- BROOKHAVEN NATIONAL LABORATORY

APPLIED MATHEMATICS DIVISION

Internal Report

PROGRAMMING SYSTEM FOR MERLIN
by

. Betty 0. Weneser

September, 1959.

* Work performed under the Auspices of the U.S.Atomic Energy Commission

ii

This report contains a description of the Programming System
pfesently available for use with the Merlin Com’putér at Brookhaven
National Laboratory.

The Programming System was designed by Mary T. Kresge and Betty
O. Weneser, with the direction and encouragement of Milton E. Rose.

It is being developed and prepared for use by Mary Anne Kelley,
D, Alan Ravenhall and Betty O, Weneser, with auxiliary programs done
by Mary Louise Buchanan, Francis Ding Lee and Peter Mumford.

Suggestions for future additions to the system will be welcamed.

Section A,

Section B,

Section C.

iii

TABLE OF CONTENTS

Introduction
l, General. . + « « + ¢ 4 4 e e e e e
2. Structure of System.‘ e ¢ e & « o+ a4 e .
Symbolic Language
1, Description
a. General. « < . . .
b. Structure of Symbolic Computer Instructions.
c. Definitions of Symbols.+ . .
2. List of Symbolic Instructions

a. Instructions to the Computer. . Index . .
List « .

b, Instructions to the Utility System, . . .
(1) Psevdo Operations to the Assembler .,
(2) Macro Operations to the Assembler. ., .
(3) Instructions to the Corrector
(4) Instructions to the System's Control. .
Utility System
1, Symbolic Language Translators
a, Paper Tape Assembler+ + .« .
b, Corrector« « « + « ¢ o o .
c. Reassembler+ .« . .
2. Subroutine Library . « . +« « + « ¢ «
3. Auxiliary Routines Library

4, System's Contro}l Program« . . .

10

14
16

63
63

89
93

98
101
103
104
104

105

Section D.

iv

Subroutine Library
l. Structure of the Library.

2. Reguirements.

Section A, Introduction

1. General
Merlin can understand only a unique binary language and can inter-
pret and execute only a specific set of instructions written in this
language.
In order to prepare a problem for solution on this or any other

computer, one might take the following steps:

1. Analyze‘the physical, mathematical, or logical problem
and reduce its solution to a numerical or logical procedure.

2. Reduce this "procedure" to a sequence of instructions
("program"), or to a flow-diagram, which is written with
knowledge of the computer and the operations it can perform,
and yet is meaningful to the writer,

3. Translate this "program" into the coded language of the

machine,

In order to simplify the coding process, however, it is possible
to use the computer itself to help perform step (3) and part of step (2),
outlined above, To accomplish this, a prograrming system for Merlin has
been developed which will allow the user to communicate with the machine
in a symbolic language which is meaningful to him and yet is translatable
into machine language, This system, (called the Utility System) permits
the user not only to write his program in the "middle }anguage" of step
(2) above, but also to debug and correct it and obtain results in the
same symbolic language, and to have easy access to previously "debugged"

programs.

Descriptions of the symbolic language and the entire system of
utility programs which converts and produces fram this language a machine

code, ready to be executed, form the remaining sections of this report,

-3~

2. Structure of the Utility System

The utility system is a group of programs written in machine
language and capable of understanding the symbolic language which is
described in the following section. It is the function of these pro-
grams to interpret certain of the symbolic instructions and perform the
task specified, and to translate other symbolic instructions into machine
language; thus, the utility system has both interpreting and translating
facilities.,

The system consists of: 1) an overall interpreting routine
called "System's Control Program"; 2) symbolic language translators
called "Paper Tape Assembly Program", "Correction Program" and "Reassembly
Program"; 3) a library of subroutines; and 4) auxilliary programs such
as the "Symbolic Language Memory Dump Program", "Magnetic Tape Print
Program", etc, Each of these parts will be described in Section C.
In order to explain the system more easily, however, the section describing

the symbolic language follows directly (Section B.)

Section B. Symbolic Language

1. Description
a. General
As explained in Section A, communication with Merlin can be
done through the system of utility programs which understands the symbolic
language and can translate it into machine language.

The symbolic language is made up of mnemonic representations
(composed of alphabetic, numeric, and mathematical symbols and punctuation
marks) for:

All the basic instructions to the computer

These instructions are translated or converted

by the Utility System directly into machine code.

They are described in Section B.2a.
An extension of tne vocabulary of the computer in the form of
instructions to the Utility System itself

These instructions are understood and interpreted

by the Utility System. They are described in Section B.Z2b.

1b. Structure of Symbolic Computer Instructions
(1) Format
The symbolic language for the computer instructions is designed
to resemble the coding notes a programmer might use if he were writing in
machine code, Each of these symbolic instructions represents one machine
(binary) instruction word.
The symbolic program is written on prepared coding sheets of the

following form:

Symbolic Location Field Symbolic Instruction Field Breakpoint Field

From this written form, a paper tape is punched, one line across
at a time, the fields separated by TAB punches, and the lines themselves

separated by CARRIAGE RETURN punches.

(2) The Instruction Field is of variable length and contains

all the information about the operation, operands, and receiver.

Development:

Rules for writing these instructions are kept simple and yet con-
sistent with all the characteristics of the computer. For example, in the
four basic arithmetic operations, one operand is always in the U register;
after the operation the result always appears in U and in the specified
receiver if other than U, The fundamental form for writing all the basic

arithmetic instructions symbolically becomes:

+
U U
U N Ti 3 Ti
(m; b) (m, b)
/
first operation second receiver
operand operand

where the programmer selects the particular registers and operation
he wants. (see list of definitions of symbols, Section B,lc)

In general, any additional information follows the main part of
the instruction, separated from it by a comma. For example:

U operation second 3 receiver, ¥ for fixed point operation
operand

continued on next page

In multiplication, the form can include

second
U operation operand 3 receiver,N for normalized result
or

second N receiver,R for rounded result

U operation operand

or

second 3 receiver N,R for normalized and
U operation operand rounded result

Addressing within the Instruction Field:

Memory addresses may be either absolute decimal or symbolic. In
either case, an address used within the instruction field must always
be enclosed within parentheses.

In order to modify an address by the contents of a B- box register,
the number of the B- box must follow the address, separated from it by
a comma,., Both the‘address and the B- box number then appear within the
parentheses.

In the notation used in the List of Instructions (Section B.2a),
addresses in the instruction field therefore appear as: (m, b). (See

Definitions of Symbols, Section B,lc)

Symbolic addresses, composed by the programmer, are cambinations
of one to five "printer" characters, at least one of which must be non-
numeric, andnone of which can be any of the following seven characters:

+ -~ * / .) space character

Addresses may be modified by following them with +n or -n
or ¥n or /n, where n is a decimal integer. More than one modifier
may be used with an address; the interpretation of the modifiers will
be made , in order, from left to right., If this modification is used,

it must be specified before any B- box modification. e.g., (ALPHA +2, 3)

(3) The Breakpoint Field, when it is present, contains n, a

decimal integer whose range is O thru 99. The usual way to indicate a
Breakpoint in an instruction is to enter a O in its Breakpoint Field.
If this field is present, the Breakpoint bit will be inserted in the
binary instruction word. The Breakpoint is considered to be "numbered"
if n >0; when it is »0, n will be inserted in the third dioctad of the
binary instruction unless the instruction field has already filled the
third dioctad.

If the Breakpoint Field is not present, thc Instruction Field

is followed directly by a CARRIAGE RETURN,

(4) The Location Field of an instruction line, unlike the other

two fields, contributes nothing to the machine word., It contains the
symbolic address, assigned by the programmer, of the location in which
the word will be stored in memory.

Only those instructions which are referred to in another part of
the program need be given a symbolic location, In all other instruction
lines the Location Field may be left empty. If left empty, a TAB must
nevertheless be punched on the paper tape before the Instruction Field

is begun,

~10-

lc. Definitions of Symbols

In the development of the symbolic language given abowe, certain
rules of notation, either expressly stated or implied, were used.
The following list contains the explanations of these and other

symbols used in the Symboliec.Language. (See Section B.2a)

Symbol Meaning
U Universal register
R Remainder register
A Tag transfer Address Register
PF PathFinder register
S Storage register
SN SeNse register
Ti Ti or Tj register (1< i, j ¢ 4)
T3] (In the list of instructions, Ti is used to designate

r

a T register when it is an operand; Tj when it is a
receiver. However Ti can equal Tj or not in all
instructions using both)

Bi B-box i register (1 ¢ i ¢ 6)
(Used to designate a B-box when it is an operand

or a receiver)

o o
N

B-box b or b' register (1 g b, b! ¢ 6)

(used to designate a B-box when it modifies an address)

=]

a symbolic or absolute decimal memory address

~11-

Meaning

a symbolic or absolute memory address, m or m',

modified by the contents of b or b', and used in

the instruction field,

a decimal integer

each k is a decimal integer (1< k < 16), and

represents one of the 16 bits of the Sense Register.

the second dioctad of U

1t 1] (m’ b)

the third dioctad of U

n " " 1" (m, b)

Fixed point arithmetic
Normalized result
Rounded result

Logical operation

the usual arithmetic symbols

multiplied by
absolute value

replaces the contents of

-12-

Notes on the use of ths above symbols:
1. Throughout the List of Symbolic Computer Instructions lower
case alphabetic characters are to be replaced by the programmer with the specific
numbers or characters he is using. These are the only variable characters
in the instructions. They are:

n, n', my m', b, b', i, j, k; k!

2. Where a lower case alphabetic character represents a decimal
integer (ggg an address), it can be represented symbolically in the
form: Ni, See the Pseudo Operation ®QUals in (B.2 b(1))

3. Where a lower case alphabetic character represents a variable
to be computed and stored by the program a single O should be written in
its place. No other character may be thus "omitted".

