s B
| B UGS |
L__..._..+_....._.I

The Brown University Graphics Systemtl

META 4 B / SIMALE / VECTOR GENERAL

Concepts and Facilities

Paul Constantine Anagnostopoulos
larold Henry Webber, Jr.

John Zahorjan

The Brown University Graphics Project
Division of Applied Mathematics
Box F
Brown University
Providence, Rhode Island 02912

Updated: January 12,1976

Printed: December 6, 1976

1This Research 1is being supported by the ©National Science
Foundation Grant GJ=-28401X, the Office of Naval Research,
Contract NOQO14-67-A-0191-0023, and the Brown University Division
of Applied Mathematics; Principal Investigator Andries van Dam.

I sometimes feel, 1in reviewing the evidence on the design of
computing systems, that the necessary conclusion 1is that
de-kludging just is not possible., It is difficult to conceive of
a mechanism which can satisfy the conditi,ns necessary for it.
Nevertheless, in spite of such evidence against it, de-kludging
does sometimes occur.

--adapted from Karl S. Lashley, 1950

1 InEroduction swesssseseviesens
1 OvervidWessiscssswsssnsnie voi
1.2 System Component Concepts..

1¢2.7 UNitSesecesessscsansennas
le2e Ta 1 ProceSsors eesseessws
1.2.1.2 Input/Output Units...

tuded SLOLESwasowd oo suenens
1.3 Component DesSCLiptiONSes sse
1 PIOCESSOLSesessssssasans

1‘.

1.

Ul = Wi a

META Qlsivsnesarnninnss
META 4UBhsssnsnne anean
The SIMALE:. ssssse sas
Main STOLE s« s swa s siws
DL.8K STOTC s s« sase imwd
StrUuctiUress s snas nns

USCLeseassscnsssssassssns
Programming LanguageSas.
HOn 10 v won: wow 0w aiw wowvn wpwins s
Extended MonitOCassassesse
O-interpretereceesesesaes
Extended Q-interpreter,.

Ward..........-.-.-...‘..

2 Data FacilitieS .sessssesesssss
2¢ 1l IntroductioNes s we on aw vw e s

2. 2 Programmer

24241

2

2

2

N!\JNN'

NN

2.4

2.3 D

3

-

o Wl e

3

3
3

1

2

1.
1
1
1

2
2

Storesl.l.' a0 80 8

Register FilGeeeosssseans
2:2:2 LOCAl SLODGaq as sasnansesiossesss
2.2,3 Main StOCCesesesssesssssossonsss
Vector General Register File..s.
Atad T yYpPeSasvesesnsnssessssnssanssnsas
Humeric Datlssvssssssssanvnne sea
T IntegerS.ens sesssnsnssaesascas
+2 FractionNSessessscsessssssasssn
.3 Index-Base-Displacenent. coves
4 Procedure Displacement.ecsesss
tEinGg Datfes wa s om o o o0i o 59 A e

-1 Byte.‘I-I.l.O.....l..lhcuo-l-

«2 Character StriNgeccesssssssss

S

3 Program FacilitieSsiessssencsss
3.1 Procedure DescriptioODessses
1 IntrodactioBees cssevenan

3.
3

3.
3
3

2

w o e

1.

1+ PROGraniiingss vs o 3 o ow
Instruction DescriptioON.es.

2
2

.
NN

2

. L]

2
2
2
2

-i" 1ntrOdUCtlon. " e 2 9 DO B0 90 B

Ll

-

)ppraﬂds......-.......-..

-D‘LAJN—‘

I.[lteqers."..l.‘.....
FractionSs se v es s4 o8 %

....IID.I....li.io'...llll...l!l1

® 8 @ s o0

29 28 98 @

*a® 9 8 58 @

2% 20 %0 0

28 »e o0

e ® & 08 00

® e & @ e 0

® e 29 00 @

a e @0 &0 &

® 8 & 8 800

* e 290 300

-.-:-..-l.-.-...-..l.l‘.1

I..i.'.ll..llnlll.ll.lis1

uooo.-.-------.----.-..-2

..tl.-lnl.li.lonll.o.lliz

® 0 %9 99 B e a0

2% 2 2 88 80 00

59 9% @25 P 8 80w

Index-Base-DisplacementSseseecsss
Procedure DisplacementSe:cessesssss

...I.ll....l.ll‘.l"z
llIl‘IllI.l..‘...lliB
.llI.'.l.l.'.l...".B
-..t-...-.-.i.ﬂ....‘.3
esss ssssnsssessnssaael
sesensansssnssssvnasth
sessessenssesassasselt
sessssesssasesssansed
cesesssssessssassssedd
P
.II.-O.Q..’Q‘.'I-'IUG
......lt'.llltll"t.é
‘I.I.l.‘lllll.ﬂ.l.l.é
T
lIll"lll..l..l..l..?
ll.l’...........'l..?

.Il...‘l..l’.l....lla

sssssudssrasrassasns?d
l.ll..lll.l'l...l.‘.g
ssesvsesssacesssssasesd
eressesasasessssscsssd
sssesssesnessrassss 10
.'ll‘.".l...lll.'.10
l..l‘ll'.ll‘..--‘..11
sessvesevesasssssss I
sessernssnnasssssnsell
secesssenssassssessll
.l'll'...ll..l..-'.“z
esssasencsssssssssalld
csssvssessnssssnnsal3
l.lll.lll..'.ll'...13
...D..D...'i....l..13

|.'!Cl.n.'llil.ll..13

sessvscsnsnsnsssses 14
® 2 8 » 595 0 0 I..".l.l.ll1&
® ® @0 ® 0 @S ‘..ll..l..l1q
4 » 88 o8 00w .lllll.l'.'16
e ° ° 5 &8 2% 00 IC..III"16

C'lll!llll!...'ial.16

.ll...'..l...l.l.l'17
l'...ll‘...“...'.l17

l.ll..l'l.!‘.ll.ll.18

3.2.2.5 BY‘-GSI"-I"..-‘.I ..'...Ii.llll.l.l'.l..l..ll.'.l'.'.‘ls
3. 2' 2.6 Character Strings. ® 2 5 9 0 8 B8 08 BB D e P e S SRS TR A Pe SR EE e 18
3--3 Pl’.‘OCedurO Checks.lQ'l'l.....l.l.l....l...lllll..........ll.18

4 The Transfer Data InstructioNiscsecacsssesssssassssossnsssssssnsl?d
5 Brapching InstructionSeeves sews on we we s oe ke o 6 sie s vo o6 k9 0w s o8 1
5.1 I[‘troductioli...-ll...III..Ill'll....'...!...II'II‘-I'--II'.21
Yed Condition Flag REGLSEEL: ss s siw o% 96 e Sa e sUs B 68 o o0 aie e e e 8 2 |
5.3 Onconditional Branching INsStructionScsesesecsssssssssosnsensld
5.4 Conditional Branching IDStrUCLiONS+ssnesssas sssssesessseasell

5.5 CASEDIIIll'.....!l......I.............I.‘....'...I....I.Ill25

6 Data Hoving InSECUCLLONS vv s e o o6 s @is 06 08 o6 918 w6 o8 60 aie 56 5ie ws o a0
6. 1 Una ry Instructions. " 5 8 28 56 PR WS O S F PSS B B e BE R ARS8 26
6.2 Replaceﬁ.l.Q'..I...'QQ...l.....l‘.l..-.."..'lIl......l....ze

6.3 Swapllﬂlil.ll..l -.O....‘I...I.I.Il.....ll.llIl.I-i'.II..I.I.31

7 Shift INSLEEGCEIONE. sie 4 s wiw ww wow wom iy ors wis a5e we 408 His 956 B 608 WA acs ww o2 95 20000
7.1 Intl.’oduction.....--..-.--.......................-.......-.-33
T+:2 Arithmetic Shift ITostruCLionSe e ww e eis 56 om e 60 56 56 o0 as o0 5e @33
73 Logical Shift INStructionSee as ae s o os aia a we 56 oie o8 o4 oo aim 56 030

B Atithabtil INSETUCLIONB A 54 vw wa oo su w5 w9 o6 oy bm &l Sb i 48 8k &K% bas I8
8.1 Test Si_q“.----o-o-- 55 80 e 20 2O NG EH PN EE B S e O ...l...l..lll..38
B2 Unary IncCremeNtscssssssovsssanssssssssssnsnsssseassnsssassedd
8«3 Unary Decrement angd TeStes ie eues sess veaneseseassseesnesessstdd
8.4 AbsSodute Valge and Negates sa ws enamsm s s s es oe enesse s saas veelh]
8-5 Addlllll...l.l‘..l.l..lll..".ll...lli..ll!ﬂllI......l...Ciuz
Sah SNDBLEAEE 33 5 i s 5al 6 S5 50 v Bia Sle 68 @18 w8 o8 w800 81808 516 505008 kil
8.7 P’iultiply..-..---..--I." Il....l"..."ll..l-.ll.ll'll"l.llus

8.8

8.9

8.1

DiVidEo-.-u..-........--.---.---.----..--..-----------.-on-“?

ExtE(]d Sign'.ll...Ill.....l'...l..lII-ﬁ.-II-...Illli.l.....us
0 Square {gootiﬁl.ll.Illl...ll...'...l.ll.l.l.....l.I."l."CMS

9 coﬂlpa}:ison lllstructionS.I..ltll...l...'.l'n..lll...l'......l..SO
L2 [P | Al’.‘ithlﬂetic Compares.-....--....-.........--.........--...-.50
9.2 LOgiCdl COIlipaIIeS.-..-.-..-............................-....52

10 Bit and Character String INStrUCEtioNnS.secesenssssvssascésens inedd
10]1 OI_‘OI.!I..III.IOIDI..I‘I '.Q'..l..l.'!..lll.'I.I........l'I.SS
W2 AND ITASEERCTE IO 6 b0 aiad o e axe e win my sie sre 508 85ye (@ $his e ae o e 20m w0 7
1053 BXCLUSIVE :OR INSETRCEION. w s aews muw s e en pin ss s 6 oo ais de o ainse i anD
10.4 Test under Mask InStrUCtiONSecceessssessenssssosnossossssal?
TS SEaTe o ae wiw v w0 (m e w06 80w 0 516 &5 655 808 516 78 B8 066 8 Siee wa & § 50 6 5s 590
T0H TEANSTALEE: sww oo 5@ & s 56 908 50000 6006 @ 46 876 6in Bs o0e 518 378 e a2 o wa 5060
10T IDICLALNEEG 6 viw s 5l S0 0.9 9.6.08 008 55 99 b 0od 918 378 5.8 916 5% #0d o saas w0 B0

11 Subroutines and InterruptSeccscessssccsscssesscenssssenscssesab2
111 The StaCkolo-tlnoloI--.--t.-.v---..l.----------atto-tt-nnl62
11a2 Stack CondiblonSs e eee wa o sceie sim & 50 & 5@ 6 56 96646 6 5 anss e s

11 2.1 BLack OVEETLONywanumes om slsass &5 5o o@ 2 ues ao v 8 4o aw s 5w 352
11.2.2 Stack ESCAPEsssevsesssnssssscssssossscscnsssasssnassnsnsesbl
112 3 StAcKk UBABTELOW isa e and s oa s e os ng oe oo s neesds e e s aes 0

11.3 PLoCelure CallS..aves se s esens s sqenassesssssnessnyss s e Dl

-jii-

11.“‘ Iﬂte['l'.'upt Calls..l.olil.I.II..l.ll..o.l."..‘l.ll-ll------65
11-5 Procedure Retur-.ll....l.lI..‘...II..'l"..'l.IIIlIlll....'t-67

12 lnteL‘rlal Illterrupts......- S5 5 e8P 2 B E e BN S PG BE BE BN .-.........68
12.1 Extended Instruction INterrUpPtS.cscescsessescssssssssssssnssb8
12-2 Self-lnterrupts..........--.....--....-.--........--....-.69
1243 Procedure CheCKkS.sssesessesnssscsssssssnsosnsosnsssssssssnasb?

13 Communication with the META Udleccesvocsassssanovcesssvonnseses sl
T3aT OVOIViBWsassisnsinvassnsansashsssnesasniannassansassssannarl
13.2 The Uit Control BlOcKkS..issessvrssssisvssésasnssdiaasnannt
13.3 META 47 interrupts META UBecewssesesosevsssssescccncsssannsald

13- 3. 1 Q-inte.[‘pl’_‘eter- Handled Iﬂterrupts-... e @ es e e e P AR DA ST .72
13.3.,2 Software-Handled InterruUptSesecossesscsssssssssssnsesnsall
13.4 META 4B interrupt META UYAecsccsossssscccsssscsscsssnssnnsall
13.5 Synchronization via SemaphOrE€Siscccsssssncsssssssscssncsssl3

1'4The SIHALE I.ll'...!'ll...l.--..lI..lIlll.l.!.-'-l-.-I!--ll.a76

15 Vector GCENeTalve sivow oo es w6 ow o8 a5e a0 54 %4 00 w6 508 016 i@ ain win ae o0 s wee 04
151 {(Vector) General DeSCriptiONssssésssnvsssasvswssansmswesnsll
15. 1-1 Iﬂt[‘OdUCtion..-....-....................-............-.77
15:1.2 CBF Diaplay MRite, e ve vswn vn vovn su s s obe Sb 88 4546 5E oE dias 10
15, VNeldy ¥ VADEDE B v v w50 5w 0 3 i e W0 g A W e e e
15, e 22 ChardCteL‘S.....-.--.-...............................78
154143 TNLOTACTIVE DEVILCOS: siw v ws o 909 50 508 5 2k 60 0§ 60 55000 008 5 aai 10
1542 Y8 BEYISLELD FELBw wewn o 5% o s @8 &6 &0 605 8 a006 5 e as o8 we ew e e B0
153 CRT Display QrderScussessssnsnamsndssosanienesanssessesesndd
15.3.1 NO-oPeration and Special OrderSesscccsscecescssesssssssasB3
15.3.2 LOAD/ADD/AND/OR rCeg VAlU€Sasenssessasnssssssssssssssssasll
15.3.3 ABSolute and RELative vector OCAdRCSisecssssssarsssassssasBD
154 3.4 CHARACEEY OLAOTwws wie o s 6 siw a0 s umy sis 56 6 4.0 5 660 690 580 s wes S0

G Interrupts..-..-.-.. #5585 88 s 8 88 06 B BB EBES BE BN n-..--...n:B?
1 V6 Uil Cofifrol BloCKksssisssssmnsasseasssiasdveiswviisasnedy
2 Interrupt SenSiDfJescssssnsvscassnssrssvsssosbbssssriansl
3 Interrupt Call Controlesecssssrcssvssesssecsscsvsssssscssnsns88

16 ET CETERA INSLTUCTION e o8 @ s 69 e as 58 96 66 974 698 & 908 o/ § &8 o @ae s 30
16-1 IIlfrOductionoc- ® & & & 2% 0% 5 % ¥E Y OO0 DA S S DO WO BDE A l.l.l...'.tll..go
1685727 BATIDRALER 5 % b 56 5 %6 @ %@ 590 575 55 508§ 5506 00 504 %00 Wk B8 @8 we st v e ee 30
16.1-2 ETC L{egisters.ll.l.lI..II.!.!.III!I.....‘.I..C‘..ll----go
16, 143 BTC InstructioN e se s sisersse s sisse sieaiesesssesesesses]
162 ETC Data STELUCEUL Cw e vis o:n 58 o6 5 6078 558 5 696 & 858 9w avs a0 08 wwnie 9ewa 3]
16'2!1 Data ArealilI.l'.'...'Ql'..l."‘.ll.'-lllll"l..-..l.l-91
16.2-2 B}_OCKSI-II.C.I-..'.I 28 a0 .I.IIIII'l.-I..l.I.l.lll.‘.l...92
16-2-3 Sub‘BlOCkS..........-.--.-......--..-..-.....-.-.....-.93
16524 BTC InsErnction BXECUEI0 N cwmss Samdn sda & s $08 68 w0 6ie e ok 33
16.3 Vector General SUb-BloCKSesessssssvessessnansasnasssssiaesnsIl
16. 4 The Clock INSELNCLEION e s e ain swsesnssesensiese ss s se sn e sy S0
16.5 A Typical Display S@QUENCEescescssssssssssssssssssssssasnsedd

17 Running META 4B Programs -— MULTIPAC.ceesssssssesnsssessecnsssdBD
17.1 RUNB Model..I.l.I.CIII-.-.IIIIIl'...'.!l.l....il‘.ll...-...96
17 .2 NoEnal Mode s ve svcew sman s sus o seene:s s-aee aoe a s & men we sm e se 3 5
17.3 Main Storce Control dn the Bue sesess seea s ss s os os s vesn on s I

=431~

17.4 GMNS SVCS from the Basessessssscessscsssasssssssscssncencsnsssd?
18 The Fudd Debugging Package@essssssscssssessnsasensassnssssssse 100
Appendix 0: HNetalinguistic SynbolSe.sessesesnessanssossnsesnenas 10
Appendix 2a: Instructions by Mnemonic
Appendix 2b: Instructions by Operation Code
Appendix 3a: ASCI11 to EBCDIC Conversion

Appendix 3b: EBCDIC to ASCII Conversion

-iy-

Introduction

1_INTRODUCTION

The Brown University Graphics System:

"The stated objectives of the project's activities are an

investigation into the area of redium-cost,
microprogrammable, intelligent graphics terminals and the
"division of 1labor® trade-offs between a mainframe

processor and the intelligent satellite. 1In addition to
these goals, we are also interested in examining the
impact which microprogramring has on the design of other
aspects of a graphics terminal, for example, systen
confiquraticn and the local operating system design.,"

--George M. Stabler
The BUGS Overview

The META 4B / SIMALE / Vector General conmnprise the core of
the graphics facility of the Brown University Graphics System
(BUGS). The purpose of this document is to present the
concepts and facilities of this core in such a way as to make
it easy to learn and pleasing to use by people at all levels
of design and implementation.

In order to accomplish this goal, BUGS has herein been
tormalized and conceptualized beyond the level done in other
documents pertaining to the system (a list ot such documents
is presented in references). It is hoped that by so doing,
the various facilities can be made more understandable, more
useful, and hence more enjoyable. If this should turn out not
to be the case, however, any comments, suggestions, etc.,
would be greatly appreciated and carefully considered.

e o S . e S e S S T 0 o S e S S S S i e S

How are the hardware components from which BUGS is constructed
interconnected and how do they interact? All components can be
divided into one of two classes, known as units and stores.

Introduction

121 _UNITS

Units are those components of the system capable of
performing manipulation of and computation upon data. 1In
this way, a unit is an active component whose purpose is to
allow a person to perform the operations necessary to solve
his problem. All units <c¢an, in turn, be divided into two
sub-classes, Known as processors and input/output units.

Processors are units whose behavior is capable of
being controlled and changed at will, that 1s, they are
programmable. Thus the word processor 1is used in the
conventional sense to denote a "computer" or a "CPU". A
processor consists of hardware which 1is capable of
executing a set of primitive commands, known as host
instructions, which can be used directly by programmers

——— e . s o T e g

An input/output (I,/0) unit is a hardware aevice which is
not programmable, hence having a fixed function (e.g., a
card reader or a console terminal). Although I/0 units
are capable of performing some manipulation of data,
their principal function is to transmit and present data
to other system components and to human users.,

Introduction

A store 1is a passive component of the system whose sole
capability is that of retaining or remembering data. It is
the conventional mwmemory space of a computer, although
various types of stores with various operating speeds may

/ be present on the system., Examples of stores on BUGS are
main core storage and secondary disk storage.

Each of the above components will be described in greater
detail below, Simply keep in mind the sinple picture of
stores containing programmer-defined data structures; these
data structures are operated upon in a fixed manner by I/0
units, and in a variable manner by the processors.

