Brown University Graphics Systen

Doctor UHemory!?

An Eidetic Memory System

Russell W. Burns
John Stockenberg
Andries van Canm

The Brown University Graphics Project
Division of Applied Mathematics
Box F
Brown University
Providence, Rhode Island 02912

September 15, 1976

1This research is being supported by the HNational Science
FPoundation Grant GJ-28401%, the 0ffice of WNaval GEesearch,
Contract NOOO14-67-A-0191~0023, and the Brown University Division
of Applied Mathematics; Principal Investigator Andries van Dam.

IABLE

1 Intfﬂduction-----gonoa.a-------...-o-n.-o.-o--a---.-.-----..q..

1.7 Hhy Eidekic Bomonyles e wews s o i ie 64 4o &
twl WY BOLTws wa wosws s Said Sake € 55 50 o6 o 55 &
1.3 The ImplementatiONesseeccsessccsscscscsa
1.4 Facilities OVeIrvVieW.seesscsossesssssons

2 Doctor Memory User 1nterfact.svesessssssss
Err{)c Handling.i‘.t.... ® 9 2P 2P BB P Ne P e e
File Creationl‘ 9% ¥ % 9 5 59 % OB SO VN O e DD B OeS

Creating an ATCA.secessssscssssscsssssces
Retrieving an ALle@.cseescessccacensssns
Pointer Manlpulabion oseees v ewpe snsnees
Eeleasing &n DI s s o o os o e 5 o
Disconnecting 4 Tilees sevevs us s e sns

L]

LRSS SRS E SN S S
. e
CNNF W

.

FULLLILY PEOGLANE.sssnisssidnsnssess sneana
3.7 DOCTOR: File Maintainence Utility.....

3 1i 1 CONPEOSHe evw vt wam wowa-e w% wis o 478 4608 H8 58 08 5500 §95 &5
3‘1 Extend.......-.....-;......................---;.
Ju U 3 COPY w5 wos ms 505 50 B9 00 550 00 55 45 8 R 5008 59 206 & Sd Bowie o4 e
D Tolb DOLOBE 6 0 wiw om0 @ 50 004 0 W8 ol s B w0 e e A 9
35 1 8

2 F

w "

L W W o W
i]

LEBUG:
ORIGIN <fileid> {

L] L] L] L) L] - L] *
L] L] e []

\)bdN‘d\)?\JNN(\JM
.

L]

2
3
i
5
I
. 1
2
3
i
5
b
7
8
g
1

4 BOGLOE Mook y Disk Ooganizabdof.es s sm vs ww ws w5 wny 508 % 5
5 Boctor Nemoby Core OrganizatliolNs ee e we s ss 56545 us os 5e

5 Doctor Memory and ProgTralS.cecssssssssscssssenscssacseas

LR IR IR B A]
® % ® e 5035 e B W
® % 9 9 0w 8 B

2 % 88 S p e O G B S

4 ® @ 9 & % ¢ 0 8 9 B
@ ® % B & e st W B WS
Connecting a File tC DOCLOT HeMOTY: ceveossancasasnas
sesnsssssses
% $% NN B
@ ® 5 8 64 9 8 8w 8 a

® 5 % BB 3 509 RS D

® 5 93 59 e e e

8P 0 9 99 OB BB e

® % T 5 O B 0 0 S e e e S

Doctar Nemory Pile Debuguels s we os owswss se
I SEGMENTY Juw umom o mes s 5a e 6 o a5
DISPLAY <key> [Xoffsetd {<1ongthD] e sess seanss us
STORE <Kkey» <offget> <£datad [sveJosnasinvaasen s
GETAREA <key> <length> [<£ill byted>]eeeessannana
DELETE K@Y aiasussesmenssoacssacsasssssascnsosss
LOGIN <fileid> <filename> <Filetypedecsessccsase
LOGOUT [CELLeld) |4 ips w o s o s-0a s 0 o8 S Sae s 5use
ROLLOUT [<fileid> [<segment number>]]iesssscscas

=
(JO-‘l-..n-i-t-:-II.-!IDOut.nt-nln-n.on.l.n..'.ﬂ.

