
Britton Lee Host Software

IDMLIB USER'S GUIDE

(R3v5m9)

May 1988

Part Number 205-1681-003

This edition is intended for use with Britton Lee Host Software Release 3.5 and future
releases, until further notice.

The information contained within this document is subject to change without notice.
Britton Lee assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under license and may only be
used or copied by the terms of such license.

Intelligent Database Language and IDL are trademarks of Britton Lee, Inc.

Unix is a trademark of AT&T Bell Laboratories.

VAX and VMS are trademarks of Digital Equipment Corporation.

IBM is a trademark of International Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

COPYRIGHT© 1988
BRITTON LEE, INC.

ALL RIGHTS RESERVED
(Reproduction in any form is strictly prohibited)

Table of Contents

1. C Programming With IDW..IB ... I

I.I. General .. I

1.2. Data Types ... _.......................... 2

1.3. Return Codes ... 2
1.4. Macros ... 3

I .5. Exceptions .. 3

I .6. Reference Materials .. 4

2. The IDM Runtime System ... 5

2.I. Fundamental Routines ... 6

2.I.I. Create An ID~UN Structure .. 6

2.I.2. Parse a Command ... 7
2.I.3. Execute a Command .. 8

2.2. Routines to Select Data .. 9

2.2.1. Bind Selected Data to Program Variables .. IO
2.2.2. Read Rows from the Database Server ... IO

2.3. Other IDM Runtime System Routines ... 11

2.3.1. Substitute Constants in an SQL Command 11

2.3.2. Set Up an Execute/Start Command ... I3

2.3.3. Obtain Information on a Target:-List Element 17

2.3.4. Obtain Information On An ID~UN Structure 17

2.4. Independent ID~UN Structures ... 23

2.5. Related ID~UN Structures ... 27

3. Introduction to Exception Handling .. 31

3.1. Exception Identification ... 32

3.2. Exception Handlers ... ,............................... 33

3.2.1. Def a ult Handlers .. 34

3.2.2. Standard Handlers .. 34

3.2.3. Customized Handlers .. 35

4. Command-Line Arguments .. 39

4.1. The Command-Line .. 39

4.2. The Argument List ... 40

Appendix A: Incorporating the Standard 1/0 Library ... 45

Appendix B: UNIX .. 49

Appendix C: VMS ... 51

Appendix D: .PC/MS-DOS .. 53

Britton Lee iii

Appendix E: AOS/VS .. 55

iv Britton Lee

Preface

Britton Lee's Integrated Database Management (IDM) system offers the means for shar­
ing data among individuals who need direct access to the same information. Britton
Lee systems allow dissimilar host computers to connect with a single data source.

The database resides totally within the Britton Lee hardware, so database tasks such as
processing low-level database commands, maintaining data consistency, managing
backup and restore operations, regulating resource sharing, scheduling processes, and
monitoring performance are all handled by the Integrated Database Manager (IDM)
RDBMS software running on the special purpose processor.

The IDM host-resident software performs a number of functions which involve commun­
ication with the user. A user on a host computer queries a database interactively using
Britton Lee's Intelligent Database Language, IDL, or the IBM-compatible Structured
Query Language, SQL.

It is also possible to query a database from a C program running on a host computer.
The program can pass IDL or SQL query language statements to the Britton Lee data­
base machine for execution. Data from the database machine can be returned to the
host program for processing.

Britton Lee has developed an extensive subroutine library called IDMLIB to facilitate
the efficient development of programs which access data on any Britton Lee database
machine. This document is a practical guide to the use of IDMLIB.

"C Programming With IDMLIB" contains general information for anyone writing pro­
grams in C which utilize the functions provided by IDMLIB.

"The IDM Runtime System" describes a high-level programming language interface to
the database machine. A programmer can use this interface to access a database on a
database machine from a C program without having to learn the details of the
machine's data structures and operations. This interface is of special interest to appli­
cations programmers.

"Introduction to Exception Handling" describes how the exception handling subsystem
provided by IDMLIB can be used to specify actions to be taken when an exceptional
condition occurs in an IDMLIB function.

"Command-Line Arguments" describes an IDMLIB function to process command-line
arguments in a host-independent manner.

The appendices provide instructions for building an executable program incorporating
IDMLIB in the various host environments supported by Britton Lee Host Software.

Britton Lee v

vi Britton Lee

1. C Programming With IDMLIB

IDMLIB provides tools for the development of programs running on a host computer
system which access data on a Britton Lee database server. All IDMLIB functions are
written in C and are portable to all operating systems supported by Britton Lee Host
Software.

1.1. General

Any program which uses IDMLIB must meet certain requirements, which are illustrated
in the program below.

1 /*
2 ** SIMPLE.C -- This progra.m prints a simple greeting.

4
5 #include <idmlib.h>
6
7 main()
8 {
9 INITIDMLIB(•simple");
10 printf(•Hi folks.\n•);
11 exit(RS_NDRM);
12 }

From this example one can infer the following requirements for any program which links
to IDMLIB:

• The header file idmlib.h must be listed as the first header file when the routines
in the source file use IDMLIB but not the standard 1/0 library. The print! in
this program is an IDMLIB function, not a standard 1/0 function. If both the
standard 1/0 library and IDMLIB are used, include istdio.h instead of idmlib.h.
Other header files may be required, depending on which IDMLIB functions the
program calls.

• All programs must initialize IDMLIB by calling "INITIDMLIB" with the name of
the executable object as its argument. This must be the first executable state­
ment in any program which uses IDMLIB.

• All programs must terminate with an explicit call to the IDMLIB function exit()
with an IDMLIB return code as its argument.

87/11/25 v. 1.11 Britton Lee 1

C Programming With IDMLIB ldmlib User's Guide

1.2. Data Types

Some IDMLIB functions accept constants representing database server types as argu­
ments. The following table shows the correspondence between these database server
data types and C data types.

Database Server Type Length C Type

ii NT I 1 char
iINTl 1 BOOL
iINT2 2 short
iINT4 4 long
iFLT4 4 float
iFLT8 8 double
iCHAR variable char*
iFCHAR variable char*
iPCHAR variable char*
iSTRING variable char*
iBCD variable BCD NO
iBCDFLT variable. BCD NO
iBINARY variable BYTE*
iFBINARY variable BYTE*

The types BYTE, BOOL and BCDNO are defined in idmlib.h.

The database server supports BCD (binary coded decimal) integer and floating point
types which correspond to the C type BCDNO. A BCDNO is defined as a struct con­
taining the type, length and value of a BCD object on the database server. When a
BCD value is retrieved from the database server and stored as a C object of type
BCDNO in a G program, the "type" field of the C object gets the value of the type of
the database server attribute. When an object of type BCDNO is sent to the database
server, it is sent as the (database server) type which corresponds to the value of the
"type" field in the BCDNO struct.

The database server cannot perform arithmetic or conversions with floating-point vari­
ables, so a program which expects the database server to perform these operations
should convert the variables to type BCDNO.

1.3. Return Codes

Many IDMLIB functions return values of type RETCODE. These return codes are
integer values indicating success or failure of an IDMLIB function. They are listed
under RETCODE in Section 51 of the Host Software Specification for Unix systems and
the C Run-Time Library Reference for other systems.

2 Britton Lee 87/11/25 v. 1.11

ldmlib User's Guide C Programming With IDMLIB

RS_NORM indicates success. Return codes with the prefix "RE_" signify a failing con­
dition. Return codes with the prefix "RW _" are warnings. Warnings frequently indi­
cate correct though unexpected conditions such as "end of data".

The specific definitions of these codes are machine-dependent. The macros RETSUC­
CESS, RETWARNING, and RETERROR provide machine-independent methods of
determining how an ID:MLIB function performed.

1.4. Macros

ID1'-1LIB uses a number of macro definitions which may be unfamiliar. Some macros
commonly used in ID:MLIB are

Macro

BITSET(word,bit)
BYTE NULL
CHAR NULL
FUNCNULL
RETSU CCESS(code)
RETW ARNING(code)
RETERROR(code)

1.5. Exceptions

Definition

(((word & (bit)) != 0
((BYTE *) NULL)
((char *) NULL)
((FUNCP) NULL)
varies
varies
varies

Meaning

a bit is set
null pointer to BYTE
null pointer to char
null pointer to function
successful return from IDMLIB function
unexpected return from ID:MLIB function
unsuccessful return from ID:MLIB function

In addition to returning a RETCODE, most errors in ID:MLIB cause an exception to be
raised. When this occurs, the exception handling subsystem normally displays a mes­
sage in the standard IDMLIB format and continues execution, except in the case of
severe exceptions which cause the program to abort.

A C program can catch raised exceptions before a message is displayed and specify
another action to be taken by declaring an exception handler. Exception handlers are
discussed under "Introduction to Exception Handling".

87/11/25 v. 1.11 Britton Lee 3

C Programming With IDMLIB ldmlib User's Guide

1.6. Reference Materials

All of the IDMLIB functions are described in Section 3 of the Host Software
Specification for Unix systems and in the C Run-Time Library Reference for other sys­
tems. This reference is indispensable for writing programs which use IDMLIB.