L, Spaces, in most places, will be ignored by the Utility System
and can therefore be used by the programmer to aid legibility. The
exception where spaces will not be ignored, and therefore may not be
inserted, is within the name of a pseudo or macro instruction or immed-
iately preceding it. This is so because the pseudo or macro instruction

is defined by the first three characters in the Instruction Field

immediately following the TAB,

13-

Throughout the list of instructions (See Section B.2a) the following

abbreviations are used in the Description column:

Symbol
tag

es

mo

The following list

Meaning
tag 2 is tested

exponent spill is possible

magnitude overflow is possible

contains the explanations of notations used in the

Machine Language column (Section B.2a):

Symbol
p

fff

Meaning

a 16-bit representation of a specified

sense light pattern, each bit (from right to
left) representing one sense light (from 1

to 16). These sense lights so specified
correspond to those designated by k, k', k",..,
in the symbolic language.

a dioctad composed of all 16 bits
equal to M"1¢

denotes a part of an instruction word which
is not examined by the computer. FEach bit of
such a part will be zero in the binary word,
(See the pseudo operation:

¢ n¢ n'or(m) < n*or(m)

in Section B,2b(1l) for an exception)

a binary memory address

the same as described in the
symbolic language list

(1)

(2)

- -

2 a Index
to

Instructions to the Computer

Arithmetic Instructions
Addition and Subtraction, Fixed point ., . . .
Addition and Subtraction, Floating point. . .
Multiplication. « o« « « « & R R
" > Normalized, . + « . + . .+ . .
" , Bounded « & ¢« & & ¢« & & + . .
" , Normalized and Rounded. . . .
Cummulative Multiplication. « o« o« « ¢ o o o &
Division, Fixed point . o & ¢ &4 ¢ « « &« & « &
n » Floating point. . « « « . . + .+ . .
Square Root « ¢ 4 o ¢« o ¢ o o o ¢ o o ¢« o o
Normalize & . ¢ ¢ 6 ¢ 4 ¢ o v ¢ o o o o o
Round « o v v v 4 s v 4 4 6 v 0 ¢ 4 v e 0 s
Normalize and Round « & « ¢« v o « & « ¢ ¢ « &
Absolute Value .+ . v o v v 4 o ¢ o o o o o
Negative Value . 4 v 4 v ¢ ¢ ¢ o o o o o « @
Negative Absolute Value o v « v ¢ ¢ ¢« « o « &
Load and Store Instructions
Load into U and/or T . . v v v 4 o s o o » &
Store into Memory . « o v ¢ 4 v ¢ 4 4 4 o o .
Store 16 bits into MEmOry « « v o o o o o o o
Toad B 4 4 4 o 6 ¢ o o s o o o o o o o o o s

Load A * & e & ® ® 8 o & 5 ¢ 8 & ¢ o s o

16
18

20

-17

- 19

20A

21
22

23

25
26
27
28
29
30
31
32

33
34
35
37
38

- 36

(3) B- Box Instructions

(4)

(5)

(6)

(7
(8)
(9)
(10)

Load into B . . .
Alter B,
Store B
Alter B and Test

Test B

Logical Instructions

Load U L 2 L] L] . L]
Complement . . .
Logical "And" . .

Logical "Or" . .

Symmetric Difference

Extract . « . , .

Shift Instructions

Magnitude - short shifts
" - long shifts

" - shift and count

Logical shifts

.

-15-

Transfer of Control Instructions

Unconditional Transfer

Conditional Transfers

Unconditional Skip Instruction

Repeat Instruction
Stop Instruction
Sense Instructions
Alter Sense . .
Test Sense . .

Save Sense .«

* s & e o

39
40
L0
L1
41

L2
L2
L3
L3

LA

L,

L5
L6
47
48

L9
50

52
53
54

55
56
56

- 51

(11)

(12)

~15a~

Tag Instructions
Alt er Ta‘gs . L] . L] . L d . . . L] . . L] L . . . L] . . e . . L . » L] 57

Test TagS . e« s a s & o 2 & e @ . e o e o e« ® o e * s «a s o o 58

Input-Output Instructions

Paper TAPE « & « o o o s o o o s o o o o« o s o s s o o« o o « o+ 59
FleXOWPiter o ¢ v ¢ o o o o o« o o o s o s o s o o o o« « o+ « o 60
Fast Printer + ¢ ¢ o o ¢ o « o o 2 o o o o o ¢« o o s o o« s s 2 b1

Magnetic Tape ® & & &8 @ e & e 2 T e o & e o . ® & ° o o LI) . 62

2a,

~16-

Instructions to the Computer

(1) Arithmetic Instructions

Addition - Fixed Point

Machine Langua, Symbolic Language Description

a0-0 0 U+U -» U,FX U+ L=Uand L!

a0-~-0 i U+Ti » U,FX fixed point arithmetic

al0-3 Y U+U » Tj,FX

al0-3 i U+Ti -» Tj,FX mo

ahbdbo m U+(m,b) - U,FX U+X>Uand N

akhbdbj m U+(m,b) -» Tj,FX I fixed point .arithmetic

albs m U+(m,b) - (m,b),FX mo, tag

Subtraction ~ Fixed Point

Machine Langu2 Smbolic Language Description

a2-0 0 U-U - U,FX “ U-L-U and L }l
“a 2-0 i U-Ti » U,FX fixed point arithmetic

a2-] 0] U-U - Tj,FX

az2-~j3 i U-Ti » Tj,FX H mo

abb0 |m U-(m,b) - U,FX U-Xs3Uand¥N

abb j m U-(m,b) -» Tj,FX fixed point arithmetic J
ha 6b5 |m U-(m,b) » (m,b),FX mo, tag r

Explanation on next page.

-17-

Explanation

This is an addition or subtraction of two signed numbers, U and the specified
operand., The result appears in bits O to 40 of U, and the specified receiver
if other than U, and in S. The sign is in bit O. The exponent bits and both tag
bits of the original U are carried into the result in U and the specified receiver
if other than U, S, and R, The sign of the result (bit 0) is also the sign of
R. The rest of R is cleared. The specified operand, unless it is also the receiver,
is unchanged., |
Note:

The magnitude overflow condition will be set if the addition or subtraction
of the two operands results in a magnitude which is 1 or greater (the binary

point considered to be between bits O and 1). The result then will be incorrect.,

-18~

Addition - Floating Point

Machine Language Symbolic Language Description
al-o0 0 - U+U - U U+ LU and L!
al-o i - U+Ti » U floating point arithmetic
al-j j0 |- U+U -~ Tj |
al-] i - U+Ti » Tj es
as5bo0 m - U+(m,b) » U U+X>Uand N it
as5bj m - U+(m,b) - Tj floating point arithmetic
ab5bsb m - U+(m,b) - (m,b) es, tag

Subtraction - Floating Point
Machine Langugge Symbolic Language Description
a3-0 0 - U-U - U U-~L-3Uand L'
a3-~-0 i - U-Ti - U floating point arithmetic “
a3-3 0 - U-U -» Tj
a3~ i - U-Ti » Tj es
a7bo m - U-(m,b) » U U=-X=2Uand N
a7byj m - U-(m,b) - Tj floating point arithmetic
a7bs m - U-(m,b) -» (m,b) es, tag

Explanation on next page

-19-

Explanation

On floating point additions and subtractions the signed exponents of
the operands are compared and the exponent which is algebraically larger be-
comes the exponent of the result. After the comparison of the exponents the
fractional part of the number with the smaller exponent (bits 1 to 40) is
shifted right by shifts of 8 until the difference between the two exponents
is satisfied. The shifted bits appear in R bits 1 to 40. If the exponents
were equal no shifting takes place and R, bits 1 to 40, are cleared., After
shifting, the fractional parts of the operands are algebraically combined.
If there is an overflow on the fractional add, the exponent and fraction
are adjusted; the magnitude overflow indicator is not set. However, exponent
spill cen occur. The result of this operation, magnitude and exponent, appears
in U, and the specified receiver if other than U, and in S. The R register
contains the same sign as the result, and bits 1 to 40 of R contain the low
order bits of the result. The exponent of R is the exponent of the result.
The tag bits as they appeared in U before the operation are carried into the
result in all registers. The specified operand, unless it is also the receiver,

is unchanged.

Note: The positive exponent spill condition will occur if the magnitude of

the exponent equals or exceeds 2LL and the sign of the exponent is positive.

~20-

Multiplication - (Unnormalized)

Machine Language Symbolic Language Description
a8~-0 0 - U*xU - U UsL - UR and L'(high order)
a8-0 i - UTi - U unnormalized product
a8-3j 0 - Uy -» T3
a8~ i - U*Ti - Tj es
acboO m - U*(m,b) » U U+X - UR and N(high order)
acbj m - U*(m,b) = Tj unnormalized product
achb5 m - U*(m,b) » (m,b) es, tag

Explanation

sum

The exponents of the operands are algebraically added and thigﬂbecames the
exponent of the result., The magnitudes of the operands are multiplied and a
signed 80 bit product is obtained. This appears in bits O to 40 of U and is ex~
tended to bits 1 to 4O of R, The sign bit and the exponent of R are the same
as those of the resulting U. The high order bits of this product and the exponent
(the new contents of U) also go to the receiver if it is other than U, and to S,
The tag bits which were in the original U are the tag bits of the result and will
appear in all of the result registers, The specified operand, if other than

U, is unchanged after the operation.

Note: This is the multiplication operation which is used for fixed point arith-

metic. (see note on exponent spill)

~20A~

Multiplication - Normalized

fzchine Language Symbolic Language Description
29-0 0 - U%U » U,N UsL - UR and L' (high order)
a9-0 i - U*Ti » U,N product is normalized
a9-3 |0 |- U%xU - Tj,N
a9 - j i - OxTi = T3, N es
adbo m - U*(m,b) - U,N U:X 2 UR and N (high order)
adb j m - U*(m,b) -» Tj,N product is normalized
adbs5 | m | - Ut(m,b) - (m,b),N es, tag

Explanation

This operation is the same as the multiplication operation except that
there is a normalization step added. After the multiplication operation the
fractional or magnitude part of the result, in U and R, is shifted left, in
cshifts of 8, until the first 8 bits of the fraction (U 1-8) are not zero. This
is done for a maximum of 5 such shifts., The exponent of the result is adjusted
downward by "1" for each shift of 8 needed to meet the above condition., Bits
shifted out of bit 1 of R are shifted into bit 40 of U. Zeros are shifted into
the R register from the right to replace shifted bits., The normalized result
appears in U with the low order bits in R. The exponent of R and the sign of R
is the same as the exponent and sign of the result. The high order part of the
normalized result also goes to the specified receiver if it is other than U, and
to S, The tag bits of the result are set equal to the tag bits of the original U,
The specified operand, unless it is also a receiver, remains unchanged.

(see note on exponent spill)

2]

Multiplication -~ Rounded (Unnormaligzed)

Machine Langu%ge Symbolic Language Description
aa-0 0 - U*U > U,R “ UsL = UR and L'(high order)
aa-0 i - U*Ti » U,R product is rounded (Un-
normalized)
aa-j 0 - U*U - Tj,R “
aa-=j i - UxTi -» Tj,R I es
aebo m - U*(m,b) - U,R U+X - UR and N(high order)
aebj |m| - U*(m,b) - Tj,R product is rounded (un-
normalized)
aebs5 m - U%(m,b) - (m,b),R es, tag
Explanation

This operation is the same as multiplication except that a rounding step

is added. After the multiplication operation has been completed, bit 1 of R

is tested and if it is '1l', a '1' is added to the high order part of the result

in U in position 40. If bit one of R is '0' there is no change in the high order

part. The rounded result then appears in U, and the specified receiver if other

than U, and S. R is unaffected by the rounding.

