
o New Release • Revision o Update o New Mail Code

Title

MCP/AS Binder Programming Reference Manual (8600 0304–301)

This announces a retitling and reissue of the ClearPath HMP NX and A Series Binder Programming Reference Manual.
No new technical changes have been introduced since the HMP 1.0 and SSR 43.2 release in June 1996.

To order a Product Information Library CD-ROM or paper copies of this document

• United States customers, call Unisys Direct at 1-800-448-1424.

• Customers outside the United States, contact your Unisys sales office.

• Unisys personnel, order through the electronic Book Store at http://iwww.bookstore.unisys.com.

Comments about documentation can be sent through e-mail to doc@unisys.com.

Product Information
Announcement

Announcement only: Announcement and attachments: System: MCP/AS
AS200 Release: HMP 4.0 and SSR 45.1

Date: June 1998
Part number: 8600 0304–301

Binder
Programming Reference
Manual

MCP/AS

Copyright û 1998 Unisys Corporation.
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

HMP 4.0 and SSR 45.1 June 1998

Printed in USA
Priced Item 8600 0304–301

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related
information described herein is only furnished pursuant and subject to the terms and conditions of a
duly executed agreement to purchase or lease equipment or to license software. The only warranties
made by Unisys, if any, with respect to the products described in this document are set forth in such
agreement. Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, special, or consequential
damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

RESTRICTED – Use, reproduction, or disclosure is restricted by DFARS 252.227–7013 and 252.211–
7015/FAR 52.227–14 & 52.227-19 for commercial computer software.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using
the Business Reply Mail form at the back of this document or by addressing remarks to Software
Product Information, Unisys Corporation, 25725 Jeronimo Road, Mission Viejo, CA 92691–2792
U.S.A.

Comments about documentation can also be sent through e-mail to doc@unisys.com.

Unisys and ClearPath are registered trademarks of Unisys Corporation.
IInfoExec is a trademark of Unisys Corporation.
All other terms mentioned in this document that are known to be trademarks or service marks have
been appropriately capitalized. Unisys Corporation cannot attest to the accuracy of this information.
Use of a term in this document should not be regarded as affecting the validity of any trademark or
service mark.

8600 0304–301 iii

Contents

About This Manual ... xiii

Section 1. Understanding the Binding Process

What Is Binder? .. 1–1
Binder Code File Restrictions .. 1–1
Binder Input Files ... 1–2

The Primary Input File ... 1–2
The Host Program .. 1–2
The Subprogram .. 1–3

Binder Output Files .. 1–4
Avoiding Unresolved External References in the Bound

Code File .. 1–5
Invoking Binder .. 1–5

Invoking Binder from CANDE 1–5
Invoking Binder from WFL ... 1–6

Reserved Words ... 1–7
Binder Execution .. 1–7

Binding Subprograms ... 1–7
Encountering Errors ... 1–8

Using Binder Efficiently .. 1–8
Object-Code Efficiency .. 1–8

Section 2. Binder Language Constructs

File Specifier .. 2–1
Identifier ... 2–3
Intrinsic Specification .. 2–3
Subprogram Identifier ... 2–4

Section 3. Binder Statements

BIND Statement ... 3–3
DONTBIND Statement .. 3–7
Conflicts between BIND and DONTBIND Statements 3–8
EXTERNAL Statement .. 3–9
HOST Statement .. 3–10
INITIALIZE Statement ... 3–11
PURGE Statement .. 3–12
STOP Statement .. 3–13

Contents

iv 8600 0304–301

USE Statement ... 3–14

Section 4. Binding Programs Written in the Same Language

ALGOL Intralanguage Binding .. 4–1
Compiling ALGOL Host Programs and Subprogram 4–1
Declaring Global Items within an ALGOL Procedure 4–2

Using the Brackets Method 4–2
Using the INFO File Method 4–3

Adding New Global Items to an ALGOL Host Program .. 4–3
Using the ALGOL Separate Compilation Facility 4–4
Library Binding in ALGOL ... 4–4
Record Binding in ALGOL .. 4–5
Example of ALGOL Intralanguage Binding 4–5
Example of Binding an ALGOL Library 4–7
Example of Binding an ALGOL Program That

References a Library .. 4–8
C Intralanguage Binding .. 4–10

C Host Programs ... 4–10
C Subprograms .. 4–10
Describing Functions and Global Variables 4–10
Binding with Different Memory Models 4–10
Example of C Intralanguage Binding 4–11
Binding Level-3 C Programs 4–12
Example of Binding a Level-3 C Program 4–12

COBOL Intralanguage Binding ... 4–14
Compiling COBOL Host Programs and Subprograms ... 4–14
Binding an External Procedure to a COBOL Host

Program .. 4–14
Activating Bound Subprograms 4–14
Global Declarations in Subprograms 4–15
Tasking and Binding ... 4–15
OWN Declarations in the Subprogram 4–16
Library Binding in COBOL .. 4–16
Example of COBOL Intralanguage Binding 4–16

FORTRAN Intralanguage Binding ... 4–19
Compiling FORTRAN Host Programs and

Subprograms ... 4–19
FORTRAN Common Blocks .. 4–19
Library Binding in FORTRAN 4–19
Example of FORTRAN Intralanguage Binding 4–20

FORTRAN77 Intralanguage Binding 4–21
Compiling FORTRAN77 Host Programs and

Subprograms ... 4–21
Files .. 4–21
Common Blocks ... 4–21
Library Binding in FORTRAN77 4–21
Example of FORTRAN77 Intralanguage Binding 4–22

PL/I Intralanguage Binding .. 4–25
Declaring Host Programs and Subprograms 4–25
STATIC EXTERNAL Variables 4–25

Contents

8600 0304–301 v

Example of PL/I Intralanguage Binding 4–26

Section 5. Binding Programs Written in Different Languages

ALGOL-C Interlanguage Binding .. 5–2
Identifiers .. 5–2
C Functions ... 5–2
Pointers .. 5–4
Parameter Passing ... 5–4
Example of Binding ALGOL Procedures Into a C Host .. 5–4
Accessing the C Heap from ALGOL 5–5
Example of an ALGOL Subprogram Accessing the C

Heap ... 5–7
ALGOL-COBOL Interlanguage Binding 5–10

Global Items .. 5–10
Parameters ... 5–11
Libraries .. 5–11
Record Binding .. 5–11
Binding ALGOL and COBOL74 Programs That Use

COMS ... 5–12
ALGOL-FORTRAN Interlanguage Binding 5–14

Parameters ... 5–15
Global Items .. 5–16
Files .. 5–16
Common Blocks ... 5–16

Simulating Common Blocks in ALGOL 5–17
Accessing FORTRAN Common Blocks as ALGOL

Arrays .. 5–17
Accessing ALGOL Global Arrays from a FORTRAN

Common Block .. 5–18
Example of ALGOL-FORTRAN Binding 5–19

ALGOL-FORTRAN77 Interlanguage Binding 5–21
Global Items .. 5–22
Subprograms .. 5–22
Files .. 5–22
Common Blocks ... 5–23

Accessing FORTRAN77 Common Blocks as
ALGOL Arrays .. 5–23

Using Initial Values with Common Blocks 5–24
Accessing ALGOL Arrays from a FORTRAN77

Common Block .. 5–24
Simulating Common Blocks in ALGOL 5–25

Parameters ... 5–25
Example of Binding an ALGOL Subprogram Into a

FORTRAN77 Host Program 5–27
Example of Replacing a FORTRAN77 Character

Function by an ALGOL Procedure 5–29
Example of Binding FORTRAN77 Program Units Into an

ALGOL Host Program ... 5–30
ALGOL-NEWP Interlanguage Binding 5–31
ALGOL-Pascal Interlanguage Binding 5–32

Contents

vi 8600 0304–301

Global Items ... 5–35
Parameters .. 5–35
Examples of Binding an ALGOL Subprogram Into a

Pascal Host Program .. 5–37
COBOL-C Interlanguage Binding .. 5–39

Example of COBOL-C Binding 5–40
COBOL-FORTRAN Interlanguage Binding 5–41

Global Items ... 5–42
Parameters .. 5–42

COBOL-FORTRAN77 Interlanguage Binding 5–43
Global Items ... 5–44
Parameters .. 5–44
Example of Passing a FORTRAN77 Character Variable

to a COBOL74 Section ... 5–44
COBOL-Pascal Interlanguage Binding 5–46

Global Items ... 5–50
Parameters .. 5–50
Example of Binding a COBOL74 Procedure Into a

Pascal Host Program .. 5–51
Example of Binding a COBOL Procedure Into a Pascal

Host Program .. 5–52
FORTRAN-FORTRAN77 Interlanguage Binding 5–53

Subprograms ... 5–54
Common Blocks ... 5–54
Parameters .. 5–54
Characters ... 5–55
Libraries .. 5–55
Example of Binding a FORTRAN Common Block Into a

FORTRAN77 Host Program 5–56
Example of Interlanguage Binding Involving

FORTRAN77, COBOL74, and ALGOL 5–57

Section 6. Binding Intrinsics

What Is an Intrinsic? ... 6–1
Compiling Intrinsics .. 6–1
Creating a Binder Input File ... 6–2
Intrinsic Specification ... 6–3

Section 7. Binding Programs That Access Databases

Binding DMSII Databases ... 7–1
Binding SIM Databases .. 7–2

SIM Data Types .. 7–2
Referencing a SIM Database 7–3
Referencing a SIM Entity Reference Variable in a Host

Program .. 7–5
Referencing a SIM Query Variable in a Host Program ... 7–6
Adding Query Variables as New Globals 7–7
Referencing a SIM Database in a Pascal Host 7–9

Contents

8600 0304–301 vii

Section 8. Printing Binding Information

Generating Binding Information .. 8–1
Using the PRINTBINDINFO Utility ... 8–2
Printing Binding Information for Specific Procedures 8–4
Output Options ... 8–6

Appendix A. Warning and Error Messages

Appendix B. Using Binder Control Record Options

Binder Control Record Format .. B–1
Binder Options ... B–4

Appendix C. Understanding Railroad Diagrams

Railroad Diagram Concepts .. C–1
Paths .. C–1
Constants and Variables ... C–2
Constraints .. C–3

Vertical Bar ... C–3
Percent Sign ... C–3
Right Arrow ... C–3
Required Item .. C–4
User-Selected Item ... C–4
Loop ... C–5
Bridge .. C–5

Following the Paths of a Railroad Diagram C–6
Railroad Diagram Examples with Sample Input C–7

Index ... 1

Contents

viii 8600 0304–301

8600 0304–301 ix

Figures

2–1. Subprogram Nesting Structure ... 2–6

Figures

x 8600 0304–301

8600 0304–301 xi

Tables

1–1. Allowable Binding Combinations .. 1–2
1–2. Binder Action on Subprograms Named in the Host Program 1–7

3–1. Binder Statements ... 3–2

4–1. Heap Size in Bound Code Files ... 4–11

5–1. Allowable Binding Combinations .. 5–1
5–2. Corresponding C Function Types and ALGOL Procedure Types 5–3
5–3. Corresponding ALGOL Parameter Types and C Argument Types 5–3
5–4. Name and Format of the C Heap .. 5–6
5–5. Corresponding Identifier Types between ALGOL and COBOL 5–10
5–6. Corresponding Identifier Types between ALGOL and FORTRAN 5–14
5–7. Corresponding Identifier Types between ALGOL and FORTRAN77 5–21
5–8. Corresponding Identifier Types between ALGOL and Pascal 5–32
5–9. Corresponding Parameter Types Between C and COBOL 5–39
5–10. Corresponding Identifier Types between COBOL and FORTRAN 5–41
5–11. Corresponding Identifier Types between COBOL and FORTRAN77 5–43
5–12. Corresponding Identifier Types between COBOL and Pascal 5–46
5–13. Corresponding Identifier Types between FORTRAN and FORTRAN77 5–53

B–1. Binder Options .. B–4

C–1. Elements of a Railroad Diagram .. C–2

Tables

xii 8600 0304–301

8600 0304–301 xiii

About This Manual

Purpose
This manual explains how to use the Binder compiler to insert a module from a separately
compiled program into another separately compiled program.

Scope
This manual begins with an introduction to the process of binding. The main text includes
information, syntax, and examples for binding programs and libraries written in the same
language and in a variety of different languages.

Audience
Programmers of all experience levels can use this manual.

Prerequisites
You must be familiar with the languages in which the programs you are binding are
written.

How to Use This Manual
Read the first section of this manual to understand the binding function and process. You
can use the rest of the manual as a reference tool to obtain more information for your
specific program binding needs.

The syntax of Binder statements is presented in this manual in railroad syntax diagram
form. If you are unfamiliar with this notation, see Appendix C for a complete explanation.

Organization
This manual consists of eight sections, three appendixes, and an index. The content of the
sections and appendixes is described as follows:

Section 1. Understanding the Binding Process

This section explains the overall binding process.

About This Manual

xiv 8600 0304–301

Section 2. Binder Language Constructs

This section describes the elements that form the most primitive structures of the Binder
language.

Section 3. Binder Statements

This section provides the syntax and function of the language elements used with Binder.

Section 4. Binding Programs Written in the Same Language

This section describes the procedures and techniques required to perform intralanguage

binding, which is the process of binding programs written in the same language.

Section 5. Binding Programs Written in Different Languages

This section describes the procedures and techniques required to perform interlanguage

binding, which is the process of binding programs written in different languages.

Section 6. Binding Intrinsics

This section describes the binding procedures that are required to create and bind
intrinsic files.

Section 7. Binding Programs That Access Databases

This section explains how to bind programs that access SIM or DMSII databases.

Section 8. Printing Binding Information

This section describes how to use the PRINTBINDINFO utility to print an analysis of the
binding information of a code file.

Appendix A. Warning and Error Messages

This appendix lists the various warning and error messages and their meanings, and
provides solutions for the errors when applicable.

Appendix B. Using Binder Control Record Options

This appendix describes how to use Binder control record options to control the
processing of Binder input files and the content of the resulting bound code file.

Appendix C. Understanding Railroad Diagrams

This appendix describes the notation used throughout this manual to represent the syntax
of the Binder language.

About This Manual

8600 0304–301 xv

Related Product Information
Unless otherwise stated, all documents referred to in this publication are MCP/AS
documents. The titles have been shortened for increased usability and ease of reading.

The following documents are included with the software release documentation and
provide general reference information:

• The Glossary includes definitions of terms used in this document.

• The Documentation Road Map is a pictorial representation of the Product
Information (PI) library. You follow paths through the road map based on tasks you
want to perform. The paths lead to the documents you need for those tasks. The Road
Map is available on the PI Library CD-ROM. If you know what you want to do, but
don't know where to find the information, start with the Documentation Road Map.

• The Information Availability List (IAL) lists all user documents, online help, and
HTML files in the library. The list is sorted by title and by part number.

The following documents provide information that is directly related to the primary
subject of this publication.

CANDE Operations Reference Manual

This manual describes how CANDE operates to allow generalized file preparation and
updating in an interactive, terminal-oriented environment. This manual is written for a
wide range of computer users who work with text and program files.

Work Flow Language (WFL) Programming Reference Manual

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who have
some experience with programming in a block-structured language such as ALGOL and
who know how to create and edit files using CANDE or the Editor.

About This Manual

xvi 8600 0304–301

8600 0304–301 1–1

Section 1
Understanding the Binding Process

What Is Binder?
Binder is a utility that lets you permanently insert a module from one compiled program
into another compiled program. The module you want to insert is called a subprogram.
The program in which you are inserting the subprogram is called the host program. Binder
lets you combine subprograms and host programs written in the same language or in a
variety of different languages. Table 1–1 shows the allowable binding combinations.

By using Binder, you can change or correct an existing program without having to rewrite
or recompile the entire program. For example, if a program accesses several subprograms,
and some require changes, you can revise and recompile only the subprograms that need
changes, and then use Binder to combine the subprograms into one resultant program.
This process saves computer time in recompiling and programmer time in rewriting.

Binder also allows you to use a standard set of subprograms with multiple other programs.
You need to write the subprograms only once. Then, you can bind them into the other
programs whenever you need to do so.

Binder Code File Restrictions
You cannot bind code files that are more than three system software releases older than
the release level of the Binder program with which you are working. For example with the
Mark 3.9 release of Binder, you can only bind code files of Mark 3.6 or later. If you use a
code file that is too old, Binder flags the file with an error message and terminates.

If you use your compiler to generate code that runs on a restricted set of computers, the
resulting bound code file will run only on the computers on which the host program and
the bound subprograms run. For example, if one code file runs on an A 4 and an A 16 and
another code file runs only on an A 4, the bound code file will run only on the A 4.

Understanding the Binding Process

1–2 8600 0304–301

Table 1–1. Allowable Binding Combinations

Host Program Language

Subprogram
Language

ALGOLò C COBOL FORTRAN FORTRAN77 NEWPó Pascal¬ PL/I

ALGOLò Yes Yes Yes Yes Yes Yes Yes

C Yes

COBOL Yes Yes Yes Yes Yes Yes Yes

FORTRAN Yes Yes Yes Yes Yes Yes

FORTRAN77 Yes Yes Yes Yes Yes Yes

PL/1 Yes

ò All references to ALGOL include the various extensions of ALGOL, such as BDMSALGOL, DCALGOL, and
DMALGOL.

ó The NEWP Master Control Program (MCP) can serve only as a host program in binding.

¬ Pascal programs can serve only as host programs in binding.

Binder Input Files
In a normal execution, you supply Binder with the following input:

• A primary input file (optional)

• A compiled host program

• One or more externally compiled subprograms

The Primary Input File
The primary input file is an optional file that consists of Binder statements and Binder
control records. You can use Binder statements to indicate the titles of the subprograms
and the title of the host program to be bound. You can also use Binder statements to
exclude certain subprograms from the binding process. You can use Binder control
records to control the way Binder processes the subprogram and the host program, and to
determine the content of various files produced during binding. Binder statements are
described in Section 3. Binder control records are described in Appendix B.

The internal name of the primary input file is CARD. If you initiate the bind from WFL, the
file kind is READER. If you initiate the bind from CANDE, the file kind is DISK, unless you
use a file equation.

The Host Program
The host program is the code file to which subprograms can be bound. A host program
must contain the first executable code segment of a program. A host program can be the
resultant code file of a previous bind.

Understanding the Binding Process

8600 0304–301 1–3

You can specify the title of the host file to Binder by using the Binder HOST statement
(see Section 3) or by file equating file HOST in the WFL or CANDE syntax used to start
Binder. The internal name of the host program is HOST. The file kind is DISK, unless you
change the file kind with a file equation. You must always supply a host program, except
when binding intrinsics. For details about binding intrinsics, see Section 6.

Some examples of host programs are as follows:

• An ALGOL outer block

• A FORTRAN program containing a main program

• The MCP

• A PL/I procedure

• A COBOL program compiled with the LEVEL option set to 2

• A previously bound program

• A FORTRAN77 program with $ BINDINFO set

• A Pascal program with modules declared EXTERNAL

• A C program containing the function, “main”

The Subprogram
A subprogram is a separately compiled program unit that exists externally to the host
program. You must compile external subprograms with the appropriate language compiler
before binding them to a host program. Note that a subprogram cannot be the resultant
code file of a previous bind. Multiple subprograms can exist in a subprogram file.

External subprograms are referenced in the host program but have not yet been bound.
You do not have to specify external subprograms in the BIND statement, because they are
bound automatically by default.

Binding makes the subprogram a part of the host program. When you bind a new version
of the subprogram, the new version replaces the existing version in the host program. This
procedure is known as replacement binding.

Some examples of subprogram files are as follows:

• ALGOL procedures

• FORTRAN77 subroutines or functions

• Separately compiled procedures of the MCP

• Intrinsics

• PL/I procedures

• COBOL programs compiled with the LEVEL option set to a value greater than 2

• A compiled C module that does not define the function “main”

The ALGOL, FORTRAN, FORTRAN77, and PL/I compilers title subprograms compiled
through WFL by replacing the identifier following the last slash of the code file title in the

Understanding the Binding Process

1–4 8600 0304–301

WFL COMPILE statement with the subprogram name. In COBOL, the subprogram name is
taken from the identifier following the last slash of the code file title in which the
subprogram resides.

In ALGOL, FORTRAN, and FORTRAN77, a LIBRARY compiler control option is available
that causes the compiler to place all subprograms compiled in a single compilation into
one code file. The title of the code remains as specified in the COMPILE statement. The
LIBRARY option is automatically set to TRUE when the compilation of an ALGOL program
with one or more independent procedures is initiated by CANDE, or when the compilation
of a FORTRAN or FORTRAN77 program with the SEPARATE compiler control option set
to TRUE is initiated by CANDE.

Binder Output Files
Binder can produce three files during normal execution:

• A bound code file

 This is a file consisting of the host program and the subprograms bound into the host
program.

 All of the deimplementation warnings produced for the individual code files are
included in the bound code file. In addition, the bound code file might also contain
unresolved references to external programs. Unresolved external references occur
when subprograms referenced in the host do not get bound. Unresolved external
references are discussed later in this section.

 The internal file name for the bound code file is CODE. The KIND attribute for the file
is DISK; you cannot change the KIND attribute with a file equation.

 If the host and all subprograms have the same FILEKIND attribute (such as
ALGOLCODE), that FILEKIND attribute is retained for the new bound codefile.
Otherwise, the FILEKIND attribute is BOUNDCODE.

• An optional printer listing

 The contents of the printer listing vary depending upon the Binder control record
options you specify. To produce a printer listing, include the LIST or TIME Binder
control record option in the primary input file.

 The internal file name for the printer file is LINE. The file kind is PRINTER unless you
change the file kind with a file equation.

• An optional error file

 The error file, labeled ERRORS by default, contains all the error messages produced
during the binding process. To generate an error file, include the ERRORLIST Binder
control record option in the input file you use to invoke Binder.

 If you initiate Binder from WFL, the file kind is PRINTER. If you initiate Binder from
CANDE, the file kind is REMOTE, unless you change the kind with a file equation.

Understanding the Binding Process

8600 0304–301 1–5

Avoiding Unresolved External References in the
Bound Code File

A reference to an external subprogram is in a resolved state when the subprogram is
successfully bound to the host program. An external reference is in an unresolved state
when the subprogram does not get bound to the host program.

External subprograms do not get bound to the host program if

• Binder cannot locate the subprogram

• You use the Binder EXTERNAL statement in the host program to prevent the
subprogram from being bound

Unresolved references to external subprograms are fatal to program execution if the
program tries to access the unbound subprogram. Program execution is not affected if the
program does not attempt to access the unbound subprogram.

You can help prevent fatal program errors due to unresolved external references by
including the WAIT, STRICT, and LIST Binder control record options in the primary input
file.

WAIT Causes Binder to suspend binding when it cannot find a specified
subprogram. You can then make the subprogram available and
resume binding, or you can terminate Binder.

STRICT Prevents the resultant code file from being locked if a specified
subprogram is not bound.

LIST Produces a printer listing that you can use to verify that all
necessary subprograms have been bound before you attempt to
execute the program.

Invoking Binder
There are two ways to invoke Binder:

• By using the CANDE command, BIND, to activate the primary input file (a work file or
disk file containing Binder statements)

• By using a WFL job that contains Binder statements

Refer to Section 3 for the syntax and explanation of the Binder statements.

When the bind is complete, Binder gives the time of the compilation, as well as the
compiler name and version number for the subprograms and the host program.

Invoking Binder from CANDE
Your primary input file must contain BIND statements to indicate the location of the
subprograms to be bound. The input file can optionally indicate the name of the host

Understanding the Binding Process

1–6 8600 0304–301

program to which the subprograms are being bound. If the input file does not contain the
name of the host program, you must indicate the host program name by using a file
equation in the CANDE BIND command.

For example, assume that you have the following CANDE file, named BOUND/LIB, as the
primary input file:

HOST IS OBJECT/BOUND/LIB/HOST;
BIND SUBA FROM OBJECT/BOUND/LIB/PASSR;
BIND SUBB FROM OBJECT/BOUND/LIB/PASSR;

To invoke Binder, you would enter

BIND BOUND/LIB

Assume that the HOST statement was not included in the BOUND/LIB file, and instead,
the file looked like the following:

BIND SUBA FROM OBJECT/BOUND/LIB/PASSR;
BIND SUBB FROM OBJECT/BOUND/LIB/PASSR;

In this case, the command to invoke Binder would be

BIND BOUND/LIB; BINDER FILE HOST=OBJECT/BOUND/LIB/HOST

For both of the preceding command examples, the resultant bound code file would be
titled OBJECT/BOUND/LIB.

Refer to the CANDE Operations Reference Manual for the complete syntax and
description of the BIND command.

Invoking Binder from WFL
You can list Binder statements in a WFL job, and then use the WFL job to initiate the bind,
as shown in the following example.

? BEGIN JOB BIND/SYSTEM/MYLIB
 BIND SYSTEM/MYLIB BINDER LIBRARY;
 BINDER DATA
 HOST IS OBJECT/BOUND/LIB/HOST;
 BIND SUBA FROM OBJECT/BOUND/LIB/PASSR;
 BIND SUBB FROM OBJECT/BOUND/LIB/PASSR;
? END JOB.

The resultant bound code file would be titled SYSTEM/MYLIB.

Understanding the Binding Process

8600 0304–301 1–7

Reserved Words
The following list contains words that are reserved for use in Binder syntax. You cannot
use these words for any purpose other than that described in this manual.

BIND FROM OF
DONTBIND HOST PURGE
EXTERNAL INITIAL STOP
FOR IS USE

Binder Execution
Binder begins execution by reading the primary input file (CARD), if one exists. If Binder
finds a primary input file, it processes and stores the Binder statements for future
reference. If Binder detects any syntax errors during the processing, it terminates after
reading the last input record of the file. If a primary input file does not exist, Binder
attempts to open the host program and read the first record.

If the host program is not present or cannot be made present, the operating system
discontinues Binder. If the host program is not a code file or is otherwise not suitable for
binding, the appropriate error message appears and Binder terminates.

If Binder finds a host program, it locates and reads the Binder information contained
therein. Binder determines if each named subprogram is bound or unbound, and then
determines whether a statement from the primary input file applies to the subprogram. As
a result of this examination, Binder takes the actions shown in Table 1–2.

Table 1–2. Binder Action on Subprograms Named in the Host Program

Primary Input File
Statement

Bound Subprogram External (Unbound)
Subprogram

No statement Ignores subprogram Attempts to bind
subprogram

DONTBIND statement Ignores subprogram Ignores subprogram

BIND statement Binds subprogram and
discards previously bound
subprogram (replacement
binding)

Binds subprogram

Binding Subprograms
When directed to bind a subprogram, Binder attempts to find the correct file where the
subprogram resides. If the correct file is not present on disk and neither the STRICT nor
WAIT options are specified, Binder ignores the subprogram, sends a message indicating
that it was unable to access the file, and continues to look for other subprograms to bind.
(For more information about the STRICT and WAIT options, refer to Appendix B.)

Understanding the Binding Process

1–8 8600 0304–301

If Binder is directed to a host program or to the resultant code file of a previous bind,
Binder sends a message indicating that the file is suitable only as a host and does not bind
the given subprogram. Binder continues to look for other subprograms to bind.

When Binder finds a file containing a subprogram, it first verifies that the file contains the
necessary information for binding. Binder also verifies that the subprogram matches the
description of what is expected by the host. If the type of subprogram, its number or type
of parameters, or its execution level does not match its declaration in the host, Binder
discontinues binding the subprogram, returns to its previous level of binding, and
continues to look for other subprograms to bind.

Encountering Errors
Once Binder finds a subprogram that matches the host description, any subsequent error
conditions arising during the bind of that subprogram are usually fatal, and binding is
discontinued.

Errors occur during the binding process when Binder finds a mismatch between the
description of a global reference made in the subprogram and its corresponding
description in the host program. Certain languages allow minor discrepancies in type
matching, such as referencing a variable as a real number in the subprogram when it is
declared as an integer in the host. However, more serious mismatches, such as referencing
a single-precision variable as an array or calling another subprogram with the wrong
number of parameters, are flagged as fatal errors.

Using Binder Efficiently
Most of Binder’s execution time is used to perform input and output operations. For this
reason, the most efficient way to use Binder is to maintain a host program that contains a
completely bound program. When you need to update an existing subprogram, you change
the code, recompile the subprogram, and then replace the existing subprogram in the host
program by binding in the new version. This method, called replacement binding, requires
that only two files be accessed, greatly reducing the I/O time used.

If your host program is not a completely bound program, you can waste a great deal of I/O
time. For example, if you have an unbound host program and 250 files that contain
subprograms to be bound to it, you have to rebind all the files each time you update one
subprogram. To bind the host program and the subprograms together requires the opening
and closing of 251 files with corresponding buffer allocations and deallocations, as well as
the I/O time to read and write the files. You could reduce the number of files by using the
LIBRARY option available in some compilers to combine several subprograms into one
library code file. However, using this option is not as effective as maintaining a bound
program.

Object-Code Efficiency
In general, the bound code file produced by Binder is equivalent to the code file produced
by a language compiler. In the case of replacement binding, a process in which an existing
subprogram is replaced by binding in a new subprogram, Binder reuses some segment

Understanding the Binding Process

8600 0304–301 1–9

dictionary locations used exclusively by the subprograms being exchanged. However,
code segments not needed by the new subprogram might remain in the bound code file.
These obsolete code segments do not affect the execution of the bound code but do
occupy storage space.

Once added to a bound program, items at lexical (lex) level 2 are never removed. For
example, if a subprogram containing variables declared as OWN or STATIC is replaced,
the lex level-2 locations for the one or more variables declared as OWN in the replaced
subprogram are not reused. New lex level-2 locations can be allocated for the subprogram
that replaces the existing subprogram. (Although variables declared as OWN exist at lex
level 2, they are accessible only to the program unit that declares them; thus, if this
program unit is replaced, the lex level-2 locations are inaccessible.)

Usually the unreferenced lex level-2 stack locations belonging to replaced subprograms
cause very little overhead in execution or in core usage. However, if an initialized array,
which is an array containing initial values other than 0 (zero), is declared as OWN, the
code to initialize the array causes the array to be made present. Therefore, repeated
replacement binding of a subprogram that contains initialized arrays can cause some
additional core usage and can increase execution time.

Understanding the Binding Process

1–10 8600 0304–301

8600 0304–301 2–1

Section 2
Binder Language Constructs

This section describes the syntactic items that appear in the syntax diagrams in Section 3
of this manual.

File Specifier
Use the file specifier construct to indicate the name of a file.

Syntax
<file specifier>

 ÚêÄÄÄÄÄÄ / ÄÄÄÄÄ¿
ÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄ/12\Ä <name> ÄÁÄÂÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë
 ÃÄ (<usercode>) Ä´ ÀÄ = ÄÙ
 ÀÄ * ÄÄÄÄÄÄÄÄÄÄÄÄÙ
ëÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄ´
 ÀÄ ON ÄÄ <family name> ÄÙ

<name>

ÄÄÂÄ <letter> ÄÂÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ <digit> ÄÄÙ ³ ÚêÄÄÄÄÄÄÄ /16\ ÄÄÄÄÄÄ¿ ³
 ³ ÀÄÁÄÂÄ <letter> ÄÄÄÄÄÂÄÁÄÄÄÄ´
 ³ ÃÄ <digit> ÄÄÄÄÄÄ´ ³
 ³ ÃÄ <hyphen> ÄÄÄÄÄ´ ³
 ³ ÀÄ <underscore> ÄÙ ³
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄ " ÄÁÄ /17\ ÄÄ <EBCDIC character> ÄÁÄ " ÄÙ

<family name>

ÄÄÂÄ <nonquote identifier> ÄÂÄÄ´
 ÃÄ PACK ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ DISK ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Explanation

<letter> Any one of the 26 uppercase characters, A through Z

<digit> Any character in the range 0 (zero) through 9

<hyphen> The hyphen character (-)

<underscore> The underscore character (_)

Binder Language Constructs

2–2 8600 0304–301

<name> A string of characters used to identify an entity such
as a file, a usercode, or a device group.

<EBCDIC> Any EBCDIC character for which the hexadecimal
code is greater than or equal to hexadecimal 40 and
is not the EBCDIC quotation mark character (")

<usercode> A name whose purpose is to establish user identity,
to control security, and to provide for segregation of
files

<family name> An identifier that specifies the group of disk storage
devices that function as one logical unit.

<nonquote identifier> A string of 1 to 17 alphanumeric characters

alphanumeric character Any of the characters A through Z or 0 (zero)
through 9

Details

In a file specifier, all of the names except the last indicate the directory in which a file is
located. The last name is the actual file name. For example, in the file specifier A/B/C, A/B
is the directory name, and C is the file name.

The file specifier can be optionally preceded by a usercode (enclosed in parentheses) or
by an asterisk (*). A family other than the default family (which usually is DISK) can be
specified by using the suffix, ON <family name>.

The name and the family name can consist of 1 through 17 alphanumeric characters and
cannot be split across input record boundaries.

If you use an equal sign (=) as part of the directory name, Binder replaces the equal sign
with the subprogram name. For example, if the directory name is A/B/= and the
subprogram is S, Binder looks for a file titled A/B/S. If multiple files have the same
directory name, as in A/B/SUB, A/B/PROG, A/B/ALG, Binder examines each of the
specified files in order of appearance to determine if the file contains the subprogram to
be bound.

Examples

A/B/=

(MYUSERCODE)TEST/=

*= ON TESTPACK

A/B/C

FILEID1/FILEID2/FILEID3 ON MYPACK

Binder Language Constructs

8600 0304–301 2–3

Identifier
Use the identifier construct to indicate the name of a file, subprogram, or program
variable.

ÄÄ<identifier>ÄÄÄ´

Explanation

An identifier consists of any combination of the following characters, optionally enclosed
in quotation marks. You cannot split an identifier across input record boundaries.

A through Z - (hyphen)
a through z @ (commercial at)
0 (zero) through 9 / (slash)
_ (underscore) $ (dollar sign)
’ (single quote) # (pound sign)
. (period)

Intrinsic Specification
Use the intrinsic specification construct to indicate the name of an installation intrinsic to
be bound.

Syntax

<intrinsic specification>

ÄÄ<subprogram identifier>ÄÄ = ÄÄ<intrinsic number pair>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ<language list>ÄÄ´

<intrinsic number pair>

ÄÄ<integer>ÄÄ , ÄÄ<integer>ÄÄ´

<language list>

 ÚêÄÄÄÄÄÄ , ÄÄÄÄÄ¿
ÄÄ (ÄÁÄÂÄ ALGOL ÄÄÄÂÄÁÄ) ÄÄ´
 ÃÄ COBOL ÄÄÄ´
 ÃÄ DCALGOL Ä´
 ÃÄ FORTRAN Ä´
 ÃÄ NEWP ÄÄÄÄ´
 ÀÄ PL/1 ÄÄÄÄÙ

Binder Language Constructs

2–4 8600 0304–301

Explanation

<intrinsic number pair> Specifies an intrinsic number pair. The first integer of
the intrinsic number pair specifies an installation
number, which can range in value from 0 through
2046; however, numbers 0 through 99 are reserved for
system use. The second integer specifies an intrinsic
number, which can range in value from 0 through
8191. No two intrinsics within an intrinsic file can
have the same intrinsic number pair.

<language list> Specifies a list of those compilers authorized to
reference a given intrinsic. A referencing language is
not necessarily the same as the language in which the
intrinsic is written. The DCALGOL language identifier
allows a specified intrinsic to be accessed by the
DMALGOL compiler as well as by the DCALGOL
compiler.

Details

Standard system intrinsics that are referenced as EXTERNAL in a program are
automatically bound. Thus, you do not need to declare such system intrinsics in a BIND
statement. See Section 6 for details on binding intrinsics.

Examples

$ SET INTRINSICS
 BIND = FROM INTR/=;
 BIND MYSIN = 101, 1 (ALGOL,FORTRAN) FROM INTL/=;
 BIND COFFEE = 102, 2 (COBOL) FROM POT;
 STOP;

Subprogram Identifier
Use the subprogram identifier construct to indicate the name of a subprogram.

 ÚêÄ/29\ÄÄ OFÄÄ¿
ÄÄÁÄ<identifier>ÄÁÄÄÄ´

Explanation

The identifier construct is defined earlier in this section.

Binder Language Constructs

8600 0304–301 2–5

Details

If you have subprograms with the same name, you must use identifiers to uniquely
identify, or qualify, the subprograms. A structure block type or a connection block type
can be used as an identifier to uniquely qualify a subprogram.

A subprogram identifier can contain a maximum of 30 identifiers. A level of nesting cannot
be skipped when a subprogram is qualified.

When a subprogram identifier is used in a Binder statement, the Binder statement is
applicable to all subprograms that fit the qualifications of the subprogram identifier.

Figure 2–1 illustrates the nesting structure of a program.

Examples

PROC_ONE

REC-1-LEN

P OF QTEST-5 OF TEST-4 OF TEST-3

Binder Language Constructs

2–6 8600 0304–301

Figure 2–1. Subprogram Nesting Structure

The program shown in Figure 2–1 declares one external subprogram R (subprogram R is
declared in subprogram Q that resides in the host), plus the structure of the separately
compiled subprogram R. As R is bound into the host, all subprogram identifiers become
applicable to subprograms nested within R as well as to those subprograms initially
residing in the host. Each subprogram is given a number in the example so that it can be
uniquely identified O.B. is the name given to the unnamed outer block so that it can be
used as a qualifier.

8600 0304–301 3–1

Section 3
Binder Statements

Binder statements let you initiate certain binding operations or specify file names or
identifiers to be used in the binding process.

You specify Binder statements in the primary input file in free form on one or more
records. Place a semicolon (;) after each statement.

A percent sign (%) appearing in any column from 1 through 72 of a record directs Binder to
ignore the remaining columns of the record. Binder automatically ignores columns 73
through 80.

An example of a Binder primary input file within a WFL job is shown below. The WFL job
is indicated in bold type.

? BEGIN JOB BIND/RESULT;
 BIND COBOL74/EXAMPLE BINDER;
 BINDER DATA;
 HOST IS COBOL74/HOST;
 USE S1 FOR PROG;
 BIND S1 FROM COBOL74/PROG;
 STOP;
? END JOB.

The various Binder statements are shown in Table 3–1. The syntax and examples for each
statement are provided in this section.

BIND Statement

3–2 8600 0304–301

Table 3–1. Binder Statements

Statement Description

BIND Indicates the name of a subprogram or intrinsic to be bound, the title
of the file containing the subprogram or intrinsic, or both.

DONTBIND Directs Binder not to bind a specified subprogram.

EXTERNAL Nonpreferred synonym for DONTBIND.

HOST Indicates the name of the host program to which a subprogram will
be bound.

INITIALIZE Specifies the address couple of a Master Control Program (MCP)
global item for intrinsic binding.

PURGE Causes the file or group of files indicated by the file specifier to be
removed from disk after binding.

STOP Indicates the end of the primary input file.

USE Matches the identifiers of external subprograms with the identifiers in
the host program.

BIND Statement

8600 0304–301 3–3

BIND Statement
Use the BIND statement to specify the name of a subprogram or intrinsic to be bound, the
title of the file where the subprogram or intrinsic can be found, or both.

Syntax

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ BIND ÄÂÄÁÄÂÄ<subprogram identifier>ÄÄÄÂÄÁÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄ´
 ³ ÀÄ<intrinsic specification>ÄÙ ÀÄ <from part> Ä´
 ÃÄ = ÄÄ <from part> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ ? ÄÄ FROM ÄÄ <file specifier> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

<from part>

 ÚêÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄ¿
ÄÄ FROM ÄÁÄ<file specifier>ÄÁÄÄ´

Explanation

For an explanation of the metatokens in the preceding syntax diagram, see Section 2.

