THE BROWN UNTVERSITY GRAPHICS SYSTEM

by

George M., Stabler

The Brown University Graphics Prcject

CENTER FOR
COMPUTER & INFORMATICK SCIFNCES
EROWN UNIVEFRSITY
Providence, Rhode Island

February 15, 1973

TAFIE OF CCNTENTS

1. Projert CVEAT ViOW.seesseeoossossnossssscssssosssssssssssscsccnssse
1e1 INtrodUCtiON.ssessoossssssseassscsccncsssscsssasssacssse
1.2 MOtivVAtiON e eesesosevessesccscossssssassssnssssssses
1.3 Fxperimental AlMS.esseesvecssvsscsosoacncresssncsssnensne
2. Hardware ConfiguratiOnN.icieeeessenvscososcnossnscsnsscnsnsae
2.7 SYStem OVeIVIieW.: eeesecosconssssossnsssensosasssnnsscosssae
The LOCAl PIrCCOS SOl essscvsassssscsssasnsenssenss
The DiSpPlay PIOCESSCLescsssvssesssnsnsasssnscnssesssoa
The Vector Arithmetic Logic Unit.sesesesavencssssacs
The NDisplay Unit .. eeeesseesssesesrosacssssnnsssas
local PeripheralsS.eeccesasescssossccsoscanssssscnssns

L
-
L]
L]
L] . L] L]
L) * L d)
s o ® o

.
.
QO EEN a2

-
R = % WN) X W= AR WNsO U EwWwN

3. Th perating System for the Meta UA....ceevesessesnssnnasoss il
. Introductionldlt.C.'..I.......'..C'O.......‘CI........1O

Characteristics of the Level 0 Extended Machin€.csseses 11
Prcgram Develcpment SOftWATIC.seesesseessacssssescssssall
Debugging TOClSe se cesesssosssesscccscacnssssssanessscse 13
High Level Lanquage SUPPOFt.ieesscosssseasscnsscsassssell
A: Technical InformatiChesesescesssssossscsssssssssess 1D
The Meta U Processortl,,....cceovacasncscsss
The Vector Generaltll,..ieieesccesscscscnsssnsassssssssslh
The STIMALF eeeaveonooeassvonserscasossssssasssancssnsnsensass I8
B: The Meta U4A Tarqget MAachinN€.eeeseessnssessccecenansl
Informaticon FCIMAt € ereeesasosancscassosssssssansnsseasell
Central Processing Tinit (CPU)sseevecessassssssssnsenself
Toput/0utput Handlinge....cooversooonssvessoossessconcscnell
C: The Meta UP Target Maci i7€..eseessessasssosnssssasl3
General APPILCACh ceeesavsesoassrvcsscrosnssnsssvosnssssssnsll
Central Processing Unit (CEU)uaesevcosveoosovenssconsaces?l
Appendix D: Language for Systems Development.icieisossescenasaneslb
Appendix F: List of Puhblications and ActivitieoS,.eeeesesessnese?lB

Rpfereﬂcas..-o.-.....-..‘--.-g.-....o....-....-o.-o.

Appen

-.0.....0.;15

Appen

.

Appen

A LD D I W W WD NN N

ot.c'.c»ao.v}“

1. PROJECT OVERVIEW

The aim of this document 1is to provide a unifjed cverview of
the current research activities of the Brown University
Graphics Proiject.t The stated objectives of the project's
activities are an investigation into the area cf medium-cost,
microprogrammable, intelligent graphics terminals and the
"division of labor" trade~offs between a mainframe processor
and the intelligent <catellite, A high level systen
implementaticn language and a facility for online symbolic
debugqing of qgraphic data structures are to be prcvided for
system irplementers and vusers. In addition to these goals,
we are alsc interested 1in exawining the impact which
microproqramming has on the design of other aspects of a
graphics terminal, for example, system configuraticn and the
local orperating system design. The following sections give
further detail on the motivation and aims of the project.

1.2 Motivation

For the past seven years, the Grephics Froject at Brown has
been engaged in the develcyment o¢f graphics system and
applicaticn oriented software, This experience, most of
which was gained on the IFM 2250 series of Jdisplays, has lead
us to certain conclusicns,

1.2.1 The facilities offered by the IBFM 2250 display series
are woefully inadequate for a large variety of

arrlications, particularly those requiring
sophisticated real-time interaction, arbitrary
three-dimensional transformations, large or
structured display files, or analecg 1inputs for

display «ccntrol (e.g., swmooth windowing and zooming
on a large drawing with a joystick, tumbling a wire
frame object in three space using a bowling ball).

1This research is bheing supported by the National Science
Foundation, grant GJ-284n1Y, the 0Office of Naval Research,
contract NOCOIU4-67-A-0191-0023, and the Brown University Division
of Applied Mathematics; Princiral Investigatcr: Andries van Dam,
A list of publications resulting frcm this research is presented in
Appendix ¥,

1.2.2 To date only one display has come <close to
alleviating all of these deficiencies: the Fvans and
Sutherland display system [6]. However, the EE&S
system has the disadvantages of being expensive and,
because it uses hardwired 1logic, inflexible for
fundamental investigaticns in architecture tradeoffs,

We believe in 1in an "intelligent terminal" approach,
in which a swmall computer, capable of a nontrivial
amount of lccal rrocessing, is juxtaposed between the
display and the mainframe computer.Z2 We feel such
lccal prccessing is necessary in our environment, as

well as in rost industrial and government
installaticns, because the resources (core, CPU) of
the mainframe ccmputer are nct available on a
fulltime, high pricrity basis. Furthermore, we

anticipate that the 1lccal prccessor can be made
sufficiently powerful tc¢ handle the majority of
interactions hetween a user and his graphics program.
Consequently only occasional service (e.qg.,, data base
retrieval or large scale floating point calculations)
should be demanded of the mainframe computer.,

1.2.3 Finally, much work has vyet to be done in the area of
develoring a rfpowerful high level display instruction
set, There are several areas (interrupt handling,
arithmetic and logical capabilities, display
file/user program synchronizaticn, graphic device
ccntrol) in which the «current repertoire of display
instructions should ke expanded.

—_—_ L RS e R —-—— s =

The design of the configuration described below was, of
course, influenced by such factors as cost, available funds,
interfacing capabilities, etc, However, a mcre important
factor in cur 1investigaticn into possible configqurations was
the requirement that the system be capable of fulfilling our
research needs. These research requirements are as follows,

17.3.1 The capability for stand-alone operations. The
satellite processcr must be powerful enocugh to allov
significant grarphic orerations to run without

2Note that E&S have now partially come atocund the "Wheel of
Reincarnation” [11] with us ty enhancing their display fprocessor
with a general ©purpose instruction set and allowing it to be
interfaced to other computers [7]. However the EES system still

relins on mainframe memory for storage of imnstructions and graphic
data.

