4
T L] 1
1 BUGS |
1....._.,_...._.*._..............3

The Brown University Grarhics Systemi

SIMALE Principles cof Operation

The Brown University Graphics Proiject

Division of Applied Mathematics

Box F

Brown University

Providence, Rhode Island 02912

June 1975

Printed: June 13, 1978

1This Research is being supported by the ©National Science
Foundation Grant GJ-41539, the Office of Naval Besearch, Contract
NOOO14~-75-C~0427, and the Brown University Division of Applied
Mathematics; Principal Investigator Andries van Dam.

1 QvervieWAl's!a---t..-a1-:taﬁota-a-.------mnaaa:-t--s11..naan-141

4 STHALE CORDOTEUT S wowsmniaans wm s S oeein S S e s e s sy eawses b
2o 1 STUALE SLUTOS amw e wnmie e e s oewes e s me e e s i & e sseses 5 e 5 e wl
2+2 SINALE PLOCESSOLSsssavssssssesssssesssesssevessssssnsss ow desd
243 The Bata Bus‘..l\!llm—‘-.‘-ll.i:--"’:‘C:‘x’.'l-."'l.ﬂ0‘1"4‘*‘!"“*"‘ﬂ-‘&‘il"""u

3 THE SIHALE INSTBUCTIGN SETJ&QQ.“"Q.II'QQGIJIHQWI'W‘.I"WI"I'S
381 PfOCeSSOI InstIUCtionS.‘...Iui.s-aﬂllaoaaa.!II!'-.:-.s--u-i.S

Hgaapaaatosca.naamit-nqiu-so oaoanow»4-4.:.ngm.unaaonznasal.nnnnnah!ans'6
LQauasaa-- I E R N) o-o‘o,l-.la‘.-,na—.«n---..a---.oat-—.‘n:o-.-ouo-.c-nnaioaé
LAS.'C'S'!IS.OQlQﬂ‘.ﬁo.n-.-aa-‘--‘m-!-n.-a-‘ﬂa.sa-‘-niat-ﬂ--\‘.ﬂlll'-6
LBQQ-‘Q’!! L I R I I I R R I I R I I I I N L I I I I I R N T I) -ats--oac-saﬁ
LSHQ--sﬁsanaanac‘nsna-can--m---anaa.oz.a.nann-uaanaa--sao.gaa-o']
BSBQ*J!&:"'Dli‘cam‘itsstlao.act-ch-J--gainaiaanonnatamaaau-#n?
RSHB"—“IJ‘Q-‘Q):‘. R R R I R N I N lln-licnctaia—oc?
3.2 Control Register InStrUCtionSeicccossnanshansissnssesasissied
LHARO .s'ﬁﬂii‘iO'-l"dl‘*-..*QJ‘.-’!’-...‘"M:i‘D—.--.:-;.*;Qi-.ua.agn.‘s.’.w.’ta
,LCTR:)Q.-:ma-O-.-ﬂta PR BB D DD D BB BDB BB DSBS A .aaqatmaca-o-oo—oao».a
LA.UFB“'""--O*S"*)IO!ﬁtn-t-—'l--naat--na-nsam'-!atn!sa--n------n8
LEBCR.cauio-ﬂ-OA-a-s-&naumloa.ooza—t.ataoga—-awamaa---ant,osa-:-—o-a-1:003—311
HQD’EQ..S%-ca.-I-“nﬂ‘ﬂ"i.ﬂﬂ’*‘-a-sa'n,.--.ogaiq.-n-a.tidﬂngnn‘tq
33 Flow of Control InsStructioNSiceccicenscssacasiinsnsosssissss 15
BR-«--naaaa-sootﬂa-----a--.----q;h.q.aaqnngoq.s.'.—-a-;-a-- LI R 15
CAL-L-‘.‘.'D.'?"‘-"‘GD.-.‘.‘Qt“"-”--.'.'---.--."...---"“Iﬂ‘--‘ﬂ15

BETUBN‘..-’.""-"-.“i-'..-".3"“'.l-lia‘.'.ﬁr.'ﬂv.‘{1"‘90!?..3-..J;QCJ-‘-‘.J-"?E

3-“ COﬂﬁitiUﬂ CoﬁeSQwo--au‘.--.sana-'.--.-Qﬂano-.--,nuanm:-ann.aﬁ

The SIMALE is a processing element of the BUGS systen
capable of performing a varied and ccmplex repetoire of graphics
operations for the user. Its high speed gives BUGS the
performance typical of grarphics systems employing special purpose
hardware but none of the inherent inflexibility. Although anyone
could program the SIMALE to meet the needs of his application, it
is presumed most users will use a standard set of SIMALE graphics
operations enbedded within a higher 1level language. The
discussion that follows, therefore, is intended for the more
serious user.