The ref ere nee provides a formal description of each IDMLIB function which includes

• the name of the function,

• a summary of the calling format, including arguments and return values,

• a narrative description of the function,

• a description of all possible RETCODEs, if applicable,

• a list of exceptions commonly raised by the function,

• one or more examples of C code using the function,

• a list of ID~1LIB functions of related interest.

4 Britton Lee 87/11/25 v. 1.11

2. The IDM Runtime System

This chapter describes the IDM Runtime System, which encompasses the IDMLIB func­
tions having names beginning with "ir". A programmer can use these functions to exe­
cute database queries on the database server, without having to acquire expertise on the
details of the database server's internal data structures and routines.

The prerequisites for using the IDM Runtime System are a working knowledge of the C
programming language and one of two database query languages: the Intelligent Data­
base Language (IDL) or the Structured Query Language (SQL). If you are not familiar
with either of these database query languages, consult the IDL Reference Manual or
SQL Reference Manual before proceeding with this section.

The examples in this guide use SQL, but IDL commands could be used instead. Fami­
liarity with the concepts of qualification and target-list and the following database com­
' mands is required to understand the examples used to illustrate the IDM Runtime Sys­
tem.

IDL Command

range
append to
begin transaction
end transaction
define
execute
replace
retrieve

SQL Command

no SQL equivalent
insert into
set autocommit off
commit work
store
start
update
select

The examples in this chapter assume the following schema for the "title" table in the
"books" database:

create table title
(

)

docnum
title
on hand

87/11/25 v. 1.11

smallint,
char(35),
smallint

Britton Lee 5

The IDM Runtime System ldmlib User's Guide

2.1. Fundamental Routines

The following program inserts a specific row into the "title" table in the "books" data­
base. It illustrates the most fundamental routines of the IDM Runtime System.

1 /*
2 ** APPEND.C -- This program inserts a row into the "title"
3 ** table in the "books• database.
4 **
5 */
6
7 #include <idmlib.h>
8 #include <idmrun.h>
9
10 main()
11 {
12 IDMRUN *idmrunptr;
13
14 /* initialize IDMLIB */
15 INITIDMLIB(•append");
16
17 /* create an IDMRUN structure to access the "books" database */
18 idmrunptr = iropen("books");
19
20 /* parse and execute an SQL insert command */
21 irsql(idmrunptr. "insert into title (docnum. title. onhand)\
22 values(max(docnum) + 1. 'the great gatsby'. 6)");
23 irexec(idmrunptr);
24
25 /* close the IDMRUN structure */
26 irclose(idmrunptr);
27
28 /* clean up and terminate */
29 exit(RS_NORM);
30 }

This program creates an ID:MRUN structure, parses and executes some database com­
mands, and removes the ID:MRUN structure when all database server activity is com­
pleted. Because it uses the IDM Runtime System, it includes i"dmrun.h. The header file
idmrun.h must be included after idmlib.h, and, in programs in which they are used,
before the header files env.h, idmdone.h, idmtlist.h and/or idmtree.h.

The fund.a.mental "ir" routines used by append.c, iropen(}, irclose(}, irsql(}, and irexec(},
are described below.

2.1.1. Create An IDMRUN Structure

The basic data structure used by the IDM Runtime System is the ID:MRUN structure.
An ID:MRUN structure can be conceptualized as a pipe into which database commands
are dropped. An ID:MRUN structure can have only one parsed IDL or SQL command

6 Britton Lee 87/11/25 v. 1.11

/dmlib User's Guide The IDM Runtime System

string associated with it at a given time, but that command string can contain multiple
commands. When a new command string is parsed, the previously parsed commands
are flushed. If a command selects data from the database server, the data must be
fetched and processed by the host before a new string of commands is dropped into the
pipe.

A program must create at least one IDMRUN structure with iropen(} before calling any
other IDM Runtime System function. The function iropen(} takes one argument, the
name of the database to be queried. It returns a pointer to the IDMRUN structure
which it has created. This pointer is the first argument passed to subsequent "ir" func­
tions which access that ID~ffiUN structure.

The IDMRUN structure pointer idmrunptr is declared on line 12 of append.c. The call
to iropen(} on line 18 creates an IDMRUN structure and sets idmrunptr to point to it.

When the IDMRUN structure is no longer needed, it is removed with irclose(}.

2.1.2. Parse a Command

After an IDMRUN structure has been created, IDL or SQL commands can be parsed
and executed using that structure.

The function iridl(} is called to parse IDL commands, irsql(} to parse SQL commands.
Both iridl(} and irsql(} take two arguments: a pointer to the IDMRUN structure and the
command string to be parsed.

/* parse an IDL command */
1ridl(idmrunptr. •retrieve (t.docnum) where t.onhand < s•);

/* parse an SQL command */
irsql(idmrunptr. •select docnum from title where onhand < s•);

Several database commands can be concatenated into a single command string to be
passed to iridl(} or irsql(}. When more than one command is contained in the command
string, the individual commands should be separated by blanks. Do not separate com­
mands with the word go or a semicolon, as in interactive IDL or SQL.

#define CMDS •insert into title \
(docnum. title. onhand) \
values (max(docnum). 'madame bovary·. 6) \
select docnum. title. onhand \
where docnum = (select max(docnum) from title)•

/* parse multiple SQL commands */
irsql(idmrunptr. CMDS);

87/11/25 v. 1.11 Britton Lee 7

The IDM Runtime System ldmlib User's Guide

2.1.3. Execute a Command

After a command string has been parsed with iridl(} or irsql(}, it can be executed on the
database server with irexec(}. This function takes the ID:tvIRUN pointer as a single
argument.

irexec(idmrunptr);

If more than one command has been parsed and is awaiting execution, irexec(} executes
only the first command. In such cases, irnext() must be called to execute subsequent
commands.

#define CMDS •insert into title \
(docnum. title. onhand) \
values (max(docnum) + 1, 'the great gatsby'. 6) \
select docnum. title. onhand \
where docnum = (select max(docnum) from title)•

/* parse multiple SQL commands */
irsql(idmrunptr. CMDS);

/* execute the first command */
irexec(idmrunptr);

/* execute subsequent commands */
while (RETSUCCESS(irnext(idmrunptr)))
{

/* code to process data */
}

Because of the way transactions are implemented in SQL, the commands rollback
work and commit work are each considered as two internal commands by the data­
base server. Therefore, the execution of a single instance of either of these commands
requires both a call to irexec(} and a call to irnext().

8

/*this code parses and executes an SQL ··commit work'' command*/
irsql(idmrunptr. •commit work•);
irexec(idmrunptr);
while (RETSUCCESS(irnext(idmrunptr)))

Britton Lee 87/11/25 v. 1.11

'

Idmlib User's Guide The IDM Runtime System

2.2. Routines to Select Data

The following variation of the previous program not only inserts a new row into the
"title" table but also selects it and displays the data at the terminal. Three variables,
docnum, title, and onhand, are declared to receive data from the three target-list ele­
ments, docnum, title, and onhand, selected from the database server. The call to
irexec(} on line 29 causes the select command to be executed on the database server.
The functions irbind(} and irfetch(} make the selected data available to the C program
on the host. These functions are described in detail in Sections 2.2.1 and 2.2.2.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

/*
** APPRET.C -- This program inserts a row into the "title"
** table in the "books" database and selects the new row.
*/

#include <idmlib.h>
#include <idmrun.h>

main()
{

}

IDMRUN *idmrunptr;
short docnum, onhand;
char title[36];

/* initialize IDMLIB */
INITIDMLIB("appret•);

/* create an IDMRUN structure */
idmrunptr = iropen("books");

/* parse and execute an SQL insert command */
irsql(idmrunptr. "insert into title(docnum, title. onhand) \

values(max(docnum) + 1, 'don quixote'. 6)");
irexec(idmrunptr);

/* parse and execute an SQL select command */
irsql(idlrunpts. •select docnum. title. onhand from title \

where docnum = (select max(docnum) from title)•);
irexec(idmrunptr);

/* bind selected data to program variables */
irbind(idmrunptr. 1. iINT2. 2. ~ adocnum);
irbind(idmrunptr. 2. iSTRING. sizeof(title). title);
irbind(idmrunptr. 3. iINT2. 2. aonhand);

/* fetch the selected data from the database server */
while (RETSUCCESS(irfetch(idmrunptr)))

printf("%d Is ld\n•. docnum. title. onhand);

irclose(idmrunptr);
exit(RS_NORM);

87/11/fS v. 1.11 Britton Lee 9

The IDM Runtime System Idmli"b User's Guide

2.2.1. Bind Selected Data to Program Variables

The function irbind(} designates a C program variable that is to receive selected data,
and converts the selected data to the type of the specified variable. It takes five argu­
ments:

(1) an ID:MRUN pointer,

(2) the position of the selected data in the target-list,

(3) the type of the program variable which will be bound to the data,

(4) the length of the program variable which will be bound to the data,

(5) the address of the program variable which will be bound to the data, cast as a
BYTE*.

There must be one call to irbind(} for every program variable to be bound to a target­
list element. The call to irbind(} on line 32 of appret. c binds the first target-list element
in the select command, docnum (a smallint) to the C program variable docnum (a
short). The variable docnum is cast as a BYTE * using the special macro "--"· Simi­
larly, the call to irbind(} on line 33 binds the C program variable title to the second
target-list element, title, and the call on line 34 binds onhand to the third target-list ele­
ment, onhand. Any selected target-list elements not bound with irbind(} would be dis­
carded.

