
IDM SYSTEM/UNIX
SOFTWARE SPECIFICATION

BRITTON LEE, INCORPORATED

Britton Lee, ·Inc.

IDM SYSTEM/UNIX
SOFTWARE SPECIFICATION

FEBRUARY 1988
Part Number 205-1392-006

This document supercedes all previous documents. This edition is intended for use with software
release number 3.1> and future software releases, until further notice.

The information contained within this document is subject to change without notice. Britton Lee
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under license and may only be used or
copied by the terms or such license.

IDM, Intelligent Database Language, and IDL are trademarks of Britton Lee Inc.
UNIX, 3B2, 3B5 and 3B20 are trademarks of AT&T Bell Laboratories.
VAX and VMS are trademarks of Digital Equipment Corporation.
MVS is a trademark of International Business Machines.
PYRAMID is a trademark of Pyramid Technology Corporation.

COPYRIGHT© 1988
BRITTON LEE INC.

ALL RIGHT RESERVED
(Reproduction in any form is strictly prohibited)

COVERSHEET (01) Britton Lee COVERSHEET (01)

NAME
coversheet - a message to our readers

DESCRIPTION
This revision of the IDMLIB spec describes the final Product Release of Release 3.

I am somewhat embarrassed to realize that this spec uncovers so many internal aspects that it is
almost an internals document. The intent is that every attempt to use some facility should be
centralized in one routine (or family of routines). For example, itapeopts(3I) is intended for
minimal use, but all users of IDM tape options should use this routine.

NOTE: This is not a user document. It is intentionally terse to minimize
possible inconsistencies and to minimize the size of the document. Other
documents will be provided in the future directed for a user audience.

DEFICIENCIES
The following areas are known to be insufficiently addressed at the current time. They are
ranked in approximate priority order.

• A forms-based screen interface is a necessity.

• There should be some way of adjusting the output field format in the idl(ll) and aql(ll) prcr
grams.

IDS TORY
The following descriptions do not include sections that have changed because of minor editorial or
typographical changes.

3.5 PHI, UNIX/ULTRIX binary Product Release Version

intro(ll) Warning added that syntax errors in file specifications will cause the
remaining parameters to be ignored. More syntax checking has been
added to the Release 3.5 pextract(3I) routine.

idmckload(ll) New utility checks database and trasaction logs if running RDBMS
Software Release 3.5.

idmcklog(ll) New utility checks transaction log time stamps and verifies they are com­
plete.

idmconfig(ll) New menu-based IDM configuration utility.

idmcopy(ll) Many new RDBMS Software Release 3.5 features supported.

Copy in accepts •.d (names ending with a ".d") as the relation list for
convenience.

Page lock option avoids locking the whole relation during copy in.

idmdump(ll) Always send IDM tape error performance option to report soft tape
errors to user.

idmfcopy(ll) New 2 byte length variable length field syntax.

idmload(ll)

Page lock flag avoids locking the whole relation during copy in.

Always send IDM tape error performance option to report soft tape
errors to user.

idmxdbin(ll) New DBA utility to kill a hung dbin.

ric(ll)/rsc(ll) New $cancel command to cancel commands on the database server.
New $fetch feature for execution of user stored commands.

3.5-88/03/01-R3v5m8 Britton-Lee 1

COVERSHEET (01)

iecontrol(31)

iesetopt(31)

irget(3I)

itqstmt(31)

itxdbin(31)

keylook(31)

parsedate(31)

params(SI)

Britton Lee COVERSHEET (01)

New "mapcc" control to allow printing of control characters for Kanji.

Set options are now linked to the IDL/SQL command tree from the
environment when the tree is sent to the database server. Set options
are no longer linked into the command tree at parse time.

Add IP _OBIN field which returns dbin from idmrun structure.

New interface for fast tree building of query commands such as retrieve
or append.

Kill dbin tree builder for the idmxdbin(11) utility.

New binary keyword lookup interface.

Now accepts IDM time specifications in the format "idmtime <days> [
<ticks>]" where daya is an integer representing the number of days
since the epoch and ticka is an integer representing the number of 60ths
of a second since midnight.

MAPCO now controls printing of control characters in tupprint. Multi­
ple hashed message files added for MESSAGES using a comma separated
list. IDMSYSLINE is obsolete along with the serial multi-user kernel
driver.

3.4 PHI, UNIX/ULTRIX binary Product Release Version

intro(ll) Addition of IDM tape parameters verify and norcwind.

idl(ll) Auto-association of stored command definitions has been added. New
%redo command to reexecute the complete log of the user session. It is
no longer required to quote immediate commands containing special char­
acters. Better syntax error reporting.

idmdump(ll) Removed -r ftag. Added -or I m[cloek,waitcnt] ftags for doing online
(read/write) dumps.

re(11), ric(11)

sql(ll)

bytetype(31)

crackargv(31)

Re11amed re to ric.

New %redo command to reexecute the complete log of the user session.
It is no longer required to quote immediate commands containing special
characters. Better syntax error reporting.

Add ISZWIDTH and ISKANGI for kangi language support. Add
ISPMATCH to check for IDM pattern matching characters.

Default ftags added. The version (-V) ftag is useful to customers needing
the version number of the host software.

getclock(31), params(51)

exc(31)

New EPOCHOFFSET system parameter to change the IDMLIB epoch
(defaults to Jan 1, 1900).

A new handler excprbo was added which modifies the severity to "E'',
reraises the exception and backs out.

ifdump(31), irdump(31)

igeteot(31)

iftscan(41)

3.5-88/03/0l-R3v5m8

New routines to dump IFILE and IDMRUN structures respectively.

Allow the "n!" (n is a digit) on IDM tape transport prompting. If a '!' is
present then the tape volume name will not be verified.

added TK_INFO and giveinfo param to return token information. The
new "Of" (4 byte ftoat) and "Od" (8 byte float) radix specifications have

Britton-Lee 2

COVERSHEET (01) Britton Lee COVERSHEET (01)

been added.

3.3 SB/Pyramid-Binary Product Releaae Venion 1.

idl(ll),sql(ll) Added new flag -p to turn off reading of profile files.

rc{ll)

igetdone{31)

iftidm(41) and

params(51)

New -S flag to set the size of the symbol table. RC library librcrun.a
bas been merged into libidmlib.a. To compile re generated source files
use -lidmlib only.

IDM warning messages are not printed if there was an error on the data­
base server.

System parameter IDMDEV may now have the device name coded in
using a fileapec syntax. On UNIX users may omit "/dev /"from the dev­
ice name.

3.2 UNIX/ULTRIX Product Release Venion 1. Added A:IDMRUN.BADIDMRUN
and A:IDMRUN.RECOMPD.,E exceptions to all runtime interfaces (ir•{3l)) to check
for valid structures and version ids.

idl(ll)

idmdump(ll)

rc(ll)

sql(ll)

crackargv(31)

exc(31)

fmtfloat(3l)

idlparse(3I)

if tloterm(41)

iftterm(41)

irsql(31)

istdio(31)

sqlparse(3l)

params(51)

maketerm(SI)

Add the ? and I help and shell commands. Mark the char to the con­
tinuation command as being optional. Add the silent flag -· Document
the MAPCO map control character system parameter.

Added new flags -r and -w for no-read lock and wait options during the
dumping of a database.

(New page) Relational C precompiler.

(New page) SQL parser.

Exceptions with severity U: now exit with the RETCODE RE_USAGE.

Added ezccleanup. Added exception handler setting routine ezcahandle.
This macro ta.kes an argument to be passed to the handling functions.

Precision zero suppresses printing a decimal place. Useful for printing
BCD integers.

Input overflow for commands such as and no longer send data which
encountered a conversion overflow error.

(New page) Low level machine dependent file type.

Additions for cursor motion characters. Opens the lftLoTerm machine
dependent file type.

(New page) Runtime library interface to SQL.

(New page) Standard 1/0 compatability library.

(N~w page) Build query tree's from SQL program input.

Removed parameter CLOCKTICKS. Add parameter MAPCO to map
control characters in the IDL and SQL. Add parameter IDMVERSION
for the version software running on the database server.

Add cursor motion definitions. -C flag may be used to generate a
language source file rather than the binary data file.

3.1 PHI Product Release Vel"Sion 1. This revision includes many contenti-free changes in
the spec so that it will print nicely on our laser printer (yeah!!!).

3.5-88/03/01-R3v5m8 Britton-Lee 3

COVERSHEET (01) Britton Lee COVERSHEET (01)

idl(ll) Add %diapla7 command.

idmfcopy(ll) Change syntax of floating point precision specification from
ftoat.prec(/en) to float(len,prec) for aesthetic reasons.

exc(31)

ifgetc(31)

iferror(31)

ifputc(3I)

ifscrack(31)

intro(31)

bcdtoa(31)

dba(31)

dsc(31)

fmtclock(31)

fmtftoat(31)

ftoa(31)

getclock(31)

igeteot(31)

irclose(31)

itcopy(31)

itdefine(31)

mapsym(31}

parsedate(31)

xalloc(31)

iftidm(41)

Removed onbackout

The ifgetc macro IFGETC added.

Macro names iferror and ifeor are now capitalized.

The ifputc macro IFPUTC added.

Remove insistence on a file name for some file types.

Document foldcase mode in level 3 interface.

Arguments changed for compatibility with /toa(31) and to clean up the
interface.

Retract foldcase changes; these are only in level 3.

Added. This describes internal routines to manipulate descriptor-based
types that must be implemented during porting.

Broken oft' from getc/ock(31).

Broken oft' from /toa(31).

Arguments changed for compatibility with 6cdtoa(31) and io clean up the
interface.

Broken into three pages: /mtclock(31), getclock(3I), and paracdatc(31).

Add ifp and cnv parameters to itapcload.

Return value defined.

Retract foldcase changes; these are only in level 3.

Retract foldcase changes; these are only in level 3.

Add 'd' tag for done status bits.

Split oft' from getclock(3I).

A primitive technique has been added to recover from out of memory
conditions. Zero and negative sizes are specified.

Prompting for user name/password is now controlled by the
GETHUNPW parameter.

iftterm(41) Add ITG _BLOTCH.

params(51) GETHUNPW added.

symfile(51) Add 'd' tag for done status bits.

maketerm(8I) Add so and si sequences and gt-blotch character.

2.11 BetaC Prereleaae. Updates for (hopefully) the final modifications before product
release. Most of this falls into the class of "tuning."

intro(ll) Allow specification of volume lists for tape files.

idl(ll) Semicolon is an alias for "go." %continuation added. Profile files
added.

idmpasswd(ll) Added.

3.5-88/03/01-R3v5m8 Britton-Lee 4

COVERSHEET (01)

anyprint(31)

bcdtoa(31)

bitset(31)

dba(31)

exc(31}

foldcase(31)

ftoa(31)

getclock(31)

getpass(31)

iecontrol(31)

ieopen(31)

iesetopt(31)

irget(31)

irset(31)

itcopy(31)

Britton Lee COVERSHEET (01)

Anrprint now actually prints the output; anrfmt has been added to pro­
vide (essentially) the old semantics.

Separated from /toa(31); ftoa is environment dependent, while bcdtoa is
not.

Name changed to be upper case to emphasize that it is a macro.

Upper to lower case Colding added.

Add bocleanup.

Added.

Add documentation of fmtftoat; this routine can be used to simplify for­
mating. Bcdtoa broken off to a separate page.

Fmtclock now takes a timezone argument.

Resurrected.

Added.

Param& added.

Parameter order reversed for consistency.

IP _DMASK added. IP_ TREE now gets the entire tree.

IP _DMASK added. IP_ TREE now sets the entire tree. IP _CURSTMT
deleted.

Case folding added.

itdefine(31) Case folding added.

makefname(31) Added.

operator(31)

sysshell(31)

unsign(31)

intro(41)

iftidm(41)

if tltape(41)

iftscan(41)

ienv(5I)

Radically changed to support multiple language, multiple operators,
automatic tape loaders, different response characterstics, etc., etc.

Changed to not raise an exception if the exit status was not normal, but
rather to just pass it back to the calling program.

Name changed to be upper case to emphasize that it is a macro.

Changed semantics or _ioerr routine and _ioerr ifcontrol call.

Added parameter to id_ ioerr routine.

Allow specification of volume lists.

TK_DPARAM added.

Je_ftag& field added.

2.10 BetaB Prereleaae. Support for different wording for different query languages in mes­
sages added (e.g., "relation" for IDL, "table" for SQL). Some changes as indicated by a
detailed code walkthrough.

intro(ll) Document QRYLANG parameter.

intro(31) Drop GDEF and GREF; these have been unused and do not have quite
the right semantics anyhow.

anyprint(31)

bintoa(31)

3.5-88/03/01-R3v5m8

Added.

Add overflow exception.

Britton-Lee 5

COVERSHEET (Ol)

bytetype(31)

dba(3l)

iesetopt(3l)

iesubst(3I)

if control(31)

igetdone(31)

itcopy(31)

itdefine(31)

itxcmd(31)

intro(41)

ifthfile(41)

iftifile(41)

iftkeyed(41)

iftltape(41)

iftmtext(41)

messages(51)

retcode(51)

buildmsgs(81)

Britton Lee COVERSHEET (01)

Formerly ctype(31}; macro names are now upper case.

Add env parameter to all routines.

Added.

Now returns a RETCODE.

Truncate control changed to rewrite; dio changed to _dio (to
emphasize that it is reserved for internal use). Flushblock control
added for blocked files.

Restrict abortable errors from 128-191 (i.e., 192-255 are no longer front
end errors) so the IDM group has room for more user errors.

Pass env parameter.

Pass env parameter.

Pass env parameter.

Dio changed to _dio; truncate changed to rewrite; flushblock added.

Truncate changed to rewrite.

Truncate changed to rewrite.

Formerly lftHash(4l). Exception names changed for consistency.

Reset and rewrite controls now give an error if they are ·not supported.

Add language flags.

Change syntax to allow for language flags and clean up experience map­
ping.

RW _IGNORED added.

Allow for language flags.

2.9 Environments added to include the range and substitute tables for precompiler support.
Default exception handlers added. Support for IDM passwords added.

idl(ll)

intro(31)

exc(31)

getpass(31)

gethunpw(31)

idlparse(31)

ieopen{31)

iesubst(3I)

ifcontrol(3I)

igetdone(3I)

igeteot(3l)

iputtree(31)

3.5-88/03/0l-R3v5m8

%experience and %substitute commands added. -E flag changed to
-e; -E should be reserved for the experience level. -1 flag added.

Stdtrc added. Added description of environments. Global variable
DoneMask deleted; De/Env added.

Ezcdhandle added.

Deleted.

Added.

Env parameter added.

Added.

Renamed from itsubst(3I). Old tree parameter is now the env parameter.

Rbf parameter changed to _rbf to emphasize that it is not for use by
normal users.

Env parameter added.

Env parameter added.

Env parameter added. Exception E:IDMLIB.IDM.NOTSUB changed to
E:IDMLIB.IDM.SUB.NEEDV AL for consistency with other substitution

Britton-Lee 6

COVERSHEET (01)

irclose(31)

irget(31)

iropen(31)

irset(31)

irsubst(31)

itlprint(31)

itprint(31)

itsubst(3I)

tupprint(31)

intro(41)

iftidm(41)

iftscan(41)

ienv(5I)

retcode(5I)

vinodb{8I)

Britton Lee COVERSHEET (01)

message names. E:IDMLffi.IDM.SUB.TYPE and
E:IDMLffi.IDM.SUB.V AL now raised from ipttttree instead of from
itaubat(31). Special casing of open databue command added.

Interaction with environment documented.

IP _ENV added.

Dbname parameter added. Interaction with environment documented.

IP _ENV added.

Change to interact with ieaubat(3I) instead of itaubat(3I).

Added.

Prints on atdtre instead of atdout.

Renamed to ieaubat(31).

Added env parameter to tupaetup to (someday) hold default print formats
for domains.

Rbf parameter renamed _rbf to emphasize that it is not for use by user
programs.

R:IDMLffi.IDM.GETHUNPW exception added.

TK_EOL token added for SQL ad hoc parser. Added TK_PSEUDO.

Added.

Dropped RW _NOSUB.

Dropped.

2.8 BetaA Prerelease. Minor updates to version 2.7

irparse(31) has been changed to iridl(31).

2.7 Update for the BetaA prerelease.

intro(ll) Default mode on tapes changed.

idmfcopy(ll) -w flag added. Use or type(text) specified.

idmrollf(ll)

inittape(11)

bcopy(31)

bintoa(31)

crackargv(3I)

dba(3I)

exc(3I)

getclock(31)

helpsys(31)

if control(31)

3.5-88/03/01-R3v5m8

The log is really in wdbname.

-i flag added.

STRUCTASGN added.

Atobin added.

Usage messages changed to U: severity.

Names of dump and load routines changed to fit on machines with six­
character external names.

U: severity added. Mappings between UNIX signals and exceptions
added.

IDMTOTICKS and TICKSTOIDM added. DLtieka field changed from a
long to a short. Correspondence to IDM time and date clarified.

Command syntax changed to be consistent with idl(ll).

Geterr control added.

Britton-Lee 7

COVERSHEET (01)

ifclose(31)

imush(31)

ifopen(31)

igeteot(31)

irxcmd(31)

itrange(31)

onexit(31)

sysedit(31)

syserr(31)

tf(31)

if thfile(41)

iftidm(41)

if tifile(41)

iftltape(41)

iftscan(41)

if tstring(41)

iftterm(41)

iftype(41)

intro(SI)

retcode(51)

symfile(51)

intro(81)

Britton Lee COVERSHEET (01)

The remove control changed to _delete to emphasize that it is for
internal use only.

Interaction with record-based files clarified.

Autocloae parameter added.

ltapeload added.

Added.

Dropped.

Restriction on number of calls removed.

Second parameter dropped.

Catastrophic versus recoverable syserr's identified. Syntax of messages
specified.

DPRINTF added.

Delete control changed to _delete. Predisposition parameter added.

Semantics of id_ reopen defined.

Delete changed to _delete.

Largely rewritten. Gen, gver, offset, expiration, and fQrmat parame­
ters added. Newfile control added.

Mark control dropped.

Mark control dropped.

Converted to ANSI specifications.

renamed intro(4I); remove changed to _delete.

Added.

RW _NOSUB added.

User defined symbols specified.

Added.

dumptape(81) Added.

inittape(81) Moved from section 11.

maketerm(81) Added.

porting(SI) Dropped.

Histories for versions prior to Beta release have been removed.

ASSISTANCE AND FEEDBACK
For assistance with the release, please contact Britton Lee Customer Support at (408) 37S.7000.

3.10-87 /12/01-R3v5m7 Britton-Lee 8

INTRODUCTION (OI) Britton Lee INTRODUCTION (01)

NAME
Britton Lee Integrated Database Management Host Software Release 3 Introduction and Sum­
mary

DESCRIPTION
Section 11 documents commands, i.e., operations that the user can invoke directly, without the
use or a programming language or special interpreter. In this spec the pages are specific to
UNIX, although all commands run on all systems unless otherwise noted. Section 31, describes
IDMLID. File types are assigned to section 41. Section 51 describes various file and data struc­
tures. Installation and operation information are relegated to section 8I.

References to other pages within this spec are given as name(nI), where name is the name or the
page and nl is the section in which it is found. References such as name(n) are to the UNIX
Progrommer'a Manual.

PHil..OSOPHY

BUGS

Several philosophical points will facilitate the understanding of IDMLIB and this document.

• IDMLIB contains a complete runtime environment. Modules that must be modified to move
to a new architecture or operating system are extremely limited; all other modules are
intended to be completely portable between environments. This environment attempts to
provide a reasonable set or primitives without becoming a superset or every operating sys­
tem.

• Essentially all functionality is located in the library. That is, Britton Lee-supplied utilities
are most often just calls to library routines, rather than being complex modules themselves.
This centralizes code at the cost of making the library quite large. Fortunately, no program
has to link the entire library.

• IDMLIB is layered. At the bottom layer are buffered 1/0 primitives; these will not be exten­
sively used by application programs. On top of this is an interface layer to the shared data­
base system. This defines basic data structures such as trees, target lists, etc, and is called
the "system interface." It is used by most Britton Lee-supplied utilities. It is flexible but
requires considerable sophistication to use. Above the system interface is the "application
interface." This level simplifies the interface for application software.

• Bindings are normally dynamic. Decisions are put off until quite late. For example, the
default size or an 1/0 buffer is determined at run time rather than compile time. This is
intended to maximize flexibility and portability.

The BUGS section describes quirks or the environment-independent implementation that cannot in
good conscience be called "features" but which are not expected to change due to the high cost or
solution. However, these should not be relied on either. Britton Lee reserves the right to change
these semantics at any time without notice.

SEE ALSO
S'l/dem Programmer'a Manual, Britton Lee part number 205-2088-rev, for a description of the
semantics or database server symbols, error codes, etc. This document is ref erred to as SPM in
the remainder of this spec.

IDL Primer (Britton Lee· part number 205-1024-rev). A tutorial introduction to the IDL
language.

BL700 Inatallation Manual, Britton Lee part number 200-1077-rev.
Installation/Operation Manual Britton Lee part number 205-1568-rev.

BL700 Operation Manual Britton Lee part number 201-1078-rev.

3.10-87 /12/0l-R3v5m7 Britton-Lee

or BL300

1

INTRODUCTION (Ol) Britton Lee INTRODUCTION (01)

Hoat Software Coding Standarda for the Britton Lee coding standards for host software in this
release.

UNIX Programmer'a Manual for references of the form name(n). References such as name(nl)
refer to this spec.

Hoat Software Meaaa.ge Summary (IDL Veraion), Britton Lee part number 205-1432-rev, for a list
of error messages returned by the IDL query language.

Hoat Software Meaaa.ge Summary {SQL Veraion}, Britton Lee part number 205-1421-rev, for a list
of error messages returned by the SQL query language.

A Guide to Writing an IDM DetJiee Driver, Britton Lee part number 205-1150-rev.

3.2-86 /09 /09-R3v5m0 Britton-Lee 2

PTX (01) Britton Lee PTX (01)

NAME
ptx - perniuted index

CONTENTS
R2toR3 - convert Release 2 source to Relea&e 3 .. r2tor3(1i)

- convert Release 2 source to Release 3 R2toR3 .. r2tor3(1i)
Management (IDM)/ Introduction to Release 3 Britton Lee Integrated Data.base lintro(li)

Data.ba.se Management Host Software Release 3 Introduction a.nd Summary fLee lntegr~d Obinintro(Oi)
- defa.ult .m getpara.m (31) para.meter file /uar/lib/idm/para.ma para.ms(5i)

syaerr - print a. fatal system error a.nd a.bort .. syserr(3i)
irdesc - get type a.nd na.me informa.tion a.bout a. retriend target-list element irdesc(3i)

idmhelp - a.ccess the IDM Help Subsystem idmhelp{li)
Da.ta.base La.nguage) parser idl - Ad hoc intera.ctive IDL (Intelligent idl{li)

ita.ddopts - add options bytes to a. tree ita.ddopts(3i)
itrollf - build trees for da.ta.base administra.tion functions /ittxloa.d, dba(3i)

Comma.nds a.nd Procedures Introduction to Administra.tive a.nd Ma.chine-Dependent 8intro(8i)
freempool, showmpool - main memory alloca.tor /'d.ree, newmpool, mergempool,. xalloc{3i)

bcdtoa. - BCD to alpha. conversion .. bcdtoa(3i)
bintoa., a.tobin - binary to alpha. conversion .. bintoa(3i)

ftoa. - Boa.ting-point to alpha. conversion .. rtoa(3i)
a.tobcd - alpha. to BCD conversion .. a.tobcd(3i)

idmda.te - set the da.te a.nd/or time on the shared data.base system idmda.te(li)
IftLTa.pe - ANSI la.beled ta.pe Ille type iftlta.pe{-ti)

a.nsita.pe - write files on a.n ANSI sta.ndard la.belled ta.pe a.nsita.pe(Si)
initta.pe - initialize ANSI sta.ndard la.belled ta.pe initta.pe{Si)

dumpta.pe - report on contents of a.n ANSI ta.pe ... dumpta.pe(Si)
sta.ndard la.belled ta.pe ansita.pe - write Illes on a.n ANSI a.naita.pe{Si)

a.nyprint, a.nyfmt - print or rorma.t a.ny possible type ror printing a.nyprint(3i)
type for printing a.nyprint, a.nyfmt - print or rorma.t a.ny possible a.nyprint{3i)
possible type for printing a.nyprint, a.nyfmt - print or format a.ny a.nyprint(3i)

message cra.ckargv, usage - ta.ke a.part a.n argument vector or print a. usage cra.ckargv(3i)
idmcklog - verify IDM tra.nsa.ction logs are complete a.nd print their time sta.mps. idmcklog(li)

isforegnd - are we in foreground (intera.ctive)! isforegnd(3i)
cra.ckargv, usage - ta.ke a.part a.n argument vector or print a. usage message era.ckargv(3i)

bcddiv, bcdmult, bcdcmp, bcdround - BCD arithmetic bcda.dd, bedaub,. bcd(3i)
irxcmd, irxprog, irxsetp - arra.nge to execute a. stored comma.nd irxcmd(3i)

with the system opera.tor tellopera.tor, ask.opera.tor, huopera.tor - communicate opera.tor(3i)
ASSERT - nrify llxpoints in a. progra.m assert(3i)
a.tobcd - alpha. to BCD conversion a.tobcd{3i)

bintoa., a.tobin - binary to alpha. conversion bintoa(3i)
to numbers a.tor, a.toe, a.to! - convert chara.cters a.tor(3i)

a.tor, a.toe, a.to! - convert chara.cters to numbers a.tor(3i)
numbers a.tor, a.toe, a.to! - convert chara.cters to a.tor(3i)

ifungetc - put a. chara.cter ba.ck into input bull'er ... ifungetc(3i)
procedures using idmdum.p, idmloa.d, a.nd/ ha.ck.up - Shared data.base system ha.ck.up ba.ckup(Si)

a.nd/ ba.ckup - Shared data.base system ba.ckup procedures using idmdump, idmloa.d, ba.ckup(Si)
bcddiv, bcdmult, bcdcmp, bcdround - BCD arithmetic bcda.dd, bcdsub,. bcd{3i)

a.tobcd - alpha. to BCD conversion .. a.tobcd(3i)
bcdftobcd, bcdtobcdf - BCD conversion .. bcdtobcdf(3i)

bcdtoa. - BCD to alpha conversion .. bcdtoa(3i)
bcdtol, ltobcd - BCD to long integer conversion bcdtol{3i)

bcdround - BCD arithmetic bcda.dd, bedaub, bcddiv, bcdmult, bcdcmp, bcd(3i)
bcda.dd, bcdsub, bcddiv, bcdmult, bcdcmp, bcdround - BCD uithmetic bcd(3i)

arithmetic bcda.dd, bcdsub, bcddiv, bcdmult, bcdcmp, bcdround - BCD bcd{3i)
bcdftobcd, bcdtobcdf - BCD conversion bcdtobcdf(3i)

arithmetic bcda.dd, bcdsub, bcddiv, bcdmult, bcdcmp, bcdround - BCD bcd(3i)
bcda.dd, bcdsub, bcddiv, bcdmult, bcdcmp, bcdround - BCD arithmetic bcd{3i)

- BCD arithmetic bcda.dd, bedaub, bcddiv, bcdmult, bcdcmp, bcdround ..••••... bcd(3i)
bcdtoa. - BCD to alpha. conversion•...•••.•••.••..... bcdtoa(3i)

bcdftobcd, bcdtobcdf - BCD conversion ...•........•..•.•.••••••.••.•.. bcdtobcdf(3i)
conversion bcdtol, ltobcd - BCD to long integer bcdtol(3i)

set, or zero a block of memory bcopy, bllll, bzero, STRUCTASGN - copy, beopy{3i)
idmcopy - copy rela.tion(s) between the da.ta.base server a.nd the host idmcopy(li)

idmrea.d, idmwrite - rea.d/write Illes between the host a.nd the shared data.base/ idmrea.d{li)

3.2-86 /09 /09-R3v5ni0 Britton-Lee 1

PTX (01) Britton Lee PTX (01)

or zero 11. block or memory bcopy, bllll, bzero, STRUCTASGN - copy, set, bcopy(3i)
keylook, uaage - perrorm bina.ry sell'ch on 11. ginn table keylook(3i)

bintot., t.tobin - binll'y to alpha conversion bintoa(3i)
list elements irbind - bind program Vll'iablea to retrieved tll'get irbind(3i)

conversion bintot., t.tobin - binary to alpht. bintoa(3i)
BITSET - teat to see ir a bit ia set•..............•.............. bitset(3i)

UNSIGN - remove sign-extension bits rrom 11. byte•.....................•.........•..•..•.•...... unsign(3i)
BITSET - teat to see iC a bit is set bitset(3i)

STRUCTASGN - copy, set, or zero 11. block or memory bcopy, bllll, bzero, bcopy(3i)
irread - read a block or memory ... irread(3i)

ifwrite - write It. block or memory ... ifwrite(3i)
igeteot, itapeload - get DONE blocks until end or IDM t11.pe igeteot(3i)

/ excalock, excaunlock, excclet.nup, boclet.nup - exception t.nd message ht. exc(3i)
IrtScan, TK_PSEUDO - break t.n input stream up into tokens iftscan(4i)

- put 11. character back into input bull'er ifungetc .. ifungetc(3i)
itqstmt - build a tree for It. general query statement ············· itqstmt(3i)

node itnode, itvll', itroot - build t.n IDM tree node, VAR node, or ROOT itnode(3i)
buildmsgs - build keyed message text Ille buildmsgs(Si)

idlparse, idl!parse - build query trees from IDL program input idlparse(3i)
sqlparse, sqlfparse - build query trees rrom SQL program input sqlparse(3i)

it.copy - build tree ror bulk copy runction ··························· itcopy(3i)
/ittxdump, itdbload, ittxload, itrollf - build trees for database administration/ dbt.(3i)

itxcmd, itxprog, itxsetp - build trees to execute stored/ itxcmd(3i)
· buildmsgs - build keyed message text Ille buildmsgs(Si)

it.copy - build tree ror bulk copy function•............. itcopy(3i)
- remove sign-extension bits Crom 11. byte UNSIGN .. unsign(3i)

JFGETC, ifgetc - get t. byte from a Ille ... ifgetc(3i)
JFPUTC, ifputc - put 11. byte to t. Ille .. ifputc(3i)

xdump - dump bytes in hexadecimal to standll'd trace xdump(3i)
itaddopts - add options bytes to a tree ... itaddopts(3i)

t. block or memory bcopy, bllll, bzero, STRUCTASGN - copy, set, or zero bcopy(3i)
ric - precompiler tor embedding IDL in C .. ric(li)

rsc - precompiler ror embedding SQL in C .. rsc(li)
sysedit - call system editor on a ftle sysedit(3i)

structure irct.ncel - cucel current operations on t.n IDMRUN ircucel(3i)
foldcase - rold upper to lower case in It. string .. roldcase(3i)

Irtldm - IDM cht.nnel ftle type .. irtidm(4i)
ifungetc - put a chll'acter back into input buffer irungetc(3i)

ISKANJI, TOCHAR, TOUPPER, TOLOWER - chll'acter classillca /ISPMATCH, ISZWIDTH, bytetype(3i)
&.tot, a.tos, t.tol - convert chll'acters to numbers .. a.tof'(3i)

irnext - check for next executed statement irnext(3i)
conversion typecnvt, cktypecnvt - generalized type typecnvt(3i)

TOCHAR, TOUPPER, TOLOWER - chll'acter classiftct. /ISPMATCH, ISZWIDTH, ISKANJI, bytetype(3i)
fRETWARNING, RETERROR - get, clell', set, classify, or interpret error codes geterr(3i)

iesetopt, ieclropt - set or clear options .. ieaetopt(3i)
/RETSUCCESS, RETWARNING, RE'.fERROR - get, clell', set, classify, or interpret error/ geterr(3i)

Make - clever interface to make(l) make(8i)
IDMTOTICKS, TICKSTOIDM -/ get.clock, clocktodate, datetoclock, dilJclock, getclock(3i)

ifclose - close 11. Ille .. irelose(3i)
irclose - close an IDMRUN structure irclose(3i)

ieopen, ieclose - open and close IENV'a (IDM environments) ieopen(3i)
RETSUCCESS, RETWARNING, RETERROR/ get.err, clrerr, seterr, errstring, errclass, geterr(3i)

retcode - return/status/error code ... retcode(Si)
clell', set, classify, or interpret error codes /RETWARNING, RETERROR - get, geterr(3i)

irlluah - flush tuples for current command ... irllush(3i)
irxaetp - ll'range to execute a stored command irxcmd, irxprog, irxcmd(3i)

itdeftne - create tree ror deftne command ... itdeftne(3i)
sysshell - execute system command ... syaahell(3i)

Database Management (IDM) support commands /Release 3 Britton Lee Integrated......... liatro(li)
to Administr&tive t.nd Machine-Dependent Commt.nds t.nd Procedures Introduction 8intro(8i)

itxsetp - build trees to execute stored commt.nds/progrt.ma itxcmd, itxprog, itxcmd(3i)
/askoperator, haso1>erator - communic&te with the system operator opert.tor(3i)
idmtokens - values or IDM communic&tion tokens .. idmtokens(Si)

libistdio.a. - atandll'd 1/0 compatibility library ... istdio(3i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 2

PTX (01) Britton Lee PTX(01)

maketerm - compile a terminal deacript.or maketerm(8i)
/-verify IDM transaction lop are complete and print their time stamps idmcklog(li)

matername - make Ille name rrom components ... matername(3i)
dumptape - report OD contents or an ANSI tape dumptape(8i)

onexit, olexit - transrer control on exit•.........•.......•.•••••••.•••••.••.... oaexit(3i)
iecontrol - perrorm control operations on eDTironments iecontrol(3i)
ifcontrol - perrorm control operations on Illes•.••.••..••.••.•• itcontrol(3i)

atobcd - alpha to BCD conversion ..•...•....•...... atobcd(3i)
bcdtoa - BCD to alpha conversion•... bcdtoa(3i)

bcdl'tobcd, bcdtobcdr - BCD conversion ...•.. bcdtobcdl'(3i)
bcdtol, ltobcd - BCD to long integer conversion .. bcdtol(3i)

bintoa, atobin - binary to alpha conversion ...•.. bintoa(3i)
l'toa - floating-point to alpha conversion .. l'toa(3i)

parsedate - free-rormat date/time COnYersion .. parsedate(3i)
sprintr, tprintr - rormatted output conversion printr, irprintf,.. printl'(3i)

typecnvt, cktypecnvt - generalized type conversion .. typecnvt(3i)
- descriptor-based type (iDSC) conversion boob _dsctoidm, _idmtodac .. ~.............. dsc(3i)

a.tor, atos, atol - convert characters to numbers ator(3i)
BJ'Dt&x to .ric (RIC/ ldel2ric - convert .idm (IDEL precompiler input) idel2ric(li)

R2toR3 - convert Release 2 source to Release 3 r2tor3(1i)
representations itiutree, ituitree - connrt to and rrom user tree (UTREE) utree(3i)

idmrcopy - format and copy data to or from a relation idmfcopy(li)
itcopy - build tree for bulk copy function•..................................... itcopy(3i)

eerver and the host idmcopy - copy relation(s) between the database idmcopy(li)
bcopy, bllll, bzero, STRUCTASGN - copy, aet, or zero a block or memory bcopy(3i)

coversheet - a meaaage to our readers Ocover(Oi)
irscrack, irstype - crack Ille apeciftcation string•..........•... irscrack(3i)

argument vector or print a usage meuage crackargY, usage - take apart an•... crackargY(3i)
tempname - create a unique Ille name .. tempname(3i)

itdeftne - create tree for deftne command itdeftne(3i)
irftusb - lush tuples ror current command•... irflush(3i)

ircancel - cancel current operations on an IDMRUN structure ircancel(3i)
idmidyd - IDM XNS identiry daemon .. idmidyd(8i)

- verify database or transaction log data Illes idmckload•.................. idmckload(li)
Introduction to Ille and data rormata. ... 6intro(oi)

ITREE - IDM tree data structure•......................•................•........... itree(Oi)
idmfcopy - rormat and copy data to or from a relation•............................. idmrcopy(li)

/ittxload, itrollf - build trees for database administration functions .•........................ dba(3i) ·
idmdump - dump database and transaction log ..•................•....••........ idmdump(li)

idl - Ad hoc interactive IDL (Intelligent Database Language) parser•........ idl(li)
3 Introduction and/ Britton Lee Integrated Database Management HOit sort.ware Release Obinintro(Oi)

/to Release 3 Britton Lee Integrated Database Management (IDM) support commands . lintro(li)
idmload - load database or t.ranaaction log•.•.•.•...•..•.•.•.••••••••••••.. idmloe.d(li)

idmckload - verify database or transaction log data Iles ...•................. idmckload(li)
ERROR, MEASURE, and DONE packets from the database se"er igetdone - read•..•.......•...... igetdone(3i)

itlfree - read a target lilt from a database ae"er igettl, .•.........................•.................. igettl(3i)
iputtree - put a tree to the database ae"er ... iputtree(3i)

- put a tuple from a target list to the database se"er iputtup.. iputtup(3i)
idmcopy - copy relation(s) between the database aerver and the ba1t•.......•..... idmcopy(li)

igettup - get a tuple from a database server into a target list igettup(3i)
- set the date and/or time on the shared database syatem idmdate ... idmdate(li)

Iles between the ha1t and the shared databue BJ'ltem /idmwrite - read/write................. idmread(li)
idmdump, idmload, and/ backup - Shared database system backup procedures using backup(8i)

idmpasswd - aet password in the shared databue system login relation••......... idmpasswd(li)
system idmdate - set the date and/or time on the shared database ...•.......... idmdate(li)
paraedate - free-format date/time conversion•...........••.•....••••••..••••••.•.• pvsedate(3i)

ditrclock, IDMTOTICKS, TICKSTOIDM - date/time manipulation /datetoclock, ...•••••••••••••••••• 1etclock(3i)
fmtclock, fmtdate, fmtintvl - date/time output formatting fmtclock(3i)

TICKSTOIDM-/ getclock, clocktodate, datetoclock, dilclock, IDMTOTICKS, ptclock{3i)
- dump an IDMLIB Ille pointer for debugging irdump ..•..•......................•.....••••••.•••••••••••• itdump(3i)

irdump - dump an IDMRUN structure ror debugging .. irdump(3i)
- print IDM target lilt (ITLIST) for debugging itlprint ... itlprint(3i)

itprint - print a tree ror debugging .. itprint(3i)
/usr/lib/idm/params - default .IR getpara.m (31) parameter lie para.ms(Oi)

3.2-86 /09 /09-R3v5m0 Britton-Lee 3

PTX (01) Britton Lee PTX (01)

IENV, Del'Env - IDM environment ienv(5i)
itdefloe - create tree for define command .. itdeflne(3i)

IODEFS - Input/output flag defloitiona .. iodefs(5i)
ITLIST - IDM target list descriptor .. itliat(5i)

maketerm - compile a terminal descriptor .. maketerm(8i)
hooks _dactoidm, _idmtodac - descriptor-baaed type (iDSC) conversion dac(3i)

getclock, clocktodate, datetoclock, ditfclock, IDMTOTICKS, TICKSTOIDM -/ getclock(3i)
string stredit - do sophisticated output editing or numeric stredit(3i)

igeteot, itapeload - get DONE blocks until end or IDM tape igeteot(3i)
igetdone - read ERROR, MEASURE, and DONE packets Crom the databaae server igetdone(3i)

IDONE - IDM DONE token ... idone(5i)
trset, tr, tflev, DPRINTF - trace package tl'(3i)

type (iDSC) conversion books _dsctoidm, _idmtodac - descriptor-based dsc(3i)
itdump - dump an IDMLm Ille pointer Cor debugging ifdump(3i)
irdump - dump an IDMRUN structure Cor debugging irdump(3i)

trace xdump - dump bytes in hexadecimal to standard xdump(3i)
idmdump - dump database and transaction log idmdump(li)

tape dumptape - report on contents or an ANSI dumptape(Si)
atredit - do sophisticated output editing or numeric string .. stredit(3i)

sysedit - call system editor on a Ille ... sysedit(3i)
information about a retrieved target-list element irdeac - get type and name irdesc(3i)

program variables to retrieved target list elements irbiod - bind... irbind(3i)
ric - precompiler Cor embedding IDL in C ... ric(li)
rsc - precompiler Cor embedding SQL in C .. rsc(li)

itapeload - get DONE blocks until end or IDM tape igeteot,.. igeteot(3i)
IENV, Del'Env - IDM environment ... ienv(5i)

- perform control operations on environments iecontrol ... iecontrol(3i)
ieclose - open and close IENV's (IDM environments) ieopeo, .. ieopen(3i)

iesubst - perform substitutions in environments ... iesubst(3i)
-/get.err, clrerr, aeterr, errstring, errclass, RETSUCCESS, RETWARNING, RETERROR geterr(3i)

syserr - print a fatal system error and abort .. syserr(3i)
get, clear, set, classify, or interpret error codes /RETWARNING, RETERROR - geterr(3i)

database server igetdone - read ERROR, MEASURE, and DONE packets from the igetdone(3i)
RETWARNING,/ get.err, clrerr, set.err, errstriog, errclass, RETSUCCESS, geterr(3i)

/excprint, excCprint, excbackout, excprbo, excabort, excalock, excaunlock,/ exc(3i)
excvraise, excigoore,/ exchandle, excahandle, excdhandle, excraise, exc(3i)

/excfprint, excbackout, excprbo, excabort, excalock, excaunlock, exccleanup,/ exc(3i)
/excbackout, excprbo, excabort, excalock, excaunlock, exccleanup, bocleanup -/ exc(3i)
/excvraise, excignore, excpriot, excfpriot, excbackout, excprbo, excabort, excalock,/ exc(3i)
/excprbo, excabort, excalock, excaunlock, exccleanup, bocleanup - exception and/ exc(3i)

excignore,/ exchandle, excahandle, excdhandle, excraiae, excvraiae, exc(3i)
excaunlock, exccleanup, bocleanup - exception and mesaage ha /excalock, exc(3i)

/excrajae, excvrajae, excigoore, excpriot, excfprint, excbackout, excprbo, excabort,/ exc(3i)
excraise, excvraiae, excigoore, excprint,/ exchandle, excahandle, excdhandle, exc(3i)

/excdbandle, excraiae, excvrme, excigoore, excprint, exctprint,/ exc(3i)
/excpriot, excfpriot, excbackout, excprbo, excabort, excalock, excaunlock,/ exc(3i)

exca.bort,/ /excrajse, excvraise, excigoore, excprint, excfprint, excbackout, excprbo, exc(3i)
exchandle, excahandle, excdhandle, excraiae, excvraiae, excignore, excprint,/ exc(3i)
/excahandle, excdhandle, excraise, excvrajse, excignore, excprint, excfprint,/ exc(3i)

irxcmd, irxprog, irxaetp - arrange to execute a stored command irxcmd(3i)
irexec - execute parsed IDL statements irexec(3i)

itxprog, itxaetp - build trees to execute stored commands/programs itxcmd, itxcmd(3i)
sysahell - execute system command sysahe11(3i)

irnext - check ror next executed statement ... irnext(3i)
onexit, otfexit - transfer control on exit .. onexit(3i)

exit - terminate program exit(3i)
pextract - extract parameter value Crom list pextract(3i)

syserr - print a Cata! system error and abort ayserr(3i)
irCetch - Cet.ch a retrieved tuple .. irCetch(3i)

buildmsga - build keyed message text file .. buildmsga(8i)
iCclose - close a Ille .. irclose(3i)
ifflusb - flush a Ille .. ifllusb(3i)

IFGETC, iCgetc - get a byte Crom a file .. iCgetc(3i)
iCgets - get a line from a text Ille .. ifgets(3i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 4

PTX (01) Britton Lee PTX (01)

ifopen - open a file .. iropen(3i)
IFPUTC, irputc - put a byte to a file .. ifputc(3i)

ifputs - put a string on a text file ...•..•....... ifputs(3i)
iputtl - write a target list to a file .. iputtl(3i)

- derault .IR getpararn (3I) parameter ftle /usr/lib/idm/pararns .. params(5i)
- symbol to integer YBlue mapping ftle /uar/lib/idm/symfile•...•..... aymftle(5i)

sysedit - call system editor on a ftle .. sysedit(3i)
- XNS host name mapping file /usr/lib/idm/xnshosts .. xnshosts(5i)

Introduction to file and data rormat.s. .. 6intro(5i)
IrtHFile - host file file type ... in.hfile(4i)
IrtlFile - IDM file file type ... irt.iflle(4i)

meBBages - meBBages file rormat meBSages(5i)
tempname - create a unique Ille name .. tempname(3i)

mabfname - make file name from components m&kername(3i)
ifdump - dump an IDMLIB file pointer for debugging .. ifdump(3i)

ifscrack, ifstype - crack file specification string .. ifscrack(3i)
IFERROR, ifeor, IFEOR - file status inquiries .. iferror(3i)

IrtHFile - host file file type ... il\hflle(4i)
Irtldm - IDM channel file type ... il\idm(4i)

IrtlFile - IDM file file type ... iftiflle(4i)
IrtKeyed - keyed host file type ... iftkeyed(4i)

IrtLoTerm - physical terminal file type ... il\loterm(4i)
lltLTape - ANSI labeled tape file type ... iftltape(4i)

IrtMText - MeBBage-text file type ... iftmtext(4i)
IrtString - in-core string file type ... il\string(4i)

11\Term - terminal file type ... iftterm(4i)
IDM file type introduction and implementation 4intro(4i)

- verify databue or transaction log data files idmekload .. idmckload(li)
- perform control operations on files ifcontrol... ifcontrol(3i)

macros ror RIC and RSC precompiler source files /INITRSC, RCDEVICE, RCDBNAME - initre(3i)
- subroutine for RSC and RIC source files recount .. recount(3i)

database/ idmread, idmwrite - read/write files between the host and the shared idmread(li)
ansitape - write files on an ANSI standard labelled tape anaitape(Si)

ASSERT - verify flxpoints in a program ... usert(3i)
IODEFS - Input/output flag definitions ... ioders(5i)

tmtfloat - internal floating-point output formatting routine fmtfloat(3i)
ftoa. - floating-point to alpha conversion rtoa{3i)

iftlush - flub a file .. iftlush(3i)
irflusb - flub tuples for current command irfluh(3i)

output formatting tmtclock, tmtdate, fmtintvl - date/time rmtclock(3i)
formatting tmtclock, fmtdate, rmtintvl - date/time output tmtclock(3i)

output formatting routine rmtfloat - internal floating-point tmtfloat(3i)
tmtclock, fmtda.te, fmtintvl - date/time output formatting fmtclock(3i)

foldcue - fold upper to lower case in a string foldcue(3i)
a string foldcase - told upper to lower case in toldcase(3i)

iaforegnd - are we in foreground (interactive)! ... isforegnd(3i)
meBBages - meBBages file format ... messages(5i)

idmfcopy - format and copy data to or from a relation idmfcopy(li)
anyprint, anyfmt - print or format any possible type for printing anyprint(3i)
Introduction to file and data formats. ... 6intro(5i)

printf, irprintf, sprintf, tprintf - formatted output conversion printr(3i)
fmtdate, rmtintvl - date/time output formatting fmtclock, .. fmtelock(3i)

- internal floating-point output formatting routine fmtfloat...................................... fmtfloat(3i)
idmrollf - roll forward a transaction Jog .. idmrollr(li)

itfree - free an ITREE .. itfree(3i)
parsedate - free-rormat date/time conversion paraedate(3i)

/savestr, xl'ree, newmpool, mergempool, freempool, showmpool - main memory/ ..•....•••.... Dlloc(3i)
conversion ftoa. - floating-point to alpha•..••..... ftoa(3i)

iteopy - build tree for bulk copy function ..•..••.... ltcopy(3i)
build trees ror database administration functions /ittxload, itrollf -•••••... dba(3i)

itqstmt - build a tree ror a general query statement••......•... itqstmt(3i)
typeenvt, cktypecnvt - generalized type conversion typeenvt(3i)

lfGETC, ifgetc - get a byte from a file .. ifgetc(3i)
' if gets - get a line from a text file .. if gets(3i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 5

PTX (OI) Britton Lee PTX (OI)

target list igettup - get a. tuple rrom a. data.hue server into a. igettup(3i)
fRETSUCCESS, RETWARNING, RETERROR - get, clear, set, clllllil'7, or interpret/ geterr(3i)

igeteot, ita.peloa.d - get DONE bloeka until end or IDM ta.pe igeteot(3i)
gethunpw - get host user na.me a.nd pusword gethunpw(3i)

irget - get information from the IDMRUN structure irget(3i)
getpus - get password securely from terminal getpass(3i)

getprompt - get string with a. prompt .. getprompt(3i)
retrieved target-list element irdesc - get t1Pe a.nd na.me information a.bout a. irdesc(3i)

username - get user name .. userna.me(3i)
dift'clock, IDMTOTICKS, TICKSTOIDM -/ getcloek, clocktodate, da.tetoclock, getcloclt(3i)

errclass, RETSUCCESS, RETWARNING,/ geterr, clrerr, seterr, errstring, geterr(3i)
pusword gethunpw - get host user na.me a.nd gethunpw(3i)

/usr/lib/idm/params - default .m getpara.m (31) para.meter file para.ms(5i)
parameter getpara.m, setpara.m - get/set a system getparam(3i)

terminal getpus - get pusword securely from getpass(3i)
getprompt - get string with a. prompt getprompt(3i)

getparam, setparam - get/set a system para.meter getpara.m(3i)
usage - perform binary search on a. given ta.hie lteylook,.. keyloolt(3i)

sgrep - structured grep ... sgrep(Si)
bocleanup - exception and mesaage ha /excalock, exca.unlock, exccleanup, exc(3i)

system/ tellopera.tor, askopera.tor, huopera.tor - communicate with the opera.tor(3i)
helpsys - interactive help subsystem .. helpsys(3i)

idmhelp - accesa the IDM Help Subsystem ... idmhelp(li)
helpsys - interactive help aubs1stem helpsys(3i)

xdump - dump bytes in hexadecimal to sta.ndard trace xdump(3i)
descriptor-based type (iDSC) conversion hooks _dsctoidm, _idmtodsc - , ... _dsc(3i)

between the databue sener a.nd the host idmcopy - copy relation(s) idmcopy(li)
/idmwrite - rea.d/write files between the host and the shared database system idmrea.d(li)

IrtHFile - host file file type ... if'thflle(4i)
IrtKeyed - keyed hoet file type ... iftkeyed(4i)

/usr/lib/idm/xnshoets - XNS hoet na.me ma.pping file ... xnshoets(5i)
Britton Lee Integrated Database Management Hoet SoCtware Release 3 Introduction and/ Obinintro(Oi)

gethunpw - get hoet user na.me and pusword gethunpw(3i)
(RIC precompiler/ Idel2ric - convert .idm (IDEL precompiler input) syntax to .ric idel2ric(li)

input) syntax to .ric (RIC precompiler/ Idel2ric - convert .idm (IDEL precompiler idel2ric(li)
idmidyd - IDM XNS identiry da.emon .. idmidyd(Si)

. Data.base Language) parser idl - Ad hoc intera.ctive IDL (Intelligent idl{li)
ric - precompiler for embedding IDL in C .. ric(li)

idl - Ad hoc interactive IDL (Intelligent Database Language) parser idl(li)
idlfparse - build query trees from IDL program input idlparse, idlparse(3i)

irexec - execute parsed IDL sta.tements ... irexec(3i)
iridl - parse IDL sta.tements ... iridl(3i)

program input idlparse, idlfparse - build query trees from IDL idlparse(3i)
from IDL program input idlparse, idlfparse - build query trees idlparse(3i)

Irtldm - IDM channel file type ... irt.idm(4i)
idmtokena - values or IDM communication tokena idmtoltens(5i)

IDONE - IDM DONE token ... idone(5i)
IENV, DefEnv - IDM environment .. ienv(5i)

ieopen, iecloee - open and cloee IENV's (IDM environments) .. ieopen(3i)
IrtlFile - IDM file file type ... iftiftle(4i)

implementation IDM file type introduction and 4intro(4i)
idmhelp - accesa the IDM Help Subsystem .. idmhelp(li)

.ric (RIC precompiler/ Ide12ric - convert .idm (IDEL precompiler input) s1ntax to •.............. idel2ric{li)
Britton Lee Integrated Database Management (IDM) support commands /to Release 3.................. lintro(li)

INITIDMLm - initialize the IDM support libra.ry .. initidmlib{3i)
INITIDMLm IDM Support Libra.ry (IDMLm) summary; 3intro(3i)

idmsymbol, idmwsymbol - return name or IDM s1mbol or WITH node idmsymbol(3i)
- get DONE bloeka until end or IDM ta.pe igeteot, itapeloa.d igeteot(3i)

itapeopts - parse IDM ta.pe options .. ita.peopts(3i)
ITLIST - IDM target list descriptor•.•....... itlist(5i)

itlprint - print IDM target list {ITLIST) for debugging itlprint(3i)
print their time/ idmcklog - verify IDM transaction logs are complete a.nd idmcklog{li)

ITREE - IDM tree data structure ... itree(5i)
itnode, itvar, itroot - build an IDM tree node, VAR node, or ROOT node itnode(3i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 6

PTX(01) Britton Lee PTX (01)

idmidyd - IDM XNS identiry daemon idmidyd(8i)
idmboot - load the IDM/RDBMS llOl't.ware •..•••...••. idmboot(8i)

trannetion log data &lea idmckload - nriry database or•....•.•...•..••...... idmckload(li)
are complete and print their time stamps. idmcklog - veriry IDM transaction logs idmcklog(li)

d&tabue se"er and the boat idmcopy - copy relation(s) between the •.•..•.••••••.... idmcopy(li)
shared database system idmdate - set the date and/or time on the •.••••..•.. idmdate(li}

log idmdump - dump databue and transaction idmdump(li)
d&tabue system backup procedures using idmdump, idmload, and idmrollf /- Shared............ backup(8i)

rrom a relation idmfcopy - rormat and copy data to or idmfcopy(li)
idmbelp - acceu the IDM Help Subsystem idmbelp(li)
idmidyd - IDM XNS identiry daemon idmidyd(8i)

ifdump - dump an IDMLm &le pointer for debugging ifdump(3i)
IDM Support Library (IDMLm) summary; INITIDMLm 3intro(3i)

log idmload - load database or transaction idmload(li}
system backup procedures using idmdump, idmload, and idmrollr /- Shared database............... backup(8i}

databue system login relation idmpuswd - set pusword in the shared idmpuswd(li)
idmboot - load the IDM/RDBMS llOl't.ware ; .. :.............. idmboot(8i}

between the boat and the shared databue/ idmread, idmwrite - read/write tlles .. : ; idmread(li)
procedures using idmdump, idmload, and idmrollf /-Shared databue system backup............ backup(8i)

idmrollr - roll forward a transaction log idmrollf(li}
- cancel current operations on an IDMRUN structure ircancel.. ircancel(3i)

irclose - close an IDMRUN structure ... irclose(3i)
irget - get information rrom the IDMRUN structure•...............•........•.................. irget(3i)

irnopen - reopen an IDMRUN structure ... irreopen(3i)
irset - set nluea into the IDMRUN structure•.....•.•............. irset(3i)

irdump - dump an IDMRUN structure ror debugging ...•......•............... irdump(3i)
iropen - open an IDMRUN structure ror uae•............................. iropen(3i)

IDM symbol or WITH node idmsymbol, idmwsymbol - return name or• idmsymbol(3i)
(iDSC) conversion books _dsctoidm, _idmtodsc - descriptor-hued type dsc(3i)

tokens idmtokens - nlues or IDM communication idmtokens(Si)
/clocktodate, datetoclock, ditrclock, IDMTOTICKS, TICKSTOIDM - date/time/ getclock(3i)

host and the shared database/ idmread, idmwrite - read/write tllea between the idmread(li)
or WITH node idmsymbol, idmwaymbol - return name or IDM symbol idmsymbol(3i)

IDONE - IDM DONE token idone(Si)
_idmtodsc - descriptor-hued type (iDSC) connrsion hooks _dsctoidm,•................. dsc(3i)

3.2-86/09 /09-R3v5m0

environments) ieopen, ieclose - open and close IENV's (IDM ieopen(3i)
ieaetopt, ieclropt - set or clear options •.............................. iesetopt(3i)

on environment& iecontrol - perl'orm control operations iecontrol(3i)
IENV, DerEnv - IDM environment ienv(Si)

ieopen, ieclose - open and close IENV's (IDM enYironments)•...............•............ ieopen(3i)
(IDM environments) ieopen, ieclose - open and close IENV's ieopen(3i)

options iesetopt, ieclropt - set or clear ••..........•................ iesetopt(3i)
environments ieaubst - perform substitutions in •.....•................. ieaubst(3i)

BITSET - test to see if a bit is set•.......................•.... bitaet(3i)
ifclose - close a tlle ... ifclose(3i)

on tlles ifcontrol - perl'orm control operations•........... ifcontrol(3i)
ror debugging ifdump - dump an IDMLm tlle pointer•.. ifdump(3i}

JF'ERROR, ireor, IFEOR - tlle status inquiries•............. iferror(3i}
IFERROR, ifeof, IFEOR - tlle status inquiries iferror(3i}

inquiries IFERROR, ireor, IFEOR - tlle status iferror{3i}
ifllush - tlusb a &le ...••... iflluab(3i}

JF'GETC, ifgetc - get a byte from a tlle ifgetc(3i)
IFGETC, ifgetc - get a byte from a tlle ifgete(3i}
ifgets - get a line from a text tlle••................... ifgeta(3i}
ifopen - open a tlle•.....••..........••.•.................. ifopen(3i}

output conversion printf, ifprintf, sprintr, tprintf - formatted •...••...••••••••••.. printl'(3i)
IFPUTC, irpute - put a byte to a tlle .•.....•.....•..••...•••.••••.•••. ifpute(3i)

IFPUTC, ifpute - put a byte to a tlle ••••.•.•••.••••••. ifpute(3i)
ifputs - put a string on a text tlle ifputa(3i)
irread - read a block or memory••...•••••••••••.. ifread(3i)

specification string irscrack, irstype - crack &le•.....••.•••...... ifserack(3i)
string ifacrack, irstype - crack tlle speeiftcation•.......•...... if'serack(3i}

IrtHFile - boat tlle file type•..................... ir\b8le(4i)
ll't.ldm - IDM channel file type irt.idm(4i)

Britton-Lee 7

PTX(01) Britton Lee PTX (01)

IftlFile - IDM file file type irti8le(4i)
IftKeyed - keyed host file type irtkeyed(4i)
IftLoTerm - physical terminal file type irtloterm(4i)
IrtLTape - ANSI labeled tape file type•.•.... iftltape(4i)
IftMText - Message-text file type•...... irtmtext(4i)

stream up into tokens IftScan, TK_PSEUDO - break an input irtscan(4i)
IrtString - in-core string file type•.. irtstring(4i)
IrtTerm - terminal file type irtterm(4i)

input buffer ifungetc - put a character back into iCungetc(3i)
ifwrite - write a block or memory ifwrite(3i)

DONE packets from the database server igetdone - read ERROR, MEASURE, and igetdone(3i)
until end or IDM tape igeteot, itapeload - get DONE blocks igeteot(3i)

from a database server igettl, itlfree - read a target list igett1(3i)
server into a target list igettup - get a tuple from a database igettup(3i)

IDM file type introduction and implementation ... 4intro(4i)
IrtString - in-core string file type ... if't.string(4i)

ptx - permuted index .. lbinptx(Oi)
element irdese - get type and name information about a retrieved target-list irdesc(3i)

irget - get information Crom the IDMRUN structure irget(3i)
inittape - initialize ANSI standard labelled tape inittape(Si)

INITIDMLm - initialize the IDM support library initidmlib(3i)
IDM Support Library (IDMLm) summary; INITIDMLm ... 3intro(3i)

library INITIDMLm - initialize the IDM support initidmlib(3i)
RCDBNAME- macros for RIC and RSC/ INITRC, INITRIC, INITRSC, RCDEVICE, initrc(3i)

macros for RIC and RSC/ INITRC, INITRIC, INITRSC, RCDEVICE, RCDBNAME - initrc(3i)
for RIC and RSC/ INITRC, INITRIC, INITRSC, RCDEVICE, RCDBNAME - macros .. .initrc(3i)

labelled tape inittape - initialize ANSI standard inittape(Si)
- build query trees from IDL program input idlparse, idlfparse.. idlparse(3i)

- build query trees from SQL program input sqlparse, sqlfparse ... sqlparse(3i)
iCungetc - put a character back into input buffer ... ifungetc(3i)

IrtScan, TK_PSEUDO - break an input stream up into tokens if't.scan(4i)
input) syntax to .ric (RIC precompiler input) syntax /.idm (IDEL precompiler idel2ric(li)

Idel2ric - convert .idm (IDEL precompiler input) syntax to .ric (RIC precompiler/ idel2ric(li)
IODEFS - Input/output ftag definitions iodefs(Si)

IFERROR, ifeof, IFEOR - file status inquiries ... iferror(3i)
bcdtol, ltobcd - BCD to Jong integer conversion ... bcdto1(3i)

mapsym - translate symbol name into integer value .. mapsym(3i)
/usr/lib/idm/symfile - symbol to integer value mapping file symfile(Si)

Sortware Release 3/ Britton Lee Integrated Database Management Host Obinintro(Oi)
Introduction to Release 3 Britton Lee Integrated Database Management (IDM)/ lintro(li)

id! -Ad hoc interactive IDL (Intelligent Database Language) parser idl(li)
isforegnd - are we in foreground (interactive)? ... isforegnd(3i)

helpsys - interactive help subsystem helpsys(3i)
Language) parser idl -Ad hoc interactive IDL (Intelligent Database idl(li)

sq! - Interactive /SQL parser ... sq!(Ii)
Make - clever interface to make(l) .. make(Si)

routine rmtftoat - internal Boating-point output formatting fmtftoat(3i)
- get, clear, set, classify, or interpret error codes /RETERROR geterr(3i)

isleep - sleep for a real-time interval .. isleep(3i)
IDM file type introduction and implementation 4intro(4i)

Management Host Software Release 3 Introduction and Summary /Database.................... Obinintro(Oi)
Machine-Dependent Commands and Procedures Introduction to Administrative and 8intro(8i)

Introduction to file and data formats Sintro(Si)
Integrated Database Management (IDM)/ Introduction to Release 3 Britton Lee lintro(li)

libistdio.a - standard 1/0 compatibility library .. istdio(3i)
· IODEFS - Input/output ftag deftnitions iodefs(Si)

iputtl - write a target list to a file iputtl(3i)
server iputtree - put a tree to the database iputtree(3i)

list to the database server iputtup - put a tuple from a target iputtup(3i)
retrieved target list elements irbind - bind program variables to irbind(3i)

an IDMRUN structure ircancel - cancel current operations on ircancel(3i)
irclose - close an IDMRUN structure irclose(3i)

about a retrieved target-list element irdesc - get type and name information irdesc(3i)
debugging irdump - dump an IDMRUN structure tor irdump(3i)

3.2-86/09/09-R3v5m0 Britton-Lee 8

PTX (Ol) Britton Lee PTX (Ol)

irexec - execute parsed IDL statements irexec(3i)
irfetch - fetch a retrieved tuple irfetch(3i)

command irftush - Bush tuples for current irftusb(3i)
structure irget - get information from the IDMRUN irget(3i)

iridl - parse IDL statements iridl(3i)
statement irnext - check for next executed irnext(3i)

use iropen - open an IDMRUN structure for iropen(3i)
irreopen - reopen an IDMRUN structure••..... irreopen(3i)

structure irset - set values into the IDMRUN inet(3i)
irsql - parse SQL statements inq1(3i)

trees irsubst - perform substitutions in inubst(3i)
execute a stored command irxcmd, irxprog, irxsetp - arrange to irxcmd(3i)

stored command irxcmd, irxprog, irxsetp - arrange to execute a irxcmd(3i)
command irxcmd, irxprog, irxsetp - arrange to execute a stored irxcmd(3i)

/ISUPPER, ISLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT, !SPRINT,/ bytetype(3i)
ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT,/ ISALPHA, !SUPPER, ISLOWER, ISDIGIT, bytetype(3i)

/ISPUNCT, ISPRINT, lSGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, ISKA.NJI,/ bytetype(3i)
/ISSPACE, ISPUNCT, ISPRINT, ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH,/ .. bytetype(3i)

ISPUNCT,/ ISALPHA, ISUPPER, ISLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, bytetype(3i)
(interactive)! isforegnd - are we in foreground isforegnd(3i)

/ISALNUM, ISSPACE, ISPUNCT, ISPRJNT, ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH,/ bytetype(3i)
/ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, lSKA.NJI, TOCHAR, TOUPPER, TOLOWER -/ bytetype(3i)

isleep - sleep ror a real-time interval isleep(3i)
ISSPACE, ISPUNCT,/ ISALPHA, ISUPPER, ISLOWER, lSDlGIT, ISXDIGIT, ISALNUM, bytetype(3i)

/!SPRINT, ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, ISKA.NJI, TOCHAR,/ .. bytetype(3i)
/ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT, ISPRINT, ISGRAPH, ISCNTRL, ISCHAR,/ bytetype(3i)

/ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT, ISPRINT, ISGRAPH, ISCNTRL,/ bytetype(3i)
/ISLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT, !SPRINT, ISGRAPH,/ bytetype(3i)
ISALNUM, ISSPACE, ISPUNCT,/ ISALPHA, ISUPPER, ISLOWER, ISDIGIT, ISXDIGIT, bytetype(3i)

ISALPHA, ISUPPER, !SLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT,/ bytetype(3i)
/ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, ISKANJI, TOCHAR, TOUPPER,/ ... bytetype(3i)

itaddopts - add options bytes to a tree itaddopts(3i)
of IDM tape igeteot, itapeload - get DONE blocks until end igeteot(3i)

itapeopts - parse IDM tape options itapeopts(3i)
function itcopy - build tree for bulk copy itcopy(3i)

itrollr - build trees ror database/ itdbdump, ittxdump, itdbload, ittxload, dba(3i)
trees ror database/ itdbdump, ittxdump, itdbload, ittxload, itrotlr - build dba(3i)

command itdeftne - create tree ror deftne itdefine(3i)
itfree - free an ITREE .. itfree(3i)

from user tree (UTREE) representations itiutree, ituitree - convert to and utree(3i)
database server igettl, itlfree - read a target list from a igett1(3i)

ITLIST - IDM target list descriptor itlist(Si)
itlprint - print IDM target list (ITLIST) for debugging ... itlprint(3i)

(ITLIST) for debugging itlprint - print IDM target list itlprint(3i)
tree node, VAR node, or ROOT node itnode, itvar, itroot - build an IDM itnode(3i)

itprint - print a tree for debugging itprint(3i)
query statement itqstmt - build a tree for a general itqstmt(3i)
itfree - free an ITREE ... itfree(3i)

ITREE - IDM tree data structure itree(Si)
itdbdump, ittxdump, itdbload, ittxload, itrollr - build trees for database/ dba(3i)

node, or ROOT node itnode, itvar, itroot - build an IDM tree node, VAR itnode(3i)
build trees for database/ itdbdump, ittxdump, itdbload, ittxload, itrollf - dba(3i)

database/ itdbdump, ittxdump, itdbload, ittxload, itroltr - build trees for dba(3i)
tree (UTREE) representations itiutree, ituitree - convert to and from user utree(3i)

VAR node, or ROOT node itnode, itvar, itroot - build an IDM tree node, itnode(3i)
to execute stored commands/programs itxcmd, itxprog, itxsetp - build trees itxcmd(3i)

execute stored commands/programs itxcmd, itxprog, itxsetp - build trees to••••.••...... itxcmd(3i)
commands/programs itxcmd, itxprog, itxsetp - build trees to execute stored••••....... itxcmd(3i)

IftKeyed - keyed host file type•.••.•.•••.... ift.keyed(4i)
buildmsgs - build keyed message text file ... buildmsgs(8i)
on a given table k:eylook, usage - perform binary search ..•.•..••...... lteylook(3i)

lftLTape - ANSI labeled tape file type ... ift,ltape(4i)
- write files on an ANSI standard labelled tape anaitape ... ansitape(8i)

inittape - initialize ANSI standard labelled tape .. inittape(8i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 9

PTX(01) Britton Lee PTX(01)

hoc lnteractiYe D>L (Intelligent Databue Language) parur idl -Ad .•.•••••.••............................. idl(li)
compatibilit1 libl'V1 libiatdlo.a - standard 1/0 iatdio(3i)

INITD>MLJB - initialize the D>M support libl'V1 ..••..•..•..••.•••..........•.••.....••••••.•..••.••••.•..•.••.••••.•• iDitidmlib(3i)
- standard 1/0 compatiblllt7 lib1'V1 libiatdio.a••.........•....•••.•..........••..•••.••••.•••... iatdio(3i)

