NAME:

MODULE SPECIFICATION

MIDAS

FUNCTION:

This is the mainline of the system. It does initialization
of system parameters, and contains the main control loop.
Display window update, speed control, dial and function key
reading, system message displays and calls to the display
and simulation routines are done in the loop. The command
parser is also contained as an internal subroutine. it
parses and executes commands read from the keyboard in
command mode. These commands are either executed within the
command parser, or external command handlers are called to

execute then. A system initialization routine 1is also
called as an internal routine. This initializes display and
simulation variables, and calls two other external

initialization routines to set up the display and
simulation.

CALLED BY:

GMS

PARANMNETERS:

none

ENTRY POINTS:

MIDAS, GETOK, MIUPDAT

NORMAL EXITS:

Re—~IPL's GMS on halt command from user.

ERROR CONDITIONS:

Exits on bad initialization of display.

INTERNAL ROUTINES CALLED:

COMPARSE: Contains command parser and calls to command
handlers. Certain smaller commands (CLEAR, RESET, DEBUG,
GMS, GO and END) are handled directly by COMPARSE.

GETOK: (GLOBAL ROUTINE) Parses the command input buffer into
tokens, which are returned in a global buffer areca (TOKEN).

MIUPDAT: {(GLOBAL ROUTINE) Updates display window parameters
and polls function keys. Keys 0-7 are used for systen
control and are handled here. All other keys are free to be
used in the simulation. A mask is set to reflect these key
hits.

INITSYS: Calls system initialization routimnes to initialize
display and simulation. Puts user in ccmmand environment.



EXTERNAL ROUTINES CALLED:
PROSTART, QUERYDYN, PROTERM: PROCRUSTES routines

MIDASBUG, MSBINT, MIDINIT, MISIMINT, MIDISPLY, MNIDASIHN,
MIFILE, MILOAD MISET, MNIMENN, MISAVE, MIRECL: MIDAS
processors

SEGDELET, MULTIPAC, TYPEOUT, SEGLOAD, SVCCA: GHMS utilities

EXTERBNAL DATA REFERENCED: .
MIDASCB: MIDAS common data area
PROCRUST: PROCRUSTES common data area
BHEADER: PROCRUSTES buffer header
STATRECz MIDAS simulation status record.

STORAGE UTILIZATION:
Dynamic storage allocated for auxilliary status record and
memory page. Automatic storage allocated for saved status
record.

ALGORITHM:

After system initialization, the main control loop is
entered, where window parameters, simulation speed, and
function keys are read. Depending on one of six operating
modes, the command parser/processor is called (COMMAND
mode) , the simulation routines and display routines are
called (REAL TIME, NORMAL, and SINGLE STEP modes), or just
the simulation routines are called (DEBUG mode). The loop
terminates on the user set halt flag, and the system is
cleared, dynamic storage freed, and GMS is re-IPLed.



MODULE SPECIFICATION

NAME:
MIDISPLY

FUNCTION:Z

This is the main display routine for MIDAS. It implements a
repetoire of five different animation effects in response to
a set of pseudo display orders c¢reated by the simulator.
This routine is called once per <cycle of the main control
loop in MIDAS, or once for every time the simulation 1is
called. This routine is also called in the initialization
of the display, from the RECALL and replay utilities when
system status is changed, and from the SET wutility, when a
data element is altered. The five functions it performs are:
BRIGHTEN or DIM a control line type device, FLASH or CHANGE
the contents of a register type device, and MOVE data across
a bus type device. These devices (single bit control 1lines,
one byte registers, two byte register pairs, two byte
address registers, single bit flag registers, and one and
two byte Dbusses) are referred to by symbolic addresses in
the pseudo display orders generated by the simulation. It
produces linked blocks of these orders, which are executed
in three phases by the display program: a set up phase for
all operations, a dynamic phase for MOVES, and a cleanup
phase for FLASHES and MOVES.

The display program operates in two modes. The normal
mode allows for full display of all requested animation
effects. A brief mode, used for altering the display in
initializations, SET and RECALL utilities, and REAL TIME
mode display, consists of an abbreviated set of animation
effects wherein the operation of the FLASH and MOVE pseudo
orders are simplified.

CALLED BY:
MIDAS, INITSYS, MISET

PARAMETERS:
A pointer to a linked 1list of blocks of pseudo display
orders is passed in the global variable MIDISTOP.

NORMAL EXITS:
The routine returns to its . caller after wupdating the
display.

ERROR CONDITIONS:
A bad display command given to PROCRUSTES causes aborting of
the display process.

INTERNAL ROUTINES CALLED:
CHREG: Changes data in register type devices, when passed
the device identifier «f that register.