2.2.2. Read Rows from the Database Server

Data from the database server is not transferred to the C program variables until the
call to irfetch(} on line 37. This function reads selected data from the database server
and assigns it to the variables designated by irbind(}, performing any necessary type
conversions. It takes the IDMRUN pointer as its single argument. The function
irfetch{) is usually executed in a loop which continues until all of the selected rows have
been read. The body of the loop contains the code to process the selected data.

If for any reason the irfetch(} loop is exited before all of the selected rows have been
read, the unread rows must be flushed. The function irflush{) flushes unread rows and
leaves the IDMRUN structure in the state it would be in had all of the selected rows
been read.

10

while (RETSUCCESS(irfetch(idmrunptr)))
{

if (onhand < 0)
{

}

else

printf("Error in database\n•);
irflush(idmrunptr);
break;

printf("%d %s %d\n•, docnum. title. onhand);
}

Britton Lee 87/11/25 v. 1.11

ldmlib User's Guide The IDM Runtime System

If unread rows are not flushed, a subsequent call to any IDM Runtime System function
involving that IDMRUN structure will raise an exception, because rows are still remain­
ing to be read.

At times it may be desirable to cancel all current operations and those waiting to be
processed, as well as flushing selected data. For example, if a keyboard interrupt is
received from an impatient user, all outstanding operations should be canceled before
the program continues. For this purpose, use ircancel(}. This function flushes selected
data and terminates all current activity on the specified IDMRUN structure, leaving it
in a state to receive a new set of commands.

2.3. Other IDM Runtime System Routines

2.3.1. Substitute Constants in an SQL Command

Returning to the sample program in Section 2.1, suppose that instead of hardcoding the
row to be inserted into the program, we wanted the ability to change the values of con­
stants in the IDL or SQL command string during program execution without having to
reparse the query. This can be done by using substitution constants in the command
string which is passed to iridl(} or irsql(}. A substitution constant has the syntax of a
name preceded by a percent symbol (%).

The following program gets input from the user for the values to be inserted and substi­
tutes them in the SQL command string using irsubst(}.

87/11/25 v. 1.11 Britton Lee 11

The IDM Runtime System Idmlib User's Guide

1 /*
2 ** APPSUB.C -- This program inserts new rows into the •title•
3 ** table in the •books• database. getting input for
4 **
5 */
6

the new row from the user.

7 #include <idmlib.h>
e #include <idmrun.h>
g

10 main()
11 {
12
13
14
15
16
17
18

IDMRUN *idmrunptr;
short onhand;
char title(36], buf(36];

INITIDMLIB(•appsub•);
idmrunptr = iropen(•books•);

19 /* parse an SQL insert command with substitution constants */
20 irsql(idmrunptr. •insert into title (docnum, title. onhand) \
21 values(max(docnum) + 1. ltitle. lonhand)•);
22
23 /* loop on user input until user signals <RETURN> */
24 for (; ;)
25 {
26 /* get user input for title and onhand */
27 getprompt(buf, sizeof(buf).
28 •Enter title or <RETURN> to quit: •);
29 if (buf(O] == '\O')

break;
strcpy(title, buf);

30
31
32
33
34
35
36
37
38
39

getprompt(buf, sizeof(buf), •Enter quantity: •);
onhand = atos(buf);

/* substitute user
lrsubst(idmrunptr.

title);
irsubstCidmrunptr,

values in the insert command */
•title•, iSTRING. sizeof(title).

•onhand". iINT2. 2, &onhand);

40 /* execute the insert command */
41 irexec(idmrunptr);
42 }
43 irclose(idmrunptr);
44 exit(RS_NORM);
45 }

Note the differences between this program and the one in Section 2.1. The variables
onhand and title declared on lines 13 and 14 hold the values to be substituted into the
command string. The call to irsql(} on line 20 contains the substitution constants
"%title" and "o/oonhand" instead of hardcoded values.

After the call to irsql(} which parses the insert command, and before the call to irexec(}
which executes it, irsubst() is called to specify the values which are to replace the substi­
tution constants in the command string. There is one call to irsubst() for each value to
be substituted. The function irsubst() takes five arguments:

12 Britton Lee s1;11/es v. 1.11

)

ldmlib User's Guide The IDM Runtime System

{1) an IDMRUN pointer,

(2) the name of the substitution constant, in quotation marks, without the % sym­
bol,

(3) the data type of the value to be substituted,

(4) the length of the value to be substituted, in bytes; if the type of the value to be
substituted is !STRING, this value is ignored and the actual length of the string
is used,

(5) the address of the variable containing the value to be substituted, a BYTE *.

The call to irsubst() on line 36 substitutes the value of the C program variable title for
the substitution constant "%title". The call on line 38 substitutes the value of onhand
for "%onhand". The value is copied from the program variable, so subsequent changes
to the value of that variable will not affect the value substituted by irsubst(}.

The ID:MLIB function getprompt() is called to get user input to be assigned to title and
onhand. This function displays a prompt at the user's terminal and reads the user's
response into a buffer, returning a pointer to the buffer. The function getprompt() pro­
vides the only reliable host-independent method of outputting a line which does not ter­
minate with a newline to the terminal.

2.3.2. Set Up an Execute/Start Command

If the command to be executed is an IDL execute or SQL start command, use irxcmd(}
to create its tree and irxsetp() to supply the required parameters to the stored com­
mand. This is faster than parsing the command with iridl(} or irsql(}.

The function irxcmd(} takes the IDMRUN pointer and the name of the stored command
as its arguments. The function irxsetp() sets the values of the parameters for the stored
command. There must be one call to irxsetp() for each parameter to the stored com-
mand, with each call passing five arguments: ·

(1) an IDMRUN pointer,

(2) the name of the parameter as it is defined in the stored command, in quotation
marks, without the $ symbol,

(3) the data type of the parameter,

(4) the length of the parameter, in bytes; use a negative number to indicate a vari­
able length parameter,

(5) the value of the parameter, a BYTE *.

87/11/£5 v. 1.11 Britton Lee 13

The IDM Runtime System Idmlib User's Guide

Assume that there is a stored command on the database server named "addtitle" which
is defined as follows:

store addtitle
insert into title
(docnum, title, onhand)
values (max(docnum) + 1, &t, &q)

end store

We could then rewrite append.c as stored1.c invoking this stored command with
irxcmd(} and irxsetp(}.

14

1 /*
2 ** STORED1.C -- This program inserts a row into the "title" table
3 ** in the "books" database. using the stored command "addtitle"
4 */
5
6 #include <idmlib.h>
7 #include <idmrun h>
8
9 ma.in()
10 {
11 IDMRUN *idmrunptr;
12 short onhand;
13 char *title;
14
15 INITIDMLIB(•stored1");
16 idmrunptr = iropen("books");
17
18 /* assign values to pass to the stored command */
19 onha.nd = 6;
20 title= "the great ga.tsby";
21
22 /* arrange to execute a.n SQL start command */
23 irxcmd(idmrunptr. "addtitle");
24
25 /* supply parameters to the stored command */
26 irxsetp(idmrunptr. •q•. iINT2. 2. &onha.nd);
27 irxsetp(idmrunptr, •t•. iSTRING. -1. title);
28
29 /* execute the stored command */
30 irexec(idmrunptr);
31
32 irclose(idmrunptr);
33 exit(RS_NORM);
34 }

Britton Lee 87/11/25 v. 1.11

ldm/£b User's Guide The IDM Runtime System

A stored command containing multiple commands is treated as multiple commands by
the database server. Therefore, in a stored command containing multiple commands, a
call to irexec(} will execute only the first command; subsequent commands must be exe­
cuted by irnext(}. Assume that we have a variation on the stored command, "addti­
tle2" which both adds a new row and selects it:

store addtitle2
insert in to title
(docnum, title, onhand)
values(max(docnum) + 1, &t, &q)
select docnum, title, onhand
from title
where docnum =

(select(max(docnum) from title)
end store

In this case, the stored command consists of multiple commands, so the program must
use irnext(} to advance to the select before calling irbind(}.