D>M Support Libl'V1 (D>MLm) summary; INITD>MLm ••..••.•.... 3intro(3i)
ifgeta - get a line from a t.ext ftle••••............•.••....••...•..•... ifgeta(3i)

tuple from a databaae serYer into a target list igettup - get &.. igettup(3i)
pextract - extract pll'amet.er Yalue.from list ... pextract(3i)

rn.IST - D>M tll'get list descriptor .. itliat(5i)
bind program Yll'iablea to retriend tll'get list elements irbiad -.. irbiad(3i)

igettl, itlfree - read a tll'get list from a databue aerYer igettl(3i)
itlpriat - print D>M tll'get liat (rn.IST) for debugging ••.................................. itlpriat.(3i)

iputtl - write a tll'get list to a Ille .•...........•.•..••...•.......•.••...................•....... iputtl(3i)
iputtup - put a tuple from a tll'get list to the databaae se"er •..•••.•......•.•..............•...... iputtup(3i)

idmload - load databue or tr&Dsactioa log•...................•... idmload(li)
idmboot. - load the D>M/RDBMS soft.ware idmboot.(8i)

idmdump - dump databaae and tr&DS&Ction log ...•........•..••...•.•.......•......•...•.•..•.......................•..... idmdump(li)
idmload - load databue or transaction log .. idmload(li)

idmrollf - roll forwll'd a transaction log ...•..•....•.....••.....•...••.......•..•..................•....•........... idmrollr(li)
- verit, databaae or tr&DS&Ctioa log data Illes idmckload.. idmckload(li)

set pusword ia the shll'ed database •JStem logia relation idmpuswd -....................................... idmpuawd(li)
idmctlog - verify D>M transaction lop ll'e complete and print their time/ idmcklog(li)

bcdtol, ltobcd - BCD to long integer coDYel'lion••..•.•....•....•.... bcdtol{3i)
foldcue - fold upper to lower caae in a string •.......•....•.........••.....•..•............ foldcue(3i)

bcdtol, ltobcd - BCD to long integer conversion •....•....... bcdto1(3i)
Introduction to Adminiatratin and Machine-Dependent Commands and Procedures 8iatro(8i)

/INITRIC, INITRSC, RCDEVICE, RCDBNAME - mlCJ'OI for RIC and RSC precompiler source/ initrc(3i)
mergempool, f'reempool, ahowmpool - main memorJ allocator /dree, newmpool, :xalloc(3i)

Mate - clever interface to make(l) make(8i)
makefname - make Ille name from components•.................... makefaame(3i)

Mate - cleYer iaterfaee to make(l)•.•.•.. make(8i)
components maketaame - make Ille name from .•........•........... makefaame(3i)

maketerm - compile a terminal descriptor maketerm(8i)
Britton Lee Integrated Databue Management HCllt Soft.ware Releue 3/ Obiaintro(Oi)

Release 3 Britton Lee Integrated Databue Management (D>M) support commands /to............ lintro(li)
D>MTOTICKS, TICKSTOD>M- date/time manipulation /datetoclock, dilfclock, getclock(3i)

- 17mboJ to integer Yalue mapping Ille /ur/lib/idm/symftle 17mllle(5i)
/ur/lib/idm/nahCllts - XNS hC11t name mapping ftle ... xnsbC11ta(5i)

integer Yalue mapa7m - tr&llllate symbol name into ...•............. mapa1m(3i)
pmatch - text pattern matching •..•............•...................•....•.........•............. pmatch(3i)

databue se"er igetdone - read ERROR, MEASURE, and DONE paeketa from the igetdoae(3i)
- copy, set, or zero a block or memory bcop7, bllll, bzero, STRUCTASGN........... bcopy(3i)

if'read - read a block or memory•..........•..•.............................•••............ if'read(3i)
ifwrite - write a block or memory••..•......................•..........•.•...•........ ifwrite(3i)

mergempool, f'reempool, showmpool - main memorJ allocator /dree, newmpool, .•..........•.......... xalloc(3i)
xalloc, zalloc, 8&Yeatr, dree, aewmpool, mergempool, f'reempool, showmpool - main/ xalloc(3i)

apart an ll'gument vector or print a llAle message cracbtgY, u11e - take craekll'gv(3i)
exccleanup, bocleanup - exception and message ha /excalock, excaunlock, ..•....................... exc(3i)

buildmsga - build ke7ed me1111e text ftle•................•................... buildmsga(8i)
conraheet - a me11age to our readers ... Ocover(Oi)

me1111ea - me1111ea ftle format .•.........•............... me11age1(5i)
me111agea - me1111ea ftle format••.•.......................•..•........... me1111es(5i)
IttMText - Me1111e-text ftle t7pe •........•...••••....•.•...................•. in.mtext(4i)

tempname - create a unique ftle name ..•.....•......•••.•.....................•.....•.••....•................ tempname(3i)
uername - get uaer name•..•...•...........••....•........•................................. uaername(3i)

gethunpw - get haet uer name and pusword•..•....•..................•••••.....•...... gethunpw(3i)
mabfname - make ftle name f'rom components ... makername(3i)

tll'get-liat/ irdeac - get type and name information about a retrined •......•......••.•..•.. irdeac(3i)
mapaym - tranabte 17mboJ name into Integer value .•.•..............•....•...••.•.••••••...• mapa7m(3i)

/ur/lib/idm/xnahCllta - XNS bCllt name mapping 81e•••......•.•••.•.•..............•..•....•••.•.. X1111hoets(5i)
idms7mbol, idmwaymbol - return name or D>M 17mboJ or WITH node•.••.....•...... idmsymbol(3i)

- main/ xalloc, zalloc, 8&Yeatr, dree, newm~, mergempool, f'reempool, showmpool xalloc(3i)
irnext - check for next executed statement•..•.•....•..•.•..•.•..•............. irnext(3i)

- return name or D>M 17mboJ or WITH Dode idma7mboJ, idmwqmbol•....................... idmsymbo1(3i)

3.2-86/09/09-R3v5m0 Britton-Lee 10

PTX (01) Britton Lee PTX (01)

build an IDM tree node, VAR node, or ROOT node it.node, ltvar, it.root-..................................... itnode(3i)
it.root - build an IDM tree node, VAR node, or ROOT node it.node, itvar, itnode(3i)

it.var, it.root - build an IDM tree node, VAR node, or ROOT node it.node, itnode(3i)
atos, &to! - convert characters to numbers at.or, ...••..•.•..... u.ol'(3i)

- do aophistica.ted output editing or numeric string stredit•.•..••.•••..... stredit(3i)
onexit, olfexit - transfer control on exit•.•.•.••..•.... onexit(3i)

exit onexit, olfexit - tr&DSfer control on••••......... onexit(3i)
ifopen - open a. tile ...•...... ifopen(3i)
iropen - open an IDMRUN structure for use iropen(3i)

ieopen, ieclose - open and close IENV's (IDM environments) ieopen(3i)
atrlen, strchr, 1trrchr - string operations /strcpy, atrncpy, strmcpy, 1tring(3i)

fn:ancel - caucel current opera.tiona on an IDMRUN structure ircancel(3i)
iecontrol - perform control operations on environments iecontrol(3i)
ifcontrol - perform control operations on tiles ... ifcontrol(3i)

- communicate with the system opera.tor /ukopera.tor, ha.aopera.tor opera.tor(3i)
iesetopt, ieclropt - set or clear options ... iesetopt(3i)

ita.peopts - parse IDM ta.pe options ... ita.peopts(3i)
itaddopts - add options bytes to a. tree .. itaddopts(3i)

coversheet - a. message to our readers .. Oeover(Oi)
ifprintr, sprintr, tprintr - Corma.tted output conversion printr, ... printl'(3i)

atredit - do aophistica.ted output editing or numeric string stredit(3i)
rmtclock, rmtda.te, rmtintvl - da.te/time output formatting ... fmtclock(3i)

fmtftoa.t - internal Boa.ting-point output formatting routine fmt8oa.t(3i)
tfset, tr, tftev, DPRINTF - trace package .. tl'(3i)

- read ERROR, MEASURE, and DONE packets from the da.ta.bue server igetdone igetdone(3i)
getpara.m, aetpara.m - get/set a. system para.meter .. getpara.m(3i)

- def a.ult .m getpara.m (31) para.meter tile /usr /lib/idm/params para.ms(Si)
pextract - extract para.meter value from list pextract(3i)

iridl - parse IDL statements .. iridl(3i)
ita.peopts - parse IDM ta.pe options .. ita.peopts(3i)

irsql - parse SQL statements ... irsq1(3i)
irexec - execute parsed IDL statements .. irexee(3i)

conversion parseda.te - free-format date/time parsedate(3i)
IDL (Intelligent Da.ta.bue Language) parser idl - Ad hoc interactive idl(li)

sq! - lnteractive/SQL parser .. aql(li)
gethunpw - get host user name and pusword .. gethunpw(3i)

login rela.tion idmpuswd - set pusword in the shared da.tt.bue ayatem idmpuswd(li)
get.pus - get pusword securely from terminal getpass(3i)

pma.tch - text pa.ttern matching .. pma.tch(3i)
keylook, usage - perform binary search on a. given ta.ble keylook(3i)

iecontrol - perform control operations on environments iecontro1(3i)
ifcontrol - perform control operations on tiles ifcontro1(3i)

iesubst - perform substitutions in environments ie11ubst(3i)
irsubst - perform substitutions in trees iraub1t(3i)

ptx - permuted index•................... lbinptx(Oi)
list pextract - extract para.meter value from pextract(3i)

IrtLoTerm - physical terminal file type if'Uoterm(4i)
pmatch - text pa.ttern matching pmatch(3i)

ifdump - dump t.n IDMLm ftle pointer for debugging .. ifdump(3i)
t.nyprint, anyfmt - print or Corma.t any possible type ror printing .. anyprint(3i)

ric - precompiler for embedding IDL in C ric(li)
rsc - precompiler ror embedding SQL in C rsc(li)

precompiler input) syntax to .ric (RIC precompiler input) syntax /.idm (IDEL idel2ric(li)
ldel2ric - convert .idm (IDEL precompiler input) syntax to .ric (RIC/ idel2ric(li)

RCDBNAME - macros for RIC and RSC precompiler source tiles fRCDEVICE, initrc(3i)
syserr - print a. fa.ta! system error t.nd t.bort ..•.......•...•..•.... 1yserr(3i)

it.print - print .. tree ror debugging•.•..•..•.•..... itprint(3i)
- ta.ke a.part t.n argument vector or print a usage message cra.ckargv, usage................... cra.ckargv(3i)

debugging itlprint - print IDM target list {ITLIST) for•.•.•.••••••..•• itlprint(3i)
printing &nyprint, anyfmt - print or format &ny posaible type for•••••••.•••...... uayprint(3i)

IDM tr&nsaction logs are complete t.nd print their time 1ta.mps. /- verify••....•••••••••..... idmcklog(li)
tupsetup, tupsep, tuphead, tupprint - print tuples •..•.•.........................•.....•.....•••••••........... tupprint(3i)

forma.tted output conversion print.r, ifprint.r, aprintf, tprintr - printl'(3i)
- print or format &ny posaible type for printing anyprint, t.nyfmt .. a.nyprint(3i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 11

PTX(01) Britton Lee PTX(01)

and Machine-Dependent. Commanda and Procedures Introduct.ion t.o Adminiat.rat.ive ...••.....••. 81nt.ro(81)
backup - Shared dat.abue system backup procedures using idmdump, idmlo&d, and/ •.•....•••.. backup(8i)

ASSERT - veril) ftxpoints in a program ... uaert(3i)
exit. - terminat.e program ... exit(3i)

idlfparae - build quel'J trees rrom IDL prosram input idlpane,.. idlparae(3i)
aq)fparae - build qUel'J t.reea rrom SQL program input aqlpane,.. aq)parae(3i)

elements irbind - bind program variables to retrieved t.arget lilt irbind(3i)
get.prompt - get string with a prompt .. getprompt(3i)

IFPUTC, ifputc - put a byte to a ftle .. ifputc(3i)
ifungetc - put a character back int.o input bulrer irungetc(3i)

i(puta - put a string on a text ftle ifputa(3i)
iputtree - put. a t.ree to the databue server iputtree(3i)

databue server iputtup - put a tuple rrom a target lilt. to the iputtup(3i)
itqstmt - build a tree tor a general quel'J statement .. itqstmt(3i)

idlparae, idltparae - build quel'J trees from IDL program input idlparae(3i)
aqlparae, aqlfparae - build quel'J trees from SQL program input aq)parae(3i)

Releue 3 R2t.oR3 - convert Releue 2 source to r2tor3{1i)
source Blea recount - subroutine ror RSC and RIC rccount(3i)

INITRC, INITRIC, INITRSC, RCDEVICE, RCDBNAME- macros tor RIC and RSC/ initrc(3i)
RSC precompiler J INITRC, INITRIC, INITRSC, RCDEVICE, RCDBNAME - macros tor RIC and initrc(3i)

ifread - read a bloek ol memOl'J .. itread(3i)
igettl, itltree - read a target list from a dat.abue server igettl{3i)

the dat.abue server igetdone - read ERROR, MEASURE, and DONE packets from igetdone(3i)
coversheet - a me881&e to our readers ... OcoYer(Oi)

shared dat.abue/ idmread, idmwrite - read/write ftles betwffn t.he bolt. and the idmread(li)
ialeep - sleep tor a real-t.ime interval .. ialeep(3i)

- format and copy data t.o or rrom a relation idmfcopy .. : ·1dmrcopy(li)
in the shared dat.abue system login relation idmpuawd - set. puaword.......................... idmp111wd(li)

and the host idmcopy - copy relat.ion(s) between the dat.abue server idmcopy(li)
UNSIGN - remon sign-exteuion bits rrom a byte uuign(3i)
irreopen - reopen an IDMRUN structure irreopen(3i)

dumptape - report on contents ol an ANSI tape dumptape(Si)
- convert t.o and from user tree (UTREE) representat.iona itiutree, ituitree utree(3i)

retcode - return/status/error code retcode(Si)
or/ /errcl111, RETSUCCESS, RETWARNING, RETERROR - get, clear, set, cl111ify, geterr(3i)

irbind - bind program variables t.o retriend target Jilt elements irbind(3i)
- get type and name information about a retriend targetrliat element irdesc irdesc(3i)

irtetch - retch a retriend tuple ... irretch{3i)
/clrerr, set.err, emtring, errclua, RETSUCCESS, RETWARNING, RETERROR - get,/ geterr(3i)

idmaymbol, idmwaymbol - return name ol IDM symbol or WITH node •......... idmaymbo1(3i)
retcode - return/status/error code ... retcode(Si)

/set.err, emtring, errclua, RETSUCCESS, RETWARNING, RETERROR - get, clear, set,/ geterr(3i)
ric - precompiler for embedding IDL in C ric(li)

/RCDEVICE, RCDBNAME - macros tor RIC and RSC precompller source ftles .•................. initrc(3i)
(IDEL precompiler input) syntax to .ric (RIC precompiler input) syntax /.idm idel2ric(li)

/.idm (IDEL precompiler input) syntax t.o .ric (RIC precompiler input) syntax idel2ric(li)
recount - subroutine ror RSC and RIC source ftles ... rccount(3i)

idmrollt - roll forward a tr&n1action log•.................. idmrollr(li)
- build an IDM tree node, VAR node, or ROOT node it.node, it.var, it.root itnode(3i)

internal ftoating-point output formatting routine fmtftoat - ... fmtftoat(3i)
rsc - precompiler ror embedding SQL in C rsc(li)

recount - subroutine ror RSC and RIC source Blea rccount(3i)
RCDEVICE, RCDBNAME - macros for RIC and RSC precompiler source ftles /INITRSC, initrc(3i)

freempool, ahowmpool -/ xalloe, zalloc, savestr, xrree, newmpool, mergempool, xalloc(3i)
keylook, usage - perform binary search on a given table ... keylook(3i)

getp111 - get p111word securely rrom terminal .. getpus(3i)
BITSET - teat t.o see if a bit ii set ... bitaet(3i)

and DONE packets rrom the dat.abue server igetdone - read ERROR, MEASURE,........ igetdone(3i)
- read a target lilt rrom a database server igettl, itltree ... igett1(3i)

iput.tree - put a tree t.o the dat.abue server ... iputtree(3i)
a tuple rrom a t.arget list to the dat.abue server iputtup - put ... iputtup(3i)

- copy relation(•) between the databue server and the host idmcopy idmcopy(li)
igettup - get a tuple rrom a dat.abue server into a target lilt. ... igettup(3i)

BITSET - teat t.o see if a bit ii set. ... bitset(3i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 12

PTX(01) Britton Lee PTX(Ol)

fRETWARNING, RETERROR - get, clear, set, cl-ify, or interpret error codes geterr(3i)
ieaetopt, ieelropt - set or clear optiona•............ ieeetopt(3i)

bcopy, bflll, bzero, STRUCTASGN - copy, set, or zero & block or memory••••..•....•.• bcopy(3i)
login relation idmpuawd - aet puaword In the shared database s;rstem ..•••..... idmpasswd(li)
database system idmdate - set the date and/or time on the shu-ed •.••.•..••.••.... idmdate(li)

irset - set nlues into the IDMRUN structure .•..••.•.•..•••.•. lnet(3i)
RETWARNING, RETERROR -/ geterr, clrerr, seterr, erratring, errclass, RETSUCCESS, ••.....•..... geterr(3i)

getpu-am, setparam - get/set & system parameter getpu-am(3i)
sgrep - structured grep ... agrep(Si)

idmdate - set the date and/or time on the shared databue system .. idmdate(li)
read/write flies between the host and the shared database system /idmwrite - idmre&d(li)
using idmdump, idmlioad, and/ backup - Shared databue system backup procedures backup(Si)

idmpaaswd - set puaword in th abaHd d&t&bue system login relation idmpasswd(li)
/xfree, newmpool, mergempool, freempoal, ahowmpool - main memory allocator :xalloe(3i)

UNSIGN - remoft mga-extension bita from & b~ unaign(3i)
ialeep - sleep for & real-time internl isleep(3i)

string stredit - do sophisticated output editing or numeric stredit(3i)
- macros for RIC and RSC precompiler source Bies /INITRSC, RCDEVICE, RCDBNAME initrc(3i)
recount - subroutine for RSC and RIC source Bies ... rccount(3i)

R2toR3 - convert Releue 2 source to Release 3 ... r2tor3(1i)
ifscrack, ifstype - era.ck file specification string .. ifscra.ck(3i)

conversion print!, ifprintr, sprint!, tprintf - formatted output printl'(3i)
aql - latera.ctin/SQL parser aql(li)

rsc - precompiler for embedding SQL in C ... nc(li)
aqlfparae - build query trees from SQL program input aqlpU"ae, aqlparae(3i)

1 irsql - parse SQL statements .. irsq1(3i)
program input sqlparse, aqlfparae - build quer;r t.rees from SQL aqlparae(3i)

from SQL program input aqlparae, aqlfparae - build query trees aqlparae(3i) ·
lop u-e complete and print their time stamps. /- verif;r IDM transaction.......................... idmcklog(li)

libistdio.& - standard 1/0 compatibility libru-y iatdio(3i)
&naitape - write Blea on an ANSI standu-d labelled t&pe ... &nait&pe(Si)

initt&pe - initialize ANSI standard labelled t&pe :....................................... initt&pe(Si)
xdump - dump bytes in hexadecimal to standard trace ... xdump(3i)

irnext - check for next executed statement .. irnext(3i)
- build & tree for & general quer;r statement itqstmt... itqstmt(3i)

irexec - execute parsed IDL statements ... irexec(3i)
iridl - pU'Be IDL statements ... iridl(3i)

irsql - pU'Be SQL statements ... irsql(3i)
IFERROR, ifeor, IFEOR - 81e status inquiries .. irerror(3i)

irxprog, irxaetp - U"r&Dge to execute & stored command irxcmd, .. irxcmd(3i)
itxsetp - build trees to execute stored commanda/programa itxcmd, itxprog, itxcmd(3i)

strncpy, atrmcpy, atrlen, strchr, strrchr/ strcat, strncat, strcmp, atrncmp, strcpy, atring(3i)
/strncmp, strcpy, atrncpy, strmcpy, strlen, strcbr, atrrchr - atring opera.t.ions atring(3i)

strlen, strchr, atrrcbr/ strc&t, strncat, strcmp, strncmp, atrcpy, strncpy, strmcpy, atring(3i)
strrchr/ strc&t, strnc&t, strcmp, strncmp, strcpy, atrncpy, strmcpy, strlen, strchr, string(3i)
U'tScan, TILPSEUDO - break an input stream 11p into tokens ... ift.acan(4i)

editing or numeric string stredit - do aophiaticated output stredit(3i)
- fold upper to lower cue in & string foldcue... foldcue(3i)

ifstype - era.ck Ble speciBcation string ifscra.ck, .. ifscra.ck(3i)
do sophisticated output editing or numeric string stredit -.. stredit(3i)

U't.String - in-core string Ille type ... irtatring(4i)
ifputs - put a string on a text Ille ... ifputs(3i)

strmcpy, strlen, strchr, strrchr - string operations /strcpy, strncpy,. string(3i)
getprompt - get string with a prompt .. getprompt(3i)

/strcmp, strncmp, strcpy, strncpy, strmcpy, strlen, strcbr, strrchr - string/ string(3i)
/strncat, strcmp, strncmp, strcpy, strncpy, strmcpy, atrlen, strchr, strrchr -/ string(3i)

atrmcpy, strlen, strchr, atrrchr/ strcat, strncat, strcmp, atrncmp, strcpy, strncpy,•.•••... ltring(3i)
strchr, strrchr/ atrcat, atrnc&t, strcmp, strncmp, atrcpy, atrncpy, atrmcpy, atrlen, ······-····· ltring(3i)

strcat, strncat, strcmp, strncmp, strcpy, atrncpy, strmcpy, strlen, atrchr, strrcbr/ ········-····· ltring(3i)
atrcpy, strncpy, atrmcpy, strlen, strchr, atrrchr - string operations /strncmp, ·············-···· ltring(3i)

or memory bcopy, bflll, bzero, STRUCTASGN - copy, set, or zero & block·-····· bcopy(3i)
cancel current oper&tions on an IDMRUN structure ircancel - .. ircancel(3i)

irclose - close an IDMRUN structure .. irclose(3i)
irget - get information from the IDMRUN structure .. irget(3i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 13

PTX(OI) Britton Lee PTX(OI)

irreopen - reopen an IDMRUN structure .. irreopen(3i}
irset - set values into the IDMRUN structure ;.. inet(3i)

ITREE - IDM tree data structure .. itree(Si)
irdump - dump an IDMRUN structure for debugging ... irdump(3i)

iropen - open an IDMRUN structure ror use•..............................•......•.... iropen(3i)
sgrep - structured grep ..••........... sgrep(Si)

recount....- subroutine ror RSC and RIC source Illes rccount(3i)
iesubst - perform substitutions in environments iesubst(3i)
irsubst - perform substitutions in trees .. irsubst(3i)

helpsys - interactive help subsystem .. helpsys(3i)
idmhelp - access the IDM Help Subsystem ... idmhelp(li)

Host Software Relesae 3 Introduction and Summary /Integrated Databue Management Obinintro(Oi)
IDM Support Library (IDMLm) summary; INITIDMLm .. 3intro(3i)

Lee Integrated Dat&bue Management (IDM) support commands /to Relesae 3 Britton................ lintro(li)
INITIDMLm - initialize the IDM support library .. initidmlib(3i)

INITIDMLm IDM Support Library (IDMLm) summary; 3intro(3i)
mapsym - translate symbol name into integer value mapsym(3i)

idmwsymbol - return name or IDM symbol or WITH node idmsymbol,.......................... idmsymbol(3i)
/usr/lib/idm/symllle - symbol to integer value mapping Ille symllle(Si)

syntax to .ric (RIC precompiler input) syntax /.idm (IDEL precompiler input)................... ide12ric(li)
/- convert .idm (IDEL precompiler input) syntax to .ric (RIC precompiler input)/ ide12ric(Ii)

sysedit - call system editor on a file sysedit(3i)
abort syserr - print a fatal system error and syserr(3i}

sysshell - execute system command sysshe11(3i)
date and/or time on the shared databsae system idmdate - set the ... idmdate(li}

between the host and the shared database system /idmwrite - re&d/write flies ,... _idmre&d(li)
idmlo&d, and/ backup - Shared databue system backup procedures using idmdump, backup(8i}

sysshell - execute system command .. sysshell(3i)
sysedit - call system editor on a file .. sysedit(3i}

syserr - print a fatal system error and abort ... syserr(3i}
- set password in the shared database system login relation idmpasswd idmpasswd(li)
hasoper&tor - communicate with the system operator /ukoperator, operator(3i)

getpar&m, setpar&m - get/set a system parameter .. getparam(3i)
- perform binary search on a given t&ble keylook, usage ... keylook(3i)

usage message crackargv, usage - take apart an argument vector or print a crackargv(3i)
write flies on an ANSI standard labelled tape ansitape - ... ansitape(8i)

dumptape - report on contents of an ANSI tape ... dumptape(Si)
- get DONE blocks until end of IDM tape igeteot, itapelo&d.. igeteot(3i)

- initialize ANSI standard labelled tape inittape ... inittape(8i)
Il't.LTape - ANSI l&beled tape ftle type ... ift.ltape(4i)

itapeopts - p&rae IDM tape options ... itapeopts(3i)
get a tuple rrom a dat&bue se"er into a target liat igettup - .. igettup(3i)

' ITLIST - IDM target list descriptor ... itlist(Si)
- bind program variables to retrieved target list elements irbind.. irbind(3i)

igettl, itlrree - re&d a target list from a databue se"er igett1(3i)
itlprint - print IDM target list (ITLIST) for debugging itlprint(3i)

iputtl - write a target list to a file ... iputt1(3i)
iputtup - put a tuple from a target list to the database server iputtup(3i)

and name information about a retrieved target-list element irdesc - get type irdesc(3i)
- communicate with the system operator telloperator, askoperator, hasoperator operator(3i)

tempname - create a unique ftle name tempname(3i)
getpus - get password securely from terminal ... getpass(3i)

maketerm - compile a terminal descriptor .. maketerm(Si)
IrtLoTerm - physical terminal Ille type .. iftloterm(4i)

If't.Term - terminal Ille type .. iftterm(4i)
exit - terminate program .. exit(3i)

BITSET - test to see it a bit is set ... bitset(3i)
buildmsgs - build keyed message text Ille .. buildmsgs(8i)

ifgets - get a line from a text file .. irgets(3i)
ifputs - put a string on a text ftle .. ifputs(3i)

pmatch - text pattern matching ... pmatch(3i)
tfset, tr, tftev, DPRINTF - trace package tt(3i)

trset, tr, tftev, DPRINTF - trace package tt(3i)
package trset, tf, tftev, DPRINTF - trace tt(3i)

3.2-86/09/09-R3v5m0 Britton-Lee 14

PTX (01) Britton Lee PTX (01)

tra.nsaction logs are complete and print their time stamps. idmcklog - nrify IDM idmcklog(li)
/datetoclock, dilfclock, IDMTOTICKS, TICKSTOIDM - date/time manipulation aetclock(3i)

idmdate - set the date and/or time on the ahared databue system idmdate(li)
logs are complete and print their time stamps. /-verify IDM tra.nsaction•....•...... idmcklog(li)

into tokens lttScan, TK_PSEUDO - break an input stream up•... il\acan(4i)
fISCHAR, ISPMATCH, ISZWIDTH, ISKANJI, TOCHAR, TOUPPER, TOLOWER - character/ b,rtetype(3i)

IDONE - IDM DONE token ... idone(Si)
idmtokens - values or IDM communication tokens .. idmtokens(Si)

- break an input stream up into tokens lttScan, TK_PSEUDO il't.scan(4i)
/ISZWIDTH, ISKANJI, TOCHAR, TOUPPER, TOLOWER - character cl&BBifica bytetype(3i)

/ISPMATCH, ISZWIDTH, ISKANJI, TOCHAR, TOUPPER, TOLOWER - chara.cter classifica bytetype(3i)
printf, ifprintr, sprintr, tprintr - formatted output conversion printl'(3i)

- dump bytes in hexadecimal to standard trace xdump ... xdump(3i)
tfset, tr, tfiev, DPRINTF - trace pa.ck.age .. tl'(3i)

idmdump - dump database and transaction log ... idmdump(li)
idmload - load datablllle or transa.ction Jog •..........................•..•......•......•.......•.... idmload(li)

idmrollf - roll forward a transa.ction log ... idmrollf(li)
idmckload - verify dat&base or tra.nsaction log dat& Illes ... idmcklo&d(li)

their time stamps. idmcklog - verify IDM tra.nsaction logs are complete and print idmcklog(li)
onexit, olfexit - transfer control on exit ... onexit(3i)

mapsym - tra.nslate symbol ume into integer value ma.psym(3i)
it&ddopts - a.dd options bytes to a. tree .. ita.ddopts(3i)

ITREE - IDM tree data. structure .. itree(Si)
itqstmt - build a. tree for a. general query statement itqstmt(3i)

itcopy - build tree for bulk copy function itcopy(3i)
itprint - print a. tree for debugging ... itprint(3i)
itdeline - create tree for deftne comm&nd ... itdellne(3i)

itnode, itvar, itroot - build &n IDM tree node, VAR node, or ROOT node itnode(3i)
iputtree - put & tree to the dat&base server iputtree(3i)

ituitree - convert to &nd from user tree (UTREE) representations itiutree, utree(3i)
irsubst - perform substitutions in trees ~ irsubst(3i)
/itdblo&d, ittxlo&d, itrollf - build trees for data.base &dministration/ dba(3i)

idlpa.rse, idlfpa.rse - build query trees from IDL program input idlpa.rse(3i)
sqlpa.rse, sqlfpa.rse - build query trees from SQL program input sqlpa.rse(3i)
itxcmd, itxprog, itxsetp - build trees to execute stored commands/programs itxcmd(3i)

tupsetup, tupsep, tuphea.d, tupprint - print tuples tupprint(3i)
irfetch - retch .. retrieved tuple .. irfetch(3i)

list igettup - get & tuple from a da.t&blllle server into a. target igettup(3i)
server iputtup - put & tuple from a. target list to the data.base iputtup(3i)

tupsep, tuphe&d, tupprint - print tuples tupsetup,.. tupprint(3i)
irflush - flush tuples for current command ir8ush(3i)

tupaetup, tupsep, tuphea.d, tupprint - print tuples .. tupprint(3i)
tuples tupaetup, tupsep, tuphea.d, tupprint - print tupprint(3i)

print tuples tupaetup, tupsep, tuphea.d, tupprint - tupprint(3i)
lttHFile - host Ille Ille type ... ift.hllle(4i)

lttldm - IDM channel Ille type ... ift.idm(4i)
lttIFile - IDM Ille Ille type ... ift.illle(4i)

lttKeyed - keyed host Ille type if'tkeyed(4i)
lf'tLoTerm - physical terminal Ille type ... ift.loterm(4i)
lttLTa.pe - ANSI la.beled ta.pe Ille type ... ift.lt&pe(4i)

lttMText - Message-text Ille type ... il\mtext(4i)
lf'tString - in-core string Ille type ... il't.string(4i)

lttTerm - terminal file type ... ift.term(4i)
retrieved target-list/ irdesc - get type &nd name information &bout a irdesc(3i)

typecnvt, cktypecnvt - generalized type conversion ... typecnvt(3i)
anyfmt - print or format a.ny possible type for printing a.nyprint,•............... 1111print(3i)

_dsctoidm, _idmtodsc - descriptor-based type (iDSC) conversion hooks•......••........ dac(3i)
IDM file type introduction a.nd implementation 4intro(4i)

conversion typecnvt, cktypecnvt - generalized type typecnvt(3i)
tempname - create a unique Ille name .. tempname(3i)

from a. byte UNSIGN - remove sign-extension bits ...•.....•..•.•.. auign(3i)
igeteot, itapelo&d - get DONE blocks until end of IDM ta.pe ... igeteot(3i)

TK_PSEUDO - bre&k an input stream up into tokens lttScan, ... il't.sca.n(4i)
foldcase - fold upper to lower case in a. string foldclllle(3i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 15

PTX (01) Britton Lee PTX (01)

given table keyloot, uaage - perform binary search on a keylook(3i)
or print a usage message crackargv, uaage - take apart an argument vector•......... crackargv(3i)

take apart an argument vector or print a uaage meaeage cractargY, uaage - ..•....................... crackargv(3i)
iropen - open an lD>dRUN structure ror uae•.•.............................•................ iropen(3i)

uaername - get uaer name•.........•.......•...•............................. uaername(3i)
gethunpw - get hoet uaer name and password•............................•...... gethunpw(3i)

/ituitree - convert to and rrom uaer tree (UTREE) representations .•...........•.....•.... utree(3i)
username - get user name•......................... username(3i)

Shared databaae system backup procedures uaing idmdump, idmload, and idmrollf /-............... bactup(Si)
getparam (31) parameter Ble /usr/Iib/idm/params - default .IR params(Si)

integer value mapping ftle /usr/Iib/idm/symftle - symbol to symftle(Si)
mapping ftle /usr/lib/idm/xnshoeta - XNS boet name xnsboeta(Si)

- convert to and from user tree (UTREE) representations /ituitree utree(3i)
- translate symbol name into integer value mapsym... mapsym(3i)

pextract - extract parameter value from list •.. pextract(3i)
- symbol to integer value mapping ftle /usr/Iib/idm/symftle symftle(Si)

irset - set values into the lD>dRUN structure irset(3i)
idmtokens - values of lDM communication tokens idmtokens(Si)

itvar, itroot - build an lDM tree node, VAR node, or ROOT node itnode,. itnode(3i)
elements irbind - bind program variables to retrieved target list irbind(3i)

/usage - take apart an argument vector or print a usage message crackargv(3i)
ftles idmckload - verify databue or transaction log data idmekload(Ii)

ASSERT - verify 6xpoints in a program asaert(3i)
and print their time stamps. idmcklog - verify lDM transaction logs are complete idmcklog(li)

isforegnd - are we in roreground (interactive)! isforegnd(3i)
ifwrite - write a block of memory ... ifwrite(3i)
iputtl - write a target list to a ftle iputtl(3i)

tape ansitape - write ftles on an ANSI standard labelled ansitape(Si)
mergempool, freempool, abowmpool -/ xalloc, zalloc, aavestr, xtree, newmpool, xalloc(3i)

standard trace xdump - dump bytes in hexadecimal to xdump(3i)
showmpool -/ xalloc, zalloc, savestr, xtree, newmpool, mergempool, freempool, xalloc(3i)

/usr/lib/idm/xnshoets - XNS hoet name mapping ftle xnshoets(Si)
idmidyd - lDM XNS identify daemon ... idmidyd(8i)

mergempool, freempool, showmpool/ xalloc, zalloc, savestr, xtree, newmpool, xalloc(3i)
bzero, STRUCTASGN - copy, set, or zero a block of memory bcopy, bftll, bcopy(3i)

3.2-86 /09 /09-R3v5m0 Britton-Lee 16

INTRODUCTION (11) Britton Lee INTRODUCTION (11)

NAME
Introduction to Release 3 Britton Lee Integrated Database Management (IDM) support commands

DESCRIPTION
Section 11 describes the UNIX command line syntax Cor the Release 3 Britton Lee IDM support
commands. These commands provide direct access to the IDL and SQL languages and database
administrator utilities.

PARAMETERS

FLAGS

A number or system parameters can be set in the environment. For example, the command:

setenv IDMDEV /dev /testidm
- or -

(csh)

(sh) ID MD EV=/ dev /testidm; export ID MD EV

will set the parameter IDMDEV to have the value "/dev/testidm" Cor all subsequent commands.
Parameters without an explicit setting are given a default. See params(5i) for a complete descrip­
tion or the following parameters. Useful parameters (and their usual default value, shown in
square brackets) are:

EXPERIENCE [beginner] The experience level of the user, chosen Crom "beginner," "able," or
"expert," with case ignored. Only the first character is checked, so "expert,"
"Expert," "e," and "Excalibur" are the same.

ID MD RIVER

ID MD EV

TERM

QRYLANG

[OJ An index into a driver table for the database server. Driver zero is the stan­
dard driver. On most systems, driver one is the standalone serial driver.
Drivers other than zero are normally used for experimental protocols. Consult
your site manager for details.

[/ dev /idm] The name or the file used to connect to the database server. If
IDMDRIVER is not zero, this parameter may be interpreted differently or
ignored.

[dumb] The type or the terminal being used. On most UNIX systems, this is set
automatically when you log in. On Berkeley UNIX systems, see tset(l) for
details.

[idl] The query language you normally use: "idl" or "sql." This affects the word­
ing or messages. The id/(11) program always sets this to "idl;" sql(ll) always
sets this to "sql." The setting or this variable in no way limits the query
language you can use.

Flags that have values may or may not have a space between ihe flag and the value as con­
venient.

Several flags are available on almost all commands as noted in the individual command descrip­
tions:

-Bdet1ice

-T trac eftags

-P

The IDMDEV setting. For example, "idl -B /dev /newidm" runs id/ using
"/dev /newidm" as the interCace to the database server, regardless or the setting
or the IDMDEV variable.

Trace flag settings; see t.1{31) for details.

Turn on perCormance monitoring. This turns on the following IDM system
options:

33 oRESP
34 oCPU
37 olNP

Response time
Database server CPU use
Input wait

3.20-88/03/02-R3v5m9 Britton Lee 1

INTRODUCTION (11) Britton Lee INTRODUCTION (11)

38 oMEM Database server memory wait
39 oCPUW Database server CPU wait
40 oDJSK Database server disk wait
41 oTAPE Database server tape wait
42 oOUTW Output wait
43 oBLOCK Blocked wait (for locks)
44 oDAC Database Accelerator use
45 oOUTC Output buffer wait
46 olllTS Database server disk cache hits
47 oREADS Database server disk reads
48 oTPERRS Soft tape errors
49 oQRYBUF Bytes of query buffer used
60 oPLAN Decomposition plans

Fll.E SPECS
Names of files on many commands can be given using a file •pee, that is, a combined file name,
type, and parameter indication. The syntax:

filename% t,,e ,parama

specifies the given filename of the selected fJPe modified by the parama. T,,,e can be selected
from Mlle (host file, see i/thfile(41)), Ulle (IDM file, see i/ti/Ue(4I)), htape (host (.ANSij tape, see
i/tltape(41)), and itape (IDM tape, see itapeopta(3I)}. Ir a type is not given, hflle ~assumed. See
i/acrad(31) for details. Filename for IDM files containing a ':' specify filename:ovmer. Filename
is unused on IDM tape.

Parameters are specified using a comma-separated list of name(value) pairs. Valid parameters are
documented in i/control(31), i/open(31) and section 41.

Ir the required commas are~omitted between each parameter, parameters after the missing comma
will be ignored and defauld values used instead. Be sure to put a comma after the file tppe and
before the parama when specifying parameters.

Tape parameters are chosen Crom the list:

mode(M) 1/0 mode; M may be 'r' (read), 'w' (overwrite), or 'a' (append). Britton Lee
utilities that read tapes (e.g., idmload(ll)) default to 'r'; utilities that write tapes
(e.g., idmdsmp(ll)) default to 'a' on host tape (i.e., create a new file on the end
of the tape) and 'w' on IDM tape (overwrite).

volume(VL)

fileset(FS)

newname(V)

fileno(N)

3.2(}-88 /03 /02-R3v5m9

A comma-separated list of the names of the volumes in this set. Ir specified, the
header of each tape is read and verified before the tape is used. Ir not specified
any volume is accepted. Only the first volume is checked on IDM tape. Tape
reads will always check volume names on tapes 2-n (but not 1).

The name of the fileset to check. Host tape only. Ir not specified, the fileset ·
name is not checked.

The new volume name to write on the tape to replace the existing name. Can
only be used in 'w' mode. Ir not specified, the volume name is unchanged. New
IDM tapes (tapes not previously written by the IDM/RDMBS software) must be
given a n~w name. IDM tape only.

The file number to access. Only used in read mode on IDM tape. Ir not
specified file zero is assumed on IDM tape, or the filename ia used on host tape.
Note that files are numbered from zero on IDM tape and one on host tape. The
fileno and filename must match if both are specified on host tape. This option
is ignored when writing an IDM tape.

Britton Lee 2

INTRODUCTION (1I) Britton Lee INTRODUCTION (1I)

unit(N)

density(D)

length{L)

bs{N)

format{F)

erase

xlate(X)

norewind

verify{B)

The unit number to access. Zero by default.

The tape density in BPI. Host tape only (on IDM tape this is determined from
the "configure" relation). If not specified, a system default is used.

The length of the tape in feet. Host tape only. Ignored on eome systems. The
UNIX implementation of inittape(SI) writes the tape length into a UVLl label,
which will override this parameter. The tape length is reduced by approxi­
mately 4% to allow for possible tape errors and variations in interrecord gap
size.

The (maximum) block size. Ignored in read mode if it can be determined from
the tape header. Host tape only. If not specified, 2048 is used. Block sizes
larger than 2048 exceed ANSI Standards X3.22-1978 and X3.39-1973 and hence
may be incompatible with other systems.

The format of this file. Supported formats are 'F' for fixed length records and
'D' for variable length records. UNIX also supports 'U' for undefined; this for­
mat roughly resembles a stream. ldm/copy{ll) defaults to format 'D' and
idmdump(ll), idmload(ll) and idmcopr(ll) default to 'U' on UNIX.

Perform a "security erase" of the tape before writing. Only supported on some
drives. Mode 'w' must be specified. IDM tape only.

Perform the requested translation of data on the tape. This may be one of
"none" (no translation), "ascii" (translate to ASCII), "ebcdic" (translate to
EBCDIC), "host" (do host translation). The default is "none." IDM tape only.
Host tape is always host translated.

Do not rewind tape between writing files. Default is to rewind. IDM tape only.
Norewind is available for writes only in IDM Software Releases 35 and 40.
Norewind applies to both reads and writes in RDBMS Software Release 3.5 and
future RDBMS releases.

Turn on (B = 1) or off (B = 0) tape sequence number verification. Default is
not to verify. This parameter should only be used on tapes previously written
by the IDM/RDBMS software on the database server. Like volume, tape reads
will automatically verify the sequence numbers on tapes 2-n. IDM tape only.

AUTHENTICATION

NOTE

If your shared database 'system is configured to require user authentication, you may be
prompted for a password the first time the database is opened. The password can be set or
changed using idmpaaawd(ll).

On some systems it may be possible to set a default password. This will only be permitted if the
password can be securely stored on the host.

System V Release 2.0 (running on 3B series) does not provide access to basic tape operations.
Therefore support of ANSI labeled tape (htape) is unavailable at this time.

SEE ALSO
idmpasswd(11), get par am(31), if scrack(31), itapeopts(31), tf(31), if thfile(41), if tifile(41), if tltape(41),
csh(l), sh(l), tset(l)

3.24-88/02/29-R3v5m8 Britton Lee 3

IDL (11) Britton Lee IDL (II)

NAME
idl - Ad hoc interactive IDL (Intelligent Database Language} parser

SYNOPSIS
idl [-B device] I -P J [-e] [-a] [-f infile] [-1 linesperpage J [-n J [-p J [- J [dbname]

ARGUMENTS
-B detlice Use device as the connection to the database server.

-P Turn on performance monitoring. Individual performance options can be set
using the set pseudcrIDL command.

-a Turn off aut<rassociation. See %aaaociate below.

-e Echo every command as read. This can be useful when redirecting the input or
the parser. In this case, the input commands as well as the replies will go into
the output file.

-tinfile Input file name. IC not specified, read the standard input in interactive mode.

-l lineaperpage Set the number of lines per page for output formatting. When data is being
retrieved, a new header will be printed sufficiently frequently to insure that
column labels are always visible. IC lineaperpage is zero, only the initial header
will be printed. IC not speciCed, the terminal driver (I/tTerm(4l)) is queried.

-n Parse commands but don't execute them. The connection to the database server
will not be opened. Front-end commands (e.g., %input) and range statements
will still be executed. This can be used to verify an input script that is to be
run later.

-p Disable the reading or user and system profile (or startup) files.

-a Run the parser in silent mode. Turns off prompting, printing of IDL banner and
elaborate printing or syntax errors.

dbname The name of the initial database to open.

DESCRIPTION
Id/ implements the IDL query language. Queries typed at a terminal are translated, processed by
the shared database system, and results are formatted and printed.

IC the -f flag is specified, input is read Crom the named file rather than the standard input. File
input is non-interactive, that is, special functions or interest only to the interactive user are dis­
abled and input will be Caster.

IC the -p is not speciCed, system and user profile files are read before user input begins. On
UNIX, these are "/usr/lib/idm/idlpro.idl" and ..-/.idlpro.idl" respectively.

The system parameter MAPCC may be used to pass control characters through the IDL front
end. The default is to map control characters to blanks. See parama(5I).

Auto association of stored command, relation, and view creation will place the user text into the
deacriptiona relation of the current database using the ueociate command. Text starting at the
end or the previous command up to and including the end define or command terminater (i.e.,
"go" or semi-colon) is stor!'d in the te:rt field, including comments and newlines, as it appears in
the input. The ke1 field or the relation has a value or iX where X ranges Crom O to 9 and a to Z
to insure the sorting order ~r the text in the deacriptiona relation.

See the discWl8ion oC the -a flag, above, or the description oC the %aaaociate command, below.
See BUGS section Cor warning about creating many objects within one "go".

3.24-88/02/29-R3v5m8 Britton Lee I

IDL (11) Britton Lee IDL (11)

The following list describes features of Britton Lee's IDL implementation.

• A "go" or a semicolon terminates all commands and sends them to the IDM/RDBMS
software if no continuation character is set. If a continuation character is set (using the
%continuation command - see below) then each line without a continuation character is sent
immediately to the database server.

• The "exit" command exits idl.

• The "reset" command resets the command buffer like the "go" command but does not send
the buffered commands to the database server.

• The "? [topic)" command invokes the help subsystem. See helpaya(31).

• The "! (shcomm)" command invokes the system shell. See ayaahel/(31).

• The commands cloee, copy, dump databaae, dump tranaactlon, load databaee, load
transaction, open file, read file, write file, cloae file, roll forward, aetd.ate, and set.­
time are not implemented here. Separate utilities provide these functions. See id/parae(31)
for details.

• The interrupt character (normally delete (a.k.a. rubout) or control-C on UNIX) can be used
to interrupt a command.

• BCD numbers are preceeded by the '#' sign. (eg. "*1234.1234E-10"). BCD's may have 31
digits total with a decimal point embedded anywhere within the digits These digits are
optionally followed by an 'E' or 'e' and an exponent from 1022 to -1023.

• Floating point constants must begin with a digit. For example, use "0.1" instead of ".l ".

• The command eet option causes the specified IDM system option to be set on all future com­
mands. For example, "set 11" or "set CPU" causes database server CPU time to be
returned. The unset command turns off options.

Commands
A number of front-end specific commands are available. These are all introduced with a percent
sign at the beginning of a line and take effect immediately (i.e., are not buffered to a "go" com­
mand). Abbreviations are allowed for convenience.

%associate [on I oi!J If there is no argument or if the argument is on au~association
is enabled, so that the text description of stored commands is
automatically entered into the database (using the aaeociate
command of IDL). If the argument is off then au~association
is disabled. Au~association is normally on. See also the -a
flag.

%continuation (char]

%display text

3.24-88 /02 /29-R3v5m8

Set the continuation character to char. Lines ending with the
specified character are not sent directly to the parser. If this
mode is set, the "go" command is not recognized; instead, the
first line that does not end with the continuation character ter­
minates the command. If the char parameter is omitted the
"go" mode is reinstated.

Britton Lee strongly discourages use of the continuation charac­
ter. Inadvertently typing a carriage return before a command is
complete may destroy data. You should use the default ("go" or
semicolon) input mode.

Output the text to the standard output. This is normally used
in system profile files to provide informational messages to users.

Britton Lee 2

IDL (11) Britton Lee IDL (11)

%edit [filename]

%experience level

%help

%input [filename}

%redo

%showranges

o/osubstitute name value

%trace traceapec

%?

Edit the transcript or the IDL session (or filename iC given).
When the editor returns, the file is submitted as input to IDL.
The editor used is defined by the EDITOR parameter. See
parama(5l)

Set the experience to level.

Print all immediate commands.

Read the specified filename for IDL commands. When the file
ends (or an "exit" command is encountered) control returns to
the standard input. Ir filename is not specified, the standard
input is read.

Resubmit the transcript or the IDL session as input to IDL.

Show the currently defined range variables.

Assign the name to have the specified value. The "%name" syn­
tax can be used to interpolate the value. This is a substitution,
not a macro, so there are restrictions on where this substitution
can occur. See idlparae(3l) for details. The value is typed as an
i.INT2 if the name begins with a digit, otherwise the value is
typed as an iSTRING (iCHAR).

Send the traceapec to tfaet(3l).

Same as %help.

In addition to these commands, two special characters are recognized in the first position or a
line. "?" invokes a help subsystem. It may be followed by a help topic, so "? idl append"
describes the append command. A line beginning with the "!" character pa.sses the remainder of
the line to the UNIX shell.

EXAMPLE
idl -B /dev/gpib hostdb

Invokes IDL on the GPIB interface, database hoatdl>.

SEE ALSO

BUGS

idlparse(3i), iftterm(41), IDL Reference Manual, Britton Lee part number 205-1235-rev.

Ir more than one create and/or define command is submitted to the parser at once, they are all
auto-uaociated under the relation id or the first object.

There should be some way or controlling the format or the output. A %/ ormat command will
probably be added to do this.

The output format should be better adapted to the terminal. For example, output lines that
exceed the terminal width are not wrapped nicely. In particular, the current interface does not
adapt nicely to IBM 3270-style interactions.

It should be possible to write scripts at this level that include looping based on return data so
that simple applications can be prototyped easily.

In general, there should be a very sexy applications development tool available that would include
report capabilities, simple applications generators, etc.

3.4-87 /02/03-R3v5m0 Britton Lee 3

IDEL2RIC (11) Britton Lee IDEL2RIC (11)

NAME
ldel2ric - convert .idm (IDEL precompiler input) syntax to .ric (RIC precompiler input) syntax

SYNOPSIS
idel2ric [-r] pgm.idm ...

DESCRIPTION
ldeltrie converts files that were written in the dialect used by the old idel precompiler into the
dialect used by the current rie precompiler. For each itlel source file pgm.itlm a corresponding
pgm. rie file is generated.

If an argument of -r is given, the generated files will have the suffix . re, rather than the suffix
. rie. These files can be precompiled by the re precompiler, a predecessor of rie. The option has no
effect on the contents of the generated files.

The source . idm files should not provoke any diagnostics from id el. Idel£rie assumes its inputs
are valid idel files, and is relatively weak at recovering from syntax errors.

The changes made are the following:

• Semicolons are added to query language statements;

• C variables embedded in data.base statements get a dollar-sign ("$") prefix;

• Leading dollar signs ("$") are stripped from continuation lines and lines containing
only curly brackets.

The generated files will need further work before they are ready to run. In particular, you should
edit them to make sure that the first executable statement in the program is INITRIC
("yourprogname") and that the last executable statement in the main procedure is an
exit(RS_NORM).

For a more complete conversion from Release 2 1/0 and Standard 1/0 to Release 3 1/0 R£toR9
may be used instead of idel£rie. RttoRS will call ideltrie (without the -r flag).

EXAMPLES
To convert an ide/ program m711uy. idm use the command

idel2ric myguy .idm
Edit the file myguy. rie to make sure the INITRIC and exit are in place and checking out any
lines containing the string %%%.

SEE ALSO
r2tor3(1i)

DIAGNOSTICS
Some idel syntax errors are diagnosed, but the effort made is pretty feeble.

BUGS/DEFICIENCES
Lines with detected idel syntax errors evaporate, rather than being passed on to the output file.

User variables used in order by clauses are not converted to the correct relation domain. This is
left for the user to correct by band.

3.4-87 /12/04-R3v5m7 Britton-Lee, Inc. 1

IDMCKLOAD (11) Britton Lee IDMCKLOAD (11)

NAME
idmckload - verily database or transaction log data files

SYNOPSIS
idmck.load [-B device] [-P J [-1] wdbname srcspec

ARGUMENTS
-Bdevicc

-P

Use device as the database server connection. See intro(ll) for details.

Turn on performance monitoring.

-I

wdbname

If specified, a transaction log file is verified; otherwise, a database file is verified.

The working database. If an IDM file is specified in 8rc8pec it will be round in
this database.

8rc8pec The specification of the input file (see intro(ll)).

DESCRIPTION
Idmckload verifies a database or a transaction log as previously dumped by idmdump(ll).

WARNING
This utility uses with option 28 to the command. If the error "bad with option option: 28" is
returned, then the database server does not have code to support this utility. The mimimum
requirement is 03.5 RDBMS software .

. EXAMPLES
idmckload system %itape

Verifies a database data file from IDM tape file 0.

idmckload system "%itape,fileno(1)"
Verifies a database data file from IDM tape file 1. Since IDM tape files are numbered
sequentially from zero, this is actually the second file on the tape.

idmckload -1 system tuesday .log
Verily transaction log from the host file "tuesday .log."

SEE ALSO
intro(ll), idmcklog(ll), idmload(ll), idmdump(ll), idmrollr(ll), backup(81}, The section "Backup
and Restore" in the Databa8e Admini8trator'8 Manual

3.3-87 /09/25-R3v5m4 Britton Lee 1

IDMCKLOG (11) Britton Lee IDMCKLOG (11)

NAME
idmcklog - verify IDM tra.nsa.ction logs a.re complete a.nd print their time stamps.

SYNOPSIS
idmcklog [-B device] [-d dbna.me J loglist

ARGUMENTS
-B device

-ddbname

logli8t

DESCRIPTION

Use device a.s the database server connection.

If set, will print the current time stamp for data.base dbname.

List of log file specifications to check.

/dmcklog outputs the timestamps found in the headers or the specified tra.nsa.ction logs a.nd reads
the complete log to verify tha.t the la.st pa.ge is present. Logs tha.t a.re missing the la.st page
(which ma.y ha.ve occured from a. user interrupt, host system era.sh, or da.ta.ba.se server era.sh) will
generate a.n Error exception.

If the -d fla.g is given, the system da.ta.ba.se is queried for the current time stamp (found in the
databa8e8 relation) for dbname. The ending stamp for the la.st tra.nsa.ction log dumped should
match this value. Rea.d permission of the system da.ta.ba.se is required to use this option. ldmck­
log requires one or more transaction log file specs (see intro(ll) for file specs) which ma.y be host
file or ta.pe specifications.

Currently tra.nsa.ction logs on the da.ta.ba.se server (IDM files a.nd IDM tape) cannot be checked.
The log could be dumped tp host file or host tape a.nd then idmcklog run on the host copy or the
log.

EXAMPLES
idmcklog -d mydb logl log2 log3%hta.pe

Check tra.nsa.ction logs logl, log2, a.nd logs (on host la.belled tape). The time stamp for
data.base mydb will be printed out along with the time stamps for the three logs.

SEE ALSO
intro(ll), idmdump(ll).

3.11-87 /12/04-R3v5m7 Britton Lee 1

IDMCOPY (11) Britton Lee IDMCOPY (11)

NAME
idmcopy - copy relation(s) between the data.base server and the host

SYNOPSIS
idm.copy in I out [-B device J [-P J [-t filespec J I -w wdbna.me } [-1 } [-n J [-p J dbname [

rein ...]

ARGUMENTS
in lout

-Bdevice

-P
-lfileapec

-wwdbname

-1

-n

-p

dbname

rein ...

DESCRIPTION

Copy direction relative to the database: in means to copy into relations; out
means to copy out of relations.

Use device as the data.base server connection.

Turn on performance monitoring.

Copy all relations to or from the given fileapec (see intro(ll)). IDM files are not
supported. If not specified, host files named reln.d are used.

Use wdbname as the working database. Currently the main purpoee for this is
to use a different IDM tape permission.

Rather than locking the entire relation during copy in, only lock the page being
modified.

Do not verify pages as they are copied in. Verification is performed only when
copying in data pages.

Copy out the data in IDM system internal page format. This is more efficient
than the standard (tuple) format. Copy in does not require this flag. the
IDM/RDBMS software will recognize the format as the data is written to the
database server.

The name of the database in which to find the relations to be copied. If -w is
not specified, this is also the working databse.

The list of relations to be copied. If not specified, all user relations are copied.

ldmcopy copies relations in or out of the shared data.base system. If any reins are listed, then
they are copied; otherwise, all user relations (i.e., objects of type 'U') in the database are copied.
If the -t flag is specified, the relations are all copied to or from the named file. Otherwise, host
files named reln.d are used. Note that for idmcopy in the rein names may contain the trailing .d
so that pattern matching (•.d) can be used {see example below).

If idmcopy in is specified, data is copied from fileapec or reln.d files to the shared database sys­
tem relations. The relations will be created in the database if they do not already exist. The
rein must match the name of the relation copied out. ldmcopy out copies data from shared data­
base system relations to the named fileapcc or re/n.d files in standard copy (tuple) format. If the
-p option is specified then data is copied in IDM system internal page format. A ":waer" may be
used on relation names. If so, this tag is removed before the ".d" is appended. For example, a
relation spec of "parts:user" references host file "parts.d."

ldmcopy to or from IDM files is not supported at this time. To copy IDM files, use idmread or
idmwrite (see idmrcad{1I)).

EXAMPLE
idmcopy out -p -f backup hostdb

Make a copy of all user relations in hoatdb in the host file backup formatted as IDM sys­
tem internal pages.

3.11-87 /12/04-R3v5m7 Britton Lee 1

IDMCOPY (11) Britton Lee IDMCOPY (11)

BUGS

idmcopy in hostdb wines stores
Copy host files winea.d and atorea.d into relations winea and atorea, respectively.

idmcopy in mydb • .d
Copy all files ending with .din the current directory into the database mrd6.

Idmcopy out of two relations with the same name but different owners will use the same host file;
the second will override.

SEE ALSO
intro(ll), idmfcopy(ll), idm.read(ll), Syatem Adminiatrator'a Manual

3.7-87 /12/04-R3v5m7 Britton Lee 2

IDMDATE (11) Britton Lee

NAME
idmdate - set the date and/or time on the shared database system

SYNOPSIS
idmclat.e (-B device J [-P J [-cl] [-t] [daytime J

ARGUMENTS
-Bdewee

-P
-cl

-t

Use device as the database server connection.

Turn on performance monitoring.

Do not set the date.

Do not set the time.

IDMDATE (11)

dartime The date and time in free format. The syntax is described in paraedate(3I). H
not specified, the host date and time are used. This must be a single parameter,
so it will have to be quoted if it contains spaces.

DESCRIPTION
Umdate sets the date and time for the shared database management system. H no daytime is
given the date and tiJM are collected from the host.

H -cl and -t are both given, idmdate does nothing.

Only the DBA or the system database may use this command.

EXAMPLES
idmdate

BUGS

Set the date and time on the shared database system to the current date and time on the
host.

idmdate -d 5:32pm
Set the time on the IDM to 5:32 P.M.; do not change the date.

Since dates are represented in GMT, the "day" as represented by the IDL getdate function can
wrap at strange times (e.g., 4 P .M. on the West coast).

SEE ALSO
parsedate(31)

3.24-88/02/29-R3v5m8 Britton Lee 1

IDMDUMP (11) Britton Lee IDMDUMP (11)

NAME
idmdump - dump data.base a.nd transaction log

SYNOPSIS
idmdump [-B device] [-P] [-1 logna.me] [-w] [-m mode [clock,waitcnt] J [-d dbspec] -t

logspec dbna.me wdbname

ARGUMENTS
-Bdevice

-P
-llogname

-d dbspec

-mmode

-w

-tlogspec

dbname

wdbname

DESCRIPTION

Use device as the database server connection.

Turn on performance monitoring.

Specify the name of the transaction log on the shared database system. The
default is "transact". This argument has no effect if the -d ftag is SJ"'i:-ified,
since only transact can be dumped during a full data.base dump.

Set the data.base destination file specification (see intro(ll)).

Set the dump mode, only when dumping both the transaction log and the data­
base. Legal modes are r read only a.nd o online or read/write dump. The o
mode will reverse the order in which files are written (see below).

Wait until the database is accessible to commit updates, rather than returning
errors to the updating program. Ignored when using the online dump ftag.

Set the transaction destination file specification. (see intro(ll)).

The name of the database to dump.

Destination database to dump into if dumping within the databa.se server (IDM
file or IDM tape); wdbname must be different from dbname. Wdbname may be
the same as dbname unless the user is dumping to IDM file.

ldmdump dumps the transaction log of database dbname to an IDM file, a host file, IDM tape, or
host ANSI labelled tape. The database may also optionally be dumped.

The database to be dumped is specified as dbname. A "working database" wdbname must also be
specified; it must not be the same database as dbname if dumping to an IDM file. IDM files will
be created in the working database.

The transaction and database destinations are controlled using the -t and -d ftags, respectively.
The -t ftag must be specified since the transaction log must always be dumped; the databa.se
dump (-d flag) is optional.

ldmdump without a -d ftag causes only the transaction log from the database dbname to be
dumped into the file given in logspec. The log name is assumed to be "transact" unless specified
by the -1 ftag.

If a -d flag is also specified, then the transaction log is dumped as above, followed by the data­
base. The database is dumped to the file specified in dbspec. Note that if the -mo ftag is
specified the data.base is dumped first. The data.base is locked during the dump (unless using the
-mo option), that is, no other users ma.y update the data.base during the dump.

If either the log or database is going to IDM tape, then the other cannot be going to the host.
An error will be reported if this is attempted. If both the log and the data.base a.re going to IDM
tape, then the tape parameters must be put on the -t ftag.

The mode flag -m sets either the read only (-mr) or the online (-mo) dump options available in
Release 40 or newer RDBMS software. Online dump writes pages that are not being modified,
keeping track of those marked as "dirty". Successive passes are ma.de to write all dirty pages.
The number of these passes and their frequency are user-definable as described below.

3.24-88/02/29-R3v5m8 Britton Lee 1

IDMDUMP (11) Britton Lee IDMDUMP (lI)

The online mode will accept optional clock time and wait count to be used by the database server
in checking for updates not yet complete in the database. The syntax is two comma-separated
integers: <clock>[, <waitent>J.

The clock value for an online dump specifies the number of seconds which itlmtlwmp should wait
between passes over the database. The clock value may range between 1-540 seconds and
defaults to 60 seconds.

The wait count is the number of passes to make over the database before new updates are locked
out and may range from 1-20 passes. The default is to make 5 passes.

A warning message is issued when using these options on a transaction only dump. For more
detailed information read the IDM System Status Document for IDM Release 40.

NOTE: the order in which the files are written a.re reversed. This could create a prob­
lem when loading the database from host or IDM tape if the user is not aware that the
database is now the first file on the tape. If both the log and the database are to idm or
host tape then the first file written to tape is the database followed by the transaction
log.

ldmtlump -w will suspend the database dump until all updates active in the database to be
dumped have finished. Normally, if there are updates active, the dump will exit and print an
error meMage. This flag is ignored if using online dump (-m) or when dumping the transaction
log only.

The -m and -w options are legal only when dumping the database.

A dbapec or logapec specifying an IDM file creates an object of type "T" for the log and type "F"
for the database. These can only be read by idmload(II), idmckload(ll), idmro//fl.11), or the
audit command. In pa.rticula.r, the idmread(ll) command cannot be used to read a dumped tran­
saction log.

EXAMPLES
idmdump -d dbdest -t /dev/null parts system

Dump database "parts" to the host file "dbdest". The transaction log is not saved.

idmdump -t log%hfile -d db%ifile -mo80,10 parts system
The transaction log is dumped to the host file and the database to IDM file with the online
option set. The clock value is 80 and the waitcnt 10.

idmdump -t log%hfile -d · db%ifile -mo80 parts system
The transaction log is dumped to the host file and the database to IDM file with the online
option set. The clock value is 80. The waitcnt defaults to 10.

idmdump -t logsave parts system
The transaction log is dumped to the host file "logsave".

idmdump -t logsave%ifile -"l logl parts backup
The transaction log is dumped to the IDM file "logsave" in database "backup" from
IDM file "logl" in database "parts".

idmdump -d %htape -t partslog%ifile -B / dev / gpib parts system
Dump database "parts" using GPIB parallel driver to host tape. The transaction log
is saved in IDM file "pa.rtslog" in the system database.

idmdump -t tr%ifile ,..d "%htape,bs(8192),density(1600)" parts backup
Dump transaction log to IDM file "tr" in the database "backup" and dump database
"parts" to host tape where the tape block size is SK and density is 1600 bpi. (Note:
block sizes exceeding 2048 may not be available on all systems.)

3 .24-88 /02 /29-R3v5m8 Britton Lee 2

IDMDUMP (11) Britton Lee IDMDUMP (11)

BUGS

idmdump -t "%itape,volume(old),newname(new)" -d %itape employees system
Dump database "employees" and the transaction log on IDM tape. Check the name
on the tape first and make sure that it is equal to "old" then replace it with "new."
Note that when using IDM tape the database destination name is not needed.

idmdump -t "elog%ifile,newname(new),mode(a)" -d %itape employees system
Dump da.tabase "employees" to the end of IDM tape with the transaction log to IDM
file "elog".

H the dump is suspended when using the -w flag and updates are not yet complete, the user does
not receive error messages until the dump resumes.

SEE ALSO
intro(ll), idmcklog(ll), idmckload(ll), idmload(ll), backup(81), The section "Backup and fitstore"
in the Datdaae Adminiatrator'a Manual

3.14-88/02/29-R3v5m8 Britton Lee 3

IDMFCOPY (11) Britton Lee IDMFCOPY (II)

NAME
idmf'copy - format and copy data to or from a relation

SYNOPSIS
idmf cop7 in [-B devname J [-P J [-bN] [-d dataspec] [-eN J [-f formfile] [-1] [-n J [

-r rejectfile] [-eN] [-v] [-w J [dbname [relname [f ormdesc J J J

idmf copy out [-B devname J [-P J [-d dataspec J [-eN] [-f f ormfile J [-v J [-w] [
dbname [relname [formdesc J J]

ARGUMENTS
in lout

-Bdevice

-P
-bN

-d dataapec

-eN

-tformfile

-1

-n

-r rejectfile

-sN

-v

-w

dbname

re/name

3.14-88/02/29-R3v5m8

Ir in, data is copied from the host to the shared database system. Ir out, data
is copied from the shared database system to the host.

Use det1iee as the connection to the database server.

Turn on performance monitoring.

Copy records in batches of N records, and commit the copy of each batch
automatically. Ir the system crashes during a long copy, records that were com­
mitted can be skipped (using the - flag). Ir -b is not specified, records will be
committed in batches of 5000. /dm/eopy in only.

The specification of the host data file. Host files or host tapes may be specified.
Ir not specified, a ft.le statement in the specification is used. Ir that does not
exist either, then by default standard input is used on copy in and standard out­
put is used on copy out.

Stop processing after N errors have been encountered. The default is to never
stop on error. ldmfcop'll in only.

The name of a host file containing a description of the format of data in
dataapee.

Rather than locking the entire relation during copy in, only lock the page being
modified.

Check data, but do not copy it. Data format descriptions and input records are
checked, but no data is transferred to the shared database system. This option
is useful for debugging file descriptions and cleaning up input data. ldmfcopy in
only.

The name of a host file to receive copies of records from the dataapec that do
not match the format specification. Duplicate records deleted by the
IDM/RDBMS software will not be included in rejectfi/e. This option applies to
idmfeopy in only.

Skip the first N input records. ldmfcopy in only.

Verbose mode. Data transferred to or Crom the relation is formated as a table
and written to standard error. This can be useful for debugging file descrip­
tions.

Ignore warnings. Records that have warnings instead of errors (e.g., conversiQJl
overflows) will be copied into the database; otherwise, the record will be rejected
to the reject file and included in the error count. ldmfco11 in only.

The name of the database containing the relation to copy. Overrides a data­
base statement in the specification.

The name of an existing relation. The relation name on the command line over­
rides a relation statement in a /ormfi/e.

Britton Lee 1

IDMFCOPY (11)

formdeae

DESCRIPTION

Britton Lee IDMFCOPY (11)

The description of the format of data, if not specified by a formfile. Must be
quoted on most systems.

ldmfeopy converts and copies data to or from an external form described by formfile or a
formdeae. Only the fields in the format description will be copied; it is not neceesary to copy all
fields in the relation. Those fields not copied are filled with the appropriate NULL value depend­
ing on the type of the field.

ldmfeopy in reads records from a host file, converts to internal (IDM system) format, and loads
the database server.

Idmf copy out reads tuples from the shared database system, converts them to external format,
and writes records to a host file.

External (host) records are defined in one of three ways:

• Phyaieal reeorda are defined by the underlying file system. This includes fixed length records
on stream-based files and operating-system defined variable length records.

• Delimited reeorda terminate at a specific record delimiter character. For example, data for­
mated as lines of text on UNIX terminate at a newline character.

• Field-driven reeorda simply gather enough data to fill all the component fields. The use of this
record type is strongly discouraged, as it is inefficient and reduces error recovery dramatically.

Records may not exceed 4096 bytes in length.

Records are composed of fields. Fields are defined in one of the following ways:

• Fixed length fir.Ida consume a predetermined number of bytes. The data may be text or binary.

• Delimited fir.Ida consume bytes until a specified delimiter character. The delimiter is consumed,
but is not sent to the shared database system. The data is always text.

