
r----+----,
I BUG 5 I
L ____ +-___ J

BOGUS

Brown anivecsity Graphic s System'

L8VELO Extended Machine

The Brown Univ ecsity Graphics Project

Division of A.pplied Mathematics

Box F

Brown University

Providenc e , Rhode Island 02912

Updated: Jun e 25, 1974

Printed: September 15, 1 976

l This research is bei ng s upported by the National Sc i e nc e
Foundation Gr ant GJ- 2940 1 X, the off ice of Naval Resear ch,
ContI:act N000 14-67-A-0 19 1-002J, and the Brow n University Division
of Applied Mathemat i cs; P rincipal Investigato[Andries van Dam.

1 Introduction ' 1

2 The
2. 1

LEVELl Routine and Its Stack Frame.
LEVEL1 vs. the Bare Machine •••

Non-privileged State ••••••• 2. 1. 1
2.1 .2
2. 1 .3

WAIT Sta t e
Extended Instr uctions •••••

2.2 The Programmer's Data ••••••••••••
2.2.1 sta tic Da ta
2.2.2 Automatic Data
2.2.3 Controlled Data.

•
. ,.

• · .
2.3 The Stack Frame ••••••••
2.4 Subroutine Linkage Instruct ions.
2.5 Types of Rou tines•

2 .5.1 Parallel Routines. · .
Subroutines ••

..

. .

•

•

.. ..

. .
•

. . ..
•

· • 2
...... 2

• 2
.... 2
• 2
..]

,.3
.3 · .

.. 4

· · · · · · . · · · · · . · · .4

· · · · · · · · · . · · · 5

· · · · · . 6

· · • · · • · · · .6

· · . · • · · · • • · · .7 2.5. 2
2.5.3
2. 5. 4

Immediate Routines.
Registers at Entry

. . . · . • • · • · · · · · · · · .8
to a Routine.

3 Events and Their Routines .••..
Eve nts 3. 1

3.2 Dispatching of Parallel Routines. •
· .

3.3 LEVEL 1 Control of Routines and Events.
WAIT a nd POST. 3 .3. 1

3. 3. 2 SIGNAL ••••••••••••••• •••• ••

4 Mainta ining Controlled Data •••••
4.1 Get ting Controlled Storage.
4.7 Freeing Co ntrolled S torage.

•

5 Extended
5. 1

I/O
Local I/O Units and the Channel ••

5. 1.1 The Channel ·Program ••••• •• ••••
5.1.2 Starting a
5. 1 .3 Other Loca l

Channel Program.
I/O Facilities.

5.1.4 Handling of Parit y Checks.
5.2 S/360 Communication.
5.3 The Interval Time r.

.. . '
S. 3 .1 CPU and Ru nning Time ••
5.3.2 Time Intervals • •

5.4 MET A 4 B Communica tions. · .
6 Unit-Depen dent CPCs.

6. 1 346 1 Card Reader.
..
..

6.2 Interval T imer
6.3 4132 Keyboard/'Iypewriter •••
6.4 1444 Disk Storage uni 't

-i-

•

· ..

•

•

• ••

• . · · . 9

·

10
10
13
13
B
14 ·

•

·
· .. • · .

· .

15
15
15

16
16

......................... 16
· .. · 17

...................... 1 8

· . 18
18

• • • • • .. • • • .. • • 1 9 . . 19
19

.. 1 9

..

• .21
.. • 21
• .. 21

2 1
22

6. 5
6.6

Control [lan e l.
Null META 4B ••

7 A P pe nd i x I : LEVELO-Def in ed
7.1 Interval Timer Events.
7. 2 META 4B Eve nts ••••••••

Events.
• •

•
7. 3 Null ME11A 4 B Eve h ts
7.4 Other Local I / O Unit Events •••
7.4.1 346 1 Ca rd Reader ••••• ••••
7.4.2 4132 Key board/Typel/riter.
7.4.3 1444 DiSK Storage Unit ••••••
7.4.4 Control Pan e l •••••

Events 7. 5 s vc
7. 6 Program Inte .l:rupt Event s.

Program Ma nipulation Events. 7.7
7. 8 Event Trap •••••••••••••••••••••

. •

•

.

•

•

• •

• • . .
•

· ..

• •• 23
23

. 25

.25
.. 25
.. 2 5
.. 26

....

26
26
26

............

•
• ...

.. .. ' 27

•
• ••

27
27

.. 27
.. 27

8 Appendix II LEVELO Lo wer Memory Layout .. 28

9 A P pe od i x I II lEV ELl Progcam Int er ['upts •• ,. 30

10 Appe ndix IV: Extended Instruction op Codes ••••••••••••••••••• 31

11 lIpp e ndix
11. 1

V: M4ALI B Macros

11. 2
11. 3
11.4
11. 5

EV EN T • ... •
AUTOjENDAU'fO ••
RETCO DE.
C PC
LEVF:LO.

.
.. ,. ...

..
...............

-ii-

..3 2
.. • 32

• • ' 32 ·] J · •• 33 · · • • 34

This publication describes th~ LEVELO ExtEnded Machi ne, a
compon e nt of the Bro~n Operati.ng Graphics University System,
runniug on the BUGS 11ETA 4A pl:ocessol:. LEV .ELO provides tile BU GS
use r: wi ·th facilities beyond those inherent in the
hardware/f irmw are. A thorough kno wledge of the princ iples of
Opera tion of the MET A '. A is assumed.

LBVRLO is a soft wace package desig n ed to ru n on the META 4A and
provide the BUGS user with faci l ities making up an e xt e nded
machine . The se faciliti es alleviate some of the deudgeey of
coding on a bare mac hi ne and ass u me responsibility foe many
maclline f unctions. feeeing tile user to worry about th8 operation
of [lUGS (referred to as the " system") a t a higher le vel. LEV ELO
assumes the presence of another level of operatin g s ystem,
rUTlni n g as a " LEVEL l" abo ve it . S uc h a Lll VEL l (loe s exist on
BUGS , and is cal l e d the G.raphics Monitor System (GMS) , or , to
c l ose friends, " Oue Fearless Leader " . III ttds pub] icat i on,
howev e e, i t will be .refecced to as LE VEL l tor gene ra l ity.

