Burroughs Corporation @ B1800/B1700 SDL (BNF Version) 2212 5405 /-

%

COMPUTER SYSTEMS GROUP ﬂ e

SANTA BARBARA PLANT

PRODUCT SPECIFICATION

REV
LTR

REVISION
ISSUE DATE

APPROVED BY

REVISIONS

11/17/78

6/25/80

i
1

¥

g v

sy

/)

Changes for the Mark VIII.O Release (cont)

10-28 - Updated £ SEARCH STATEMENT? :
Added ON.FILE PART
Deleted all other references to SEARCH PART
Deleted QFILE MISSING PART)
Deleted LFILE LOCKED PARTy
Added {ON FILE PART)
10-31 Updated table:
Added PROTECTION
Added PROTECTION_IO
10-39 Updated COMPILE_CARD_INFO table
Added USERCODE
Added FILLER
Added SESSION
Changed CHARGE NUMBER CHARACTER from 6 to 7

10-45 Updated MESSAGE_COUNT
: Deleted | (FILE IDENTIFIER) E(EXPRESSION)]
Added 4SWITCH FILE IDENTIFIER 2
L-Changes for the Mark 10.0 Release

5-6 Added "<LEVEL NUMBER> <STRUCTURE ELEMENT>" to
<STRUCTURE ELEMENTS>.

5-20 Added "<HOST_NAME PART>" to <FILE ATTRIBUTE> list.
5-33 Added "<HOST_NAME PART>'" ATTRIBUTE.

8-16 Added '<BINARY_SEARCH DESIGNATOR>",
: - "<DATA LENGTH DESIGNATOR™", "<PATA_TYPE DESIGNATORS"
 "<LAST LIO STATUS:DESIGNATOR>", & "<TIMER DESIGNATOR>'
to "VALUE GENERATING FUNCTIONS" Tist.

8-18 Added "BINARY SEARCH" description.

8-22 Added "DATA LENGTH" & "DATA TYPE" descrlptlons.
8-28 Added "LAST LIO STATUS" descrlptlon..

8-39 - Added‘"TIMER" descrlption

9-2 ' Added " <ON BEHALF OF MODE>" to "<OPEN ATTRIBUTES "]
Added "<ON BEHALF OF MODE>" to OPEN STATEMENT,

9-6 Added "<READ PART> <RESULT MASK> <ON SEQUENCE>"‘
to "<READ STATEMENT>."
Added "<RESULT MASK> s:= WITH REbULT MASK <ADDRESS
GENERATOR>'" to ' the READ STATEMENT. B

9-7 Added "if the <RESULT MASK>..." paragraph. .. -~

BT .. - - ——
“"THE INFORMATION CONTAINED IN T‘HIS DOCUMENT IS CONFlDENTIAL AND PROPRIETARY TO BURROUGHS
CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIDE OF BURRQUGHS CQRPORATlON WITHQUT

THE PRIOR WRITTEN RELEASE FROM THE PATENT DlVISIQN OF BURRQUGHS CDRPORAT‘ON ’

il

e S AU SBP 1983 8-76

v 2212 5405
®
Burroughs Corporation Q B1800/B1700 SDL (BNF Versiom)

COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

PRODUCT SPECIFICATION

REV | REVISION

LTr |issue pare| APPROVED BY REVISIONS

Changes for the Mark 10.0 Release (cont.)

9-8 Added "<WRITE PART> <RESULT MASK>; <ON - SEQUENCE>"
to the WRITE STATEMENT.

1 9-9 Added " <RESULT MASK> ::= WITH RESULT_MASK
<ADDRESS. GENERATOR>'" to the WRITE STATEMENT.

9-10 Added "If the <RESULT MASK>...'" paragraph.

10-15 Added "<DYNAMIC HOST_NAME PART>" and
""<DYNAMIC OPEN _ON BEHALF _OF PART>" to
<DYNAMIC FILE ATTRIBUTE> list.

10-25 Added "<DYNAMIC HOST NAME PART>'" and
"<DYNAMIC OPEN_ON_BEHALF_OF>'" descriptioms.

10-36 Added "<REFER_ADDRESS DESIGNATOR>",
"<REFER_LENGTH DESIGNATOR>'" and
"<REFER_TYPE DESIGNATOR>" as FUNCTION DESIGNATORS.

10-47 Added "REFER ADDRESS" description.
10-48 Added "REFER LENGTH" and "REFER TYPE" descriptions.

;'THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPR!ETARY TO BURROQUGHS
CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIDE OF IURROUGHS CORPORATION WITHOUT
THE PRIOR WRITTEN RELEASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION

sSeP 19688 8-76

Burroughs Corporation @ B1800/B1700 sSDL (BNF Version)

COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

2212 5405

PRODUCT SPECIFICATION

REV | REVISION
LTR [issue paTg|APPROVED BY REVISIONS
E 11/17/7 Changes to the Mark VIIT.0 Release

3Q§ﬁA}“)L/'

5-18

5-19

5-21

5=-22

5-25
5=31
5-32

6=-2

Changed title to B1800/B1700 SDL £BNF Version)

Changed BNF statement IDENTIFIER) ::= {IDENTIFIER) to
{IDENTIFIERD ::= {.ETTER)
Replaced "/" with "§"
Updated STRUCTURE OF AN SDL PROGRAM Section:
Added J{RECORD STATEMENT) to {DECLARATION STATEMENT)
Replaced 3 NVS BIT(l) with 3 NSR BIT(l) in PL/I-STYLE
STRUCTURE
Updated NON-STRUCTURE DECLARATIONS BNF;
Replaced {DECLARED PARTY with ...l {DECLARED PART. t...
in {DECLARED ELEMENTY declaration.
Updated REFERENCE DECLARATION:
Replaced ¢DECLARED REF) REFERENCE with ...l {DECLARED
REF) REFERENCE |...
Updated REFERENCE RECORD DECLARATION:
Replaced ¢DECLARED RECORD REFY» REFERENCE with
«+o) LDECLARED RECORD REF) REFERENCE |...
in {DECLARE ELEMENTp DECLARATION.
Updated FILE DECLARATIONS:
Added | ¢PROTECTION PART) and § LPROTECTION_IO}PART to
{FILE ATTRIBUTE})
Updated Syntax
Deleted JREADER_PUNCH £DEVICE OPTION) from &DEVICE
SPECIFIERD
Added DATA_RECORDER_80 to ZDEVICE SPECIFIERQ
Updated Format
Deleted READER.PUNCH
Added DATA_RECORDER_80
Updated Default section of UNBLOCKED RECORD LENGTHS
to
Added Default status of ZPROTECTION PART2 attribute and
£PROTECTION_IQ_PART2
Updated PROCEDURE HEAD:
Added REFERENCE TO £TYPE PART?2
Updated ASSIGNMENT STATEMENTS AND EXPRESSIONS:
Deleted EXPRESSION from ASSIGNMENT STATEMEN
Added EXPRESSION LIST to ASSIGNMENT STATEMENT
Description of NULL rewritten
ACCEPT STATEMENT section updated:
Deleted 4END-OF-TEXT SPECIFIERY}
Deleted paragraph pertaining to END-OE-TEXT
Updated SEARCH DIRECTORY STATEMENT:

""THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO BURRQUGHS
CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE QUTSIDE OF BURROUGHS CORPORATION WITHOUT T
THE PRIOR WRITTEN RELEASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION"' ,""(1'

e]

SBP 1968 8-76¢

BURRQUGHS CORPURATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

BACKUS NAUR FORM . o o
RELATED PUBLICATIONS
BA3IC CCMPINENTS OF THE
COMMENTS
NUM&ERS Ld - * - -
BIT STRINGS
CHARACTER STRINGS
CHAR_TABLE
OTHER CONSTANTS .

STRUCTURE GOF AN SDL PROGRAHA

PROGRAM SEGMENTATION
DECLARATICNS
CATA TYPES . « o
DECLARE STATEMENT
RECORD STATEMENT

NON=-STRUCTURE CECLARATIONS

STRUCTURE DECLARATIUNS - * L] L] L] L] - - - - £ L J - » L] L]

PAGED ARRAY DECLARATIONS

DYNAM[C DECLARATIDP’IS L] - L] L] - L] L] » * L] 2 - L] L] - L
Restrictions:

TC=-1

COKPANY CONFIDENTIAL

818CL/817C3 SOL (BNF Version) (F)
P.S. 2212 5445

Ll » Ll - - L » L] - . . . L d L] - » » L -

» - . » L L] L L L * » - - L - - L4 L]

- - » - - - - - - - - L) - - ® - - - »

. - - 3 - L] - - -]) - [- - - L] »

L3 - » . » L] - . - - - - » »

- - L] - . [- - - - - L] . - . - - » -

PV VNIV & W NN PO NN =

REFERENCE DECLARATIONS « o o o &
RECORC REFERENCE DECLARATIONS
FILE DECLARATIGNS e o o 2 s uw =
SWITCH FILE DECLARATIONS

DEFINE STATIEZMENT @ o o o o & s o«
FORAAID DECLARATIONM

USE STATEMENT * e e e e e o o

PRICECURES

PROCEDURE HEAD o o o o o o o o &
INTRINSIC HEAD

PRBCEDU':{E BDOY - - - - * - * -
PROCEDURE ENDING

ASSIGNHMENT STATEMENTS AND EXPRESSIONS

UNARY OPERATORS

ARITHMETIC OPERATORS e s o»
RELATIONAL OPERATORS

LOCICAL OPERATORS o o o o o o @
REPLACE OPERATORS

CONCATENATION . e - . .

PRIMARY EZLEVENTS 0OF THE EXPRESSIQN

CONDITIONAL EXPRESSION o « o o @
CASE EXPRESSION
BUMP « e e o o e s e s e s a2
CECREMENT
ASSIGHNOR +» o« & a o s e s e s
ADDRESS VA?[A%LES
INOEXING » s s s s e s »
ADDRESS GENERATING FUVCTIO&S

(SIS RV IV IV, RV IV RV O IRV,
]
I & 5 NN - ps et 2 e g |

NNSN~NSNSNoo oo |

XNV U O VTN WO S OO @NOU @ WINE pepd b U N8 NN N N

BUXROUGHS CCRPORATION

COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT

SUB3IT AND SUBSTR
FETCH_COMMUNICATE_M3G_ PTR
DESCRIPTORS
MAKE_DESCRIPTOR

NEXT_ITEM,

NULL

ADDRESS GENERATORS

VALUE VARIABLES
TYPED PRCCEDURES

ADDRESS AND VALUE Phn#ﬁETER‘

VALUE GENERATING FUNC
BASE_REGISTER
BINARY CONVERSION
BINARY SEARCH

-

-

-

CTIONMS

COFMPANY

BISO’/B*?OO SDL (BNF

»

-

COMMUNICATE _WITH_GISNG

CUNSOLE_SKITCHES
CONTROL_STACK_BITS
* CONTROL_STACK_TUP
CONVERT
DATA_ADDRESS
DATA_LENGTH
DATA_TYPE

DATE

DECIMAL COINVERSION
DELIMITED_TOKEN
DISPATCH
DISPLAY_RASE
DYNAMIC_MEMORY_BASE

-

-

-

»

»

L]

EVALUATION_STACK_TGCP

EXECUTE

EXTENDED ARITHMETIC FUNCTIONS
HASH_CODE

INTERROGATE _INTERRUPT_STATUS
LAST _LIO_STATUS

LENGTH

LIMIT_REGISTER
LOCATION
NAME_OF _DAY
NAME_STACK_TOP
NEXT_TOKEN
PARIT(_ADDRESS
PROCESSOR_TIME
PROGRAM SHWITCHES
SEARCH_LTNKED_LIST
SEARCH_SODL_STACKS
SEARCH_SERTAL_LIST

-

S_PEM_SIZE,

SURT_SEARCH
SORT_STEP_DO WY
SORT_UNBLOCK
SPO_TINPUT_PRESENT
SUBBTIT AND SUBSTR

SHAP
TIME

-

-

-

-

N _MEM_SIZE

-

-

PREVIOUS_ITEM

-

-

3

P

TC=2
CONFIDENTIAL
Yersion) (F)

«Se 2212 5405

3-8
8=1C
a=1iu
8=-11
8=12
8=12
8=-13
8=14
8-15
8=15
8=-16
8=17
8=-18
8=-18
8=19
=19
&=19
=19
§=-21%
g=22
8=22
g=22
8§=-22
3-23
g=23
E=24
8=25
8=25
8=25
8§=25
8=27
=27
B=248
8=23
B=28
8=26
8=29
§<29
8=3
8=32
8=31
3=31
=31
8=32
8=-33
8=34
e » o s B8=35

8=35

8=35
8=30
- 8=36
8§=37

.8=38

8=39

BURROUGHS
COMPUTER

CORPFURATION

SYSTEMS GROUP

SANTA BARBARA PLANT

TIMER .