The diagram on the following page pictures the various
components of BUGS and their interconnections. Data is, in
most cases, transferred among components in groups of sixteen
bits, called halfwords. Furthermore, most stores are
haltword-oriented, also containing data in 16-bit groups, each
halfword accessable via an address specified by a number from
zero to n. (The exception is the SIMALE, as described later.)
The following paragraphs describe the components in greater
detail.

There are three processors in 'BUGS: the META 4A, META 4B,
and the Super-Integral Multi-purpose Arithmetic/Logic
Expediter (SIMALE) » Each processor has three stores for
its own internal use, and mway be connected to a variety of
I/0 units.

As was previously mentioned, each processor is capable of
executing a set of primitive host instructions. Programs
composed of these intructions reside in a program memory
known as control store. It is from control store that the
processor fetches, decodes, and executes host
instructions.

Programmers using host instructions require work space in
which to keep operands, temporary results, etc., and with
which to communicate to other units. This work space comnes
as a set of halfwords known as a register file. Each
processor has its own register file,

Introduction

Finally, =ach processor is equipped with a relatively large
local store for retaining larger amounts of information
such as tables, matrices, or data lists., Although smaller
than main store, local =store is at least an order of
magnitude faster, and hence should be used for retaining

often-used information.

1.3.1.1_META_UA

The HMETA 4A processor 1is composed of a Digitial
Scientific Corp. META 4 computer. The META U4A is
equipped with control store consisting of 4K2 halfwords
of cread-only memory (ROM), making modification of host
programs difficult. The register file consists of 32
halfword registers, many of which serve special
purposes. Local store has not yet been i1mplemented and
is unavailable to the programmer.

The I/0 units connected to the META U4A include a disk
controller, a console terminal, a control panel, and a
general-purpose binary switch., In addition, the META 4A
is connected via a multiplexor channel to a S5/360-67.

The META 4B processor with its stores is identical in
nature to the META 4A, although it is equipped with 1K
halfwords of local store.

The only I/0 unit connected to the META 4B is the Vector
General (VG) high-speed CET tube wused for graphical
display.

The SIMALE 1is a high-speed wunit wnhich 1is actually
composed of four independent sub-processors. Originally
intended to be used solely for the matrix operations
necessary for graphical transformations, it has evolved
into a completely deneral-purpose processor. I+ ds
equipped with 256 halfwords of fully readable-writeable
control store which «contains the host program. In
addition, each sub-processor has a register file with
three 18-bit registers, and a local store with sixteen
18-bit locations. There are no I/0 units connected to
*the SIMALE.,

2ugn stands for "times 1,024n,

- U=

Introduction
It should be <clear from the diagram that data paths

exist between the SIMALE and the META 4B, and between
the META 4B and the META 4A.

1.3.1.4_ MAIN STORE

Main store is the central data nmemory for the system.
It 1is accessable from both the META 4A and META 4B
processors, so that it can contain data structures,
programs, etc. It can also be accessed directly by the
disk controller so that data transters c¢an be made
directly to and from main store without processor
intervention. A halfword can be transferred to or from
main store in 900 nanoseconds.

We are currently equipped with 32K halfwords of main
store.,

1.5_DISK_STORE

Disk store is implemented on large circular packs, each
of which contains 512,000 halfwords. These packs are
removable and replaceable, hence allowing virtually any
amount of backup storage., However, data 1s accessed via
the disk controller I/0 unit, and the access time is
extremely slow, averaging approximately 250
milliseconds.

It has been said that, given the components described above, a
user/programmer could implement his applications using the
host instructions provided by the processors in conjunction
with stores and I/0 units., This would be extremely crude,
however, given, the rather primitive nature of these
instructions, the fixed ROMs in the META 4A and META 4B, and
the lack of programming facilities in general.

To alleviate this problen, the designers of BUGS have
provided the user with various facilities to aid him in his
work. These facilities are embodied in an overall system
structure; this structure encompasses various conceptual

levels into which the facilities fall. Each level has the use
of those facilities supported by the 1lower levels, and in
turn offers various additional facilities to the levels above
it. The system structure is pictured below and described in

the following paragraphs.

Introduction

1. 4.1 _USER

At the pinacle of the structure is the user himself,
provided with all the facilities supported by the levels
below hin. All in all, the level at which he can design
and implement 1s nuch closer to the problem description
than if he were to work on the bare hardware. He cones in
contact with the following three levels:

1s4.2 PROGRAMMING_LANGUAGES

e e e e L e e e

The programming language 1is the usert's vehicle for
expressing the computations he wishes to perform. Ideally
this programming language would be full English, however
current technology allows only simple artificial languages,
ranging across a spectrum starting with such high-level
languages as PL/1 and continuing down to a language which
is directly executed by the hardware (i.e., the host
language)., On BUGS we will have a high-level language
called ALGOL W, and currently have a low-level PL/360-1like
language called PL/BUGS, and assenmbly langquage, to be
described later.

1.4.3_MONITOR

The monitor, also called the operating system, is a
comprehensive package of programs provided to the user for
performing standard and often-used functions. These
functions include I/0 unit control, management of storage
space, program control, etc,

lo4.4_ EXTENDED MONITOR

The extended monitor comprises an extension to the monitor
which is specifically oriented toward the application with
which the user is involved. Such extensions might include
graphical support packages, scientific subroutines, or
communications programs. The extended monitor provides
those useful facilities which do not belong in the standard
monitor because they are not generally used by all
applications.

Introduction

1.4.5 Q-INTERPRETER

As we have said, the user expresses his algorithms in a
programming language, as opposed to directly in host
instructions., Clearly then, we must have a program, called
a compiler, which takes the user's programs and translates
them into a sequence of host instructions. This is a very

difficult task, however, due to the primitiveness of the
host; current compiling techniques dictate that such
compilation “would be extrenmely inefficient and
time-consuming. We might then be forced to design
programming languages that ~were lower-level, closer to the
host =-- in the worst case we could require the user to
specify each host instruction individually, something

which we stated would be unreasonable.

In order to make high-level languages possible, and in
order to provide the user with a reasonably useful language
in the absence of a high-level one, we have provided a
g-interpreter (commonly called an emulator) to act as an
interface between the host machine and the programming
language. The g-interpreter, written in the host
instructions and residing in control store, provides
facilities which are much more useful than the host itself.
Such facilities may include the interpretation of
higher-level intructions or data structures, control of I/0
units, control of communication with other processors, etc.
In other words, the g-interpreter provides the well-known
assembly language instructicn set.

Ideally, many different g-interpreters could exist, one
for each application, one for each high-level languages to
compile into, etc. Each of these g-interpreters could be
designed so as to be well-suited for its intended purpose.
However, the existence of ROM for control store rules this
out, except in the case of the SIMALE (where it is fully
exploited, as described later). Therefore, a g-interpreter
had to be designed which was wuseful for all applications
and all programming languages, obviously a hopeless task.

1.4,6 EXTENDED Q- INTERPRETER

In order to help alleviate the unadaptability of the ROWMs,
an extra level has been added between the g-interpreter and
the programmming language. This level, implemented using
the facilities provided by the g-interpreter, extends the
g-interpreter by supporting additional facilities 1in a
manner transparent to the programming language. Since the
extended g-interpreter is programmable just like higher
levels of the structure, features can be added with ease,
debugged, experimented with, etc. liowever, the

=

Introduction

programming language uses them just like any other feature,
and hence need nct Kknow that they are not really part of
the g-interpreter. Eventually, when a feature is
completely implemented, it can be moved down into the
g-interpreter, causing an increase 1in speed with no
Ceprogramming necessary.

Due to their implementation, each level +falls into one of
three categories, dependiing wupon its "solidity". The most
solid is the hardware, changeable only via engineering
modifications. Next, the g-interpreter, although changeable,
is "firm", both because it may reside in ROM and because it is
somewhat difficult to program. Finally, the remaining levels,
the majority thereof, are "soft" -- easily programmable and
adaptable.

1.5_ONKARD

The remainder of this document is 'devoted to describing the
META 4B / SIMALE / Vector General units of BUGS. The next few
chapters describe the facilities provided by the NETA 4B
g-interpreter.

bata Facilities

2. 1_INTRODUCTION

The META 4B, with its g-interpreter, becones a
general-purpose processor. It provides many storage and data
types to the programmer with which he can design and implement
any type of data structures and data bases necessary for his
application, In order to operate upon this data, a
comnprehensive set of instructions is provided, which can be
used directly in assembly language or via a high-level
language and its compiler.

2.2 PROGRAMMER_STORES

There are four types of stores provided to the META 4B
programmer: register file, local store, main store, and the VG
register file. These stores are described briefly in the
tollowing paragraphs; more detailed information is given in
the course of this document.

The programmer, rather than using the processor's register
file, 1is provided with a more extensive one of his own.
This register file consists of 64 halfword registers,
divided into four groups of sixteen each.

The first group, numbered 0 - 15, 1is called the
general-purpose registers (GPR). These registers can
be wused to contain numeric data for purposes of

arithmetic or comparison, address data, progranm
flags, etc. They are the major store for performing
data operations, and can be referenced by all

instructions.

The second group, numbered 16 - 31, 1is the control
registers. These registers are used by the
y-interpreter to control the execution of a user's
program. Access to these registers might be useful to
the programmer, and hence they are included in his
register file,

The third group, numbered 32 - 47, 1is the ET CETERA
instruction registers. Refer to Chapter 16. for an

explanation of this group.

-G

~—

bata Facilities

The final group, numbered 48 - 63, 1is the SIMALE
external registers, used as a communication area

ol = P

The META 4B 1is equipped with a 256-halfword local store
(soon to be expanded to 1K). This local store contains
often-used data, both for the wuser and the g-interpreter.
The contents of the first 96 locations are pre-defined, as
follows:

The first sixteen halfwords, numbered 0 - 15,
correspond one-for-one with general-purpose registers
0 - 15,

Locations 16 - 31 are used by the g-interpreter for a
data queue between the SIMALE and the VG. This queue
is necessary in order to maintain a high rate of
display on the VG.

Locations 32 - 47 correspond one-for-one with the ET
CETERA instruction registers 32 - 47,

Locations 48 - 63 correspond one-for-one with the
SIMALE external registers 48 - 63.

Locations 64 - 95 contain the information necessary to
maintain the swapping of SIMALE virtual control store
pages to and from real control store. These 32
halfwords are called the SIMALE virtual control store
page table.

All local store locations from 96 on up can be used by the
programmer Lor any purposes he desires.

2.2.3 MAIN STORE

The META 4B, along with the META U4A, has access to main
store which 1s equipped with 32K haltwords. These
halfwords comprise the major store for both the user's data
structures and his progranms.

There is a major difference between the hardware operation

of main store and the way the programmer uses it via the

g-interpreter. Instead of addressing a set of halfwords,

the programmer addresses sequential groups of eight bits,

called bytes. Each byte is assigned an address starting

with zZero and continuing up tor%ﬁk {currently). In effect,
0

-

Data Facilities

then, the low-order bit of an address specifies one of two
bytes within the halfword addressed by the remaining bits.

In spite of this added flexibility, the g-interpreter
requires that certain 16-bit data be located at an even
byte address, i.e., not cross a halfword boundary. This
requirement 1is called halfword alignment.

224 VECTOR_GENERAL REGLSIER_FILE

.

The VG display unit 1is equipped with a register file
containing 85 registers of varying sizes (none greater than
16 bits). These register are used to control the display,
handle user input devices, and provide information to the
programmer.

2.3 _DATA_TYPES

s e A e A i b St < o i i Sl

We have described the data stcres which are available to the
programmer; what sort of data can he keep in these stores? A
variety oif data types exist, each of which is useful for
solving certain types of problems. These data types are
divided into two classes: numeric and string.

The operations which can be performed on these data types are
described beginning in Chapterd.

2.3.1_NUMERIC DATA

243.1.1_INTEGERS

Integers are the simplest form of numeric data. They
consist of some number of bits (commonly 16)
representing a base two integer number.

integers wused for performing arithmetic need to be
signed. Hence they are stored in two's-complement
binary form, with the high-order bit indicating the
sign. A sign bit of 0 signifies a non-negative number,
while that of 1 signifies a negative one. Some integers
and their decimal equivalents are:

000...000 = 0 (base 10)
000...001 = 1
T11...111 = =1
171102100 = =4

-11-

Data Facilities

The value of an n-bit signed integer ranges fron
-2%%(n-1) up to +2%*(n-1) =-1. Thus a halfword ‘integer
can have the values -32,768 up to +32,767.

It is also possible to work with unsigned integers,
which are called logical. The value of a n-bit logical
integer ranges from 0 up to #2%*n -1, The most
important use of logical integers is for addressing data
stores, which have locations numbered from 0 on up. All
references to stores nmust eventually generate a logical

integer to act as the final location address.

It 1is possible for the programmer to work with signed
fractions on the META 4B. A fraction is represented as
an n-bit two's-complement binary number, the high-order
bit indicating the sign., The binary point is assumed to
lie between the sign bit and the next high-order bit.
This allows fractions in the range -1.0 up to +.,999...
Examples of fractions are:

010...000 = .5 (base 10)
011...000 = .75
0114111 = .999...
110+, .000 = =,5

1004..000 = -1.0

Fractions are a necessary data type on the META 4B
because the VG disgplay scope uses fractional
coordinates.

2:3.1.3 INDEX-BASE-DISPLACEUENT

An index-base-displacement (XBD) is a data type which is
present only within instructions. It is used to
genarate an integer which can be used for various
purposes during the execution of +the instruction.
Typically this integer 1is treated logically and used as
a main store address in order to obtain one or more
bytes for the instruction to operate upon.

The 1integer 1is generated from the sum of three other
integers specified by the index, base, and
displacement, The base is a U4-bit field (called the B
field in the instruction) which specities one of the
sixteen general-purpose registers, the contents of which
is treated as an integer. Added to this integer is the
contents of the GPR specified by the 4-bit index (X}
field. Finally, the displacement, a 12-bit logical
integer present immediately within the instruction (in
the D field) is addad. If the base or index field

-y -

Data Facilities

specifies GPRO, that field is ignored and GPRO is not
added to the sun.

IfE the XBD 1is to be wused as an address, the above
computation will produce the expected result regardless
of whether the X, B, or D components are considered to
be signed or logical integers; the final sum is a
logical integer specifyirg a location in main store.

See Chapter 3.1.1 for an explanation.

{

2.3.2_STRING_DATA

2+3.2.1 BYTE

A byte is the simplest fcrm of string data. It consists
of any single byte of information, which could be an
8-bit number, a character, or a flag. A byte is also a
character string of length one (see next paragraph).

2:3.2,2 CHARACTER STRING

A character string is a sequence of bytes in main store,
having a length from zero (the null string) to 65,535.
Character strings are used to represent arbitrary length
logical data (e.g9., a PL/I bit string) or character
strings in the usual sense (e.g., messages).

o Fo

Program Facilities

3_PROGRAM_FACILITIES

The qg-interpreter provides a comprehensive set of facilities
which can be wused directly in assembly 1language or via a
high-level 1language., Specifications for a high-level language
such as ALGOL W will hide many of the g-interpreter features from
the programmer and hopefully make it easier to program. However,
it is the purpose of this document to present all of the features
for posterity; hence we will be oriented toward the assenbly
language programmer.

It 1is assumed that the reader is familiar with the META 4A
Principles of Operation and the facilities provided by Waterloo
Assembler G (ASMG). The differences between S/360 ASHMG and
BUGSASM A, which are outlined in the META 4A Assembler Users!
Guide, do not hold for the META 4B, however. Any differences
will be presented in this document. The general format used
herein 1s to present each META 4B feature and its use in
conjunction with BUGSASH B.

The metalinguistic symbols used in this document to specify
syntax are described in Appendix 0.

3.1 _PROCEDURE_DESCRIPTION

3.1,1 _INTRODUCTION

The average programmer is accustomed to thinking of his
program as a sequence of individual computations leading to
the solution of his problem. Programming practice dictates
that these computations should be grouped into logical sets
of associated computations, each of which performs a
specific portion of the overall job. The META 4B supports
such a concept by requiring a program to be split up into

procedures. Sequencing of procedures 1is controlled by
procedure call and return. During the execution of one
procedure, other procedures may be called (either

explicitly by the programmer or implicitly by the
g-interpreter), execute, and return.

The g-interpreter 1is at all times executing a specific
procedure, called the current procedure. The execution of
this procedure is maintained by three registers in the
register file. The first, control register 16, is called
the Procedure Base Register (PBR). It simply contains the
main store address of the beginning of the current
procedure (remember, main store is addressed in bytes!).

Since a procedure must begin on a halfword boundary, the

i

Program Facilities

PBR is always forced to be even (i.e., the low-order bit
is 1ignored). In addition, whenever a new procedure is
entered, GPE15 1in the register file is set to contain a
copy of the PBR. This is useful for implicit addressing of
static data 1in the procedure, and should not be modified
by the programmer.

PBR

r A
| proc. address 0]
L 4

o 15

The third register is the Procedure Displacement Register
(PDR) , control register 17. It contains the Dbyte
displacement from the PBR to the next instruction to be
executed. Whenever the g-interpreter is ready to execute
an instruction, it fetches it from the locations specified
by the sum of the PBR and PLR, and then adjusts the PDR so
as to be ready for the next instruction.

Procedures are limited to 4K bytes in length. Furthermore,

instructions must be on halfword boundaries, so the
low-order bit of the PDR is ignored, as with the PBR.,

PDK

r— ==

10000 proc. disp.0]
J

0 4 15

Procedure displacements are a standard data type, and can
reside in areas other than the PDR. For example,
instructions which alter the normal sequential execution
path (branching instructions) contain such displacements.

-15=

Program Facilities

3s 1.2 PROGRAMMING

o e s s S s . L S e e S . it S e i

A single assenmbly may contain any number of procedures,
each of which is coded as fcllows:

'

[EXTERNAL] PROC <name>

{procedure ccde)

static data

The PROC statement specifies the start of a new procedure
with the name indicated by <name>. Each procedure nust
have an identifying name. If the scope of the procedure is
to be external, that 1is, if the procedure name can be
referenced by other assemblies (e.g., via V-constants),
the specification EXTERNAL must be included.

Following the PROC statement is up to 4K bytes of code and
data which performs the computations assigned to this
procedure. Static data not used by other procedures should
be placed at the end, including a LTORG statement to
locate all literals., The PROC statement sets up a USING on
GPR15 so that this data can be implicitly addressed.

NOTE that it is not necessary to code a CSECT statement
anywhere in the assembly.

2.1_INTRODUCTION

Instructions on the MET 4B are similar to those on an IBHM
System/360,370[]. Each instruction consists of an
operation, which specifies some function to be performed
upon one or two operands.

The operation is specified in an instruction by a four-,
eight-, or twelve-bit operation code. This code specifies
not only the basic function to be performed, but also
certain modifiers, such as the data type of the operands.
Each different operaticn code is given a mnemonic for use
in assembly language programming (e.g., "A" for add).

Operations can be performed upon single operands (unary

operations), or upon two operands (binary operations).
"Reference codes" are appended to an operation mnemonic to

-16-

Program Facilities

specify the data type and location of the operands (e.g.,
"ARR" for adding the contents of two general-purpose
registers). The next section describes the various types of
operands and their reference codes.

When programming in assembly language, instruction operands
are specified in their logical order. The instruction
descriptions in the document give the symbolic format for
these operands, A general-purpose register 1s shown
symbolically as an "R", while an XBD address is shown
symbolically as "“"D(X,B)%. A symbolic operand may have a
mw o or a "2" suffix to denote which operand it is, or an
ws" or "D" suffix to denote source and destination. Thus
an instruction to add two registers is shown as:

ARR R1,R2

3:2.2 OPERANDS

Various restrictions are placed upon data types if they are
to be operated wupon directly by an instruction. These
restrictions are outlined here:

32202, 1 _INTEGERS

In most cases, integers must be sixteen bits in length
in order to be operated upon by instructions. In a few
cases they must be 32 bits 1long, such as for the
dividend in a divide operation. These integers may
reside in the general-purpose registers (and if so are
given the reference code "R"), within instructions as
immediate data (code "I"), or within a halfword in main
store (code “H"),

The restriction placed wupon dintegers also hold for
fractioans.

