o

Programmer's Guide

to ALGOL W

Howard Koslow

June 20, 1577

Computer Science Program
Brewn University

Providence, Rhode Island 02912

This tesearch is being supported by the National Science
Foundation, Grant GJ-41539, the 0ffice of WNaval Research,
Contract NOOO14-75-C-0427, and the Brown University Division ot
Applied Mathematics. Principal Investigator: Professor Andries
van Dam.

Programmer 's Guide to ALGOL W

TABLE OF CONTENTS

| 1 Compilation and EXeCUtiONeaucescssmsanssencnacannaccassanssannsnnd
1a)] DeCK SelliDuacacananee s swmseneansmastnesnes ob emae ens smdnnss oo
].2 %I{LGOL Cal’.‘ds.-....... n-n--c-n--q---a---n------a-t---nn----aioz
153 OPYION CATAS e wm grw e s e s e e ase we G s e e e 68 Gn 8 e ee oe gmed
1o 84 DALY OPLiONSeseassssunas s ssssssensssossessssysseesssaeessh
T 5 DUND DPEIONSwews wuis siwws 38 sie e vl sie s s i s s e wihe ou ve Hawd
1.6 Compiling and Executing Under 05/360ccasscsanccssasencencannsh
1.7 Compiling and Bxecuting Under CUSiescesscccsmcscncssascasssand
1.8 Assemnbling Programs to Interface with ALGOL Weseesosesssssaad
1.9 Compiling/Link-editing Programs for the Metalheececeaneenssaal
T« 10 OCCRAMN: Handiing ALGOL ¥ TeX% DeCKSassawssesssusssssvvensenn 10

2 ALGOL W on the Metallesecvevvosssssesnanensssssassansnensasnss 12
2.1 Progran ExecutioNececcvessaccsccsvsesacccssnenosssnsncsanocans 32
2.2 IRPUL/OUtpPUL ceacnsmevcvosasasnesasncansseanestnssnssarssasensss 13
293 DEDUGTINGa awwe as o0 o6 tibios sw e srps o 0 o 4 obms sie e o e esees en LW
2.4 Runtime EITOr MeSSadgeSuessssscesscussssssssnasssssansvsscvuaa il
2.5 Implementation ResStrictioNSe.ssssssssnsascsccaancaccnssnsas ID

3 ALGOL INLBIDA LB uw su came v tiun ueveon cews gy sune e ve s te s swds sy sel]
3.1 Internal Data RepresentatiON.ccececsccscsavescncsosasosanseall
3. 2 Metalid Cross-compiler ConsiderationS.ccccccsnsacssensusncecas 18
3.3 Buntime EnvironmeNf..cvsecacssscscescnacnsnscasvsonasnasnnsbnssld
3.4 Standard FunctioNS.ceavecevescsccscsessocncncecsasenssnnnsnsnnldl

4 Interfacing ALGOL W with Assembler..vocsesssesccacsocnanssecsnanasl3
4.1 External ProCelUreS.wcuessevancassbtsannnetessn sessssasstsnedd
4.2 PORTRAN Linkage CONVENLiONS.ssesannasseeassasbonnseesanoesedd

o2e]1 ON the /300ciesseisnsstonssss onsensssnsensseessessesssee ot
UaZei2 Of EhS NELAL NG sum vons on s@e s e ¥ S0 sm B 28 58 00 ee seis s wie e
4.3 ALGOL W Linkage CONventioNS.cccessonsessssananncsnsnanniaseld
4ol The AFX-MaCLOScssesssonsstoasestsscssansennssedosatsenssossnd
Bella] AHXMAIN cnonsensannroansusssssansassensanassenasonesnssnnd i
Rl Z BRI, o om0 ot e s uon s wioiy s whs 5 won i e
Ho o3 AWIBNDAT suwsnoessss sioe soasas o es oe ad §ane s ss ueainsassnie ne o
Beibedt ANXCAGL s mwws wa e Sio@s @6 6 08 68 68 08 Gk wE e B8 S5 weeeens 5s 20

ARXEE T T wais a6 ois $aiond 3045 96 6.4 we 0@ o Geed 4n we 39 s weeswwe s 29

ANXLHY and ARXRHV G siasmnanssessdisassasiinass o assanmeve 3o
AWXARRAY, LiSt FOLMueeeescansancascenssscnosnsnmeasesusaad]
AWXARRAY, EX@CULE FOIMeewesevevcanasncasastuasnsoansnsanenss 3
AHTD L LD wn wwme wwisnm i ewm e @0 o ee &6 e e we seue o s syyie 3o
0 BUXEREE oo uresinves s sos 5l 66 506606 We i w0 e e Sie s §i9w s e e ed o

1 SANPLlE PrOgTANas seie vb v bs s% 46 aesaie dusdssews odisveseswe 30

B e Y i gl e S et g
']

P i~ i i~
e

- O 0w N

5 Progragning aAng COGLNT HAINTSo aede o sm wmwno aeen oo om oe s b oy anen s D

6 References.to...ut.-naq‘----n-qu---.ua-----.---u-.sabﬂ"uo-a0937

Pcogrammet’s Guide to ALGOL W

0 Preface

This document is a programmer's guide to ALGOL W on the
Brown University computer system. Knowledge of the language as
described in the reference manual [4] is assumed. For those using
ALGOL ¥ on BUGS, a knowledge of GMS, the Metalld instruction set,
and the Metald assembler is also assumed.

The notation wused in this manual to specify command and
macro formats is consistent with IBM standards. Lowercase synmnbols
denote parameters to be specified by the user; uppercase symbols
denote keywords; brackets, [], indicate a choice of one or none
of the enclosed items; braces, {}, indicate that exactly one of
the enclosed items should be specified. Default options are
underlined.

Programmer's Guide to RLGOL ¥

1 COMPILATION AND EXECUTION

The ALGOL W compiler is supported under [0S/PCH and [CP/CHS] on
the 360/67 at Brown University. This section describes the format
of card decks and the procedures to compile and execute ALGOL W
programs. This information is contained in more detail in [4].

1.1 _DECK_SETUP

The deck (or source file) setup for an ALGOL W
compilation is as followus:

(1) an optional %ALGOL card, see section 1.Z.

(2) the source prcgram, interspersed with option cards.
See section 1.3.

(3) a %OBJECT <card, followed by ALGOL W procedure text
decks. This step 1is optional, but if included then
PDEBUG,0 must also be specified.

(4) a H#DATA card, followed by data cards. This step is
optional.

Steps 1 thru 4 may be repeated, but the second and subsequent
%ALGOL cards are required.

1.2 %HALGOL CARDS

#ALGOL cards delimit programs in a batch submission, and
allow the default compilation/execution options to Dbe
specified by the user. The format of an %ALGOL card is:

%ALGOL [<options>]

The options may be specified in any order, separated by
commas. Available options (with abbreviations and defaults
underlined) are:

TIME=s5s specifies the executionr time limit (which does
not include compilation or post-processing
time). If this 1limit 1is exceeded, an errcor
nessage is printed giving the coordinate of the
statement executing at the time, and execution
is terminated with a post-mortem dump. The

..2

PAGES=ppp

MARGIN={72]80}

SIZE=XXxxK

Programmer's Guide to ALGOL W

default time limit is ten seconds. This option
is not supported under CMS or on the Metala.

specifies the execution page limit (which does
not include compilation or post-processing
printed output). If this 1limit is exceeded,
execution 1is terminated in the same manner as
when the time limit is exceeded. The default
value 1is nine pages, 60 1lines per page. This
option is not supported on the NetalAi.

specifies the last column of data cards that
READ and READON should scan. The default is
MARGIN=80; however, if the program source cards
are sequence nunbered, it is assumed that the
data cards are also sequence numbered and that
MARGIN=7 2.

limits the maximum amcunt of dynamic storage
requested by the compiler or runtime library to
xxx*1024 bytes. This option should only be used
in rare cases to prevent the compiler from
using all of the available core.

1.3 _OPTION_CARDS

Any of th

e following cards can appear between a %ALGOL

card and the next %-card:

Option
FNOLIST

$LIST

PTITLE,"<text>"®

FSYNTAX

$STACK

$DUMP*ab, cc

Effect

Do not 1ist subsequent source cards.

List subsequent source cards. This is the
default.

Eject the page and use "<text>" {(up to U5
characters) as a title.

Analyze the program for syntax errors, but
do not execute.

Dump the current parsing stack if a pass 2
error occurs, with the most recent
syntactic element listed last.

Dump certain internal tables during the
compilation.

