r 4 1
| BU G S |

L i]
T

BOGUS

Breown University Graphics Systenl

LEVELO Extended Machine

of Operatio

1

Principle

1443

The Brown University Graphics Project

Division of Applied Mathematics

Box F

Breown University

Providence, Rhode Island 02912

Updated: June 25, 1974

Printed: September 15, 1§76

1This research 1is being supported by the WNational Science
Foundation Grant GJ=-29401%, the 0Office of WNaval GResearch,
Contract N0C014-67~-a2-0191-0023, and the Brown University Division
of Applied Mathematics; Principal Investigator Andries van Dam.

TABLE COF CONTENTS

1 IntrOdUCti\){l-- LIE B I R I I B B B T BB IR BT B I R TR)

2 The
241

FVFT1 Routine and Its S5tack Fram€s.se.
EL1 vs, the Bare Machin@eisescseecosss
Non—puivileged StatCissnsnunsassesns
HATT SEATC s vie w8 i o i d wis who ww 9 @ a4 m ok
Extended InstructicCnNSescssscscsssscsss
e e Programmer's Datdsesscssssnssasssons
2ede b SEALEE DAL we wre o mw wre o BB RN WE ¢
Ziy 2 2 Entonabitc DAEA e e ere eie we s e @ @
2:2:3 Controlled Datdes eessss e seas s o sss

1
1.
1

NN e

2.2 T

--‘S’h-?[\.)...atjt""

2 3 The StaCk Fram@...-l‘l..-.. " R & 5 " 5 8 S e =B
2.4 Subroutine Linkage InstructionS.cesc.sass
2 5 ypes of Routln{)“'\. S 8 9 09 45 B P 9 B 8D e W E B e S

5.1 Parallel RoOUtineSs cosssasssssssacsss
5-3 SubroutinesSs.s PP 85 N BB BE O NORES D P
«5.3 Immediate ROULINOSieceescsssosannsase
5.4 Registers at Entry to a Routine.....

2
2y
2
2l
3 Events and Their RoUtine S. sscsesescesssooa
Fw T BUSNES e wws v sown are ave ars o 65 son e w 6% $50 9 % a0
3.2 Dispatching of Parallel RoutineSecsecses
3.3 LEVEL1 Control of Routines and Events..

35331 WAIT BN POSTaiscasns i 64886 00 o0 v ®
33i)SIGNAL'I...I..l'..l....‘ltﬂ‘."..l‘l

4 Maintaining Controlled DatQececassasssaass
4,7 Getting Controlled StOragCessssssoasasss
f’l‘.? Freein.g CODt[‘Olled Stcragé&-...........

5 Extended I/0:sensmavinisiaons aissssssessansses
5.1 Local I/0 Units and the Channelesssecsss
D51.71 The Channel ProOgTaMs ve vy oo e ssemess
5.1.2 Starting a Channel Prografleesscessss
5.1.3 Other Local I/0 FacilitieS..ssesessss
5.1.4 Handling of Parity CheCkS.eeeeeceses
5.2 5/360 ConMUNICALiON.s e 5595 cets00sessnss
5.3

e 3.1 CPU and Running PifG.esessewsseessss
5'3-2 Tilne I}lte.rvalSIli-.ilI.'I.ll'l.l‘...l
5,4 META 4B CommunicatioOnNSeesssssccsocsscnse

6 Unit-~Dependent CPCS.icessnssvsscsscnsnssssens
6.7 3461 Card Reade@lesessesssossssansscsnsan
6.2 Inberval Pilioelecesvsms monesswsmn omosons
6.3 4132 Keyboard/TypeWwriterecsesessesssssscas
64 TUUYH Disk Storage Uhite eceeeiwsessssssses

---agnn'nnl‘--------c-1

’.‘l.'...’l..!l.llOioz
ressassassaassnens sl
cevesssesssssensseanel
i...‘l'.ll'nl'..lll‘lz
csesessessnssssassnaal
P |
I"“‘.‘lll."..lh‘...j
cessvssvasssansersas a3
sssssssvssssccnsessest
'.'.I.Il'.l..ll...'.““!'
sscanssscsassrsrnsenssd
...-I.I.II..‘.-..-..OB
5 3 % 8 9 e 4 % e Il...-.'...6
.0!"'..'....5...'..07
.'l“ll..l..'l.l..tlﬂa

n-‘-l.c-ml“!-------.cg

ssesvessssmesaveswses 10
I T I I T e |
cedsaseavissasssnasns 13
ssssssessssnbsssanny 13
".-‘-I.QIDQQII.'I.I—IB

l'.'.!‘l...-.....'..-‘u

2 % 020 9 e A B O 6 @9 8 s S 08D ew

v G

1
ll..'t‘!l.....'-.l."’l
1!

@ 9 8 % 9B e P G U B EE VDS S

ssesssssssnssannsses 10
csssssnsssssssssesse 10
I.lll'.l.l’.".'l‘..16
seessasessssassnenas 17
“.‘I.ll‘.'."'..l‘.‘lB
ssesssssnnessssssess 18

.0..0..!.......1...-18

g
Thﬂ‘ Intefval T.i[[lero-n.-------..---.-.....-..-...---o--.---.‘lg‘

‘.........".....--.‘][)
OI..l.lll'.IIolo.l..)‘})

.ll.l‘!ll.'.ll‘l.lﬂl““}

esssrsesssssessnsseedl
sessssnesssneusenyanll
scasesvsasssnenssssesl
esssssssssescsssnsas 2]

% 9 3% 38 B8 O 8BOS E W SE S O 22

Bw D CORELOL PADBlas se 565 v e oiw bie s v i o o068 i 5560505 nenae ane 23
6'6 Null ME‘I‘A I""B.ll".ﬂ......l.'lI.......I.I..I.'.II...I..I..'.23

