a digit [0-9]

ISXDIGIT ¢ is a hexadecimal digit [0-9, A-F, a-f]

ISALNUM ¢ is an alphanumeric character (a-z, A-Z, 0-9]

ISSPACE ¢ is a space, tab, carriage return, newline, or formfeed

ISPUNCT ¢ is a punctuation character (neither control nor alphanumeric)

ISPRINT ¢ is a printing character, ASCII codes 040 (space) through 0176 (tilde).

ISGRAPH ¢ is a printing character, like tsprint except false for space

ISCNTRL ¢ is a delete character (ASCII 0177) or ordinary control character (less than
ASCII 040).

ISCHAR ¢ is a character in the native character set of the host computer.

ISPMATCH ¢ is an IDM pattern matching character (‘*’, ’?’, or ‘[’) or the internal equivalent
thereof.

ISZWIDTH ¢ is nominally a zero-width character when printed.

ISKANJI c is one byte of a two-byte Kanji character. This is always FALSE in American
and European versions of IDMLIB.

TOCHAR Converts a character into the legal range by stripping off special bits.

TOUPPER If the argument is a lowercase letter, returns the uppercase equivalent; undefined

on other values.

TOLOWER If the argument is a uppercase letter, returns the lowercase equivalent; undefined
on other values.

SEE ALSO
string(3I)

IMPLEMENTATION NOTES
Although the descriptions of the domain of these routines refer to ASCII characters, the imple-
mentation also handles EBCDIC. The EBCDIC codes are derived from the IBM System/360

3.6-86,/09/26-R3v5m0 Britton Lee 1

BYTETYPE (31) Britton Lee BYTETYPE (31)

Reference Card, order number GX20-1703-7.

3.18-87/05/22-R3v5m3 Britton Lee 2

CRACKARGYV (31) Britton Lee CRACKARGYV (31)

NAME
crackargv, usage — take apart an argument vector or print a usage message

SYNOPSIS
#include <crackargv.h>

crackargv(argv, template)
char *xargv;
ARGLIST stemplate;

usage(template, fmt, al, a2, a3)
ARGLIST stemplate;
char *fmt;

DESCRIPTION
Crackargy parses command-line arguments as necessary for the host environment. Traditionally
in C, the command line is passed to the subroutine main() as the arguments argc and argv,
without provisions for special command options and differing command syntax with different
operating systems. Crackargv accepts a NULL-terminated argv and a template data structure
describing the allowable arguments for the command and where the argument values should be
stored. Crackargv takes apart the argument vector, storing argument values in the program’s
variables.

Command arguments are either positional arguments or flag arguments:

Positional arguments have no explicit name in the command invocation; They must be specified
in a particular order. Required positional arguments must precede optional positional arguments.
The template specifies required and optional positionals for this program. The number of posi-
tional arguments that the user specifies in the command invocation must be at least as many as
the number of required arguments. Because of limitations on some host operating systems, at
most six positional arguments may be specified.

Flag arguments have names, and may be specified in any order. They are almost always optional.
A flag having no value associated with it is called a boolean flag. The template lists all flag argu-
ments with their names and the type of their argument.

Given a template and an argv, crackaergv finds the argument values in the most user-friendly
manner possible.

On UNIX, flags with values have the form —xvalue or —x value as convenient. Boolean flags can
be concatenated; for example, “~abc” is the same as ‘“~a -b —”’. A flag taking an argument must
be the last flag in the sequence; for example, “~abcx 7 is legal (assuming the “—x” flag takes a
value) but “-abxc 7” is not. A minus sign ‘-’ preceding the argument of a short, integer, or long
must be abutted to the flag, e.g., “—x-7".

The template is an array of structures describing the parameters. The fields are:

flag_cname The character that names this flag, on operating systems like UNIX that
use single-character flag names. If it is FLAGPOS then this entry
represents a positional argument. Order is important; positional argu-
ments will be matched in the order listed. In general, all positional argu-
ment templates should come after all flag argument templates for reada-
bility. The last entry in the list has this argument equal to the null
character, ‘\0’.

flag_type The type of the value for this argument. These may be

3.18-87/05/22-R3v5m3 Britton Lee 1

CRACKARGYV (31)

flag_mlength

flag_lname

flag_aname

flag_value

flag_prompt

flag_usage

3.18-87/05/22-R3v5m3

Britton Lee CRACKARGYV (3I)

FLAGBOOL boolean (takes no value)

FLAGSHORT short integer

FLAGLONG long integer

FLAGINT native integer

FLAGCHAR single character

FLAGSTRING text string

FLAGLIST vector of string (last positional only)
FLAGTRACE trace specification

FLAGPARAM global IDMLIB parameter

FLAGVER show IDMLIB version number (takes no value)

Native integers are short or long, depending on the underlying hardware.
Lists are sequences of strings. There should be no more than one param-
eter of type FLAGLIST and it should be the last flag in the description.
For example, on VMS this will turn a comma-separated list of elements
on the command line into one list. On UNIX it will match the rest of
the argv argument vector after the other positionals are consumed.
FLAGPARAMSs are passed to setparam with the flag_value pointing to a
null-terminated parameter name. Trace flags are passed to tfset (see
t(31)). FLAGVER is used so that a user can determine the exact version
of the library being used.

Minimum length (flags only). In the string form (for VMS-like systems)
this is the minimum number of characters that must be specified on the
command line to match this flag_Iname. Normally this is just enough to
make the name unique. For instance, if the Inames are “fig”, “plum”,
“process”, and “protect”, “fig”” would have an mlength of one, “plum”
two, and the last two would both require four. ‘“Dangerous” flags can
set the mlength equal to their total length; for example, the parameter
“initialize” could have an mlength of ten to insure that it could not
accidently be specified.

The long (string) form of the flag name. This is used on VMS and other
systems that use full-word qualifier names. These should be unique in
the first four characters.

An alternate string form, for Multics-like systems. This will normally be
very short and incomprehensible. If NULL, it will be ignored.

A pointer to a place to put the result. It should be a pointer prepended
by two underscores (“_ _”") which will do necessary type coercion. If this
value is to have a default it should be set before erackargy is called. For
FLAGSTRINGS, this points to a character pointer that will end up
pointing to the string which has been statically allocated by crackargv.
For FLAGPARAMS, this pointer instead points to a constant character
string that specifies the system parameter name that should receive the
value.

Prompt string. If this is not NULL, the argument is required. If the
user does not specify it and the operating system supports prompting,
this prompt will be printed (followed by a question mark) and the value
read from the standard input.

A text string to print in a usage message; the name of this argument. If
this is NULL, flag_prompt is used. If that is NULL, flag_{name is used.
If this is the zero-length string (‘”’) then this flag will never be printed in

Britton Lee 2

CRACKARGYV (31) Britton Lee CRACKARGYV (31)

a usage message; this is used for “hidden” flags, i.e., flags intended for
BLI use only.

Crackargyv must consume all arguments.

An implementation must accept some default flags; that is, flags that are not listed in a template
should be availiable in a default list. The following list is the minimum set of default flags that
must be implemented:

-B FLAGPARAM "IDMDEV”

-E FLAGPARAM "EXPERIENCE”
-T FLAGTRACE —

-V FLAGVER —

The routine usage can be used to print a usage message in a machine-independent fashion. It
prints the fmt and arguments in printf{3I) style followed by a usage message built from template.
Usage then raises “U:name.USAGE” (where name is the program name specified by INI-
TIDMLIB) and exits with status RE_USAGE. This message can give more detail about the use
of the command.

GLOBALS

ProgName Used by usage to print the name of this program.

EXAMPLES

In order for the argument template in the following example to fit completely on the page the
definition of _ CN for CHARNULL is included. Note that it is not defined by the include files.

#include <idmlib.h>
#include <crackargv.h>

#define _CN CHARNULL

short ShortV;
BOOL Xact;

int .- Count;
char *DbName;

ARGLISTArgs[| =

{

/* cname type mlen Iname aname value prompt usage */
’s’, FLAGSHORT, 1, ”short”, ”fs”, _ _ &ShortV, _CN, -CN,
x’, FLAGBOOL, 4, “trans”, ”tx”, __ &Xact, _CN, _CN,
’r’, FLAGINT, 1, “rep”, -CN, _ _ &Count, ”"count”, _CN,
B, FLAGPARAM, 1, ”idmdev”, _CN, __ IDMDEV”, _CN, _CN,
T, FLAGTRACE, 4, “trace”, _CN, BYTENULL, -CN, nn
FLAGPOS, FLAGSTRING, 0, _CN, -CN, _ . &DbName, ”dbname”, _CN,
7\07

b

main(argc, argv)

int argc;
char **argv;

{

INITIDMLIB(” testprog”);
crackargv(argv, Args);
(etc)

3.18-87/05/22-R3v5m3 Britton Lee 3

CRACKARGYV (31) Britton Lee CRACKARGYV (31)

Legal command-line syntax includes:

% testprog hostdb
% testprog -xs5 -B/dev/other -T50.9 bigdb

LIMITATIONS
It is not possible to have multiple occurrences of named flags.

IMPLEMENTATION NOTES
An implementation exists to parse UNIX argument vectors. This version should be examined
before doing further development.

It may be reasonable to check the experience level to decide whether to prompt for missing
required arguments rather than diagnosing an error.

EXCEPTIONS
E:IDMLIB.CRACKARGYV BADINT(str)
An illegal value was specified for an integer.

U:progname USAGE
This program was invoked incorrectly.

SEE ALSO
getparam(3I), printf(3I), tf(3I)

3.8-88/02/29-R3v5m8 Britton Lee 4

DBA (3I) Britton Lee DBA (31)

NAME
itdbdump, ittxdump, itdbload, ittxload, itrollf — build trees for database administration functions

SYNOPSIS
#include <idmtree.h>
#include <idmenv.h>

ITREE s*itdbdump(dbname, dbfile, txfile, tape, env)
char *dbname;

char *dbfile;

char *txfile;

char stape;

IENYV =»env;

ITREE tittxdump(dbname, txname, txfile, tape, env)
char *dbname;

char *txname;

char *txfile;

char *tape;

IENYV =env;

ITREE sitdbload(dbname, dbfile, tape, env)
char *dbname;

char sdbfile;

char stape;

IENY =env;

ITREE =sittxload(dbname, txname, txfile, tape, env)
char *dbname;

char *txname;

char *txfile;

char «tape;

IENYV =xenv;

ITREE sitrollf(dbname, txname, datetime, env)
char *dbname;

char *txname;

CLOCK =*datetime;

IENYV =env;

DESCRIPTION
The DBA functions build trees to perform certain database administration functions. These func-
tions are not provided as part of the IDL grammar implemented by sdlparse(3I). Itcopy(3l) is
also of interest.

Each of these operates on a particular database whose name is passed as dbname. The working
database is the database that is open when the commands are sent by sputtree(3I).

The dump and load operations all take an optional dbfile and/or tzfile to represent the name of
an IDM file in the working database to use as a source or destination for the database dump or
the transaction dump respectively. If these are CHARNULL and the tape parameter is provided
then IDM tape is used. If the tape parameter is also CHARNULL then I/O is engaged with the
host; it is up to the user program to ensure that this I/O is handled properly, since none of these
routines return data structured as a target list.

The tape options are defined in stapeopts(3I).

3.8-88/02/29-R3v5m8 Britton Lee 1

DBA (3I) Britton Lee DBA (3I)

Itrollf produces a tree to roll forward a database from a transaction log until the given date. If
the date is not given (i.e., if CLOCKNULL is passed), the entire log is rolled forward. The date
is specified as a CLOCK datum; see getclock(3I).

In all cases, options set in the environment are added to the tree. If env is IENVNULL a default
environment is used.

All functions return a tree that will execute the specified function when sent to the IDM/RDBMS
software using iputtree(3I). It is then up to the user program to send or receive any additional
data that the IDM/RDBMS software expects, such as a load image. The routines sfread(3I) and
tfwrite are the usual means of accomplishing this.

EXAMPLES
The call:

t = itdbdump(”db”, CHARNULL, "tx”, CHARNULL, IENVNULL);

produces a tree which, when executed, will dump the database “db” to the host and the transac-
tion log for “db” to the IDM file “tx” in the working database.

t = itdbload(”db”, CHARNULL, ”volume(d123),unit(1)”, [IENVNULL);

produces a tree that will load database “db” from IDM tape, verifying that volume “d123” is
mounted before the load begins. File zero from unit one will be read.

SEE ALSO o
getclock(3I), iesetopt(3I), ifread(3I), ifopen(3I), iputtree(3I), itapeopts(3I), itcopy(3I), iftltape(4I)

3.6-87/09/28-R3v5m5 Britton Lee 2

DSC (3I) Britton Lee DSC (31)

NAME
_dsctoidm, _idmtodsc — descriptor-based type (iDSC) conversion hooks

SYNOPSIS
int _dsctoidm(dsc, ptype, len, val)
BYTE =dsc;
int sptype;
int len;
BYTE xval;

—idmtodsc(type, len, val, dsc)

int type;
int len;
BYTE =val;
BYTE =dsc;

DESCRIPTION
N.B.: These routines are used internally by IDMLIB routines. They are not for use by applica-
tions. System porters must provide these routines if they wish to support descriptor-based types.

_Dsctotdm converts types represented by the descriptor dsc to one of the legal IDM system types.
The resulting type is stored indirectly through *ptype and the value is stored into the buffer val.
The value may not exceed len. The actual length of the resulting value is returned.

_Idmtodsc converts an IDM system datum represented by type, len, and val to the type indicated
by the descriptor dsc.

Descriptors are assumed to contain a buffer for (or a pointer to) the actual value.

These routines are invoked when a datum of type IDSC is passed to one of the level three
IDMLIB routines.

Programs using descriptors are inherently non-portable.

SEE ALSO
intro(3I)

3.15-88/02/29-R3v5m8 Britton Lee 1

EXC (3I) Britton Lee

NAME

EXC (31)

exchandle, excahandle, excdhandle, excraise, excvraise, excignore, excprint, excfprint, excbackout,
excprbo, excabort, excalock, excaunlock, exccleanup, bocleanup — exception and message han-

dling package

SYNOPSIS

#include <exe.h>

int exchandle(pattern, func)
char *pattern;
FUNCP fune;

excahandle(pattern, func, arg)
char *pattern;

FUNCP func;

BYTE »arg;

excdhandle(pattern, func, arg)
char spattern;

FUNCEP func;

BYTE *arg;

excraise(exc, argl, arg2, ..., CHARNULL)
char *exc;
char *argl, *arg2, ...;

excvraise(excv)
char *xexcv;

int excignore(excv, arg)
char **excv;
BYTE +arg;

int excprint(excv)
char **excv;

int excfprint(exev, outifp)
char *zexcv;

IFILE *outifp;

int excbackout{excv, arg)
char *sexcv;

BYTE xarg;

int excprbo(excv, arg)
char *:excv;
BYTE »arg;

int excabort({excv, arg)
char sxexcv;
BYTE sarg;

excalock()

excaunlock(force)
BOOL force;

exccleanup(func, arg)
FUCNP func;
BYTE =*arg;

3.15-88/02/29-R3v5m8 Britton Lee

EXC (3I) Britton Lee EXC (31)

MPOOL *bocleanup(idmifp, oldmpool)
IFILE *idmifp;
MPOOL *oldmpool;

DESCRIPTION

The exception package is a general-purpose facility to help formalize the handling of special con-
ditions that require abnormal flow of control. A function or procedure represents a context; if it
agrees to handle a particular exception by declaring a handler routine, any time that exception is
raised in that function or in a subordinate function, that routine will get control. Exceptions
handlers nest, so if f{) calls g() calls h(), and f and k both agree to handle EXCXXX, then if
EXCXXX is raised in f or g, control will return to f, but if EXCXXX is raised in A, control will
be returned to h rather than f.

Ezchandle agrees to handle any exception matching the pattern (described in pmatch(3I)). It
returns zero on first return, and the return value of the handler for subsequent returns. Ezcraise
or ezcurasse cause an exception to happen, i.e., “be raised”. When an exception EXCXXX is
raised, the package looks backwards on the stack of exception handlers built by ezehandle until it
finds the most recent handler with a pattern matching the exception being raised. The handler
procedure func is then called with an argument vector ezev and the argument arg. The zeroth
element of that ezcv is the actual exception being raised (e.g., EXCXXX), and the remaining
arguments in the vector correspond to the remaining arguments passed to ezcraise. Ezcahandle
is identical to ezchandle except that a second argument may be passed to the handler procedure.
Ezcratse and ezcvraise are identical except that the latter passes the ezev directly. The final
argument must be CHARNULL. The arguments are copied before processing the exception.

The handling function func may:
e Return with value zero which will cause the ezcrasse to return.

e Return non-zero which will cause the ezchandle that set the handler to return again with
that value. This is refered to as “backing out” to the handler. See the section below on
Backout Functions for special backout handlers.

o Raise the exception again (after possibly modifying the severity or arguments), which causes
it to be passed back to the previous willing handler.

If there are no handlers willing to handle this exception, a default handler is invoked. Default
handlers are like regular handlers, except:

o They are not removed automatically when the procedure that sets them exits, that is, they
remain in force until explicitly removed.

e The handler may not back out (return non-zero) since the context they were set in may no
Jonger exist. If it does, the process is aborted.

o They are set using ezcdhandle instead of ezchandle. Since they can never back out, ezcdhan-
dle returns no value.

If no default handler is specified, then the exception name is used to select a message using
IftMTezt(41) which is printed on the diagnostic output. The exception then returns or the pro-
cess exits, depending on the “severity” of the exception (see below). This is analogous to the
default action of a signal. This technique should be used for printing all messages generated by
libraries in order to support multilanguage I/O and to insure that the user can do special message
formatting as required.

The handler func executes in a subordinate context to the function executing the raise call. Thus,
if it raises another exception, the new exception will be interpreted relative to the function that
called ezerasse rather than relative to the function that called ezchandle.

3.15-88/02/29-R3v5m8 Britton Lee 2

EXC (3I) Britton Lee EXC (3I)

As a special case, ezcraise and ezcvratse will never return if a message of severity “abort” is
raised. The procedure may return nonlocally; otherwise the program is terminated.

Messages always begin with at least two asterisks for easy recognition. The number of asterisks
reflects the severity of the message.

If the func argument to ezchandle is FUNCNULL, the exception is no longer handled at this level,
i.e., it is passed back to anyone who previously preferred to handle it. The handler is also
removed when the routine that sets it returns.

Five canned functions are supplied that may be passed to ezchandle:
o Ezcignore will cause the exception to be ignored.
o Ezcbackout will cause the ezchandle call to return again with value one.

e FEzcprint causes the exception to be printed and otherwise ignored.

Ezcfprint causes the exception to be printed on the output file specified and otherwise
ignored.

Ezcprbo arranges to print the exception (by reraising the exception) and then returns one,
causing backout. Abort severity exceptions are first downgraded to Error exceptions.

Ezcabort converts the exception to an Abort severity exception and reraises it; the usual
effect is to print the exception and then abort the process exactly as though no one had been
willing to handle the exception.

Critical sections can be protected using ezcalock and ezcaunlock to lock and unlock asynchronous
exceptions respectively. It is almost always an error to leave these exceptions locked for a long
time; these routines are intended to be used to lock modification of a critical global data structure
(i.e., no more than a few instructions) rather than large blocks of code. Ezcaunlock will process
any exceptions that were raised during the locked interval. Ezcalock and ezcaunlock nest if the
force parameter to ezcaunlock is FALSE. If TRUE, exceptions are completely unlocked regardless
of the nesting level; this is normally used during exception backout.

Procedures that must get control during exception backout to do cleanup operations should use
ezccleanup. “Cleanup functions” are called when the stack is being unwound due to an exception
handler returning non-zero (backing out). Note that cleanup functions are NOT passed the
argument vector from ezcraise. Any number of cleanup functions may be set. These handlers
will be called (and the functions removed) in the reverse order from setting. Cleanup functions
are removed as they are called so that duplicates will not exist in the exception handler list
should the code continue execution. See the example below. Cleanup functions are normally used
to release local resources.

After a major backout where memory may have to be freed, etc., the routine bocleanup may be

called to do cleanup actions. The idmifp will be canceled if supplied (i.e., if not IFNULL). If an

oldmpool is supplied, this memory will be released and a new pool created and returned. The

new pool is guaranteed to be at the same position in the memory pool tree as the old pool. See
. zalloc(3I) for details of memory pools. Asynchronous exceptions will be reenabled.

EXCEPTION CODES

Exception codes are text strings. Every exception code is also a message code. They must be in
the format:

S:EXCCODE
The S field is a one character severity indication, selected from the set:

I Information
S Success’
C Continue

3.15-88/02/29-R3v5m8 Britton Lee 3

EXC (3I) Britton Lee EXC (31)

Respond
Warning
Transient
Error
Usage
Abort

Information These exceptions give no information that the user must know, but such infor-
mation may be convenient. For example, copy utilities may raise an “I:” excep-
tion periodically with the expectation that it will be printed to let the user know
how far they have gotten.

> gD

Success These tell the user of the successful completion of a step. They may be omitted
for expert users. For example, copy utilities may terminate with a success mes-
sage including the number of tuples actually copied; expert users may prefer to
have this information suppressed. :

Continue These exceptions invite the user to continue with some action; for example, in a
screen-based system, a continue message might be generated between each
frame.

Respond These exceptions indicate that an unusual but not erroneous condition has
occurred that requires human intervention, e.g., “End of tape; mount next
volume.”

Warning These exceptions are raised when some condition has occurred that may be an
error.

Transient Transient exceptions are usually caused by asynchronous events, operator inter-
rupts, transient resource exhaustion, or some problem that is due not to a user
error but rather to a condition that is unlikely to occur again. The user is
invited to try again later. Programs raising transient exceptions are not
expected to behave in the same way if run again.

Error Error exceptions are due to a user error. The program will normally try to con-
’ tinue processing if possible, but it is certain that incorrect results will occur.

Usage Raised only by usage (see erackargv(3I)) when a program is invoked incorrectly.
If there is a message associated with this exception it will be printed. In any

case, this terminates the process exactly like an “Abort” severity exception (see
below).

Abort These indicate catastrophic errors that immediately abort processing if some
exception handler does not arrange to back out. It is not possible for the
current routine to continue processing.

The EXCCODE field uniquely identifies the exception and the associated message. It is a struc-
tured field, consisting of a series of dot-separated names reading from most to least significant.
Each of these names should be descriptive but “reasonably” short, consisting exclusively of upper
case letters, digits, and underscores. For example, the code “IDMLIB.IO.WLR” might represent a
wrong length record error in the IO submodule of IDMLIB.

Note that the severity is not considered part of the name, so codes “EXXX” and “AXXX"” are
the same message, but with different severities.

Conventions
Exceptions that represent error messages, measure tokens, or done bits from the database server
begin with the word “IDM”. Exceptions from level-one or level-two IDMLIB modules begin with
the word “IDMLIB”. Exceptions from the level-three IDM interface module begin with the word
“IDMRUN”. Exceptions generated by applications (e.g., idmfcopy) begin with the name of the

3.15-88/02/29-R3v5m8 Britton Lee 4

EXC (31)

Britton Lee

application.

EXC (31)

Within IDMLIB, the second word of a three-or-more-part exception code identifies the major
module that raised the exception. Common modules are “IDM” for IDM-specific interfaces, “IO”
for the Input/Output module, “CNVT” for the data conversions, or the name of the routine gen-
erating the error.

Within the IDMLIB.IO module, file-type-specific messages have the name of the file-type module
(with the “Ift” removed) as the third word, e.g., “IDMLIB.IO.SCAN.NOROOM?” is the error
“NOROOM?” from the IftScan(4I) module.

GLOBALS
FileName If set, print as the input file name with messages.
LineNumber If non-negative, printed with messages.
EXAMPLE

#include <idmlib.h>
#include <exc.h>
#include <idmmpool.h>

main()
MPOOL *mympool = MPOOLNULL;
extern maincatch();
extern MPOOL *bocleanup();
extern MPOOL *DefMpool;
INITIDMLIB(” demo”);
exchandle(” *:USER.EXC”, maincatch);
/* handle interrupts and back out */
if (exchandle(” T:IDMLIB.ASYNC.+”, excbackout) == 0)
DefMpool = mympool = newmpool(0, MPOOLNULL);
else
DefMpool = mympool = bocleanup(IFNULL, mympool);
/* this call will cause maincatch to be called */
subr();
exchandle(”*:USER.EXC”, FUNCNULL);
/* this call will abort the process */
subr();
}
maincatch(excv)
char sxexcv;

printf(” caught exception %s\n”, excv(0]);

/* return zero to cause excraise to return */
return (0);

3.15-88/02/29-R3v5m8 Britton Lee

EXC(81) Britton Lee EXC (31)

subr()
MPOOL stemppool = MPOOLNULL;
extern freempool();
extern subrcatch();

/* create a new memory pool to illustrate resource release on backout */
temppool = newmpool(0, MPOOLNULL);

if (exchandle(” T:IDMLIB.ASYNC.INT”, subrcatch) != 0)

return;
/*
»x Backout function — freempool(temppool);
*% Release resource when subrcatch backs out
L1 after interrupt.
*/
exccleanup(freempool, _ _ temppool);

printf(”try interrupt now\n”);

sleep(5);

excraise(”E:USER.EXC”, CHARNULL);
}

subrcatch(excv)
char **excv;

{
printf(” congratulations! you typed “C!\n");
/* return non-zero to cause exchandle to back out */
return (1);
WARNINGS

It may not always be possible to build an efficient implementation of the exception handler.
Avoid calling ezchandle inside inner loops, or inside functions that get called frequently. In gen-
eral it is safe to use ezcratse however.

The use of setymp and longymp in programs that link to lébidmliib.a is not recommended. If the
user code performs a longymp over active contexts which called ezchandle, then the exception
stack will become out of sync and strange behaviour will occur.

Since it is very hard to predict all calling sequences (to know if a context on the stack set a
exception handler), it is recommended that user code convert to using only the exception facility.

IMPLEMENTATION NOTES
The UNIX implementation is quite flexible and can probably be adapted to your environment.
This implementation requires that your system supply you with the setymp(3) primitives to do
non-local gotos. You must supply two internal assembly-language routines that manipulate the
run-time program stack: _ezcpra which returns a pointer to the return address of your parent,
and _ezcdisable which cleans up a context at a given level. Ezchandle is actually a macro that
calls _ezcvect and then does a setymp on the return to save the possible backout address.

3.15-88/02/29-R3v5m8 Britton Lee 6

EXC (3I) Britton Lee EXC (3I)

When _ezeveet is called, it calls _ezcpra to find the return address of the function that called it.
If it is not the address of _ezcdisable then this is a first call at this level, and initialization must
occur: a context is allocated, the old return address is stored in the context, and the return
address is replaced with the address of _ezcdisable. Then in any case the context is adjusted to
reflect this exception handler.

When the function returns, _ezcdisable will be executing in the stack frame of the caller of the
function that placed the handler. It should deallocate the context. It then does a jump to the
saved return address, simulating the last part of the return statement.

On UNIX, the following mappings of signals to exceptions apply:

UNIX EXCEPTION

SIGHUP T:IDMLIBASYNC.INT
SIGINT T:IDMLIB.AASYNC.INT
SIGILL A:IDMLIB.ASYNC.NOFP=*

SIGALRM A:IDMLIB.ASYNC ALARM
SIGTERM T:IDMLIB.ASYNC.TERM
SIGTSTP T:IDMLIB.JOB.SUSPEND
SIGCONT T:IDMLIB.JOB.CONTINUE

(*Only on systems that have no floating point hardware.)
Other signals have default actions.

The routine _ezeinst is called by INITIDMLIB to do initialization; it must be defined by the
implementation. On UNIX, it arranges to catch signals. The job-control signals, SIGTSTP and
SIGCONT, are caught and handled in IftLo Term(4I).

SEE ALSO
exit(3I), pmatch(3I), ftMText(4I), IftLoTerm(4I), messages(5I), signal(2), setjmp(3)

3.8-87/09/28-R3v5m5 Britton Lee 7

EXIT (31) Britton Lee EXIT (31)

NAME

exit — terminate program
SYNOPSIS

exit(stat)

RETCODE stat;

DESCRIPTION

Ezit is the normal means of terminating a program. Ezit performs necessary cleanup actions and
returns stat to the operating system.

This call can never return.
The stat should be an error code as defined in geterr(3I).

IMPLEMENTATION NOTES
It may be necessary to map stat to a system exit status code.

This routine must call _tcleanup before exiting to invoke onezit(3I) routines. Possible recursive
invocations of ezit will be handled by _scleanup.

If the system ezit performs additional cleanup actions it may be necessary to redefine the name of
this routine (for example, using ##define exit _iexit) so that the IDMLIB exit routine can per-
form its cleanup and then call the system exit routine.

If the program calls fork(2), the child process will need to #undef exit before calling ezit() to
avoid freeing resources inherited from the parent process. In particular, a parent database server
connection will be closed if the IDMLIB ezt is called by the child process.

SEE ALSO
onexit(3I), retcode(5I)

3.5-87/05/22-R3v5m3 Britton Lee 1

FMTCLOCK (3I') Britton Lee FMTCLOCK (3I)

NAME :
fmtclock, fmtdate, fmtintvl — date/time output formatting

SYNOPSIS
#include <clock.h>
char «fmtclock(clock, sone)
CLOCK *clock;

int sone;

char sfmtdate(date)
DATE xdate;
char *fmtintvl(clock, verbose)
CLOCK xclock;
BOOL verbose;
DESCRIPTION
Fmtdate and fmtclock turn the specified date or clock value (described in getclock(3I)) into a

string in the system default format. For example, this might produce “Tue Mar 29 16:59:46
1983” or “29-MAR-83 16:59:46”’ depending on the host computer’s operating system.

The zone parameter to fmtclock specifies the time zone in which the value should be interpreted;
the semantics are identical to the zone parameter to clocktodate (see getclock(3l)).

Fmtintvl is similar to fmtelock except that it assumes that the clock represents an interval; typi-
cally the output will be something like “3+12:03:00” or “3 days, 12 hours, 3 minutes” depending
on the setting of the verbose flag.

WARNINGS
The return values point to static data whose content is overwritten by each call.
Fmtclock and fmtdate may silently fail for dates before Jan. 1, 1900 or after Feb. 28, 2100.

IMPLEMENTATION NOTES
If the time zone is not available from the system, it should be supplied as a system parameter (see
getparam(3I)).

The routines fmtclock and fmtdate are environment-dependent; fmtintv! is environment-
independent.

SEE ALSO
getclock(3I), parsedate(3I)

3.5-86/09/26-R3v5m0 Britton Lee 1

GETCLOCK (3I) Britton Lee GETCLOCK (31)

NAME

getclock, clocktodate, datetoclock, dificlock, IDMTOTICKS, TICKSTOIDM — date/time manipu-
lation

SYNOPSIS
ffinclude <clock.h>

CLOCK s*getclock()

DATE =*clocktodate(clock, sone)
CLOCK xclock;

int sone;

CLOCK *datetoclock(date)
DATE xdate;

CLOCK =diffclock(cl, ¢2)
CLOCK =xcl;
CLOCK *c2;

long TICKSTOIDM(ticks)
long ticks;

long IDMTOTICKS(idmtime)
long idmtime;

typedef struct
{

long cl_day; /* days since the epoch */

long ecl_ticks; /* clock ticks since midnight */
} CLOCK;

typedef struct
{
short dt_ticks; /+ ticks (parts of a second) */
short dt_sec; /* seconds */
short dt_min; /+ minutes =/
short dt_hour; /* hour */
short dt_mday; /* day of the month */
short dt_mon; /* month of the year x/
short dt_year; /* year x/
short dt_wday; /+ day of the week */
short dt_yday; /* day of the year */
short dt_sone; /+ timesone %/
BOOL dt_isdst; /* TRUE if daylight savings time ever used in your area */
} DATE;
DESCRIPTION
There are two representations for dates. The first is a CLOCK value, having days (gross resolu-
tion) and clock ticks (fine resolution). The day is stored as days since the epoch. The time is
stored as ticks (1/TICKSPERSEC of a second) since midnight. GMT is always used for the
clock. It can be used to store either dates or intervals.

3.12-87/12/04-R3v5m7 Britton Lee 1

FTOA (3I) Britton Lee FTOA (3I)

NAME
ftoa — floating-point to alpha conversion

SYNOPSIS

ftoa(f, buf, width, fmt, scale, prec)
double f;

char *buf;

int width;

char fmt;

int scale;

int prec;

DESCRIPTION

Ftoa converts the floating-point number f into a string stored in buf of length at most width
(including the trailing null byte). There will be at most prec digits after the decimal point. Six
formats are defined by fmt. These are:

F Regular floating-point.

E Exponential format.

G E or F format, whichever produces the smaller number of output digits.
H

E or F format, with F preferred. That is, if F format will fit in the specified width field it
will be used; E format will be used only if the number will not fit when represented in F
format.

A Like H, but with decimal points aligned on the numbers represented in F format. This for-
mat is convenient for columns of numbers. Alignment is done only within E and F formats,
that is, E format align with E format, F format with F formats, but E and F format do not

align.
P Like A, but with the precision padded out. This is provided for compatibility with
bedtoa(3I).
If the number is ultimately formatted in E style, there will be scale digits before the decimal
point.

IMPLEMENTATION NOTES
This routine must be supplied by the environment-dependent implementation for use by

printf(3I). It may use the internal routine fmtfloat(3I). This routine is intended to print in a for-
mat compatible with bedtoa(3I).

SEE ALSO
atof(3I), bedtoa(3I), fmtfloat(3I), printf(3I), ecvt(3)

3.12-87/12/04-R3v5m7 Britton Lee 1

FOLDCASE (3I) Britton Lee FOLDCASE (31)

NAME

foldcase — fold upper to lower case in a string
SYNOPSIS

foldcase(src, dst, cnt)

char *src;

char =dst;

int cnt;
SYNOPSIS

Foldcase copies up to cnt bytes from src to dst folding uppercase alphabetics to lowercase as it

goes. The copy terminates when ¢nt is exceeded or a null byte is encountered. The null byte will
be copied.

Sre and dst may point to the same string.

SEE ALSO
string(3I)

3.4-86/09/26-R3v5m0 Britton Lee 1

FMTFLOAT (31) Britton Lee FMTFLOAT (31)

NAME

SYNOPSIS

fmtfloat — internal floating-point output formatting routine

fmtfloat(digits, neg, expon, buf, width, fmt, scale, prec)
char +digits;

BOOL neg;

int expon;

char *bufj;

int width;

char fmt;

int scale;

int prec;

DESCRIPTION

N.B.: This routine is for internal use by bcdtoa(3I) and ftoa(3I) only — it should not be used by
end-user routines.

Fmtfloat takes a string of digits representing a floating-point value and adds the sign, decimal
point, exponent, etc. in the correct places for normal output representation. Digits is a string of
digits converted to alpha notation. A decimal point is implied before the first digit. Neg is
TRUE if the number is negative. Ezpon is the exponent, that is, the number of digits that
should be to the right of the decimal point. It may be negative. The result is stored in buf; at
most width characters (including the trailing null byte) will be stored. There will be at most pree
digits after the decimal point. A precision of zero suppresses the printing of a decimal point, use-
ful for printing BCD integers. Six formats are defined by fmtfloat:

o\

P

Regular floating-point.
Exponential format.
E or F format, whichever produces the smaller number of output digits.

E or F format, with F preferred. That is, if F format will fit in the specified width field it
will be used; E format will be used only if the number will not fit when represented in F
format.

Like H, but with decimal points aligned on the numbers represented in F format. This for-
mat is convenient for columns of numbers. Alignment is done only within E and F formats,
that is, E format align with E format, F format with F formats, but E and F format do not
align.

Like A, but with the precision padded out. This is provided for compatibility with
bedtoa(3I).

If the number is ultimately formatted in E style, there will be scale digits before the decimal
point.

SEE ALSO

ftoa(31), bedtoa(3I)

BUGS

Output buffer overflow is not properly detected with format E.

Format F does not always round correctly when the exponent is negative.

3.5-86/09/26-R3v5m0 Britton Lee 1

PARSEDATE (31) Britton Lee PARSEDATE (31)

specifications may not be intermixed with other textual time information.
EXAMPLES
The following all represent October 6, 1950:
Oct. 6, 1950
october 6, 1950 14:30:12 edt
friday, 6 oct 50, 2 pm
TUES 6-OCT-50 1400 H
noon, 50/10/6
10-6-50 143012
6.10.50 14:30
50/10/6-14:00-PDT
6-Oct-50 10:37:19-PDT (Tue)

EXCEPTIONS
E:IDMLIB.CLOCK PARSE(input)
The specified input could not be parsed.
WARNINGS
The return value points to static data whose content is overwritten by each call.
SEE ALSO
fmtelock(3I), getclock(3I)

3.3-86,/09/28-R3v5m0 Britton Lee 2

PARSEDATE (31) Britton Lee PARSEDATE (31)

NAME
parsedate — free-format date/time conversion

SYNOPSIS
ffinclude <clock.h>

CLOCK sparsedate(string)
char *string;

DESCRIPTION
Parsedate reads a string that represents the date and turns it into a CLOCK structure. A
heuristic parse is used that accepts a wide variety of formats. Either upper or lower case may be
used within date strings. Parsedate can only handle dates between Jan. 1, 1900 and Feb. 28,
2100.

Unspecified date fields are copied from the current system date; unspecified time fields are set to
their minimum possible values. For example, if the current date is September 12, 1983 at
11:32:05, the input “10AM September 20” would mean “September 20, 1983 at 10:00:00” and “3
PM 1980” would mean “September 12, 1980, at 3:00.00 PM.”

Parsing an empty string returns the current date.

Parsedate returns CLOCKNULL and raises an exception if the input cannot be recognized or is
inconsistent.

CLOCK structures are described in getclock(3I).

The following time zones are supported:
STD, DST local standard, daylight-savings times, respectively.
GMT, GST Greenwich mean time. =
AST, ADT Atlantic standard, daylight-savings time.
EST, EDT Eastern standard, daylight-savings time. Synonymous with AST, ADT
CST, CDT Central standard, daylight-savings time.
MST, MDT Mountain standard, daylight-savings time.
PST, PDT Pacific standard, daylight-savings time.
YST, YDT Yukon standard, daylight-savings time.
HST, HDT Hawaii standard, daylight-savings time.

Parsedate also recognizes military time zones represented by the characters ‘A’ through ‘2’
(except for ‘J’) where ‘H’ is Pacific Standard Time and ‘Z’ is Greenwich Mean Time.

Specifications indicating daylight-savings times are ignored if daylight savings was not in effect on
the specified date. For example, in the date string “dec 20, 2:30 pm dst” the time is known to be
standard, not daylight.

Four-digit numbers are interpreted as times if possible, otherwise as dates. The string “1915”
parses to the time 7:15 PM, while the string “1970” parses to the year 1970.

Date formats may be syntax-sensitive. For example, the date “9/2/84” parses to September 2,
1984, while “2.9.84” is interpreted as February 9, 1984.

Six-digit numbers are interpreted as dates in “YYMMDD” format, if possible, otherwise as mili-
tary time specifications.

Parsedate accepts IDM time specifications in the format "idmtime < days > | < ticks > |”
where days is an integer representing the number of days since the epoch and ticks is an integer
representing the number of 60ths of a second since midnight. The ticks are optional. IDM time

3.7-87/02/08-R3v5m0 Britton Lee 1

OPERATOR (31) Britton Lee OPERATOR (31)

HTAPE ERR.WRONGVOLUME
The wrong volume was mounted.

HTAPE FILENOTFOUND
File not found on host tape.

HTAPEMOUNT(volume, unit)

Mount the specified volume on host tape unit unit.

HTAPE.NEXTVOLUME
Ready for next volume.

ITAPE MOUNT(volume, unit)
Mount the specified volume on IDM tape unit unit.

ITAPE.NEXT
Mount the next IDM tape volume. Respond with the unit number. of the drive.

WARNINGS
Askoperator may return CHARNULL even if hasoperator previously returned TRUE if the opera-
tor logs out; in this case the user program must be careful not to go into a loop.

EXCEPTIONS
W:IDMLIB.OPERATOR.NONE
Raised by askoperator and telloperator if there is no operator available.

IMPLEMENTATION NOTES
Care must be taken to insure that these implementations are extensible, that is, that new opera-
tors and new messages may be added easily.

On UNIX, this just communicates with the user. Hasoperator tests whether input is coming from
the terminal. On other systems this is likely to test whether the operator is currently in atten-
dance, or may just return TRUE.

On VMS, all communications go to the operator named by the system parameter OPERATOR
(determined from the logical name IDM_OPERATOR). Only IDM tape messages are imple-
mented using this facility, as host tape messages are handled automatically by RMS. The
OPERATOR parameter may be set to any of the standard VMS operator identifiers: TAPES,
CARDS, CENTRAL, DEVICE, DISKS, NETWORK, PRINT, and OPER1 through OPERI12.
You may also direct IDMLIB operator messages to your own terminal by specifying SELF or ME.