The r eade r is ass umed to ha v e a thorough knowledge of th e MET A 4A
and BUGS in geneca l. In pacticular, howev er, ae will use only
those " normal" i ns t c uctiollS not co ncecned with machin e s t atus ,
in te rrupt ha ndli n g , I /O , etc. LEV .ELO is respo ns i b l e for hand l ing
those por t i ons of t he mac h ine. ~h us i t is necessar y for the
reader to realize that much of what be reads in the META 4A
Principles of Operat i on wi ll not direct l y co ncern him.

- 1-

1\ LEVELl r-outin e ruoning OIl LEVELO must t ollow so mewhat
differ-ent con ventions from on e r-unnin g stand-alone o n the HETA
4&. These conventions a~e neces s ar-y for- two reas on s. fir- st
of a ll, they allow LEVELO to maintain control ove r t he s tatus
of tile system , and secondly, the y pr-ol/i d€ a hig her level of
system organization for the LEVEL l pr-ogr-ammer-.

2 .1.1 NON-PRIVILEGED STATE

The LEVELl r-cutine r-uns at all tim es with the Pril/ilege bit
in the MSR ofL This prevent s him f ro m pertor-ming local I/O
and 5/360 operat ions wi thout us i n g the facilities r rovide d
by LEI/ ELO. Specifically, he can not exec ute the following
instructions : 5IOR, 510, llST, liST , EXCC , TilB, and 55 . It
is consider-ed invalid for the LEVEL l system e ve r- to set the
Privilege bit on.

2. 1. 2 II 1\ IT 5Tll TE

In addition to
neve l: set the
control of the
of this bi t.

the Pri vile ge
Wait bit in

s tate of the

2. 1. 3 EXTE ND ED INSTRUC'IIONS

bit, the l EVELl pl:ogram must
the M5R. LEVELO assumes al l
system, including t he se ttin g

Becaus e of the above re s triction s and fo r th e iocr-eased
flexibility of LEVEL l, LEVELO provides a set of " Extended
Ma chin e Instr-~ctions". These instructions, which ar-e coded
by the progr-dmmer as if they we r e real ME TA 4A
instru ct ions, pr-ovided added features f or LEVEL l, s uch as
memor-y manag e me nt, e xtended I/O, e t c . The se ins tructi ons, of

- 2-

which ther:e at: _ some fifteen, will be explai n", d in the
cour:se of this publication.

Since computing is concet:ned with the manipulation of data,
str:ict co nve ntion s concerning types of data are made by
LEVELO. The r e are specifically three types of data with which
the programmer can concern himsel f: sta tic. automatic. aud
controlled.

2.2.1 S'l' A TIC D AT A

Static data is data that is assembled/compile d into a
routine and is prese ·nt there when the routine is loaded.
This data includes the iustrnctions of th e progeam i tse l f.
plus any pre-initialized va riables DCed within the routine
proper. The term "static" may be misleading in that it is
not assumed that static data will mmain unchanged
throughout the execut ion of a prog ram; it is certainly
possible for a programmer to DC an initial value for a
variable a nd then change it l ater . The ter:m static s im ply
implies that the data was defined before exec uti on of the
r:outine was begun.

2.2.2 AU'l'O[1A'l'IC DATA

Automatic data ' is the teem applied to vaeiabl e space wh ich
is allocated prioe to the execution of a routine and freed
when tha t r:outine com pletes. This data cannot be
initialized at assen.bly!compile time, because th e storage
does not exis t at this point. The data is local to the
rout in e owning the automatic storage and disappe a r:s when
that routine completes. It is this type of data that is
specially treated by LEVELO.

-)-

2.2.3 CONTROLLED DATA

Controlle d data is data which is maintained in stora ge
space obtained by a routine and prese n t until e xclicitly
released. Extended instructions a r e provided to maintain
th i s controlled storage. Most programmers are p robably
familiar with this type of storage from expe riellce with I BN
operating Syst e m/360 or similar systems, with th e ir GETtHlIN
and F REEflAIN SVcs .

As was me ntioned above, automatic storage is on p. sp ecia l
f e at ur e of LE VELO. In order to mai n tain thi s a utomatic
storage across normal occur e nces such as subroutin e calling
and the execution of interrupt ha ndle rs and the lik e , LEV ELO
maintains a n um be r of "stack frames" in th e META 4A. 1\ stack
frame is a logically infinite piece of storage in whic h is
maintained a serl.es of automa tic storage section s .for e a c h
ro utine in th e dynamic seg u ence of execution. Each routine
n e e d only be concerned with th e section of the s t a ck fram e
be longing to him. This s e ction has th e following format:

SFP
I
V

r-·-----------,
o I pr e vious poillte rl
r----------~

2 I next pointer I
Ir-------------'/

4 I I
sa ve area

I I
l-------------j

22 1 I
all toma tic
storage

L ____________ -J

pl:e vious pointel:: thi s halfwol:d contains th e addr e s s of th e
stack fram e sectioD of the ro utine executi n g dynamically
prior: to this routine.

-4-

next pointer: this pointer
dynamic link of stack
use to the programmer.

i s used by L EVELO to maintain the
frame sections dnd is of no direct

(vj;<) I.'Y t,<-< Jb,.>_ ".~_,)

save area: these 15 halfwords are used to store the rou tine ' s
MSR tlll: ough reg i ster 14 at auy ti me his execll tio n is
delayed due to an actual machinE interrupt or to a
s ubroutin e call .

i } ' !,.......J "" r,~

automatic storage: This space is the ac·tual automatic st~rag e
requested by the routine. It can va ry ill size f .ro m 1 to
n halfwords; this size is de termined by th e e xtended
insteuct ion EN T, wh ic h nltlst be the ii£§i i nstr uctio n 0 f
e very routine that either saves the regist e r s of the
previous routine or requires automatic sto rag e or both.

ENTer routin e ENT RI

The immediate halfword of t his RI-format extended instr uction
s p g ci f ies the size , in bytes, of the automatic storage
r eq uired by the routine. The s ize is rounded up to the next
higher hal fword , if necessary, a nd use d to determin e the size
of the a u tomatic storage shown in the diagram abov e . Thi s
instruction must be the first executed instructioll of e vgey
routine in which it appears.

