r . Al
i BUGS |
2 3

Brown Universitv Graphics Systenm

FUDD Debugging Packagel

Russell W. Burns

The Brown University Graphics Prqjéct.q
Division of Applied Hathematicél ‘
: Box F
Brown University
érovidence, Rhode Island 02912

January 26, 1977

1This research is being supported by the National Science

- Foundation Grant 6J-28401X, the Office of Naval Research,
“Contract NOOO14-67-A-0191-0023, and the Brown University Division

of Applied Mathematics; Principal Investigator Andries van Daunm.

RIF

'DISPLAY' <address> [<lengthd> b SEY PR} Toi o dmie, 40 s cos, e 58 B SR
'STORE' <address> <data> [<data> [<data> [<data>]]Jeecccosaceed
'lFER' (addreSS‘1> (addKeSS"2> [<1ength>]ooon-;jtf---.oo.t.auolﬁ

4.2 Prograw Manipulation COMMANAE. cvenssvavosccosconcesoscnnceseh
.EELETEF (lOﬂﬂlE);-..-d,.......-o-‘........-...;.p;.......--..-ﬁ
'LOABHOE. <m°d‘ule‘>‘........' L LB O B I I) .‘.....7’...:.._ ...-..‘....‘..6
'-H-AP' <m0dule> -[<Start>]..'.........‘..‘.'."'.....'...‘...'....6
'ZAP' <m0d01€>'[<csect>]......-.....c--.-..-..........-.......-6-

4.3 Execution Control.......a..-.---.-.-........5;4;....-..-....7
'EBEAKPT. <aldress>‘....'.........'....'.-........ﬂ.........-....v
.QHECKPT' <aldress> [(cpu'id)]i-.l-t......;.o..qu;OQOQIOIDQIOOT

.go..l...l...Il..l'.l.l.l...-...'l.l..'...-.t...I..’I-.....I...'.a
'BALT. <cpu_id>..:l-..l.....ﬁ.l.....l‘.'.....‘".."..l......l.l...a
'lPL.......-...-.-_.lll.lﬁﬁl..-.'..‘I.....l"...l""l-.l.i.-l"‘.-..s
4.4 Symbolic Debuggirg Ccmnands................;................8
'BEEINE' (lab91> [(adﬁ[ess)].....-..-...........;}......-.....98
'ZEST' <m0dule> .Q_....,'.l..!I.I.............‘.OV.O........I..'..lle
'HHERE' <address> [<tyfpe> [(add[ess-2>]}........,..............9

4.5 Systel Conmands........-......-‘..-.--...-gm.;........-.--..g
'gILEBUG'.-onmi!{cm;ccoatoqoocno.-o--o-ounocn.cnonpa..c-oat-a.og
'QQS' (GHS-COIEaDﬂfStting>.....q.....-.....---...1.-.-.-...----9
'g“ <“hat> (hOH)--aqn-.n-.o.u.bpao-anoouan-.-.ot-.po-.oouo.o-cog

5 Salple Ieriual Session...-...i’.....'l..I....C..-I..-l.....‘...O.10

-i=

BUGS:

FUDD:-

"Eh, Hhat’s.up Doc2"

"You'we a shwewd chawactew
I'we gct you now!®

he Fuddian Dialogues, page Vi.

uistéw Kabbit,

but

The GMS command FUDD2 is the Level 1 interactive debugger
for ‘the BUGS multiprocessing £ystem. FUDD 'is not a resident
~Troutine during normal execution. Only a small root segment is
active in the system at all times. The main portion of FUDD is on
the disk. Whenever an undefined interrupt occurs, the root module
fetches the main . portion of FULD f£rom the disk and starts its
execution. FUDD . gives the user the akility to-display and store
the five different storage types avaiiable on the system and to
control execution of his Program. - ;