Details

Using the BIND...FROM... Form of the BIND Statement

With the BIND <subprogram identifier> FROM <file specifier> construct, you can
specify only one subprogram identifier, unless the file specifier names a library file (an
ALGOL, FORTRAN, or FORTRAN77 program compiled with the LIBRARY option set to
TRUE).

Replacement Binding

You can use the BIND statement to bind in a new version of a subprogram already bound
to a host. This action is called replacement binding.

(Replacement binding is not possible with a C program. Refer to “C Intralanguage Binding”
in Section 4 for more information.)

Binding External Subprograms

It is not necessary to use a BIND statement to declare external subprograms (those not
already bound to the host). Rather, you can declare the subprograms as external in the
host program, and use the BIND = form of the BIND statement to indicate the file that
contains the subprograms to be bound.

Using the BIND = Form of the Bind Statement

You should use the BIND = construct when a subprogram identifier is specified in a BIND
statement and no file is provided. Binder attempts to locate the file containing the
subprogram by using the directory names declared in this construct. Binder replaces the
equal sign (=) with the name of the subprogram to be bound.

BIND Statement

3–4 8600 0304–301

You can supply only one BIND = statement to Binder. If you supply more than one, only
the last statement is used.

If a BIND = statement is required for proper binding, but you did not include that
statement in the CARD input file, Binder creates a BIND = statement by using the host
program title and substituting the last identifier with an equal sign. For example, if the
host program has the title THIS/IS/MY/HOST, Binder creates the following statement:

BIND = FROM THIS/IS/MY/=

After creating a BIND = statement, Binder replaces the equal sign with the subprogram
name and looks for a file with that title. For example, if PF is the subprogram to be bound,
the BIND statement assumes the following form:

BIND PF FROM THIS/IS/MY/PF

Binder looks for subprogram PF in the file titled THIS/IS/MY/PF and binds the subprogram
if it is found.

During intrinsic binding when no host program is used, Binder creates the BIND =

statement by substituting the code file title for the host program title.

Using the BIND ? Form of the BIND Statement

The BIND ? FROM <file specifier> form of the BIND statement is used to bind programs
written in C. In place of <file specifier>, you can name either a host program or a
subprogram written in C. This form of the BIND statement can also be used for non-C
subprograms.

If <file specifier> names . . . Then the BIND ? FROM statement . . .

A host program written in C Is interpreted as HOST IS For example, if you
specify a host program named TEST, Binder
interprets the BIND ? FROM TEST statement as
HOST IS TEST.

A subprogram written in C Binds all functions and data objects in the
specified file, even if the file does not provide a
function referenced by the host or other
suprograms. Note that you can bind a C
subprogram only to a C host program.

A subprogram not written in C Replaces the question mark in the BIND ? FROM
statement with the names of all functions exported
from the file. For example, if object file F has
functions X, Y, and Z, then the statement BIND ?
FROM F is the same as BIND X, Y, Z FROM F.

Examples

The following example binds subprogram SUBA with subprogram P, which is nested in
subprogram Q. For details on subprogram nesting structure and restrictions, refer to
“Subprogram Identifier” in Section 2.

BIND Statement

8600 0304–301 3–5

BIND SUBA, P OF Q

The following example directs Binder to bind subprograms SUBA and SUBB from an
ALGOL library file labeled ALGOL/LIBFILE.

BIND SUBA, SUBB FROM ALGOL/LIBFILE

The following example directs Binder to bind subprogram SUBA from the file A/B/C.

BIND SUBA FROM A/B/C

The following example directs Binder to bind subprograms SUBA, SUBB, and SUBC from
the files A/SUBA, A/SUBB, and A/SUBC, respectively.

BIND SUBA, SUBB, SUBC FROM A/=

The following example directs Binder to look for subprogram SUBA first in TEST1/SUBA,
and then in TEST2/SUBA. Then Binder looks for subprogram SUBB first in TEST1/SUBB,
and then in TEST2/SUBB.

BIND SUBA, SUBB FROM TEST1/=, TEST2/=

The following example directs Binder to bind subprogram SUBA nested in SUBX, and
subprogram SUBB nested in SUBY, from the file TEST/FILE.

BIND SUBA OF SUBX, SUBB OF SUBY FROM TEST/FILE

In the following example, Binder looks in the file, THISFILE, for any external subprograms
and for any subprograms declared in a BIND statement without a corresponding file
specifier. Binder replaces the equal sign with the name of the subprogram.

BIND = FROM THISFILE

Assuming that there is an external subprogram labeled SUBA, the following example
directs Binder to look for SUBA first in A/SUBA, next in B/SUBA, and then in C/SUBA.

BIND = FROM A/=,B/=,C/=

If the subprogram is SUBA, the following example directs Binder to look for SUBA in
SUBA.

BIND = FROM =

The following examples illustrate how you can specify program files by using the BIND

<subprogram identifier> and BIND = constructs. Each of the three statement groups has
the same net effect.

BIND = FROM FILEID/=;
BIND P;
BIND Q;
BIND R;

BIND Statement

3–6 8600 0304–301

BIND P,Q,R FROM FILEID/=;

BIND P FROM FILEID/P;
BIND Q FROM FILEID/Q;
BIND R FROM FILEID/R;

If the subprograms, P, Q, and R were external to the host, they would be bound by default.
Thus the following statement would have the same effect as the statements in the
previous three examples:

BIND = FROM FILEID/=;

DONTBIND Statement

8600 0304–301 3–7

DONTBIND Statement
Use the DONTBIND statement to direct Binder not to bind a specified subprogram. You
can use the DONTBIND statement to suppress the binding of all external subprograms
referenced in the host program.

Syntax

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ DONTBIND ÄÁÄÂÄ <subprogram identifier> ÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Explanation

For an explanation of the metatokens in the preceding syntax diagram, see Section 2.

Details

When you include a subprogram identifier in a BIND statement, but do not include a file
specifier, Binder uses the host program title to create a file in which to possibly locate the
subprogram. Binder substitutes the subprogram identifier for the last identifier of the host
program title and searches for the subprogram in the file under this name. The
DONTBIND statement is used to suppress this process.

For example, if a subprogram is declared external to allow it to be invoked by the ALGOL
statement, CALL, the DONTBIND statement can be used to suppress the automatic search
for the subprogram reference. In addition, the DONTBIND statement can be used if the
subprogram is to be bound during a later run of Binder.

Examples

The following example directs Binder to suppress the binding of the subprograms, SUBA
and SUB3. The subprograms remain unresolved external references.

DONTBIND SUBA, SUB3

The following example directs Binder to suppress the binding of all external subprograms
referenced in the host program and not explicitly named in a BIND statement. All of the
subprograms remain unresolved external references.

DONTBIND =

Conflicts between BIND and DONTBIND Statements

3–8 8600 0304–301

Conflicts between BIND and DONTBIND Statements
If multiple BIND and DONTBIND statements apply to a subprogram, Binder selects the
statement to use according to the following priority scheme.

1. Binder uses the statement that contains the subprogram identifier with the most
qualifiers if the qualification matches the environment of the given subprogram.

2. When a BIND statement and a DONTBIND statement have the same number of
qualifiers, Binder uses the BIND statement.

3. When more than one BIND statement applies and each has the same number of
qualifiers, Binder uses the last BIND statement. (These rules are referred to in the
following paragraphs as priority rule 1, priority rule 2, and priority rule 3.)

In the following example, Binder selects the BIND statement according to priority rule 1.

DONTBIND = ;
BIND SUBR;

In the next example, Binder selects the BIND statement according to priority rule 2.

BIND SUBR;
DONTBIND SUBR;

In the following example, potential conflict exists among three BIND statements. If
subprogram P is nested in subprogram Q, P is bound from file B/C according to priority
rule 1. If subprogram P is not nested in subprogram Q, the statement BIND P OF Q FROM

B/C; does not apply, and P is bound from file C/D according to priority rule 3.

BIND P FROM A/B;
BIND P OF Q FROM B/C;
BIND P FROM C/D;

EXTERNAL Statement

8600 0304–301 3–9

EXTERNAL Statement
Use the EXTERNAL statement to direct Binder not to bind the specified subprogram.

Syntax

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ EXTERNAL ÄÁÄÂÄ <subprogram identifier> ÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Explanation

For an explanation of the metatokens in the preceding syntax diagram, see Section 2.

Details

If a subprogram is external to the host, it is left as an unresolved external reference when
the EXTERNAL statement is used.

The EXTERNAL statement is the nonpreferred synonym for the DONTBIND statement.
Refer to the DONTBIND statement for a more detailed explanation.

HOST Statement

3–10 8600 0304–301

HOST Statement
Use the HOST statement to name the title of the host program to which a subprogram is to
be bound.

Syntax

ÄÄ HOST ÄÄ IS ÄÄ <file specifier> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

For an explanation of the metatokens in the preceding syntax diagram, see Section 2.

Details

When the HOST statement is used, any file equation that involves the host program is
overridden. If more than one HOST statement appears in the primary input file, only the
last HOST statement is effective.

A HOST statement (or host program equation) is not necessary when binding a C program
if the host program is specified in a BIND ? statement. The file containing the “main”
function is implicitly the host program.

Examples

HOST IS MY/HOST;
HOST IS *SYSTEM/PL/I;
HOST IS (MYUSERCODE)HOST/FILE;

INITIALIZE Statement

8600 0304–301 3–11

INITIALIZE Statement
Use the INITIALIZE statement when binding intrinsics to specify the correct address
couple of an MCP global item.

Syntax

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ INITIALIZE ÄÁÄ <identifier> ÄÄ = ÄÄ <address couple> ÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<address couple>

ÄÄ (ÄÄ <integer> ÄÄ , ÄÄ <integer> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<integer>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄ/11\Ä <digit> ÄÁÄÄÄ´

Explanation

<digit> Any one of the Arabic numerals 0 (zero) through 9.

For an explanation of the other metatokens in the preceding syntax diagram, see
Section 2.

Details

This statement is necessary because compilers do not have the correct address couple of
the MCP global item at compiling time.

Take extreme care when using the INITIALIZE statement, because unpredictable results
can occur.

For details about binding intrinsics, see Section 6.

Examples

INITIALIZE A = (0,50);
INITIALIZE BLOCKEXIT = (0,10);

PURGE Statement

3–12 8600 0304–301

PURGE Statement
The PURGE statement causes the file or group of files indicated by the file specifier to be
removed from disk after Binder has finished processing.

Syntax

<purge statement>

 ÚêÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄ¿
ÄÄ PURGE ÄÁÄ <file specifier> ÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

For an explanation of the metatokens in the preceding syntax diagram, see Section 2.

Details

If a file is specified in the PURGE statement but is not successfully bound, it will not be
removed from disk after Binder has finished.

Examples

PURGE SEP/FILE;
PURGE =;
PURGE FILE1/=,FILE2/=;

STOP Statement

8600 0304–301 3–13

STOP Statement
Use the STOP statement to indicate the end of the primary input file. The STOP statement
is optional.

Syntax

ÄÄ STOP ÄÄÄ´

Details

Binder ignores all records that follow the STOP statement in the input file. This feature
allows you to store additional Binder input records in one file without having them
executed.

Example

STOP;

USE Statement

3–14 8600 0304–301

USE Statement
The USE statement directs Binder to match a specified identifier in a subprogram with a
specified identifier in a host program. Use the USE statement when identifiers in the
subprogram have different names from the identifiers in the host program.

The ALGOL, COBOL, FORTRAN77, NEWP and Pascal languages are not case sensitive;
therefore, identifiers are implicitly read as uppercase by these compilers. In the USE
statement, uppercase characters must be used to reference identifiers from these
languages.

Syntax

ÄÄ USE ÄÄ <identifier> ÄÄ FOR ÄÄÄë
 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ëÄÁÄ <identifier> ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ OF ÄÄ <subprogram identifier> ÄÙ

Explanation

For an explanation of the metatokens in the preceding syntax diagram, see Section 2.

Details

The first identifier following USE is the identifier contained in the host.

The identifiers following FOR are identifiers referenced by the subprograms to be bound
into the host. For example, the statement, USE A FOR B,C,D, directs Binder to use the
host identifier, A, anytime it encounters the subprogram identifiers, B, C, or D.

When a USE statement is invoked and the host identifier does not exist in the host
program, the identifier referenced by the subprogram is added to the host program and
given the name of the host identifier as specified in the USE statement. The identifier
referenced by the subprogram can be qualified by the subprogram identifier so that the
USE statement is invoked only when the specified subprogram is bound.

Special considerations are necessary when the USE statement includes the subprogram
name itself. According to file-naming conventions, the identifier following the last slash in
the subprogram title is the subprogram name. (For more information concerning file-
naming conventions, refer to “BIND Statement” in this section.) However, when Binder
looks for the subprogram through the directory name, as in OBJECT/LIB/=, it looks for a
file title ending with the subprogram name as found in the host program.

If Binder is directed to bind a subprogram from a specified file, and it discovers that the
subprogram identifier does not match the subprogram identifier in the host, Binder issues
a warning message and creates a USE statement that corrects the identifier mismatch.

USE Statement

8600 0304–301 3–15

Examples

The following examples set up the following correspondences:

• Use the host identifier ALGOLARRAY whenever the COMMON block is referenced in a
FORTRAN or FORTRAN77 subprogram.

• Use the host identifier A whenever the subprogram identifiers B, C, or D are
encountered.

• Use the host identifier Z whenever the subprogram identifier Y is encountered in the
subprogram identified as SUBR2.

USE ALGOLARRAY FOR /COMMON/;
USE A FOR B,C,D;
USE Z FOR Y OF SUBR2;

For the following two examples, assume that Q is a subprogram contained in a file titled
A/Q. If the input to Binder is as shown in the first example, Binder will attempt to bind
from file A/P. That is, the USE statement does not cause Binder to bind subprogram P
from file A/Q. The BIND statement included in the second example is necessary for
correct binding.

BIND = FROM A/=;
USE P FOR Q;
BIND P;

BIND = FROM A/=;
USE P FOR Q;
BIND P FROM A/Q;

USE Statement

3–16 8600 0304–301

8600 0304–301 4–1

Section 4
Binding Programs Written in the Same
Language

The process of binding one or more subprograms to a host written in the same language is
known as intralanguage binding. This section discusses the various techniques required
to perform intralanguage binding for programs written in ALGOL, C, COBOL, FORTRAN,
FORTRAN77, and PL/I. You cannot perform intralanguage binding for NEWP and Pascal
programs.

ALGOL Intralanguage Binding
Note: In this section, any reference to ALGOL also refers to the extensions of ALGOL,

such as BDMSALGOL, DCALGOL, and DMALGOL.

ALGOL intralanguage binding consists of binding one or more ALGOL procedures (or
subprograms) into an ALGOL host program. The declaration of the subprogram must
match its declaration in the host as to the type of subprogram, its number and type of
parameters, and its execution level.

Compiling ALGOL Host Programs and Subprogram
An ALGOL host program can be either the outer block of an ALGOL program or an ALGOL
procedure.

An ALGOL subprogram compiled independently is called a separate procedure. To bind
the procedure to a host program, you must compile the procedure at the same lexical level
as that of the procedure within the host. Use the Binder control record option, LEVEL,
described in Appendix B, to set the desired lexical level of the procedure you want to bind.
If you do not set the LEVEL option, the lexical level of the procedure is 3.

Parameter names declared in the procedure need not be the same as those declared in the
host. If unmatched identifiers exist in the host and in the procedure you want to bind,
declare a Binder USE statement to correct the mismatch. (For the syntax and explanation
of the USE statement, see Section 3.)

A separate procedure can reference any item declared in the host that is global to the
lexical level of that procedure. This includes items at intermediate lexical levels. However,
when the item is an array, and the item is declared in the host at an intermediate lexical

Binding Programs Written in the Same Language

4–2 8600 0304–301

level, the size of the array is always as declared in the host program rather than as
declared in the separate procedure.

Any item declared after the body of a given procedure in a host program can be referenced
by a separately compiled procedure that replaces the original procedure. Thus, a host
program that contains a separately compiled and bound procedure might produce
different results from the same program fully compiled by the ALGOL compiler.

Note: Binder can only perform replacement binding on ALGOL exception and epilog

procedures. Only one procedure, epilog or exception can appear in a block.

Declaring Global Items within an ALGOL Procedure
You must declare all global items within the separate procedure that references them. This
ensures that no undeclared global identifiers exist within the procedure. You can declare
global items by using either the brackets method or the INFO file method described later
in this section.

Using the Brackets Method

With this method, you enclose global item declarations in brackets and place the
declarations before the separate procedure. A bracketed set of global declarations, also
known as the global part, is illustrated in the following example.

[REAL S;
ARRAY B [1];
FILE LINE;
PROCEDURE PROC (V); VALUE V;
REAL V; EXTERNAL;]

When a compilation includes multiple procedures, you must include all global items
referenced by all procedures within the same set of brackets and place the global part
before the first procedure to be compiled.

Following are some Binder exceptions to the typical way of declaring ALGOL items:

• You can declare an array with lower bounds only.

• You can declare switch items without declaring the corresponding switch list items.

• You cannot declare LABEL items, as new global items unless a “bad GO TO” to that
item appears in the host. (A “bad GO TO” transfers control from an inner block to an
item that is global to that block.)

• If an array declared in the outermost block of the host program and the matching
global array in the subprogram are different sizes, and the host array is not an
equivalence array, the array in the bound code file is the larger of the two arrays.

• If an array declared in an intermediate level, but not the outermost block, of the host
file is matched to a global array in a subprogram, the array in the bound code file is
the one declared at the intermediate level in the host program, not the one declared in
the subprogram.

Binding Programs Written in the Same Language

8600 0304–301 4–3

• If a global array in the subprogram is bound to an equivalence array in the host
program, the array in the bound code file takes on the size of the array in the ALGOL
host program.

Using the INFO File Method

With this method of declaring global items, you store declared information for Binder in an
INFO file. You can create an INFO file by placing the DUMPINFO compiler control record
at any point within the symbolic file of the host program and compiling your ALGOL
program with DUMPINFO set to TRUE.

DUMPINFO places information about all items within the scope of the DUMPINFO control
record into the INFO file. For example, if a DUMPINFO compiler control record is placed
just before the last END statement of a program, all global items declared in that program
are described in the INFO file.

To recover the information about the declared items from the INFO file, include the
LOADINFO compiler control record in the subprogram before the first procedure to be
compiled.

Note that INFO files created by the ALGOL compiler cannot be used by an ALGOL
compiler of a different release level. For example, if an INFO file is created by the
DUMPINFO compiler control option of the Mark 3.8 ALGOL compiler, the INFO file
cannot be used by the LOADINFO compiler control option of the Mark 3.9 ALGOL
compiler. If the release levels of the INFO files do not match, a syntax error message is
given and the compilation is discontinued.

For a description of INFO files and the DUMPINFO and LOADINFO compiler control
options, refer to the ALGOL Reference Manual, Volume 1.

You can use a combination of the INFO file and brackets methods to add global items to
the host without recompiling the host program. To do this, place the LOADINFO compiler
control record within the brackets before the first global declaration.

Adding New Global Items to an ALGOL Host Program
If a subprogram references a global item not declared in the host program, Binder adds the
item to the host as a new global item when binding the procedure into the host. Binder
adds new global items at the global level of the host.

The following rules apply when Binder adds new global items to a host program:

• Binder cannot add the following variable types as new global items:

− DMSII database

− FORMAT

− LABEL

− LIBRARY

− LIST

Binding Programs Written in the Same Language

4–4 8600 0304–301

− PICTURE

− SDF form record libraries

− SIM databases

− STRING

− Switch items

− Transaction base

− TRUTHSET

− TRANSLATETABLE

− VALUE ARRAY

• Binder can add a new global array only if the array is declared in the subprogram with
both upper bounds and lower bounds.

• Binder strips a new global file of any specified file attributes during the binding
process. Thus, you must indicate all necessary file attributes by using a file equation.
Note that if a global file is already present in the host and is being replaced during the
binding procedure, the file attributes specified in the host are used.

Using the ALGOL Separate Compilation Facility
The ALGOL compiler provides a separate compilation and binding facility called sepcomp.
The sepcomp facility lets you easily recompile and bind procedures contained within one
large symbolic file. When you make changes to a procedure, you can use the sepcomp
facility to recompile only the changed procedure, rather than recompiling the entire
program.

To use the sepcomp facility, you must first create a host object code file by compiling the
program with the ALGOL MAKEHOST compiler control option set to TRUE. This causes
the ALGOL compiler to save special Binder information in the object code file.

Next, make changes to your program in a patch file. The first record of the patch file must
set the ALGOL SEPCOMP compiler control option to TRUE. This signals the compiler to
perform a separate compilation.

During the sepcomp process, the ALGOL compiler determines which procedures are
affected by the patch file and recompiles those procedures. The compiler then invokes
Binder to bind the recompiled procedures into the rest of the object code obtained from
the host file.

(Refer to the ALGOL Reference Manual, Volume 1 for more information about the
SEPCOMP and MAKEHOST options.)

Library Binding in ALGOL
You can bind libraries and library objects like other locally or globally declared
nonprocedure items. You can declare exported procedures as EXTERNAL, and you can
bind and replacement bind them. For more information about libraries and exported

Binding Programs Written in the Same Language

8600 0304–301 4–5

procedures, refer to the System Software Utilities Manual and the ALGOL Programming

Manual, Volume 1.

Libraries in subprograms do not have to be explicitly declared in the host program. If
libraries are not declared in the host program, Binder builds a library template from the
binding information in the subprogram file. Once the template is built, Binder can add
library objects not explicitly declared in the host program. When declaring libraries in the
global part, you must declare the library before declaring the library object.

The restrictions that apply to library binding are as follows:

• Additional library objects can be added to a library declared in the host program if the
host program was compiled with a Mark 3.8 compiler or a more recent version of the
compiler.

• Library attributes cannot be changed or added from a subprogram. The library
attributes in the host are always used, so it is not necessary to include any attributes
in the subprogram.

• The declaration of a procedure to be bound to an exported procedure must be
identical to the declaration of the exported procedure.

• Library objects and by-calling procedures cannot be declared external and bound in.
(A by-calling procedure is a procedure that is declared in a library program and is
specified to be exported dynamically.)

• By-calling procedures cannot be declared in the global part of a procedure that is to
be bound to a host program.

• If a new global library object is declared in two or more subprograms, then the global
library objects must be identical and match the library object in the library referenced.

Record Binding in ALGOL
Binding of records retrieved from a data dictionary is allowed in ALGOL. However, Binder
does not check the format of the records involved, nor does it make any distinction
between records and EBCDIC arrays. Thus, Binder allows any record to be bound to any
other record, and allows any record to be bound to any star-bounded EBCDIC array and
vice versa.

Example of ALGOL Intralanguage Binding
The following example shows an ALGOL host program, a subprogram, and the Binder
input file used to bind them together. The WFL job used to compile each program appears
in bold type.

ALGOL Host Program

? BEGIN JOB ALGOL/HOST;
 COMPILE OBJECT/HOST ALGOL LIBRARY;
 ALGOL DATA
 BEGIN
 FILE LINE(KIND=PRINTER,MAXRECSIZE=22);
 ARRAY BUFFER[0:2,0:8];

Binding Programs Written in the Same Language

4–6 8600 0304–301

 REAL J;
 PROCEDURE PRINTIT; EXTERNAL;
 FOR J := 0 STEP 1 UNTIL 8 DO
BUFFER[0,J] := BUFFER[1,J] := BUFFER[2,J] := " ";
 FOR J := 0 STEP 1 UNTIL 2 DO
BUFFER[J,1] := BUFFER[J,3] := BUFFER[J,5] := "*";
 BUFFER[1,2] := "*";
 PRINTIT;
 END.
? END JOB.

ALGOL Subprogram

? BEGIN JOB COMPILE/PRINTIT;
 COMPILE OBJECT/PRINTIT ALGOL LIBRARY;
 ALGOL DATA
 [ARRAY BUFFER[0,0]; REAL J, K; FILE LINE;]
 PROCEDURE PRINTIT;
 BEGIN
 FOR J := 0 STEP 1 UNTIL 2 DO
 WRITE(LINE,<3A1,X1,3A1>, FOR K := 1 STEP 1 UNTIL 6
 DO BUFFER[J,K]);
 END;
? END JOB.

Binder Input File

? BEGIN JOB BIND/PRINTIT;
 BIND OBJECT/HELLO BINDER LIBRARY;
 BINDER DATA
 HOST IS OBJECT/HOST;
 BIND PRINTIT FROM OBJECT/PRINTIT;
 STOP;
? END JOB.

The result of the bind is a program entitled OBJECT/HELLO. When OBJECT/HELLO is
executed, it produces the following output:

 * * *
 *** *
 * * *

Binding Programs Written in the Same Language

8600 0304–301 4–7

Example of Binding an ALGOL Library
This binding example includes an ALGOL library host program, an ALGOL subprogram to
be bound to that library, and the Binder input file used to bind them together. The WFL job
used to compile each program appears in bold type.

ALGOL Host Program

 ? BEGIN JOB COMPILE/LIB/HOST;
 COMPILE OBJECT/LIB/HOST ALGOL LIBRARY;
 ALGOL DATA
 BEGIN
 PROCEDURE REVERSE (A,B,LEN);
 VALUE LEN;
 EBCDIC ARRAY A,B [0];
 INTEGER LEN;
 BEGIN
 END;

 EXPORT REVERSE;
 FREEZE (TEMPORARY);
 END.
 ? END JOB.

ALGOL Subprogram

 ? BEGIN JOB COMPILE/REVERSE;
 COMPILE OBJECT/REVERSE ALGOL LIBRARY;
 ALGOL DATA
 PROCEDURE REVERSE (A,B,LEN);
 VALUE LEN;
 EBCDIC ARRAY A,B [0];
 INTEGER LEN;
 BEGIN
 INTEGER J;
 IF LEN > 0
 AND LEN <= SIZE(A) AND LEN <= SIZE(B)
 THEN
 FOR J := 0 STEP 1 UNTIL (LEN-1) DO
 REPLACE B[J] BY A[LEN-J-1] FOR 1;
 END;
 ? END JOB.

Binder Input File

 ? BEGIN JOB BIND/SYSTEM/MYLIB;
 BIND SYSTEM/MYLIB BINDER LIBRARY;
 BINDER DATA
 HOST IS OBJECT/LIB/HOST;
 BIND REVERSE FROM OBJECT/REVERSE;

Binding Programs Written in the Same Language

4–8 8600 0304–301

 STOP;
 ? END JOB.

The result of the bind is a library named SYSTEM/MYLIB. This library is used in the
following example.

Example of Binding an ALGOL Program That References a Library
This example shows an ALGOL host program, a subprogram, and the Binder input file
used to bind them together. The WFL job used to compile each program appears in bold
type. This example uses the library, SYSTEM/MYLIB, created in the preceding example.

ALGOL Host

 ? BEGIN JOB COMPILE/HOST;
 COMPILE OBJECT/HOST ALGOL LIBRARY;
 ALGOL DATA
 BEGIN
 LIBRARY L (LIBACCESS = BYTITLE,
 TITLE = "SYSTEM/MYLIB.");
 PROCEDURE REVERSE (A,B,LEN);
 VALUE LEN;
 EBCDIC ARRAY A,B [0];
 INTEGER LEN;
 LIBRARY L;
 PROCEDURE P; EXTERNAL;
 P;
 END.
 ? END JOB.

Binding Programs Written in the Same Language

8600 0304–301 4–9

ALGOL Subprogram

 ? BEGIN JOB COMPILE/P;
 COMPILE OBJECT/P ALGOL LIBRARY;
 ALGOL DATA
 [LIBRARY L (LIBACCESS = BYTITLE,
 TITLE = "SYSTEM/MYLIB.");
 PROCEDURE REVERSE (A,B,LEN);
 VALUE LEN;
 EBCDIC ARRAY A,B [0];
 INTEGER LEN;
 LIBRARY L;
]
 PROCEDURE P;
 BEGIN
 EBCDIC ARRAY E1,E2 [0:29];
 FILE F (KIND = PRINTER);
 REPLACE E1[0] BY "ABCDEFGHIJKLMNOPQRSTUVWXYZ ";
 REPLACE E2[0] BY " " FOR 30;
 REVERSE (E1,E2,10);
 WRITE (F,5,E1);
 WRITE (F,5,E2);
 END;
 ? END JOB.

Binder Input File

 ? BEGIN JOB BIND/P;
 BIND OBJECT/BOUND BINDER LIBRARY;
 BINDER DATA
 HOST IS OBJECT/HOST;
 BIND P FROM OBJECT/P;
 STOP;
 ? END JOB.

The result of the bind is a file named OBJECT/BOUND. When executed, OBJECT/BOUND
produces the following result:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
JIHGFEDCBA

Binding Programs Written in the Same Language

4–10 8600 0304–301

C Intralanguage Binding
C intralanguage binding involves binding C subprograms into a C host program.
Replacement binding is not supported. You can use the BIND ? form of the BIND
statement to specify the host program and all subprograms. Alternatively, you can use a
HOST statement in place of the BIND ? statement to specify the host program.

C Host Programs
A C host program is a C program that contains the function, “main”. The host program can
contain variables and functions that are referenced by external functions.

You cannot use a bound C program as a host program for a subsequent bind.

If the host program appears in a BIND ? statement (see Section 3), it is not necessary to
file equate the host program or use a HOST statement in the primary input file.

C Subprograms
A C subprogram file is any C code file that does not contain the function, “main”. Unlike
with other programming languages, you are not required to use an explicit compiler
control option, such as LEVEL, to create a C subprogram file. You can, however, create a
level-3 program to bind into a C host program by compiling a C program that includes a
“main” function with the compiler option LEVEL set to 3 (LEVEL=3). For more
information on binding this level of C programs, refer to “Binding Level-3 C Programs”
later in this section.

Describing Functions and Global Variables
Any function or global variable not declared with the storage class specifier, static, is
implicitly exported.

All references to a global variable or function must match the declaration of the global
variable or function in type, number, and types of parameters.

If the bound program is to be a library, you must define all the library entry points in the
host program. A subprogram cannot add entry points.

Binding with Different Memory Models
Subprograms compiled with any memory model can be bound to a host compiled with the
TINY or LARGE memory model if the FARHEAP compiler control option is set.
Subprograms compiled with the LARGE or HUGE memory model can be bound to a host
compiled with the LARGE or HUGE memory model. The number of initial far heap rows in
the bound C program is determined by the maximum number of initial rows required by
the memory models of the host and the subprograms. The initial size of the near and far
heap rows is determined by the maximum heap row size required by the memory models

Binding Programs Written in the Same Language

8600 0304–301 4–11

of the host and the subprograms. Use of near or far heap by the host or a subprogram
depends on its own memory model. The following table illustrates the size of the heap that
results from cross binding different memory models.

Table 4–1. Heap Size in Bound Code Files

Tiny
Subprogram

Small
Subprogram

Large
Subprogram

Huge
Subprogram

Tiny Host Tiny Heap Small Heap Large Heap Huge Heap

Small Host Small Heap Small Heap Huge Heap Huge Heap

Large Host Bind Error Bind Error Large Heap Huge Heap

Huge Host Bind Error Bind Error Huge Heap Huge Heap

The binder does not issue an error for an incompatibly typed pointer parameter to a
function. Use function prototypes to allow the C compiler to detect incompatible pointer
parameters. If near and far type qualifiers are not used in function prototypes, the function
being called needs to determine whether an actual pointer parameter is near or far. If near
and far type qualifiers are used in the function prototypes contained in a header file, a C
subprogram that includes this header is able to call the functions without casting the
actual pointer parameters, if no attempt is made to pass a far pointer to a near pointer.
The other cases (near to near, near to far, and far to far) are all compatible.

Example of C Intralanguage Binding

The following example shows a C host program, a C subprogram, and the Binder input file
used to bind them together. The WFL job used to compile each program appears in bold
type.

C Host Program

? BEGIN JOB C/MAIN;
 COMPILE C/MAIN CC LIBRARY;
 CC DATA
 #include <stdio.h>
 extern int add (int x, int y);
 print_it (int s)
 {printf ("the sum is %d\n", s);}
 main ()
 {int i = 12, j = 24;
 add (i, j);}
? END JOB.

C Subprogram

? BEGIN JOB C/ADD;
 COMPILE C/ADD CC LIBRARY;

Binding Programs Written in the Same Language

4–12 8600 0304–301

 CC DATA
 extern_print it (int s);
 int add (int x, int y)
 {print_it (x + y);
 return x + y;}
? END JOB.

Binder Input File

? BEGIN JOB C/BIND;
 BIND SUM BINDER;
 BINDER DATA
 BIND ? FROM C/ADD;
 BIND ? FROM C/MAIN;
? END JOB.

The result of the bind is a file named SUM. When executed, SUM produces the following
output:

the sum is 36

Binding Level-3 C Programs

You must bind a level-3 C program as a single function into a C host program. The external
declaration you use to call a level-3 C program must match the declaration of “main” in the
level-3 program. Calling the function causes the level-3 program to initialize and run.

External variables and functions in the level-3 program that are not resolved within the
level-3 program itself are mapped by Binder to variables and functions at level 2. The level-
3 program uses the heap at level 2, so data pointers can be shared. However, a function
pointer is usable only in the program where it is created. A level-3 program can make a
pointer to an external level-2 function, but using the pointer outside of the level-3 program
produces indeterminate results.

To bind a level-3 program, use the BIND statement in the following format:

BIND <identifier> FROM <file specifier>;

For the identifier, use the name from the external function declaration used to access the
level-3 program.

Example of Binding a Level-3 C Program

The following example shows a C host program, a level-3 C program, and the Binder input
file used to bind them together. The WFL job used to compile each program appears in
bold type.

Binding Programs Written in the Same Language

8600 0304–301 4–13

C Host Program

? BEGIN JOB C/HOST;
 COMPILE OBJECT/C/HOST CC LIBRARY;
 CC DATA
 extern nestedProgram ();
 int global;
 main ()
 {nestedProgram ();
 nestedProgram ();}
? END JOB.

Level-3 C Program

? BEGIN JOB C/LEVEL3;
 COMPILE OBKECT/C/LEVEL3 CC LIBRARY;
 CC DATA
$$ set level 3
 extern int global;
 int local;
 main ()
 {static int staticLocal;
 global++; /* Adds 1 to global on each call */
 local++; /* Sets local to 1, because local
 is initialized on each call */
 staticLocal++; /* Sets staticLocal to 1, like local */
 return;}
? END JOB.

Binder Input File

? BEGIN JOB C/BIND;
 BIND OBJECT/C/BIND BINDER;
 BINDER DATA
 BIND ? FROM OBJECT/C/HOST;
 BIND nestedProgram FROM OBJECT/C/LEVEL3;
? END JOB.

Binding Programs Written in the Same Language

4–14 8600 0304–301

COBOL Intralanguage Binding
COBOL intralanguage binding consists of binding a COBOL subprogram into a COBOL
host. The declaration of the subprogram must match its declaration in the host as to the
type of subprogram, its number and type of parameters, and its execution level.

Note: COBOL68, COBOL74, and COBOL85 programs usually are bound similarly

and, therefore, are discussed in this section generically as COBOL programs.

When a difference exists, the version is specified.

Compiling COBOL Host Programs and Subprograms
A COBOL host program is a COBOL program compiled at the default lexical (lex) level of
2.

You must compile subprograms at a lex level compatible with their usage in the host
program. All subprograms must be compiled at one lex level higher than the lex level of
the subprogram in which they are declared. For example, a subprogram to be bound to a
lex level 3 subprogram must be compiled at lex level 4.

If a subprogram is declared directly in the host, you must set the LEVEL option to 3 during
the compilation of that subprogram.

You must describe in the subprogram any parameters being passed to the subprogram
from a host program. You must also specify such parameters following the keyword
USING in the PROCEDURE DIVISION heading. You must declare parameters in the
LOCAL-STORAGE (LD entry) of the DATA DIVISION and identify them as being passed by
reference or by content.

Binding an External Procedure to a COBOL Host Program
To bind an external procedure to a COBOL host program, you must declare the procedure
as external in the DECLARATIVES portion of the PROCEDURE DIVISION of the host
program.

You can indicate the title of the code file containing the subprogram by using the CODE

FILE TITLE IS <mnemonic name> option within the SPECIAL-NAMES paragraph. Note
that using a BIND statement overrides the SPECIAL-NAMES paragraph.

Activating Bound Subprograms
You can activate bound subprograms by using either the ENTER or CALL verb.
Immediately following the verb, you must indicate the name of the section in the
DECLARATIVES portion that contains the procedure description of the subprogram.
Binder uses the section name that declares the subprogram as external to process the
external subprogram. All Binder statements that pertain to an external subprogram must
reference the corresponding section name.

Binding Programs Written in the Same Language

8600 0304–301 4–15

Global Declarations in Subprograms
Any variable that can be passed or received as a parameter can be declared as a global
variable in the subprogram. Untyped procedures, files, and direct files can also be
declared as global variables in the subprogram. To declare global variables, use the
GLOBAL clause. The following COBOL74 examples illustrate the declaration of global
variables in the WORKING-STORAGE SECTION of the subprogram.

77 GLASTATUS GLOBAL BINARY PIC 9(11).
77 BL-EVNT GLOBAL EVENT.
77 GL-SWFL INDEX FILE GLOBAL.
01 GL-RCD RECORD AREA GLOBAL OCCURS 10 PIC X(180)
01 GL-EBCRAY GLOBAL.
 03 CMP-ITE BINARY PIC 9(11)
 OCCURS 100 INDEXED BY I1.

If most of the variables declared in the WORKING-STORAGE SECTION are global, use the
GLOBAL compiler control option. You can set this option throughout the compilation.

The GLOBAL option affects only the variables that are candidates for global declarations
and only the items declared in the WORKING-STORAGE SECTION.

You can use the LOCAL or OWN option to override the GLOBAL option. In the following
example, items G1, G2, and G3 are declared GLOBAL; I is declared OWN; and L1 is
declared LOCAL.

$ SET GLOBAL
 77 G1 BINARY PIC 9(11).
 77 G2 BINARY PIC 9(11).
 77 L1 LOCAL
 BINARY PIC 9(11).
 01 G3.
 03 FLD BINARY PIC 9(11) OCCURS 10 INDEXED BY I.

Note that Binder strips a new global file of any specified file attributes during the binding
process. Thus, you must indicate all necessary file attributes by using a file equation. If a
global file is already present in the host and is being replaced during the binding
procedure, the file attributes specified in the host are used.

Tasking and Binding
A host program can call a bound subprogram as a task by using either the PROCESS
statement or the CALL statement. You can declare data to be shared between the host and
the subprogram as global variables. Be aware that 01-level data items with a usage of
binary, computational, double, or real might cause run-time errors when passed as
parameters to a bound subprogram that is called as a task.

Binding Programs Written in the Same Language

4–16 8600 0304–301

OWN Declarations in the Subprogram

COBOL programs compiled at lex level 3 or higher can declare certain variables as OWN
in the subprogram. OWN variables retain their initial values or states throughout repeated
exit and reentry of the subprogram in which they are declared.

With the exception of direct switch files, you can declare any item in the WORKING-
STORAGE SECTION of the subprogram as OWN by using either the OWN clause or the
OWN compiler control option.

All related index names for OWN items are also considered to be OWN. Redefined OWN
items are implicitly OWN, so you do not need to specify them in the OWN clause.

If you use the OWN compiler control option throughout the compilation, all variables
declared in the WORKING-STORAGE SECTION are declared OWN, unless they are direct
files.

You can use the LOCAL or GLOBAL clause to override the OWN option for any
individually specified item.

Library Binding in COBOL

Binder lets you bind COBOL programs that are libraries and COBOL programs that
reference libraries. You can bind libraries and library objects as you would other locally or
globally declared nonprocedure items.

