MIDAS: A Microprocessor Display

and Animation Systen
by

Robert F. Gurwitz Read T, Fleming

and

Andries van Damnm

November 19, 1979

Department of Computer Science
Brown University
Box 1910

Providence, Rhode Island 02912

TABLE _CF CONTENTS

Abstract

1 :[nt'rog-i[lct.ionll....'l...‘....-‘IO‘ﬂlIll..!l.‘.‘...ﬂ..‘l.‘l....l.l1
2 Bacquound.ll-III'I.‘I’-IQ.’.-O--.."I."..Ql-....""'.‘."'l..“l..:g

3 Overview..'..'.."‘."'.ﬂ'I...!.I"l"'.'.‘..'.‘....‘"-.'."'..

9
.3I 1 The Simulation' ® % 90 B PSP S P S S SV D S S IP S ST RO DO PSS S S G S S SRS .7
3.2 The Dlsplay PrOCESSOlsssssssssenessssssssenssossanssnsasnssssnnsd
3. 3 The Supervisor. LR IR BE B B B B B BN B BN BN B I DR BT B BN B BN BN BE NN O BE EE IF BE BE BT AR BE B N N B BN B B DR B N 12
Q Implemerlrtation..I.l.'i...‘-.lﬁt.‘-l--.--IIIIIICl-..-..‘-‘....'.lu

5 Discussion and ConcluSions cesssscsenisssstnosssssiessnsssnsas 18

5 Referenc_eS-nndl..‘.--oaQI.I‘O......UI!l.s....s"..'...c‘..i.-0‘22

ABSTRACT

An interactive graphics program has been developed to
simulate and animate the operation of a typical microcomputer
system. MIDAS, A Microprocessor Interpreter Display and Animation
System, allows the user full control over the simulation and the
display, as well as several auxiliary functions that enhance its
capabilities as an dinstructional tool. The illustration of the
activity of the computer, based on the Intel 8080 microprocessor,
takes the form of an animated block diagram of the CPU and its
peripherals. It shows the operation of the system at various
levéls of detail, down to the level of the devices' internal

registers, buffers, ccntrol lines, and busses,.

This paper describes +the design, implementation, and use of
MIDAS. It discusses its effectiveness as a tool for teaching the
complex, asynchronous interaction between devices of a computer
system, known as "handshaking." It also discusses a strategy for
developing a qeneraliéed tool for simulating/animating arbitrary

computer systenms.

CR Categories: 1.5, 8.1, 8.2

Keywords: computer aided instruction, computer animation,
computer science education, interactive graphics,

microprocessors, simulation

1_Introduction

MIDAS, a Microprocessor Interpreter Display and Animation
System, provides 1its users with a real time simulation of a
microcomputer system, an animated display of the simulation, and
facilities for controlling their presentation. It is intended
for instructional use, to acquaint students with the operation of
a typical computer system based on the most popular production
microprocessor, the 1Intel 8080, It allows viewing of this
operation on the register and bus transfer level. MIDAS is
comprised of three parts. First, there is a discrete simulation
of the microprocessor system, including the CPU, wenmory, a
conéole, DMA controller, floppy disk controller, interrupt
control unit, bus contrcl unit, and a keyboard interface. Second,
animation of the simulated system's block diagram is controlled
by a display processor which is driven by the simulator. Finally,
a supervisor allows interactive control over the operation of the
simulated computer, as well as such aspects of the display as
rate of presentation, view of the diagram, and level of detail of
the display, There are utility functions provided which are
accessed through a simple command language and interpreted by the

SUpPervisor.

MIDAS is an interactive system that attempts to let its
users follow the complex activity of a working computer at their

own pace, and at a level of detail +that makes the operations

o= i

understandable, In order to do this, it provides special
facilities that are geared toward allowing a high degree of user
control in as unconmplicated a manner as possible. This paper
descrihbes these facilities in detail. The motivation and design
goals behind the MIDAS project will be discussed, along with the
features the system offers, its implementation and the degree to
which it fulfills the stated objectives. 1t also examines MIDAS
in a more general context, as an example of a system whicCh
employs techniques of presentation and interaction that are
fundamentally different from those used in classical

instructional tools.

