
Britton Lee Host Software

IDMFCOPY USER'S GUIDE

(R3v5m2)

March 1988

Part Number 205-1680-001

This document supersedes all previous documents. This edition is intended for use with
Britton Lee Host Software Release 3.4 and future releases, until further notice.

The information contained within this document is subject to change without notice.
Britton Lee assumes no responsiblity for any errors that may appear in this document.

The software described in this document is furnished under license and may only be
used or copied by the terms of such license.

IDM, Intelligent Datab~e Language, and IDL are trademarks of Britton Lee, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

VMS is a trademark of Digital Equipment Corporation.

IBM is a trademark of International Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

COPYRIGHT © 1988
BRITION LEE, INC.

ALL RIGHTS RESERVED
(Reproduction in any form is strictly prohibited)

Table of Contents

1. Genera.I Information .. 1
1.1. Definition ... 1

1.2. Uses ... 1
1.3. Other Copy Utilities .. 2
1.4. Prepa.ra.tion .. 2

2. A Simple Example 3
2.1. The Host File 3
2.2. The Relation 3
2.3. The Format Specification 4
2.4. Idmfcopy In ... 5
2.5. Idmf copy Out 6

3. Building a. Format Specifica.tion .. 7
3.1. Files .. 8

3.1.1. File Structures ... 8
3.1.2. File Specifica.tions .. 9

3.1.2.1. File Specification Para.meters ... 9
3.1.2.2. Default Host Files 10

3.2. Records ... _.... 11
3.2.1. Fixed-Length Records .. 11
3.2.2. Delimited Records 12
·3.2.3. Na.tura.l Records ... 12
3.2.4. Field-Delimited Records ... 13

3.3. Fields 14
3.3.1. Text Fields .. 15

3.3.1.l. Fixed-Length Text Fields ... 15
3.3.1.2. Delimited Text Fields .. 15

3.3.1.2.l. Default Delimiters .. 17
3.3.1.3. Counted Text Fields .. 18

3.3.2. Bina.ry Fields ... 19
3.3.2.1. Fixed-Length Binary Fields .. 19
3.3.2.2. Counted Bina.ry Fields 20

3.3.3. Combining Field Types .. 20
3.3.4. Dummy Fields .. 21
3.3.5. Initialized Fields 21

4. Error Checking 23

Britton Lee iii

5. Batches 25

Appendix A: Symbolic Delimiters .. 27

Appendix B: ldmf copy Keywords 29

iv Britton Lee

Preface

This manual is an introduction to the use of the utility idmfcopy. It should be read in
conjunction with the reference material pertaining to idmfcopy in Section (11) of the
Host Software Specification (UNIX Systems) or in the Command Summary (other sys­
tems).

There are a number of examples throughout this guide which illustrate various invoca­
tions of idmf copy. In all cases, both a UNIX version of the command-line precedes a
non-UNIX version, as illustrated below. In cases where the command-line requirements
for VM/CMS hosts are more restrictive, a third VM/CMS example is given.

idmfcopy in -f "emp.fmt"

idmfcopy in /formatfile="emp.fmt"

idmfcopy in mydatabaae emps /formatfile="emp.fmt"

One-character options preceded by a hyphen, such as -f, are used in UNIX environ­
ments. One-word options preceded by a slash, such as /formatfile, a.re commonly used
in other host environments. In this example, -f and /formatfile represent the same
option in UNIX and non-UNIX environments.

We have used the terminology of Britton Lee's Intelligent Database Language (IDL)
throughout this guide to refer to certain database objects a.nd commands. The table
below can · be used to translate these IDL terms to the Structured Query Language
(SQL).

IDL SQL
relation ta.hie

tuple row

attribute column

append insert

retrieve select

Keywords and command-lines which can be entered at the terminal a.re shown in bold­
face.

Britton Lee v

vi Britton Lee

1. General Information

1.1. Definition

ldmfcopy converts and copies formatted data. between a. file on the host system and a
relation on the Britton Lee database server.

ldmfcopy consists of two programs. ldmfcopy in reads records from a file or tape on the
host computer, converts them to a format which can be read by the data.base server,
and copies them into a relation on the database server. ldmfcopy out reads tuples from
a relation on the data.base server, converts them to a format specified by the user, and
writes them as records to a file on the host computer.

A record is converted and copied to a tuple, or vice-versa, one at a time.

File Relation

record tuple

record tuple

record
idmfcopy in

tuple

record idmfcopy out tuple

record tuple

record tuple

HOST DATABASE SERVER

1.2. Uses

One common use of idmfcopy in is to load a new relation into the database server from
an existing host file. ldm/copy in can also be used to append a. large a.mount of data to
an existing relation. To add small a.mounts of data, the IDL command append is
appropriate, but it is more efficient to use idmfcopy in to add large a.mounts of data to
a. relation.