VALUE_DESCR

WAIT o .

I/0 CCNTROL STATEMENTS

CPEN STATEMENT
CLOSE STATEMENT

READ STATEMENT

WRITE STATEMENT
SEEK STATEMENT

ACCEPT STATEMENT
DISPLAY STATEMENMT

SPACE STATEMENT
SKIP STATIMENT
ON SERUENCE

EXECUTABLE STATEAENTS

CO GROUPS
UNDD o = =
IF STATEMENT

CASE STATEMENT

REFER STATEMENT
STATEMENT
£ND OF STRING
STATEMENTS (CLEARS

REDUCE

MODIFY
NULL STATEMENT

»

L

FILE ATTRISUTE STATEMEMT (CHANGE STATENMENT)

stae

STATEMENT

ZIP STATEMEANT .« .+ &

SEARCH_DIRECTORY STATEMENT
WRITE_FILE_HEADER o .
MAXE KEAD_WRITE

READ_
VAKE

FILE_HEADER,
READ_ONLY»

COROUTINE STATEHENT

EXECUTE-PROCEDURE STATEAENT
EXECUTE-FUNCTION STATEMENT

ACCESS_FILE_INFORMATLON
CHANGE_STACK_SIZES

CHARACTER_F ILL
COAMUNICATE .

IPTOR

COMPILE_CARD_INFO

DC_INITIATE_IN
DESLANK

DIS&BLE_INTERRUPTS

PRUREY

DUMP_FOR_ANALYSIS
ENAGLE_INTERRUPTS
ERRCR_COMMUNICATE

EXECUTE

FETCH o o o
FREEZE_PROGRAM
GROW = o o =
HALT

HAR CWARE _MOMITOR

-

.

INITIALIZE_VECTOR

AESSAGE_COUNT
MCNITOR

A\

-

RUMP

TC=3

COMPANY CONFIDENTIAL

B1362/781700 SOL (BNF Version)

DECREMENT)

(F)

PoSe 2212 5405

8=39

TC=4

QURRJUGHS CORPORATION COvMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18C3/317C0 S0L (BNF Version) (F)
SANTA gARBARA PLANWNT P.Sa 2212 5405
UVERLAY - - - - » - » » o - » » - - L J L J - - - - 10-&5
READ_CASSETTE 10-46

REAC_FPB», WRITE_FPE ® s o % s o e e e e e e o = 10=45
READ_OVERLAY s WRITE_OVERLAY 10=47

REFER ADDRESS « o o o o ‘s o o o s s o o o » 10=47

REFER LENGTH 190=43

REFER TYPE * o ® » o o e s e s o o = s s s 10=-48

REINSTATE ' 10-48

T{ESTGRE - e » 8 v e » * e 0w s ® e * ® = @ e a 10‘49
REVERSE_STORE 10-49

SAVE - - - - . A\ d - L d - - - - - - L] - . - - - - 10-5‘)
SAVE_STATE 10=5¢

SORT ¢ & o o o o o o o o o o o =« o & o« o« o o » o L0=5Z
SORT_MERGE 12-51
SORT_SHAP o o o o o o o o o o o o o o s o « o o 10=52
THAW_PROGRAM 10=5¢
THREAD_VECTOR o« s o o o % s s s s s 2 s 3 o « « 10=52

TRACE 10=53

TR&NSL‘\TE ® ® » ® & ®» ® ® e ® ®» ®» e e e ®w e e e 10'54

APPENDIX I: RESERVED AND SPECIAL WORDS 11-1
APPENCIX II2 SDL CONTROL CARD OPTICNS o o o o o o o o o » o l2-1
APPENCIY IIT: PROGRAMMING OPTIMIZATION 13=-1
APPENCIX IV: RUNNING THE COMPILER e« o s & o o e v s e e o l4=1
APPENDIX v: CONDITIONAL COMPILATION 15-1
APPENLCIX VI: SDL PROGRAMMING TECHNIQUES o o o o o o o o « » 16-1
APPENCIX vII: SDL PARTIAL RECOMPILATION FACILITY 17=-1
APPENCIX VvIII: SDL MHONITORING FACILITY * o s o s » o = s o 18-1

1-1

dURROUGHS COxPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTENS GROUP 31800/8L479C SDL (BNF Version) (F)
SANTA SAR3ARA PLANTY P.S5. 2212 5405

BACKUS NAUR EQRHM

- —

A language used to talk about a language is a metalanguage. The
natural languages are, in fact» metalanguagess for exampler the
metalanguage English is used to talk about the structure of an
English langquage sentence. Backus Naur Form (BNF)» a
metalanguaye popularized by its use to describe the syntax of
Algol 60 is used to describe the syntax of SDL. To avoid the
confusion tetween the symbols of the metalanguage and those of
the language being describeds BMF uses only & metalinguistic
symbolsa Literal occurrences of symbols other than the the
metasymbolss with no tracketing characters, represent themselves
as terminal symbols of the language.

4 grammar for SDL is written as a set of 3NF statementse each of
which has a left part, followed by the metasymbol ™::=" followed
By a list of right partse The left part is a phrase name.» and
the right partse separated by the metasymbol "1™, are strings
cont aining terminal symools and/or phrase namese.

METASYMBUL ENGLISH EQUIVALENT USE

-t em e W LS E WD WM A A MM WR NS WD WS B @O ap W wm - e

a0
[}

"

is defined as separates a phrase name from
its definition.

i or separates alternate cefinition

of a phrase.

<IDENTIFIER> "IODENTIFIER"™ The bracketing characters indi-

cate that the intervening char=

acters are to be treated as a
unit, i.2.» as a phrase name,

Zach BANF statement i5 a rewriting rules such that we may
substitute any right part for any occurrence of its associated
Left rpart:; and we have a choice of right parts which we may
substitute. The following example specifies the use of these
rules to determine those strings which are grammatically correct
identifiers in SOL.

SLET TER> ::= Al B C1Y 21 EYF LG HY I 31 KT L
I N 3P PEYYT RS ETEUTVYEELDLX DY
f alt bt ci dt et £f1 gl ht 1 §j1 x 1 1L
' nt ol ptat ri sttt ul v Il wi x 1ty

N g N

1-2

BURROUGHS CORPORATION COMPANY CONMFIDENTIAL
COMPUTER SYSTEMS GROUP 31800781700 SDOL (3NF Version) (F)
SANTA SARBARA PLANT P.S. 2212 5495
<DIGIT>» ::= crtrtir 213t atrstet 7081419

<BREAK> ::=

CIDENTIFIER> 8= <LETTER>
1 <IDENTIFIER> <LETTER>»
I <IDENTIFIER> <DIGIT>
| <IDENTIFIER> <BREAK>

XYZ12_8h is a proper SDOL <IDENTIFIER> since it can be generated

as a terminating set of syabols by using the 8NF rulese.

Proof that XYZl2_84 is an <IDENTIFIER> by starting with the fact

that an <IJENTIFIER> can be a <LETTER>.

FORM EXAMPLE
<IDENTIFIER> s:= <LETTER> X
SIDENTIFIER> 2= <KIDENTIFIER>SLETTER> Xy
<IDENTIFIER> :1:= <CIDENTIFIER><LETTER> XYz
<IDENTIFIER> 2:= <TRDENTIFIER><DIGIT> XYZ1
CIDENTIFIEZR> s:= <IDENTIFIER><KDIGIT> XyZ1i2
CIDENTIFIER> 33= <IDENTIFIER><BREAK> Xy 212 _
CIDENTIFIER> 3:= <IDENTIFIER><CLETTER> XYZ12_8B
<IDENTIFIER> ::= <CIDENTIFIER»<DIGIT> XYZ12_34

Notice that the 8NF rules do nots» in any wayes limit the number
letterss digitse and dots which comprise the <IDEMTIFIER>.
such cases» further semantic rules will be specified; 2eJe>
SOL <IDENTIFIER> is Limited to a maximum of 63 characterss

NAME NUMBER
SDL/UPL CODHPILER Pa5. 2212 53893%
g1700 SDL S5S=LANGUAGE P.%. 2201 2389

B1730 SYSTEMS REFERENCE #MANUAL #1557155

of

In
an

2=1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1865/8B170G0 SDL (BNF Version) (F)
SANTA SARBARA PLANT PeSa 2212 5495

BASIC COMPONENYS OF THE SDL LANGUAGE

In order to understand SODL grammares the user should be famitiar

with the most btasic elements of the Software Developmental
Language below.

<SCIGIT> =2:= 2111 241 318 415 ¢vtse t 71 81
KLETTER> ::= Al BI1 CI DILEUVF I GUVHITTII
I Kt Lt Mt NT OTPILQ@ITRTS I
Ut Vv i WXt Y 21 atbl cl
1 et f 1 gt ht it j vk 1 U mt
f ol pl gt rt st ¢t 1 ul v 1! wi
1 v | 2
<SPZCIAL CHARACTER> ::= KO B S R B DA VA
f 31 2t >0 >= 1 = ¢ + 1 x|
1 C 1Yt = 1 <=1 T 1 1 1 <BLANK>
<BRE AK> :1:= -
<BLANK> =:=
NOTE: <BLANK> is the occurrence of one non-visitle
character ™ .
ICENTIEIERS ‘
CIDINTIFIER> == <LETTER>» | <IDENTIFIER> <LETTER>»
! <IDENTIFIER>» <DIGIT>
1 <IDENTIFIER> <3REAK>
RESTRICTIONS:
1. An i1dentifier may not contain blanks.
? . An identifier may contain a maximum of 63 characterse.
3. Reserved words may not te used as identifiers.
bhe "tpecial™ words may be used for segment and D0=group

identifiers without losing their special significance
in S5DL.

x D0 -

BURROUGHS C
COMPUTER SY
SANT A BARBA

Se

SCOMMENT ST

RESTRICTION

2=2
ORPORATION COMPANY CONFIDENTIAL
STEMS GROUP 81800u/81700 SDL (BNF Version) (Ff)
RA PLANT P.5. 2212 5405

In all other cases» "special™ words may be used as

identifierss howaver, they Llose their special
significance throughout the entire program when
declared at Lexic Level {. When declared at any
greater lexic Llevels they oniy lose their special
meaning wWithin the procedure in which they are
declared.

{Also see "Structure of an SDL Program™ and "Appendix
i™)

All reserved and special words must be in all upper
casa.

Identifiers must contain exactly the same letterss»

where upper and lower <case are concerneds to be
identicale If an upper=case identifiers for examnle»

is entered in lower cases, it is a new identifier.

RING> ::= /e <COMMENT TEXT> &/

S:

1. The pair /+* preceding the <CUMMENY TEXT> must appear
as adjacent symbolse. Similarily» the pair «/
following the <COMMENT TEXT>» must also appear as
adjacent synmbol sa

CCOMMENT TEXT> ::= SEMPTY>

LEMPTY> 1:=

Note:

<COMMENT TE
CHARACTER>

<CARD TERMI

1 <COIMMENT TEXT CHARACTER>
| <COMMENT TEXT CHARACTER>
<COMVMENT TEXT>

<EMPTY> is the null set or the occurrence of nothinge.

XT
= DIGIT>
1 <LETTER>
| <SPECIAL CHARACTER>
[D I I I I 4

NATOR> 5= p4

2=3

BURROUGHS COHPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31860781700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405
RESTRICTION: A 2 is treated as any other string character if

it is contained within a <CHARACTER STRING> or in
SCOMMENT TEXT>. Howeversr in all other casesr a %
will cause the scanning of the current source
image to terminate and to continue in the next
source image.

<NUMBER> 3= <DIGIT> § <NUMBER> <DIGIT>

NOTE€: Range of signed numbers =(2 exp 23) to (2 exp 23)-1.
Range of unsigned numbers 0 to (2 exp 24)-1.

4iT STRING

- ¢

s

<EINARY DIGIT> ::= 2 1 1 1 <COMMENT STRING>

<BiNARY DIGITS> =

[

<3INARY DIGIT>
I <3INARY DIGITS> <BINARY DIGIT>

<CQUARTAL DIGIT>

¢3INARY DIGIT> }J 2 1 3

<QUARTAL OIGITS> @

<QUARTAL DIGIT>
1 <QUARTAL DIGITS> <QUARTAL DIGIT>

e

<0CTAL DIGIT> ::= <JUARTAL DIGIT> ¥ 4V S 1 6 1 7

<0CTAL DIGITS> ::= <0CTAL DIGIT>
I <JCTAL DIGITS> <3CTAL DIGIT>

<HEX DIGIT> ::= <QCTAL DIGIT>
1319 1 A1 31 CI1 DItEVF

<HEX DIGITS» === <HEX DIGIT»
1 <HEX DIGITS> <HEX DIGIT>

<BIT GROUP>::= (4) <HEX DIGITS>

I (3) <0CTAL DIGITS>
f (2) <QUARTAL DIGITS>

t (1) <BINARY DIGITS»
<BITS>::= <BIT GROUP> 1 <HEX DIGITS>

)} <BITS> <3IT GROUP>

I <EMPTY>

<8IT STRING> ::= 3<3175>a

: 2<4
EURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B8L8QL/BL70G SDL (BNF Version) (F)
SANT A BARBARA PLANT PeSe 2212 5405
RESTRICTIONS:

1. If no bit mode is specified (iecer The indicator

digit in parentheses is omitted)» "Hex™ is assumed.
This <can only be assuted if the bit string does not
start with a mode 1indicator; when the mode is
suitched to "Hex™» an explicit "(4)" is requireds,

2e As noted above» a <COMMENT STRING> may appear
anywhere within a <BIT STRING>» but not within the
parantheses poundina the 1indicator digite The
presence of a <COMMENT STRING> wWwill» in no ways» alter
the vatue of the <3IT STRING> containing ite Blanks
may not appear in a <BIT7T STRING>.