2 _SIMALE COMPONENTS

The SIMALE's architecture departs radically from the more
traditional ones of the Meta U4A and Meta 4B in several respects.
These departures were dictated by the special nature of the
graphics coperations it performs. Speed, flexibility, simplicity,
reliability, and cost were all important design considerations
affecting its architecture.

The most noticable features of the SIMALE are its abundances
of processors, stores, and data buses {[see figure 1). The SIMALE
has four parallel processors, gquadrupling its effective speed,
and unfortunately making it difficult to understand and program.

2.1 _SIMALE_STORES

The SIMALE has four general types of stores; two in the
control and two in the processing units.

CONTROL STORE: This is a fully readable/writeable
store in the control unit and is used primarily
to hold instructions. It <comnsists of 256,
16-bit words organized into two, 128-word pages
which are loaded by the Meta 4B during
execution of the ETIC instruction. Control
storage locations may be read or written under
SIMALE program ccntrol, although the addressing

mechanisn makes doing so difficult.

CCNTROL REGISTERS: The SIMALE makes heavy use of
residual control; a technique where the loading
of special contrcl 1registers determines the
nature o¢f subsequent operations. The control
unit has five such registers; the CounT
Register (CTR), the Memory Address Register
{MAR), the Enable and Bus <Control Register
{EBCR), the Regquest Code Register ({BCR), and
the ALU Function Register (AUFR). These
registers control such things as progran
looping, the sources and destinatioms during
data transfers, and the operands and operations
per formed by the four processors. Their
existence greatly increases the power of the
SIMALE's small instruction set while avoiding a

- P

A

FIG | — SIMALE ARCHITECTURE

DATA BUS

C . E 3
— | PROC. 1| d PROC. 2| T} PROC. 3 “}J PROC. 4
< MEMORY [* « MEMORY [~ | || MEMCRY ™ e~ MEMORY 7
__ TARRY: 4 16 %15 by TN - flx g
A REG 1ol (A REG s " e-[A_REG ' I -[A_REG = I
I o N X o B B S et o QM
sl l IR .. PTG E SN, o JRRPOPY L(I — €/\;,l
‘i (B A 19 | [ZREcE}-S | [BAE s |) GECI g
E.._'i i a = ¥ ol g @ E
+ Ly g . A
| ALU ALy }, ALU ;_.*LL ALy R
!
8
INTERFACE/
CONTROL| address DEBUG
STORAGE | | 10 UNIT
asente | elAGERle>
(2 pnq::;;} la :
' JEECR > Lo cables

cond;tions >>

control INESqu.

AND
S EQUINCE

LOGIC

= =41

i : | { T \ i
R»"‘}ZD §\ \\ !

DECODE | - ! '

, o G I

:

"'""'"“"1

more expensive and inefficient "horizontal"
architecture.

PROCESSOR MEMCEY: Each processor possesses sixteen,
18-bit words of memcry used as a "“scratch-pad"
te hold 1less frequently used operands. The
memories are addressed by the MAR control
register. All operand stores in the SIMALE are
18 bits to provide the precision necessary to
avoid overflow problems arising during certain
graphics coperaticns, The eighteen bits of these
stores are labeled {X0),{(X1),1(0),{1) ssees(15)
to emphasize their positional relationship with
the sixteer bits of control storage and the
Meta 4B,

PBOCESSOR REGISTERS: In addition to the sixteen
memory locations, each processor has three
18-bit registers; the A, Q, and B registers.
Two of these registers are shiftable and all
are used for intermediate results and

frequently used data during computations.

222 SIMALE_PROCESSORS

The SIMALE bhas five 1logical processing units: one
processes instructions, and four process operand data.