1.3.2

interacting with the mainframe computer {(an IBM S/3€0
Model 67). EFver for programs which require the
facilities c¢f the mainframe, it should be possible to
carry out a fair amount of local prccessing (e.qg.,
data base editing) withcut recourse to the mainframe,

Research into graphic instruction sets., It must be
possible tc conmpletely define (cr redefine) the
instruction set fcr the graphic processor or display
system, We should have the widest possible latitude
to implement and experiment with those features which
sheuld be included in a high-level graphics
instructicn set, for example, the direct display of
graphic data from complex data structures,

The ability te implement a wide range of
transformational capabilities. These transformations
include full three-dimensional perspective display
(homogeneous ccordinates), dynamic (real time)
transformaticns such as pan and zoom, and window and
viewport operaticns,

Frulaticn c¢f other display systems. It should be
possible tc use the system to emulate other display
systems, such as the IEPM 2250 Models 1, 3, and 4, to
provide a smocth transition between existing
applications programs and new ones taking proper
advantage of the new features.

Interconnected Processing. The architecture of the
satellite rrocessor should be such as to facilitate
the transfer of programs and data between it and the
mainframe computer. This 1is 1in anticipation of
"division of latcer" studies to Lte carried out into
the optimal assignment of the subtasks of a large
graphics applicaticn tetween the two processors,

Symbolic Debugginq., Creating programs involves two
operations, First, the syntactic definition of the
data items to be manipulated and the semantic
relationships, if any, among these data items must be
defined. Second, the method c¢f transforming this
data from its initial tc its final form, as embodied
for example in a prcgram, must Lke enumerated.
Cebugqging programs involves the availability of
effective, low-cverhead, user-oriented methods that
provide both cowmpile~ and execution-time facilities
for data and program examination and alteration., The
system must facilitate the develcpment of such tools,

1.3.7.High Level Language Suppcrt. The instructicn set of
the satellite rrocessor should be such as tc
facilitate the devel opnment of a compiler capable of
generating code for bcth the satellite and the main
frame,3

2., HAPLWAPRF CONFIGURATION

The confiquration which has been assembled to meet the above
requirements consists o©f two Digital Scientific Meta 4
microprogrammable computers, a Vectcr General Display
vector/matrix arithmetic unit, and miscellaneous
peripherals, ¢ The two Meta U's are designated Meta UA and
Meta 4B and are interccnnected with the Vector General as
shown in Figure 1. The Meta 4A functicns as the satelljte
processor; the Meta 4B is a display processor, transforming

high level graphics ¢frcgrams into a format accepted by the
Vector General.

30 brief description of the language for Systems Development is
rresented in Appendix D.

*A brief technical description of the major hardware components of
the system can be found in Appendix A.

BROWN UNIVERSITY

CORE GRAPHICS SYSTEM
16k x 16 -

900 Nsec cycLE I b

— .

B \/ \} ~ VECTOR

i F (—:__>[< { GENERAL

| META U4a §;7 META Ui 300 NSEC CYCLE

: (CPU) | e (DPU) zN;Z“gZ*X
PROC,
60 | - 90 NSEC CYCLE NIRRT 90 NSEC CYCLE Joy-
— = Z\ — STICK
N | l
_——">IDIALS

| A
i 1/0 BUS -
T ‘ LCL STORE

puy

z Inm
’ L} {} EBGNin6 _EZZIZ::ﬁFKEYS
CARD CONSOLE | .
U Uy e

READER : 7
CTIR STO CTRL

%6x16 <15 Nsed | ALU || ALy || ALy || ALy

NSEC CYCLE FEBRUARY 15, 1973

STMALE (TRANSFORMATION PROCESSOR)

The following sections describe +the functions cf each component of
the system in detail.

_ e R Y R L m Ca S mE s

The first Meta 4 (the Meta Uh) is used as a small satellite
processor for local processing. The instruction set which wve
have microprogrammed for the Meta A is very similar to that
of a Sy367 with additicrs and modifications to enhance the
ability of the processor to meet the needs of the operating
system Aand graphics arplicaticns. S The tasks of this
processor will be:

2.2.1 1I/C to the mainframe computer. Currently, the
mainframe ccmputer is an IBM S/360 Model 67.

2.2.2 I,/C to local perirpherals.

2.2.3 Running user written or system provided routines for
irterrupt rrocessing, data base editing, etc.

2.2.4 Controlling the Display Controller (the Meta UB).

2.2.5 Providing capabilities for stand-alone graphics
applications (thcse nct reguiring the mainframe
ccaoputer).

The second Meta 4 {(the Meta UB) chares ccre with the Meta u4A
and can be thought of as an interface between the Meta U4A and
the Vectcr General. Hcwever, this interface is much more
than a mere data transfer device since i1t has been given its
own general purgose instruction set, ® Much of this
instruction set is identical to that cof the Meta U8A, thus
giving the Meta UA/UE asgects ct a multigprocessor
confiqguration. The differences btetween the two instruction
sets arise from twec sources: instructions in the Meta 42
which have noc obvicus aprlication to graphic data processina
have heen dropped, and a ccmprehensive set c¢f powerful
graphic data display instructions has been added., The tasks
of the Meta UR include the following,

SFor

a brief descripticn of the Meta U4A target machine, see

Appendix B .

6T he

Meta 4B target machine is described in Appendix C.

-6 =

2.,3.1 Fetching Display 1instructions and coordinate data
frcm data structures or tables in core, processing
them (including 3D transforwmations, clipping, and
rerspective calculations), and passing them to the
display unit,

2.3.2 Prcviding capabilities not implemented in the display
unit's hardware, e.g., 1light pen tracking and cursor
manipulatiocon,

2.3.3 Prccessing graphic device interrupts, either by
status switching in the Meta U4E or by interrupting
the Meta U4na,

We have determined that even with the high speed of the Meta
4, it is not possible to provide full three-dimensional
transformations in a reasonable amount c¢f tirme. (e define
"a reasonable arcunt of time" bty the criteria of being able
to display 10N"-2000 vectcrs at a refresh rate of at least 30
frames per second.) Therefore, we have irrlemented an
arithmetic logic unit c¢f cur own design which will provide
the necessary vector/matrix operations.

The STMALF (fcr Super 1Integral Microprogrammed Arithmetic
Logic FExrediter) is a small microprogrammable processor which
operates at a basic «cycle time of 15 nancseccnds and is
closely integrated into the Meta U4B.?7 The functions of the
SIMALY are as follows.

2.4.1 Vector-Matrix multiplication. As each ccmpcnent of a
graphic cocrdinate is fetched frcm core, it is given
to the SIMALF for multiplication by the corresponding
row of a transforraticn matrix which is stcred in the
SIMALE's <scratchrpad memory. These partial sums are
accumulated to fcrm fafter X, Y, 2Z, and possibly ¥
have heen fetched) the product cf graphic coordinate
and the transforraticr matrix. {The total time for
this multiplication will be in the order of 5
microseconds.,)

7A more detailed description of the SIMALE appears in Appendix A.

-7 -

2.4,2 windowing. Fach point or line for display is then
clipped to a user specified window, the coordinates
of which are stored in scratchpad memory.?