Programmer's Guide to ALGOL ¥

SNOCHECK Omit the checking of subscript ranges,
case-index ranges, and reference
compatability, and omit the initializaton
of variables to "undeifined" (X'FB').

SDEBUG,n (m) Activate the tracing, statement counting,
and post-mortem dumping facilities of the
ALGOL W system.

$NORM,a,b Activate the floating point significance
tracing facilities of ALGOL W. This
facility is only available on the /360.
See [4] for more details.

1.4 _DEBUG_CPTIONS

In the JDEBUG,n(m) option, the meaning of the single
digit n is as follows:

0 Print the coordinate number of the statement
in error if execution terminates abnormally.

1 The above plus a post-mortem dump of all the
program?'s variables.

2 The above plus counis of how often each
statement was executed.

3 The above plus a statement by statement trace
of each value stored.

4 The above plus a trace of each value fetched.

If tracing 1is specified, i.e., n > 2, and the standard
procedure TRACE is not used, then each ALGOL W statement will
be traced in symbolic form the first m times it is executed.
PDEBUG,4{2) may be abbreviated "$DEBUG", and $DEBUG,n{2) may
be abbreviated "5DEBUG,n". The default is $DEBUG,1. See [4]
for a detailed explanation of the debugging facilities and how
to interpret debugging ocutput.

1.5

Programmer's Guide to ALGOL W

DUMP OPTLIONS

The $DUMP option specifies what information 1is to be

dumped and which segmenrts in the program will be dumped. The

form

wher

Note

at is:
$DUMP*ab[,cc]
e:
(1) a is a single digit and is ignored.
(2) b is a single digit signifying which combination of
the 5 tables given below is to be dumped.
(3) cc is a number in the range of 00 to ©3; exactly 2
digits must be specified. If cc is not specified, then
tables for all segments will be dumped. If cc is
specified, then the object code for only that segment
will be dumped. Multiple dump cards may be used to
specify more than one segment. If the b digits are
diftferent, the last cone is used.
e Parse Symbol Fdit Intermediate Fipal
b Tree Table Code Object Code Db ject
Code
no no no no no
no no no no yes
no no no yes yes
no yes no no no
no yes no no yes
no . yes no yes yes
yes yes no no no
yes yes es no yes.
yes es yes yes yes
yes yes yes no yes
that b = 9 has the same effect as b = 7.

Programmer?'s Guide to ALGOL W

6 _COMPILING AND EXBCUTING UNDER_0S5/360

Under 0S5/360, there are actually two versions of the
ALGOL W compiler; both versions use exactly the same code for
the various phases of the compiler and the runtime library,
but the monitor phase 1is slightly different. The compile,
load, and go incore version is called ALGOLW; it supports all
debugging features. The compile only version is called ALGOLY;
it produces standard /360 text decks, Dbut cannot pass any
debugging information, so $DEBUG,0 is forced. The output from
ALGOLY <can be link-edited with other text decks or load
modules, including these produced by FORTEAN.

Before execution the text decks from ALGOLY must be
link-edited or 1loaded with the ALGOL 1library and runtime
monitor ALGOLX. 7To facilitate this, all object decks for
ALGOL W mainline programs contain external references to the
monitor and the iibrary.

The restricted object deck facility for the compile,
load, and go version only handles text decks of ALGOL ¥
procedures, compiled without debugging features (i.e.,
$DEBUG,0) .

If a procedure declaration is compiled and a //SYSPUNCH
DD card is supplied, then a /360 text deck for that procedure
will be produced. This deck can then be wused with the
link-editor or loader as described above, or it can be read
back into the <compile, load, and go incore version when the
main program is compiled. The text decks are placed after the
%OBJECT carda.

Four catalogued procedures are provided: ALGOLW (compile,
load, and go incore), ALGOLCG (compile and go), ALGOLC
(compile only), and ALGOLG (locad only). In the latter three
cases, the text decks are passed in the same way that FORTRAN
text decks are passed; thus ALGOLC and FORIHC can be
intermixed and followed by ALGOLG. The step names are COMP and
GU. Parameters given on an %ALGOL card are not passed to the
GO step; the EXEC card parameter field is instead decoded in
the same way. An example of an EXEC card is:

//STEPA EXEC ALGOLCG, PARM.GO=1MAP,EP=ALGOLX/T=3,P=15"

Programmer?'s Guide to ALGOL ¥

1.7 COMPILING AND EXECUIING UNDER CHMS

The format

compiler is:

the CMS command to invoke the ALGOL ¥

ALGOLW <filemame> [(Koptions>]

where <filename> is the name of a file of filetype ALGOL,

<options> is one or more of the compiler options listed below.

The minimum abbreviation of the default is underlined.

Option

ATR] NOATR

DECK | NOD ECK

DIAG|NODIAG

LIST|NOLIST

PRINT| NOPRINT

XEQ| NOXEQ

XREF| NOXREF

MU4A

ATR causes the conpiler to produce an
attribute listing.

DECK causes a TEXT deck to be produced.

DIAG causes compilaticon diagnostics to
be typed online.

LIST causes a compilation listing to be
generated. The listing is written to
disk with a filetype of LISTING unless
the PRINT option is specified.

PRINT causes the compilation listing to
be written to the printer rather than
to disk.

SEQ causes the compiler to check the
sequence field {(columns 73-80) of input
records for ascending order, printing a
warning message when sequence is out of
order.

XEQ causes the object code produced by
the, compiler to be loaded directly into
core and executed.

XREF causes the compiler to produce a
cross—-reference listing.

M4A causes a TEXT deck for the Metalld
to ke produced, and forces HDEBUG,0. If
MUA is omitted, /360 code will be
produced.

Programmer’s Guide to ALGOL W

OCCAM| NOOCCAmN? OCCAM causes the OCCAM utility to be
invoked if the DECK option was
specified or implied (by MHU4A).

ICPNOICP ICP causes the OCCANM utility to be
invoked with the ICP option if the DECK
option was specified or implied.

NS{NONS NS causes the SPIE normally issued by
ALGCL W to be suppressed.

ALLINT|NOALLINT ALLINT causes a PSW and register dump
to be printed when any progran
interrupt occurs.

The source file must reside on the P-disk or on a
read-only extension, and must be of filetype ALGOL. 1f the
DECK option is specified, the file "<filename> TEXT" is
created containing the object deck. If the PRINT option is not
specified, the file "{filename> LISTING" is create; it
contains the compilation 1listing ({and the map produced by
occaMm if it was invoked). The /360 deck produced by means of
the DECK option is identical to that produced by the 0S/360
version. Note that the MetalA version of the compiler is
supported only under CUlS.

During program execution under ALGOLW (with the XEQ
option), the files SYSIN, SYSPRINT, and SYSPUNCH are normally
FILEDEFed (with the NOCHANGE option) to <£fn> ALGOL, <fn>
LISTING, and DUMMY respectively; however, the user may
override them by explicitly issuing FILEDEF's. The ALGOL W
runtime library routines are contained in ALGOLW TXTL1IB, which
should be globaled before loading the user programn{s) .

issue:

GLOBAL T ALGOLW [<other TXTLIB?s>]
LOAD <filename> (NCMAP
START ALGOLX [<options>]

The options that may be specified are NS and A. Note that
programs loaded and executed in this manner may call
subroutines written in other languages, e.g., FORTRAN and
Assembler. During program execution under ALGOLX, the files
SYSIN, SYSPRINT, and SYSPUNCH are normally FILEDEFed to CON,
CON, and DUMMY, respectively.

The %ALGOL TIME parameter 1is nct supported under CMS. As
an alternative, the CP EXTERNAL command will cause progran
termination as if time had expired.

1Both the OCCAM and ICP options cause the compiler to return
unique codes to CHS which are then used by the ALGOLW¥ EXEC on
the COMMON disk to invoke OCCAF. See Section 1.10 for details.

s

Programmer's Guide to ALGOL W

1.8 ASSENBLING PROGRAMS TO INTERFACE WITH ALGOL M

Assembler subroutines may be interfaced with ALGOL W
programs using either FORTRAN or ALGOL W linkage conventions.
Details on hovw to interface assembler programs with ALGOL W
will be discussed in Section 4.

To assemble ({or compile) ALGOL ¥ programs for the Netala,
the Computer Science COMMON disk must be logged in (at device
address 199 . The minidisk contains EXEC's for compiling,
assembling, and creating MODU's (executable modules for BUGS)._
It also contains two sets of libraries: AWXALL, A%X360, and
AWXMUA MACLIB's (macros to interface assembler routines with
ALGCL W) and AWXMUA TXTLIB (Metald runtime subroutines).