7 Appendix I: LEVRLO=Defined EVENLS, s essssnsassensesssessssssve oD
7.1 Interval Timer EventS.ccessoscesssassnssssansssssesssssansvsldd
Teo2 NETA UB EVENESsaswam awesan sieee e nios eneess e esesseedsesousss 20
7.3 Null META uB EvelltSa--------------.--------an----oaoo-.--.-25
7«4 Other Local I/0 Unit EventS.icasssssssnsssessssnaessinndnss 20
. Tallel 3861 CAaTd RoGd@Tesenss b s passsasatesssessssidedsssesvndd

T.4.2 4132 Keyboard/Typeuriteracesesccesssasseanscncanssnnsensselb

To 4,3 1444 Disk Storage Unitecesesssscassosnvenssassssssesnvssss 2

T84 CONtrol PANeli e ew s eis o e 906 6550 5 6 60 608 55 400 98 e§ S 0ew s wad T
3 BNC BVeRLHs sies oa @ v e aninine s e sn e 5 e es a8 Ee a8 se sn e e B
Program Interrupt EVentS.ceessecsssscscessssccssssscssacssnsdl
Program Manipulation EventS.siscesscssscssssssessssasosnnsensall

Eveﬂt Tcapqcoolocoooosnn..ao-..o-ooo-t.ano.--olanouo.----0027

-

»
-

N [P
@~ W,

8 Appendix IX: LEVELO Lower Memory LayOUteeesscescsscsscscssssesa 28
9 Appendix IIT: LEVEL1 Program InterruptS..c..esessesesssccssceesa3l
10 Appendix IV: Extended Instruction O0p CodeSeeccesnccssossssees3l

11 Appendix V2 MARALIB MAGLOBuie vis ae v e se omeine 8 s ssses e ey sess odo
11.1 EVENT.......-......II..--.-‘...-..III..I.-."..‘.........132
11 ‘2 Ai]TO/ENDAU'I.O.. ® 5 & S S P PO PR O P 9 e P W PSP O G SRS PR S TS 9 DA B E S YRS l‘32

11-3 RET{:ODE--‘QQOOCDIOU...IIUIO....!.II.lola....l'."ll'!'--ll'33

11-“ CPCI.-.II-..-.-.....-...'.'....--....-...l.l--.---.C.....IJB

11.5 LEVELO.....'C.C..-..‘-.IlIl....l..Illll‘l..Q..........I...3u

-ii=-

Abstract

This publication describes the LEVELD Extended Hachine, a
component of +the Brown Operating Graphics University Systen,
running on the BUGS META 4A processor. LEVELD provides the BUGS
use with facilities bevond those inherent in the
hacrdware/firmware. A thorough knowledge of the Principles of
Operation of the META 4R is assuned.

1_INTRODUCTION

LEVRELO is a software package designed to run on the META 4A and
provide the BUGS user with facilities making up an extended
machine, These facilities alleviate some o0f the drudgery of
coding on a bare wmachine and assume responsibility for many
machine functions, freeing the user to worry about the operaticon
of BUGS (referred to as the "systen") at a higher level. LEVELO
assumes the presence of another level of operating systen,
running as a "LEVEL1" above it. Such a LEVEL1 does exist on
BUGS, and 1is called the Graphics Monitor System (GMS), or, to
close friends, "Our Fearless Leader". In this publication,
however, it will be referred to as LEVEL1 for generality.

The reader is assumed to have a thorough kncwledge of the NETA 4A
and BUGS in general, In particular, however, he will use only

those "normal" instructions not ccncerned with machine status,
interrupt handling, I/0, etc. LEVELO is responsible for handling
those portions of the machine. Thus it is necessary for the

reader to realize that much of what he reads in the META UA
Principles of Operation will not directly concern him.

2

I

le=t

HE_LEVFL1 ROUTINE AND ITS_STACK FRAME

221 _LEVEL1 VS, THE BARE HMACHINE

A LEVEL?1 routine running on LEVELD must follow somewhat
different conventions fromr cne running stand-alone on the META
4A., These conventions are necessary for two reasons. First
of all, they allow LEVELO to maintain control over the status
of the system, and secondly, they provide a higher level of
system organization for the LEVEL1 programmer.

2.1.17 NON-PRIVILEGED STATE

The LEVEL1 routine runs at all times with the Privilege bit
in the MSR off. This prevents him from performing local I/0
and S$/360 operations without using the facilities provided
by LEVELO. 3Specifically, he canonot execute the following
instructions: SIOR, $I0, RST, WST, EXCC, TRB, and SS. It
is considered invalid for the LEVEL1 system ever to set the -
Privilege bit on.

2. 1.2 WAIT STATE

In addition to the Privilege bit, the LEVEL1 program must
never set the Wait bit in the #MSR. LEVELO assumes all
control of the state of the system, including the setting
of this bit.

2.17.3 EXTENDED INSTRUC TIONS

Because of the abcve restrictions and for the increased
flexibility of LEVEL1, LEVELO provides a set of "Extended
Machine Instructions®. These instructions, which are coded
by the programner as if they were real META U4A
instructions, provided added features for LEVEL1, such as
memory management,extended I/0, etc. These instructions, of

which there are some fifteen, will be explained in the
course of this publication.

Since computing is concerned with the mpanipulation of data,
strict conventions <concerning types of data are made by
LEVELO. There are specifically three types of data with which
the programmer can concern himself: static, automatic, and
controlled.

