[|
| BUGS |

e T

Brown University Graphics Systen

LEVELO Extended Machine!

A Progra

=]

Logic Hanual

Russell W. Burans

The Brown University Graphics Project
Division of Applied Mathenmatics
Box F
Brewn University
Providence, Rhoda Island 02912

September 15, 1978

1This research 1s being supported by the HNational Science
Foundation Grant GJ=-28401X, the Office of Naval Research,
Contract NOOQ14-67-2-0191-0023, and the Brown University Division
of Applied Mathematics; Principal Investigator Andries van Dam.

Abstract

LEVELO is the nucleus program of the BUGS extended machine.
This document describes the 1logic and organization of LEVELO. Tt
is intended for use by systems programmers debuyging and
modif ying the operating system as a guide to the code., A thorough
knowledge of the META 4A Principles of Operation and the LEVELO
Extended Machine Principles of Operation is assuned.

TABLE GF CONTENTS

1 Intxoauction.-.......-.-..---.------c-----o--oa-----.-.-.-.-.---1

2 The SUPOLViSOLuwsssesesesnssssnssssacassanssasssnsssssnsssssssns
2l DISPABEHOT 3 e ww s s 59 59 05 805 00 50 $58 ©8 508 B8 506 S8 w0 0 W SIS W R R S8 s
2.2 Prodgran ChECRkSesseas ose vies o696 a8 a8 4/ 56 o) aie s o0 8¢ a/e 9a 54 00 wawew
2.3 Extelided InStrUCLIiONS(: some 465 8% o0 54 0.6 0.5 o0 28 208 00 08 0o o a0 &ia ¥e

.3.1 Execution Contrcl INsStruCtiONSesesssessescsssscssesssasssd
2+3.71+71 SIGNAL: The SChedUuler ccsscsssseesscnsscasssssssossssne s

243142 RAIT: Suspend EBXECUELON. ew ws »s v s we s s e o we s0e 58 98 woe

233+ 73 POST: Conitifive BXecUli ofiee s s se ps as ore ais 6 556 855 908 38 5% &89
2. 3.1

2.3.1

Wik N

.L' F\}T‘ Subroutine Entry.‘.‘-.‘l---"llOl....lﬂb......llﬂs
B BRETF SUDToutine BXite esiineisnesd asasweiyseve s on s e oeb

[\S]

e
ro*
U.

= ata ManagemenNteeecesessesscssssessssnsacssannsnsancnscss/
2,3.2,1T GEF: Get Controiled STOTAGE. ss sy ve v s saws e en s o won oow T
2.3.2.2 GETMAX: Get Maximum Ccontrclled StOragleecevssssssesssssB
2+ 3.2.3 FREE: Free Controlled StOrag€eccesscssssscssnsnansescasd

2.3.3 Interprocessor CommunNicationSeescessscsssasssscssssssnssssll

+3.7 INTB: Interrupt META UBccinevasesecsssnsnscsnsanssnsns 10

. ONtrol BlOCKSeeessessesesccssssscnnesscscnsncssnsnsnsncssasnsses 10

281 Stack Frame Headelu. ses s sn s s sswnae vy ee wn sy oy ss s eseas |0

— 2ol8.2 Stack Fral@sessssssssssncssnssnssssannsassnsanssesssanss 12
2,443 CPU Unit Control BloCKSeasssssensssssssssssnnssssssnssss 13

