o]
aQ
@
0

This publication is one of the machine reference manuals for the
Brown University Graphics System (BUGS). The META U4A is the
general-purpose processor component of BUGS., Readers are assumed
to have a knowledge of the principles of operation of the TBM
System/360.1

April 7, 1975

1The research for this project was done wunder a grant from the
National Science Foundation (GJ-28401X) and a contract from the
Office of Naval Research (n00014-67-2-0191-0023). Reproduction
in whole or in part is permitted for any purpose of the United
States Government,

1 In
1.4 1
1.2
1.3

2 Ce
2.1
2.2

s e

NNNNDN

7
2
2.
2.
2.
243
2.4

3 Ar

- 3OO JAAUNEWN

3
3
3.
3.
3.
3.
3.
3!
3'
3.
3.
4 Lo
4.1
4.2
4.3
4.4
4.5
4,6
4.7
4.8
4.9
4.1
4.1
4.1

5 Br

6 St

formationOCCOOOClncﬂllnncllio.toocolllloonno..llll...l..“‘c.1

Pormats OperaANd.cscesissanncnsnssssssdannsocssasnnnsnasaasasl
Addresslng.....‘..!"llﬁﬂ.lllllll..llllll.l.l.l..l..l.ll...l1
Arlthmetlc-..............---......-o..--..----------------o-1

ntral Processing Unit (CPU) c.eeecececooccoaoosaancsocsacacsnacl
REG ISt @I S et cooesoosocessooasssesceassssssssssscsenssseoasssssssl
INSteuctlon POrMma TS e s s wow v 65 5 § 0.6 00 505 58 S0 % 6 555 88 § 06 B9 95 905 N 2
e 1 BRI POEMECS o onm v v @0 ww ow @ 6% 0% 504 605 N6 508 008 0 % 8 9§ @9 w8 w5 v ww 3
+2 Adarass Coneratlon.cciississiiisissansnsisiandvhsinndonmsdosl
i3 BY FORRMEAE G ¢ iks o aine oo e via soe st 08 at 50 40 & 8 5 4 & & 408 000w ibcs g 0w ace O
<l FSS (SVCD) Field:.ceeeccccaccooososssosansossssassossancsasceslh
«5 N85 lenghh PLeYA. cuvewmaenenecnsas as e aewsonms e ow gy 5w en salh
Program COUNter (PC) ews s swsn son vw i 50 o0 50 605 54 Bin 006 500 808 2 000 B8 3 D
Machine Status Reglater (MSR) «ve ew e wesm s oessss os s o8 oses oD
LEHWEE 1S TREEEOEELONE vi 6 4 0 b 550 0k 5 3 i 9k ik i 5 A 10 W 0 b W0 00 T
Load INStruCtioNS.eesececcscoscsoocsasossoannsssscesanssssancsscsas
Add TnsStrucCtionS.ciceceresssssscsesscsrssscscassossosssasanscasll
Subtroact. InstructRomSe s « som om o o 5 % i AR aw 505 5% 408 W @00 0 o i w2
Arithmatic Conparce INStYuctionsS. . uwee sw sw s vs os ws owen oo ss s w1l
Multiply TustructIOons. . « es om we s s o6 59 55 0w o 6 9 6 56 0 wa oo e v 158
DIvIde IUBEEMCELTNS: o i L 58 58 Sk skl ed Bk o Sk ek i 0 56 B0 T 908 5k 0 1B
Cconvert INStructionS..cccecesectcacsscsssncsacssscnscssocsassll
Store TNStruCtionS.iceeccccecccescsccesnsccscossccccancssscccsccslB
Move Halfword InsStructions. e s s ew ow s em o8 o s us we e am oa 19
0 SHAP ISt uCtlon @ o s v s oim sue wn w0 wow w08 00 il 6 8 06 5 8 508 0w aw ww s w19
1 krithnebtic Shift THEtrNCtIONSve s ws ow o6 o9 o6 58 59 95 0w e s 5w 520

gloal INSECHeEL OB o m s s 0G0 e il 5o 50 b Sl BF B el Sl LA 06 W el 2D
NOVE INSEEUEELONE L vtk ok 508 bicacs e ans 90w e e 050 w0 308 0 8 S e Bon s g, 402D
Logical Compare INStruCtioNS.ceececsescssccscssoscsoacsscsossseell
ANS INSEEGECIONG, o o v soves @ wim 4 ' Fwrm v 59 S50 8 B $7 ¥ G BE S 08 B 2% G0
Or INSETUCEIONE ¢ ¢ we wre o s wm e0w 08 908 S03 308 S0 9055 B0 08 B8 06 ¥ S KIS NN SR 5 wED
Exclusive Or INSCructionSu m e e ss ovis ir sn o v wn i ve swsw a5 32T
Test ‘Under Mask InstructlotiSe.eiee e ie siveessendiesveiseselB
BYte Instructions-‘-...-....--..--..-.....-.--.-..-...-......28
Address Manipulation InstructionS...ceecececcecesossacscssaes3l
Translate and Scan InstructionS..cieeecccccceeseccascsoseaeall
D LogdicAl ShiIft Instractlonsmc s sw sw es nw s e o om s 476 K€ 2% 39 9 332
1 Stack ToBtructlons. wse .y sw em v v ew v o o o o 3w s 50w wiv e oo e w30
2 Linked List Instructlon®e.esasess e sw e on owes o os 9% o9 a5 sw #30

anching Instructions Illl-l.c1...t....l.l.l..ocl......nco00039

atus-Switching InStructionsS...ceeerecescacescsosososacosaceslilh

7 Interrupts..oloit-ll.-l...oa..tc.---.l.ollll-llJl.o.oo...ocll.”?

8 Input/Ouput Operations.. we we ww we s s 506 @8 G0 G858 908 B § 508 508 & § o e e B9
Biwl L0 UNA LS wou e mm won oo sis 558 558 5 i 590 6 5 906 509 W 68 R W § 06 R W4 R 6.6 e D
Bals LOCAL UHIES ¢ sn wn 0 6 e S0k 500 506 00 5o 00 0 Bk 0 W o 4§ s %) 3 e s 0 O
Ba 162 THO S/3600 as is it 54 55 55 0.8 0.8 e 020 a0 wa 078 o8 458 00 08 450 08 4 6 o0 45 0s/ 5D
8.2 Control Of LOCAl UNitS.eeoeeceooesososcnssccnossnssssasesssld
8.2.1 Unit INfOrMAation. ceeeeeosececoscsseasscsaosonccccsssosassldd
BiZ2.2 SEavting T/, en s um ww ow o0s im 608 59 W6 575 656 &% W08 s B 05 & 8 50k 4 % 90 B0
8.3 L/D Inbortmpt. s v swen oo om w5 908 B9 S0 955 506 500 50 908 9 ¢ 66 B @d 9 6 8 B2
8.8 I/0 to the S0 as v ww ok o § 5 0 558 558 55 9.9 306 o6 £ 66 68 508 o 959 54 5652
.1 General TnformatioN..cecccesceccecossccacnascssonssoaeacead?
.2 5/360 Interface RAAreSSeS.cecscccncasoaecses
3 S/360 UCB FOTMAteescaocscoecsccoansascossessse
Firiware Oparations. wven o v vm wis 508 sod 98 555 52 §
4.1 Thitial Status Presentation we we s ws i e on 6 0% B s 5 i % v 55
1.2 DALY Transfer . avewsmsssss e okse on o8 o @ e oe be o4 oy 2 awhb
4. .
[.

8.
8. ..-‘ill‘ill!'53
8 o ae mimamwinsm e
8

...CI.I..I...SS

0-...-..-....56

3 Ending Status PresentatioN.seccececcses
I System or Selective ReSet.eecesccoccaaaos
S/360 InsStrucCtioNS.e ceeecessccoccacocosases

OIIIICIOIICI.56

4
u
.
4.0
8.4,
8.4,
8.4,
8.4,
8.4.5 T e]
9 Local I/O Unit Descriptl ONBe « w o« v siw 0w o o9 oe 0w 506 Wk ww wie e e o 059
9.1 3461 Card Reader (unit address 00100) ceeeceen

Bela] DOSCTLPELOMNG s vow o 5 5 508 56 5 5.8 85 5.8 5 5 5eos 0l ok e

91 21/0 Contr()l CommandS--o-co............-.-----.--'--...--.59
913USH Format.-a.llllunnl..llCIQQUIQIIICQOCOOO.-.000010010060

000100.000-0059

----ao---q-..sg

9.2 Terminal Interface (unit address 00110)......
2.V DoSCTi DO o w0 aiw e s v ww o 6 s 5 o 3 4 3 8 3 55 975 e
22 CORtrol COMMANAB . wisinsnissnsmomsss s s on s
2od UBH FPOTUMHEL g v 6w 6 0 58 0005 0 600 000 508 0 ol 80 8 8 0 900 o ol o 6 5 i o 3t B
/360 Terminal Interface (unit address 000711) ¢c.cececoccecsab63
F+Y DOBOrIpELONa: it e cnaanasasnsnswsesnsnon wm s snsasssses Bl
Model 1444 Disk Storage Unit (unit address 00010) ccceece..6l
R L e o o . 1 R e |
Hal.1 Storage Capaclbye smewowewsons s s s s ow 5% 60 w55 s 5 6w @5 Bl
obe1s2 Data Organizationivesensnsnininensninivoninovinandss bl
He2 THUYL T70 Control COMMBNAG s ivivsiississanedonsesdsnenesBD
Hud DSH FOEMEE G s 508 000 008 6.5 00 00 mn e e @ o 5 a0 0 00 0 o0 @ oo o @ 00 8 000 @ @ o 0 0 7w @ BT
ETA 42 Control Panel (unit address 007101} ciceccccvsssnacssbB
1 DesCriptioNeseececeesscscceocccoscsceasacascssosasssasesseeab8
2 System Control PuncElonE, vesswsmewswsss®om s om ows ws vuwa whB
3 User Intervention FacilitieS..cececececccesccccscacnnecseb?
B I/0 Lo the CORYEAL PAYBLw i s s sl 5.6 o o6 e is o 686 gd i i wanTl
5] PAREL “TOCUS S 5w 56 0§50 54 55 6 68w 8 5 ¢ e aom 21 8 9 89 ¢ f0 8 44w gy e 0 0 T
elo2 USH FOTMAL: caveeeeesssoancceasaonssssasossscssscsssscsscell
ETA 4B (unit address 00007) ceeececccesoccoasoonacassoassaaell
1 DOBCE I DRL O ey vow wiw v o w0 e e 55 5 6906 00 8 87 08 06 0 @ w0 468 w5 o o e w7]
2 L/O Control COoOmWATAS. ws pos v 500 0 6 5% 908 655 0 4 5 8 56 ¥ & 9.5 o0 5 v mew | 2
3 Typical Compunication SequUence s wcssesswiss sswsoundaisnseTd
ompon 170 CONEYrol COMMAYA S w6 a6 %6 9 0k 56 % 65 6 50 4 8 i 59 0 s ss @ T D
7«1 NO OpPerationeeeeeeeeceseeeaseacesseasocassansasssenncesssl3

I.O.l.ll..0.¢61
-;-.---‘-....-61

l...lll“‘...61

9.
9
9
9.
9

9.
9

9

9
2
945
9.5
9.5
9.5
9
6
6
6

3
4
9
9
5
9
9
6
9.7

M
5
5
H
c

B
9
9
9

o f Y

9.7.2 Invalid I/0 CONtTOl COMMANAS e teeeeeacssanesencoassoneeeslll
10 Appendix I: Operation Program interrupt StOrage seeeesececeoess?5
11 Appendix II: Operation Codes and TimingS.eeccececcesssasasaaeTb

11.1 Operation Codes and Instruction Fxecution timMesS .eeeeeeseo76
11.2 Other Timings.l...III........llll.'l...........I.I...l.l..BO
11.3 Comments and Programming HintS....eeeeeeeeceaseeacoccnossssBl

12 Appendix IV: Layout Of LOWETr MemMOT Y. eeeeeeoeseeecaassoanseesld3

-iii-

t}}_.\

9,16

!

1.1 _FORMATS_OPERAND

Information on the META 4A is stored in main memory in 8-bit
units, called "bytes", as in the 5/360. Bytes may be handled
separately or grouped together in fields. The most common
field consists of 2 bytes, and is sometimes called a
"halfword"; these halfwords are the basic building block of
CPU instructions and also the size of the fixed-point 2's
complement numbers operated wupon by arithmetic instructions.
These instructions require the halfwords +o be located on an
even byte boundary. Other instructions operate upon variable
length fields of bytes, called "character strings". These
character strings may be located anywhere in memory and may be
of any length.

Bytes in main storage are addressed consécﬁtively from 0. The
META WA uses a 16-bit address, allowing for a maximum of 6uUK

bytes. Cuerently—we-—have-only 32K, and addresses—wrap from
FLIPPF—to—b+

: A field of bytes (1 or more) is usually
addressed by its leftmost byte,

1.3 _ARITHMETIC

All arithmetic on the META 4R is performed on 16-bit 2's
complement binary numbers wusing 2's complement arithmetic.
Any overflow that occurs is ignored in some operations (such
as address computation), but causes program action in certain
others (such as the Add instructions).

PV LS4

Instructions can address information in 16 registers, 3 of
which serve special purposes. Registers have a capacity of 1
halfword and are addressed by a U4-bit number from 0 to 15.
Register 0 1is called the Machine Status Register (MSR),
register 1 is the Program Counter (PC), and register 15 is the
Stack Frame Pointer (SFP). These will be explained later.

2.2 INSTRUCTION FORMATS

— — e . S5

The META 4A has 8 instruction formats, denoted by the

mnemonics RR, RI, RS, R¥, BY, SI, FSS, and VSS. The formats
are as follows:

Register-Register (RR)

R1,R2
r T T |
| OP | RT | R2 |
L - L L gl
0 8 12 15

Register-Immediate (RT)
R1S,R1F,I2

r | BE A L] L
| OP {R1S |R1F | I2
L A I 1

0 8 12 16 31

Register-Storage (RS)
R1,R3,D2(B2)

L

L ¥ i
RT | R3 { B2 | D2
A1 i L 1
0 8 12 16 20 31

—

op

B -

Register-indeYed storage (RYX)
R1,D2(X2,B2)

L] | | L T L 1
| oP | R1 | X2 | B2 | D2 i
L [N A L | 9 []
0 8 12 16 20 31
Branch indeXed (BY)
R1,D2 (X2)
L] v L o L 1
| 0P Il R1T | X2 | D2 |
L L 1 I — P |
0 8 12 16 31
Storage-Immediate (STI)
P1{(B1H ,I2
L] B L i | LI b |
| oP | 12 | B1 | D1 I
| P - [- [[]
o 8 16 20 31
Fixed Storagé-Storage (FSS)
D1(B1),D2 (B2)
v T L T ™ ™% -
| OP | (SVCD) | B1 | D1 | B2 | D2 I
L - L [} i - i L J
0 8 16 20 32 36 a7
Variable Storage-Storage (VSS)
D1(L,B1), D2 (B2)
e T T T T T i —
| op | L | B1 { D1 ! B2 | D2 B
L ek i 1 L '\ i
] 8 i6 20 32 36 47

The various instruction formats and fields will be referred to

by the above mnemonics.