The specified operand if it is

not a receiver is unchanged. (see note on exponent spill)

22—

Multiplication - Normalized and Rounded

Machine Language Symbolic Language Description
ab-20 0 - U%xy - U,N,R UeL - UR and LT (high order)
ab-0 i - UXTi 7 product is normalized
- U,N,R then rounded
ab-3 10 }- U*y -» Tj,N,R
ab-j i = ETi - T3 N 3 es, mo
afbo m . - Ut(m.b) - U.N.I U.X 5 UR and N (high order)
(m,b) L product is normalized then
afbj m - U*(m,b) - Tj,N,R rounded
afb5 fm |- U*(m,b) - (m,b),N,R es, mo

Explanation

After multiplication of the 2 operands, normalization takes place and then
rounding, each in the manner explained in the three preceding multiplication
instructions. The result is in U, and the specified receiver if other than U,
and S. The R register contains the low order part of the product after normal-
ization, and the same sign and exponent as U, Again the tag bits of the original
U are the tag bits of the result., The magnitude overflow condition will be set

if overflow occurs on rounding. (see note on exponent spill)

Cumulative Multiplication

Machine Language Symbolic Language Description

edbbd m | m (m,b)*(m' ,b')+T4 > T4 X-X'+T4 - U and T4

~ product is normalized;
addition is floating
point

es, tag

Explanation

The multiplication with normalization operation is performed on the two
specified operands, After this the product which is in U and extended to R
(bits 1 to 40) is added to the content of T4 by a floating point addition operation.
The result of the cumulative multiplication appears in U, S, and T4 after the
operation. The R register contains any shifted bits fram the exponent adjustment
on the floating addition. The sign and exponent of R are the same as the sign and
exponent of the result., The tag bits of the first operand are the tag bits of the
result. (see note on exponent spill) |
Note: The tag 2 bit is tested on both memory operands and the tag 'on' condition

will be met if either or both operands are tagged.

-2~

Division - Fixed Point

Machine Language Symbolic Language Description
dOo -~ - i - u/Ti » U,FX “ UR =T = U (rounded
quotient)

fixed point arithmetic
remainder = R
unrounded guotient = S

mo

d4b- |m |- U/(m,b) » U,FX UR %+ X - U (rounded
guotient) :
fixed point arithmetic
remainder = R
unrounded quotient = S

mo, tag

Explanation

The signed magnitude of U (bits O — 40) and its extension into R (bits 1 to 40)
is divided by the signed magnitude of the specified operand. The result of this
operation appears in the sign and magnitude of S (bits 0-40). This quotient is
then rounded and the rounded quotient appears in U (bits 0-40) with the remainder in
R (bits 1 to 40)., The exponent and tag bits of U remain as before the operation.
The exponent, tag bits, and magnitude sign of R remain as before the operation. The
sign of the R register is therefore not the sign of the quotient. The exponent and
tag bits of S are the same as those of U, The specified operand remains unchanged
after the operation., For a fixed point divide the magnitude in U (the dividend)
must be smaller than the magnitude of the other operand, If this is not so, magni-

tude overflow condition will be set and the answer will be incorrect.

25—

Division - Floating Point

Machine Language Symbolic¢ Language Description
dl- -~ i - U/Ti - U UR = T -U (rounded
quotient)

floating point arithmetic
remainder R
unrounded quotient - S

es, mo

d5b - m - U/(m,b) » U UR =X -?U (rounded
quotient)

floating point arithmetic

remainder - R

unrounded quotient = S

es, mo, tag

Explanation

The exponent of the specified divisor is subtracted from the exponent of

U. Then the magnitude of U (bits 1 to 40) is adjusted by shifts of 8 until it is
smaller than the magnitude of the divisor.* The exponent is adjusted accordingly.
After the adjustment, the magnitude of U is divided by the magnitude of the other
opezfand and this quotient (magnitude&exponent) appears in S. The quotient is then
rounded and the rounded quotient appears in U with the remainder in R (bits 1 to 40),
The exponent of R, the sign of R, and the tag bits of R remain as they were before
the operation. The tag bits of U also remain as before the operation and appear in
S. The specified operand is unchanged after the operation, Magnitude overflow can

occur on rounding,

If this adjustment cannot be made in at most A shifts of 8, then the insignifi-
cant divide condition is set. If the adjustment cannot be made in at most 5 shifts
of 8, then the magnitude overflow indicator is set and no magnitude division takes

place.,

~2h-

Square Root

Yachine Language Symbolic Language Description
¢ 0 - - . - SQ AV‘Ui "’U
' result is rounded

Explanation

After this operation, U contains the rounded square root of the absolute
value of the original U, S is cleared after the operation. The tag bits of the
result are the same as the tag bits of the original U.

The square root operation may be used as both floating and fixed point operation
since the operation takes the square roct of the magnitude of U and divides the
exponent by two. If the exponent is not a multiple of two an adjustment is made
by a magnitude right shift of 4, where bits shifted ocut of position 40 of U are

shifted into bit 1 of R, The rounding takes place after this adjustment.

-2

Normalize
Machine Language Symbolic Language Description
cl- - - - N normalize UR + UR
es
Explanation

The number in U and extended to R (bits 1 to 40) is normalized by left
shifts of 8 until the most significant 8 bits of the magnitude are not O, This
is done for at most 5 shifts. The exponent is adjusted downward by 1 for each
shift of & bits . S is cleared after the operation. The normalized result
appears in U and is extended to R, bits 1 to 40. The rest of R remains the
same as before the operation. The tag bits of U are unchanged by the operation.

(see note on exponent spill)

28

Round
Machine Language Symbolic Language Description
c2- - - - R round UR = U
mo
Explanation

The number in U and extended to R (in bit 1) is rounded and the result
appears in U, If bit 1 of R is equal to '1!, a '1' is added in bit 40 of U,
If bit 1 of R is equal to '0' no change occurs. R is unchanged by the operation;

S is cleared. Magnitude overflow may occur in this operation.

~29—

Normalize and Round

Machine Language Symbolic Language " Description
c3-- - - N.R normalize UR;
! then round UR - U
es, mo

Explanation

The number in U and extended to R is normalized as in the normalize operation.
Then the normalized number is rounded as in the round operation. The normalized
rounded result appears in U. The R register, in bits 1 to 40, contains the
extension of U as formed by the normalizing operation. The rest of R is unchanged.
S is cleared. The tag bits of the original contents of U are the tag bits of the

result,

~30-

Absolute Value

Machine Language Symbolic Language Description
el-0 0 lul - U Il = U and L!
el-0 i 'Til - U (set sign plus)
el-j 0 jul » 13

el-3 |3 |Ti] » Tj

e5b0 | m |(m,0)| » U |X} 3 U and N
e5b3 | m | (m,b)| » T3 (set sign plus)
e5b5 | m |(m,0)| = (m,b) tag

Explanation

The contents of the specified operand (U, a T register, or a memory location),

with the sign of the magnitude set positive, is loaded into the U register and the

specified receiver if other than U, and in S.

receiver, is unchanged by the operation.

The operand, unless it is also a

-31-

Negative Value

Machine Language Symbolic Language Description
e2-0 0 - -U~-U -L U and 1!
e é-— 0 i - -Ti » U (change sign)
e2-3 | 0| - -U - Tj

e2-3 | 1| - ~Ti - Tj

eb6b0 | m| - -(m,b) - U -X 53U and N
ebbj m | - -(m,b) -~ Tj (change sign)
ebbs5 | m | - | -(m,b) » (m,b) tag

Explanation

The contents of the operand (U, a T register, or a memory location), with
the sign of the magnitude changed, is loaded into U and the specified receiver
if other than U, and in S. The operand, unless it is also a receiver, is unchanged

by the operation.

-32-

Negative Absolute Value

Machine Language Symbolic Language Description
e3-0 10 |- -lu} » U -[L{-> U and L'
e3~-0 i - ‘—‘Ti[- U (set sign minus)
e3-3 |0 |- -jul - 13
e3-43 11 |- -1l - T
e7b0 |m |- ‘ -l (m,b)| » U -1X}5 U and N
e7bj |m |- -|tm,b)| » Tj (set sign minus)
e7b5 m - - -] (m,b)| - (m,Db) tag

Explanation

The contents of the operand (U, a2 T register, or memory location), with the
sign of the magnitude set minus, is loaded into the U register and the specified
receiver if other than U, and into S. The operand, unless it is also a receiver,

is unchanged by the operation.

(2) Load and Store Instructions

Load into U and/or T

Machine Language Symbolic Language Description
e0-0 i ~ Ti - U L U and L!
e0 -3 0 - U->Tj

e0-3 i - Ti » Tj

ehDdO m = (m,b) » U X->Uand N
elbji m |~ (m,b) » TJ tag

Explanation

The contents of the operand (U, a T register, or memory location) is loaded
into the U register and the specified receiver if other than U, and into S. The

operand is unchanged by this operation.

Machine Language Symbolic Language Description
a3-01{ - |- R->U R =L
d3-3 1 - |- R~ 15

ad2-0 - - S=-U S =L

d2-3 | - |- S -+ TJ

Explanation
The contents of the specified operand (S or R) is loaded into the U register

and the specified receiver if other than U, and into S. The operand is unchanged

by the operation,

3k

Store into Memory

Machine Language Symbolic Language Description
beb- m - U - (m,Db) U->X
ecbb i m m! (m,b) » (m',b') I-=-x

tag
d?7b - m - R - (m,b) R-oX
Hdéb- m | - S - (m,b) S 5 X

Explanation

The contents of the operand (U, R, S or memory location) is loaded into the

specified memory location, and into S.

The operand is unchanged by this operation.

Machine Language . Symbolic Language Description
nb 7b0 m | - “ CLEAR(n,b) set to 0 all bits of X
Explanation

All bits of the specified memory location, and of S, are set to zero.

-35~

Store 16 bits into Memory

From U
Machine Language Symbolic Language Description
ddb - m - U2 - (m,b)2 U2 = X2 (X1 and X3
are unaltered)
deb- {m |- U3 - (m,b)3 U3 - X3 (X1 and X2
are unaltered)

Explanation

The contents of the second or third dioctad of U is deposited into the
second or third dioctad of X. The rest of X is unchanged by either operation.
Thus when X2 is the receiver X1 and X3 are unaffected and when X3 is the receiver
S has the same

X1 and X2 are unaffected. U is unchanged by these operations.

contents as X after operation.

~36-

From Pathfinder

Machine Language Symbolic Lenguage Desecription
{dcb-‘m - PF -+ (m,b) PF - X2
i
Explanation

The contents of the pathfinder is loaded into the second dioctad of X,
The first and third dioctads of X, and the pathfinder, are unchanged by the

operation, S has the same contents as X after the operation,

From Tag Transfer Address (A)

Machine Language Symbolic Language Description
bfb- m - & - (m,b) A 3X2
(X1 and X3 are cleared)

Explanation

The contents of the Tag Traensfer Address register is deposited into the
second dioctad of X. The rest of X is cleared. A is unchanged by the operation.

S has the same contents as X after the operation,

-37-

Load R

Machine Language Symbolic Language Description
e8 -~ |1 |- Ti » R
d fb-~ m — (m,b) - R X—)R

Explanation

The content of the specified operand (U, a T register, or memory locetion)

is loaded into R,

is affected.