2-”’.73.1 A-CPU.’I.I.‘CQQ.. !!‘.I.........ll..l'..lll.l..l!...-l13

Reglister USAQCes se v sws s sos 63 s i aie o sew 6 sn 8w ses e 5 v e s oy soe w1
isPatcher...1&
1 EBXCP BoutllBS. s sursssssnsnassniisnsnsssnesanavssssssnas]d
2alall COMNSTOmanassasnds seansnunsnsassinhnsnsnsvsminassnsuswdd
s 2 Va2 COMBDY G ow oa aue am vom mue win srmimim see e i somie @il #ud son o 8 @ oob bdis min s 19
vewd LAEGEEURE HoUbIimES . svwes sie gvms e swe m e sy see e v wws e s wew | B
«2¢3 META 4B Interrupt ProcessSing.cesseessssvessassnssacenens 1B
3 BEXCD ProCOSEINGase va vsas e win o a8 0/e8 o ¢ 9/8 84 66 %6 &0 $08%s0 wesussy 19
sl CPC Processingesss e ens smeee a6 es6s8aess e neeesewssswsesvssself
3.4.1 Unit Dependent RoUtineS..sssssssessssssossccscsssvsssseass 18
I/0 Interrupt ProCesSSiNgesssssessccssnscsssncsscsscssnsscansslB
Timer COntroliccessassssancsenssnsasnssssnsnsnssssanssssasns 19
6.1 Timer Interrupt Routin@.ssessvresnvsanssssssessssnseseses 19
o842 QTLINER INSELUCTION s ews o sssim om v sin ais wu wiw wim o0 o0 w0s woww o 0w 13
5 0x 3 UPTINER ROULING S aw va wis v /% 5w a6 o0 §50/s % s 808 #9608 06 379 516 06 €5 9 9 20
347 CONLTOL BlLOCKS: onswivn s ubnsses s o8 o5 o ne 5% o0 5o 478 08 416 00 vess e L]
37«1 Unit Control BloCK.issssssssssnsnsnsannsasasnsssanssnss ol
3 1.1 BUGSUCB MACEO ssss ssnsnessannnsnnsssossnsesnsssssisssesll
Ju7.1.2 Pimer UCHB ExXtensSiol.ccuveesvesesvssnonssovnsessnassaenvedd

3 1/0 SUPRLViSOLacesnss sscasssscsscasasescscsssonssassncsssssonsssss |4
1
2

L
m)N'

1_INTRODUCTION

The standard LEVELO module is assembled from two SYSIN
files, LEVOSUP [CSECT LEVELO, entry points LEVELO, DISPATCH,
SIGNALEY] and LEVOIOS [CSECT EXCP, entry points EXCP, ZLIOH,
UPTINMNER, OTIMER, and the Unit Control Blocks]. Functions of the
extended machine are roughly diveided into supervisor functions,
in LEVOSUP, and I/C supervisor functions, in LEVOTOS. Both source
files reside on the Graphics archival disk, and the text in
BUGSLIB TXTLIB on RWB.

The version of LEVELO for +the Null B is no loanger being
upgraded. It consists of one CSECT in two SYSIN files, LEVO~1 and
LFV0O-2 on the Graphics archival disk. Although the supervisor
functions are largely the same, the I/0 supervisor has been
extensively re-written in the process of deleting the Null B
support,

The differences in the LEVELO for Dynamic Relocation of
Programs and Data will be discussed in another document?

22

The LEVELD supervisor handles user requests for execution
control and core management. It is entered upon program checks
and supervisor call interrupts. The supervisor operates in
supervisor mode, with I/0 interrupts disabled. Global register
usage is as tollows:

R12 =-=> user's stack Erame header
R15 =-> user's current save area

Supervisor calls are merely reflected up to LEVELT by
signalling the appropriate event nane.

2. 1_DISPATCHER

LEVELC Dispatch is a simple priority dispatcher, entered
only when a return to a user would be inadvisable, or when a
naw task 1is contending for the CPU. It searches the stack
frame queune for the highest priority stack frame which is not
in a wait state, and dispatches it. If all stack frames are in
wait state (MSR bit 6 on), Dispatch calls UPTIMER3 to compute
the running CPU time and then dispatches the top stack frane,
placing the machine in a wait state.

2.2 _PROGRAM_CHECKS

Entry: PGMCHK

The user communicates his reguests for LEVELO0 services
through extended instructions, which cause operation
exceptions. The LEVELQO program check handler reflects all
other program checks up to LEVEL1 by signalling the
appropriate event name {(X'DOxx%).

3 vide Timer Centrol, Section 3.6

._2_

« If the reason for euntry was an operation exception,
the preogram check handler searches for the offending
opcode in the extended opcode table. Upon success,
the program check handler calls the associated
routine wvia K13, and then returns to the user,
unless the routine evits to the dispatcher.