• Counted fir.Ida begin with either a single byte or two bytes that is interpreted as a binary
length followed by that many bytes of data. This is normally used only for special IDM system
typ~ such as BCD.

H all fields are text types the file will be opened with type(text) by default (this can be overrid­
den by specifying type(binary) in the file spec).

The external format is defined in formfile or on the command line using the formdeae parameter.
The syntax is as follows:

<description> ::= { <statement> }+
The description is a sequence of statements.

<statement> ::=database <name> ;

<statement>

<statement>
<filespec>

3.14-88/02/29-R3v5m8

The name of the database to access. A databaae on the command line overrides
this statement.

::=relation <name> ;
The name of the relation in the database server to be copied. A re/name on the
command line overrides this statement.

::= flle <filespec> ;
::=<name>
The specification of the host file in i/aeraek{31) format. The specification will
normally need to be quoted. A fileapee parameter on the command line over­
rides this statement.

Britton Lee 2

IDMFCOPY (11) Britton Lee IDMFCOPY (11)

<statement> ::=- delimit.era <delims> ;
The default set of field delimiters. Ir not specified, tab, comma, and newline are
the default field delimiters.

<statement> ::= verb088 ;
Turns on verbose mode (i.e., the same as the -v ftag).

<statement> ::==record <extent> { <fieldspec> ; }+end
This statement describes the internal structure of a record. It consists or a
definition or the record followed by an ordered sequence of field specifications.

<fieldspec> ::== <attname> <typespec> [== <value>]
Every field has a name, a type (describing the type in the external file, not in
the database), and an optional initial value.

<attname> ::== <name> I all I -
A name may be specified explicitly, which matches the attribute or the same
name in the relation, specified as the keyword all to indicate all domains in the
relation, or specified as dash for dummy fields. On idm/copr in dummy fields
are discarded; on idm/cop11 out dummy fields are created.

<typespec> ::== <binspee> I <textspec>

<binspec> ::== <fixedbinspec> I <varbinspec>
<fixedbinspec> ::= l1 I i2 I i4 I t4 I f8
<varbinspec> ::==bed <length> I bcdftt <length> I bin <length>

<textspec>

<texttype>
<inttype>
<ftoattype>

<extent>
<length>
<precision>

3.I4-88/02/29-R3v5m8

Binary sp~ifications represent data that is stored in IDM system internal for­
mat. These are not recommended for use in interchange. Types bed, bcdftt,
and bin require a length specification (see below). The length on bed and
bcdflt is in bytes, not digits, and the data stored does not include a type or
length byte.

::== <texttype> <extent>
Text types describe representations that have been rendered into the printable
character set. These are in general usable for interchange with other operating
systems and database systems. The <extent> field defines the size of the field.

::==text I <inttype> I <floattype>
::== [unsigned] decimal I octal I hex
::= float I sci
For character domains text represents a byte-by-byte copy. For integer
numeric domains text is equivalent to signed decimal. For ftoating numeric
domains text is equivalent to float. The <inttype>s must match an integer
domain (il, i2, or i4) and force interpretation in the indicated radix. The
<ftoattype>s must match a ftoating point domain (f4, rs, bed, or bcdftt). On
output, type sci causes output in exponential notation. On input, types float
and sci are identical.

ftoating point numbers at the maximum representable value may give a ftoat
point overftow error when copied in. To avoid this, reduce the precision on out­
put to ensure that the number will correctly convert during copy in.

::= [<length> I to <delims>]
::== (<integer> [, <precision>]) I (•) I (var)
::== <integer>
A length specifies the total number of bytes consumed by a record or field. Ir
an integer is specified, the field or record is fixed length, consuming or producing
the number of bytes specified. The asterisk syntax indicates counted field

Britton Lee 3

IDMFCOPY (11)

<delims>
<delimiter>

<value>

<name>

Britton Lee IDMFCOPY (11)

format is used for fields. The first byte of the data describes the width of the
field. The var syntax indicates eovnted field format with two bytes or data
describing the width of the field. The byte ordering is most significant followed
by least significant.

An optional <precision> specifies the number or digits alter the decimal point
for float or aci output; in other contexts it is either ignored or illegal.

A delimiter list specifies delimiter characters that will cause input to end. On
idmf eopy out the first delimiter specified is used to terminate the field. Ir neither
length nor delims are specified, then a variable length string delimited by a
default set of delimiters is assumed for fields. The rules for records ar_e
described below. On output the first delimiter specified is used.

::= <delimiter> { , <delimiter> }*
::= <identifier> I <integer> I <string>
Delimiters may be represented as a symbolic name, as a numeric value, or as a
string. For example, the specifiers comma, ",", Oo54, and Ox2c all represent the
same delimiter on ASCil-based machines. See below for a list of the symbolic
names.

::= <integer> I <string>
Values specify verification or initialization of external fields. On idmfcopy out
the <attname> must be '-' and the resultant output field contains the specified
value. On idmfcopy in the input field must exactly match the specified value.

::= <identifier> I <string>
Names that have no special characters may be given directly. Ir necessary,
names can be quoted to hide special characters.

The following is a list of reserved words that must be quoted if they are to be used as names of
fields in a database server relation:

all bin bed
bcdflt database decimal

file delimiters
float
hex
i4
relation
to
verbose

end
f 4
i1
octal
aci
unsigned

t8
12
record
text
var

Comments begin with '/•' and end with '•/' as in C or PL/I.

Record formats are defined as follows:

record (<integer>)
Opens the underlying host file with the rbp (record-based presentation)
parameter and the specified record length. On physically record-based
files, this may specify a variable-length file. On physically stream-based
files, this specifies fixed-length records.

record to <delimiter>

record

3.14-88/02/29-R3v5m8

Opens the file as a stream. Data will be scanned for t.be specified delim­
iter.

Ir the underlying file is record based or if all fields in the record are
fixed length, acts like "record(N)," that is, opens the file with rbp
(record based presentation). The record length is the sum of the field

Britton Lee 4

IDMFCOPY (11) Britton Lee IDMFCOPY (1I)

lengths if all are fixed lengths, or otherwise is a system default. Other­
wise (on stream based files with variable length fields) acts like "record
to nl."

record(•) Opens the file as a stream. Fields are read or written piecemeal.
Efficiency is lost, and error recovery is reduced. The rejectfile option is
disabled with this mode.

For example, the input:

/ * address records * /
record(60)'

end

name
address

text(20};
text(40};

specifies a file containing a collection or fixed length records, sixty bytes in length, containing
names and addresses.

Offsets in the host file are implied by the order or the specifications. For example, in the above
example, attribute 'name' is loaded Crom the data in positions zero through nineteen, and
'address' is loaded Crom positions twenty through fifty-nine.

Symbolic delimiters may be selected Crom the Collowing list:

Na.me Graphic ASCII EBCDIC Meaning
null 000 00 Null
tab \t 011 05 Horizontal Tab
nl \n 012 15 Newline
Ir 012 25 Line Feed
ff \r 014 OC Form Feed/New Page
er \r 015 OD Carriage Return
Cs 034 22 Field Separator
gs 035 Group Separator
rs 036 35 Record Separator
us 037 Unit Separator
space (space) 040 40 Space
comma , 054 6B Comma
dash 055 60 Dash/Hyphen/Minus
dot 056 4B Dot/Period/Decimal Point
slash / 057 61 Slash
colon 072 7 A Colon
seIDI 073 SE Semicolon

TYPE CONVERSION
Corresponding attributes in the relation and the host file do not have to be of the same type or
length. ldmf copy uses typecnvt(31) to convert as necessary. Britton Lee's IDM/RDBMS software
does not convert floating point numbers to a standard representation. Floating point numbers
generated on one machine may not be meaningful if read on a machine or a different type.

Dummy fields, denoted by a name or"-", are not transferred to or Crom the shared database sys­
tem. ldmfcoPJ out will wr'ite an empty field or a value (eg. = <value>) if specified. ldmfcopy
in will read but discard dutnmy fields.

ldmfcopy in
When the direction is in, itlmfcopy appends data into the relation Crom the host file. Domains in
the relation which are not assigned values Crom the host file are assigned the default value or zero
for numeric attributes, and blank for character attributes. When copying in this direction the

3.14-88/02/29-R3v5m8 Britton Lee 5

IDMFCOPY (11) Britton Lee IDMFCOPY (11)

following special meanings apply:

text The data is a variable length character string terminated by any field del­
imiter character (comma, tab, or newline if not specified with the delim­
iter command). The delimiter is thrown away.

text to <delims>

text(<integer>)

text(•)

text(var)

For example:

pnum text;

The data in the host file is a variable length character string terminated
by the delimiter delim. If more than one delim character is specified, any
of the characters will terminate the string.

The data in the host file is exactly integer bytes long.

The data in the host file begins with a single byte that contains the
number of bytes of data when interpreted as a binary number. Tb" count
field does not include itself. Usage of this field type should be w;th fixed
length records. Record delimiters with the same binary representation as a
count byte will cause the record to be prematurely terminated.

The data is the host file begins with two bytes that contain the number of
bytes of data when interpreted as a binary number (most significant byte
first). The count field does not include itself. Usage of this field type
should be with fixed length records. Record delimiters with the same
binary representation as a count byte will cause the record to be prema­
turely terminated.

A variable length string ending in the field delimiter character (tab,
comma, or newline if not set with the field-delim option) is read from the
host file. The delimiter is discarded and the string is converted to an
integer and copied into the pnum attribute.

pnum text to ",";
A variable length string ending in comma is read. It is converted and
copied into the pnum attribute.

pnum text to"\\";
A variable length string ending in the character '\' is read. It is converted
and copied into the pnum attribute.

Pnum decimal to " " "/" · , , ,

all text;

- text;

ldmfcopy out

A variable length string ending in comma or slash is read. All characters
in the string must be decimal digits or spaces. The string is then con­
verted and copied into the pnum attribute.

all attributes of the relation appear in the input file as variable length
strings ending in comma, tab, or newline.

a variable length string ending in comma, tab, or newline appears in the
record, but is not transferred to the shared database system.

When the direction is out, idm/ copy transfers data from the relation into the host file. Any field
in the host file which is not assigned a value (the attname is -, and no literal field-value is
specified), is assigned the default value of zero for numeric attributes, and blank for character
attributes. When copying in this direction, the following special meanings apply:

3.14-88/02/29-R3v5m8 Britton Lee 6

IDMFCOPY (11)

text

Britton Lee IDMFCOPY (11)

The attribute value is converted to a character string and written into the
host file. For character &ttributes, the length will be the same as the attri­
bute length as defined when the relation was created. Integer and bed
attributes are converted to decimal, and f 4, C8, and bcdfloat attributes are
converted to scientific notation. A comma (or the first field delimiter
specified with the delimiter statement) is written after the field.

text to <delimiter>

text(<integer>)

The attribute will be converted according to the rules for text above. The
one character delimiter will be inserted immediately after the attribute. H
the record type is "to <delimiter>" and the field delimiter matches the
record delimiter in the last field of the record, the field delimiter will be
suppressed so that only one copy of the delimiter will be output to the
record.

Exactly integer bytes are written to the output file. The field is padded
with spaces or truncated as necessary to fit.

text (•) A byte is written giving the length of the field, followed by the field itself.
The count byte does not include itself. Usage or this field type should be
with fixed length records. Record delimiters with the same binary
representation as a count byte will cause the record to be prematurely ter­
minated on idmfcop1 in .

text(var) Two bytes are written giving the length of the field, followed by the field
itself. The count bytes do not include the two bytes of count. Usage of
this field type should be with fixed length records. Record delimiters with
the same binary representation as a count byte will cause the record to be
prematurely terminated on idmfcoPJ in .

text = <string>
String is written to the output file. A tab (or the first field delimiter
specified with the delimiter statement) is written after the field.

Numeric fields represented in text fields are generated as specified in ANSI standard X3.42-1975.

For example:

pnum text; The integer in pnum is converted to a character string in decimal notation
and written to the host file. The field delimiter character (tab iC not set
with the field-delim option) is written after the string.

pnum decimal; This is identical to the above example.

pcost text; The bed float in the pcoat attribute is converted to a character string in
scientific notation. The field delimiter character is written after the string.

pcost float; The bed float in the pcost attribute is converted to a character string in
floating point decimal format. The field delimiter character is written
after the string.

pnum text to ",";

EXAMPLES
Example 1:

The integer in pnum is converted to a character string in decimal notation
and written to the host file. A comma is written after the string.

idmf copy in -r empUmt

3.14-88/02/29-R3v5m8 Britton Lee 7

IDMFCOPY (11) Britton Lee IDMFCOPY (11)

empl.fmt:
database demo;
relation emp;
file myfile;
record

name text(lO);
sal f4;
date i2;
mgr text(lO);

text(l);
end

copies data into the "emp" relation in the "demo" database from "myfile" on the host. ''Myfile"
contains a string field, a ftoat field, a two byte integer field, a string field, and a one character
field that is ignored.

Example 2:
idmf copy out -f emp2.fmt demo emp

emp2.fmt:
file outfile;
record to nl

name text to ":";
sal decimal to nl;

end

copies employee names and their salaries to standard output. The name field is followed by a
colon. Records are terminated by newlines. For example, the output may look like:

Fred:lOOOO
Joe:l2000
Sam:52000

Outfile will be opened with type(text).

Example 3:
idmfcopy in demo -f parts.fmt

parts.fmt:
relation parts;
file "xyzdata%htape,unit(l)";
record(80)

pnum text(5);
pname text(20);

end '
Reads data from host ANSI tape on unit 1 into the parts relation. The pnum domain comes
from the first five bytes of each eighty-byte record; the pname domain comes from the next
twenty bytes. The remaining fifty-five bytes are ignored.

Example 4:
idmfcopy in demo parts 'record to nl all text; end'

Reads records from the standard input into the "parts" relation in database "demo"; each record
is on one line in the external file, with fields separated by commas or tabs.

SEE ALSO
intro(ll), idmcopy(ll), typecnvt(31), ANSI X3.42-1975, Idmfcopy Uaer'a G•i4e, American National
Standard Repreaentation of Numeric Valuea in Character Stringa for Information Interchange.

3.14-88 /02 /29-R3v5m8 Britton Lee 8

IDMFCOPY (11) Britton Lee IDMFCOPY (11)

BUGS
The reject file is always opened as a stream with default parameters.

3.4-87 /09/25-R3v5m4 Britton Lee 9

IDMHELP (11) Britton Lee IDMHELP (11)

NAME
idmhelp - access the IDM Help Subsystem

SYNOPSIS
idmhelp [topic]

ARGUMENTS
topic The topic for which help is desired. If not specified, the user is placed at the top of the

help tree.

DESCRIPTION
ldmhelp is a menu-based help facility for users of Britton Lee's Shared Database System. It
shows proper command syntax, gives the meaning of command-line arguments, and describes
available features.

The help system is a tree-structured collection of topics. Each topic has some explana 1 ,. '.~· text
and zero or more children associated with it. The user is shown the text for the curnr.t topic,
and presented with a list of subtopics.

The user may ask for information on a subtopic by typing its name. The following commands
are also recognized:

3EXIT
Exit idmhelp.

3UP Move up the help tree to the topic immediately above the current one.

3TOP
Move directly to the top of the help tree.

Commands and topic names may be entered in either upper or lower case.

EXAMPLE
idmhelp idl.append

Enter the help system, starting with the description of the IDL append command.

SEE ALSO
helpsys(3I)

3.10-87 /12/04-R3v5m7 Britton Lee 1

IDMLOAD (II) Britton Lee IDMLOAD (II)

NAME
idmload - load database or transaction log

SYNOPSIS
idmload [-B device] [-P] [-1 logname] dbname wdbname srcspec

ARGUMENTS
-Bdevice Use device as the connection to the database server. See intro(II) for details.

Turn on performance monitoring. -P
-llogname The name of the transaction log in dbname. If specified, a transaction log is

loaded; otherwise, an entire database is loaded.

dbname The name of the database to be loaded (if -1 is not specified) or the database in
which to place the loaded transaction log.

wdbname The working database. If an IDM file is specified in ercapec it will be found in
this database. Wdbname must be specified and differ from dbname.

ercepec The specification of the input file (see intro(ll)).

DESCRIPTION
ldmload loads a database or a transaction log as previously dumped by idmdump(II). If -1 is
specified a transaction log is loaded, otherwise a database is loaded.

After a transaction log is loaded into a database it can be applied using idmroll/(11), that is, the
updates described by the log can be run again. If this is intended the log must be loaded into a
different database than that which is to be rolled forward.

EXAMPLES
idmload db system %itape

Load database "db" from IDM tape file 0.

idmload db system "%itape,fileno{l)"
Load database "db" from IDM tape file 1. Note that IDM tape files are numbered
sequentially from zero, so tape file one is the second file on the tape.

idmload -1 new log db system tuesday .log

WARNING

Load log "newlog" into database "db" from the host file "tuesday.log." The usual next
step would be the command "idmrollf targetdb db newlog" to roll forward "targetdb"
from newlog.

Using the online option to idmdump will cause the order of the files written to be reversed. The
database is written as the first file and the transaction log is written as the second file. This is
most significant when using host or IDM tape.

SEE ALSO
intro(II), idmckload(II), idmcklog(ll), idmdump(ll), idmrollf(II), backup(8I), The section "Backup
and Restore" in the Databaee Adminiatrator'a Manual

3.4-87 /12/04-R3v5m7 Britton Lee 1

IDMP ASSWD (11) Britton Lee IDMP ASSWD (11)

NAME
idmpasswd - set password in the shared data.base system login relation

SYNOPSIS
idmpasswd [-B device]

ARGUMENTS
-B device Use device as the connection to the database server. See intro(ll) for details.

DESCRIPTION
ldmpaaBwd resets the password for the current user as stored in the login relation in the system
database. The user must specify both old and new passwords.

SEE ALSO
intro(ll), The section "System Level Security" in the Sylltem AdminiBtrator'B Manual

3.9-88 /02 /29-R3v5m8 Britton Lee l

IDMREAD (11) Britton Lee IDMREAD (11)

NAME
idmread, idmwrite - read/write files between the host and the shared database system

SYNOPSIS
idmread (-B device J [-c count] [-o offset J database idmfile [destspec]

idmwrite [-B device J [-c count] [-o offset] database idmfile [srcspec]

ARGUMENTS
-Bdcviee Use the specified IDM device, instead of the default, to connect to the database

server.

-ceount A maximum of count bytes will be copied. H omitted, the entire file will be
copied.

-o offaet Start copying from the byte offaet in the IDM file. The host offset is always
zero. Gaps in the IDM file caused by offsets have undefined values.

databaae

idmfile

arcapec

deatapee

DESCRIPTION

The database name to operate in.

The name of the IDM file to access.

The specification of the source of an idmwrite (see intro(ll)).

The specification of the destination of an idmrcad.

/dmread reads the file IDM file idmfile in databaac to deatapee. H deatapec is not specified, the file
is written to the standard output.

ldmwritc writes arcapee (or the standard input if not specified) to file idmfilc in the specified data­
baae.

The sense of "read" and "write" is always with respect to the IDM file.

Neither areapce nor dcatapee may specify an IDM file.

EXAMPLES
idmwrite -c 10000 db igetdone igetdone.c

Write the first ten thousand bytes of host file "igetdone.c" into the IDM file "igetdone"
in database "db."

idmread db igetdone %itape
Read the IDM file "igetdone" in database "db" and write to IDM tape.

SEE ALSO
intro(ll), iftifile(41), Syatcm Programmer'a Manual

3.7-87 /12/04-R3v5m7 Britton Lee 1

IDMROLLF (11) Britton Lee IDMROLLF (II)

NAME
idmrollf - roll forward a transaction log

SYNOPSIS
idmrollf [-B device] [-P] [-d enddate] [-v] dbname wdbname logname

ARGUMENTS
-Bdevice

-P
-denddatc

-v

dbnamc

wdbnamc

lognamc

DESCRIPTION

Use device as the connection to the database server. See intro(ll) for details.

Turn on performance monitoring.

Do not run any updates in the transaction log dated after enddate. This essen­
tially leaves all logged relations in database dbname in at the same state they
were in at enddate. Enddate can be entered in free format (see paraedate(31)).

Print more information during rollforward. Useful when a date is specified ,and
the user wants to check the idm day and ticks value after conversion.

The database to roll forward.

The working database. This must not match dbname.

The name of the transaction log in wdbnamc. Logname must have previously
been created by idmdump(ll) or idmload(ll).

Idmroll/ applies the transaction log logname to database dbname. All updates logged in logname
(created by an idmload -1) are re-executed against the database dbname.

Times as represented by the shared database system in the audit command may be input
directly using the idmtime(idmdate,idmticks) syntax for enddate.

EXAMPLES
idmrollf vino system vinolog

Roll forward database vino using the tranaction log vinolog in the database 1r1tem.

idmrollf -v -d "idmtime(31480,60000)" vino system vinolog

SEE ALSO

Roll forward database vino using the tranaction log vinolog in the database •rltem up to
IDM day 31480 at IDM time 60000. This date translates to Mon March 10, 16:16:40
1986.

intro(ll), idmdump(ll), idmload(ll), parsedate(31), backup(81), The section ''Backup and Restore"
in the Databaac Adminiatrator'a Manual

3.4-87 /02/08-R3v5m0 Britton Lee 1

R2TOR3 (11) Britton Lee R2TOR3(11)

NAME
R2toR3 - convert Release 2 source to Release 3

SYNOPSIS
RetoRS

DESCRIPTION
RetoRS is a shell script which convert.a release 2 source files to release 3 source files.

Directories NEW and OLD are created in the directory where RttoR8 is invoked. Converted
copies of all •.e, •.J, •.idm, •.rie, and •.re files are put into NEW and the originals are copied to
OLD. RetoR8 will run idelerie on any .idm files first. This will create an output file ending with
.ric. The .ric file will be copied to NEW and the original file will be copied to OLD.

The changes applied to the source files are as follows:

• Release 3 *ine/•de files are added to the beginning of each file. H the file is yacc source,
move these *inel•des to their proper place in the file.

• Release 2 and system dependent include files are deleted or modified. These are:

bcd.h
ctype.h
done.h
idmio.h
options.h
setexit.h
setjmp.h
stdio.h
symbol.h
useful.h

<deleted>
- bytetype.h
- idmdone.h
<deleted>
<deleted>
<deleted>
<deleted>
<deleted>
- idmsymbol.h
<deleted>

• Runtime system calls (eg. fetch) are renamed according to Release 3 (eg. irfetch).

• Standard 1/0 and Release 2 1/0 calls are replaced with calls to Release 3 1/0 routines.

• Signals, setexit, setjmp and longjmp are replaced by an exception raise or the setting of an
exception handler. See exc(31) for more information on the exception facility.

Only Release 2 oriented setjmps and longjmps are converted to exceptions.

Signals are converted as:

signal(SIGINT, SIG_IGN)
signal(SIGINT, handle)
signal(SIGHUP, handle)
signal(SIGTERM, handle)
signal(SIGALRM, handle)

- exchandle("T:IDMLm.ASYNC.INT", excignore)
- exchandle("T:IDMLm.ASYNC.INT", handle)
- exchandle(" T:IDMLm.ASYNC.INT", handle)
- exchandle("T:IDMLm.ASYNC.TERM", handle)
- exchandle("T:IDMLm.ASYNC.ALARM", handle)

All other signals, setjmps and longjmps are commented out with a%%% in the comment
for later correction.

• A line of the form INITIDMLm("%%%progname%%%"); will be added if a call to
crackargv() already exist.a. H not, add this call by hand, replacing the %%%prog­
name%%% with the name of your program. This must be the first executable statement
in the program.

• Check that exlt is called when leaving your program so that output will be flushed.

• Release 2 defined constant.a are replaced with Release 3 semantically equivalent constant.a.
This includes defines such as token types (INT4 - ilNT4) and done status bit.s

3.4-87 /02/08-R3v5m0 Britton-Lee, Inc. 1

R2TOR3 (11) Britton Lee R2TOR3 (II)

(DONE_CONTINUE - ID_CONTINUE).

• Release 2 structures and field names are converted to their equivalent in Release 3.

• Ctype macros (e.g. isalpha) are converted to bytetype macros (e.g. ISALPHA).

The converted files in NEW may need further work before they are ready to be compiled. In
particular, you should edit the files to make sure that the first executable statement in the pr~
gram is INITIDMLIB("yourprogname") and that the la.st executable statement in the main
procedure is an exit(RS_NORM). Also check out any lines containing the string %%% in a
comment; they mark changes which may require more work.

Makefiles will have to modified if they used ide/.

SEE ALSO
idel2ric(li)

3.19.1.3-88/02/29-R3v5m8 Britton-Lee, Inc. 2

RIC (11) Britton Lee RIC (11)

NAME
ric - precompiler for embedding IDL in C

SYNOPSIS
ric [-d database [-B device] [-n progname]] [-S symtabsize] [-1] [-q] [-V] [file.ric ...]

ARGUMENTS
-d databaae Database to use.

-B device Use device as the database server connection. U not specified, the IDMDEV
parameter is consulted. Databaae must also be specified.

-nprogname Use stored programs. Associate stored programs under progname. Databaae
must also be specified.

-S aymtabaize Make the symbol table aymtabaize elements large. The default size is 100 sym­
bols.

-1, -q Normally, the #line directives that n·c writes look like this: #line 9 "file.ric".

-V

filc.ric ...

DESCRIPTION

U -I is specified, they will look like # 9 "file. n·c "; if -q, like #line 9 file. ric; if
both, like# 9 file.ric. See the RIO Uaer'a Guide.

Prints the version number of the
IDMLIB used to make it on atderr.

The file(s) to be precompiled.

precompiler and the version number of

The precompiler ric takes file(s) with IDL commands embedded in C code and generates file(s)
containing pure C. The embedded IDL is translated to appropriate calls into the Britton Lee
library IDMLIB. After precompilation, there will be a file generated with the same name as the
.ric source file, but with a .c suffix. This file is ready for compilation by the C compiler.

An input file name must either have a suffix of .ric or (for backward compatibility) a suffix of .re
or else have no suffix. A file name with no suffix is taken literally. U a directory contains the
files p and p. ric, the command ric p will precompile p and not p. ric. U there are two input files
named :r.ric and y, then the two output files produced will be named :r.c and J.C. U an input file
name of - (a single minus) is given, then atdin is read and atdout is written. This allows ric to be
used in pipelines.

The precompiled query language commands either may be kept within the object module (the
default case) or stored in the database (if the -n ftag is given). Storing commands in the data­
base is much more efficient at execution time, but requires that the database schema not change
during the program's lifetime. See the RIO Uacr'a Guide for a more complete discussion.

Programs that are precompiled with ric must link in the runtime library idmlib. See the exam­
ples below.

Example of precompiler source code:

main()
{

$int num;

INITRIC(".demo");
$range of a is arelation;

$retrieve($num=a.number) where a.name= "animal"
{

printf("%d\n", num);

3.19.1.3-88/02/29-R3v5m8 Britton Lee 1

RIC (11)

}

}
exit(O);

To precompile:

Britton Lee

ric -d mydb -n Xprog prog.ric
To compile:

cc -o prog prog.c -lidmlib

LANGUAGE SYNOPSIS
The following is a short synopsis of those IDL queries that may be used with ric.

$ abort tr&ll8&Ction ;

$ append [to) object_name (target-list) [where qualification) ;

$ ueociate { object-name I range . att_name } [with J string [, string J ;

$ audit [into relation) (target-list) [where qualification) ;

S begin [new I nest n) transaction ;

RIC (11)

Note that the modifiers new and neat are not part of interactive idl. They may only be
used in embedded idl.

$ create relation (att_name = type ,...) [with options J ;

$ create database dbname [with options) ;

$ create [unique] [nonclustered I clustered] index [on] relation (att_name ,...) [with
options) ;

$ create view object-name (target-list) [where qualification J ;

$ define queryname command ... end define ;

S delete range [where qualification) ;

S deny protect mode [of I on) object-name [(att_name ,...)] [to user ,. ..

$ destroy object-name ,... ;

S destroy (target-list) [where qualification] ;

$ destroy database dbname ,... ;

$ destroy [nonclustered I clustered) index [on] relation (att_name ,.. .) ;

$ end transaction ;

$ [execute] [program] query-name [[with J [(J [name = J value ,. .. [) J J { { I ; }
The sole purpose of following an execute with a bracketed series of statements is to associ­
ate it with one or more obtain commands (see below).

$ extend database dbname [with options] ;

$ open dbname ;

$ permit protect-mode [of I on] object-name [(att_name ,...)] [to user ,. ..] ;

$ range of range is relation [with options] ;

$ reconfigure ;

$ replace range (target-list) [where qualification] ;

3.19.1.3-88/02/29-R3v5m8 Britton Lee 2

RIC (II) Britton Lee RIC (11)

S retrieve [unique J [into relation J (target-list } . [order [by J order , ... J [where
qualification] { { I ; }
S aet option_number , ...

$sync;

$ trace [on I delete J flag ;

$ truncate object_name ,... ;

$ unset option_number ,... ;

Two statements have been added that do not exist in interactive IDL.

An $ obtain statement has been added to allow the assignment or items retrieved by retrieve
statements that are part or stored commands to be assigned to C variables. Its syntax is

$ obtain [(] SC , ... [} J { { I ; }

SC is defined below.

For instance, ir a stored command named too contained a retrieve statement that returned
three items, then we might invoke it via the statements

$execute too
{

}

$obtain (Sa, Sb, $c)
{

printf("From roo - %d %d %d.\n", a, b, c);
}

Obtain is a loop-controlling command, like retrieve. If an obtain is simply followed by a semi­
colon (";") rather than a bracketed sequence or statements, it still cycles through all the tuples
returned by the retrieve statement, assigning them to the targets in turn, rather than just
returning one tuple like the singleton retrieve. Thus a statement like

$obtain ($(•p++));

can be used to fill an array.

The new statement

$ cancel;

cancels all activity in the shared database system on the current dbin and any dbins that are
related to the current one as parent or child in a chain of reopens. Programs using cancel must
be care(ul to exit any retrieve loop with break immediately:

$range of t is threeatt;
$retrieve (Sattl=t.attl, $att2=t.att2, $att3=t.att3)
{

irprintf(stdout, "\t%d\t%s\t%ro, attl, att2, att3);
ir (attl = 3)
{

$cancel;
irprintf(stdout, "loop cancelled.");

3.19.l.3-88/02/29-R3v5m8 Britton Lee 3

RIC (11)

}
}

Britton Lee

/ • must terminate loop after cancel • /
break;

RIC(ll)

The following synopsis shows those places in the above sentence types where C variables or
expressions may be embedded within the IDL statements. ·SC indicates that a S-prepended C
variable name or parenthesized C expression may appear at the indicated location in the state­
ment. All C variables must have been correctly declared in a statement with a prepended $.

For the syntax of an ezpre1J11ion, see the IDL Language Reference section "EXPRESSION". For
the syntax of a qualification, see the section "QUALIFICATION". Any place a numeric or
character-string constant can appear in these, a $-pref aced C variable name or expression of the
appropriate type may also appear.

S append [to] SC (attribute = expression ,...) [where qualification] ;
Thus the following program fragment precompiles:

$append $animal (name= Sname, type= Stype);

$ &880ciate SC [with . ..] ;
Unfortunately, C strings cannot be used for the aaaociate comment strings.

S audit into SC ... [where qualification] ;
It would be nice if audit was a loop-controlling command like retrieve and could store its
results into variables, but currently it can't.

$ create [databaae] SC ... ;

$ { create I destroy } ... index [on] SC ...

Thus the following work:
$ create index on Srel (type);
S destroy clustered index on $rel (name);

S create view SC ... [where qualification] ;

$ delete range [where qualification] ;

$ { permit I deny } protect-mode of relation (SC ,...) ... ;
The name of the attribute to which access is being permitted or denied can be given in a C
string. The following are equivalent:

S permit read on animal (name) to edwin;
$ permit read on animal ($("name")) to edwin;

This is the only place in these two statements that C expressions can be used.

$ destroy [database] SC ,... ;

$ destroy ... [where qualification] ;

$ execute queryname [with] [(] [name =] SC , ... [)] ;

$ extend [database] $C ... ;

$open $C;

$ range of dynamic_range is SC [with options] ;

$ replace range (attribute = expression ,...) [where qualification] ;

3.19.l.3-88/02/29-R3v5m8 Britton Lee 4

RIC (11) Britton Lee RIC (11)

$ retrieve [unique] ({ [$C = } expression I range.attribute } ,...) [order [by] expression
...] [where qualification] ;

$ retrieve [unique] [into J $C (attribute = expression ,...) ... [where qualification J ;
For a retrieve that is not a retrieve into, the retrieved values are always placed in C vari­
ables. if the name of the C variable is not given explicitly, the value is stored in the C vari­
able that has the same name as the attribute given. Thus the following two statements are
exactly equivalent: ·

$ retrieve (a.x, a.y) { ...
$retrieve (Ix= a.x, $y = a.y) { ...

Ir an expression more complicated than a simple range. attribute pair is given, then this must
be explicitly 888igned to a C variable or expression. Thus the following is valid:

$retrieve (S(•i) = int4 (a.string));

$ truncat.e IC ;

Note that the truncat.e command is not documented in the IDL Language Reference. It is
present in the grammar, however, and does compile and execute correctly when a C string
expression is given as its argument:

$ truncat.e $animal ;

C expressions can be used as arguments to IDL functions almost anywhere integer or character­
string literals may be used. This is not true for arguments that are digit, character, or byte
counts; these may only be integer constants.

We give a list of IDL functions with their argument names as given in the IDL Language Refer­
ence Manual, with a dollar sign ("$") prepended to the names of those arguments which may be
C expressions.

abs ($n)
mod (Sn, Sd)
concat ($a, $b)
substr (pos, len, $str)
substring (pos, Jen, Sstr)
inti (Sn)
tinying ($n)
int2 ($n)
smallint ($n)
int4 ($n)
integer (Sn)
[fixed J binary (Sn)
Cbinary (Sn)
[fixed] bed (I, Sn)
Cbcd (I, Sn)
[fixed J bcdftt (I, Sn)
Cbcdftt (1, Sn)
[fixed] bcdftoat (I, $n)
[fixed] string (I, $n)
{string (I, $n)
Cchar (I, $n)
[fixed J char (1, Sn)
bcdfixed (prec, Cra.c, Sn)
float4 ($n)
ftt4 (Sn)

3.19.l.3-88/02/29-R3v5m8 Britton Lee 5

RIC (11) Britton Lee RIC (11)

smallfioat (Sn}
float8 (Sn)
fits (Sn}

EXAMPLES

BUGS

ric prog.ric
Generate a file named prog.c, and do not use stored commands. It is the program's
responsibility at runtime to determine which database it uses by assigning the appropiate
value to the (char•) variable RcCDB before the execution of the INITRIC code.

ric -d hostdb file.ric
Generate a file named fiJe.c. The code will not use stored commands, but thf program
will use the database hoatdb by default. The program can override the defaul' .,,. assign­
ing a value to ReCDB before INITRIC is executed.

ric -d hostdb -n stprog phyle.ric
The file phy/e. c will execute stored programs in the database when ~ible. 'I ne stored
programs will be stored under the name atprog.

Does not allow substitution of attribute names like IIDEL did.

User-level substitutions not supported yet.

SEE ALSO
initrc{Si}

RIC Uaer'a Guide, BLI part number 205-1393-rev.

IDL Reference Manual, BLI part number 205-1235-rev.

3.16.1.4-87 /12/23-R3v5m7 Britton Lee 6

RSC (11) Britton Lee RSC (II)

NAME
rsc - precompiler for embedding SQL in C

SYNOPSIS
nc [-d database [-B device J [-n progname J] [-S symtabsize] [-1] [-q] [-V] [fi.Ie.rsc ...]

ARGUMENTS
-d databaae Database to use.

-B device Use device as the connection to the database server. If not specified, the
IDMDEV parameter is consulted. Only used if databaae is specified.

-nprogname Use stored programs. Associate stored programs under progname. Databaae
must be specified.

-S aymtabaize Make the symbol table aymtabaize elements large. The default size is 100 sym­
bols.

-1, -q Normally, the #line directives that rac writes look like this: #line 9 "file.rac".
If -1 is specified, they will look like # 9 "file. rac "; if -q, like #line 9 file. rac; if
both, like# 9 file.rac. See the RSC Uaer'a Guide.

-V Prints the version number of the precompiler and the version of IDMLffi it uses
on atderr.

file.rac ... The file(s) to be precompiled. An input file name must either have a suffix of
.rac or else have no suffix. A file name with no suffix is taken literally; that is, if
a directory contains the files p and p.rac and the command rac pis given, then it
is p and not p. rac that is precompiled. If an input file name of - (a single
minus) is given, then atdin is read and atdout is written. This allows rac to be
used in pipelines.

DESCRIPTION
The precompiler rac takes file(s) with SQL commands embedded in C code and generates file(s)
containing pure C. The embedded SQL statements have a dollar-sign ("$") prefix and are ter­
minated by either a semi-colon (";") or an open-curly bracket ("{"). The SQL commmands are
translated to appropriate calls into the Britton Lee library IDMLm. After precompilation, there
will be a file generated with the same name as the .nc source file, but with a .c suffix. This file
is ready for compilation by the C compiler.

Input files must either have a suffix of .rac or else have no suffix. If there are two input files
named z.rac and ,, then the two output files produced will be named z.c and 71.c.

The precompiled query-language commands either may be kept within the object module (the
default case) or stored in the database (if the -n flag is given). Storing commands in the data­
base is much· more efficient at execution time, but requires that the database schema not change
during the program's lifetime. See the RSC Uaer'a Guide for a more complete discussion.

Programs that are precompiled with rsc must link in the runtime library IDMLffi. See the exam­
ples below.

Example of precompiler source code:

main()
{

$int num;

INITRSC(" dummy");
$select $num=number from arelation where name = "animal"
{

3.16.1.4-87 /12/23-R3v5m7 Britton Lee 1

RSC (11) Britton Lee RSC (11)

printf("%d\n", num);
}
exit(O);

}

To precompile:
rsc -d mydb -n Xprog prog.rsc

To compile:
cc -o prog prog.c -lidmlib

LANGUAGE SYNOPSIS
The following is a quick synopsis of those SQL statements that are acceptable to l'llC when they
contain no embedded C expressions.

$ alter db_name [with options] ;

$ audit [into table_name] target_list [from objecLname , ...] [where qualification] ;

$ comment on objecLname [. column_name J I is string_l [, string_2]] ;

$ create databaee dbname [with option_list] ;

S create [unique] [clustered I nonclustered] index on objecLname (column_name ,...)
[with option_list] ;

$ create table table_name (name type ,...) [with option_list.] ;

$ create view view _name [(coLname ,...)] as select_ statement ;

$ delete from objecLname [label] [where qualification] ;

$ drop objecLname ,... ;

$ drop database dbname ,... ;

$ drop [unique j [clustered I nonclustered J index [on] objecLname (column_na!11e , ...
) ;
S grant protecLmode [on objecLname [(coLname ,...)]] [to user , ...] ;

S inaert into objecLname [(column_name ,...) J { values (expression ,...) I
select_statement } ;

$ open dbname ;

$ reconfigure ;

$ revoke protecLmode [on object_name [(column_name ,...) J J [from user , ...] ;

$ eelect [distinct] [into table_name] target ,... [from objecLname ,... J [where
qualification] [group by column_name [having qualification J] [order by order _spec , ...] {
{ I ; }
$ set option [on I off J ;

$ start { name I program number } [[name =] constant , ...] { { I ; }
The sole purpose of following a start with a bracketed series of statements is to associate it
with one or more obtain commands (see below).

$store [program] objecLname command [command , ...] end store;

$sync;

3.16.1.4-87 /12/23-R3v5m7 Britton Lee 2

RSC (11) Britton Lee RSC (11)

$ truncate table_name ,... ;

$ update object_name [label] [from from_name , ...] set coLname =expression , ... [where
qualification] ;

The SQL statements commit work and rollback work are not accepted by rsc. Instead, the
three transaction control statements from the IDL language are used. These are

$ begin transaction ;

$ end transaction ;

$ abort transaction ;

See the RSC User's Guide.

Two statements have been added that do not exist in interactive SQL.

An $ obtain statement has been added to allow the assignment of items selected by select state­
ments that are part of stored commands to be assigned to C variables. Its syntax is

$ obtain [(] SC ,... [)] { { I ; }
$C is defined below.

For instance, if a stored command named foo contained a eelect statement that returned three
items, then we might invoke it via the statements

$start foo
{

$obtain $a, $b, $c
{

printf("From foo - %d %d %d.\n", a, b, c);
}

}

Obtain is a loop-controlling command, like eelect. If an obtain is simply followed by a semi­
colon (";") rather than a bracketed sequence of statements, it still cycles through all the tuples
returned by the eelect statement, assigning them to the targets in turn, rather than just return­
ing one tuple like the singleton select. Thus a statement like

$ obtain $(•p++) ;

can be used to fill an array.

The new statement
$cancel ;

cancels all activity in the shared database system on the current dbin and any dbins that are
related to the current one as parent or child in a chain of reopens. Programs using $cancel must
be careful to exit any retrieve loop with break immediately:

$ range of t ia threeatt;
$ retrieve ($attl=t.attl, $att2=t.att2, $att3=t.att3)
{

ifprintf(stdout, "\t%d\t%s\t%f0, attl, att2, att3);
if (attl = 3)
{

$cancel;
ifprintf(stdout, "loop cancelled.");

3.16.1.4-87 /12/23-R3v5m7 Britton Lee 3

RSC (11)

}
}

Britton Lee

/ * must terminate loop after cancel * /
break;

RSC(ll)

The following synopsis shows those places where C variables or expressions may be embedded
within SQL statements. C variables or expressions may appear as syntactic elements of inaert
and aelect statements. They may also appear in other statements as part of a qualification or an
ezpreHion.

For the syntax of an ezpreHion, see the SQL Language Reference Manual, section "EXPRES­
SION". For the syntax of a qualification, see the section "QUALIFICATION". Any place a
numeric or character-string constant may appear in these, a $-prefaced C variablt> name or
expression of the appropriate type may also appear.

The syntax of a neated_aelect is approximately that of the •lect statement. See the SQL
Language Reference Manual, "SUBQUERIES" and "CORRELATED SUBQUERIES'', for exact
details. C variables and expressions may be used in qualifications in neated_aelects just as they
can be in the aelect statement itself, including clauses controlled by all, an11, or in.

Rae does not disallow assignments to C variables within a neated_aelect target list, but these
attempted assignments have no effect at execution time. For example, the statement

create view vyu as select $t = type from animal;

compiles and executes and creates the view, but the C variable t remains unchanged by the exe­
cution of the statement. The effect is exactly as if the phrase "$t=" had been left out of the
statement. This is neither a bug nor a feature, simply a curiosity.

Synopsis of where C variables or expressions, and qualifications and ezpreaaions containing them,
may appear in embedded SQL statements:

$ audit ... where qualification ;
1t would be nice if audit were a loop-controlling command like aelect and could store its
results into C variables, but currently it cannot.

S create view ... u nested_select ;

S delete ... where qualification ;

S insert into S obectname ... { values (expression ,...) I nested_select } ;

$ aelect from S objectname ... [$0-variable = J name , ... [where qualification J [group by
... [having qualification J J { { I ; }

H only name appears, this is equivalent to saying Sname = name.

$start queryname [name= J SC, ... ;

S update ... aet column = expression , ... where qualification ;

0 expressions can be used as arguments to SQL functions in most places that an integer or
character-string literal may be used. The one exception is those arguments that are a count of
digits, characters, or bytes; i.e., those identified by the words preciaion, poa{ition), or len(gth} in
the section ''FUNCTION DESCRIPTIONS" in the SQL Language Reference Man.al. The fol­
lowing is a list of the SQL functions that take arguments, with the names of the arguments as
given in the SQL Language Reference Manual. The arguments prepended with a dollar sign ("$")
may be C expressions.

table_id ($name)

3.16.1.4-87 /12/23-R3v5m7 Britton Lee 4

RSC (11) Britton Lee RSC (II)

table_name ($id)
abs ($num)
binary ($arg)
[fixed J bed (precision, $expression)
[fixed] bcdftt (precision, $expression)
[fixed] char (len, $expression)
mod (Sexprl, Sexpr2)
concat (Sstrl, Sstr2)
coLname (Stable_id, ScoLid)
substring (pos, len, $str)
char (1, Sn)
bcdfixed (position, fraction, $expr)
integer (Sn)
smallint (Sn)
tinyint (Sn)
ftoat (Sn)
smallftoat ($n)

EXAMPLES

BUGS

rsc prog.rsc
Generate a file named prog.c, and do not use stored commands. It is· the program's
responsibility at runtime to determine which database it uses by assigning the appropri­
ate value to the (char•) variable RcCDB, before the execution of INITRSC.

rsc -d hostdb file.rsc
Generate a file named file.c. The code will not use stored commands, but the program
will reference the database hoatdb by default. The program can override the default by
assigning a value to RcCDB before INITRSC is executed.

rsc -d hostdb -n stprog phyle.rsc
The file phyle. c will execute stored programs in the database when possible. The stored
programs will be stored under the name atprog.

Does not allow substitution of attribute names like IIDEL did.

User level substitutions not supported yet.

SEE ALSO
initrc{9i}

The RSC Uaer'a Guide, BLI part number 205-1575-rev.

Portable Boat Interface Software Specification, BLI part number 205-1190-rev.

SQL Reference Manual, BLI part number 205-1344-rev.

3.21-88 /01 /29-R3v5m8 Britton Lee 5

SQL(ll) Britton Lee SQL (11)

NAME
sql - Interactive/SQL parser

SYNOPSIS
aql [-B device J [-P J [-f infile] [-c] [-e] [-I linesperpage] [-n] [-p] [-s] [-x

contchar] I dbname]

ARGUMENTS
-B device

-P

-c

-e

-finfile

Use device as the connection to the database server.

Turn on performance monitoring. Individual performance options can be set using
the eet SQL command.

Turn off auto-commenting (auto-association). See Avto Commenting below and the
%eomment pseudo command.

Echo every command as read. This can be useful when redirecting the in;;ut of the
parser. In this case, the input commands as well as the replies will go into the out­
put file.

Input file name. Hnot specified, read the standard input in interactive mode.

-1 lineaperpage

-n

-p

-s

For rudimentary output formatting. Lineaperpage specifies the number of lines
displayed before re-displaying the header. When data is being retrieved, a new
header will be printed sufficiently frequently to insure that column labels are always
visible. If lineaperpage is zero, only the initial header will be printed. H not
specifed, the terminal driver (//tTerm(41)) is queried.

Parse commands, but don't execute them. The connection to the database server
will not be opened. Front-end commands (e.g., "%input") will still be executed.
This can be used to verify an input script that is to be run later.

Disable the reading of user and system profile (or startup) files.

Run the parser in silent mode. Turns off prompting, printing of SQL banner, and
elaborate printing of syntax errors.

-x contchar Set contchar to be the continuation character. See Continuation Oharactera below,
and see the %continuation pseudo command.

dbname .. The name of the initial data.base to open.

DESCRIPTION
Sql implements the SQL , relational query language. Queries typed at a terminal are translated
and sent to the shared database system, and results are formatted and printed.

H the -f flag is specified, input is read from the named file rather than the standard input. File
input is non-interactive. Special functions of interest only to the interactive user are disabled and
input is faster.

Continuation Ch&r&eters
There are several forms of input recognized by Britton Lee Interactive/SQL. The user may
choose the input format that is most familiar or comfortable.

The default is similar to that of DB2. Input is buffered, and not executed until a semicolon (";")
is entered. This guarantees that incomplete input lines will not destroy data.

The user may also set the line-continuation character to any non-alphanumeric character. In this
case, any line not terminated with the continuation character is executed immediately. This con­
vention is similar to that of SQL/DS.

3.21-88/01/29-R3v5m8 Britton Lee 1

SQL (11) Britton Lee SQL (11)

Britton Lee strongly discourages the use of line continuation characters. Inadvertently typing a
carriage return before a command is complete may destroy data. Britton Lee recommends that
customers use the semicolon to terminate commands, and leave the continuation character at its
default value. ·

For more information, see the -x argument above and the %contintaation pseudo-command,
below.

Auto Commenting
Auto comment of stored commands or table and view creation will place the user text into the
deacriptiona relation of the current database using the comment command. Text starting at the
end of the previous command up to and including the end store or command termination is
stored in the tezt field, including comments and newlines, as it appears in the input. The key
field or the relation has a value of aX where x ranges from 0 to 9 and a to z to insure the sort­
ing order of the text in the deacriptiona relation. See also the discussions of %comment, below,
and the -c flag, above. See BUGS section for warning about submitting many create statments
to the parser at once.

Ueer Profile.
IC the -p flag is not specited, SQL reads system and user profile files before user input begins.
These files may contain any valid SQL commands. Particularly useful may be the pseudo­
commands, which cause the profile file to configure SQL according to the user's individual prefer­
ence. On UNIX, the profile files may be "/usr/lib/idm/sqlpro.sql" (for a system-wide profile} or
..- / .sqlpro.sql" (for a user's individual profile). ·

Ueer Interrupt.
The interrupt character (normally delete (a.k.a. rubout) or control-C on UNIX) can be used to
interrupt processing at any time.

Control Character Mapping

The system parameter MAPCO may be used to pass control characters through the SQL front
end. The default is to map control characters to blanks. See parama(SI).

Special SQL commands

• The special keyword "ignore" may be used anywhere in a command to cancel the entire
current command and reset the line number to 1 (one).

• The "exit" command immediately exits SQL.

Peeudo-Commands
There are a number of commands do not process data but instead control the actions of the
parser itself. These are all introduced with a percent sign at the beginning of a line and take
effect immediately (i.e., the line cannot be extended by the line-continuation character). Pseudo­
commands may be abbreviated to any length.

%comment [on I oJn IC no argument is present or the argument is on, then auto­
commenting is enabled. Text description of stored commands
are automatically entered into the database (using the comment
command of SQL). IC the argument is off then auto-commenting
is disabled. Auto-commenting is normally on. See also the -c
flag.

%continuation [char]

3.21-88/0l/29-R3v5m8

By default, all Britton Lee Interactive/SQL commands must be
terminated with a semicolon (";"). The o/ocontinuation pseudo­
command allows users to set the line-continuation character to
any non-alphanumeric char.

Britton Lee 2

SQL(ll) Britton Lee SQL (lI)

%display text

%edit [filename]

%experience level

%input !filename]

%help

%redo

%substitute name value

%trace trace1pec

%?

If the continuation character is set, input lines ending in a car­
riage return without the continuation character are executed
immediately. Commands may extend over more than one line, if
each line is terminated with the specified continuation character.

Use of the continuation character is strongly discouraged. Ir
char is omitted, the input style reverts to the default.

Output text to the standard output. This is normally used in
system profile files to provide informational messages to users.

Edit the transcript of the SQL session (or filename if given).
When the editor returns, the file is submitted as input to SQL.
The editor used is defined by the EDITOR parameter. ·

Set the user's experience level to level. Level can be "Bf:'t=inner",
"Able", or "Expert".

Read the specified filename for SQL commands. When the file
ends (or an "exit" command is encountered) control returns to
the standard input. H filename is not specified, the standard
input is read.

Print all immediate commands.

Resubmit the transcript of the SQL session as input to SQL.

Assign the name to have the specified value. The "%name" syn­
tax (within SQL commands) can be used to interpolate the value.
This is a substitution, not a macro, so there are restrictions on
where this substitution can occur. See eqlparee(31) for details.
The value is typed as an ilNT2 if the name begins with a digit,
otherwise the value is typed as an iSTRING (iCHAR).

Send the trace1pec to the t/eet(31) routine. This turns on host
software tracing, and should not be used in normal operation.

Equivalent to "%help"

In addition to these commands, two special characters are recognized in the first position of a
line. "?" invokes a help subsystem. It may be followed by a help topic, so "? sql insert"
describes the inaert command. A line beginning with the "!" character passes the remainder of
the line to the operating system.

EXAMPLE

BUGS

sql -B /dev/gpib hostdb
Invokes SQL on the GPIB interface, opening the database ho1tdb.

H more than one create and/or store command is submitted to the parser at once, they are all
auto-a1aociated under the ta.hie id or the first object.

There should be some wa.y of controlling the format of the output. A "%format" command will
probably be added to do this.

The output format should be better adapted to the terminal. For example, output lines that
exceed the terminal width are not wrapped nicely. In particular, the current interface does not
adapt nicely to IBM 3270-style interactions.

It should be possible to write scripts a.t this level that include looping based on return data so
that simple a.pplica.tions can be prototyped easily.

3.21-88/01/29-R3v5m8 Britton Lee 3

SQL (11) Britton Lee SQL (11)

In general, there should be a very sexy applications development tool available that would include
report capabilities, simple applications generators, etc.

3.21-88/0l/29-R3v5m8 Britton Lee 4

INTRODUCTION (3I) Britton Lee INTRODUCTION (3I)

NAME
IDM Support Library (IDMLID) summary; INITIDMLID

SYNOPSIS
*include <idmlib.h>

INITIDMLIB(progname);

cc -i .•.• -lidmlib

DESCRIPTION
The IDM Support Library (IDMLID) contains a set of routines that may be ported to a number
of different host machines and operating systems. Some of these routines are machine­
independent, but others are highly machine-dependent and have to be modified or completely re­
written to port to a new environment.

Given only an acceptable C compiler and an IDMLID, our "generic code" should be ablt- to run
happily in a large number of environments.

GENERAL INFORMATION

TYPES

In order to use the capabilities of IDMLIB, all source files must include the file idmlib.h.

The main program must use INITIDMLIB(progname) as the first IDMLID operation. This will
initialize IDMLIB and set the name of this program for use by error messages, etc. This mvat be
called from main() to insure machine-independence.

In addition, the IDM support library (-lidmlib on UNIX) must be loaded. Sixteen-bit machines
require the use of separated instruction and data space (the -i ftag on UNIX).

Warning: Variable names and structure field names which start with an underscore ('_') are
non-public unless otherwise documented. Usage of these hidden values may result in unexpected
errors.

In general, any arguments passed into IDMLID that are saved internally are copied. Thus, the
space used by the argument may be reused immediately.

The f~llowing basic types are defined either by the C language or by IDMLIB:

int

char

BYTE

short

long

BOOL

BCD NO

An integer in the basic size of the language. It is not fair game to assume that
a pointer fits into an int. Also, there is no guarantee that a long is always the
same size as an int, even though this is true on VAXes.

A character in the native character set.

An eight-bit byte.

A twe>-byte integer.

A four-byte integer.

A Boolean (TRUE/FALSE) value.

A BCD number. Direct access to fields in a BCDNO should not be attempted.
This format is specific to the RDBMS system software and does not correspond
to the "packed decimal" format of most hosts.

ANYTYPE A union consisting of a large number of types. The symbols in parentheses are
the associated IDM symbol. The types are:

iltype - a one-byte integer (iINTl)
i2type - a twe>-byte integer (iINT2)
i4type - a four-byte integer (i1NT4)
inttype - an integer in the native size
f4type - a four-byte ftoat (iFLT4)

3.29-88/03/02-R3v5m9 Britton Lee 1

INTRODUCTION (31)

IF ILE

FUNCP
RETCODE

Britton Lee

f8type - an eight-byte float (iFL TS)
chartype - a one-byte character
cvtype - a vector of characters (iCHAR)
cptype - a pointer to characters (iCHAR)
cpptype - a pointer to a pointer to characters
bvtype - a vector of BYTEs (iBIN)
bptype - a pointer to BYTEs (iBIN)
iptype - a pointer to integers
booltype - a BOOL
bcdtype - a BCDNO (iBCD, iBCDFLT)
anyptype - a pointer to another ANYTYPE

An IDMLIB file descriptor.

A pointer to a function.

Return status code.

INTRODUCTION (3I)

"Quote bits" (the 0200 bit) cannot be safely used in characters since EBCDIC and other charac­
ter representations are. eight-bit codes.

The > > and < < (shirt) operators should be kept under close control. Although < < is
guaranteed to shirt zero bits in to the right, > > is not guaranteed to sign-extend.

The defined constant STATIC is the null string if debugging is turned on (i.e., DEBUG is
defined); "static" otherwise.

The defined constant READONL Y is defined to be the null string on most compilers. Ir your
compiler supports read-only shared data, this will be the appropriate keyword to get these seman­
tics (usually "readonly"). The usage is as a storage class, e.g.,

READONL Y struct fooQ = ...
The macro INITZERO ca.Jll be used on global declarations to cause zero-initialization. For exam­
ple:

int LineNumber INITZERO;

This is necessary because some compilers (e.g., Whitesmith's) require all declarations to be initial­
ized. Other compilers (e.g., the UNIX PCC) are less efficient it' unnecessary initialization is used,
especially for large arrays. INITZERO is either the null string or "= O" as appropriate for the
particular compiler.

The macro " __ " (two underscores) acts as a cast to a pointer to BYTE; this is used in initializa­
tions and !or routines that take an arbitrary type.

The following constants are used to identify data types when necessary. The type name, length,
and corresponding C type are shown:

Type Name Length C Type Fetched

iINTl 1 char
iINT2 2 short
iINT4 4 long
iFLT4 4 ft oat
iFLT8 8 double
iCHAR variable char•
iFCHAR variable char•
iSTRING variable char•
iBCD variable BCD NO
iBCDFLT variable BCD NO

3.29-88/03/02-R3v5m9 Britton Lee 2

INTRODUCTION (31) Britton Lee INTRODUCTION (31)

iBINARY variable BYTE *
iFBINARY variable BYTE *

For the STRING type the string is terminated by a null byte ("\O") so the bind length must be
one byte larger than the maximum anticipated return string or truncation may result.

1/0 INTERFACE (LEVEL ONE)
IDMLIB includes a buffered 1/0 interface. The 1/0 interface gives a uniform view or the file
capabilities available.

A file with associated buffering is called a i/p (IDMLIB file pointer), and is declared to be a
pointer to a defined type IFILE. If open creates certain descriptive data for a file and returns a
pointer to designate the file in all further transactions.

A constant "pointer" IFNULL designates no i/p at all.

An integer constant EOF is returned upon end-of-file by integer functions that deal with files.
This may also be returned for certain error indications.

There are four normally open files with constant pointers declared in the include file and associ­
ated with the standard open files:

std in
stdout
std err
stdtrc

standard input file
standard output file
standard error file
standard trace file

Standard output, standard error, and standard trace are normally line-buffered, so that no actual
output will occur until a newline is output. Standard trace normally refers to the same file as
1Stdout, so closing either will close the other implicitly.

By default, files are presented to the application as a •tream, that is, as a continuous stream of
bytes with no inherent delimiters except the beginning and end or the file. An application may
also request a record-based presentation, which limits access to the record-at-a-time primitives.

All operations (in particular, IFGETC, IFPUTC, ifungetc, ifread, and i/write) are available on
stream-based presentations. I/read and i/write are logically equivalent to sequences or IFGETCs
and U'PUTCs respectively, although the actual implementation allows performance improve­
ments.

Record-based presentation may be requested by the application by specifying the rbp parameter
in an i/ open or if control call. The only 1/0 operations available to a file with record-based
presentation are if read and i/write to read and write one record respectively. All other operations
are undefined and must not be used. Record-based presentations are best suited to files contain­
ing fixed-format data, or where record boundaries may be confused with byte values of 012 (the
C "newline" character).

High-level operations (e.g., ifget1S, ifprintf, igetdone) are built on top of i/getc/i/putc and hence are
limited to streams. By default all files are presented as streams.

Files also have an inherent physical structure that cannot be changed. This structure depends on
the operating system, the media, and the file format. For example, labelled tape is always physi­
cally record-based. On UNIX, all disk files are stream-based from the point of view or a user pro­
cess. VMS has both record- and stream-based files.

IDMLIB permits a record-based file to be presented as a stream and vice versa, with a few obvi­
ous constraints. Stream-based presentation of a record-based file removes record boundaries on
input, placing newline characters in their place for text-type files, or ignoring record boundaries
for binary-type files. On output, records are assumed to end at newline characters for text files.
For binary files, one call to i/write() results in one record. Record-based presentation of stream­
based files only accomodates fixed-length records, that is, one fixed-length record is presented to

3.29-88 /03 /02-R3v5m9 Britton Lee 3

INTRODUCTION (31) Britton Lee INTRODUCTION (31)

the application at a time on input, and on output the application must give a complete record to
if write.

Not all difrerences will be hidden. For example, the format of file names will not be standardized
across operating systems. However, make/name(31) will build default file names 88 needed.

The constants (e.g., EOF} and many of the "functions" (such 88 IFPUTC) are implemented as
macroe.

IDM INTERFACE (LEVEL TWO)
The level-two IDM interface routines operate on data structures specific to the RDBMS system
software. A family of routines create and manipulate trees that represent queries. Another f am­
ily of routines interacts with the database server itself.

Trees can be created using itl/parae(31), it:rcmtl(31), itcopr(31), or one of the DBA routines
described in tl6c(31}. Ulpar.e parses an IDL string. /t:rcmtl creates a tree for an execute com­
mand. The others create trees to perform DBA commands.

Once a tree is created, iputtree(31) sends it to the database server. /gett/(31) reads the target list
for commands that return data. Retrieved tuples can be read back by successive calls to
igdt•p(31). The DONE token is read by igettlone(3I), as well as ERROR or other trailing data.

/puft/(31) and ip•ff•p(31) send target-list descriptions and tuple data respectively to a file, nor­
mally used by routines doing bulk copies.

When a tree is no longer needed, it must be explicitly deallocated using if/ree(31). Similarly,
when a target list is no longer needed, it must be explicitly deallocated using it/free (see igett/(31)).

Many of these routines use an ent1ironment that maintains miscellaneous control and state inf or­
mation. In most cases, passing an environment of IENVNULL will default to a system global
environment. Environments are stacked. New environments are created using ieopen(31) and
destroyed using iecloae(31).

The level-two routines are suited to system program interfaces. Application programs will typi­
cally find the level-three interface more convenient.

IDMRUN INTERFACE (LEVEL THREE}
The IDMRUN subsystem provides a high-level programming-language interface to the shared
database system. Most of the details of data structures and operations are hidden. This inter­
face is appropriate for the application programmer. All modules using the IDMRUN interface
must include the file <itlmrun.A> after <idmli6.A>:

*include <idmlib.h>
*include <idmrun.h>

Any modules that include level-two include files (e.g., < idmtree.A >) must include these before
<idmrun.A>.

All character strings passed into these routines that do not refer to data (e.g., object or parame­
ter names) have all uppercase letters folded to lowercase if foldcue mode is set in the underlying
environment; see irget(31) and iecontro/(31) for details. The default setting of this mode depends
on the local system conventions: on for VMS, oft' for UNIX, etc.

I

The IDMRUN Structure
The IDMRUN structure contains all of the state information necessary for the run-time system to
determine the legality of operations. An IDMRUN structure has the following characteristics:

• An IDMRUN structure is associated with a single database server.

• IDMRUN structures can only have one parsed IDL statement list aseoeiated with them at a
time. Every time new statements are created, the previously parsed statements are discarded
and the newly parsed statements take their place.

3.29-88/03/02-R3v5m9 · Britton Lee 4

INTRODUCTION (31) Britton Lee INTRODUCTION (31)

• The ID MR UN structure contains the return status from the shared database system. After a
command is executed, all of the return data must be processed. An attempt to create another
set of statements before this is done will result in an error.

Jropen(31) returns an IDMRUN structure. If the database name is known in advance, it can be
specified in this command. If not, a database can be opened later.

Upon completion of the use of the IDMRUN structure, it should be closed via ircloae.

All use of the IDMRUN structure must follow in the strict order:

(1) Select a statement to process using irid/(31), iraq/(31), irzcmd(31), or irzprog, or by setting
a command tree using im:t(31) with the IP_ TREE option.

(2) Send the tree to the IDMjRDBMS software using irezec(31).

(3) Retrieve results (if appropriate) using ir/etch(31). Results can be described using
irdeac(31) and bound to programming-language variables using irbind(31).

(4) Proceed to the next set of commands and/or results using imezt(31). This step is neces­
sary since several trees can be in an IDMRUN structure at the same time - even a tree
created with irzcmd can reference a stored command that contains several primitive com­
mands, so that multiple batches of data can be returned. The program should then cycle
back to step three.,

(1) Selecting a Command
IDL statements in text form are parsed and associated with an IDMRUN structure using irid/(31)
or iraq/(31). This is the usual way of inputting statements. Special trees to execute stored com­
mands (or programs) can be created quickly using irzcmd{31) or irzprog {documented in the same
section). Parameters are added incrementally using irzaetp (also documented in irzemd(31)).

(2) Starting Execution
Successfully parsed statements can be executed using irezec(31). This sends the first command in
a list to the IDM/RDBMS software. lrezec "peeks ahead" at the results coming back Crom the
IDM/RDBMS software - if' data is returned it determines the type of the fields; if' no data is
returned it reads and processes the status information.

(3) Reading Results
If the statement returns tuple values the program can bind program variables to receive the
retrieved target-list elements with ir6ind{31). Descriptions of the types of the retrieved target-list
elements can be requested to aid in the binding process by calls to irdeac(31). lrbind causes
conversion from any of the numeric IDM types to any of the numeric types and from any of the
IDM types to STRING. Np other automatic conversions are guaranteed. ·

Each call to ir/etch(31) reads the next tuple into the bound programming-language variables.
Any target-list element values which have not been bound to programming variables are dis­
carded. Automatic type conversion from the type of the target-list element as stored on the
database server to the type of the bound programming variable is performed. If the program
decides not to process all of the retrieved tuples (e.g., by exiting a retrieve loop early) then
irftvah(31) can be called to remove the remaining tuples by reading them all and throwing the
results away. Jrcance/(31) will flush the remaining tuples without reading them but it will also
cancel any pending commands to be executed on the database server as well as any return infor­
mation. Ircancel can also be called to stop the current executing command on the database
server (this is useful when responding to interrupts). In general, irft.ah should be used when
responding to normal conditions where the data is no longer of interest, while irccnce/ should be
used to do a full abort.

(4) The Next Command
When a command stream contains more than one executable statement, due either to parsing
several statements in a single call to iridl or iraql or to executing a stored command containing

3.29-88 /03 /02-R3v5m9 Britton Lee 5

INTRODUCTION (31) Britton Lee INTRODUCTION (31)

several commands, the routine ime:rt(31) must be called for each primitive command. lrne:rt
moves on to the next command in the stream and otherwise acts like ire:ree.

All data must be processed before processing can continue. lrjlaala will discard all of the return
information for the next statement. However, if there was more than one executable IDL state­
ment parsed (or if there was an IDL ire:rec of a stored command which contained more than one
executable statement), an irjlvala must be performed for each command which returns data (i.e.,
after every call to ime:rt). Alternatively a single call to ircancel will clear all of the return infor­
mation.

Status
All error tokens and done packets are handled automatically by the run-time system. Done
packet information is known immediately upon executing commands which do not return data,
i.e., ire:rec will read in the done packet information for the first command unless there is tuple
data to be processed. For commands returning data the done packet information is returned
automatically when all of the data bas been read or a flush bas been performed. lrne:rt reads in
the done packet for a statement if there is no data to be returned.

Return Values
Some routines return only a status code (typed as RETCODE). The status code can be
RS_NORM to indicate successful, normal completion, RE_FAILURE to indicate failure, or a
warning status. If the status is RE_F AILURE, an exception will be raised giving more detail.
Warning returns will typically not have an associated exception raised. See retcode(SI) for
details.

Types
In addition to the types supported in level two, the type iDSC may be used at this level. This
type is intended to be a "descriptor-based" type defined by the host architecture and operating
system. Most commonly this will be used for scaled types, decimal types, etc.

Type iDSC may be passed to iravbat(31) and irbind(31).

The routines used to manipulate descriptors are described in dac(31).

Programs using descriptors are inherently non-portable.

EXCEPTIONS
The exception package helps formalize the handling of special conditions that require abnormal
flow of control. When a procedure "raises an exception" a search is made backward through the
invocation stack until a "handler" is found for this exception. The handler is then called; it can
perform any necessary cleanup operations and can then ignore the exception, back out (i.e., abort
the procedure that raised the exception), or re-raise the exception to start the process over again.
See e:rc(31) for details.

Routines that raise exceptions list the exceptions and the semantics of the parameters to the
exception.

The following exceptions can occur from a number of places:

W:IDMLID.ARITH.OVERFLOW
Arithmetic overflow occurred.

W:IDMLID.ARITH.UNDERFLOW
Arithmetic underflow occurred.

W:IDMLID.ARITH.DIVZERO
Division by zero occurred.

W:IDMLID.ARITHPRECISION
Precision was lost during a conversion operation.

3.29-88 /03 /02-R3v5m9 Britton Lee 6

INTRODUCTION (31) Britton Lee INTRODUCTION (31)

T:IDMLID.ASYNC.INT
A terminal interrupt occurred.

T:IDMLID.ASYNC.TERM
A terminate signal occurred.

A:IDMLID.ASYNC.NOFP
The program attempted to use floating-point with no floating-point hardware or software
emulation.

A:IDMLID.10 .BADJFP(detail)
The •1P passed to some routine was determined to be bad.

A:IDMLID.IO.IOERR(filetype, filename, detail}
An 1/0 error occurred during some operation. This typically indicates some sort of
hardware problem.