To assemble programs for the /360, issue:

GLOBAL(M AWXALL AWX360 SYSLIB [<other MACLIB's>]
ASHUG <filename> [(<opticuns>]

To assemble progranmns for the Metala, issue:
BUGSGBL AWXALL AWXMUA [<other MACLIB's>]
BUGSASM AL |<filenamed> [(<ASHG options>]
The BUGSGBL command globals the macro 1libraries used by the
Metallh assembler, and upr to four additional ones. Text decks

produced by BUGSASM may be treated as ALGOL W text decks and
processed as described in sectiocn 1.9.

1.9 COMPILING/LINK-EDITING PROGRAMNS FOR THE META4R

To prepare programns for the Metald, all procedures nust
be compiled and/or assembled, and then 1link-edited. This
section describes how tc¢ perform each of these steps.

To compile an ALGOL W mainline and/or procedure (s), type:
ALGOLW <filename> (MUA [<other options>]

This command invokes the ALGOL W compiler to produce a file
"<filename> TEXT".

All external procedures must be explicitly declared in
ALGOL W programs. The format of the procedure declaration is:

[type] PROCEDURE name [({parameter list>)] 3
' {ALGOL|FORTRAN} "<string>";

where <string> is the one to eight character ESD name of the
CSECT to be called. For FORTRAN procedures, <string> may be
any valid FORTRAN name. ¥or ALGOL W procedures, <string> nay

—-Q9-

Programmer's Guide to ALGOL W

be of two forms: if the procedure was compiled by the ALGOL W
compiler then <string> is of the form "xxxxx001", where
"xxxxx" are the first five letters of the procedure nane
extended if necessary with #'s3; 1f the procedure was assembled
(using the AWX-macros) then <string> is any valid ESD nane.

To link-edit a mainline and/or external procedure (s) and
create an executable module (MODU) for BUGS, issue:

ALGLINK <moduname> <namnel> ... <namne8>

where <moduname> is the name given to the MODU and MAP files
created by GMSLINK and each name(i) is a file of filetype
SYSLIN, TEXT, TXTLIB or MODU. If TXTLIB's are specified, they
must appear last in the list of names. Usually the symbol
AWX ERROR (and AWXSLOO6, if the TIME function is used) will be
unresolved until the MODU is loaded on BUGS.

1.10_OCCAM: HANDLING ALGOL_k_TEXT DECKS

The text decks produced by the ALGOL W compiler are quite
large and complex. For each program segment (i.e., procedure
or begin block with declares), ESD, END, and RLD cards are
generated (in addition, of course, to the TXT cards). These
occupy extra online storage space and, unfortunately, mnake
the inclusion of ALGCL W compiled text decks in TXTLIB's
virtually impossible. Since each program segment is given a
standard name, separately compiled procedures may contain
identical ESD names, making it impossible to include them in
one TXTLIB. Moreover, updating a TXTLIB for one ALGOL W source
procedure would entail updating each program segmnent
Separately. :

To eliminate these problems, a utility program, OCCANMZ,
has been written by Russell Burns. Basically, it takes a TEXT
file produced by the ALGOL W compiler that contains extra ESD,
END and RLD cards and merges them into one text deck at a
space savings of up to fifty percent. OCCAM performs the
following functions: resolves all cross-references (external)
between program segments in one compilation; consolidates all
external references (and thus eliminates duplicate ESD
entries); consolidates all RLD entries; and consolidates all
TXT cards, creating a single CSECT. In addition, duplicate
record table entries (which are generated for RECORD datatypes
to facilitate their aliccations/garbage collection) are
eliminated; thus, if multiple external procedures are
contained in one compilation, the user must be sure that the
first procedure (in the lexical sense) declares every record
type which the other procedures might use.

20ccam's Razor: to take the simpler of two hypotheses

‘10.

Programmer®s Guide to ALGOL ¥

OCCAM is invoked in CMS by specifying the OCCAM option to
the ALGOLW compiler or by issuing the command:

OCCAM <textname> (ICP

where <textname> is the name of a file of filetype TEXT
produced by the ALGOL W compiler. The ¥{ICP option causes the
ESD name of a compiled procedure to be <changed from the
standard format (xxxxx001) to the actual name of the procedure
(for use by ICOPS). TEXT files from many separate ALGOL ¥
compilations may Dbe combined ¥using CMS utilities¥ and
processed by OCCAM. Note that a text file produced by the
assembler should not be processed by OCCAM; if such a file is
used as input to OCCAM, an error will be indicated and the
file will remain unchanged.

Output from OCCAM is the file "<textname> TEXT", which
replaces the input file; it contains the input file
"compressed" as previocusly described. In addition, a file
"<textname> MAP" is produced which may be OFFLINE PRINTCCed.
It contains two statement maps of the ALGOL W program(s) whose
TEXT file was processed. Each mnap 1lists for each source
statement (or coordinate, in ALGOL ¥ terminology) the offset,
from the start of the first program segment in the
compilation, of the first instruction generated for that
statement; one map is sorted by statement numbers, the other
by statement addresses. If TEXT files from separate
compilations are combined and processed, the statement maps
will contain duplicate statement numbers, corresponding to the
order in which the compiled TEXT files were combined.

The statement nap is essential for debugging
compiler-generated programs which have been processed by O0CCAlN
(particularliy those compiled for the MetadA, since the /360
debugging features are not supported on the MetadA). In order
to set breakpoints and display compiler-generated code and
data, one must specify addresses relative to the first progran
segment rather than relative to each program segment, since
OCCAM combines all program segments. The statement map is used
to determine the offset from the first compiled program
segment where a breakpoint or display point is desired; then
the desired operation (setting a breakpoint, displaying core)
is performed using an interactive debugger (LSDBUG, NEWBUG, or
FUDD). In addition, when a runtime error occurs which is not
intercepted by the runtime error handler (such as when the NS
option is specified on either the /360 or Metal4aA), then only
the interrupt address will be available; the actual statement
in which the error occured can only be determined from the
statement map after calculating the offset of the interrupt
address from the load pocint of the first program segment.

-11=-

— s d—

Programmer 's Guide to ALGOL W

2 ALGOL W_ON_THE METAU4A

ALGOL W was obtained from Stanford University in the fall of
1975 to be used as a tool for graphics and distributed processing
{ICOPS) research. By the spring of 1976, the compiler had been
modified to generate code for the Metald satellite processcor, and
the runtime package had Dbeen rewritten for that machine. This
section describes the Metald implementation of ALGOL W

2.1 _PROGRAM EXECUTION

The current version of the ALGOL W runtime monitor exists
on BUGS disk ¢€S276. To run an ALGOL W program, type:

ALGOL <moduname> [({options>]

where <moduname> is the name of the MODU file created by the
ALGOL or ALGLINK EXEC's. Available execution options are:

NS allows FUDD to be wused for debugging (similar to the
NOSPIE option on the /360) by causing all interrupts to
be trapped by FUDD instead of the runtime monitor, and
by allowing breakpoints/checkpoints to be interpreted as
such rather than as invalid op-codes.

DEBUG is a synonym for NS.

OUTF directs program ccntrolled output to disk file
#"<{moduname> OUTF" (however, runtime error messages and
the execution time message still appear on the console
rather than in this file). This file is a listing file,
and may be shipped to the /360 and printed offline using
the QFFLINE PRINTCC command.

SF=xx specifies the amount of runtime storage (in units of 1K
bytes) to be allocated in the stack frame during ALGOL ¥
program execution. The default is 4K. If records or
recursion are used, or if runtime error 5005 or 5007
occurs, specify a larger size. The maximum size is 56 =
{progranmnsize>.

The ALGOL command invokes the runtime monitor, which
establishes the runtime environment and loads and executes the
user program. Execution continues until normal completion, a
fatal error (see Error Messages, section 2.4), or the
INTERRUPT key on the Metaldh prcgrammer's panel is hit. In the
latter case, i1f the NS option was specified, FUDD is entered,
and typing 1'G0' will resume normal execution; otherwise, a
time limit exceeded error will occur, terminating execution.

-12-

[P U SHE O

o

Programner's Guide to ALGOL W

2.2 _INPUIZQUIPUT

The Input/Output facilities were designed to be
compatible with the /360, given the limitations of GMS.