Once the E NT instruction i s pe rformed, the cal l er ' s registers
o through 14 are saved in the call e r' s savearea, and t he Stack
Prame Pointe r (SFPl. register 15, is set to pcint a t the stack
f rame section for the EN'fered I:Gutine . This regist el: may ·be
used as a base for instl:uctions access ing data out o f the
stack frame , but shou.ld not be modified in any way by the
I:outine. Tts contents a l: e maintained e ntil:ely by LEVE LO .

Once a routine has completed execution, it must cetuen conteol
to the I:outine dynarnica 11y pl:e viou s to it. This is done by
exec utin g the RET extended ins·tl: uction :

RETurn from I:outin e BET Rl1

This instcllctioll. which has no operands, causes the stack
frame section a llocat ed to the routine to be fl: ee d up, and
contl:ol to be I:etul:n e d to the inte rrupted point of th e
pre vious rou ·tine. l'h e SFP will l:e backed up so as to be

-5-

.~

cOLrect f OL the p.rior Loutine and registeLs 0 th Loug h 14
re store d ELo m its save ar e a. I f th e Le turning Lout.in e d e sires
to modif y th e r e gi sters of the pre viou s routine, a n actioD
which i s e ntire ly valid in certain caS ES, he may d o so by
picking up the pre vious pointer and using it a s a bas e t o
a ddre s s th e pce viou s r:eg i s t el: s . If the re t uc ni ng 'cou tine i s
re- e ntece d, it.s a ut owatic storage will have bee n in no way
presecve d. The conte nt s of automat ic s to c a ge a r e alw ays
und e fin e d at the start of a cou t ine .

At this po int in time we c a n be gin to ffi a ke a di stinction
be twe e n various types of coutines , nam e ly p aca l l e l c o utines,
s ubcoutin e s, and immediate routine s .

2 .5.1 PII !l ALLKL ROU TINES

A pacalle l coutine i s one Which can cun s imultane ously wi t h
and indep e nd e ntly of any and all other coutines . LF.V ELO
has th e capability t o run an arbi t c ac y numb e c o f paralle l
coutin e s s imultane ou s ly within the s ys tem. Eac h paLall el
contine i s give n con t rol and allow e d to ex ecute until s ome
event occ ucs that LEV EL O decides s houl d cau s e a nothe r
pacall e l coutine to gain con t rol. Each paL a llel r out i n e h as
its ow n "infinite " s t a ck f Lame whicb r e mains in e xi s t e nce
until tha t Loutine r e turn s . At t he f ront of tha t s t a c k
fram e i s a s ection of s toLage known as the "stack f rame
head e r", which has the following f CLmat~

r--------r------ -,
o I pa La 11 el '1 ue ue I

I---------+---- --j
2 I priocityI IIIIIII j

t--------+-------;
4 I stack fram e si ze I

I---------+-------~
6 I SFP save l L ___ _____ ~ _______ J

paralle l g ueue : thi s poin teL is us ed by L EVEL O t o ma inta in
a q u e u e of the s ta ck fra me s of e ach o f th e pacall e l
r o utines curre ntly Lunning on the sy s tem. The head of
thi s queu e i s in me mory loea tion X '60 '.

- 6-

priority: This byte contains the priority assigned to this
parallel e vent. The prior i t y is us ed by LEVELO to
decide which parallel e vent shcullt be given c ont rol
each time s uch a decision mu s t bE made. See Section
3. 2.

stack frame size: This halfword
size ~st imatio,Il made by the
3. 1. JV!":

contains the stacK frame
prog rammer. See Section

SPP save: Whe ne ve r the parallel routi ne i s not executing.
its c urrent SFP is sa ved in this halfword.

The previou s pointer in the stack frame secti on of a
parallel e vent i s zero because there is no dynamically
pre vious routin e . Each pa·ral lel e v e nt i s considered an
e ntity in itself and control is ne ve r passed betl,e en them
under programmer request.

? . h.,.....v,.....~
Al so associated l with the entry into suc h a ro utine is some ,
pre-determined ' gata called " stat us". This data i s stored
in t o the first fe byt es of the routine's automatic storage
by LEVE10 before that routine is placed on the q ue ue. T he
programmer must i nclude this space in his automatic storag e
request i n the ENT instruction. This da t a will be
explained in grea t er detail later. (l) ~rl

2.5.2 SUBROUTI NE S

A s ubrout j ne .is a ro utine which is explicitly invoke d by
another ro ut ine. Although the su broutine i s logically a
separate routine with it s own automa tic storage. LEV ELO
considers it to be a n extension of the invoking cout ine .
It gets its 'stack f .rame sectie n oot of the stack £.rame of
the i nvoking routille. a n d it runs with th e priority of the
originally e ntered paralle l routi n e .

The programmer exercises explici t control o ver t he
exec ution of s u bro utines; in order to in voke on e he mus t
l oad the return addr ess into register 14 and branch to the
ENT in struction of the sub routine , via:

BAl R 14, subroutine

or, if th e s ubroutin e is exter nal:

1 1
BALR

Rx , V (sub routine)
R14, Rx

-7-

i'

When t he s ubroutin e i s e ntered , the cont en t s of the
registers will be ide nt ical to what they were in th e
in vo king ro utine, e xcept o f course for the SFP. It is no t
n e cessaL¥ tOL the s ubroutine to l:es to re a n Y Leg isters
before exiting with a RET inst ~u ction; this i s taken care
of byLEV ELO with tbe sa ve areas .

A s ubl:o uti ne its e l f may call other subro utines , down to any
leve l. If a s ub ro utin e desires t o modify t he registers of
the invoker, he may do EO as e xplained io s e ction 2.3, by
using the pre vious pointer as d baSE t or the in voker' S
st ack frame section . A typical case of this i s fOI:
implementing I:et llrn cones.

2.5.3 IMMEDInTE ROUTINES

o imm enia t e Loutine , unli ke a paral l el on e , c annot l:un
simultalleousl y with otll e r routin es . Th e purpose of the
immediate routine is to perf orm system lIlilintainence
f unctions, such as th e handling of I/O int e rr apts , as
qu i ck l y and with as little o ve l:head as possible. To
accomplish this , a imm e diat e routine must:

1) Run disab l ed, i. e ., with the I/O and 5/360 intel:rupt
ma sks in the MSR of f . This e n s ures that the e xec ution of
the routin e will not b e interrupted by any extel:nal unit.