SEE ALSO
getprompt(3I)

3.7-87/02/08-R3v5m0 Britton Lee 2

OPERATOR (31) Britton Lee OPERATOR (31)

NAME
telloperator, askoperator, hasoperator — communicate with the system operator

SYNOPSIS
telloperator(oper, msgcode, param, ..., CHARNULL)
char *oper;
char *msgcode;
char *param;
char *askoperator(buf, len, oper, msgcode, param, ..., CHARNULL)
char buff |;
int len;
char «oper;
char smsgcode;
char *param;

BOOL hasoperator(oper)
char *oper;
DESCRIPTION
Telloperator sends the message to the specified system operator.

Askoperator sends the message to the specified operator exactly like telloperator and then waits

for an operator response. It returns buf if the response was successful, CHARNULL if the opera-
tor is not in attendance.

Hasoperator returns TRUE if it is possible to communicate with someone acting as the specified
system operator.

The system may have several operators. The following operators are specifically defined:
ITAPE The IDM tape operator (for IDM tape mount requests).

HTAPE The host tape operator (for host tape mount requests).

PRINTER The line printer operator (for special forms requests).

The msgcode and params behave like exceptions, where msgcode is modified to be an exception
name. The last parameter must be CHARNULL.
Defined operator, message code, and parameter combinations are:
HTAPE.EOV
At end of volume.

HTAPE.ERR.INVALID
Host tape is not a valid format.

HTAPE.ERR.NODRIVE(drivename, error)
Cannot open drivename: system reported error as the cause.
HTAPE.ERR.NOHDRI1
No HDRI1 label on tape.
HTAPE.ERR.NOTONLINE(volume, unit, error)
The specified tape unit could not be accessed when trying to read the named volume.
HTAPE ERR.WRONGTAPE
Incorrect tape.

HTAPE.ERR.WRONGVOL(needed, actual)
Incorrect volume: needed required, actual mounted.

3.9-87/02/08-R3v5m0 Britton Lee 1

ONEXIT (31) Britton Lee ONEXIT (3I)

NAME
onexit, offexit — transfer control on exit

SYNOPSIS
onexit(exitfn, arg)
FUNCP exitfn;
BYTE sarg;

offexit(exitfn, arg)
FUNCP exitfn;
BYTE xarg;
DESCRIPTION
Onezit specifies functions to be called when the process exits. Each ezitfn is called with the

specified erg. The functions will be called in the reverse order in whlch they were established.
Duplicate calls to onezit are ignored.

Offezit removes the entry that matches. It is not an error if no entries match.
IMPLEMENTATION NOTES
Ezit(3]) must call _tcleanup to invoke the exit routines set by onezit.

On VMS, ezit() either calls the system service SYS$EXTT\) or the ezit routine in the VAX C
Run-time Library, depending on how a program is linked. In either case, a VMS exit handler is
declared in INITIDMLIB() that will call _scleanup to invoke the exit routines set by onezit. This
way, all exit handlers will be called regardless of how the program exits.

SEE ALSO
exit(3I)

3.9-87/02/08-R3v5m0 Britton Lee 1

MAPSYM (31) Britton Lee MAPSYM (31)

NAME
mapsym — translate symbol name into integer value

SYNOPSIS
int mapsym(prefix, sym)
char prefix;
char *sym;

DESCRIPTION
Mapsym translates a symbolic name having the given prefiz into an integer by doing a file lookup
in the file specified by the SYMFILE parameter (see getparam(3I) and params(5I)).
If the parameter begins with a digit, it is converted to integer and returned directly.
The following prefixes are defined:

d IDM done status bits.
o IDM option values.

t IDMLIB trace flags.

* IDM trace flags.

Upper case prefixes are reserved for customer use. All other prefix characters are reserved for
Britton Lee use.

Case is ignored in sym comparisons.
EXAMPLES

mapsym(’t’, "PROTECT”) — 26

mapsym(’t’, "Protect”) — 26

mapsym(’x’, ”38”) — 38
EXCEPTIONS

E:IDMLIB.MAPSYM.NOSYM(prefix, symbol)
No mapping for the specified symbol exists.

SEE ALSO
atoi(3I), getparam(3I), params(5I), symfile(5I)

3.6-86,/09/28-R3v5m0 Britton Lee 1

MAKEFNAME (3I) Britton Lee MAKEFNAME (31)

NAME
makefname — make file name from components
SYNOPSIS
char *makefname(file, directory, filetype)
char «file;

char *directory;
char *filetype;

DESCRIPTION
Makefname makes a fully qualified host file name from the constituent pieces: file is the basic file
name, directory is the name of the directory in which to find file, and filetype is the filetype part
of the file name.

If directory is CHARNULL or the null string then the current dlrectory is used. The following
special strings are also recognized and interpolated:

-LOGIN_ The current user’s login directory.

~USRPROFILE. The profile directory for the current user, that is, a directory in which to find
user startup and configuration files.

-SYSPROFILE_ A system profile directory.

If filetype is CHARNULL then no filetype is added to the file name. Filetypes compiled into pro-
grams should never exceed three characters for maximum portability.

Components that are already present in file are not replaced or added. That is, if file already
had a directory and a filetype makefname would return file.

Since the syntax of directories cannot be standardized it is expected that this routine will always
be called with one of the builtin directory names or by calling getparam(3I).

EXAMPLES
The call

ma.kefname(”lqppro , ”_USRPROFILE_~, "idl")

might return the following strings:

UNIX /a/sw [eric/ iqppro.idl
VMS DBAO:[eric)igppro.idl
CMS igpro.vmuserid

The call

makefname(” /usr/idl/x”, ” /tmp”, *idl”)
might return:

UNIX /usr/idl/x.idl

CMS x.idl

IMPLEMENTATION NOTES
This routine is machine dependent.

On UNIX, a “filetype” is defined to be anything after a dot found after the second position of the
final component of the pathname. This allows a leading dot in the filename that will not be con-
sidered the beginning of a filetype. Correspondingly, the “_USRPROFILE_” directory is actu-
ally the home directory plus a leading dot as shown in the examples above.

SEE ALSO
getparam(3I)

3.5-87/02/17-R3v5m0 Britton Lee 1

KEYLOOK (31) Britton Lee KEYLOOK (31)

LIMITATIONS
Keylook can only handle string/integer pairs. This is insufficient for some applications.

3.8-87/05/18-R3v5m3 Britton Lee 2

KEYLOOK (3I') Britton Lee KEYLOOK (3I)

NAME
keylook, usage — perform binary search on a given table

SYNOPSIS
#include <keylook.h>

keylook(string, table)

char *string;

KEYTABLE #table;
DESCRIPTION

Keylook looks up the given string in the given table, and returns the integer token associated with
the table entry.

Keylook uses a fast binary search algorithm, so it is very efficient for medium-sized tables. Very
small tables are probably better handled by linear search, very large tables by some hashing
method. .

The first entry of the table is the default returned if the search string is not found. The method
of specifying a lookup table is shown below in the example.

EXAMPLE

#finclude <idmlib.h>
#include <keylook.h>

KEYWORD Keywrds[] =

{
/* keyword token returned =*/
{CHARNULL, -1 }, /* default =/
{”and”, I_AND },
{”any”, I_ANY },
{"as”, I_AS }
{"by”, I_BY }
{*from”, I_FROM },
{rin”, LN Y
{”on”, I_ON b
{set”, I_SET }
{"t0”, I_TO },
{"with”, I_WITH }

b

KEYTABLE Keytable =
{ Keywrds, _.KTAB_SIZE(Keywrds) };

int

get_token(str)
char =str;
/* this returns -1 if ‘str’ not found in Keytable */
return (keylook(str, &Keytable));

}

The macro _KTAB_SIZE is provided in keylook.h for convenience. The KEYWORD array is
referenced only in the KEYTABLE declaration.

1.2-86/10/15-R3v5m0) Britton Lee 1

ITXCMD (31) Britton Lee ITXCMD (31)

SEE ALSO
idlparse(3I), iesetopt(3I), iputtree(3I), System Programmer’s Manual .

3.7-87/12/04-R3v5m7 Britton Lee 2

ITXCMD (31) Britton Lee ITXCMD (31)

NAME
itxcmd, itxprog, itxsetp — build trees to execute stored commands/programs

SYNOPSIS
ffinclude <idmtree.h>
#finclude <idmenv.h>

ITREE sitxemd(cmdname, env)
char *¢emdname;
IENYV xenv;

ITREE sitxprog(progid, env)
long progid;
IENY xenv;

itxsetp(t, name, type, len, val)
ITREE =t;

char sname;

int type;

int len;

BYTE #val;

DESCRIPTION

Itzemd and ttzprog produce trees for the execute command and execute program operations
respectively. The tree returned includes no parameters. Parameters may be added using succes-
sive calls to ttzsetp. The name of the parameter may be CHARNULL to specify unnamed param-
eters. The type and len describe both the data in the host and to be sent to the IDM/RDBMS
software. Type iSTRING is converted to iCHAR but is otherwise semantically equivalent (i.e., if
a length of —1 is specified then the strlen of the argument is used). Values of type iPCHAR will
have the standard pattern characters mapped to internal form.

Options set in the environment will be set in the command tree. If env is IENVNULL, a default
environment will be used.

EXAMPLES

/* execute update with name = ”mike”, amount = 44 */

t = itxcmd(”update”, [IENVNULL);

itxsetp(t, "name”, iSTRING, —1, _ _ "mike”);

itxsetp(t, "amount”, iINT2, 2, _ _ &amnt);

/* help "relation” */

t = itxcmd(”help”, IENVNULL);

itxsetp(t, CHARNULL, iSTRING, —1, _ _ ”relation”);

/* execute program 2112001 with (*foobar”, 7) %/

= itxprog(2112001L, IENVNULL);

itxsetp(t, CHARNULL, iSTRING, —1, _ _ "foobar”);

itxsetp(t, CHARNULL, iINT1, 1, _ _ &seven);
EXCEPTIONS

E:IDMLIB.IDM.ITXCMD

No name was specified to ttzemd.

E:IDMLIB.IDM.ITXSETP.BADTYPE(type)
The tree specified is not an execute command or execute program tree.

E:IDMLIB.IDM.ITXSETP.NOTREE
The user did not correctly specify a value.

3.7-87/12/04-R3v5m7 Britton Lee 1

ITQSTMT (31) Britton Lee ITQSTMT (31)

** retrieve (r.name, a.name)
ok order by a.name

*k where r.relid = a.relid
*k and r.name 3 “relation”;
*/

/* build the range table */
rlist[0] = "relation”;
rlist{1] = ”attribute”;
rlist[2] = CHARNULL;

/* build the target list */
tlist[0] = itvar(0, "name”);
tlist1] = itvar(1, "name”);
tlist[2] = ITNULL;

/* build the qualification */
= itvar(0, "relid”);
r = itvar(1, "relid”); _
qlist[0] = itnode(], r, iEQ, 0, BYTENULL);
1 = itvar(0, "name”);
r = itnode(ITNULL, ITNULL, iCHAR, -1, "relation”);
qlist[1] = itnode(l, r, iNE, 0, BYTENULL);
qlist[2] = ITNULL;

/#* build the order list */ -

/* now create the entire tree */
it = itgstmt(iIRETRIEVE, rlist, tlist, qglist, olist, IENVNULL);

SEE ALSO
idlparse(3I), itnode(3I), sqlparse(3I)

3.7-87/12/04-R3v5m7 Britton Lee 2

ITQSTMT (31) Britton Lee ITQSTMT (31)

NAME

itgstmt — build a tree for a general query statement

SYNOPSIS

#include <idmtree.h>
#include <idmsymbol.h>
#include <idmenv.h>

ITREE *itqstmt{cmnd, rlist, tlist, qlist, olist, env)
int emnd;

char =srlist;

ITREE *=tlist;

ITREE *sqlist;

int =olist;

IENYV =env;

DESCRIPTION

Itgstmt builds query trees for most of the general query statements (retrieve, append, etc.)
without calling a full parser such as tdlparse(3I) or aglparse(3I). It is intended for use in environ-
ments that require ad hoc queries of some sort (so a precompiler is insufficient) but which still
have memory or performance requirements that prohibit linking of the full parser — specifically,
4th Generation interpreters.

The user is still required to build some subtrees; additional documentation can be found in the
System Programmer’s Manual . In other words, this routine encapsulates the non-public inter-
faces.

Cmnd is the type of the tree, e.g., IRETRIEVE or iDELETE. Rlist is CHARNULL-terminated
list of relation names used in the query. The relation number is determined by the index into the
vector. Any VAR nodes in the other lists must match this index.

Tlist, an ITNULL-terminated list of targets, can be simple VAR nodes or complex expressions.
Each entry will have a iRESDOM node tacked on. QIlist is an ITNULL-terminated list of
qualification terms. These are conjoined to create the qualification.

If a particular ordering is required, oltst may be specified as a zero-terminated list of order terms.
Each integer entry is an index into t!ist. For the purposes of this array, tlist is assumed to have
an origin of one — that is, if olist[0] == 1, that implies that the first target (i.e., t/és¢[0]) should
be ordered. If the entry is negative, the ordering is descending instead of ascending.

FEnv is an environment used for execution as in the other routines.

Itgstmt returns a tree that can be executed as though it had been returned from tdlparse(3I) or
one of the other tree creation routines. This tree will have iRESDOM nodes rather than
iRESATTR nodes, so the retrieved data will be unnamed. Also, there is no way to specify .all at
this time.

DEFICIENCIES

Possibly should check its arguments more carefully; as it stands the database server will give a
diagnostic, but it may be quite obscure.

The iATTRALL (ak.a., .all) should be supported.

EXAMPLE

In the following example, the routine stvar is used to create VAR nodes.
/*

** Handcraft the query:

%x%

% range of r is relation;

*k range of a is attribute;

3.6-88/02/29-R3v5m8 Britton Lee 1

ITPRINT (31) Britton Lee ITPRINT (31)

NAME
itprint — print a tree for debugging
SYNOPSIS
#include <idmtree.h>
itprint(tree, all)
ITREE xtree;
BOOL all;
DESCRIPTION
Itprint prints a representation of the given tree on the standard trace. This is not expected to be
readable by mortals. If all is set the entire tree is printed, otherwise only the root node is
printed.
SEE ALSO
itnode(3I), itfree(3I)

3.6-88/02/29-R3v5m8 Britton Lee 1

ITNODE (31) Britton Lee ITNODE (31)

NAME
itnode, itvar, itroot — build an IDM tree node, VAR node, or ROOT node

SYNOPSIS
#include <idmtree.h>
#include <idmsymbol.h>

ITREE sitnode(left, right, type, len, valp)
ITREE xleft;

ITREE =right;

int type;

int len;

BYTE =»valp;

ITREE *itvar(relno, attname)
int relno;
char *attname;

ITREE sitroot(left, right, vall, val2)
ITREE =left;
ITREE =*right;
int vall;
int val2;
DESCRIPTION
Itnode creates a new tree node. The ¢t_left, it_right, and st_type fields are filled in directly from
left, right, and type respectively. If len is given, it is used as the length of the node. If omitted
(by passing —1), an attempt is made to determine the length from the type. If the type is a fixed

length symbol, then that length is used. If it is a “length follows symbol’ type, then valp must
be non-NULL, and the string length of the value field is used.

The value field of the generated node is filled in from the valp if non-NULL, otherwise zeroed.

Since space for the node is allocated off of the default heap, the space must always be released
when done. This can be done easily using stfree(3I).

VAR nodes can be created using stvar, supplying the range variable number and the name of the
attribute desired. ROOT nodes can be created using ¢troot, supplying the left and right child
pointers, and two bytes of value to put in the ROOT node itself.

SEE ALSO
itfree(3I), itree(5I)

3.3-86/09/28-R3v5m0 Britton Lee 1

ITLPRINT (3I) Britton Lee ITLPRINT (3I)

NAME

itlprint — print IDM target list (ITLIST) for debugging
SYNOPSIS

#include <idmtlist.h>

itlprint(itl, all)
ITLIST =itl;
BOOL all;

DESCRIPTION

Itlprint prints a representation of the IDM target list ¢t/ on stdtre for debugging. The resulting
output is intended to edify gurus.

If all is set the entire target list is printed; otherwise only the first node is shown.

SEE ALSO
igettl(3I), itlist(5I)

3.5-86/09/28-R3v5m0 Britton Lee 1

ITFREE (31) Britton Lee ITFREE (31)

NAME
itfree — free an ITREE

SYNOPSIS
#include <idmtree.h>

itfree(tree)
ITREE xtree;

DESCRIPTION
Itfree frees the space used by an IDM tree. The space must not be touched again.

All fields in all tree nodes must be allocated using zalloc(3I) (stnode(3I) has the equivalent effect).

SEE ALSO
itnode(3I), xalloc(3I)

3.4-88/02/29-R3v5m8 Britton Lee 1

H

ITDEFINE (31) Britton Lee ITDEFINE (31)

NAME
itdefine — create tree for define command

SYNOPSIS
#include <idmtree.h>
#include <idmenv.h>

ITREE *itdefine(treelist, name, definep, env)
ITREE *treelist;

char *name;

BOOL definep;

IENYV xenv;

DESCRIPTION
Itdefine encapsulates the treelist into a DEFINE command with given name, returning the resul-
tant tree. If definep is TRUE then a DEFINE PROGRAM is created, otherwise a simple
DEFINE is created.

Options set in the environment are set in the resultant tree. If env is [IENVNULL a default
environment is used. (These options are unused at this time.)

When a DEFINE PROGRAM is executed, the done count field is set to the command number to
be passed to an EXECUTE PROGRAM. 1t is the responsibility of the user program to save this
information.

SEE ALSO
idlparse(3I), iesetopt(3I), iputtree(3I), itxcmd(3I), System Programmer’s Manual

3.3-86/09/28-R3v5m0 Britton Lee 1

ITCOPY (31) Britton Lee ITCOPY (31)

NAME
itcopy — build tree for bulk copy function

SYNOPSIS
#include <idmtree.h>
#include <idmenv.h>

ITREE *itcopy(dbname, in, rellist, tape, env)
char *dbname;

BOOL in;

char *xrellist;

char stape;

IENYV =env;

DESCRIPTION
Itcopy builds a tree to execute the IDM copy function. If ¢n is set, a COPY IN tree is built, oth-
erwise a COPY OUT tree is built. Rellist is a CHARNULL-terminated array of pointers to
names of relations to be copied to or from database dbname; if NULL all user relations in data-
base dbname are copied. If tape is not CHARNULL then IDM tape will be used; the format of
the tape parameter is described in dba(3I).

Options set in the environment are included in the copy tree. If env is null a default environment
is used.

After the copy tree is complete, it can be sent to IDM/RDBMS using sputtree(3I). The database
system will then return results formated to look like a series of retrieve statements; the routines
tgettl(31) and sgettup(3I) can be used to simplify this. If it is not necessary to interpret the results
(e.g., if copy is being used to back up a relation) then data can be read until end-of-file.

SEE ALSO

dba(3I), iesetopt(3I), igettl(3I), igettup(3I), iputtl(3I), iputtree(3I), iputtup(3I), ienv(5I), System
Programmer’s Manual .

3.6-87/12/04-R3v5m7 Britton Lee 1

ITAPEOPTS (31)

NAME

Britton Lee ITAPEOPTS (31)

itapeopts — parse IDM tape options

SYNOPSIS

BYTE sitapeopts(optlist)

char *optlist;

DESCRIPTION

Itapeopts converts a text description of IDM tape options to a twenty-eight byte option value as
described in SPM. This string is suitable for direct use by the IDM/RDBMS software.

Optlist is a comma-separated list of name(value) pairs chosen from the list:

mode(M)
volume(VL)

newname(V)

fileno(N)

unit(N)

erase

norewind

xlate(X)

verify(B)

I/O mode; M may be r (read), w (overwrite), or a (append). Defaults to a.

A comma-separated list of the names of the volumes in this set. If specified, the
header of each tape is read and verified before the tape is used. If not specified

_any volume is accepted. Only the first volume name is actually checked,

although all will be presented to the operator. Tape reads will always check
volume names on tapes 2-n (but not 1).

The new volume name to write on the tape to replace the existing name. Can
only be used in w mode. If not specified, the volume name is unchanged. New
IDM tapes (tapes not previously written by Britton Lee’s IDM/RDBMS
software) must be given a new name.

The file number to access when reading the tape. If not specified file zero is
assumed. This option is ignored when writing a tape. File numbers on IDM
tape always begin at zero.

The unit number to access. Zero by default.

Perform a “security erase” of the tape before writing. Only supported on some
drives. Mode w must be specified.

Do not rewind tape between writing files. Default is to rewind. Norewind is
available for writes only in IDM Software Releases 35 and 40. Norewind applies
to both reads and writes in RDBMS Software Release 3.5 and future RDBMS
releases.

Perform the requested translation of data on the tape. X may be one of none
(no translation), ascii (translate to ASCII), ebedic (translate to EBCDIC), host
(do host translation). The default is none.

Turn on (B = 1) or off (B = 0) tape sequence number verification. Default is
to not verify. This parameter should only be used on tapes previously written
by Britton Lee’s IDM/RDBMS software. Like volume, tape reads will automati-
cally verify the sequence numbers on tapes 2-n.

Other fields may be specified but are ignored.

After creation, these options may be added to a tree using staddopts(3I). More typically, tape
options are set directly using ¢tcopy(3I) or one of the routines in dba(3I).

SEE ALSO

intro(1I), dba(3I), igeteot(3I), itaddopts(3I), itcopy(3I), pextract(3I), SPM.

3.6-87/12/04-R3v5m7

Britton Lee 1

ITADDOPTS (3I) Britton Lee ITADDOPTS (3I)

NAME
itaddopts — add options bytes to a tree

SYNOPSIS
#include <idmtree.h>

itaddopts(tree, len, options)

ITREE =*tree;

int len;

BYTE *options;
DESCRIPTION

Itaddopts adds len bytes of options to a tree. No check is made to see if any of the options are
already set. There is no way to delete options from an existing tree.

Options are normally set in the environment using tesetopt(3I). The sole reason for this routine is
to allow IDM tape options.

BUGS
This routine is totally bogus.

SEE ALSO
idlparse(3I), iesetopt(3I), IDL or SQL Reference Manual for a description of the available options.

3.11-88/02/29-R3v5m8 Britton Lee 1

ISTDIO (31) Britton Lee ISTDIO (31)

/* write to file "outfile” and standard output */
while (fgets(buf, sizeof(buf), fp) = CHARNULL)
{

puts(”standard I/O ”);
printf(*should be flushed if there is not a newline”);
fllush(stdout);

ifputs(buf, istdout);
iflush(istdout);

ifputs(buf, ifp);
} .

fclose(fp);
ifclose(ifp);

/* must call exit */

exit();
}

doerror.c:
#include <idmlib.h>

doerror(msg)
char *msg;

{ :
/*

« Note that we now use stdout,
= pot istdout.

*/

ifputs(msg, stdout);

}

To compile the program:
cc —o demo main.c doerror.c -listdio ~lidmlib
If using curses, etc:
c¢ -0 demo main.c doerror.c -listdio ~lidmlib ~lcurses ~ltermcap

IDMLIB cursor control and graphic characters must go through IDMLIB I/0.
WARNINGS
It is safest to do a flush on the appropriate standard I/O file before changing I/O systems.

Be careful not to pass tprintf the standard 1/O file (e.g., stdout). IDMLIB will warn you about
this, but the standard I/O system will dump core.

CAVEATS
Reading on IDMLIB ¢stdin for large amounts of data is not efficient due to the limitations of the

I/O interleaving mechanism. When mixing the I/O systems it is preferable to use standard I/O
stdin.

SEE ALSO
intro(3S), UNLX Programmer’s Manual

3.5-87/12/04-R3v5m7 Britton Lee 2

ISTDIO (3I) Britton Lee ISTDIO (3I)

NAME
libistdio.a — standard I/O compatibility library

SYNOPSIS
#include <istdio.h>

FILE #stdin;
FILE =stdout;
FILE sstderr;

IFILE =istdin;
IFILE #istdout;
IFILE =istderr;

iprintf(fmt |, arg] ...)
char *fmt;

char *isprintf(buf, fmt [, arg | ...)
char *buf;
char «fmt;

DESCRIPTION
Standard I/O may be used along with the IDM library 1/O (IDMLIB) system by changing one
include declaration and linking in the appropriate libraries before the standard C runtime

libraries. The first operation in main() must initialize IDMLIB by calling the macro
INITIDMLIB(progname).

Include the file <tstdio.h> in the module containing main() and link the libraries sstdio and
tdmlih.

It is not necessary to add includes of <sstdio.h> except in modules that will also use IDMLIB. If
standard I/O is not used it is simpler to only include <tdmlib.h>.

To access IDMLIB’s standard 1/O system, use the files sstdin, sstdout, and tstderr. IDMLIB printf
and sprintf are renamed so that standard I/O versions are used. IDMLIB versions are sprintf and
tsprintf when <tstdio.h> is included.

If the file <istdio.h> is not included in a module in which <sdmlib.h> is included, then stdin
refers to IDMLIB’s standard input, not standard 1/O’s input.

EXAMPLE
main.c:
#include <istdio.h>

main()
{
IFILE =ifp;
FILE «fp;
char buf(100];
INITIDMLIB(”demo”);

ifp = ifopen(”outfile”, &IftHFile, > mode(w)”, IFNULL);

fp = fopen(”somefile”, "r”);
if (fp == (FILE *) NULL)
{

doerror(”can’t open somefile\n”);

3.15.1.1-88/02/29-R3v5m8 Britton Lee 1

ISLEEP (3I) Britton Lee ISLEEP (3)

NAME
isleep — sleep for a real-time interval

SYNOPSIS
isleep(ticks)
long ticks;

DESCRIPTION
Isleep delays the current process by ticks clock ticks (as defined in getclock(3I)), that is, in
1/TICKSPERSEC intervals). This will be rounded as necessary to the resolution of the host
clock.

Since the resolution may be crude, this should not be used for precise intervals; these are perforce
environment dependent.

If ticks is negative, then tsleep will simply return. £

EXAMPLE
To sleep for four seconds:

isleep(4 * TICKSPERSEC);
To sleep for one-half second:
isleep(TICKSPERSEC / 2);

IMPLEMENTATION NOTES

If the host system does not have sufficient resolution to delay for the exact interval, rounding
(not truncation) should be employed.

If the host system has no way of delaying a process, the exception E:IDMLIB.ISLEEP.NOCLOCK
should be raised.

Isleep was added to allow for an environment-independent identify daemon; general use is prob-
ably risky.

3.15.1.1-88/02/29-R3v5m8 Britton Lee 1

ISFOREGND (31) Britton Lee ISFOREGND (31)

NAME
isforegnd — are we in foreground (interactive)?
SYNOPSIS
BOOL isforegnd()
DESCRIPTION
Isforegnd returns TRUE if the process is running in foreground, i.e., if it is connected to a termi-
nal.

IMPLEMENTATION NOTES
On UNIX and VMS, this tests to see if the standard input is a terminal. The intent of this rou-
tine is to see if we should operate interactively (e.g., give prompts).

This may be called fairly frequently, so the implementation should be reasonable efficient.

On CMS, tsforegnd returns FALSE if username returns “cmsbatch” or if the user is disconnected.

3.5-87/07/27-R3v5m3 Britton Lee 1

IRXCMD (3I') Britton Lee

A:IDMRUN.RECOMPILE("irx(cmd | prog | setp)”)

Must recompile from source.

E:IDMLIB.USENEXTCMD(”irx(cmd | prog)”)
You should be using srnezt(3I) instead.

SEE ALSO :
intro(3I), iridl(3I), itxcmd(3I), System Programmer’s Manual

3.5-86/05/13-R3v5m0 Britton Lee

IRXCMD (31)

IRXCMD (3I) Britton Lee IRXCMD (31)

NAME
irxemd, irxprog, irxsetp — arrange to execute a stored command

SYNOPSIS
#finclude <idmrun.h>

RETCODE irxcmd(idmrun, cmdname)
IDMRUN *idmrun;
char *¢crndname;
RETCODE irxprog(idmrun, progid)
IDMRUN *idmrun;
long progid;
irxsetp(idmrun, name, type, len, val)
IDMRUN s*idmrun;
char *name;
int type;
int len;
BYTE xval;
DESCRIPTION
Irzemd is a fast, special purpose version of fridi(3I) for execute command operations. A call to
srzemd creates a tree that will execute the stored command named emdname with no parameters.
Subsequent calls to srzsetp will add parameters with the given name of the specified type, length,
and value. Parameter name s may be CHARNULL to specify unnamed parameters.

Irzprog is identical except that it sends an execute program operation.
Both trzemd and trzprog free any existing command trees in the tdmrun structure.

RETURN VALUES
RS_NORM The tree was successfully created.
RE_FAILURE The tree could not be created; detail is given by an exception.
EXAMPLES - -
The calls:
(void) irxemd(idmrun, ”e¢md”);
irxsetp(idmrun, ”a”, iCHAR, 2, _ _ "xx");
irxsetp(idmrun, "b”, iPCHAR, 2, _ _ "r+”);
irxsetp(idmrun, CHARNULL, iSTRING, —1, _ _ relation”);
are equivalent to (and faster than):
iridl(idmrun, ”execute cmd (a = \"xx\”, b = \"r#\”, \”relation\”)");

The following code saves the program id for a define program command.

(void) iridl(idmrun, ”define program ... end define”);
(void) irexec(idmrun);
(void) irget(idmrun, IP_DINT, _ _ &progid, 0);
(void) irxprog(idmrun, progid);
EXCEPTIONS
A:IDMRUN.BADIDMRUN("irx(cmd | prog | setp)”)
Closed, NULL or bad IDMRUN structure.

E:IDMRUN.NOTEXEC(”irx(cmd | prog)”)
Commands have bgen parsed, but not executed.

3.7-87/12/04-R3v5m?7 Britton Lee 1

IRSUBST (31) Britton Lee IRSUBST (31)

Bed numbers can be substituted with:
(void) irsubst(idmrun, ”xx”, b—bcd _type, b—bcd_len, _ _ b—sbed_str);

EXCEPTIONS
As described in tesubst(3I).

A:IDMRUN.BADIDMRUN(”irsubst”)
Closed, NULL or bad IDMRUN structure.

A:IDMRUN.RECOMPILE("irsubst”)
Must recompile from source.

SEE ALSO
intro(3I), iesubst(3I), iridl(3I), irexec(3I), irnext(3I), ienv(5I)

3.7-87/12/04-R3v5m7 Britton Lee 2

IRSUBST (31) Britton Lee IRSUBST (81)

NAME
irsubst — perform substitutions in trees

SYNOPSIS
#include <idmrun.h>

RETCODE irsubst(idmrun, name, type, length, value)
IDMRUN s*idmrun;

char *name;

int type;

int length;

BYTE »value;

DESCRIPTION
Irsubst associates a value with a substitution name in an IDMRUN structure almost exactly
analagously to sesubst(31). Irsubst operates on IDMRUN structures rather than directly on
environments.

Type, length, and value describe the value to be substituted. I type is iISTRING, the length is
ignored in favor of the string length of value.

If the type is iPCHAR, then any pattern matching characters in the string (e.g., “#”, “?” in IDL,
“%”, “_” in SQL) will be interpreted as documented. Values of type iCHAR or iSTRING will
not interpret pattern-matching characters as magic. Note that type iPCHAR does not require
that pattern-matching characters be present; it only instructs IDMLIB to treat them specially if
they are. iPCHAR values used in target lists will generate IDM error E39. They should be used
in qualifications only.

All iSUBSTITUTE nodes must have a value associated before sreze¢(3I) may be called. However,

values can be reassigned and the query rerun without reparsing the query, and without reassign-
ing all iSUBSTITUTE nodes.

The value is copied; that is, changes to the memory that value points to will not affect the value
of the substitution. When substituting BCD numbers, pass the bed_ str data area of the BCDNO
as the value. Bed_len should be passed in as length to ensure that the correct number of bed_str
bytes are copied.

RETURN VALUES
RS_NORM The substitution has proceeded normally.

RE_FAILURE The substitution has failed; an exception has explained why.

EXAMPLE
qry = "replace x (a = %gq) where x.b = %r”;
(void) iridl(idmrun, qry);

val =1,
(void) irsubst{idmrun, q”, iINT2, 2, _ _ &val);
val = 2;

(void) irsubst(idmrun, ”r”, iINT2, 2, _ _ &val);
(void) irexec(idmrun);
val = 3;
(void) irsubst(idmrun, "r”, iINT2, 2, _ _ &val);
(void) irexec(idmrun);
runs the two queries:
replace x (a = 1) where x.b = 2
replace x (a = 1) where x.b =3

3.8-87/08/28-R3v5m4 Britton Lee 1

IRSQL (3I) Britton Lee IRSQL (31)

NAME

irsql — parse SQL statements
SYNOPSIS

#include <idmrun.h>

RETCODE irsql(idmrun, string)
IDMRUN #*idmrun;
char *string;

DESCRIPTION
Irsql parses the SQL statements in string and associates the resulting query tree with sdmrun.

Irsql accepts a sequence of SQL statements so that SQL statements can be processed in groups
(see trnezt(3I)).

The language accepted by irsql is described in sglparse(3I).

RETURN VALUES
RS_NORM The input has sucessfully been parsed and may now be executed using srezee(3I).
RE_FAILURE The input could not be parsed. An exception has been raised giving details.

EXCEPTIONS

A:IDMRUN.BADIDMRUN(”irsql”)

Null IDMRUN or not an IDMRUN structure.
A:IDMRUN.RECOMPILE(”irsql”)

Must recompile from source.
E:IDMRUN.USENEXTCMD(”irsql”)

You should be using irnezt(3]) instead.
Many others, described in sglparse(3I).

SEE ALSO
intro(3I), sqlparse(3I), irexec(3I), irnext(3I), irxcmd(31)

3.8-87/08/28-R3v5m4 Britton Lee 1

IRSET (3I) Britton Lee IRSET (3I)

NAME
irset — set values into the IDMRUN structure

SYNOPSIS
#include <idmrun.h>

RETCODE irset(idmrun, addr, field, item)
IDMRUN =*idmrun;
BYTE »*addr;
int field;
int item;
DESCRIPTION

Irset sets the value contained in addr into the IDMRUN structure. Field specifies what action to
take. The legal field and type is:

IP_TREE Set the head of the command tree list to a copy of the argument (ITREE).
IP_ENV Set the environment to the argument (IENV x). The environment is not
copied.

IP_DMASK Set the done mask (int). See sgetdone(3I).
Item is currently unused.

Improper use of this routine can cause grave damage.

RETURN VALUES
RS_NORM The trset was successful.
RE_FAILURE The set could not be performed. An exception will have been raised explaining
why.
EXAMPLES
irset(idmrun, _ _ newenv, [P_ENV, 0);
Set the environment to newenv for all future commands associated with the fdmrun
structure.
EXCEPTIONS
A:IDMRUN.BADIDMRUN("irset”)
Null IDMRUN structure or not an IDMRUN structure.
E:IDMRUN.MOREDATA("irset”)
There is data remaining to be read from the previous command.

A:IDMRUN.RECOMPILE("irset”)
Must recompile from source.

E:IDMRUN.SETFLD(field)
Illegal field identifier.

E:IDMRUN.SETTREE(treenum)
Cannot set specified tree number.

E:IDMLIB.USENEXTCMD(”irset”)
You should be using srnezt(3]) instead.

i

SEE ALSO
intro(3I), igetdone(3I), irget(3I), ienv(5I), itree(5I)

3.4-86/09/28-R3v5m0 Britton Lee 1

IRREOPEN (31) Britton Lee IRREOPEN (31)

(void) irclose(idmrun);
EXCEPTIONS
A:IDM.E46
No open database
A:IDMRUN.BADIDMRUN(”irreopen”)
Null IDMRUN structure or not an IDMRUN structure.
E:IDMRUN.MOREDATA(”irreopen”)
There is data remaining to be read from the previous command.

A:IDMRUN.RECOMPILE(”irreopen”)
Must recompile from source.

E:IDMRUN.USENEXTCMD(”irreopen”)
You should be using srnez¢(3I) instead.

SEE ALSO
irclose(3I), iropen(3I), System Programmer’s Manual

3.5-86,/09/28-R3v5m0 Britton Lee 2

IRREOPEN (3I) Britton Lee IRREOPEN (31)

NAME
irreopen — reopen an IDMRUN structure

SYNOPSIS
#tinclude <idmrun.h>

IDMRUN sirreopen(oldidmrun)
IDMRUN =*oldidmrun;

DESCRIPTION
Irreopen creates a new IDMRUN structure much like tfropen(3I). A database must be opened and
a begin transaction executed on oldidmrun before issuing the reopen request. The new

IDMRUN structure is a child of oldidmrun as described in section the System Programmer’s
Manual.

Reopened IDMRUN structures may be closed using irclose(3I) before executing an sbort tran-
saction or end transaction. All reopened IDMRUN structures must be closed before the parent
is closed.

The IDMRUN structure returned by trreopen can be used just like an IDMRUN structure
returned by tropen.

EXAMPLES
The following code fragment illustrates irreopen:

idmrun = iropen(”db”);

/* a reopen must be done within a transaction */
(void) iridl(idmrun, "begin transaction”);
(void) irexec(idmrun);

/* reopen to do updates while retrieving */
child = irreopen(idmrun);

(void) iridl(idmrun, "range of x is x”);
(void) iridl{idmrun, "retrieve (x.a)”);
(void) irexec(idmrun);

(void) irbind(idmrun, 1, iINT4, 4, _ _ &i);

/* set up an append to do during the parent’s retrieve */
(void) iridl(child, "append to x (a = %value)”);

/* add new values to x.a x/
while (RETSUCCESS(irfetch(idmrun)))

if (i > 100)

/* substitute ”i” into the child’s append command */
(void) irsubst(child, ”value”, iINT4, 4, _ _ &i);

/* append i to relation "x” */
(void) irexec(child);
}

}

(void) irclose(child);

(void) iridl(idmrun, "end transaction”);
(void) irexec(idmrun);

3.10-87/12/04-R3v5m7 Britton Lee 1

IROPEN (3I) Britton Lee _ IROPEN (3I)

NAME
iropen — open an IDMRUN structure for use

SYNOPSIS
#include <idmrun.h>

IDMRUN *iropen(dbname)
char *dbname;

DESCRIPTION
Iropen creates a new IDMRUN structure. An IDMRUN structure must be opened before any
commands can be executed by the IDM/RDBMS software on the database server. The server
accessed is determined by the IDMDEV parameter (see getparam(3I) and IftIdm(4I)).

The indicated dbname is opened. If it is CHARNULL then no database is opened initially; an
tridl(3I) of an open command will perform this operation.

Every subroutine taking an IDMRUN structure as an argument takes it as the first argument.

The initial environment (see tenv(5I)) is the default at the time of the open. This can be changed
using sraet(3I).

Many IDMRUN structures can coexist.

EXAMPLE
The following example is included to also show how to get IDM DONE warning messages of the
form W:IDM.bitname. See igetdone(3I) and sdone(5I) for more details.

#include <idmenv.h>
#include <idmrun.h>

opendb()
IDMRUN #idmrun;
/* enable printing of some warnings from the idm */
DefEnv—ie_donemask |= ID_DUP |ID_OVERFLOW |ID_DIVIDE;
/* open system database */
idmrun = iropen(”system”);
/* more code */

}

SEE ALSO

intro(3I), getparam(3I), irclose(3I), irreopen(3I), iftidm(4I)

3.10-87/12/04-R3v5m7 Britton Lee 1

IRNEXT (31) Britton Lee IRNEXT (31)

NAME
irnext — check for next executed statement

SYNOPSIS
#include <idmrun.h>

RETCODE irnext(idmrun)
IDMRUN s*idmrun;
DESCRIPTION
Irnezt checks to see if there is another statement to be executed on the database server. It is
used in conjunction with an IDL execute statement which executes a stored command that con-

tains more than one executable IDL statement or when more than one executable IDL statement
is processed with a single call to sridi(3I).

Irnezt does not flush any return information. If this is desired ¢rflush(3I) must be called. All
data must be consumed before srnezt can be called. The DONE struct information from the next
command is read in if no data is returned.

RETURN VALUES
RS_NORM The information for the next command is available. Irdesc(3I), srbind(3I), or
srfetch(31) should normally be the next routine called.

RW_DONECMDS

All commands have been processed.

RE_FAILURE This command was not legal, probably because results are pending from the pre-
vious frezec.

EXCEPTIONS
A:IDMRUN.BADIDMRUN(”irnext”)
Closed, NULL or bad IDMRUN structure.