If it is necessary to edit a. large a.mount of data. in a relation, it is often easier to copy
the data out and edit it on the host system using a. text editor rather than update the
relation using the data.base query languages IDL or SQL. The edited host file can then
be copied back in, after you have deleted the tuples in the original relation.

ldmfcopy is also an appropriate tool for moving data from one host to another via a
database server. Relations can be copied in from one host to the data.base server and
then out from the database server to another host.

88/0£/££ v. 1.8 Britton Lee 1

General Information ldm/copy User's Guide

1.3. Other Copy Utilities

ldm/copy is distinguished from other Britton Lee copy utilities in that it copies user­
forma.tted data.. If you a.re working with data formatted by the data.base server, it
would be more appropriate to use other utilities to copy your data. The utility idmcopy
is used for copying data.base-server-formatted data to and from the database server. If
you wish to back up an entire data.base, use idmdump and idmload. These utilities are
described in Section (11) of the Host Software Specification (UNIX Systems) or in the
Command Summary (other systems).

1.4. Preparation

You will have to provide certain information to idm/copy. From the database server
side, you must provide the name of the database and the names of the the relations you
are copying to or from, and the names of the attributes in those relations. From the
host side, you must supply the name and type of the host file being copied to or from
and some information about how data. is organized in the file.

For both idmfcopy in and idm/copy out, the relation must already exist. For idm/copy
out, the host file will be created if it does not already exist.

You also need to create a format specification which idm/copy uses to convert data.
This specification is based upon information you have about the host file and the rela­
tion. Learning to use idm/copy primarily involves learning to build this format
specification.

For the examples used in this gui4e, we will create the host file and the relation so that
you can see how this material is generated. In most real-life applications, however, the
host file and relation already exist. You will have to examine the file, and any available
documents describing it, especially if it contains binary data., in order to obtain the
information necessary to build the format specification. You also need to obtain some
specific information about the relation; at a. minimum you need to know the names of
the attributes which will be affected by idm/copy, since these names must be used in the
format specification. It would also be useful to know the types and sizes of the attri­
butes in order to understand any error messages generated by idm/copy.

2 Britton Lee 88/01!/1!1! v. 1.8

2. A Simple Example

2.1. The Host File

Let us create a host file named "empfile" containing the employee numbers, last names,
first initials, and phone extensions of the employees in an organization. This can be
done with the text editor that we normally use on our host:

101Claus,N20
102Hood,R21
103Kole,K26
104White,S28

All the records in this file have the following structure:

The first field, containing the employee number, consists of three digits.

The second field, containing the last name, consists of a variable number of
alphabetic characters and is terminated with a comma.

The third field, containing the first initial, consists of one alphabetic character.

The fourth field, containing the telephone extension, consists of two digits.

This choice of organization is completely arbitrary. Later in this document, we will
demonstrate other methods of describing and delimiting fields .containing the same and
similar data.

2.2. The Relation

Let us create a relation "emps" on the database server, whose attributes correspond to
the fields in "empfile". We can do this using the idl program

1) open mydatabase
2) create emps {empno == i2, lname == cl2, init == cl, ext == il);
1) exit; ·

or the sql program

88/oe;ee v. 1.8 Britton Lee 3

A Simple Example ldmf copy User's Guide

1) open my database -
2) create table emps (empno smallint, Iname char(12), init char(l), -
3) ext tinyint)
1) exit

Either of these commands creates a.n empty relation in "mydata.base" which- looks like
this:

1•mpno lname in it ext

The names of the attributes (empno, Ina.me, init, ext) a.re the same names which will be
used in the format specification when idmfcopy is invoked to copy to or from this rela­
tion.

2.3. The Format Specification

Whether you wish to copy in or out, you need to build a format specification to
describe the host file and the relation to the idmfcopy program. The simplest way to do
this is to create a format specification file or formfile using the text editor on your host
system.

The following format specification file named "emp.fmt" can be used to copy data
between the host file "empfile" and the relation "emps":

database
relation
file
record

mydata.base;
emps;
"empfile";

empno decima.1(3);
Ina.me text to comma;
init text(l);
ext decima.1(2);

end

This format specification maps the attributes in the "emps" relation, represented by the
attribute names (empno, Ina.me, init, ext), to fields in the host file "empfile". The fields
are described by their type and method of delimitation {decimal{3), text to comma,

Britton Lee 88/oe;ee v. 1.8

ldmf copy User 'a Guide A Simple Example

etc.). This descriptive portion of the format specification always describes the data as it
appears in the host file, not the relation, no matter which direction idmfcopy is copying.
The corresponding attribute is represented by its name alone. Therefore, the field
corresponding to the attribute "Ina.me" is described as "text to comma.", which
describes its structure in the host file, not as "text(l2)" which would reftect the alloca­
tion of 12 characters for the attribute "Ina.me" in the relation.