¢ Otherwise, an invalid opcode event is signalled up to
LEVEL1.

2.3 _EXTENDED_INSTRUCTIONS

The Extended Instruction Handlers are entered either
through the program check handler or through intermnal call.
Both the internal calling sequence and the extended
instruction format will both be described where appropriate.

2.3.1 EXECUTION CONTROL INSTRUCTIONS

The Execution Centreol Instructions provide the
scheduling, blocking, creaticn and destruction of tasks in

BUGS. As such, they are intimately related to the
dispatcher and to each other.

o |

3. 1.1 SIGNAL: The_Scheduler

=i

‘ntry: SIGNALEY

Internal Calling Segquences

R8 contains event nane
RO -=-> status information
R10 contains length of status information

T LE v
00 | En | Cn | Bs

1 L 1

i 2 3

The SIGNAL Troutine acts as the scheduler of
interrupt processing., It searches the appropriate event
list for a matching entry. If none is found, the low
order hex digits of the event name are successively
zeroed and the 1list re-searched. If no entry matches
even partially, the trap event entry is chosen.

1n any case, there are three possibilities of event
list entry types which could be selected:

« TIf the entry indicates the event should be
ignored, SIGNAL exits to the Dispatcher.

¢ If the entry indicates the event sould be
handled syncronously (immediate event), SIGNAL
exits to ENT processing to start the routine
running immediately.

e Otherwise SIGNAL creates a new stack frame
header, copying the entry point,priority, and
stack frame size from the event entry and
exits to the Dispatcher.

(3]

23.1.2 HWAIT: Suspend Execution

Entry: WAIT

Instruction Format:

r T LB T ! B |
| 1E] 00 | Xw | Bw | Dw |
L 1 1 L i TR |
o a 12 16 20 31

The WAIT extended instruction checks the high order
bit of the Wait Control Halfword:

« If the bit is on, WAIT returns to the caller.
(via R13).

e If the bit is off, WAIT stores the caller's
stack frame address in the WCH, sets the wait
bit on in the stack frame MSR, and exits to
the dispatcher.

2.3.1.3 POST: Continue Execution

intry: POST

Instruction Format:

r—

L]
i PE 00 Bc bn | Bw | Dy

@
(S S
[V S
al e o

&

The FPOST extended instruction swaps the former
contents of the WCH with the return code; it then checks
the former contents of the WCH:

» Tf the former contents were zero, POST returns
to the caller (via R13).

» TIf the contents were non-zerc, it is assumed to
be a stack frame pointer. It wait bit in the
MSR of that stack frame is turned off, and
POST returns to the caller (via R13).

2¢3. 1.4 ENT: Subroutine Entry

SYNCHENT

Internal Calling Seguence:

R2 contains leﬁgth of autcmatic storage

Instructicn Format:

1

-
BE 00 i Length i
1
1

s il

O e -
|
© b=

] 31

The ENT routins computes the total amount of stack
storage required by the wuser for linkage, save area and
his automatic data:

e TIf the requirement can be met from the carrent
extension, the ne w remaining length 1is
calculated and stored.

¢ Else a stack frame pointer is set in R15 for the
user, and chained into the stack.

« If bhit 3 is on in the MSR, SYNCHENT was entered
due to an interrupt; the status information is
moved into the stack and ENT exits directly to
the new routine.

» FElse the PC in the interrupted stack frawme is
set to the <former contents of R14, R2 through
R14 are loaded from the interrupted stack
frame, and ENT exits directly to the new
routine.

2+3.1.5_RET: Subroutine Exit

Instruction Formak:

<

.
I 0B
1
4]

iy

<
- —
T

The RET extended instruction handler sets R15 equal
to the address of the previcus savearea:

 TIf there is no previous savearea, the stack
frame header is rTemoved from the active queue
and freed, and RET exits to the dispatcher.

Else it computes the new remaining length:

» Tf the address of the next savearea in the
savearea pointed to by R15 is the same as the
former c¢ontents of R15, RET stores the new
remaining length.

