
• 

r---+----, 
1 BUG S 1 
L ___ + __ ~ 

This publication is one of the machine reference manuals for the 
Brown University Graphics System (BUGS). The META 4Ais the 
general-purpose processor component of BUGS. Readers are assumed 
to have a knowledge of the principles of operation of the IBM 
System/360. 1 

April 7, 1975 

--------
lThe research for this project was done under a grant from the 
National Science Foundation (GJ-28401X) and a contract from the 
Office of Naval Research (n00014-67-A-0191-0023). Reproduction 
in whole or in part is permitted for any purpose of the united 
States Government. 



I 

1 Information .. . .... . 
1. 1 Formats Operand. 
1.2 Addressing. 
1.3 Arithmetic. 

• • • 

· . • · . • •• · . . .. • 

2 Central 
2. 1 

processing Unit 
Registers ...•.....•. 

(CPU) 

3 

2.2 Instruction Formats. 
2.2.1 RI Format .•... • . . 
2.2.2 Address Generation 
2.2.3 BX Format . ........ • 
2.2.4 FSS 
2.2.5 VSS 

(SVCD) 
length 

Program 
Machine 

Field . 
Field. 

2 . 3 
2.4 

Counter (PC) 
Status Register 

Arithmetic Instructions . 
Load Instructions • ••• •• 
Add Instructions • •• •••• 

• 

(MSR) 

• 

• • 
• 

• 

• 

• 
3. 1 
3 . 2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 

Subtract Instructions •• 
Arithmetic Compare Instructions. 
Multiply Instructions •• 
Divide Instructions •• 
Convert Instructions. 
Store Instructions • •• • • 

3.9 Move Halfword Instructions . 

• .. 

• 

• 

• 

• 

~ . 10 Swap Instructions •••..•••• •• 
3 . 11 Arithmetic Shift Instructions. 

4 Logica l Instructions. . · . 
4.1 Move Instructions. • • 
4.2 Logical Compare Instructions. 
4.3 And Instructions. 
4.4 Or Instructions •• • •• 

· . .. · ... · .... 
4.5 Exclusive Or Instructions • • 
4. 6 Test Under Mask Instructions. 
4.7 Byte Instructions • •• ••••••••• 

• 

· . 
4.8 Address Manipulation Instructions. 
4.9 Translate and Scan Instructions. 
4.10 Logical Shift Instructions • • 
4.11 Stack Instructions ........ 
4.12 Linked List Instructions. 

• 

• • 
• • • • • 

• 
• • 

• 

• • 

• 
• 

• • • 

• 
• • • 

• • 
• • 

• • 
• • • •• • 

• •• 
• 

• • 
• • • • 

.. . 
· . · . 

• 

• 

• 
• • 

• •• 

• 

• 

• • 
• 

• •• 

• 
• •• 

. . 
• 

• • 
• 
• 

• 

• 

• 

1 
1 
1 
1 

2 
2 
2 
3 

.4 
4 
4 

.4 
5 

• 5 

.7 

.7 
10 
12 
14 
15 
16 
17 
18 
19 

.19 

.20 

.23 

.23 

.23 

.25 

. 26 

.27 
..28 

.28 

.30 

.30 

.32 

.34 

.35 

5 Branching Instructions . . . . . . . ................................ .39 

6 status-Switching Instructions. ............................... . 44 

-i-



7 Interrupts ••...••...••• . .. . .. . .. .. .. .. . . .. .. . . .. .. .. .. . . . .. .. .. . . . . .. .. .. . .. .. .. .. 

Input/Ouput Operations. 
I/O Units •••••• 

Local Units ••• 
8.1.2 The S/360 ••• 

8 
8.1 

8. 1. 1 

8.2 control of Local Units. 
8.2.1 Unit Informa~ion. 
8.2.2 Starting I/O .• 

8.3 I/O Interrupts .••• 
8.4 I/O to the S/360. 

•. 
••• 

8.4.1 General Information. 
8.4.2 S/360 Interface Addresses. 
8.4.3 S/360 UCB Format ••.• 

• • 

• 

• • 

8.4.4 Firmware Operations. 
8.4.4.1 Initial Status Presentation. 
8.4.4.2 Data Transfer .•....•......• 
8.4.4.3 Ending Status Presentation. 
8.4.4.4 System or Selective Reset. 

8.4.5 S/360 Instructions .••• • .••••• 

• 

• 

• 

9 Local I/O unit Descriptions .....•••..•.. 
9.1 3461 
9. 1. 1 
9.1 .2 
9. 1. 3 

Card Reader (unit address 00100) 
Oeser i ption .................. .. 
I/O Control Commands. • 
USH Format ••..•..•... 

• • 

9.2 Terminal 
9.2. 1 

Interface (unit 
Description ••••• 
Con·trol Commands. 

address 00110) 

9.2.2 
9.2.3 USH Format . ......... .. 

• 

. • 
• 

9.3 /360 Terminal Interface (unit address 00011) • 
9.3.1 Description ................. .. 

9.4 Model 1444 Disk Storage Unit 
9.4.1 Description ...•..••.. 
9.4.1.1 Storage Capacity •.••••• 
9.4.1.2 Data Organization •••••• 

9.4.2 1444 I/O Control Commands. 
9.4.3 USH Format ........ . ............ 

(uni t 

9.5 META 4A Control Panel (unit address 
Description ..........•....... 9.5. 1 

9.5.2 
9.5.3 
9.5.4 I/O 

System Control Functions ••••• 
User Intervention Facilities. 

to the Control Panel. 
Panel I aces .. .................. .. 9.5.4.1 

9.5.4.2 USH Format ....................... .. 
9.6 META 4B (unit address 00001) •• 
9.6.1 Description •............. 
9.6.2 I/O Control Commands ••• ,. 
9.6.3 Typical Communication Sequence. 

9.7 Common I/O Control Commands. 
9.7.1 No Operation ........................ .. • 

-ii-

• 

.. .. .. .. .. • • 
address 00010). 

• 
• • 

• 
• 

00101) 
• 

• 
• 
• 

• 
• • • 

• 
• • 

• • • 
• • •• 

• • •• 
• 

• 

.. 

• • 

• • 

•• 47 

.49 

.49 

.49 

.49 

.49 

. 49 

.50 

.52 

.52 

.52 

.53 

.53 

.55 
..55 

.56 

.56 

.56 

.57 

.59 

.59 

.59 

.59 

.60 

.61 

.61 

.61 

.62 

.63 

.63 

.64 

.64 

.64 

.64 

.65 

.67 

.68 

.68 

.68 

.69 

.70 

.70 

.71 

.71 

.71 

.72 

.73 

.73 

.73 



9.7.2 Invalid I/O Control Commands ......••..•....••.•......••• 74 

10 Appendix I: Operation Program interrupt storage ••••••••.••. 75 

11 Appen"dix II: Operation Codes and Timings ••••••••••••••••••.• 76 
11.1 Operation Codes and Instruction Fxecution times •••••.•••• 76 
11.2 Other Timings ...•..•.•...•.••...........•...•...•..•....•. 80 
11.3 Comments and proqramming Hints ..........••..•...•.•....••. 81 

12 Appendix IV: Layout of Lower Memory ...............••..•...•. 83 

-iii-



Information on the META 4A is stored in main memory in 8-bit 
units, called "bytes", as in the 5/360. Bytes may be handled 
separately or grouped together in fields. The most common 
field consists of 2 bytes, and is sometimes called a 
"halfword"; these halfwords are the basic building block of 
CPO instructions and also the size of the fixed-point 2's 
complement numbers operated upon by arithmetic instructions. 
These instructions require thehalfwords to be located on an 
even byte boundary. Other instructions operate upon variable 
length fields of bytes, called "character strings". These 
character strings may be located anywhere in memory and may be 
of any length. 

Bytes in main storage are addressed consecutively from O. The 
META 4A uses a 16-bit address, allowing for a maximum of 64K 
bytes. CftFFcfttly we have oRl, 32K, and add~eGge3 wLap from 

"X'7FFF' te 9. A field of bytes (1 or more) is usually 
addressed by its leftmost byte. 

All arithmetic on the META 4A is performed on 16-bit 2's 
complement binary numbers using 2's complement arithmetic. 
Any overflow that occurs is ignored in some operations (such 
as address co~putation), but causes program action in certain 
others (such as the Add instructions). 

-1-



Instructions can address information in 16 registers, 3 of 
which serve special purposes. Registers have a capacity of 1 
halfword and are addressed by a 4-bit number from 0 to 15. 
Register 0 is called the Machine Status Register (MSR), 
register 1 is the Program Cou nter (PC), and register 15 is the 
stack Frame Pointer (SFPI. These will be explained later. 

2.2 INSTRUCTION FORMATS 
-------~---------------

The META 4A has 8 instruction 
mnemonics RR, RI, RS, RX, BX, SI, 
are as follows: 

Register-Register (RR) 
R1,R2 

r-'--------r, ~~, 

1 OP 1 R1 1 R2 I 
L-~_,~, __ ~I-__ -L ____ J 

o 8 12 15 

Register-Immediate (RI) 
R1S,R1F,I2 

formats, denoted by the 
FSS, and VSS. The formats 

,.- , ; t ,---------- ----- , 
1 OP IRIS IR1F I 12 I 
L-_ _ _ ~L--- ~ __ ~ J 

o 8 12 16 

Register-Storage (RS) 
R1,R3,D2(B2) 

31 

r---------~i----T----~__r---- -----, 
OP 1 R1 I R3 t B2 1 D2 , I 

L-_____ L-_~--~--L J 

o e 12 16 20 31 

- 2-



Reqister-indeXed storage (RX) 
R 1 ,02 (X 2, B 2) 

r------ i .----~~--------------, 
1 OP 1 R 1 1 X2 1 B2 , 02 1 
L-_______ L--_-L __ --L---~ 

o 12 16 20 

Branch indeXed (BX) 
R1,02 (X2) 

f" 'i ~_r__-------------, 
1 OP ,R1, X2 02 1 
L-________ L-__ ~~ ___ L__~ J 

o 8 12 16 31 

storage-Immediate (SI) 
01 (B1) ,12 

r--------r-----~T----r--------------, 
1 OP 1 12 1 B 1 1 01 
L-_______ L--_______ i-_~-L--------------J 

o 8 16 20 31 

Fixed Storage-Storage (FSS) 
01 (B1) ,02 (B2) 

r- ~--r-------------~~~--------------' 
1 OP (SVCO) 1 B 1 1 01 1 B21 02 1 
L-______ ~~--. __ --__ .-~_--L----__ ,~,.-----

o 8 16 20 

variable storage-Storage (VSS) 
01 (L, B1), 0.2 (B2) 

r--------r- ----TI-·-~----·-·~·------
1 OP 1 L ,B1, 01 
L-___ . ____ ~ _______ . __ L-_ __L 

o 8 16 20 

..L-----L ___ -.,.. __ J 

32 36 

~--T--~----------' 
1 B2 , 02 

_~__.L _______ -.I 

32 36 

The various instruction formats and fields will be referred to 
by the above mnemonics. 

2.2.1 RI FORMAT 

Most RI format instru~tions are 3-address; whenever the 
first operand must be fetched, it is fetched from the R1F 
register. Whenever it must be stored, it is stored into 

-3-



the R1S register. cer~ain instructions perform only R1 
fetches (Le., TMI, STDI, CLI, and CI), thus ignoring the 
R1S field, while LI and LDI perform only a store and ignore 
the R1F field. Both registers will be referred to as 
Operand 1. Operand 2 is always the 16·bit immediate 
halfword. 

2.2.2 ~DDRESS GENER~TION 

Operand addresses are generated for all instructions except 
those in BY. format by taking the contents of the base 
register (B1/B2) and the displacement lD1/D2) (expanded to 
16 bits by adding 4 high·order O's) and performing 2's 
complement addition on them. Furthermore, in the case of 
the RY. format, the contents of the index register (X2) is 
also added in. The resulting sum is the address of the 
operand. If a base and/or index register of 0 is specified 
in a~ instruction, the contents of the MSR is nQi used in 
the address computation, but rather a 0 is added. 

2.2.3 BY. FORM~T 

The branch address in a BY. format instruction is obtained 
by adding the signed immediate Displacement to the contents 
of the Program Counter (the next instruction address). 
Optionally on all intructions except BXH and BY.LE, the 
contents of the X2 register is added in as an index, unless 
the X2 field is zero (as in RX format). 

2.2.4 FSS (SVCD) F!ELD 

This field is ignored except in the SVCD instruction. 

2.2.5 VSS LENGTH FIELD 

The VSS format is used to operate upon character strings. 
The "length" field in the instruction specifies the length 
of the strings. .Each VSS instruction ha~ 2 operation 
codes, 1 allowing the length to be specified immediately as 



/ 

I 

a number from 0 to 255 (sc_t ,u!!l length, unlike the S/360). 
The other ignores bits (~7rthrough 11 and uses bits 12 
through 15 as the num~~ of a register containing the 
length, and will have the same mnemonic as the immediate 
type with an appended "L", for "Long". Thus, any length 
character string can be operated upon with only 1 
instruction. 

The PC (register 1) is the Program Counter (or instruction 
address register) ' for the META 4A. It is incremented by 2, 
during instructiori fetching, for each halfword of the 
instruction fetched. During parsing and execution, it will 
contain the address of the next sequential instruction. It 
may be operated upon, in all respects, just as any of the 
other registers, although the effects upon program execution 
sh ou I d be 0 bv i ous. ~--t.h.e--fHH'1les~e-j<-f-e+~-4n-~Ue-M-o. , 
-54 '\-5-Q-J;......t..h.e- P- i-s- a-Jcw-a-y- i--g-n-0-~s,s.u..me-d-t: ' tJe-tT. 

The MSR, register 0, contains the information required for 
ptoper program control and execution. It format is: 

~ too-, b b<- 1'\.,,",') fo}-b ~ W 

I CO~1 C 2 "j";-rr~-;-;-I;;Io';-TEl(6i~1 IS J;, 
L-_ • ; I .L.--L_.L.--L--1. "'::::-L_.L-_J 

o 3" 6 7 B 9 1 0 II 11. 13 1" 1 5 

e !~ COC1C2: This is the 3-bit Condition Code, which is set 
bV various instructions. The 3 bits will be referred to as ca, 
C1, and C2. An instruction may affect none, some, or all of 
these bits. 

F: 
it can 
Section 

This bit is undefined but may be used as a flag since 
be tested by the Branch Condition instructions (see 

5) • 

'-1 > ILC: These 2 bits are significant only when the r1SR is 
stored after an SVC or Program interrupt (see section 7), when 
the V will specify the length, in halfwords, of the instruction 
that caused the interrupt. The ILC will never be set to ~. 

-5-



b W: This bit, when on, specifies that the META 4A is to 
be kept in wait state until the occurrence of some sort of I/O 
or S/360 interrupt. 

PR: This bit is the Privilege bit, which must be on to 
perform an I/O or 5/360 instruction. If this convention is 
violated, a Privilege Program interrupt will occur. See 
Section 8 for a more detailed explanation. 

0: This is the Overflow interrupt mask. ~hen off, 
arithmetic and conversion overflows on those instructidns for 
which they are significant merely set the Condition Code. 
When on, they also cause a Proqram interrupt and the contents 
of the operand which was to receive the result remains 
unchanqed. 

9 S: This is the Stack Overflow/Underflow interrupt mask. 
When off, stack overflow or underflow merely sets the 
Condition Code. When on, either of these 2 conditions also 
causes a Program interrupt. 

\'1 I/O: This bit controls the ability of local I/O units ':0 
cause an I/O interrupt. If off, these ~nits cannot interrupt 
the cPU, and the interrupt request remains pending. 

l ~ IS: This bit controls S/360 Initial Select interrupts. 
If 1, an initial selection causes an immediate interrupt. If 
0, the interrupt is held pending. 

IS P: This bit controls ~arity Check interrupts. When on, 
Parity Checks cause an I/O interrupt. When off, the interrupt 
is kept pendinq. 

-6-



Arithmetic Instructions 

LOAD 

The description of each instructi.on i.ncllldes a list of possible 
Program inte~rupts that can occur. These interrupts are 
e~~lained in Section 7. 