87/11/25 v. 1.11 Britton Lee 15

The IDM Runtime System Jdmlib User's Guide

16

1 /*
2 ** STORED2.C -- Tbis program inserts a. row to the •title• table
3 ** in the. •books• data.base. using the stored command •addtitle2".
4 */
5
6 #include <idmlib.h>
7 #include <idmrun.h>
8
9 main()
10 {
11 IDMRUN *idmrunptr;
12 short onhand. docnum;
13 char *title;
14
15 INITIDMLIB(•stored2•);
16 idmrunptr = iropen("books");
17
18 /* assign values to pass to the stored command */
19 onhand = 5;
20 title = •im westen nichts•;
21
22 /* arrange to execute an SQL start command */
23 irxcmd(idmrunptr. •addtitle2•);
24
25 /* supply para.meters to the stored command */
26 1rxsetp(idmrunptr. •q•. 1INT2, 2. tonha.nd);
27 1rxsetp(idmrunptr, •t•, iSTRING. -1. title);
28
29 /* execute the first (insert) command in the stored command */
30 1rexec(1dmrunptr);
31 /• execute the next (select) command in the stored command */
32 while (RETSUCCESS(irnext(idmrunptr)))
33 {
34 /* bind selected data. to program variables •/
35 1rbind(idmrunptr. 1. 1INT2, 2, tdocnum);
36 1rbind(idmrunptr. 2. 1STRING. 36:" title);
37 irbind(idmrunptr. 3, iINT2. 2. tonha.nd);
38
39 /* and fetch the selected data. */
40 while (RETSUCCESS(irfetch(idmrunptr)))
41 printf(•ld Is ld\n•. docnum. title. onhand);
42
43 }
44 irclose(idmrunptr);
45 ex1t(RS_NORM);
46 }

Britton Lee 87/11/25 v. 1.11

ldmlib User's Guide The IDM Runtime System

2.3.3. Obtain Information on a Target-List Element

In a dynamic application, in which database commands are supplied by the user during
program execution, the source code cannot literally specify the data types of variables
to be bound with selected data, because the types of the selected data are not known
prior to runtime. During program execution, after the user has input the target-list, the
data types of target-list elements can be obtained with irdesc(}. This function returns
information on the data type, length and name of attributes on the database server.
This information can then be stored in an array and passed to irbind(}. The function
irdesc(} takes five arguments:

(1) an ID"MRUN pointer,

(2) the position of the element in the target-list,

(3) the address of the integer where data type information will be stored,

(4) the address of the integer where length information will be stored,

(5) the address of the character string where name information will be stored.

The next example program, mysql.c, executes any syntactically correct SQL commands
provided by the user. If the command is a select command, it calls irdesc(} to obtain
the types and lengths of target-list elements so the target-list elements can be bound to
variables of the appropriate type.

2.3.4. Obtain Information On An IDMRUN Structure

The function irget(J supplies information concerning the state of the ID:MRUN structure.
Consult the entry for irget(J in the Host Software Specification or C Run-Time Library
Reference for a complete list of the fields that can be requested and the predefined con­
stants which are associated with them.

The function irget(J takes four arguments:

(1) an ID:MRUN pointer,

(2) the address at which returned information should be stored, as a BYTE *,
(3) the information requested, as an int (usually a predefined constant),

(4) the item number, if the requested information has compound fields.

A common use of irget() is to request a count of the number of rows selected. The code
segment below requests the "done count" or number of rows read by the database
server upon termination of an irfetch(} loop. The constant for the "done count" is
IP _DCNT.

87/11/25 v. 1.11 Britton Lee 17

The IDM Runtime System ldmlib User's Guide

short docnum. onhand;
long count;

1rsql(1<1mrunptr. •select docnum. onhand where onhand < 2•);
1rexec(1dmrunptr);
1rb1nd(1<1mrunptr. 1. 1INT2. 2. ~ &docnum);
1rb1nd(1dmrunptr. 2. iINT2. 2. ~ &onhand);
while (RETSUCCESS(irfetch(idmrunptr}))

printf(•ld ld\n•. docnum. onhand);

irget(idmrunptr. ~&count. IP_DCNT. O);
printf(•A total of lld title must be reordered•. count};

The program mysql.c demonstrates the use of irget() with compound fields.

18 Britton Lee 87/11/25 ti. 1.11

/

ldmlib User's Guide The IDM Runtime System

1 /*
2 ** MYSQL.C -- demonstrates irdesc and irget.
3 **
4 **
5 **
6 **
7 */
8

Parses and executes SQL commands supplied by the user.
Displays any selected data requested.
Displays the "done status• after executing each command

9 #include <idmlib.h>
10 #include <idmdone.h>
11 #include <idmrun.h>
12
13 IDMRUN
14
15 main()
16 {

*Idmrunptr;

17 char buf[128];
18 BOOL retrieve();
19 void donestat();
20
21 INITIDMLIB("mysql");
22 Idmrunptr = iropen("books");
23
24 /* get input of SQL commands */
25 getprompt(buf. sizeof(buf). "Enter SQL commands:\n•);
26
27 /* parse the command string */
28 if (RETSUCCESS(irsql(Idmrunptr. buf)))
29 {
30 /* execute the first SQL command */
31 irexec(Idmrunptr);
32 if (!retrieve())
33 printf("\nWARNING: some data may have been lost.•);
34 donestat();

/* execute any subsequent commands */
while (RETSUCCESS(irnext(Idmrunptr)))
{

if (!retrieve())

35
36
37
38
39
40
41
42
43

printf("\nWARNING some data may have been lost.");
donestat();

}
}

44 irclose(Idmrunptr);
46 exit(RS_NORM);
46 }

87/11/25 v. 1.11 Britton Lee 19

The IDM Runtime System /dmlib User's Guide

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

20

** RETRIEVE -- reads and displays data selected from the database
** server.
**
** displays only shorts. longs and char strings;
** if data is another type returns FALSE. otherwise TRUE
•I

#define MAXTARGS 6

BOOL
retrieve()
{

int type. length. i. j;
char *p;
struct
{

int type;
char na.me[16];
union
{

}dval;

short
long
char

sval;
lval;
pval (36];

} datatab[MAXTARGS]; /*for selected data*/

/• clear buffers for selected string data */
for (j = O; j < MAXTARGS; j++)

strcpy(datatab[j] .dval.pval."

i = O;

.) ;

/* loop through target list. store description of 1th element */
While (RETSUCCESS(irdesc(Idmrunptr. ++i. &type. &length. ap)))
{

}

strcpy(datatab[i] .na.me. p);
datatab[i] .type= type;
if (type== 1CHAR II type== iINT2 I I type== iINT4)

irbind(Idmrunptr. i. type. length. _ &datatab[i] .dval);
else
{

}

printf(•\nOnly characters. shorts and longs printed.\n•);
irflush(Idmrunptr);
return (FALSE);

while (RETSUCCESS(irfetch(Idmrunptr)))
{

for (j = 1; j < 1; j++)
{

printf("%s = •. datatab[j] .na.me);
if (datatab[j] .type== iCHAR)
{

printf("%s \t•. datatab[j] .dval.pval);
strcpy(datatab[j] .dval.pval. •

}
else if (datatab[j] .type== 1INT2)

printf("%d \t•. datatab[j] .dval.sval);
else if (datatab[j] .type== 1INT4)

Britton Lee 87/11/25 v. 1.11

.) ;

Idmlib User's Guide The IDM Runtime System

106 printf(•%1d \t•. datatab[j] .dval.lval);
107 }
108 printf(•\n");
109 }
110 return (TRUE);
111 }

87/11/£5 v. 1.11 Britton Lee 21

The IDM Runtime System Idmlib User's Gui"de

22

112 /* This structure declaration is used by DONESTAT. */
113 struct item
114 {
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

char *string;
int mask;

};

struct item items[] =
{

•continue•. ID_CDNTINUE.
•error•. ID_ERROR.
"interrupt". ID INTERRUPT.
"abort•. ID_ABORT.
•count•. ID_COUNT.
•overflow". ID_OVERFLDW.
"divide". ID_DIVIDE.
"dup•. ID_DUP.
"timer•. ID_TIMER.
• inxact•. ID INXACT.
•round". ID_RDUND.
•underflow•. ID_UNDERFLOW,
"badbcd". ID_BADBCD.
•tminutes•, ID_TMINUTES,
"logoff •. ID_LOGOFF.
•volume•. ID VOLUME

};

139 /*
140 ** DONESTAT -- display donestatus after completion of every SQL command
141 **
142 */
143
144 void
145 donestat()
146 {
147 long status;
148 int i·
149
150 for (i = O; i < 16; i++)
151 {
152 irget(Idmrunptr. astatus, IP DSTAT. items[i) .mask);
153 if (BITSET(items[if.mask. status))
154 printf("\n%s %ld". items[i].string. status);
155 }
156
157 irget(Idmrunptr. astatus. IP DINT. O);
158 printf("\nDone integer= %ld". status);
159
160 1rget(Idmrunptr. astatus. IP DCNT, O);
161 printf("\nDone count= %ld\n•, status);
162 }

Britton Lee 87/11/25 v. 1.11

/dmlib User's Guide The IDM Runtime System

2.4. Independent IDMRUN Structures

A single program can call iropen(} several times to create several independent IDMRUN
structures working simultaneously. To the database server, each structure appears as
an independent user executing IDL or SQL commands. ID:rvfLIB knows which structure
to use for each function call, because each IDMRUN function passes a pointer to an
IDMRUN structure as its first argument.

Multiple IDMRUN structures are necessary if a program accesses more than one data­
base. They can be used to copy data between databases or even between database
servers. A single IDMRUN structure is associated with a single database server.

Multiple IDMRUN structures are also necessary to handle a "parts explosion task".
Consider a "parts" table in a database. The parts recorded in this table may be indivi­
dual parts or assemblies comprised of individual parts or of other assemblies. A pro­
gram which produces a list of all the parts of a given product must run a query on the
main assembly and on each subassembly. These subqueries must be run on different
IDMRUN structures, so that one does not loose one's position in the primary assembly.
This kind of recursive query is called a "transitive closure" operation. The following
example demonstrates this use of multiple IDMRUN structures.

The program subexam. c displays all of the host software documents for a given environ­
ment. The "parts" table in a hypothetical database contains all of the documents and
document sets in the database. The "assemblies" table records the relationship between
an assembly and another assembly or between an assembly and an individual document.
Part numbers for top level sets (for a given environment), begin with an 'S' as in

S03 Vax/VMS Documentation Set.