Example:
d(3)6336G316260/% THIS */313230/7% IS */63302560/% THE =«/
4321626360/% LAST %« /512523465124/% RECORD #/3

<STRING> 3= <CHARACTER STRING>
I <3IT STRING>

CHARACTER STRINGS
SCHARACTER STRING> 3= " <STRING CHARACTER LIST>"
<STRING CHARACTER LIST» s:3= CEMPTY> .
I <STRING CHARACTER LIST>
<STRING CHARACTER>
<STRING CHARACTER> ::= <OIGIT> | <LETTER> | <SPECIAL CHARACTER>
AL T~ N N I B 4
RESTHICTIONS: if a gquote sign is desired in a character

strings then two adjacent quote signs must
appear in the texts

2=5

BURRGUGHS CORPORATION COMPANY CUONFIDENTIAL
COMPUTER SYSTEMS GROUP BL80O/BL7DY SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

EXAMPLE: DECLARE STRING CHARACTER (6)»
QUOTE CHARACTER (1)

"AB""CDE";

"
"y H

STRING 3
QUITE @

i

After executionr STRING will contain: AB8"CDE,
and RUUTE will contain: ™.

Mote: A <CHARACTER STRING> may contain a maximum of
256 characterse.

LHAR_TAZLE

The translation bit table for the set=-membership reduction is
rather cumber some to construct by hands 50 the compiler provides
a convenient notation for table constructs. These constants are
Wwritten:

i = CHAR_TABLE (<TABLE STRING>)

<TA3LE CUNSTANT> :
te= <STRING> {§ <TABLE STRIMNG> CAT <STRING>

<TABLE STRING>

The constant denoted is a 256=pit string with 3(1)1l3
corresponding to every character in <TABLE STRING>. (When a <3IT7
STRING> occurs in the <TABLE STRING>, it is used to denote
non=graphic characters in their hexidecimal (EECDIC)Y form.)

QTHE R

I-C

CONSTANTS

CCONSTANT> 3:= <NUMBER> 1 <STRING> t TODAYS_DATE

! SEQUENCE_NUMBER
I HEX_SEQUENCE_NUMBER

1 <TASLE CONSTANT>

TODAYS_DATE represents the date and time of
compilation of the program. It is5 the same as the
date and time appearing at the tap of the progran
Listinge It is a character strinc with the following
format =--

TMM/DD/ZYY HHIMM™

STCUENCE_NUM3ER represents a <CHARACTER STRING> of &
characters which is the sequence number of the
current source image being compilede.

2=ob

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTENS GROUP 31806/s31700 SOL (BNF Version) (F)
SANT A EAR3ARA PLANT : P.Se. 2212 5405

HEX_SEQUEMCE _NUMBER represents a bit string of 8

w

(hex) digits which 1is the sequence nuaber of the
current source image Lline being compiled. If this
sequence field is bltanks then HEX_SEQUENCE_NUMBER =
4360000072

If the current source image line sequence number is
1275333%» then on this line:

SEQUENCE_NUMBER = ™127530900"
HEX_SEGUENCE_NUMBERY = 2127530603

=1

BURRUUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP BLECU/81703 SODL (BNF Version) (F)

SANTA BARBARA PLANT PeS. 2212 5435
SIRUCTURE OF AN SpL PROGRAY

<PROGRAM> ::= <DECLARATION STATEMENT LIST>

<PROCEDURE STATEMENT LIST>
SEXECUTABLE STATEMENT LIST>
FINI

<CECLARATION STATEMENT
LIST> ::= <EMPTY>
1 <QECLARATION STATEMENT>
<KDECLARATION STATEMENT LIST>

<DECLARATION STATEMENT> :1:= <DECLARE STATEMENT>;
I <DEFINE STATEMENT>S
I <FILE DECLARATION STATEMENT>;
| <SWITCH FILE DECLARATIGN
STATEMENT>;
| <FORWARD DECLARATION>;
1 <USE STATEMENT>;
I <SEGMENT STATEMENT>;
I <OECLARATION STATEMENT>?
I <RECORO STATEMENT>;

<PXJCEDURE STATEMENT
LIST> ::= <KEMPTY>
! <PROCEDURE STATEMENT>;
<PROCEDURE STATEMENT LIST>

<PROCEDURE STATEMENT> ::= <PRICEDURE DEFINITION>
1 <SEGMENT STATEMENT>
<PROCEDURE STATEMENT>

<EXE CUTABLE STATEMENT
LIST> ::= CEMPTY>
1 <EXECUTABLE STATEHENT>
<EXECUTABLE STATEMENT LIST>

SEXECUTABLE STATEMENT> z:= See SECTION 10.

A program written in SDL must follow the sequential structure
descrivped in the syntax above. That is» the executable section
of the program may not appear until all procedures have been
definedrs and procedures may not be defined before the formats of
data items (variabless arrayss etcs) have teen declared. "FINIT
is not requireds tut if present must physically occur 4as the
final statement in the program.

3-2

BURROUUGHS CORPORATION CONMPANY CONFIOENTIAL
COMPUTER SYSTEMS GROUP BL82C/BL702 SDL (BNF vVersion) (F)
SANT A BARBARA PLANT P.5. 2212 5405

The procedure statement (including declarations procedurer and
executaple statements) is the basic structure in S0le. An SDL
program 1is a collection of proceduresr» each of which can be
descrited for conceptual purposes as a microcosm of the program.
Any given procedure may contain a collection of other procedures
within itself. This process is known as "Nesting™.

The ™Lexicographic Level™ of any statement 1in the ©program 1is

€equal to the number of procedures in which it is nested. The
program itself will always be Lexic Level 0, and no grocedure may
have a lexic level greater than 15. The diagram in Figure 1

illustrates procedure nesting and lexic levels,.

It is important to understand the relationships Dbetween these

nested procedurese. As Figure 1. indicatesr, the name of any
given procedure is contained in the procedure in which it s
nested at the next lower lexic level. For examples» procedure D

is a Lexic Level 2 procedure» howevers, its names, "0%", 1is part of
Lexic Level 1.

The “scope™ of any given procedure 15 recursively defined as:

1 The procedure itsel f»
2) Any procedure{s) nested within the procedures»
3) Any procedure {and i1ts nested procedures) whose name

appears at the same lexic level and within the same
procedure as its own names and

4) The procedure in which its own nare is defined.

In Figure L» one can see that the scope of Procedure B includes:

1) Itselfs» i.0«» Procedure B
2) The nested grocedures within B (C and D)»
3 The other procedures defined at LLO: E Cand 1its

nested procedures F and 6) and procedure H {and its
nested procedures Jr Ko L» M, Mo and Pe.

4) The procedure which defines B» in this caser the
program A,

Note: Al the Lexic Level O procedures have scope to each
othere. This occurs because of rule 4 aboves wherein
the program itself i35 thought to te a "procedure©.

3-3

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 318C0/81700 SDL (BNF Version) (F)
SANTA EARBARA PLANT Pede 2212 54235

In the same manner, the scope of procedure J includes J» Ky, L» M,
Nr» P» and He

By understanding the relationships between the wvarious
proceduresrs 1t is possible to determine which proceduras may te
invoked by any given procedure. S0L has been defined so that any
procedure X may call or invcke any procedure Y» if the scope of Y
encompasses X

In Figure L» Procedure J may call procedures JsK»LsMsHstr» and B
because each of these contains 4 in i1ts scope.

Note: J cannot call the program A since the name of the
grograae if there is one» exists outside the progran

and iss» therefore, not conrpiled; however» J aay
access the data contained in A (i.esr Als A2» A3, and
A4),

Figure 2 below shows the relationship between scope and caltling
abil ity for program A,

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP 818C0/81700
SANTA BARBARA PLANT

PROGRAMN 4
DECLARE Al, A2, A3, 445
PROCECURE 33
DECLARE Bl» B2, 835
PROCEDURE C;
DECLARE Cl» C2» C35
EXECUTABLE STATEMENTS;
END C;
PROCEDURE D;
EXECUTABLE STATEMENTS;
END D3
EXECUTABLE STATEMENTS;
END 33
PROCEDURE E3 «
DECLARE El, E2;
PROCEDURE F;
DECLARE Fl, F2, F3;
EXECUTABLE STATEMENTS;
CEND Fj5
PROCEDURE G5
DECLARE 61, 62;
EXECUTABLE STATEMENTS;
END 6:
EXECUTABLE STATEMENTS;
END Ej
PROCEDURE H;
DECLARE Hl, H2r H3» H4;
PROCEDURE J;
PROCEDURE K;
END K;
PROCEDURE L;
END L;
END;
PROCEDURE M5
PROCEDURE N;

END W3
PROCEDURE P;
END P3;
END M5
END A3
EXECUTANLE STATESEANTS?
FLil

Fig 1. Procedure Nesting

3=4

CONPANY CONFIDENTIAL
SDL (BNF Version) (F)

P.S.

2212 5405

3=5

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRDUP B18C0/B1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT ' PaSe 2212 5405

Procedure

Scope

Note:

o ——— i i - —— -

A 3 C D E F G H J K L M N P

8 * * * F x & & x * * & * ® *
[#* * &

D * * *

FE F) * * & * * x * i * ' * & '
F | & x x

G) x * K}

H & * & Y * PO # ' & * x & &
J * i* * * * * *
K i x &

L i * '

M * #* * * * * &
N x Kk
P *

To find the scope of a grocedures find the procedure
in the column of procedure namese. The horizontal
rews to the right indicate the procedures in its
scopes. The procedures which may be called by a given

procedure are marked in the vertical columns below
that calting procedure.

Fig 2. Scope and Calling Ability

h=1

BURARQUGHS CORPCRATION COMPANY CONFIDENTIAL
CONPUTER SYSTEMS GROUP 3183G/BL70) SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

PROGRAM SEGMENTATION

<SEGMENT STATENMENT> ::= <SEGMENT STATEMENT WORD> (<3EGHENT PART>);
<SEGMENT STATEMENT WURD> :3:= SEGMENT | SEGMENT_PAGE

CSEGMENT PART> ::= <SEGMENT IDENTIFIZR> <PAGE PART> <IMPORTANT PART>
<KSEGMENT IDENTIFIER> <IMPORTANT PART> <PAGE PART>

<SEGMENT IDENTVIFIER> 3= <IDENTIFIER>

<PAGE PART> ::= <EMPIY> 1 0OF <PAGE IDENTIFIER>
<PAGE IDENTIFIER> 2:= <IDENTIFIER>

<IMPORTANT PART> ::= <EMPTY> { » IMPORTANT

As the 89NF indicatesr, the <SEGMENT STATEMENT> may occur anywhere
within an SOL program. Its purpose is to reduce the memory
requirement of the program by allowing segments to overlay each
other.

There 15 a maximum of i6 pages with 64 segments per page. The
segment names represent a page~number segment~-number pair.

It is only necessary to specify SEGMENT_PAGE once for each page.
Every subsequent segment wWwill be compited to that page until
another SEGMENT_PAGE is encountered.

if there are no SEGMENT_PAGE specifications» all segments wWwill be
conmpiled to Page Zeros and there may be no more than 64 segments
total. If a program is to be segmerteds the first statement must
pe a <SEGMENT STATEMENT>. Jtherwise a warning message will
appear in the source listing.

There are two types of segmentation: "permanent™ and
"temporary®. Every statement following a permanent <SEGMENT
STATEMENT> will be compited to that segeent wuntil another
<SEGHMENT STATEMENT> is read. Non=~consecutive statements may be
compiled to the same segment by using the same <SEGHMENT
ICENTIFIER>, Notes howevers» that <D0 GROUP>s (See "DO GROUPS™)
and procedures must end in the same segment in which they begina
1f this 1is not the caser the compiler issues a warning and
inserts code to bring the program back to the proper segment so
that the do=group or procedure may be exited correctly.

The following example illustrates the wuse of the "permanent”™
<SEGMENT STATEMENT>.

