
Product Format

Predefined Stored Commands Version R3v5m4
Release/Installation Notes For Unix BSD 4.2/4.3

The Predefined Stored Commands are supplied on 9-track tape at 1600 bpi in w format. They
consist or 79 files that conta.in the command scripts to be installed in any Britton Lee Shared
Database system. The commands are described in the document Pretlefinetl Storetl Command&,
Britton Lee part number 205-1607-rev. This document also includes a listing or the individual
stored command scripts. The command scripts come in two versions, one for IDL query language
and one for SQL. Only one of these sets need be installed in a database to be uaeable from both
query languages.

Installing from Tape

Create a directory called scmds in the desired path. Generally, these commands should be acces­
sible to the DBA for the database machine. It may be moat convenient to create the directory
/a/hoat/acmds. On release 3.4 or later of the Britton Lee host software, the command script files
will be loaded into a directory /a/host/scmds automatically. From inside the directory /scmds,
type:

tar x

There should be 79 files loaded from tape into this directory.

Loading the Commands into a Databue

The Commands may loaded into a databse by using the command script "loadcmds" found in the
directory. Any number of database names may follow the command. For instance, to load the
stored commands into databases "mydb" and "db2", type the following:

loadcmds mydb db2

To install the same commands in the SQL form into the same databases, type:

loadcmds -. mydb db2

To install the system database commands simply type:

loadcmds system

The installation using the loadcmds script may also reference a database port (IDMDEV) by
using the -B ftag with the name or the device.

loadcmds -Bt3%xns mydb

This command will load the stored commands in database "mydb" on the database found
through device address "t3%ms". There must be no apace between the "-B" and the device
identifier. ·

The command script will run for about five minutes, with frequent messages of the variety ''xxx
not found" and "n tuples affected". These messages are normal for a first installation. Read the
Predefined Stored Commands document Introduction to find out how to avoid name conflicts, or
how to install only some of the commands in a database.

Editing Control Files

There are a set of files in the directory with the suffix ".iin". These files are eoatrol files used to
load the commands scripts for IDL. The actual command scripts are suf&xed ".idl". You may
edit any file in this directory with any Unix editor. You may wish to edit the "perms.iin" file,
since it con ta.ins the default execute permissions for the commands. Similarly, all files suffixed
".sin" will control the loading of SQL scripts (suffix: ".sql"}.

Part Number 200-1910-001 Britton Lee

Britton Lee Host Software

PREDEFINED STORED COMMANDS

(r3v5)

March 1988
Part Number 205-1607-002

Printed February 1988.

This document supersedes all previous documents. This edition is intended for use with Britton
Lee Host Software Release 3.5 and future software releases, until further notice.

The information contained within this document is subject to change without notice. Britton Lee
assumes no responsibility Cor any errors that may appear in this document.

The software described in this document is furnished under license and may only be used or
copied by the terms or such license.

Integrated Database Manager, IDM, Intelligent Database Language, and IDL are trademarks or
Britton Lee Inc. ·

COPYRIGHT© 1988
BRITTON LEE INC.

ALL RIGHTS RESERVED
(Reproduction in any form is strictly prohibited)

Table of Contents

I: Overview 1

Introduction 3

How to Load 4

Permissions 6

Executing the Stored Commands 7

The Stored Commands 8

II: Stored Commands - All Users 9

Summa.ry 11

attname .. 12

atts ... 13

basel970, basel900 .. 14

cmds ... 15

cmds_date .. 16

cmds_permit .. 17

cmds_space .. 18

cols .. 19

date... 20

dateconv :... 21

depend .. 22

describe 23

dir ... 24

expire .. 25

expiredate 26
files ... 27

f reespace 28

gmt_date ... 29

mine .. 30

othercmds ... 31

otherviews 32

permits ... 33

permitsall 34

permitsgen 35

permitsme 36

permitsuser 37

pgms ... 38

rels .. 39

rename .. 40

Britton Lee iii

Table of Contents Predefined Stored Commanda

size .. 41

sizebyzone ... 42

sizes .. 43

spacebyuser 44

tabs ... 45

uses ... · 46

views ... 47

ymd .. 48

ill: Stored Commands - Database Administrators 49

Summary .. 51

allindexes .. 52

cmds_dba ... 53

freelog ... 54

group_off ... 55

group_on ... 56

groups ... 57

indexes .. 58
notowned 59

rmuser .. 60

setcard .. 61

system... 62

usersright ···············:··· 63
who... 65

whois .. 66

whoisid ... 67

IV: Stored Commands - System Database 69

Summary .. 71

baudrate 72

channel ... 73

cmds_system 7 4

config .. 75

dbs .. 76

diskio .. 77

mon ... 78

mondisk .. 79

monfail ... 80

monlock .. 81

monun .. 82

monwait ... 83

ps .. 84

APPENDICES ... 85

iv Britton Lee

Predefined Stored Oommanda Table of Contents

Appendix A: Summary of Commands 87
Appendix B: JDL Definitions ... 89

columns (atts.idl) ... 89

objects (objects7.idl) .. 90
allindexes (indexes.idl)•..... 91

attname (attname.idl) .. · 91

atts (atts.idl) .. 92
baudrate (channel.idl) 92
channel (channel.idl) 93
cmds (cmdsS.idl) ... 95
cmds_date (cmds5.idl) ... 95
cmds_dba (cmds5.idl) .. 96
cmds_permit (cmdsS.idl) 96
cmds_space (cmds5.idl) ... 97
cmds_system (cmds_sys.idl) 97
config (config.idl) .. 98
date (date8.idl) ... 99
dbs (dbs.idl) .. 109
depend (depend.idl) .. 110
describe (describe.idl) ... 111
dir (objects7.idl) ... 113
diskio (diskio.idl} .. 114
expire (date8.idl) .. 114
expiredate (date8.idl) ... 115
files (objects7.idl) ... 115
rreelog (freespc.idl) ... 116
rreespace {freespc.idl) ... 116

groups (groups3.idl) ... 117
group_otr (groups3.idl) .. 111·

group_on (groups3.idl) .. 119
indexes (indexes.idl) :.......................... 120
mine (objects7 .idl) .. 121

mon (mon5.idl) ···~·········· 121
mondisk (mon5.idl) .. 122
monfail (mon5.idl) .. 123

monlock (mon5.idl) .. 123
monun (mon5.idl) ... 125

monwait (mon5.idl) .. 125
notowned (notowned.idl) 126

othercmds (objects7.idl) ... 126

otherviews (objects7 .idl) .. 127
permits (protectS.idl) ... 128

permitsall (protect5.idl) ... 129

Britton Lee v

Table of Contents Prctlcfinctl Storctl Oommantla

permitsgen (proteet5.idl) 130
permitsme {permita5.idl) .. 130
permitsuser (proteet5.idl) 131
pgms (objects7.idl) ... 131
ps (ps.idl) .. 132
rels {objects7.idl) .. · 133
rename (rename.idl} ... 134

rmuser (rm user .idl) .. 134
setcard (setcard.idl) .. 135
size (size.id!) .. 135
sizebyzone (szbyzone.idl) 136
sizes (sizes.id!) ... 136
spacebyuser (spbyuser.idl) 137
system (system.id!) ... 138
usersright (uright.idl) ... 138
uses (uses.id!) .. 140
views (views.id!) 140

who (who3.idl) .. 141
whois (who3.idl) ... ; .. · 141

whoisid {who3.idl) .. 142

Appendix C: SQL Definitions .. 143

columns (cols.sql) ... 143
objects (objects7.sql) .. 144

allindexes cn:idexes.sql) ... 146
attname (attname.sql) .. 146

baudrate (channel.sql) .. 147
channel (channel.sql) .. 148

cmds (cmds5.sql) .. 149
cmds_date (cmds5.sql) ... 150

cmds_dba (cmds5.sql) .. 151
cmds_permit (cmds5.sql) 151
cmds_space (cmds5.sql) ... 152
cmds_system (cmds_sys.sql) 152
config (con&g.sql) ... 153
config (con&g.sql) ... 153
date (date8.sql) ... 154
dbs (dbs.sql) ... 164
depend (depend.sq!) ... 165
describe (describe.sq!) ... 166
dir (objects7.sql) ... 168
diskio (diskio.sql) .. 168
expire (date8.sql) .. 169
expiredate (date8.sql) ... 169

vi Britton Lee

Predefined Stored Oommanda Table of Contents

files (objects7.sql) ... 170
Creelog (freespc.sql) ... 170
freespace (freespc.sql) ... 171
groups (groups3.sql) ... 171

group_oft' (groups3.sql) .. 172
group_on (groups3.sql) .. · 173
help (cmds5.sql} .. 174

indexes (indexes.sql) ... 17 4

mine (objects7.sql) .. 175
mon (mon5.sql) ... 176

mondisk (mon5.sql) .. 177
monrail (mon5.sql) ... 177

monlock (mon5.sql} .. 178
monun (mon5.sql) .. 179
monwait (mon5.sql} .. 180

notowned (notowned.sql) 180
othercmds (objects7.sql} .. 181

otherviews (objects7 .sql} .. 181
permits (protect5.sql} ... 182
permitsall (protect5.sql} ... 183

permitsgen (protect5.sql} 184
permitsme (protect5.sql} .. 184
permitsuser (protect5.sql) 185
pgms (objects7.sql) ... 185
ps (ps.sql) .. 186
rename (rename.sql) ... 188
rmuser (rmuser .sql) .. 188
eetc~d (setcard.sql) ... 189
size (size.sql) ... 189
sizebyzone (szbyzone.sql) 190
sizes (sizes .sql} 191
spacebyuser (spbyuser.sql) 192
system (system.sql) ... 192
tabs (object7 .sql) .. 193
usersright (uright.sql) .. 193

uses (uses.sql) ... 195
views (views.sql) ... 196

who (who3.sql} ... 196
whois (who3.sql) ... 197

whoisid (who3.sql} .. 197
Appendix D: Data Tables .. 199

atype_I (protect5.:r:r:r) ... 199
calendar _I (date8.:r:r:r} ... 199

Britton Lee vii

Table of Contents Predefined Stored Commanda

config_I (config.:r.rz) ... 200
day _I (date8.a:r) ... 200
dbsO_I (dbs.=z) ... 201
dtype_I (atts.idl) 202
dtype_SQL (atta.aql) ... 202
host_users_I (groups3.n:r) · 203
itype_I (indexes.=z) .. 203
julian_J (date8.nz) .. 203
lockdef _I (mon5.n:r) ... 204
logged_I (objecta6.nz) .. 204
ma.sk_I (channel.nz) ... 205
mon_I (date8.u:r) .. 206
month_I (date8.n:r) .. 206
number _I (date8.nz) .. 207
otype_I (objecta6.nz) .. 209
ps_data_I (pa.n:r) ... 210
ptype_I (protect5.nz) ... 212
aavings_I (date8.zz:r) ... 212
users_I (groups3.n:r) .. ;.. · 213

viii Bn"tton Lee

PARTI

Overview

Introduction

Britton Lee

The stored commands described in this manual are delivered with
Britton Lee Release 3.5 Host Software. They are designed to facilitate
the use of the BL300 and BL700 system families through the interactive
query languages IDL and SQL. The commands are contained in
machine- and human-readable IDL and SQL scripts in a host di.i-ectory.
The DBA of a database may choose to install either the full set of
commands or any subset.

The stored commands are described on-line by the informational stored
commands cmds, cmds_dba, cmds_date, cmds_permit,
cmds_space, and cmds_system. These interrogate the "descriptions"
relation and print the results in a neat format. Thus, the user need only
know the command cmds to list the stored commands that describe the
database contents. Security considerations may cause the DBA either
not to install these commands in a database or to permit their use to
only certain groups of users.

The stored commands are contained in a directory or diskette directory
called acmds. For the location (path name) of this directory on your
system, see the associated document Predefined Stored Commands -
Release Note& and lnatallation Guide or see your system administrator.
The directory acmds contains a file for each stored command described
in this document. Stored commands that must be loaded together
because they share the use of objects are included in common files whose
names end with a digit (e.g., objects7 .sql contains seven stored
command scripts for commands using the view, "objects").

There is a two similar sets of stored commands described by the two
types of scripts, IDL and SQL. The same functionality is provided by
both sets of commands, but the SQL version will use SQL terminolgy
while the IDL version uses IDL terminology. Whichever set of commands
is loaded, they may be invoked from either language. Two commands
have different names. The SQL scripts (.-qi) will provide a cols
command that will give the SQL data types and column names for a
table, while the IDL version (.idl) is called atts and will yield IDL data
types. It is not necessary to load both sets of scripts into a database for
the commands to accessible to both command parsers.

The directory also contains a set of command files labeled .iin for IDL
and .sin for SQL. The use of these files is described below.

3

How to Load

4

On any host type, the stored commands may be loaded by entering the
IDL or SQL parser, opening the database to be accessed, and typing

%input filename

Ir just a single command script is desired, the filename should be the file
containing that script (e.g., beespc.idl). When installing all or the
stored commands, the special file Input.tin may be used from IDL and
lnput.ein from SQL. By invoking the parser with the name of the
desired command script, the script will be entered as it Crom a %input
command. This invocation may be or the UNIX va.riety,

ldl dbname -f input.tin

or

eql dbname -f input.etn

or it may be or the VMS, VM/CMS, or PC MS-DOS va.riety:

IDL dbname /INPUT=INPUT.DN

or

SQL dbname /INPUT=INPUT.SIN

Each or the input command scripts will cause the individual commands
to be loaded in the database. Ir this is the first time these commands a.re
loaded, an error message will appea.r on the screen for each command,
stating that the command name was not round. Each command script
attempts to destroy any previously existing object or the same name in
the database before definition. Ir there is no such object, this error
message will appea.r. In addition, several of the helper data relations will
be installed and loaded with data. The resulting operations will print
quite a few "n tuples affected,, messages. Since the installation takes
several minutes, the OBA may wish to redirect standa.rd output and
standa.rd error, or place the job in a batch stream, rather than tie up a
terminal Cor the load time.

A possible side effect or loading these commands into an existing
database is a conflict or object names. Objects or the same name as the
stored commands will be destroyed by the loading script. To prevent
loss or data, another pair or helper scripts, eonflict.iin or eonfllet.ein,
can be run to print any possible name confticts that would arise Crom
installing the commands in a database. The scripts 11eonflet.iin or
econflet.ein perform the same function (or the stored commands specific
.to the system database. To run these scripts, simply invoke them in the
database Crom the IDL or SQL command parsers. A report will be

Britton Lee

Predefined Stored Oommanda How to Load

Britton Lee

printed to the screen that contains the names or existing objects that will
be destroyed. A conflict can be resolved by either renaming the existing
object or changing the script file to alter the name or the command. The
file name containing the conflicting command is listed alongside the
object name. Simply edit the named file and do a global replace on the
name. In most cases this will solve the problem or name conflict.

On each host, there is a sample command script that will load the stored
commands on the de(ault shared database system (IDMDEV) into
designated databases. This script will appear as the executable file
loadcmda on UNIX systems, loadcmda.bat on PC MS-DOS,
loadcmda.com on VMS, and loadcmda exec on VM/CMS. Each such
file will take the names or one or more databases as arguments. In
addition, the files on UNIX, VMS and PC-DOS will accept a flag to load
the commands Crom the SQL parser rather than the IDL parser.

For the commands to be loaded in the "system" database, there is a file
called ainput.iin Cor IDL and ainput.ain Cor SQL, or these may be
loaded by opening the system database and typing

%input "ainput.iin"

or

%input "•input.sin"

Alternatively, the loadcmds command file with the database name
"system" added may be used to load the system database specific
commands.

There are some special requirements Cor the system-database commands.
First, the system database may need to be extended beyond its de(ault
allocation. This means the command

extend database system (IDL)
or
alter database system (SQL)

must be issued in the system database. Second, there must be an ''M"
tuple in the "configure" system relation (or the monx:rz commands to
(unction properly.

6

Permissions

A separate file contains the permissions for each command. This file may
be modified to restrict the usage of each command. The input.iin and
sinput.iin files also execute the permissions file, so this file should be
edited appropriately before being loaded. Similarly, the file may be
executed by itself via the %Input facility in each parser. The file names
are perma.iin and sperm.a.Un for the IDL parser, and grant.a.sin and
egrante.ain for the SQL parser.

There are also separate files that contain the commands to destroy all of
the stored commands and related objects in a database or the system
database. Theee files are called destroy .iin and sdestro:y .Un for the
IDL parser, and drop.sin and edrop.sin for the SQL parser.

Britton Lee

Executing the
Stored Commands

Britton Lee

The stored commands may be executed during an interactive or batch
session through the IDL or SQL parsers. They may also be executed
from application programs and used as background queries for. screen­
based application programs such as Freef orm. In IDL, one invokes a
stored command by either issuing an execute command or naming the
command on the first line of a prompt. Commands that need
parameters must be invoked with their parameters listed in order,
separated by commas. Sometimes strings must be quoted.

IDL examples for the atta command:

atta relation;
execute atta relation;
execute atta "relation" go

All or the above invocations will yield the COl'J'ect results. The first Corm
(implicit execution) will only work after a 1) prompt. All IDL commands
must end with a go or a semicolon ";"unless a continuation character is
specified.

SQL example for the cols command:

.tart cola ("table");

SQL does not allow implicit invocation. All strings must be enclosed in
quotation marks, and the parameter list must be in parentheses.

In the examples, the implicit IDL Corm is given Cor most commands.

7

The Stored Commands

8

The commands are divided into roughly three groups:

(1) Commands that are useful to all users. These are generally
inf ormatiooal in nature. None or them permit users to modify
structures except the rename command.

(2) Commands that are useful primarily to the DBA. These are both
informational and modifying.

(3) Commands that are useful only in the system database.

This manual is divided into parts according to these types. Part Il
describes the general user commands. Part m describes the DBA
commands. Part IV describes the system database commands. An
alphabetical listing or all the command scripts can be round in the
appendices - Appendix B covers the JDL versions and Appendix C
covers· the SQL versions. In addition, a display or each or the standard
data relations is given in Appendix D. These relations are used by the
stored commands to decode various system relations. They are also
available (or user applications.

Each part contains an alphabetical listing or commands. For each
command, there is a description or the purpose or the command, its
usage, and an example.

Several o(the stored commands make use or relations and views with
data tables to aid in decoding system relations. To help distinguish these
Crom the system relations and user relations or views, the names always
end in "-1", and the types in the "relation" relation are changed to type
"I" for relations. A listing or these relations can be found in Appendix
D.

The stored commands operate best if certain standards are maintained.
There should be only one user mapped to DBA for each database. There
should be corresponding entries for all users in the "hosLusers" and
"users" system relations. There should be only one user 0 named ALL in
any database. To help maintain these standards, there is a stored
command (or DBAs, useHl'ight, which will report any violations.

Britton Lee

PARTU

Stored Commands - All Users

Summary

Britton Ltt

These are stored commands that are useful to all users:

atts
buelOOO
bue1070
cmds
cmds_date
cmds_permit
cmds_space
cols
date
dateconv
depend
describe
dlr
expire
expiredate
flies
tree.pace
gmt_date
mine
othercmds
otherviews
permits
permit.sail
permitsgen
permit.me
permitswler
pgm•
re ls
rename
aiae
lliaebysone
alses
apaceby1111er
tabs
views
Wle8

ymd

Displays attributes and types for given rd•tion (IDL only).
Changes base date for date conversion.
Changes base date for date conversion.
Lists predefined stored commands with one--line descriptions.
Lists stored commands dealing with date conversions.
Lists stored commands dealing with protection of objects.
Lists stored commands dealing with space/size/storage.
Displays the column names and types for a given table (SQL only).
Returns the current date and time from the relational system clock.
Returns a readable date given an i'mtlatt value.
Displays objects depending on object.
Displays description or given relation or command.
Displays all objects or given name or fragment.
Sets the expiration date for an object to current + ntlays.
Sets the expiration date for an object to rr1111mmtld.
Displays files owned by you and the DBA.
Displays total space and free space in database.
Returns Greenwich mean time and date from shared database system.
Displays objects owned by you only.
Displays user stored commands (those not displayed by cmds).
Displays user views (those not displayed by views).
Shows the explicit protection for an object.
Shows all explicit permits and denies.
Shows the· explicit tape and create permissions.
Shows the explicit permissions for me.
Shows the explicit permissions for •1tr _name.
Displays stored programs owned by you or the DBA.
Displays user relations owned by you or the DBA (IDL only).
Allows users to rename their relation to new_ name.
Displays size or object.
For object, lists number or blocks in each zone.
Displays size or database and larger relations.
Lists disk space utilization by user.
Displays user tables owned by you or the DBA (SQL only).
Lists standard views with a one--line description.
Lists relations or views used by a stored command.
Takes a r111111mmtltl date string, returns itlmtlatc.

11

attname

attname relation

DESCRIPTION

EXAMPLE

12

Predefined Stored Oommanda

This is the stored command used . by early releases or IDL to return attri­
bute names for .all in an attribute list. It is not needed with release 25
or later IDM/RDBMS code. It may be used by IDL usen to retum a list
or attribute names, but the atte command is preferable.

1) attname host_w.en;

name
•1
hid
huid
uld

4 tuplea aft'ected

Britton Lee

Predefined Stored Oommanda at ts

atts relation

DESCRIPTION

EXAMPLE

Britton Lee

This command returns both the attribute names and the attribute types
for the named relation. It makes use or the view "columns" wh~ch con­
tains all or the information Crom the system relation "attributes" in
decoded Corm. The decoding information is contained in a relation called
"dtype_I" which is used by the "columns" view.

This command is only installed by IDL. It is equivalent to the "cols"
stored command installed by SQL. The data types are named differently
in the two languages.

1) atta host_ uaere;

attribute type
•1 i1
hid i2
buid i4
uid 12

4 tuples affected

base1970, base1900 Predefined Stored Oommantla

base1970

base1900

DESCRIPTION

14

These commands convert the base date for other date-related stored
commands from January 1, 1900 to January 1, 1970 and back. When
the stored commands are loaded, the default base date 1900 is used in
the table "calendar _I". The command bue1970 will convert this table
and all date functions that depend on it to a system that assumes dates
are stored as number or days since January 1, 1970. Similarly,
buelGOO will convert the table back to 1900 base date. The text of
these commands can be found in Appendices B and · C under the date
command script. If some other base date is needed, it may be useful to
look at those scripts.

Britton Lee

Predefined Stored Oommanda cmds

cmds

DESCRIPTION

EXAMPLE

Britton Lee

This command is the help command replacement. It list.a the highest
level of predefined stored commands. Each of the commands has a
description, type, and key in the "descriptions" system relation, anowing
the cmda command to distinguish it from other objects. At the end of
each of the scripts, you will find an uaociate command with the one­
line description and keys necessary to place this command in the proper
category.

1) cmds;

command description
atte Displays attributes and types for elven RELATION
cmds Llate atandard atored commands with a one line description
cmds_date Liets atored command• relating to date conversion
cmds_dba Lists atored commands mostly u11ed by the dba
cmds_permit Lists stored commands dealing protection of objects
cmde_epace Lists atored commands dealing with apace/aise/etorage
depend Displays objects depending on OBJECT
describe Displays description of given RELATION or COMMAND
dir Displays all objects of given NAME or fragment
files Displays files owned by you and the dba
mine Displays all objects owned by this user
othercmds Displays user stored commands (thoee not displayed by cmds)
otherviews Displays user views (those not displayed by views)
pg ms Displays stored programs owned by you or the dba
re ls Displays user relations owned by you or the dba
rename Allows users to rename their RELATION to NEW _NAME
uses Lists objects that OBJECT depends on
views Lists standard views with a one line description

17 tuples affected

16

cmds_date

cmds_date

EXAMPLE

16

Predefined Stored Commanda

This is a version of the cmda command for those predefined commands
that relate to date conversion. The Britton Lee shared database system
stores dates as 4-byte integers. There are several commands and views
that convert between this format and various human-readable forms.
Two commands are provided to allow the user to condition the "expire"
attribute in the "relation" system relation with friendly dates.

1) cmds_date;

command description
baae1900 Change base for date conversion to Jan 1,1900 from 1970
buel970 Change base for date conversion to Jan 1,1970
date Returns the current date and time from the database server clock
dateconv Returns the month day, year given idmdate NUMBER
expire Sets the expiration date for an OBJECT to getdate + NDA YS
expired ate Seta the expiration date for an OBJECT to date YYYYMMDD
gmt_date Returns Greenwich Mean Time and Date from the database server
ymd Returns the idmdate given a date string: YYYYMMDD

8 tuples affected

Bn'tton Lee

Predefined Stored Oommanda cmds_permit

cmds_permit

DESCRIPTION

EXAMPLE

Britton Lee

This is a version or the cmda command for those predefined commands
that show non-default permissions in the database. There are fiye such
commands. It may be desirable to restrict some or these to the DBA and
privileged users.

1) cmda_permit;

command description
permits Shows the explicit protection for an 0 BJECT
permit.sail Shows all explicit permits and denies
permitsgen Shows the explicit tape and create permi•ions
permitm:ne Shows the explicit permissions for me
permitsuaer Shows the explicit permisaions for USER

6 tuples affected

17

cmds_space

cmds_space

DESCRIPTION

EXAMPLE

18

Predefined Stored Oommanda

There are ao many commands related to space usage that they have been
given a menu or their own. These commands are or particular interest to
the DBA, but they may also be userul to the general user. -

1) cmda_space;

command description
free log Displays space usage for hard allocated transact log
freespace Displays total space and free space in this database
siae Displays Bise of RELATION
sisebysone For OBJECT, lists number of blocks in each sone
sises Displays aise of this database and its larger relatioDJJ
spacebyuaer Lista disk space utilisation by user

6 tuples affected

Britton Lee

Predefined Stored Commanda cols

cols table

DESCRIPTION

EXAMPLE

Britton Lee

This command returns both the column names and the column types for
the named table. It makes use of the view "columns" which contains all
of the information from the system table "attributes" in decoded form.
The decoding information is contained in a table called "dtype_SQL"
which is used by the "columns" view.

This command is only installed by SQL. It is equivalent to the "atts"
stored command installed by IDL. The data types are named differently
in the two languages.

SQL version:

1) start cols(" host_ wiers");

coLname type
al tinyint (1)
hid 111:nallint (2)
huid integer (4)
uid 111:nallint (2)

4 rows afl'ected

UI

date

date

DESCRIPTION

EXAMPLE

20

Predefined Stored Commanda

The date command prints the date and time in a neatly formatted Corm.
Information is derived Crom the getdate and gettime functions or Brit­
ton Lee's IDM/RDBMS.

Since the relational system hardware is not user-programmable, the tests
normally used to convert Crom Julian date and ticks (1/60ths o(a
second) to human-readable dates are not available. Instead, relations are
used to aid the conversions.

The date command and its close relative gmt_date make use or a
number or such relations for conversions or day of the month, length of
the year, and day of the week. The script itself is lengthy and well
documented.

Britton Lee's IDM/RDBMS stores dates as +byte integers that usually
represent the number or days since January 1, 1900. Some systems may
choose other base dates (the EPOCHOFFSET parameter in host
software). The conversion routines provided by date and other com­
mands depend on the relation "calendar _I" to contain the proper
conversions. Two additional stored commands are provided with the
date script. One, bue1970, will convert the "calendar _J" relation to
conversions based on January 1, 1970. Another, bue1900, will restore
the conversion table Crom 1970 to 1900. The view ''DateAndTime" con­
tains a variety or representations of the underlying current date that can
be used in any query. The relation "savings_!" should be adjusted to
the local time zone before date is loaded. Beware, date will expire in
1995.

1) date;

Day Date Time
Tuesday June 11, 1985 13:08:07

1 tuple affected

Britton Lee

Predefined Stored Oommanda dateconv

DESCRIPTION

EXAMPLE

Britton Lee

This command converts dates from Britton Lee'is IDM/RDBMS form (4-
byte integers) into human-readable form. This is convenient when trying
to decode some date other than the current date. (Use the date com­
mand for the current IDM/RDBMS date.) It uses the relations
"calendar _I" and "month_J" for date conversion.

1) dateconv 82214;

date_ written
March 14, H88

1 tuple affected

21

depend

depend object

DESCRIPTION

EXAMPLE

22

Predefined Stored Command•

When a view or stored command references another object (generally a
relation or view), the view or stored command is said to be dependent on
that relation or view. Among other things, this means that the underly­
ing relation may not be destroyed without first destroying the dependent
object. When you try to destroy such a relation, you will get back an
error message that lists at least one dependent object. This command
lists all the dependent objects on a named object.

1) depend indices;

object dependents downer
indices indexes DBA
indices omnLfull DBA
indices omnLxa DBA
indices omni_xaot DBA

4 tuples affect.ed

Britton Lee

Predefined Stored Commanda describe

describe object

DESCRIPTION

EXAMPLE

Britton Lee

The deecribe command is an easy way to extract inf orma.tion from the
"descriptions,, system relation. It will retrieve all of the descript~on text
for a named object and format it neatly on the screen. It only looks at
the first 72 characters or each "description.text,, line, 80 if you use the
&880clate command, keep your descriptions down to 72 characters per
line.