0 _ENI"IA..{...!.Q&.atc-o--nlu....‘oon.so-o-'ao‘ttl

LR IR BB B A A)

L B B O B B)

= wbhon

® 4 0 2 9w B O e

-----a---b
P
. bimmiaw el
AR——
l.'-.llicg

Q

.------.10
....'.’.10

----a-;.11

..-.--1112

T 7.
Vi wEa Gee 12
W s aw 12
o bl e 12
wiim woave wimon: b
e Tp———
s es waw 13
14
14
14
14
15
15
15
15
15
16

LR I I I B
® % s 9w e @ e
® % 99 9 8 R0
2 a2 2@ e s e
® 8 3 20 8 °@
LR BE I B B BRI
® w9 e E 98
*“ 50820 e
LR B B B I)
® 2 @ o8 @ &8

17

21

¢ & B39 9 0w

———,

Abstract

Doctor Memory 1s a software package designed to operate on
the Heta U4A as part of the Level 0 extended machine. Doctor
Memory provides access to disk records in an associative manner,
throngh the use of extended instructions. This operation is a
primitive sort of virtual memory, suitable to small scale
computor systems. A knowledge of the #HMeta U4 Level 0 Extended
Machine is assumed,.

Keywords: Data Structure, Memory Maragement.

1_INTRODUCTION

T B ot i o s o e S e S g e e A e S S

Doctor Memory is irntended for a user who has complex data
structures which he wishes to maintain for multiple runs and
which cannot reasonably be expressed in a sequential form, or
which cannot be squeezed into ccore stcorage.

Onfortunately most nmeaningful graphics applications fall
into one of these categories. The data involved in the
pictoral representaticn ¢f, for instance, a piping system is
radically different from the data needed for a stress analysis
of that system. The idea of variable length records and a
higher level of symbolic access to data is geared towards this
user, The envisiored applicaticns will dinvolve large data
bases with a high degree of interrelation among elements of
varying lengths. :

The 1444 disk on the BUGS configuration is designed for
sequential access to 640 byte records. Any variation on that
size requires blocking, unblocking, worrying about sector
boundaries and head position, and other hair splitting. The
preliminary disk management imbedded in the GMS operating
system for BUGS is designed for handling sequential and randon
access to fixed length records. Mapping from a logical record
address to a sector/offset address is a simple arithmetic
function., Care still must be taken in splitting records across
sector boundaries, as 2 sectors must be accessed for a spilit
records If records are not split, space 1is wasted, and the
formula must be ammended to account for this waste.

The Read and Write Buffer routines of GMS perfecrm this
blocking and deblocking <¢f records, while a read/write sector
routine provides disk syncronization, and LEVELO provides the
actual seeking, reading and writing.

This system maintains one buffer per active file,
providing only one sector buffering and leaving no provision
for buffering according to wusage or buffer sharing among
files, Since record identifiers are directly related to their

-7 -

sequential order in the file, sgueezing out unused records
destroys the integrity of any intrafile pointers which
identify subsequent records.

Garbage collection in a sequentially addressed file, i.e.
a file in which the "address" of a record is dependent upon
its relative position in the file, is neccessarily application
dependent. Any physical movement of a record potentially
invalidates "pointers" in other records., 1Iu order to correct
these references, a detailed knowledge of the data structures
involved 1is neccessary, Freearea management in a file with
variable length records is a book keeping nightmare which
should be available as a system function rather than a
continual vre-invention of the wheel by each application
programmer.

The disk access currently available is used largely for
program storage, Data files are kept 1in a sequential order,
since the mwmost common access is serial. Mest programs must
build and modify their data structures in core.

1e3_THE_INPLEMENTATION

These considerations lead to a re-examination of the
method of bulk storage access and memory management. i
"yvirtual” nmemory system seemed to be the wmost sensible
approach, but the neccessity of accessing large address
wmapping tables for each core access would add unreasonable
execution and system overhead, and the 16 bit wide address
space made the gains c¢f such an addressing scheme minimal.