2.4,3 Perspective Division. If the user has requested
perspective 3D display, each coordinate is then
divided by its Z-compcnent to form a 3-dimensional
cone of vision,

2.,8.4 The Box Operation. In displaying a hierarchic display
file employing nested windows, the SIMALE may be used
to calculate the new clipping limits resulting from
the composition of the vindow/viewport and
master/instance transformations.?

2.4,5 Miscellaneous Matrix Operations. Since the SIMALE is
driven frorm a writable ccntrol store, the user will
be able toc implement his own matrix alqorithms. 1In
addition, <ince the Meta 4B allows the Meta U4A to
access the SIMALF directly, programs in the Meta 4R
can wutilize the carpabilities o¢f +the SIMALF for
ncn-graphics applications.

The Vector General, which is driven by the Meta UB, is itself
a moderately powerful display processor. In addition to the
normal complement of disrlay instructicns, there are
instructions for 1lcading, ANDing, OCRing, or ALCDing to
internal registers, which can be up to 128 in number. These
registers hold informaticn such as the current bean
coordinates, scale and displacement factors, and analog and
digital infut frcm the varicus graphic devices. The Vector
fenrral is currently equipped with a lightpen, 32 function
keys, 10 control dials, a Jjoystick, and an alphanumeric
keyboari. The functicne of the Vectcr General are as
follows,

2.5.1 Priving the vector generator with coordinate data
passed to it from the Meta UB,

2.5.2 Performing scale and translaticn c¢f coordinate data
for viewport operatiocns,

2.5,3 Passing grarhic irterrupts to the Meta U8B,

8The algorithm wused for the «clipping and windcwing operations was
deveiored by Sprcull and Sutherland[12].
*The Box Operation is also completely described in [12].

-R-

2.5.,4 Accepting analog and digital inputs from the various
graphic devices and holding the information until
requested by the Meta 4B,

e s e o e o T e s e S e i e B i s

The follecwing 1lists the 1I/0 devices which are currently
available to a program in the Meta 4A., Possible future
additions to the confiquration include a printer, a small
drum, and a real-time clcck.

2.6.,1 DSC Model 1444 Disk Storage Unit, The disk unit
provides the Meta U4A with 1 megabyte of online
storage. The disk cartridge is interchangeable with
an IBM 2315 cartridge (used on an IBM 1130 Computing
Systenm). Average access time (seek time plus
latency) is 180 milliseconds; data transfer rate to
the Meta U3 is 72 KHz bytes,

2.6,2 DSC Model 3461 Card Reader. The Model 3461 is a 300
card/minute Hollerith Card Reader.

2.6,3 I'SC Model 4153 Programmer's Ccntrol Panel. The
ccntrol panel for the Meta 4R was designed to be used
with DSC's IBM 1130 emulator, and thus is very
similar to an 1130 control ©ganel. However, the
functions of the panel have been partially redefined
by the Meta U4A firmware to allow, for example,
display of all 1€ general purpose registers and IPL
device selection,

2.6,4 CsC Model 4132 Keyboard/Printer. The
key-board/printer 1is an IBM Selectric typewriter
wvhich has ©been wmodified for wuse with DSC's 1130
emulator.

2.6.,5 The 1Interprocesscr Interrupt, The inter-processor
interrupt (IPI) is a device accessible frcm both the
Meta 4A and the Meta 4B, The function of the IPI is
to allow either processor to interrupt the other with
a halfword of =system or user provided data. This
makes possible ccmmunication between the processors
without the use of core memory.

2.6.6 The 5/360 Interface. The S/360 interface connects the
Meta 4a to a Ss/360 multiplexor <channel, The
interface (together with the Meta 4A firmvare)
functions in accordance with IBM's Channel tc Control
Unit specifications[17] and is non-specific, that is,
interpretation of channel commands is left to Meta u4A
software, The interface allows data transfer between

-9~

the S/367 and the Meta 4A at rates up to 50-100KHz
bytes (depending cn cther channel activity).

e e e e - e

A fundamental decision in the design of the orerating systen
for the Meta U4A was tc discard the more common “supervisor
and management®" agproach, typified by 1IBM's 0.5.[2] and
filnivac's Fxec 8, 1in favor of the ‘"extended machine" or
"structured" approach typified by Lijkstrats “THE" System[5],
TRM's TSS[8] and CP/67{9), and Honeyvwell's Multics[3].

In the extended wpachine approach, the operating systenm
provides a "“more useful" target machine fcr the user by
simulating it om a sispler machine, the host. By this
definition, a micro-programmable machine could be said to
provide an extended machine to the software, and it is clear
that many levels of extensicn are tpcssible, with each
simunlator running on the extended wmachine provided by the
lower level. The first versicn c¢f the operating system for
the Meta U4A, BOGUS (Frown Orperating Graphics Oniversity
System), consists of an extended machine simulator running on
the firmware-provided machine., This lowest level system will
te referred to hereafter as Level (. The "™user" progran,
which may be an application procgram, an operating system or
another level of simulaticn, runs on Level 1.

An ijmmediate effect of this design is to blur the boundary
tetween firmware and software. The user program on Level 1
sees only "“hardware" belcw itself, with the characteristics
of that hardware being simulated by Level # and by the
firmware, It is therefore possible to test the usefulness of
a functicn by implementing it in level 0, and later moving it
into the firmware if that is focund to be appropriate. The
Level 1 prcgram will not notice the change except in terms of
the speed of the function., Thus the extended machine concept
and microprogramming together provide an ideal architecture
for research into exactly what a "useful" machine for remote
graphics (cr many cther things) should look like,

The major drawback to the extended machine approach is that
the extended machine runs slower than would a real machine of
the same type, especially 1in those areas which are difficult
for the host wmachine to simulate, 1In fact, a simulated
instruction may take fifty times as 1lcng to "execute" as a
native 1instructicn (one fcund on the host as well as the
target machine and executed directly). Tt is cur opinion (to

-10~-

be tested by trial) that the architecture of the entire
system makes this ccnsideration less important, since actions
requiring very fast, sub-millisecond response will Dbe
performed by the Meta 4B or by the firmware of the Meta uaj,
or in special <cases could be prcgrammed so that they do not
use extensive simulaticn,

B o T e e L e o e R e e e e e ol o e e R ot e ol e 03 e st e, e i o, i et i s b, s, et

The follcwing paragraphs describe the basic supervisory
services provided bty Level 0., Our criteria for what services
are apprecrriate tc Level 0 approximate the restrictions on
IeM's 0.S. Type 1 SvVC's, that 1is, they must execute in
disabled mode and cannot call any other lLevel 0 routines, (Of
course, as Level 1 functicns become well defined, they may be
added to Level 0 even if they do not meet these preliminary
restrictions.)