A:IDMLID.RECOMPILE
The program is out of date with respect to the library.

This document does not list all IDMLID exceptions. For a complete list, see the IDL MeHage
Summary and SQL MeHage Summary for your host system.

GLOBALS
The following globals are used by IDMLID for communication with the application:

CnvtCount Set to the count of the number of characters converted by ato/, atoi, and atol.
See ato.1{31).

The name of this program; used by routines that print messages. ProgName

FileName

LineNumber

This may be set to the current input file name for printing with error messages.

H this variable is greater than zero, it will be printed with error messages.
lftScan will increment the LineNumber if requested.

DefEnv The default environment for use by the IDM routines.

DefMpool The default memory pool for za//oc(31), et. al.

SysMpool The global memory pool.

COMPILATION FLAGS
The following flags are defined to handle exceptional cases. Their use should be kept to an abso­
lute minimum.

One of the following flags is set to tell what hardware we are running on:

IDM370 This is an IBM 370-architecture processor (this includes the 43xx and 30xx
series).

M68K

MV

PDP

PYRAMID

VAX

U3B2

U3B5

U3B20S

3.29-88 /03 /02-R3v5m9

This is a 68000-based processor.

This is a Data General MV processor.

This is a PDP-11 processor.

This is a RISC processor.

This is a VAX processor.

This is a Western Electric 3B2 series processor.

This is a Western Electric 3B5 series processor.

This is a Western Electric 3B20S series processor.

Britton Lee 7

INTRODUCTION (31) Britton Lee INTRODUCTION (31)

U3B20AP This is a Western Electric 3B20AP series processor.

One of these flags is set to define the operating system being run:

UNIX We are running 4.2 BSD UNIX.

UNIX5

VMS

CMS

MVS

MSDOS

AOS_VS

We are running UNIX System V.

We are running DEC VMS.

We are running IBM CMS.

We are running IBM MVS.

We are running MS-DOS.

We are running Data General AOS/VS.

The native character set or the machine is defined using one or the rollowing:

ASCD Thia machine uses the ASCD character set, as defined by ANSI standard X3.4-
1977, American Notional Stontlortl Ootle for Information Interclaange.

EBCDIC This machine uses the EBCDIC character set.

The rollowing constants are always defined; their value describes certain parameters of the
hardware and the underlying system:

WORDBITS The size or an integer, normally 16 or 32.

ADDRBITS Set to the number or bits of address space available for user programs, normally
16, 17, 24, 31, or 32.

The following constants may be defined to enable special features.

NOFP

DEBUG

This machine may not have floating-point hardware. ·

Compile U;i debugging flags.

WlllTESMims The Whitesmith's pseudo-compiler is being used.

IMPLEMENTATION NOTES
This spec is both a functional spec for users of IDMLIB and an implementation spec. Implemen­
tation notes are broken out into a special section.

Where necessary to rename an IDMLm routine to avoid conflict with a system routine,
"*define"s can be used. Routine names with leading underscores should not be used in regular
programs to provide a namespace that can be used freely by the IDMLIB implementor.

Since IDMLm can be linked with user programs, it will be important for IDMLIB to coexist with
the host run-time library. However, it should be possible to link IDMLIB without linking in
unused portions or the system run-time library.

3.6-87 /09/28-R3v5m5 Britton Lee 8

ANYPRINT (31) Britton Lee ANYPRINT (31)

NAME
anyprint, anyfmt - print or format any possible type for printing

SYNOPSIS
anyprint(type, length, value, ifp)
int type;
int length;
BYTE •value;
IFU..E •ifp;

char •anyfmt(type, length, value)
int type;
int length;
BYTE •value;

DESCRIPTION
Anyprint prints any type and length datum pointed to by value onto the file i/p. Regular data
types (e.g., iINTl etc.) are stored as a direct conversion. Certain IDM/RDBMS nodes (such as
iRANGE et al.) are formatted with labels. Other types are converted to a hexadecimal string.

Any/mt formats the result and returns a pointer to the converted string. The string will be des­
troyed on the next call.

The format of the following "vanilla" types (basic user data types) are guaranteed suitable for
normal user consumption:

iINTl
iFLT4
iCHAR
iBCD

iINT2
iFLT8
iFCHAR
iBCDFLT

ilNT4
iBINARY
iSTRlNG
iFBCD

The formats of more obscure types are for gurus only.

SEE ALSO
intro(31), itlprint(3l), itprint(31), printf(31), typecnvt(31)

3.4-86 /09 /26-R3v5m0 Britton Lee

iFBINARY
iSUBSTlTUTE
iFBCDFLT

1

ASSERT (3I) Britton Lee ASSERT (3I)

NAME
ASSERT- verify fixpoints in a program

SYNOPSIS
ASSERT(expresaion)

DESCRIPTION
ASSERT indicates that ezpreaaion is expected to be true at this point in the program. It syserrs
with a diagnostic comment when ezpreaaion is FALSE.

DIAGNOSTICS
Some mes.5age will be given containing sufficient information to find the problem in the source
code. It is not intended that a naive user be able to understand the message. For example:
"Assertion failed: file f line n." Fis the source file and n the source line number of the ASSERT
state~nt.

SEE ALSO
syserr(3I)

IMPLEMENTATION NOTES
Some C compilers define the pseudo-macros " __ FILE __ " and " __ LINE __ " to describe the
current file and line number. These should be used if available.

3.7-87 /12/04-R3v5m7 Britton Lee 1

ATOBCD (31)

NAME
atobcd - alpha to BCD conversion

SYNOPSIS
*include <bcd.h>

BCDNO •atobcd(but, res)
char •but;
BCDNO •res;

DESCRIPTION

Britton Lee

Atobed converts a character string to BCD and stores the result in rea.

EXCEPTIONS
W:IDMLIB.BCD.OVERFLOW

An overflow occurred.

W:IDMLIB.BCD.UNDERFLOW
An underflow occurred.

SEE ALSO

ATOBCD (31)

intro(31), bcd(31), Syatem Programmer'a Manual {SPM) for BCD representations and semantics.

3.5-86 /06 /26-R3v5m0 Britton Lee 1

ATOF (31) Britton Lee ATOF(31)

NAME
atof, atos, atol - convert characters to numbers

SYNOPSIS
double atof(nptr)
char *Dptr;

atos(nptr)
char *nptr;

long atol(nptr)
char *nptr;

DESCRIPTION
These functions convert a character string pointed to by nptr to double precision floating point,
short integer, and long integer representation respectively. The first unrecognized character ends
the string.

Ato/ recognizes an optional string of tabs and spaces, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional 'e' or 'E' followed by an optionally signed
integer.

Atoa and atol recognize an optional string of tabs and spaces, then an optional sign, an optional
"Ox" to force hexadecimal radix interpretation or "Oo" to force octal radix interpretation, then a
string of digits.

GLOBALS
CnvtCount Set to the number of bytes consumed from nptr.

EXCEPTIONS
W:IDMLID.CNVT.OVERFLOW(nptr, limit)

An arithmetic error occurred during processing.

IMPLEMENTATION NOTES

BUGS

Environment-independent versions of atoa and atol exist. An environment-dependent version of
atof must be supplied by the OEM.

Atoi is not defined in IDMLID. If the system C runtime library does not define an atoi then the
machine dependent header file machdep.h can add the appropriate :ftl:define line depending on the
system integer size.

:ftl:define
#define

atoi(p)
atoi(p)

(int) atos(p)
(int) atol(p)

Atof neither sets CnvtCount nor detects overflow, and is unlikely to in the near future.

Atoa fails on the value -32768; atol fails on -2147483648.

These routines do not understand unsigned numbers; they will cause overflow exceptions.

3.8-87 /12/04-R3v5m7 Britton Lee 1

BCD (31) Britton Lee BCD (31)

NAME
bcdadd, bcdsub, bcddiv, bcdmult, bcdcmp, bcdround - BCD arithmetic

SYNOPSIS
*include <bcd.h>

BCDNO •bcdadd(Rea, sreb, res)
BCDNO •area;
BCDNO •aeb;
BCDNO •res;

BCDNO •bedsub(srea, sreb, res)
BCDNO •Rea;
BCDNO •aeb;
BCDNO •res;

BCDNO •bedmult(Rea, aeb, res)
BCDNO •srea;
BCDNO •lll'cb;
BCDNO •res;

BCDNO •beddiv(srea, sreb, res, domod)
BCDNO •srea;
BCDNO •aeb;
BCDNO •res;
BOOL domod;

bcdemp(srea, areb)
BCDNO •srea;
BCDNO •areb;

bcdround(bednum, pree)
BCDNO •bcdnum;
int pree;

WARNING .
These routines are not supported at this time.

DESCRIPTION
Bcdadd, bedaub, bcdmult, and bcddiv each perform an arithmetic operation between the two
source operands area and arcb and place the result in rea. The type of the result will be BCDFL T
it either of the source operands are BCDFLT and will be BCD otherwise. If domod is true when
bcddiv is called then the modulo operation is performed. Modulo operations are not defined for
BCDFLTs.

BCD and BCDFL T comparisons can be done with bcdcmp. It returns a negative, zero, or positive
number depending on whether the first operand is less than, equal to, or greater than the second
operand, respectively.

A BCD FLT number can be rounded to a specified precision or a BCD number can be truncated
using bcdround. The specified bcdnum is left with at most prec digits right of the decimal point in
the case of BCDFL T, or prcc digits altogether in the case of a BCD number.

EXCEPTIONS
W:IDW...IB.BCD.OVERFLOW

An overflow occurred during BCD arithmetic.

W:IDW...IB.BCD.UNDERFLOW
An underflow occurred during BCD arithmetic.

3.8-87 /12/04-R3v5m7 Britton Lee 1

BCD (31) Britton Lee BCD (31)

BUGS

W:IDMLIB.BCD.DIVZERO
An attempt was made to divide by zero.

W:IDMLIB.BCDPRECISION
Precision was lost during a conversion operation.

Bcdcmp fails on zero value comparisons if one BCD was retrieved from the database and the
other created via atobcd. This is due to the many possible representations of a zero BCD.

SEE ALSO
intro(3I), atobcd(3I), bcdtobcdf(3I), bcdtol(3I), ftoa(3I), SPM for BCD representations and seman­
tics.

3.7-87 /12/04-R3v5m7 Britton Lee 2

BCDTOA(31) Britton Lee BCDTOA(31)

NAME
bcdtoa - BCD to alpha conversion

SYNOPSIS
#include <bcd.h>

char •bcdtoa(bcd, buf, width, fmt, scale, prec)
BCDNO •bed;
char •buf;
int width;
char fmt;
int scale;
int prec;

DESCRIPTION
Bcdtoa converts the BCD number bed into a string stored in bu/ of length at most width. There
will be at most prcc digits after the decimal point. Six formats are defined by /mt. These are:

F Regular floating-point.

E Exponential format.

G E or F format, whichever produces the smallest number of characters.

H E or F as appropriate to fit, with F pref erred.

A Like H, but with decimal points aligned on F's. Alignment is done only within E and F for­
mats, that is, E format align with E format, F format with F formats, but E and F format
do not align.

P Like F, but with the number padded out to prcc digits after the decimal point even if they
are not present in the input.

If the number is output in E format, acale digits will be placed before the decimal point.

SEE ALSO
atobcd(3I), fmtftoat(3I), ftoa(3I), SPM for BCD representations and semantics.

3.5-87 /12/04-R3v5m7 Britton Lee 1

BCDTOBCDF (31) Britton Lee

NAME
bcdftobcd, bcdtobcdf - BCD conversion

SYNOPSIS
#include <bcd.h>

BCDNO •bcdftobcd(bcdnum, res)
BCDNO •bcdnum;
BCDNO •res;

BCDNO •bcdtobcdt(bcdnum, res)
BCDNO •bcdnum;
BCDNO •res;

DESCRIPTION

BCDTOBCDF (31)

Conversions between BCD and BCDFLT can be performed using bcdftobcd and bcdtobcdf. The
former operation can cause an OVERFLOW exception, but the second is guaranteed to succeed.

EXCEPTIONS
W:IDMLIB.BCD.OVERFLOW

An overflow occurred.

SEE ALSO
intro(3I), bcd(3I), Syatem Programmer'a Manual for BCD representations and semantics.

3.8-87 /12/04-R3v5m7 Britton Lee 1

BCDTOL (31) Britton Lee

NAME
bcdtol, ltobcd - BCD to long integer conversion

SYNOPSIS
#include <bcd.h>

long bcdtol(lll'c, res)
BCDNO •lll'c;
long •res;

BCDNO •ltobcd(Bl'c, res, restype)
long •lll'c;
BCDNO •res;
BYTE reetype;

DESCRIPTION
Bcdtol Converts a BCD or BCDFL T number to a long integer.

BCDTOL (31)

Ltobcd Converts a long integer to the desired reatrpe bed. Reatrpe may be either iBCD or
iBCDFLT.

EXCEPTIONS
W:IDMLIB.BCD.OVERFLOW

An overflow occurred.

W:IDMLIB.BCD.UNDERFLOW
An underflow occurred.

W:IDMLIB.BCD.PRECISION
Precision was lost during conversion.

SEE ALSO
intro(31), bcd(3I), Sratem Programmcr'a Manual for BCD representations and semantics.

3.3-86 /09 /26-R3v5m0 Britton Lee 1

BCOPY(31} Britton Lee BCOPY(31)

NAME
bcopy, bfill, bzero, STRUCTASGN - copy, set, or zero a block of memory

SYNOPSIS
bcopy(from, to, aise)
BYTE •from, •to;
intaiHJ

bflll(to, aise, ch)
BYTE •to;
int aise;
BYTE ch;

bsero(to, Ilise)
BYTE •to;
int aise;

STRUCTASGN(dst, arc)
struct m dst;
lltruct ??? arc;

DESCRIPTION
Bcopf copies aize bytes from from to the block of memory at to.

I

Bfill fills aize bytes of memory at to with copies of the given character cla. Bzero acts like l>fill
except that the character is the zero byte.

STRUOTASGN is a macro that copies the struct arc to dat (note: these are not pointers to the
structs, but the structs themselves); arc and dat must be compatible structures. On compilers
supporting structure assignment this macro expands to "dst = src"; otherwise it is a l>co,,,.

LIMITATIONS
The from and to areas in l>co,,, should not overlap in any way to allow most efficient implemen­
tation on any machine. Specifically, left-to-right copy is not guaranteed.

Size should never exceed 65535. This also limits the size of the structures in STRUOTASGN.

IMPLEMENTATION NOTES
Although environment-independent implementations exist, these may be implemented as an in-line
macro instruction using an assembly language massager.

The "size == O" case must be handled properly.

Bfill and 6zero are provided as separate commands because zeroing memory is typically less
expensive than filling it with an arbitrary byte.

SEE ALSO
string(31)

3.3-86/09/26-R3v5m0 Britton Lee 1

BINTOA(31) Britton Lee BINTOA (31)

NAME
bintoa, atobin - binary to alpha conversion

SYNOPSIS
bintoa(inptr, inlen, outptr, outlen}
BYTE •inptr;
int inlen;
char •outptr;
int outlen;

atobin{inptr, inlen, outptr, outlen}
char •inptr;
int inlen;
BYTE •outptr;
int outlen;

DESCRIPTION
Bintoa converts a string or bytes or length inlcn starting at inptr to a character string stored into
outptr. There are otdlcn bytes available at outptr for data storage. ·

Each input byte is converted to two output characters representing the hexadecimal value or that
byte. For example, the input byte with value 31 (decimal) is converted to the characters "IF" on
output.

A trailing null byte is added.

Ir out/en is not large enough to store all the bytes from the input, input bytes are truncated on
the right. Note that binaries represent byte strings rather than integers: leading zeros are
significant, while trailing zeros are insignificant.

Atobin performs the inverse operation.

EXCEPTIONS
W:IDMLID.CNVT.OVERFLOW(input, limits)

The output overflowed.

W:IDMLID.CNVT.ATOBIN(cbar)
The specified character is not a valid hexadecimal character (0-9, a-r, A-F).

SEE ALSO
typecnvt(31), xdump(31)

3.4-86 /06 /26-R3v5m0 Britton Lee 1

BITSET (31)

NAME
BITSET - test to see if a bit is set

SYNOPSIS
BOOL BITSET{bita, word)
int bit.a;
int word;

DESCRIPTION

Britton Lee BITSET (31)

BITSET returns TRUE if any of the bit& are set in word. For example, typical usage might be:

if (BITSET(ID_ERROR, dp-id_stat))

To set one or more bit&, use

word I = bits;

To clear one or more bits, use

word &= -bits;

BITSET is implemented as a macro.

DISCLAIMER
B/TSET actually returns an int, not a BOOL (or char).

3.6-86 /09 /26-R3v5m0 Britton Lee 1

BYTETYPE (31) Britton Lee BYTETYPE (31)

NAME
ISALPHA, ISUPPER, !SLOWER, ISDIGIT, ISXDIGIT, ISALNUM, ISSPACE, ISPUNCT,
!SPRINT, ISGRAPH, ISCNTRL, ISCHAR, ISPMATCH, ISZWIDTH, ISKANJI, TOCHAR,
TOUPPER, TOLOWER - character classification and conversion

SYNOPSIS
#include <bytetype.h>

ISALPHA(c)

DESCRIPTION
The /Sxxx macros classify character-coded integer values by table lookup. Each is a predicate
returning TRUE if the indicated condition is satisfied. The TOxxx macros do character-specific
conversions.

/SCHAR is defined on all integer values; the rest are defined only where /SCHAR is true and on
the single out-of-band value EOF (see intro(3I)}.

ISALPHA c is a letter [a-z, A-Z]

/SUPPER

/SLOWER

/SDI GIT

ISXDIGIT

/SALNUM

ISSPACE

ISP UN CT

!SPRINT

IS GRAPH

ISCNTRL

IS CHAR

ISPMATCH

ISZWIDTH

ISKANJI

TO CHAR

TO UPPER

TOLOWER

SEE ALSO
string(3I}

c is an uppercase letter [A·Z]

c is a lowercase letter [a-z]

c is a digit [0-9]

c is a hexadecimal digit [0-9, A-F, a-f]

c is an alphanumeric character [a-z, A-Z, 0-9]

c is a space, tab, carriage return, newline, or formfeed

c is a punctuation character (neither control nor alphanumeric)

c is a printing character, ASCII codes 040 (space) through 0176 (tilde}.

c is a printing character, like iaprint except false for space

c is a delete character (ASCII 0177) or ordinary control character (less than
ASCII 040).

c is a character in the native character set or the host computer.

c is an IDM pattern matching character ('•', "!', or '[') or the internal equivalent
thereof.

c is nominally a zero-width character when printed.

c is one byte of a two-byte Kanji character. This is always FALSE in American
and European versions of IDMLIB.

Converts a character into the legal range by stripping off special bits.

U the argument is a lowercase letter, returns the uppercase equivalent; undefined
on other values.

U the argument is a uppercase letter, returns the lowercase equivalent; undefined
on other values.

IMPLEMENTATION NOTES
Although the descriptions of the domain of these routines refer to ASCII cha.racters, the imple­
mentation also handles EBCDIC. The EBCDIC codes are derived from the IBM System/360

3.6-86 /09 /26-R3v5m0 Britton Lee 1

BYTETYPE (31) Britton Lee BYTETYPE (31)

Reference Card, order number GX20-1703-7.

3.18-87 /05/22-R3v5m3 Britton Lee 2

CRACKARGV (31) Britton Lee CRACKARGV (31)

NAME
crackargv, usage - take apart an argument vector or print a usage message

SYNOPSIS
#include <crackargv .h>.

crackargv(argv, template)
char **&rgv;
ARGLIST •template;

usage(template, fmt, al, a2, a3)
ARGLIST •template;
char •fmt;

DESCRIPTION
Oraekargv parses command-line arguments as necessary for the host environment. Traditionally
in C, the command line is passed to the subroutine main() as the arguments arge and argv,
without provisions for special command options and differing command syntax with different
operating systems. Oraekargv accepts a NULL-terminated argv and a template data structure
describing the allowable arguments for the command and where the argument v~ues should be
stored. Oraekargv takes apart the argument vector, storing argument values in the program's
variables.

Command arguments are either positional arguments or Bag arguments:

Poaitional argumenta have no explicit name in the command invocation; They must be specified
in a particular order. Required positional arguments must precede optional positional arguments.
The template specifies required and optional positionals for this program. The number of posi­
tional arguments that the user specifies in the command invocation must be at least as many as
the number of required arguments. Because of limitations on some host operating systems, at
most six positional arguments may be specified.

Flag argumenta have names, and may be specified in any order. They are almost always optional.
A Bag having no value associated with it is called a boolean Bag. The template lists all Bag argu­
ment.I! with their names and the type of their argument.

Given a template and an argv, craekargv finds the argument values in the most user-friendly
manner possible.

On UNIX, Bags with values have the form -xtJalue or -x t10lue as convenient. Boolean flags can
be concatenated; for example, "-abc" is the same as "-a -b -c". A Bag taking an argument must
be the last Bag in the sequence; for example, "-abcx 7" is legal (assuming the "-x" Bag takes a
value) but "-abxc 7" is not. A minus sign '-'preceding the argument of a short, integer, or long
must be abutted to the Bag, e.g., "-x-7".

The template is an array of structures describing the parameters. The fields are:

flag_cname

flag_ type

3.18-87 /05/22-R3v5m3

The character that names this Bag, on operating systems like UNIX that
use single-character Bag names. If it is FLAGPOS then this entry
represents a positional argument. Order is important; positional argu­
ments will be matched in the order listed. In general, all positional argu­
ment templates should come after all Bag argument templates for reada­
bility. The last entry in the list has this argument equal to the null
character, '\O'.
The type of the value for this argument. These may be

Britton Lee 1

CRACKARGV (31)

flag_mlength

fiag_lname

fiag_aname

flag_ value

flag_prompt

flag_ usage

3.18-87 /05/22-R3v5m3

Britton Lee CRACKARGV (31)

FLAGBOOL
FLAGSHORT
FLAGLONG
FLAG INT
FLAGCHAR
FLAGSTRING
FLAG LIST
FLAG TRACE
FLAGPARAM
FLAGVER

boolean (takes no value)
short integer
long integer
native integer
single character
text string
vector of string (last positional only)
trace specification
global IDMLm parameter
show IDMLm version number (takes no value)

Native integers are short or long, depending on the underlying hardware.
Lists are sequences of strings. There should be no more than one param­
eter of type FLAGLIST and it should be the last flag in the description.
For example, on VMS this will turn a comma-separated list of elements
on the command line into one list. On UNIX it will match the rest of
the argt1 argument vector after the other positionals are consumed.
FLA GP ARAMs are passed to aetparam with the flag_ t1al..e pointing to a
null-terminated parameter name. Trace flags are passed to tfaet (see
t1(31)). FLAGVER is used so that a user can determine the exact version
of the library being used.

Minimum length (flags only). In the string form (for VMS-like systems)
this is the minimum number of characters that must be specified on the
command line to match this ftag_lname. Normally this is just enough to
make the name unique. For instance, if the lnamea are "fig", "plum",
"process", and "protect", "fig" would have an mlength of one, "plum"
two, and the last two would both require four. "Dangerous" flags can
set the mlength equal to their total length; for example, the parameter
"initialize" could have an mlength of ten to insure that it could not
accidently be specified.

The long (string) form of the flag name. This is used on VMS and other
systems that use full-word qualifier names. These should be unique in
the first four characters.

An alternate string form, for Multics-like systems. This will normally be
very short and incomprehensible. If NULL, it will be ignored.

A pointer to a place to put the result. It should be a pointer prepended
by two underscores ("- _ ") which will do necessary type coercion. If this
value is to have a default it should be set before crackargt1 is called. For
FLAGSTRINGs, this points to a character pointer . that will end up
pointing to the string which has been statically allocated by crackargt1.
For FLA GP ARAMs, this pointer instead points to a constant character
string that specifies the system parameter name that should receive the
value.

Prompt string. If this is not NULL, the argument is required. If the
user does not specify it and the operating system supports prompting,
this prompt will be printed (followed by a question mark) and the value
read from the standard input.

A text string to print in a usage message; the name of this argument. Ir
this is NULL, ftag_prompt is used. If that is NULL, ftag_lname is used.
If this is the zero-length string (" ") then this flag will never be printed in

Britton Lee 2

CRACKARGV (31) Britton Lee CRACKARGV (31)

a usage message; this is used for "hidden" flags, i.e., flags intended for
BLI use only.

Orackargv must consume all arguments.

An implementation must accept some default flags; that is, flags that are not listed in a template
should be availiable in a default list. The following list is the minimum set of default flags that
must be implemented:

-B FLAGPARAM
-E FLAGPARAM
-T FLAGTRACE
-V FLAGVER

"IDMDEV"
"EXPERIENCE"

The routine •1age can be used to print a usage message in a machine-independent fashion. It
prints the /mt and arguments in print.1(31) style followed by a usage message built from template.
U1age then raises ''U:name.USAGE" (where name is the program name specified by INI­
TIDMLIB) and exits with status RE_ USAGE. This message can give more detail about the use
of the command.

GLOBALS
ProgName Used by uaage to print the name of this program.

EXAMPLES
In order for the argument template in the following example to fit completely on the page the
definition of _ON for CHARNULL is included. Note that it is not defined by the include files.

*include <idmlib.h >
*include < crackargv .h >

#define _CN CHARNULL

short
BOOL
int .
char

ShortV;
Xact;

. Count;
•DbName;

ARGLISTArgs[] =
{
/ • cname type mlen lname aname

's', FLAGSHORT, 1, "short", "fs",
'x', FLAGBOOL, 4, "trans", "tx",
'r', FLAGINT, 1, "rep", _CN,
'B', FLAGPARAM, 1, "idmdev", _CN,
'T', FLAGTRACE, 4, "trace", _CN,
FLAGPOS, FLAGSTRING, O, _CN, _CN,
'\O'

};

main(argc, argv)

{

}

int argc;
char uargv;

INITIDMLIB(" testprog");
crackargv(argv, Args);
(etc)

3.18-87 /05/22-R3v5m3 Britton Lee

value prompt usage • /
__ &:ShortV, _CN, _CN,
__ &:Xact, _CN, _CN,
__ &:Count, "count", _CN,
- - "IDMDEV" I _CN, _CN,
BYTENULL, _CN, "",
__ &:DbName, "dbname", _CN,

3

CRACKARGV (31) Britton Lee CRACKARGV (31)

Legal command-line syntax includes:

% testprog hostdb
% testprog -xs5 -B/dev/other -TS0.9 bigdb

LIMITATIONS
It is not poesible to have multiple occurrences of named flags.

IMPLEMENTATION NOTES
An implementation exists to parse UNIX argument vectors. This version should be examined
before doing further development.

It may be reasonable to check the experience level to decide whether to prompt for missing
required arguments rather than diagnosing an error.

EXCEPTIONS
E:IDMLm.CRACKARGV.BADINT(str)

An illegal value was specified for an integer.

U:progn11me.USAGE
This program ·was invoked incorrectly.

SEE ALSO
getparam(31), printf(31), tC(31)

3.8-88/02/29-R3v5m8 Britton Lee 4

DBA (31) Britton Lee DBA(31)

NAME
itdbdump, ittxdump, itdbload, ittxload, itrollf - build trees for database administration functions

SYNOPSIS
=#include <idmtree.h>
*include <idmenv.h>

ITREE •itdbdump(dbname, dbflle, txflle, tape, env)
char •dbname;
char •dbflle;
char •txflle;
char •tape;
IENV •env;

ITREE •ittxdump(dbname, txname, txflle, tape, env)
char •dbname;
char •txname;
char •txflle;
char •tape;
IENV •env;

ITREE •itdbload(dbname, dbflle, tape, env)
char •dbname;
char •dbflle;
char •tape;
IENV •env;

ITREE •lttxload(dbname, txname, txflle, tape, env)
char •dbname;
char •txname;
char •txflle;
char •tape;
IENV •env;

ITREE •itrollf(dbname, txname, datetlme, env)
char •dbname;
char •txname;
CLOCK •datetlme;
IENV •env;

DESCRIPTION
The DBA £unctions build trees to perform certain database administration functions. These func­
tions are not provided as part or the IDL grammar implemented by idlparae(31). /tco1>r(31) is
also or interest.

Each or these operates on a particular database whose name is passed as tl6name. The working
database is the database that is open when the commands are sent by iputtree(31).

The dump and load operations all take an optional tl6file and/or tzfile to represent the name or
an IDM &le in the working database to use as a source or destination for the database dump or
the transaction dump respectively. Ir these are CHARNULL and the tape parameter is provided
then IDM tape is used. Ir the tape parameter is also CHARNULL then 1/0 ii engaged with the
host; it is up to the user program to ensure that this 1/0 is handled properly, since none or these
routines return data structured as a target list.

The tape options are defined in itapeopt8(31).

3.8-88/02/29-R3v5m8 Britton Lee 1

DBA (31) Britton Lee DBA(31)

!troll/ produces a tree to roll forward a database from a transaction log until the given date. If
the date is not given (i.e., if CLOCKNULL is passed), the entire log is rolled forward. The date
is specified as a CLOCK datum; see getclock(3l).

In all cMeS, options set in the environment are added to the tree. If env is IENVNULL a default
environment is used.

All functions return a tree that will execute the specified function when sent to the IDM/RDBMS
software using iputtree{31). It is then up to the user program to send or receive any additional
data that the IDM/RDBMS software expects, such as a load image. The routines i/read(31) and
ifwrite are the usual means of accomplishing this.

EXAMPLES
The call:

t = itdbdump("db", CHAR.NULL, "tx", CHAR.NULL, IENVNULL);

produces a tree which, when executed, will dump the database "db" to the host and the transac­
tion log for "db" to the IDM file "tx" in the working database.

t = itdbload{"db", CHARNULL, "volume(dl23),unit(l)", IENVNULL);

produces a tree that will load database "db" from IDM tape, verifying that volume "dl23" is
mounted before the load begins. File zero from unit one will be read.

SEE ALSO
getclock(31), iesetopt(31), ifread(31), ifopen(31), iputtree(3I), itapeopts(31), itcopy(31); irtltape(41)

3.6-87 /09/28-R3v5m5 Britton Lee 2

DSC (31) Britton Lee DSC (31)

NAME
_dsctoidm, _idmtodsc - descriptor-based type (iDSC) conversion hooks

SYNOPSIS
int _dsct.oidm(dsc, pt;ype, len, val)
BYTE •dsc;
int •pt;ype;
int Jen;
BYTE •val;

_id.mt.odsc{type, len, val, dsc)
int type;
int len;
BYTE •val;
BYTE •dsc;

DESCRIPTION
N.B.: These routines are used internally by IDMLIB routines. They are not for use by applica­
tions. System porters must provide these routines if they wish to support descriptor-based types.

_Dactoitlm converts types represented by the descriptor tlac to one of the legal IDM system types.
The resulting type is stored indirectly through •ptype and the value is stored into the buffer val.
The value may not exceed /en. The actual length or the resulting value is returned.

_Idmtotlac converts an IDM system datum represented by type, len, and val to the type indicated
by the descriptor tlac.

Descriptors are assumed to contain a buffer for (or a pointer to) the actual value.

These routines are invoked when a datum or type iDSC is passed to one or the level three
IDMLIB routines.

Programs using descriptors are inherently non-portable.

SEE ALSO
intro(31)

3.15-88/02/29-R3v5m8 Britton Lee 1

EXC (31) Britton Lee EXC (31)

NAME
exchandle, excahandle, excdhandle, excraise, excvraise, excignore, excprint, excCprint, excbackout,
excprbo, excabort, excalock, excaunlock, exccleanup, bocleanup - exception and message han­
dling package

SYNOPSIS
#include < exc.h>

int exchandle(pattern, tune)
char •pattern;
FUNCP tune;

excahandle(pattern, tune, arg)
char •pattern;
FUNCP tune;
BYTE •arg;

excdhandle(pattern, func, arg)
char •pattern;
FUNCP func;
BYTE •arg;

excraise(exc, argl, arg2, ••• , CHARNULL)
char •exc;
char •argl, •arg2, ••• ;

excvraise(excv)
char uexcv;

int excignore(excv, arg)
char ••excv;
BYTE •arg;

int excprint(excv)
char uexcv;

int excfprint(excv, outitp)
char uexcv;
IFILE •outitp;

int excbackout(excv, arg)
char uexcv;
BYTE •arg;

int excprbo(excv, arg)
char uexcv;
BYTE •arg;

int excabort(excv, arg)
char uexcv;
BYTE •arg;

excalock()

excaunlock(force)
BOOL force;

exccleanup(func, arg)
FUCNP lune;
BYTE •arg;

3.15-88/02/29-R3v5m8 Britton Lee 1

EXC (31) Britton Lee EXC (31)

MPOOL •bocleanup(idmifp, oldmpool)
IFILE •idmifp;
MPOOL •oldmpool;

DESCRIPTION
The exception package is a general-purpose facility to help formalize the handling of special con­
ditions that require abnormal flow of control. A function or procedure represents a context; if it
agrees to handle a particular exception by declaring a handler routine, any time that exception is
raised in that function or in a subordinate function, that routine will get control. Exceptions
handlers nest, so if JO calls 1() calls h(}, and I and h both agree to handle EXCXXX, then if
EXCXXX is raised in /or 1, control will return to/, but if EXCXXX is raised in h, control will
be returned to h rather than /.

E:rchandle agrees to handle any exception matching the pattern (described in pmatch(31}). It
returns zero on first return, and the return value of the handler for subsequent returns. E:rcraiae
or e:rctwaiae cause an exception to happen, i.e., "be raised". When an· exception EXCXXX is
raised, the package looks backwards on the stack of exception handlers built by e:rchandle until it
finds the most recent handler with a pattern matching the exception being raised. The handler
procedure /wnc is then called with an argument vector e:rct> and the argument arg. The zeroth
element of that e:rct> is the actual exception being raised (e.g., EXCXXX), and the remaining
arguments in the vector correspond to the remaining arguments passed to e:rcraiae. E:rcahandle
is identical to e:rchantlle except that a second argument may be passed to the handler procedure.
E:rcraiae and e:rcvraiae are identical except that the latter passes the e:ret> directly. The final
argument must be CHARNULL. The arguments are copied before processing the exception.

The handling function /wne may:

• Return with value zero which will cause the e:reraiae to return.

• Return non-zero which will cause the e:rehandle that set the handler to return again with
that value. This is refered to as "backing out" to the handler. See the section below on
Backout Functions for special backout handlers.

• Raise the exception again (after possibly modifying the severity or arguments), which causes
it to be passed back to the previous willing handler.

If there are no handlers willing to handle this exception, a default handler is invoked. Default
handlers are lilce regular handlers, except:

• They are not removed automatically when the procedure t~at sets them exits, that is, they
remain in force until explicitly removed.

• The handler may not back out (return non-zero) since the context they were set in may no
longer exist. If it does, the process is aborted.

• They are set using e:rctlhandle instead of e:rchandlc. Since they can never back out, c:rcdhan-
dle returns no value.

If no default handler is specified, then the exception name is used to select a message using
1/tMTe:rt(41) which is printed on the diagnostic output. The exception then returns or the pro­
cess exits, depending on the "severity" of the exception (see below). This is analogous to the
default action of a signal. This technique should be used for printing all messages generated by
libraries in order to support multilanguage 1/0 and to insure that the user can do special message
formatting as required.

The handler June executes in a subordinate context to the function executing the raise call. Thus,
if it raises another exception, the new exception will be interpreted relative to the function that
called e:rcraiac rather than relative to the function that called e:rchandle.

3.15-88/02/29-R3v5m8 Britton Lee 2

EXC (31) Britton Lee EXC (31)

AB a special case, e:ecraiae and e:ecvraiae will never return if a message of severity "abort" is
raised. The procedure may return nonlocally; otherwise the program is terminated.

Messages always begin with at least two asterisks for easy recognition. The number or asterisks
reflects the severity or the message.

IC the June argument to czchandlc is FUNCNULL, the exception is no longer handled at this level,
i.e., it is passed back to anyone who previously pref erred to handle it. The handler is also
removed when the routine that sets it returns.

Five canned functions are supplied that may be passed to ezchandlc:

• Ezcignore will cause the exception to be ignored.

• Ezcbackout will cause the ezchandle call to return again with value one.

• Ezcprint causes the exception to be printed and otherwise ignored.

• Ezc/print causes the exception to be printed on the output file specified and otherwise
ignored.

• Ezcprbo arranges to print the exception (by reraising the exception) and then returns one,
causing backout. Abort severity exceptions are first downgraded to Error exceptions.

• Ezcabort converts the exception to an Abort severity exception and reraises it; the usual
effect is to print the exception and then abort the process exactly as though no one had been
willing to handle the exception.

Critical sections can be protected using ezcalock and e:ecaunlock to lock and unlock asynchronous
exceptions respectively. It is almost always an error to leave these exceptions locked Cor a long
time; these routines are intended to be used to lock modification oC a critical global data structure
(i.e., no more than a Cew instructions) rather than large blocks of code. Ezcaunlock will process
any exceptions that were raised during the locked interval. Ezcalock and czcat1nlock nest if the
force parameter to czcaunlock is FALSE. IC TRUE, exceptions are completely unlocked regardless
of the nesting level; this is normally used during exception backout.

Procedures that must get control during exception backout to do cleanup operations should use
czcclcanup. "Cleanup functions" are called when the stack is being unwound due to an exception
handler returning non-zero (backing out). Note that cleanup functions are NOT passed the
argument vector from ezcraue. Any number of cleanup functions may be set. These handlers
will be called (and the functions removed) in the reverse order Crom setting. Cleanup functions
are removed as they are called so that duplicates will not exist in the exception handler list
should the code continue execution. See the example below. Cleanup functions are normally used
to release local resources.

After a major backout where memory may have to be freed, etc., the routine bocleanup may be
called to do cleanup actions. The idmi/p will be canceled if supplied (i.e., if not lFNULL). IC an
oldmpool is supplied, this memory will be released and a new pool created and returned. The
new pool is guaranteed to be at the same position in the memory pool tree as the old pool. See
za/loc(31) Cor details of memory pools. Asynchronous exceptions will be reenabled.

EXCEPTION CODES
Exception codes are text strings. Every exception code is also a message code. They must be in
the format:

S:EXCCODE

The S field is a one character severity indication, selected Crom the set:

I Information
S Success·
C Continue

3.15-88/02/29-R3v5m8 Britton Lee 3

EXC (31) Britton Lee EXC (31)

R Respond
W Warning
T Transient
E Error
U Usage
A Abort

Information These exceptions give no information that the user must know, but such infor­
mation may be convenient. For example, copy utilities may raise an "I:" excep­
tion periodically with the expectation that it will be printed to let the user know
how far they have gotten.

Success These tell the user of the successful completion of a step. They may be omitted
for expert users. For example, copy utilities may terminate with a success mes­
sage including the number of tuples actually copied; expert users may prefer to
have this information suppressed.

Continue These exceptions invite the user to continue with some action; for example, in a
screen-based system, a. continue message might be generated between each
frame.

Respond These exceptions indicate that an unusual but not erroneous condition has
occurred that requires human intervention, e.g., ''End of tape; mount next
volume."

Warning These exceptions are raised when some condition has occurred that may be an
error.

Transient

Error

Usage

Transient exceptions are usually caused by asynchronous events, operator inter­
rupts, transient resource exhaustion, or some problem that is due not to a user
error but rather to a condition that is unlikely to occur again. The user is
invited to try again later. Programs raising transient exceptions are not
expected to behave in the same way if run again.

Error exceptions a.re due to a user error. The program will normally try tO con­
tinue processing if possible, but it is certain that incorrect results will occur.

Raised only by •aage (see eraekargv{31)) when a program is invoked incorrectly.
If there is a message associated with this exception it will be printed. In any
case, this terminates the process exactly like an "Abort" severity exception (see
below).

Abort These indicate catastrophic errors that immediately abort processing if some
exception handler does not arrange to back out. It is not possible for the
current routine to continue processing.

The EXCCODE field uniquely identifies the exception and the associated message. It is a struc­
tured field, consisting or a series or dot-separated names reading from most to least significant.
Each of these names should be descriptive but "reasonably" short, consisting exclusively of upper
case letters, digits, and underscores. For example, the code "IDMLIB.10.WLR" might represent a
wrong length record error in the IO submodule of IDMLIB.

Note that the severity is not considered part of the name, so codes ''E:XXX" and "A:XXX" are
the same message, but with different severities.

Conventions
Exceptions that represent error messages, measure tokens, or done bits from the database server
begin with the word "IDM". Exceptions from level-one or level-two IDMLIB modules begin with
the word "IDMLIB". Exceptions Crom the level-three IDM interface module begin with the word
"IDMRUN". Exceptions generated by applications (e.g., idmfcopy) begin with the name of the

3.15-88/02/29-R3v5m8 Britton Lee 4

EXC (31) Britton Lee EXC (31)

application.

Within IDMLIB, the second word of a three-or-more-part exception code identifies the major
module that raised the exception. Common modules are "IDM" for IDM-speeific interfaces, "10"
for the Input/Output module, "CNVT" for the data conversions, or the name of the routine gen­
erating the error.

Within the IDMLIB.10 module, file-type-specific messages have the name of the file-type module
(with the "ltt" removed} as the third word, e.g., "IDMLIB.10.SCAN.NOROOM" is the error
"NOROOM" from the 1/tScan(4l} module.

GLOBALS
FileName If set, print as the input file name with messages.

LineNumber If non-negative, printed with messages.

EXAMPLE
*include <idmlib.h>
*include <exc.h>
*include <idmmpool.h>

main()
{

}

MPOOL •mympool = MPOOLNULL;
extern maincatch(};
extern MPOOL •bocleanup(};
extern MPOOL •DeCMpool;

INITIDMLIB(" demo");

exchandle("•:USER.EXC", ma.incatch);

/• handle interrupts and back out •/
if (exchandle("T:IDMLIB.ASYNC.•", excbackout) == 0)

else
DeCMpool = my;mpool = newmpool(O, MPOOLNULL);

DeCMpool = mympool = bocleanup(IFNULL, mympool};

/ • this call will cause maincatch to be called • /
subr(};

exchandle(" •:USER.EXC", FUNCNULL);

/ • this call will abort the process • /
subr(};

maincatch(excv)
char **excv;

{

}

printf("caught exception %s\n", excv[O]);

/•return zero to cause excraise to return•/
return (O);

3.15-88/02/29-R3v5m8 Britton Lee 5

EXC (31)

subr()
{

}

Britton Lee

MPOOL •temppool = MPOOLNULL;
extern freempool();
extern subrcatch();

/• create a new memory pool to illustrate resource release on backout •/
temppool = newmpool(O, MPOOLNULL};

if (exchandle("T:IDMLIB.ASYNC.INT", subrcatch) != 0)
return;

I•
•• Backout function - freempool(temppool};
•• Release resource when subrcatch backs out
•• after interrupt.
•/

exccleanup(freempool, __ temppool);

printf("try interrupt now\n" };
sleep(5);
excraise("E:USER.EXC", CHARNULL);

subrcatch(excv)

{

}

WARNINGS

char ••excv;

printf("congratulations! you typed "C!\n");

/ • return non-zero to cause exchandle to back out • /
return (1);

EXC (31)

It may not always be possible to build an efficient implementation of the exception handler.
Avoid calling e:rckandle inside inner loops, or inside functions that get called frequently. In gen­
eral it is safe to use e:rcraiae however.

The use of aetjmp and longjmp in programs that link to libidmlib.a is not recommended. H the
user code performs a longjmp over active contexts which called e:rckandle, then the exception
stack will become out of sync and strange behaviour will occur.

Since it is very hard to predict all calling sequences (to know if a context on the stack set a
exception handler), it is recommended that user code convert to using only the exception facility.

IMPLEMENTATION NOTES
The UNIX implementation is quite flexible and can probably be adapted to your environment.
This implementation requires that your system supply you with the aetjmp(3) primitives to do
non-local gotos. You must supply two internal assembly-language routines that manipulate the
run-time program stack: _e:rcpra which returns a pointer to the return address of your parent,
and _ e:rcdiaable which cleans up a context at a given level. E:rchandle is actually a macro that
calls _ e:rcvect and then does a aetjmp on the return to save the possible backout address.

3.15-88/02/29-R3v5m8 Britton Lee 6

EXC (3I) Britton Lee EXC (31)

When _ ezcvect is called, it calls _ e:rcpra to find the return address of the function that called it.
If it is not the address of _ezcdiaable then this is a first call at this level, and initialization must
occur: a context is allocated, the old return address is stored in the context, and the return
address is replaced with the address of _ e:rcdiaable. Then in any case the context is adjusted to
reflect this exception handler.

When the function returns, _e:rcdiaablc will be executing in the stack frame of the caller of the
function that placed the handler. It should deallocate the context. It then does a jump to the
saved return address, simulating the last part of the return statement.

On UNIX, the following mappings of signals to exceptions apply:

UNIX
SIGHUP
SIGINT
SIGILL
SIGALRM
SIG TERM
SIGTSTP
SIGCONT

EXCEPTION
T:IDMLIB.ASYNC.INT
T:IDMLIB.ASYNC.INT
A:IDMLIB.ASYNC.NOFP•
A:IDMLIB.ASYNC.ALARM
T:IDMLIB.ASYNC.TERM
T:IDMLIB.JOB.SUSPEND
T:IDMLIB.JOB.CONTINUE

(•Only on systems that have no floating point hardware.)

Other signals have default actions.

The routine _ ezcinit is called by INITIDMLIB to do initialization; it must be defined by the
implementation. On UNIX, it arranges to catch signals. The job-control signals, SIGTSTP and
SIGCONT, are caught and handled in lftLoTerm(4I).

SEE ALSO
exit(3I), pmatch(3I), lftMText(41), lftLoTerm(41), messages(SI), signal(2), setjmp(3)

3.8-87 /09/28-R3v5m5 Britton Lee 7

EXIT (31} Britton Lee EXIT (31)

NAME
exit - terminate program

SYNOPSIS
exit(stat}
RETCODE stat;

DESCRIPTION
Eftt is the normal means of terminating a program. Ent performs necessary cleanup actions and
returns atat to the operating system.

This call can never return.

The atat should be an error code as defined in geterr(31}.

IMPLEMENTATION NOTES
It may be necessary to map atat to a system exit status code.

This routine must call _icleanup before exiting to invoke oneftt(31) routines. Possible recursive
invocations or ezit will be handled by _icleanup.

IC the system ezit performs additional cleanup actions it may be necessary to redefine the name of
this routine (for example, using *define exit _iexit) so that the IDMLm exit routine can per­
form its cleanup and then call the system exit routine.

IC the program calls /ork{2), the child process will need to *undef exit before calling ezit() to
avoid freeing resources inherited Crom the parent process. In particular, a parent database server
connection will be closed iC the IDMLm eftt is called by the child process.

SEE ALSO
onexit(31), retcode(51)

3.5-87 /05/22-R3v5m3 Britton Lee 1

FMTCLOCK (31) Britton Lee FMTCLOCK (31)

NAME
fmtclock, fmtdate, fmtintvl - date/time output formatting

SYNOPSIS
#include < clock.h>

char •fmtclock(clock, zone)
CLOCK •clock;
int zone;

char •f'mtdate(date)
DATE •date;

char •f'mtintvl(clock, verbose)
CLOCK •clock;
BOOL verbose;

DESCRIPTION
Fmtdate and /mtclock turn the specified date or clock value (described in getclock(31)) into a
string in the system default format. For example, this might produce "Tue Mar 29 16:59:46
1983" or "29-MAR-83 16:59:46" depending on the host computer's operating system.

The zone parameter to /mtclock specifies the time zone in which the value should be interpreted;
the semantics are identical to the zone parameter to clocktodate (see getclock(31)).

Fmtintvl is similar to /mtclock except that it assumes that the clock represents ari interval; typi­
cally the output will be something like "3+12:03:00" or "3 days, 12 hours, 3 minutes" depending
on the setting of the verboae flag.

WARNINGS
The return values point to static data whose content is overwritten by each call.

Fmtclock and /mtdate may silently fail for dates before Jan. 1, 1900 or after Feb. 28, 2100.

IMPLEMENTATION NOTES
H the time zone is not available from the system, it should be supplied as a system parameter (see
getparam(31)).

The routines /mtclock and /mtdate are environment-dependent; /mtintvl is environment­
independent.

SEE ALSO
getclock(31), parsed ate(31)

3.5-86/09/26-R3v5m0 Britton Lee 1

GETCLOCK (31) Britton Lee GETCLOCK (31)

NAME
getclock, clocktodate, datetoclock, difl'clock, IDMTOTICKS, TICKSTOIDM - date/time manipu­
lation

SYNOPSIS
*include <clock.h>

CLOCK •getclock()

DATE •elocktodate(clock, sone)
CLOCK •clock;
int sone;

CLOCK •datetoclock(date)
DATE •date;

CLOCK •difrclock(cl, c2)
CLOCK •cl;
CLOCK •c2;

long TICKSTOIDM(ticks)
long ticks;

long IDMTOTICKS(idmtime)
long idmtime;

typedef struct
{

long
long

cLday;
cLticks;

} CLOCK;

typedef struct
{

abort dt_ ticks;
abort d.t_eec;
abort dt_min;
abort dt_hour;
abort dt_mday;
abort dt_mon;
abort dt_year;
abort dt_ wday;
abort dt_yday;
abort dt_sone;
BOOL dt_isdst;

} DATE;

DESCRIPTION

/ * days since the epoch • /
/ • clock ticks since midnight • /

/ • ticks {part.a or a second) • /
/ • seconds • /
/ * minutes * /
/•hour•/
I• day or the month • /
/ • month or the year * /
/• year •/
/ • day or the week • /
I• day or the year •I
/ • timesone • /
/ • TRUE it daylight aavings time ever Wied in your area • /

There are two representations for dates. The first is a CLOCK value, having days (gross resolu­
tion) and clock ticks (fine resolution). The day is stored as days since the cpoela. The time is
stored as ticks (1/TICKSPERSEC of a second) since midnight. GMT is always used for the
clock. It can be used to store either dates or intervals.

3.12-87 /12/04-R3v5m7 Britton Lee 1

FTOA (31) Britton Lee FTOA (31)

NAME
ftoa - Boating-point to alpha conversion

SYNOPSIS
ftoa{f, but, width, fmt, scale, prec)
doublet;
char •but;
int width;
char fmt;
int scale;
int prec;

DESCRIPTION
Ftoa converts the Boating-point number / into a string stored in bu/ of length at most width
(including the trailing null byte). There will be at most prec digits after the decimal point. Six
formats are defined by /mt. These are:

F Regular floating-point.

E Exponential format.

G E or F format, whichever produces the smaller number of output digits.

H E or F format, with F pref erred. That is, it F format will fit in the specified width field it
will be used; E format will be used only it the number will not fit when represented in F
format.

A Like H, but with decimal points aligned on the numbers represented in F format. This for­
mat is convenient for columns of numbers. Alignment is done only within E and F formats,
that is, E format align with E format, F format with F formats, but E and F format do not
align.

P Like A, but with the precision padded out. This is provided for compatibility with
bcdtoa(3l).

It the number is ultimately formatted in E style, there will be acale digits before the decimal
point.

IMPLEMENTATION NOTES
This routine must be supplied by the environment-dependent implementation for use by
print.f{31). It may use the internal routine /mtftoat(31). This routine is intended to print in a for­
mat compatible with bcdtoa(31).

SEE ALSO
atof{31), bcdtoa{3l), fmtftoat(3l), printf{3l), ecvt(3)

3.12-87 /12/04-R3v5m7 Britton Lee I

FOLDCASE (31) Britton Lee

NAME
Coldcase - Cold upper to lower case in a string

SYNOPSIS
foldcue(arc, dst, cnt)
char •src;
char •dst;
int cnt;

SYNOPSIS

FOLDCASE (31)

Foldcase copies up to cnt bytes from arc to dst folding uppercase alphabetics to lowercase as it
goes. The copy terminates when cnt is exceeded or a null byte is encountered. The null byte will
be copied.

Src and dst may point to the same string.

SEE ALSO
string(31)

3.4-86 /09 /26-R3v5m0 Britton Lee 1

FMTFLOAT (31) Britton Lee FMTFLOAT (31)

NAME
Cmtfloat - internal floating-point output formatting routine

SYNOPSIS
fmtftoat(digit.a, neg, expon, but, width, tmt, scale, prec)
char •digits;
BOOL neg;
int expon;
char •but;
int width;
char tmt;
int scale;
int prec;

DESCRIPTION
N.B.: This routine is for internal use by bcdtoa(3l) and /toa(31) only - it should not be used by
end-user routines.

Fmtftoat takes a string of digita representing a floating-point value and adds the sign, decimal
point, exponent, etc. in the correct places for normal output representation. Digita is a string of
digits converted to alpha notation. A decimal point is implied before the first digit. Neg is
TRUE if the number is negative. Eqon is the exponent, that is, the number of digits that
should be to the right of the decimal point. It may be negative. The result is stored in bu/; at
most width characters (including the trailing null byte) will be stored. There will he at most prec
digits after the decimal point. A precision of zero suppresses the printing of a decimal point, use­
ful for printing BCD integers. Six formats are defined by fmtftoat:

F Regular floating-point.

E Exponential format.

G E or F format, whichever produces the smaller number of output digits.

H E or F format, with F preferred. That is, if F format will fit in the specified width field it
will be used; E format will be used only if the number will not fit when represented in F
format.

A Like H, but with decimal points aligned on the numbers represented in F format. This for­
mat is convenient for columns of numbers. Alignment is done only within E and F formats,
that is, E format align with E format, F format with F formats, but E and F format do not
align.

P Like A, but with the precision padded out. This is provided for compatibility with
bcdtoa(3I).

Ir the number is ultimately formatted in E style, there will be aca/e digits before the decimal
point.

SEE ALSO
ftoa(31), bcdtoa(31)

BUGS
Output buffer overflow is not properly detected with format E.

Format F does not always round correctly when the exponent is negative.

3.5-86/09/26-R3v5m0 Britton Lee I

PARSEDATE (31) Britton Lee

specifications may not be intermixed with other textual time information.

EXAMPLES
The following all represent October 6, 1950:

EXCEPTIONS

Oct. 6, 1950
october 6, 1950 14:30:12 edt
friday, 6 oct 50, 2 pm
TUES 6-0CT-50 1400 H
noon, 50/10/6
10-6-50 143012
6.10.50 14:30
50 /10 /6-14:00-PDT
6-0ct-50 10:37:19-PDT (Tue)

E:IDMLIB.CLOCK.P ARSE(input)
The specified input could not be parsed.

WARNINGS

PARSEDATE (31)

The return value points to static data whose content is overwritten by each call.

SEE ALSO
f mtclock(31), getclock(31)

3.3-86 /09 /28-R3v5m0 Britton Lee 2

P ARSEDA TE (31) Britton Lee P ARSEDATE (31)

NAME
parsedate - free-format date/time conversion

SYNOPSIS
#include <clock.h>

CLOCK •panedat.e(string)
char •string;

DESCRIPTION
Paraedate reads a string that represents the date and turns it into a CLOCK structure. A
heuristic parse is used that accepts a wide variety of formats. Either upper or lower case may be
used within date strings. Paraedate can only handle dates between Jan. 1, 1900 and Feb. 28,
2100.

Unspecified date fields are copied from the current system date; unspecified time fields are set to
their minimum possible values. For example, if the current date is September 12, 1983 at
11:32:05, the input "IOAM September 20" would mean "September 20, 1983 at 10:00:00" and "3
PM 1980" would mean "September 12, 1980, at 3:00:00 PM."

Parsing an empty string returns the current date.

Paraedate returns CLOCKNULL and raises an exception if the input cannot be recognized or is
inconsistent.

CLOCK structures are described in getclock(31).

" The following time zones are supported:

STD, DST

GMT, GST

AST,ADT

EST, EDT

CST, CDT

MST, MDT

PST, PDT

YST, YDT

HST, HDT

local standard, daylight-savings times, respectively.

Greenwich mean time.

Atlantic standard, daylight-savings time.

Eastern standard, daylight-savings time. Synonymous with AST, ADT

Central standard, daylight-savings time.

Mountain standard, daylight-savings time.

Pacific standard, daylight-savings time.

Yukon standard, daylight-savings time.

Hawaii standard, daylight-savings time.

Paraedate also recognizes military time zones represented by the characters 'A' through 'Z'
(except for 'J') where 'H' is Pacific Standard Time and 'Z' is Greenwich Mean Time.

Specifications indicating daylight-savings times are ignored if daylight savings was not in effect on
the specified date. For example, in the date string "dee 20, 2:30 pm dst" the time is known to be
standard, not daylight.

Four-digit numbers are interpreted as times if possible, otherwise as dates. The string "1915"
parses to the time 7:15 PM, while the string "1970" parses to the year 1970.

Date formats may be syntax-sensitive. For example, the date "9/2/84" parses to September 2,
1984, while "2.9.84" is interpreted as February 9, 1984.

Six-digit numbers are interpreted as dates in "YYMMDD" format, if possible, otherwise as mili­
tary time specifications.

Paraedate accepts IDM time specifications in the format "idmtime < ""'' > [< ticka >]"
where dar• is an integer representing the number or days since the epoch and ticka is an integer
representing the number of 60ths of a second since midnight. The ticka are optional. IDM time

3.7-87 /02/08-R3v5m0 Britton Lee 1

OPERATOR (31) Britton Lee OPERA TOR (31)

HTAPE.ERR.WRONGVOLUME
The wrong volume was mounted.

HTAPE.FILENOTFOUND
File not found on host tape.

HTAPE.MOUNT(volume, unit)
Mount the specified tJolume on host tape unit unit.

HTAPE.NEXTVOLUME
Ready Cor next volume.

ITAPE.MOUNT(volume, unit}
Mount the specified volume on IDM tape unit unit.

IT APE.NEXT
Mount the next IDM tape volume. Respond with the unit number. or the drive.

WARNINGS
Aakoperator may return CHARNULL even iC haaoperator previously returned TRUE iC the opera­
tor logs out; in this case the user program must be careful not to go into a loop.

EXCEPTIONS
W:IDMLIB.OPERATOR.NONE

Raised by aakoperator and tel/operator iC there is no operator available.

IMPLEMENTATION NOTES
Care must be taken to insure that these implementations are extensible, that is, that new opera­
tors and new messages may be added easily.

On UNIX, this just communicates with the user. Haaoperator tests whether input is coming Crom
the terminal. On other systems this is likely to test whether the operator is currently in atten­
dance, or may just return TRUE.

On VMS, all communications go to the operator named by the system parameter OPERATOR
(determined Crom the logical name IDM_OPERATOR). Only IDM tape messages are imple­
mented .using this facility, as host tape messages are handled automatically by RMS. The
OPERATOR parameter may be set to any or the standard VMS operator identifiers: TAPES,
CARDS, CENTRAL, DEVICE, DISKS, NETWORK, PRINT, and OPERI through OPER12.
You may also direct IDMLIB operator messages to your own terminal by speciCying SELF or ME.

SEE ALSO
getprompt(31}

3.7-87 /02/08-R3v5m0 Britton Lee 2

OPERA TOR (31) Britton Lee OPERATOR (31)

NAME
telloperator, askoperator, basoperator - communicate with the system operator

SYNOPSIS
telloperator(oper, msgcode, param, ••• , CHARNULL)
char •oper;
char •msgcode;
char •param;

char •askoperator(buf, Jen, oper, msgcode, param, ••• , CHARNULL)
char buf[);
int Jen;
char •oper;
char •msgcode;
char •param;

BOOL haaoperator(oper)
char •oper;

DESCRIPTION
Tel/operator sends the message to the specified system operator.

Aakoperator sends the message to the specified operator exactly like telloperator and then waits
for an operator response. It returns bu/ if the response was successful, CHARNULL if the opera­
tor is not in attendance.

Haaoperator returns TRUE if it is possible to communicate with someone acting as the specified
system operator.

The system may have several operators. The following operators are specifically defined:

!TAPE The IDM tape operator (for IDM tape mount requests).

HTAPE The host tape operator (for host tape mount requests).

PRINTER The line printer operator (for special forms requests).

The magcode and params behave like exceptions, where magcode is modified to be an exception
name. The last parameter must be CHARNULL.

Defined operator, message code, and parameter combinations are:

HTAPE.EOV
At end of volume.

HTAPE.ERR.INV ALID
Host tape is not a valid format.

HTAPE.ERR.NODRIVE(drivename, error)
Cannot open drivename: system reported error as the cause.

HTAPE.ERR.NOHDRl
No HDRI label on tape.

HTAPE.ERR.NOTONLINE(volume, unit, error)
The specified tape unit could not be accessed when trying to read the named volume.

HTAPE.ERR.WRONGTAPE
Incorrect tape.

HTAPE.ERR.WRONGVOL(needed, actual)
Incorrect volume: needed required, actual mounted.

3.9-87 /02/08-R3v5m0 Britton Lee 1

ONEXIT (31) Britton Lee ONEXIT (31)

NAME
onexit, oflexit - transfer control on exit

SYNOPSIS
onexit(exitfn, arg)
FUNCP exitfn;
BYTE •arg;

off exit(exitfn, arg)
FUNCP exitfn;
BYTE •arg;

DESCRIPTION
Onezit specifies £unctions to be called when the process exits. Each ezitfn is called with the
specified arg. The functions will be called in the reverse order in which they were established.
Duplicate calls to one:tit are ignored.

Offezit removes the entry that matches. It is not an error if no entries match.

IMPLEMENTATION NOTES
Ezit(31) must call _ icleanup to invoke the exit routines set by onezit.

On VMS, erit() either calls the system service SYS$EX11U or the ezit routine in the VAX C
Run-time Library, depending on how a program is linked. In either case, a VMS exit handler is
declared in INITIDMLIB() that will call _icleanup to invoke the exit routines set by onezit. This
way, all exit handlers will be called regardless or how the program exits.

SEE ALSO
exit(31)

3.9-87 /02/08-R3v5m0 Britton Lee 1

MAPSYM(31) Britton Lee

NAME
mapsym - translate symbol name into integer value

SYNOPSIS
int mapqm(preflx, sym)
char prefix;
char •sym;

DESCRIPTION

MAPSYM(31)

Map11m translates a symbolic name having the given pre/n into an integer by doing a file lookup
in the file specified by the SYMFILE parameter (see getparam(31) and parama(51)).

Ir the parameter begins with a digit, it is converted to integer and returned directly.

The following prefixes are defined:

d IDM done status bits.
o IDM option values.
t IDMLm trace flags.
• IDM trace flags.

Upper case prefixes are reserved for customer use. All other prefix characters are reserved for
Britton Lee use.

Case is ignored in aym comparisons.

EXAMPLES
. mapsym('t', "PROTECT") - 26

mapsym('t', "Protect") - 26
mapsym('x', "38") - 38

EXCEPTIONS
E:IDMLIB.MAPSYM.NOSYM(prefix, symbol)

No mapping for the specified symbol exists.

SEE ALSO
atoi(31), getparam(31), params(51), symfile(51)

3.6-86 /09 /28-R3v5m0 Britton Lee 1

MAKEFNAME (31) Britton Lee MAKEFNAME (31)

NAME
makefname - make file name from components

SYNOPSIS
char •makefname(flle, directory, flletype)
char •file;
char •directory;
char •flletype;

DESCRIPTION
Make/name makes a fully qualified host file name from the constituent pieces: file is the basic file
name, directory is the name of the directory in which to find file, and filetype is the filetype part
of the file name.

If directory is CHAR.NULL or the null string then the current directory is used. The following
special strings are also recognized and interpolated:

LOGIN The current user's login directory.

USRPROFILE The profile directory for the current user, that is, a directory in which to find
user startup and configuration files.

SYSPROFILE A system profile directory.

If filetJPe is CHAR.NULL then no filetype is added to the file name. Filetypes compiled into pro­
grams should never exceed three characters for maximum portability.

Components that are already present in file are not replaced or added. That is, if file already
had a directory and a filetype make/name would return file.

Since the syntax of directories cannot be standardized it is expected that this routine will always
be called with one of the builtin directory names or by calling getparam{31).

EXAMPLES
The call

makefname("iqppro", "_USRPROFILE_", "idl")

might return the following strings:

UNIX /a/sw/eric/.iqppro.idl
VMS DBAO:[eric]iqppro.idl
CMS iqpro.vmuserid

The call

makefname(" /usr/idl/x", "/tmp", "idl")

might return:

UNIX
CMS

IMPLEMENTATION NOTES

/usr /idljx.idl
x.idl

This routine is machine dependent.

On UNIX, a "filetype" is defined to be anything after a dot found after the second position of the
final component of the pathname. This allows a leading dot in the filename that will not be con­
sidered the beginning of a filetype. Correspondingly, the "_ USRPROFILE_" directory is actu­
ally the home directory plus a leading dot as shown in the examples above.

SEE ALSO
getparam(31)

3.5-87 /02/17-R3v5m0 Britton Lee 1

KEYLOOK (31) Britton Lee KEYLOOK (31)

LIMITATIONS
Keylook can only handle string/integer pairs. This is insufficient for some applications.

3.8-87 /05/18-R3v5m3 Britton Lee 2

KEYLOOK (31) Britton Lee KEYLOOK (31)

NAME
keylook, usage - perform binary search on a given table

SYNOPSIS
#include <keylook.h>

keylook(strin.g, table)
char •string;
KEYT ABLE •table;

DESCRIPTION
Keylook looks up the given atring in the given table, and returns the integer token associated with
the table entry.

Keylook uses a fast binary search algorithm, so it is very efficient for medium-sized tables. Very
small tables are probably better handled by linear search, very large tables by some hashing
method.

The first entry of the table is the default returned if the search string is not found. The method
of specifying a lookup table is shown below in the example.

EXAMPLE
#include <idmlib.h >
#include <keylook.h >

KEYWORD
{

};

/•keyword
{CHARNULL,
{"and",
{"any",
{"as"'
{"by",
{"from",
{,,. "

ID '
{"on",
{"set",
{"to"'
{"with",

KEYTABLE Keytable =

KeywrdsQ =

token returned •/
-1 }, /• default •/
LAND },
LANY },
LAS },
LBY },
LFROM },
LIN },
LON },
LSET },
LTO },
LWITH }

{ Keywrds, _KTAB_SlZE(Keywrds) };

int
get_ token(str)

char •str;
{

}

/• this returns -1 if 'str' not found in Keytable •/
return (keylook(str, &Keytable));

The macro _KTAB_SJZE is provided in keylook.h for convenience. The KEYWORD array is
referenced only in the KEYTABLE declaration.

l.2-86/10/15-R3v5m0 Britton Lee 1

ITXCMD (31) Britton Lee ITXCMD (31)

SEE ALSO
idlparse(31), iesetopt(31), iputtree(31}, Syatem Programmer'a Manual .

3.7-87 /12/04-R3v5m7 Britton Lee 2

ITXCMD (31) Britton Lee ITXCMD (31)

NAME
itxcmd, itxprog, itxsetp - build trees to execute stored commands/programs

SYNOPSIS
#include <idmtree.h>
#include <idmenv.h>

ITREE •itxcmd(cmdname, env)
char •cmdname;
IENV •env;

ITREE •itxprog(progid, env)
long progid;
IENV •env;

itxeetp(t, name, type, len, val)
ITREE •t;
char •name;
int type;
int len;
BYTE •val;

DESCRIPTION
It:umd and itzprog produce trees for the execute command and execute program operations
respectively. The tree returned includes no parameters. Parameters may be added using succes­
sive calls to it:raetp. The name of the parameter may be CHARNULL to specify unnamed param­
eters. The trpe and len describe both the data in the host and to be sent to the IDM/RDBMS
software. Type iSTRING is converted to iCHAR but is otherwise semantically equivalent (i.e., if
a length of -1 is specified then the atrlen of the argument is used). Values of type iPCHAR will
have the standard pattern characters mapped to internal form.

Options set in the environment will be set in the command tree. If env is IENVNULL, a default
environment will be used.

EXAMPLES
/•execute update with name= "mike", amount= 44 •/
t = itxcmd("update", IENVNULL);
itxsetp(t, "name", iSTRING, -1, __ "mike");
itxsetp(t, "amount", iINT2, 2, __ &amnt);

/•help "relation" •/
t = itxcmd{"help", IENVNULL);
itxsetp(t, CHARNULL, iSTRING, -1, __ "relation");

/• execute program 2112001 with ("foobar", 7) •/
t = itxprog(2112001L, IENVNULL);
itxsetp(t, CHARNULL, iSTRING, -1, __ "foobar");
itxsetp(t, CHARNULL, iINTl, 1, __ &seven};

EXCEPTIONS
E:IDMLIB.IDM.ITXCMD

No name was specified to it:rcmd.

E:IDMLIB.IDM.ITXSETP .BADTYPE{ type)
The tree specified is not an execute command or execute program tree.

E:IDMLIB.IDM.ITXSETP .NOTREE
The user did not correctly specify a value.