INSTRUCTION PROCESSOER: All dinstructions in the
SIMALE are processed by the control umit. The
execution of an instruction can cause activity
on all of the four operand processors
simultaneously. This parallel execution of
instructions makes the SIMALE an efficient

machine for graphical operations.

OPERAND PROCESSORS: Fach of the processing units has
an 18-bit ALU (Arithmetic/logic Unit) which
selects operands from among the various stores
and performs an arithmetical or 1logical
operation upon them. The AUFR control register
determines the operations performed by the
ALU'S. The results are made available on the
F-buses where they can be <copied into a store
or tested by subsequent instructions.

2=3 THE DATA BUS

The SIMALE +transfers data among its various processing
units and the Meta 4B via a bidirectional 18-bit data bus; the
Z-bus. During a data transfer, cne of eight sources and one of
seven destinations are selected by the EBCR control register.
Among them are the Meta 4B, control storage, the low order
byte of the current instruction, and the processor F-buses.
16-bit sources (such as the Meta 4B and ccntrol storage) have
their signs extended onto the bus. When the instruction
register is source, bits({8-15) of the current instruction are
copied onto the corresponding bits of the Z-bus and the rest
are forced to zero. An additioral data path serves to pass
command, status, and debugging information between the Meta 4B
and the SIMALE's control unit.

3_THE SIMALE INSTRUCTION_ SET

The SIMALE has sixteen instructions, all of which are
16-bits 1long. Alrmost all instructions are divided into three
fields; an operation code in bits{0-3), a modifier or data field
in bits{4-7), and an address field in bits(8-15). While nmost
SIMALE instructions are simple register 1loads, they <can be
difficult to wunderstand bLecause several things modify their
behavior.

First, the loading of residual control registers determines
the operation of subsequent instructions. For example, the
setting of the AUFR register might instruct the ALU's to perform
addition on the B and (registers. If an instruction then loaded
the A registers, they would contain the result of this addition.
But for other settings of contrcel registers, this sane
‘instruction could =zero the A register, perform a logical OR'ing
of two registers, or complete a data transfer with the Meta 4B.
In addition, many of the control registers are on top of stacks
and can assume different values on different levels of progranm
execution!?

Besides being affected by residual control registers, the
execution itself of many instructions is conditional. Condition
codes referenced by these instructions test one of sixteen
conditions throughout the SIMALE and modify executicn behavior
according to the result.. See Section 3.4 for a further
explanation of the condition codes.

In the instruction descriptions that follow, upper case
symbols are predefined by the SIMALE assembler to the hexadecimal
values annotated (#hex value) and opticrnal symbols are enclosed
in braces. All symbols are delimited by either blanks or commas.
To produce object <code, the assembler simply OR's together the
values of the symbols appearing on a line of code, For more
detail, see the SIMALE Assembler Manual.

321 _PROCESSOR_INSTRUCTICNS

Instructions with operation codes 8 through 15 affect the
operand stores of the four processors. All interpret bits{4-7)
as a condition code and bits {8-15) as a branch address unless
the condition code specified pre~enmpts taking this branch.
The EBCR control register enables the fprocessors, and no

-0

action is ever taken by a disabled processor or by a processor

which is not a bus destinmation during a data transfer (see the
XFER condition code).

¥rite Memory from F-bug on condition

WM <condition code>[,<label>]
T T T 3

| 8 | CcC | ADDRESS |

1 1 1 i

0 4 8 18

load { register from F-bus on condition
LQ <condition code>[,<labeld>]
f E| T k]

] B] CC | ADDRESS |

1 1 i ¥}

0 4 a8 is

Load A register from F-bus con ceondition

LA <condition code>[,<label>]
T T T B

] € | CC | ADDRESS |

i i E d

0 4 8 15

Load B register from F-bus on condition
LB <condition code>[,<label>]
1 L) LI E

1 ¥ | €CC | ADDRESS |

i i i E |

¢} 4 B 15

For these instructions, each enabled processor takes the
local value of the condition c¢ode specified and if true,
copies the current ALU output frcem the F-bus into the
specified 18-bit store. In the <case of a Write Memory
instruction, the exact remory lccation written is specified by
the Memory Address Register ({MAR) .