All lLevel 0 facilities are accessed via undefined cperation
codes, This feature has two advantages over the more
conventional supervisor-call approach. First, the Meta U4A
firmware parses the instruction and stores the effective
addresses in 1lcw core before causing an illeqal-operation
interrupt. This saves code on level 0 and permits more
natural specificaticn of ©parameters for the Level (¢ routine,
Second, when a 1lLevel £ function 1is wmoved down into the
firmware, it 1is possible for a previocusly assembled program
to take immediate advantage of this fact, that is, there is
no obsolete Level € c¢verhead in accessing the ‘“new"
instructicn,

3.2.1 Storage Management, Level 7 provides the equivalent
of GETMAIN and FREEMAIN instructions for a simple
dynamic stcraqge allccation system. It assumes that a
reserved location in lcw core contains the head of a
free-area 1list, and allocates storage from blocks in
that 1list in such a way as to avoid fragmentation,
It also wmerges blccks into a single entry wvwhen a
newly-freed block is adijacent to another free block.
GFTMATIN uses the SEARCH, ENQ, and DEQ target
instructions to provide exceptionally fast operation.

It is possible fcr the Level 1 program to provide a
mcre complex free-area wmanagement system by swapping
different 1list heads 1in and ocut of the reserved
location in low ccre used by Level 0. In this way it
can provide subpool facilities, multiple user
facilities, etc.

3.2.2 Intut/Output, Level 0 extends the relatively
primitive I/0 regertocire of the Meta 4A to provide

-11~

S/360~1ike CCW {Channel Command Word) facilities to
Level 1, Included are command and data chaining,
rrcgrammed controlled interrupts, etc,

Interrupt Processing. The interrupt processing
action of the Level 0 virtual machine generalizes the
PSW-swap mechanism of the 5/360 and provides the
following facilities.

3,.2.3.1 Allowarnce for an arbitrary npumber of
ipterrurting conditions and exit routines,
both hardware and program defined.

3.2.3.2 Support for dynamic allocation of control
blocks and saving of ™old machine state"
({MSR, EC, general registers) s¢ that the
Level 1 Interrupt Handlers may be recursive
and run enabled,.

2,2.3.3 Cueuing of interrupts which cccur while
they are disabled in a manner defined by
the programmer.

3.3.3.4 BAllowance for interrupt handlers to be
specified for both explicit events and
classes of events, such as one exit for
Function Key 3 and another for all other
Functicn Keys,

3.2,3.5 Allowance for user—-defined events which may
be "signalled" by software. Also allowance
for scftware "signalling" of
hardware-defined interrupts.

To m=2et these gcals, we have generalized the notion
of an interrupt into that of an event. The class of
possible events 1includes hardware interrupts as a
subset, but alsc includes software "interrupts" such
as event notification, Fvery event in the system is
given a 16-bit name which, along with control
information, new machine status, and the amount of
wcrkspace the event routine regquires, 1is kept in an
Fvent Table maintained by Level 0 {the table is
actually a tree). When an event occurs, a Level 0
event handler scans this table to find the
ccrresponding event routine, If such a routine is
found, all necessary linking and status switching is
performed, and the routine is given control, If a
routine for the srecific event is not found, the last
four hits of the event name are zeroed, and the
search is repeated, etc. This effectively implements
the capability noted in 3,3.3.4 abcve. Since the
head of the Rvent Table is pointed to by a low-core
location, it is ©possible for Level 1 to ccmpletely

-12-

redefine 1its event handling =strategy merely by
pointing this lccation at a new Event Table. Also,
priority among events 1is a natural offshoot of the
manner in which thke tatle is searched,

3.2.4 other facilities. Other facilities ©planned for
incorporation into Level 0 include floating point
subroutines, data conversion rcutines (e.g., EBCDIC
tc ASCITI), and real-time clock sugport.

Until such time as an assembler for the Meta UA (and UB) is
implemented, we are using Waterloco's Assembler G (ASMG) for
our assembler. ASMG {which runs 1in the S/360) is table
driven and has been modified +to recognize the mnemonics and
generate machine instructions for the Meta 4A. This gives us
A very povwerful macro-generatcr and a rich assembly language,
In a similar fashion, we plan to modify the CMS loader to
link together Meta U4A object decks and produce a Meta U4A core
imagqe in S/367 core, which we <can then ship across the
interface and store on the Meta U4A disk. This will give us
such features as automatic library 1lcokup of unresolved
names, V-cons, pseudo-registers, REP cards, etc.

We are also in the ©prccess of bootstrapping a version of
PL/3677 Y471 to run locally cn the Meta 43, thus providing a
minimal local high-level language,

A major part of the initial work on the graphics system is
concerned with the develcpment of debugging tools, as users
need to debug programs on the Meta 4A, the Meta UB, the
S/36”, and even the STMALF., Of immediate use is a primitive,
machine-ccde-oriented package for dJdebugging Level 0 code
itself, This is similar 1in function to CMS*'s DEBUOG program,
but lacking some of the mcre advanced features,

For the development of lccal prcqgrams, but mcre importantly,
tc suprcrt the implementation of large applications which
rFfgaire the facilities of both the S/360 and the Meta U4A, a
version of the Language fcr Systems Development [1] is being

-13-

implemented which will prcduce cods for the 3€0 and the Meta
42, When a user ccmpiles a program 1is ISP, he will be able
to specify for which machine cobject code is to be compiled.
In additicn, facilities are being added to the language to
allow, for example, specification that a procedure or
variable refernced ty a program in one machine is tc be found
in the cther processor. This will greatly facilitate the job
of allocating (and re-~allocating) the various modules of a
large application between the two machines,

-14~

e . S . s A ot S o e i i S e At i e . T~

Th
is

[Me
a s

ta 4, manufactured by Digital Scientific Corporation,
mall 1lcogical processor ccntrolled by a random-access

Read-0Only Memory (ROM). The following paragraphs describe
the salient features of the processor,

A.11

Read~-0Only Memory. The control store which drives the
Meta 4 1is an inductive-tyre ROM which senses bit
ratterns which hLave been "peeled" onto special PC
boards by either the wuser or DSC personnel. (An
attractive feature of DSC's BRCM is that it can be
loaded and modified on-site.) The ROM has a 35
nanosecond access time and is available in up to U096
16-bit words.,

Hardware Reqgisters. The Meta 4 CEU can hold up to 11
16-bit integrated-circuit registers. These
reqisters, all c¢f which are directly addressable by
the microcode, can be either general purpcse, memory
access, scratchpad access, or input/output.

Cata Processing lcgic, A nnrmal instruction involves
three buses called the A, B, and D buses. An
arithmetic/Bcolean unit procesces data received via
the A-~-bus and the EBE-bus. The result of an operation
is transmitted thrcough a Skew unit to the D-bus and
thence to a destinaticn register. The arithmetic
unit is a 16-bit, high—-sreed parallel adder,.
Carry-in contrels, tcgether with cverflcw and
carry-out condition bits, allow multiple precision
operations. The Boolean functicns comprise the
logical <connectives ANLC, OR, and Exclusive OR, The
skew unit manifpulates the result of either an
arithmetic or a Boolean creration, rroviding
functions such as right and left shifts of one or
eight bits and sign extend.

