Predefined Stored Commands Version R3vSm4
Release/Installation Notes For Unix BSD 4.2/4.3

Product Format

The Predefined Stored Commands are supplied on 9-track tape at 1600 bpi in tar format. They
consist of 79 files that contain the command scripts to be installed in any Britton Lee Shared
Database system. The commands are described in the document Predefined Stored Commands,
Britton Lee part number 205-1607-rev. This document also includes a listing of the individual
stored command scripts. The command scripts come in two versions, one for IDL query language
and one for SQL. Only one of these sets need be installed in a database to be useable from both
query languages.

Installing from Tape

Create a directory called scmds in the desired path. Generally, these commands should be acces-
sible to the DBA for the database machine. It may be most convenient to create the directory
/a/host/scmds. On release 3.4 or later of the Britton Lee host software, the command script files
will be loaded into a directory /a/host/scmds automatically. From inside the directory /scmds,
type:

tar x

There should be 79 files Joaded from tape into this directory.

Loading the Commands into a Database

The Commands may loaded into a databse by using the command script “loadcmds” found in the
directory. Any number of database names may follow the command. For instance, to load the
stored commands into databases “mydb” and “db2”, type the following:

loadcmds mydb db2

To install the same commands in the SQL form into the same databases, type:
loadcmds -s mydb db2

To install the system database commands simply type:
loadcmds system

The installation using the loadcmds script may also reference a database port (IDMDEV) by
using the -B flag with the name of the device.

loademds -Bt3%xns mydb

This command will load the stored commands in database “mydb” on the database found
through device address “t3%xns”. There must be no space between the “-B” and the device
identifier.

The command script will run for about five minutes, with frequent messages of the variety ‘“xxx
not found” and “n tuples affected”. These messages are normal for a first installation. Read the
Predefined Stored Commands document Introduction to find out how to avoid name conflicts, or
how to install only some of the commands in a database.

Editing Control Files

There are a set of files in the directory with the suffix “.iin”. These files are comtrol files used to
load the commands scripts for IDL. The actual command scripts are suffixed “.idl”. You may
edit any file in this directory with any Unix editor. You may wish to edit the “perms.iin” file,
since it contains the default execute permissions for the commands. Similarly, all files suffixed
“sin” will control the loading of SQL scripts (suffix: “.sql”).

Part Number 205-1610-001 Britton Lee

Britton Lee Host Software

PREDEFINED STORED COMMANDS

(r3v5)

March 1988
Part Number 205-1607-002

Printed February 1988.
This document supersedes all previous documents. This edition is intended for use with Britton
Lee Host Software Release 3.5 and future software releases, until further notice.

The information contained within this document is subject to change without notice. Britton Lee
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under license and may only be used or
copied by the terms of such license.

Integrated Database Manager, IDM, Intelligent Database Language, and IDL are trademarks of
Britton Lee Inc. o

COPYRIGHT © 1988
BRITTON LEE INC.
ALL RIGHTS RESERVED
(Reproduction in any form is strictly prohibited)

Table of Contents

Britton Lee

L OVEIVIEW cooeeeeeeeeeteeteeeeeeeecteesteesseesseeesssesssssesseesssssansessssssssessrennaas ’

Introduction
How to Load
Permissions

Executing the Stored Commandscc.ccecoveeeireurnenncnnnne
The Stored Commands

B coiiiiiiiiiiiirtere it e taeeattnesneasetnsnesassesnenasarsnnerrarnns

CINAS coieiieecereeee e ete et e et eesaee s se e e e e s ra e aaesaaesaa e saanabeas
cmds_date

cmds_permit
cmds_space
COLS wieeereiiiireeeieeieeecette bt et et s e sas e sneesnaserntestenneenassnsassaenes

dateconv ...
dePEnd ...oooirieiieieeceeeeree et s et sae st e e e resaeanne
AESCTIDE ..cueeeiieieeceeettee et se e s s sae e e e aea s
dir .
expire
expiredate
BIES ettt e e sese e s s e se s e e e saessnnes
frEESPACE ..oceeereerreeereeeeeerereatraeeeeneeeraeaeeeeasessanastanstasssaensn
gmt_date ..

mine
othercmds
OLREIVIEWS ooeevereerereirieinieereneeneeieeereneasessaseonnnne rererererereeeereanns

TENAINE ..ccceierreretrencerrsrscecnssecrtcsssosescsscssesssssssesssseanne [T

00 ~3 O & W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

31
32
33
34
35
36
37
38
39
40

-e
e
—e

Table of Contents Predefined Stored Commands

size sevserens cesesessecesesrassccestseasrsesctsotsrasttscoarntens 41

sizebyzone 42
BIZESccevveirineniuiians ceeeeeee etesreeneeneeneas 43
SPACELYUSErcoveeeivunrcnninceenieninens

BBDE cooeeerteerrteieirtiesteeereeeeerertsenraarareassrnssrrrnrnrsssaseransssrnnarene 45

vi 7
TEWS .ceicieiiniicnsantacanconcecacnces [T eeeecerersecesentecansesseserancsranan 4
ymd ceensssncssnttcttcnttetetentessrcetntentatercrcerteraseratarasasanan [STTTISPIPPPn 48

III: Stored Commands — Database Administratorsc...... 49
51
BIHNAEXEScccoveerereerirnrrenrreeecireeieeeesseecsneserrresersesessnaneses 52
emMAdS_dDa ...t e r e e ernesene 53
5 -1 U SO 54
group_off reeerresreeneennens eerreerneeeneas 55
© group_on crereseseaesesnesecennas 56
ErOUPS ...ccvevrnnene 57
INAEXES ..occeveerereiiteeeeirnreesrrrecrnreecsreressrasssssesesseesenssseessssraesans 58
notownedcccuuenen. teereeesrneeessstesetnesennesssnessnssresessneserase . D@

SELCATA ...eocveieirieirreeneenieseenneseeereecaaeseeste st s teesensaeneesnasnaeas 61
17 1+ U . 62
igh
usersright 63
WHO oottt esesee st srts s reesteseesnesseessasssasseessaennnas 65
WHROIB ..ottt ntnsteerestrse et ses e aesassstessesenesnnes 66
hoisid
WhOISIAocovvrieiinniineninnniennenanees 67

IV: Stored Commands — System Database 69
SUMMATYcocovirmieninnininenrinnens 71
baudrate 72
channelccoevmnieviniieenee eerennenrasensesnseseasensntesn 73
CIAS_SYSLEIM ...ooccevieereeenrecerrernerensereeeseeesassssnesseesssaesnsesssnnes 74
CONAG .ooovcneeeiererereereneeene e saees 75

diSKIO ccoevveeeririreaeereee e eerreeeeeenreeeeennes 77

MONAISK ...eovvieiecrieeieeicitreeecrnree e crneeeee s neresese s bareeeesnennnnns 79
MONTAIl ...t ee e e e e 80
monlock ..ovvriciiiiieeeee oo eerereresreeesaaeenane 81
IMNONUN ..oceiiiiieerrruneerassereeerteesseaasasssssssnssanasesssasssassssssssssassannes 82
MONWAIL ..ooeeerreeerreeerneeerinncessaneaseransas evveeen 83

PS teeterreeierersensreesesanssnsssesestissessassasssssassstossesstesseesnssasssnsssnteses 84

APPENDICESccoveerriiinnne 85

iv Britton Lee

Predefined Stored Commands Table of Contents

Appendix A: Summary of Commandsccceeverurcueenrenne 87
Appendix B: IDL Definitionsccccceeervernccreinrnriensnenns 89
columns (atts.idl)cooooriiiiiniieeeenenene 89
objects (objects7.idl) ...c...ooueeinciocicreecnreteenranae 90
allindexes (indexes.idl)cccceveureieiniccrcccncaenen 91
attname (attname.idl) ..o, 81
atts (attsddl) .o 92
baudrate (channelidl) ... 92
channel (channel.idl)cccocooiviivcininniicieiiene. 93
cemds (emds5.idl) .ooeeeviiieiiiiii e 95
emds_date (emds5.dl)cooiiiiiiii 95
emds_dba (¢cmds5.idl) ...o.ooieniiniieineiece 96
cmds_permit (emds5.idl)ccceiiiiniieniiiinennne, 96
cmds_space (cmds5.idl)cccooveiiecninennenccnne. 97
cmds_system (cmds_sys.idl) ...cccccoocerrvennincnnnnnne. 97
config (config.idl)ccoovevenirevenrcreneirieccreenena. 98
date (date8.id])cccoovvreeeernenrereeeeeee et 99
dbs (dbsddl) ..ot 109
depend (depend.idl)ccccoevevercinrneinreceerennnene. 110
describe (describe.idl)cccoceveiriviiiiiciciienenee. 111
dir (objects7.4dl)ccovevrinirrenrrienneeteee e, 113
diskio (diskioddl) ...ccevveecencrneirneeceeeean, 114
expire (date8.idl) ..o 114
expiredate (date8.idl)cooovereeerreererereireraens 115
files (objects7.idl) ...covvvuriveruiriiicirieeecennes 115
freelog (freespc.idl)cccocvereeenunecnrcncnercncnsrnenennans 116
freespace (freespc.idl)cccoeveruvciruereeenencscererennee 116
groups (groups3.idl)ccccocceevevceerenrenenneenrerennenen 117
group _off (groups3.idl)cceoevierrremrvenrcrenennne. 117
group_on (groups3.idl)ccccocveveminueeccnneninene. 119
indexes (indexes.idl)cccoerrrerrerrreresererseiesnnnennas 120
mine (objects7.idl)coccvcruriiniritcceeen 121
mon (mon5.idl)cceeeeeirieininiiiecetee e 121
mondisk (Mon5.idl)cccevuiiirieieiieceeenen 122
monfail (mon5.idl)cceveevvveieiiiiireeeieeeeeee 123
monlock (Mon5.idl) ..o, 123
monun (mon5.idl) ...t 125
monwait (mon5.idl)cccevevinerinriieereeeee 125
notowned (notowned.idl)cccccevevervenriirenennnnenns 126
othercmds (objects7.idl)cccovvevvvueiicinnnrrernnnne 126
otherviews (objects7.idl)ccccocevvrriverrrerrerereenenens 127
permits (protect5.idl)cccccooiiiiiniiinniienenrerenenen 128
permitsall (protect5.idl)c.ccocovcevrvmvvereerereene. 129

Britton Lee v

Table of Contents Predefined Stored Commands

permitsgen (protect5.idl)ccccocovceueenercrenicinnenece 130
permitsme (permits5.idl)ccoooveuemerereirieiinnnnns 130
permitsuser (protectS.idl)c.cocooeveriiinirinnrunens 131
pgms (objects7.idl)ccoceiieiiiiiniiiiinisirincianne 131
PS (PSAAD) vttt eesnesesebenne 132
rels (objects7.idl) ...cccccevrreeieriincnricnirieeicecncncienne T 133
rename (rename.idl) ... 134
rmuser (rmuser.idl)cocoeecicnnneiinininnniens 134
setcard (setcard.idl)cccocveeveirieiiciecccnceinne. 135
size (size.dd]) ..oocvveriircnrinini 135
sizebyzone (szbyzone.idl)coeevvrviiiiinnnninnnns 136
sizes (sizes.idl) ...ccoovviereieininreneneecccccee e 136
spacebyuser (spbyuser.idl)ccccccocenenivirrenirrnnene 137
system (system.idl)cccocvviricurinnnncniniicniciennnene 138
usersright (uright.idl)cocovcviivinnninninnenne 138
uses (uses.idl) ..o 140
views (Views.ddl) ..o 140
who (Who3.idl) e 141
whois (Who3.id]) ..ot - 141
whoisid (Who3.idl) ..o 142
Appendix C: SQL Definitionscccccoveevirrreeveccveenverennnnnn. 143
columns (cols.8ql) ...coeeverreireininriccecre e 143
objects (objects7.5ql)ccovverireciennnnncninriinieniane 144
allindexes (indexes.sql)o.....cemmmmrrrreressemenrsrrennne 146
attname (attname.sql)c.coccocvueveeennrncccrucenenunnene 146
baudrate (channel.sql)ccccoviivuvnvcnnnncnriunncne 147
channel (channel.sgl) ..o 148
cmds (cmds5.8ql)ccocoeeuiemiinicicce e 149
cmds_date (cmds5.5ql)cccoeervvniiinininiiinnnnnes 150
cmds_dba (¢cmds5.5ql) ..., 151
cmds_permit (cmds5.5q])cccceiricinininiinininincnns 151
cmds_space (cmds5.5q])ccocevrrreencrnecnnrecnrnenene 152
cmds_system (cmds_sys.sql)ccccoeoeieeccnienninnnncne 152
config (config.8ql)ccceoeveueririiirenenreeneeieeneneaes 153
config (config.sql)ccocevivirienirineniiininiiceenienne 153
date (date8.sql)ccooeurcrieiiniicnicnes 154
dbs (dbs.sql) ...ccrrnriiic 164
depend (depend.sql)cccoviriiiiniiinnicinininceee 165
describe (describe.sql) ... 166
dir (objects7.5q1) ..occecemreniniiieiiceceereeeeeeaenes 168
diskio (diskio.sql) ..c.oceveciiriiniiiiccenaenes 168
expire (date8.5ql)cccovivimirninininiiiiniinnnen 169
expiredate (date8.5ql)cocoeeuniiriuiieinincneenennneanee 169