2) Not i ss ue a ny
another pa ralle l
These r estrictiollS
inst ru c tions.

extended
ro utine
will be

instl:uction s which woul d cau se
to gai n control of th e system.
descr i bed under tb e ilppropriate

An immedia t e l:outine, however , may ca ll s ubl:uutines a nd may
cause ot ~ e£ ' immediat e routines to ga i n c ontl:o l . Any
s u bro u tine called must dlso foLl ow the above conve ntions.
An imme diate routin e a nd a ll it s subroutines, beca use they
do not run in pa r a lle l with othe l: routines, do no t have
their own stack frame. Instead, the y run in the stack
frame of th e paralle l routi ne that was e xec uti ng at th e
time the immediate routine was invoked .

-8-

2 . 5 .4 REGISTERS AT ENTRY TO I RO UTI NE

The following table d esc ~ibes the s tatus of the registers
UpOll e n try to a pa rall el o r immediate routi ne:

MSR: Condition Code and Flag zero; Ar it hme tic Overf l ow
and stack (lverflow/Onderflc~ disabled; iJlterrupt
masks as described abo v e . Parity i nterrupts are always
enab l ed , and the Parity in terr upt ma sk bit in the r1S11
sh ould no t be altered.

PC: Set appropr i ate ly.

82 R3: Ident ica l to what they were when the former l y
executing ro utine was int e rru pted. Th i s is es~eciall y
useful for SVC handling rO ll ti.nes, which are pas s e d
parameters i n these registers.

84 - R 14: Undefined .

SFP : Se t app ropriatel y.

Now th a t t he variou s types of ro udnes a va i lable o n LllV ELO h a v e
been d iscussed , it is time to describe how indi v~dual rout~nes
ar e invok ed . Th e siwplest case is that of subro utines , whi ch are
exp lici tly invok e d by the programmer as described in section
2 .5. 2 . It i s paral l e l and im med iat e rou t ines that th~ s sectio n
deals with.

Till e ve nt in DUGS is defi n ed as th e occurence of some so rt of
s y s t e m inte rrupt that s ho uld de lay the execut~o n of the
curJ:ent routine and s tart uF a nother . Events are s uch t hings
as I/O inter J: ll pts , SVC calls , Program Checks, etc . LE VELO
pres um es that the LEVEL l system will havE a rout i ne which
s hould be eXEcute d whe n eac h o f these e ve nt s occurs , and
the refore nlus t invoke th e peoper rou t in e at th e proper time.
In order to do this, LEVELO need s an EVe nt List (EVL) , whi ch
i s a li st of entries , each one specify ing a n e ve nt an d th e
routi ne t o be invoked whe n it occurs . Each e v en t e n t ry has
the f ollowin g format:

r------ T----'
o I EVL link I

\---- -----+---- -1
2 I e v ent nam e I

t-- -----+--- ---l
4 Ipriorityl flags I

r--------+---~---i
6 I rout ine e ntry I

/---------+------1
8 l s tack frame s i ze l

l _______ -i ____ J

E VL link: Thi s i s th e addr ess of the next en t ry in t he EVL.

e v e nt nam e : This i s th e 16-bit naDie a ssigned to th e e vent .
Many e ve nts hav e nam es p r e - a s s igned by l EVELO s o tha t a n
effective communication with LEV Fl. l c a n t e set u p . Other
e v e nt names can be assigned by LEVELl. The f irst hex
digi t of the name i s called th e event "ty pe", a nd is u sed
in sea r ching th e E VL.

-10 -

priority: T his is t h e 8-bit pr io .rit y assigned to the event
routine if it is parallel. It i s used in determi ning
which para llE!l routine to run, as describe d below .

f la gs : This byte contains flags desc ribing the e vent routine:

bit 0 : If zero " th is routine is
routine i s paralle l. The
immediate routines .

imm e di a te. If o ne , the
priority is ignore d for

bit 1: I f on,
no rou ti ne
dy nami ca lly

t he e ve nt is
is invoked .

by the LE VE L 1

ignor ed whe n it occu r s and
This bit may be a lte r ed

s yste m.

routine e ntry: Thi s is th e address of th e routin e i t self.
The f ir s t in str uction must b e an ENT spec ify ing the
a mount of a utomat i c sto r age desired by t he programmer .

stack f1:ame s i ze : This halfwo rd i s o nly used f or parall e l
routines . As was mention ed pre viously, the stack frame i s
a lo gically in f ini te ,: i ece of stora ge. I n actuality, it
i s com po sed of one or m01:e stack i1:ame ex t e nsions. Thi s
h a lfword sho uld contain an e stimation of th e total amo unt
of s t ack frame space needed. so that th e f irst ex tension
will hopefully be the only one. Thi s c uts down on LEVELO
overhead a nd the fragmentation o f memory.

In orde r to l oca t e th e e ve nt e nt ry for a n e ve nt when it
occurs, LEVELO uses a tab l e of EV L "h eads" 2 • The1:e are
s ixt een h a lfwonl e'itln t h eads , located in memory locations 70
through 8E. Eac h head i s .Ised to point t o the EVL for t he
corresponding e vent type. I t i s up to the LEV EL1 system to
set up th e even t h e dd table in its initi a lization code. Th
six t ee n ev e nt types are:

o Inte rval T imer e ven t s
1 META 4 B e v ent s
2 All othe r local I/O unit e ve nt s
3 5/360 e ve n ts
4)
5)
6)
7 > e v ent s for LEVEL1 use
8)
9)
A)

2yig~ section 8 f or the location of these lists .

- 11 -

B)
C SVC e vents
D Prog ram Interrupt e ve nt s
8 Program Manipulation events
F Event trap

The fo llowing steps are taken when au e vent occurs:

1) LEVELO builds the appropriate e vent name and extracts the
first hex digit as the e v ent type.

2) The event type is used to pick au BVI head from the abov e
table, and the EVL is searc hed for an en try containing th e
na me.

3) If non e is found, the fo uI:th hex digit of the e vent nallle
is zeroed a nd t he list is sea rched again. This allows generic
c la sses of events .

4 and '» If s ti 11
are made , \~ith the
a l so ze roed .

no e v e n t entry is fou nd, two more sea rches
third and second hex digits, respectively,

6) Finally, if the above searches were unsuccessful, a check
is made of e vent type F, the eve nt trap , to see if any entry
e xists in tha t EVL, regardless of namE'.