Sequence Ccntrol, Sequence Contrcl for the processor
is a program stored in RCHM, Addresses in RONM
instructions and in a special Link register are used
by the branch-ccrtrol unit to shift control between
various Sequences as the result cf testing
operations, Any single bit of any addressable
register may be tested for zero cr ncnzero, B8-bit and
16-bit fields may be tested for zero or nonzero, and

10parts of this descripticn were taken with permissicn from[u].

a self-decrementing register may be tested for zero
concurrently with operations of functional units. An
indexed branch and multilevel execute facility are
available,

A.1.5 1Input/Output. I/0 to system peripherals may be
carried out via direct cable connections to special
types of directly addressable 1I/0 registers. The
sequence ccntrol program may communicate with the
system peripheral equipment through these registers.
There 1is alsc a separate chassis which accepts
standard ccntrollers for various peripheral equipment
on a plug-in basis. No wiring chages are required to
add or delete peripheral equipment, Peripheral
equipment ccontrollers operate on a party-line I/0 bus
cr directly to merory, as applicatle,

A.1.6 Core Memory. Core memory is operated by the control
prcgram through sgpecial registers and controls. Four
standard @memory rorts allow multiple processors or
special equipment to share multirle banks of menory.
Each bank cf core memcry is an independently operable
unit. The prccessor can use additicnal memory
registers <c¢r interleaving to overlap accesses to
several banks, Ccre memcry is available up to 65,536
18-bit (16 data tits plus parity and protect) words
rer memory I/0 register and has a 8450 nanosecond
access time (900 nanoseconds full-cycle).

A.2 The Vector Geperaltl

The Vectcr General Graghics Disrlay System is an interactive
graphics cathode ray tube (CRT) display that may be connected
to any computer system with standard input/output capability.
The display 1interacts with an cn-iine user by displaying
pictoral informaticn on the surface c¢f the CRT and hy
accepting 1inputs from external cocntrol devices. The inputs
are requested and processed by computer prcgrams that alter
and maintain the output gfpicture being presented to the user.
The following paragraphs describe the capabtilities of the
Vector General Systen,

A.2.1 Tnterface and Contrcller. The interface between the
Vector General transmits 16-bit wcrds between the
ccntrcller and the cocmputer's memory. The interface
also passes graphic interrupts to the computer, and
gives the grarhics prcgram access to the 128
reqisters internal to the contrcller (64 of these are

11parts of this description were taken with permission from [13].

_16-

A.2.2

writable). The ccntroller allows register
modificaticn via Iload, Add, OR, and AND instructions,
arithmetic being carried out in rarallel two's
complement, Vector infcrmation is accepted by the
controller in absolute, relative, short incremental,
lecng incremental, and auto-increment formats. The
controller 3includes a line locked frame clcck. The
internal cycle time of the controller 1is 300
nanoseconds,

Coordinate Transfcrmation Generatcrs, Vector General
provides fcur <cccrdinate transformation options, The
first of these, the Dual DAC, merely provides
digital-to-analcg conversion. The second and third,
two dimensional or two dimensional with rotation,
prcvide image scale, translation, and rotation about
a single axis. The fourth option allows image scale,
translaticn, and rotaticn with 6 degrees of freedon,

The CRT and Vector Generator. The CRT 1is a
rectangular 21-inch tube with a display area of 13X14
inches, Deflection is dual electromagnetic; spot
size is 0.,010-inch; and the dynamic range of the
vector generator is 30%30 inches. There are
4096x4n096 addressable 1locations and 16 intensity
levels (plus optional continucus intensity
modulation)., At a 3¢ framey/second refresh rate,

12,000 linear inches cr A,A0C short vectors (D.625%
inches or less) can be Arawn with end matching and
clcsure of 0.020-inch or better, The vector
generator accepts dot, dash, point, and solid vector
modes and performs hardware scisscring.

The Character Generator. The character generator
displays the 192 character extended ASCII set with 32
opticnal user defined special characters., Characters
can be disrlayed in four sizes either horizcntally or
vertically. Characters are generated at an average
rate of 10 wmicroseconds/character.

Optional Contrcl Devices, Ccntrcl devices which can
be connected to the Vector General include a 70 key
alphanumeric keybcard (256 codes), 32 function keys,
a solid state light pen with carpacitive tirp switch,
10 single-turn control dials, a 10x11 inch data
tablet, a 3-axis 4oy stick, and an 8-channel A/D
multiplexer, All c¢f these devices feed analcg or
digital infcrmation into ccntrcller registers which
may then be read by the grarhics prcgram. The
keyboard, functicn keys, light fen, and tablet also
generate interrupts which are passed tc the computer,

-17-

A.3 The SIMALFE

The SIMALE is a swall wmicroprogrammable processor which we
have desiqgned for the purpose of performing vector/matrix and
matrix/matrix calculations which cannct be dcne in the Meta
4B at a sufficient rate of speed. The SIMALE consists of
five 1logical units: the contrcl wunit and four parallel
PIOCEeSSOIS.

A.3.1 The Control Unit. Microprograms for the SIMALE are
stored in a 2%€x16-bit control store which has an
access time of 12 nanoseconds. Instructions stored
in the <control store «contain information such as
which data paths and processors are to be enabled,
the arithmetic or 1logical operation tc be performed,
and the next instruction address. The control has a
basic instructicn time of 15 nancseconds., A small
push-down stack is also 1included to facilitate
micro-subroutine linkage,

A.3.2 The Arithmetic Processors, There are four
interconnected arithmetic processors, each containing
twc work registers, an arithmetic unit, and 16 18-bit
words of scratchpad memory {access time 5
nanoseconds). The arithmetic unit accepts two inputs
which can come from the work registers, scratchpad,
ancther prccesscr, or directly from a Meta 4 1I/0
register. The arithmetic (or lcgical) operation is
performed in 24 nanoseconds, and the result is gated
back to one of the ©possible destinations (which are
the same as the possihble sources)., Typically, all
four vprocessors run independently and in parallel.
Thus, for example, it 1is ©poscible to multiply a
complete row of a matrix (one element of the row is
stcred in each of the scratchpad memories) by a
scalar in nc more time than it takes to do a single
multiplication. (3 full 16x16-bit multiplication
takes an average of 900 nanoseconds.) For certain
windowing o¢perations, the four processors can be
cross connected ty twos to form simultaneously the
sue and difference of pairs cf numbers.

-18-

APPENDIX B:

THE_MFTA U4A_TARGET_MACHINE

B.1 Informaticn Fcrmats

it e e s i i e .

B.1.1

B,2.1

Operands, Information on the Meta UA is stored in
main memory in 8-bit units, called "bytes", as in the
S/360., Bytes may be handled separately or grouped
together 1in fields. The most common field consists
cf 2 bytes, and is sometimes called a "halfwordw,
These halfwords are the tasic building blccks of CPU
instructions and are also the size of the fixed-point
2's complement numbers operated upcn by arithmetic

instructions. These instructions require the
halfwords to be 1located on an even byte boundary.
Dther instructicns operate wupon variable 1length

fields of tytes, <called "character strings"., These
character =strings may be 1located anywhere in memory
and may be of any length,

Addressing. Bytes 1in main storage are addressed
consecutively frcm 10, The Meta U4A uses a 16-bit
address, allowing for a maximum of 64K bytes.

Currently we have only 32K, and addresses wrap from
Xt*TFFFY tc 9. A field of bytes (1 or more) is
usually addressed by its 1leftmcst byte. Effective
address calculaticn 1is similar to that of the S/360
{e.g., Base~Displacement), with some instructions
allowing one level of indirect addressing.

