

CONTENTS

1. Introduction to the IDM
2. The IDM System Architecture
3. Programming the User Interface
4. I DM Command Set
5. Hardware Reliability and Maintenance
6. Configuration and Selection Guide
7. Product Support

1. INTRODUCTION TO THE IDM

The Intelligent Database Machine (IDM) is a tool for
providing sophisticated end user database systems. It is
an integrated hardware/software database computing
system . The system is housed in a single rack-mountable
16 by 24 by 12 inch electronic chassis that is connected
between user-supplied front-end systems and user­
supplied disks. Front-end systems can be intelligent (OEM
programmable) terminals ; micro, mini , and/or mainframe
computer systems. The IDM performs the following func­
tions:

IDM Database Management Functions

• transaction management
- guarantees database consistency

• optional logging of database changes
- for audit trail

• indexing of data
- for fast access and update

• crash recovery facilities

• large RAM cache
- to hold indices and frequently

used disk blocks

• concurrency control
- multiple users can access the same

database

• protection features
- unauthorized users may not access the

database

• data definition facilities
- dynamic data definitions

• data manipulation facilities
- high level, non-procedural functions

• data independence

The IDM is a back-end system and performs data
management functions at speeds up to 10 times faster
than conventional systems. The speed is obtained by the
use of special-purpose hardware. The IDM includes:

Hardware

• an optional special-purpose 10 mip database
processor

• a general-purpose processor
• disk controllers
• ram memory
• 110 processors
• a high-speed bus
• rack-mountable chassis

Software

• complete relational database management
system

• random access file system

OEM Support

• the complete definition for a general-purpose
query language

• extensive documentation
• training sessions

Both the hardware and the software systems are
designed and manufactured by Britton-Lee. This document
contains an overview of the IDM, description of and con­
figuration guides for the hardware system, and specifica­
tion of the software system, including the interface to the
database management system.

Overview

The IDM is a database computing system that can be
used as a back-end machine or, together with intelligent
terminals, as a stand-alone data management system.
Figures 1.1 and 1.2 show the IDM in both configurations.

Figure 1.1: Stand-Alone System

SMA LL SYSTEM

The IDM requires pre-processing of user queries. This
is a task which can easily be performed in an intelligent
terminal .

When used as a back-end database machine the IDM
provides a powerful central data management facility_.
Several computers can share access to data stored on an
IDM because concurrency control, scheduling, and protec­
tion functions are implemented within the IDM itself.

Whether the user is communicating with the IDM
through an intelligent terminal or through a large main­
frame, the user never has to program the IDM itself. The
IDM is a complete database software/hardware package
that is fully programmed. Database commands are pre­
processed in the front-end system (the terminal or main­
frame) and sent to the IDM. After the commands are pro­
cessed , the IDM buffers the results until the front-end can
receive them, then sends the results. The user does not in­
tervene in the processing of a database command from the
moment it is received by the I DM unti I the results are sent

DISKS

LARGE SYSTEM

Figure 1.2: Back-end System

back. This processing is extraordinarily fast because the
hardware and software are specifically designed for data
management.

Software

The IDM contains a complete relational database
management system . Relational data management
systems were developed at research institutions and have
been found to provide the best performance and data
organization for back-end database machines. A relational
database management system organizes data into "rela­
tions". A relation is a table: it has rows and columns. A row
is technically termed a "tuple", and a column an "at­
tribute". Relations can also be thought of as "files", tuples
as "records" and attributes as "fields". Figure 1.3 shows
the logical organization of two databases.

DATABASE: PERSONNEL
EMPLOYEES

NAME NUMBER ADDRESS SALARY

JONES 2501 210 .12th St. 50000

SMITH 8912 404 4th St. 12000

VITALE 1573 809 24th St. 7000

2

DEPT.

25

12

7 RELATION

OR TABLE

Figure 1.3

DEPARTMENTS

NAME NUMBER MANAGER

SHOE 25 2715

HAT 12 8912

BOOK 7 1531

t
COLUMN, OR DOMAIN

,

Figure 1.3 (continued)

DATA BASE: INVENTORY

PARTS

NAME NUMBER IN. STOCK PRICE VENDOR

HAT 250931B 12. 35 HATS, INC.

ORDER
DATE

80106106

ORDERED

QUANTITY PRICE

25 20

NUMBER

2509318

HAT 250970B 4 70 B.JONES, INC. 80/09/05 30 10 71025A

SHOE 370210B 14 25 LEATHER, INC. 80107102 12 15 370210B ~

The IDM will manage up to 50 databases. Each
database can have up to 32,000 relations . There may be up
to 2 billion tuples per relation. Each tuple can contain up to
2000 bytes.

The IDM database management system provides data
independence, so the user programs do not need to be
changed when the database is changed. It is a non­
procedural system: that is, database commands specify
only what is required, and are not concerned with the ac­
tual structure of the data.

A complete description of the IDM software is con­
tained in Section 4. The IDM database management
system includes the following basic database commands:

• create, destroy database
• create , destroy relation
• retrieve data
• change data
• delete a tuple (record)
• add a tuple (record)
• create, destroy index

In order for a data management system to be useful,
more than the above commands must be provided. The
IDM, since it is a complete date management system, also
includes the following features:

• transaction management
· The user defines the beginning and end of
transactions; the entire transaction is
either completely finished, or not started.

• transaction logging
· for audit trails and crash recovery

• relation (table) load and dump facilities
· for data backup and fast loading of the
database.

TUPLE , OR ROW

• protection of data from unwarranted access

• partial view of the data
- selected users can only see part of the
data

• concurrency control

I~

-

· changes to the data are coordinated so
more than one user at a time can safely in·
teract with the same database.

A unique feature of the IDM data management system
is the stored command. A stored command is one that has
been previously defined by the user, and is stored in a par­
tially processed form in the IDM. From then on, the com­
mand is referred to by the user only as a short name or
number. Since the command is stored in the IDM, the
transmission time from the front-end to the IDM is minimiz­
ed; since it is already partially processed, execution time
is also minimized.

Because one configuration of the IDM database com­
puting system is a stand-alone system, the IDM software
also includes a general purpose file system. The file
system is also described in Sect ion 4.

OEM Support

The IDM accepts commands that have been pre­
processed by the front-end system. An OEM must
therefore write the programs that translate a user query
from the form the user types in at a terminal to t he IDM­
internal form expected by the IDM. This translation con­
sists of parsing the user query: that is, putting it into a
standard form understood by the IDM. To facilitate that
task, Britton-Lee will provide the complete specifications
for a general-purpose query language, IDL. IDL (Intelligent
Database Language) translates easily into the IDM­
internal form. In Section 3 several examples of user inter­
faces to the I DM are given. It is not necessary to use I DL;
one of the examples in Section 3 does not. It is simply pro­
vided as a tool and an example for the OEM.

3

PROGRAMMABLE.
TE.RMI NA LS

The Britton-Lee
Intelligent Database Machine

ASYNC

I
I
I
I
I
I
I
I
I
I
L ___ _

DATABASE.
PROCESSOR

PARALLEL

1/ 0
CHANNE.L(S)

7 OPTIONAL

USER

Application
Program

Report
Writer

Screen
Definition
Program

Front
E.nd
Processor

F C
00
R B
T 0
R L
A
N B

A
s
I
c

DISK
CONTRO LLE.R(S)

IDL OR QUE.RY
LANGUAGES

DISKS

PARSED
QUE.RY

3 OPTIONAL

DISKS DISKS DISKS

Relational Data Management
Transaction Management
Security

IDM 500 Optimized Access Path Selection
RE.LA TIONAL RAM Cache for Disk Blocks
DATA
BASE. Concurrency Control

MACH IN E. ,._A_u_d_it_L_o_g_s _______ ___,
Crash Recovery

Dump&. Load of Data
Random Access File System

Storage Devices

I .