¥B8D data can only reside within instructions, and are
given the code "A", They consist of a four-bit X field,
a four-bit B ftield, and a twelve-bit D field.

-17-

Program Facilities

Procedure displacements typically reside within the PDR
control register or branching instructions, but they can
also be stored in GPRs (code "R") or halfwords in main
store (code "H"),. Since they require only twelve bits,
the high-order four bits of the register or halfword are
ignored and assumed to be zero.

Single byte data items can reside in the low-order eight
bits of a GPR (code “R"™), an instruction (code "I"), or
in any byte 1in main store (code "“B"). When in main
store, bytes do not necessarily have to be on halfword
boundaries.

3.2.2.6 CHARACTER STRINGS

Character strings can only reside in main store and are
given the code "C"., They may begin on any byte boundary
and be of any length from 0 (the null string) up to
65,535 bytes.

3.3 _PROCEDURE_CHECKS

Certain errors can arise during the execution of a progranm,
such as an attempt to divide by =zero. The g-interpreter
provides a means of informing the monitor and/or user of these
errors, a means called procedure checks. When an error is
detected, execution of the instruction in question 1is aborted,
and an implicit procedure call occurs. A detailed explanation
is given in Chapter 12,

With each instruction description in the following chapters
is given a list of the possible procedure checks that can
occur and why.

- {8

The Transfer Data Instruction

4 THE_TRANSFER DATA_ INSTRUCTION

The purpose of this chapter is to serve as an introduction to the
instruction set of the META 4B by describing a fundamental
instruction, XFER. NOTE that the format used to describe this
instruction will be used throughout the remaining chapters.

Each instruction description consists of four parts:

1. The name of the instruction.

2., The mnemonic used when coding the instruction, followed by the
symbolic format of the operands.

3. A picture of the instruction as it resides in main store,
with 1its operand code (hexadecimal) and operand fields.
Unused pits are indicated by a slash.

4. An English-lanquage description of the instruction.

transFER data

X FER D, DD (BD) ,S,DS({BS),DN (BN)
r T T Sl 5 LE T T e |
| FF I/ D1/ S | BD | DD DS] BS | | BN| DN
[A L 4 L i i 4 1
¢] 3 12 16 20 32 36 48 52 63

The XFER 4instruction allows the programnmer to transfer one or
more halfwords of data from locations in one store to locations
in the same or any other store. Data 1is transierred from the
source store specified by S, starting at the location specified
by D5 (BS), to the destination store specified by D, starting at
the location DD (BD). The number of halfwords transferred is

specified by DN (BN) . N

Addresses and the length are computed by adding the contents of
the base GPR (BD, BS, or BN) to the immediate twelve-bhit
displacement (DD, DS, or DN), forming a logical integer. 1If a
base field contains zero, GPRO is not added; the displacement is
used by itself. The reader may have noticed that the addresses
and length are XBD data types without the index.

The stores which can be specifed in the three-bit D or S fields
and their idiosyncracies are as follows:

code 0: Register file (R). Addresses are treated modulo 64, so
that transferring wraps from register 63 to 0.

-19=-

Th

©

Transfer Data Instruction

code 1: Local Store (LS). Addresses are treated modulo n, n
being the current size of local store. Thus transferring
wraps from location n-1 to 0.

code 2: Main Store (MS). The address must specify a halfword
boundary. If it does not, an alignment procedure check
OCCUrS.

code 3: Vector General Register file (VGR). Addresses are treated
modulo 128, so that transferring wraps from register 127 to
0. See chapter 15,2, for an explanation of the Vector
General registers.

codes 4-7: unused., If specified as a source, zeroes are obtained;
i1f as a destination, the data falls off the face of the
earth.

If the number of halfwords tc¢ be transferred is zero, you
wouldn't believe what happens.

In order to simplify the specification of store types,
registers, etc.,, a macro is provided which generates equates for
them. This macro is called "MUBEQUS" and should be included at
the end of all META UB assemblies., A listing of the generated
code can be found in Appendix 1.

Examples:

XFER R,R5,M85,PLACE, 3
Three halfwords are transferred from main store, starting at
PLACE, into GPR5-7.

XFER LS,256,L5,128,128
128 halfwords are transferred from local store locations
128=-255 to locations 256-383.

XFER LS,0 (R2) ,VGR,VGDIAL1,0 (R3)
The number of Vector General dial registers specified by the
contents of GPR3 is transferred into local store starting at
the location specified by the contents of GPRZ,

XFER R,R8,R,DBR,1
The DBR is placed into GPRS8.

NOTE that XFER 1is not intended for transferring single data items
among the general-purpose registers and main store. There are
other, more powerful, instructions for this purpose, which are
described in later chapters.

-20=

Branching Instructions

5_BRANCHING_INSTRUCTIONS

51 _INTRODUCTION

A class of operations known as branching operations are
provided to allow the programmer to make decisions and alter
the flow of control through his procedures. Branching
decisions are controlled by the Condition Flag Register.

5.2 CONDIFION FLAG REGISTER

The CFR, <control register 18, provides the means for making
decisions 1in a procedure. It ccntains eight condition bits
which are set by certain instructions in order to inform the
programmer of the results of the instruction. For examnple,
compare operations set the CFR to reflect whether the first
operand was less than, equal to, or greater than the second
operand.

CFR

] T 3
| f£lags |S]00000000]
L i — J

0 7 B 15

Whenever the CFR is modified by an instruction, all bits are
initially set to zero. HNext, one of the flags (bits 0-6) is
set to reflect the results of the operation. (In the case of
compares, bit 0 is set on 1if the operands are equal, bit 1 if
the first operand is dgreater, or bit 2 if it is less than the
second operand.) Finally, the summary flag, bit 7, is set to
reflect the most important condition. {For compares, it is
set off if the operands are unegual, or on if they are equal.)

The purpose of some branching instructions is to test the CFR
and either bkranch cr not, depending upon the test.

Unconditional Branching Instructions

5.3_UNCONDITIONAL BRANCHING INSTRUCTIONS

No OPeration
NOP 0

r

T 1
| 0D 100000000}
i i

L

0 8 15

NOP performs no operation whatsoever.
with the next sequential intruction.

e T a
| 4 lproc., disp.0|
1 '} — |

0 4 15

A branch 1is taken
setting of the CFR.

to the specified

Branch via Register

BR R

T - Ll =
| 0FC | R]

1 L i
0 12 15

Branch via Halfword [Note the mnemonic]
BH D(X,B)
r T T T 1
| 9FC I X | B 1 D |
Ty SSICRNS! [P S 1 i i

0 12 16 20 31

-722=

Execution continues

label regardless of the
Such a branch is called unconditional.

Unconditional Branching Instructions

An unconditional branch 1is taken. For BR, the procedure
displacement is obtained from the GPR specifed by the operand.
For BH, 1t is obtained from the halfword at the main store
address specified. In both cases, the high-order four bits
of the operand are ignored.

An alignment procedure check occurs during BH 1if the main
store address is odd.

Conditional Branching Instructions

Branch True
BT label

T T 1
{ 3 |proc. disp.0]
L i = |

0 4 15

Branch False
BF label
r T a
1 2 |proc. disp.0}
- J

Q 4 15

If the summary f£lag is on and the operation is BT, or if it is
off and the operation is EF, and branch 1is taken to the
specifed label. Otherwise no branch is taken.

Branch on Condition Flag register

BCF mask, label

| T T 3
| 5D | mask |0000proc. disp.0]
L L 1 —]
0 8 16 31

The eight-bit mask is used to select bits in the CFR. If any
selected bits are on, a branch is taken to the label,

Otherwise, no branch is takxen. Fach bit in the mask
corresponds to a_ bit in the CFR. Wherever a one bit appears
in the nask, the corresponding CFR bit 1is selected for
testing.

It 1is not usually necessary for the programmer to specify a
mask on a BCF instruction. Instead, "extended mnemonics"
are provided which allow the user to ignore the mask. Examples
are BE (Branch Egqual) and BNG (Branch Not Greater). Extended
mnemonics are described with the relevant instructions, and
are also listed in Appendix 2a.

zu

Case Instruction

2.5 CASE

CASE R,D(X,B)

r-) L T ED E Fe— a1

| 6D i R | X | B | D |

L 1 1 1 4 — | \

] 8 12 16 20 31

The main store address specifies a table of halfwords
containing procedure displacements, The n'th halfword is

selected, and a branch is taken to the procedure displacement
within this halfword. As wusual, the high-order four bits are
ignored. The value of n is the logical integer in the GPR
specified by R, and ranges frcm 0 on up.

An alignment procedure check cccurs if the table address is
odd.

In order to simplify the generation of CASE tables, the DCPD
(Define Constant Procedure Displacements) statement 1is
provided. It is coded as follows:

[Label] DCPD labell,label2,...,labeln

A table of n procedure displacements is generated.

-25=

Unary Data Moving Instructions

5 _DATA_MOVING_INSTRUCTIONS

6.1 UNARY INSTRUCTIONS

Set to Zero Register
SZR R

‘g = T 1
] 0F0 | R |
1 1 1
V] 12 15

Set to Zero Halfword

SZH D(X,B)

r 3 . R T |
| 9F0 | X I B | D |
L — e L i 1 [|
[¢] 12 16 20 31

These two instructions cause their operand to be set to zero.
For SZR, the specified GPR 1is set to zero, while for SZH, the
halfword at the main store address is zeroed.

An alignment procedure check occurs during SZH if the address
is odd.

Set to One Register
SOR R

T T

T a

| 0F1 IR
i

S5

L [l

0 12 1

Set tc One Halfword

SOH D(X,B)

r T T & 1
| 9F1 | X | B | D I
| - L A 1 ¥
0 i2 16 20 31

-26-

Unary Data Moving Instructions
These +two instructions cause their operand to be set to the
integer 1. For SOR, the specifed GPR is set to 1, while for
SOH, the main store halfword is set to 1.

An alignment procedure check cccurs during SOH if the address
is odd.

-] -

Replace

6.2_REPLACE bt s
R R
H ®
: . B
Replace Register with Register ﬁ T
RRR R1,R2 A
T T T B &
| 06 { B1 1 R2 }
L) i i RR | HR 1 BR |cc
0 a 12 15 rr [wr | e1
RH | HH
RA | WA
Replace Register with Immediate kB
RRI R1,IH2
L) F | i i |
I 56 {1 RV 2417 IH2 |
i i s sl il s sl 4 J
0 8 12 16 31

Replace Register with Halfword

RRI R1,D2 (X2, B2)

r : r LI LI LI 1
| 66 | R1 | X2 | B2 | DZ |
i i A PR 1 - i
0 a8 i2 16 20 31

Replace Register with Address

]RA R1,D2(X2,B2)

r LI LD LA i B a
i 76 { R1 | X2 | B2 | D2 |
L 1 1 | L —— 1
¢] 8 12 16 20 31

Replace Reyister with Byte

RRB R1,D2(X2,B2)

. HEC T L Ll 1
| 86 { R1 | X2 | B2 | Dz |
1 L‘ L 1] Epo 1
0 8 12 16 20 31
Replace Halfword with Register

RHR D1(x1,B1),R2

" T T T T 1
| 96 | R2 | X1 | B1 | D1 |
L L 1 L i 1
0 8 12 16 20 31

s

Replace

Replace Byte with Register

RBR D1(X1,B1),R2
T T T T —T b= a
| Ab | R2 | X1} B1 | D1]
P SO Il { i i E = d
v 8 12 16 20 31
Replace Halfword with Immediate
RHI D1 {X1,B1),IH2
T e T [} T |
| B6 /7771 X1 | B1 | D1 | 1H2 |
L 1 S 1 i — 1 —— 1
0 8 12 16 20 3z 4 7
Replace Halfword with Address
RHA D14X1,81) .02 42, B2)
-7 T T ¥ i T a
| Cé6 I X2 § X1 | B1 | D1 | B2 | D2 |
L 1 1 i i i 1 i
o] 8 12 16 20 32 36 47
Replace Halfword with Halfword
RHH D1{(X1,B1),D2(X2,B2)
3 T T T T =t T T gl
| D6] X2 | X1 | B1 | D1 | B2 | D2 |
i e i A A 1 i i i
4]] 12 16 20 32 36 47
Replace Byte with Immediate
RBI .~ D1(x1,B1),IB2
r T T T T T T 1
| L6 \////71 ¥1 | B1 | b1 V777777771 1B2 |
L 1 L 1 1 1 i]
Q 8 12 16 20 32 4 0 47
Replace Character string with Character string
RCC D1(X1,B1),D2(X2,B2),DL(BL)
T T T T T T E L | E 3 a
| F6 jX2 (X1 yB1 | D1 |B2 | D2 | BL | DL |
OISR e | e B 1 i 1 i 1 A |
4] B 12 16 20 32 36 48 52 63

-729=

ot

L
v ™ ot®
|‘-‘,"‘]_

Vs

8

5o

\n-i“g'

&
A
o

sokl

Replace

These instructions cause the first operand to be replaced by
the second operand.

RRR causes the GPR specified by R1 to contain the contents of
the GPR specified by R2. BRI causes the GPR specified by R1
to contain te immediate halfword. Immediate data may be

RRH causes the GPR specified by R1 to contain the halfword at
the specified main store address.

RRA causes the R1 GPR to contain the value of the specified
XBD address. The address itself is the second operand =-- no
main store data is used.

RRB causes the low-crder eight bits of the R1 GPR to contain
the byte at the main store address. The high-order eight bits
of the GPR are zeroed.

RHR causes the halfword at the main store address to contain
the GPR specified by R2.

RBR causes the byte at the main store address to contain the
low-order eight bits of the GPR specified by R2.

RHI causes the specifed main store halfword to contain the
immediate halfword.

RHA causes the specifed main store halfword (first operand) to
contain the second operand XBD address. This address is not
used to reference main store, but 1is itself the second
operand.

RHH causes the first operand main store halfword to contain
the second operand main store halfword. '

RBL causes the byte at the main store address to contain the
immediate byte.

RCC causes a copy of the second operand character string to be
placed into the first operand string., This copy is made by
logically lifting the string cut of main store and setting it
down in the first operand, so that no propagation occurs. The
length of the two strings is specifed by DL(BL), and is
cemputed as follows: the contents of the GPR specified by BL
(unless it is zero) is added to the twelve-bit displacement
DL«

An aligament procedure check can occur on any instruction
requiring a halfword in main store if its address is odd.

-30-

SWap Register with Register

Swap

: RR
SWRR R1,R2 RH = WR
T T .- L ; RB = BR
| 07 | R1 | R2 | HH
L i A /]
0 8 12 15
SWap Register with Halfword
SWRH R1,D2(X2,B2)
i T ko = g Ll 1
| 67 { R1 | X2 | B2 | D2 J
L. 1 i A= i i
0 8 12 16 20 31
SWap Register with Byte
SWRB §1,D2 {£3,82)
T - T T LB T L
| 87 I R1 1 ¥2 1 B2] Dz |
, - i A . W i J
0 8 12 16 20 31
SWap Halfword with Register
SWHR D1(X1,B1),R2
L § T T T LB e a
| 97 | R2 | X1 | B1 | D1]
1 e s L e L i e o)
0 a8 12 16 20 31
SWap Byte with Register
SWBR D1(X1,B1),R2
~ T e & T T 1
| A7 | R2 | X1 | B1 | D1 |
L 1 1 L i J
0 8 12 16 20 31
SWap Halfword with Halfword
SWHH D1(Xx1,B1),D2(X2,B2)
r T ED A kD T LD 1
i n7 | X2 | X1 | B1] D1 | B2 | D2
1 i 1 1 i L 1 1
0 8 12 16 20 32 36 47

Swap

SWap Character string with Character string
SWCC pD1(x1,81) ,D2(X2,B2) ,DL(BL)
(macro)

The swap operation is used to interchange the contents of the
two instruction operands.

SWRR causes the contents of the two specifed GPRs to be
swapped.

SWRH causes the contents of the GPR and the main store
halfword to be swapped.

SWRB causes the low-order eight bits of the GPR to be swapped
with the byte in main store., The high-order eight bits of the
GPR are set to zero.

SWHR performs the same function as SWRH.
SWBR performs the same function as SWRB.

SWHH causes the contents of the two main store halfwords to be
swapped.

SWCC causes the two character strings to be interchanged. The
length of the strings is specified by DL(BL). As with all
character string operations, no propagation occurs. SWCC is
not implemented in the g-interpreter, but rather by a macro
which generates three XCC instructions.

An alignment procedure check will occur on instructions which
specify a main store halfword not on an even boundary.

-32-

Arithmetic Shift Instructions

——— o —

The shift instructions allow the programnmer to shift the
contents of a 16- or 32-bit value in the GPRs. The first
operand 1s always a GPR number specitying the GPR(s) whose
contents are to be shifted. The second operand specifies the
shift count (number of bit positions to be shifted), which
can be located immediately within the instruction or in a GPR.
Immediate counts are four bits long, allowing a value from
zero to fifteen. If the count is in a GPR, the low-order five
bits are used, allowing a value trom zero to 31.

7.2 ARITHMETIC_SHIFT_INSTRUCTICNS

Left SHift, Imnmediate

LSHI Bz TX2

T i =re -

1 14 i B1 jIx2 |

L] 1 J
0 a8 12 15

Left SHift, Register

LSHR R1,R2
R | iz i
| 1iC | R1 | R2
1 i L |
0 a 12 15

Right SHift, Immediate

RSHL R1,1X2

T T 1 1
] 15 i BT JIX2 |
L L S : 1
0 8 12 1s

-33-

Arithmetic Shift Instructions

Right SHift, Register

RSHE R1,R2

e = & T 1
| 1D | R1T | R2 |
L E | i i
0 3 12 1s

The contents of the GPR specified by R1 is shifted. The
direction of shift is specified by the op code: left shifts
cause vacated bit positions to be filled with zeroes; right
shifts cause them to be filled with the original sign bit
(original bit 0). The shift count 1is either the immediate
field IX2 or the low-order five bits of the GPR specified by
R2.

NOTE that these shifts can be used to multiply or divide the
GPR by a power of two.

If, during left shifts, a bit unlike the original sign bit is
shifted into bit 0, overflow 1is considered to have occurred,
because a significant bit has been shifted out of the
register. Such a condition is reflected in the CFR: flag bit
1 is set off if it does not occur or on if it does (the
summary flag is always off). 1The extended mnemonic BO (Branch
on Overflow) can be used to test this condition. NOTE that it
is impossible to branch on nc overflow; overtlow is the one
exception to the CFR-setting rules described in Chapter 5. 2.

Left SHift Double, Immediate

LSHDI R1,IX2

T T T g
| 16 | R1 |IX2 |
1 1 1 1
0 8 12 15

Left SHift Double, Register

LSHDR R1,R2

i LD T 1
| 1E { B § B2 |
L A 1 d
(4] a8 12 15

3u

Arithmetic Shift Instructions

Right SHift Double, Immediate

RSHDI R1,IX2

r T S i |

| 17 | R1 JIX2 |

| S S— US| SUSGSS,. |
0 8 12 1S5

kight SHift Double, Register

RSHDR R1,R2

T —— g |

| 1F | R1] R2 |

L i 1 J
0 8 12 15

These instructions operate exactly as the four explained
above, wexcept that a 32-bit operand (GPR pair) is shifted.
The low-order sixteen bits of the operand are in the GPR
specified by R1, while the high-order sixteen bits are in the
previous (I said previous) GPR (i.e., R1-1).