Stream input to a program conmes initially from the
console unless a file "<moduname> DATA" exists on the BUGS
disk, in which case 1input initiates from this file.
Subsequently, input can be routed from any file by use of the
E1LNCLUDE facility; when the line

EINCLUDE <filename> <filetyped>

{vhere "SINCLUDE" begins in the first column of the record) is
read from the console or from a disk file, input from the
current source is suspended and subsequent input comes from
the file specified in the SINCLUDE 1line; if the EINCLUDE'd
file is exhausted before the program terminates (or if the
file is not found), the original source 1is returned to for
input. A file may be SINCLUDE*'d from within another file, as
long as no more than five files are open for stream input at
any one time; if five files are already open, an SINCLUDE will
be ignored (except for an error message to the console). Note,
however, that a file is closed immediately upon reading the
last record in it. Therefore, if the last record of a file "a"
were to E&INCLUDE a file "B", the number of open files would
not change since "A" would first be closed, and then "B" would
be opened. By GINCLUDEing it with the last record in "“AYW, "p®
becomes a logical extension of "A". Any number of files can be
linked in this manner.

Input files may be of any record length up to eighty
bytes. If less than eighty bytes long, each record is padded
with blanks; if greater, each record 1is truncated. Upon
reading the last record in a file, input is routed back to the
console or the file from which the exhausted file was
GINCLUDE'd. Note that an end-of-file condition:- is never
reached: if a null line 1is read (either from the console or a
disk file) another read is issued in order to satisfy the
input request. The user should wuse a unique data item to flag
the end of the input data.

All output is normally printed at the console (long lines
are folded). If the OUIF option is specified, all progranm
controlled output will be written to the disk file "<moduname>
OUTF"Y. (Runtime error wmessages and the execution time message
s5till go to the console rather than the disk file). If the
disk file overflows dune to a full or fragmented disk, output
is routed back to the console. The OUTF file is equivalent to
a CM5 LISTING file, and may be sent to the /360 and printed
with the OFFLINE PRINTCC command.

Note that ALGOL W assembles output lines in a buffer that
is not flushed until a new "WRITEY forces the previous line
out -- thus, output to the console is always one line "behind"

- 13-

s o v e S

Programnmer's Guide to ALGOL W

the program. If the user expects to see the output of a WRITE
statement immediately after it is executed {e.g., if
subsequent input 1is to be conditioned on messages to the
console), he should follow each WRITE with an IOCONTROL (2) to
force immediate flushing of the buffer.

2.3 DEBUGGING

The process of debugging an ALGOL W program on BUGS is
similar to debugging any program written for the Metaldd. A
knowledge of FUDD, the symbolic debugger, is assuned. To
debug an ALGOL program, issue the seguence:

*FUDD

-TEST moduname
set breakpoints/checkpoints; note that
the name of an ALGOL mainline is AWXSCO0O1

-

-G0
*ALGOL moduname (NS

Debugging of ALGOL W code on the MetaldA should not be
necessary; however, if it 1is, the $DUMP*01[,cc] option may be
specified in the compilation to obtain a 1listing of the
generated code. If there are problems with the —runtime
environment (I/0, procedure linkage, runtime subroutines,
etc.), document the error and contact a member of the BUGS or
ALGOL W group.

2.4 RUNTIME ERROR MESSAGES

Runtime error messages are of the form:
BUN ERROR xxxx [(yyyy)] NEAR COORDINATE zzzz IN procnane

where xxxx is the error code; yyyy is am additional error code
for certain error messages, as described below; zzzz is the
coordinate number near where the error occurred; and procname
is the name of the procedure or block in which the error
occurred. Error codes greater than 5100 indicate runtime
subroutine errors (nop-fatal on the MetaldA, fatal on the
/360), while those in the range 5000-5099 indicate fatal
execution errors. In the latter case, FUDD will be entered.
The error codes are as follows:

5001 substring ocut of range

5002

5003

5004

5005

5006

5007

5008
50089

5010
5011

5012
5013

5014
5015
5016
5017
5018

5019
5020

Programmer's Guide to ALGOL W

index in a case statement or expression is less than
one or greater than the number of cases

array subscript out of bounds

attempt to assign to a name parameter whose actual
argument is not a variable; yyyy is the paranmeter
numnber in error

data area overflow; caused by excessive recursion or
not enough free memory; try specifying a larger
value for SF=xx

actual parameter passed is not assignment compatible
with the formal parawmeter; yyyy 1is the parameter
number in error

no more storage exists for records; try specifying a
larger value for SP=xX

string read on input longer that variable length

value read for a LOGICAL variable was not TRUE or
FALSE

the number read was not assignment compatible with
the variable in the READON or READ statement

REFERENCE values cannot be read

reader BOF {cannot occur on BUGS)

the number of actual parameters in a procedure call
differs from the number of formal parameters
declared

array is too large; see [1]

a null string or a string longer than 255 characters
was read

attenpt to access a record field using a NULL or
undefined REFERENCE

page estimate exceeded (cannot coccur on BUGS)

time estimate exceeded; occurs if the INTERRUPT key
on the MetalA panel 1is hit and the NS or DEBUG
option was not specified

runtime monitor or library error

program interrupt; yyyy is the GMS interrupt code in
hexadecimal, as follows:

MetalddA D002 operation exception

D004 stack frame overflow
. D006 stack frame underflow

D008 integer overflow

DOOA conversion error

DOOC integer divide by zero

DOOE alignment

D010 register specification

D012 priviledge

D014 stack overflow (PSH instructions)
D016 stack underflow (POP instructions)
D018 execute exception

DOTA invalid UCB addr

DO1C dinvalid unit addr

D020 no free menory

D022 invalid free

D024 invalid CEBC

D026 invalid /360 UCB addr

D030 exponent overflow

—-15-

Programmer's Guide to ALGOL W

D032 exponent underflow
D034 floating point divide by zero
DO3b timeout (floating point hardware error)
D060 addressing
D062 protection
MetaldB 1040 operation
10417 aligument
1042 register specification
1043 divide by =zero
1044 sqrt operand negative
S5imale 1080 Simale error

‘5021 attempt to access a field of a ©record, but the
REFERENCE 1is not defined tc designate a record of
the corresponding class; may occur if the REFERENCE
is null or undefined

5022 assertion yyyy failed

5101 division by - zero or O%*{-n); (result set to zero on
Metaldd) :

5102 SQRT of a negative number; (absolute value of
argument is used on MNetadd)

5103 argument to EXP function must be less than 174.67;
{result set tc MAXREAL on Netadd)

5104 LN/LOG of a negative or zero number; (absolute value
of argument is used on Metalda)

5105 SIN/COS functicn domain error; (result set to zero on
Metaldl)

5 IMPLEMENTATION RESTRICTIONS

Because there 1is only short (32 bit) precision flcating
point on the MetaliA, the LOKNG versions of standard
functions produce the same results as the SHORT versions.

The predeclared variable MAXINTEGER is egual to 32767 on
the Metala, and 16,777,215 on the /360.

None of the debugging features are supported on the NMetall
(primarily because the symbol table cannot be saved
externally). The TRACE procedure has no effect (and
$DEBUG,0 is forced for a Metaldd compile, anyway).

Exceptional conditions on the MetaldA are handled entirely
by the runtime monitor and operating system. Exception
records (INTREF's) are not supported; wusing them may
produce weird side-effects.

- 16—

3

Programmer's Guide to¢ RALGOL ¥

ALGOL INTERNALS

3.1 INTERNAL DATA_REPRESENTATION

The internal data formats on the MetalA are similar to
that on the /360. All datatypes are stored in the same amnount
of space which they cccupy on the /360. However, since the
Metala 1is a halfword machine, it was decided to ignore
high-order halfwords for all but REAL, LOGICAL, and STRING
datatypes. The following chart summarizes storage and access
conventions on both machines:

datatype stored in Metall accesses?
integer fullword 2nd hword

real fullword fullword

complex 2 fullwords 2 fullwords

bits fullword 2nd hword

reference fullwerd 2nd hword

logical byte byte (X*'00' or X'01")
string{n) n bytes n bytes

Long datatypes are stored in doublewords, but floating-point
operations on the MetadA use only the high-order fullword
(single precision). Arrays are stored in column-major order
(i.e., the same as FORTRAN arrays; the first subscript varies
first) in contiqguous wmemory locations, following the above
storage and alignment rules for each datatype. Array
descriptors (dope vectors) are created by the compiler and
allocated 1in each procedure's automatic storage Lo access
individual elements of arrayvs and for parameter passing (see
section 4.4.7 for the fcrmat of array descriptors).

Up to fifteen record types (structures) may be defined in
ALGOL W. The fields in records are allocated in a compiler-
defined order for aligament and to facilitate garbage
collection. The order is: 1) reference fields; 2) integer,
real, complex, and bitstring fields; 3) string and logical
fields; #%#) a mandatory O0-7 bytes of padding for doubleword
alignment; and 5) long real and 1long complex fields. If nore
than one field of a given alignment level 1is in a record,
fields are taken from lefi to right in the order declared.