The operand is unchanged by this operation. No other register

-38-

Load Tag Transfer Address (A)

Machine Language Symbolic Language Description

bdb ~ m X2 <A

T ener]

Explanation

The contents of the second dioctad of a memory location is loaded into the
Tag Transfer Address register (A). X is unchanged by the operation. No other

register is affected.

-39~

(3) B-Box Instructions

Load B

m Machine Language Symbolic Language .Description
b0-~1 n - n - Bi n =B
b3-i - - U - Bi U2 —»B
bhbi |m |- (m,b) - Bi X2 =B

Explanation

The second dioctad of the operand (either the instruction itself, U, or a
memory location) is loaded into the specified B box. After the operation, the
second dioctad of S has the same contents as the specified B box and the rest of
S is cleared, The operands are unchanged.

Note: If the B box specified is O no B box is affected; however the second

dioctad of S contains the same number as the second dioctad of the operand,

~40-

Alter B
Machine Language Symbolie Language - Description
bl-1i {n |~ Bi+n - Bi B+n>B
b5bi |m |- Bi+(m,b) - Bi B+X2-B
Explanation

The contents of the specified B box is added to the second dioctad of the
operand (either the instruction itself or a memory location) and stored into
the B box specified. After the operation, the second dioctad of S has the same
contents as the B box; the rest of S is cleared, The operand is unchanged.

(see note about B = 0 following the previous instruction)

Store B
Machine Language Symbolic Langueage Description
b7bi |{m |~ Bi - (m,b) B 5 X2 (X1 and X3 are
cleared)
Explanation

The contents of the B box specified is loaded into the second dioctad of
X and the rest of X is cleared. After the operation, S has the same contents as X.
The B box is unchanged. If B is specified as O, X is cleared and S again has the

same contents as X after the operation.

41—~

Alter B and Test

Machine Language Symbolic Language Description

b2~13 n n' SKIF n'<Bi+n B+ n =B, then skip the
next instruction if n'< B.

bébi m - SKIF (m,b)3<Bi+(m,b)2 B + X2 =+ B, then skip the
next instruction if X3 ¢ B

Explanation

The contents of the second dioctad of the operand (either the instruction
itself or a memory location) is added to the contents of the specified B box., The
new contents of the B box is then campared to the contents of the third dioctad of
the operand. If the contents of the third dioctad is less than or equal to the
contents of the B box, the next instruction is skipped. If this condition is not
met, control proceeds in sequence. The second dioctad of S, after the operation,
has the same contents as the specified B box after the operation and the rest of

S is cleared. The operand is unchanged by the operation. (see note on B = 0) -

Test B
Machine Language N Symbolic Language Description
b2-1 |0 {n SKIF n'<Bi Skip the next instruction
if n' < B
Explanation

The contents of the specified B box is compared to the contents of the third
dioctad of the operand. If the contents of the third dioctad of the operand is less
than or equal to the contents of the B box, the next instruction is skipped. If not,
control proceeds in sequence. The second dioctad of S, after the operation, has the

same contents as the B box and the rest of S is cleared, The operand is unchangad

by the operation,

42—

(4) Logical Instructions

Load U
Machine Language Symbolic Language Description
bechb - m - (n,b) - U,L ' XU
(The tag 2 bit is not
tested.)
Explanation

The contents of the specified memory location is loaded into the U register,
and S, The contents of the memory location remains unchanged. In this instruction,

unlike the instruction"(m, b) 3 U"on page 33, the tag 2 bit of the operand is not

tested.

Complement
fb-- - - CSMP U Complement of U = U
fcb - m - COME (m, b) Complement of X 3 U

Explanation

The one's complement of the contents of the operand (U or a memory location)
replaces the contents of U and of S. When a memory location is the operand,

its contents is unchanged by the operation.

—}y3-

INTERSECT ~ LOGICAL "AND"

Machine Language Symbolic Language Description
£f7b - m - AND(m, b) intersection or
logical "AND" of U and
L =U.
Explanation

In the result of this operation, a '1' will appear in any bit position in
which the corresponding bits of the contents of both U and the specified memory
location are '1'. Any other bit position of the result will contain a '0', This
result appears in U, X is unchanged by the operation. After the operation, R

contains the original U; S has the same contents as X,

UNION - TOGICAL "OR™

. Machine Language " Symbolic Language Description

f4Lb - m - €R(m,b) Icl)il‘i[olna;g %oiigal "ORM

Explanation

In the result of this operation, a "1" will appear in any bit position where
either one or both of the corresponding bit positions in the contents of U and
the specified memory location contain a "1", All other bit positions of the
result contain a "O", This result appears in U, X is not altered by the operation.

After the operation, R and S have the same contents as X.

Ll

SYMMETRIC DIFFERENCE - EXCLUSIVE OR

Machine Language Symbolic Language) Description
f6b - m - X8R (m, b) symmetric difference
or "exclusive ORY of
X and U 51U,
Explanation

In the result of this operation, a '1' will appear in any bit position in
which the corresponding bits of U and X are not alike. A '0' will appear in any
bit position in which the corresponding bits of U and X are alike, This result
appears in U. X is not altered by the operation. R, after the operation, has
the original contents of U, S, after the operation, contains the ones complement

of the contents of X,

EXTRACT
Machine Language Symbolic Language Description
f5b- m - EXT(m,b) EXTract from X the

bit pattern in R 4 U.

Fxplanation
The bits specified by the binary pattern in R are extracted from X and

deposited in U as follows: a 'l1' in any position in R causes the carresponding
bit of U to be set equal to the corresponding bit in X. The rest of U is unchanged.,
R and X are not altered by the operation., After the operation, S has the same

contents as X,

15—

(5) Shift Instructions

Magnitude —— Short Shifts

Machine Language _ Symbolic Language Description

£f0-=- | n |- UnL shift the magnitude of U
n bits to the Left
mo

£f8-- n - UnR shift the magnitude of U
n bits to the Right

Explanation

These instructions cause the contents of U, bits 1 to 40 only, to be shifted
left or right n (mod 128) bits, respectively. The left shift causes '0's' to be
shifted into the right side of U to replace shifted bits, and the bits shifted
out of bit 1 of U to be lost. The right shift causes '0's' to be shifted into
bit 1 of U to replace shifted bits, and bits shifted out of bit 40 to be lost,

Note: The overflow indicator is set if a '1l! is shifted left out of bit 1 of U.

-

Magnitude ——-Long Shifts

Machine Language Symbolic Language Description

f1l-- n URnL shift the magnitudes of
UR n bits to the Left
mo

£f9 -~ n URnR shift the magnitudes of
UR n bits to the Right

Explanation

These instructions cause the contents of U, bits 1 to 40 only, and the contents

of R, bits 1 to 40 only, to be shifted, as if one register, left or right n (mod 128)

bits, respectively.

In the long shifts, bit 40 of U is "tied to" bit 1 of R and the

shifting takes place left from R to U and right from U to R. As in the short shifts,

"O"s replace the shifted bits and bits shifted out of the left of U or right of R

are lost. Overflow indicator is set if a "1" is shifted left out of bit 1 of U.

47—

Magnitude - Shift and Count
! Machine Language Symbolic Language Description
£f3-1 - - S,C » Bi Shift the magnitude of U
left until bit 1 of U # O,
Counting B by 1 after
each shift.
Explanation

This instruction causes the contents of U, bits 1 to 40, to be shifted left,

until bit 1 of U is not equal to O. Before shifting begins, the specified B box

is cleared and during the shifting a "1" is added to the B box for each single

shift necessary to satisfy the requirement that bit 1 of U # 0. A maximum of 40

shifts will be performed. After the operation the B box contains the number of

shifts required, and the second dioctad of S has the same count, The rest of S

is cleared.

L8~

Logical Shifts

Machine Language Symbolic Language Description

f2-- n - UnL, L shift all of U n bits to
the Left

fa-- n - UnR,L shift all of U n bits to
the Right

Explanation

These instructions cause the contents of the entire U register (bits -7 through
40)to be shifted left and right n (mod 128) bits, respectively., "O"s again replace
the shifted bits on the left or right. Bits shifted out of bit -7 on a logical
left shift are lost and bits shifted out of bit 40 of U on a logical right shift

are lost. The overflow indicator is never set on these instructions.

-L9-

(6) Transfer of Control Instructions

Unconditional Transfer

Machine Language Symbolic Language Description

ch4 b= m - TR (m, b) TRansfer control to X,

unconditionally

Explanation

This instruction transfers control to the specified memory location by
resetting the control counter to that location., The pathfinder will contain 1

plus the location of this instruction. No other registers are affected.

Conditional Transfer

Machine Language Symbolic Language . Description

c5b - m - TR (m,b) IF+ TRansfer control to X

if U is positive

c7b- m - TR(m,b)IF O TRansfer control to X

if the magnitude of U is O

cfb- m - TR(m,b)IF O,L TRansfer control to X
if U is a Logical O

(all 48 bits = 0)

Explanation
These operations test the contents of U for the following conditions:
¢ 5 - tests for a positive sign (bit O = 0)
¢ 7 - tests for a zero magnitude (bits 1 thru 40 = C)
c: f - tests for all bits equal to O (bits =7 thru 40 = 0)

In each case if the condition tested for is found, a transfer of control
to the specified memory location is effected and the pathfinder is set to 1 plus
the address of this instruction.

If the condition is not met, there is no transfer and the pathfinder is not

reset. In either case no other register is affected.

~51-

Conditional Transfer (Cont.)

Machine Language ‘ Symbolic Language Description

cbb -~ m |- TR(m,b) IF OV TRansfer control to X if
the overflow indicator is
on, and turn off the

| indicator.

ccb- m - TR(m,b) IF PES TRansfer control to X if
the positive exponent spill
indicator is on, and turn

off the indicator.

Explanation

These operations test the overflow and positive exponent spill indicators
respectively. If the specified indicator is on, the indicator is turned off and
control is transferred to the specified memory location., If the indicator is off,
control proceeds to the next instruction in sequence. If a transfer does take
place, the pathfinder is set to 1 plus the address of this instruction., No other

register is affected.

(For transfers on tags, see Tag Instructions)

—-52—

(7) Unconditional Skip Instruction

Machine Language Symbolic Language Description
bbb~ - n - SKIPn SKIP the next n
instructions

Explanation

The contents of the second dioctad, n, of this instruction is added to the
contents of the control counter and the sum is stored into the control counter,

thus causing the n words following the SKIP instruction to be ignored during

execution,

(conditional skips are listed with B-Box

Instructions and Sense Instructions)

-53-

(8) Repeat Instruction

Description

ﬂ_Machine Language Symbolic Language

eb - - no1- Den

DO the next instruction n
times, increasing the
effective left and right
address of that instruction
by the contents of B6 and
B5 respectively, after each

perform.