Loa d Register 
J.R R1,R2 
r------~---_r----, 

, 33 ~ R1 , R2 , 
L-~--.1..--~ __ .J 

o e 12 15 

Load heY. digit 
LX P1,R2 
r-------~---_r~, 

, 23 ,R 1 , R2 , 
L-_______ L- -L ____ J 

o 8 12 15 

Load Deferred Register 
LDR R1,R2 
r--------r----r----, 
, 13 ,R1, R2 1 
L-~ ___ "'--- 1 J 

o 8 12 15 

Load Immediate 
LI R1S,R1F,I2 
~------~--~~~-----------------, 
1 B 3 , R 1 S ~'1 F' , 12 , 
l.-_____ L-_~--"'--------__ __J 

o 8 12 16 31 

Load Deferred Immediate 
LDI R1S,R1F,I2 
r--------T----~~--~---------------__, 
, B 8 I R 1 S ' .:!8:R~1 12 / I 
L _____ .... ~ _ _.L~~_ J 

o 8 12 16 31 

-7-



Arithmetic Instructions 

LOAD 

Load 
L R1',D2(X2,B2) 
r-------~r----i ~__r--------------, 

73 I R1 I X2 I B2 I P2 I L-______ ~_-L, ___ ,-L-__ _L __________ ~-__ J 

o e 12 16 20 31 

. Loa d Deferred 
LD R1,D2 (X2,B2 ) 

r--------T----T----~-_T--------------, 
I 53 I R1 I X2 I B2 I D2 
L 

o 
____ ~ __ _L ____ L__~ ___________ ---J 

e 12 16 20 31 

Load Signed Byt.e 
LSB R1,D.2 (X2,B2) 
r--------r----r ~-__r~----------, 

5B I R1 I X2 I B2 I D2 L. ____ ---L ___ -L ___ -L--_~ ____ - ______ . ___ J 

o 8 12 16 20 31 

The second operand is placed in the first operand location. 
The second operand for LX is the R2 field expanded with 0's ~o 
16 bits, while the second operand for LDR is the halfwor~ 
pointed to by the contents of R2. The LDI instruction uses the 
immediate halfword operand as the address of the halfword to 
load. LD adds an e xtra level of indirectness by using the 
second operand as an address to pick up still another 
halfword. LSB loads a byte, propagating its sign through bits 
o to 7 of the register. Alignment interrupt.s can occur for L, 
LD, LDR, LZ, and LDI. 

Load and Zero 
LZ R1,D2(X2,B2) 
r-------~ , ~~--------------, 
I 5E I R 1 I X 2, I B 2 I D 2 L-________ L-_--L ___ -L-__ -4 ______________ J 

o 

The second 
load, the 
occur. 

e 12 16 20 31 

operand halfword is placed in R1. Following this 
halfword is zeroed. An Alignment interrupt can 

-8~ 



\ 

Arithmetic Instructions 

Load Complement Register 
LCR R1,R2 
r--------T----r----' 
I OE I R 1 I R2 I 
'--___ L-_-.L_J 

o • 12 15 

Load Complement 
LC R1,D2(X2,B2) 
r----- " , ~-__r----------, 

4E I R1 I ~2 I B2 I D2 I L--____ ~ __ ~ ____ ~ __ -L ______________ J 

o • 12 16 20 31 

The 2's . complement of the second operand is placed in th~ 
first eperand locatfon. C1 is set if overflow occurs, or reset 
otherwise. Arithmetic Overflow and Alignment (LC only) 
interrupts can occur. 

Load positive Register 
LPF F1,R2 
r- ~ ,-, 
I OC I Rl I R2 I 
L-_______ L-__ -L ____ J 

o • 12 15 

Load positive 
LP R1,D2 (Y.2, B2) 
r--------T----r----~--~--------------, 

I 4C I R1 I X2 I B2 I 62 I L-_______ L- -L ____ L-__ -L ______________ J 

o • 12 16 20 3{ 

The absolute value of 
first operand location. 
otherwise. Arithmetic 
interrupts can occur. 

Load Negative Register 
LNR . R1,R2 
r-----r- , , 
I OD I R1 I R2 I 
L ________ ~~-i----~ 

o • 12 15 

the second operand is placed in the 
C1 is set if overflow occurs, or reset 

Overflow and Alignment (LP only) 

-9~ 



Arithmetic Instructions 

ADD 

Load Negative 
LN R1,D2 (Y.2, B2) 
r-----~i , ~--~ -----, 

4 D ,R 1 , y. 2 , B2 , D2 
~ ______ L--__ I 4-__ -L _____________ J 

o e 12 16 20 31 

The 2's complement of the absolute value of the second operand 
is placed in the first operand location. An Alignment 
interrupt can occur for LN. 

Load Multiple 
LM R1,R3,D2(B2) 
r-------~~--T,---~--- -----, 
, 93 ,R 1 , R 3 , B2 , D2 , 
L-______ L----L ___ ~_-L ____________ J 

o e 12 16 

Load Multiple Deferred 
LMD R1,R3,D2(B2) 

20 31 

r-~---~- ,. ~----r-----------, 

91 ,R1, R3 , B2 , D2 
L~___ ~I_,~.~L-___ ~--L _________ J 

o 8 12 16 20 31 

The set of registers from R1 to R3 (wrapping from register 15 
to the MSR if necessary) is loaded from consecutive halfwords 
at the second operand address (LM) or at the address specified 
by the second operand half word (LMD). If R1 specifies the MSP, 
no IIO or S/36~ interrupts can occur after execution. An 
Alignment interrupt can occur. 

3.2 ADD INSTRUCTIONS 
-------------------~ 

Add Registers 
AR R1,R2 
,.-~-~~~, 

, 34 ,R1, R2 , 
L-~ _____ ~. -L __ J 

o 8 12 15 

-10-



Arithmetic 1nstcuctions 

Add heX digit 
AX R1,R2 
r--------.- , , 
I 24 I R1 I R2 I 
'--_ ' -L_J 

o 8 12 15 

Add Immediate 
AI R1S,R1F,I2 
r--------~~~----T-------------------, 
I B4 IRIS IR1F I 12 I 

o 

Add 
A 

L-. 

o 

8 12 16 

R1, D2 (X2, B'2) 
i -, ~~--------

I R1 I X2 I B2 I D2 

8 12 16 20 

Add to Halfword Immediate 
AHI D1(B1),I2 

31 

-, 
I 

31 

r--------~--~, -----~__T--------------, 
84 I2 I B1 I D1 

L--___ L_ 
-L ______________ J 

o 8 16 20 31 

Add Halfwords 
AH D1(B1),D2(B2) 

ADD 

r--------~------~--~--------------r_---T-------------_, 
I F 4 I 0 I B 1 I D 1 I B2 I D2 I 
L--~ __ __L _________ ~_~ ___ ------__ - __ L_ __ _L __ ~--------J 

o e 1 .6 20 32 36 _7 

The second operand is added using 2's complement arithmetic to 
the first operand, and the sum is put in the first operand 
location. The second operand for AX is the R2 field treated 
as a 4-bit number from 0 to 15. For AHI, the second operand is 
the immediate byte extended with 8 high-order O's. C1 is set 
to the overflow conaitipn resulting from the addition. 
Arithmetic Overflow and Alignment (except for AR, AX, and AI) 
interrupts can occur. 

-11-



Arithmetic Instructions 

subtract 

Add Logical Registers 
ALR R1,R2 
r--------~.~~·~·-·Ti-----' 
I 3e I R1 1 R2 I 
L- • I -' 

o e 12 15 

Add Logical Immediate 
ALI R1S,R1F,I2 
r--------<~ir---~i-----~ ---------, 
I Be I RIS I R1r I !2 I 
L ________ ~i ____ ~\~---L---_r ______ . ____ J 

o 8 12 16 3 1 

Add Logical 
AL R1,D2(X2,B2 ) 
r-----' " T--~------------, 

I 7e I R 1 IX2 I B2 I D2 
L ________ .-L ____ ~ ___ . L-_--L ______________ J 

o 8 12 16 2 0 3 1 

The second operand 
result is placed in 
the resulting carry 
At. 

Subtract Registers 
SR R1,R2 
r---~~-, 

I 35 I R 1 1 R2 I 
L 

o 
____ ~i~. __ -L ____ J 

B 12 15 

Subtract heX digit 
SY. R1,R2 
r i , 
I 25 I R1 R2 ~ 
L---.- J 

0 e 12 1 5 

is 
t he 
out. 

logical l y added to the first, and the 
first oper and location . e1 is set to 

An Alignment inter rupt can occur for 

-12-



Arithmetic Instructions 

Subtrac~ 

subtract Immediate 
SI R1S,R1F,I2 

~--------~--~----~----~-----------, 
85 IRIS IR1P 12 

L ________ L--- L-- ________ ---~--J 
o 8 12 16 31 

Subtract 
S R1,02(Y.2,B2 ) 

t i , ~----r--------------' 

75 I R 1 I y. 2 I B2 I 02 I L ________ L----L ___ -L--_~ ______________ J 

o 8 12 16 20 31 

Subtract -from 8alfword Immediate 
S8I 01(B1),I2 
r -~--~,~----------, 

I 85 t2 B 1 01 
'-----

L---____ ~,L__--L ______________ J 

o 8 16 20 31 

Subtract 8alfwords 
S8 01 (B1) ,02 (B2) 
r-- -~--~-----T_--_r .----T------~~~_, 

I F5 (I I B 1 I 01 I B2 I 02 I 
L _________ L _______ L-__ -L ______________ L----L--------------J 

o 8 _ 16 20 32 36 

The second operand is subtracted from the first, and the 
result replaces the first operand. The SX second operand is 
the R2 field treated as a 4-bit number from 0 to 15. For 581 , 
the second operand is the immediate byte extended with 9 
high-order O's. C1 is set to the overflow condition resulting 
from the subtraction. Arithmetic Overflow and Alignment 
(except for SR, SY., and SI) interrupts can occur. 

Subtract Logical Registers 
SLR R1,R2 
r-- I , , 

I 3D I R1 I R2 I 

o 8 12 15 

-13-



Arithmetic Instructions 

COMPARE 

Subtrace Logical Immediate 
SLI R1S,R1F,I2 
r 
I BD 

I -r--r__ 
IRIS IR1F I 

L-___ L-.--L_L-__ _ 

o 8 12 16 

Subtract Logical 
SL R1,D2(X2,B2) 
r------~--T----TI--T 

I 7D I R1 I X2 I B2 

12 

D2 

, 
I 
J 

31 

--, 
I 

L ____ ----L--~--L----L---___ ----J 
o e 12 16 20 31 

~he second operand is logically subtracted from the first, and 
the result replaces the first operand. C1 is set to th e 
resulting carry. An Alignment interrupt can occur on 5L. Note 
that carry is the complement of borrow. 

Compare Registers 
CR R1,R2 
r--------~ , 1 

I 30 I R1 I R2 I L-______ .,. ___ -L ___ J 

o 

Compare 
CI 

8 12 15 

Immediate 
R15,R1F,I2 

r------- i ~----~-------------, 

:"'_B_(l_--,!..:~:..:1:...:,l~~ ____ :: J 
o 

Compare 
C 

8 16 

R1,D2 (X2,B2) 
r-------~-r--r__--r 

I 70 I R 1 I X 2 I B2 I 

31 

-----, 
D2 I 

L--.-T ____ -L ___ ~ ____ ~ _ _L_~------__ --J 

o 8 12 16 20 31 

-14-



Arithmetic Instructions 

MULTIPLY 

Compare Halfword to Immediate 
CHI 01(B1),I2 
~- ----~.--------~r--~-----.------- , 
I 80 I2 B1 I D1 I 
L ________ L---~ __ --~ __ ~--------------J 

o e 16 20 31 

Compare Halfwords 
CH 01(B1),D2(B2) 
~--------~--------~-~--------------~---T--------------' 
I FO I 0 I B 1 I D1 I B2 I 02 I 
'--

, __ ~ ________ L--~ ______________ ~---L ______________ J 

o e 16 20 32 36 .7 

The first operand is compared algebraically with the second, 
and the result dete'rmines the setting of the Condition Code: 
CO, C1, ' and C2 are reset and then CO is set if equal, C1 if 
first operand greater, or C2 if less. The second operand for 
CHI is the immediate byt e treated as an 8-bit signen number. 
Alignment interrupts can occur for C, CHI, and CH. 

Multiply Registers 
MR R1,R2 '" 
~--------~~----, 

I 36 I R1 I R2 I 
L- .L-- I .J 

o e 12 15 

, Multiply Immediate 
MI R1S,R1F,I2 

~--~----~-----------------, 
B6 IRIS IR1F I I2 I 

L____ -L ____ L--_------__________ J 

o 8 12 16 31 

Multiply 
M R1,02(X2,B2) 
r-~- , I ~--..,.- , 

76 I R1 I :>:2 I B2 I D2 I 
L _____ ---L---,-'~ __ i-__ -L ______ ~----J 

o 8 12 16 20 31 

-15,-



Arithmetic Instructions 

DIVIDE 

Multiply Halfwords 
MH D1(B1).D2(B2) 
r-- ~--------~--r--------------~---T--------------' 
1 F6 o 1 B 1 1 D 1 1 B 2 1 D2 1 
L--______ L---______ 4-__ ~ ___ ~-______ . ___ L_~~----------~--J 

o 8 16 20 32 36 47 

The first and second operands are multiplied and the 
2-halfword (32-bit) product is placed in the first opera!ld 
location and the following register or halfword. C1 is reset 
unless ~he product requires more than 16 bits, in which case 
it is set. An Aliqnment interrupt can occur for M and MH, and 
a Register Specification interrupt for MR and M if register 15 
is specified as the first operand or for MI if register 15 is 
specified in the R1S, field. 

Divide Registers 
DR R1,R2 
r--------r---~----, 

1 37 1 R1 1 R2 1 
L ~.L.. _ __L ____ .J 

o 8 12 15 

Divide Immediate 
Dr R1S.R1F.I2 
r--------T---~--T__~----------------, 

B7 IRIS IR1F 1 I2 
L-__ ~" ____ L---~~i__--------_________ J 

o 8 12 '16 31 

Divide 
D R1,D2(X2,B2) 
r-------r-~~-~ ..... ~ --------, 

77 1 R1 1 X2 1 B2 1 D2 1 L-____ .1. 
-L ____ ~--L __ ----------_-J 

9 8 12 16 20 31 

Divide Halfwords 
DH D1(B1).D2(B2) 
r------T---------~-~---------- '~--~i'--------------, 

1 F7 1 0 1 B 1 1 D 1 B2 D2 
L ________ ~ ______ ~ __ -L ____ ___ ~~.1.~-----------J 

o 8 16 20 32 36 "7 

The double register/hal fword (32- bi t) first 0 perand is div ided 
by the second operand and the quotient and remainder, 

-16-



Arithmetic Instructions 

CON VEil'!' 

respectively, replace the 2 registers/halfwords of the first 
operand. Alignment interrupts can occur for D and DH, 
Register specification interrupts for DR, DI, and D (if 
register 15 is specifed as the first operand), and Division by 
o and Arithmetic Overflow interrupts for all ~ format s. C1 is 
set to the overflow condition. 

ConVert to Binary 
CVB R1,D2(Y.2,B2) 
r'"~----r-- , ~-~-----------, 

51}- 1 R1 1 X2 1 32 I D2 1 
1-_ _ -L'~j ~ ____ ~ __ -L ____________ J 

o 8 t ·2 16 20 31 

This instruction takes a string of EBCDIC digit characters 
(with optional leading blanks and/or minus sign) and converts 
the number to binary, placing it in R1. Register 2 is set to 
the address of the first invalid character following the 
digits~ CO, C1, and C2 are initially set to O. co is set if 
there were no valid digits, C1 is set if there was overflow 
(the result required more than 16 bits to represent), or C2 
is set if the instruction was completed successfully. A 
Conversion Overflow interrupt can occur. 

ConVert to Decimal 
CVD R1,D2(Y.2,B2) 
r-------r'-----r, ~___r.------.-------- , 
1 51 1 R1 1 X2 IB2 1 D2 1 
L _________ .-'----L~--~-_-L------· _J 

o 8 12 16 20 31 

This instruction takes the contents of R1 and converts i t to a 
6-digit EBCDIC decimal number with leading O's replac e d by 
blanks and a floatinq minus sign, if appropriate. Register 2 
is set to the absolute address of the first non-blank 
generated, while register 3 is set to the length of the 
remaininq string. 