The original motivation for the design and implementation of
MIDAS came from a desire to illustrate the complex interactions
that exist at +the level of individual hardware control lines
during the operation of a computer system. This "handshaking" is
a dynamic process that is difficult to teach using conventional
methods, Typically, these methods have included the study of
manufacturer's specifications and operating manuals that employ
static block diagrams, waveform timing diagrams, and narrative
descriptions to convey the precise operating characteristics of
hardware., Since many of these processes run asynchronously, it is
difficult to describe them adequately with standard illustrative
techniques. From our experience, both in +trying to teach these
concepts in computer architecture courses, and in attempting to
learn about communications protocols, interrupt handling, and I/0O
in various systems ourselves, it became apparent that real-time
graphics would help the user to visualize these ideas. It was
felt that by combining a low-level simulation of a hypothetical
computer with an animated block diagram of the szstem in
operation, we could develop dynamic mwmethods of illustrating
handshaking and asynchronous control, Our experience with real
time, interactive, vector graphics [BUGS76] suggested that
placing this simulation and animation under direct user control

was the best way to proceed [STRAT7U].

Computer animation for various purposes 1is not a new
concept. The work of Knowlton [KNOW65], Baecker [BAEC75], and
Hopgood [HOPG74] describe applications of computer animation and
computer production of animated films, and demonstrate the
feasiblity of such systems., For example, a method of illustrating
LISP programs has been developed at the University of British
Columbia [DION75] and wused for teaching with some success.
However, to our knowledge, no other current system exists that
animates the low-level operation of computers and peripherals in

real time, with a high degree of user control.

MIDAS 1is an experimental implementation of this type of
presentation. It was decided that this system be designed for use
in ihe introductory computer architecture course at Brown. It was
also felt that the simulation of a microprocessor based systenm
would be the mos*t appropriate subject for this treatment., Reasons
for this included the fact that microprocessor systems are small
and hence suitable for an initial implementation under time and
size constraints, and their increasing proliferation in a variety
of applications would make such an implementation useful. The
Intel 8080 [INTE75] was chosen as the CPU since it was one of the
first, and most well known of the microprocessors in current use.
It also has a wide enough range of features in the areas of
interrupt handling and I/0 to be useful for illustrating
handshaking. The system to be simulated around the CPU was

designed to «contain devices typically found in microprocessor

based computers, It will be described in more detail in section

3‘1.

Several design constraints were defined. The system had to
operate slowly enough to he comprehensible, For teaching
purposes, the operator would have to be able to stop it at any
time and be able to have some "instant replay" facilitv. The
contents of devices' registers, as well as the status of all
control lines and the progress of bus transfers would have to be
depicted, Because a block diagram at such a low level could
become cluttered, steps had to be taken to allow the activity
taking place on the display to be followed by a student without
confusion., The animation had to be devised so as to attract the
vieﬁer’s attention and highlight important events as they take
place. Finally, two capabilities were deemed essential to the
goal of making the display "scrutable': the ability for the user
to smoothly "pan" over the block diagram, and similarly to be
able to smoothly "zoom in" on individual devices while having
lower level details of the picture come into view, These logical
zooming and panping capabilities would allow the user to view the
action at any of several levels of detail, while concentrating on
individual areas of interest in the diagram. The notion of
representing a picture on nultiple 1levels of detail has its
antecedents in classical parts "explosion" diagrams, and more
recently, in text manipulation systems. These allow authors to

structure text in such a way as to allow access to multiple

representations, hiding detail as desired [WELS72]. This
technique has also heen used in applications where data bases are

explored graphically, on a number of different levels [BOLT78].

-f-

3 Overview

. s - St B A s P

3.1 THE SIMULATION

The simulation part of MIDAS consists of an incremental
(finite state) simulation of a hypothetical system built
around the Intel 8080 nmicroprocessor, The other devices in the
system have been designed to simulate the activity of
"typical" currently available hardware, and thus correspond
to no specific commercial devices. In addition to the CPU and
1K random access memory, these include a status decoder,
console, keybhoard interface, direct memory access (DMA)
céntroller, floppy disk controller, priority interrupt
control unit (PICU), and bus control unit (BCU). They allow
depiction of DMA and peripheral interface activity, as well as
CPU-memory operations, The devices are tied together by an
B8-bit bi-directional data bus, and a 16-bit address bus. The
configuration (showing devices and interconnecting busses, but

not control lines) is illustrated in figure 1.