Hardware

Figure 1.4 is a block diagram of the IDM's hardware ar­
chitecture.

Section 2 discusses, in detail, the IDM architecture.
The following is an overview. The IDM can be configured
with up to 16 boards. the configuration guide is in Section
7.

In figure 1.4 the front-end system is shown com­
municating with the IDM through the 1/0 processors. There
are two types of 1/0 processors: serial (RS232C) and
parallel (GPIB, IEEE-488). Up to 8 asynchronous l ines can
be connected to each serial 1/0 processor. Since the GPIB
is a multiplexed interface, several front-end systems can
be connected through one parallel 1/0 processor. The IDM
can be configured with up to eight 1/0 processors (4 serial
and 4 parallel).

The Database Accelerator is designed to perform
time-critical data management functions, while the
Database Processor performs the less time-critical func­
tions. The Database Accelerator is an optional feature of
the system; in its absence the Database Processor accom­
modates its functions.

The RAM cache is provided in units of 256K bytes
each; up to twelve units can be connected to one system
(subject to the limitation that the sum of all units may not
be more than 16). The RAM cache is used by the IDM to
cache pointers, store frequently used disk pages, and to
store data associated with user commands.

F-RONI -[ND
SYSTL~IS

I R;.\NSLAT[I)

UP TO 8 1/0 Cl IANNLLS

1/0 CHANNLL
PROCLSSOR:

BU FIL RS CO:VIMA D,
INTLLLIGCNT DA TABASL COMMA~D RES UL TS

l~~~~ALS ,,.-~------i NOTll- ILS DAIABASL

MAINrRAMES -....~Bl-NA_R_Y-RE_S_UL_T_S __, ~~~c~~~~~,?:s

Figure 1.4

IDM HARDWARE

ARCHITECTURE

D1\TABASE
ACCCLLRi\TOR

PLRFORMS DATA
~IANAG[MENT
COMMANDS

The IDM controller is designed to operate with the
Database Accelerator to process data at the speed that it
is read from the disk. Up to 4 controller boards may be on
the IDM. Each controller board will support up to 4 SMD
disks.

Disk storage is supplied by the OEM. Section 7 (Pro­
duct Support) discusses integrating the IDM with the
users' disk storage.

Summary

The hardware and software of the IDM are designed to
function jointly. They are not available separately. The IDM
is up to 10 times faster than conventional software-only
general purpose data management systems because it is
an integrated hardware/software data management
system.

2. THE IDM SYSTEM ARCHITECTURE

The IDM is an integration of hardware and software
designed for the specific task of managing a relational
database. This section provides a basic overview of the ar­
chitecture.

Hardware Architecture

The IDM is organized around a central, very high
speed bus. The design is broken up into independent, func­
tional modules each of which performs a specialized task.
A block diagram of the system is shown below.

DAT1\BASI_
PROCLSSOR :

GCNlRAL PURPOSI_
PROCLSSOR ;
COORDINATLS RLSf
OF S'r Sl L 1\\

lllGH-SPL[D BUS

UP TO 3 MBYTCS

R1\M CACI II_

BUI FLRS DISK
BLOCKS ; STORLS
PROG.RA~IS & DAT A
ro PROCLSS USLR
CO~IMM\D

UP TO 4 CON fROLLU~S

CONTROL LL R:

L;.\CllONL
INlLRl- ACLS
TO UP 10 4 S~lD
DIS"S

USER-SUPPL\ ED D ISKS

5

Each component is a single board which plugs into the
IDM bus. The components are:

6

1. Database Processor (DBPJ

The Database Processor manages all system
resources and executes most of the software in
the system.

2. /JO Processor (S/O and PIO)

The 1/0 processor is a channel that connects a
front-end device to the IDM. The 1/0 processor
accepts commands from a host and returns
results to the host. It performs all host depen­
dent hand-shaking including checking that all
data sent to or from the host has been correctly
transmitted and received. In the event of an er­
ror during data transmission, the channel pro­
cessor coordinates the retransmission of the
data. The channel optionally converts various
host data types to a standard , IDM format. For
example, some hosts will send a two byte in­
teger as the least significant byte followed by
the most significant bytes. The 1/0 processor
will swap bytes. When a command has been
completely received or reaches a predetermin­
ed length, the Database Processor is notified
and the command is transferred at high speed
into main memory for processing.

There are two types of 1/0 channels pro­
cessors: parallel (PIO) and serial (SIO). The
parallel channel provides byte parallel
transmissions between host and channel at up
to 250,000 bytes/ second. The serial channel
allows up to 8 separate bit serial lines to
simultaneously communicate at individual
speeds up to 19,200 bits/second.

3. Disk Controller (CON)

The disk controller moves data between exter­
nal disks and the IDM main memory. It per­
forms burst error detection and correction. The
I DM uses a 2K byte disk page size. The con­
troller disk interface is SMD CDC 9760 com­
patible. This allows disk drives made by many
different vendors to be directly connected to
the IDM.

One controller manages from 1 to 4 disk drives.
Each drive can be a different capacity. New
drives can be added at any time. Drives
dedicated to the IDM can only be accessed
through the IDM.

4. Database Accelerator (DAC)

The Database Accelerator is a very high speed
processor with an instruction set specifically
designed to support a relational database. Its
instruction time is 100ns. The Database Ac­
celerator performs specific functions under the

direction of the Database Processor. It can in­
itiate disk activity and can search disk pages
while they are being transferred into memory.
In most cases the Database Accelerator can
complete processing of a page by the time the
page has been completely read in. The
Database Accelerator and the IDM system soft­
ware are structured so that most of the ti me
consuming processing is performed by the
DAG.

5. Memory Timing and Control (MTG)

The Memory Timing and Control manages the
main memory subsystem. It provides single bit
error correction and double bit error detection.
The MTC controls one or more memory storage
boards . The board is pipelined to supply data at
the processing speed of the Database Ac­
celerator.

6. Memory Storage (MEM)

An IDM can have from one to twelve semi­
conductor memory storage boards. These
boards are managed by the Memory Timing and
Control.

BASIC SYSTEM

A basic IDM configuration consists of:

• Database Processor
• Memory Timing and Control
• 256K bytes of Memory
• One Disk Controller
• One 1/0 Processor

The architecture of the IDM allows it to operate with
or without the Database Accelerator. The presence of the
Database Accelerator provides a dramatic increase in
system performance. For applications which require only a
modest transaction rate, the Database Accelerator can be
omitted, providing a cost savings.

More disk controllers can be added to the system up
to a total of 16 drives. The maximum storage capacity of all
disks is limited to 32 gigabytes.

Additional 1/0 channels can be added to increase the
number of hosts and terminals directly connected to the
IDM. Finally, additional main memory can be added up to a
limit of 3 megabytes. Section 6 discusses how to configure
an IDM.

Software Architecture

The software features of particular importance to the OEM
are:

• logical data organization
• integrated data dictionary
• physical data organization
• user process organization
• crash recovery

Logical Data Organization

The user of the IDM sees data organized into one or
more independent databases. Each database is a collec­
tion of relations or files. A user on a host computer opens a
database and then issues commands to manipulate the
data in the database.

A "relation" is an object similar to a "file" in other
systems. As an example, there could be a database
designated "personnel" and inside that database there
could be many relations, one of which would hold informa­
tion about employees:

employee relation

name

Baker, R.

Booth , J.W.

number

A8080

B3083081

This example shows a relation called "employee" with col­
umn names (also called "attributes" or "domains") name,
number, deptno, and salary. Each "row" in the relation
(also called "record" or "tuple") represents specific data
about one employee.