2.2.1 STATIC DATA

Static data is data that is assenbled/compiled into a
routine and is present there when the routine is loaded.
This data includes the instructions of the progran itself,
plus any pre-initialized wvariables DCed within the routine
proper. The term "static" may be misleading in that it is
not assumed that static data will remain unchanged
throughout the execution of a program; it is certainly
possible for a programmer to DC an initial value for a
variable and then change it later. The term static simply
implies that the data was defined before execution of the
routine was begun.

2.2.2 AUTOMATIC DATA

Automatic data is the terwm applied to variable space which
is allocated prior to the execution of a routine and freed
when that routine completes. This data cannot be
initialized at assenbly/compile time, because the storage
does not exist at this point. The data 1is local to the
routine owning the automatic storage and disappears when
that routine completes. It is this type of data that is
specially treated by LEVELO.

2.2.3 CONTROLLED DATA

Controlled data 1is data which is maintained in storage
space obtained by a routine and present until exclicitly
released, Extended dinstructions are provided to maintain
this controlled storage. Mcst programmers are probably
familiar with this type of storage from experience with IRY
Operating System/360 or similar systems, with their GETHALN
and FREEMAIN SVCs,

2.3 THE_STACK_FRAME

PP A S AR L

As was mentioned above, automatic storage is one special
feature of LEVELO. In order to maintain this automatic
storage across normal occurences such as subroutine calling
and the execution of interrupt handlers and the like, LEVELC
maintains a number of "stack frames" in the META 4A. A stack
frame 1is a logically infinite piece of storage in which is
maintained a series of automatic storage sections for each
routine in the dynamic sequence of execnticn. FEach routine
need only be concerned with the section of the stack frame
belonging to him., This section has the following format:

SFP
I
v

r -3
0 Jprevious poiuter|
]

t 1

2 | next pointer |

k sl

L ‘ |
save area

| |

+ 4

221 |
auntomatic
storage

I I

1 |

pre vious pointer: this halfword contains the address of the

stack frame section of the routine executing dynamically
prior to this routine.

next pointer: this pointer is used by LEVELO to maintain the
dynamic link of stack frame sections and is of no direct
use to the progranmer., (Uged by Free slosse wonn gpan b)

save area: these 15 halfwords are used to stere the routine's
MSR through register 14 at any time his execution is
delayed due to an actual machine interrupt or to a
subroutine call.
It hade rivg
automatic storage: This space is the actual automatic storage
requested by the routine., It can vary in size from 1 to
n halfwords; this size 1ie determined by the extended
instruction ENT, which must be the first instruction of
every routine that either saves the registers of the
previous routine or requires automatic storage or both.

2.4 SUBROUTINE_LINKAGE_INSTRUCT IONS

ENTer routine ENT RI

The immediate halfword of this RI-format extended instruction
spacifies the size, in bytes, of the automatic storage
required by the routine, The size is rounded up to the next
higher halfword, if necessary, and used to determine the size
of the automatic storage shown in the diagram above. This
instruction nmust be the first executed instruction of every
routine in which it appearcs.

Once the ENT instructiocn is performed, the caller's registers
0 through 14 are saved in the caller's savearea, and the Stack
Frame Pointer (SFP), register 15, is set to pecint at the stack
frame section for the ENTered —rcutire., This register may be
used as a base for instructions accessing data out of the
stack frame, but should not be modified in any way by the
routine. TIts contents are maintained entirely by LEVELO.

Once a routine has completed execution, it must return control
to the routine dynamically previous to it. This is done by
executing the RET extended instruction:

RETurn from routine RET RR

This dinstruction, which has no operands, causes the stack
frame section alloccated to the routine to be freed up, and
control to be returned to the interrupted point of the
previous routine, The SFP will ke Lkacked up so as to be

= s

correct for the prior routine and registers 0 through 14
restored from its savearea., TIf the returning routine desires
to modify the registers of the previous routine, an action
which 1is entirely valid in certain cases, he wmay do so by
picking wup the previous pointer and using it as a base to
address the previous registers. If the returning routine is
re-entered, its autcowatic storage will have been in no way
preserved. The contents of automatic storage ace always
undefined at the start of a routine.

2.5 _TYPES_QF_ROUTINES

At this point in time we «can begin to make a distinction
between various types of roatines, namely parallel routines,
subroutines, and imwmediate routines.

2.5.1 PARALLEL ROUTINES (taskr)

A parallel routine is one which can run sinmultaneously with
and independently of any and all other routines., LEVELO
has the capability to run an arbitrary number of parallel
routines sinultaneously within the systew. Each parallel
routine is given control and allowed to execute until some
event occurs that LEVELO decides should cause another
parallel routine to gain control. Rach parallel routine has
its own "infinite" stack frame which remains in existence
until that routine returns. At the front of that stack
frame 1is a section of storage known as the Ystack frane
header", which has the following format:

f ED
Iparallel gueue
L]
L B

2 {\priorityl/////// 1

o

e —

t T i

4 }stack frame size|
F 3 1

& | SFP save H
]

parallel gueue: this pointer is used by LEVELO to maintain
a gqueue of the stack frames of each of the parallel
routines currently running on the system. The head of
this gqueue is in mewmory location X160 1.

priority: This byte contains the priority assigned to this
parallel event. The priority is used by LEVELC to
decide which parallel event shculd be given control
each time such a decision must be made. See Section
3.2

stack frame size: This halfword contains the stack frame
size estimation made by the programmer. See Section
3 2 1 ® it f

SFP save: Whenever the parallel routine is not executing,
its current SFP is saved in this halfwozd.

The previous pointer in the stack frame section of a
parallel event 1is =zero because there 1is no dynamically
previous routine, BEach parallel event 1is cousidered an
entity in itself apd ccntrol is never passed between then
under programmer regquest.