A register specification procedure check cccurs if R1 is zero,
since no previous GPR exists (GPR=12)

- 35~

Logical Shift Instructions

1.3 LOGICAL SHIFT INSIRUCTIONS

Left SHift Logical, lmmediate

LSHLI R1,IX2

r T i i E
i 10 | R1 |IX2 |
-] 1 i
0 B8 12 15

Left SHift Logical, Register
LSHLR E1,R2
r NE I T

| 18 { R1 | R2
L 1 1

0 8 12 1

W e

Right SHift Logical, lmmediate
RSHLI Rl;1X2

r

T T B

| 11 { R¥ JIX2]
i 1

5

L 1
0 8 i2 1

Right SHift Logical, Register

RSHLR R1,R2

r T v g |
| 19 { BR1 | R2 |
L N—— i A]
Q a8 12 1%

The contents of the GPR specified by R1 is shifted. The
direction of shift is specified by the operation code: both
directions cause vacated bit positions to be filled with
zeroes. The shift count is either the immediate field IX2 or
the low-order five bits of the GPR specified by R2.

The CFR is unchanged.

-36-

Logical Shift Instructions

Left SHift Logical Double, Immediate

LSHLDI BN ;IX2

r ¥ T 1
i 12 | B |ITX2 |
1= L i)
¢] 8 12 15

Left SHift Logical Double, Register

LSHLDR R1,R2

. R T T 1

| 14 | B1 | R2 |

;| RS S | 1 i
0 8 12 1§

Right SHift Logical Double, Immediate

RSHLDI R1,TX2

f T 1 Al
i 13 | R1 |IX2 |
[N 1 1 1
0 a8 12 15

Right SHift Logical Double, Register

RSHLDR R1,R2

o T T al

i 1B | R1 | R2 {

| I 1 il — |
] 8 12 15

These instructions operate exactly as the four explained
above, except that a 32-bit operand {GPR pair) 1is shifted.
The low-order sixteen bits of the operand are in the GPR
specified by R1, while the high-order sixteen bits are in the
previous GPR (i.e., R1-1).

A register specification procedure check occurs if R1 is zero,
since no previous GPR exists.

- 37=

Arithmetic Instructions - Test

8_ARITHMETIC INSTRUCTIONS

——— i — - — o o T o T it o o o S

Test Sign Register

TSR R

r T A

| CF8 I R |

 I—— 1 4
(o] 12 1s

Test Sign Aadress

TSA D{X,B)

r T T T a
| 778 | X | B | D |
L 1 L 1 P |
0 12 16 20 31

Test Sign Halfword

TSH D(X,B)

r T T T e B |
i 9F8 | X | B | D i
s L L 1 _— 1
0 12 16 20 31

The operand is treated as a signed integer and its sign is

tested. The CFR is set as follows: bit 0 is set if the
operand is zero; bit 1 if it is positive; or bit 2 if it is
negative, The summary flag is set to 0 if the operand is

zero, or 1 otherwise.

The operand for TSR is the specified GPR. For TSA it is the
XBD address itself. And for TSH it is the Lalfword at the

specified main store address.

Extended mnemonics are provided for use with the BCF
instruction. They are: BZ (Branch Zero), BNZ (Branch HNot
Zero), BP (Branch Positive), BNP (Branch Not Positive), BN
(Branch Negative), and BNN (Branch Not Negative) .

An alignment procedure check cccurs during TSH if the halfword
address is odd.

-38' 1l

8.2 UNARY

Increment

INCREMENT

_— e S

Register

Unary

Increment

IR R

r E e |
| 0F2 | R |

1 L J
0 12 15

Increment Halfword

Id D(X,B)

| FREEaa v i T T 1
| 9F2 I X | B | D |
L — 3 1 1 1
0 12 16 20 31

Increment Increment Register
IIR R

[————

T)
| OF3 i B |
L i 4
0 12 195

Increment Increment Halfword

1IH D(X,B)

r T i 8 T 1
| 9F3 1 X |1 B | D |
1 =S i & 1]
0 12 16 20 31

The operand is incremented by one (IR, IH) or two (IIR, IIH),
depending upon the operation code.

The operand for IR or IIR is the specified GPR, while for IH

or IIH it is the halfword at the main store address. An
alignment procedure check occurs if this address is odd.

-39

Unary Decrement and Test

DTSR R

S e 1
I OF4 | R |
e e Jd
0 12 15

Decrement, Test Sign Halfword

DISH D(X,B)

l'""—""_" T A T — |
| 9F Y | X | B | D]

L 1 1 1 K|
0 12 16 20 31

Decrement Decrement, Test Sign Register
DDTSR R

r L 1

I OF5 i R |

1 L Jd

0 12 15

Decrement Decrement, Test Sign Halfword

DDTSH D({X,B)

r B | T T 1
| 9F5 | £ | B { D i
L s 1 1 1 " 4
0 12 16 20 31

The operand is decremented by one (DTSR, DTSH) or two (DDTSR,
DDTSH), depending wupon the operation code. Following this,
the sign of the resulting number is tested, and the CFR is set
as for the Test Sign instructions described above.

The operand for DTSR or DDTSR is the specified GPR, while for
DTSH and DDTSH it is the halfword at the main store address.
An alignment procedure check occurs if this address is odd.

T

Absolute Value and Negate

8.4 ABSOLUTE_VALUE_AND NEGATE

Absolute value Register
ABSR R
r |] 1
i OF6 | R |
L L 4
0 12 15
Absolute value Halfword
ABSH D(X,B)
i T 5 i T 1
| 9F6 { X | B | D |
4 4 L 1 4 — 1
0 12 16 20 31

The operand is treated as a signed number and replaced by its
absolute value. The absolute value of the maximum negative
number is again the maximum negative number.

The operand for ABSR is the specified GPR, while for ABSH it
is the halfword at the main store address. An alignment
procedure check occurs if the address is cdd.

Negate Reglster

NEGR R
| i v h
| Or7 | R |
{ 1 J
(¢] 12 15
Negate Halfword
NEGH D(X,B)
T T T T ; |
i 9F7 | X | B | D]
R i ¥ | 1 i i e i
0 12 16 20 31
The operand is treated as a signed number and replaced by its
negative. The negative of =zerc is again zero. The negative of
the maximum negative number 1is again the maximum negative
numbers,
The operand for NEGR is the specified GPR, while for NEGH it
is the halfword at the main store address. An alignment

procedure check occurs if the address is odd.

=i§}=

8.5 _ADD
Add Register plus Register ﬁz
ARR R1,R2 -
r T T == | A
| 01 | R1 | R2 |
i 1 A i
0 8 12 1%
Add Register plus Imunediate
ARI R1D,R15,IH2 -or- R1,1IH2
r i i LB 1
| 51 IR1D |R1S | IH2 i
L - 1 L A a1
0 8 12 16 1
Add Register plus Halfword
ARH R1,D2 {(X2,B2)
— L § 1 T L] 1
| 61 I R1 § X2 | B2 | D2 1
L 1 1 1 i . 3
(4] 8 12 16 20 31
Add Register plus Address
ARA R1,D2(X2,B2)
r T L3 T T =S5 A
| 71 { B% | X2 § B2 | D2 |
L L ' o] - |
0 8 12 16 20 31
Add Halfword plus Register
AHR D1(Xx1,B1),R2
r T . it T T 1
| 91 { R2 | X1 | B1 | L1 |
L i 1 sl et i i
0 8 12 16 20 31
Add Halfword plus Immediate
AHI D1(X1,B1),1IH2
Jl T T Ll L T 1
| B1 \ /7771 X1 | B1 | D1 | TH2 |
i L A 1 L i 4
0 8 12 16 20 32 7

wlj 2

HR
L3
HH
kit

Add

Add

Add Halfword plus Address

AHA D1(X1,B1),D2(X2,B2)

v LB T L] T T LD]
| c1 | X2 | X1 | B1 | D1 | B2 | D2 |
L L —_— 1 1 A i i
V] B 12 16 20 32 38 47
Add Halfword plus Halfword

AHH D1(X1,B1),D2(X2,B2)

[T LB Ll T I L i L]
] D1 I X2 | X1 | B1 | D1 | B2 | D2

A L 1 1 i 1 1 i
[¥] a 12 le 20 32 36 47

The two operands are added together, and the first operand is
replaced by the sum. Carry out of the sign bit is recorded in
bit 0 of the CFR, while overflow {the 'exclusive or' of the
carries out of the sign bit and bit 1) is recorded in bit 1 of
the CFR., The summary flag is always zero.

In addition to the BO extended mnemonic already described,
there exists BC (Branch Carry). Remember, it is impossible to
branch on no carry or no overflow. The operands for ARR are
the two specified GPRs.

For ARI, the first coperand 1is really two operands. Execution
proceeds as follows: The GPR specified by R1S is fetched,
added . to the 1immediate halfword, and the sum is placed into
the GPR specified by R1D. Hence it is possible to add a
constant to one GPR and put the sum in another. If only one
GPR is specified, it is considered to be both R1D and RI1S.

For ARH, the operands are a GPR and a main store.halfword.

For ARA, the operands are a GPR and the XBD address itself.

—_———m=mR

For AHR, the operands are a main store halfword and a GPR.

For AHI, the operands are a main store halfword and an
immediate halfword.

For AUA, the operands are a main store halfword and the XBD
address itself.

For AHH, the operands are two main store halfwords. An
alignment procedure check will occur on any instruction
specifying a main store halfword not on an even boundary.

-} 3=

Subtract

8,6 _SUBTRACT

—— - — e = e

Subtract Instructions

The second operand 1is subtracted from the first, and the
difference is placed in the first operand location. The CFR
is set as for the add instructions.

The instruction formats are identical to those for the add
instructions, except that the operation code is X'*2' rather
than X'*17?, Mnemonics are identical except for the first
letter, which is "S" rather than "AY,

An alignment procedure check will occur on any instruction
specifying a main store halfword not on an even boundary.

-l -

Multiply Instructions

8,7 MULTIPLY '

Multiply Register times Register

MRR R1,R2

T T v 1
| 03 | R1 | R2 |
b s il
0 8 12 15

Multiply Register times Immediate

MRI R1D,R1S,IH2 -or- R1,IH2

r L} LI F I 1
| 53 |R1D |R1S | IH2 |
L 1 . 1 J
0 a8 12 16 31

Multiply Register times Halfword

MRH ’1,D2 (X2, B2)

L 1 T T LK 1
1 63 I R1 } X2 | B2 | D2]
1 i RSN, | A i d
0 8 12 16 20 31
Multiply Register times Address

MRA R1,D2(X2,B2)

r L T o T 1
| 13 | R1 § X2 | B2 { D2 |
L i i L . i
0 8 12 16 20 31

The first operand, which is always a GPR, is multiplied by the
second operand to produce a 32-bit product. The low-order
sixteen bits of this product are placed into the first operand
GPR, and tne high-order sixteen bits are placed into the
previous GPR (i.e., R1-1). A register specification procedure
check occurs it the first operand is GPRO.

For MRR, the second operand is the GPR specified by R2.

MRI is special in that it allows the first operand GPR to be
two operands. Execution procedes as follows: the contents of
the GPR specified by R1S 1is multiplied by the immediate
halfword. The low-order sixteen bits of the product are placed
in the R1D GPR, and the high-order =sixteen bits in the
previous one. If only one GPR is specified, it is assumed to
be both R1S and R1D.

For MRH, the second operand is the specified main store

halfword. An alignment procedure check occurs if its address
is odd.

T

Multiply Instructions
For MRA, the second operand is the XBD address itself.
If multiply instructions are used with fractions, the product

must be shifted one bit +tc the leit to give the correct
ansvwer.

45—

Divide Instructions

8.8 DIVIDE

o A s ity S e S S i

Divide Reyister by Register

DRR R1,R2
r—————"""7 T E |
| 04 | BT | R2 §
| IS 4 1 3
0 a8 12 15

Divide Register by Immediate

DRI R1D,R1S,IH2 -or- R1,IH2

S EB T L E |

| 54 JR1D |R1S | IH?2 |

L 1 L L 4

0 8 12 16 31

Divide Register by Halfword

DRH R1,D2(X2,B2)

: [LB Ll T w 1
| 6l | R1 | X2 | B2 | D2 i
L A 1 L i | ¥ |
0 8 12 16 20 31
Divide Register by Address

DRA Rr1:D2 (X2,:B2)

T T LB LD [3 E]
I 74 | R1 | X2 | B2 | D2 I
s i 1 I 1 ¥]
0 8 12 le 20 31

The first operand is the 32-bit dividend, the low-order
sixteen bits of which are in the GPR specifed by R1, while the
hrigh-crder sixteen bits are in the previous GPR. The second
operand is the divisor, which is divided into the dividend,
producing a gquotient, which is placed in the R1 GPR, and a
remainder, which is placed in the previous GPR. A register
specification procedure check cccurs if R1 specifies GPRO.

For DRR, the divisor is in the GPR specified by R2.

The execution of DRI is somewhat different than that of the

other divide instructions. It procedes as follows: the
dividend 1is taken from the GPR specified by R1S and the
previous one. This dividend 1is divided by the immediate

halfword, and the gquotient is placed in the GPR specified by
R1D. The remainder is placed in the previous GPR (i.e.,
R1D-1). If only one GPR is specified, it is assumed to be
both R1D and R1S.

T

Square Root

For DRH, the divisor is the main store halfword. An alignment
procedure check will occur if its address is odd.

For DRA, the divisor is the XBL address itself.

Fractional divides camnot be performed with these
instructions.

A division by zero procedure check occurs if the divisor is
zero., The CFR is set to indicate overflow: bit 1 is set to
zero if there was no overflow, or to one if there was; the
summary flag is always zero. Overflow occurs if the quotient
is too big to fit in one GPR.

B23_EXTEND SIGN (shett o Onade wa Mun)

EXtend Sign of Register

EXSR R

| T |
| OF9 i R |
L i 1
0 12 15

The contents of the specified GPR is treated as a signed
integer and extended to 32 bits by replicating its sign in the

previous GPR.

A register specification procedure check occurs if GPRO is
specified.

SQuare RooT Register

SQRTR R

r SEe G
| OFA I B |
L i ;|
0 12 15

-4 g=

Square Root

SQuare RooT Halfword

SORTH D (X,B)

o T T T 1
| 9FA 1 X +B | D |

L L A i 1
0 12 16 20 31

The operand is treated as a signed fraction and replaced by
its square root. A negative square root procedure check occurs
if the operand is negative.

The operand for SQRTR is the specified GPR, while for SQRTH it
is the main store halfword. An alignment procedure check
occurs if this halfword is on an odd boundary.

-UY=

Comparison Instructions

9 COMPARLISON LINSTRUCTIONS

i . i i i P i M SO R . S T St B S i S S i

Compare Register with Register

CKR R1,R2

T ——— T . B |

1 05 | R1 | R2 |

- 1 —4 - |
0 8 12 15

Ccmpare Register with Immediate

CRI R1D,R15,THZ -or— R1,IH2

r T T T 1
I 55 |R1D | R1S | IH2 |
i 1 1 1 — 1
0 a8 12 16 31

Ccmpare Register with Halfword

CRH B1,D2 (X2,B2)

I T L L] L] 1
| 65 | R1 | X2 | B2 | D2 |
1 —_— A 1 1 L 1
0 8 12 16 20 31

Ccmpare Register with Address

CRA R1,D2(X2,B2)

I T i L} L 1
| 75 | R1 | X2 | B2 | Dz |
s 1 1 i L 1
0 8 12 16 20 31

Ccnpare Halfword with Register

CHR D1(X1,B1),R2

r T B T T 1
| 95 1 R2 | X1 | B1 | D1 |
1 T L L 1 — 1
0 8 12 16 20 31

-50-

Comparison Instructions

Compare Halfword with Immediate

CHE DT4{X1,81) ,IH2

r 8 3 T - T 1

| B5 \//771 X1 | B1 | D1 | IH2 i

L 1 — i 1 1 4
0 8 12 16 20 32 47

Compare Halfword with Address

CHA D1 (Xx1,B1),D2(X2,B2)

S R SR T | T T T T 1

| C5 | X2 | X1 1 Bl } D1 | B2 | D2 |

L A i L A i i Jd
0 8 12 16 20 32 36 47

Ccmpare Halfword with Halfword

CHH D1(x1,81),D2({X2,B2)

r— T T T T T T |

| D5 | %2 1 X1 § BT | D1 | B2 | D2 |

L A ik . A i 4 J
[¢] 8 12 16 20 32 36 47

The two operands are treated as signed numbers and compared
(so that negative numbers are less than zero, which is less
than positive numbers). The CFR is set as follows: bit 0 is
set 1f the operands are equal; bit 1 is set if the first
operand is greater than the second; or bit 2 is set if it is
less. The summary flag is set on if they are equal, off
otherwise.

The following extended mnemonics are provided for branching
after compares: Branch Equal (BE), Branch Not Egual (BNE),
Branch Greater (BG), Branch Not Greater (BNG), Branch Less
{BL), and Branch Not Less (BNL).

Note that BH is not an extended mnemonic. BH is a mnemonic for

Branch Halfword.

The instructions allow the comparison of all possible
combinations of 16-bit numbkers in registers, immediate
halfwords, addresses, or main store halfwords.

An alignment procedure check occurs if a halfword is specified
on an odd bounaary.

Logical Compares

9,2 LOGICAL_COMPARES

Compare Logical Register with Register

CLRR R1,R2 Re e Br cc
r T T \ nt]4[| 23
R)
I 0B | R1 | R2 | i :: Wy
i 1 1 3 RA
re

0 8 12 15
Compare Logical Register-with Immediate /
CLRI R1,1H2

T E B L T 1

I 5B I Bl 1477F]) TH2 |

i 1 A L . i

] 8 12 16 31

Compare Logical Register with Halfword

CLRH R1,D2(X2,B2)

T - T E L LN a
6B { R1 | X2 | B2 | D2 I

i A i { T A A

0 8 12 16 20 31

Compare Logical Register with Address

CLRA R1,D2(X2,B2)

r T T | T = 1
| 7B | R1 | X2 | B2 | D2 |
L 1 1 L 1 J
0 a8 12 16 20 31

Compare Logyical Register with Byte

CLRB R1,D2(X2,B2)

S T T T T - Bl
| 8B | R1] X2 | B2 | D2 |
i A .. AL i J
0 8 12 16 20 31

Compare Logical Halfword with Register

CLHR DT {X1,B1) »R2

r - L T T T 1
i 9B ! B2 § X% § BY | D1 |
[CRES 1 — 1 L 1
lv] 8 12 16 20 31

-52-

Logical Compares

Compare Logical Byte with Register

CLBR D1(X1,B1), R2

r E N v L} v a1
| AB | R2 | X1 | B1 | D1 |
L 1 i 1 L i
0 8 12 16 20 31

Compare Logical Halfword with Immediate

CLHIL D1(X1,B1),1u2

== T k & i 5 i T =
i BB iszz777) X1 | B1 | D1 | IH2 |
L — 1 i L i L]
0 a8 12 16 20 3z 47

Compare Logical Halfword with Address

CLHA D1(X1,B1),D2(X2,B2)
T T T T T T T g |
i CB i ¥2 3 ¥1 } BY | D1 | B2 | D2 |
1 B 1 1 A 1 1 i
0 a8 12 16 20 32 36 47
Compare Logical Halfword with Halfword
CLHHU D1(X1,B1),D2 (X2, B2)
| — T T T T T v R q
i DB { X2 | X1 | B1 | D1 | B2 | D2 i
. IRt i i i i i i d
0 8 12 16 20 32 3e 47
Compare Logical Byte with Immediate
CLBI D1(X1,B1),1B2
= & il D ™) i]
| ED \/777) ¥1 | B1 | D1 \///7/7/7/7//1 1B2 |
L 1 1 i i L 1 J
0 a 12 16 20 32 4 0 47
Compare Logical Character string with Character string
CLCC D1(X1,B1),b2(X2,B2),DL{(BL)
B T w | i —— T T | 3
| FB {X2 X1 (B1] D1 |B2 | D2 | BL | DL |
1 W L L 4 4 L I} 1 b |
0 8 12 16 20 3z 36 48 52 63

Logical Compares

The two operands are treated as logical bit strings and
compared in magnitude (so that =zero is the smaliest number).
The CFR 1s set as for the other compare instructions.

