
Britton Lee Host Software

RIC USER'S GUIDE

(R3v5)

March 1988

Part Number 205-1393-004

This document supersedes all previous documents of the same title. This edition is intended for
use with Britton Lee Host Software Release 3.5 and future releases, until further notice:.

The information contained within this document is subject to change without notice. Britton Lee
assumes no responsiblity for any errors that may appear in this document.

The software described in this document is furnished under license and may only be used or
copied by the terms of such license.

IDM, Intelligent Database Language and IDL are trademarks of Britton Lee, Inc.

Unix is a trademark of AT&T Bell Laboratories.

VAX and VMS are trademarks of Digital Equipment Corporation.

MS-DOS is a trademark of Microsoft Corporation.

AOS/VS is a trademark of the Data General Corporation.

COPYRIGHT © 1988
BRITTON LEE, INC.

ALL RIGHTS RESERVED
(Reproduction in any form is strictly prohibited)

Table of Contents

1. Introduction to RIC .. 1
1.1. Overview ... 1

1.1.1. Input to RIC .. .,...... 1

1.1.2. Precompilation ... '" ,,........... 2
1.1.3. Output from RIC ... '° ~.... 4
1.1.4. Compilation .. 6

1.2. Data Types ... 7

1.3. Error Messages .. 8

1.4. References ... 9

1.4.1. RIC (lI) ... 9

1.4.2. INlTRC ... 9
1.4.3. IDMLIB .. 9

1.4.4. IDL ... 9

1.4.5. RSC .. 10

2. Programming with RIC .. ,. .. 00.................... 11
2.1. IDL in C Code ... 11

2.1.1. Delineating IDL Commands.. 12
2.1.2. Range Statements ... 13

2.1.2.1. Scope of Range Variables .. 13
2.1.2.2. Fixed Range Variables ... 15
2.1.2.3. Dynamic Range Variables ... 16

2.1.3. Placement of IDL Commands .. 17
2.2. C Expressions in IDL Commands ... 17

2.2.1. C Declarations Used by RIC .. 18
2.3. Retrieves ... 20

2.3.l. Singleton Retrieves ... 20
2.3.2. Looped Retrieves ... 21
2.3.3. Memory for Strings ... 24
2.3.4. Order By Clauses .. 26
2.3.5. Nested Retrieves .. 27

2.4. Canceling IDL Commands .. 28

3. Advanced Programming with RIC ... 31
3.1. Stored Commands .. 33

3.1. l. Obtaining Retrieved Data from Stored Commands 33
3.2. Transactions ... 39

3.2.1. Nested Transactions ... 42
3.2.2. New Transactions ... 45

3.2.3. Nested Operations in Retrieve Loops ... 47

3.3. Deadlock Backout and Recovery ... 48

Britton Lee iii

Appendix A: Stored Programs ... 51

Appendix B: RIC and the C Preprocessor ... 55

Appendix C: Portability of RIC Programs ... 59

iv Britton Lee

Preface

Britton Lee's Integrated Database Management (IDM) system offers the means for shar­
ing data among individuals who need direct access to the same information. Britton
Lee systems allow dissimilar host computers to connect with a single data. source.

The database resides totally within the Britton Lee hardware, so data.base ta.s)ts such as
processing low-level database commands, maintaining data consistency, managing
backup and restore operations, regulating resource sharing, scheduling processes, and
monitoring performance are all handled by the Integrated Database Manager (IDM)
RDBMS software running on the special purpose processor.

The IDM host-resident software performs a number of functions which involve commun­
ication with the user. A user on a host computer queries a database interactively using
Britton Lee's Intelligent Database Language, IDL, or the IBM-compatible Structured
Query Language, SQL.

It is also possible to query a database from a program running on a host computer writ­
ten in a language which is a combination of a procedural programming language, such
as C, and a non-procedural database query language, such as IDL.

Britton Lee has developed a precompiler called RIC, which handles IDL queries embed­
ded in C. RIC translates program statements written in a mixture of IDL and C into
pure C code which makes calls to Britton Lee's host software subroutine library,
ID11LIB. The pure C output of the precompiler can then be compiled with a C com­
piler.

"Introduction to RIC" contains a general description of RIC and covers general infor­
mation for anyone writing programs in RIC.

"Programming with RIC" describes in detail how IDL commands are embedded in C
code, how C expressions may be used in IDL commands, and how IDL retrieve queries
are handled in RIC programs.

"Advanced Programming With RIC" describes RIC support for stored commands and
transactions. It also contains some examples of RIC programs which make direct calls
to IDMLIB. Users of this chapter who are not familiar with IDMLIB should consult the
Idmlib User's Guide.

The appendices cover various aspects of building a compilable pure C program from
RIC source code.

Britton Lee v

1. Introduction to RIC

RIC is a precompiler which accepts a. file with IDL commands embedded in C code as
input and generates a file containing pure C code as output. The output makes calls to
the subroutine library, IDMLIB. This C program can then be compiled with· a C com­
piler and linked with IDMLIB to create an executable object which runs on the host
computer system and accesses data. on the Britton Lee data.base server.

prog.ric RIC precompiler prog.c C compiler
prog

RIC itself is written in C and has been ported to all operating systems currently sup­
ported by Britton Lee Host Software.

The prerequisites for using RIC a.re a solid knowledge of the C programming language
and some knowledge of the Intelligent Data.base Language (IDL). The requirement for a
solid knowledge of C cannot be overemphasized. It is not feasible to learn C and RIC
simultaneously, since the power of C is achieved at the cost of considerable difficulty for
the novice. The vast majority of the difficulties novice C programmers encounter using
RIC are found to be problems with the finer points of C.

1.1. Overview

Throughout this guide, "source file" refers to the file with embedded IDL commands
precompiled by RIC and "output file" refers to the pure C file produced by RIC to be
compiled by a C compiler. The word "RIC" refers both to the precompiler and to the
embedded language which it precompiles.

1.1.1. Input to RIC

The following RIC program executes a single command on the database server.

88/0£/££ v. 1. 7 Britton Lee 1

Introduction to RIC

1 /•
2 ** SIMPLE.RIC
3 ** This progra.m appends a tuple to •myrelation•.
4 */
5
6 main()
7 {
8 INITRIC(•s1mp1e•);
g

10 $append to myrelation
11 (
12 num = 1.
13 na.me = •agatha•
14) ;
15
16 exit(RS_NORM);
17 }

RIC User's Guide

This brief example demonstrates the minimal requirements for any RIC program:

• The RIC source filename must have the suffix ric, re or no suffix. We could
name the source file simple.ric, simple.re or simplesrc but not simpksrc.

• All RIC programs must call !NITRIC with the name of the executable object as
its argument. !NITRIC initializes IDMLIB and the RIC runtime library environ­
ment. !NITRIC may be called only once by a RIC program.

• The program contains at least one embedded IDL statement introduced by a dol­
lar sign ($). RIC would precompile a pure C program without any embedded
IDL statements, but there would be little point to this exercise, since the pur:.
pose of using RIC is to write programs which contain IDL embedded in C.

• All programs must terminate with an explicit call to the IDMLIB function exit
with an IDMLIB return code as its argument. These return codes are listed
under RETCODE in Section 51 of the Host Software Specification for Unix sys­
tems and the C Run-Time Library Reference for other systems.

1.1.2. Precompilation

We can precompile simple.ric with the command

ric -d "mydatabaae'' simple.ric (Unix)

ric /dbname=mydatabaae simple.ric (other)

2 &~~nLu 88/oe;ee v. 1. 1

RIC User's Guide Introduction to RIC

The -d or /dbname database option specifies the data.base to be accessed. There is no
default value for the data.base, so this option must be specified if the database is being
indicated at precompile time.

An alternative to specifying the database and/or the device connecting the host com­
puter with the database server at precompile time is specifing them at runtime using the
macros RCDEVICE and RCDBNAME. These macros may appear before or after the
call to INITRIC, but they must appear before the first executable IDL command. For
example, we rewrite the program above in Section 1.1.1 as

1 /*
2 ** SIMPI..E2.RIC -- this program appends a tuple to •myrelation•.
3 **
4 •/
5 ma.in()
6 {
7 RCDEVICE(•hostlxns•);
8 RCDBNAME(•myda.taba.se•);
9 INITRIC(•simp1e•);
10
11 $append to myrelation
12 (
13 num = 1.
14 name = •a.ga.tha.'
15) ;
16
17 exit(RS_NORM);
18 }

These macros a.re particularly useful if the program gets the database name from the
command-line using the IDMLIB function crackargv(), as demonstrated by the following
example. For more information on how to use crackargv(}, consult Chapter 4 of the
ldmlib User's Guide.

BB/oe;ee v. 1. 1 Britton Lee 3

Introduction to RIC RIO User's Guide

1 /•
2 **SIMPLES.RIC -- this program appends a tuple to •myrelation•.
3 **
4 ** Gets da.taba.se name from the command-line using crackargv.
5 ** Device name is the default in environmental variable IDMDEV.
6 */
7
8
9

#include <crackargv.h>

10 char
11

•oba.se;

12 I• the argument list •/
13 ARGLIST Args [] =
14 {
15
16
17
18 };
19

FLAGPOS. FLAGSTRING. o. CHARNULL. CHARNULL.
•Enter da.ta.ba.se:•. CHARNULL.
'\O'

20 ma.in(a.rgc. argv)
21
22
23 {
24
25
26
27
28
29
30
31
32
33
34
35 }

int a.rgc;
char •a.rgv [) ;

INITRIC(•simple");
cra.cka.rgv(a.rgv. Args);
RCDBNAME(Dba.se);

$append to myrela.tion
(

num = 1.
name = •a.ga.tha.•

);

exit(RS_NORM);

&Dba.se.