-17-



Arithmetic Instructions 

STORE 

STore Deferred Register 
STOR R1,R2 
r-~----r----r~, 

I 12 I R1 I R2 I 
L ________ L----L----~ 

o 8 12 15 

STore Deferred Immediate 
STOI P1S,R1F,I2 
r--------r-~~----~-------~~'-------, 

~ __ B~ __ ~~R1F_L 12 _J 
/ IJ e 12 '16 31 

STore 
ST R1, 02 (Y.2, B2) 
r--------r~_T----~~--------------, 

I 72 ' I R1 I X2 I B2 I D2 I 
L-__ - _ _ ~L----~----4-__ -L--------------J 

o e 12 16 20 31 

STore Deferred 
STD P1,D2(Y.2,B2) 
r-~-----r-----r-~--T , 
I 52 I R1 I X2 I B2 I 02 I 
L-____ ~L----LI~\ --4-_--L ____ ----------J 

o 8 ~~ 16 20 31 

STOR stores the contents of R1 at the halfword location 
pointed to by R2. The STOI instruction uses the imm e dia t e 
operand as the address of where to store the register. ST 
stores R1 at the RX address. STO stores P1 at the half word 
location whose address is Operand 2. An Alignment inte rrupt 
can occur. 

STore Multiple 
STM R1,R3,02(B2) 
r-----~~---r----~-~--------------, 

1921R11R31B2 ' I 02 I 
L- ; > L----L~L-~_-L--__________ -rJ 

o e 12 16 20 31 

-18-



Arithm8tic Instructions 

SWAt:> 

STore Multiple Deferred 
STMD P1,R3,D2(B2) 
,-- , ~~~---T--------------' 

90 I R1 I R3 I B2 I D2 I L-________ L-__ _L ____ ~ __ _L ______________ J 

o 8 12 16 20 31 

The set of registers from R'T to R3 (wrapping from regist.er 15 
to the MSR, if necessary) is stored in consecutive halfwords 
at the second operand location (STM) or at the address 
specified by the second operand halfword (STMD). An Alignment 
interrupt can occur. 

MoVe to Halfword Immediate 
MVHI D1 (B1) ,12 

~~---- ----, 
83 12 I B 1 I D1 1 L _______ -L--_______ +-_--L ______________ J 

o 8 . 16 20 31 

MoVe Ha lfword . 
MVH D1(B1),D2(B2) 
r--- ,; ------~~--------------~~--------------, 

F3 o 1 R 1 1 D 1 I B2 I D2 1 
L-__ ~ ___ L---__ ----L-~--L---------__ ---L--~---~--------J 

o 8 16- 20 32 36 4 7 

The second operand is placed in the first operand halfword. 
The second operand for MVHI is the immediate signed byte 
expanded to a halfword. An Alignment interrupt can occur. 

SwaP Registers 
SWPR R1,R2 
r------,.----r-, 
I 1 'i1 'M. 1 R1 I R2 I 
L-_ ' I ..J 

o 8 12 15 

-19-



Arithmetic Instructions 

SHIFT 

SwaP 
swp R1, D2 (X2, B2) 
r-------~ , ~-~--------------, 

I 78 I R1 I X2 I E2 I D2 I ~ ________ L ___ -L __ _ L-__ -L ______________ J 

o 01 12 16 20 31 

The contents of the first operand register is interchanged 
with the contents of the second operand register/halfword. An 
Alignment interrupt can occur for SWP. 

3.11 ARITHMETIC SHIFT INSTRUCTIONS 
---------------------~------------

Shift Left Algebraic Immediate 
SLAI R1,R2 
r--------'ir~>~_rf----' 

I 1C I R1 I R2 I 
~ ________ L----L ____ J 

o II 12 15 

Shift Left Algebraic 
SLA R1,R3,D2(B2) 

Shift Right. Algebraic Immediate 
SRAI R1,R2 
r ---TO -~----, 

I 1D I R1 I R2 I 
L-~ ____ L ___ -L ____ J 

o e 12 15 

Shift Right Algebraic 
SRA R1,R3,D2(B2) 
r--------T----y~~-~--------------, 
I 9D I R1 I~ I B2 I D2 I 
L- ;' I .l...-_--L __________ J 

o e 12 16 20 31 

-2()-



Arithmetic Instrur.tions 

S HI"'" 

Shift Left Double Algebraic Immediate 
SLDAI R1,R2 
.. ~-T'---r-, 

I 1E I R1 I R2 I 
L-_____ L __ -L ____ ~ 

o 8 12 15 

Shift Left Double Algebraic 
SLDA R1,R3,D2(B2) 
r--------r---~~-.-~~--------------, 
I n I R 1 1,,-' 3 I B2 I D2 I 
L _______ L_-_ _~~---L-------------~ 
o 8 12 16 20 31 

Shift Right Double Algebraic Immediate 
SRDAI R1,R2 
r-------r----T----, 
I 1F I R1 I R2 I 
L ______ -'----1._J 

o 8 12 IS 

Shift Right Double Algebraic 
SRDA R1,F3,D2(B2) 
r--------,..-- , ' "'~~-----------, 

I 91' I R1 I \l 3 ,1 1\2 I D2 I 
L-~ ____ ~ ___ ~T_--L----L--------~----~ 

o 8 12 l-t; 20 31 

The register or pair of registers specifed by R1 is shift~d 
left or right the number of bits specified by the R2 field for 
the FR form, or by the 5 low order bits of the computeQ 
address for the RS form. Right shifts cause vacated bit 
positions to be filled with the original sign bit. For left 
shifts, if a bit unlike the sign bit is shifted out of bit 
position 1 of R1, overflow is set into C1 and Arithmetic 
Overflow interrupts can occur. C2 is set to the last bit 
shifted out. Register Specification interrupts occur for 
double shifts if R1 is specified as register 15. 

Shift for Divide 
SD , R1,R2 

1~--17--I~~~t 
L-_ I~-L ;J 

o 8 12 15 

The register specified by F1 is shifted right into the next 
higher register, and its sign is propagated through R1. This 
instruction can be used to set up a 32-bit dividend for a 
divide instruction. C2 is set to the original bit 0 of the 

-21-



Arithmetic Instructions 

SHIFT 

next higher registet. Register Specification interrupts can 
occur if R1 specifies register 15. 

-22-





Loqical Instructions 

COMP~RE 

Compare Logical Immediate 
CLI R1S,R1F,I2 
r--------T---~----T_-------- ----, 
1 BF ~ R1P 1 12 1 
L _____ ~-~__ ----Lr------------------J 

o 8 12 16 31 

Compare Logical 
CL R1,02(Y.2,B2) 
r------r----r-~---r~-----, 

1 7F 1 R1 1 X2 1 B2 1 02 
L-__ ~-~L---~---L----L--------------J 

o 8 12 16 20 31 

Compare Logical to Byte 
CLB R1,02(Y.2,B2) 
r--------.---~----~~-----------, 
1 5F 1 R 1 1 Y.2 I B2 I 02 I 
L_-r-~L-__ -L ___ -~~~-L----------~--J 
o e 12 16 20 31 

Compare Logical Byte to Immediate 
CLBI 01 (B1) ,I2 
r--------r--------~-~------~---, 
I SF I 12 I 81 I 01 I 
L-_______ L ___ ~--~~--L-----___ ----__ J 

o 8 16 20 31 

Compare Logical Halfwords 
CLH 01(B1),02(B2) 
r--------T~-------~-___r~----------._---T--· ----~----_, 
1/ f& ", I 0 I 81 I 01 I B2 I 02 I 
~::-----~-----__ ~;_-L;;_-----------~;~;;__--~-----;;J 

Compare Logical Characters (Long) 
CLC/CLCL 01 (L, B1) ,02 (B2) 
r-~-~'" ; --~--r 

I CF 10 F ILl 81 I 01 
- I T-------.....--~ 

B2 02 
L ____ - ___ ~------L-__ -L-------------~---L--------------J 

o e 16 20 32 36 47 

, 
The first operand is compared logically with the second, and 
the result determines the setting of the Condition Code as in 
the · alg~braic compares. For CLB, Operand 1 is the low order 
byte of 81. CLC/CLCL causes register 2 to be set to th e 
address in Operand 1 of the first unequal byte, unless ar 
equal compare occurs. ~n equal compare always occurs if the 
length specified is zero, as two null strings are considered 
equal. ~n ~lignment interrupt can occur for CL and CLH. 

-24-



aNd Registers 
NR R1,R2 
r-------r--~--, 

I 39 I R1- I R2 I 
L ________ L~---L~J 

o 8 12 15 

aNd Immediate 
NI R1S,R1F,I2 
r----~--T----T----~----------------_, 

B9 IRIS IR1F I I2 L-______ ~_-L ____ ~ _________________ J 

o • 12 16 31 

aNd 
N R1, 02 (X2, B2) 
r----~-~-T--__r---------, 

I 79 I R 1 I X 2 I B2 I 02 
~ ______ ~>LI -L ____ ~ __ _L ______________ J 

o 8 12 16 20 31 

aNd to Byte Immp.diate 
NBI 01(B1),I2 
r------T-------......---~--------------, 
1 89 1 I2 I B1 I 01 
L 

o 

aNd Characters (Long) 
NC/NCL 01 (L, B1) ,02 (B 2) 

Logical Tnstructio rs 

hr': ' 

/v 

r----' ,---------T----r--------------TT---T-------------_, 
1 C9/09 1 LIB 1 1 01 I B2 I 02 1 II)r 
L ________ L _________ i---~------------~---i--------------' 

o 8 • 16 20 32 36 ~7 

The first operand is ANOp.d 
replaces the first operand. 
all 0'5 or the lp.ngth is 
interrupt can occur for N. 

with the second and the result 
CO is set to 1 if the result is 
0, to 0 otherwise. An Alignment 

-25-



Loqical Instructions 

OR 

Or Registers 
OR R1,R2 
r--------T---~----' 
I 3A I R1 I R2 I L _______ -L ___ ~ ____ J 

o 8 12 15 

Or Immediate 
OT R1S,R1F,I2 
r--------r---~~~--------------~--, 
I B1\ IRIS I R1F I 12 L _______ -~-L ____ ~ _________________ J 

o 8 12 16 31 

Or 
o R1,D2(X2,B2 ) 

r--------~--~----~-~ 
I 7A I R1 I X2 I B2 I 

, 
D2 I 

L , ______ -L~---L----~ __ ~ ____ - ___ ~--J 

o 8 12 16 2 0 31 

Or to Byte Immediate 
OBI D1 (B1) ,I2 
r--------T---~----~-~------------__, 

SA 12 I B1 I D1 
L-~-----L--_------~--~ ____ ----------J 

o 8 16 20 , 31 

Or Characters (Lo ng) 
OC/OCL D1(L,B1),D2{B2) 
r--------T---------~-~ ,----T--------------, 
I CA/DA I L I B1 I D1 I B2 I D2 I L ________ L _________ L-__ -L ______________ L--_~ ______________ J 

o e 16 20 32 36" 47 

The first operand is ORed 
replaces the first operand. 
all O's or the length is 
interr~pt can occur for o. 

with t he second and the resul t 
CO is set to 1 if the result is 
0, to C otherwise. An ~liqnmen+ 

-26-



Logical Instructions 

l'XCLUSIVE ()1l 

4.5 EXCLUSIVE OR INSTRUCTIONS 
------~----------------------

e~clusive or Registers " 
XR R1,R2 
r-----T--y--, 
1 3B 1 R 1 1 R2 1 
L ______ ~-L ____ J 

o 8 12 15 

eXclusive or Immediate 
~I R1S,R1F,I2 
r-----T-~~~----------------, 
1 BB I RIS lR1F 1 I2 1 L-_____ ~ _ _L ____ ~~ _____________ J • 

o B 12 16 31 

exclusive or 
X R1 ,D2P:2,B2) 
r-----""T----r--T-~-- c , 

1 7B 1 R1 , X2 1 B2 1 D2 1 
L-__ ~--L--_ 4-__ -L ______ - ___ J 

o e 12 16 20 31 

eXclusive or to Byte Immediate 
XBI D1 (B1) , I2 
r-----~--~~~-------------, 

8B I2 1 B 1 1 D 1 
L-______ L ______ 4----L------------J 

o 8 16 20 31 

exclusive or Characters (Long) 
XC/XCL D1(L,B1),D2(B2) 
r-----~~~----~~------------~--T----------_, 
I CB/DB 1 L 1 B1 I D1 "I B2 1 D2 1 
L-_ ___ LI ___ ~, ____ L--_-L _____________ ~_--L _____ ~ _____ J 

o 8 16 20 32 36 47 

The first operand is EXCLUSIVE ORed with the secodd and th~ 
result replaces the first operand. CO is set to 1 if the 
result is all O's or the length is 0, to 0 otherwise. An 
Alignment interrupt can occur for x. 

-27-



Logical Instructions 

BYTE 

Test under Mask Register 
TMR 1"1,R2 
~--------T----T~' 

I 32 I R1 I R2 I 
L-___ --__ ~I. ___ -L---TJ 

o 8 12 15 

Test under Mask Immediate 
TMI R1S,R1F,I2 
r----........ --T ~, ~_r__----~-----, 

~_~~~~~-1------::-----~ 
o 8 12 16 31 

Test Byte under Mask Immediate 
'\~ \;)1: ""ffi.14.I D 1 (B 1) , I2 

~--------T--------T----T------------' 
82 12 I B1 I D1 

L __ ----~-----___ -~---L-----------J 
o 8 16 . 20 31 

The 1 bits in the s~cond operand mask select the correspondinry 
bits in the first operand. These bits are then tested and th e 
Condition Code is set as follows: all bits are reset and then 
CO is set if the tested bits were all O's or the mask was 0 , 
C1 is set if all tested bits were 1, or C2 is set if they wer e 
mixed O's and 1's. 

4.7 BYTE ·· INSTRUCTIONS 
------------------~~-

Insert Byte 
IB R1,D2(Y.2,B2) 
r--------r----r----T----r-----------~, 

I 58 I R 1 I Y.2 I B2 I D2 I 
L-_______ L-__ ~ ___ ~_~-L _____ ~------J 

o 8 12 r6 20 31 

Load Byte 
LB R 1,D2(X2,B2) 
r--------T-~----~-~-------------, 
I 5A I R1 I Y.2 I B2 I D2 I 

L-__ -L ______________ J 

o 8 12 16 20 31 

-28-



Loqical Instructions 

BYT" 

The byte at the second 
through 15 of R1, and 
zeroed (LI3,). 

operand location is placed into bits 8 
bits 0 to 7 are left the same (IB) or 

STore Byte 
STB R1,D2(X2,B2) 
r-------T i E (~___r--- -, 

59 I R1 I X2 I 1'2 I D2 I 
L _____ ~ -L--__ ~_~ ___ ~--__ --J 

o 8 12 16 20 31 

Bits S to 15 of R1 are stored as a byte into the second 
operand location. 

FILL (Long) 
FILL 
FILLL D1(L,B1),D2(B2) 
r-------~--------~~~---------, ---T---~-----------~-' 

CS/DS I L I B1 I D1 I B2 I D2 
L _______ L __ ---~-L----L---------~--~ __ -~-. -____ ~ 

o 8 16 20 32 36 4? 

The first operand i character string is filled with the 
low-order byte of the second operand ~[QIf§§. 

Load and eXchange Bytes Register 
LXBR R1,R2 
r--------r-.~__r---, 

I OF I R1 1 R2 I 
'-____ .&....:..._ .J 

O. 8 12 15 

Load and eXchange Bytes 
LXB R1,D2(X2,B2) 
r--------T---r---~--r------------, 

I 4F 1 R1 1 X2 I B2 I D2 1 
L-___ - ___ L----L--__ ~~--L------~~--J 

o 8 12 16 20 31 

The second opera'nd halfword is loaded into R1, with its 2 
bytes exchanged. An Alignment interrupt can occur for LXB. 

- 29-



Loqical Instructions 

TRANSLATE and SCA~ 

4.8 ADDRESS MANIPULATION INSTRUCTIONS 
---------------~-~-------------------

Load Address 
LA R1,D2(Y.2,B2) 
r----"-- t' ; --r--~-__r-------, 

5!J I R 1 1 Y2 I B2 1 D2 
L-__ ..--1- -L_~._L-__ -L ______________ J 

o 8 12 16 20 31 

Subtract Address 
SA R1,D2(X2,B2) 
r-----T i ~__,.----- , 

1 5C 1 R 1 1 y. 2 1 B 2 1 D 2 1 
L _______ L~-L ___ -i----L------------J 

o 8 12 16 20 31 

The computed RY. address is loaded into (LA) or subtracted from 
(SA) R1. 

MoVe Address 
MVA D1, B1), D2 (B2) 
r--------r--------~-__r------------~---T------· ------_, 
1 f2- 1 e 1 B 1 1 D 1 1 B 2 1 D2 1 
L-~------L-----~--~---L-------------~---L--~--------J 

o 8 16 20 32 36 ~7 

The computed second operand address is moved to the firs t 
operand location. 