Explanation

This instruction causes the machine to execute the instruction which follows

it n (mod 256) times., After each performance of the "following instruction", the

second dioctad of the instruction is increased by the contents of Bé,. If the

instruction is one which uses the third dioctad, it is increased after each per-

form by the contents of B5,

Where the second or third dioctad is a memory reference the normal B-box

address modification takes place before this special repeat mode modification.

-5/~

(9) Stop Instruction

Machine lLanguage " Symbolic Language Description
90 - ~ - - STSP STOP the computer.
Explanation

This instruction causes the control to stop the machine; however, the next
instruction has been fetched from memory so that pushing the "start" button will

cause the control to proceed again,

-55-

(10) Sense Instructions

Alter Sense

Machine Language Symbolic Language Description
b8 - - p CLEAR SN k,k' ,k",... Set bits k, k', k",...
of the SeNse register =0
b8~~~ |ffff CLEAR ALL SN set all bits of the
SeNse register = 0
b9 -~ P SET SN k,k',k',... set bits k, k', k",...
of the SeNse register = 1
b9 -~ bbb i SET ALL SN set all bits of the
SeNse register = 1
Explanation

The second dioctad, p, of the instruction contains 16 bits, one corresponding

to each sense light. ‘Light 1 is addressed by the rightmost bit of the second

dioctad, light 2 by the second from right, ..., light 16 by the leftmost bit,

For each bit in the second dioctad which is a "1", the corresponding sense light
is set as directed by the instruction, i.e., b 8 causesthe light or lights to be

turned off or set to O; b 9 causes the light or lights to be turned on or set to 1.

Test Sense

. Machine Language Symbolic Language Description

ba-- H - SKIF SN k,k',k",... SI.(ip one instruction IF
bits k, k', k",... of the
SeNse register = 1.

ba-- |£fff - SKip one instruction IF
SKIF ALL SN ALL bits of the Selse
register = 1.

Explanation
If all sense lights addressed by a "1" in the second dioctad are on then the

next instruction is skipped. If they are not on, control goes to the next instruction
in sequence, After the operation, the second dioctad of S contains the binary
pattern of the sense light register. The rest of S is cleared. The sense light
register is unchanged. Note: If p = 0, the next instruction is always SKipped

(see the following instruction).

Save Sense

ba-- 0 - SN - 8,SKIP SeNse register = S2 and |
SKIP 1 instruction
(81 and S3 are cleared)

Explanation

The contents of the sense light register becomes the contents of the second
dioctad of S and the rest of S is cleared. The next instruction is always skipped

and the sense light register is unchanged.

~57-

(11) Tag Instructions

Alter

4 Machine Language Symbolic Language Description
c8-=~-| - | - CLEAR TAG1 O - Tag 1 bit of U
c9-- - - CLEAR TAGZ O 2 Tag 2 bit of U
ca-- - - SET TAGL 1l =>Tag 1 bit of U
cb~-| - | - SET TAG2 1 5 Tag 2 bit of U

Explanation
The first 2 operations deposit a “O" in the Tag 1 bit and Tag 2 bit of U

respectively. The next 2 operations deposit a "1" in the Tag 1 and Tag 2 bits of

U respectively. The rest of U is unchanged and no other registers are affected.

Test
Machine Language _Symbolic Language Description
H
cdb- m - TR(m,b)IF TAG1 TRansfer control to X
b
1] ‘
IF TAG 1 bit of U =1
ceb - m - TR(m,b) IF TAG2 TRansfer control to X
IF TAG 2 bit of U =1
Explanation

These operations test the tag 1 and tag 2 bits, respectively., If the
respective tag bit of U is set (equal to "1"), a transfer of control to the
specified memory location takes place. If not, control proceeds to the next
instruction in sequence. If control is transferred, that is, if the condition
is met, the pathfinder will contain the address of this instruction plus one,

The pathfinder is not altered if the transfer does not take place.

~59-

(12) Input-Output Instructions

Read Paper Tape

Machine Language Symbolie Language Description

941~} m| - Paper Tape read. Read 1

| PT = (m,b) hexad character into the
rightmost 6 bits of X and
skip {unless parity failure
occurs)

Explanation
Six bits from the paper tape are read, through the feeder stage and S, into
the rightmost six bits of X. The rest of S and X are cleared, If the six bit
character is the End of Block symbol, the paper tape will stop (the canputer will
not). If the character is a delete, it will not be read into S or X (the paper
tape will not stop). If parity failure occurs, control goes to the next instruction

in sequence; otherwise the next instruction is skipped.

Punch Paper Tape

Machine Language Symbolic Language Description

1 95b ~ m - , Paper Tape punch., Punch
f (m b) » FT 1 hexad character from the
leftmost 6 bits of X

Explanation
The contents of X goes to S, and the leftmost 5 bits of S are shifted through

the feeder stage and punched on to paper tape.

Stop Paper Tape

93~ ~ - - STeY TR stop Paper Tape Reader

-

Explanation

This stops the motion of the paper tape, and does nothing else.

60~

Flexowriter
Machine Language Symbolic Language Description
98-=- | - |- S - FL,4 Flexowrite, tetrad mode.
Type the contents of S
on the console typewriter.
99 ~ - - - S - FL,6 FlLexowrite, hexad mode.
Type the contents of S
on the console typewriter.
Explanation

These two instructions take the contents of S and by

shifts of 4 or 6 bits

into the feeder stage type out tetrad or hexad characters, respectively, on the

flexowriter. Tetrad mode types out twelve characters, hexad mode types out eight

characters,

~6]~

Fast Printer

. Mechine Langusage Symbolic Language Description
9c¢cb - m - PRint columns 1-48 using
(m,b)32 » PR the 32 character print

matrix starting at X,

9eb- | m - i PRint columns 1-48 using
(m,b)64 » PR the 6l character print
matrix starting at X,

Explanation

These instructions assume that a print matrix*of 32 or 64 words in length has
been set up in memory starting at the specified memory address. The contents of
this matrix determines one line of 48 columns of printed output. S is destroyed

during the execution of these instructions.

Machine Language Symbolic Language Description

9dbb'| m |m! (m,b) (m' ,b')32 -» PR PRint columns 1-96 using
two 32 character print
matrices starting at

X and X!

9fbb'{m m' (m,b) (m' ,b')64 - PR {PRint columns 1-96 using
two 6l character print
matrices starting at

X and X!

Explanation

These instructions assume that two print matricesw, each of 32 or 64 words in
length, have been set up in memory, the first matrix starting in the first memory
location specified and the second matrix starting in the second memory location
specified. The contents of the first matrix determines the first 48 columns in
the line of printed output, and the second determines columns 49-96. S and R are

destroyed during execution of these instructions.

3 Explanation of "print matrix" is given in Report on Merlin (Section 4.2).

Machine Language

62—

Fast Printer (Cont.)

Symbolic language

Description

9b - - - - BLANK LINE Advance one line on the
fast printer
Explanation

As the result of this instruction, the fast printer advances the paper one

row, thus creating a blank line.

changed,

S and R, and all other registers, remain un-

Magnetic Tapes

Note: The magnetic tape instructions are omitted provisionally
from this report because magnetic tapes are not yet

available for use,

- 63 -

2b. Instructions To The Utility System

The instructions to the utility system are included in this section

along with the instructions to the computer so that the entire list

of Symbolie Instructions appears together and as such can be used as
a reference list. The functions of these instructions are explained
in detail in Section C (Utility System).

(1) Pseudo Instructions to the Assembler

These pseudo instructions are instructions to the assembler to
take certain actions which may or may not result in one or more machine
language words. Some of them may have a symbolic address in the
location field; some may not. None of them take a breakpoint field.
The following is a list of pseudo instructions to the assembler

NOTE: The particular designation given to the pseudo instruction
cannot be broken up by spaces; thus DEC is acceptable, D EC
is not. See the rules on spaces (Note 4 following Definitions
of Symbols (B.le)).

Symbolic Language

ABS x

- €Yy -

Eg_cp_lanation

ABSolute at x, where x is a decimal memory
location. This is an instruction to the
assembler to produce the machine language
program with an origin at x and with all

' address references located absolutely. If
b this instruction is used, it must precede

4 any other instructions in the symbolic program.

This instruction cannot have a symbolic

| address in the location field.

NOTE: Any symbolic program which does not use this instruction will

be assembled as a relocatable machine language program.

PAD

Symbolic Language

- 65 -

Explanation

t PAPer tape output. This is an instruction

to the assembler 1o produce the loading
routine and machine language program on
paper tape as well as magnetic tape. This
instruction does not result in a machine
language ingtruction and therefore cammot
take a symbolic address in its location
field.

Symbolic Language

- 66 -

Eg_cglanation

REMark k where k is any statement written

' in characters which can be translated to -

printer-coded characters. This is an instruc-
tion to the assembler to print the remark as
part of the symbolic listing of the program.
The instruction results in no machine words.
It cannot take a symbolic address in the
location field.

- 67 -

Symbolic Language Explanation
DEC *d,%q',%qn,.,. DECimal + d where d is a decimal number of

} several specified forms. This is an
instruction to the assembler to convert

the decimal numbers to binary numbers.

Each decimal number must be separated by

a comma from the next number. The converted
numbers will occupy consecutive memory
locations. The several forms of the decimal
number and their resulting binary forms are
as follows:

d machine word

integer (no decimal pt) fixed point binary
eg 5,+ 20, -3 with the binary point
assumed after bit LO.

| fixed or floating fixed point binary
decimal followed by with the binary

{ B and a number point after the
_specifying the position bit specified by
of the binary point the number following
in the machine word B.

eg +5 B L4, -6.2B3
.6+2 B20

- - - -— -

fixed or floating normalized floating
"decimal (with either point binary.

a decimal point or

an exponent)

eg -5.6,6-3, .6+44,

(continued on next page)

Symbolic Language Explanation (cont.)

The plus sign may be omitted from the magnitude
of the number but must always be used to
express a positive exponent.

Any one of the numbers following DEC can be
followed by a T1, T2, or T3 before the comma.
These have the following meaning to the
assembler:

Tl means set tag 1 bit

T2 means set tag 2 bit

T3 means set both tag bits

This instruction can take a symbolic
{ address in the location field; the
symbolic location will be assigned to
- the machine word corresponding to the
first number.

Symbolic Instruction

UFD 4,%ar fav,...

- 69 -

Explanation

Unnormalized Floating Decimal vwhere 4 is a
decimal number. This is an instruection to

the assembler to convert the number or numbers
to unnormalized floating point binary numbers
and store them into consecutive memory
locations. Each decimal number must be
separated from the next by a comma. The
converted numbers will occupy consecutive
memory locations. The input form is a fixed
or floating point decimal number e.g., .0006,
-6, +25.2-10, 6.200. The number will be
converted so that the last bit of the last
converted decimal digit is at bit 40 in the
machine word. No normalization takes place.
Here again the sign of the number if it is plus
may be omitted. The sign of the exponent may not.
The tag bits of any machine word corresponding
to any of the numbers can be set in the same
manner as specified under the instruction DEC.
The location field preceding this instruction
field may contain a symbolic address and this
address will be assigned to the first of the

converted numbers.