Also associated with the entry into such a routine is some
pre-determined 'data called "status", This data is stored
into the first (few bytes of the routine's automatic storage
by LEVELO before that routine is placed on the queue. The
programmer must include this space in his automatic storage
request in the ENT dinstruction. This data will be
explained in greater detail later. QU e {7

2542 SUBROUTINES

A subroutine is a routine which 1is explicitly invoked by
another routine, Although the subroutine is logically a
separate routine with 1its own automatic storage, LEVELC
considers it to be an extension of the invoking rcutine.
It gets its stack frame secticn out of the stack frame of
the invoking routine, and it runs with the priority of the
originally entered parallel routine.

The prograamer exarcises explicit control over the
execution of subroutines; in order to invocke one he must
load the return address into register 14 and branch to the
ENT instruction ¢f the subroutine, vias

BAL R14,subroutine

or, if the subroutine is external:

LI Rx,V {subroutine)
BALR R14,Rx

When the subroutine 1is entered, the <contents of the
registers will be identical to what they were in the
invoking routine, except of course for the SFP. Tt is not
necessary for the subroutine +to restore any registers
before exiting with a RET instruction; this is taken care
of by LEVELO with the save areas.

A subroutine itself may call other subroutines, down to any
level. If a subroutine desires to modify the registers ot
the invoker, he may dc so as explained in Section 2.3, by
using the previous pointer as a bLase for the invoker's
stack frame section. A typical case of this is for
implementing return codes.

2.5.3 INMEDIATE ROUTINES

An immediate routipe, unlike a parallel one, cannot run
simultauneously with other routines. The purpose of the
immediate routine is to perform system maintainence
functions, such as the handling of I/ interrupts, as
quickly and with as 1little overhead as possible. To
accomplish this, a immediate routine must:

1) Run disabled, i.e2e, with the 1I/0 and S/360 interrupt
masks in the MSR off. This ensures that the execution of
the routine will not be interrupted by any external unit.

2) VNot 1issue any extended instructions which would cause
another parallel routine +to gain control of the systen.
These restrictions will be described under the appropriate
instructions.

An immediate routine, however, may call subroutines and may
cause other " immediate routines to gain control. Any
subroutine called must alsc follow the above conventions.
An immediate routine and all its subroutines, because they
do mnot run in parallel with other routines, do not have
their own stack frame. Instead, they run in the stack
frame of the parallel routipe that was executing at the
time the inpmediate routine was invoked.

2.5.4 REGISTERS AT ENTRY TO A ROUTINE

The following table describes the status of the registers
upon entry to a parallel or immediate routine:

MSRz Condition Code and Flag zero; Arithmetic Overflow
and Stack oOverilowsUnderflew disabled; interrupt
masks as described above, Parity interrupts are always
enabled, and the Parity interrupt mask bit in the HSR
should not be altered.

PC: Set appropriately.

R2 - R3: TIdentical to what they were when the formerly
executing routine was interrupted. This is especially
useful for SVC handling routines, which are passed
parameters in these registers.

RY - R14: Undefined.

SFP: Set appropriately.

'VENTS_AND_T

=

ELR_ROUTINES

Now that the various types of routines available on LEVFLO have
been discussed, it 1is time to describe how individual rcutines
are invoked. The sinplest case is that of subroutines, which are
explicitly invoked by the programmer as described in Section
2.5.2. It is parallel and inmediate routines that this section
deals with.

3.1 _EVENTS

_—— e

An event in BUGS is defined as the occurence of some sort of
system interrupt that should delay the execution of the
current routine and start ufp another. Events are such things
as I/0 interrupts, SVC calls, Program Checks, etc. LEVELD
presumes that the LEVEL1 system will have a routine which
should be executed when each of these events occurs, and
therefore must invoke the proper routine at the proper time.
In order to do this, LEVFLO needs amn EVent List (EVL), which
is a list of entries, each one specifying an event and the
routine to be invoked when it occurs, Fach event entry has
the following format:

T |
0 | EVL link |
k 1 4
2 1 event name |
i+ 1 4
4 Jpriority| flags |
= ————my
6 | routine entry |
= + s |
8 |stack frame size]
i i J

EVL link: This is the address of the next entry in the EVL.

event name: This is the 16-hit name assigned to the event.
Many events have names pre-assigned by IEVELO so that an
effective communication with LEVEL1 can ke set up. Other
event names can be assigned by LEVEL1. The first hex
digit of the name is called the event "type", and is used
in searching the EVL.

&0

priority: This is the 8-bit priority assigned to the event
routine if it is parallel. It is used in determining
which parallel routine to run, a¢ described below.

flags: This byte contains flags describing the event routine:

bit 0: If zero, this routine is immediate. If cone, the
routine is parallel. The priority is ignored for
immediate routines.

bit 1: If on, the event is ignored when it occurs and
no routine is invoked, This bit may be altered
dynamically by the LEVEL1 systen.

routine entry: This is the address of the routine itselt.
The first instruction must be an ENT specifying the
amount of automatic storage desired by the programmer.

stack frame size: This halfword is only used for parallel
routines. As was mentioned previously, the stack frame is
a logically infinite vpiece of storage. In actuality, it
is composed of one or more stack frame extensions. This
halfword should ccntain an estimation of the total amount
of stack frame space needed, so that the first extension
will hopefully be the only cne. This cuts down on LEVELO
overhead and the fragmentaticn of memory.

In order to 1locate the event entry for an event when it
occurs, LEVELD uses a table of EVL ‘"heads"2, There are
sixteen halfword event heads, located in memory locations 70
through 8E. Each head is used to point to the EVL for the
corresponding event type. It is up to the LEVEL1 system to
set up the event head table in its initialization code. The
sixteen event types are:

TYPE DESCRIPTION

Interval Timer events

META 4B events

All other local I,0 unit events
5/360 events

events for LEVEL1 use

PO o~NOOUNplwnn-=O

o N e

2yide Section 8 for the location of these lists.