TRanslate .(Long) . 
TR/TRL !J1(L,E1),D2(B2) 
r-------~-----~---~--------------r_---T-----------_, 
ICE/DE 1 L I B1 1 D1 I B2 I D2 1 L _______ ~ __ --__ ~ __ -L ___ --______ L_ __ ~ ___________ ~_J 

o 8 l6 20 32 36 47 

T·he bytes at the first operand location are used as arguments 
to reference 1 of the 256 bytes in the second operand ~able, 
by adding each argument byte to the second operand address. 
The resulting byte then replaces the original argument in 
Operand 1. 

~30-



Scan using Table Right (Long) 
STR/STRL D1 (L, B1), D2 (132) 

Logical Instructions 

TRANSLAT E an d SC~N 

rr-----~----- --~__r-----~-----r_---T~--- ---, 
I CD/DD I L I B1 I D1 I B2 f D2 
L ________ L----_____ ~_~-L--~ __________ L_ __ _L __ - ________ ---J 
o 8 16 20 

Scln using Table Left (Long) 
STL/STLL D1 (L, B1), D2 (B2') 

32 36 47 

r------~---------~~--------------~---T------------~_, 
I ce /DC I L ,B 1 I D 1 I 82 I D 2 I 
L ____ ~L___~----~---L--_______ -----L----L---__________ _J 

o 8 16 20 32 36 47 

Each byte of Operand 1 is used (as in TR) to reference a byte 
in the table poi'nted to by Operand 2. If the byte thus 
referenced is 0, referencing continues. If it is non-O, it is 
loaded into register 3 (the high-order byte of which is 
zeroed), the argument byte address is placed in register 2, 
and C2 of the Condition . Code is set. If all referenced bytes 
are 0 or the length is 0, C2 is reset to o. STL addresses 
Operand 1 by its rightmost byte. 

Scan Fight Equal (Long) 
SRE/SREL D1 (L, B1), D2 (B2) 
r--------T---------T--~--------

C1/D1 I L I B1 I D1 
L ___ .L.--__ ~..L...----.L 

o 8 16 20 

Scan Rignt Not Equal (Long) 
SRNP 
SRNEL D1 (L, B1), D2 (8 2) 

--T----T--------------, 
B2 I D2 I 

32 36 47 

r------~-------~-~__r--------------~TT-------------_, 
I C3/D3 I L I B1 ID1 I B2 I D2 
~_~-___ ~-------_-i----L _________ ---__ L_~ _____________ _J 

o 8 16 

Scan Left Equal (Long) 
SLE 
SLEL D1(L,B1),.D2(B2) 

20 32 36 47 

r--------T--- I --T------------~T----T-------------_, 
I CO/DO I L I B 1 I D 1 I B 2 I D2 
L-_______ ~ ___ ~--__ L--_-.L~ ____________ L_ ___ ~ ___ ---~~---J 

o 8 16 20 32 36 47 

-31-



Logical Instructions 

SHIFT 

Scan Left Not Equal (Long) 
SLNE 
SLNEL D1(L,B1),D2(B2) 
.. . --T-"-~ r----r--------------, 
I C2/D2 LIB 1 I D1 I B2 I D2 I 
L-,....--. ___ ..L ______ ._L-__ --.J.. ____ - ______ L-_--i ____ ~ ______ ~-~ 

o • 16 20 32 36 07 

This instruction uses the low-order byte of the second operand 
~~QIg§§ as a character to scan Operand 1. A scan for equality 
(xxE) or ineguality (xxNE) is performed. If the scan i s 
satisfied, the absolute address of the satisfying character in 
Operand 1 is placed in register 2 and C2 is set. If it i s 
not, C2 is reset to 0 (C2 is always reset if the length is 0). 
The scan can be performed from left to right (xllxx) or right 
to left (xL xx) , in which case Operand 1 is addressed bv it s 
rightmost byte. 

4.10 LOGICAL SHIFT INSTRUCTIONS 
-------------~-------~---------

Shift Left Logical Immediate 
SLLI R1,R2 
r---~~~---, 

I 18 I R 1 I R2 I 

o • 12 15 

Shift Left Logical 
SLL R1,R3,D2(B2) 
r--------r----r-_---~-~------------__, 
I 98 . 1 R1 I \R3~ 1 B2 I D2 I L ____ , I ~~~ _ _L ______________ J 

o 8 12 16 20 31 

Shift Right Logical Immediate 
SRLI R1,R2 
.. ~-----r-~-, 
I 19 I R1 I R2 I 
L ______ ~~ -L ____ J 

o 8 12 '~5 

-32-



Logical Instructions 

SHIFT 

Shift Right Logical 
SRL R1,R3,D2(B2 ) 
r------~~----TI--~~-~-----~------, 
I 99 IR11,, 3' IB21 D2 1 
L-____ .L- I ~-----_---J 

o 8 12 16 20 31 

Shift Left Double Logical Immediate 
SLDLl R1,R2 
r f t i , 
1 1Jl; 1 R1 1 R2 1 
'- .L--""""""'_J 

0 B 12 15 

shift Left Double Logical 
SLDL R 1, R3, D2 (-B2) 
r--------r- , -r--~------, 

1 9A 1 R1 I~ R3 \1 B2 1 D2 
L-___ -.L_.-.1. __ .L--_-.L-_------ _J 

o 8 12 16 20 31 

Shift Right Double Logical Immediate 
SRDLI R1,R2 
r---, i, 

' 1B 1 R1 1 R2 1 
'-___ ~.L-----1._-' 

o e 12 15 

Shift Right Double Logical 
SRDL R1,R3,D2(B2) 
r-~~~-T-,---T--~--------------, 

1 9B 1 R1 1 R3 1 B2 I D2 1 
'-____ --~I~. - ~--~-_-L--------------J 

o B 12 16 20 31 

A left or right shift is performed on the register or 
contiguous pair of registers indicated by R1. The shift count 
is specifed by bits 12 to 15 of the instruction for the RR 
formats, or by the low order 5 bits of the Operand 2 a[[I~22 
for the RS formats. C2 is set to the last bit shifted out. A 
Register Specification interrupt can occur on a double shift 
if R1 specifies re,gister 15. 

-33-



Logical Instructions 

STACK 

PuSH Multiple 
PSHM R1,R3,D2(B2) 
r--------r----T----~-__T--------------, 
I 96 I R 1 I R 3 I B2 I D2 I 
L-_ .L--.e----.:-L ___ ..&..r __ -L _______ J 

o 8 12 16 20 31 

PuSH Halfwords 
PSHH 
PSHHL D1(L,B1),D2(B2) 
r--------~------~~--------------~~-------------_, 
I C6/D6 I L I B1 I D1 I B2 I D2 I 
L-____ .L.----..1.----J. ~ ___ L~ ___ ~-----J 

o 8 16 20 32 36 47 

These instruc~ion 
described by the 
the second operand 

are used to push data into the stack 
Stack Descriptor Block (SDB) pointed to by 
addres s. The format of an SDB is: 

r--------------~-----------~---------------, 
current top I stack addre~s I stack limit L-_____ _ 

__ -L--___________ --L __ ---___ -------J 
o 4 6 

current top: This halfword 
half word in the stack. 

will always point to the top 

stack address: This is the address of the stack itsel f 
and controls the amount of popping that can be 
performed. 

stack ~imit: This 
that can be 
limit is thus 

is the address of the highest half word 
used as part of the stack. A pushing 
established and checked. 

PSHM causes the registers from R1 to R3 (wrapping from the SFP 
to the MSR if necessary) to be pushed into ':he stack and the 
current top pointer to be updated to point at the top 
halfword. PSHH/PSHHL pushes the number of bytes specified by 
the length field (rounded up to the next higher even number if 
odd) into the stack and leaves the current top point e r 
pointing at the last halfword pushed. These bytes are t,eated 
as a sequence of halfwords and thus must be aligned. It is 
obvious that the s~~~ top should be initialized to 2 less 
than the stack address. ~ 

(...0(( 

Before any pushing is performed, the stack limit is checked to 
ensure that it wi 11 not be exceeded. If it is not, C 1 is 
reset; if it is, C1 is set and a Stack Overflow Interrupt 
occurs if enabled. 

-34-



L 
POP Multiple 
POPM R1,R3,D2(B2) 
r----~--r---_r----~-_r--------------, 

I 97 I R1 I R3 I B2 I D2 
L­

o 
__ ~,_,~I~ __ -L ____ ~_~ ________ --,-__ J 

8 

POP Halfwords 
POPH 

12 16 20 31 

POPHL D1(L,ll1),D2(B2) 

Logical Instructions 

LINKED LIST 

r--------r---------~-~--------------~---~-------------_, 
I C7/D7 I L I B1 I D1 , B2 I D2 I 
L-_______ L--_______ ~~_-L--------------L--~--------------J 

o 8 16 20 32 36 47 

POP instructions ?erform the complement of the pushing ones. 
The current top is first checked against the stack address to 
see if enough halfwords exist in the stack to do the pop. If 
not, C1 is set and a Stack Underflow interrupt occurs if 
enabled. If it is, C1 is reset and the halfwords are poppeQ 
into the registers (POPM) or to the first operand address 
(POPH/POPHL) . The current top is then decremented so as to 
point to the new top of the stack. The Operand 2 address is 
that of the SDB, as described above. An Alignment interrupt 
can occur. 

SeaRCH 
SRCH D1 (B1), D2 (B2) 
r--------TI---~~~~--------------~-~~-----------_, 

F9 o I B 1 I D 1 I B 2 I D2 L ________ 4--_______ i-__ -L ______________ L-__ -L ______ ~-----J 

o 8 16 20 32 36 47 

This instruction is used to search a table or a linked list 
for a key which holds some relation to a search argument. The 
table or linked list is described by an Entry Descriptor Block 
(EDB) pointed to by the second operand address, in addition +0 
the contents of certain registers. An EDB looks as follows: 

For a table 

-35-

--



Logical Instructions 
ta:.c Fizt.: f l I l'r?, r.. rub- v..J<r /'1..,1.. " "0»<.. "'" 
J1-... /U-y owJ f ~ 'IIJ~' J;l- r i;,- 0, .. Co"" fW'-

L<, ~<AI IY Utl'M... c.cc. <'If <t ",..,1< fw. fk (P,.J 'h~ ~. 
LINKED LIST 

r---------------~------------~ -------, --, 
I entry length I key /!isp. key length 10/TCCCI 
L ____________ ~-L-----~ _____ ~ ___________ ----L------J 

o 2 4 6 7 

For a linked list 

r--------------~~---------~ i-' 
I pointer disp. I key disp. key length 11/TCCCI 
L_~_________ f ___________ --L _______________ L--~~ 

o 2 4 6 7 
entry length: This is the length in bytes of each entry 

in the table. 
pointer disp.: This gives the offset in bytes of a 

halfword containing the relative addres~ of the next 
entry in the linked list, called the "forward 
pointer". The address is relative to the area base 
as described below. 

key disp.: This is the offset in bytes to the key in an 
entry. 

key length: This is the length in bytes of the key in an 
entry and of the search ~rgument. 

The information in the EDE will most likely remain constant 
throughout the program. The search argument is pointed to by 
the first operand address and has a length equal to the key 
length. Registers 2 through 5 must be initialized prior to 
issuing a SRCH, as follows: 

register 2: This register contains the relative address 
of the first entry to be searched. For a t~ble it 
merely points to some entry, while for a linked list 
it must point to the forward pointer in the 
predecessor of the first entry to be searched. In 
order to start searching at the first entry, 
therefore, a "dummy pointer" to it must be 
available. 

register 3: This contains a count of the number of 
entries to be searched and will be decremented by 1 
after each entry checked unsuccessfully A 0 count 
causes the instruction to be ignored except for 
setting C1 as described below. 

register 4: This is the area base address. It is added 
to all addresses pertaining to the table or linked 
list, including the initial entry address (in 
register 2) and all forward pointers. This allows 
relocatable linked lists (useful in computer 
graphics), or, if set to 0, absolute addressirig. 

register 5: When the search is completed, register 5 will 
be set to the relative address of the last entry 
searched, while register 2 will have been updated to 
contain the relative address of the previous entry. 
There are two exceptions to this, the first being 

-36-



Logical Instructions 

LINKED LIST 

qhen the initial count in register 3 is 0 or th~ 
forward pointer in the initial entry for a linken 
list is null (0), in which case both regist~rs 2 and 
5 will point to the initial entry. The other 
exception if for tables when the count is exhausted; 
register 2 will point to the last entry and register 
5 to the first byte following the table. 

If the search was successful, C2 will be set. Otherwise, C1 
will be set if the entry count in register 3 was decremented 
to or . initially 0, or cO if a null forward pointer (0) was 
encountered in a linked list. For key lengths of 0, or for 
arguments o~ all O's on a TM SRCH, a successful match occurs 
on the first entry if the criterion specifies equal or O's; 
the search is unsuccessful otherwise. An Alignment interrupt 
can occur. 

NOTE: SRCH can be used to perform a PL/I-like INDEY. or an 
LSD-like FIND. 

ENQueue 
ENQ D1 (B1) , D2 (B2) 
r--------r---------~-__r--------------~--~-------------_, 
I 1'8 I 0 I B 1 I D1 I B2 I D2 I 
L­

o 
______ L---_____ -~-_-L ________ ------L----L--------------J 

8 16 20 32 36 47 

The first operand address plus the area base address in 
register 4 points to a new en\ry, which is be inserted into 
the linked list described by the EDB at the second operand 
address. The area base plus the relative address in register 
2 gives the address of the forward pointer in the entry which 
is to become the predecessor of the new inserted entry. Note 
that SRCH sets up register 2 so that an ENQ or DEQ can be 
executed immediately. An Alignment interrupt can occur. 

DEQueue 
DEQ R1,D2(Y.2,B2) 
,.-----T i ; -r-----r 

48 I R 1 I Y.2 I B2 I 
.,-------, 

D2 I L-_______ L----L--__ i--_~ ______________ J 

- 0 8 12 16 20 31 

The second operand address points to an EDB describing a 
linked list from which an entry is to be removed. The 
contents of register 4 (the area base address) plus the 
relative address in register 2 give the address of some 
entry's forward pointer; the next entry is removed from the 
list and CO is reset. In case this forward pointer is null, no 

-37-



Loqical Instructions 

LINKED LIST 

dequeueinq is performed and CO is set. An Alignment interrupt 
can occur. 

-38-



Branching Instructions 

No RR format branching instructions cause a branch if P2 
specifies reqister O. 

Test and Branch positive Register 
TBPR R1,R2 
r--------r'----~' _, 
, 29 , R1 R2' 
L- ...L- ~ 

o 8 12 15 

Test and Branch positive 
TBP R1,D2(X2 ) 
r----- -ri----~ir-'--~--~----~------_, 

I A9 I R1 , Y.2 D2 
L-______ -L--__ i- ------------' 

o 8 12 16 31 

Test and Branch Not positive Register 
TBNPR R1,R2 
r---------r < f -, 

2E ,R 1 , R2 I 
L-__ --L-__ "'--_J 

o e 12 15 

Test and Branch Not positive 
TBNP R1,D2(X2) 
r~----- i ~~--------~-------, 
, AE I R 1 , Y.2 I D2 I 
L-~ __ -L--~ __ -i--__________ ~ ____ ' _-' 

o 8 12 · 16 31 

Test and Branch Zero Register 
TBZR R1,R2 
r------~ -, , 2A I R1 R2 I 
L-_~ __ ....L- _J 

0 8 12 15 

-39-



Branching Instructions 

Test and Branch Zero 
TBZ R1,02(X2) 
r--- , , , ~ 

I AA I R1 I 11:2 I D2 
1-_ , , ~ -' 

0 8 12 16 31 

Test and Branch Not Zero Rp.gister 
TBNZR R1,R2 
.---- , , 

20 I R1 R2 
L- ~ _J 

0 e 12 15 

Test and Branch Not Zero 
TBNZ R1, 02 (11:2) 

r------~--~~,~<~---~----------------_, 

I AD I R1 I Y.2 02 I 
L __ -_-.1..----.I..- _~ ___ -~ ____ ~ __ J 

o 8 12 16 31 

Test and Branch Minus Register 
TBMR R1,F2 
.------r-- ...., 
I 2C I R1 R2 I L ____ 

-' 
0 8 12 15 

Test and Branch Minus 
TBM R1,02(X2) 
r------T- i i --------------_, 

I AC I R 1 I Y.2 I 02 I L-_____ ~__L_ __ ~ _____________ J 

o 8 12 16 31 

Test and Br~ncq Not Minus Register 
TBNMR R1,R2 
r------T--~---, 

I 2B I R'\. I R 2 I 
\. ___ ---'-- I --' 

o 8 12 15 

Test and Branch Not Minus 
TBNM R1,02(X2) 
r-------~~ , -------------, 
I AB I R1 I Y.2 I 02 I L-_____ ~ __ ~ __ ~ ______________ __ 

J 

31 o 8 12 16 

-40-



~ddfWI .".. 
A branch is taken to the ·cont-e-n-t .s -e-r R2 
second operand address (BX form) if the 
specified by the instruction. 