EURROUGHS CCRPURATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

SEGMENT (XX)»

DECLARE Al, A2,

PRUCEDURE B3
NECLAKE 31, 82,
SEGMENT (YY)
PROCEDURE C»

43,

END C3
PROCEDURE D3

END D
SEGMENT (XX)»;

-

END 85

FINI

Unly procedures C and D have been compiled to the

Segment "XX" is segment zero and

A <SEGMENT
precedes a
following statements:

STATEMENT> is

¢ACCESS FILE HEADER STATEMENT>
CCASE STATEMENT>

<IF STATEMENT>

SREAD STATEMENT>

SRECEIVE STATEMENT>

In these specific cases»
suborginate statement following it.

318CoH/8B1700

LY

treated
"Subordinate Executable Statement™

4=2
COMPANY CONFIDENTIAL
SDL (BNF Version) (F)

P.S. 2212 5405

B33

segment "YY".

includes everything else.

as "temporary™ only when it

within any of the

<SEARCH DIRECTORY. STATEMENT>
CSEND STATEMENT>

<SPACE STATEMENT>

CHRITE STATEMENT>

<OPEN STATEMENT>

the segmert change arplies only to the
For example-»

the syntax for

the <If STATEMENT> could te written as follows:

STATEMENT> 3:3= IF <EXPRESSION>

THEM <SUBORDINATE EXECUTABLE STATEMENT>
I [F <EXPRESSION>

THEN <SUBORDINATE EXECUTABLE STATEMENT>

ELSE <SUBORDINATE EXECUTASLE STATEMENT>

4=3

JURRQUGHS CORPURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31800/8B1705 SDL (BNF vVersion) (F)
SANTA BARBARA PLANT , PeSes 2212 54905

The segmentation of a hypothetical <IF STATEMENT> is presented
Delow to illustrate the use of a "temporary™ <SEGMENY STATEMENT>.

SEGMENT (A) 7
PROCEDURE X3

IF Y>Z THEN yv:=17; ELSE
SEGMENT (8)2
00 SOME_FUNCTIONS

-

» * * % %

END S3CME_FUNCTIONS

END X5
Compiled to Segment (8)

Because the <D0 GROUP>,» "SIME_FUNCTION", is a subordinate
SEXECUTABLE STATEMENT> in the <IF STATEAENT>. Segment (3)
automatically ends when the <D0 GROUP> s terminated. At

statements following are compiled to Segment (A).

Notice the distinction between Segment (4), a "permanent"”
CSEGMENT STATEMENT>» and Segment (B)» a “temporary"™ one.

If the construct »IMPORTANT agppears in the <IMPORTANT PART> of a
segment statementes then the SOL/UPL compiler will set the decay
factor for that segment to seven. If the <controt option word
SIZE is usedr a Llist of segment names» numbers and sizes will be
printed at the end of the source listing. The segments that have
been marked » IMPORTANT will be noted.

EXAMPLES:
SEGMENT (SEGZERO » [WMPORTANTY
SEGMENT _PAGE (SECGONE OF PAGEZERD » [MPORTANT);
SEGMENT (SEGTWO » IMPORTANT OF PAGEQONE);

4=4

EURRGUGHS CCRPORATION COMPANY CONFIODENTIAL
COMPUTER SYSTEMS GROUP 31800/831700 SDL (3NF Vversion) (F)
SANTA EARBARA PLANT P.S. 2212 54305
PRAGHMATICS

The decay factor field in the segment dictionary is three bits
tong. It will always have a value of zero or seven. Hhatever
value the compiler puts in the code ftiler the MCP changes ite. So
when reading a memory dumps a value of zero means that the memory
priority will decay more slowly. But when locking at code files»
a value of seven means that the memory priority Wwill decay more
slowly.

5-=1

BURRCUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP 818C00/81700 SDL (ENF vVersion) (F)

SANT A BARBARA PLANT P.5. 2212 5405
DECLARATIOANS

Three main types of data may be declared in S5SDL:

1) 8IT
2) CHARACTER
3) FIXEC

A bit field consists of a number of bits specified by a number in
parentheses following the reserved word "8IT". The field may be
a maximum of 65,535 bits.

A character field 1is a number of «characterss & £its eaches
specified by a number in parentheses follcwing the reserved word
"CHARACTER™. The field may be a maximum of 8,191 characters.

4 fixed data field is a 24~bitr signed numeric field where the
high order bit is interpreted as the sign. Negative numbers are
represented 1in 2=s complement forma

The range of signed numbers (i.e.» fixed data fields) is =(2 exp
23 to (2 exp 23)-1. The range of unsigned numbers (bit data
fields) is 0 to (2 exp 24)-1. Bit fields» as noted aboves are
not restricted to 24 bitse. HoWwevere for arithmetic purposese
oniy the low=order 24 bits will be considered except in the case
of the extended arithmetic functione.

5=2

BURRGUGHS CORPORATIONM COVMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRrROUP 31800781700 S5DL (QNF Version) (F)
SANTA BARBARA PLANT PaSe 2212 5405

DECLARE STATEMENT

<CECLARE STATEMENT> ::= DECLARE <DECLARE ELEMENT>
1 <DECLARE STATEMENT>» <DECLARE ELEMENT>

<CECLARE ELEMENT> s:= <DECLARED PART>

<TYPE PART>

I <STRUCTURE LEVEL NUMBER>
<STRUCTURE DECLARED PART>
<STRUCTURE TYPE PART>

1 PAGED <ELEMENTS~-PER-PAGE PART>
<ARRAY IDEMIIFIER> <ARRAY 3CUND>
<TYPE PA&RT>

| DYNAMIC <COMPLEX DYNAMIC>
<DYNAMIC TYPE PART>

1 <DECLARED REF> HEFERENCE

| <DECLARED RECORD REF> REFERENCE

fhe <DECLARE STATEMENT> specifies the addresses and
characteristics of contents of memory storage areass

Any number of <DECLARE ELEMENT>s may be declared in one <DECLARE
STATEMENT>», and must be separated by commas. Best <code is
generated 11f atl elements are declared Wwithin one <DECLARE
STATEMENT>. (See Appendix VI).

The maximum number of data elements (including fillers» dummys»
and implicit fillers) contained in one structure varies as to the
compiler being useds (currently: 50 = small version» 75 = Llarge

version)e Any attempt to declare more will cause a table
over flow error to be detected at compile time.

An array may have a maximum of 650535 elementss each being a
maximum of 65,535 pits (85191 characters).

The five types of <DECLARE ELEMENT>s are each discussed telows.

5=3

dURRUOUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 3180G/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT Pa.Se. 2212 5405

RECURY STATZMENT

<RECOKD STATEMENT> 1= RECORD <RECORD IDENTIFIER>
<FIELD LISTY>

<SRECORD IDENTIFIER> ::= <IDENTIFIER>

¢F IELD LIST> ::= <FIELD ELEMENT> 1

<FIELD LIST>», <FIELD ELEMENT>

I [<COSPATIAL FIELD LIST>1
1 <FIELD LIST>» [<COSPATIAL FIELD LIST>]

<COSPATIAL FIELD LISY> @

H

<FIELD ELEMENT>
1 <COSPATIAL FIELD LIST>, <FIELD ELEHUENT>

<FTELD ELEMENT> ::= <SIMPLE FIELD ELEMENT>

| <COMPLEX FIELD ELEMENT>

<SIMPLE FIELO ELEMENT> ::= <SIMPLE IDENTIFIER> <FIELD TYPE>
! FILLER <FIELD TYPE>

(1]

<COMPLEX FIELD ELEMENT> ::= <ARRAY IDENTIFIER> <ARRAY 3OUND>
<FIELD TyYPE>

<SIMPLE TDENTIFIER> ::= <IDENTIFIER>

¢ARRAY ICENTIFIER> 2:= <IDENTIFIER>

<ARRAY BOUND> ::= (<CONSTANT EXPRESSION>)
<FIELD TYPE> ::= FIXED

1 BIT <FIELD SIZE>
! CHARACTER <FIELD SIZE>
1 <RECORD IDENTIFIER>

<F [ELD 51ZE> ::= C<CONSTANT EXPRESSION>)

o
32
I—
[3-3
17
—
I
=
I
(B
=
[Ps]
fr=
=4
I

A new mechanism called Record is intended to eventually replace
the PL/I-style structures currently being used in 5DL. For
compatibilitye. of courses no current features wWwitl De removed
until they have fallen into disuse. Although records are used
for the same purpose as the current structuress» they are
different in declaration» reference» and run-time effecte. They
are designed to provide the following benefits:

1. Since fields of records are not represented by
desceriptors at run=timer they do not <cause Llarge name
stackse. This removes the reed for USE declarations and

elatorate SUBBITting schemes which have been used in the

5=4

BURROUGHS CORPCORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GRQOUP B31820/3173Q SDL (BNF Version) (F)

SANTA BARBARA PLANT Pa.Ses 2212 5475
pasta

e Paged arrays may be structured using records.

3« Arrays may occur nested in structural levels.

4. Accessing of Llinked data structures is safer» simpler,
and often faster.

5. The substructure is specified in one placer, Lut may bhe
invoked in many places to declare variable or specify
substructure of other recordse» thus reducing the
probability of error.

6« The syntax epncourages the treatment of data structures as

newWw typess hopefully imposing better structure on
programse

4 record 1is an addressing template analogous to a structure
decl ared REMAPS BASE in the current language. Declaration of a

record causes no data space to be allocateds it only establishes
an addressing schema in the scope of the declaratione. An example

of a record declaration is:

This

RECORD TYPEFIELD
NV BIT(Ll)»
NSR BITCLl)»

DATATYPE BIT(5);

REC3IRD DESCRIPTNR
TYPE TYPEFIELD,
LEN BIT(L6)>»
£apnr 317T(24)»
VAL BIT(24)1];

two=Layered definition provides raoughly the same effect as

the following PL/I=-style structure:?

5=5

BURRUUGHS CORPGRATION COMPANY CONFIDENTIAL
CUMPUTER SYSTEMS GROUP 318C0/B1700 SOL (BNF Yersion) (F)
SANTA BAXBARA PLANT P.S. 2212 5405
DECL ARE 1 DESCRIPTOR REMAPS BASE,
2 TYPE»
3 NV BITC(1)»
3 WSR 3ITC1)»
3 DATATYPE BIT(G)»
2 LEN - BITC16)»
2 ADDR BITC24)»
2 VAL REMAPS ADDR BITC24);

The concept of making several fields alternative formats for the
same argar» or "cospatial"™s, is expressed by enclosing the list of
alternatives in bracketse. This has the advantage of not
requiring a distinguished alternative {the Llargest) which is
remappedr and it also groups atll the alternatives in one spot
textually.

Another distinction of record is in the nested use of definitions
to achieve the effect of PL/I level numberse. The advantage here

is that a single record may be used as part of several other
recordss at different levels» or even more than once in another
record declaration. This can be done without repeating the
definition of its substructures thus simplifying modifications.
The use of a record in maore than one contexts of courses reguires
that qualified names be introduced. This is discussed later in
detailas

Each field of a record has a type assaciated with it in the
decl araticn (the type may be another record identifier)» and may
also be arrayed by noting the array bound after the field
identifier== similar to an ordinary arcay declaration. The type
of an array field may be a record which also contains array
fields, i1.e.» arrays may be nested in a way not permitted by the
current S0L structures.

STREUCTURES

A structure which would be the functional eguivalent of the
current SDL structure wmay be declared using the previously
defined record:

DECLARE D DESCRIPTOR;

Declaring this structure allocates storage on the vatlue stack for

the data (48 bits in this case) and allocates one descriptor on
the name stacke. A structure array could also be declared Cand

pagedr in this examplie):

DECLARE PAGEDC(16) DA(256) DESCRIPTUR?

5=6

BURRJOUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B31800/81700 S5DL (BNF Version) (F)
SANTA BARBARA PLANT PeSs 2212 5405
This causes one array descriptor to be allocated. The space for

the array is not allocated on the value stack in this case
because the array is paged.

The field of a structure is accessed by use of a qualified name.
For exampier the length field of descriptor "D" is named "D.LEN"™
ana the type field is named "D.TYPE", The name=value bit of the
type fietd is named "D.TYPE.NV". HWhen a compaonent of the name is
an arrays a subscript must be mentioned after that component as
in "DA(2)) .TYPE.NSR", qualification must bte complete and
explicits wunlike that of PL/I or COBOL. The dot notation was
chosen bpecause it is almost a standard among languages using
qual ified namese. The underscore character ("_") is used as a
replacement for the currant wuse of "." as an identifier oreak
character.

A A A o 1 T P SAP - SA P PR

To provide a {ink between current and new facilitiesr, a field of
a reccrd may be named ty itself (no qualification) with an index.
The effect is the same as indexing a field of a structure

decl ared REMAPS BASE. This eases regrogramring since in many
appl ications the structure declaration could be rewritten as a
record Wwithout changing the rest of the code.