To bind a COBOL library, declare the library as external in the host program and make
sure that the procedure parameters match those in the host program.

Libraries in subprograms do not have to be explicitly declared in the host program. If
libraries are not declared in the host program, Binder builds a library template from the
binding information in the subprogram file. Once the template is built, Binder can add
library objects not explicitly declared in the host program. When declaring libraries in the
global part, you must declare the library before declaring the library object.

Example of COBOL Intralanguage Binding

The following example contains a COBOL host program and a subprogram, and the Binder
input file used to bind them together. The WFL job used to compile each program appears
in bold type.

COBOL Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE COBOL74/HOST COBOL74 LIBRARY;
 COBOL74 DATA
 IDENTIFICATION DIVISION.
 PROGRAM-ID. HOST.
 ENVIRONMENT DIVISION.

Binding Programs Written in the Same Language

8600 0304–301 4–17

 CONFIGURATION SECTION.
 SOURCE-COMPUTER. A-15.
 OBJECT-COMPUTER. A-15.
 SPECIAL-NAMES.
 "COBOL"/"PROG" IS TO-BE-CALLED.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT PR ASSIGN TO PRINTER.
 DATA DIVISION.
 FILE SECTION.
 FD PR.
 01 PR-RCD PIC X(36).
 WORKING-STORAGE SECTION.
 01 ORIG PIC X(36).
 01 NEW PIC X(36).
 LOCAL-STORAGE SECTION.
 LD PARMS.
 01 A PIC X(36) REF.
 01 B PIC X(36) REF.
 PROCEDURE DIVISION.
 DECLARATIVES.
 S1 SECTION.
 USE EXTERNAL TO-BE-CALLED AS PROCEDURE WITH PARMS USING A B.
 END DECLARATIVES.
 THE-MAIN SECTION.
 START.
 OPEN OUTPUT PR.
 MOVE "THIS WILL STOP WHEN THIS LINE ENDS" TO ORIG.
 ENTER S1 USING ORIG NEW.
 WRITE PR-RCD FROM ORIG.
 WRITE PR-RCD FROM NEW.
 STOP RUN.
? END JOB.

COBOL Subprogram

? BEGIN JOB COMPILE/PROG;
 COMPILE COBOL74/PROG COBOL74 LIBRARY;
 COBOL74 DATA
 $ SET LEVEL = 3
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ARRAY/MIXER.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. A-9.
 OBJECT-COMPUTER. A-9.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 X REF.
 03 ONE PIC X(5).
 03 SECOND PIC X(5).
 03 THIRD PIC X(5).

Binding Programs Written in the Same Language

4–18 8600 0304–301

 03 FOURTH PIC X(5).
 03 FIFTH PIC X(5).
 03 SIXTH PIC X(5).
 03 SEVENTH PIC X(5).
 03 EIGHTH PIC X(1).
 01 Y REF.
 03 FIRS PIC X(5).
 03 SECON PIC X(5).
 03 THIR PIC X(5).
 03 FOURT PIC X(5).
 03 FIFT PIC X(5).
 03 SIXT PIC X(5).
 03 SEVENT PIC X(5).
 03 EIGHT PIC X(1).
 PROCEDURE DIVISION USING X Y.
 THE-SUBPROGRAM SECTION.
 MIX.
 MOVE ONE TO SECON.
 MOVE SECOND TO FOURT.
 MOVE THIRD TO FIRS.
 MOVE FOURTH TO THIR.
 MOVE FIFTH TO SIXT.
 MOVE SIXTH TO SEVENT.
 MOVE SEVENTH TO FIFT.
 MOVE EIGHTH TO EIGHT.
? END JOB.

Binder Input File

? BEGIN JOB BIND/RESULT;
 BIND COBOL74/EXAMPLE BINDER;
 BINDER DATA;
 HOST IS COBOL74/HOST;
 USE S1 FOR PROG;
 BIND S1 FROM COBOL74/PROG;
? END JOB.

The result of the bind is an object file titled COBOL74/EXAMPLE. When executed, the
program generates the following output:

THIS WILL STOP WHEN THIS LINE ENDS
STOP THIS WHEN WILL ENDS THIS LINE

Binding Programs Written in the Same Language

8600 0304–301 4–19

FORTRAN Intralanguage Binding
FORTRAN intralanguage binding consists of binding a FORTRAN subroutine or function
into a FORTRAN host.

Compiling FORTRAN Host Programs and Subprograms
A FORTRAN host is a FORTRAN program that contains a main program. The host can also
include subroutines or functions compiled with the main program.

A FORTRAN subprogram is a FORTRAN subroutine or function. You must compile the
subprogram at a lexical (lex) level consistent with its lex level within the host.

Any subprogram bound into a host must match its invocations in the host program in
terms of the number and type of parameters. If the subprogram identifier does not match
its invocation as specified in the host, you must use the Binder USE statement to correct
the mismatch.

If an entry point is referenced by a host program, but the corresponding subprogram is not
referenced, you must use a BIND statement to specify the file in which the entry point is
located.

FORTRAN Common Blocks
When a common block is bound, its resulting length is the largest of all the length values
declared for that common block in the host and bound subprograms.

Library Binding in FORTRAN
Subroutines and functions can be bound or replacement bound into a host program that
references libraries.

Libraries in subprograms do not have to be explicitly declared in the host program. If
libraries are not declared in the host program, Binder builds a library template from the
binding information in the subprogram file. Once the template is built, Binder can add
library objects not explicitly declared in the host program.

Exported subroutines and functions can be replacement bound. You cannot add new
exported program units to a host.

You can bind program units that do not reference libraries into host programs that are
libraries or that reference libraries.

Binding Programs Written in the Same Language

4–20 8600 0304–301

Example of FORTRAN Intralanguage Binding
The following example shows a FORTRAN host program and subprogram, and the Binder
input file used to bind them together. The WFL job used to compile each program appears
in bold type.

FORTRAN Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE FORTRAN/HOST FORTRAN LIBRARY;
 FORTRAN DATA
 DIMENSION ICK(5,55)
 DO 5 I=1,5
 DO 5 J=1,55
5 ICK(I,J)=" "
 DO 10 I=1,55
10 CALL PLOT(ICK,I)
 DO 20 I=1,5
20 WRITE(6,100) (ICK(I,J),J=1,55)
100 FORMAT(1X,55A1)
 CALL EXIT
 END
? END JOB.

FORTRAN Subprogram

? BEGIN JOB COMPILE/PLOT;
 COMPILE FORTRAN/PLOT FORTRAN LIBRARY;
 FORTRAN DATA
$ SET SEPARATE
 SUBROUTINE PLOT(ICK,I)
 DIMENSION ICK(5,55)
 ICK(3-SIN(I*0.3)*2,I)="*"
 RETURN
 END
? END JOB.

Binder Input File

? BEGIN JOB BIND/PLOT;
 BIND SINE BINDER;
 BINDER DATA
 HOST IS FORTRAN/HOST;
? END JOB.

The result of the bind is an object file titled SINE. When executed, this program produces
the following output:

 ******* ******* *******
 * ** ** ** ** **
 ** * ** * **
 ******* ******* *

Binding Programs Written in the Same Language

8600 0304–301 4–21

FORTRAN77 Intralanguage Binding
FORTRAN77 intralanguage binding consists of binding a FORTRAN77 subprogram into a
FORTRAN77 host.

Compiling FORTRAN77 Host Programs and Subprograms
A FORTRAN77 host is a program that has the BINDINFO compiler control option set. If a
main program does not exist in the host program, the main program is assumed to be
external. A FORTRAN77 host is compiled at an outer lexical (lex) level of 2. The main
program is compiled at a lex level of 3.

A FORTRAN77 subprogram can be a FORTRAN77 main program, subroutine, function, or
block data subprogram. Each subprogram is compiled at a lex level of 3.

Any subprogram bound into a host must match its invocations in the host in terms of
number and type of parameters. If the subprogram identifier does not match its invocation
as specified in the host, you must declare a Binder USE statement to correct the
mismatch.

In cases where an entry point is referenced by a host but the corresponding outer
subprogram is not referenced, you must use a BIND statement to specify the code file in
which the ENTRY statement is located.

A FORTRAN77 main program can be replaced by another FORTRAN77 main program or a
FORTRAN77 subroutine that has no parameters.

Files
At execution time, file declarations in the host apply to all subprograms that are bound
into the host. If a new file is bound into the host, the first declaration for the new file
encountered during binding takes precedence over other declarations.

Common Blocks
When a common block is bound, its resulting length is the largest of all the length values
declared for that common block in the host and subprograms, as long as the compiler
control option CODEFILEINIT is not set in the host. Any common block that has been
initialized in the code file cannot be extended.

Library Binding in FORTRAN77
You can replacement bind exported subroutines and functions into a FORTRAN77 host
program that is a library. You cannot add or delete exported subprograms from a host
program.

Binding Programs Written in the Same Language

4–22 8600 0304–301

Libraries in subprograms do not have to be explicitly declared in the host program. If
libraries are not declared in the host program, Binder builds a library template from the
binding information in the subprogram file. Once the template is built, Binder can add
library objects not explicitly declared in the host program. When declaring libraries in the
global part, you must declare the library before declaring the library object.

If you compile a program with the SEPARATE option set, you must declare all libraries
and entities imported from those libraries before the first executable program unit. Each
program unit can contain references only to those libraries and library objects that it uses.

Example of FORTRAN77 Intralanguage Binding
The following example shows the binding process involved in binding three FORTRAN77
subprograms to a FORTRAN77 host program.

First, the skeleton library program is created and compiled as a Binder host during a
Command and Edit (CANDE) session.

File Name: BOUND/LIB/HOST

 $ SET BINDINFO
 BLOCK GLOBALS
 EXPORT (PASSR, PASSI, EQV)
 END
 SUBROUTINE PASSR (R)
 REAL R
 END
 SUBROUTINE PASSI (I)
 INTEGER I
 END
 LOGICAL FUNCTION EQV (R1, R2)
 REAL R1, R2
 END
 CALL FREEZE ('TEMPORARY')
 END

Next, the following three separate subprograms are compiled:

File Name: BOUND/LIB/PASSR

 $ SET SEPARATE
 SUBROUTINE PASSR (R)
 REAL R
 PRINT *, ' IN PASSR, R = ', R
 END

File Name: BOUND/LIB/PASSI

 $ SET SEPARATE CALLBYREFERENCE
 SUBROUTINE PASSI (I)
 INTEGER I

Binding Programs Written in the Same Language

8600 0304–301 4–23

 PRINT *, ' IN PASSI, I (ROUNDED) = ', I
 END

File Name: BOUND/LIB/EQV

 $ SET SEPARATE
 LOGICAL FUNCTION EQV (R1, R2)
 PARAMETER (TINYNO = 0.000000001)
 REAL R1, R2
 EQV = (ABS(R1 - R2) .LT. TINYNO)
 END

The following Binder input file is used to bind the three separate code files into the library
program:

File Name: BOUND/LIB

 HOST IS OBJECT/BOUND/LIB/HOST;
 BIND PASSR FROM OBJECT/BOUND/LIB/PASSR;
 BIND PASSI FROM OBJECT/BOUND/LIB/PASSI;
 BIND EQV FROM OBJECT/BOUND/LIB/EQV;

The following program references the newly bound library:

File Name: REF/BOUND/LIB

 BLOCK GLOBALS
 LIBRARY LIB (TITLE='OBJECT/BOUND/LIB')
 END
 SUBROUTINE PASSR (R)
 REAL R
 IN LIBRARY LIB
 END
 SUBROUTINE PASSI (I)
 INTEGER I
 IN LIBRARY LIB
 END
 LOGICAL FUNCTION EQV (R1, R2)
 REAL R1, R2
 IN LIBRARY LIB
 END
 LOGICAL EQV
 X = 1.7
 Y = 1.7
 CALL PASSR (X)
 CALL PASSI (Y)
 IF (EQV(X, Y)) THEN
 PRINT *, ' X STILL EQUALS Y'
 ELSE
 PRINT *, ' X NO LONGER EQUALS Y'
 END IF
 END

Binding Programs Written in the Same Language

4–24 8600 0304–301

When executed, the preceding program produces the following output:

 IN PASSR, R = 1.7
 IN PASSI, I (ROUNDED) = 2
 X STILL EQUALS Y

Usually, when a FORTRAN77 variable or array element appears as an actual argument
(that is, the corresponding dummy argument is a variable), the argument is passed by
value-result. The dummy argument is assigned the value of the actual argument when the
subprogram is entered. If the value of the dummy argument changes, the final value of the
dummy argument is assigned to the corresponding actual argument when execution of the
subprogram is completed. Passing by value-result is also known as copy-restore.

Note that in the preceding example, the compiler control option CALLBYREFERENCE is
set for PASSI. Therefore, the argument to that subroutine is passed by reference rather
than by value-result. Thus, the value of Y is not truncated when Y is passed to an integer.

Suppose that a new version of PASSI, called PASSI2, is created without
CALLBYREFERENCE set.

File Name: BOUND/LIB/PASSI2

 $ SET SEPARATE
 SUBROUTINE PASSI2 (I)
 INTEGER I
 PRINT *, ' IN PASSI2, I (ROUNDED) = ', I
 END

A new version of BOUND/LIB binds the new subroutine into the old library.

File Name: BOUND/LIB

 HOST IS OBJECT/BOUND/LIB;
 BIND PASSI FROM OBJECT/BOUND/LIB/PASSI2;
 USE PASSI FOR PASSI2;

When REF/BOUND/LIB is executed again, the argument to PASSI2 is explicitly truncated
to form an integer when the subroutine is entered. The following output is produced:

 IN PASSR, R = 1.7
 IN PASSI2, I (ROUNDED) = 1
 X NO LONGER EQUALS Y

Binding Programs Written in the Same Language

8600 0304–301 4–25

PL/I Intralanguage Binding
PL/I intralanguage binding consists of binding one or more PL/I subprograms or
procedures to a PL/I host. Communication among the procedures is performed through
common EXTERNAL declarations within the procedures and through parameters.

Declaring Host Programs and Subprograms
You can declare any external PL/I procedure as a host program if the only parameters
declared within the external procedure are CHARACTER VARYING or DECIMAL FIXED.

Any external procedure not specified as the host is considered to be a subprogram. No
parameter type restrictions exist for subprograms.

STATIC EXTERNAL Variables
If you declare a STATIC EXTERNAL variable in both the host program and the external
procedure, the variable retains the value declared in the host upon binding. If you declare
a STATIC EXTERNAL variable only in the external procedure, the variable retains the
value declared in the external procedure.

If you declare a STATIC EXTERNAL variable in more than one external procedure but not
in the host, a binding error occurs.

Examples of declaring STATIC EXTERNAL variables in a host and in an external
procedure are provided in the following example:

HOST:PROC;
 DCL A(4) FIXED STATIC EXTERNAL
 INIT (1,2,3,4),
 SEPARATE ENTRY EXTERNAL;
 CALL SEPARATE();
 PUT DATA (A);
END HOST;
SEPARATE: PROC;
 DCL A(4) FIXED STATIC EXTERNAL INIT(5,6,7,8),
 A1(4) FIXED STATIC EXTERNAL INIT(9,10,11,12);
 PUT DATA (A,A1);
END SEPARATE;

When executed, the bound code file produces the following output:

A(1)= 1 A(2)= 2 A(3)= 3 A(4)= 4 A1(1)= 9
A1(2)= 10 A1(3)= 11 A1(4)= 12 ; A(1)= 1
A(2)= 2 A(3)= 3 A(4)= 4 ;

You must initialize any STATIC EXTERNAL CONTROLLED or STATIC EXTERNAL
BASED variable before using either variable in a declaration. For example, the first set of

Binding Programs Written in the Same Language

4–26 8600 0304–301

code below must be rearranged to initialize and declare the variables in the proper order,
as shown in the second set of code.

DCL
1 S1(X) STATIC,
 2 A(X) INIT(B(1),B(2),B(3),B(4)),
1 S2 STATIC,
 2 B(2*X) INIT(C(1),C(2),C(3),C(4)),
1 S3 STATIC,
 2 C(2*X) INIT(1,2,3,4),
X STATIC INIT(2);

DCL
X STATIC INIT(2),
1 S3 STATIC,
 2 C(2*X) INIT(1,2,3,4),
1 S2 STATIC,
 2 B(2*X) INIT(C(1),C(2),C(3),C(4)),
1 S1(X) STATIC,
 2 A(X) INIT (B(1),B(2),B(3),B(4));

Variables whose order of declaration causes a program to run incorrectly when bound
also cause a level 3 error at compilation time.

Example of PL/I Intralanguage Binding
The following example shows a PL/I host program and subprogram, and the Binder input
file used to bind them together. The WFL job used to compile each program appears in
bold type.

PL/I Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE HOST/HOST PL/I LIBRARY;
 PL/I DATA
 HOST:PROC;
 DCL SEPARATE ENTRY (CHAR(*)) EXTERNAL;
 DCL CHR CHAR(8) INIT('ABCDEFGH');
 PUT SKIP LIST (CHR);
 CALL SEPARATE(SUBSTR(CHR,1,3));
 END HOST;
? END JOB.

PL/I Subprogram

? BEGIN JOB COMPILE/SEPARATE;
 COMPILE SEPARATE/SEPARATE PL/I LIBRARY;
 PL/I DATA
 SEPARATE:PROC(C);
 DCL C CHAR(*);

Binding Programs Written in the Same Language

8600 0304–301 4–27

 PUT SKIP LIST(C);
 END SEPARATE;
? END JOB.

Binder Input File

? BEGIN JOB BIND/SEPARATE;
 BIND BOUND BINDER LIBRARY;
 BINDER DATA
 HOST IS HOST/HOST;
 BIND SEPARATE FROM SEPARATE/SEPARATE;
 STOP;
? END JOB.

When executed, the code file, BOUND, produces the following output in the SYSPRINT
print file:

ABCDEFGH
ABC

Binding Programs Written in the Same Language

4–28 8600 0304–301

8600 0304–301 5–1

Section 5
Binding Programs Written in Different
Languages

The process of binding one or more subprograms and a host program written in different
languages is known as interlanguage binding. This section provides information about
binding all of the allowable language combinations, which are shown in the following list.
Each combination is presented in alphabetical order in this section.

ALGOL-C COBOL-C

ALGOL-COBOL COBOL-FORTRAN

ALGOL-FORTRAN COBOL-FORTRAN77

ALGOL-FORTRAN77 COBOL-Pascal

ALGOL-NEWP FORTRAN-FORTRAN77

ALGOL-Pascal

Table 5–1 shows the allowable binding combinations.

Table 5–1. Allowable Binding Combinations

Host Program Language

Subprogram
Language

ALGOLò C COBOL FORTRAN FORTRAN77 NEWPó Pascal¬ PL/I

ALGOLò Yes Yes Yes Yes Yes Yes Yes

C Yes

COBOL Yes Yes Yes Yes Yes Yes Yes

FORTRAN Yes Yes Yes Yes Yes Yes

FORTRAN77 Yes Yes Yes Yes Yes Yes

PL/1 Yes

ò All references to ALGOL include the various extensions of ALGOL, such as BDMSALGOL, DCALGOL, and
DMALGOL.

ó The NEWP Master Control Program (MCP) can serve only as a host program in binding.

¬ Pascal programs can serve only as host programs in binding.

ALGOL-C Interlanguage Binding

5–2 8600 0304–301

ALGOL-C Interlanguage Binding
ALGOL-C interlanguage binding consists of binding a level-3 ALGOL subprogram into a C
host program.

Identifiers
Procedure identifiers can be shared between a C host program and an ALGOL
subprogram. Identifiers that name data objects cannot be shared, because a C program
stores its external data objects in its heap. For more information about the C program
heap, refer to “Accessing the C Heap from ALGOL” later in this section.

The C language is case-sensitive, but the ALGOL language is not. ALGOL identifiers are
implicitly read as uppercase by the ALGOL compiler. If a C function identifier contains
lowercase letters, you must include a Binder USE statement to map the lowercase
characters to uppercase so that ALGOL can access the function.

C Functions
An ALGOL procedure can call standard C functions as long as the functions are bound in
from SYSTEM/CC/HEADERS compiled from SYMBOL/CC/HEADERS. Alternatively, you
can create a C function that calls the standard function you desire, and then call the C
function from the ALGOL procedure.

You can declare C functions with ALGOL linkage, which

• Matches a void C function to an untyped ALGOL PROCEDURE rather than to an
INTEGER PROCEDURE, as shown in Table 5–2

• Enables parameters to be passed by reference

ALGOL linkage is required for all of the by reference C arguments types that use the “&”
character, as shown in Table 5–3. You can use the by-reference types in C programs
calling ALGOL programs but not in ALGOL programs calling C programs.

ALGOL-C Interlanguage Binding

8600 0304–301 5–3

Table 5–2. Corresponding C Function Types and ALGOL Procedure Types

C Function Type Corresponding ALGOL Procedure Type

int (), char () INTEGER PROCEDURE

pointer () INTEGER PROCEDURE

void () INTEGER PROCEDURE

extern"ALGOL"void () PROCEDURE

float () REAL PROCEDURE

long double () DOUBLE PROCEDURE

struct (), union () PROCEDURE (RESULT);

 VALUE RESULT; POINTER RESULT;

Table 5–3. Corresponding ALGOL Parameter Types and C Argument Types

C Argument Type Corresponding ALGOL Parameter Type

char INTEGER (by VALUE)

int, pointer INTEGER (by VALUE)

float REAL (by VALUE)

long double DOUBLE (by VALUE)

int&, pointer& INTEGER (by REFERENCE)

float& REAL (by REFERENCE)

long double& DOUBLE (by REFERENCE)

char(&)[] EBCDIC (or ASCII) ARRAY [*]

int(&)[], pointer(&)[] INTEGER ARRAY [*]

float(&)[], long double(&)[],;

 struct&, union&;

REAL ARRAY [*]

in(&) (), char(&) (), pointer(&) () INTEGER PROCEDURE

void(&) () INTEGER PROCEDURE

float(&) () REAL PROCEDURE

long double(&) () DOUBLE PROCEDURE

struct(&) (), union(&) () PROCEDURE (RESULT);

 VALUE RESULT; POINTER RESULT;

ALGOL-C Interlanguage Binding

5–4 8600 0304–301

Pointers
C pointers, including pointers in arrays passed to ALGOL procedures, occur in the C heap
in byte units. C pointers of types char and void are passed as parameters and returned
from functions in byte units.

Other types of pointers can be passed and returned in units other than bytes depending on
the release level of the compiler and the settings of various options.

If an ALGOL procedure uses a pointer to access the C heap, the pointer should be in byte
units. If you pass a non-char pointer to an ALGOL procedure, you should declare the
argument in C as a void pointer, so that it will be passed in byte units. Likewise, if you
write an ALGOL procedure that extracts a pointer from the C heap and returns it as a
procedure result, you should declare the ALGOL procedure in the C program with a result
type of char* or void* to prevent a unit mismatch.

Parameter Passing
When an ALGOL procedure receives an array parameter from a C program, the array is
passed with a lower bound such that indexing the array by zero (0) gives the first element
of the C object.

For struct and union typed functions, ALGOL receives a RESULT parameter that points to
a place for the procedure to store its result. You must declare any other parameters after
the RESULT parameter.

Example of Binding ALGOL Procedures Into a C Host
The following example illustrates the binding of ALGOL procedures into a C host program.
The WFL jobs used to compile and bind the programs appear in bold type.

C Host Program

? BEGIN JOB C/HOST;
 COMPILE OBJECT/C/HOST CC LIBRARY;
 CC DATA;
 #include <stdio.h>;
 extern "ALGOL" void CALL_C_BACK (void);
 extern "ALGOL" void DISPLAY_C_STRING (char(&)[]);
 extern "ALGOL" SUM_C_ARRAY (FLOAT(&)[], INT arraySize);
 void C_FROM_ALGOL (void);
 {DISPLAY_C_STRING (ALGOL has called C);}
 main ();
 {float array [] = {1.1, 2.2, 3.3, 4.4};
 char outBuf [100];
 sprintf (outBuf, "The sum is %f", SUM_C_ARRAY (array, 4));
 DISPLAY_C_STRING (outBuf);
 CALL_C_BACK();}
? END JOB.

ALGOL-C Interlanguage Binding

8600 0304–301 5–5

ALGOL Subprogram

? BEGIN JOB COMPILE/ALGOL;
 COMPILE OBJECT/ALGOL/SUBPROGRAM ALGOL LIBRARY;
 ALGOL DATA;
$$ SET LEVEL 3 LIBRARY;
 [
 Integer procedure C_FROM_ALGOL; external;
]
 procedure CALL_C_BACK;
 begin
 C_FROM_ALGOL;
 end;

 procedure DISPLAY_C_STRING (cStr);
 Ebcdic array cStr [*];
 begin
 display (cStr[0]);
 end;

 Real procedure SUM_C_ARRAY (cArray, cArraySize);
 value cArraySize;
 Real array cArray [*];
 Integer cArraySize;
 begin
 Integer index;
 for index ;= cArraySize - 1 step -1 until 0 do
 SUM_C_ARRAY ;=* + cArray[index];
 end.
? END JOB.

Binder Input File

? BEGIN JOB C/BIND;
 BIND OBJECT/D/BIND BINDER;
 BINDER DATA
 BIND ? FROM OBJECT/C/HOST;
 BIND = FROM OBJECT/ALGOL/SUBPROGRAM;
? END JOB.

The result of the bind is a program titled OBJECT/C/BIND that displays the following
output;

The sum is 11.000000.
ALGOL has called C.

Accessing the C Heap from ALGOL
The externally accessible data objects in a C program are stored in an array called a heap.
The heap can be accessed as an EBCDIC array or a REAL array. The name and form of the
heap depend upon the memory model of the C program and whether the FARHEAP option
is TRUE or FALSE, as shown in Table 5–4.

ALGOL-C Interlanguage Binding

5–6 8600 0304–301

Table 5–4. Name and Format of the C Heap

If the
memory
model is . . .

And the
FARHEAP
option is . . .

Then the
heap is
a . . .

And the
EBCDIC array
is named . . .

And the REAL
array is
named . . .

TINY or
SMALL

FALSE One-
dimensional
array

.Heap_ebcdic

To index into the
array, use a C
pointer.

.Heap

To index into the
array, divide the C
pointer by 6.

LARGE or
HUGE

FALSE Two-
dimensional
array

.Heap_ebcdic

To index into the
array with a C
pointer, use bits
[38;12] of the C
pointer for the
first dimension
and [26;27] for
the second
dimension.

.Heap

To index into the
array with a C
pointer, divide the
C pointer by 6, and
then use bits
[38;13] for the first
dimension and
[25;26] for the
second dimension.

TINY, SMALL,
LARGE, or
HUGE

TRUE Two-
dimensional
array

.fHeap_ebcdic

To index into the
array, use bits
[38;15] of a C
pointer for the
first dimension
and bits [23;24]
for the second
dimension.

.fheap_single

To index into the
array, use bits
[38;15] of a C
pointer for the first
dimension. For the
second dimension,
divide bits [23;24]
by 6.

ALGOL-C Interlanguage Binding

8600 0304–301 5–7

Example of an ALGOL Subprogram Accessing the C Heap

The following example shows how ALGOL procedures can access the C program heap.
The ALGOL global part and the Binder input contain the ALGOL declarations and the
Binder USE statements required to access the heap for the different memory models and
the FARHEAP option. You can use these ALGOL declarations and Binder USE statements
in your own programs. Note that the WFL jobs used to compile and bind appear in bold
type.

C Host Program

? BEGIN JOB C/HOST;
 COMPILE OBJECT/C/HOST CC LIBRARY;
 CC DATA
 #include <stdio.h>
 extern DISPLAY_C_STRING (char*);
 extern SUM_C_ARRAY (void* array, int arraySize);
 main ()
 {float array [] = {1.1, 2.2, 3.3, 4.4};
 char outBuf [100];
 sprintf (outBuf, "The sum is %f", SUM_C_ARRAY (array, 4));
 DISPLAY_C_STRING (outBuf);}
? END JOB

ALGOL Subprogram

? BEGIN JOB COMPILE/ALGOL;
 COMPILE OBJECT/ALGOL/SUBPROGRAM ALGOL LIBRARY;
 ALGOL DATA
$$ SET LEVEL 3 LIBARY
 [
 % To select the appropriate declarations for accessing the C
 % heap, add "$$ SET FARHEAP" if the FARHEAP option is set for
 % the C host program; otherwise, add the "$ SET LARGEORHUGE" if
 % the host memory model is LARGE or HUGE.
$$ SET OMIT = FARHEAP OR LARGEORHUGE
 % C heap access for TINY or SMALL memory model without FARHEAP
 Define rowEbcdic (cPtr) = 0#,
 colEbcdic (cPtr) = cPtr#,
 rowSingle (cPtr) = 0#,
 colSingle (cPtr) = (cPtr div 6)#,
 heapEbcdic [row, col] = HEAP_EBCDIC_1D [col]#,
 heapSingle [row, col] = HEAP_SINGLE_1D [col]#;
 Ebcdic array HEAP_EBCDIC_1D [0];
 Real array HEAP_SINGLE_1D [0];
$$ POP OMIT SET OMIT = FARHEAP OR NOT LARGEORHUGE
 % C heap access for LARGE or HUGE memory model without FARHEAP
 Define rowEbcdic (cPtr) = (cPtr.[38:12])#,
 colEbcdic (cPtr) = (cPtr.[26:27])#,
 rowSingle (cPtr) = ((cPtr div 6).[38:13])#,
 colSingle (cPtr) = ((cPtr div 6).[25:26])#,

ALGOL-C Interlanguage Binding

5–8 8600 0304–301

 heapEbcdic [row, col] = HEAP_EBCDIC_2D [row, col]#,
 heapSingle [row, col] = HEAP_SINGLE_2D [row, col]#;
 Ebcdic array HEAP_EBCDIC_2D [0, 0];
 Real array HEAP_SINGLE_2D [0, 0];
$$ POP OMIT SET OMIT = NOT FARHEAP
 % C heap access for any memory model if FARHEAP option is set
 Define rowEbcdic (cPtr) = (cPtr.[38:15])#,
 colEbcdic (cPtr) = (cPtr.[23:24])#,
 rowSingle (cPtr) = (cPtr.[38:15])#,
 colSingle (cPtr) = (cPtr.[23:24] div 6)#,
 heapEbcdic [row, col] = HEAP_EBCDIC_FAR [row, col]#,
 heapSingle [row, col] = HEAP_SINGLE_FAR [row, col]#;
 Ebcdic array HEAP_EBCDIC_FAR [0, 0];
 Real array HEAP_SINGLE_FAR [0, 0];
$$ POP OMIT
]

 Integer procedure DISPLAY_C_STRING (cPtr);
 value cPtr;
 integer cPtr;
 begin
 display (heapEbcdic [rowEbcdic(cPtr), colEbcdic(cPtr)]);
 end;

 Real procedure SUM_C_ARRAY (cArrayPtr, cArraySize);
 value cArrayPtr, cArraySize;
 Integer cArrayPtr, cArraySize;
 begin
 Integer start, index;
 Real array reference heapRow [0];
 heapRow := heapSingle [rowSingle(cArrayPtr), *];
 start := colSingle(cArrayPtr);
 for index := start + cArraySize - 1 step -1 until start do
 SUM_C_ARRAY :=* + heapRow[index];
 end.
? END JOB.

Binder Input File

? BEGIN JOB C/BIND;
 BIND OBJECT/C/BIND BINDER;
 BINDER DATA
 BIND ? FROM OBJECT/C/HOST;
 USE .Heap_ebcdic FOR HEAP_EBCDIC_1D;
 USE .Heap FOR HEAP_SINGLE_1D;
 USE .Heap_ebcdic FOR HEAP_EBCDIC_2D;
 USE .Heap FOR HEAP_SINGLE_2D;
 USE .fHeap_ebcdic FOR HEAP_EBCDIC_FAR;
 USE .fHeap_single FOR HEAP_SINGLE_FAR;
 BIND = FROM OBJECT/ALGOL/SUBPROGRAM;
? END JOB.

ALGOL-C Interlanguage Binding

8600 0304–301 5–9

The result of the bind is a program titled OBJECT/C/BIND, which displays the following
information:

The sum is 11.000000.

ALGOL-COBOL Interlanguage Binding

5–10 8600 0304–301

ALGOL-COBOL Interlanguage Binding
ALGOL-COBOL interlanguage binding consists of binding either an ALGOL subprogram
into a COBOL host program or a COBOL subprogram into an ALGOL host program.

Table 5–5 matches identifier types between ALGOL and COBOL.

Table 5–5. Corresponding Identifier Types between ALGOL and COBOL

ALGOL COBOL COBOL74

REAL ARRAY COMP OCCURS REAL OCCURS

INTEGER ARRAY COMP OCCURS BINARY OCCURS

BOOLEAN ARRAY COMP OCCURS BINARY OCCURS

DOUBLE ARRAY

COMPLEX ARRAY

HEX ARRAY COMP-2

ASCII ARRAY ASCII

EBCDIC ARRAY DISPLAY DISPLAY

EBCDIC ARRAY [*] +
INTEGER

DISPLAY LOWERBOUNDS +
LEVEL 77

DISPLAY LOWER BOUNDS +
LEVEL 77

REAL VARIABLE COMP-4 REAL

INTEGER VARIABLE COMP or COMP-1 BINARY (1 to 11 digits)

BOOLEAN VARIABLE COMP or COMP-1 BINARY (1 to 11 digits)

DOUBLE VARIABLE COMP-5 DOUBLE

COMPLEX VARIABLE

UNTYPED PROCEDURE SECTION SECTION

TYPED PROCEDURE

UNTYPED PROCEDURE + 2
PARAMETERS (EBCDIC
ARRAY [*] + INTEGER)

SECTION + 2 PARAMETERS
(DISPLAY LOWERBOUNDS +
LEVEL 77)

SECTION + 2 PARAMETERS
(DISPLAY LOWERBOUNDS +
LEVEL 77)

FILE FILE FILE

DIRECT FILE DIRECT FILE DIRECT FILE

Global Items
Global items can be shared between COBOL and ALGOL programs. If a COBOL
subprogram references a global variable in an ALGOL host program, you must declare the
variable in COBOL by using the GLOBAL clause or by setting the GLOBAL compiler
control option in the COBOL subprogram to TRUE.

ALGOL-COBOL Interlanguage Binding

8600 0304–301 5–11

Similarly, when an ALGOL subprogram references a global variable in a COBOL host
program, you must declare the variable in ALGOL by using either the brackets method or
the INFO file method described in Section 4.

Note that an item declared GLOBAL in a COBOL/COBOL74 program declared at a lexical
level greater than 3 can be matched to an ALGOL array declared in a procedure. When the
arrays are different sizes, the size declared in the host file is used. However, the larger of
the two sizes is used when the array is declared in the outer block of the ALGOL host
program.

Note that Binder strips a new global file of any specified file attributes during the binding
process. Thus, you must indicate all necessary file attributes by using a file equation. If a
global file is already present in the host and is being replaced during the binding
procedure, the file attributes specified in the host are used.

Parameters
You must observe the following requirements when passing parameters between ALGOL
and COBOL:

• If the ALGOL host program passes arrays to or receives arrays from COBOL
subprograms, you must declare the arrays in the ALGOL host program with a lower
bound of zero.

• When a word-oriented (integer, real, or Boolean) array or variable is passed between
ALGOL and COBOL68, you must declare the word-oriented entity as
COMPUTATIONAL in the COBOL68 program.

 In a COBOL74 program, you must declare a real array or variable as REAL, and an
integer or Boolean array or variable as BINARY.

• ALGOL EBCDIC arrays correspond to COBOL DISPLAY items.

• You can pass files and direct files between ALGOL and COBOL.

• If a file is declared to have a file record in COBOL, the ALGOL program must declare
the file or direct file followed by a by-value pointer to match the file record.

• You cannot pass a procedure as a parameter between ALGOL and COBOL.

• Binder allows a procedure with unknown parameters to match and bind with a
procedure of the same name with either known or unknown parameters.

Libraries
You do not need to declare attributes for a global library in a procedure to be bound.
Instead, Binder uses the attributes found in the host program.

Record Binding
You can bind records retrieved from a data dictionary. However, Binder does not check
the format of the records involved, nor does it make any distinction between records and
EBCDIC arrays. Thus, Binder allows any record to be bound to any other record, and

ALGOL-COBOL Interlanguage Binding

5–12 8600 0304–301

allows any record to be bound to any star-bounded EBCDIC array and vice versa.
Specifically, this means that you can bind an ALGOL record to a COBOL EBCDIC array.

Binding ALGOL and COBOL74 Programs That Use COMS
ALGOL and COBOL74 use different titles for the COMS support library. ALGOL names the
library COMSSUPPORT, while COBOL74 names the library DCILIBRARY.

To prevent library mismatch errors when binding a COBOL74 subprogram to an ALGOL
host program, add the following Binder statement to the Binder input file:

USE COMSSUPPORT FOR DCILIBRARY

When binding an ALGOL subprogram to a COBOL74 host program, add the following
Binder statement to the Binder input file:

USE DCILIBRARY FOR COMSSUPPORT

If you are using COMS service functions, you can avoid possible binding problems by
using a naming convention for the library in the COBOL74 subprogram similar to that used
in the ALGOL host program. Thus, use an internal name other than DCILIBRARY for the
library in which the service functions reside and give the library the function name of
COMSSUPPORT, as shown in the following example.

Examples

The following is an example of declaring a COMS service function in ALGOL. For more
information on the declaration and use of COMS service functions, see the ALGOL

Reference Manual, Volume 2.

LIBRARY SERVICE_LIB
 (FUNCTIONNAME = "COMSSUPPORT", LIBPARAMETER = "02");

INTEGER PROCEDURE GET_NAME_USING_DESIGNATOR
 (ENTY_DESIGNATOR, ENTY_NAME);
 REAL ENTY_DESIGNATOR;
 EBCDIC ARRAY ENTY_NAME[0];
LIBRARY SERVICE_LIB;

The following is an example of declaring a COMS service function in COBOL74. For more
information on the declaration and use of COMS service functions, see the COBOL ANSI-

74 Reference Manual, Volume 2.

CHANGE ATTRIBUTE LIBACCESS OF "SERVICE_LIB"
 TO BYFUNCTION.
CHANGE ATTRIBUTE FUNCTIONNAME OF "SERVICE_LIB"
 TO COMSSUPPORT.

CALL "GET-NAME-USING-DESIGNATOR OF SERVICE_LIB"
 USING WS_DESG,

ALGOL-COBOL Interlanguage Binding

8600 0304–301 5–13

 WS_NAME
 GIVING SF-RSLT.

ALGOL-FORTRAN Interlanguage Binding

5–14 8600 0304–301

ALGOL-FORTRAN Interlanguage Binding
ALGOL-FORTRAN interlanguage binding consists of binding either an ALGOL subprogram
into a FORTRAN host program or a FORTRAN subprogram into an ALGOL host program.

Table 5–6 matches the identifier types between ALGOL and FORTRAN.