2.2.17 RI FORMAT

Most RI format instructions are 3-address:

whenever the

first operand must be fetched, it is fetched from the R1F
register. Whenever it must be stored, it is stored into

-3=-

the R1S register. Certain instructions perform only R1
fetches (i.e., TMI, STDI, CLI, and CI), thus ignoring the
R1S field, while LI and LDI perform only a store and ignore
the R1F field. Both reqgisters will be referred to as
Operand 1. Operand 2 is always the 16~bit immediate
halfword.

2.2.2 ADDRESS GENERATION

Operand addresses are generated for all instructions except
those in BYX format by taking the contents of the base
register (B1/B2) and the displacement (D1/D2) (expanded to
16 bits by adding 4 high-order 0's) and performing 2's
complement addition on them. Furthermore, in the case of
the RY format, the contents of the index register (%2) is
also added in. The resulting sum is the address of the
operand. If a base and/or index register of 0 is specified
in an instruction, the contents of the MSR is pot used in
the address computation, but rather a 0 is added.

2.2.3 BY FORMAT

The branch address in a BY format instruction is obtained
by adding the signed immediate Displacement to the contents
of the Program Counter (the next instruction address).
Optionally on all intructions except BXH and BXLE, the
contents of the X2 register is added in as an index, unless
the X2 field is zero (as in RX format).

2.2.4 FSS (SVCD) FIELD

This field is ignored except in the SVCD instruction.

2,2.5 VSS LENGTH FIELD

The VSS format is used to operate upon character strings.
The "length" field 'in the instruction specifies the length
of the strings. Each VSS instruction has 2 operation
codes, 1 allowing the length to be specified immediately as

~Y4=-

7 ‘\;).‘)‘o

8ix

The other ignores bits '@)through 11 and wuses bits 12
through 15 as the number” of a register rontaining the
length, and will have the same mnemonic as the immediate
type with an appended "L", for "Long". Thus, any length
character string can be operated upon with only 1
instruction.

a number from 0 to 255 (actual length, unlike the S/360).

The PC (register 1) is the ©Program Counter (or instruction
address register) for +the META 43, I+ is incremented by 2,
during instruction fetching, for each halfword of the
instruction fetched. During parsing and execution, it will
contain the address of the next sequential instruction. Tt
may be operated wupon, in all respects, just as any of +he
other registers, although the effects upon program execution
should be obvious. For-the —purpose-of fetching instruetions;-

bit 15 of the PC is always ignored and-assumed to be 0

2.4 MACHINE STATUS_REGISTER_(MSR).

The MSR, register 0, contains the information rééuired for
ptoper program control and execution. It format is:

o Son o be Foddy poidb b1E

v Ly T Y T T LN Y| TERY v 1
ICOCIC2(F [ILC W |PRIO |S |@m|%|zsw |
L X 1 1 1 & L L it | L1

0 3 a 6 7 8 9 10H i2 13 14 15

C0C1C2: This 1is the 3-bit Condition Code, which is set
by various instructions. The 3 bits will be referred to as CO0,
C1, and C2. An instruction may affect none, some, or all of
these bits.

F: This bit is undefined but may be used as a flag since
it can be tested by the Branch Condition instructions (see
Section 5).

TLC: These 2 bits are significant only when the MSE is
stored after an SVC or Program interrupt (see Section 7), when
they will specify the length, in halfwords, of the instruction
that caused the interrupt. The TILC will never be set to N.

9

12

"

W: This bit, when on, specifies that the META 4R is to
be kept in wait state until the occurrence of some sort of I/0
or S/360 interrupt,

PR: This bit is the Privilege bit, which must be on to
perform an I/0 or S/360 instruction. If this convention is
violated, a Privilege Program interrupt will occur. See
Section 8 for a more detailed explanation.

o This 1is the Overflow interrupt mask. When off,
arithmetic and conversion overflows on those instructions for
which they are significant merely set the Condition Code.
When on, they also cause a Program interrupt and the contents
of the operand which was to receive the result remains
unchanged. '

S: This is the Stack Overflow/Underflow interrupt mask.
When off, stack overflow or underflow merely sets the
Condition Code. When on, either of these 2 conditions also
causes a Program interrupt.

I/0: This bit controls the ability of local I/0 units +o
cause an TI/0 interrupt. If off, these units cannot interrupt
the CPU, and the interrupt request remains pending.

IS: This bit controls S/360 Initial Select interrupts.
If 1, an initial selection causes an 1mmed1ate interrupt. TIf
0, the interrupt is held pending.

P: This bit controls Parity Check interrupts. When on,
Parlfv Checks cause an I/0 interrupt. When off, the interrupt
is kept pending.

Arithmetic Idstructions

LOAD

The description of each instruction includes a list of possible

Program interrupts that <can occur. These interrupts are
explained in Section 7.

3.1 _LOAD INSTRUCTIONS

p— O

Load Regiéter
LR R1,R2

r

T 1
{ 32 { R1T | R2 |
1 !

S

L

Load he¥ digit
LY RP1,R2

Load Deferred Register

LDR R1,R2

r= ¥ L} 3

| 13 I R1 | R2 |
L - i 1 H |
0 8 12 15

Load Immediate

LT R1S,R1F,I2

r Y T ~y 1
| B3 IR1S {RAF | 12 |
1 1 1 i]
o] 8 12 16 31

Load Deferred Immediate

LDI R1S,R1F,I2

v Ll LIS : L] Al
| B8 IR1S {RI1F | 12 / |
L L.~ L : L ;]
0 8 12 16 31

Arithmetic Instructions

LOAD

Load

T R1,D2 (X2, B2)

r =T T T T 1
| 73 | R1 | X2 | B2 | D2 [
| I La 4 L L - i
0 8 12 16 20 31

. Load Deferred

LD R1,D2 (¥X2,B2)

L L) L] L] Ll i
|- 53 | R1T | ¥2 | B2 | D2 |
L [l 1 i []
0 8 12 16 20 31

Load Signed Byte

LSB R1,D2 (X2, B2)

f - T T L4 T T 1
| 5B | R1T | ¥2 | B2 | D2 |
L i 1 A L . oy

0 8 12 16 20 31

rl

The second operand is placed in the first operand location.
The second operand for LY is the R2 field expandead with 0N's +o
16 bits, while the second operand for 1IDR is the halfword
pointed to by the contents of R2. The LDI instruction uses the
immediate halfword operand as the address of +the halfword to
load. LD adds an extra level of indirectness by using the
second operand as an address to pick up still another
halfword. LSB loads a byte, propagating its sign through bits
0 to 7 of the register. Alignment interrupts can occur for 1L,
Lb, LDR, LZ, and LDI.

Load and Zero

L2 R1,D2 (X2, B2)

v LB Y L \ |) 1
{ 5e | R1T | ¥2 | B2 | D2 |
L 1 1 L L 4

0 8 12 16 20 31

The second operand halfword is placed in R1. Following this
load, the halfword is =zeroed. An Alignment interrupt can
occur.

B

Arithmetic Ins+ructions

T.OAD

Load Complement Register

LCR R1,R2

r T T h
| 0Fr { R1 | R2 |
Lo o L = K]
0 8 12 15

Load Complement

ILC 7 R1,D2 (X2, B2)

r) T 1 v T 1
| 4r | RT | ¥2 | B2 | D2 |
L 1 P 1 1 1
0 8 12 16 20 31

The 2's. complement of the second operand is placed in the
first eperand location. C1 is set if overflow occurs, Or reset
otherwise, Arithmetic Overflow and Alignment (LC only)
interrupts can occur.

Load Positive Register

LPR R1,R2

r L T 1
I 0C | RL | R2 |
e 1 1 J
0 8 12 15

Load Positive

LpP R1,D2 (¥ 2,B2)

r T T T L , 1
| 4c | R1 | X2 | B2 | D2 |
| - L 1 L i |]
0 8 12 16 20 31

The absolute value of the second operand is placed in the
first operand location. C1 is set if overflow occurs, oOr reset
otherwise. Arithmetic Overflow and Alignment (LP only)
interrupts can occur.

Load Negative Register
LNR R1,R2

h
|
L 1 L 4
S

o

Arithmetic Instructions

ADD

Load Negative

LN R1,D2(12,B2)

r- T T T T 1
| 4p ! R1 | X2 | B2 | D2 |
L 1 SR Lo A L 4
0 8 12 16 20 31

The 2's complement of the absolute value of the second operand

is placed in the first operard 1location. An Alignment
interrupt can occur for LN.

Load Multiple

LM R1,R3,D2(B2)

LN v AN LI v L
| 93 ! R1 { R3 | B2 | D2 |
[L] A g M J
(V] 8 12 16 20 31

Load Multiple Deferred

LMD R1,R3,D2(B2)

L Ll | Ly v . 1
| 91 | R1 | R3 | B2 | D2 |
1 < o A g— | i 1 |

0 8 12 16 20 31

The set of registers from R1 to R3 (wrapping from register 15
to the MSR if necessary) is loaded from consecutive halfwords
at the second operand address (LM) or at the address specified
by the second operand halfword (LMD). If R1 specifies the MSE,
no I/0O or §/360 interrupts «can occur after execution. An
Alignment interrupt can occur.

Add Registers

AR R1,R2

L .4 LB v 1
i 38 | R1 [R2 |
L 4 L d
0 8 12 15

-10-

Arithmetic Instructions

ADD
Add heX digit
AY R1,R2
L] LI 2 } |
| 24 ! R1 | R2 |
L 1 (1]
o) 12 15
Add Immediate
AT R1S,R1F,I2
r 0 e T \J 1
| BU {R1S |R1TF | I2 |
L [N i L d
0 8 12 16 31
add : _
A R1,D2 (X2, B2)
v L L] 1 L h
| T4 i R1 | X2 | B2 | D2 |
L i . i L e | Jd
(4] 8 12 16 31
Add to Halfword Immediate
AHI D1(B1),I2
\ D v = L L] h
| 84 | 12 { B1 | D1 |
L ST *L 1 L]
0 8 16 31
Add Halfwords
AH D1(B1),D2 (B2)
r : T T T | T |
| FUu | 0 | BT | D1 | B2 | D2 {
i L | | j [} 1 |]
0 8 16 32 36 4 7

The second operand is added using 2's complement arithmetic to
sum is put in the first operand

the first operand, and the
location. The second operand for aXY
as a U4-bit number from 0 to 15.
the immediate byte extended with 8
to +the overflow condition

interrupts can occur.

-11=-

is the R2 field treated
For AHI, the second operand is

high-order 0's. C1 is set
resulting from the addition.
Arithmetic Overflow and Alignment

(except for AR, A¥X, and AI)

Arithmetic Instructions

Subtract

Add Logical Registers

ALR R1,R2

r | e n e

! 3C | R1 | R2
A L

L P -
0 8

1
|
[l

5

Add Logical Immediate

ALT R15,R1F,I2

L Le L] L} a1
| BC [R1S |RIP | T2 |
[& AL l‘_ A - J
4] 8 12 16 31

Add Logical

AL §T,D2 (12,87)

LI L ¥ X L Ll & 1
| 7cC I R1 | ¥2 { B2 | D2 {
[N i [] y | [] []
0 8 12 16 20 31

The second operand 1is logically added

result is placed in the
the resulting carry out.
RL.

3.3_SUBTRACT INSTRUCTIONS

Subtract Registers
SR R1,R2

v | 3

| 35 |
L i | .
0 8

T h
R1 t R2 |
12 18

Subtract heX digit
sXY R1,R2

v

| 25

r
I R1 |
1

0 8

first operand location.

to the first,

C1 is

and the
set to

An Alignment interrupt can occur for

“A D

Arithmetic Instructions

Subtract

Subtract Immediate

ST R1S,R1F,I2

F o T T = 1

I B5 |R1S |RIF | 12 [

L L 1 L (]

0 8 12 16 31

Subtract

S R1,Db2 (X2,B2)

[T T T T 1

| 75 | R1T | ¥2 | B2 | D2 |

L L L { L 1

0 8 12 16 20 31
Subtract from Halfword Immediate
SHI D1(B1),I2

r T L T 1

| 85 1 T2 - 1 B1 D1 |

L L. " 1 J

0 B 16 20 31
Subtract Halfwords
SH D1(B1),D2(B2)
r T : 1 T T T e dy |
| F5 | ¢ { B1 | D1 | B2 | D2 |
L j | L [] F i L s J
0 8. 16 20 3z 36 47

The second operand is subtracted from the first, and the
result replaces the first operand. The SX second operand is
the R2 field treated as a U-bit number from 0 *+o 15. For SHT,
the second operand is the immediate byte extended with 8
high-order 0's., C1 is set to the overflow condition resulting
Overflow and Alignment
(except for SR, SY, and SI) interrupts can occur.

from the subtraction,. Arithmetic

Subtract Logical Registers

SLR R1,R2

r T T bl
i 3D | R1 | R2 |
L 4 . <J
0 8 12 15

-13-

Arithmetic Instructions

COMPARE

Subtrace Logical Immediate

SLY R1S,R1F,I2

L] L L L Ll
| BD {R1S |R1F | 12 |
L 1 -l -t]
0 8 12 16 31

Subtract lLogical

SL R1,D2 (X2, B2)

LB AN 1 LB v Ll
| 7D | R1 | ¥2 | B2 | D2 |
1 L A L [1
0 8 12 16 20 31

The second operand is logically subtracted from the first, and
the result replaces the first operand. C1 is set to the
resulting carry. An Alignment interrupt can occur on SL. Note
that carry is the complement of borrow.

3.4 _ARITHMETIC_COMPARE INSTRUCTIONS

Compare Regisfers

CR R1,R2

Ly L] T a
| 30 | R1 | R2 |
L i (| 4
0 a8 12 15

Compare Immediate

CI R1S,R1F,I2

f L R L 1
1 BO RIS |R1F | I2 |
1 i —d L 4
0 a8 12 16 31

Compare Lo

C R1,D2 (X2, B2)

f T T T T 1
| 70 I R1 | X2 | B2 | D2]
L 1 L 1 L .]
0 8 12 16 20 31

-14-

Arithmetic Instructions

MULTIPLY

Compare Halfword to Immediate
CHI D1(B1),I2

r L) [] T 1

| 80 | I2 I B1 | D1 |

L i L L]

0 8 16 20 31
Compare Halfwords
CH D1(B1),D2 (B2)

T Ll T T T T 1
| FO | 0 | B1 | D1 | B2 | D2 |
L - 1 A 1 L L —d
0 8 16 20 32 36 47

The first operand is compared algebraically with the second,
and the result determines the setting of the Condition Code:
Co, C1, and C2 are reset and then C0 is set if equal, C1 if
first operand greater, or C2 if less. The second operand for
CHTI is the immediate byte treated as an 8-bit signed number.
Aliqnment interrupts can occur for C, CHI, and CH.

5_MULTIPLY INSTRUCTIONS

Multiply Registers
MR R1,R2 -

L L] Y

-
| 36 | RT | R2 |
1|
s

i 1 L

0 8 12 1

‘Multiply Immediate

MI © R1S,R1F,I2
f v L] Ll 1
| B6 {R1S |R1F | I2 |
L - L i L J
0 8 12 16 ' 31
Multiply
M R1,D2 (¥X2,B2)
[s T T T T B .
| 76 i R1T | ¥2 | B2 | D2 |
L - L e & i —L .]