Branch Conditions . Zero Register 
BCZR R1,R2 
r-----~~--, 

26 I R 1 I R2 I 
L--___ ,.J.. 

o 8 
--~--' 

12 t 5 

Branch Conditions Zero 
BCZ R1,D2(X2) 
r-------r----~ -Tt----------------, 
I A6 I R 1 I X2 I D2 
L-__ ~--1- ; I 

o 8 12 16 

Branch Condition One Register 
BeaR R1,R2 
r-------r- ---., 
I 27 I R 1 R2 I 
L-___ -l.__ -' 

o 8 12 15 

Branch Condition One 
BCO R1, D2 (X2) 
r-------~---T_- , --------------, 

'It 7 I R 1 I X2 I 1)2 L-____ -L--_~- -l. ______ r-_______ J 

o 8 12 16 31 

Branching Instructions 

(RR format) or to the 
condition of R1 is as 

The R1 field is used as a mask to select any of the Condition 
Code bits or bit 3 in the MSR. If all selected bits are - 0 for a 
Bez (R), or if 1 or more are 1 for BCO (R), then a branch is taken 
to the contents of .R2 (RR form), or to the second operand address 
(BX). Otherwise no branch is taken. ff' rl.1:.0, \'H,... \4 ~,....,;, i't' qw..y.r /?)u.... 

Branch and Link Register 
BALR R1,R2 
r t -, 
I 28 I R1 R2 I 
L_~ __ -'-_ J 

0 e 12 15 

- 41-



Branching Instructions 

Branch and Link 
BAL R1,D2(X2) 
r I ~ i ---, 
I AS I R1 I Y.2 I D2 I L _____ --~_~ __ -L--_________________ J 

o 8 12 16 31 

The branch address (contents of R2 for RR form or second operand 
address for BY. form) is compu ted and saved. '1'he PC is thAn 
copied into R1 and a branch is taken to the saved address. 

Branch on CounT Register 
BCTR R1,R2 
r------~----~--~ 
I 2F I R1 I R2 I 
L-_______ ~---~---J 

o e 12 15 

Branch on CounT 
BCT R1,D2(Y.2) 
r----- i ~--~----------------, 

I R1 I Y.2 L-______ -L-___ ~ ___ ~_ 

o 8 12 16 

D2 
J 

31 

R1 is decremented by 1, and if the result is positive, a branch 
is taken to the contents of R2 (RR form) or to the second operand 
address (BY.). If the result is minus or 0, no branch is taken. 

Branch on indeX High 
BY.H R1,D2(Y.2) 

i ~ I ---~ ----, 
AO I P 1 1 Y.2 1 D2 1 

L 

o 
i-__ -L--____ ------_______ J 

e 12 16 31 

Branch on indeY. Low or Equal 
BY.LE R1,D2(Y.2) 
r-------r-'--~,~'--~- ---------, 

A11R11Y.2 D2 I L _______ ~__L_ , __ ~ _______ --_________ J 

o 8 12, 16 31 

The content 2 is added ~braic~" to R1 and the resul t is 
compared gebraica -lv to the ~rg!lQ~ntents of Y.2 (if it is 
an odd-num _ 'ster) or to the contents of the next higher 
register (if Y.2 is even-numbered). A branch is taken to the 
second operand address if R1 is greater than the compare register 

-42-



Branching Instructions 

(BXH) or if it is less than or equal to it (BXLE). Otherwise no 
branch is taken. 

EXecute 
EX R1,D2(X2,B2) 
r---- i --.- i T------ -, 

54 I R 1 I X2 I B2 I D2 I 
L ____ ~-L--~ __ T-L _____ _ 

o 8 12 16 20 

This instruction causes execution of the single instruction at 
the second operand address. The contents of R1 is temporarily 
ORed with the first halfword of this subject instruction before 
it is executed, unless R1 specifies register o. control is 
eventually returned to the instruction following the EX, unless 
the subject instruction modifies the pc. An Alignment interrupt 
can occur. Any Program interrupts that can occur for the executed 
instruction are possible. I/O and 5/360 Initial Select interrupts 
cannot occur between and EX and its executed instruction. An 
Execute interrupt occurs if the subject of an EX instruction is 
another EX. 

-43-



status-switching Instructions 

6 STATUS-SWITCHING INSTRUCTIONS 
---------------------------~---

SuperVisor Call 
SVC 11 
r-------_r---------, 
, 31 , 11 , 
'-- ~-----...-' 
o 8 15 

SuperVisor Call Single-register 
SVCS D1(B1),I2 
r~-----_r------ T--------------, 

81 12 B 1 , D 1 , 
'-____ ~--i---------L----~-----

o 8 16 20 

SuperVisor Call Double-register 
SVCD D1 (B 1) , D2 (B2) ,13 

J 

31 

r-----~_r---------r----T-------------_r----~------~-__, 
, F1 , 13 t B1 , D1 , B2 , D2 , 
'-______ -L-___ ~~ __ ~ ___ ~-----------~----4--------------J 

o 8 16 20 32 36 .7 

This instruction causes a Supervisor Call (SVC) interrupt using 
the second byte of the instruction as the interrupt code. Before 
causing the interrupt, SVCS loads the first operand address into 
register 2. SVCD does this also, plus loads register 3 with the 
second operand address. 

Test and Set Lock 
TSL D1(B1),I2 
r-----_r --r----T------~-------, 
, 87 12 ,B 1 , D 1 
'-______ -L ________ -L----~____ _' 

o 8 16 20 31 

The bits of the first operand byte selected by the second operand 
mask are tested, and the Condition Code is set as for the TM 
instructions. If the test indicates 0's, the mask is ORed into 
the first operand. Memory accessing by local 1/0 units i s 
prevented between testing and modification. 

-44-



t-
! 
i 

status-switching Instructions 

ENTer subroutine 
ENT R1S,R1F,I2 

r-------~-~ i ---...., 
I BE IRIS IR1F I 12 I L-______ ~_ I < -L--___________ • ____ ~,-J 

o 8 12 16 31 

This instruction causes save area chaining and automatic storage 
allocation. It is generally executed as the first instruction of 
a subroutine and assumes that the SFP (register 15) points into a 
"Stack Frame", which must be on a halfword boundary: 

1--- ~_I 
SFP-->Iprevious pointerl 

1--- '~_I 
I next pointer I 
1-- -...; 
I I 
I I 

caller's 
I save area 
I 
1-- ~-_I 

I I 
I caller's I 

automatic 
storage 

I----~-~~-I 

length I 
1----- , • --_I 

I 

The immediate halfword operand specifies the number of bytes of 
automatic storage desired. This number (rounded to the next 
higher halfword, if necessary) plus 30 bytes for a register save 
area plus 4 bytes for the new pointers is compared against th e 
length, which specifies the remaining space in the Fram e 
(including itself). If not enough space exists, a Stack Fram e 
Overflow interrupt occurs. If there is space, it is allocated to 
the subroutine, and a new, updated length field is built below 
it. The caller's MSR through register 14 are saved in the save 
area in his storage (with <the PC i7Qt Q,,!l1al to ~e~isteF 14, the 
'retuuI aaaFess), The old lengt"h field is replaced by the 
contents of the SFP (a previous pointer), the halfword following 
the lenqth is set to point at the newly built length field (a 
next pointer), and finally the SFP is updated to point to th ~ 
new save area: 

-45-



status-Switching Instructions 

I" ~-.....j 
Iprevious pointer, 
r-------_� 
1 next pointer , 
r----~---_I 
, 1 
MSR-regist.er 14 

1 save area , 
r-------~_I 
, caller's , 

automat.ic 
, storage , 
r-~--~-r---_I 

SFP-->,previous pointer, 
r------_I 
, next pointer , 
r---- --_I , , 

suhro utin e' s 
, save area , 
r-------_I 
, subroutine's , 

automatic 
, storage , 
I· -_I 
, length , 
I-----~-~--I 
, I 

An Alignment interrupt can occur. 

RETurn from subroutine 
RET R1,R2 
r-- --'-i-~--' 

OB I R 1 I R2 I 
L-___ ~I~,. 

o 8 

.L--_-' 
12 1 S 

RET is executed to return from a subroutine and to free the save 
area and automatic storage gotten by ENT. It first checks ~o soe 
if tke back pointer (the SFP is assumed to be left as set up by 
ENT) points to a save area which - points forward to the curren~ 
one. If not, a Stack Frame Underflow interrupt occurs. If so, 
registers 2 through 13 are reloaded from the current save area, 
the old length and 0 fields are rebuilt at the top of it (so as 
to free it), the SFP is backed up to the previous save area, and 
a branch is taken to the new contents of register 13, the retur~ 
address. An Alignment interrupt can occur. 

-46-



Interrupts 

There are four types of interrupts on the META 4A: SuperVisor 
Call (SVC), Program, I/O, and S/360. When an in+errupt is 
detected, and if it is not disabled by the MSR or I/O ~ask, the 
following sequence occurs: 

1) The current M SR and PC are stored in 2 ha lfwords in low 
core (see table below), and an interrupt code is 
generated and stored. If the interrupt is an SVC or 
Program check, the ILC field in the stored MSR will 
contain the length, in halfwords, of the instruction 
causing the interrupt. 

2) A new MSR and PC are loaded from 2 other halfwords in 
low core. 

3) Execution continues wit.h this new machine status. 

The low core locations reserved for these MSR's, PC's, a~d 
interrupt codes are as follows: 

4 SVC old MSR 
6 SVC old PC 
8 SVC interrupt code 
A SVC new MSR 
C SVC new PC 

E Program old MSR 
10 ~ro~ram old PC 
12 Program interrupt code 
14 Program new MSR 
16 PFogram new PC 

18 I/O old MSR 
1A I/O old PC 
1C I/O interrupt code 
1E I/O newMSR 
20 I/O new PC 

Z2 S/360 old MSR 
24 S/360 old PC 
26 S/360 interrupt code 
28 S/360 new MSR 
2A S/360 new PC 

-47-



In terrupt.s 

The SVC interrupt code 
SVC instruction that 
codes are determined 
follows: 

is determined by the second byte of the 
caused the interrupt. Program interrupt 
by the type of Program interrupt, as 

Operation (2): An instruction with an invalid operation 
code was encountered. When this occurs, v~rious 
information is stored in low core before the interrupt 
occurs. See Appendix I for a description of this 
information. 

Stack Frame Overflow (4): On an ENT instruction, no room 
existed in the stack frame for the registers and th a 
requested automatic storage. 

Stack Frame Underflow (6): On 
previous save area was not in 
the current one. 

a RET instruction, the 
the same stack frame as 

Arithmetic Overflow (8): Overflow occurred on an arithmetic 
instruction and was not masked out by the MSR. The 
resulting value was not stored. ' 

Conversion Overflow (11): On a CVB instruction, the 
resulting number required more than 16 bits and the 
interrupt was not masked out in the MSR. The resulting 
binary number was not loaded into R1. 

Division by 0 (C): An attempt was made to divide by O. 
Alignment (E): A halfword was not located on a even byte 

boundary where required. 
Register Specification (10): Register 15 was specified in 

some double register operation. 
Privilege (12): An I/O instruction was attempted with the 

privilege bit in the MSR off. See Section 8. 
Stack Overflow (14): On a PSHM or PSHH/PSHHL, there was not 

enough room in the stack for the requested data, and 
the interrupt was not masked out in the MSR. 

Stack Underflow (16): On a POPM or POPH/POPHL, there was 
not enough data in the stack to fill the pop request, 
and the interrupt was not masked out in the MSF. 

Execute (18): The subject of an EX instruction was ap.other 
EX. This situation cannot be handled by the firmware. 

Invalid Unit Address (1A): Some error was detected in th", 
unit address portion of an IOCC. See Section 8. 

Invalid UCB Address (1C): The UCB 
the unit specified in an IOCC, 
or odd. See Section 8. 

address in the UCBT for 
or for the 5/360, was 0 

I/O and S/360 interrupts are described in more detail in the next 
Section. 

-48-



8 INPUTLOUPUT OPERATIONS ------- ------------~---

The META 4A can communicate 
These units consist of some 
5/360. 

8.1.1 LOCAL UNITS 

Input/Output 

with various external I/O units. 
number of local I/O units and the 

The local I/O units which can be operated by the ME~A 4A 
include a Disk, Card Reader, Keyboard/Typewriter, Control 
Panel, and META 4B (the graphics processor of BUGS). Up to 
a total of 11 local units can be supported by the firmware. 
The instructions used to perform I/O with these are SlOP 
and SID. 

8.1.2 THE 5/360 

The META 4A can also communicate with an IBM 5/360. The 
5/360 regards the ME~A 4A as a standard unit, performing 
I/O with it via a Multiplexor Channel and the stan~ard IBM 
5/360 Interface. The instructions offered by the firm warp 
to support 5/360 communication are 55, TRB, OST, 1ST, and 
EXCC. 

8.2.1 UNIT INFORMATION 

An I/O unit is designated by an I/O address. This address 
is a 5-bit binary number ranging from xOOOO through x101 0 
(the first bit is ignored; C will be assumed here). 
Associated with each unit is a Unit Control Block (DCB). 
This' storage block can contain all the information 

-49-



Input/Output 

necessary to operate the unit, its status, I/O request 
queue, etc. Its format as regard~d by the firmware is as 
follows: 

r--~ ~---, 

OIOOOOOOOOOOOxaddrl 
/---------1 

21 USH 1 
I-~- -I 

41 1 
1 variable 1 
1 1 
1 1 

The UCBs, because of their varying number and length, are 
not located in fixed memory locations. Instead, there 
exists the Unit Control Blo6k Tabl~ (UCBT), which contains 
12 pointers to UCBs. The first pointer corresponds to unit 
00000, the second to unit 00001, etc. (hence, twice a 
unit's address is the UCBT offset of its UCB pointer), 
while the twelfth pointer is for the S/360 UCB. ~he UCBr 
occupies core locations 30 through 47. The only common UCB 
entries are the unit address and the Unit Status Halfword 
(USH). This halfword contains flags describing the current 
operating status of the associated unit (e.g., offline, 
busy, I/O error, etc. ). The exact bit meanings will be 
described with each unit. 

8.2.2 STARTING I/O 

SIOR R 1, R2 
r--------r'- --T----' 
1 16 1 R1 1 R2 1 
L-__ ---L __ ~~-J 

o 8 1215 

Start I/O 
SIO R1,D2(X2,B2) 
r------.---T----T-~ 

1 56 1 R 1 1 X2 1 B 2 1 02 
L-____ ~-~~_~-~----

o 8 12 16 20 

-, 
1 __ J 

31 

These instructions cause I/O to be initiated at a specified 
unit. In order to specify the type of I/O, a 2-halfword 
I/O Control Command (IOCC) is reguired. Operand 2 of SIO is 

-50-



InputlOutput 

this IOCC, while, for SIOR, the firsthalfword is in R1, 
and the second in R2. An IOCC has the following form~t: 

r---------------~----~-----~__, 
I address I xaddr I op I mod I L-______________ -L ____ -L-~ _____ ~ __ J 

o 16 21 2931 

address: The use of this field varies from IOCC to 
IOCC. It normally specifies a memory address or 
is unused. 

xaddr: This is the 5-bit unit address of the 1/0 unit 
on which the 1/0 is to be performed. If the UCB 
pointer in the UCBT for this unit is 0 or odd, an 
Invalid UCB Address Program interrupt will occur. 
Furthermore, if no unit with the specified 
address is installed, or if the unit address in 
the corresponding UCB does not match, an Invalid 
unit Address interrupt w'ill occur, with the unit. 
address in error being stored in core location 
50. 

op: . this 8-bit code specifies the type of 1/0 
operation to be performed. 

mod: this portion of the IOCC provides additional 
information for the unit and operation specified. 

Once an IOCe is initiated, a new USH is automatically 
sensed and stored in the UCB. In addition, a bit is set in 
the Condition Code (the others being reset) as follows: 

CO- Busy or Offline. The unit was found to be in 
Busy status or offline at the time of IOCC 
initiation. 