If there are incompatibilities between the way in which a field appears in the host file
and the description of its corresponding attribute in the relation, idm/copy will treat
them in a predictable manner. In this case, if the value of a last name occupies fewer
than 12 characters, the value in the relation will be blank-padded. If it occupies more
than 12 characters, a warning will be generated and the record containing the illegal
field will not be copied. We will describe a method for previewing such problems in the
section on error checking.

2.4. ldmtcopy In

Thus far, we have created a host file called "empfile'', a relation called "emps", and a
host file called "emp.fmt" containing a format specification.

The relation "emps" is empty. We can now invoke idm/copy in to load it with the da.ta
from "empfile":

idmfcopy in -f "emp.fmt"

idmfcopy in /formatfile="emp.fmt"

idmfcopy in mydatabaae emps /formatfile="emp.fmt"1

The -for /formatfile option instructs idmfcopy to read the /ormfile called "emp.fmt"
for the name of the host file, the name of the relation and the attributes in the relation
along with a description of the fields in the host file which correspond to those attri­
butes.

If you wish to verify that idmf copy in was successful, retrieve all of the attributes in the
relation using IDL

or SQL

1) range of e is emps;
1) retrieve (e.all);

1Ir the host environment ii VM/C'MS, the d&t.abaat name and the relation name must be 1peciled ca Ute command-line
when itlmfcop11 ii invoked.

BB/oe;ee "· 1.8 Britton Lee 5

A Simple Example ldmf cop'!J User 'a Guide

1) Hlect • from empe

empno lname in it ext
101 Claus N 20
102 Hood R 21
103 Kole K 24
104 White s 25

If the idmfcopy in did not produce the desired results, all of the data in the relation can
be deleted with the truncate command, which is identical in IDL and SQL:

1) truncate emps

2.5. ldmtcopy Out

If idmfcopy in was successful, the relation can be copied out, often using the same for­
mat specification that was used to copy in. There are some cases in which it is not
advisable to use the same format specification to copy in and out. These cases are dis­
cussed under "Delimited Text Fields".

If you wish to copy out to a new host file, you can override the filename in the format
specification by specifying another filename on the command-line. The new filename can
be specified with the -d or /datafile option:

idmfcopy out -f "emp.fmt" -d "newempftle"

idmfcopy out /formatfile=="emp.fmt" / dataflle=="newempflle"

idmfcopy out mydatabue emp• /formatflle=="emp.fmt"
/ dataflle=="newempflle"

Since no modifications were ma.de to the relation, "newempfile" should be identical to
"empfile". In general, if one filename is indicated on the command-line and another in
the format specification, the filename on the command-line takes precedence.

8 Britton Lee 88/0e/ee "· 1.B

3. Building a Format Specification

At a minimum, a format specification consists of a series of statements describing the
data in the host file and a mapping of host file data to attributes in the relation. A for­
mat specification is needed whether data is being copied in or out of the database
server.

Other format specification statements, such as those indicating the database and rela­
tion or the name of the host file, may be provided as parameters on the command-line
when idmfcopy is invoked or included in the /ormfile as in the previous example.

We could have invoked idm/copy by

idmfcopy in -f "emp.fmt" -d. "empfile" mydatabue emps

idmfcopy in mydatabaae emps /formatflle=="emp.fmt"
/ datafile=="em pfile"

Then the entire format specification would have looked like this:

record

end

empno decima.1(3);
}name text to comma;
init text(l);
ext decima.1(2);

:

This example has the exact same meaning as the one in Section 2.3. In that example,
the names of the host file, the data.base, and the relation were included in the format
specification itself, while here they are indicated on the command-line.

If the database name, relation name, or host file name is indicated both on the
command-line and in the format specification, the name on the command-line takes pre­
cedence.

If your host environment is VM/CMS, the alternative of supplying the data.base name
and relation name in the format specification is not available. If the data.base name or
relation name is included in the format specification, is ignored. In this environment,
the only correct invocation is

idmfcopy in mydatabase emps /formatfile="emp.fmt"
/ datafi.le="empfile"

88/0£/££ v. 1.8 Britton Lee 7

Building a Format Specification ldmfcopy User's Guide

In order to write the part of the format specification which actually describes the organ­
ization of the data. in the record, it is necessary to have specific information about the
file being copied to or from, the records in that file, and the fields contained in the
records.

3.1. Files

3.1.1. File Structurea

Host files a.re considered to have a stream-based or record-based presentation, depending
upon the way in which their data is conceptually organized. A file with a stream-based
presentation is perceived as a stream of bytes with no notion of record boundaries
imposed on it. Data. is read from or written to a stream-based file by specifying a start­
ing point and the number of bytes to be read or written.

A file with a. record-based presentation is perceived as discreet chunks of data called
records, in which each chunk has a clear beginning and end. Records may be of vari­
able or fixed length. The record boundaries are created when the file is written, and
reads performed on the file must pair one-to-one with the writes. Data. is read from or
written to a record-based file by specifying the records to be read or written.