0 . 8 12 16 20 31

=15~

Arithmetic Instructions

DIVIDE

Multiply Halfwords

MH D1(B1),D2 (B2)

r L] | L L] L] I

| F6 | 0 { B1 | D1 { B2 | D2 |

! . 1 L L - 5 AL L PR |

o 8 16 20 32 36 47
The first and second operands are multiplied and the
2-halfword (32-bit) product 1is placed in the €first operand

location and the following register or halfword. C1 is reset
unless the product reqguires more than 16 bits, in which case
it is set. An Alignment interrupt can occur for M and MH, and
a Register Specificat*ion interrupt for MR and M if register 15
is specified as the first operand or for MI if register 15 is

specified in the R1S field.

3.6 _DIVIDE_INSTRUCTIONS

Divide Registers

DR R1,R2
| v . 2 A
N | 37 | R1 | R2 |
L i 1 i |
0 8 12 15
| Divide Immediate
| DY R1S,R1F,I2
\ v L} L] | 1
i | B7 |R1S | R1F | L2 |
‘ L s L . = R |
| 0 8 12 16 31
} Divide
| D R1,D2 (¥2,B2)
‘ L L 1] b L] Bl
| | 77 | R1 | ¥2 | B2 | D2 [
i L " A - i ['R [[]
9] 12 16 20 31
Divide Halfwords
DH D1(B1),D2 (B2)
1) N | A v Ll L) 1
| F7 | 0 | B1 | D1 { B2 | D2 |
‘ L L 1 1 e i -l
i 0 8 16 20 32 36 4 7
\
|
The double register/halfword (32-bit) first operand is divided
the second operand and the quotient and remainder,

:
|

~-16-

Arithmetic Instructions
CONVERT

respectively, replace the 2 registers/halfwords of the first
operand. Alignment interrupts can occur for D and DH,
Register Specification interrupts for DR, DI, and D (if
register 15 is specifed as the first operand), and Division by
0 and Arithmetic Overflow interrupts for all 4 formats. C1 is
set to the overflow condition.

3.7 _CONVERT INSTRUCTIONS

ConVert to Binary

CVB R1,D2 (¥2,B2)

L I T] LN Al 1
| 50 ! R1T | X2 | B2 | D2 |
L K O 1 L 1 1
0 4 8 12 16 20 31

This instruction takes a string of EBCDIC digit characters
(with optional leading blanks and/or minus sign) and converts
the number to binary, placing it in R1. Register 2 is set to
the address of the first invalid character following the
digits, CO0, C1, and C2 are initially set to 0. CO is set if
there were no valid digits, C1 is set if there was overflow
(the result required more than 16 bits to represent), or C2
is set if +the instruction was completed successfully. A
Conversion Overflow interrupt can occur.

ConVert to Decimal

CVD R1,D2(¥2,B2)

r= - T T | S h|
| 51 | R1T | X2 | B2 | D2 |
| 1 1 L 1 ; I

] 8 i2 16 20 ’ 31
This instruction takes the contents of R1 and converts it to a
6-digit EBCDIC decimal number with 1leading 0's replaced by
blanks and a floating minus sign, if appropriate. Register 2
is set to the absolute address of +the first non-blank

generated, while register 3 is set +to the 1length of the
remaining string.

17

Arithmetic Instructions

STORE

3.8_STORE_INSTRUCTIONS

STore Deferred Register

STDR R1,R2

T T T k|
| 12 I R1 | R2 |
L . L i J
0 8 12 15

STore Deferred Immediate

STDT RP1S,R1F,I2

T T omend T 1
| B1 [RJS&jR1F | I2 i
L LN NN L]
‘0 8 12 ‘16 31
STore :

ST R1,D2(¥2,B2)

r N T T T 1
| 72 | R1 | ¥2 | B2 | D2 |
| B A 1 A i J
0 8 12 16 20 31

STore Deferréd

STD P1,D2(¥2,B2)

T T L L] T 1
| 52 I R1 | ¥2 | B2 | D2 |
L . A wdk . L L]
0 8 2 16 20 31

STDR stores the <contents of R1 at the halfword location
pointed to by R2. The STDI 4instruction uses the immediate
operand as the address of where to store the register. ST
stores R1 at the BRX address. STD stores R1 at the halfword

location whose address is Operand 2. 2n Alignment interrupt
can occur.

STore Multiple

- STH R1,R3,D2(B2)
r e L L] L] v 1
i a8z | R1T | R3 | B2} D2 |
L =t L L i ' -~
0 8 12 16 20 31

~-18-

_\5' §

Arithmetic Instructions
SWAD

STore Multiple Deferred

STMD ®1,R3,D2(B2)

r ¥ Y T T 1
| 90 { R1 | R3 | B2 | D2 |
L 1 L L L 3
[v] 8 12 16 20 31

The set of registers from RT to R3 (wrapping from register 15
to the MSR, if necessary) 1is stored in consecutive halfwords
at the second operand 1location (STM) or at the address
specified by the second operand halfword (STMD). An Alignment
interrupt can occur.

MoVe to Halfword Immediate

MVHI D1{B1),I2
{ T T s & 1
i 83 | I2 | B1 | D1 |
v | 1l_ A1 J
0 8. 16 20 31
MoVe Halfword
MVH D1(B1),D2 (B2)
1 n. o LB L] T T -
i 73 | 0 | B1 | D1 | B2 | D2
| >~ 1 i - 1 § 1]
0 8 16 20 32 36 47

The second operand is placed in the first operand halfword.
The second operand for MVHI is the immediate signed byte
expanded to a halfword. Rn RAlignment interrupt can occur.

3,10 _SWAP INSTRUCTIONS

SwaP Registers

SWPR R1,R2

v L] ML A
| 52788 | R1 | R2 |
L L L 1
0 ; 8 12 15

- A

Arithmetic Instructions

SHIFT
SwaP
SWP R1,D2 (X2, B2)
r L} L] L B LB 1
I 78 | R1 | X2 | B2 | D2 I
[B L i A g L 1 1
0 8 12 16 20 31

The contents of the first operand register is interchanged
with the contents of the second operand register/halfword. An
Alignment interrupt can occur for SWP.

Shift Left Algebraic Immediate

SLATI R1,R2

L LI Ll 3
| ic | R1 | R2
v A 1 N |
0 8 12 15

Shift Left Algebraic

SLA R1,R3,D2(B2)

r % L] Ll hl L Al
| 9C { R1 {_ R3 | B2 | D2 |
L A4 A1 1 [] J
0 8 12 16 20 31

Shift Right Algebraic Immediate

SRAI R1,R2

r T T T a
| 1D i R1T | R2 |
[- L L 4
0 8 12 15

Shift Right Algebraic

SRA R1,R3,D2(R2)

r & T T QL T 1
I 9D | R1 |[0R3 | B2 | D2 [
L SN L L. L 1 s |
o 8 12 16 20 31

Arithmetic Instructions
SHIFT

Shift Left Double Algebraic Immediate

SLDAT R1,R2

r " LB L] B
l 1E | R1 { R2 |
L 1 A J
0 8 12 15

Shift Left Double Algebraic

SLDA R1,R3,D2(B2)

r T LSRR T 1
| 9% | R1T |L°R3 | B2 | D2 |
L L. 1 N 1 i
0 8 i2 16 20 31

Shift Right Double Algebraic Immediate

SRDAI R1,R2

L Ll L] A |
| 1F | B1 | R2 |
L I | J
0 8 12 15

Shift Right Double Algebraic

SRDA R1,R3,D2(B2)

r T T 7 T L
| ar | R1 | R3 | B2 | D2 |
L —— 1 | I— A 1 i
0 8 12 16 20 31

The register or pair of registers specifed by R1 is shifted
left or right the number of bits specified by the R2 field for
the PRR form, or by the 5 1low order bits of the computed
address for the RS form. Right shifts cause vacated bit
positions - to be filled with the original sign bit. For left
shifts, if a bit unlike the sign bit is shifted out of bit
position 1 of R1, overflow is set into C1 and Arithmetic
Overflow interrupts can occur., C2 1is set +to the last bit
shifted out. Register Specification interrupts occur for
double shifts if R1 is specified as register 15.

Shift for Divide

SD R1,R2

. i T T\':u. 2’1
i 17 | R1 WR200
Lo ripr—— b¢§}“|
0 8 12 15

The register specified by R1 is shifted right into the next
higher register, and its sign is propagated through R1. This
instruction can be used to set up a 32-bit dividend for a
divide instruction. €2 is set +to the original bit 0 of the

-21-

Arithmetic Instructions

SHIFT

next higher registet. Register Specification interrupts can
occur if R1 specifies register 15.

-22-

Logical Tnstructions

COMPARE

Compare logical Immediate

CLY R1S,R1F,I2
r T - P L |
| BF RIS RIF | 12 |
[N B 5. W, L. 1
0 8 12 16 31
Compare Logical
CL R1,D2 (X2, B2)
r T T T T) i
| TF { R1 | X2 | B2 | D2 |
L i | L i L J
o 8 12 16 20 31
Compare Logical to Byte
CLB R1,D2 (¥2, B2)
1 DL LB 1 LD i |
| 5F t R1T | ¥2 | B2 | D2 |
L7 - —vl] = A . AL J
0 8 12 16 20 31
Compare Logical Byte to Immediate
CLBI D1(B1),I2
! LE L] L 1
| 8F | 12 | B1 | D1 {
L AL ,l 1 (]
0 8 16 20 31
Compare Logical Hal fwords
CLH D1(B1),D2 (B2)
r N T) T 5 —
I 0 R1 | D1 | B2 D |
.L FB I l 1 1 -
o 8 16 20 32 36 a7
Compare Logical Characters (Long)
CLC/CLCL D1(L,B1),D2(B2)
L AL L] T L] K |
| CF/DF | L { B1 | D1 { B2 D2 i
L - (- L L |
0 8 16 20 32 36 47

The first operand is compared

the result determines the

the algebraic compares. For CLB, Operand
byte of R1. CLC/CLCL causes register
address in Operand 1 of the first
equal compare occurs. An equal compare

length specified is zero, as

logically with the second, and
setting of the Condition Code as in

1 is the low order
2 to
unequal byte,

be set to the
unless ar

always occurs if the

two null strings are consider=ad

equal. An Alignment interrupt can occur for CL and CLH.

-2l-

Logical Tnstructiors

3_AND_INSTRUCTIONS

aNd Registers

NR R1,R2
r T | al (93
| 39 | Rt | R2 |
1 i i i |
0 8 12 15 I
aNd Immediate
NI R1S,R1F,I2
T T T L 1 T
| B9 IR1S |R1F | T2 |
L - L L J
0 8 12 16 31
aNd _
N R1,D2 (X2,B2)
) T T T T 1 L A
| 79 | R1 | ¥2 | B2 | D2 |
L 1 AL - 1 L d
o 8 12 16 20 31
aNd to Byte Imhediate
NBI D1(R1),I2
f T g + T 1 ST
| 89 | T2 | B1 } D1 |
L (| L i i
0 8 16 20 31
aNd Characters (Long)
NC/NCL P1(L,B1),D2(B2)
r T T T b TT T -/
{ C9/Dp9 | I | B1 | D1 | B2 | D2 {
i L 1 i A L 1
0 _ 8 16 20 32 36 &7

The first operand is ANDed with the second and the result
replaces the first operand. CO0 is set to 1 if the result is
all O's or +he length is 0, to 0 otherwise. An Alignment
interrupt can occur for N.

“25-

:
Logical Instructions

OR

8.4 OR_INSTRUCTIONS

Or Registers

OR R1,R2

r T T 1

| 32 | R1 | R2 |

L L . 1]

0 8 12 15

Or ITmmediate

ol R1S,R1F,I2

r T T T L
| BE IP1S |RIF | 12 |
L s 1 . 1 |
0 8 12 16 31

Oor

0 R1,D2 (¥2,B2)

r ¥* ™ ¥ T al
| Th | R1 1 ¥2 | B2 | D2 |
1 A L i SRS | 3
0 8 12 16 20 31

Or to Byte Immediate
0OBI D1(B1) ,I2
v ¥ 3 L] A J ‘ 1

| 82 i I2 | B1 | D1 |

0 8 16 20 31

Or Characters (Long)

0C/0CL D1(L,B1),D2(B2)

T T T T T T e |
| CA/DA | L 1 B1 | D1 | B2 { D2 |
L L A [] L (] "
0 8 16 20 32 36° 47

The first operand is ORed with the second and the result
replaces the first operand. C0 is set +to 1 if the result is
all O0's or +the 1leng*th is 0, to 0 otherwise. An Alignment*
interrupt can occur for 0.

=26~

Logical Instructions
RY¥CLUSIVE ONR

4.5 _EXCLUSIVE OR_INSTRUCTIONS

e¥clusive or Registers’

XR R1,R2

r T L a
| 3B I BT | R2 |
L i -4 J
0 8 12 15

e¥clusive or Immediate

YT R1S,R1F,TI2

L Ll LD \ L a1

] BB IR1S |RI1F | T2 I
L L R L 4
] 8 12 16 31

e¥clusive or

X R1,D2 (¥2,B2)

] L Ll L | LI 1
| 7B f R1T y ¥2 | B2 | D2 1
L A A L i J
0 8 12 16 20 ' 31

e¥clusive or to Byte Immediate

¥BI D1(B1 ,I2

T T T T 1
i 8B | 12 | B1 { D1 |
L 1 i 1 g

0 8 16 20 31

exclusive or Characters {Long)

XC/¥XCL D1(L,B1),D2(B2)

f g | LI T T T .|
| CB/DB | L | B1 | D1 1 B2 | D2 I
1 1 - L 1 1 L i |
(4] 8 16 20 32 36 47

The first operand is EXCLUSIVE ORed with the secornd and the
result replaces the first operand. CO0 1is set to 1 if the
result 1is all O's or the 1length is 0, +to 0 otherwise. An
Alignment interrupt can occur for ¥.

B I

Logical Instructions

BYTE

4.6 _TEST _UNDER_MASK_INSTRUCTIONS

Test under Mask Register
TMR R1,R2

v \J \J

-
| 32 | R1T | R2 |
| 1 1 J

0] 12 15

Test under Mask Immediate

TMT R1S,R1F,I2
r | ey | L] < 1
I B2 [RISTIRIF | 19 |
RN
L] R, e, e | - i 1
0 a 12 16 31
.ijg
! Test Byte under Mask ITmmediate
TMRL “TBAT D1(B1),12
\ LM L A | |
| 82 | 12 B1 | D1 |
L g 1 i i J
0 8 16 20 ' 31

The 1 bits in the
bits in *he first
Condition Code is
CO0 is set if +the

second operand mask selact the corresponding
operand. These bits are then tested and +he
set as follows: all bits are reset and then
tested bits were all O0's or the mask was 0,

C1 is set if all tested bits were 1, or C2 is set if they were
mixed O's and 1's.