* FElse it is popping up from a stack extension,
and frees the extension.

» If the new remaining length is equal to the
total 1length, the header is dequeued, the
stack frawe freed, and RET exits to the
dispatcher.

RET then checks the status of the routine to which
control is about to be returned:

e If it is in a wait state, RET exits to the
dispatcher.

*» HElse it returns directly to the new stack franme.

2.3.2 DATA HMANAGEMENT

The free nmemory is maintained in a linked list, with
the pointer +to the starter element in the META 4A Unit
Control Block. If the low order bit of this semaphore is
one, the META 4B is using the queue, and the META 43 must
loop, waiting for the list to be free.

The entries are stored by @ ascending address, to
facilitate concatenation of adjacent free areas. Fach entry
is of the format:

r T
0 | next pointer
1

length of entry

L

2

SRR

M e BT

next pointer: pointer to the next element on the free
gqueue.

length of entry: the length of this entry in bytes,
including the header.

Internal Calling Seguence:

R6 contains amcunt of storage required (in bytes)

RS --> new allocated area
R6 contains rounded length

» normal -- to caller via R14

-7 -

« abnormal -- to PGMCHK

i T T 1

1 01] Ba | R1 |

L L i a

0 8 12 15

r Ll T T T 3|
| 41 ! Ra | ¥Xi | BI1 1| Ll]
1 i i 1 i ——
0 8 12 16 20 31

The GETMEM routine searches the free mewmoiry Jueue
for the first entry long enough *to satisfy the request:

¢ If no entry long enough is found, GETMEN exits
to EGMCHK to signal a No Free Memory progran
check.

¢ If the entry matched the requested length
exactly, it is dequeued and its address
returned to the caller.

» If the entry is longer than the regquest, its
length is decremented by the reguested length,
and the address of the entry plus the length
remaining is returned.

2:3:2.2 GETMAX: Get Maximum _Controlled_Storage

e i e e i e S s s e e e i T i et i e S T S e T

Entry: GETHMAX

R1

O o
<
no

]

T
|
1
1

PR P

2 1

The GETHAX routine searches the free memory gueue
ror the largest element:

» If the queue is null, GETHAX exits to PGHCHK to
signal a No Free Memory program check.

» FElse it dequeues the entry found and returns

address to the user, exiting via R13.

Internal Calling Seguence:

R6 -=-> area to Iree
R7 contains length of area to free

e qpnormal =-- to caller via R14
o abnormal -- to PGMCHK

Instruction Format:

r T T |
1 03 | Ra | R1 |
L A L]
0 8 12 15
r L L s T i
I 43 | Ra | X1 | Bl | Dl |
, - 1 | A 1 i
0 8 12 16 20 31

its

FREEMEM searches the free memory queue for an entry
with a forward pointer greater than the address to be

freed:

o If unsuccessful, it selects the last element on

the list.

It then checks to see if the end address of the
selected element is adjacent to the area to be

freed,

e If so, the length of that elemsnt is incremented

by the length to be [reed.

 T%lse, the new element is enqueued at that point.

FREEMEM tnen examines the next element con the queue:

e If it is adjacent to the new element, it is

dequeued and the new element's length adjusted
accordingly.

2.3.3 INTERPROCESSOR COMMUNICATIONS

223.3.1 INTB: Interrupt MELA 4B

Entry: SHOULDER

e i e s i D e i e

63

——————

1

Dt H

o F=—n

The

T T T

00 | Xt | Bt |
L 1 A -1
1 1 20 31

INTB extended instruction handler issues a

start I/0 to the 1IPI to determine if the last interrupt
has been acknowledged by the META 4B:

¢ If the last interrupt is still pending, the

routine lcoops until the NETA 4B acknowledges
the interrupt.

¢ QOtherwise, it stores the interrupt code in the

META 4A UCB Unit Status Halfword, and issues a
start I/0 to interrupt the MUETA U4B.