Arithmetic, Al1l arithmetic on the Meta 4A 1is
performed on 16-tit two's copplement binary numbhers
using twec's complement arithmetic. Any overflow that
occurs is ignored in some operaticns (such as address
computation), but may cause a program interrupt in
certain others (such as the Add instructions).

Registers. Instructions can address information in
sixteen registers, three of which serve special
purposes, Registers have A capacity of one halfworAi
and are addressed by a 4-bit number frcm 0 to 15,
Register 0O 1is <called the Machine Status Register
(MSR), Register 1 1s the Program Counter (PC), and
Register 15 is the Stack Frame Pcinter (SFP).

B.2.1.1 The Machine Status Register (MSR). The MSR,
Register n, contains the information

-19-

required for rproper rfprogram ccntrol and
executicn. It contains a 3-bit condition
code, various status flags, and a mask to
enable and disable the various possible
interrurts.

B.2.1.2 The Program Counter (PC). The PC, Register
1, 1is the Frcgram Counter (or instruction
address register) for the Meta 4A. It is

incremented by 2 during instruction
fetching for each halfword of the
instruction fetched, It may be operated

upcn, in all respects, just as any of the
cther registers, although the effects upon
program execution should be chvious,

B.2.1.3 The Stack Frame Pointer (SFP). The SFP,
Register 15, 1is assumed by the ENTER and
RFTHRN instructions (see B,2.2.4) to point
at the savearea being used by the progran
currently in control. These instructions

automatically update the SFP, thus
rroviding an efficient means of progranm
linkage.

BR,2.2 Instruction Formats, The Meta UA has 8 instruction

formats <corresponding closely tc those of a S/360.
Two notable differences are the Indexed-Branch
format, which allcws use of the PC as a base register
(as on an IBM 1130), and the Varying-length SS
format, which allows character operations on strings
of arbitrary length. With the notable exception of
floating point instructions, the capabilities of the
Meta UA instruction set also parallel thcse of the
Sy360, However, several special instructions have
teen added to the instruction set on the basis of our
past experience in grarphics programming.

B.2.2.1 Push/Pcrf. These instructions allcow data
from pmultiple core 1locations or registers
to be placed on a LIFO-type stack in core.
The firmware does all necessary pointer
updating and can cause a stack
overflces/underflow interrupt {or,
optionally, set the <conditicn code) when
the stack limits are exceeded,

B.2.2.2 Search. This instructicn is used to search
a table or a linked list for a key which
holds =scme relaticn tc a search arqument,
The key can bte from 1 tc 255 bytes in
length, The <critericn for a successful
search can be equal, greater, or less than,
or ones, mixed, or zeros.

-2!‘}-

B.2.2.3

B.z‘z.u

B.2.3 Interrupt

interrupts

Program,
detected
following

p.2.3.1

R.2.3.2

Engqueue/Dequeue, These instructions can bte
used tc add c¢r delete an element from a
linked list, all necessary pointer
manipulation being done by the firnmwvare.

Enter/Return. These instructions
implement save area chaining and automatic
storage allocation (and de-allccation).
The Enter instruction is generally executed
as the first instruction of a subroutine
and ascsumes that the SFP (Register 15)
points into a "stack frame"., A stack frame
is a ccntiguous block of storage which is
used by Enter for allocation cof multiple
saveareas, together with fcrward and
backward pointers, and workareas of user
defined 1length, Tf the Enter instruction
finds that there 1is insufficient space in
the current stack frame, a stack frame

overflcy interrupt occurs, and the
operating system can gprocure and link in a
new stack frame, The Return instruction

performs the reverse function, causing a
stack frame underflow interrupt when the
bcttom of the stack frame is reached.

Handling. There are four types of

on the Meta #A: Supervisor Call (SvQ),
1,0, and Sy367. Wwhen an interrupt 1is
and if it is not disabled by the MSR, the
acticns c¢ccur.

The current MSR and PC are stored in two
halfwords in 1low <core, and an interrupt
ccde 1is generated and stored. If the
interrurt 1is an SVC or Program Check, the
Instruction Length Code in the MSR
indicates the 1length of the instruction
causing the interrupt. In additicn, for an
illegal operation Frogram interrupt,
certain information atout the offending
instruction (effective operand addresses,
immediate data, etc.) 1is stcred. {I/0
interrupts are further described below.)

A new MSR and FC are loaded from two other

halfwords in 1low ccre, and execuytion
centinues with this new machine status.

-21_

8'3.1

The "nit Control Plock Table. The UCBT is a table of
halfwords 1in 1low <core, one fcr each TI/0 device
attached to the Meta 4BA. For each device, the
corresponding entry 1in the table ©points to the Unit
Ccntrol Bleck for that device., The UCB contains both
firmware and operating system defined infcrmation.
The firmware uses the UCB to store current device
status and (for the S/360 1interface) information
akcut the current ccommand and sense information. The
operating system can use the rest cf the UCB for such
information as c¢nline/offline flags, 1I/0 request
gueue pointers, etc.

I/ tc Lccal Peripherals., The Start I/0 (S10)
instruction is used to issue I,0 commands to local
peripherals. The operand of ¢the SIO instruction is
apn IOCC (I/0 Ccntrol Command) which is similar in
format tc an IBM 1135 1ICCC. Following execution of
the SIC instructicn, the firmware sets the condition
code to indicate the result of the I/0 operation,
Fossible settings include Device Busy, Operation in
Prcgress, and Operation Conplete, After execution of
the SI0 (also after any I/0 interrupt), the firmware
also stores the <current device status in the
appropriate UCBE.

I/C to the S/360. The Meta 4A ccmmunicates with the
S/360 with three tasic instructions: Fxecute Channel
Command, Transfer Byte, and Send Status. The first
cf these 1is used to request block transfers of data
in accordance with the Channel Ccmmand received fron
the S/36C channel and stored in the UCE for the S/360
interface, The Transfer Byte instruction can be used
to request the transfer of a single byte to or fronm
the 1dinterface, thus enabling c¢perations such as
“"gather-read"® and "“scatter-writen, Send Status is
used to qgive asynchroncus or ending status to the
channel.

..22_

APPENDIX C: THE MFTA 4B TARGET MACHINE

The overall architecture of the Meta 4B is very similar to
that of the Meta 4A as described in Appendix P, The Meta UPR
shares the core memory of the Meta 4A and uses the same
addressing schenmes. Instructicon formats, except as noted
below, are identical, and a similar set of general purpose
registers 1is available. Below are described those features
‘of the Meta UB which give it its graphic display processing
capabilities.

C.2.1 Registers. There are sixteen registers available for
display program use, however, unlike the Meta 43, the
majority of thece are special purpose. Along with
the Program Counter and Machine Status Register,
registers will te dedicated tc uses such as the
current beam rpcsition, cursor address, a Dbase
register fcr paged data structures, an interrupt
mask, etc. As in the Meta #4A, the programmer is free
to modify any of these registers at his cwn risk.