When the database name is supplied at runtime, the command to precompile the RIC
source IS

ric aimple3.ric

1.1.3. Output from RIC

RIC's output from simple.ric is the following pure C file named simple.c:

4 Britton Lee 88/oe;ee v. 1. 1

RIC User's Guide

#include <rcinclude.h>
static char •RcProg = ••;
static char •RcCDB = •mydatabase•;
static char •RcDevice = •hostlxns•;
#line 1 •simple.ric"
I•
** SIMPLE.RIC
** This program appends a tuple to •myrelation•.
*/

main()
{

{

}

rcutree(getutree(O));
RcResult = rcexec();

#line 14 •simple.ric"
exit(RS_NORM);

}

#line 18 •after end of file on simple.ric"

Introduction to RIC

static char •utrees[] = {
•\ooo\ooo\ooo\ooo\ooo\ooo\001\000\000\ooo\ooo\ooo/\ooo\oos
\OOOagatha\003\000\241\000\004\000na.me\OOO\OOOO\OOO\OOl
\000\001\003\000\241\000\003\000num\OOO\OOO".
•\002\000\000\000\003\000\264\000\002\000\000\000\000\000
\343\000\013\000\000myrelation\000\000)\000\002\000\001
\002\001\000\200\001\000\000\002\000\200\001\000\000\003".
"\000\200\001\000\000\003\000\303\000\000\000\001\000\374
\001\010\000\001\000\000\000\000\000\000\000\377\377\000".
•endoftrees•};

st•tic short utlen[] = {
128. O};

static short utpos[] = {
o. 3};

static ITREE •utp[l];
static ITREE •

getutree(i) int 1·
{

}

if (utp[i] == ITNULL)
utp[i] = (ITREE •) rcgetutree(utpos[i].
utpos[i + 1). utlen[i]. utrees);

return (utp[i]);

A comparison between simple.ric, the source file in Section 1.1.1, and aimple.c, the out­
put file in Section 1.1.3, demonstrates how RIC precompiles a syntactically correct RIC
source file.

88/0f/ff v. 1. 7 Britton Lee 5

Introduction to RIC RIC User's Guide

First, RIC adds four lines of code to the top of the output file. The first line includes
<rcinclude.h> which in turn includes all the header files needed to compile the source.
The next three lines initialize static variables. RcProg holds the names of stored pro­
grams which are defined when the RIC source is compiled with the -n or /progname
option. This option is discussed in Appendix A. Since we did not compile this program
with this option, the value of RcProg is an empty string. RcDevice stores the name of
the device connecting the host system to the database server, which here is tb.e default
device name taken from the environmental variable IDMDEV. RcCDB stores the name
of the database, which was taken from the command-line option with which RIC was
invoked.

The next line, #line 1 "simple.ric", is a directive to the C compiler which will ulti­
mately compile the output file. It can be translated as "Consider the next line as line I
for the purpose of error messages". Predictably, the next line in the output file
corresponds to line 1 of the RIC source. These #line directives are used by the C com­
piler to synchronize the lines in the source file with the lines in the output file. This
enables the C compiler to give error messages which reference lines in the original RIC
source instead of in the pure C file which it is compiling.

From the beginning of main to the closing bracket of the source file, RIC scans the file
copying the input file to the output file until it reads a dollar sign ($). The dollar sign
($) is a signal to RIC that it has encountered either an IDL statement or a C identifier
which is used in an IDL statement. Either situation requires special proces5in·g by RIC.
In this example, RIC encounters an IDL statement in the form of the append command
in lines 10 through 14 of the source. RIC transforms this statement into

{

}

rcutree(getutree(O));
RcResult = rcexec();

in the output file. RIC adds the code for getutree to the bottom of the output file. It
also adds the specific information passed to getutree (in this case the name of the rela­
tion and the attributes being appended) as a series of octal bytes comprising the vari­
able utrees. These bytes define the specific IDL command as a tree which can be under­
stood by the database server. RIC then synchronizes with another #line directive and
continues in this manner until end-of-file.

1.1.4. Compilation

The output file, simple.c, which RIC creates from simple.ric can be compiled with the C
compiler normally used on the host system. You must load IDMLIB and you may have
to specify the directory containing the IDMLIB header files. We can compile simple.c
with the command-line

6 Britton Lee 88/02/22 v. 1. 7

RIC User's Guide Introduction to RIC

cc -1/uar/include/idm -o •imple •imple.c -lidmlib

on our Unix system. This produces an executable object called aimple. Consult the
entry for RIC (11) in the Host Software Specification for Unix systems a.nd the Com­
mand Summary for other systems for instructions on compiling and linking a RIC pro­
gram in your host environment. If the program also makes calls to the sta,ndard 1/0
library, consult the appropriate appendix of the /dmlib User's Guide for instructions on
building an object file incorporating IDMLIB and !STDIO in your host environment.

1.2. Data Types

RIC maps C variables to corresponding data structures on the database server. The fol­
lowing table shows the correspondence between these database server types a.nd C data
types.

Database Server Type Length in Bytes C Type

iINTl 1 char
iINTl 1 BOOL
i1NT2 2 short
iINT4 4 long
iFLT4 4 ft oat
iFLTS 8 double
iCHAR variable char[]
iFCHAR variable char[]
iBCD variable BCD NO
iBCDFLT variable BCD NO

The types BOOL and BCDNO a.re macros contained in one of the header files inserted
by RIC.

Data of the database server BINARY data type should be retrieved from or appended to
an array of type char[]. Conversion between BINARY and CHAR must be done on the
database server, not on the host, using the binary and string functions within the query
as indicated below.

88/02/22 v. 1. 7 Britton Lee 7

Introduction to RIC

$char bindata[lOO];

$ range of m = myrelation;

I• append binary data •/
$ append to myrelation
(

binattr = binary($bindata);
) ;

I• retrieve binary data •/
$retrieve ($bindata = string(100, m.binattr));

RIC User's Guide

The database server supports BCD (binary coded decimal) integer and floating point
types which correspond to the C type BCDNO. A BCDNO is defined as a 1truct con­
taining the type, length and value of a BCD object on the database server. When a
BCD value is retrieved from the database server and stored as a C object of type
BCDNO in a RIC program, the "type" field of the C object gets the value of the type
of the database server attribute. When an object of type BCDNO is sent to the data­
base server, it is sent as the (data.base server) type which corresponds to the value of
the "type" field in the BCDNO 1truct.

The data.base server cannot perform arithmetic or conversions with floating-point vari­
ables, so a program which expects the data.base server to perform these operations
should convert the variables to type BCDNO.

1.3. Error Messages

RIC produces error messages only for statements beginning with a dollar sign ($). It
assumes that other statements a.re valid C and passes them through to the output file
without parsing them. Thus it is perfectly possible for a RIC program which is full of
C synta.x errors to come through the precompiler stage eliciting no error messages. The
error messages will appear at compile time.

Because of the #line directives mentioned in Section 1.1.3, error messages from the C
compiler will reference the RIC source, not the C compiler source, so that the RIC pro­
grammer can make corrections on the original RIC source file and then run this file
through RIC again. It should never be necessary for the RIC programmer to write on
the RIC output (the .c file).

The line referenced in the error message is always the last line of the statement contain­
ing the error. An error message for a. thirty-line atruct declaration with an error in the
fifth line will cite the thirtieth line as the source of the error.

8 Britton Lee 88/oe/ee v. 1. 1

RIC User's Guide

1.4. References

1.4.1. RIC (11)

Introduction to RIC

An indispensible reference for a.nyone using RIC is the entry for RIC in Section 11 of the
Host Software Specification for Unix Systems and the Command Summarr for other sys­
tems. This document provides a formal description of the RIC progra.m which includes

• a synopsis of the invocation of RIC

• a description of all Bags and command-line arguments

• a description of what the program does

• a list of IDL queries that may be used in RIC programs

• a list of IDL functions which may be used in RIC programs

• a synopsis of the use of C expressions in IDL statements

• some examples of invocations of RIC

• a list of related documents

1.4.2. INITRC

The macros INITRIC, RCDBNAME, and RCDEVICE a.re formally documented under
"INITRC" in Section 3 of the Host Software Specification for Unix Systems and the C
Run-Time Library Reference for other systems.

1.4.3. IDMLIB

A formal description of all IDMLIB functions is contained in Section 3 of the Host
Software Specification for Unix Systems and the C Run-Time Library Reference for
other systems.

An informal description of some relevant portions of IDMLIB is available in the /dmlib
User's Guide.

1.4.4. IDL

The Intelligent Database Language (IDL) is documented in the IDL Reference Manual.
Any differences between the interactive version of IDL used in this reference and the
IDL accepted by RIC are noted in the reference documentation for RIC (11) listed above.

88/0e/ee v. 1. 7 Britton Lee 9

Introduction to RIC RIC User's Guide

1.4.5. RSC

Britton Lee also has a precompiler called RSC which precompiles programs containing
SQL statements embedded in C. For more information concerning RSC, consult the
RSC User's Guide.

10 Britton Lee 88/02/2£ v. 1. 7

2. Programming with RIC

This chapter provides basic information needed to use RIC: how to embed IDL state­
ments in C code, how to use C expressions in IDL statements, and how to construct
code for retrieving data from the database server.

The examples in this chapter assume the following schema for the "books" database:

create title
(

)

docnum == i2,
title == c35,
onhand == i2

create author
(

)

authnum == i2,
flnt == clO,
laat == c15

create authttl
(

)

authnum == i2,
docnum == i2

2.1. IDL in C Code

The following RIC program embeds an IDL range statement and an IDL append com­
mand in C code.

ss;oe;ee v. 1. 1 Britton Lee 11

Programming with RIC

1 /*
2 ** APPLIT.RIC
3 **

RIC User's Guide

4 ** This program appends a tuple to the •title• relation.
5 •/
6
7 main()
8 {
9 INITRIC(•applit•);
10
11 $range of t is title;
12 $append to title
13 (
14 docnum = ma.x(t.docnum) + 1.
15 title= •a flag for sunrise•.
16 onhand = 7
17);
18
19 exit(RS_NORM);
20 }

2.1.1. Delineating IDL Commands

An embedded IDL command always begins with a dollar sign ($). If there were no dol­
lar sign, RIC would assume that the command was C code and pass it through to the
output file where it would elicit a syntax error from the C compiler.

An embedded IDL command terminates with a semicolon (;) except for a looped
retrieve command which has its IDL portion delineated by a left curly brace ({). This
exception is illustrated in Section 2.3.2.