30 i e e e e S W B e s e e A i et

<STRUCTURED RECORD STATEMENT> ::=
RECORD 01l <RECORD ICENTIFIER> <TYPE>
<STRUCTURE ELEMENTS>

<RECORD IDENTIFIER> 3= <CIDENTIFIER>

<STRUCTURE ELEHENTS> 3=
s <LEVEL NUMBER> <STRUCTURE ELEMEANT>

{ <LEVEL NUWBER> <STRUCTURE ELEMENT>
A » <STRUCTURE ELEMENTS>

<STRUCTURE ELEAENT> z:=
<F TELD NAME> <TYPE>

i <FIELD NA#E> <a]RAY BOUND> <TYPL>
{ FILLER <TYPE>

1 <FIELD NAME> REHMAPS <REMAPS 0BJECT>

<TYPE>

5=7

BURRGUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B184G/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 54495
Structured Records have been iaplemented to allow easier

conversion of the current PL/I-style structures to recordse.

Structured Records have the same capabilities as RECURDS.

Fiel ds declared as an array may not have nested structure.

5-8

BURRBUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31830/81700 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405
NONzSTHRUCTURE DECLARATIONS

<CECLARE ELEMENT> ::= e+« | <DECLARED PART>l.a.

<DECLARED PART> ::= <COMPLEX IDENTIFIER> <TYPE PART>

1 (<COMPLEX IDENTIFIER LIST>»)
<TYPE PART>

| <COMPLEX IDENTIFIER> REHAPS
<SREMAP OBJECT> <REMAPS TYFE PART>

<COMPLEX IDENTIFIER
LIST> ::= <COMPLEX IDENTIFIER>
I <COMPLEX IDENTIFIER>,
<COMPLEX IDENTIFIER LIST>

CCIMPLEX IDENTIFIER> :3= <STMPLE IDENTIFLER>
I <ARRAY IDENTIFIER> <ARRAY BOUND>
SSIMPLE IDENTIFIER>» ::= <IDENTIFIER>
CARRAY IDEWTEFIER> ::= <IDENTIFIER>
<ARRAY BJUND> S {<CONSTANT EXPRESSION>»)
<REMAP OBJECT> ::= BA SE
I <SIMPLE IDENTIFIER>
| <ARRAY IDENTIFIER>
| <ADDRESS GENERATOR>
<TYPE PART> 3:= FIXED
! CHARACTER <FIELD SIZE>
I 8IT <FIELD SIZE>
! <RECORD IDENTIFIER>
SREMAPS TYPE PART ::= FIXED
! CHARACTER <FIELD SIZE>
f BIT <FIELD SIZE>
<RECORD IDENTIFIER> z:= <IDENTIFIER>
KFIELD SIZE> 2:= (<SCONSTANT EXPRESSION>)
CCONSTANT E£XPRESSION> 1= SMUMBER> 1| <CONSTANT EXPRESSION>

<CCONSTANT EXPRESSION OPERATOR>
SNUMBER> 1 (<CONSTANT EXPRESSION>)
<CINSTANT EXPRESS ION

OPERATOR> ::= Z + 1 =1 « | /7 1 NGD

5=9

AURRJUGHS CORPURATIONW CONPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180O/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSa 2212 5405
Data may be declared as simpler having ore occcurrence» or as
subscrioted» having as many occurrences as specified by the

<ARRAY BOUND>.

The <TYPE PART> specifies the type of data in the field and the
field size.

As the syntax indicates» different data fields having the same
type may be declared collectively as a <COMPLEX IDENTIFIER LIST>.

The ofollowing examples illustrate the various options available
in this type of <DECLARATION STATEMENT>.

DECLARE A FIXED»
B CHARACTER (19).
C BIT (43)»
(Dsr E» F (5)) 3IT (10)»
G (20) FIXED» -
H (5) CHARACTER (56);

1. A is a 24=bit signed numeric field.

2. % is a 10~pyte character fielce

3. C is a 43=pit field

4. D and £ are 10-bit fields each.

5. F is a 5=element array of 10-bit fieldse.

6. G is a 29%-element array oaof 24-bit signed numeric
fields.

7Te H is a 6=byte character array with five elements.

Data fields may be re-formatted by the use of the remapping
device:

SCOMPLEX IDENTIFIER> REMAPS <REMAP OBJECT> <TYPE PART>

Remapping is subject to the same general rules discussed above.
The following example best illustrates its usee.

DECLARE A FIXED», B8 BIT (53),
AA REMAPS A CHARACTER (3)»
BB(2) REMAPS SUBBIT(B,2) FIXED?

5-12

BURRUUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTENS GROUP 818C0/B8170C SOL (3BNF Version) (F).
SANTA SARBARA PLANT PeSe 2212 5405
Note that BB specifies 48=bits (or 2 elementsr 24=bits each)a. A
field may not te remapped larger than its original size. If the
<REMAPS 0BJECT> is an <ADDRESS GENERATOR>» this <check cannot bhe
made until run time. The check will Le made only when the the

compiler option FORMAL_CHECK is set.

There is no Limit on the nuaeber of times a field may be remappeds»
A field which has remapped another may itself Le remapped. The
REMAP option specifies that the identifier on the left side of
the resaerved word REMAPS will have the same starting address as
the identifier on the right sidee.

For rules concerning the remapping of dynamic or formal
decl arations, see those sectionse

A data field may be remapped to base which will give the field a
relative address of zero. For examples

DECLARE X REHMAPS BASE BIT(7);

This device is used as a free~standing declaration since it does
not remap a previously declared data item and is used primarily
Wwith data to be indexed (See ADDHESS VARIABLES).

5=-11

BURROUGHS CORPORATION COMPANY CONFIDENTILAL
COMPUTER SYSTEMS GROUP B180C/B1705 SDL (8NF Version) (F)
SANTA BARBARA PLANT PsSs 2212 5495

i Tt e e eas PP 3 REAP PPN

<BDECLARE ELEMENT> 3:= ..;I<STRUCTURE LEVEL NUMBER>
<STRUCTURE DECLARED PART>
<STRUCTURE TYPE PART> 1| ...

<STRUCTURE LEVEL

NUMBER> 3:= <SNUMBER>
<STRUCTURE DECLARED
PART> s3:t= <DECLARE]D PART>

i FILLER

I <DUMMY PART> REMAPS <REVAPS 0BJECT>
<DECLARED PART> ::= 5ee NON~STRUCTURE DECLARATIONS
<CUMMY PART> 3= DUMMY <ARRAY BOUND PART>
<ARRAY SBOUND PARYT> ::= <EMPTY>

1 <ARRAY BOUND>
<ARRAY 30UND> :2:= C<CONSTANT EXPRESSION>)

<STRUCTURE TYPE PART> :: <EAPTY>
I <TYPE PART>
H

CHARACTER 1 31T

1

<TYPE PART> 23= See NON-STRUCTURE OECLARATIONS

SOL allows the structuring of data where a field may be
subdivided into a number of sub-fields» each of which has its own
identifier. The whole structure is organized in a hierarchical
form.» where the most general declaration is at Level 41 (or 1)
and the highest at Level 99. A supdivided field 1is called a
group itemr, and a field not subdivided is known as an elementary
iteme.

When the REMAPS option appears on a declare with Lltevel number
greater than ane» it is known as an intra=structure remape In
this cases the <RTMAPS OBJECT> must be the Last identifier

declared in the same structure with the same level numbter unless
that identifier was also declared with REMAPS. In that case both

must remap the same identifier.

CECLARE 1
3IT(5)»
BITC43),
3 0 BIT (1)»

REMAPS C CHARACTER(1),

REMAPS C FIXED»
FIXEDS>

[AVE AN
oW

N N
aomom

5=12

BURRCUGHS CORFORATION COMPANY CONFIDENTIAL
COAPUTER SYSTEMS GROUP B1860/BL703 SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSae 2212 5405

is legals» but E and F may not remap B or D.

The type and Llenath of data need not be specified on the group

level. All elementary items amust indicate type and lengths and
the compiler will assume tyoe bit and add the lengths of the
components to determine the length of the group item. For
example:

DECLARE J1 A,
02 C»
53 D 8IT(2))»
N3 E BITC3D)»
g2 D CHARACTERS(S)»,

In this examples both A and C are considered group items» with A
having a total length of 90 bits and L being S0 bits long.

EILLER

FILLERs may te used to designate certain elementary items which

the prograas does not reference. If the group item has a length
specified and the FILLER is the last item in a structures, it may
be omittede and the conpiler witl consider the item to be an

implied FILLER. A FILLER may never be used as a group items

A group item may have a type specified with length omittede. The
compiter will calculate the Llength from the Length of the
sub-items. For example:

ODECLARE 01 A CHARACTERS
02 B FIXED,
92 € BIT(3)?

4 will become type CHARACTER(4) Lleaving an implied 3-pbit filler
after C.

If the 01 tevel group 1item 1is an arrays it is mapped as a
ccnt YJuUOUs area iIin Memorye. Howevers» subtdivisions of this array
are not contiguouse. In the exanple structure below?

01 4(5) 8ITC43)» 31 ACS5)»

5=13

BURROUGHS CORPURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18CG/B1700 SDL (BNF Version) (F)
SANTA SBAXRBARA PLANT PaSe 2212 5405
02 8 FIXED, or 32 B FIXED»
32 € FIXED? Q2 C FIXED,

k&% 4B bits
4

*

| LYV i LY} i 42 1 A3 1 A4 1
i 80 1 CoO t BL P C1L 1 B2t Cc2 1 83 1 C3 1 B4 1 Cat

cxx 24 Dits

I[f a group item 1is an arrays an array specification may not

appear in any subordinate items that is» only one=-dimensional
arrays are allowed. Down=~level carry of array specifications 1is
implied.

Structured data may be remapped 1in the same manner as
non=structured data. In additicn» structured data may be
remapred with a dummy group identifier. The purpose of this

construct is to allow the user to remap data items without having
to declare another group item which descrites the same memory

area. Thuss in the following example:

01 & BITCLAG),
02 B BIT(2G),
G2 € BITCEG);

"A" might be REMAPped as

0L AA REMAPS A BIT(1CG)» 01 DUMMY REAAPS A BIT(100)»
92 A8 BIT(32)» or 32 BB BITC33)»
22 CC BITLINn); D2 €C BITC70):

Both A and AA in the above exanple refer to the same area in
memory. Hence AA is redundanta. During runtimes» the descriptor
for 44 will also be on the stacke.

5=14

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BLENI/BL700 SDL (BNF vVersion) (F)
SANTA BARBARA PLANT P.§. 2212 5405

If DUMMY js substituted for the identifier AAs no descriptor will
be generatedr» however BB and CC will both point to 4 in the
correct fashion.

The wuser should note the distinction between DUMMY and FILLER.
DUMMY is wused 1in conjunction with REMAPS to eliminate the

necessity of declaring a redundant group items FILLER is usad if
one desires to skip over an area of core.

The following restrictions apply to the use of CUMHY REMAPS:

1. DUMMY may only be used with remap declarations.

2e All the restrictions applying to REMAPS apply to
DUMMY REHAPS.

3 DUMMY must not remap another DUMMY.

4, DUMMY group items must have at least one non-filler

component.

5=-15

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81800/81700 SOL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5495

<DECLARE ELEMENT > 2:= ' seel PAGED <ELEMENTS-PER-PAGE PART>
<ARRAY IDENTIFIER> <ARRAY BOUND>

<TYPE PART>

CELEMENTS=PER=PAGE

PART> s:= (<CONSTANT EXPRESSION>)
<ARRAY IDENTIFIER> ::= <IDENTIFIER>
CARRAY BOUND> ::= (<CONSTANT EXPRESSIUN>)

The paged array declaration allows the user ¢to segment arrayse.
The <ELEMENTS=-PER=-PAGE PART> specifies the number of array

elements contained in each segment. For example:

PAGEC(64) A(4098) 8ITC(1);

is an array of 4(9%06» i-bit elements» segmented into 64,
bh=element segments.

fRestrictions:

1. Paged arrays may not be indexede.

2o Paged arrays may not be part of a structuree.

3. Paged arrays may not be remapped.

bhe The number of elements per page must be a power of 2»

and may not egxceed 32»768.

5. The <ARRAY J0OUND>» may not exceed 65»535 but the

bounds may be subsegquently increascd to a maximum of
L6»777»215 by use of the GROW statement.