vi Britton Lee

Predefined Stored Commands Table of Contents

files (objects7.8ql)cccoceveiniiiniirieniinniinnieeennee 170
freelog (freespc.sgl)cocovvviecnicninniccnnsncecniincncns 170
freespace (freespc.sgl)cccoccviininvccniscscsnsnnnes 171
groups (groups3.8ql)cceeevrviiiiicinicisiseenenenes 171
group_off (groups3.5ql)ccccccmreurereerecnnrennnennens 172
group_on (Broups3.5ql)ccccccerrrurrenienserereensnnanes - 173
help (emds5.5ql) ..ccocvniiniimiiiiiiccccciceee 174
indexes (indexes.sql)ccccoeereinininieiniiininciincnne. 174
mine (objects7.5ql) ...cocurureniruiiriiiiinees 175
mon (MON5.8q1)cocvereiiiiiiiiiiii s 176
mondisk (mMon5.8ql)cccocceveiinniniinineeene 177
monfail (mon5.5ql)ccoceeiiiiiiiiiii 177
monlock (mon5.5Gl) ..coeeeererieiirieineereeereseeiene 178
monun (MOoNS5.8ql) .cccvuivereieereiirereeiennieesnerenene 179
monwait (mon5.5ql)ccceeevuerierieeninenineneenieinne 180
notowned (notowned.sql)cccoceeeivireernrennenennn. 180
othercmds (objects7.8Gl)ccccoevvvrircrecnccnnne. 181
otherviews (objects7.5Gl)c.cccovverererueveinerrenennne 181
permits (protect5.5ql)cocevceveererenerieneeenereerennenans 182
permitsall (protect5.5ql)ccoccoevreircrneescncennnne 183
permitsgen (protect5.5ql)cococvereviriniereruenenns 184
permitsme (protect5.8ql)ccceeeiirinieerercnnenenns 184
permitsuser (protect5.sql)c.cocecevienienereneenienens 185
PEMS (0bjects7.5q]) .oceorrrrerrirernrerirerieaesiesiereesenaas 185
PS (PS:5Q1) wovieiiiiiiiiici ettt 186
rename (rename.sgl)ccoccovecivennrnccrereeresennennnens 188
rmuser (rmuser.sql)ccccovvvnnnerisnnninceisnenenens 188
setcard (setcard.sgl) ..ot 189
size (8i2€.8q1) .o 189
sizebyzone (szbyzone.sqgl)coevivccvinniccnnennne. 180
sizes (5izes.8Ql) ...ccoeriiniiiiiiis 191
spacebyuser (spbyuser.sgl)cccoeeeveniriiiiciinenences 192
system (system.sql)cccovrervirinnccninieininieninennns 192
tabs (object7.8ql) ...occeieriuienircriineceeeeeernes 193
usersright (uright.sql)cccocevmiinnninincnenneencns 193
USeS (USES.5Q]) ..uvverrerrurerinrnenresren st 195
views (VIEWS.5Ql)ocoevcviininnincniiincccccceenene 196
who (Who3.5ql) ..o 196
whois (Who3.5q1) ..ccceveiniiinciriieeneeeee 197
whoisid (Who3.5ql) ...cocoeeevccininnniiiceeecsaenenene 197
Appendix D: Data Tablesccccourvvivivvennnicrerceneeennennes 199
atype_I (Protect5.2zz)cccccecvvverecrerereernernenennes 199
calendar_I (date8.22z)c.ccccovvvverirriveneereernerannes 199

Britton Lee vi

——e

Table of Contents Predefined Stored Commands

config_I (cODig.22Z) ...ccoeovevervvrenerecrcnriericnccranenens 200
day_I (dateB.222)ccocovevuvieirninnnnicriiiniininene 200
dbsO_I (db8.Z2Z)oecoverruemeveneeriitiniccnenctsissenens 201
dtype_I (atts.idl) ...cccocovvrvcviniriiiiniiiiinincnnns 202
dtype_SQL (atts.8ql)cccooeureeievrieerierrerceeecesenenes 202
host_users_I (groups3.z2z)ccoocvvcrcrcrnenenenee " 203
itype_I (indexes.zzz)cccoevuriciiiniirninnnininnnns 203
julian_I (date8.2zz)ccoevuevvuvrcurunuinnccccinncnee 203
lockdef_I (MON5.222Z)ccvoeeevuenrccireceinecerrennns 204
logged _I (objects8.22z)ccccoevvreevnerccnriinreenene 204
mask_I (channel.zzz)coocuiuvvieinrccnnnncncnn. 205
mon_I (date8.z2z) ... 206
month_I (date8.22z)c..occoevvvvevencerecrenrinenennnns 206
number_I (date8.22z)ccccoverivencniennnirinienans 207
otype_I (objects8.2zz)cccccevevurenrrninienriniereniennn. 209
ps—data_l (Ps.222)cccooevrvrirvivenerieieeiceeene 210
ptype_I (protect5.2zz)cccoevevvveenevcrirnuerinnans 212
savings_I (date8.22z)ccccoveruiicinencncccnnne, 212
users_I (groups3.2zz)cccooevvveveevrccnvccnireeeniie - 213

viii Britton Lee

PART 1

Overview

Introduction

Britton Lee

The stored commands described in this manual are delivered with
Britton Lee Release 3.5 Host Software. They are designed to facilitate
the use of the BL300 and BL700 system families through the interactive
query languages IDL and SQL. The commands are contained in
machine- and human-readable IDL and SQL scripts in a host directory.
The DBA of a database may choose to install either the full set of
commands or any subset.

The stored commands are described on-line by the informational stored
commands cmds, emds_dba, cmds_date, cmds_permit,
cmds_space, and emds_system. These interrogate the ‘‘descriptions”
relation and print the results in a neat format. Thus, the user need only
know the command emds to list the stored commands that describe the
database contents. Security considerations may cause the DBA either
not to install these commands in a database or to permit their use to
only certain groups of users.

The stored commands are contained in a directory or diskette directory
called scmds. For the location (path name) of this directory on your
system, see the associated document Predefined Stored Commands —
Release Notes and Installation Guide or see your system administrator.
The directory scmds contains a file for each stored command described
in this document. Stored commands that must be loaded together
because they share the use of objects are included in common files whose
names end with a digit (e.g., objects7.sql contains seven stored
command scripts for commands using the view, “objects”).

There is a two similar sets of stored commands described by the two
types of scripts, IDL and SQL. The same functionality is provided by
both sets of commands, but the SQL version will use SQL terminolgy
while the IDL version uses IDL terminology. Whichever set of commands
is loaded, they may be invoked from either language. Two commands
have different names. The SQL scripts (.sql) will provide a eols
command that will give the SQL data types and column names for a
table, while the IDL version (.idl) is called atts and will yield IDL data
types. It is not necessary to load both sets of scripts into a database for
the commands to accessible to both command parsers.

The directory also contains a set of command files labeled .iin for IDL
and .sin for SQL. The use of these files is described below.

How to Load

On any host type, the stored commands may be loaded by entering the
IDL or SQL parser, opening the database to be accessed, and typing

%input filename

If just a single command script is desired, the filename should be the file
containing that script (e.g., freespc.idl). When installing all of the
stored commands, the special file input.iin may be used from IDL and
input.sin from SQL. By invoking the parser with the name of the
desired command script, the script will be entered as if from a ZGinput
command. This invocation may be of the UNIX variety,

idl dbname —f input.iin
or

sql dbname —f input.sin

or it may be of the VMS, VM/CMS, or PC MS-DOS variety:
IDL dbname /INPUT=INPUT.IIN
or

SQL dbname /INPUT=INPUT.SIN

Each of the input command scripts will cause the individual commands
to be loaded in the database. If this is the first time these commands are
loaded, an error message will appear on the screen for each command,
stating that the command name was not found. Each command script
attempts to destroy any previously existing object of the same name in
the database before definition. If there is no such object, this error
message will appear. In addition, several of the helper data relations will
be installed and loaded with data. The resulting operations will print
quite a few “n tuples affected” messages. Since the installation takes
several minutes, the DBA may wish to redirect standard output and
standard error, or place the job in a batch stream, rather than tie up a
terminal for the load time.

A possible side effect of loading these commands into an existing
database is a conflict of object names. Objects of the same name as the
stored commands will be destroyed by the loading script. To prevent
loss of data, another pair of helper scripts, conflict.iin or conflict.sin,
can be run to print any possible name conflicts that would arise from
installing the commands in a database. The scripts sconflct.iin or
sconflct.sin perform the same function for the stored commands specific
to the system database. To run these scripts, simply invoke them in the
database from the IDL or SQL command parsers. A report will be

Britton Lee

Predefined Stored Commands How to Load

Britton Lee

printed to the screen that contains the names of existing objects that will
be destroyed. A conflict can be resolved by either renaming the existing
object or changing the script file to alter the name of the command. The
file name containing the conflicting command is listed alongside the
object name. Simply edit the named file and do a global replace on the
name. In most cases this will solve the problem of name conflict.

On each host, there is a sample command script that will load the stored
commands on the default shared database system (IDMDEV) into
designated databases. This script will appear as the executable file
loademds on UNIX systems, loademds.bat on PC MS-DOS,
loademds.com on VMS, and loademds exec on VM/CMS. Each such
file will take the names of one or more databases as arguments. In
addition, the files on UNIX, VMS and PC-DOS will accept a flag to load
the commands from the SQL parser rather than the IDL parser.

For the commands to be loaded in the “system” database, there is a file
called sinput.iin for IDL and sinput.sin for SQL, or these may be
loaded by opening the system database and typing

%%input "sinput.iin”
or

%input "sinput.sin”

Alternatively, the loademds command file with the database name
“system” added may be used to load the system database specific
commands.

There are some special requirements for the system-database commands.
First, the system database may need to be extended beyond its default
allocation. This means the command

extend database system (IDL)
or
alter database system (SQL)

must be issued in the system database. Second, there must be an ‘M”
tuple in the “configure” system relation for the monzzz commands to
function properly.

Permissions

A separate file contains the permissions for each command. This file may
be modified to restrict the usage of each command. The input.iin and
sinput.iin files also execute the permissions file, so this file should be
edited appropriately before being loaded. Similarly, the file may be
executed by itself via the %input facility in each parser. The file names
are perms.iin and sperms.iin for the IDL parser, and grants.sin and
sgrants.sin for the SQL parser.

There are also separate files that contain the commands to destroy all of
the stored commands and related objects in a database or the system
database. These files are called destroy.iin and sdestroy.iin for the
IDL parser, and drop.sin and sdrop.sin for the SQL parser.

Britton Lee

Executing the

Stored Commands

Britton Lee

The stored commands may be executed during an interactive or batch
session through the IDL or SQL parsers. They may also be executed
from application programs and used as background queries for screen-
based application programs such as Freeform. In IDL, one invokes a
stored command by either issuing an execute command or naming the
command on the first line of a prompt. Commands that need
parameters must be invoked with their parameters listed in order,
separated by commas. Sometimes strings must be quoted.

IDL examples for the atts command:
atts relation;

execute atts relation;
execute atts "relation” go

All of the above invocations will yield the correct results. The first form
(implicit execution) will only work after a 1) prompt. All IDL commands
must end with a go or a semicolon “;” unless a continuation character is
specified.
SQL example for the cols command:

start cols ("table”);

SQL does not allow implicit invocation. All strings must be enclosed in
quotation marks, and the parameter list must be in parentheses.

In the examples, the implicit IDL form is given for most commands.

The Stored Commands

The commands are divided into roughly three groups:

(1) Commands that are useful to all users. These are generally
informational in nature. None of them permit users to modify
structures except the rename command.)

(2) Commands that are useful primarily to the DBA. These are both
informational and modifying.

(3) Commands that are useful only in the system database.