-11-

)

SVC avents

Program Interrupt events
Program Manipulation events
Event trap

HE|o Qo

The following steps are taken when an event occurs:

1y LEVELD builds the appropriate event name and extracts the
first hex digit as the event type.

2) The event type is used to pick an EVL head from the above
table, and the EVL is searched for an entry containing the
name.

3) 1I1If none is found, the fourth hex digit of the event nane
is zeroed and the list is searched again. This allows generic
classes of events,

4 and 5) If still no event entry is found, two more searches
are made, with the third and second hex digits, respectively,
also zeroed,

6) Finally, if the above searches were unsuccessful, a check
is made of event type F, the event trap, to see if any entry
exists in that EVL, regardless of name.

It is presumed that one of the above searches produces an
event entry which <can be used to invoke a routine. If no
entry was produced, the event is ignored and discarded. If an
entry was found, the follcwing actions occur:

parallel event: A new stack frame 1is created with the size
specified in the entry. The header is initialized with
the priority and the frame size and placed at the head of
the quaue of stack franmes.

inmediate event: The routine is entered after allocating it
space in the current stack <frame in accordance with its
ENT instruction.

No action is taken of course, if the ignore flag is on in the
event entry.

-12=

i e e i e e e e T e o

There are certain conditions under which LEVELO determines
that the current parallel routine should be delayed and
another one given control. Whenever this occurs, the LEVELO
"dispatcher" is executed. It performs the following seacch:

1) A scan of the parallel gqueue is made for the highest
priority runnable parallel routine. A routine is not runnable
if it has gone into wait state (see Section 3.3.1). If two or
more have the highest pricrity, the last one on the queue is
picked.

2) If all routines are in wait state, the first one is
picked.

Once a routine 1is picked, it is given control by loading its
current SFP from the stack frame header and picking up its
registers from the save area. During its execution the address
of the predecessor stack frame header on the event gqueue will
be in memory location X'62'.

3.3 LEVEL1 CONTROL OF_ROUTINES ANLD_EVENTS

Certain extended instructions are provided by LEVELO tc assist
LEVEL1T in controlling the execution of routines and che
occurence of events.

3.3.17 WAIT AND POST

It is possible for a routine to put itself into wait state,
i.e. a state where execution is suspended, pending
notification or "posting" by another routine. Wait state is
controlled by the Wait Control Halfword (WCH), used as the
communication link between the waiter and the poster.

WATIT on wch WAIT RX

The second operand is a WCH, which is checked to see if bit
0 is on. If not, the SFP of the routine issuing the WAIT is
set into the WCH, and the routine 1is flagged as being in
wait state by setting the Wait bit in its MSR. If bit 0 is

-13=

on, the WCH has already been posted and the routine is
allowed to continue. An immediate routine may not issue a
WAIT,.

POST wch Porv fe, ek PO ST FSS

The second operand is a WCH, which is posted by turning off
the Wait bit in the MSR of the routine whose save area it
points to. The first operand address is then moved into

the WCH as a completion code and bit 0 is set on.

A typical use for these instructions is for waiting for an
I/0 operation to complete. A routine starts some I/0 and
then WAITS on a WCH which is POSTed by the I/0 interrupt
handling rontine,

3.3.2 SIGNAL

The SIGNAL extended instruction is provided to allow LEVELI1
to force the inveccation ¢f an event routine.

SIGNAL event SIGNAL FSS

The second operand halfword is the name of an event whose
occurence 1is to be forced. The event may be parallel or
immediate and its routine will be invoked provided the EVL
search is successful and the ignore bit is off. The first
operand address points to the status to be placed in the
beginning of the routine's automatic storage. This status
must be in the following format:

T E
|length | status
L 1

IO

0 2 n

An immediate routinme cannot SIGNAL a parallel one.

...1 =

4 MAINTAINING CONTROLLED_DATA

A group of extended instruction are provided so that LEVEL1 can
easily maintain controlled storage. Contiguous areas of
controlled storage are maintained in a 1linked list called the
Free Memory List (FML). The head of this 1list is in memory
location X'6U4',

4.1 GETTING_CONTRCLLED STOEAGE

GET controlled storage Register GETE RR
GET controlled storage GET RX

The contents of R2 (GETR) or the second operand halfword (GET)
specifies the anount of ccntrolled storage desired. This size
is rounded up to a multiple of four bytes and the storage is
obtained from the FML. Its address is returned in R1. If no
contiguous piece of storage of the requested size exists, a No
Free Memory Preogram interrupt occurs.

GET MAXimum controlled storage GETHAX RR

The address of the largest contiguous piece of free controlled
storage is returned in R1, and its length is returned in R2.
If absolutely no storage is available, a No Free lemory
Program interrupt occurs.

4,2 FREEING CCNTROLLED _STORAGE

FREE controlled storage Register FREFER RR
FREE controlled storage FREE RX

The contents of B1 contains the address of an area of
controlled storage to be FREEd, i.e., put back on the FHL.
The contents of 82 (FREER) or the seccnd operand halfword
(FREE) contains the 1length of this area. If the address is
not even an Invalid FREE Program interrupt will occur.

-15-=

S_EXTENDED_I/O

LEVELO provides a great many extended I/0 facilities to the
LEVEL1 programmer, both in terms of 1local I/0 and 5/360

communications. These facilities provide a higher level of
control over I/0 and I/0 interrupts, allowing LEVEL]1 routines to
be much smaller and logically simpler. In addition, they

eliminate all of the data codes associated with various units and
reduce all data transfer to the EBCDIC code.