CONVASC: Does hex to ASCII conversion for CHREG.

EXTERNAL BOUTINES CALLED:
OPENIMAG, ADDSUBLK, CALLDDIM, SIMNHTRAN, QUERYDYN, DELIMAGE:
PROCRUSTES routines

MIUPDAT: Window and function key update routine.

EXTERNAL DATA REFERENCED:
MIDASCB: MIDAS common data area.
PROCRUST: PROCRUSTES common data area.
BHEADER: PROCRUSTES buffer header
STATREC: MIDAS simulation status record.

STORAGE UTILIZATION:
Dynamic storage allocation is done for dynamic display data
lists.

GLOBAL ASSUMPTIONS & SIDE EFFECTS:
The type of animation done (normal or brief effects) depends
on the global system mode variable (MIMODE).

ALGORITHHN:

- The pseudo display orders are interpreted in a loop. For
BRIGHTEN operations, a dynamic line image 1is set up for the
brightened line which makes a call to the line image (the
‘image 1is overdrawn for brightemning). This image is only
allocated once. If the image is dimmed after brightening,
the CALL sublk is made a NEXT sublk (no-oped). If it is
then brightened once again, the NEXT sublk is once again
made a CALL sublk. The DIM operation checks for one of
these dynamic CALL sublks to the 1line image. If it is
present, the CALL is no-oped {(made a NEXT sublk).

For FLASH and CHANGE operations, data 1in the status
record is converted to ASCII and the display data is changed
in the named register sublk. For FLASH operations, the
blink attribute 1is set, and a dynamic list element is
created with the name of the call with the blink attribute
set. In brief mode, FLASH is treated identically to change.

_ For MOVE operations, a dynamic display list 1is set up
containing interpolation pairs that cause the bus data to be
displayed incrementally along a path between two
coordinates. The display list also contains pointers and
length information for changing source and destination
registers, and for displaying data along two separate paths
(so that the data paths may turn corners). The register
that 1is the bus source 1is changed. 1In brief mode, the
destination register data is changed as well, and no move
takes place.

The second phase of the display program is a loop where
the data 1in move operations is moved across the bus path.



In brief mode neither this phase, nor the following one is
executed, and return 1is made directly to the caliing
routine. In normal mode, a dynamic display 1list 1is
allocated for FLASH and MOVE operations, as described above.
In this second phase, FLASH elements are ignored. This
phase consists of a loop, the length of which is determined
by a counter set by the user (MINTVAL) with the speed dial.
Based on the setting of this dial, the incremental moves
along the bus are made in such a way that the total move is
completed at the end of the loop. Thus, for each traverse
of the loop, the interpolation pairs are recomputed for each
active bus element on the basis of increments calculated in
phase 1. The window parameter and function keys are also
polled in this 1loop, to allow user control during this
display phase.

The final phase of the display consists of a loop where
the dynamic display list elements set up in phase 1 are
dfreed. For FLASH operations, the blink attribute on the
register image is reset. For MOVE operations, data is
changed in the destination registers. At the end of this
loop, dynamic images are closed and control is returned to
the caller.



MODULE SPECIFICATION

NAME:
MISET

FUNCTION:

This is the —register/line set utility for MIDAS. It
implements the SET command and is called by the command
parser. Using a set of pre-defined symbolic names, the user
may change the data or state of any simulated register,
line, or flag. The user specifies the idname, and the data
in hexadecimal (for registers) or the keywords Set or Reset
(for flags and lines) . The data maintained in the simulation
status record is then changed and the display processor is
called to update the display.

CALLED BY:
COMPARSE

PARAMETERS:
none

ENTRY POINTS:
MISET, CONVHEX

NORMAL EXITS:
Returns to caller on ccmpletion of command.

ERROR CONDITIONS:
Invalid data or id name causes command to be ignored.

INTEBRNAL ROUTINES CALLED:
CONVHEX: (GLOBAL ROUTINE) Comnverts an EBCDIC string of up to
four bytes to a hex constant.

EXTEBNAL ROUTINES CALLED:
MIDISPLY, GETOK

EXTERNAL DATA REFERENCED:
MIDASCB: MIDAS common data area
STATREC: MIDAS simulation status record

ALGORITHM:
GETOK is called to parse the command string into an idname
and data. The global symbol table MISYMTAB is then searched.
If the symbol 1is found, the status record entry is changed
with the new data and a pseudo display order is built.
MIDISPLY is called in brief mode, to update the display.