Record allocation is managed entirely by runtime library
subroutines. Records are implicitly allocated in fixed-length
doubleword-aligned pages; when no free records exist, those

3yarning: the first halfword of integer, bits and reference
datatypes may be overwritten on assignment to them as RESULT
or VALUE RESULT parameters.

-17_

Programmer?s Guide to ALGOL W

not currently pointed at by REFERENCE variables are collected
for reuse by the garbage ccllector. Note that the first
fullvord in a recoxd is reserved for runtime record
management. On the MetaldA the high crder byte of this fullword
contains the record type (X¥?01' thru X'0F') and the second
halfword contains the allocation number of that record type
(for debugging). On the /360, the record type is always stored
in the high order byte of REFERENCE variables and is usually
stored 1in the first byte of a record, while the second
halfword of a record contains the record number.

3.2 META4A CROSS—COMPILER_CONSIDERATIONS

The changes made to the ALGOL W compiler and runtime
environment to convert from the /360 version to the BUGS
version are conplicated by the differences in architecture and
register usage, since the MetaldA is a halfword machine with an
extended /360 instruction set and a more functionally
restrictive register set. The problem of data structures was
solved by keeping the same storage format on the Metaldhd as on
the /360; this was discussed in section 3.1.

The primary architectural differences between the /360
and the Metaldh are: (1) the Metaldd has a register length of 16
bits, not 32 bits as on the /360; (2) the non—-RR Metaldd branch
instructions branch relative to the program counter, rather
than %o an absolute address; (3) instructions that set the
condition code on the /360 do not set the condition code in
the same manner on the Metald; (4) the condition code value
for a given situation on the Metad4hA is different than that on
the /360.

Register allocation on the Metaldl presents problems in
that registers RO, R1, and R15 have special meanings: the
machine status register, the program counter, and the stack
frame pointer, respectively. 1In addition, the MNetalh CLC
instruction alters R2. These problems were alleviated both by
altering the register allocators of the compiler to avoid
certain registers, and by mapping the /360 registers into
Metald registers as described below:

T EB T 3
| 360 | MetallA | "Q-reg" |
| Register | Register | |
b 4 } |
] RO i R4 or RO | QO]
] R1 - RS | RS - R9 |} 01 - Q05 |
| R6 - R7 | wvoid | g6 - Q7 |
| R8 = BR12 | R10 - R14] 08 - Q12 |
| R13] R15 1 013]
| R4] R3 | 014]
| R15 | void | ¢15]
| void | R2 i 90X |
L i i 1

- 18-

Programmer?'s Guide to ALGOL W

The register corresponding to /360 register Rn on the
Metald is referred to as Qn (or a "Q-reg" to those in the
know), €.9., Q1 1is R5. See [5] for an explanation of how the
mapping was derived.

3.3 RUNTIME ENVIRONMENT

ALGOL W requires a non—trivial runtime environment
because of its block structure and strindgent type-checking.
Library routines are called to perform: I/0; the building of
parameter lists and type-checking of parameters; the built-in
arithmetic functions; error checking of array bounds, case
indices, references +to uninitialized variables (unless the
HPNOCHECK option is specified) ; and automatic storage
allocation for 1local variables and parameters upon each
procedure?s invocation.

Data segments (parameters, declared variables) and
progran segnents {parameter descriptors, branch table,
literals, executable code) are stored separately. Each data
segment 1is stored in a fixed compiler-defined format; only
those maintaining the compiler and runtime support need be
concerned with the precise layout. Each program segment is
also stored in a fixed compiler-defined format; for assembly
language programmers, the information stored in these segments
may be useful. The format of a program segment is as follows:

offset contents
000 branch to procedure entry code
004 F'-1% or a branch instructicn (/360 only)
008 ALY4 (entry point)
00c X'00001000?
010 offset to CL8'<procedure name>?
012 offset to end of coordinate table
014 ALY (0)
018 current CLN (data segment base) register
01¢ program segment base register
014 offset to end of auto storage
01cC procedure type, see chart below (byte)
01D <length>-1 of function value (byte)
01E nunber of parameters (haltfword)
020 parameter descriptor(s) (fullword)
bbb branch table (a fullword fotr each source label)
111 literal table
pPEP procedure entry, body, and exit code
cece CL8'<procedure name>' and coordinate table

- 19~-

Programmer?!s Guide to ALGOL W

For each parameter, a fullword descriptor appears (starting at
offset X'020'); no descriptor fullwords are allocated 1if there
are no parameters. The format of a parameter descriptor is:

byte 0 B'000000rv?, parameter type: r=1 if result, v=1
if value (any combinations are allowed)

byte 1 number of dimensions, zero if scalar

byte 2 <Klength>-1 of string parameters

byte 3 parameter type (see chart below)

The procedure and parameter types are:

0 untyped (proper or formal procedures only)
1 integer

2 real

3 1long real

4 complex

5 1long complex
6 logical

7 string

8 Dbits

9 reference
16+<type> function procedure

Procedures passed as parameters have the same format as name
parameters (type 0). For more details on the internals of
procedures and parameters, see [3].

Registers are allocated at runtime as follows:

360 Metala
Register Register Function
RO - R1 R4 = RS systen liukage, scratch (pair)
R2 R6 expressions
R3 - R4 R7 - R8 thunks and expressions
R5 R9 procedure entry, expressions
R6 - R7 void auto storage base, expressions
R8 — R12 R10 - R14 auto storage base, expressions
R13 SFP common data area address
R14 R3 current program segment base address
R15 void procedure calls, extra program base
FO - Fo FO - F6 expressions

To generalize this discussion to both machines, the Q-reg
notation of section 3.2 will be used. ALGOL W 1is a
block-structured languacge; to allow blocks to access variables
allocated in enclosing blocks, registers Q13 down te 05 on the
/360, and Q13 down to (08 on the MetalA, nay be allocated as
data segment (auto storage) base registers. This imposes a
limit (of eight 1levels on the /360 and five levels on the
Metald) on the static {i.e., source-level) nesting of
procedures and blocks that contain declarations. If cln is
the current static nesting level, then (@13 to Q{13-cln) are
used as data segment base registers, and R2 (on both the /360
and Metal4A) up to Q{13-cln-1) are used for computation.

_20..

Programmer's Guide to ALGOL W

Note that Q13, which corresponds to nesting level zero
(the standard ALGOL W environment), and Q12, which corresponds
to nesting level one (the mainline data segment), are always
constant. The standard ALGOL W environment is allocated by
the monitor prior to execution of the user program. It
contains information wused by the runtime monitor and library
subroutines, such as buffers, flags, constants, and record
pages. On the /360 this area is GETMAINed in free core; on the
Metala it is DC'd into the monitor, and its address is loaded
into Q13 (R15) so as to make the area look like an entry in
the stack frame.

3.4 STANDARD FUNCTIONS

The ALGOL W runtime library routines (standard functions)
for the /360 reside in ALGOLW TXTLIB, and those for the letalai
reside in AWXM4A TXTLIB. On the /360, these routines must
execute in the ALGOL W environment because they use constants
stored in the common data area and may call AWXERROR for
domain errors. However, on the Metald, the standard functions
have been written to execute outside c¢f the ALGOL W
environment. They may generate calls to AWXERROR (which must
execute in the ALGOL W environment), but a dummy routine caan
be used to Mtrap" such calls and allow the functions to be
used by any assembly language programmer.

The standard functions of analysis are invoked by a
standard calling sequence for each machine, as follows:

£380 Hetala
LE FO,arg LE FO,arqg
L R15,=V(entry) LI 01,V (entry)
BALR R1,R15 BALR Q1,01
DC H'<code>"?

The result of each function replaces the argument in FO.
The functions alter the contents of f£loating point registers
F0, F2 and F4; the (LONG)ARCTAN and (LONG) EXP functions alter
F6 in addition. In other words, they do not save the previous
contents of the flcating-point registers.