5.1 LOCAL_I/0O UNITS_AND THE CH

5.1.1 THE CHANNEL PRCGERAM

LEVELQ provides a logical fichannel"™ which btas the
capability of executing wultiple operations (IOCCs) at a
unit via only one LEVEL1 instruction, EXCP, which initiates
a chain of wunit commands. These commands are known as
Channel Program Commands (CPCs) and have the following
format:

r T T ER B
jcommand |[flags] address | length |
1 A1 i 1 |

0 1 2 i 6

command: This byte specifies the particular operation to
be performed by this CPC at the unit. There are seven
different ccnmands:

x1- Write. Data is transferred from the memory address
specified to the wunit. The length specifies the
number of bytes to transfer.

x2- Read. Data 1is read from the unit into memory at the
address specified, The 1length determines the
number of bytes read.

x3- No Operation. ©No operation is perforwed at the unit.
The address and length fields are ignored.

..16.-

x4- Sense. The USH 1is read into the halfword at the
specified address. The length field is ignored.

x5- Sense with Reset. This CPC operates exactly as Sense
with the addition that any pending interrupt frow
the unit is reset.

X6 Special. This CPC command has special usage with
different units. See the explanation of each
unit.

x7- Transfer in Channel. This CPC is not used to perform

I/0 at the unit, but rather to cause a branch so
that the chanprel program may bhe continued at a
different memory location. The address field
specifies from where the next CPC 1is to be
obtained; the length field is ignored.

flags: The only flaqg currently used is bit 0. This bit is
checked atter completion of each CPC except a Transfier
in Channel, and, if on, another CPC is retrieved fron
the next three halfwords in memory. This feature, with
Transfer in Charnel, allows initiating controllable
multiple operations at the unit with only one channel

program.

address: This field specifies the nmemory address where
data associated with the command is to be obtained or
stored.

length: This field gives a byte count for data transrer
commands.

5. 1.2 STARTING A CHANNEL PROGRAHM

BXecute Channel Program EXCP FSS

The second operand address is the address of the first CPC
in the channel program. This program 1is initiated, if
possible, at the local unit specified by the low-order 4
bits of the operand 1 address. The Condition Code is set
as follows:

CO0- Unit busy cr offline.

C1- <Channel program in progress,
C2- Channel program completed immediately.

-17-

Once a channel program that caused C1 to be set is
completed, an event with a pre-defined name is signalled by
LEVELO., This is to inform LEVEL1 of its completion and any
error conditions that occured, and to allow LEVEL? to
perform any post-I/0 housekeeping necessary. Appendix T
lists these event names and their associated status
information.

5. 1.3 OTHER LOCAL I/0 FACILITIES

In order to control I,/0 1interrupts, it is perfectly valid
for LEVEL1 to manipulate the I/0 wask bit in the MSR and
the I/0 unit mask in location 2E, within limits. It is
considered invalid for a immediate routine to enable T/0
interrupts.

In addition, LEVEL1 can never modify the UCB table or the
UCBs for any unit, However, the third halfword of each UCB
is reserved for LEVEL1 use as a peointer to a UCB extension
or whatever. LEVEL1 may access this halfword through the
UCB table and modify it at will.

5.1.4 HANDLING OF PARITY CHECKS

When a Parity Check Control Panel interrupt occurs, LEVELD
goes into "hard" stopped state. The user can only recover
by resetting the system and re-IPLing.

522 _5/360 COMMUNICATION

Although 5/36C 1I/0 logically belongs on LEVELO, it is
currently supported by a subroutine package which dynamically
"hooks" itself into LEVELO. See S$/360 - META 4A I,/0,
Subroutine Descriptions for calling conventions.

-13=-

5.3 _THE_INTERVAL TIMER

The Interval Timer decrements location X'50!' every 100 usec.
When location X'50' goes to zero, 1t causes an Interval Timer
interrupt. The LEVELO support for the Interval timer allows
the LEVEL1 user to keep track of running and CPU time, and to
set time intervals.

5.3.1 CPU AND RUNNING TIME

The user may query the runaning and CPU time by use of the
QTIMER instruction:

Query TIMER QTIMER RX

The first and only operand address is the address of an
@ight byte scannout area, aligned on a halfword boundary.
After completion of the QTIMER instruction, the scannout
area contains the running time and CPU time since the last
IPL in timer units (100 usec.):

Real Tine

CPU time

R Wa——

(o . =

5.3.2 TIME INTERVALS

ok
The LEVEL1 user may set a time interval by placing the real
time at which he wishes to be interrupted in the Tiper Unit

Control Block extension. When that time is reached, LEVELO
will signal an interrupt to LEVEL1.

5.4 META_4B_COMMUNICATIONS

One instruction is provided by LEVELO for communications with
the META 4B. The META 4A can interrupt the META 4B and pass it
a code using the INTB instruction:

INTerrtupt meta 4B INTB RX

-19-

The first and only operand address is passed to the HETA 4B to
identify the interrupt.

-20-

6_UNIT-DEPENDENT CPCS

This section describes the CPCs which are unit-dependent, i.e.,

Write, Read, and Special. Note that all data transfer is in
EBCDIC.

6,1 3461 CARD READER

01- Write. This command is invalid for the 3461 and, if
encountered, causes the channel program to be aborted and
an Invalid CPC Program interrupt to occur. This is the
case for all invalid CPCs for every unit.

02- Read. This cormand causes the number of bytes specified

by the length field to be read into memory starting at
the address in +the CPC, If the length dis not in the
range 1 to 80, unpredictable results will occur.