The solution to this problem was to add a further
refinement to the existing address space. This space is
accessed in an associative manner, with each address
specifying an area, a variable Jlength logical unit, rather
than a particular location in memory. Each area is identified
by a 16 bit key. The high order 5 bits of this key specify the
file which the user wishes to access, and the low crder 11
bits specify the area within that file,

A user may identify one or more of his general purpose
registers to be pointers into this virtual address space. The
address mapping tables are accessed when the user issues one
of the Doctor Memory extended instuctions, the specified area
is fetched f{from dis if neccessary, and the register is
initialized to point to the start of that area. If the data
management system determines that the real address of that
area must be changed, the user’s register (s) will be updated

to reflect that change. Addressing within an_ area works
according to the normal base/displacement scheme.{&he user may
modify his base register to point to anywhere within the area,
and the system will maintain that address.}?)

1. 4_FACILITIES OVERVIEW

For the purposes of this paper a file is defined as a
collection of data identified by an external name (e.g.
WORKFILE DATA). A segment is defined as a physical unit of the
file which 1is read or written at the same time, i.e. sone
integral multiple of a disk sector. There are up to 256
segments in a file, An area is defined as a logical unit tc
the user. Areas are physically independent, although they may
contain links to other areas. An area is isomorphic to a
record in the sense of a datum retrieved from bulk storage by
an external name, but it has an area of core associated with
it. This area actually is the record, rather than being a copy
of it. The vpaximun size of an area 1is equal to the segnent
size. The minimum size of an area is defined by a function of
the segment size,

The abstraction of the area identifier allows intrafile
pointers to be independent o¢f the relative position of the
areas. Garbage collection can be made an automatic incremental
function by allowing areas to migrate within and between
segments in the file. The 16 bit key allows interfile pointers
to retain their integrity through garbage collection. If two
files contain 1links to one another, these links will still
point to the same areas, even though their physical position
on the disk or their relative position within the files may
have changed.

USRS W N I M

G —— —
uth st feg ety

U e R
-y : T

~
v]
T ‘-{,, ytoibr:

or T—=7 areas [v !:c,-.-}‘.-.‘,}

This systen

has basically eight user interface points,

which are implemented as supervisor calls (LOGIN and LOGOUTZ2)
and extended instuctions:

Name

LOGIHN

GETARTA

RETRIEVE
COPYBASE
MOVEBASE

wol _(LOCK
lquﬁkﬁf'
a

RELEASE

LOGOUT

2These functions

level as well.

Function

Identify a file to ke managed by Dcctor
Memory. It establishes a symbolic
identifier for the file, and a mode ot
access.

This function allocates a new area. The

key may be specified by the user, ot
generated by the filing system. In any
case, the length of the area is specified
in the calling =sequence. The address and
rounded length of the area and the
associated key are returned to the caller.

The caller wishes to access the existing
area identified by the given key. The
address and length of the area are
returned to the caller.

The caller wishes to point an additional
register at the srecified area.

The caller wishes to point another
register at t he specified area and
discortinue use of the original register.

The user requires that the specified area

must <remain in its current location. It
may be neither moved nor rolled back to
secondary storage.

The area specified by the caller is no
longer needed by the caller and may be
returned to bulk storage or deleted.

7
The caller no longer wishes to access the
specified file.

are available to the user at the command

2_DOCTOR_MEMORY USER_INTERFACE

2,1_ERROR_HANDLING

Doctor HMemory is designed with the "friendly" user in
mind. Progran checks are issued only in the case of
"malformed" 1instructions. A register specification interrupt
will be issued 1if a register to be modified by the system is
the MSR or the SFP. Protection violaticn interrupts will be
issued upon attempts tc wmecdify a readonly file. An addressing
exception will be issued if the user attenmpts to access a file
identifier which is not logged in. Other errors will cause the
condition code to be set so the user «can initiate his own
@I rCOr Tecovery.

If a register which is currently connected to an area is
specified as a target for a new address, the old area will be
freed automatically before the new area is accessed. All
registers connected by a procedure are implicitly freed when a
RET instruction is encountered,

The LOGOUT supervisor call insures that all areas in the
specified file are copied to disk, If a user program
terminates abnormally the user may issue the LOGOUT ccgmmand to
insure the integrity of his data.

2.2 _FILE CREATION

To create a file, the user should use the LOGIN command.
The syntax for the LOGIN command for allocation is as follows:

LOGIN <fileid> <fileranme> <filetype> (Koptions>

Where <fileid> is a number between 0 and 31 , specifying
the "address" at which the file is tc be attached to Doctor
Memory. The <filetype> operand may be omitted if the user
wishes tc¢ conform +to the convention of naming the type
according to the mode of access. See the discussion of the
<mode> option in the section belcw on "Connecting a File to
Doctor Memory“.