E:IDMRUN MOREDATA(”irnext”)
The is data remaining to be read from the previous command.
E:IDMRUN.NOCMDS(”irnext”)
" There were no commands to be executed.

E:IDMRUN.NOTEXEC(”irnext”)
Commands have been parsed, but not executed.

A:IDMRUN RECOMPILE(”irnext”)
Must recompile from source.

E:IDMRUN.USEIREXEC(”irnext”)
Use irexec before calling irnext.

SEE ALSO
intro(3I), irdesc(3I), irexec(3I), irflush(3I), irid}(3I)

3.6-87/09/28-R3v5mb Britton Lee 1

IRIDL (3I) Britton Lee IRIDL (3I)

NAME
iridl — parse IDL statements

SYNOPSIS
#include <idmrun.h>

RETCODE iridl(idmrun, string)
IDMRUN xidmrun;
char =*string;

DESCRIPTION
Iridl parses the IDL statements in string and associates the resulting query tree with tdmrun.
Iridl accepts a sequence of IDL statements so that IDL statements can be processed in groups (see
trnezt(31)).
The language accepted by sridl is described in sdiparse(3I).

RETURN VALUES
RS_NORM The input has sucessfully been parsed and may now be executed using trezec(3I).
RE_FAILURE The input could not be parsed. An exception has been raised giving details.

EXCEPTIONS
A:IDMRUN.BADIDMRUN(”iridl”)
Null IDMRUN or not an IDMRUN structure.

A:IDMRUN.RECOMPILE("iridl”)
Must recompile from source.

E:IDMRUN.USENEXTCMD("irid]”)
You should be using ¢rnezt(3I) instead.

Many others, described in tdiparse(3I).

SEE ALSO
intro(3I), idlparse(3I), irexec(3I), irnext(3I), irxemd(3I)

3.6-87/09/28-R3v5m5 Britton Lee 1

IRGET (31) Britton Lee IRGET (3I)

SEE ALSO
intro(3I), irset(3I), idone(51), ienv(5I), itree(5I)

3.4-86,/09/28-R3v5m0 Britton Lee 2

IRGET (3I) Britton Lee

NAME
irget — get information from the IDMRUN structure

SYNOPSIS
#finclude <idmrun.h>
RETCODE irget(idmrun, addr, field, item)
IDMRUN *idmrun;
BYTE *addr;
int field;
int item;
DESCRIPTION

IRGET (31)

Irget extracts requested information from the tdmrun structure into the address specified by addr.

Field specifies what information to return. Compound fields include an stem number.

The possible field values and types are:
IP_NUMSTMTS Number of commands (int)
[P_CURSTMT Number of current command (int)
IP_CMDTYP Type of item’th command (int)

IP_DSTAT Current done status (int)

IP_DINT Current done integer (int)

IP_DCNT Current done count (long)

IP_IFILE Address of IFILE (IFILE #)

IP_TREE A copy of the tree (ITREE x). This must be freed when done using
itfree(3I).

IP_ENV A pointer to the environment (IENV %)

IP_DMASK The current done mask (short).

IP_DBIN The current dbin (int).

RETURN VALUES
RS_NORM The srget was successfully performed.

RE_FAILURE It was not possible to satisfy the call.

EXAMPLES
irget(idmrun, _ _ &dstat, [P_DSTAT, 0);

Sets the variable dstat to the value of the done status field in the IDONE structure asso-

ciated with the IDMRUN structure specified.

EXCEPTIONS
A:IDMRUN.BADIDMRUN(irget”)
Null IDMRUN structure or not an IDMRUN structure.

E:.IDMRUN.GETFLD(field)
Illegal field specifier.

E:IDMRUN.GETTREE(treenum)
Specified tree not available.

A:IDMRUN.RECOMPILE(”irget”)
Must recompile from source.

3.6-87/01/13-R3v5m0 Britton Lee

IRFLUSH (31) Britton Lee IRFLUSH (31)

NAME
irflush — flush tuples for current command

SYNOPSIS
#include <idmrun.h>

RETCODE irflush(idmrun)
IDMRUN =*idmrun;

DESCRIPTION
Irflush discards any tuple data for the current command. This is used when a retrieve loop is to
be exited before all of the tuples have been fetched or when the user wishes to ignore any
returned tuples and would simply like to see the status information for the command.

If the returned tuples are not desired they must be flushed before further processing can occur on
the IDMRUN structure. For instance, one could send a retrieve command, then go into a loop
calling srfetch(3I) for each iteration. If it became necessary to leave the loop without having
fetched all of the tuples trflush must be called.

Ircancel(3I) flushes the current command as well as any commands waiting to be processed. The
status information for all waiting commands will be lost. Irflush and trnezt(3I) allow the user to
view all of the status information without processing all of the return data.

RETURN VALUES
RS_NORM The values were successfully flushed.

RE_FAILURE Some failure occured during processing; an exception was raised explaining why.

EXAMPLES
The following code fragment illustrates early exit of a retrieve loop.
(void) iridl(idmrun, "retrieve (r.name)”);
(void) irexec(idmrun);
(void) irbind(idmrun, 1, iCHAR, sizeof name, _ _ name);
while (RETSUCCESS(irfetch(idmrun)))

/t code to handle each tuple goes here */
if (flag)

(void) irflush(idmrun);
break;

}

EXCEPTIONS
A:IDMRUN.BADIDMRUN(”irflush”)
Closed, NULL or bad IDMRUN structure.

E:IDMRUN.NOTEXEC(”irflush”)
Commands have been parsed, but not executed.

A:IDMRUN.RECOMPILE(”irflush”)
Must recompile from source.

E:IDMLIB.USENEXTCMD(”irflush”)
You should be using ¢rnezt(3I) instead.

SEE ALSO
intro(31), ircancel(3I), irexec(3I), irfetch(3I), irnext(3I), irid](3I)

3.6-87/01/13-R3v5m0 Britton Lee 1

IRFETCH (3I) Britton Lee IRFETCH (3I)

/* code to process the tuple goes here */

}

EXCEPTIONS
A:IDMRUN.BADIDMRUN(”irfetch”)
Closed, NULL or bad IDMRUN structure.

W:IDMRUN.NEWTL
A new target list was read.

E:IDMRUN.NOCMDS(”irfetch”)

There were no commands to be executed.

E:IDMRUN.NOTEXEC(”irfetch”)
Commands have been parsed, but not executed.

A:IDMRUN.RECOMPILE(”irfetch”)
Must recompile from source.
BUGS
Single pseudo-commands which are parsed, executed, and fetched will return RW_TUPEND
rather than RW_NOTUPS. A range and retrieve statement together will return RW_NOTUPS
if the user attempts to apply srfetch after executing the range statement.
"SEE ALSO
intro(3I), irbind(3I), ircancel(3I), irdesc(3I), irexec(3I), irflush(3I), iridl(3I)

3.6-87/02/17-R3v5m0 Britton Lee 2

IRFETCH (31) Britton Lee IRFETCH (31)

NAME
irfetch — fetch a retrieved tuple

SYNOPSIS
#include <idmrun.h>

RETCODE irfetch(idmrun)
IDMRUN xidmrun;

DESCRIPTION
Irfetch reads a tuple from the IDM/RDBMS software. Each target-list element is converted and
stored into programming-language variables previously specified by calls to srbind(3I). Irfetch is
used after an IDL or SQL statement which returns tuples (such as retrieve or select) has been

parsed and executed. Information about the retrieved target-list elements can be found by calls
to trdesc.

Any unbound target-list element values are discarded. If all of the target-list elements are
unbound, tuples are read but not converted or stored.

If a retrieve loop is exited before all of the tuples have been fetched then srflush(3I) or
trcancel(3]) must be called.

Irfeteh or srflush must be called after a retrieve or select statement has been executed.

If a new target-list is read without an intervening DONE packet (i.e., an audit command is being
processed), “W:IDMRUN.NEWTL” is raised. If the application program does not rebind using
srdesc(3I) and srbind(3I), additional targets will be fetched but not bound.
RETURN VALUES
RS_NORM A tuple has been successfully retrieved and bound to programming-language
variables specified in srbind(3I).

RW_NOTUPS The IDM command passed to trezec never returns data. Some IDM system
commands, like delete, never return tuples.

Other commands, like select or retrieve, can return tuples. If no tuples
satisfied the qualification, then RW_TUPEND will be the first value returned by
trfetch (see below).

When RW_NOTUPS is returned, srnezt(3I) will normally be the next routine
called. If it is certain that there no other commands, another command can be
parsed using tridl(31) or sragl(3I).

RW_TUPEND All available tuples have been retrieved. If this is the first value returned by
srfetch, then no tuples were retrieved.

RE_FAILURE It was not possible to execute this command, probably because it was called at
the wrong time. An exception has been raised giving details.
EXAMPLE
A sample retrieve loop. No calls to trdesc are used since the storage type of the target-list ele-
ment is known.

relnames()
char name(15];
(void) iridl(idmrun, ”retrieve (r.name)”);
(void) irexec(idmrun);

(void) irbind(idmrun, 1, iCHAR, sizeof name, _ _ name);
while (RETSUCCESS(irfetch(idmrun)))

3.9-87/09/28-R3v5m5 ' Britton Lee 1

IREXEC (3I') Britton Lee IREXEC (3I)

NAME
irexec — execute parsed IDL statements

SYNOPSIS
#include <idmrun.h>

RETCODE irexec(idmrun)
IDMRUN =*idmrun;

DESCRIPTION
Irezec sends the first IDL statement associated with the IDMRUN structure to the IDM/RDBMS
software and retrieves any initial status information. The statements must have already been
parsed by a call to #ridi(3I).
If multiple executable IDL statements are parsed with one call to sridl, then srnezt(3I) must be
used to send the second and subsequent commands. Status information is associated with each

statement (and possibly other return data as well). Irnezt reads in the status information for the
next executed command (or in the case of returned data warns the user of this fact).

If the user program attempts to perform another srezec on an IDMRUN structure without having
processed all of the input data, an error will be returned and the srezec will be ignored. The user
must either process all of the return data or call srcancel(3I) before another srezec can be per-
formed. Irflush(3I) is also useful in processing return information quickly.

RETURN VALUES .

RS_NORM The command has been successfully sent. If the command returns data, the first
tuple is available (via srfetch(31)); otherwise, the return status is available. If
there is any return data, it can be described using ¢rdesc(3I) and/or bound to
programming language variables using srbind(3I).

RE_FAILURE It was not possible to execute this command. An exception has been raised
describing the problem in detail. Most likely, srezec has been called at the

wrong time or a required substitution (as described in srsubst(3I)) has not been
performed.

EXCEPTIONS
A:IDMRUN.BADIDMRUN(”irexec”)
Null IDMRUN or not an IDMRUN structure.

E:IDMRUN.MOREDATA(irexec”)
There is data remaining to be read from the previous command.

E:IDMRUN.NOCMDS(”irexec”)
There were no commands to be executed.

A:IDMRUN.RECOMPILE("irexec”)
Must recompile from source.

E:IDMRUN.USENEXTCMD(”irexec”)
You should be using trnezt(3I) instead.

SEE ALSO
intro(3I), ircancel(3I), irflush(3I), irnext(3I), iridl(3I)

3.9-87/09/28-R3v5mb Britton Lee 1

IRDUMP (31) Britton Lee IRDUMP (31)

NAME
irdump — dump an IDMRUN structure for debugging

SYNOPSIS
irdump(idmrun)
IDMRUN =idmrun;

DESCRIPTION
Irdump prints the contents of tdmrun onto stdtrc in a format suitable for gurus. The intent is to
support debugging by very sophisticated users.

3.6-87,/09/28-R3v5m5 Britton Lee 1

IRDESC (31) Britton Lee IRDESC (31)

while (RETSUCCESS(irfetch(idmrun)))
{

/* process the data */

DIAGNOSTICS
A return value of RW_TARGEND means target-list element number is too large by one; this
allows a person to have a simple loop starting with target-list element number one and increment-
ing until the return code is equal to RW_TARGEND to get the descriptions of all the retrieved
target-list elements. If a target-list element number is a value other than the number of domains
in the target list plus one then the IDMRUN.TARGNUM exception is raised.

EXCEPTIONS
A:IDMRUN.BADIDMRUN(”irdesc”)
Closed, NULL or bad IDMRUN structure.

E:IDMRUN.NOCMDS("irdesc”)

There were no commands to be executed.

E:IDMRUN.NOTEXEC("irdesc”)
Commands have been parsed, but not executed.

A:IDMRUN.RECOMPILE("irdesc”)

Must recompile from source.
E:IDMRUN.TARGNUM(”irdesc”, targnum)

An impossible target number was specified.

SEE ALSO
intro(3I), irbind(3I)

3.1-85/11/25-R3v5m0 Britton Lee 2

IRDESC (31) Britton Lee IRDESC (31)

NAME
irdesc — get type and name information about a retrieved target-list element

SYNOPSIS
#include <idmrun.h>

RETCODE irdesc(idmrun, tl_num, type, length, name)
IDMRUN =*idmrun;
int tl_num;
int *type;
int *length;
char **name;

DESCRIPTION
Irdesc returns type and name information about the retrieved target-list elements. It is typically
called once for each target-list element. The target-list elements are specified by tl_nvm, num-
bered starting at one from left to right in the target list. Normal usage has a loop calling frdesc
with tI_num incremented each time through the loop. When the return value of srdesc is
RW_TARGEND then all of the target-list elements have been described.

The type of the target-list element as stored on the database server is placed at type. The length
of the target-list element as stored on the database server is placed at length. The address of the
name of the target-list element is placed at name, stored as a null-terminated string.

The names of the target-list elements correspond to the name given them in the target list (e.g.,
for the target-list element “cost = p.number * p.price”, the name is ‘“cost”, and for the target-
list element “p.number * p.price”, there is no name). If no name is specified then the address of
an empty string will be placed in name. The storage for the name is owned by the run-time sys-
tem and cannot be modified by the user; it may change after the next call to the run-time system
and must be copied if it is to be saved.

RETURN VALUES
RS_NORM The target was succesfully described. Normally the application program will
bind the target to some program variable using ¢rbind(3I).
RW_TARGEND
There are no more targets left to describe.
RW_NOTUPS This command does not return any data.

RE_FAILURE This operation could not be satisfied; an exception has been raised giving the
complete description.
EXAMPLES
The following loop illustrates how srdesc can be called to get information about each target-list
element.
auto int type, length;
auto char *name;
i=1;
while (RETSUCCESS(irdesc(idmrun, i, &type, &length, &name)))
{
/*
*x code to process the information goes here,
** e.g. save it in an array

*/

i++;

3.9-88/03/02-R3v5m9 Britton Lee 1

IRCLOSE (31) Britton Lee IRCLOSE (31)

NAME
irclose — close an IDMRUN structure

SYNOPSIS
#include <idmrun.h>

RETCODE irclose(idmrun)
IDMRUN sidmrun;

DESCRIPTION
Irclose releases the specified IDMRUN structure. The IDMRUN structure can no longer be used.
Any open database associated with the IDMRUN structure is closed.

The environment associated with the IDMRUN structure is not closed automatically.
RETURN VALUES
RS_NORM The IDMRUN structure was successfully closed.
RE_FAILURE The IDMRUN could not be closed because it was active. An exception is raised
explaining the problem.

EXCEPTIONS
A:IDMRUN.BADIDMRUN(”irclose”)
Closed, NULL or bad IDMRUN structure.

E:IDMRUN MOREDATA(”irclose”)
Data remains to be read from the previous command.

A:IDMRUN RECOMPILE("irclose”)

Must recompile from source.

E:IDMRUN.USENEXTCMD("irclose”)
You should be using srnezt(3I) instead.

SEE ALSO
intro(3I), ircancel(3I), iropen(3I)

3.9-88/03/02-R3v5m9 Britton Lee 1

IRCANCEL (3I) Britton Lee IRCANCEL (3I)

NAME
ircancel — cancel current operations on an IDMRUN structure

SYNOPSIS
#include <idmrun.h>

ircancel(idmrun)
IDMRUN =*idmrun;
DESCRIPTION
Ircancel aborts any command currently being processed on the specified IDMRUN structure and
flushes any pending return data and any commands waiting to be processed. No DONE packet

results are available. Ircancel is intended for use whenever further processing of the current
activity is to be ceased, for example, upon the receipt of a user interrupt.

If the user parsed several executable IDL statements with a single call to sridl and a cancel was
performed while the first of the statements was being executed, the others would be discarded.

To simply discard the return data from the current command (e.g., when exiting a retrieve loop
before processing all of the tuples) the program may call irflush(3I).

EXAMPLES

The following code fragment illustrates responding to user interrupts. This assumes that only
one IDMRUN structure is used by operations affected by the interrupts.

#finclude <idmlib.h>
#include <idmrun.h>
#include <exc.h>

IDMRUN sIdmrun;
toplevel()

extern intr();

Idmrun = iropen(CHARNULL);
(void) exchandle(” T:IDMLIB.ASYNC.INT”, intr);

for (;;)
{
... etc ...
}
}
intr()
ircancel(Idmrun);
return (1);

}

EXCEPTIONS
A:IDMRUN .BADIDMRUN(”ircancel”)
Closed, NULL or bad IDMRUN structure.

A:IDMRUN RECOMPILE(”ircancel”)
Must recompile from source.

SEE ALSO
intro(3I), irexec(3I), irfetch(3I), irflush(3I), iridl(3I)

3.5-86/09/28-R3v5m0 Britton Lee 1

IRBIND (3I) ' Britton Lee IRBIND (3I')

The length argument given in the call to t{rbind declares the total number of bytes available in
the variable.

#include <idmlib.h>
#tinclude <idmrun.h>

char relname(14];
long relid;

idmrun = iropen(”demo”);
(void) iridl(idmrun, "range of r is relation”);
(void) iridl(idmrun, "retrieve (r.name, r.relid)”);
(void) irexec(idmrun);
(void) irbind(idmrun, 1, iSTRING, 14, _ _ relname);
(void) irbind(idmrun, 2, iINT4, 4, _ _ &relid);
while (RETSUCCESS(irfetch(idmrun)))
printf(”rel=%s, relid=%ld\n”, relname, relid);

Bcd numbers can be substituted with:

BCDNO b;

‘ (void) irbind(idmrun, 1, iBCD, sizeof(BCDNO), _. _ &b);
EXCEPTIONS
A:IDMRUN.BADIDMRUN(”irbind”)
Closed, NULL or bad IDMRUN structure.
E:IDMRUN BINDTYPE(usertype, idmtype)
It was not possible to bind the specified user variable to the IDM target list.
A:IDMRUN.RECOMPILE(”irbind”)
Must recompile from source.
E:IDMRUN.TARGNUM(”irbind”, targnum)
An impossible target number was specified.
E:IDMRUN.NOCMDS(”irbind”)
There were no commands to be executed.
E:.IDMRUN.NOTEXEC(”irbind”)
Commands have been parsed, but not executed.
SEE ALSO
intro(3I), bed(3I), irdesc(3I), irexec(3I), irfetch(3I), iridl(3I), typecnvt(3I)

3.6-87/07/14-R3v5m3 Britton Lee

(34

IRBIND (31) Britton Lee IRBIND (31)

NAME

irbind — bind program variables to retrieved target list elements

SYNOPSIS

#include <idmrun.h>

RETCODE irbind(idmrun, tl_num, type, length, address)
IDMRUN =*idmrun;

int tl_num;

int type;

int length;

BYTE *address;

DESCRIPTION

Irbind associates data from domain ¢l_nwm retrieved from the database server with a program
variable. After being bound, each srfetch(3I) call will convert the tuple data to the specified type
and length and store it into the data area specified by address. Irbind may only be called after a
statement that returns data (such as retrieve) has been executed.

The parameter tI_num specifies the index (numbered from one) into the target list after expan-
sion of .all clauses. For example, consider the query:

retrieve (x.a, y.all, x.b)

If the relation indicated by “y” had three domains (e.g., “y.q”, “y.r”, and “y.s”) then the follow-
ing bindings would apply:

ti_num domain

1 x.a
2 y.q
3 y.r
4 y.s
5 x.b

The types and names of each domain can be determined by srdese(3I).

The type, length, and address of the program data area are specified using the final three parame-
ters. The IDM system types iINT1, iINT2, iINT4, iFLT4, iFLT8, and iCHAR are supported in
the obvious way. Types iBCD and iBCDFLT may be bound to data areas of type BCDNO; the
routines described in bcd(3]) may be used to manipulate them. Type iBINARY is treated identi-
cally to type iCHAR except that it is padded with zero-bytes instead of spaces. In addition to
the IDM system types, the host type iSTRING (null-terminated string, for C) is supported; length
represents the maximum length of the string, including the trailing null byte.

For complete details of conversions, see typecnvt(3I). For a description of the difference between
the RW_TARGEND return value and the IDMRUN.TARGNUM exception see the Diagnostics
section in srdesc(3I).

RETURN VALUES

RS_NORM The target was successfully bound.
RW_TARGEND There are no more targets left.
RW_NOTUPS This query does not return any tuples.

RE_FAILURE It was not possible to do the bind; an exception has been raised giving more
detail.

EXAMPLES

The following code fragment parses and executes an IDL retrieve statement and prints the
return data. ‘

3.9-87/09/28-R3v5m5 Britton Lee 1

IPUTTUP (31) Britton Lee IPUTTUP (31)

NAME
iputtup — put a tuple from a target list to the database server

SYNOPSIS
#include <idmtlist.h>

RETCODE iputtup(itl, idm)
ITLIST =*itl;
IFILE *idm;

DESCRIPTION
Iputtup writes a tuple from the specified target list ¢t/ to the specified ¢dm. It! is typically created
by fgettl(3I).

Iputtup sends an iTUPLE token followed by the tuple information from the target list. The type,
length, and name information should have been sent previously by sputti(3I).

Returns RS_NORM on success, RE_FAILURE on failure.
This routine is normally used for copy in/out.

SEE ALSO
igettl(3I), igettup(3I), iputtl(3I), itlist(5I)

3.9-87/09/28-R3v5m5 Britton Lee 1

IPUTTREE (31) Britton Lee IPUTTREE (31)

EXCEPTIONS
W:IDMLIB.IDM.LONGNODE(type, len)
A node with a length field that was too long to transfer to the database server (that is,
greater than 255) was truncated.

E:IDMLIB.IDM.ALL NOREL(relname)

The specified relation name does not exist. This error occurs during expansion of an .all
clause.

E:IDMLIB.IDM.BADORDER(ordervalue)

An attempt was made to order the query output by ordervalue. It was not found in the
target list.

E:IDMLIB.IDM.ILLEGPARAM(cmd, paramvalue)
Illegal use of stored command parameter paramvalue in command e¢md. Parameters to
stored commands are only legal within define, define program, exec, and exec pro-
gram commands.
E:IDMLIB.IDM.NOTCOMMAND(rootnode)
The tree passed was not a command tree; the type of the initial node was rootnode.
E:IDMLIB.IDM.SUB.NEEDVAL(subname)
The substitute node named subname has not had a value bound.
E:IDMLIB.IDM.SUB.TYPE(subname, symbol)
Illegal type type for substitution subname in some context in the tree, e.g, an integer used
as a result attribute name.

E:IDMLIB.IDM.SUB.VAL(subname, value, min, max)
The value specified for substitution subname is out of range for the context in which it is
used; mén and maz specify the acceptable range of values.

R:IDMLIB.IDM.GETHUNPW(database)
A host user name and password were required to open the specified database. This
exception has a default handler associated with it to prompt for the name and password

- as required.

A:IDMLIB.IDM.TLOVFLOW(max)
The query had too many target list entries to send in one query; the maximum number
of entries is maz. Break up the query or dispose of domains you don’t really need.

SEE ALSO
intro(3I), dba(3I), idlparse(3I), iesubst(3I), ifcontrol(3I), itxcmd(3I), iftidm(4I), ienv(5I), itree(5I)

3.5-88/02/29-R3v5m8 Britton Lee 2

IPUTTREE (31) Britton Lee IPUTTREE (31)

NAME
iputtree — put a tree to the database server

SYNOPSIS
#include <idmtree.h>
#include <idmenv.h>

RETCODE iputtree(tree, ifp, env)
ITREE xtree;

IFILE xifp;

IENV =xenv;

DESCRIPTION
Iputtree translates a tree from the fully connected internal form produced and manipulated by
the tree routines into the list form expected by Britton Lee’s IDM/RDBMS software. This form
is written to the file specified by ifp, which is normally a file of type IftIdm(4I).

As the tree is sent, all substitute nodes present in the tree will have values interpolated from the
environment. If env is [IENVNULL a default environment is used. Values must be supplied for
all substitutions in the tree. If a value cannot be found in the current environment, the parent
environments will be searched recursively until the value is found.

In some cases the tree can be modified, always resulting in the same semantics. In particular, .all
nodes are converted to iATTRALL nodes.

The open database command is captured if ¢fp is a true IDM file (type Ift/dm(4]) or IftReopen)
and turned into an tfcontrol(3I) “opendb” call. This allows all special processing (IDM system
user name/password processing and saving of the “dbin”) to be centralized in one module.
RW_PSEUDO is returned so that applications will not call igetdone(3I) inappropriately.

After a tree is sent, the program should call ¢gettl(3I) to check for returned data. If a target list
is returned, the data should be retrieved using tgettup(3I). The iDONE token should then be
read using fgetdone(3I). If it specifies that more results are to be read, a new target list should
be read.

RETURN VALUES
RW_PSEUDO A pseudo-tree (e.g., a tree for a range statement) was ignored by tputtree.

RS_NORM The tree was successfully sent to the file.
RE_FAILURE The tree could not be sent; an exception is raised.

EXAMPLE
The following code provides a template for the generic case:
if (iputtree(tree, idmifp, [ENVNULL) != RS_NORM)

return;

do
while ((it] = igettl(idmifp)) !== ITLNULL)
{

while (igettup(idmifp, itl) == RS_NORM)
process_ tup(itl);
itlfree(itl);
}
dp = igetdone(idmifp, [ENVNULL);
} while (BITSET(ID_CONTINUE, dp—id_stat));

3.8-88/02/29-R3v5m8 Britton Lee 1

IPUTTL (3I) Britton Lee IPUTTL (31)

NAME
iputtl — write a target list to a file

SYNOPSIS
#include <idmtlist.h>

iputtl(itl, ifp)

ITLIST »itl;

IFILE =ifp;
DESCRIPTION

Iputtl writes the description of the target list il to the specified ifp, consisting of the of names the
target fields followed by one or more iIFORMAT tokens and the the format information. See
tgettl(3I) for creating the target list.

Itl is a target list as described in stlist(51). Iputtl puts the types and names, but not the values
themselves. The values are put using sputtup(3I).

This routine is normally used for copy in/out.

SEE ALSO
igettl(3I), iputtup(3I), itree(5I), itlist(51), System Programmer’s Manual

3.8-88/02/29-R3v5m8 Britton Lee 1

INITRC (3I) Britton Lee INITRC (31)

ftinclude <crackargv.h>
s'tatic char *Dbname, *Device;
static ARGLIST Args || =

{
/* argument template for database name */
'd’, FLAGSTRING, 4, "dbname”, CHARNULL, _ _ &Dbname, CHARNULL, CHARNULL,
/* argument template for IDM device name */
'B’, FLAGSTRING, 4, "idmdev”, CHARNULL, _ _ &Device, CHARNULL, CHARNULL,
/* other argument templates */

!

main (arge, argv)
char x*argv;
{

/* declarations */

/* initialize the runtime system */

INITRIC (argv(0]);

/* get command line arguments */

crackargv (argv, Args);

/#* reset device or database names, if given on command line */
RCDEVICE (Device);

RCDBNAME (Dbname);

/* begin processing */

}

SEE ALSO
ric(1I), rsc(1I), crackargv(3I), params(5i).

3.9-88/03/02-R3v5m9 Britton Lee 2

INITRC (3I) Britton Lee INITRC (3I)

NAME

INITRC, INITRIC, INITRSC, RCDEVICE, RCDBNAME — macros for RIC and RSC precom-
piler source files

SYNOPSIS

INITRIC(progname);

INITRC(progname);

INITRSC(progname);
RCDEVICE(devicename);
RCDBNAME(databasename);

char *databasename, *devicename, sprogname;

SYNOPSIS

INITRIC does the run-time setup for programs that have been run through the ric (IDL/C)
precompiler. Its single argument is a character string that names the program, for use by the

run-time system in writing error messages. For UNIX users, it is usually appropriate to say
INITRIC(argv[0]).

INITRIC in turn invokes INITIDMLIB, so the wuser does not have to. Usually
INITRIC(progneme) will be the first executable statement in the program. It must be executed
before the first executable IDL or SQL statement is executed.

INITRC is a synonym for INITRIC, maintained for historical reasons.

INITRSC does the exact same job in the exact same way for programs that have been run
through the rsc (SQL/C) precompiler.

RCDEVICE is used for changing at run time the system device name of the device to use as the
connection to the datbase server. Ordinarily, the device name is set at precompile time, either by
giving an argument to the —B flag on the ric or rsc command, or (if this flag is omitted) from
the value of the IDMDEV system parameter at precompile time. (Note that the value of the
IDMDEV parameter at run time is never automatically used.) If neither of these values is
appropriate, the device name can be given to RCDEVICE at run time. Often, this name will be
obtained from the command line.

If devicename is neither the null pointer nor the null string, then it will be used as the name of
the device to open.

RCDBNAME is used to reset the name of the database to access at run time. Ordinarily this
value is inherited from the precompiler —d argument. If databasename is neither the null pointer
nor the null string, then it will be used as the name of the database to open.

Either RCDEVICE or RCDBNAME may appear either before or after INITRIC or INITRSC, but
they must appear before the first executable IDL or SQL statement if they are to have any effect.

All these macros are defined in the header file reinclude.h, which is automatically included by the
precompiler in all files it produces.

EXAMPLE

The following canned lines are appropriate in most rie programs:

3.8-87,/09/28-R3v5m5 Britton Lee 1

INITIDMLIB (3I) Britton Lee INITIDMLIB (31)

NAME
INITIDMLIB — initialize the IDM support library

SYNOPSIS
#include <idmlib.h>

INITIDMLIB(progname);
cc =i ... =lidmlib (on UNIX)
DESCRIPTION
In order to use the capabilities of IDMLIB, all source files must include the file tdmisb.A. In addi-

tion, the IDM support library (-lidmlib on UNIX) must be loaded. Sixteen-bit machines require
the use of separated instruction and data space (the —i flag on UNIX).

The main program must use INITIDMLIB(progname) as the first operation. This will initialize
IDMLIB and set the name of this program for use by error messages, etc. This must be called
from matn().

SEE ALSO
intro(3I)

© 3.8-87/09/28-R3v5m5 Britton Lee 1

IGETTUP (3I) Britton Lee IGETTUP (3I)

NAME
igettup — get a tuple from a database server into a target list

SYNOPSIS
#include <idmtlist.h>
RETCODE igettup(idm, itl)
IFILE *idm;
ITLIST xitl;
DESCRIPTION
Igettup reads a tuple from the specified tdm into the target list stl. Itl is typically created by
tgettl(3I).

Igettup returns RS_NORM on success. If the input did not begin with a TUPLE token sgettup
ungets the errant token and returns RW_TUPEND. :

SEE ALSO
igettl(3I), tupprint(3I), itlist(5I)

3.5-88/02/29-R3v5m8 Britton Lee 1

IGETTL (31) Britton Lee IGETTL (31)

NAME
igettl, itlfree — read a target list from a database server

SYNOPSIS
#include <idmtlist.h>

ITLIST sigettl(idm)
IFILE *idm;
itifree(itl);

ITLIST =itl;

DESCRIPTION
Igettl reads the description of a target list as described in st/is¢(5I) from the specified 1dm, consist-
ing of the description of the types, lengths, and names of values to be returned by the
IDM/RDBMS software. A target list is built, including sufficient space to hold the values when
they are retrieved using sgettup(3I).

The IDM SENDFORMAT option (option one) must be set for the target list to be built. If the
SENDNAMES option (option two) is set then the names will be available in the iTLELM node.

If the next token in the input stream is not FORMAT or CHAR, then ¢gett! pushes back the
input token and returns ITNULL.

A query tree must be written (typically using sputtree(3I)) before igett! is called.
A target list must be explicitly freed using st/free when it is no longer needed.

SEE ALSO
igettup(3I), iputtl(3I), iputtree(3I), itree(5I), itlist(5I)

3.5-88/02/29-R3v5m8 Britton Lee 1

IGETEOT (31) Britton Lee IGETEOT (31)

NAME
igeteot, itapeload — get DONE blocks until end of IDM tape

SYNOPSIS
#include <idmdone.h>
#finclude <idmenv.h>
IDONE sigeteot(ifp, env)
IFILE sifp;
IENV xenv;
itapeload(optlist, ifp, env)
char *optlist;
IFILE «ifp;
IENV xenv;
DESCRIPTION
Igeteot acts almost exactly like tgetdone(3I) except that it understands intermediate DONE tokens

asking the operator to mount another tape. Intermediate DONE tokens are handled automati-
cally by communicating with the operator using the operator(3I) primitives.

Igeteot returns the IDONE value from the final volume.

Igeteot only prompts the operator for the second and subsequent tape. The initial tape should be
requested using stapeload or a direct operator request.

A user response of the form n! where n is a digit, will turn off tape volume verification in the
IDM/RDBMS software. This is useful when a partially completed dump needs another tape and
there are no more initialized tapes available.

Itapeload should be called before the command tree that includes the tape option is sent to the
IDM/RDBMS. Optlist describes the tape(s) to be mounted (see stapeopts(3I) for details). Ifp
refers to the database server that will be used. Env refers to the associated environment, with
the value JENVNULL mapped to the current default environment.
LMTATIONS
Since tgeteot must interact with ¢fp, this file must be of type IftIldm(41) or IftReopen.
EXCEPTIONS
A:IDMLIB.IDM.TAPE.NOOPER
The job was aborted because there was no operator available to change the tape.
SEE ALSO
igetdone(3I), itapeopts(3I), operator(3I), iftidm(4I), idone(5I), System Programmer’s Manual

3.7-88/02/29-R3v5m8 Britton Lee 1

IGETDONE (31) Britton Lee IGETDONE (31)

NAME

igetdone — read ERROR, MEASURE, and DONE packets from the database server

SYNOPSIS

#include <idmdone.h>
#include <idmenv.h>

IDONE =igetdone(ifp, env);
IFILE =*ifp;
IENYV xenv;

DESCRIPTION

Igetdone reads the database server connection pointed to by ifp for zero or more ERROR and/or
MEASURE packets followed by a done packet. The arguments to the error and measure packets
are formatted into exceptions which are raised.

The done packet is read and returned. The done status word is masked with the te_donemask
field in the environment and any bits remaining on cause an exception to be raised as described
below. If env is IENVNULL a default environment is used.

The range table from env is used to select the range variable name for tokens of type iVAR that
are returned in messages. If the variable name can not be determined the variable number is
used instead.

1

WARNINGS

The done packet that is returned points to static memory. It must be copied if it is to be saved.

EXCEPTIONS

E:IDM.Ennn(message-dependent arguments)

An IDM error packet has been read with an error value between 1 and 127 or 192 and
255.

A:IDM Ennn(message-dependent arguments)
An IDM error packet with error value between 128 and 191 inclusive has been read.

LIDM Mnnn(message-dependent arguments)

A MEASURE token was read. These tokens give performance information about the
IDM.

W:IDM.bstname
Here, bitname is INTERRUPT, OVERFLOW, DIVIDE, DUP, ROUND, UNDFLO,
BADBCD, LOGOFF, or XABORT. The corresponding bit is set in the status word.
This must be enabled by setting the corresponding bit in the done mask in env. Warning
messages are not printed in the event that an IDM system error is returned in this call to
tgetdone.

IIDM.INXACT
The INXACT bit is set in the status word. This must be enabled by setting the
corresponding bit in the done mask in env.

L:IDM.bstname(value)
Here, bitname is COUNT or TIMER. The corresponding bit is set in the status word.
Value is the value from the appropriate field of the done packet. The MINUTES bit is

interpreted properly. This must be enabled by setting the corresponding bit in the done
mask in env.

SEE ALSO

exc(3I), igeteot(3I), idone(5I), ienv(5I), System Programmer’s Manual

3.10-87/12/04-R3v5m7 Britton Lee 1

IFWRITE (31) Britton Lee IFWRITE (31)

NAME
ifwrite — write a block of memory

SYNOPSIS
ifwrite(ifp, ptr, cnt)
IFILE «ifp;
BYTE =*ptr;
int cnt;

DESCRIPTION
Ifwrite appends at most cnt bytes of data beginning at ptr to the named output tfp. It returns
the number of bytes actually written.

This routine is efficient on large transfers, doing the output directly from the user’s buffer if pos-
sible.

Ifwrite is the only output primitive defined on files with the rbp (record-based presentation) attri-
bute set. In this case sfwrite writes exactly one record; if ent exceeds the maximum record length,
a full record is written, the rest of the data is discarded, and an exception is raised.

When a stream-based file has a record-based presentation, short records (i.e., records where cnt is
less than the rs) will be padded to the full rs using the padchar character (binary zero default).

EXCEPTIONS
E:IDMLIB.IO.WLR(filetype, filename)
An attempt was made to write a record that was too long.

A:IDMLIB.IO.WOROF (filetype, filename)
An attempt was made to write on a read-only file.

SEE ALSO
ifcontrol(3I), ifopen(3I), ifputc(3I), ifputs(3I), ifread(3I), printf(3I)

3.9-88/03,/02-R3v5m9 Britton Lee 1

IFUNGETC (3I) Britton Lee IFUNGETC (3I)

NAME
ifungetc — put a character back into input buffer
SYNOPSIS

ifungetc(c, ifp)
int c;
IFILE =ifp;

DESCRIPTION

Ifungete pushes the byte ¢ back on an input #fp. That character will be returned by the next
IFGETC call on that ¢fp. Ifungetc returns c.

Attempts to push EOF are ignored.

LIMITATIONS
One character of pushback is guaranteed provided something has been read from the ¢fp and the
ifp is actually buffered.

This primitive is only defined on files with stream-based presentations.

EXCEPTIONS
E:IDMLIB.IO.IFUNGETC(filetype, filename)
If there is no room to hold the pushback character.

E:IDMLIB.IO.UOWOF (filetype, filename)
You have tried to invoke sfungetc on a write-only file.

SEE ALSO
ifgetc(3I)

3.4-86/09/28-R3v5m0 Britton Lee 1

IFSCRACK (3I) Britton Lee IFSCRACK (31)

A:IDMLIB.IO.CRACK BADTYPE(spec)
Illegal type is spec <spec>.

IMPLEMENTATION NOTES
The percent sign can be changed on a per-system basis. If necessary this routine could be com-
pletely rewritten to provide a different syntax.

SEE ALSO
intro(1I), ifopen(3I), ifthfile(4I), iftifile(4I), iftltape(4I)

[

3.6-86/09/28-R3v5m0 Britton Lee

IFSCRACK (31) Britton Lee IFSCRACK (31)

NAME
ifscrack, ifstype — crack file specification string

SYNOPSIS
#include <ifscrack.h>

char *ifscrack(spec, ptype, fnbuf, fnlen)
char *spec;

int *ptype;

char fobuf];

int fnlen;

char *ifstype(type, filename)

int type;

char *filename;
DESCRIPTION

Ifscrack takes an IDM file spec and breaks it up into a file name, a file type, and a set of params.
The syntax of a file spec is:

ra

[ilename][%params]

where params is a comma-separated list of parameters in peztract(3I) format. Params may
include a type, which must be one of:

hfile host file
ifile IDM file
htape host (ANSI) tape
multi multi-diskette file
itape IDM tape
Hfile is the default. For example:
myfile host file
myfile%hfile same
myfile%ifile IDM file
myfile%htape,bs(4096) host tape, block size = 4096
%itape IDM tape

The file name is stored into the fnbuf buffer. At most fnlen characters, including a terminating
null byte, will be stored. An exception is raised if the filename in the spec is too long.

A pointer to the params is returned. If no parameters exist, the zero length string is returned.

The type field is decoded and stored indirectly into *ptype as a bit mask. The IFS_TAPE bit is
set if tape is used, and IFS_IDM is set if an IDM file or tape is specified. The constants
IFS_HFILE, IFS_HTAPE, IFS_IFILE, and IFS_ITAPE represent the valid combinations.

Htape and mults are equivalent (both returning IFS_HTAPE), with the latter intended for use in
the PC environment.

The syntax accepted by ifscrack is intended to be used for external specification of files, e.g., file
names specified by users on command lines.

Ifstype takes an encoded type field and a filename and returns a string suitable for printing. For
example, it might produce “host file "xyzzy”” for a type of IFS_HFILE and a filename of
“XYZZ}’”.
EXCEPTIONS
E:IDMLIB.IO.CRACK .NAMETOOLONG(name, maxlen)
The name specified was too long.