Symbolic Language

TET t,t',t",...

-7 -

Explanation

Machine language code t, t', ¢'',....,

where t is a group of at most - +twelve TETrads

(hexadecimal characters)representing a word

in machine language. Each group of characters
is separated from the next by a comma and

each group results in one machine word. The
groups of characters are set up in consecutive
memory locations. Since the machine words are
set up from left to right, the first character
of any group will occupy the first four bits

of the word; following characters are set up

in succeeding bits by fours. If the right of a
word is meant to be zero, the programmer need
not write the zero characters in the group; thus
f is the same as £OO0O00000000. This instruction
may take a symbolic address in the location field
and it will be assigned to the first group of
characters in the list.

Symbolic Language

<n<n'

or (m)<n" or (m')

- 71 -

Explanation

This is an instruction to the assembler

to set up a machine word such that the
binary representation of n is the first
dioctad; the locations equivalent to m and m!
or the binary representations of n' and nt'!
are the second and third dioctads. Since
the word is set up from left to right, there
is no need to include the third dioctad if
it is meant to be 0, or the second and third
dioctads if they are both meant to be O.

The first dioctad, however, must always be
present even if it is 0, i.e., < < n will
set O into the first and third dioctads and
n into the second.

This instruction may take a symbolic address
in the location field.

This pseudo instruction may be written after any symbolic computer

instruction.

The assembler will then combine into one computer word,

by means of a logical union, the bits of the two instructions.

- 72 -

Symbolic Language Explanation
PCC fe Flexowriter Coded Characters fc where fc is a

group of eight flexowriter characters. These
eight characters will be set up as one machine
word. Eight characters must be specified as
 failure to will cause the omission of the next
{ instruction.

This instruction can take a symbolic address

F in the location field.

Symbolic Language

*CC ¢

.."(5._

Eglana’tion

Printer CGodeiCharacters ¢ where ¢ is a group
of characters which appear on the print wheel.
This is an instruction to the assembler to
convert all the characters of ¢ to printer-
coded characters and to set these characters
into machine words - eight to one word. This
instruction will result in o machine words for
a group of B characters, where a = B/8 when

B is a multiple of 8, and a = (integral part
of B/8)+ 1 otherwise.

In this latter case blank characters will fill
the remaining right bits of the last word.
This instruction may have a symbolic address
in the location field and this address will be
assigned to the first machine word formed.

Symbolic Language

BL2 n

- -

Egglanation

BlOck n where n is a decimal integer.

1 This is an instruction to the assembler to

reserve a block of storage n words long.
This instruction can take a symbolic address
in the location field; it will be assigned
to the location of the first word of the
block,

- 75 -

Symbolic Language Explanation

LIB LIBrary 2 insert. This is an instruction
to the assembler to pick-up the library

program specified by the symbolic address
in the location field of this instruction

from the library 2 tape end insert it into

the program at this point.

Symbolic Language

STA(n)

Explanation
STArt at (m) where m can be a decimal address

or a symbalic address which is defined by some
other instruction in the program. This instruction
tells the assembler to set up an instruction in
such a way as to cause the loading program to
transfer to address m when the machine language
program has been loaded. This pseudo instruction
does not result in a word which is part of the
machine language program and can therefore not

take an address in the location field.

~77-

Symbolic Language Explanation
VE(m) OVErlap (m) where m is a symbolic address which

has been previously defined by some other in-
struction in the program. This is an instruction
to the assembler to set the location counter to

m, allowing the programmer to set up the program
which follows it at the same place in memory as
some preceding part. It is useful for "breaking-
up" programs which exceed the lengtbh of memory.
Since this instruction merely causes the assembler
to reset the location counter, it does not result
in a machine word and therefore cannot take an

address in the location field,

Symbolic Language

DAEF(m)

~78-

Explanation

DEFined by (m) where m is a decimal address or a
symbolic address which has been previously defined.
This is an instruction to the assembler either to
assign to a symbol the memory location already
assigned to another, or to assign an absolute
decimal location to a symbolic address, This
instruction must have a symbolic address in the
location field, since the purpose of the instructic
is to define this symbol, No machine language

word results from this instruction,

79—

Symbolic Language Explanation
330n EQUals n where n is a decimal integer., This is

an instruction to the assembler to assign the
binary equivalent of n to a symbolic integer,
This symbolic integer appears in the location
field in the specific form: Ni where i is an
integar from 1 to 9. This instruction is used
to define an integer which is constant in the
program but is to be used symbolically throughout
the program, The instruction does not result in

a machine word,

80—

(2) Macro Instructions to the Assembler

Macro Instructions are instructions to the assembler which when
translated result in more than one machiﬁe language instruction. At
present all of these instructions are concerned with the use of the main
subroutine library. Additions to the 1list of macro instructions will be
made as the programming system is used and as the subroutine library
increases.

Since at present these instructions do refer to subroutines, the
use of a macro operation causes the assembler to insert the calling
sequence to the specified library subroutine into the program at the
point the macro instruction is used and to add the subroutine itself
to the program.

These instructions may have a symbolic address in the location
field. They do not have a breakpoint field.

The following is a list of macro instructions so far included in
the system. Complete instructions for using any of them are given in

the write-up for the particular subroutine referred to.

NOTE: The particular designation given to the macro instruction cannot
be broken up by spaces; thus SIN is acceptable, S IN is not.
See the rule on spaces (Note 4 following Definitions of Symbols (B.1c)).

- 81 -

Symbolic Language

SIN

ces

ART

A1l of the above refer to commonly
used elementary functions. They all
assume floating point arithmetic;
however, fixed point arguments may be
used and fixed point operations may
be obtained by adding, ",FX" to any
of the instructions, e.g.: SIN,FX.
Before any of the instructions are

used the argument must be placed in U.

Explanation

SINe of U - U

COSine of U —» U

ARcTangent of U » U

Natural LoG of U - U

EXPonential of U »U

82~

Symbolic Language Explanation

L8T(m)form,c print Line SeT from (m) where m is a symbolic or

decimal address,

This instruction causes the assembler to set
up the appropriate calling sequence to the print
Line SeT subroutine., This subroutine takes the
word in "m", converts it according to the specified
"form" and stores the converted characters into a
block of memory registers called the print line
block, such that the rightmost character is set
in the position corresponding to column "c" of the
print line., This print line block is the one used
in the Line PRint subroutine. After a complete
line has been set up as the programmer wishes, he
then uses the LPR instruction, which produces the
calling sequence to the Line PRint subroutine, to
do the printing,

A list of "form" expressions follows:

Symbolic Language

LST(m)I ~» I,c

LST(m)FXb - FXd,c

LST(m)FL - FXd,c

LST(n)FXb - Fid,c

- 8% -

. Explanation

This "form" specifies that the binary Integer
stored at location m is to be converted to a
decimal integer and the printer-coded characters
for this decimal number are to be set into the

print line.

This "form" specifies that the FiXed point binary
number stored at location m is to be converted to
a FiXed point decimal number with d places to the
right of the decimal point end the printer-coded
characters for this decimal number are to be set
into the print line. In conversion the binary
number is to be assumed to have a binary point
after bit b.

This "form" specifies that the FLoating point
binary number at location m is to be converted

to a FiXed point decimal number with d places to
the right of the decimal point and the printer
coded characters for this number are to be stored

into the print line.

This "form" specifies that the FiXed point binary
number at location m is to be converted to a
FLoating point decimal number with d places to
the right of the decimal point and the print-
characters stored into the print line. The
binary point is to be assumed after bit b of the

binary number.

Symbolic Language

LST(n)FL » FLd,c

LST(m)TXn,c

- 8h -

Egglanation

This "form" specifies that the FLoating point
binary number at location m is to be converted

to a FLoating point decimal number with d places
to the right of the decimal point and the printer-
coded characters for this number are to be set

into the print line.

This "form" specifies that the n printer-coded
characters of TeXt stored in memory starting

at location m are to be set into the print line.

NOTE: Floating point decimal numbers are defined
here to have the form x.xx ... + XX and are
distinguished from fixed point numbers only by
their format. '

Symbolic Language

oR

BPR(m)n,n' ,form

-85 -

Ezglanation

Line PRint. This instruction causes the assembler
to set up a calling sequence to the Line PRint
subroutine such that a print line will be printed
on the fast printer. LPR follows one or more

LST instructions which have caused a print line

1o be constructed.

Block PRint starting at (m) where m is a symbolic
or decimal address. This instruction causes the
assembler to produce a calling sequence to the
Block PRint subroutine specifying that a block

of n numbers located in memory starting at
location m is to be printed, having a format of

n' words per line. Each number is to be converted

as expressed in "form".

There are 5 expressions of "form" which are
identical to the first five described in the
18T instruction. There is no form equivalent
to TXn.

Symbolic Language

PHD(m)n

THD (m)n

TDD(m)ni

- 86 -

E@lanation

Print Hexadecimal Dump of memory starting at m
where m is a symbolic or decimel address. This
instruction causes the assembler to produce a
calling sequence to the Print Hexadecimal Dump
subroutine specifying that n words starting at
location m are to be converted from binary to
hexadecimal characters and printed on the fast
printer.

Type Hexadecimal Dump is the same as PHD (m) n,
except that the dump is typed on the flexowriter.

Type Decimal Dump of memory starting at m where m
is a symbolic or decimal address. This instruction
causes the assembler to produce a calling sequence
to the Type Decimal Dump subroutine specifying
that n words starting at location m are to be
converted from floating point binary numbers to
floating point decimal numbers and then typed on

the flexowriter.

Symbolic Language

INP(m) type n

INP(n) type n

"type" of input
DEC

PCC

- 87 -

Explanation

Input from paper tape to memory starting at m where
m is a symbolic or decimel address. This instruction
causes the assembler to produce a calling sequence

to the INPut subroutine which specifies that, in
general, n words of data from paper tape, converted
according to "type" of input, are to be read into
memory starting at location m.

The various "types" of input, listed below, cause the
assembler to alter the calling sequence and in this

way give the needed information to the subroutine.

Meanin
Data on paper tape consists of decimal numbers to be
converted to binary in the same way the pseudo
instruction DEC performs this conversion. Each
number on the paper tape is separated from the next
by a comma, and the last number is followed by the
End-of-Blocksymbol. The routine will read either
n words or until End-of-Block, whichever comes first.
n need not be specified at all in which case the
routine will read until End-of-Block.

Data on paper tape consists of Printer-Coded
Characters and they are treated in the seame way the
pseudo instruction PCC treat them. There is no sep-
aration between characters (spaces are considered to
be characters), but the last is followed by the
End-of-Block symbol. The routine will read n
characters or until en End-of-Block, whichever comes
first. If n is not specified, characters will be
read until End-of-Block. If necessary, space
characters will be added after the last PCC
character to make n (or the number of PCC characters
before E.O.B.) a multiple of 8.