The <options> field is optional if the filename is fully
specified. The options in general contrcl the attributes and
access of the file. These options are specified in keyvword
form ({shortest acceptable name underscored) :

MODE=0O, B, W, or P, for Utility, Readonly, Read/Write,
and Program,

SSI7ZE= segumnent size, in secters {number from 1 to 6).
FSIZE= file size, in segments (number from 1 to 25%6).

RKEY= protection key for read access to file (nunber from
0 to 15).

WKEY= protection key for write access to file (number
from 0 to 15).

" CORE= number between 2 and 256 specifying the number of
648 byte buffers to be used by LCGCTOR MEMORY.

2.3_CONNECTING A_FILE_TO_DOCTOR_KEKORY

Connecting a file to Doctor Memory may be accomplished
through the use of the LOGIN command or through the MLOGIN
supervisor call. The LOGIN command allows greater flexibility,
but MLOGIN is a resident routine with a smaller overhead. The
syntax of the LOGIN command 1is the same for connecting a file
as creating it, with the exception that the SSIZE and FSIZE
operands are ignored., If the <filetype> is omitted, the type
will default according to the mode as follows:

HODE=U, <filetype>:=UTIL
MODE=R or W, <filetype>:=DATA
MODE=P, <filetype> :=DHOD

If the user wishes to connect to a utility file, he may
omit the filenare and specify merely "“LOGIN <fileid> (NCDE=U",
and optionally the size parameters. The LOGIN command will
search for the smallest free utility file which satisfies the
space requirements.

The MLOGIN supervisor c¢all is intended for use by
routines which need to access specific files. It is passed a
parameter list, (see Ligure 1), specifying the file name and
type, the mode of access and the protect key{s) . The "“address"

-] -

at which the file is tc be connected may either be specified
by the caller or assigned by the system (if the user specifies
an address of (X'FF'). The available modes are X'00' for
utiiity, X'"10' for —readonly, X'20' for read/write and X*'30?
for program. If utility 1is specified, the real wode of the
fiie will be returned to the user in the mode field of his
parameter list.

et sk ok
ek ke K LOGIN SUPERVISOR CALL PARAMETER LIST
o e ok %k

e e e

LOGPARWM DSECT
LOGWCH DS

DUMMY SECTION FOR PARIS
WAIT CONTROL HALFWORD
LOGFNPT DS ==> FTLENAME, TFilLE TYPE
LOGFNUM DS FILE NUABER (OR X'FF!

e kool e ess IF TO BE SYSTEM ASSIGNED)

R .

LOGEMODE DS X AOLCE OF FILE
LOGCORE DS X NUMBER OF SECTOR
BUFFERS REQUESTED

LOGKEY DS X PRCTECT KEY
Figure 1 - Login SVC parameter list.

Z2s 4 CREATING AN _AREA

An area nray be created through the wuse of the GETAREA
instruction:

GET AR EA Bb'Rk'K EY fL ENG*IH 1 (’_ Pﬁ"‘?-"“;'(t-\"‘jtzl.'iﬂ'\J 4 A

R 2 2 '(.-ijl"
r T T T- T : 'l: LJT ;—1
| B0 | Rb | Rk | Bk | Dk | Bl | D1 |
== i : IR IS e 1 1 i SRR |
0 3 12 i6 20 32 36 47

Results, normal: An area will be created with the specified
key and 1length; the high order 5 bits of Bk should
contain the required file identifier; i1if the low

- -

order 11 bits of the KEY effective address are zero,
a key will be assigned to the area by the system; in
any case, Rb will be set to point to this new area,
the full 16 bit key will be returned in Rk, the
length of the area will be returned in register 2,
and the ISR will be =set to "success". If Rk is 0, 2
or 15, the key will not be returned; if Rb is 2, the
length will nct be returned.

Results, abnormal: If there is not encugh room in the file for
the new area, the MSR will ke set tc "not success'.

Progran C hecks: addressiung, protection, register
specification.