The conceptual presentation of a. file is not necessarily the same as its actual physical
structure, so that it is possible to mix physical structures and presentations. Generally,
a record-based presentation may be used on physically record-based files or on physically
stream-based files. A stream-based presentation may be used on physically stream­
based files; however, an attempt to perform stream-based reads and writes on a physi­
cally record-based file may produce undefined results.

It is helpful to know both the physical structure and the presentation of the host file
before attempting to build a format specification. The possible physical structures and
presentations for host files in environments currently supported by Britton Lee Host
Software are:

ENVIRONMENT PHYSICAL STRUCTURE PRESENTATION

UNIX stream stream or record

VMS stream or record stream or record

VM/CMS record stream or record

PC MS-DOS stream stream or record

8 Britton Lee 88/oe;ee v. 1.8

ldmf copy User's Guide Building a Format Specification

3.1.2. File Specifications

Host data may reside in a disk file or tape file or it may be entered from the user's ter­
minal. General information a.bout a host file is detailed in a filespec. The filespec can
be a quoted string in the format specification; in the example in Section 2.3, the word
"empfile" is the filespec. The filespec ca.n also be a. para.meter on the command-line; in
the example on page 7, the "empfile" following the -d or /datafile option on the
command-line is the filespec.

Filespecs can include optional para.meters, some of which are discussed below. For the
format of a. filespec, consult the entries for i/scrack(} and i/open(} in the Host Software
Specification or C Run-Time Library Reference.

3.1.2.1. File Specification Parameters

Optional para.meters may be included in a. filespec to override default aa;umptions
which idmfcopy makes a.bout a. file. The para.meters a.re separated from the filename by
a filename delimiter, which is usually a. percent symbol (%), except on VMS hosts where
it is a. score(#).

If the file resides on host tape, this can be indicated in the filespec a.s

empfile%hta.pe

or

empfile#htape

if the host is VMS. If the file type is not specified, the def a.ult is a. disk file.

In addition to the file type, there a.re other parameters which can be used to override
default assumptions a.bout a. host file. Some useful para.meters a.re listed below:

mode(m)

rbp(b)

rs(n)

88/02/£2 v. 1.8

If m is a, the file is open for appending. The defa.ult on copy out
is w signifying open for writing. When m is w, any data. already
in the host file is over written on copy out.

If b is 0, record-based presentation is off. If b is 1, it is on. This
parameter is specified when the host file has a. physical record­
based structure and all of the fields a.re binary and the record
structure is not specified elsewhere in the format specification.

This indicates the record size. On VMS, if the record size is not
specified, the block size bs is used. If record size is not specified
in the format specification, the system provides a def a.ult record
size on physically record-based systems. On physically stream­
ba.sed systems, if the fields in a record a.re all fixed-length, the

Britton Lee 9

Building a Format Specification ldmf copy User's Guide

bs(n)

default record size is the sum of the fixed-length fields. H the
fields are of variable length, the default record size is 8 * IOB­
SIZE.

On output, this defines the physical block size. On input, the file
type can override this value if the block size can be determined
from the file itself.

format(f) For ANSI-labeled tape, t indicates fixed format, d indicates vari­
able format. The default is d. This feature is not supported on
all systems.

padchar(c) This specifies the character to use for padding on files having a
.stream-based physical structure. It defaults to binary zero on
most file types.

type(c) H c is b, the file is opened as binary; if c is t it is opened as text.
The default is text.

For example,

empfile%hfile,mode(a),rbp(l),rs{16)

specifies that the data is in a host file to be opened in append mode, using a record­
based presentation and a record size of 16 bytes, and

em pfile%h tape ,f ormat(f),padchar($)

indicates that the data is to be read from a host ANSI-labeled tape in fixed format and
that unfilled portions of fields are to be padded with the "$" character on idmfcopy out.

3.1.2.2. Default Host Files

H there is no filespec in the format specification or on the command-line, the host file is
assumed to be the user's terminal (or stdin and stdout on a UNIX system). For exam­
ple, the command

idmfcopy out mydatabaae empe -f "emp.fmt"

idmfcopy out mydatabaae emps /formatflle=="emp.fmt"

when "emp.fmt" looks like

10 Britton Lee 88/0t/tt tT. 1.8

ldmf copy User's Guide Building a Format Specification

record
empno
lname
in it
ext

end

decimal(3);
text to comma;
text(l);
decimal(2);

has no filespec. It produces the following output at the user's terminal.

3.2. Records

101Claus,N20
102Hood,R21
103Kole,K26
104White,S28

Files consist of one or more records, and records consist of one or more fields. We
categorize records according to the way in which their boundaries are delineated. There
are four record types of interest to idmf copy:

• fixed-length

• delimited

• natural

• field-delimited

A single host file will contain only one type of record. The type of record which exists
in a particular file depends on the characteristics of the data and the physica.l structure
a.nd presentation of the host file.