There are very few limitations to the sizes of relations
in the IDM. Each database can have up to 32,000 separate
relations. Each relation has from 1 to 250 columns and up
to 2 billion rows. A row is limited to 2000 bytes. Section 4
explains how relations are created and accessed.

Integrated Data Dictionary

Both the IDM and the user need to know what informa­
tion is kept in a database. This information is commonly
called a "data dictionary". The IDM maintains this infor­
mation in relations which are available to the user. When a
database is created by the user, the IDM will create a set of
standard relations which comprise the data dictionary.
The information in the data dictionary includes:

• Each relation, its name and an optional descrip­
tion.

• Each column name and its type (character, in­
teger, etc.)

• The indices on each relation
• A list of database users and their access

privileges.
• An audit trail of changes made to the database.
• Other information.

Users do not need special commands to access the data
dictionary. The integrated data dictionary allows the OEM
user to integrate sophisticated data descriptions with the
IDM defined relations.

All IDMs contain one special database called the
"system" database. This database is created when the
IDM is first installed and holds information about the IDM
system and about the databases on the IDM. In addition to
the data dictionary found in user databases, the "system"
database contains:

• list of all databases
• list of all disks and their specifications.
• physical allocation of disks to databases and

relations.
• IDM binary software.
• log of system f ai I ures.

dept no

17

3

salary

25000.00

27500.00

The system database is accessed exactly like any
other database and is of particular interest to personnel
maintaining the IDM.

Physical Organization

Physically, the databases are stored on disk drives.
Each disk drive is given a name supplied by the user
together with the necessary drive information including
drive capacity, number of heads, and bits per track. The
IDM uses the information to format the drive initially and
for allocating space on the drive. The IDM subdivides each
disk drive into "zones". A zone is always a whole number
of disk cylinders. When a database is created, the user can
specify the number of zones to give to the database. As the
database grows, more zones can be added. Each zone is
further subdivided into 2048 byte "pages". A page is a
basic unit of allocation. As relations grow they are
allocated one or more pages at a time. The number of
pages per zone depends on the particular capacity and
organization of the disk. The user of the IDM may control
how much space a database or relation can occupy on
each disk.

User Process Organization

The IDM supports a large number of users
simultaneously accessing the same or different relations.
It contains all the logic needed to control the processing
order of different requests and to prevent the different re­
quests from interfering with each other. One user can have
many commands running in parallel on the IDM.

To access a database, a user sends an "open
database" command to the IDM. If the database exists
then a process is created on the IDM which manages com­
mands for that particular user on the specified database.

7

The IDM process will service the user's requests until a
" close database" command is received. The I DM al lows an
arbitrary number of users to simultaneously access the
same or different databases. Main memory is used both to
store the user command and as a private workspace for
processing. The IDM has been designed to use a minimum
amount of main memory per user process. If the IDM does
not currently have a command to process for a particular
user, that user's process requires no main memory. As the
command is processed it can use up to 18K bytes of
memory. The typical command will use about 8K bytes.
The actual amount depends on the complexity of the
command .

When the IDM has many commands all in various
states of execution, it will schedule among them giving
each a priority which depends on various parameters. If
there is insufficient main memory to hold all active user
processes, they will be moved to temporary storage on
disk.

Crash Recovery

The IDM is a "transaction" oriented system which pro­
vides complete database consistency. The user may group
one or more commands into a " transaction" . The IDM will
guarantee that either the entire transaction is performed
or none of it. This is crucial both for consistency during

The IDM System

All the components of the IDM are integrated to sup­
port a common task of efficiently and reliably supporting a
database. The next section overviews how to program the
IDM user interface.

3. PROGRAMMING THE USER INTERFACE

The IDM is a complete database computing system
that depends on its front-end to provide the direct interface
to the end-users. There are two types of "users" of the
IDM: those who buy multiple IDMs and write the programs
to interface the IDM to their systems: throughout this
document we refer to this user as "the OEM". The second
type of user is the person for whom the OEMs are develop­
ing their products. This person sees only the combined
OEM/IDM system and is referred to as the "end user".

The end-user, at a terminal or through a batch system,
executes a database command . Then the OEM-written
software translates the command to a compact form
understood by the IDM. This compact form is the "IDM­
internal form". The translated command is subsequently
sent to the IDM to be executed; the results are returned,
and the OEM-written software formats the results to be
displayed to the user. This interaction is shown in the
following figure.

Figure 3.1

THE IDM AS A BACK-END

MAINFRAME

OTHER
PROGRAMS

IDM INTERFACE
(TRANSFORM,
SEND
COMMAND

OP
SYS

multiple user interactions and in case of a system wide
failure. When the IDM detects a failure condition, (for ex­
ample, loss of power, host processor failure, or IDM hard­
ware failure) , it is capable of maintaining database con­
sistency. This is achieved by keep ing redundant informa­
tion at certain critical points in the processing of a trans ­
action. As is true of all disk based systems, certain
failures such as a head crash may not be recoverable. In
such a case, the IDM provides the ability to reload the
database from a previous checkpoint or dump.

8

TRANSFORMED
COMMAND

RETURN TOTAL

IDM

ORMS,
DISK SYSTEM
(Perform
COMMAND)

DISKS

The figure 3.1 shows the interface in a large main­
frame hose. The host operating system would also have to
be changed to manage the communication with the IDM. In
any system that front-ends the IDM, the following func­
t ions must be performed:

Front-end Functions

• Communicate with the end-users.
• Translate user commands to IDM-internal form.

• Send commands to the IDM.
• Receive results from the IDM.
• Format the results and display to the user.

The extent to which the OEM goes beyond the above
depends on the specific application. There are many dif­
ferent types of user interfaces possible. We will show
three examples, ranging from a minimal system to a more
complicated one.

Subroutine Calls

The first example is a hypothetical company, the
Parts Control Company (Parts), which sells a parts inven­
tory control system to small manufacturers. In order to
upgrade their system, Parts is going to an IDM-based
system. To protect their software investment, and to keep
the customer re-training costs down, Parts has decided to
simply connect the IDM to the mini-computer system they
now have. This connection is physically made by connec­
ting the IDM via a GPIB bus interface. The IDM can take the
place of some of the disk controllers that previously were
on the system.

Parts will implement a subroutine library which con­
tains subroutines that call the IDM to perform certain,
limited database functions. The current programs are
modified to call subroutines in the library to use the IDM to
perform all database-related functions. The screen editing,
data checking, forms production and report formatting
functions that Parts spent many years developing are un­
touched and remain in the mini-computer. For example,
the monthly report of the outstand ing orders used to re­
quire reading a large file, where the comparison was made
on each element in the file to determine if the order was
over a month late. The previous read loop was this:

10 read (filel) ordernum, date, vendor_name,
part_num
if (end of file) go to 12
if (date. < T. late)

print ordernum, date, vendor_name,
part_num

go to 1 O
12 continue

Using the IDM, the loop is replaced with subroutine
calls:

IDM Example 1: Subroutine Calls

call write_dm(db_num, "lateout", late)

10 call read_idm(results, max_char)
if (end of data) go to 12
call print_data("outstand", results)
go to 10

The subroutines "write_idm" and "read_idm" are
the IDM interface routines. "write_idm" calls the IDM with
the information that the stored command "lateout" is be­
ing executed on database db_num, with the date to be

compared against stored in "late". Any record (tuple) in the
relation referred to in the stored query "lateout" for which
the date is less than "late" is passed back to the minicom­
puter. The command "read_ idm" reads the records (to a
maximum of max_ char characters) that are passed to the
minicomputer, and stores them in "results". Then
"print_ data" is cal led , which, using the formatting infor­
mation provided with the returned data prints the resu Its.