2.4 CONTROL_BLOCKS

2.4.17 STACK FRAME HEADER

0 |parallel
—

T

queue

i

2 Jpriority
i

+

!
1

77777771
]

4 |stack frame size)

T

R

10

—
S
-

6 SFP save |
I3

4

parallel queune: this pointer is used by LEVELO to maintain
a queue of the stack frames of each of the parallel
routines currently running on the system. The head of
this queue is ip memory location X'60°'.

priority: This byte contains the priority assigned to this
parallel event,. The priority is used by LEVELO to
decide which parallel event should be given control
each time such a decision must be made.

stack frame size: This halfword contains the stack frame
size estimaticn made by the programmer.

SFP save: Whenever the parallel routine is not executing,
its current SFP is saved in this halfword.

11

2.4.2 STACK FRAME

SFP
|
v
r -
0 |previous pointer|
(o |
2 | next pointer |
t 1
4 I
save area
l |
e 4
221 |
auntomatic
storage
| |
L .|
previous pointer: this halfword contains the address of
the stack £frame section of the routine executing
dynamically prior to this routine.
ne xt pointer: this pointer is wused by LEVELO to maintain
the dynamic link of stack frame sections and is c¢f no
direct use to the progranmer.
save area: these 15 halfwords are used to store the
routine's MSR through register 14 at any time his
execution is delayed due to ap actual machine
intertupt or to a subroutine call.
antomatic storage: This space 1is the actual automatic

storage requested by the routine. It can vary in size
from 1 to n halfwords; this size is determined by the
extended instruction ENT, which must be the first
instruction of every rcutine that either saves the
registers of the previous routine or requires
automatic storage ci both.

=

2.4,3 CPU UNIT CONTROL BLOCKS

The cru Unit Control Blocks are used for
interprocessor communications and vary in format from the
I/0 unit 0CB's,

r -T 5|
0 1 7 |
— : 1

2 |Interrupt Code |

: + 4

4 | =--> MULTICOM* |

b - —

6 | Freelist Flags |

i + i

| 8 |-->Freelist Head|
L. i J

4Initialized by MULTIPAC at executicn tinme.
SLow order bit used as Freelist semaphore.

-13=-

3 I/0 _SUPERVISOR

The I/0 Supervisor handles all 1local 1I/C interrupts, and
processes the EXCP extended instruction. Since the superviscor
simulates a virtual chanpel, the EXCP and interrupt processing
are intimately related.

3.1_REGISTER_USAGE

Some of the general purpose registers have fixed contents
during operation of the I/0 Supervisor:

R3 -=> current CPC
R10 =--> Unit Control Block
R15 ==> user's current save area

3.2 _DISPATCHER

e e

Internal Calling Segquence:

R10 =--> UCB
R5 contains current operation

The possible operations are:

s (-- EXCP

e 1 —-- READ

e 2 -- WRITE

e 3 -- NOP

e« U —-- SENSE

= 5 -- SENSE with reset
s 6 -- SPECIAL

- 14=-

¢] =- Interrupt

The dispatcher uses the code in R5 as an index into the Where
to Go table in the UCB. It then wuses the byte at that offset
in the UCB HTG table to index into the globkal WTG table. Since
many of the entries, e.qg. NOP, SENSE, SENSE with reset, are
identical, this saves space from individual WTG tables.

3.2.1 EXCP ROUTINES

The EXCP routines are generally responsible for
insuring that the wunit is teady before starting an I/0
operation.

Register Usage:

R3 -=-> current CPC

R10 -=> UCB

K13 --> return point

R15 =-=-> user's current save area
3.2.1.1_CCMSIQ

Entry: COMSIO

The common start I/0 routine issues a sense to the

unit:

e If the USH returned indicates that the unit is
busy or offline, CCMSIC sets the condition
code appropriately in the usexr's stack frawme
and exits via R13.

e PFlse COMSIO continues into CCMRDY.

322,1.2 COMKRDY

Entry: COHMRDY

COMRDY 1is entered from CCMSIO or directly from the
EXCP Dispatcher, 1if +the device cannct be offline. It

sets the "logically busy flag on in the UCB and calls
CPC processing® via R9.