Unless modified by the copdition code, execution resumes
at the address specified by <label>,

left SHift ¢ register, entering condition value

LSHQ <condition code>[,<label>]
T E ED 1
1 9 | CC | ADDRESS |
i E | 1 K |
0 4 a 1s

Right SHift ¢ register, entering condition value
RSHQ <condition coded>[,<label>]

i 5 T

A | CC | ADDRESS
i A
4 B8

[QS

1

I

i
15

Left SHift B register, entering condition value

LSHB <condition code>[,<lakel>]
¥ T T 1
| D | CC | ADLRESS |
1 | i 3
0 4 8 1s

BRight SHift B register, entering condition value

RSHB <condition code>[,<labeld]
r T T k |
| E | CC | ADDRESS |
i 1 1]
0 4 8 15

For these instructions, each enabled processor shifts the
specified register one position in the specified direction,
entering the local value of the condition code into the
emptied end bit position.

Unless modified by the condition code, execution resunes
at the address specified by <label>.

3.2_CONTROL_REGISTER_INSTIRUCTIONS

The following instructions, with <o¢peration codes 2
through 6, load and modify the residual control registers.

Lcad Memory Address Register with immediate

LMAR <data>[,<label>]
¥ k) E] E
{ 4% | DATA| ADDRESS |
i | i |
0 4 8 15

This instruction takes the data specified in bits {(4-7)
and loads it into the 4-bit Memcry Address Register (MAR).

Execution resumes at the address specified by <labeld,

. The MAR is a control register whose contents selects one
of the sixteen locations in the processcr nemories. It sits
atop a 16-level stack in which the current value of the MNAR
may be saved by a CALL instruction and from which the MAR may
be restored by a RETURBN instruction.

The MAR <can be dincremented by a MODR instruction (see
Section 3.3).

Load CounT Register with immediate

LCTR <data>[, <label>]
g T v R
{ 5 | DATA] ADDRESS |
i i i fl
4] 4 B8 15

This instruction takes the data specified in bits (4-7)
and loads it into the 4-bit CounT Register (CTR).

Execution resumes at the address specified by <label>.

The CTR 1is a control register used to control program
lcoping. It sits atop a 16~level stack inm which the current
value of the CTR may be saved by a CALL instruction or fron
which the CTR may be restored by a RETURN instruction,

The CTR can be decremented and tested by the CounT (CT)
and Not CounT ([NCT) conditicn ccdes (see Section 3.4).

Load ALU Function Register with imnediate

LAUFR <function>[,INV][,RND][,+1]
=TT T T 1
1 2 1S1}S21TI]JRJCJFUNC |
i i i - s ety DR | . |
4] % L) 8 9 10 15

This instruction takes the immediate data specified in
bits(4-15) and loads it into the 12-bit ALU function register.

Execution resumes at the next sequential imstruction.

The ALU function register is a ccntrocl register selecting
the operand stores and the cperation performed by the ALU's of
the processors. There are several fields within the register.
The 5-bit field in bits(11-15) =selects one of thirty-two
arithmetic or boolean operations performed upon the two source
stores selected by the fields in bits(4-7). A description of
all thirty-two functions can be found in the SIMALE hardware
Princiles of Operation manual; those currently defined for the
assenbler are:

<function>:
F=<s1> (#0000): This ccpies s1 onto the F-bus.

F=<s1> OR <s2> {#0001): This logically OR's the
two sources.

F=<s1> CR_NOT <s2> (#0002): This OR's s1 with
the complement of s2.

F= ONES (#0003): This =sets the F-bus to all
Ones.

F=<s1> AND <s2> {#0004): This AND's the two

SOULCeS.

F=<s 1> XNOR <s2> (#0006) : This is the
corplement of the exclusive OR of the two
sources.

F=<s1> AND_NOT <s2> (#0008): This AND's s1 with
' the cormplement of s2.

F=<s1> XOR <s2> {#0009): This XOR's s1 with s2.
F= NOT <s2> {#000A): This complements s2.

F=<g1> NAND <s2> (#000B): This NAND's s1 and
S2a

F= ZERCS (#000C): This sets the F-bus to all
ZRLO0S.

F=<s1> NOR <s2> (#000E): This NORS s1 with s2.

F=<s1> #0 (#0010): This adds zero plus the
carry in to s1.