This manual is divided into parts according to these types. Part II
describes the general user commands. Part III describes the DBA
commands. Part IV describes the system database commands. An
alphabetical listing of all the command scripts can be found in the
appendices — Appendix B covers the IDL versions and Appendix C
covers the SQL versions. In addition, a display of each of the standard
data relations is given in Appendix D. These relations are used by the
stored commands to decode various system relations. They are also
available for user applications.

Each part contains an alphabetical listing of commands. For each
command, there is a description of the purpose of the command, its
usage, and an example.

Several of the stored commands make use of relations and views with
data tables to aid in decoding system relations. To help distinguish these
from the system relations and user relations or views, the names always
end in “_I”, and the types in the “relation” relation are changed to type

“I” for relations. A listing of these relations can be found in Appendix
D.

The stored commands operate best if certain standards are maintained.
There should be only one user mapped to DBA for each database. There
should be corresponding entries for all users in the “host_users’” and
‘““users” system relations. There should be only one user 0 named ALL in
any database. To help maintain these standards, there is a stored
command for DBAs, usersright, which will report any violations.

8 Britton Lee

PART II

Stored Commands — All Users

Summary

Britton Lee

These are stored commands that are useful to all users:

atts
base1900
basel970
cmds
cmds_date
emds_permit
cmds_space
cols

date
dateconv
depend
describe

dir

expire
expiredate
files
freespace
gmt_date
mine
othercmds
otherviews
permits
permitsall
permitsgen
permitsme
permitsuser
pgms

rels

rename

size
sizsebysone
sizes
spacebyuser
tabs

views

uses

ymd

Displays attributes and types for given relation (IDL only).
Changes base date for date conversion.

Changes base date for date conversion.

Lists predefined stored commands with one-line descriptions.
Lists stored commands dealing with date conversions.

Lists stored commands dealing with protection of objects.
Lists stored commands dealing with space/size/storage.
Displays the column names and types for a given table (SQI. only).
Returns the current date and time from the relational system clock.
Returns a readable date given an sdmdate value.

Displays objects depending on object.

Displays description of given relation or command.

Displays all objects of given name or fragment.

Sets the expiration date for an object to current + ndays.

Sets the expiration date for an object to yyyymmdd.

Displays files owned by you and the DBA.

Displays total space and free space in database.

Returns Greenwich mean time and date from shared database system.
Displays objects owned by you only.

Displays user stored commands (those not displayed by emds).
Displays user views (those not displayed by views).

Shows the explicit protection for an object. ‘

Shows all explicit permits and denies.

Shows the: explicit tape and create permissions.

Shows the explicit permissions for me.

Shows the explicit permissions for wser_name.

Displays stored programs owned by you or the DBA.

Displays user relations owned by you or the DBA (IDL only).
Allows users to rename their relation to new_name.

Displays size of object.

For object, lists number of blocks in each zone.

Displays size of database and larger relations.

Lists disk space utilization by user.

Displays user tables owned by you or the DBA (SQL only).
Lists standard views with a one-line description.

Lists relations or views used by a stored command.

Takes a yyyymmdd date string, returns sdmdate.

11

attname Predefined Stored Commands

attname relation

DESCRIPTION This is the stored command used by early releases of IDL to return attri-

bute names for .all in an attribute list. It is not needed with release 25
or later IDM/RDBMS code. It may be used by IDL users to return a list
of attribute names, but the atts command is preferable.

EXAMPLE 1) attname host_users;

sl
hid
huid
uid

4 tuples affected

12 Britton Lee

Predefined Stored Commands atts

atts relation

DESCRIPTION

EXAMPLE

Britton Lee

This command returns both the attribute names and the attribute types
for the named relation. It makes use of the view “columns” which con-
tains all of the information from the system relation “attributes” in
decoded form. The decoding information is contained in a relation called
“dtype_I"” which is used by the “columns” view.

This command is only installed by IDL. It is equivalent to the “cols”
stored command installed by SQL. The data types are named differently

in the two languages.

1) atts host_users;

attribute | type
sl il
hid i2
huid it
uid i2

4 tuples affected

13

base1970, basel900 Predefined Stored Commands

basel970

basel1900

DESCRIPTION

14

These commands convert the base date for other date-related stored
commands from January 1, 1900 to January 1, 1970 and back. When
the stored commands are loaded, the default base date 1900 is used in
the table “calendar_I”. The command basel970 will convert this table
and all date functions that depend on it to a system that assumes dates
are stored as number of days since January 1, 1970. Similarly,
base1900 will convert the table back to 1900 base date. The text of
these commands can be found in Appendices B and C under the date
command script. If some other base date is needed, it may be useful to
look at those scripts.

Britton Lee

Predefined Stored Commands

cmds

cmds
DESCRIPTION This command is the help command replacement. It lists the highest
level of predefined stored commands. Each of the commands has a
description, type, and key in the “descriptions’ system relation, allowing
the emds command to distinguish it from other objects. At the end of
each of the scripts, you will find an associate command with the one-
line description and keys necessary to place this command in the proper
category.
EXAMPLE 1) ecmds;
command description .
atts | Displays attributes and types for given RELATION
emds Lists standard stored commands with a one line description
cmds_date Lists stored commands relating to date conversion
emds_dba Lists stored commands mostly used by the dba
cemds_permit | Lists stored commands dealing protection of objects
cmds_space Lists stored commands dealing with space/size/storage
depend Displays objects depending on OBJECT
describe Displays description of given RELATION or COMMAND
dir Displays all objects of given NAME or fragment
files Displays files owned by you and the dba
mine Displays all objects owned by this user
othercmds Displays user stored commands (those not displayed by cmds)
otherviews Displays user views (those not displayed by views)
pgms Displays stored programs owned by you or the dba
rels Displays user relations owned by you or the dba
rename Allows users to rename their RELATION to NEW_NAME
uses Lists objects that OBJECT depends on
views Lists standard views with a one line description

Britton Lee

17 tuples affected

15

cmds_date

Predefined Stored Commands

cmds_date

EXAMPLE

16

This is a version of the ernds command for those predefined commands
that relate to date conversion. The Britton Lee shared database system
stores dates as 4-byte integers. There are several commands and views
that convert between this format and various human-readable forms.
Two commands are provided to allow the user to condition the ‘“‘expire”
attribute in the “relation” system relation with friendly dates.

1) cmds_date;

command description

basel1900 ' | Change base for date conversion to Jan 1,1900 from 1870
basel870 Change base for date conversion to Jan 1,1970

date Returns the current date and time from the database server clock
dateconv Returns the month day, year given idmdate NUMBER
expire Sets the expiration date for an OBJECT to getdate + NDAYS

expiredate | Sets the expiration date for an OBJECT to date YYYYMMDD
gmt_date | Returns Greenwich Mean Time and Date from the database server
ymd Returns the idmdate given a date string: YYYYMMDD

8 tuples affected

Britton Lee

Predefined Stored Commands

cmds_permit

cmds_permit

DESCRIPTION

EXAMPLE

Britton Lee

This is a version of the emnds command for those predefined commands
that show non-default permissions in the database. There are five such
commands. It may be desirable to restrict some of these to the DBA and

privileged users.

1) cmds_permit;

command description

permits Shows the explicit protection for an OBJECT
permitsall Shows all explicit permits and denies
permitsgen | Shows the explicit tape and create permissions
permitame Shows the explicit permissions for me
permitsuser | Shows the explicit permissions for USER

5 tuples affected

17

cmds_space

Predefined Stored Commands -

cmds_space

DESCRIPTION

EXAMPLE

18

There are so many commands related to space usage that they have been
given a menu of their own. These commands are of particular interest to
the DBA, but they may also be useful to the general user.

1) emds_space;

command description

freelog Displays space usage for hard allocated transact log
freespace Displays total space and free space in this database
size Displays size of RELATION

sizebysone For OBJECT, lists number of blocks in each sone
sises Displays sise of this database and its larger relations
spacebyuser | Lists disk space utilization by user

5 tuples affected

Britton Lee

Predefined Stored Commands cols

cols table

DESCRIPTION

EXAMPLE

Britton Lee

This command returns both the column names and the column types for
the named table. It makes use of the view ‘“columns” which contains all
of the information from the system table “attributes” in decoded form.
The decoding information is contained in a table called ‘“dtype_SQL”
which is used by the “columns” view.

This command is only installed by SQL. It is equivalent to the “atts”
stored command installed by IDL. The data types are named differently
in the two languages.

SQL version:

1) start cols(”host_users”);

col_name | type

sl tinyint (1)
hid smallint (2)
huid integer (4)
uid smallint (2)

4 rows affected

19

date

Predefined Stored Commands

date

DESCRIPTION

EXAMPLE

20

The date command prints the date and time in a neatly formatted form.
Information is derived from the getdate and gettime functions of Brit-
ton Lee’s IDM/RDBMS.

Since the relational system hardware is not user-programmable, the tests
normally used to convert from Julian date and ticks (1/60ths of a
second) to human-readable dates are not available. Instead, relations are
used to aid the conversions.

The date command and its close relative gmt_date make use of a
number of such relations for conversions of day of the month, length of
the year, and day of the week. The script itself is lengthy and well
documented.

Britton Lee’s IDM/RDBMS stores dates as 4-byte integers that usually
represent the number of days since January 1, 1900. Some systems may
choose other base dates (the EPOCHOFFSET parameter in host
software). The conversion routines provided by date and other com-
mands depend on the relation “calendar_I” to contain the proper
conversions. Two additional stored commands are provided with the
date script. One, basel970, will convert the ‘“calendar_I" relation to
conversions based on January 1, 1970. Another, base1900, will restore
the conversion table from 1970 to 1800. The view “DateAndTime” con-
tains a variety of representations of the underlying current date that can
be used in any query. The relation “savings_I"” should be adjusted to
the local time zone before date is loaded. Beware, date will expire in
1995.

1) date;

Day Date Time
Tuesday | June 11, 1985 | 13:08:07

1 tuple affected

Britton Lee

Predefined Stored Commands dateconv

dateconv idmdate

DESCRIPTION

EXAMPLE

Britton Lee

This command converts dates from Britton Lee’s IDM/RDBMS form (4-
byte integers) into human-readable form. This is convenient when trying
to decode some date other than the current date. (Use the date com-
mand for the current IDM/RDBMS date.) It uses the relations
‘“‘calendar_I” and “month_I" for date conversion.

1) dateconv 82214;

date_written
March 14, 1988

1 tuple affected

21

depend

Predefined Stored Commands

depend object

DESCRIPTION

EXAMPLE

22

When a view or stored command references another object (generally a
relation or view), the view or stored command is said to be dependent on
that relation or view. Among other things, this means that the underly-
ing relation may not be destroyed without first destroying the dependent
object. When you try to destroy such a relation, you will get back an
error message that lists at least one dependent object. This command

lists all the dependent objects on a named object.

1) depend indices;

object dependents | downer
indices | indexes DBA
indices | omni_full DBA
indices | omni_xs DBA
indices | omni_xsof | DBA

4 tuples affected

Britton Lee

Predefined Stored Commands describe

describe object

DESCRIPTION

EXAMPLE

Britton Lee

The describe command is an easy way to extract information from the
“descriptions” system relation. It will retrieve all of the description text
for a named object and format it neatly on the screen. It only looks at
the first 72 characters of each ‘‘description.text” line, so if you use the

associate command, keep your descriptions down to 72 characters per
line.

Along with the script of the describe command is a set of multi-line
descriptions of the system relations for each database. These demon-
strate how to use associate properly for this command to work. They
also give on-line information on the system relations.

The key field used by associate is essentially a sequential line number
for each description.

1) describe attribute;

description
attribute: Catalog of each attribute of each relation.
Each tuple represents one attribute.

2 tuples affected

23

Predefined Stored Commands

dir name

DESCRIPTIONS

. EXAMPLE

24

This command is a simple query into the “objects” view that searches for
all objects of the given name. By using wild-card characters, it can also
identify objects of a given name fragment. It is meant to work similarly
to a “directory” command on other operating systems. It is different
from the other object-related commands (rels, pgms, files, othercmds,
otherviews) in that it searches all objects in the database no matter
who owns them.

It also incorporates a decoding table (“otype_I") for the known object

types.

1) dir " *tup*”;

relid | object type | definition owner tups
416 | onektup U User relation | eds 1000
20247 | tenktupl | U User relation | eds 10000
9198 | tenktup2 | U User relation | eds 10000

8 tuples affected

Britton Lee

Predefined Stored Commands expire

expire object,ndays

DESCRIPTION

EXAMPLE

Britton Lee

There is a user-definable attribute in the “relation” relation that permits
users to list an expiration date for an object. Databases that.permit
users to create objects can thus accumulate objects and provide a
maintenance problem for the DBA. If users are required to condition
this attribute, the DBA may write stored commands or programs that
regularly purge the database of expired data.