The syntax of the FUDD command language is tailored to allow
the user access to all storage cn the system. Since the systenm
contains two distinct and powerful CPU’'s, - the origin systenm
{appropriate to . @ simplex operation) has been scrapped, but the
useful farts have been kept. Expressions may be used for
addresses and lengths, and a Proyrammer may sit down to debug his
program without,needing a pencil to subtract and add addresses
etc. by hand. That is, after all, what computers (usually) are
good at, . : o

The BREAK and CHECK POINT facilities allow the user to have
up to sixteem break pcints andyor check points active at any
given time. It is also posibkle for the user to include
checkpoints in his ~Program so that he or She camn display or
modify values during execution, The full capabilities {within
core storage limits) of GNS are available to the user while under
the control of FUDD. Some of the GMS ccmmands are available
directly (QUERY, MODHMAP, LCADMCD, DELETE, and MODZAP) and the
rest may be accessed through the Gms command. t s

2Name courtesy of Susan Beckley,

2.C CQE!A&D-ﬁ!ﬂI&E

The commands consist of a commanpd name, which may be -
abbreviated, followed by one or more parameters,‘separated by
blanks, There are three general types of parameters, the first of
these types being a literal, Literals are used for label names
(<label>) and CPU identifiers (<cpu-id>) . The only valid
Lcpu-id>'s ‘are 'A' and 'B'. Any character string up to eight
characters, beginning with an ialphabetic fcllowed by letters and
numbers may be used ‘as a label.

The second type of parameter is an address (<address>).
Addresses have both a value and a type. The type is determined by
the first value ‘in the address string. These types are A-CPU
rQQ1ster, B-CPU register, Vector General register,. Local storage,
and Main .storage. The rules for combination of these storage
types are not rigorously defined, but seem to be convenient for
the sort of things which the ncrmal (and even.abnormal) user
might want to do while debugging his program. Any complaints
about these rules should be written on the walls of the Faunce
House men's or ladies? room. o

The A-CPU registers: are specified by ?R*', 'A', or 'AR'
followed by a decimal or hexadecimal number. B-CPU registers are
specified by *B' or *'BR' followed by a number, and the Vector
General registers -are indicated by 'V* or 'VR' followed by a
number. Local storage is specified by 'L.? followed by an
expression. Unless a register 1is specified first. in an
expression, its contents rather than its number are used in
congputing the final address. 4

Both decimal and bexadecizal constants 'may be used in
address expressions. Hexadecimal constants are specified by
prefixing '/' to the number. Tke first ncn-valid character is

treated as the end of the number. The parameter scan continues

from that point, ulthout demandan an operatoz..

Any btrxng not recognlzable as one of these types 1is
considered to - be a label. Labels have three methods of
definiticn; first, the external mames of all loaded modules are
automatically entered in the label table; second, upon each entry
FUDD automatically defines the labels 'A*' and ‘'B' to the
beginning of the A-CPU most currently loaded routine, and to the
start of the current B-CPU procedure respectlvely. third, labels
may be added to the label table through the use of the DEFINE or
TEST commands. .-Labels and constants always ‘have the type main
storage, and gn, address expression startlng_ with these will

define a main storage address. Labels which are not first in an
expression must be preceeded by operator. The valid operators
for-expression.are-'+! and *=?, yith v+ being the default. Since

the scan: continues after a number . with the ' next character
regardless of whether or not there is an operator present, many

common exrressicns may be abbreviated.

The 'L.' storage designation nmust ~always be first in a
address string, and may not appear im any other conjunction.

Examples of valid addresses:

R1 ==> A~CPU register one

BRY4 --> B-CPU register four

A --> address of A-CPU routine

L./43 --> local storage word X®43¢ e

4R1 --> four past the contents of register one

B+4 --> four bytes past the start of the main *B’ procedure.