F= NEG_ONE (#0C13) : This =sets the F-bus to all
ones plus the carry in.

F=<s1> MINUS <s2> (#0016): This sets the F-bus
to s1 minus s2 minus one plus the carry
in.

F=<s1> PLUS <s2> (#0019): This sets the F-bus
to s1 plus s2 plus the carry in.

F=<s1> TIMES_2 {#001C)z: This sets the F~bus to
s1 left shifted one place.

F=<s1> -1 (#001F): This sets the F-bus to sl
minus one plus the carry in.

<s1> 2 The first orerand source for the above
functions is selected by bits(4,5). the
possible sources are:
F=MEM (#0000): The memory
F=A (#04C0): The A register
F=Q (#0800): The Q register
F=B {#0C00): The B register

<s2>> : The second operand source for the above
functions is selected ty bits ({6,7). The
possible sources are:
MEM (#0000): The memory
A (#0100): The A register
Q {(#0200): The Q register
B {#0300): The B register

INV (#0080): ERit(8) is the dinvert bit (I) and
inverts the carry in and function bits (12-15)
seen ty processors 2 and 3. This has the effect
of making the ALU's of processors 2 and 3
perforn the complenent of the function

pecformed on processcors 0 and 1. Thus it is
possible, for examnple, to dc addition om

.,10

processors O and 1 and at the same time do
subtracticn on processors 2 and 3.

RND (#0040): Bit (9) is the round bit (R) and if set,
the wcarry in +to any processor that has right
shifted a one bit out of its B register is
inverted., This prevents roundoff errors during
certain cperations.

+1 (#0020): Bit(10) is the carry bit (C) into the
ALU's during arithmetic operations. It may be
inverted either by the round or the invert bits
and has the effect of adding one to the results
of arithmetic operations.

Load Enable, Eus Control Register
with inmnediate

LEBCR <enable or request><{tus src><bus dst>
T T T T T 3
1 3 JEN/EC|E}SRC]DST |
| i i 1 i i
0 4 9 10 13 15

This instruction takes the inmmediate data specified in

bits (4-15) and 1loads it into the Fnable and Bus Control
Register (EBCR).

Execution resumes at the next sequential address.

The EBCR is a control register which deals with enabling
processors and with data transfers on the Z-bus. The LEBCR
instruction does not actually perforr a data transfer but
rather determines what transfer will be performed by the XFER
condition code.

<enable> : When a LEBCE instruction is executed with
bit (9) (E) set, bits{4-7) are lcaded into a
4-bit enable register each bit of which enables
one of the processors, Usually all processors
are left enabled, but when not, disabled
processors are unaffected by instructions and
cannot be tested by condition codes. The MOLIR
instruction can rotate right the enable bits
one place. The enable register bits are:

PO (#0840): enables Processor 0

P1 {#044C) ; enables Processor 1

_Ilu

P2 {#0240): enables Processor 2
P3 (#0140): enables Processor 3
ALL (#0F00): enables Processors 0-3.

<request> : When a LEBCR instruction is executed and
bit {9) (E) 1is off, bits(4-8) are loaded into
the 5-bit Regquest Code Recgister. This register
is used by the SINALE to request an operation
of the Meta 4B, When an XFER condition code
causes the SIMALE to pause for I/0 with the
Meta 4, the Q-interpreter examines the request
code register and the CTR. It then performs the
requested operation, sometimes using the CTR as
a modifier. Only sixteen of the thirty-two
possible request codes are currently
implemented in the Meta 4B firmware, and
reguesting illegal codes causes a SIMAILE
interrupt . The poscible request codes are:

QUIT (#0C00): causes termination of the current
ETC instruction.

INTERRUPT (#0080): <causes a SIMALE interrupt,
then guits.

NEXT_BLCCK (#001C)z: causes the termination of
the current ETC block and resumnes
execution at the next block.

NEXT_SUB_BLOCK (#0180): causes termination of
the current ETC sub-bleck and resumes
execution at the next sub-block.

GOTO_PAGE (#0200): The SIMALE gives the Meta UuB

' a SIMALE initialization halfword via the
Z-bus. The Meta 4B then loads the
requested control store page if necessary
and starts SIMALE execution at the
requested lecaticn. This is an
inter-virtual page jump (see Section 16.3
of the Meta 4B manual).