C.2.2 Instruction Formats., Instruction formats are
identical tc¢ thcse of the Meta UA, however many
instructions have lteen dropped from the retrertoire,
particularly the data ccnversion, list manipulation,
and subroutine 1linkage instructions. A complete set
of register manipulaticn, arithemetic, and logical
instructions has been kept, and the following
adiitions have teen made.

C.2.2.1 Branch/Interrupt Instructions. The tranch
instructions of the Meta U4A have been
modified so that a csuccessful test may
result in one of four actions: branch,
interrurt the Meta 4A and stop, branch and
interrupt, c¢r interrupt the Meta UA and
centinue,

Coe2s2.2 SIMALE Instructions, Instructions have
' been added to lcad and store the contents
of the SIMALYF's centrol storage and
scratchpad memcry. A set of vector and
matrix arithmetic instructions has also

been added,

-23-

C.2.2.3 Vectcr General Instructions. JInstructions
have Leen added +o0 access directly the
registers in the Vector General. Examples
of these instructions are Read Analog
Inputs and Set Function Key Indicators,

C.2.3 Cisplay 1Instructions. The display instructions form
the heart of ¢the Meta UB instruction set, and a
special attempt has been made to provide a complete
and powerful set, A particular design aim has been
tc simplify the display cf structured display files.
while the graphics ©programmer is free to keep his
cocrdinate data in conventional table format, display
instructions are availabtle to allow direct display
frcm a variety cf more complex data structures, FEach
display instruction contains the following types of
information,

C.2.3.1 Tata Type. The cocrdinate data being
referenced by the display instruction can
be absolute, relative or 1incremental

vector, or character,

C.2.3.2 Vector Mode, Vector data can be displayed
as solid lines, dashed lines, dotted lines,
or end roints,

C.2.3.3 Display Mode. The display mode refers to
the manrer in which the coordinate data is
to bhe interpreted., Pocssible display modes
include moving to the first point, then
drawing to the second, alternating moves
and draws, moves alternating with
subroutine calls, and a crosshatching.

"Cs2.3.U4 Addressing mrodes. The set of addressing
modes allows disgplay frcm a wide variety of
different data formats, for example tables
of immediate data, referenced data, linked
lists or rings, etc. Fointers to data can
te absolute 16-bit addresses or in
hase-displacement form. In addition, a
paged mcde 1s available in which a page
base register 1is added to all pointers,
This simplifies the ©processing of paged
data structures.

C.2.4 Interrupt Handling. All graphic interrupts which the
Meta U4B receives from the Vector General are kept in
a status reqgister which can ke examined by the
graphics prograe, I1f an interrupt has been
"disabled" by tte graphics rprcgram, the Meta UB
leaves the interrupt pending. The graphics progranm
can then use the Branch/Interrupt instruction to act

24

on the interrupt at a later time. If an interrupt
has not been disabled, the Meta 4P immediately stores
the current status of the systewr in the appropriate
JCB and interrupts the Meta U4A. An interrupt can be

completely disabled by zeroing its enable bit in the
Vector General,

~25-

1SD is a general purpose procedure oriented lanquage with many
of the features and much of the syntax of PL/I. In contrast to
PL/I, however, the language enables the programmer to "get at" the
machine for which he is programming rather than hiding that machine
from him., Thus the wuser can explicitly perform operations on main
memory locaticns and registers; he can intersperse LSD code with
assembly language or wachine language (thrcugh the CODE/ENDCODE
construct). LSD alsc grecvides a variety of extension mechanisms to
permit the user to tailor the lanquage tc specific problems or
programming styles, The language is oriented towards a
knowledgeable and sophisticated class cf programmers who wish to do
cystems programming as well as applications programming in a high
level language. The compiler is optimized for very efficient code
generation,

.SD is designed for a machine like the 1IBM System /360 and
System /377, A number of <c¢cnstructs have been included in the
language because they are present in the System /360: general and
floating point registers, a Translate and Test function, decimal
data type, etc.. Nevertheless the language 1is general enough sc
that prcgrams can be written fcr any machine which is similar to
the System /367" and compile to efficient ccde.

The programper can exercise considerable ccntrol over the code
aesnerated by the «compiler. Ccnversions are never performed unless
the user specifically requests them by calling a built-in function.
Tnstead code will be generated whenever possible regardless of the

data types of +the operands. Thus a substring can be taken of a
flcating point number (the number will be treated as a character
string). The compiler will, however, generate a warning message

whenever an operand type other then the expected one is used or
whenever mixed mode operations are encountered to call the user's
attention tc these 1in case they are errors. If code cannot be
generated for a construct, the ccmpiler will automatically place
one or more no-ofrs at that point in the generated code and provide
a vatch area at the end «c¢f the program. The user can also control
which operands are retained in registers and reserve specific
registers for his exclusive use (the <compiler will not generate
code using these registers). The programmer can ccntrol the
generaticn of code to check for certain runtime errors (e. g.
stringrange) and provide routines which are to be called when
specific interrurts or errors cccur.,

The wuser <can control the degree of optimization which the
compiler will perform and the type of space~time tradeoff which is
to be wused in that optimization. Optimization on particular
variables can be turned cn and off. There 1is a construct in LSD
for indicating which of a set cf possible paths are most likely to
be evecuted., This is used by the compiler in deciding what should
he krnpt in registers and whether expressions shculd be moved out of
loops. The user «can regquest that the compiler generate assenmbly

-26-

language code which will be listed by source program statement. A
programmer car then hand cptimize critical porticns cof his programs
(it 1is hoped that at +the highest level of optimization the LSD
compiler will produce code about as good as that produced by an
experienced assembly lanquage frprcqgrammer),

LSD includes significant enhancements of a number of
facilities available in PL/I. Multiple level pcinter chasing in a
single statement and the use of more then one pointer at each level
are provided, For example, the address of a data element may be
based on the address of a fpage, the relative displacement of a
block from the top of the page, and the offset c¢f the element fronm
the top of the block. Pointers can be variables or constants of
any data type. Other improvements are in the areas of: character
facilities, detbugging facilities, more flexible structure
definiticns, and the glcbal sccpe type for variables,

A PL/T variable is given the data type CCNTROLLED to provide a
stack facility in PL/Y. The only way the prcgrammer can use this
stack is to access the top element To access an element lower in
the stack, the elements above it must be lost, The programmer
cannot access the pointer which PL/I uses to access the variable,
ISD has a data type of STACKEL which extends the capabilities of
PL/I. The lanquage has a built-in function which returns a pointer
to the previous e€lement when given a pointer to an element of a
stack.

LSD attempts to rrcvide many of +the <character handling

capahilities of SNOBCLY4 in a PL/I syntax. There are infix
operators and statements which insert and delete substrings, locate
patterns, and +trim trailing tlanks. Special functions (ANY and

NOTANY) permit the user tc search for any of a group of characters
or for any character except a srecified group.