It is
e v e nt
e ntry
e ntry

presumed that one of the above searches produces
entry which can be used to invoke a routine. I f

was produced, th e e ve nt is ignor ed and discard e d. If
was found, the follcwing ac tions occur:

an
no
all

para l lel eve nt:
specified in
the priority
th e q ue ue ~f

A new stack
the e n try.

and t he ira me
stack frallles.

frame is create d with the size
The header i s initialized with

s i ze and placed at the head of

imm ed iate e vent: The routine is
space in t he current stack
ENT instruction .

entered after allocating it
frame in accorda nce with its

No act ion is taken of course,
e v e nt e nt ry.

if tho ignore flag is Oil in the

- 12-

There
t ha t

are cectain conditions under
the current parallel couline

another one given control. Whenever
"dispatch e r" is executed. It performs

which L£V£10 d~ta rmine s
should be d e laye d and
this occurs, the 1EV £10

t.he following s eacch:

1) A scan o f the paralle l queue is made for t.he highest
priocity runnable parallel routine . A routine is not r unnabl e
if it has gone into "ait stat e (s ee section 3.3. 1) . If two or
mor e have the highest Friority, the last one on th e q ueue i s
pic ke d.

2) If all rout.ines are ill wait. state, the fi .r st one is
picked.

Onc e a routine is picked, it is given control by ~oadln g it s
current SFP from the stack fram e h e ader and picking up it s
r e gisters from th e save area. During its execution th e ad dr e s s
of the predecessor stack fram e head e r all the e vent qU\J ue will
be in memory location X'62'.

Ce rtain extended instructions
LEVEL1 in controlling the
occur e nce of events.

3.3.1 \~AIT hND POST

are provided by LEVELO t o a s sis t
execution of routilles a nd ehe

It is possible for a routine to put itself into wai t state,
i.e. a s tate where exe c u tion is suspended , pending
notifica tion or "posting" by anoth e r routine. Wait state i s
controll e d by the ,Iait Control Half word (I,Cll) , used as th e
communic ation link b e twe en the wait e r a nd the pos t e r.

WAIT on well WAIT HX

Th e second ope rand is a WCH, which is checke d to see if bi t
o is on. I f not, the SIP of the routin e issuing th e WAI T i s
s et into the WCH, and the routine is fla g ge d as be in g in
wait sta t e by s etting the Wait bit ill its lIsa. I f b i t 0 i s

-1)-

on, the WCH has already bee n posted and the routine i s
allowed to continue. An immediate routine may QQ.l i ss ue a
WAIT.

POST wch POST fSS

T he second ope~and is a WCR, which i s posted by tu~ning off
the Wait bit in the MSB of the routine whos e sa v e area it
points to. The fi~st op erand ~ddf~§§ is then mov ed into
the WCR as a completion cod e and b it 0 is set on.

A typical use for
I/O operat ioll to
then WAITS on a
ha ndli n g routine.

the~e instruc tions i E for wai ting for an
complete. h routine starts s ome I /O and
WCH which i s POSTed by the 1/0 interrupt

3.3 . 2 SIGNAL

T he SIGNAL extende d instruction is p!:o vi ded to al l o w LEVEL 1
to force the i nvocatio n of an event ro utine .

SIGNAL e v e nt SIGN AL FSS

The second operand halfword i E the name of an event whose
occurence is to be forced. The event may b e pa Lallel or
imme diate a n d it s !:outine will be invoked provid ed the EVL
search i s successf ul and the i g nore bit i s o ff . The first
operand address points to th e status to be placed in th e
beginning of th e routine 's automatic storage . Thi s status
must be in the following forma t:

r------~----------,

Ilength I status I
L ______ ~ _____________ J

o 2 n

An imm ediate routine cannot SIGNAL a parallel one.

- 14-

A gro up of exte nded i ns tr uc ti on a r e pro vided so that LEVEL l can
easily ma i ntain co n tro l led storage. Contig uous ar eas of
controlled storage are maintained in a li nked list ca lled ti,e
Free ~lemory List (FML) . The head of this list i s in memory
locatio n X' 64 ' .

GET co n tro l led storage Register
GET contro l led s torage

GETR
GET

RR
ax

The co ntents of i12 (GETR) or th e second operalld halfword (GET)
specif i es t he arrount of ccntrolled storage desired. This size
is ro unded up to a multipl e of four bytes and the storage is
obtained from the E'ML. I t s add r ess i s returne d in R 1. If no
contiguous piece of s torage of thereguested size exist s , a No
Free Memory Program inter r upt occurs.

GET MAXimum controlled storage

The address of the larges t contiguous piece
storage is r e t u rn e d in Hl , and its l e ngth
If abso l utely no storage lS available,
Program inter r u ~t occ urs.

FREE contt:olled stot:age Register
FREE controlled s torage

GETl1 A X RR

of free controlled
is returne d in H2.

a No Free ~lemot:y

FllEF.R
PH EE

RIl
RX

The contents o f Bl contains the address of an area of
contro l led storage to be FHEEd, i.e., Fut back on the FML.
The contents o f 82 (FREER) or th e seccnd operand halfword
(FREE) contains the length of thi s area . If th e address is
not e ven an Invalid FREE Program i nterr u pt wi l l occur.

- 1 5-

I

LEVELO provid es a great many e xte nded I/O facilities to t . ll e
LE VE L1 progra mmer, both in terms of l o cal I/O anti S/ 360
communications. These f acilities provide a higher leve l o.f
contro l over I/O and I/O interr u pts, allowingLEvEL1 ro ut ines t.o
be muc h s maller and logically simpl e r. In addit.ion, t hey
el iminat e all of th e data codes a ssociated with QariO ll s uli i t s and
r ed uce a ll data tra n sfer to the EBCD I C code .