3.12-87/12/04-R3v5m7 Britton Lee 1

IFREAD (31) Britton Lee IFREAD (31)

NAME

ifread — read a block of memory

SYNOPSIS

ifread(ifp, ptr, cnt)
IFILE »*ifp;

BYTE =ptr;

int ent;

DESCRIPTION

Ifread reads ent bytes of data from the named input ¢fp into a block beginning at ptr. It returns
the number of bytes actually read.

This routine is efficient on large transfers, doing the I/O directly into the user’s buffer if possible.

Ifread is the only input primitive defined on files with the rbp (record-based presentation) attri-
bute set. In this case ifread reads exactly one record; if the ent is smaller than the length of the

next record cnt bytes are read, the remainder of the record is discarded, and
W:IDMLIB.IO.SHORTREAD is raised.

EXCEPTIONS

A:IDMLIB.IO.ROWOF(filetype, filename)
Read on write-only file.

W:IDMLIB.IO.SHORTREAD(filetype, filename)
Data was discarded.

SEE ALSO

ifcontrol(3I), ifopen(3I), ifgetc(31), ifgets(3I), ifwrite(3I)

DIAGNOSTICS

Ifread returns zero upon end of file.

3.12-87/12/04-R3v5m7 Britton Lee 1

IFPUTS (3I) Britton Lee IFPUTS (31)

NAME
ifputs — put a string on a text file

SYNOPSIS
ifputs(s, ifp)

char *s;
IFILE »ifp;

DESCRIPTION

Ifputs copies the null-terminated string s to the named output ¢fp. It does not copy the terminat-
ing null character.

Since ifputs is built on top of sfputc(3I), all IFPUTC restrictions apply to ¢fputs.
SEE ALSO

iferror(3I), ifgets(3I), ifopen(3I), ifputc(3I), ifwrite(3I), printf(3I)
BUGS

Ifgets and ifputs are not inverse operations, since ifgets strips the newline but sfputs does not add
one.

3.4-86/09/28-R3v5m0 Britton Lee 1

IFPUTC (31) Britton Lee IFPUTC (31)

NAME
IFPUTC, ifputc — put a byte to a file

SYNOPSIS
int IFPUTC(¢, ifp)
BYTE c;
IFILE x*ifp;
int ifputc(c, ifp)
BYTE c¢;
IFILE xifp;
DESCRIPTION

IFPUTC and ¢fputc append the character ¢ to the named output éfp. The return value is not
defined. I/O errors are reported via ezcraise(3I).

IFPUTC is functionally the same as ifputc, but is implemented as a macro for efficiency.

The standard files stdout and stderr are normally line buffered. When an output file is line
buffered, information appears on the destination file or terminal as soon as one line is written;
when it is fully buffered, many characters are saved up and written as a block. Ifflush(3I) may
be used to force the block out early. However, on record-based files fflush will start a new
record.

LIMITATIONS
Some systems may not allow completely unbuffered output, i.e., a newline may be required to
force output. To print a prompt and read input, use getprompt.

EXCEPTIONS
A:IDMLIB.JIO.WOROF(filetype, filename)
Write on read-only file.

SEE ALSO
getprompt(3I), ifflush(3I), ifgetc(3I), ifopen(3I), ifputs(3I), ifwrite(3I), printf(3I)

WARNINGS
Because JFPUTC is implemented as a macro, an sfp argument with side effects functions improp-
erly. In particular “IFPUTC(c, #f++);” doesn’t work sensibly.

Errors can occur long after the call to tfputc or IFPUTC.

Ifputc is undefined on files with a record-based presentation; tffwrite(3I) must be used instead.

3.4-87/02/08-R3v5m0 Britton Lee 1

IFOPEN (31) Britton Lee IFOPEN (31)

H

W:IDMLIB IO RSIZE(type, name, user, file)
The user has specified an explicit rs for the specified file that does not match the infor-
mation associated with the file. The user parameter overrides.

W:IDMLIB.IO BRSIZE(type, name, bs, rs)
The rs is larger than the s for this file. The bs will be increased to accommodate the rs.

Others as described in section 4I.

SEE ALSO
ifclose(3I), ifcontrol(3I), ifgetc(3I), ifpute(3I), ifread(3I), ifwrite(3I), section 41 for descriptions of
the various file types.

3.5-86/09/28-R3v5m0 Britton Lee 3

IFOPEN (31) Britton Lee IFOPEN (31)

mode(M) This may be r for read, w for write, a for append, u for update. The file is
created if it does not already exist in w, a, and u modes.

padchar(C)t Set the pad character. Used by some file types to pad out short records.
Defaults to binary zero if not overridden by the file type. See below for details.

rbp(B)t Use a record-based presentation.
rs(RS) The logical record size for this file. If not specified, the block size is used.
trace(B)t Enables detailed tracing on this file. This normally includes showing all traffic

on the file if trace flag IOTRAFFIC.6 is set.

Other parameters may be defined by the file-type module; see the individual descriptions for these
parameters.

The basic primitives that may be applied to an ifp are IFGETC (get character), IFPUTC (put
character), tfcontrol (perform control operations), ifflush (force output), and sfelose (close file).
Other operations are built from these primitives.

Update mode has highly restricted semantics. In general, a file must have the reset or rewrite
tfcontrol(3]) call applied to it before switching from read to write operations or vice versa. Indi-
vidual file types may have less restrictive semantics; see section 4l for details. Any usage other
than those explicitly defined will give undefined results (probably without an error message).

The padchar is used when simulating records on physically stream-based files. Short logical
records will be padded with this character to the full record length on output. It will not be
stripped on input. The padchar defaults to binary zero on most file types.

IMPLEMENTATION NOTES
Parameters that are not recognized by an implementation should be ignored rather than diag-
nosed. If there are parameters that will cause important functional differences, they should be
parsed and diagnosed specially.

EXAMPLES
extern IFTYPE IftHFile, Iftldm, IftIFile;

hifp = ifopen(InputFile, &IftHFile, " mode(r),vms(dsp=prt)”, IFNULL);
iifp = ifopen(”system”, &Iftldm, "trace”, IFNULL);
fifp = ifopen(”myfile”, &IftIFile, "bs(8192)”, iifp);
EXCEPTIONS
A:IDMLIB.IO.BADMODE(filetype, filename, mode)
An I/0 mode was specified that was incompatible with the file type.

A:IDMLIB.IO.CANTOPEN(filetype, filename, mode, why)
The file cannot be opened.

A:IDMLIB.IO.NOBASE(filetype, filename)
The specified file was not supplied with a required base file.

A:IDMLIB.IO.NEEDNAME(filetype)
The specified file type was not supplied with a required file name.

A:IDMLIB.IO.CANTNAME(filetype, filename)
This file type does not accept names. For example, strings do not have names.

- A:IDMLIB.I0O.NOMODAE(filetype, filename)
The specified file did not have a required I/O mode supplied.

W:IDMLIB.I0O.BSIZE(type, name, user, file)
The user has specified an explicit bs for the specified file that does not match the infor-
mation associated with the file. The user parameter overrides.

3.7-87/09/28-R3v5m5 Britton Lee 2

IFOPEN (3I) Britton Lee IFOPEN (31)

NAME

ifopen — open a file

SYNOPSIS

IFILE sifopen(filename, type, params, baseifp)
char *filename;

IFTYPE stype;

char *params;

IFILE sbaseifp;

DESCRIPTION

Ifopen opens the file named by filename and associates a file pointer with it. Ifopen returns a
pointer to be used to identify the file in subsequent operations.

Type specifies the file type. A few of the important types are IftHFile (host file), IftIldm (IDM
channel), and IftString (in-core string). See section 4I for details and other file types.

Certain file types do not implement a true file. Rather, they act somewhat like a UNIX filter,
reading from one file, performing a transformation, and writing to another file. For example, the
IftIFile (IDM file) type module does not actually open any files on the host. However, reads or
writes on an Ift[File are transformed into I/O on an underlying file of type Iftldm (IDM channel).
This allows the IftIFile type to emulate a stream on top of the database server. Baseifp is used
to pass in this underlying file.

Params is a character string describing characteristics of the file. It consists of a series of
comma-separated file parameters, each of the form name(value). Individual parameters may be in
any order. Parameters that are not recognized by an implementation should be silently ignored.

In most cases binary params (that is, parameters that are either on or off) are asserted by speci-
fying “name” or “name(1)”; they can be explicitly deasserted by specifying “name(0)” (e.g., to
override the default setting on a file type).

STANDARD PARAMS

Params that apply to all file types are listed below. Params marked with t are identical to the
corresponding sfcontrol(3I) calls. Defaults listed are for the usual case, although a file type may
specify a different default. That is, explicit {fopen parameters are preferred, followed by the file-
type default, followed by the default listed here. See the appropriate writeup in section 4I for
exact information regarding defaults.

autoclose(B) Close this file automatically on exit. This is normally used only in the default
parameters for a file type.

bs(BS) The value is the block size for this file. The block size must be at least as large
as the largest record in the file. On output, this defines the physical block size.
This is advice only on input, i.e., the file type can (and should) override this
value if it can be determined from the file itself.

disp(D)t Set the file disposition, i.e., what should happen to the file when it is closed.
Defined values are delete for a file that should be deleted when closed and keep
for files that should be kept when closed (default).

global Allocate the resources for this file in a global arena. Files without this attribute
may be automatically deallocated by a freempool (see zalloc(3I)) call. In general,
always specify this attribute if the file pointer is stored in a global variable;
never specify it if the file pointer is a local variable. -

linebuffer(B)t Enables line buffering, that is, an automatic flush of each newline-terminated
line. This operation should normally be reserved to the file type, since it can
affect the normal functioning of the file.

3.7-87/09/28-R3v5mb Britton Lee 1

IFGETS (31) Britton Lee IFGETS (31)

NAME
ifgets — get a line from a text file

SYNOPSIS
char sifgets(s, n, ifp)
char =s;
int n;
IFILE x»ifp;

DESCRIPTION
Ifgets reads n—1 characters, or up to a newline character, whichever comes first, from the ifp into
the string s. The last character read into s is followed by a null character. Ifgets returns its first
argument. The trailing newline is deleted. If the input line is longer than n-1 bytes, the
remainder of the line is thrown away.

Since ifgets is built on top of tfgetc(31) all restrictions on tfgetc also apply here.

SEE ALSO
iferror(3I), ifgetc(3I), ifputs(3I), ifread(3I)

DIAGNOSTICS
Ifgets returns the constant pointer CHARNULL upon end of file.

3.7-87/09/28-R3v5mb Britton Lee 1

IFGETC (31) Britton Lee IFGETC (31)

NAME
IFGETC, ifgetc — get a byte from a file

SYNOPSIS
int IFGETC(ifp)
IFILE =ifp;
int ifgetc(ifp)
IFILE «ifp;
DESCRIPTION

IFGETC and ifgete return the next byte from the named input ifp, and the integer constant EOF
at end of file.

IFGETC is functionally the same as ifgetc, but is implemented as a macro for efficiency.

EXCEPTIONS
A:IDMLIB.IO.ROWOF(filetype, filename)
Read on write-only file.

WARNINGS
Ifgete and IFGETC are undefined on files having a record-based presentation; ifread(3I) must be
used instead.

Because it is implemented as macro, IFGETC treats an ifp argument with side effects incorrectly.
In particular, “IFGETC(*f++);” doesn’t work sensibly. '

SEE ALSO
ifgets(3I), ifopen(3I), ifputc(3I), ifread(3I), ifungetc(3I)

3.4-86/09/28-R3v5m0 Britton Lee 1

IFFLUSH (31) Britton Lee IFFLUSH (31)

NAME
iflush — flush a file

SYNOPSIS
int ifflush(ifp)
IFILE *ifp;
DESCRIPTION

Ifflush causes any buffered data for the named output t¢fp to be written to that file. The EOF bit
is cleared and the file remains open. Ifflush returns zero on success and negative on failure.

This call may be safely applied to a read-only file. This will cause the EOF bit to be cleared.

If ifp specifies a file with stream-based presentation of a physically record-based file, {fflush will
terminate a record. Ifflush is undefined on files with record-based presentations.

SEE ALSO
ifcontrol(3I), ifopen(3I)

3.4-86,/09/28-R3v5m0 Britton Lee 1

IFERROR (3I) Britton Lee IFERROR (31)

NAME

IFERROR, ifeof, IFEOR — file status inquiries
SYNOPSIS

RETCODE IFERROR(ifp)

IFILE »ifp;

BOOL ifeof(ifp)

IFILE =ifp;

BOOL IFEOR(ifp)

IFILE «ifp;
DESCRIPTION

IFERROR returns the error code of the most recent error that has occurred reading or writing

the named ¢fp. Unless cleared by the clrerr control, the error indication lasts until the file is
closed. The value RS_NORM is returned if no error has occurred.

Ifeof returns TRUE after end-of-file has been read on the named input ifp, otherwise FALSE.

IFEOR returns TRUE at end-of-record. It is only meaningful on input. /FEOR is also TRUE at
the beginning of the file. On a stream-based-file, it means that the buffer is empty.

SEE ALSO
geterr(3I), ifcontrol(3I), ifopen(3I)

3.4-86/09/28-R3v5m0 Britton Lee 1

IFDUMP (31) Britton Lee IFDUMP (31)

NAME

ifdump — dump an IDMLIB file pointer for debugging
SYNOPSIS

ifdump(ifp)

IFILE »*ifp;
DESCRIPTION

Ifdump prints the contents of ifp onto stdtrc in a format suitable for gurus. The intent is to sup-
port debugging by very sophisticated users.

3.4-86/09/28-R3v5m0 Britton Lee 1

IFCONTROL (31)

—rbf(B)*
rbp(B)t
reset

rewrite

trace(B)t
EXCEPTIONS

Britton Lee IFCONTROL (31)

should be taken using numeric values since they are unlikely to be portable
between ASCII and EBCDIC environments. Use of this parameter is discretion-
ary to the file type.

Set or clear record-based-file mode. Since this is an attribute of the physical file,
use is strictly limited to file-type modules.

Set or clear record-based-presentation mode. When set, ifread(3I) and ifwrite
are the only legal interfaces.

Resets the internal pointers to the beginning of the buffer, clears the EOF bit,
and (where possible) rewinds the device.

Reset the file (as above) and destroy any existing contents (i.e., truncate the file
to zero length). The file must be writable for this to succeed.

Set or clear trace mode on this file.

E:IDMLIB.IO.REWRITE(filetype, filename, why)
The file could not be rewritten.

SEE ALSO

ifopen(3I), iflush(3I), ifclose(3I), iodefs(51), section 4I for specific controls for different file types.

3.2-85/11/25-R3v5m0

Britton Lee 2

IFCONTROL (31) Britton Lee IFCONTROL (31)

NAME
ifcontrol — perform control operations on files

SYNOPSIS
int ifcontrol(ifp, params, args)
IFILE »*ifp;
char *params;
BYTE =args;

DESCRIPTION
Ifcontrol performs control operations on the named file. These can set or retrieve parameters or
perform special operations on the file.

The syntax of the params argument is identical to the ifopen(3I) call. The semantics are defined
by the file type. The args parameter is used by some control operations; the semantics vary.
Controls which return a value via the args parameter (getbs, getflags, etc.) of a type other than
BYTE = are noted in their description.

The return value depends on the control operation performed. Normally zero means success,
negative means failure.

STANDARD CONTROLS
The following controls are implemented on all files where they are possible, as detailed in section
41. Controls marked with 1 are identical to the corresponding sfopen(3I) params. Controls
marked with * should be implemented by the file-type module if possible, but should never be
used by application programs; they typically implement some internal feature.

cancel Resets the internal pointers to the beginning of the buffer and sets the EOF bit.
Used to cancel input from a device and fool any other code into thinking that
the transfer is complete.

clrerr Clear the current error indication on the file.

—deletex Remove the underlying file. This is not intended for use by the end user. It is
guaranteed that the file will be closed. This call is issued by tfclose(3I).

—dio(B)* Set or clear direct I/O capability. Setting this mode is a dangerous operation on
some file types; use is reserved to file-type modules.

disp(D)?t The file disposition, i.e., what will be done with the file when the file is closed.
Currently defined values are keep and delete to keep and delete the file respec-
tively.

flushblock Flush the file using ¢fflush(3I), then force any blocked data to the physical

media. This is the only way to guarantee that output to a blocked file is actu-
ally on the media.

getbs Return the buffer size of this file into the integer pointed to by args.

getflags Return the flag bits for this file into the integer pointed to by args. These bits
are defined in <tdmiodefs.h>, described in todefs(5I).

getrs Return the record size of this file into the integer pointed to by args.

linebuffer(B)t* Enables line buffering, that is, an automatic flush of each newline-terminated
line. This operation should normally be reserved to the file type, since it can
affect the normal functioning of the file.

padchar(C)t Set the pad character to be used to pad the record out for fixed-length records.
This is used when simulating records on streams or by file types that want to
provide settable padding. By default this is a zero byte. This may be a single
character used directly, or a numeric character value converted by atos. Care

3.6-86/09/28-R3v5m0 Britton Lee 1

IFCLOSE (31) Britton Lee IFCLOSE (31)

NAME
ifclose — close a file

SYNOPSIS
ifclose(ifp)
IFILE =*ifp;
DESCRIPTION
Ifclose causes any buffers for the named ¢fp to be emptied using iffush(3I), and the file to be

closed. Buffers allocated by the standard input/output system are freed. If the file disposition is
delete the file is removed.

Ifelose is invoked automatically by freempool (see zalloc(3I)) if the memory pool being freed is
bound by ifopen(3I) to the file.

SEE ALSO
ifcontrol(3I), ifflush(3I), ifopen(3I), xalloc(3I).

IMPLEMENTATION NOTES

The delete file disposition is implemented by issuing the _delete ifcontrol(3I) call. (This module
is environment-independent.}

3.6-86/09/28-R3v5m0 Britton Lee 1

IESUBST (31) Britton Lee IESUBST (31)

meaning.

All SUBSTITUTE nodes must have a value associated before sputtree(3I) may be called. How-
ever, values can be reassigned and the query rerun without reparsing the query, and without
reassigning all SUBSTITUTE nodes. See srsubst(3I) for an example.

Iesubst returns RS_NORM if the substitution was successful; RE_FAILURE if the value was not
legal.

EXAMPLES
Bcd numbers can be substituted with:
(void) iesubst(env, "xx”, b—bcd_type, b—bcd_len, _ _ b—becd_str);
EXCEPTIONS
E:IDMLIB.IDM.SUB.TYPE(subname, symbol}
Ilegal type for walue. This only occurs if the specified type can never be an acceptable
substitution type, i.e., if it is not a constant. This exception can also be raised by
tputtree(3I) if the type is unacceptable in a particular context, e.g., a string must be
specified in a context where only a domain name may occur.
SEE ALSO
idlparse(3I), iputtree(3I), irsubst(3I), ienv(5I)

3.4-86/09/28-R3v5m0 Britton Lee 2

IESUBST (31) Britton Lee IESUBST (31)

NAME

iesubst — perform substitutions in environments

SYNOPSIS

#include <idmenv.h>

RETCODE iesubst(env, name, type, length, value)
IENYV *env;

char *name;

int type;

int length;

BYTE *value;

DESCRIPTION

Iesubst associates the value of specified type and length with the name in the environment. If env
is IENVNULL a default environment is used. The type must specify a constant.

Substitutions are a way of putting placeholders into an ITREE using the %name syntax in
tdlparse(31) or sqlparse(3I). Values may be substituted later into the tree without reparsing.
Substitutions may occur

e Any place where an object-name might appear.
e Any place where an ezpresston might appear.

e As the first or second parameter to a substring or bedfized function, or as the first parameter
to a [fized]bed, [fized|bedfloat, or [fized]string function.

e As an attribute name on the left-hand side of an equal sign; the substitution must be a char-
acter type.

e As the with part of an associate command.

When a tree is sent using sputtree(3I), all substitute nodes are replaced with associated values
from the environment. For example, the calls

tree = idlparse(”retrieve (r.relid) where r.name = %rel”, env);
stat = iesubst(env, ”rel”, iSTRING, —1, "parts”);

stat = iputtree(tree, idmifp, env);

stat = iesubst(env, "rel”, iPCHAR, 2, "p#”);

stat = iputtree(tree, idmifp, env);

are equivalent to

tree = idlparse(”retrieve (r.relid) where r.name = \”parts\””, env);
stat = iputtree(tree, idmifp, env);

tree = idlparse(”retrieve (r.relid) where r.name = \”p#\””, env);
stat = iputtree(tree, idmifp, env);

“Call by value” semantics apply to value; changes to the memory that value points to will not
affect the value of the substitution.

If the type is iSTRING the length is ignored and the strien (see string(3I)) is taken instead.
Name is a null-terminated string.

When substituting BCD numbers, pass the bcd_str data area of the BCDNO as the value.
Bed_len should be passed in as length to ensure that the correct number of bed_str bytes are
copied.

When passing character or string data, the iPCHAR type indicates that the datum may contain
pattern matching characters. Pattern matching may not be used in target lists; doing so will
return IDM error E39. Types iCHAR and iSTRING indicate that all characters should be inter-
preted literally. Meta-characters (e.g., “*”, “?” in IDL, “%”, “_” in SQL) have no magic

3.8-87,/08/28-R3v5m4 Britton Lee 1

IESETOPT (31) Britton Lee IESETOPT (3I)

NAME
iesetopt, ieclropt — set or clear options

SYNOPSIS
#include <idmenv.h>

RETCODE iesetopt(env, option)
IENYV =env;
int option;

RETCODE ieclropt(env, option)
IENYV =zenv;
int option;

SYNOPSIS
Iesetopt sets the specified IDM system option in the environment. This option will be associated
with all further commands sent with the environment using tputtree(3I). Options are linked into
the tree when it is sent rather than at parse time when the tree is built. This allows programs
such as ric(1I) to set options at runtime rather than at precompile time.

Returns RS_NORM if the option is successfully set, RE_FAILURE if the option is illegal, or
RW_IGNORED if the option is already set.

If env is IENVNULL the default environment is used.

The IDM tape option is rejected in tesetopt. To use IDM tape, use one of the dba(3I) routines,
stcopy(3I), or set the option using ttaddopts(3I).

The optNAMES and optFORMAT options may not be changed. These are set by default, and
any attempt to alter their values will result in an exception.

Ieclropt functions identically, except that the option is cleared. If the option was not previously
set, feclropt raises a warning exception.

EXCEPTIONS
W:IDMLIB.IDM.OPT.SET(option)
The specified option is already set.

W:IDMLIB.IDM.OPT.NOTSET(option)
The specified option is already clear.

E:IDMLIB.IDM.OPT .ILLEGAL(option)
The specified option number is unknown.

E:IDMLIB.IDM.OPT.ILLEGAL.TYPE(option)
The specified option may not be set or unset.

W:IDMLIB.IDM.OPT.TAPE(option)
Cannot set IDM tape option in iesetopt.

SEE ALSO
dba(3I), idlparse(3I), itaddopts(3I), itcopy(3I), sqlparse(3I), ienv(5I)

3.8-87/08/28-R3v5m4 Britton Lee 1

IEOPEN (31) Britton Lee IEOPEN (31)

NAME

ieopen, ieclose — open and close [ENV’s (IDM environments)
SYNOPSIS

#include <idmenv.h>

IENV xieopen(parent, params)

IENYV sparent;

char *params;

ieclose(env)
IENYV xenv;
DESCRIPTION
Ieopen opens (creates) a new environment with the specified parent. The range and substitute
tables are initially empty. The done mask is copied from the parent unless modified by paramas.

Properties of the environment may be set or modified using a comma-separated list of params
(see below).

Ieclose closes (destroys) the specified environment. Env must not be used again. If env is the
default environment (DefEnv) the default is replaced by its parent. It is a grave error to destroy
the root environment (the environment with no parent).

These routines take [ENVNULL as values for env to indicated the default environment.
PARAMS ‘ '
donemask(D) Set the done mask literally to the list of done bits named in D (see idone(5I)).
setdonemask(D) Set the done mask to the parent’s done mask plus the named bits.
cirdonemask(D) Set the done mask to the parent’s done mask minus the named bits.

foldcase(B) If Bis ‘0’, turn foldcase mode off. If B is ‘1’ or omitted, turn foldcase mode on.
If foldcase is not specified, set foldcase to the value of the FOLDCASE parame-
ter (see getparam(3I)). If foldcase mode is set, routines taking an env parameter
will fold uppercase letters in character string arguments to lowercase.

mapce(B) Set the mode where output control characters are mapped to ITG_BLOTCH
tftterm(4I) in tupprint(3I) if B is missing or ‘l’; print control characters if B is
‘0’. Defaults from the MAPCC parameter at seopen(3I) time.

EXAMPLE
Environments can be stacked easily using:

DefEnv = jeopen(IENVNULL, CHARNULL);
/* use new environment */
ieclose(IENVNULL);

SEE ALSO
idlparse(3I), iecontrol(3I), iesubst(3I), iputtree(3I), sqlparse(3I), idone(5I), ienv(5I), params(5I)

3.8-87/09/28-R3v5mb5 Britton Lee 1

IECONTROL (31)

NAME

Britton Lee IECONTROL (3I)

iecontrol — perform control operations on environments

SYNOPSIS

#include <idmenv.h>

iecontrol(env, params, args)

IENY =env;
char *params;

BYTE x*args;
DESCRIPTION

Iecontrol adjusts fields in the environment. If env is IENVNULL the default environment is used.

Params describes what is to be done. Args are used by some control calls as specified by params.

CONTROLS
donemask(D)

clrdonemask(D)
setdonemask(D)
foldcase(B)

mapec(B)

SEE ALSO
’ idone(5I)

3.5-86,/08,/26-R3v5m0

Set the done mask to the list of done bits named (see tdone(5I)). Any bits not
explicitly named are cleared. If D is missing, args contains the literal bits to use
for the new value.

Clear the named bits in the done mask. If D is missing, args contains the literal
bits to use for the new value.

Set the named bits in the done mask. If D is missing, arge contains the literal
bits to use for the new value.

Set the foldcase mode if B is missing or ‘1’; clear the foldcase mode if B is ‘0’.
This defaults from the FOLDCASE parameter at teopen(3I) time.

If B is missing or 1, map control characters to ITG_BLOTCH (see iftterm(4I))
in tupprint(3I). If Bis ‘0’, do not change control characters. Defaults from the
MAPCC parameter at teopen(3I) time.

Britton Lee 1

IDMSYMBOL (31) Britton Lee IDMSYMBOL (31)

NAME

idmsymbol, idmwsymbol — return name of IDM symbol or WITH node
SYNOPSIS

char *idmsymbol(sym)

int sym;

char *idmwsymbol(wsym)

int wsym;
DESCRIPTION

Idmsymbol returns the name of the symbol passed as the argument. If the symbol is not recog-
nized, a printable version of the numeric value is returned.

Idmwsymbol returns the name of the WITH node symbol in a manner analagous to tdmsymbol.

WARNINGS

The return value of either routine may be a pointer to a static data area that will be destroyed
on the next call.

EXAMPLES
idmsymbol(0342) — "DBOPEN”"
idmsymbol(0204) — ” >="
idmsymbol(0543) — ”(token 0x163)”
idmwsymbol(5) — ”demand”
SEE ALSO
System Programmer’s Manual (SPM) for the tokens and their semantics.

3.5-87/02/08-R3v5m0 Britton Lee 1

IDLPARSE (31) Britton Lee IDLPARSE (3I)

Syntax errors should try to give you a pointer into the input line, rather than just a line number,
so that user-friendly error messages can be generated.

SEE ALSO
dba(3I), ieopen(3I), iesubst(3I), iputtree(3I), itfree(3I), itxemd(3I), ienv(5I), itree(5I)

3.4-87/12/04-R3v5m7 Britton Lee 4

IDLPARSE (31) Britton Lee IDLPARSE (31)

E:IDMLIB.IDM MAPC ESCAPE(string)
Nlegal pattern-matching string.

E:IDMLIB.IDM.NOTINT(type)
Constant in %N substitution name was not an integer.

E:IDMLIB.IDM.NOTFUNC(name)

The specified name was used in a context that would imply that it must be a function or
aggregate name, but it cannot be recognized.

E:IDMLIB.IDM.NUMARGS.TOOMANY/TOOFEW(function, nargs)
The wrong number of arguments were given to the specified function. The correct
number of arguments is given.

E:.IDMLIB.IDM.OPT.ILLEGAL(option)
An attempt was made to set an impossible or unknown option.

W:IDMLIB.IDM.OPT.NOTSET(option)
An attempt was made to unset an option that was not set.

W:IDMLIB.IDM.OPT.SET(option)
An attempt was made to set an option that was already set.

E:IDMLIB.IDM.OPT.TOOMANY
Too many options have been set.

E:IDMLIB.IDM.RANGE.NOTDECL(rvar)
The specified range variable was not declared in a range statement.

E:IDMLIB.IDM.RANGE.BADNO(rangenum)
Internal error — used an illegal range variable number.

E:IDMLIB.IDM.RANGE.BADOP T(optname)
The specified range option is not valid.

W:IDMLIB.IDM.RANGE.GRAB(newrv, oldrvar, oldreln)
A range table entry has been changed.

E:IDMLIB.IDM.RANGE.TOOMANY(nvar, maxvar)
Too many range variables were used in a single query.

E:IDMLIB.IDM.RANGE .ILLEGOPTVAL(optname)
The specified option does not accept a value.

E:IDMLIB.IDM.RANGE .NEEDOPTVAL(optname)
The specified option requires a value.

E:IDMLIB.IDM.PERMDENY(cmd)

A required object was missing from a permit or deny command.
E:IDMLIB.IDM.SET.SYNTAX(valuetype)

Wrong type of value to set command.

E:IDMLIB.IDM.SYNTAX(lasttoken)
A syntax error was detected during parsing.

E:IDMLIB.IDM.TRACE .SYNTAX(type)

An invalid type was passed as an IDM trace specification.
E:IDMLIB.IDM.WITH(withoption)

An option value for the specified with option was not a constant.

BUGS
No reasonable recovery from syntax errors is made at this time.

3.11-87/12/04-R3v5m7 : Britton Lee 3

IDLPARSE (31) Britton Lee IDLPARSE (31)

e The set command sets IDM options to be used on all subsequent commands. For example,
“set 11” causes IDM option 11 (return database server CPU time) to be sent on all future
commands. Unset can be used to turn off options.

Idifparse treats input conversion overflow as an error. The command tree will not be sent to the
IDM/RDBMS software. This mainly affects the append and replace commands.

EXCEPTIONS
E:IDMLIB.CNVT.OVERFLOW(input, max)
The user’s input overflowed during conversion. The maximum value or size is also
printed.

W:IDMLIB.CNVT.OVERFLOW(datatype, max)

Conversion overflowed during data output. The maximum value or size is printed.

E:IDMLIB.IDM.BADARG(problem, argument, func)
The specified argument to an IDL function was not valid.

E:IDMLIB.IDM.BADDIREC(direction)

An unknown sort direction has been specified. Direction can be ascending or descend-
ing (or may be abbreviated to a or d).

E:IDMLIB.IDM.BADORDER(domain)

An attempt was made to order by a domain that was not specified in the target list.
E:IDMLIB.IDM BADTYPE(type)

An unknown type was specified in a create statement.

E:IDMLIB.IDM.BADWITHOP T(optname)
The specified with option is invalid.

E:IDMLIB.IDM.CANTBY(func)
The specified function cannot accept a by clause.

E:IDMLIB.IDM.CANTFIX(func)
The specified function cannot accept a fixed specification.

E:IDMLIB.IDM.CANTUNIQUE(func)
The specified function cannot accept a unique specification.

E:IDMLIB.IDM.CANTWHERE(func)
The specified function cannot accept a where clause.

E:IDMLIB.IDM.CONSTTOOLONG(type, maxlen)
A constant was too long.

E:IDMLIB.IDM.EXEC.PROGID(type)
An illegal execute program name was specified.

E:IDMLIB.IDM.EXEC.PARAM(cmdname, argnum)
The specified argument to an execute was not a constant.

E:IDMLIB.IDM.FIELDSIZE(type)
An illegal size was specified for a domain in a create statement.

E:IDMLIB.IDM.ILLEGPRTCT{(mode)
Illegal mode to permit or deny.

W:IDMLIB.IDM.LONGNODE(type, len)
Long node was truncated.

“W:IDMLIB.IDM.LONGTOKEN(token, maxlen)
A token was too long and was truncated.

3.11-87/12/04-R3v5m7 Britton Lee 2

IDLPARSE (31) Britton Lee IDLPARSE (31)

NAME
idlparse, idlfparse — build query trees from IDL program input

SYNOPSIS
#include <idmtree.h>
#include <idmenv.h>
ITREE *idlparse(text, env)
char *text;
IENYV xenv;
ITREE idifparse(ifp, env)
IFILE «xifp;
IENYV xenv;
DESCRIPTION i
Idlparse reads and parses the given tezt as IDL input in the given environment and produces a
list of trees corresponding to the statements in tezt. The return value points to a list of iCOM-

MAND nodes as described in tree(5I). The number of iCOMMAND nodes equals the number of
commands in tezt. If env is IENVNULL, a default environment is used.

Certain commands consisting only of side effects take place immediately, although they continue
to have an entry in the tree list. For example, the range statement updates the range table in
the environment immediately upon being parsed.

The trees should be presented one at a time to ipuitree(3I) to be sent to Britton Lee’s
IDM/RDBMS software.

When the tree is no longer needed, it must be explicitly freed using stfree(3I).

Idifparse takes an IFILE pc;inter which must return tokens as described in. IftScan(4I); it is in all
other ways identical to sdlparse. This input stream may be macro processed or otherwise manipu-
lated before being parsed.

Idiparse accepts the language described in System Programmer’s Manual , with the following
changes:

e Close is not supported.

e Database administration functions (dump database, dump transaction, load database,
load transaction, roll forward, copy in, copy out) are not supported using this inter-
face; see dba(3I) and stcopy(3I) for details.

e The syntax Zname creates placeholder nodes in the tree; values can be assigned using
tesubst(3I).

e Open file, close file, create file, read, write, and write eof commands are not‘supported;
IftIFile(4]) provides this functionality.

e Reopen is not supported; Ift/dm(4]) gives equivalent functionality.

e Setdate and settime are available only using idmdate(1I).

e Syntax “OxNNN” accepts hexadecimal radix integers; “OoNNN”’ accepts octal radix integers.
e “ObNNN” accepts binary constants in hexadecimal radix.

e BCD constants are preceded by a ‘#’ mark.

e Floating-point constants must begin with a digit. For example, use ‘“0.1” instead of “.1” If
an exponent is present, it must abut the final digit.

o Floating-point constants preceded by “Of” or “0d” indicate four- or eight-byte representa-
tions respectively. The default is eight-byte constants.

3.11-87/12/04-R3v5m7 Britton Lee 1

HELPSYS (31) Britton Lee HELPSYS (31)

NAME

helpsys — interactive help subsystem
SYNOPSIS

helpsys(topic)

char *topic;

DESCRIPTION
Helpsys implements an interactive tree-structured help subsystem. Once helpsys is invoked, direct
communication with the user is maintained until they explicitly exit Aelpsys.

At any point the user is at a certain node in the help tree. The text associated with that node is
printed, and the user is prompted for input. The user can enter a subtopic, causing descent
through the tree, or one of the following commands:

%EXIT Exit helpsys. End of file (control-D on UNIX, control-Z on VMS and the IBM Personal
Computer, etc.) also works. ’

%TOP Return to the top menu of the help tree.
%UP Move one level back up the help tree.

The messages are printed out using the facilities of IftMTezt(41), so recognition of the experience
level applies.

An initial topic may be specified. For example, a topic of “IDL. APPEND” would start the help
session at the section describing the IDL append command. If topic is CHARNULL, the help
session begins at the top of the help tree.

If the session is not interactive, only one frame 1is printed. For example,
“helpsys(”IDLAPPEND”)” would print the frame describing the IDL append command and
then return immediately if the input was not a terminal.

The parameter feature of ftMText is not currently used.

" DISCLAIMER

This module requires more evaluation. The human interface may change at some point in the
future to be more user-friendly.

EXCEPTIONS
E:HELPATTOP
Already at top of help tree.

E:HELP.NONEXT
There is no automatic next frame.
E:HELP.UNKNOWN(topic)
The topic is unknown.
SEE ALSO
idmhelp(1I), IftMText(4I), the INFO facility on MIT ITS systems.

BUGS
The method of interaction does not extend gracefully to screen-based interfaces.

3.5-86/09/26-R3v5m0 Britton Lee 1

GETPROMPT (3I) Britton Lee GETPROMPT (31)

NAME
getprompt — get string with a prompt

SYNOPSIS
char sgetprompt(buf, size, prompt)

char buff];
int sise;
char *prompt;

DESCRIPTION
Getprompt prints the prompt on the standard output and then reads a line from the standard

input into buf. Buf can be at most size bytes long. The trailing newline is deleted. Buf is null-
terminated.

In general, this is the only way to output a line to a terminal that is not terminated by a newline.
Getprompt returns CHARNULL on end of file, buf otherwise.

SEE ALSO
ifgets(3I)

3.5-86/09/26-R3v5m0 Britton Lee

GETPASS (31) Britton Lee GETPASS (31)

NAME
getpass — get password securely from terminal
SYNOPSIS
char sgetpass(prompt)
char *prompt;
DESCRIPTION
Getpass prints prompt and reads a password from the user. The null-terminated result is
returned.
IMPLEMENTATION NOTES
Getpass is responsible for ensuring that the password is not visible. On a full-duplex terminal

echo should be turned off. On a half-duplex terminal the password should be obliterated
promptly.

SEE ALSO
getpass(3)

3.6-87/02/08-R3v5m0 Britton Lee 1

GETPARAM (31) Britton Lee GETPARAM (31)

NAME
getparam, setparam — get/set a system parameter

SYNOPSIS
char *getparam(param)
char *param;

setparam(param, value)
char *param;
char *value;

DESCRIPTION
Getparam returns a pointer to the string value of the named parameter. The parameters are
described in params(5I). If the parameter is unknown, a syserr occurs.

Setparam sets the named parameter to the specified value.

WARNINGS
The return value from getparam points to static memory that will be destroyed on the next call.
Be sure to copy the return value before calling getparam again.

IMPLEMENTATION NOTES
On UNIX, this looks in the file “/usr/lib/idm/params” for the default set of names. Names in
the user environment override these names.

On VMS, parameters are implemented as logical names. To avoid collision with other VMS logi-
cal names, “IDM_" is prepended to each IDMLIB parameter name. Both routines add “IDM_"
to the beginning of the name passed in. Getparam then performs one logical name translation to
get the value. Setparam defines the indicated logical name in the user mode process logical name
table; its scope is the current running image. '

Under AOS/VS, this looks for a file called “params” first in the current working directory, then
in the user’s search path, and finally in :idm:etc.

On CMS this looks in the table “IDMPARAM ASSEMBLE” and “userid.idmparam.*” for the
default set of names. The file “IDMPARAM ASSEMBLE” contains system defaults, and is
always processed. The file “userid.idmparam.*” is local to the user, and is processed if present.

The implementation must be extensible, that is, it must be possible to add new parameters
without changing the code.

The implementation must define the entry point _tnitparams to be called by the initialization
code. Since the I/O subsystem is not yet initialized when this is called, this should use native
I/0.

The implementation should allow “secure parameters’” — parameters that cannot be imported
from the user. These are used for relatively static parameters that may have disasterous effects
on users (e.g., the system call number used to access the database server). The system parameter

file must contain the necessary information to decide which parameters are secure and which are
not; that is, these must not be hard-coded into the implementation.

SEE ALSO
crackargv(3l), getenv(3), params(5I)

3.4-86/09/26-R3v5m0 Britton Lee 1

GETHUNPW (31) Britton Lee GETHUNPW (31)

NAME
gethunpw — get host user name and password

SYNOPSIS
int gethunpw(excv)
char *xexcv;

DESCRIPTION
Gethunpw is the default exception handler for the R:IDMLIB.IDM.GETHUNPW exception (see
ezc(31)). This exception is raised by IftIldm(4I) when the IDM complains that access is denied on
an open database command.

Gethunpw determines the user name and/or password, setting the IDMHUNAME and
IDMPASSWD parameters respectively (see getparam(3I)). It then returns zero to retry the open.
This could be done by reading a file in the user’s home directory, promptmg the user, or what-
ever is appropriate for the host environment.

If it is not possible to determine the user name and/or password (e.g., if the program is run in
background and the user must be contacted) then gethunpw will reraise the exception using ezca-
bort. This will print the message and abort the process.

SEE ALSO
getparam(3I), getpass(3I), iftidm(4I), params(5I), The section “System Level Security” in the Sys-
tem Adminsstrator’s Manual

IMPLEMENTATION NOTES

It may not be necessary to read the user name. On “trusted” hosts using user numbers, the host
name is not strictly necessary. See the System Administrator’s Manual for details.