Along with the script or the deecribe command is a set of multi-line
descriptions or the system relations for each database. These demon­
strate how to use auociate properly for this command to work. They
also give on-line information on the system relations.

The key field used by ueociate is essentially a sequential line number
for each description.

1) deecribe attribute;

description
attribute: Catalog or each attribute or each relation.

Each tuple repreeenta one attribute.

2 tuples affected

23

dir

1 ·dir name

DESCRIPTIONS

EXAMPLE

24

Predefined Stored Oommanda

This command is a simple query into the "objects" view that searches for
all objects or the given name. By using wild-card characters, it can also
identify objects or a given name fragment. It is meant to work similarly
to a "directory" command on other opera.ting systems. It is different
from the other object-related commands (rels, pgma, flies, othercmds,
otherviewa) in that it searches all objects in the database no matter
who owns them.

It also incorporates a. decoding table ("otype_I") for the known object
types.

1) dir " •tup *" ;

re lid object type definition owner tu pa
418 onektup u User relation eda 1000

20247 tenktupl u User relation eda 10000
9198 tenktup2 u User relation eda 10000

a tuples aft'ected

Britton Let

Predefined Stored Commanda expire

expire object,ndays

DESCRIPTION

EX.AMPLE

Britton Lee

There is a user-definable attribute in the "relation" relation that permits
users to list an expiration date Cor an object. Databases that. permit
users to create objects can thus accumulate objects and provide a
maintenance problem for the DBA. If users are required to condition
this attribute, the DBA may write stored commands or programs that
regularly purge the database or expired data.

The attribute is a 4-byte integer, so it most conveniently accepts a valid
IDM/RDBMS date (see the date command). This attribute is automati­
cally set to the current date + 5 days when a relation is created. Ir the
user wishes to use a different date, he can update through the expire
command. The user need not have write permission on the "relation"
relation to provide an update in this way.

The parameter ndaya is added to the value returned by getdate to pro­
duce a new expiration date Cor the named object.

1) expire onektup,80;

1 tuple affected

25

expiredate Predefined Stored Command•

expiredate object,yyyymmdd

DESCRIPTION

EXAMPLE

28

This command works in the same way u expll'e, except that it accepts
a date parameter in the Corm or an absolute date written as an 8-
character string 1'vrmmdd (year-month-day). It sets the expiration date
or object to the idmdate equivalent value in the "relation,, system rela­
tion. It is up to the DBA to entorce this expiration date, so its use is
optional.

1) expll'edate onektup," 10801018"

1 tuple affected

Britton Lee

Predefined Stored Commanda files

files

DESCRIPTION

EXAMPLE

Britton Lee

This is one of the commands that depend on the view "objects". It is a
friendly way to list all of the files owned by you and the DBA. The
"objects" view includes the more readable information from the "rela­
tion" relation joined to the owner name and a relation for decoding log­
ging information called "logged_!".

1) files;

files owner logging
fort.ex DBA Not Logged
john test DBA Not Logged

2 tuples affected

27

frees pace

frees pace

DESCRIPTION

EXAMPLE

28

Predefined Stored Oommanda

This command reports the amount or space allocated to this database,
how many disk blocks are free, and what percent or the database _is used.

1) tree.pace;

total_ bib tree_ bib percent_ used
15120 8571 58

1 tuple affected

Britton Lee

Predefined Stored Oommanda gmt_date

gmt_date

DESCRIPTION

EXAMPLE

Britton Lee

Like the date command, gmt_date gives the Greenwich date and time
in a neatly formatted form. It is actually a little simpler than date,
because Britton Lee's aha.red databa.se system stores \l8e5 Greenwich
Mean Time internally.

Interactive IDL vel"llion 8.5

1) gmt_date;

Day Date Time
Tuesday June 11, H85 23:Uh18

1 tuple affected

29

mine

mine

DESCRIPTION

EXAMPLE

30

Predefined Stored Command•

This is one of the commands that depend on the view "objects". It is a
friendly way to list all of the objects owned by you only. In a large
database with many objects owned by the DBA and only a few owned
by each user, this can be a very convenient command. The "objects"
view includes the more readable information from the "relation" table
joined to the owner name and a table for decoding logging information
called "logged_!".

1) mine;

re lid object type definition tups
17849 addauthor c Stored command 0
24980 addpubset c Stored command 0

4548 author u User relation 10
18090 authttl u User relation 8
31874 balance u Ueer relation a
10947 pubsmaster u User relation 101

8 tuples aft'ected

Britton Lee

Predefined Stored Oommonda othercmds

othercmds

DESCRIPTION

EXAMPLE

Britton Lee

This is one of the commands that depend on the view "objects". It is a
friendly way to list all of the stored commands owned by you and the
DBA that are not part of the predefined commands. The "objecis" view
includes the more readable information from the "relation" relation
joined to the owner name and a relation for decoding logging informa­
tion called

Interactive IDL version S.6

1) othercmds;

command owner logging
distrib DBA Not Logged
fields_ or DBA Not Logged
inc_rank DBA Not Logged
lcode DBA Not Logged
median DBA Not Logged
relq DBA Logged
acode DBA Not Logged
st_ median DBA Not Logged
statepror DBA Not Logged

V tuples afl'ected

31

otberviews

otherviews

DESCRIPTION

EXAMPLE

32

Predefined Stored Commanda

This is one of the commands that depend on the view "objects". It is a
friendly way to list all of the views owned by you and the DBA. The
"objects" view includes the more readable information Crom the "rela­
tion" relation joined to the owner name and a relation for decoding log­
ging information called "logged_}".

1) othel'Viewa;

views owner logging
DateAndTime DBA Logged
GMT DBA Logged
fteld_view DBA Not Logged
tables_ view DBA Not Logged

4 tuples affected

Britton Lee

Predefined Stored Oommanda permits

permits object

DESCRIPTION

EXAMPLE

Britton Lee

This command extracts information encoded in the "protect" system
relation and displays it in readable form. It describes all non:-default
protection placed on object. It does not describe the protection placed on
individual attributes in a relation.

1) permit. configure;

access object user
permit read configure ALL
permit write configure eds

2 tuples affected

33

permitsall

permitsall

DESCRIPTION

EXAMPLE

34

Predefined Stored Commanu

This command describes all non-default protection (or all objects in the
database. It does not describe the protection placed on individual at.tri­
butes in relations. It extracts information encoded in the "proteet" rela­
tion and displays it in readable form.

1) permitaall;

access object Wier
permit execute f'reespace ALL
permit execute permltaall ALL
permit read vintnera ALL
permit read ptype_I ALL
permit read kindsq ALL
permit read atype_I ALL
permit read wines ALL
permit read pr icings ALL
permit read stores ALL
deny write ptype_I ALL
deny write atype_I ALL

11 tuples affected

Britton Lee

Predefined Stored Oommanda permitsgen

permitsgen

DESCRIPTION

EXAMPLE

Britton Lee

This command describes all non-default permissions regarding the data­
base. This includes tape read and write permissions, create permissions,
create index permissions, and create database permissions (system data­
base only). These permissions apply to the database in general and to all
objects in the database. This command extracts information encoded in
the "protect" relation and displays it in readable form.

1) permit.gen;

accesa user
permit create ALL
permit create index ALL
permit read tape ALL
permit write tape ALL

4 tuples affected

35

permitsme

permitsme

DESCRIPTION

EXAMPLE

38

Predefined Stored Commanda

This command describes all non-deCault permissions regarding objects in
the database Cor the user entering the command. It does not report pro­
tection on individual attributes in a relation. It extracts in(ormation
encoded in the "protect" relation and displays it in readable Corm.

1) permitmae;

acc.. object
permit write configure

1 tuple aft'ected

Britton Lee

Predefined Stored Commanda permits user

permitsuser user _name

DESCRIPTION

EXAMPLE

Britton Lee

This command describes all non-default permissions regarding objects in
the database for the stated user. It does not report protection on indivi­
dual attributes in a relation. Notice that asking for permissions -for user
ALL will return permissions that apply to everyone. This command
extracts information encoded in the "protect" system relation and
displays it in readable form.

1) permitauaer helen;

acceas object
deny read tenktupl

1 tuple aft'ected

87

pgms

pgms

DESCRIPTION

EXAMPLE

38

Predefined Stored Oommantl.a

This is one or the commands that depend on the view "objects".· It is a
friendly way to list all of the stored programs owned by you and the
DBA. The "objects" view includes the more readable information from
the "relation" relation joined to the owner name and a relation Cor
decoding logging information called "logged_I".

1) pgms;

pgma owner logging
dar _ updatep root Logged
dartypesp garey Logged
dhelpp root Logged
floeearnum root Not Logged
gar_retrp root Logged
gartermp garey Logged
gartypesp root Logged
ghelpp root Logged
narqp root Logged
sattdetail root Logged

10 tuples affected

Bn"tton Lee

Predefined Stored Oommanda re ls

re ls

DESCRIPTION

EXAMPLE

Britton Lee

This is one of the commands that depend on the view "objects". It is a
friendly way to list all or the relations owned by you and the DBA. The
"objects" view includes the more readable information from tht "rela­
tion" relation joined to the owner name and a relation for decoding log­
ging information called "logged_I".

It is equivalent to the SQL command "tabs".

1) rels;

relation owner tups logging
Bprimel DBA 1000 Not Logged
diet DBA 24001 Not Logged
edalO DBA 20004 Not Logged
eds5 DBA 10002 Logged
onektup DBA 1000 Not Logged
tenktupl DBA 0 Not Logged

8 tuples affected

39

rename Predefined Stored Oommantla

rename object,objectname

DESCRIPTION

EXAMPLE

40

This command allows a user to change the name of an object owned by
that user without needing write permission on the "relation" relation.
Only the name recorded in "relation.name'' is changed. In this way,
dependencies are not altered. For instance, if a stored command was
defined on a relation named "old", and the name of the relation was
changed to "new", the stored command would still function in the same
manner. Similarly, if a different relation were given the name "old", it
would not be recognized by the stored command.

1) rename onektup,uniquetup;

1 tuple affected

Britton Lee

Predefined Stored Common.ta aize

size object

DESCRIPTION

EXAMPLE

Britton Lee

Thia command gives two kinda of information: (1) the number of tuples
and the number of disk pages for a given object according to the "rela­
tion'' relation; (2) the actual number of diak pages (blocka) allocated to
that object from the "blockalloc" system relation. The command does a
count of the "blockalloc" tuples with the "relid" of the named relation.

The value stored in the "relation.pages" attribute is also given as
"reLpages", so that it may be checked for accuracy. There is no
guarantee that thia attribute or "relation.tups" is correct.

1) lllae geography;

relid reLtupa reLpagee num_blocb
0063 1282 146 238

1 tuple affected

.Cl

size by zone

sizebyzone object

DESCRIPTION

EXAMPLE

42

Predefined Stored Command•

The best indication or how fragmented a relation may be ia t.he distribu­
tion or t.he data among the sones or the disk. Scans or the dat.a will per­
form bet.t.er it all or the sones are close together and it t.hey are· largely
filled. When a new relation becomes fragmented, it may indicate that
t.he database ia too run. Extending the database and then recopying the
relation may help. Sisebysone lists all or the disk zones allocat.ed to the
named relation and how many blocks within each sone are allocated.
The zone addresses are given in hexadecimal, and the number or blocks
in decimal. A zone contains up to 255 disk blocks, depending on how the
disk is formatted.

1) alsebysone tenktupl;

sone blocb
001D8t 8
002050 12
00210D 88
0021Cl 1'12
002275 147
002329 2

8 tuples aft'ected

Bn°tton Lee

Predefined Stored Oommanda sizes

sizes

DESCRIPTION

EXAMPLE

Britton Lee

This command provides quite a bit of useful information about space
allocation in the database. It first lists the number of blocks allocated
for the database, the number or free blocks, and the percentage-or all<r
cated blocks used by data. This is the same display one gets from the
tree.pace command. It then prints a table of all of the objects larger
than 10 disk blocks, showing their types and their respective sizes. The
table is in descending order or size.

The command takes a while to execute, since it must do an aggregate
count of "blockalloc" by "relid".

1) •ises;

total_ bib free_ bib percent_uaed
13880 4832 84

1 tuple affected

name owner type reLpages num_of' _ blb
work 1 Q 24 952
11eh00Lvet 1 Q 45 682
tenktupl 1 u 120 425
eda5 1 u 87 287
diet 1 u 18 188
onektup 1 u 1 108
Bprimel 1 u 200 100
query 1 s 4 80
blockalloc 1 s 189 78
transact 1 T 27 87
attribute 1 s 12 18

11 tuples affected

43

spacebyuser

spacebyuser

DESCRIPTION

EXAMPLE

Predefined Stored Commantla

This command gives a listing or the space allocated to all the objects
owned by each user in the database. For each user, the number of
blocks allocated to each owned object is added up and tabulated. The
display lists these sums with the user name. The entries are listed in
decreasing order of space used.

1) epaceb)'Wler;

Wlel' uaer_id pages
eda 146 8012
DBA 1 207
to ma 144 200
llWl&ll 126 86
miacguest 100 28
loren 84 0
student2 160 6
john 65 4
helen 106 4
garry 107 8
miket 189 2
pitta 133 2
aharon 123 2
berlind 176 2
garve7 185 1
steven 184 1
melinda 177 1

1 '1 tuples affected

Britton Lee

Predefined Stored Oommanda tabs

tabs

DESCRIPTION

EXAMPLE

Britton Lte

This is one of the commands that depend on the view "object.a". It is a
friendly way to list all of the tables owned by you and the DBA. The
"objects" view includes the more readable information from tire ''rela­
tion" table joined to the owner name and a table for decoding Jogging
information called "logged_I".

It is equivalent to the IDL command "rels".

1) start tabs;

table_name owner row• logging
Bprimel DBA 1000 Not Logged
diet DBA 24001 Not Logged
edelO DBA 20004 Not Logged
eda6 DBA 10002 Logged
onektup DBA 1000 Not Logged
ten.ktupl DBA 0 Not Logged

e rows affected

45

uses

uses

DESCRIPTION

EXAMPLE

48

Predefined Stored Comm11nda

Views or stored commands use underlying objects (relations or views)
and are dependent on them. The depend command takes and underly­
ing object and lists the objects dependent on it. The Wle9 takes a
dependent object and lists the relations or views it uses.

1) wiea omnLfull;

relation used owner
indicee DBA
relation DBA

2 tuples affected

Britton Lee

Pretl.efinetl. Stored Oommontl.a views

views

DESCRIPTION

EXAMPLE

Britton Lee

This command gives a listing or the views used by the predefined stored
commands with a brief description or each. These views may be useful
for making queries on the data dictionary without having to worry about
the encoding used by the system relations.

1) views;

views description
Date.And Time Gives current date and time in various formate
GMT Gives Greenwich date and time in various formate
columns Friendly view of attributes relation
objects Objects, their owners, type, aise, and if logged

4 tuples affected

47

ymd

ymd yyyymmdd

DESCRIPTION

EXAMPLE

48

Predefined Stored Oommanda

This stored command takes a standard date string and returns Britton
Lee,s IDM/RDBMS date (4-byte integer). It uses the "calendar_!,, and
"month_I,, relations to decode the date string nvrmmdd. The same
relations and algorithms are used in all IDM/RDBMS date-conversion
functions.

1) ymd "19851225";

idmdate
31404

1 tuple affected

Britton Lee

PART ID

Stored Commands - Database Administrators

Summary

Britton Lee

The stored commands described in this part are largely for the use or the
DBA in managing the shared database system:

allindexes
cmds_dba
free log
sroup_off
sroup_on
groups
indexes
not.owned
rm user
•tcard
9J'lltem
u.enrigbt
who
whole
wholsid

Lists all the indices in the database (132 columns)
Lists stored commands mostly used by the DBA.
Shows the space usage in a bard-allocated transaction log.
Turns off all access to database for group (DBA only).
Turns group database access back on (DBA only).
Lists the groups and membership ror this database.
Displays keys and type or indices for given relation.
Lists objects not owned by people in "users".
Removes a user from database (DBA only).
Sets cardinality ror relation, intlez_ itl, cardinalit11.
Displays system relation names and sizes.
Checks consistency or "users" with "host_users".
Lists users who can use this database.
Returns "user _id", "bost_id", and "huid" ror given Her_ name.
Returns "user _name", "bost_id", and "buid" ror given •aer _id.

61

allindexes

I alllndexeo

DESCRIPTION

EXAMPLE

52

Predefined Stored Commanda

This command returns information on all indices on all tables in the
database. It includes the names and the first five concatenated keys for
each index. There may be more keys in the concatenation sequence, but
you will have to look into the "indices" relation to find out.

The "indices.card" attribute is also listed, so you may see that this accu­
rately reftects the cardinality of each index. A unique index has a cardi­
nality or 1. A 1ero means there is no information. This attribute is
important for assuring proper performance of joins and other queries. It
may be set with the aetcard command.

Unlike other stored commands, this one does not fit in an 80-column
screen. It uses a 132-column display, so it may be easier to route its
results to a printer.

1) allindexee;

relation type lte;rl lte;rt lr.e;rl lr.e;r4 lr.e;y& lndld
aummarJ clustered rec_t7pe It.ate aeqno 0
aummarJ noncluatered U"ea_name 1
aummarJ noncluatered aeqno 2
onektup clustered unique2 0 1
onektup noncluatered uniquel 1 I

3 tuples affected

Britton Lee

~ard

0
1
0

Predefined Stored Oommancl1 cmds_dba

cmds_dba

DESCRIPTION

EXAMPLE

Bn"tton Lee

-
This is a version of the cmda command for those predefined commands
that are in the DBA category. Thia stored command ia in the user com­
mand section, although the commands it describes may be permitted only
to the DBA.

1) cmde_dba;

command deacription
allindexea Displays keys and type of indices for all user relations (132 columns)
group_oft' Turn oft' all acceu t.o dat.abue for GROUP • for DBA only
group_on Turn GROUP database acceu back on • for DBA only
groups List.a the groups and memberahip for this database
indexea Displays ke1• and t.)'pe of indices for given RELATION
not.owned List objects which are not. not owned by people in 'users'
rm user Removes a USER from database • for DBA only
Mt.card Set cardinalit1 for RELATION, INDEXID, CARD
•;yet.em Diepla;ye e;yetem relation namea and •l•ea
useraright Checks con•ietency of 'uMra' with 'hoet._ueera'
who List.a usera who can UM this database
whoie Returns ueerid, host_id and buid for a given UMrname
whoieid Returns user name, hoet_id and huld for a given ueer_id

13 tuplea afl'ected

&3

freelog

free log

DESCRIPTION

EXAMPLE

54

Predefined Stored Commanda

This command allows the DBA to see how much space is allocated and
how much is Cree in the "transact" system relation, where that relation
has been explicitly allocated space at database creation or extend time.
The freeepace command shows the total space allocated to a database
including the transaction log. Ir the database is created with a "with
logblocks" option, the transaction log may be placed on a separated disk
Crom the rest of the data. Free space in this log is not seen as Cree space
in the database, since it cannot be used by other objects. Since it is
undesirable to have a transaction log overflow the allocated space on a
separate disk, this command gives the DBA an idea or how much space
remains.

1) freelog;

log_ blocks free_blks
25212 12374

1 tuple affected

Britton Lee

Predefined Stored Oommanda group_oft'

group_oft' group_name

DESCRIPTION

EXAMPLE

Britton Lee

This command allows the DBA to delete a group Crom access to this
database. The members or the group are stored in a temporary relation,
so that they can be restored by a group_on command subsequently.
This command is useful when the DBA wishes to grant temporary access
to a database to a group or guests or students. Likewise, a group of
users may be denied access temporarily while some changes are being
made to the data.

The command works by actually deleting all the tuples for the users in
the named group Crom the "h05t_users" system relation and the "users"
system relation. These tuples are added to temporary relations calJed
"h05t_users_J" and "users_}". The response should be four statements
or "tuples affected", two for the appends and two for the deletes.

1) group_otf centfolk;

e tuples affected
'I tuples aft'ected
'I tuples aft'ected
e tuples aft'ected

65

group_on Predefined Stored Command~

group_on group_name

DESCRIPTION

EXAMPLE

58

This command restores access to the users that have been temporarily
removed by the group_ofl' command. It has no eft'eet it the specified
group is not currently a group that is off access. Its function is just the
reverse of the group_ofl' command, since it first appends the users f'rom
the temporary relations "users_I" and "host_users_I" to the real system
relations, then deletes the same entries from the temporary relations.

1) group_on centfolk;

8 tuples affected
'1 tuples affected
'1 tuples affected
8 tuples affected

Britton Lee

Predefined Stored Commanda groups

groups

DESCRIPTION

EXAMPLE

Britton Lee

This is an easy way to see the groups in the "users" relation and the
number or members in each. Use the who command to find out the
members' names.

1) groups;

id gid name members
1000 1000 centfolk "

1 tuple affected

67

indexes

indexes relation

DESCRIPTION

EXAMPLE

68

Pretlefinetl Stored Commend.

This command is designed to give friendly information from the
"indices" system relation, and because we don ,t want to confuse the com­
mand with the relation, we use an alternative spelling. The indices on a
named relation are listed, along with the &rst three concatenated keys for
each index. There may be more keys in the concatenation sequence, but
you will have to look into the "indices,, relation to find out.

The "indices.card" attribute is also listed, so you may see that this accu­
rately reftects the cardinality of each index. A unique index has a cardi­
nality of 1. A zero means there is no information. This attribute is
important for assuring proper performance of joins and other queries. It
may be set with the Mtcard command.

1) indexes geography;

type keyl key2 key a indid card
cluatered rec_ type state •qno 0 0
noncluatered area_ name 1 1
noncluatered •qno 2 0

8 tuples affected

Britton Lee

Predefined Stored Oommanda notowned

notowned

DESCRIPTION

EXAMPLE

Britton Lee

: ...

This command provides a utility Cor determining whether there are any
objects that are not owned by current users (members or the "users" sys-
tem relation) in the database. ·

1) not.owned;

name nlid owner_num
myparte 10810 5001
m;yvendon 29509 6001
part_ list 1H32 5001

a tuplee atfected

rm user

rmuser user _name

DESCRIPTION

EXAMPLE

80

Pret!.efinet!. Stored Oommantla

This command allows the DBA to remove a user Crom the database. It
deletes the "users" and "host_users" tuples associated with tuer_t111me
Crom their respective relations. The command may not be used to
remove the DBA tuples Crom these relations.

1) rmueer pcguest;

1 tuple affected
1 tuple affect.ed

Britton Lee

Predefined Stored Commands setcard

setcard relation,index_id,cardinality

DESCRIPTION

EXAMPLE

Britton Let

This command allows the DBA to set the c&l'dinality of an index in the
"indices" relation. You must know the relation name and the intlez_ id,
which may be obtained from the Indexes stored command. The correct
cardinality is important for the proper functioning or the cost algorithms
in query optimization. The default is zero. For a unique index, 1 is the
value.

1) eetcard geography, 2, 1;

1 tuple affected

1) indexes geography;

type keyl key2 key3 indid card
elUBtered rec_ type .tate eeqno 0 0
nonclUBtered area_name 1 1
nonclUBtered eeqno 2 1

8 tuples affected

system

system

DESCRIPTION

EXAMPLE

Predefined Stored Oommanda

This commands displays the system relations and their sizes in number of
tuples and number of blocks.

1) q.tem;

relation type tuplea pagea
attribute s 716 18
batch T 0 1
blockalloc s 180 1
cr088l'ef s 181 1
deec:riptions s 73 6
diak_uaage s 6 1
host_ueen s 8 1
indicea s 41 3
protect s 84 1
query s 304 80
relation s 128 7
transact T 8310 44
Wlel'tl s 8 1

13 tuples affected

Britton Lee

Predefined Stored Commanda usersright

usersright

DESCRIPTION

EXAMPLE

Britton Lee

b'

This command helps the DBA check for errors in the system relations
that keep track or users. The exception conditions that are caught by
this command include: ·

(1) ''Users" tuples for which there are no corresponding "hosLusers"
tuples.

(2) "HosLusers" tuples for which there are no corresponding "users"
tuples.

(3) Groups which have no members.

(4) Users with no groups.

(5) Duplicate user ids in either relation.

(6) User id 0 (or a user other than ALL, or any entry in
"hosLusers" for user id 0.

(7) List or all those users who are DBA (or this database iC there are
more than one.

1) uaeraright;

I hid I buid I uid I comment

0 tuples affected

I name I id I gid I comment

0 tuples affected

name id gid comment
ALL 0 0 Duplicate ids in 'u.eers'
default 0 0 Duplicate ids in 'uaers'

2 tuples affected

name id gid comment
default 0 0 Inappropriate Ulle or uid = 0

1 tuple affected

usersrigbt Predefined Stored Commanda

I bld I huJd I uid I comment I
0 tuples affected

hid huid uid comment
1 187 1 DBA for thie database
4 4390924 1 DBA for thia databaae
4 4390935 1 DBA for thia databue
5 HT 1 DBA for thia database

4 tuples affected

84 Bn'tton Lee

Predefined Stored Commanda who

who

DESCRIPTION

EXAMPLE

Britton Lee

This command does a join of the "users" and "host_users" relations to
give a neatly formatted listing of the users in this database. It will miss
any users who aren't in both, so you might want to do a umenright
command first.

1) who;

ueer group bst_ld hoet_ ueer _id id
DBA centfolk 4 4880915 1
DBA centfolk 5 187' 1
DBA eentfolk 6 144 1
guest centfolk -1 0 100
helen centfolk 6 17'0 17'0
miket centfolk 6 114 114

8 tuples affected

05

whois

whois user _name

DESCRIPTION

EXAMPLE

08

Predefined Stored. Oommanda

This command will look up a uaer _name in the "users" relation and
report back all in(ormation about this user, mainly the ''user _id" in this
database and the "bost_id" and "host_user_id" information.

1) whola eds;

id group hat_ id host_uaer_ld
244 BL wien 4 4390915
244 BL ueen 5 244
244 BL ueen 7 187
244 BL uaen 11 18

4 tupl• affected

Britton Lee

Predefined Stored Oommtr.nda whoisid

whoisid user _id

DESCRIPTION

EXAMPLE

Britton Lee

This command will look up a uaer _id and return the "user _n&me" along
with the "host_ ids" and "host_ user _ids" that map to t.his user in this
database.

1) whoisid 244;

name group hst_id host_ user_ id

eda BL usere ' 4890915
eds BL ueera 6 244
eds BL users '1 28'1
eds BL users 11 18

4 tuples affected

8'1

whoisid Predefined Stored Oommanda

88 Britton Lee

PART IV

Stored Commands - System Database

Summary

Britton Lee

The stored commands listed here are for uae in the system database:

baudrate
channel
cmda_qstem
conflg
dbs
cliakio
mon
mondisk
monfail
monlock
mo nun
monwait
pa

Reports the speed set for each serial line.
Decodes the bits set in "configure.value".
Lists stored commands dealing with protection or objects.
Lists the tuples from the "configure" relation.
Displays databases on this relational database system.
Lists the on-line disks and their 1/0 activity.
Monitors CPU and DAC usage for last n monitor intervals.
Monitors disk usage for last ft monitor intervals.
Monitors suspended processing for lack or memory.
Monitors current locks and history for last ft monitor intervals.
Monitors unused memory bufl'ers for last ft monitor intervals.
Summarizes wait queues for last ft monitor intervals.
Lists the active processes and status for known users.

These commands are designed to give configuration and performance
information available in the system-database data dictionary. They all
depend on the special system relations, and generally make the informa­
tion available in these relations more easy to read. Some or the com­
mands {pa, mon*) give information on the current or recent state or
process and hardware activity. Other commands (conflg, diskio, bau­
drate, channel, dbs) supply and decode information about the rela­
tional system hardware's configuration and databases.

There are five separate monitor commands, each or which provides cer­
tain types or information Crom the "monitor" relation during the last ft

intervals. These commands all take an argument ft between 1 and 54.

'11

baudrate

baudrate

DESCRIPTION

EXAMPLE

72

Predefined Stored Commanda

The baud.rate command decodes the baud rate set by each of the S
tuples in the "configure" system relation. This command uses the Invisi­
ble relation: cbaud_I, to decode the last 5 bits of the "S" tuple. ·see the
S11atem AJminiatrator'a Manual for more information.

1) baud.rate;

channel baud.rate
2 No communication

' HOO
5 9800
e HOO

4 tuplee aft'ected

Britton Lee

Predefined Stored Oommanda channel

channel

DESCRIPTION

EXAMPLE

Britton Lee

The channel command decodes some of the bits set in the "configure"
system relation. These bits determine host trustworthiness, modem con­
trol, packet size, timeout protocol, byte order, and character type. This
command uses the Invisible relations: channeLI, and maak_J to mask
out the binary bits and interpret their meaning. The decoding is
different for each tuple type. See the Sratem Adminiatrator'a Manual for
more information.