5. 1 . 1 THE CHANNEL PRO GBAM

LEVELO provides a logi cal " c h a nn e l " which h clS the
capa b ility of e xecuting multiple ope ration s (LOCCs) a t a
uni t via o nly on e LEVEL1 ins truction, EXCP, which initiate s
a chain of unit commands . These comm a nd s are kn own as
Chann e l Progr a m Comm ands (CPCs) and have t h e fo llowing
fo cmat:

r-------.-----r---------,------- - ,
Icommand Ifl ags I address I lengtll I
L-______ ~ ____ ~ _________ ~ ________ J

o 1 2 4 6

comman d: Th i s by t e spec i fies th e partie ular. operation to

x 1-

x2-

be perfo'rmed by this (PC at th e unit. Ther e ar e se ve n
di f ferent command~:

Wri t. e . Data
specified
numbpr o f

i s trans ferred from the me mory dddress
t.o the unit.. The l e ng t h s pecifie s the
bytes to transfer.

llead . Data i s r ead from the unit into memo ry a t the
l engtb det ermilles the address specified. Th e

nu mbe r o f bytes r ead.

x 3- No Ope·cation. No operat i on i s pe cf o rmed a t th e unit.
Th e address a nd l e n gth fiel ds are ignore d.

-1 6 -

x4- Se"nse. The USH is read into th e halfworu at the
specified address. The length fi e ld is ignored.

x5- Sense with Rese t. This CPC op e ra tes exactly a s Sense
with the addition that any p ending inter ru pt fr om
the unit i s reset.

x6- Spe cial. This CPC
different units.
unit.

comllland has
See the

special us a ge wi t h
eXFlanation o f e ach

x7- Transfer in Channel. This CPC is not us ed to perform
I/O at the unit, but rathe r to cause a branch so
that the channel program may be continue d at d

dif ferent memory location. The addre ss fiel d
specifies from where the nex t CPC i s to be
obta in e d; the length field is ignore d.

flags: The only flag currently used i2 bit O. Thi s bit i s
ch e cked atter comFle t i on of each epe except a Transte r
in Channel, and, if on, a nother epe is r e tri e ved from
the D~I! three halfwords in memory. This featur e , with
Transfer in Char-nel, allow s initiating controllabl e
multiple operations at the unit with only one channel
program.

addres s : This fi e ld sp ecifie s the ne mory a d dress wher e
data associated with the command is to be obtained or
stored.

length: This field gives a byte count for data transfer
commands.

5. 1.2 S'rARTING A eHANN EL P R GRAM

EXecute Channel Program Ex e p FSS

Th e second operand address is the addre ss of the fir s t ep c
in the channe l program. This program is initia ted, if
possible , a t the local unit Epecified by the 10~J- o rcJ.er 4
b its of tile operand 1 EQQ£g§§.. The Condition Cod e is set
as follows:

CO­
C 1-
C2 -

Unit busy or offline .
Channel progrdlO in progress.
Channe l program comple t e d immediately.

-17-

Once a channel program that caused Cl to be set i s
completed, an event ~ith a p r e-def ined name is signall ed by
LEVELO. This is to inform LEVEL l of it s completion and any
e rror conditions that occured, and to allo \~ LEVELl to
perform any po st -I/O hous ekeeping neces sary. Appendix I
li s ts t hese event names and the ir associated status
information.

5. 1.3 OTHER LOCAL I/O PACILITIES

In order to control I /O inte rr upts, it is perfectly valid
fo r LEV ELl to manip ul ate the 1/0 mask bit in the ftSR a nd
the I/O unit mas k in loca tion 2E, within li mits . It is
considered invalid for a immediate routine to e nable 1/0
illt err u pts.

In addition, LEVEL l can never modify the DC B ta bl e or the
UCBs for any unit. However, the third hal fword of each .DCB
is res e r v ed for LEVEL l use as a pointer to a DCa 8xt8Tl sion
or wha te ver. LEVEL l may access this ha l f word through t he
UCB ta bl e and mo dify it at will.

5 .1.4 HANDLING OF PA RIT Y CH ECKS

Whe n a Parity Check Control Pdnel int er ru pt occurs. LEV2LO
go es into "har~' stopped state. The user can onl y recover
by rese ttin g the s ystem and re-IPLi ng .

Although S/360 liD logically be longs on LEVELO, it is
currently s uppo.rt ed by a s ubroutine package which dyndmically
"hook s " itse lf into LEVELO. See ~LL§Q _ tU;:ri .!!! ILQ.L
~!!Q.~Q!!.ti!!.~ Q~§££iEiio!!.§ for calling conventio·ns .

- 18-

.1

The Interval Timer decrements location X'50' every 100 usec.
When location X'50' goes to ze ro, it causes an Interva l Timer
interrupt. The .LEVELO s UFPort for the I n terval timet: allol's
tlw LrlV~L l uset: to keep track of cunning and CPU time, and to
set time intervals.

5.3 .1 CPU iND RUNNING TIME

The user may query the t:unning and CPU time by use of the
QTIMER instruction:

Query TIMEil QTIMED HX

The first and only opeeand address is the address of an
e ight byte scannout area, a ligned on a halfwot:d boundary.
After completion of the QTIMER insteuction, the sca nnout
area contains th e running time and CPU time si llce tne last
I PL in timer uni ts (1 00 usec.) :

.r-------------,
o J Rea I T i rue I

l 1
4 I CP U ti me I l ____________ J

5.3.2 TINE INTERVALS
0"'· \ :.----

The LEVELl ush r may set a time interval by placing the t:eal
time at whicn he wishes to be interr upt ed in the Tiroer Unit
Cont rol Block exte nsio n. When that time is reached, LEVELO
will signal an interrupt to LEVEL l.

One instruction i s provided by LEVELO for communications with
the META 4B. The META 4A can interrupt the META 4B and pass it
a code using the INTB instruction:

INTerr up t meta 48 INTB HX

-19-

The first and on l y operand address i s passed to the META 4 8 to
identify the interr upt .

-20 -

This section
Write , Read,
EBCDIC.

describes the CPCs which aLe unit-depe ndent, i. e.,
and Specia l. Note that a ll data transfer i s i n

0 1- Hrite. This command is invalid for the 3461 and, if
encountered, causes the channel program to be aborted and
an Invalid CPC Prog ram interrupt to occur. This is the
case for all invalid CPCs for every unit.

02- Read. This co.ma nd causes
by the length field to be
the address in the CPC.
range 1 to 80, unpredictab l e

06- Special. Invalid.

0 1- Write. Invalid.

02- Read. I nv a lid .

the number o f bytes -, pecified
read into memory starting at
I f the length i s not in the
results will occur.

16- Start Timer: The Timer begins to decre ment location X'50'
e very 100 microseconas.

06- Stop Timer.