An IDL command embedded in a RIC program may span more than one line. Multiple
IDL commands may share a single line, as long as ea.ch command is preceded by a dol­
lar sign and terminated with a semicolon (;) or left curly brace ({). The following
embedded commands are valid input to RIC:

12

$range of a is author; $range of t is title; $range of l is authttl;

$append to title
(
docnum = max(t.docnum) + 1.
title= •a flag for sunrise•.
onhand = 7
) ;

$retrieve(a.last. a.first)
{

printf(•\n Is. ls\n•. first. last);
}

Britton Lee 88/oe;ee v. 1. 1

RIC User's Guide Programming with RIC

2.1.2. Range Statements

An IDL range statement is a declarative statement which assigns a relation name to a
range variable. IDL commands subsequent to the range statement reference the rela­
tion through its range variable. The range variable is used by the idl program, but it
has no direct effect on the database. Consult the entries for range and range_ var in
the IDL Reference Manual for general information about range statements.

2.1.2.1. Scope of Range Variables

A range variable may be declared local to a function or global and therefore visible to
all functions. As with C identifiers, a local range variable with the same name as a glo­
bal range variable hides the declaration of the global variable for the extent of the func­
tion. This is demonstrated in the following program.

88/0£/££ tJ. 1. 7 Britton Lee 13

Programming with RIC RIC User's Guide

1 /*
2 ** SCOPE.RIC
3 **
4 ** This program demonstrates the scope of range variables across
5 **function calls.
6 */
7
8 /* a and t are global */
9 $r&.nge of a is author;
10 $range of t 1s title;
11
12 main()
13 {
14 $char first[11];
15 void func().
16
17 INITRIC("scope•);
18
19 /* a is bound to author */
20 $delete a where a.authnum > 12;
21
22 /• t is bound to title */
23 $delete t where t.docnum > 15;
24
25 func();
26
27 /• a is still bound to author. unchanged by func() •/
28 $retrieve (a first) where a.last= "lawrence•;
29
30 exit(RS_NORM);
31 }
32
33 /•
34 ** FUNC -- declares a local range variable ·a·.
35 */
36
37 void
38 func()
39 {
40 /* a is local •/
41 $range of a is animals;
42
43 /• a is bound to &.nimals •/
44 $replace a (type = •canine•)
45 where a.type= "dog•;
46
47 /* t is bound to title from the global declaration •/
48 $replace t (title = •tender is the night")
49 where t.title ="the great gatsby";
50 }

Unlike C identifiers, range variables do not nest within functions. A redefinition of the
same range variable within a function holds for the remainder of the function, even if
the redefinition takes place at a deeper level of nesting than the original definition.

14 Britton Lee 88/oe/ee v. 1. 7

RIC User's Guide Programming with RIC

In addition, when the declaration of a range variable is subject to the evaluation of a
conditional statement, the declaration will be made regardless of the evaluation of the
conditional statement.

1 /*
2 ** SURPRISE
3 **
4 **
5 **
6 */
7
8 void

Demonstrates hov range variables do not nest
within functions.

9 surprise(x)
10 BOOL x;
11 {
12 $range of a is author;
13
14 if (x)
15 {
16 /* some c code */
17
18 $range of a is animals;
19 $replace a (type = •feline•)
20 where a.type= •cat•;
21 }
22
23 /* name is nov bound to animals. whether x was TRUE or FALSE */
24 $replace a (type = •homo sapiens•)
25 where a.na.me = •bonzo•.
26 }

2.1.2.2. Fixed Range Variables

All of the range variables declared thus far a.re fixed range variables, meaning that the
binding of the range va.ria.ble to a. relation by the IDL range statement is not altered
from one run of the application to the next.

The syntax of a range statement declaring a. fixed range variable is

$range of range_ var is reLname [with options];.

Fixed range variables are defined during precompilation. Fixed range variables are not
C identifiers and thus may not be substituted for C expressions. They may not have
values assigned to them, be passed as arguments, or be declared as formal para.meters.

88/0£/££ v. 1. 7 Britton Lee 15

Programming with RIC RIC User's Gui'de

2.1.2.3. Dynamic Range Variables

Dynamic range variables are used when the binding between a range variable and a
relation name occurs at runtime. There are two discrete steps involved in setting a
dynamic range variable: declaration and assignment.

The syntax of a range statement declaring a dynamic range variable is

$range of range_ var is :range_ var [with options];.

Early versions of RIC used a percent sign (%) instead of a colon (:) as in

$range of range_ var is %range_ var [with options];.

This allocates storage in the range table maintained by the host software.

Dynamic range variables must be declared a.s global. The precompiler gives an error
message for a dynamic range variable declared within a function. Any optio~s associ­
ated with a dynamic range variable are specified in the declaration:

$range of a is :a with logging;

Once the relation name to be bound to the dynamic range variable is known, it can be
assigned. The syntax of an executable range statement for assigning a relation name
to a range variable is

$range of range_var is $(reLname);

The rel_ name may be either a literal character string or an identifier having a string
valued expression. If a literal character string is used, it must be enclosed in
parentheses. If an identifier is used, the parentheses are optional. Either of the follow­
ing statements binds the range variable 'a' to the "author" relation.

16

$range of a is $(•author•);

or

strcpy(relnlU!le. •author•);
$range of a is $relname;

Britton Lee 88/02/22 v. 1. 7

RIC User's Guide Programming with RIC

The following example demonstrates the use of dynamic range variables.

1 /•
2 ** GETREL -- assigns a dynamic range variable.
3 •/
4
5 /• declare a dynamic range variable •r• outside the function •/
6 $range of r is :r;
7
8 void
g getrel ()
10 {
11 $char relname[13];
12
13 /• get the relation name using the IDMLIB function getprompt() •/
14 getprompt(relna.me. sizeof(relna.me). •Enter the relation name:•);
15
16 /• bind 'r' to the name input by the user •/
17 Srange of r is $relname;
18 }

2.1.3. Placement of IDL Commands

There are two types of IDL statements which can appear in a RIC program: executable
and declarative. Executable statements are commands which affect a database, such as
append, delete, replace, and retrieve. A range statement which assigns the value of
a dynamic range variable is also an executable statement. Embedded executable IDL
statements may occur anywhere in a RIC source file where executable C statements may
occur.

Range statements which declare fixed range variables, and the declarative portion of a
range statement which allocates storage for a dynamic range variable are declarative
IDL statements. These may occur anywhere in a source file, but they are usually placed
with C declarations before the executable code. Declarations of dynamic range variables
are global and must appear outside of functions.

2.2. C Expressions in IDL Commands

C identifiers which appear in embedded IDL commands must be Bagged with a dollar
sign, both where they are declared and in the IDL statement in which they are used.
The following program uses C identifiers in an IDL append command.

88/02/22 v. 1. 7 Britton Lee 17

Programming with RIC RIC User's Guide

1
2
3
4
5
6
7
8
9
10
11

/*
**
**
**
**
**
**
**
*/

APPVAR.RIC

This program appends tuples to the •title• relation.
getting input from the user.

Demonstrates the use of c variables in RIC code.
Gets database from the user at runtime using getprompt().

12 main()
13 {
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 }

/* $ prefaces declaration of C identifiers to be used in IDL code */
$char nevtitle[36];
$short nevquan;
char buf(5];
char dbname[13];

$range of t is title;

INITRIC(•appvar•);
getprompt(dbname. sizeof(dbna.me). •Enter database name: •);
RCOBNAME(dbname);

/* loop on user input until user signals <RETURN> */
for (;;)
{

}

/* get user input for nevtitle and nevquan */
getprompt(nevtitle. s1zeof(newtitle).

•Enter title or <RETURN> to quit:•);
if (newtitle(O] == '\O')

break;
getprompt(buf. sizeof(buf). •Enter quantity: •);
newquan = atos(buf);

/* append the new tuple to the •title• relation */
$append to title
(

) ;

docnum = max(t.docnum) + 1.
title = $nevtitle.
onha.nd = $newqua.n

exit(RS_NORM);

2.2.1. C Declarations Used by RIC

The C declarations on lines 15 and 16, for newtitle and newquan, are prefaced with a
dollar sign ($) because the identifiers are used in IDL statements in the executable part
of the program. This is in contrast to the C declarations declared on lines 17 and 18,
for bu/ and dbname, which do not require a dollar sign ($) because these identifiers are

18 Britton Lee 88/012/1212 v. 1. 7

RIC User's Guide Programming with RIC

used only in pure C code.

In lines 41 and 42, inside the append command, newtitle and newquan appear prefaced
with dollar signs ($) because they are embedded in IDL code. When these same vari­
ables are used in pure C code, in lines 30, 32, and 35, they are not prefaced with a dol­
lar sign ($). The point to remember is that the dollar sign ($) must preface a C
declaration only if the identifier will later appear in an IDL statement, a.nd the dollar
sign ($) must preface the identifer when it appears in an IDL statement. ·

C identifiers used in IDL code can be of any data type and storage class known to C,
except for the register storage class.

The default size of the symbol table maintained for declarations prefaced with dollar
signs ($) is 100. A program which requires more than 100 C identifiers in IDL code
should be precompiled with the -S or /symtabsize size option, where size is the
desired size of the symbol table.

Any C expression may be used in place of an IDL expression. If the C expression is a
simple C variable name, it need not be enclosed in parentheses when it is used in the
IDL statement:

$short newquan;

I• no parentheses necessary - newquan is a simple variable name •/
$replace t (onhand = $newquan);

If the C expression is more complex than a simple variable name, the expression must
be enclosed in parentheses in the IDL statement. In addition, each C identifier used in
the expression must be declared with a dollar sign ($).

$short newqua.n;
$short oldqua.n;
$int num;

I• parentheses necessary for complex expression •/
$replace t (onha.nd = $((newqua.n + oldqua.n) I num))

RIC evaluates the types of C expressions prefaced with dollar signs ($) and generates
the code for performing any necesssary type conversions. It will issue an error message
when type conversions are not possible or do not make sense such as trying to convert
"abl23" to an int or storing too large a number as a short.

RIC can handle all C expressions, including casts such as

$replace t (docnum = $((short) 8.7))

88/02/22 ti. 1. 7 Britton Lee 19

Programming with RIC RIC User's Guide

When a C string's length is greater than the length of the attribute in which it is to be
stored, the string is truncated.