Part numbers for subassemblies begin with an 'A' as in

AOl General Documentation Series.

Part numbers for individual documents begin with other letters.

To find all the documents that make up a given documentation set, a query must be
run on the top-level set (which has a part number beginning with 'S'), and a subquery
must be run on each subassembly (those with part numbers beginning with 'A'). The
subqueries must be run on a different IDMRUN structure from the primary query. If
there were deeper levels of subassembly, each level of subquery would be run with a
different IDMRUN structure.

87/11/~5 v. 1.11 Britton Lee 23

The IDM Runtime System ldmlib User's Guide

24

1 /*
2 ** SUBEXAM.C -- This progra.m demonstrates multiple IDMRUN structures.
3 ** It displays all of the documents for a given environment.
4 */
5
6 #include <idmlib.h>
7 #include <idmrun.h>
8
9 #define NUMSIZE 4
10 #define TITLESIZE 50
11
12
13

IDMRUN *Outerptr.

14 main()
15 {
16 char buf[10];
17

*Pa.rtsptr;

18 INITIDMLIB(•subexa.m•);
19
20 /* create fDMRUN structures */
21 Outerptr = iropen(•books•);
22 Partsptr = iropen(•books•);
23
24 /* select and display all the top-level sets */
25 printdoc(•s*•. iPCHAR);
26
27 /* get input */
28 getprompt(buf. sizeof(buf).•\nEnter a pa.rt number from one\
29 of these documentation sets: •);
30
31 /* print number and title of set to be exploded */
32 printdoc(buf. iSTRING);
33 printf(•\n**\n•);
34
35 /* print all the documents in the set */
36 explode(Outerptr. buf);
37
38 irclose(Outerptr);
39 irclose(Partsptr);
40 exit(RS_NORM);
41 }

Britton Lee 87/11/25 v. 1.11

ldmlib User's Gu£de The IDM Runtime System

42 /*
43 ** EXPLODE -- expands all assemblies into their constituent documents,
44 ** if the current document is an assembly, calls itself with a new
45 ** IDMRUN pointer to find all the constituents of the subassembly
46 **

Para.meters •
irptr pointer to IDMRUN structure

47 **
48 **
49 **
50 **
51 */

partnum number of assembly for which constituent parts will
be searched

52
53 explode(irptr, partnum)
54 IDMRUN *irptr;
55 char partnum[NUMSIZE];
56 {
57 char child[NUMSIZE],
58 IDMRUN *innerptr;
59
60 /* find children of the current assembly */
61 irsql(irptr. •select child from assemblies where parent= %num•);
62 irsubst(irptr. •num". iSTRING, o. pa.rtnum);
63 irexec(irptr);
64 irbind(irptr, 1. iSTRING. NUMSIZE, child);
65
66 /* print data from •parts• table for the children */
67 while (RETSUCCESS(irfetch(irptr)))
68 {
69 /* select row from •parts• table */
70 printdoc(child, iSTRING);
71
72
73
74
75
76
77
78
79
80
81 }
82 }

87/11/25 V, 1.11

/* if current doc is an assembly */
if (child[O] == 'A')
{

}

/* open a new IDMRUN structure */
innerptr = iropen("books");
explode(innerptr. child);
irclose(innerptr);
printf("\n•);

Britton Lee 25

The IDM Runtime System Idmlib User's Guide

26

83 /*
84 ** PRINTDOC -- selects and displays sets qualified by pnum.
85 **
86 **
87 **
88 **
89 **
90 **
91 **
92
93
94
95
96 */
97

Parameters:
pnum: number of part for which data is displayed
ptype: type of parameter

Assumptions:
A stored command called •getpartsdata• has been defined as

store getpartsdata
select docnum. title from parts
where docnum = tpnum

end store

98 printdoc(pnum. ptype)
99 char pnum[NUMSIZE];
100 int ptype;
101 {
102 char partnum[NUMSIZE];
103 char partname[TITLESIZE];
104 char tab;
105
106
107
108

/* parse a •start getpartsdata• command */
irxcmd(Partsptr, •getpartsdata•);

109
110

/* set stored command parameter tpnum to value of pnum */
1rxsetp(Partsptr. •pnum•. ptype, -1. (char *)pnum);

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129 }

/* execute the stored command */
irexec(Partsptr);

/* bind targets selected by •getpartsdata• */
irbind(Partsptr. 1. iSTRING. NUMSIZE. partnum);
1rb1nd(Partsptr. 2. 1STRING. TITLESIZE. partname);

while (RETSUCCESS(irfetch(Partsptr)))
{

/* tab if not an assembly */
if (partnum[O] != 'A' ta partnum[O] != 'S')

tab = '\t';
else

tab = '\O';

ls\n•. tab. partnum. partname);
}

Britton Lee 87/11/25 v. 1.11

/dmlib User's Guide The IDM Runtime System

2.5. Related IDMRUN Structures

Independent ID:MRUN structures may not update and select a table simultaneously. If
this is attempted, it appears to the database server that one user is updating the table
while another is selecting data from it, and the database server waits for the select loop
to complete before beginning the update. Since the application is waiting for the
update to complete in order to continue the select loop, the program deadlocks.

To update a table nested inside a select loop and avoid such a deadlock, create a parent
IDMRUN structure to run the select, and run the update on a child IDMRUN structure.
A child ID:MRUN structure is created with irreopen(}. This function accepts a pointer
to the parent ID:MRUN structure as its argument and returns a pointer to a child
ID:MRUN structure. The database server then knows that the structures are related
and allows them to share locks. A new irreopen(} call must be made for every level of
nesting.

There are restrictions on the use of irreopen(}. It can only be called inside a transac­
tion, and no updates can have been issued on the parent ID:MRUN structure between
the execution of the set autocommit off command and the irreopen() of the child
ID:MRUN structure. Any child IDMRUN structures opened within the transaction must
be closed before a commit work or a rollback work. Updates are not committed to
the database until the transaction has completed.

If two users are updating the same tuple at the same time, only one of the updates will
be performed. To prevent a user from attempting to update a table which is being
updated by another user, the table should be accessed with the fulllock option. This is
the default when the type of lock is not specified. If minlock is specified, there is a
possibility that a user may not discover until end of the transaction that none of the
updates (s)he has made will be processed because another user was accessing the same.
rows.

The correct use of irreopen(} is demonstrated in reexam.c. This program updates the
"onhand" column in the "title" table of the "books" database. As each title is
selected, the user is prompted for the number of copies to be added or subtracted. The
program then updates the "onhand" column based on the user's input.

The select runs in an outer loop on the parent IDMRUN structure, while the updates
are nested in a transaction running on the child IDMRUN structure. The updates are
not committed to the database until the entire transaction has completed and all of the
rows in the table have been accessed or the user has signaled a wish to quit.

87/11/£5 v. 1.11 Britton Lee 27

The IDM Runtime System ldmlib User's Guide

28

1 /*
2 ** REEXAM. C -- demonstr.a.tes use of related IDMRUN structures.
3 */
4
5 #include <idmlib.h>
6 #include <idmrun.h>
7
8
9 ma.in()
10 {
11 IDMRUN *parentptr. *Childptr;
12 short docnum. onha.nd. newstock;
13 cha.r title[36]. buf[5];
14
15 INITIDMLIB(•reexam•);
16
17 /* set up the parent IDMRUN structure */
18 pa.rentptr = iropen(•books•);
19
20 irsql(parentptr. •set autocommit off•);
21 irexec(parentptr);
22
23 /* create the child IDMRUN structure */
24 childptr = irreopen(parentptr);
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

/* parse and execute the select loop on parent IDMRUN structure */
irsql(parentptr. •select docnum. title. onhand from title•);
irexec(parentptr);
irbind(parentptr. 1. iINT2. 2. tdocnum);
irbind(parentptr. 2. iSTRING. sizeof(title). title);
irbind(parentptr. 3. iINT2. 2. tonband);

/* parse the upda.te on the child IDMRUN structure to execute later */
irsql(childptr. •update title set onhand = onha.nd + lnewstock \

where docnum = ldocnum and title= ltitle•);

while (RETSUCCESS(irfetch(pa.rentptr)))
{

}

printf(•\nDOCNUM TITLE
printf(•ld Is
getprompt(buf. sizeof(buf).

or <RETIJRN> to quit:
if (buf[O] == '\O')
{

}

irflush(parentptr);
break;

newstock = atos(buf);

ONHAND\n•);
ld\n•. docnum. title. onhand);

•\nEnter new stock \ .) ;

printf(•\nAdding %d copies of %s.\n•. newstock. title);

irsubst(childptr. •newstock•. iINT2. 2. tnewstock);
irsubst(childptr. •docnum•. iINT2. 2. °""idocnum);
irsubst(childptr. •title•. iSTRING. sizeof(title). title);
irexec(childptr);

Britton Lee 87/11/25 v. 1.11

ldmlib User's Guide The IDM Runtime System

56 irclose(childptr);
57 irsql(parentptr, •commit work•);
58 irexec(parentptr).
59
60 /* ··commit work'' processed as multiple commands*/
61 while (RETSUCCESS(irnext(parentptr)))
62
63 irclose(parentptr);
64 exit(RS NORM);
65 } -

87/11/£5 v. 1.11 Britton Lee 29

The IDM Runtime System ldmlib User's Guide

30 Britton Lee 87/11/25 v. 1.11

\

3. Introduction to Exception Handling

In our sample programs we have made no provisions to handle abnormal returns from
ID:MLIB functions. We could have tested the RETCODE returned by every IDMLIB
routine and taken some action on a abnormal return as in

if (RETSUCCESS(irexec(Idmrunptr)))
errorfunc () ;

This is a commonly used approach, which requires that each function not only return its
own RETCODE, but also check the RETCODEs of all of the functions that it calls to
see if it should also return a failure. This method requires numerous conditional state­
ments to verify normal returns and tends to isolate error messages from the functions in
which the error actually occurred.