The CPU's entire 78 instruction repertoire is
implemented, All ptbqrammer accessible registers and flags, as
well as some that are not directly accessible under progran
control, are maintained by the simulation and displayed, as
are the 8080's control lines. The 8080 is doubly clocked, with

two clock pulses defining a clock state. A varying number of

",

clock states are reguired to form any of ten 8080 machine
cycles. These cycles perform basic operations such as
instruction fetch, and memory, I/C, and stack reads and
writes, One.or nmore of these cycles make up the execution of
an instruction, vrequiring from 4 to 18 clock states to
complete., The simulation and display processes of MIDAS are
closely tied to these clock states, MIDAS simulates the
microcomputer system at the state level; that is, one clock
state 1is the smallest time unit that the simulation deals
with., This results in occasional compromises in depicting
certain activies (e go, "pulsesg" last an entire state), but an
effort has been made to retain a high degree of accuracy in

representing the relative timing of all operations.

A status decoder in the system derives I/C and memory
read and write signals from a status byte sent out on the data
bus at the end of clock state T1 of every machine cycle. This
byte is unique for each of the ten different machine cycle
types, and encodes the information needed for these control
signals. The console simulates a programmer's panel, similar
to those found on most minicomputers. It contains a switch
register and several addressing functions which are tied to
function keys available to the wuser. The cgnsole can perform
DMA operations (read and write memory with the CPU locked
out). A keyboard interface allows data to be typed into the

system from the user's alphanumeric keyboard. Thus, interrupt

driven character communication, such as teletype handling, can
be simulateds A DMA controller and floppy disk controller
allow disk data to be read and written directly from memory.
The simulated disk has 32 +tracks each with eight 128 byte
sectors, and can accept commands to seek and format tracks,
and read, write, and verify sectors. Its controller
communicates with the DMA ccntroller wvia its own 8 bit
bi-directional data bus (independent of the system data bus).
A PICU accepts interrupts from the keyboard interface, DMA
controller, and the «console, It has a mask register which
allows device interrupts to be held pending., Vector and
control registers within the PICU allow different interrupt
priorities and interrupt handling sequences to be programnmed.
Finally, a BCU arbitrates bus access requests by devices other
than the CPU which <can perform DMA operations. These requests
are accepted from the DMA controller and the console on a

simple priority basis.

3,2 THE DISPLAY PROCESSOR

Tied to the simulation is a display which animates the
operation of the system, The display consists of a block
diagram of the simulated computer. Each device in the systenm
is represented by a box containing the device's registers and

flags. Single bit control lines, represented as thin single

lines, tie devices together., Busses, shown by double lines of
different widths, indicate 8 bit data and 16 bit address paths
between devices. Data in the system 1is represented by
hexadecimal digits contained in registers or flowing across
the busses. The display 1is organized so that elements are
shown in various levels of detail. The degree of detail is
cantrolled by the user with a dial. As the user turns the
dial, the diagram "zooms in" smoothly and continuously, until
a new level of detail pops into view. At the top level the
boxes, busses and some control lines are shown., As the diagram
zooms in, line identifiers appear, followed by high level
‘registers and flags, and finally internal registers. 1In
addition to smooth zooming in or out, the user can also "pan"

over the block diagram with the use of a joysticke.

These effects are shown in figure 2, where the sequence
of three photographs shows an area of the block diagranm
displayed at three successive levels of logical "zoonr". Figure
2a shows the overall block diagram at the highest level. In
fiqure 2b, we have zoomed in on the CPU and its neighboring
devices. At this level, the line’ identifiers have appeared.
Finally, figure 2c shows a detailed view of the same area
"zoomed in", Here, the registers and flags of the various
devices can be seen., Note that the SYNC line from the BCU to

CPU are active ({(dark) in the figures, while all other control

-10-

lines are not. Also, note the presence of data on the busses

in the sequence,

In order to show the activity of the simulated computer
in operation, a repertoire of several animation effects is
uséd. Bus transfers are depicted by the movement of characters
representing the hexadecimal equivalent of +the data moving
across the bus paths. Because the display is tied to the CPU's
clock states, the nmovement of data is arranged in such a way
that bus transfers are completed by the end of the state they
start 1in. Tc¢ preserve the accuracy of the simulation, all
transfer paths terminate 1in registers that represent the
availability of data on the bus. These registers may
éorrespond in some cases to latches which hold the data until
it can be gated to its destination register in the following
clock state. The contents of all registers are updated once
each clock state to insure that they display the correct data
by the end of that state, Charnges in an individual register's
contents are highlighted by blinking the appropriate data in
the display. Activity on control lines is shown by brightening
line intemnsity to indicate a high or active line. All lines,
registers, and devices in the diagram are clearly marked by

identifying legends.