2.3. Retrieves

The last program used C expressions as values in an IDL append command. RIC also
uses C identifiers to store the values of target-list elements fetched from the database
server by an IDL retrieve command. Identifiers which will store retrieved data are pre­
faced with dollar signs ($) when they are declared and when they are used in the body
of the retrieve command:

$short
$char

num;
lna.me (16);

$range of a is author;
$retrieve ($num = a.authnum. $lna.me = a last)

where .

If the name of the C identifier is identical with the name of the attribute on· the data­
base server, an explicit assignment is not needed in the retrieve command. Below we
have changed the names of the C identifiers to match those of the retrieved target-list
elements to indicate clearly the relationship between the database server attributes and
the C identifiers and to avoid having to make explicit assignments in the retrieve com­
mand. The following code implicitly assigns the retrieved data to au.thnum and last.

$short
$char

authnum;
la.st (16];

$range of a is author;
$retrieve (a a.uthnum. a.last)

where .

There are two forms of retrieve command in RIC programs, the "singleton" form,
which retrieves a single tuple and simply stores its results, and the "looped" form,
which may retrieve more than one tuple and process retrieved data as it is fetched.

2.3.1. Singleton Retrieves

This program appends a tuple to the "title" relation and then retrieves it.

20 Britton Lee 88/02/22 v. 1. 7

RIC User's Guide Programming with RIC

1 /•
2 ** SINGLE.RIC
3 **
4 **
5 **
6 **
7 •/

This program appends a specific title to the •title• relation
and retrieves it. Demonstrates singleton retrieves

8
9 main()
10 {
11 $char title[36];
12 $short onhand;
13 $short docnum;
14
15 $range of t is title;
16
17 INITRic(•sing1e•);
18
19 /* append a new tuple •/
20 $append to title
21 (
22 docnum = max(t.docnum) + 1.
23 title= •the color purple•.
24 onhand = 7
25);
26
27 /• retrieve the new tuple. impl1c1t &ssignment Of t&rget elements •/
28 $retrieve (t docnum, t.title. t.onha.nd)
29 where t.docnum = max(t.docnum);
30
31 printf(•\nThe new tuple 1s:\nld\tls\tld\n•. docnum. title. onhand).
32
33 exit(RS_NORM);
34 }

The singieton form of the retrieve command is useful only when a single tuple will be
retrieved by the query. If more than one tuple were to satisfy the qualification, only
one of them would be retrieved, a.nd RIC cannot guarantee which one. The singleton
form is most commonly used when the retrieve command is qualified by a unique key
to the relation or by a.n aggregate with no by clause which yields a single value, as
demonstrated in the example above.

2.3.2. Looped Retrieves

Looped retrieve commands in RIC source a.re precompiled into C for loops in the out­
put file. C code to process the retrieved data is executed inside the for loop for each
retrieved tuple. If no tuples are retrieved, the loop body does not execute.

88/0£/££ v. 1. 7 Britton Lee 21

Programming with RIC RIC User's Guide

1 /•
2 ** LOOPED.RIC
3 **
4 **
5 **
6 •/
1
8 ma1n0
g <

This progt&111 retr1eves tuples for t1tles wh1ch are low 1n stock
from the •title• relat1on. Demonstrates looped retrieves.

10 $char title[36];
11 $short onha.nd;
12 $short docnum;
13
14 $range of t is title;
15
16 INITRIC(•looped•);
17
18 printf(•TITLES TO BE REORDERED\n•);
1g
20 /* retr1eve tuples •/
21 $retrieve (t.docnum. t.title. t.onha.nd)
22 where t.onhand < 6
23 <
24 if Conhand < O)
25 pr1ntf(•\nPOSSIBLE ERROR IN DATABASE:•);
26
27 pr1ntf(•ld\tls\tld\n•. docnum. title. onha.nd);
28 }
29
30 exit(RS_NORM);
31 }

It is important to note that the retrieve command on lines 21 and 22 is not terminated
by a semicolon (;). Instead, the IDL portion of the command is terminated by the left
curly brace ({) which begins the body of the loop. The presence of the left curly brace
({) informs RIC that this is a looped retrieve. If the retrieve command were ter­
minated with a semicolon (;) RIC would treat it as a singleton and generate code to
retrieve one tuple. As in C, the body of the loop terminates with a. right curly brace
(}).

The only acceptable way to leave a retrieve loop prematurely (before all tuples have
been fetched) is by using the C break statement. Never use a return, goto, or
longjump to exit a retrieve loop. This point cannot be overemphasized. The precom­
piler cannot detect when a retrieve loop has been improperly exited, but such a situa­
tion will produce strange and unpredictable behavior at runtime.

Each C identifier in which retrieved data is stored is evaluated n plus I times, where n
is the number of tuples retrieved. This is important when the evaluation of this term
has a side effect, as demonstrated in the following example:

22 Britton Lee 88/oe;ee v. 1. 1

RIC User's Guide Programming with RIC

1 /*
2 ** GETOOCS

3 **
4 ** Retrieves tbe tuples and puts them 1n an array. docs[].
5 ** Returns the number of tuples retrieved.
6 •/
7
8 getdocs(docs)
9 $int docs[);
10 {
11
12

int n = O;

13 $range of t is title;
14
15 $retrieve($(docs[n++)) = t. docnum)
16 where t onhand < 8
17 {
18 /* just fill the array •/
19 continue.
20 }
21 /* return the number of documents retrieved •/
22 return (n - 1);
23)

The function recount(} provides a.n alternative method for obtaining the number of
tuples a.ff ected by the last IDL command executed. Using recount() the function a.hove
would look like this:

1 /•
2 ** GETDOCS

3 **
4 ** Retrieves the tuples and puts them in an array. docs[].
5. ** Returns the number of tuples retrieved.
6 •/
7
8 getdocs(docs)
g $int docs[];
10 {
11 int n = O;
12
13 $range of t is title;
14
15 Sretrieve($(docs[n++)) = t. docnum)
16 where t.onhand < 8
17 {
18 /* just fill the array •/
19 continue;
20)
21 /* return the number of documents retrieved •/
22 return (recount());
23)

88/0£/££ v. 1. 7 Britton Lee 23

Programming with RIC RIC User's Guide

2.3.3. Memory for Strings

It is the programmer's responsibily to allocate memory for retrieved strings. The fol­
lowing function illustrates improper usage:

1 /•
2 ** BADFUNC -- illustrates improper usage.
3 •/
4
5 ba.dfunc()
6 {
7 $char •la.st;
8
9
10
11
12
13
14 }

I• la.st does not point to anything •/
$retrieve ($la.st= a.la.st)
{

printf(•ls •,la.st);
}

Memory can be allocated statically as in

1 /•
2 ** GOODFUNC -- illustrates proper usage.
3 •/
4
5 goodfunc()
6 {
7 /• a.lloca.te for the length of the attribute plus the NULL byte •/
8 $cha.r la.st[16];
9
10 $retrieve ($la.st= a.la.st)
11 {
12 printf(•ls •.la.st);
13 }
14 }

Memory can also be allocated dynamically using the IDMLIB functions zalloc or saves tr.
The function savestr allocates enough memory to store the retrieved string and then
copies it. Both functions are documented under xalloc (31) in the Host Software
Specification and C Run-Time Library Ref ertnce.

The following program builds a linked list of authors' names from the "author" rela­
tion, using zalloc and savestr.

24 Britton Lee 88/oe;ee v. 1. 1

RIC User's Guide Programming with RIC

1 /•
2 ** LISTAUTHS.RIC
3 **
4 ** Th1& program bu1lds a l1nked l1st of author• names from the
6 ** •author• relation. Demonstrates xalloc and •ave•tr.
6 •/
7
8 #include <idmmpool.h>
9
10 struct list
11 {
12
13
14
15

}

char •name.
struct list •next.

16 ma.in()
17 {
18 $char inbuf[26].
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

struct list
struct list
struct list

•plist = (struct list •) NULL;
•new;
•p;

$range of a is author;

INITRIC("listauths");

$retrieve ($inbuf = concat(a. first. a.last))
{

}

/* allocate a new list element •/
new= (struct list•) xa.lloc(sizeof(•new). DefMpool);

I* push the new element to the front of the list •/
new ->next = plist;
plist = new.

/* copy the new string into its place •/
new->name = sa.vestr(inbuf. DefMpool);

40 exit(RS_NDRM);
41 }

88/0£/££ v. 1. 7 Britton Lee 25

Programming with RIC RIC User's Guide

2.3.4. Order By Clauses

In interactive IDL it is possible to sort the results of a retrieve command using an
order by clause with the name of the domain in which the retrieved data is stored as
in

retrieve (last = a.last) order by last

and

retrieve (name = concat(a.first, a.last)) order by name

In RIC, the object on which retrieved data is ordered may not be the domain in which
retrieved data is stored. The RIC code required to achieve the functionality of the com­
mands above is

26

$retrieve ($l&st = &.l&st) order by &.l&st;

and

$retrieve ($na.me = conc&t(&.first. &.l&st))
order by conc&t(&.first. &.l&st);

Britton Lee 88/0£/2£ v. 1. 7

RIC User's Guide Programming with RIC

2.3.5. Nested Retrieves

It is possible to nest an IDL retrieve command inside of another IDL retrieve com­
mand.

1
2
3
4
5
6
7
8

u NEST.RIC

** ** Displays all th• books in th• •t1t1e• relation &nd
** for ea.ch book displays all its authors.
** Demonstrates nested retrieves.
•I

9 ma.in()
10 {
11 $char name[16);
12 $char title[36];
13 $short docnum;
14
15 $range of t is title;
16 $range of a is author;
17 $range of l is authttl;
18
19 INITRIC(•nest•);
20
21 /• outer loop retrieves and displays titles •/
22 $retrieve Ct.title. t.docnum)
23 {
24 printf(•ls\n•. title);
25
26 /• inner loop retrieves and displays authors for each title •/
27 $retrieve ($name =a.last)
28 where a.authnum = l.a.uthnum and $docnum = l.docnum
29 {
30 printf(•\tls\n•. name);
31 }
32 printf(•\n•);
33 }
34
35 exit(RS_NORM);
36 }

The issue of nesting other types of queries, such as updates, inside a retrieve loop is
discussed in the following chapter in Section 3.2.3.