The exception handling system provided by ID:MLIB uses another approach in which a
single declaration is made: "If this condition exists, call this function to handle it".
This method separates the detection of an exception from the code which handles it.
The detection of the abnormal condition and subsequent raising of an exception is local­
ized in the function in which the condition occurs. The action to be taken when an
exception is raised is specified elsewhere, in an exception handler, which is a special
function that has been declared to handle specific exception conditions.

Most ID:MLIB functions raise exceptions. The specific exceptions which a particular
IDMLIB routine may raise are listed in the description of the function in the Host
Software Specification or C Run-Time Library Reference.

A program may recognize these exceptions and declare an exception handler to take
appropriate action when an exception is raised.

87/11/£5 v. 1.11 Britton Lee 31

Introduction to Exception Handling ldmlib User's Guide

3.1. Exception Identification

All ID:MLIB exceptions are named by a character string prefaced by a severity code as
ID

A:ID:MLIB.10. CANTO PEN

The 'A' is one of nine single upper-case characters used to indicate exception severity.
The severity codes are:

I: Information
These exceptions give information. For example, copy utilities may raise
an 'I' exception periodically with the expectation that the exception
handler will display how much of a file or relation has been copied.

S: Success
These are raised on successful completion of a task. For example, copy
utilities may end by invoking a handler to print a success message
displaying the number of tuples copied; expert users may prefer to have
this information suppressed.

C: Continue
These exceptions are raised so that a handler may prompt the user to
continue with some action; for example, in a screen-based system a con­
tinue message might be generated between each frame.

R: Respond
These exceptions indicate that an unusual but not erroneous condition
has occurred that requires human intervention, e.g., "End of tape; mount
next volume."

W: Warning
These exceptions are raised when a condition may be an error.

T: Transient
Transient exceptions are usually caused by asynchronous events, operator
interrupts, transient resource exhaustion, or some problem that is due not
to a user error but to a condition that is unlikely to occur again in the
same section of code. The handler may invite the user to try again later.

E: Error
Error exceptions are caused by user error. If the program continues to
process, incorrect results are certain.

U: Usage

32

Usage exceptions are raised when a program is invoked incorrectly. If
there is a message associated with this exception it will be displayed. A
"Usage" exception terminates the process exactly like an "Abort" severi­
ty exception (see below).

Britton Lee 87/11/25 v. 1.11

\

Idmlib User's Guide Introduction to Exception Handling

A: Abort
These indicate catastrophic errors. It is not possible for the current rou­
tine to continue processing. Processing aborts immediately unless an ex­
ception handler backs out.

The remainder of the exception name consists of one or more upper-case mnemonics
separated by periods. The first gives the name of the facility that raised the error, in
this case IDW..IB. Succeeding mnemonics specify the error condition more precisely.
The last one states the error explicitly. For example, the exception name
A:IDW..IB.10.CANTOPEN indicates that the 1/0 subsystem of IDW..IB could not open
something. What could not be opened could be passed as an exception argument by the
function which raised the exception.

3.2. Exception Handlers

The program using IDW..IB can specify the action to be taken when a specific exception
or type of exception is raised by declaring an exception handler with exchandle(}.

The function exchandle() takes two arguments. The first is a character string naming
the exception to be handled, in quotation marks. The character string identifying the
exception may contain wild cards, allowing for the declaration of a handler to deal with
a class of exceptions, rather than a single, specific exception. The second argument is
the name of the exception handler which will handle the exception. If this argument is
FUNCNULL, any handler currently in effect for the specified character string is dis­
abled.

Suppose that we want to specify that whenever an IDW..IB function raises an exception
of severity Error anywhere in a program, the program should invoke an exception
handler called myhandler. This is arranged by including exc.h and calling exchandle(} to
declare the exception handler.

#include <idmlib.h>
#include <idmrun.h>
#include <exc.h>

ma.in()
{

extern int myha.ndler();

}

INITIDMLIB(•myprog•);

/* ca.11 myha.ndler for any E level exceptions raised by IDMLIB */
excha.ndle(•E:IDMLIB.*•. myha.ndler);

/* rest of program */

87/11/25 v. 1.11 Britton Lee 33

Introduction to Exception Handling /dmlib User's Guide

The scope of an exception handler is associated with the function in which the handler
was declared. The handler will be called for any exception of the specified pattern
raised in the same function as the call to exchandle(} which declared the handler or at a
deeper function call. The handler remains in effect until one of three events occurs:

,....

• The function which declared the handler declares another handler or
FUNCNULL associated with the same exception pattern.

• The function which declared the handler returns or exits.

• The function which declared the handler is aborted by a backout.

3.2.1. Default Handlers

If a program does not declare a handler for a particular exception, a default handler is
invoked. These operate like any other exception handler except that (1) they are not
automatically removed when the function that set them returns or exits, and (2) they
never back out.

The def a ult actions taken by ID:tvfLIB abort the program for Abort level exceptions and
print a message and continue processing for all exceptions of lesser severity. This is the
action that will be taken when an exception is raised and no exception handlers have
been declared.

If you wish your program to take some other action when an exception is raised, you
must declare an exception handler. You may declare one of the standard handlers pro­
vided by ID.MLIB, or you may supply your own handler. Exceptions which do not
match the patterns specified in the call to exchandle(} will be processed by the default
handlers.

3.2.2. Standard Handlers

ID.MLIB provides five standard handlers which are available to applications programs to
use for handling a variety of exceptions. They are declared in exc.h. The standard
handlers are

excignore(}
Ignores the exception.

excbackout()
Backs out the program to the function that declared the handler for the
named exception. Returns control to the statement following the de­
claration of the exception handler.

excprint(}

34

Prints the message associated with the error and then ignores the excep­
tion.

Britton Lee 87/11/£5 v. 1.11

\

ldmlib User's Guide Introduction to Exception Handling

excprbo(}
Prints the message associated with the error and then backs out.

excabort()
Aborts the program.

The following statement declares a handler to ignore all Information and Success excep­
tions instead of printing messages, which would be the default action. This is done by
declaring the standard handler excignore(} for all I and S exceptions.

exchandle("[IS) :*•. excignore);

3.2.3. Customized Handlers

If the standard handlers do not provide the functionality required by your program, you
can write your own exception handler. It must be a function which returns an integer.

The value returned by the handler determines whether the program continues execution
or backs out. If the handler returns zero, the exception subsystem ignores the excep­
tion. The result is that the excraise(} function which raised the exception returns and
execution of the program continues from that point. If the handler returns nonzero, the
program backs out to the exchandle(} call which declared the handler and causes exchan­
dle(} to return again with the value the handler returned. Since the original call to
exchandle(} (the one that declared the exception handler) returns zero and these su bse­
quent calls return nonzero, the program can detect the circumstances under which
exchandle(} is returning.

The handler is called with one argument, an argument vector of type char**. The
zeroth element is the exception being raised and any remaining elements, all text
strings, are passed by the function raising the exception. The last pointer element must
be CHARNULL.

The following exception handler displays the name of the exception and a special mes­
sage, calls ircancel(}, and backs out to the exchandle(} call that declared the handler.

87/11/£5 v. 1.11 Britton Lee 35

Introduction to Exception Handling Idmlib User's Guide

1 myhandler(excv)
2 char **excv;
3 {
4 extern IDMRUN Idmrunptr;
5
6
7
8
9
10
11 }

printf("\nERROR: %s\n". excv[O]);
printf("Cancelling current operations and backing out.\n•)
printf("Please submit a new request:\n•);
ircancel(Idmrunptr);
return (-1);

The function excahandle(} performs just like exchandle(} except that it allows an addi­
tional argument to be passed to the exception handler. The following call to excahan­
dle(} passes the IDMRUN pointer as an argument to the exception handler:

excahandle("E.IDMRUN *" myhandler. idmrunptr);

In the following example, myhandler(} displays a warning message, flushes selected data
and returns to the function which raised the exception.

1 myhandler(excv, idmrunptr)
2 char **excv;
3 IDMRUN *idmrunptr;
4 {
5 printf("\nWARNING: %s\n•. excv[O]);
6 printf("Some selected data may be lost \n•);
7 irflush(idmrunptr);
8 return (O);
9 }

The following program is a variation on main{} in the source file myidl. c used in Section
2.3.3. Exception handling has been added to call irflush(} or ircancel(} if the user enters
CTRL-C, and to back out if there is a syntax error in the SQL command string.