1) channel;

type channel bit_ Mt meaning

E 0 12 Packet aise 612-byte, (268 if bit 12 eet)
s 8 11 Nontrustworthy host_ ueerids

2 tuples affected

73

cmds_system

cmds_system

DESCRIPTION

EXAMPLE

74

Predefined Stored Oommanda

This lists all of the stored commands unique to the system database. Its
description will appear in the output of the cmd. command for the sys-
tem database only. ·

command deecrlption
baudrat.e Givee the aerial channel bit.a per eecond rat.e
channel Decodee the bit.a eet in 'configure.value'
con fig Identify the tuplee from the configure relation
dba Diaplays databuee on thia shared database syst.em
diaklo Liat.a the on-line diaka and their 1/0 activity
mon Monitor CPU and DAO usage for lut N monitor lnt.ervala
mondi•k Monitor disk usage for lut N monitor lnt.ervala
monlail Suspended proceuing for lack of memory from monitor
monlock Current locks and hiatory for lut N monitor lnt.ervals
monun Unueed memory buft'era for lut N monitor lnt.ervala
monwalt Summary of wait queuee for lut N monitor lnt.erval•
pa List.a the active proceuee and statue-known ueera

12 tuplee aft'ect.ed

Britton Lee

I

Predefined Stored Oommanda conflg

conflg

DESCRIPTION

EXAMPLE

Britton Lee

The conflg command simply lists the tuples in the "contigure" system
relation along with a brier explanation of each tuple type.

1) conflg;

type number value name
A 0 18 Accelerat.or, value-WCS level
c 0 6 Checkpoint interval
D 0 0 Derault char eet 0-ASCD 1-EBCDIC
E 0 4098 Ethernet hoet interrace
E 1 10 Ethernet hoet lnterrace .
E " 0 Ethernet hoet lnterrace
E 6 " Et.hernet boat Interface
M 0 1 Monlt.or lnterval(mtnutea)
p 1 8257 IEEE-488 hoet interface
p • 8104 IEEE-488 hoet. Interface
R 0 41 IDM/RDBMS 110rtware releue

11 t.uples affected

'75

dbs

dbs

DESCRIPTION

EXAMPLE

Predefined Storti. Oommonda

The dbl command lists the databases Crom the "databases" system rela­
tion, along with their owners and status descriptions. The decoding or
descriptions is defined in the relation "dbsO_I" that is establi.Shed by
installing the stored command. This list is current through release 3.5 of
IDM/RDBMS software. Succeeding releases of soltware add new codes.
These new codes may be added to the relation "dbsO_I" by the OBA.

1) dbef

name dbld owner-name ltatus
ar_qstem 4 DBA On-Dae (ASCII).
att_test ll DBA On-Dae (ASCII)
eem• 18 DBA On-Dae (ASCII)
eemusl 8 DBA Unused slnee boot, reeon17 bad to run (ASCD)
demoe I DBA On-Dae (ASCII)
error I DBA On-Dae (ASCII)
Jim I DBA On-Dae (ASCII)
lue7 11 DBA On-Dae (ASCD)
pltta 11 pit ta Unused slnee boot, reeove17 bad to run (ASCD) I DBA Unused slnee boot, reeove17 bad to run (ASCII)
sandbox • DBA On-Dae (ASCII)
11&1'& '1 DBA Unused slnee boot, reeove17 bad to run (ASCD)
system 1 DBA On-Dae (ASCII)
templt 11 pit ta Unused elnee boot, reeove17 bad to run (ASCD)
vino 14 DBA On-Dae (ASCD)

H tuples atreeted

Britton Lee

Predefined Stored Command• diskio

diskio

DESCRIPTION

EXAMPLE

Britton Lee

This command lists the disks currently known in the "disks" relation and
in "devmonitor." It also summarizes their activity for the last 54 monitor
intervals. The number or disk accesses and the amount of time each disk
has been active are given. The quotient or these two values gives the
average access time ror that disk as well.

Ir a disk was not used during the previous 54 monitor intervals, that disk
does not appear in the output or this command.

1) diakio;

name alot acceaeea tlme_ticb avg_ma
lfuji180mb ' 1'183 4338 19.0Gl
lcdclDOmb 6 18 10 H.OD7

I tuplea affected

'1'1

mon

mon n

DESCRIPTION

EXAMPLE

78

Predefined Stored Commanda

This is one of the commands to view the "monitor" relation. It permits
you to view the last n intervals of "monitor." The command consists of
two separate retrieves. The first tells you the average monitor interval
in minutes over the period you have selected. The second lists the
entries from the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The mon command gives a summary of CPU activity, the number of
commands executed during each interval, and the average completion
time in seconds for commands terminating during that interval. The
DAC, CPU, and IDLE times are given aa a percentage of the interval
duration. The meaning of the DAC column depends on whether or not a
DAC is present in the relational system hardware. H it is not present,
this column represents the time that the CPU spent emulating DAC rou­
tines. The CPU time includes the DAC time, so the CPU value will
always be larger than the DAC value.

1) mon 6;

CPU _ac:tlvit)' time
av1 monitorln1 interval (minutes : O.QQOOO

SEQ NO CPU_percent DAC_percent IDLE_percent
u 0.2&000 o.oaaaaa o.
18 0.083333 o. o.
11 1'7.426 1.1111 10.066
18 0.80610 0.040684 et.188
H 1.0660 0.19444 97.1'78

COMMANDS AVG __ onda

1 0.10000
0 0.
0 0.
1 0.18333
I 0.60007

Britton Lee

Predefined Stored Commanda mondisk

mondisk n

DESCRIPTION

EXAMPLE

Britton Lee

This is one or the commands to view the "monitor" relation. It permits
you to view the last n intervals or "monitor." The command consists or
two separate retrieves. The first tells you the average monitor 'interval
in minutes over the period you have selected. The second lists the
entries Crom the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The mondiak command summarizes disk activity over the last n inter­
vals. The number or disk reads and writes is given, as well as the
number or cache hits (the number or times a disk block was round to
already exist in cache memory, thus eliminating· a read). The
"disk_ wait" is the cumulative time processes spent waiting for disk 1/0
during that interval. The "disk_wait" may be greater than the length
or the interval.

1) mondiak 6;

DISK_active time
avg monitoring interval {minutes): O.HOOO

1 tuple affected

SEQNO READS WRITES HITS DISK_WT_Nc
16 0 0 104 o.
lG 0 0 as o.
17 898 02 208 10.260
18 8 0 61 0.21H7
19 11 1 116 0.40000

6 tuples affected

79

monfail

monfail n

DESCRIPTION

EXAMPLE

80

Predefined Stored Oommantla

This is one of the commands to view the "monitor" relation. It permits
you to view the last n intervals of "monitor." The command conaists of
two separate retrieves. The first tells you the average monitor interval
in minutes over the period you have selected. The second lists the
entries from the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The monlail command reports on situations where the shared database
system has had to suspend processing due to lack of memory space. The
INDELA Y and OUTDELA Y indicate what percent of the interval no
proceuing could occur for lack of buff er space in either the input or out­
put buffers. Ally appreciable number of non-zero entries in these
columns would indicate a need for increasing the size of the affected
buffer through the "configure" system relation.

The MEMDELA Y column indicates the percent of the interval that the
CPU was idle with processes waiting to run due to lack of available
memory space. Ally non-zero entry in this column may indicate the need
for more memory on the relational system hardware. The DBINF AILS
column represents the number of "dbins" that had to be rejected due to
lack of available entries in the "dbins" table. See the Datdaae
Adminiatrator'a Manual.

These values can be used in· conjunction with their corresponding values
given in the monun command.

I) montall ''

SUSPENDED time
av1 monltorln1 Interval (minutes)• 1.0000

I tuple •eeted

SEQ NO INDELA Y _pet OUTDELA Y _pet MEMDELAY_pet DBINFAILS
18 o. o. o. 0
19 o. o. o. 0
10 o. o. o. 0
ti o. o. o. 0
It o. o. o. 0

i tupla •ected

Britton Lee

Predefined Stored Oommande monlock

monlock n

DESCRIPTION

EXAMPLE

Britton Lee

This is one of the commands to view the "monitor" relation, but it also
gives a view or the "lock" system relation. The command consists of
three separate retrieves. The first tells you the average monitor interval
in minutes over the period you selected. The second lists the entries
from the last intervals recorded in chronological order, most recent last.
The third lists the current locks on the shared database system. The list
of current locks Crom the "lock" relation will change rapidly as locks are
acquired and released by query processes. It can help to identify locks
that have not been released.

The third retrieve requires some interpretation. The ."block" column is
the disk block id for the lock. Ir it is 0, the lock is a relation lock. The
RELID is the "relid" or the relation in its database. It is not poesible to
decode that into a name in the system database.

1) monlock 5;

LOCKS_BLOCKS time
avg monitoring interval (minutes): 1.0000

1 tuple affected

SEQNO DEADLOCKS LOCK_aec
21 0 o.
22 0 o.
23 0 o.
14 0 o.
15 0 11.187

6 tuples affected

DBIN DATABASE RE LID block
7 john I031 000000
2 lucy 13900 002FF1
I lucy 13800 0027C2
2 lucy 13900 OOODDB
2 lucy 13 000000
2 lucy 23900 0027C2
2 lucy 13900 000000
2 lucy 23900 000000

8 tuples affected

l0ck_type
write lock

-read lock
read lock
read lock
write lock
write lock
intend to eet block read lock
Intend to eet block write lock

81

monun

monun n

DESCRIPTION

EXAMPLE

82

Pretl.efinetl. Stored Oommanu

Thia is one or the commands to view the "monitor" relation. It permits
you to view the last ft intervals or "monitor." The command consists or
two separate retrieves. The first tells you the average monitor Interval
in minutes over the period you have selected. The second lists the
entries Crom the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The monun command records the amount or memory that was not used
during the monitor interval. The UNIN and UNOUT columns record the
unused input and output buft'er apace. Should these values Call to zero
during an interval, one should check the monwalt command to see if
the CPU had to wait tor these buft'era to clear. The UNDBIN column
records the minimum number or unused "dbins" during each interval.
The UNMEM records the minimum number or pages tor query buft"ers
that were not used.

Should any or these values Call to zero during a monitor interval, there is
a need tor more memory in that category. This can be obtained through
reconfiguration or adding memory to the relational system hardware.

1) monun i1

BUFFER-SPACE time
ave monltorlns Interval mbau~)1 0.119000

1 tuple deeted.

SEQ NO UNUSED-INPUT UNUSED-OUT UNUSED_MEM UNUSED_DBIN
11 11584 115118 184 153
11 11iH 115138 111 163
19 17518 114150 177 253
10 ITHI 114150 177 263
11 17HO 114911 177 !53

I tuplee deeted

Britton Lee

Predefined Stored Oommanda monwait

monwait n

DESCRIPTION

EXAMPLE

Britton Lee

This is one or the commands to view the "monitor" relation. It permits
you to view the last n intervals or "monitor.,, The command consists or
two separate retrieves. The first tells you the average monitor interval
in minutes over the period you have selected. The second lists the
entries from the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The monwait command summarizes the various wait queues that
processes occupy. The total number or seconds that processes waited in
that queue during the monitor interval is recorded. This number may be
greater than the length or the interval when multiple processes are run­
ning.

The INWAIT and OUTWAIT values and the TAPE value represent
processes scheduled out while waiting for I/O processes to complete with
the host or shared database system tape. The DISK wait for disk I/O is
reported from the mondiak command. The CPU wait queue is for
processes that are waiting to be run while another process has the CPU.
In multi-process conditions, this value will normally be quite high as jobs
are scheduled. The MEMORY wait time represents processes waiting for
available buffer space to process their query.

I) monwalt ''

WAIT_QUEUES time
avg monitoring Interval (mlnutee)a 0.09000

I tuple all'eeted

SEQ NO INPUT_11ee OUTPUT _11ee CPU_11ee MEMORY _11ee TAPE_11ee
Ii o. o. o. o. o.
10 o. o. o. o. o.
18 o. o. o. o. o.
10 o. o. 0.033333 o. o.
10 o. o. 0.033333 o. o.

i tuplell all'eeted

83

ps

ps

DESCRIPTION

EXAMPLE

84

Predefined Stored Oommand.t

This is the process status command (name borrowed from lJNIX) that
tells you what queries are active on Britton Lee's shared database system
at the time or the command. The information is largely derived from
the "dbinstat" system relation. It is joined to the relation "ps_data_I"
to decode the status field of that relation. The list or status meanings is
current as or release 3.5 or the IDM/RDBMS code. Subsequent releases
may include new values that may be updated by the DBA. This com­
mand does not preserve the CANCEL information available from that
field.

The second query is a list of the users attached to the "dbins" where
those users are known in the system database.

1) ps;

dbln status block time data_baae
0 wait-input in a transact.ion -1 11 system
I runnable -1 8 system

I tuples affected

dbin user hid huid
0 eds 6 144
2 eds 6 144

2 tuples affected

Britton Lee

APPENDICES

Appendix A:
Summary of
Commands

Britton Lee

all indexes
atU relation
bueH'10
bueHOO
baudrate
channel
cmda
cmda_date
cmda_dba
cmda_permit
cmda_epace
cmda_B)'stem
cola
con.fig
date
dateconv idmdate
db.
depend object
deecribe object
dir name
cliakio
expire object,ndays
expiredate object,yyyymmqd
flies
free log
tree.pace
gmt_date

. group_off group_name
group_on group_name
groups
indexes relation
monn
mine
mondisk n
monfail n
monlock n
monun n
monwait n
not.owned
othercmds
otherviews
permit.a object
permit.sail
permit.agen
permit.ame
permit.auser user_ name
pgms
pe

8'1

Appendix A: Summary of Commands

88

rela
rename object,objectname
rmUllel' user _name
Mtc&l'd relation,index_id,cardinality
aiae object
alsebyaone object
epacebyu.r
q.t.em
WM!l'Sl'ight
view a
who
whoia user _name
whoiaid user _id
ymd yyyymmdd

Predefined Stored Oommanda

Britton Lee

Appendix B: IDL Definitions

This appendix lists the IDL stored-command scripts in alphabetical order. Since some of
the commands are included in files by other names, the file name is given in parentheses
after the command name. The first two sections define two views, "columns" and
"objects'', that are used to decode attribute and object lists.

columns (atts.idl)

destroy columns go
destroy dtype_I go

/* Build "dtype_l" for "atts" command, used to generate mnemonic * /

create dtype_I (

go

mne=c7,
code=i2,
uncomp=il,
dpb=il,
adj=il

/* mnemonic • /
/* internal rep • /
/* 0 = fixed, +!==uncompressed, -!=compressed * /

/* digits per byte; bcd=2, all others==l * /
/* size adjustment; bcd==3, all others==O * /

append to dtype_I (mne="bcdftt", code=35, uncomp== -1, dpb==2, adj=3) go
append to dtype_I (mne="bin" ,code==45, uncomp= -1, dpb==l, adj==O) go
append to dtype_I (mne="bcd" ,code=46, uncomp== -1, dpb=2, adj==3) go
append to dtype_I (mne="c",code=47, uncomp= -1, dpb=l, adj==O) go
append to dtype_I (mne="ubcdftt" ,code=35, uncomp= 1, dpb=2, adj=3) go
append to dtype_I (mne="ubin" ,code=45, uncomp= 1, dpb=l, adj==O) go
append to dtype_I (mne=="ubcd" ,code==46, uncomp= 1, dpb=2, adj=3) go
append to dtype_I (mne="uc" ,code=47, uncomp== 1, dpb=l, adj==O) go
append to dtype_I (mne=="i" ,code==48, dpb==l, adj==O) go
append to dtype_I (mne="i" ,code==52, dpb==l, adj==O) go
append to dtype_I (mne=="i" ,code==56, dpb==l, adj==O) go
append to dtype_I (mne=="f" ,eode==57, dpb==l, adj==O) go
append to dtype_I (mne=="f" ,eode=60, dpb=l, adj==O) go

range of r is relation
replacer (type="I") where r.relid=reLid("dtyp~_I") go
/*
** define "columns" view
*/
range of a is attribute
range of dt is dtype_I
range of r is relation
create view columns (attribute = a.name,

relid = a.relid,
relation = r.name,
type= concat(dt.mne,string(4,

mod(256+((a.len * dt.dpb) - dt.adj),256)
)

Britton Lee 89

columns (atts.idl) Predefined Stored Commanda

go

.)
/* mod used to force length postive when > 127 * /

)
where a.type = dt.code
and ((dt.uncomp < 0 and a.offset < O}

or
(dt.uncomp >= 0 and a.offset >= 0)

)
and r .relid = a.relid

associate columns with "Friendly view of attributes relation" ,"VI" go

objects (objects7 .idl)

/*

90

** The view objects is used by the stored commands:
** rels, dir, mine, otherviews, pgms, files, othercmds
••
*I

destroy objects go /* view upon which all of the above are based * /

destroy logged_} go

/*
** logged_! - used to decode stat field to find if object is logged
*/

create logged_} (value=i2, text=clO) go

append to logged_} (value=O, text="Not Logged") go
append to logged_} (value=64, text="Logged") go

range or r is relation
replacer (type="I") where r.relid=reLid("logged_r) go

/*
** create "objects" view
*/

range or r is relation
range or u is users
range or log is logged_!

create view objects (object= r.name,
relid = r.relid,
owner = u.name,
ownerid = r .owner,
tups = r .tups,

Britton Lee

Predefined Stored Commanda

)

type = r .type,
logging = log.text

where r.owner *= u.id

objects (objects7 .idl)

and log.value = mod{int2(r.stat)+int4{65536),128)
- mod(int2(r.stat)+int4{65536),64)

go
associate objects with
"Objects, their owners, type, tups, and if logged" ,"Vl" go

allindexes (indexes.idl)

I*
** Define "allindexes" command
*I
destroy allindexes;

define allindexes
retrieve (relation= r.name,

type = it.desc,
keyl = att_name(i.relid,intl(substring(4,1,i.keys))),
key2 = att_name(i.relid,intl(substring(l4,l,i.keys))),
key3 = att_name(i.relid,intl(substring(24,l,i.keys))),
key4 = att_name(i.relid,intl(substring(34,l,i.keys))),
key5 = att_name(i.relid,int1(substring(44,l,i.keys))),
i.indid, .
i.card
)
order by relation, indid
where i.relid = r.relid
and mod(i.stat,4) = it.type
and r .type="U"

end define;

associate allindexes with
"Displays keys and type of indices for all user relations"," lD";

attname (attname.idl)

I*
* IDL to define "attname" command for ".all"
* pseudo-attribute call from the parser
*I

destroy attname go
range of a is attribute

Britton Lee

attname (attname.idl) Pretlefinetl Storetl Commantla

define attname
retrieve (a.name) where a.relid = reLid(Srelation)

end define
go

atts (atts.idl)

/* atts command * /

destroy atts go

define atts

range of col is columns
retrieve (col.attribute,col.type) where col.relid = reLid($relation)

end define
go

associate atts with
"Displays attributes and types for given RELATION"," IL" go

baudrate (channel.idl)

/*

92

* channel command to determine serial channel baud rate
*I

create cbaud_I (value=il,baud=c20);
append to cbaud_l(value=O,baud="9600");
append to cbaud_l(value=l,baud="IDegal");
append to cbaud_l(value=2,baud="l50"};
append to cbaud_l(value=3,baud="300"};
append to cbaud_l(value=4,baud="600"};
append to cbaud_l(value=S,baud=" 1200");
append to cbaud_l(value=6,baud=" 1800");
append to cbaud_l(value=7,baud="2400");
append to cbaud_l(value=8,baud="4800");
append to cbaud_l(value=9,baud="9600");
append to cbaud_l(value=l0,baud="l9200");
append to cbaud_l(value==l l ,baud=" No communication");
append to cbaud_l(value=l2,baud="IDegal");
append to cbaud_l(value=l3,baud="IDegal");
append to cbaud_l(value==14,baud="IDegal");
append to cbaud_l(value==lS,baud=="IDegal");

replacer (type="r) where r.relid=reLid("cbaud_I");

Britton Lee

Predefined Stored Commanda baudrate (channel.idl)

range of ch is cbaud_I
destroy baudrate go

define baudrate
retrieve (channel=c.number, baud=cb.baud)

order by channel
where c.type="S"
and mod(c.value,16) = ch.value

end define;

associate baudrate with "Gives the serial channel bit/ second rates"," IM";

channel (channel.idl)

/*
• channel command to decode the configure tuple bit strings
•;
destroy channel;
destroy channeLI;
destroy mask_I;
destroy cbaud_J;

range .or r is relation

/* table of powers of two to 16 • /

create mask_l(bit=il,value=i4);

append to mask_I (bit=O,value=l);
range of ml is mask_I

append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)•2);
append to mask_I (bit=max(m1.bit)+l,value=max(m1.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(m1.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(m1.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(m1.value)•2);
append to mask_I (bit=max(m1.bit)+l,value=max(ml.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)•2);
append to mask_I (bit=max(m1.bit)+l,value=max(m1.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)•2);
append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)*2);
append to mask_I (bit=max(ml.bit)+l,value=max(ml.value)*2);

Britton Lee 93

channel (channel.ldl) Predefined Stored Commanda

04

append to mask_I (bit=-max(ml.bit)+l,value=max(ml.value)*2);

replacer (type=="I") where r.relid==rel_id("channel_I");

create channeLI (type-ucl ,number==il ,bit==il,meaning==c50);

append to channeLI(type=="S" ,bit==4,meaning=="DCD (Drop Carrier Detect}");
append to channeLl(type=="S" ,bit=-5,meaning=="CTS (Clear to Send)");
append to channeLI(type=="P" ,bit==5,meaning=-"No Timeout");
append to channeLl(type=="P" ,bit=6,meaning=="20 Second Timeout");
append to channeLl(type=="S" ,bit==6,meaning=="Cancel host");
append to channeLI(type==" S" ,bit==lO,meaning==" Trustworthy hunames");
append to channeLl(type=="S" ,bit==ll,meaning=="Nontrustworthy huids");
append to channeLI(type=="P" ,bit=lO,meaning=="Trustworthy hunames");
append to channeLI(type=="P" ,bit==ll,meaning=="Nontrustworthy huids");
append to channeLI(type=="P" ,bit==12,meaning==" 1024 byte packet size");
append to channeLI(type=="P" ,bit==13,meaning=="512 byte packet size (256 if bit 12 is set)");
append to channeLI(type=="S" ,bit==14,meaning=="Cancel user output in 1 min");
append to channeLI(type=="P" ,bit==14,meaning=="Cancel user output in 1 min");
append to channeLl(type=="P" ,bit==15,meaning=="Cancel user output in 5 min 20 min if bit 14 set");
append to channeLI(type=="S" ,bit==15,meaning=="Cancel user output in 5 min 20 min if bit 14 set");
append to channeLI(type=="E" ,bit=O,number==l,meaning="TCP Protocol"); . .
append to channeLI(type=="E" ,bit=lO,number=l,meaning="Trustworthy hunames");
append to channeLI(type=="E" ,bit==ll,number==l,meaning=="Nontrustworthy huids");
append to channeLl(type=="E" ,bit=12,number=l,meaning="1024 byte packet size");
append to channeLl(type="E" ,bit=13,number==l,meaning=="512 byte packet size (256 if bit 12 is set)'

replacer (type=="I") where r.relid=reLid("channeLI");

range of c is configure
range of ci is channeLI

define channel
retrieve (c.type, channel==c.number ,bit_set==mlbit,ci.meaning)

order by type,channel
where c.type==ci.type
and (ci.number-0 or mod(c.number,8)==0}
and ml.bit==ci.bit
and mod(c.value/ml.value,2) == 1

end define;

associate channel with "Decodes the bits set in 'configure.value' "," lM";

Britton Lee

Predefined Stored Oommanda

cmds (cmds5.idl)

destroy cmds go

I*
.. Define "cmds" command.
·1
range or r is relation
range or d is descriptions

define cmds
retrieve unique(command = r.name,

description = substring(I,60,d.text)
)

order by command, d.key
where r .relid = d.relid
and (r.owner = dba or r.owner = userid)

and r.type = "C"
and d.key ="IL"

end define
go

associate cmds with

cmds (cmds5.idl)

"Lists standard stored commands with a one line description" ,"IL" go

-cmds_date (cmds5.idl)

I*
.. Define "cmds_date" command.
·1
destroy cmds_date go

range or r is relation
range or d is descriptions

define cmds_date
retrieve unique(command = r.name,

description = substring(I,60,d.text)
)

order by command, d.key
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C"
and d.key = "IT"

end define go

associate cmds_date with

Britton Lee 05

cmds_date (cmds5.idl) Predefined Stored Oommand.s

"Lists stored commands relating to date conversion"," IL" go

cmds_dba (cmds5.idl)

destroy cmds_dba go

/*
** Define "cmds_dba" command.
•;
range or r is relation
range of d is descriptions

define cmds_dba
retrieve unique(command = r .name,

description = substring(I,60,d.text)
)

order by command, d.key
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C"
and d.key = "ID"

end define go

associate cmds_dba with
. "Lists stored commands mostly used· by the dba"," IL" go

permit execute of cmds_dba go

cmds_permit (cmds5.idl)

98

destroy cmds_permit go

/*
** Define "cmds_permit" command.
*/

range or r is relation
range of d is descriptions

define cmds_permit
retrieve unique (command = r.name,

description = substring(I,60,d.text)
)

order by command, d.key
where r .relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C"

Britton Lee

Predefined Stored Oommanda

and d.key = "lP"
end define go

associate cmds_permit with

cmds_permit (cmds5.idl)

"Lists stored commands dealing protection or objects"," IL" go

cmds_space (cmds5.idl)

destroy cmds_space go

/*
** Define "cmds_space" command.
*/

range or r is relation
range of d is descriptions

define cmds_space
retrieve unique (command = r .name,

description= substring(l,60,d.text))
order by command, d.key
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C"
and d.key = "lS"

end define go

associate cmds_space with
"Lists stored commands dealing with space/size/storage"," lL" go

cmds_system {cmds_sys.idl)

/*
* Define "cmds_system" command.
*/

destroy cmds_system go

define cmds_system
range or r is relation
range or d is descriptions
retrieve unique (command = r .name,

Britton Lee

description = substring(l ,60,d.text)
)

order by command, d.key
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)

cmds_system (cmds_sys.idl)

and r.type = "C"
and d.key = "IM"

end define

associate cmcls_system with

Predefined Stored Command&

"Lists stored commands for monitoring performance"," IL" go

config (config.idl)

/*
** "config" stored command:
**
** dumps the "configure" relation from the "system" database.
*I

destroy config go

/* "config_I" - constant relation for "config" command. * /

destroy config_I go

create config_I

go

(type= ucl,
name= c40

)

append config_I (type=" A", name=" Accelerator, value=WCS level") go
append config_I (type= "B", name = "Block multiplexer host interface") go
append config_I (type= "C", name= "Checkpoint interval") go
append config_I (type= "D", name= "Default char set 0 ASCil I=EBCDIC") go
append config_I (type= "E", name= "Ethernet host interface") go
append config_I (type = "F", name = "Pages used for Track Buffer") go
append config_I (type= "I", name= "IDM l.D. for IDENTIFY response") go
append config_J (type= "K", name= "Memory configuration") go
append config_I (type= "L", name= "Passes for on-line dump") go
append config_I (type= "M", name= "Monitor interval(minutes)") go
append config_I (type= "P", name= "IEEE-488 host interface") go
append config_I (type= "R", name= "IDM software release") go
append config_I (type = "S", name = "RS-232 host interface") go
append config_I (type = "T", name = "Mag tape interface, value=4 for h/p") go
append config_I (type= "V", name= "Pages to promote locks") go

range of r is relation
replace r (type=" I") where r .relid=reLid(" config_I") go

define config
range of c is configure
range of ex is config_I
retrieve (c .all,

Britton Lee

Predefined Stored Commonda

name== ex.name)
order by c.type

conflg (conflg.idl)

where c.type *== ex.type
end define go

associate config with
"Identify the tuples from the configure relation"," lM" go
permit execute or config go

date (date8.idl)

All of the structures used by the date command and "DateAndTime" view are included
to improve readability. The date command uses several data relations and views defined
below. In addition, there are several stored command examples embedded in the scripts.