These instructions allow all possible combinations of
byte-byte, halfword-halfword, and character string-character
string comparisons.

An alignment procedure check occurs if a halfword is specified
on an odd boundarye.

Bit and Character String Instructions

10_BIT AND_CHARACTER STRING INSTRUCTIONS

Ra WR B& o
10.1_OR RI WKr 8r
RH H@
RA lia
Or Register with Register kS
ORR R1,R2
r T E i 1
| 08 | R1 } R2 |
TR S: S S
0 8 12 15

Or Register with Imrmediate

ORI R1D,R1S,IH2 =or= R1,IH2

| T Ll LB 1

| 58 {R1D |R1S5 | IH2 |
Lo L i i X
Q B 12 16 31

Or Register with Halfword

ORH R1,D2 (X2, B2)

r - T T T L0 T
| 68 | R1T | X2 | B2 | Dz

L i 1 i 1 ¥ |
4] 8 12 16 20 31

Or Register with Address

ORA R1,D2(X2,B2)

r~ T Baat i T T m— 3
| 78 | R1 | X2 | B2 | D2 |
| dp— A L A L 1
0 8 12 16 20 31

Or Register with Byte

ORB R1,D2 (X2, B2)

f - T E il LI T a
| 88 | R1 | X2 | B2 | D2 |
L 1 i 1 i Jd

Q 1] 12 16 20 31

Bit ard Character String Instructions

Or Halfword with Register

OH R D1(X1,B1),R2
- T T T T - £
| 98 ! R2 | X1 | B1 | D1 |
. - L i 1 1

0 a8 12 16 20 31

Or Byte with Register

OBR D1(Xx1,B1),R2

g T T T T == 1

| A8 | R2 | X1]| B1 | D1 |

SRR 1 4 L 1 1

0 8 12 16 20 31

Or Halfword with Immediate

oHIL D1(X1,B1),IH2

r -1 T T T T ¥ & |

| B8 \/7771 X1 1 B1 | D1 | IHZ2 i

L 1 L 1 i L 1

0 8 12 16 20 32 47
Or Halfword with Address
Ol A D1(X1,B1),D2 (X2, B2)

r - T T T L LIk L :

| c8 I T2 | X1 1 BT | D1 | B2 | D2 |

1 1 1 1 1 —_— 1 —_ i

0 a 12 16 20 3z 36 47
Or Haltfword with Halfword
OHH D1 (E1:B1); D2{%X2,:;82)
fr E N T T T = T T 1

| DB] X2 | X1 | B1 | D1 | B2 | D2 |

, SR 1 1 1 i 3 a4 i

0 8 12 ie 20 32 36 47
Or Byte with Imnediate
OBI D1(Xx1,B1),1IB2
L] T T E o LN T [§ i]
| E8 \/7771 ¥1 1 B1 | D1 \//7////7/1 1BZ i
L i L 1 L 1 i J

0 8 12 16 20 32 40 4 7
Or Character string with Character string
0CC D1(x1,B1),D2(X2,B2),DL{(BL)
T T ™ T -T T T g i i |
| F8 1 %2 1 X1 1B1 | D1 |B2] D2 | BL | DL |
| s i 1 4. i L L L. 1 i
0 8 12 16 20 32 36 48 52 63

-56-

Bit and Character String Instructions

The two operands are treated as logical bit strings, and a
boolean 'OR' 1is performed upon them. The result is placed in
the first operand location.

The instructions allow all possible combinations of byte-byte,
halfword-nalfword, and character string-character string
operations.

An alignment procedure check occurs if a halfword is specified
on an odd boundary.

10.2_AND_INSTRUCTIONS

The two operands are treated as 1logical bit strings, and a
boolean 'AND' is performed upon them. The result is placed in
the first operand location.

The instruction formats are identical to those for the OR
instructions, except that the operation code is ¥X'*9!' rather
than X'*8°', Mnemonics are identical except for the first
letter, which is "N" rather than "OY.

An alignment procedure check occurs if a halfword is specified
on an odd boundary.

10.3_EXCLUSIVE _OR_INSTRUCTION

The two operands are treated as 1logical bit strings, and a
boolean 'EXCLUSIVE OR' is performed upon them. The result is
placed in the first operand location.

The instruction formats are identical to those for the OR
instructions, except that the coperation code is X'*A' rather
than X'%*87?, Mpnemonics are identical except for the first
letter, which is "¥" rather than "Oou,

An alignment procedure check occurs if a halfword is specified
on an odd boundary.

The second operand 1is used as a mask to select bits in the
first operand. BEach one bit in the mask selects the
corresponding bit in the first operand. The CFR is set as
follows: bit O is set if all selected bits are zero or the
mask 1is all zeroes; bit 1 is set if all selected bits are

-57 -

Bit ard Character String Instructions

one; or bit 2 is set if the selected bits are mixed zeroes and
ones. The summary flag is set on if all selected bits are one;
it. is set off otherwise.

Extended mnemcnics are provided for branching after a Test
under Mask dinstruction: Branch all Zeroes (BZ), Branca Not
all Zeroes (BNZ), Branch all Ones (B0), Branch Not all Ones
(BNO), Branch Mixed (BM), and Branch not Mixed (BNM).

The instruction formats are identical to those for the boolean
instructions, except that the operation code is X'*C!' rather
than ¥'*8,9,A'. Mremonics are identical except for the first
letter which is "TM" rather than "O,N,X". Additionally, the
TMCC instruction (for testing character strings) is not
provided.

An alignment procedure check occurs if a halfword is specified
on an odd boundary. :

10.2_ SCAN

SCan Forward Equal to Addres

SCFEA D1(X1,B1) ,D2(X2,B2),DL{BL)

r L I T ¥ i T T T T 1
| FO | X2 1 X1 | B1] D1 182 | D2 iBL | DL |
L 1 i i i i i 1 1 1 i
0 8 12 186 20 32 36 48 52 63
SCan Rackward FEqual to Address

SCBEA D1(X1,B1),D2(X2,B2),DL{BL)

| T i T T T T T T ¥
| F2 |X2 (X1 (B1 | D1 {B2 | D2 | BL | DL |
L & L i 1 i A i A J
0 8 12 16 20 32 36 48 52 63

The first operand character string is scanned forward (left to
right) or backward (right to left) for a character equal to
that specified by the low-crder byte of the second operand
address. If the character is found, bit 0 of the CFR is set
on and GPR1 is set to point at that character in operand 1.
If no such character is present, bit 1 of the CFR is set on
and GPR1 1is unchanged. The summary flag 1is set on if
successful, off otherwise.

Extended mnemonics are provided for branching after a scan:
Branch Successful (BS), and Branch Not Successful (BNS).

1f the length is zero, the instruction always fails.

-58-

Bit ard Character String Instructions

SCan Forward Not equal to Address

SCFNA p1(x1,B1),D2(X2,B2),LL(BL)

T S 3 Ll T T T Ll k| : LB v 1
i F1 | X2 1£1 | B1 | D1 |B2 | D2 | BL | DL]
_ 1 1 1 1 i 1 1 1]
0 8 12 16 20 32 ER- %38 52 63

SCan Backward Not egual to Address

SCBNA D1(x1,B1),D2(X2,B2),DL(BL)

i ¥ T T Ly ED T L i 3 1
| F3 12 1X1 {B1 | D1 IB2 | D2 | BL | DL |
1 1 1 1. —_— 1 L i S | J
0 a8 12 16 20 32 36 48 52 65 3

The first operand character string is scanned forward (left to
right) or backward (right to left) for a character not equal
to that specified by the low-order byte of the second operand
address. I1f an unegual character is found, bit C of the CFR
is set on and GPR1 1is set to point at that character in
operand 1, TIf all characters are equal, bit 1 of the CFR is
set on and GPR1 is unchanged. The summary flag is set on if
successful, off otherwise.

Lxtended mwmnemonics are provided for branching after a scan:
Branch Successful (BS), and Branch Not Successful (BNS).

If the length is zerc, the instruction always fails.

SCan Forward using Table

SCFT D1{%1,B1) ,D2{¥2,B2) ,DL{REL)

L £ T Ll T L 1 T 3
| Fu 1X2 1X1 {81 | D1 1B2 | D2 I|BL | DL |
L i A A1 41 L L i ']
0 8 12 16 20 32 36 48 52 63

SCan Backward using Table

SCBT D14X Y, B1) +» D2 X 2, B2):; DE{BL)

¥] T L 4 T ¥ T L] I
| F5 | X2 | X1 | B1] D1 |B2 | D2 | BL | DL i
| & L L i A s B 1 e L J
0 8 12 16 20 3z 3e 48 52 63

-5§-

Bit ard Character String Instructions

The first operand character string is scanned forward or
backward a character at a time. Each character is used to
select a byte from the second operand table. If this selected
byte is zero, scanning continues. If this byte is non-zero, it
is placed in GPRO and the address of the selector character in
operangr1 is placed in GPR1, If the scan is successful, CFR
bit 0 /iand the summary flag are set on; otherwise CFR bit 1
is set on and the summary flag is set off (allowing use of the
BS and BNS extended mupemonics) .

The second operand table is always 256 bytes long. Hence there
is one table byte for every possible value of a character from
operand 1, Tatbtle bytes are selected by taking the "n"th table
byte 1f the value of the operand 1 character is "n".

If the length is zerc, the instruction aiways fails.

TRanslate character string

TR D1(X1,B1),D2{X2,B2), DL(BL}

T L LA T W q
i FD IX2]X1 181 | D1 IBZ | D2 | BL | bL |
L 1 i 1 L L i i L 3
a0 a8 12 16 20 32 36 48 s2 63

The first operand character string is translated according to
the 256-byte table specified by operand 2. Each character in
operand 1 is scanned, its value , say "n", is used to select
the correspoding "n"th byte in the table, which then replaces
the old operand 1 byte.

If the length is zerc, no translation is performed.

INITialize character string

INIT D1{X1%,B1) ,D2{X2,B2), DL (BL)

1 T T T T T T T 1
| PE | X2 1 %1 1 B1 | D1 |B2 | D2 | BL | DL 1
- i i 1 i 1 1 1 i i
0 8 12 16 20 32 36 48 52 63

-60=

Bit and Character String Instructioms

The first operand character string is initialized to the
low-order byte of the operand 2 address. The whole character

string is filled with this byte.
If the length is zero, no initialization is performed.

-61=

Subroutines and Interrupts

11 _SUBROUTINES AND_INTERRUPTS

—— v e e s . i S o e i s oy S s . s e e e o

Procedures were first nmentioned in Chapter 3.1 -- how to write
them and how they were controlled. This chapter gives a more
detailed explanation, particularly in terms of how procedure
calls are performned.

A procedure call can occur for twc reasons. First the programmer
may request an explicit subroutine call via the CALL instruction.
Secondly, the g=-interpreter wight force an implicit interrupt
call when an interrupt request is detected. Both of these calls
are performed in the same manner, so that a called procedure need

not know whether it is a subroutine or an interrupt handler.

11.1_THE_STACK

In order to maintain the correct sequence of procedure calls,
and to save the contents of various registers across these
calls, a save area gtack is employed. It has the following

format:
L]
L]
L]
T a
| SAVE AREA I
U2y 1 {
F 1
| SAVE AREA |
2} 0 |
T 1'
SP--> Ojcurrent} last |
1 i |
0 B 15
As a new procedure 1is invoked, it is assigned the next
available save area on the stack. The save area number for
the currently executing procedure is contained in the

current" byte, A save area 1s twenty halfwords long, and is
used to save the general-purpose registers, PBR, PDR, CFR,
and ICMR (see below) whenever a new procedure is called. When
the procedure returns, they are restored, thus preserving
their contents across the call.

The "last" byte gives the save area number of the last

useable save area on the stack. This helps prevent main store
following the stack from being used indiscriminately.

-67=

Subroutines and Interrupts
META 4B control register 20, the Stack Pointer {(SP), is always

set to point at +the stack ("current" byte). This register
should not bhe tampered with by the user.

Certain special conditions concerning the save area stack can
arise during program execution. These conditions require
special ' consideration (probably performed by a monitor
program) and are described here.

11. 2.1 _STACK _OVERFLOW

e e L

When the g-interpreter determines that a procedure being
invoked will own the next-to-last save area, 1t considers
stack overflow to have occurred. After invocation is
comnplete, but before the first instruction of the new
procedure 1is executed, a stack overflow procedure check
will be forced. This allows a monitor program to allocate
a bigger stack.

11,2.2_STACK_ESCAPE

If the warning given by stack overflow goes unheeded, a
procedure may eventually be invoked which can own no save
area. If this ©procedure were to c¢all another, or an
interrupt call were to occur, stack escape would be
recognized. In this case, the g-interpreter goes into an
infinite loop.

If an attempt is made to return from a procedure which owns
the 0Oth save area, stack underflow occurs. A stack
underflow procedure check is generated, and a monitor
program can react as desired.

-(H3=-

Procedure Calls

11.3_ PROCEDURE_CALLS

CALL via Register

CALLR i

£ -T]
] 0 FD | R |
L i 4
0 12 195

CALL via Address

CALLA D (X, B)

= =- LB : | L) a1
| TED | X | B | D |
L 1 i 1 J
0 12 16 20 31

CALL via Halfword

CALLH D(X,B)

r T T : k|
| 9FD | X 1 B | D i
i i e i i
0 12 16 20 31

The operand specifies the address of a procedure to be.
invokeds The following steps are taken by the g-interpreter:

1. Check for stack escape condition.

2. Save general-purpose registers, PBR, PDR, CFR, and ICHR
in current save area.

3. Assign next save area to new procedure, and update
"current" byte,

4, Update PBR and GPR15 to point at new procedure, and set PDR
to zero.

5. Cause stack overflow procedure check if appropriate, or
begin execution of new procedure.

An alignment procedure check cccurs 1if the procedunre address
is odd.

-6l4-

Interrupt Calls

11,4 INTERRUPT_ CALLS

An interrupt call is performed automatically by the
g-interpreter when some special event occurs of which the
software must be informed. The interrupt procedure 1is invoked
almost exactly 1like a called procedure, except that its
address cannot be provided by the programmer at the time of
invocation. Instead, these addresses are obtained from the
stack prefix, which resides below the stack in main store.
The stack prefix contains pairs of halfwords, one for each
interruption source. It has the following format:

(4]

SP==> | %
i 1

v R “

-4 | Extended Inst. | Fr—1 |
; = (]
L g 1
-8 | Self-interrupt i
1 4
L] A
-12 | Procedure Check |
F 1
-16 | META 4A]
t 1
-20 | SIMALE |
F :
-24 | Vector General |
L]

The first halfword of each pair contains the address of a
procedure to handle interrupts from that interrupt source. The
second halfword contains the ICMR which should be in affect
during execution of the interrupt procedure.

The Interrupt Call Mask Register (ICMR), control register 19,
contains bits which «control the occurence of interrupt calls.
It has the following format:

ICMR

r : T T T s |
IVG bits |Al////10QT]|
| F - 1 J

0 8 13 15

Bits 0-8 are used to control interrupt calls for the META 4A
and Vector General. Whenever these units request an
interrupt, one of these bits 1is checked. If it is off, the
interrupt is ignored for the time being. If it is on, an
interrupt call is performed. More detail will be presented in
later chapters.

Bits 13 and 14 are wused by the g-interpreter and should never
be set on by the user.

-65=

Interrupt Calls

Bit 15 is the trace bit, See the META 4B g-interpreter
listing for a description of this bit.

The following steps are performed by the g-interpreter when an
interrupt procedure is to be called:

1. Check for stack escape condition.

2. Save general-purpose registers, PBR, PDR, CFR, and ICMR
in the current save area.

3. Assign next save area tc¢ new procedure, and wupdate
“"current" byte.

4. Update PBR, GPR15, and ICMR from stack base, and set PDR to
ZEeT 0.

5, Put dinterrupt designator in GPR6, and any interrupt
information in GPR7 on up.

6. Cause stack overflow procedure check if appropriate, or
begin execution of new procedure.

The interrupt designator in Step 5 1is a halfword specifying
the =source of the interruption. This and the interrupt
information will be described in detail in the appropriate
chapters.

-6H -

Return

RETURN from procedure

RETURN ficst,; count

' L L

i 5E |frstifrst
i 1

L

e
| count
S B

PO TR

[¢] 8 12 16 3

The RETURN instruction is used to terminate the execution of a
procedure and return to the previously-executing cne {caller
or interrupted)., A set of general-fpurpose registers may be
preserved across this return, so that results or completion
codes may be returned to the caller., The first register and
number of registers to be preserved are . specified by the
"first" and Ycount" operands, respectively. If the count is
zero, no registers are preserved.

The following steps are taken bty the g-interpreter:

1. Check for stack underflow, and cause a procedure check if
it exists.

2. Update '"current" byte to specify previous save area.

3. Restore general-purpose registers {except those to be
preserved), and PBR, PDR, CFR, and ICHMR.

4, Continue execution in the previous procedure.

-67-

Internal Interrupts

12 _INTERNAL _INTERRUPTS

. . —— T — . S S S i S — — —

Interrupt requests can be divided up into two classes: internal
and external. 1Internal interrupts originate from within the
g-interpreter, and are necessary to indicate various exceptional
programming Treguirements oOr €ELLOCS., External interrupts are
generated by units other than the META 4B, and are used to inform
the B of special conditions in those units.

This chapter deals with the three kinds of internal interrupts:
extended instruction interrupts, self-interrupts, and procedure
checks.

12.1_EXTENDED_ INSTRUCTION INTERRUPTS

Extended instructions are an optional facility useful for
interfacing between a user's program and the monitor. They
allow the wuser to code monitor requests in the normal
instruction format, using otherwise invalid operation codes,
and to have these “"jinvalid" instructions trapped and
interpreted by software. This technique is extensively used
in the META 4A.

In order for an operation code to be considered extended
rather than invalid, alterations must be made to a table in
the g-interpreter. Given these alterations, the occurence of
an extended operation code causes an immediate extended
instruction interrupt call. The interrupt procedure will find
the following information in its general-purpose registers:

GPR6: X'0000?

GPR7: first halfword of instruction.

GPR8: contents of g-interpreter register A1l.
GPR9: contents of g-interpreter register D1.
GPR10: contents of g-interpreter register AZ,
GPR11: contents of g-interpreter register D2.

The contents of the four g-interpreter registers depends upon

the format of the extended instruction. See the g-interpreter
listing for more detail.

-68-

Procedure Checks

12,2 _SELF-INTERRUPTS

Self-INTerrupt via Register

SINTR R

r T a1
| OFFE | R |
L i]
0 12 15

Self-INTerrupt via Halfword

SINTH D{¥X,B)
r ¥ L 4 1
| 9FE 1 X 4B D i
L 4 A 4 i
0 12 16 20 31
Self-INTerrupt via Address
SINTA D(X,B)
l' LD Ll T a
| TFE | X 1 B | D |
L 1 A i i
0 12 16 20 31
The self-interrupt instructions provide another, more
explicit, means of communicating with the monitor. Upon
execution of one of these instructions, an immediate
self-interrupt call is performed, with the interrupt

procedure receiving the following information:

GPR63: X'0001?
GPR7: instruction operand.

12.3 PROCEDURE_CHECKS

e o e i s o i . . . s S S, e

A cursory description cf procedure checks was given in Chapter
3«3, They provide a means for informing the user and/or
monitor of programming errors. With each iastruction
description in this document, the possible procedure checks
are noted.

When a procedure check occurs, the PDR 1is backed up to point
at the instruction in error, and a procedure check interrupt
call is forced. The interrupt procedure receives the
following information:

GPR6: X'0002!