11

3.3 THE SUPERVISCR

Wwhen the system 1is activated, the simulation and display
processor are invoked by the supervisor on a state by state
basis, with the simulation updating status dinformation
maintained for each device and the display processor then
illustrating the changes with +the appropriate animation
effects. Several status displays alongside the animated block
diagram indicate the «current clock state, machine cycle type,
and the mnemonic of the 8080 instruction being executed. There
are three operating modes, In norwmal mode, the simulation
operates continuously at a speed controlled by the user. The
system can also be run one clock state at a time, in single
step mode, with the wuser hitting a function key for each
state, The third, or fast run mode, allows the simulator to
run at higher speed for a number of clock states specified by
the wuser. In this mode, animation effects are abbreviated,
with the displayed registers and lines wupdated, but no bus
transfers shown., During these three nodes, a set of user
functions are available Lthrouqh a function keyboard, for
controlling the display directly. Conmmands to invoke utility
functions <can be entered from an alphanumeric keyboard when

the simulator is stopped, a state known as command mode,

The auxiliary functions are available to the user through

a simple command language. Commands are available to enter one

-

=D

of the operating nodes described above., In addition, while the
simulator is stopped, the user may issue commands to display
or alter the contents of simulated memory, alter the contents
of any device's registers or the state of any control line,
clear system memory, or reset the status of the entire systen
{registers, control lines) to start-up values. The contents of
simulated wmemory may be saved in or loaded from a specified
disk file, sSimilarly, the state of +the entire simulated
system, including the contents of all registers and control
lines, may be saved in or recalled from a disk file. This

feature allows events to be saved and '"replayed" at any time,

As mentioned earlier, several commands are available
which may be issued while the simulator is running. These
commands are fied to function keys. They include commands to
stop the simulation and enter command mode; to "freeze" the

display during a simulated <clock state and to lock the

joystick, which controls panning, over any position of the
display to concentrate on a specific device or area. A set of
predefined views of the diagram may be tied to function keys
so that they may be recalled at the touch of a button. The
simulator is automatically "backed up" for one state, allowing
"instant replay" of the previous state at any time. This is
especially useful in single step mode. Finally, a-group of
keys 1is dedicated to controlling functions of the simulated

console,

..“3...

4 Implementation

MIDAS has been implemented on the Brown University Graphics
System {BUGS). BUGS is a stand alone system currently consisting
of two Digital Scientific Metal4 16 bit user microprogrammable
miniéomputers, a Vector General CRT display, and a high speed
graphics processor, the SIMALE, desigpred and built at Brown
[WEBB73], The nrinicomputers are ugsed for general purpose
computation and for graphics processing. One has the Vector
General display and its interaction devices (joystick, analog
dials, function keys, 1light pen, data tablet, and alphanumeric
keyboard) as peripherals, The SIMALE was designed as a high
speed processor used for real time graphics transformations,
windowing and clippirg, image correlation, and interpretation of
graphics primitives (lines, text, etc.). It employs four parallel
ALUs and bhas an effective instruction cycle of 38 nsec. BUGS
offers wvector manipulation facilities for a large variety of
applications, particularly those requiring sophisticated real
time interaction, arbitrary 3-D transformations, and analog
inputs for display control (e.qg., MIDAS-like smooth windowing and
zooming on a large drawing) [BUGST6]s A diagram of the

configuration of BUGS is shown in figure 3.