The password should be read with echo turned off if possible, or should obscure the password
echoed to the user.

If a file is read, care should be taken to ensure that it is not readable except by the owner to
encourage security.

On some environments it is appropriate to set only the password, since setting the name changes
the sémantics of IDM authentication.

On CMS, the user is prompted for a user name and password if tsforegnd is TRUE. If the user
can supply the correct password for any “login” relation tuple, the user takes on the ‘“huid” for
that user. This supports applications authorized for only one user but executed by all users given
the password.

3.9-87/09/28-R3v5m5 . Britton Lee 1

GETERR (31) Britton Lee GETERR (31)

BUGS
RETERROR et al should work on all RETCODESs.

3.10-88/03/02-R3v5m9 Britton Lee 2

GETERR (31) Britton Lee GETERR (31)

NAME
geterr, clrerr, seterr, errstring, errclass, RETSUCCESS, RETWARNING, RETERROR — get,
clear, set, classify, or interpret error codes

SYNOPSIS
RETCODE geterr()

clrerr()

seterr(code)
RETCODE code;

char *errstring(code)
RETCODE code;

RETCODE errclass(code)
RETCODE code;

BOOL RETSUCCESS(code)
RETCODE code;

BOOL RETWARNING(code)
RETCODE code;

BOOL RETERROR(code)
RETCODE code;

DESCRIPTION
Geterr returns a magic number that describes the current error. These reflect the full level of
detail available from the operating system. Errclass classifies them into a limited range, which
are a subset of the total set of error codes. Errclass can return values as described in retcode(5I).

Clrerr clears the system’s idea of the current error. On some systems this may be done automati-
cally at the next system call, so it is wise not to depend on it being sticky.

Seterr sets the system’s idea of the error code. Normally this is only used in cases where an error
is detected and exception is to be raised, so that an appropriate exit status may be returned to
the host. system. In particular, it is almost certainly an error to use seterr when the system error
is already set, since this will most probably cause information to be lost.

Errstring returns a string describing the specified error code. Typical uses are “errstring(geterr())”
and “errstring(IFERROR(ifp))”. The return value may point to a static value that will be des-
troyed on the next call.

RETSUCCESS, RETWARNING, and RETERROR are predicates returning TRUE if their argu-
ment is a Sucess, Warning, or Error severity respectively. They are not guaranteed to work on
return values from geterr, but will work on return values from errclass and other IDMLIB rou-
tines.

IMPLEMENTATION NOTES
In many systems errstring will use operating system services to get the string. For.example,
UNIX will use syserrlist]]. Whereever possible it should return the most specific message possible.

A namespace must be chosen such that the detailed system errors and the error codes may coex-
ist. Errclass must map values from its range onto themselves, e.g., “errclassfRE_PERM)” —
“RE_PERM”.

On VMS, RETCODEs are VMS condition codes and errstring uses the SYS$GETMSG system ser-

vice.

SEE ALSO i
exc(3I), exit(3I), iferror(3I), retcode(5I)

3.6-86,/09/26-R3v5m0 Britton Lee 1

GETCLOCK (31) Britton Lee GETCLOCK (31)

The second is a DATE value, containing the date broken down into component fields. These
quantities give the time on a 24-hour clock (including ticks), day of month (1-31), month of year
(1-12), day of week (Sunday = 0), year (1900-), day of year (1-366), a flag that is nonzero if
daylight saving time is ever used in your area, and an offset in minutes from Greenwich Mean
Time.

Getclock returns the current system clock value. Clocktodate converts a CLOCK value into a
DATE. The zone argument specifies an adjustment in minutes westward from GMT (e.g., the
adjustment for California is 480 minutes westward from GMT; Amsterdam has an adjustment of
—60 minutes westward from GMT, i.e., one hour eastward). The value LOCALTIME can be
used to get local time adjustment including Daylight Savings Time (if the system parameter
ISDST is set). Valid zone values are multiples of 30; if an illegal zone is used the TIMEZONE
and ISDST system parameters are used to determine the time zone. Datetoeclock performs the
inverse function.

Diffclock determines the difference between two clocks. These may represent intervals or absolute
times.

Correspondence with IDM Time and Date
Under Release 3, the IDM system stores time under GMT since the epoch. Thus, the cl_day field
exactly matches the getdate IDL primitive. The e¢l_tscks field must be scaled between the host
and the shared database system; the macros IDMTOTICKS and TICKSTOIDM provide this scal-
ing. .

Selection of the Epoch
The default epoch is January 1, 1900. If a later epoch is desired, the EPOCHOFFSET parameter
can be set to the number of days between January 1, 1900 and the desired epoch. For example,
an epoch of January 1, 1970 can be achieved by setting EPOCHOFFSET to 25568.

Extreme care should be taken if the offset is changed from the default, especially in environments
where several hosts are connected to a single database server. Since dates are stored by IDM sys-
tem software relative to this epoch, all hosts must agree on the epoch.

WARNINGS
The return values point to static data whose content is overwritten by each call.

This family of routines is defined only for dates in the range of Jan. 1, 1900 through Feb. 28,
2100.

IMPLEMENTATION NOTES

If the time zone is not available from the system, it should be supplied as a system parameter (see
getparam(3I)).

The routine getclock is environment-dependent; the others are environment-independent.

SEE ALSO
fmtclock(3I), parsedate(3I), params(5I), date(2), ctime(3),

3.6-86,/09/26-R3v5m0 Britton Lee 2

PEXTRACT (31) Britton Lee PEXTRACT (31)

NAME
pextract — extract parameter value from list

SYNOPSIS
char spextract(field, list)
char x*field;
char xlist;
DESCRIPTION

Peztract finds the named field in list and returns a copy of the value. If the field does not exist,
peztract returns CHARNULL. If the field exists but has no value, the zero length string (””) is
returned.

The list is a comma-separated list of name(value) pairs. For example, the list:
bs(512),linebuffer,mode(r)

specifies three parameters, two with values and one with no value. Elements of the list may be

empty.

The value can have at most 256 characters. It may have commas and parentheses, but the

parentheses must be properly nested.

By convention, arguments specifying “yes or no” options assert the option if no value is specified
or if it has value of ‘1’. Digit ‘0’ explicitly deasserts the option. For example, “linebuffer” and
“linebuffer(1)”” both assert the linebuffer option, while “linebuffer(0)” turns off the option.

Peztract with a zero length field parameter checks the parameter list for syntactical accuracy and
raises an exception on errors. This should always be done before using peztract to extract values,
as syntactically incorrect lists have undefined results.

WARNING

The routine value points to static data whose content is overwritten by each call.
EXAMPLES

list = ”mode(r),linebuffer,bs(512),sync”;

pextract(”bs”, list) — ”512”

pextract(”sync”, list) — *”

pextract(”trace”, list) — CHARNULL
EXCEPTIONS

E:IDMLIB.PEXTRACT.SYNTAX(list)
Syntax error in list.

BUGS
Blanks are significant unless immediately following a comma. For example:

pextract(®a”, a , b”)
will return CHARNULL (that is, parameter “a” not found).

SEE ALSO
intro(1I), ifcontrol(3I), ifopen(3I)

3.7-87/11/24-R3v5m7 Britton Lee 1

PMATCH (31)

NAME

Britton Lee PMATCH (31)

pmatch — text pattern matching

SYNOPSIS

BOOL pmatch(pattern, string)

char *pattern;
char *string;

DESCRIPTION

Pmatch compares the pattern and the string, returning TRUE if they match. FALSE may be
returned on non-matching patterns or malformed patterns.

Special characters in pattern are:

?
[abe...]

{abc,def,...}

Matches zero or more characters.
Matches exactly one character.

Matches any single character listed. If the first character is a caret (‘ * ’) then it
matches any character not listed.

The square brackets turn off special meaning for most other characters. After an
open square bracket (“[”), only the backslash character (*\”) and the close
square bracket character (“]”’) are magic. Thus the string “[+?*]”” will match any
single asterisk, question mark, or caret.

Matches any of the comma-separated patterns listed.

Lowercase letters match themselves or the corresponding uppercase letter. Other characters
match themselves. Any character can be preceded by a backslash to disable any possible magic

interpretation.

Patterns may nest.

For single-character matching, the notation “[abc]” is more efficient than “{a,b,c}” and “?” is
more efficient than “s”.

EXAMPLES

pmatch(As2”, "AZ”) — TRUE
pmatch(”AsZ”, "AMNZ") — TRUE
pmatch(*A*Z”, "AZY”) — FALSE
pmatch(”?ABC”, ”AABC”) — TRUE
pmatch(”?ABC”, "EABC”) — TRUE
pmatch(”?ABC”, ”A:ABC”) — FALSE
pmatch(”[ABC]”, ”A”) - TRUE
pmatch(”[ABC]”, ”"B”) — TRUE
pmatch(”[ABC]”, "X”) — FALSE
pmatch(”["ABC]”, ”X") — TRUE
pmatch(”A:{ABC,DEF}”, "A:ABC”) — TRUE
pmatch(”A:{ABC,DEF}”, "A:DEF”) — TRUE
pmatch(”A:{ABC,DEF}”, "A:XYZ”) — FALSE
pmatch(”?:[UVW]+ {COMMOC}+["XYZ}”, "E:-VERY COMPLICATED”) — TRUE

SEE ALSO
string(3I)

3.4-86/09/28-R3v5m0

Britton Lee 1

PRINTF (31) Britton Lee PRINTF (31)

NAME
printf, ifprint{, sprintf, tprintf — formatted output conversion

SYNOPSIS
printf(format [, arg | ...)
char *format;

ifprintf(ifp, format |, arg | ...)
IFILE *ifp;
char sformat;

sprintf(s, format |, arg | ...)
char s[);
char *format;

tprintf(format |, arg] ...)
char *format;

DESCRIPTION
Printf places output on the standard output text file stdout. Ifprintf places output on the named
output ¢fp. Sprintf places output in the string s, followed by the character ‘\0’. Tprintf prints to
the trace file stdtrc. Because of the problems of mixed-language environments, printf should not
be used in libraries that may be loaded with other languages.

Each of these functions converts, formats, and prints its arguments after the first under control
of the first argument. The format argument is a character string which contains two types of
objects: plain characters, which are simply copied to the output, and conversion specifications,
each of which causes conversion and printing of the next successive arg.

Each conversion specification is introduced by the character ‘%’. Following the ‘%%’, there may
be

e An optional minus sign
cated field;

e An optional digit string specifying a field width ; if the converted value has fewer characters
than the field width it will be blank-padded on the left (or right, if the left-adjustment indi-
cator has been given) to make up the field width; if the field width begins with a zero, zero-
padding will be done instead of blank-padding;

e An optional period ‘.’ which serves to separate the field width from the next digit string;

‘~* which specifies left adjustment of the converted value in the indi-

e An optional digit string specifying a precssion which specifies the number of digits to appear
after the decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

e The character 1 specifying that a following d, o, x, or u corresponds to a long integer arg.
e A character which indicates the type of conversion to be applied.

A field width or precision may be ‘*’ instead of a digit string. In this case an integer arg supplies
the field width or precision. A negative arg is equivalent to specifying no width or precision.
Note that “%s#*” with an drg of —5 differs from “%—5.”

In summary, in all formats except the floating-point formats, the width specifies the minimum
number of characters that will be output and the prec specifies the maximum number of charac-
ters that will be output.

The conversion characters and their meanings are

duox The integer arg is converted to decimal, unsigned decimal, octal, or hexadecimal notation
respectively.

3.4-86/09/28-R3v5m0 Britton Lee 1

PRINTF (31)

%

Britton Lee PRINTF (31)

The float or double arg is converted to decimal notation in the style “(~|ddd.ddd” where
the number of d’s after the decimal point is equal to the precision specification for the
argument. If the precision is missing, 6 digits are given; if the precision is explicitly 0, no
digits are printed.

The float or double arg is converted in the style “[~|d.ddde+dd” where there is one digit
before the decimal point and the number after is equal to the precision specification for
the argument; when the precision is missing, 6 digits are produced.

The float or double arg is printed in style f or in style e, whichever gives full precision in
minimum space.

The character arg is printed.

The character arg is printed with nonprintable characters turned into a printable
sequence.

Arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is negative or missing all characters up
to a null are printed. If the pointer is null it prints “[null]”.

Arg is printed as a string with non-printable characters escaped as in %C.
Arg is printed as a pointer.

Print a ‘%’; no argument is converted.

Use of any other keyletter is specifically undefined.

In no case does a non-existent or small field width cause truncation of a field; padding takes place
only if the specified field width exceeds the actual width.

EXAMPLES

To print a date and time in the form ‘“‘Sunday, July 3, 10:02”, where weekday and month are
pointers to null-terminated strings:

printf(” %s, %s %d, %02d:%02d”, weekday, month, day, hour, min);

RESTRICTIONS
Ifprintf is undefined on files with record-based presentations.

No more than fourteen parameters may be passed in one call to any of these routines. On 16-bit
machines, longs and floats count as two parameters, doubles as four parameters. On 32-bit
machines, doubles count as two parameters.

SEE ALSO

ifpute(3I)

1.3-87/02/23-R3v5m0 Britton Lee 2

RCCOUNT (31) Britton Lee RCCOUNT (31)

NAME
rccount — subroutine for RSC and RIC source files

SYNOPSIS
long ntups, rccount();
ntups = rccount();
DESCRIPTION

Receount returns the number of tuples affected by the last SQL or IDL command executed. For
select/retrieve loops, rccount() should be called after the loop has finished executing.

If the last command was killed, or if there was some kind of error, the value is unreliable.
Rccount must not be used to check for error or abnormal termination; rather, it should only be
used when a query completes normally.

3.10-87/09/28-R3v5m5 Britton Lee 1

SQLPARSE (3I) Britton Lee SQLPARSE (31)

NAME

sqlparse, sqlfparse — build query trees from SQL program input

SYNOPSIS

ITREE ssqlparse(text, env)

char stext;
IENV zenv;

ITREE #sqlfparse(ifp, env)
IFILE =*ifp;
IENYV *env;

DESCRIPTION

Sqlparse reads and parses the given text as SQL input in the given environment and produces a
list of trees corresponding to the statements in tezt. The return value points to a list of iCOM-
MAND nodes as described in stree(5I). The number of iCOMMAND nodes equals the number of
commands in tezt. If env is IENVNULL, a default environment is used.

Certain commands consisting only of side eflects take place immediately, although they continue
to have an entry in the tree list.

The trees should be presented one at a time to sputtree(3I) to be sent to the IDM/RDBMS
software.

When the tree is no longer needed, it must be explicitly freed using stfree(3I).

Sqlfparse takes an IFILE pointer which must return tokens as described in [ftSean(4]); it is in all
other ways identical to sglparse. This input stream may be macro processed or otherwise mani-
pulated before being parsed.

Sqlparse accepts the language described in SQL Reference Manual. The following features are
not documented in the manual:

e The syntax Z%name creates placeholder nodes in the tree; values can be assigned using
tesubst(3I).

e Syntax “OxNNN”’ accepts hexadecimal radix integers; “OoNNN”’ accepts octal radix integers.
e “ObNNN?” accepts binary constants in hexadecimal radix.
e BCD constants must be preceded by a ‘#’ mark.

e Floating-point constants must begin with a digit. For example, use “0.1” instead of “.1” If
an exponent is present, it must abut the final digit.

e Floating-point constants preceded by “Of” or “0Od” indicate four- or eight-byte representa-
tions respectively. The default is eight-byte constants.

Sqlfparse treats input conversion overflow as an error. The command tree will not be sent to the
IDM/RDBMS software. This mainly affects the insert and update commands.

EXCEPTIONS

E:IDMLIB.CNVT.OVERFLOW(input, max)
The user’s input overflowed during conversion. The maximum value or size is also
printed.

W:IDMLIB.CNVT.OVERFLOW(datatype, max)
Conversion overflowed during data output. The maximum value or size is printed.

E:IDMLIB.IDM.ALL.NOTONE

The “*” operator was used in a context in which too many tables were specified.

3.10-87/09/28-R3v5m5 Britton Lee 1

SQLPARSE (31) Britton Lee SQLPARSE (31)

E:IDMLIB.IDM.BADARG(problem, argument, func)
The specified argument to an SQL function was not valid.

E:IDMLIB.IDM.BADDIREC(direction)
An unknown sort direction has been specified. Direction can be ascending or descend-
ing (or may be abbreviated to a or d).

E:IDMLIB.IDM.BADORDER(domain)
An attempt was made to order by a domain that was not specified in the target list.

E:IDMLIB.IDM.BADTYPE(type)
An unknown type was specified in a create statement.

E:IDMLIB.IDM.BADWITHOPT(optname)
The specified with option is invalid.

E:IDMLIB.IDM.CANTFIX(func)
The specified function cannot accept a fixed specification.

E:IDMLIB.IDM.CANTUNIQUE(func)

The specified function cannot accept a unique specification.

E:IDMLIB.IDM.CONSTTOOLONG(type, maxlen)
A constant was too long.

E:IDMLIB.IDM.EXEC.PROGID(type)
An illegal start program name was specified.

E:IDMLIB.IDM.EXEC PARAM(cmdname, argnum)
The specified argument to a start command was not a constant.

E:IDMLIB.IDM FIELDSIZE(type)
An illegal size was specified for a domain in a create statement.

E:IDMLIB.IDM.ILLEGPRTCT(mode)
Illegal mode to grant or revoke.

W:IDMLIB.IDM.LONGNODE(type, len)
" Long node was truncated.

W:IDMLIB.IDM.LONGTOKEN(token, maxlen)
A token was too long and was truncated.

E:IDMLIB.IDM MAPC ESCAPE(string)
Illegal pattern-matching string.

E:IDMLIB.IDMMATCHLIST NOMAT T
Two lists failed to match (usually in the insert command)

E:IDMLIB.IDM.NOTABLE(column-name)

There was no table specified for the given column-name.

E:IDMLIB.IDM.NOTFUNC(name)
The specified name was used in a context that would imply that it must be a function or
aggregate name, but it cannot be recognized.

E:IDMLIB.IDM.NOTINT(type)
An integer was expected in the context.

E:IDMLIB.IDM.NUMARGS.TOOMANY(what, function, nargs)
The wrong number of arguments were given to the specified function. The correct
number of arguments is given.

3.10-87/09/28-R3v5mb Britton Lee 2

SQLPARSE (3I) Britton Lee

BUGS

E:IDMLIB.IDM.OBJECT .SYNTAX(type)
Bad syntax for object_name.

E:IDMLIB.IDM.OPT.ILLEGAL(option)

An attempt was made to set an impossible or unknown option.

W:IDMLIB.IDM.OPT.NOTSET(option)
An attempt was made to unset an option that was not set.

W:IDMLIB.IDM.OPT.SET(option)
An attempt was made to set an option that was already set.

E:IDMLIB.IDM.OPT. TOOMANY
Too many options have been set.

E:IDMLIB.IDM.QUAL.AGG
An aggregate was found in a where clause.

E:IDMLIB.IDM.RANGE .BADOPT(optname)
The specified from clause option is not valid.

E:IDMLIB.IDM.RANGE.TOOMANY(nvar, maxvar)
Too many table references were used in a single query.

E:.IDMLIB.IDM.RANGE.ILLEGOPTVAL(optname)
The specified option does not accept a value.

E:IDMLIB.IDM RANGE .NEEDOPTVAL(optname)
The specified option requires a value.

E:IDMLIB.IDM.PERMDENY(cmd)

A required object was missing from a grant or revoke command.

E:IDMLIB.IDM.SET.SYNTAX(lasttoken)
Incorrrect syntax in the set command.

E:IDMLIB.IDM.SYNTAX(lasttoken)

A syntax error was detected during parsing.
E:IDMLIB.IDM.TRACE.SYNTAX(type)

An invalid type was passed as a trace specification.

E:IDMLIB.IDM.WITH(withoption)

An option value for the specified with option was not a constant.

No reasonable recovery from syntax errors is made at this time.

SQLPARSE (31)

Syntax errors should try to give you a pointer into the input line, rather than just a line number,

so that user-friendly error messages can be generated.

SEE ALSO

3.3-86/06/27-R3v5m0 Britton Lee

dba(3I), ieopen(3I), iesubst(3I), iputtree(3I), itfree(3I), itxcmd(3I), ienv(5I), itree(5I)

STREDIT (3I) Britton Lee STREDIT (31)

NAME
stredit — do sophisticated output editing of numeric string

SYNOPSIS
char sstredit(str, exp, neg, pic)
char sstr;
int exp;
BOOL neg;
char =pic;

DESCRIPTION
Stredst edits str under the control of pic. Ezp represents the position of a decimal point in str as
characters rightward from the end of str. If neg is set, str represents the magnitude of a negative
number. For example, a str value of “123” with ezp = —2 represents the number 1.23.

Pic is a series of characters describing the output stream. The values are:
9 Copy a digit from str.

Z Set the fill character to space. Copy a digit from str. Leading zeros are replaced by the fill
character.

Same as ‘Z’ except the fill character is set to ‘»’.
0 Same as ‘Z’ except the fill character is set to ‘0’.

, Replaced by itself unless we are currently suppressing zeros, when it is replaced by the fill
character (space, zero, or asterisk). Also true of ‘.’ and ¢’ (space).

$ If present, represents a floating dollar sign. The dollar sign is moved to be adjacent to the
first non-blank output character.

(The American pound mark/sharp sign and the British currency symbol overlap in the ASCII
character set.) Behaves the same as ‘$’.

— Same as ‘@’ except that it is only output if the neg flag is set. The same is true of ‘(’ and ‘<’.
This can be used in conjunction with ‘§’ or ‘#’.

) Replaced by itself if the neg flag is set; otherwise, replaced by the fill character. The same is
true of ‘D’, ‘B’, ‘C’, ‘R’, and ‘>".

V Matches the decimal point in the input as specified by ezp. Does not produce any output. If
not specified, the end of pic is assumed.

The input is first aligned with a “V’ spec in pic (or the end of pic if no “V’ spec is present). Zeros
are implicitly added to the front of str as necessary to match all replacement characters (‘9’, ‘Z’,

etc.) in ptc.

EXAMPLES
In the following examples, ‘<’ in the output field represents a space.
str ezp neg pic output
123456 0 F ZZ7Z,2ZZ,179.99 xxxxxx1,234.56
123456 0 F sxx axxxx0.909 *xxxxx] 234.56
123456 0 F 999,999,999.V99 000,123,456.00
123456 -2 ¥ Z722,222,229.V99 xxxxxx1,234.56
123456 0 F $ZZ,222,229.99 xoxx$1,234.56
123456 0 F ($2,212,2729.99) waxx$1,234.56x
123456 0 T ($2,222,2729.99) xxxx($1,234.56)
123456 0 F -Z7Z,77172,179.99 xxxxxx1,234.56
123456 0 T -2Z,Z7272,2729.99 xxxxx—1,234.56

3.5-86/11/13-R3v5m0 Britton Lee 1

STRING (3I) Britton Lee STRING (31)

NAME
strcat, strncat, strcmp, strncmp, strepy, strncpy, strmcepy, strlen, strchr, strrchr — string opera-
tions
SYNOPSIS
char sstrcat(dst, src)
char xdst, *src;
char *strncat(dst, src, n)
char *dst, *src;
stremp(sl, s2)
char *sl, *s2;
strncmp(sl, s2, n)
char *sl, *s2;
char *strcpy(dst, src)
char *dst, *src;
char *strncpy(dst, src, n)
char *dst, *src;
char *strmcpy(dst, src, m)
char *dst, *src;
strien(s)
char *s;
char *strchr(s, c)
char s, c;
char *strrchr(s, c)
char *s, c;
DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Streat appends a copy of string srec to the end of string dst. Strncat copies at most n characters.
Both return a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as sl is lexicographically greater than, equal to, or less than s2. Strnemp makes the
same comparison but examines at most n characters.

Strepy copies string sre to dst, stopping after the null character has been moved. Strncpy copies
exactly n characters, truncating or null-padding src; the target may not be null-terminated if the
length of sre is n or more. Strmepy copies a maximum of m characters, including a trailing null
byte. All three return dst.

Strlen returns the number of non-null characters in s.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character ¢ in string s, or
CHARNULL if ¢ does not occur in the string.

WARNINGS
Stremp uses native character comparison, which is signed on PDP11s and VAX-11s, unsigned on
other machines.

All string movement is performed character by character starting at the left. Thus overlapping
moves toward the left will work as expected, but overlapping moves to the right may yield
surprises.

3.5-86/11/13-R3v5m0 Britton Lee 1

STRING (3I) Britton Lee STRING (31)

SEE ALSO
bytetype(3I)

3.6-86/09/28-R3v5m0 Britton Lee 2

SYSEDIT (31) Britton Lee SYSEDIT (31)

NAME
sysedit — call system editor on a file
SYNOPSIS
RETCODE sysedit(name)
char *name;
DESCRIPTION
Sysedit calls the system editor on the named file. The file must be of type IftHFile(4I) and must
be closed. It is normally expected to be a temp file.

Sysedit prepares the file for editing if necessary (e.g, setting locking modes, etc.), and then invokes
an editor on the named file. If the system supports multiple editors, the pathname of the editor
is specified by the EDITOR parameter (see getparam(3I)).

The return value is the exit status of the editor.

EXCEPTIONS
W:IDMLIB.CANTFORK (why)

Cannot create a new process to run the editor.

E:IDMLIB.SYSEDIT(file, problem)
Could not edit the file as noted.

IMPLEMENTATION NOTES
Sysedst should take care of such issues as file locking, file version numbers, etc. An exception

should be raised if the editor cannot be invoked, and RE_CANT should be returned if a more
specific error is not available.

Interrupts should be ignored while the editor is running. Locking them using ezcalock (see

ez¢(31)) is not sufficient, as interrupts will be improperly queued for delivery when ezcaunlock is
called.

On VMS, only DEC-supported editors are supported by IDMLIB as editors that can be called by
sysedit. Any others may cause unexpected side-effects, especially in terminal settings.

On CMS, sysedit raises no exceptions.

SEE ALSO
exc(3I), getparam(3I), sysshell(3I)

3.8-87/02/08-R3v5m0 Britton Lee 1

SYSERR (3I) Britton Lee SYSERR (31)

NAME
syserr — print a fatal system error and abort

SYNOPSIS
syserr(format, arg, ...)
char *format;

DESCRIPTION
Syserr interpolates the args into format in the same format as printf(3I). The maximum number
of args is three integer or pointer arguments. Formatting of double (64 bit) arguments will not
work. They must first be converted into a string buffer and passed as a pointer to char. The
result is printed on the standard error together with any other information about the state of the
process that syserr can divine.

Format should have the syntax:
[t][module/]routine: text
where:

o If present, ! indicates that this is a catastrophic error from which recovery should not be
attempted. If this is not included, syserr can raise “A:IDMLIB.SYSERR” after printing the
message to attempt to back out to a top loop. Otherwise, syserr has no recourse except to
immediately abort the process; no cleanup actions should be attempted. Preferably, a core
dump will be generated.

e Module/ is the name of the module, to be included if the routine name may not be meaning-
ful in itself.

e Routine: is the name of the routine that is generating this error.

o Tezt is the text of the syserr. This is not intended to be “user-friendly”, but is supposed to
give a sophisticated systems maintainer whatever information is necessary to determine the
problem. It should be terse, but complete.

Syserr is only to be used on internal errors. Users should never see any such error if the system
is properly installed.

Syserr should prefix its output with a distinctive indication so that the user will easily understand
that this is an internal system error.

If recovery is attempted, the magic variable _IL#bState should be set to zero after backing out to
indicate to IDMLIB that the syserr recovery has been successful.

EXCEPTIONS
A:IDMLIB.SYSERR(message)
Raised on non-catastrophic errors. Message will have been printed already.

IMPLEMENTATION NOTES _
Extreme care must be taken to avoid using any unnecessary resources in this routine, since syserr
may be called due to resource exhaustion. Also, syserr should not use the buffered primitives,
since they may not be properly initialized. Typically, syserr should sprintf to a local buffer, and
then do a physical write to the standard error file.

If the error is not catastrophic, syserr may invoke a routine to interactively log a Problem Report
before raising the exception.

On VMS, this always signals the VMS condition IDMLIB-F-SYSERR, which is defined in
IDMLIB. It never raises A:IDMLIB.SYSERR. You can catch this signal using the usual VMS
conventions or you can link with IDMOBJ and provide your own syserr() routine. As supplied,
syserr always causes the program calling to exit. In addition, the message generated by syserr
bypasses the IDMLIB I/O system so it can’t be redirected by internal manipulation to IDMLIB.

3.8-87/02/08-R3v5m0 Britton Lee 1

SYSERR (31) ' Britton Lee SYSERR (31)

SEE ALSO
printf(3I)

BUGS
The number of arguments to syserr is limited to three.

3.9-87/05/18-R3v5m3 Britton Lee 2

SYSSHELL (31) Britton Lee SYSSHELL (31)

NAME
sysshell — execute system command

SYNOPSIS
RETCODE sysshell(cmd)
char *cmd;

DESCRIPTION

Sysshell executes the system command emd. If emd is CHARNULL an interactive command
interpreter is created.

The exit status of the command interpreter is returned.

EXCEPTIONS
W:IDMLIB.CANTFORK(why)
Cannot create a new process to run the shell.

E:IDMLIB.SYSSHELL(problem)
The shell could not be executed.

IMPLEMENTATION NOTES
An exception should be raised if the command cannot be executed. An exception should be raised
if aysshell cannot be emulated on the host system, and RE_CANT should be returned if a more
specific error is not available.

Interrupts should be ignored while the subshell is running. Locking them using ezcalock (see

ezc(31)) is not sufficient, as interrupts will be improperly queued for delivery when ezcaunlock is
called.

On VMS, this is implemented using the library routine LIBSSPAWN. Only DCL is currently sup-
ported as a shell since the DEC/Shell has not been tested with IDMLIB. This may change in a
future release of IDMLIB.

On CMS, the emd string must explicitly request CP or EXEC as required, e.g.,

»CP Q N”

"EXEC MYEXEC”

"MYPROGRAM”
Note that all are uppercase names; if a program name is given, it must not be the name of a
CMS user area program.

SEE ALSO
sysedit(3I), system(3)

3.7-87/05/22-R3v5m3 Britton Lee 1

TEMPNAME (31) Britton Lee TEMPNAME (31)

NAME

tempname — create a unique file name
SYNOPSIS

char stempname()
DESCRIPTION

Tempname returns a file name that is unique on the system. The file is not created. The string
is a copy, so it need not be saved before use.

If a file with this name is created, it will not be automatically deleted unless other arrangements
are made, such as setting a file disposition in ifopen(3I).

The file name is dynamically allocated, and must be freed using zfree.

DIAGNOSTICS
This routine is guaranteed to work for at least twenty-six calls. After that, it will raise an excep-
tion.

EXCEPTIONS

A:IDMLIB.TEMPNAME.NOFILES
All temporary files are in use.

IMPLEMENTATION NOTES
On UNIX, the temp file should be in “/tmp”. Other systems should behave analogously if possi-
ble. The implementation is encouraged to allow more than twenty-six calls. -

On VMS, the file name is SYS$SCRATCH:IDMxxxxxx.n, where zzzzzz is the lower six characters
of your process ID in hexadecimal, and n is a decimal number that is incremented once for each
call to tempname(), starting at 0.

On CMS, the file name is vmuserid.IDLUTxy.Al, where z and y belong to the set A-Z, $, #, and
@.

SEE ALSO
ifopen(3I)

3.8-87/03/16-R3v5m0 Britton Lee 1

TF (3I) Britton Lee TF (31)

NAME
tiset, tf, tev, DPRINTF — trace package

SYNOPSIS
#include <idmtrace.h>

tfset(flags)
char *flags;

tf(flag, level)
int flag;
int level;

tflev(flag)
int flag;

DPRINTF (flag, level, (args))
int flag;
int level;
(LIST) args;
DESCRIPTION
Every process has available a vector of 100 trace flags, numbered 0-99. Flags 50-99 are reserved
for use by IDMLIB itself and other Britton-Lee-supplied libraries; flags 0-49 may be used by the

application. Tfset sets the trace flags as described by its argument. The syntax of flags is
approximately as follows:

<flaglist> := <flagclause> [, <flagclause>]«
< flagclause> ::= <flagrange> | <flagname>
<flagrange> = <flagid> — <flagname>
<flagname> = <flagid> [. <flaglevel>]
<flagid> = <integer> | <identifier>
<flaglevel > := <integer> | <identifier>

An individual flag name, e.g., “flag.level” specifies setting the flag to level. A range specification
sets all the named flags to the specified level. A missing level is assumed to be one. The
identifiers are looked up in a special file using mapsym(3I), using a prefix of ‘t’. IDMLIB
identifiers are defined in the include file tdmtrace.h.

The boolean routine tf{) may be used to test if a given flag is at least at a particular level. The
routine #flev() returns the level of a trace flag.

Calls to the trace package should be surrounded by #tifdefs to simplify deletion for small hosts.
Trace information must always be printed using tprintf() (see printf(3I)).

The macro DPRINTF combines calls to tf() and tprintf() if the precomiler flag DEBUG is defined.
DPRINTF expands to

if (tf(flag, level))
tprintf args
Args must be enclosed in parentheses (see example below).
If DEBUG is not defined, DPRINTF is defined as the null string.

EXAMPLE
/* set flag 20 to level 2 */
tfset(”20.2”);
/* test flag 20 for level 1 or greater (TRUE in this example) */
if (¢1(20, 1))
tprintf(...);

3.8-87/03/16-R3v5m0 Britton Lee 1

TF (31) Britton Lee TF (31)

/* test for level 5 or greater (FALSE in this example) %/
if (tf(20, 5))
tprintf(...);
/*
** Print index if flag 32 is level 4 or greater.
** Note that arguments to tprintf() are enclosed in parentheses
** when DPRINTF is invoked.
*/
DPRINTF(32, 4, ("index=%d\n”, index));
SEE ALSO
crackargv(3I), mapsym(3I), printf(3I)

3.7-86/09/29-R3v5m0 Britton Lee 2

TUPPRINT (3I) Britton Lee TUPPRINT (31)

NAME
tupsetup, tupsep, tuphead, tupprint — print tuples

SYNOPSIS
#include <idmtlist.h>
#include <idmenv.h>

tupsetup(itl, env)
ITLIST xitl;

IENYV zenv;
tupsep(itl, where, ifp)
ITLIST =itl;

int where;

IFILE «ifp;
tuphead(itl, ifp)
ITLIST =itl;

IFILE «»ifp;

tupprint(itl, ifp)
ITLIST =itl;
IFILE »ifp;

DESCRIPTION
This family of routines prints tuples as in ¢dI(1I).

Tupsetup sets up the target list for printing. This involves computing the width of fields, etc.,
storing the results in the target list. Defaults are determined from the specified environment
(someday). If envis IENVNULL a default environment will be used.

Tupsep prints a line between parts of the output. Where is —1, 0, or +1 for the line above,
amidst, and at the bottom of the table respectively.

Tuphead prints a line with the titles.
Tupprint prints the data in a tuple.

For example, the following sample table shows which lines are generated by which routine:

| | tupsep(—1)
|name | x| tuphead

| | 1 tupsep(0)
Igreg | 12| tupprint
|dave | 114] tupprint

| | —-I tupsep(0)
[name | x| tuphead

| | ——1 . tupsep(1)

Tupsetup fills in print information in the target list. This can be modified before printing by the
application. The ITL_PRINTABLE bit is set in sti_flags to indicate that this attribute can be
printed; if cleared, the attribute is ignored by all routines. The other fields are:

itl_pwidth The width of the output field.
itl_pprec For floating point or BCD attributes, the number of digits after the decimal
point.
itl_pfmt The output format.
RESTRICTIONS

In all cases, the ifp should be type IftTerm(4I), since special terminal sequences are generated.

3.7-86/09/29-R3v5m0 Britton Lee 1

TUPPRINT (3I) Britton Lee TUPPRINT (31)

SEE ALSO
igettl(3I), igettup(3I), printf(3I)

3.9-87/02/26-R3v5m0 Britton Lee 2

TYPECNVT (31) Britton Lee TYPECNVT (31)

NAME
typecnvt, cktypecnvt — generalized type conversion
SYNOPSIS
int typecnvt(intype, inlen, inval, outtype, outlen, outval)
int intype;

int inlen;
BYTE xinval;
int outtype;
int outlen;
BYTE *outval;

BOOL cktypecnvt(intype, inlen, outtype, outlen)
int intype;

int inlen;

int outtype;

int outlen;

DESCRIPTION

Typecnvt converts the data of type tntype of length snlen pointed to by tnval into the specified
outtype/outlen into the buffer pointed to by outval. Returns the actual length of owtval on suc-
cess, negative on failure. An exception will also be raised on failure.

Cktypecnvt checks to see if the conversion can be performed, returning TRUE if it can and
FALSE if it cannot.

CONVERSIONS
The following types are supported both as input and output types:
iCHAR iIFCHAR iSTRING
iINT1 iINT2 iINT4
iFLT4 iFLTS8 iBCD
iFBCD iBCDFLT iFBCDFLT
iBINARY iFBINARY

All conversions are supported except that iBINARY and IFBINARY can only be converted to or
from one of the string types.

For convenience, if ¢ntype is iSTRING and inlen -1, typeenvt will use the strlen() of inval as the
input length.

Conversion to iBCD and iBCDFLT should be done in the manner of the following example, which
converts a character string named z into a BCD number named b:

BCDNO b;
char x[12];

l;.bcd...len = typecnvt(iCHAR, 12, x, iBCD, 11, _ _ b.bed_str);
b.bed_type = iBCD;

Bed_len, bed_str, and bcd_type are the three fields defined in sdmlib.h for a structure of type
BCDNO. Note that the field bcd_str is an array, and therefore the expression _ _ b.bcd_str in the
above example does not need an ampersand preceding the b.bed_str.

The following example shows how to convert a number stored in a BCDNO structure to some
other type. We use b and z as defined in the previous example.

(void) typecnvt(b.bcd_type, b.bed_len, _ _ b.bed_str, iCHAR, 12, x);

3.9-87/02/26-R3v5m0 Britton Lee 1

TYPECNVT (31) Britton Lee TYPECNVT (31)

~ EXCEPTIONS
E:IDMLIB.CNVT.CANT(intype, outtype)
The type conversion cannot be performed.

W:IDMLIB.CNVT.OVERFLOW(input, limits)
Data has been truncated.

W:IDMLIB.CNVT.GARBAGE(input, type)
Garbage (non-numeric data) was found on the end of the input stream during conversion
to the specified type.

E:IDMLIB.CNVT.BADTYPE(type)
The type was unknown.

BUGS

Input types that have extra blanks or zeros that overflow a non-fixed output type overflow, even
though they would not if the extraneous cruft were stripped.

SEE ALSO
string(3I)

3.3-86/06/27-R3v5m0 Britton Lee 2

UNSIGN (31) Britton Lee UNSIGN (31)

NAME

UNSIGN — remove sign-extension bits from a byte
SYNOPSIS

int UNSIGN(byte)

int byte;
DESCRIPTION

UNSIGN strips the sign-extension bits off of the low-order byte of an int value, leaving eight bits.

UNSIGN must be used for comparisons of bytes which may have the high-order bit set; for exam-
ple:

BYTE cmd;

if (UNSIGN(c¢md) == iRANGE)

UNSIGN is implemented as a macro.

EXAMPLES
UNSIGN(0123) — 0123
UNSIGN(0200) — 0200
UNSIGN(0177600) — 0200

3.4-86/09/28-R3v5m0 Britton Lee 1

USERNAME (31) Britton Lee USERNAME (31)

NAME
username — get user name
SYNOPSIS
char *username()
DESCRIPTION
Username returns a pointer to the current user’s login name.
WARNINGS
This call may be expensive in some environments. It is wise to save the result if needed inside
loops.

The return value points to static data space. However, since each call will return the same value,
this should be irrelevant.

IMPLEMENTATION NOTES
This routine is intended to log names of users in logs and to store dynamically generated user
profiles. As such it should make every attempt to identify the individual. For example, on UNIX
a distinction is made between the logged in user and the executing user (which can be changed
using the su(1) command); the former should be used.

This routine must always return a value; if the user name cannot be determined, then the
numeric userid should be converted to a string and returned.

On VMS, this is implemented with the LIB$ GETJPI(JPI$_ USERNAME) system service.

SEE ALSO
su(1), getlogin(3)

3.3-86/09/28-R3v5m0 Britton Lee 1

UTREE (31) Britton Lee UTREE (31)

NAME

itiutree, ituitree — convert to and from user tree (UTREE) representations
SYNOPSIS

#include <idmtree.h>

BYTE sitiutree(tree, &sise)

ITREE =tree;

int *sise;

ITREE situitree(utree)

BYTE xutree;
DESCRIPTION

UTREE'’s are a representation of an IDM tree structure with pointers removed. This form can be

moved in memory, sent to a different process, written to a file, or otherwise moved and still be
viable. The most common use is to pass compiled trees to a program generated by a precompiler.