C1- Unit Operating. An 1/0 operation was begun which 
will, upon completion at a later time, produce an 
1/0 interrupt. The new USH will indicate Busy. 

C2- Immediate Operation Complete. The operation 
performed completed immediately. The unit can 
now respond to another SIO (R) • 

An Alignment interrupt can occur on an SIO(R) for the 
following reasons: 

1) The IOCC was not on a halfword boundary. This can 
only occur for SIO. 

3) The address portion of the IOCC is to be used as a 
memory address, but is not on a half word 
boundary. 

A privilege interrupt can also occur for both formats if 
the privilege bit is not on; this prevents user programs 
from "ac6identally" performing 1/0. 

-51-



In p'ut/output 

At the completion of an interrupting I/O operation, for which 
C1 was set at SIO(R), or upon an externally caused interrupt, 
the operating unit requests an I/O interrupt. At this time, 
the META 4A performs the following functions: 

1) Checks the I/O interrupt bit in the MSR. If off, the 
interrupt is kept pending until such time as ~he bi~ 
is set on. 

2) Next checks the I/O Mask in location 2E. There 
exists one bit for each of the 11 possible I/O 
units, the unit address beinq the bit position. If 
the bit for the interrupting unit is off, the 
interrupt is again kept pending until such time as 
the mask bit is set on. 

3) If the interrupt can be allowed, an I/O interrup~ 
occurs with ~he interrupt ' code equal to ~he unit 
address (see section 7). A new USH is stored in the 
UCB, unless the UCB address in the UCBT is odd or 0, 
in which case the USH is ignored ~n£ bit 0 of the 
I/O interrupt code is set on. Finally, the unit 
interrupt request is reset. 

If two or 
time, they 
address. 

more units 
are taken 

compete for an interrupt at the same 
in priority order by ascending uni~ 

8.4.1 GENERAL INFORMATION 

Viewed from either ~he META 4A or the S/360, I/O to the 
other processor differs from I/O to other units in several 
respects. While most I/O consists of a program issuing 
commands to a unit with a particular set of 
characteristics, S/360 I/O consists of a program in one 
processor communicating with another proqram in the other. 
Since this communication takes place over a S/360 channel, 
it is relatively simple and allows high data rates. 
However, it is also rigidly defined by the channel 
hardware, and deviations from the established protocol can 
have dire consequences for other devices sharing the 
channel and for CPo For this reason, before I/O between 
the S/360 and the META 4A is attempted, the description~ of 

-52-



Input/'Jutpu" 

I/O in th~ System/360 Principles of 0peration msnual s~ouli 
be thoroughly understood. 

The ~E~A 4A is connectei to the S/360 ~ultipl~xor c~s~nQ: 
through an interface hous~i within EUGS. In the int~rface 
are the logic circuits necessary for ad1ress recognition, 
automstic propagation of Sele~t Out, and ~om~an1 byt~ an~ 
status transf~r. Two 15-bi~ registers i~ ~h~ i~~~~f~c~ 
reflect the current state of the tag and bus lines fro~ th~ 
channel, along with certain other status =lags. nthouq~ 
these r~gisters can be dir~ctly controlled (via th~ Io! sn1 
OST instructions), there will rarely be any n~~d to do so. 

8.4.2 S/360 INTERFACE ADDRESSES 

The S/360 interface will respond to initial selections 
directed to any device address in the range osn to ~5~. 
However, only the first four of these (05 n to 053) ar~ 
treated as valid by the ME!A4A, and 1/0 to an address 
higher than 053 should never be attempted. The four vali~ 
device addresses correspond to ~ETA 4A unit addresses 01011 
through 01110, but these unit addresses are effectivelv 
ignoreil., aM th", device address is specified in the 5/315C' 
I/O instruction by the low order digit of the S/360 address 
(i. e., 0 to 3). 

8.4.3 S/360 UCB FO?~AT 

Each of the S/360 DCBs has the following format: 

-53-



Input/Output 

i ---, 

0100000000000 xaddr I 
t----- -I 

2 I I 
t-~. -I 

4 I I cu rr S ta t I 
I '------.--1 

6 I I 
I I 

8 I I 
I .. -I 

AI ICmnd By tel 
t- I _~-I 

CI Data Address I 
I -I 

EI Data Count I 
I ~--I 

10lLast Data ~ddress I 
t- ---I 

12 I Residual Count I 
t-----~--I 

14 I I 
I I 

16 I -Sense Bytes ,()-5 I 
I I 

181 I 
t--~ -I 

1 A I I 
I I 

1C1 Initial statu s I 
I Table I 
I I 

Curr Stat: The current status byte for the device. 
Cmnd Byte: The last (non-zero) command received from 

the channel. 
Data Address: A pointer to the data area for the E~C: 

instruction. 
Data Count: The number of bytes to be transferred by 

the E~CC instruction. 
Last Data address: The address of the last data byte 

read or written by an E~CC instruction. 
Residual Count: The count remaining if the E~C: 

instruction was prematurely terminated. 
Sense Bytes 0-5: 6 sense bytes. (The firmware only 

references the first of these. The rest are 
software defined.) 

Initial Status Table: There is one initial status byte 
for every possible command which can be receivei 
from the S/360. Note that the first byte i the 

-54-



Input/Qutput 

table (for a commad byte of 0) is not used. A n 
command (Test I/O) will cause the curret status 
byte to be sent as initial status. 

8.4.4 FIRMWARE OPERATIONS 

There are 3 basic functions which must be performed ir. 
handling the S/360 interface: initial status presentation, 
data transfer, and ending status presentation. Thesp are 
now described: 

8.4.4.1 Initial Status Presentation 
-------~------~-----~----------~---

When an Initial Selection occurs, the firmware examines 
the command byte, the UCB table, the UCB, and the MSR to 
determine what initial status should be sent to the 
S/360. The following situations can occur: 

Test I/O and valid UCB pointer: The current status 
bye is used as iniial status and then reset to 
o (except possible for busy). Since no 
interrupt is generated, the state of the 
initial Select bit in the MSR is ignored. 

Test I/O and invalid UCB address: An initial status 
of busy is sent. 

Non-zero command and Initial select disabled: 
initial status of Busy is sent. 

Non-zero command and initial selection enabled: The 
UCB pointer for the appropriate device is 
checked. If it is valid (even and non-zero), 
the currpnt status field is checked. If the 
current status field is non-zero, it is ORen 
with busy, sent as initial status, and then 
reset. If the current status field is 0, then 
initial status byte for the command is found 
in the initial status table and sent. The 
command byte is then stored in the UCB and a 
S/360 interrupt occurs, the interrupt code 
being the device address with bit 2 on.lf the 
UCB pointer for the device is found to be 
invalid, unit exception is sent as initial 
status, and the device address with bit 0 on 
serves as the interrupt code. 

-55-



Input/Output 

8.q.q.2 Data Transfer 
----~----~---------~-

Once the software has been given an Initial Select 
interrupt, it must examine the device address and 
command fields of the DCB to determine what action to 
take. For operations involving data transfer between 
the META qA and the S/360, a choice can be made between 
proceeding in "burst mode" or in "byte mode". In the 
first case, control is returned to the firmware via an 
Elecute Chanriel Command ( EXCC ) instruction. The 
firmware then retrieves a data address and count from 
the DCB and proceeds with the data transfer as indicated 
by the command byte which was previously stored in the 
DCB . On termination of the command, the condition code 
is set appropriately (see description of EXCC below), 
and the program is continued. 

In byte mode, the software explicitly requests each da~a 
byte transfer. using the TRansfer &yte (TRB) 
instruction. While slower than the use of EXCC, this 
allows more flexibility in the placement of data in META 
qA memory, for example. 

At the termination of data transfer (due either to the 
count from the UCB reaching 0 or to Interface Stop) , 
ending status must be sent to the channel with the Send 
status (SS) instruction. Normal ending status consists 
of Channel End and Device End. Unusual conditions 
encountered during data transfer (such as Bus 4 0ut Check) 
are indicated bV ORing the appropriate bits in the 
sta tus byte-. 

If the S/360 performs a System or Selective Reset, a 
5/360 interrupt will unconditionally occur with an 
interrupt code of 2. Whatever instruction was executing 
on the META qA at this time is ~~Q~l~~, thus this is an 
irrecoverable condition. 

-56-



Input/0utpU t . 

8 . 4.5 S/360 INSTRUCTIONS 

Input/Output S or T register 
lOST R1--,R2 
r' i---r----, 
I 20 I R1 I R2 I 
~ ______ ~' __ ~---J 

o 8 1215 

This instruction is used for direct control of the 
interface Sand T registers. The R1 field refers to the 
~ETA 4A register which is to be snet to or loaded from the 
interface. The R2 field contains the operation to be 
performed, as follows: 

0: The contents of S are placed into R1. 
1: The contents of R1 are loaded into S. 
2: The contents of T are placed into R1. 
3: The contents of R1 are loaded into T. 

Bits 12 and 13 of the R2 field are ignored. 

EXecute Channel Command 
EY.CC R1,R2 
r--- i ---r--, 

22 I R 1 I R2 I 
L- I --L-___ J 

o 8 1215 

This instruction is used to perform block data transfers to 
and from the S/360. The address and length of this data 
are found in the S/360 UCB, for the device whose address is 
in the R1 field. Bit 7 of the Command byte determine the 
direction of data t r ansfer: 1 means from the 5/360, 0 
means to it. If a Bus-Out Check is encountered during 
transfer, transfer is stopped and the error is recorded in 
bit 2 of Sense Byte 0 and in bit 6 (Unit Check) of the 
Current Status (Cur Stat). Transfer is also halted if Stop 
or Halt 1/0 is received from the channel. In whatever 
manner transfer is completed, the Final Data Address will 
be set to the address of the last byte transferred plus 1, 
while the Residual Count is set to the number of bytes 
rema1n1ng to be transferred. The Condition Code will be 
set as follows: 

cO - Transfer successful or Bus-Out Check. 
C1 - Stop received. 
C2 - Halt I/O received. 

Privilege and Invalid UCB Address interrupts can occur. 

-57-



Input/output 

TRansfer Byte 
TRB R1 ,D2 (X2,B2) 
.. --~i- --T-~----r--------------' 

I 62 I R 1 I X2 I B 2 I D 2 I 

o 8 12 16 20 

J 

31 

This instruction operates exactly as EXCC except that the 
Data Count is assumed to be 1 and the byte to be 
transferred is found at the Operand 2 address. Because 
only 1 byte is transferred, the Final Data Address and 
Residual Count fields are not modified. Invalid UCB 
Address and Privilege interrupts can occur. 

Send Status 
SS R1,D2(X2,B2) 
.. ------~-~--~~--------------, 
I 55 I R 1 , X2 , B2 , D2 , 
L-______ ~---~ --L ______________ J 

o 8 12 16 20 31 

This instruction causes a status byte to be sent from the 
device specified by the F1 field to the S/360. The status 
byte is either the low order byte of the second operand 
.~~r.~~ or the current status field of the UCB. If the 
second operand address is non-zero, it is taken as the 
status byte, and the status is considered to be 
asynchronous (e.g., suppressable). If the address is 0, the 
current status field is examined. If this is also zero, C0 
is set and nothing more is done. If the current status is 
non-zero, it is sent to the S/360. In either case, if 
status is stacked, the status byte is stored in the current 
status field of the UCB and c2 is set. (The program can 
then either try to re-issue the SS instruction or assume 
that the chan~el will eventually reguest the stacked 
status.) The Condition Code is set as follows: 

co - Status accepted. 
C1 • Status was suppressed or stacked. 
C2 - Halt I/O received. 

Privilege and Invalid UCB Address Program Interrupts can 
occur. 

-58-



Inputloutput 

9.1.1 DESCRIPTION 

The D.S.C. Model 3461 Card Reader provides punched card 
input for the META 4A processor. It is rated at a maximum 
throughput of 300 cards per minute, reading serially column 
bV column. The 3461 reads cards in Hollerith image only; 
no code translation is provided by it or the firmware. A 
column image is stored in bits 0 through 11 of a halfword; 
bits 12 through 15 are set to 0. 

9.1.2 110 CONTROL CbMMAND S 

The 3461 is addressed by the 5-bit unit address 0010~. It 
utilizes a single IOCC wich is an Initiate Read, to start 
up a card read cvcle: 

Initiate Read IOCC (X'2620') 

~ ----~----~-------~--, 
1 buffer address 10010011100010011/11 L-____ ~ _________ -L--__ -i-_ 

J 

o 16 21 2931 

The address portion of the IOCC specifies the half word 
memory address of the read buffer. The first halfword of 
the buffer designates the number of columns to be read. 
This count ("n" in the ,Uagram below) is located in bi t 
positions 9 through 15 and should never exceed gn 
(information in succeeding memory locations wi~l be 
destroved). The halfwords following the count will receive 
the column data. 

Buffer 

-59-



• 
Inputloutput 

r--- --, 

0111111111 n I 
I- ---~ 

21 column 1 I 
1--- ~ 

41 column 2 I 
I- ~ 

61 I 

I I 
I ---~ 

2*nl column n I 
I- --~ 
I I 

Once the card readinq operation is complete, the 3461 will 
request an Operation Complete Ilo interrupt. 

9.1.3 USH FORMAT 

The format of the USH for the 3461 and the meanings of the 
bits are as follows: 

~-r- i i ~-T"'""-'--T , i ~ 

1IIIIIIECILCIOCtllllllllllllllllllllilB lOBI 
'---L--.L--L-..... ...L--.L_ .1.-L_-J...- I -.oJ 

o 1 2 3 ~ 5 6 7 8 13 14 15 

EC: Error Check. Th~s indicates a feed check or a 
read check. It will appear along with OC. 

LC : Last Card. This bit comes on after the last card 
is rea..d and will appea r with OC. It remain s on 
until more cards are placed in the hopper. 

OC: Operation Complete. This bit is set just prior 
to ~he request for an IIO interrupt after card 
reading is completed. It will appear in the USH 
that is s tored in conjunction with the IIO 
interrupt. 

B: Busy. "'his indicates that a card read is in 
progress and therefore another read cannot be 
initiated. This indicator turns off when the 
Operation Complete interrupt occurs. 

OB: Offline or Busy. Offline is on when the Read 
Stop light is lit on the 3461. This bit is also 
on when the B (BUSy) bit is on. 

-60 -



Input/output 

9.2.1 DESCRIPTION 

The Terminal Interface provides a means of interactive 
communication between the META 4A processor and a terminal. 
Any terminal which conforms to the RS232-C conventions may 
be plugged into this interface. This unit also controls the 
black plexiglass box (hereafter called the magic box) 
connected to the terminal cable. The input and output codes 
are right justifi~d ASCII. 

9.2.2 CONTROL COMMANDS 

The Terminal Interface is addressed by the 5-bit uni~ 
address 00110. The control IOCC uses a set of status codes 
to control the ablitity of the Terminal Interface to 
interrupt the cpd, and to control the lights on the 
terminal and the magic box. 

Control IOCC (1'3430') 

~---------------~---~-------~--, 
I status codesl0011011000011010001 
L- _____ ----~---L--------~_-J 

o 16 21 2931 

Status Codes Format: 

r---r- i '''''I''''~--...---t"--r-- i f-' 
IOCIIRIIIIIIIIIIIIIIIIIIIPRIIIIIIIIFLILLIRLI 
'--i.--.L.-.-L I I ~_-L • 1--1 

0 1 2 

OC: 

IR ~ 

PR: 

FL: 

LL: 

RL: 

3 4 5 6 7 e 13 14 15 

output Complete Enable. If this bit is on, the 
output complete interrupt will be enabled. 
Input Complete Enable. If this bit is on, the 

input complete interrupt will be enabled. 
Proceed. If the terminal has a wait/proceed 

light, this bit will control its status. 
Flash Light. If on, the light on the left side of 
the magic box will flash. 
Left Light. If this bit is on, the left hand 

light on the magic box will be on. 
Right Light. If this bit is on the light on the 
right side of the magic box will be on. 

-61-



Input/Output 

Read Command 

When the user stikes a key on the terminal, an Input Ready 
interrupt will occur if a previous control IOCC enabled the 
interrupt. At this time, a Read IOCC should be performed to 
store the ASCII character into a halfword in core. This 
IOCC has the following format: 

Read IOCC (lC ' 3208 1 ) 

r-- ....,.--~ -~-, 

memory addressl00110101000001 10001 
L~ ________ ~ _______ -L--__ -L _ _ ..,,_.L-_~ 

o 16 21 2931 

output Command 

The Write IOCC will write one ASCII character to the 
terminal plugged into the interface. 