Note that the work that the IDM performs for this query
is to read the records from the disk system and send to the
front-end only those records for which the date is less than
"late" . The IDM is faster at this function than the main­
frame because it uses its own special-purpose controller
and database accelerator to read the records and perform
the comparison.

The subroutines "read_idm" and "write_idm" are
operating system routines. The interface from the
operating system to the IDM is designed to be logically like
writing to and receiving results from a disk. The OEM
(Parts in our hypothetical example) will have the following
work to do to implement an application similar to the one
just described:

• modify operating system to interface with the
IDM

• modify programs to call the IDM for data
management

• set up the database and define the stored com­
mands

To set up the database and define the stored com­
mands requires the same sort of interaction as described
above. Subroutines are called that send specific informa­
tion to the IDM: in the case of a "define command" a
binary representation of the command is sent to the IDM.
In the case of a database load, a "load" command is sent
to the IDM, and so on. The Parts Control Company,
because it uses only a few well defined database interac­
tions, does not need a general purpose query language,
and can use this subroutine-only application of the IDM.
That is not the case with the following example.

General Purpose Query Language

In this hypothetical example, the Accounting Services
Co. (Account) has decided to offer an accounting package
that includes a management information package. This
will be an intelligent terminal based system, with each
OEM-programmable terminal directly communicating with
the IDM over asynchronous lines. There is no host system
involved.

Account's customers have expressed the need to
analyze the data on income, taxes, accounts payable, and
specific parts of their operations that might be losing (or
making) money. Account cannot write a well-defined set of
subroutines to execute any possible user query since the
queries are not known ahead of time. Therefore they
decide to implement a general purpose query language.

9

The Intelligent Database Language (IDL) is a general­
purpose query language. It is similar to QUEL which was
developed at the University of California, Berkeley. IDL
translates easily into I OM-internal form. Let us say that Ac­
count decided to use IDL as its general purpose query
language. Then the work that must be done in the in­
telligent terminal is shown in Figure 3.2:

SIMPLE INTERFACE

USER
• results

programmable terminal

parser formatter

1 unformatted results

internal form ;

IDM

Figure 3.2

The intelligent terminal translates the user command
to the IDM-internal form by using a parser. The full defini­
tion for the parsing of IDL commands is furnished by
Britton-Lee. The parsed command is sent to the IDM in ex­
actly the same way that the command was sent in the
Parts example. Since the interface is asynchronous the
terminal must accept the results as they come from the
IDM rather than loading OMA registers.

An example of the use of such a system is the follow­
ing. Let us say that a customer of Account's types in the
query:

IDM Example 2: Intelligent Database Language

retrieve (total = sum (sales.amt
where sales.month = "July"))

This is the IDL query for "get the July sales total". The
intelligent terminal parses the query, putting it into the
standard form. Then it sends it to the IDM. The result, when
it is sent back from the IDM, is in binary form. This is for­
matted by the terminal and displayed to the user:

$10,159.46

Note that all of the work to perform this query is done
in the IDM. Those records for the month of July are found,
and the summation performed within the IDM. Only the
total is sent to the front-end system.

The programs that any OEM must write to implement
an intelligent-terminal based general purpose query
system are:

10

• a parser for the query language
This is facilitated by the use of IDL and
associated parse tables.

• routines to transfer data to and from the IDM

• routines to format data received from the IDM

Embedded Query Language

The third example is the Combined Service Bureau
(CSB) which sells software that runs on large mainframes.
The IDM is CSB's chance to enter the data management
market ; since the IDM provides data management without
impacting the host system, CSB can sell its new data
management system to its current users without having to
also sell them new mainframes. CSB wants the flexibility
of the general purpose query language, but needs to be
able to issue database commands from application pro­
grams as well as directly from terminals. CSB has
therefore decided to use an embedded query language.

An embedded query language is a database command
language that is written as a part of a program in another
language. The following is a program fragment which is
written in Fortran with IDL embedded:

IDM Example 3: Embedded Query Language

C*** get transaction code***
200 print 10

10 format ("enter transaction code")

read 15, code
15 format (15)

if (code .NE. 10) go to 100
C*** 10- accumulate interest***

print 20
20 format ("enter posting date")

read 25 post_date
25 format (16)

M replace receive (due = receive. due•
receive.rate)

M where receive.date_due > post_date
go to 200

The database commands are denoted by an "M" in
the first column. This program fragment passes the
database command "replace" to the IDM when transac­
tion 10 is entered. This will update all acounts which are
past due.

To implement this system, CSB must write a pre­
processor program. The pre-processor reads a Fortran pro­
gram, f inds all the IDL statements, parses them, and sends
them to the I OM as stored commands. It then replaces the
lines with calls to the run-time subroutines that interface
to the IDM. The program now contains only Fortran
statements and can be compiled. At run-time the
subroutine calls result in the execution of the IDM com­
mands, exactly as in the Parts example.

The work that the OEM must do in order to implement
an embedded general purpose query language in a large
mainframe is:

• write a pre-processor
• write a parser
• modify operating system to interface with the

IDM

The following section assumes that there are one or
more such interfaces to the IDM, and shows the full func­
tionality of the IDM itself.

4. IDM COMMAND SET

Introduction

The full set of IDM commands is given in this section.
Examples are given for each of the commands. These ex­
amples are in IDL (Intelligent Database Language). IDL
translates easily into the IDM-internal form that is actually
sent to the IDM. If an OEM wishes to implement IDL on a
front-end system , Britton-Lee will furnish the complete
language defin iti on. IDL is used for examples in this sec­
tion for clarity; it is important to note, however, that the in­
terface to the IDM may be via subroutine calls and involve
no IDL commands at all. It is also possible that the OEM
will want to develop a different general-purpose query
language.

The rest of this section is divided into two parts. The
first part is a general overview of IDM database manage­
ment. It contains a discussion of features that are com­
mon to several commands. The second part contains the
command set.

IDM Database Management

The IDM database management system is relational.
Figure 4.1 shows a sample database, the "personnel "
database, with two relations.

The employee relation has at least 7 tuples; each tu­
ple has 5 attributes. Three of the tuples in the relation
"departments" are shown. The relation "departments" has
three attributes.

The relations are set up (created) by the end-user. The
data types for each of the attributes are specified when the
relations are created. The data types supported by the I OM
area are:

BCD

IDM Data Types

binary coded decimal
1 - 31 decimal digits

int1, int2, int4 1, 2 and 4 byte integer

f4, f8 4 and 8 byte floating point (limited sup­
port)

char 1 to 255 ascii characters

bin binary string

When a relation is created the maximum length of the
BCD and character attributes is specified. The IDM will
automatically compress the data (deleting trailing blanks
in character attributes, leading zeros in BCD attributes) to
save storage space.

Floating point numbers are only stored or retrieved.
No floating point arithmetic is included in the IDM, except
floating point comparison.

The commands sent to the IDM are at a high level. For
instance, to obtain the address of the employee "Smith"
the retrieve command is submitted by the end-user:

retrieve (employee.address)
where employee.name = "Smith"

This command is translated to IDM-internal form by
the front-end system, then sent to the IDM. The IDM per­
forms the command , and returns the answer:

404 4th St.

to the user.

DATABASE: PERSONNEL
EMPLOYEES

NAME NUMBER ADDRESS
.....

JONES 2501 210 12th St.

SMITH 8912 404 4th St.

VITALE 1573 809 24th St.

BROWN 8122 802 Ave. J

KELLEY 1503 25 Ave. N

JONES 1201 820 12th St.