Itiutree converts a normal tree such as might be returned by tdlparse(3]) into a position indepen-
dent byte stream, referred to as a UTREE. The UTREE form is dynamically allocated via

zalloc(3I) and should be freed when no longer needed. The length of the UTREE in bytes is
stored into the integer pointed to by size.

Ituitree converts a UTREE into a normal fully linked tree suitable for passing to further routines.
This tree should be freed using stfree(3I) when no longer needed.

EXCEPTIONS
A:IDMLIB.IDM.UTREE .BADVER(tree, me)

A UTREE was passed to ttuitree marked as version tree. Version me is the version that
is understood.

A:IDMLIB.IDM.UTREE.TRASH
The tree that was passed to ftuttree could not be decoded.

SEE ALSO
idlparse(3I), itfree(3I), xalloc(3I), itree(5I)

3.7-86/12/24-R3v5m0 Britton Lee 1

XALLOC (31) Britton Lee XALLOC (31)

NAME

xalloe, zalloc, savestr, xfree, newmpool, mergempool, freempool, showmpool — main memory allo-
cator

SYNOPSIS
#include <idmmpool.h>

BYTE #xalloc(sise, mpool)
int sise;

MPOOL *mpool;

BYTE #salloc(size, mpool)
int size;

MPOOL +mpool;

char *savestr(str, mpool)
char »*str;

MPOOL *mpool;

xfree(ptr)
BYTE sptr;

MPOOL *newmpool(quantum, parentmpool)
int quantum;
MPOOL *parentmpool;

mergempool(oldmp, newmp)
MPOOL #*oldmp;
MPOOL *newmp;

freempool(mpool)
MPOOL *mpool;

showmpool(mpool, flags)
MPOOL +mpool;

int flags;

DESCRIPTION
Memory is arranged into a collection of memory pools. Each pool contains a collection of zero or
more scgments, allocated by one of the allocation routines. Pools are organized into trees: except
for the root, each pool has a unique parent and some number of children. If a memory pool is
freed, all segments in that pool and all child memory pools are freed.

There are two special memory pools: SysMpool is the root memory pool, and DefMpool is the
default memory pool. SysMpool can never be freed or subsumed into another pool. DefMpool is
used if no memory pool is explicitly referenced. Initially, DefMpool is set to SysMpool.

Xalloce returns a pointer to a block of at least size bytes suitably aligned for storage of any type
object out of the specified memory pool. If the memory pool is specified as MPOOLNULL
DefMpool is used. Zalloc promises to return zeroed memory; in other respects it is identical to
zalloc. Savestr allocates enough memory to store the string and copies it.

If size is zero then any pointer may be returned. If possible this pointer should be an illegal
value so that attempts to reference it will be caught and rejected.

If memory cannot be allocated in any of these routines, the function pointed to by the global
variable NoMemFunc will be called. This function must free memory and return non-locally. It
must NOT raise an exception before freeing memory, since the process of raising an exception
consumes memory. If NoMemFunc is not specified or returns the program is irrevocably aborted.

3.7-86/12/24-R3v5m0 Britton Lee 1

XALLOC (31) Britton Lee XALLOC (31)

The argument to zfree is a pointer to a block previously allocated by zalloc, zalloc, or savestr;
this space is made available for further allocation. Grave disorder will result if this pointer does
not point to area that has been allocated — no special validation is performed.

Newmpool allocates a new memory pool. Parentmpool is the memory pool that should “own”
this pool; when a pool is freed, all child pools are also freed. The gquantwm is advice from the
application to the memory allocator about the size of blocks allocated from the system for this
pool. It is not a limit on the maximum allocation size. If gzero, a system default is used. This
represents the nominal size of a new extent to be requested from the system if the existing
memory pool cannot honor an allocation request. Applications that wish to allocate a large
number of small segments may want to set the quantum high to minimize memory fragmentation.

Freempool frees the memory pool, all memory that was allocated out of it, and all child memory
pools. SysMpool can never be freed; any attempt to do so will abort the program.
Mergempool merges oldmp into newmp; that is, all memory owned by oldmp is given to newmp

and oldmp is deleted a la freempool. If oldmp is MPOOLNULL then DefMpool is used; if newmp
is MPOOLNULL then the parent of oldmp is used.

Showmpool prints some information about the memory allocation in the given memory pool.
MPOOLNULL may be used to see the system default pool. This routine is for debugging. If

debugging is not enabled, it will act as a no-op. The flags are a map consisting of the following
bits:
MPS_RECURSE

Show subordinate memory pools as well.

MPS_SUMMARIZE
Print one number instead of a report for every memory pool you look at.
MPS_NDISPLAY
Don’t display any memory pool information (but the total number of segments is
returned).
MPS_DETAIL
Print a detailed summary of memory utilization. This requires that trace flag ILIB-
MEMORY.101 be turned on. This only works on some implementations.

The include file <tdmmpool.h> must be included by all files using any of the memory pool rou-
tines and by any files passing non-default memory pools to any of the other routines.
To safely create a memory pool to be released in the event of an exception backout, use the code:

excalock(); _

if (exchandle(” T:IDMLIB.ASYNC.#", excbackout) != 0) -

freempool(DefMpool);
DefMpool = newmpool(0, MPOOLNULL);
excaunlock(TRUE);

EXCEPTIONS
A:IDMLIB XALLOC SIZE(size)
An illegal size (that is, less than zero) has been specified.

IMPLEMENTATION NOTES
Zalloc is provided as a separate function since some operating systems may have a particularly
efficient way of getting zeroed memory.

UNIX implementations must also provide malloc, realloc, and free so that host programs using
these primitives may coexist with IDMLIB. Similar comments apply to other operating systems.

s

3.7-86/12/24-R3v5m0 Britton Lee 2

XALLOC (31) Britton Lee XALLOC (31)

Where possible, memory pools should be physically clustered to improve paging behavior.

The gquantym is the number of bytes that should be requested from the system if there is no room

in the memory pool to allocate the current request. It must never be interpreted as a maximum
limit.

The implementation of memory pools must include a field named mp_ flist that contains a list of

routines to be invoked when the memory pool is freed. These routines should be invoked using:
—fi_call((FLIST **) &mp—mp_flist);

The FLIST structure is defined in <sdmflist.h>.

Comments in the UNIX version explain more details.

The VMS version is the same as the UNIX version, except that the MPS_DETAIL feature of

showmpool() is not supported. The primitives malloc() and free() have been implemented as calls
to LIBSGET_VM and LIB$FREE_VM.

GLOBALS
DefMpool The default memory pool, used if MPOOLNULL is passed to one of the alloca-
tion routines. .
SysMpool The global memory pool. This pool is never freed. IDMLIB system resources
are allocated from it.
BUGS-UNIX

UNIX ignores the guantym parameter to newmpool; in fact, memory pools are simulated, and
memory can become horribly fragmented.

SEE ALSO
malloc(3)

3.4-86/06/27-R3v5m0 Britton Lee 3

XDUMP (31) Britton Lee XDUMP (31)

NAME
xdump — dump bytes in hexadecimal to standard trace

SYNOPSIS
xdump(p, n)
BYTE =*p;
int n;
DESCRIPTION
Xdump prints n bytes from p on stdirc in hexadecimal. A character representation is also
included.

Duplicate lines of output are suppressed (not printed) to compress the output. When a line is

encountered which is different, printing resumes and a ‘*’ character is output next to the byte
count.

3.4-86/06/27-R3v5m0 Britton Lee 1

INTRODUCTION (41) Britton Lee INTRODUCTION (41)

NAME
IDM file type introduction and implementation

SYNOPSIS
IFTYPE
{
FUNCP _ift_open; /* open file */
FUNCP _ift_close; /* close file »/
FUNCP _ift_read; /* physical read bytes x/
FUNCP _ift_getbuf; /* get a buffer of data =/
FUNCP _ift_write; /* physical write bytes */
FUNCP _ift_putbuf; /# put a buffer of data */
FUNCP _ift_control; /# control file */
char *_ift_name; /* name of type */
char *_ift_params; /* default open params */
b
DESCRIPTION
The IFTYPE structure defines the interface between the buffering system (ifopen, tfgete, ifwrite,
tfcontrol, etc.) and the type-dependent implementation. The routines in this interface are not
intended to be called by application programs. However, it may prove convenient for a sophisti-
cated application to define a special purpose file type.

The interface consists of seven procedures and two strings. The procedures implement file open,
file close, reads of bytes, writes of bytes, and performing of control operations. The strings give a
name of the file type for messages (e.g., “host file” or “IDM channel”) and the set of defaults for
tfopen parameters.

—ift_open(name, params, ifp) opens the named file with the specified params. It may store infor-
mation necessary to access the file into the following fields of ¢fp: _¢f_fd (file descriptor or control
block), —¢f_dbin (database instantiation number), _¢f_Iflags (local flag bits), and _if_z (a pointer
to a local control block used to store any additional information). It should return zero on suc-
cess. On failure it may return —1 to issue a generic ‘“cannot open’ message or may raise a more
specific exception with “Abort” severity. Memory should be allocated from the memory pool
tfp— _if_mpool; this memory is deallocated automatically when the file is closed.

—ift_close(ifp) closes the file indicated by ifp. Any resources allocated in the _¢ft_open module
should be released (memory allocated from ifp—_if_mpool will be deallocated automatically). If
necessary, closing protocol should be sent.

—tft_read(ifp, buf, cnt) reads up to cnt bytes from ifp into buf. It should return the number of
bytes actually read. It may return zero on end of file and —1 on error. This will only be called
if the _dio attribute is set. If the _rbf attribute is set, ent is guaranteed to be the block size.

—ift_getbuf(ifp) gets a buffer’s worth of data and sets ifp—_if_irbase to point to it, returning the
number of bytes available. For streams, the canned routine _sgetbuf can be used, which calls
—tft_read with the appropriate arguments.

_ift_write(ifp, buf, ent) writes ent bytes from bufonto tfp. The actual number of bytes written is
returned, or —1 on error. This will only be called if the _dio attribute is set. If the _rbf attri-
bute is set, ¢nt is guaranteed to be the block size.

—ift_putbuf(ifp, ent) Put the buffer pointed to by #fp—_¢f_orbase containing cnt useful bytes to
the file. This routine may pad out the buffer to up to t{fp—_if_rsize bytes, but ifp—_if_orptr
may not be used. The field ifp—_if_orbase is then reset to point to a clean buffer that must be
at least of size ffp— _{f_rsize, usually ifp—_1f_obbase which points to the base of the buffer area.
A ent of zero indicates a zero-length record; a negative ¢nt must not put any data, but must still
return a pointer to a new buffer. Returns the actual count of bytes written. This routine may

3.10-88/03/01-R3v5m8 Britton Lee 1

INTRODUCTION (41) Britton Lee INTRODUCTION (41)

manipulate the fields ffp—_¢f_obent and tfp—_if_obptr to implement blocked files; on the first
call (with ent < 0) these will be zero.

—tft_control(ifp, params, args) performs the control operation(s) specified by the params field on
ifp. The args field may point to additional arguments as needed by the control operation. The
return value is passed back to the user, normally zero for success, negative for failure.

These routine should be bundled together into one module, and a new file type declared. For
example:

extern int myopen(), myclose(), mycontrol();
extern int myread(), mywrite(), _igetbuf(), —iputbuf();
IFTYPE IftMyFile =
{
myopen, myclose,
myread, _igetbuf,
mywrite, _iputbuf,
mycontrol, "My File”, bs(512)”
b
The routines in the interface can be declared STATIC; only the declaration of IftMyFile need be
extern.

All control operations on the file should be implemented as an ifcontrol call rather than through
ad hoc routines or global variables. This ensures maximum consistency, flexibility, and portabil-
ity.

CONTROLS
The following controls should be implemented on all files where they make sense. The individual
pages document all the controls that apply to that type — if the description is “standard” then

they behave as described below. See also tfcontrol(3I). Controls beginning with underscore
should never be issued by an application program.

cancel Stop 1/0 on the file. _

—delete Remove the file indicated by ¢fp—_tf_name. The file is guaranteed to be closed.
This control is issued from sfclose(3]) if the file disposition is delete.

flushblock Flush any blocked I/O that may be stored. This should be ignored on any file
type that does not support blocked I/O (that is, more than one record per
block).

—ioerr Try to recover from an I/O error. If it returns a generic message will be raised.

Files that can generate more specific messages or which can recover in some way
may back out using another message. This is generated from the routine

—toerr.
reset Reset the file to the beginning.
rewrite Reset and truncate the file to zero length. The file must be enabled for writing

for this to succeed. Writing will begin at the beginning of the file.

Control operations that are not understood should be ignored by the file type. However, some
file types may want to catch operations that they cannot implement and flag them as errors if
their failure would cause confusion.

Several flag bits can be set using tfcontrol(3I) to control the presentation of data to the type
module. In general these should never be used by an application, since the correct functioning of
the type module may depend on their setting.

3.10-88/03/01-R3v5m8 Britton Lee 2

INTRODUCTION (41) Britton Lee INTRODUCTION (41)

—dio (Direct 1/0) When set, the I/O subsystem will attempt to use _¢ft_read and
_ift_write under some conditions. When clear, all /O will be performed using
~tft_getbuf and _ift_putbuf.

linebuffer (Buffer output one line at a time) When set, A call to _ift_putbuf will be made
every time ifputc is called with a ‘newline’ argument. Systems that store text
files as variable length records or that must convert newlines to carriage-

return/line-feed combinations can set this mode to help simplify the file type
module.

nameopt(O) (Can be used only in _ift_params.) If O is r, a non-null name is required on the
tfopen(3I) call. If O is n, no name is allowed. If O is o or nameopt is not
specified, a file name is optional.

_rbf (Record Based File) When set, all calls to _ift_read and _ift_write will have a
count equal to the block size. This flag should only be asserted from inside the
file type module; use by a user program can cause unexpected results.

EXCEPTIONS
Exceptions should normally be labelled

application.JO.type.cause

where application is the name of the application or library that defines this type, type is the name
(or a permutation of the name) of this file type, and cause uniquely identifies the exception.

Exceptions common to all files are:

A:IDMLIB.IO.IOERR(filetype, filename, reason)
An 1/0O error occured on the specified file.

A:IDMLIB.IO.ROWOF(filetype, filename)
An attempt was made to read a write-only file.

A:IDMLIB.IO.WOROF(filetype, filename)
An attempt was made to write a read-only file.

RECORD-BASED VS. STREAM-BASED
Files can be physically record-based or stream-based. Stream-based files may have physical I/O
performed on them of any length at arbitrary offsets; when read, any boundaries from the write
that produced the data will not appear. UNIX files, strings, and the database server all fit this
model. Record-based files have distinct record boundaries created by a write, and reads must
pair one-to-one with writes.

SUPPORT ROUTINES
The following routines are provided for use by the file type modules:
—ioerr(ifp)
Signal an I/O error on ifp. This saves the error code in ifp—_if_error and calls

tfeontrol(ifp, " _ioerr”, BYTENULL) to attempt error recovery. If this ¢feontrol call
returns, then _foerr will raise A:IDMLIB.IO.IOERR.

—ifsetbuf(ifp, bs, rs)

Creates the appropriate buffers on ¢fp of size s with the record size set to rs. The order
for selecting the size is: (1) the size specified by the user, (stored by sfopen(3I) in the
—tf_basize and _tf_rsize fields), (2) the bs and rs parameters, assuming they are positive,
(3) the default for this file type, determined by the _ift_params field, and (4) a system
default, determined by the IOBSIZE system parameter for bs or the copied from the bs to
the rs specification. This call should only be used in the open routine, and must be called
before attempting any I/O on ifp.

3.10-88/03/01-R3v5m8 Britton Lee 3

INTRODUCTION (4I) Britton Lee INTRODUCTION (41)

EXAMPLES
Examples of getbuf and putbuf routines are included here for a mythical type ‘“xx” file.

Unblocked getbuf
xxgetbuf(ifp)
register IFILE #*ifp;

ifp—_if _irbase = ifp—_if _ibbase;
return (xxread(ifp, ifp—_if _ibbase, ifp— _if _bsize));
}

Unblocked putbuf
xxputbuf(ifp, cnt)
register IFILE »ifp;

{
ifp—_if_orbase = ifp—_if_obbase;
if (cnt < 0)
return (0);
return (xxwrite(ifp, ifp— _if _orbase, ent));
}
Blocked getbuf
xxgetbuf(ifp)
register IFILE #ifp;
{ .
if (ifp—_if_ibent < 0)
int i;
i = xxread(ifp, ifp— _if _ibbase, ifp— _if _bsize);
if (i <0)
return (i);
ifp—_if _ibent = i;
ifp—_if_ibptr = ifp—_if _ibbase;
}
ifp—_if _irbase = ifp—_if _ibptr;
ifp—_if_ibptr += ifp—_if _rsize;
ifp—_if _ibent —= ifp—_if _rsize;
if (ifp—_if_ibent < ifp— _if _rsize)
ifp—_if _ibent = 0;
return (ifp—_if _rsize);
}

Blocked putbuf
This example assumes that only fixed-length records are being delivered from the upper level,
which is not a good assumption.

xxputbuf(ifp, cnt)
IFILE *ifp;
int cnt;

int i;

if (ent > 0)

3.10-88/03/01-R3v5m8 ; Britton Lee 4

INTRODUCTION (41) Britton Lee INTRODUCTION (41)

ifp—_if _orbase += cnt;
ifp—_if_obent —= cnt;

if (ifp—_if_obent < ifp—_if _rsize)

i = ifp—_if _orbase - ifp—_if _obbase;
if (i > 0)

xxwrite(ifp, ifp—_if _obbase,);
ifp—_if _orbase = ifp—_if _obbase;
ifp—_if_obptr = ifp—_if _obbase;
ifp—_if _obent = ifp—_if _bsize;

return (cnt);

SEE ALSO
ifclose(3I), ifcontrol(3I), ifopen(3I), pextract(3I)

3.12-86/10/16-R3v5m0 Britton Lee 5

IFTHFILE (41)

NAME

Britton Lee IFTHFILE (41)

IftHFile — host file file type

SYNOPSIS

extern IFTYPE IftHFile;
ifp = ifopen(filename, &IftHFile, params, IFNULL);

DESCRIPTION

This file type implements an interface to host operating system files. The filename is the name of
the file on the host, in the host syntax.

PARAMS

Params marked with { are also legal controls. Descriptions reading “standard’ are documented
in ¢fopen(3I). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B)
bs(N)

cms(X)

disp(D)t
global
linebuffer(B)t*
mode(M)
padchar(B)t#
pred(P)

rbp(B)+
rs(N)

temp
trace(B)t

type(T)

vms(X)
CONTROLS

Standard.

Buffer size. Default depends on the host operating system. In a record-based
file system, this parameter may define the maximum record or buffer size as con-
venient; larger records may be truncated on reads and disallowed on writes.
Note that in some cases, such as magnetic tape, buffer size and block size are the
same.

X is passed directly to CMS for further interpretation. Ignored by other sys-
tems.

Standard.
Standard.
Standard.
Standard. Mode(u) is not required to work except on temp files.
Standard.

If the file predisposition P is new then the file must not already exist; if old
then the file must already exist. Otherwise the file must exist in read mode, and
is created if necessary in the other modes.

Standard.
Standard.

This is to be used as a temporary file. It may have more restrictive permissions,
and it should be removed if the process exits.

Standard.

Detailed type information: currently text or binary. Where possible, this infor-
mation is defaulted from the operating system. Type(text) may imply line
buffering.

X is specific to VMS. 1t is ignored by other systems.

Controls described as “standard” are documented in sfcontrol(3I) and sntro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the

file type only.

cancel

3.12-86/10/16-R3v5m0

Standard.

Britton Lee 1

IFTHFILE (41) Britton Lee IFTHFILE (41)

clrerr Standard.
—deletes Remove the underlying file. This call should only be issued from ifelose(3I) if
the disposition is delete. The file will have been closed already.

flushblock Standard.

getbs Standard.

getflags Standard.

getrs Standard.

reset Standard. Should raise an exception if a reset is not possible on the file.

rewrite Standard. Should raise an exception if a rewrite is not possible on the file.
EXCEPTIONS

A:IDMLIB.IO HFILE.DELETE(filename, reason)
If the file cannot be deleted.

RESTRICTIONS
Update mode is only required to work in the following limited manner: a file opened for update
may be written, reset, and read; writing may continue at end of file or after truncation. This is
only required to work with disk files with the temp attribute.

IMPLEMENTATION NOTES o
This file type is used for all types of host files, including disk files, unit record files (e.g., line
printers), and terminals (however, see IftTerm(4I)). The implementation should be prepared to
do any extra multiplexing necessary. In general, it is not a requirement that tape drives be sup-
ported; tapes should be accessed using the IftLTape module. The type parameter can be used if
necessary to determine the detailed host file type. Where possible, the implementation should be
flexible in the interpretation of this parameter, and it must never be required.

On CMS, this file type can be used for all types of host files including tapes and terminals. In
both cases, the user opens the desired type, which then internally accesses IftHFile.

This module must ensure that special mappings are performed as necessary, e.g., mapping newline
to carriage-return/line-feed on output to a text file if required.

On VMS, ANSI labeled tape is already supported by the operating system. IftLTape is defined to
be IftHFile.

SEE ALSO
exc(3I), ifopen(3I), iftmtext(4I), iftterm(4I)

3.18-88/03/01-R3v5m8 Britton Lee 2

IFTIDM (41)

NAME

Britton Lee IFTIDM (41)

Iftldm — IDM channel file type

SYNOPSIS

extern IFTYPE Iftldm, IftReopen;
ifp = ifopen(dbname, &Iftldm, params, IFNULL);
rifp = ifopen(NULL, &IftReopen, ", ifp);

DESCRIPTION

Iftldm is the type descriptor for a raw connection to the database server. The dbname is used as
the database name. If it is NULL, no database is opened.

IftReopen is used to get a reopened connection to the database server (see the System
Programmer’s Manual . The name parameter is unused, but the ifp of an existing connection of
type Iftldm must be passed as the baseifp parameter.

The name of the device used to create the connection is divined from the IDMDEV system
parameter. The syntax is similar to file specifications described in sfserack(3I): “device%%driver”
specifies the device using driver. Drivers vary from system to system; common values are multi
for the normal multiuser driver, stand for the standalone serial driver, and xns for the XNS eth-
ernet driver. On UNIX the “/dev/” part of a device name may be omitted. For example, an
IDMDEV set to idm%multi specifies the multiuser driver and device /dev/idm. If no driver is
specified, the IDMDRIVER parameter is interpreted as an ¢nteger index into the driver table.
This use is discouraged.

PARAMS

Params marked with { are also legal controls. Descriptions reading ‘“‘standard” are documented
in ifopen(3I). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard. Defaults off.

bs(N)= Underlying block size. This is set to 2048 by default.

device(D) Overrides the IDMDEV parameter.

disp(D)T Ignored.

global Standard.

lifeline Used only on XNS connections. If set, this socket may be the “lifeline socket”
— otherwise, opening the lifeline socket is illegal.

linebuffer(B)t* Meaningless.

mode(M) Only u mode accepted (default). Reads and writes may be intermixed without
intervening reset calls; however, the output should always be sfflush(3I)’ed
before a read is attempted.

padchar(B)t* Ignored.

rbp(B)t* llegal.

rs(N) Standard.

trace(B)t Standard. Defaults on.

CONTROLS

3.18-88/03/01-R3v5m8

Controls described as “standard” are documented in tfcontrol(3I) and ¢ntro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

Britton Lee 1

IFTIDM (41) Britton Lee IFTIDM (4I)

cancel Cancel the current query. Sends a CANCEL command to the database server.
clrerr Standard.

flushblock Standard.

getbs Standard.

getdbin Put the “dbin” into the short pointed to by args.

getflags Standard.

getrs Standard. Identical to getbs.

_loerr* Used internally to signal an I/O error.

lifeline Return TRUE into the BOOL variable pointed to by args if this is the lifeline

socket; FALSE otherwise.
opendb(DB) Open the named database.

setdbin Set the “dbin” to the short pointed to by args.
reset* Undefined.
rewrites Undefined.

IMPLEMENTATION NOTES
A machine-independent implementation of most of this module is provided. Physical interface to
the host operating system is via the following dispatch table, defined in <sidmdriver.h>:

struct idmdriver

{
BYTE #(xid_open)(); /* open a connection */

FUNCP id_huid; /* send user id (XINS only) %/
FUNCP id_close; /* close a connection */

FUNCP id_read; /* read bytes/packets »/

FUNCP id_write; /* write bytes/packets */

FUNCP id_cancel; /* send a cancel (non-XNS only) =/
FUNCP id_ioerr; /* recover from I/O error »/

b
There are two styles of system interface supported. The first is used for the serial or parallel
IDM-HOST interface. The second is the XNS interface.

Serial/Parallel Interface
It is expected that these will map to one system or supervisor call if a multiuser driver is avail-
able. If not, these are expected to implement the single user (READWAIT/WRITEWAIT) proto-
col.

id_open(device, ifp)
Open the named device and set all appropriate modes (e.g., baud rate on serial lines).
Return the file descriptor for the channel. The specified {fp may be used if other parame-
ters must be set.
id_huid
Unused. This should always be specified as FUNCNULL for serial or parallel interfaces.
id _close(fd)

Close the IDM connection.

id_read(fd, dbin, buf, count)
Read count bytes from the given fd and dbtn into buf. Return the number of bytes actu-
ally read as returned by the database server (including the EOR bit, which should be the

3.18-88/03/01-R3v5m8 Britton Lee 2

IFTIDM (41) Britton Lee IFTIDM (41)

0x8000 bit).

id_write(fd, dbin, buf, count)
Write count bytes from buf to the database server indicated by fd and dbin. Return the
actual number of bytes written.

id_cancel(fd, dbin, what)
Send a CANCEL or a CANCELP on the given fd/dbin. What is either CANCEL or
CANCELP (defined in <idmchan.h>) to send the corresponding command.

id _ioerr(ifp) :
Handle an I/O error. In some cases this may require reading error tokens from the chan-
nel. In this case the processing should back out by raising an abort exception. On
UNIX, the canned routine _tdmsoerr can be used for vanilla drivers. This depends on
the driver setting the errno variable to one of the distinguished values listed in
tdmcherr.h.

XNS Interface
These calls are specific to XINS network implementations.

id_open(hostname, ifp)
Open a connection to the specified hostname. Otherwise identical to the Serial/Parallel
interface. This routine will probably want to call

_ifsetbuf(ifp, 0, MAXPACK);

where MAXPACK is the maximum packet size to be sent over the connection. Larger
packets will still be accepted.

id _huid(fd) ‘
Send an HUID packet on the specified fd for identification purposes.

id _close(fd)
Identical to the Serial/Parallel interface.

id_read(fd, buf, ent, ptype)
Read a single XINS SPP (Sequential Packet Protocol) packet from the socket indicated by
fd into buf, which is of maximum size ent. Return the actual number of data bytes read
(excluding SPP header bytes) as the value, and the one byte Datastream Type into the
byte indicated by ptype.

id _write(fd, buf, cnt, type)
Write a single XINS SPP packet of specified type to the connection indicated by fd. The
data part, if any, is specified by buf and ent. If buf is BYTENULL no data is to be sent
with this packet (i.e., the type completely specifies the content of the packet). If type is
ATTENPACK (defined in <sdmzns.h>) this packet must be sent “out of band” — that
is, with the ATTENTION bit set in the Connection Control field of the SPP header.

id _cancel
MUST be FUNCNULL for XNS based drivers.

id _ioerr(ifp)
Same as specified in the Serial/Parallel interface.

Out-of-band data (that is, data with the ATTENTION bit set in the SPP Connection Control
field) must be caught, normally by the fd_open module. This must set two global variables:
_Attention to TRUE to indicate that an attention packet has been received, and _AttnFd to the
file descriptor of the file blessed with the out-of-band data. _AtinFd is not examined unless
_Attention is set, so a possible implementation might set _AttnFd on every call to td_write, set-
ting _Attention only when out-of-band data is actually received.

3.18-88/03/01-R3v5m8 Britton Lee 3

IFTIDM (41) Britton Lee IFTIDM (4I)

WARNINGS

Sending an “open database” command will not cause the ‘“dbin” to be set automatically from the
associated done packet. Use the setdbin ifcontrol call to set the “dbin” in this case, or open the
database using the opendb call.

EXCEPTIONS
A:IDMLIB.IO.IDM.NODEVICE(devicename, why)
The database server device cannot be accessed.
R:IDMLIB.IDM.GETHUNPW(database)
Raised if the specified database is inaccessible on an opendb tfcontrol or on an initial
open. If the system parameter GETHUNPW is set to ‘1’ (see params(5I)), the default
handler gethunpw(3I) will try to divine a user name and password (by asking the user if
necessary) and return so that the open can be retried.
A:IDMLIB.I0.IDM.NODRIVER(options)
You have specified an unknown driver specifier in your IDMDRIVER parameter. Options
gives the list of legal driver names.
A:IDMLIB.IO.IDM.TIMEOUT(device)
When you tried to read results from the database server you found that they had been
cancelled because of an excessive delay.
SEE ALSO .
gethunpw(3I), getparam(3I), ifcontrol(3I), ifopen(3I), igetdone(3I), igettl(3I), igettup(3I),
params(5I), System Programmer’s Manual .

3.9-87/12/04-R3v5m7 Britton Lee 4

IFTIFILE (4I) Britton Lee IFTIFILE (41)

NAME
IftIFile — IDM file file type

SYNOPSIS
extern IFTYPE IftIFile;
ifp = ifopen(filename, &IftIFile, params, idmifp);

DESCRIPTION
This file type interfaces with an IDM file. The filename names a file in the current database for
the database server connection opened by the file tdmifp, which must be of type Iftldm.

PARAMS
Params marked with t are also legal controls. Descriptions reading ‘“‘standard’ are documented
in tfopen(3I). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

bs(N) Standard.
disp(D)t Standard.
global Standard.
linebuffer(B)t Standard.
mode(M) Standard. Mode(a) is simulated at open time, so multiple writers may trash

each other. On a mode(u) file, writes may follow reads with an intervening
seek, reset, or rewrite call; reads may follow writes with any of the above calls
or an ifflush(3I) call intervening.

padchar(B)t* Unused.

rbp(B)t Standard.

rs(N) Standard.

trace(B)t Standard.
CONTROLS

Controls described as “standard” are documented in sfcontrol(3I) and sntro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancel Standard.

clrerr Standard.

—deletex Delete the file. Invoked internally from ifelose(3I) if the disposition is delete.

flushblock Standard.

getbs Standard.

getflags Standard.

getfn Put the ‘“file number” into the int pointed to by args. Used for the commands
tdmread(11) and {tdmwrite(1I) to IDM tape.

getrs Standard.

reset Standard. Equivalent to seek(0).

rewrite Standard. Reset file and truncate to zero length.

3.9-87/12/04-R3v5m7 Britton Lee 1

IFTIFILE (41) Britton Lee IFTIFILE (41)

seek(N) Seek to byte N in the file.

weof Write an end-of-file at the current location in the file. The file must be writable.
This truncates the file to the current offset, discarding any following data.

EXCEPTIONS

A:IDMLIB.IO . NOMODE(filetype, filename)
No mode parameter was passed to the open.

A:IDMLIB.IO . BADMODAE(filetype, filename, mode)
An illegal mode was requested.

A:IDMLIB.IO.NOBASE(filetype, filename)
A base ifp was not supplied as required.
SEE ALSO
ifopen(3I), iftidm(4I), System Programmer’s Manual .

BUGS

Mode(a) does not guarantee to write at the end of the file if other users are also writing to the
same file.

3.9-86/09/28-R3v5m0 Britton Lee 2

IFTKEYED (41) Britton Lee IFTKEYED (41)

NAME
IftKeyed — keyed host file type

SYNOPSIS
extern IFTYPE IftKeyed;

ifp = ifopen(filename, &IftKeyed, params, IFNULL);

DESCRIPTION
IftKeyed provides access to keyed host files. This is intended primarily for use by IftMtezt(4]),
and not for database applications.

The ¢fopen call returns a handle on the keyed file. The file may be opened for read-only or
write-only. After being opened, a key may be specified using the setkey operation to tfcontrol. If
the file is read-only the key must exist. If the file is write-only the key must not already exist;
the key is created when set. Ifcontrol returns zero on success, negative on failure.

After setting a key in read mode, ifgetc will return bytes of the value associated with the key.
End-of-file is returned when the key is exhausted.

In write mode, writes to the file are stored as the value of the key set by setkey.

PARAMS
Params marked with } are also legal controls. Descriptions reading ‘“standard” are documented
in ifopen(3I). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

disp(D)t* Undefined.

global Standard.

linebuffer(B)t* Undefined.

mode(M) Standard. Mode u is not supported.
padchar(B)t* Unused.

rbp(B)t=* Undefined.

rs(N) Standard.

tablesize(SZ) Set the length of the hash-table to be SZ entries. This parameter is ignored
unless the file is being newly created. Hash implementations only.

trace(B)t Standard.

CONTROLS
Controls described as “standard” are documented in ¢fcontrol(3I) and tntro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only. '

cancel* Undefined.
clrerr Standard.
flushblock Standard.
getbs Standard.
getflags Standard.
getrs Standard.
reset* Undefined.

3.9-86/09/28-R3v5m0 Britton Lee 1

IFTKEYED (41) Britton Lee IFTKEYED (41)

rewrites Undefined.
setkey Set the key to the arg field of ifcontrol.
EXCEPTIONS

A:IDMLIB.IO.KEYED .BADFILE(filename)
The file opened is not in hashed-index format. Only files created with the IftKeyed
module may be accessed as hashed-index files.

E:IDMLIB.IO. KEYED .DUPKEY(key, filename)
The file is opened for write operations, and the key passed to sfcontrol has a duplicate
already in the file. Duplicate keys are not allowed.

L.IDMLIB.IO KEYED.NOTFOUND(key, filename)
The file is opened for read operations. The key passed to ifcontrol was not found in the
file. This is not necessarily an error condition.

E:IDMLIB.IO KEYED.NOKEY
Ifeontrol has been called to perform a setkey operation, but no key was passed in the arg
parameter.

IMPLEMENTATION NOTES
On UNIX, this module is heavily dependent on lseek(2), and is therefore considered to be machine
dependent. A reliable lscek (or equivalent) is critical.

On VMS, this is implemented using the VMS Librarian facility. The keyed file is a VMS text
library accessed by keys using the Librarian (LBR) routines.

SEE ALSO
ifthfile(4I), iftmtext(4I), ifopen(3I), ifcontrol(3I), lseek(2)

3.7-86/09/28-R3v5m0 Britton Lee 2

IFTLOTERM (41)

NAME

Britton Lee IFTLOTERM (41)

IftLoTerm — physical terminal file type

SYNOPSIS

#include <iftterm.h>
(Opened only on IDMLIB initialization; see below for details.)

DESCRIPTION

IftLoTerm is the machine-dependent terminal module. It is used as an underlying file type for
IftTerm(4]). The standard files stdout, stdin, stderr, and stdtrc are all opened as type IftTerm
with the underlying file of type IftLoTerm.

PARAMS

Params marked with 1 are also legal controls. Descriptions reading ‘“standard” are documented
in ifopen(31). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only. Note that this file is only opened during initiali-
zation, so these parameters are really moot.

autoclose(B)
bs(N)
disp(D)t

T*

global
linebuffer(B)1*
mode(M)
padchar(B)t*
rbp(B)1*
rs(N)
trace(B)t

CONTROLS

Standard.
Standard.
Ignored.

Where T is one of the following characters:
E standard error
I standard input
O standard output
T standard trace

Standard.

Standard.

Standard. Will always be either r or w as compatible with the f parameter.
Unused.

Standard. (Should never be set.)

Standard.

Standard. It is a grave error to set trace mode on the file stdirc, since tracing
occurs on stdtrc.

Controls described as “standard” are documented in ifcontrol(3I) and ¢ntro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the

file type only.

cancel

clrerr

cmode(B)

3.12-87/12/18-R3v5m7

Standard. Can be used to insure that any (potentially) buffered output will not
actually appear on the screen, for example, on an interrupt.

Standard.

On stdin, cmode(1) turns off all buffering of the input, making each character
available to the program as it is entered. Also, echoing is turned off, and it is
the program’s responsibility to echo characters entered on the keyboard. On
output terminal files, emode(1) initiaiizes the terminal for executing cursor
motion commands. This may be a no-op on some systems. Cmode processing is
used for screen-oriented applications, and the cmode controls prepare the termi-
nal for such processing. Cmode(0) restores the terminal file to its original con-
dition.

Britton Lee 1

IFTLOTERM (41) Britton Lee IFTLOTERM (4I)

flushblock Standard. Should be used if you really truly want data to actually kid-me-not
get onto the user’s screen.

getbs Standard.

getflags Standard.

getrs Standard.

reset® Meaningless.

rewrite* Meaningless.

NONSTANDARD INTERFACES
This module must include several routines that lie outside the normal Ift protocols. These pro-
vide information to IftTerm(4I) about the nature of the physical terminal. The routines are:

—gettermdesc(termtype)
Here, termtype is a pointer to a character string specifying the name of the terminal.
—gettermdesc returns a pointer to a TERMDESC structure, or TDNULL if the terminal
description could not be found.

—isterm(ifp)
Returns TRUE if the ifp refers to a physical terminal.
—termtype()
Returns a pointer to a character string specifying the name of the user’s terminal.

—gettermdesc(_termtype()) should return a TERMDESC pointer for the user’s terminal,
if such a description exists.

IMPLEMENTATION NOTES
This module is machine-dependent. The T parameter is guaranteed to be the first parameter in
the params list. The module is opened exactly four times. The first time it is opened with T
equal to E (standard error), the second time with T equal to O (standard output), the third time
with T equal to I (standard input), and the fourth time with T equal to T (standard trace). This
order is guaranteed.

The open module should do any necessary initialization including setting the name of the file that
will be used for printing, e.g.,

ifcontrol(ifp, "name(SYS$INPUT)”, BYTENULL);

Two versions of this module may be necessary to implement the scheme for being compatable
with the standard C library. For more information see istdio(3I).

In emode processing, the host must insure that no special processing is done on output or input.
Systems that ‘add’ carriage control to output strings must be discouraged from this practice.

On Berkeley UNIX systems, the SIGTSTP (i.e., the "Z signal) is caught and an exception,
“T.IDMLIB.JOB.SUSPEND” is raised. This exception is “invisible’” — the default handler
returns without printing any messages. When the process is continued after the stop, IftLoTerm
raises the “T:IDMLIB.JOB.CONTINUE” exception, again transparently. These exceptions can be
handled by forms-oriented applications that need to refresh screens.

SEE ALSO .
exc(3I), iftterm(4I), ifthfile(4I), maketerm(8I)

(3]

3.12-87/12/18-R3v5m7 Britton Lee

IFTLTAPE (41) Britton Lee IFTLTAPE (41)

NAME
IftLTape — ANSI labeled tape file type

SYNOPSIS
extern IFTYPE HtLTape;

ifp = ifopen(filename, &IftLTape, params, [IFNULL);

WARNING
System V Release 2.0 (running on 3B series) does not provide access to basic tape operations.
Therefore support of ANSI labeled tape is unavailable at this time.

The hfile file spec (see fthfile(4])) may be used as an alternative.

For example, to dump the transaction log from mydb to /dev/rmt/Om with a block size of 1024
the following command would be used:
idmdump -t/dev/rmt/0m%hfile bs\(1024\) mydb system °

HARDWARE WARNING
On some tape controllers, record sizes that fall below some number of bytes (40 or so) will con-
fuse the controller and cause unpredictable results. It is recommended that the user avoid writing
extremely small records.

DESCRIPTION
This file type implements ANSI labeled tape, as specified by ANSI X3.27-1978. A level two imple-
mentation, including multivolume files and multifile volumes is guaranteed on most systems;
higher level implementations may be supported on some systems.

Systems on which multivolume tapes are nonsensical (in particular, personal computers) may
redefine this module to implement multivolume diskette files instead of ANSI tape. Multivolume
files must be supported across all implementations however, and whereéver possible arguments
must maintain these semantics.

Tape mount requests are handled by communicating with the system operator using the
operator(3]) primitives.

Files may be accessed by file number, file name, generation, and/or generation-version. If file
number is specified, that file must match the other parameters. If file number is not specified, the
first file encountered on the tape matching the name, generation, and generation-version is
selected. Unspecified values of name, generation, and generation-version match anything. In read
mode, unnamed files on the tape match anything: use fileno to correctly select the file. If none of
file number, name, generation, or generation-version are specified, the first file on the tape is
accessed.

The protection on all volumes and files must be blank. Files being written must be expired.