88/oe;ee tJ. 1. 1 Britton Lee 27

Programming with RIC RIC User's Guide

2.4. Canceling IDL Commands

At times it may be desirable to cancel all IDL activity on the database server. To do
this, use the special IDL command, cancel pref aced by a dollar sign. This command is
only available in embedded languages; it does not exist in interactive IDL. The cancel
command cancels all data.base server activity on the current dbin and any related dbins.
If the cancel occurs inside a retrieve loop, the C break command must be used to
exit the loop. If the retrieve loop is nested, there must be an explicit break command
for every level of nesting outside of the loop in which the cancel command occurs.

The previous example, nest.ric, could be re-written a.s follows to cancel all data.base
server activity if a.n invalid author name is retrieved.

28 Britton Lee as;oe;ee v. 1. 1

RIC User's Guide Programming with RIC

1 /*
2 ** CANCEL.RIC
3 **

D1splays all the books 1n the •t1t1e• relat1on and
for each book d1splays all 1ts authors.

4
5
6
7
8

**
**
**
**
**

If an author name not beg1nn1ng v1th an alphabet1c character
1s retr1eved. cancels all database act1v1ty and brelLks from
the 1nner and outer retrieve loops Demonstrate• $cancel.

10
11 #define NDTALPHA
12

!(c >= ·a· && c <= •z• I I c >= 'A' &a c <= 'Z')

13 main()
14 {
15 $char name[16);
16 $char t1tle[36);
17 $short docnum;
18 char c;
19 BDDL cancelled = FALSE;
20
21 $range of t is t1tle;
22 $range of a 1s author;
23 $range of l 1a authttl;
24
25 INITRIC(•cancel");
26
27 /* outer loop retr1eves and d1splays t1tles */
28 $retr1eve Ct title. t.docnum)
29 {
30 pr1ntf(•ls\n•. title);
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

/* 1nner loop retr1eves and d1splays authors for each t1tle */
$retrieve ($name = a last)

50 }
51

{

}

where a authnum = l.authnum and $docnum = l.docnum

c = name[O];
1f (NDTALPHA)
{

}
else

cancelled
$cancel;
break;

=TRUE;
I• both retrieves •/
/* from 1nner loop */

printf("\tls\n•. name);

1f (cancelled)
brea.k; /* from outer loop •/

else
printf("\n•);

52 exit(RS_NORM);
53 }

88/0!2/!22 v. 1. 7 Britton Lee 29

Programming with RIC RIC User's Guide

30 Britton Lee BB/oe;ee v. 1. 1

3. Advanced Programming with RIC

This chapter describes methods for making RIC programs more powerful

• by accessing IDL's stored commands.

• by taking advantage of IDL's support for transactions

• by invoking IDMLIB's exception handling system for error conditions

Transactions are described in the IDL Reference Manual pages for begin transaction,
end transaction, and abort transaction. Stored commands are described under
define and execute.

In addition to the schema used for the examples in Chapter 2, the examples in this
chapter assume the existence of the following stored commands in the "books" data­
base:

define addtitle
range of t ia title
append to title
(

docnum == max(t.docnum) + 1,
title= $t,
onhand = $q

)
end define

define newtitle
ra.nge of t ia title
append to title
(

docnum == max(t.docnum) + 1,
title = $t,
onhand = $q

)
retrieve (t.docnum, t.title, t.onhand)

where t.docnum = max(t.docnum)
end define

88/02/22 v. 1. 7 Britton Lee 31

Advanced Programming with RIC

32

define newauth
range of a is author
append to author
(

authnum === max(a.authnum) + 1,
first === $t,
last === $1

)
retrieve (a.authnum, a.first, a.Jut)

where a.authnum === max(a.authnum)
end define

define addlink
append to authttl
(

authnum ===$a,
docn um === $d

)
end define

define getatuff
range of t is title
retrieve (t.docnum, t.onhand)
range of a is author
retrieve (a.first, a.last)

end define

Britton Lee

RIC User's Guide

88/oe;ee v. 1. 7

RIC User's Guide Advanced Programming with RIC

3.1. Stored Commands

Stored commands may be defined and executed from a RIC program. Parameters
passed to the stored command may be literal values or C identifiers Bagged with dollar
signs. The following program executes the stored command "add title".

1 /*
2 ** STORED RIC
3 **
4 ** This program appends a tuple to the •title• relation
5 ** using the stored command •addtitle•. Para.meters passed
6 ** to the stored command are C identifiers fetched from the
7 ** command-line with crackargv().
8 */
9
10 #include <crackargv.h>
11
12 $static short Quan;
13 $static char •Title;
14
15 /* the argument list •/
16 ARGLIST Args[] =
17 {
18
19
20
21
22

't' .. FLAGSTRING .. 0, CHARNULL .. CHARNULL#
'q ' . FLAGSHORT. 0. CHARNULL. CHARNULL.
'\O'

~Title. •Title: • CHARNULL,
~uan. •Quantity: •. CHARNULL.

};

23 main(argc. argv)
24 int argc;
25 char •argv[];
26 {
27 INITRIC("stored");
28 crackargv(argv. Args);
29
30 $execute addtitle with q = $Quan. t = $Title;
31 exit(RS_NORM);
32 }

3.1.1. Obtaining Retrieved Data from Stored Commands

If the stored command contains one or more retrieve commands, the execute com­
mand must have a block structure delineated by curly braces ({ }). The statements
between the curly braces consist of one or more special obtain commands used to bind
retrieved data to C program variables. This is a special command which is only avail­
able in embedded IDL; there is no obtain command in interactive IDL. The only kind
of $-Bagged statements allowed within the execute block are obtain statements.

There must be one obtain command Bagged with a dollar sign for ea.ch retrieve com­
mand in the stored command.

88/0£/£2 v. 1. 7 Britton Lee 33

Advanced Programming with RIC RIC User's Guide

The syntax of an obtain command is

obtain (expr [,expr ...])

Each element in the comma-separated list of C expressions must evaluate tci an object
of a type compatible with the targets returned by the retrieve. The table in Section
1.2 maps database server types to C types.

The first attribute returned by the retrieve command is assigned to the object indi­
cated by the first expression passed to obtain; the second attribute returned by the
retrieve is assigned to the object indicated by the second expression passed to obtain,
etc.

The obtain command is terminated either by a pair of curly braces ({ }), which may
enclose a list of executable statements processing the retrieved data, or by a semicolon
(;), if the only processing of retrieved data is assignment to the designated C identifiers.
If the obtain command is terminated by a semicolon (;), the command still loops for
every tuple retrieved; it does not simply fetch the first tuple as in a. singleton retrieve.

When the curly braces are used, the executable statements in the obtain block must be
C statements, not $-flagged IDL statements. The precompiler checks for $-flagged IDL
statements in the body of the obtain loop, but it is the programmer's responsibility to
make certain that no function called from the obtain loop contains any IDL state­
ments. This code elicits an error message at precompile time

$obtain C$num. $name)
{

if (num = badnum)
$deleter where r.num = $badnum;

else
printf(•ld. Is•. num. name);

}

but the following code elicits no error message, although it will cause unpredictable
behavior a.t runtime.

34 Britton Lee 88/oe;ee v. 1. 1

RIC User's Guide Advanced Programming with RIC

$obtain ($num. $name)
{

}

if (num = badnum)
func(badnum);

else
printf(•ld. Is•. num. name);

func(badnum)
$int ba.dnum;
{

}

$deleter where r.num = $badnum;
return()

The following program uses the obtain command to bind data retrieved from the
stored command "getstuff" into arrays of shorts and character strings. Because the
counters are incremented on the final pass through the obtain loop for which all of the
tuples have already been obtained, the counters must be decremented at the end of the
loop if their values are to be used subsequently in the program.

88/02/22 v. 1. 7 Britton Lee 35

Advanced Programming with RIC RIC User's Guide

1 /*
2 ** GETDATA.RIC
3 **
4 ** This program executes the stored command •getstuff•.
5 */
6
7 #define MAXITEM 15
8 #define MAXNAME 20
9
10 ma1nO
11 {
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 }

$short docnums[MAXITEM]. quantities[MAXITEM];
$char fna.mes[MAXITEM] (MAXNAME]. lna.mes[MAXITEM] [MAXNAME).
int 1. j. k;

INITRIC(•getdata•);
i = j = O;

$execute getstuff
{

}

/* fill the arrays •/
$obta1n($(docnums[1]). $(quantit1es[i++]));
$obta1n($(fna.mes[j]). $(lna.mes[j++]));

/* decrement the counters */
j--; 1--;

/* print the arrays •/
printf(•\ndocnum\tquantity•);
for (k = O; k < 1; k++)

printf(•\nld\tld•, docnums[k]. quantities[k]);

printf(•\nauthors•);
for (k = O; k < j; k++)

printf(•\nls\tls•. fna.mes[k]. lna.mes[k]);

ex1t(RS_NORM);

The next program uses the obtain command to bind data retrieved by the stored com­
mands "newtitle" and "newauthor". The obtain command is followed by two printf
statements enclosed in curly braces ({ }). These statements are executed one time for
each tuple obtained.

36 Britton Lee 88/02/22 v. 1. 7

RIC User's Guide Advanced Programming with RIC

1 /*
2 ** NEWBOOK.RIC
3 **

This program enters new books into the •books• 4atabase

Retrieves the title from the •title• relation.
If it is there. adjusts •onhand• attribute.

4 **
5 **
6 **
7 **
8 **
9 **
10 **
11 **

If it is not there. adds appropriate tuple to the •title•.
•author•. and •authttl• relations. using the •tored -commands
•newtitle". •newauth•. and •addlink".

12 **
13 **
14 •/
15

Demonstrates use of the obtain command to execute stored
commands containing retrieves from a RIC program.

16 main()
17 {
18
19
20
21
22
23
24
25
26
27
27

$cha.r title[36).
$char lname[16).
$char fna.me[ll);
$short onhP.nd;
$short docnum;
$short authnum;
$char nevname(36];
$short newqua.n.
cha.r buf (5] .