[e,wi'\",‘. e~ oy
2.5 _RETRIEVING AN AREA
To retrieve an existing area, use the RETRIEVE

instruction:
RETRIEVE Rb,KEY gy (= el clins)

) A : \,
r Rlseme: 7 ED T(T 1
1 60 | Rb | Xk | Bk | Dk i
L L i 1 i 4
0 3 12 i6 20 31

Results, normal: Rb will be set to the start of the area, the
length of the area will be returned in register 2
and the MSR will be set to M"success"; if Rb is
register 2, the length will not be r=aturned.

Results, abnecrmal: If the specified area was not fouad, the
MSR will be set to "not success'.

Program Checks: addressing, register specification.

2.6 _PCINTER MANIPULATION resc™

—— (L o

ut?

Registers connected to areas through RETRIEVE may be -
modified by the wuser/ to point anywhere within that area.
Doctor Memory will maintain those pointers even if the area is/
moved or removed to secondary storage. Pointers to or within
areas may be manipulated with two special instructions in
addition to the normal ones:

COPYBASE Run,Ro

[~

Results: Rn will be pointed to the same area and offset as Ro.
Program checks: register specification.

MOVEBASE Bn,Ro

07 an Ro

O g ==
@ p—
- --....-‘
N s

2 1

Results: Rn will be pointed to the same area and offset as Ro;
the system will no longer maintain the address in
"Ro.
Program checks: register specification.

2.7_RELEASING AN_AREA

To disconnect a register from an area, use the RELEASE
instruction:

RELEASE Rb, (<options>)

¥
10 Rb | opt]
|

[+ [e

i2 15

Where <options> is a parenthesized list {shortest acceptable
form underscored, default first in pair) 3
NOEXPRESS/EXPRESS - indicates whether or not the request
shculd be handled AS:iD (bit 12).

-1 =

NODELRTE/DELETE - indicates whether or not the area is to
be deleted from the file (bit 13).

NOALL/ALL - indicates whether or not all references to
that area {i.e. all registers connected to the area
with RETRIEVE, COPYBASE, MOVEBASE, etc.) are to be
disconnected (bit 14).

URITE/NOWRITE - indicates whether or not the area should
be written to disk (bit 15).

Results: Rb will have bheen disconnected from the area; the
area will have been deleted if requested.
Program checks: protection, register specification.

2¢8_DISCONNECTING

"

~A_FILE

A file may be disconnected from Doctor Memory by using
the LOGOUT command or the HMLOGOUT supervisor call. The syntax
of the LOGOUT command is a follows:

LOGOUT <fileid>

The MLOGOUT supervisor call expects register 2 to contain
a number between 0 and 31, designating the file to be
disconnec tad.

-§1-

e e e

The DOCTOR utility program allows the basic file
maintainence facilities which the user might need. The format
of the comrand is as follcws:

DOCTOR <function>» <parameters> ...

3. 1.1 COMPRESS

The COMPRESS function 1ig intended to allow users to
free up space allocated for a file which is not needed. The
format of the COMPRESS ccmmand is as followus:

DOCTOR COMPRESS <filename> <filetype>
At the completion of the command rprocessing, the file will

be compacted into the smallest possible amount of space,
and any excess will be freed.

3.1.2 EXTEND

The EXTEND function is 1intended to allow users to
extend the size of a file which is full:

DOCTOR EXTEND {filename> <filetype> <number of
seguents to extend>

3. 1.3 COPY
The COPY function is intended to allow the user to
create another copy of an already existing file:

DOCTCR COPY <filename> <filetype> <newname> <newtyped>

'=-12-

3.7.4 UNLOAD

The UNLOAD function converts a Dr. Memory file to
standard GMS format:

DOCTOR UNLOAD <filename> <filetype>

The original file is erased, and a new file with the
same name is created. The new file is in sequential format.
The first record of the file is the image of the LOGIN
command neccessary toc re-create the file. The other records
contain the key and length as the first four bytes of the
record, followed by the data from the area. The record
length of the new file will be the larger of the size of
the largest area ot the length of the ILCGIN command.

The new file may be shipped to the 360 using CHARON

for backup purpecses or manipulated with the editor. It may
be re-constituted by using the LOAD function.

3.7.5 LOCAD

The LOAD function 1is the converse of the UNLOAD
function:

DOCTOR LOAD <filename> <filetype>

The LOAD fuaction will create a Dr. Memory file from a
sequential file in the unlcaded format described above.