5=16

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31800/B8170¢ SDL (BAF version) (F)
SANTA BARBARA PLANT PeS. 2212 54C5

- ——— — e " ———

<CECLARE ELEMENT> ::= eeel DYNAMIC <DYNAMIC COMPLEX
IDENTIFIER> <DYNAMIC
TYPE PART>1 enw

<DYNAMIC COMPLEX
ICENTIF IER> ::= <IDENTIFIER> 1| <ARRAY IDENTIFIER>
<DYNAMIC SUBSCRIPT 30OUNDS>
| PAGED <DYNAMIC ELEMENTS PER PAGE>
<CARRAY IDENTIFIER>
<DYNAKIC SUBSCRIPY SQUNDS>

<DYNAMIC ELEMENTS

PER PAGE> 13= (<EXPRESSION>)
<CYNAMIC SUBSCRIPT
BOUNDS> :3:= (<EXPRESSION>)
<DYNAMIC TYPE PART> ::= BIT <DYNAMIC FIELD SIZE>
! CHARACTER <DYNAMIC FIELD SIZE>

1 FIXED
I <RECORD I[OENTIFIER>

<OYNAMIC FIELD SIZE> ::= (<EXPRESSION>)

The dynamic declare statement allows the user to declare simple
data with a non-static field length and/or array tound. For
example:

PROCEDURE ABX>
DECLARE DYNAMIC X BITC(A);

where A will determine the length of X. The wvalue of the
<EXPRESSION> appearing in the <DYNAMIC FIELD SIZE> is used to
determine the number of bits or characters in the declared data

iteme. If X were an array» its bounds would be evaluated at run
time as wells. :

5=17

GURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTE#MS GROUP 31800/B1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeS. 2212 5405

Restrictigns:

le The variabtes used in the <DYNAMIC FIELD SIZE> must
have been previously initializeda.

2» Oynamics may not appear on Lexic Level 2.

BDynamic variables may be remappedr however a warning message wWwill
appear in the source listing. it is the programmer s
responsibility to ensure that a dynamic is not remapped larger
than allouad. i1f $FrORMAL_CHECK is sets this remapping length
will be run time checked.

5=-13

BURRGUGHS CCRPORATION COMPANY CONFIDENTILAL
COMPUTER SYSTEMS GROUP 31800/8170) SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 54G5
REFERENCE QECLARATIONS

CCECLARE ELEMENT> ::= »os 1 <DECLARED REF> REFERENCE!...
<DECLARED REF> ::= <SIMPLE IDENTIFIER>

(<SIMPLE IDENTIFIER LIST>)

<SIMPLE IDENTIFIER LIST> : <SIHPLE IDENTIFIER>
<SIMPLE IDENTIFIERD>,

<STHAPLE TDENTIFIER LIST>

Reference variables are wused as pointers to data and their
declaration does not allocate data space. A refererce wvariable
has a close analog in a formal parameter declared VARYING. Such
a parameter has only one type» tengths, and address associated
Wwith it for each 1invocation of the procedure in which it is
declareds, but it may te different for each invocation. The
formal parameter 1is, bound (to the actual parameter) by the
procedure call mechanisms 4 reference variable is an extension
of this idea because it may be declared anywhere other variatles
may be declared and may be rebound at any time using a statement
known as the reference assignment statement or REFER statement.
This statement binds the reference variable to a new referente. A
fed other SOL statements may change the referent of a reference
variable also» but not to any arbitrary address generator as does
the REFER statemente.

5=19

BURROUGHS CORPORATION COMPANY CONMFIDENTIAL
COMPUTER SYSTEMS GROUP aLenn/81799 SOL (BNF Version) (F)
SANTA BARBARA PLANT PeS. 2212 5405

RECORD REFERENCE DECLARATIONS

——— S S D e e e AE> w e are

<DECLARE ELEMENT> ::= »»s | <DECLARED RECORD REF> REFERENCE ...

<DECLARED RECORD R

in
-
v
o
.
il

<SIMPLE IDENTIFIER>
<RECORD IDENTIFIER>

In some casess storage is not to be directly altocated for a
records but a certain area of an array or large string is knowun
to have the format specified by a recorde. This 1s the case 1in
which indexing is applied currently. Record reference variables
are designed to replace this use of indexing.

4 record reference variable 1i1s declared» say for recorc
CESCRIPTOR, as

DECLARE DR DESCRIPTOR REFERENCE?

Record reference variables are assigned with a REFER statement
Like ordinary reference variablesr» bDut they may be written in
other statements as though they were structure namess lege.» they

may have field qualifiers attached with the dot notatione Such
an access subfields the current memory area described Ly the
reference variable according to the record speciticatione for
exampler

REFER DR TO SUBBIT(MYAREA, 100, 48);
X 3= DR.LENS

assigns X to bits 198 through 124 of the string MYAREA.

41l restrictions which apply to normal reference variables are
appl icable to record reference variables as wells Record
raference variables may not be used in the REDUCE statement.

5=24

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 3180GG/B17C0 SOL (BNF Yersion) (F)
SANTA BARBARA PLANT Pe5. 2212 5405

FILE CECLARATIGNS

<FILE DECLARATION
T> T =

STAT EMEN FILE <FILE DECLARE ELEMENT LIST>

<FILE DECLARE
ELEMENT LIST> =:= <FILE DECLARE ELEMENT>
I <FILE DECLARE ELEMENT>>»
<FILE DECLARE ELEMENT LIST>

<FILE DECLARE ELEMENT> 3= <FILE IDENTIFIER><FILE ATTRIBUTE PART>
<FILE IDENTIFIER> ::= <IOENTIFIER>
<FILE ATTRIBUTE PART> ::= <CEMPTY>

I (<FILE ATTRIBUTE LIST>)

<FILE ATTRIBUTE LIST> ::= <F ILE ATTRIBUTE>
| <FILE ATTRI3UTE>», <FILE ATTRISUTE LIST>

<FILE ATTRIBUTE> 2= <LABEL PART>

<DEVICE PARTI>

<SMODE PART>

BUFFERS PART>

<VARIABLE RECORD PART>
<LOCK FART>

<SAVE FACTOR PART>

<RECORD SPECIFICATION PART>
<REEL NUMBER PART>

<DISK FILE DESCRIPTION PART>
<PACK=ID PART>

<GPEN OPTION PART>

ALY _AREAS_AT_OPEN PART>
<AREA_DY_CYLINDER PART>
<SEU_ASSIGNMENT PART>
ZMULTI_PACK PART>
<USE_INPUT_BLOCKING PART>
<END_OF _PAGE PART>
<SREMOTE_KEY PART>
<NUMBER_DF_STATIQONS PART>
SFILE TYPE PART>

<HORK FILE PART>

<L.43EL TYPE PART>

<INVALID CHARACTER REPORTING PART>
<MONITOR SPECIFICATION PART>
<SERIAL NUMBER PART>
<UPTIONAL FILE PART>

<TAPE LAREL PA4RT>
<EXCEPTION HASK PART>
<TRANSLATE PART>»

<YSER NAMED BACKUP PART>
<PROTECTION PART>
PROTECTION_IO PART>

<HOST _NAME PART>

e G i e - e wmm W eum A AN e M S S GG cab S M A Wk RN S e e s Sme Guk M Rae S we

5=21

GURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800 /817900 SOL (BNF version) (F)
SANTA BARBARA PLANT P.Se 2212 5495
All attributes are optional:» as the abtove syntax indicatese.

Default status wWill automatically be set for omitted attributes
as follouds:

SYNTAX: SLABEL PART> ::= LABEL =
<FILE IDENTIFICATION PART>
<FILE IDENTIFICATION PART> 3= <HULTI=FILE IDENTIFICATION>
{ <MULTI-FILE
ICENTIFICATION>
<FILE IDENTIFICATION>
<MULTI-FILE ICEMTIFICATION> ::= <CHARACTER STRING>

<FILE IDENTIFICATION> ::= <CHARACTER STRING>

Wwhere:

<FILE IDENTIFIER> is a file or program identifier
by which the program identifies the file.

and:
<MULTI-FILE IDENTIFICATION> and <FILE
IDENTIFICATION> are name or contents of
identification field on file {tabel or Disk

Directory by which the system identifies the file.

FORNAT: LABEL

"NAME_1"™ / "NAME_2"

or
LABEL = "™NAME_1"
Example:

FILE INV_DATA_1 (LABEL = "RCD_TAPE™ / "FILE_1");

Mote: The system Wwill use only the first ten characters
of the "NAME™.

DEFAULTY If LABEL(s) is (are) not specifiedrs the INITERMNAL FILE
NAME» jaeer <FILE IDENTIFIER>» is moved to <MULTI-FILE
IDENTIFICATION>» and btlanks are moved to KFILE
IDENTIFICATION> in the FP3 (FILE PARAMETER BLOCK).

SYNTAX: <OEVICE PART> 13 DEVICE = <DEVICE SPECIFIER>

5=272

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31800/B17380 SDL (3NF vYersion) (F)
SANTA gARBARA PLANT PeSa 2212 5405

<CEVICE SPECIFIER> :: TAPE

TAPE_7

TAPE_9

TAPE_PE

TAPE_NRZ

DISK <ACCESS MODE>

DISK_PACK <ACCESS MODE>
DISK_FILE <ACCESS MODE>
DISK_PACK_CENTURY <ACCESS MODE>
DISK_PACK_CAELUS <ACCESS MODE>
CARD

CARD_READER

CARD_PUNCH <DEVICE OPTION>
PRINTER <DEVICE GPTION>

PUNCH <DEVICE OPTION>
PAPER_TAPE_PUNCH

<DEVICE 0PTION>
DATA_RECCROER_80
READER_PUNCH_PRINTER

<DEVICE OPTION>

PUNCH_PRINTER <DEVICE OPTION>
READEX_96

PAPER_TAPE_READER
SORTER_READER

READER_SORTER

CASSETTE

REMOTE (<QUEUE SIZE>) <REMOTE
OPTION>

! QUEUE (<QUEUE SIZE>)

<QUEUE OPTION>

1}
W A A G M D N b G AN S MDA e wEw

<ACCESS MODE>

13= <EMPTY> 1| SERIAL ' RANDOM
<CEVICE OPTION> :

s= SENPTY>
1 <BACKUP OPTION>
I <SPECIAL FORMS OPTION>
I <SPECIAL FORMS OPTION>
<BACKUP OPTION>

<BACKUP OPTION> 2:= <BACKUP SPECIFIER>
I OR <8ACKUP SPECIFIER>
I NO BACKUP

CRACKUP SPECIFIER> z2:= BACKUP 1 BACKUP TAPE
i BACKUP DISK

<SPECIAL FORMS OPTION> ::= FORMS

<FREMOTE OQPTION> ::= <SEMPTY> 1 FAMILY 1| WITH HEADERS
I FAMILY WITH HEADERS

SQUEUE SIZE> 323 <NUMBER>

CQUEUE QPTION> 2= <EMPTY>

EURROUGHS CORPORATION

COMPUTER SYSTEMS GROUP
SANTA DBARBARA PLANT

<FAMILY SIZE> :2:=

FORMAT: DEVICE =

& may or may not

BACKUP
BACKUP
BACKUP
OR BAC
DR BAC
OR EAC
NO BAC

Note: See <USER

k& may
below:

5-23

COMPANY CONFIDENTIAL

818%0/78170C SOL (BNF Version) (F)
PaSe 2212 54925

I FAMILY (<FAMILY SIZE>)

<SNUMBER>

CARD

CARD_READER

TAPE

TAPE_7

TAPE_O

TAPE_PE

TAPE_NRZ
x& DISK
x+ DISK_PACK
«x DISK_FILE
£+ DISK_PACK_CENTURY
DISK_PACK_CAELUS
CARD_PUNCH
PRINTER
PRINTER FORMS
PUNCH
PUNCH FORMS
PAPER_TAPE_PUNCH
PAPER_TAPE_PUNCH FORMS
DATA_RECORDER_&8J
READER_PUNCH_PRINTER
READER_PUNCH_PRINTER FORMS
PUNCH_PRINTER
PUNCH_PRINTER FORMS
READER_96
PAPER_TAPE_READER
SORTER_READER
READER _SORTEK
CASSETTE
xex REMOTE (<QUEUE SIZE>)
xxx QUEUE C(<QUEUE SIZE>)

¥ ot ®» w X ® N ® ® x ¥ ¥ »

be followed by any single option below:

TAPE
DISK
Kup
KUP TAPE
XuP DISK
Kup

NAMED 3ACKUP PART> for more on backupe

or may not be followed by any single option

5=24

BURRJUGHS CORFORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180G/B1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.5. 2212 5405
SERIAL
RANODOM

% may or may not be followed by options applicable to
this "device". See syntax abovee

Exampless DEVICE = TAPE
DEVICE = PRINTER BACKUP
DEVICE = PRINTER FORMS BACKUP TAPE
DEVICE = REMOTE(S) KITH HEADERS
DEFAULT: in the absence of any specifications disk wWill be

assumed by the compiler.

SYNTAX: <MUDE PART> 3= MODE = <MODE SPECIFIER>

<MODE SPECIFIER> ::= <FILE PARITY PART>

I <TRANSLATION PART>

<FILE PARITY PART> ::= aDDd 1 EVEN

CTRANSLATION PART> 3= EBCDIC 1| ASCII | BCL | BINARY
FORMAT: HODE = 8CL

MODE = ASCII

HODE = EVYEN
DEFAULT: Default is odd or EBCDIC, whichever is applicable.
SYNT AX: <BUFFERS PART>» ::= BUFFERS =

<NUMBER OF BUFFERS>

<NUMBER OF BUFFER3> ::3

<SNUMBER>
FORMAT: BUFFERS = MNMUHMBER
1
DEFAULT: If not specifiedr puffers will be set to 1 in the FPB.