36 Britton Lee 87/11/25 v. 1.11

ldmlib User's Guide Introduction to Exception Handling

1 /*
2 ** MYSQL C -- demonstrate excha.ndle.
3 */
4
5 #include <idmlib.h>
6 #include <idmrun.h>
7 #include <exc.h>
8
9 IDMRUN *Idmrunptr.
10 BOOL Cancel;
11 int handler();
12
13 ma.in()
14 {
15 cha.r buf[128].
16 extern BDDL retrieve();
17 extern void donesta.t();
18
19 INITIDMLIB("mysql");
20 Idmrunptr = iropen("books");
21
22 /* ba.ck out to here on CTRL-C */
23 excha.ndle("T:IDMLIB.ASYNC INT". handler);
24
25 /* get desired interpretation of CTRL-C */
26 getprompt(buf. sizeof(buf). "Enter action to take on CTRL-C \
27 (flush or cancel): •);
28 if (buf[O] == 'c' I I buf[O] == 'C')
29 Cancel = TRUE;
30 else
31
32

Cancel = FALSE;

33 /* back out to here if there are errors in the command string */
34 if (exchandle("E:IDMLIB.IDM.SYNTAX". excbackout) != O)
35 printf("Syntax error in command string; try again.\n•);
36
37 /* get input of SQL commands */
38 getprompt(buf. sizeof(buf). "Enter SQL commands:\n•);
39
40 /* parse the command string */
41 if (RETSUCCESS(irsql(Idmrunptr, buf)))
42 {
43 /* execute the first SQL command */
44 irexec(Idmrunptr);
45 if (!retrieve())
46 printf("\nWARNING: some data. may have been lost•);
47 donestat();

/* execute any subsequent commands */
while (RETSUCCESS(irnext(Idmrunptr)))
{

if (!retrieve())

48
49
50
51
52
53
55
56
57

printf("\nWARNING: some data may have been lost•).
donestatO;

}
}

58 irclose(Idmrunptr);
59 exit(RS_NORM);
60 }

87/11/25 v. 1.11 Britton Lee 37

Introduction to Exception Handling ldmlib User's Guide

38

61
62 ** HANDLER -- call irflush or ircancel depending on value of Cancel.
63 **
64 */
65 handler(excv)
66 char **excv;
67 {
68
69
70
71
72
73 }

if (Cancel)
ircancel(Idmrunptr);

else
irflush(Idmrunptr);

return (O);

Britton Lee 87/11/£5 v. 1.11

4. Command-Line Arguments

IDMLIB provides a system-independent function called crackargv(} to read command-line
arguments into program variables.

To use crackargv(} include crackargv.h and declare two arguments to main(), an integer
and a pointer to an argument list as a char **. The integer is a value representing the
total number of command-line arguments; it is calculated when the command-line argu­
ments are read. The argument list (ARGUST) describes each argument and must be
declared and initialized in your C program.

4.1. The Command-Line

A command-line argument is either positional, if it is identified by its pos1t1on on the
command-line, or flagged, if it is identified by a flag which specifically labels the argu­
ment. When a positional argument is used, its position among the other arguments on
the command-line is inflexible. When a flagged argument is used, its position on the
command-line is arbitrary, but the argument must be flagged so that crackargv() can
match the argument with the appropriate program variable based upon the name infor­
mation supplied by the argument list.

The command-line

myprog 3 w smith

has three positional arguments; the program expects the numeric argument followed by
the character argument followed by the string argument. If you want the user to be
able to enter arguments in any order, each argument must be· flagged with a name, as
m

myprog -t smith -s 3 -c w (short flag)

or

myprog /text=smith /short=3 /char=w (long flag)

which could also be invoked as

87/11/25 v. 1.11 Britton Lee 39

Command-Line Arguments /dmlib User's Guide

myprog -c w -s 3 -t smith (short flag)

or

myprog /char=w /short=3 /text=smith (long flag)

The host environment determines whether long or short flag names should be chosen to
identify flagged arguments. Short flags are used on Unix systems, long flags on most
other systems.

A program may combine positional and flagged arguments. The following command­
line passes one argument, a database name, as a positional argument. The other two
arguments are flagged as demonstrated above.

myprog mydatabase -t smith -s 3

or

myprog mydatabase /text=smith /short=3

4.2. The Argument List

For each command-line argument being passed to the program, the following informa­
tion is supplied in the initialization of the argument list:

short name

type

40

If you have chosen to use flagged arguments, and the host operating sys­
tem expects short flags, you must specify the one-character flag which
names the argument on the command-line. If the program uses position­
al arguments, the value of this field should be FLAGPOS. If the pro­
gram uses long flags, this field will be ignored, but do not assign it the
NULL character '\O', because this would be interpreted as the end of the
argument list.

You must specify the type of the argument, such as FLAGINT,
FLAGSHORT, FLAGLONG, FLAGCHAR, FLAGSTRING, etc. For a
complete list of possible values for this field, consult the entry for
crackargv in the Host Software Specification or C Run-Time Library
Reference.

Britton Lee 87/11/25 v. 1.11

Idmlib User's Guide Command-Line Arguments

minimum length
When a flag has a long name (see below), you must specify an integer
value representing the minimum number of characters that must be
specified on the command-line to make the name string unique. A value
of zero may be assigned if short flags or positional arguments are used.

long name
Some host operating systems require a long name for flags. The long
name should be unique in its first four characters. If short flags or posi­
tional arguments are used, this field may be CHARNULL.

alternate name

value

prompt

An alternate flag name is required on some (Multics) hosts. It can be ini­
tialized to CHARNULL if not required on your system.

You must specify the address of the variable to which the argument
should be assigned. It is cast as a character pointer with the " __ '' mac­
ro.

A string may be displayed as a prompt if the user omits a required argu­
ment. It may be initialized to CHARNULL.

usage name
This is the name of the argument to be displayed in a "usage" message,
when the program is invoked incorrectly. If it is CHARNULL, "prompt"
will be used.

The argument list is terminated by a NULL character '\O'.

The following examples illustrate the use of crackargv(} with positional and Bagged
arguments.

87/11/25 v. 1.11 Britton Lee 41

Command-Line Arguments /dmli'b User's Guide

42

1 /*
2 ** MYPROGl.C -- demonstrates use of crackargv with positional
3 ** arguments;
4 **
5 ** progra.m must be invoked with arguments in the order of
6 ** their declarations. ~
7 ** i.e. •myprog 3 w smith"
8 **
9 */
10
11 #include <idmlib.h>
12 #include <crackargv.h>
13
14 /* variables for command-line arguments */
15 short Num;
16 char Ch;
17 char *Text;
18
19 /* the argument list */
20 ARGLIST Args(] =
21 {
22 FLAGPOS, FLAGSHORT. 0, CHARNULL. CHARNULL.
23 CHARNULL. CHARNULL.
24 FLAGPOS, FLAGCHAR, 0, CHARNULL. CHARNULL.
25 CHARNULL. CHARNULL.
26 FLAGPOS, FLAGSTRING. 0, CHARNULL. CHARNULL.
27 CHARNULL. CHARNULL,
28 '\O'
29 };
30
31 main(argc. argv)
32 int argc;
33 char **argv;
34 {

INITIDMLIB(•myprog•);
crackargv(argv. Args);

.tNum.

.tCh,

.tText.

35
36
37
38

printf(•Num = %d. Ch= %c. Text= %s\n•. Num. Ch. Text);
exit(RS_NORM);

39 }

Britton Lee 87/11/25 v. 1.11

Idmlib User's Guide Command-Line Arguments

1 /*
2 ** MYPROG2.C -- demonstrates use of crackargv with flagged arguments;
3 **
4 ** specifies prompt string to be used when arguments are omitted;
5 ** arguments must be flagged as in •myprog -s3 -tsmith -cw•
6 ** or •myprog /short=3/text=smith/char=w"
7 */
8 #include <idmlib.h>
9 #include <crackargv h>
10
11 /* variables for command-line arguments */
12 short Num;
13 char Ch;
14 char
15

/* the

*Text;

argument list 16
17
18
19
20
21
22
23
24
22
23
24

ARGLIST Args [) =
{

's .. FLAGSHORT.
CHARNULL.

•c, # FLAGCHAR,
CHARNULL.

't .. FLAGSTRING.
CHARNULL.

'\O'
};

25 main(argc. argv)
26 int argc;
27 char **argv;
28 {

*/

1. "short•.

1. "char•.

1. •text•.

INITIDMLIB("myprog").
crackargv(argv. Args);

CHARNULL.

CHARNULL.

CHARNULL.

ltNum.•number:

ltCh, "character:

ltText. •text :

29
30
31
32

printf("Num =Id. Ch= le. Text= ls\n•. Num. Ch, Text);
exit(RS_NORM);

33 }

87/11/25 v. 1.11 Britton Lee 43

Appendix C: VMS

Compilation

The C program must be compiled with the DEC V AX-11 C compiler. The VMS logical
name V AXC$INCLUDE must be defined as the name of the directory containing the
include files supplied with the Host Software. This directory name should be IDM_DIR
unless local modifications have been made. If no include files appear in this directory,
the system manager should run the ININC.COM command procedure in the IDM_DIR
directory. If V AXC$INCLUDE is already defined, add IDM_DIR to the definition of
V AXC$INCLUDE by using a search list.

Loading IDMLIB Without the VAX C Run-Time Library

There are two versions of IDMLIB: a shared image version and an object library version.
The shared image version is a production version. The object library version is neces­
sary if a copy of the IDMLIB source code is required for debugging.