The implementation of MIDAS is comprised of three parts: the
simulator, the display processor, and the supervisor. The

simulator maintains a status record which holds all information

1=

on each device of the simulated system., It is invoked once per
simulated clock state to update this status record. Communication
between the simulator and the display processor is done entirely
through the status record and a set of pseudo-display orders.
These orders specify the animation effect to be performed and the
subject of the operation. The animation operations inciude: moyve
for ill&stratinq bus transfers, flash and change for changing the
contents of a displayed register or flag, and brite and dim
which are used for changing the status of control lines. The
objects of these orders are the different modifiable entities in
the display: t+he busses, registers, flags, and control lines. In
each simulated state, the simulator constructs lists of these
orders which are interpreted by the display processor to update
the display. The supervisor invokes the simulator and the display
processor for each clock state. Modification of the display
resulting from auxiliary function commands (like resetting the
system, altering of system registers, reéding in a new status
record, or "instant replay") cause the supervisor to update the
status record and invoke the display processor with its own
display orders, The reiation of the components of the

inplementation is shown in figure 4,

-15-

5 _Discussion and Conclusions

As a result of our initial experience with MIDAS as a
teaching tool, several conclusions about the techniques used have
been made. We have fcund that MIDAS reduces the time required for
teéchinq concepts of handshaking and asynchronous control in
general, and the architecture of +the Intel 8080 specifically,
compared with conventional methods (study of manufacturer's
literature, classroom lectures, 2tC.). A significant reduction in
teaching time over «conventional classroom lectures has been
observed, when MIDAS is used with properly prepared students.
This preparation should include an introduction to the
organization of *he 8080, relevant terminology, and the functions
of the peripherals in the system. The main reason for the success
of MIDAS as a teaching +ool seems to be the use of user
controlled animaticn., The system attracts students!? attention,
and the «control facilities available for instant replay, single
step running, freezing the display, etc., are a great help with
instruction. The use of descriptive messages, such as cycle type
descriptions and instruction mnemonics also help in understanding
the action. The ahility +o hide and smoothly reveal different
levels of detail at his own pace, greatly helps the student
visualize the operation of the systenm in stages, making it easier

to introduce new concepts,

-16-

Several factors were found to be important in developing
this type of dynamic instruction system, The display must be well
organized to reduce clutter and confusion. Animation effects nust
be carefully chosen to highlight relevant areas of the display.
The speed of such an animation nmust be slow enough to avoid
confusion of the viewer. Interactive speed control is a great
help in determining the speed appropriate to each user., Adequate
preparation of students with introductory lectures and study
greatly enhances MIDAS' effectiveness. The system as it now
stands cannot be used to teach these concepts "cold," without
prior preparation of the student, It is definitely not a
replacement for classroom teaching. Rather, it should be viewed
as an adjunct, providing concrete reinforcement of ideas taught
in the classroom. In our experience, the system was operated by a
teaching assistant for a group of four or five students gathered
around the display. The system is also effective when students

are given subsequent "hands-on" experience.

Being an initial implementation, there are several
improvements that can be suggested, We have found that the systen
is not fully self-disclcsing. Better methods, such as the use of
color for highlighting, would improve its ability to draw the
user's attention to the riqght places in the display. At present,
there 1is too nmuch activity taking place in the display for a
student to follow it totally unassisted. The use of raster-scan

graphics in future implementations of MIDAS or similar systens

17

might facilitate color, but would restrict the dynamics presently
available with high performance vector graphicss. The effects of
such restrictions on the quality of the presentation and possible

ways of compensating for them, remain areas for future stuady.

Another question that needs to be answered is how MIDAS
compares with more traditional teaching methods. The reduction in
teaching time over classroom lectures mentioned earlier provides
only ome basis for <comparison. Some reduction in time would also
probably be observed if MIDAS is used in conijunction with self
study programs. In contrast with other educational aids, MIDAS
bas several advantages., Hardware development systems that include
real hardware systems and various programming and debugging aids,
and -are specifically geared toward education, are available
through manufacturers. These systems give students the kind of
hands on experience no simulator can duplicate. However, aids
such as these cannot illustrate the internal data transfers and
sequence of operations as MIDAS does. More importantly, MIDAS
allows the user to exercise a high level of control over what he
sees, and the speed a*t which things proceed. As a result, he is
able to master concepts more easily by being in control of the
process which presents them. Ideally, a system which combines the
feeling of working with actual hardware (with the attendant real
signal 1level and +iming considerations), with a tool having
MIDAS' illustrative power and user controls, would have the most

to offer in terms of education.