SYNT 4%z <VARTABLE RECORD PART> =::= VART A3LE
FORMAT: VARIABLE

DEFAULT:= Not variable, i.e.» fixed=size recordse.

BURROUGHS CORPORATICN
COMPUTER SYSTENAS GROUP
SANTA BAR3ARA PLANT

5-25

COMPANY CONFIDENTIAL

BL8O0O/81793 SOL (3NF Version) (F)
P.S5S. 2212 5405

SYNT AX 3 <LOCK PART> ::= LucCK

FORMAT: LOCK

DEFAULT:= LIOCK is not sete.

SYNTAK: <SAVE FACTOR PART> ::= SAVE = <SAVE FACTOR>
<SAVE FACTOR> =:= SNUMBER>

FORMAT: SAVE = NUMBER (of days to save file)

DEFAULT: If not specifiedr
32 in the FPB.

SYNTAX: <RECORD
PART> 3

<RECGRD SIZE SPECIFIER>

SPECIFICATION

the SAVE specifier will be set to

RECORDS = <RECORD SIZE
SPECIFIER>

1]

<PHYSICAL RECORD SIZE>
1 <LOGICAL RECORD SIZE>

<SLASH>

<LOGICAL KECORDS PECR

PHYSICAL RECORD>

<PHYSICAL RECORD SIZE> ::= <NUMBER>
<LOGICAL RECORD SIZE> =:= <NUMBER>
<LUG1CAL RECORDS PER
PHYSICAL RECORD> ::= <NUMBER>
FORMAT: RECORD3 = NUMBER
;ECGRDS = NUMBER s/ NUMBER
Not e: <PHYSICAL RECORD SIZE> indicates the number of

characters per blocks? <LOGICAL RECORD S51ZE>»» the number
of characters per recorde

Example:
RECORDS

or
RECOROS

1200

120 /7 1¢

DEFAULT: 1In the absence of record specifications, unblocked records

5=256

BURRQOQUGHS COXRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/B1790 SOL (BANF version) (F)
SANTA BARBARA PLANT PaS. 2212 5405

of the following lengths will be assumed.

Disk ’ 180 bytes
Tape 80 bytes
Any paper tape configuration &0 bytes
Any 96 column card configuration 96 bytes
ALl remaining card configurations 80 bytes
Any printer configuration 132 bytes
AlL others 72 bytes

SYNTAX: <REEL NUMBER PART> ::= REEL = <REEL NUMBER>
<REEL NUMBER>» 3:= <SNUMBER>

FORMAT : REEL = 2

DEFAULT: The FPB assumes #1 in the absence of any specification.

SYNTAX: <DISK FILE DESCRIPTION

PART> ::= AREAS = <NUMBER OF AREAS>
<SLASH>
<PHYSICAL RECORDS PER AREA>
CNUMSER OF AREZS» 3= <NUMBER>
¢PHYSICAL RECORDS
PER AREA> ::= <NUHABER>
Format: Areas = # of Areas / #of Blocks Per Area

Example: Areas 20 7 83

Note: <PHYSICAL RECORDS PER ARE2> indicates the
number of blocks per areae This attribute is
applicable for disk files onlye.

OEFAULT: If areas are not specifiedr the FPB will assume 25
Areas with 1¢0 8Blocks Per Arege If the record
specifications have been given the compiler will
compute the numcer of Records Per Area. However, if
record specifications are omittedsr the FFB will assume
190 records per area. In either case thens whether
areas are specified or nots the compiler will have
computed the number of records for insertion in the
FPE.

5=27

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BL8QO/BL700 SOL (BNF Version) (F)
SANTA BARBARA PLANT PeaSe 2212 5405
SYNTAX: <PACK_ID PART> 1= PACK_ID =

<PACK TDENTIFICATION>

<P ACK
IDENTLFICATION> ::= <CHARACTER STRING>
FORMAT: PACK_ID = "NAME"'
Note: The system will wuse only the first ten
characters of the "NAME"™,
DEFAULT: If absents <PACK IDENTIFICATION> will be set to

blanks in the FPB.

SYNTAX: <OPEN OPTION>::= OPEN_OPTION=
<0PEN OPTION ATIRIBUTE LIST>

<OPEN OPTION ,
ATTRIBUTE LIST>::= <OPEN ATTRIBUTE>

1 <OPEN ATTRIBUTE> <SLASH>
<OPEN OPTION ATTRIBUTE LIST»>

<JPEN ATTRIBUTE> ::

SEE "OPEN STATEMENT® q -2

FORMAT: OPEN_JPTICON = ATTRIBUTE /7 ATTRIBUTE. . .
Example: OPEN_OPTION = QUTPUT / NEW C'WC”T —
Note:
<OPEN STATEMENT> may be separated by cdmmas» and the
<OPEN ATTRIBUTE>s in the <OPEN OPTION> above are
separated by slashese. fla'v' ! Q 0'2 f\"’)
QEFAULT: if abtsento» the <OPEN ATTRIBUTE>s will be se :ng:.
follouws:
If <DEVICE> 1is: <OPEN OPTION> is:
CARD INPUT
PRINTER QuUTPUT
PUNCH QuUTPUT
~DISK INPUT
REMOTE INPUT/Z/0UTPUT
TRPE YNPUT
QUEUE INPUT/Z0UTPUT

O ————

5=28

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180G/BL7CO SOL (BNF Version) (F)
SANTA 3AXBARA PLANT P.5. 2212 5405
SYNTAX: <SALL_AREAS_AT_GOPEN PART> 2:= ALL_AREAS_AT_OPEN

FUNC TION: If this option is sets disk space for each area will
De allocated when the file 1is openede. I1f

insufficient space is availabler» a S5P0 message will
indicate that there is no user diske

DEFAULT: Areas are created as neededa

SYNTAX: <AREA_BY_CYLINDER PART> ::= AREA_BY_CYLINDER

FUNCTION: If this option is specifiedrs each area will be placed
at the bteginning of a cylinder. If there is no
{more) space at the beginning of any cylinder» a 3P0
message will indicate that there is no user disk.

DEFAULT: Areas are placed anywhere on disk.

SYNTAX: <EU ASSIGNMENT PART> ::= EU_SPECIAL = <NUMBER>
I EU_INCREMENTED = <NUMBER>

FUNCTIONW: The <NUMBER> specifies any integer 0O through (5.
"EU_SPECIAL™ is applicable only with head=per=track
disks ana systems disk packsr» and specifies the drive
on which the file is to go. "EU_INCREMENTED"™
specifies the disk drive on which the first area of 3
file is to go. Each subsequent area is placed on the
next drive. [f» with either options the necessary
€.Ue 1is not availablesr E.U. 0 will be taken.

DEFAULT: Space for files and areas is allccated anywhere on
diske '
SYNTAX: <SMULTI PACK PART>::= MULTI_PACK

FUNCTION: If this option is specifiedr the entire file may be
put onto several disk packse.

DEFAULT: The file will be placed on one disk pack.

SYNTAX: <USE_INPUT_SLOCKING
PART> 2:= ‘ USE_INPUT_BLOCKING

5=29

BURROUGHS CCRPURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP _ BL8L0/3179G S0L (BNF Version) (F)
SANTA BARBARA PLANT a P.S. 2212 5405

FUNCTION: This option applies to input disk», taper or card
filesa If specified for disks» the record and block
size specifications will be taken from the Disk File

Header and the user's specificaticns will be ignorede.

f[f specified for taper the tape must be labeled;
otherwiser a run=time error occurs. If specified for
card files» the following record lengths witl be
assumed?:

80=col = 30 bytes

95=col = 96 bytes

BIN = 960 bits
DEFAQULT: The record and block size are as stated in the file

declaration. Those optiors onitted are set to
default statuse.

SYNTAX: <END_UF_PAGE PART> ::= EXD_QF _PAGE _ACTICN

FUNCTION: This attribpute will cause the <EQF FART> of a <HWRITE
STATEMENT> to be executed at the end of a page on a
printer file. Refer to "WRITE STATEMENT™ and "ON
SEQUENCE™ for detailse.

DEFAULT: No automatic paging action

SYNTAX: CREMOTE_KEY PART>::= REMOTE_KEY

FUNCTION: This atrribute is used only with files of type
"REMOTE"™. When presents it indicates that a key may

be present on a read or write to that files ¢
missing, then no key can be usede. The format of the
key is given oelows. Each field of the key is5 in
decimal characterse. The key 1is a total of L3

characters formatted as follows:

Station NMumber 3 characters
Message Length (byta count) & characters
Message Type (must be "¢3U"™) 3 characters

DEFAULT: No remote key

SYNTAX: <NUMBER_OF _STATIONS PART>:= NUMBER_OF _STATIONS = <NUM3ER>

5=39

BURROQUGHS CORPIBATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1380G/B1700 SOL (BNF version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

FUNCTION: This attribute 1is wused only with files of type
"REMOTE". dhen presentr, it specifies the maximum
number of stations that can be attached to this filee.

DEFAULT: NUNMBER_OF _STATIONS=1
SYNTAX: <FILE TYPE PART>::= FILE_TYPE=<FILE TYPE SPECIFIER>
<FILE TYPE SPECIFIER>::= DATA | INTERPRETER | CODE

I INTRINSIC | PSR_DECK

FUNCTION: This attribute allows SOL programs to specify the
type of the files they are creating. In particular»
the coapilers will wuse the type "CODE"™ for their
codefiles.

DEFAULT: FILE_TYPE = DATA
SYNT AX: <WORK FILE PART>::=) WORK_FILE
FUNCTION: This attribute causes the job number to bte included

as part of the file identifier.

DEFAULT: Not a workfile
SYNTAX : <LABEL TYPE PART>»::= LABEL_TYPE=<LABEL TYPL SPLECIFIER>
<L ARBEL TYPE SPECIFIER»::= UMLABELED t BURRCUGHS

FUNCTION: This attribute allows the label type to te specified.

DEFALLT: ANSII STANDARD LAZEL

SYNTAX: <INV_CHAR_REPORTING PART>::= INVALID_CHARACTERS=
<INV_CHAR_REPORT TYPE PART>

SINV_CHAR_
REPORT TYPE PART> 2= 21 1 4 2 1+ 3
FUNCTIOM: Invalid characters occurring in a print file will be

reported on the 5PJ to the comrputer operators as

5=31

BURRDUGHS CORPORATION CUMPANY'CUNFfDENTIAL
COMPUTER SYSTEMS GROUP 818045/B17C) 30L (BN Version) (F)
SANTA BARBARA PLANT P.Se 2212 5495

specified:

VALUE TYPE
0 Report all Llines containing invalid
characterse.
1 Report all {ines containing invalid
characters and then stop progranm.
2 Report onc2 that the file contains
invalid characterse.
3 Do not report that the file
contains invalid characters.
DEFAULT: ¥
SYNTAX: <MGNITOR SPEC PART>» ::= MONITOR_INPUT_FILE

i MONITOR_GUTPUT_FILE
FUNCTIUN: See Appendix VIII: SOL MONIVTORING FACILITY

DEFAULT Not present

SYNTAX: <SERTAL NUMBER PART> ::= SERIAL
1 SERIAL

<NUMBER>
<CHARACTER STRING>

[T

FUNCTIUN: The file will be opened on the output media with the
specified serial number.

CEFAULT Not present

SYNTAX: <OPTIONAL_FILE_PART> ::= UPTIONAL

FUNCTIONS If this option is used on an input file» then the
file may be amissing and the operator may respond with
the OF message to the FILE MISSING message. This
will result in the execution of the ON EOF branch on
the execution of the first read of the file.

DEFAULT: Reset

5~32

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
CONPUTER SVYSTEMS GROUP 31L8Q00/8L705 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.Se. 2212 S435
SYNTAX: <EXCEPTION MASK PART> ::= EXCEPTION_MASK = «BIT STRING>
FUNCTION: The exception mask specifies the tyres of exceptions

that the oprogram is wWilling to handle for this
particular file. See the B1709 MCP Manual for a
description of the bit assignment within the bit
string. Note that this string should generate a
24=bit value.

DEFAULT: 306005002

SYNTAX: <TRANSLATE PART> ::= TRANSLATE = <CHARACTER STRING>

FUNCTION: The MCP will do a soft translation on the file using
<CHARACTER STRING> as the file~id for the translate
tabte file. The multi=file=id for the translate
table file will be "TRANSLATE".,

DEFAULT: DEFAULT: No translation.