The attribute is a 4-byte integer, so it most conveniently accepts a valid
IDM/RDBMS date (see the date command). This attribute is automati-
cally set to the current date + 5 days when a relation is created. If the
user wishes to use a different date, he can update through the expire
command. The user need not have write permission on the ‘“relation”
relation to provide an update in this way.

The parameter ndays is added to the value returned by getdate to pro-
duce a new expiration date for the named object.

1) expire onektup,680;

1 tuple affected

25

expiredate Predefined Stored Commands

expiredate object,yyyymmdd

DESCRIPTION This command works in the same way as expire, except that it accepts
a date parameter in the form of an absolute date written as an 8-
character string yyyymmdd (year-month-day). It sets the expiration date
of object to the idmdate equivalent value in the “relation” system rela-
tion. It is up to the DBA to enforce this expiration date, so its use is
optional.

EXAMPLE 1) expiredate onektup,”19891018"

1 tuple affected

26 Britton Lee

Predefined Stored Commands files

files

DESCRIPTION This is one of the commands that depend on the view “objects™. It is a
friendly way to list all of the files owned by you and the DBA. The
‘“objects” view includes the more readable information from the ‘“rela-
tion” relation joined to the owner name and a relation for decoding log-
ging information called “logged_I"".

EXAMPLE 1) files;
files owner | logging

Britton Lee

fort.ex DBA Not Logged
johntest | DBA Not Logged

2 tuples affected

27

freespace Predefined Stored Commands

freespace
DESCRIPTION This command reports the amount of space allocated to this database,
how many disk blocks are free, and what percent of the database is used.
EXAMPLE 1) freespace;
total_blks | free_blks | percent_used
15120 8571 56
1 tuple affected
28

Britton Lee

Predefined Stored Commands gmt_date

gmt_date

DESCRIPTION Like the date command, gmt_date gives the Greenwich date and time
in a neatly formatted form. It is actually a little simpler than date,
because Britton Lee’s shared database system stores uses Greenwich
Mean Time internally.

EXAMPLE Interactive IDL version 3.5
1) gmt_date;
Day Date Time

Tuesday | June 11, 1985 | 23:16:18

1 tuple affected

Britton Lee 29

mine

Predefined Stored Commands

mine

DESCRIPTION

EXAMPLE

30

This is one of the commands that depend on the view “objects”. It is a
friendly way to list all of the objects owned by you only. In a large
database with many objects owned by the DBA and only a few owned
by each user, this can be a very convenient command. The “objects”
view includes the more readable information from the “relation” table
joined to the owner name and a table for decoding logging information
called “logged 1.

1) mine;
relid | object type | definition tups
17649 | addauthor C | Stored command 0
24980 | addpubset C | Stored command (1}
4546 | author U | User relation 10
16590 | authttl U | User relation 8
31874 | balance U | User relation 3
15947 | pubsmaster U | User relation 101
6 tuples affected
Britton Lee

Predefined Stored Commands othercmds

othercmds

DESCRIPTION

EXAMPLE

Britton Lee

This is one of the commands that depend on the view ‘“objects”. It is a
friendly way to list all of the stored commands owned by you and the
DBA that are not part of the predefined commands. The “objects” view
includes the more readable information from the “relation” relation
joined to the owner name and a relation for decoding logging informa-
tion called

Interactive IDL version 8.5

1) othercmds;

command | owner | logging

distrib DBA Not Logged
fields_of DBA Not Logged
inc_rank DBA Not Logged

lcode DBA Not Logged
median DBA Not Logged
relq DBA Logged

scode DBA Not Logged

st_median | DBA Not Logged
stateprof DBA Not Logged

9 tuples affected

31

otherviews

Predefined Stored Commands

otherviews

DESCRIPTION

EXAMPLE

32

This is one of the commands that depend on the view “objects”. It is a
friendly way to list all of the views owned by you and the DBA. The
‘“objects” view includes the more readable information from the ‘“rela-
tion” relation joined to the owner name and a relation for decoding log-
ging information called “logged _I"".

1) otherviews;

4 tuples affected

views owner | logging
DateAndTime | DBA Logged
GMT DBA Logged
field_view DBA Not Logged
tables_view DBA Not Logged

Britton Lee

Predefined Stored Commands

permits

permits object

DESCRIPTION

EXAMPLE

Britton Lee

This command extracts information encoded in the “protect” system

relation and displays it in readable form.

It describes all non-default

protection placed on object. It does not describe the protection placed on
individual attributes in a relation.

1) permits configure;

access object user
permit read | configure | ALL
permit write | configure | eds

2 tuples affected

33

permitsall

Predefined Stored Commands

permitsall
DESCRIPTION This command describes all non-default protection for all objects in the
database. It does not describe the protection placed on individual attri-
butes in relations. It extracts information encoded in the “protect” rela-
tion and displays it in readable form.
EXAMPLE 1) permitsall;
access object user
permit execute | freespace | ALL
permit execute | permitsall | ALL
permit read vintners ALL
permit read ptype_1 ALL
permit read kindsq ALL
permit read atype_I ALL
permit read wines ALL
permit read pricings ALL
permit read stores ALL
deny write ptype-I ALL
deny write atype_I ALL
11 tuples affected
34 Britton Lee

Predefined Stored Commands

permitsgen

permitsgen

DESCRIPTION

EXAMPLE

Britton Lee

This command describes all non-default permissions regarding the data-
base. This includes tape read and write permissions, create permissions,
create index permissions, and create database permissions (system data-
base only). These permissions apply to the database in general and to all
objects in the database. This command extracts information encoded in

the “‘protect’ relation and displays it in readable form.

1) permitsgen;

access user
permit create ALL
permit create index | ALL
permit read tape ALL
permit write tape ALL

4 tuples affected

385

permitsme Predefined Stored Commands

permitsme

DESCRIPTION This command describes all non-default permissions regarding objects in
the database for the user entering the command. It does not report pro-
tection on individual attributes in a relation. It extracts information
encoded in the “protect” relation and displays it in readable form.

EXAMPLE 1) permitsme;

access object
permit write | configure

1 tuple affected

36 Britton Lee

Predefined Stored Commands permitsuser

permitsuser user_name

DESCRIPTION This command describes all non-default permissions regarding objects in
the database for the stated user. It does not report protection on indivi-
dual attributes in a relation. Notice that asking for permissions for user
ALL will return permissions that apply to everyone. This command
extracts information encoded in the ‘“protect” system relation and
displays it in readable form.

EXAMPLE 1) permitsuser helen;

access object
deny read | tenktupl

1 tuple affected

Britton Lee 87

pgms Predefined Stored Commands

pgms
DESCRIPTION This is one of the commands that depend on the view “objects”.- It is a
friendly way to list all of the stored programs owned by you and the
DBA. The “objects” view includes the more readable information from
the “relation” relation joined to the owner name and a relation for
decoding logging information called “logged._1".
EXAMPLE 1) pgms;
pgms owner | logging
dar_updatep | root Logged
dartypesp garry | Logged
dhelpp root Logged
freearnum root Not Logged
gar_retrp root Logged
gartermp garry | Logged
gartypesp root Logged
ghelpp root Logged
narqp root Logged
sattdetail root Logged

10 tuples affected

38 Britton Lee

Predefined Stored Commands

rels

rels

DESCRIPTION

EXAMPLE

Britton Lee

This is one of the commands that depend on the view “objects”. It is a
friendly way to list all of the relations owned by you and the DBA. The
‘“‘objects” view includes the more readable information from the “rela-
tion” relation joined to the owner name and a relation for decoding log-
ging information called “logged_1".

It is equivalent to the SQL command “tabs”.

1) rels;
relation owner tups | logging
Bprimel | DBA 1000 | Not Logged
dict DBA 24001 | Not Logged
eds10 DBA 20004 | Not Logged
edsb DBA 10002 | Logged
onektup | DBA 1000 | Not Logged
tenktupl | DBA 0 | Not Logged

6 tuples affected

39

rename Predefined Stored Commands

rename object,objectname

DESCRIPTION This command allows a user to change the name of an object owned by
that user without needing write permission on the “relation” relation.
Only the name recorded in “relation.name” is changed. In this way,
dependencies are not altered. For instance, if a stored command was
defined on a relation named ‘“old”, and the name of the relation was
changed to “new”, the stored command would still function in the same
manner. Similarly, if a different relation were given the name “old”, it
would not be recognized by the stored command.

EXAMPLE 1) rename onektup,uniquetup;

1 tuple affected

40 Britton Lee

Predefined Stored Commands size

size object

DESCRIPTION

EXAMPLE

Britton Lee

This command gives two kinds of information: (1) the number of tuples
and the number of disk pages for a given object according to the “rela-
tion” relation; (2) the actual number of disk pages (blocks) allocated to
that object from the “blockalloc” system relation. The command does a
count of the “blockalloc” tuples with the “relid” of the named relation.

The value stored in the “relation.pages” attribute is also given as
“rel_pages”, so that it may be checked for accuracy. There is no

guarantee that this attribute or “relation.tups” is correct.

1) sise geography;

relid | rel_tups | rel_pages | num_blocks
9053 8282 145 236

1 tuple affected

41

sizebyzone

Predefined Stored Commands

sizebyzone object

DESCRIPTION

EXAMPLE

42

The best indication of how fragmented a relation may be is the distribu-
tion of the data among the zones of the disk. Scans of the data will per-
form better if all of the zones are close together and if they are largely
filled. When a new relation becomes fragmented, it may indicate that
the database is too full. Extending the database and then recopying the
relation may help. Sisebysone lists all of the disk zones allocated to the
named relation and how many blocks within each zone are allocated.
The zone addresses are given in hexadecimal, and the number of blocks
in decimal. A zone contains up to 255 disk blocks, depending on how the
disk is formatted.

1) sisebysone tenktupl;

sone | blocks
001D89 6
002059 12
00210D 86
0021C1 172
0022756 147
002329 2

6 tuples affected

Britton Lee

Predefined Stored Commands

sizes

sizes

DESCRIPTION

EXAMPLE

Britton Lee

This command provides quite a bit of useful information about space

allocation in the database.

It first lists the number of blocks allocated

for the database, the number of free blocks, and the percentage-of allo-
cated blocks used by data. This is the same display one gets from the
freespace command. It then prints a table of all of the objects larger
than 10 disk blocks, showing their types and their respective sizes. The
table is in descending order of size.

The command takes a while to execute, since it must do an aggregate
count of “blockalloc” by “relid”.

1) sises;
total_blks | free_blks | percent_used
13680 4832 04

1 tuple affected

name owner | type | rel_pages | num_of_blks
work 11 Q 24 952
school_vet 1|1 Q 45 582
tenktupl 1|U 120 425
edss 11U 67 287
dict 1|U 16 168
onektup 1|U 1 106
Bprimel 11U 200 100
query 118 4 80
blockalloc 1 (8 189 76
transact 1|7T 27 87
attribute 118 12 18

11 tuples affected

43

spacebyuser

Predefined Stored Commands

spacebyuser

DESCRIPTION

EXAMPLE

44

This command gives a listing of the space allocated to all the objects
owned by each user in the database. For each user, the number of
blocks allocated to each owned object is added up and tabulated. The
display lists these sums with the user name. The entries are listed in
decreasing order of space used.

1) spacebyuser;

user user_id | pages
eds 145 8012
DBA 1 2067
toms 144 200
susan 1256 85
miscguest 100 23
loren 34]
student2 156 5
john 56 4
helen 165 4
garry 167 3
miket 169 2
pitta 133 2
sharon 123 2
berlind 176 2
garvey 185 1
steven 184 1
melinda 177 1

17 tuples affected

Britton Lee

Predefined Stored Commands

tabs

tabs

DESCRIPTION

EXAMPLE

Britton Lee

This is one of the commands that depend on the view ‘“‘objects”. It is a
friendly way to list all of the tables owned by you and the DBA. The
‘“objects” view includes the more readable information from the “rela-
tion” table joined to the owner name and a table for decoding logging
information called “logged _1".

It is equivalent to the IDL command “rels”.