GET_DATA ({#0280) : causes the Meta 4B to get the
CTR number of halfwerds from the current
sub-block and give them one at a time to
the SIMALE via the Z-bus. If the CTR is
zero, an interrupt is caused and execution
is halted.

SET_VG_MODE (#0300): «causes the MNeta 4B to
issue a mecde order to the V6 which it
reads from the SIMALE Z—-bus.

SEND_VG_DATA (#0380): causes the MHeta 4B to
send the VG the CTR number of halfwords
from the SIMALE Z-bus. If the CTR is zero,
an dinterrupt is caused and execution is
halted.

GET_REG (#0400) , PUI_REG (#0480), GET_LS
{#0500), PUT_LS {#0580), GET_MS {#0600),
PUT_HS (#0680) , GET_VG_REG (#0700),
PUT_VG_REG (#0780) : All of these request
codes cause the Meta U4E to read an address
from the SIMALF's Z-tus. It then transfers
the CTR number of halfwords to or from the
specified stores {(ie. user REGisters,
Local Store, Main Store, or VG REGisters).
If the CTR is zerc, an interrupt is caused
and executicn is halted.

<bus src>: Bits({10-12) of the EBCR select the Z-bus

source. They sit atop a 16-level stack in which
they may be saved by a CALL imstruction and
from which they may be restored by a RETURN
instruction, The bus source bits may be
incremented by the MODR instruction. Possible
sources are:

FROM_M4 {#0000): Meta 4 is scurce
FROM_CS (#0008): Contrcl Store is source

FROM_IR ({#0010): The 1low order byte of the
instruction is source

FROM_ALL (#0018): The F-buses of all processors
are OR-ed tcogether and are the source

FROM_PO (#0020): The F-bus of Processor 0 1is
source

FROM_P1 (#0028): The F-bus of Processor 1 is
source

FROM_P2 {#0030): The F-bus of Processor 2 is
source

FROM_P3 {#0038): The F-bus of Processor 3 is
source

-13-

<bus dst>: Bits(13-15) of the EBCR select the Z-bus
destinaticn. As with the bus source field, the
bus destinaticn bits are atop a 16-level stack
and may te incremented by the MODR instruction.
possible destinations are:

TO_M4 (#0000): Meta 4B is the destination

TO_CS (#0001):z Ccntrol Store is the
destination., Bits (8-15) cf the instruction
invoking the data transfer (ie. specifying
xfer) is the address of the location
loaded from the Z-bus.

TO_ALL (#0003): The 2Z-bus contents is copied
onto the ¥F-buses of all processors, which
are not bus source, regardless of the AUFR
setting.

TO_FO (#0004) : The Z-kus is <copied onto
processor 0O's F-bus, if not bus source.

TO_P1 (#0005): the Z—-tus is copied onto
processor 1's F-bus, if not bus source.

TO_P2 {(#00086) 2 the Z-bus is <copied onto
processor 2's F-bus, if not bus source.

TC_PB3 (#0007): the Z-bus is <copied onto
processor 3's F-bus, if not bus source.

MODify Registers

MODR [MAR])[,ENABLE]{ ,SRC][,DST])[<,label>]
T T T 1
] 6 '] MASK] ADDRESS |
i EN i 3
0 4 8 15

The Modify Registers instruction uses bits{4~7) as a mask
to determine which of fcur control registers to modify as
fecllows:

MAR (#0800)z: If Lit(4) is set, the Memory Address
Register is incremented.

ENABLE {#0400): If bit(5) is set, the Enable field
of the EBCR bits(4-7), is rotated right one
position. EBCR Lkit(7) is wentered into EBCR
bit (4) when this is done.

-14~

SRC {(#0200)=2 If bit(€) is set, the source field of
the EBCR is increnented if the source specified
is one of the processors. Processor 3 wraps
around to Processcr 0.

DST {(#0100): If bit(7) is set, the Destination field
of the ¥BCR is incremented if the destination
specified is one of the processors. Processor 3
wraps arocund to processor 0.