06- Special. Invalid.

6.2 INTERVAL TIMER

01

Write. Invalid.
02- Read. Invalid.

16- Start Timer., The Timer begins to dectement location X'50°
every 100 microseconds.

06~- Stop Timer.

6.3 4132 KEYBOARD/TYPEWRITER

07 or 11- Write or Write without Edit. The character string
specified by the address and length fields is typed on
the Typewriter, with trailing blanks removed and a
carriage return appended. If an exact +typing of the

-21-

string is desired, with trailing blanks and no carriage
return, then bit 3 of the command should be set.

02 or 12- Read or Read without Edit. Input is accepted from

06~

the keyboard wuntil either a carriage return is typed or
the length is exhausted. If a Read is performed, as
opposed to a Read without Edit, then two extra facilities
are provided: Logical Backspace and Logical Line Delete.
If a logical backspace character 1is typed (LEVELI1
specifies this character in location 66), the previous
character is ignored and removed fronm the input buffer.
If a 1logical 1line delete is typed {also specified by
LEVEL? in location 67), the complete preceeding input is
ignored and the Read is restarted.

Special. Invalid.

6.4 1444 DISK_STORAGE UNIT

x1- Write. Data is written onto the disk from the buffer
pointed to by the CPC address. This buffer has the

following format:

r T 1

0 | rese ved |

k i 4

2 | sector address |

t ¢ 1

4 DATA |

k + 4

| - |

L]
L
The length 1is <counded wup to a halfword and used to
determine the amount of data to write. Any amount may be
written with one CPC, The sector address specifies the
first sector on which data is to be written; an
automatic seek to this sector is performed by LEVELO. If
the 1length is not a multiple of 640 bytes, the last
sector will be filled with zeroes.

02 or 12- Read or Read Check, The Read command uses the sane

buffer format as a Write, and performs eguivalently in
terms of length specification, automrmatic seek, etc. The
only difference is that data is read into the buffer and
the length does specify the exact amount of data to
transfer.

22

Read Check is used to <check data just written on the disk and

06~

should be chained onto every Write for best performance,.
The address and 1length fields should be identical to
those in the Write.

Special. This CPC is used to cause a "stand-alone! seek
of the carriage arm. This can <cause a performance
increase in certain sitvaticns whers computing is to be
done before a Read or Write - the seek can operate
concurrently wWwith the computing. The address field
points to a halfword containing the sector address teo
which the seek is domne; the length field is ignored.

6.2 CONTROL_PANEL

X 1=

Write. Either one or two halfwords at the address
specified are written on the 1lights, dependiang on the
setting of bits 2 and 3:

00: WNo Operation.

01z One halfword is written on the lowvers.

10: One halfword is written on the upgpers.

11: First halfword is written on the uppers and

the next one on the lowers, The leagth field is

ignored,

x2- Read. The contents of the data switches are read into

the halfword at the specified address: the length field is

ignored.

xb6- Special. Invalid.

["6.6 _NULL_META 4B

01- PIO Write. The halfword at the data address is used to
perform a PIO write to the Vector General., The length
field is ignored.

02- Read. The length field divided by two specifies the

number of consecutive registers to be read from the
Vector General into the merory location specified. The
starting register address is determined by the last PIO
Write CPC.

DY

06 or 16- Allow 1Interrupts or Set Display Buffer Address.
The Allow 1Interrupts command is used to inform the META
483 that it can again request interrupts. This CPC should
be issued at the end of the interrupt handler for the B.

In a Set Dpisplay Buffer Address Command, the display
buffer address specified in the CPC is sent to the WNull
META 4B so that it can initialize for displaying.

Both of these CPCs igncre the length field.

J _APPENDIX I: LEVELC-DEFINED EVENTS

This section lists and describes the events that are pre-defined
by LEVELO. In addition, the status data passed to the event
handling routine in its automatic storage is explained.

The firs halfword of the status, and therefore of an event's
automatic storage, 1is always the event name that was originally
signalled (as opposed to the name actually found in the EVL
search). This is also true for events caused by LEVEL1 via the
SIGNAL instruction. The remaining status is variable, ailthough
two halfwords are ccmmon:

Last CPC Address: On an I/0 event, this 1s the address of the
last CPC that was interpreted. Some CPCs way be ignored if
an error condition arises.

US:H: On an I/0 event, this is the final USH from the unit
causing the event.

2001- The time of day placed in the UCB extention by LEVELI1
has been reached. Status is the running time (32 bits)
and CPU time (32 bits) at the time of the interrupt, in
timer units.

7.2_META _4B_EVENTS

1031- HMETA 4B interrupt. Status is the ccde specified in an
INTA instruction executed on the META 4B,

7.3_NULL META_U4P_EVENTS

1031- Null META 4B interrupt. Status is the USH and the
display buffer address. Further interrupts will be
enabled after an Allow Interrupts CPC is executed.

.4 _OTHER _IOCAL I/O UNLT EVENTS

The second hex digit of the event name for these events is the
unit address of the local I/0 unit.

7.4.1 3461 CARD READER

2411~ Channel Program Complete. Status 1is Last CPC
Address and USH,

2421- 1,0 Error, caused by Read or Feed Check, or Hoppert
Empty. Status is the same as 2411.

7.4.2 4132 KEYBOARD/TYPEWRITER

2611+ Channel Program Complete. Status is Last CPC
Address, USH, and Remaining Length. The Remaining
Length is only meaningful on Read commands, where it
gives the difference between the length specified in
the CPC and the actual number of characters typed in.

2631- Interrupt Switch. Status is USH.

7.4.3 1444 DISK STORAGE UNIT

2211~- Channel Program Complete. Status 1is Last CPC
Address and USH.