1) start tabs;
table_name | owner rows | logging
Bprimel DBA 1000 | Not Logged
dict DBA 24001 | Not Logged
eds10 DBA 20004 | Not Logged
edsbs DBA 10002 | Logged
onektup DBA 1000 | Not Logged
tenktupl DBA 0 | Not Logged

6 rows affected

45

uses

Predefined Stored Commands

uses

DESCRIPTION

EXAMPLE

46

Views or stored commands use underlying objects (relations or views)
and are dependent on them. The depend command takes and underly-
ing object and lists the objects dependent on it. The uses takes a
dependent object and lists the relations or views it uses.

1) uses omni_full;

relationused | owner

indices DBA
relation DBA

2 tuples affected

Britton Lee

Predefined Stored Commands views

views
DESCRIPTION This command gives a listing of the views used by the predefined stored
commands with a brief description of each. These views may be useful
for making queries on the data dictionary without having to worry about
the encoding used by the system relations.
EXAMPLE 1) views;
views description
DateAndTime | Gives current date and time in various formats
GMT Gives Greenwich date and time in various formats
columns Friendly view of attributes relation
objects Objects, their owners, type, size, and if logged

Britton Lee

4 tuples affected

47

ymd Predefined Stored Commands

ymd yyyymmdd

DESCRIPTION This stored command takes a standard date string and returns Britton
Lee’s IDM/RDBMS date (4-byte integer). It uses the “calendar_I” and
“month_I" relations to decode the date string yyyymmdd. The same
relations and algorithms are used in all IDM/RDBMS date-conversion
functions.

EXAMPLE 1) ymd "19851225";

idmdate
81404

1 tuple affected

48 Britton Lee

PART Il

Stored Commands — Database Administrators

Summary

The stored commands described in this part are largely for the use of the
DBA in managing the shared database system:

Britton Lee

allindexes Lists all the indices in the database (132 columns)

cemds_dba Lists stored commands mostly used by the DBA.

freelog Shows the space usage in a hard-allocated transaction log.
group_off Turns off all access to database for group (DBA only).
group_on Turns group database access back on (DBA only).

groups Lists the groups and membership for this database.

indexes Displays keys and type of indices for given relation.

notowned Lists objects not owned by people in ‘“‘users”.

rmuser Removes a user from database (DBA only).

setcard Sets cardinality for relation, sndez_¢d, cardinality.

system Displays system relation names and sizes.

usersright Checks consistency of “users” with ‘“host_users”.

who Lists users who can use this database.

whois Returns “user_id”, “host_id”, and “huid” for given user_name.
whoisid Returns “user_name”, “host_id”, and “huid” for given user_itd.

51

allindexes . Predefined Stored Commands

allindexes

DESCRIPTION This command returns information on all indices on all tables in the
database. It includes the names and the first five concatenated keys for
each index. There may be more keys in the concatenation sequence, but
you will have to look into the “indices” relation to find out.
The “indices.card” attribute is also listed, so you may see that this accu-
rately reflects the cardinality of each index. A unique index has a cardi-
nality of 1. A zero means there is no information. This attribute is
important for assuring proper performance of joins and other queries. It
may be set with the setecard command.
Unlike other stored commands, this one does not fit in an 80-column
screen. It uses a 132-column display, so it may be easier to route its
results to a printer.

EXAMPLE 1) allindexes;
relation type keyl key2 | key3 | key4 | key$ | indid | card
summary clustered rec_type state | seqno T 0 0
summary nonclustered | area_name 1 1
summary nonclustered | seqno 2 0
onektup clustered unique2 0 1
onektup nonclustered | uniquel 1 1

3 tuples affected

52 Britton Lee

Predefined Stored Commands cmds_dba

cmds_dba
DESCRIPTION This is a version of the emds command for those predefined commands
that are in the DBA category. This stored command is in the user com-
mand section, although the commands it describes may be permitted only
to the DBA.
EXAMPLE 1) emds_dba;
command | description
allindexes | Displays keys and type of indices for all user relations (132 columns)
group_off | Turn off all access to database for GROUP - for DBA only
group_on | Turn GROUP database access back on - for DBA only
groups Lists the groups and membership for this database
indexes Displays keys and type of indices for given RELATION
notowned | List objects which are not not owned by people in ‘users’
rmuser Removes a USER from database - for DBA only
setcard Set cardinality for RELATION, INDEXID, CARD
system Displays systemn relation names and sises
usersright | Checks consistency of ‘users’ with ‘host_users’
who Lists users who can use this database
whois Returns userid, host_id and huid for a given username
whoisid Returns user name, host_id and huid for a given user_id
13 tuples affected
Britton Lee 53

freelog

Predefined Stored Commands

freelog

DESCRIPTION

EXAMPLE

54

This command allows the DBA to see how much space is allocated and
how much is free in the ‘“transact” system relation, where that relation
has been explicitly allocated space at database creation or extend time.
The freespace command shows the total space allocated to a database
including the transaction log. If the database is created with a ‘“with
logblocks” option, the transaction log may be placed on a separated disk
from the rest of the data. Free space in this log is not seen as free space
in the database, since it cannot be used by other objects. Since it is
undesirable to have a transaction log overflow the allocated space on a
separate disk, this command gives the DBA an idea of how much space

remains.

1) freelog;

log_blocks

free_blks

25212

12374

1 tuple affected

Britton Lee

Predefined Stored Commands group _off

group _off group_name

DESCRIPTION

EXAMPLE

Britton Lee

This command allows the DBA to delete a group from access to this
database. The members of the group are stored in a temporary relation,
so that they can be restored by a group._on command subsequently.
This command is useful when the DBA wishes to grant temporary access
to a database to a group of guests or students. Likewise, a group of
users may be denied access temporarily while some changes are being
made to the data.

The command works by actually deleting all the tuples for the users in
the named group from the “host_users” system relation and the ‘“users”
system relation. These tuples are added to temporary relations called
“host _users_I”" and “users_I. The response should be four statements
of “tuples aflected”, two for the appends and two for the deletes.

1) group_off centfolk;
6 tuples affected
7 tuples affected

7 tuples affected
8 tuples affected

b6

group._on Predefined Stored Commands

group.on group.name

DESCRIPTION This command restores access to the users that have been temporarily

‘ removed by the group_off command. It has no effect if the specified
group is not currently a group that is off access. Its function is just the
reverse of the group._off command, since it first appends the users from
the temporary relations “users_I” and “host_users_I” to the real system
relations, then deletes the same entries from the temporary relations.

EXAMPLE 1) group_on centfolk;

6 tuples affected
7 tuples affected
7 tuples affected
6 tuples affected

56 Brstton Lee

Predefined Stored Commands . groups

groups
DESCRIPTION This is an easy way to see the groups in the ‘‘users” relation and the
number of members in each. Use the who command to find out the
members’ names. .
EXAMPLE 1) groups;
id gid | name members
1000 | 1000 | centfolk 4

1 tuple affected

Britton Lee 57

indexes] Predefined Stored Commands

indexes relation

DESCRIPTION This command is designed to give friendly information from the
“indices” system relation, and because we don’t want to confuse the com-
mand with the relation, we use an alternative spelling. The indices on a
named relation are listed, along with the first three concatenated keys for
each index. There may be more keys in the concatenation sequence, but
you will have to look into the “indices” relation to find out.

The “indices.card” attribute is also listed, so you may see that this accu-
rately reflects the cardinality of each index. A unique index has a cardi-
nality of 1. A zero means there is no information. This attribute is
important for assuring proper performance of joins and other queries. It
may be set with the setcard command.

EXAMPLE 1) indexes geography;
type keyl key2 | key3 indid | card
clustered rec_type state | seqno

nonclustered | area_name
nonclustered | seqno

N = O
O = 0O

3 tuples affected

58 Britton Lee

Predefined Stored Commands

notowned

notowned

DESCRIPTION This command provides a utility for determining whether there are any
objects that are not owned by current users (members of the “users” sys-
tem relation) in the database. :

EXAMPLE 1) notowned;

Britton Lee

name relid | owner_num
myparts 10610 5001
myvendors | 29569 5001
part_list 16632 5001

8 tuples affected

59

rmuser Predefined Stored Commands

rrmuser user._name

DESCRIPTION This command allows the DBA to remove a user from the database. It
deletes the “users” and “host_users” tuples associated with wser_name
from their respective relations. The command may not be used to
remove the DBA tuples from these relations.

EXAMPLE 1) rmuser pcguest;

1 tuple affected
1 tuple affected

60 Britton Lee

Predefined Stored Commands

setcard

setcard relation,index_id,cardinality

DESCRIPTION

This command allows the DBA to set the eardinality of an index in the

“indices” relation. You must know the relation name and the indez_1d,
which may be obtained from the indexes stored command. The correct
cardinality is important for the proper functioning of the cost algorithms
in query optimization. The default is zero. For a unique index, 1 is the

value.
EXAMPLE 1) setcard geography, 2, 1;

1 tuple affected

1) indexes geography;

type keyl key2 | key3 indid | eard
clustered rec_type state | seqno 0 (1]
nonclustered | area_name 1 1
nonclustered | seqgno 2 1

8 tuples affected

Britton Lee

61

system

Predefined Stored Commands

system
DESCRIPTION This commands displays the system relations and their sizes in number of
tuples and number of blocks.

EXAMPLE 1) system;
relation type | tuples | pages
attribute S 715 18
batch T o 1
blockalloc] 180 1
crossref S 161 1
descriptions | S 73 5
disk _usage S 5 1
host_users S 6 1
indices S 41 3
protect S 94 1
query S 304 80
relation S 129 7
transact T 8310 44
users S 6 1

62

13 tuples affected

Britton Lee

Predefined Stored Commands

usersright

usersright
DESCRIPTION This command helps the DBA check for errors in the system relations
that keep track of users. The exception conditions that are caught by
this command include: ’
(1) “Users” tuples for which there are no corresponding “host_users”
tuples.
(2) “Host_users” tuples for which there are no corresponding “users”
tuples.
(3) Groups which have no members.
(4) Users with no groups.
(5) Duplicate user ids in either relation.
(6) User id O for a user other than ALL, or any entry in
“host_users” for user id 0.
(7) List of all those users who are DBA for this database if there are
more than one.
EXAMPLE 1) usersright;
hid | buid | uid { comment

O tuples affected

id | gid | comment

0 tuples affected

name id | gid | comment
ALL 0 0 | Duplicate ids in ‘users’
default | O 0 | Duplicate ids in ‘users’

2 tuples affected

name

id | gid | comment

default | O 0 | Inappropriate use of uid = 0

1 tuple affected

Britton Lee

63

usersright

64

Predefined Stored Commands

"|hid | huid | uid | comment
0 tuples affected
hid huid | uid | comment
1 167 1 | DBA for this database
4 | 4390924 1 | DBA for this database
4 | 4390935 1 | DBA for this database
3 167 1 | DBA for this database

4 tuples affected

Britton Lee

Predefined Stored Commands who

who
DESCRIPTION This command does a join of the “users” and ‘“host_users” relations to
give a neatly formatted listing of the users in this database. It will miss
any users who aren’t in both, so you might want to do a usersright
command first.
EXAMPLE 1) who;
user group hst_id | host_user_id id
DBA centfolk 4 4390915 1
DBA | eentfolk 5 167 1
DBA centfolk b 244 1
guest | centfolk -1 0 | 100
helen | centfolk 5 176 | 176
miket | centfolk 5 114 | 114

Britton Lee

6 tuples affected

85

whois

Predefined Stored Commands

whois user_name

DESCRIPTION

EXAMPLE

This command will look up a user_name in the ‘“users” relation and
report back all information about this user, mainly the “user_id” in this

database and the “host_id” and “host_user_id” information.

1) whois eds;

id | group hst_id | host_user_id
244 | BL users 4 4390915
244 | BL users 5 244
244 | BL users 7 2067
244 | BL users 11 18

4 tuples affected

Britton Lee

Predefined Stored Commands whoisid

whoisid user_id

DESCRIPTION This command will look up a user_sd and return the “user_name” along
with the “host_ids” and ‘“host_user_ids” that map to this user in this
database. -

EXAMPLE 1) whoisid 244;

name | group hst_id | host_user_id
eds BL users 4 48909015
eds BL users 5 244
eds BL users 7 267
eds BL users 11 18

4 tuples affected

Britton Lee 67

whoisid Predefined Stored Commands

68 Britton Lee

PART IV

Stored Commands — Systemn Database

Summary

Britton Lee

The stored commands listed here are for use in the system database:

baudrate
channel
cmds_system
config
dbs
diskio
mon
mondisk
monfail
monlock
monun
monwait

ps

Reports the speed set for each serial line.

Decodes the bits set in “configure.value”.

Lists stored commands dealing with protection of objects.
Lists the tuples from the “configure” relation.

Displays databases on this relational database system.