/* make sure that the values in the savings_! relation below are correct
for the local time zone • /

destroy date, gmt_date go /* the commands (or date and time • /

destroy DateAndTime go /* the view that holds the current date and time * /

destroy GMT go /* the view that bolds GMT current date and time • /

destroy ymd go /* stored command returns idmdate given YYYYMMDD * /

destroy dateconv go /* stored command to convert idmdate to readable
form
*/

destroy expire go /* Updates relation.expire for given number of days * /

destroy expiredate go /* Updates relation.expire to YYYYMMDD as idmdate * /

destroy number _I go /* a relation containing tuples for
the numbers from 0 to 60, along with their twcr
digit string representations. The numbers Crom
0 to 23 also contain the day correction
*/

destroy mon_I go /* a view of month_I with the values corrected for
leap years * /

destroy month_J go /* a relation containing the first and last days,
name and number of the 12 months * /

destroy locaLI go /* a view of getdate to correct for the date
in the local time zone, based on julian_J * /

destroy julian_J go /* a view or the calendar relation containing the

Britton Lee 09

date (date8.idl) Pretlefinetl Storetl Oommanda

100

information ror the current year */
destroy savings_I go /* a relation that corrects for daylight savings time

and time zone * /

destroy basel970 go /* set the base for calendar _I to Jan 1, 1970 * /

destroy ba.sel900 go /* set the base for calendar_I to Jan 1, 1900 */

destroy calendar _I go /* a relation containing information needed to
convert to julian date and allow Cor leap years
ror the years 1985 - 1992 *I

destroy day _I go /* a relation containing the 7 days or the week * /

/****•···;
range or r is relation /* needed to change types or relations and cmds * /

/* savings_I is the * /
/* displacement or hours Crom GMT and the change • I
/* julian dates Cor daylight savings time * /
/* Check these tuples for local time zone • /

create savings_I (
first=i4,
last=i4,
displacement = i4

) go

replacer (type="I") where r.relid=reLid("savings_I") go

append to savings_I (first = 0, la.st = 75, displacement = 8) go
append to savings_I (first = 76, last= 300, displacement = 7) go
append to savings_I (first = 301, la.st= 366, displacement = 8) go

create calendar _I(
start=i4,
shortyear=uc2,
longyear==uc4,
leapyear=i4

) go

/* first day year since epoch • /
/* yy Corm or year ie. 85 • I
/* yyyy Corm or year ie. 1984 • I

/* 0 ir not leap year, 1 ir leap year * /

replacer (type="I") where r.relid=reLid("calendar_I") go

append to calendar _I (start=31045,shortyear="85" ,longyear=" 1985" ,leapyear=O) go
append to calendar _I (start=31410,shortyear="86" ,longyear=" 1986" ,leapyear=O) go
append to calendar _I (start=31775,shortyear="87" ,longyear=" 1987" ,leapyear=O) go
append to calendar _I (start=32140,shortyear="88" ,Jongyear=" 1988" ,leapyear=l) go
append to calendar _I (start=32506,shortyear="89" ,longyear=" 1989" ,leapyear=O) go
append to calendar _I (start=32871,shortyear="90" ,longyear=" 1990" ,leapyear=O) go
append to calendar _J (start=33236,shortyear="91" ,longyear=" 1991" ,leapyear=O) go

Britton Lee

Predefined Stored Commanda date (date8.idl)

append to calendar _I (sta.rt=33601,shortyear=" 92" ,longyear=" 1992" Jeapyear=l) go
append to calendar _J (start=33967 ,shortyear=" 93" ,longyear=" 1993" ,leapyear=O) go
append to calendar_} (start=34332,shortyear="94" ,longyear="l994" ,leapyear=O) go
append to calendar _J (start=34697 ,shortyear="95" ,longyear=" 1995" ,leapyear=O) go

/*
** In case your IDM requires a different base date than 1900
** this command will reset the base date for the above conversion
** table (calendar _I) to Jan 1, 1970. Other dates may be used
** by the same method. Note there are 25,566 days from 1900 to 1970.
*I

range of cal is calendar _I

define basel 970
replace cal (start = cal.start -25566)

where cal.start > 25566
end define go

associate basel 970 with
"Change base for date conversion to Jan 1,1970" ," lT" go

/* This will reset from 1970 to 1900 * /

define base1900
replace cal (start = cal.start + 25566)

where cal.start < 25566
end define go

associate baseI 900 with
"Change base for date conversion to Jan I,I900 from 1970" ,"IT" go

/* set up current year * /
range of cal is calendar _I
range of sav is savings_}

create view julian_I(

go

)

start = cal.start,
cal.shortyear,
cal.Jongyear,
cal.Jeapyear,
sav .displacement

where cal.start < = getdate
and cal.start + 365 + cal.leapyear > getdate
and sav .first < = getdate - cal.start
and sav .last > getdate - cal.start

associate julian_I with
"View of the current year in calendar _I", "VI" go

Britton Lee 101

date (date8.idl) Predefined Stored Command&

102

range or jul is julian_I

/*
** day _I - used to give the day or the week.
*I

create day _l(number=i4,day==e9,shortday=uc3) go

replacer (type="I") where r.relid=reLid("day_I") go

append to day_J(number=O,day="Monday" ,shortday="Mon") go
append to day _l(number=l,day="Tuesday" ,shortday="Tue") go
append to day _l(number=2,day="Wednesday" ,shortday="Wed") go
append to day_l(number=3,day="Thursday" ,shortday="Thu") go
append to day_l(number=4,day="Friday" ,shortday="Fri") go
append to day_l(number=5,day="Saturday" ,shortday="Sat") go
append to day_l(number=6,day="Sunday" ,shortday="Sun") go

/*
** month_I - used to give the month
*I

create month_I(6rst=i4,
last=i4,
month=c9,
month_num=uc2,
leapfirst=i4,
leaplast=i4

) go

replacer (type="I") where r.relid=reLid("month_I") go

append to month_l(first=l,last=31,month=" January" ,month_num="Ol",
leapfirst =O,leaplast = 0) go

append to month_l(first=32,last=59,month="February" ,month_num="02",
leapfirst =O,leaplast = 1) go

append to month_l(first=60, last=90, month="March" ,month_num="03",
leapfirst =l,leaplast = 1) go

append to month_l(first=91, last=l20, month=" April" ,month_num="04",
leapfirst =l ,leaplast = 1) go

append to month_l(first=l21, last=l51, month="May" ,month_num="05",
leapfirst =l,leaplast = 1) go

append to month_l(first=l52, last=l81, month=" June" ,month_num="06",
leapfirst =l,leaplast = 1) go

append to month_l(first=l82, last=212, month=" July" ,month_num="07",
leapfirst =l,leaplast = 1) go

append to month_l(first=213, last=243, month=" August" ,month_num="08",
leapfirst =l,leaplast = 1) go

append to month_l(first=244, last=273, month=" September" ,month_num="09",
leapfirst =l,leapla.st = 1) go

append to month_l(first=27 4, last=304, month="October" ,month_num=" 10",
leapfirst =l,leaplast = 1) go

Britton Lee

Predefined Stored Commanda date (date8.idl)

append to month_l(first=305, last=334, month="November" ,month_num=" 11",
leapfirst =1,leaplast = 1) go

append to month_l(first=335, last=365, month="December" ,month_num=" 12",
leapfirst =1,leaplast = 1) go

/* view of month that corrects for leapyear on leapyears * /

range of month is month_I
create view mon_I (first= month.first + month.leapfirst * jul.leapyear,

last = month.last + month.leaplast * jul.leapyear,
month = month,month,
month_num = montb.month_num

) go

associate mon_I with
"View of the months from the current year", "Vl" go

/*
** number _I relation -
** useful for numeric conversions
** especially date, hour, minute, and second conversions
** also
** Used to compensate for GMT date standard.
** Basically this is an if statement. For a
** given hour of the day what do we have to
** add (subtract) to the GMT date to get the
** local date
*/

create number _l(number=i4,str=uc2) go

repla~e r (type="I") where r.relid=reLid("number _I") go

append to number _J(number=O,str="OO") go
append to number _l(number=l ,str="Ol") go
append to number _J(number=2,str="02") go
append to number_l(number=3,str="03") go
append to number_l(number=4,str="04") go
append to number _l(number=5,str="05") go
append to number _l(number=6,str="06") go
append to number _l(number=7 ,str="07") go
append to number _l(number=8,str="08") go
append to number _l(number=9,str="09") go
append to number _J(number=lO,str=" 10") go
append to number_l(number=ll,str="ll") go
append to number _l(number=12,str=" 12") go
append to number_l(number=13,str="13") go
append to number_l(number=14,str="14") go
append to number _l(number=15,str="15") go
append to number _l(number=16,str="l6") go
append to number_l(number=17,str="l7") go
append to number_l(number=18,str="18") go

Britton Lee 103

date (date8.idl) Predefined Stored Oommanda

104

append to number_I(number=19,str=•19•) go
append to number_l(number-20,str="20"} go
append to number_l(number==21,str=="21"} go
append to number_I(number==22,str=="22") go
append to number_l(number==23,str=="23") go
append to number_l(number=24,str="24•) go
append to number_J(number=25,str="259) go
append to number_J(number==26,str="26") go
append to number_J(number=27,str="27") go
append to number_l(number=28,str="28") go
append to number_J(number=29,str="29") go
append to number _J(number==30,str=="30") go
append to number_J(number==31,str=="31") go
append to number_l(number=32,str="32") go
append to number_l(number=33,str="33") go
append to number_l(number==34,str=="34") go
append to number_l(number==35,str=="35") go
append to number_l(number=36,str="36") go
append to number _I(number==37,str=="37") go
append to number_l(number==38,str="38") go
append to number_J(number=39,str="39") go
append to number_l(number==40,str=="40") go
append to number_l(number=41,str=="41") go
append to number_l(number==42,str="42") go
append to number_l(number=43,str="43") go
append to number_l(number=44,str="44") go
append to number_l(number==45,str="45") go
append to number_l(number=46,str="46").go
append to number_l(number=47,str="47") go
append to number_J(number=48,str="48") go
append to number_l(number=49,str="49") go
append to number_I(number=50,str="50") go
append to number_J(number=51,str="51") go
append to number_J(number=52,str="52") go
append to number_J(number=53,str=="53") go
append to number_l(number=54,str=="54") go
append to number_J(number=55,str="55") go
append to number_J(number=56,str=="56") go
append to number _J(number==57 ,str==" 57") go
appen~ to number_J(number=58,str=="58") go
append to number_l(number=59,str="59") go
append to number_J(number==60,str=="60") go

/* This view corrects getdate to the local date based on the
** current local displacement Crom GMT
*I

range or jul is julian_)

create view local_J (
lgetdate = getdate

+ (((gettime - jul.displacement*216000}

Britton Lee

Predefined Stored Oomm111nd1 date (date8.idl)

) go

associate locaLI with

/ aba(gettime • jul.displacement*216000)
) • 1
) I 2

"View or getdate corrected for time zone", "Vl" go

/*
** For string conversion or numbers whose preferred format is with a

**
** preceding zero (as in the ninth or the month being YYMM09 or

minutes in IDI:03:SS) the number _I relation is used rather than the
** string function (which won't give preceding zeroes)

*/

range or mon is mon_I
range or day is day _I
range or local is local_I
range or jul is julian_I
range or da is number _I
range or n_day is number _I
range or n_min is number _J
range or n_secs is number _I

/*
** define "DateAndTime" view.
*I
create view DateAndTime (

day = day .day,
date_numeric = concat(jul.shortyear ,concat(mon.month_num,n_day .str)),
date_slashed = concat(jul.shortyear,

Britton Lee

concat(" /",
concat(mon.month_num,

concat(" /" ,n_day.str)
)

)
),

date_written = concat(mon.month,
concat(" ",

concat(string(O, n_day.number),
concat(" ,",

),
Time = substring (1,10,

concat(string(O,

concat(" " jul.longyear)
)
)

mod((((gettime/60)/60)/60 + (24 - jul.displacement)).24)
), .

concat(" :",
concat(n_min.str,

105

date (date8.idl) Predefined Stored Command•

108

)
)

)
) /* end attribute list * /

/* jul.start is year's first day * /

where moo.first <== local.lgetdate - jul.start
and moo.last >== local.lgetdate • jul.start

concat(•:" ,n_secs.str)
)

and n_day.number = local.Jgetdate - jul.start - moo.first+ 1
and da.number - ((gettime/3600)/60)

go

and n_min.number = mod(gettime/3600,60)
and n_secs.number == mod(gettime/60,60)
and day.number == mod((local.lgetdate),7) /* gets day or week * /

associate DateAndTime with
"Gives current date and time in various rormats•, "Vl" go

/*
** date command
*/

define date
range or Date is DateAndTime
retrieve (

Day == Date.day,
Date == Date.date_ written,
Time== Date.Time

)
end define
go

associate date with
"Returns the current date and time from the database server"," 1 T" go

create view GMT(
day = day .day,
date_numeric == concat(jul.shortyear,concat(mon.month_num,n_day.str)),
date_slashed == concat(jul.shortyear,

)

concat(" r.

),

concat(mon.month_num,
concat(" /" ,n_day.str)

)

date_ written == concat(mon.month,
concat(" ",

concat(string(O, n_day.number),
concat(" ,",

Britton Lee

Predefined Stored Oommanda date (date8.idl)

),
Time = substring (1,10,

concat(string(O,

con cat(" "jul.longyear)
)

)

mod((((gettime/60)/60)/60 + 24),24)
),

concat(" :" ,
concat(n_min.str,

concat(" :" ,n_secs.str)
)

)
) /* end attribute list * /

/* jul.start is magic for year's first day * /

where mon.first <= getdate-jul.start
and mon.last >= getdate -jul.start
and n_day.number = getdate - jul.start - mon.first + 1
and n_min.number = mod(gettime/3600,60)
and n_secs.number = mod(gettime/60,60)
and day.number = mod(getdate,7) /* gets day of week * /

go

associate GMT with
"gives Greenwich date and time in various formats", "VI" go

/* . .
** gmt_date command
*/

define gmt_date
range of GMT is GMT
retrieve (

Day = GMT.day,
Date= GMT.date_written,
Time = GMT.Time)

end define go

associate gmt_date "Returns Greenwich Mean Time and Date from the database server"," 1 T" go

/*
** dateconv command converst date from idmdate to readable form
*/

range of cal is calendar _I
range of n_day is number _I
range of month is month_J

Britton Lee 107

date (date8.idl) Predefined Stored Oommanda

108

define dateconv
retrieve(

date_ written = concat(month.month,
concat(" ",

concat(string(O, n_day .number),
concat(" ,",

con cat(" ",cal.longyear)
)

)

where month.first + month.Ieapfirst * cal.Jeapyear <= int4(Sidmdate) - cal.start
and month.last + month.leaplast * cal.leapyear >= int4(Sidmdate) - cal.start
and n_day.number = int4($idmdate) - cal.start - month.first + I

- month.Ieapfirst * cal.Ieapyear
end define go

associate dateconv with
"returns the month day, year given idmdate NUMBER", "IT" go

/*
** Define ymd command to convert a string or the Corm "YYYYMMDD" to
** an idmdate
*/

range or cal is calendar _I
range or month is month_!

define ymd
retrieve (idmdate = cal.start+ month.first+ int4(substring(7,2,$YYYYMMDD))

+ cal.leapyear * month.leapfirst - I
)
where cal.longyear = substring(l,4,SYYYYMMDD)
and month.month_num = substring(5,2,$YYYYMMDD)

end define go

associate ymd with
"Returns the idmdate given a date string: YYYYMMDD"," IT" go

Britton Lee

Predefined Stored Oommanda

dbs {dbs.idl)

/*
** The "dbs" command list databases, along with owner and status
·1

destroy dbs;
destroy dbsO_I;
create dbsO_I (value=i2, text=c46};

/*
** For ASCil databases
·1

/* 'text can only be this long!! ' • /
append to dbsO_I (value=!, text=

"Database/ disks not on-line");
append to dbsO_I (value=5, text=

"Database is being created or destroyed (ASCil)");
append to dbsO_I (value=9, text=

"Locked: database marked unrecoverable (ASCil)");
append to dbsO_I (value=17, text=

"Unused since boot-recovery not needed (ASCil)");
append to dbsO_I (value=33, text=

"On-line (ASCil)");
append to dbsO_I (value=49, text=

"Unused since boot, recovery had to run {ASCil)");
append to dbsO_I (value=65, text=

"being loaded or rolled forward (ASCil)");
append to dbsO_I (value=69, text=

"b.eing created or destroyed (ASCil)");
append to dbsO_I (value=l45, text=

"LOCKED: unused since boot-no recovery need (A)");
append to dbsO_I (value=161, text=

"LOCKED for dump/load/rollforward (on-line) (A)");
append to dbsO_I (value=177, text=

"LOCKED: Unused since boot, recovery run(ASCil)");
append to dbsO_I (value=l93, text=

"LOCKED: being loaded or rolled forward (ASCil)");
append to dbsO_I (value=l97, text=

"LOCKED: being created or destroyed (ASCil)");
/*
** for EBCDIC databases
·1
append to dbsO_I (value=3, text=

"Database/ disks not on-line (EBCDIC)");
append to dbsO_I (value=7, text=

"Database is being created or destroyed (EBCDIC)");
append to dbsO_I (value=ll, text=

"Database marked unrecoverable (EBCDIC)"};
append to dbsO_I (value=l9, text=

Britton Lee

dbs (dbs.idl)

109

dbs (dbs.idl) Prtdt/inttl Storti. Oommantla

•unused since boot, no recovery needed (EBCDIC)•);
append to dbaO_I (value==35, text=

•on-line (EBCDIC)•);
append to dbsO_I (value==51, text=

•unused since boot, recovery had to run (E)•);
append to dbeCLI (value==67, text=

•being loaded or rolled forward (EBCDIC)•);
append to dbaO_I (value=71, text==

•being created or destroyed (EBCDIC)•);
append to dbsO_I (value=147, text=

•LOCKED: unused since boot-no recovery need(E)•);
append to dbsO_J (value=163, text=

•LOCKED for dump/load/rollforward (on-line) (E)9);
append to dbsO_I (value=179, text=

•LOCKED: Unused since boot, recovery run (E)•);
append to dbsO_I (value=195, text=

•LOCKED: being loaded or rolled forward (E)•);
append to dbsO_I (value=199, text=

•LOCKED: being created or destroyed (EBCDIC)9);

create clustered index on dbsO_l(value);

range of r is relation
replacer (type=•r) where r.relid=reLid(•dbsO_P);

define dbs
range of db is databases
range .or u is users
range or dbsO is dbsO_J
retrieve unique (db.name,dbid-string(3,db.id), owner _name == u.name,

status= dbsO.text)
order by name

where u.id =* db.owner
and dbsO.value ==* mod(int4(db.stat) + 65536 ,256)

end define
go
associate dbs with
•Displays databases on this shared database system•,• 1M";

depend (depend.idl)

/*

110

• • Define •depend" command.
*/

destroy depend go

range or cross is crossrer
range or u is users
range of r is relation

Britton Lee

Predefined Stored Oommanda depend { depend.idl)

define depend
retrieve unique (object= reLname(cross.relid),

dependents= reLname(cross.drelid),
downer = u.name)

order by object
where cross.relid = reLid($object)
and r.owner *= u.id
and r .relid = cross.drelid

end define
go

associate depend with
"Displays objects depending on OBJECT" ,"IL" go

describe (describe.id!)

I*
** Define "describe" command
*I

destroy describe go

range of r is relation
range of d is descriptions

define. describe
retrieve(description == substring(l,72,d.text))

order by d.key
where reLid(Sobject) = r.relid
and d.relid = r.relid
and d.attid == 0

end define
go

usociate describe with
"Displays description of given RELATION or COMMAND" ,"lL" go

I*
usociate commands for descriptions of system relations

*I
usociate relation
"relation: Catalog of all objects in database. An object is a" ,"91" go
associate relation
" relation, view, file, stored command or stored pr~" ,"92" go
associate relation
" gram. Each tuple represents a single object. ","93" go

associate attribute
"attribute: Catalog of each attribute of each relation. Each ","91" go
associate attribute

Britton Lee 111

·describe (describe.idl) Predefined Stored Oommand.t

112

,, tuple represent.a one attribute.

associate indices
"indices: Catalog or indices that exist in database. Each • ,•91• go
associate indices
• tuple represent.a one index. • ,•92• go

associate protect
"protect: Catalog of protection information for the database.• ,"91" go
associate protect
• Each tuple represent.a one type of access (e.g., • ,•92• go
associate protect
• read, write, create index) for one user or group • ,•93• go
associate protect
• for all attributes of one view, relation, file, or • ,•94• go
associate protect
• - stored command. • ,•95• go

associate query
•query: Text or stored commands

associate crossrer
•crossref: Catalog of dependencies among relations, views and• ,•91• go
associate crossrer
• stored commands. • ,•92• go

associate transact
•transact: Transaction logging relation • ,•93• go

associate batch
"batch: Temporary transaction logging relation, used for . • ,•91• go
associate batch
• transaction management so that even transactions • ,•92• go
associate batch
• against non-logged relations may be cancelled if • ,•93• go
associate batch
• needed. • ,•94• go

associate descriptions
"descriptions: User definable descriptions, keyed to relation id's" ,•91• go

associate users
•users: Mapping or user and group names to user id • ,•91• go
associate host_users
"host-users: Mapping from host id and user's id to IDM user id.• ,•91• go

associate blockalloc
"blockalloc: Catalog of disk blocks, showing relations assigned,, ,•91• go
associate blockalloc
• to blocks. Each tuple represent.a a block. • ,"92" go

associate disk_usage

Britton Lee

Predefined Stored Oommanda describe (describe.idl)

"disk_usage: Shows relation and database allocation.

dir (objects7 .idl)

/*
** Define "dir" command to find an object by na.me
*/

destroy otype_I go

create otype_I (type=ucl,definition=cl7) go
append to otype_l(type="S" ,definition= "System relation") go
append to otype_l(type="T" ,definition= "Transaction log") go
append to otype_l(type="U" ,definition= "User relation") go
append to otype_l(type="C" ,definition= "Stored command") go
append to otype_l(type="P" ,definition= "Stored program") go
append to otype_l(type="F" ,definition= "File") go
append to otype_l(type="I" ,definition ="Standard relation") go
append to otype_l(type="V" ,definition= "User view") go

replacer (type="I") where r.relid= reLid ("otype_I") go

range or 0 is objects
range or ot is otype_I

destroy dir go

defin~ dir
retrieve (o.relid,

o.object,
o.type,
ot.definition,
o.owner,
o.tups

)
order by object,owner
where o.type *= ot.type
and o.object = Ina.me

end define go

associate dir with
"Displays all objects or given NAME or fragment"," lL" go

Britton Lee 113

diskio (diskio.idl) Predefined Stored Commanda

diskio (diskio.idl)

/*
** Find average disk access time Crom devmonitor
*/

destroy diskio go

range or dev is devmonitor
range or disk is disks

define diskio
retrieve unique(disk.name,dev .slot,

accesses= sum(dev.d2 by dev.d3,dev.slot where dev.type = "D" and dev.d2>0),
time_ticks= sum(dev.dl by dev.d3,dev.slot where dev.type ="D" and dev.d2>0},

/* avg = time(msec) / accesses * /

end define
go

avg_ms= bcdflt(5,

)

bcdflt(5,sum(dev.dl by dev.d3,dev.slot where dev.type=="D" and dev.d2
• 1000 I 60 /

bcdflt(5,sum(dev.d2 by dev.d3,dev.slot where dev.t!pe="D" and dev.d2

/* prevent division by zero * /
) where dev.type="D" &nd dev.d2>0

/* devmonitor identifies disks by low block*/
and dev .d3 = disk.low

/* only meaningful for physical disks * /
and (disk.type= "P" or disk.type="M")

associate diskio with "lists the on-line disks and their 1/0 activity"," lM" go

expire (date8.idl)

114

/* Set expiration date on an object to current date plus <N> days * /

destroy expire go

range of r is relation

define expire
replacer (expire= getdate + $n_days)

where r.relid = reLid ($lobject)
and r .owner = userid

end define go

associate expire with

Britton Lee

Predefined Stored Oommanda expire (date8.idl)

"sets the expiration date for an OBJECT to getdate + NDA YS"," 1 T" go

expiredate (date8.idl)

** Define "expiredate" stored command to update relation.expire to
** a given YYYYMMDD
*/

destroy expiredate go

range or r is relation
range or cal is calendar _I
range or month is month_I

define expiredate
replacer (expire= cal.start+ month.first+ int4(substring(7,2,$YYYYMMDD))

+ cal.leapyear * month.leap.first -1
)
where cal.longyear = substring{l,4,$YYYYMMDD)
and month.month_num = substring{5,2,$YYYYMMDD)
and r .relid= reLid($OBJECT)
and r .owner = userid

end define go

associate expiredate with
"sets the expiration date for an OBJECT to date YYYYMMDD" ," 1 T" go

files (objects7 .idl)

/*
** define "files" command.
*/

range or 0 is objects
destroy files go

define files
retrieve unique (files = a.object,

o.owner,
o.logging

Britton Lee

)
order by owner ,files
where o.type = "F"
and ((o.ownerid = userid or o.ownerid = dba)

or user id =dba /* show all relations for dba * /

115

files (objects7 .idl) Predefined Stored Command&

end define
go

associate fi]es with "Displays files owned by you and the dba" ,"IL"
go

freelog (freespc.idl)

I*
** Displays space usage for hard allocated log

*I
destroy freelog go

define freelog
retrieve (Jog_blocks =sum (du.high - du.low + I where du.relid= 7),

free_bl.ks = count(b.relid where b.relid = 7 and b.mode=32)
)

end define
go

associate f reelog with
"Displays space usage for hard allocated transact log"," IS" go

freespace (freespc.idl)

I*

118

** Report freespace in database in blocks
*/

destroy freespace go

range of r is relation
range of b is blockalloc
range of du is disk_ usage

define freespace
retrieve (totaLbl.ks = sum (du.high - du.low + I),

free_bl.ks = count(b.relid where b.relid = 0),
percent_ used =

)
end define
go

100 - ((count(b.relid where b.relid = 0) * IOO) /
sum (du.high - du.low + I))

associate f reespace with
"Displays total space and free space in this database"," IS" go

Britton Lee

Predefined Stored Oommand1 freespace (freespc.idl)

groups (groups3.idl)

destroy groups go

range or u is users

/* define 'groups' stored command. Lists names and membership or groups. • /

define groups
retrieve (u.id,

u.gid,
u.name,

)
members = count(u.id by u.gid) - 1

where u.id = u.gid
and u.id != 0

end define
go

associate groups with
"Lists the groups and membership for this database" ,"lD" go

group _off (groups3.idl)

/*
u Create temporary relations to stored removed users
u Allows groups to be temporarily removed from hosL users
•• and users, and restored later.
•• These are logged so we don't lose them. They are not destroyed first
** lest there already be some relations like these with members. The
•• Create will therefore fail and give an error message when re-installed

create host_ users_I (

create users_I (

hid= i2,
huid = i4,
uid = i2

) with logging go

id= i2,
gid = i2,
name= c12

) with logging go

range or r is relation
replace r (type=" I") where
r.relid=reLid("host_users_I") or r.relid=reLid("users_I") go

Britton Lee 117

group_otr (groupsS.ldl} Predefined Stored Oommtinda

118

destroy group_ofl' go

range of hu is host_ users
range of u is users
range of ul is users

/* Remove database access to group * /
define group_o8'

/* First move group member tuples to safe place * /

append to users_I (id==u.id,
gid==u.gid,
name==u.name

}
where ul .name == $group
and ul.id == ul.gid
and ul.gid == u.gid

append to host_users_I (hid==hu.hid,
huid==hu.huid,
uid==hu.uid

}
where ul .name == $group
and ul.id == ul.gid
and ul.gid == u.gid
and u.id == bu.uid

/* Now delete group tuples from host_ users and users * /

delete hu where ul.name == $group
and ul .id == ul.gid
and ul .gid == u.gid
and u.id == bu.uid

delete u where ul.name == Sgroup
and ul.id = ul.gid

end define
go

and ul .gid == u.gid

associate group_o8' with
"Turn ofl' all access to database for GROUP - for DBA only", "ID" go ·

Britton Lee

Predefined Stored Command& group_on (groups3.idl)

group_on (groups3.idl)

destroy group_on go

/* Restore database access to group * /

range of hul is host_users_I
range of ul is users_!
range of ull is users_I

define group_on

/* First restore the group members to users and host_ users * /

append to users (id=ul.id,
gid=ul.gid,
name=ul.name

)
where ull.name = $group
and ull.id = ull.gid
and ull.gid = ul.gid

append to host_ users (hid=hul.hid,
huid=hul.huid,
uid=hul.uid

)
where ull.name = $group

and ull.id = ull.gid
and ull.gid = ul.gid
and ul.id = hul.uid

/* Then delete group member tuples from host_users_I and users_ I * /

delete hul where ull.name = $group
and ull.id = ull.gid
and ull.gid = ul.gid
and ul.id = hul.uid

delete ul where ull.name = $group
and ull.id = ull.gid
and ull.gid = ul.gid

end define
go

associate group_on with
"Turn GROUP database access back on - for DBA only", "ID" go

Britton Lee 110

indexes (indexes.idl) Predefined Stored Commanda

indexes (indexes.idl)