Initiate Write IOCC (X ' 3130 1 ) 

r---------------r-----T--------~--, 

I ASCII characterl0011010010011010001 
L-.,---____ I --L-- .L-_J 

o 16 21 2931 

9.2.3 USH FORMAT 

The format of the USH for the Terminal Interface and the 
meaninqs of the bits are as follows: 

i , f i ~T--~-r--'----------r--r-..., 

10CIIRIBRIATITBITO IP EIOR I/////II/II//I//I//1 
L-~' I -'--.L-.L--L--L l -1 

o 1 2 3 • 5 6 7 e 13 1. 15 

OC: Output Complete. This bit is set when t he 
interface is ready for another character. 
Following the setting of this bit, an I/O 
interrupt is requested by the Terminal Interface. 

IR: Input Ready. This bit comes on after the user 
has hit a key and just prior to the request by 
the interface for an I/O interrupt. A Read IOCC 
should be performed after receiving this 
interrupt. 

BR: Break. This bit is set when the user strikes the 
BREAK key on the terminal. It is provided as a 

-62-



Input/Output 

means of signalling an attention to the META 4A. 
An I/O interrupt will occur after the setting of 
this bit. 

AT: Attention: This bit is set when the buttQn on the 
magic box is pressed. An I/O interrupt will be 
requested after this bit is set. 

TB: Terminal Busy. When on, this indicates that the 
interface is busy transmitting a character. 

T~: Terminal Offlin e or Busy. This bit is off when 
the terminal is powered on and plugged into the 
interface. 

PE: Parity Error. This bit is set when a parity error 
is detected in a received character. 

OR: Overrun. This bit is set when t.he interface 
detects an overrun condition. 

9.3.1 DESCRIPTION 

The /360 Te~minal Interface is almost identical to the 
interface described in 9.2 above. It provides an interface 
to the /360 so that BUGS can look to CP as though it were a 
terminal. Only the differences in operation from the 
description above will be shown here. 

Control IOCC (X' 1C3(J ') 

r--------------~~--~----~__, 
1 status codesl0001111000011010001 
~ ~_~_ .L.-__ J 

o 16 21 2931 

The 
the 
will 

status codes are identical to those 
exception that turning bit 2 on 
transmit a BREAK to the /360. 

Read IOCC (X'1A08') 

--r-----r------~-, 

memory address 10001110100000110001 
'-_____ ~ _____ .L.-__ J 

o Y6 21 2931 

Initiate Write IOCC (X'1930') 

-63-

described in , with 
in the status codes 



Input/Output 

r ~-~~-------~--, 
I ASCII characterI00011!~0 100110!OCO! L..-____ ,... ____ -L-__ ~_ J 

o 16 21 2931 

9.4.1 DESCRIPTION 

The Model 1444 Disk Storage Unit provides the META 4A 
Computing System with a large t1 seguential or random access 
data store. The features of this store are described in 
the following paragraphs. 

The storaqe capacity provided by the 1444 ' is 1,024K 
(1, O~8,~7h\ bytes per disk cartridge. A single 
cartridge may be . ~ ~-·.d on the drive at anyone time; 
but cartridges mav be inttLchanqed in a matter of 
minutes. 

The disk access mechanism, called the carriage, is moved 
back and forth by programmed I/O Control Commands and 
can be placed over anyone of 203 cylinders, numbered 
from 0 to 202. Each cylinder is divided into 8 sectors, 
numbered 0 to 7. Sectors 0 through 3 are located on the 
upper surface of the disk, while sectors 4 through 7 are 
on the lower surface. Each sector contains 642 bytes of 
information and is the largest segment of data that can 
be read/written with a single IOCC. 

-64-

z.o~ x K x l~L ' ~­
, o'1 1-4(Jg" 



Input/nutput 

9.4.2 1444 I/O CONTROL COMMANDS 

The 1444 is addressed by the unit address 00010, and is 
controlled by 4 IOCCs. The first of these is a Control, 
and is used to position the carriage over one of the 203 
cylinders of the cartridge. Its format is: 

G:ontrol IOCC (X'1430') 

r----------------T----~~------~--, 
1///////incrementI00010110~00110ID//1 
L-~ _______ ~ __ ~ ____ ~ _______ ~ __ J 

o 16 21 2931 

The increment specifies the number of cylinders to move the 
carriage relative to its curren t position. If bi t 29 (D) 
is 0, the-carriage is moved toward the higher cylinders 
(the center of the cartridge); if 1, it is moved toward 
the lower cylinders (the edge of the cartridge). Wher. 
movement is complete, an Operation complete interrupt 
occurs, unless the increment was O. Because movement is 
relative, it is necessary to keep in the UCB the current 
cylinder position,' so that increments can be computed 
correctly. 

The second IOCC 
information on a 
Its format is: 

is an Initiate Write, used for recording 
particular sector of the current cylinder. 

Initiate Write IOCC (X'1520') 

r---------------~---~-----~--, 
I memory address 100010110100100lseci 
L-__ --.,...-----L-...,--L- ___ .L-__ J 

o 16 21 2931 

The memory address specifies the address of a buffer on a 
halfword boundary from which data is written on the sector 
specified by the 3-bit · number sec. The buffer has the 
following format: 

Buffer 

-65- · 



• 

Input/output 

r- .., 
0, count n , 
I-~-------I 

2, column 1 , 
I-~ --I 

4, column 2 , 
1----- _I 

61 , 

1 1 
I-~--------I 

2*nl column n 1 
I---------~---I 

1 1 
The count specifies the number of halfwords of data to be 
written on the sector, and is followed by the halfwords 
themselves. If less than 642 bytes (321 halfwords) is 
written, the remaining bytes on the sector are zeroed. An 
Operation Complete interrupt occurs after the write 
operation is finished. 

Finally, there 
these is used to 
Its format is: 

are 2 
read 

Initiate Read IOeCs. The first of 
all or part of a sector into memory. 

Initiate Read IOCC (Y' 1620') 

-.,---.,------r---.. 
memory address I00010111000100lseci 
~ _______ . ____ -L-___ -L- . ___ .1-_J 

o 16 21 2931 

The memory address points to a buffer (in the same format 
as that for Initiate Write) which specifies a count of the 
number of halfwords to be read from the sector specified by 
the 3-bit number sec. An operation Complete interrupt 
occurs after data transfer is complete. 

The second of these, Initiate Read-Check, performs exactly 
the Same function as Initiate Read, except that no data is 
stored . in memory. Therefore, no data halfwords need 
folllow the count in the buffer. A Read-Check is used to 
check the validity of data written on the disk and should 
follow every Write if maximum reliablilty is to be 
maintained. 

Initiate Read-Check lace (Y'16AO') 

-66-



InputlOutput 

r---------------~----~--------._--, 
I memory address I00010111010100lseci 
L-____ ~--_______ -L-----L--_--_--~--J 

o 16 21 2931 

NOTE: If a count of 0 is >specified on any of the last 3 
IOCts, unpredictable results will occur. 

9.4.3 USH FORMAT 

The format of the USH for the 1444 is as follows: 

r- i i ~, i ~-r~------, i-' 

IE > I·otl OBI B ICO 11/11/11/11/11111111/11 SCI SCI 
L __ ..L.-.l-.-L I I -Ia_-L- I --1 

o 1 2 3 • 5 6 7 8 13 14 15 

~: Error. This bit can appear at Operation Complete 
for the following reasons: 
1) A datfl error occurred on an Initiate Read or 
Read-Check. 
2) More than 642 bytes (321 halfwords) were 
specified by the · count field. A sector is the 
maximum s~gment that can be transferred by 1 
IO(lC~ 

3) The carriage was moved to cylinder 0 or 202 
by a Control IOCC, but the increment specified 
still more movement. The current D.S.C. 1444 
controller circuitry goes berserk when this 
situation occurs. 

OC: Operation Complete. This bit will appear in the 
USH after an Operation Complete interrupt. 

OB: Offline or BUSy. This bit is on when the 1444 
drive is powered down, not up to speed, or when 
the unit is busy executing a previous IOCC. 

ll: Busy . This bit is on when the unit is busy 
executing a previous IOCC. OB will also be on in 
this case. 

CO: Carriage at O. This bit is always down unless 
tfie catriage is positioned over cylinder O. 

SC: Sector Count. These 2 bits specify the sector 
numb'lr (modulo 4) of the next sector to pass 
under the ReadlWrite Heads on the carriage. If a 
program can be arranged to readlwrite either of 
these sectors next, rotational delay will be 
minimi zed. 

-67-



Input/Output 

9.5.1 DESCRIPTION 

The Control Panel contains th~ switches, dials, and lights 
necessary to operate and control the META 4A and the whole 
BUGS system. In addition it is possible for a running 
program to perform limited I/O to the Panel. 

9.5.2 SYSTEM CONTROL FUNCTIONS 

POWER ON {blac~: This key is pressed 
power-on sequence of the whole BUGS 

to initiate a 
system. 

POWER OFF (red): The Power Off key 
initiate the power-off sequence 
1444 disk should be in SAFE state 
is press~d. 

is pushed to 
of BUGS. The 
when this key 

STOP: This button causes all processing to stop after 
the completion of the current instruction. The 
META 4B is siqnalled to stop also. " but other 
initiated I/O operations are allowed to come to 
completion. It is necessary for the META 4A to 
be in this "stopped" state if any Panel 
manipulations are to be performed. 
NOTE: If S/360 Initial Select interrupts are 
disabled ~n1 the META 4A is online. the STOP 
button is ignored. This is to prevent 
Multiplexor Channel and CP crashes. 

RESET: This button resets the META 4A and all online 
local I/O units; in other words, the whole BUGS 
system. All pending interrupts are cleared, 
parity Checks are corrected, and the system is 
placed in an initialized state. The contents of 
the memory and registers after RESE~ are 

IPL: 
unpre~ictable. 

This button provides a means of initially 
loadinq a program into memory and beginning 
execution. Before initiating an IPL, BUGS should 
be reset and the data switches set to specify 
from where the initial program should be 
obtained: 

all off: bytes 2 
on the 1444. 

through 641 of cylinder 0, sector 0 

switch 0 up: bytes 2 through 641 of cylinder 202, 
sector 0 on the 1444. 

-68-



Input/Output 

switch 1 up: a variable number of bytes from the 
S/360. 

The IPL sequence involves lighting the IPL-ING light, 
loading the initial program starting at location 
0, and obtaining the initial MSR and PC from 
locations 0 through 3 to start execution. Oncp. 
the IPL is complete, the IPL-ING light is 
extinguished, unless an error occurs. If thp. 
light remains _on, IPL should be re-attempted. 

IPL-ING light: This light is on during an TPL 
seguence, as described above. 

CPU RUN light: This light is on when the META ~A CPU 
is running. The CPU is considered to be running 
at all ti~es except during panel manipulations 
performed after the STOP button is pressed. 

WAIT light: This light is on when the META ~A CPU is 
running bu t the MSR indicates wait state. 

9.5.3 USER INTERVENTION FACILITIES 

Whenever the BUGS s~stem has entered "stopped" state due to 
the STOP button being pressed, the user may execute one or 
more of the above control functions. In addition . the Panel 
provides him with facilities to display and modify various 
components of the META ~A. 

Displaying and Loading the MSR: The user can display 
the current contents of the MSR on the lower 
lighks by s~tting the REGISTER SELECT (RS) dial 
to MSR and the MODE SELECT (MS) dial to DISPLAY. 
Furthermore, by turning the MS dial to LOAD, he 
may modify these contents by setting the desired 
halfword on the 16 data switches. The CLEAR 
switch will at all times zero the contents of the 
register currently being loaded. 

Displaying and Loading the PC: This operation is 
coMpletely synonomous to that for the MSR, except 
that the RS dial is set to the PC postion. 

Displaying, and Modifying the Next Sequential 
Instruction (NS!): The NS! is the first half word 
of the instruction currently pointed to by the 
PC. This halfword may be manipulated exactly as 
the MSR and PC by setting the RS dial to NS!. 

Displaying and Modifying Memory: !n order to select a 
memory location for displaying or modification, a 
special , register, called the . Display Counter, is 
used. The RS dial has a COUNTER position, so 
that this register can be treatep just as the 
MSR, PC and NSI explained above. Following the 

-69-



Inputloutput 

setting of the Display Counter to the desir~d 
address, the RS dial is turned to MEMORY DATA, 
and the halfword pointed to by the Display 
Counter is shown on the lower lights, with the 
Display Counter itself on the uppers. The memory 
halfword may then be modified by the normal 
procedure. If the START switch is depressed 
during a memory display, the Display Counter is 
incremented by 2 and the next halfword displayed. 

Displaying and Modifying Registers: As you may have 
guessed, this operation is identical to that for 
memory, except that the RS dial is turned to 
REGS. Only bit 12 through 15 of the Display 
Counter are used to select the register. 

Clearing Memory: A firmware memory clear may be 
performed by sett ing the RS dial to MEMORY DATA, 
the MS dial to LOAD, and depressing the IPL, 
CLEAR, and START buttons simultaneously. Memory 
is completely zeroed in approximately on~-half 
s<;!cond. 

starting the META 4A after Stopping: This is 
accomplished by setting the MS dial to STEP, RUN 
or INT RUN (described below), and pressing the 
START switch. RUN causes normal CPU execution to 
continue, while STEP causes "stopped" state to be 
re-entered after ex e cution of for , debugging 
system programs "interactively". 

9.5.4 IIO TO THE CONTROL PANEL 

The Panel 
IOCCs are 
these is 
switches: 

is addressed 
available to 

used to re'ad 

Read IOCC (X' 2A08') 

by the unit number 00101. 2 
the programmer - the first of 
the setting of the 16 data 

i < --_----.---~---.e---_ i i 

1 memory address 10010110100000111/11 
L--_ .;..--.L-___ L-~ J 

- 0 16 21 2931 

The half word switch setting is stored at the memory 
a,ddress speci fied. 

-70-



Inputioutput 

The other IOCC is used for setting the lights to a 
certain value. This can be useful for operating system 
error halts or what have you. Its format is: write IOCC 
(X'280(l') 

.. ---------"'"T""--~ i 1 

I memory address 1001011000000001/LUI 
L 

o 
__ --L----L----------L'~e--J 

16 21 2931 

The halfword at the memory address 
lights if L is on, the uppers if U 
both modifiers are set. 

is set on ~he lower 
is on, or bo~h if 

The format of the USH for the Panel is: 

, 
"'--1' ~--r---r~ , -------r--r--, 
I IR I IB I P 1111111//11111111111111111111111111 L--, I .L.--..L_._.L--L_--L_-L. ______ -~-i--.J 

o 1 2 3 • 5 6 7 8 13 · 14 15 

IP.: This bit is se~ · after a Panel interrupt caused 
by running in INTerrupt RUN mode. This mode 
of execution causes an interrupt after every 
instruction. 

IB: This bit will be set after a Panel interrup~ 
caused by hitting the INTERRUPT button. 

P: This bit is set after a Panel interrupt cause~ 
by a parity Check. The PAR STOP light is 
automatically set by the firmware when thi~ 
check is detected, and an interrupt then 
occurs, unless disabled by the MSP.. 

9.6.1 DESCRIPTION 

The META UB is the graphics processor of the BUGS 
configuration - a CPU of the same power as the META UA, 
but with tarqet instructions oriented towards graphic data 
manipulation and display. A complete description can be 
found in the META UB Principles of Operation. This section 

-71-



Inputioutput 

describes the IOCCs used in communication between the 2 
processors. It should be realized that the META US can 
perform equivalent operations (although they are programmed 
differently), thus completing the communications link. 

9.6.2 1/0 CONTROL COMMANDS 

There are 3 IOCCs used to communicate with the META U B. 
These IOCCs manipulate registers in a special 
inter-processor interface, The Inter-Processor Interrupt 
(IPI). The IPI is addressed as unit 00000 The first IOCC 
is a write: 

write IOCC (~'0930') 

r------ i ---,-----.--.. 

1 11111111111111 10000110010011011/11 
L-______ ~-L---L-

J 

o 16 21 2931 

This IOCC sends an interrupt request to the META UB. 

The second IOCC is a Read, whose 
META UA to read back its own USH. 

Read lace (~'0208') 

function is to allow th e 
Its format is: 

r- --~--~-----.--.. 
1 memory address 10000110100000111/11 
L-_~_ 

. ___ -L-__ -L- ___ .1.-_J 

o 16 21 2931 

The USH is pl.ced in the halfword at the memory address. 