3. 2_FILEBUG: DOCTOR_MEMORY FILE DEBUGGER

FILEBUG is an extension to FURD to allow a user to
examine and modify his Doctor Memcry data structure. It may be
entered by the FILEBUG command to FUDD. FILEBUG is a
non-resident ccmmand, but it will remain in core until it
receives an 'END' subcommand. Upon entry, FILEBUG will priat
' FILEBUG HERE ...' and request a sub-command. The subcommands
are described below.

-13-

3.2.1 QRIGIN <FILEID> ['SEGHENT']

v 54 e e e e e

The ORIGIN subcommand sets the default file for subsequent
operations., Whenever a key is specified whose 5 highorder
bits are zero, the default file number is or-ed into these
bits to <form the fimal %ey. E.G. if the user has set the
origin file to 1 and requests key 6, the key used will be
X'0806'. If the 'SEGMENT' coperand 1is specified, the <key>
operands for 'DISPLAY' and *STORE' will be treated as
segnent addresses rather than keys., This operand 1is
intended only for system debugging and should be avoided by
the normal user.

3.2.2 DISPLAY <KEY> [<OFFSEP> [<LENGTHD]]

The DISPLAY subcommand allows the user to print all or part
of an area. The default offset is zero, and the default
length is the length of the area.

3. 2.3 STORE <KEY> <OFFSET> <DATA> [e..

—J

The STORE subcommand allows the user to modify data in an
area. The default offset is zero. Up to four 16 bit fields
may be specified.

3.2.4 GETAREA <KEY> <LENGT H> [<FILL BYTE>]

e 7 el v el S e e

The GETAREA subcommand allows the user to create a new
area, I[f a zero key is specified, a key will be assigned by
the system. The low order byte of the <fill byte> operand
will be used to initialize the contents of the area. The
default f£ill byte is X'00°?.

...1[4_

3.2.5 DELETE <KEY>

‘unction:

The DELETE subcommand allows the usexr to delete an area.

3.2.6 LOGIN <FILEID> <FILENAME> <FILETYPE>

Function:

The LOGIN subcommand allows the user to connect a file to
Dr. Memory. The file will be logged in in utility wode, and
the origin will be set to this file.

3.2.7 LOGOUT [<PILEID>]

Function:

e

The LOGOUT subcommand allows the user to disconnect a file
from Dr. Memory. The default <fileid> 1is the current
origin.

3.2.8 ROLLCUT [<FILEID> [<SEGMENT NUMBER>]]

S s e e s T s e e

The ROLLOUT subcommand allows the user to insure ‘that all
his areas are written to disk. If a segment nunmber is
specified, only that segment will be written out, eilse all
the segments of of the £file currently in core will be
written to disk. The default <fileid> is the current
origin,

‘Il')

The GO subcowmmand returns +the user to the FUDD conmansid
environment, but maintains the origin and keeps FILEBUG in
core.

3. 2. 10 END

The END subcommand returns the uwser to the FUDD command
enviroament and deletes FILEBUG from core.

~16-

The first area of any file, (see figure 2), is reserved for
the use of the access method mapping rcutines, and the GHMS file
handler. The first sixteen bytes are used by the filing system to
indicate file size and organization. The rest of this area is
used by the access nethod tc¢ maintain lecgin information, a free
area map and to translate keys into segment/offset addresses. The
login infomation is a four byte field cortaining the segmeat size
of the file (1 byte), the default mode and protect key of the
file. The free area wmwap contains the awmcunt of free space
available on any given segment., It consists of 256 one byte
entries, one per segment. The remainder of the first segment
contains the first level index map, containing 32 entries, one
for each of the 32 first level keys. Fach of these entries

contains the segment numnber and offset to a second level table.