MODULE SPECIFICATION

NAME:
MIMEMHM

FUNCTION:

This routine is the menrory display and alter utility. It is
called from the command parser, to implement the DISPLAY and
STORE commands. For DISPLAY the user specifies an address
in sipulated memory, and the routine displays the contents
of that address and several bytes following it in memory, in
the system prompt buffer. For STORE, the user specifies an
address and a variable length string of hexadecimal data.
The routine converts the data and stores it starting at the
specified locations and displays it as described above

CALLED BY:
COMPARSE

PARAMETERS:
R9=0 for STORE, R9=1 for DISPLAY

ENTRY POINTS:
MIMEMHM

NORMAL EXITS:
This routine returns to the caller when the command 1is
comnpleted

ERROR CONDITIONS:
Bad address or data causes the command to be ignored.

INTERNAL ROUTINES CALLED:
CONVEBC, CONVERT: Hexadecimal to EBCDIC conversion routines.

EXTERNAL ROUTINES CALLED:
GETOK, CONVHEX

EXTERNAL DATA REFERENCED:
MIDASCB: MIDAS common data area

ALGORITHM:
GETOK parses the command string into an address and data
which are converted to hexadecimal. For display, the

contents of memory starting at the specified address for 12
bytes is displayed in a buffer in six groups of two bytes,
after conversion to EBCDIC. For store, the specified data
is converted and stored starting at the specified address.
The contents of memory starting at the specified address is
displayed as described above. If the given address is
outside the bounds of memory, the command is ignored. If
invalid data is found, valid data preceeding it is stored,
and the rest of the data string is ignored. Data is parsed



in groups of four hexadecimal digits.



NAME:

MODULE SPECIFICATION

MIFILE

FUONCTION:

This is the file handling routine for MIDAS. It is called
by the command parser to implement disk I/0 for the FILE,
LOAD, SAVE, and RECALL commands. The pointer to the
appropriate data or buffer area is placed in an FCB along
with the 1logical record 1length and the filename and

filetype. The read or write operation is then performed,

along with a FINIS on that file.

CALLED BY:

COMPARSE

PARAMETERS:

none

ENTRY POINTS:z

MIFILE, MILOAD, MISAVE, MIRECL

NORMAL EXITS:

This routine returns to its caller after a FINIS is done on
the file.

ERROR CONDITITONS:

File not found on reads, and disk errors on writes cause an
error message to be displayed in the prompt buffer and
control to return to the caller.

INTERNAL ROUTINES CALLED:

none

EXTERNAL ROUTINES CALLED:

RDBUF, WRBUF, FINIS: GMS disk I/0 routines.

EXTERNAL DATA REFERENCED:

MIDASCB: MIDAS common data area
STATREC: MIDAS simulation status record

GLOBAL ASSUMPTIONS & SIDE EFFECTS:

The current file name is contained in the global variable
MICURFIL.

ALGORITHMz

Depending on the entry, the appropriate buffer pointer and
record length is put in the FCB. The appropriate filetype
(MIDA for SAVE and RECALL; and MEMM for LOAD and FILE) is
moved into the FCB. The filename in MICURFIL is checked.
If it is non-blank, it is moved into the FCB, otherwise the
default filename ..TEMP.. 1is moved into the FCB. Then



either a BRDBUF or WRBUF is issued. If it 4is successful, a
FINIS is done and control is returned to the caller.



MODULE SPECIFICATION

NAME:
MIDINIT

FONCTION:
This routine initializes the basic display by interpreting
an dinitialization module and calling the appropriate
PROCRUSTES routine to create the picture.

CALLED BY:
- MIDAS

PARAMETERS:
none

ENTRY POINTS:
MIDINIT

NORMAL EXITS: .
Returns to calling routine when initialization is complete.

ERROR CONDITIONS:
Initialization errors or errors from PROCRUSTES routines
rause return to calling routine with a non-zero return code
~in R3 and a message typed at the Teleray terminal.

EXTERNAL ROUTINES CALLED:

OPENIMAG, CALDDIM, ADDSUBLK, ADDMARK: FROCEUSTES routines.
EXTERNAL DATA REFERENCED:

MIDASCB: MIDAS common data area

MIBDF: Display initialization module.

ALGORITHM:

The initialization module is an external CSECT. It contains
blocks which contain an operation code, a 1length and data.
The routine goes into a loop which gets the op code for the
block, which can specify one of eleven initialization
operations. The . operation 1is then done, which entails
calling a PROCRUSTES image c¢reation or manipulation routine
and passing it data contained in the block, or allocating
entries in one of three tables to be used in locating line,
register or bus type data elements in the data structure.
The routine continues until an end flag is hit, when it
returns to the calling routine.