/*

120

** Install Indexes stored command to decode indices relation
**
*/

destroy indexes go
destroy itype_I go

I*
** Build "itype_I" for "indexes" command
*/

create itype_l(type=il, desc=c17) go

append itype_l(type = 1, desc="unique noncluster") go
append itype_l(type = -3, desc="unique noncluster") go
append itype_l(type = 0, desc="nonclustered") go
append itype_l(type = 2, desc="clustered") go
append itype_l(type = -2, desc="clustered") go
append itype_l(type = -1, desc ="unique clustered") go
append itype_l(type = 3, desc ="unique clustered") go

range or r is relation
replace r (type="I") where r.relid=reLid("itype_I") go

I*
** Define "indexes" command
*/
range of it is itype_I
range or i is indices
range or r is relation

define indexes
retrieve (type = it.desc,

)

keyl = att_name(i.relid,intl(substring(4,l,i.keys))),
key2 = att_name(i.relid,intl{substring(14,1,i.keys))),
key3 = att_name(i.relid,intl (substring(24,1,i.keys))),
i.indid, .
i.card

order i.indid
where i.relid = reLid($relation)
and mod(i.stat,4) = it.type

end define
go

associate indexes with
"Displays keys and type of indices for given RELATION"," ID" go

Britton Lee

Predefined Stored Commonda mine (objects7 .idl)

mine (objects7 .idl)

/*
** Define "mine" command to find an object owned by me
*I

destroy mine go

define mine
retrieve (o.relid,

o.object,
o.type,
at.definition,
o.tups
)

order by type,object
where o.type *= at.type
and o.ownerid = userid

end define;

associate mine with
"Displays all objects owned by this user" ,"IL";

mon (mon5.idl)

/*
•• "mon" command-cpu usage Cor the last N monitor intervals.
*I

destroy mon go

range or m is monitor

define mon
retrieve

retrieve

(CPU_activity = "avg monitoring in~erval (minutes):",
time = bcdfixed{S,2,avg(bcdftt(O,m.length))/3600)
)

(SEQNO = m.seqno,

)

CPU_percent = bcdftt(S,100 * bcdftt(5,m.cpu)/bcdftt(5,m.length)),
DAC_percent = bcdflt(S,100 * bcdflt(5,m.dac)/bcdflt(5,m.length)),
IDLE_percent = bcdflt(S,100 * bcdftt(5,m.idle)/bcdftt(5,m.length)),
COMMANDS = int2(m.cmnds),
AVG_seconds =bcdftt(5,bcdftt(5,m.avgcmnd)/60)

order by m.date,m.time

Britton Lee 121

moo (mon5.idl) Predefined Stored Commanda

where (m.date-getdate and m.time >gettime - m.length • int4(SINTERVALS))
or (m.date==getdate-I and m.time> gettime - m.length • int4(SINTERVALS) +

(int4(24) • int4(60) * int.4(3600))
)

end define go

associate mon with "Monitor CPU and DAC usage for last N monitor intervals" ,"IM"
go

mondisk (mon5.idl)

122

/*
•• "mondisk" command-disk usage for the last N monitor intervals.
•1

destroy mondisk go

range of m is monitor
define mondisk
retrieve

retrieve(

(DISK_active == "avg monitoring interval (minutes):",
time == bcdfixed(S,2,avg(bcdflt(O,m.length))/3600)

)

SEQNO == m.seqno,
READS == m.reads,
WRITES == m.writes,
ffiTS = m.hits,
DISK_ WT _sec - bcdflt(5,bcdftt(5,m.diskwait) / 60)

)
order by m.date,m.time
where (m.date=getdate and m.time >gettime - m.lengtb • int4(SINTERVALS))

or (m.date==getdate-I and m.time> gettime - m.lengtb • int4(SINTERVALS) +
(int.4(24) • int4(60) • int4(3600)}

)

end define go

associate mondisk with "Monitor disk usage for last N monitor intervals"," IM"
go

Britton Lee

Predefined Stored Oommanda monfail (mon5.id1)

monfail (mon5 .idl)

/*
** "monfail" command-Time processing or processes are suspended for lack
** of available memory resources
*/

destroy monfail go

range or m is monitor
define monfail
retrieve(

retrieve
)

SUSPENDED = "avg monitoring interval (minutes):",
time = bcdfixed(5,2,avg(bcdftt(O,m.length))/3600)

(SEQNO = m.seqno,
INDELAY _pct = bcdftt(5,100 * bcdftt(5,m.indelay)/bcdftt(5,m.length)),
OUTDELAY _pct= bcdftt(S,100 * bcd8t(5,m.outdelay)/bedftt(5,m.length)),
MEMDELAY _pct= bedftt(5,100 * bedftt(5,m.memlos.s)/bcdftt(5,m.length)),
DBINF Ail..S = m.dbinfails

)
order by m.date,m.time
where (m.dat.e=getdate and m.time >gettime - m.length * int4($INTERVALS))
or (m.date=getdate-1 and m.time> gettime - m.length * int4($INTERVALS}

+ (int4(24) * int4(60) * int4(3600)}
)

end define go

associate monfail with
. "Suspended processing for lack of memory from monitor"," IM" go

monlock (mon5.idl)

/*
** "monlock" command-blocked wait, deadlocks, current locks
*/

destroy monlock go
destroy lockdef _I go

!* interpretation or lock types * /

create loekdeLl(eode = ubinl, meaning = e36) go

append to lockdeLI(code=binary(l), meaning ="read lock") go
append to lockdeLI(eode=binary(2), meaning ="write lock") go
append to lockdeLI(eode=binary(3), meaning ="read, intend to set block write lock") go
append to loekdeLl(eode=binary(5}, meaning ="intend to set block read lock") go

Bn'tton Lee 123

monlock (mono.idl) Predefined Stored Commands

124

append to lockdeLI(code=binary(6), meaning ="intend to set block write lock") go
deny write or loclc.der _I go

range or r is relation
replace r(type="I") where r.relid=reLid("lockdeLI") go

range or lock is lock
range or lockder is lockdeLI
range or db is databases
range or ds is dbinstat
range or m is monitor

define monlock

/* first define the interval length * /

retrieve(
LOCKS_BLOCKS = "avg monitoring interval (minutes):",

time == bcdfixed(S,2,avg(bcdftt(O,m.length))/3600)
)

/* history or locks and deadlocks over last N intervals *I

retrieve(
SEQNO == m.seqno,

DEADLOCKS == m.deadlocks,
LOCK_sec == bcdftt(5,bcdftt(5,m.blockwait) / 60)
)
order by m.date,m.time
where (m.date=getdate and m.time >gettime - m.Iength * int4(SINTERV ALS))
or (m.date==getdate-1 and m.time> gettime - m.Iength * int4(SINTERVALS)

+ (int4(24} * int4(60) * int4(3600))

/* list current locks * /

retrieve (
DBIN == ds.dbin,
DATABASE=db.name,

/* this is the relid in the database, not system * /
RELID=lock.dnum,
block=lock.pid,
lock_ type=lockdeC.meaning

)
where ds.xactid=lock.tnum
and ds.dbid=db.id
and lockdef.code =* lock.type

end define go

associate monlock with
"Current locks and history for last N monitor intervals" ,"lM" go

Britton. Lee

Predefined Stored Oommanda monlock (mon5.idl)

monun (mon5.idl)

/*
** "monun" command-unused memory resources for the last N intervals.
*/

destroy monun go

range of m is monitor
define monun
retrieve(

retrieve
)

BUFFER_SPACE ="avg monitoring interval (minutes):",
time = bcdfixed(5,2,avg(bcdflt(O,m.length))/3600)

(SEQNO = m.seqno,
UNUSED_INPUT = m.unin,
UNUSED_OUT = m.unout,
UNUSED_MEM = m.unmem,
UNUSED_DBIN = m.undbin

)
order by m.date,m.time
where (m.date=getdate and m.time >gettime - m.length * int4($INTERVALS))
or (m.date=getdate-1 and m.time> gettime - m.length * int4($INTERVALS)

+ (int4(24) • int4(60) • int4(3600))
)

end define go

associate monun with
"Unused memory buffers for last N monitor intervals"," lM" go

monwait (mon5.idl)

/*
** "monwait" command-wait queues from monitor for the last N intervals.
*I

destroy monwait go

range or m is monitor
define monwait
retrieve(

WAIT_QUEUES ="avg monitoring interval (minutes):",
time = bcdfixed(5,2,avg(bcdftt(O,m.length))/3600)

)
retrieve(

SEQNO = m.seqno,
INPUT _sec = bcdftt(5,bcdftt(5,m.inwait) / 60),
OUTPUT _sec = bcdftt(5,bcdflt(5,m.outwait) / 60),

Britton Lee 125

monwait (mon5.idl) Predefined Stored Oommanda

)

CPU_see
MEMORY-sec
TAPE_see

= bcd8t(5,bcdftt(5,m.cpuwait) / 60),
== bcd8t(5,bcd8t(5,m.memwait) / 60),

== bcd8t(5,bcd8t(5,m.tapewait) / 60)

order by m.date,m.time
where (m.date==getdate and m.time >gettime - m.length * int4(SINTERVALS))
or (m.date==getdate-I and m.time> gettime - m.length * int4($INTERVALS)
+ (int4(24) * int4(60) * int4(3600))
)

end define go

associate monwait with
"Summary of wait queues for la.st N monitor intervals"," IM" go

notowned (notowned.idl)

/*
** Define "notowned" command.
** Finds objects without owners in users relation
*I

destroy notowned go

range or r is relation
range or u is users

define notowned
retrieve unique (r .name,

r.relid,

end define
go

owner_num = r.owner
)

order by owner _num, name
where 0 = count (u.id by r.relid where u.id = r.owner)

associate notowned with
"List objects which are not not owned by people in 'users'"," ID" go

othercmds (objects7 .idl)

/*

128

**define "othercmds" command.
*/

range of o is objects
range or d is descriptions

Britton Lee

Predefined Stored Commands otbercmds (objects7 .idl)

destroy othercmds go

define othercmds
retrieve unique (command = o.object,

o.owner,
o.logging

)
order by owner, command
where o.type = "C"
and ((o.ownerid = userid or o.ownerid = dba)

or userid =dba /* show all relations for dba • /

/* exclude a11 standard commands • /
and 0 = any(d.key by o.relid

end define
go

where o.relid = d.relid
and (d.key = "IM"

or d.key ="IL"
or d.key ="IP"
or d.key = "ID"
or d.key = "IS"
or d.key ="IT"

associate othercmds with
"Displays user stored commands (those not displayed by cmds)" ,"IL" go

otherviews (objects7 .idl)

I*
** define "otherviews" command.
*I

range or 0 is objects
range or d is descriptions
destroy otherviews go

define otherviews
retrieve unique (views = o.object,

o.owner,
o.logging)

order by owner,views
where o.type = "V"
and ((o.ownerid = userid or o.ownerid = dba)

or userid =dba /"' show all relations for dba * /

r exclude any standard views *I

Britton Lee 127

otherviews (objects7 .idl) Predefined Stored Oommanda

and 0 = any(d.key by o.relid

end define
go

)

where o.relid = d.relid
and d.key = "VI"

associate otherviews with
"Displays user views (those not displayed by views)"," IL" go

permits (protects .idl)

128

destroy permits go
destroy ptype_I go

/* IC there is no user tuple for "all" with id=O, put one there * /

range of u is users
append to users (id= O,name ="ALL")

where any(u.id where u.id = 0) = 0 go

/*
** ptype_I relation contains the decoding of the access attribute
** of the protect system relation
*/
create. ptype_l(access = iI, desc = c20} go

append to ptype_l(access = I, desc =" read") go
append to ptype_l(access = 2, desc = n write") go
append to ptype_l(access = 3, desc = n all") go
append to ptype_I(access = -32, desc = n execute") go
append to ptype_I(access = -53, desc = n create database") go
append to ptype_l(access = -58, desc = " create") go
append to ptype_l(access = -56, desc = n create index") go
append to ptype_l(access = 4, desc = n read tape") go
append to ptype_l(accesa = 8, desc = n write tape") go
append to ptype_l(access = I2, desc =" all tape") go

create unique clustered index on ptype_I (access) go

range or r is relation
replacer (type="I") where r.relid=rel_id("ptype_r) go

/*
** atype_I decodes the bit pair for permit/deny in protect.attmap

*/

destroy atype_J go

Britton Lee

Predefined Stored Oommanda permits (protectS.idl)

create atype_l(access = il, desc = c8) go

append to atype_l(access = 1, desc ="permit") go
append to atype_l(access = 2, desc = "deny") go
append to atype_l(access = 3, desc ="BOTH!") go

range or r is relation
replacer (type="I") where r.relid=reLid("atype_I") go

/*
** Permits command
** Returns explicit permissions on a given OBJECT
*I

range or p is protect
range or at is atype_I
range or pt is ptype_I
range or u is users

define permits

retrieve (access = concat(at.desc, pt.desc),
object = Sobject,
user = u.name

)
where at.access= mod(intl(substring(l,l,p.attmap)), 4)
and pt.access == p.access
and reLid(Sobject) == p.relid
and u.id = p.user
and reLid($object) > 0

end d~fine go

associate permits with "shows the explicit protection for an OBJECT"," IP" go

permitsall (protect5.idl)

/*
** Permitsall command
** Returns all explicit permissions from the protect relation
*/

destroy permitsall go

define permitsall
retrieve(access = concat(at.desc, pt.desc),

object= r.name,

Britton Lee

user == u.name
)
where at.access== mod(intl(substring(l,1,p.attmap)), 4)
and pt.access = p.access

129

permitsall (protect5.idl) Predefined Stored Oommanda

and p.relid = r .relid
and u.id = p.user

end define
associate permitsall with "shows all explicit permits and denies"," lP" go

permitsgen (protect5.idl)

/*
** Permitsgen command
** Returns explicit tape and create permissions
*/

destroy permitsgen go

define permitsgen
retrieve(access = concat(at.desc, pt.desc),

user= u.name
)
where at.access= mod(intl(substring(l,l,p.attmap)), 4)
and pt.access = p.access
and p.relid = 0
and u.id = p.user

end define
go

associate permitsgen with "shows the explicit. tape and create permissions"," lP"
go

permitsme (permits5.idl)

/*

130

** Permitsme
** Returns explicit permissions on all objects (or this user
*/

destroy permitsme go

define permitsme
retrieve(access = concat(at.desc, pt.desc),

object= r.name
)
where at.access= mod(intl(substring(l,l,p.attmap)), 4)
and pt.access = p.access
and p.relid = r .relid
and u.id = p.user
and u.id = userid

end define go

Britton Lee

Predefined Stored Oommonda permitsme (permits5.idl)

associate permitsme with •shows the explicit permissions for me• ,•1p• go

permitsuser (protects .idl)

I*
** Permitsuser command
** Returns explicit permissions on all objects for a user
•;
destroy permitsuser go

define permitsuser
retrieve(access = concat(at.desc, pt.desc),

object= r.name
)
where at.access = mod(intl(substring(l,l,p.attmap)), 4)
and pt.access = p.access
and p.relid = r .relid
and u.id = p.user
and u.name= Susername

end define

associate permitsuser with •shows the explicit permissions for USER" ,"IP" go

-pgms (objects7 .idl)

I*
** define "pgms" command.
•;
range or 0 is objects

destroy pgms go

define pgms
retrieve unique (pgms == o.object,

o.owner,
o.logging

)
order by owner ,pgms
where o.type = "P"
and ((o.ownerid == userid or o.ownerid = dba)

or userid ==dba /* show all relations for dba • /
)

end define
go

Britton Lee 131

pgms (objects7 .idl) Predefined Stored Commanda

associate pgms with "Displays stored programs owned by you or the dba" ," lL" go

ps (ps.idl}

132

/*
** "ps" command:
** Without an outer join, the maintenance port listener process
** will not be reported.
*/

destroy ps go
destroy ps_data_I go

create ps_data_I

(status = il,

/*Destroy stored command ...
/* ... & constant relation.

/* Create constant relation,
/* for translating codes from
/* "dbinstat.status" into
/*strings.

/* status code, matching that
/* from "dbinsta.t.status"

meaning= c29 /* string description of status.*/
)
go

range .of r is relation

*/
*I

*/
*/
*/
*I

*/
*/

replacer (type ="I") where r.relid=reLid("ps_data_I") go

/* Now populate the constant relation. * /
range of psis ps_data_I
append to ps_data._I (status= 1, meaning= "UNDEFINED") go
append to ps_data_l(status = ps.status + max(ps.status), meaning= "UNDEFINED") go
append to ps_data_l(status = ps.status + max(ps.status), meaning= "UNDEFINED") go
append to ps_data_l(status = ps.status + max(ps.status), meaning= "UNDEFINED") go
append to ps_data_l(status = ps.status + max(ps.status), meaning= "UNDEFINED") go
append to ps_data_l(status = ps.status + max(ps.status), meaning= "UNDEFINED") go
append to ps_data_l(status = ps.status + max(ps.status), meaning= "UNDEFINED") go
delete ps where ps.status > SO go ·

replace ps (meaning= "runnable") where ps.status = 1 go
replace ps (meaning= "wait-input; no transaction") where ps.status = 2 go
replace ps (meaning= "wait-input in a transaction") where ps.status = 3 go
replace ps (meaning= "DEBUGGING (timed out)") where ps.status = 4 go
replace ps (meaning= "DEBUGGING") where ps.status = 5 go
replace ps (meaning= "DEBUGGING") where ps.status = 6 go
replace ps (meaning= "wait-output to drain") where ps.status = 7 go
replace ps (meaning= "DEBUGGING") where ps.status = 8 go
replace ps (meaning= "suspended-checkpoint") where ps.status = 9 go
replace ps (meaning= "terminated abnormally") where ps.status = 10 go
replace ps (meaning= "wait-tape controller") where ps.status = 11 go

Britton Lee

Predefined Stored Oommonde ps (ps.ldl)

replace ps (meaning= "wait-child to terminate") where pa.status= 12 kO
replace ps (meaning= "wait-special disk command") where pa.status= 13 go
replace ps (meaning= "DEBUGGING") where pa.status= 14 go
replace ps (meaning= "wait-maint port input") where pa.status== 18 go
replace ps (meaning== "wait-transaction lock") where pa.status== 30 go
replace ps (meaning== "wait-interruptible quick lock") where pa.status - 31 go
replace ps (meaning= "wait-non-interrupt quick lock") where ps.status = 32 go
replace ps (meaning= "wait-one disk 1/0") where ps.status = 35 go
replace ps (meaning= "wait-multiple disk I/O's") where pa.status == 36 go
replace ps (meaning= "wait-process memory") where pa.status== 40 go
replace ps (meaning= "wait-process memory has input") where ps.status = 41 go
replace ps (meaning= "normal exit, draining output") where ps.status = 42 go

define ps
range of ds is dbinstat
range of db is databases
range of u is users
range of hu is hosLusers
retrieve unique

(ds.dbin,

)

STATUS= ps.meaning,
block=int4(ds.block),
ds.time,
DATABASE = db.name

order by dbin
where ds.dbid *= db.id
and mod(ds.status,50) = ps.status /*ignore CANCEL STATUS*/

retrieve unique(ds.dbin, USER = u.name, ds.hid, ds.huid)
order by USER

·where u.id = hu.uid
and bu.hid ==* ds.hid
and hu.huid =* ds.huid

end define go

associate ps with "Lists the active processes and status-known users"," IM" go

rels (objects7 .idl)

I*
•• define "rels" command.
*/

define rels
range or o is objects
retrieve unique (relation == o.object,

o.owner,
o.tups,
o.logging

Britton Lee 133

rels (objects7 .idl} Predefined Stored Oommanda

)
order by owner ,relation
where o.type == "U"
and ((o.ownerid == userid or o.ownerid == dba)

end define
go

)
or userid ==dba /* show all relations for dba * /

associate rels with
"Displays user relations owned by you or the dba" ,"IL" go

rename (rename.id!)

I*
** Rename permits users to change
** the name of relations they own
*I

destroy rename go

range of r is relation

define rename
replacer (name==Snewname)

. where r.name==Scurr_name
and r .owner == userid

end define
go

associate rename with
"Allows users to rename their RELATION to NEW_NAME","IL" go

rm user (rm user .idl)

I*

134

** Define "rmuser" command - remove user
*I

destroy rmuser go

range of hu is host_ users
range of u is users

define rmuser
delete bu where u.name == Susername
and hu.uid = u.id

Britton Lee

Predefined Stored Oommanda rmuser (rmuser.idl)

and u.id I== dba

delete u where u.name = Susername and u.id != dba
end define
go

associate rmuser with
"Removes a USER Crom database - Cor DBA only", "ID" go

setcard (setcard.idl)

/* •• setcard command Cor set cardinality or an index
·1

destroy setcard go

range or i is indices

define setcard
replace i (card= $3card)

end define
go

where i.relid = reLid($1relation)
and i.indid = $2indexid

associate setcard with
"Set cardinality Cor RELATION, INDEXID, CARD" ,"lD" go

size (size.idl)

/*
•• Report sizes or objects in blocks
•;
destroy size go

range or r is relation
range or b is blockalloc

define size
retrieve (r.relid,

Britton Lee

)

reL tups=r .tups,
reL pages=r .pages,
num_blocks = count(b.relid where b.relid = reLid($object))

where r.relid=reLid($object)

135

size (size.ldl)

and reLid(Sobject) > 0
end define
go

associate me with
"Displays size of RELATION" ,"IS" go

sizebyzone (szbyzone.idl)

I*
** Define "sizebyzone" command.
** Lists the fragmentation of any relation
*/

destroy sizebyzone go

range of b is blockalloe

define sizebyzone
retrieve (zone-au bstring(1,3,b.tid),

blocks=count(b.relid by substring(l,3,b.tid)
where b.relid = reLid(Sobject)

)
)

where O!=count(b.relid by substring(l,3,(b.tid))
where b.relid = reLid(Sobject)

)
and reLid(Sobject) > 0

end define
go

associate sizebyzone with

Predefined Stored Oommanda

"For OBJECT, lists number or blocks in each zone"," IS" go

sizes (sizes.idl)

I*

138

** Report sizes of objects in blocks
*I

destroy sizes go

range of r is relation
range or b is blockalloc

define sizes
retrieve (totaLblks = count(b.relid),

Britton Lee

Predefined Stored Command.a

free_blks = count(b.relid where b.relid = 0),
percent_ used =

sizes (sizes.idl)

(count(b.relid where b.relid != 0) • 100) / count(b.relid)
)

retrieve (r.name,
r.owner,
r.type,
reLpages =r .pages,
num_oLblks = count(b.relid by b.relid)

)
order by num_oLblks:d
where b.relid = r.relid
and count(b.relid by b.relid) > 10

end define
go

associate sizes with
"Displays size of this database and its larger relations"," IS" go

spacebyuser (spbyuser.idl)

/*
•• Define "spacebyuser" command.
•• Lists space allocated to each user in the database

destroy spacebyuser go

range or b is blockalloc
range or u is users
range or r is relation

define spacebyuser

retrieve (user = u.name,
user _id = u.id,

)

pages== sum(count(b.mode by b.relid) by r.owner
where b.relid=r .relid

)

order by pages:d
where r.owner = u.id

end define
go

associate spacebyuser with
"Lists disk space utilization by user"," IS" go

Britton Lee 13'7

system (system.idl) Predefined Stored Oommanda

system (system.id!)

/*
** Define "system" command .
•• Retrieves info about the system relations
*/

destroy system go

range of r is relation

define system
retrieve unique (relation = r .name,

r.type,

)

tuples = r.tups,
r.pages

order by relation
where r.type = "S" or r.type = "T"

end define
go

/* S = system, T = transaction logs • /

associate system with
"Displays system relation names and sizes"," lD" go

usersright (uright.idl)

/*

138

•• Define "usersright" command.
** Checks for consistency in users and host_ users
*/

destroy usersright go

range of hu is hosLusers
range of u is users
range of ul is users

define usersright
retrieve unique (bu.hid,

hu.huid,
hu.uid,
comment= "In 'host_users' not in 'users'"

)
where 0 = any (u.id by hu.uid where u.id = hu.uid)

retrieve unique (u.name,
u.id,

Britton Lee

Predefined Stored Oommonda usersright (uright.idl)

u.gid,
comment= "In 'users' not in 'host_users'"

)
where 0 = any (hu.uid by u.id where u.id = hu.uid)
and u.gid != u.id r exclude groups•/

retrieve unique (u.name,
u.id,
u.gid,
comment= "Group-no members or user-no group"

)
where 1 >= count (ul.gid by u.gid where u.id = ul.id)
and u.name != "ALL"

retrieve unique (u.name,
u.id,
u.gid,
comment= "Duplicate id's in 'users'"

)
where count (u.id by u.id) > 1

retrieve unique (u.name,
u.id,
u.gid,
comment= "Inappropriate use or uid == O"

)
where u.id == 0
and u.name != "ALL"

retrieve unique (bu.hid,
hu.huid,
bu.uid,
comment="lnappropriate use of uid == O"

)
where bu.uid = 0

retrieve unique (bu.hid,
hu.buid,
hu.uid,
comment= "DBA for this database"

)
where hu.uid = dba and count(hu.uid where hu.uid=dba) > 1

end define
go

associate usersright with
"Checks consistency of 'users' with 'host_ users'" ,"ID" go

Britton Lee 139

uses (uses.id!) Predefined Stored Oommanda

uses (uses.idl)

/*
** Stored command to give the list of objects a named object depends on
•• Usage is "uses <objectname>"
*I

destroy uses go

range of Cl'OS8 is crouref
range of r is relation
range of u is users

define uses
retrieve (relationused = reLname(crou.relid),

owner= u.name
)

where cross.drelid == r.relid
and r.relid = reLid (Sobject)
and u.id =* r.owner

end define go

associate uses "list objects that OBJECT depends on" ,"IL" go

views (vi!!ws.idl)

140

/*
•• Define "views" command.
** This lists the standard views just like cmds lists standard cmds
*/

destroy views go

range or r is relation
range of d is descriptions

define views
retrieve(views = r.name,

description= substring(l,60,d.text)
)
order by views, d.key
where r .relid = d.relid
and (r.owner == dba or r.owner = userid)
and r .type = "V"
and d.key == "Vt"

end define
go
associate views with

"Lists standard views with a one line description"," IL" go

Britton Lee

Predefined Stored Oommanda

who (who3.idl)

/*
u Define "who" command

*/

destroy who go

range or bu is host_users
range or ul is users
range or u is users

define who
retrieve(user = u.name,

group= ul.name,
hst_id = bu.hid,

)

host_ user _id = hu.huid,
id= u.id

order by group,user
where hu.uid = u.id
and ul .id =* u.gid /* outer join to get groupless users • /
and u.id != u.gid

end define
go

associate who with
. "Lists users who can use this databa5e", "lD" go

whois (who3.idl)

/* Define wbois command to find userid Crom name • /

destroy whois go

define whois
retrieve(

)

id= u.id,
group = ul.name,
hst_id = bu.hid,
host_user _id= hu.huid

where hu.uid = u.id
and ul.id =* u.gid /* outer join to get groupless users • /
and u.name = $username

end define
go

associate whois with

Britton Lee

views (views.idl)

141

whois (who3.idl) Predefined Stored Command•

•Returns userid, host_id and huid for a given username•, ,, lD,, go

whoisid (who3.idl)

142

/* Define whoisid command to find username from userid • /

destroy whoisid go

define whoisid
retrieve(

)

u.name,
group = ul .name,
hst_id = bu.hid,
host_user_id = hu.huid

where hu.uid = u.id
and ul .id =* u.gid /* outer join to get groupless users • /
and u.id = $user _id

end define
go

associate whoisid with
•Returns user name, host_id and huid for a given user _id", "lD" go

Britton Lee

Appendix C: SQL Definitions

This appendix lists the SQL stored-command scripts in alphabetical order. Since some of
the commands are included in files by other names, the file name is given in parentheses
after the command name.

None of the stored commands scripts uses the continuation character. Because users are
free to turn the continuation character on, every input file shown below turns it off
before defining any stored commands. Britton Lee strongly discourages use of the
continuation character.

The first two sections define two views, "columns" and "objects", that are used to decode
attribute and object lists. "Columns" depends on the "dtype_SQL" table, which supplies
mnemonic names for internal data types. "Objects" depends on the table "logged_!",
which decodes status fields to log messages. Both or these tables are defined before the
tables that depend on them.

columns (cols.sql)

/*
** Define columns view and dtype_SQL table
*/

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.