3.7-87 /12/04-R3v5m7 Britton Lee 1

ITQSTMT(31)

** retrieve (r.name, a.name)
** order by a.name
** where r.relid = a.relid
** and r.name ':/= "relation";
•/

/ * build the range table * /
rlist[O] = "relation";
rlist[l] ="attribute";
rlist[2] = CHARNULL;

/ * build the target list * /
tlist[O] = itvar(O, "name");
tlist[l] = itvar(l, "name");
tlist[2] = ITNULL;

/ * build the qualification * /
l = itvar(O, "relid");
r = itvar(l, "relid");

Britton Lee

qlist[O] = itnode(l, r, iEQ, 0, BYTENULL);
I = itvar(O, "name");
r = itnode(ITNULL, ITNULL, iCHAR, -1, "relation");
qlist[l] = itnode(l, r, iNE, O, BYTENULL);
qlist[2] = ITNULL;

/ * build the order list * /
olist[Oj = 2;
olist[lj = O;

/ * now create the entire tree * /
it= itqstmt(iRETRIEVE, rlist, tlist, qlist, olist, IENVNULL);

SEE ALSO
idlparse(31), itnode(31), sqlparse(31)

3.7-87 /12/04-R3v5m7 Britton Lee

ITQSTMT (31)

2

ITQSTMT (31) Britton Lee ITQSTMT(31)

NAME
itqstmt - build a tree for a general query statement

SYNOPSIS
*include <ldmtree.h>
*include <ld.ms)rmbol.h>
*include < ldmenv .h>

ITREE •itqstmt(cmnd, rlist, tlist, qlist, olist, env)
int cmnd;
char urlist;
ITREE **tlist;
ITREE **qlist;
int •olist;
IENV •env;

DESCRIPTION
ltq1tmt builds query trees for most of the general query statements (retrieve, append, etc.)
without calling a full parser such as idlpar1e(31) or 1qlpar1e(31). It is intended for W1e in environ­
ments that require ad hoc queries of some sort (so a precompiler is insufficient) but which still
have memory or performance requirements that prohibit linking or the Cull parser - specifically,
4th Generation interpreters.

The user is still required to build some subtrees; additional documentation can be found in the
S11tem Programmer'• Manual . In other words, this routine encapsulates the non-public inter­
faces.

Omnd is the type or the tree, e.g., iRETRIEVE or iDELETE. Rli1t is CHARNULL-terminated
list of relation names Wied in the query. The relation number is determined by the index into the
vector. Any VAR nodes in the other lists must match this index.

7Yi1t, an ITNULL-terminated list or targets, can be simple VAR nodes or complex expressions.
Each entry will have a iRESDOM node tacked on. Qliat is an ITNULL-terminated list or
qualification terms. These are conjoined to create the qualification.

Ir a particular ordering is required, oli1t may be specified as a zero-terminated list or order terms.
Each integer entry is an index into tliat. For the purposes of this array, tliat is assumed to have
an origin or one - that is, iC oliat[OJ == 1, that implies that the first target (i.e., tliat[O]) should
be ordered. Ir the entry is negative, the ordering is descending instead or ascending.

EntJ is an environment used for execution as in the other routines.

ltq1tmt returns a tree that can be executed as though it had been returned from i'lparae{31) or
one of the other tree creation routines. This tree will have iRESDOM nodes rather than
iRESATTR nodes, so the retrieved data will be unnamed. Also, there is no way to specify .all at
this time.

DEFICIENCIES
Poesibly should check its arguments more carefully; as it stands the database server will give a
diagnostic, but it may be quite obscure.

The iATTRALL (a.k.a., .all) should be supported.

EXAMPLE
In the following example, the routine ittJar is used to create VAR nodes.

/*
** Handcraft the query:

** ** range or r is relation;
** range or a is attribute;

3.6-88 /02 /29-R3v5m8 Britton Lee 1

ITPRINT (31)

NAME
itprint - print a tree for debugging

SYNOPSIS
#include <idmtree.h>

itprint(tree, all}
ITREE •tree;
BOOL all;

DESCRIPTION

Britton Lee ITPRINT (31)

ltprint prints a representation or the given tree on the standard trace. This is not expected to be
readable by mortals. H all is set the entire tree is printed, otherwise only the root node is
printed.

SEE ALSO
itnode(31), itCree{31)

3.6-88/02/29-R3v5m8 Britton Lee 1

ITNODE (31) Britton Lee ITNODE (31)

NAME
itnode, itvar, itroot - build an IDM tree node, VAR node, or ROOT node

SYNOPSIS
#include <idmtree.h>
#include < idmsymbol.h >

ITREE •itnode(lett, right, type, len, valp}
ITREE •left;
ITREE •right;
int type;
int len;
BYTE •valp;

ITREE •itvar(relno, attname)
int relno;
char •attname;

ITREE •itroot(left, right, vall, val2)
ITREE •left;
ITREE •right;
int vall;
int val2;

DESCRIPTION
Itnode creates a new tree node. The iLle/t, it_ right, and it_ type fields are filled in directly from
left, right, and type respectively. If /en is given, it is used as the length of the node. If omitted
(by passing -1), an attempt is made to determine the length from the type. If the type is a fixed
length symbol, then that length is used. If it is a "length follows symbol" type, then t1alp must
be non-NULL, and the string length of the value field is used.

The value field of the generated node is filled in from the t1alp if non-NULL, otherwise zeroed.

Since space for the node is allocated off of the default heap, the space must always be re~ased
when _done. This can be done easily using it/ree(31).

VAR nodes can be created using ittJar, supplying the range variable number and the name of the
attribute desired. ROOT nodes can be created using itroot, supplying the left and right child
pointers, and two bytes of value to put in the ROOT node itself.

SEE ALSO
itfree(31), itree(5I)

3.3-86 /09 /28-R3v5m0 Britton Lee 1

ITLPRINT (31) Britton Lee ITLPRINT (31)

NAME
itlprint - print IDM target list (ITLIST) for debugging

SYNOPSIS
*include < idmtlist.h>

ltlprint.(itl, all)
ITLIST •itl;
BOOL all;

DESCRIPTION
/tlprint prints a representation of the IDM target list itl on atdtrc Cor debugging. The resulting
output is intended to edify gurus.

Ir all is set the entire target list is printed; otherwise only the first node is shown.

SEE ALSO
igettl(31}, itlist(51)

3.5-86 /09 /28-R3v5m0 Britton Lee 1

ITFREE (31) Britton Lee ITFREE (31)

NAME
itfree - free an ITREE

SYNOPSIS
#include < idmtree.h>

ittree(tree)
ITREE •tree;

DESCRIPTION
lt/ree frees the space used by an IDM tree. The space must not be touched again.

All fields in all tree nodes must be allocated using :ra/loc(31) (itnode(31) has the equivalent effect).

SEE ALSO
itnode(31), xalloc(31)

3.4-88/02/29-R3v5m8 Britton Lee 1

ITDEFINE (31) Britton Lee ITDEFINE (31)

NAME
itdefine - create tree for define command

SYNOPSIS
*Include <ic:lmtree.h>
*include < ic:lmenv .h >

ITREE •ltdeftne{treelu.t, name, deftnep, env)
ITREE •treelist;
char •name;
BOOL deftnep;
IENV •env;

DESCRIPTION
ltdefine encapsulates the treeliat into a DEFINE command with given name, returning the resul­
tant tree. If definep is TRUE then a DEFINE PROGRAM is created, otherwise a simple
DEFINE is created.

Options set in the environment are set in the resultant tree. If ent> is IENVNULL a default
environment is used. {These options are unused at this time.)

When a DEFINE PROGRAM is executed, the done count field is set to the command number to
be passed to an EXECUTE PROGRAM. It is the responsibility or the user program to save this
information.

/SEE ALSO
,, idlparse{31), iesetopt(31), iputtree(31), itxcmd(3I), Syatem Programmer'a Manual

3.3-86 /09 /28-R3v5m0 Britton Lee 1

ITCOPY(31) Britton Lee ITCOPY (31)

NAME
itcopy - build tree for bulk copy function

SYNOPSIS
*include <idmtree.h>
*include <idmenv.h>

ITREE •itcopy(dbname, in, rellist, tape, env)
char •dbname;
BOOL in;
char urellist;
char •tape;
IENV •env;

DESCRIPTION
/tcop71 builds a tree to execute the IDM copy function. Ir in is set, a COPY IN tree is built, oth­
erwise a COPY OUT tree is built. Relliat is a CHARNULL-terminated array of pointers to
names of relations to be copied to or from database dbname; if NULL all user relations in data­
base dbname are copied. Ir tape is not CHARNULL then IDM tape will be used; the format or
the tape parameter is described in d6a(31).

Options set in the environment are included in the copy tree. Ir en" is null a default environment
is used.

Arter the copy tree is complete, it can be sent to IDM/RDBMS using iputtree(31). The database
system will then return results formated to look like a series or retrieve statements; the routines
igett/(31) and igettup(31) can be used to simplify this. Ir it is not necessary to interpret the results
(e.g., if copy is being used to back up a relation) then data can be read until end-of-file.

SEE ALSO
dba(31), iesetopt(31), igettl(31), igettup(31), iputtl(31), iputtree(31), iputtup(31), ienv(51), S11atem
Programmer'• Manual .

3.6-87 /12/04-R3v5m7 Britton Lee 1

ITAPEOPTS (31) Britton Lee ITAPEOPTS { 31)

NAME
itapeopts - parse IDM tape options

SYNOPSIS
BYTE *ltapeopta(optllst)
char •optlist;

DESCRIPTION
Itapeopta converts a text description of IDM tape options to a twenty-eight byte option value as
described in SPM. This string is suitable for direct use by the IDM/RDBMS software.

Optliat is a comma-separated list of name(value) pairs chosen Crom the list:

mode(M) I/O mode; M may be r (read), w (overwrite), or a (append). Defaults to a.

volume(VI..)

newname(V)

fileno(N)

unit(N)

erase

norewind

xlate(X)

verify(B)

A comma-separated list of the names of the volumes in this set. If specified, the
header of each tape is read and verified before the tape is used. If not specified
any volume is accepted. Only the first volume name is actually checked,
although all will be presented to the operator. Tape reads will always check
volume names on tapes 2-n (but not 1).

The new volume name to write on the tape to replace the existing name. Can
only be used in w mode. If not specified, the volume name is unchanged. New
IDM tapes (tapes not previously written by Britton Lee's IDM/RDBMS
software) must be given a new name.

The file number to access when reading the tape. If not specified file zero is
assumed. This option is ignored when writing a tape. File numbers on IDM
tape always begin at zero.

The unit number to access. Zero by default.

Perform a "security erase" of the tape before writing. Only supported on some
drives. Mode w must be specified.

Do not rewind tape between writing files. Default is to rewind. Norewind is
available for writes only in IDM Software Releases 35 and 40. Norewind applies
to both reads and writes in RDBMS Software Release 3.5 and future RDBMS
releases.

Perform the requested translation of data on the tape. X may be one of none
(no translation), ascii {translate to ASCII), ebcdic (translate to EBCDIC), host
(do host translation). The default is none.

Turn on (B = 1) or off (B = 0) tape sequence number verification. Default is
to not verify. This parameter should only be used on tapes previously written
by Britton Lee's IDM/RDBMS software. Like volume, tape reads will automati­
cally verify the sequence numbers on tapes 2-n.

Other fields may be specified but are ignored.

After creation, these options may be added to a tree using itaddopta(3I). More typically, tape
options are set directly using iteopy(3I) or one of the routines in d6a(31).

SEE ALSO
intro(ll), dba(3I), igeteot(3I), itaddopts(31), itcopy(31), pextract(31), SPM.

3.6-87 /12/04-R3v5m7 Britton Lee 1

ITADDOPTS (31) Britton Lee ITADDOPTS (31)

NAME
itaddopts - add options bytes to a tree

SYNOPSIS
*include <idmtree.h>

ltaddopta(tree, len, options)
ITREE •tree;
int len;
BYTE •options;

DESCRIPTION

BUGS

ltaddopta adds len bytes of optiona to a tree. No check is made to see if any of the options are
already set. There is no way to delete options from an existing tree.

Options are normally set in the environment using ieaetopt(31). The sole reason for this routine is
to allow IDM tape options.

This routine is totally bogus.

SEE ALSO
idlparse(31), iesetopt(31), IDL or SQL Reference Man.al for a description or the available options.

3.11-88 /02 /29-R3v5m8 Britton Lee 1

ISTDIO (31)

}

Britton Lee

/• write to file "outfile" and standard output •/
while (Cgets(bur, sizeoC(buC), Cp) != CHARNULL)
{

puts("standard I/O ");
printf("should be flushed if there is not a newline");
ffiush(stdout);

ifputs(buf, istdout);
iffiush{istdout);

ifputs(buf, ifp);
}

fclose(fp);
ifclose{ifp);

/ * must call exit * /
exit();

doerror.c:
#include <idmlib.h>

doerror(msg)
char •msg;

{
/•
** Note that we now use stdout,
** not iatdout.
•/

ifputs(msg, stdout};
}

To compile the program:
cc -o demo main.c doerror.c -listdio -lidmlib

Ir using curses, etc:
cc -o demo main.c doerror .c -listdio -lidmJib --kurses -ltermcap

IDMLm cursor control and graphic characters must go through IDMLm I/O.

WARNINGS

ISTDIO (31)

It is safest to do a flush on the appropriate standard I/O file before changing I/O systems.

Be careful not to pass iprint/ the standard I/O file (e.g., atdout). IDMLIB will warn you about
this, but the standard I/O system will dump core.

CAVEATS
Reading on IDMLm iatdin for large amounts of data is not efficient due to the limitations of the
I/O interleaving mechanism. When mixing the I/O systems it is preferable to use standard 1/0
atdin.

SEE ALSO
intro{3S), UNIX Programmer'• Manual

3.5-87 /12/04-R3v5m7 Britton Lee 2

ISTDIO (3I) Britton Lee ISTDIO (3I)

NAME
libistdio.a - standard I/O compatibility library

SYNOPSIS
*include <lstdio.h>

FU..E •stdin;
FU..E •stdout;
FU..E •stderr;

IFU..E •istdin;
IFU..E •istdout;
IFU..E •istderr;

iprintf(fmt [, arg] ...)
char •fmt;

char •iaprintf(buf, fmt [, arg] ...)
char •buf;
char •fmt;

DESCRIPTION
Standard I/O may be used along with the IDM library I/O (IDMLIB) system by changing one
include declaration and linking in the appropriate libraries before the standard C runtime
libraries. The first operation in main() must initialize IDMLIB by calling the macro
INITIDMLIB(progname).

Include the file <i1tdio.k> in the module containing main() and link the libraries i1tdio and
idmlib.

It is not necessary to add includes or <iatdio.k> except in modules that will also use IDMLIB. Ir
standard I/O is not used it is simpler to only include <idmlib.k>.

To access IDMLIB's standard I/O system, use the files iatdin, i1tdout, and iatderr. IDMLID print/
and 1printf are renamed so that standard I/O versions are used. IDMLID versions are iprintf and
iaprint/ when <iatdio.k> is included.

Ir the file <iatdio.k> is not included in a module in which <idmlib.k> is included, then 1tdin
refers to IDMLID's standard input, not standard I/O's input.

EXAMPLE
main.c:
*include <istdio.h>

main()
{

IFILE •ifp;
FILE •fp;
char buf[lOO];

INITIDMLID(" demo");

ifp = ifopen("outfile", &IrtHFile, "mode(w)", IFNULL);

fp = fopen("somefile", "r");
if (fp ==(FILE•) NULL)
{

doerror("can't open somefile\n");
}

3.15.1.1-88/02/29-R3v5m8 Britton Lee 1

ISLEEP (31) Britton Lee !SLEEP (31)

NAME
isleep - sleep for a real-time interval

SYNOPSIS
isleep(ticb)
long ticb;

DESCRIPTION
!sleep delays the current process by ticks clock ticks (as defined in getclod{31)), that is, in
1/TICKSPERSEC intervals). This will be rounded as necessary to the resolution of the host
clock.

Since the resolution may be crude, this should not be used for precise intervals; these are perforce
environment dependent.

If ticks is negative, then isleep will simply return. ,

EXAMPLE
To sleep for four seconds:

isleep(4 * TICKSPERSEC);

To sleep for one-half second:

isleep(TICKSPERSEC / 2);

IMPLEMENTATION NOTES
If the host system does not have sufficient resolution to delay for the exact interval, rounding
(not truncation) should be employed.

If the host system has no way of delaying a process, the exception E:IDMLID.ISLEEP .NOCLOCK
should be raised.

!sleep was added to allow for an environment-independent identify daemon; general use is prob­
ably risky.

3.15.1.1-88/02/29-R3v5m8 Britton Lee 1

ISFOREGND (31) Britton Lee ISFOREGND (31)

NAME
isCoregnd - are we in foreground (interactive)?

SYNOPSIS
BOOL iatoregnd()

DESCRIPTION
la/oregnd returns TRUE if the process is running in foreground, i.e., if it is connected to a termi­
nal.

IMPLEMENTATION NOTES
On UNIX and VMS, this tests to see if the standard input is a terminal. The intent of this rou­
tine is to see if we should operate interactively (e.g., give prompts).

This may be called fairly frequently, so the implementation should be reasonable efficient.

On CMS, ia/oregnd returns FALSE if uaername returns "cmsbatch" or if t)le user is disconnected.

3.5-87 /07 /27-R3v5m3 Britton Lee I

IRXCMD(31) Britton Lee

A:IDMRUN.RECOMPILE("irx(cmd I prog I setp)")
Must recompile Crom source.

E:IDMLIB.USENEXTCMD(" irx(cmd I prog)")
You should be using irne:rt(31) instead.

SEE ALSO
intro(31), iridl(31), itxcmd(31), Syatem Programmer'& Manual

3.5-86/05/13-R3v5m0 Britton Lee

IRXCMD (31)

2

IRXCMD (31) Britton Lee

NAME
irxcmd, irxprog, irxsetp - arrange to execute a stored command

SYNOPSIS
*include < idmrun.h>

RETCODE irxcmd(idmrun, cmdname)
IDMRUN •idmrun;
char •cmdname;

RETCODE irxprog(idmrun, progid)
IDMRUN •idmrun;
long progid;

irxeetp(idmrun, name, type, len, val)
IDMRUN •idmrun;
char •name;
int type;
int len;
BYTE •val;

DESCRIPTION

IRXCMD (31)

lncmd is a Cast, special purpose version of iridl(3l} for execute command operations. A call to
ir:icmd creates a tree that will execute the stored command named cmdnamc with no parameters.
Subsequent calls to inaetp will add parameters with the given name or the specified type, length,
and value. Parameter name a may be CHARNULL to specify unnamed parameters.

lnprog is identical except that it sends an execute program operation.

Both incmd and ir:iprog Cree any existing command trees in the idmrun structure.

RETURN VALUES
RS_NORM The tree was successfully created.

RE_F AILURE The tree could not be created; detail is given by an exception.

EXAMPLES-
The calls:

(void) irxcmd(idmrun, "cmd" };
. t (.d " " 'CHAR 2 " ") irxse p l mrun, a , 1 , , _ _ xx ;
irxsetp(idmrun, "b", iPCHAR, 2, __ "r•");
irxsetp(idmrun, CHARNULL, iSTRING, -1, __ "relation");

a.re equivalent to (and Caster than}:

iridl(idmrun, "execute cmd (a= \"xx\", b = \"r•\", \"relation\")");

The following code saves the program id for a define program command.

(void) iridl(idmrun, "define program ... end define");
(void) irexec(idmrun);
(void} irget(idmrun, IP _DINT, __ &progid, O);
(void) irxprog(idmrun, progid};

EXCEPTIONS
A:IDMRUN.BADIDMRUN("irx(cmd I prog I setp)")

Closed, NULL or bad IDMRUN structure.

E:IDMRUN.NOTEXEC("irx(cmd I prog)")
Commands have been parsed, but not executed.

3.7-87 /12/04-R3v5m7 Britton Lee 1

ffiSUBST{ 31) Britton Lee

Bed numbers can be substituted with:
(void) irsubst{idmrun, "xx", b-bcd_type, b-bcd_len, __ b-bcd_str);

EXCEPTIONS
As described in ieadat(31).

A:IDMRUN.BADIDMRUN("irsubst")
Closed, NULL or bad IDMRUN structure.

A:IDMRUN .RECOMPILE("irsubst")
Must recompile from source.

SEE ALSO
intro{31), iesubst(31), iridl{31), irexec(31), irnext(31), ienv(51)

3.7-87 /12/04-R3v5m7 Britton Lee

ffiSUBST (31)

2

ffiSUBST (31) Britton Lee ffiSUBST (31)

NAME
irsubst - perform substitutions in trees

SYNOPSIS
ift/:include <idmrun.h>

RETCODE inubst(idmrun, name, type, length, value)
IDMRUN •idmrun;
char •name;
int type;
int length;
BYTE •value;

DESCRIPTION
lrHbat associates a value with a substitution name in an IDMRUN structure almost exactly
analagously to ieaubat(3I). lravbat operates on IDMRUN structures rather than directly on
environments.

T'llpe, length, and t>alue describe the value to be substituted. If f'llpe is iSTRING, the length is
ignored in favor of the string length of t>alue.

If the trpe is iPCHAR, then any pattern matching characters in the string (e.g., "•", "?"in IDL,
"%", "-" in SQL) will be interpreted as documented. Values of type iCHAR or iSTRING will
not interpret pattern-matching characters as magic. Note that type iPCHAR does not require
that pattern-matching characters be present; it only instructs IDMLm to treat them specially if
they are. iPCHAR values used in target lists will generate IDM error E39. They should be used
in qualifications only.

All iSUBSTITUTE nodes must have a value associated before frezee(3I) may be called. However,
values can be reassigned and the query rerun without reparsing the query, and without reassign­
ing all iSUBSTITUTE nodes.

The t>alue is copied; that is, changes to the memory that t>alue points to will not affect the value
of the substitution. When substituting BCD numbers, pass the bed_atr data area of the BCDNO
as the t1alue. Bed_len should be passed in as length to ensure that the correct number of bcd_atr
bytes are copied.

RETURN VALUES
RS_NORM The substitution has proceeded normally.

RE_F AILURE The substitution has failed; an exception has explained why.

EXAMPLE
qry ="replace x (a= %q) where x.b = %r";
(void) iridl(idmrun, qry);
val= 1;
(void) irsubst(idmrun, "q", iINT2, 2, __ &val);
val= 2;
(void) irsubst(idmrun, "r", iINT2, 2, __ &val);
(void) irexec(idmrun);
val= 3;
(void) irsubst(idmrun, "r", iINT2, 2, __ &val);
(void) irexec(idmrun);

runs the two queries:

replace x (a= 1) where x.b = 2
replace x (a= 1) where x.b = 3

3.8-87 /08/28-R3v5m4 Britton Lee 1

ffiSQL (31)

NAME
irsql - parse SQL statements

SYNOPSIS
#include <idmrun.h>

RETCODE inql(idmrun, string)
IDMRUN •idmrun;
char •string;

DESCRIPTION

Britton Lee ffiSQL (31)

Iraqi parses the SQL statements in atring and associates the resulting query tree with idmrun.

Iraqi accepts a sequence of SQL statements so that SQL statements can be processed in groups
(see irnezt(31)).

The language accepted by iraql is described in aqlparae(3I).

RETURN VALUES
RS_NORM

RE_FAILURE

The input has sucessfully been parsed and may now be executed using irezec(31).

The input could not be parsed. An exception has been raised giving details.

EXCEPTIONS
A:IDMRUN.BADIDMRUN(" irsql")

Null IDMRUN or not an IDMR.UN structure.

A:IDMRUN.RECOMPILE("irsql")
Must recompile Crom source.

E:IDMRUN.USENEXTCMD("irsql")
You should be using irnezt(31) instead.

Many others, described in aqlparae(3l).

SEE ALSO
intro(31), sqlparse(31), irexec(31), irnext(31), irxcmd(31)

3.8-87 /08/28-R3v5m4 Britton Lee 1

msET (SI) Britton Lee ffiSET (SI)

NAME
irset - set values into the IDMRUN structure

SYNOPSIS
#include <idmrun.h>

RETCODE inet(idmrun, addr, field, item)
IDMRUN •idmrun;
BYTE •addr;
int field;
int item;

DESCRIPTION
/reet sets the value contained in addr into the IDMRUN structure. Field specifies what action to
take. The legal field and type is:

IP_ TREE Set the head of the command tree list to a copy of the argument (ITREE •).

JP_ENV Set the environment to the argument (IENV •). The environment is not
copied.

JP_DMASK Set the done mask (int). See igetdorae(31).

Item is currently unused.

Improper use of this routine can cause grave damage.

RETURN VALUES
RS_NORM The iraet was successful.

RE_F AIL URE The set could not be performed. An exception will have been raised explaining
why.

EXAMPLES
irset(idmrun, __ newenv, IP _ENV, O);

Set the environment to newenv for all future commands associated with the idmntn
structure.

EXCEPTIONS
A:IDMRUN .BADIDMRUN("irset")

Null IDMRUN structure or not an IDMRUN structure.

E:IDMRUN.MOREDATA("irset")
There is data remaining to be read from the previous command.

A:IDMRUN .RECOMPil..E("irset")
Must recompile from source.

E:IDMRUN .SETFLD(field)
lliegal field identifier.

E:IDMRUN.SETTREE(treenum)
Cannot set specified tree number.

E:IDMLIB.USENEXTCMD("irset")
You should be using irnezt(31) instead.

SEE ALSO
intro(31), igetdone(31), irget(31), ienv(SI), itree(51)

3.4-86 /09 /28-R3v5m0 Britton Lee 1

m.REOPEN (31)

(void) irclose(idmrun);

EXCEPTIONS
A:IDM.E46

No open database

A:IDMRUN.BADIDMRUN("irreopen")

Britton Lee

Null IDMRUN structure or not an IDMRUN structure.

E:IDMRUN.MOREDATA("irreopen")
There is data remaining to be read Crom the previous command.

A:IDMRUN.RECOMPILE("irreopen")
Must recompile Crom source.

E:IDMRUN .USENEXTCMD("irreopen")
You should be using ime:rt(31) instead.

SEE ALSO
irclose(31), iropen(31), s,atem Programmer'• Manual

3.5-86 /09 /28-R3v5m0 Britton Lee

m.REOPEN (31)

2

ffiREOPEN (31) Britton Lee IR.REOPEN (31)

NAME
irreopen - reopen an IO:MRUN structure

SYNOPSIS
*include <idm.run.h>

IDMRUN •irreopen(oldidm.run)
IDMRUN •oldidm.run;

DESCRIPTION
I"eopen creates a new IDMRUN structure much like iropen(31). A database must be opened and
a begin transaction executed on oldidmrun before issuing the reopen request. The new
IDMRUN structure is a child of oldidmrun as described in section the Syatem Programmer's
Manual.

Reopened IDMRUN structures may be closed using irc/ose(31) before executing an abort tran­
saction or end transaction. All reopened IDMRUN structures must be dosed before the parent
is closed.

The IDMRUN structure returned by irreopen can be used just like an IDMRUN structure
returned by iropen.

EXAMPLES
The following code fragment illustrates irreopen:

idmrun = iropen(" db");

/ • a reopen must be done within a transaction • /
(void} iridl(idmrun, "begin transaction");
(void} irexec(idmrun);

/• reopen to do updates while retrieving •/
child = irreopen(idmrun);

(void) iridl(idmrun, "range or x is x");
(void} iridl(idmrun, "retrieve (x.a)");
(void) irexec(idmrun};
(void) irbind(idmrun, 1, ilNT4, 4, __ &i);

/• set up an append to do during the parent's retrieve •/
(void} iridl(child, "append to x (a= %value)");

/• add new values to x.a •/
while (RETSUCCESS(irf etch(idmrun)))
{

if (i > 100}
{

/ • substitute "i" into the child's append command • /
(void) irsubst(child, "value", iINT4, 4, __ &i);

/• append i to relation "x" •/
(void) irexec(child};

}
}
(void} irclose(child};
(void) iridl(idmrun, "end transaction"};
(void} irexec(idmrun);

3.10-87 /12/04-R3v5m7 Britton Lee 1

moPEN (31) Britton Lee moPEN (31)

NAME
iropen - open an IDMRUN structure for use

SYNOPSIS
#include <idmrun.h>

ID MR UN •iropen(dbname)
char •dbname;

DESCRIPTION
Iropen creates a new IDMRUN structure. An IDMRUN structure must be opened before any
commands can be executed by the IDM/RDBMS software on the database server. The server
accessed is determined by the IDMDEV parameter (see getparam(31) and l/tldm(41)).

The indicated dbname is opened. If it is CHARNULL then no database is opened initially; an
irid/(31) of an open command will perform this operation.

Every subroutine taking an IDMRUN structure as an argument takes it as the first argument.

The initial environment (see ientt{.51)) is the default at the time of the open. This can be changed
using iraet(3I).

Many IDMRUN structures can coexist.

EXAMPLE
The following example is included to also show how to get IDM DONE warning messages of the
form W:IDM.bitname. See igetdone(31) and idone(51) for more details.

#include <idmenv .h >
#include <idmrun.h >

open db()
{

IDMRUN •idmrun;

/ • enable printing of some warnings from the idm • /
DefEnv-ie_donemask I= ID_DUP I ID_OVERFLOW I ID_DIVIDE;

}

SEE ALSO

/ * open system database • /
idmrun = iropen("system");

/• more code •/

intro(31), getparam(31), irclose(31), irreopen(31), iftidm(41)

3.10-87 /12/04-R3v5m7 Britton Lee I

m.NEXT (31) Britton Lee IR.NEXT (31)

NAME
irnext - check for next executed statement

SYNOPSIS
://:include <idmrun.h>

RETCODE irnext(idmrun)
IDMRUN •idmrun;

DESCRIPTION
/mezt checks to see if there is another statement to be executed on the database server. It is
used in conjunction with an IDL execut.e statement which executes a stored command that con­
tains more than one executable IDL statement or when more than one executable IDL statement
is processed with a single call to iridl(31).

/rnezt does not Bush any return information. If this is desired irfluah(3I) must be called. All
data must be consumed before imezt can be called. The DONE struct information from the next
command is read in if no data is returned.

RETURN VALUES
RS_NORM The information for the next command is available. /rcleac(31), ir6ind(3I), or

ir/etch(31) should normally be the next routine called.

RW _DONECMDS
All commands have been processed.

RE_FAJLURE This command was not legal, probably because results are pending from the pre­
vious irezec.

EXCEPTIONS
A:IDMRUN.BADIDMRUN("irnext")

Closed, NULL or bad IDMRUN structure.

E:IDMRUN.MOREDATA("irnext")
The is data remaining to be read from the previous command.

E:IDMRUN.NOCMDS("irnext")
· There were no commands to be executed.

E:IDMRUN.NOTEXEC("irnext")
Commands have been parsed, but not executed.

A:IDMRUN.RECOMPILE("irnext")
Must recompile from source.

E:IDMRUN.USEIREXEC("irnext")
Use irexec before calling irnext.

SEE ALSO
intro(31), irdesc(31), irexec(31), irflush(31), iridl(31)

3.6-87 /09/28-R3v5m5 Britton Lee 1

ffiIDL (31)

NAME
iridl - parse IDL statements

SYNOPSIS
#include <idmrun.h>

RETCODE lridl(idmrun, string)
IDMRUN •idmrun;
char •string;

DESCRIPTION

Britton Lee ffiIDL (31)

Jridl parses the IDL statements in atring and associates the resulting query tree with idmrun.

Jridl accepts a sequence of IDL statements so that IDL statements can be processed in groups (see
irnezt(31)).

The language accepted by iridl is described in idlparae(31).

RETURN VALUES
RS_NORM

RE_FAJLURE

The input has sucessfully been parsed and may now be executed using irezee(31).

The input could not be parsed. An exception has been raised giving details.

EXCEPTIONS
A:IDMRUN.BADIDMRUN("iridl")

Null IDMRUN or not an IDMRUN structure.

A:IDMRUN.RECOMPILE(" iridl")
Must recompile from source.

E:IDMRUN.USENEXTCMD("iridl")
You should be using irnezt(31) instead.

Many others, described in idlparae(31).

SEE ALSO
intro(31), idlparse(31), irexec(31), irnext(31), irxcmd(31)

3.6-87 /09/28-R3v5m5 Britton Lee 1

ffiGET (31) Britton Lee ffiGET (31)

SEE ALSO
intro(3l), irset(3l), idone(5l), ienv(51), itree(5l)

3.4-86/09/28-R3v5m0 Britton Lee 2

ffiGET(31) Britton Lee

NAME
irget - get information from the IDMRUN structure

SYNOPSIS
*include <idmrun.h>

RETCODE irget(idmrun, addr, field, item)
IDMRUN *ldmrun;
BYTE *addr;
int field;
int item;

DESCRIPTION

ffiGET(31)

lrget extracts requested information from the idmrun structure into the address specified by addr.
Field specifies what information to return. Compound fields include an item number.

The possible field values and types are:

IP _NUMSTMTS Number or commands (int)

Number of current command (int)

Type of item'th command (int)

Current done status (int)

Current done integer (int)

Current done count (long)

Address of WILE (WILE *)

IP_CURSTMT

IP_CMDTYP

IP_DSTAT

IP_DINT

IP_DCNT

IP_WILE

IP_TREE A copy of the tree (!TREE *). This must be freed when done using
it/ree(31).

IP_ENV

IP_DMASK

IP_DBIN

RETURN VALUES

A pointer to the environment (IENV *)

The current done mask (short).

The current dbin (int).

RS_NORM The irget was successfully performed.

RE_F AILURE It was not possible to satisfy the call.

EXAMPLES
irget(idmrun, __ &dstat, IP _DSTAT, O);

Sets the variable datat to the value of the done status field in the IDONE structure ~
ciated with the IDMRUN structure specified.

EXCEPTIONS
A:IDMRUN.BADIDMRUN("irget")

Null IDMRUN structure or not an IDMRUN structure.

E:IDMRUN.GETFLD(field)
IDegal field specifier.

E:IDMRUN.GETTREE(treenum)
Specified tree not available.

A:IDMRUN.RECOMPILE("irget")
Must recompile from source.

3.6-87 /01/13-R3v5m0 Britton Lee 1

IRFLUSH (31) Britton Lee IRFLUSH (31)

NAME
irflush - flush tuples for current command

SYNOPSIS
#include <idmrun.h>

RETCODE irflush(id.mrun)
IDMRUN •idmrun;

DESCRIPTION
lrftuah discards any tuple data for the current command. This is used when a retrieve loop is to
be exited before all or the tuples have been retched or when the user wishes to ignore any
returned tuples and would simply like to see the status information for the command.

IC the returned tuples are not desired they must be flushed before further processing can occur on
the IDMRUN structure. For instance, one could send a retrieve command, then go into a loop
calling ir/etch(31} for each iteration. Ir it became necessary to leave the loop without having
fetched all of the tuples irftuah must be called.

lrcance/(31) flushes the current command as well as any commands waiting to be processed. The
status information for all waiting commands will be lost. Jrftuah and imezt(31) allow the user to
view all of the status information without processing all or the return data.

RETURN VALUES
RS_NORM The values were successfully flushed.

RE_FAil..URE Some failure occured during processing; an exception was raised explaining why.

EXAMPLES
The following code fragment illustrates early exit of a retrieve loop.

(void) iridl(idmrun, "retrieve (r.name)");
(void) irexec(idmrun);
(void) irbind(idmrun, 1, iCHAR, sizeof name, __ name);
while (RETSUCCESS(irf etch(idmrun)))
{

/• code to handle each tuple goes here * /
if (flag)

}

EXCEPTIONS

{

}

(void) irflush(idmrun);
break;

A:IDMRUN .BADIDMRUN(" irflush")
Closed, NULL or bad IDMRUN structure.

E:IDMRUN.NOTEXEC("irflush")
Commands have been parsed, but not executed.

A:IDMRUN.RECOMPILE("irflush")
Must recompile Crom source.

E:IDMLIB.USENEXTCMD(" irflush")
You should be using irnext(31) instead.

SEE ALSO
intro(31), ircancel(31), irexec(31), irfetch(31), irnext(31), iridl(31)

3.6-87 /01/13-R3v5m0 Britton Lee 1

m.FETCH (31) Britton Lee

}

{

}
/• code to process the tuple goes here •/

EXCEPTIONS
A:IDMRUN.BADIDMRUN("irf etch")

BUGS

Closed, NULL or bad IDMRUN structure.

W:IDMRUN.NEWTL
A new target list was read.

E:IDMRUN.NOCMDS("irfetch")
There were no commands to be executed.

E:IDMRUN.NOTEXEC("irfetch")
Commands have been parsed, but not executed.

A:IDMRUN.RECOMPILE("irfetch")
Must recompile from source.

ffiFETCH(31)

Single pseudo-commands which are parsed, executed, and fetched will return RW _ TUPEND
rather than RW _NOTUPS. A range and retrieve statement together will return RW _NOTUPS

. • if the user attempts to apply irfetch after executing the range statement.

'SEE ALSO
intro(31), irbind(31), ircancel(31), irdesc(31), irexec{31), irftush(31), iridl(31}

3.6-87 /02/17-R3v5m0 Britton Lee 2

m.FETCH (31) Britton Lee JRFETCH (31)

NAME
irfetch - fetch a retrieved tuple

SYNOPSIS
*include <idmrun.h>

RETCODE lrt'etch(idmrun)
IDMRUN •idmrun;

DESCRIPTION
lrf ttcla reads a tuple from the IDM/RDBMS software. Each targetrlist element is converted and
stored into programming-language variables previously specified by calls to ir6ind(31). Ir/etch is
used after an IDL or SQL statement which returns tuples (such as retrieve or 11elect) has been
parsed and executed. Information about the retrieved targetrlist elements can be found by calls
to irdeac.

Any unbound targetrlist element values are discarded. Ir all of the targetrlist elements are
unbound, tuples are read but not converted or stored.

Ir a retrieve loop is exited before all of the tuples have been fetched then irftuala(31) or
ircance/(31) must be called.

lrfttcla or irftuah must be called after a retrieve or 11elect statement has been executed.

Ir a new targetrlist is read without an intervening DONE packet (i.e., an audit command is being
processed), "W:IDMRUN.NEWTL" is raised. Ir the application program does not rebind using
irdeac(31) and ir6ind{31), additional targets will be fetched but not bound.

RETURN VALUES
RS_NORM A tuple has been successfully retrieved and bound to programming-language

variables specified in ir6ind(31).

RW _NOTUPS The IDM command passed to irezec never returns data. Some IDM system
commands, like delete, never return tuples.

Other commands, like eelect or retrieve, can return tuples. Ir no tuples
satisfied the qualification, then RW _ TUPEND will be the first value returned by
ir/ctcla (see below).

When RW _NOTUPS is returned, irnezt(31) will normally be the next routine
called. Ir it is certain that there no other commands, another command can be
parsed using irid/(31) or iraql(31).

RW _ TUPEND All available tuples have been retrieved. Ir this is the first value returned by
ir/etcla, then no tuples were retrieved.

RE_FAILURE It was not possible to execute this command, probably because it was called at
the wrong time. An exception has been raised giving details.

EXAMPLE
A sample retrieve loop. No calls to irdeac are used since the storage type of the targetrlist ele­
ment is known.

relnames()
{

char name[l5];

(void) iridl(idmrun, "retrieve (r.name)");
(void) irexec(idmrun);
(void) irbind(idmrun, 1, iCHAR, sizeof name, __ name);
while (RETSUCCESS(irfetch(idmrun)))

3.9-87 /09/28-R3v5m5 Britton Lee 1

IREXEC (31) Britton Lee ffiEXEC (31)

NAME
irexec - execute parsed IDL statements

SYNOPSIS
#include < idmrun.h>

RETCODE irexec(idmrun)
IDMRUN •idmrun;

DESCRIPTION
Irezec sends the first IDL statement associated with the IDMRUN structure to the IDM/RDBMS
software and retrieves any initial status information. The statements must have already been
parsed by a call to irid/(31).

If multiple executable IDL statements are parsed with one call to iridl, then imezt(31) must be
used to send the second and subsequent commands. Status information is associated with each
statement (and possibly other return data as well). lrnezt reads in the status information for the
next executed command (or in the case or returned data warns the user or this fact).

If the user program attempts to perform another irezec on an IDMRUN structure without having
processed all of the input data, an error will be returned and the irezec will be ignored. The user
must either process all or the return data or call ircance/(31) before another irezec can be per­
formed. lrftuah(31) is also useful in processing return information quickly.

RETURN VALUES
RS_NORM The command has been successfully sent. If the command returns data, the first

tuple is available (via ir/etch(3l)); otherwise, the return status is available. If
there is any return data, it can be described using irdeac{3l) and/or bound to
programming language variables using irbind(31).

RE_F A.ILURE It was not possible to execute this command. An exception has been raised
describing the problem in detail. Most likely, irezec has been called at the
wrong time or a required substitution (as described in iraubat(31)) has not been
performed.

EXCEPTIONS
A:IDMRUN.BADIDMRUN(~irexec")

Null IDMRUN or not an IDMRUN structure.

E:IDMRUN .MOREDATA("irexec")
There is data remaining to be read Crom the previous command.

E:IDMRUN.NOCMDS("irexec")
There were no commands to be executed.

A:IDMRUN .RECOMPILE("irexec")
Must recompile Crom source.

E:IDMRUN.USENEXTCMD("irexec")
You should be using imezt(31) instead.

SEE ALSO
intro(31), ircancel(31), irflush(31), irnext(31), iridl(31)

3.9-87 /09/28-R3v5m5 Britton Lee 1

mDUMP (31) Britton Lee

NAME
irdump - dump an IDMRUN structure for debugging

SYNOPSIS
irdump(idmrun)
IDMRUN •idmrun;

DESCRIPTION

mDUMP (31)

lrdump prints the contents of idmrun onto atdtrc in a format suitable for gurus. The intent is to
support debugging by very sophisticated users.

3.6-87 /09/28-R3v5m5 Britton Lee 1

ffiDESC(31)

while (RETSUCCESS(irfetch(idmrun)))
{

/* process the data*/
}

DIAGNOSTICS

Britton Lee ffiDESC (31)

A return value of RW _ TARGEND means target-list element number is too large by one; this
allows a person to have a simple loop starting with target-list element number one and increment­
ing until the return code is equal to RW _ TARGEND to get the descriptions of all the retrieved
target-list elements. If a target-list element number is a value other than the number of domains
in the target list plus one then the IDMRUN.TARGNUM exception is raised.

EXCEPTIONS
A:IDMRUN .BADIDMRUN("irdesc")

Closed, NULL or bad IDMRUN structure.

E:IDMRUN .NOCMDS(" irdesc")
There were no commands to be executed.

E:IDMRUN .NOTEXEC(" irdesc")
Commands have been parsed, but not executed.

A:IDMRUN .RECOMPil..E("irdesc")
Must recompile from source.

E:IDMRUN.TARGNUM("irdesc", targnum)
An impossible target number was specified.

SEE ALSO
intro(31), irbind(31)

3.1-85/11/25-R3v5m0 Britton Lee 2

m.DESC (31) Britton Lee m.DESC (31)

NAME
irdesc - get type and name information about a retrieved target-list element

SYNOPSIS
#include <ldmrun.h>

RETCODE irdeac(idmrun, tLnum, type, length, name)
IDMRUN •idmrun;
int tLnum;
int •type;
int •length;
char ••name;

DESCRIPTION
lrde11c returns type and name information about the retrieved target-list elements. It is typically
called once for each target-list element. The target-list elements are specified by ti_ num, num­
bered starting •t one from left to right in the target list. Normal usage has a loop calling irdeac
with tL num incremented each time through the loop. When the return value or irdeac is
RW _ TARGEND then all of the target-list elements have been described.

The type or the target-list element as stored on the database server is placed at trpe. The length
or the target-list element as stored on the database server is placed at length. The address or the
name of the target.-list element is placed at name, stored as a null-terminated string.

The names or the target-list elements correspond to the name given them in the target list (e.g.,
for the target-list element "cost = p.number • p.price", the name is "cost", and for the target­
list element "p.number • p.price", there is no name). Ir no name is specified then the address of
an empty string will be placed in name. The storage for the name is owned by the run-time sys­
tem and cannot be modified by the user; it may change after the next call to the run-time system
and must be copied if it is to be saved.

RETURN VALUES
RS_NORM The target was succesfully described. Normally the application program will

bind the target to some program variable using ir6ind(31}.

RW_°TARGEND
There are no more targets left to describe.

RW _NOTUPS This command does not return any data.

RE_F Ail..URE This operation could not be satisfied; an exception has been raised giving the
complete description.

EXAMPLES
The following loop illustrates how irdeac can be called to get information about each target-list
element.

auto int type, length;
auto char •name;

i = 1;
while (RETSUCCESS(irdesc(idmrun, i, &type, &length, &name)))
{

I•
** code to process the information goes here,
** e.g. save it in an array
•/
i++;

}

3.9-88 /03 /02-R3v5m9 Britton Lee 1

ffiCLOSE(31)

NAME
irclose - close an IDMRUN structure

SYNOPSIS
#include <idmrun.h>

RETCODE il"close(idmrun)
IDMRUN •idmrun;

DESCRIPTION

Britton Lee ffiCLOSE (31)

lrcloae releases the specified IDMRUN structure. The IDMRUN structure can no longer be used.
Any open database associated with the IDMRUN structure is closed.

The environment associated with the IDMRUN structure is not closed automatically.

RETURN VALUES
RS_NORM The IDMRUN structure was successfully closed.

RE_FAILURE The IDMRUN could not be closed because it was active. An exception is raised
explaining the problem.

EXCEPTIONS
A:IDMRUN.BADIDMRUN("irclose")

Closed, NULL or bad IDMRUN structure.

E:IDMRUN.MOREDATA("irclose")
Data remains to be read Crom the previous command.

A:IDMRUN .RECOMPILE(" irclose")
Must recompile Crom source.

E:IDMRUN.USENEXTCMD("irclose")
You should be using irnezt(31) instead.

SEE ALSO
intro(31), ircancel(31), iropen(31)

3.9-88/03/02-R3v5m9 Britton Lee 1

mcANCEL (31) Britton Lee mcANCEL (31)

NAME
ircancel - cancel current operations on an IDMRUN structure

SYNOPSIS
#include <idmrun.h>

ircancel(idmrun)
IDMRUN •idmrun;

DESCRIPTION
Ircancel aborts any command currently being processed on the specified IDMRUN structure and
flushes any pending return data and any commands waiting to be processed. No DONE packet
results are available. lrcancel is intended for use whenever further processing of the current
activity is to be ceased, for example, upon the receipt of a user interrupt.

If the user parsed several executable IDL statements with a single call to iridl and a cancel was
performed while the first of the statements was being executed, the others ·would be discarded.

To simply discard the return data from the current command (e.g., when exiting a retrieve loop
before processing an of the tuples) the program may call irftuah(31).

EXAMPLES
The following code fragment illustrates responding to user interrupts. This assumes that only
one IDMRUN structure is used by operations affected by the interrupts.

#include <idmlib.b>
#include <idmrun.h>
#include <exc.h>

ID MR UN •ldmrun;

toplevel()
{

extern intr();

ldmrun = iropen(CHARNULL);
(void) exchandle("T:IDMLIB.ASYNC.INT", intr);
for(;;)

}

in tr()
{

}

{
... etc ...

}

ircancel(Idmrun);
return (l);

EXCEPTIONS
A:IDMRUN.BADIDMRUN("ircancel")

Closed, NULL or bad IDMRUN structure.

A:IDMRUN.RECOMPILE("ircancel")
Must recompile from source.

SEE ALSO
intro{3I), irexec(31), irfetch(31), irflush(31), iridl(31)

3.5-86 /09 /28-R3v5m0 Britton Lee 1

IRBIND (31) Britton Lee IRBIND (31)

The length argument given in the call to irbind declares the total number of bytes available in
the variable.

#include <idmlib.h>
#include <idmrun.h>

char relname[14};
long relid;

idmrun = iropen(" demo"};
(void) iridl(idmrun, "range of r is relation");
(void) iridl(idmrun, "retrieve (r.name, r.relid)");
(void) irexec(idmrun);
(void) irbind(idmrun, 1, iSTRING, 14, __ relname);
(void) irbind(idmrun, 2, iINT4, 4, __ &relid);
while (RETSUCCESS(irfetch(idmrun)))

printf("rel=%s, relid=%ld\n", relname, relid);

Bed numbers can be substituted with:
BCDNO b;

(void) irbind(idmrun, 1, iBCD, sizeof(BCDNO), __ &b);

EXCEPTIONS
A:IDMRUN.BADIDMRUN(" irbind")

Closed, NULL or bad IDMRUN structure.

E:IDMRUN.BINDTYPE(usertype, idmtype)
It was not possible to bind the specified user variable to the IDM target list.

A:IDMRUN RECOMPILE(" irbind")
Must recompile from source.

E:IDMRUN.TARGNUM("irbind", targnum)
An impossible target number was specified.

E:IDMRUN .NOCMDS(" irbind")
There were no commands to be executed.

E:IDMRUN.NOTEXEC("irbind")
Commands have been parsed, but not executed.

SEE ALSO
intro(31), bcd(31), irdesc(31), irexec(31), irfetch(31), iridl(31), typeenvt(3I)

3.6-87 /07 /14-R3v5m3 Britton Lee 2

ffiBIND (31) Britton Lee mBIND (31)

NAME
irbind - bind program variables to retrieved target list elements

SYNOPSIS
*include < idmrun.h>

RETCODE irbind(idmrun, tLnum, type, length, address)
IDMRUN •idmrun;
int tLnum;
int type;
int length;
BYTE •address;

DESCRIPTION
lrbind associates data from domain tL Hm retrieved from the database server with a program
variable. After being bound, each ir/etch(31) call will convert the tuple data to the specified type
and length and store it into the data area. specified by addreaa. lrbind may only be called after a
statement that returns data (such as retrieve) has been executed.

The para.meter tLnam specifies the index (numbered from one) into the target list after expan­
sion of .all clauses. For example, consider the query:

retrieve (x.a, y.all, x.b)

H the relation indicated by ''y" had three domains (e.g., "y.q", "y.r", and "y.s") then the follow­
ing bindings would apply:

tLnum domain
1 x.a
2 y.q
3 y.r
4 y.s
5 x.b

The types and names of each domain can be determined by irdeac(31).

The type, length, and addreaa of the program data area are specified using the final three parame­
ters. The IDM system types iINTl, iINT2, iINT4, iFLT4, iFLT8, and iCHAR are supported in
the obvious way. Types iBCD and iBCDFL T may be bound to data areas of type BCD NO; the
routines described in 6cd{3l) may be used to manipulate them. Type iBINARY is treated identi­
cally to type iCHAR except that it is padded with zero-bytes instead of spaces. In addition to
the IDM system types, the host type iSTRING (null-terminated string, for C) is supported; length
represents the maximum length of the string, including the trailing null byte.

For complete details of conversions, see trpecnvt(31). For a description of the difference between
the RW _ TARGEND return value and the IDMRUN.TARGNUM exception see the Diagnostics
section in irdeac(31).

RETURN VALUES
RS_NORM

RW_TARGEND

RW_NOTUPS

RE_FAILURE

EXAMPLES

The target was successfully bound.

There are no more targets left.

This query does not return any tuples.

It was not possible to do the bind; an exception has been raised giving more
detail.

The following code fragment parses and executes an IDL retrieve statement and prints the
return data.

3.9-87 /09/28-R3v5m5 Britton Lee 1

IPUTTUP (31) Britton Lee

NAME
iputtup - put a tuple from a target list to the database server

SYNOPSIS
#include <idmtlist.h>

RETCODE iputtup(itl, idm)
ITLIST •itl;
IFILE •idm;

DESCRIPTION

IPUTTUP (31)

lputtup writes a tuple from the specified target list itl to the specified idm. !ti is typically created
by igett/(31).

lputtup sends an iTUPLE token followed by the tuple information Crom the target list. The type,
length, and name information should have been sent previously by iputt/(31).

Returns RS_NORM on success, RE_FAILURE on failure.

This routine is normally used for copy in/out.

SEE ALSO
igettl(31), igettup(31), iputtl(31), itlist(51)

3.9-87 /09/28-R3v5m5 Britton Lee 1

IPUTTREE (31) Britton Lee IPUTTREE (31)

EXCEPTIONS
W :IDMLIB.IDM.LONGNODE(type, len)

A node with a length field that was too long to transfer to the database server (that is,
greater than 255) was truncated.

E:IDMLIB.IDM.ALL.NOREL(relname)
The specified relation name does not exist. This error occurs during expansion of an .all
clause.

E:IDMLIB.IDM.BADORDER(ordervalue)
An attempt was made to order the query output by ordervalue. It was not found in the
target list.

E:IDMLIB.IDM.ILLEGP ARAM(cmd, paramvalue)
IDegal use of stored command parameter paramvalue in command cmd. Parameters to
stored commands are only legal within define, define program, exec, and exec pro­
gram commands.

E:IDMLIB.IDM.NOTCOMMAND(rootnode)
The tree passed was not a command tree; the type of the initial node was rootnode.

E:IDMLIB.IDM.SUB.NEEDV AL(subname)
The substitute node named aubname has not had a value bound.

E:IDMLIB.IDM.SUB.TYPE(subname, symbol)
IDegal type fJPe for substitution subname in some context in the tree, e.g, an integer used
as a result attribute name.

E:IDMLIB.IDM.SUB.VAL(subname, value, min, max)
The tJalue specified for substitution .rubname is out of range for the context in which it is
used; min and maz specify the acceptable range of values.

R:IDMLIB.IDM.GETHUNPW(database)
A host user name and password were required to open the specified databa.re. This
exception has a default handler associated with it to prompt for the name and password
as required.

A:IDMLIB.IDM.TLOVFLOW(max)

SEE ALSO

The query had too many target list entries to send in one query; the maximum number
of entries is maz. Break up the query or dispose of domains you don't really need.

intro(31), dba(31), idlparse(31), iesubst(31), if control(31), itxcmd(31), iftidm(41), ienv(51), itree(51)

.l

3.5-88 /02 /29-R3v5m8 Britton Lee 2

IPUTTREE (31) Britton Lee IPUTTREE (31)

NAME
iputtree - put a tree to the database server

SYNOPSIS
#include <ldmtree.h>
#include <ldmenv.h>

RETCODE iputtree(tree, ifp, env)
ITREE •tree;
IFILE •ltp;
IENV •env;

DESCRIPTION
/puttree translates a tree Crom the fully connected internal Corm produced and manipulated by
the tree routines into the list Corm expected by Britton Lee's IDM/RDBMS software. This Corm
is written to the file specified by i/p, which is normally a file of type //t/drii{4I).

AB the tree is sent, all substitute nodes present in the tree will have values interpolated Crom the
environment. H env is IENVNULL a default environment is used. Values must be supplied Cor
all substitutions in the tree. H a value cannot be found in the current environment, the parent
environments will be searched recursively until the value is found.

In some cases the tree can be modified, always resulting in the same semantics. In particular, .all
nodes are converted to iATTRALL nodes.

The open databue command is captured iC i/p is a true IDM file (type l/t/dm(41) or l/tReopen)
and turned into an i/contro/(31) "opendb" call. This allows all special processing (IDM system
user name/password processing and saving of the "dbin") to be centralized in one module.
RW _PSEUDO is returned so that applications will not call igetclone(SI) inappropriately.

After a tree is sent, the program should call igettl(Sl) to check for returned data. H a target list
is returned, the data should be retrieved using igettup(SI}. The iDONE token should then be
read using igetclone(SI). H it specifies that more results are to be read, a new target list should
be read.

RETURN VALUES
RW _PSEUDO A pseude>tree (e.g., a tree Cor a range statement) was ignored by iputtree.

RS_NORM The tree was successCully sent to the file.

RE_F AIL URE The tree could not be sent; an exception is raised.

EXAMPLE
The Collowing code provides a template for the generic case:

it (iputtree(tree, idmifp, IENVNULL) != RS_NORM)

do
{

return;

while ((itl = igettl{idmiCp)) != ITLNULL)
{

}

while (igettup(idmirp, itl) == RS_NORM)
process_ tup(itl};

itlfree(itl);

dp = igetdone(idmifp, IENVNULL);
} while (BITSET(JD_CONTINUE, dp-id_stat));

3.8-88/02/29-R3v5m8 Britton Lee 1

IPUTTL (31) Britton Lee IPUTTL (31)

NAME
iputtl - write a target list to a file

SYNOPSIS
*include <idmtlist.h>

iputtl{itl, ifp)
ITLIST •itl;
IFILE •ifp;

DESCRIPTION
lpvttl writes the description of the target list it/ to the specified i/p, consisting of the of names the
target fields followed by one or more iFORMAT tokens and the the format information. See
igett/(31) for creating the target list.

ltl is a target list as described in itliat(&I). lputtl puts the types and names, but not the values
themselves. The values are put using iputtup(3I). ·

This routine is normally used for copy in/out.

SEE ALSO
igettl(31), iputtup(31), itree(51), itlist(51), S11atem Programmer'a Manual

3.8-88/02/29-R3v5m8 Britton Lee 1

INITRC (31) Britton Lee INITRC (31)

#include < crackargv .h >

static char •Dbname, •Device;

static ARGUST Args 0 =
{

};

/* argument template for database name •/
'd', FLAGSTRING, 4, "dbname", CHARNULL, __ &Dbname, CHARNULL, CHARNULL,

/* argument template for IDM device name •/
'B', FLAGSTRING, 4, "idmdev", CHARNULL, __ &Device, CHARNULL, CHARNULL,

/ • other argument templates • /

main (argc, argv)
char uargv;

{

}

SEE ALSO

/ * declarations * /

/ • initialize the runtime system • /
INITRIC (argv(O]};
/ • get command line arguments * /
crackargv (argv, Args);
/ * reset device or database names, if given on command line • /
RCDEVICE (Device);
RCDBNAME (Dbname);
/ * begin processing * /

ric(ll), rsc(ll), crackargv(31), params(5i).

3.9-88/03/02-R3v5m9 Britton Lee 2

INITRC (3I) Britton Lee INITRC (3I)

NAME
INITRC, INITRIC, INITRSC, RCDEVICE, RCDBNAME - macros for RIC and RSC precom­
piler source files

SYNOPSIS
INITRIC(progname);
INITRC(progname);
INITRSC(progname);
RCDEVICE(devlcename);
RCDBNAME(databuename);
char •databaeename, •devieename, •progname;

SYNOPSIS
!NITRIC does the run-time setup for programs that have been run through the rie (IDL/C)
precompiler. Its single argument is a character string that names the program, for use by the
run-time system in writing error messages. For UNIX users, it is usually appropriate to say
!NITRIC{ argvfoj).

!NITRIC in turn invokes INITIDMLIB, so the user does not have to. Usually
INITRIC{progname} will be the first executable statement in the program. It must be executed
before the first executable IDL or SQL statement is executed.

!NITRO is a synonym for !NITRIC, maintained for historical reasons.

INITRSC does the exact same job in the exact same way for programs that have been run
through the ne (SQL/C) precompiler.

RCDEVICE is used for changing at run time the system device name of the device to use as the
connection to the datbase server. Ordinarily, the device name is set at precompile time, either by
giving an argument to the -B flag on the ric or rec command, or (if this flag is omitted) from
the value of the IDMDEV system parameter at precompile time. (Note that the value of the
IDMDEV parameter at run time is never automatically used.) Ir neither of these values is
appropriate, the device name can be given to RCDEVICE at run time. Often, this name will be
obtained from the command line.

Ir demcename is neither the null pointer nor the null string, then it will be used as the name of
the device to open.

RCDBNAME is used to reset the name of the database to access at run time. Ordinarily this
value is inherited from the precompiler -d argument. Ir 4ata6aaename is neither the null pointer
nor the null string, then it will be used as the name of the database to open.

Either RCDEVICE or RCDBNAME may appear either before or after !NITRIC or INITRSC, but
they must appear before the first executable IDL or SQL statement if they are to have any effect.

All these macros are defined in the header file rcincl.de.la, which is automatically included by the
precompiler in all files it produces.

EXAMPLE
The following canned lines 'are appropriate in most ric programs:

3.8-87 /09/28-R3vSm5 Britton Lee 1

INITIDMLIB (31) Britton Lee INITIDMLIB (31)

NAME
INITIDMLIB - initialize the IDM support library

SYNOPSIS
*include <ldmlib.h>

INITIDMLIB(progname};

cc -i .•.• -lidmlib (OD UNIX)

DESCRIPTION
In order to use the capabilities of IDMLIB, all source files must include the file itlmlil>.h. In addi·
tion, the IDM support library (-lidmlib on UNIX) must be loaded. Sixteen-bit machines require
the use of separated instruction and data space (the -1 flag on UNIX).

The main program mtJat use INITIDMLIB(progname) as the first operation. This will initialize
IDMLIB and set the name of this program for use by error messages, ets:. This muat be called
from main().

SEE ALSO
intro(31)

· 3.8-87 /09/28-R3v5m5 Britton Lee 1

IGETTUP (31) Britton Lee

NAME
igettup - get a tuple from a database server into a target list

SYNOPSIS
*include < idmtliat.h>

RETCODE igettup(idm, itl)
IFILE •idm;
ITLIST •itl;

DESCRIPTION

IGETTUP (31)

/gettup reads a tuple from the specified idm into the target list itl. /ti is typically created by
igettl(31).

lgettup returns RS_NORM on success. If the input did not begin with a TUPLE token igettup
ungets the errant token and returns RW _ TUPEND.

SEE ALSO
igettl(31), tupprint(3I), itlist(51)

3.5-88 /02 /29-R3v5m8 Britton Lee 1

IGETTL (31) Britton Lee IGETTL (31)

NAME
igettl, itlf ree - read a target list from a database server

SYNOPSIS
#include < idmtlist.h>

ITLIST •igettl{idm}
IFILE •idm;

itlfree(itl};
ITLIST •itl;

DESCRIPTION
lgettl reads the description of a target list as described in itliat(51) from the specified idm, consist­
ing of the description or the types, lengths, and names of values to be returned by the
IDM/RDBMS software. A target list is built, including sufficient space to hold the values when
they are retrieved using igett•p(31).

The IDM SENDFORMAT option (option one) must be set for the target list to be built. Ir the
SENDNAMES option (option two) is set then the names will be available in the iTLELM node.

Ir the next token in the input stream is not FORMAT or CHAR, then igettl pushes back the
input token and returns ITNULL.

A query tree must be written (typically using iputtree(31)) before igettl is called.

A target list must be explicitly freed using itl/ree when it is no longer needed.

SEE ALSO
igettup(31), iputtl(31), iputtree(31), itree(SI), itlist(51)

3.5-88 /02/29-R3v5m8 Britton Lee 1

\

IGETEOT (31) Britton Lee IGETEOT (31)

NAME
igeteot, itapeload - get DONE blocks until end of IDM tape

SYNOPSIS
*include < idmdone.h>
#include <idmenv.h>

IDONE •lgeteot(ifp, env)
IFILE •ifp;
IENV •env;

itapeload(optJist, itp, env)
char •optlist;
IFILE •ifp;
IENV •env;

DESCRIPTION
lgeteot acts almost exactly like igddone(31) except that it understands intermediate DONE tokens
asking the operator to mount another tape. Intermediate DONE tokens are handled automati­
cally by communicating with the operator using the operator{31) primitives.

lgeteot returns the IDONE value from the final volume.

lgeteot only prompts the operator for the second and subsequent tape. The initial tape should be
requested using itapeload or a direct operator request.

A user response of the form n! where n is a digit, will turn off tape volume verification in the
IDM/RDBMS software. This is useful when a partially completed dump needs another tape and
there are no more initialized tapes available.

Itapeload should be called before the command tree that includes the tape option is sent to the
IDM/RDBMS. Optliat describes the tape(s) to be mounted (see itapeopta(31) for details). lfp
refers to the database server that will be used. Env refers to the associated environment, with
the value IENVNULL mapped to the current default environment.

LIMITATIONS
Since· igeteot must interact with ijp, this file must be or type l/tldm(41) or l/tReopen.

EXCEPTIONS
A:IDMLIB.IDM.TAPE.NOOPER

The job was aborted because there was no operator available to change the tape.

SEE ALSO
igetdone(31), itapeopts(31), operator(31), iftidm(41), idone(51), S11atem Programmer 'a Manual

3.7-88 /02 /29-R3v5m8 Britton Lee 1

IGETDONE (31) Britton Lee IGETDONE (31)

NAME
igetdone - read ERROR, MEASURE, and DONE packets Crom the database server

SYNOPSIS
#include < idmdone.h>
#include <ldmenv.h>

IDONE •igetdone(ifp, env);
IFll.E •ifp;
IENV •env;

DESCRIPTION
lgetdone reads the database server connection pointed to by i/p for zero or more ERROR and/or
MEASURE packets followed by a done packet. The arguments to the error and measure packets
are formatted into exceptions which are raised.

The done packet is read and returned. The done status word is masked with the ie_ donemaak
field in the environment and any bits remaining on cause an exception to be raised as described
below. Ir ent1 is IENVNULL a default environment is used.

The range table Crom env is used to select the range variable name for tokens or type iV AR that
are returned in messages. Ir the variable name can not be determined the variable number is
used instead.

WARNINGS
The done packet that is returned points to static memory. It must be copied if it is to be saved.

EXCEPTIONS
E:IDM.Ennn(meaaage-dependent argumenta)

An IDM error packet has been read with an error value between 1 and 127 or 192 and
255.

A:IDM.Ennn(meaaage-dependent argumenta)
An IDM error packet with error value between 128 and 191 inclusive has been read.

l:IDMMnnn(meaaage-dependent argumenta)
A MEASURE token was read. These tokens give performance information about the
IDM.

W:IDM.6itname
Here, 6itname is INTERRUPT, OVERFLOW, DIVIDE, DUP, ROUND, UNDFLO,
BADBCD, LOGOFF, or XABORT. The corresponding bit is set in the status word.
This must be enabled by setting the corresponding bit in the done mask in ent1. Warning
messages are not printed in the event that an IDM system error is returned in this call to
igetdone.

I:IDM.INXACT
The INXACT bit is set in the status word. This must be enabled by setting the
corresponding bit in the done mask in ent1.

I:IDM. 6itname(t1alue)

SEE ALSO

Here, 6itname is COUNT or TIMER. The corresponding bit is set in the status word.
Val•e is the value Crom the appropriate field of the done packet. The MINUTES bit is
interpreted properly. This must be enabled by setting the corresponding bit in the done
mask in ent1.

exc(31), igeteot(31}, idone(51), ienv(51}, S11atem Programmer'a Manual

3.10-87 /12/04-R3v5m7 Britton Lee 1

IF'WRITE (31) Britton Lee IFWRITE (31)

NAME
ifwrite - write a block or memory

SYNOPSIS
ifwrite(ifp, ptr, cnt)
IFILE •ifp;
BYTE •ptr;
int cnt;

DESCRIPTION
I/write appends at most cnt bytes or data beginning at ptr to the named output ifp. It returns
the number of bytes actually written.

This routine is efficient on large transfers, doing the output directly from the user's buffer ir pos­
sible.

I/write is the only output primitive defined on files with the rbp (record-b&sed presentation) attri­
bute set. In this case i/write writes exactly one record; if ent exceeds the maximum record length,
a run record is written, the rest. or the data is discarded, and an exception is raised.

When a stream-based file has a record-based presentation, short records (i.e., records where cnt is
less than the re) will be padded to the run re using the padchar character (binary zero default).

EXCEPTIONS
E:IDMLIB.IO.WLR(filetype, filename}

An attempt was made to write a record that was too long.

A:IDMLIB.IO .WOROF(filetype, filename)
An attempt was made to write on a read-only file.

SEE ALSO
ifcontrol(3I), ifopen(3I), ifputc(3I), ifputs(3I), ifread(3I), printf(31)

3.9-88/03/02-R3v5m9 Britton Lee 1

IFUNGETC (31) Britton Lee

NAME
ifungetc - put a character back into input buffer

SYNOPSIS
itungetc(c, lfp)
int c;
IFILE •ifp;

DESCRIPTION

IFUNGETC (31)

lfungetc pushes the byte c back on an input i/p. That character will be returned by the next
IFGETO call on that i/p. l/ungetc returns c.

Attempts to push EOF are ignored.

LIMITATIONS
One character of pushback is guaranteed provided something has been read from the ifp and the
i/p is actually buffered.

This primitive is only defined on files with stream-based presentations.

EXCEPTIONS
E:IDMLffi.10 .IFUNGETC(filetype, filename)

H there is no room to hold the pushback character.

E:IDMLIB.10.UOWOF(filetype, filename)
You have tried to invoke i/ungetc on a write-only file.

SEE ALSO
ifgetc(31}

3.4-86/09/28-R3v5m0 Britton Lee 1

IFSCRACK (31) Britton Lee

A:ID'MLIB.10.CRACK.BADTYPE(spec)
lliegal type is spec <spec>.

IMPLEMENTATION NOTES

IFSCRACK (31)

The percent sign can be changed on a per-system basis. H necessary this routine could be com­
pletely rewritten to provide a different syntax.