Table 5–6. Corresponding Identifier Types between ALGOL and FORTRAN

ALGOL FORTRAN

REAL ARRAY REAL ARRAY/COMMON BLOCK

INTEGER ARRAY INTEGER ARRAY/COMMON BLOCK

BOOLEAN ARRAY LOGICAL ARRAY/COMMON BLOCK

DOUBLE ARRAY DOUBLE PRECISION ARRAY/COMMON BLOCK

COMPLEX ARRAY COMPLEX ARRAY/COMMON BLOCK

HEX ARRAY

ASCII ARRAY

EBCDIC ARRAY

EBCDIC ARRAY [*] + INTEGER

REAL VARIABLE REAL VARIABLE

INTEGER VARIABLE INTEGER VARIABLE

BOOLEAN VARIABLE LOGICAL VARIABLE

DOUBLE VARIABLE DOUBLE PRECISION VARIABLE

COMPLEX VARIABLE COMPLEX VARIABLE

UNTYPED PROCEDURE SUBROUTINE

TYPED PROCEDURE FUNCTION

UNTYPED PROCEDURE + 2 PARAMETERS
(EBCDIC ARRAY [*] + INTEGER)

FILE FILE

DIRECT FILE

ALGOL-FORTRAN Interlanguage Binding

8600 0304–301 5–15

Parameters
When ALGOL and FORTRAN program units are bound, only simple variables, arrays, and
labels can be passed as parameters between program units. Procedures, functions, and
subroutines cannot be passed as parameters between ALGOL and FORTRAN.

Binder allows a procedure with unknown parameters to match and bind with a procedure
of the same name with either known or unknown parameters.

When simple variables and arrays are passed as parameters, the following special
conditions apply:

• All FORTRAN arrays are implemented as one-dimensional arrays. Thus, only one-
dimensional ALGOL arrays (or array rows) can be passed between ALGOL and
FORTRAN program units.

• When passing an ALGOL array to a FORTRAN routine, you must declare the ALGOL
array with a lower bound of 0 (zero). The ALGOL subscript 0 (zero) corresponds to
the FORTRAN arrays lower bound, usually 1.

• When passing a FORTRAN array to an ALGOL routine, you must declare the ALGOL
array with an asterisk (*) for the lower bound. If you use a FORTRAN subscript value
to evaluate the parameter, the FORTRAN subscript corresponds to an ALGOL
subscript value of 0 (zero). If you do not specify a subscript, the lower bound of the
FORTRAN array (usually 1) is used.

 ALGOL describes all simple variable arguments to imported subprograms as call-by-
name. FORTRAN describes them as call-by-reference. When calling a library object,
Binder allows call-by-reference and call-by-name arguments to match at run time.

• When passing simple variables between FORTRAN and ALGOL, you can mix by-name
and by-value parameters. Note, however, that FORTRAN by-value parameters are
different from ALGOL by-value parameters. Thus the following conditions apply:

− If FORTRAN calls an ALGOL procedure and passes a variable as a parameter, the
variable acts like an ALGOL by-name parameter in all situations.

− If FORTRAN calls an ALGOL procedure and passes an expression as a parameter,
the expression acts like an ALGOL by-value parameter in all situations.

− If ALGOL calls a FORTRAN program unit and passes a by-name parameter to a by-
value formal parameter, the parameter acts like a FORTRAN by-value parameter.

− If ALGOL calls a FORTRAN program unit and passes a by-value parameter, the
parameter acts like an ALGOL by-value parameter in all situations.

ALGOL-FORTRAN Interlanguage Binding

5–16 8600 0304–301

Global Items
The only global items that can be shared between ALGOL and FORTRAN programs are
files, subprograms, and common blocks matched to ALGOL arrays. No restrictions are
imposed on the referencing of subprograms between the two languages.

Files
An ALGOL file with a declared internal name of FILEnn, where nn is a 1-digit or 2-digit
number from 1 to 99 (without a leading zero), is identified as the same file as a FORTRAN
file with that number. Thus, an ALGOL file declaration of FILE6 and a FORTRAN
subprogram file statement of WRITE (6,1) refer to the same file.

This also applies to the use of ALGOL files as variable files within a FORTRAN program.
For example, assume that an ALGOL host program declares a global file as FILE12 and
declares a FORTRAN subprogram with the following statements:

IX=12
READ(IX,7)Y

With these statements, the FORTRAN subprogram is bound into the ALGOL host program,
and then the ALGOL global file is read.

Note: The ALGOL print routine performs its carriage control after writing to a

printer file. The FORTRAN print routine performs carriage control before

writing to a printer file. To prevent potential printing problems, set the

WRITEAFTER compiler control option when the ALGOL program is compiled.

Common Blocks
A FORTRAN common block is a one-dimensional, single-precision array immediately
followed by a double-precision copy descriptor. The copy descriptor allows the same data
items to be referenced from the single-precision array.

An ALGOL subprogram can access a common block in a FORTRAN host program as a
single-precision array, a double-precision array, or both. A common block in a FORTRAN
subprogram can access ALGOL single- or double-precision arrays.

When equating ALGOL arrays and FORTRAN common blocks, you must declare the arrays
as global.

You must enclose common block names in slashes (/), as in the following example:

/ABC/

To indicate a blank common block, use the following syntax:

/.BLNK./

ALGOL-FORTRAN Interlanguage Binding

8600 0304–301 5–17

A FORTRAN common block in a subprogram cannot contain an initial value when bound
into an ALGOL host array. However, an ALGOL array can be bound to a host common
block that contains initial values.

If a FORTRAN common block is equated to an ALGOL host array of a different length, the
resulting array in the bound code file will be the longer of the two lengths. However, if the
ALGOL array is an equivalence array, the resulting common block will be the size of the
array that the equivalence array references.

(Note that an equivalence array is an array that is declared to refer to the same data as
another array.)

Array B in the following example is an equivalence array:

ARRAY A[0:99];
ARRAY B[1] = A;

Simulating Common Blocks in ALGOL

You can determine the contents of a FORTRAN common block by mapping the elements
of the common declaration onto a contiguous array. You can simulate this procedure in
ALGOL as shown in the following example;

FORTRAN Statements

DOUBLE PRECISION DA(10)
COMMON /C/ RA(7),X,DA

ALGOL Statements

ARRAY C[0:27];
DOUBLE ARRAY D[0] = C;
DEFINE DA(N) = D[(N)+3] #,
 RA(N) = C[(N)-1] #,
 X = C[7] #;

In this example, subscripts are adjusted so that DA(N) and RA(N) in the ALGOL code
reference DA(10) and RA(7) in the FORTRAN common block.

Accessing FORTRAN Common Blocks as ALGOL Arrays

The following paragraphs describe how an ALGOL subprogram can access a FORTRAN
common block as a single-precision array, a double-precision array, or as both.

Single-Precision Array

To access a FORTRAN common block as a single-precision array, declare a global ALGOL
array and equate it to the FORTRAN common block by using the Binder USE statement.
For example, the USE statement for a single-precision ALGOL array A and a FORTRAN
host common block /BLK/ is as follows:

USE /BLK/ FOR A;

ALGOL-FORTRAN Interlanguage Binding

5–18 8600 0304–301

Double-Precision Array

To access a FORTRAN common block as a double-precision array, declare the ALGOL
array as double-precision, and then use the USE statement as shown in the previous
example for a single-precision array.

Single- and Double-Precision Arrays

To access a FORTRAN common block as both single-precision and double-precision
ALGOL arrays, declare both types of ALGOL array and equate the arrays to the FORTRAN
common block by using a Binder USE statement.

For example, with a single-precision ALGOL array A, a double-precision ALGOL array D,
and a FORTRAN host common block /BLK/, the Binder USE statement is as follows:

USE /BLK/ FOR A,D;

If the common block and all of the global ALGOL arrays equated to it are of different
lengths, the length of the resulting common block will be the longest of all of the lengths.
If one of the ALGOL arrays is an equivalence array, the resulting common block will be the
size of the array that the equivalence array references.

Accessing ALGOL Global Arrays from a FORTRAN Common Block

The following paragraphs describes how a common block in a FORTRAN subprogram can
access single- and double-precision arrays in an ALGOL host program.

Single-Precision Array

To access an ALGOL single-precision array through a FORTRAN common block, equate
the array to the common block with a Binder USE statement. For example, given an
ALGOL single-precision array A and a FORTRAN common block /BLK/, the Binder USE
statement is as follows:

USE A FOR /BLK/;

Double-Precision Array

To access an ALGOL double-precision array through a FORTRAN common block, you
must perform the following steps:

• Declare the double-precision array immediately following the declaration of the
single-precision array and equate the double-precision array to the single-precision
array by using the equal sign (=).

• Equate the single-precision array to the FORTRAN common block by using a Binder
USE statement.

For example, to access an ALGOL single-precision array A and an ALGOL double-
precision array D through a FORTRAN common block /BLK/, you would declare the
ALGOL arrays in the ALGOL host program as follows:

REAL ARRAY A[0:99];
DOUBLE ARRAY D[0]=A;

ALGOL-FORTRAN Interlanguage Binding

8600 0304–301 5–19

Then you would use the following Binder USE statement:

USE A FOR /BLK/;

FORTRAN references to single-precision items in /BLK/ are changed by Binder to refer
to array A, and FORTRAN references to double-precision or complex items in /BLK/
are changed to refer to array D. It is not sufficient for array D to be a copy of array A;
array D must also be declared immediately following array A.

Example of ALGOL-FORTRAN Binding
The following example illustrates the binding of ALGOL and FORTRAN subprograms into
a FORTRAN host program. The WFL job used to compile each program appears in bold
type.

FORTRAN Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE FORT/HOST FORTRAN LIBRARY;
 FORTRAN DATA
 DIMENSION X(1), Y(1)
 X(1) = "MENTAT"
 Y(1) = "RESDED"
 WRITE (6,1) X,Y
 1 FORMAT (2(X,A6))
 CALL SUB (X,Y)
 WRITE (6,1) X,Y
 CALL SUBA (X,Y)
 WRITE (6,1) X,Y
 STOP
 END
? END JOB.

ALGOL Subprogram

? BEGIN JOB COMPILE/FTEST/ALGOL;
 COMPILE FTEST/ALGOL ALGOL LIBRARY;
 ALGOL DATA
 PROCEDURE SUBA(A,B); ARRAY A,B[*];
 BEGIN
 REAL C;
 C ;= A[0];
 REPLACE POINTER (A) BY B[0] FOR 3;
 REPLACE POINTER (B) BY C FOR 3;
 END;
? END JOB.

ALGOL-FORTRAN Interlanguage Binding

5–20 8600 0304–301

FORTRAN Subprogram

? BEGIN JOB COMPILE/FTEST/FORTRAN;
 COMPILE FTEST/FORTRAN FORTRAN LIBRARY;
 FORTRAN DATA
$ SET SEPARATE
 SUBROUTINE SUB(A,B)
 DIMENSION A(1), B(1)
 C = A(1)
 A(1) = B(1)
 B(1) = C
 RETURN
 END
? END JOB.

Binder Input File

? BEGIN JOB BIND/ROUND/PROGM;
 BIND ROUND/PROGM BINDER;
 BINDER DATA
 HOST IS FORT/HOST;
 BIND = FROM FTEST/=;
? END JOB.

The result of the bind is a program titled, ROUND/PROGM. The execution of
ROUND/PROGM generates the following output:

MENTAT RESDED
RESDED MENTAT
MENDED RESTAT

ALGOL-FORTRAN77 Interlanguage Binding

8600 0304–301 5–21

ALGOL-FORTRAN77 Interlanguage Binding
ALGOL-FORTRAN77 interlanguage binding consists of binding either an ALGOL
subprogram into a FORTRAN77 host program or a FORTRAN77 subprogram into an
ALGOL host program.

You cannot bind a FORTRAN77 subroutine with a label parameter into an ALGOL host
program.

Table 5–7 matches identifier types between ALGOL and FORTRAN77.

Table 5–7. Corresponding Identifier Types between ALGOL and FORTRAN77

ALGOL FORTRAN77

REAL ARRAY REAL ARRAY/COMMON BLOCK

INTEGER ARRAY INTEGER ARRAY/COMMON BLOCK

BOOLEAN ARRAY LOGICAL ARRAY/COMMON BLOCK

DOUBLE ARRAY COMMON BLOCK

COMPLEX ARRAY COMMON BLOCK

HEX ARRAY

ASCII ARRAY

EBCDIC ARRAY CHARACTER COMMON BLOCK

EBCDIC ARRAY [*] + INTEGER CHARACTER ARRAY/CHARACTER VARIABLE

DOUBLE PRECISION ARRAY

COMPLEX ARRAY

REAL VARIABLE REAL VARIABLE

INTEGER VARIABLE INTEGER VARIABLE

BOOLEAN VARIABLE LOGICAL VARIABLE

DOUBLE VARIABLE DOUBLE PRECISION VARIABLE

COMPLEX VARIABLE COMPLEX VARIABLE

UNTYPED PROCEDURE SUBROUTINE/MAIN PROGRAM

TYPED PROCEDURE FUNCTION

UNTYPED PROCEDURE + 2 PARAMETERS
(EBCDIC ARRAY [*] + INTEGER)

CHARACTER FUNCTION

FILE FILE

DIRECT FILE

ALGOL-FORTRAN77 Interlanguage Binding

5–22 8600 0304–301

Global Items
The only global items that can be shared between ALGOL and FORTRAN77 programs are
subprograms, files, and common blocks. The common blocks map onto ALGOL arrays.

Subprograms
Following are the restrictions to referencing subprograms between ALGOL and
FORTRAN77:

• You can replace a FORTRAN77 main program with any ALGOL untyped procedure
without parameters by binding a separate file containing an ALGOL procedure to a
FORTRAN77 host program. Use the following Binder syntax to indicate the title of the
file containing the ALGOL procedure and to indicate the name of the ALGOL
procedure to use in place of the main program, .MAIN.:

BIND .MAIN. FROM <file specifier>
USE .MAIN. FOR <identifier>

• A FORTRAN77 character function can map only onto an ALGOL untyped procedure
that has two required leading parameters. The first parameter must be a star-bounded
EBCDIC array and the second parameter must be an integer variable. The EBCDIC
array maps onto the value of the character function, and the integer variable maps
onto the length of the character function.

• Subroutines and functions can be bound or replacement bound into a host program
that references libraries.

• New exported subprogram units cannot be added to a host program.

• Libraries can be added to the host program.

Files
An ALGOL file with a declared internal name of FILEnn, where nn is a 1-digit or 2-digit
number from 0 to 99 (without a leading zero), is identified as the same file as a
FORTRAN77 file with that number. Thus, an ALGOL output statement writing to a file
declared globally as FILE6 and a WRITE (6,1) statement in a FORTRAN77 subprogram
bound to that ALGOL host program refer to the same file. This method of matching an
ALGOL file name with a FORTRAN77 file name also applies to the use of ALGOL files as
variable files within a FORTRAN77 program. For example, if the ALGOL subprogram
declares a global file FILE12 and writes to it, and the FORTRAN77 host program contains
the following statements, they both access the same global file, FILE12:

IX=12
READ (IX,7) Y

Note: The ALGOL print routine performs its carriage control after writing to a

printer file. The FORTRAN print routine performs carriage control before

writing to a printer file. To prevent potential printing problems, set the

WRITEAFTER compiler control option when the ALGOL program is compiled.

ALGOL-FORTRAN77 Interlanguage Binding

8600 0304–301 5–23

Common Blocks
In FORTRAN77, there are two types of common blocks: character and arithmetic. The
character common block maps onto an ALGOL EBCDIC array. The arithmetic common
block can be accessed by ALGOL as a single-precision array, a double-precision array, or
as both.

FORTRAN77, unlike FORTRAN, accesses the common block only through a single-
precision descriptor and is not affected by odd offsets.

You must enclose common block names in slashes (/) as in the following example:

/ABC/

To indicate a blank common block, use the following syntax:

/.BLNK./

When a host common block is bound, its resulting length is the longest of all the lengths
declared for that block in the host program and bound subprograms, provided that the
FORTRAN77 CODEFILEINIT compiler control option is not set in the host program. You
cannot extend any common block that has been code file initialized. If you attempt an
extension, Binder issues the following error message:

COMMON BLOCK CANNOT BE EXTENDED BECAUSE IT IS CODEFILE INITIALIZED

Accessing FORTRAN77 Common Blocks as ALGOL Arrays

The following paragraphs describe how an ALGOL subprogram can access FORTRAN77
arithmetic and character common blocks as ALGOL arrays.

Single-Precision Array

To access an arithmetic common block as a single-precision array, declare a global
ALGOL array and equate it to the FORTRAN77 common block by using the Binder USE
statement. For example, with a single-precision ALGOL array titled A and a FORTRAN77
host common block titled /BLK/, the USE statement is as follows:

USE /BLK/ FOR A;

Double-Precision Array

To access an arithmetic common block as a double-precision array, declare the ALGOL
array as double precision and use the same statement as shown in the previous example
for a single-precision array.

Single- and Double-Precision Array

To access an arithmetic common block as both single- and double-precision arrays,
declare a single- and a double-precision ALGOL array and equate both arrays to the
FORTRAN77 common block with the Binder USE statement. For example, with a single-
precision array titled

ALGOL-FORTRAN77 Interlanguage Binding

5–24 8600 0304–301

A, a double-precision array titled D, and a host common block titled /BLK/, the USE
statement is as follows:

USE /BLK/ FOR A,D;

EBCDIC Array

To access a character common block as an EBCDIC array, declare a global ALGOL
EBCDIC array and equate it to the FORTRAN77 common block by using a Binder USE
statement.

Using Initial Values with Common Blocks

You can bind an ALGOL array to a FORTRAN common block that contains data-initialized
values. Similarly, you can bind a FORTRAN77 common block containing initial values to
an ALGOL host array if the common block is in a main program or a block data
subprogram and the FORTRAN77 compiler control option CODEFILEINIT is not set
during compilation.

The following are additional restrictions on the use of initial values with common blocks
in binding:

• If you plan to data initialize a common block in a given program unit, set
CODEFILEINIT to avoid losing the data in the common block if the program unit is
ever replaced. The program unit that replaces the original program unit might or might
not initialize the common block.

• If you data initialize a common block in one program unit, and then you bind in a
different program unit that also initializes the common block, either program unit can
supply data for the common block. Thus, the results are unpredictable. For this
reason, you should avoid initializing values for the same common block in more than
one program unit.

Accessing ALGOL Arrays from a FORTRAN77 Common Block

The following paragraphs describe how to access single-precision and EBCDIC arrays in
an ALGOL host program from the common block of a FORTRAN77 subprogram. Double-
precision arrays in ALGOL hosts cannot be accessed through FORTRAN77 common
blocks.

Single-Precision Array

To access a single-precision array through an arithmetic common block, declare the
ALGOL array as a single-precision array and equate the array to the FORTRAN77 common
block by using the Binder USE statement. For example,

USE A FOR /BLK/;

If a common block is equated to an ALGOL array of a different length, the resulting array
in the bound code file will be the longer of the two lengths, unless the ALGOL array is an
equivalence array. If the ALGOL array is an equivalence array, the resulting common block
will be the size of the array that the equivalence array references.

ALGOL-FORTRAN77 Interlanguage Binding

8600 0304–301 5–25

An equivalence array is an array that is declared to refer to the same data as another array.
Array B in the following example is an equivalence array.

ARRAY A[0:99];
ARRAY B[1] = A;

EBCDIC Array

To access an EBCDIC array through a character common block, equate the ALGOL array
to the FORTRAN77 common block by using the Binder USE statement.

Simulating Common Blocks in ALGOL

A FORTRAN77 common block is represented internally as a one-dimensional, single-
precision array. You can determine the contents of the array by mapping the elements of
the common declaration onto a contiguous array. You can simulate this procedure in
ALGOL, as shown in the following example:

FORTRAN77 Statements

DOUBLE PRECISION DA(10)
COMMON /C/ RA(7),X,DA

ALGOL Statements

ARRAY C[0:27];
DOUBLE ARRAY D[0] = C;
DEFINE DA(N) = D[(N)+3] #,
 RA(N) = C[(N)-1] #,
 X = C[7] #;

In this example, subscripts are adjusted so that DA(N) and RA(N) in ALGOL reference
DA(10) and RA(7) in the common block.

Parameters
When ALGOL and FORTRAN77 program units are bound, only simple variables, arrays,
and labels can be passed as parameters between program units. Procedures, subroutines,
functions, and intrinsics cannot be passed as parameters between ALGOL and
FORTRAN77.

Binder allows a procedure with unknown parameters to match and bind with a procedure
of the same name with either known or unknown parameters.

When simple variables and arrays are passed as parameters, the following special
conditions apply:

• All FORTRAN77 arrays are implemented as one-dimensional arrays. Thus, only one-
dimensional ALGOL arrays (or array rows) can be passed between the two languages.

ALGOL-FORTRAN77 Interlanguage Binding

5–26 8600 0304–301

• When passing a FORTRAN77 array to an ALGOL array, declare the ALGOL array as a
star-bounded array.

• If you use a FORTRAN77 subscript value to evaluate the actual parameter, the
subscript corresponds to the ALGOL subscript value of 0 (zero).

• If you do not specify a subscript, the FORTRAN77 arrays lower bound is used (usually
1).

• To pass an ALGOL array to a FORTRAN77 subprogram, you must declare the array in
ALGOL with a 0 (zero) lower bound (or as star bounded if the array is a formal
parameter in the ALGOL subprogram). The specified or default FORTRAN77 lower
bound corresponds to the ALGOL 0 (zero) lower bound.

• The following conditions apply to arrays:

− FORTRAN77 double-precision and complex arrays are implemented as single-
precision arrays that need not be even-word aligned.

Thus, double-precision and complex arrays do not correspond to any ALGOL
array and cannot be passed as parameters between the two languages. In some
cases, you can override this restriction by using the DOUBLEARRAYS compiler
control option described in the FORTRAN77 Programming Reference Manual.

− To pass FORTRAN77 character variables and character arrays to ALGOL, you
must use two consecutive formal arguments in the ALGOL subprogram; an
ALGOL EBCDIC array with star bounds, and an integer variable.

The characters are passed with a descriptor, an offset, and a character length. The
descriptor and offset correspond to the EBCDIC array argument, and the
character length corresponds to the integer variable argument.

• When passing simple variables between FORTRAN77 and ALGOL, you can mix by-
name and by-value parameters. Note, however, that FORTRAN77 by-value parameters
are different from ALGOL by-value parameters because FORTRAN77 passes
noncharacter variables by value-result.

(Passing by value-result is also known as copy-restore. See “FORTRAN77
Intralanguage Binding” in Section 4 for more information about passing arguments by
value-result.)

• When mixing by-name and by-value parameters, the following conditions apply:

− If FORTRAN77 calls an ALGOL procedure and passes a variable as a parameter,
the variable acts like an ALGOL by-name parameter in all situations.

− If FORTRAN77 calls an ALGOL procedure and passes an expression as a
parameter, the expression acts like an ALGOL by-value parameter in all situations.

− If ALGOL calls a FORTRAN77 program unit and passes a by-name parameter to a
by-value-result formal parameter, the parameter acts like a FORTRAN77 by-value-
result parameter.

− If ALGOL calls a FORTRAN77 program unit and passes a by-value parameter, the
parameter acts like an ALGOL by-value parameter in all situations.

ALGOL-FORTRAN77 Interlanguage Binding

8600 0304–301 5–27

Example of Binding an ALGOL Subprogram Into a FORTRAN77 Host
Program

The following example illustrates a FORTRAN77 host program, an ALGOL subprogram,
and the Binder input file used to bind them together. The WFL job used to compile each
program appears in bold type.

FORTRAN77 Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE F77/HOST WITH FORTRAN77 LIBRARY;
 FORTRAN77 DATA
$ SET BINDINFO

C EMPTY MAIN PROGRAM - IT WILL BE BOUND IN

 END

 SUBROUTINE WORK
 REAL A(3)
 DO 20 I = 1,4

C THIS LOOP WILL CAUSE AN INVALID INDEX TO OCCUR

 A(I) = 1
20 CONTINUE
 END
? END JOB.

ALGOL Subprogram

Note that the ALGOL procedure contains an ON INVALIDINDEX statement that provides
error recovery for the FORTRAN77 program.

? BEGIN JOB COMPILE/ALGOL;
 COMPILE ALGOL/SUBS ALGOL LIBRARY;
 ALGOL DATA
 [PROCEDURE WORK; EXTERNAL;]
 PROCEDURE MAIN;
 BEGIN
 LABEL XIT;
 FILE RMT (KIND=REMOTE);
 ON INVALIDINDEX:
 BEGIN
 WRITE (RMT,<" INVALID INDEX ">);
 GO TO XIT;
 END;
 WORK;
 XIT;
 END;
? END JOB.

ALGOL-FORTRAN77 Interlanguage Binding

5–28 8600 0304–301

Binder Input File

? BEGIN JOB BIND/INVALID/INDEX;
 BIND PROG BINDER LIBRARY;
 BINDER DATA
 HOST IS F77/HOST;
 BIND .MAIN. FROM ALGOL/MAIN;
 USE .MAIN. FOR MAIN;
? END JOB.

The result of the bind is a file titled PROG. The execution of PROG generates the following
output:

INVALID INDEX

ALGOL-FORTRAN77 Interlanguage Binding

8600 0304–301 5–29

Example of Replacing a FORTRAN77 Character Function by an
ALGOL Procedure

The following example shows how a FORTRAN77 character function can be replaced by
an ALGOL procedure with two leading parameters. The first parameter is an EBCDIC
array with star bounds. The second parameter is an INTEGER variable that contains the
length. The WFL job used to compile each program appears in bold type.

FORTRAN77 Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE F77/HOST WITH FORTRAN77 LIBRARY;
 FORTRAN77 DATA
$ SET BINDINFO
 EXTERNAL C
 CHARACTER*6 C, CL
 CL = C(2)
 PRINT *,CL
 END
? END JOB.

ALGOL Subprogram

? BEGIN JOB COMPILE/ALGOL;
 COMPILE ALGOL/SUBS ALGOL LIBRARY;
 ALGOL DATA
 PROCEDURE C (A,L,I);
 EBCDIC ARRAY A[*];
 INTEGER L, I;
 BEGIN
 REPLACE A[0] BY "2" FOR I, "4" FOR L-I;
 END;
? END JOB.

Binder Input File

? BEGIN JOB BIND/CHARACTERS;
 BIND PROG BINDER LIBRARY;
 BINDER DATA
 HOST IS F77/HOST;
 BIND = FROM ALGOL/=;
? END JOB.

The result of the bind is a file titled PROG. The execution of PROG generates the following
output:

224444

ALGOL-FORTRAN77 Interlanguage Binding

5–30 8600 0304–301

Example of Binding FORTRAN77 Program Units Into an ALGOL Host
Program

During a CANDE session, the following two files are created and compiled:

File Name: ALGOL/HOST

$ SET WRITEAFTER
BEGIN
 FILE FILE6 (KIND=PRINTER);
 REAL ARRAY COMM [0;4];
 %
 % Array COMM is implicitly initialized when MAIN is bound in,
 % even though MAIN is not referenced as a subprogram.
 %
 PROCEDURE MAIN; EXTERNAL;
 PROCEDURE F77SUB; EXTERNAL;
 %
 WRITE (FILE6, */, COMM);
 F77SUB;
END.

File Name: F77/SEP

$ SET SEPARATE
 PROGRAM MAIN
 REAL C(5)
 COMMON /COMM/ C
 DATA C /1, 2, 3, 4, 5/
 END

 SUBROUTINE F77SUB
 REAL C(5)
 COMMON /COMM/ C
 WRITE (6, *) 'IN SUBROUTINE F77SUB, C = ', C
 END

The two code files are bound together by the following Binder program:

HOST IS OBJECT/ALGOL/HOST;
BIND MAIN, F77SUB FROM OBJECT/F77/SEP;
USE COMM FOR /COMM/;

The execution of the resulting code file produces the following printed output:

COMM[0]=1.0, COMM[1]=2.0, COMM[2]=3.0, COMM[3]=4.0, COMM[4]=5.0,
 IN SUBROUTINE F77SUB, C = 1.0 2.0 3.0 4.0 5.0

ALGOL-NEWP Interlanguage Binding

8600 0304–301 5–31

ALGOL-NEWP Interlanguage Binding
ALGOL-NEWP interlanguage binding is restricted to binding DCALGOL subprograms into
a Master Control Program (MCP) host program compiled in NEWP. Binder cannot bind
DCALGOL subprograms to other host programs compiled in NEWP.

Replacement binding is not allowed for procedures in the NEWP host program, except for
externals that were bound in and must be rebound.

Observe the following requirements when binding a DCALGOL subprogram into an MCP
host program compiled in NEWP:

• You must compile the subprogram in DCALGOL.

• You must declare the subprogram as external in the MCP code file.

• The subprogram cannot add globals to the MCP host program or contain OWN
variable declarations.

• The only global variables that the subprogram can reference are those that are
declared in the outer block of the MCP host program.

Note: Because of the interaction with the NEWP SEPCOMP facility, the old object code

of procedures being rebound is retained in the MCP code file. The old object code

is not referenced and cannot be executed. If many rebindings occur, the MCP

code file can grow undesirably large with the accumulation of useless object

code. You can reallocate segments in the MCP by recompiling the MCP with the

NEWP compiler.

ALGOL-Pascal Interlanguage Binding

5–32 8600 0304–301

ALGOL-Pascal Interlanguage Binding
ALGOL-Pascal interlanguage binding consists of binding an ALGOL subprogram into a
Pascal host program. Table 5–8 matches identifier types between ALGOL and Pascal.

Table 5–8. Corresponding Identifier Types between ALGOL and Pascal

ALGOL Pascal

REAL ARRAY [*] array of real

array of record

array of set

array of vlstring

array of packed array

array of explicit type

long set (> 48 elements in set)

record

vlstring

explicit record (by-value)

packed array of real

packed array of set

packed array of record

packed array of vlstring

INTEGER ARRAY [*] array of integer

array of char

array of enumeration

array of fixed (n < 12)

array of sfixed (n < 12)

array of integer subrange

array of char subrange

array of enumeration subrange

packed array of integer

packed array of fixed (n < 12)

packed array of sfixed (n < 12)

packed array of subrange

 (> 256 elements in subrange)

packed array of enumeration

 (> 256 elements in enumeration)

continued

ALGOL-Pascal Interlanguage Binding

8600 0304–301 5–33

Table 5–8. Corresponding Identifier Types between ALGOL and Pascal
(cont.)

ALGOL Pascal

BOOLEAN ARRAY [*] array of Boolean

DOUBLE ARRAY [*] array of fixed (n > 11)

array of sfixed (n > 11)

packed array of fixed (n > 11)

packed array of sfixed (n > 11)

HEX ARRAY [*] hex (n)
digits (n)
s_digits (n)
digits_s (n)
Boolean1
Boolean4
packed array of Boolean
packed array of subrange
 (0–16 elements in subrange)
packed array of enumeration
 (0–16 elements in enumeration)

EBCDIC ARRAY [*] bits (n)

binary (n)

u_display (n)

z_display (n)

display_z (n)

s_display (n)

display_s (n)

word48 (n)

word96 (n)

integer48

integer96

real48

explicit record (var)

packed array of char

packed array of subrange

• elements in subrange)
packed array of enumeration

 (17–256 elements in enumeration)

continued

ALGOL-Pascal Interlanguage Binding

5–34 8600 0304–301

Table 5–8. Corresponding Identifier Types between ALGOL and Pascal
(cont.)

ALGOL Pascal

REAL VARIABLE real

short set

 (1–48 elements in set)

INTEGER VARIABLE integer

char

enumeration

fixed (n < 12)

sfixed (n < 12)

integer subrange

char subrange

enumeration subrange

BOOLEAN VARIABLE Boolean

Boolean subrange

DOUBLE VARIABLE fixed (n > 11)

sfixed (n > 11)

PROCEDURE procedure

REAL PROCEDURE function : real

INTEGER PROCEDURE function : integer

function : char

function : enumeration

function : fixed (n < 12)

function : sfixed (n < 12)

function : integer subrange

function : char subrange

function : enumeration subrange

BOOLEAN PROCEDURE function : Boolean

function : Boolean subrange

DOUBLE PROCEDURE function : fixed (n > 11)

function : sfixed (n > 11)

ALGOL-Pascal Interlanguage Binding

8600 0304–301 5–35

Global Items
Pascal and ALGOL programs can share global items. When binding global items from an
ALGOL subprogram into a Pascal host program, you must write a Pascal module heading
that describes the ALGOL subprogram in Pascal terms. You include ALGOL global
variables in the export declaration of the Pascal module heading as shown in the following
portion of Pascal syntax:

MODULE m EXTERNAL;
 EXPORT int(a, p, f);
 VAR a : integer;
 PROCEDURE p (param : integer);
 FUNCTION f : integer;
 END;

The EXTERNAL directive indicates that the module is written in a language other than
Pascal. When a Pascal host program is compiled with modules that are declared with the
EXTERNAL directive or modules that use other modules that are declared as external, the
Pascal compiler creates a BINDERINPUT file. This file contains a set of suggested
commands for Binder to use when binding the procedures compiled in the other language.

For example, when binding an ALGOL subprogram into a Pascal host program, the Pascal
compiler puts USE statements in the BINDERINPUT to equate variable identifiers in
Pascal and ALGOL. The USE statements are necessary because the Pascal compiler names
the Pascal identifier by assigning the module name followed by a slash (/) and the ALGOL
identifier name.

For example, assuming that the external module is titled m and an ALGOL variable is
declared as a, as in the preceding example, the BINDERINPUT file would contain the
following Binder USE statement:

USE M/A FOR A

There might be times when you need to edit the BINDERINPUT file. The internal name of
the file for file equation is BINDERINPUT.

For more information about the BINDERINPUT file, the EXTERNAL directive, and
modules, refer to the Pascal Programming Reference Manual, Volume 1.

Parameters
The following restrictions apply to parameters passed between ALGOL and Pascal:

• You cannot pass text files between ALGOL and Pascal.

• You can pass standard files between ALGOL and Pascal; however, you must declare in
the Pascal host program the files that can be passed. Refer to the example following
this discussion to see the code for a Pascal host program that passes standard files.
For more information on Pascal file syntax, refer to the Pascal Reference Manual,

Volume 1.

ALGOL-Pascal Interlanguage Binding

5–36 8600 0304–301

• Procedures and functions are allowed as parameters to ALGOL procedures bound to
Pascal programs.

• Parameters passed between a Pascal host program and an ALGOL subprogram must
match.

• Variables passed by reference (that is, variable parameters) in a Pascal host program
must match by-name parameters in the ALGOL subprogram.

• Variables passed by value in a Pascal host program must match by-value parameters
in the ALGOL subprogram.

• Binder allows a procedure with unknown parameters to match and bind with a
procedure of the same name with either known or unknown parameters.

ALGOL-Pascal Interlanguage Binding

8600 0304–301 5–37

Examples of Binding an ALGOL Subprogram Into a Pascal Host
Program

Example 1

The following example shows how a Pascal program can incorporate a module written in
ALGOL. The module heading describes an ALGOL procedure with one global variable, one
untyped procedure, and one typed procedure to be bound into a Pascal program or library.
The WFL job used to compile each program appears in bold type.

Pascal Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE PASCAL/HOST WITH PASCAL LIBRARY;
 PASCAL DATA CARD
 MODULE m EXTERNAL;
 EXPORT int (a, p, f);
 VAR a : integer;
 PROCEDURE p (param : integer);
 FUNCTION f : integer;
 END;
 PROGRAM prog;
 IMPORT int;
 VAR ig : integer;
 BEGIN
 p (42);
 ig := f;
 DISPLAY (concat ('value of a is ', string(a)));
 DISPLAY (concat ('value of ig is ', string(ig)));
 END.
? END JOB.

The BINDERINPUT file created by the Pascal compiler is as follows. You can use this file
to bind the Pascal host program, PASCAL/HOST, and the ALGOL subprogram, OBJECT/M.

$ RESET LIST
 USE M/A FOR A;
 USE M/F FOR F;
 USE M/P FOR P;
 BIND
 M/F,
 M/P,
 DUMMY FROM OBJECT/M;
 HOST IS PASCAL/HOST;

ALGOL Subprogram

? BEGIN JOB MODULE/BODY;
 COMPILE OBJECT/M WITH ALGOL LIBRARY;
 ALGOL DATA CARD
$ SET LEVEL 3 LIBRARY
 [INTEGER A;]
 PROCEDURE P (I);

ALGOL-Pascal Interlanguage Binding

5–38 8600 0304–301

 VALUE I; INTEGER I;
 BEGIN
 DISPLAY ("CALL ON P EXECUTED WITH I = " CAT STRING(I,*));
 A := 399;
 END;
 INTEGER PROCEDURE F;
 BEGIN
 DISPLAY ("CALL ON F EXECUTED");
 F := 7;
 END;
? END JOB.

When executed, the newly bound program displays the following:

CALL ON P EXECUTED WITH I = 42
CALL ON F EXECUTED
value of a is 399
value of ig is 7

Example 2

The following example shows a Pascal host program that has an ALGOL procedure bound
into it. In this example, the formal parameter f represents an ALGOL file. In the Pascal
host program, this formal parameter is compatible with any standard file parameter.

For this example, FILE OF char is the standard file parameter. Note that the Pascal buffer
variable f@, is not affected by any input or output that occurs during the execution of the
bound-in procedure.

MODULE m EXTERNAL;
 EXPORT i(p);
 PROCEDURE p (VAR f; stdfile)
END;

PROGRAM p;
 IMPORT i;
 TYPE tf= FILE OF char;
 VAR myf; tf;
BEGIN
 p(myf)
END.

COBOL-C Interlanguage Binding

8600 0304–301 5–39

COBOL-C Interlanguage Binding
COBOL-C interlanguage binding consists of binding a level-3 COBOL subprogram into a C
host program. You declare a COBOL subprogram in C as a void function with COBOL
linkage.

A COBOL subprogram cannot call functions with C linkage, and thus, it cannot call
functions defined in the C host program. Identifiers that name data objects cannot be
shared between C and COBOL, because a C program stores its external data items in its
program heap.

If you are binding COBOL85 to C, ensure that the value of the FARHEAP option matches.
If the FARHEAP option is false, the value of the MEMORY_MODEL must match the C
host. Table 5–9 shows the corresponding parameter types between C and COBOL.

Table 5–9. Corresponding Parameter Types Between C and COBOL

C Argument Type COBOL TYPE

char 77 BINARY BY CONTENT

int, short, long 77 BINARY BY CONTENT

pointer 77 BINARY BY CONTENT

float 77 REAL BY CONTENT

long double 77 DOUBLE BY CONTENT

int&, short&, long& 77 BINARY BY REFERENCE

pointer& 77 BINARY BY REFERENCE

float& 77 FLOAT BY REFERENCE

long double& 77 DOUBLE BY REFERENCE

COBOL-C Interlanguage Binding

5–40 8600 0304–301

Example of COBOL-C Binding
The following example illustrates binding a COBOL subprogram into a C host. The WFL
jobs used to compile and bind appear in bold type.

C Host Program

? BEGIN JOB C/HOST;
 COMPILE OBJECT/C/HOST CC LIBRARY;
 CC DATA
 extern "COBOL" void COBOLSUBPROGRAM (int, int(&));
 main ()
 {int passedByValue = 1, passedByReference = 1;
 COBOLSUBPROGRAM (passedByValue, passedByReference);
 COBOLSUBPROGRAM (passedByValue, passedByReference);
 return 0;}
? END JOB.

COBOL Subprogram

? BEGIN JOB COMPILE/COBOL;
 COMPILE OBJECT/COBOL/SUBPROGRAM COBOL74 LIBRARY;
 COBOL DATA
 $$ SET LEVEL = 3
 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 LINKAGE SECTION.
 77 C-INT-VALUE PIC S9(11) BINARY BY CONTENT.
 77 C-INT-REFERENCE PIC S9(11) BINARY BY REFERENCE.
 PROCEDURE DIVISION USING C-INT-VALUE C-INT-REFERENCE.
 SUBPROGRAM SECTION.
 DISPLAY-C-ARGUMENTS.
 DISPLAY "C-INT-VALUE IS " C-INT-VALUE
 " AND C-INT-REFERENCE IS " C-INT-REFERENCE.
 ADD 1 TO C-INT-VALUE C-INT-REFERENCE.
 EXIT-PROCEDURE.
 EXIT PROCEDURE.
? END JOB.