BLACK 1402 400 Ave. N

OR ROW

SALARY DEPT

50000 25

12000 12

7000 7

18000 17

24000 25

15000 25

48000 12

Figure 4.1

DEPARTMENTS

NAME NUMBER MANAGER

SHOE 25 2715

HAT 12 8912

BOOK 7 1531

AUTO 17 2510

~
COLUMN, OR DOMAIN

RELATION
OR
TABLE

11.

Tuples are accessed by values not by position.
Therefore the structure of a relation can change. At­
tributes can be added, the relation can be re-organized,
with minimal impact on end-user programs. The values are
specified in the " qualification". The qualification in the
above query is "where employee.name = Smith".
Qualifications are always specified with the "where
clause", and can include multiple relations and functions.

Commands can access data in several relations at
once. The command to make a new relation from data in
existing relations is retrieve into:

retrieve into sdept (employee = employees.name,
number = employees.number)

where enployees.dept = departments.number
and departments.name = "shoe"

The above command creates a new relation , the
" sdept" relation , which contains data about only those
employees who work in the shoe department. The " retrieve
into" command returns no data to the front-end except the
count of the number of tuples in the created re lation. All
the work is done in the IDM, except translating the query.

In the above commands, the list of attributes between
the parentheses is called the "target list " . The target list
can be any attribute name, aggregate or arithmetic func­
tion. For example, the command to change data in the
database is replace.

replace employees (salary = 2*salary)
where employees.name = " Jones"

The above command wil l give a 100% salary increase to
both employees named "Jones" . The target list contains
the arithmetic function "*" , which is multiply.

+

Arithmetic functions in the I DM

addition
subtraction

I division
multiplication

mod modulo: gives remainder
abs absolute value

The arithmetic functions can be applied to any BCD, int1,
int2 or int4 attributes.

An aggregate function is one that can take on several
values. For example, the command:

retrieve (departments.name,

12

total = sum(employees.salary by
departments.name
where employees.dept =
departments.number))

will produce the following results:

name
shoe
hat
book
auto

total
44000
60000

7000
18000

The following aggregate functions are performed within
the IDM:

IDM Aggregate Functions

count
count_unlque counts only the unique values
average
average_un lq ue
maximum
minimum
sum
sum_ unlque
any shows existence of a value

There are two special functions: The "time" function
supplies the time of day in a 4-byte integer. The "date"
function provides the date in a 4-byte integer.

Data may be converted from one type to another in
both the target and qualification lists. The following exam­
ple uses the command to remove a tuple, delete.

delete employees where employees.salary =
bcd(employees.year)

The above command removed from the employees
relation all employees whose salary is the year they were
born

Type conversion is supported from binary coded
decimal (bed), binary (bin) ascii characters (char), 1, 2, or 4
byte integers to each of the other types.

COMMAND LIST

Setting up a database

create database
The command to set up a database is

create database DBNAME
with size = NUM on DISK1,

size = NUM2 on DISK2

where DBNAME is a database name of the
user's choosing, and NUM is the size of the
database on the disk named DISK1, NUM2 is
the size on DISK2. The IDM then sets up a
database with the name DBNAME. If the disks
are not specified (the "with clause" is not in the
command) the IDM will use the first available
space.

The user can control who has access to this
database through the protection mechanisms
provided. The database is initially empty except

>

for system relations that the I D.M maintains for
each database. These system relations provide
a data dictionary and aid in managing the data.

Entering the database

open database
The database, once created, must be opened by
each user who will be issuing commands to
that database. The IDL command to open the
database is

open DBNAME

The result of an "open" is that a process is set
up in the IDM for the user who executed the
open. A unique number is returned to the user
(the "dbid") which then must be supplied with
each subsequent command to this open
database.

Putting data into relations

Getting data into a relation is a two-part pro­
cess.

create relation

append

First the relation is defined:

create employee(name = c10, number = i4,
deptno = 12, address = c20, salary = i4)
with size = NUM on DISK1, size = NUM1
on DISK2,
quota = NUM2, logging

The employee relation is defined, with the at­
tributes of name (maximum of 10 characters,
variable length field), number and salary (4-byte
integer fields), department number (a 2-byte in­
teger field), and address (maximum of 20
characters, variable length field).

It is allocated an initial size of NUM on logical
device DISK1 and NUM1 on DISK2. It will not be
allowed to grow beyond NUM2. There are
default values for the size specification; quota
is assumed to be the size of the database if the
quota is not specified. The quota can, at any
time, be increased by the person who created
the relation.

The audit facility consists of logging all
changes to any relation. If it is needed for a
given relation, the relation is created with the
specification "logging".

The entire "with clause" is optional. Default
values are assigned.

Data is put into a relation with the "append"
command.

append to employees(name = "Jones"
deptno = 27,number = 1234)

The tuple is stored in the relation "employee";
the name and number fields have the values
specified. Since the salary and address fields
are not specified, the IDM assigns to them the
default values: zero for salary, since it is a
numeric field; blank for address since it is a
character field.

There is also a bulk loading capability for filling
a relation with large amounts of data already
stored by the host computer. It is discussed in
the section "load".

retrieve into
Data can be put into a new relation as a result
of a "retrieve into":

retrieve into namsal (employee.name,
employee.salary)

where employee.dept =
department.number
and department.name = "shoe"

In the above command, the relation namsal is
created by the IDM and contains only the
names and salaries of those people who work
in the shoe department.

Accessing data In the database

range

retrieve

For ease in abbreviating the relation names,
and for multi-relation commands, a "range"
statement is required to associate a variable
name with a relation name:

range of e is employee

In this example, "e" is a variable that stands for
the "employee" relation.

Data is displayed through the command
"retrieve".
The command:

range of e is employee
retrieve (e.name, e.salary)

where e.salary) 1000
order by e.name

will display the employee names and salaries
of all employees who have a salary greater than
1000. The "order by" clause causes the results
to be returned sorted by name.

The items between the parentheses comprise
the "target list", which are the items to be
displayed. The qualification (the "where
clause") defines which of the items in the

13

target list are affected by the command . If , for
instance, the user wished to see the names and
salaries of all the employees, the command
would be:

retrieve (e.name, a.salary)

Both the qualifications and the target list can
refer to several relations. The below query lists
all those who work in the manufacturing
department:

range of e is employee
range of d is department
retrieve (e.name) where e.deptno = d.deptno

and d.deptname = " manufacturing"

The processing of multi-relation queries is done
completel y in the IDM . Advanced techniques
are used to effic iently execute multi -relation
queries.

create index
Data in relations can be accessed quickly if
pointers to the data exist ; an index is a pointer
to the data. There are two kind of indices:
clustering and non-clustering. A clustering in­
dex is one that points to an attribute or group of
attributes that the relation is ordered by. The
command:

create clustering index on
employees (number)

causes the IDM to sort the relation
"employees" on " number", store it in that
order, and to make a B-tree index that contains
page identifiers for values of the " number" at­
tributes of the employees relation. When the
employees relation is accessed with the
number specified in the qualification, the index
is searched first and the access is made direct­
ly to the data needed.

There can be only one clustering index per rela­
tion. When the relation will be accessed by
other attributes, non-clustering indices can be
created.

create non clustering index on
employee (name)

The above command results in the creation of a
directory that has one entry for each tuple in
the employees relation. Each entry contains the
value of "name" for the employee, and the
pointer to the page that contains the tuple for
that employee.

View Support

create view

14

A view is a relation wh ich doesn 't really exist. It
is a "virtual relation " that is composed of parts
of one or more relations. One use of views is to

create a virtual relat ion that is missing sen­
sit ive data present in the real relation.

create vi ew emp (employees.name,
employees.address,
employees.dept, employees.number)

The view "emp" created above will contain the
information in the employees relat ion without
the sensitive "salary" attr ibute. The view
" emp" can be retr ieved from and protected in
the same way as a real relation.