"Type" of input

TET

FCC

UFD

- 88 -

Meening

Data on paper tape consists of groups of hexadecimal
characters, at most 12 to a word, each word separated
from the next by a comma, and the last followed by
the End-of-Block symbol. If there are fewer than 12
tetrads in any group, the routine will fill in the
remaining right bits with zeros, as the pseudo in-
struction TET. The routine will read tetrads for n
words or until an End-of-Block, whichever comes first.
If n is not specified, words will be read until an
End-of-Block.

Data on paper tape consists of at most 8 characters
to be stored into one memory location in the way the
pseudo instruction FCC does this. If fewer than 8
characters appear, the routine will fill in space
characters into the remaining right bits of the word.
No n should be specified, but an End-of-Block must
follow the last character,

This "type" is the same as DEC except for the form of
decimal-to-binary conversion. The conversion is
explained in the pseudo instruction UFD.

(3)

-89 -

Instructions to the Corrector

The instructions to the corrector do not result in
instructions in the machine language program. They are merely
instructions which tell the corrector what kind of action to
take in altering a symbolic program on the programmer's magnetic
tape. The location fields of these instructions must always be
blank and there is no breakpoint field.

Symbolic Language Explanation

DELETEnLINEp Delete n symbolic instructions starting
at line p, where n is a decimal integer and p
is the number of a line of symbolic code as
specified on the printed listing of the symbolic
program being corrected.

This instruction, unlike the other

instructions to the corrector, cannot be
followed by symbolic instructions to the

assembler. (machine, pseudo, or macro)

- 91 -

Symbolic Language Explanation
INSERTnI;INEp Insert n symbolic instructions after line p

in the symbolic program being corrected, where
n is a decimal integer specifying the number
of symbolic instructions to be inserted and p
is the number of the line of symbolic code after
which they are to be inserted.

This instruction must be followed by n
symbolic instructions to the assembler.

(machine, pseudo or macro)

Symbolic Language

CHANGEnLINEp

- 92 -

Eglana'bion

Change n symbolic instructions starting
at line p in the symbolic code, where n
is the number of symbolic instructions tc be
altered and p is the line number of the first
line of symbolic code to be changed.

This instruction must be followed by
n symbolic ingtructions to the assembler.

(machine, pseudo, or macro)

(%)

..93_

Instructions to the Systems Control Program

The following instructions are interpreted by the System's
Control Program. They specify actions which are to be taken by this
overall control. The instructions have only one field. The location
and breakpoint fields are absent, not merely blank. FEach instruction
is followed by an End-of-Block character.

-9l

Symbolic Language Egglanation'
P T ASSEMBLE , ASSEMBLE the symbolic program which

follows on Paper Tape.

Whatever follows this instruction
either on the same paper tape or on another
paper tape must be a program written in
symbolic language. The instruction causes
the systems control program to search the
utility tape for the paper tape assembler
program, read it into the memory and transfer

control to it,

- 95 -

Symbolic Language | Explanation
CERRzCT CORREET the symbolic program on the Programmer's

Magnetic Tape using the symbolic corrections
which follow this instruction on paper tape.
What follows this instruction must be a paper
tape of symbolic corrector instructions. This
instruction causes the corrector to be searched
for on the utility tape. When it is found and

recad into memory, control is transferred to it.

Symbolie Language

EXECUTE

- 96 -

Eglana’cion

Load into memory and EXECUTE the machine
language program on the Programmer's Magnetic
Tape.

This instruction causes the Systems Control
program to seafch for the loader on the
Programmer's Magnetic Tape, to read it into

memory and transfer control to it.

- 97 -

Several other System'!s Control instructions have been proposed.
They are intended for use with auxiliary programs. Examples of the
proposed instructions follow:

Symbolic Language Explanation
HEX DUMP Print the contents of memory in hexadecimal on

the fast printer.

DECIMAL DUMP Print the contents of memory as floating

decimal numbers on the fast printer.

SYMBOLIC DUMP Print the contents of memory in symbolic
language on the fast printer.

RENUMBER Renumber the lines of the symbolic program

on the programmer's magnetic tape.

-98-
Segetion C, Utility System

The structure of the system, introduced earlier in Section A.Z2, is
outlined in greater detail in this section.
1. Symbolic Language Translators
a. Paper Tape Assembly Program
This program will accept a symbolic languege program
from paper tape and convert it to a machine language program,
(1) Input
The input to the Paper Tape Assembler is a paper tape containing
symbolic instructions, written in the format specified in
section .Bl., These instructions can be any of the symbolic
machine language instructions, pseudo instructions or macro
instructions all listed in section ~ B2, The symbolic pro-
gram on paper tape must always start with an assigned program numbe;
followed by a carriage return. The last line must be followed
by an end of block merk (EOB).
(2) Output
This program will produce the following output:
(a) a Programmer's Magnctic Tepe containing the symbolic
program, symbol table, and self-loading machine language
*

program in relocatable binary.

(see pseudo instruction ABS for exception)

* A relocatable binary program is a binary program which may, et the operator's
discretion, be loaded into different sections of memory. This is achieved
by : modifying: each location used by the location which will be specified on
the console when the program is being loaded.

-99~

(b) a printed listing of the symbolic program with each line
numbered, the machine language program in hexadecimal, and
a list of errors. (see diagram on next page)
(c) a paper tape, if requested, (see psecudo instruction PAP)
of the self loading machine language program,

(3) Internal Operation
(a) Each symbolic instruction from paper tape is converted
from flexo-coded characters to printer coded characteré*
and each instruction is given a line number. This converted
and numbered program is written onto magnetic tape.
(b) Memory locations are assigned to the symbolic instructions
and a table of symbolic locations vs. memory addresses is
set up (Symbol Table). This symbol table is written onto
magnetic tape.
(¢) A "Loader"; that is, a program to load the machine
language program from the magnetic tape into memory before
operation, is written onto the Programmer's Magnetic Tape.
(d) Requested subroutines (see macro and pseudo instructions)
are "picked up" from the subroutine library tape, their
address references are adjusted, and they are written onto

the Programmer's Magnetic Tape.

#* TFlexo-coded characters are six bit characters punched by depressing proper
keys on the flexowriter. Printer coded characters are 6 bit characters which
are used to set up a matrix for printing on the fast printer.

Printed Listing of Assembled Program

&
HEXADECIMAL ~ HEX. & SYMB. BP
LINE # INSTRUCTION LOC» 1LOC. SYMBOLIC INSTRUCTION #
(A

/ v \ \ M\] \ f ,
D400 ¢ D 0008000080 ¢O a0 0D S QD 6000 0D 9.0000000000000000.00000860000600000000¢00000000000000000 04

3t

-107~

(e) The symbolic instruction and breakpoint fields of the
symbolic instructions are translated to produce machine
language instructions. These also are written onto the
Programmer's Magnetic Tape,
(f) A printed listing of the original symbolic program
with each line numbered, the machine language program in
hexadecimal, and a list of definite errors and possible
errors is produced,
b. Correctoy - Program
Corrections to a symbolic program on the Programmer!'s
Magnetic Tape* can be made by use of the Corrector. This
program accepts a paper tape with corrections and directions
for making the corrections and produces a corrected symbolic
program plus a self-loading machine language program.
(1) Input
The input to the Correction Program is:
(a) A paper tape containing Instructions to the
Corrector and the corrections themselves in symbolic
assembly language (symbolic machine instructions,
pseudo instructions and macro instructions). The
first line on this paper tape must be the assigned
program number followed by a carriage return. An
End of Block symbol must end the paper tape.
(b) Programmer's Magnetic Tape containing the symbolic

program to be corrected,

A symbolic program on magnetic tape is one which has been produced by
the paper tape assembler or by previous use of the correction program.

-102-

(2) Output
The output from the Corrector is
(a) a Programmer's Magnetic Tape containing the corrected
symbolic program, symbol table, and the self-loading
machine language program.
(b) a printed listing of the contents of the correction
paper tape, the new symbolic program, the machine language
program in hexadecimal and a list of errors.
(c) a paper tape, if requested.
(3) Internal Operation of the Correction Program
(a) The symbolic instructions on the correction paper tape
are converted fram flexo-coded characters to printer-coded
characters and written on magnetic tape. The Instructions
to the Corrector and the corrections which follow them
are sorted according to line number.
(b) Each Instruction to the Corrector is interpreted by
the Corrector and the direction specified by it is |
followed with respect to the old symbolic program on
magnetic tape. Thus the lines of the old symbolic pro-
gram are either deleted or changed or new lines are added
to produce a corrected symbolic program on the Programmer's
Magnetic Tape.
(c) Once the new symbolic program has been produced by the
Corrector, the translation process has reached the same
point as that reached by the Paper Tape Assembly Program

when the instructions from paper tape have been converted and

~103-

written on magnetic tape. Hence the remaining steps taken

by the Corrector are identical to steps (b) through (f)

performed by the Paper Tape Assembler and these steps are

oftén referred to as the Assembler.
c. Reassembly Progranm

It is often necessary to make short corrections to a symbolic

program which has already been assembled, that is, a symbolic
program for which a self-loading machine language program already
exists. If these corrections can be made directly to the existing
machine language program, reassembly time will be saved., It is
convenient to make the corrections in symbolic language and to have
a corrected symbolic program as part of the output. Facilities
for correcting programs in this way are inherent in the Utility
System and such a reassembly process is planned for future use.
However, at the outset such a program will be unavailable for use
by programmers. All corrections will be made through the Correction

Program.

-104~

2. Subroutine Library

A library of subroutines to compute mathematical functions and
perform input-output and debugging tasks for the programmer will be
part of the utility system. Most of these routines cen be called for
within the symbolic language program by use of macro instructions (see
section B.2b(2)). The less commonly used subroutines will be called
for by use of the pseudo instruction LIBand a specified calling sequence,
The subroutines themselves are "debugged" routines which meet certain
specifications and are present in the Utility System as machine language
programs. The language translators will incorporate any of these sub-
routines into programs which "call" for them. (See the detailed

description of the subroutine library in section D)

3. Auxiliary Routine Library

Another part of the Utility System is a group of programs to
perform certain functions which are nct integral parts of any program
but which are often necessary while "running" or "debugging" programs.
These programs will, for example, allow the programmer to print the
contents of a magnetic tape on the fast printer, to print the contents

~ of memory on the fast printer, etc.

~105-

L. System's Control Program

Access to any of the parts of the utility system is gained
through the System's Control Program. By use of Instructions to the
System's Control (see B.2b(4)), the programmer cen specify to this
overall interpreting program which language translator or auxiliary
program he wants to use. Since the entire utility system is contained
on a magnetic tape called the "System Tape", the control program will
interpret the Instructions to the System's Control given to it m
paper tape and take from the System Tape into memory the proper
program. It then transfers control to this program. For example if
the SCP instruction read by the System's Control Program is PT ASSEMBLE,
the paper tape assembly program is brought into memory and it operates

as specified in section C,la.