Programmer's Guide to ALGOL W

names and locations of the functions are as follows:

T he
/360 Metalh
function entry pt__code text deck _entry pt
SQRT AWXSLO12 0001 AWXSORT AWXSLS01
LONGSQRT AWXSL0O13 0001 AWXSQRT AWXSL4U01
STIN AWXSLO12 0005 AWXTRIG AWXSLUOS
LONGSIN AWXSLO13 00605 AWXTRIG AWXSL505
cOs AWXSLO12 0006 AWXTRIG AWXSL4OG6
LONGCOS AWXSL0O13 0006 AWXTRIG AWXSL506
ARCTAN AWXSLO12 0007 AWXATAN AWXS5L4U407
LONGARCT AN AWXSLO13 0007 AWXATAN AWXSL507
LN AWXSL0O12 0003 AWXLOGLN AWXSL403
LONGLN AWXSL013 0003 AWXLOGLN AWXSL503
LOG AWXSLO12 0004 AWXLOGLN AWXSLU4OY
LONGLOG AWXSLO13 0004 AWXLOGLN AWXSLS50Y
LOG?2 uni mplemented*® AWXLOGLN AWXSLU413
EXP AWXSL0O12 0002 AWXEXPON AWXSLLUO2
LONGEXP AWXSL013 0002 AWXEXPON AWXSL502
complex *,/,abs, %% AWXSL014 xXxXX AWXCHMPLX AWXLS6XX

Assembly langquage programmers Ray want to call the
runtime error handler, AWXERROR, directly. The standard
calling sequence is:

£360 Metalia
LA RO,<error code> LI Q0,<error code>
L R15,=V (AWXERROR) LI 02,V (AWXERROR)
BALR R2,R15 BALR 2,02

The possible error codes contained in Q0 are listed in [4] and
section 2.4; the absolute value of the code is 5000 less than
the printed error message. If the code is negative (a standard
function error), AWXEEROR will return to the caller after
attempting a fixup; if the code is positive, an error message
will be printed and execution will terminate; a zero error
code is mnot used for a direct call of AWXERROR (and will
produce unpredictable results). The error handler assumes upon
entry that: Q0 contains the error code; Q1 contains the object
code return address (i.@., the return address from a standard
function); Q2 contains the address AWXEERROR should return to;
013 <contains the address of the runtime data area; and Q14
contains the current precgram segment base address.

4hdded to the MetaldA subroutine library for convenience; not a
standard function.

22

Programmer's Guide to ALGOL W

‘4 INTERFACING ALGOL W_WITH_ASSEMBLER

4,1 EXTERNAL PROCEDURES

In a program which calls an external procedure, a dunnmy
procedure declaration and body are used to establish the
proper correspondence to the external procedure name, as
follows:

[type] PROCEDURE name [{<parameter list>)] ;
{ALGOL]|FORTRAN} "<string>"¥;

The symbols ALGOL and FORTRAN specify what kind of linkage
conventions will be used by the compiler in generating a call
to the procedure; the <string> fLollowing the symbol specifies
the ESD name of the external procedure. Note that it is not
necessary to use ALGOL linkage cconventions in assenbler
routines unless the user intends to either

{1) call an ALGOL W procedure from the assembler
routine, or

{2) Use ALGOL's stcrage management facilities (i.e.,
the AWXALLO and AWXFREE macros described below).

4.2 FORTRAN LINKAGE CONVENTIONS

The symbol FORTRAN indicates the use of standard
operating system linkage conventions on the /360 or the
MetalA. The string following the symbol 1is extended with
blanks or truncated to eight characters anpd is used as the ESD
name of the external procedure. The following formal parameter
types are allowed and are interpreted as follows:

(1) <simple type>: The corresponding actval parameter is
examined, If that parameter is a variable, the address of
the variable is computed once and transmitted. Otherwise,

the expression which is the actual parameter is
evaluated, the value 1is assigned to an anonymous local
variable, and the address of that variable 1is
transmitted.

(2) <simple type> {value|resultjvalue result}: As in
ALGOL W procedures, a local variable unique to the call
is created, and the address of that variable is

transmitited.

-

Programmer's Guide to ALGOL W

(3) <simple type> array: The address of the actual array
element with wunit indices in each subscript position is
computed and transmitted, even 1if that element lies
outside the declared bounds of the ALGOL W array. Arrays
with only one dimension and arrays with wunit lower
subscript bounds will have elements with indices which
are identical in ALGOL ¥ and FORTRAN routines. Array
cross-sections should not be used as actual parameters to
FORTRAN subprograms, since the array descriptor will not
be handled properly.

4.2.1 ON THE /360

FORTRAN linkage conventions are defined to be standard
0S/360 linkage conventions. Caller's registers should be
saved in the standard 0S save area. String functions with
FORTRAN linkage conventions are not permitted. If FORTRAN
I/0 or error handling facilities are used, the subroutine
package 1BCOM or a suitable substitute is required.

4.2.2 ON THE META4A

FORTRAN linkage conventions on BUGS are defired to be
standard GMS conventions. The following caliing seguence 1is
generated:

% R2 ,PLIST optional
Le R5,R14
LT R14,V {<procname>)
BALR R14,R14
LR R14 ,R5
DS On
PLIST DC AL2 (<param>..,) optional
DC I'FPFP? optional

Itemns marked optional are included only if the procedure
has a formal parameter list; if there are no parameters, R2
will contain garbage. The called routine should use ENT/RET
instructions for entry/exit (thus saving the caller’s
registers automaticalily). The construction of the parameter
list proceeds in the manner described in section 4.1 above.
Parameters are stored according to the internal data
representations described in section 3.71; on the Metala,
an offset of two must be added to the parameter addresses
of those datatypes whose values are stored in the second
half of fullwords.

- 24-

Programmer's Guide to ALGOL W

4.3_ALGOL_ ¥ _LINKAG

]
3

CONVENTIONS

The symbol ALGOL in the dummy body irndicates the use of
ALGOL W linkage conventions. The string following the symbol
indicates the ESD name of the main entry point of the
procedure and may be of two forms. For an independently
compiled ALGOL W procedure, <{string> takes the form
"yxxxx001", where ¥xxxx are the first five characters of the
procedure identifier extended if necessary with #'s; the name
of a mainline is AWXSC001l. For an assembled ALGOL ¥ procedure

or mainline, <string> is the label appearing on the CSECT or
ENTRY DS.

ALGOL W linkage conventions are nonstandard and
compiler-dependent. They are basically identical on the /360
and Metald, except <fcr minor <changes made to the Metall
version because of architectural differences. Parameter lists
are built at run time prior to every procedure call. A
parameter list is a 1list of addresses; each address points to
a parameter or a thunk. Due to the complexity of these
mechanisms, macros have been written to simplify parameter
passing in assenbler. In general, these AWX—-pacros make
assemnbler programs look like ALGOL W procedures (or
mainlines); thus, the wuser can ignore the details of
compiler-dependent code.

The assembler programmer must be careful to adhere to
register usage conventicns. ALGOL W assumes that the following
registers will always contain their assigned contents: 1) 013,
the common data area pointer; 2) 012 and 011, the auto storage
registers for the mainline and first level procedure; and 3)
014, the program base register. Any other registers needed by
an ALGOL W procedure are saved by the caller and restored by
the caller upon return from an ALGOL W subroutine. The user
need save the above registers only if they are used explicitly
in an assembler program. The AWX—-macros (AWXLHV, AWXRHV,
AWXCaLl, and AWXARRAY, in particular) will not®change the
contents of these registers; however, they may change the
contents of any other register, so the programmer must be wary
of assuming register contents over a call of one of the
macros. To be safe, do pot alter R11 - R14 on the /360, or R3

and R13 = SFP on the MetaldA.

4.4 THE AWX-MACROS

The AWX-macros need only be wused if ALGOL 1linkage
conventions have been elected by the wuser. These macros,
written by Charles Sorgie, reside in three macro libraries on
the Computer Science CCOMNON disk. They are:

AWXALL macros common to the /360 and Metal A interfaces
AWX360 macros to interface /360 assembler with ALGOL W

..25_.

[

Programmer's Guide to ALGOL W

AWXM4A macros to interface HMetall assembler with ALGOL W

One assembler "mainline" (in the ALGOL % sense) aud any
number of assembler procedures (again, in the ALGOL W sense)
may appear in an assenbly. Nesting of mainlines and procedures
is strictly forbidden, and the macros willi check for
incorrectly sequenced macro calls. The macros automatically
generate EQU's for the R-, F-, and Q-registers for the Netala
assemnbler:; do mot include a BUGSREGS macro or the assembler
will get extremely confused. Symbols beginning with the
characters "AWX" and "SAWX"™ are used extensively by the
macros, S0 the user is well-advised to avoid these.

The user should not necessarily expect the contents of
all registers to remain constant across macro calls: certain
macros cream certain registers. The specific register(s) (if
any) affected by a macrc call are explicitly mentioned in the
macro descriptions below.

boho1 AWXMAIN

AWXMAIN generates the entry seguence for an ALGOL W
mainline. Only one mainline mwmay occur in an assembly. This
macro begins the definition of automatic storage {i.e., a
DSECT) for the mainline, and must be followed by an
AWXENDAU macro. The format is:

AWXMAIN label[,CSECT=YES|NO]
label the actual ESD name of the procedure

CSECT= CSECT=YES to generate a CSECT, or NO to generate
a "DS OH".