The advantage of using a view is that all
changes to the real relation "employees" are
automati cal ly reflected in the view "emp". This
is a part icularly useful feature when there is
data that comes from several relations and is
needed in the form of one relation :

create view ndept (employee = employees.name,
dept = departments.name)

where employees.dept = departments.number

Changing Data

replace

delete

destroy

The values in the database can be changed
through the "replace" command. An example
is:

Replace e (salary = 5000)
where e.name = " Jones"

and e.deptno = d.number
and d.name = " shoe"

This changes the salary to 5000 for all people
named Jones who work in the Shoe depart­
ment.

The " delete" command can be used to delete
tuples from a relat ion.

delete e where e.name = "Jones"
and e.deptno = d.number and d.name =

" Shoe."

This command removes all empl oyees named
Jones from the employee relat ion if they are
also employed in the Shoe department.

To remove an entire relat ion , the command is:

destroy RELNAM E

This command completely removes the rel at ion
RELNAM E from the database.

To remove an index, the command is:

destroy clustering index on emp loyees

or

dest roy non-c lusteri ng index
on employees (number)

destroy database
To remove an entire database, the command is:

destroy database dbname

The IDM will check user access privileges
before allowing any command to take place.
Only the user who created the database can
destroy it.

Stored Commands

define

execute

Protection

deny

permit

An efficient way to execute database com­
mands is to store them in the IDM; the IDM
does al I the necessary pre-processing when the
command is stored. Then when the command is
run it is specified by name or number.

To store a command in the IDM:

range of e is employee
define getname retrieve e.name
where e.sal >$min

Parameters are specified with a $.

To execute the command, the statement is:

execute getname with min = 1000

The stored query feature is particularly impor­
tant for front-end programs. It allows the inter­
nal form of the query to be stored in the IDM.
The front-end program sends the query name
and appropriate parameters. This reduces the
amount of information that must be transmit­
ted to the IDM to run a query, and it reduces the
size of the front-end program. The end result is
more efficient , smaller programs.

Users are denied access to a relation based
upon the user identifer provided by the front­
end system. The command to deny access to a
relation is:

deny write of employee(salary) to USER

The user or group of users identified by USER is
denied permission to change the salary field in
the relation "employee".

Conversely, to permit access to a relation to a
user is:

permit read of department to USER

In this example, the entire relation "depart­
ment" can be read by the user or group iden­
tified by USER. For both "deny" and "permit"
an entire relation or parts of a relation can be
specified.

The command:

deny execute of getname to USER

similarly protects the stored query getname
from execution by USER

Transaction Management

begin transaction
Transactions are commands which, as a group,
must either be completely executed, or not ex­
ecuted at all. An example is a money exchange:

begin transaction

replace customer(bal = customer.bal
- new.sales\
where new.cust_number =
customer.number

replace sales(total = sales.total +
new.sales)
where new.product = sales.product

end transaction

These two commands - decrementing the
customer's balance and incrementing the sales
totals - must take place as a pair, or the books
will not balance. The IDM data management
system processes the commands between
"begin" and "end" transaction as a group - if
the command is aborted for any reason before
the end transaction is reached, the data is
restored to its pre-transaction state.

abort transaction
The abort transaction command:

abort transaction

stops the end-user's current transaction, and
restores the database to its state prior to the
beginning of transaction.

Auditing Support

create audit
The transaction log is written to whenever a
relation is changed, unless logging was
declared "off" when the relation was created.
The transaction log can be periodically dumped
to other files for back-up, as discussed in
"dump" below. In order to create a relation
from the log file that auditors can use the
create audit command is used:

15

create audit ANAM E from RELNAM E
where time > T1 and time < T2

This command creates an audit relation
ANAME from the dumped transaction log name
RELNAME. The audit relation is processed
from the time specified by T1 until the time
specified by T2.

Crash Protection

dump disk
load disk

In order to protect the integrity of databases in
case of equipment malfunction or other data­
damaging catastrophes there are three types of
dumps available: physical, logical and in­
cremental.

A physical disk is written to another device with
the dump disk command. In case of
catastrophe, the disk can be re-written with the
load disk command.

dump disk DISK1 to DISK2

DISK1 and DISK2 are the logical names of disks
on the IDM; if the disk is to be dumped to a
device connected to the front-end system,

dump disk DISK1

will write the contents of the disk to the front­
end system.

Similarly,

load disk DISK1 from DISK2
and

load disk DISK1

re-write the contents of the disk DISK1. The
disk that is loaded must correspond exactly to
the disk that was dumped - it must have the
same number of blocks, cylinders, etc.

dump database
load database

16

A logical dump of a database means writing the
data out a relation at a time, keeping the logical
structure of the database. When a logical dump
is re-loaded, it need not be loaded to a similar
device. In fact, the load database command
can be used to bulk load data into the IDM from
external sources.

dump database DNAME to DISK1

The above dump will put the entire database on

the · 1DM disk DISK1 . Then to restore the
existing database, the command is

load database DNAME from DISK1

To dump the database to the front-end system
the command is

dump database DNAME

To dump or load a relation at a time, the com­
mand is:

dump database DBNAME (RELNAME1),
RELNAME2, ...)

or
load database DBNAME (RELNAME1,

RELNAME2, ...)

A database or relation can also be dumped and
loaded to IDM files.

dump transactions

The transaction log is updated whenever an
audited relation is changed. A strategy for
handling the possibility of catastrophic loss of
data is to

1) dump the entire database occasionally
2) dump the transaction log frequently
3) in case of loss of data, load the last

database dump and apply the trans­
action log.

The success of the above strategy
depends on the fact that logging is on for rela­
tions important to the application.

To dump the transaction log:

dump transaction into RELNAME

rollforward

To apply the transaction log:

rollforward RELNAME to DATE, TIME

If DATE is not specified, the databases are
restored to the last date on the RELNAM E
transaction log.

File System

create file

The IDM random access file system is provided
particularly to support users who need to use
the IDM disks for uses other than database
management.

The command:

create file FILENAME with alloc
DISK1, quota = SIZE2

SIZE1 on

creates FILENAME of size SIZE1 on DISK1. It
will not be allowed to grow beyond SIZE2. The
file size is limited to 2* *31 bytes. Only the
creator of a file many destroy it. Protection
(read and write capabilities) for files are ex­
pressed exactly as for relations.

destroy file

open file

read
write

The command:

destroy FILENAME

will remove the file from the system.

To access the data in a file, or to change it, the
file must first be opened. A file number is
returned to the used as the result of a suc­
cessful open.

filenum = open file FILENAME

The file is then referred to by filenumber.

To read or write the file, the commands are:

read (filenum, count, offset)
write (filenum, count, offset)

The count is given in bytes; the offset is the
byte number within the file where reading or
writing is to begin. Sequential access is
therefore implemented by the user program
keeping track of the position within the file for
the next access.

If the file size is less than 580K bytes, a random
access is 2 disk references . If it is less than
168M bytes, it is three references. There are a
maximum of 4 disk references to randomly ac-

close file

cess a 2G byte file. Since the IDM utilizes a buf­
fer cache, after the first access the actual disk
references may be to the cache, not to the disk.

When the user finishes with a file, it is closed:

close file fi lenum

5. HARDWARE RELIABILITY AND
MAINTENANCE

The IDM tolerates a variety of common hardware error
conditions including uncorrectable memory errors, host­
IDM communication errors , disk read/write errors, inter­
mittent IDM bus errors, and power failure. Each board ex­
cept the memory storage boards contains built-in
diagnostics and self-test capability. The memory storage
boards are tested from the Database Processor. Every IDM
has two special RS232 ports labeled "console" and
"maintenance" which can be used to monitor system per­
formance and for remote diagnostics.