*/

%continuation

/* Build "dtype_SQL" for "cols" command, used to generate mnemonic*/

drop columns;
drop dtype_SQL;
create table dtype_SQL(

mne char{13),
code smallint,
uncomp tinyint,
dpb tinyint,
adj tinyint);

/* mnemonic * /
/* internal rep * /

/* 0 =fixed, +1 =uncompressed , -1 =compressed•/
/* digits per byte; bcd=2, all others=l • /
/* size adjustment; bcd=3, all others=O * /

insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("bcdftt(" ,35,-1,2,3);
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("binary(" ,45,-1,1,0);
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("bed(" ,46, -1, 2, 3);
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("char(" ,47, -1, 1, O);
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("fixed bcdfl.t(" ,35,1,2,3);

Britton Lee 143

columns (cols.sql) Predefined Stored Commanda

insert into dtype_SQL (mne,code,uncomp,dpb,adj) values {"fixed binary(" ,45,1,1,0);
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("fixed bed(" ,46,1,2,3);
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("fixed char(" ,47,1,1,0);
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("tinyint (" ,48, 0,1, O};
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("smallint (" ,52, 0,1, O);
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("integer (" ,56, 0,1, O);
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("smallfloat (" ,57,0,1,0); -
insert into dtype_SQL (mne,code,uncomp,dpb,adj) values ("float (" ,60, 0,1, O);

update relation set type=="l" where relid=table_id("dtype_SQL");

I*
** Define "columns" view
*I
create view columns (column_name, relid,tab_name,type)

as select a.name,
a.relid,
r.name,
type = concat(concat(d.mne,string(4,

mod(256+((a.len * d.dpb) - d.adj),256))),")")
/* mod used to force length postive when > 127 * /

from attribute a, relation r, dtype_SQL d
where a.type == d.code
and ((d.uncomp < 0 and a.offset < 0) or

(d.uncomp >= 0 and a.offset >= 0))
and r.relid = a.relid;

comm~nt on columns is "Friendly view of attribute table" ,"VI";

objects (objects7 .sql)
I*
** Define view objecta and the tables used by the commands that depend on the
** view: dirs, tabs, mine, otherviews, pgms, files and othercmds
*/

I*
** Stored command scripta do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*I

%continuation

drop objects; /* view upon which other commands are based * /

drop logged_l;

I*
** logged_I - used to decode stat field to find if object is logged

*I

144 Britton Lee

Predefined Stored Commanda objects (objects7 .sql)

create table logged_I (value smallint, text char(lO));

insert into logged_I (value,text) values(O,"Not Logged");
insert into logged_I (value,text) values(64,"Logged");

update relation set type="I" where relid =table_id("logged_I");

/*
** create "objects" view
*/

create view objects (object,
relid,
owner,
ownerid,
rows,
type,
logging

)
as select r .name,

r.relid,
u.name,
r.owner,
r.tups,
r.type,
t.text

from relation r, users u, logged_! t
where r.owner *= u.id
and t.value = mod(smallint(r.stat)+integer(65536),128)

- mod(smallint(r.stat)+integer(65536},64};

comment on objects is
"Objects, their owners, type, rows and if logged" ,"Vl";

drop otype_I;

create table otype_I (type fixed char(l),
definition char(17)

);

insert into otype_I (type,definition) values("S", "System relation");
insert into otype_I (type,definition) values("T", "Transaction log");
insert into otype_I (type,definition) values("U", "User relation");
insert into otype_I (type,definition) values("C", "Stored command");
insert into otype_I (type,definition) values("P", "Stored program");
insert into otype_I (type,definition) values("F", "Files");
insert into otype_I (type,definition) values("!", "Standard relation");
insert into otype_I (type,definition) values("V", "User view");

update relation set type="I" where relid= table_id ("otype_I");

drop logged_I;

Britton Lee 145

objects (objects7.sql) Predefined Stored Commanda

/*
** logged_I - used to decode stat field to find if object is logged
*I

create table logged_I (value smallint, text char{IO));

insert into logged_! (value,text) values(O,"Not Logged");
insert into logged_! (value,text) values(64,"Logged");

update relation set type="I" where relid =table_id("logged_I");

allindexes (indexes.sql)

/*
** Store "allindexes" command
*I

drop allindexes;

store allindexes
select tab_name= r.name,

type = it.desc,
keyl = coLname(i.relid,tinyint(substring(4,l,i.keys))),
key2 = coLname(i.relid,tinyint(substring(l4,1,i.keys))),
key3 = coLname(i.relid,tinyint(subs~ring(24,l,i.keys))),
key4 = coLname(i.relid,tinyint(substring(34,l,i.keys))),
key5 = coLname(i.relid,tinyint(substring(44,1,i.keys)}),
i.indid,
i.card
from itype_I it, indices i, relation r
where i.relid = r.relid
and mod(i.stat,4) = it.type
and r.type="U"
order by 1,8

end store;

comment on allindexes is
"Displays keys and type of indices for all user tables"," ID";

attname (attname.sql)

/*
** SQL to define "attname" command for ".all"
** pseudo-attribute call from the parser

*I

148 Britton Lee

Predefined Stored Oommonde attname (attname.sql)

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in ease the user or system
** profile files turned them on.
*I

%continuation

drop attname;
store attname

select name
from attribute
where relid = table_id(&table}

end store;

baudrate (channel.sql)

I*
** Channel command to determine the serial baud rate and the
** table used by the command (ebaud_I).
*/

create table cbaud_I (value tinyint, baud char(20)};
insert into cbaud_l(value, baud) values(0,"9600"};
insert into cbaud_l(value, baud} values(l,"IDegal"};
insert .into cbaud_J(value, baud} values(2," ISO");
insert into cbaud_J(value, baud) values(3,"300");
insert into cbaud_l(value, baud} values(4,"600");
insert-into cbaud_l(value, baud) values(S,"1200");
insert into cbaud_l(value, baud) values(6,"1800");
insert into cbaud_l(value, baud) values(7,"2400");
insert into cbaud_l(value, baud) values(S,"4800");
insert into cbaud_l(value, baud) values(9,"9600");
insert into cbaud_J(value, baud) values(l0,"19200");
insert into cbaud_J(value, baud) values(ll,"No communication");
insert into cbaud_J(value, baud) values(l2,"IDegal");
insert into cbaud_J(value, baud) values(l3,"IDegal");
insert into cbaud_l(value, baud) values(l4,"IDegal");
insert into cbaud_J(value, baud) values(l5,"IDegal");

update relation set type=•r where relid==table_id("cbaud_r);

drop baudrate;
store baudrate
select channel==c.number, baudrate==cb.baud

from configure c, cbaud_J cb
where c.type="S"
and mod(c.value,16) == cb.value
order by channel

end store;

Britton Lee 147

baudrate (channel.sql) Predefined Stored Command•

comment on baudrate ia "Gives the serial channel bit/second rates"," lM";

channel (channel.sql)

/*

148

** Channel command to decode the configure tuple bit strings
*/

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

drop channel;
drop channeLI;
drop mask_I;

drop cbaud_I;

create table mask_l(bit tinyint,value integer); /*table of powers of two to 16* /

insert.into mask_I (bit,value) values (0,1);
insert into mask_I select bit=max(bit)+l,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value=max(value}*2 from mask_I;
insert into mask_I select bit=max(bit)+1,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value==max(value)*2 from mask_I;
insert into mask_I select bit==max(bit)+l,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value==max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value==max(value)*2 from mask_I;
insert into mask_I select bit==max(bit)+l,value==max(value)*2 from muk_I;
insert into muk_I select bit=max(bit)+l,value==max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value=max(value)*2 from muk-1;
insert into mask_I select bit=max(bit)+1,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value=max(value)*2 from mask_I;
insert into mask_I select bit=max(bit)+l,value=max(value)*2 from mask_I;

update relation set type="I" where relid=table_id("mask_I");

create table channeLI (type fixed char(l),
number tinyint,
bit tinyint,

Britton Lee

Predefined Stored Oommand1 channel (channel.sql)

meaning char(SO)
);

insert into channeLl(type, bit, meaning) values (''S" ,4,"DCD (Drop Carrier Detect)");
insert into channeLI(type, bit, meaning) values ("S" ,5,"CTS (Clear to Send)");
insert into channeLl(type, bit, meaning) values ("P" ,5,"No Timeout");
insert into channeLl(type, bit, meaning) values ("P" ,6,"20 Second Timeout");
insert into channeLI(type, bit, meaning) values ("S" ,6,"Cancel host");
insert into channeLI(type, bit, meaning) values ("S" ,10,"Trustwortby hunames");
insert into channeLI(type, bit, meaning) values ("S" ,11,"Nontrustworthy huids");
insert into cbanneLl(type, bit, meaning) values ("P" ,10,"Trustworthy hunames");
insert into cbanneLl(type, bit, meaning) values ("P" ,11,"Nontrustworthy buids");
insert into channeLl(type, bit, meaning) values ("P" ,12," 1024 byte packet size");
insert into channeLl(type, bit, meaning) values ("P" ,13,"512 byte packet size (256 if bit 12 is set)");
insert into channeLl(type, bit, meaning) values("$" ,14,"Cancel user output in 1 min");
insert into cbanneLI(type, bit, meaning) values ("P" ,14,"Cancel user output in 1 min");
insert into cbanneLl(type, bit, meaning) values ("P" ,15,"Cancel user output in 5 min 20 min ir bit 14 set");
insert into cbanneLl(type, bit., meaning) values ("S" ,15,"Cancel user output in 5 min 20 min if bit 14 set");
insert into cbanneLI(type, bit, number,meaning) values ("E" ,0,1,"TCP Protocol");
insert into cbanneLI(type, bit, number,meaning) values ("E" ,10,1,"Trustwortby bunames");
insert into cbanneLI(type, bit, number,meaning) values ("E" ,11,1,"Nontrustwortby buids");
insert into cbanneLl(type, bit, number,meaning) values ("E" ,12,l,"1024 byte packet size");
insert into cbanneLl(type, bit, number,meaning) values ("E" ,13,1,"512 byte packet size (256 if bit 12 is set.)'

update relation set type=" I" where relid=table_id(" channeLI");

store channel
select ·c.type, channel=c.number,bit_set=ml.bit,ci.meaning

from configure c, cbanneLI ci, ma.sk_I ml
where c.type=ci.type
and (ci.number=O or mod(c.number,8)=0)
and ml.bit=ci.bit
and mod(c.value/ml.value,2) = 1

order by type,cbannel
end store;

comment on channel is "Decodes the bits set in 'configure.value' "," lM";

cmds (cmds5.sql)

/*
** Description for stored commands from the descriptions table.
*I

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.

Britton Lee

i.

149

cmds (cmdsS.sql)

·1

%continuation

drop cmds;

store cmds
select distinct command == r .name,

description = substring(l,60,d.text)
from relation r, descriptions d
where r .relid == d.relid
and (r.owner =- dba or r.owner == userid)
and r.type == "C"
and d.key == "lL"
order by command

end store;

comment on cmds is

Prttlt/irml. Storttl Command•

"Lists standard stored commands is - a one line description" ,"IL";

cmds_date (cmds5.sql)

/*

160

** store "cmds_date" command.
•;
drop cmds_date;

store cmds_date
select distinct command == r .name,

description= substring(l,60,d.text)
from relation r, descriptions d
where r .relid = d.relid
and (r.owner = dba or r.owner == userid)
and r.type == "C"
and d.key == "1 T"
order by command

end store;

comment on cmds_date is ·
"Lists stored commands relating to date and time","IL";

Britton Let

Predefined Stored Oommanda

cmds_dba (cmds5.sql)

/*
u store "cmds_dba" command.
*/

drop cmds_dba;

store cmds_dba
select distinct command = r.name,

description = substring(l,60,d.text)
Crom relation r, descriptions d
where r .relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C"
and d.key = "10"
order by command

end store;

comment on cmds_dba is
"Lists stored commands mostly used by the dba" ," lL";

cmds_permit (cmds5.sql)

/*
** Store "cmds_permit" command.
*I

drop. cmds_ permit;

store cmds_permit
select distinct command = r .name,

description = substring(l,60,d.text)
Crom relation r, descriptions d
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C"
and d.key = "lP"
order by command

end store;

comment on cmds_permit is

cmds_dba (cmds5.sql)

"Lists stored commands dealing protection of objects"," lL";

Britton Lee 151

cmds_space (cmds5.sql) Predefined Stored Commanda

cmds_space (cmds5.sql)

/*
** Store "cmds_space,, command.
*/
drop cmds_space;

store cmds_space
select distinct command = r.name,

description = substring(l,60,d.text)
Crom relation r, descriptions d
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = ncn
and d.key = ,, IS,,
order by command

end store;

comment on cmds_space is
9 Lists stored commands dealing is- space/size/storage",,,lL9 ;

cmds_system (cmds_sys.sql)

I*

152

** Define "cmds_system" command.
*/

I*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

drop cmds_system;

store cmds_system
select distinct command = r.name,

description = substring(l,60,d.text)
Crom relation r, descriptions d
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C"
and d.key == ,, IM"
order by command, d.key

end store;

Britton Lee

Predefined Stored Oomma.nda cmds_system (cmds_sys.sql)

comment on cmds_system is
"Lists stored commands for monitoring performance"," lL";

config (config.sql)

/* cols command • /

drop cols;

store cols
select column_name, type Crom columns where relid = table_id(&table)

end store;

comment on cols is
"Displays column names and types for given TABLE" ,"lL";

config (config.sql)

/*
.. The "config" stored command dumps the "configure" table from the
.. "system" database.
•;
/*
u Stored command scripts do not use continuation characters .
.. We turn continuation off here in case the user or system
.. profile files turned them on.
·1
%continuation

/* "config_I" - constant relation for "config" command. • /

drop config;
drop config_I;

create table config_I
(type fixed char(l), name char{40));

insert into config_I (type,name) values(" A"," Accelerator, value=WCS level");
insert into config_I (type,name) values("B" ,"Block multiplexer host interface");
insert into config_I (type,name) values("C", "Checkpoint interval");
insert into config_I (type,name) values{ "D" ,"Default charset 0 ASCII !==EBCDIC");
insert into config_I (type,name) values{ "E", "Ethernet host interface");
insert into config_I (type,name) values("I", "Database server id for IDENTIFY response");
insert into config_I (type,name) values("K", "Memory configuration");
insert into config_I (type,name) values("M", "Monitor interval(minutes)");

Britton Lee 163

config (conflg.sql) Predefined Stored Commanda

insert into config_J (type,name) values("P", "IEEE-488 host interface");
insert into config_I (type,name) values("R", "IDM/RDBMS software release"-);
insert into config_I (type,name) values("S", "RS-232 host interface");
insert into config_I (type,name) values("T",

"Mag tape interface, value=4 for h/p"
);

update relation set type="!" where relid=table_id("config_I");

store config
select c.*,

meaning =ex.name
from configure c, config_I ex

where c.type = ex.type
order by c.type

end store;

comment on config is "Identify the tuples from the configure relation" ,"lM";

. date (date8.sql)

All of the objects used by the dat.e command and the "DateAndTime" view are included
to improve readability. A number of stored commands for date conversion are also
found in this file.

/* This installs the date command and the gmt_date command along
with their needed relations and views * /

/* make sure that the values in the savings_! relation below are correct
for the local time zone * /

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

drop date, gmt_date; /* the commands for date and time * /

drop DateAndTime; /* the view that holds the current date and time */

drop GMT; /* the view that holds GMT current date and time * /

drop ymd; /* stored command returns idmdate given YYYYMMDD * /

drop dateconv; /* stored· command to convert idmdate to readable
form*/

154 Britton Lee

Pretlefinetl Storetl Oommantl1 date (date8.sql)

drop basel970;

drop basel 900;

drop locaLI;

drop mon_J;

drop month_J;

drop julian_l;

drop calendar _J;

drop day_J;

drop number _I;

drop savings_J;

/* set the base for calendar _I to Jan 1, 1970 • / ·

/* set the base for calendar _J to Jan 1, 1900 • /

/* a view of getdate to correct for GMT displacement * /

/* a view or month_J with the values corrected for
leap years *I

/* a relation containing the first and last days,
name and number or the 12 months *I

/* a view of the calendar relation containing the
information !or the current year *I

/* a relation containing information needed to
convert to julian date and allow for leap years
for the years 1985 - 1992 *I

I* a relation containing the 7 days or the week • /

/* relation containing the days of the month *I

/* a relation for daylight savings correction •I

1··1
create table savings_I (/* displacement of ·hours from GMT and the change• I

first integer, /* julian dates for daylight savings time *I
last integer, /* Check these tuples for local time zone •I
displacement integer);

update relation set type="I" where relid=table_id("savings_l");

insert into savings_J (first, last,displacement)
values (0,120, 8);

insert into savings_J (first, last,displacement)
values (121,240, 7);

insert into savings_J (first, last,displacement)
values (241,365, 8);

create table calendar _J(
day _one integer, /* first day year since epoch *I
sbortyear fixed char(2), /* YY form or year ie. 85 *I
longyear fixed char(4), /* YYYY form or year ie. 1984 •I
leapyear integer /* 0 if not leap year, 1 if' leap year *I
);

update relation set type="l" where relid=table_id("calendar _J");

insert into calendar _I (day _one,shortyear, longyear ,leapyear)
values (31045,"85" ," 1985" ,O);

Britton Lee 155

date (date8.sql) Predefined Stored Commantla

158

insert into calendar _I (day _one,shortyear, longyear,leapyear)
values (31410,"86" ,"1986" ,O);

insert into calendar _I (day _one,sbortyear, longyear,leapyear)
values (31775,"87" ," 1987" ,O);

insert into calendar_! (day_one,shortyear, longyear,leapyear)
values (32140,"88" ," 1988" ,1);

insert into calendar_! (day_one,shortyear, longyear,leapyear)
values (32506,"89" ," 1989" ,O);

insert into calendar _I (day _one,shortyear, longyear ,leapyear)
values (32871,"90" ," 1990" ,O);

insert into calendar _I (day _one,shortyear, longyear ,leapyear)
values (33236,"91" ,"1991" ,O);

insert into calendar_I (day_one,shortyear, longyear,leapyear)
values {33601,"92" ," 1992" ,1);

insert into calendar _J (day _one,shortyear, longyear ,leapyear)
values {33967,"93" ," 1993" ,O);

insert into calendar _I (day _one ,shorty ear, longyear ,leapyear)
values (34332 "94" "1994" O}· , ' ' '

insert into calendar _I (day _one,shortyear, longyear ,leap year)
· values (34697,"95" ," 1995" ,O);

/* This will reset calendar _I to work from Jan 1,1970 base date * /

store base1970
update calendar _J

end store;

set day _one = day _one • 25566
where day _one > 25566

comment on base1970 is
"Change base for date conversion to Jan 1,1970"·,"lT";

/* This will reset from 1970 to 1900 * /

store base1900
update calendar _J

end store;

set day _one = day _one + 25566
where day _one < 25566

comment on base1900 is
"Change base for date conversion to Jan 1,1900 from 1970" ,"IT";

Britton Lee

Predefined Stored Oomm11nd1 date (date8.sql)

/* set up current year • /

create view julian_I
as select

day _one = cal.day _one,
cal.shortyear,
cal.longyear,
cal.leapyear,
s.displacement
from calendar _I cal,savings_I s
where cal.day_one <= getdate
and cal.day _one + 365 + cal.leapyear > getdate
and s.first < === getdate - cal.day _one
and s.last > getdate - cal.day _one;

comment on julian_J is
"View of the current year in calendar _I", "Vl";

/*
** day_I
.. used to give the day or the week.
*/

create table day _I(number integer ,day char(9),shortday fixed char(3));

update relation set type==="I" where relid=table_id("day_I");

insert into day _l(number,day,shortday) values(O,"Monday" ,"Mon");
insert"into day _I(number ,day ,shortday) values(l,"Tuesday" ,"Tue");
insert into day _l(number,day ,shortday) values(2,"Wednesday" ,"Wed");
insert into day _I(number ,day ,shortday) values(3,"Thursday" ,"Thu");
insert into day_l(number,day,shortday) values(4,"Friday" ,"Fri");
insert into day_l(number,day,shortday) values(5,"Saturday" ,"Sat");
insert into day_l(number,day,shortday) values(6,"Sunday" ,"Sun");

r
** month_I
** used to give the month
*/

create table month_ I(first integer,
last integer,
month char(9),
month_num fixed char(2),
leapfirst integer,
leaplast integer);

update relation set type="l" where relid=table_id("month_J");

insert into month_J(first, last, month,month_num, leapfirst, leaplast)
values (1,31," January" ,"01", 0, O);

insert into month_l(first, last, month,month_num, leapfirst, leaplast)

Britton Lee 167

date (date8.sql) Predefined Stored Commanda

158

values (32,59,"February" ,"02", 0, l);
insert into month_l(fim, last, montb,month_num, leapfirst, leaplast)

values (60, 90, "March" ,"03", 1, l);
insert into montb_l(first, last, month,month_num, leapfirst, leaplast)

values (91, 120, "April" ,"04", 1, l);
insert into month_l(first, last, month,month_num, leapfirst, leaplast)

values (121, 151, "May" ,"05", 1, l};
insert into month_I(first, last, month,month_num, leapfirst, leaplast)

values (152, 181, "June" ,"06", 1, l);
insert into month_l(first, last, month,month_num, leapfirst, leaplast)

values (182, 212, "July" ,"07", 1, l);
insert into month_l(first, last, month,month_num, leapfirst, leaplast)

values (213, 243, "August" ,"08", 1, l);
insert into month_l(first, last, month,month_num, leapfirst, leaplast)

values (244, 273, "September" ,"09", 1, l);
insert into month_l(first, last, month,month_num, leapfirst, leaplast)

values (274, 304, "October"," 10", 1, l);
insert into month_l(first, last, month,month_num, leapfirst, leaplast)

values (305, 334, "November","11", 1, l);
insert into month_l(first, last, month,month_num, leapfirst, leaplast)

values (335, 365, "December","12", 1, l);

/* view ot month that corrects tor leapyear on leapyears • /

create view mon_I
as select first = m.first + m.leapfirst • jul.leapyear,

last = m.last + m.leaplast • jul.leapyear,
month= m.month,
month_num = m.month_num

Crom julian_I jul, month_I m;

comment on mon_J is
"View ot the months Crom the current year", "Vl";

/*
** Used to compensate Cor GMT date standard.
** Basically this is an if statement. For a
•• given hour or the day what do we have to
•• add (subtract) to the GMT date to get the
** local date
•• also useful for numeric conversions
** especially date, hour, minute, and second conversions
*/

create table number _J(number integer,
str fixed char(2)

);

update relation set type="I" where relid=table_id("number_I");

insert into number_l(number,str} values (0,"00");
insert into number_J(number,str) values (l,"01"};

Britton Lee

Predefined Stored Command•

insert into number_l(number,str) values (2,•02");
insert into number_l(number,str) values (a,•oa•);
insert into number_l(number,str) values (4,.04");
insert into number _I(number ,str) values (s,•os");
insert into number_l(number,str) values (6,,,06");
insert into number_l(number,str) values (7,•07•);
insert into number_l(number,str) values (8,•09•);
insert into number _l(number,str) values (9,"09");
insert into number_l(number,str) values (10,•10");
insert into number_l(number,str) values (11,"ll•);
insert into number _I(number ,str) values (12," 12");
insert into number_J(number,str) values (13,"13");
insert into number_J(number,str) values (14,•14•);
insert into number_J(number,str) values (15,,,15");
insert into number_l(number,str) values (16,•16");
insert into number_l(number,str) values (17,"17");
insert into number_l(number,str) values (18,"18");
insert into number_J(number,str) values (19,"19");
insert into number _J(number,str) values (20,"20");
insert into number_l(number,str) values (21,•21");
insert into number_J(number,str) values (22,•22");
insert into number _I(number ,str) values (23,"23");
insert into number_l(number,str) values (24,"24");
insert into number _I(number ,str) values (25,"25");
insert into number_l(number,str) values (26,"26");
insert into number_l(number,str) values (27,"27");
insert into number _J(number ,str} values (28,"28");
insert into number _J(number ,str) values (29,.29");
insert ·into number_J(number,str) values (30,"30");
insert into number_J(number,str) values (31,"31");
insert into number_J(number,str) values (32,"32");
inseri in.to number_l(number,str) values {33,"33");
insert into number_l(number,str) values (34,"34•);
insert into number _J(number ,str) values (35," 35");
insert into number _l(number,str) values (36,"36");
insert into number_l(number,str) values (37,.37");
insert into number _I(number ,str) values (38,"38");
insert into number _l(number,str) values {39,"39");
insert into number_l(number,str) values (40,"40");
insert into number_l(number,str) values (41,"41");
insert into number _l(number,str) values (42,"42");
insert into number_l(number,str) values (43,"43");
insert into number_J(number,str) values (44,"44");
insert into number_l(number,str) values (45,"45");
insert into number_l(number,str) values (46,"46");
insert into number_J(number,str) values (47,"47");
insert into number_l(number,str) values (48,"48");
insert into number_J(number,str) values (49,"49");
insert into number_l(number,str) values (50,"50");
insert into number _J(number,str) values (51,"51");
insert into number_l(number,str) values (52,"52");
insert into number_J(number,str) values (53,"53");

Britton Lee

date (date8.sql)

169

date (date8.sql) Predefined Stored Oommanda

180

insert into number_J(number,str) values (54,n54");
insert into number_l(number,str) values (55,"55");
insert into number_J(number,str) values (56,"56");
insert into number_l(number,str) values (57,"57");
insert into number_J(number,str) values (58,"58");
insert into number_l(number,str) values {59,"59");
insert into number _I(number,str) values (60,"60");

/* This view corrects getdate to the local date ba.sed on the
** current local displacement from GMT
*/

create view local_I as
select lgetdate = getdate

+ (((gettime • displacement * 216000)
/ abs(gettime • displacement * 216000)

) • 1) I 2
from julian_I;

comment on local_I is
"View of getdate corrected (or time zone", "VI";

/*
** Store "DateA.ndTime" view.
** For string conversion of numbers whose preferred format is with a
** preceding zero (as in the ninth or the month being YYMM09 or
** minutes in HH:03:SS) the number _I relation is used rather than the
** string function {which won't give preceding zeroes)
*/ .

create view DateAndTime as
select day = day .day,

date_numeric = concat(jul.shortyear,concat(month.month_num,n_day.str)),
date_slashed =

concat(jul.shortyear,
concat(" /",

concat(month.month_num,
concat(" /" ,n_day.str)

)
)

),
date_ written =

con cat(month.month,
concat(" ",

Time=

concat(string(O, n_day.number),
concat(" "

' '

)
),

)

concat(" ",jul.longyear)
)

Britton Lee

Predefined Stored Commande date (date8.sql)

substring (1,10, /* used only to narrow column width • / .
concat(string(O,

mod((((gettime/60)/60)/60 + (24 - jul.displacement)),24)
),

concat(" :",
concat(n_min.str,

cone at(":" ,n_secs.str)

)
)
)

)

/* end attribute list • /
from mon_I month,
day_I day,
julian_I jul,
number _I da,
number _I n_day,
number _I n_min,
number _I n_secs,
local_I local
/* jul.day _one is year's first day • /
where month .first < = lgetdate-jul.day _one
and month.last >= lgetdate -jul.day _one
and n_day .number = lgetdate - jul.day _one - month.first + 1
and da.number=(((gettime/60}/60}/60}
and n_min.number = mod(gettime/3600,60}
and n_secs.number = mod(gettime/60,60}
and day.number= mod((lgetdate),7); !*gets day of week•/

comment on DateAndTime is
"Gives current date and time in various formats", "VI";

r
** date command
•;
store date
select

Day= day,
Date = date_ written,
Time= Time
from DateAndTime

end store;

comment on date is "Returns the current date and time from the database server clock"," 1 T";

create view GMT as
select day = day .day,

Britton Lee

date_numeric = concat(jul.shortyear ,concat(month.month_num,n_day .str)),
date_slashed =

concat(jul.shortyear,
concat(" /",

Ul

date (date8.sq)) Predefined Stored Oomm4nd8

182

concat(montb.month_num,
concat(" /" ,n_day.str)

)
)

),
date_written =

concat(month.month,
concat(" ",

)
),

Time=

concat(string(O, n_day.number),
concat(" ,",

con cat(" ",jul.longyear)
)

)

substring (1,10, /* used only to narrow column width * /
concat(string(O,

mod((((gettime/60)/60)/60 + 24),24)
),

concat(" :",
concat(n_min.str,

con cat(":" ,n _secs.str)

)
)
)

)

/* end attribute list * /
Crom mon_I month,
day_I day,
julian_I jul,
number _I da,
number _I n_day,
number _I n_min,
number _I n_secs

/* jul.day _one is magic ror year's first day * /
where month.first <= getdate-jul.day _one
and month.last >== getdate -jul.day _one
and n_day .number = getdate - jul.day _one - month.first + 1
and n_min.number = mod(gettime/3600,60) ·
and n_secs.number = mod(gettime/60,60)
and day .number = mod(getdate,7); /* gets day or week * /

comment on GMT is
"gives Greenwich date and time in various formats", "Vt";

I*
** Store gmt_date command

*I

store gmt_date

Britton Lee

Predefined Stored Commands date (date8.sql)

select
Day== day,
Date = date_ written,
Time== Time

from GMT
end store;

comment on gmt_date is "Returns Greenwich Mean Time and Date Crom database server"," 1 T";

/*
,.. Store dateconv to convert from idmdate to readable date £ormat

*/

store dateconv
select date_written == concat(month,

concat(" ",
concat(string(O, number),

concat("" I I

concat(" ")ongyear)
)

)

)
from calendar _I, month_!, number _I
where &rst + leap&rst * leapyear <== integer(&ddmdate) - day_one
and last+ leaplast * leapyear >== integer(&idmdate) - day_one
and number = integer(&idmdate) - day _one - first + 1

- leapfirst * leapyear
end st.Ore;

comment on dateconv is
"returns the month day, year given idmdate NUMBER", "IT";

/*
** Define ymd command to convert a string or the form "YYYYMMDD" to
•• an idmdate
*I

store ymd
select idmdate == day _one + first + integer(substring(7 ,2,SYYYYMMDD))

+ leapyear * leapfirst - 1
from calendar _I, month_I

where longyear = substring(l,4,SYYYYMMDD)
and month_num == substring(5,2,SYYYYMMDD)

end store;

comment on ymd is
"Returns the idmdate given a date string: YYYYMMDD" ," 1 T";

Britton Lee 183

dbs (dbs.sql) Predefined Stored Oommand1

dbs (dbs.sql)

** Define "dbs" command.
*/

/*
** Stored command scripts do not use continuation characters.