3.2.1. Fixed-Length Records

Fixed-length records a.re typical for a host file with a record-based presentation and
fixed-length fields.

The format for specifying a fixed-length record of 80 bytes is

record (80).

On an idmfcopy in of a fixed-length record, if the specified record size n is less than the

88/0£/££ v. 1.8 Britton Lee 11

Building a Format Specification /dmf copy User's Guide

actual record size in a physically record-based file, data beyond the nth byte will not be
copied. On an idmfcopy out, if the data in the tuple is less than n bytes, the record will
be padded to fill the file's specified record size.

3.2.2. Delimited Records

The end of a delimited record is marked with a special delimiter character. A list of
commonly used delimiters which may be referenced by their symbolic names is provided
in Appendix A.

A single host file can contain delimited records of varying lengths. On copy out, the
record is scanned until the specified delimiter is found, and then it is copied. More than
one character can be specified as the delimiter. In this case, on an idmfcopy out the first
delimiter specified is written to the host file. On an idmfcopy in, the first delimiter
encountered is interpreted as the end.of the record.

It is essential that the delimiter character not appear in any part of the record except at
the end. The delimiter itself is not considered part of the record and is discarded when
the data is copied.

A record which is delimited by a newline character is represented in the format
specification as

record to nl

The delimiter may be specified by its symbolic name, its graphic symbol, or its ASCII or
EBCDIC numeric value (hex or octal), so that

record to nl
record to '\n'
record to 012
record to 15

/*ASCII*/
/*EBCDIC*/

all signify that the record delimiter for a specified host file is a newline.

3.2.3. Natural Records

A natural record is specified as

record

This is the simplest record specification format to use, because it leaves to idmfcopy the
task of interpreting the size and method of delimiting the record.

12 Britton Lee 88/oe/ee v. 1.s

ldmf copy User's Guide Building a Format Specification

When the user specifies a natural record, idmfcopy determines the presentation and phy­
sical structure of the host file and extrapolates from the format specification certain
information about the fields. ldmfcopy then interprets the structure of a natural record
according to the following guidelines:

(1) If all the fields in the record a.re of fixed length, the file is usumed to have a
record-based presentation. The record is treated as a fixed-length record with its
length equal to the sum of the lengths of the fields.

(2) If the file has a record-based physical structure, a record-based presentation is
assumed. If a.II the fields are fixed length, the record is treated as in (1) above.
If not all the fields are of fixed length, a system default length is used for the
length of the record.

(3) If the file has a stream-based physical structure and not all fields in the record
are of fixed length, a stream-based presentation is assumed. The record is
treated as a delimited record with the newline (nl) as its delimiter.

Our simple example in Section 2.3 uses a natural record specification. If the host file
"empfile" had a record-based physical structure the file would be assumed to have a
record-based presentation (guideline 2). Since the field length for the field containing
the last name is not fixed, a system-provided default length would be used for the
length of the record.

If "empfile" had a stream-based physical structure, a stream-based presentation would
be assumed (guideline 3), and the record would be considered to be of variable length
delimited by a newline.2

3.2.4. Field-Delimited Records

Field-delimited records are copied in or out a field at a time. The format for specifying
a field-delimited record is

record (*)

Field-delimited records will not work on a file with a record-based physical structure
and a.re not recommended for files with stream-based physical structures either, as they
afford less reliable error detection and recovery than the three record specifications pre­
viously discussed. This feature is provided to allow unusual data sets to be copied in.

21.r the host environment is VM/CMS, a record in which all the data is of type text must. be apeciled •record to nl and
a record containing any binary data must be specified a.& record.

88/0£/££ v. 1.8 Britton Lee 13

Building a Format Specification ldm/copy User'• Guide

3.3. Fields

A record consists of one or more fields. Just as a. record in a. host file corresponds to a
tuple in a. relation on the database server, a field in a record corresponds to an attribute
in a. tuple. Ea.ch attribute has a unique name which is used to pair a field description
with its corresponding attribute in the format specification.

RECORD

101Claus,N20

TUPLE

I empno I !name
101 Claus

FORMAT SPECIFICATION

record

end

empno decimal(3);
lname text to comma;
init text(l);
ext decimal(2);

in it ext
N 20

There are two reserved attribute names: all for specifying all the fields in a. record or
attributes in a rela.tion a.nd " - " for specifying a dummy field.

If the name of an attribute is the same as that of an idmfcopy keyword, it must be
enclosed in quotation marks in the format specification. For example, if an attribute
name is identical with the keyword text, it must be specified as "text" in the format
specification. Keywords are listed in Appendix B.

Fields are described in the format specification by a field specification or fieldspec. This
section contains informal descriptions and examples of field specifications for various
types of data. For a formal description of the syntax of a fieldspec and all of its com­
ponents, consult the reference ma.terial for idm/copy in the Boat Software Specification
and Command Summary.

All field specifications begin with the name of the attribute which corresponds to the
field in the host file. The remainder of the field specification describes the structure of
the field in the host file.