SEE ALSO
intro(ll), ifopen(31), ifthfile{41), iftifile(41), iftltape(41)

3 .6-86 /09 /28-R3v5m0 Britton Lee 2

IFSCRACK (31) Britton Lee IFSCRACK (31)

NAME
ifscrack, ifstype - crack file specification string

SYNOPSIS
#include <ifecrack.h>

char •ifecrack(spec, ptype, fnbuf, fnlen)
char •spec;
int •ptype;
char fnbut[);
int fnlen;

char •ifstype(type, filename)
int type;
char •filename;

DESCRIPTION
l/acraclt: takes an IDM file apec and breaks it up into a file name, a file type, and a set of params.
The syntax of a file spec is:

[filename] [%params]

where parama is a comma-separated list of parameters in peztract(3I) format. Parama may
include a type, which must be one of:

hfile host file
ifile IDM file
htape host (ANSI) tape
multi multi-diskette file
itape IDM tape

Hflle is the default. For example:

myfile host file
myfile%hfile same
myfile%ifile IDM file
myfile%htape,bs(4096) host tape, block size= 4096
%itape IDM tape

The file name is stored into the /nbu/ buffer. At most /nlen characters, including a terminating
null byte, will be stored. An exception is raised if the filename in the spec is too long.

A pointer to the parama is returned. IC no parameters exist, the zero length string is returned.

The type field is decoded and stored indirectly into •ptype as a bit mask. The IFS_ TAPE bit is
set if tape is used, and IFS_IDM is set if an IDM file or tape is specified. The constants
IFS_HFILE, IFS_HTAPE, IFS_IFILE, and IFS_ITAPE represent the valid combinations.

Htape and multi are equivalent (both returning IFS_HTAPE), with the latter intended for use in
the PC environment.

The syntax accepted by i/serack is intended to be used for external specification of files, e.g., file
names specified by users on command lines.

l/atype takes an encoded type field and a filename and returns a string suitable for printing. For
example, it might produce "host file "xyzzy"" for a type of IFS_HFILE and a filename of
"xyzzy".

EXCEPTIONS
E:IDMLIB.10.CRACK.NAMETOOLONG(name, maxlen)

The name specified was too long.

3.12-87 /12/04-R3v5m7 Britton Lee 1

IF'READ (31) Britton Lee IF'READ (31)

NAME
ifread - read a block of memory

SYNOPSIS
ifread(ifp, ptr, cnt)
IFILE •ifp;
BYTE •ptr;
int cnt;

DESCRIPTION
I/read reads cnt bytes of data from the named input i/p into a block beginning at ptr. It returns
the number of bytes actually read.

This routine is efficient on large transfers, doing the 1/0 directly into the user's buffer if possible.

I/read is the only input primitive defined on files with the rbp (record-based presentation) attri­
bute set. In this case ifread reads exactly one record; if the cnt is smaller than the length of the
next record ent bytes are read, the remainder of the record is discarded, and
W:IDMLID.10.SHORTREAD is raised.

EXCEPTIONS
A:IDMLID.10.ROWOF(filetype, filename)

Read on write-only file.

W:IDMLID.10.SHORTREAD(filetype, filename)
Data was discarded.

SEE ALSO
ifcontrol(31), ifopen(3I), ifgetc(31), ifgets(31), ifwrite(31)

DIAGNOSTICS
I/read returns zero upon end of file.

3.12-87 /12/04-R3v5m7 Britton Lee 1

IF'PUTS (31)

NAME
if puts - put a string on a text file

SYNOPSIS
itputa(llt itp)
char••;
IFil..E •ifp;

DESCRIPTION

Britton Lee IF'PUTS (31)

lfputa copies the null-terminated string tJ to the named output i/p. It does not copy the terminat­
ing null character.

Since ifputa is built on top of •1putc(3l), all IFPUTC restrictions apply to ifputa.

SEE ALSO
iferror(3I), ifgets(3I), ifopen(31), ifputc(31), ifwrite(31), printf(31)

BUGS
If gettJ and •1puta are not inverse operations, since i/ geta strips the newline but i/puta does not add
one.

·'

3.4-86 /09 /28-R3v5m0 Britton Lee I

IFPUTC (31) Britton Lee IFPUTC (31)

NAME
IFPUTC, itputc - put a byte to a file

SYNOPSIS
int IFPUTC(c, ifp)
BYTE c;
IFll.E •ifp;

int ifputc(c, ifp)
BYTE c;
IFll.E •ifp;

DESCRIPTION
IFPUTC and i/putc append the character c to the named output i/p. The return value is not
defined. 1/0 errors are reported via ezcraiae(31).

IFPUTC is functionally the same as ifputc, but is implemented as a macro· for efficiency.

The standard files atdout and atderr are normally line buffered. When an output file is line
buffered, information appears on the destination file or terminal as soon as one line is written;
when it is fully buffered, many characters are saved up and written as a block. ljJfuah(31) may
be used to force the block out early. However, on record-based files iffeuah will start a new
record.

LIMITATIONS
Some systems may not allow completely unbuffered output, i.e., a newline may be required to
force output. To print a prompt and read input, use getprompt.

EXCEPTIONS
A:IDMLIB.10.WOROF{filetype, filename)

Write on read-only file.

SEE ALSO
getprompt(31}, ifftush{31), ifgetc(31), ifopen(31}, ifputs{31), ifwrite(31), printf{31)

WARNINGS
Because IFPUTC is implemented as a macro, an i/p argument with side effects functions improp­
erly. In particular "IFPUTC(c, •f++);" doesn't work sensibly.

Errors can occur long after the call to ifputc or IFPUTC.

l/putc is undefined on files with a record-based presentation; i/write(31) must be used instead.

3.4-87 /02/08-R3v5m0 Britton Lee 1

IFOPEN (31) Britton Lee IFOPEN (31)

W:IDMLID.IO.RSIZE(type, name, user, file)
The user has specified an explicit rt for the specified file that does not match the infor­
mation associated with the file. The user parameter overrides.

W:IDMLID.IOBRSlZE(type, name, bs, rs)
The rt is larger than the 6t for this file. The 6t will be increased to accommodate the "'·

Others as described in section 41.

SEE ALSO
ifclose(31), ifcontrol(31), ifgetc(31), ifputc(31), ifread(31), ifwrite(31), section 41 for descriptions of
the various file types.

3 .5-86 /09 /28-R3v5m0 Britton Lee 3

IFOPEN (31) Britton Lee IF'OPEN (31)

mode(M) This may be r for read, w for write, a for append, u for update. The file is
created if it does not already exist in w, a, and u modes.

padchar(C)t Set the pad character. Used by some file types to pad out abort records.
Defaults to binary zero if not overridden by the file type. See below for details.

Use a record-based presentation. rbp(B)t

rs(RS)

trace(B)t

The logical record size for this file. Ir not specified, the block size is used.

Enables detailed tracing on this file. This normally includes showing all traffic
on the file if trace flag IOTRAFFIC.6 is set.

Other parameters may be defined by the file-type module; see the individual descriptions for these
parameters.

The basic primitives that may be applied to an i/p are IFGETC (get character), IFPUTC (put
character), I/control (perform control operations), ijJfvah (force output), and i/cloae (close file).
Other operations are built from these primitives.

Update mode has highly restricted semantics. In general, a file must have the :reaet or rewrite
i/contro/(31) call applied to it before switching from read to write operations or vice versa. Indi­
vidual file types may have less restrictive semantics; see section 41 for details. Any usage other
than those explicitly defined will give undefined results (probably without an error message).

The padchar is used when simulating records on physically stream-based files. Short logical
records will be padded with this character to the full record length on output. It will not be
stripped on input. The padchar defaults to binary zero on most file types.

IMPLEMENTATION NOTES
Parameters that are not recognized by an implementation should be ignored rather than diag­
nosed. Ir there are parameters that will cause important functional differences, they should be
parsed and diagnosed specially.

EXAMPLES
extern IFTYPE lftHFile, Irtldm, IrtlFile;

hifp = ifopen(InputFile, &IrtHFile, "mode(r),vms(dsp=prt)", IFNULL);
iifp =if open(" system", &Irtldm, "trace", JF'NULL);
fifp = ifopen("myfile", &IrtlFile, "bs(8192)", iifp);

EXCEPTIONS
A:IDMLIB.10.B.ADMODE(filetype, filename, mode)

An 1/0 mode waa specified that was incompatible with the file type.

A:IDMLIB.10.CANTOPEN(filetype, filename, mode, why)
The file cannot be opened.

A:IDMLIB.10 .NOBASE(filetype, filename)
The specified file was not supplied with a required base file.

A:IDMLIB.10.NEEDNAME(filetype)
The specified file type was not supplied with a required file name.

A:IDMLIB.10.CANTNAME(filetype, filename)
This file type does not accept names. For example, strings do not have names.

A:IDMLIB.10 .NOMODE(filetype, filename)
The specified file did not have a required 1/0 mode supplied.

W:IDMLIB.10.BSIZE(type, name, user, file)
The user has specified an explicit ba for the specified file that does not match the infor­
mation associated with the file. The user parameter overrides.

3. 7-87 /09 /28-R3v5m5 Britton Lee 2

IFOPEN (31) Britton Lee IFOPEN(31)

NAME
itopen - open a file

SYNOPSIS
IFll.E •itopen(filename, type, params, baaeifp)
char •filename;
IFTYPE •type;
char •parall).8f
IFll.E •bueifp;

DESCRIPTION
I/open opens the file named by filename and &880Ciates a file pointer with it. I/open returns a
pointer to be used to identify the file in subsequent operations.

T11pe specifies the file type. A few of the important types are QtHFile (host file), l/t/dm (IDM
channel}, and l/tString (in-core string). See section 41 for details and other file types.

Certain file types do not implement a true file. Rather, they act somewhat lilc:e a UNIX filter,
reading Crom one file, performing a transformation, and writing to another file. For example, the
/ft/File (IDM file) type module does not actually open any files on the host. However, reads or
writes on an Qt/File are transformed into 1/0 on an underlying file of type lftl'm (IDM channel).
This allows the I/I/File type to emulate a stream on top of the database server. Baaei/p is used
to pass in this underlying file.

Parama is a character string describing characteristics of the file. It consiSts ·of a series of
comma-separated file parameters, each of the Corm name(value). Individual parameters may be in
any order. Parameters that are not recognized by an implementation should be silently ignored.

In most cases binary para ma (that is, parameters that are either on or off) are asserted by speci­
fying "name" or "name(l)"; they can be explicitly deasserted by specifying "name(O)" (e.g., to
override the default setting on a file type).

STANDARD PARAMS
Parama that apply to all file types are listed below. Params marked with t are identical to the
corresponding i/control(31) calls. Defaults listed are for the usual case, although a file type may
specify a different default. That is, explicit i/open parameters are preferred, followed by the file­
type default, followed by the default listed here. See the appropriate writeup in section 41 Cor
exact information regarding defaults.

autoclose(B) Close this file automatically on exit. This is normally used only in the default
parameters for a file type.

bs(BS) The value is the block size (or this file. The block size must be at least as large
as the largest record in the file. On output, this defines the physical block size.
This is advice only on input, i.e., the file type can (and should) override this
value if it can be determined from the file itself.

disp(D)t Set the file disposition, i.e., what should happen to the file when it is closed.
Defined values are delete (or a file that should be deleted when closed and keep
for files that should be kept when closed (default).

global Allocate the resources (or this file in a global arena. Files without this attribute
may be automatically deallocated by a /reempool (see zdloc(31)) call. In general,
always specify this attribute ir the file pointer is stored in a global variable;
never specify it if the file pointer is a local variable.

linebutrer(B)t Enables line buffering, that is, an automatic flush of each newline-terminated
line. This operation should normally be reserved to the file type, since it can
affect the normal functioning of the file.

3.7-87 /09/28-R3v5m5 Britton Lee 1

IFGETS (31)

NAME
if gets - get a line from a text file

SYNOPSIS
char •ifgete(s, n, ifp)
char••;
Int n;
IFILE •itp;

DESCRIPTION

Britton Lee IFGETS (31)

lfgeta reads n-1 characters, or up to a newline character, whichever comes first, from the i/p into
the string a. The last character read into a is followed by a null character. lfgeta returns its first
argument. The trailing newline is deleted. If the input line is longer than n-1 bytes, the
remainder of the line is thrown away.

Since i/geta is built on top of i/getc(31) all restrictions on i/getc also apply here.

SEE ALSO
iferror(31), ifgetc(31), ifputs(31), ifread(31)

DIAGNOSTICS
lfgeta returns the constant pointer CHARNULL upon end of file.

3.7-87 /09/28-R3v5m5 Britton Lee 1

IFGETC (31) Britton Lee

NAME
IFGETC, irgetc - get a byte from a file

SYNOPSIS
int IFGETC(ilp)
IFILE •ilp;

int ltgetc(ilp)
IFILE •ilp;

DESCRIPTION

IFGETC (31)

IFGETO and i/getc return the next byte from the named input i/p, and the integer constant EOF
at end or file.

IFGETO is functionally the same as •Jgetc, but is implemented as a macro for efficiency.

EXCEPTIONS
A:IDMLID.10 .ROWOF(filetype, filename)

Read on write-only file.

WARNINGS
l/getc and IFGETO are undefined on files having a record-based presentation; i/read(31) must be
used instead.

Because it is implemented as macro, IFGETO treats an i/p argument with side effects incorrectly.
In particular, "IFGETC(•f++);" doesn't work sensibly. ·

SEE ALSO
ifgets(31), ifopen(31), ifputc(31), ifread(31), ifungetc(31)

3.4-86 /09 /28-R3v5m0 Britton Lee 1

IFFLUSH (31)

NAME
iffiush - flush a file

SYNOPSIS
int ifBuah(ifp)
IFILE •ifp;

DESCRIPTION

Britton Lee IFFLUSH (31)

lffl.uah causes any buffered data for the named output i/p to be written to that file. The EOF bit
is cleared and the file remains open. lffl.uah returns zero on success and negative on failure.

This call may be safely applied to a read-only file. This will cause the EOF bit to be cleared.

H i/p specifies a file with stream-based presentation of a physically record-based file, iffl.uah will
terminate a. record. lffl.uah is undefined on files with record-based presentations.

SEE ALSO
ifcontrol(31), ifopen(31)

3.4-86/09/28-R3v5m0 Britton Lee 1

IFERROR (31) Britton Lee IFERROR (31)

NAME
IFERROR, iCeoC, IFEOR - file status inquiries

SYNOPSIS
RETCODE IFERROR(ifp}
IFILE •ifp;

BOOL iteof(ifp)
IFILE •ifp;

BOOL IFEOR(ifp)
IFILE •ifp;

DESCRIPTION
IFERROR returns the error code of the most recent error that has occurred reading or writing
the named i/p. Unless cleared by the clrerr control, the error indication lasts until the file is
closed. The value RS_NORM is returned if no error has occurred.

lfeof returns TRUE after end-of-file has been read on the named input i/p, otherwise FALSE.

IFEOR returns TRUE at end-of-record. It is only meaningful on input. JFEOR is also TRUE at
the beginning of the file. On a stream-based-file, it means that the buffer is empty.

SEE ALSO
geterr(31), ircontrol(31), ifopen(31)

3.4-86 /09 /28-R3v5m0 Britton Lee 1

IFDUMP (31) Britton Lee

NAME
ifdump - dump an IDMLIB file pointer for debugging

SYNOPSIS
lfdump(ifp)
IFILE •ifp;

DESCRIPTION

IFDUMP (31)

If dump prints the contents of i/p onto atdtrc in a format suitable for gurus. The intent is to sup­
port debugging by very sophisticated users.

3.4-86 /09 /28-R3v5m0 Britton Lee 1

WCONTROL (31)

rbp(B)t

reset

rewrite

trace(B)t

EXCEPTIONS

Britton Lee WCONTROL (31)

should be taken using numeric values since they are unlikely to be portable
between ASCII and EBCDIC environments. Use of this parameter is discretion­
ary to the file type.

Set or clear record-based-file mode. Since this is an attribute of the physical file,
use is strictly limited to file-type modules.

Set or clear record-based-presentation mode. When set, i/reatl(3I) and i/write
are the only legal interfaces.

Resets the internal pointers to the beginning of the buffer, clears the EOF bit,
and (where possible) rewinds the device.

Reset the file (as above) and destroy any existing contents (i.e., truncate the file
to zero length). The file must be writable for this to succeed.

Set or clear trace mode on this file.

E:ID}..ll.IB.10.REWRITE(filetype, filename, why)
The file could not be rewritten.

SEE ALSO
iCopen(3I), iftlush(31), iCclose(31), iodeCs(51), section 41 for specific controls for different file types.

3.2-85/11/25-R3v5m0 Britton Lee 2

Il"CONTROL (3I) Britton Lee Il"CONTROL (3I)

NAME
if control - perform control operations on files

SYNOPSIS
int itcontrol(ifp, parama, args)
IFILE •ifp;
char •parama;
BYTE •args;

DESCRIPTION
I/control performs control operations on the named file. These can set or retrieve parameters or
perform special operations on the file.

The syntax of the parama argument is identical to the i/opcn(31) call. The semantics are defined
by the file type. The orga parameter is used by some control operations; the semantics vary.
Controls which return a value via the a.rga parameter (gctba, gctftoga, ete.) of a type other than
BYTE • are noted in their description.

The return value depends on the control operation performed. Normally zero means success,
negative means failure.

STANDARD CONTROLS
The following controls are implemented on all files where they are possible, as detailed in section
41. Controls marked with t are identical to the corresponding i/opcn(31) params. Controls
marked with • should be implemented by the file-type module if possible, but should never be
used by applicatio~ programs; they typically implement some internal feature.

cancel Resets the internal pointers to the beginning of the buffer and sets the EOF bit.
Used to cancel input Crom a device and fool any other code into thinking that
the transfer is complete.

clrerr Clear the current error indication on the file.

_delete• Remon the underlying file. This is not intended for use by the end user. It is
guaranteed that the file will be closed. This call is issued by i/cloac(31).

_dio(B)• Set or clear direct 1/0 capability. Setting this mode is a dangerous operation on
some file types; use is reserved to file-type modules.

disp(D)t The tile disposition, i.e., what will be done with the file when the file is closed.
Currently defined values are keep and delete to keep and delete the file respec­
tively.

flushblock Flush the file using i,Oluah(31), then force any blocked data to the physical
media. This is the only way to guarantee that output to a blocked file is actu­
ally on the media.

getbs Return the buffer size of this file into the integer pointed to by arga.

getflags Return the flag bits for this file into the integer pointed to by arga. These bits
are defined in <idmiodc/a.h>, described in iodc/a(51).

getrs Return the record size of this file into the integer pointed to by arga.

linebuffer(B)t• Enables line buffering, that is, an automatic flush of each newline-terminated
line. This operation should normally be reserved to the file type, since it can
affect the normal functioning of the file.

padchar(C)t Set the pad character to be used to pad the record out for 6xed-length records.

3.6-86 /09 /28-R3v5m0

This is used when simulating records on streams or by file types that want to
provide settable padding. By default this is a zero byte. This may be a single
character used directly, or a numeric character value converted by otoi. Care

Britton Lee 1

IFCLOSE (31)

NAME
ifclose - close a file

SYNOPSIS
ifcloee(ifp)
IFU..E •itp;

DESCRIPTION

Britton Lee IFCLOSE (31)

l/cloae causes any buffers for the named i/p to be emptied using affeuah(31), and the file to be
closed. Buffers allocated by the standard input/output system are freed. H the file disposition is
delete the file is removed.

l/cloae is invoked automatically by /reempool (see zalloc(31)) if the memory pool being freed is
bound by i/open(31) to the file.

SEE ALSO
ifcontrol(31), ifftush(31), ifopen(31), xalloc(31).

IMPLEMENTATION NOTES
The delete file disposition is implemented by issuing the _delete i/contro/(31) call. (This module
is environment-independent.)

3.6-86/09/28-R3v5m0 Britton Lee 1

IESUBST (31) Britton Lee IESUBST (31)

meaning.

All SUBSTITUTE nodes must have a value associated before ipt1ttree(31) may be called. How­
ever, values can be reassigned and the query rerun without reparsing the query, and without
reas.signing all SUBSTITUTE nodes. See iraubat(31) for an example.

leaubat returns RS_NORM if the substitution was successful; RE_FAILURE if' the value was not
legal.

EXAMPLES
Bed numbers can be substituted with:

(void) iesubst(env, "xx", b-bcd_type, b-bcd_len, __ b-bcd_str);

EXCEPTIONS
E:IDMLIB.IDM.SUB.TYPE(subname, symbol)

SEE ALSO

lliegal type for Hlue. This only occurs if the specified type can never be an acceptable
substitution type, i.e., if it is not a constant. This exception· can also be raised by
iputtree(31) if' the type is unacceptable in a particular context, e.g., a string must be
specified in a context where only a domain name may occur.

idlparse(31), iputtree(31), irsubst(31), ienv(51)

3.4-86/09/28-R3v5m0 Britton Lee 2

IESUBST (31) Britton Lee IESUBST (31)

NAME
iesubst - perf'orm substitutions in environments

SYNOPSIS
*include <ldmenv.h>

RETOODE leeubat(env, name, type, length, value)
IENV •env;
char •name;
int type;
int length;
BYTE •value;

DESCRIPTION
leau6•t associates the t1alve or specified trpe and length with the name in t~e entJironment. Ir env
is IENVNULL a default environment is used. The trPe must specify a constant.

Substitutions are a way or putting placeholders into an ITREE using the %name syntax in
id/parae(31) or •qlparae(31). Values may be substituted later into the tree without reparsing.
Substitutions may occur

• Any place where an o6ject-name might appear.

• Any place where an eqreHion might appear.

• AB the first or second parameter to a au6•tring or 6cdfized function, or as the. first parameter
to a [fi.zed]6cd, [fized]6cdftoat, or [fized]atring function.

• AB an attribute name on the left-hand side of an equal sign; the substitution must be a char­
acter type.

• AB the with part of an aaaociate command.

When a tree is sent using iputtree(31), all substitute nodes are replaced with associated values
from the environment. For example, the calls

tree= idlparse("retrieve (r.relid) where r.name = %rel", env);
stat = iesubst(env, "rel", iSTRING, -1, "parts");
stat= iputtree(tree, idmiCp, env);
stat = iesubst(env, "rel", iPCHAR, 2, "p•");
stat = iputtree(tree, idmiCp, env);

are equivalent to

tree= idlparse("retrieve (r.relid) where r.name =\"parts\"", env);
stat = iputtree(tree, idmiCp, env);
tree= idlparse("retrieve (r.relid) where r.name = \"p•\"", env);
stat = iputtree(tree, idmiCp, env);

"Call by value" semantics apply to value; changes to the memory that t1alue points to will not
affect the value or the substitution.

Ir the t,,e is iSTRING the length is ignored and the atrlen (see atring(31)) is taken instead.
Name is a null-terminated string.

When substituting BCD numbers, pass the 6cd-•tr data area or the BCDNO as the value.
Bcd_len should be passed in as length to ensure that the correct number or 6cd_atr bytes are
copied.

When passing character or string data, the iPCHAR type indicates that the datum may contain
pattern matching characters. Pattern matching may O:ot be used in target lists; doing so will
return IDM error E39. Types iCHAR and iSTRING indicate that all characters should be inter­
preted literally. Meta-characters (e.g., "•", "?" in IDL, "%'', " ,, in SQL) have no magic

3.8-87 /08/28-R3v5m4 Britton Lee 1

IESETOPT (31) Britton Lee IESETOPT (31)

NAME
iesetopt, ieclropt - set or clear options

SYNOPSIS
#include < idmenv .h>

RETCODE ieeetopt(env, option)
IENV •env;
int option;

RETCODE ieclropt(env, option)
IENV •env;
int option;

SYNOPSIS
leaetopt sets the specified IDM system option in the ent1ironment. This option will be associated
with all further commands sent with the ent1ironment using iptdtree(31). -Options are linked into
the tree when it is sent rather than at parse time when the tree is built. This allows programs
such as ric(ll) to set options at runtime rather than at precompile time.

Returns RS_NORM if the option is successfully set, RE_FAILURE if the option is illegal, or
RW _IGNORED if the option is already set.

If ent1 is IENVNULL the default environment is used.

The IDM tape option is rejected in ieaetopt. To use IDM tape, use one of the d6a(31) routines,
itcopr(31), or set the option using itaddopta(31}.

The optNAMES and optFORMAT options may not be changed. These are set by default, and
any attempt to alter their values will result in an exception.

leclropt functions identically, except that the option is cleared. If the option was not previously
set, ieclropt raises a warning exception.

EXCEPTIONS
W:IDMLIB.IDM.OPT .SET(option)

.The specified option is already set.

W:IDMLIB.IDM.OPT.NOTSET(option)
The specified option is already clear.

E:IDMLIB.IDM.OPT .Il..LEGAL(option)
The specified option number is unknown.

E:IDMLIB.IDM.OPT .Il..LEGAL.TYPE(option)
The specified option may not be set or unset.

W :IDMLIB.IDM.OPT .TAPE(option)
Cannot set IDM tape option in iesetopt.

SEE ALSO
dba(31), idlparse(31), itaddopts(31), itcopy(31}, sqlparse(31), ienv(51)

3.8-87 /08/28-R3v5m4 Britton Lee 1

IEOPEN (31) Britton Lee IEOPEN (31)

NAME
ieopen, ieclose - open and close IENV's (IDM environments)

SYNOPSIS
#include < idmenv .h>

IENV •ieopen(parent, params)
IENV •parent;
char •para.ms;

iecloee(env)
IENV •env;

DESCRIPTION
leopen opens (creates) a new environment with the specified parent. The range and substitute
tables are initially empty. The done mask is copied from the parent unless modified by param11.

Properties or the environment may be set or modified using a comma-separated list or param11
(see below).

leclo11e closes (destroys) the specified environment. Env must not be used again. Ir env is the
default environment (DerEnv) the default is replaced by its parent. It is a grave error to destroy
the root environment (the environment with no parent).

These routines take IENVNULL as values for env to indicated the default environment.

P.ARAMS
donemask(D) Set the done mask literally to the list or done bits named in D (see idone(5I)).

setdonemask(D) Set the done mask to the parent's done mask plus the named bits.

clrdonemask(D) Set the done mask to the parent's done mask minus the named bits.

foldcase(B) Ir B is 'O', turn foldcase mode off. Ir B is '1' or omitted, turn foldcase mode on.
Ir foldcue is not specified, set foldcase to the value of the FOLDCASE parame­
ter (see getparam(31)). H foldcase mode is set, routines taking an ent1 parameter
will fold uppercase letters in character string arguments to lowercase.

mapcc(B) Set the mode where output control characters are mapped to ITG_BLOTCH
iftterm(4I) in tupprint(3I) ir Bis missing or '1'; print control characters if B is
'O'. Defaults from the MAPCC parameter at ieopen(3I) time.

EXAMPLE
Environments can be stacked easily using:

SEE ALSO

DerEnv = ieopen(IENVNULL, CHARNULL);
/ * use new environment * /
ieclose(IENVNULL);

idlparse(3I), iecontrol(3I), iesubst(31), iputtree(31), sqlparse(31), idone(51), ienv(51), params(51)

3.8-87 /09/28-R3v5m5 Britton Lee 1

IECONTROL (31) Britton Lee IECONTROL (31)

NAME
iecontrol - perform control operations on environments

SYNOPSIS
*include <idmenv.h>

iecontrol(env, para.ma, args)
IENV •env;
char •para.ma;
BYTE •args;

DESCRIPTION
lecontrol adjusts fields in the environment. Ir ent1 is IENVNULL the default environment is used.

Parama describes what is to be done. Arga are used by some control calls as specified by parama.

CONTROLS
donemask(D) Set the done mask to the list or done bits named (see idone(51)). Any bits not

explicitly named are cleared. Ir Dis missing, arga contains the literal bits to use
ror the new value.

clrdonemask(D) Clear the named bits in the done mask. Ir Dis missing, arga contains the literal
bits to use for the new value.

setdonemask(D) Set the named bits in the done mask. Ir Dis missing, orga contains the literal
bits to use for the new value.

foldcase(B)

mapcc(B)

SEE ALSO
idone(51)

3.5-86/08/26-R3v5m0

Set the foldcase mode if B is missing or 'l '; clear the foldcase mode if B is 'O'.
This defaults from the FOLDCASE parameter at ieopen(3I) time.

If Bis missing or 1, map control characters to ITG_BLOTCH (see i/tterm(41))
in tupprint(3I). Ir Bis 'O', do not change control characters. Defaults from the
MAPCO parameter at ieopen(31) time.

Britton Lee 1

IDMSYMBOL (31) Britton Lee

NAME
idmsymbol, idmwsymbol - return name of IDM symbol or WITH node

SYNOPSIS
char •idmsymbol(sym.)
int llYJDJ

char •idmwsym.bol(wsym.)
int wsym;

DESCRIPTION

IDMSYMBOL (31)

ldmaym6ol returns the name of the symbol passed as the argument. H the symbol is not recog­
nized, a printable version of the numeric value is returned.

ldmw11m6ol returns the name of the WITH node symbol in a manner analagous to idmaymbol.

WARNINGS
The return value of either routine may be a pointer to a static data area that will be destroyed
on the next call.

EXAMPLES
idmsymbol(0342) - "DBOPEN"
idmsymbol(0204) - ">="
idmsymbol(0543) - "(token Oxl63)"

idmwsymbol(5) - "demand"

SEE ALSO
Syatem Programmer'• Manual {SPM} for the tokens and their semantics.

3.5-87 /02/08-R3v5m0 Britton Lee 1

IDLP ARSE (31) Britton Lee IDLP ARSE (31)

Syntax errors should try to give you a pointer into the input line, rather than just a line number,
so that user-friendly error messages can be generated.

SEE ALSO
dba{3I), ieopen(31), iesubst(31), iputtree(31), itfree(31), itxcmd(31), ienv(SI}, itree(51)

3.4-87 /12/04-R3v5m7 Britton Lee 4

IDLP ARSE (31) Britton Lee IDLP ARSE (31)

BUGS

E:IDMLIB.IDM.MAPCESCAPE(string)
IDegal pattern-matching string.

E:IDMLIB.IDM.NOTINT{type)
Constant. in %N substit.ution name was not an integer.

E:IDMLIB.IDM.NOTFUNC(name)
The specified name was used in a context that would imply that it must be a function or
aggregate name, but. it cannot be recognized.

E:IDMLIB.IDM.NUMARGS.TOOMANY /TOOFEW(Cunction, nargs)
The wrong number or arguments were given to the specified function. The correct
number or arguments is given.

E:IDMLIB.IDM.OPT.ILLEGAL(option)
An attempt was made to set an impossible or unknown option.

W:IDMLIB.IDM.OPT.NOTSET(option)
An attempt was made to unaet an option that was not set.

W:IDMLIB.IDM.OPT.SET(option)
An attempt was made to aet an option that was already set.

E:IDMLIB.IDM.OPT.TOOMANY
Too many options have been set.

E:IDMLIB.IDM.RANGE.NOTDECL(rvar)
The specified range variable was not declared in a range statement.

E:IDMLIB.IDM.RANGE.BADNO(rangenum)
Internal error - used an illegal range variable number.

E:IDMLIB.IDM.RANGE.BADOPT(optname)
The specified range option is not valid.

W:IDMLIB.IDM.RANGE.GRAB(newrv, oldrvar, oldreln)
A range table entry has been changed.

E:IDMLIB.IDM.RANGE.TOOMANY(nvar, maxvar)
Too many range variables were used in a single query.

E:IDMLIB.IDM.RANGE.ILLEGOPTV AL(optname)
The specified option does not accept a value.

E:IDMLIB.IDM.RANGE.NEEDOPTV AL{optname)
The specified option requires a value.

E:IDMLIB.IDM.PERMDENY(cmd)
A required object was missing Crom a permit or deny command.

E:IDMLIB.IDM.SET .SYNTAX(valuetype)
Wrong type or value to aet command.

E:IDMLIB.IDM.SYNTAX(lasttoken)
A syntax error was detected during parsing.

E:IDMLIB.IDM.TRACE.SYNTAX(type)
An invalid type was passed as an IDM trac~ specification.

E:IDMLIB.IDM.WITH(withoption)
An option value for the specified with option was not a constant.

No reasonable recovery Crom syntax errors is made at this time.

3.11-87 /12/04-R3v5m7 Britton Lee 3

IDLP ARSE (31) Britton Lee IDLP ARSE (31)

• The 11et command sets IDM options to be used on all subsequent commands. For example,
"set 11" causes IDM option 11 (return database server CPU time) to be sent on all future
commands. Unaet can be used to turn off options.

ldlfpa.rac treats input conversion overflow as an error. The command tree will not be sent to the
IDM/RDBMS software. This mainly affects the append and replace commands.

EXCEPTIONS
E:IDMLIB.CNVT .OVERFLOW(input, max)

The user's input overflowed during conversion. The maximum value or size is also
printed.

W:IDMLIB.CNVT.OVERFLOW(datatype, max)
Conversion overflowed during data output. The maximum value or size is printed.

E:IDMLIB.IDM.BADARG(problem, argument, func)
The specified argument to an IDL function was not valid.

E:IDMLIB.IDM.BADDIREC(direction)
An unknown sort direction has been specified. Direction can be ascending or descend­
ing (or may be abbreviated to a or d).

E:IDMLIB.IDM.BADORDER(domain)
An attempt was made to order by a domain that was not specified in the target list.

E:IDMLIB.IDM.BADTYPE(type)
An unknown type was specified in a create statement.

E:IDMLIB.IDM.BADWITHOPT(optname)
The specified with option is invalid.

E:IDMLIB.IDM.CANTBY(func)
The specified function cannot accept a by clause.

E:IDMLIB.IDM.CANTFIX(func)
The specified function cannot accept a fixed specification.

E:IDMLIB.IDM.CANTUNIQUE(func)
The specified function cannot accept a unique specification.

E:IDMLIB.IDM.CANTWHERE(func)
The specified function cannot accept a where clause.

E:IDMLIB.IDM.CONSTTOOLONG(type, maxlen)
A constant was too long.

E:IDMLIB.IDM.EXEC.PROGID(type)
An illegal execute program name was specified.

E:IDMLIB.IDM.EXEC.P ARAM(cmdname, argnum)
The specified argument to an execute was not a constant.

E:IDMLIB.IDM.FIELDSIZE(type)
An illegal size was specified for a domain in a create statement.

E:IDMLIB.IDM.ILLEGPRTCT(mode)
lliegal mode to permit or deny.

W:IDMLIB.IDMLONGNODE(type, len)
Long node was tru~cated.

W :IDMLIB.IDM.LONGTOKEN(token, maxlen)
A token was too long and was truncated.

3.11-87 /12/04-R3v5m7 Britton Lee 2

IDLP ARSE (31) Britton Lee IDLP ARSE (31)

NAME
idlparse, idlfparse - build query trees from IDL program input

SYNOPSIS
#include < idmtree.h>
#include <idmenv.h>

ITREE •idlparse(text, env)
char •text;
IENV •env;

ITREE •idlfparse(ifp, env)
IFILE •ifp;
IENV •env;

DESCRIPTION
ldlparae reads and parses the given tezt as IDL input in the given environment and produces a
list of trees corresponding to the statements in tezt. The return value points to a list of iCOM­
MAND nodes as described in itree(51). The number of iCOtv!MAND nodes equals the number of
commands in tezt. H env is IENVNULL, a default environment is used.

Certain commands consisting only of side effects take place immediately, although they continue
to have an entry in the tree list. For example, the range statement updates the range table in
the environment immediately upon being parsed.

The trees should be presented one at a time to ipwttree(31) to be sent to. Britton Lee's
IDM/RDBMS software.

When the tree is no longer needed, it must be explicitly freed using it/ree(31).

ldlfparae takes an IFILE pointer which must return tokens as described in-, l/tScan(41); it is in all
other ways identical to idlparae. This input stream may be macro processed or otherwise manipu­
lated before being parsed.

ldlparae accepts the language described in Syatem Programmer'a Manual , with the following
changes:

• Close is not supported.

• Database administration functions (dump databue, dump transaction, load databue,
load transaction, roll forward, cop;y in, copy out) are not supported using this inter­
face; see dba(31) and itcopy(31) for details.

• The syntax %name creates placeholder nodes in the tree; values can be assigned using
ieaubat(31).

• Open file, cloee file, create file, read, write, and write eof commands are not supported;
lftlFile(41) provides this functionality.

• Reopen is not supported; lftldm(41) gives equivalent functionality.

• Setdate and aettime are available only using idmdate(ll).

• Syntax "OxNNN" accepts hexadecimal radix integers; "OoNNN" accepts octal radix integers.

• "ObNNN" accepts binary constants in hexadecimal radix.

• BCD constants are preceded by a '#' mark.

• Floating-point constants must begin with a digit. For example, use ''O.l '' instead of ".1" If
an exponent is present, it must abut the final digit.

• Floating-point constants preceded by "Of" or "Od" indicate four- or eight-byte representa­
tions respectively. The default is eight-byte constants.

3.11-87 /12/04-R3v5m7 Britton Lee 1

HELPSYS (31) Britton Lee HELPSYS (31)

NAME
helpsys - interactive help subsystem

SYNOPSIS
helpsys(topic)
char •topic;

DESCRIPTION
Helpa'lla implements an interactive tree-structured help subsystem. Once laelpara is invoked, direct
communication with the user is maintained until they explicitly exit laelpaJla.

At any point the user is at a certain node in the help tree. The text 8880Ciated with that node is
printed, and the user is prompted for input. The user can enter a subtopic, causing descent
through the tree, or one of the following commands:

%EXIT Exit helpaya. End of file (control-D on UNIX, control-Z on VMS and the IBM Personal
Computer, etc.) also works. ·

%TOP Return to the top menu of the help tree.

%UP Move one level back up the help tree.

The messages are printed out using the facilities of lftMTe:zt(41), so recognition of the experience
level applies.

An initial topie may be specified. For example, a topie of "IDL.APPEND" would start the help
session at the section describing the IDL append command. If topie is CHARNULL, the help
session begins at the top of the help tree.

If the session is not interactive, only one frame is printed. For example,
"helpsys("IDL.APPEND")" would print the frame describing the IDL append command and
then return immediately if the input wa.s not a terminal.

The parameter feature of lftMText is not currently used.

DISCLAIMER
This module requires more evaluation. The human interface may change at some point in the
future to be more user-friendly.

EXCEPTIONS
E:HELP .ATTOP

Already at top of help tree.

E:HELP .NO NEXT
There is no automatic next frame.

E:HELP .UNKNOWN(topic)
The topic is unknown.

SEE ALSO
idmhelp(ll), lftMText(41), the INFO facility on MIT ITS systems.

BUGS
The method of interaction does not extend gracefully to screen-ba.sed interfaces.

3.5-86 /09 /26-R3v5m0 Britton Lee 1

GETPROMPT (31) Britton Lee

NAME
getprompt - get string with a prompt

SYNOPSIS
char •getprompt{buf, size, prompt)
char but{];
int sise;
char •prompt;

DESCRIPTION

GETPROMPT (31)

Getprompt prints the prompt on the standard output and then reads a line from the standard
input into bu/. Bu/ can be at most aize bytes long. The trailing newline is deleted. Bu/ is null­
terminated.

In general, this is the only way to output a line to a terminal that is not terminated by a newline.

Getprompt returns CHARNULL on end of file, bu/ otherwise.

SEE ALSO
ifgets(31)

3.5-86 /09 /26-R3v5m0 Britton Lee 1

GETP ASS (31) Britton Lee

NAME
getpass - get password securely from terminal

SYNOPSIS
char •getpus(prompt)
char •prompt;

DESCRIPTION

GETP ASS (31)

Getpa88 prints prompt and reads a password from the user. The null-terminated result is
returned.

IMPLEMENTATION NOTES
Getpa88 is responsible for ensuring that the password is not visible. On a full-duplex terminal
echo should be turned off. On a half-duplex terminal the password should be obliterated
promptly.

SEE ALSO
getpass(3)

3.6-87 /02/08-R3v5m0 Britton Lee 1

GETP ARAM (31) Britton Lee GETP ARAM (31 }

NAME
getparam, setparam - get/set a system parameter

SYNOPSIS
char •aetparam.(param)
char •param.1

setparam.(param., value)
char •param;
char •value;

DESCRIPTION
Getparam returns a pointer to the string value of the named parameter. The parameters are
described in parama(51). If the parameter is unknown, a syserr occurs.

Setparam sets the named parameter to the specified value.

WARNINGS
The return value from getparam points to static memory that will be destroyed on the next call.
Be sure to copy the return value before calling getparam again.

IMPLEMENTATION NOTES
On UNIX, this looks in the file "/usr/lib/idm/params" for the default set of names. Names in
the user environment override these names.

On VMS, parameters are implemented as logical names. To avoid collision with other VMS logi-
"' cal names, "IDM_" is prepended to each IDMLIB parameter name. Both routines add "IDM_"

to the beginning of the name passed in. Getparam then performs one logical name translation to
get the value. Setparam defines the indicated logical name in the user mode process logical name
table; its scope is the current running image.

Under AOSfVS, this looks for a file called "params" first in the current working directory, then
in the user's search path, and finally in :idm:etc.

On CMS this looks in the table "IDMP ARAM ASSEMBLE" and "userid.idmparam.•" for the
default set of names·. The file "ID:MP ARAM ASSEMBLE" contains system defaults, and is
always processed. The file "userid.idmparam.•" is local to the user, and is processed if present.

The implementation muat be extensible, that is, it must be possible to add new parameters
without changing the code.

The implementation must define the entry point _ initparama to be called by the initialization
code. Since the 1/0 subsystem is not yet initialized when this is called, this should use native
1/0.

The implementation should allow "secure parameters" - parameters that cannot be imported
from the user. These are used for relatively static parameters that may have disasterous effects
on users (e.g., the system call number used to access the database server). The system parameter
file must contain the necessary information to decide which parameters are secure and which are
not; that is, these must not be hard-coded into the implementation.

SEE ALSO
crackargv(31), getenv(3), params(51)

3.4-86/09/26-R3v5m0 Britton Lee 1

GETHUNPW (31) Britton Lee GETHUNPW (31)

NAME
gethunpw - get host user name and password

SYNOPSIS
int gethunpw(excv)
char uexcv;

DESCRIPTION
Gethwnpw is the default exception handler for the R:IDMLIB.IDM.GETHUNPW exception (see
e:rc(3I)). This exception is raised by J/tldm(4I} when the IDM complains that access is denied on
an open database command.

Gethunpw determines the user name and/or password, setting the IDMHUNAME and
IDMPASSWD parameters respectively (see getparam(3I)). It then returns zero to retry the open.
This could be done by reading a file in the user's home directory, prompting the user, or what­
ever is appropriate for the host environment.

IC it is not possible to determine the user name and/or password (e.g., if the program is run in
background and the user must be contacted) then gethunpw will reraise the exception using e:rca­
bort. This will print the message and abort the process.

SEE ALSO
getparam(3I), getpass{3I), iftidm(4I), params(SI), The section "System Level Security" in the Sra­
tem Adminiatrator'• Manv.al

IMPLEMENTATION NOTES
It may not be necessary to read the user name. On "trusted" hosts using user numbers, the host
name is not strictly necessary. See the Siatem Adminiatrator'a Man•al for details.

The password should be read with echo turned off if possible, or should obscure the password
echoed to the user.

IC a file is read, care should be taken to ensure that it is not readable except by the owner to
encourage security.

On some environments it is appropriate to set only the password, since setting the name changes
the semantics of IDM authentication.

On CMS, the user is prompted for a user name and password if u/oregnd is TRUE. IC the user
can supply the correct password for any "login" relation tuple, the user takes on the "huid" for
that user. This supports applications authorized for only one user but executed by all users given
the pa88Word.

3.9-87 /09/28-R3v5m5 Britton Lee 1

GETERR(31) Britton Lee GETERR(31)

BUGS
RETERROR et cl should work on all RETCODEs.

3.10-88 /03 /02-R3v5m9 Britton Lee 2

GETERR(31) Britton Lee GETERR (31)

NAME
geterr, clrerr, seterr, errstring, errclass, RETSUCCESS, RETWARNING, RETERROR - get,
clear, set, classify, or interpret error codes

SYNOPSIS
RETCODE get.err()

clrerr()

eeterr(code)
RETCODE code;

char •errstring(code)
RETCODE code;

RETCODE errclaas(code)
RETCODE code;

BOOL RETSUCCESS(code)
RETCODE code;

BOOL RETWARNING(code)
RETCODE code;

BOOL RETERROR(code)
RETCODE code;

DESCRIPTION
Geterr returns a magic number that describes the current error. These reflect the full level of
detail available from the operating system. Errclaaa classifies them into a limited range, which
are a subset of the total set of error codes. Errclaaa can return values as described in retcode(51).

Clrcrr clears the system's idea of the current error. On some systems this may be done automati­
cally at the next system call, so it is wise not to depend on it being sticky.

Seterr sets the system's idea of the error code. Normally this is only used in cases where an error
is detected and exception is to be raised, so that an appropriate exit status may be returned to
the host system. In particular, it is almost certainly an error to use a et err when the system error
is already set, since this will most probably cause information to be lost.

Erratring returns a string describing the specified error code. Typical uses are "errstring(geterr())"
and "errstring(IFERROR(ifp))". The return value may point to a static value that will be des­
troyed on the next call.

RETSUOOESS, RETWAR.NING, and RETERROR are predicates returning TRUE if their argu­
ment is a Sucess, Warning, or Error severity respectively. They are not guaranteed to work on
return values from get err, but will work on return values from errclaaa and other IDMLIB rou­
tines.

IMPLEMENTATION NOTES
In many systems erratring will use operating system services to get the string. For. example,
UNIX will use ayaerr/iatO. Whereever possible it should return the most specific message possible.

A namespace must be chosen such that the detailed system errors and the error codes may coex­
ist. Errclaaa must map values from its range onto themselves, e.g., "errclass(RE_PERM)" -
"RE_PERM".

On VMS, RETCODEs are VMS condition codes and erratring uses the SYS$GETMSG system ser­
vice.

SEE ALSO
exc(31), exit(3l), iferror(3I), retcode(51)

3.6-86 /09 /26-R3v5m0 Britton Lee 1

GETCLOCK (31) Britton Lee GETCLOCK (31)

The second is a DATE value, containing the date broken down into component fields. These
quantities give the time on a 24-hour clock (including ticks}, day of month (1-31), month of year
(1-12), day of week (Sunday = 0), year (1900-), day of year (1-366), a flag that is nonzero if
daylight saving time is ever used in your area, and an offset in minutes from Greenwich Mean
Time.

Getclock returns the current system clock value. Clocktodatc converts a CLOCK value into a
DATE. The zone argument specifies an adjustment in minutes westward from GMT (e.g., the
adjustment for California is 480 minutes westward from GMT; Amsterdam has an adjustment of
-60 minutes westward from GMT, i.e., one hour eastward). The value LOCALTIME can be
used to get local time adjustment including Daylight Savings Time (if the system parameter
ISDST is set). Valid zone values are multiples of 30; if an illegal zone is used the TIMEZONE
and ISDST system parameters are used to determine the time zone. Datctoclock performs the
inverse function.

Diffclock determines the difference between two clocks. These ma.y represent intervals or absolute
times.

Correspondence with IDM Time and Date
Under Release 3, the IDM system stores time under GMT since the epoch. Thus, the cL day field
exactly matches the getdate IDL primitive. The cl_ ticka field must be scaled between the host
and the shared data.base system; the macros IDMTOTICKS and TICKSTOIDM provide this scal­
ing.

Selection ot the Epoch
The default epoch is January 1, 1900. If a later epoch is desired, the EPOCHOFFSET parameter
can be set to the number of days between January 1, 1900 and the desired epoch. For example,
an epoch of January 1, 1970 can be achieved by setting EPOCHOFFSET to 25568.

Extreme care should be taken if the offset is changed from the default, especially in environments
where several hosts are connected to a single database server. Since dates .are stored by IDM sys­
tem software relative to this epoch, all hosts must agree on the epoch.

WARNINGS
The return values point to static data whose content is overwritten by each call.

This family of routines is defined only for dates in the range of Jan. 1, 1900 through Feb. 28,
2100.

IMPLEMENTATION NOTES
If the time zone is not available from the system, it should be supplied as a system parameter (see
getparam(31)}.

The routine getclock is environment-dependent; the others are environment-independent.

SEE ALSO
fmtclock(31), parsedate(31), params(51}, date(2}, ctime(3),

3.6-86 /09 /26-R3v5m0 Britton Lee 2

PEXTRACT (31) Britton Lee PEXTRACT (31)

NAME
pextract - extract parameter value from list

SYNOPSIS
char •pextract(fleld, list)
char •field;
char •list;

DESCRIPTION
Pextract finds the named field in liat and returns a copy of the value. If the field does not exist,
pextract returns CHARNULL. If the field exists but has no value, the zero length string ("") is
returned.

The list is a comma-separated list of name(value) pairs. For example, the list:

bs(512),linebuffer,mode(r)

specifies three parameters, two with values and one with no value. Elements of the list may be
empty.

The value can have at most 256 characters. It may have commas and parentheses, but the
parentheses must be properly nested.

By convention, arguments specifying "yes or no" options 885ert the option if no value is specified
or if it has value of '1 '. Digit 'O' explicitly deasserts the option. For example, "linebufJer" and
"linebufJer(l)" both assert the linebuffer option, while "linebuffer(O)" turns off the option.

Pextract with a zero length field parameter checks the parameter liat for syntactical accuracy and
raises an exception on errors. This should always be done before using pextract to extract values,
as syntactically incorrect lists have undefined results.

WARNING
The routine value points to static data whose content is overwritten by each call.

EXAMPLES
list= "mode(r),linebuffer,bs(512),sync";

pextract("bs", list) - "512"
pextract(" sync", list) - ""
pextract("trace", list) - CHARNULL

EXCEPTIONS
E:IDMLIB.PEXTRACT.SYNTAX(list)

Syntax error in list.

BUGS
Blanks are significant unless immediately following a comma. For example:

pextract("a", "a , b")

will return CHARNULL (that is, parameter "a" not found).

SEE ALSO
intro(ll), ifcontrol{3l), ifopen{3I)

3.7-87 /11/24-R3v5m7 Britton Lee 1

PMATCH (31) Britton Lee PMATCH (31)

NAME
pmatch - text pattern matching

SYNOPSIS
BOOL pmateh(pattern, string)
char •pattern;
char •string;

DESCRIPTION
Pmatch compares the pattern and the string, returning TRUE if they match. FALSE may be
returned on non-matching patterns or malformed patterns.

Special characters in pattern are:

• Matches zero or more characters .

Matches exactly one character.

[abc ... J Matches any single character listed. If the first character is a caret (' • ') then it
matches any character not listed.

The square brackets turn off special meaning for most other characters. After an
open square bracket ("["), only the backslash character ("\") and the close
square bracket character ("]") are magic. Thus the string "[•?"]" will match any
single asterisk, question mark, or caret.

{abc,def, ... } Matches any of the comma-separated patterns listed.

Lowercase letters match themselves or the corresponding uppercase letter. Other characters
match themselves. Any character can be preceded by a backslash to disable any possible magic
interpretation.

Patterns may nest.

For single-character matching, the notation "[abc]" is more efficient than "{a,b,c}" and "?" is
more efficient than "•".

EXAMPLES
pmatch(" A•Z", "AZ") - TRUE
pmatch(" A•Z", "AMNZ") - TRUE
pmatch(" A•Z", "AZY") - FALSE
pmatch(" ?ABC", "AABC") - TRUE
pmatch("?ABC", "EABC") - TRUE
pmatch("?ABC", "A:ABC") - FALSE
pmatch(" [ABC]", "A") - TRUE
pmatch(" [ABC]", "B") - TRUE
pmatch(" [ABC]", "X") - FALSE
pmatch{"["ABCJ", "X") -TRUE
pmatch{"A:{ABC,DEF}", "A:ABC") -TRUE
pmatch{"A:{ABC,DEF}", "A:DEF")-TRUE
pmatch(" A:{ABC,DEF}", "A:XYZ") - FALSE
pmatch("?:[UVW]•{COM,MOC}•["XYZ]", "E:VERY COMPLICATED") - TRUE

SEE ALSO
string(31)

3 .4-86 /09 /28-R3v5m0 Britton Lee 1

PRINTF (31) Britton Lee PRINTF (31)

NAME
print£, ifprintr, sprint£, tprintf - formatted output conversion

SYNOPSIS
printf'(format [, arg J ...)
char •format;

lf'printf'(ifp, format [, arg] ...)
IFll..E •lf'p;
char •format;

sprintf'(s, format [, arg] ...)
char a[];
char •format;

tprintf'(format [, arg] ...)
char •format;

DESCRIPTION
Print/ places output on the standard output text file atdout. I/print/ places output on the named
output i/p. Sprint/ places output in the string a, followed by the character '\O'. Tprint/ prints to
the trace fi)e atdtrc. Because of the problems of mixed-language environments, print/ should not
be used in libraries that may be loaded with other languages.

Each or these functions converts, formats, and prints its arguments after the first under control
or the first argument. The format argument is a character string which contains two types or
objects: plain characters, which are simply copied to the output, and conversion specifications,
each of which causes conversion and printing of the next successive arg.

Ea.ch conversion specification is introduced by the character '%'. Following the '%', there may
be

• An optional minus sign '-' which specifies left adjuatment or the converted value in the indi­
cated field;

• An optional digit string specifying a field width ; if the converted value has fewer characters
than the field width it will be blank-padded on the left (or right, if the left-adjustment indi­
cator has been given} to make up the field width; if the field width begins with a zero, zero­
padding will be done instead of blank-padding;

• An optional period '.'which serves to separate the field width from the next digit string;

• An optional digit string specifying a preciaion which specifies the number or digits to appear
after the decimal point, for e- and f-conversion, or the maximum number or characters to be
printed from a string;

• The character I specifying that a following d, o, x, or u corresponds to a long integer arg.

• A character which indicates the type or conversion to be applied.

A field width or precision may be '*'instead of a digit string. In this case an integer arg supplies
the field width or precisi~n. A negative arg is equivalent to specifying no width or precision.
Note that"%•" with an arg of -5 differs from "%-5."

In summary, in all formats except the floating-point formats, the width specifies the minimum
number of characters that will be output and the prec specifies the maximum number of charac-
ters that will be output. ,

The conversion characters and their meanings are

duox The integer arg is converted to decimal, unsigned decimal, octal, or hexadecimal notation
respectively.

3.4-86 /09 /28-R3v5m0 Britton Lee 1

PRINTF (31) Britton Lee PRINTF (31)

t The float or double arg is converted to decimal notation in the style "[-Jddd.ddd" where
the number or d's after the decimal point is equal to the precision specification for the
argument. Ir the precision is missing, 6 digits are given; if the precision is explicitly 0, no
digits are printed.

e The float or double arg is converted in the style "[-Jd.ddde±dd" where there is one digit
before the decimal point and the number after is equal to the precision specification for
the argument; when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style for in style e, whichever gives full precision in
minimum space.

c The character arg is printed.

C The character arg is printed with nonprintable characters turned into a printable
sequence.

s Arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number or characters indicated by the precision
specification is reached; however if the precision is negative or missing all characters up
to a null are printed. Ir the pointer is null it prints "[null]".

S Arg is printed as a string with non-printable characters escaped as in %C.

p Arg is printed as a pointer.

% Print a '%'; no argument is converted.

Use of any other keyletter is specifically undefined.

In no case does a non-existent or small field width cause truncation of a field; padding takes place
only if the specified field width exceeds the actual width.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02", where weekdav and month are
pointers to null-terminated strings:

printf("%s, o/os %d, %02d:%02d", weekday, month, day, hour, min);

RESTRICTIONS
I/print/ is undefined on files with record-based presentations.

No more than fourteen parameters may be passed in one call to any of these routines. On 16-bit
machines, longs and floats count as two parameters, doubles as four parameters. On 32-bit
machines, doubles count as two parameters.

SEE ALSO
ifputc(31)

1.3-87 /02/23-R3vSm0 Britton Lee 2

RCCOUNT (31) Britton Lee RCCOUNT (31)

NAME
recount - subroutine for RSC and RIC source files

SYNOPSIS
long ntups, recount{);
ntups =recount{);

DESCRIPTION
Recount returns the number of tuples affected by the last SQL or IDL command executed. For
ae/ect/retrieve loops, recount(} should be called after the loop has finished executing.

If the last command was killed, or if there was some kind of error, the value is unreliable.
Recount must not be used to check for error or abnormal termination; rather, it should only be
used when a query completes normally.

3.1~87 /09/28-R3v5m5 Britton Lee 1

SQLP AR.SE (31) Britton Lee SQLP ARSE (31)

NAME
sqlparse, sqlf'parse - build query trees Crom SQL program input

SYNOPSIS
ITREE •aqlp&l'tle(text, env)
char •text;
IENV •env;

ITREE •aqlfparse(ifp, env)
IFILE •ifp;
IENV •env;

DESCRIPTION
Sqlparae reads and parses the given tezt as SQL input in the given environment and produces a
list or trees corresponding to the statements in tezt. The return value points to a list oC iCOM­
MAND nodes as described in itree(51). The number or iCOMMAND nodes equals the number or
commands in tezt. H env is IENVNULL, a default environment is used.

Certain commands consisting only of side effects take place immediately, although they continue
to have an entry in the tree list.

The trees should be presented one at a time to iputtree(31} to be sent to the IDM/RDBMS
software.

When the tree is no longer needed, it must be explicitly Creed using it/ree(31).

Sqlfparae takes an IFILE pointer which must return tokens as described in lftScan(41}; it is in all
other ways identical to aqlparae. This input stream may be macro processed or otherwise mani­
pulated before being parsed.

Sqlparae accepts the language described in SQL Reference Manual. The following features are
not documented in the manual:

• The syntax %name creates placeholder nodes in the tree; values can be assigned using
ieaubat(31).

• Syntax "OxNNN" accepts hexadecimal radix integers; "OoNNN" accepts octal radix integers.

• "ObNNN" accepts binary constants in hexadecimal radix.

• BCD constants must be preceded by a '#' mark.

• Floating-point constants must begin with a digit. For example, use "O.l" instead or ".I" H
an exponent is present, it must abut the final digit.

• Floating-point constants preceded by "OC" or "Od" indicate four- or eight-byte representa­
tions respectively. The default is eight-byte constants.

Sqlfparae treats input conversion overflow as an error. The command tree will not be sent to the
IDM/RDBMS software. This mainly affects the insert and update commands.

EXCEPTIONS
E:IDMLID.CNVT.OVERFLOW(input, max)

The user's input overflowed during conversion. The maximum value or size is also
printed.

W :IDMLID.CNVT.OVERFLOW(datatype, max)
Conversion overflowed during data output. The maximum value or size is printed.

E:IDMLID.IDM.ALL.NOTONE
The"•" operator was used in a context in which too many tables were specified.

3.10-87 /09/28-R3v5m5 Britton Lee 1

SQLP ARSE (31) Britton Lee SQLP ARSE (31)

E:IDMLIB.IDM.BADARG(problem, argument, rune)
The specified argument to an SQL function was not valid.

E:IDMLIB.IDM.BADDmEC(direction)
An unknown sort direction has been specified. Direction can be ueending or descend­
ing (or may be abbreviated to a or d).

E:IDMLIB.IDM.BADORDER(domain)
An attempt was made to order by a domain that was not specified in the target list.

E:IDMLIB.IDM.BADTYPE(type)
An unknown type was specified in a create statement.

E:IDMLIB.IDM.BADWITHOPT(optname)
The specified with option is invalid.

E:IDMLIB.IDM.CANTFIX(Cunc)
The specified function cannot accept a fixed specification.

E:IDMLIB.IDM.CANTUNIQUE(func)
The specified function cannot accept a unique specification.

E:IDMLIB.IDM.CONSTTOOLONG(type, maxlen)
A constant was too long.

E:IDMLIB.IDM.EXEC.PROGID(type)
An illegal start program name was specified.

E:IDMLIB.IDM.EXEC.P ARAM(cmdname, argnum)
The specified argument to a start command was not a constant.

E:IDMLIB.IDM.FIELDSlZE(type)
An illegal size was specified for a domain in a create statement.

E:IDMLIB.IDM.ILLEGPRTCT(mode)
Illegal mode to grant or revoke.

W:IDMLIB.IDM.LONGNODE(type, len)
· Long node was truncated.

W:IDMLIB.IDM.LONGTOKEN(token, maxlen)
A token was too long and was truncated.

E:IDMLIB.IDM.MAPC.ESCAPE(string)
Illegal pattern-matching string.

E:IDMLIB.IDM.MATCHLIST.NOMAT
Two lists failed to match (usually in the insert command).

E:IDMLIB.IDM.NOTABLE(column-name)
There was no table specified for the given column-name.

E:IDMLIB.IDM.NOTFUNC(name)
The specified name was used in a context that would imply that it must be a function or
aggregate name, but it cannot be recognized.

E:IDMLIB.IDM.NOTINT(type)
An integer was expected in the context.

E:IDMLIB.IDM.NUMARGS.TOOMANY(what, function, nargs)
The wrong number of arguments were given to the specified function. The correct
number or arguments is given.

3.1~87 /09/28-R3v5m5 Britton Lee 2

SQLP ARSE (31) Britton Lee

BUGS

E:IDMLID.IDM.OBJECT.SYNTAX(type)
Bad syntax for o6jecL name.

E:IDMLID.IDM.OPT.ILLEGAL(option)
An attempt was m~e to set an impossible or unknown option.

W:IDMLID.IDM.OPT.NOTSET(option)
An attempt was made to unset an option that was not set.

W:IDMLID.IDM.OPT.SET(option)
An attempt was made to set an option that was already set.

E:IDMLID.IDM.OPT.TOOMANY
Too many options have been set.

E:IDMLID.IDM.QUAL.AGG
An aggregate was round in a where clause.

E:IDMLID.IDM.RANGE.BADOPT(optname)
The specified from clause option is not valid.

E:IDMLID.IDM.RANGE.TOOMANY(nvar, maxvar)
Too many table references were used in a single query.

E:IDMLID.IDM.RANGE.ILLEGOPTV AL(optname)
The specified option does not accept a value.

E:IDMLID.IDM.RANGE.NEEDOPTV AL(optname)
The specified option requires a value.

E:IDMLID.IDM.PERMDENY(cmd)
A required object was missing from a grant or revoke command.

E:IDMLID.IDM.SET.SYNTAX(lasttoken)
Incorrrect syntax in the set command.

E:IDMLID.IDM.SYNTAX(lasttoken)
A syntax error was detected during parsing.

E:IDMLID.IDM.TRACE.SYNTAX(type)
An invalid type was passed as a trace specification.

E:IDMLID.IDM.WITH(withoption)
An option value (or the specified with option was not a constant.

No reasonable recovery Crom syntax errors is made at this time.

SQLP AR.SE (31)

Syntax errors should try to give you a pointer into the input line, rather than just a line number,
so that user-friendly error ~essages can be generated.

SEE ALSO
dba(31), ieopen(31), iesubst(31), iputtree(3I), itfree(31), itxcmd(3I), ienv(51), itree(51)

3.3-86/06/27-R3v5m0 Britton Lee 3

STREDIT (31) Britton Lee STREDIT (31)

NAME
stredit - do sophisticated output editing or numeric string

SYNOPSIS
char •stredit(str, exp, neg, pie)
char •str;
int exp;
BOOL neg;
char •pie;

DESCRIPTION
Stredit edits atr under the control or pie. Exp represents the position or a decimal point in atr as
characters rightwa.rd from the end or air. Ir neg is set, atr represents the magnitude or a negative
number. For example, a atr value of "123" with exp = -2 represents the number 1.23.

Pie is a series or characters describing the output stream. The values are:

9 Copy a digit Crom atr.

Z Set the fill character to space. Copy a digit Crom atr. Leading zeros are replaced by the fill
character.

• Same as 'Z' except the fill character is set to '•'.

0 Same as 'Z' except the fill character is set to 'O'.

Replaced by itselr unless we are currently suppressing zeros, when it is replaced by the fill
character (space, zero, or asterisk). Also true or'.' and ' '(space).

$ Ir present, represents a floating dollar sign. The dollar sign is moved to be adjacent to the
first non-blank output character.

{The American pound mark/sharp sign and the British currency symbol overlap in the ASCil
character set.) Behaves the same as '$'.

Same as '$' except that it is only output iC the neg flag is set. The same is true or '(' and '< '.
This can be used in conjunction with '$' or '#'.
Replaced by itself iC the neg flag is set; otherwise, replaced by the fill character. The same is
true or 'D', 'B', 'C', 'R', and'>'.

V Matches the decimal point in the input as specified by exp. Does not produce any output. Ir
not specified, the end or pie is assumed.

The input is first aligned with a 'V' spec in pie {or the end or pie iC no 'V' spec is present). Zeros
are implicitly added to the front or atr as necessary to match all replacement characters {'9', 'Z',
etc.) in pie.

EXAMPLES
In the following examples, 'x' in the output field represents a space.

air exp neg pie output
123456 0 F ZZZ,ZZZ,ZZ9.99 xxxxxxl,234.56
123456 0 F •••,•••,••9.99 ******1,234.56
123456 0 F 999,99~,999.V99 000,123,456.00
123456 -2 F ZZZ,ZZZ,ZZ9.V99 xxxxxxl ,234.56
123456 0 F $ZZ,ZZZ,ZZ9.99 xxxxx$1,234.56
123456 0 F ($Z,ZZZ,ZZ9.99) xxxxx$1,234.56x
123456 0 T ($Z,ZZZ,ZZ9.99) xxxx(Sl,234.56)
123456 0 F -ZZ,ZZZ,ZZ9.99 xxxxxxl ,234 .56
123456 0 T -ZZ,ZZZ,ZZ9.99 xxxxx-1,234.56

3.5-86/11/13-R3v5m0 Britton Lee 1

STRING (31) Britton Lee STRING (31)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strmcpy, strlen, strchr, strrchr - string opera­
tions

SYNOPSIS
char •atrcat(dat, 81'C)
char •dat, *81'CJ

char •atrncat(dst, arc, n)
char •dst, •Re;

atrcmp(sl, d)
char ••1, •d;

atrncmp(al, d, nj
char •el, •d;

char •atrcp7(dst, Bl'C)
char •dst, •Rc;

char •strncp7(dst, src, n}
char •dst, •sre;

char •strmep7(dst, src, m)
char •dst, •sre;

atrlen(s)
ch&I' ••;

char •strchr(s, c)
char •s, c;

ch• •etrrchr(s, e)
char •a, c;

DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Streat appends a copy of string are to the end of string tlat. Strneat copies at most n characters.
Both return a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as d is lexicographically greater than, equal to, or less than at. Strnemp makes the
same comparison but examines at most n characters.

Strepp copies string are to tlat, stopping after the null character has been moved. Strnepp copies
exactly n characters, truncating or null-padding are; the target may not be null-terminated if the
length of are is n or more. Strmep11 copies a maximum of m characters, including a trailing null
byte. All three return tlat.

Strlen returns the number of non-null characters in •·

Strelar (atrrelar) returns a pointer to the first (last) occurrence of character e in string a, or
CHARNULL if e does not occur in the string.

WARNINGS
Stremp uses native character comparison, which is signed on PDPlls and VAX-Us, unsigned on
other machines.

All string movement is performed character by character starting at the left. Thus overlapping
moves toward the left wiµ work as expected, but overlapping moves to the right may yield
surprises.

3.5-86/ll/13-R3v5m0 Britton Lee 1

STRING (31)

SEE ALSO
bytetype(31)

3.6-86/09/28-R3v5m0

Britton Lee STRING (31)

Britton Lee 2

SYSEDIT (31) Britton Lee SYSEDIT (31)

NAME
sysedit - call system editor on a file

SYNOPSIS
RETCODE qeedit.(name}
char •names

DESCRIPTION
Sraedit calls the system editor on the named file. The file must be of type lftHFile(41) and must
be closed. It is normally expected to be a temp file.

Sr.edit prepares the file for editing it necessary (e.g, setting locking modes, ete.), and then invokes
an editor on the named file. IC the system supports multiple editors, the pathname of the editor
is specified by the EDITOR parameter (see getparam(31)).

The return value is the exit status of the editor.

EXCEPTIONS
W:IDMLIB.CANTFORK(why)

Cannot create a new process to run the editor.

E:IDMLIB.SYSEDIT(file, problem)
Could not edit the file as noted.

IMPLEMENTATION NOTES
Sraedit should take care of such issues as file locking, file version numbers, etc: An exception
should be raised it the editor cannot be invoked, and RE_CANT should be returned it a more
specific error is not available.

Interrupts should be ignored while the editor is running. Locking them using ezealoek (see
eze(31)) is not sufficient, as interrupts will be improperly queued for delivery when ezeaunlock is
called.

On VMS, only DEC-supported editors are supported by IDMLIB as editors that can be called by
araedit. Any others may cause unexpected side-eft'ects, especially in terminal settings.

On CMS, ayaedit raises no exceptions.

SEE ALSO
exc(31), getparam(31), sysshell(31)

3.8-87 /02/08-R3v5m0 Britton Lee 1

SYSERR (31) Britton Lee SYSERR (31)

NAME
syserr - print a fatal system error and abort

SYNOPSIS
syeerr(format, arg, •••)
char •format;

DESCRIPTION
S11aerr interpolates the args into format in the same format as printj(31). The maximum number
or args is three integer or pointer arguments. Formatting or double (64 bit) arguments will not
work. They must first be converted into a string buffer and passed as a pointer to char. The
result is printed on the standard error together with any other information about the state of the
process that a11aerr can divine.