164

** We turn continuation oft' here in case the user or system
** profile files turned them on.
*/

%continuation

drop dbs;
drop dbsO_I;

create table dbsO_I (value smallint, text char(46}};

/*
** for ASCII databases
*/

/* 'text can only be this long!! ' * /
insert into dbsO_I (value, text) values (1,

"Database/ disks not on-line (ASCII)");
insert ·into dbsO_I (value, text) values (9,

"Locked: database marked unrecoverable (ASCII)");
insert into dbsO_I (value, text) values (17,

"Unused since boot, recovery not needed (ASCII)");
insert into dbsO_I (value, text) values (145,

"Locked: unused since boot-no recovery need (A)");
insert into dbsO_I (value, text) values (33,

"On-line (ASCII)");
insert into dbsO_I (value, text) values (161,

"LOCKED for dump/load/rollforward (on-line) (A)");
insert into dbsO_I (value, text) values (49,

"Unused since boot, recovery had to run (ASCII)");
insert into dbsO_I (value, text) values (177,

"LOCKED: Unused since boot-recovery run (ASCII)");
insert into dbsO_I (value, text) values (65,

"being loaded or rolled forward (ASCII)");
insert into dbsO_I (value, text) values (193,

"LOCKED: being loaded or rolled forward (ASCII)");
insert into dbsO_I (value, text) values (69,

"being created or destroyed (ASCII)");
insert into dbsO_I (value, text) values (197,

"LOCKED: being created or destroyed (ASCII)");
/*
** for EBCDIC databases
*/

Britton Lee

Predefined Stored Oommanda

insert into dbsO_I (value, text) values (3,
"Database/ disks not on-line");

insert into dbsO_I (value, text) values (11,
"Locked: database marked unrecoverable (EBCDIC)");

insert into dbsO_I (value, text) values (19,
"Unused since boot, no recovery needed (EBCDIC)");

insert into dbsO_I (value, text) values (147,
"Locked: unused since boo~no recovery need(E)");

insert into dbsO_I (value, text) values (35,
"On-line (EBCDIC)");

insert into dbsO_I (value, text) values (163,
"LOCKED for dump/load/rollf'orward (on-line) (E)");

insert into dbsO_I (value, text) values (51,
"Unused since boot, recovery had to run (E)");

insert into dbsO_I (value, text) values (179,
"LOCKED: Unused since boot, recovery run (E)");

insert into dbsO_I (value, text) values (67,
"being loaded or rolled forward (EBCDIC)");

insert into dbsO_I (value, text) values (195,
"LOCKED: being loaded or rolled forward (E)");

insert into dbsO_I (value, text) values (71,
"being created or destroyed (EBCDIC)");

insert into dbsO_I (value, text) values (199,
"LOCKED: being created or destroyed (EBCDIC)");

update relation set type="I" where relid=table_id("dbsO_l");

store dbs
select "distinct d.name,

dbid~ring(3,d.id),

end store;

owner _name = u.name,
status = tO.text
from databases d, users u,dbsO_I tO
where u.id =* d.owner
and tO.value ==* mod(integer(d.stat) + 65536 ,256)
order by name

dbs (dbs.sql)

comment on dbs is "Displays databases on this shared database system"," lM";

depend (depend.sql)

/*
** Store "depend" command.
·1

/*
** Stored command scripts do not use continuation characters.
•• We turn continuation off here in cue the user or system
•• profile files turned them on.

Britton Lee 1G5

depend (depend.sq)) Predefined Stored Commanth

*/

%continuation

drop depend;

store depend
select distinct object == table_name(c.relid),

dependents== table_name(c.drelid),
downer == u.name
Crom crossrer c, users u, relation r

where c.relid == table_id(&:object)
and r.owner == u.id
and r.relid == c.drelid
order by object

end store;

comment on depend is
•Displays objects depending on OBJECT•," 1L•;

describe (describe.sql)

1·

188

** Define •describe• command
*/

/*
•• Stored command scripts do not use continuation characters.
•• We turn continuation off here in case the user or system
•• profile files turned them on.
·1
%continuation

drop describe;
store describe
select description == substring(l,72,d.text)

Crom relation r, descriptions d
where table_id(&:object) == r.relid
and d.relid == r.relid
and d.attid = 0
order by d.key

end store;

comment on describe is
•Displays description of given RELATION or COMMAND•," IL";

/*
•• comment on commands (or descriptions or system relations

Britton Lee

Predefined Stored Commanda describe (describe.sql)

*/

comment on relation is
"relation: Catalog of all objects in database. An object is a" ,"91";

comment on relation is
" relation, view, file, stored command or stored pr~" ,"92";

comment on relation is
" gram. Each tuple represents a single object. ","93";

comment on attribute is
"attribute: Catalog of each attribute of each relation. Each ","91";
comment on attribute is
" tuple represents one attribute. ","92";

comment on indices is
"indices: Catalog of indices that exist in database. Each ","91";
comment on indices is
" tuple represents one index. ","92";

comment on protect is
"protect: Catalog of protection information for the database." ,"91";
comment on protect is
" Each tuple represents one type of access (e.g., ","92";
comment on protect is
" read, write, create index) for one user or group ","93";
comment on protect is
" · for all attributes of one view, relation, file, or ","94";
comment on protect is
" stored command. ","95";

comment on query is
"query: Text of stored commands ","91" i

comment on crossref is
"crossref: Catalog of dependencies among relations, views and ","91";
comment on crossref is
" stored commands. ","92";

comment on transact is
"transact: Transaction logging relation ","93";

comment on batch is
"batch: Temporary transaction logging relation, used for ","91";
comment on batch is
" transaction management so that even transactions ","92";
comment on batch is
" against non-logged relations may be cancelled if ","93";
comment on batch is
" needed. ","94";

Britton Lee 167

describe (describe.sql) Predefined Stored Commanda

comment on descriptions is
"descriptions: User definable descriptions, keyed to relation id's"," 91";

comment OD users is
"users: Mapping or user and group names to user id ","91";
comment on host_ users is .
"host_ users: Mapping from host id and user's id to database server user id." ,"91";

comment oD blockalloc is
"blockalloc: Catalog or disk blocks, showing relations assigned ","91";
comment on blockalloc is
" to blocks. Each tuple represents a block. ","92";

comment on disk_usage is
"di.sk_usage: Shows relation and database allocation. ","91";

dir (objects7 .sql)

/*
** Define "dir" command to find an object by name
*/

store dir

end store;

select o.relid,
o.object,
o.type,
ot.definition,
o.owner,
o.rows

from objects o, otype_I ot
where o.type *= ot.type
and o.object = &name
order by object,owner

comment on dir is
"Displays all objects of given NAME or fragment"," IL";

diskio (diskio.sql)

/*
** Find average disk access time from devmonitor
*I

/*
** Stored command scripts do not use continuation characters.

188 Britton Lee

Predefined Stored Commanda

** We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

drop diskio;

store diskio
select distinct d.name,

s.slot,
accesses= sum(s.d2),
time_ticks = sum(s.dl),

diskio (diskio.sql)

avg_ms = bcdftt(5,bcdftt(5,sum(s.dl) * 1000 / 60 / bcdftt(5,sum(s.d2))))
from disks d, devmonitor s
where s.type ="D" and s.d2 > 0 /* prevent division by zero * /
and s.d3 = d.low /* devmonitor identifies disks by low block*/
and (d.type = "P" or d.type="M") /* only meaningful for physical disks * /
group by s.d3, s.slot

end store;

comment on diskio is "lists the on-line disks and their 1/0 activity"," lM";

expire (date8 .sql)

drop expire;

/* Set expiration date on an object to current date plus <N> days * /

store expire
update relation

set expire= getdate + &n_days
where relid = table_id (&!object)
and owner = userid

end store;

comment on expire is
"sets the expiration date for an OBJECT to getdate + NDAYS" ,"lT";

expiredate (date8.sql)

/*
**
**
*I

Define "expiredate" stored command to update relation.expire to
a given YYYYMMDD

drop expiredate;

Britton Lee

expiredate (date8.sql) Predefined Stored Commanda

store expiredate
update relation

from calendar _I, month_I
set expire= day_one +first+ integer(substring(7,2,&YYYYMMDD))

end store;

+ leapyear * leapfirst - 1
where longyear = substring(l,4,&YYYYMMDD)
and month_num = substring(5,2,&YYYYMMDD)
and relid= table_id(&OBJECT)
and owner = userid

comment on expiredate is
"sets the expiration date for an OBJECT to date YYYYMMDD" ,"IT";

files (objects7 .sql)

I*
** Store "files" command.
*I
store files
select distinct files == object,

owner,
logging

from objects
where type = "F"
and ((ownerid = userid or ownerid = dba)

or userid =dba /* show all relations for dba * /
)

order by owner, object
end store;

comment on files is "Displays files owned by you and the dba" ,"IL";

freelog (freespc.sql)

170

drop freelog;

store freelog
select log_blocks =sum (du.high -du.low+ 1),

free_blks = count(b.relid)
from disk_usage du, blockalloc b
where b.relid = 7
and b.mode=32
and du.relid = 7

end store;

comment on freelog is

Britton Lee

Predefined Stored Commanda rreelog (lreespc.sql)

•Displays space usage in hard allocated transact log",• ts";

freespace (freespc.sql)

/*
** Report Creespace in database in blocks
*/

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
•• profile files turned them on.
*/

%continuation

drop freespace;

store f reespace
select totaLblks =sum (du.high - du.low + 1),

free_blks = count(b.relid),
percent_used = 100 -

(count(bl.relid) * 100) /
sum (du.high - du.low + I)

from disk_usage du, blockalloc b, blockalloc bl
where du.relid = -32768
and b.relid = 0
and bl.relid != 0

end s1-0re;

comment on freespace is
"Displays total space and Cree space in this database"," IS";

groups (groups3.sql)

I*
** Define 'groups' stored command. Lists names and membership of groups.
·1

/*
•• Stored command scripts do not use continuation characters.
•• We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

Britton Lee 171

groups (groups3.sql)

drop groups;

store groups
select distinct gid,

name,
members == count(id) - I

Crom users
group by gid
having gid==id
and id!== 0

end store;

Prctlcfirml Storctl Commantla

comment on groups is "Lists the groups and membership for this database"," ID";

group_off (groups3.sql)

/*

172

** Allows groups to be temporarily removed Crom host_users
** and users, and restored later.
*/

drop group_ofr;

/* A place to keep temporary users * /

create· table host_ users_ I (hid smallint,
huid integer,
uid smallint

)
with logging;

create table users_! (id smallint,
gid smallint,
name char(l2)

)
with logging;

update relation set type=="I"
where relid==table_id(" host_ users_I")
or relid==table_id("users_I");

/* save group members in a safe place, * /
store group_ofr
insert into users_I (id, gid, name)

select u.id, u.gid, u.name
Crom users u, users ul
where ul.name == &group
and ul.id == ul.gid
and ul.gid == u.gid

insert into host_users_I (hid, huid, uid)

Britton Lee

Predefined Stored Oommande group_oft' (groups3.sql)

select hid,huid,uid
from host_users, users u, users ul
where ul.name = &group
and ul.id = ul.gid
and ul.gid = u.gid
and u.id = uid

/* Now delete the group members • /
delete from host_ users

where uid =
any (select u.id

from users u, users u 1
where ul.name = &group
and ul.id = ul.gid
and ul .gid = u.gid

delete from users
where gid =

any (select id
from users
where name = &group
and id= gid

end store;

comment on group_off is
"Turn off all access to database for GROUP - for DBA only", "lD";

group_on (groups3.sql)

/* Group-on command to restore group members from holding • /

drop group_on;

store group_on
insert into users (id, gid, name)

select u.id, u.gid, u.name
from users_I u, users_J ul
where ul .name = &group
and ul.id = ul.gid
and ul.gid = u.gid

insert into host_users (hid, huid, uid)
select hid,huid,uid
from host_users_I, users_J u, users_I ul
where ul.name = &group
and ul.id = ul.gid
and ul.gid = u.gid
and u.id = uid

delete from host_users_J
where uid =

any (select u.id

Britton Lee 173

group_on (groups3.sql) Predefined Stored Oommanda

)
delete from users_I

where gid =

from users_I u, users_I ul
where ul.name = &group
and ul .id = ul .gid
and ul.gid = u.gid

any (select id

)
end store;

from users_I
where name = &group
and id= gid

comment on group_on is
"Turn GROUP database access back on - for OBA only", "lD";

help (cmds5.sql)

!* left here to get rid or the old "help" in old data.bases * /
drop help;

I*
** Define "help" command.
*I

store help
select note="USE THE 'cmds' COMMAND TO GET A LIST OF COMMANDS"
end store;

indexes (indexes.sq!)

I*

174

** Install Indexes stored command to decode indices relation
**
*/

I*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*I

%continuation

drop indexes;

Britton Lee

Predefined Stored Commanda indexes (indexes.sql)

/* Build "itype_r for "indexes" command • /

drop itype_I;

create table itype_l(type tinyint, desc char(l7));

insert into itype_l(type,desc) values (l,"unique noncluster");
insert into itype_l(type,desc) values (-3, "unique noncluster");
insert into itype_l(type,desc} values (0, "nonclustered");
insert into itype_l(type,desc) values (2, "clustered");
insert into itype_l(type,desc) values (-2, "clustered");
insert into itype_l(type,desc) values (-1, "unique clustered");
insert into itype_l(type,desc) values (3, "unique clustered");

update relation set type="I" where relid=table_id("itype_I");

/*
•• Store "indexes" command
·1

store indexes
select type = it.desc,

keyl = coLname(i.relid,tinyint(substring(4,1,i.keys))),
key2 = coLname(i.relid,tinyint(substring(l4,l,i.keys))),
key3 = coLname(i.relid,tinyint(substring(24,l,i.keys))),
i.indid,
i.card
from itype_I it, indices i, relation r
where i.relid = table_id(&table)
and mod(i.stat,4) = it.type
order by i.indid

end store;

comment on indexes is
"Displays keys and type of indices for given RELATION"," ID";

mine (objects7 .sql)

/*
•• Define "mine" command to find an object owned by me
*I
drop mine;

store mine

Britton Lee

select o.relid,
o.object,
o.type,
ot.definition,
o.rows

Crom objects o, otype_I ot

175

mine (objects7 .sql) Predefined Stored Commanda

end store;

where o.type *= ot.type
and o.ownerid = userid
order by type,object

comment on mine is
"Displays all objects owned by this user"," IL";

mon (mon5.sql)

I*

176

** "moo" commands-cpu usage for the last N monitor intervals.
**

*/

I*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*I

%continuation

drop mon;

store mon
select

CPU_activity ="avg monitoring interval (minutes):",
time = bcdfuced(5,2,avg(bcdftt(O,length))/3600)
from monitor

select
SEQNO
CPU_percent
DAC_percent
IDLE_ percent
COMMANDS
AVG _seconds
from monitor

= seqno,
= bcdftt(5,IOO * bcdftt(5,cpu)/bcdftt(5,length)),
= bcdftt(5,IOO * bcdftt(5,dac)/bcdftt(5,length)),
= bcdftt(5,IOO * bcdftt(5,idle)/bcdftt(5,length)),

= smallint(cmnds),
= bcdftt(5,bcdflt(5,avgcmnd)/60)

where (date=getdate and time >gettime ·length * integer(&INTERVALS))
or (date=getdate-I and time> gettime ·length * integer(&INTERVALS)

)
order by date,time

end store;

+ integer(24) * integer(60) * integer(3600)

comment on moo is "Monitor CPU and DAC usage for last N monitor intervals"," IM";

Britton Lee

Predefined Stored Oommanda mondisk (monS.sql)

mondisk (mon5.sql)

/*
** "mondisk" command-disk usage for the last N monitor intervals.
*/

drop mondisk;

store mondisk
select

select

DISK_active ="avg monitoring interval (minutes):",
time = bcdfixed(S,2,avg(bcdftt(O,lengtb))/3600)
from monitor

SEQNO = seqno,
READS = reads,
WRITES = writes,
IUTS =hits,
DISK_ WT _sec = bcdftt(5,bcdftt(5,diskwait) / 60)
from monitor
where (date=getdate and time >gettime - length * integer(&INTERVALS))
or (date=getdate-1 and time> gettime - length * integer(&INTERVALS)

+ integer(24) * integer(60) * integer(3600)
)

order by date,time
end store;

comment on mondisk is "Monitor disk usage for last N monitor intervals"," lM";

monfail (mon5.sql)

/*
** "monfail" command-Time processing or processes are suspended for lack
** or available memory resources
*I

drop monCail;

store monrail
select

select

Britton Lee

SUSPENDED = "avg monitoring interval {minutes):",
time = bcdfixed(5,2,avg(bcdftt(O,lengtb))/3600)
from monitor

SEQNO == seqno,
INDELAY _pct == bcdftt(5,100 * bcdftt(5,indelay)/bcdftt(5,length)),
OUTDELAY _pct == bcdftt(5,100 * bcdftt(5,outdelay)/bcdftt(5,lengtb)),
MEMDELAY _pct == bcdftt(5,100 * bcdftt(5,memloss)/bcdftt(5,length)),

1'1'7

monfail (monS.sql) Predefined Stored Commanda

DBINF A.aS == dbintails
from monitor
where (date=getdate and time >gettime ·length • integer(&INTERVALS))
or (date=getdate-1 and time> gettime - length• integer(&INTERVALS)

)
order by date,time

end store;

comment on monf ail is

+ integer(24) • integer(60) • integer(3600}

"Suspended processing for lack of memory from monitor"," IM";

monlock (mon5.sql)

1'18

/*
•• "monlock" command-blocked wait, deadlocks .
•• current performance
*/

drop monlock;
drop lockdeLI;

create table lockdeLI(code fixed binary(l), meaning char(36));

/* interpretation or lock types • /
insert.into lockdeLl{code, meaning) values(binary(l), "read lock");
insert into lockdef_l(code, meaning) values(binary(2), "write lock");
insert into lockdeLI(code, meaning) values{binary{3), "read, intend to set block write lock");
insert into lockdeLl(code, meaning) values{binary{S), "intend to set block read lock");
insert into lockdeLl{code, meaning) values(binary(6), "intend to set block write lock");

update relation set type="r where relid=-table_id("lockdeLI");

store monlock
/* first store the interval length • /
select

LOCKS_BLOCKS ="avg monitoring interval (minutes):", ·
time = bcdfixed(S,2,avg(bcdftt(O,length))/3600)

from monitor
/* history of locks and deadlocks over last N intervals • /
select

SEQNO
DEADLOCKS
LOCK_ sec

from monitor

=- seqno,
= deadlocks,

= bcd8t{5,bcd8t(5,blockwait) / 60)

where (date=getdate and time >gettime ·length• integer(&INTERVALS))
or (date=getdate-1 and time> gettime ·length • integer{&INTERVALS)

+ (integer(24) • integer(60) • integer(3600))
)

order by date,time

Britton Lee

Predefined Stored Commanda monlock (mon5.sql)

/* list current locks • /
select

DBIN = d.dbin,
DATABASE = b.name,
RELID = l.dnum, /* this is the relid in the database, not system • /
block = l.pid,
lock_type = t.meaning
from lock 1, lockdeLI t, dbinstat d, databases b

where d.xactid=l.tnum and d.dbid=b.id and t.code = I.type
end store;

comment on monlock is
"Current locks and history for last N monitor intervals"," IM";

monun (mon5.sql)

/*
•• "monun" command-unused memory resources for the last N intervals.
·1
drop monun;

store monun
select

select

WAIT_QUEUES ="avg monitoring interval (minutes):",
time = bcdfixed(5,2,avg(bcdflt(O,length))/3600}
from monitor

. SEQNO = seqno,
UNUSED_INPUT = unin,
UNUSED_OUT = unout,
UNUSED_MEM = unmem,
UNUSED _OBIN = undbin
from monitor
where (date=getdate and time >gettime ·length• integer(&INTERVALS))
or (date=getdate-1 and time> gettime ·length• integer(&INTERVALS)

+ integer(24) * integer(60) * integer{3600)
)

order by date,time
end store;

comment on monun is "Unused memory buffers for last N monitor intervals"," IM";

Britton Lee 179

monwait (mon5.sql) Predefined Stored Oommanda

monwait (mon5.sql)

/*
** "monwait" command-wait queues from monitor for the last N intervals.
*/

drop monwait;

store monwait
select

WAIT_QUEUES ="avg monitoring interval (minutes):",
time = bcdfixed(S,2,avg(bcdftt(O,length))/3600)
from monitor

select
SEQNO = seqno,
INPUT _sec = bcdflt(5,bcdflt(5,inwait) / 60),
OUTPUT _sec = bcdftt(5,bcdftt(5,outwait) / 60),
CPU_sec = bcdftt(5,bcdftt(5,cpuwait) / 60),
MEMORY _sec = bcdftt(5,bcdflt(5,memwait) / 60),
TAPE_sec = bcdflt(5,bcdflt(5,tapewait) / 60)
from monitor
where (date=getdate and time >gettime - length * integer(&INTERVALS))
or (date=getdate-1 and time> gettime - length* integer(&INTERVALS) ·

)
order by date,time

end store;

+ integer(24) * integer(60) * integer(3600)

comment on monwait is "Summary of wait queues for last N monitor intervals"," lM";

notowned (notowned.sql)

/*

180

** Define "notowned" command.
*I

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

drop notowned;

store notowned
select distinct name,

relid,

Britton Lee

Predefined Stored Commond1 notowned (notowned.sql)

owner _num = owner
from relation r
where not exists

(select any(id) from users
where id = r .owner)

order by owner, name
end store;

comment on notowned is
"List objects which are not not owned by people in 'users'"," lD";

othercmds (objects7 .sql)

/*
**store "othercmds" command.
*I

store othercmds
select distinct command = object,

owner,
logging

from objects
where type= "C"
and ((ownerid = userid or ownerid = dba)

or uaerid =dba /* show all relations for dba * /
)

/* exclude any predefined stored commands * /
and relid not in (select relid from descriptions

where key like "L ")
order by owner, object

end store;

comment on othercmds is
"Displays user stored commands (those not displayed by cmds)" ,"lL";

otherviews (objects7 .sql)

/*
••store "otberviews" command.

*I

store otherviews
select distinct views = object,

owner,
logging

from objects o
where type == "V"

Britton Lee 181

otherviews (objects7 .sql) Predefined Stored Oommanda

and ((ownerid == userid or ownerid == dba)
or userid ==dba /* show all relations for dba * /

)
/* exclude any cmds in comments * /
and "Vl" !== all(select key from descriptions d

where relid == o.relid)
order by owner, object

end store;

comment on otherviews is
"Displays user views (those not displayed by views)","IL";

permits (protect5.sql)

/*

182

** "permits" commands
*/

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

drop permits;
drop ptype_I;
drop atype_I;

/* If there is no user tuple for "all" is id=O, put one there * /

insert into users(id,name) values(O," ALL");

/*
**
**
*/

ptype_I relation contains the decoding of the access attribute
of the protect system relation

create table ptype_I (access tinyint, desc char(20));

insert into ptype_l(access, desc) values(1, " read");
insert into ptype_l(access, desc) values(2, " write");
insert into ptype_l(access, desc) values(3, " all");
insert into ptype_l(access, desc) values(-32," execute");
insert into ptype_l(access, desc) values(-53, " create database");
insert into ptype_l(access, desc) values(-58, " create");
insert into ptype_l(access, desc) values(-56, " create index"};
insert into ptype_l(access, desc) values(4, " read tape");
insert into ptype_l(access, desc) values(8, " write tape");

Britton Lee

Predefined Stored Commanda permits (protect5.sql)

insert into ptype_l(&ecess, desc) values{ 12, " all tape");

create unique clustered index on ptype_l (access);

update relation set type="I" where relid=table_id("ptype_l");

/*
** Atype_l decodes the bit pair for permit/deny in protect.attmap
*/

create table atype_l(access tinyint, meaning char(8));
insert into atype_l(access,meaning) values(l, "permit");
insert into atype_l(access,meaning) values(2, "deny");
insert into atype_l(access,meaning) values(3, "BOTH!");

create unique clustered index on atype_I (access);

update relation set type="I" where relid=table_id("atype_I");

/* permits returns explicit permissions on a given OBJECT * /

store permits
select access= concat(a.meaning, p.desc),

object = &object,
user= u.name

from users u, atype_I a, ptype_I p, protect t
where a.access= mod(tinyint(substring(l,l,t.attmap)), 4)
and p.access = t.access
and table_id(&object) = t.relid
and u.id = t.user

end siore;
and table_id(&object) > 0

comment on permits is "shows the explicit protection for an OBJECT"," lP";

permitsall (protect5.sql)

/* permitsall returns all explicit permissions from the protect relation. * /

drop permitsall;

store permitsall
select access = concat(a.meaning, p.desc),

object= r.name,

Britton Lee

user= u.name
Crom users u, atype_J a, ptype_I p, protect t, relation r
where a.access= mod(tinyint(substring(l,l,t.attmap)), 4)
and p.access = t.access
and t.relid = r.relid
and u.id = t.user

183

permitsall (protect5.sql) Predefined Stored Command&

end store;
comment on permitsall is "shows all explicit permits and denies"," IP";

permitsgen (protect5.sql)

/* permitsgen returns explicit tape and create permissions * /

drop permitsgen;

store permitsgen
select access = concat(a.meaning, p.desc),

user= u.name
from users u, atype_J a, ptype_J p, protect t
where a.access = mod(tinyint(substring(I,I,t.attmap)), 4)
and p.access = t.access
and t.relid = 0
and u.id = t.uaer

end store;

comment on permitsgen is "shows the explicit tape and create permissions"," IP";

permitsme (protect5.sql)

184

/* permitsme returns explicit permissions on all objects for this user*/

drop permitsme;

store permitsme
select access= concat(a.meaning, p.desc),

object = r.name
from users u, atype_J a, ptype_J p, protect t, relation r
where a.access= mod(tinyint(substring(l,l,t.attmap)), 4)
and p.access = t.access
and t.relid = r.relid
and u.id = t.user
and u.id = userid

end store;

comment on permitsme is "shows the explicit permissions for me"," IP";

Britton Lee

Predefined Stored Oommanda permitsuser (protect5.sql)

permitsuser (protects .sql)

r permitsuser returns explicit permissions OD all objects for a user • I

drop permitsuser;

store permitsuser
select access = concat(a.meaning, p.desc),

object= r.name
from users u, atype_I a, ptype_I p, protect t, relation r
where a.access= mod(tinyint(substring(l,l,t.attmap)), 4)
and p.access = t.access
and t.relid = r .relid
and u.id = t.user
and u.name= &user

end store;

comment on permitsuser is "shows the explicit permissions for USER"," lP";

pgms (objects7 .sql)

r
**store "pgms" command.
*/

store j>gms
select distinct pgms = object,

owner,
logging

Crom objects
where type = "P"
and ((ownerid == userid or ownerid == dba}

or userid ==dba /* show all relations for dba • /
)

order by owner ,object
end store;

comment on pgms is "Displays stored programs owned by you or the dba"," lL";

Britton Lee 185

ps (ps.sql) Predefined Stored Oommanda

ps (ps.sql)

188

/*
•• •ps" command: Show current dbin status
·1

/*
•• Stored command scripts do not use continuation characters.
•• We turn continuation off here in case the user or system
0 profile files turned them on.
·1
%continuation

drop ps;
drop ps_data_I;

/* Destroy stored command... •I
/* ... & constant relation. •I

/*
•• Create constant relation, for translating codes Crom
* • dbinstat relation
·1
create table ps_data_I

(status tinyint, /* status code, matching that •I

meaning char{30)
);

/* Crom "dbinstat.status" •I
!* string d~cription or status.* I

update relation set type ="I" where relid=table_id("ps_data_I");