0 1 or 11- Hrite or Write without Edit. The character string
specified by the aadress and length fields is typed on
the Typewriter, with trailing blan ks removed a nd a
carriage return appended. If an exact typing of the

-2 1-

string is desired, with trailing blanks and 110 carriage
return, then bit 3 of the command should be set.

02 or 12- Read or Read without Edit. Inp ut is accepted feom
the keyboard until either a carriage return is typed or
the length is exhausted. If a Read is performed, a s
opposed to a Read wi t hout Edit, the n two extra facilities
are provided: Logica l Backspace and Logical Line Delete.
If a logical bac kspace character is typed (LEVELl
specifies this character in location 66) , the pre vious
character is ignored and removed from the input buffer.
If a logical line delete is typed (a l so spe cified by
LEVELl in location 67) , the complete pr€ceeding input is
ignored and the Read is restarted.

06- Special. Invalid •

.xl- Write. Data is written onto the
pointed to by the CPC address.
follow in 9 format:

r--------r-------,

disk from the buffer
This buffer has th e

o I reserved I
\--------+ ------I

2 I s e ctor address 1
i-------+-------1

4 I DATA I
\---------+-------1
I • I

•
•

The length is rounde d up to a halfword and used to
determine the amount of data to write. Any amount may be
writte n with one CPC. T h e sector addres s sp ecifies the
first sector on whic h data i s to be writte n; an
automatic seek to this sector i s performed by LBVELO. If
the length is not a multiple of 640 byte s, the last
s ec tor Hill be filled with z eroes.

02 or 12- Bead or Read Check. The Read command uses the same
buffer format as a Write , and pe rforms e q uival e ntly in
terms of length specification, automat i c s e ek, et c . The
only differe nce is that data is read into th e buf f er dnd
th e length doe s specify th e e xact amount of data to
t.rao. s fer.

-22-

Read Check is used to check data just written Oll the d isk alld
shou ld be chai ned onto e ve ry Wr i te fo r best pe r formance.
The add r ess and length fiel d s shoul d be ide ntica l to
those in the Write.

06- Special. T hi s CPC is used to callse a "sta nd - alone" seek
of th e carriage arm. T his c a n cause a pertorma nce
increase i ll certain s.ituatiolls where computing is to be
done before a Read or Write - t h e seek can operate
concurrent ly with the comp u ting. The address field
points to a half word co nt ai nin g the sector ad dress to
~hich t h e seek is do ne: t he l e ngth field is ignored.

x1- Write. Either on e or two
on t he specified are writte n

setting of bits 2 aod 3:

ba l fwords at th e address
lights, depe ndi ng o n the

00 :
01 :
10:
11 :

No operatio n .
Oll hal.t'word is
o ae half·word is
First halfwor:d
t he next one

written on the l owers .
written on th e uppers.

is written on th~ u ppers a nd
on the lowers. The length field i s

ignored.

x2-
the

Read. The
half word at

contents of the data switches are r:ead int o
t he specified addres£; t he l ength field is

ignore d.

x6- Special. I nv a lid.

0 1- PIO Wri t e. The halfword a t
perform a PIO write to t he
f i e l d is ign ored.

the data address i s used to
Vector GenEral. T he length

02- Read. The l e ngth fie l d divid e d b y two specifies the
number of consecutive register:s to be read from the
Vector General into the memory location specifiell. '£he
starti ng register add r ess is det e rmined by the last PIO
Write CPC .

-23 -

06 or 16- Allow Interrupt s or Set Display Buffer Address.
The Allow Interrupts command is us ed to inform tI,e META
48 that it can again reques t interrupts . This CPC should
be i ss ued at the e nd of th e interrupt handler for t I,e B .

In a Set Display Buffer Address command, the display
buffer address specified in the CPC is sent to the Null
META 4B so that it can initialize for di sp laying.

Both of these CPCs ignore the length field.

-24-

This section lists and describes th e events
by LEVELO. In additio n, the status data
handling routine ill its automatic stocage is

that are pre-defined
passed to the event

explained.

The first halfKord of the status, and therefore of an Avent's
automatic stoI:aqe, is always the event name that wa s originally
signalled (a s opposed to the name actually found in the EVL
search). This is also true for events c a used by LEVEL1 via lOhe
SIGNAL instruction. The remaining status is vaciable, although
two halfl,/Ords are comlllon:

La s t (PC Address: On an I/O event,
last CPC th a t WdS interpr e ted.
an ecrOI: condition arises.

this 1S the addI:ess of th e
Some CPCs may be ig nored if

USH: On a .n I/O event,
causing the event.

this is the final USH fI:om the unit

2001- The time of day placed in the UCB exte ntion by LEVEL1
has been reached. statns is the running tim e (J 2 bits)
and CPU time (32 bits) at the time of the in te I: r upt, in
timer units.

103 1- META 4B intfJrrupt. Stat us is the cede specifie o in an
INTA instruction executed on the META 4B.

1 03 1- Null
display
enable d

~lETA 4B inteLrllpt. Status is the USH and th e
bu ffer add ress. F urther .i n t e rr upts will be

after an Allow InteI:I:upts CPC is ex e cut e d.

-25-

The second he x digit of the e vent nam e fo~ these eve n ts is th e
unit add~ess of the local I/O unit.

7.4.1 346 1 CARD READEll

2411 - Ch a n ne l P~ogram Complete. Status i s La s t CPC
Add~ess and USB.

242 1- I/O
Empty.

E~~or, caused by Read or Ee e d C he ck, or Hopper
Status is the same as 2411.

7.4.2 4132 KEYBOARD/TYPEWRITER

26 11 - Channel Prog~am Co mplete.
l\ dd ~ess , USH, a nd Remaining
Le ngth is only me aningful on
g ives t he d i ffe r e nce bet.een
th e CPC and the actual numb e r

s t a tus is La s t CPC
Le ngth. Th e Remaining

Read commands, where it
th e length spec ified in

of characters typed in.

2631- I nt er rupt. Switch. St.at us i s USI1.

7.4.3 14114 DISK STORAGE UNIT

22 11 - Channel Prog~am Complete. Status i s Last (PC
Address ' and USH .

2221- Seek Check, caused if the sector n umbe r on a n
a u tomatic or stand-al one seek cannot ce v ee ified aftee
t e n r e tri es . status same as 22 11.