- The third type of parameter is the length (<length>) or data
{<data>) type parameter. These may be specified in the same
manner as addresses, with the 2xception that the contents rather
than the address of registers always are used. Lengths are always
considered to be in bytes. '

- S T S S e i e S

‘FUDD may be invoked in many ways, but only two are totally
under the control of the user. The first of these is to enter the
FUDD ° command to GMS. FUDD will respond with the message 'FUDD
HERE ...' and request a command., The seccnd method, which should
be used only when the first is not posible, is to depress the
interrupt key on the 'A' panel. FUDD will respond with the
message: ' o o : -

A:I/0 IMNTERRUPT~-(2531)-PANEL AT XXXX.
Where 'xxxx' is the address of the currently exécuting routine.

For debugging routines which use GETMAX, it is advisable to
enter the FUDD command before starting the program. This will
insure that there will be sufficient core available for FUDD to
be loaded. '

Once ianvoked, FUDD will remain in core until' the next IPL,
to allow the user to .use PUDD during his prcgram test phase, and
to define global 1labels which will remain in force until IPL. A
production program need never compete with the debugger for
resources, but test sessions =should begin with . the use of the
PUDD = command. If PFUDD initialization fails, the machine will
enter a disabled wait state, with X'FODD' in the upper lights,
the name of the event which caused entry to FUDD in the lower
lights, and the Program Counter set tc the address where the
event occurred. - :

The FUDD commands are hore divided into rfive ma jor areas:
data manipulation commands, - precgram manipulation commands,
execution control, symbolic debugging ccmpands, and system
commands. In each section, the commands will be 1listed in
alphabetical order, preceded by the syntactical detinition of the
command. The command npame will be expressed in single guote
marks, with the shortest acceptable fcrm underscored. Brackets
around parameters indicate that they are optional.,

Address operands for DISPLAY, STORE, and XFER are rounded
down - to the nearest halfword before the data is accessed.
Lengths are always rounded up tc the nearest halfword.

'"DISPLAY' <ADDRESS> [<LENGTH> [<TYPE>]]

The specified lccation or register is displayed at the
terminal, for the specified length., The default length is two
bytes. The <type> parameter may take the value X {default),
which displays the data in hexadecimal form; it may be 'pe,
which displays in decimal; if 7y js specified, the character
translation as well as the hexadecimal is rrinted; and if

is specified,” the number is printed as .a signed decimal
fraction. , - L.

"STORE' <ADDRESS> <DATA> [<DATA> [<DATA> [<DATA>]]]

The ~ specified two byte data fields are placed in the
specified location, and in accending locaticns if more than
one data field is specified. Up to four data fields may be
specified, delimited by blanks.

"XFER! <ADDRESS=1> <ALDRESS-2> [<LENGTH>]

Halfwords of data are transfered from <address-2> to
<address=-1> for the length specified (default two bytes). To
insure against accidental disruption of the data in the
machine, the maximum length which can be XFER*ed is 256 bytes.

'DELETE' <MODULE> =

The DELETE command operation is identical to the GHNS
DELETE command. . : :

*LOADMOD' <MODULE>

The LOADMOD coumand operation is identical to the GHMS
LCADMCL command. ot A

"MAP' <MODULE> [<START>]

The MAP command is identical to the GMS.MODMAP command.

VZAP' <MODOLE> [<CSECI>]

The_ZhP command'isridentical to the GHS.HODZAP command.
. ‘ : ! ® '

4.3 _EXECUTION CONTROL

— —

"BREAKPT' <ADDRESS>

'EREAKPT' (bredkPoint-id) 'OFF?

The BREAKPT command causes FUDD tc break execution of the
Erogram at thenspecifged address. A break point identifier is
associated with this address shich is printed after the break
point has been set, If '0FF! is specified, the break point
identified by the <breakpcint-id> is removed. When a break
Eoint is executed by a problen program, FUDD will be entered
and the user -pay modify storace or his registers. If a BREAK
supervisor call {SvcC 244) is assembled intc a Frogram, it will
act as a check point, allowing the user to display or modify
data in his program and continue, =

"CHECKPT® <ADDRESS> [<CPU-ID>]

'CHECKPT' <breakpoint-id> Q7!