4.7 BYTE.INSTRUCTIONS

Insert Byte

IB R1,D2 (¥Y2,B2

r T T T T T 1
i 58 | R1 { ¥2 | B2 | D2 |
L Il B | L 1 - 1
0 8 i2 re 20 31

Load Byte

LB ®1,D2 (X2, B2)

L] o E o T L) L] 1
| 52 | R1T | ¥2 | B2 | D2 |
1 AL A L i J
4] 8 12 16 20 31

+ D

Logical Instructions
BYTF

The byte at the second operand location is placed into bits 8
through 15 of R1, and bits 0 to 7 are left the same (IB) or
zeroed (LB).

‘STore Byte

STB R1,D2 (¥2,B2)

r T ~T T ™ 1
(59 | R1 | ¥2 | R2 | D2 |
L L 1 i 1 v 1
0 8 12 16 20 31

Bits 8 to 15 of R1 are stored as a byte into the second
operand location.

FILL (Long)

FILL

FILLL D1(L,B1),D2(R2)

r T T T g T =T =
| C8/D8 | L | B1 | D1 | B2 | D2 |
r— ' . < L 1 L L PCTI Y 1
0 8 16 20 ' 32 36 7

The first operand# character string is filled with the

e X

Load and eYXchange Bytes Register

LYBR R1,R2

L 1 il LB A
| oF | R1 | R2 |
L A i i |
[V 8 12 1S

Load and eXchanqe-Bytes

LXB R1,D2 (X2, B2)

r r T T T T . |
| 4F | BR1 | ¥2 | B2 | D2 |
L A L 1 1 s d
4] 12 16 20 ’ 31

The second operand halfword is loaded into R1, with its 2
bytes exchanged. An Alignment interrupt can occur for LXB.

29

Logical Instructions

TRANSLATE and SCAN

—— e e . e o

Load Address

LA R1,D2 (Y2, B2)

q A ~T T T S 1
| 5D | R1 { ¥2 | B2 | D2 |
L 1 1 L L ’
0 8 12 16 20 31

Subtract Address

SA R1,D2(¥2,B2)

r T . T T 1
| 5C | R1 | ¥2 | B2 | D2 |
L i 1 1 L J
0 8 12 16 20 31

The computed RY address is loaded into (LA) or subtracted from
(SA) R®R1.

MoVe Address

MVA D1(f,B1),D2(B2)

r T T T ! ™ T i ==
| FZ | 3] | B1 | D1 | B2 | D2 |
L - L e o L 1 J
4] 8 16 20 32 36 47

The computed second operand address is moved to the first
operand location.

4.9 TERANSLATE AND SCAN INSTRUCTIONS

TRanslate (Long)

TR/TRL 01(L,EBE1),D2(B2)

v i T ™ T T -
| CE/DE | L | B1 | D1 | B2 | D2 |
L i . L 1 1 1 wd
0 8 16 20 32 36 47

The bytes at the first operand location are used as arguments
to reference 1 of the 256 bytes in the second operand +able,
by adding each argument byte to +the second operand address.
The resulting byte then replaces the original argument in
Operand 1.

#30=

Logical Instructions

TRANSLATE and SCAN

Scan using Table Right (Long)
STR/STRL D1(L,B1),D2(B2)

r v T T Ei E MR |

| cp/DDb | L | B1 | D1 | B2 | D2 |

L 4 L P 1 : L I)
0 8 16 20 3z 36 47

Scan using Table left (Long)

STL/STLL D1(L,B1),D2 (B2

r T T o T T -

| cE/DC | L t B1 | D1 | B2 | D2 |

L L : N oo i 1 1 : P
) 8 16 20 32 36 47

Each byte of Operand 1 is wused (as in TR) to reference a byte
in the table pointed +to by Operand 2. If the byte thus
referenced is 0, referencing continues. If it is non-0, it is
loaded into register 3 (the high-order byte of which is
zeroed), the argument byte address is placed in register 2,
and C2 of the Condition Code is set. If all referenced bhytes
are ¢ or the 1length is 9, C2 is reset to 0. STL addresses
Operand 1 by its rightmost byte.

Scan Right Equal (Long)
SRE/SREL D1(L,B1),D2(RB2)

r T T T L] T |

| C1/D1 | L | B1 | D1 | B2 | D2 |

[i A L L L i]

0 8 16 20 ‘ 32 36 47

Scan Right Not Egual (Long)

SRNE

SRNEL . D1(L,B1),D2(B2)

v v iR 1 T T T 1
| Cc3/D3 | T | B1 | D1 | B2 | D2 |
A—— L L L L L 1
0 8 16 20 32 36 47

Scan lLeft Equal (Long)

SLE

SLEL D1(L,B1), D2 (B2)

e g ‘ LI v L}] 1
|- CO/DO0 | L | B1 { D1 | B2 | D2 |
[L S | L L 1 e : J
0 8 16 20 32 36 47

~-31-

Logical Instructions

SHIFT

Scan Left Not Fgqual (Long)

SLNE

SLNEL D1(L,B1),D2(B2)

r ¥ L] L Ll L 1
| C2/D02 | L | B1 | D1 | B2 | D2 |
L L o 1 " A 1 |
o 8 i6 20 32 36 47

This instruction uses the low-order byte of the second operand
address as a character to scan Operand 1. 1A scan for equality
(xxE) or inequality (xxNE) is performed. If the scan is
satisfied, the absolute address of the satisfying character in
Operand 1 is ©placed in register 2 and C2 is set. Tf it is
not, C2 is reset to 0 (C2 is always reset if the length is 0).
The scan can be performed from left to right (xRxx) or right
to left (xLxx), in which case Operand 1 is addressed by its
rightmost byte.

Shift Lef+ logical Immediate
SLLT R1,R2
L] L) T

1
| 18 I R1T | R2 |
= |

[, | 1
0 8 12 15

Shift Left Logical

SLL R1,R3,D2(B2)

\ | Y T ~—=
| 98 .| R1 |R3. | B2 | D2 |
L S— 7 Lo . 1 1
0 8 12 16 20 31

Shift Right Logical Immediate
SRLI R1,R2

L L LI

"
[19 I R1 | R2 |
i]

5

L - i

0 8 121

i B e

Logical Instructions

SHIFT

Shift Right Logical

SRL R1,R3,D2(B2)

L M | L. ™ T 7 1
{99 | R1 |0R3 | B2 | D2 I
L 1 N A e J
(4] 8 12 16 20 31

Shift Left Double Logical Immediate

SLDLI R1,R2

r + ™7 1
| 1K | R1 | R2 |
L L. F,_iL J
0 8 12 185

Shift Left Double Logical

SLDL R1,R3,D2 (¢B2)

v \ | L] L L Al
I 92 | R1 | R3 | B2 | D2 |
[- 1 [L 1_ng 1

0 8 12 16 20 31

Shift Right Double lLogical Immediate
SRDLI R1,R2

L a1
| 1B | BR1 | R2 |
L] 1 A

0 8 12 15

Shift Right Double Logical

SRDL R1,R3,D2(B2)

L v R L L] a1
| 9B | R1 { R3] B2 | D2 |
L - L. L"‘ L i 3
0 .8 12 16 20 31

A left or right shift is performed on the register or
contiguous pair of registers indicated by R1. The shift count
is specifed by bits 12 to 15 of the instruction for the RR
formats, or by the low order 5 bits of the Operand 2 address
for the RS formats. C2 is set to the last bit shifted out. A
Register Specification 4interrupt can occur on a double shift
if R1 specifies register 15.

~33=-

Logical Instructions

STACK

4.11_STACK_INSTRUCTIONS

PusSH Multiple

PSHM R1,R3,D2(B2)

r T T T T 1
I 96 | R1 | R3 | B2 | D2 :
L 1 Lo, L, i 1
0 8 12 16 20 31

PuSH Halfwords

PSHH

PSHHL D1(L,B1),D2(B2)

r | v L T T -
| C6/D6 | L | B1 | D1 | B2 | D2 |
L L 1 L i 1 .]
0 8 16 20 32 36 47

These instruction are wused to push data into the stack
described by the Stack Descriptor Block (SDB) pointed to by
the second operand address. The format of an SDB is:

[™

T T 1
| current top | stack address | stack limit |
L 1 1 |
0 2 . b 6
current top: This halfword will always point to the top
halfword in the stack.
stack address: This is the address of the stack itself
and controls the amount of popping that can be
_ performed.
stack limit: This is the address of the highest halfword
that «can be wused as part of the stack. A pushing
limit is thus established and checked.

PSHM causes the registers from R1 to R3 (wrapping from %the SFP
to the MSR if necessary) to be pushed into *+he stack and the
current top pointer +to be wupdated to point at the top
halfword. PSHH/PSHHL pushes the number of bytes specified by
the length field (rounded up to the next higher even number if
odd) into the stack and 1leaves the current top pointer
pointing at the last halfword pushed. These bytes are treated
as a sequence of halfwords and thus must be aligned. It is
obvious +that the st@gf top should be initialized to 2 less
than the stack address.™ -
s

Before any pushing is performed, the stack 1limit is checked to
ensure that it will not be exceeded. If it is not, C1 is
reset; if it 1is, C1 1is set and a Stack Overflow Interrupt
occurs if enabled.

A=

Logical Tnstructions

LINKED LIST

POP Multiple

POPM R1,R3,D2(B2)

v X Ll 1 T L 1
| 97 | RT | R3 | B2 | D2 |
L ~L L [AR | -]
0 8 12 16 20 31

POP Halfwords

POPH

POPHL D1(L,B1),D2(B2)

r T v = T T T -
| ¢7/D7 | z | B1 | D1 1 B2 | D2 |
L 1 i N 1 1 —
] 8 16 20 3z 36 47

POP instructions perform the complement of the pushing ones.
The current top is first checked against the stack address to
see if enough halfwords exist in the stack to do the pop. If
not, C1 1is set and a Stack Underflow interrupt occurs if
enabled. Tf it is, C1 is reset and the halfwords are popped
into the registers (POPM) or to the first operand address
(POPH/POPHL) . The current +top is then decremented so as to
point to the new top of the stack. The Operand 2 address is
that of the SDB, as described above. An Alignment interrupt
can ogcur.

—— s s . . S, B o o s e S g e e e e, S, . i, S S o . e i

SeaRCH

SRCH D1(B1),D2(B2)

r T = T T T T |
| F9 | 0 | B1 | D1 | B2 | D2 I
L L L L 1 1 -
0 8 16 20 32 36 47

This instruction is used to search a table or a linked list
for a key which holds some relation to a search argument. The
table or linked list is described by an Entry Descriptor Block
(EDB) pointed to by the second operand address, in addition to
the contents of certain registers. An EDB looks as follows:

For a table

-35-

IRENS]
Taee fds! DF T 31, o Fesk uwer PMask & done on
Mo feey md;m@«q@ww&.erivo/u Compere.
hyhnf]Y dme, € & 4 medk for Noe comlbin cade

Logical Instructions

LINKED LIST

r

T Ll T b
| entry length | key disp. | key length |0/TCCC|
L i J

L |

0 2 4 6 7

For a linked list
r Ll T L L
| pointer disp. | key disp. | key length |1/TCCC|
L i L [l]
0 2 U 6 7
entry length: This is +the length in bytes of each entry
in the table.
pointer disp.: This gives the offset in bytes of a
halfword containing the relative address of the next
entry in the 1linked 1list, called +the "forward
pointer"., The address is relative to the area base
as described below.
key disp.: This is the offset in bytes to the key in an
entry.
key length: This is the length in bytes of the key in an
entry and of the search argument.

#

The information in the EDB will most likely remain constant

throughout the program. The search argument is pointed to by

the first operand address and has a length equal to the key

length. Registers 2 through 5 must be initialized prior to
issuing a SRCH, as follows:

register 2: This register contains the relative address

of the first entry to be searched. For a table it

merely points to some entry, while for a linked list

it must point to the forward pointer in the

predecessor of the first entry to be searched. Tn

order to start searching at the first entry,

therefore, a "dummy pointer" to it must Dbe
available.
register 3: This contains a count of the number of

entries to be searched and will be decremented by 1
after each entry checked unsuccessfully A 0 count
causes the instruction to be ignored except for
setting C1 as described below.

register 4: This is +the area base address. It is added
to all addresses pertaining to the table or linked
list, including the initial entry address (in
register 2) and all forward pointers. This allows
relocatable linked lists (useful in computer
graphics), or, if set to 0, absolute addressing.

register 5: When the search is completed, register 5 will
be set to the relative address of the last entry
searched, while register 2 will have been updated to
contain the relative address of the previous entry.
There are two exceptions to this, the first being

=-36-

Logical Tnstructions

LINKED LIST

when the initial count in register 3 is 0 or the
forward pointer in the initial entry for a linked
list is null (0), in which case both registers 2 and
5 will point to +the initial entry. The other
exception if for tables when the count is exhausted:
register 2 will point to the last entry and register
5 to the first byte following the table.

If the search was successful, C2 will be set. Otherwise, C1
will be set if the entry count in register 3 was decremented
to or initially 0, or cO if a null forward pointer (0) was
encountered in a linked 1list. For key 1lengths of 0, or for
arguments of all O's on a TM SRCH, a successful match occurs
on the first entry if the criterion specifies equal or 0N's;
the search is unsuccessful otherwise. An Alignment interrupt
can occur.

NOTE: SRCH can be used to perform a PL/I-like INDEY or an
1LSD-1like FIND.

ENQueue

ENQ D1(B1),D2(B2)

T T T T T L L
| + F8 | 0 I B1 | D1 | B2 | D2 {
L. i A L A [J
0 8 16 20 32 36 47

The first operand address plus the area base address in
register 4 points to a new entry, which is be inserted into
the tlinked 1list described by the EDB at the second operand
address. The area base plus the relative address in register
2 gives the address of the forward pointer in the entry which
is to becore the predecessor of the new inserted entry. Note
that SRCH sets up register 2 so that an ENQ or DEQ can be
executed immediately. An Alignment interrupt can occur.

DEQueue
DEQ B1.,D2{¥2, B2}

LB Ll L L] T \ L}
I 48 | R1 | ¥2 | B2 | D2 |
L <L Y_l_ L i d
-0 8 12 16 20 31

The second operand address points +to an EDB describing a
linked 1list from which an entry is to be removed. The
contents of register 4 (the area base address) plus the
relative address in register 2 give the address of some
entry's forward pointer; the next entry is removed from the
list and CO is reset. In case this forward pointer is null, no

. by .

lLogical Instructions

LINKED LIST

dequeueing is performed and CO is set. An Alignment interrupt
can occur.

-38-~

Branching Instructions

5_BRANCHING INSTRUCTIONS

No RR format branchirg instructions cause a branch if B2
specifies register 0.