Binder Input File

? BEGIN JOB COBOL/C/BIND;
 BIND OBJECT/COBOL/C/BIND BINDER;
 BINDER DATA
 BIND ? FROM OBJECT/C/HOST;
 BIND COBOLSUBPROGRAM FROM OBJECT/COBOL/SUBPROGRAM;
? END JOB.

The result of the bind is a program titled OBJECT/COBOL/C/BIND, which displays the
following information:

C-INT-VALUE IS +00000000001 AND C-INT-REFERENCE IS +00000000001.
C-INT-VALUE IS +00000000001 AND C-INT-REFERENCE IS +00000000002.

COBOL-FORTRAN Interlanguage Binding

8600 0304–301 5–41

COBOL-FORTRAN Interlanguage Binding
COBOL-FORTRAN interlanguage binding consists of binding a COBOL program into a
FORTRAN host program or binding a FORTRAN subprogram into a COBOL host program.
Table 5–10 matches identifier types between COBOL and FORTRAN.

Table 5–10. Corresponding Identifier Types between COBOL and FORTRAN

COBOL COBOL74 FORTRAN

COMP OCCURS REAL OCCURS REAL ARRAY/COMMON
BLOCK

COMP OCCURS BINARY OCCURS INTEGER ARRAY/COMMON
BLOCK

COMP OCCURS BINARY OCCURS LOGICAL ARRAY/COMMON
BLOCK

DOUBLE PRECISION
ARRAY/COMMON BLOCK

COMPLEX ARRAY/COMMON
BLOCK

COMP-2

ASCII

DISPLAY DISPLAY

DISPLAY LOWERBOUNDS +
LEVEL 77

DISPLAY LOWERBOUNDS +
LEVEL 77

COMP-4 REAL REAL VARIABLE

COMP or COMP-1 BINARY (1 to 11 digits) INTEGER VARIABLE

COMP or COMP-1 BINARY (1 to 11 digits) LOGICAL VARIABLE

COMP-5 DOUBLE DOUBLE PRECISION
VARIABLE

COMPLEX VARIABLE

SECTION SECTION SUBROUTINE

FUNCTION

SECTION + 2 PARAMETERS
(DISPLAY LOWERBOUNDS +
LEVEL 77)

SECTION + 2 PARAMETERS
(DISPLAY LOWERBOUNDS +
LEVEL 77)

FILE FILE FILE

DIRECT FILE DIRECT FILE

COBOL-FORTRAN Interlanguage Binding

5–42 8600 0304–301

Global Items
Only files and FORTRAN subprograms can be shared globally between COBOL and
FORTRAN. Files in FORTRAN are given the internal name, FILEnn, where nn is a 1-digit
or 2-digit number (without a leading zero) that refers to the unit number in a FORTRAN
I/O statement.

For example, a WRITE(6,1) statement in a FORTRAN subroutine writes to FILE6. To share
a common file with FORTRAN, a COBOL file must be named and declared accordingly.

Parameters
The following restrictions apply when passing parameters between COBOL and
FORTRAN:

• You can pass only arrays and simple variables (declared as 77-level items in COBOL)
as parameters between FORTRAN and COBOL.

• You must declare COBOL array parameters as REAL or BINARY in COBOL74 and
COBOL85, or COMPUTATIONAL in COBOL68, because FORTRAN works only with
word-oriented arrays.

• When passing an array from FORTRAN to COBOL, include a LOWER-BOUNDS clause
in the 01-level description for the array. When passing an array from COBOL to
FORTRAN, you must also include a LOWER-BOUNDS clause in the LOCAL-STORAGE
SECTION description of the formal parameters.

• COBOL always assumes that the lower bound of an array that is passed or received is
0 (zero).

• Unpredictable results can occur if you pass to COBOL a FORTRAN subscripted
variable with a value other than 0 (zero).

• You should pass only the first array appearing in a FORTRAN common block to
COBOL. Otherwise, results are unpredictable.

• You cannot pass subroutines and functions as parameters between COBOL and
FORTRAN.

• Binder allows a procedure with unknown parameters to match and bind with a
procedure of the same name with either known or unknown parameters.

COBOL-FORTRAN77 Interlanguage Binding

8600 0304–301 5–43

COBOL-FORTRAN77 Interlanguage Binding
COBOL-FORTRAN77 interlanguage binding consists of binding either a COBOL program
into a FORTRAN77 host program or a FORTRAN77 subprogram into a COBOL host
program. Table 5–11 matches identifier types between COBOL and FORTRAN77.

Table 5–11. Corresponding Identifier Types between COBOL and FORTRAN77

COBOL COBOL74 FORTRAN77

COMP OCCURS REAL OCCURS REAL ARRAY/COMMON
BLOCK

COMP OCCURS BINARY OCCURS INTEGER ARRAY/COMMON
BLOCK

COMP OCCURS BINARY OCCURS LOGICAL ARRAY/COMMON
BLOCK

COMP-2

ASCII

DISPLAY DISPLAY CHARACTER COMMON
BLOCK

DISPLAY LOWERBOUNDS +
LEVEL 77

DISPLAY LOWERBOUNDS +
LEVEL 77

CHARACTER
ARRAY/CHARACTER
VARIABLE

DOUBLE PRECISION ARRAY

COMPLEX ARRAY

COMP-4 REAL REAL VARIABLE

COMP or COMP-1 BINARY (1 to 11 digits) INTEGER VARIABLE

COMP or COMP-1 BINARY (1 to 11 digits) LOGICAL VARIABLE

COMP-5 DOUBLE DOUBLE PRECISION
VARIABLE

COMPLEX VARIABLE

SECTION SECTION SUBROUTINE/MAIN
PROGRAM

FUNCTION

SECTION + 2 PARAMETERS
(DISPLAY LOWERBOUNDS +
LEVEL 77)

SECTION + 2 PARAMETERS
(DISPLAY LOWERBOUNDS +
LEVEL 77)

CHARACTER FUNCTION

FILE FILE FILE

DIRECT FILE DIRECT FILE

COBOL-FORTRAN77 Interlanguage Binding

5–44 8600 0304–301

Global Items
Only files and FORTRAN77 subprograms can be shared globally between COBOL and
FORTRAN77. Files in FORTRAN77 are given the internal name, FILEnn, where nn is a 1-
digit or 2-digit number (without a leading zero) that refers to the unit number in a
FORTRAN77 I/O statement. For example, a WRITE(6,1) statement in a FORTRAN77
subroutine writes to FILE6. To share a common file with FORTRAN77, a COBOL file must
be named and declared accordingly.

You can simulate a character function in COBOL with a COBOL section that has two
leading parameters. These parameters must be a DISPLAY array with the LOWER-
BOUNDS clause and a 77-level item declared BINARY in COBOL74 and COBOL85, or
COMP-1 in COBOL68. The second parameter corresponds to the character length of the
character function.

Parameters
The following restrictions apply to parameters passed between FORTRAN77 and COBOL:

• You can pass only simple characters, arrays, and variables (declared as 77-level items
in COBOL) as parameters between FORTRAN77 and COBOL.

• When passing an array from FORTRAN77 to COBOL, include a LOWER-BOUNDS
clause in the 01-level description for the array. When passing an array from COBOL to
FORTRAN77, you must also include a LOWER-BOUNDS clause in the LOCAL-
STORAGE SECTION description of the formal parameters.

• COBOL always assumes that the lower bound of an array that is passed or received is
0 (zero).

• Unpredictable results can occur if you pass to COBOL a FORTRAN77 subscripted
variable with a value other than 0 (zero).

• You should pass only the first array appearing in a FORTRAN77 common block to
COBOL. Otherwise, the results are unpredictable.

• All FORTRAN77 character variables are stored in a character pool. You should pass to
COBOL only the first FORTRAN77 character variable in the pool. Otherwise, the
results are unpredictable.

• You cannot pass subroutines and functions as parameters between COBOL and
FORTRAN77.

• Binder allows a procedure with unknown parameters to match and bind with a
procedure of the same name with either known or unknown parameters.

Example of Passing a FORTRAN77 Character Variable to a
COBOL74 Section

The following example shows a FORTRAN77 host program, a COBOL subprogram, and
the Binder input file used to bind them together. The WFL job used to compile each
program appears in bold type.

COBOL-FORTRAN77 Interlanguage Binding

8600 0304–301 5–45

FORTRAN77 Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE F77/HOST WITH FORTRAN77 LIBRARY;
 FORTRAN77 DATA
$ SET BINDINFO
 CHARACTER*7 C
 CALL SUB (C)
 PRINT *,C
 END
? END JOB.

COBOL Subprogram

? BEGIN JOB COMPILE/COBOL74;
 COMPILE COBOL74/SUB COBOL74 LIBRARY;
 COBOL74 DATA
 $ SET LEVEL = 3
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. A-15.
 OBJECT-COMPUTER. A-15.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 COBARY DISPLAY LOWER-BOUNDS RECEIVED BY REFERENCE.
 03 DUMMY PIC X(1) OCCURS 7 TIMES.
 01 FAKEIT REDEFINES COBARY.
 03 NUMB PIC X(7).
 77 LEN BINARY PIC 9(11).
 PROCEDURE DIVISION USING COBARY, LEN.
 CB SECTION.
 STORE-VALUE.
 MOVE "ABCDEFG" TO NUMB.
? END JOB.

Binder Input File

? BEGIN JOB BIND/COBOL74;
 BIND PROG BINDER LIBRARY;
 BINDER DATA
 HOST IS F77/HOST;
 BIND SUB FROM COBOL74/SUB;
 USE SUB FOR CB;
? END JOB.

The result of the bind is an object file titled PROG. When executed, PROG generates the
following output:

ABCDEFG

COBOL-Pascal Interlanguage Binding

5–46 8600 0304–301

COBOL-Pascal Interlanguage Binding
COBOL-Pascal interlanguage binding consists of binding a COBOL subprogram into a
Pascal host program. Table 5–12 matches identifier types between COBOL and Pascal.

Table 5–12. Corresponding Identifier Types between COBOL and Pascal

COBOL COBOL74 Pascal

COMP OCCURS REAL OCCURS array of real

array of record

array of set

array of vlstring

array of packed array

array of explicit type

long set (> 48 elements in set)

record

vlstring

explicit record (by-value)

packed array of real

packed array of set

packed array of record

packed array of vlstring

continued

COBOL-Pascal Interlanguage Binding

8600 0304–301 5–47

Table 5–12. Corresponding Identifier Types between COBOL and Pascal (cont.)

COBOL COBOL74 Pascal

COMP OCCURS BINARY OCCURS array of integer

array of char

array of enumeration

array of fixed (n < 12)

array of sfixed (n < 12)

array of integer subrange

array of char subrange

array of enumeration subrange

packed array of integer

packed array of fixed (n < 12)

packed array of sfixed (n < 12)

packed array of subrange

 (> 256 elements in subrange)

packed array of enumeration

 (> 256 elements in enumeration)

COMP OCCURS BINARY OCCURS array of Boolean

array of fixed (n > 11)

array of sfixed (n > 11)

packed array of fixed (n > 11)

packed array of sfixed (n > 11)

array of fixed (n > 11)array of sfixed (n > 11)

packed array of fixed (n > 11)

packed array of sfixed (n > 11)

continued

COBOL-Pascal Interlanguage Binding

5–48 8600 0304–301

Table 5–12. Corresponding Identifier Types between COBOL and Pascal (cont.)

COBOL COBOL74 Pascal

COMP-2 hex (n)

digits (n)

s_digits (n)

digits_s (n)

Boolean1

Boolean4

packed array of Boolean

packed array of subrange

 (0-16 elements in subrange)

packed array of enumeration

 (0-16 elements in enumeration)

DISPLAY DISPLAY bits (n)

binary (n)

u_display (n)

z_display (n)

display_z (n)

s_display (n)

display_s (n)

word48 (n)

word96 (n)

integer48

integer96

real48

explicit record (var)

packed array of char

packed array of subrange

 (17-256 elements in subrange)

packed array of enumeration

 (17-256 elements in enumeration)

continued

COBOL-Pascal Interlanguage Binding

8600 0304–301 5–49

Table 5–12. Corresponding Identifier Types between COBOL and Pascal (cont.)

COBOL COBOL74 Pascal

COMP-4 REAL real

short set

 (1-48 elements in set)

COMP OR COMP-1 BINARY (1 to 11
digits)

integer

char

enumeration

fixed (n < 12)

sfixed (n < 12)

integer subrange

char subrange

enumeration subrange

COMP OR COMP-1 BINARY (1 to 11
digits)

Boolean

Boolean subrange

COMP-5 DOUBLE fixed (n > 11)

sfixed (n > 11)

SECTION SECTION procedure

function : real

function : integer

function : char

function : enumeration

function : fixed (n < 12)

function : sfixed (n < 12)

function : integer subrange

function : char subrange

function : enumeration subrange

function : Boolean

function : Boolean subrange

function : fixed (n > 11)

function : sfixed (n > 11)

COBOL-Pascal Interlanguage Binding

5–50 8600 0304–301

Global Items
You can share global items between Pascal and COBOL. If a COBOL subprogram is to
reference a global variable in a Pascal host program, you must declare the variable by
using the GLOBAL clause or the GLOBAL compiler control option in the COBOL
subprogram.

When binding global items from a COBOL subprogram into a Pascal host program, you
must write a Pascal module heading that describes the COBOL subprogram in Pascal
terms. You include COBOL global variables in the export declaration of the Pascal module
heading as shown in the following portion of Pascal syntax:

MODULE m EXTERNAL;
 EXPORT int(a, p);
 VAR a : integer;
 PROCEDURE p (var param : integer);
 END;

The EXTERNAL directive indicates that the module is written in a language other than
Pascal. When a Pascal host program is compiled with modules that are declared with the
EXTERNAL directive or modules that use other modules that are declared as EXTERNAL,
the Pascal compiler creates a BINDERINPUT file. This file contains a set of suggested
commands for Binder to use when binding the procedures compiled in the other language.

For example, when binding a COBOL subprogram into a Pascal host program, the Pascal
compiler puts USE statements in the BINDERINPUT to equate variable identifiers in
Pascal and COBOL. The USE statements are necessary because the Pascal compiler
names the Pascal identifier by assigning the module name followed by a slash (/) and the
COBOL identifier name.

For example, assuming that the external module is named m and the COBOL variables are
declared as a and p, as in the preceding example, the BINDERINPUT file would contain
the following Binder USE statement:

USE M/A FOR A;
USE M/P FOR P;

There might be times when you need to edit the BINDERINPUT file. The internal name of
the file for file equation is BINDERINPUT.

For more information about the BINDERINPUT file, the EXTERNAL directive, and
modules, refer to the Pascal Reference Manual, Volume 1.

Parameters
The following restrictions apply when passing parameters between Pascal and COBOL:

• When passing a word-oriented variable or array (integer, real, or Boolean) between
Pascal and COBOL68, declare the word-oriented entity as COMPUTATIONAL in the
COBOL68 program. You can declare real variables as COMPUTATIONAL-4.

COBOL-Pascal Interlanguage Binding

8600 0304–301 5–51

• In a COBOL74 program, you must declare a real array or variable as REAL, and an
integer or Boolean array or variable as BINARY.

• You cannot pass text files between Pascal and COBOL.

• You can pass standard files between COBOL and Pascal; however, you must declare in
the Pascal host program the files that can be passed. Refer to the example following
this discussion to see the code for a Pascal host program that passes standard files.
For more information on Pascal file syntax, refer to the Pascal Reference Manual,

Volume 1.

• Binder allows a procedure with unknown parameters to match and bind with a
procedure of the same name with either known or unknown parameters.

Example of Binding a COBOL74 Procedure Into a Pascal Host
Program

The following example shows how a Pascal program can incorporate a module written in
another language. The module heading describes a COBOL74 procedure with one global
variable to be bound into a Pascal program or module. The WFL job used to compile each
program appears in bold type.

Pascal Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE PASCAL/HOST WITH PASCAL LIBRARY;
 PASCAL DATA CARD
 MODULE m EXTERNAL;
 EXPORT int(a, p);
 VAR a : integer;
 PROCEDURE p(var param : integer);;
 END;
 PROGRAM prog;
 IMPORT int;
 VAR i : integer;
 BEGIN
 p(i);
 DISPLAY (concat ('value of i is ',string(i)));
 DISPLAY (concat ('value of a is ',string(a)));
 END.
 ? END JOB.

The Pascal compiler produces the following BINDERINPUT file. You can use this file to
bind the Pascal host program, PASCAL/HOST, and the COBOL subprogram, OBJECT/M.

$ RESET LIST
USE M/A FOR A;
USE M/P FOR P;
BIND
 M/P,
 DUMMY FROM OBJECT/M;
HOST IS PASCAL/HOST;

COBOL-Pascal Interlanguage Binding

5–52 8600 0304–301

COBOL74 Subprogram

? BEGIN JOB MODULE/BODY;
 COMPILE OBJECT/M WITH COBOL74 LIBRARY;
 COBOL74 DATA CARD
 $ SET LEVEL = 3
 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 A PIC S9(11) GLOBAL BINARY.
 77 I PIC S9(11) LOCAL BINARY RECEIVED BY REFERENCE.
 PROCEDURE DIVISION USING I.
 LBL.
 DISPLAY "CALL ON SUBPROGRAM EXECUTED".
 MOVE 111 TO I.
 MOVE 399 TO A.
 EXIT PROCEDURE.
? END JOB.

When executed, the bound program generates the following output:

CALL ON SUBPROGRAM EXECUTED
value of i is 111
value of a is 399

Example of Binding a COBOL Procedure Into a Pascal Host
Program

The following example shows a Pascal host program that has a procedure bound into it. In
this example, the formal parameter (f) represents a COBOL file. In the Pascal host
program, this formal parameter is compatible with any standard file parameter. For this
example, FILE OF char is the standard file parameter. Note that the Pascal buffer variable
f@ is not affected by any input or output that occurs during the execution of the bound-in
procedure.

MODULE m EXTERNAL;
 EXPORT i(p);
 PROCEDURE p (VAR f: stdfile)
END;
PROGRAM p;
 IMPORT i;
 TYPE tf= FILE OF char;
 VAR myf: tf;
BEGIN
 p(myf)
END.

FORTRAN-FORTRAN77 Interlanguage Binding

8600 0304–301 5–53

FORTRAN-FORTRAN77 Interlanguage Binding
FORTRAN-FORTRAN77 interlanguage binding consists of binding a FORTRAN
subprogram into a FORTRAN77 host program or binding a FORTRAN77 subprogram into a
FORTRAN host program. You cannot bind a FORTRAN77 subroutine with a label
parameter into a FORTRAN host program.

Table 5–13 matches identifier types between FORTRAN and FORTRAN77.

Table 5–13. Corresponding Identifier Types between FORTRAN and
FORTRAN77

FORTRAN FORTRAN77

REAL ARRAY/COMMON BLOCK REAL ARRAY/COMMON BLOCK

INTEGER ARRAY/COMMON BLOCK INTEGER ARRAY/COMMON BLOCK

LOGICAL ARRAY/COMMON BLOCK LOGICAL ARRAY/COMMON BLOCK

DOUBLE PRECISION ARRAY/COMMON BLOCK COMMON BLOCK

COMPLEX ARRAY/COMMON BLOCK COMMON BLOCK

CHARACTER COMMON BLOCK

CHARACTER ARRAY/CHARACTER VARIABLE

DOUBLE PRECISION ARRAY

COMPLEX ARRAY

REAL VARIABLE REAL VARIABLE

INTEGER VARIABLE INTEGER VARIABLE

LOGICAL VARIABLE LOGICAL VARIABLE

DOUBLE PRECISION VARIABLE DOUBLE PRECISION VARIABLE

COMPLEX VARIABLE COMPLEX VARIABLE

SUBROUTINE SUBROUTINE/MAIN PROGRAM

FUNCTION FUNCTION

CHARACTER FUNCTION

FILE FILE

FORTRAN-FORTRAN77 Interlanguage Binding

5–54 8600 0304–301

Subprograms
A FORTRAN subprogram can be a FORTRAN subroutine or function. A FORTRAN77
subprogram can be a FORTRAN77 main program, subroutine, function, or block data
subprogram.

A FORTRAN77 main program is compatible with a FORTRAN subroutine that has no
parameters. Thus, you can bind a FORTRAN77 main program into a FORTRAN77 host
program by replacing the main program with a separately compiled FORTRAN subroutine.

Use the following Binder syntax to indicate the title of the file containing the FORTRAN
subroutine and to indicate the name of the FORTRAN subroutine to use in place of the
FORTRAN77 main program, .MAIN.:

BIND .MAIN. FROM <file specifier>
USE .MAIN. FOR <identifier>

Unlike FORTRAN77 main programs, FORTRAN main programs cannot be bound or
replacement bound by a host program.

Exported subroutines and functions can be replacement bound. It is not possible to add
new exported program units to a host program.

Common Blocks
FORTRAN77 arithmetic common blocks correspond to FORTRAN common blocks.
However, FORTRAN77 accesses the common block only through a single-precision
descriptor and is not affected by odd offsets.

When a common block is bound, its resulting length is the longest of all the lengths
declared for that block in the host program and bound subprograms, unless the
FORTRAN77 compiler control option CODEFILEINIT is set in the host program.

Any common block that has been code file initialized cannot be extended.

Parameters
FORTRAN77 double-precision and complex arrays are passed to subprograms as single-
precision descriptors. The array elements do not have to be on even-word boundaries. For
this reason, the FORTRAN77 arrays do not correspond to any FORTRAN array and, thus,
cannot be passed as parameters between the two languages. (In some cases, you can
override this restriction by using the DOUBLEARRAYS compiler control option described
in the FORTRAN77 Reference Manual.)

You cannot pass subroutines and functions as parameters between FORTRAN77 and
FORTRAN.

Binder allows a procedure with unknown parameters to match and bind with a procedure
of the same name with either known or unknown parameters.

FORTRAN-FORTRAN77 Interlanguage Binding

8600 0304–301 5–55

Characters
FORTRAN77 character variables, character arrays, and character common blocks do not
correspond to any FORTRAN data structure.

Libraries
You can bind or replacement bind subroutines and functions into a host program that
references libraries. You can also add libraries to the host program.

When compiling subprograms, declare all libraries used by the subprograms before the
first executable program unit.

Libraries in subprograms to be bound to a host program do not have to be explicitly
declared in the host program. If libraries are not declared in the host program, Binder
builds a library template from the binding information in the subprogram file. Once the
template is built, Binder can add library objects not explicitly declared in the host.

Subprograms that do not reference libraries can be bound into host programs that
reference libraries or that are themselves libraries.

FORTRAN describes all simple variable arguments to imported subprograms as call-by-
reference. FORTRAN77 describes them as call-by-name. When calling a library object,
Binder allows call-by-reference and call-by-name arguments to match at run time.

FORTRAN-FORTRAN77 Interlanguage Binding

5–56 8600 0304–301

Example of Binding a FORTRAN Common Block Into a FORTRAN77
Host Program

The following example shows a FORTRAN77 host program, a FORTRAN subprogram, and
the Binder input file used to bind them together. The WFL job used to compile each
program appears in bold type.

FORTRAN77 Host Program

? BEGIN JOB COMPILE/HOST;
 COMPILE F77/HOST WITH FORTRAN77 LIBRARY;
 FORTRAN77 DATA
$ SET BINDINFO
 COMMON A,B,C,D
 DATA A,B,C,D /1,1,1,1/
 CALL SUB
 WRITE (6,*) A,B,C,D
 END
? END JOB.

FORTRAN Subprogram

? BEGIN JOB COMPILE/FORTRAN;

 COMPILE FORTRAN/SUB FORTRAN LIBRARY;
 FORTRAN DATA
$ SET SEPARATE
 SUBROUTINE SUB
 COMMON ONE, TWO
 DOUBLE PRECISION ONE, TWO
 TWO = 2
 END
? END JOB.

Binder Input File

? BEGIN JOB BIND/CHARACTERS;
 BIND PROG BINDER LIBRARY;
 BINDER DATA
 HOST IS F77/HOST;
 BIND = FROM FORTRAN/=;
? END JOB.

The result of the bind is an object file titled PROG. When executed, PROG generates the
following output:

2*1.0 2.0 0.0

FORTRAN-FORTRAN77 Interlanguage Binding

8600 0304–301 5–57

Example of Interlanguage Binding Involving FORTRAN77,
COBOL74, and ALGOL

The following is a complex example of interlanguage binding. The host program is a
FORTRAN77 program that passes an array as a parameter to a COBOL74 program. The
COBOL74 program calls an ALGOL procedure, that in turn calls another COBOL74
program. The WFL job used to compile each program appears in bold type.

FORTRAN77 Host Program

The WFL job compiles and saves the program.

? BEGIN JOB COMPILE/HOST;
 COMPILE FORTRAN77/HOST FORTRAN LIBRARY;
 FORTRAN77 DATA
 DIMENSION A(7)

C PLACE ALPHABET IN A(1)-A(5)
 CALL MOVE (A(1),"ABCDEFGHIJKLMNOPQRSTUVWXYZ ",30)

C NOW CALL THE COBOL PROGRAM
 CALL COBPRO(A)
 STOP
 END
? END JOB.

COBOL74 Subprogram

The following WFL job compiles the COBOL74 program called from the FORTRAN77 host
program and saves it in the file named SEP/COBPRO.

? BEGIN JOB COMPILE/SEP/COBPRO;
 COMPILE SEP/COBPRO COBOL74 LIBRARY;
 COBOL74 DATA
 $ SET LEVEL = 3
 IDENTIFICATION DIVISION.
 PROGRAM-ID. NUMBERS.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. A-15.
 OBJECT-COMPUTER. A-15.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 COBARY COMP LOWER-BOUNDS REFERENCE.
 03 DUMMY PIC 9(11) OCCURS 7 TIMES.
 01 FAKEOUT REDEFINES COBARY.
 03 FILLER PIC X(30).
 03 NUMB PIC X(12).
 LOCAL-STORAGE SECTION.
 LD PASS.
 01 LARY COMP.
 O3 OTHER-DUMMY PIC 9(11) OCCURS 7 TIMES.

FORTRAN-FORTRAN77 Interlanguage Binding

5–58 8600 0304–301

 PROCEDURE DIVISION USING COBARY.
 DECLARATIVES.
 A1 SECTION.
 USE EXTERNAL PROCEDURE WITH PASS USING LARY.
 END DECLARATIVES.
 S1 SECTION.
 PUT-IN-NUMBERS.
 MOVE "0123456789 " TO NUMB.
 ENTER A1 USING COBARY.
? END JOB.

ALGOL Subprogram

The following WFL job compiles the ALGOL procedure called from the COBOL program
and saves it in the file named SEP/ALG.

? BEGIN JOB COMPILE/SEP/ALG;
 COMPILE SEP/ALG ALGOL LIBRARY;
 ALGOL DATA
 [PROCEDURE COBPRINT(A,B); ARRAY A,B[0]; EXTERNAL;]
$ SET LEVEL 4
 PROCEDURE ALG (ARGOLD);
 ARRAY ARGOLD[0];
 BEGIN
 INTEGER M;
 ARRAY ARGNU [0;6];
 POINTER PN,PO,POT;
 PO := POT := POINTER(ARGOLD[6])+5;
 PN := POINTER(ARGNU);
 FOR M := 0 STEP 1 UNTIL 41 DO
 BEGIN
 PO := POT-M;
 REPLACE PN+M BY PO FOR 1;
 END;
 COBPRINT(ARGOLD,ARGNU);
 END;
? END JOB.

COBOL74 Subprogram

The following WFL job compiles the COBOL74 program called from the ALGOL procedure
and saves it in the file named SEP/COBPRINT.

? BEGIN JOB COMPILE/SEP/COBPRINT;
 COMPILE SEP/COBPRINT COBOL74 LIBRARY;
 COBOL74 DATA
 $ SET LEVEL = 3
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PRINT/ARRAYS.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. A-15.
 OBJECT-COMPUTER. A-15.

FORTRAN-FORTRAN77 Interlanguage Binding

8600 0304–301 5–59

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT PR ASSIGN TO PRINTER.
 DATA DIVISION.
 FILE SECTION.
 FD PR.
 01 PR-RCD PIC X(42).
 WORKING-STORAGE SECTION.
 01 A COMP REFERENCE.
 03 DUMMY PIC 9(11) OCCURS 7 TIMES.
 01 B COMP REFERENCE.
 O3 OTHER-DUMMY PIC 9(11) OCCURS 7 TIMES.
 PROCEDURE DIVISION USING A B.
 CB SECTION.
 OPEN-PR.
 OPEN OUTPUT PR.
 WRITE PR-RCD FROM A.
 WRITE PR-RCD FROM B.
? END JOB.

Binder Input File

The four files are then bound and executed by the following WFL job:

? BEGIN JOB BIND/EXAMPLE/PROG;
 BIND EXAMPLE/PROG BINDER;
 BINDER DATA
 HOST IS FORTRAN77/HOST;;
 USE A1 FOR ALG;
 BIND A1 FROM SEP/ALG;
 BIND = FROM SEP/=;
 STOP;
? END JOB.

The result of the bind is an object file named EXAMPLE/PROG. When executed,
EXAMPLE/PROG generates the following output:

ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789
 9876543210 ZYXWVUTSRQPONMLKJIHGFEDCBA

FORTRAN-FORTRAN77 Interlanguage Binding

5–60 8600 0304–301

8600 0304–301 6–1

Section 6
Binding Intrinsics

This section provides the information you need to compile, bind, and access an intrinsic
file. For additional information about intrinsics, refer to the appropriate language manual.

What Is an Intrinsic?
An intrinsic is a program routine that performs common mathematical and other
operations. An intrinsic file consists of standard system intrinsics such as SIN, SQRT, and
formatting routines, as well as user-written intrinsics commonly referred to as installation

intrinsics.

Although intrinsics can be written only in ALGOL, COBOL, and FORTRAN, almost any
language that defines binding can access an intrinsic file. All compilers automatically
recognize and access standard system intrinsics. COBOL and PL/I programs can
automatically access installation intrinsics as well. FORTRAN and ALGOL programs must
be compiled with the INSTALLATION compiler control option set in order to access
installation intrinsics.

Compiling Intrinsics
When compiling an intrinsic, observe the following requirements:

• You must set the INTRINSICS compiler control option for all compilations.

• When compiling ALGOL and FORTRAN programs that access installation intrinsics,
you must set the INSTALLATION compiler control option.

• When compiling an intrinsic in COBOL, you cannot reference global items.

• When compiling an intrinsic in DCALGOL, you can only reference other intrinsics or
Master Control Program (MCP) items.

Binding Intrinsics

6–2 8600 0304–301

Creating a Binder Input File
To bind an intrinsic, you must create a Binder input file that includes the following:

• A $SET INTRINSICS Binder control record.

• A BIND statement specifying the source file or files for standard system intrinsics.
Using the BIND‚= form of the BIND statement causes Binder to look for all the
standard system intrinsics whose names and intrinsic numbers are tabulated within
Binder.

• One or more BIND statements that specify the installation intrinsics.

Once an intrinsic is bound into an intrinsic file, you cannot alter the intrinsic number, type
of subprogram, or parameters by performing replacement binding. If you need to modify
any of these items in an installation intrinsic, you must specify the necessary changes, and
then bind the intrinsic into a new intrinsic file. To modify a standard system intrinsic, you
must update the Binder internal tables and create a new intrinsic file.

Binding Intrinsics

8600 0304–301 6–3

Intrinsic Specification
Use the intrinsic specification construct with the BIND statement to bind installation
intrinsics.

Syntax

<intrinsic specification>

ÄÄ <subprogram identifier> ÄÄ = ÄÄ <intrinsic number pair> ÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ <language list> ÄÄ´

<intrinsic number pair>

ÄÄ <integer> ÄÄ , ÄÄ <integer> ÄÄ´

<language list>

 ÚêÄÄÄÄÄÄ , ÄÄÄÄÄ¿
ÄÄ (ÄÁÄÂÄ ALGOL ÄÄÄÂÄÁÄ) ÄÄ´
 ÃÄ COBOL ÄÄÄ´
 ÃÄ DCALGOL Ä´
 ÃÄ FORTRAN Ä´
 ÃÄ NEWP ÄÄÄÄ´
 ÀÄ PL/I ÄÄÄÄÙ

Explanation

<intrinsic number pair> Specifies an installation number and an intrinsic
number. The first integer of the intrinsic number pair
metatoken specifies an installation number, which
can range in value from 0 through 2046; however,
numbers 0 through 99 are reserved for system use.

The second integer specifies an intrinsic number,
which can range in value from 0 through 8191.

No two intrinsics within an intrinsic file can have the
same intrinsic number pair.

<language list> Specifies the compilers that are authorized to
reference a given intrinsic. A referencing language is
not necessarily the same language in which the
intrinsic is written. For example, the DCALGOL
language identifier allows a specified intrinsic to be
accessed by the DMALGOL and DCALGOL
compilers.

Binding Intrinsics

6–4 8600 0304–301

Details

Binder automatically binds standard system intrinsics that are referenced as EXTERNAL
in a program. Thus, you do not need to specify such system intrinsics in a BIND statement.

Example

This example shows a Binder input file that is used to bind intrinsics.

$ SET INTRINSICS
 BIND = FROM INTR/=;
 BIND MYSIN = 101, 1 (ALGOL,FORTRAN) FROM INTL/=;
 BIND COFFEE = 102, 2 (COBOL) FROM POT;
 STOP;

8600 0304–301 7–1

Section 7
Binding Programs That Access
Databases

You can bind programs that access Data Management System II (DMSII) or Semantic
Information Manager (SIM) Databases. To do so, you must declare the database in the
host program and meet the criteria discussed in this section.

Note that the examples in this section illustrate the possible combinations in which the
host program and the subprogram can declare a SIM database for binding. These examples
are not complete and cannot be compiled as shown. Comments are placed within the
examples to indicate portions of missing code.

References made to compiler in the examples in this section refer to the language
compiler used to compile the host program and the subprogram.

Binding DMSII Databases
You can bind subprograms that access DMSII databases to host programs compiled with
ALGOL, COBOL85, COBOL74, COBOL68, and PL/I compilers. Observe the following
requirements:

• The database code files must be compiled with a Mark 3.5 or later compiler.

• You must declare the DMSII database in the host program.

• The host program must invoke all the database structures that it references, as well as
all the database structures referenced in the subprograms it is attempting to bind.

• You must declare the DMSII database as global in all subprograms that access the
database.

• A database invocation in a subprogram must include the same structures in the same
order as the host database invocation, regardless of whether the subprogram accesses
a particular structure.

• You must compile the host program and all subprograms with the same DMSII
description file. If making a DASDL update or reorganization requires you to
recompile a component that accesses the database, then you must recompile all of the
components that access the database, even if a particular component accesses an
unchanged portion of the database.

Binding SIM Databases

7–2 8600 0304–301

Binding SIM Databases
You can bind subprograms that access SIM databases to host programs compiled in
ALGOL, COBOL74, and Pascal. (Pascal programs can serve only as host programs.) You
can bind subprograms that reference the following elements:

• A database declared in the host program

• An entity reference variable declared in the host program

• A query variable declared in the host program

Binder performs type checking of the variables for compatibility.

For an explanation of SIM concepts and instructions for using SIM, refer to the InfoExec

Administration Guide and the InfoExec Semantic Information Manager (SIM)

Programming Guide.

SIM Data Types
Binder recognizes three data types when binding programs that use SIM databases: the
DMRECORD variable, the entity reference variable, and the query variable. Before binding
programs, Binder verifies that these data types reference the same class in the same
database. The three data types are as follows:

• DMRECORD

 A DMRECORD is made up of fields that hold information retrieved from SIM. You can
bind DMRECORDs to each other.

• Entity reference variable

 An entity reference variable refers to an entity with the attributes of a given database
class.

 The compiler queries SIM about this database class and gets information about the
format of the entity reference variable. The format determines the number of words
that are allocated for this variable. If a subprogram references an entity reference
variable, the variable must be declared in the global declarations and must be
preceded by the database declaration.

• Query variable

 A query variable represents an active query and contains information about the state
of a query.

The compiler queries SIM when class information is required. The class information is
stored in the binding information of the code file.

If the subprogram declares the query variable in the global declarations, the database
declaration must precede the query variable declaration.

If the query variable is associated with a DMRECORD, the DMRECORD must be declared
before the query variable. Binder verifies that the host program and the subprogram query
variables reference the same database class or DMRECORD.

Binding SIM Databases

8600 0304–301 7–3

Referencing a SIM Database
You must declare a SIM database in the host program and in the subprogram. When the
compiler encounters the database declarations, it generates a SIM library template in the
outer block of the host program and generates a SIM library template in the subprogram.
These templates import all the library objects in the SIM system.

Binder changes all code references of the SIM library objects in the subprogram to match
the SIM library objects in the host program. The following example shows the SIM library
template generated by the compiler and the SIM library objects in the subprogram that
Binder will change to match those of the host program.

Example

Host Program H1

 BEGIN
 SEMANTIC DATABASE UNIVDB:(INSTRUCTOR,STUDENT);

 (2,2) = FUNNY SIRW % These lines of code for
 (2,3) = SUPPORT LIBRARY TEMPLATE % the SIM library template
 (2,4) = LIBRARY TEMPLATE MARKER % are generated by the
 % compiler.
 (2,5) = SUPPORT LIBRARY PROCEDURE %
 . % Several support library
 . % procedures generated by
 . % the compiler are bound.
 (2,15) = SUPPORT LIBRARY PROCEDURE %
 . % Other data structures
 . % are generated by the
 . % compiler and placed here.

 PROCEDURE REPLACE_ME (R);
 (2,1B) = REPLACE_ME
 REAL R;
 EXTERNAL;

 OPEN UNIVDB;

 % Additional program statements
 % could be included here.
 DELETE STUDENT WHERE CURRENT(STUQ) = STU;
 REPLACE_ME (10);
 CLOSE UNIVDB;
 END.

Subprogram S1

 [REAL I, J; % Global
 SEMANTIC DATABASE UNIVDB:(INSTRUCTOR,STUDENT);] % declaration

 (2,4) = FUNNY SIRW % These lines of code for
 (2,5) = SUPPORT LIBRARY TEMPLATE % the SIM library template

Binding SIM Databases

7–4 8600 0304–301

 (2,6) = LIBRARY TEMPLATE MARKER % are generated by the
 % compiler.
 (2,7) = SUPPORT LIBRARY PROCEDURE %
 . % Several support library
 . % procedures generated by
 . % the compiler are bound.
 (2,17) = SUPPORT LIBRARY PROCEDURE %

 PROCEDURE REPLACE_ME (R1);
 (2,1D) = REPLACE_ME
 REAL R1;
 BEGIN
 DELETE INSTRUCTOR WHERE SALARY > R1;
 END;

In the preceding example, the host program, H1, declares a SIM database in the outer
block and an external procedure, REPLACE_ME, to be bound. The compiler builds the
SIM library template.

The subprogram S1 declares REPLACE_ME, which references the database. The compiler
builds the SIM library template for the subprogram. However, the stack locations in the
subprogram for the SIM library objects and the procedure do not match the stack
locations for those elements in the host program. Binder fixes these code references in the
subprogram so that they match those in the host program. For example, Binder changes
the stack location (2,D) of the procedure REPLACE_ME in the subprogram to match the
stack location (2,B) of the procedure REPLACE_ME in the host program.

Binding SIM Databases

8600 0304–301 7–5

Referencing a SIM Entity Reference Variable in a Host Program
In this example, the subprogram references an entity reference variable declared in the
host program. The database must be declared before the entity reference declaration in
the global declarations of the host program.