LSP is designed to be corerating system independent and yvet
provide only a rinimal runtime envircnment. The I/0 facilities are
very limited, Cnly character strings can be inputed or outputed
and the user must do any dAata set initialization (OPEN) which is
necessary. No facilities for multitasking or coroutining are
currently available, althcocugh they may be added to the language in
the future,

LsSD provides a full set cf structured prcqgramming primitives
(the GOTO is also available fcr those who prefer or need it). The
Select statement allows the user to execute one of several pieces
of code derending cn the run-time value (nunmber or
character-string) of an expression, DO WHILES and iterative DO's
are available, The OUTOF and ENDOF constructs kranch to either the
statement following the end of a TO lccp or the END statement of
the loop. The If-THEN-®LSE is also available for binary choices.

-27-

e e . e it i, . e e it . A i i, S o S S . o . i s o i o Y o — T~ o o s i i

Publications and Activities Directly Resulting fromrm National
Science Foundation Grant GJ-28401X and Office of Naval Research
Contract NONO14~67-2-0191-0N23:

"Microprogramming for Ccmputer Graphics"®, A. van Dam, SIGGRAPH,
Vol. €, No., 4, #Winter 1071,

"Software Data Paging and Segmentaticn for Complex Systems"™, Frank
W, Tompa and A. van Dam, Informaticn Processing Letters, Volume 1,
Nuaber 3, North-Holland Publishing Comgany, February, 1972.

"Microprogramming for Ccmputer Graphics™, A. van Dam, SIGMICRO
Newsletter, Vecl, 3, No., 1, April, 1972,

“Some Implementation Issues Relating to Data Structures for
Interactive Grarhics", A. van Dam, Intermational Journal of
Computer and Information Sciences, Plenum Press, August 1872,

"Systems Programming Lanquages", L. Bergercn, J. Gannon, D.
Shecter, F. Tcwpa and A. van Dam, Advances in Computers, Volunme
12, Academic Press, October 1972.

"The Super Integral Microprogrammed Arithmetic 1logic EBxpediter
(SIMALF) ", H. Wehber, SIGMICRC, Vcl. 6, No. 4, 1972,

"Oon the Unfolding of Sinqularities in Complex 2-space. Part 1:
(2**%2,7%«%x3)y%" T, Banschoff and C.M. Strauss, American Mathematical
Society, National Meeting, Dallas, Texas, January, 1973.

"4 Machine and A Language fcr TInteractive Grarhics Satellite
Frocessing", G. Stabler, I.Carlbcm and M. Michel, ACHM
SIGPLAN/STGMICRC Interface Meeting, May 1973,

"Computer Architecture and Instructicn fet Design"®, Paul
Anagnostopoulos, Gary Scckut, George Stabler, A. van Dam and M,
Michel, National Computer Conference and Exposition, June 4, 1973,

-8~

"Operating System NDesign Considerations for Microprogrammed
Minicomputer Satellite Systems"™, John Stockenberg, George Stabler,
Roy Jchnson, Paul Anagncstopculos, Robert Munck and A. van Dam,
National Computer Conference and Fxposition, June 4, 1973..

Invited Papers:

"Microprogramming in Grathics", A. van Dam, Annual SEAS
Conference, Pisa, Italy, September 1971.

"Software Support Packages for the Vector General on [CSC's Meta U4
and DEC's PDP-11", M. Michel, Vector General User's Group
Conference, FJICC, December 1972.

"Microprogrammed TIntelligent 1Terminals and Satellites"™, A, wvan
Pam, National Computer Conference and Expositicn, June 4, 1973

"Computer-Fncouraged Serendipity in Pure Mathematics", C. Strauss
and T. Banchoff, National Computer Ccnference and Exposition, June
4, 1973,

"Microprogrammed Device Ccntrcllers", ¥, Michel and A. van Dam, ACM
Computer Surveys, January, 1973,

Theses:

"On Optimizing Compilers and Generation of Optimal Code in the LSD
Compiler", J. Guttag, Masters Thesis, Brown University, August,
1972,

"A System for Systems Development", R. Pergeron, Phd Thesis, Brown
Mniversity, in preparation,

-29-

Bogks 1in Progress:

Interactive Computer Grarhics, A. van Dam and James Foley, (to

— e A e e i ot ——r i e X AD

appear in the Addiscon Wesley /IBM Systems Frogramming Series),
1974,

Readings in Ccmruter Graghi

published by Academic Fress

A. van Dam and Ira Cotton, to be

Courses:

Applied Mathematics 29: Computers and Art (A public exhitition of
the resulting computer art was favorabtly reviewed).

Applied Mathematics 276: Computer Graphics,

Major Publicaticns Resulting frcm National Science Foundation Grant
GJ-181:

"An Introducticn to TInteractive Computer Graghics", A. van Danm,

Proceedings of Delft Sysposiur on Interactive Computer Graphics,
October 1970,

"A Microprogrammed Intelligent Grarhics Terminal", L, Schiller, R.
Abraham, R. Fox and A, van Canm, IEEE Transactions c¢cn Computers,
July 1971,

“"Programming Language Ccaparison Study", A. van Dam, R,D.
Eergeron, J.D. Gannon, and J.V. Guttaq, U.S. Arry Safequard Systems
Command, September, 1971,

"Language for Systems Development", A. van Dam and R.D., Bergeron,
ACM SIGPLAN Symposium c¢n Lanquages for Systems Implementation,
Cctober 1971,

~-30-

REFERFNCES

1) Berqeron, R. Tani=l, J. Ganncn, D. Shecter, F., Tompa, A,
van Dam, Systems Prcgramming Languages, Advances in
Computers, 12, Academic Fress, (October, 1972),

2) Clark, W.A., The Functional Structure of 0S/360, Part
ITT: PData Management, IBM Systems Journal 5, 1(1966),
30-51,

3 Corbato,F.J, and Vyssotsky, V.A., Introduction and
Overview of the Multics System, AFIPS Conf, Proc, 27(1965S
FJcc), 18E5-196,

4y Digital Scientific Corporation, Meta U4 (TM) Series

Computer System Reference Manual, Publication Number 7032MO,
(May 1971).

5) Dijkstra, BE.¥W., The Structure of THEF Multiprogramming
System, CACM 11,5(May 1968), 341-346,

6) Fvans & Sutherland Computer Corporation, line Drawing
System Model 1 System Reference Manual, (November 1970).

7) Fvans and Sutherl

and Ccumr rperation,
System Model 2 System Reference

c Line Drawing
1, (August, 1971).

)

8) IBM Corporation, Syste
Superviscr Program Logic Ma

rm Y28-2012.

9) IBM Corporatiocn, Control P

1) TRM Corporation, IBM Systemz/36C and System/370 Interface
Channel tc Control Unit Original Eguipment Manufacturers!
Information, Form GA22-6974,

11) Myer, T.H. and Sutherland, I.E., On the Designbof
Display Processors, CACM, (June 1968), u41C-u414,

12y Sproull, Robert ¥, and Sutherland, I.E.,, A Clipping
PDivider, Proceedings of AFIPS (1968).

13) Vectcr General Corporation, Graphics Display Systen
Reference Manual, (July 1¢771).

14) Wirth, Niklaus, A Programming Language fcr the 3690
Computers, JACM, 15,1, (January 1968), 37,

-31-