14 Britton Lee 88/oe;ee v. 1.B

ldmf copy User's Guide Building a Format Specification

Fields a.re specified according to the types of data. they contain (text or binary). Data
stored in huma.n-rea.da.ble form is text data., data stored in machine-rea.da.ble form is
binary data.. Within this classification based on the type of the data, fields may be
described further by the manner in which their boundaries are delineated. At this level,
a field may be considered fixed-length, delimited, or counted.

3.3.1. Text Fields

There are six text types: text (for character strings), and decimal, hex, octal, aci, and
float (for numbers). On idmfcopy in, aci and float are identical; on idmfcopy out, sci
formats data in exponential notation.

3.3.1.1. Fixed-Length Text Fields

The description of a fixed-length text field consists of the name of the corresponding
attribute, the text type, and the length of the field (in digits or cha.racters) enclosed in
pa.rentbeses. If the field is of type aci or float, an optional precision may be indicated
by a comma followed by an integer to represent the number of digits to the right of the
decimal point. If the precision is not specified, a default precision of 6 digits is used on
idmf copy out.

Below are some examples of field specifications for fixed-length text data:

}name text(12)
empno decimal(3)
salary float(4,2)

When fixed-length fields do not have enough data to fill their specified lengths, numeric
data is blank-padded on the Jeft and text data is blank-padded on the right on idmfcopy
out.

Numeric data may be preceded by a "+" or "-" sign. A field containing hexadecimal
or octal data may contain the "Ox" or "Oo" base notations. The characters used to
indicate sign and base notations are not counted as part of the length of a field when
the length of a numeric field is specified.

3.3.1.2. Delimited Text Fields

If the length of a field is not fixed, the end of a field may be marked with a delimiter
character.3 The delimiter character for a specific field must not appea.r as data in that

'Ir the host environment is VMS a.nd the file ii at.ream-bued, the line-reed, rorm-reed, and carrUp-return characters
ahould not be used as field delimiters, because they may be recognized by VMS u record delimit.era. Jr t.he host environ­
ment is PC/MS-DOS, a.nd a field delimiter is not ASCII text, tab, or newline, the file 1hould be opened u binary. This

88/oe;ee v. 1.8 Britton Lee 15

Building a Format Speelflcation Idm/copy User 'a Guide

field, nor should a field delimiter be identical with the record delimiter for the record
which contains the field.

Delimited fields are specified by the name of the corresponding attribute, the text type,
the keyword to and the field delimiter. The delimiter may be specified by its symbolic
name, its graphic symbol, or its numeric value:

lname text to ','
lname text to 054
lname text to 68
lname text to comma

/*ASCII•;
/*EBCDIC•;

We could have built the records in our sample "empfile" completely with delimited
fields. This would have been necessary had we wanted to accommodate variable-length
employee numbers, initials, and phone extensions as well as variable-length last names.
The file might have looked like

101 Claus,N:20
102 Hood,R:21
103 Kole,K:26
104 White,S:28

in which case the format specification would have looked like

record

end

empno decimal to space;
}name text to comma;
init text to colon;
ext decimal to nl;

You can execute idm/copy in substituting this new file and format specification for the
original ones in Section 2.3 and produce the exact same tuples in the relation.

It is important to understand that, although the lengths or delimited text fields a.re not
fixed in the host file, a fixed amount of stora.ge was allocated for each attribute when
the relation was created on the data.base server. Field lengths which exceed the stora.ge
allocated for their corresponding attributes will generate overflow warnings and not be
copied in.

can be done b7 indicating t7pe(b) int.be jUuprc. See Section 3.1.2.1.

18 Britton Lee 88/oe;ee v. 1.a

ldmf copy User's Guide Building a Format Specification

3.3.1.2.1. Default Delimiters

A set of default field delimiters may be specified with the delimiter statement in the for­
mat specification. For example, the semicolon can be specified as a default delimiter as
follows:

delimiters

If the delimiter statement is not used and no delimiter is named in the field
specification, tab, comma, and newline a.re the default delimiters on copy in, and comma
is the only def a ult delimiter on copy out. The tuple

lempno lname in it
101 Claus N

could be copied out using the format specification

record to nl

e~d.

empno text;
Ina.me text;
init text;
ext text;

ext
20

In this case, default field delimiters would be inserted to produce a record that might
look like this:

101,Claus,N,20,

To copy the tuple back in, the same format specification could be used, but there is
always a. danger that one of the other default delimiter characters could exist in the
data. If this were the case, the character could be interpreted as a field delimiter by
idmfcopy. Even if default delimiters are being used to copy data out, it is more prudent
to state field delimiters explicitly when copying in. The safest format specification to
copy in this record would be

BB/oe/ee v. 1.s Britton Lee 17

Building a Format Specification

record

end

empno text to comma;
lname text to comma;
init text to comma;
ext text to comma;

3.3.1.3. Counted Text Fields

ldmfcopy User's Guide

Another way or specifying variable-length fields is by using counted fields. In a counted
field, the data is preceded by a one-byte count field which contains the number or bytes
or data in the field. This count does not include the count field itself.