Test and Branch Positive Register

TBPR R1,R2

1 Ll L Al
| 29 | R1 | R2 |
L - oA L TvJ
0 8 12 1S

Test and Branch Positive

TBP R1,D2(¥2)

r L] L L] . 1
| A9 | R1 | ¥2 | D2 |
| 5 1 i 1 g
0 8 12 16 31

Test and Branch Not Positive Register
TBNPR R1,R2
v L] L] 1
| 2E { R1 | R2 |
[} L L J
0 8 12 15

Test and Branch Not Positive

TBNP R1,D2 (X2)

| 3 | | T 1 1
| AE | R1 | ¥2 | D2 |
L i L L - i |
0 a 12 16 31

Test and Branch Zero Register

TBZR R1, R2

\ e Ll L L}
| 23 1 R1 | R2 |
L ” L L o g
0 8 12 15

-39-

Branching Instructions

Test and Branch Zero
TBZ R1,D2(X2)
L LB L L] o
i AR | R1T | X2 | D2 |
1 L L _’_l]
0 8 12 16 31
Test and Branch Not Zero Register
TBNZR R1,R2
r ™ T 1
| 2D | R1 | R2 |
L A i []
0 a 12 15
Test and Branch Not Zero
TBNZ R1,D2(¥X2)
r LA LI B] 1
[AD | BR1 | X2 | D2 |
L S L 1 1
) 8 12 16 31
Test and Branch Minus Register
TBMR R1,R2
L G L3 T]
| 2C | R1 | R2 {
[N L 1 []
0 8 12 1S
Test and Branch Minus
TBM R1,D2 (¥X2)
I L 4 LB 1 1
i AC | R1 | ¥2 | D2 |
1 [] [| i i |
0 8 12 16 31
Test and Branch Not Minus Register
TBNMR R1,R2
— T T g
I 2B | R+ | R2 |
L - A 1 []
[+] 8 12 15
Test and Branch Not Minus
TBNM R1,D2(X2)
¥ BES Ly L 1] B
| AB I R1T | %2 | D2 |
L L i []
0 8 12 16 3

-40-

o

Branching Instructions

@ 0‘ {} et 'a
A branch is taken to the contents of R2 (RR format) or to the

second operand address (BY form) if the condition of R1 is as
specified by the instruction.

Branch Conditions Zero Register

BCZR R1,R2

Al L L] 1
1 26 | R1 | R2 |
L ‘_‘l L []
0 8 12 15

Branch Conditions Zero

BCZ R1,D2(¥2)

L ¥ T \ 1

| A6 | R1T | X2 | D2 I
L il (| - R e

4] 8 12 16 31

Branch Condition One Register
BCOR R1,R2

I L] L

“
| 27 | R1T | R2 {
]

| - 1 1
0 8 12 15

Branch Condition One

BCO R1,D2(¥2)

LB L] A AN 1
| X7 | R1 | ¥2 | D2 |
L i L. 1 1
0 8 12 16 31

The R1 field 1is used as a mask to select any of the Condition
Code bits or bit 3 in the MSR. TIf all selected bits are 0 for a
BCZ(R), or if 1 or more are 1 for BCO(R), then a branch is taken
to the contents of .R2 (RR form), or to the second operand address

(BX) . Otherwise no branch is taken. If R1:0. ften Pe Srmon b5 alwayr faken,

Branch and Link Register
BALR R1,R2

r L) L L

| 28 | R1 | R2 |

| I AL []

0 8 12 15

-t} q=

Branching Instructions

Branch and Link

BAL R1,D2(¥2)

LB L] L] L 1
| A8 | R1 | ¥2 | D2 I
L L [} L]
[4] 8 12 16 31

The bran¢h address (econtents of R2 for RR form or second operand
address for BY form) 1is computed and saved. The PC is then
copied into R1 and a branch is taken to the saved address.

Branch on CounT Register

BCTR R1,R2

r v T G |

| 2F { R1 | R2 |

L 1 L d

o 8 12 15 ¥

Branch on CounT

BCT R1,D2(¥2)

L] T) |] ! 1
| AF | R1T | X2 | D2 |
L AL 1 1 k|
0 8 12 16 31

R1 is decremented by 1, and if +the result is positive, a branch
is taken to the contents of R2 (RR form) or +o the second operand
address (BY¥). If the result is minus or 0, no branch is taken.

Branch on inde¥Y High

BYH R1,D2 (X2)

e L LB T 1
| 1.X0) I R1 | X2 | D2 I
| L 1 1 1
0 8 12 16 31

Branch on inde¥ Low or Equal

BYLE R1,D2(¥X2)
v Ll Ll L] 1
| A1 I R1 | ¥2 | D2 |
| L] [l [i |
0 8 12 16 31
o "W_“‘-\\
The contents of ¥2 is added‘algebraically’to R1 and the result is
compared gebraically to the previous contents of ¥2 (if it is
an odd-néﬁb@redwureqfster) or to the contents of the next higher
register (if ¥2 1is even-numbered). A2 branch is taken to the

second operand address if R1 is greater than the compare register

-42=-

Branching Instructions

(BYH) or if it is less than or equal to it (BY¥LE). Otherwise no
branch is taken.

EYecute

EY R1,D2(¥X2,B2)

r T T T T 1

| 54 I R1 { ¥2 | B2 | D2 |

_ 1 i 1 I |]
0 8 12 16 20 31

This instruction causes execution of the single instruction at
the second operand address. The contents of R1 is temporarily
ORed with the first halfword of this subject instruction before
it is executed, unless R1 specifies register 0. Control is
eventually returned +to the instruction following the E¥, unless
the subject instruction modifies the PC. An Alignment interrupt
can occur., Any Program interrupts that can occur for the executed
instruction are possible. I/0 and S/360 Initial Select interrupts
cannot occur between and EY and its executed instruction. An
Execute interrupt occurs if the subject of an EY instruction is
another FY,.

il T

Status-Switching Instructions

6 _STATUS-SWITCHING INSTRUCTIONS

SuperVisor Call
svcC I1
| AR

| 31 | I1

[1
0 8 i

1T R

SuperVisor Call Single-register
SvVCS D1(B1) ,I2

LI 1 T 1
81 | I2 | B1 | D1 |

i 1 A 3}
8 16 20 31

ol]

SuperVisor Call Double-register

SVCD D1(B1) ,D2(B2),I3

r T T T T T i
¢\ F1 | I3 t B1 | D1 | B2 | D2 |
L 1 . 1 —L L ' 4
0 8 16 20 32 36 47

This instruction <causes a Supervisor Call (SVC) interrupt using
the second byte of the instruction as the interrupt code. Before
causing the interrupt, SVCS 1loads the first operand address into
register 2. SVCD does this also, plus loads register 3 with the
second operand address.

Test and Set Lock

TSL D1(BT ,I2

r T L T 1
1 87 | 12 I 81 1 D1 |
L 1 P | 1 1
0 8 16 20 31

The bits of the first operand byte selected by the second operand
mask are tested, and the Condition Code is set as for the TH
instructions. TIf +he test indicates 0's, the mask is ORed into
the first operand. Memory accessing by local I/O units is
prevented between testing and modification.

-4l

Status-Switching Instructions

eyt

ENTer subroutine

ENT R1S,R1F, X2

Ll v v L) 1
| BE IR1S |R1F | 2 - |
L 1 [i J

0 8 12 16 31

This instruction causes save area chaining and automatic storage
allocation. It is generally executed as the first instruction of
a subroutine and assumes that the SFP (register 15) points into a
"Stack Frame", which must be on a halfword boundary:

L 1
SFP-->(|previous pointerj

L J

- > 1

| next pointer |

et ‘ g \
[¢ | |
(5N | |
o caller's

v | save area 1
I |

+ {

| |

| caller's |

automatic

| storage |

! :

L) & L

| length |

L]

L 1

| |

.8

25

The immediate halfword operand specifies the number of bytes of
automatic storage desired. This number (rounded to the next
higher halfword, if necessary) plus 30 bytes for a register save
area plus 4 bytes for the new pointers is compared against the
length, which specifies the remaining space in the Frame
(including itself). If not enough space exists, a Stack Frame
Ooverflow interrupt occurs. If there is space, it is allocated to
the subroutine, and a new, updated 1length field is built bhelow
it. The caller's MSR through register 14 are saved in the save
area in his storage ~twith—+he PC-set egual—toregister—Hi+—the
roturn —address),~ The o0ld length field is replaced by the
contents of +*+he SFP (a previous pointer), ¢the halfword following
the length is set to point at the newly built length field (a
next pointer), and finally the SFP is updated to point to the
new save area:

-135-

prfee

Status-Switching Instructions

L

L i ML |
|previous pointer|
¢ > 4
| next pointer |
F ~ i
{ |

MSR-register 14
save area

|
L.
+
|

caller's
automatic
| storage |
—— s
SFP-->|previous pointer|
+ {
| next pointer |
1 1 \
S L} 1
o | |
J

subroutine's
save area

|
L
F

I

subroutine's
automatic
storage

length

e e i
— e ek ——

An Alignment interrupt can occur.

RETurn from subroutine

RET R1,R2

r LN L} |
{ OB | R1 | R2 |
1 L.,_, L []
0 8 12 15

RET is executed to return from a subroutine and to free the save
area and automatic storage gotten by ENT. It first checks *o see
if tWe back pointer (the SFP is assumed to be left as set up by
ENT) points to a save area which points forward to the current
one. If not, a Stack Frame Underflow interrupt occurs. If so,
registers 2 through 13 are reloaded from the current save area,
the 0ld length and 0 fields are rebuilt at the top of it (so as
to free it), the SFP is backed up to the previous save area, and
a branch is taken to the new contents of register 13, the return
address. An Alignment interrupt can occur.

-U6-

Interrupts

J_INTERRUPTS

There are four types of interrupts on the META 4A: SuperVisor
call (sv¢), Program, T/0, and S/360. When an interrupt is
detected, and if it is not disabled by <the MSR or I/0 Mask, the
following sequence occurs:

1) The current MSR and PC are stored in 2 halfwords in low
core (see table below), and an interrupt code is
generated and stored. If the interrupt is an SVC or
Program check, the TILC field in the stored MSR will
contain the 1length, in halfwords, of the instruction
causing the interrupt.

2) A new MSR and PC are loaded from 2 other halfwords in
low core, E

3) Execution continues with this new machine status.

The low core locations reserved for these MSR's, PC's, and
interrupt codes are as follows:

address contents

4 SVC old MSR

6 SVC old PC

8 SVC interrupt code

A SVC new MSR

Cc SVC new PC

E Program old MSR

10 Program old PC

12 Program interrupt code
14 Program new MSR

16 Program new PC

18 I/0 old MSR

1A I/0 old PC

1C I/0 interrupt code
1E I/0 new MSR

20 I/0 new PC

22 S/360 old MSR

24 S/360 old PC

26 S/360 interrupt code
28 S/360 new MSRE

27 S/360 new PC

T

Interrupts

The SVC interrupt code is determined by the second byte of the
SVC instruction that caused the interrupt. Program interrupt
codes are determined by the ¢type of Program interrupt, as
follows:

Operation (2): An instruction with an invalid operation
code was encountered. When this occurs, various
information is stored in low core before the interrupt
occurs. See Appendix T for a description of this
information.

Stack Frame Overflow (4): On an ENT instruction, no room
existed in the stack frame for the registers and *he
requested automatic storage.

Stack Frame Underflow (6): Oon a BRET instruction, the
previous save area was not in the same stack frame as
the current one.

Arithmetic Overflow (8): Overflow occurred on an arithmetic
instruction and was not masked out by the MSR. The
resulting value was not stored.’

Conversion Overflow (A): on a CVB instruction, the
resulting number required more than 16 bits and the
interrupt was not masked out in the MSR. The resulting
binary number was not loaded into R1.

Division by 0 (C): An attempt was made to divide by 0.

Alignment (E): A halfword was not located on a even byte
boundary where required.

Register Specification (10): Register 15 was specified in
some double register operation.

Privilege (12): An I/0 instruction was attempted with the
privilege bit in the MSR off. See Section 8.

Stack Overflow (14): On a PSHM or PSHH/PSHHL, there was not
enough room in +the stack for the requested da%ta, and
the interrupt was not masked out in the MSR.

Stack Underflow (16): On a POPM or POPH/POPHL, there was
not enough data in the stack ¢to fill the pop request,
and the interrupt was not masked out in the MSR.

Execute (18): The subject of an EY instruction was another
E¥. This situation cannot be handled by the firmware.

Invalid Unit Address (1A): Some error was detected in the
unit address portion of an IOCC., See Section 8.

Invalid UcB Address (1C): The UCB address in the UCBT for
the unit specified in an 1I0CC, or for the $/360, was 0
or odd. See Section 8.

I/0 and S/360 interrupts are described in more detail in the next
Section.

], e

Input/Output

8 _INPUT/QOUPUT OPERATIONS

8.1 _I/0 UNITS

The META U4A can communicate with various external I/O units.
These units consist of some number of local I/0 units and the
S/360.

8.7+1 LOCAL UNITS

The local TI/0 units which can be operated by the META 4A
include a Disk, Card Reader, Keyboard/Typewriter, Control
Panel, and META 4B (the graphics processor of BUGS). Up to
a total of 11 local units can be supported by the firmware.
The instructions used +to perform I/0 with these are SIOPR
and STIO.

8.1.2 THE S/360

The META U4A can also communicate with an IBM S5/360. The
S/360 regards the META 42 as a standard unit, performing
I/0 with it via a Multiplexor Channel and the standard IBM
S/360 Interface. The instructions offered by the firmware
to support S/360 communication are SS, TRB, 0ST, IST, and
EXCC.

Pty

8.2.1 UNIT INFORMATION

An I/0 unit is designated by an I/0 address. This address
is a 5-bit binary number ranging from x0000 through x1010
(the first bit is ignored; ¢ will be assumed here).
Associated with each unit is a Unit Control Block (UCB).
This storage block can contain all the information

- G

Input/Output

necessary +o operate ¢the unit, its status, I/0 request
queue, etc. Its format as regarded by the firmware is as
follows:

(ow]
= —

00000000000xaddr|

[\

USH

=
.___..._T._.]

variable

SN S |

The UCBs, because of their varying number and length, are
not located in fixed memory locations. TInstead, there
exists +he Unit Control Block Table (UCBT), which contains
12 pointers to UCBs. The first pointer corresponds to unit
0N000, +the =second +to unit 00001, etc. (hence, twice a
unit's address is +the UCBT offset of its UCB pointer),
while the twelfth pointer is for the $/360 UCB. The UCBT
occupies core locations 30 through 47. The only common UCP
entries are +he unit address and the Unit Status Halfword
(USHY. This halfword contains flags describing the current
operating status of the associated unit (e.g., offline,
busy, I/0 error, etc.). The exact bit meanings will be
described with each unit.

8.2.2 STARTING I/0

SIOR R1,R2
r - T T 1
| 16 | R1 | R2 |
L i 1 3
0 a8 12 15
Start I/0
STIO R1,D2(X2,B2)
T T T T] d 1
| 56 { R1 | ¥2 | B2 | D2 |
L i 't S L]
0 8 12 i6 20 31

These instructions cause I/0 to be initiated at a specified
unit. In order +to specify the type of I/0, a 2-halfword
I/0 Control Command (IOCC) is reguired. Operand 2 of SIO is

«50=

Input/Output

this 7T0CC, while, for SIOR, the first halfword is in R,
and the second in R2. An TOCC has the following format:

L] L} L 1 1
| address | xaddr| op imod|
L L 1 1.]
0 16 21 2931
address: The use of this field varies from IOCC to

IOCC., It normally specifies a memory address or
is unused.

xaddr: This is the 5-bit unit address of the I/O unit
on which the I/0 is to be performed. If the UCR
pointer in the UCBT for this unit is 0 or odd, an -
Invalid UCB Address Program interrupt will occur.
Furthermore, if no unit with the specified
address is installed, or if the unit address in
the corresponding UCB does not match, an Invalid
Unit Address interrupt will occur, with the unit
address in error being stored in core location
50 .

op: this 8-bit code specifies the +type of I/0
operation to be performed.

mod: this portion of the 7IOCC provides additional
information for the unit and operation specified.