/* Now populate the constant relation. *I

insert into ps_data_I (status, meaning) values (1, "UNDEFINED");
insert into ps_data_I

select status =status + max(status),
meaning= "UNDEFINED" Crom ps_data_I;

insert into ps_data_I
select status =status + max(status),

meaning = "UNDEFINED" Crom ps_data_I;
insert into ps_data_I

select status =status+ max(status),
meaning = •UNDEFINED" Crom ps_data_I;

insert into ps_data_I
select status =status + max(status),

meaning = •UNDEFINED" Crom ps_data_I;
insert into ps_data_I

select status =status + max(status),
meaning = "UNDEFINED" Crom ps_data_I;

insert into ps_data_I
select status =status+ max(status),

Britton Lee

Predefined Stored Command• ps (ps.sql)

meaning = "UNDEFINED" from ps_data_l;
delete rrom ps_data_l where status > 50;

update ps_data_I set meaning= "runnable" where status= 1;
update ps_data_l set meaning= "wait-input; no transaction" where status - 2;
update ps_data_I set meaning= "wait-input in a transaction" where status == 3;
update ps_data_l set meaning= "DEBUGGING (timed out)" where status= 4;·
update ps_data_I set meaning= "DEBUGGING" where status == 5;
update ps_data_I set meaning= "DEBUGGING" where status = 6;
update ps_data_I set meaning= "wait-output to drain" where status = 7;
update ps_data_I set meaning= "DEBUGGING" where status = 8;
update ps_data_l set meaning= "suspended-checkpoint" where status = 9;
update ps_data_J set meaning= "terminated abnormally" where status= 10;
update ps_data_J set meaning= "wait-tape controller" where status= 11;
update ps_data_J set meaning= "wait-child to terminate" where status = 12;
update ps_data_I set meaning= "wait-special disk command" where status = 13;
update ps_data_J set meaning= "DEBUGGING" where status == 14;
update ps_data_J set meaning= "wait-maint port input" where status= 18;
update ps_data_J set meaning= "wait-transaction lock" where status = 30;
update ps_data_J set meaning= "wait-interruptible quick lock" where status= 31;
update ps_data_J set meaning= "wait-non-interrupt quick lock" where status= 32;
update ps_data_I set meaning= "wait-one disk 1/0" where status = 35;
update ps_data_J set meaning== "wait-multiple disk I/O's" where status= 36;
update ps_data_J set meaning= "wait-process memory" where status= 40;
update ps_data_J set meaning= "wait-process memory-has input" where status= 41;
update ps_data_J set meaning= "normal exit, draining output" where status= 42;

store ps
select distinct

ds.dbin,
STATUS = p.meaning,
block = integer(ds.block),
ds.time,
DATABASE= db.name

from dbinstat ds, databases db , ps_data_J p
where ds.dbid *=db.id
and mod{ds.status,50) = p.status /* ignore CANCEL STATUS * /
order by dbin

select distinct

end store;

ds.dbin,
USER == u.name,
ds.bid,
ds.buid

rrom dbinstat ds, users u, host_users bu
where u.id =* bu.uid
and bu.hid =* ds.hid
and bu.huid =* ds.huid
order by USER

comment on ps is "Lists the active processes and status-known users"," IM";

Britton Lee 187

ps (ps.sql) Predefined Stored Commanda

rename (rename.sql)

/*
** Rename permits users to change the name or tables they own
*I

/*
** Stored command scripts do not use continuation characters.
** We turn continuation oft' here in case the user or system
** profile files turned them on.
*I

%continuation

drop rename;

store rename
update relation set name-&newname

where name-&curr _name
and owner == userid

end store;

comment on rename is
"Allows users to rename their RELATION to NEW_NAME","lL";

rm user (rm user .sql)

/*

188

** Define "rmuser" command - remove user
*I

/*
** Stored command scripts do not use continuation characters.
** We turn continuation oft' here in case the user or system
** profile files turned them on.
*I

%continuation

drop rmuser;

store rmuser
delete Crom host_ users

where uid ==(select id Crom users

)
delete Crom users

where name == &name

where name = &name
and id !== dba

Britton Lee

Predefined Stored Command& rmuser (rmuser.sql)

and id !== dba
end store;

comment on rmuser is
"Removes a USER from database - for DBA only", "lD";

setcard (setcard.sql)

/* •• Setcard command for set cardinality of an index
*/

/*
•• Stored command scripts do not use continuation characters.
** We turn continuation otr here in case the user or system
•• profile 6.les turned them on.
*/

%continuation

drop setcard;

store setcard
update indices set card== &Seard

end store;

where relid == table_id(&lrelation)
and indid == &2indexid ·

comm.ent on setcard is "Set cardinality for TABLE, INDEXID, CARD" ,"ID";

size (size.sql)

/*
.. report sizes or objects in blocks
*/

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*I

%continuation

drop size;

store size

Britton Lee 189

size (size.sql)

select r .relid,
reL tups==tups,
reLpages==pages,
num_blocks == count(num)

Crom relation r, blockalloc b
where b.relid == table_id(&name)
group by b.relid
having b.relid == table_id(&name)
and b.relid = r.relid

end store;

comment on size is
"Displays size of RELATION","IS";

sizebyzone (szby~one.sql)

/*
** Define "sizebyzone" command.
*/

/*

Predefined Stored Commanda

** Stored command scripts do not use continuation characters.

190

** We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

drop sizebyzone;

store sizebyzone
select zone = substring(l,3,b.tid),

blocks= count(b.relid)
Crom blockalloc b
where b.relid = table_id(&object)
and table_id(&object) > 0
group by substring(l,3,b.tid)
having b.relid = table_id(&object)
and table_id(&object) > 0

end store;

comment on sizebyzone is
"For OBJECT, lists number of blocks in each zone" ,"IS";

Britton Lee

Predefined Stored Oommanda

sizes (sizes.sql)

r
.. Report sizes of objects in blocks

*I

/*
.. Stored command scripts do not use continuation characters .
.. We turn continuation off here in case the user or system
.. profile files turned them on.
*/

%continuation

drop sizes;

store sizes
select totaLblks = sum (du.high -du.low + 1),

free_blks = count(b.relid),
percent_used =

(count(bl.relid) * 100) /
sum (du.high - du.low + 1)

from disk_usage du, blockalloc b, blockalloc bl
where du.relid = -32768
and b.relid = 0
and bl.relid != 0

select _r.name,
r.owner,
r.type,
reLpages =r.pages,

·num_oLblks = count(bl.relid)
from relation r, blocka.lloc b, blocka.lloc bl
where bl.relid = r.relid
group by r .relid
having 10 < {select count(b.relid)

)

where b.relid = r .relid
group by r .relid

order by num_oL blks d
end store;

comment on sizes is
"Displays size of this database and its larger relations" ,9 lS";

Britton Lee

sizes (sizes.sq!)

191

spacebyuaer (spbyuaer.sql) Predefiatd Stored Oommanda

spacebyuser (spbyuser .. sql)

I*
•• Define "spacebyuser" command.
*I

I*
•• Stored command scripts do not use continuation characters.
•• We turn continuation ofl' here in case the user or system
•• profile files turned them on.
*I

%continuation

drop spacebyuser;

store spacebyuser
select user == u.name,

user _id == u.id,
pages == count(b.mode)

from users u, relation r, blockalloc b
where r.owner == u.id
and b.relid==r .relid
group by u.name
having 0< (select count (b.mode)

where b.relid ==r.relid
and u.id == r .owner
group by u.id ·

order by pages d
end store;

)

comment on apacebyuser is
"Lists disk space utilization by user"," IS";

system (system.sql)

I*
•• Define "system" command.
*I

I*
•• Stored command scripts do not use continuation characters.
** We turn continuation ofl' here in case the user or system
•• profile files turned them on.
*I

%continuation

192 Britton Lee

Predefined Stored Oomm11nd1 system (system.sq})

drop system;

store system
select distinct tab_name =name,

type,
tuples = tups,
pages

from relation
where type = "S" or type = "T"

/* S =system, T = transaction logs * /
order by tab_name

end store;

comment on system is
"Displays system relation names and sizes"," lD";

tabs (object7 .sql)

/*
** Store "tabs" command.
*/
drop tabs;

store tabs
select distinct table_name = object,

owner,
rows,
logging

. from objects
where type = "U"
and ((ownerid = userid or ownerid = dba)

or userid =dba /* show all relations for dba * /
)

order by owner, object
end store;

comment on tabs is
"Displays user tables owned by you or the dba"," lL" ;

usersright (uright.sql)

/*
** Define "usersright" command.

*I

/*
** Stored command scripts do not use continuation characters.

Britton Lee 103

usersright (uright.aql) Predefined Stored Commanth

•• We turn continuation oft' here in case the user or system
** profile files turned them on.
*I

%continuation

drop usersright;

store usersright
select distinct hid,

huid,
uid,
problem== "In 'host_users' not in 'users"'

from host_ users
where uid !== all (select id from users)

select distinct name,
id,
gid,
problem== "In 'users' not in 'host_users'"

from users
where id !==all (select uid from host_users)
and gid != id /* exclude groups • /

select distinct name,
id,
gid,
problem= "Group-no inembers or user-no group"

from users u
where I ==(select count(gid) from users

)

select distinct name,
id,
gid,

group by gid having id == u.id

problem== "Duplicate id's in 'users"'
from users u
where I< (select count(id) from users where id= u.id)

select distinct name,
id,
gid,
problem= "Inappropriate use or uid = O"

from users
where id== 0
and name !== "ALL"

select distinct hid,
huid,
uid,
problem=" Inappropriate use of uid = O"

Britton Lee

Predefined Stored Commontla usersright (uright.sql)

from host_users
where uid = 0

select distinct hid,
huid,
uid,
status= "DBA(s) for this database"

from host_users
where uid = dba

end store;

comment on usersright is
"Checks consistency or 'users' with 'host_ users'"," ID";

uses (uses.sql)

/*
** Stored command to give the list or objects a named object depends on
** Usage is "uses <objectname>"
•;
/*
•• Stored command scripts do not use continuation characters.
•• We turn continuation off here in case the user or system
** profile files turned them on.
•;
%continuation

drop uses;

store uses
select table_used = table_name(c.relid),

end store;

owner = u.name
from crossref c, users u, relation r
where c.drelid = r .relid
and r.relid = table_id (&table)
and u.id =• r .owner

comment on uses is "list objects that OBJECT depends on" ,"IL";

Britton Lee 1U5

views (views.sql) Predefined Stored Commanda

views (views.sql)

/*
** define "views" command.
*/

/*
** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

drop views;

store views
select views = r .name,

description = substring(l,60,d.text)
Crom relation r, descriptions d
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "V"
and d.key = "VI"
order by r.name, d.key

end store;

comment on views is
"Lists standard views with a one line description"," IL";

who (who3.sql)

196

/*
**
*/

/*

Define "who" command

** Stored command scripts do not use continuation characters.
** We turn continuation off here in case the user or system
** profile files turned them on.
*/

%continuation

drop who;
store who

select user= u.name,
group_name = t.name,
hst_id = h.hid,

Britton Lee

Predefined Stored Oommand.t who (wbo3.sql)

end store;

host_user_id-= h.huid,
id==u.id

from users u, users t, host_users h
where h.uid == u.id
and t.id ==* u.gid /* get users with no groups * /
and u.id !== u.gid /* skip groups * /
order by group_name,user

comment on who is
"Lists users who can use this database", "lD";

whois (who3.sql)

/* Define whois command to find userid from name * /

drop whois;

store whois
select

end s~re;

id== u.id,
group_name == ul.name,
bst_id == bu.hid,
host_user_id == bu.huid

from host_users bu, users u, users ul
where hu.uid == u.id ·
and ul.id ==* u.gid /* outer join to get groupless users * /
and u.name == &username

comment on whois is
"Returns userid, host_ id and huid for a given username", "lD";

whoisid (who3.sql)

/* Define whoisid command to find username from userid * /

drop whoisid;

store whoisid
select

u.name,
group_name == ul.name,
hsLid == bu.hid,
host_user _id == bu.buid

Crom host_users bu, users u, users ul
where hu.uid = u.id

Britton Lee U7

whoisid (who3.sql) Predefined Stored Oommantla

198

end store;

and ul.id -• u.gid /* outer join to get groupless users * /
and u.id = Suser _id

comment on wboisid is
"Returns user name, host_id and buid for a given user _id", "ID";

Britton Lee

Appendix D: Data Tables

This appendix lists the data tables (views and relations) used by the
predefined stored commands.

atype_I {protect5.xxx)

This is a decoder for protection bits in the ''protect" relation.

1) 11elect • fl'Om atype_I

access desc
1 permit
2 deny
8 BOTH!

8 l'OWS affected

calendar _I { date8.xxx)

Britton Lee

This is the mapping of the years to days Crom January 1, 1900 used by
most date conversions. It is modified by the bueH70 command to
contain "start" values that are 25,566 days smaller.

2) 11elect • from calendar _J

start ahortyear longyear leapyear
81046 86 H86 0
81410 88 1988 0
81776 87 1987 0
82140 88 1988 1
82608 89 1989 0
82871 90 1990 0
83238 91 1991 0
88801 92 1992 1
83987 93 1993 0
84332 94 1994 0
84897 96 1995 0

11 rows affected

config_I (config.xxx) Predefined Stored Oommanda

config_I (config.x.x.x)

This decodes the "type" fields in the "configure" system relation.

1) select • from conftg_I

type name
A Accelerator, value= WCS level
B Block multiplexer ho.t interface
c Checkpoint interval
D Default char set O=ASCD l=EBCDIC
E Ethernet host interface
I IDM I.D. for IDENTIFY response
K Memory configuration
M Monitor interval(minutea)
p IEEE-488 ho.t interface
R IDM aoftware releaae
s RS-232 host interface
T Mag tape interface, value=4 for h/p

12 rows afl'ected

day _I (date8.x.x.x)

The days or the week Cor date conversions.

3) select • from day _I

number day shortday
0 Monday Mon
1: Tueaday Tue
2 Wedneaday Wed
a Thursday Thu
4 Friday Fri
6 Saturday Sat
8 Sunday Sun

7 rows afl'ected

200 Britton Lee

Predefined Stored Oommand1 dbsO_I (dbs.xxx)

dbsO_I (dbs.xxx)

Britton Lee

This table contains the status values currently defined from the
"databases" system relation.

2) eelect • from dbaO_I

value text
1 Databue/ disks not on-line
a Databue/ diab not on-line
9 Locked: databue marked unrecoverable (ASCil)

11 Locked: databue marked unrecoverable (EBCDIC)
17 Unueed aince boot, recovel')' not needed (ASCil)
19 Unueed since boot, no recovel')' needed (EBCDIC)
18 On-line (ASCil)
15 On-line (EBCDIC)
49 Unueed aince boot, recovel')' had to run (ASCil)
61 Unueed aince boot, recovel')' had to run (E)
05 being loaded or rolled forward (ASCil)
87 being loaded or rolled forward (EBCDIC)
89 being created or destroyed (ASCil)
71 being created or destroyed (EBCDIC)

145 Locked: unused aince boot-no recovel')' needed (A)
147 Locked: unused aince boot-no recovel')' needed (E)
181 LOCKED for dump/load/rolltorward (on-line) (A)
183 LOCKED tor dump/load/rollforward (on-line) (E)
177 LOCKED: Unwied aince boot, recovel')' run (ASCil)
179 LOCKED: UnW1ed aince boot, recoveey run (E)
183 LOCKED: being loaded or rolled forward (ASCil)

value text
185 LOCKED: being loaded or rolled forward (E)
187 LOCKED: being created or destroyed (ASCD)
109 LOCKED: being created or destroyed (EBCDIC)

24 row• affected

201

dtype_I (atts.idl) Predefined Stored Command&

dtype_I (atts.idl)

This turns the codes from the "attributes" relation into the mnemonics
that IDL uses.

4) eeleet •fl-om dtype_I

mne code uncomp dpb adJ
bed.flt 86 -1 2 8
bin 46 -1 1 0
bed 48 -1 2 8
c 41 -1 1 0
ubcdflt 86 1 2 a
ubin 46 1 1 0
ubcd 48 1 2 a
UC 41 1 1 0
i 48 0 1 0
i 62 0 1 0
i 68 0 1 0
t 67 0 1 0
t 80 0 1 0

18 rowa affected

dtype_SQL (atts.sql) ·

202

This turns the codes from the "attributes" relation into the mnemonics
that SQL uses.

1) eeleet •from dtype_SQL

mne code uncomp dpb adJ
bed.flt(86 -1 2 8
binary(46 -1 1 0
bed(48 -1 2 8
char(47 -1 1 0
fixed bed.flt(86 1 2 8
fixed binary(46 1 1 0
fixed bed(48 1 2 8
fixed char(41 1 1 0
tinyint (48 0 1 0
smallint (62 0 1 0
Integer (68 0 1 0
amallftoat (67 0 1 0
float (80 0 1 0

18 rows affected

Britton Lee

Predefined Stored Commenda dtype_SQL (atts.sql)

host_ users_ I {groups3.:rxx)

Thia is the copy or the "host_ users" relation used by the poup_off and
sroup_on commands.

6) •lect • from host_ usera_I

hid huid uid

0 rows affected

itype_I (indexes.:rxx)

This contains the decoding values ror index types from the "indices"
relation.

8) •lect • fl'om ltype_I

type desc
1 unique noncluster

-· unique noncluster
0 non clustered
2 clustered

-2 clustered
-1 unique clustered

• unique clustered

'I rows affected

julian_I (date8.:rxx)

The current-year view or the "calendar _I,, relation.

'I) •lect •from Julian_!

.tart shorty ear longyear l leapyear l di.placement J
81045 85 1985 I o I a]

1 row affected

Britton Lee 203

lockdet_I (mon5.:z) Predefined Stored Oommanda

lockdef_I (mon5.z=)

Locking is decoded from the "locks" system relation.

8) •lect •from lockdef_I

code meaning
01 read lock
02 writ.e lock
08 read, int.end to eet block writ.e lock
06 int.end to •t block read lock
08 int.end to •t block wrlt.e lock

6 row• affect.ed

logged_! (objects6.x.xx)

The "logged" flag from the "relation" relation.

8) •lect •from logged_I

value t.ext
0 Not Logged

84 Logged

2 rowe affect.ed

204 Britton Lee

Predefined Stored Oommanda mask_I (channel.xxx)

mask_I (channel.xxx)

Britton Lee

This is a convenient way to find bit values when binary fields are
encoded. It is used by the ehannele command to tell what bite are set
in the "configure" system relation tuples.

4} aelect •from muk._I

bit value
0 1
1 2
2 4
a 8
4 18
6 82
8 84
'I 128
8 268
I 612

10 1024
11 2048
12 4008
18 8192
14 18384
u; 82'188
18 86538
1'1 1810'12

18 rows affected

205

mon_I (date8.x:u) Predefined Stored Commanu

mon_I (date8.x.zx)

A view of the months of the current year. This is a view of "month_!"
that alters the "first" and "last" attributes.

8) aelect • from mon_I

first last month month_num
1 31 Janual')' 01

32 58 Februal')' 02
80 80 March 03
81 120 April 04

121 151 May 05
lli2 181 June 08
182 212 July 07
213 243 August 08
244 273 September 08
274 804 October 10
306 384 November 11
335 385 December 12

12 rows affected

month_I (date8.x.zx)

208

A tape containing the months of the year and their starting days. The
"leapfirst" and "leaplast" help correct these starting dates for leap years
when multiplied by "calendar _I.leapyear".

10) eelect • from month_I

first last month month_num leapfirst leap last
1 31 Janual')' 01 0 0

82 68 Februal')' 02 0 1
80 80 March 03 1 1
81 120 April 04 1 1

121 llil May 05 1 1
lli2 181 June 08 1 1
182 212 July 07 1 1
213 243 August 08 1 1
244 273 September 00 1 1
274 304 October 10 1 1
305 334 November 11 1 1
335 385 December 12 1 1

12 rows affected

Britton Lee

Predefined Stored Oommanda number _I (date8.xxx)

number _I (date8.xxx)

Britton Lee

This table does multiple jobs. It is used to get the "date" and "time"
strings with preceding zeroes into a result. It is also used to adjust the
day based on the hour displacement from Greenwich. The "adjust"
column is modified by a join with "savings_!".

11) .elect• from number_I

number str adjust
0 00 -1
1 01 -1
2 02 -1
a 03 -1

' 04 -1
5 06 -1
0 00 -1
7 07 -1
8 08 -1
I 09 0

10 10 0
11 11 0
12 12 0
13 13 0
14 14 0
15 16 0
H 10 0
17 17 0
18 18 0
19 19 0
20 20 0

(continued next page)

207

number _I (date8.zzx) Predefined Stored Commanda

number str adJust
21 21 0
22 22 0
28 28 0
24 24 0
26 26 0
28 28 0
27 27 0
28 28 0
29 29 0
80 80 0
81 81 0
82 82 0
88 83 0
84 84 0
35 35 0
88 88 0

. 87 37 0
88 88 0
89 89 0
40 40 0
41 41 0

number lltr adJust
42 42 0
48 43 0
44 44 0
45 45 0
48 48 0
41 41 0
48 48 0
49 49 0
50 50 0
61 51 0
52 52 0
53 53 0
54 64 0
65 65 0
58 58 0
57 57 0
58 58 0
59 59 0
80 80 0

81 l'OWS affected

208 Britton Lee

Predefined Stored Oommonda otype_I (objects6.xxx)

otype_I {objects6.xxx)

Used to identify the object type from "relation" with the d1r command.

12) eelect • from otype_I

type definition
s S:y.t.em relation
T Transaction log
u Ueer relation
c Stored command
p Stored program
F File
I Standard relation
v Uaer view

8 rows afl'ected

Britton Lee 209

ps_data_I (ps.zz.x) Predefined Stored Command.

ps_data_I (ps.xxz)

210

Thia t.able cont.aim the interpret.ation of the status codes from the
"dbinstat" system relation. It is used by the pe command.

6) Mlect • from pe_clata_I

llt&tU8 meaning
1 runnable
2 wait-input; no tranaaction
8 wait-input in a tramaction
4 DEBUGGING (timed out)
6 DEBUGGING
8 DEBUGGING
'I wait-output to drain
8 DEBUGGING

' 8U8peD.ded-checkpolnt
10 terminated abnormally
11 wait-tape controller
12 wait-child to terminate
18 wait-special d1sk command
14 DEBUGGING
1& UNDEFINED
18 UNDEFINED
1'1 UNDEFINED
18 wait-maint port input
11 UNDEFINED.
20 UNDEFINED
21 UNDEFINED

(continued next page)

Britton Lee

Predefined Stored Commanda ps_data_I (ps.x.xx)

.tat us meaning
22 UNDEFINED
28 UNDEFINED
24 UNDEFINED
26 UNDEFINED
2D UNDEFINED
27 UNDEFINED
28 UNDEFINED
29 UNDEFINED
80 wait-transaction lock
81 wait-interruptible quick lock
82 wait-non-interrupt quick lock
88 UNDEFINED
84 UNDEFINED
86 wait-one diak 1/0
ID wait-multiple disk 1/0'a
87 UNDEFINED
88 UNDEFINED
88 UNDEFINED

'° wait-procem memoey
41 wait-proceea memoey-hu input
42 normal exit, draining output

Btatua meaning
43 UNDEFINED
44 UNDEFINED
46 UNDEFINED
48 UNDEFINED.
47 UNDEFINED
48 UNDEFINED
48 UNDEFINED
60 UNDEFINED

50 rows affected

Britton Lee 211

ptype_I (protect5.:uz) Predefined Stored Commantl.t

ptype_I (protect5.=z)

This table decodes the types or permissions from the "protection"
relation.

14) •lect • ft-om ptype_I

&CCe88 deec
-68 create
-60 create Index
-68 creat.e databue
-82 execute

1 read
2 write
a all
4 read tape
8 write tape

11 all tape

.10 rows aftected

savings_I (date8.xxx)

212

Two local values are stored in "savinp_I" and they must be modified by
the user for proper local date and time to work. ''First" and "la.st"
indicate the days on which daylight savings time shuts the clock. The
displacement column contains the displacement Crom Greenwich Mean
Time that separates local time between the days (Julian dates) indicated.

16) •lect • ft-om •vinp_I

ftnt last displacement
0 76 8

78 100 7
801 aoo 8

a rows affected

Britton Lee

Pretlefinetl Stored Oommontl• users_I (groups3.:rxx)

users_I (groups3.ux)

Britton Lee

This is the temporary storage place for group members removed from
database access by the group_off command. It serves the same function
as "host_users_J".

18} •lect •from uaers_I

I Id I gid I name I
0 row• affected

213

Index of Terms

.iin files:
See Al1Jo: IDL command files

.ein files:
See Al1Jo: SQL command files

administrative stored commands: 8, 50-67

allindexes: 51, 52, Dl, 148

allocation:
See Al1Jo: sizes, spacebyuser

associate: 15, 23

attname: 12, 148

attribute: 167

atts: 3, 11, 12, 13, 19, 92

atype_I: 129, 183, lH

basel900: 11, 14, 16, 20, 101, 108

ba.se1970: 11, 14, 16, 20, 101, 158, 199

batch: 167

baudrate: 71, '72, 74, D3, 147

blockalloc: 168

calendar_!: 20,21, 100, 155, lDD

cbaud_I: 92, 147

channel: 71, '73, 74, 94, 148

cmds:3, 11, 15,85, 14D

cmds_date: 3, 11, 95, 160,
See A/1Jo: SQL command files

cmds_dba:3,51,63,96, 151

cmds_permit: 3, 11, 96, 151,
See Al1Jo: SQL command files

cmds_space: 3, 11, 18, 97, 152

cmds_system: 3, 71, '14, 97, 152

cols: 3, 11, 13, lD

columns: 89, 143, 144

config: 71, 74, 75, 98, 153

config_I: 98, 163, 200

configure: 72, 73, 75

crossrer: 167

data tables: 199-213

date: 11, 14, 16, 20, 106, 154, Ull

date commands: 154

DateAndTime: 20, 105, 154, 180

dateconv: 11, 16, 21, 108, 183

day_l: 102, 157, 200

dbs: 71, 74, '78, 110, 184

dbsO_I: 76, 109, 184, 201

depend: 11, 22, Ill, 185,
See A/1Jo: uses

describe: 11, 23, 111, 188

descriptions: 3, 168

destroying stored commands: 6

dir: 11, 24, 188

disk_usage: 168

diskio: 71, 74, 77, 114, 188

dropping stored commands: 6

dtype_I: 13, 89, 202

dtype_SQL: 19, 202

executing stored commands: 7

expire: 11, 16,25, 114, 18D

expiredate: 11, 16, 28, 115, 1'10

files: 11, 2'7, 115, 1'70

fragmentation: .t2

freelog: 18, 51, 64, 116, 1'10

freespace: 11, 18, 28, 116, 1'11

GMT: 106, 181

gmt_date: 11, 16, 20, ID, 107, 183

group_off: 51, 66, 118, 172, 203,
See Al1Jo: group_on

group_on: 51, 58, 119, 1'73, 203,
See Alao: group_off

groups: 51, 57, 117, 172

help: 15, 1'74

hosLusers_I: 117, 1'72, 203

IDL command files: 3

indexes: 51, 58, 1'15

indices: 167

informational stored commands: 8, 10

installing stored commands: 8

itype_I: 1'15, 201

julian_I: 101, 15'1, 208

loaclcmds command: 5

loading stored commands: 4--5

local_I: 104, HO

lockdeLI: 123, 1'18, 204

logged_I: 27, 30, 31, 32, 38, 39, 45, 144, 146,
204

mask_I: 93, 205

mine: 11, ao, 121, 1'15

mon:71,74,'18,121, 1'18

mon_I: 103, 158, 208

mond~k:71,74, '11, 122, 1'17

monfail: 71, 74, 80, 123, 1'17

monlock: 71, 74, 81, 124, 178

month_I: 21; 102, 10'1, 208

monun: 71, 74, 82, 125, 1'11

monwait: 71, 74, 88, 125, 180

notowned:51, 51, 126, 180

number _I: 103, 158, 20'1

object dependencies:
See Alao: depend, uses

objects: 3, 144

objects7 .sq}: 3

othercmds: 11, 81, 127, 181

otherviews: 11, 82, 127, 181

otype_I: 113, 145, 201

permissions: 6,
See Alao: permits, permitsall, permitsgen,
permitsme, permitsuser

permits: 11, 17, 88, 129, 181

permitsall: 11, 17, 84, 129, 181

permitsgen: 11, 17, 85, 130, 184

permitame: 11, 17, 88, 130, 184

permitsuser: 11, 17, 8'1, 131, 185

pgma: 11,88, 131, 185

protect: 36, 167

ps:71,74, 84, 133, 187

ps_data_I: 132, 188, 210

ptype_I: 128, 182, 212

query: 167

relation: 167

relations:
See Alao: data tables

rels: 11, 81, 133

rename: 11, 40, 134, 188

rmuser: 51, 80, 134, 188

savings_I: 20, 100, 155, 212

scmds: 3

setcard: 51, 81, 135, 181

sue: 11, 18, 41, 135, 110

sisebyzone: 11, 18, 42, 136, 110

sizes: 11, 18, 48, 111

spacebyuser: 11, 18, 44, 137, 112

SQL command files: 3

system: 51, 82, 138, 118

system stored commands: 8

tabs: 11, 45, 118

transact: 167

users: 168

users_I: 117, 172, 218

usersright: 51, 88, 138, 114

uses: 11,48, 140, 196,
See Alao: depend

views: 11, 47, 140, 118,
See Alao: data tables

who:Sl, 86, 141, 198

who~:Sl, 00, 141, 107

wboisid: 51, 87, 142, 197

ymd: 11, 16, 48, 108, 183