Lists the on-line disks and their I/O activity.

Monitors CPU and DAC usage for last n monitor intervals.
Monitors disk usage for last n monitor intervals.

Monitors suspended processing for lack of memory.

Monitors current locks and history for last n monitor intervals.
Monitors unused memory buffers for last n monitor intervals.
Summarizes wait queues for last n monitor intervals.

Lists the active processes and status for known users.

These commands are designed to give configuration and performance
information available in the system-database data dictionary. They all
depend on the special system relations, and generally make the informa-
tion available in these relations more easy to read. Some of the com-
mands (ps, mon*) give information on the current or recent state of
process and hardware activity. Other commands (config, diskio, bau-
drate, channel, dbs) supply and decode information about the rela-
tional system hardware’s configuration and databases.

There are five separate monitor commands, each of which provides cer-
tain types of information from the “monitor” relation during the last n
intervals. These commands all take an argument n between 1 and 54.

71

baudrate Predefined Stored Commands

baudrate

DESCRIPTION The baudrate command decodes the baud rate set by each of the S
tuples in the “configure” system relation. This command uses the Invisi-
ble relation: cbaud_I, to decode the last 5 bits of the ”S” tuple. See the
System Administrator’s Manual for more information.

EXAMPLE 1) baudrate;

channel | baudrate

No communication
9600
9600
9600

o0k N

4 tuples affected

72 Britton Lee

Predefined Stored Commands

channel

channel

DESCRIPTION

EXAMPLE

Britton Lee

The channel command decodes some of the bits set in the “configure”
system relation. These bits determine host trustworthiness, modem con-
trol, packet size, timeout protocol, byte order, and character type. This
command uses the Invisible relations: channel_I, and mask_1I to mask
out the binary bits and interpret their meaning. The decoding is
different for each tuple type. See the System Admintstrator’s Manual for

more information.

1) channel;

meaning

0 12

type | channel | bit_set
E
S 8 11

Packet sise 512-byte, (256 if bit 12 set)
Nontrustworthy host_userids

2 tuples affected

73

cmds_system Predefined Stored Commands

cmds_system

74

DESCRIPTION This lists all of the stored commands unique to the system database. Its
description will appear in the output of the emds command for the sys-
tem database only. ’

EXAMPLE 1) cmds_system;

command | description

baudrate | Gives the serial channel bits per second rate

channel Decodes the bits set in ‘configure.value’

config Identify the tuples from the configure relation

dbs Displays databases on this shared database system
diskio Lists the on-line disks and their I/O activity

mon Monitor CPU and DAC usage for last N monitor intervals
mondisk Monitor disk usage for last N monitor intervals
monfail Suspended processing for lack of memory from monitor
monlock Current locks and history for last N monitor intervals
monun Unused memory buffers for last N monitor intervals
monwait Summary of wait queues for last N monitor intervals
ps Lists the active processes and status—known users

12 tuples affected

Britton Lee

Predefined Stored Commands

config

config
DESCRIPTION The config command simply lists the tuples in the “configure” system
relation along with a brief explanation of each tuple type.
EXAMPLE 1) config;
type | number | value | name
A 0 16 | Accelerator, values=WCS level
C o 5 | Checkpoint interval
D o 0 | Default char set 0==ASCII 1=EBCDIC
E 0 | 40968 | Ethernet host interface
E 1 10 | Ethernet host interface .
E 4 0 | Ethernet host interface
E 6 4 | Ethernet host interface
M (1] 1 | Monitor interval(minutes)
P 1 | 8257 | IEEE-488 host interface
P] 8104 | IEEE-488 host interface
R 0 43 | IDM/RDBMS software release

Britton Lee

11 tuples affected

75

dbs

Predefined Stored Commands

dbs
DESCRIPTION The dbs command lists the databases from the “databases” system rela-
tion, along with their owners and status descriptions. The decoding of
descriptions is defined in the relation ‘“dbs0_I” that is established by
installing the stored command. This list is current through release 3.5 of
IDM/RDBMS software. Succeeding releases of software add new codes.
These new codes may be added to the relation “dbs0_I" by the DBA.
EXAMPLE 1) dbsy
name dbid | owner_name | status
ar_system | 4 DBA On-line (ASCII)
att_test 13 DBA On-line (ASCII)
census 18 DBA On-line (ASCII)
censusl 8 DBA Unused since boot, recovery had to run (ASCII)
demos 2 DBA On-line (ASCII)
error 6 DBA On-line (ASCII)
Jim § DBA On-line (ASCII)
luey 18 DBA On-line (ASCII)
pitta 19 pitta Unused since boot, recovery had to run (ASCII)
sales 3 DBA Unused sinee boot, recovery had to run (ASCII)
sandbox 9 DBA On-line (ASCII) C
sara 7 DBA Unused since boot, recovery had to run (ASCII)
system 1 DBA On-line (ASCII)
templit 11 pitta Unused since boot, recovery had to run (ASCII)
vino 14 DBA On-line (ASCII)
18 tuples affected
76 Britton Lee

Predefined Stored Commands

diskio

diskio

DESCRIPTION

EXAMPLE

Britton Lee

This command lists the disks currently known in the “disks” relation and
in “devmonitor.” It also summarizes their activity for the last 54 monitor
intervals. The number of disk accesses and the amount of time each disk
has been active are given. The quotient of these two values gives the
average access time for that disk as well.

If a disk was not used during the previous 54 monitor intervals, that disk
does not appear in the output of this command.

1) diskio;
name slot | accesses | time_ticks | avg_ms
1fujil60mb 4 3793 4338 19.001
2¢dc160mb .1 16 16 16.067

2 tuples affected

77

mon

Predefined Stored Commands

mon n

DESCRIPTION

EXAMPLE

78

This is one of the commands to view the “monitor” relation. It permits
you to view the last n intervals of “monitor.” The command consists of
two separate retrieves. The first tells you the average monitor interval
in minutes over the period you have selected. The second lists the
entries from the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The mon command gives a summary of CPU activity, the number of
commands executed during each interval, and the average completion
time in seconds for commands terminating during that interval. The
DAC, CPU, and IDLE times are given as a percentage of the interval
duration. The meaning of the DAC column depends on whether or not a
DAC is present in the relational system hardware. If it is not present,
this column represents the time that the CPU spent emulating DAC rou-
tines. The CPU time includes the DAC time, so the CPU value will
always be larger than the DAC value.

1) mon 8;

CPU _activity time
avg monitoring interval (minutes): | 0.99000

1 tuple affected

CPU_percent

DAC _percent

IDLE _percent

COMMANDS

AVG _seconds

0.25000
0.083333
37.425
0.30526
3.0556

0.083333
0.

2.1172
0.040584
0.19444

0.
0.
19.085
99.188
97.278

W= QOm

0.10000
0.
0.
0.18333
0.56607

Britton Lee

Predefined Stored Commands mondisk

mondisk n

DESCRIPTION

EXAMPLE

Britton Lee

This is one of the commands to view the “monitor” relation. It permits
you to view the last n intervals of “monitor.” The command consists of
two separate retrieves. The first tells you the average monitor interval
in minutes over the period you have selected. The second lists the
entries from the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The mondisk command summarizes disk activity over the last n inter-
vals. The number of disk reads and writes is given, as well as the
number of cache hits (the number of times a disk block was found to
already exist in cache memory, thus eliminating: a read). The
“disk_wait” is the cumulative time processes spent waiting for disk I/O
during that interval. The “disk_wait” may be greater than the length
of the interval.

1) mondisk 5;

DISK _active time
avg monitoring interval (minutes): | 0.99000

1 tuple affected

SEQNO | READS { WRITES | HITS | DISK_WT_sec
16 0 o 104 0.
16 0 0 38 0.
17 890 62 2006 10.250
18 8 0 51 0.21667
19 11 1 1156 0.40000

5 tuples affected

79

monfail

Predefined Stored Commands

monfail n

DESCRIPTION

EXAMPLE

80

This is one of the commands to view the “monitor” relation. It permits
you to view the last n intervals of “monitor.” The command consists of
two separate retrieves. The first tells you the average monitor interval
in minutes over the period you have selected. The second lists the
entries from the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The monfail command reports on situations where the shared database
system has had to suspend processing due to lack of memory space. The
INDELAY and OUTDELAY indicate what percent of the interval no
processing could occur for lack of buffer space in either the input or out-
put buffers. Any appreciable number of non-zero entries in these
columns would indicate a need for increasing the size of the affected
buffer through the “configure” system relation.

The MEMDELAY column indicates the percent of the interval that the
CPU was idle with processes waiting to run due to lack of available
memory space. Any non-zero entry in this column may indicate the need
for more memory on the relational system hardware. The DBINFAILS
column represents the number of “dbins” that had to be rejected due to
lack of available entries in the “dbins” table. See the Database
Administrator’s Manual.

These values can be used in conjunction with their corresponding values
given in the monun command.

1) monfall §;

SUSPENDED time
avg monltoring interval (minutes): | 1.0000

1 tuple affected

SEQNO | INDELAY_pet | OUTDELAY_pet | MEMDELAY_pet | DBINFAILS

18 0. . 0. 0.
19 0. 0. 0.
20 0. 0. 0.
21 0. 0. 0.
22 0. 0. 0.

- N}

§ tuples aflected

Britton Lee

Predefined Stored Commands . monlock

monlock n
DESCRIPTION This is one of the commands to view the ‘“monitor” relation, but it also
gives a view of the “lock” system relation. The command consists of
three separate retrieves. The first tells you the average monitor interval
in minutes over the period you selected. The second lists the entries
from the last intervals recorded in chronological order, most recent last.
The third lists the current locks on the shared database system. The list
of current locks from the “lock” relation will change rapidly as locks are
acquired and released by query processes. It can help to identify locks
that have not been released.
The third retrieve requires some interpretation. The ‘block” column is
the disk block id for the lock. If it is 0, the lock is a relation lock. The
RELID is the “relid” of the relation in its database. It is not possible to
decode that into a name in the system database.
EXAMPLE 1) monlock §;
LOCKS_BLOCKS time
avg monitoring interval (minutes): | 1.0000
1 tuple affected
SEQNO | DEADLOCKS | LOCK_sec
21 0 0.
22 0 0.
23 (1] 0.
24 0 0.
25 0 21.167
§ tuples affected
DBIN | DATABASE | RELID | block lock _type
7 | john 3031 | 000000 write lock
2 | luey 23000 | 002FF1 | read lock -
2 | lucy 23900 | 0027C2 read lock
2 | luey 23900 | 000DDB | read lock
2 | lucy 13 | 000000 write lock
2 | lucy 23900 | 0027C2 write lock
2 | luey 23900 | 000000 intend to set block read lock
2 | luey 23000 | 000000 intend to set block write lock
8 tuples affected
Britton Lee 81

monun

Predefined Stored Commands

monun n

DESCRIPTION

EXAMPLE

82

This is one of the commands to view the “monitor” relation. It permits
you to view the last n intervals of “monitor.” The command consists of
two separate retrieves. The first tells you the average monitor interval
in minutes over the period you have selected. The second lists the
entries from the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The monun command records the amount of memory that was not used
during the monitor interval. The UNIN and UNOUT columns record the
unused input and output buffer space. Should these values fall to zero
during an interval, one should check the monwait command to see if
the CPU had to wait for these buffers to clear. The UNDBIN column
records the minimum number of unused “dbins” during each interval.
The UNMEM records the minimum number of pages for query buffers
that were not used.

Should any of these values fall to zero during a monitor interval, there is
a need for more memory in that category. This can be obtained through
reconfiguration or adding memory to the relational system hardware.

1) monun §;

BUFFER_SPACE time
avg monlitoring Interval (minutes): | 0.99000

253
253
253
253

1 tuple affected
SEQNO | UNUSED_INPUT | UNUSED_OUT | UNUSED_MEM | UNUSED_DBIN
16 07684 135108 184
18 075652 135130 178
19 07508 1340506 177
20 07552 134650 177
21 07500 134912 177

253

§ tuples affected

Britton Lee

Predefined Stored Commands monwait

monwait n

DESCRIPTION

EXAMPLE

Britton Lee

This is one of the commands to view the “monitor” relation. It permits
you to view the last n intervals of “monitor.” The command consists of
two separate retrieves. The first tells you the average monitor interval
in minutes over the period you have selected. The second lists the
entries from the last intervals recorded in chronological order. The most
recent interval will always be the last one listed.

The monwait command summarizes the various wait queues that
processes occupy. The total number of seconds that processes waited in
that queue during the monitor interval is recorded. This number may be
greater than the length of the interval when multiple processes are run-
ning.