GPR7: procedure check type code:
0 - invalid operation code

-HG=

ST EWN o

alignment

register specification
division by zero

SQRT operand negative
stack overflow

stack underflow

=70~

Procedure Checks

Communication with the META 4A

13.1_OVERVIEM

Communication with the META 4A is a necessary ingredient for
performing multiprocessing tasks on BUGS. Facilities are
provided for dinterrupting each processor from the other, and
for synchronizing execution via Dijkstra-like semnaphores,

13.2 THE_UNIT_CONTROL ELOCKS

e T — S S A . S S e S S e S e S S A

Interrupting of one processor by the other is controlled by
the Unit Control Blocks (UCB). The META 4A is unit 7; hence
its UCB pointer 1is at locaticn X?'3E' (since the. UCB pointer
table starts at locations X'30C'). The META 4B is unit 1; its
UCB pointer is at location X'32'. The formats of the two UCBs
are as follows:

META 4A UCE

r 3
0 1 71
i]
v 1
2. USH |
L]
0 15
META 4B UCB
T 1
0 | 11
s = : |
2 | UsH |
i e |
4 | start-up PBR |
j—-— 1
6 | start-up ICHMR |
t -
8 | start-up SP |
L]
0 15

o e

Communication with the META 4A

13.3_META_4A_INTERRUPTS META_ 4B
The META 4A interrupts the B via the extended instruction
INTB:
INTB D (X, B)
f T T T T a
| 6F /7771 X | B | D- |
L 1 1 1 i i
0 =] 12 1o 20 31
The operand address is used as the interrupt cocde. There are

two

classes of interrupts:

— e e e . A . S . S i i

If bit 0 of the interrupt code 1is on, the META 4B's
gq-interpreter handles the interrupt and does not give it to
the software. The only g-interpreter interrupt present now
is code X'8000'. This is a start-up interrupt and causes
the B to perform the following steps:

1. Halt execution of any current program.

2. Pick up the start-up FBR from its UCB, copy it into
GPR15, and zero the PDR.

3. Zero the CFR.

4, Pick up the start-up ICMR and SP from its UCB.

5. Begin execution of the new procedure. This is the
method by which the META U4A starts wup a program in the
METAUB.

If bit 0 of the interrupt code is off, the g-interpreter
will attempt to cause a META 4A interrupt call. Bit 8 in
the current ICMR controls this call ~-- if it is on, then
an interrupt call immediately occurs; 1if it is off, the
interrupt remains pending. When the interrupt procedure
receives control, the EéSgiters are loaded with the
following information: =

GPR6: X'8007!
GPR7: the interrupt code

-72=

Communication with the META 4R

NOTE CAREFULLY: Software interrupt codes are divided up
into two classes for purposes of the monitor environment.
Users should restrict their interrupt codes to the range 0
to X'3FFF'. All codes above X'"3FFP? are trapped by the

monitor and not given to the user.

13,4 _META 4B _INTERRUPT_META_U4A

The META 4B interrupts the A via the instructions:

INTerrupt A via Register
INTAR R

T L)

1
| OFF | R |
¥ |
S

L A

0 12 1

INTerrupt A via Halftword

INTAH D(X,B)

= T T T Bl
| 9FF | X | B | D |
L 1 1 1 1
0 12 16 20 31

INTecrupt A via Address

INTAA D(X,B)

. o - T T T A
| TFF | X | B | D |
L 1 L 1]
0 12 16 20 31

The instruction operand is used as the interrupt code to the
A, As with the INTB instruction, usars should restrict
themselves to codes between 0 and X'3FFF?',

The methods by which the wuser actually épecifies interrupt
procedures on the A and B is described in Chapter 17.

13,5 SINCHRONIZATION VIA SEMAPHORES

—— - —— —_—

Semaphores are a means of synchronizing execution of parallel
processors. A semaphore on BUGS is a halfword in main store
which 1is usually associated with a resource that Dboth
processors wish to wuse (e.g., a data structure). Bit 15 of
this semaphore determines whether or not the resource is

-3~

Communication with the META 42

free -- if it is off, the resource is Eree and can be used by
a processor; if it is on, the resource is already 1n use.

A typical sequence of code utilizing a semaphore to control a
resource would be as follows:

1. test bit 15 of the senmaphore.

2, if on, repeat step 1. if off, set it on and continue.

3. use the resource.

4, reset bit 15 to zZero

Steps 1 and 2 must be performed so that the other processor

cannot change the semaphore in between them. The B provides a
special iastruction to do this:

SEMAphore

SEMA D (X, B)

r T T & - I
| 9D | X |1 B | D |
L L . i i
0 12 16 20 31

Bit 15 of the halfword operand is tested. If it is on, bit 1
of the CFR is set; if off, bit 0 is set. The summary flag is
set to reflect the on state. The bit 15 1is then
unconditionally set to one. The two steps are done with main
store locked out, so that +the A cannot tamper with the
semaphore.

If the semaphore address 1is odd, an alignment procedure check
OCCUTLS.

Thus, to use a resource on the B, the user codes:

SEMA <semabhone>
BT -l
L]

¢ use the resource
L]

SZH {semaphore>

The same sequence would be coded on the A as:
TSL <semaphore>+1,X'01"
BO * =1

e use the resource

o

Communication with the META 4A

L2 R2,<semaphore>

with the TSL instruction performing the same duties as the
SEMA.

The SIMALE

14 _THE_SIMALE

Vector General

15 _VECTOR GENERAL

e e e e e e e e e

15.1.1_INTRODUCTION

The Vector General (VG) is an I/0 unit connected to the
META 4B and capable of processing numerous types of
graphical information. As its main function, it displays
graphical data upon a Cathode-Ray Tube (CRT), not unlike an
oscilloscope. This data is in the form of point, line and
character specifications. Additiomnally, the VG 1s equipped
with various interactive devices useful for inputting of
information by the user.

15.1.2 CRT_DISPLAY UNIT

—— i S T o T T o e . e e S

The cathode-ray tube creates images by moving a beam of
electrons across a glass face covered with phosphorus.
This beam traces out the points and lines making up the
image, as specified by orders to the VG control logic. It

is necessary to draw the picture continually -- about 40

times per second -- to maintain a steady image without
flicker,

Each point on the scope tface is represented by three
coordinates: X and Y to select the position on the screen,
and Z to select the writing intensity. +Z is considered to
be in front of the scope face, while -Z is behind it. It is
possible for the user to work in two dimensions,
maintaining a constant Z intensity, or to work in all three
dimensions.

A coordinate 1is a 12-bit signed number, most commonly
treated as a fraction frcom -1.0 to +.999... It is also
possible to consider it an integer from -2048 to +2047,
although this can lead to problens. Thus our screen
consists of a 4096 X 4096 X 4096 grid of points, called
raster units. The <cubic space created by these coordinates
is called the scope or image space, with the point (0,0,0)
located in the center of the scope face.

-77=-

Vector General

15.1.2.1 _VECTORS

The VG 1s «capable of drawing vectors from the current
beam position to any specified point. These vectors can
be blanked (that is, the beam can be turned off) or
non-blanked, allowing both beam movement and drawing.
Furthermore, a drawn line can be solid, dashed, dotted,
or simply an end=-point.

Characters can be drawn on the scope in tour different
sizes. The character set consists of about 200
graphics, represented by 8-bit ASCII codes. Appendix 3a
contains a table of the character set,

A character occupies a certain amount of space in the

scope space, mnmneasured in raster units, The following
table describes the four sizes:

CODE ROWS COLUMNS WIDTH HEIGHT

0 60 120 34 68 .00® .07

1 40 80 50 100 .orz 02y

2 30 60 68 136 .oy 033

3 16 32 128 25606 .03 U623
(per screen) (raster units)

Certain ASCII codes perform control functions, such as
carriage returnm or changing the character size. These
characters are given symbolic namnes, which are
generated by the MUBEQUS macro if the argument "VG" is
specified.

Each ASCII code has an equivalent EBCDIC code and
vice-versa (see Appendices 3a and 3b). Translate tables
are available for converting these codes, and are
generated as follows:

TABLE ASCII-EBCDIC | EBCDIC-ASCIL

15.1.3_INTERACTIVE DEVICES

The VG 1is equipped with a veritable plethora of devices
which can be employed by the user to input information.
These devices are lccated on the table in front of the CRT
display and are manipulated by the human hands. The
following paragraphs describe these devices:

+ 7=

Vector General

Joystick. The Jjoystick 1is a small spring-loaded upright
shaft with three degrees of freedom: left/right,

back/forth, and twist., These are most commonly
thought of as representing movement in the ¥, Y, and
Z dimensions, respectively. The analog settings of

these three degrees of freedom are passed through an
A/D converter, and are continuously available to the
user as three 12-bit signed fractions.

Dials. There are ten analog dials (numbered 1-10) on a
small box connected to the VG. The analog settings of
these dials are passed through an A/D converter, and
are continuously available to the user as ten 12-bit
signed fractiocns.

Light Pen. The light pen is a small, pen-shaped device
which can be held by the user. If the pen is pointed
at the CRT screen, and the electron beam passes 1in
front of 1it, a signal 1is generated to the VG. If
appropriately enabled, this signal can result in an
interrupt request to the META 4B.

The light pen is also equipped with a finger-activated tip
switch, which can be used in conjunction with the pen
to control interrupt requests. This is explained in
greater detail below.

Data Tablet. The data tablet is a flat tablet-sized device
which can produce X-Y coordinates when tracked over by
a stylus., In addition, if appropriately enabled, it
produces interrupts to inform the user of the location
of the stylus above the table surface.

The data tablet is good for inputting free-form pictures or
characters to the progranm.

Keyboard. A rather complex alphanumeric keyboard is
available for inputting characters. Appendix 3c shows
the physical layout of this keyboard, with
the graphics produced by each key. The keyboard
produces ASCII character codes identical to those used
by the character drawing facility.

If appropriately enabled, depression of a key causes an
interrupt request to the META 4B. 1f held down, any
key will cause a request every sixth of a second.

Function Keys. A panel of 33 function keys (numbered 0-32)
is available on the VG. Each key is a small button
which has the capability of being illuminated. If
appropriately enabled, depression of a function key
causes an interrrupt request to the META 4B. The B
can then determine which key was hit. Key 32 is
special in that it will generate continuous interrupt
requests.

-79-

Vector General

Any combination of function keys 0-31 (but not 32) can be
illuminated by the user under program control.

15.2_VG _REGLSTER_FILE

As mentioned in Chapter 2.2.4, the VG 1is equipped with a
register file, which c¢an be. referenced with the XFER
instruction. These registers vary in length from eight to
twelve bits, but are always transferred in a 16-bit halfword,

e mme— L S o

The following paragraphs describe the register file. Each
register 1is assigned a symbclic name by which it should be
referenced. These names are defined by the MUBEQUS macro if
the argument "VG" 1is given. In addition each register has a
7-bit integer address.

COORDinate (VGXCOORD, 8)
COORDinate (VGYCOORD, 9)
COORDinate (VGZCOORD, 10)
===y

fraction |

)

0 11

0N o= <

—

These three registers always contain the 12-bit signed
fractional coordinates of the current beam position. They can
be fetched and loaded. If loaded, they cause the beam to
move (not draw) to the specified position. This is useful for
setting up initial image starting points.

X SCALE (VGXSCALE, 17)
Y SCALE (VGYSCALE, 19)

B R
| fraction |

| SR S NI, |

0 11

- These two registers are used to scale the X and Y dimensions
of the image. The 12-bit signed fractions in these registers
are multiplied times any X and Y image coordinates,
respectively, before they are used for moving the beam. If a
scale register contains a negative number, the image will be

scaled and inverted in that dimension.

Notice that the two registers are not contiguously numbered.

-80-=

Vector General

Z or Intensity Scale Register (VGISE, 13)

¥ == R
| fraction |
I J

0 11

When this register contains zero, the writing intensity is
full, and all Z coordinates are ignored, allowing the user to
work in only two dimensions.

When this register contains a negative fraction, all points
with a +Z coordinate are written at tull intensity, while
those with a -2 coordinate are gradated. The smaller the Z
coordinate, the dimmer it is drawn.

When this register ccntains a positive fraction, all points
with a +Z coordinate are blanked, while those with a -%Z
coordinate are gradated.

The magnitude of the ISR determines the range of gradation.

The bigger the ISR is in magnitude, the more gradation that
CCCULS,

X DISPlacement (VGXDISP, 20)
Y DISPlacement (VGYDISP, 21)

Fo————

-

| fraction |

| O ———

0 11

These two registers are used for displacing the image to be
drawn., After scaling 1is perforned, these 12-bit signed
fractions are added to the resulting coordinates before they

are used to move the beam. This can be used to display an
image centered around a point other than (C,0).

JoYstick X coordinate (VGJOYX, 67)
JOYstick Y coordinate (VGJOYY, 68)
JOYstick Z coordinate (VGJOYZ, 69)

T |
| fraction I
L i
0 11 g

These three registers contain the digitized 12-bit signed
fractional values of the three joystick degrees-of-freedom.
Storing into these registers is ignored.

DIAL 1 value (VGDIAL1, 70)

8=

Vector General

DIAL 2 value (VGDIALZ2, 71)

DIAL 10 value (VGDIAL10, 79)

.
| fraction
L

U SR

o 1

These ten registers contain the digitized 12-bit signed
fractional values of each of the ten dials. Storing into
these registers is ignored.

data TABlet X coordinate (VGTABX, 2)

T K T T
| fraction //1117|
5 i E I N |
0 11 14 15

data TABlet Y coordinate (VGTAEY, 3)

T

| fraction
i

i el

0 1

The high-order 12 bits of these two registers contain the
digitized signed fractional values of the X and Y sensing
circuits in the data tablet. 1In addition, the VGTABX register
contains two position bits:

I: This bit is on when the stylus is less than one inch
&Sabove the tablet surface; it is off otherwise.

T: This bit 1is on when the stylus 1is touching the tablet
surface; 1t is off otherwise.

If appropriately enabled, an interrupt request is made to the
B whenever either of these bits changes.

Storing into these registers is ignored.

ode Control Register (VGMCR, 5)
T Ry —
IV LIDIEIFIBI0OI1111
1 4 i.-;ﬁ L i 1 i i 1 |

0125{456?8 11

The L, D, K, and F bits control the light pen, data tablet,
keyboard, and function keys, respectively. 1If a bit is off,

-32-

Vector General

the corresponding device is entirely disabled. If it is on,

use of the device will cause interrupt requests to the META
4B. ;

The blink bit (B), if on, causes any image being displayed
to blink nauseatingly every half second (bad karma).

The remaining bits must be set as gspecified in the picture.

Function Key Lights 0-7 (VGFKLGC, 0)
Function Key Lights 8-15 (VGFKL8, 1)
Function Key Lights 16-23 (VGFKL16, 52)
Function Key Lights 24-31 (VGFKL24, 53)

. RS RR s e |

] bits |

| —
0 r

These four registers contain a total of 32 bits, one for each
of the function keys 0-31. Their status determines whether or
not each key is 1lit. Function key 32 cannot be lit at will,
but only lights when depressed.

Notice that the four registers are not contiguously numbered,
thus requiring two XFERS to set all the function key lights,

15,3 _CRT_DiSPLAY ORDERS

The VG graphical facilities are controlled by special
instructions, called orders, which are sent to the VG by the

META 4B, These orders can modify the contents of the VG
register tile, display lines and points, display characters,

etc, VG orders can be generated at assembly time using
macros, or at run-time. The following paragraphs describe
them.

15.3.1_NO-OPERATION AND_SPECIAL _ORDERS

e e e e e e

VGNOP

r 6 38 3
10000\ /r/7/7777727777)
P ' i

s
0 4 15

VGSPEC [DATA=<value>][,PBIT=NO*+ | YES]

-83-

Vector General

= -7 ===
|1P1010] value

PR SR |
0 1 4 1

B e o

The VGNOP order perfoms no cperation at the VG.

The VGSPEC order serves the special purpose of allowing the
user to generate an interrupt request to the META 4B.
These interrupt requests are called P-bit interrupts and
are activated by the presence of bit 0 in the order.
Optionally, a 12-bit integer can be included in the order,
specified at assembly time by the DATA argument.

When a P-bit is encountered, the VG will stop accepting
orders, and then will request an interrupt to the META 4B.

15,3.2_ LOAD/ADD/AND/OR_REG_VALUES

VGLOAD/ADD/AND/OR <first-reg>,<valuel>,...,<valuen>
r -1

T T
| op |1////1frst-rg
n A

L

|
4
0 s 9 15

These orders can be used to modify the <contents of
registers in the VG register file. Hant
contiguously-numbered registers are modified, starting
with the one specified by <first-reg>. The registers are
modified by replacing them with the values, adding the
values to them, or 'AND'ing or ‘'OR'ing the values with
them. A value can be specified as a signed fraction, a
decimal numnber from -2048 to +2047, a 2- or 3-digit
hexadecimal number, or a symbol.

These values are generated left-justified in "n" halfwords
following the order. The low=-order four bits of these
halfwords are zero, except for the final halfword, in
which bit 15 pust be on. This should be remembered if the
last value is to be changed dynamically.

Note that it is now possible to change VG registers with
both the XFER instruction and a display order.

-8l

Vector General

15.3.3 _ABSOLUTE_AND RELATIVE VECTOR _ORDERS

——— e L e e L e e e e e e T e e e e o e e e s St e

VGABS/REL [MODE=LINE+ | DASHED | DOTTED | POINT]
- e |
100011//////|md1 op |
. ORI Y, S S P |
0 4 10 12 15

VGC <value>,<op>,<axis>

| T

] value loplax]

L v RS, |
0 12 14

These orders allow the user to draw vectors on the VG
scope. Vector mode is entered by specifying a VGABS or
VGREL order, which is followed by an arbitrary number of
VGC coordinate specificaticrms.

VGABS mode causes absolute vectors to be drawn, that is,
the user specifies absolute scope space coordinates. VGREL
mode causes relative vectors to be drawn, that is, the
user specifies coordinates which are relative to the
current beam position just before the vector mode was

entered,

Vectors can be drawn as solid (md=00), dashed (md=01), or
dotted (md=10) lines, or as simple end-points (a dot at
the.end of the vector) (md=11).

To specify the actual vectors, the user can use the VGC
macro or generate them at run-time, 1In either case, he
must specify actual 12-bit coordinate values, whether they
pertain to the X, Y, or 2 axis, and how they are to be
used. Coordinate values can be specified as signed
fractions, integers frcm -2048 to +2047, 3-digit
hexadecimal numbers, or symbols. The axis is specified as
nxm, wyn, or. “zZuw, Coordinate operations are as follows:

"L": The coordinate value 1is 1loaded (VGABS) or added
(VGREL) to the specified coordinate register, but the
beam position is not changed.

"LM": The coordinate register 1is modified as with "L", and
the beam is them moved to the position specified by all

D

coordinate registers.
"LD": The coordinate register is modified as with "L", and

the beam is then drawn to the position specified by all
coordinate registers.

-f5=

Vector General

"LDT": Operation proceeds as with "LD". In addition, after
drawing, the vector mocde is terminated, and the next
halfword is assumed to be a new order. "LDT" must be the
last operation in a list of coordinate
specifications.

When building VGC halfwords at run-time, the following
method is used: compute the coordinate value and shift it
into the high-crder 12 bits of a work register, zeroing
the low-order four bits. Then 'OR' in the <op> and <axis>
bits. Mnemonic names are provided by the MU4BEQUS macro for
this purpose (if the "VG" argument is specified). They are
nYGLY , "yGLM", "vVGLD", and M“VGLLT" for the operations,
and "vgx", "ysy", and "vcz" for the axis., If these names
are '0OR'ed into a value (with bits 12-15 off), they will
set the appropriate bits.