For example, a counted field consisting or eight bytes or data can be conceptualized as

count data
8 eight bytes of data

If the fields in the file have been set up as counted fields, you must specify them as
such, unless you are prepared to make extensive revisions to the host file to accomodate
another field structure.

A counted field is specified by the corresponding a.ttribute name and the field type fol­
lowed by an asterisk enclosed in parentheses.

lname text(*)
empno decimal(*)

A counted field may also be specified by the attribute name and the field type followed
by the keyword var.4 When this Corm is used, the count field occupies two bytes:

lname text(var).

+.rbe var torm ia commonly used on mM systems.

18 Britton Lee 88/oe;ee v. 1.8

ldmf copy User's Guide Building a Format Specification

3.3.2. Binary Fields

There may be fields in your host file, or even entire records, which contain binary rather
than text data. There are two categories of data which may be stored in binary format:
numeric data which is stored in fixed binary format, and decimal numbers which are
"packed" or binary coded (bin, bed, bedflt).

Data may be stored in binary format because it requires less stora.ge in this form or
because manipulation of numeric data is more efficient since binary data need not be
converted to machine-readable form prior to being processed. On the other hand, data
specified in binary format is not readily convertible from one host machine to another.
Therefore, binary specifications are not recommended when the file may be transferred to
a host supporting a different internal representation. If there is any possibility that a
host file will be ported to another system, format specifications should utilize a text for­
mat, which will automatically be converted to the appropriate internal representation
by idmf copy.

3.3.2.1. Fixed-Length Binary Fields

A fixed-length binary field specification consists of the corresponding attribute name fol­
lowed by a fixedbinspec which indicates both the type of numeric data (integer or
floating-point) and the number of bytes of data in the binary field. Possible .fixedbin­
specs are

il (1-byte integer)
i2 (2-byte integer)
i4 (4-byte integer)
f4 (4-byte floating-point number)
f8 (8-byte floating-point number)

The following a.re typical fixed-length binary specifications:

salary f4
empno i2

The binary-coded decimal data types (bin, bed, bedflt) may have fixed-length
specifications consisting of an attribute name, followed by one of these bed types, fol­
lowed by the length of the field in bytes enclosed in parentheses. The precision of a
bdeflt is indicated by a comma followed by an integer indicating the precision:

salary bcdflt(4,2)
empno bcd(2)

88/0£/££ v. 1.8 Britton Lee 19

Building a Format Speei&eation ldmfcopy User's Guide

3.3.2.2. Counted Binary Fielda

Binary-coded decimal fields which do not have a fixed length are specified as counted
fields. As with counted text fields, the first byte is the length byte which indicates the
number of bytes in the field. Counted bed fields are specified by the corresponding
attribute name followed by the bed type followed by an asterisk enclosed in
parentheses:

num bed(*).

3.3.3. Combining Field Typea

Text and binary fields can be combined in the same record. For example, a record with
the format specification

record

end

empno decimal(3);
Ina.me text(l2);
init text(1);
ext i2;
salary bcdflt(4);

is treated as a fixed-length record of 22 bytes. The host file is opened as a binary file,
because at least one of the fields is binary.

Fields which are delimited in different manners can be combined within the same record.
A file described by the format specification

record

end

empno decima.1(3);
Ina.me text to comma;
init text to comma;
ext i2;
salary bcdflt{4);

would be treated as a file of records delimited by newlines if the host file had a stream­
based physical structure. If the file had a record-based physical structure, it would be
considered a file of fixed-length records with a default record length provided by the sys­
tem.

20 Britton Lee 88/oe;ee "· 1.8

ldmf copy User's Guide Building a Format Specification

3.3.4. Dummy Fields

It may be desirable to omit some of the fields when the record or tuple is copied. This
is done by specifying the field to be omitted as a dummy field. Dummy fields are
signified by a hyphen:

record

end

decimal(3);
lname text to comma;
init text to comma;
ext i2;

bcd8t(4);

The first and fifth fields from the host file are discarded on the idm/ copy in.

Dummy fields are not copied in to the database server, but they are copied out to the
host file where they are given a. null value appropriate to their type.

3.3.5. Initialized Fields

Initializing fields is a common practice when copying out dummy fields, so that the
dummy fields can be easily identified in the host file. For example,

record
empno decimal(3);

text(l2) = "#############";
in it text(l);
ext i2;

bcdftt(4) = 00.00;
end

produces a record on idmfcopy out which might look like

103############K2600.00

When an initialized field is copied in, the initialization specified in the format
specification must match the actual data in the host file.