~106%

Section D. Subroutine Library

The Utility System will have a subroutine library in two parts,
as was introduced in section C.2. The first or main library will
include commonly used subroutines such as elementary functions routines,
print routines, etc. The second, or library 2, will be made up of
specialized subroutines used less frequently. Both parts of the library

can be enlarged or changed as need arises.

1. Structure of the Library

In order to aid the programmer in using library subroutines,
several forms of information about them will be available:
short descriptions of the subroutines from the card file of

Subroutine Abstracts; a detailed discussion of any subroutine

in the Catalog of Subroutine Write-ups. The subroutines will

be kept in symbolic language and in machine language in a
paper tape file. All subroutines in the main library will
be available in relocatable machine language on magnetic
tape. These will be available to the programmer by means
of macro instructions. Most of the library 2 subroutines
will also be available as a separate file on magnetic tape.
The pseudo instruction LIB will meke these available to

the programmer.

2. Requirements

For each subroutine which is included in the library, certain
information about it must be made available and certain rules

of programming must be conformed to.

a. Programming Method.
(1) The subroutines should be written in symbolic language

(2) The calling sequences for the subroutines, while they
can be of variable length, should have the following

form:

-107-

Location Instructions

« TR (SUBR)

o+l SKIP n-1

a2 locations containing variable information
! required by SUBR and error return or returns
! if required
1

a+n

a4n+l normal return

where o is the first location of the calling sequence and

SUBR

(3)

()

(5)

(6)

(N

is the symbolic name of the subroutine.

Erasable storage should be assigned locations immediately
following the last instruction of the main body of the
subroutines.

Before a subroutine returns to the main program, it must
restore the following registers if they have been
destroyed during the operation of the subroutine: B
registers, A register and Sense register.

Subroutines may require that an argument be placed in
the U or R registers before entrance to the subroutine.
These registers may be destroyed on exit from the sub-
routines.

Results may be stored in the U and R registers on exit
from a routine.

The T registers may be used during operation of sub-
routines and they need not be restored; however the
subroutine write-ups must contain a list of T registers

vwhich are destroyed.

(8)

(9)
(10)

(11)

-108-

Any programming techniques - use of indicators, etc. -
should be internal to the subroutine. The main
program should never be required to preset any part

of a subroutine.

There should be no programmed stops within subroutines.
Manual operation of Merlin, that is, use of Breekpolnt
switches, etc., should not be required by subroutines.
Subroutines should not use the Tag 2 bit.

Subroutine Abstract

The card file of Abstracts will be a quick reference source

for all library subroutines. The information which must be

available for the abstract file is:

(1)
(2)

(3)

()

Name of Subroutine and statement of problem.

Which part of the library contains this routine -
main library or library 2.

Short statement of method used, renge of arguments
and other pertinent information.

Name of programmer and date checkout procedure was
completed. (Names of programmers making corrections

and date of each correction).

Subroutine Write-Up.

The Catalog of Write-Ups will be the source of detailed in-

formation about each subroutine. Each write-up must ineclude

the following information:

(1)
(2)

(3)

Name of subroutine and statement of problem.

An adequate description, in outline form, of the
method used.

A discussion of accuracy and/or any other limitations

of the subroutine.

(k)

(5)
(6)
(7
(8)

(9

(10)

(11)

(12)

~109-

The number of storage registers used by the subroutine
(1ength of program), not including erasable storage
registers.

The number of erasable storage registers used.

A list of disturbed and unrestored registers.

The time of operation, if possible.

A description of the calling sequence including:

the form of arguments, the form of result, where the
argument or arguments are to be placed on entry, where
the result or results are placed on exit, a description
of indicators and other information used in the calling
sequence, a description of the error return or returns.
A list of other library subroutines used by this sub-
routine.

Names and references of any other routines which are
included in this subroutine and which the programmer
submitting the subroutine obtained from other sources.
A printed listing of the subroutine‘as obtained from
the assembler. |

The name of the programmer and date of final checkout
(and names of programmers making corrections and dates

of corrections).

d. Symbolic and machine language programs on paper tape.

The paper tape file of symbolic programs will contain the

final versions of the symbolic programs§ that is, the sub-

routine after it has been completely debugged. The machine

language program in this file will be a direct copy of the

subroutine as it appears on the magnetic tape library file.

C.

-110~

Machine language program on magnetic tape.

The files of the main library and library 2 (in relocatable binary
codes) will be available on magnetic tape. Subroutines which have
been completely debugged and for which all the preceding information
is available will be added to the Utility System as part of one

of the above library files. Since any alteration of these library
tapes affects the entire Utility System, any such additions must be

made only by the group working on the system,

___0:04 €400 008a 0000 Q090 .. BEG TR {LSTYL. . . 6010 4900 0000 0000 003¢ ~ Uxy=UsN L

1+ 0~ bb0O 0002 0000 0001 SKIP 2 61: 09 a103 0003 0000 002d U+T3+T3
‘ : 735 0000 0002 . % : 62: 04 €000 0000 0000 0Q3e U - . _
35 0n 0000 0050 004b 0003 63; 0n 2003 0000 0000 0037 U-T3
__%.0A c400 0380 0000 OO0C4 . YRtLPRO.. . 0 ¢ 64: 0~ @000 0002 0000 _004Q . . T2~U_ .
5. 00 €400 04b0 0000 0005 START TR (DIN) o 65: 0n d100 0003 0000 004] U/T3«U
__ 61 0n bh0O 0001 0000 OOO6 _ SKIP { . . ¢ 66; 00 400 004e 0000 0042 . TR (ART) R
7: 00 0000 0045 0002 0007 <<{HVAL)<2 67; 0n 4100 0003 0000 0043 , U/T3=U
__8:.00 e400 0045 0000 0008 ; _{HVAL) =y o 68; 0A 400 0000 0000 0Q44 ExIT TR (o) B
9: 0A 2700 0049 0000 0009 U=(RADI)»U 69, 0n 0000 0000 0000 0045 HVAL <
_10: 00 be0O 0047 0000 00Qa . Uelay R 3 700 0n 0000 0000 0000 0046 KVAL < .
11: 0n €400 0045 0000 000b (HVAL 1=y 71. 00 0000 0000 0000 0047 A <
_12: 00 4500 0049 0000 000e = . __ . Us(RADIYY 721 0n NQOO 0000 0000 OC48 B < R
13: 09 be0OO 0048 0000 000d U+(B] 73,00 0079 eb85 {eb8 0049 RADI DEC 0. 47625
14¢ 04 €400 06d8 0000 0O0OQe TR _LINT) - 74: 07 1002 ce90 £f97 004a 20VA DEC 218069 e
15, 00 bb0O 0002 0000 0Q0f SKIP 2 75: 0n 0000 0000 0000 004b DAVK <
__16:0n AO00 Q047 0048 00)0 . _<<umy(By o 76: 0n 200} 91ee 147b 00sc KCON DEC 401w83 IR
17, 00 0000 0030 0Q!4 0011 <<(F)<20 77: 0~ 0000 0000 0000 004d DOSE <
__18.0n 4400 0048 0000 0Q12 . _ U%(20VA) = ysN 7800 00ue ART LIB o
19. 00 be0OO 004b 0000 0013 U=(DovK) 7%: 0n 008a LsT LIB
_20:0A ad00 Q04c 0000 0014 U*{KCON)=U,N 80: 05 04b0 DIN LIB
21: 0n be00 004d 0600 0015 U~(DOSE) 81, 00 0648 INT LIB
_22: 0n @400 Q045 0000 0016 o HVAL) ey 82000 STA (BEG) . .
23,00 4904 0000 0000 0017 U%U » T4sN 83,00 6186 Ol4a 3432 0735 HEAD ~ PCC /DIST, SG, RATIO
_24s 0n ed0Q 0046 0046 0018 (KVAL)% {KVAL)+T4 » T4 cd36 32c)| 3618 o736
25, 04 e400 073e 0000 0019 (ONE) = U 6186 1861 8618 0737
26:0n 4100 0004 0000 0018 U/T4 = U o B 6186 186) 8¢c60 0738 .
27: 0 he00 073f 0000 00ib U = (10VP) ceSb 9861 8618 0739
_ 28,04 ad00 004b 0000 0OOte | Us(DOVK) » UseN ¢ 84, 00 6186 1861 8618 0738 | pcc ... INTEGRAL DOSE
29: 0~ be00 0740 0000 001d U = (RATO) , 6186 28b7 3926 073b
_30:.04 €400 008a 0000 _O0le . TR GLST)Y L ce0d d861 8618 073c¢
31, 00 bb0OQ 0002 0000 007f SKIP 2 6186 23bb 2918 07=2d -
32: 00 0100 073f 0000 0020 <256<({ |0VP) <0 , - 85: 04 100} 0000 0000 073e ONE DEC 10
33, 0~ 0000 0005 0016 002] <<5<22 86: 0n 0000 0000 0000 073f 10VP <
_34: 00 400 0084 0000 0022 _ _ __ ° TR ILSTY o _____ 87100 0000 0000 0000 O740 _ RATO < .
38, 04 bb0O 0002 0000 0023 SKIP 2 END 0200 0000 0000
_36:0n 0100 0740 0000 0024 . <256<(RATO)<Q
37, 0n 0000 0005 002d 0025 <<5<45
38; 0n €400 0083 0000 0026 TR _(LST) i
39:. 00 bb00 0002 0000 0027 SKIP 2
_40: 0n 0100 004b 0000 0028 <2s56<tDOVKyi<0
41, 00 Q000 0005 0041 0029 <<5<65
_42: 0 €400 008a 0000 QQ028 TR LSy
43, 09 bb00 0002 0000 002b SKIP 2
441 07 0100 004d 0000 00zc <256<(DOSE) <0 -
45, 04 0000 0005 0055 002d <<5<85
_ 46,00 e400 0330 0000 O02e TR ALPRY
47+ 0n €400 0005 0000 0027 TR (START)
48, 0n de00 0044 0000 0030 F_ PF-(ExITY
49, 0n €001 0000 0000 0031 UsT1
50¢ 04 2700 0045 0000 0032 ' Us{HVAL) U -
51: 00 a902 0000 0000 0023 Uxy=T2,N
_52: 0n 2400 0049 0000 0034 . __ARADI)ey
53, 00 a900 0000 0000 0025 Uxy+UsN
_ 54104 a300 0002 0000 0036 U=T2+U]
58: 0n ¢000 0000 0000 0037 sQ
56: 0n_e002 0000 0000 Q028 U~T2 o
57. 0~ e400 0046 0000 0029 (KVAL) »U
58, 00 a903 0000 0000 003a UXU<T3sN

5910~ e000 0001 0000 003 TisU

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	015a
	016
	017
	018
	019
	020
	020a
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	062a
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	099a
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	_1