The IDM classifies hardware errors into three
categories: fully recoverable means that no user is af­
fected by the problem ; for example, a correctable main
memory error or a disk read error on a disk block which is
subsequently read correctly. Recoverable means that one
user may have to be aborted or restarted. This would hap­
pen, for example, if an uncorrectable memory error oc­
cured in the user's workspace. Unrecoverable means the
IDM cannot reliably determine its current state. In such a
case, the IDM restarts itself, cancelling all current user
operations. The IDM then comes up in recovery mode and
diagnoses the hardware failure. If possible it will then
come up and bring the database to a consistent state.
Finally it will become available for use. As long as the error
causing the crash did not damage the disk drives, the con­
sistency of the database is guaranteed.

Front Panel Controls

The IDM is control led using the front panel key switch
and a terminal plugged into the " console port " on the back
panel.

17

The IDM function key may be positioned in the following
locations:

1) Off

DC power is turned off. All IDM boards are
powered off; however, AC power is still sup­
plied to the IDM power supply

2) Safe

The database is brought to a consistent state.
Current transactions are allowed to complete.
Any new transactions are rejected. The "safe"
light will come on once the last transaction has
completed and al I changes have been reflected
to the database.

3) Run

The IDM is in its normal operation. The "ready"
light will be on.

4) Maintenance

The IDM will accept commands only from the
console port. The "ready" light will blink. The
IDM will ignore any communications from the
host computers.

Under normal usage, the IDM can be taken off-line by
putting it in safe mode. This allows current transactions to
finish and notifies the host processors that the IDM is go­
ing off line. If necessary, the IDM can be brought into
maintenance mode which will cause all currently running
transactions to be aborted.

When the IDM is powered up and put in safe mode, it
will check the consistency of the databases, will complete
any committed transactions and will backout any uncom­
mitted transactions. When this is done the "safe" light will
come on. If the IDM is powered up and immediately put in
"run" mode, it will check the consistency of the databases
and come on line once the databases are ready.

It should be noted that changing the IDM's running
mode will not compromise database consistency. Its main
usage is for gracefully bringing the system up and down
and for diagnosing system problems.

Diagnostics

The IDM reports errors by maintaining error logs in the
" system " database, through use of the FAULT light on the
front panel , and through a written log on the console (if
one is connected). If an unrecoverable hardware error oc­
curs, the front panel FAULT light will go on. If the IDM can
diagnose the problem and work around it, the IDM will turn
off the FAULT light, print a diagnostic message, and come
back up.

If the FAULT light remains on, there is a system error
which prevents the database processor from running. This

18

woulp happen if the system bus were inoperable or the
database processor was not functioning.

In most cases the IDM can self-diagnose problems
down to the board level and report which board needs
replacing. The·system is also designed to run diagnostics
with various boards missing. The Database Processor is
capable of running by itself in the IDM chassis.

Fault Tolerance

The specific way the IDM handles each type of hard­
ware fault will now be discussed.

Main Memory Errors. Main memory can detect and correct
single bit errors and can detect double bit errors. Both con­
ditions are logged by the IDM in the "system" database. At
any time, a log of hardware problems can be examined.
Correctable, single bit failures are expected from time to
time and are not logged unless they exceed a predetermin­
ed frequency. If that happens, they are analyzed to deter­
mine if a memory device had completely failed. If so the
failure is reported and the IDM avoids using that section of
memory. Periodic replacement of failed memory devices is
necessary to guarantee that uncorrectable errors will not
occur. Uncorrectable errors occur when two bits are in er­
ror. In such a case, a variety of attempts are made to keep
the IDM running. In many cases, the bad memory can be
mapped out of the system and a complete recovery is
possible. Whenever possible a second attempt is made to
read memory in case the double bit failure was intermit­
tent.

When the IDM is powered up, all of memory is check­
ed and bad sectors of memory are reported. If a sufficient
amount of good memory remains (at least 256K bytes), the
IDM will come up; otherwise, the memory must be repaired
before the IDM can function.

IDM bus errors. The IDM internal bus operates at extremely
high speed. To insure integrity of bus operations, parity is
used throughout the bus. If an error is detected, the bus
operation will be retried if at all possible. Retries are
counted and an abnormally high incidence will generate a
diagnostic message. The use of bus parity and bus opera­
tion retry provides very stable and reliable interboard com­
munications.

Disk Errors. The IDM disk controllers have built-in burst er­
ror correction and automatically retry and correct disk
pages. This virtually eliminates the possiblilty of a disk ·
read error causing the user to see incorrect data. When a
disk page has been correctly read, the disk controller
reports if an error procedure had to be used to read the
disk page. If it is warranted, an attempt is immediately
made to rewrite the disk page arid if necessary reassign
the page to a new location before the data becomes
unreadable. This elaborate fault tolerance is designed to
detect gradual deterioration of the disk media and move
valuable data before it is lost.

When a disk is first formatted by the IDM, a surface
analysis is automatically performed and any defective
areas are reported and tagged to prevent the IDM from us-

•

ing them. The IDM can avoid using individual sectors, or
whole tracks. The IDM maintains 8 bits of information
about every sector on every disk. This information is
available in the "system" database.

Host·IDM communications. Communications between a
host and the IDM is done over either a serial line or IEEE
488 bus. Both types of lines use a block mode protocol with
error detection. The error detection is programmable and
can be either none, a checksum, or CRC characters. Every
message passed between a host and the IDM requires a
positive acknowledgement. A negative acknowledgement
causes a retransmission of the message. If an individual
line fails or a complete 1/0 Channel fails, the IDM will
abort any commands associated with the corresponding
hosts and continue to run.

Periodically the channel will poll each host to make
sure the host is still operational. If a response is not
received within a specified period of time , the host is
presumed down . When the host comes back up, it can
reestablish communications with the channel.

Power Fail. The IDM will shut down upon internally detec·
ting AC power low. When power is restored, the IDM will
check the consistency of the databases, backout or com­
plete any transactions in progress at the time of the power
fail, and then come up. Just before writing to a disk the
disk controller checks the status of AC power. If it is nor­
mal, it commits the write. If the power fails during the
write, the IDM power supply will maintain DC power
through the completion of the write. A similar power sens­
ing capability is required from the disk drive itself.

6. CONFIGURATION AND SELECTION
GUIDE

This section discusses the physical limits of the IDM.
The IDM can be configured to expand the amount of main
memory, expand the number of host communication chan­
nels, expand the number of disks, or add a Database Ac­
celerator.

Basic IDM System Components

The basic IDM comes in a rack mountable chassis
with self-contained power supply and room for a maximum
of 16 IDM boards. The minimum IDM requires:

• Database processor Board
• Memory Control & Timing board
• One 256K byte Memory Storage board
• One Disk Controller board
• One 1/0 Processor

for a total of 5 boards. This leaves ample room for up to 11
additional boards. The various configurations will be
described as follows:

The I OM Chassis Bottom Plane

The IDM chassis has room for up to 16 boards. The
IDM bottom plane does not support an "expansion

chassis", therefore, no IDM can have more than 16 boards.
The bottom plane is designed electrically so that any
board can be plugged into any slot. IDM boards have no
user settable straps or options. The IDM internally deter­
mines the system configuration when the unit is powered
up. Parameters to specific boards are entered through
software control and are stored in the database. Certain
boards have external cables leading from the boards to the
back panel of the IDM. For ease of installation it is recom­
mended that IDM boards be inserted in the following order
(starting from the power supply):

1. Database Processor
2. Disk Controller(s)
3. Host 1/0 Processors(s)
4. Memory Timing & Control , Memory Storage,

and Database Accelerator

Parallel 1/0 Channel Processors

One 1/0 parallel processor board controls one IEEE 488
GPIB bus . The standard back panel on the IDM has room
for 4 independent GPIB buses. A GPIB bus can connect
several hosts to the IDM or each host (up to a maximum of
four) can connect to the IDM via a dedicated GPIB parallel
channel. In very high transaction rate environments, and in
some other special applications, it may be beneficial to
use multiple GPIB buses to multiple hosts. The primary
advantage is increased parallelism - two hosts can com­
municate with the IDM simultaneously. The maximum data
rate of the IDM GPIB is 250K bytes/second.