2221- Seek Check, <caused if the sector naumber on an
automatic or stand-alone seek cannot ke verified after
ten retries. Status same as 2211.

2222- 1,0 Error, caused by Read or Read Check commands 1t

a data transfer error persists after 10 retries.
Status is same as 2211 and 2221.

-.26...

7.4, 4 CONTROL PANEL

2531 Interrupt Button. There is no status other than the
event name.

7.5 _SVC_EVENTS

The event name for an SVC instruction is always COxx, where xx
is the SVC code. No status other than the name itself is
passed.

7.6 _PROGRAM_INTERRUPT EVENTS

The event name for a Program Interrupt is always DOxx, where
xx is the Program interrupt code. No ctatus other than the
name itself is passed, except in the following cases:

Operation- An image of the Program Interrupt Scan-out Area is
passed, comprising five halfwords of status.

Invalid CPC- The Last CPC Address is passed. This CPC
contains the invalid command.

This event 1is really LEVEL1-defined, but is intended for use
in initially 'starting up the LEVEIL1 system and in
mul ti-programming maintenance., See the appropriate LEVEL1
manual for an explanation.

7.8 EVENT TRAP

As described in Section 3.1, this event is used if no other
event entry was found in the EVL search., The first entry in
the event trap EVL 1is used, and should have a standard
name of F0O0C,.

27

8 APPENDIX II: LEVELQ LOWER_MEMORY LAYOUT

The following table 1lists the various lower memnory areas
LEVELO which are accessable by LEVEL1:

OQCATION CONTENTS

2E I/0 unit interrupt mask

30 UCB Table - Interval Timer UCB address
32 META 4B UCB address

34 1444 Disk Storage Unit UCB address
36

38 3461 Card Reader UCB address

3A Control Panel UCB address

3C 4132 Keyboard/Typewriter UCB address
3E META 4A UCB address

40 SIMALE UCB address

12 Vector Gen=2ral UCR address

uny

46 S/360 Device 050 UCB address

48 S/360 Device 051 UCB address

4 A S/360 Device 052 UCB address

4c 5/360 Device 053 UCB address

D)

50 Interval Timer

60 Parallel Queue head

62 Pointer to predecessor of executing routine
64 Free Memory List head

66 Logical Backspace character

67 Logical ILine Delete Character

70 Event List heads - Timer events

12 META UB events

T4 all other local I/0 unit events

76 5/360 events

78)

TA)

7C)

7B > events for LEVEL1 use

80)

82)

84)

86)

88 SVC events

=3 85

|
8A Program Interrupt events

8C Program Manipulation events
‘ 3B Event trap

=25~

D _APPENDIX IIX: LEVEL1 PROGRAM INTERRUPTS

The

following table

occur on LEVEL1l:

CODE DESCRILPTION

2

8

10

12

14

16

18

22

24

26

Operation

Arithmet ic Overflow
Conversion Overflow
Division by Zero
Alignment

Register Specification
Privilege

Stack Overflow
Stack Underflow °
Execute

No Free Memory

Invalid FREE instruction

Invalid CPC

Zero S5/360 UCB Address

lists the Progranm

__30_

interrupt codes that can

10_APPENDIX_IV: EXTENDED_INSTRUCTION OP _CODES

The following table 1lists the operation codes for the LEVELD
extended instructions:

INSTRUCTION CODE
. ENT BE
. EXCP FD
~ FREE 43
“ FREER 03
~ GET 1
- GETMAX 02
~<GETR 01
" INTB 6F
“ POST FE
QT INER 6
« RET 0B
« SIGNAL FC
« WALT TR

WRITE 67 »

=

11 _APPENDIX V: MUALIB_MACROS

—

Certain macros are provided for the LEVEL1 assenmbly language
programmer, These macros reside in the BUGS macro library
(MU4ALIB) and are described in the following paragraphs.

11.1_EVENT

This macro generates an Event entry which can be placed on an
EVL. It is coded as follows:

[1abel] EVENT link ,name, flags,entry-point
[,priority,stack-frame-size]

The priority and stack frame size need only be coded for
parallel routines.

11.2_AUTQ/ENDAUTO

These two macros are used in each routine to generate a DSECT
describing the stack frame section. The DSECT is begun by
coding:

label AUTO

which generates:

LINE
i
* AUTOMATIC STORAGE FMAP
&

LINE
label DSECT

USING label,SFP
labelP DS A PREVIOUS POINTER
labeln DS A NEXT POINTER
labelR ns 15H REGISTER SAVE
labelA DS 0cC AUTOMATIC STORAGE

-3 D=

following the AUTO, DS's for the autowmatic variables can be
coded. Once all the automatic space is defined, the programner
should code:

ENDAUTO

which will generate:

labell EQU *-label A AUTO STORAGE LENGTH
ESYSECT <C€SECT
LINE

to end the DSECT. The symbol "labelL" should be used in the
ENT instructicn to specify the length of the automatic storage
desired. Do not forget to include space for status data.

This macro is used in a subroutine to return a code in one of
the registers of the invoking routine. It is coded:

[1label] RETCODE invcker-reg[,code | ({reg)]
The return code specified in the macro or contained in the
{reg) register is placed in the register of the invoking

routine specified by "invoker-reg", Register 2 is bashed in
the process.

This macro is used to generate a CPC for use with the EXCP
instruction.

[label] CPC comnmand,flags| ,address[,length]]

If the addiress and/or length is not coded, these fields are
set to zero in the generated CPC.

-33-

11.5_1EVELD

This macro generates an equate table of the LEVELO-defined
locations in lower memory accessable by ILEVELl1. A listing of
the macro is available for those who need it.

-3~