The INWAIT and OUTWAIT values and the TAPE value represent
processes scheduled out while waiting for 1/O processes to complete with
the host or shared database system tape. The DISK wait for disk 1/0 is
reported from the mondisk command. The CPU wait queue is for
processes that are waiting to be run while another process has the CPU.
In multi-process conditions, this value will normally be quite high as jobs
are scheduled. The MEMORY wait time represents processes waiting for
available buffer space to process their query.

1) monwalt §;

WAIT_QUEUES time
avg monitoring Interval (minutes): | 0.99000

1 tuple affected
SEQNO | INPUT_sec | OUTPUT_sec | CPU_sec | MEMORY_sec | TAPE_ sec
16 0. 0. 0. 0.
16 0. 0. 0. 0.
18 0. 0. 0. 0.
19 0. 0. | 0.033333 0.
20 0. 0. | 0.033333 0.

§ tuples affected

83

ps

Predefined Stored Commands

ps

DESCRIPTION

EXAMPLE

84

This is the process status command (name borrowed from UNIX) that
tells you what queries are active on Britton Lee’s shared database system
at the time of the command. The information is largely derived from
the “dbinstat” system relation. It is joined to the relation “ps_data_I”
to decode the status field of that relation. The list of status meanings is
current as of release 3.5 of the IDM/RDBMS code. Subsequent releases
may include new values that may be updated by the DBA. This com-
mand does not preserve the CANCEL information available from that

field.

The second query is a list of the users attached to the “dbins” where

those users are known in the system database.

1) ps;
dbin | status block | time | data_base
0 | wait—input in a transaction -1 11 | system
2 | runnable -1 8 | system
2 tuples affected
dbin | user | hid | huid
0 | eds 5 244
2 | eds 5 244 |
2 tuples affected
Brstton Lee

APPENDICES

Appendix A:
Summary of
Commands

Britton Lee

allindexes

atts relation
basel1970
base1900
baudrate
channel

emds

cmds_date
cmds_dba
emds_permit
emds_space
cmds_system
cols

config

date

dateconv idmdate
dbse

depend object
describe object
dir name

diskio

expire object,ndays
expiredate object,yyyymmdd
files

freelog
freespace
gmt_date

- group_off group_name

group.on group._name
groups

indexes relation

mon n

mine

mondisk n

monfail n

monlock n

monun n

monwait n

notowned

otheremds
otherviews

permits object
permitsall
permitsgen
permitsme
permitsuser user_name
pgms

ps

87

Appendix A: Summary of Commands

rels

rename object,objectname
rmuser user_name
setcard relationindex_id,cardinality
sise object

sisebysone object

sizes

spacebyuser

system

usersright

views

who

whois user_name
whoisid user_id

ymd yyyymmdd

Predefined Stored Commands

Britton Lee

Appendix B: IDL Definitions

This appendix lists the IDL stored-command scripts in alphabetical order. Since some of
the commands are included in files by other names, the file name is given in parentheses
after the command name. The first two sections define two views, ‘“columns” and
‘“‘objects”, that are used to decode attribute and object lists.

columns (atts.idl)

destroy columns go
destroy dtype_I go

/* Build "dtype_I” for atts” command, used to generate mnemonic */

create dtype_I (

mne=c7, /* mnemonic */

code=i2, /* internal rep */

uncomp=il, /* 0 = fixed, +1=uncompressed, -1=compressed */
dpb=il, /* digits per byte; bed=2, all others=1 */
adj=il /* size adjustment; bed=3, all others=0 */

)
go '
append to dtype_l (mne="bcdfit”, code=35, uncomp= -1, dpb=2, adj=3) go
append to dtype_l (mne="bin” code=45, uncomp= -1, dpb=1, adj=>0) go
append to dtype_I (mne="bcd” ,code=46, uncomp= -1, dpb=2, adj=3) go
append to dtype_l (mne="c”,code=47, uncomp= -1, dpb=1, adj=0) go
append to dtype_I (mne="ubcdfit” ,code=35, uncomp= 1, dpb=2, adj=3) go
append to dtype_I (mne="ubin” ,code=45, uncomp= 1, dpb=1, adj=0) go
append to dtype_l (mne="ubcd” ,code=46, uncomp= 1, dpb=2, adj=3) go
append to dtype_I (mne="uc”,code=47, uncomp= 1, dpb=1, adj=0) go
append to dtype_I (mne="i" ,code=48, dpb=1, adj=0) go
append to dtype_l (mne="i" code=52, dpb=1, adj=0) go
append to dtype_I (mne="i" ,code=56, dpb=1, adj=0) go
append to dtype_I (mne="{" code=>57, dpb=1, adj=0) go
append to dtype_l (mne="{" ,code=60, dpb=1, adj=0) go

range of r is relation
replace r (type="1") where r.relid=rel_id("dtype_I") go
*

** define ”"columns” view
*/
range of a is attribute
range of dt is dtype_I
range of r is relation
create view columns (attribute = a.name,
relid = a.relid,
relation = r.name,
type = concat(dt.mne,string(4,
mod(256+((a.len * dt.dpb) - dt.adj),256)
)

Britton Lee 89

columns (atts.idl) Predefined Stored Commands

/* mod used to force length postive when > 127 */

where a.type = dt.code
and ((dt.uncomp < 0 and a.offset < 0)
or
(dt.uncomp >= 0 and a.offset >= 0)

)

and r.relid = a.relid
g0

associate columns with "Friendly view of attributes relation”,”V1” go

objects (objects7.idl)

90

/‘
** The view objects is used by the stored commands:

** rels, dir, mine, otherviews, pgms, files, othercmds
"

*/
destroy objects go /* view upon which all of the above are based */

destroy logged..1 go

*

** log'ged-l — used to decode stat ﬁéld to find if object is logged

*/
create logged_I (value=i2, text=c10) go

append to logged_I (value=0, text="Not Logged”) go
append to logged_I (value=64, text="Logged”) go

range of r is relation
replace r (type="1") where r.relid=rel_id("logged_I") go

/‘
** create "objects” view

*/

range of r is relation
range of u is users
range of log is logged 1

create view objects (object = r.name,
relid = r.relid,
owner = u.name,
ownerid = r.owner,
tups = r.tups,

Britton Lee

Predefined Stored Commands objects (objects?.idl)

type = r.type,
logging = log.text

where r.owner *= u.id
and log.value = mod(int2(r.stat)+int4(65536),128)
- mod(int2(r.stat)+int4(65536),64)
go
associate objects with
?Objects, their owners, type, tups, and if logged”,”V1” go

allindexes (indexes.idl)

*

** Define "allindexes” command
*

destroy allindexes;

define allindexes

retrieve (relation= r.name,
type = it.desc,
keyl = att_name(i.relid,int1(substring(4,1,i.keys))),
key2 = att_name(i.relid,int1(substring(14,1,i.keys))),
key3 = att_name(i.relid,int1(substring(24,1,i keys))),
key4 = att_name(i.relid,int1(substring(34,1,i keys))),
key5 = att_name(i.relid,int1(substring(44,1,i.keys))),

. iindid, C

i.card

order by relation, indid
" where irelid = r.relid
and mod(i.stat,4) = it.type
and r.type="U"
end define;

associate allindexes with
?Displays keys and type of indices for all user relations”,”1D”;

attname (attname.idl)

*

* IDL to define "attname” command for ”.all”
* pseudo-attribute call from the parser

*/

destroy attname go
range of a is attribute

Britton Lee 91

attname (attname.idl)

define attname

retrieve (a.name) where a.relid = rel_id($relation)
end define
go

atts (atts.idl)

/* atts command */
destroy atts go
define atts

range of col is columns

Predefined Stored Commands

retrieve (col.attribute,col.type) where col.relid = rel_id($relation)

end define
go

associate atts with

"Displays attributes and types for given RELATION” ”1L” go

baudrate (channel.idl)

92

/i

*/

create cbaud_I (value=il baud=c20);

append to cbaud_I(value=0,baud="9600");
append to cbaud_I(value=1baud="1Illegal”);
append to cbaud_I(value=2baud="150");
append to cbaud_I(value=3,baud="300");
append to cbaud_I(value=4,baud="600");
append to cbaud _I(value=5,baud="1200");
append to cbaud_I(value=6,baud="1800");
append to cbaud_]I(value=7,baud="2400");
append to cbaud_I(value=8baud="4800");
append to cbaud_I(value=9,baud="9600");
append to cbaud_](value=10,baud="19200");
append to cbaud_I(value=11,baud="No communication”);
append to cbaud_I(value=12 baud="1Illegal”);
append to cbaud_I(value=13,baud="1llegal”);
append to cbaud_I(value=14,baud="1Illegal”);
append to cbaud_I(value=15,baud="1Illegal”);

channel command to determine serial channel baud rate

replace r (type="1") where r.relid=rel_id(”cbaud_I");

Britton Lee

Predefined Stored Commands : baudrate (channel.idl)

range of cb is cbaud_I
destroy baudrate go

define baudrate

retrieve (channel=c.number, baud=cb.baud)
order by channel
where c.type="8"
and mod(c.value,16) = cb.value

end define;

associate baudrate with "Gives the serial channel bit/second rates”,” 1IM”;

channel (channel.idl)
/‘

*/

destroy channel;
destroy channel_I;
destroy mask_I;
destroy cbaud_I;

channel command to decode the configure tuple bit strings

range of r is relation
/* table of powers of two to 16 */
create mask_I(bit=il,value=i4);

append to mask_I (bit=0,value=1);
range of ml is mask_I

append to mask_I (bit=max(ml.bit)+1,value=max(mI.value)*2);
append to mask_I (bit=max(mI.bit)+1,value=max(ml.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(mI.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(mIl.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(mI.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(ml.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(mI.value)*2);
append to mask_I (bit=max(mI.bit)+1,value=max(ml.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(ml.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(ml.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(ml.value)*2);
append to mask_I (bit==max(mI.bit)+1,value=max(mI.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(ml.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(ml.value)*2);
append to mask_I (bit==max(ml.bit)+1,value=max(ml.value)*2);
append to mask_I (bit=max(ml.bit)+1,value=max(ml.value)*2);

Britton Lee 03

channel (channel.idl) . Predefined Stored Commands

append to mask_I (bit=max(ml.bit)+1,value=max(mI.value)*2);
replace r (type="1") where r.relid=rel_id(”channel_I");
create channel_I (type=ucl,number=il bit=il,meaning=c50);

append to channel_I(type="S” bit=4,meaning="DCD (Drop Carrier Detect)”); °

append to channel_I(type="S" bit="5,meaning="CTS (Clear to Send)”);

append to channel_I(type="P” bit=>5,meaning="No Timeout”);

append to channel _I(type="P” bit=6,meaning="20 Second Timeout”);

append to channel _I(type="S" bit=6,meaning="Cancel host”);

append to channel_I(type="S" bit=10,meaning=""Trustworthy hunames”);

append to channel _I(type="S" bit=11,meaning="Nontrustworthy huids”);

append to channel_I(type="P” bit=10,meaning=""Trustworthy hunames”);

append to channel _I(type="P” bit=11,meaning="Nontrustworthy huids”);

append to channel _I(type="P” bit=12,meaning="1024 byte packet size”);

append to channel _I(type="P” bit=13,meaning="512 byte packet size (256 if bit 12 is set)”);
append to channel_I(type="S" bit=14,meaning="Cancel user output in 1 min”);

append to channel_I(type="P” bit=14,meaning="Cancel user output in 1 min”);

append to channel_I(type="P” bit=15,meaning="Cancel user output in 5 min 20 min if bit 14 set”);
append to channel_I(type="8" bit=15,meaning="Cancel user output in 5 min 20 min if bit 14 set”);
append to channel_I(type="E” bit=0,number=1,meaning="TCP Protocol”);

append to channel_I(type="E” bit=10,number=1,meaning=""Trustworthy hunames”);

append to channel_I(type="E” bit=11,number=1,meaning="Nontrustworthy huids”);

append to channel _I{type="E” bit=12,number=1,meaning="1024 byte packet size”);

append to channel_I(type="E” bit=13,number=1,meaning="512 byte packet size (256 if bit 12 is set)’

replace r (type="1") where r.relid=rel_id(” channel _I");

range of c is configure
range of ci is channel I

define channel
retrieve (c.type, channel=c.number bit_set=ml.bit,ci.meaning)
order by type,channel
where c.type=ci.type
and (ci.number=0 or mod(c.number,8)=0)
and ml.bit=ci.bit
and mod(c.value/ml.value,2) = 1
end define;

associate channel with "Decodes the bits set in ’configure.value’ ”,” 1IM”;

94 Britton Lee

Predefined Stored Commands cmds (cmds5.idl)

cmds (cmds5.idl)

destroy ¢mds go

*

** Define "cmds” command.
*/

range of r is relation
range of d is descriptions

define cmds
retrieve unique(command = r.name,
description = substring(1,60,d.text)
)

order by command, d.key
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C”
and d.key = "1L”
end define
go

associate cmds with
”Lists standard stored commands with a one line deseription”,”1L” go

cmds_date (cmds5.idl)
/* :

** Define "cmds_date” command.

*/

destroy cmds_date go

range of r is relation
range of d is descriptions

define cmds_date
retrieve unique(command = r.name,
description = substring(1,60,d.text)

order by command, d.key
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C”
and d.key = "1T”
end define go

associate cmds_date with

Britton Lee 95

cmds_date (cmds5.idl) Predefined Stored Commands

”Lists stored commands relating to date conversion”,”1L” go

cmds_dba (cmds5.idl)

destroy cmds._dba go

*

** Define "cmds_dba” command.

*/

range of r is relation
range of d is descriptions

define cmds_dba
retrieve unique(command = r.name,
description = substring(1,60,d.text)

order by command, d key
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C”
and d.key = "1D”
end define go

associate cmds_dba with
~ "Lists stored commands mostly used by the dba”,”1L” go
permit execute of cmds_dba go

cmds_permit (cmds5.idl)

96

destroy cmds_permit go
/*
** Define ”cmds_permit” command.