3.2.2 INTERRUPT ROUTINES

Register Usage:

R3 -=> current CPC
R1C --> UCBE
R15 =~=-> interrupted task's current save area

The interrupt routines are completely unit dependent.
They do share some ccocmmnon characteristics:

o They check for errors, and either retry the
operation or set the device non-busy and exit to
SIGNALEV to signal an error event.

» Else they check for operation complete:

» TIf the operation on the CPC is complete, they call
CPC processing via R9 at entry COMINTEN to
continue processing on the CPC chain. When
control 1is restored, they exit to SIGNALEV to
signal the operation complete event.

» FElse, they issue the next start I/0 in the sequence
and exit to the interrupted task.

3.2.,3 HETA 4B INTERRUPT PROCESSING

¥hen the I/0 Supervisor reccgnizes an intercupt fronm
the META 4B, it retrieves the interrupt code from the USH
in the META 4B UCB, acknowledges the interrupt, and exits
to SIGNALEV to signal event X'1031', with the interrupt
code as its status.

6yide Section 3.4

3. 3_EXCP_PROCESSING

Instruction Format:

FD 00

@ -
- —

T T

Bu | Lu Be] Dc |
1 1
2 3

O po e
W P -

5 0 2] 47

The EXCP routine sets R10 to pointer to the proper UCRE,
sets R3 to point at the user's CPC, then tests the UCR flags:

 If the unit is logically busy, it sets the condition
code appropriately in the user's stack frame and
exits via R13.

« Else it enters the EXCP dispatcher with a 0 in RS.

3. 4_CPC_PROCESSING

e

Register Usage:

R3 -=-> current CPC
R9 --> return point
R10 --> UCB

R15 ==> user's current save area

COMINTRD is the common CPC interpreting loop. 1t stores
the current CPC address in the UCB, picks the opcode from the
CPC, clears out the high crder four bits, and places a copy of
them in R14:

e If the opcode is greater than 7, it exits to SIGNALEY
to signal an Invalid CPC program check (X'DO241').

« TIf the opcode is equal tc 7 (TIC), it picks up the new
CPC address and goes back to the start of the loop.

e BElse it calls EXCPDISP via R4, with the CPC opcode in
R5 to call the unit dependent routine.

When it returns, it checks the immediate operation flag in the
NncB:

=1 9=

» If it is off, an interrupt is expected, and COMINTRD
returns to the caller via R9Y.

 TIf it is on, COMINTRD checks for chaining in the CPC
flags:

* TIf chaining is indicated, COMINTED bumps R3 by 6 and
re-enters the lcop.

* Else it resets the "logically busy" flag in the UCB
and exits via R9Y.

3.4.1 UNIT DEPENDENT ROUTINES

Register Usage:

R3 -=-> current CPC
R4 -=> return pocint
R9 RESERVED

R10 ==> UCB
R14 contains modifier field of CPC
R15 ==> user's current save area

The unit dependent routines generally start an I/0
operation, set a flag in the UCB to indicate what operation
is in progress and then exit via R4:

» TIf the operation completes immediately, the
immediate operation flag is set in the UCB flags.

35 I/0 INTERRUPT _PROCESSING

Fntrys: ZLIOH

-t Lh£

ZLIOH sets R10 and R3 to point to the interrupting unit's
UCB and current CPC respectively. It then checks the I/0 old
MSR:

» TIf the interrupted task was in a wait state, it sets
the expected CPU interval equal to the current
contents of the timer,

It then checks the interrupting urit's address:

<4 8=

» If the interrupt was from the META 4B, it goes to the
META 4B interrupt handler?

« FElse it branches to EXCPDISP with a 7 in R5,
indicating an interrupt.

3.6_TIMER_CONTROL

The Timer contrcl ccde allows the LEVEL1 user to keep
track of running and CPU time, and to set time intervals.

3.6.,1 TIMER INTERRUPT ROUTINE

Entry: GRANDDAD

The Timer Interrupt Routine «calls UPTIMER to update
the CPU and Running times. It then sets a new time interval
in the Timer, and checks to see if a time intecrval set by

— the user has expired:

e If the user's interval has not expired, it returns
directly tc the interrupted routine.