Once an IOCC is initiated, a new ©USH is automatically
sensed and stored in the UCB., In addition, a bit is set in
the Condition Code (the others being reset) as follows:

cn- Busy or 0ffline. The unit was found *o be in
Busy status or offline at the time of TOCC
initiation.

C1- Unit Operating. An I/O operation was begun which
will, upon completion at a later time, produce an
I/0 interrupt. The new USH will indicate Busy.

G2+ Immediate Operation Complete. The operation
performed completed immediately. The unit can
now respond to another STIO(R).

An Alignment interrupt can occur on an SIO(R) for the
following reasons:
1) The IOCC was not on a halfword boundary. This can
only occur for SIO.
3) The address portion of the IOCC is to be used as a
memory address, but 1is not on a halfword
boundary.

A Privilege interrupt can also occur for both formats if

the Privilege bit is not on; this prevents user programs
from "accdidentally" performing I/0.

o B

Input/0Cutput

8.3 I/O_INTERRUPTS

~ At the completion of an interrupting I/0 operation, for which
Cc1 was set at SIO(R), or upon an externally caused interrupt,
the operating unit requests an I/0 interrupt. At this time,
the META 42 performs the following functions:

1) Checks the I/0 interrupt bit in the MSR. If off, the
interrupt is kept pending until such time as the bit
is set omn.

2) Next checks the TI/0 Mask in location 2E. There
exists one bit for each of the 11 possible I/O
units, *he unit address being the bit position. If
the bit for the interrupting unit is off, the
interrupt is again kept pending until such time as
the mask bit is set on.

3) If the interrupt can be allowed, an I/O interrupt
occurs with +the interrupt' code equal to the unit
address (see Section 7). A new USH is stored in the
UCB, unless the UCB address in the UCBT is odd or 0,
in which case the USH is ignored and bit 0 of the
1/0 interrupt code 1is set on. Finally, the unit
interrupt request is reset.

If two oOr more units compete for an interrupt at the same
time, they are taken in priority order by ascending unit¥
address.

8.4.1 GENERAL INFORMATION

Viewed from either +he META U4A or the S/360, I/0 to the
other processor differs from I/0 to other units in several
respects. While most TI/0 consists of a program issuing
commands to a unit with a particular set of
characteristics, S/360 TI/0 consists of a program in one
processor communicating with another program in the other.
Since this communication takes place over a S/360 channel,
it is relatively simple and allows high data rates.
However, it 1is also rigidly defined by the channel
hardware, and deviations from the established protocol can
have dire consequences for other devices sharing the
channel and for CP. For this reason, before I/0 betweaen
the S/360 and the META 47 is attempted, the descriptions of

..52_

Tnput/JNutou*

I/0 in the System/367 Principles of Nperation manual stould
be thoroughly understood.

The MFT™A U4A is connec*ted +to +he S/360 Multiplexor channel
+hrough an interface housed within BUGS. In +ha intarface
are +he logic circuits necessary for address recognition,
automa+tic propagation of Select Out, and ~ommand bv+e and
status transfar,. T™wo 16-bi+t registers in *he in*arface
reflect the current state of +he tag and bus lines £fron the
channel, along with certain other status £lags. Al+hough
these registers can be directly controlled (via the IST and
0ST instructions), there will rarely be any need *o 10 so.

8,4.2 S/360 INTERFACT ADDRESSES

The S/360 interface will respond *o initial selections
directed +to any device address in the range (5N €5 057,
However, only the first four of these (057 to 753) ar=
treated as valid by +the META42, arnd I/O to an address
higher +han 053 should never be attempted. The four vali?d
device addresses correspond to META 4R unit addresses 01011
through 01110, but +*hese unit addresses are effactively
ignored, and the device address is specified in *he S /2360
T/0 instruction by the low order digit of the S/360 address
(Lagsy O 0 3},

8.4.3 S/360 UCB FOPMAT

Pach of the S/360 TUCBs has +the following format:

-53-

Input/Output

Table

© 1
0100000000000 xaddr |
+ - 4
2| |
L i
L] L L | 2)
4y {Curr Stat|
| L -
61 |
| |
81 |
| v 4
A ICmnd Byte|
— L i |
Cl Data Address |
F |
E| Data Count i .
L [
L] S A
101Last Data Address |
F —
121 Residual Count |
t — 4
141 |
| |
16| Sense Bytes V-5 |
| |
18] |
F ~ 4
1A 1
| |
1C| Tnitial Status |
| |
| |

Curr
Cmnd

Data
Data

Last

Stat: The current status byte for the device.
Byte: The last (non-zero) command received fronm

the channel.

Address: A pointer +to *he data area for the FYCC
instruction.

Count: The number of bytes to be transferred by
the EYCC instruction.

Data address: The address of the last data bvte
read or written by an EYCC instruction.

Residual Count: The count remaining if +the EYCC

Sense

Initi

instruction was prematurely terminated.

Bytes 0-5: 6 sense bytes. (The firmware only
references the first of these. The rest are
software defined.)
al Status Table: There is one initial status byte
for every possible command which can be receivei
from +the S/360. ©Note that the first byte i the

#Citw

Input/Nutput

table (for a commad byte of 0) 1is not used. A 0
command (Test I/0) will <cause the curret status
byte to be sent as initial status.

8.4.4 FIRMWARE OPERATIONS

There are 3 basic functions which must be performed ir
handling the S/360 interface: initial status presentation,
data transfer, and ending status presentation. These are
now described:

8.4.4,1 Initial Status Presentation

A= 4

When an Initial Selection occurs, the firmware examines
the command byte, the UCB table, the UCB, and the MSR to
determine what initial status should be sent to the
S/360., The following situations can occur:
Test I/0 and valid UCB pointer: The current status
bye is used as iniial status and then reset to
0 (except possible for busy). Since no
interrupt 1is generated, the state of the
initial Select bit in the MSR is ignored.
Test I/0 and invalid UCB address: An initial status
of busy is sent.
Non-zero command and 1Initial Select disabled:
initial status of Busy is sent,
Non-zero command and initial selection enabled: The
UCB poirnter for the appropriate device is
checked. If it is wvalid (even and non-zero),
the current status field is checked. If the
current status field is non-zero, it is ORed
with busy, sent as initial status, and then
reset. If the current status field is 0, then
initial status byte for the command is found
in +the initial status +table and sent. The
command byte 1is then stored in the UCB and a
S/36C interrupt occurs, the interrupt code
being the device address with bit 2 on.If the
UCB pointer for the device is found to be
invalid, wunit exception is sent as initial
status, and the device address with bi+t 0 on
serves as the interrupt code.

55

Input/Output

8.4.4,.2 Data Transfer

Once the software has been given an Initial Select
interrupt, it must examine the device address and
command fields of the UCB to determine what action to
take. For operations involving data transfer between
the META 42 and the S/360, a choice can be made between
proceeding in "burst mode" or in "byte mode". In the
first case, control is returned +to the firmware via an
EY¥ecute Channel Command (E¥XCC) instruction. The
firmware then retrieves a data address and count from
the UCB and proceeds with the data transfer as indicated
by the command byte which was previously stored in the
UCB. On termination of the command, the condition code
is set appropriately (see description of EXCC below),
and the program is continued. .
In byte mode, the software explicitly requests each da*a
byte transfer. using the TRansfer Byte {TRB)
instruction. While slower than the wuse of EXCC, this
allows more flexibility in the placement of data in META
47 memory, for example.

8.4.04.3 Ending_Status Presentation

At the termination of data transfer (due either to the
count from +the UCB reaching 0 or to Interface Stop),
ending status must be sent to the channel with the Send
Status (SS) instruction. Normal ending status consists
of Channel ¥End and Device End. Unusual conditions
encountered during data transfer (such as Bus=Out Check)
are indicated by ORing the appropriate bits in the
status byte.

8.4.84.4 System_or Selective Reset

If +the 5S/360 performs a System or Selective Reset, a
$/360 interrupt will nunconditionally occur with an
interrupt code of 2. Whatever instruction was executing
on the META 4A at this time is aborted, thus this is an
irrecoverable condition,

Input/Jutput

8.4.5 S/360 INSTRUCTIONS

Input/Output S or T register
I0ST Rt+,R2

| 20 | R1 | R2

This instruction is used for direct control of the
interface S and T registers. The R1 field refers *o the
META 4R register which is to be snet to or loaded from the
interface. The R2 field contains the operation *o bhe
performed, as follows: '

0: The contents of S are placed into R1.

1: The contents of R1 are loaded into S.

2: The contents of T are placed into R1.
3: The contents of R1 are loaded into T.

ae

Bits 12 and 13 of the R2 field are ignored.

EXecute Channel Command

BICe R1,R2

L] L il
| 22 | R1 { R2 |
L i i []
0 8 12 15

This instruction is used to perform block data transfers to
and from the S/360. The address and length of this data
are found in the S/360 UCB, for the device whose address is
in the R1 field. Bit 7 of +the Command byte determine the
direction of data +ransfer: 1 means from the S$/360, °
means to it. If a Bus=-Out Check is encountered during
transfer, transfer is stopped and the error is recorded in
bit 2 of Sense Byte ¢ and in bit 6 {(Unit Check) of the
Current Status (Cur Stat). Transfer is also halted if Stop
or Halt I/0 1is received from the channel. 1In whatever
manner transfer 1is completed, the Final Data Address will
be set to the address of the last byte transferred plus 1,
while +the Residual Count is set to the number of bytes
remaining to be transferred. The Condition Code will be
set as follows:

C0 - Transfer successful or Bus-0ut Check.
C1 - Stop received.
C2 - Halt I/0 received.

Privilege and Invalid UCB Address interrupts can occur.

-57-

Input/Output

TRansfer Byte

TRB R1,D2(X2,B2)

r L§ T B3 L LI 1
| 62 | R1 | ¥2 | B2 | D2 |
L] " 1 [1 1
0 8 12 16 20 31

This instruction operates exactly as EXCC except that the
Data Count is assumed to be 1 and the byte +o be
transferred is found at the Operand 2 address. Because
only 1 byte 1is +transferred, the Final Data Address ard
Residual Count fields are not modified. Invalid UCR
Address and Privilege interrupts can occur.

Send Status

SS R1,D2(¥2,R2)

| I i | Ll] N 1
I 55 | R1 | ¥2 | B2 | D2 |
L L‘ L i L 1
0 8 12 16 20 31

This instruction causes a status byte +to be sent from +he
device specified by the B1 field to the S/360. The status
byte is either the 1low order byte of the second operand
address or the current status field of +the UCB. Tf +he
second operand address is non-zero, it is taken as the
status byte, and the status is considered +o be
asynchronous (e.g., suppressable). If the address is 0, the
current status field is examined. If this is also zero, C"
is set and nothing more is done. Tf the current status is
non-zero, it 1s sent +o the $/360. Tn either case, 1if
status is stacked, the status byte is stored in the current
status field of the UCB and C2 is set. (The program can
then either try to re-issue the SS instruction or assunme
that the channel will eventually request the stacked
status.) The Condition Code is set as follows:

CO0 - Status accepted.
C1 - Status was suppressed or stacked.
C2 - Halt I/O received.

Privilege and TInvalid UCB Address Program Interrupts can
occnr.

-58-

Input/Output

{

9.1 3461 _CARD_READER_(UNIT ADDRESS 00100) Op§

OLETE
..-w-""”n

9.1.1 DESCRIPTION

The D.S.C. Model 3461 Card Reader provides punched card
input for the META 4R processor. It is rated at a maximum
throughput of 300 cards per minute, reading serially colunn
by colunn. The 3461 reads cards in Hollerith image only;
no code +translation is provided by it or the firmware. A
column image is stored in bits 0 through 11 of a halfword;:
bits 12 through 15 are set to C.

9.1.2 T/0 CONTROL COMMANDS

The 3461 is addressed by the 5-bit unit address 0010". Tt
utilizes a single IOCC wich is an Initiate Read, to start
up a card read cvycle:

Initiate Read IOCC (¥'2620')

L

—
| buffer address [00100[11000100(///
" [|]

L NN []

4] 16 21 2931

The address portion of +he IOCC specifies the halfword
memory address of the read buffer. The first halfword of
the buffer designates the number of columns to be read.
This count ("n" in +the diagram below) 1is located in bit
positions 9 through 15 and should never exceed 80
(information in succeeding memory locations will be
destroyed) . The halfwords following the count will receive
the column data.

Buffer

-59-

Input/Output

] 1
0Vz77//777/ n |
} g
21 column 1 |
+ y y
b column 2 |
t 1
61 l
| |
¢ {
2%n | column n |
F —
| |

Once the card reading operation is complete, the 38461 will
request an Operation Complete I/O0 interrupt.

9.1.3 USH FORMAT

The format of the USH for the 3461 and the meanings of the
bits are as follows:

\//7V//ZVEC\LCNOC // NV /7 /7 / /7 /7 //////7 /1B | OB

0 1 2 3 L S 6 7 B8 13 14 15

EC: Error Check. This indicates a feed check or a
read check. It will appear along with 0OC.

LC: Last Card. This bit comes on after the last card
is read and will appear with O0OC. It remains on
until more cards are placed in the hopper.

OC: Operation Complete. This bit is set just prior
+t0 the request for an I/0 interrupt after card
reading is completed. It will appear in the USH
that is stored in conjunction with +the T/0

interrupt.

B: Busy. This indicates that a card read is in
progress and therefore another read cannot he
initiated. This dindicator +turns off when the

Operation Complete interrupt occurs.

OB: Offline or Busy. 0Offline is on when the Read
Stop light is 1it on the 2U461. This bit is also
on when the B (Busy) bit is on.

-60~

Input/Output

9.2 TERMINAL INTERFACE_(UNIT ADDRESS 00110L

9.2.1 DESCRIPTION

The Terminal Interface provides a means of interactive
communication between the META 4A processor and a terminal.
Any terminal which conforms to the RS232-C conventions may
be plugged into this interface. This unit also controls the
black ©plexiglass box (hereafter called the ragic box)
connected to the terminal cable. The input and output codes
are right justified ASCIT.

9.2.2 CONTROL COMMANDS

The Terminal Interface is addressed by the 5-bi*+ unit+
address 00110. The control IOCC uses a set of status codes
to control the ablitity of the Terminal Interface +o
interrupt the CPU, and to control +he lights on the
terminal and the magic box.

Control TIOCC (¥'3430")

r

L LB Ll Ll
| status Todes|001101{100001101000}
1 L |]

L

0 16 21 2931

Status Codes Format:

v LM | L]

IOCIIRI//I//I//I//I//I//IPR////////FLILLIFLI

1] 1 2 3 4 S 6 7 8 13 14 15

O0C: Output Complete Enable. TIf this bit is on, the
output complete interrupt will be enabled.

IR: Input Complete Enable. If this bit is on, the
input complete interrupt will be enabled.

PR: Proceed, TIf +the terminal has a wait/proceed
light, this bit will control its status.

FL: Flash Light. If on, the light on the left side of
the magic box will flash.

LL: Left Light If this bit is on, the left hand
light on +he magic box will be on.