PARAMS
Params marked with t are also legal controls. Descriptions reading “standard” are documented
in ¢fopen(3I). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard. Defaults on.

bs(N) The block size. When a file is read, the block size is read off the tape. The
default is 2048. Block sizes larger than 2048 exceed ANSI Standards X3.22-1978
and X3.39-1973 and hence may be incompatible with other operating systems.

density(N) The tape density. Some systems may be able to determine the density of a tape
automatically, ignoring this parameter. N may be 800, 1600, or 6250. The
default depends on the system, normally 1600.

3.12-87/12/18-R3v5m7 Britton Lee 1

IFTLTAPE (41)

disp(D)te
expiration(N)
fileno(N)

fileset(FS)

format(F)

gen(N)

global
gver(N)

length(L)

linebuffer(B)t
mode(M)

padchar(B)t#*

rbp(B)t
rs(N)
trace(B)t
unit(N)
volume(VL)

CONTROLS

Britton Lee IFTLTAPE (41)

Ignored. Files are only deleted by being overwritten.
The expiration period in days. Ignored in read mode.

The file number desired. If both filename and fileno are supplied, they must
match. If only one is supplied, the other is not checked. At least one must be
supplied.

The name of the fileset. If not supplied, any fileset is accepted in read mode. In
write mode, any fileset will be accepted if we are appending to the tape.

The format of this file. Supported formats are ‘F’ for fixed length records and
‘D’ for variable length records. UNIX also supports ‘U’ for undefined; this for-
mat roughly resembles a stream.

The generation number of this file. This may be viewed as an extension to the
file name.

Standard.

The generation-version number. This may be viewed as an extension to the file
name and generation number.

The tape length in feet. This is ignored if it can be determined in any other
way. 2400 feet default.

Standard.

‘r’ or ‘w’ for read or write mode. Writing a file destroys all files following on
the volume set. If filename does not exist on the volume set, the file is appended
at the end of the volome. ‘a’ appends to a volume set; fileno may not be
specified. ‘u’ is not supported.

Standard. Used to pad fixed-length (‘F’ format) records out to full length.
Defaults to ¢*’.

Standard.
Standard.
Standard.
Do I/O on unit N. Unit zero is the default.

A comma-separated list of the names of the volumes comprising this volume set.
If not supplied, any volume names are accepted.

Controls described as ‘“standard” are documented in ifcontrol(3I) and intro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the

file type only.
cancel*

clrerr
flushblock
getbs

getflags

getrs
newfile(FN)

3.12-87/12/18-R3v5m7

Undefined.
Standard.
Standard.
Standard.
Standard.
Standard.

Terminate the current file being written, and start a new file named FN.
Parameters gen, gver, offset, expiration, format, bs, rs, and fileset may also
be specified, having the same semantics as on the open. This call may only be

Britton Lee 2

IFTLTAPE (41) Britton Lee IFTLTAPE (41)

used in ‘W’ or ‘a’ mode. The application must insure that the file is uniquely
identified on the tape. This need not be supported on all implementations.

reset* Gives an error on some systems because of the difficulty of resetting to the
beginning of a multi-volume file.
rewrites Same as reset.
EXCEPTIONS

A:IDMLIB.IO.LTAPE.ABORT(filename)
The operator aborted the job, typically because the requested tape was not available.

E:IDMLIB.IO.LTAPE .DENSITY/(density)
An impossible tape density was requested.

A:IDMLIB.IO.LTAPE BADMODE(filename, mode)
An impossible I/O mode was requested.

W:IDMLIB.IO.LTAPE.NOOPERATOR
No operator is available; if the job requires operator assistance it will be aborted.

A:IDMLIB.IO.LTAPE.NOTEXPIRED
An attempt was made to write a file that was not expired.

A:IDMLIB.IO.LTAPE PERM(protection)
You do not have permission to access this tape.

A:IDMLIB.IO.LTAPE.CANT(operation, reason)
One of the low level tape operations (e.g., backspace record) failed for the specified rea-
son.

A:IDMLIB.JIO LTAPE.NOFILE(name)
The specified file could not be found on the tape.

E:IDMLIB.IO.LTAPE RESET
Cannot use the reset control on labeled tape.

E:IDMLIB.IO.LTAPE REWRITE
Cannot use the rewrite

E:IDMLIB.IO.LTAPE.SMALLBLOCK((blocksize, minblocksize)
Blocksise is smaller than the system mimimum minblocksize.

I:IDMLIB.IO LTAPE FILENO(fileno)
The specified file number will be accessed.

A:IDMLIB.IO.LTAPE. UNAVAILABLE
Issued if this system does not support labeled tape at all.

IMPLEMENTATION NOTES
Systems that support labeled tape should use the available system services.

If you must count tape usage using the length parameter, the total should be reduced slightly to
allow for variant interrecord gap sizes and tape errors. The UNIX implementation uses 85.83%
of the available length.

Systems that don’t support any way to backspace a tape drive (notably UNIX System V) only
allow overwrites of the tape (i.e., params of “fileno(1),mode(w)”). Fortunately this is consistent
with other tape utilities on such systems.

On VMS, record sizes for tape vary, depending on the record format. The range for fixed-length
records is 1 to 65,534 bytes; The range for variable-length records is 4 to 9,999 bytes, including
the 4-byte Record Control Word. Therefore, the maximum length of the data area of a
variable-length record is 9,995 bytes. IDMLIB will read or write variable-length records by

3.12-87/12/18-R3v5m7 Britton Lee 3

IFTLTAPE (41) Britton Lee IFTLTAPE (41)

default, but fixed-length records may be specified with the vms(rfm(fix)) parameter to open.

To comply with ANSI standards, the record size should not be larger than the maximum block
size of 2,048 bytes.

BUGS-UNIX '
Generations should be handled automatically.

It should be possible to set a buffer offset on output.
There should be some way to generate UHLa labels.

SEE ALSO
ifopen(3I), itapeopts(3I), operator(3I), dumptape(8I), inittape(8I), ANSI X3.27-1978, American
National Standard Magnetic Tape Labels and File Structure for Information Interchange.

3.7-86/09/28-R3v5m0 Britton Lee 4

IFTMTEXT (41) Britton Lee IFTMTEXT (41)

NAME

IftMText — Message-text file type

SYNOPSIS

extern IFTYPE IftMText;
ifp = ifopen(msgfile, £IftMText, params, IFNULL);
(void) ifcontrol(ifp, "setvect”, (BYTE =) excvect);

DESCRIPTION

IftMText allows read-only access to the text of messages as described in messages(5I). The text
returned is determined by the message name and arguments specified by the setvect control, the
user’s experience level (Beginner, Able, or Expert), and the query language being used.

The message to be read is set by the setvect parameter to ifcontrol. The argument is a vector as
passed to an exception handler. The first element of the vector is the message name, and the rest
of the arguments are parameters. The parameters are substituted into the text of the message as
described in messages(5I).

Once a message vector is set, reads may be performed on the file to return the text of the mes-
sage with the parameters substituted. End-of-file is returned at the end of the message. A new
message may be selected using setvect without reopening the message file.

The query language can be specified by using the qrylang parameter to ifopen(3I) or
tfcontrol(3I). If not explicitly set, the query language specifier is set from the QRYLANG param-
eter from getparam(3I).

The experience level can be set using the exp parameter to sfopen(3I) or ¢fcontrol(3I). If not
explicitly set, the experience level is set from the EXPERIENCE parameter from getparam(3I).

WARNINGS

Writing to an IftMTezt file ,will always result in failure.

PARAMS

Params marked with } are also legal controls. Descriptions reading “standard” are documented
in ifopen(31). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

bs(N) Standard. Limits the length of a line.
disp(D)t# Ignored
exp(EXP) The experience level (Beginner, Able, or Expert). This argument, if used,

overrides the EXPERIENCE parameter. This is useful for applications that
require a fixed expertise level, such as a screen-based application that always
wants a single line description for the status line.

global Standard.

linebuffer(B)t* Ignored.

mode(M)x Only r accepted (default).

noerr Force success on open. Read calls will return a canned message. Used for sys-

tem messages.
padchar(B)t* Ignored. A
rbp(B)t* Standard.

3.7-86/09/28-R3v5m0 Britton Lee 1

IFTMTEXT (41) Britton Lee IFTMTEXT (41)

rs(N)=* Undefined.
trace(B)t Standard.
CONTROLS

Controls described as “standard” are documented in tfcontrol(3I) and intro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancelx Undefined.
clrerr Standard.
flushblock# Undefined.
getbs Standard.
getflags Standard.
getrs Standard.
reset* Undefined.
rewrites Undefined.
setvect Set the key-code of the message and the message arguments. If the message

code is unknown the ifcontrol returns —1, but reads will still succeed.
IMPLEMENTATION NOTES -
This module currently opens the underlying file as a file of type IftKeyed(4I).

An environment independent implementation exists, but on some environments it might be
appropriate to redefine this module. For example, on a large-address-space machine it may be
appropriate to cache frequently used messages.

IftMTezt is used by the exception handler, so the handling of exceptions within the module must
be done very carefully in order to avoid infinite recursion.

SEE ALSO
exc(3I), getparam(3I), ifcontrol(3I), ifopen(3I), iftkeyed(4I), messages(5I)

3.10-88/03/01-R3v5m8 Britton Lee 2

IFTSCAN (41) Britton Lee IFTSCAN (41)

NAME
IftScan, TK_PSEUDO — break an input stream up into tokens

SYNOPSIS
#include <iftscan.h>

extern IFTYPE IftScan;

ifp = ifopen(NULL, &IftScan, params, baseifp);
BOOL TK_PSEUDO(tok)

BYTE tok;

typedef struct

{

int tk_line; /* line num of this token =/

BYTE =tk_pdiff; /* offset from base of baseifp— _if _irbase */
} TOKINFO;
#define TOKINFNULL ((TOKINFO) NULL)

DESCRIPTION
Reading from an fp of type IftScan reads characters from the underlying basetfp and turns them
into tokens. Each token has a byte of type, two bytes of length, most significant byte first, and
some amount of value defined by the length.

Token types are:

TK_ID An identifier, i.e., a string of letters, digits, and underscores. If the KANJI com-
pilation option is on, pairs of Kanji characters are accepted as letters.

TK_INT An integer constant. Formats “OoNNN” and “OxNNN” are accepted.

TK_FLT A floating point constant. Constants preceeded by “Of” or “0d” (intended to
force four- and eight-byte floating-point representations respectively) are
accepted.

TK_BCD A BCD constant. The leading ‘4’ is stripped off.

TK_SQSTR A string constant set off by single quotation marks (‘ * ’). The quotation marks
are stripped off.

TK_DQSTR A string constant set off by by double quotation marks (‘” ’). The quotation
marks are stripped off.

TK_BINARY A binary constant (that is, a hexadecimal string beginning “0b”). The “Ob” is
stripped by IftScan.

TK_DPARAM A parameter specifier, that is, a string beginning with a dollar sign or an amper-
sand. These are used to interpolate parameters into IDM stored-command
definitions.

TK_OP An operator (i.e., something containing special characters). Generally anything
not fitting into the above classes is an operator. Recognized multi-character
operators include:

>= <= I=
>=x% <=*x I=x =x%
*>= * = wl= =
>> << *! = ->

TK_LINE Returned at the beginning of each line. The value is taken from the global vari-
able LineNumber. The given! option must be set for these tokens to be gen-
erated.

3.10-88/03/01-R3v5m8 Britton Lee 1

IFTSCAN (41) Britton Lee IFTSCAN (41)

TK_EOL A pseudo-token returned at the end of each line.

TK_INFO A pseudo-token may be returned before each token. The value is the TOK-
INFO structure containing the linenumber and the offset of this token in the
input buffer of baseifp. The giveinfo option must be set for these tokens to be
generated. The buffer size must be increased to allow these on each token.

Numeric tokens are not converted, i.e., they are returned as strings.

ANSI quote escaping is supported for both single quotation marks (‘ “’) and double quotation
marks (‘” ’). Within a quoted string, if two quotation marks of the same type (eg. single) are
encountered, the first is discarded and the second is passed through uninterpreted. For example:

”he said ””hi there”””
will return a TK_DQSTR with a value of:

he said ”hi there”
Comments (delimited by /* and /) are silently deleted, as is any unquoted white space.

If case folding is specified (i.e., if the fold parameter is specified or the FOLDCASE system
parameter has the value 1) then all uppercase letters will be converted to lowercase. String con-
stants are excepted.

The macro TK_PSEUDO(token) returns TRUE if the token is a pseudo-boken (TK_LINE,
TK_EOL, or TK_INFO). :

PARAMS
Params marked with t are also legal controls. Descriptions reading “standard” are documented

in ¢fopen(3I) Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

bs(BS) Standard. Limits the size of a single token.

countlines(B)t Increment LineNumber on each input line.

disp(D)}= Ignored.

fold(B)t If set, uppercase is folded to lowercase except in strings. If not explicitly

specified, defaults to the value of the FOLDCASE option.
giveinfo(B)t Return TK_INFO tokens.

givenl(B)t Return TK_LINE tokens.
global Standard.
linebuffer(B)t* Meaningless.
mode(M)= May be r only (default).
padchar(B)t* Ignored.
rbp(B)t Standard.-
rs(N)= Undefined.
trace(B)t Standard.
CONTROLS

Controls described as “standard” are documented in ¢fcontrol(3I) and sntro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

3.10-88/03/01-R3v5m8 Britton Lee 2

IFTSCAN (41) Britton Lee IFTSCAN (41)

cancel* Undefined.
clrerr Standard.
flushblock * Undefined.
getbs Standard.
getflags Standard.
getrs Standard.
reset* Undefined.
rewrites Undefined.
GLOBALS
LineNumber The current line number. If countlines mode is set, this will be incremented on

each input newline character. It is returned in TK_LINE and TK_INFO tokens
if the givenl or giveinfo option (respectively) is set.

EXCEPTIONS
A:IDMLIB.IO.SCAN.CANTWRITE
An attempt was made to write to the scanner.

A:IDMLIB.IO.NOBASE(name, openname)
The baseifp passed in was IFNULL.

E:IDMLIB.JIO.SCAN EOFINCOMMENT(type, name)

An end of file was found while scanning a comment while reading the specified underlying
file.

E:IDMLIB.IO.SCAN.EOFINSTRING(type, name)

An end of file was found while scanning a comment while reading the specified underlying
file.

E:IDMLIB.IO.SCAN.NLINSTRING(type, name)

A newline was found while scanning a quoted string while reading the specified underly-
ing file.

E:IDMLIB.IO.SCAN.NOROOM(type, name)
No room was available to store a token while reading the specified underlying file.

3.3-86,/06 /30-R3v5m0 Britton Lee 3

IFTSTRING (41)

NAME

Britton Lee IFTSTRING (41)

IftString — in-core string file type

SYNOPSIS

extern IFTYPE IftString;

ifp = ifopen(

CHARNULL, &IftString, params, IFNULL);

(void) ifcontrol(ifp, "setstring,bs(—1)", buffer);

DESCRIPTION

This file type causes “input/output” to happen into an incore buffer. Only read (r) and write
(w) modes are supported. Reads return successive bytes from buffer until the buffer size is
reached, when they return EOF. Writes put characters into buffer.

A flush on a w mode file puts a null (zero) byte into the next position of buffer and resets the
pointer to the beginning.

WARNINGS

Care must be taken not to overwrite the buffer if the size is not specified.

PARAMS

Params marked with { are also legal controls. Descriptions reading ‘“‘standard” are documented
in ifopen(3I). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B)
bs(BS)t

disp(D)t*
global
linebuffer(B)t*
mode(M)
padchar(B)t*
rbp(B)t»
rs(N)=
trace(B)t
CONTROLS

Standard.

The size of the buffer. If not specified, it is set to be very large. If the open is
for read mode and the BS is negative, it is set to the strlen of the string (see
string(3I)). The resulting length (excluding trailing null byte) will not be
reflected into the block size (which will still be negative), but will be returned by
a getrs control call. Note that the bs may also be set by ¢fcontrol.

Ignored.
Standard.
Undefined.

Mode r or w only.
Unused.
Undefined.
Undefined.
Standard.

Controls described as “standard” are documented in ¢fcontrol(3I) and intro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the

file type only.
cancels

clrerr
flushblock
getbs

getflags

3.3-86/06/30-R3v5m0

Undefined.
Standard.
Standard.

Standard. Note that this may not actually show the string length; getrs should
be used instead.

Standard.

Britton Lee 1

IFTSTRING (41) Britton Lee IFTSTRING (41)

getrs Standard.

reset Reset the pointer to the beginning of the buffer.

rewritex Undefined.

setstring Change to a buffer selected by the arg field to ifcontrol.
EXCEPTIONS

E:IDMLIB.IO.STRING.OVERFLOW
No room is available to put more characters into the buffer.

IMPLEMENTATION NOTES

Since there is no need for a special intermediate buffer in this file type the normal buffering is
bypassed.

3.16-86/08/12-R3v5m0 Britton Lee 2

IFTTERM (41) Britton Lee IFTTERM (41)

NAME

IftTerm — terminal file type

SYNOPSIS

#include <iftterm.h>
(Opened only on IDMLIB initialization; see below for details.)

DESCRIPTION

IftTerm accepts device-independent terminal escape sequences and interprets them for a specific
device. The files stdin, stdout, stderr, and stdtrc are type IftTerm. IftTerm is a machine-
independent module with one major exception: it will only work with ASCII terminals.

IftTerm must open a machine-dependent underlying file type. If no base ifp is passed from
fopen(3I), IftTerm will open a file of type IftLoTerm(4I).

The protocol uses an eight-bit path, i.e.,, all 256 possible codes are reserved for use. Non-
printable characters are used as control codes.

Control and escape sequences comply with American National Standards X3.41-1974 and X3.64-
1979 except as noted below.

Graphics
Special graphics may be output by sending the ITC_SS2 (Single Shift 2) character followed by
one of the following:

ITG_TLC top left corner
ITG_TRC top right corner
ITG_BLC bottom left corner
ITG_BRC bottom right corner
ITG_TT top ‘tee’

ITG_BT bottom ‘tee’
ITG_LT left ‘tee’

ITG_RT right ‘tee’
ITG_VB vertical bar
ITG_HB horizontal bar
ITG_X cross (like ‘+’)

ITG_BLOTCH an out-of-band ‘blotch’ character

Command Sequences

Certain control operations may be performed using a ‘“command sequence’” beginning with the
CSI (Command Sequence Introducer) character, followed by parameters. The parameters are
decimal numbers, expressed as numeric digit strings. The parameters are separated by semi-
colons, and terminated by a “final character’” that determines the actual operation to be per-
formed. For example, the sequence

ITC_CSIO0 ;1 ITC_SGR
invokes SGR (Select Graphic Rendition) with arguments zero and one.

Valid final characters for CSI sequences are

ITC_SGR select graphic rendition
ITC_CUF move cursor right (forward)
ITC_CUD move cursor down
ITC_CUB move cursor left (backward)
ITC_CUU move Cursor up

ITC_CUP absolute cursor position
ITC_ED erase display

IftTerm translates these sequences into the actual control signals required by the terminal. The

3.12-87/12/18-R3v5m7 Britton Lee 1

IFTTERM (41) Britton Lee IFTTERM (41)

information required to perform this translation is obtained from the underlying file type.

Graphic Renditions
Parameters to ITC_SGR may be

ITP_PRIMARY primary (default) rendition
ITP_BOLD bold or increased intensity
ITP_FAINT faint, decreased, or colored
ITP_ITALIC italic

ITP_UNDER underscore

ITP_BLINK slow blink (under 150/minute)
ITP_FLASH fast blink (over 150/minute)
ITP_REVERSE reverse video

Note that these are integer values rather than strings.

Cursor Control

The CSI sequences that control cursor motion and clear the screen are not guaranteed to work
unless stdout is in “cmode” (cursor-motion mode). Stdout may be set in this mode by using the
cmode control (see the section on controls below).

The rules for screen control and cursor motion follow the ANSI standards. The ‘“home” position
of the screen is line 1 (one) and column 1 (one). The absolute cursor motion sequence CUP takes
two arguments: the line number followed by the column number. The other cursor-control
sequences take no arguments. :

Erase Display
The ITC_ED (Erase Display) command must be preceeded by the ITP_ED_ALL parameter to
specify erasure of the entire display. Partial erasure is not supported at this time.

Extensions to the Standards
The following characters represent extensions to the ANSI standards:

ITX_RESET Reset the terminal to a known state.

The ASCII characters SO (Shift Out, octal 016) and SI (Shift In, octal 017) do not shift to the
G1 character set as specified by X3.41. Instead they ‘“quote” characters that are passed directly
through to the terminal without interpretation. This is intended to support an additional graphic
set such as required for Korean ideographs. These are not otherwise supported in the code.

Multi-byte characters such as Kanji are supported. Both bytes must be in the range O0xAO0
through OXFE inclusive. This preempts use of the G1 character set as specified by X3.41.

Shorthands
As a convenience, certain common sequences are defined as individual strings:

ITS_PRIMARY primary graphic rendition
ITS_BOLD bold rendition
ITS_UNDER underscore

ITS_BLINK blink

ITS_REVERSE reverse video

ITS_CUF move cursor right

ITS_CUD move cursor down

ITS_CUU move cursor up

ITS_CUB move cursor left

ITS_CUP absolute cursor position (template)

ITS_CLEAR clear screen
For example, to print “STRING” in bold, the sequences

printf(” %c%d%cSTRING%c%d%c\n”,
ITC_CSI, ITPBOLD, ITC_SGR,

©

3.12-87/12/18-R3v5m7 Britton Lee

IFTTERM (41) Britton Lee IFTTERM (41)

ITC_CSI, ITP_PRIMARY, ITC_SGR);

and

printf(” %sSTRING%s\n”, ITS_BOLD, ITS_PRIMARY);
are equivalent.
To move the cursor to line 24, column 10, the sequences

printf(” %¢c%d;%d%c”, ITC_CS]I, 24, 10, ITC_CUP);
and

printf(ITS_CUP, 24, 10);
are equivalent.
This file type will almost certainly be extended greatly in the future.

PARAMS
Params marked with } are also legal controls. Descriptions reading “standard” are documented
in {fopen(3I). Params marked with * may have unexpected side effects; they should normally be
reserved by internal use by the file type only. Note that this file is only opened during initializa-
tion, so these parameters are really moot.

autoclose(B) Standard.

bs(N) Standard.

disp(D)t Ignored.

T* See IftLoTerm(4l).

global Standard.

linebuffer(B)t* Standard.

mode(M) Standard. Will always be either r or w as compatible with the f param.
padchar(B)t* Unused.

rbp(B)t* Standard. (Should never be set.)

rs(N) Standard.

trace(B)t Standard. It is a grave error to set trace mode on the file stdtre, since tracing

occurs on stdtre.

CONTROLS
Controls described as “standard” are documented in ifcontrol(3I) and intro(4I). Controls marked

with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancel Standard. Can be used to ensure that any (potentially) buffered output will not
actually appear on the screen; for example, on an interrupt.

clrerr Standard.

cmode(B) On stdout or stderr, cmode(1) turns on cursor motion mode, enabling the use of

cursor motion CSI sequences. On stdin, cmode(1l) turns off all buffering of the
input, making each character available to the program as it is entered. Also,
echoing is turned off, and it is the program’s responsibility to echo characters
entered on the keyboard. Cmode(0) restores the terminal file to its original
condition. Also passed to IftLoTerm(4I).

flushblock Standard. Should be used if you really truly want data to actually kid-me-not
get data onto the user’s screen.

3.12-87/12/18-R3v5m7 Britton Lee 3

IFTTERM (41)

getbs
getcols
getflags
getlines
getrs
reset*
rewrite*

term(T)

Britton Lee IFTTERM (41)

Standard.

Return the number of columns on the screen into the integer pointed to by args.
Standard.

Return the number of lines on the screen into the integer pointed to by args.
Standard.

Meaningless.

Meaningless.

Set the terminal type to T. If T is unknown, the type will not be changed if a
type is already set, otherwise it will be set to dumb. If no type T is specified,
the terminal type is divined from the operating system, e.g., by the TERM
parameter (see getparam(3I)). The term control may be re-issued to change the
terminal type, but the application must be prepared to handle parameters that
change, such as the screen size.

NONSTANDARD INTERFACES
This module calls several routines that are defined in IftLoTerm(41). These are:

—gettermdesc

Returns a pointer to a structure that provides a description of the physical terminal.

_isterm

Returns a BOOL indicating whether output is to a terminal.

~termtype

Returns the type of the terminal currently in use.
These routines are described at length in IftLo Term(4I).

IMPLEMENTATION NOTES
This module is machine-independent except for its ASCII dependence. It opens the underlying file
as a file of type IftLoTerm(4]).

The module is opened exactly four times. The first time it is opened with T equal to E (standard
error), the second time with T equal to O (standard output), the third time with T equal to I
(standard input), and the fourth time with T equal to T (standard trace). This order is

guaranteed.
SEE ALSO

iftloterm(4I), ifthfile(4I), maketerm(8I), ANSI X3.4-1977, American National Standard Code for
Information Interchange; ANSI X3.41-1974, American National Standard Code Extenston Tech-
niques for use with the 7-bit Coded Character Set of American National Standard Code for Infor-
mation Interchange; ANSI X3.64-1979, American National Standard Additional Controls for use
with American National Standard Code for Information Interchange.

3.12-87/12/18-R3v5m?7

Britton Lee 4

INTRODUCTION (5I) Britton Lee INTRODUCTION (5I)

NAME
Introduction to file and data formats.

DESCRIPTION
This section describes the file formats used by Britton Lee libraries and applications and the data
structures used by IDMLIB.

3.5-87/08/28-R3v5m4 Britton Lee 1

IDMTOKENS (51) Britton Lee IDMTOKENS (51)
NAME
idmtokens — values of IDM communication tokens
DESCRIPTION
octal hex 1 name semantics
0001 0x01 0 TLEND end of target list
0002 0x02 0 QLEND end of qualification list
0003 0x03 0 TIME substitute current time
0004 0x04 0 USERID substitute current userid
0005 0x05 0 DBA substitute uid of database admin
0012 0x0a 0 HOST substitute host id
0013 O0xOb 0 DATE substitute current date
0014 0xOc 0 DATABNAME substitute current database name
0023 0x13 0 EXITIDM close database
0030 0x18 ¢ REP_OLD audit: old value before replace
0031 0x19 0 REP_DUP audit: a replace was a duplicate
0032 Oxla 0 APP_DUP audit: an append was a duplicate
0033 0xlb 0 SYNC flush cache memory to disk
0040 0x20 F HUNAME host user name for login id
0041 0x21 F PASSWORD password for login id
0042 0x22 F ATTR attribute name
0043 0x23 F BCDFLT floating point BCD
0044 0x24 F FBCDFLT fixed length BCDFLT
0045 0x25 F FBINARY fixed length binary
0046 0x26 F FBCD fixed length BCD
0047 0x27 F FCHAR fixed length CHAR
0050 0x28 F VAR reference variable
0051 0x29 F OPTIONS specify processing options
0052 0x2a F FORMAT define format of returned tuples
0053 0x2b F PARAM stored command parameter
0054 Ox2c F PCHAR string that may contain pattern matching characters
0055 0x2d F BINARY binary string
0056 0x2¢ F BCD binary coded decimal
0057 0x2f F CHAR character string
0060 0x30 1 INT1 one byte integer
0061 0x31 1 ORDERA order ascending
0062 0x32 1 ORDERD order descending
0063 0x33 1 ERROR error follows
0064 0x34 2 INT?2 two byte integer
0065 0x35 2 TYPE
0066 0x36 2 NVAR count any attribute
0070 0x38 4 INT4 four byte integer
0071 0x39 4 FLT4 four byte floating point number
0074 0x3¢c 8 FLTS eight byte floating point number
0100 0x40 0 ABS take absolute value
0101 0Ox41 0 MINUS take arithmetic inverse
0102 0x42 0 NOT take logical not
0103 0x43 0 CNVTI1 convert to il
0104 Ox44 0 CNVTI2 convert to i2
0105 Ox45 0 CNVTI4 convert to i4
0106 0x46 0 CNVTF4 convert to 4
0107 0x47 0 CNVTF8 convert to {8
0110 0x48 0 CNVTBINARY convert to binary

3.5-87/08/28-R3v5m4

Britton Lee

IDMTOKENS (5I)

0111
0112
0113
0114
0115
0116
0117
0120
o121
0122
0123
0124
0126
0127
0160
0161
o162
0163
0164
0165
0166
0167
0200
0201
0202
0203
0204
0205
0207
0206
0210
0211
0212
0213
0214
0215
0216
0217
0220
0221
0222
0223
0224
0225
0226
0227
0230
0231
0232
0233
0234
0235

0x49
Ox4a
0x4b
Ox4c
Ox4d
Ox4e
Ox4f
0x50
0x51
0x52
0x53
0x54
0x56
0x57
0x70
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x80
0x81
0x82
0x83
0x84
0x85
0x87
0x86
0x88
0x89
0x8a
0x8b
0x8¢
0x8d
0x8e
Ox8f
0x90
0x91
0x92
0x93
0x94
0x95
0x96
0x97
0x98
0x99
0x9a
0x9b
0x9c¢
0x9d

COO0OO0OO0O0O0OO0O0OO0OO0O0O0O0O0O0O0O0O0OOOOOOCCOOOONNNNNMMEMERMMBMOOOOOOOOOOOOOO

3.5-87/08/28-R3v5m4

CNVTFBINARY
AOPCNT
AOPCNTU
AOPSUM
AOPSUMU
AOPAVG
AOPAVGU
AOPMIN
AOPMAX
AOPANY
CNVTRNAME
CNVTRID
AOPONE
AOPONEU
CNVTBCD
CNVTCHAR
CNVTFBCD
CNVTFCHAR
SUBSTR
CNVTFLTBCD
CNVTFFLTBCD
FIXEDPT
RESDOM

EQ

NE

GT

GE

LT

RNEOUT

LE

AND

OR

ADD

SUB

MUL

DIV

BYHEAD
AGHEAD
CONCAT
MOD
QUALDOM
ORDERDOM
CNVTANAME
LOUT

ROUT
LGTOUT
RGTOUT
LGEOUT
RGEOUT
LLTOUT
RLTOUT
LLEOUT

Britton Lee IDMTOKENS (51)

“count” aggregate

”count unique” aggregate
"sum” aggregate

"sum unique” aggregate
"average” aggregate

”average unique” aggregate
"min” aggregate

”max” aggregate

"any” aggregate

convert relid to relname
convert relname to relid

return err if more than 1 value
return err if more than 1 distinct value
convert to bed

convert to character

take substring
convert to BCDFLT

specify result domain

o

>

>=

<

l==x%

<=

conjoin conditions
disjoin conditions
+

*
head of by list in aggr function
head of aggregate list in aggr (function)

concatenate strings

%

< =%

Britton Lge 2

IDMTOKENS (51)

0236
0237
0241
0242
0260
0261
0263
0264
0301
0302
0303
0304
0305
0306
0307
0310
0311
0312
0313
0314
0315
0316
0317
0320
0321
0322
0324
0325
0326
0327
0330
0331
0332
0333
0334
0335
0336
0340
0341
0342
0343
0344
0345
0346
0350
0352
0353
0354
0355
0356
0357
0360

0x9e
0x9f

Oxal
0xa2
0xb0
Oxb1
0xb3
Oxb4
Oxcl

Oxc2
0xc3
Oxc4
Oxc5
0xc6
Oxc7
Oxc8
Oxc9
Oxca
Oxcb
Oxcc

Oxcd
Oxce

Oxcf

0xdo
0xd1
0xd2
Oxd4
0xd5
0xdé
0xd7

-0xd8

0xd9
Oxda
Oxdb
Oxdc
Oxdd
Oxde
0xe0
Oxel

Oxe2
Oxe3
Oxe4
Oxeb
Oxeb
Oxe8
Oxea
Oxeb
Oxec

Oxed
Oxee

Oxef

0xf0

T T O 0O 00 0000000000000 000000000O0OCONMMEMMMPOO

3.5-87/08/28-R3v5m4

RLEOUT
LNEOUT
RESATTR
QUALATT
WITH
ATTRALL
MEASURE
ROOT
RETRIEVE
RET_INTO
APPEND
DELETE
REPLACE
CREATE
DESTROY
INDCREATE
INDDESTROY
TRUNCATE
DBCREATE
DBDESTROY
PERMIT
DENY

VIEW

ENDOFCOMMAND

TUPLE
ABORT
BEGINXACT
ENDXACT
EXTEND
DBEXTEND
REOPEN
AUDIT
AUDIT_INTO
ASSOCIATE
CONFIGURE
KILLDBIN
FILECREATE
EXEC
DEFINE
DBOPEN
RANGE
DUMPDB
LOADDB
NEWPWORD
FILEOPEN
ROLLFORWARD
DUMPXACT
COPYIN
COPYOUT
DEFINEP
LOADXACT
FILECLOSE

Britton Lee

<=

*!=

specify param to various commands

target list of all attributes
performance token

root of query tree

retrieve command

retrieve into command
append command

delete command

replace command

create relation

destroy relation

create index

destroy index

truncate relation to zero length
create database

destroy database

give permissions

remove permissions

define a view

this command is done
mark returned tuple
abort transaction

begin transaction

end transaction

extend allocation for relation
extend allocation for database
reopen database

audit transaction log
audit xact log into ...
associate text with object
please configure 1/0

dba kill dbin command
create unstructured file
execute a stored command
define a stored command
open a database

declare range variable
dump database

load database

new password

open unstructured file

roll forward database from xact log

dump transaction log
copy relation in

copy relation out
define stored program
load transaction log
close a file

Britton Lee

IDMTOKENS (51)

IDMTOKENS (51)

0361
0362
0363
0364
0365
0370
0371
0372
0373
0375

0xf1
0xf2
0xf3
Oxf4
0xf5

0xf9
Oxfa
0xfb
Oxfd

QO swn i Win W DD DD e e

3.8-88/03/01-R3v5m8

FILEREAD
FILEWRITE
FILEEOF
TRACE
TRACEOFF
EXECP
SETDATE
SETTIME
PLAN
DONE

Britton Lee

read a file

write a file

write and truncate a file
turn on trace information
turn off trace information
execute stored program
set current date

set current time
decomposition plan

done packet

Britton Lee

IDMTOKENS (51)

IDONE (51) Britton Lee IDONE (51)

NAME
IDONE — IDM DONE token

SYNOPSIS
ffinclude <idmdone.h>

typedef struct

{ short id_stat; /* status bits, see below */
short id_int; /* defined by the command */
long id_count; /* # of tuples or blocks affected */
} IDONE;

#define IDNULL ((IDONE *) NULL)

/* bit values for id_stat; see SPM for details */
#¢define ID_CONTINUE 0000001 /* more results are available */

#tdefine ID_ERROR 0000002 /* an error occurred in processing */

#define ID_INTERRUPT 0000004 /* the command was interrupted */

##define ID_ABORT 0000010 /* xact abort, typically deadlock */

#define ID_COUNT 0000020 /* the count field is valid */

#define ID_OVERFLOW 0000040 /* overflow detected */

#tdefine ID_DIVIDE 0000100 /# divide by zero detected */

#define ID_DUP 0000200 /* duplicates encountered */

#tdefine ID_TIMER 0000400 /+ opt 5 or 11: id_int is wallclock */

#define ID_INXACT 0001000 /* currently in a transaction */

#tdefine ID_ROUND 0002000 /* rounding occurred on BCDFLT */

#define ID_UNDERFLOW 0004000 /* exponent underfiow on BCDFLT */

#tdefine ID_BADBCD 0010000 /= illegal BCD(FLT) sent by host */

#tdefine ID_TMINUTES = 0020000 /* id_int is in minutes */

#tdefine ID_LOGOFF 0040000 /* please log off */

#define ID_VOLUME 0100000 /* current volume exhausted */
DESCRIPTION

The IDONE structure represents the. IDM DONE token, as described in the System Programmer’s
Manual. This structure is read using tgetdone(3I).

The te_donemask field of the environment (see tenv(5I)) contains a mask for id_stat; bits that
match between these two fields have exceptions raised by tgetdone.

The symbolic names of done bits used by tecontrol(3I) and seopen(3I) are identical to the con-
stants listed above with the “ID_ ” stripped off. For example CONTINUE is the name to pass
when setting the environment’s done mask (see symfile(5I)).

SEE ALSO .
iecontrol(3I), igetdone(3I), ienv(5I), symfile(5I), System Programmer’s Manual .

3.6-87,/02/17-R3v5m0 Britton Lee 1

IENV (51) Britton Lee IENV (51)

NAME
IENV, DefEnv — IDM environment

SYNOPSIS
Note: field names and layout of this structure are not guaranteed.

ftinclude <idmenv.h>
typedef struct

IENV sie_parent; /# parent environment for inheritance */
short ie_donemask; /* igetdone status mask */

short ie_flags; /* flag bits, see below =/

short je_rtstamp; /* timestamp in range table */

BYTE =ie_rtab; /* range table =/
BYTE *ie_subst; /# substitution table */
BYTE sie_options; /# options table «/

} IENV;
#define [ENVNULL ((IENV ») NULL)
/* flag bits values for ie_flags =/
#define IEF _FOLDCASE 1 /* fold case in character arguments */
#define [EF_NOMAPCC 2 /* do not map control chars in tupprint */
extern [ENV sDefEnv; /* default environment */

DESCRIPTION

Many IDM operations are performed in a particular environment. This environment contains:
e A pointer to the parent environment. The default environment DefEnv has no parent.

e The mask of bits from the IDONE :d_stat (status) field that will have associated exceptions
raised automatically by igetdone(3I).

e Assorted flags. If IEF_FOLDCASE is set, character string arguments to routines creating
IDM trees have upper case letters mapped to lower case for systems that prefer to consider
them semantically equivalent. If [EF_NOMAPCC is set, tupprint(3I) will pass control char-
acters through unchanged.

e A time stamp for the range table, used internally.

e The range variables that have been declared. Set by idlparse(3I) immediately when a
range statement is parsed.

e The current substitution values. Set by sesubst(3I), used by sputtree(3I).

e The set of options that will be attached by default to each tree. Modified by ¢diparse(3I)
immediately when a set or unset is parsed.

If a value is not found when an environment is searched for a substitution variable or a range
declaration, the parent environment will be searched. If that fails, the parent’s parent will be
searched, and so on, recursively.

Most routines requiring an environment parameter will accept the constant IJENVNULL as the
env parameter to mean the DefEnv environment. On initialization, this is set to a special static
environment that has no parent and can never be deallocated.

Range, option, and substitution tables are created as needed. The format of these tables is inter-
nal to IDMLIB.

3.6-87/02/17-R3v5m0 Britton Lee 1

IENV (51) Britton Lee IENV (51)

SEE ALSO
ieopen(3I), iesubst(3I)

3.4-86/09/17-R3v5m0 Britton Lee 2

IODEFS (5I) Britton Lee IODEFS (51)

NAME

IODEFS — Input/output flag definitions
SYNOPSIS

#include <idmiodefs.h>
DESCRIPTION

Definitions for flag bits (available using the getflags control to ifcontrol(3I)) contain file status.
These flags are accessible for the convenience of extremely sophisticated applications and are not
guaranteed to be available in this form in future releases. The flags are:

IFF_READ This file is enabled for reading.
IFF_WRITE This file is enabled for writing.
IFF_APPEND TBis file is enabled for appending.
IFF _PRBF This file is physically record-based.

SEE ALSO
ifcontrol(3I)

3.4-87/09/25-R3v5m4 Britton Lee 1

ITLIST (51)

NAME
ITLIST — IDM target list descriptor

SYNOPSIS
#finclude <idmtlist.h>

typedef struct

ITLIST *itl_next;
short itl_type;
short itl_len;
short itl_alloc;
short itl_flags;
ANYTYPE =itl_valp;
char *itl_name;
union
{
struct
{
short itlb_type;
short itlb_len;

ANYTYPE »itlb_addr;

} itl_binding;

Britton Lee

ITLIST (51)

/* next target in list */

/* type of data */

/* actual length of data */

/* number of bytes allocated for data »/
/* flag bits; see below */

/* pointer to value buffer */

/* name of this domain */

/* application dependent info */

/* level 3 (runtime) binding info %/
/* type of prog lang var */

/* length of prog lang var */
/% address of prog lang var »/

struct /* IDL print format info */
{
short itlp_width; /* print field width %/
short itlp_prec; /#* precision */
char itlp_fmt; /* print format */
char sitlp_pic; /* edit picture */
itl_print;
itl_un;
} ITLIST;
#tdefine ITLNULL ((ITLIST ») NULL)

/* some macros to simplify access of nested fields */

#tdefine itl_btype
##define itl_blen
##define itl_baddr

#define itl_pfmt
#define itl_pwidth
##define itl_pprec
#tdefine itl_ppic

/* bit values for itl_flags */

itl_un.itl_binding.itlb_type
itl_un.itl_binding.itlb_len
itl_un.itl_binding.itlb _addr

itl_un.itl_print.itlp_fmt
itl_un.itl_print.itlp_width
itl_un.itl_print.itlp _prec
itl_un.itl_print.itlp _pic

#define ITL_BOUND 0000001 /* binding info is present */
#tdefine ITL_IGNORE 0000002 /* ignore in iputtl & iputtup */
#tdefine ITL_PRINTABLE 0000004 /* tupprint info present */

DESCRIPTION

The ITLIST data structure holds tuple data retrieved from the database server. The fields are:

itl_next

itl_type The type of the data.