28 INITRIC(•newbook");
29 $range of t is title.
30 $range of a is author.
31
32 getprompt(newna.me. sizeof(newna.me). •Enter title:•);
33 getprompt(buf. sizeof(buf). "Enter quantity: •);
34 newqua.n = (short) atos(buf);
35
3~ /* retrieve the docnum from the •title• relation */
37 $retrieve (t.docnum)
38 where t.title = $nevname;
39
40 /* if the title is already in the data.base */
41 if (docnum != '\O')
42 {
43 $replace t (onha.nd = t.onha.nd + $newqua.n)
44 where t.docnum = $docnum;
45 $retrieve Ct docnum. t.title. t.onhand)
46 where t.title = $nevna.me;
47
48 printf(•The new tuple is:\nld\tls\tld\n•. docnum. title. onha.nd).
49 exit(RS_NORM);
50 }
51 else
52 /* add the book to the da.taba.se */
53 {
54 /* invoke stored command •newtitle" */
55 $execute newtitle with q = $newquan. t = $nevna.me
56 {
57 /* bind retrieved data. to designated C identifiers •/
58 $obta.in($docnum. $title. $onhand)

88/0f/22 v. 1. 7 Britton Lee 37

Advanced Programming with RIC RIC User's Guide

5g
60
61
62
63
64
65
66
67
68
5g
'TO
'11
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
gl
92
g3
g4 }

38

}

{

}
}

printf(•\nThe new row is:\n•);
printf(•ld\tls\tld•. docnum. title. onhand);

I• retrieve the author from the •author• relation •/
getprompt(fna.me. sizeof(fna.me). •Enter author's firs~ name: •);
getprompt(lna.me. s1zeof(lna.me). •Enter author's last name: •);
$retrieve (a.authnum)

where a.first= $fname and a.last= $lna.me;

I• if the author is not in the database •/
if (authnum == '\O')
{

}

I•

I• invoke stored command •newauth• •/
$execute newauth with f = $fname. l = $lname
{

}

I• bind the new author number with authnum) •/
$obtain($authnum. $fname. $lname)
{

}

printf(•\nThe new row is:\n•);
printf(•ld\tls\tld•. docnum. title. onha.nd•);

** add a tuple to the •authttl• relation using stored
** command •addlink•
•/
$execute addlink with a = $authnum. d = $docnum;

exit(RS_NORM);

Britton Lee 88/oe/ee v. 1. 1

RIC User's Guide Advanced Programming with RIC

3.2. Transactions

A transaction is a sequence of one or more IDL commands which are executed as though
they were a single command. Transactions are used to ensure consistency in a data­
base.

None of the commands comprising the transaction may alter the schema of the data­
base. An attempt to execute a command such as create or destroy inside ·a transac­
tion will cause an exception to be raised. The only commands which can be used in a
transaction in a RIC program are:

• abort transaction

• append

• begin transaction

• delete

• end transaction

• replace

• retrieve

•sync

The begin transaction and end transaction commands which delineate a transaction
must pair up within a function. A begin transaction with no corresponding end
transaction in the same function will elicit an error message from the precompiler.

C code as well as IDL queries may be inserted between the begin transaction and the
end transaction in a RIC program.

88/02/1:£ v. 1. 7 Britton Lee 39

Advanced Programming with RIC RIC User's Guide

The following program demonstrates the use of a simple transaction in a RIC program.
Tuples are appended to three relations as a new book is entered in the database. If a
transaction were not used in an application such as this and the system went down in
the middle of execution, for example after the title was entered but before the author,
the entry for that book would be incomplete. The use of a transaction ensures that
entries are made in all three relations or not at all.

40 Britton Lee 88/oe;ee v. 1. 1

RIC User's Guide Advanced Programming with RIC

1
2
3
4

I•
** TRANS.RIC
••
** This program enters a new book into the •books• 4atabase.

Adds a tuple to the •title• and •authttl• relations and may
add a tuple to the •author• relation.

Demonstrates RIC support for transactions.
Aborts if user tries to add a duplicate title.

s **
6 **
7 **
8 **
9 **
10 **
11 **
12 **
13 •/

Gets title and author from the command-line using the IDMLIB
function. crackargv.

14
15 #include <cracka.rgv.h>
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/* variables for
$short Quan;
$char •Title;
$char •Fna.me ;
$char •Lna.me;

command-line arguments •/

I• the argument list •/
ARGLIST Args [] =
{

FLAGPOS. FLAGSHORT. 0. CHARNUU.. CHARNULL.
•Quantity:•. CHARNULL.

FLAGPOS. FLAGSTRING. O. CHARNULL. CHARNULL.
•Title:•. CHARNUl..L.

FLAGPOS. FLAGSTRING. O. CHARNULL. CHARNULL.
•Author's first name:•. CHARNULL.

FLAGPOS. FLAGSTRING. O. CHARNULL. CHARNULL.
•Author's last name:•. CHARNUU..

34 '\O'
35 };
36
37· main(argc, a.rgv)
38 int a.rgc;
39 char ••a.rgv;
40 {
41 $short authnum;
42 $short docnum;
43

aTitle.

Una.me.

l:Lna.me,

44 $range of t i8 title; $range of a i8 author; $range of l is authttl;
45
46 INITRIC(•trans•);
47
48 /• get values from command-line for Quantity. Title. Fna.me. Lna.me •/
49 cracka.rgv(a.rgv. Args);
so
51 $begin transaction;
52 $append to title
53 (
54 docnum = ma.x(t.docnum) + i.
SS title = $Title,
56 onhand = $Qua.n
57);
58
59 $retrieve ($docnum = t.docnum)

88/0£/££ v. 1. 7 Britton Lee 41

Advanced Programming with RIC RIC User's Guide

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98 }

{

}

where t.title = $Title

/* check for duplicates •/
if (recount() > 1)
{

}

printf(•\nThat title is already in the database.•);.
printf(•\nAborting this transaction•);
/• control passes to statement after •end transaction• •/
$abort transaction;

I• check if the author is in the •author• relation •/
$retrieve ($authnum = a.authnum)

where a.first= $Fname and a.last= $Lname;

/• if the author is not in the relation •/
if (authnum == '\O')
{

}

$append to author
(.

) ;

authnum = max(a.authnum) + 1.
first = $Fname.
last = $Lname

$retrieve (a authnum)
where a.authnum = ma.x(a.authnum);

$append to authttl
(

);

authnum = $authnum.
docnum = $docnum

$end transaction;
ex1t(RS_NORM);

3.2.1. Nested Transactions

A tra.nsa.ction is nested if a. begin transaction is executed inside of a. tra.nsa.ction.
Nested transactions ca.n occur inside a. single function or a.cross function ca.Us. In the
outline below, the tra.nsa.ction in g() is nested when g() is called by f(), but not when g()
is called by e().

42 Britton Lee 88/oe;ee v. 1. 1

RIC User's Guide Advanced Programming with RIC

f()
{

$begin transaction;
I• stuff •/
gO;
Send transaction;
return();

}

e()
{

I• stuff •/
g();
return();

}

g()
{

$begin transaction.
I• IDL queries •/
Send transaction;

I• more stuff •I
return();

}

Since the database server does not commit the transaction until the end transaction
corresponding to the first begin transaction is executed, which in this case is the end
transaction in f(), the transaction in g() does not have any real meaning when g() is
called by f().

When f() calls g(), an abort transaction in g() transfers control to the statement fol­
lowing the end transaction in f(). When e(), calls g(), an abort transaction in g()
transfers control to the statement following the end transaction in g().

The following program demonstrates nested transactions.

88/0£/f£ v. 1. 7 Britton Lee 43

Advanced Programming with RIC RIC User's Guide

1
2
3
4
5
6
7
8
g
10
11
12
13
14
15
16
17
18
1g
20
21
22
23
24
25
26
27
28
2g
30
31
32
33
34
35
36
37
38
3g
40
41
42 }

43
44
45
46
47
48
4g
50
51
52
53
54
55
56
57
58
5g

44

/*
** NESTTRANS.RIC
**
** This progra.m displays all the books in the •title• relation
** and for each book displays all its authors.
**
** Demonstrates nested transactions.
** Functionally like NEST RIC. except commands are tra.nsactions.
** If a title is found with no associated author,
** an error message is displayed and all processing is
** halted by the •abort transaction•.
*/

main()
{

/*

$char title[36);
$short docnum;
void getauths();

$range of t is title;

INITRic(•nesttra.ns•);

/* outer loop to retrieve and display titles */
$begin transaction;

$retrieve (t title. t.docnum) order by t.docnum
{

}

/*

printf(•ls\n•. title);
getauths(docnum. title);
printf(•\n•);

** commit everything from the above retrieve
** a.nd the one in getauths
*/

$end transaction;

exit(RS_NORM);

** GETAUTHS -- retrieve and display the authors of the title
** passed in docnum.
*/

void
getauths(docnum. title)

$short docnum;

{
$char *title;

$char na.me[16];

$range of a is author;
$range of l is authttl;

/* this is a nested transaction when called from main */

Britton Lee 88/02/22 v. 1. 7

RIC User's Guide Advanced Programming with RIC

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
n
80 }

$begin transaction;
$retrieve ($name = a last)

where l.authnum = a.authnum and l.docnum = $docnum
{

printf("\tls\n•. name);
}

/* if the name is not there •/
if (1 recount())
{

}

printf(•\nNo entry for an author of Is •. title);
printf("\nAborting this transaction so user can•);
printf(•\nmodify the 'author• and/or •authttl' relations.•);

I• transfers control to after •end transaction• in main •/
$abort transaction;

I• other IDL commands could go here. •/
$end transaction;

3.2.2. New Transactions

In the program above, all processing halts after execution of the abort transaction on
line 7 4 because the inner transaction in getauths(} is nested in the outer transaction in
main(}. If the transaction aborts, control passes to the statement following the end
transaction in main(), which is exit().

It may be desirable for some applications to ensure that a begin transaction command
initiates a new transaction rather than a nested one. To accomplish this, use the com­
mand begin new transaction.

To modify nesttrans.ric so that a new transaction is initiated in getauths(} change the
begin transaction on line 60 to begin new transaction. The result of this
modification is that the transaction in getauths(} is no longer nested in the transaction
in main. When the abort transaction in getauths(} is executed, control passes to the
statement following the end transaction in getauths(} rather than the one in main(}.
In this case, the function returns to line 31 in main() and the program continues pro­
cessing.