RL: Right Light. TIf this bit is on the light on the
right side of the magic box will be on.

-61=-

Input/Output

Read Command

When the user stikes a key on the terminal, an Input Ready
interrupt will occur if a previous Control IOCC enabled the
interrupt. At this time, a Read IOCC should be performed to
store the ASCII character into a halfword in core. This
IOCC has the following format:

Read TOCC (X'3208")

r

Ll L L} 1
{ memory address{001101010000011000]|
A [}

L A]

.

0 16 21 2931

Output Command

The Write IOCC will write one ASCII character to the
terminal plugged into the interface.

Initiate Write IOCC (¥'31301)

L] v T a1
| ASCII character|001101001001101000}
L] |]

L
0 16 21 2931

9.2.3 USH FORMAT

The format of +the USH for +the Terminal Interface and the
meanings of the bits are as follows:

L 1

IOCIIRIBRlATITBITOIPEIORi////////////I//I//I
L (] y | A i L i i L]

A\l

0 1 2 3 4 S 6 7 a8 13 14 15

0Cs Output Complete. This bit 1is set when the
interface is ready for another character.
Following the setting of this bit, an TI/C
interrupt is requested by the Terminal Interface.

IR: Input Ready. This bit comes on after the user
has hit a key and just prior to the request by
the interface for an I/0 interrupt. A Read IOCC
should be performed after receiving this
interrupt.

BR: Break. This bit is set when the user strikes the
BREAK key on the terminal. It is provided as a

..62_

Input/Nutput

means of signalling an attention to the META 4A.
An I/0 interrupt will occur after the setting of
this bit,

AT: Attention: This bit is set when the buttqon on the
magic box is pressed. An I/0 interrupt will be
requested after this bit is sot.

TB: Terminal Busy. When on, this indicates that the
interface is busy transmitting a character.

T®: Terminal O0ffline or Busy. This bit is off when
the terminal is powered on and plugged into the
interface.

PE: Parity Error. This bit is set when a parity error
is detected in a received character.

OR: Overrun. This bit is set when the interface
detects an overrun condition.

9.3 /360 TERMINAL INTERFACE (UNIT ADDRESS 00011)

9.3.1 DESCRIPTION

The /360 Terminal TInterface is almost identical to the
interface described in 9.2 above. Tt provides an interface
to the /360 so that BUGS can look to CP as though it were a
terminal. Only the differences in operation from +he
description above will be shown here.

Control IOCC (X'1C36")

-

| - status codes|00011i10000110;000]
1 1 [§ []

L

= -

0 16 21 2931

The status codes are identical to those described in , with
the exception that turning bit 2 on in the status codes
will transmit a BREAK to the /360.

Read TOCC (¥X'1A08!")

L] T L] i |

| memory address [00011{01000001]000]
[2 I | i []
1

4] 16 21 293

Initiate Write IOCC (X'1930")

- -63-

Input/Output

L A 1

e

| Ll L N 1
| ASCIT character|N001117010011010C0
L (]

1

o} 16 21 293

— o . s e i S e e S e e e e e e s e e e e e e e . o

9.4.1 DESCRIPTION

The Model 1444 Disk Storage Unit provides <the META 4R
Computing System with a large(’) sequential or random access
data store. The features of this store are described in
the following paragraphs.

—_—— =

9.4.1.1 Stordage Capacity

The storage capacity provided by the 1444'is 1,024K
(1,042,57R)Y bytes per disk cartridge. 1 single
cartridge may bpe wcu:"ted on the drive at any one time;
but cartridges mav be interchanged in a matter of
minutes. '

9.4.1.2 Data Organization

The disk access mechanism, called the carriage, is moved
back and forth by programmed I/0 Control Commands and
can be placed over any one of 203 cylinders, numbered
from 0 *o 202. Each cylinder is divided into 8 sectors,
numbered 0 to 7. Sectors 0 through 3 are located on the
upper surface of the disk, while sectors 4 through 7 are
on the lower surface. Each sector contains 642 bytes of
information and is the 1largest segment of data that can
be read/written with a single IOCC.

209 x §x (U= foeda
1041Lbos

-plU-

Tnput/Nutput

9.4.,2 1444 T/0 CONTROL COMMANDS

The 1444 is addressed by the unit address 00010, and is
controlled by 4 TOCCs. The first of these is a Control,
and is used to position the carriage over one of the 203
cylinders of the cartridge. Its format is:

Control IOCC (X'1430")

1////7//increment|00010{10000110(D//|

e -

0 16 21 2931

The increment specifies the number of cylinders to move the
carriage relative +to its current position. TIf bit 29 (D)
is 0, the carriage 1is moved +toward the higher cylinders
(the center of the cartridge); if 1, it is moved toward
the 1lower cylinders (the edge of +the cartridge). Whern
movement is complete, an Operation Complete interrupt
occurs, ulless the increment was 0. Because movement is
relative, it is necessary to keep in the UCB the current
cylinder position, so that increments can be computed
correctly.

The second IOCC is an Initiate Write, used for recording
information on a particular sector of the current cylinder.
Its format is:

Initiate Write IOCC (¥ '152C1)

memory address [00010[10100100|sec|
1 [[l

o[7

16 21 2931

The memory address specifies the address of a buffer on a
halfword boundary from which data is written on the sector
specified by the 3-bit number sec. The buffer has the
following format:

Buffer

Input/Output

L N 1
01 count n |
L. 1

LD 1
21 column 1 |
| —— {
by column 2 {
L N |

v 1

6 | |
| |
% {
2%n| column n |
+ {
I !

The count specifies the number of halfwords of data to be
written on the sector, and-is followed by the halfwords
themnselves. Tf 1less than 642 bytes (321 halfwords) is
written, the remaining bytes on the sector are zeroed. An
Operation Complete interrupt occurs after the Write
operation is finished.

Finally, there are 2 TInitiate Read TIOCCs. The firs+ of
these is used to read all or part of a sector into memory.
Its format is:

Initiate Read IOCC (¥'1620")

¥ | L] L] 1
| memory address [|00010]11000100|sec|
i i

0 . 16 21 2931

The memory address points to a buffer (in the same format
as that for Initiate Write) which specifies a count of the
number of halfwwords to be read from the sector specified hy
the 3-bit number sec. BAn Operation Complete interrup+*
occurs after data transfer is complete.

The second of these, Initiate Read-Check, performs exactly
the same function as 1Initiate Read, except that no data is
stored in nmemory. Therefore, no data halfwords need
folllow the count in the buffer. A Read-Check is used *o
check the wvalidity of data written on the disk and should
follow every Write if maximum reliablilty is to be
maintained.

Initiate Read-Check IOCC (¥ '16A0")

-66=

Input/Output

r

| memory
L

Ll L} LB A
address (00010111010100 |sec|
A 1 AL

4

0

NOTE: If
I0CCs, un

9.4.3 USH

The forma

16 21 2931

a count of € is specified on any of the last 3
predictable results will occur.

FORMAT

t of the USH for the 1444 is as follows:

T T T T T L . T
\B 1COV//V /2N /77777777777 71SCLSC
1 A L L. K} 1 1 L]

: | | L

|E |OC|OB

L i 1

0 1 2

B:-
0C:
OB:
B:
CO:
SCs

3 4 S 6 7 8 13 14 15

Error. This bit can appear at Operation Complete
for the following reasons:
1) A data error occurred on an Initiate Read or
Read-Check.
2) More than 642 bytes (321 halfwords) were
specified by the- count field. 1A sector is the
maximum segment that can be transferred by 1
T0GC.
3) The carriage was moved to cylinder 0 or 202
by a Control IOCC, but the increment specified
still more movement. The <current D.S.C. 1444
controller circuitry goes berserk when +this
situation occurs.
Operation Complete. This bit will appear in the
USH after an Operation Complete interrupt.
Offline or Busy. This bit is on when the 1444
drive is powered down, not up to speed, or when
the unit is busy executing a previous IOCC.
Busy, This bit 1is on when the unit is busy
executing a previous IOCC. OB will also be on in
this case,
Carriage at 0. This bit is always down unless
the carriage is positioned over cylinder 0.
Sector Count. These 2 bits specify the sector
number (modulo 4) of +the next sector to pass
under the Read/Write Heads on the carriage., If a
program can be arranged to read/write either of
these sectors next, rotational delay will be
minimized.

.

Input/Output

9.5 _META_UA_CONTROL_PANEL (UNIT ADDPESS 00101)

9.5.1 DESCRIPTION

The Control Panel contains the switches, dials, and lights
necessary to operate and control the META 4R and the whole
BUGS system. In addition it 1is possible for a running
program to perform limited I/0 o the Panel.

9.5.2 SYSTEM CONTROL FUNCTTIONS

POWER ON (black): This key is pressed to initiate a
power-on sequence of the whole BUGS systen.

POWER OFF (red): The Power Off key 1is pushed +o

: initiate the power-off sequence of BUGS. The
1444 disk should be in SAFE state when this key
is pressed.

STOP: This button causes all processing to stop after

the completion of +the current instruction. The
META 4B is signalled to stop also,' but other
initiated I/0 operations are allowed to come to
completion. It is necessary for +the META U4A to
be in this "stopped" state 1if any Panel
manipulations are to be performed.
NOTE: If 5/360 1Initial Select interrupts are
disabled and the META 4A is online, the STOP
button is ignored. This is to prevent
Multiplexor Channel and CP crashes.

RESET: This button resets +the META 4A and all online
local I/0 units: in other words, the whole BUGS
system. All pending interrupts are cleared,
Parity Checks are corrected, and the systen is
placed in an initialized state. The contents of
the memory and registers after RESET are
unpredictable.

IPL: This button provides a means of initially
loading a program into memory and beginning
execution. Before initiating an IPL, BUGS should
be reset and the data switches set to specify
fron where the dinitial program should be
obtained: :

all off: bytes 2 through 641 of cylinder 0, sector "
on the 1444,

switch 0 wup: bytes 2 through 641 of cylinder 202,
sector 0 on the 1444,

-68-

Input/Output

switch 1 up: a variable number of bytes from the
S/360.

The IPL sequence involves lighting the IPL-ING light,
loading the initial program starting at location
0, and obtaining the initial MSR and PC from
locations 0 ¢through 3 to start execution. Once
the IPL is complete, the IPL-ING 1light 1is
extinguished, unless an error occurs. If the
light remains .on, IPL should be re-attempted.

IPL-ING 1light: This 1light 1is on during an TIPL
sequence, as described above.

CPU RUN light: This light is on when the META 4A CPU
is running. The CPU is considered to be running
at all times except during panel manipulations
performed after the STOP button is pressed.

WAIT light: This light is on when the META 4A CPU is
running but the MSR indicates wait state.

9.5.3 USER INTERVENTION FACILITIES

Whenever the BUGS system has entered "stopp2d" state due *o
the STOP button being pressed, the user may execute one or
more of the above control functions. In addition.the Panel
provides him with facilities to display and modify various
components of the META 4R, '

Displaying and Loading the MSR: The user can display
the current contents of +the MSR on the lower
lights by setting the REGISTER SELECT (RS) dial
to MSR and the MODE SELECT (MS) dial to DISPLAY.
Furthermore, by +turning the MS dial to LOAD, he
may modify these contents by setting the desired
halfword on the 16 data switches. The CLEAR
switch will at all times zero the contents of the

. register currently being loaded.

Displaying and Loading the PC: This operation is
cofipletely synonomous to that for the MSR, except
that the RS dial is set to the PC postion.

Displavying, and Modifying the Nex+t Sequential
Tnstruction (NSI): The NSI is the first halfword
of the instruction currently pointed to by the
PC. This halfword may be manipulated exactly as
the MSR and PC by setting the RS dial to NST.

Displaying and Modifying Memory: In order to select a
memory location for displaying or modification, a
special register, called the Display Counter, is
used. The RS dial has a COUNTER position, so
that this register «can be treated just as the
MSR, PC and NSI explained above. Following the

=B 0w

Input/Output

setting of the Display Counter to the desired
address, +the RS dial is +turned to MEMORY DATA,
and the halfword pointed to by the Display
Counter 1is shown on the 1lower lights, with *he
Display Counter itself on the uppers. The memory
halfword may <then be modified by the normal
procedure. If the START switch 1is depressed
during a memory display, the Display Counter is
incremented by 2 and the next halfword displayed.

Displaying and Modifying Registers: As you may have

gquessed, this operation is identical +o that for
memory, except +that +the RS dial is turned +*o
REGS. Only bit 12 through 15 of the Display
Counter are used to select the register.

Clearing Memory: A firmware memory clear may he

performed by setting the RS dial to MEMORY DATA,
the MS dial to LOAD, and depressing the IPI,
CLEAR, and START buttons simultaneously. Memory
is completely =zeroed in approximately one-half
second.

Starting the META 41 after Stopping: This 1is

accomplished by setting the MS dial to STEP, RUW
or INT RUN (described below), and pressing the
START switch. RUN causes normal CPU execution to
continue, while STEP causes "stopped" state to be
re-entered after . execution of for .debugging
system programs "interactively".

9.5.4 I/0 TO THE CONTROL PANEL

9.5.4.1_Panel IOCCs

The Panel is addressed by the wunit number 00101. 2
IOCCs are available to +the programmer - the first of
these is wused +to read the setting of the 16 data
switches:

- Read TIOCC (¥X'2A08")

| g —

nemory address [00101]01000001]///]
- L i 1L |]

0

The

16 21 2931

halfword switch setting is stored at the memory

~address specified.

-T70-

Input/Output

The other TIOCC is wused for setting the lights to a
certain value. This can be useful for operating systen
error halts or what have you. Its format is: Write TOCC
(Xx'28007")

1

ML | L] ¥ 1
| memory address 100101100000000¢ /LU
1 1 1 (]

L.

0 16 21 2931
The halfword at the memory address is set on the lower

lights if L is on, the wuppers if U 1is on, or bo*th if
both modifiers are set.

9:5.4.2 USH Format

The format of the USH for the Panel is:

L L] L] 1 T l“r LB Ll 1 L
VIRVIBIR N//V/ /NSNS I 77777777\ 7717/
0 1 2 3 & s 6 7 8 13 14 15

IR: This bit is set after a Panel interrupt caused
by running in INTerrupt RUN mode. This mode
of execution causes an interrupt after every
instruction.

IB: This bit will be set after a Panel interrupt

- caused by hitting the INTERRUPT button.

P: This bit is set after a Panel interrupt caused
by a Parity Check. The PAR STOP light is
automatically set by the firmware when this
check 1is detected, and an interrupt +then
occurs, unless disabled by the MSR.

9.6_META 4B (UNIT ADDRESS_00001)

i

9.6.1 DFSCRIPTION

The META 4B 1is the graphics processor of the BUGS
configuration - a CPU of the same power as the META 43,
but with target instructions oriented towards graphic data
manipulation and display. A conplete description can be
found in the META 4B Principles of Operation. This section

-71-

Input/Cutput

describes the 7I0CCs used in communication between the 2
processors. Tt should be realized that the META 4B can
perform equivalent operations (although they are programmed
differently), thus completing the communications link.