Associated with this map is a 32 bit first level free map. A
one bit indicates that the associated second level map is full]
and can conrtain nc new keys.

kev (ot 5.15)

[»,_.-_,m.ugj.,_ .,.,,M_.._,Hﬁ‘j'
e n"., ' { T O Wi
5] 9 w0 i=3
>
15c Leven ene Loeo Level mp ¢
[EXRTINES {t‘i Ewraey)
=] P
| o -
Ty e -]
! 5] TLavres E)
. —— ! 3 Bvrer
" S — - . —— e
L 1 T‘-’ l B e A
Ee—~]] s N N N O
i Toe— 1
(o 2o 5 / / :._qA:} /
tever amp) ‘{ G e . J {01‘- Ftr, o, / T
GFF ST frsd€e Anza) ORFIYT oy SEL -
NeE D BFFTers g LENGTRS ANE 1A pusanes Wi Y 3\1\3«'/ T Fecron fen § eGmunr
2 2
FA:] [

17

ok s ke ok

fe ke A
steofe e o ok

3 3 3 e e
SEGO
GMSHEAD

GMSRECLN
GMSRECCT
GHSSECCT
GUSDATE
e A e ok

LOGINFO

LOGSEGSZ
LOGMODE

LOG PROT
sedokdkok

FREEMAP
e s e ole sk

FREEK EY
$1STHAP

MAPENTRY

MAPSEG
MAPOFF

SEGOL EN

Figure 2 - Segment zero format.

SEGMENT ZERO CONTAINS THE

BASIC FILE HANDLING

INFORMATION FOR THE FILE T0 BE PRQOCESSED

DSECT ,

DS cL16 .
ORG GMSHEAD
DS H .

DS H .

DS H .

DS CL6 .

UNUSED 4 BYTES
ORG

DS CL4 .
ORG LOGINFO
Ds X .

DS X .

DS X .

UNUSED 1 BYTE
ORG

DS CL256 .
DS BL.32 .
BS 32H .
ORG $1STMAP
DS 2(: L]
ORG MAPENTRY
DS £ .

b5 ¥ s

ORG

EQU *-~SEGO .

DSECT FCR SEGMENT ZEEQC
GMS FILF HEADER

RECORD LENGTH
RECORD CCUNT
SECTCR COUNT
DATE OF CREATION

LOGIN INFORMATION
SEGMENT SIZE IN SECTORS

DEFAULT MCDE
EROTECT KEY

FREE AREA MAFP

(ONE BYTE/SEGMENT)
FEEF KEY BIT MASK
FIRST LEVEL INDEX

INCIVIDUAL MAP ENTRY

RELATIVE SEGHMENT NUMBER
OFFSET WITHIN SEGMENT

LENGTH CF SEGHENT ZERC

18

|

The second level tables, (see figure 3), will be acquired as
needed by the filing system; they will ©be constucted in free
space in the file, In corder to minimize the amount of space
needed ' for these tables, the relative byte address apd length
will be kept in allocation units dependent on the segment size,
The lengths are expressed in four byte increments for a segment
size of one sector (640 bytes), eight ©Lbyte increments for a
segmnent size of two sectors and so on., The second level table
consists of 64 three byte entries consisting of the relative
segment number, offset and length in allocation units.

Accessing an area will neccessitate indexing into the first
level table to find the appropriate second level table, which
will then be fetched. The remainder of the key will determine the
index into the second level table, and the proper segment will be
loaded into core. The user's register will then be pointed to the
required offset into that segment and his register table updated
appropriately.

An attempt will be made to keep free space on any given
segment contigquous. Lengths defined by the user will be rounded
up to the basic units of the space alleocation algorithm. A rea
migration may be used to wminimize Efragmentation and to place
records which are used together on the same segment or adjacent
segments.

-19-

oA okok ok

sl o e s THE
ot sk e THE
ok ok ok OF
ek ok Aok

KEYSEG DSECT

AREAS IN THE FILE

zr

SECOND LEVEL INDRX SEGHMENT({SY CCNTAIN
RELATIVE SEGMENT ACDRESSES AND LENGTHS
THE

DSECT FOR KEY SEGMEWNT

KEYTABLE DS 6UCL3 . SECOND LEVEL KEY TABLk

ORG KEYTABLE
AEY ENTRY DS CL3 . ACTUAL KEY ENTRY
‘ ORG KEYENTRY
AREASEG DS X . RELATIVE SEGMENT NUMBER OF
AREA
AREAOQOFF DS X . CFFS5ET WITHIN SEGMENT
AREALEN DS X o LENGTH OF AREA

ORG
KEYSGLEN EQU *~REYSEG LENGTH OF SECOND LEVAEL TABLE
Figure 3 - Second Leval Index Segment.