An example may <clarify the use of VGC specifications.
Suppose 1 wanted to draw a 2-dimensional dashed line from
the point (0,0) to the point (.4,.5). The following
seqguence could be used: :

VGABS MODE=DASHED
VGC 0,8:; X

VGC 0,LM,Y

VGC ol By X

VGC .5,LDT, ¥

15. 3.4 CHARACTER_ORDER

1 \e ot oo

VGCHAR [SIZE=16X32+ | 30X60 § 40X80 | 60X120 { PREVIOUS]
[,SLANT=HCRIZONTAL+ | VERTICAL]

r | L 3 ir ED b)
10001y ////1s1siz211111]
L L 1 = L. i

0 4 8 9 12 15

This order causes character mode to be entered. The
character size can be specified explicitly, or the size
from the previous VGCHAR order can be used. If an explicit
size is specified, the "siz" field contains a 1 followed
by the size code, If PREVIOUS is used, it contains zeroes.
The characters can be written horizontally (s=0) or
vertically (s=1) (e« 9., for graphs).

Following the order is an arbitrarily long string of ASCII
character codes, one per byte, specifying the message to be
displayed. This string can be of an odd or even length,
but must end with the VGTERM control character. A macro is
provided to generate ASCII character codes:

86

Vector General
ASCII <string1>,...,<stringn>

Each string is either a string of characters enclosed in
pops (pops or ampersands withinm this string must be
doubled), or a single character code. Single characters
can be specified using the symbolic names generated by the
MUBEQUS macro, Oor as any expression.

The characters are displayed with the center of the first
one lying at the current beam position. The beam position
1s updated as each character is displayed.

Exanmnples:
VGCHAR SIZE=40X80
ASCII 'DOG ','BONE !
ASCII 'EAT',VGTERM
VGCHAR SIZE=PREVIOUS
ASCIT '1.',VGCR
ASCIT 12.',VGTIERN

15,4 _VG_INTERRUPTS

e o o e et e e o e e e e e St e it

15.,4,1 _VG_UNIT CONTROL_BLOCK

The VG 1is at unit address 9, and its UCB pointer is at
location X'42°?, since the UCB pointer table begins at
location X*30'. The g-interpreter expects the first two
halfwords of the UCB to look as follows (the usual format):

VG UCRB

interrupt USH

o — i — -

O e e e

The contents of the USH is irrelevant.

15.4.2 INTERRUPT SENSING

Whenever an event occurs in the VG which causes an
interrupt request to the META 4B, this fact is recorded in
the B's VG Interrupt Register (VGLR) , control

8‘7

Vector General

register 24, This will in turn cause an interrupt call if
enabled in the ICMR (see next section).

The format of the VGIR is as follows:

VGIR

T T T 1
IPICILID|K|F] I
L1 31 a2 i _3a_.1 J
0 1 2 3 &4 S 15

P: if on, a P-bit interrupt request has been made.

C: if on, the refresh rate <clock has timed out a 40th of a
second, signifying that another image <frame can be
drawn.

L: if on, a light pen interrupt request has been nade.

D: if on, a data tablet interrupt request has been nade.

K: if on, a keyboard interrupt request has been made.

F: if on, a function key interrupt request has been made.

Once an 1interrupt call has occurred for an interrupt

request, the corresponding VGIR bit is turned off ‘by the
g-interpreter.

4. 3_LINTERRUPT CALL CONTRCL

Various types of gadgets which can cause interrupt requests
have been described above. At the VG end, these requests
can be controlled by the VGMCR register. At the META 4B
end, the ICMR «can be used to control the occurence of
interrupt calls for these requests.

The high-order byte of the ICMR contains the tollowing
bits:

ICMR \

T T T 7T T i S o a
IPI/ILIDIKIEL/IT] |
| R S EU T IR T I S S ———
0 1 2 3 4 5 6 7 15

~8B=

On

Vector General

P-pit mask. If on, P-bit interrupt requests resulting
from VGSPEC orders cause interrupt calls. If off, they
do not, and the request remains pending in the VGIR.

Light pen mask. If on, the occurrence of light pen
interrupt calls is contrclled by the T bit (bit 7). If
the T bit is off, interrupt calls always occur. If the T
bit is on, the <calls occur only if the light pen tip
switch is being touched (otherwise the interrupt request
is discarded) . NOTE that a light pen interrupt call will

occur each time the pen sees light for as long as the
switch is touched.

the other hand, if the light pen mask is off, the light
pen request remains pending. Note +that once the
interrupt call does occur, there will be no way to
correlate the light pen position,

Data Tablet mask. If on, data tablet interrupt requests
cause 1interrupt calls. If off, they do not, and the
request remains pending.

Keyboard mask. If on, keyboard interrupt requests cause
interrupt calls. 1f off, they do not, and the request
remains pending.

Function key mask. If on, function key interrupt
requests cause interrupt calls. If off, they do not,
and the request remains pending.

When a VG interrupt call c¢ccurs, the interrupt procedure
receives the following infcrmation:

GPR6: X'8009!

GPR7: The ICHMR bit number of the type of interrupt (0
for P-bit, 2 for light pen, 3 for data tablet,
4 for keyboard, or 5 for function keys).

GPRB: Special information depending upon the type of

interrupt. For keyboard interrupts, it
contains the ASCITI character code in bits
8«15, zeroes 1in bits 0-7, For function key
interrupts, it contains the function key

number (0=<32). For the other interrupts, it
contains cruft.

?

]

G .

Vector General

16_ET_CETERA_INSTRUCTION

e e o o i e e

— e e s mmaa — s . S e s S o

In the preceeding chapters we have described the SINALE and
the Vector General. In each <case, a (perhaps complex)
data structure is needed to contain the data information to
be interpreted by these units. In the case of the SIMALE
the data might be coordinates, characters, or
floating-point numbers. For the Vector General, the data
is a linear sequence of orders specifying a display image.
The question which remains is: how do we provide this data
to these units?

The ET CETERA (ETC) instruction gives us this capability.
When an ETC is executed, the META 4B g-interpreter goes
into a special mode in which it acts as an interface
between the user-specified data structure and the SIMALE
and/or Vector General. 1t directs the interpretation of
the data structure at the highest level, extracting
information and trasferring it to and from these units.

e e e s LS

In order for the user and the g-interpreter to control the
interpretation of the ETC data structure, a set of sixteen
registers is used. These are the ETC registers 32-47,
also referenceable as local store locations 32-47.

Some of these registers are set up by the user before
issuing an ETC instruction =-- these registers specify the
whereabouts of the data structure to be interpreted. The
g-interpreter updates these registers as it extracts
information from the structure.

Each ETC register will be described below. They are given

symbolic names which are defined by the MUBEQUS macro, as
usual.

-gQ=

Vector General

ET Cetera
ETC name
&

| o F V72777777 name

[T— Sy 1
0 8 16 3

[S N

The ETC instruction causes interpretation of the user data
structure to begin, as specified by certain ETC registers.
The halfword name 1is locaded into ETC register 47, the
ETCNAME register, This gives the user a means of
identifying which ETC instruction was executing if one
should be aborted for any reason (such as by a procedure
check) .

16.2_ETC_DATA_STRUCTURE

—— e e ——— . T S . T . e S

16.2.1_DATA_AREA

The data structure for an ETC instruction lies within an
area of main store called a data area. Although this data
area resides 1in a specific place in main store, all
pointers to or addresses of items within this area are
relative to the start of the area. Thus the first byte in

the area 1is relatively addressed as byte 0, while the 100th
halfword would be addressed as byte 198,

The purpose of relative addressing is to provide the user
an easy and efficient nmeans of 1rtelocating his data
structure without changing the actual data. An example is
when she writes a data area out to disk and reads it back
into a different place in main store.

When a data area 1is to be wused initially by an ETC
instruction, its address (absolute) must be placed in the
Data Base Register (DBR), ETC register 32.

A data area can be created at assembly time by coding the
following macros:

[<labela>] DATA

e {info within data area)
&

[<labelb>] ENDDATA

-91=

Vector General

If the user wishes to use absolute pointers within the data
area (i.e., relative to absolute location 0), the label on
the DATA macro should be ommitted. This is useful if the
data is to be built at run time, but not saved.

16.2. 2_BLOCKS

Within the data area, informaticn to be interpreted is
arranged in a linked ring of Dblocks. Each block is
composed of three parts:

1. The block header. The header contains two halfwords,
the first of which contains a felative pointer to the
next block in the ring. The second halfword can be used
for any purposes desired by the programmer (a typical
use might be for a relative pointer to the previous
block, making the data structure a doubly-linked ring).

2. A set ot sub-blocks. It is the sub=-blocks which contain
the actual data to be interpreted. An arbitrary number
of sub-blocks can reside in each block.

3. A halfword containing =zero. This marks the end of the
block.

Before an ETC instruction can be issued, the Block Pointer
{BP) (ETC register 33) nwnust be initialized with the
relative address of the initial block to be interpreted
within the data area.

A block can be <created at assembly time by coding the
following macros:

<labela> BLK next-blk[,PREV=<blk-label> |
SECOND=<value>]
8

e (info within block)
4

[<labelb>] ENDBLK

<next-blk> is the label on the BLK macro for the next block
in the ring. If the second header halfword is to be used,
it can be specified as a relative pointer (PREV=) Oor as an
absolute value (SECOND=).

R < i

Vector General

Sub-blocks are the entities containing the actual data to
be interpreted. A sub-blecck resides within a block, and
consists of two parts:

1. The sub-block header. This header is two halfwords long,
and the tirst halfword ccrtains the length (in bytes) of
the sub-block, including the four bytes of header. A
sub-block may be odd in length, 1in which case the extra
byte after the end 1is ignored. The second halfword
contains information specifying how this sub-block is to
be interpreted. 1f bit 0 is off, then this sub-block is
to be interpreted by the SIMALE, and the remaining bits
contain SIMALE initialization information. Lf bit 0 is
on, then this sub-block contains only orders to be sent
directly to the Vector General.

2. Sub-block data. Following the header 1is the data to be

interpreted by the SIMALE or the orders to be sent to
the Vector General.

Before an ETC is issued, the Sub-Block Pointer (SBP) {ETC
register 34) must be set to contain the relative address
of the initial sub-block (within the initial block) to be
interpreted. This is usually the first sub-block in the
initial block.

A sub-block can be created at assembly time by coding the
following macros:

[<labela>] SUBLK <simale-init> | VG

e (data within sub-block)

[<labelb>] ENDSUBLK

The argument to SUBLK 1is either SIMALE initialization
information or the tag "VG", The sub-block length is filled
in automatically.

NOTE: The SUBLK macro generates labels in the form SUBn

(n=1,2,3.+.)« The user should avoid using such labels.

2.4 ETC_INSTRUCTION EXECUTION

When an ETC instruction is issued, after setting up the
DBR, BP, and SBP, execution proceeds as follows:

1. Starcting with the initial block and sub-block,
interpret all the sub-blocks 1in each block, switching

-g3=-

Vector General

to new blocks each time the ending zero halfword is
encountered.

2. If, while interpreting, an error condition should arise
(eegs, an odd next-block offset), abort execution and
cause the appropriate procedure check.

3., Otherwise, if a META U4A, SIMALE, or Vector General

interrupt call is required (€eGe, due to an
enapled 1light pen hit), abort execution so that it may
eCCUr

4, Otherwise, 1if none of the above occur, display the
entire data ring exactly once, and then abort,

Whenever we abort ETC execution, the BP and SBP will be
updated to point at the next block/sub-block that would
have Dbeen displayed hnad we not aborted. This means the
programmer has to set up these registers only once, and
then can issue multiple ETCs (perhaps in a loop). Each
successive ETC will take up wherever the previous one left
of £,

Furthermore, four other ETC registers will be set to
indicate where we were interpreting when the abort
occurred. These are the Final Data Base Register (FDBR),
Final Block Pointer (FBP), Final Sub-Block Pointer (FSBP),
and Final Data Pointer (FDP), ETC registers 40-43, These
can tell the programmer in which data area, block, and
sub-block the abort occurred, plus which halfword was the
last one interpreted. The FDBR contains an absolute
address, while the others are relative to it. S

buring 1interpretation of Vector General sub-blocks, the ETIC
instruction may be aborted due to errors or the completion of
one circuit of the block ring. In addition, if a P-bit or
light pen interrupt request 1is recognized, interpretation
will be immediately aborted so that an interrupt call can
occur., Keyboard or function key interrupts will not abort --
they are left pending during ETC execution.

After an abort due to a P-bit request, the FDP will point at
the VGSPEC order 1in question. After one due to a light pen
hit; the FDP will be accurate 1if a vector was being
displayed, but mwmay be off by one or two halfwords if
characters were. '

-9l

Vector General

16.4_THE_CLOCK_INSTRUCTION

Clearly, one of the principal uses of the ETC instruction is
to perform graphical data wmanipulation and display. When
using the Vector General scope, it is necessary to ensure that
simple images are not displayed too often. For example, 1if
an ETC instruction were to be used to display a single dot,
and this ETC were to be put in a tight 1loop in order to
maintain the image, a wonderful burned spot would soon appear
in the phosphorus.

As explained 1in Chapter 15.1.2, the Vector General has a
refresh rate clock which pulses 40 times per second. No image
should be displayed more often that this. Hence the
programmer needs an instruction which pauses until the next
clock pulse:

CLOCK vector general
CLOCK 0
poess

T - i
| 8E | A AL L LTS LA IS AL LR LT A

L

0 8 31

A CLOCK instruction should appear at the top of every display
loop using ETC,

2_A_TYPICAL_DISPLAY SEQUENCE

The following is an outline of a typical sequence employing
the ETC instruction to display an image upon the Vector
General:

set up initial DBR, BP, and SBP

LOOP CLOCK 0
update dynamic portion cof data structure
ETC 0

test for terminate conditions
GOTO LOOP if not satisfied

..

Multipac

17_RUNNING HETA_4B_PROGRAMS == MULTIPAC

When running programs on BUGS wusing the META 4B, a monitor is
needed to control such things as META 4A/B communication, META 4B
interrupts, main store allocaticn by the META 4B, etc. This
monitor is called MULTIPAC, and is controlled by the user via the
MULTI macro.

Two modes of programming are available with MULTIPAC:

1. RUNB mode. In RUNB mode, it is assumed that the user wants
to write «code only for the META 4B; no A programs will be
present. A "npull" A program is provided which will load and
execute any such B programe.

2, Normal mode, In this mode, the user writes both A and B
programs, and they communicate via g-interpreter and MULTIPAC
facilities.

17.1_RUNB_MODE

In RUNB mode, the user writes code only for the META 4B. The
mainline B program must use the MULTI macro to set up an
operating environment and to specify Vector General interrupt
handling options, if required. This macro should be the

FULTI META4B[,VCGINT=<proco>
[,ICHMR=(P-BIT*,
LIGHT-PEN*+,
DATA-TABLET*,
KEYBOARD*,
FUNCTION=-KEYSH,
TIP=-SHITCHY,

, META=-U4AY)

[,VGMCR= (LIGHT-PEN*,
DATA-TABLET*,
KEYBOARD®,
FUNCTION=-KEYSH,
BLINK)]]]

If Vector General interrupts are to be accepted, the VGINT
argument specifies a procedure to handle them. The ICHMR
arqument specifies which and how interrupt calls are to be
enabled in the B's ICMR. The VGMCR arqument specifies the
type of 1interrupts or opticn to be enabled in the VG MCR
register. Any combinations of keywords, in any order, is
allowed.

=G5+

' &

‘"ﬂa‘ [,MAXUSH=<expression>]]

Multipac
Upon return from the MULTI macro, interrupts will be enabled

as specified by the ICHMR and VGMCR options. Enabling may be
changed later if the user so desires.

When the mainline B program determines that execution is

complete, the following macro should be executed to terminate

processing: :
RUNBDONE

This generates code to inform MULTIPAC of completion and to

return from the B mainline.

When you are ready to run a program in RUNB mode, denerate a

BUGS MODU file under CMS using the GMSLINK command.

Once the MOLU is on the BUGS disk, it can be run with the
following GMS command:

RUNB <modu-name>

A sample RUNB mode program is shown in Appendix 4a.

17.2 _NORMAL_MODE

In normal mode, the user writes programs for both machines,
which can communicate using the facilities described in

Chapter 13. When a normal mcde program is executed, the A
mainline gets control first, It must then start up a B
mainline, which will run in parallel with it. To do this,

another version of the MULTI macro is used:

MULTI START, H4BPROC=<proco>
" [,HUBINT=<proco>

The MUBPROC argument specifies the address of the B mainline.
If B interrupts are to be accepted by the A (these would be
generated by an INTA instruction), MUBINT specifies the
address of an A procedure to handle them. The MAXUSH argument
can be used to set a limit on the interrupt code, so that all
codes above this limit are discarded. The default limit is
X' 3FFF!'.,

The MUBINT procedure, if present, nmust begin with an ENT and
return with a RET. The interrupt code from the B will be in
register 2 upon entry.

Additional arguments are available on the MULTI META4B macro
to specify handling of A interrupts. These are:

Multipac

MULTI METAU4B,..s[, H4AINT=<procnd>
[,HAXUSH=<expression>]]

If A interrupts are to be accepted by the B (these would be
generated by an INTB dinstruction), the MUAINT argument
specifies a procedure to handle them. The MAXUSH argument
corresponds to the one on the MULTI START macro.

The HMUAINT procedure, if present, must be a standard B
procedure. The interrupt code from the A will be in GPR7 upon
entry.

When the mainline A program determines that execution is
complete, it should 1issue the following macro before POSTing
GMS and KETurning:

MULTL DONE
On the other hand, when the mainline B program desires to
complete, all it needs to do is RETURN. The two mainlinerpmust
complete; they may complete in any order -- MULTIPAC waits
until they are both finished.

A and B programs may cf course be GHSLINKed into the same HODU
files, and they may refer to each other via V-constants.

A sample normal mode program is shown in Appendix Ub.

R — e e —

As 1n the A, a user of the B can allocate and free blocks of
main store. An allocated block is always aligned on a
halfword boundary, and is always a multiple of four bytes in
length., To allocate a block, the B user codes:

MOLTL ALLOCATE, STZE=<size>,ADDRESS=<gpr>

The <size> can be specified as an XBD address or as a GPR in
parenthases, This size is rounded up to a multiple of four,
space is obtained from main stcre, and its address is returned
in the GPR specified by the ADDRESS arqument., If space is not
availaple, an address of zero is returned.

When the user no 1lcnger needs this allocated space, it should
be freed. To do this, the user codes:

MULTI FREE, ADDRESS=<gpr>,SIZE=<size>

The size 1is again rounded, and the secified block 1is
dealloca ted.

-98_

Multipac

17.4 _GMS_SVCS_FROM _THE B

MULTIPAC provides a facility which allows the user to execute
GMS SVCs from the B, Thus the user could execute commands,
manipulate files, or tead cards from the B. This is
especially useful in RUNB mode. To do this, one codes:

MULTI GMSVC,SVC=<expression>, ARGLIST=<label>,
WAIT=YES*+ | NO

The SVC specified by the SVC argument is executed, using the
argument list specified by ARGLIST. This argument list should
be identical to the one used on the A.

In order to wait for completicn of the SVC, the user can code
WAIT=YES, or can test for completion later in the program
(WAIT=NO)., To test for completion, code:

WAIT <arglist-label>
This loops until the WCH is POSTed by the A.

=99 =

The Fudd Debugging Package

18_THE_FUDD_DEBUGGING_ PACKAGE

The FUDD debugging package is described 1in a separate document
entitled "FUDD: Interactive Debugger Users' Guide".

= $00-

Appendix 0 - QMetalinguistic Symbols

APPENDIX 0: _METALINGUISTIC SYMBCLS

e Syntactic constants are specified in upper-case letters.

e Syntactic variables are enclosed in angle brackets ("<" and
">y, and named using lower-case letters.

e Optional itewms are enclosed in square brackets ([" and "
« The minimum abbreviation for a keyword is underscored.

» Defaults are specified by following them with a superscript
plus sign ("+"),

¢ Syntactic variables followed by a box ("u") are special

address specifications. They c¢an be coded as a label, a
V-constant, or a register in parenthases.