The final IOCC, a Control, is used by the META UA to reset 
bits in the B's USH: 

Control IOCC (~'OU30') 

r---~-, --~--' -~-.~-~-, 
11111111111111111/0000111000010011/11 
L-____________ -L----L- _. ____ .-.1.--J 

o 16 21 2931 

This IOCC acknowledges an interrupt from the META UB. 

-72-



Inputloutput 

9.6.3 TYPICAL COMMUNICATION SEQUENCE 

Let us assume that the ME~A 4B wants to interrupt th~ MF~A 

4A. The following sequence of events might occur: 
META 4B: Initiates the equivalent of a Write to set 

its USH to the interrupt code and requ~st an 
interrupt at the A. 

META 4B: Goes into a loop reading its USH and testing 
for 0 to wait for the A to acknowledge the 
interrupt. 

META 4A: Receives the interrupt and so as to avoid a 
continuous interrupt request, Controls the actual 
META 4B USH (stored in the UCB upon interrupt) to 
t he B so as to clear its USH and the interrupt 
request. 

META 4A: Branches off on the USH code to perform 
reguested function. 

META 4B: Drops out of the read loop and continues 
operat ion. 

NOTE: The Qnly way to clear an interrupt request is to 
zero the META 4B's USH by a Control IOCC. Not even the B 
can clear its request (by writing a USH of 0, for example ) . 

9.7.1 NO OPERATION 

The No Operation IOCC is common to all 1/0 units. !.t 
performs no. 1/0 at the unit and therefore completes 
immediately with Condition Code C2. It does, however, (as 
do all SIO (R)/IOCC combinations) cause the post-SIO (R) USH 
to be stored in the UCB, and can optionally be used to 
clear a pending 1/0 interrupt. 

No Operation IOCC 

r-~ -r--~-r--------~--' 

1IIIIIIIIIIIIIIIIIxaddrl11100011111CI L-______________ -L-___ ~ __ ~ ___ ~ __ , 

o 16 21 2931 

If bit 31 (C) is on, and 
unit has been requested but 

an interrupt from the addressed 
kept pending due to the MSR or 

-73-



Input,routput 

I/O Mask, that interrupt request is cleared. This bit is 
ignored when the META 4B is addressed. 

9.7.2 INVALID I/O CONTFOL COMMANDS 

If an lace with an invalid operation code is initiated , 
unpredictable results will occur at the I/O unit, along 
with possible spurious I/O interrupts. Such operatio~ 
codes should therefore never be used for any purposes 
whatsoever. 



~ ~ 
O,I ... 2 f ';t 

B 

'! 

'1, S, ~17 

A 

G,F 

(., D 

As mentioned in Section 7, certain extra information is stored in 
low core when an Operation Program interrupt occurs. Thi~ 
information facilitates simulating extended machine instructions 
in software. There are 5 halfwords of information stored in 
memory locations 52 through 5B; the exact nature of the 
halfwords stored depends on the format of the invalid instructio~ 
as shown in "the followihg table: 

LOCATION 
.2~ .2~ 

-~~-----
.2~ SA 

EQl\l1AI 
RR First 4*F.1 4*F.2 

halfword of 
instruction 

RI " 4*1'1S Operand 2 
(immediate 
data) 

RS " 4"' R1 Operand 2 
address 

RX " 4*R1 Operand 2 
address 

EX " 4* R 1 Operand 2 
(branch) 
address 

SI " Operand 1 Operand 2 
address (immediate 

data) in 
locaton ')1 
(0 in 50) 

FSS " Operand 1 operand 2 
address address 

VSS " ler.gth Operand 1 Operand 2 
address address 

NOTE: Blank entries in the table signify that the contents of 
the location are undefined, or too ridiculous to mention. 

-75-



11 • 1 OPERATION CODES AND INSTRUCTION EYECUTION TIMES 
----------------------~-----------------~-~-~-~------

In§1£l!f.ti2n Code I!~fl!1iQn Iim~ Jin mif§.!.l.. ----
A 74 4.62 (assuming no overflow) 
AH F4 7.62 
AHI BII 5 . 37 
AI R4 3.54 
AL 7C 4.77 (a vera gel 
ALI BC 3.69 
'ALR 3C 3. 3 6 
AR 34 3. 21 
AX 24 3.3 0 

II 
BAL A8 3.75 
BALR 28 3.42 
BCO A7 3.65 

'------" 
BCOR 27 3.32 
BCT AF 3.99 
BCTR 2F 3.66 
BCZ A6 3.65 
BCZR 26 3.32 
BXH AO 5.25 
BXLE A1 5.25 
C 70 5. 14 (average) 
CH FO 7.42 
CHI 80 5.38 
CI BO 3.96 
CL 7F 4. 13 3 
CLB SF 4.89 
CLBI 8F 4. 83 
CLC CF 7.56 + 2.04N (N is the num ber of 

characters compared) 
CLCL DF 7.83 + 2.04N 
CLH "B 7 • 11 ' 
CLI BF 3.75 
CLR 3F 3.42 
CR 30 3.53 
CVB 50 5. 4 3 + 1 .80N ('I is the number of 

characters converted) 
CVD 51 17.75 ( average) 
D 77 12.75 
tlEQ 48 7.08 

'---'" DH F7 16.71 
or B7 12.09 

-76-



" '---../ 

DR 37 11 . 34 
ENQ F8 9.24 
ENT BE 23.88 
EX 54 5. 01 + normal time of subject 

instruction (R1=O) 
5. 10 + normal tim~ of subject 
instruction (R 110) 

:":XCC 22 
FILL C8 7. 11 + 2.04L (L is the number of 

bytes specified by the lenqth 
field.) 

FULL D8 7.38 + 2.04L 
IB 58 4.71 
IST 20 3.45 (average one register 

0) 
L 73 4. 32 
LA 5D 4.29 
LB 5A 4. 41 
LC 4E 4.92 
LCR OE 3.63 
LD 53 4.92 
LDI B8 4.03 
LDR 13 3.63 
LI B3 3. 24 
LM 93 5.64 + 1.02R (R is the number of 

registers specified) 
LMD 91 5.85 + 1.02R 
LN 4D 4.44 (if already negative) 

4.62 (if positive) 
LNR OD 3. 15 

3.33 
LP 4C 4.56 

5.04 
LPR Oc 3.27 

3.75 
LR 33 2. 91 
LSB 5B 4.80 
LX 23 3.09 
LXB 4F 4. 41 
LXBR OF 3. 12 
LZ 5E 5.25 
M 76 10.77 
MH F'6 13.22 
MI B6 9. 81 
MR 36 9.36 
MVA 62 7.06 
MVBI BC 5.61 ~ 
MVC C4 7.32 + ~ . L (bot h addresses 

even) 
'------ 7.23 + 3.06L (otherwise) 

MVCL D4 7.59 + .08L 

-77-



7. 50 + 3.06L 
MVCN C5 7.53 + 1 .0 8L (addres s 1 < 

add,ess2 and hoth even) 
7.80 + 3.06L (oth er wis e ) 

MVCNL D5 7.80 + 1.0 8L 
8.07 + 3 .06L 

MVH F3 7 . Li 1 
MVH1 83 5 . 37 
N 79 Li. 80 (average) 
NBI 89 6. 2 Li 
NC C9 7. 11 + 3.06L 
NCL D9 7.38 + 3.06L 
NI B9 3.72 
NR 39 3.39 
0 H Li.89 
OBI 81\ 6.33 
OC el\ 7. 11 + 3.06L 
OCL DI\ 7.38 + 3.06L 
01 131\ 3. 8 Li 
OR 31\ 3. 5 1 
POPH C7 9.1'3 + 1.0 8L (L is t hI'! number of 

bv~es specified by t. he :engt.h 
fi e l d) 

POPHL D7 9.30 + 1 .0 8t, 
POPM 97 7.53 + 1.02 11 (R is the nu m hl'!r of 

reg i sters specified) 
PSHH C6 9. 5 1 + 1.08L 
PSHHL D6 9.78 + 1. 0 8L 
PSHM 96 7.35 + 1.1Li R 
RET 0B 21 . 99 
S 75 Li.72 
SA 5c Li. 5r 
SD 17 8.70 
SH F5 7.71 
SHI 85 5.58 
51 B5 3.75 
SIO 56 10 .7 (approximate a vl'!rag e ) 
SIDR 16 8. 5 
SL 7D Li. 86 
SU_ 9C 6.72 + • 30 B (B is the numb",,, of 

bit positions specified) 
SLH 1C 5. 1 I) + .30B 
SLDA 9E 7.02 + • 30 B 
SLDAI 1E 5. Li 0 + .30 B 
SLDL 91\ 6.93 + • 30 B 
SLDL1 11\ 5. 3 1 + .30B 
SLE CO 7.29 + 1.02N (N is the number of 

byt.es searched in the first 
operand) 

SLEL DO 7.56 + 1.02N 
SLI ED 3.90 

-78-



SLL 98 6.63 + .30B 
SLLl 18 5.01 + .30B 
SLNE C2 7.29 + 1.02N 
SLNPL D2 7.56 + 1.02N 
SI,P 3D 3.57 
SR 35 3. II 2 
SRA 9D 6.63 + · 21 B 
SRAl 1D 5.1'1 + .21 B 
SRCH )'9 9.75 + 1.25N (see la +.er rate) 
SRDA 9F 6.8(1 + .21 B 
SRDAl 1F 5.22 + .21B 
SRDL 9B 6.75 + .21 B 
SRDLl 1B 5.13 + .21B 
SR E C1 7. 20 + 1.02 11 
SREL D1 7.117 + 1.02N 
SRL 99 6.511 + • 21 B 
SRLl 19 11.92 + • 21 B 
SFNE C3 7.20 + 1.02N 
SRNEL D3 7.117 + 1 .0 2N 
SS 55 
ST 72 5. 16 
STB 59 5.4 11 

STD 52 5.37 
STl1l B1 4. 41 

'-' STDR 12 4.08 
STL CC 7.29 + 2.04N 
STLL DC 7.56 + 2.04N 
STM 92 5.70 + 1 .14 R 
STMD 90 5.91 + 1.111R 
STR CD 7.20 + 2.04N 
STRL DD 7.47 + 2.01lN 
SVC 31 8.70 (This reflects the t ~. me 

until the first instruction of 
the SVC interrupt handler is 
fetched. ) 

SVCD F 1 12. 33 
SVCS 81 10. '1 
SHP 78 5. 16 
SWPR 38 3.6 ., 
SX 25 3. 51 
TBM AC 3.63 
TBMR 2C 3.30 
TBNM AB 3.63 
'1'BNMR 2B 3.30 
TBNP AE 3.63 
TBNPR 2E' 3.30 
TBNZ AD 3.63 
TBNZR 2D 3,30 
TBP 119 3.63 
TBPR 29 3.31' 
TBZ AA 3.63 

-79-



TBZR 2A 3. 30 
TMBI 82 4.83 (average ) 
'I'MI B2 3.75 
TMR 32 3.42 
TR CE 7.02 + 3.18L 
TRB 62 
TRL DE 7.29 + 3.18L 
TSL 87 5.94 
X 7B 4.80 
YBI 8El 6.42 
XC CB 7. 11 + 3.06L 
XCL DB 7.38 + 3.06L 
XI BB 3.84 
XR 3B 3.51 

Tho times shown reflect instruction fetching and parsing as 
well as individual execution time. For instructions like ST, 
which perform a memory operation late in the execution 
routine, the time shown includes the full memory cycle. 

A non-O base register i s assumed wherev er appropriate. Deduct 
.09 microseconds for each n base registe r . For PI and BY 
instructions, a 0 index register is assumed. Ad1 .4 2 
microseconds for each non-0 PX index and .39 microseconds for 
each non-~ BX index. For branches, the time s hown is the 
average for a successful and an unsuccessful branch. The 
execution time for any instruction may be lengthened if a 
cycle-stealing I/O opprat~on is in progress. 

For SPCH, N is the number of memory reads that must be 
performed during searching. This is defined as follows: 
There is one memory read for each forward pointer fetched. 
For a TM search, the re i s one memory read for fetching the key 
in each entry. ,The argument is nQi refetched each time. For 
each entry in a CLC search, the argument and the key are each 
fetched one byte at a time until the strings are discovered to 
be unequal, or the key length is exhausted. One memory read 
is required for each byte fetched. 

11.2 OTHER TIMINGS 
-----------------~ 

A local I/O interrupt takes 9.60 
detection and the fetch of the first 
interrupt handlp.r. A disabled local 
microseconds to each instruction. 

-80-

microseconds bp.t wee n 
instruction of the I/O 
I/O interrupt adds .51 



An Operation Program interrupt takes 11.58 microseconds 
between the end of its parsing and the fetch of the first 
instruction of the Program interrupt handler. An invalid unit 
address or UCB address interrupt takes 6.48 microseconds 
between detection and the fetch of the first instruction of 
the Program interrupt ' handler. Any other program interrupt 
takes 6.18 microseconds after detection. 

The times for instruction fetch and parsing alone are: 

EQIJ!l£1 .I!!!lg l!!! !!l!£~.!.l. 

RR 2.61 
RI 2.94 
RX 3.90 
RS 4.32 
SI 3.93 
EX 3. 15 
FSS 6.06 
VSS 6.69 

Long 
VSS 6.96 

The assumptions made in earlier timing figures concerning base 
and index registers also apply here. 

To zero one or more registers, a sequence of ins·ructions 
like: 

LX R 3,0 
LR R4,R3 
LR R5,P3 

should be used. Do !!21 use a sequence of SRs. 

For SRCH, note that a TM is significantly faster than a CLC. 

Logical compares are faster than corresponding arithmetic 
compares and thus should be used to test for equality whenever 

-81-



it is not important to distinguish between arithmetically 
greater and arithmetically less. 

For loading a constant into a register, note that LX < LI « 
LA. 

For adding a constant to a register, note that AX < AI < ALI < 
LA. Arithmetic adds and subtracts are faster than logical 
adds and subtracts. 

Remember that LDR and STDR take less core and less time than L 
and ST and thus should be used whenever the address of the 
operand is in a register. LDI and STDI are also faster than L 
and ST and can be used whenever indexing is not required. 
However, they are less easily relocatable than L and ST. 

To determine if an 
use an NC or OC. 
condition Code. 

area of core contains all zeroes, do ~Qi 
Use SRNE to an X'OO' and then check the 

Wherever it is certain than two string will not overlap, use 
MVC instead of MVCN. Not only is setup time faster, but there 
is a greater chance that the string will be moved a halfword 
at a time. 

Doing a LI into the PC is the fastest way of executing an 
unconditional branch. 

-82-



12 APPENDIX IV: LAYOUT OF LOWER MEMORY ---------------------------------------

The following is a map of the various firmware-defined locations 
in lower memory: 

o 
2 

II 
6 
8 
A 
C 

[;.!Hl.!!lll!§ 

IPL new MSR 
rPL new PC 

SVC old MSR 
SVC old PC 
SVC interrupt code 
SVC new MSR 
SVC new PC 

E Program interrupt old MSR 
10 Program interrupt old PC 
12 Program interrupt code 
111 Program interrupt new MSR 
16 Program interrupt new PC 

18 
1A 
1C 
1E 
20 

22 
211 
26 
28 
2A 

2C-2D 

2E 
30 
32 
34 
36 
38 
3A 
3C 
3E-1I1I 
116 

I/O interrupt old MSR 
I/O interrupt old PC 
I/O interrupt code 
I/O interrupt new MSR 
I/O interrupt new PC 

S/360 interrupt old MSR 
S/360 interrupt old PC 
S/360 interrupt code 
S/36.0 interrupt new MSR 
S/360 interrupt new PC 

reserved for use by firmware 

I/O intetrupt mask 
Interval Timer UCB address 
META liB UCB address 
111411 Disk Storage Unit UCB address 

3461 Card Reader UCB address 
Control Panel UCB address 
4132 Keyboard/Typewriter UCB address 

S/360 device 050 UCB ADDRESS 

-83-



48 
4A 
4C 
4E 
50 

52-5B 

S/360 device 051 UCB address 
S/360 device 052 UCB address 
S/360 device 053 UCB address 

Interval Timer 

Program interrupt scan-out area - 5 halfwords 

-84-



We would like to thank the following people for their help in 
designing and implementing the META 4A: 

Wolfgang W. Millbrandt 
(We are pleased to Mr.) Robert G. Munck 
William B. Rothman 
George M. Stabler 
John E. Stockenberg 
Richard c. waters 

And a special thanks to all those dear friends in Holland, 
without whom register 0 would have been fixed at O. 

Paul Constantine Anagnostopou los 
Gary Howard Sockut 

-85-