The parallel and serial 110 Channel Processors do all
host dependent data type conversions (swapping bytes on
integers, one's to two's complement conversions, etc.) The
channel must be told what type of host it is talking to and
also the unique host ID. This information can be supplied
automatically from the host, or it can be kept in the system
database in the IDM.

Serial 110 Processors

One serial 1/0 Processor controls eight independent
RS232 compatible lines. The serial channels are program­
mable for baud rates from 110 baud through 19,200 baud.
Modem control is standard and can be disabled if not
needed.

A Serial 1/0 Channel processor is connected to the
back panel of the IDM through one fifty pin connector. The
connector services 8 serial lines. The standard IDM ·back
panel has room for up to 8 connectors. This provides 64
serial communication lines controlled by eight serial 110
processors. Back panels can be tailored for an appropriate
mix of serial and parallel ports limited only by the physical
dimensions. Britton-Lee distribution panels (DTP) are
available which connect the fifty pin connector from a
serial 1/0 channel to eight EIA standard connectors. The
distribution panel is completely passive and can be
manufactured by the OEM to meet specific requirements.

19

Memory

Additional Memory Storage boards can be added up
to the maximum number of slots · available on the bottom
plane. The IDM requires a minimum of 256K bytes in order
to run at all. Additional main memory improves perform­
ance in two ways. First it reduces the amount of disk
activity by keeping a cache of disk pages, and second it
can increase the number of users which can simul­
taneously have commands in progress. The IDM
dynamically balances the amount of memory available for
various resources . The performance improvement
achieved by increasing the amount of main memory
greatly depends on the specific application. The basic IDM
code requires 224K bytes. The remaining memory is
divided into 2K byte pages which can be used either for
caching disk activity or storing user commands in execu­
tion . Storage boards are available in 256K byte sizes. Only
one Memory Timing and Control is required .

Disk Controller

Each IDM disk controller is compatible with the CDC
9760 SMD interface. The disk controller has one "A" cable
and four "B" cables on the back panel of the IDM allowing
four disk drives to be directly connected to the disk con­
troller. The IDM allows up to four disk controllers per
system providing a maximum of 16 disks. The total capacity
of all disk drives cannot exceed 32 gigabyte (235 bytes). Cer­
tain disk drives which claim to be SMD compatible are in
fact, not strictly compatible. Britton-Lee will provide a list
of compatible drives. A drive can be connected to a disk
controller without any changes to the controller board. All
parameters about the disk, such as number of bytes per
track, number of heads, number of cylinders , are supplied
through software and once given, are kept on the actual
disk. The disk may be cabled to any connector of any disk
controller. The IDM reads each disk to determine its actual
logical device name and does not depend on any specific
cabling.

Database Accelerator

The IDM will run with or without the Database Ac­
celerator. When the IDM is powered up, it determines
whether the Database Accelerator is present. If not, it
automatically emulates the accelerator.

7. PRODUCT SUPPORT

Installation The IDM 500 is a self contained hardware
device that can be installed by the OEM user. It is
preferable, however, to allow Britton-Lee, Inc. to install the
first system with the OEM disk drive being used. The disk
drive can be drop shipped to Britton-Lee, Inc., or the Ser­
vice Department will arrange installation on site. The 1/0
connection to the host processor can be accomplished by
simply plugging into the back panel serial or parallel port.
Field service fees are included in the IDM price schedule.

Training Four day training courses will be offered at the
factory to cover IDM software integration and use. A con­
tiguous course of one day will cover maintenance and in­
stallation of the IDM. Upon the signing of the OEM agree-

20

ment the buyer has the right to send two people to these
courses free of charge. Accommodations are the respon­
sibility of the OEM. Fees for these courses are included in
the IDM price schedule.

Application Notes A Britton-Lee application note publica­
tion is available on a subscription basis to all users of the
IDM. This application note will profile typical applications
of users, and document future products and improvements
to the IDM 500. Contact the Marketing Department for
subscription information.

Depot Maintenance Depot maintenance at the PCB level
will be handled at the California factory. Maintenance will
be handled on a spares replacement basis. The OEM
customer will purchase a complement of spares to serve
his user needs. When the OEM has replaced his part with a
spare, the problem part should be sent to the Service
Department with the service authorization number and a
description of the fault. The Service Department will repair
or replace that part within one week of receipt and return
the part to the OEM. Depot maintenance fees are included
in the OEM schedule.

Board Exchange Policy

The OEM, upon agreement may enter into a PCB ex­
change policy whereby the OEM may return a faulty PCB
and receive a one day turnaround at the factory. This pro­
cess will be billed on a flat per board fee basis. See the
IDM price schedule. Contact Field Service for further infor­
mation on the Board Exchange Policy.

Ordering Procedure

General. A purchase order may be used to order small
quantities of the IDM. After credit verification has been ac­
complished an acknowledgement of the order will be sent
confirming price, delivery, terms and conditions. Orders
may be placed by following the configuration guide and
the IDM price list.

Example

Product Number

IDM 500

Description

IDM 500 System
Includes:
power supply,
bottom plane,
1-256K memory,
1-database processor,
1-serial 1/0 processor,
1-control ler
chassis with 12 spare slots.

Warranty A limited warranty of 90 days is provided with
the purchase of each IDM. The warranty is restricted to
repair and/or replacement of any IDM part at the Britton­
Lee, Inc., factory in California.

B CABLE 32

B CABLE 30

J)

B CABLE 22

B CABLE 20

8 CABLE 12

8 CABLE

.oj)

~

• ~

10

·~
I)

A CABLE 3

·~ \Si

·~ ~

A CABLE 2

~ ~·
Ii$; ~

A CABLE 1

·~·
~1

'ii

A CABLE l!l

B CABLE 33 ii $

~ SERIAL 7

B CABLE 3 1 ~ il
(ii SERIAL 6

.f) ®
Iii SERIAL 5

B CABLE 23 Ji) ®
ilil SERIAL 4

B CABLE 21
~ ii

SERIAL 3

~ (ii

·~
SERIAL 2

8 CABLE 13
<ii

i) SERIAL 1

8 CABLE 11

~

N;
8 CABLE 03

8 CABLE 01
§\ti

tiJ

V3 • V4
jADJ ADJ I

™Intelligent Database Machine, IDM, Intelligent Database Language and IDL are (applied for) trademarks of Britton-Lee, Inc.

Specifications subject to change. Litho in U.S.A.

~ I POWER I

I
, 10 v
10 AMP

1111111111111111~11 Britton
WLee,lnc.
ALBRIGHT WAY
LOS GATOS, CALIFORNIA 95030
(408) 378-7000

' ;

	broch0007_a
	broch0008_a
	broch0008_b
	broch0009_a
	broch0009_b
	broch0010_a
	broch0010_b
	broch0011_a
	broch0011_b
	broch0012_a
	broch0012_b
	broch0013_a
	broch0013_b
	broch0014_a
	broch0014_b
	broch0015_a
	broch0015_b
	broch0016_a
	broch0016_b
	broch0017_a
	broch0017_b
	broch0018_a
	broch0018_b