-20 -

5_DOCTOR_MEMORY_ COEE ORGANIZATION

The main memory control blocks of Doctor Memory serve as an
interface between LEVELO and LEVEL1 modules, and to allow speedy
access to often used areas and segments., A roct pointer to these
blocks is in the third word of the disk UCB. This root pointer
indica tes the address of Doctory Memory's OFFICE, (see figure 4).
This block contains first the information for LEVELO to access
its pame table, then information about the free area maintained
by DRPD. Finally, the rest of the block contains the nane table
itself.

Each name table entry corresponds to a file identifier under
the control of Doctor Memory. It contains the name and mode for
DRPD, the sector starting address of the file, the length of
segments in bytes, a pointer to a GMS Active File Table entry for

the file, and a lock word.

T o

e o ¢

Aok 4k THIS AREA IS GRETMAINED AT THE TIME OF THE FIRST LOGIN
kK K AND FREED AT THE LAST LOGOUT. IT CONTAIKS INFORMATION
Fede o ok COMMON TO ALL PHASES OF LOCTOR HEHMORY AND DRPD. THE
ok Kk THIRD WORD OF THE DISK UCB POINTS TC THIS AREA.

Heok 3k el

OFFICE DSECT |, DSECT FOR RESIDENT AREA
OFFICEHD DC A (FILEMAP) ==> TO MAP OR LDUMMY ELEMENT

, DC A(32) NUMBER OF ENTRIES

HAPEDB DS CL8 EDB TO SEARCH BY NAME AND MODE

FREELIST DS A ==> TO START OF FREE AREA
FREELEN DS H LENGTH OF SAME
DRPDEND DS A ==> END OF DRPD AREA
DRPDSTRT DS A . ' ==> START OF DRPD AR EA
DEPDLENG DS A . LENGTH OF SAMNE
DS F/ UNUSED
FILEMAP DS 32CL16 . NAME TABLE
ORG FILEMAP
MAPSEL EC DS CL2 . SELECTICN WOED
ORG MAPSELEC
DENAME b5 X . FLILE NAME
DRMODE Ds £ . FILE MODE OF ACCESS
RO EQU 16 . READ ONLY INDICATOR
FILESTRT DS A . SECTOR ALDDRESS OF START OF
FILE
FILECNT D35 A . SECTOR COUNT
FILESIZE DS Ao LENGTH OF SEGMENT IN BYTES
FILESTAT DS A . STATUS BITS
FILEGMS DS A . ==> AFT FOR FILE
FILEUNIT DS A . SEGMENT SIZE MULTIPLIER
FILELOCK DS A, FILE 1O0CK WORD
ek e ok {LOCKED BY EXTENDED OP ROUTINES)

ORG
OFFICELN EQU *-0FFICE

Figure 4 - Doctor Memory's OFFICE Layout.

6 _DOCTOR_MENHORY_AND_FROCGBAMNS

One of the purposes of the 16 bit arca identifier is to
allow programs to be dynamically relocated with a minimum change
in programming convention, A "™hbinder"™ ©program can translate
external references tc a form usable at run time, directly
replacing 16 bit VCCN's with 16 bit keys. The programs to be
accessed are placed 1in a program library in executable form by
the binder,

Certain programming conventions must be adhered to in order
for successful relocation cf progranms:

1. Programs must be serially re-usable .,

2. Programs must be self-relocating, i.e. they wcannoct
contain data (e.g. address constants) whose value is
dependent upon program location.

3. There will be some maximum size Ilimit placed on CSECTs to
be re-located, perhaps 1280 bytes. _ 7 qbn

— The facilities for managing the program counter exist, but

the flow of control through calls and returns has not yet been
established.

-23-

PRES: Direct readout. Dr. Memory, [UHCLEM].

CLEM: Thank you, thank you. Now Doctor - I'm speaking to
you, Doctor ...

DR M: MMMMMMMMWNN?

CLEM: Something the leprechauns asked me when I was a sprout
in Indiana has always puzzled wme. Doctor? Question.
Evaluate, Why does the porridge bird lay his egg in the
air?

I Think We're All Bozos on this Bus
Firesign Theater