3.4-87/09/25-R3v5m4

The pointer to the next element of a target list.

Britton Lee 1

ITLIST (51)

itl_len
itl_alloc

itl_flags
itl_valp

itl_name

Britton Lee ITLIST (5I)

The length of the data actually stored.

The length of the space allocated to store the data; this represents the maximum
length of a field.

Flag bits.
A pointer to the buffer used to hold the value.

The name of this domain, if known.

The union field is used by various applications as necessary. In particular, the level three
IDMLIB interface uses it to store binding information from srbend(3I); ¢dl(1I) uses it to store print
format information.

Target lists are built with igett/(3I) and freed with ttlfree.

SEE ALSO

idl(11), igettl(3I), igettup(3I), iputtl(3I), iputtup(3I), irbind(3I)

3.8-88/03/01-R3v5m8

Britton Lee 2

ITREE (51) Britton Lee ITREE (51)

NAME :
ITREE — IDM tree data structure

SYNOPSIS
#include <idmtree.h>

typedef struct

ITREE »it_left; /* left child pointer */
ITREE #it_right; /* right child pointer */

short it_type; /* type of this node %/
short it_len; /* length in bytes of itval */
ANYTYPE it_val; /* variable length value */
} ITREE;
#define ITNULL ((ITREE *) NULL)
DESCRIPTION

ITREEs represent query trees destined for Britton Lee’s IDM/RDBMS software.

Each node contains a left and right pointer. These fields normally implement child pointers,
although in some cases one or the other may be used as a sibling pointer.

The node type is typically the same type as will be passed to the database server. Nodes with no
correspondence in IDM/RDBMS are assigned values greater than 255. The values zero and 255
are reserved for use by the host.

The value field is variable length. The length is explicitly specified in the st_len field. The value
always abuts the remainder of the node; a pointer to the value is never used.

A special node is the INOTOKEN node. This node is always zero length, and essentially has “no
type” — it is used as a placeholder. During tree walks in sputtree(3I), INOTOKEN nodes are
ignored completely, except for their pointers.

A query tree for a complete command always has a iCOMMAND node as the root. This node
contains status and flag information about the command. The left child must be a command
node.

The left child of the command node is the query tree as described in the System Programmer’s
Manual for most commands; commands that do not accept query trees either leave this node null
or have a pseudo tree that describe any additional parameters.

The right child of the command node is a right-linked list of control information. The first ele-
ment is the range table, the second element the order table, and the third element the options
clause. Other elements may be added at Britton Lee’s discretion as needed.

The iCOMMAND node has an eight byte value. The first two bytes are used for status flags.
The remainder of the node is reserved for use by Britton Lee.

SEE ALSO
itnode(3I), iputtree(3I), itlist(5])

3.7-86/09/17-R3v5m0 Britton Lee 1

MESSAGES (51) Britton Lee MESSAGES (51)

NAME
messages — messages file format

DESCRIPTION
The messages file contains the text for all message codes used by IDMLIB. This section describes
the format of the master file as distributed by Britton Lee. This format will generally be mas-
saged by an implementation-dependent program (e.g., butldmasgs(8I)) into a form that can be read
efficiently by the IftMTezt(4I) module.

Each line of the file begins with a code that gives the semantics of the rest of the line. These are:

$msg.code This line introduces an entry for the named message code.

@n name Indicates the semantics of parameter n. This is used to prepare documen-
tation.

code < tab>text Text for this message. Code is a set of one or more letters or blanks.

These letters specify conditions for display of the line at execution time.
The letters specify the experience levels: B=Beginner, A=Able,
E=Expert, and the query language being used: I=IDL, S=SQL. The
code and the text are separated by a tab character, which will be
stripped from the message before printing. Note that the default for the
query language specifier is SI — display the line to both query languages.
However, the default for the experience level is null — hide the line from
all users.

Any other lines should be ignored.

Within the text, parameters are substituted using %6n. For example, “%2” should substitute the
second parameter.

Macros are substituted using a ?¢ syntax. For example, “?S” in the text of a message will be sub-
stituted by its definition when buildmags is run. Definitions are contained in the file messages.mac
(in etc/ on UNIX systems) and should be configured at each site to indicate the correct local per-
son to report problems to.

Each message should contain a single line message that is sufficiently rich as to be adequate to be
understood by most users. The remainder of the message should be explanatory information for
beginning users. These should include the following subheadings, as appropriate: Explanation (of
the message), System Action (what happened to your job), and User Action (what the user should
do next).

The same syntax is used to store the help file. In the help file, lines of the form
code<tab>$help-command represent a default command to be executed if the user enters a blank
line.

IMPLEMENTATION NOTES
The master version of this file will be supplied by Britton Lee. The OEM will be responsible for

writing a program to convert from the standard format into the format needed by the local sys-
tem. See busldmsgs(8I) for details.

EXAMPLE
$IDM.E19
@1 <domname>
BAE I Result for attribute: %1 has wrong type.
BAE S Result for column: %1 has wrong type.
BA I Explanation: The tuple was invalid because the value
BA S Explanation: The row was invalid because the value
BA I specified for the attribute %1 was
BA S specified for the column %1 was

3.7-86/09/17-R3v5m0 Britton Lee 1

MESSAGES (51) Britton Lee MESSAGES (51)

BA of the wrong type.
B 1 User Action: Determine the actual type of the attribute,
B S User Action: Determine the actual type of the column,

B and correct the query.
If the user has an experience level of ABLE, and is running IDL, the following message should be
seen:

Result for attribute: esalary has wrong type.

Explanation: The tuple was invalid because the value
specified for the attribute esalary was
of the wrong type.

SEE ALSO

iftmtext(4I), buildmsgs(8I), IBM OS/860: Messages and Codes for an excellent example.

3.31-88/02/23-R3v5m8 Britton Lee 2

PARAMS (51)

NAME

Britton Lee PARAMS (51)

/usr/lib/idm/params — default getparam(3I) parameter file

DESCRIPTION

The “params” file contains the default settings for all system parameters. On UNIX, this file is
structured as a series of lines of the form

name=/[=]value

No spaces are allowed in the line unless they are part of the value. By convention, the name is in
upper case. If the second “="" is present, the name will not be imported from the UNIX environ-
ment (see getenv(3)).

For the UNIX system, the required entries are:

EDITOR
EPOCHOFFSET

EXPERIENCE
FOLDCASE

GETHUNPW

HELPFILE
IDMBAUD

IDMDEV

IDMHOSTID
IDMHUNAME

IDMPASSWD
IDMPKTSIZE

3.31-88/02/23-R3v5m8

The pathname of the system editor to use.

This is used to offset the beginning of the “epoch” for date and time routines.
The default epoch is January 1, 1900. EPOCHOFFSET is given as a number
of days from January 1, 1900. For instance, to change the epoch to January 1,
1901, change EPOCHOFFSET to 365. In general, the use of this parameter is
discouraged.

The default experience level, chosen from the set Beginner, Able, and
Expert. Normally Beginner.

Perform upper to lower case folding if set to 1. UNIX command lines are
currently not folded.

Constant 1 if shared database system password processing is desired, otherwise
0. This should match the “untrustworthy” bit for this host in the “configure”
relation. The user will be prompted for a password on ‘“permission denied”
messages on the first open database if this is set.

The location of the help file; see messages(5I).

The baud rate for serial connections. These are used directly in the stty(2)
call; for example, 13 means 9600 baud. See stty(2) and tty(4) for details.

The default device name for database server connections; normally
“/dev/idm”. On UNIX, the “/dev/” part is optional. For convenience the
driver may also be specified in IDMDEV using the filespec syntax of
device %driver (see intro(1l)). For example, an IDMDEV set to “idm%0” or
“idm%multi” specifies the “system standard” driver and device “idm”
(“/dev/idm”). IDMDRIVER is used if driver is not specified. Other values
accepted are “idm%stand” (idm%1), “idm%xns” (idm%2) and “idm%tcp”
(idm%4).

The offset into the IDM driver table for the low-level interface. Driver 0 is
always the “system standard” driver. Driver 1 is normally the standalone
serial driver. Other drivers are typically used for experimental protocols. This
value must be an integer.

The host id to use for the standalone commands.

The user name to be passed to the IDM/RDBMS software for identification. If
the value is null, no user name is known.

The IDM/RDBMS password for this user.

The size of communication packets to the database server for standalone serial
connections. If your line is flakey or if your UNIX system has a small line-
length limitation, this can be adjusted.

Britton Lee 1

PARAMS (51)

IDMSERROR
IDMSYSCALL

IDMSYSLINE
IDMUSER
IDMVERSION

IOBSIZE
ISDST
MAPCC

MESSAGES

NOPROFILE
QRYLANG
SHELL
SYMFILE

TERM -
TERMPATH

TIMEZONE

Britton Lee PARAMS (51)

If nonzero, simulates a flakey line for protocol testing. Should always be zero.

The system call number used to access the database server. This must match
the entry in the kernel sysent or ymsysent table.

Since the multi-user serial driver is no longer supported, this parameter is not
used. It used to represent the line discipline for the multi-user serial driver. It
had to match the installed line discipline in the kernel.

The (numeric) user id to use for the standalone IDM drivers.

The version of IDM/RDBMS you are running. The minimum version is 30.
The version configures in features supported by newer IDM/RDBMS versions.
The default 1/O buffer size.

Constant 1 if daylight savings time ever applies in this area, otherwise 0.

Map control characters to blanks (input) and blotch (output) characters if set
to 1. When cleared, control characters are passed through unchanged.
Currently used by the IDL and SQL front ends and tupprint to allow terminals
to switch character sets to Kangi.

A comma-separated list of files containing messages; see mecssages(5I). The files
are searched in order by ezcprint (see ez¢(3I)). Changing this parameter after
the first message is output has no effect.

Disable reading of profile (or startup) files in IDL or SQL if set to 1. See
+di(1I) and sq!(1I) for the command-line —p (noprofile) flag.

The query language normally used, either IDL or SQL. The setting of this flag
changes the wording of messages. It in no way limits the query languages that
may be used.

The pathname of the system shell to use.
The location of the symbol file; see symfile(5I).
The terminal type.

On UNIX, the prefix of the pathname (with TERM concatentated) containing a
terminal descriptor as created by maketerm(8I). Normally
“/usr/lib/idm/term”.

The local time zone in chronological minutes westward from GMT. Negative
values are minutes eastward from GMT. The maximum (absolute) value is
4720 (minutes), representing the time in Western Samoa-

In most cases the parameter is only examined once, so any adjustments should be made early in

processing.

Other parameters may be required by particular implementations.

SEE ALSO

gethunpw(3I), getparam(3I), iftterm(4I), messages(5I), symfile(5I), maketerm(8I), esh(1), sh(1),
stty(2), getenv(3), tty(4), System Administrator’s Manual .

3.8-86/09/17-R3v5m0

Britton Lee 2

RETCODE (51) Britton Lee RETCODE (5I)

NAME

retcode — return/status/error code
SYNOPSIS

#tinclude <machdep.h>
DESCRIPTION

Type RETCODE is used by IDMLIB routines that return a status code, for status returns from
programs, and for system service error codes.

The following codes are defined in all environments. They are of the form Rz_code, where zis S,
W, or E for success, warning, and error respectively. Codes marked with an ‘R’ are returned by
normal IDMLIB routines; codes marked with an ‘E’ are returned by errclass (see geterr(3I)).

RS_NORM E R Normal return
RW_DONECMDS R There are no more commands during an srnezt(3I).
RW_IGNORED R This request was ignored because it would have no effect, e.g.,

setting an option that was already set.

RW_NOTUPS R No tuples available.
RW_PSEUDO R Tree represents pseudo-command.
RW_TARGEND R Target list exhausted.
. RW_TRUNCATE R Data truncation occured.
RW_TUPEND R No more tuples.
RE_CANT E Impossible operation requested, e.g., write on a read-only file.
RE_FAILURE R An error occured; an exception will have been raised giving more
information.
RE_IDMQRY E IDM query error occured.
RE_INTR E Program or routine was interrupted.
RE_IOERR E Hard 1/O error.
RE_MISC E A miscellaneous (unclassifiable) error has occured.
RE_NOSPACE E Write failed because of lack of space.
RE_NOOUTPUT E Cannot create output.
RE_NOINPUT E Cannot open input.
RE_PERM E You do not have permission to perform this operation.
RE_USAGE E Bad arguments or parameters.

This list will be expanded as necessary in the future.

IMPLEMENTATION NOTES
Type RETCODE and Rz_ codes are defined in <machdep.h>. Codes should match operating
system conventions if possible.

The code RS_INFO exists and is identical to RS_NORM. It is intended for use with sysshell(3I)
so that VMS commands run by sysshell that return STS$K_INFO can return that value as the
exit value of an IDMLIB application.

On VMS, RETCODEs are VMS condition codes. In addition to the codes listed above, there are
several codes returned by IDM drivers. The numerical value of all of these codes may be found
in the <retcode.h> include file.

3.8-86/09/17-R3v5m0 Britton Lee 1

RETCODE (51) Britton Lee RETCODE (51)

All IDMLIB RETCODESs have associated messages defined by the VMS Message Utility.

SEE ALSO
intro(3I), exit(3I), geterr(3I)

3.6-86/09/17-R3v5m0 Britton Lee 2

SYMFILE (51) Britton Lee SYMFILE (51)

NAME
/usr/lib/idm/symfile — symbol to integer value mapping file

DESCRIPTION
The symbol file contains the information to map symbols to integers. The format is the symbol
name, one or more space or tab characters, and the integer value. Every symbol must begin in
the first position of the line, and there may be only one symbol per line. Comments may be

added after the value, separated by more white space, or may be on a line by themselves begin-
ning with ‘#¢’.

The first character of each symbol is a tag indicating the class of symbol. Assigned tags are:

d IDM done status bits.
o IDM option names.

t Host trace flags.

* IDM trace flags.

Uppercase alphabetic tags are reserved for use by the customer. All other characters are reserved
for use by Britton Lee.

The symbols input to .mapaym(3l) are converted to uppercase before matching (except for the tag
character). Thus, symbols containing lowercase characters will never match.

Syntax errors are silently ignored.

EXAMPLE
Note: this is an example only. It does not match the actual values used in the system.

IDMLIB basic flags (50-59)

tILIBGEN 50 /* general utility routines &/
tILIBEXC 52 /* exception handler */

tILIBBCD 53 /* BCD routines */

tILIBCNVT 54 /* type conversion module */
tILIBOS 55 /* host O/S interface (except I/O) */

tILIBCLOCK 56 /* clock routines */

IDM-specific modules (60-65)

tIDMTREE 60 /* print tree */

tIDMGEN 61 /* general utility routines */
tIDMCNVT 62 /* type conversion */
tIDMPARSER 63 /* parser, scanner and tables */
tIDMUTREE 64 /* UTREE routines */
tIDMRANGE 65 /* range variables */

RUNTIME-specific modules (66-69)
tRUNTREE 66 /* print tree support =/
tRUNTL 67 /* print target lists */
tRUNGEN 69 /* general tracing */

I/O subsystems (70-79)

tILIBIO 70 /* basic I/O calls */
tIFTLTAPE 71 /* labeled tape */
tIFTHASH 72 /* hash file type */
tIFTSIDM 73 /* standalone IDM access */

SEE ALSO
atof(3I) (for atoi), mapsym(3I), idone(5I)

1.4-86/09/17-R3v5m0 _ Britton Lee 1

XNSHOSTS (51') Britton Lee XNSHOSTS (51)

NAME
/usr/lib/idm/xnshosts — XNS host name mapping file

DESCRIPTION
Xnshosts specifies the numeric addresses used for particular symbolic names. The format of this
file is

physical_address logical_name | alias ...]
The physical address is in the form:
nin2.nS.nfhl.h2.h8.h4.h5.h6

where nl through n4 are the four nibbles of the network number and Al through A6 are the six
nibbles of the host number.

The logical_name or any of the optional altases may be used to identify the host.

EXAMPLE
0.0.0.1:8.0.44.0.0.8 host idm
0.0.0.1:8.0.44.0.0.2 p3
0.0.0.1:8.0.44.0.0.1 p3spy
0.0.0.1:8.0.44.0.0.10 p7

0.0.0.1:8.0.44.60.186.252 tsa
0.0.0.1:8.0.44.74.184.20 tsb

1.4-86/09/17-R3v5m0 Britton Lee 1

INTRODUCTION (81) Britton Lee INTRODUCTION (81)

NAME
Introduction to Administrative and Machine-Dependent Commands and Procedures

DESCRIPTION
Section 8I describes commands and procedures used in release administration. This section is not
part of the spec. Commands described herein are not guaranteed to be supported on non-UNIX
based systems. Several of the commands are for Britton-Lee internal use only.

N.B.: Most of these pages are UNIX-dependent.

3.2-87/02/04-R3v5m0 Britton-Lee 1

ANSITAPE (81) Britton Lee ANSITAPE (81)

NAME
ansitape — write files on an ANSI standard labelled tape
SYNOPSIS
ansitape | —f files | [—t tapespec]
ARGUMENTS
—ffiles A file containing a list of files to write to labelled tape. Files will be written as
the first file on the tape. If not specified standard input is read for the list of
files.
—~ttapespec Labelled tape parameters for use when opening tape. See iftltape(8I) for a list of
tape parameters.
DESCRIPTION

Ansitape writes files listed in the file files or from standard input to an initialized labelled tape
(see ¢nittape(8I)) using a fileset name of Write mode, record based presentation of 512 byte
records blocked every 2048 bytes are the default sftitape(8I) open parameters. Tape parameters
passed in via tapespec will override the default values.

Under record based presentation, ansstape will read and write one line of data from the host file
to the tape file. Otherwise 8K blocks are read/written from host to tape file.
EXAMPLE
inittape —f listoffiles —t” mode(a),rbp(0)”
Writes files listed in listoffiles at the end of the tape without record based presentation
(in 8K blocks).
IMPLEMENTATION NOTES
This module is UNIX-specific. Systems that support ANSI tape will have another module to per-
form this function.
SEE ALSO

iftltape(4I), inittape(8I), ANSI X3.27-1978, American National Standard Magnetic Tape Labels
and File Structure for Information Interchange.

3.7-88/03/02-R3v5m9 Britton-Lee 1

BACKUP (8I) Britton Lee BACKUP (8I')

NAME
backup — Shared database system backup procedures using idmdump, idmload, and idmrollf

DESCRIPTION
Databases should be copied (“backed up” or ‘“dumped”) periodically to guard against the
unnecessary loss of data due to database server disk crashes or failures. A database can be
backed up to an IDM file in a different database, an IDM tape, a host file, or a host tape. The
procedures are similar for all cases.

As databases are accessed and modified a ‘“transaction log” is maintained. The transaction log
contains information describing all the changes made to the database on relations created ”with
logging”. The transaction log does not contain information on non-logged relations or on files. If
you have a copy of the database at some point and a transaction log describing all the changes
made since that point, you can recreate the contents of the database that were active at the end
of the transaction log.

The transaction log is interesting since it is normally much smaller than the database itself.
Obviously, if the transaction log is allowed to grow forever, it will eventually become larger than
the database.

The program sdmdump(1I) will dump either entire databases or transaction logs. Idmload(1I) will
load a database or a transaction log. Idmrollf(1I) will “roll forward” (that is, make the changes
specified by a transaction log) a database.

Databases should normally be dumped in toto periodically. The frequency of your dumps
depends on how much the database is updated. For example, a database that is updated fre-
quently should probably be dumped every day. A database that is only updated occasionally
could only be dumped once per month. An average database should probably have a full dump
once a week. A database dump for RDBMS software before release 35 requires that all users stop
using the database while it is being dumped, so backups should be scheduled for off hours.
RDBMS release 35 and above defaults to allowing users to read a database that is being dumped.

Transaction dumps should occur more frequently. For example, if you dump your entire data-
base once a week, you might want to dump your transaction log at least once every day. The
frequency of the transaction log is critical: if you only dump the transaction log once per week,
you may lose up to a week’s worth of work if the database server fails. If you dump the transac-
tion log once per hour but only dump the database once per month, then a crash at the end of
the month may require loading the database and then over seven hundred transaction logs (31
days/month times 24 hours/day = 744 transaction dumps/month). A good rule is to dump the
database once for every three to ten transaction dumps.

Loading a transaction log is not useful by itself; the transaction must be “applied to the data-
base” for the changes to occur. That is, the roll forward utility must read a transaction log
that has been loaded and make all the changes indicated. This is the same as asking all your
users to make all the changes they have made, but much less painful. The sdmrolif(11) program
will perform this operation for you.

Dumping to another database has some good points as well as some drawbacks. On the negative
side, if a hardware failure destroys the entire disk you will have lost your database regardless of
the dump going into another backup database. On the positive side, the dumps will be very fast,
and the roll forward operation can happen without requiring an sdmload first.

For details on developing a complete backup strategy, see the Database Administrator’s Manual .

SEE ALSO
idmdump(1I), idmload(1I), idmrollf(1I).

3.1-86/09/29-R3v5m0 Britton-Lee 1

BUILDMSGS (81) Britton Lee BUILDMSGS (81)

NAME
buildmsgs - build keyed message text file
SYNOPSIS
buildmsgs [—s | [-h | [—a | [=] length | outfile infiles
ARGUMENTS
-h Key (“hash”) the output file instead of outputting text.
~llength Specify the length of the hash table, i.e., the number of hash buckets. The
default is 512. For efficiency, the hash table should be about 30 percent larger
than the number of keys. Ignored if the IftKeyed(4I) implementation does not
require a table size.
-a Append new materal to outfile rather than creating a new file.
- Create “subtopic” lists from the keys in the input file.
DESCRIPTION

Busldmasgs reads the files in the list tnfiles and creates outfile. The —h flag causes outfile to be a
keyed file accessible using the IftKeyed(41) module; otherwise it is a text file. The —a flag specifies
that output will be appended to outfile if it already exists; otherwise outfile will always be created
as a new file. Input lines beginning with ‘¢’ are interpreted as index keys. Lines beginning with a
mask-code are text associated with the most recent key. (A mask code is one or more upper-case
letters and one or more blank, followed by a tab.) All other input lines are ignored.

The —s flag builds subtopic lists for use by the help facility. This may be combined with the -h
flag.
EXAMPLES
buildmsgs —h -1 1024 messages.uvax messages.txt e
Create a keyed file named ‘“messages.uvax” from the text file “messages.txt”. The
length of the hash table is set to 1024.
buildmsgs -h -s helpfile.uvax helpfile.t1 helpfile.t2
Create a keyed help file named “helpfile.uvax” from the text files “helpfile.t1” and
“helpfile.t2”.
SEE ALSO
iftkeyed(4i), iftmtext(4i), messages(5i)

3.4-86/09/17-R3v5m0 Britton-Lee 1

DUMPTAPE (8I') Britton Lee DUMPTAPE (81)

NAME
dumptape — report on contents of an ANSI tape
SYNOPSIS
dumptape [—r | [v | [-t tapefile]
ARGUMENTS
-r Raw dump mode. Every tape record is dumped in abtruse detail.
-v Verbose mode. Gives even more detail.
—ttapefile The name of the UNIX device to reference; /dev/rmt8 (4.2 BSD) by default.
NOTE

System V Release 2.0 (running on 3B series) does not provide access to basic tape operations.
Therefore support of ANSI labeled tape is unavailable at this time.

DESCRIPTION

Without —r specified, dumptape produces a report of the tape contents in a one line per file for-
mat. The —v flag adds several fields; this format is suitable for output on a line printer. The
fields output are:

SEQN Sequence number of the file on the tape.
—FILE-NAME—
File name.
SECT File sectiop number. A multivolume file will be in several sections.
GEN# Generation number.
GV Generation version number.
CDATE Creation date.
XDATE Expiration date.
A Access code.

-SYSTEM-CODE-
System code for the system that created the file.

F Format.

BSIZE Maximum block size.

RSIZE Maximum record size.

BO Buffer offset.

BLOCKS Number of blocks in the file. This is computed rather than being read from the
labels.

In raw format (i.e., with the —r flag specified) the output is suitable for system debuggers.

SEE ALSO
iftltape(4I), inittape(8I), ANSI X3.27-1978, American National Standard Magnetic Tape Labels
and File Structure for Information Interchange.

3.6-88/03/01-R3v5m8 Britton-Lee 1

IDMBOOT (81) Britton Lee IDMBOOT (81)

NAME
idmboot — load the IDM/RDBMS software
SYNOPSIS
idmboot | —B device | [=V | [=2] [source]
ARGUMENTS
—Bdevice Use device as the connection to the database server. The device must be con-
nected to the database server console or maintenance port. If not specified, the
system parameter IDMCONS is used.
-V Verbose mode.
-2 Run the older two-port load. This flag is necessary if the database server has
dbp proms rev. 28 or earlier.
sovrce This must be a single parameter, so it will have to be quoted if it contains
spaces. If not specified, the default will be the host system’s default
IDM/RDBMS software source. (On 4.2 BSD UNIX, this is usually “/dev/rmt8”
- the 1600 BPI tape-drive.)
DESCRIPTION

Idmboot in one-port mode (the default) allows the user to access the database server’s console
port, issuing dse server console commands. If the user issues ‘load’ or ‘list’ commands, sdmboot
will obtain the necessary files to transmit to the database server.

The older, two-port load requires that a terminal be connected to the IDM console port. The
database server connection specified by the —B option must be to the database server mainte-
nance port. All console commands must be issued via the console terminal - two port sdmboot
only handles the actual transmission of files to the database server.

Idmboot does not know when the console session is finished, so the only way to terminate sdmboot
is by user interrupt.

Please refer to the BLI 700 Operation Manual for a description of database server console com-
mands and their use.

EXAMPLES
idmboot
Access the database server console port specified by the system parameter IDMCONS.
Any files required by the IDM system will be read from the system’s default RDBMS
software source (on 4.2 BSD UNIX, the 1600 BPI tape-drive *“/dev/rmt8”). This is the
one-port load.

idmboot -2 -V -B/dev/idmmaint /dev/rmt8
Run the two-port load in verbose mode. The database server console port is connected

to the device “/dev/idmmaint.” The RDBMS software is read from the 1600 BPI tape-
drive “/dev/rmt8” (the default IDM/RDBMS software source on UNIX).

SEE ALSO
BL 700 Operation Manual.

3.2-87/09/28-R3v5m5 Britton-Lee 1

IDMIDYD (81) Britton Lee IDMIDYD (81)

NAME
idmidyd — IDM XNS identify daemon
SYNOPSIS
/usr/lib/idm/idmidyd | -B device | [-h interval | [=p | [idmname ...]
ARGUMENTS
-B device Specify the database server device connection. Ignored if any names are specified as
positionals.
~hinterval Poll every tnterval seconds. The default is set from the XNSHELLOINT parame-
ter.
-p Force poll mode. This mode is assumed if more than one database server is
specified.
tdmname The name of one or more database servers to be controlled by this identify daemon.
DESCRIPTION

Idmidyd opens a “lifeline connection” to the named database server(s). An IDENTIFY packet is
sent to establish the host characteristics, and the connection is held open.

In “poll” mode a message is sent to the database server periodically to verify that both the host
and the database server are both working. If the database server fails to respond, the connection
is closed and tdmidyd goes into a loop trying to open the connection again.

In non-poll mode tdmidyd hangs on a read on the connection. If the read ever fails then the
database server must be down and idmidyd enters the loop to attempt to re-open the connection.

This program is normally started on all database servers during system startup.

IMPLEMENTATION NOTES
An implementation is supplied that is machine independent assuming that a routine:

sleep(N)

is supplied which suspends the execution of the process for N seconds.

3.3-86/09/17-R3v5m0 Britton Lee 1

INITTAPE (81) Britton Lee INITTAPE (8I)

NAME

inittape — initialize ANSI standard labelled tape
SYNOPSIS

inittape | —a access | [—d density | [—i] [-1 length] [—o owner | [—t tapefile] volumeid
ARGUMENTS

—aaccess The access character for this tape volume. The default is space, meaning all

access for everyone. If any other character is chosen, the current implementa-
tion will refuse to access the tape in any way.

—ddensity The tape density in bits per inch. Default is 1600 bpi.

—i Create an initial empty file on the tape. This option is required if the tape is
to be used on another system before being written.

—llength The tape length in feet, 2400 default. If this is not specified properly volume
switching may be defeated.

—oowner The name of the owner of the tape. If not specified, the name of the user
running tnittape will be used. The owner name is truncated to fourteen char-
acters.

—ttapefile The name of the file to be opened to access the tape. The default is
“/dev/rmt8.”

volumestd The name that this volume should have. The volume name is truncated to

six characters.

WARNING

Use of this program can cause destruction of valuable data. Some installations may want to limit
access to this command to system personnel.

System V Release 2.0 (running on 3B series) does not provide access to basic tape operations.
Therefore support of ANSI labeled tape is unavailable at this time.

DESCRIPTION
Inittape initializes a tape by writing an ANSI standard label set. A tape must be initialized

before using the iftitape(4I) module, implicit in most of the IDM utilities. Initializing a volume
destroys any previous contents.

Every tape must have a volume name. This name should be unique among all tapes at your
installation to insure that important data is not accidently overwritten.

The volume name should be copied onto the physical tape reel for easy identification. A good
technique is to initialize and physically label all tapes as soon as they arrive at your installation.

Characters in user and volume names must be chosen from the set of letters, digits, and the spe-
cial characters:

'Y % & () = +,
- ./ + ;3 < =>1 space
Lower case letters are automatically mapped to upper case.

EXAMPLE
inittape a00452
Initializes the tape to have the label “A00452.”

IMPLEMENTATION NOTES
This module is UNIX-specific. Systems that support ANSI tape will have another module to per-
form this function. .

3.3-86/09/17-R3v5m0 ' Britton-Lee 1

INITTAPE (81) Britton Lee INITTAPE (81)

UNIX writes a UVL1 label containing:

CP Field Name L Content

1to3 Label Identifier 3 UVL

4 Label Number 1 1

5 to 17 System Code 13 Identifies this implementation.
18 to 22 Tape Density 5 Density in bits per inch.

23 to 27 Tape Length 5 Length in feet.

BUGS-UNIX
The density must be consistent with the value of the —t flag.

Use of -1 is a hack.

SEE ALSO
idmcopy(1I), idmdump(1I), iftitape(4I), mt(4), ANSI X3.27-1978, American National Standard
Magnetic Tape Labels and File Structure for Information Interchange.

3.2-86/09/04-R3v5m0 Britton-Lee 2

MAKE (8l) | Britton Lee MAKE (8I)

NAME
Make — clever interface to make(1)

SYNOPSIS
Make make arguments

DESCRIPTION

Make (with a capital-M) is a front end to make(1) which creates a Makefile from a Makefile.m4
using m4(1) if necessary. If the Makefile does not exist or is out of date with respect to a
Makefile.m4, the command

m4 $IDMCONFIG Makefile.m4 > Makefile

is executed. IDMCONFIG may be defined in your environment to select a configuration file; if
not specified, /a/host/etc/config.m4 is used.

All other arguments are exactly as described in make(1). The —f flag is not correctly processed.
SEE ALSO

make(1), m4(1)
FILES

Makefile

Makefile.m4

RCS/Makefile.m4,v

/a/host/etc/config.m4

3.8-86/04/11-R3v5m0 Britton-Lee 1

MAKETERM (8I') Britton Lee MAKETERM (8I)

NAME
maketerm — compile a terminal descriptor
SYNOPSIS
maketerm [-C | term
ARGUMENTS
-C Create a “C” language source-file instead of a binary data file.
term The name of a terminal type.
DESCRIPTION

Maketerm reads a terminal description text file named term.tty and creates the file term.td.N
(where N is the a version number on the binary format) containing a compact representation to
be read by IftTerm(4I). Term.tty must exist in the current directory. If the —C argument is
used, a C source file will be produced instead of a “.td” file. The file will be named term.c, and
the data structure will be BYTE array named Td_term . It is the programmers responsibility to

cast the pointer to Td_term to be of type (TERMDESC). (See IftLoTerm(4I) for a description
of the _gettermdesc interface.)

TERMINAL DESCRIPTIONS
A terminal description consists of a series of “field=value” lines. Lines beginning with a ‘#’
mark and blank lines are comments.

Field names are:

flags A list of terminal flags

init Initialization string

reset Reset string

so-gl The G1 “shift out” (alternate char set) sequence
si-gl The G1 “shift in” (normal char set) sequence
s0 Same as “so-gl”’

si Same as “si-gl”

so-g2 The G2 “shift out” sequence
si-g2 The G2 “shift in” sequence
so-g3 The G3 “shift out” sequence
si-g3 The G3 “shift in”” sequence
so-g4 The G4 “shift out” sequence
si-g4 The G4 “shift in” sequence
so-g5 The G5 “shift out” sequence
si-g5 The G5 “shift in” sequence
so-g6 The G6 “shift out” sequence
si-g6 The G6 “shift in” sequence
so-g7 The G7 “shift out” sequence
8i-g7 ‘The G7 “shift in” sequence
g2-tlc Top Left Corner sequence
g2-tre Top Right Corner sequence
g2-blc Bottom Left Corner sequence
g2-bre Bottom Right Corner sequence
g2-1t Left Tee sequence

g2-rt Right Tee sequence

g2-tt Top Tee sequence

g2-bt Bottom Tee sequence

g2-x Cross sequence

g2-vb Vertical Bar sequence

g2-hb Horizontal Bar sequence
g2-blotch Out-of-band Blotch sequence

3.8-86/04/11-R3v5m0 Britton-Lee 1

MAKETERM (81) Britton Lee MAKETERM (81)

lines Number of lines

cols Number of columns

e-primary Primary enhancement string
e-bold Bold enhancement string
e-faint Faint enhancement string
e-italic Italic enhancement string
e-under Underscore enhancement string
e-blink Blink enhancement string
e-flash Flash enhancement string
e-reverse Reverse enhancement string
c-cuf move cursor right

c-cud move cursor down

c-cuu move Cursor up

c-cub move cursor left
c-cup absolute cursor motion

c-clr clear screen

c-con start cursor-motion mode
c-coff end cursor-motion mode

padch padding character (if not NUL)
speed Baudrate

The “speed” field is ignored on systems that can automatically determine the baudrate.

If a field specification is missing from the terminal descriptor file, the terminal is assumed not to
have that capability.

The strings are specified using the following mappings:

\b BS (backspace) character
\e ESC (escape) character
\f FF (form feed) character
\i SI (shift in) character
\n NL (newline) character
\o SO (shift out) character

\r CR (carriage return) character

\\ backslash character

“z Control-z

\NNN The octal representation
Arguments

Arguments are indicated by a “%” character, and a literal “%” may be specified by “%%”. In
most strings, the only recognized argument is for padding. Padding is specified as follows:

%n p
where n is a decimal integer represented by a string of digits. Actual padding times are calcu-
lated at run-time relative to the baudrate of the terminal. For most control strings, padding is

absolute. For absolute cursor motion, the padding specified is for each line affected. That is, if
the cursor is moved down 6 lines, the padding value will be multiplied by 6.

There are two other arguments recognized in the “c-cup” (absolute cursor motion) control string.
These are the line and column to position to. The format of the argument specifications is as fol-
lows:

%ec [o]w]t

3.8-86/04/11-R3v5m0 Britton-Lee 2

MAKETERM (81) Britton Lee MAKETERM (81)

where the meta-characters have the following special meanings: ¢ is either ‘“x”, specifying that the
argument is the column, or “y” for the line. o (optional) is an offset to be added to the line or
column number, and is in the format of a decimal integer string followed by a “+” or a “-”. w
(optional) is a decimal integer indicating the width of the argument, in bytes. ¢t is either “b”,
specifying that the argument is to be interpolated as a binary byte, or “d”, specifying decimal
digits.
As an example, the “c-cup” string for an adm3a would be as follows:

\e=%y31+b%x31+b
The following specifications all work for the Concept avt:

\e[%yd;%xdH

\e|%y2d;%x2dH

\e[%y0+2d;%x0+2dH
Graphics

The graphic characters have a single character which may be a single-quoted character or an
integer representation followed by a series of flags:

gl Terminal must be in G1 mode
so Same as “gl”

g2 Terminal must be in G2 mode
g3 Terminal must be in G3 mode
g4 Terminal must be in G4 mode
g5 Terminal must be in G5 mode
g6 Terminal must be in G6 mode
g7 Terminal must be in G7 mode

G4 mode is reserved for Katakana mode.

In general, the terminal is normally in normal (GO) mode. When a special graphic is printed, it is
shifted into the mode specified by the terminal descriptor and then the specified translation is
printed. (Katakana characters are always shifted into G4 mode and are passed through
untranslated.) For example, the description “g2-tlc = 54 g6” would cause the terminal to be
shifted into G6 mode (as specified by the ‘“so-g6” string), the byte with value 54 to be sent, fol-
lowed by the appropriate shift-in string (‘“si-g6”).

EXAMPLE
#
Descriptor for VT100 terminal
#
flags= fancy
init= \e)Oo
reset= *X\i\e[Om
so-gl= \o
si-gl= \i
g2-tle= 108 so
g2-tre= 107 so
g2-ble= 109 so
g2-bre= 106 so
g2-lt= 116 so
g2-rt= 117 so
g2-tt= 119 so
g2-bt= 118 so

3.8-86/04/11-R3v5m0 Britton-Lee 3

MAKETERM (81)

SEE ALSO

g2-x=
g2-vb=
g2-hb=
g2-blotch=

lines=
cols=

e-primary=
e-bold=
e-faint=
e-italic=
e-under=
e-blink=
e-flash=
e-reverse=

c-cuf=
c-cud=
c-cuu=
c-cub=
c-cup=
c-clr=

iftterm(4I)

3.0-84/11/01-R3v5m0

110 so
120 so
113 so
097 so

24
80

\¢e[0m
\e[lm
\e[2m
\¢[3m
\e[4m
\e[5m
\¢e[6m
\¢[7m

%2p\e[C
%2p\e[B
%2p\e[A
%2p\e[D

Britton Lee

%5p\e|%yd;%xdH
%50p\e[1;1H\e[J

Britton-Lee

MAKETERM (81)

SGREP (8i) Britton Lee SGREP (8i)

NAME
sgrep — structured grep

SYNOPSIS
sgrep [—ooutput-spec | [—ccomment-char | [—ttab-char | [—dkeyword==default] selection-
criteria
ARGUMENTS
—ooutput-spec Set the output specification.

—ccomment-char

Set the comment character; “#” by default.
—ttab-char Set the character to be used to separate fields; comma by default.
—~dkeyword=default

Set a default value for a field name.

DESCRIPTION

Sgrep selects lines from the standard input and copies them to the standard output under control
of the output spec and the selection criteria.

The input is structured as a set of “keyword==value” pairs separated by ‘“tab characters”
(comma by default). There is no implied ordering of fields on a line. Alternative values can be
separated by vertical bars. For example, the input line

file==Makefile.m4, type=base | ext
will match selection criteria matching either “type=base’’ or ‘“type=ext.”

Lines are selected by a series of criteria of the form “keyword=pattern” where pattern is a list of
alternatives separated by vertical bars or is null (to match any line that has that keyword
present). Criteria may be combined using and, or, and not; the expression must be a disjunc-
tion of conjunctions. For example, the criteria:

type=Dbase and ver=2 or type=ext

will select all lines where the type field is “‘base” and the ver field is “2” or where the type field
is “ext.”

If an output spec is given, selected lines are formated. Characters are copied from the output
spec to the standard output except for field names enclosed in braces (“{ }”). For example, the
output spec:

—o’co -r{ver} {file}”

will output a series of RCS commands that can in turn be input to the shell. Some special field
names are supplied by sgrep. “{$input$}” is the input line as read; this is the default output spec.
“{$lineno$}” is the line number of the input. For example, to get a numbered list of all lines
that match, use:

—o’{$lineno$}: {$input$}’

It is an error to specify a field name in an output spec that is not in the input line. However,
defaults can be specified in the command line using the —d flag.

Lines in the input beginning with the comment-char (“#” by default) are ignored.

SEE ALSO
grep(1)

3.0-84/11/01-R3v5m0 Britton-Lee 1

¥ Britton

Bul Lee, Inc.

14600 Winchester Boulevard

Los Gatos, California 95030 -

(408)378-7000
Telex: 172-585