-18=

Other conventional teaching +tools, such as "canned" lessons
on film or videotape, sometimes employ animated diagrams to
illustrate important concepts. More often, they are just variants
of classroom - instruction transferred to mnew media. In any case,
the ability for the student to control the presentation is not
available, Another advantage of MIDAS over these methods, is the
fact that presentations can be easily tailored to the students?
needs., While it is true that the implications and capabilities of
MIDAS has not been fully explored, the potential utility and

advantages of it seems clear.

MIDAS is a system designed around the Intel 8080
microprocessor. However, it could just as easily have been based
on .ancther processor, One possibility for overcomiﬂg the fact
that MNIDAS is T"hardwired" for the presentation of a single
computer system, would be to combine its capabilities with a
means for generating new simulations and animations of other
systems. These could be produced by the modification of a
hardware specification language to include animation
instructions. For example, ISP (Instruction Set Processor) is one
such language: a register transfer language for specifying the
instruction set architecture of digital processors [BARB77].
Simulators for descriptions written in this language currently
exist. By adding animation eonst:ucts to such a language, and
using a simulator for it to drive a MIDAS-like display, an

extensible system could be developed.

-19-

The extensibility of its techniques to digital electronics
systems other than micrccomputers, or tasks which are not purely
instructional are also feasible. Sone of these useful
applications wmight 1include testing of proposed system designs,
communications protocols, and other development tasks where low
level design and debugging are necessary. For éxample, a
byproduct of the MIDAS simulation is the ability to do machine
language debugging in a straightforward manner on programs which
do asynchronous input and output, Another possible use is in the
maintenance and repair of digital electronics systems. It is not
hard to envision MIDAS, or systems like 1t simulating and
animating other computer systems for use by students, engineers,
or . customers needing to learn about specific machine
architectures or general operating concepts. The applicability of
a MIDAS-like presentation to areas which are outside the world of
digital electronics, but also have multiple asynchronous
activities, can also be imagined. The same advantages it has over
conventional methods of instruction might also be found in
simulating analog electronic «circuits, mechanical systems, or
even more abstract Systems (such as the flow of data in a

computer program, or in an office).

In conclusion, we believe MIDAS represents a significant
advance over conventional +teaching methods. While the techniques
it employs need further development and problems of cost

effective implementation remain, the need for advanced methods of

-2{0-

technical education, both in schools and in indus*try, seems to
make such development worthwhile, Ultimately, extension of these
techniques to a wore general purpose tool for simulating and
animating would be desirable., A system allowing interactive
animation programming, like Xerox PARC's SMALLTALK [LEAR76], and
MIDAS-like simulation and user control wonld be an éxample of
this. Future work needs to be done to exploit the full potential
of these methods, and make MIDAS-like educational aids a

practical reality.

_2“-

6_References

[BAECT75]

[BARB77]

[BOLTT8]

[BUGST6]

[DIONT5]

[HOPGT7Y]

[INTE75]

[KNOW65]

[LEARTG]

[NELS72]

[STRATY4]

[WEBB73]

Baecker, R.M., "Two Systems Which Produce Animated
Representations of the Execution of Computer Programs,"
SIGCSFE_Bulletin 7:1, 1975. pp. 158-67.

Barbacci, M., G. Bacnes, R, Cattell, and D. Sieworiek,
"The ISPS Computer Description Language," Department of
Computer Science Technical Report, Carnegie-Mellon
University, August, 1977.

Bolt, R Biu iy Spatial Data-Management, Architecture
Machine Group, MIT, 1978.

Brown University Graphics System, The Brown University
Graphics _System__Overview, Computer Science Progran,
Brown University, 1976,

Dionne, M.S., and A.K. Mackworth, ANTICS -- A System_for
Animating_ LISP__Programs, Dept. of Computer Science,
University cf British Columbia, 1975.

Hopgood, F.R.A,, "Computer Animation Used as a Tool in
Teaching Computer Science," Proc, 1974 IFIP, North
Holland Publishing, Amsterdam, 1974, pp. 889-92,

intel Corp., Intel 8380 _Microcomputer System's Guide,
Intel Corp., Santa Clara CA, 1975,

Knowlton, K.C. "Computer Produced Movies," Science 150,
1965,
Learning Research Group, Personal Dynamic Media, Xerox

PARC, March, 1976,

Nelson, T., Computer Lib, Chicago, 1972.