4.04.2 AWXPROC.

AWXPROC generates the code sequence to enter a
procedure using ALGOL W 1linkage conventions. 1t begins the
definition of automatic storage for the procedure and must
be followed by an AWXENDAU macro for CSECI=YES|NO, but not
for CSECT=EXTERNAL. Automatic storage contains parameter
descriptors and storage used by the procedure itself. Note
that registers are not automatically saved; however, Q12
{the outermost auto storage register) 1is saved by the
accompanying AWXENDAU macro in automatic storage for later
use by the AWXCALL and AWXEXIT macros. The name of the
savearea is "Xxxxx#SA", where "xxxxx" are the first five
(or less) letters of the procedure name. The user may
place data in automatic storage (by inserting DS's between
the AWXPROC and AWXENDAU macros); this is not required, but

26.

— it

Programmer's Guide to ALGOL ¥

will reduce the size of static storage since data will be
allocated at runtime instead of assenbly time. The macro
format is:

[proctype] AWXPROC labelf, (plist)][,CSECT=YES|NO|EXTERNAL]

proctype an optional ALGOL W procedure type (INTEGER,
REAL, LONGREAL, COMPLEX, LCNGCOMPLEX, STRING,
STRING (n) , LOGICAL, BITS, or REFERENCE)

label the actual ESD name of the procedure

(plist) a list of keywords enclosed in parentheses

specifying an ALGOL W formal parameter list

CSECT= CSECT=YES to generate a CSECT, CSECT=NO to
generate a "DS OH", or CSECT=EXTERNAL to indicate
that the actual body of the procedure is
specified in a separately compiled or assembled
program (i.e., an ESD name will be generated and
later resolved to the external procedure).

The parameter list uses the same Dbasic format as an
ALGOL W formal parameter 1list, except the symbols in the
list are separated by commas and the specification of
certain keywords is different. The format is:

(dtypel[,ptypel],nlistl,...dtypeN] ,ptypeN],nlistN)

where dtype 1is: 1) one of the datatypes INTEGER, REAL,
LONGREAL, COMPLEX, LONGCOMPLEX, BITS, REFERENCE, LOGICAL,
STRING, or STRlNG(n)G}Z) a datatype followed by the keyword
PROCEDURE, e€.d., INTEGERPRDCEDUREQ) or 3) the keyword
PROCEDURE; ptype is one of the “parameter types VALUE,
RESULT, VALUERESULT, or ARRAY, amnd if not specified
defaults to a name paranmeter; nlist specifies a list (one
or several separated by commas) of symbolic parameter
"names", the last of which may be the string "(¥,...,%)"
denoting an array parameter, with one asterisk for each
dimension.

Parameter Mnames" have the form "#xxxxxxx" where
HxxxEXxXx" is a unigue name. The symboiic parameters
{#-names's) may be used as arguments to the AWXRHV, AWXLHV
and AWXCALL macros. Bach mname is EQU'd to the ordinal
number oi the parameter as specified in the formal
parameter list; a name may also be specified as simply "#",
in which case no EQU will be generated. The symbols which
are generated by the macro to define the actual parapeters
(which are allocated in the procedure's automatic storage)
are of the form Yxxxxx#n", where "xxxxx" are the first five
(or less) letters of the procedure name, and n is the
ordinal number of the parameter.

Examplies:

...27_.

Progyrammer's Guide to ALGOL W
INTEGER AWXPROC INDEX, (STRING(256) ,VALUE, #STR,#PAT)

AWXPROC SUM, (REAL,ARRAY, # NUMBER, (*,%),
R FAL ,RESULT, #SUM) ,CSECT=NO

4.4.3 AWXENDAU

AWXENDAU ends the automatic storage DSECT defined in

_the AWXMAIN and AWXPROC macros. The format is:

AWXENDAU

.4.4 AWXCALL

AWXCALL generates the code to <call a procedure using
ALGOL W linkage conventions. This macro alters registers
(see the SA option described below). As part of the calling
sequence, Q12 (the outermost auto storage register) is
restored if the AWXCALL is not in a mainline. The format
18

[1abel] AWXCALL {proc| (proc,r) |#name] (¥name,r)}
[,(plist)][,SA=area]

label an optional label

proc the ESD name of the procedure being called; this
is either the name appearing in quotes in an
ALGOL external procedure declaration, or the
procedure name in an AWXPROC macro.

(proc,rn) the name of the procedure being called and the
general-purpose register already containing the
address of the procedure being calied.

#name the parameter which represents the procedure
being called. "#nane" mnust be defined with an
AWXPROC macro.

{(#name, r) the parameter being called and the register
containing its address. "#name" must be defined
with an AWXPROC macro.

(plist) the actual parameter list consisting of a list of
one or more parameter names enclosed 1in
parentheses. The legal parameters are: 1) nanme;
2) #name as described in section L4.4.2; 3)
name () , indicating a parameterless procedure; and
4) name (*¥), indicating a parameterized procedure.
In the 1later two cases, the user must define

- 8-

Programmer's Guide to ALGOL ¥

"name" with an EXTRN statement if ‘“name" 1is
external.
SA=area specifies the name of a user-declared save area

in which the calling procedure's registers
(R4-R15 on both machines) will automatically be
saved and restored as part of the calling
sequence; the save area should be twelve
fullwords long on the /360 and twelve halfwords
long on the MetaldAl.

In the "#name" and " (#name,r)" cases, the parameter
list is not checked at runtime to 1insure proper
correspondence; this is the user's responsibility.

Examples:
AWXCALL SUM, (STKING,PAT)

AWXCALL SUM, (#VECTOR,#RESULT) ,SA=NYSAVE

Lol4.5 AWXEXIT

AWXEXIT generates the code sequence to exit from a
procedure using ALGOL W linkage conventions, optionally
returning a value to the caller. As part of the exit
sequence, (@12 is restored if the EXIT is not in a mainline.
Return values are only valid for typed procedures
(functions). The format is:

[label] AWXEXIT [value] (reg)] (*)]
label an optional label

value a label or base-displacement address of the value
being returned

(reg) a general-purpose register containing the address
of the return value or the value itself

() indicates that the return value or its address is
already in Q3 or FO.

Either the address of the 1location containing the
function value or the value itself is returned to the
caller in Q3 (R3 on the /360, R7 on the Meta4d) depending
on the type of the value and whether the procedure has
parameters. The address is placed in 03 if there are no
parameters or if there are parameters and the type of the
returned value is LOGICAL or STRING. Addresses conform to
the storage conventicns discussed in section 3.1. The value
is placed in Q3 if the function has parameters and the type
of the returned value is INTEGER, REFERENCE, or BITS; the

- 20~

P ——

-

Programmer's Guide to ALGOL ¥

value is placed in floating-point register F0 if the type
is REAL/LONGREAL, or FO-F2 if COMPLEX/LCNGCOMPLEX.

b.0.6 AWXLHV AND AWXRHV

AWXLHV and AWXRHVS generate subroutine calls which
returnr the address of a parameter to a procedure using
ALGOL # linkage conventions. Both macros return the
parameter address in 3, (R7 on the Metald, R3 on the
/360). In addition, AWXLHV checks a flag in the paranmeter
list to determine if it is 1legal to assign to the
parameter, i.e., if the actual parameter can appear on the
left-hand side of an assignment; if not, the runtime error
handler 1is called and program execution terminates. These
macros alter registers Q3 and Q4 (R3, E4 on the /360; R7,
R8 on the Meta 4A). The format of the macros is:

[label] BuXxHV {parm#]| {r,A)]| (x,N)}[,copy]

label an optional label
parmi the ordinal number of the parameter whose address
is desired, either an integer or a "#name"

symbol defined in the parameter 1list of an
AWXPROC macro

{r,8) indicates a register containing the address of
the parameter 1list entry {(i.e., DPD} of the
parameter whose address is desired; " (r,ADDRESS)"
is also accepted.

(z, N) indicates a register containing the ordinal
number of the parameter whose address is desired;
"({r,NUMBER)" is also accepted.

copy an optional label or base-displacement address of
where the actual parameter is to be copied to
(AWXRHV) ot assigned from (AWXLHV); the assembler
length attribute of the 1label is used in an HVC.
Note that the local copy of the parameter must
conform to the storage conventions discussed in
section 3.1; in particular, the values of
REFERENCE, INTEGER and BITS datatypes are stored
in the low-order halfword of a halfword pair on
t he MetalAi.