Example

Host Program H2

 BEGIN
 SEMANTIC DATABASE UNIVDB:(STUDENT);
 ENTITY REFERENCE STU_REF (STUDENT);
(2,B) = STU_REF

 PROCEDURE REPLACE_ME (R);
(2,E) = REPLACE_ME
 REAL R;
 EXTERNAL;

 <rest of declarations>

 OPEN UNIVDB;

 <program statements>

 DELETE STUDENT WHERE CURRENT(STUQ) = STU_REF;
 REPLACE_ME (10);
 CLOSE UNIVDB;
 END.

Subprogram S2

 [REAL I, J, K; % Global declaration
 SEMANTIC DATABASE UNIVDB:(STUDENT); %
 ENTITY REFERENCE STU_REF (STUDENT);] %
(2,D) = STU_REF

 PROCEDURE REPLACE_ME (R1);
(2,10) = REPLACE_ME
 REAL R1;
 BEGIN
 DELETE STUDENT WHERE CURRENT(STUQ) = STU_REF;
 END;

In this example, the host program, H2, declares the entity reference variable STU_REF.
The compiler determines whether STUDENT is a valid database class and, if so, allocates
the proper number of stack cells for it. The compiler also supplies class and size
information about STU_REF in the binding information.

Binder also verifies that STU_REF references the same class in the same database in both
the host program and the subprogram. As an added check, Binder verifies the size of

Binding SIM Databases

7–6 8600 0304–301

STU_REF. Binder fixes the code references in the subprogram so that all code references
to STU_REF match those of the host program.

Referencing a SIM Query Variable in a Host Program
In this example, the subprogram references a query variable declared in the host program.
The database and an optional DMRECORD must be declared before the query variable
declaration in the global declarations.

Example

Host Program H3

 BEGIN
 SEMANTIC DATABASE UNIVDB:(STUDENT);
 QUERY STUQ (STUDENT);
(2,B) = STUQ

 PROCEDURE REPLACE_ME (R);
(2,C) = REPLACE_ME
 REAL R;
 EXTERNAL;
 <rest of declarations>

 OPEN UNIVDB;

 <program statements>

 DELETE STUDENT WHERE CURRENT(STUQ) = STU_REF;
 REPLACE_ME (10);
 CLOSE UNIVDB;
 END.

Subprogram S3

 [REAL I, J, K; % Global declaration
 SEMANTIC DATABASE UNIVDB:(STUDENT); %
 QUERY STUQ (STUDENT);] %
(2,D) = STUQ

 PROCEDURE REPLACE_ME (R1);
(2,10) = REPLACE_ME
 REAL R1;
 BEGIN
 DELETE STUDENT WHERE CURRENT(STUQ) = STU_REF;
 END;

In the preceding example, the host program, H3, declares the query variable STUQ. The
compiler determines whether STUDENT is a valid database class and, if so, supplies
information about STUQ in the binding information. The compiler verifies that STUQ
declared in the host program and in the subprogram references the same class (or
DMRECORD) in the same database.

Binding SIM Databases

8600 0304–301 7–7

Binder fixes the code references in the subprogram so that all code references to the
global query variable STUQ match those of the host program.

Adding Query Variables as New Globals
The following example illlustrates how a query variable that does not exist in the host
program can be declared in the global declarations portion of the subprogram. A database
declaration must precede the query variable declaration. If the query variable is associated
with a DMRECORD, the DMRECORD must be declared before the query variable.

When a query variable is declared in this way, Binder adds the query variable as a new
global item and alters all subprogram code references to the query variable to match the
host program code references to that query variable. Locally declared query variables are
unaffected by Binder.

Example

Host Program H8

 BEGIN
 SEMANTIC DATABASE UNIVDB;

 PROCEDURE REPLACE_ME (R);
(2,B) = REPLACE_ME
 REAL R;
 EXTERNAL;

 <remaining declarations>

 OPEN UNIVDB;

 <program statements>

 REPLACE_ME (10);
 CLOSE UNIVDB;
 END.

Subprogram S8

 [REAL I, J, K; %Global declaration
 SEMANTIC DATABASE UNIVDB;
 QUERY STUQ (STUDENT);]
(2,D) = STUQ
 PROCEDURE REPLACE_ME (R1);
(2,E) = REPLACE_ME
 REAL R1;
 BEGIN
 DELETE STUDENT WHERE CURRENT (STUQ) = STU_REF;
 END.

In the preceding example, the subprogram, S8, declares the query variable STUQ. STUQ is
a SIM construct used for querying database information, which is the database class

Binding SIM Databases

7–8 8600 0304–301

STUDENT in this example. The compiler determines if STUDENT is a valid database class
and supplies information about STUQ in the binding information. The compiler also
allocates STUQ as a new global for the host. Binder alters the subprogram code references
to the global query variable STUQ to match the host program code references to that
query variable.

Binding SIM Databases

8600 0304–301 7–9

Referencing a SIM Database in a Pascal Host

To create a host program, the Pascal program must declare an external module. The
variables, procedures, functions, and databases of the host program become visible to an
external subprogram if the following occurs:

• These items are exported by host modules before the declaration of the external
module.

• These items are imported by the EXTERNAL module.

Refer to the Pascal Reference Manual, Volume 1 for more information about compiling
modules in the Pascal host program.

The following example shows a Pascal host program that accesses a SIM database.
Appropriate Pascal syntax is used to enable modules to bind external modules
(subprograms) written in other languages. The Pascal compiler creates a file titled,
BINDERINPUT, which contains Binder instructions to bind the external modules.

Two modules are declared in the example program: data_access and data_user. The
data_access module defines the database and the SIM variables used in the program. The
SIM variables are exported, which makes them available to other modules such as
data_user.

The data_user module is declared external. The export list of this module contains an
ALGOL subprogram, named ALGOL_subroutine, to be bound. The data_user module
imports all the interface identifiers from the data_access module, including the database
and other variables. This makes the database and the variables visible to the external
program.

The implementation section of the data_access module imports the ALGOL subprogram,
ALGOL_SUBROUTINE, and uses it in a function call.

Example

Host Program H4

MODULE DATA_ACCESS INTERFACE
 (univdb: database,
 Mydict: DICTIONARY <FUNCTIONNAME = '39DATADICTIONARY'>);
export data_access (intq, stuq, univdb, ent_ref, dmrec, dostuff);
from univdb import instructor, student;
type stu_rec_type = record
 stu_no : integer;
 end;
 stu_rec = dmrecord (stu_rec_type);
var intq : query (instructor);
 stuq : query (student);
 ent_ref : entityreference (student);
 dmrec : stu_rec;

Binding SIM Databases

7–10 8600 0304–301

procedure dostuff;
end;

module data_user external;
export ALGOL_external (ALGOL_subroutine);
import data_access;
function ALGOL_subroutine: integer;
end;

module data_access implementation;
import ALGOL_external;
var salary_increase : Boolean;
 1imres : dmstatetype;
 int : integer;

procedure dostuff;
var i : integer;
begin
 i := ALGOL_subroutine;
 open(univdb, update);
 begintransaction;
 startinsert (intq);
 If salary_increase then
 assign (intq.salary, 50000);
 applyinsert (intq);
 close (univdb);
end; {End DOSTUFF}
end. {Module implementation}

program p; {Main program}
import data_access;
 begin
 dostuff;
 end;

8600 0304–301 8–1

Section 8
Printing Binding Information

You can compile a program so that it generates the binding information used to bind the
code file to another code file. Binding information consists of a description of the
elements in the code file, such as

• The lex level and code segment location for each procedure

• A description of the items in the local directory of each procedure, including variables
and arrays and their characteristics

• A description of the information in the global directory of a procedure

• A description of the information in an external procedure

• The identification of various other elements, including the block exit pointer, the first
executable code segment, and the global stack size

Generating Binding Information
Language compilers differ slightly in the instructions they require to generate binding
information. These differences are described in the following list:

• ALGOL and FORTRAN

 A program compiled in ALGOL or FORTRAN will have binding information generated
when the NOBINDINFO compiler control option is set to FALSE. The default setting is
FALSE.

• COBOL

 A program compiled in COBOL will have binding information generated if any of the
following conditions exist:

− Its lexical (lex) level is greater than 2.

− It contains a procedure declared as EXTERNAL.

− The BINDINFO compiler control option is set to TRUE.

• FORTRAN77

 A program compiled in FORTRAN77 will have binding information generated when
the BINDINFO compiler control option is set to TRUE.

• Pascal

 A program compiled in Pascal will have binding information generated when a module
is declared as external in the program.

Using the PRINTBINDINFO Utility

8–2 8600 0304–301

Using the PRINTBINDINFO Utility
You can print an analysis of the binding information of a bound or unbound code file by
using a utility named SYSTEM/PRINTBINDINFO (hereafter referred to as the
PRINTBINDINFO utility). The binding information for each separate procedure of a
multiprocedure library file (an ALGOL, FORTRAN, or FORTRAN77 program compiled
with the LIBRARY option set to TRUE) is analyzed and printed. A list of the identifiers in
the separate procedures is written at the beginning of the printed output.

You can start the PRINTBINDINFO utility from a WFL job or from a CANDE session.

The WFL syntax for running PRINTBINDINFO is as follows:

? BEGIN JOB PRINT/BINDER/INFO;
 RUN SYSTEM/PRINTBINDINFO;
 FILE CODE = <code file title>;
 FILE LINE = <line printer output file title>;
? END JOB.

The CANDE syntax for running PRINTBINDINFO is as follows:

RUN $SYSTEM/PRINTBINDINFO; FILE CODE = <code file title>;
FILE LINE = <line printer output file title>

The <code file title> and <line printer output file title> constructs are used in both the
WFL and the CANDE syntaxes.

The <code file title> construct specifies the code file whose binding information is to be
analyzed. Its default file characteristics are as follows:

KIND=PACK, FAMILYNAME="DISK.", FILETYPE=8, INTMODE=SINGLE

The <line printer output file title> construct specifies the output file created by
PRINTBINDINFO when the LIST option is set. Its default file characteristics are as
follows:

KIND=PRINTER, INTMODE=EBCDIC, MAXRECSIZE=22

Note: If you try to run PRINTBINDINFO on a code file that does not contain binding

information, the system generates an error message and terminates execution.

Example

Consider the following ALGOL program:

BEGIN
 INTEGER I;
 REAL ARRAY ARY[0:4,0:9];
 REAL PROCEDURE RP(A);
 VALUE A; BOOLEAN A;
 BEGIN
 INTEGER J;

Using the PRINTBINDINFO Utility

8600 0304–301 8–3

 END RP;
END.

If this program is compiled and its code file is given the title OBJECT/EXAMPLE/1, then
the following CANDE command can be used to run PRINTBINDINFO to print a complete
analysis of the binding information of OBJECT/EXAMPLE/1:

RUN $SYSTEM/PRINTBINDINFO; FILE CODE = OBJECT/EXAMPLE/1

The output produced by PRINTBINDINFO appears as follows:

PROGRAM DESCRIPTION:

 PROCEDURE DIRECTORY **
 PROCEDURE BLOCK#1; LEX LEVEL: H02; CBIT CODE SEGMENT H0003
 LOCAL DIRECTORY
0001 VARIABLE (INTEGER) H(02,0002) I
0002 ARRAY (REAL) H(02,0003) ARY
 NUMBER OF DIMENSIONS: 02
0003 FUNCTION (REAL) H(02,0004) RP
 PARAMETERS
 NUMBER OF PARAMETERS: 01
 VARIABLE (BOOLEAN)
 LIT48 POINTER FOR MAKING PCW: H(0003:0007:3,LL=00)
 PROCEDURE RP; LEX LEVEL: H03; CODE SEGMENT H0005
 LOCAL DIRECTORY
0004 VARIABLE (REAL) H(03,0003) RP.VALUE
0005 VARIABLE (BOOLEAN) H(03,0002) A
0006 VARIABLE (INTEGER) H(03,0004) J
 END OF PROCEDURE DIRECTORY *************************************

 GLOBAL DIRECTORY ******************************
0007 INTRINSIC (REAL) H(01,0004) ?007
0008 INTRINSIC (REAL) H(01,0006) ?010
 END OF GLOBAL DIRECTORY ************************

 BLOCK EXIT POINTER: H(0003:0006:2, LL=02)
 FIRST EXECUTABLE CODE: H(0003:0000:1, LL=02)
 POINTER TO END OF D2 STACK: H(0003:0009:0, LL=00)
 GLOBAL STACK SIZE: 5
 SOFTWARE CONTROL WORD IMAGE: H800000001000

NO EXTERNAL PROCEDURES.

Printing Binding Information for Specific Procedures

8–4 8600 0304–301

Printing Binding Information for Specific Procedures
You can select certain procedures and blocks, and items within those procedures and
blocks for which you want to print the binding information. You make selections by using
a SELECTIDS file.

The SELECTIDS file consists of a list of one or more EBCDIC identifiers separated by one
or more blanks. If a SELECTIDS file is present when PRINTBINDINFO is run, binding
information is analyzed and printed for only the listed items.

If an identifier appears in the SELECTIDS file, information about that identifier is printed
only if one of the following conditions is true:

• The identifier belongs to a procedure or block in the program.

• The identifier is described in the program description outside the global directory and
the own directory.

• The identifier is described in the global directory.

• The identifier is described in the own directory.

• The identifier is described in the local directory of a procedure or block, and the
identifier of that procedure or block also appears in the SELECTIDS file.

For example, if identifier M is declared in procedure P, then information about M is
printed only if both M and P appear in the SELECTIDS file.

If identifier J is declared in the outer block of an ALGOL program, then information about
J is printed only if both J and the identifier of the outer block appear in the SELECTIDS
file.

(The identifier of the outer block of an ALGOL program is BLOCK#1 for programs
compiled with Mark 3.5 and later compilers and B.0000 for programs compiled with
compilers earlier than Mark 3.5.)

The default characteristics for the SELECTIDS file are as follows:

KIND=READER, INTMODE=EBCDIC, FILETYPE = 8

To use a disk file for SELECTIDS, specify KIND=DISK when file-equating.

Example

The following WFL job runs PRINTBINDINFO to analyze OBJECT/EXAMPLE/1, the
ALGOL program shown in the previous example, but restricts the analysis by providing a
SELECTIDS file:

 ? BEGIN JOB RUN/PRINTBINDINFO;
 RUN SYSTEM/PRINTBINDINFO;
 FILE CODE = OBJECT/EXAMPLE/1;
 DATA SELECTIDS
 BLOCK#1
 ARY

Printing Binding Information for Specific Procedures

8600 0304–301 8–5

 J
 ? END JOB.

The output produced by this job appears as follows:

SELECTED IDENTIFIERS:

BLOCK#1
ARY
J

PROGRAM DESCRIPTION:

 PROCEDURE DIRECTORY **
 PROCEDURE BLOCK#1; LEX LEVEL: H02; CBIT CODE SEGMENT H0003
 LOCAL DIRECTORY
0001 ARRAY (REAL) H(02,0003) ARY
 NUMBER OF DIMENSIONS: 02
 END OF PROCEDURE DIRECTORY *************************************

 GLOBAL DIRECTORY ******
 END OF GLOBAL DIRECTORY ******

NO EXTERNAL PROCEDURES.

In this output, no information is printed for J because J is described in the local directory
of the procedure RP, and RP does not appear in the SELECTIDS file. Information about
ARY was printed because ARY appears in procedure BLOCK#1, and BLOCK#1 appears in
the SELECTIDS file.

Output Options

8–6 8600 0304–301

Output Options
You can use the following three options to affect the format of the output from the
PRINTBINDINFO utility. To enable one or more of these options, you must assign a
negative value to the TASKVALUE attribute. To do this, set bit 46 of the TASKVALUE
attribute to 1. In addition, you must set a bit for each specific option as indicated below. A
list of the enabled options appears at the beginning of the printed output.

DEBUG Prints binding information in unanalyzed as well as analyzed
form. To enable the DEBUG option, set bit 0 (zero) of the
TASKVALUE attribute to 1.

IGNORELOCALDIR Prevents local directories from being analyzed and printed.
To enable the IGNORELOCALDIR option, set bit 1 of the
TASKVALUE attribute to 1.

NOREFERENCES Prevents code references from being analyzed and printed.
To enable the NOREFERENCES option, set bit 2 of the
TASKVALUE attribute to 1.

Example

The following CANDE command causes PRINTBINDINFO to analyze the code file,
OBJECT/TEST, with the options IGNORELOCALDIR and NOREFERENCES enabled:

RUN $SYSTEM/PRINTBINDINFO; VALUE=-6; FILE CODE = OBJECT/TEST

8600 0304–301 A–1

Appendix A
Warning and Error Messages

This appendix contains an alphabetical listing of the warning and error messages that you
might encounter when using Binder and provides corrective action when applicable.

A COMPILER ERROR WAS DETECTED AT BINDER LINE NUMBER nnnnnnnn

• Refer this problem to your Customer Service Representative.

A <DIRECTORY SPECIFIER> IS NOT ACCEPTABLE HERE

• This error results when a directory specifier appears in a HOST statement.

A <FILE NODE> WAS EXPECTED IN THIS FILE NAME

• There is an error in the format of the file name.

A GLOBAL VARIABLE (THAT WAS REFERENCED FROM AN INTRINSIC BEING

BOUND) COULD NOT BE FOUND. USE A BIND STATEMENT

• An intrinsic being bound to an intrinsic file references a global variable that

− Is not an MCP global item

− Is not initialized to a correct address couple by an INITIALIZE statement

− Does not already exist in the intrinsic file

− Is not specified to be bound on a BIND statement

A LEFT PARENTHESIS IS MISSING HERE

• In an INITIALIZE statement, the left parenthesis at the beginning of the address
couple is missing.

A NEW GLOBAL VARIABLE MAY NOT BE ADDED TO A HOST THAT IS A

SUBPROGRAM WITH NO GLOBAL DECLARATIONS

• The host program is a subprogram that contains no global declarations. Binder does
not allow a new global to be added to such a host in the course of binding a nested
subprogram.

A QUOTE MARK WAS EXPECTED

• An identifier that begins with a quotation mark is missing the ending quotation mark.

A RIGHT PARENTHESIS WAS EXPECTED HERE

• This error is given in the following situations:

− In an INITIALIZE statement, the right parenthesis at the end of the address couple
is missing.

− In a BIND statement of the form BIND <intrinsic specification>, the right
parenthesis at the end of the language list is missing.

Warning and Error Messages

A–2 8600 0304–301

− In a file specifier or directory specifier, the right parenthesis following the
usercode is missing.

A SEMICOLON WAS EXPECTED HERE

• The semicolon (;) at the end of the Binder input statement is missing.

A STATEMENT “USE <HOST-FILE-LIBOBJECT-NAME>” FOR <SUBPROGRAM-

LIBOBJECT-NAME> IS REQUIRED

• A USE statement is required for one of the following reasons:

− A library in the host program specified an alias for the name of a library object
and a subprogram made reference to the actual name of the same library object.

− The host program used the actual name for the library object and the subprogram
used an alias.

− The host program and the subprogram used different aliases for the same library
object.

• The library object names that you include in the USE statement must reflect the name
by which the library object is referenced in the respective programs, regardless of
whether an alias has been assigned. For example, assume that the host file declares a
library object within a library named “ALIASED” and specifies that “ALIASED” refers
to “LIBRARYOBJECT1.” If a subprogram refers directly to “LIBRARYOBJECT1,” you
must provide the following USE statement: USE ALIASED FOR LIBRARYOBJECT1.

A SUBPROGRAM IDENTIFIER WAS EXPECTED HERE

• In a BIND statement, the word BIND is not followed by an identifier or an equal sign
(=).

A VALID INTEGER WAS EXPECTED HERE

• This error is given in the following situations:

− In an INITIALIZE statement, either the first or second number of the address
couple is not a valid integer.

− In a BIND statement of the form BIND <intrinsic specification>, either the first or
second number of the intrinsic number pair is not a valid integer.

A VALID LANGUAGE IDENTIFIER WAS EXPECTED HERE

• In a BIND statement of the form BIND <intrinsic specification>, an item in the
language list is not a valid language identifier.

AN ARRAY PARAMETER MUST BE DECLARED BEFORE THE 24TH

PARAMETER

• The procedure to be bound has more than 24 parameters, and an array was discovered
after the 24th parameter.

• Avoid this error by declaring arrays within the first 24 parameters.

AN ARRAY THAT WAS ADDED AS A NEW GLOBAL VARIABLE HAD NO LENGTH

SPECIFIED FOR IT

• The array that was added as a new global array to the host program had no length
specified for it.

Warning and Error Messages

8600 0304–301 A–3

 In ALGOL, this results from not declaring an upper bound for the array within the
brackets used for declaring such global items for separate compilation.

 In COBOL, this message occurs when a new array is added to a host program by
Binder. New global arrays are not allowed for COBOL binding.

AN ENTRY POINT CANNOT BE ADDED AT OTHER THAN THE GLOBAL LEVEL

• If a FORTRAN subprogram containing entry points is compiled at a lexical level higher
than 3 and bound to a host program in which one of the entry point variables was not
previously declared, an error results. The entry point would have to be added at the
global level, which is incompatible with its execution level.

• When binding a higher level subprogram containing entry points, declare all entry
points directly within the program unit to which the subprogram is bound.

AN INTERNAL BINDER ERROR HAS OCCURRED

• Refer this problem to your Customer Service Representative.

AN INTERNAL BINDER ERROR HAS OCCURRED—THE PROCEDURE

DIRECTORY AND THE INFO TABLE ARE MISMATCHED

• Refer this problem to your Customer Service Representative.

BINDER CONTROL OPTIONS MAY NOT APPEAR IN THE MIDDLE OF A BINDER

STATEMENT

• Binder control records can appear between Binder statements but cannot appear
within a Binder statement contained on more than one input record.

BINDER_MATCH OPTION MISMATCH: THE HOST WAS COMPILED FOR POSIX

AND THE SUBPROGRAM <title> WAS NOT COMPILED FOR POSIX

• The host object file is C code that contained either #define _POSIX_SOURCE or
#define _ASERIES_SOURCE 410 /* or larger value*/. The subprogram <title> is C
code that did not contain either define or contained #define _ASERIES_SOURCE 409

/* or smaller value*/. C code being bound into a C host that was compiled for POSIX
must have either of the first two defines above.

BINDER_MATCH OPTION MISMATCH: THE HOST WAS NOT COMPILED FOR

POSIX AND THE SUBPROGRAM <title> WAS COMPILED FOR POSIX

• The subprogram <title> is C code that contained either #define _POSIX_SOURCE or
#define _ASERIES_SOURCE 410 /* or larger value*/. The host file is C code that did
not contain either define or contained #define _ASERIES_SOURCE 409 /* or smaller
value*/. C code compiled for POSIX can only be bound into a C host that must have
either of the first two defines above.

BINDER_MATCH OPTION '<name>' IS DIFFERENT: FILE <title1> HAS VALUE

'<value1>' BUT FILE <title2> HAS VALUE '<value2>'

• BINDER_MATCH options are generated when you set the $BINDER_MATCH compiler
option in ALGOL, C, and COBOL85. This option also can be generated automatically
by the C and COBOL85 compilers. This message indicates that Binder detected two
BINDER_MATCH options that have the same name string but different value strings.
The two strings must match exactly, including casing and blank characters.

Warning and Error Messages

A–4 8600 0304–301

• Review the source code of the files you are attempting to bind and ensure that the
same compile-time BINDER_MATCH options have the same values. Then execute
Binder again.

BOUND CODE LEVEL CHANGED FROM rr.lll TO rr.lll.

• This error message is given in the following situations:

− You tried to bind a subprogram compiled with an earlier version of the compiler
than that used to compile the host program or previously bound subprograms.

− Binder is an earlier version than the bound programs.

The bound code file is set to the earliest version found.

COMMA EXPECTED

• This error message is given in the following situations:

− In an INITIALIZE statement, the comma in the address couple is missing.

− In a BIND statement of the form BIND <intrinsic specification>, the comma after
the first integer of the intrinsic number pair is missing.

DUE TO THE ABOVE ERROR(S), THE BINDING OF THIS PROCEDURE IS

DISCONTINUED

• The definition of a subprogram within a subprogram file was found to be incompatible
with the subprograms definition in the host. The reason for the incompatibility was
indicated by the error messages emitted prior to this message.

 Binder discontinues binding the procedure at this point, resets the error count back to
the value it had before the start of binding the subprogram, and continues the binding
process. The given subprogram is treated as if no attempt had been made to bind it.

 If two subprograms within the host program are known by the same identifier and
Binder attempts to bind both occurrences of the identifier from the same subprogram,
the definition of the separate subprogram probably would be incompatible with one of
the occurrences, but might be compatible with the other occurrence. Thus, the
subprogram would be bound correctly to its compatible occurrence, and the
incompatible occurrence would not affect the bind in an adverse way. This result
might have been the original intention of the user who did not realize that a
subprogram identifier occurred twice within the host.

EITHER THE SUBPROGRAM MUST BE COMPILED WITH A SSR 42.3 OR LATER

COMPILER OR THE HEAP ROW SIZE OF ALL SUBPROGRAMS MUST MATCH

THAT OF THE HOST.

• The size of a row in the heap is determined by the value of the MEMORY MODEL
option and the value of the LONGLIMIT option when the memory model is TINY or
LARGE. The heap row size in one or more of the subprograms that preceded the
current subprogram in the bind is different from that of the host. The current
subprogram was compiled with a pre-SSR 42.3 compiler. Either the current
subprogram must be recompiled with a SSR 42.3 or later compiler or the subprograms
with a memory model or possibly a long limit different from the host must be
recompiled with the host memory model and long limit.

Warning and Error Messages

8600 0304–301 A–5

EITHER THE SUBPROGRAM MUST BE COMPILED WITH A SSR 42.3 OR LATER

COMPILER OR THE MEMORY MODEL OF ALL SUBPROGRAMS MUST MATCH

THAT OF THE HOST.

• The value of the MEMORY MODEL option in one or more of the subprograms that
preceded the current subprogram in the bind is different from that of the host. The
current subprogram was compiled with a pre-SSR 42.3 compiler. Either the current
subprogram must be recompiled with a SSR 42.3 or later compiler or the subprograms
with a memory model different from the host must be recompiled with the host
memory model.

FAR/NEAR SPECIFICATION DOES NOT MATCH BETWEEN SUBPROGRAMS

• A C pointer variable is declared as far in one subprogram, but as near in another. The
module declaring the pointer as near can misinterpret the pointer if the other module
assigns a far pointer value to the variable.

FILE <FILENAME> NOT AVAILABLE

• A BIND ? FROM <file> statement was issued and Binder did not find the file.

FORTRAN77 SUBPROGRAMS MAY NOT BE BOUND INTO A MARK 3.6

FORTRAN77 HOST

• Compile the host program with a Mark 3.7 level or newer compiler.

<identifier 1> DECLARED IN SUBPROGRAM AS <CONNECTION or

STRUCTURE> BLOCK TYPE <identifier 2> BUT DECLARED IN HOST AS

<CONNECTION or STRUCTURE> BLOCK TYPE <identifier 3>

• The name of the structure or connection block type for <identifier 1> in the
subprogram is different from its name in the host program. <Identifier 1> is the name
of a:

− Structure block array

− Structure block reference

− Structure block variable

− Single connection library

− Multi-connection library

− Connection block reference

• <Identifier 2> is the name of the structure or connection block type in the
subprogram.

• <Identifier 3> is the name of the structure or connection block type in the host
program.

• The type name in the subprogram must be the same as the type name in the host
program.

IN A CODE FILE THAT CANNOT RUN ON ANY MACHINE, A COMMON BLOCK

CANNOT BE EXTENDED BECAUSE IT IS CODEFILE INITIALIZED

• The FORTRAN77 host program was compiled with CODEFILEINIT set, and locations
in the common block were initialized. A subprogram being bound declared the
common block to be longer than the common block in the host. Because the initial
value of the common

Warning and Error Messages

A–6 8600 0304–301

block was initialized within the code file, the common block could not be extended.

IN THIS BIND STATEMENT, AN EQUAL SIGN WAS EXPECTED HERE

• In this statement, the equal sign after the identifier is missing.

 <lo> <LIBRARY OBJECT> REQUIRES LIBRARY <ll>

• Binder did not find the library <ll> in the host program, so it did not bind the library
object <lo>. This error can occur if the library names are different in the host program
and the subprogram.

• To match different names, include a USE statement in the primary input file. For the
syntax and explanation of the USE statement, see Section 3.

Refer this problem to your Customer Service Representative if the preceding solution
is not applicable.

MARK nn CODE FILES MAY NOT BE BOUND; ONLY MARK mm, OR LATER

CODE FILES MAY BE BOUND

• You tried to bind a code file that was more than three system software releases old.
The letters nn indicate the release level of the code file. The letters mm indicate the
earliest release level of software that can be used with Binder, which is software that
is three releases older than the current level of Binder.

MEMORY MODEL MISMATCH: THE HOST USES THE nnnnnnnn MODEL, THE

SUBPROGRAM USES THE nnnnnnnnn MODEL.

• The value of the MEMORY_MODEL option must be the same for a C host program and
a C subprogram when (1) binding object code files compiled with a C compiler before
SSR 42.3, or (2) the compiler control option FARHEAP is false.

<NAME> EXPECTED

• This error is given when the following situations occur within a file specifier or
directory specifier:

− The usercode is not a valid name.

− The family name is not a valid name.

− The specifier does not begin with a valid name or the equal sign.

− A right parenthesis, an asterisk, or a slash is not followed by a valid name or an
equal sign.

− A name is specified to be two quotation marks with no characters in between.

NEW GLOBAL AND <OWN> VARIABLES CANNOT BE ADDED TO THE HOST

• If the host is a NEWP program, new global variables and own variables cannot be
added.

NEW GLOBAL VARIABLES CANNOT BE ADDED WHILE BINDING SEGMENT 1

OF THE MCP

• While MCP segment 1 is being bound, new globals cannot be added to the MCP.

Warning and Error Messages

8600 0304–301 A–7

ONLY MULTIPROCEDURE FILES ARE ALLOWED IN UNIVERSAL BIND

STATEMENT

• One of the following two types of statements was given as input to Binder:

 BIND = FROM A/B
 BIND P, Q, SUBR FROM A/B;

 In these examples, A/B is not a library or multiprocedure file. Because A/B contains
only one subprogram, it should not be used in the above BIND statements.

ONLY THE LAST BIND STATEMENT ENCOUNTERED WILL BE USED

• If more than one BIND statement is found, the last statement entered is used.

OUTPUTMESSAGE ARRAY NAMES MUST BE UNIQUE THROUGHOUT THE

ENTIRE PROGRAM

• Output message array names are an exception to the rules of scope for an identifier.
They must be unique throughout the entire program.

PL/I PROGRAMS MAY ONLY BE BOUND TO PL/I PROGRAMS

• A subprogram compiled by the PL/I compiler can be bound only to host programs
compiled by the PL/I compiler.

REPLACEMENT BINDING IS NOT ALLOWED

• If the host program is a NEWP program, only output message arrays or procedures
declared as EXTERNAL can be bound.

SINCE NO INTRINSIC NUMBER WAS GIVEN, THIS INTRINSIC CANNOT BE

REFERENCED OUTSIDE OF THE INTRINSICS FILE

• You did not specify an intrinsic number pair for a new intrinsic being added to an
intrinsic file. The intrinsic can be called by other intrinsics within the file, but cannot
be invoked from a user program.

THE AREASIZE OF THE BOUND CODE FILE IS TOO SMALL. INCREASE IT BY

SETTING THE AREASIZE FILE ATTRIBUTE DURING THE BIND

• During the conclusion of intrinsic binding, Binder found that the area size of the
bound code file was smaller than required.

• Increase the area size of the bound code file by using the AREASIZE file attribute as
shown in the following example:

 BEGIN JOB MAKE/INTRINSICS;
 BIND NEW/INTRINSICS WITH BINDER LIBRARY;
 BINDER FILE CODE (AREASIZE = 2016);
 BINDER DATA
 $ SET INTRINSICS
 BIND = FROM INTR/=;
 BIND MYINT = 101,1 (ALGOL, FORTRAN) FROM INTL/=;
 ? ! END DATA
 END JOB.

THE BIND STATEMENT FOR THIS PROCEDURE WAS NOT USED --(EITHER

THE ABOVE BIND STATEMENT(S) WERE OVERRIDDEN BY ANOTHER

Warning and Error Messages

A–8 8600 0304–301

STATEMENT, OR THE PROCEDURE IDENTIFIER DID NOT EXIST IN THE

HOST AND WAS NOT CALLED BY ANY PROCEDURE BOUND IN.)

• If a subprogram identifier specified in a BIND statement is not declared in the host
program or otherwise encountered during the binding process, the subprogram is not
bound.

THE BINDER OPTION DEBUG HAS BEEN DEIMPLEMENTED. INSTEAD USE

THE TEST AND DEBUG SYSTEM (TADS)

• The Binder DEBUG option is no longer valid.

• Use the Test and Debug System (TADS) appropriate to the program in error to identify
the binding problem.

THE BINDER WAS UNABLE TO BIND ONE OR MORE PROCEDURES BUT THE

CODE FILE IS STILL EXECUTABLE

• This warning message is given when Binder has been unable to bind one or more of
the procedures declared as EXTERNAL or explicitly named in a BIND statement. The
bound code file can be executed. However, if an attempt is made to execute an
external subprogram that was not bound, the following error message is given:

<identifier> NOT BOUND

If Binder is unable to replacement bind a subprogram, the original subprogram
remains in the bound code file.

THE BINDER’S INTERNAL CONSTANT ARRAY HAS OVERFLOWED—THE

BINDER’S CAPACITY HAS BEEN EXCEEDED

• Refer this problem to your Customer Service Representative.

THE BINDER’S INTERNAL INFO TABLE HAS OVERFLOWED—THE BINDER’S

CAPACITY HAS BEEN EXCEEDED

• Refer this problem to your Customer Service Representative.

THE CODEFILES CONTAIN DATA MANAGEMENT LEVELS THAT ARE

INCOMPATIBLE AND CANNOT BE BOUND

• This error message refers to the binding of DMSII databases. The host program and all
subprograms that reference a DMSII database must all be compiled with the same
level of DMSII software.

THE COMBINED SPACE IN THE HEAP REQUIRED FOR DATA ITEMS

DECLARED IN THE OUTER BLOCK (nnnn WORDS) EXCEEDS THE MAXIMUM

AVAILABLE SPACE OF nnnn WORDS.

• The global variables require more space than can be supported with the current value
of the MEMORY MODEL option. Either reduce the size requirements of the
LONGLIMIT option or use a larger memory model.

THE COMMON BLOCK CANNOT BE EXTENDED FOR THIS HOST. YOU MUST

RECOMPILE THE HOST

• A subprogram tried to extend a global array by declaring it larger in the subprogram
than in the host. The new size was too large to fit in the array declaration parameters
of the host. This situation can occur only with hosts compiled before release 3.6.

Warning and Error Messages

8600 0304–301 A–9

THE DECLARATION IN SUBPROGRAM MUST BE COMPATIBLE WITH THE

DECLARATION IN HOST

• The description of a library object in the subprogram is not compatible with the
description of the same library object in the host program. This incompatibility can
occur with mismatched parameter types or with mismatched by-reference or by-value
usage.

THE FORTRAN77 HEAP VECTOR EXCEEDS MAXIMUM LENGTH. RECOMPILE

THE SEPARATE FILE WITHOUT THE “HEAP” OPTION

• New heap vector entries in a FORTRAN77 subprogram would make the length of the
heap vector exceed its maximum of 65,535.

THE HOST AND THE SUBPROGRAM DO NOT HAVE THE SAME LIBRARY

SHARINGCLASS

• This error occurs if the subprogram and the host program being bound are libraries,
but have a mismatched SHARINGCLASS. For example, the subprogram is a share-by-
all library, whereas the host program is a private library.

THE HOST CODE FILE WAS PRODUCED BY A PREVIOUS BIND. ADDITIONAL

BINDING IS NOT ALLOWED

• A bound C program cannot be used as the host of a subsequent bind.

THE HOST FILE IS NOT AN INTRINSICS FILE

• The INTRINSICS option has the value TRUE in Binder, but the host program is not an
intrinsics file.

THE HOST WAS COMPILED AT A LEXICAL LEVEL TOO HIGH

• Compile the host program at lexical level 2 or 3.

THE HOST WAS COMPILED WITH THE CONCURRENT EXECUTION OPTION

SET, BUT THE SUBPROGRAM WAS NOT

• Binder issues this warning when trying to bind a subprogram that doesnt have the
CONCURRENTEXECUTION option set into a host program that was compiled with
the option set. In general, concurrent execution of multiple tasks requires all
subprograms to be compiled with the option set. The only exception is a subprogram
that runs only while there is no other execution stream, such as before a shared-by-all
library freezes.

• Recompile the subprogram with the CONCURRENTEXECUTION option set, and then
rerun Binder.

THE IDENTIFIER OF THE SEPARATE PROCEDURE DOES NOT MATCH THE

DECLARATION IN THE HOST

• Binder was directed by a BIND statement to bind the given subprogram from a
specific file. The subprogram identifier in the subprogram file does not match the
declaration in the host. Binder generates this message and creates a USE statement
that matches the two identifiers. Note that this situation cannot occur when binding
from a specific library file or multiprocedure file.

THE INITIALIZE STATEMENT IS LEGAL FOR INTRINSIC OR MCP BINDING

ONLY

• The INITIALIZE statement is legal only for intrinsic or MCP binding.

Warning and Error Messages

A–10 8600 0304–301

THE INTERNAL BINDER ARRAY, CRIT_BLK_AC, HAS OVERFLOWED—THE

BINDER CAPACITY HAS BEEN EXCEEDED

• Refer this problem to your Customer Service Representative.

THE LIBRARY ATTRIBUTES IN THE SUBPROGRAM DIFFER FROM THE HOST.

THE HOST LIBRARY ATTRIBUTES WILL BE USED.

• The subprogram and the host program have a different number of attributes or else
the attributes do not match. You need not have attributes in the subprogram because
the attributes of the host program are always used.

THE MATCHING LIBRARY <NAME> COULD NOT BE FOUND IN THE HOST

• Binder could not find the named library referenced by the library object.

THE MERGE OF THE TARGET LEVELS HAS RESULTED IN A CODE FILE THAT

CANNOT BE RUN ON ANY MACHINE

• Either the host program or previously bound subprograms have machine features not
available for the target level of this subprogram, or this subprogram has machine
features not available in the host program or previously bound subprograms.

THE NUMBER OF ARRAY DIMENSIONS IN THE SUBPROGRAM DIFFERS FROM

THE NUMBER OF DIMENSIONS IN THE HOST

• When an array is shared as a global item between two programs, it must be declared
with the same number of dimensions in both programs.

THE NUMBER OF INTERNAL BINDER FILES REQUIRED IS TOO GREAT - THE

BINDER’S CAPACITY HAS BEEN EXCEEDED

• The number of file declarations reserved by Binder for subprogram files has been
exceeded. Each time Binder regresses to a previous level to bind a nested external
subprogram, an additional subprogram file declaration is required. In addition, each
library or multiprocedure file opened by Binder is left open until all subprograms have
been bound from it. Thus, if the number of library files is greater than the number of
file declarations, this message results.

• Refer this problem to your Customer Service Representative.

THE NUMBER OF PARAMETERS IN THE SUBPROGRAM DIFFERS FROM THE

NUMBER OF PARAMETERS IN THE HOST

• For binding to occur, you must declare the same number of parameters in both the
host program and the subprogram to be bound.

THE OFFSET OF xxxx CANNOT BE REACHED FROM LEXICAL LEVEL xx

• As the execution lex level of a subprogram increases, the offset that can be specified
in a VALC or NAMC operator decreases. If a program or subprogram at a low lex level
declares many variables, it is possible that a subprogram at a higher lex level will not
be able to reference all of them.