To link your C program to the shared image version of IDMLIB

LINK myprog, IDMLIB/OPT

If you require an object library containing all the internal and external symbols of
IDMLIB for debugging, you can link with the object library version. This will take con­
siderably longer to link and produce a much larger image than the shared image ver­
sion.

LINK myprog, IDMOBJ/OPT

Loading IDMLIB With the VAX C Run-Time Library

If ISTDIO is loaded, all modules which make calls to standard I/O routines must
include istdio.h instead of idmlib.h.

The command-line for linking the shared image versions of IDMLIB and the standard
library compatibility modules is

LINK myprog, IDMLIBRTL/OPT

87/11/es v. 1.11 Britton Lee 51

Appendix B: UNIX /dmlib User's Guide

50 Britton Lee 87/11/25 v. 1.11

Appendix B: UNIX

Compilation

The requirements for a suitable C compiler to support ID:MLIB are listed m the intro­
duction to the Host Software Specificatz"on.

Loading IDMLIB Without the Standard I/O Library

Linking the IDM support library with the C program can be done as part of the compi­
lation phase, as in

cc -o myprog myprog.c -lidmlib

Loading IDMLIB With the Standard 1/0 Library

If ISTDIO is loaded, all modules which make calls to standard 1/0 routines must
include istdio.h instead of idmlib.h.

Load ISTDIO before ID:MLIB.

cc -o myprog myprog.o -listdio -lidmlib.

87/11/25 v. 1.11 Britton Lee 49

Appendix A: Incorporating the Standard I/ 0 Library Idmlib User's Guide

48 Britton Lee 87/11/25 v. 1.11

ldmlib User's Guide Appendix A: Incorporating the Standard I/ 0 Library

1 #include <istdio.h>
2
3 ma.in()
4 {
5 INITIDMLIB(•test•);
6
7

fprintf(stderr. •This will use the sta.nda.rd I/O library.•);<fl!lh
exit(RS_NORM);

8 }

or

1 #include <istdio.h>
2
3 ma.in()
4 {
5 INITIDMLIB(•test•);
6
7

ifprintf(istderr. •This will use IDMLIB.•);
exit(RS_NORM);

8 }

87/11/25 v. 1.11 Britton Lee 47

Appendix A: Incorporating the Standard I/ 0 Library ldmlib User's Guide

Implementation

When !STDIO is loaded and istdio.h included, all IDMLIB names which previously
conflicted with standard 1/0 names will unambiguously refer to the standard 1/0
library routine. To reference the IDMLIB counterpart, preface the standard If.2 library
name with the character "i".

Standard 1/0

printf
sprintf
std in
stdout
std err

IDMLIB

iprintf
isprin tf
istdin
istdout
istderr

When using both libraries, the programmer must insure that standard 1/0 routines use
standard 1/0 file pointers, and IDMLIB routines use IDMLIB file pointers. The follow­
ing program is incorrect, because it passes the standard 1/0 library variable, stderr to
the IDMLIB function ifprintf

1 #include <istdio.h>
2
3 main()
4 {
5 INITIDMLIB("test•);
6 ifprintf(stderr. "This might produce undesirable results");
7 exit(RS_NORM);
B }

A correct implementation would be:

46 Britton Lee 87/11/25 v. 1.11

Appendix A: Incorporating the Standard 1/0 Library

Standard 1/0 Functionality in ID:MLIB

Some of the functionality of the standard 1/0 library is provided by ID:MLIB routines
and symbols with the same names as their counterparts in the standard I/O library.
These routines are

Functions

printf
sprintf
strcat
strncat
strcmp
strncmp
strcpy
strncpy
strlen
strchr
strrchr
atoi
atof
atol
exit

Macros

EOF
NULL

Variables

std err
std in
stdout

The standard library is generally incompatible with ID:MLIB. This means that standard
I/O functions should not be called, and header files containing definitions for those func­
tions, such as stdio.h, should not be included for modules whiCh use ID:MLIB routines,
unless the provisions described below are made to resolve the incompatibilities. These
provisions are currently available for programs running on Unix, VMS or PC/MS-DOS
systems.

Compatibility Using ISTDIO

If a C program module makes calls to ID:MLIB and the standard I/O library, a special
compatibility library called !STDIO must be loaded before ID:MLIB. If !STDIO is
loaded, the modules using both libraries must include istdio.h instead of idmlib.h. Con­
sult the appropriate appendix for your host environment for instructions on loading
IDMLIB and !STDIO.

87/11/25 v. 1.11 Britton Lee 45

Command-Line Arguments ldmlib User's Guide

44 Britton Lee 87/11/25 v. 1.11

Idmlib User's Guide

Appendix C: VMS ldmlib User's Guide

To link the object library versions of IDillIB and the standard library compatibility
modules

LINK myprog, IDMOBJRTL/OPT

52 Britton Lee 87/11/25 v. 1.11

Appendix D: PC/MS-DOS

Compilation

The C program should be compiled using the Microsoft C compiler, version 4.0 or later.
Modules which will be linked with IDMLIB must be compiled with the /AL flag to
specify the large model library and the /Gs flag to turn off stack checking.

The following example compiles a source file called MYPROG.C and assumes that the
environment variable INCLUDE is set to the directory which contains the IDMLIB
header files.

MSC /AL /Gs MYPROG.C, MYPROG.OBJ;

Loading IDMLIB Without the Standard 1/0 Library

Object files must be linked with the Microsoft linker. The following example loads the
object file and IDMLIB to produce an executable file named MYPROG.EXE. The
/STACK flag is used because most modules linked with IDMLIB require 10000 bytes of
stack space. This example assumes that the environment variable LIB includes the path
to the the directory containing Microsoft's libraries and the path to the directory which
contains IDMLIB.

LINK /STACK:lOOOO MYPROG.OBJ,MYPROG.EXE,,IDMLIB;

Loading IDMLIB With the Standard 1/0 Library

If ISTDIO is loaded, all modules which make calls to standard I/O routines must
include ISTDIO.H instead of IDMLIB.H.

This example assumes that the environment variable LIB includes the path to the the
directory containing Microsoft's libraries and the path to the directory which contains
!STDIO.

LINK /STACK:lOOOO MYPROG.OBJ,MYPROG.EXE,,ISTDIO,IDMLIB;

87/11/£5 v. 1.11 Britton Lee 53

Appendix D: PC/MS-DOS ldmlib User's Guide

54 Britton Lee 87/11/fS v. 1.11

Appendix E: AOS/VS

Compilation

The command to compile a C program named myprog.c is:

cc myprog.c :idm:include/search

Loading IDMLIB Without the Standard I/O Library

To link myprog.ob with IDMLIB to produce an executable object called myprog, the
command is:

ccl/o=myprog/tasks=4 myprog.ob :idm:lib:rclib.lb &
:idm:lib:idmlib.lb :idm:lib:itpusr.lb

The ampersand indicates a continuation line and is not part of the link command.

ISTDIO is not currently available for this environment.

87/11/25 v. 1.11 Britton Lee 55

Abort: 32

BCDNO: 2

BITSET: 3

BOOL: 2

BYTE: 2

BYTEJ\11.JLL: 3

CHARNULL: 3, 35

command-line argument: 39-40

command-line argument list: 40-41

commit work: 8

compilation, AOS/VS: 55

compilation, PC: 53

compilation, Unix: 49

compilation, VMS: 51

Continue: 32

crackargv(}: 39-43

data types: 2

deadlock: 27

done count: 17

Error: 32

ezcabort(}: 36

ezcahandle{): 38

ezcbackout(): 34

exception handler: 33

exception handler, default: 34

exception handler, scope: 34

exception handling: 3, 31-38

exception name: 32-33

exchandle(): 33

ezchandle(}: 33, 35

ezcignore(): 34

ezcprbo(}: 34

ezcprint{): 34

ezcraise(): 35

Index of Terms

ezit: 1

FUNCNULL: 3, 33

getprompt(}: 13

header file: 1

header files: 6

idmlib.h: 1

IDMRUN: 6, 6-7

IDMRUN, independent: 23

IDMRUN, related: 27

idmrun.h: 6

Information: 32

INITIDMLffi: 1

iprintf: 46

irbind{): 9, 10, 17

ircancel(}: 11, 36

irclose{): 7

irdesc(): 17

irezec{): 8

irfetch{): 9, 10

irftush(}: 10, 36

irget(): 17

iridl{): 7

irnezt(): 8, 15

iropen(): 7

irreopen(}: 27

irsql(): 7

irsubst(): 11, 12

irzcmd{): 13

irzaetp(): 13

isprintf: 46

iatderr: 46

istdin: 46

ISTDIO: 45

iatdio. h: 1, 45

istdout: 46

loading, AOS/VS: 55

loading, PC: 53

loading, Unix: 49

loading, VMS: 51

macros: 3

print/: 1, 46

Respond: 32

RETCODE: 2, 31

RETERROR: 3

RETSUCCESS: 3

return codes: 2

RETWARNING: 3

rollback work: 8

severity code: 32-33

sprint/: 46

standard I/O: 1, 45

stderr: 46

stdin: 46

stdio.h: 45

stdout: 46

substitution constant: 11

Success: 32

Usage: 32

Warning: 32