Strauss, C.,M, and T. Banchoff, "Cowmputer-Encouraged
Serendipity in Pure Mathematics", IEEE__Proceedings,
Special Issue on Computer Graphics., Spring, 1974.

Webber, e Ha "SIMALE" SIGMICRO__Newslerter, 314,
January, 1973, pp. 25-44,

-2~

A
v
—
o)
e -
|
11
SRR . 3
o5
=
1
-1
Q
e
B
=
<
(8]
|
=
=
o
i S
=
| o3
| =
| ©
| ©
| =
| &=
| a2
R
o
|
1
1
|
{
v

== 7=="""
CLOCK

I
|
I
I

i

ISTAT | t——yp—p——md

| |
| >
| = |
| ©
| = |
&= i
= _
|
b o e o o m w— ..._1...!1.-.....-..._
_ _
llllll b e o e e ——
111111 e e T - — v — -
il e . vy
I o
1 e |
o N) | w3 1
~ | < 1
S 1 w2 N
i = | ~
l o] | »,
| & | ~
0 b | ~Nw
= | -
aa] - ——
i Tiw
i | | =
B | =] | o
= | O !
llllll fan] [==] | w0
b e w
iiiii - wn £
By o — e}
| » I | a o)
| | |]
e - [! 1 <<
| | I |
Pree b = n
! | (S Ll
Fp—m p— o w |
| I | TR I
—— | R | | |
fr ot b = o e
[r o e e e i e o —— e — e — e
1 1
! |
| |
i |
| 1
| 2 i
| |
| © |
| |
bt o o e e —— — — —— — — o — -

MIDAS BLCOCK DTAGRAM

FIG. 12

r—

P a—— |

m——————— 9 e | SUPERVISOR
| DISK | <———{ |
e |ty T T
| | 1 {
== mmmmr | I Yoomy |
/ TERMINAL|<——=4 { { STATUS | I
[e e e | | RECORD | |
R e 1
r s 4 / L 1
! / I
T ¥ s T A 1 | i ¥ 1
| | /] DISPLAY| | |
| SIMULATION }—-—=—=>1 CRDERS }——->| DISPLAY PROT |
l | e | i
i 4 L T d
|
r— S, o i
!
£ S dana ! ———————y
| GRAPHICS t-——y———=>| DISPLAY]
| SUPPORT | | b
i T H {
! i
| I
r— . 9 | T 1
{ GRAPHICS DATA | L->|INTERACTION |
| STRUCTURE | | DEVICES |
L d i o

FIG. 4: MIDAS TIMPLEMENTATION

THE ENSTITUTE OF
ELecTRICAL AND
ELectronics
EnGINEERS, INC.

EDITORIAL DEPARTMENT--11TH FLOOR

345 EAST 47th STREET, NEW YORK, NEW YORK 10017

DIRECT NUMBER
(212) 644- 7585

November 5, 1980
Mr. Robert Gurwitz
Bolt, Beranek & Newman
50 Moulton St.
Cambridge, MA 02238

Re: Title MIDAS: A Microprocessor Display and Animation System

IEEE XRMEX /J. Education - Feb.'S8l

Dear

Your paper is scheduled for publication. To complete your
manuscript kindly supply the material indicated:

1) Abstract (125-200 words)

XXX 2) Biography (Birth date and place, education,
emp loyments, special fields of research, and
membership in other professional societies.)
On Read T. Fleming '

XXX 3) Author(s) Photograph (Not to exceed 9-1/2 cm
(3-3/4 in) across the widest part of the head.)
O0f Read T. Fleming

XXX 4) Figures (Original or good reproducible copies.)

Fig. 3. The Brown University Graphics System.
5) Additional Material

Please send immediately Read T. Fleming's biography and photograph;
and an original Fig. 3. The Brown University Graphics System.

When submitting any requested material please identify by
author, title, journal, and month.

To maintain publication schedules, your immediate attention

will be appreciated., Kindly return this form with your reply.

Very truly yours,
C. Elenowitz
Production Manager

U-76 Rev. 3/76