Consider the outline

88/02/22 ti. 1. 7 Britton Lee 45

Advanced Programming with RIC RIC User's Guide

f(X)

{

}

g(y)

{

}

BOOL x;

BOOL y;

$begin transaction;
y = TRUE;
g(y);

1f (x)
$abort transaction;

/* this transaction is committed here •/
$end transaction;
return(TRUE);

BOOL y;

$begin new transaction;
if (y)

$abort transaction;

/* this transaction is committed here •/
$end transaction;

I• control transfers to here on an abort transaction •/
return(TRUE);

An abort transaction in f() will not a.bort anything tha.t was done in g(), because the
tra.nsa.ctions in f() a.nd g() a.re unrelated as fa.r as the data.base server is concerned. It is
as though the two tra.nsa.ctions were invoked by two sepa.ra.te programs. Unrelated
tra.nsa.ctions must be used with caution, however, because they ca.n lead to self-inflicted
infinite wa.its as illustrated below:

46 Britton Lee 88/oe;ee v. 1. 1

RIC User's Guide Advanced Programming with RIC

$range of t is title with fulllock;

f()
{

}

g()
{

}

$begin tr&nsaction;

/* this replace locks the whole relation */
$repl&ce t (title= •untitled");
g();
$end transaction.

$begin new tr&nsaction;
$replace t (title = "UNIX SYSTEMS")

where t.title = "ARCHAIC OS THEORY";
$end tr&nsaction;

Since the transa.ction in g() needs to a.ccess some data which the transa.ction in f() has
locked, g() must wait for the transa.ction in f() to complete. Function f() however, is
waiting for g() to return before committing its transa.ction and releasing its locks.
Because the database server cannot detect the dependency between f() and g(), the
deadlock is not signaled and the program goes into an infinite wait.

3.2.3. Nested Operations in Retrieve Loops

Special issues a.rise when a program performs an update inside a retrieve loop. The
update cannot simply be nested in the retrieve loop as in nuttrans.ric because of the
way retrieve loops are implemented; when two operations are so closely related (running
in the satne dbin), the IDMLIB software expects all the data from the database server to
be fetched before initiating a new database query. On the other hand, if the update is
begun in a new transaction, as described in section 3.2.2, the retrieve transaction and
the update transaction a.re completely unrelated; if a deadlock occurs in this situation,
there is no way for the data.base server to manage a backout because it does not know
which operations are related. What is needed is the establishment of a relationship
between the nested transactions, so that communication between them is possible.

This is accomplished with the begin nest n transaction command where n represents
the depth of nesting up to a maximum of 7. The outline below represents two levels of
nesting inside an outer retrieve loop:

88/0!2/!2!2 v. 1. 7 Britton Lee 47

Advanced Programming with RIC RIC User's Guide

tune()
{

}

$begin nest 2 transaction;

I• outer retrieve loop •/
$retrieve ...
{

}

I• .inner retrieve loop - first level of nesting •/ ·
$retrieve
{

}

I• update - second level of nesting •/
$repl&.ce .

$end transaction;

The next program, reezam.ric, demonstrates the use or a single level of nesting to exe­
cute a replace command inside a retrieve loop. As each tuple in the "titles" relation
is retrieved, the user is prompted to update the value of the "onhand" attribute in that
tuple.

3.3. Deadlock Backout and Recovery

If several applications a.re simultaneously accessing and updating the same data,
deadlock can occur. Deadlock can also occur within a. single application which uses the
begin new transaction or begin neat n transaction constructions.

When the database server detects that a deadlock has occurred, it selects one or more
participants, backs out all the work already done by their queries, and signals the host
that a backout is occurring by raising two exceptions: "E:IDM:E55" and
"W :IDM.DONEJCA.BORT".

By def a.ult, RIC generates code which catches the exceptions and attempts to restart the
query immediately.

If you wish your RIC program to take some alternate or additional action when a
deadlock/backout is detected, the program should set a handler to ignore "E:IDM:E55"
and another to manage "W:IDM.DONEJCABORT". For more information about set­
ting an exception handler, consult Chapter 3 of the ldmlib User's Guide.

If the query being backed out is a transaction, the exception handler must be set after
the begin transaction and removed after the end transaction. If new transactions
a.re used, the exception handler must be reset after ea.ch begin new tran•action and
removed after each end transaction.

The next program sets an exception handler called handler(} which displays a message
and re-raises the exception.

48 Britton Lee 88/0e/ee v. 1. 1

RIC User's Guide Advanced Programming with RIC

1 /*
2 ** REEXAM.RIC -- runs an update inside a retrieve loop
3 **
4 ** Retrieves each tuple in the •title• relation.
s ** Allows the user to update the •onhand• attribute of
6 ** the retrieved tuple.

Demonstrates •begin nest <n> transaction•.
Provides one level of nesting - one parent and one child.
The •begin nest <n> transaction• is necessary when there is
an update inside a retrieve loop.

Sets an exception handler to display a message and re-raise

7 **
8 **
9 **
10 **
11 **
12 **
13 **
14 **
15 **
16 */

the exception to restart the transaction when W:IDM.DONE.XABORT
is raised Uses canned handler excignore for E:IDM:ES5

17
18 main()
19 {
20 $char title[36);
21 $short docnum;
22 $short onhand;
23 $short newstock;
24 char buf[S);
25 int handler();
26
27 $range of t is title;
28
29 INITRic(•reexam•);
30 $begin nest 1 transaction;
31
32 /* set exception handlers for deadlocks */
33 exchandle(•E:IDM £55•. excignore);
34 exchandle(•w:IDM DONE XABORT•. handler);
35 printf(•\nDOCNUM TITLE ONHAND\n•);
36
37 /* run retrieve on parent dbin */
38 $retrieve (t.docnum. t.title. t.onhand)
39 {
40 printf(•ld\tls\tld\n•. docnum. title. onhand);

/* get input for the update */
getprompt(buf. sizeof(buf).

•Enter new stock or <RETURN> to quit: •);
if (buf[O] == '\O')

break;
newstock = atos(buf);

if (newstock == 0)
printf(•\nNo change in# copies of ls.\n•. title);

else if (newstock > O)

41
42
43
44
45
46
47
48
49
so
51
52
53
54
55
56

printf(•\nAdding Id copies of Is \n•. newstock. title);
else

88/02/22 v. 1. 7

printf(•\nSubtracting Id copies of ls.\n•.
newstock * -1. title);

Britton Lee 49

Advanced Programming with RIC RIC User's Guide

57
58
59
60
61
62
63
64
65
66
67
68
69 }
70
71

72 **
73 **
74 **
75 •/
76

}

I• run replace on nested ch1ld db1n •/
$replace t Conhand = t.onhand + $newstock)

where t.docnum = $docnum and t.t1tle = $t1tle;

$end transact1on;

I• remove the except1on handlers •/
exehandle(•E:IDM.ESS•. FUNCNULL);
exchandle(•W:IDM.DONE.XABORT·. FUNCNULL);

exit (RS_NORM);

HANDLER

D1splays message before attempting to restart the query.

77 handler(excv)
78
79 {
80
81
82
83
84
es
86
87
88 }

char ••excv;

fpr1ntf(stderr. •\nYour query has deadlocked w1th another•);
fpr1ntf(stderr. •applicat1on and your work 1s be1ng backed out.•);
fpr1ntf(stderr. •\DAD attempt is be1ng made to restart the query.•);

/• call RIC's except1on handler to attempt restart •/
excvraise(excv);
return (O);

You may wish for a RIC program to catch all exceptions, not just "E:IDM.55", and
"W:IDM.DONE.XABORT". The following statement declares myhandler{} to handle all
exceptions of severity Error.

50 Britton Lee 88/0e/ee v. 1. 7

Appendix A: Stored Programs

All of the query trees which RIC builds from IDL code are normally stored in the exe­
cutable program which is created when the output of RIC is compiled. When the pro­
gram is executed, the trees are sent to the data.base server for processing.

The trees representing the database queries ma.y instead be stored on the database
server as a. stored program.

store
program

prog.rac

!
my queries

RIC precompiler
prog.c C compiler

prog

Queries ma.y be stored on the database server only if the RIC program satisfies the fol­
lowing requirements:

• The program operates on a single database server in a single database which can
be specified at precompilation time.

• The schema of the data.base is unchanging, meaning that objects in the data.base
are not created, destroyed or otherwise altered structurally during execution of
the program.

• The program uses no dynamic range variables.

When a program is in the development stage, it is genera.Uy desirable not to store the
trees on the data.base server because precompila.tion time is longer, since the precompiler
must communicate with the data.base server. But when a. production version of a. RIC
program is being precompiled, it is often preferable to store the queries on the database
server, because execution may be faster and the size of the executable program is
smaller.

To precompile a RIC program so that the trees a.re stored on the database server, use
the -n or /progname progname option. The progname is the unique name under
which the collection of database queries in that program are to be stored.

When the -n or /progname progname option is used, the -d or /dbname database
option must also be used.

88/0£/££ v. 1. 7 Britton Lee 51

Appendix A: Stored Programs RIC User's Guide

The database server destroys any stored programs in the specified database previously
stored under progname before precompiling the source file and creating the stored pro­
gram.