9.6.2 I/0 CONTROL COMMANDS

There are 3 IOCCs used to communicate with the META 4 B.
These I0CCs manipulate registers in a special
inter-processor interface, The Inter-Processor Interrupt
(IPI). The 1IPI is addressed as unit 00000 The first TIOCC
is a Write:

Write TOCC (¥'0930")

| B LI v L] 1
\ /7777777777777 1000011001001101///1
L %) i A |

4] 16 21 2931

This IOCC sends an interrupt request to the META UB.

The second IOCC 4is a Read, whose function is to allow the
META 4K to read back its own USH. TIts format is:

Read TOCC (¥'0208")

L]

LI L Ll 1
| memory address |00001101000001(///1
1 (1 1 i |

i
0 16 21 2931

-r

The USH is placed in the halfword at the memory address.

The final IOCC, a Control, is used by the META U4A to reset
bits in the B's USH:

Control IOCC (Y'04307")

[; X) : ! 1 q
[1111111111111111100001{10000100|///|
' ; N L i)

0 16 21 2931

This IOCC acknowledges an interrupt from the META UB.

T P

Input/Output

9.6.3 TYPICAL COMMUNTICATION SEQUENCE

Let us assume that the META 4B wants to interrupt the META
4UA. The following sequence of events might occur:

"META U4B: Initiates the equivalent of a Write %o se+*
its USH +*o the interrupt code and request an
interrupt at the 1. .

META UB: Goes into a loop reading its USH and testing
for 0 to wait for the A +to acknowledge the
interrupt.

META U4A: Receives the interrupt and so as to avoid a
continuous interrupt request, Controls the actual
META 4B USH (stored in the UCB upon interrupt) to
the B so as to clear its USH and the interrupt
request.

META U4RA: Branches off on the USH code to perform
requested function.

META U4B: Drops out of the read loop and continues
operation.

NOTE: The only way to clear an interrupt reques* is to
zero the META 4B's USH by a Control IOCC. Not even the R
can clear its request (by writing a USH of 0, for example).

9.7_COMMON_I/O_ CONTROL_COMMANDS

—e s =

9.7.1 NO OPERATION

The No Operation IOCC is <common to all T/0 units. Tt
performs no TI/0 a*t the wunit and therefore conmnpletes
immediately with Condition Code C2. It does, however, (as
do all SIO(R)/IOCC combinations) cause the post-SIO(R) USH
to be stored in the UCB, and can optionally be used to
clear a pending I/0 interrupt.

No Operation IOCC

\//7777777777777 71 %addr 111100011 | //C |
[[l [1 []

0 16 21 2931

If bit 31 (C) is on, and an interrupt from the addressed
unit has been requested but kept pending due to the MSR or

e

Input/Output

I/0 Mask, that interrupt request is cleared. This bit is
ignored when the MFTA 4B is addressed.

9.,7.2 INVALID I/0 CONTROL COMMANDS

TFf an TOCC with an invalid operation code is initiated,
unpredictable results will occur at the I/0 unit, along

with possible spurious I/0 irterrupts. Such operation
codes should therefore never be wused for any purposes
whatsoever.

-74-

X
ﬂﬁi“‘l o

ar e 9T

01,2,

10_APPENDIY_I: _OPFRATION PROGRAM_INTERRUPT_STOQRAGE_

As mentioned in Section 7, certain extra information is stored in
low core when an Operation Program interrupt occurs. This
information facilitates simulating extended machine instructiorns
in software. There are 5 halfwords of information stored in
memory locations 52 +through 5B; the exact nature of the
halfwords stored depends on the format of the invalid instruction
as shown in the following table:

LOCATION
52 54 56 58 52
FORMAT
RR First U*R1 U4*xp2
halfword of
instruction
RT " 4*R1S Operand 2
(immediate
data)
RS 1 4*R1 Operand 2
address
RY L L*R1 Operand 2
address
BY " *R1 Operand 2
(branch)
address
ST " Operand 1 Operand 2
address (immediate
data) in
locaton 51
(0 in 50)
FSS i Operand 1 Operand 2
address address
Vss " length Operand Operand 2
address address
NOTE: Blank entries in the table signify that the contents of

the location are undefined,

e

or too ridiculous to mention.

11_AP

o
=

NDIY ITI: OPERATION CODES_AND TIMINGS

11.1_OPERATION CODES_RND INSTRUCTION EYECUTION TIMES

Instruction

AHI

AL
ALT
ALR
AR
AY
BAL
BALR
BCO
BCOR
BCT
BCTR
BCZ
BCZR
BYH
BYLE

CH
CHT
CI
CL
CLB
CLBI
CLC

CLCL
CLH
CLI
CLR
CR
CVB

CvVD
DEQ

DH
Nt

Code

T4
FY
8u
BLU
7C
BC
312
34
24
A8
28
A7
27
AF
2F
A6
26
AQ
A1
70
F0
80
BO
7F
5F
8T
CF

DF
¥B
BF
3F
30
50

51
77
u8
¥7
B7

EFxecution Time (in migs.)

(assuming no overflow)

4,77 (average)

5.14 (average)

4.83

7.56 + 2.04N (N is the number of
characters comnpared)

7.83 + 2.04N

7= 14

3: 75

3.42

3.53

5.43 + 1,80N (N is the number of
characters converted)

17.75 (average)

12.75

7.08

16.71

12.09

=76~

DR
ENQ
ENT

LCR
LD
LDT
LDR
LT
LM

LMD
LN

LNR
Lp
LPR

LR
LSH
LY
LY¥B
LXBR
L7

MH
MI
MR
MVA
MVBI
MVC

MVCL

37
78
BE
54

22
c8

D8
58
20

73
5D
5A
UE
0E
53
B8
13
B3
93

91
4n

0D

4c

33
5B
23
ur
oF
58
76
F6
B6
36
62

8cC -

ol

DU

11. 34

9.24

23.88

5,01 + normal time of subiject
instruction (R1=0)

5.10 + normal time of subject
instruction (R1#0)

7.11 + 2,04L (L is the number of
bytes specified by the length
field.)

7.38 + 2,041

4,71

3.45 (average = one register
0)

by 32

4.29

4,41

4,92

3.63

4.92

4,03

3.63

3.24

5.64 + 1,02R (R is the number of
registers specified)

5.85 + 1.02R

4.44 (if already negative)
4.62 (if positive)

3w 15

3.33

4,56

5.00

3.27

34 15

2.91

4,80

3.09

4,41

3.2

54 25

10.77

13+ 22

9.81

9.36

7.06

5.61 @
7.32 +/1.08L (both addresses

even)
7.23 +\3.06L (otherwise)
7.59 + 1.08L

T

MVCY

MVCNL

MVH
MVHI

NBT
NC
NCL
NT
NR

0BT
oc
OCL
oT
OR
POPH

POPHL
POPHM

PSHH
PSHHL
PSHM
RET

Sh
SD
SH
SHI
ST
SIO
STIDOR
SL
SLA

SLAT
SLDA
SLDAI
SLDL
SLDLT
SLE

SLEL
SLT

C5

D5

F3
83
79
89
co
D9
B9
39
77
8a
CA
DA
BA
32
c7

D7
97

G
D6
96
CB
i
5¢C
17
FS
85
B5
56
16
D
2c

1c
9F
1E
9a
11
co

DO
BD

7.50 + 3.061L
7.53 + 1,08L
address2 and hoth even)

74 80
7.80
8.07
7.41
5437
4.890
6.24
T+ 11
Ta38
372
3439
4,89
B33
T+11
7.38
3.84
5581
9.03

+
+
+

+
+

+
+

+

3.06L
1.08L
3.06L

(address1 <

(otherwise)

(average)

3.06L
3IO6L

3.06L
3 I06TJ

1.08L

(L is the number of

by+tes specified by the length

fiela

)

9.30 + 1.08L
7.53 # 1.02R
registers specified)
9.51 + 1.08L
9.78 + 1.08L
7.35 + 1,14FR

21.99
4.72
4.50
8.70
T4 71
5.58
3. 75
10,7
8.5
4,86
6412

+

(R is the number of

(approximate average)

.30B

(B is the number of

bit positions specified)

5.10
T« 12
5.40
6.93
581
T+29

+

+ + 4+ + +

.30B
. 30B
.30RB
.30B
.3CB
1.02%

(N is the number of

bytes searched in the first
operand)
7.56 + 1.02N

3.9

-78

-

SLL
SLLT
SLNE
SLNFL
SLER
SR
SRA
SRATI
SRCH
SRDA
SRDAY
SRDL
SRDLT
SRE
SREL
SRL
SRLT
SENE
SRNEL
58

ST
STB
STD
STDI
STDR
STL
STLL
STM
STMD
STR
STRL
sSVC

SVCD
SVCs
Swp
SWPPR
SY
TBM
TBMR
TBNHM
TBNMR
TBNP
TBNPR
TBNZ
TBNZR
TBP
TBPR
TBZ

98
18
C2
n2
3D
35
9D
1D
F9
9F
1F
9B
1B
Cc1
D1
99
19
c3
D3
55
72
59
52
B1
12
CC
bC
92
90
CD
DD
N

F1
81
18
38
25
AC
2C
AB
2B
AE
2
AD
2D
A9
25
AR

6.63 + .30B
5.01 + ,30B
7.29 + 1.02N
7.56 + 1.02N
3.57
3.42
6.63 + .21B
5.01 + .21B
9.75 + 1.25N (see later rote)
6.84 + .21B
5.22 + .21B
6.75% + .21B
5.13 + .21B
7.20 + 1,02VW
7.47 + 1.02N
6.54 + .21B
4,92 + ,21B
7.20 + 1.02W
T.47 + 1.02N
5.16
5.u4n
5.37
4.4
u.08
7.29 + 2.0u4N
7.56 + 2.CuN
5.70 + 1.14R
5.91 + 1.14R
7.20 + 2,04N
T7.47 + 2.04N

8.70 (This reflects the time
until the first instruction of
the SVC interrupt handler is
fetched.)

12.33

10.11

5.16

3,863

3 54

3.63

3.30

3.63

3. 30

3.63

3.30

3:63

3,30

3.63

3.30

3.63

] i

TBZR 27 3.30

TMBI 82 4,83 (average)
TMT B2 3.75

TMR 32 3.42

TR CE 7.02 + 3,18L
TRB 62

TRL DE 7.29 + 3.18L
TSL 87 5.94

X 1B 4.80

YBI 8R 6.42

ZC CB 7.11 + 3.06L
YCL DB 7.38 + 3.06L
XI BB 3.804

¥R 3B 3.51

The +imes shown reflect instruction fetching and parsing as
well as individual execution time. For instructions like ST,
which perform a memory operatior late in the executior
routine, the +*ime shown includes the full memory cycle.

A non-0 base register is assumed wherever appropriate. Deduct
.09 microseconds for each N base register. For RY anrd BY
instructions, a 0 index register is assumed. Addq4 .42
microseconds for each non-0 RY index and .39 microseconds for
each non-? BY index. For branches, *he +*ime shown is the
average for a successful and an unsuccessful branch. The
execution time for any instruction may be lengthened if a
cycle-stealing I/0 operation is in progress.

For SRCH, N is the number of memory reads that must be
performed during searching. This is defined as follows:
There 1is one memory read for each forward pointer fe*ched.
For a TM search, there is one memory read for fetching the key
in each entry. The argument is not refetched each time. For
each entry in a CLC search, the arqument and the key are each
fetched one byte at a time until the strings are discovered to
be unequal, or the key length is exhausted. One memory read
is required for each byte fetched.

11.2_OTHER_TIMINGS

A local I/0 interrupt takes 9.60 microseconds Dbetween
detection and the fetch of the first instruction of the I/0
interrupt handler. 2 disabled local T/0 interrupt adds .51
microseconds to each instruction.

-80-

An Operation Program interrupt takes 11.58 nmicroseconds
between the end of its parsing and the fetch of the first
instruction of the Program interrupt handler. An invalid unit
address or UCB address interrupt takes 6.48 microseconds
betwaen detection and the fetch of the first instruction of
the Program interrupt:'handler. Any other program interrupt
takes 6.18 microseconds after detection.

The times for instruction fetch and parsing alone are:

RR 2.61
RI 2.94
RX 3.90
RS 4,32
ST 3.93
BY 3. 15
FSS 6.06
vss 6.69
Long

VsSsS 6.96

The assumptions made in earlier timing figures concerning base
and index registers also apply here.

To =zero one oOr more registers, a sequence of ins*ructions
like:

LY R3,0
LR RU,R3
LR R5,R3

should be used. Do not use a sequence of SRs.
For SRCH, note that a TM is significantly faster than a CLC.

Logical compares are faster than corresponding arithmetic
compares and thus should be used to test for equality whenever

BT

it is not important to distinguish between arithmetically
greater and arithmetically less.

For loading a constant into a register, mnote that L¥ < LT <<
LA.

For adding a constant to a register, note that AY < AT < ALT <
LA. Arithmetic adds and subtracts are faster than logical
adds and subtracts.

Remember that LDR and STDR take less core and less time than L
and ST and +thus should be used whenever the address of the
operand is in a register. 1DI and STDI are also faster than L
and ST and can be used whenever indexing is not required.
However, they are less easily relocatable than L and ST.

To determine if an area of core contains all zeroes, do rot
use an NC or OC. Use SRNE to an ¥'00' and then check the
Condition Code.

Wherever it is certain than two string will not overlap, use
MVC instead of MVCN. Not only is setup time faster, but there
is a greater chance that the string will be moved a halfword
at a time.

Doing a LI into the PC is the fastest way of executing an
unconditional branch.

i

12_APPENDIX IV:

LAYOUT OF LOWER_MEMORY

The following is a map of the various firmware-defined locations
in lower memory:
Location Contents
0 IPL new MSR
2 IPL new PC
i SVC old MSR
6 SVC old PC
8 : SVC interrupt code
A SVC new MSR
c SVC new PC
E Program interrupt old MSR
10 Program interrupt old PC
12 Program interrupt code
14 _Program interrupt new MSR
16 Program interrupt new PC
18 I/0 interrupt old MSR
1A I/0 interrup+ old PC
1C I/0 interrupt code
1E I/0 interrupt new MSR
20 TI/0 interrupt new PC
22 . S/360 interrupt old MSR
24 S/360 interrupt old PC
26 S/360 interrupt code
28 S/360 interrupt new MSR
21 S/360 interrupt new PC
2C-2D reserved for use by firmware
2E I/0 interrupt mask
30 Interval Timer UCB address
32 META 4B UCB address
34 1444 Disk Storage Unit UCB address
36
38 3461 Card Reader UCB address
3A Control Panel UCB address
3C 4132 Keyboard/Typewriter UCB address
3E-44
46 S/360 device 050 UCB ADDRESS

-83-

48 S/360 device 051 UCB address

4An 5/360 device 052 UCB address

uc S/360 device 053 UCB address

UE

50 Interval Timer

52-5B Program interrupt scan-out area - 5 halfwords

-8~

Acknowledgements

We would like to thank the following people for their help in

designing and implementing the META UA:

Wolfgang W. Millbrandt

(We are pleased to Mr.) Robert G. Munck
William B. Rothman

George M, Stabler

John E. Stockenberg

Richard C. Waters

And a special thanks to all those dear friends in Holland,
without whom register 0 would have been fixed at 0.

Paul Constantine Anagnostopoulos
Gary Howard Sockut

e G