3.3 _FLOW_CF_CONTEOL INSTRUCTIONS

The SIMALE has three instructions which alter the flow of

control in programs. All of them dinterpret bits(8-15) as an
address, These instructicns are:

BRanch on condition true

ER <condition code>[<,label>]
¥ T L] |
] 1 |1 €C | ADDRESS |
1 i i J
L¢] 4 B8 15

The Branch instruction tests the global value of the
condition code specified (see Section 3.4). If it is true,
execution resumes at the address specified by <label>,
Otherwise execution resunes at the next sequential
instruction.

CALL subroutine
CALL [MAR]{ ,CTR) ,SRC][,DST][<,label>]

B T E 1
| 7 | MASK]| ADCRESS |
i 3 1 3
0 4 a 15

The call instructicn saves the next sequential address in
a 16-level stack internal tc the control unit. This serves as
link information used by the RETURN instructiona.

Execution is resumed at the address specified by <label>l.

The CALL instruction also affects those control registers
that are on stacks. The values of these control registers are
constantly being copied intoc the present level of their
stacks. When a <CALL is executed, the stack frame pointer is

e B

-t

incremented, accessing the mnext level of the stacks, then

bits(4~-7) determine the subsequent setting of these control
registers as follows:

MAR (#0800): If Dbit(4) is set, the Memory Address
Register's current value remains unchanged. If
bit (4) is not set, the MNAR is loaded from the
new stack level and thus assumes the value it
had previous to the last RETUBN .

CTR (#0u00): If bit(5) is set, the Count Register
remains unchanged. If not set, the CTR assumes
its previous value.

SRC (#0200): If Dbit(6) is set, the source field of
the EBCEKE remains unchanged. If not set, it
assumes its previcus value.

DST (#0100): If bit(7) is set, the destination field

of the FEEBCR remains unchanged. If not set, it
assumes its previcus value.

RETURN from sutroutine on conditicon true.

BETURN <condition code>[<,label>]
T T LD 1
] 0 | €C | ABLDRESS |
i i i |
0 4 B8 15

The EHETURN instruction tests the glcbal value of the
condition code specified, If it is true, the stack frame
pointer is decremented and the control registers are restored
to their values previous to the last CALL instruction.
Execution is resumed at the saved address. If the condition
code is not true, executicn is resumed at the address
specified by <labelD.

3,4 CONDITION CODES

P

The SIMALE conditional instructions specify a condition
code in bhits(4~7). All codes select one of sixteen conditions
tested in five places; in the control unit, and in each of the
four processors. The value tested in the control unit is
called the global value, and the values tested in the
processors are called the local values. In many cases, the
global value is simply the logical o©R'ing of the four local

-1H~

values. Disabled processors make no ccontribution to the global

values so

Four

obtained.

of the condition codes can modify the operation of

processor—-type instructions, This predification usually

invelves
execution

invoking special cycle sequences or altering where
is resumed upcn comppletion., The condition codes are:

FALSE (#0000) s This dcesn't nodify instruction
sequencing

local value: always false
glotal value: always falcse

TRUE (#0100) 2 This doesn't rcdify instruction
sequencing

local value: always true
global value: always true

TREJ (#0200): This is a windowing rejection test for
a 1line whose end rpoint window coordinates are
in the A and (Q registers. If both of these
registers are negative cn any one processor,
then the line is absolutely cutside the windovw.
TREJ doesn't modify instruction seguencing.

local values: {[A{X0) AND Q(X0)) from all enabled
processors CR'd together

global value: =ame as local value.

REJ (#0300): This is a windowing rejection test for
a line whose window coordinate end points are
in the A register and on the F-bus. If both are
negative on any one processor, the line is
absclutely outside the window., REJ doesn't
modify instruction sequencing.

local value: (A{X0) AND F(X0)) from all enabled
processors CR'd together

global value: same as local value
DELAY (#C400): This inserts a one cycle delay before
the execution of a processor instruction to aid

fixing possible program timing problems.

local value: always true

-17-

global value: always true

XFER (#0500) When referenced by a processcr
instruction, XFER triggers a several cycle
sequence causing a data transfer along the
Z-bus. The transfer is frem the source to the
destination as specified in the EBCR. If the
Feta 4B is involved, the SIMALE pauses until
the Meta 4 can signal the transfer is complete.
Cnly these processors which are destipations
can be affected by an instruction specifying
XFER, and only those which are sources pay
attenticn to the setting of the AUFR during the
transfer.