Format should have the synta.x:

l!J[module/]routine: text

where:

• Ir present, ! indicates that this is a catastrophic error from which recovery should not be
attempted. Ir this is not included, a11aerr can raise "A:JDMLIB.SYSERR" after printing the
message to attempt to back out to a top loop. Otherwise, araerr has no recourse except to
immediately abort the process; no cleanup actions should be attempted. Preferably, a core
dump will be generated.

• Module/ is the name or the module, to be included if' the routine name may not be meaning­
ful in itself.

• Routine: is the name or the routine that is generating this error.

• Tezt is the text of the syserr. This is not intended to be "user-friendly", but is supposed to
give a sophisticated systems maintainer whatever information is necessary to determine the
problem. It should be terse, but complete.

Sraerr is only to be used on internal errors. Users should never see any such error if the system
is properly installed.

S1aerr should prefix its output with a distinctive indication so that the user will easily understand
that this is an internal system error.

Ir recovery is attempted, the magic variable _/Li6State should be set to zero after backing out to
indicate to IDMLm that the syserr recovery has been successful.

EXCEPTIONS
A:IDMLIB.SYSERR(message)

Raised on non-catastrophic errors. Meaaage will have been printed already.

IMPLEMENTATION NOTES
Extreme care must be taken to avoid using any unnecessary resources in this routine, since a11aerr
may be called due to resource exhaustion. Also, araerr should not use the buffered primitives,
since they may not be properly initialized. Typically, ayaerr should aprint/ to a local buffer, and
then do a physical write to the standard error file.

Ir the error is not catastrophic, ayaerr may invoke a routine to interactively log a Problem Report
before raising the exception.

On VMS, this always signals the VMS condition IDMLIB-F-SYSERR, which is defined in
JDMLIB. It never raises A:IDMLIB.SYSERR. You can catch this signal using the usual VMS
conventions or you can link with JDMOBJ and provide your own araerr() routine. As supplied,
•r•err always ca.uses the program calling to exit. In addition, the message generated by ayaerr
bypasses the JDMLIB 1/0 system so it can't be redirected by internal manipulation to IDMLm.

3.8-87 /02/08-R3v5m0 Britton Lee 1

SYSERR (31)

SEE ALSO
printf(31}

BUGS

Britton Lee

The number of arguments to ayaerr is limited to three.

3.9-87 /05/18-R3v5m3 Britton Lee

SYSERR (31)

2

SYSSHELL (31) Britton Lee SYSSHELL (31)

NAME
sysshell - execute system command

SYNOPSIS
RETCODE B)"BBhell(cmd)
char •cmd;

DESCRIPTION
Syaahell executes the system command cmd. H cmd is CHAR.NULL an interactive command
interpreter is created.

The exit status of the command interpreter is returned.

EXCEPTIONS
W:IDMLIB.CANTFORK(why)

Cannot create a new process to run the shell.

E:IDMLIB.SYSSHELL(problem)
The shell could not be executed.

IMPLEMENTATION NOTES
An exception should be raised if the command cannot be executed. An exception should be raised
if ayaahell cannot be emulated on the host system, and RE_CANT should be returned if a more
specific error is not available.

Interrupts should be ignored while the subshell is running. Locking them using e:realock (see
ezc(31)) is not sufficient, as interrupts will be improperly queued for delivery when ezcavn/ock is
called.

On VMS, this is implemented using the library routine LIB$SPA WN. Only DCL is currently sup­
ported as a shell since the DEC/Shell has not been tested with IDMLIB. This may change in a
future release or IDMLIB.

On CMS, the emd string must explicitly request CP or EXEC as required, e.g.,
"CPQN"
"EXEC MYEXEC"
"MYPROGRAM"

Note that all are uppercase names; if a program name is given, it must not be the name of a
CMS user area program.

SEE ALSO
sysedit(3l), system(3)

3.7-87 /05/22-R3v5m3 Britton Lee 1

TEMPNAME (31) Britton Lee TEMPNAME (31)

NAME
tempname - create a unique file name

SYNOPSIS
char •t.empnam.e()

DESCRIPTION
Tempname returns a file name that is unique on the system. The file is not created. The string
is a copy, so it need not be saved before use.

Ir a file with this name is created, it will not be automatically deleted unless other arrangements
are made, such as setting a file disposition in i/open(31).

The file name is dynamically allocated, and must be Creed using s/ree.

DIAGNOSTICS
This routine is guaranteed to work for at least twenty-six calls. After that, it will raise an excep­
tion.

EXCEPTIONS
A:IDMLm.TEMPNAME.NOFILES

All temporary files are in use.

IMPLEMENTATION NOTES
On UNIX, the temp file should be in "/tmp". Other systems should behave analogously iC possi-
ble. The implementation is encouraged to allow more than twenty-six calls. · ·

On VMS, the file name is SYSSSCRATCH:IDMxxxxxx.n, where nna is the lower six characters
or your process ID in hexadecimal, and n is a decimal number that is incremented once Cor each
call to tempname(), starting at 0.

On CMS, the file name is vmuserid.IDLUTxy.Al, where z and r belong to the set A-Z, S, *·and
@.

SEE ALSO
iCopen(31)

3.8-87 /03/16-R3v5m0 Britton Lee 1

TF (31) Britton Lee TF (31)

NAME
tfset, tf, tflev, DPRINTF - trace package

SYNOPSIS
=H=include < idmtrace.h >
tf'aet(flags)
char •flags;

tf(flag, level)
int flag;
int level;

tflev(flag)
int flag;

DPRINTF(flag, level, (args))
int flag;
int level;
(LIST) args;

DESCRIPTION
Every process has available a vector of 100 trace flags, numbered (}.99. Flags 5(}.99 are reserved
for use by IDMLIB itself and other Britton-Lee-supplied libraries; flags (}.49 may be used by the
application. Tfaet sets the trace flags as described by its argument. The syntax of ftag11 is
approximately as follows:

<flaglist> ::= <flagclause> [, <flagclause>]•
<flagclause> ::= <flagrange> I <flagname>
<flagrange> ::= <flagid> - <flagname>
<flagname> ::= <flagid> [. <flaglevel>]
<flagid> ::= <integer> I <identifier>
<flaglevel> ::= <integer> I <identifier>

An individual flag name, e.g., "flag.level" specifies setting the ftag to level. A range specification
sets 8.11 ·the named flags to the specified level. A missing level is assumed to be one. The
identifiers are looked up in a special file using maparm(31), using a prefix of 't'. IDMLIB
identifiers a.re defined in the include file idmtrace.h.

The boolean routine t/() may be used to test if a given flag is at least at a particular level. The
routine tftetJ(j returns the level of a trace flag.

Calls to the trace package should be surrounded by #if de/s to simplify deletion for small hosts.
Trace information must always be printed using tprintf(} (see pn"nt.1{31)).

The macro DPRINTF combines calls to tf{) and tprintf(j if the precomiler flag DEBUG is defined.
DPRINTF expands to

if (tf(flag, level))
tprintf args

Arga must be enclosed in parentheses (see example below).

If DEBUG is not defined, DPRINTF is defined as the null string.

EXAMPLE
/• set flag 20 to level 2 •/
tfset("20.2");

/• test flag 20 for level 1 ~r grell-ter (TRUE in this example) •/
if (tf(20, 1))

tprintf(...);

3.8-87 /03/16-R3v5m0 Britton Lee 1

TF (31) Britton Lee

/* test for level 5 or greater (FALSE in this example) •/
u (tr(20, s))

tprintr(...);

I•
** Print index it flag 32 is level 4 or greater.
** Note that arguments to tprintf{) are enclosed in parentheses
** when DPRINTF is invoked.
•I
DPRINTF(32, 4, ("index=%d\n", index));

SEE ALSO
crackargv(31), mapsym(31), printf(31)

3.7-86/09/29-R3v5m0 Britton Lee

TF (31)

2

TUPPRINT (31) Britton Lee TUPPRINT (31)

NAME
tupsetup, tupsep, tuphead, tupprint - print tuples

SYNOPSIS
#include < idmtlist.h >
#include <idmenv.h>

tupeetup(itl, env)
ITLIST •itl;
IENV •env;

tupaep(itl, where, ifp)
ITLIST •itl;
int where;
IFILE •ifp;

tuphead(itl, ifp)
ITLIST •itl;
IFILE •ifp;

tupprint(itl, ifp)
ITLIST •itl;
IFILE •ifp;

DESCRIPTION
This family of routines prints tuples as in idl(ll).

Tupaetup sets up the target list for printing. This involves computing the width of fields, etc.,
storing the results in the target list. Defaults are determined Crom the specified environment
(someday). H env is IENVNULL a default environment will be used.

Tupaep prints a line between parts of the output. Where is -1, 0, or +1 for the line above,
amidst, a.nd at the bottom of the table respectively.

Tuphead prints a line with the titles.

Tupprint prints the data in a tuple.

For example, the following sample table shows which lines are generated by which routine:

--1-1 tupsep(-1)
I name I x I tuphead
1--1 - I tupsep(O)
I greg I 12 I tupprint
I dave I 114 I tupprint
I I - I tupsep(O)
I name I x I tuphead
I 1-1 tupsep(l)

Tupaetup fills in print information in the target list. This can be modified before printing by the
application. The lTL_PRINTABLE bit is set in itLftaga to indicate that this attribute can be
printed; if cleared, the attribute is ignored by all routines. The other fields are:

itLpwidth The width of the output field.

itLpprec For floating point or BCD attributes, the number of digits after the decimal
point.

itLpfmt The output format.

RESTRICTIONS
In all cases, the i/p should be type //tTerm(41), since special terminal sequences are generated.

3.7-86/09/29-R3v5m0 Britton Lee 1

TUPPRINT (31) Britton Lee TUPPRINT (31)

SEE ALSO
igettl(31), igettup(31), printf(31)

3.9-87 /02/26-R3v5m0 Britton Lee 2

TYPECNVT (31) Britton Lee TYPECNVT (31)

NAME
typecnvt, cktypecnvt - generalized type conversion

SYNOPSIS
int typecnvt(intype, inlen, inval, outtype, outlen, outval)
int intype;
int inlen;
BYTE •inval;
int outtype;
int outlen;
BYTE •outval;

BOOL cktypecnvt(intype, inlen, outtype, outlen)
int intype;
int inlen;
int outtype;
int outlen;

DESCRIPTION
Typccnvt converts the data of type intypc of length in/en pointed to by inval into the specified
otdtypc/ ovtlcn into the buffer pointed to by ovtval. Returns the actual length of owtval on suc­
cess, negative on failure. An exception will also be raised on failure.

Oktppccnvt checks to see if the conversion can be performed, returning TRUE if it can and
FALSE if it cannot.

CONVERSIONS
The following types are supported both as input and output types:

iCHAR iFCHAR iSTRING
iINTl iINT2 iINT4
iFLT4 iFLT8 iBCD
iFBCD iBCDFL T iFBCDFL T
iBINARY iFBINARY

All conversions are supported except that iBINARY and IFBINARY can only be converted to or
from one of the string types.

For convenience, if intppc is iSTRING and in/en -1, typccnvt will use the atrlcn() of inval as the
input length.

Conversion to iBCD and iBCDFLT should be done in the manner of the following example, which
converts a character string named :r into a BCD number named b:

BCDNO b;
char x[12];

b.bcd_len = typecnvt(iCHAR, 12, x, iBCD, 11, __ b.bcd_str);
b.bcd_type = iBCD;

Bcd_lcn, bcd_atr, and bcd_typc are the three fields defined in idmlib.h for a structure of type
BODNO. Note that the field bcd_atr is an array, and therefore the expression __ b.bcd_atr in the
above example does not need an ampersand preceding the b.bcd_atr.

The following example shows how to convert a number stored in a BCDNO structure to some
other type. We use 6 and :r as defined in the previous example.

(void) typecnvt(b.bcd_type, b.bcd_len, __ b.bcd_str, iCHAR, 12, x);

3.9-87 /02/26-R3v5m0 Britton Lee 1

TYPECNVT (31) Britton Lee

EXCEPTIONS
E:IDMLm.CNVT.CANT(intype, outtype)

The type conversion cannot be performed.

W:IDMLm.CNVT .OVERFLOW(input, limits)
Data has been truncated.

W:IDMLm.CNVT.GARBAGE(input, type)

TYPECNVT (31)

Garbage (non-numeric data) was found on the end of the input stream during conversion
to the specified type.

BUGS

E:IDMLm.CNVTBADTYPE(type)
The type was unknown.

Input types that have extra blanks or zeros that overflow a non-fixed output type overflow, even
though they would not it the extraneous cruft were stripped.

SEE ALSO
string(31)

3.3-86/06/27-R3v5m0 Britton Lee 2

UNSIGN (31) Britton Lee

NAME
UNSlGN - remove sign-extension bits from a byte

SYNOPSIS
int UNSIGN(byte)
int byte;

DESCRIPTION

UNSIGN (31)

UNS/GN strips the sign-extension bits off of the low-order byte of an int value, leaving eight bits.

UNSIGN must be used for comparisons of bytes which may have the high-order bit set; for exam­
ple:

BYTE cmd;
if (UNSIGN(cmd) == iRANGE)

UNSIGN is implemented as a macro.

EXAMPLES
UNSlGN(0123) - 0123
UNSIGN(0200) - 0200
UNSlGN(0177600) - 0200

3.4-86/09/28-R3v5m0 Britton Lee 1

USERNAME (31) Britton Lee USERNAME (31)

NAME
username - get user name

SYNOPSIS
char •Wlel'name{)

DESCRIPTION
Uaername returns a pointer to the current user's login name.

WARNINGS
This call may be expensive in some environments. It is wise to save the result if needed inside
loops.

The return value points to static data space. However, since each call will return the same value,
this should be irrelevant.

IMPLEMENTATION NOTES
This routine is intended to log names of users in logs and to store dynamically generated user
profiles. As such it should make every attempt to identify the individual. For example, on UN1X
a distinction is made between the logged in user and the executing user {which can be changed
using the au(l) command); the former should be used.

This routine must always return a value; if the user name cannot be determined, then the
numeric userid should be converted to a string and returned.

On VMS, this is implemented with the LIB$GETJPI(JP1$_USERNAME) system service.

SEE ALSO
su{l), getlogin{3)

3.3-86 /09 /28-R3v5m0 Britton Lee 1

UTREE (31) Britton Lee UTREE (31)

NAME
itiutree, ituitree - convert to and from user tree (UTREE) representations

SYNOPSIS
:#include <idmtree.h>

BYTE •itiutree(tree, &sise)
ITREE •tree;
int ••ise;

ITREE •ituitree(utree)
BYTE •utree;

DESCRIPTION
UTREE's are a representation of an IDM tree structure with pointers removed. This form can be
moved in memory, sent to a different process, written to a file, or otherwise moved and still be
viable. The most common use is to pass compiled trees to a program generated by a precompiler.

Jtiutree converts a normal tree such as might be returned by id/parae(3I) into a position indepen­
dent byte stream, referred to as a UTREE. The UTREE form is dynamically allocated via
Hlloc(31) and should be freed when no longer needed. The length of the UTREE in bytes is
stored into the integer pointed to by aize.

/tuitree converts a UTREE into a normal fully linked tree suitable for passing to further routines.
This tree should be freed using it/ree(31) when no longer needed.

EXCEPTIONS
A:IDMLIB.IDM.UTREE.BADVER(tree, me)

A UTREE was passed to ituitree marked as version tree. Version me is the version that
is understood.

A:IDMLIB.IDM.UTREE.TRASH
The tree that was passed to ituitrec could not be decoded.

SEE ALSO
idlparse(31), itfree(31), xalloc(31), itree(51)

3.7-86/12/24-R3v5m0 Britton Lee 1

XALLOC (31) Britton Lee XALLOC (31)

NAME
xalloc, zalloc, savestr, xfree, newmpool, mergempool, freempool, showmpool - main memory allo­
cator

SYNOPSIS
#include <idmmpool.h>

BYTE •xalloe(siae, mpool)
int sise;
MPOOL •mpool;

BYTE .. alloc(sise, mpool)
int sise;
MPOOL •mpool;

char •savestr(str, mpool)
char •str;
MPOOL •mpool;

xfree{ptr)
BYTE •ptr;

MPOOL •newmpool(quantum, parentmpool)
int quantum;
MPOOL •parentmpool;

mergempool(oldmp, newmp)
MPOOL •old.mp;
MPOOL •newmp;

freempool(mpool)
MPOOL •mpool;

showmpool(mpool, flags)
MPOOL •mpool;
int flap;

DESCRIPTION
Memory is arranged into a collection of memory poola. Each pool contains a collection of zero or
more aegmenta, allocated by one of the allocation routines. Pools are organized into trees: except
for the root, each pool has a unique parent and some number of children. If a memory pool is
freed, all segments in that pool and all child memory pools are freed.

There are two special memory pools: SyaMpool is the root memory pool, and De/Mpool is the
default memory pool. SyaMpool can never be freed or subsumed into another pool. De/Mpool is
used if no memory pool is explicitly referenced. Initially, De/Mpool is set to SyaMpool.

Xalloc returns a pointer to a block of at least aize bytes suitably aligned for storage of any type
object out of the specified memory pool. If the memory pool is specified as MPOOLNULL
De/Mpool is used. Zalloc promises to return zeroed memory; in other respects it is identical to
zalloc. Saveatr allocates enough memory to store the string and copies it.

If aize is zero then any pointer may be returned. If possible this pointer should be an illegal
value so that attempts to reference it will be caught and rejected.

If memory cannot be allocated in any of these routines, the function pointed to by the global
variable NoMemFunc will be called. This function must Cree memory and return non-locally. It
must NOT raise an exception before freeing memory, since the process of raising an exception
consumes memory. If NoMemFunc is not specified or returns the program is irrevocably aborted.

3.7-86/12/24-R3v5m0 Britton Lee 1

XALLOC (31) Britton Lee XALLOC (31)

The argument to -z/ree is a pointer to a block previously allocated by salloe, zolloe, or eave&tr;
this space is made available for further allocation. Grave disorder will result if this pointer does
not point to area that has been allocated - no special validation is performed.

Newmpool allocates a new memory pool. Parentmpool is the memory pool that should "own"
this pool; when a pool is freed, all child pools are also freed. The qvant•m is advice from the
application to the memory allocator about the size of blocks allocated from the system for this
pool. It is not a limit on the maximum allocation size. If zero, a system default is used. This
represents the nominal size of a new extent to be requested from the system if the existing
memory pool cannot honor a.n allocation request. Applications that wish to allocate a large
number of small segments may want to set the quantum high to minimize memory fragmentation.

Freempool frees the memory pool, all memory that was allocated out of it, and all child memory
pools. SraMpool can never be freed; any attempt to do so will abort the program.

Mergempool merges oldmp into newmp; that is, all memory owned by oldmp is given to newmp
and oldmp is deleted a la /reempool. If oldmp is :MPOOLNULL then De/Mpool is used; if newmp
is :MPOOLNULL then the parent of oldmp is used.

Showmpool prints some information about the memory allocation in the given memory pool.
MPOOLNULL may be used to see the system default pool. This routine is for debugging. If
debugging is not enabled, it will act as a no-op. The ftaga are a map consisting of the following
bits:

MPS_RECURSE
Show subordinate memory pools as well.

MPS_SUMMARIZE
Print one number instead of a report for every memory pool you look at.

MPS_NDISPLAY
Don't display any memory pool information (but the total number of segments is
returned).

MPS_DETAIL
Print a detailed summary of memory utilization. This requires that trace flag ll.IB-

. MEMORY.IOI be turned on. This only works on some implementations.

The include file <idmmpool.h> must be included by all files using any of the memory pool rou­
tines and by any files passing non-default memory pools to any of the other routines.

To safely create a memory pool to be released in the event of an exception backout, use the code:

excalock();

EXCEPTIONS

if (exchandle("T:IDMLIB.ASYNC.•", excbackout) != 0)
freempool(DefMpool);

DefMpool = newmpool(O, :MPOOLNULL);
excaunlock(TRUE);

A:IDMLIBXALLOC.SIZE(size)
An illegal aize (that is, less than zero) has been specified.

IMPLEMENTATION NOTES
Zalloe is provided as a separate function since some operating systems may have a particularly
efficient way of getting zeroed memory.

UNIX implementations must also provide malloc, realloc, and free so that host programs using
these primitives may coexist with IDMLIB. Similar comments apply to other operating systems.

3.7-86/12/24-R3v5m0 Britton Lee 2

XALLOC (31) Britton Lee XALLOC(31)

Where possible, memory pools should be physically clustered to improve paging behavior.

The qunt•m is the number of bytes that should be requested from the system if there is no room
in the memory pool to allocate the current request. It must never be interpreted. u a maximum
limit.

The implementation of memory pools must include a field named mp_/ft.t that contains a list of
routines to be invoked when the memory pool is freed. These routines should be invoked using:

_ft_call((FLIST **) &mp-mp_ftist);

The FLIST structure is defined in <itlm/fut.la>.

Comments in the UNIX version explain more details.

The VMS version is the same as the UNIX version, except that the MPS_DETAR. feature of
1/aotompool() is not supported. The primitives malloc() and free() have been implemented as calls
to LIBtGET_ VM and LIB$FREE_ VM.

GLOBALS
Def'Mpool

SysMpool

BUGS-UNIX

The default memory pool, used if MPOOLNULL is passed to one or the alloca­
tion routines.

The global memory pool. This pool is never freed. IDMLm system reeources
are allocated from it.

UNIX ignores the q.ant•m parameter to netompool; in fact, memory pools are simulated, and
memory can become horribly fragmented.

SEE ALSO
malloc(3)

3.4-86/06/27-R3v5m0 Britton Lee 3

XDUMP (31) Britton Lee

NAME
xdump - dump bytes in hexadecimal to standard trace

SYNOPSIS
xdump(p, n)
BYTE *Pi
int n;

DESCRIPTION

XDUMP (31)

Xdump prints n bytes from p on stdtrc in hexadecimal. A character representation is also
included.

Duplicate lines of output are suppressed (not printed) to compress the output. When a line is
encountered which is different, printing resumes and a '·' character is output next to the byte
count.

3.4-86/06/27-R3v5m0 Britton Lee 1

INTRODUCTION (41) Britton Lee INTRODUCTION (41)

NAME
IDM file type introduction and implementation

SYNOPSIS
IFTYPE
{

};

FUNCP
FUNCP
FUNCP
FUNCP
FUNCP
FUNCP
FUNCP
char
char

DESCRIPTION

_ift_open;
_ift_close;
_ift_read;
_ift_getbuf;
ift write;
_ift_putbuf;
ift control;
•_ift_name;
• _ift_ par ams;

/• open file •/
/ * close file * /
/ * physical read bytes * /
/ * get a buff er or data * /
/ * physical write bytes * /
/• put a buffer or data•/
/ * control file * /
/* name of type •/
/ * default open par ams * /

The IFTYPE structure defines the interface between the buffering system (if open, 1f getc, sf write,
i/control, etc.) and the type-dependent implementation. The routines in this interface are not
intended to be called by application programs. However, it may prove convenient for a sophisti­
cated application to define a special purpose file type.

The interface consists of seven procedures and two strings. The procedures implement file open,
file close, reads of bytes, writes of bytes, and performing of control operations. The strings give a
name of the file type for messages (e.g., "host file" or "IDM channel") and the set of defaults for
if open parameters.

_i/Lopen{name, parama, ifp) opens the named file with the specified parama. It may store infor­
mation necessary to access the file into the following fields of i/p: -•1-fd (file descriptor or control
block), _if_dbin (database instantiation number), _if_lftaga (local flag bits), and _i/_z (a pointer
to a local control block used to store any additional information). It should return zero on suc­
cess. On failure it may return -1 to issue a generic "cannot open" message or may raise a more
specific exception with "Abort" severity. Memory should be allocated from the memory pool
ifp-_if_mpool; this memory is deallocated automatically when the file is closed.

_i/Lcloae{1fp) closes the file indicated by i/p. Any resources allocated in the _ift_open module
should be released (memory allocated from i/p-_i/_mpoo/ will be deallocated automatically). If
necessary, closing protocol should be sent.

_ i/L read{ifp, bu/, cnt} reads up to cnt bytes from i/p into bu/. It should return the number of
bytes actually read. It may return zero on end of file and -1 on error. This will only be called
if the _dio attribute is set. If the _rbt attribute is set, cnt is guaranteed to be the block size.

_i/Lgetbuf{ifp) gets a buffer's worth of data and sets ifp-_if_irbaae to point to it, returning the
number of bytes available. For streams, the canned routine _igetbu/ can be used, which calls
_ i/L read with the appropriate arguments.

_ i/L write{ifp, bu/, cnt} writes cnt bytes from bu/onto •fp. The actual number of bytes written is
returned, or -1 on error. ,This will only be called if the _dio attribute is set. If the _rbf attri­
bute is set, cnt is guaranteed to be the block size.

_i/Lputbu/{i/p, cnt} Put the buffer pointed to by ifp-_if_orbaac containing cnt useful bytes to
the file. This routine may pad out the buffer to up to i/p-_i/_raizc bytes, but ifp-_if_orptr
may not be used. The field ifp-_if_orbaac is then reset to point to a clean buffer that must be
at least of size 1/p-_i/_raizc, usually ifp-_if_obbaac which points to the base of the buffer area.
A cnt of zero indicates a zero-length record; a negative cnt must not put any data, but must still
return a pointer to a new buffer. Returns the actual count of bytes written. This routine may

3.10-88 /03 /OI-R3v5m8 Britton Lee 1

INTRODUCTION (41) Britton Lee INTRODUCTION (41)

manipulate the fields •1p-_if_obent and i/p-_i/_obptr to implement blocked files; on the first
call (with ent < 0) these will be zero.

_i/Leontrol{ifp, parama, arga) performs the control operation(s) specified by the parama field on
i/p. The arga field may point to additional arguments as needed by the control operation. The
return value is passed back to the user, normally zero for success, negative for failure.

These routine ehould be bundled together into one module, and a new file type declared. For
example:

extern int myopen(), myclose(), mycontrol();
extern int myread(), mywrite(), _igetbuf(), _iputbuf();
IFTYPE IftMyFile =
{

};

myopen, myclose,
myread, _igetbuf,
mywrite, _iputbuf,
mycontrol, "My File", "bs(512)"

The routines in the interface can be declared STATIC; only the declaration of lftM11File need be
extern.

All control operations on the file should be implemented as an if control call rather than through
ad hoc routines or global y;a.riables. This ensures maximum consistency, flexibility, and portabil­
ity.

CONTROLS
The following controls should be implemented on all files where they make sense. The individual
pages document all the controls that apply to that type - if the description is "standard" then
they behave as described below. See also i/eontro/(31). Controls beginning with underscore
should never be issued by an application program.

cancel

_delete

flush block

_ioerr

reset

rewrite

Stop 1/0 on the file.

Remove the file indicated by i/p-_i/_name. The file is guaranteed to be closed.
This control is issued from i/eloae(31) if the file disposition is delete.

Flush any blocked 1/0 that may be stored. This should be ignored on any file
type that does not support blocked 1/0 (that is, more than one record per
block).

Try to recover from an 1/0 error. If it returns a generic message will be raised.
Files that can generate more specific messages or which c'&n recover in some way
may back out using another message. This is generated from the routine
_ioerr. 1

Reset the file to the beginning.

Reset and truncate the file to zero length. The file must be enabled for writing
for this to succeed. Writing will begin at the beginning of the file.

Control operations that a.re not understood should be ignored by the file type. However, some
file types may want to catch operations that they cannot implement and flag them as errors if
their failure would cause confusion.

Several ftag bits can be set using i/eontro/(31) to control the presentation of data to the type
module. In general these should never be used by an application, since the correct functioning of
the type module may depend on their setting.

3.10-88 /03 /01-R3v5m8 Britton Lee 2

INTRODUCTION (41) Britton Lee INTRODUCTION (41)

_dio (Direct I/O) When set, the I/O subsystem will attempt to use _i/Lread and
_i/Lwrite under some conditions. When clear, all I/O will be performed using
_ i/t_ get6u/ and _ i/t_ put6u/.

linebuffer (Buffer output one line at a time) When set, A call to _ift_,vt6u/ will be made
every time i/putc is called with a 'newline' argument. Systems that store text
files as variable length records or that must convert newlines to carriage­
return/line-Ceed combinations can set this mode to help simpliry the file type
module.

nameopt(O) (Can be used only in _i/Lparama.) Ir 0 is r, a non-null name is required on the
i/open(3I) call. Ir 0 is n, no name is allowed. Ir 0 is o or nameopt is not
specified, a file name is optional.

_rbr

EXCEPTIONS

(Record Based File) When set, all calls to _i/Lread and _ift_write will have a
count equal to the block size. This flag should only be asserted Crom inside the
file type module; use by a user program can cause unexpected results.

Exceptions should normally be labelled

application.IO.tJPe.cat1ae

where application is the name of the application or library that defines this type, IJPe is the name
(or a permutation of the name) of this file type, and cauae uniquely identifies the exception.

Exceptions common to all files are:

A:IDMLIB.IO.IOERR(filetype, filename, reason)
An 1/0 error occured on the specified file.

A:IDMLIB.IO.ROWOF(filetype, filename)
An attempt was made to read a write-only file.

A:IDMLIB.IO .WOROF(filetype, filename)
An attempt was made to write a read-only file.

RECORD-BASED VS. STREAM-BASED
Files can be physically record-based or stream-based. Stream-based files may have physical I/O
performed on them of any length at arbitrary offsets; when read, any boundaries Crom the write
that produced the data will not appear. UNIX files, strings, and the database server all fit this
model. Record-based files have distinct record boundaries created by a write, and reads must
pair one-to-one with writes.

SUPPORT ROUTINES
The Collowing routines are provided for use by the file type modules:

_ioerr(itp)
Signal an I/O error on i/p. This saves the error code in i/J>--i/_error and calls
ifcontrol(ifp, "_ioerr", BYTENULL) to attempt error recovery. Ir this i/control call
returns, then _ioerr will raise A:IDMLIB.IO.IOERR.

_itsetbur(itp, bs, rs)
Creates the appropriate buffers on •lp oC size 6a with the record me set to ra. The order
for selecting the size is: (1) the size specified by the user, (stored by t]o,en(31) in the
_i/_6aize and _i/_raize fields), (2) the 6a and ra parameters, assuming they are positive,
(3) the default for this file type, determined by the _ift_parama field, and (4) a system
default, determined by the IOBSIZE system parameter for 6a or the copied Crom the 6a to
the r• specification. This call should only be used in the open routine, and muat be called
before attempting any 1/0 on i/p.

3.10-88 /03 /01-R3v5m8 Britton Lee 3

INTRODUCTION (41) Britton Lee INTRODUCTION (41)

EXAMPLES
Examples of getbuf and putbuf routines are included here for a mythical type ''xx" file.

Unblocked getbuf
xxgetbuf(ifp)

register IFILE •ifp;
{

ifp-_iLirbase = ifp-_iLibbase;
return (xxread(ifp, ifp-_if_ibbase, ifp-_if_bsize));

}

Unblocked putbuf
xxputbuf(ifp, cnt)

register IFILE •ifp;
{

}

ifp-_if_orbase = ifp-_if_obbase;
if (cnt < 0)

return (O);
return (xxwrite(ifp, ifp-_if_orbase, cnt));

Blocked r;etbuf
xxgetbuf(if p)

{

}

register IFILE •ifp;

if (ifp-_if_ibcnt S 0)
{

}

inti;

i = xxread(ifp, ifp-_if_ibbase, ifp-_if_bsize};
if (i s 0)

return (i);
ifp-_iLibcnt = i;
ifp-_if _ibptr = ifp-_if_ibbase;

ifp-_if_irbase = ifp-_if_ibptr;
ifp-_if_ibptr += ifp-_iLrsize;
ifp-_if_ibcnt -= ifp-_if_rsize;
if (ifp-_if _ibcnt < ifp-_if_rsize)

ifp-_if _ibcnt = O;
return (ifp-_if _rsize);

Blocked putbuf
This example assumes that only fixed-length records are being delivered from the upper level,
which is not a good assumption.

xxputbuf(ifp, cnt)
IFILE •ifp;
int cnt;

{
inti;

if (cnt > 0)

3.10-88/03/01-R3v5m8 Britton Lee 4

INTRODUCTION (41) Britton Lee

}

SEE ALSO

{

}

itp-_iLorbase += cnt;
itp-_it_obcnt -= cnt;

if (itp-_if_obcnt < itp-_if _rsize)
{ .

}

i = itp-_iLorbase - itp-_iLobba.se;
if (i > 0)

xxwrite(ifp, ifp-_iLobba.se, i);
ifp-_iLorbase = ifp-_if_obba.se;
ifp-_iLobptr = ifp-_if_obbase;
ifp-_iLobcnt = ifp-_if_bsize;

return (cnt);

ifclose(31), itcontrol{31), ifopen(31), pextract(31)

3.12-86/10/16-R3v5m0 Britton Lee

INTRODUCTION (41)

5

IFTHFil..E (41) Britton Lee IFTHFil..E (41)

NAME
lftHFile - host file file type

SYNOPSIS
ext.ern IFTYPE IftBFile;

ifp = ifopen(fllename, &IftHFile, params, IFNULL);

DESCRIPTION
This file type implements an interface to host operating system files. The filename is the name of
the file on the host, in the host syntax.

PARAMS
Params marked with t are also legal controls. Descriptions reading "standard" are documented
in i/open(31). Parameters marked with • may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

bs(N) Buffer size. Default depends on the host operating system. In a record-based
file system, this parameter may define the maximum record or buffer size as con­
venient; larger records may be truncated on reads and disallowed on writes.
Note that in some cases, such as magnetic tape, buff er size and block size are the
same.

cms(X)

disp(D)t

global

linebuffer(B)t•

mode(M)

padchar(B)t•

pred(P).

rbp(B)t

rs(N)

temp

trace(B)t

type(T)

vms(X)

CONTROLS

Xis passed directly to CMS for further interpretation. Ignored by other sys­
tems.

Standard.

Standard.

Standard.

Standard.· Mode(u) is not required to work except on temp files.

Standard.

If the file predisposition P is new then the file must not already exist; if old
then the file must already exist. Otherwise the file must exist in read mode, and
is created if necessary in the other modes.

Standard.

Standard.

This is to be used as a temporary file. It may have more restrictive permissions,
and it should be removed if the process exits.

Standard.

Detailed type information: currently t.ext or binaey. Where possible, this infor­
mation is defaulted from the operating system. Type(text) may imply line
buffering.

Xis specific to VMS. It is ignored by other systems.

Controls described as "standard" are documented in i/contro/(31) and intro(41). Controls marked
with • may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancel Standard.

3.12-86/10/16-R3v5m0 Britton Lee I

IFTHFILE (41) Britton Lee 1FTHFILE (41)

Standard. clrerr

_delete• Remove the underlying file. This call should only be issued rrom i/cloac(31) if
the disposition is delete. The file will have been closed already.

flush block

getbs

getflags

getrs

reset

rewrite

Standard.

Standard.

Standard.

Standard.

Standard. Should raise an exception if a reset is not possible on the file.

Standard. Should raise an exception if a rewrite is not possible on the file.

EXCEPTIONS
A:IDMLIB.IO.HFILE.DELETE(filename, reason)

If the file cannot be deleted.

RESTRICTIONS
Update mode is only required to work in the following limited manner: a file opened for update
may be written, reset, and read; writing may continue at end of file or after truncation. This is
only required to work with disk files with the temp attribute.

IMPLEMENTATION NOTES
This file type is used for all types of host files, including disk files, unit record files (e.g., line
printers), and terminals (however, see /ftTcrm(4I)). The implementation should be prepared to
do any extra multiplexing necessary. In general, it is not a requirement that tape drives be sup­
ported; tapes should be accessed using the IftLTapc module. The type parameter can be used if
necessary to determine the detailed host file type. Where possible, the implementation should be
flexible in the interpretation of this parameter, and it must never be required.

On CMS, this file type can be used for all types of host files including tapes and terminals. In
both cases, the user opens the desired type, which then internally accesses /ftHFilc.

This module must ensure that special mappings are performed as necessary, e.g., mapping newline
to carriage-return/line-feed on output to a text file if required.

On VMS, ANSI labeled tape is already supported by the operating system. IftLTapc is defined to
be lftHFilc.

SEE ALSO
exc(31), ifopen(31), iftmtext(41), iftterm(41)

3.18-88/03/01-R3v5m8 Britton Lee 2

IFTIDM (41) Britton Lee IFTIDM (41)

NAME
Iftldm - IDM channel file type

SYNOPSIS
extern IFTYPE lttldm, IttReopen;

ifp = ifopen(dbname, <tldm, params, IFNULL);

rifp = ifopen(NULL, &IttReopen, "", ifp);

DESCRIPTION
lftldm is the type descriptor for a raw connection to the database server. The dbname is used as
the database name. If it is NULL, no database is opened.

lftReopen is used to get a reopened connection to the database server (see the S11atem
Programmer'a Manual . The name parameter is unused, but the ifp of an existing connection of
type lftldm must be p8.$ed as the baaeifp parameter.

The name of the device used to create the connection is divined from the IDMDEV system
parameter. The syntax is similar to file specifications described in i/acrack(31): "device%driver"
specifies the device using driver. Drivers vary from system to system; common values are multi
for the normal multiuser driver, stand for the standalone serial driver, and xns for the XNS eth­
ernet driver. On UNIX the "/dev /" part of a device name may be omitted. For example, an
IDMDEV set to idm%multi specifies the multiuser driver and device /dev/idm. If no driver is
specified, the IDMDRIVER parameter is interpreted as an integer index into the driver table.
This use is discouraged.

PARAMS
Params marked with t are also legal controls. Descriptions reading "standard" are documented
in i/open(31). Parameters marked with • may have unexpected side effec~ they should normally
be reserved by internal use by the file type only. ·

autoclose(B) Standard. Defaults off.

bs(N)• Underlying block size. This is set to 2048 by default.

device(D)

disp(D)t

global

lifeline

linebuffer(B)t•

mode(M)•

padchar(B)t•

rbp(B)t•

rs(N)

trace(B)t

CONTROLS

Overrides the ID MD EV parameter.

Ignored.

Standard.

Used only on XNS connections. If set, this socket may be the "lifeline socket"
- otherwise, opening the lifeline socket is illegal.

Meaningless.

Only u mode accepted (default). Reads and writes may be intermixed without
intervening reset calls; however, the output should always be iffeuah(3l}'ed
before a read is attempted.

Ignored.

Illegal.

Standard.

Standard. Defaults on.

Controls described as "standard" are documented in i/contro/(31) and intro(41). Controls marked
with • may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

3.18-88 /03 /01-R3v5m8 Britton Lee 1

IFTIDM(41) Britton Lee IFTIDM (41)

cancel

clrerr

flush block

getbs

getdbin

getflags

get rs

_ioerr•

Cancel the current query. Sends a CANCEL command to the database server.

Standard.

Standard.

Standard.

Put the "dbin" into the short pointed to by arga.

Standard.

Standard. Identical to getbe.

Used internally to signal an 1/0 error.

lifeline Return TRUE into the BOOL variable pointed to by arga if this is the lifeline
socket; FALSE otherwise.

opendb(DB}

setdbin

reset•

rewrite•

Open the named database.

Set the "dbin" to the short pointed to by arga.

Undefined.

Undefined.

IMPLEMENTATION NOTES
A machine-independent implementation of most of this module is provided. Physical interface to
the host operating system is via the following dispatch table, defined in <idmdriver.h>:

struct idmdriver
{

};

BYTE
FUNCP
FUNCP
FUNCP
FUNCP
FUNCP
FUNCP

•(•id_open)();
id_huid;
id_ close;
id_read;
id_ write;
id_ cancel;
id_ioerr;

/ * open a connection * /
/* send user id (XNS only) •/
/ * close a connection * /
/* read bytes/packets •/
/•write bytes/packets •/
/• send a cancel (non-XNS only) •/
/* recover from 1/0 error •/

There are two styles of system interface supported. The first is used for the serial or parallel
IDM-HOST interface. The second is the XNS interface.

Serial/Parallel Interface
It is expected that these will map to one system or supervisor call if a multiuser driver is avail­
able. If not, these are expected to implement the single user (READW AIT /WRITEW AIT) proto­
col.

id_open(device, ifp)

id_huid

Open the named device and set all appropriate modes (e.g., baud rate on serial lines).
Return the file descriptor for the channel. The specified i/p may be used if other parame­
ters must be set.

Unused. This should alwaya be specified as FUNCNULL for serial or parallel interfaces.

id_close{fd)
Close the IDM connection.

id_read{fd, dbin, buf, count)
Read count bytes from the given /d and dbin into bu/. Return the number of bytes actu­
ally read as returned by the database server (including the EOR bit, which should be the

3 .18-88 /03 /01-R3v5m8 Britton Lee 2

JFTIDM (41) Britton Lee JFTIDM (41)

Ox8000 bit).

id_ write(f d, dbin, buf, count)
Write count bytes from bu/ to the database server indicated by /d and dbin. Return the
actual number of bytes written.

id_cancel(fd, dbin, what)
Send a CANCEL or a CANCELP on the given fd/ dbin. What is either CANCEL or
CANCELP (defined in < idmchan.h >) to send the corresponding command.

id_ioerr(ifp)
Handle an 1/0 error. In some cases this may require reading error tokens from the chan­
nel. In this case the processing should back out by raising an abort exception. On
UNIX, the canned routine _ idmioerr can be used for vanilla drivers. This depends on
the driver setting the errno variable to one of the distinguished values listed in
idmeherr.h.

XNS Interface
These calls are specific to XNS network implementations.

id_open(hostname, ifp)
Open a connection to the specified hoatname. Otherwise identical to the Serial/Parallel
interface. This routine will probably want to call

_ifsetbuf(ifp, 0, MAXP ACK);

where MAXPACK is the maximum packet size to be sent over the connection. Larger
packets will still be accepted.

id_huid(fd)
Send an HUID packet on the specified /d for identification purpose5.

id_close(fd)
Identical to the Serial/Parallel interface.

id_read(fd, buf, cnt, ptype)
Read a single XNS SPP (Sequential Packet Protocol) packet from the socket indicated by
fd into 6u/, which is of maximum size cnt. Return the actual number of data bytes read
(excluding SPP header bytes) as the value, and the one byte Data.stream Type into the
byte indicated by ptype.

id_write(fd, buf, cot, type)
Write a single XNS SPP packet of specified type to the connection indicated by /d. The
data part, if a.ny, is specified by bu/ and ent. If bu/ is BYTENULL no data is to be sent
with this packet (i.e., the type completely specifies the content of the packet). If type is
ATTENPACK (defined in <idmxna.h>) this packet muat be sent "out of band" - that
is, with the ATTENTION bit set in the Connection Control field of the SPP header.

id_cancel
MUST be FUNCNULL for XNS based drivers.

id_ioerr(ifp)
Same as specified in the Serial/Parallel interface.

Out-of-band data (that is, data with the ATTENTION bit set in the SPP Connection Control
field) must be caught, normally by the id_open module. This must set two global variables:
_Attention to TRUE to indicate that an attention packet has been received, and _AttnFd to the
file descriptor of the file blessed with the out-of-band data. _AttnFd is not examined unless
_Attention is set, so a possible implementation might set _AttnFd on every call to id_ write, setr
ting _Attention only when outrof-band data is actually received.

3.18-88/03/01-R3v5m8 Britton Lee 3

IFTIDM (41) Britton Lee IFTIDM (41)

WARNINGS
Sending an "open database" command will not cause the "dbin" to be set automatically from the
associated done packet. Use the aetdbin i/control call to set the "dbin" in this case, or open the
database using the opendb call.

EXCEPTIONS
A:IDMLIB.10.IDM.NODEVICE(devicename, why)

The database server device cannot be accessed.

R:IDMLIB.IDM.GETHUNPW(database)
Raised iC the specified databaae is inaccessible on an opendb if control or on an initial
open. If the system parameter GETHUNPW is set to '1' (see parama(5I)), the default
handler get/aunpw(31) will try to divine a user name and password (by asking the user if
necessary) and return so that the open can be retried.

A:IDMLIB.10 .IDM.NODRIVER(options)
You have specified an unknown driver specifier in your IDMDRIVER parameter. O,,tiona
gives the list of legal driver names.

A:IDMLIB.10.IDM. TIMEOUT(device)

SEE ALSO

When you tried to read results from the database server you found that they had been
cancelled because of an excessive delay.

gethunpw(31), getparam(31), ifcontrol(3I), ifopen(3I), igetdone(3I), igettl(31), igettup(31),
params(51), Syatem Programmer'a Manual.

3.9-87 /12/04-R3v5m7 Britton Lee 4

IFTIFILE (41) Britton Lee IFTIFILE (41)

NAME
lftIFile - IDM file file type

SYNOPSIS
extern IFTYPE lftIFile;

ifp = ifopen(filename, &lftIFile, params, idmifp);

DESCRIPTION
This file type interfaces with an IDM file. The filename names a file in the current database for
the database server connection opened by the file idmi/p, which must be or type lftldm.

PAR.AMS
Params marked with t are also legal controls. Descriptions reading "standard" are documented
in tfopen(3I). Parameters marked with • may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

bs(N) Standard.

disp(D)t

global

linebuffer(B)t

mode(M)

padchar(B)t•

rbp(B)t

rs(N)

trace(B)t

CONTROLS

Standard.

Standard.

Standard.

Standard. Mode(a) is simulated at open time, so multiple writers may trash
each other. On a mode(u) file, writes may follow reads with an intervening
eeek, reset, or rewrite call; reads may follow writes with any or the above calls
or an iffeuah(3I) call intervening.

Unused.

Standard.

Standard.

Standard.

Controls described as "standard" are documented in tfcontro/(31) and intro(41). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancel

clrerr

_delete•

flush block

getbs

getftags

getfn

get rs

reset

rewrite

3.9-87 /12/04-R3v5m7

Standard.

Standard.

Delete the file. Invoked internally from i/cloae(3I) iI the disposition is delete.

Standard.

Standard.

Standard.

Put the "file number" into the int pointed to by arga. Used for the commands
idmread(ll) and idmwrite(ll) to IDM tape.

Standard.

Standard. Equivalent to seek(O).

Standard. Reset file and truncate to zero length.

Britton Lee 1

IFTIFILE (41) Britton Lee IFTIFILE (41)

Seek to byte Nin the file. seek(N)

weof Write an end-of-file at the current location in the file. The file must be writable.
This truncates the file to the current offset, discarding any following data.

EXCEPTIONS
A:IDMLIB.10.NOMODE(filetype, filename)

No mode parameter was passed to the open.

A:IDMLIB.10.BADMODE{filetype, filename, mode)
An illegal mode was requested.

A:IDMLIB.10 .NO BASE(filetype, filename)
A base i/p was not supplied as required.

SEE ALSO
iCopen(31), iCtidm(41), S1atem Programmer'a Manual .

BUGS
Mode(a) does not guarantee to write at the end of the file if other users are also writing to the
same file.

3.9-86 /09 /28-R3v5m0 Britton Lee 2

IFTKEYED (41) Britton Lee IFTKEYED (41)

NAME
HtKeyed - keyed host file type

SYNOPSIS
extern IFTYPE lttKeyed;

lfp = ltopen(filename, <tKeyed, params, IFNULL);

DESCRIPTION
lftKeyed provides access to keyed host files. This is intended primarily for use by lftMtext(4I),
and not for database applications.

The i/open call returns a handle on the keyed file. The file may be opened for read-only or
write-only. After being opened, a key may be specified using the setkey operation to if control. If
the file is read-only the key must exist. If the file is write-only the key must not already exist;
the key is created when set. I/control returns zero on success, negative on failure.

After setting a key in read mode, i/getc will return bytes of the value 8880Ciated with the key.
End-of-file is returned when the key is exhausted.

In write mode, writes to the file are stored as the value or the key set by setkey.

PARAMS
Params marked with t are also legal controls. Descriptions reading "standard" are documented
in i/open(3I). Parameters marked with • may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

disp(D)t• Undefined.

global Standard.

linebuffer(B)t• Undefined.

mode(M) Standard. Mode u is not supported.

padchar(B)t• Unused.

rbp(B)t• Undefined.

rs(N) Standard.

tablesize{SZ) Set the length of the bash-table to be SZ entries. This parameter is ignored
unless the file is being newly created. Hash implementations only.

trace(B)t Standard.

CONTROLS
Controls described as "standard" are documented in i/confrol{3l) and intro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancel• Undefined.

clrerr Standard.

flush block Standard.

getbs Standard.

getftags Standard.

getrs Standard.

res eh Undefined.

3.9-86 /09 /28-R3v5m0 Britton Lee 1

IFTKEYED (41) Britton Lee

rewrite• Undefined.

setkey Set the key to the arg field of if control.

EXCEPTIONS
A:IDMLIB.10.KEYED.BADFILE(filename)

IFTKEYED (41)

The file opened is not in hashed-index format. Only files created with the lftKeyed
module may be accessed as hashed-index files.

E:IDMLIB.IO.KEYED.DUPKEY(key, filename)
The file is opened for write operations, and the key passed to if control has a duplicate
already in the file. Duplicate keys are not allowed.

I:IDMLIB.10.KEYED.NOTFOUND(key, filename)
The file is opened for read operations. The key passed to ifcontrol was not found in the
file. This is not necessarily an error condition.

E:IDMLIB.10.KEYED.NOKEY
I/control has been called to perform a aetkey operation, but no key was passed in the arg
parameter.

IMPLEMENTATION NOTES
On UNIX, this module is heavily dependent on /aeek(2), and is therefore considered to be machine
dependent. A reliable la eek (or equivalent) is critical.

On VMS, this is implemented using the VMS Librarian facility. The keyed file· is a VMS text
library accessed by keys using the Librarian (LBR) routines.

SEE ALSO
ifthfile(41), iftmtext(41), ifopen(31), if control(31), lseek(2)

3.7-86/09/28-R3v5m0 Britton Lee 2

IFTLOTERM (41) Britton Lee IFTLOTERM (41)

NAME
lftLoTerm - physical terminal file type

SYNOPSIS
#include <iftterm.h>

(Opened only on IDMLIB initialization; see below for details.)

DESCRIPTION
lftLo Term is the machine-dependent terminal module. It is used as an underlying file type for
lftTerm(4I). The standard files stdout, stdin, stderr, and stdtrc are all opened as type lftTerm
with the underlying file of type JftLoTerm.

PARAMS
Params marked with t are also legal controls. Descriptions reading "standard" are documented
in (fopen(31). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only. Note that this file is only opened during initiali­
zation, so these parameters are really moot.

au toclose(B)

bs(N)

disp(D)t

T*

Standard.

Standard.

Ignored.

Where Tis one of the following characters:
E standard error
I standard input
0 standard output
T standard trace

global Standard.

linebuffer(B)t* Standard.

mode(M) Standard. Will always be either r or w as compatible with the f parameter.

padchar(B)t* Unused.

rbp(B)t* Standard. (Should never be set.)

rs(N) Standard.

trace(B)t Standard. It is a grave error to set trace mode on the file stdtrc, since tracing
occurs on stdtrc.

CONTROLS
Controls described as "standard" are documented in i/contro/(31) and intro(41). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancel

clrerr

cmode(B)

3.12-87 /12/18-R3v5m7

Standard. Can be used to insure that any (potentially) buffered output will not
actually appear on the screen, for example, on an interrupt.

Standard.

On stdin, cmode(l) turns off all buffering of the input, making each character
available to the program as it is entered. Also, echoing is turned off, and it is
the program's responsibility to echo characters entered on the keyboard. On
output terminal files, cmode(l) initiaiizes the terminal for executing cursor
motion commands. This may be a no-op on some systems. Cmode processing is
used for screen-oriented applications, and the cmode controls prepare the termi­
nal for such processing. Cmode(O) restores the terminal file to its original con­
dition.

Britton Lee 1

IFTLOTERM (4I) Britton Lee IFTLOTERM (4I)

ftushblock Standard. Should be used if you really truly want data to actually kid-me-not
get onto the user's screen.

getbs

getftags

get rs

reset*

rewrite*

Standard.

Standard.

Standard.

Meaningless.

Meaningless.

NONSTANDARD INTERFACES
This module must include several routines that lie outside the normal !ft protocols. These pro­
vide information to !ft Term(41) about the nature of the physical terminal. The routines are:

_gettermdesc(term type)
Here, termtype is a pointer to a character string specifying the name of the terminal.
_gettermdesc returns a pointer to a TERMDESC structure, or TDNULL if the terminal
description could not be found.

_isterm(ifp)
Returns TRUE if the ifp refers to a physical terminal.

_termtype()
Returns a pointer to a character string specifying the name of the user's terminal.
_ gettermdesc(_ termtype()) should return a TERMDESC pointer for the user's terminal,
if such a description exists.

IMPLEMENTATION NOTES
This module is machine-dependent. The T parameter is guaranteed to be the first parameter in
the params list. The module is opened exactly four times. The first time it is opened with T
equal to E (standard error), the second time with T equal to 0 (standard output), the third time
with T equal to I (standard input), and the fourth time with T equal to T (standard trace). This
order is guaranteed.

The open module should do any necessary initialization including setting the name of the file that
will be used for printing, e.g.,

ifcontrol(ifp, "name(SYS$INPUT)", BYTENULL);

Two versions of this module may be necessary to implement the scheme for being compatable
with the standard C library. For more information see istdio(3I).

In cmode processing, the host must insure that no special processing is done on output or input.
Systems that 'add' carriage control to output strings must be discouraged from this practice.

On Berkeley UNIX systems, the SIGTSTP (i.e., the • Z signal) is caught and an exception,
"T:IDMLIB.JOB.SUSPEND" is raised. This exception is "invisible" - the default handler
returns without printing any messages. When the process is continued after the stop, lftLoTerm
raises the "T:IDMLIB.JOB.CONTINUE" exception, again transparently. These exceptions can be
handled by forms-oriented applications that need to refresh screens.

SEE ALSO .
exc(3I), iftterm(41), ifthfile(41), maketerm(8I)

3.12-87 /12/18-R3v5m7 Britton Lee 2

IFTLTAPE (4I) Britton Lee IFTL TAPE (4I)

NAME
lftL Tape - ANSI labeled tape file type

SYNOPSIS
extern IFTYPE lftL Tape;

ifp = ifopen(filename, &UtLTape, params, IFNULL);

WARNING
System V Release 2.0 (running on 3B series) does not provide access to basic tape operations.
Therefore support of ANSI labeled tape is unavailable at this time.

The Ii.file file spec (see i/thfile(4I)) may be used as an alternative.

For example, to dump the transaction log from m11db to /dev/rmt/Om with a block size of 1024
the following command would be used:

idmdump -t/dev/rmt/Om%hfile,bs\(1024\) mydb system ·

HARDWARE WARNING
On some tape controllers, record sizes that fall below some number of bytes (40 or so) will con­
fuse the controller and cause unpredictable results. It is recommended that the user avoid writing
extremely small records.

DESCRIPTION
This file type implements ANSI labeled tape, as specified by ANSI X3.27-1978. A level two imple­
mentation, including multivolume files and multifile volumes is guaranteed on most systems;
higher level implementations may be supported on some systems.

Systems on which multivolume tapes are nonsensical (in particular, personal computers) may
redefine this module to implement multivolume diskette files instead of ANSI tape. Multivolume
files mu3t be supported across all implementations however, and whereever pos.5ible arguments
must maintain these semaniics.

Tape mount requests are handled by communicating with the system operator using the
operator{3I) primitives.

Files .may be accessed by file number, file name, generation, and/or generation-version. If file
number is specified, that file must match the other parameters. If file number is not specified, the
first file encountered on the tape matching the name, generation, and generation-version is
selected. Unspecified values of name, generation, and generation-version match anything. In read
mode, unnamed files on the tape match anything: use fileno to correctly select the file. If none of
file number, name, generation, or generation-version are specified, the first file on the tape IS

accessed.

The protection on all volumes and files must be blank. Files being written must be expired.

PAR.AMS
Params marked with t are also legal controls. Descriptions reading "standard" are documented
in i/open(3I). Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard. Defaults on.

bs(N) The block size. When a file is read, the block size is read off the tape. The
default is 2048. Block sizes larger than 2048 exceed ANSI Standards X3.22-1978
and X3.39-1973 and hence may be incompatible with other operating systems.

density(N)

3.12-87 /12/18-R3v5m7

The tape density. Some systems may be able to determine the density of a tape
automatically, ignoring this parameter. N may be 800, 1600, or 6250. The
default depends on the system, normally 1600.

Britton Lee 1

IFTLTAPE (41)

disp(D)t•

expiration(N)

fileno(N)

fileset(FS)

format(F)

gen(N)

global

gver(N)

length(L)

linebuffer(B)t

mode(M)

padchar(B)t•

rbp(B)t

rs(N)

trace(B)t

unit(N)

volume(VL)

CONTROLS

Britton Lee

Ignored. Files are only deleted by being overwritten.

The expiration period in days. Ignored in read mode.

IFTLTAPE (41)

The file number desired. If both filename and fileno are supplied, they must
match. Ir only one is supplied, the other is not checked. At least one must be
supplied.

The name of the fileset. If not supplied, any fileset is accepted in read mode. In
write mode, any fileset will be accepted if we are appending to the tape.

The format of this file. Supported formats are 'F' for fixed length records and
'D' for variable length records. UNIX also supports 'U' for undefined; this for­
mat roughly resembles a stream.

The generation number of this file. This may be viewed as an extension to the
file name.

Standard.

The generation-version number. This may be viewed as an extension to the file
name and generation number.

The tape length in feet. This is ignored if it can be determined in any other
way. 2400 feet default.

Standard.

'r' or 'w' for read or write mode. Writing a file destroys all files following on
the volume set. If filename does not exist on the volume set, the file is appended
at the end of the volome. 'a' appends to a volume set; fileno may not be
specified. 'u' is not supported.

Standard. Used to pad fixed-length ('F' format) records out to full length.
Defaults to•·•.

Standard.

Standard.

Standard.

Do 1/0 on unit N. Unit zero is the default.

A comma-separated list of the names of the volumes comprising this volume set.
If not supplied, any volume names are accepted.

Controls described as "standard" are documented in •1control(31) and intro(4l). Controls marked
with • may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancel•

clrerr

flush block

getbs

getftags

getrs

newfile(FN)

3.12-87 /12/18-R3v5m7

Undefined.

Standard.

Standard.

Standard.

Standard.

Standard.

Terminate the current file being written, and start a new file named FN.
Parameters gen, gver, offset, expiration, format, be, I'll, and flleset may also
be specified, having the same semantics as on the open. This call may only be

Britton Lee 2

IFTL TAPE (41) Britton Lee IFTLTAPE (41)

used in 'w' or 'a' mode. The application must insure that the file is uniquely
identified on the tape. This need not be supported on all implementations.

res eh Gives an error on some systems because of the difficulty of resetting to the
beginning of a multi-volume file.

rewrite• Same as reset.

EXCEPTIONS
A:IDMLIB.10.LTAPE.ABORT(filename)

The operator aborted the job, typically because the requested tape was not available.

E:IDMLIB.10.LTAPE.DENSITY(density)
An impossible tape density was requested.

A:IDMLIB.10.LTAPE.BADMODE(filename, mode)
An impossible 1/0 mode was requested.

W:IDMLIB.10.LTAPE.NOOPERATOR
No operator is available; if the job requires operator assistance it will be aborted.

A:IDMLIB.10.LTAPE.NOTEXPffiED
An attempt was made to write a file that was not expired.

A:IDMLIB.10 .LTAPE.PERM(protection)
You do not have permission to access this tape.

A:IDMLIB.10 .LTAPE.CANT(operation, reason)
One of the low level tape operations (e.g., backspace record) failed for the specified rea­
son.

A:IDMLIB.10 .LT APE.NOFILE(name)
The specified file could not be found on the tape.

E:IDMLIB.10.LTAPE.RESET
Cannot use the reset control on labeled tape.

E:IDMLIB.10.LTAPE.REWRITE
Cannot use the rewrite

E:IDMLIB.10 .L TAPE.SMALLBLOCK(blocksize, minblocksize)
Blocbise is smaller than the system mimimum minblocbise.

l:IDMLIB.10.LTAPE.FILENO(fileno)
The specified file number will be accessed.

A:IDMLIB.10.L TAPE.UNAVAILABLE
Issued if this system does not support labeled tape at all.

IMPLEMENTATION NOTES
Systems that support labeled tape should use the available system services.

If you must count tape usage using the length parameter, the total should be reduced slightly to
allow for variant interrecord gap sizes and tape errors. The UNIX implementation uses 95.83%
or the available length.

Systems that don't support any way to backspace a tape drive (notably UNIX System V) only
allow overwrites of the tape (i.e., para.ms of "fileno(l),mode(w)"). Fortunately this is consistent
with other tape utilities on such systems.

On VMS, record sizes for tape vary, depending on the record format. The range for fixed-length
records is 1 to 65,534 bytes; The range for variable-length records is 4 to 9,999 bytes, including
the 4-byte Record Control Word. Therefore, the maximum length of the data area of a
variable-length record is 9,995 bytes. IDMLIB will read or write variable-length records by

3.12-87 /12/18-R3v5m7 Britton Lee 3

IFTLTAPE (41) Britton Lee IFTLTAPE (41)

default, but fixed-length records may be specified with the vms(rfm(ftx)) parameter to open.

To comply with ANSI standards, the record size should not be larger than the maximum block
size or 2,048 bytes.

BUGS-UNIX
Generations should be handled automatic a.Uy.

It should be possible to set a buffer offset on output.

There should be some way to generate Ulll.a labels.

SEE ALSO
itopen(31), itapeopts(31), operator(31), dumptape(81), inittape(81), ANSI X3.27-1978, American
National Standard Magnetic Tape Labela and File Structure for Information Interchange.

3.7-86/09/28-R3v5m0 Britton Lee 4

IFTMTEXT (41) Britton Lee IFTMTEXT (41)

NAME
IrtMText - Message-text file type

SYNOPSIS
extern IFTYPE Itt.MText;

lfp = lfopen(lllllgfile, &:lttMText, params, IFNULL);

(void) ifcontrol(ifp, "aetvect", (BYTE •} excvect};

DESCRIPTION
lftMText allows read-only access to the text of messages as described in meaaagea(51). The text
returned is determined by the message name and arguments specified by the t1etvect control, the
user's experience level (Beginner, Able, or Expert), and the query language being used.

The message to be read is set by the setvect parameter to ifcontrol. The argument is a vector as
passed to an exception handler. The first element of the vector is the message name, and the rest
of the arguments are parameters. The parameters are substituted into the text of the message as
described in meaaagea(51).

Once a message vector is set, reads may be performed on the file to return the text of the mes­
sage with the parameters substituted. End-of-file is returned at the end of the message. A new
message may be selected using setvect without reopening the message file.

The query language can be specified by using the qrylang parameter to i/open(31) or
i/control(31). If not explicitly set, the query language specifier is set from the QRYLANG param­
eter from getparam(31).

The experience level can be set using the exp parameter to i/open(31) or i/contro/(31). If not
explicitly set, the experience level is set from the EXPERIENCE parameter from getparam(31).

WARNINGS
Writing to an lftMText file will always result in failure.

I

PARAMS
Params marked with t are also legal controls. Descriptions reading "standard" are documented
in i/open(31). Parameters marked with • may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

bs(N) Standard. Limits the length of a line.

disp(D)t•

exp(EXP)

global

linebuffer(B)t•

mode(M)•

noerr

pa.dchar(B)t•

rbp(B)t•

3.7-86/09/28-R3v5m0

Ignored

The experience level (Beginner, Able, or Expert). This argument, if used,
overrides the EXPERIENCE parameter. This is useful for applications that
require a fixed expertise level, such as a screen-based application that always
wants a single line description for the status line.

Standard.

Ignored.

Only r accepted (default).

Force success on open. Read calls will return a canned message. Used for sys­
tem messages.

Ignored.

Standard.

Britton Lee 1

IFTMTEXT (41)

rs(N)•

trace(B)t

CONTROLS

Undefined.

Standard.

Britton Lee IFTMTEXT (41)

Controls described as "standard" are documented in •Jcontro/(31) and intro(41). Controls marked
with • may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

clrerr

ftushbloch

getbs

getftags

getrs

rewrite•

Undefined.

Standard.

Undefined.

Standard.

Standard.

Standard.

Undefined.

Undefined.

setvect Set the key-code or the message and the message arguments. U the message
code is unknown the i/control returns -1, but reads will still succeed.

IMPLEMENTATION NOTES
This module currently opens the underlying file as a file of type l/tKeJed(41).

An environment independent implementation exists, but on some environments it might be
appropriate to redefine this module. For example, on a large-address-space machine it may be
appropriate to cache Crequently used messages.

l/tMTezt is used by the exception handler, so the handling of exceptions within the module must
be done very carefully in order to avoid infinite recursion.

SEE ALSO
exc(31), getparam(31), itcontrol(31), itopen(31), ittkeyed(41), messages(SI)

3.10-88 /03 /01-R3v5m8 Britton Lee 2

IFTSCAN (41) Britton Lee IFTSCAN (41)

NAME
IftScan, TK_PSEUDO - break an input stream up into tokens

SYNOPSIS
#include <iftscan.h>

extern IFTYPE lftScan;

1tp = ifopen(NULL, &IttScan, params, baaeifp);

BOOL TK_PSEUDO(tok)
BYTE tok;

typedef struct
{

int tk_line; / * line num of this token * /
BYTE •tk_pdiff; /* offset from base of baseifp-_iLirbase */

} TOKINFO;

#define TOKINFNULL ((TOKINFO •)NULL)

DESCRIPTION
Reading from an i/p of type l/tScan reads characters from the underlying 6aaei/p and turns them
into tokens. Each token has a byte of type, two bytes of length, most significant byte first, and
some amount of value defined by the length.

Token types are:

TK_ID

TK_INT

TK_FLT

TK_BCD

TK_SQSTR

TK_DQSTR

TK_BINARY

An identifier, i.e., a string of letters, digits, and underscores. If the KANJI com­
pilation option is on, pairs of Kanji characters are accepted as letters.

An integer constant. Formats "OoNNN" and "OxNNN" are accepted.

A floating point constant. Constants preceeded by "Of" or "Od" (intended to
force four- and eight-byte floating-point representations respectively) are
accepted.

A BCD constant. The leading '#' is stripped off.

A string constant set off by single quotation marks (' ' '). The quotation marks
are stripped off.

A string constant set off by by double quotation marks (' " '). The quotation
marks are stripped off.

A binary constant (that is, a hexadecimal string beginning "Ob"). The "Ob" is
stripped by l/tScan.

TK_DP ARAM A parameter specifier, that is, a string beginning with a dollar sign or an amper­
sand. These are used to interpolate parameters into IDM stored-command
definitions.

TK_OP

TK_LINE

3.10-88/03/01-R3v5m8

An operator (i.e., something containing special characters). Gener&lly anything
not fitting into the above classes is an operator. Recognized multi-character
operators include:

>= <= !=
>=* <=* !=• =*
*>= *<= •!= *=
>> << *' .- ->
Returned at the beginning of each line. The value is taken from the global vari­
able LineNumber. The given/ option must be set for these tokens to be gen­
erated.

Britton Lee 1

IFTSCAN (41)

TK_EOL

TK_INFO

Britton Lee IFTSCAN (41)

A pseudo-token returned at the end of each line.

A pseudo-token may be returned before each token. The value is the TOK­
INFO structure containing the linenumber and the offset of this token in the
input buffer of baaei/p. The giveinto option must be set for these tokens to be
generated. The buffer size must be increased to allow these on each token.

Numeric tokens are not converted, i.e., they are returned as strings.

ANSI quote escaping is supported for both single quotation marks (' ' ') and double quotation
marks ('" '). Within a quoted string, if two quotation marks of the same type (eg. single) are
encountered, the first is discarded and the second is passed through uninterpreted. For example:

"he said ""hi there"""
will return a TK_DQSTR with a value of:

he said "hi there"

Comments (delimited by/• and •/) are silently deleted, as is any unquoted white space.

If case folding is specified (i.e., if the fold parameter is specified or the FOLDCASE system
parameter has the value 1) then all uppercase letters will be converted to lowercase. String con­
stants are excepted.

The macro TK_PSEUDO{token) returns TRUE if the token is a pseudo-token (TK_LINE,
TK_EOL, or TK_INFO).

PA.ft.AMS
Params marked with t are also legal controls. Descriptions reading "standard" are documented
in i/open(31) Parameters marked with * may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

bs(BS) Standard. Limits the size of a single token.

countlines(B)t

disp(D)t•

fold(B)t

giveinfo(B)t

givenl(B)t

global

linebuffer(B)t•

mode(M)•

padchar(B)t•

rbp(B)t

rs(N)•

trace(B)t

CONTROLS

Increment LineNumber on each input line.

Ignored.

If set, uppercase is folded to lowercase except in strings. If not explicitly
specified, defaults to the value of the FOLDCASE option.

Return TK_INFO tokens.

Return TK_LINE tokens.

Standard.

Meaningless.

May be r only (default).

Ignored.

Standard.·

Undefined.

Standard.

Controls described as "standard" are documented in i/contro/(31) and intro(41). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

3.1~88/03/01-R3v5m8 Britton Lee 2

IFTSCAN (41)

cancel•

clrerr

ftushbloch

getbs

getftags

get rs

reset•

rewrite•

Undefined.