 An offset of 4096 and a lex level of 2 or above specified in the warning message
indicates that you have exceeded the maximum number of global stack cells that can
be referenced by the program. The maximum offset that can be referenced at lex level
2 is 4095.

 An offset of 8192 and a lex level of 1 indicates that the bound program has exceeded
the maximum number of segment dictionary entries that is allowed.

Warning and Error Messages

8600 0304–301 A–11

• If the offset in the error message is 4096, you can reduce the number of global stack
cells referenced by your program by limiting the number of variables declared as
GLOBAL or OWN to only those that must have a global address.

 If the offset in the error message is 8192, you can try one of the following methods to
avoid the error:

− Modify your bound program to decrease the number of segment dictionary
entries.

− Bind all the subprograms into the unbound version of the host.

− If the host is ALGOL and the SEGDESCABOVE compiler option is used, change
the option to a lower number and recompile the host to allow more code segment
entries to fit in the segment dictionary.

 If the preceding methods do not resolve the error, then change the structure of
your program to use fewer code or data segments. You can move some of the
subprograms into a library to reduce the size of the bound program.

THE PROCEDURE THAT IS BEING PASSED AS A PARAMETER WAS NOT

DECLARED IN A FORMAL DECLARATION

• When the parameters expected by a formal procedure are specified in a formal
declaration by both the program unit passing the procedure as an argument and the
subprogram receiving the procedure as a parameter, then no parameter checking for
the formal procedure is performed at execution time. This error results when either
the receiver or caller specifies the procedure formally, but the program unit passing or
receiving the formal procedure does not contain a formal declaration of the
procedure.

THE RESERVED WORD “FOR” WAS EXPECTED HERE

• In a USE statement, the word FOR after the first identifier is missing.

THE RESERVED WORD “FROM” WAS EXPECTED HERE

• In a BIND statement that begins with BIND =, the word FROM is missing after the
equal sign (=).

THE RESERVED WORD “IS” WAS EXPECTED HERE

• In a HOST statement, the word IS is missing after the word HOST.

THE RESULTING CODE FILE WILL RUN ON A MORE RESTRICTED SET OF

MACHINES THAN THE HOST

• This warning message is given when a subprogram must run on a more restricted set
of computers than the host program. The resulting bound code file will run only on the
more restricted set of computers.

THE SDF FORM LIBRARY APPLICATION RECORD DESCRIPTION IN THE HOST

DID NOT MATCH THE SUBPROGRAM.

• SDF form record libraries in the host program and the subprogram are different
versions, although they have identical names. This might indicate that one or more
forms in the form library were altered between compilation of the host program and
the subprogram.

• Recompile the host program and the subprogram.

Warning and Error Messages

A–12 8600 0304–301

THE SUBPROGRAM IDENTIFIER CONTAINED TOO MANY QUALIFIERS

• The subprogram identifier contains more qualifiers (OF <identifier> clauses) than are
legal.

THERE ARE TOO MANY ADDRESSED PROCEDURES

• The number of addressed C functions exceeds the limits of Binder.

THERE ARE TOO MANY CALLS TO FORMAL OR ADDRESSED PROCEDURES

• The number of calls to C functions through pointers exceeds the limits of Binder.

THERE HAS BEEN A COMPILER ERROR. THE COMPILER EMITTED A BRANCH

OPERATOR WITH AN OFFSET THAT IS TOO LARGE FOR THE LEXICAL LEVEL

D2

• Refer this error to your Customer Service Representative.

THERE HAS BEEN A COMPILER ERROR. THE COMPILER EMITTED TOO MANY

BRANCHES IN THE LEXICAL LEVEL D2

• Refer this error to your Customer Service Representative.

THERE IS A MISMATCH IN THE PARAMETER TYPE. IT IS BEING PASSED BY-

NAME AND SHOULD BE PASSED BY-VALUE OR VICE VERSA

• This message is given in the following situations:

− During the binding of an exported procedure, the host program declares a
parameter by value, and the subprogram declares it by name, or vice versa.

− During ALGOL-ALGOL, COBOL-COBOL, or ALGOL-COBOL bindi{ng, the host
program declares a parameter by value, and the subprogram declares it by name,
or vice versa.

THERE IS A MISMATCH IN THE ROW SIZE OF THE HEAP (POSSIBLY CAUSED

BY DIFFERENT LONGLIMITS OR DIFFERENT MEMORY MODELS): THE SIZE

IN THE HOST = nnnn, THE SIZE IN THE SUBPROGRAM = nnnn.

• The value of the LONGLIMIT compiler control option must be the same for a C host
program and a C subprogram when: (1) binding object code files compiled with a C
compiler before SSR 42.3, or (2) the compiler control option FARHEAP is false.

THERE IS A MISMATCH IN THE SIM CLASS INFORMATION. THE INTERNAL

VALUE IN THE HOST = <VALUE>. THE INTERNAL VALUE IN THE

SUBPROGRAM = <VALUE>.

• The CLASSINFOs of the SIM entity reference variable, entity reference array, or query
variable used in the host program are different from those used in the subprogram.
This error occurs when items with the same name are declared with different field
sizes.

THERE IS A MISMATCH WITH THE (SIM) SEMANTIC QUALIFICATION. THE

NAME IN THE HOST = <NAME>. THE NAME IN SUBPROGRAM = <NAME>.

• The database ID used to qualify the SIM entity reference variable, entity reference
array, or query variable for the host program is different from the ID used for the
subprogram. This error message can result if you tried to bind a host program and a
subprogram compiled with different SIM databases.

Warning and Error Messages

8600 0304–301 A–13

THERE IS AN INCOMPATIBILITY IN THE ARRAY LOWER BOUNDS

SPECIFICATION

• This error message results when Binder detects that a subprogram expects lower
bounds for an array and they are not passed, or a subprogram does not expect lower
bounds and is called with lower bounds passed to it.

 FORTRAN and FORTRAN77 always pass an array descriptor and an offset.

 COBOL rarely passes an offset, although it accepts and passes an offset if the WITH

LOWER BOUNDS clause is used. However, the offset value itself is ignored in
calculating subscripts within the COBOL subprogram.

 In ALGOL, the user can specify whether the array parameter is passed with lower
bounds.

THERE IS AN INCORRECT NUMBER OF ADDRESS COUPLES DECLARED FOR

THIS VARIABLE

• A PL/I structure of another variable type has a number of address couples associated
with it, in accordance with the way it is declared in the program unit. This error
occurs when two program units reference the same variable with a different number
of address couples, indicating an incompatibility in the declarations within the
separate program units.

THERE WERE NO SUBPROGRAMS BOUND TO THE HOST

• No subprograms were bound to the host program during the binding process.

THIS BINDER OPTION IS NOW OBSOLETE AND WILL BE IGNORED

• The Binder option you tried to use is obsolete.

THIS CODE FILE IS THE RESULT OF A PREVIOUS BIND AND IS SUITABLE AS

A HOST ONLY

• The resultant code file from a previous bind cannot be bound to another host. Such a
file may be used only as a host program in subsequent binds.

THIS CODE FILE USES AN UNRECOGNIZABLE MEMORY MODEL

• Refer this error to your Customer Service Representative.

THIS FILE CANNOT BE ACCESSED BY THE BINDER

• Binder is unable to access this file.

THIS FILE IS NOT A CODE FILE

• Check to make sure that the file title is complete and that a directory is not specified
by the title.

THIS ITEM DEFINITION HAS ALREADY BEEN SEEN. ONLY ONE NON-

EXTERNAL DECLARATION IS ALLOWED.

• The same variable or function is exported from more than one C subprogram or C host
program.

THIS ITEM IS A COPY OF TWO OR MORE DIFFERENT ITEMS

• Refer this error to your Customer Service Representative.

Warning and Error Messages

A–14 8600 0304–301

THIS ITEM WAS INITIALIZED IN TWO OR MORE DECLARATIONS

• A C variable, array, or structure can be initialized only once. Binder has found an
initialization in more than one C subprogram or C host program.

THIS NEW GLOBAL VARIABLE HAS BEEN ADDED TO THE HOST

• This is a warning message that indicates that a variable referenced in the subprogram
does not exist in the host. Binder adds the variable to the host program at the global
level.

THIS NUMBER IS TOO LARGE

• In an intrinsic number pair, either the first integer has a value greater than the largest
possible installation number or the second integer has a value greater than the largest
possible intrinsic number.

THIS IS A MISSPELLED CONTROL OPTION

• The specified compiler control option is not a valid Binder compiler control option.
Binder recognizes only a specific set of compiler control options. Binder does not
recognize user options.

THIS IS AN ILLEGAL <FAMILY NAME>

• The family name in a file specifier or directory specifier contains invalid characters.
Valid characters are A through Z and 0 (zero) through 9.

THIS IS AN ILLEGAL IDENTIFIER

• This error is given in the following situations:

− In a Binder control record, the item following the dollar sign ($) is not of identifier
format.

− In a BIND statement, an item following OF in a subprogram identifier is not an
identifier.

− In an EXTERNAL statement, either the item at the beginning of a subprogram
identifier or an item following OF in a subprogram identifier is not an identifier.

− In an INITIALIZE statement, the item following INITIALIZE or following a
comma (,) is not an identifier.

− In a USE statement, the item following USE or FOR or the item following OF in
the subprogram identifier is not an identifier.

THIS IS AN INCORRECT INTRINSIC NUMBER BECAUSE ANOTHER INTRINSIC

HAS THE SAME NUMBER

• Two intrinsics within the same intrinsic file cannot have the same intrinsic number
pair.

THIS IS AN INCORRECT INTRINSIC NUMBER BECAUSE THE SAME INTRINSIC

IDENTIFIER ALREADY EXISTS WITH A DIFFERENT NUMBER

• An intrinsic with the same identifier already exists within the intrinsic file. The
existing intrinsic has an intrinsic number pair different from that specified for the
intrinsic being bound.

Warning and Error Messages

8600 0304–301 A–15

THIS IS AN INVALID DATA DICTIONARY INVOCATION OR USAGE LIST

• Refer this problem to your Customer Service Representative.

THIS IS NOT A VALID BINDER STATEMENT

• The input to Binder is not one of the valid Binder statements.

THIS OBJECT CODE FILE HAS NO BINDER INFORMATION

• The file cannot be used for binding, either as a host program or as a subprogram. The
option NOBINDINFO may have been set during the files creation, or the respective
compiler may have determined that the file contained no external references, so it did
not require binding.

THIS PROCEDURE CANNOT BE PASSED BETWEEN THESE TWO LANGUAGES

• A procedure cannot be passed as a parameter from the language in which the
procedure call is written to the language in which the procedure declaration is
written.

THIS PROCEDURE WAS NOT FOUND IN THE MULTIPROCEDURE FILE(S)

• Binder was unable to find the subprogram within the library files designated in the
BIND statement. The subprogram is left in the host program in its present form, and
binding of other subprograms continues.

THIS PROGRAM CONTAINS UNRECOGNIZED BINDINFO, POSSIBLY FOR A

NEW CAPABILITY NOT SUPPORTED BY THIS BINDER

• One of the object files that you are attempting to bind was compiled with a compiler
that has a later release level than the Binder program.

• Try the bind again using a Binder with a release level at least as great as the release
level of the compiler.

THIS PROGRAM UNIT WAS COMPILED AT A LEXICAL LEVEL INCOMPATIBLE

WITH THE LEXICAL LEVEL IN THE HOST. RECOMPILE USING THE OPTION $

SET LEVEL N

• The given subprogram was compiled at a lex level incompatible with its execution lex
level within the host.

• Recompile the subprogram with the correct execution lex level by using the LEVEL
option of the compiler.

THIS PROGRAM UNIT IS SUITABLE AS A HOST PROGRAM ONLY, SO IT

CANNOT BE BOUND INTO ANOTHER HOST

• The designated subprogram file is actually a host program or main program. You
cannot bind a host program to another host program.

THIS VARIABLE TYPE CANNOT BE ADDED TO THE HOST

• A variable referenced in a subprogram does not exist in the host. Usually Binder adds
the variable to the host program. However, Binder is incapable of adding the following
types of variables to a host:

DATA BASE
FORMAT

Warning and Error Messages

A–16 8600 0304–301

LABEL
LIBRARY
LIST
PICTURE
SDF form record libraries
STRING
Switch-type items
TRANSACTION BASE
TRANSLATETABLE
TRUTHSET
VALUE ARRAY

TO ADD A NEW LIBRARY OBJECT, LIBRARY <NAME> MUST BE COMPILED

WITH A MARK 3.8 OR LATER COMPILER

• To add a new library object, the host program must be compiled with a Mark 3.8 or
later version of the compiler.

TOO MANY ENTRIES—INCREASE MAXENTRIES

• Refer this problem to your Customer Service Representative.

WARNING: IF DATABASE WAS REORGANIZED AFTER THIS SUBPROGRAM

WAS COMPILED, RECOMPILE TO PREVENT POSSIBLE DATA CORRUPTION

• This warning occurs when the host or a subprogram is compiled with an earlier
version of the compiler that does not emit the database update timestamp. Without
this timestamp, Binder cannot verify that the host and subprograms were compiled
against the same version of the database. To prevent run-time data corruption,
recompile the host or subprogram with a later version of the compiler that emits the
timestamp, so that Binder can verify the database for you. Otherwise, you must verify
the following for each subprogram that receives this message:

− You have not reorganized the database since the host program or subprogram was
compiled.

− The host program or subprogram does not access any database structures that
were changed in the database.

If you cannot verify the items listed above, you must recompile the host program or
the subprogram and rebind to ensure that the bound code file does not corrupt the
database.

8600 0304–301 B–1

Appendix B
Using Binder Control Record Options

You can control the manner in which Binder processes the subprogram file and the host
program file by including Binder control records in the WFL job or CANDE file used to
execute Binder. In each Binder control record, you include one or more Binder options.
These options allow you to

• Determine the content of printed output

• Determine whether error messages get sent to the ERRORS file and get printed

• Indicate whether a host file is required

• Determine whether lineinfo and bindinfo are included in the code file

• Determine whether a bound subprogram array is resized to match the host program
array

• Enable intrinsic binding

• Prevent the code file from being locked when Binder cannot locate a subprogram

• Temporarily suspend binding when a subprogram is not available

Binder Control Record Format
A Binder control record is identified by a dollar sign ($) in column one; a blank in column
one and a dollar sign in column two; or dollar signs in columns one and two. Binder
options follow the dollar sign in the succeeding columns through column 72. A percent
sign (%) appearing in any column from 2 through 72 of a Binder control record indicates
that the remaining columns of the record are to be ignored by the Binder. Binder control
records can occur at any point in the Binder input file.

There are two formats for including options in Binder control records. Syntax 1 allows you
to specify options that are effective throughout the binding process. Syntax 2 allows you
to assign the value TRUE to certain options for the duration of the binding of specific
subprograms.

Syntax 1, Version A

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ $ ÄÂÄÄÄÄÄÂÄÁÄÂÄ RESET ÄÂÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ $ ÄÙ ÀÄ SET ÄÄÄÙ ÀÄ <Binder options> ÄÙ

Using Binder Control Record Options

B–2 8600 0304–301

Syntax 1, Version B

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ $ ÄÂÄÄÄÄÄÂÄÁÄÂÄÄÄÄÄÄÄÄÄÂÄ <Binder options> ÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ $ ÄÙ ÃÄ RESET Ä´
 ÀÄ SET ÄÄÄÙ

<Binder options>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄÄ´
 ÃÄ CODE ÄÄÄÄÄÄÄÄ´
 ÃÄ CODEN ÄÄÄÄÄÄÄ´
 ÃÄ ERRLIST ÄÄÄÄÄ´
 ÃÄ ERRORLIST ÄÄÄ´
 ÃÄ HOST ÄÄÄÄÄÄÄÄ´
 ÃÄ INTRINSICS ÄÄ´
 ÃÄ LINEINFO ÄÄÄÄ´
 ÃÄ LIST ÄÄÄÄÄÄÄÄ´
 ÃÄ MAP ÄÄÄÄÄÄÄÄÄ´
 ÃÄ NOBINDINFO ÄÄ´
 ÃÄ SEGS ÄÄÄÄÄÄÄÄ´
 ÃÄ STACK ÄÄÄÄÄÄÄ´
 ÃÄ STRICT ÄÄÄÄÄÄ´
 ÃÄ TIME ÄÄÄÄÄÄÄÄ´
 ÃÄ USEHOSTSIZE Ä´
 ÃÄ WAIT ÄÄÄÄÄÄÄÄ´
 ÀÄ WARN ÄÄÄÄÄÄÄÄÙ

Explanation

Syntax 1 lets you specify Binder options that are effective throughout the binding process.
Syntax 1 has two versions, A and B.

Version A

The Binder control record contains either one or two dollar signs ($) followed by either
SET or RESET, followed by one or more Binder options. If the action is SET, the named
options are assigned a value of TRUE. If the action is RESET, the named options are
assigned a value of FALSE.

If you do not name any options, all options are set or reset according to the action you
specify.

Example

$ SET CODE STACK LIST
$ RESET SEGS

Version B

The Binder control record contains either one or two dollar signs ($) followed by one or
more Binder options. SET and RESET are not used to indicate values of TRUE or FALSE.
Rather, the named options are assigned a value of TRUE, and the unnamed options are
assigned a value of FALSE. If the control record contains a dollar sign and no options,
Binder ignores the record. (Note that ERRORLIST (ERRLIST), LINEINFO, and STRICT
cannot be used in this syntax, so they assume their default values.)

Using Binder Control Record Options

8600 0304–301 B–3

Example

$ CODE STACK LIST

Syntax 2

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ $ ÄÂÄÄÄÄÄÂÄ <identifier> ÄÁÄÂÄ CODE ÄÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ $ ÄÙ ÃÄ CODEN Ä´
 ÃÄ LIST ÄÄ´
 ÃÄ MAP ÄÄÄ´
 ÃÄ SEGS ÄÄ´
 ÃÄ STACK Ä´
 ÃÄ WAIT ÄÄ´
 ÀÄ WARN ÄÄÙ

Explanation

Syntax 2 lets you set certain options to TRUE for the binding of a specified subprogram.
All named options are assigned a value of TRUE. All unnamed options are assigned a value
of FALSE.

The options assume the assigned values only during the binding of the subprogram
specified by the identifier. Once the subprogram is bound, all options are restored to their
previous values. For any option, the last setting in a control record of Syntax 1 takes
precedence over all other settings.

You can include only one subprogram identifier in each Binder control record. You must
include one or more Binder options after the identifier.

Example

$ PROCEDURE1 CODE WAIT WARN

For information about identifiers, see Section 2.

Using Binder Control Record Options

B–4 8600 0304–301

Binder Options
Binder options are discussed in alphabetical order in Table B–1:

Table B–1. Binder Options

Option Value Function

CODE False Indicates whether the resultant code file will
be printed in hexadecimal form

CODEN False Indicates whether the input code files will be
printed in hexadecimal form

ERRORLIST False

(True for binds
initiated by CANDE)

Indicates whether Binder will write error
messages to the file titled, ERRORS. If
Binder is initiated from WFL, ERRORS is a
printer file. If Binder is initiated from CANDE,
ERRORS is a remote file, and messages are
written to the remote station that initiated
the bind. (ERRORLIST is the preferred
synonym for ERRLIST.)

ERRLIST False

(True for binds
initiated by CANDE)

See the preferred synonym, ERRORLIST.

HOST False Indicates whether a host file is required.
When the INTRINSICS options is FALSE, a
host file is always required, and the HOST
option has no effect. When the HOST option
is TRUE and the INTRINSICS option is TRUE,
a host file is required and is used for
intrinsic binding. When the HOST option is
FALSE and the INTRINSICS options is TRUE,
a host file is not required and is not used.

INTRINSICS False Indicates whether an intrinsic file will be
created or intrinsic binding will be enabled.
When FALSE, the INTRINSICS option can still
create an intrinsic code file if the host file is
the object file of a previous intrinsic bind. If
the INTRINSICS option is FALSE, a host file
is always required and the HOST option has
no effect.

LINEINFO True Indicates whether the resulting code file will
contain all LINEINFO encountered in the host
and subprogram files.

LIST True

(False for binds
initiated by CANDE)

Indicates whether input records, identifiers
and their address couples, and BEGIN
BINDING and END BINDING messages will
be printed.

continued

Using Binder Control Record Options

8600 0304–301 B–5

Table B–1. Binder Options (cont.)

Option Value Function

MAP False Indicates whether the address couples of all
identifiers in the resultant code will be
printed, both in alphabetical order by
identifier and in address couple order. (The
MAP option is the preferred synonym for the
STACK option.)

NOBINDINFO False Indicates whether the Binder will purge all
Binder information from the resultant code
file. The resultant code file cannot then be
used as a host for a subsequent bind if the
value of NOBINDINFO is TRUE.

SEGS True

(False for binds
initiated by CANDE)

Indicates whether the segment dictionary
changes will be printed. Assigning a value to
the LIST option causes the same value to be
assigned to the SEGS option.

STACK False See the preferred synonym, MAP.

STRICT False

(True for MCP
binds)

Indicates whether the resultant code file will
be locked if a subprogram specified in a
BIND statement is not bound. When FALSE,
the code file is locked.

TIME False Indicates whether header and trailer
information for the bind will be printed.
Because the information is printed when
LIST is TRUE, the value of TIME is significant
only when LIST is FALSE.

USEHOSTSIZE False Indicates whether an array global to a bound
subprogram is resized to the size of its
corresponding array in the host. If the
USEHOSTSIZE option is not set (FALSE), the
larger array size from either the host or the
subprogram is used.

WAIT False Indicates whether Binder will suspend the
binding process if a specified subprogram
file is not present. Upon suspension, the
operator is allowed to make the file present,
to terminate the Binder, or to enter the OF
(Optional File) or FA (File Attribute) ODT
command. Any OF or FA command applies
to that file only. Subsequent nonpresent files
again cause the Binder to suspend binding.
For more information about the OF and FA
commands, refer to the System Commands
Reference Manual.

continued

Using Binder Control Record Options

B–6 8600 0304–301

Table B–1. Binder Options (cont.)

Option Value Function

WARN True

(False for binds
initiated by CANDE)

Indicates whether warning messages will be
printed upon the occurrence of certain
conditions. When WARN is FALSE, these
warning messages are suppressed.
Assigning a value to the LIST option causes
the same value to be assigned to the WARN
option.

8600 0304–301 C–1

Appendix C
Understanding Railroad Diagrams

This appendix explains railroad diagrams, including the following concepts:

• Paths of a railroad diagram

• Constants and variables

• Constraints

The text describes the elements of the diagrams and provides examples.

Railroad Diagram Concepts
Railroad diagrams are diagrams that show you the standards for combining words and
symbols into commands and statements. These diagrams consist of a series of paths that
show the allowable structures of the command or statement.

Paths
Paths show the order in which the command or statement is constructed and are
represented by horizontal and vertical lines. Many commands and statements have a
number of options so the railroad diagram has a number of different paths you can take.

The following example has three paths:

ÄÄ REMOVE ÄÂÄÄÄÄÄÄÄÄÄÄÂÄÄ´
 ÃÄ SOURCE Ä´
 ÀÄ OBJECT ÄÙ

The three paths in the previous example show the following three possible commands:

• REMOVE

• REMOVE SOURCE

• REMOVE OBJECT

A railroad diagram is as complex as a command or statement requires. Regardless of the
level of complexity, all railroad diagrams are visual representations of commands and
statements.

Understanding Railroad Diagrams

C–2 8600 0304–301

Railroad diagrams are intended to show

• Mandatory items

• User-selected items

• Order in which the items must appear

• Number of times an item can be repeated

• Necessary punctuation

Follow the railroad diagrams to understand the correct syntax for commands and
statements. The diagrams serve as quick references to the commands and statements.

The following table introduces the elements of a railroad diagram:

Table C–1. Elements of a Railroad Diagram

The diagram element... Indicates an item that...

Constant Must be entered in full or as a specific abbreviation

Variable Represents data

Constraint Controls progression through the diagram path

Constants and Variables
A constant is an item that must be entered as it appears in the diagram, either in full or as
an allowable abbreviation. If a constant is partially boldfaced, you can abbreviate the
constant by

• Entering only the boldfaced letters

• Entering the boldfaced letters plus any of the remaining letters

If no part of the constant is boldfaced, the constant cannot be abbreviated.

Constants are never enclosed in angle brackets (< >) and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data that
meets the requirements of the particular command or statement. When replacing a
variable with data, you must follow the rules defined for the particular command or
statement.

In railroad diagrams, variables are enclosed in angle brackets.

In the following example, BEGIN and END are constants, whereas <statement list> is a
variable. The constant BEGIN can be abbreviated since it is partially boldfaced.

ÄÄ BEGIN ÄÄ<statement list>ÄÄ END ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Understanding Railroad Diagrams

8600 0304–301 C–3

Valid abbreviations for BEGIN are

• BE

• BEG

• BEGI

Constraints
Constraints are used in a railroad diagram to control progression through the diagram.
Constraints consist of symbols and unique railroad diagram line paths. They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (|) represents the end of a railroad diagram and indicates the
command or statement can be followed by another command or statement.

ÄÄ SECONDWORD ÄÄ (ÄÄ<arithmetic expression>ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the command
or statement must be on a line by itself.

ÄÄ STOP ÄÄÄ%

Right Arrow

The right arrow symbol (>)

• Is used when the railroad diagram is too long to fit on one line and must continue on
the next

• Appears at the end of the first line, and again at the beginning of the next line

ÄÄ SCALERIGHT ÄÄ (ÄÄ<arithmetic expression>ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ<arithmetic expression>ÄÄ) ÄÄÄ´

Understanding Railroad Diagrams

C–4 8600 0304–301

Required Item

A required item can be

• A constant

• A variable

• Punctuation

If the path you are following contains a required item, you must enter the item in the
command or statement; the required item cannot be omitted.

A required item appears on a horizontal line as a single entry or with other items. Required
items can also exist on horizontal lines within alternate paths, or nested (lower-level)
diagrams.

In the following example, the word EVENT is a required constant and <identifier> is a
required variable:

ÄÄ EVENT ÄÄ<identifier>ÄÄ´

User-Selected Item

A user-selected item can be

• A constant

• A variable

• Punctuation

User-selected items appear one below the other in a vertical list. You can choose any one
of the items from the list. If the list also contains an empty path (solid line) above the
other items, none of the choices are required.

In the following railroad diagram, either the plus sign (+) or the minus sign (–) can be
entered before the required variable <arithmetic expression>, or the symbols can be
disregarded because the diagram also contains an empty path.

ÄÄÂÄÄÄÄÄÂÄ<arithmetic expression>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ + Ä´
 ÀÄ Ä ÄÙ

Understanding Railroad Diagrams

8600 0304–301 C–5

Loop

A loop represents an item or a group of items that you can repeat. A loop can span all or
part of a railroad diagram. It always consists of at least two horizontal lines, one below the
other, connected on both sides by vertical lines. The top line is a right-to-left path that
contains information about repeating the loop.

Some loops include a return character. A return character is a character—often a comma
(,) or semicolon (;)—that is required before each repetition of a loop. If no return
character is included, the items must be separated by one or more spaces.

 ÚêÄÄÄÄÄÄ ; ÄÄÄÄÄ¿
ÄÄÁÄ<field value>ÄÁÄÄ´

Bridge

A loop can also include a bridge. A bridge is an integer enclosed in sloping lines (/ \) that

• Shows the maximum number of times the loop can be repeated

• Indicates the number of times you can cross that point in the diagram

The bridge can precede both the contents of the loop and the return character (if any) on
the upper line of the loop.

Not all loops have bridges. Those that do not can be repeated any number of times until all
valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two times.
In the second bridge example, you can enter LINKAGE or RUNTIME no more than three
times.

 ÚêÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄ¿
ÄÄÁÄ/2\ÄÂÄ LINKAGE ÄÂÄÁÄÄ´
 ÀÄ RUNTIME ÄÙ

 ÚêÄ/2\ÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄ LINKAGE ÄÂÄÁÄÄ´
 ÀÄ RUNTIME ÄÙ

In some bridges an asterisk (*) follows the number. The asterisk means that you must
cross that point in the diagram at least once. The maximum number of times that you can
cross that point is indicated by the number in the bridge.

 ÚêÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄ/2*\Ä LINKAGE ÄÂÄÁÄÄÄ´
 ÀÄ RUNTIME ÄÄÄÄÄÄÙ

In the previous bridge example, you must enter LINKAGE at least once but no more than
twice, and you can enter RUNTIME any number of times.

Understanding Railroad Diagrams

C–6 8600 0304–301

Following the Paths of a Railroad Diagram
The paths of a railroad diagram lead you through the command or statement from
beginning to end. Some railroad diagrams have only one path; others have several
alternate paths that provide choices in the commands or statements.

The following railroad diagram indicates only one path that requires the constant
LINKAGE and the variable <linkage mnemonic>:

ÄÄ LINKAGE ÄÄ<linkage mnemonic>ÄÄ´

Alternate paths are provided by

• Loops

• User-selected items

• A combination of loops and user-selected items

More complex railroad diagrams can consist of many alternate paths, or nested (lower-
level) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate
paths. The top path includes

• An ampersand (&)

• Constants that are user-selected items

 These constants are within a loop that can be repeated any number of times until all
options have been selected.

The first alternative path requires the ampersand and the required constant ADDRESS.
The second alternative path requires the ampersand followed by the required constant
ALTER and the required variable <new value>.

 ÚêÄÄÄÄÄÄ , ÄÄÄÄÄ¿
ÄÄ & ÄÂÄÁÄÂÄ TYPE ÄÄÄÄÂÄÁÄÄÄÄÂÄÄÄ´
 ³ ÃÄ ASCII ÄÄÄ´ ³
 ³ ÃÄ BCL ÄÄÄÄÄ´ ³
 ³ ÃÄ DECIMAL Ä´ ³
 ³ ÃÄ EBCDIC ÄÄ´ ³
 ³ ÃÄ HEX ÄÄÄÄÄ´ ³
 ³ ÀÄ OCTAL ÄÄÄÙ ³
 ÃÄ ADDRESS ÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ ALTER ÄÄ<new value>ÄÙ

Understanding Railroad Diagrams

8600 0304–301 C–7

Railroad Diagram Examples with Sample Input
The following examples show five railroad diagrams and possible command and statement
constructions based on the paths of these diagrams.

Example 1

<lock statement>

ÄÄ LOCK ÄÄ (ÄÄ <file identifier> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Sample Input Explanation

LOCK (FILE4) LOCK is a constant and cannot be altered. Because no part of the
word is boldfaced, the entire word must be entered.

 The parentheses are required punctuation, and FILE4 is a sample
file identifier.

Example 2

<open statement>

ÄÄ OPEN ÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄ<database name>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ INQUIRY Ä´
 ÀÄ UPDATE ÄÄÙ

Sample Input Explanation

OPEN DATABASE1 The constant OPEN is followed by the variable DATABASE1,
which is a database name.

 The railroad diagram shows two user-selected items, INQUIRY
and UPDATE. However, because an empty path (solid line) is
included, these entries are not required.

OPEN INQUIRY
DATABASE1

The constant OPEN is followed by the user-selected constant
INQUIRY and the variable DATABASE1.

OPEN UPDATE
DATABASE1

The constant OPEN is followed by the user-selected constant
UPDATE and the variable DATABASE1.

Example 3

<generate statement>

ÄÄ GENERATE ÄÄ<subset>ÄÄ = ÄÂÄ NULL ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<subset>ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ AND ÄÂÄ<subset>ÄÙ
 ÃÄ OR ÄÄ´
 ÃÄ + ÄÄÄ´
 ÀÄ Ä ÄÄÄÙ

Understanding Railroad Diagrams

C–8 8600 0304–301

Sample Input Explanation

GENERATE Z = NULL The GENERATE constant is followed by the variable Z,
an equal sign (=), and the user-selected constant NULL.

GENERATE Z = X The GENERATE constant is followed by the variable Z,
an equal sign, and the user-selected variable X.

GENERATE Z = X AND B The GENERATE constant is followed by the variable Z,
an equal sign, the user-selected variable X, the AND
command (from the list of user-selected items in the
nested path), and a third variable, B.

GENERATE Z = X + B The GENERATE constant is followed by the variable Z,
an equal sign, the user-selected variable X, the plus sign
(from the list of user-selected items in the nested path),
and a third variable, B.

Example 4

<entity reference declaration>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ ENTITY REFERENCE ÄÁÄ<entity ref ID>ÄÄ (ÄÄ<class ID>ÄÄ) ÄÁÄÄÄÄÄÄÄÄÄ´

Sample Input Explanation

ENTITY REFERENCE ADVISOR1
(INSTRUCTOR)

The required item ENTITY REFERENCE is
followed by the variable ADVISOR1 and the
variable INSTRUCTOR. The parentheses
are required.

ENTITY REFERENCE ADVISOR1
(INSTRUCTOR), ADVISOR2
(ASST_INSTRUCTOR)

Because the diagram contains a loop, the
pair of variables can be repeated any
number of times.

Understanding Railroad Diagrams

8600 0304–301 C–9

Example 5

 ÄÄ PS ÄÄ MODIFY ÄÄë

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ëÄÂÄÁÄÂÄ<request number>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë
 ³ ÀÄ<request number>ÄÄ Ä ÄÄ<request number>ÄÙ ³
 ÀÄ ALL ÄÂÄÄÄ´
 ÀÄ EXCEPTIONS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

 ëÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄÁÄÂÄÄÄÄÄÂÄ<file attribute phrase>ÄÂÄÁÄÙ
 ÃÄ Ä ÄÙ ³
 ÃÄÄÄÄÄÂÄ<print modifier phrase>ÄÙ
 ÀÄ Ä ÄÙ

Sample Input Explanation

PS MODIFY 11159 The constants PS and MODIFY are followed by the
variable 11159, which is a request number.

PS MODIFY
11159,11160,11163

Because the diagram contains a loop, the variable 11159
can be followed by a comma, the variable 11160, another
comma, and the final variable 11163.

PS MOD 11159–11161
DESTINATION = "LP7"

The constants PS and MODIFY are followed by the user-
selected variables 11159–11161, which are request
numbers, and the user-selected variable DESTINATION =
“LP7”, which is a file attribute phrase. Note that the
constant MODIFY has been abbreviated to its minimum
allowable form.

PS MOD ALL EXCEPTIONS The constants PS and MODIFY are followed by the user-
selected constants ALL and EXCEPTIONS.