-101-

Appendix 2a - Instructions by Mnemonic

APPENDIX 2A:__INSTRUCTIONS BY MNEMONIC_

SETS
MNEMONTC OPCODE PAGECFR?
ABSH 9F6 NO 41
ABSR 0Fo6 NO 41
AHA C1 YES 43
AHH D1 YES 43
AHL 51 YES 43
AHR 91 YES 42
ARA 71 YES 42
ARH 61 YES 42
AR 51 YES 42
ARR 01 YES 42
-B 4 NO 22
-BC 5D8 ! NO 43
-BCF 5D NO 24
_BE 5D8 * NO 51
-BF 2 NO 24
~-BG 5D4 > NO 51
~-BH 9FC NO 22
“BL 5D2 % NO 51
“BM 5p2 s+ NO 58
BN 5p2 . NO 38
~BNE 5D6 © NO 51
-BNG 5DA NO 51
“BNL 5pc * NO 51
~BNN 5DC ° NO 58
~-BNN 5pCc » NO 38
- BNO 5DA - NO 58
-“BNP 5DA 5 NO 38
- BNS 5D4 1 NO 52
BNZ 5D6 1 NO 38,58
~BO 504 1 NO 43,58
_BP 5D4 NO 38
- BR 0FC NO 22
- BS 5D8 It NO 58
- BT 3 NQ 24
BZ 5D8 = NO 38,58
CALLA 7FD NO 64
CALLH 9FD NO 6U
CALLR 0FD NO 64
CASE 6D NO 25
. CHA c5 YES 51
CHH D5 YES 51
CHL B5 YES 51
CHR 95 YES 50
CLBI EB YES 53
CLBR AB YES 53
CLTE FB YES 53
CLHA CB YES 53
CLHH DB YES 53

CLHT BB YES 53

Appendix 2a - Instructions by Mnemonic

CLHR 9B YES 52
CLOCK 8E NO 95
CLRA 7B YES 52
CLRB 8B YES 52
CLRH 6B YES 52
CLRI 58 YES 52
CLRR 0B YES 52
CRA 75 YES 50
CRH 65 YES 50
CRI 55 YES 50
CRR 05 YES 50
DDTSH 9F5 YES 40
' DDTSR 0F5 YES 40
DRA T4 YES 47
DRH 61 YES 47
DRI 54 YES 47
DRR 04 YES 47
- DTSH 9FY YES 40
DTSR 0FY YES 40
ETC 6F MUNG 91
EXSR 0F9 NO 48
IDLE 8D NO e ek
IH 9F 2 NO 39
IIH 9F3 NO 39
I1IR 0F3 NO 39
INIT FE NO 60
INTAA TFF NO 73
INTAH SFF NG 73
INTAR OFF NO 73
IR 0F2 NO 39
LSHDI 16 YES 34
LSHDK 1E YES 34
LSHI 14 YES 33
LSHLDI 12 NO 37
LSHLDR 1A NO 37
LSHLL 10 . NO 36
LSHLR 18 NO 36
LSHR o YES 33
MRA 73 NO 45
MRH 63 NO 45
MRI 53 NO 45
MRR 03 NO 45
NBI E9 NO 57
NBR A9 NO 57
NCC F9 NO 57
NEGH 9F7 NO 41
NEGR 0F7 NO 41
NHA c9 NO 57

NHH D9 NO 57

NHI
NHR
NOP
NRA
NRB
NRH
NRI
NER

OBI
O BR
0oCC
OHA
OHH
OHI
OHR
ORA
ORB
ORH
ORI
ORR

REI
RBR
RCC
RETURN
RHA
RHH
RHI
RHR
RRA
RRB
RRH
RRIL
RER
RSHDI
RSHDR
RSHI
RSHUHLDI
RSHLDR
RSHLI
RSHLR
RSHR

SCBEA
SCBNA
SCBT
SCIrEA
SCENA
SCFT
SEHMA
SHA
SHH
SHI
SHR

BY
99
0DO
79
89
69
59
09

E8
A8
F8
Cc8
D8
B8
98
78
838
68
58
08

E6
A6
Fé
5E
Ch
D6
B6
96
76
86
66
56
06
17
1F
15
13
1B
i
19
1D

F2
F3
F5
FO
F1
Fi
900
c2
D2
B2
92

NO
NO
NO
NO
NO
NO
NO
NO

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

Appendix 2a -

57
-
22
57
57
57
B
57

506
56
56
56
56
56
56
55
55
55
2
55

29
29
29
67
29
29
29
28
28
28
28
28
28
35
35
33
31
3t
36
36
34

58
59
53
58
59
59
74
Uy
Yy
Uy
o

Instructions by Mnemonic

Appendix 2a -~ 1Instructions by Mnemonic

STHALE 5F NO e o
SINTA 7FE NO 69
SLNTH IFE NO 69
SINTR 0FE NO 69
SOH 9F1 NO 26
SOR 0F1 NO 26
SQRTH 9FA NO 49
SQRTR 0FA NO 48
SRA 72 YES 44
SRH 62 YES 44
SRI 52 YES 44
SRR 02 YES 44
SWBR A7 NO 31
SWHE D7 NO 31
SWHR 97 NO 31
SWRB 87 NO 31
SHRH 67 NO 31
SWRE 07 NO 31
SZH 9FQ NO 26
SZR OFQ NO 26
TMBI EC YES 57
TMBR AC YES 57
TMHA ceC YES 57
TMHH DC YES 57
TMHI BC YES 57
TMHR 9c YES 57
TMRA 7¢ YES 57
TMRB 8C YES 57
THRH 6C YES 57
TMRI 5¢ YES 57
TMRR ocC YES 57
TR FD NO 60
TSA TF8 YES 38
TSH 9F8 YES 38
TSK 0F8 YES 38
XBI EA NO 57
X BR AR NO 57
X CC FA ~NO 57
XFER FF NO 19
X HA CA NO 57
XHH DA NO 57
XHI BA NO 57
XHR 94 NO 57
XRA 74 NO 57
XRB 81 NO 57
XRH 6A NO 57
¥RI 54 NO 57

XRR oA NO 57

9F e
9B
AD

Cy
c»
Yy

I

C#

APPENDIX_ 2B:

bo
b
oY

pE
P¥

Appendix 2b -

Instructions by Opcodes

INSTRUCTLONS_BY OPERATION CODE

CP CODE

01
02
03
04
05
06
07
08
¢9
OA
0B
0c
0DO
0F0
CF1
OF2
OF3
CF4
0F5
0F6
QF7
OF8
0F9
QFA
OFC
OFD
OFE
OFF

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
o

28
30

MNEMONIC

ARR
SEKR
MER
DRR
CER
RRR
SWRR
OKR
NER
XRR
CLRR
THMRR
NOP
SZR
SOR
Ik
IIR
DTSR
DDTSR
ABSR
NEGR
TSR
EXSR
SORTR
BR
CALLR
SINTR
INTAR

LSHLI
RSHLI
LSHLDI
RSHLDI
LSHI
RSHL
LSHDI
RSHDI
LSHLR
RSHLR
LSHLDR
LDR
LSHR
RSHR
LSHDR
RSHDR

BF

BT

SETS
CFR?
YES
YES
NO
Y ES
YES
NO
NO
NC
NO
NG
YES
YES
NO
NO
NO
NO
NO
YES
YES
NG
NO
YES
NO
NO
NO
NO
NO
NO

NO
NO
NO
NO
YES
NO
YES
NO
NO
NO
NO
NO
YES
NO
YES
NO

NO

NO

4

51
52
93
54
55
56
58
59
5A
5B
5C
5D
5D2
5D2
5D2
5D4
5D4
5D4
5D4
5D6
5D6
5D8
5D8
508
5D8
5DA
5DC
5DA
5DC
5DC
5DC
5E
5F

61
62
63
ol
05
66
67
68
69
6A
6B
6C
6D
oF

71
14
73
74

ARI
SRI
MRI
DRI
CRI
RRI
ORI
NRI
XRI
CLRI
TMRI
BCF
BH
BN
BG
BP
BO
BL
BNS
BNZ
BNE
BZ
BC
BE
BS
BNP
BNL
BNO
BNM
BNN
BNG
RETURN
SIMALE

ARH
SRH
MEH
DRU
CRH
RRH
SWRH
ORH
NRH
XRH
CLRH
THRH
CASE
ETC

ARA
SRA
MERA
DRA

NO

YES
YES
NO
YES
YES
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NC
NO
NO
NO
NO
NO

YES
YES
NO
YES
YES
NO
NO
NO
NO
NG
YES
YES
NO
NUNG

YES
YES
NO

YES

Appendix 2b -

Instructions by Opcodes

75
76
78
79
TA
7B
7C
TF8
71FD
7FE
7FF

86
87
88
89
A
6B
8C
8D
8E

gt
92
95
96
97
98
98
94
9B
9cC
9Do
9F0
9r1
9F?2
9EF3
9F4
9ES
9F6
9F7
9F8
9F A
SFRC
9FD
9FE
9FF

Ab
A7
A8
A9
AA
AB
AC

CRA
ER A
ORA
NR A
XREA
CLRA
THRA
TSA
CALLA
SINTA
INTAA

RRB
SWRB
ORB
NRB
XRB
CLRB
TMRB
IDLE
CLOCK

AHR
SHR
CHR
RHR
SWHR
OHR
NHR
X HR
CLHR
THMHR
SEMA
SZH
SOH
1H
IIH
DTSH
DDTSH
ABSH
NEGH
TSH
SQRTH
BH
CALLH
SINTH
INTAH

RBR
SWBR
OBR

. NBR

XBR
CLBR
THMBR

Appendix 2b =

YES
NO
NO
NO
NO
YES
YES
YES
NO
NO
NO

NO
NO
NO
NO
NG
YES
YES
NO
NG

YES
YES
YES
NO
NO

fES
YES
NO
NC
YES
NO
NO
NO
NO
NC

NO
NO
NO
NO
NO
YES
YES

Instructions by Opcodes

B1
B2
B5
B6
B8
B9
BA
BB
BC

Cc1
c2
C5
Cé6
c8
Cc9
ChA
Ch
cc

D1
D2
D5
D6
D7
D8
D9
DA
DB
C

E6
18
B9
EA
EB
EC

FO
M
F2
F3
F4
F5
e
P8
F9
A
FB
FD
FE
FF

AHI
SHT
CHT
RHI
OHL
NHI
XHI
CLHI
THHL

AHA
SHA
CHA
RHA
OHA
NHA
XHA
CLHA
TMHA

AHH
SHH
CHH
EHH
SWHH
OCHH
NHH
LHH
CLHH
THMHH

RBI
0BIL
NBI
£B1
CLBI
TiiBL

SCFEA
SCFNA
SCBEA
SCBNA
SCFT
SCBT
REC
occe
NCC
XCc
CLCC
TR
INIT
XFER

YES
YES
IES
NO
NO
NO
NO
YES
YES

YES
YES
YES
NO
NO
NGO
NO
YES
YES

YES
YES
YES
NC
NO
NO
NO
NG
YES
YES

NO
NO
NO
NO
YES
YES

YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
YES
NO
NO
NO

Appendix 2b -

Instructions by Opcodes

APPENDLX 3A:__ASCLI TO EBCDIC
ASCil1 EBCDIC GRAPHIC
00 00 + NUL
01 01 SOH
02 02 STX
03 03 ETX
0y 37 EQT
05 2D ENQ
06 2B ACK
07 21 BEL
08 16 * BS
09 05 HT
CA 25 * LF
0B 0B VI
0cC 0cC FF
0D 15 * CR
OFE on SO
or OF 5T
10 10 DLE
11 11 DC1
12 12 * DECSZ
13 13 * INCSZ
14 3C * TERNM
15 3D NAK
16 32 SYN
17 26 ETB
18 18 CAN
19 19 En
1A 3F SUB
1B 27 ESC
ic 1C FSs
1D 1D GS
18 1B RS
1F 1F VS

Appendix 3a -

CONVERSION

—— i . T e Sl e i i

20
21
22
23
24
25
26
27
28
29
24
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

40
5A
1F
7B
5B
6C
50
1D
4D
5D
5C
41
6B
60
4B
61

FO
F1
F2
P3
F4
F5
F6
F7
F8
F9
7a
5E
4C
TE
6E
bF

ASCII to EBCDIC

O @~ UTE WD O

e

W VO A s

40
41
42
43
4y
45
46
47
48
49
UA
4B
4c
4D

UE
4F

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
S5F

7C
Cc1
c2
C3
cu
€5
Cé
c7
(oF]
cY
D1
D2
D3
D4
D5
D6

D7
D8
D9
E2
E3
E4
ES
E6
E7
E8
E9
AD
EO
BD
71
6D

oO=Zz=prrRuHIIGEEDUOMNOOFES

SN E<<cHONnoO o

Appendix 3a -

60
61
62
63
64
65
66
67
69
69
6A
6B
6C
6D
oF
or

70
71
T2
13
4
75
76
17
78
79
7A
7B
e
7D
1E
IF

78
81
82
83
84
85
86
87
88
89
91
92
93
g4
95
96

97
98
99
A2
A3
A4
AS
Ab
A7
A8
A9
8B
4F
9B
59
07

ASCIL to EBCDIC

Ed

oo skHFWUPRE SO MO O

(M

e N K=< el mQU

2

DEL

80
81
82
83
8u
85
86
87
88
89
8 A
8B
8C
8D
BE
8F

90
91
92
93
94
95
96
97
93
99
9A
9B
9cC
9D
9E
9F

20
21
22
23
24
CB
9F
77
EQ
9F
9F
9F
gF
9F
9F
9F

9F
Al
61
9F
9F
4
CB
9F
aF
61
9F
41
9F
42
qF
9F

i (CUP)
. (CDOWN)
+ (CHOME)
» {CFOR)

¢ (CBACK)

Appendix 3a -

AQ
Al
A2
A3
Al
A5
A6
A7
A8
A9
AR
AB
AC
AD
AE
AF

BO
B1
B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

43

44,

48
75
DB
51
41
53
54
55
58
62
8C
ou
AE
S5F

9F
45
67
76
UA
52
9r
68
57
56
49
o3
47
BE
46
69

ASCII to EBCDIC

=<« 0

Uuny <m0

w[JL—>o0 4 v A e

SJ;.“T)‘G‘:C

Appendix 3a - ASCII to EBCDIC

co 72 i EO £ 15 (CURS OR)
ok 67 Y E1 AA o
c2 BF — (unterseard E2 FC ~
c3 9F E3 6A v
cY 8D A El BO d
c5 66 E| ES B1 €
Cé 8E § E6 B2

ey AF @ E7 FD Y
- C8 ED T E8 EC £
Cc9 8F g E9 BC

CA 80 EA jolt)

cB 9F EB 74

G 9F EC B3 'y
b 9F A ED BY p
CE 90 EE BS

CF 9C £ EF B6 w
DO BB v FO B7 v
D1 9F F1 65

D2 9D F2 B& 2
D3 9 > F3 B9 o
DU A0 6 FU BA T
D5 9F F5 9F

D6 70 Fb g¥

D7 9F F7 9y

D8 gF D8 9F

D9 9F 7 F9 68 z
DA of:] FA C % 04 SCROTUM [vesonerd
DB AB L FB AC r
DC 73 = FC 4F]
DD EE £ FD BF 4
DE DO FE co ~

::‘w,j(, Profg)

=2

DF Al 6 _ PF * 9F

Appendix 3b -

—_————=

EBCDIC to ASCII

EBCDIC_TO_ASCIL_CONVE

EBCLIC ASCII
0¢ 00
01 01
02 02
03 03
08 ad i
05 09
06 FP
07 7F
08 FP
09 FF
0A i
0B 0B
oc 0c
0D FF
OF 0B
OF OF
10 10
11 11
12 12
13 13
14 EO
15 0D
16 08
17 FPF
18 18
19 14
1A FF
B i'F
1c 1c
1D 1D
1E 18
1F 1F

ETX
SCROTUM
HT

DEL

vT
g

S0
SI

DLE

DC1
DECSZ
INCSZ
(CURSOR)

CR

'BS

CAN
EN

ES
GS
RS
us

(CUP)
(CDOWN)
(CHOH E)
(CFOR)
(CBACK)
LF

ETB
ESC

ENQ
ACK
BEL

SYN

EOT

TERM
NAK

sUB

Appendix 3b - EBCDIC to ASCII

EBCDIC ASCIL GRAPHIC EBCDIC ASCLII GRAPHIC
4Q 20 SPACE 60 2D -
41 A6 61 2F /
42 9D 62 AB
43 AOQ 63 BB
44 Al b4 AD
45 B1 65 F1
46 BE ' 66 £5
47 BC 67 €1
U8 A2 68 B7
49 BA 69 BY
4 A B4 @ 6A B3
4B 28 = 6B 2C >
4c 3C < 6C 25 %
4D 28 { 6D SF _
g 2B + 6F 3C >
4r EC) 6F 3F 2
50 26 & 0 Db
51 AS 71 5E
52 B5 72 co
53 A7 73 DC
54 AB T4 EB
55 A9 75 A3
56 39 76 33
57 B8 77 87
58 AA 78 60
59 78 79 FF
5 21 ! 7a 3A -3
5B 24 b 7B 23 #
5C 2A * icC 40 @
5D 29) 7D 27 '
5E 3B : 78 3D =
5F AF ! TF 22 "

Appendix 3b - EBCDIC to ASCII

EBCDIC ASCII GRAPHIC EBCDIC ASCII GRAPHIC
80 CA AQ D
81 61 a Al DF
82 62 b AZ 73 S
83 63 C A3 74 t
a4 64 d A4 ¥ L u
85 65 e AS 76 v
86 66 : S i W
87 67 g A7 78 X
88 68 h A8 79 y
89 6Y i A9 TA z
8A FF AR £1
8B B AB DB
8C AC AC FB
8D Cy AD 5B
8K Cob AE AR
8 F Cc9 AF g7
90 CE BO E4
91 bA 3 B1 ES
92 6B K B2 B6
93 6C | B3 EC
94 6D m BU4 ED
95 6L n B5 EE
96 6F o) B6 EF
97 70 p B7 ¥0
98 71 q B8 F2
99 12 & B9 F3
9n FF BA Fi
ap 7D BB DO
aC CF BC E9

v 9D a2 BD 5D
9L D3 BE BD

9F FF BF €2

EBCDIC ASCII GRAPHIC EBCDIC ASCILI GRAPHIC

co FE EO B
c1 41 A E1 FF
c2 {42 B E2 53 S
&3 43 C E3 54 T
Cy by D E4 55 |
€5 45 E ES 56 v
Ccé6 46 F E6 57 W
CF 47 G E7 58 4
c8 48 H EB 59 X
c9Y 49 G E9 54 Z
CA FF EA FF
CB 96 EB FF
cc FF EC E8
CDh FF : ED Cc8
CE FF EE bD
CF FF EF FD
DO DE FQ 30 0
D1 4A J F1 31 1
D2 4B K F2 32 2
D3 4c L F3 33 3
D4 4D M FlU 34 4
D5 E N F5 35 5
D6 4F 0 Fo 36 6
D7 50 p F7 37 7
D8 51 0 F8 38 8
D9 52 R F9 39 4
DA FF FA FF
DB A4 FB FF
DC FF FC E2
DD FF FD E7
DE FF FE FF

DF FF Fr 7 o

We would 1like to thank the following people for their
invaluable nelp in the creation of the system described in
this document:
Russell Wayne Burns

who designed and implemented the FUDD debugying package.
William Benjamin Rothman

who read this nonsense relentlessly, proofing and
suggesting changes, some of which were i1nadvertantly
included.

Paul Constantine Anagnostopoulos
Harold Henry Webber, Jr.
John Zahorjan

A survey of the vast experimental literature on the effects
of computing system design is likely to convince the most
dispassionate observer that the possibility of de-kludging
is improbable.

--adapted frcm I, Steele Russell, 1971