88/0f!/f!f! ti. 1.8 Britton Lee 21

Building a Format Speciflcation ldmf copy Uaer 'a Guide

22 Britton Lee 88/0£/££ v. 1.8

4. Error Checking

On an idmfcopy in, records which do not fit the forma.t specification generate a warning
or error message a.nd are not copied into the relation. Warnings a.re usually- caused by
conversion overflow. Records which generate warnings can be copied into the relation if
idmf copy is invoked with the -w or /warning option, which instructs idmfcopy to
ignore warnings.

Records which generate warnings and errors may be collected in a reject.file which is
created automatically on the host. To create a reject.file, invoke idmfcopy in with the
-r or /rejectfile option followed by the name of the reject.file. A common use of this
feature is to combine it with the -n or /checkdata option. This performs a.11 the
conversions without copying the records, so that the records in the reject.file can be
examined, edited in the host file, and resubmitted.

The command

idmfcopy in mydatabaae empa -f "emp.fmt" -r "badreca"

idmfcopy in mydatabase emps /formatfile="emp.fmt"
/ rejectfile="badrecs"

copies records into a relation, placing all the records that do not fit the specification
into a host file named "badrecs". The command

i4mfcopy in mydatabaae empa -f "emp.fmt" -n -r "badrecs"

idmfcopy in mydatabaae emps /formatflle=emp.fmt
/ checkdata / rejectfile="badrecs"

formats the data. in preparation for copying, copies the bad records into "badrecs", but
does not actually perform the copy to the data.base server. The user may then examine
the bad records, edit the host file or the format specification, and then resubmit the file
for copying. Rejectfile processing is not available with field-delimited records.

Occasionally there may be so many erroneous records in a host file that it would be
advisable to halt the idmfcopy process. Invoking idmfcopy with the -e or /errorstop
option followed by an integer instructs the program to stop processing after the
specified number of errors.

If you to wish see the data which has been copied displayed a.t the terminal, invoke
idmfcopy with the -v or /verbose option.

The table below gives a. summary of the error-checking options offered by idmfcop'!f.

88/0f!/ff! v. 1.8 Britton Lee 23

Error Checking ldmf copy User's Guide

OPTION (UNIX) OPTION {OTHER) MEANING

-e n / errorstop= n Stop processing after n errors.

-D /checkdata Check da.ta., but do not copy.

-r rejectfile /rejectfile=rejectfile Collect errors in rejectfile.

-v /verbose Use verbose mode: display data
being transferred.

-w /warning Ignore warnings.

24 Britton Lee 88/oe;ee v. 1.8

5. Batches

By default, idmfcopy in copies 5000 records together. As each ~record ba.tch is com­
mitted, a message is printed informing the user of the number of records copied so far.

This feature is useful for copying large amounts of data. If the system crashes, the
database server will back out any portions of the batch which have not been committed.
Upon recovery, you can skip the records which have already been committed using the
-s or /skipdata option with an integer to indicate the number of records to skip:

idmfcopy in mydatabue emps -f "emp.fmt" -a 5000

idmfcopy in mydatabue emps /formatfile="emp.fmt"
/skiprecord=5000

The ~record default batch size can be overridden by invoking idmfcopy with the -b
or /batchsize option with an integer to represent the desired batch size in number of
records:

idmfcopy in mydatabue emps -f "emp.fmt" -b 2000

idmfcopy in mydatabue emps /formatfile="emp.fmt"
/batchsize=2000

88/0£/££ v. 1.8 Britton Lee 25

Batches /dmf copy User 'a Guide

26 Britton Lee 88/oe;ee v. 1.8

Appendix A: Symbolic Delimiters

This is a list of delimiter characters which may be used to delimit records and fields.
These delimiters may be referenced by their symbolic names (i.e. null, comma) in a for-
mat specification. -

Name Graphic ASCII EBCDIC Meaning

null ()()() 00 Null

tab \t 011 05 Horizontal Tab

nl \n 012 15 Newline

If 012 25 Line Feed

ff \f 014 oc Form Feed/New Page

er \r 015 OD Carriage Return

f s 034 22 Field Separator

gs 035 Group Separator

rs 036 35 Record Separator

us 037 Unit Separator

spa<;e () 040 40 Space

comma 054 6B Comma

dash 055 60 Dash/Hyphen/Minus

dot 056 4B Dot/Period/Decimal Point

slash I 057 61 Slash

colon 072 7A Colon

semi 073 5E Semicolon

88/02/£2 v. 1.8 Britton Lee 27

Appendix A: Symbolic Delimiters ldmf copy User's Guide

28 Britton Lee 88/oe/ee v. 1.B

Appendix B: Idmfcopy Keywords

The following words have special significance to the idmfcopy program t.nd must be
enclosed in quotation marks if they are used as the names of attributes in a relation on
a database server.

all f8 relation

bed file aci

bcdflt float text

bin hex to

database il unaigned

delimiters i2 var

decimal i4 verbose

end octal

f 4 record

88/0e/ee v. 1.8 Britton Lee 29