Understanding Railroad Diagrams

C–10 8600 0304–301

8600 0304–301 Index–1

Index

A

<address couple>
use in INITIALIZE statement, 3-11

ALGOL
arrays

accessing from a FORTRAN common
block, 5-18

accessing from a FORTRAN77 common
block, 5-24

corresponding COBOL identifiers, 5-10
corresponding FORTRAN

identifiers, 5-14
corresponding FORTRAN77

identifiers, 5-21
corresponding Pascal identifiers, 5-32
declaring, 4-2
in COBOL binding, 5-11

binding combinations, 1-1
binding information, generating, 8-1
binding with ALGOL, 4-1
binding with C

example, 5-4, 5-7
identifiers, rules, 5-2
parameter passing, 5-4

binding with COBOL, 5-2, 5-10
corresponding identifiers, 5-10
global items, declaring, 5-10
libraries, 5-11
parameters, 5-11
records, 5-12

binding with COBOL and FORTRAN77
example, 5-57

binding with FORTRAN, 5-14
arrays, accessing from a common

block, 5-18
common blocks, accessing as an ALGOL

array, 5-17
common blocks, equating, 5-16, 5-17
corresponding identifiers, 5-14
example, 5-19
file declarations, 5-16
global items, sharing, 5-16

parameters, 5-15
printing problems, avoiding, 5-16

binding with FORTRAN77, 5-21
arrays, accessing from a common

block, 5-24
arrays, declaring, 5-26
common blocks, accessing as an ALGOL

array, 5-23
common blocks, equating, 5-23, 5-25
corresponding identifiers, 5-21
example, 5-27, 5-29, 5-30
file declarations, 5-22
global items, sharing, 5-22
subprogram restrictions, 5-22

binding with NEWP, 5-31
subprogram requirements, 5-31

binding with Pascal, 5-32
corresponding identifiers, 5-32
example, 5-38
global items, sharing, 5-35
parameters, 5-35

compiler control options
DUMPINFO, 4-3
LOADINFO, 4-3
SEPCOMP, 4-4

DUMPINFO record, 4-3
files

corresponding COBOL identifiers, 5-10
corresponding FORTRAN

identifiers, 5-14
corresponding FORTRAN77

identifiers, 5-21
corresponding Pascal identifiers, 5-32

host program
declaring global items in, 4-3, 4-4
description, 4-1
example, 4-8

INSTALLATION option, 6-1
intralanguage binding, 4-1

example, 4-8
LABEL item restriction when binding, 4-2
lexical level in intralanguage binding, 4-1
library binding in, 4-5

example, 4-8

Index

Index–2 8600 0304–301

LOADINFO record, 4-3
NOBINDINFO option, 8-1
procedures

corresponding COBOL identifiers, 5-10
corresponding FORTRAN

identifiers, 5-14
corresponding FORTRAN77

identifiers, 5-21
corresponding Pascal identifiers, 5-32
restriction in binding, 5-11

record binding in, 4-5
SEPCOMP option, 4-4
subprograms

declaring global items in, 4-2, 4-3
description, 4-1
example, 4-7, 5-27, 5-58

switch items, declaring, 4-2
valid extensions for binding, 4-1
variables

corresponding COBOL identifiers, 5-10
corresponding FORTRAN

identifiers, 5-14
corresponding FORTRAN77

identifiers, 5-21
corresponding Pascal identifiers, 5-32

allowable binding combinations, 1-1
arithmetic common blocks

accessing a single-precision array
through, 5-24

arrays
ALGOL

accessing from a FORTRAN common
block, 5-18

accessing from a FORTRAN77 common
block, 5-24

corresponding COBOL identifiers, 5-10
corresponding FORTRAN

identifiers, 5-14
corresponding FORTRAN77

identifiers, 5-21
corresponding Pascal identifiers, 5-32

declaring in ALGOL, 4-2
double-precision

accessing FORTRAN common blocks
as, 5-18

accessing FORTRAN77 common blocks
as, 5-23

accessing from a common block, 5-18
EBCDIC

accessing FORTRAN77 common blocks
as, 5-24

accessing through a FORTRAN77
common block, 5-25

equivalence
length in bound code file, 5-24

passing between ALGOL and COBOL, 5-11
passing between ALGOL and

FORTRAN77, 5-26
single-precision

accessing FORTRAN common blocks
as, 5-17

accessing FORTRAN77 common blocks
as, 5-23

accessing from a common block, 5-18
accessing through a FORTRAN77

common block, 5-24

B

BDMSALGOL
(See also ALGOL), 4-1

parameter passing, 5-4
BIND statement

affect on named subprograms, 1-7
binding external subprograms with, 3-3
conflict with DONTBIND statement, 3-8
discussion, 3-3
purpose, 3-3
syntax, 3-3

Binder
action on named subprograms, 1-7
code file restrictions, 1-1
control record options, B-4
control records

explanation, B-1
explanation of syntax, B-2, B-3
ignoring columns in, B-1
including options in, B-1
syntax, B-1

description, 1-1
error messages, A-1
executing

with CANDE, 1-6
with WFL, 1-6

execution process, description, 1-7
input files, 1-2

CARD, 1-2
for intrinsics, 6-2, 6-4
host program, 1-2
primary, 1-2
subprogram, 1-3

intrinsics file, 6-2, 6-4
language constructs

file specifier, 2-1

Index

8600 0304–301 Index–3

output files
bound code file, 1-4
description, 1-4
error, 1-4
printer, 1-4

records
use of semicolon (, 3-1
ignoring, 3-1
use of percent sign (%) in, 3-1

reserved words, 1-7
statements

BIND, 3-3
DONTBIND, 3-7
EXTERNAL, 3-9
HOST, 3-10
INITIALIZE, 3-11
PURGE, 3-12
STOP, 3-13
table, 3-2
USE, 3-14
use of percent sign in, 3-1
use of semicolon in, 3-1

BINDERINPUT file
created by the Pascal compiler, 5-35, 5-50
created by the Pascal compiler

(example), 5-37
BINDINFO option

in COBOL, 8-1
in FORTRAN77, 8-1

binding
ALGOL and C

C pointers, 5-4
example, 5-4, 5-7
identifiers, rules, 5-2
parameter passing, 5-4

ALGOL and COBOL, 5-2, 5-10
corresponding identifiers, 5-10
declaring global items, 5-10
parameters, 5-11

ALGOL and COBOL74 programs that use
COMS, 5-12

ALGOL and FORTRAN, 5-14
arrays, accessing from a common

block, 5-18
common blocks, accessing as ALGOL

arrays, 5-17
common blocks, declaring, 5-16
corresponding identifiers, 5-14
example, 5-19
file declarations in, 5-16
parameters, 5-15
printing problems, avoiding, 5-16
sharing global items, 5-16

ALGOL and FORTRAN77, 5-21
arrays, accessing from a common

block, 5-24
arrays, declaring, 5-26
common blocks, accessing as ALGOL

arrays, 5-23
common blocks, declaring, 5-23
corresponding identifiers, 5-21
example, 5-27, 5-29, 5-30
file declarations in, 5-22
sharing global items, 5-22
subprogram restrictions, 5-22

ALGOL and NEWP, 5-31
subprogram requirements, 5-31

ALGOL and Pascal, 5-32
corresponding identifiers, 5-32
example, 5-38
parameters, 5-35
sharing global items, 5-35

ALGOL with ALGOL, 4-1
ALGOL, COBOL, and FORTRAN77

example, 5-57
allowable language combinations, 1-1
and tasking, 4-15
C with C, 4-10
COBOL and C, 5-39

example, 5-40
COBOL and FORTRAN, 5-41

corresponding identifiers, 5-41
parameters, 5-42
sharing global items, 5-42

COBOL and FORTRAN77, 5-43
corresponding identifiers, 5-43
example, 5-44
parameters, 5-44
sharing global items, 5-44

COBOL and Pascal, 5-46
corresponding identifiers, 5-46
example, 5-51, 5-52
parameters, 5-50
sharing global items, 5-50

COBOL with COBOL, 4-14
errors during, 1-8
FORTRAN and FORTRAN77, 5-53

common blocks, 5-54
corresponding identifiers, 5-53
example, 5-56
parameters, 5-54

FORTRAN with FORTRAN, 4-19
FORTRAN77 with FORTRAN77, 4-21
intralanguage

definition, 4-1
languages excluded from, 4-1

Index

Index–4 8600 0304–301

intrinsics, 6-1
syntax, 6-3
without host program, 3-4

level-3 C programs, 4-12
libraries

ALGOL and COBOL, 5-11
FORTRAN and FORTRAN77, 5-55
in ALGOL, 4-5
in ALGOL (example), 4-8
in COBOL, 4-16
in FORTRAN, 4-19
in FORTRAN77, 4-22

PL/I with PL/I, 4-25
records

ALGOL and COBOL, 5-12
in ALGOL, 4-5

reducing I/O time used in, 1-8
replacement, (See also replacement

binding), 1-3
subprograms, 1-7

that access DMSII databases, 7-1
that access SIM databases, 7-2

subprograms that access SIM databases, 7-3
binding information

description, 8-1
generating

for ALGOL, 8-1
for COBOL, 8-1
for FORTRAN, 8-1
for FORTRAN77, 8-1
for Pascal, 8-1

printing, 8-2
blank common block, declaring, 5-16, 5-23
blocks, common, (See common blocks), 5-16
bound code file

description, 1-4
FILEKIND attribute, 1-4
length of common block in, 4-19, 4-21

brackets method for declaring global items in
ALGOL subprograms, 4-2

C

C
binding combinations, 1-1
binding with ALGOL

example, 5-4, 5-7
identifiers, rules, 5-2
parameter passing, 5-4
pointers, 5-4

binding with C, 4-10

binding with COBOL, 5-39
example, 5-40

functions in binding, use of, 4-10
global variables in binding, use of, 4-10
host program

description, 4-10
example, 5-4, 5-7, 5-40

intralanguage binding, 4-10
example, 4-11, 4-12

level-3 subprograms, 4-10
libraries, binding to host programs, 4-10
subprogram

description, 4-10
CALL verb, in COBOL, 4-14
COBOL

BINDINFO option, 8-1
binding an external procedure, 4-14
binding combinations, 1-1
binding information, generating, 8-1
binding with ALGOL, 5-2, 5-10

corresponding identifiers, 5-10
global items, declaring, 5-10
libraries, 5-11
parameters, 5-11
records, 5-12

binding with ALGOL and FORTRAN77
example, 5-57

binding with C, 5-39
example, 5-40

binding with COBOL, 4-14
binding with FORTRAN, 5-41

corresponding identifiers, 5-41
global items, sharing, 5-42
parameters, 5-42

binding with FORTRAN77, 5-43
corresponding identifiers, 5-43
example, 5-44
global items, sharing, 5-44
parameters, 5-44

binding with Pascal, 5-46
corresponding identifiers, 5-46
example, 5-51, 5-52
global items, sharing, 5-50
parameters, 5-50

CALL verb, 4-14
ENTER verb, 4-14
GLOBAL clause, 4-15
host program

description, 4-14
intralanguage binding, 4-14

CODE FILE TITLE option in, 4-14
example, 4-16

library binding in, 4-16

Index

8600 0304–301 Index–5

LOCAL option, 4-15
OWN option, 4-15, 4-16
subprogram

example, 5-57, 5-58
subprograms

declaring global items in, 4-15
declaring global items in (example), 4-15
description, 4-14
lexical level of, 4-14

code file
bound

description, 1-4
length of common block in, 4-19
unresolved external references in, 1-5

indicating title in COBOL binding, 4-14
CODE option in Binder control record, B-4
CODEN option in Binder control record, B-4
common blocks

accessing ALGOL arrays from, 5-18, 5-24
accessing as ALGOL arrays, 5-17, 5-23
arithmetic

accessing a single-precision array
through an, 5-24

binding in FORTRAN77, 4-21
blank, 5-16, 5-23
declaring, 5-16, 5-23
description, 5-16
equating with ALGOL arrays, 5-16, 5-23
FORTRAN

corresponding COBOL identifiers, 5-41
FORTRAN77

corresponding COBOL identifiers, 5-43
length in bound code file, 4-19, 4-21
passing between FORTRAN and

FORTRAN77, 5-54
simulating in ALGOL, 5-17, 5-25
using data-initialized values with, 5-24

compiler control options
ALGOL

DUMPINFO, 4-3
INSTALLATION, 6-1
LOADINFO, 4-3
NOBINDINFO, 8-1
SEPCOMP, 4-4

COBOL
BINDINFO, 8-1
GLOBAL, 4-15, 5-10
LOCAL, 4-15
OWN, 4-15, 4-16

FORTRAN
INSTALLATION, 6-1
NOBINDINFO, 8-1

FORTRAN77

BINDINFO, 8-1
COMS

binding ALGOL and COBOL74 programs
that use, 5-12

conflict between BIND and DONTBIND
statements, 3-8

connection block type, 2-5
constructs

Binder language
file specifier, 2-1

SIM
DMRECORD variable, 7-2
entity reference variable, 7-2
query variable, 7-2

control records, Binder
explanation, B-1
explanation of syntax, B-2, B-3
ignoring columns in, B-1
including options in, B-1
options for, B-4
syntax, B-1

D

data items
restrictions in tasking and binding, 4-15

data types, SIM, 7-2
database binding

referencing from a subprogram, 7-3
databases

binding a DMSII, 7-1
binding a SIM, 7-2

data-initialized values
using with FORTRAN common blocks, 5-24

DCALGOL, (See also ALGOL), 4-1
DEBUG option, PRINTBINDINFO utility, 8-6
declaring

blank common blocks, 5-16, 5-23
files in FORTRAN77, 4-21
FORTRAN common blocks, 5-16
FORTRAN77 common blocks, 5-23
functions

when binding C with C, 4-10
global items

in ALGOL host programs, 4-3, 4-4
in ALGOL subprograms, 4-2, 4-3
in COBOL subprograms, 4-15
when binding ALGOL and COBOL, 5-10
when binding ALGOL and

FORTRAN, 5-16
when binding ALGOL and Pascal, 5-35

Index

Index–6 8600 0304–301

when binding COBOL and Pascal, 5-50
global variables

when binding C with C, 4-10
parameters

in COBOL intralanguage binding, 4-14
SIM databases, 7-3
STATIC EXTERNAL variables in PL/I, 4-25

<digit>, 2-1
directory name in a file specifier, 2-2
<directory specifier>, 2-2
DMALGOL, (See also ALGOL), 4-1
DMRECORD variable in SIM, 7-2
DMSII databases

binding programs that access, 7-1
dollar sign ($)

use in Binder control record, B-1
DONTBIND statement

conflict with BIND statement, 3-8
discussion, 3-7
purpose, 3-7
syntax, 3-7

double-precision arrays
accessing FORTRAN common blocks

as, 5-18
accessing FORTRAN77 common blocks

as, 5-23
accessing from a common block, 5-18

DUMPINFO
record, in ALGOL, 4-3

E

EBCDIC array
accessing a FORTRAN77 common block as

an, 5-24
accessing through a FORTRAN77 common

block, 5-25
EBCDIC character

use in file specifier, 2-2
efficiency

in binding, 1-8
in object-code, 1-9

ENTER verb, in COBOL, 4-14
entity reference variable in SIM, 7-2
equal sign (=)

use in BIND statement, 3-3
use in file specifier, 2-2

equivalence array
length in bound code file, 5-24

ERRLIST option in Binder control record, B-4
error file

description, 1-4
error messages, A-1
ERRORLIST option in Binder control

record, B-4
errors

during binding, 1-8
examples

<directory specifier>, 2-2
<file specifier>, 2-2
ALGOL host program, 4-8
ALGOL intralanguage binding, 4-8
ALGOL subprogram, 4-7, 5-27, 5-58
BINDERINPUT file created by the Pascal

compiler (example), 5-37
binding ALGOL and C, 5-4, 5-7
binding ALGOL and FORTRAN, 5-19
binding ALGOL and FORTRAN77, 5-27,

5-29, 5-30
binding ALGOL and Pascal, 5-38
binding ALGOL, COBOL, and

FORTRAN77, 5-57
binding COBOL and C, 5-40
binding COBOL and FORTRAN77, 5-44
binding COBOL and Pascal, 5-51, 5-52
binding FORTRAN and FORTRAN77, 5-56
C host program, 5-4, 5-7, 5-40
C intralanguage binding, 4-11, 4-12
COBOL intralanguage binding, 4-16
COBOL subprogram, 5-57, 5-58
control records, using SET and RESET

options, B-2
declaring STATIC EXTERNAL variables in

PL/I, 4-25
FORTRAN host program, 5-19
FORTRAN intralanguage binding, 4-20
FORTRAN77 host program, 5-45, 5-57
FORTRAN77 intralanguage binding, 4-22
FORTRAN77 subprogram, 4-22
global items in COBOL subprograms, 4-15
GLOBAL option in COBOL binding, 4-15
HOST statement, 3-10
INITIALIZE statement, 3-11
primary input file, 4-9, 4-12, 4-23, 5-30, 5-59
PURGE statement, 3-12
referencing a SIM database by a

subprogram, 7-3
restricting PRINTBINDINFO utility

analysis, 8-4
running the PRINTBINDINFO utility, 8-2
SIM database

accessed by Pascal host program, 7-9
SIM entity reference variable, referenced by

subprogram, 7-5

Index

8600 0304–301 Index–7

SIM query variable referenced by
subprogram, 7-6

USE statement, 3-15
executing Binder

with CANDE, 1-6
with WFL, 1-6

execution process of Binder, description, 1-7
EXTERNAL

directive in Pascal, 5-35, 5-50
external procedure

binding in COBOL, 4-14
external references, unresolved

avoiding, 1-5
causes of, 1-5
definition, 1-5

EXTERNAL statement
effect on named subprograms, 1-7
purpose, 3-9
syntax, 3-9

EXTERNAL statement, (See also DONTBIND
statement), 1-7, 3-9

external subprograms
BIND statement for, 3-3
description, 1-3

F

family name, use in file specifier, 2-2
<family name>, 2-2
FARHEAP option, Binder USE statements for

accessing the heap, 5-7
file attributes, treatment of

in ALGOL global files, 4-4
in ALGOL-COBOL global files, 5-11
in COBOL global files, 4-15

file specifier
directory name in, 2-2
equal sign in, 2-2
explanation, 2-2
syntax, 2-1

<file specifier>
examples of, 2-2
syntax, 2-1
use in BIND statement, 3-3
use in HOST statement, 3-10
use in PURGE statement, 3-12

FILEKIND attribute, 1-4
files

ALGOL
corresponding COBOL identifiers, 5-10

corresponding FORTRAN
identifiers, 5-14

corresponding FORTRAN77
identifiers, 5-21

corresponding Pascal identifiers, 5-32
Binder input, 1-2

CARD, 1-2
for intrinsics, 6-2, 6-4
host program, 1-2
primary input, 1-2
subprogram, 1-3

Binder output
bound code file, 1-4
description, 1-4
error, 1-4
printer, 1-4

BINDERINPUT
created by the Pascal compiler, 5-35,

5-50
created by the Pascal compiler

(example), 5-37
bound code

description, 1-4
length of common block in, 4-19, 4-21
unresolved external references in, 1-5

CARD, description, 1-2
declarations in ALGOL and FORTRAN

binding, 5-16
declarations in ALGOL and FORTRAN77

binding, 5-22
declaring in FORTRAN77, 4-21
host program

definition, 1-1
description, 1-2

passing between ALGOL and COBOL, 5-11
primary input

description, 1-2
example, 4-9, 4-12, 4-23, 5-30, 5-59

printer output, description, 1-4
SELECTIDS in PRINTBINDINFO utility, 8-4
subprogram

affect of BIND statement on during
binding, 1-7

binding of, 1-7
definition, 1-1
description, 1-3
effect of EXTERNAL statement on

during binding, 1-7
nesting structure of, 2-6
processing by Binder, 1-7
titling of, 1-4

FORTRAN
binding combinations, 1-1

Index

Index–8 8600 0304–301

binding information, generating, 8-1
binding with ALGOL, 5-14

arrays, accessing from a common
block, 5-18

common blocks, accessing as an ALGOL
array, 5-17

common blocks, declaring, 5-16
corresponding identifiers, 5-14
example, 5-19
file declarations, 5-16
global items, sharing, 5-16
parameters, 5-15
printing problems, avoiding, 5-16

binding with COBOL, 5-41
corresponding identifiers, 5-41
global items, sharing, 5-42
parameters, 5-42

binding with FORTRAN, 4-19
binding with FORTRAN77, 5-53

common blocks, 5-54
corresponding identifiers, 5-53
example, 5-56
libraries, 5-55
parameters, 5-54
replacing a main program with a

subroutine, 5-54
common blocks

accessing ALGOL arrays from, 5-18
accessing as ALGOL arrays, 5-17
corresponding COBOL identifiers, 5-41
declaring, 5-16
description, 5-16
equating with ALGOL arrays, 5-16
length after binding, 4-19
simulating in ALGOL, 5-17
using data-initialized values with, 5-24

host program
description, 4-19
example, 5-19

INSTALLATION option, 6-1
intralanguage binding, 4-19

example, 4-20
library binding in, 4-19
NOBINDINFO option, 8-1
subprogram

description, 4-19
variable

corresponding COBOL identifiers, 5-41
FORTRAN77

BINDINFO option, 8-1
binding combinations, 1-1
binding information, generating, 8-1
binding with ALGOL, 5-21

arrays, accessing from a common
block, 5-24

arrays, declaring, 5-26
common blocks, accessing as an ALGOL

array, 5-23
common blocks, declaring, 5-23
corresponding identifiers, 5-21
example, 5-27, 5-29, 5-30
file declarations, 5-22
global items, sharing, 5-22
subprogram restrictions, 5-22

binding with ALGOL and COBOL
example, 5-57

binding with COBOL, 5-43
corresponding identifiers, 5-43
example, 5-44
global items, sharing, 5-44
parameters, 5-44

binding with FORTRAN, 5-53
common blocks, 5-54
corresponding identifiers, 5-53
example, 5-56
libraries, 5-55
parameters, 5-54

binding with FORTRAN77, 4-21
common blocks

accessing ALGOL arrays from, 5-24
accessing as ALGOL arrays, 5-23
corresponding COBOL identifiers, 5-43
declaring, 5-23
equating with ALGOL arrays, 5-23
simulating in ALGOL, 5-25

file declarations, 4-21
host program

description, 4-21
example, 5-45, 5-57

intralanguage binding, 4-21
example, 4-22

length of common block after binding, 4-21
library binding in, 4-22
subprogram

description, 4-21
example, 4-22

variable
corresponding COBOL identifiers, 5-43

<from part>
use in BIND statement, 3-3

functions, declaring
when binding C with C, 4-10

G

GLOBAL

Index

8600 0304–301 Index–9

clause in COBOL, 4-15
option in COBOL, 5-10

global files
file attribute treatment

ALGOL, 4-4
ALGOL-COBOL binding, 5-11
COBOL, 4-15

global items
declaring in ALGOL host programs, 4-3, 4-4
declaring in ALGOL subprograms, 4-2

with brackets method, 4-2
with INFO file method, 4-3

declaring in COBOL, 4-15
sharing between

ALGOL and COBOL, 5-10
ALGOL and FORTRAN, 5-16
ALGOL and FORTRAN77, 5-22
ALGOL and Pascal, 5-35
COBOL and FORTRAN, 5-42
COBOL and FORTRAN77, 5-44
COBOL and Pascal, 5-50

global variables
declaring

when binding C with C, 4-10

H

HOST option in Binder control record, B-4
host program

ALGOL
declaring global items in, 4-3, 4-4
description, 4-1
example, 4-8

C
description, 4-10
example, 5-4, 5-7, 5-40

COBOL
description, 4-14

definition, 1-1
description, 1-2
examples of, 1-3
FORTRAN

description, 4-19
example, 5-19

FORTRAN77
description, 4-21
example, 5-45, 5-57

PL/I
description, 4-25

HOST statement
effect of multiple, 3-10

effect on file equation, 3-10
examples, 3-10
purpose, 3-10
syntax, 3-10

hyphen character
use in file specifier, 2-1

<hyphen>, 2-1

I

I/O time
reducing during binding, 1-8

<identifier>
use in INITIALIZE statement, 3-11
use in USE statement, 3-14

identifiers, corresponding
ALGOL and COBOL, 5-10
ALGOL and FORTRAN, 5-14
ALGOL and FORTRAN77, 5-21
ALGOL and Pascal, 5-32
COBOL and FORTRAN, 5-41
COBOL and FORTRAN77, 5-43
COBOL and Pascal, 5-46
FORTRAN and FORTRAN77, 5-53

identifiers, rules for
ALGOL and C interlanguage binding, 5-2

IGNORELOCALDIR option, PRINTBINDINFO
utility, 8-6

INFO file method for declaring global items in
ALGOL subprograms, 4-3

initial values, using with FORTRAN common
blocks, 5-24

INITIALIZE statement
examples, 3-11
purpose, 3-11
syntax, 3-11

input files, Binder, 1-2
CARD, 1-2
host program, 1-2
primary, 1-2
subprogram, 1-3

interlanguage binding
ALGOL and C

C pointers in, 5-4
example, 5-7
identifiers, rules, 5-2
parameter passing, 5-4

ALGOL and COBOL, 5-2, 5-10
corresponding identifier types, 5-10
declaring global items, 5-10
libraries, 5-11

Index

Index–10 8600 0304–301

parameters, 5-11
records, 5-12

ALGOL and FORTRAN, 5-14
arrays, accessing from a common

block, 5-18
common blocks, accessing as ALGOL

arrays, 5-17
common blocks, declaring, 5-16
corresponding identifier types, 5-14
example, 5-19
file declarations, 5-16
parameters, 5-15
printing problems, avoiding, 5-16
sharing global items, 5-16

ALGOL and FORTRAN77, 5-21
arrays, accessing from a common

block, 5-24
arrays, declaring, 5-26
common blocks, accessing as ALGOL

arrays, 5-23
common blocks, declaring, 5-23
corresponding identifier types, 5-21
example, 5-27, 5-29, 5-30
file declarations, 5-22
sharing global items, 5-22
subprogram restrictions, 5-22

ALGOL and NEWP, 5-31
subprogram requirements, 5-31

ALGOL and Pascal, 5-32
corresponding identifier types, 5-32
example, 5-38
parameters, 5-35
sharing global items, 5-35

ALGOL, COBOL, and FORTRAN77,
example, 5-57

COBOL and C, 5-39
example, 5-40

COBOL and FORTRAN, 5-41
corresponding identifier types, 5-41
parameters, 5-42
sharing global items, 5-42

COBOL and FORTRAN77, 5-43
corresponding identifier types, 5-43
example, 5-44
parameters, 5-44
sharing global items, 5-44

COBOL and Pascal, 5-46
corresponding identifier types, 5-46
example, 5-51, 5-52
parameters, 5-50
sharing global items, 5-50

ALGOL and C, 5-4
FORTRAN and FORTRAN77, 5-53

common blocks, 5-54
corresponding identifier types, 5-53
example, 5-56
libraries, 5-55
parameters, 5-54

intralanguage binding
ALGOL

description, 4-1
example of, 4-8
lexical level in, 4-1

C, 4-10, 4-12
example of, 4-11, 4-12
level-3 programs, 4-12

COBOL
description, 4-14
example of, 4-16

definition, 4-1
FORTRAN

description, 4-19
example of, 4-20

FORTRAN77
description, 4-21
example of, 4-22

languages excluded from, 4-1
PL/I

description, 4-25
<intrinsic specification>

use in BIND statement, 3-3
intrinsics

Binder input file for, 6-2
example, 6-4

binding, 6-1
without a host program, 3-4

compiling, requirements for, 6-1
description, 6-1
number pair construct, 2-4
specification construct

explanation, 2-4
INTRINSICS option in Binder control

record, B-4
invoking Binder

with CANDE, 1-6
with WFL, 1-6

L

LABEL item, restriction in ALGOL binding, 4-2
language constructs, Binder

file specifier, 2-1
<letter>, 2-1
level-3 C programs, binding, 4-12

Index

8600 0304–301 Index–11

lexical level
in ALGOL intralanguage binding, 4-1
of COBOL subprograms, 4-14

library
binding

ALGOL, 4-5, 4-8
ALGOL and COBOL, 5-11
COBOL, 4-16
FORTRAN, 4-19
FORTRAN and FORTRAN77, 5-55
FORTRAN77, 4-22

mismatch errors, preventing, 5-12
LINEINFO option in Binder control

record, B-4
LIST option in Binder control record, B-4
LOADINFO

record, in ALGOL, 4-3
LOCAL option

in COBOL, 4-15

M

main program, replacing with a
subroutine, 5-54

MAP option in Binder control record, B-5
matching identifiers between

ALGOL and COBOL, 5-10
ALGOL and FORTRAN, 5-14
ALGOL and FORTRAN77, 5-21
ALGOL and Pascal, 5-32
COBOL and FORTRAN, 5-41
COBOL and FORTRAN77, 5-43
COBOL and Pascal, 5-46
FORTRAN and FORTRAN77, 5-53

messages, warning and error, A-1

N

nesting structure, program, 2-6
NEWP

binding combinations, 1-1
binding with ALGOL, 5-31

subprogram requirements, 5-31
NOBINDINFO option

in ALGOL, 8-1
in ALGOL and FORTRAN, 8-1
in Binder control record, B-5
in FORTRAN, 8-1

<nonquote EBCDIC character>, 2-2
nonquote identifier, use in file specifier, 2-2

<nonquote identifier>, 2-2
NOREFERENCES option, PRINTBINDINFO

utility, 8-6

O

object-code efficiency, 1-9
options

Binder control record, B-4
in ALGOL

DUMPINFO, 4-3
INSTALLATION, 6-1
LOADINFO, 4-3
NOBINDINFO, 8-1
SEPCOMP, 4-4

in COBOL
BINDINFO, 8-1
GLOBAL, 4-15
LOCAL, 4-15
OWN, 4-15, 4-16

in FORTRAN
INSTALLATION, 6-1
NOBINDINFO, 8-1

in FORTRAN77
BINDINFO, 8-1

in PRINTBINDINFO utility
DEBUG, 8-6
IGNORELOCALDIR, 8-6
NOREFERENCES, 8-6

output files, Binder
bound code file, 1-4
description, 1-4
error, 1-4
printer, 1-4

OWN option
in COBOL, 4-16

OWN option, in COBOL, 4-15

P

parameters
declaring

in COBOL intralanguage binding, 4-14
passing between

ALGOL and COBOL, 5-11
ALGOL and FORTRAN, 5-15
ALGOL and Pascal, 5-35
COBOL and FORTRAN, 5-42
COBOL and FORTRAN77, 5-44
COBOL and Pascal, 5-50

Index

Index–12 8600 0304–301

FORTRAN and FORTRAN77, 5-54
Pascal

binding combinations, 1-1
binding information, generating, 8-1
binding with ALGOL, 5-32

corresponding identifiers, 5-32
example, 5-38
global items, sharing, 5-35
parameters, 5-35

binding with COBOL, 5-46
corresponding identifiers, 5-46
example, 5-51, 5-52
global items, sharing, 5-50
parameters, 5-50

EXTERNAL directive in, 5-35, 5-50
passing a system file

from Pascal host to COBOL
subprogram, 5-52

percent sign (%), use in Binder control
records, 3-1

PL/I
binding combinations, 1-1
binding with PL/I, 4-25
host program

description, 4-25
intralanguage binding, 4-25
STATIC EXTERNAL variables, 4-25
subprogram

description, 4-25
pointers, C

in ALGOL-C interlanguage binding, 5-4
primary input file

description, 1-2
example, 4-9, 4-12, 4-23, 5-30, 5-59

PRINTBINDINFO utility
DEBUG output option, 8-6
description, 8-1
IGNORELOCALDIR output option, 8-6
NOREFERENCES output option, 8-6
printer format options, 8-6
restricting the analysis, 8-4
running (example), 8-2
SELECTIDS file, 8-4
starting, 8-2
TASKVALUE attribute, 8-6

printer
format options, PRINTBINDINFO

utility, 8-6
listing, 1-4
output file, description, 1-4

printing
avoiding problems in ALGOL and

FORTRAN binding, 5-16

binding information, 8-2
procedures

ALGOL
corresponding COBOL identifiers, 5-10
corresponding FORTRAN

identifiers, 5-14
corresponding FORTRAN77

identifiers, 5-21
corresponding Pascal identifiers, 5-32

restriction when binding ALGOL and
COBOL, 5-11

program
host, (See also host program), 1-1

program nesting structure of, 2-6
PURGE statement

examples, 3-12
purpose, 3-12
syntax, 3-12

Q

query variable in SIM, 7-2

R

railroad diagrams, explanation of, C-1
records

Binder control
explanation, B-1
explanation of syntax, B-2, B-3
ignoring, 3-1
ignoring columns in, B-1
including options in, B-1
options for, B-4
syntax, B-1
use of percent sign in, 3-1

binding ALGOL and COBOL, 5-12
binding in ALGOL, 4-5
DUMPINFO, in ALGOL, 4-3
LOADINFO, in ALGOL, 4-3

reducing I/O time during binding, 1-8
referencing a SIM database from a

subprogram, 7-3
replacement binding, 1-3, 4-2
reserved words, 1-7
restricting PRINTBINDINFO utility

analysis, 8-4

Index

8600 0304–301 Index–13

S

SEG option in Binder control record, B-5
SELECTIDS file, using with PRINTBINDINFO

utility, 8-4
SEPCOMP option, in ALGOL, 4-4
SIM

constructs
DMRECORD variable, 7-2
entity reference variable, 7-2
query variable, 7-2

data types, 7-2
databases

accessed by a Pascal host program
(example), 7-9

binding programs that access, 7-2
declaring, 7-3
referenced by subprogram

(example), 7-3
referenced in subprograms by entity

reference variable, 7-5
referenced in subprograms by query

variable (example), 7-6
single-precision arrays

accessing FORTRAN common blocks
as, 5-17

accessing FORTRAN77 common blocks
as, 5-23

accessing from a common block, 5-18
accessing through FORTRAN77 common

blocks, 5-24
slash (/), use in common block

declaration, 5-16
STACK option in Binder control record, B-5
starting Binder

with CANDE, 1-6
with WFL, 1-6

statements, Binder
BIND

binding external subprograms with, 3-3
conflict with DONTBIND statement, 3-8
discussion, 3-3, 3-7
purpose, 3-3
syntax, 3-3

DONTBIND
conflict with BIND statement, 3-8
purpose, 3-7
syntax, 3-7

EXTERNAL
purpose, 3-9
syntax, 3-9

EXTERNAL, (See also DONTBIND
statement), 3-9

HOST
effect of multiple, 3-10
effect on file equation, 3-10
examples, 3-10
purpose, 3-10
syntax, 3-10

INITIALIZE
examples, 3-11
purpose, 3-11
syntax, 3-11

PURGE
examples, 3-12
purpose, 3-12
syntax, 3-12

STOP
purpose, 3-13
syntax, 3-13

table, 3-2
USE

discussion, 3-14
examples, 3-15
purpose, 3-14
syntax, 3-14

use of semicolon in, 3-1
STATIC EXTERNAL variables in PL/I, 4-25
STOP statement

purpose, 3-13
syntax, 3-13

STRICT option in Binder control record, B-5
structure block type, 2-5
subprogram

referencing a SIM database from, 7-3
<subprogram identifier>

use in BIND statement, 3-3
use in DONTBIND statement, 3-7
use in EXTERNAL statement, 3-9
use in USE statement, 3-14

subprograms
ALGOL, 4-1

declaring global items in, 4-2
example, 4-7, 5-27, 5-58

binding process, description, 1-7
C, 4-10
COBOL, 4-14

declaring global items in, 4-15
declaring global items in (example), 4-15
example, 5-57, 5-58

definition, 1-1
description, 1-3
effect of BIND statement on, during

binding, 1-7

Index

Index–14 8600 0304–301

effect of EXTERNAL statement on, during
binding, 1-7

examples of, 1-3
external, 1-3

BIND statement for, 3-3
file

titling of, 1-4
FORTRAN, 4-19, 5-54
FORTRAN77, 4-21, 5-54

example, 4-22
identifier

examples, 2-5
explanation, 2-5

nesting structure, 2-6
PL/I, 4-25
processing by Binder, 1-7
requirements when binding ALGOL and

NEWP, 5-31
restrictions when binding ALGOL and

FORTRAN77, 5-22
titling of, 1-4

subroutines, titling, 5-54
switch items, declaring in ALGOL binding, 4-2
SYSTEM/PRINTBINDINFO utility

description, 8-1

T

tasking
and binding, 4-15

TASKVALUE task attribute, PRINTBINDINFO
utility, 8-6

TIME option in Binder control record, B-5
title

of a subprogram, 1-4

U

underscore character, use in file specifier, 2-1
<underscore>, 2-1
unresolved external references

avoiding, 1-5
causes of, 1-5
description, 1-5

USE statement
discussion, 3-14
examples, 3-15
purpose, 3-14
syntax, 3-14

use in equating ALGOL and Pascal
identifiers, 5-35

use in replacing a main program with a
subroutine, 5-54

USEHOSTSIZE option in Binder control
record, B-5

usercode
use in file specifier, 2-2

<usercode>, 2-2

V

values, initial, using with FORTRAN common
blocks, 5-24

variables
ALGOL

corresponding COBOL identifiers, 5-10
corresponding FORTRAN

identifiers, 5-14
corresponding FORTRAN77

identifiers, 5-21
corresponding Pascal identifiers, 5-32

FORTRAN
corresponding COBOL identifiers, 5-41

FORTRAN77
corresponding COBOL identifiers, 5-43

global
sharing between ALGOL and

COBOL, 5-10
sharing between ALGOL and

FORTRAN, 5-16
sharing between ALGOL and

FORTRAN77, 5-22
sharing between ALGOL and Pascal, 5-35
sharing between COBOL and

FORTRAN, 5-42
sharing between COBOL and

FORTRAN77, 5-44
sharing between COBOL and Pascal, 5-50

STATIC EXTERNAL in PL/I, 4-25
variables, global, (See also global

variables), 4-10

W

WAIT option in Binder control record, B-5
WARN option in Binder control record, B-6
warning messages, A-1
words

reserved, 1-7

Index

8600 0304–301 Index–15

Special Characters

$ (dollar sign), use in Binder control
record, B-1

% (percent sign), use in Binder control
records, 3-1

semicolon (, 3-1

/ (slash), use in common block
declaration, 5-16

; (semicolon), use in Binder records, 3-1
= (equal sign)

use in BIND statement, 3-3
use in file specifier, 2-2

Index

Index–16 8600 0304–301

	Documentation Notes
	Contents
	About This Manual
	Section 1. Understanding the Binding Process
	What Is Binder?
	Binder Code File Restrictions
	Binder Input Files
	The Primary Input File
	The Host Program
	The Subprogram

	Binder Output Files
	Avoiding Unresolved External References in the Bound Code File
	Invoking Binder
	Invoking Binder from CANDE
	Invoking Binder from WFL

	Reserved Words
	Binder Execution
	Binding Subprograms
	Encountering Errors

	Using Binder Efficiently
	Object-Code Efficiency

	Section 2. Binder Language Constructs
	File Specifier
	Identifier
	Intrinsic Specification
	Subprogram Identifier

	Section 3. Binder Statements
	BIND Statement
	DONTBIND Statement
	Conflicts between BIND and DONTBIND Statements
	EXTERNAL Statement
	HOST Statement
	INITIALIZE Statement
	PURGE Statement
	STOP Statement
	USE Statement

	Section 4. Binding Programs Written in the Same Language
	ALGOL Intralanguage Binding
	Compiling ALGOL Host Programs and Subprogram
	Declaring Global Items within an ALGOL Procedure
	Using the Brackets Method
	Using the INFO File Method

	Adding New Global Items to an ALGOL Host Program
	Using the ALGOL Separate Compilation Facility
	Library Binding in ALGOL
	Record Binding in ALGOL
	Example of ALGOL Intralanguage Binding
	Example of Binding an ALGOL Library
	Example of Binding an ALGOL Program That References a Library

	C Intralanguage Binding
	C Host Programs
	C Subprograms
	Describing Functions and Global Variables
	Binding with Different Memory Models
	Example of C Intralanguage Binding
	Binding Level-3 C Programs
	Example of Binding a Level-3 C Program

	COBOL Intralanguage Binding
	Compiling COBOL Host Programs and Subprograms
	Binding an External Procedure to a COBOL Host Program
	Activating Bound Subprograms
	Global Declarations in Subprograms
	Tasking and Binding
	OWN Declarations in the Subprogram
	Library Binding in COBOL
	Example of COBOL Intralanguage Binding

	FORTRAN Intralanguage Binding
	Compiling FORTRAN Host Programs and Subprograms
	FORTRAN Common Blocks
	Library Binding in FORTRAN
	Example of FORTRAN Intralanguage Binding

	FORTRAN77 Intralanguage Binding
	Compiling FORTRAN77 Host Programs and Subprograms
	Files
	Common Blocks
	Library Binding in FORTRAN77
	Example of FORTRAN77 Intralanguage Binding

	PL/I Intralanguage Binding
	Declaring Host Programs and Subprograms
	STATIC EXTERNAL Variables
	Example of PL/I Intralanguage Binding

	Section 5. Binding Programs Written in Different Languages
	ALGOL-C Interlanguage Binding
	Identifiers
	C Functions
	Pointers
	Parameter Passing
	Example of Binding ALGOL Procedures Into a C Host
	Accessing the C Heap from ALGOL
	Example of an ALGOL Subprogram Accessing the C Heap

	ALGOL-COBOL Interlanguage Binding
	Global Items
	Parameters
	Libraries
	Record Binding
	Binding ALGOL and COBOL74 Programs That Use COMS

	ALGOL-FORTRAN Interlanguage Binding
	Parameters
	Global Items
	Files
	Common Blocks
	Simulating Common Blocks in ALGOL
	Accessing FORTRAN Common Blocks as ALGOL Arrays
	Accessing ALGOL Global Arrays from a FORTRAN Common Block

	Example of ALGOL-FORTRAN Binding

	ALGOL-FORTRAN77 Interlanguage Binding
	Global Items
	Subprograms
	Files
	Common Blocks
	Accessing FORTRAN77 Common Blocks as ALGOL Arrays
	Using Initial Values with Common Blocks
	Accessing ALGOL Arrays from a FORTRAN77 Common Block
	Simulating Common Blocks in ALGOL

	Parameters
	Example of Binding an ALGOL Subprogram Into a FORTRAN77 Host Program
	Example of Replacing a FORTRAN77 Character Function by an ALGOL Procedure
	Example of Binding FORTRAN77 Program Units Into an ALGOL Host Program

	ALGOL-NEWP Interlanguage Binding
	ALGOL-Pascal Interlanguage Binding
	Global Items
	Parameters
	Examples of Binding an ALGOL Subprogram Into a Pascal Host Program

	COBOL-C Interlanguage Binding
	Example of COBOL-C Binding

	COBOL-FORTRAN Interlanguage Binding
	Global Items
	Parameters

	COBOL-FORTRAN77 Interlanguage Binding
	Global Items
	Parameters
	Example of Passing a FORTRAN77 Character Variable to a COBOL74 Section

	COBOL-Pascal Interlanguage Binding
	Global Items
	Parameters
	Example of Binding a COBOL74 Procedure Into a Pascal Host Program
	Example of Binding a COBOL Procedure Into a Pascal Host Program

	FORTRAN-FORTRAN77 Interlanguage Binding
	Subprograms
	Common Blocks
	Parameters
	Characters
	Libraries
	Example of Binding a FORTRAN Common Block Into a FORTRAN77 Host Program
	Example of Interlanguage Binding Involving FORTRAN77, COBOL74, and ALGOL

	Section 6. Binding Intrinsics
	What Is an Intrinsic?
	Compiling Intrinsics
	Creating a Binder Input File
	Intrinsic Specification

	Section 7. Binding Programs That Access Databases
	Binding DMSII Databases
	Binding SIM Databases
	SIM Data Types
	Referencing a SIM Database
	Referencing a SIM Entity Reference Variable in a Host Program
	Referencing a SIM Query Variable in a Host Program
	Adding Query Variables as New Globals
	Referencing a SIM Database in a Pascal Host

	Section 8. Printing Binding Information
	Generating Binding Information
	Using the PRINTBINDINFO Utility
	Printing Binding Information for Specific Procedures
	Output Options

	Appendix A. Warning and Error Messages
	Appendix B. Using Binder Control Record Options
	Binder Control Record Format
	Binder Options

	Appendix C. Understanding Railroad Diagrams
	Railroad Diagram Concepts
	Paths
	Constants and Variables
	Constraints
	Vertical Bar
	Percent Sign
	Right Arrow
	Required Item
	User-Selected Item
	Loop
	Bridge

	Following the Paths of a Railroad Diagram
	Railroad Diagram Examples with Sample Input

	Index
	Master Glossary