7.222- I/O Error, caus e d by Rea d or Rea d Check commands if
a data teansfe ~ error peLsists aiter 10 ~etLies.
St a tus i s same as 22 11 and 2221.

-26-

7.4.4 CONTROL PANEL

2531- I nt e rrupt Button. There is no status other than the
e vent nam e.

The e vent nam e for an SVC instruction is always COxx , ~ here xx
is the SVC code. No s t a tu s oth e r than the nam e it self is
pa ssed.

The evant
xx is th e
na me i tse l.E

name for a Program
Program int .rrupt
is passed, except

Interrupt is always DOxx, where
code. No sta tus a th er than the
in the following ca ses:

operation- An image of the Program Interrupt Sca n-out Area is
passed, comprising five halfwords of s t atus .

Invalid CPC- The La s t CPC A ddres s is Fassed. Thi s CPC
contains the invalid command.

This event is really LEVELl-defined,
in initially . s tarting up the
multi-programming maintenance. See

but is intended fo r use
LEVELl system and in
the appropriate LEVELl

manual fo r an exp lanation.

As described in
e v e nt e ntry was
the event tral'
na me of FOOO.

Section
fa und in

E VL i s

3.1, this event is used if
the EVL searc h. The first

used, and sho uld have a

-27-

no other
en try in
standard

The fo llowing table lists the vBeiou s lowee memory aeeas in
LEV ELO which are accessab l e by LEVEL1:

2E I/O unit inte rrupt masK
30 OCB Tabl e - Inter val Timer DCB address
32 META 4B UCB address
34 14 44 Disk Stdrage Onit DCB address
16
38 346 1 Ca r d Beader OCB address
3A Co ntro l Panel UCB address
]C 4132 Keyboard/T yp ewr i ter UCB address
3 E: META 4A UCB address
40 SIMA LE UCB addeess
42 vector Ge neral uee address
44
46
48
" A
4C
4 E
50

5/360 De vice 050
5/360 De vice 051
5 / 360 De vi ce 052
S/360 De vi ce 053

Inteev a 1 Timer

OCB
UCB
lI CB
UCB

60 Parallel Que ue head

address
address
add eess
add ress

62 Pointer to predecessor of execut in g rout i ne
64 Feee Memory List head

66 Logical Backspace character
67 Logical: Line De l ete Character

70 Event Li st heads - 'rimer e ven t s
72 ~I ETA 4B event s
74 a ll othee l ocal I/O unit e v e nts
76 5/360 even t s
7 8)
n)
7C)
7E > e v e nts fo rLEV EL1 use
80)
82)
84)
86)
88 SVC event s

- 28-

8A Pro g ram Interrupt events
Be Program Ma ni pulation e ve nt s
BE Eve nt trap

- 29-

'rhe fo llowing table lists the Progra m inte rrupt codes t hat can
occ ur o n I,E VllL 1 :

2 Ope ra t ion

8 Arithmet k Overf l ow

A Conversio n Ove rflo~

C Di vi sion by Zero

E Alignment

1 0 Register Specif i catio n

12 Privilege

1 4 Stack Overf lo w

1 6 Stack Underflow

1 8 Execute

20 No Fr ee Memory

22 Invalid FREE instruction

2 4 In valid CPC '

26 Zero S/360 DCD Address

-30-

The f ollowing table lists the operation codes f or th e LEVEL O
extended i nstr uc tion s;

Ui.2I!l.!KnQH S:;.QQll

v ENT BE

./ EXCP FD

.- FRllE 43

v FREER 03

v' G llT 41

v GE1'N AX 02

/ GETR 0 1

, INTB G.F

v POS'f Fll

v'QT H I ER 64

", RET OB

v SIG NiH FC

V WHT 71l
/"'.

WRITE 67 >
,y

-31-

/

.'-"'

Certain maccos ace provided for th e LEVELl ass e mbly language
pcogrammer. ~heHe macro s reside in the BUGS macro Iibcac y
(M4 ALI B) and ace described in th e following pacagraphs .

This macro gellerates an Event e ntry wh ich can be placed on an
EVL. It is coded as fo llows:

[label] EVENT link.name,flags,entry-point
[,priority,stack-frame-siz e]

The priority and stack frame size ne e d only he coded for
parallel routines .

These two mac ros
de sc ribing the
coding:

lab e l AU'l'O

which gen e rate s:

LINE I,
*
*

LINE
label OSECT

(J S IN G
labelP OS
labelN DS
labe l R OS
l abe i A OS

ar e used in each routine to generat e a DS ECT
stack frame section. The DSECT is beg un by

AUTO MATIC STOR AGE MAP

lab e l, SFP
A
A
15H
DC

-32-

PREV10U S POINTER
N EX T P a IN T El1
REGISTE R SAVE
AUTOMATIC STORAGh

Pol lowin g th e A{]Tll, DS's for: t h e automat ic va r iables can be
coded . Onc e a ll the automatic space i s defined, the pr:ogr:ammer
s ho uld co de :

EN OJ\ UTO

wh i c h will ge ner:ate :

labelL
f,SYSECT

EQU
CSEC 1'
LINE

*-labe lA AU TO STORAGE LENGTH

to e nd tile DSECT. The s ymbol " labe lL" s h ould be used in the
ENT instr:ucticn to specify th e length of the automatic s torage
des irerl. Do not f ocget to includ e space foe status data .

'1:'his macr:o i s use d in a subr:outine to r e turn a cod e ill one of
t he r:egis t ers of the invoking routine. It i s coded:

[label) RETCODE invoker-r: eg [, code I

The r:etur:n c ode speci f i ed in the
(re g) regist.er: i s pl a c ed in the
routine spe cified by"invoke r-I:eg".
t he p race ss.

(re g)]

macro or contain ed in th e
r eg i s ter of the invoking

Reg i s t e r 2 i s bashe d in

Th i s ma cr:o i s use d to genecate a CPC fo r: use with the EXCP
i ll struction.

[label] CPC comma ud ,flags[,add r: ess[,le ngth)]

If the address and/or l e n gt h i s
set to ze ro in the generated CPC .

-3 3-

not coded, these fie ld s are

I

This macr- o
locations in
the mac r-o is

ge ne rates an
lo we r Ille mo r y
availabl e f or

eq ua t e t able of th e LEV EL O- define d
access a ble b y U ; VE L1. A li s ting o f
those who need i t .

• •

- 34-