SnlLeft-hand-value" and "right-hand-value" of an assignment
operation, respectively.

- 30—

Programmer 's Guide to ALGOL W

G.o4,7 AWXARRAY, LIST FORMNM

The list form of the AWXARRAY macro builds an array
descriptor, i.e., a dope vector. An array descriptor is
used to access elements of arrays, and to pass arrays as
parameters (a parameter list entry for an array contaias a
pointer to an array descriptor). The format is:

label AWXARRAY length,name, (bounds),[MF=L]
label a unique label to reference an array descriptor
as a parameter or for the execute form of this
macro
length the length of a single array element
name the label of the area allccated for the array

{bounds) a list (enclosed in parentheses) of
lower-bound/upper-tound pairs for each dimension,
in the form (1b1,ubl,...,1bN,ubN), where each
bound is an unsigned or negative integer

MF indicates this is the 1list form of the macro.

1
b

The format of an array descriptor is:

i T
Ojrank| =zero origin ;
F . 1
4| deltald |
I i
8) 1b0 |
1 .|
1
12 ub0]
F {
i - |
I 1
| . !
i & 3
L 1
| * |
! 1
E R 1
| deltal |
F i
| 1bN |
| i
t B 1
| ub¥N |
L i

where rank is the number of dimensions in the array, stored
in the high-order byte of the first fullword (not yet
implemented on the [/360); origin is the address of the
zeroth element (i.e., the element with zero indices) in the
array; delta0 1is the length in bytes of a single arrcay
element, and in general, delta(i) is the number of bytes

— 3%~

—— —— — i

Programmer's Guide to ALGOL W

required to store the first i dimensions of the array; and
1b0,ub0,e--,1bN,ubN are the values of the lower and upper
bounds of each array dimension (stored in the second
halfword of a fullword).

4.4.8 AWXARRAY, EXECUTE FORM

The execute form of the AWXARRAY macro allocates (in
ALGOL W's runtime automatic storage) an array defined Dby an
array descriptor generated by an AWXARRAY list form macro.
It alters registers ¢0-Q4 (RO-RU4 on the /360, R4-R8 on the
Metalia) - The format is:

[label] AWXARRAY MF=(E,listnane)
label an optional label

listname the label on an AWXARRAY macro of the MF=L form
describing the array being allocated.

4.4.9 AWXALLO

This macro allocates ALGOL W runtime automatic storage
similar to the way that AWXARRAY allocates an array. It
alters Q1-¢3 (R1-RK3 on the /360, B5-R7 on the Metala). The

format is:

[iabel] AWXALLO 1, {size] (size)}
label an optional label
r indicates the register to be returned with the

address of the area; may not be 1, 02, or Q3
(the macro alters these registers).

size indicates the amount of storage to be allocated.
The macro will round it wup to a multiple of
eighta.

{size) indicates a register containing the amount of

storage to be allocated. The macro will round it
up to . a multiple of eight.

-32=

Programmer's Guide to ALGOL W

G.U4.10 AWXFREE

This macro frees ALGOL W runtime automatic storage. It
alters Q1-03 (R1-E3 on the /360, E5-R7 on the MNetalia). The
format isz:

[label] AWXFREE {size] (size)}
label an optional label

size indicates the amount of storage to be freed. 7The
macro will round it up to a multiple of eight.

{size) indicates a register containing the amount of
storage to be freed. The macro will round it up
to a multiple of eight.

i B

L.4.11 SAWMPLE

PROGRAN

The following is

the elements of an

Programmer's Guide to ALGOL ¥

a simple function procedure to sum
ALGOL W integer array of one dimension,

demonstrating the use of AWX-wacros on the /360.

INTEGER AWXPROC

AWXENDAU

AWXRHY

L

S
LA
L
SLA
A
SR

LoOP EQU
A
LA
BCT

#ARR

R5,12 (R3)

R5,8 {R3)
R5,1 (R5)
RU,8 (R3)
RY ,2

R4 ,0 (R3)
R3,R3

a

R3,0 (R4)
RY , 4 (RY)
RS ,LOCP

AWXEXIT (%)

END

SU0M, (INTEGER,AREAY ,#ARR, (*)) ,CSECT=YES

END OF AUTOHATIC STORAGE

R3 = ADDR(ARRAY DESCRIPIOR)
CONPBUTE #ELEMENTS IN ARRAY
UPPER BOUND — LOWER BOUND + 1

COMPUTE 3ST ARRAY ELEM ADDR

-3 -

OFFSET = LOWER BOUND * 4
ADD ZERO ORIGIN TO GET ADDR
ZERD SUM

DO #ELEMENTS TIMES

SUM = SUN + ARR(I)

GET NEXT ARRAY ELEMENT
END

SUM ALREADY IN R3

Programmer's Guide to ALGOL W

PROGRAMWING AND CODING HINTS

[P Ra— S

— e il i

R et

For testing programs the $DUMP*01[,cc] option is suggested;
this causes the ALGOL W compiler to print a listing of
generated machine code, from which it 1s easy to set
checkpoints at source statements.

For production runs, the $NOCHECK compiler optiomn is
recommended. It prevents the compiler from gemnerating code to
check for array bounds, 1illegal references, and the like, and
may result in a considerable savings in the size of a programe.

Runtime debugging is not supported on the Hetaldd, so the debug
option is forced to $DEEUG,0 when the MU4A option is specified.
Normally, programs should be debugged on the /360, and then
cempiled for the Metalh (1f so desired).

Constant expressions are not folded. Thus assigning 1.0/2.0 to
a real is less efficient than assigning 0.5 to a real.

- Constants are converted to the proper type at run time, not at

compile time. Thus adding 1 to a real is less efficient than
adding 1.0 to a real.

IF- and CASE-expressions and multiple assignments are compiled
efficiently and shculd be used when applicable.

When calling external procedures with FORTRAN linkage
conventions, the wost efficient way to pass parameters is by
name, since only the address of the parameter need be
computed.

If error 2012 or 3102 occurs in a statement involving a call
to a procedure having expressions as actual paranmeters, try
assigning the expressicns to local variables and passing the
variables as the.parameters.

As an alternative to bits, bits(32) may be specified.
When using FORTRAN linkage conventions, passing parameters by
name is generally more efficient than passing them by value or
result. When using ALGOL linkage conventions, the opposite is
true.

If an array declaration contains more than one array
identifier, the compiler does not recalculate the bound pair
list. Thus "INTEGER ARRAY A (1::10); INTEGER ARRAY B (1::10)"
is less efficient than "INTEGER ARRAY A,B (1::210)".

The c¢ompiler will not permit you to compile an external
procedure that contains a REFERENCE parameter, since the
RECORD to which it refers nust be global to the procedure. To

- 35~

s i i e

[P T P ———.

get

Programmer's Guide to ALGOL W

around this restriction, the following kludge may be

applied:

(1)

(2)

(3)

(4)

Code a dummy procedure, declaring the RECORD type,
around the procedure that 1is to receive the
reference paramneter; e.g.,

PROCEDURE DUMMY;

BEGIN

RECORD CAR(INTEGER LICENSE);

PROCEDURE REALPROC (REFERENCE (CAR) PTR);
BEGIN
L]
-
L]
END

END.

Compile without OCCAM, but with the DECK and NOXEQ
options.

Fdit the resulting text deck and delete down to and
including the first END card -- this removes the
dummy preccedure.

The deletion leaves youn at the first ESD entry.
Still in the editor, issue "c/002/001" (in this
exanple making REALPROC, now DUMNY002, into
DUMMYO01 -- the main entry point), and "F1ILE".

Issue "OCCAM <fn> (ICP" -- the ICP option will
(continuing our example) make the entry nane
REALPROC instead of DUMMYODO1.

- 36=

Programmer's Guide to ALGOL W

6_REFERENCES

(1]

(2]

[3]

[4]

[51]

Bauer, Hs , S. Becker, and Sk Graham, "ALGOL W
Implementation”, Stanfcord University (1968).

Koslow, Howard, and D. Taffs, "ALGOL # BRuntime Support for
BUGS"™, Brown University (1976).

Satterthwaite, Edwin H., Jr., "Source Language Debugging
Tools", Ph.D. Thesis, Computer Science Dept., Stanford
University (May 1975), STAN-CS-75-494

Sorgie, <Charles D., WALGOL W Reference Hanual", Brown
University {(1976) .

Sorgie, Charles Dey "An ALGOL W /360 to Metalh
Cross-Compiler", Sc.M. Thesis, Brown University (1976).

37