, A check point will be set at the specifie& address. The
default <cpu-id> will be tte 'A', Different instruction
lengths on the two machines make it neccessary to specify

which machine to prepare for. Although breakpoints are removed

wvhen executed, checkpoints must be explicitly removed.
Hints:

If checkpoints or breakpcints are to "be placed on
sequentially executed instructions, they should be specified

in the order they will be execcted.

Checkpoints should not be placed on kranch instuctions or
any others that modify the program counter. They may be placed
on CALL or BAL instructions if the routine called will always
return to the intructicn following the CALL or BAL.

: Execution is re-started in both CPU's, and FUDD goes into
a dormant state., Execution is ccntinued where it was
interrupted, unless the user has modified the META 4A's PC or
the META 4B's PBR/PDR. ' :

'HALT' <CPU_ID>

The HALT command ‘causes all execution to halt in the
specified CPU, except for that neccessary for FUDD to operate.

!_I-PL L

The IPL command causes FUDD to force an Initial Program
Lcad of the systen.

P e

4.4 SYMBOLIC DEBUGGING_COMMANDS

'DEFINE' <LABEL> { <ADDRESS>]

The DEFINE command allows the user to add, change and
delete entries in the FU9D symbol table. If no value is
specified for the label, it is deleted. If tne value is
specified, that is made th=2 new value of the label, and the
cld value is printed out if any. ' -

*TEST' <MODULE> ...

: The TEST command may be used tc locad routines to be
tested and to define all external labels in those routines in
the symbol table. If the name(s) gyiven is already defined by
either being an active progran or through use of the DEFINE
conmand, the routine will be treated as thcugh it were already
loaded, and the symbol table value will- be used as the
starting address for resolving the displacements within thae

e

module (e.yg, to ~define the proper labels for LEVELO, define
the label LEVELO as being location 0, and then TEST LEVELO).

'"WHERE' <ADDKESS> [<TYPE> [<ADDRESS-2>]]

The WHERE command is used to display where an address
lies relative to any other address. The default type is
relative, which will display shere the address is relative to
the arpropriate module if possible., If 1A' is specified for
the <type>, the absolute value in hexadecimal of the address
will be printed. If <type> 'R' and a second address
(Caddress-2>) are specified, the displacement from <address>
to <address=-2> wlll be printed as a signed hexadecimal value.

4.5_SYSTEM_COMMANDS

"FILEBUG®

The FILEBUG command catses FUDD to call FILEBUG, the
Doctor Memory file debugger (vide the Doctor Memory manual for
details).

'GMS' <GMS-COMMAND=STRING>

The GMS command allow access to any GMS command not
already defined by FULCD. 'GMS' must merely be appended to the
GMS command, e

"0' <WHAT> <HOW>

The operation of the Q command is identical to the GMS
QUERY command, althcugh mcet o©f the operands are nmore
meaningful when entered during debugging.

S_SAMELE_TERMINAL_ SESSION

The following is a sample: session, with the user's entries
in lovwer case and the FUDD respanses in upper. ﬂetd-conments are

in brackets.

> 1 fudd
FODD HERE ...
1 progranm

3co00 _
-define a progranm
A AT 3C00

-break a+/10
BREAK PCINT Q000
-wh a+/10
PROGRAM+/10
>program

A:BREAK POINT 0000 AT 3C10
-where r1
PROGRAM+/10
-display 5 2 t
C2FF <B.>

-st £5 /c2c2

-st r6 rb5

-d £S5 4 t

C2C2 C2C2 <BBBB>

[énie: EUbD éonﬁand]

{ LCADMCD PROGRAM]

[define label *A") :

[put break point at A+X*10*]
[verify location of break point]

[return .to GAMS)]
[start program]

[inquire as to location]

[display RS in hex and character]
[store X*C2C2' in RS]

[put ccotents of R5 in R6]

[display RS and R6é im hex and
character }

[continue execution]

-19-