» Else it exits to SIGNALEV to sigral event X'2001°%.

3.6.2 QTIMER INSTRUCTION

Dt

e e

:
I
i
20 3

The QTIMER routine calls UPTIMER to get the up to date
time, then moves the RUNNING and CPU +times from the UCB

7vide Section 3.2.3for details.

19-

extension to the user's area, and exits directly to the
user.

3.6.3 UPTIMNER ROUTINE

Entry: UPTIMER

Exits: to caller via R13

UPTIMER is called by the dispatcher wchen it is about
to go 1into a walit state; it 1s called by the Timer
Interrupt Routine to update the clocks; and it is called by
QTIMER to get the corrected times.

It subtracts the contents of the Timer from the
expected interval, then adds the computed value tc the 32
bit clocks. It then replaces the expected interval with the
contents of the Timer. This code, combined with the setting
of the CPU expected interval by the I/0O interrupt handler
should maintain the CPU and Running time 32 bit clocks.

-20-

3.7 _CONTROL_BLOCKS

3.7.7 UNIT CONTROL BLOCK

The Unit Control Block containg the device independent
information for each device and mwmost of the residual
control information needed to simulate the virtual channel:

r E a
0 | unit address |
— } 4
2 | unit status |
+ e | 1
4 jreserved |for GHMS|
- ==t . |
6 | flag bytes |
{ + 1
8 |--> current CPC |
k + . |
101 sense I0CC |
& + i
12] " y/reset " |
e } i
14} offline|flags |
: —t 1
16 | |
where to go
table
| |
i 1 = |
¥ T L
24) unit dependent |

extension
.
L]

unit address: virtual unit address.
unit status: USH from last SIO or interrupt.

reserved for GMS: wunused in all UCB's except fcr disk,
where it is used for Dr. Memory communications.

flag bytes: residual control bits:
byte 0:
bit 0: logically busy; set at start of EXCP; reset
at operation complete

-2 1=

bit 1+ immediate; set if CPC operation was
immnediate.

bit 2: verify (disk only); cylinder address must be
vaerified before write.

bit 3 multisector {disk only); multisector
operaticn in progress.

bits 4-7: unused.

byte 1:

bit 02 write; write operation in progress.

bit 1: read; read operaticn in progress.

bit 2: verifying (disk only); cylinder address is
being verified.

bit 3: control; control operaticn in progress.

bits U-7: unused.

3.7.1.1 BUGSUCB_Macro

The BUGSUCB macro is used to generate the Unit
Control Blocks and to generate a DSECT of the UCB's:

label BUGSUCB addr,offline,sense, senser,
(wtg-1list)[,UNITX=size]

label: name of UCB.
addr: virtual unit address

offline: self defining term for bits which if set
indicate that the device is busy or offliine.

sense: hex code for 2nd half of sense ICCC.
senser: hex code for 2nd half of sense w/reset I0OCC.

wtg-list:names of pointers in global Vhere to Go Table
for device dependent rcutines.

size: number of halfwords for unit deperdent extensions
to UCB.

1f TYPE=DSECT 1is specified, a DSECT rather than a real
UCB will be assenbled.

-2~

The UCB device dependent extenstion for the
Interval Timer cortains the running clocks and the
information neccessary to control then.

i T 1
24)time precision |
t + -4
2bltime interval |
k- } 1
281 RESERVED |
- t 4
201 CPU interval |
F —4 : |
32] running 1
+ + 1
| time |
— + |
361 CPU 1
t + e |
| tima |
— + |
401 expiraticn 1
¢+ + -4
| time |
L i — |

timer precision: +time interval to be set when Timetl-
expires.

time 1interval: amount of time expected to have passed
when a Timer interrupt occnrs.

CPU interval: amount of CPU time expected to have passed
when a Timer interrugt occurs.

running time: time in timer units since IPL.
CPU time: CPU time in timer units since IPL.

ex¥xpiration times: time at which LEVEL1 wishes to receive
an interrupt.

-23-