*/

range of r is relation
range of d is descriptions

define ¢mds_ permit
retrieve unique (command = r.name,
description = substring(1,60,d.text)

order by command, d key

where r.relid = d.relid

and (r.owner = dba or r.owner = userid)
and r.type = "C”

Britton Lee

Predefined Stored Commands cmds_permit (crmds5.idl)

and d key = *1P”
end define go

associate cmds_permit with
”Lists stored commands dealing protection of objects”,”1L” go

cmds_space (cmdsS.idl)

destroy cmds_space go

*

** Define "cmds_space” command.
*/

range of r is relation
range of d is descriptions

define cmds_space

retrieve unique (command = r.name,
description = substring(1,60,d.text))
order by command, d.key
where r.relid = d.relid
and (r.owner = dba or r.owner = userid)
and r.type = "C”
and d.key = "1S”

end define go

associate cmds_space with
’ ”Lists stored commands dealing with space/size/storage”,”1L” go

cmds_system (cmds_sys.idl)

4‘

*/

destroy cmds_system go

Define ”cmds_system” command.

define cmds_system
range of r is relation
range of d is descriptions
retrieve unique (command = r.name,
description = substring(1,60,d.text)

order by command, d.key

where r.relid = d.relid
and (r.owner = dba or r.owner = userid)

Britton Lee 97

cmds_system (cmds_sys.idl) Predefined Stored Commands

and r.type = "C”
and d.key = "IM”
end define

associate cmds_system with
"Lists stored commands for monitoring performance”,”1L” go

config (config.idl)
/*

*¥
® %k

**
*/

destroy config go

”config” stored command:

dumps the ”configure” relation from the "system” database.

/* "config_I” — constant relation for ”config” command. */
destroy config..I go

create config_1
(type = ucl,
name = c40

)

go

append config_I (type = "A”, name = "Accelerator, value=WCS level”) go
append config_I (type = "B”, name = ”Block multiplexer host interface”) go
append config_I (type = "C”, name = ”Checkpoint interval”) go

append config_I (type = "D”, name = "Default char set 0=ASCIl 1=EBCDIC”) go
append config_I (type = "E”, name = "Ethernet host interface”) go

append config_I (type = "F”, name = "Pages used for Track Buffer”) go

append config_I (type = "I”, name = "IDM 1D. for IDENTIFY response”) go
append config_I (type = "K”, name = "Memory configuration”) go

append config__I (type = ”L”, name = "Passes for on-line dump”) go

append config_I (type = "M”, name = "Monitor interval(minutes)”) go

append config_I (type = "P”, name = "IEEE-488 host interface”) go

append config_I (type = "R”, name = "IDM software release”) go

append config_I (type = ”S”, name = "RS-232 host interface”) go

append config_I (type = "T”, name = "Mag tape interface, value=4 for h/p”) go
append config_I (type = *V”, name = "Pages to promote locks”) go

O

range of r is relation
replace r (type="1I") where r.relid=rel_id(” config_I") go

define config

range of ¢ is configure
range of cx is config_1I
retrieve (c.all,

98 Britton Lee

Predefined Stored Commands : config (config.idl)

name = cx.name)
order by c.type
where c.type *= cx.type
end define go
associate config with
”Identify the tuples from the configure relation”,” 1IM” go
permit execute of config go

date (date8.idl)

All of the structures used by the date command and ‘“DateAndTime” view are included
to improve readability. The date command uses several data relations and views defined
below. In addition, there are several stored command examples embedded in the scripts.

/* make sure that the values in the savings_I relation below are correct
for the local time zone */

destroy date, gmt_date go /* the commands for date and time */

destroy DateAndTime go /* the view that holds the current date and time */

destroy GMT go /* the view that holds GMT current date and time */
destroy ymd go /* stored command returns idmdate given YYYYMMDD */
destray dateconv go /* stored command to convert idmdate to readable

form

*/
destroy expire go /* Updates relation.expire for given number of days */

destroy expiredate go /* Updates relation.expire to YYYYMMDD as idmdate */

destroy number_I go /* a relation containing tuples for
the numbers from 0 to 60, along with their two-
digit string representations. The numbers from
0 to 23 also contain the day correction

*/

destroy mon_I go /* a view of month_I with the values corrected for
leap years */

destroy month_I go /* a relation containing the first and last days,
name and number of the 12 months */

destroy local _I go /* a view of getdate to correct for the date

in the local time zone, based on julian_I */

destroy julian_I go /* a view of the calendar relation containing the

Britton Lee 99

date (date8.idl) - Predefined Stored Commands

100

information for the current year */

destroy savings.l go /* a relation that corrects for daylight savings time
and time zone *

destroy basel970 go /* set the base for calendar_I to Jan 1, 1970 */
destroy base1900 go /* set the base for calendar_I to Jan 1, 1900 */
destroy calendar_I go /* a relation containing information needed to
convert to julian date and allow for leap years
for the years 1985 - 1992 */
destroy day_I go /* a relation containing the 7 days of the week */

/#*t#t*****t*‘t#*t‘t**tti*#*#tt*t*ttt*t#tt*t‘t#t*#t*t##***#**#t*tttttt#t*tttt/

range of r is relation /* needed to change types of relations and cmds */

/* savings_I is the */
/* displacement of hours from GMT and the change */
/* julian dates for daylight savings time */
/* Check these tuples for local time zone */
create savings_I (
first=i4,
last=i4,
displacement = i4
) go

replace r (type="1") where r.relid=rel_id("savings_I") go

append to savings_I (first = 0, last = 75, displacement = 8) go
append to savings_I (first = 76, last= 300, displacement = 7) go
append to savings_I (first = 301, last= 366, displacement = 8) go

create calendar_I(

start=i4, /* first day year since epoch */
shortyear=uc2, /* YY form of year ie. 85 */
longyear=uc4, /* YYYY form of year ie. 1984 */
leapyear=i4 /* 0 if not leap year, 1 if leap year */
) go

replace r (type="1") where r.relid=rel_id(”calendar_I") go

append to calendar_I (start=31045,shortyear="85" longyear="1985" leapyear=0) go
append to calendar_I (start=31410,shortyear="86" longyear="1986" leapyear=0) go
append to calendar_I (start=31775shortyear="87" longyear="1987" leapyear=0) go
append to calendar_I (start=32140,shortyear="88" longyear="1988" leapyear=1) go
append to calendar_I (start=32506,shortyear="89” longyear="1989" leapyear=0) go
append to calendar_I (start=32871 shortyear="90" longyear="1990" leapyear=0) go
append to calendar_I (start=33236,shortyear="91" longyear="1991" leapyear=0) go

Britton Lee

Predefined Stored Commands date (date8.idl)

append to calendar_I (start=33601,shortyear="92" longyear="1992" leapyear=1) go
append to calendar_I (start=33967 shortyear="93" longyear="1993" leapyear=>0) go
append to calendar_] (start=34332 shortyear="94" longyear="1994" leapyear=>0) go
append to calendar_1I (start=34697 shortyear="95" longyear="1995" leapyear=0) go

/t

** In case your IDM requires a different base date than 1900

** this command will reset the base date for the above conversion

** table (calendar_I) to Jan 1, 1970. Other dates may be used

** by the same method. Note there are 25,566 days from 1900 to 1970.

*/
range of cal is calendar_1I

define base1970
replace cal (start = cal.start -25566)
where cal.start > 25566
end define go

associate base1970 with
”Change base for date conversion to Jan 1,1970”,”1T” go

/* This will reset from 1970 to 1900 */

define basel900
replace cal (start = cal.start + 25566)
where cal.start < 25566
end define go

usoéiate base1900 with
?Change base for date conversion to Jan 1,1900 from 1970”,"1T” go

/* set up current year */
range of cal is calendar_I
range of sav is savings_I

create view julian_I(
start = cal.start,
cal.shortyear,
cal.longyear,
cal.leapyear,
sav.displacement

where cal.start <= getdate

and cal.start + 365 + cal.leapyear > getdate
and sav first <= getdate - cal.start

and sav.last > getdate - cal.start

go

associate julian_I with
”View of the current year in calendar_I”, "V1” go

Britton Lee 101

date (date8.idl) Predefined Stored Commands

range of jul is julian_I

** day_I — used to give the day of the week.
*/

create day_I(number=i4,day==c9 shortday=uc3) go
replace r (type="I") where r.relid=rel_id("day_I") go

append to day_I(number=0,day="Monday” shortday="Mon”) go
append to day_I(number=1,day="Tuesday” shortday="Tue”) go
append to day_I(number=2,day="Wednesday” shortday="Wed") go
append to day_I(number=3,day=""Thursday” shortday="Thu”) go
append to day_I(number=4,day="Friday” shortday="Fri") go
append to day_I(number=>5,day="Saturday” shortday="Sat”) go
append to day_I(number=6,day="Sunday” shortday="Sun”) go

/*
** month_I — used to give the month
*/
create month_I(first=i4,
last==i4,
month=c9,
month_num=uc2,
leapfirst=i4,
leaplast=i4
) 8o

replace r (type="I") where r.relid=rel_id("month_I") go

append to month_](first=1,last=31,month="January” ,month_num="01",
leapfirst =0,leaplast = 0) go

append to month_I(first=32,last=>59,month="February” ,month_num="02",
leapfirst =0,leaplast = 1) go

append to month_J(first=60, last=90, month="March” ,month_num="03",
leapfirst =1 leaplast = 1) go

append to month_I(first=91, last==120, month="April”,month_num="04",
leapfirst =1 leaplast = 1) go .

append to month_J(first=121, last=151, month="May” ,month_num="05",
leapfirst =1 leaplast = 1) go

append to month_J(first=152, last=181, month="June” ,month_num="06",
leapfirst =1 leaplast = 1) go

append to month_I(first=182, last=212, month="July” ,month_num="07",
leapfirst =1,leaplast = 1) go

append to month_I(first=213, last=243, month="August” ,month_num="08",
leapfirst =1 leaplast = 1) go

append to month_J(first=244, last=273, month="September” ,month_num="09",
leapfirst =1 leaplast = 1) go

append to month_I(first=274, last=304, month="October” ,month_num="10",
leapfirst =1 leaplast = 1) go

102 Britton Lee

Predefined Stored Commands date (date8.idl)

append to month_JI(first=305, last=334, month="November” ,month_num="11",
leapfirst =1 leaplast = 1) go

append to month_](first=335, last=365, month="December”,month_num=="12",
leapfirst =1 leaplast = 1) go

/* view of month that corrects for leapyear on leapyears */

range of month is month_I

create view mon_I (first = month.first + month.leapfirst * jul.leapyear,
last = month.last + month.leaplast * julleapyear,
month = month.month,
month_num = month.month_num
) go

associate mon_] with
"View of the months from the current year”, "V1” go
*
L

%
®%

number_I relation -

useful for numeric conversions

especially date, hour, minute, and second conversions
*% alSO

** Used to compensate for GMT date standard.

** Basically this is an if statement. For a

** given hour of the day what do we have to

** add (subtract) to the GMT date to get the

** Jlocal date

*/
create number_I(number=i4 st<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>