Execution is always resumed at the next
sequential imstructicn.

local value: always true
global value: always true

CT (#0600): The CounT cconditicn code always causes
the CTR to le decremented. If it is specified
by a processor instruction, and the CTR was one
before being decremented, execution is forced
teo resume at the next sequential instruction;
otherwise it resumes at the address specified.
This gives Frocessor instructions a BCT
ability.

local value: always true

global value:z CTR not = 1 (i.e. goes false when
the count is exhausted)

NCT (#0700): The ©Not Count condition code always
causes the CTR to be decremented. If it is
specified by a processor instruction, and the
CTR was cne before being decremented, execution
is forced to resume at the next sequential
instruction; ctherwise it resumes at the
address specified. This gives processor type
instructions a BCT ability.

local value: always false

glokal value: CTR = 1 (i.e., goes true when the
count is exhausted)

. "!8..

COUT ({#0800) = This doesn't rodify instruction
sequencing.

local value: Carry 0UT from ALU bit(X0)

global value: carry out from all enabled
processors OR'd together.

NF(X0) {#0900): This doesn't modify instructions
sequencing.

local value: the complement of the sign bit of
the F-bus

global value: NF (X0) s cf all enabled
processors OR'd together

LSIG (#0A00) : This doesnit modify instruction
sequencinge. LSIG is a test for left
significance of a processor's B register (i.e.,
either its left most two lrits are different or
it is all ones or zZeros)

local value: ([B{X0) XOR E(X1)) OR (B NOT MIXED)

gloral value: LSIG's of all emabled processors
OR'd together.

BM {#0B0O)z This doesn?t medify instruction
sequencing. B mixed is a test for a processor's
B register nct being all ones or all zeros.

local value: B register wmixed

glotal value: BM of all enabled processors OR'd
together.

Q{X0) (#0C00), 0(15) (#0D0O), E{X0) ({#0E0D),
B(15) {#0F00): These don't mecdify instruction
sequencing they are vsed to test the end bits
of the B and Q register.
local value: the bit specified

global valune: the bit specified of all enabled
processcors are OR'd together.

~ G~

The Meta=-U4B is provided with two registers, named SY and SZ.

The SY register is used to pass control information between the
SIMALE and the "B", and the G52 register is used to pass data

o between the ~machines.. The contents of the SZ
controlled by the source and destination fields
register.

- 1.1_SY REGISIER
1.1.1 ON OOTPUT
r 550 1
| MM*%SPPPDDDDDDDD]
L 3
0123456789ABCDEF
e
S 1.1.1.1 Mode (MH):

00 --> Read and go {useless)
01 --> Load and go

10 --> Control Storage Read
11 --> Control Storage Write

register are

If this bit is on, the SIMALF steps the number of

cycles in the clock counter.

000 --> normal execution

001 --> read,write backplane pins
010 -=-> read,write backplane pins
011 --> backplane on input, no output

100 -=-> backplane on input, no output
101 --> backplane on input, no output
110 --> backplane on input, no output
111 --> backplane pons in input, clock counter on output

o e i s S e P o S

Address or data

1.1.2 INPUT IN NORMAL MODE

r 1
| ¥FXACCCCH*REFQQOQO |
1

%

0123456789ABCDEF

0 =-=-> Quit
1 -=> Interrupt (Count field contains code)
2 --> Next Block

3 --> Next Sub-block

4 -=-> Goto Page®

5 --> Get Data 1

& ==> Set VG Mode©

7 =-=> Send VG Datatl

8 --> Get Register?

9 -->» Put PRegister?

10 --> Get Local Store?

11 =-> Put Local Store?

12 --> Get Main Store?

13 --> Put Main Store?

14 --> Get VG Register?

15 --> Put VG Register?

16 =--> CALL

17 =-=> RETURN
18 —-> PIUSH!
19 ==> pOp}

(9 count ignored, data in SZ register

(1) count valid, data transfer thru S2Z

(2) count valid, SIMALE writes addr. thru SZ before
data

Te 1aZal2-Coun® Fiald {CCCCY:

Indicates no. of words to transfer.

If the run flag is off, SIMALE is pausing for a
request.