The following command-line instructs RIC to precompile myprog.ric, storing the query
trees on the database server as a. stored program in the "books" data.base named
"myqueries".

ric -n "myqueries" -d "books" myprog.ric (Unix)

ric /progname = myqueries /dbname =books myprog.ric (other)

If a. RIC program contains several modules residing in different source files, the stored
programs for ea.ch module should be associated with a. unique name. The following
command-lines instruct RIC to precompile a. program residing in two source files, and to
store the queries in main.ric in a stored program called "ma.inqueries" and the queries
in functions. ric in a. stored program called "funcqueries". Both "ma.inqueries" and
"funcqueries" are stored in the "books" database:

52

UNIX:

ric -n "mainqueries" -d "books" main.ric
ric -n "funcqueries" -d "books" functions.ric
cc -o prog main.c functions.c -lidmlib

VMS:

ric /progname=mainqueries /dbname=books main.ric
ric /progname=funcqueries /dbname=books functions.ric
DEFINE/USER V AXC$INCLUDE IDM_DIR.
CC main, functions
LINK/EXE=PROG.EXE MAIN,FUNCTIONS,IDMLIB/OPT

Britton Lee 88/02/22 v. 1. 7

RIC User's Guide Appendix A: Stored Programs

PC/MS-DOS

ric /progname=mainqueriea /dbname=books main.ric
ric /progname=funcqueriea /dbname=booka functiona.ric
mac /AL /Ga main.c, main.obj;
mac /AL /Ga functiona.c functiona.obj;
link /STACK:lOOOO main.obj + functions.obj, prog,, idmlib;

A OS/VS

ric -n "mainqueries" -d "books" main.ric
ric -n "funcqueriea" -d "books" functions.ric
cc main :IDM:include/aearch
cc function• :IDM:include/aearch
ccl/o=prog/tuks=4 main.ob functions.ob :IDM:LIB:rclib.lb &.

:IDM:LIB:IDMLIB.lb :IDM:LIB:ITPUSR.lb

88/0£/££ v. 1. 7 Britton Lee 53

Appendix A: Stored Programs RIC User's Guide

54 Britton Lee BB/oe;ee v. 1. 1

Appendix B: RIC and the C Preprocessor

The C preprocessor is the first pass of the C compiler. It processes lines beginning with
a score (#), such as #define, #include, a.nd #line. On some opera.ting systems, includ­
ing many flavors of Unix, it is possible to invoke the C compiler's preprocessor
separately from other passes of the compiler. It may be desirable to run the preproces­
sor on a RIC source file before sending it through RIC to obtain •truct definitions and
typedefs given in a header file so tha.t these definitions may be applied to C variables
which are known to RIC.

This technique should be used with caution, though many users ca.n simply use the most
straightforward pipeline their Unix systems a.nd shell a.llow. Most C preprocessors
require their input files to have a. suffix .c a.nd will not preprocess a. file with the suffix
.ric or no suffix.

Flagging Statements for RIC Header Files

A special problem a.rises when a. RIC source file is run through the C preprocessor before
being run through RIC, if a. header file is to be *included by both the RIC programs
a.nd pure C programs. For RIC, declarations in the header file must be pref a.ced with a
dollar sign ($) so they will be noticed by RIC, but if declarations in a C program are
prefaced with a. dollar sign ($), they will elicit syntax errors from the C compiler.

To overcome these contradictory requirements, a.ll header files which must be a.cceptable
to RIC and the C compiler should begin with the line

#include <rcfl&g.h>

In addition, any declarations in the header file which may need to be interpreted by
RIC should be flagged with the word "RCFLAG" instead of a dollar sign ($).

For example, the following header file called ezample.h

1 /*
2 ** EXAMPLE.H - he&der file to be used by RIC &nd & C compiler.
3 */
4
5 #include <rcfl&g.h>
6
7 RCFLAG int Num;

would be included in the RIC source file by the following two lines

88/02/22 v. 1. 7 Britton Lee 55

Appendix B: RIO and the 0 Preproceuor

#def 1ne
#include

RCFLAG $
•example.b•

RIC User's Guide

Now Num will be flagged with a dollar sign ($) in the source file processed by RIC but
not in any other files.

The #line Directive

A directive that reads

#line 3 •f1le.r1c•

instructs the C compiler to consider the next line of text to be the third line read from
a file named file.ric, regardless of the name of the file it is actually reading or the
number of lines it has actually read. RIC writes many of these directives on the output
file it produces to allow error messages from the C compiler to reference lines in the
RIC source. RIC also reads and interprets any #line directives in its source file and
uses them to formulate its conception of how lines in the input file are to be referred to
in error messages.

Unfortunately, there is a lack of unanimity among C compilers, and even among various
phases of a. single C compiler, concerning the precise syntax of #line directives. RIC
reads and interprets all the following forms identically. Any non-NULL string of blanks
or tabs can be substituted for the blanks in these examples.

(1) # line 3 "6.le.ric"

(2) * line 3 "file.ric"

(3) * 3 "file.ric"

(4) # line 3 file.ric

(5) * line 3 file.ric

(6) * 3 file.ric

By default, any #line directive emitted by RIC ressembles example 1 above. This
includes directives read from the source file, which RIC always interprets and rewrites.
This is the form pref erred by most C compilers.

If the -I command-line option is passed to RIC the word line does not appear in the
output directive, producing a. line ressembling example 3. This is the form demanded
by the parsing phase of the Unix compiler cc. On some systems it is possible to pass
RIC output which was run through the C preprocessor when it was RIC source directly
to the parsing phase of cc, a.voiding a second useless pass through the preprocessor.
This feature is not always documented.

56 Britton Lee 88/oe/ee v. 1. 1

RIC User's Guide Appendix B: RIC and the C Preprocessor

If the -q command-line option to RIC, quotation marks will not enclose the filename in
the #line directives. This is required by some C compilers.

BB/oe;ee v. 1. 7 Britton Lee 57

Appendix B: RIC and the C Preproceuor RIC User's Guide

58 Britton Lee 88/oe;ee v. 1. 1

Appendix C: Portability of RIC Programs

Without Stored Programs

The pure C code produced by the precompiler is not totally portable between different
types of hardware. This is because, when a RIC program is precompiled, · each IDL
query is represented as a series of octal bytes (see the variable utrees in the output file
shown in section 1.1.3). These bytes are defined in the C program in the order in which
they appear in storage on the host machine on which the program is precompiled.
Some machines store integers most-significant byte first; others store them least­
significant byte first. Thus, different utrees are created on different hardware.

The implications of this for portability a.re as follows:

• If a RIC program which has been precompiled on a host that represents integers
most-significant byte first is being ported to a host that represents integers
least-significant byte first, the RIC source must be precompiled a.gain on the des­
tination host.

• If a RIC program which has been precompiled on a. host that represents integers
least-significant byte first is being ported to a. host that represents integers
most-significant byte first, the RIC source must be precompiled again on the des­
tination host.

• If the original and destination hosts represent integers in the same order, it is
not necessary to re-precompile the RIC source.

With Stored Programs

If all of the IDL queries are compiled into stored programs, the above problem is
avoided .. In this case, both the stored program(s) and the C code produced by the
precompiler are machine-independent and a. new precompilation is not necessary when
the RIC program is ported.

However, in order for all of the IDL queries to be compiled as stored programs, the fol­
lowing conditions must exist:

{1) The RIC program must have been precompiled with the -n or /progname
option.

(2) No IDL statement may contain a. C expression as the first argument to the func­
tions bed(}, bcdflt{), bcdflt(}, fbcdflt{), string(), /string(}, f char(), or char{}. No
IDL statement may contain a. C expression as either of the first two arguments
to the functions bed.fixed(}, substr() or substring().

(3) The IDL statements may only be among the following: range, retrieve,
append, replace, delete, begin transaction, end tranaaction, or abort
transaction.

(4) No IDL statement may use dynamic range variables.

88/0£/££ v. 1. 7 Britton Lee 59

Appendix C: Portability of RIC Programs RIC User's Guide

If conditions 2, 3, and 4 do not exist, but the RIC program is compiled with the -n or
/progname option, the precompiler will create stored programs for the allowable IDL
statements and machine-dependent utrees for the rest. The user is not notified when
this occurs; the only way to ascertain that both utrees and stored programs have been
created is to examine the pure C output from the precompiler.

With Stored Programs and Utrees

If precompilation of a RIC program creates a combination of stored programs and
machine-dependent C code, and the program is to be ported, the machine-dependent
portion must be precompiled according to the guidelines mentioned above in the section
dealing with RIC programs which do not contain stored programs. If a new precompila­
tion is necessary, the programmer may choose to handle it in one of two ways:

(1) Precompile the RIC program on the destination machine using the -n or /prog­
name option, but give the argument to this option a different name for every
host on which the program is precompiled. For example, the following command
precompiles a program on a VAX running Unix:

ric -n "V AXmyqueries" -d "books" myprog.ric

To port the program to an IBM PC, one could transfer the source to a PC and
precompile it as follows:

ric /progname = "PCmyqueries" /dbname =books myprog.ric

This is necessary because, if the name of the stored program is not changed, the
original stored program from the original precompilation will be overwritten and
given a new internal identifier. This will make it impossible for the original RIC
program to retrieve its stored program.

This solution causes identical stored programs to be stored on the database
server under different internal identification numbers.

(2) Where feasible, a preferable solution is to write the code in such a way that all
queries which become stored programs, that is, those using the commands
range, retrieve, append, replace, delete, begin transaction, end transac­
tion, or abort transaction, and not using C expressions as arguments in the
functions listed above, are contained in one precompiler source file. The IDL
commands which produce machine-dependent code go in a. second source file.
The first file would be precompiled once on the original host a.nd then its output
transferred to all the destination hosts where it would be compiled. The second
file would be precompiled and compiled on all of the destination hosts. This
solution results in a single stored program on the database server with individual
machine-dependent modules on the various hosts.

60 Britton Lee 88/oe/e£ v. 1. 1

RIC Uaer 'a Guide Appendix C: Portability of RIC Programs

88/02/22 v. 1. 7 Britton Lee 61

abort transaction: 45, 46

BCDNO: 7-8, 8

BOOL: 7

break: 22

cancel: 28-29

colon: 16

crackargv: 3--4

curly brace: 22, 33

database: 3, 6

deadlock: 48

declarations: 18

device: 3, 6

directive: 56

dollar sign: 6, 12, 17, 18, 19

dynamic range variables: 16-17

error messages: 6, 8

exit: 2

expression: 19

filename: 2

fixed range variables: 15

identifier: 19

IDMLm:6

INITRIC: 2

nested transactions: 42

new transactions: 45

obtain: 33-38

output file: 1, 4

percent sign: 16

portability: 59

preprocessor: 55

Index of Terms

progname: 51

RcCDB: 6

recount: 23

RCDBNAME: 3

RCDEVICE: 3

RcDevice: 6

RcProg: 6

retrieves: 20-27

savestr: 24

source file: 1

stored program: 6, 51-53

string: 24

suffix: 2

symbol table: 19

transactions: 39-50

type conversions: 19

xalloc: 24