Standard.

Undefined.

Standard.

Standard.

Standard.

Undefined.

Undefined.

Britton Lee IFTSCAN (41)

GLOBALS
LineNumber The current line number. If countlines mode is set, this will be incremented on

each input newline character. It is returned in TK_LINE and TK_INFO tokens
if the givenl or giveinf'o option (respectively) is set.

EXCEPTIONS
A:IDMLIB.10.SCAN.CANTWRITE

An attempt was ma.de to write to the scanner.

A:IDMLIB.10.NOBASE(name, openname)
The bueifp pa.ssed in was IFNULL.

E:IDMLIB.10.SCAN EOFINCOMMENT(type, name)
An end of file was found while scanning a comment while reading the specified underlying
file.

E:IDMLIB.10.SCAN.EOFINSTRING(type, name)
An end of file was found while scanning a comment while reading the specified underlying
file.

E:IDMLIB.10.SCAN.NLINSTRING(type, name)
A newline was found while scanning a quoted string while reading the specified underly­

- ing file.

E:IDMLIB.10 .SCAN .NOROOM(type, name)
No room was available to store a token while reading the specified underlying file.

3.3-86 /06 /30-R3v5m0 Britton Lee 3

IFTSTRING (41) Britton Lee IFTSTRING (41)

NAME
lttString - in-core string file type

SYNOPSIS
extern IFTYPE lftString;

itp = lfopen(CHARNULL, &IttString, params, IFNULL);
(void) itcontrol(itp, "aetstring,bs(-1)", buffer);

DESCRIPTION
This file type causes "input/output" to happen into an incore buffer. Only read (r) and write
(w) modes are supported. Reads return successive bytes from buffer until the buffer size is
reached, when they return EOF. Writes put characters into buffer.

A flush on a w mode file puts a null (zero) byte into the next position of buffer and resets the
pointer to the beginning.

WARNINGS
Care must be ta.ken not to overwrite the buff er if the size is not specified.

PARAMS
Params marked with t are also legal controls. Descriptions reading "standard" are documented
in sjopen(31). Parameters marked with • may have unexpected side effects; they should normally
be reserved by internal use by the file type only.

autoclose(B) Standard.

bs{BS)t The size of the buffer. It not specified, it is set to be very large. It the open is
for read mode and the BS is negative, it is set to the atrlen of the string (see
atring(31)). The resulting length (excluding trailing null byte) will not be
reflected into the block size (which will still be negative), but will be returned by
a getra control call. Note that the be may also be set by i/control.

disp(D)t• Ignored.

global Standard.

linebuffer(B)t•

mode(M)

padchar(B)t•

rbp(B)t•

rs(N)•

trace(B)t

CONTROLS

Undefined.

Mode I' or w only.

Unused.

Undefined.

Undefined.

Standard.

Controls described as "standard" are documented in i/contro/(31) and intro(41). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancel•

clrerr

Hush block

getbs

getftags

3.3-86/06/30..R3v5m0

Undefined.

Standard.

Standard.

Standard. Note that this may not actually show the string length; getn should
be used instead.

Standard.

Britton Lee 1

IFTSTRING (41)

get rs

reset

rewrite*

setstring

Britton Lee

Standard.

Reset the pointer to the beginning of the buff er.

Undefined.

Change to a buffer selected by the arg field to i/ control.

EXCEPTIONS
E:IDMLIB.10.STRING.OVERFLOW

No room is available to put more characters into the buff er.

IMPLEMENTATION NOTES

IFTSTRING (41)

Since there is no need for a special intermediate buffer in this file type the normal buffering is
bypassed.

3.16-86 /08/12-R3v5m0 Britton Lee 2

IFTTERM (41) Britton Lee IFTTERM (41)

NAME
HtTerm - terminal file type

SYNOPSIS
#include <if'tterm.h>

(Opened only on IDMLIB initialization; see below for details.)

DESCRIPTION
lftTerm accepts device-independent terminal escape sequences and interprets them for a specific
device. The files atdin, atdout, atderr, and Btdtrc are type lftTerm. lftTerm is a machine­
independent module with one major exception: it will only work with ASCII terminals.

IftTerm must open a machine-dependent underlying file type. If no base i/p is passed from
i/open(31), lftTerm will open a file of type IftLoTerm(4l).

The protocol uses an eight-bit path, i.e., all 256 possible codes are reserved for use. Non­
printable characters are used as control codes.

Control and escape sequences comply with American National Standards X3.41-1974 and X3.64-
1979 except as noted below.

Graphics
Special graphics may be output by sending the 1TC_SS2 (Single Shift 2) character followed by
one of the following:

lTG_TLC
lTG_TRC
ITG_BLC
ITG_BRC
ITG_TT
ITG_BT
ITG_LT
ITG_RT
ITG_VB
lTG_HB
ITG_X
ITG_BLOTCH

Command Sequences

top left corner
top right corner
bottom left corner
bottom right corner
top 'tee'
bottom 'tee'
left 'tee'
right 'tee'
vertical bar
horizontal bar
cross (like '+')
an out-of-band 'blotch' character

Certain control operations may be performed using a "command sequence" beginning with the
CSl (Command Sequence Introducer) character, followed by parameters. The parameters are
decimal numbers, expressed as numeric digit strings. The parameters are separated by semi­
colons, and terminated by a "final character" that determines the actual operation to be per­
formed. For example, the sequence

ITC_CSl 0 ; 1 lTC_SGR

invokes SGR (Select Graphic Rendition) with arguments zero and one.

Valid final characters for CSI sequences are
ITC_SGR select graphic rendition
ITC_CUF move cursor right (forward)
lTC_ CUD move cursor down
lTC_CUB move cursor left (backward)
lTC_CUU move cursor up
ITC_CUP absolute cursor position
ITC _ED erase display

lftTerm translates these sequences into the actual control signals required by the terminal. The

3.12-87 /12/18-R3v5m7 Britton Lee 1

WTTERM(4I) Britton Lee WTTERM (4I)

information required to perform this translation is obtained Crom the underlying file type.

Graphic Renditions
Parameters to ITC_SGR may be

ITP _PRIMARY primary (default) rendition
ITP _BOLD bold or increased intensity
ITP _FAINT faint, decreased, or colored
ITP _ITALIC italic
ITP _UNDER underscore
ITP _BLINK slow blink (under 150/minute)
ITP _FLASH fast blink (over 150/minute)
ITP _REVERSE reverse video

Note that these are integer values rather than strings.

Cursor Control
The CSI sequences that control cursor motion and clear the screen are not guaranteed to work
unless stdout is in "cmode" (cursor-motion mode). Stdout may be set in this mode by using the
cmode control (see the section on controls below).

The rules for screen control and cursor motion follow the ANSI standards. The "home" position
of the screen is line I (one) and column 1 (one). The absolute cursor motion sequence CUP takes
two arguments: the line number followed by the column number. The other cursor-control
sequences take no arguments.

Erase Display
The ITC_ED (Erase Display) command must be preceeded by the ITP _ED_ALL parameter to
specify erasure of the entire display. Partial erasure is not supported at this time.

Extensions to the Standards
The following characters represent extensions to the ANSI standards:

JTX_RESET Reset the terminal to a known state.

The ASCII characters SO (Shift Out, octal OI6) and SI (Shift In, octal OI 7) do not shift ~o the
GI character set as specified by X3.4l. Instead they "quote" characters that are passed directly
through to the terminal without interpretation. This is intended to support an additional graphic
set such as required for Korean ideographs. These are not otherwise supported in the code.

Multi-byte characters such as Kanji are supported. Both bytes must be in the range OxAO
through OxFE inclusive. This preempts use of the GI character set as specified by X3.41.

Shorthands
As a convenience, certain common sequences are defined as individual strings:

ITS_PRIMARY primary graphic rendition
ITS_BOLD bold rendition
ITS_UNDER underscore
ITS_BLINK blink
ITS_REVERSE reverse video
ITS_CUF move cursor right
ITS_CUD move cursor down
ITS_CUU move cursor up
ITS_CUB move cursor left
ITS_CUP absolute cursor position (template)
ITS_CLEAR clear screen

For example, to print "STRING" in bold, the sequences

printf(" %c%d%cSTRING%c%d%c\n",
ITC_CSI, ITP:..:.BOLD, ITC_SGR,

3.I2-87 /I2/I8-R3v5m7 Britton Lee 2

IFTTERM (41) Britton Lee

ITC_CSI, ITP _PRIMARY, ITC_SGR);

and

printf("%sSTRING%s\n", ITS_BOLD, ITS_PRIMARY);

are equivalent.

To move the cursor to line 24, column 10, the sequences

printf("%c%d;%d%c", ITC_CSI, 24, 10, ITC_ CUP);

and

printf(ITS_CUP, 24, 10);

are equivalent.

This file type will almost certainly be extended greatly in the future.

PARAMS

IFTTERM (41)

Params marked with t are also legal controls. Descriptions reading "standard" are documented
in ifopen(3I). Params marked with * may have unexpected side effects; they should normally be
reserved by internal use by the file type only. Note that this file is only opened during initializa­
tion, so these parameters are really moot.

autoclose(B) Standard.

bs(N) Standard.

disp(D)t Ignored.

T* See lftLo Term(41).

global Standard.

linebuffer(B)t* Standard.

mode(M) Standard. Will always be either r or w as compatible with the f param.

padchar(B)t* Unused.

rbp(B)t* Standard. (Should never be set.)

rs(N) Standard.

trace(B)t Standard. It is a grave error to set trace mode on the file stdtrc, since tracing
occurs on stdtrc.

CONTROLS
Controls described as "standard" are documented in ifcontrol(3I) and intro(4I). Controls marked
with * may have unexpected side effects; they should normally be reserved by internal use by the
file type only.

cancel

clrerr

cmode(B)

flushblock

3.12-87 /12/18-R3v5m7

Standard. Can be used to ensure that any (potentially) buffered output will not
actually appear on the screen; for example, on an interrupt.

Standard.

On stdout or atderr, cmode(l) turns on cursor motion mode, enabling the use of
cursor motion OSI sequences. On atdin, cmode(l) turns off all buffering of the
input, making each character available to the program as it is entered. Also,
echoing is turned off, and it is the program's responsibility to echo characters
entered on the keyboard. Cmode(O) restores the terminal file to its original
condition. Also passed to lftLoTerm(4I).

Standarq. Should be used if you really truly want data to actually kid-me-not
get data onto the user's screen.

Britton Lee 3

IFTTERM (4I)

getbs

getcols

getflags

getlines

get rs

reset*

rewrite*

term(T)

Britton Lee IFTTERM (41)

Standard.

Return the number of columns on the screen into the integer pointed to by arg8.

Standard.

Return the number of lines on the screen into the integer pointed to by args.

Standard.

Meaningless.

Meaningless.

Set the terminal type to T. If T is unknown, the type will not be changed if a
type is already set, otherwise it will be set to dumb. If no type Tis specified,
the terminal type is divined from the operating system, e.g., by the TERM
parameter (see getparam(3I)). The term control may be re-issued to change the
terminal type, but the application must be prepared to handle parameters that
change, such as the screen size.

NONSTANDARD INTERFACES
This module calls several routines that are defined in IftLoTerm(4I). These are:

_gettermdesc
Returns a pointer to a structure that provides a description of the physical terminal.

_isterm
Returns a BOOL indicating whether output is to a terminal.

_termtype
Returns the type of the terminal currently in use.

These routines are described at length in JftLo Term(41).

IMPLEMENTATION NOTES
This module is machine-independent except for its ASCil dependence. It opens the underlying file
as a file of type IftLoTerm(4I).

The module is opened exactly four times. The first time it is opened with T equal to E (standard
errorJ, the second time with T equal to 0 (standard output}, the third time with T equal to I
(standard input), and the fourth time with T equal to T (standard trace}. This order is
guaranteed.

SEE ALSO
iftloterm(41), ifthfile(41}, malceterm(8I), ANSI X3.4-1977, American National Standard Code for
Information Interchange; ANSI X3.41-1974, American National Standard Code E:rtenBion Tech­
nique8 for u8e with the 7-bit Coded Character Set of American National Standard Code for Inf or­
mation Interchange; ANSI X3.64-1979, American National Standard Additional Contro/8 for use
with American National Standard Code for Information Interchange.

3.12-87 /12/18-R3v5m7 Britton Lee 4

INTRODUCTION (51) Britton Lee INTRODUCTION (51)

NAME
Introduction to file and data formats.

DESCRIPTION
This section describes the file formats used by Britton Lee libraries and applications and the data
structures used by IDMLIB.

3.5-87 /08/28-R3v5m4 Britton Lee 1

IDMTOKENS (51) Britton Lee IDMTOKENS (51)

NAME
idmtokens - values of IDM communication tokens

DESCRIPTION
octal hex I name semantics
0001 OxOl 0 TL END end of target list
0002 Ox02 0 QLEND end of qualification list
0003 Ox03 0 TIME substitute current time
0004 Ox04 0 USERID substitute current userid
0005 Ox05 0 DBA substitute uid of database admin
0012 OxOa 0 HOST substitute host id
0013 OxOb 0 DATE substitute current date
0014 OxOc 0 DATABNAME substitute current database name
0023 Ox13 0 EXITIDM close database
0030 Ox18 0 REP_OLD audit: old value before replace
0031 Ox19 0 REP_DUP audit: a replace was a duplicate
0032 Oxla 0 APP_DUP audit: an append was a duplicate
0033 Oxlb 0 SYNC ftush cache memory to disk
0040 Ox20 F HUNAME host user name for login id
0041 Ox21 F PASSWORD password for login id
0042 Ox22 F ATTR attribute name
0043 Ox23 F BCDFLT ftoating point BCD
0044 Ox24 F FBCDFLT fixed length BCD FLT
0045 Ox25 F FBINARY fixed length binary
0046 Ox26 F FBCD fixed length BCD
0047 Ox27 F FCHAR fixed length CHAR
0050 Ox28 F VAR reference variable
0051 Ox29 F OPTIONS specify processing options
0052 Ox2a F FORMAT define format of returned tuples
0053 Ox2b F PARAM stored command parameter
0054 Ox2c F PCHAR string that may contain pattern matching characters
0055 · Ox2d F BINARY binary string
0056 Ox2e F BCD binary coded decimal
0057 0x2f F CHAR character string
0060 Ox30 1 INTI one byte integer
0061 Ox31 1 ORD ERA order ascending
0062 Ox32 1 ORDERD order descending
0063 Ox33 1 ERROR error follows
0064 Ox34 2 INT2 two byte integer
0065 Ox35 2 TYPE
0066 Ox36 2 NVAR count any attribute
0070 Ox38 4 INT4 four byte integer
0071 Ox39 4 FLT4 four byte ftoating point number
0074 Ox3c 8 FLT8 eight byte ftoating point number
0100 Ox40 0 ABS take absolute value
0101 Ox41 0 MINUS take arithmetic inverse
0102 Ox42 0 NOT take logical not
0103 Ox43 0 CNVTll convert to il
0104 Ox44 0 CNVTl2 convert to i2
0105 Ox45 0 CNVTI4 convert to i4
0106 Ox46 0 CNVTF4 convert to f4
0107 Ox47 0 CNVTF8 convert to f8
0110 Ox48 0 CNVTBINARY convert to binary

3.5-87 /08/28-R3v5m4 Britton Lee 1

IDMTOKENS (51)

0111 Ox49 O CNVTFBINARY
0112 Ox4a O AOPCNT
0113 Ox4b 0 AOPCNTU
0114 Ox4c 0 AOPSUM
0115 Ox4d 0 AOPSUMU
0116 Ox4e O AOPAVG
0117 Ox4C O AOPAVGU
0120 Ox50 0 AOPMIN
0121 Ox51 O AOPMAX
0122 Ox52 O AOPANY
0123 Ox53 0 CNVTRNAME
0124 Ox54 O CNVTRID
0126 Ox56 0 AOPONE
0127 Ox57 O AOPONEU
0160 Ox70 1 CNVTBCD
0161 Ox71 1 CNVTCHAR
0162 Ox72 1 CNVTFBCD
0163 Ox73 1 CNVTFCHAR
0164 Ox7 4 2 SUBSTR
0165 Ox75 2 CNVTFL TBCD
0166 Ox76 2 CNVTFFL TBCD
0167 Ox77 2 FIXEDPT
0200 Ox80 0 RESDOM
0201 Ox81 0 EQ
0202 Ox82 0 NE
0203 Ox83 0 GT
0204 Ox84 0 GE
0205 Ox85 0 LT
0207 Ox87 0 RNEOUT
0206 Ox86 0 LE
0210 Ox88 o AND
0211 Ox89 O OR
0212 Ox8a 0 ADD
0213 Ox8b O SUB
0214 Ox8c o MUL
0215 Ox8d 0 DN
0216 Ox8e o BYHEAD
0217 Ox8C 0 AGHEAD
0220 Ox90 0 CONCAT
0221 Ox91 0 MOD
0222 Ox92 0 QUALDOM
0223 Ox93 O ORDERDOM
0224 Ox94 0 CNVTANAME
0225 Ox95 0 LOUT
0226 Ox96 0 ROUT
0227 Ox97 O LGTOUT
0230 Ox98 O RGTOUT
0231 Ox99 0 LGEOUT
0232 Ox9a 0 RGEOUT
0233 Ox9b O LLTOUT
0234 Ox9c O RL TOUT
0235 Ox9d 0 LLEOUT

3.5-87 /08/28-R3v5m4

Britton Lee

"count" aggregate
"count unique" aggregate
"sum" aggregate
"sum unique" aggregate
"average" aggregate
"average unique" aggregate
"min" aggregate
"max" aggregate
"any" aggregate
convert relid to relname
convert relname to relid
return err iC more than 1 value
return err iC more than 1 distinct value
convert to bed
convert to character

take substring
convert to BCDFL T

specify result domain
==
!=
>
>=
<
!=•
<=
conjoin conditions
disjoin conditions
+

*
I
head or by list in aggr function
head or aggregate list in aggr (function)
concatenate strings
%

•=
=•
•>
>•
•>=
>=•

Britton Lee

IDMTOKENS (51)

2

IDMTOKENS (51) Britton Lee IDMTOKENS (5I)

0236 Ox9e 0 RLEOUT <=•
0237 Ox9f 0 LNEOUT •!=
0241 Oxal F RESATTR
0242 Oxa2 F QUALATT
0260 OxbO 1 WITH specify param to various commands
0261 Oxbl 1 ATTRALL target Jist of all attributes
0263 Oxb3 1 MEASURE performance token
0264 Oxb4 2 ROOT root of query tree
0301 Oxcl 0 RETRIEVE retrieve command
0302 Oxc2 0 RET_INTO retrieve into command
0303 Oxc3 0 APPEND append command
0304 Oxc4 0 DELETE delete command
0305 Oxc5 0 REPLACE replace command
0306 Oxc6 0 CREATE create relation
0307 Oxc7 0 DESTROY destroy relation
0310 Oxc8 0 INDCREATE create index
0311 Oxc9 0 INDDESTROY destroy index
0312 Oxca 0 TRUNCATE truncate relation to zero length
0313 Oxcb 0 DBCREATE create database
0314 Oxcc 0 DBDESTROY destroy database
0315 Oxcd 0 PERMIT give permissions
0316 Oxce 0 DENY remove permissions
0317 Oxcf 0 VIEW define a view
0320 OxdO 0 ENDOFCOMMAND this command is done
0321 Oxdl 0 TUPLE mark returned tuple
0322 Oxd2 0 ABORT abort transaction
0324 Oxd4 0 BEGINXACT begin transaction
0325 Oxd5 0 ENDXACT end transaction
0326 Oxd6 0 EXTEND extend allocation for relation
0327 Oxd7 0 DBEXTEND extend allocation for database
0330 . Ox-d8 0 REOPEN reopen database
0331 Oxd9 0 AUDIT audit transaction log
0332 Oxda 0 AUDIT_INTO audit xact log into ...
0333 Oxdb 0 ASSOCIATE associate text with object
0334 Oxdc 0 CONFIGURE please configure 1/0
0335 Oxdd 0 KILLDBIN dba kill dbin command
0336 Oxde O FILECREATE create unstructured file
0340 OxeO F EXEC execute a stored command
0341 Oxel F DEFINE define a stored command
0342 Oxe2 F DBOPEN open a database
0343 Oxe3 F RANGE declare range variable
0344 Oxe4 F DUMPDB dump database
0345 Oxe5 F LOADDB load database
0346 Oxe6 F NEWPWORD new password
0350 Oxe8 F FILEOPEN open unstructured file
0352 Oxea F ROLLFORW ARD roll forward database from xact log
0353 Oxeb F DUMPXACT dump transaction log
0354 Oxec F COPYIN copy relation in
0355 Oxed F COPYOUT copy relation out
0356 Oxee F DEFINEP define stored program
0357 Oxef F LOADXACT load transaction log
0360 OxfO 1 FILECLOSE close a file

3.5-87 /08/28-R3v5m4 Britton Lee 3

IDMTOKENS (51) Britton Lee IDMTOKENS (51)

0361 Oxfl 1 FILEREAD read a file
0362 Oxf2 1 FILEWRITE write a file
0363 Oxf3 1 FIL EE OF write and truncate a file
0364 Oxf 4 2 TRACE turn on trace information
0365 Oxf5 2 TRACEOFF turn off trace information
0370 Oxf8 4 EXECP execute stored program
0371 Oxf9 4 SETDATE set current date
0372 Oxfa 4 SETTIME set current time
0373 Oxlb 4 PLAN decomposition plan
0375 Oxfd 8 DONE done packet

3.8-88/03/01-R3v5m8 Britton Lee 4

IDONE (51) Britton Lee IDONE (51)

NAME
IDONE - IDM DONE token

SYNOPSIS
*include <idmdone.h>

typedef struct
{

short
short
long

} IDONE;

id_stat;
id_int;
id_ count;

/ • status bits, see below • /
/ • defined by the command • /
/• *or tuples or blocks affected •/

*define IDNULL ((IDONE •)NULL)

/•bit values for id_stat; see SPM for details •/
*define ID_CONTINUE 0000001 /•more results are available•/
*define ID_ERROR 0000002 /• an error occurred in processing •/
*define ID _INTERRUPT 0000004 / • the command was interrupted • /
*define ID_ABORT 0000010 /• xact abort, typically deadlock •/
*define ID_COUNT 0000020 /• the count field is valid •/
*define ID_OVERFLOW 0000040 /•overflow detected •/
*define ID_DIVIDE 0000100 /• divide by zero detected •/
*define ID_DUP 0000200 /• duplicates encountered •/
#define ID_ TIMER 0000400 /• opt 5 or 11: id_int is wallclock •/
*define ID_INXACT 0001000 /• currently in a transaction •/
*define ID_ROUND 0002000 /•rounding occurred on BCDFLT •/
*define ID_ UNDERFLOW 0004000 / • exponent underflow on BCD FLT • /
*define ID_BADBCD 0010000 /•illegal BCD(FLT) sent by host•/
*define ID_ TMINUTES 0020000 / • id_int is in minutes • /
*define ID _LOGOFF 0040000 / • please log oft' • /
#define ID_ VOLUME 0100000 / • current volume exhausted • /

DESCRIPTION
The IDONE structure represents the IDM DONE token, as described in the Syatem Programmer 'a
Mant111l. This structure is read using igetdone(31).

The ie_donemaak field or the environment (see ient1(51)) contains a mask for id_atat; bits that
match between these two fields have exceptions raised by igetdone.

The symbolic names or done bits used by ieeontrol(31) and ieopen(31) are identical to the con­
stants listed above with the "ID_ " stripped oft'. For example CONTINUE is the name to pass
when setting the environment's done mask (see armfile(51)).

SEE ALSO
iecontrol(31), igetdone(31), ienv(51), symfile(51), Sratem Programmer'a Manual .

3.6-87 /02/17-R3v5m0 Britton Lee 1

IENV (51) Britton Lee IENV (51)

NAME
IENV, DerEnv - IDM environment

SYNOPSIS
Note: field namea and layout of thia atructure are not guaranteed.

#include <idmenv.h>

typedef struct
{

} IENV;

IENV
short
short
short
BYTE
BYTE
BYTE

•ie_parent; /• parent environment for inheritance •/
ie_donemask; /• igetdone status mask •/
ie_flags; /• flag bits, see below •/
ie_rtstamp; /• timestamp in range table •/
•ie_rtab; /•range table•/
•ie_subst; / * substitution table * /
•ie_options; /• options table •/

#define IENVNULL ((IENV *) NULL)

/• flag bits values for ie_flags •/
#define IEF _FOLDCASE 1 / * fold case in character arguments * /
#define IEF _NOMAPCC 2 /• do not map control chars in tupprint •/

extern IENV

DESCRIPTION

•DerEnv; / * default environment * /

Many IDM operations are performed in a particular environment. This environment contains:

• A pointer to the parent environment. The default environment De/Env has no parent.

• The mask of bits from the IDONE id_atat (status) field that will have associated exceptions
raised automatically by igetdone(31).

• AMorted flags. IC IEF _FOLDCASE is set, character string arguments to routines creating
IDM trees have upper case letters mapped to lower case for systems that prefer to consider
them semantically equivalent. IC IEF _NOMAPCC is set, tupprint(31) will pass control char­
acters through unchanged.

• A time stamp for the 'range table, used internally.

• The range variables that have been declared. Set by idlparae(3l) immediately when a
range statement is parsed.

• The current substitution values. Set by ieau6at(31), used by iputtree(3I).

• The set of options that will be attached by default to each tree. Modified by id/parae(31)
immediately when a set or UD11et is parsed.

IC a value is not found when an environment is searched for a substitution variable or a range
declaration, the parent environment will be searched. IC that fails, the parent's parent will be
searched, and so on, recursively.

Most routines requiring an environment parameter will accept the constant IENVNULL as the
env parameter to mean the De/Env environment. On initialization, this is set to a special static
environment that has no parent and can never be deallocated.

Range, option, and substitution tables are created as needed. The format of these tables is inter­
nal to IDMLIB.

3.6-87 /02/17-R3v5m0 Britton Lee 1

IENV (51) Britton Lee IENV (51)

SEE ALSO
ieopen(31), iesubst(31)

3.4-86/09/17-R3v5m0 Britton Lee 2

IODEFS (51) Britton Lee IODEFS (51)

NAME
IODEFS - Input/output ftag definitions

SYNOPSIS
#include <idmiodete.h>

DESCRIPTION
Definitions (or ftag bits (available using the getftag• control to i/contro/(31)) contain file status.
These Hags are accessible for the convenience of extremely sophisticated applications and are not
guaranteed to be available in this form in future releases. The flags are:

IFF _READ This file is enabled for reading.

IFF_WRITE This file is enabled for writing.

IFF _APPEND This file is enabled for appending.

IFF_PRBF

SEE ALSO
ifcontrol(31)

3.4-87 /09/25-R3v5m4

This file is physically record-based.

Britton Lee 1

ITLIST (51) Britton Lee ITLIST (51)

NAME
ITLIST - IDM target list descriptor

SYNOPSIS
.j{=include <idmtlist.h>

typedef struct
{

ITLIST *itLnext;
short itL type;
short itLlen;
short itLalloc;
short itLO.ags;
ANYTYPE *itL valp;
char *itLname;
umon
{

struct
{

short itlb_type;

}
} ITLIST;

}
struct
{

short itlb_len;
ANYTYPE *itlb_addr;
itLbinding;

short
short
char
char

itlp_ width;
itlp_prec;
itlp_fmt;
*itlp_pic;

} itLprint;
itLun;

/ * next target in list * /
/* type of data*/
/ * actual length of data * /
/*number of bytes allocated for data*/
/ * O.ag bits; see below * /
/* pointer to value buffer */
/ * name of this domain * /
/* application dependent info */

/* level 3 {runtime) binding info */

/ * type of prog lang var * /
/ * length of prog lang var * /
/ * address of prog lang var * /

/* IDL print format info */

/* print field width */
/ * precision • /
/* print format */
/ * edit picture * /

.j{=define ITLNULL ((ITLIST *)NULL)

/ • some macros to simplify access of nested fields * /
#define itLbtype itLun.itLbinding.itlb_type
#define itLblen itLun.itLbinding.itlb_len
#define itLbaddr itLun.itLbinding.itlb_addr

#define itLpfmt itLun.itLprint.itlp_fmt
#define itLpwidth itL un.itLprint.itlp_ width
#define itLpprec itL un.itLprint.itlp_prec
#define itLppic itLun.itLprint.itlp_pic

/* bit values for itLO.ags */
#define ITL_BOUND 0000001 /* binding info is present */
#define ITL_IGNORE 0000002 /* ignore in iputtl & iputtup */
#define ITL_PRINTABLE 0000004 /* tupprint info present */

DESCRIPTION
The ITLIST data structure holds tuple data retrieved Crom the database server. The fields are:

itLnext

itLtype

3.4-87 /09/25-R3v5m4

The pointer to the next element of a target list.

The type of the data.

Britton Lee 1

ITLIST (51)

itLlen

itLalloc

itLftags

itLvalp

itLname

Britton Lee ITLIST (51)

The length or the data actually stored.

The length or the space allocated to store the data; this represents the maximum
length or a field.

Flag bits.

A pointer to the buff er used to hold the value.

The name or this domain, iC known.

The union field is used by various applications as necessary. In particular, the level three
IDMLIB interface uses it to store binding information Crom irbind(31); idl(II) uses it to store print
format information.

Target lists are built with igett/(31) and freed with it/free.

SEE ALSO
idl(ll), igettl(31), igettup(31), iputtl(31), iputtup(31), irbind(31)

3.8-88/03/01-R3v5m8 Britton Lee 2

ITREE (51) Britton Lee ITREE (51)

NAME
ITREE - IDM tree data structure

SYNOPSIS
#include <idmtree.h>

typedef struct
{

ITREE •iLleft;
ITREE •it_ right;
short it_ type;
short it_len;
ANYTYPE it_ val;

} ITREE;

/•left child pointer •/
/ • right child pointer • /
/ • type or this node • /
/•length in bytes or itval •/
/ • variable length value • /

*define ITNULL ((ITREE •)NULL)

DESCRIPTION
ITREEs represent query trees destined for Britton Lee's IDM/RDBMS software.

Each node contains a left and right pointer. These fields normally implement child pointers,
although in some cases one or the other may be used as a sibling pointer.

The node type is typically the same type as will be passed to the database server. Nodes with no
correspondence in IDM/RDBMS are assigned values greater than 255. The values zero and 255
are reserved for use by the host.

The value field is variable length. The length is explicitly specified in the iLlen field. The value
always abuts the remainder of the node; a pointer to the value is never used.

A special node is the iNOTOKEN node. This node is always zero length, and essentially has "no
type" - it is used as a placeholder. During tree walks in iputtree(31), iNOTOKEN nodes are
ignored completely, except for their pointers.

A query tree for a complete command always has a iCOMMAND node as the root. This node
contajns. status and flag information about the command. The left child must be a command
node.

The left child of the command node is the query tree as described in the Sratem Programmer'a
Man.al for most commands; commands that do not accept query trees either leave this node null
or have a pseudo tree that describe any additional parameters.

The right child or the command node is a right-linked list or control information. The first ele­
ment is the range table, the second element the order table, and the third element the options
clause. Other elements may be added at Britton Lee's discretion as needed.

The iCOMMAND node bas an eight byte value. The first two bytes are used for status flags.
The remainder of the node is reserved for use by Britton Lee.

SEE ALSO
itnode(31), iputtree(31), itlist(51)

3.7-86 /09 /17-R3v5m0 Britton Lee 1

MESSAGES (51) Britton Lee MESSAGES (51)

NAME
messages - messages file format

DESCRIPTION
The meaaagea file contains the text for all message codes used by IDMLIB. This section describes
the format of the master file as distributed by Britton Lee. This format will generally be mas­
saged by an implementation-dependent program (e.g., 6uildmaga(81)) into a form that can be read
efficiently by the lftMTezt(41) module.

Each line of the file begins with a code that gives the semantics of the rest of the line. These are:

$msg.code This line introduces an entry for the named message code.

@n name

code <tab>text

Indicates the semantics of parameter n. This is used to prepare documen­
tation.

Text for this message. Code is a set of one or more letters or blanks.
These letters specify conditions for display of the line at execution time.
The letters specify the experience levels: B=Beginner, A-Able,
E=Expert, and the query language being used: l=IDL, S=SQL. The
code and the text are separated by a tab character, which will be
stripped from the message before printing. Note that the default for the
query language specifier is SI - display the line to both query languages.
However, the default for the experience level is null - hide the line from
all users. . ·

Any other lines should be ignored.

Within the text, parameters are substituted using %n. For example, "%2" should substitute the
second parameter.

Macros are substituted using a ?c syntax. For example, "?S" in the text or a message will be sub­
stituted by its definition when buildmaga is run. Definitions are contained in the file messages.mac
(in etc/ on UNIX systems) and should be configured at each site to indicate the correct local per­
son to report problems to. ·

Each message should contain a single line message that is sufficiently rich as to be adequate to be
understood by most users. The remainder or the message should be explanatory information for
beginning users. These should include the following subheadings, as appropriate: Explanation (or
the message), System Action (what happened to your job), and User Action (what the user should
do next).

The same syntax is used to store the help file. In the help file, lines or the form
code<ta6>$laelp-command represent a default command to be executed if the user enters a blank
line.

IMPLEMENTATION NOTES
The master version or this file will be supplied by Britton Lee. The OEM will be responsible for
writing a program to convert from the standard format into the format needed by the local sys­
tem. See buildmaga(SI) for details.

EXAMPLE
$1DM.El9
@l <domname>
BAE I Result for attribute: %1 has wrong type.
BAE S Result for column: %1 has wrong type.
BA I Explanation: The tuple was invalid because the value
BA S Explanation: The row was invalid because the value
BA I specified for the attribute %1 was
BA S specified for the column %1 was

3.7-86/09/17-R3v5m0 Britton Lee 1

MESSAGES (51) Britton Lee MESSAGES (51)

BA or the wrong type.
B I User Action: Determine the actual type of the attribute,
B S User Action: Determine the actual type of the column,
B and correct the query.

Ir the user has an experience level of ABLE, and is running IDL, the following message should be
seen:

Result for attribute: esalary has wrong type.
Explanation: The tuple was invalid because the value

specified for the attribute esalary was
or the wrong type.

SEE ALSO
iftmtext(41), buildmsgs(SI), IBM OS/960: Meaaagee and Gode& for an excellent example.

3.31-88/02/23-R3v5m8 Britton Lee 2

PARAMS (51) Britton Lee PARAMS (51)

NAME
/USJ'/lib/idm/params - default getparam(31) parameter file

DESCRIPTION
The "para.ms" file contains the default settings for all system parameters. On UNIX, this file is
structured as a series of lines of the Corm

name=[=Jvalue

No spaces are allowed in the line unless they are part of the value. By convention, the name is in
upper case. IC the second "=" is present, the name will not be imported Crom the UNIX environ­
ment (see getcnv(3)).

For the UNIX system, the required entries are:

EDITOR The pathname of the system editor to use.

EPOCHOFFSET This is used to offset the beginning of the "epoch" for date and time routines.

EXPERIENCE

FOLDCASE

GETHUNPW

HELP FILE

IDMBAUD

ID MD EV

ID MD RIVER

IDMHOSTID

IDMHUNAME

IDMPASSWD

IDMPKTSIZE

3.31-88/02/23-R3v5m8

The default epoch is January 1, 1900. EPOCHOFFSET is given as a number
of days Crom January 1, 1900. For instance, to change the epoch to January 1,
1901, change EPOCHOFFSET to 365. In general, the use of this parameter is
discouraged.

The default experience level, chosen Crom the set Beginner, Able, and
Expert. Normally Beginner.

Perform upper to lower case Colding if set to 1. UNIX command lines are
currently not folded.

Constant 1 if shared database system password processing is desired, otherwise
0. This should match the "untrustworthy" bit for this host in the "configure"
relation. The user will be prompted for a password on "permission denied"
messages on the first open database iC this is set.

The location of the help file; see mcaaagca(5I).

The baud rate for serial connections. These are used directly in the dty{2)
call; for example, 13 means 9600 baud. See atty{2} and ttr(4) for details.

The default device name for database server connections; normally
"/dev/idm". On UNIX, the "/dev/" part is optional. For convenience the
driver may also be specified in IDMDEV using the fi/eapec syntax of
dcvice%driver (see intro{ll)). For example, an IDMDEV set to "idmo/oO" or
"idm%multi" specifies the "system standard" driver and device "idm"
("/dev /idm"). IDMDRIVER is used if dri'fler is not specified. Other values
accepted are "idm%stand" (idm%1), "idm%xns" (idm%2) and "idm%tcp"
(idm%4).

The offset into the IDM driver table for the low-level interface. Driver 0 is
always the "system standard" driver. Driver 1 is normally the standalone
serial driver. Other drivers are typically used Cor experimental protocols. This
value must be an integer.

The host id to use for the standalone commands.

The user name to be passed to the IDM/RDBMS software for identification. If
the value is null, no user name is known.

The IDM/RDBMS password for this user.

The size of communication packets to the database server for standalone serial
connections. If your line is Bakey or iC your UNIX system has a small line­
length limitation, this can be adjusted.

Britton Lee 1

\
\

PARAMS (51)

IDMSERROR

IDMSYSCALL

IDMSYSLINE

ID MUSER

IDMVERSION

IOBSIZE

ISDST

MAP CC

MESSAGES

NO PROFILE

QRYLANG

SHELL

SYMFILE

TERM

TERMPATH

TIMEZONE

Britton Lee PAR.AMS (51)

IC nonzero, simulates a Oakey line for protocol testing. Should always be zero.

The system call number used to access the database server. This must match
the entry in the kernel •raent or t1maraent table.

Since the multi-user serial driver is no longer supported, this parameter is not
used. It used to represent the line discipline for the multi-user aerial driver. It
had to match the installed line discipline in the kernel.

The (numeric) user id to use for the standalone IDM drivers.

The version or IDM/RDBMS you are running. The minimum version is 30.
The version configures in features supported by newer IDM/RDBMS versions.

The default 1/0 buffer size.

Constant 1 if daylight savings time ever applies in this area, otherwise 0.

Map control characters to blanks (input) and blotch (output) characters if set
to 1. When cleared, control characters are passed through unchanged.
Currently used by the IDL and SQL front ends and tupprint to allow terminals
to switch character sets to Kangi.

A comma-separated list of files containing messages; see meaaagea(51). The files
are searched in order by e:zcprint (see e:zc(31)). Changing this parameter after
the first message is output has no effect.

Disable reading of profile (or startup) files in IDL or SQL if set to 1. See
idl(ll) and aql(ll) for the command-line -p (noprofile) flag.

The query language normally used, either IDL or SQL. The setting of this ftag
changes the wording of messages. It in no way limits tlie query languages that
may be used.

The pathname of the system shell to use.

The location of the symbol file; see •rmfile(51).

The terminal type.

On UNIX, the prefix of the pathname (with TERM concatentated) containing a
terminal descriptor as created by make term(SI). Normally
"/usr/lib/idm/term".

The local time zone in chronological minutes westward from GMT. Negative
values are minutes eastward from GMT. The maximum (absolute) value is
±720 (minutes), representing the time in Western Samoa:.

In most cases the parameter is only examined once, so any adjustments should be made early in
processing.

Other parameters may be required by particular implementations.

SEE ALSO
gethunpw(31), getparam{31), iftterm(41), messages(51), symfile(51), maketerm(81), csh(l), sh(l),
stty(2), getenv(3), tty(4), Sratem Adminiatrator'• Manual .

3.8-86/09/17-R3v5m0 Britton Lee 2

RETCODE (51) Britton Lee RETCODE (51)

NAME
retcode - return/status/error code

SYNOPSIS
#include <machdep.h>

DESCRIPTION
Type RETOODE is used by IDMLIB routines that return a status code, for status returns from
programs, and for system service error codes.

The following codes are defined in all environments. They are of the form Rz_eocle, where z is S,
W, or E for success, warning, and error respectively. Codes marked with an 'R' are returned by
normal IDMLIB routines; codes marked with an 'E' are returned by errelaaa (see geterr(31)).

RS_NORM E R Normal return

R There are no more commands during an irnezt(31). RW _DONECMDS

RW_IGNORED R This request was ignored because it would have no effect, e.g.,
setting an option that was already set.

R No tuples available.

R Tree represents pseudo-command.

R Target list exhausted.

R Data truncation occured.

R No more tuples.

E Impossible operation requested, e.g., write on a read-only file.

RW_NOTUPS

RW_PSEUDO

RW_TARGEND

RW _TRUNCATE

RW_TUPEND

RE_ CANT

RE_FAILURE R An error occured; an exception will have been raised giving more

RE_IDMQRY

RE_INTR

RE_IOERR

RE_MISC

RE_NOSPACE

RE_NOOUTPUT

RE_NOINPUT

information.

E IDM query error occured.

E Program or routine was interrupted.

E Hard 1/0 error.

E A miscellaneous (unclassifiable) error has occured.

E Write failed because of lack of space.

E Cannot create output.

E Cannot open input.

RE_PERM E You do not have permission to perform this operation.

RE_ USAGE E Bad arguments or parameters.

This list will be expanded as necessary in the future.

IMPLEMENTATION NOTES
Type RETCODE and Rz_ codes are defined in <machclep.h>. Codes should match operating
system conventions iI possible.

The code RS_INFO exists and is identical to RS_NORM. It is intended for use with ayaahel/(31)
so that VMS commands run by ayaahell that return STS$K_INFO can return that value as the
exit value of an IDMLIB application.

On VMS, RETCODEs are VMS condition codes. In addition to the codes listed above, there are
several codes returned by IDM drivers. The numerical value of all of these codes may be found
in the < reteocle.h > include file.

3.8-86/09/17-R3v5m0 Britton Lee 1

RETCODE (51) Britton Lee RETCODE (51)

All IDMLIB RETCODEs have associated messages defined by the VMS Message Utility.

SEE ALSO
intro(3I), exit(3I), geterr(3I)

3.6-86/09/17·R3v5m0 Britton Lee 2

SYMFILE (51) Britton Lee SYMFILE (51)

NAME
/usr/lib/idm/symfile - symbol to integer value mapping file

DESCRIPTION
The symbol file contains the information to map symbols to integers. The format is the symbol
name, one or more space or tab characters, and the integer value. Every symbol must begin in
the first position of the line, and there may be only one symbol per line. Comments may be
added alter the value, separated by more white space, or may be on a line by themselves begin­
ning with '#'.
The first character of each symbol is a tag indicating the class of symbol. Assigned tags are:

d IDM done status bits.
o IDM option names.
t Host trace flags.
* IDM trace flags.

Uppercase alphabetic tags are reserved for use by the customer. All other characters are reserved
for use by Britton Lee.

The symbols input to mapaym(31) are converted to uppercase before matching (except for the tag
character). Thus, symbols containing lowercase characters will never match.

Syntax errors are silently ignored.

EXAMPLE
Note: this is an example only. It does not match the actual values used in the system.

IDMLIB basic flags (ro-59)
tlLIBGEN 50 /• general utility routines•/
tlLIBEXC 52 / * exception handler * /
tILIBBCD 53 / * BCD routines * /
tlLIBCNVT 54 /•type conversion module•/
tILIBOS 55 /• host O/S interface (except 1/0) •/
tILIBCLOCK 56 / * clock routines * /
IDM-specific modules (60-65)
tlDMTREE 60 / * print tree * /
tIDMGEN 61 /• general utility routines•/
tIDMCNVT 62 /•type conversion•/
tIDMP ARSER 63 / * parser, scanner and tables * /
tIDMUTREE 64 /• UTREE routines•/
tIDMRANGE 65 / * range variables * /
RUNTIME-specific modules (66-69)
tRUNTREE 66 / * print tree support * /
tRUNTL 67 /• print target lists •/
tRUNGEN 69 / * general tracing * /
1/0 subsystems (70-79)
tlLIBIO 70 /• basic 1/0 calls •/
tlFTLTAPE 71 /• labeled tape•/
tlFTHASH 72 / * bash file type * /
tlFTSIDM 73 / * standalone IDM access * /

SEE ALSO
ato£(31) (for atoi), mapsym(31), idone(51)

1.4-86/09/17-R3v5m0 Britton Lee 1

XNSHOSTS (51) Britton Lee XNSHOSTS (51)

NAME
/usr /lib/idm/xnshosts - XNS host name mapping file

DESCRIPTION
Xnahoata specifies the numeric addresses used for particular symbolic names. The format of this
file is

phyaicaL addrcaa logical_ name [aliaa ... J

The physical address is in the form:

n1.nf.n9.n4:h1.ht.h9.h4.h5.h6

where nl through n4 are the four nibbles of the network number and hl through h6 are the six
nibbles of the host number.

The logicaLnamc or any of the optional aliaaes may be used to identify the host.

EXAMPLE
0.0.0.1:8.0.44.0.0.8
0.0.0.1:8.0.44.0.0.2
0.0.0.1 :8.0.44.0.0.1
0.0.0.1:8.0.44.0.0.10
0.0.0.1:8.0.44.60.186.252
0.0.0.1:8.0.44.74.184.20

l.4-86/09/17-R3v5m0

host idm
p3
p3spy
p7
tsa
tsb

Britton Lee 1

INTRODUCTION (81) Britton Lee INTRODUCTION (81)

NAME
Introduction to Administrative a.nd Ma.chine-Dependent Commands a.nd Procedures

DESCRIPTION
Section 81 describes commands and procedures used in release administration. This section is not
part or the spec. Commands described herein are not guaranteed to be supported on non-UNIX
based systems. Several or the commands are for Britton-Lee internal use only.

N.B.: Most of these pages are UNIX-dependent.

3.2-87 /02/04-R3v5m0 Britton-Lee 1

I

)

ANSITAPE (81) Britton Lee ANSITAPE (8I)

NAME
ansitape - write files on an ANSI standard labelled tape

SYNOPSIS
anaitape I -f files] [-t tapespec]

ARGUMENTS
-tfilea A file containing a list or files to write to labelled tape. Filee will be written as

the first file on the tape. If not specified standard input is read for the list or
files.

-ttapeapec Labelled tape parameters for use when opening tape. See iftltape(81) for a list or
tape parameters.

DESCRIPTION
Anaitape writes files listed in the file filea or Crom standard input to an initialized labelled tape
(see inittape(8I)) using a fileset name or Write mode, record based presentation or 512 byte
records blocked every 2048 bytes are the default iftltape(81) open parameters. Tape parameters
passed in via tapeapcc will override the default values.

Under record based presentation, anaitape will read and write one line or data from the host file
to the tape file. Otherwise SK blocks are read/written from host to tape file.

EXAMPLE
inittape -f listoffiles -t"mode(a),rbp(O)"

Writes files listed in liatoffilca at the end or the tape without record based presentation
(in SK blocks).

IMPLEMENTATION NOTES
This module is UNIX-specific. Systems that support ANSI tape will have another module to per­
form this function.

SEE ALSO
iftltape(4I), inittape(8I), ANSI X3.27-1978, Amen'can National Standard Magnetic Tape Labcla
and File Structure for Information Interchange.

3.7-88/03/02-R3v5m9 Britton-Lee 1

BACKUP (81) Britton Lee BACKUP (81)

NAME
backup - Shared database system backup procedures using idmdump, idmload, and idmrollC

DESCRIPTION
Databases should be copied ("backed up" or "dumped") periodically to guard against the
unnecessary loes of data due to database server disk crashes or failures. A database can be
backed up to an IDM file in a different database, an IDM tape, a host file, or a host tape. The
procedures are similar for all cases.

As databases are accessed and modified a "transaction log" is maintained. The transaction log
contains information describing all the changes made to the database on relations created "with
logging". The transaction log does not contain information on non-logged relations or on files. H
you have a copy of the database at some point and a transaction log describing all the changes
made since that point, you can recreate the contents of the database that were active at the end
of the transaction log.

The transaction log is interesting since it is normally much smaller than the database itself.
Obviously, if the transaction log is allowed to grow forever, it will eventually become larger than
the database.

The program idmdump(ll) will dump either entire databases or transaction logs. ldmload(ll) will
load a database or a transaction log. ldmrollj(lI) will "roll forward" (that is, make the changes
specified by a transaction log) a database.

Databases should normally be dumped in toto periodically. The frequency of your dumps
depends on how much the database is updated. For example, a database that is updated fre­
quently should probably be dumped every day. A database that is only updated occasionally
could only be dumped once per month. An average database should probably have a full dump
once a week. A database dump for RDBMS software before release 35 requires that all users stop
using the database while it is being dumped, so backups should be scheduled for off hours.
RDBMS release 35 and above defaults to allowing users to read a database that is being dumped.

Transaction dumps should occur more frequently. For example, if you dump your entire data­
base once a week, you might want to dump your transaction log at least once every day. The
frequency of the transaction log is critical: if you only dump the transaction log once per week,
you may lose up to a week's worth of work if the database server fails. H you dump the transac­
tion log once per hour but only dump the database once per month, then a crash at the end of
the month may require loading the database and then over seven hundred transaction logs (31
days/month times 24 hours/day = 744 transaction dumps/month). A good rule is to dump the
database once for every three to ten transaction dumps.

Loading a transaction log is not useful by itself; the transaction must be "applied to the data­
base" for the changes to occur. That is, the roll forward utility must read a transaction log
that has been loaded and make all the changes indicated. This is the same as asking all your
users to make all the changes they have made, but much less painful. The idmroll/(11) program
will perform this operation for you.

Dumping to another database has some good points as well as some drawbacks. On the negative
side, if a hardware failure destroys the entire disk you will have lost your database regardless of
the dump going into anoth~r backup database. On the positive side, the dumps will be very fast,
and the roll forward operation can happen without requiring an idmload first.

For details on developing a complete backup strategy, see the Databaae Adminutrator'a Manual.

SEE ALSO
idmdump(ll), idmload(ll), idmrollC(ll).

3.1-86 /09 /29-R3v5m0 Britton-Lee 1

BUILDMSGS (81) Britton Lee BUILDMSGS (81)

NAME
buildmsgs - build keyed message text file

SYNOPSIS
buildmsgs [-a] [-h] [-a] [-I length J outfile infiles

ARGUMENTS
-h
-llength

-a

DESCRIPTION

Key ("hash") the output file instead of outputting text.

Specify the length of the hash table, i.e., the number of hash buckets. The
default is 512. For efficiency, the hash table should be about 30 percent larger
than the number of keys. Ignored if the /ftKe11ed(41) implementation does not
require a table size.

Append new materal to outfile rather than creating a new file.

Create "subtopic" lists from the keys in the input file.

Buildmaga reads the files in the list infilea and creates outfile. The -h Hag causes outfile to be a
keyed file accessible using the l/tKe11ed(4I) module; otherwise it is a text file. The -a Hag specifies
that output will be &ppended to outfile if it already exists; otherwise outfile will always be created
as a new file. Input lines beginning with '$' are interpreted as index keys. Lines beginning with a
mask-code are text associated with the most recent key. (A mask code is one or more upper-case
letters and one or more blank, followed by a tab.) All other input lines are ignored.

The -a ftag builds subtopic lists for use by the help facility. This may be combined with the -h
ftag.

EXAMPLES
buildmsgs -h -11024 messages.uvax messages.txt

Create a keyed file named "messages.uvax" from the text file "messages.txt". The
length of the hash table is set to 1024.

buildmsgs -h -s helpfile.uvax helpfile.tl helpfile.t2
Create a keyed help file named "helpfile.uvax" from the text files "helpfile.tl" and
"helpfile.t2".

SEE ALSO
iftkeyed(4i), iftmtext(4i), messages(5i)

3.4-86/09/17-R3v5m0 Britton-Lee 1

DUMPTAPE (81) Britton Lee DUMPTAPE (81)

NAME
dumptape - report on contents of an ANSI tape

SYNOPSIS
dumptape [-r] [-v] [-t tapefile]

ARGUMENTS
-r

-v

-ttapefile

NOTE

Raw dump mode. Every tape record is dumped in abtruse detail.

Verbose mode. Gives even more detail.

The name of the UNIX device to reference; /dev/rmt:JJ (4.2 BSD) by default.

System V Release 2.0 (running on 3B series) does not provide access to basic tape operations.
Therefore support of ANSI labeled tape is unavailable at this time.

DESCRIPTION
Without -r specified, dumptape produces a report of the tape contents in a one line per file for­
mat. The -v ftag adds several fields; this format is suitable for output on a line printer. The
fields output are:

SEQN Sequence number of the file on the tape.

-FILE-NAME-

SECT

GEN#

GV

CD ATE

XDATE
A

File name.

File section number. A multivolume file will be in several sections.
I

Generation number.

Generation version number.

Creation date.

Expiration date.

Access code.

-SYSTEM-CODE-

F

System code for the system that created the file.

Format.

Maximum block size.

Maximum record size.

Buffer offset.

BSIZE

RSIZE

BO

BLOCKS Number of blocks in the file. This is computed rather than being read from the
labels.

In raw format (i.e., with th~ -r flag specified) the output is suitable for system debuggers.

SEE ALSO
iftltape(41), inittape(81), ANSI X3.27-1978, Amen'can National Standard Magnetic Tape Labela
and File Structure for Information Interchange.

3.6-88/03/01-R3v5m8 Britton-Lee 1

IDMBOOT (81) Britton Lee IDMBOOT (81)

NAME
idmboot - load the IDM/RDBMS software

SYNOPSIS
ldmboot [-B device J [-V J [-2] [source J

ARGUMENTS
-B device Use device as the connection to the database server. The device must be con­

nected to the database server console or maintenance port. Ir not specified, the
system parameter IDMCONS is used.

-V
-2

aource

DESCRIPTION

Verbose mode.

Run the older two-port load. This flag is necessary if the database server has
dbp proms rev. 28 or earlier.

This must be a single parameter, so it will have to be quoted iC it contains
spaces. If not specified, the default will be the host system's default
IDM/RDBMS software source. (On 4.2 BSD UNIX, this is usually "/dev /rmt8"
- the 1600 BPI tape-drive.)

ldmboot in one-port mode (the default) allows the user to access the database server's console
port, issuing dse server console commands. If the user issues 'load' or 'list' commands, idmboot
will obtain the necessary files to transmit to the database server.

The older, two-port load requires that a terminal be connected to the IDM console port. The
database server connection specified by the -B option must be to the database server mainte­
nance port. All console commands must be issued via the console terminal - two port idmboot
only handles the actual transmission of files to the database server.

ldmboot does not know when the console session is finished, so the only way to terminate idmboot
is by user interrupt.

Please refer to the BL/ 700 Operation Manual for a description of database server console com­
mands and their use.

EXAMPLES
idmboot

Access the database server console port specified by the system parameter IDMCONS.
Any files required by the IDM system will be read from the system's default RDBMS
software source (on 4.2 BSD UNIX, the 1600 BPI tape-drive "/dev /rmt8"). This is the
one-port load.

idmboot -2 -V -B/dev/idmmaint /dev/rmt8

SEE ALSO

Run the two-port load in verbose mode. The database server console port is connected
to the device "/dev/idmmaint." The RDBMS software is read from the 1600 BPI tape­
drive "/dev/rmt8" (the default IDM/RDBMS software source on UNIX).

BL 700 Operation Manual.

3.2-87 /09/28-R3v5m5 Britton-Lee 1

IDMIDYD (81) Britton Lee IDMIDYD (81)

NAME
idmidyd - IDM XNS identify daemon

SYNOPSIS
/usr /lib/idm/idmidyd [-B device] [-h interval] [-p] [idmname ...

ARGUMENTS
-B device Specify the database server device connection. Ignored if any names are specified as

positionals.

-h interval Poll every inteMJal seconds. The default is set from the XNSHELLOINT parame­
ter.

-p Force poll mode. This mode is assumed if more than one database server is
specified.

idmname The name of one or more database servers to be controlled by this identify daemon.

DESCRIPTION
Idmidvd opens a "lifeline connection" to the named database server(s). An IDENTIFY packet is
sent to establish the host characteristics, and the connection is held open.

In "poll" mode a message is sent to the database server periodically to verify that both the host
and the database server are both working. Ir the database server fails to respond, the connection
is closed and idmidrd goes into a loop trying to open the connection again.

In non-poll mode idmidvd hangs on a read on the connection. Ir the read ever tails then the
database server must be down and idmidyd enters the loop to attempt to re-open the connection.

This program is normally started on all database servers during system startup.

IMPLEMENTATION NOTES.
An implementation is supplied that is machine independent assuming that a routine:

sleep(N)

is supplied which suspends the execution of the process for N seconds.

3.3-86/09/17-R3v5m0 Britton Lee 1

INITTAPE (81) Britton Lee INITTAPE (81)

NAME
inittape - initialize ANSI standard labelled tape

SYNOPSIS
inittape [-a access] [-d. density] [-i J I -I length] [-o owner] [-t tapefile] volumeid

ARGUMENTS
-aaccea8

-d.den8ity

-i

-llength

-oowner

-ttapefi/e

tJolumeid

WARNING

The access character Cor this tape volume. The default is space, meaning all
access for everyone. Ir any other character is chosen, the current implementa­
tion will refuse to access the tape in any way.

The tape density in bits per inch. Default is 1600 bpi.

Create an initial empty file on the tape. This option is required if the tape is
to be used on another system before being written.

The tape length in feet, 2400 default. Ir this is not specified properly volume
switching may be defeated.

The name of the owner of the tape. Ir not specified, the name of the user
running inittape will be used. The owner name is truncated to fourteen char­
acters.

The name of the file to be opened to access the tape. The default is
"/dev /rmt8."

The name that this volume should have. The volume name is truncated to
six characters.

Use of this program can cause destruction of valuable data. Some installations may want to limit
access to this command to system personnel.

System V Release 2.0 (running on 3B series) does not provide access to basic tape operations.
Therefore support of ANSI labeled tape is unavailable at this time.

DESCRIPTION
Inittape initializes a tape by writing an ANSI standard label set. A tape must be initialized
before using the i/tltape(41) module, implicit in most of the IDM utilities. Initializing a volume
destroys any previous contents.

Every tape must have a volume name. This name should be unique among all tapes at your
installation to insure that important data is not accidently overwritten.

The volume name should be copied onto the physical tape reel Cor easy identification. A good
technique is to initialize and physically label all tapes as soon as they arrive at your installation.

Characters in user and volume names must be chosen from the set of letters, digits, and the spe­
cial characters:

" % & ' * + '
/ : < - > ? space

Lower case letters are automatically mapped to upper case.

EXAMPLE
inittape &00452

Initializes the tape to have the label "A00452."

IMPLEMENTATION NOTES
This module is UNIX-specific. Systems that support ANSI tape will have another module to per­
form this function.

3.3-86/09/17-R3v5m0 Britton-Lee 1

INITTAPE (81) Britton Lee INITT APE (81)

UNIX writes a UVLl label containing:

OP Field Na.me L Content
1 to 3 Label Identifier 3 UVL
4 Label Number 1 1
5 to 17 System Code 13 Identifies this implementation.
18 to 22 Tape Density 5 Density in bits per inch.
23 to 27 Tape Length 5 Length in feet.

BUGS-UNIX
The density must be consistent with the value or the -t flag.

Use of -1 is a hack.

SEE ALSO
idmcopy(ll), idmdump(ll), iCtltape(41), mt(4), ANSI X3.27-1978, American Na.tiona.I Standard
Magnetic Tape Labela and File Structure for Information Interchange.

3.2-86 /09 /04-R3v5m0 Britton-Lee 2

MAKE (81) Britton Lee MAKE (81)

NAME
Make - clever interCace to make(l)

SYNOPSIS
Make make arguments

DESCRIPTION
Make (with a capital-M) is a front end to make(l) which creates a Makefile from a Makefile.m4
using m.f (1) if necessary. Ir the Makefile does not exist or is out or date with respect to a
Makefile.m4, the command

m4 SIDMCONFIG Makefile.m4 > Makefile

is executed. IDMCONFIG may be defined in your environment to select a configuration file; if
not specified, /a/host/etc/config.m4 is used.

All other arguments are exactly as described in make(l). The -t flag is not correctly processed.

SEE ALSO

FILES

make(l), m4(1)

Makefile
Makefile.m4
RCS/Makefile.m4,v
/a/host/ etc/ config.m4

3.8-86/04/11-R3v5m0 Britton-Lee 1

MAKETERM (81) Britton Lee MAKETERM (81)

NAME
maketerm - compile a terminal descriptor

SYNOPSIS
maketerm [-C] term

ARGUMENTS
-C
term

DESCRIPTION

Create a "C" language source-file instead of a binary data file.

The name of a terminal type.

Maketerm reads a terminal description text file named term.tty and creates the file term.td.N
(where N is the a version number on the binary format) containing a compact representation to
be read by l/tTerm(4I). Term.tty must exist in the current directory. Ir the -C argument is
used, a C source file will be produced instead of a ".td" file. The file will be named term.c, and
the data structure will be BYTE array named Td_term. It is the programmers responsibility to
cast the pointer to Td_term to be of type (TERMDESC •). (See l/tLoTerm(-41) for a description
or the _gettermdesc interface.)

TERMINAL DESCRIPTIONS
A terminal description consists of a series of "field=value" lines. Lines beginning with a '#'
mark and blank lines are comments.

Field names are:
flags
init
reset
scrgl
si-gl
so
si
scrg2
si-g2
so-g3
si-g3
scrg4
si-g4
so-g5
si-g5
scrg6
si-g6
scrg7
si-g7
g2-tlc
g2-trc
g2-blc
g2-brc
g2-lt
g2-rt
g2-tt
g2-bt
g2-x
g2-vb
g2-hb
g2-blotch

3.8-86/04/11-R3vSmO

A list of terminal flags
Initialization string
Reset string
The Gl "shift out" (alternate char set) sequence
The GI "shift in" (normal char set) sequence
Same as "so-gl"
Same as "si-gl"
The G2 "shift out" sequence
The G2 "shift in" sequence
The G3 "shift out" sequence
The G3 "shift in" sequence
The G4 "shift out" sequence
The G4 "shift in" sequence
The GS "shift out" sequence
The GS "shift in" sequence
The G6 "shift out" sequence
The G6 "shift in" sequence
The G7 "shift out" sequence
.The G7 "shift in" sequence
Top Left Corner sequence
Top Right Corner sequence
Bottom Left Corner sequence
Bottom Right Corner sequence
Left Tee sequence
Right Tee sequence
Top Tee sequence
Bottom Tee sequence
Cross sequence
Vertical Bar sequence
Horizontal Bar sequence
Out-of-band Blotch sequence

Britton-Lee 1

MAKETERM (81) Britton Lee MAKETERM (81)

lines Number of lines
cols Number of columns
e-primary Primary enhancement string
e-bold Bold enhancement string
e-ra.int Fa.int enhancement string
e-italic Italic enhancement string
e-under Underscore enhancement string
e-blink Blink enhancement string
e-flash Flash enhancement string
e-reverse Reverse enhancement string
c-cuf move cursor right
c-cud move cursor down
c-cuu move cursor up
c-cub move cursor left
c-cup absolute cursor motion
c-clr clear screen
c-con start cursor-motion mode
c-cofJ end cursor-motion mode
pad ch padding character (if not NUL)
speed Baudrate

The "speed" field is ignored on systems that can automatically determine the baudrate.

If a field specification is missing from the terminal descriptor file, the terminal is assumed not to
have that capability.

The strings a.re specified using the following mappings:

\b BS (backspace) character
\e ESC (escape) character
\r FF (form reed) character
\i SI (shift in) character
\n NL (newline) character
\o SO (shift out) character
\r CR (carriage return) character
\ \ backslash character
Az Control-z
\NNN The octal representation

Argument.a

Arguments are indicated by a "%" character, and a literal "%" may be specified by "%%". In
most strings, the only rec~ized argument is for padding. Padding is specified as follows:

'
%np

where n is a decimal integer represented by a string of digits. Actual padding times a.re calcu­
lated at run-time relative to the baudrate of the terminal. For most control strings, padding is
absolute. For absolute cursor motion, the padding specified is for each line affected. That is, if
the cursor is moved down 6 lines, the padding value will be multiplied by 6.

There a.re two other arguments recognized in the "c-cup" (absolute cursor motion) control string.
These are the line and column to position to. The format or the argument specifications is as fol­
lows:

%c [o J!w Jt

3.8-86 /04/ll-R3v5m0 Britton-Lee 2

MAKETERM (81) Britton Lee MAKETERM (81)

where the meta-characters have the following special meanings: c is either "x", specifying that the
argument is the column, or "y" Cor the line. o (optional) is an offset to be added to the line or
column number, and is in the Cormat or a decimal integer string followed by a "+" or a "-". w
(optional) is a decimal integer indicating the width of the argument, in bytes. t is either "b",
specifying that the argument is to be interpolated as a binary byte, or "d", specifying decimal
digits.

As an example, the "c-cup". string for an adm3a would be as follows:

\e-%y31+b%x31+b

The Collowing specifications all work for the Concept avt:

\e[%yd;%xdH
\e[%y2d;%x2dH
\e[%y0+2d;%x0+2dH

Gl'aphice

The graphic characters have a single character which may be a single-quoted character or an
integer representation followed by a series or ftags:

gl Terminal must be in Gl mode
so Same as "gl"
g2 Terminal must be in G2 mode
g3 Terminal must be in G3 mode
g4 Terminal must be in G4 mode
g5 Terminal must be in GS mode
g6 Terminal must be in G6 mode
g7 Terminal must be in G7 mode

G4 mode is reserved Cor Katakana mode.

In general, the terminal is normally in normal (GO} mode. When a special graphic is printed, it is
shifted into the mode specified by the terminal descriptor and then the specified translation is
printed. (Katakana characters are always shifted into G4 mode and are passed through
untranslated.) For example, the description "g2-tlc = 54 g6" would cause the terminal to be
shifted into G6 mode (as specified by the "so-g6" string), the byte with value 54 to be sent, fol­
lowed by the appropriate shift-in string ("si-g6"}.

EXAMPLE

* # Descriptor for VTlOO terminal

*
ftags= fancy
init= \e)O
reset= AX\i\e[Om
so-gl= \o
si-gl= \i

g2-tlc= 108 so
g2-trc= 107 so
g2-blc== 109 so
g2-bre= 106 so
g2-lt= 116 so
g2-rt= 117 so
g2-tt= 119 so
g2-bt== 118 so

3.8-86/04/11-R3v5m0 Britton-Lee 3

MAKETERM (81)

g2-x=
g2-vb=
g2-hb=
g2-blotch=

lines=
cols=

e-primary=
e-bold=
e-faint=
e-italic=
e-under=
e-blink=
e-ftash=
e-reverse=

c-cuf=
c-cud=
c-cuu=
c-cub=
c-cup=
c-clr=

SEE ALSO
iftterm(41)

3.0-84/11/0l-R3v5m0

110 so
120 so
113 so
097 so

24
80

\e[Om
\e[lm
\e[2m
\e[3m
\e[4m
\e[5m
\e[6m
\e[7m

%2p\e[C
%2p\e[B
%2p\e[A

Britton Lee

%2p\e[D
%5p\e[%yd;%xdH
%50p\e[l;lH\e[J

Britton-Lee

MAKETERM (81)

4

SGREP (Si) Britton Lee SGREP (8i)

NAME
sgrep - structured grep

SYNOPSIS
sgrep [-ooutput-spec] [-ccomment-char] [-ttab-char] [-dkeyword=default] selection­

criteria

ARGUMENTS
-oo•tp•t-apec Set the output specification.

-c comment-char
Set the comment character; "#" by default.

-ttab-char Set the character to be used to separate fields; comma by default.

-dke11word=def a ult
Set a default value for a field name.

DESCRIPTION
Sgrep selects lines Crom the standard input and copies them to the standard output under control
or the a.tp•t apec and the atlection criteria.

The input is structured as a set of "keyword=value" pairs separated by "tab characters"
(comma by default). There is no implied ordering of fields on a line. Alternative values can be
separated by vertical bars. For example, the input line

file Makefile.m4, type=base I ext

will match selection criteria matching either "type=base" or "type=ext."

Lines are selected by a series of criteria or the Corm "keyword=pattern" where pattern is a list or
alternatives separated by vertical bars or is null (to match any line that has that keyword
present). Criteria may be combined using and, or, and not; the expression must be a disjunc­
tion of conjunctions. For example, the criteria:

type=base and ver=2 or type=ext

will select all lines where the type field is "base" and the Vel' field is "2" or where the type field
is "ext."

H an output spec is given, selected lines are formated. Characters are copied Crom the output
spec to the standard output except for field names enclosed in braces ("{ }"). For example, the
output spec:

-<>'co -r{ver} {file}'

will output a series of RCS commands that can in turn be input to the shell. Some special field
names are supplied by agrep. "{SinputS}" is the input line as read; this is the default output spec.
"{Slineno$}" is the line number or the input. For example, to get a numbered list or a.11 lines
that match, use:

-<>' {Slineno$}: {$input$}'

It is an error to specify a field name in an output spec that is not in the input line. However,
defaults can be specified in the command line using the -d flag.

Lines in the input beginning with the comment-char("#" by default) are ignored.

SEE ALSO
grep(l)

3.0-84/ll/01-R3v5m0 Britton-Lee 1

.. Britton
W Lee,Inc.
14600 Winchester Boulevard
Los Gatos, California 95030
(408)378-7000
Tulex: 172-585