SYNT AKX : <USER NAMED BACKUP PART>:3= USER_NAMED_BACKUP

FUNCTION: If the file goes to backup» its name will ©bLe its
given external name rather than a system selected

namee
DEFAULT: System selects backup file names.
SYNTAX: <PRITECTION PART>::= PROTECTION = <PROTECTION TYPE PART>

<SPROTECTION TYPE PART>:z= Q0 1 1 4 2 t 3

FUNCTIGN: (See MCP Control Syntax product specification in File
Attribute descriptions)

SYNT AX: SPROTECTION_IG_PART»>» 2= PROTECTION_IO = <PROTECTION_IO TYPE
PART>
<PROTECTION_IU TYPE PART::= D 1 1 1 2 1 3

FUNCTION: (See MCP Control Syntax product specification in File
Attribute descriptions)

5-33

BURROUGHS CORPORATION CO¥PANY CONFIDENTIAL
COAPUTER SYSTEMS GROUP BL80O/BL700 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.Sa. 2212 5495
SYNTAX: <HOST_NAME PART>:= HOST_NAME = <CHARACTER STRING>

FUNCTIUN: Specifies the name of the host system for this files

DEFAULT: No host specified.

5=34

EURRGCUGHS CORPORATION CONMPANY CONFIDENTIAL
COMPUTER SYSTEWS cRrouyp BL8OU/BL700 SDL (BNF version) (F)
SANTA BARBARA PLANT P.S. 2212 5495

SWITCH FILE DECLARATIONS

<SAITCH FILE
DECLARATION STATEMENT>::= SWITCH_FILE <SWITCH FILE
DECLARE ELEMENT LIST>

<SWITCH FILE
DECLARE ELEMENT LIST>»::

<SHWITCH FILE DECLARE ELEMENT>

| <SWITCH FILE DECLARE ELEMENT>,
<SHITCH FILE DECLARE ELEMENT LIST>

<SWITCH FILE

CECLARE ELEMENT> z2:= <SWITCH FILE IGENTIFIER> (<FILE
IDENTIFIER LIST>»)

<SKITCH FILE IDENT{FIER>::= <IDENTIFIER>

<FILE IDENTIFIER LIST>::= <FILE IDENTIFIER>
I <FILE IDENTIFIER>, <FILE IDENTIFIER LIST>

A switch file declaration specifies the elements of a "CASE",
these elements teing files. A subscripted <SWITCH FILE
ICENTIFIER> may be used anywhere that a <FILE IOQENTIFIER> may be
usede. If there are N files in the <FILE IDENTIFIER LiST>s then
the subscript must range from O to N=-i. The wvalue of the
subscript selects one of the N files in the list» depending upon
ordinal position (the files in the <«<FILE [DENTIFIER LIST> are
numpered from Lleft to rights begining with C). If atl files in
the <FILE IDENTIFIER LIST> are of type "REMOTE™, then the switch
file identifier is of type “REMOTE"™.

5=35

BURRUUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180G/817C0 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 54905

The following example copigs card images fraom cards» tapes oOr
disk to cardss» printer» tapes, or disk:

FILE
CARDS(DEVICE=CARD)
»TAPEI(DEVICE=TAPE»USE_INPUT_BLOCKING)
PCISKI(DEVICE=DISK,USE_INPUT_BLOCKING)
’
FILE
PUNCH(DEVICE=PUNCH)
+LINE(DEVICE=PRINTER)
»TAPEO(DEVICE=TAPE»RECORDS=85/4)
»CISKOCDEVICE=DISKARECORDS=30/9)

’»
SWITCH_FILE
INPUT(CARDS,TAPEI,DISKI)
»CUTPUTC(PUNCH»LINE,» TAPEDs DI SKO)

r
DECL ARE
INPUT_TYPE 3IT(24)
LQUTPUT_TYPE BIT(24)
»BUFFER CHARACTER(80)

I 4
BISPLAY "wsxxxx INPUT TYPE";
ACCEPT INPUT_TYPES
INPUT_TYPEIBINARY(SUBSTRCINPUT_TYPESC»L1)) MO0 35
DISPLAY ~=x&xxx QUTPUT TYPE™;
ACCEPT OUTPUT_TYPE;
QUTPUT_TYPZIBINARY(SUBSTR(OUTPUT_TYPE»G»,1)) MOD 47
OPEN INPUTCINPUT_TYPE) INPUT;
OPEN QUTPUT(OUTPUT_TYPEZ) OUTPUT., NEW?
DO F OREVER;

READ INPUTCINPUT_TYPE) (3UFFER)S

ON EOQF UNDO>

WRITE OQUTPUT(OUTPUT_TYPE) (BUFFER);
END?
CLOSE QUTPUT(OQUTPUT_TYPE) WITH LOCK;
ST0P; .
FINI

5-36

EURROUGHS CORPORATION COvPANY CCONFIDENTIAL
COMAPUTER SYSTEMS GROUP BL84U/BL7CO SDL (BNF Yersion) (F)
SANTA BARBARA PLANT PeSe 2212 5405

<DECLARATIUN STATEMENT> 3= .. 1<DEFINE STATEMENT>51...

<DEF INE STATEMENT> 2:= DEFIME <DEFINE ELEMENT>
I <DEFINE STATEMENT>,
<DEFINE ELEMENT>

"<DEF INE ELEMENT> 3:= <DEFINE IDENTIFIER>
<FORMAL PARAMETER PART>
AS <DEFINE STRING>

SCEF INE IDENTIFIER> 3:= <IDENTIFIER>

<FORMAL PARAHETER PART> :: (<FORMAL PARAMETER LIST>)

! [<FORMAL PARAMETER LIST>1
| <EMPTY>
<FORMAL PARAMETER LIST> ::= <¢FORMAL PARAMETER>
I <FORMAL PARAMETER>,
<FORMAL PARAMETER LIST>
<FORMAL PARAMETER> ::= <IDENTIFIER>
€DEF INE STRING> 3:= R<WELL=FORMED CONSTRUCT>#

<HELL~=FORMED CONSTRUCT>

.
i

<EMPTY>

1 <BASIC COMPONENT>
<WELL=FORMED CONSTRUCT>

CEAS IC COMPONENT>» z::= CRESERVED WORDL> ZSEE APPENDIX
<IDENTIFIER>

<SPECIAL CHARACTER>

<COMMENT STRING>

SCONSTANT>

The <DEFINE STATEMENT> assigns the text enclosed between the ™2&-©
signs following the reserved word A5 to the <DEFINE IDENTIFIER>,
Invocation of the <DEFINE IDENTIFIER>» causes the text to replace

the i1dentifierr» thereby providing a form of shorthand code.

At declaration time» the compiler is unconcerned with the
contents of the <DEFINE STRING>. Howevers when the <DEFINE
ICENTIFIER> is invokedr the <AZLL-FORMED CONSTRUCT> must conform
to the syntactical requirements of the statement containing the
identifiere.

5=37

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 8180¢/B1700 S$DL (3NF version) (F)
SANTA BARBARA PLANT P.5S. 2212 5495
There are two types of <DEFINE STATEMENT>s: Simple and

Parametrics where the parameters are enclosed in parentheses or

brackets following the <DEFINE IDENTIFIER>. Below are examples
of both types:

DEFINE A AS #IF X>10 THEN PROCX4#,
CH AS ¥CHARACTERE,
BL(Y»Z) AS #IF Ye<ZI THEN Yz=2Z #»
C(M) AS 2 =M; A ¥

Notice that <DEFINE STATEMENT>s may be factoreds with commas
separating each element.

The <DEFINE ICENTIFIER> has scope in the same manner as any other
identifier (except for SEGMENT and DO-GROUP identifiers).

Restrictions on the use of DEFINEs:

l. Reserved words may not te used as <DEFINE
IDENTIFIER>s, howevers an identifier may define a3
reserved worde.

2 "Special™ words may be used as <ODEFINE IDENTIFIER>s»

however, their special significance is Lost within
the the scope of that <DEFINE STATEMENT>.

3. <DEFINE INVOCATION>s may appear within a <KELL-FORMED

CONSTRUCT>» . jecer a <DEFINE IOENTIFIER> may appear
Wwithin another <DEFINE ELEMENT>. <DEF INE
IDENTIFIER>s may be nested no more than 12 levels
deepe.

be The identifiers Listed beltow are never looked up in
the List of define names.

DECLARE» DEFINE» PROUOCEDURE, and FORMAL IDENTIFIERS»
SEGMENT and DO-GROUP IDENTIFIERS,

FILE, OPEN, and CLOSE ATTRIBUTES,

<FILE ATTRIBUTE STATEMENT> attribute names

*ON" condition names (EOF, EXCEPTIONs» FILE_MISSING,
Q_FULL, Q_EMPTY»,NO_INPUT, FILE_LOCKED», INCOMPLETE_IO)_

"ACCEPT™/"DISPLAY" specifiers: END_OF_TEXT
and CRUNCHED.

5=-38

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31890/81790 SDL (BNF Version) (F)
SANTA BARBARA PLANT Pe.Se 2212 5405

If one of theseyidentifiers happens to te the same as a <DEFINE
ICENTIFIER>» no substitution occurs. The <WELL=FORMED CONSTRUCT>

of the define will not replace the identifiere. Note» however:»
that duplicate identifiers may not appear within the same lexic

Level? an error message resultse.

Ss There may be no more than eight <FORHAL PARAMETERD>s
in a <FORMAL PARAMETER LIST>.

6. Refer to Appendix ¥ for rules concerning conditional
inclusion cards within defines.

The foltlowing synt ax 'itlustrates the format wused 1in the
invacation of a <DEFINE IDENTIFIER>:

<DEF INE INVOCATION> z2:= <SIMPLE DEFINE IDENTIFIER>

I <PARAAETRIC DEFINE IDENTIFIER>
(«<DEFINE ACTUAL PARAMETER LIST>)

I <PARAMETRIC DEFINE IDENTIFIER>
C<DEFINE ACTUAL PARAMETER LIST>1]

<SIMPLE DEF INE
ICENTIFIER> ::= <DEFINE IDENTIFIER>

<PARAMETRIC
DEFINME IDENTIFIER> =z

"

<DEFINE IDENTIFIER>

<DEF INE ACTUAL
PARAMETER LIST> :2:= <DEFIME ACTUAL PARAMETER>

1 <DEFINE ACTUAL PARAHETER>,
<SDEFINE ACTUAL PARAMETER LIST>

<QEF INE ACTUAL
PARAMETER> ::= SWELL=FORMED CONSTRUCT>

A <DEFINE INVOCATION> may occur anywhere within an SDL progranm

except in the cases listed above in Restriction 4. A5 indicated
by the above BNFs the actual parameters of a define are not

conf ined to constants and variables but may have a wide range of
censtructs. For examplesr the <DEFINE STATEMENT> mentioned above:

DEFINE A AS RIF X>13 THEN PROCX#,
CH AS #CHARACTER#»
BCYsZ) AS #IF Y<Z THEN Y:i=Z 2%»
C(M) AS 3 X:=M; A #;
might be invoked as follows:

C(Z;BUMP ILR»S51);

which expands tos

5=39

BURRDOUGHS CORPORATION COMPANY CONFIDENTIAL
COMPYTER SYSTEMS GROUP 818Qu/B1700 SDL (BNF Version) (F)
SANTA BA®XBARA PLANT PeSe 2212 54235

X:=7Z; BU4P ILTR,SY; 1F X>10 THEMN PRUCX;

The fotlowing restrictions apply to the wuse of the <DEFINMNE
INVOCATION>:

1. No unpaired bracketing symbolsr ie2er {) or {1» may
appear.
2. Within a <DEFINE ACTUAL PARAMNMETER LIST>» commas not

enclosed within paired bracketing symbols act to
delimit the <DEFINE ACTUAL PARAMETER>s. Therefore a
<WELL-FORMED CONSTRUCT> not enclosed in tracketing
symbols may not contain commase. For example:
DEFINE X(CA,B)Y A3 # A(B) &5
and invoked as:
Z2:2=X(M,QrR»rS5);
would result in the error message:

DEFINE INVOCATION HAS T00 MANY PARAMETERS

Proper invocation is possible by
removing the parens from the define
and placing them in the invocation:

DEFINE X(A,B) AS # A B #;
2:=X(Mr (QsR»35)) s

3. Comments are allowed but will be deleted from the
actual parameter texts

54

EURROUGHS CORPORATION COMPANY COMFIDEMTIAL
COMPUTER SYSTEHMS GROUP 318090/81700 S5DL (3NF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

FORWARD DECLARATIION

<DECLARATIUN STATEMENT> :z:= ees | <FURWARD DECLARATION>l ...
<FORWARD DECLARATION> ::= FURWARD <COMPOUND PROCEDURE HEAD>

<COMPOUND PROCEDURE

HEAD> ::=) <PROCEDURE HEAD>
<FORMAL PARAMETER DECLARATION
STATEMENT LIST>

<PROCEDURE HEAD> 3= <8ASIC PROCEDURE HEAD>
<P{OCEDURE TYPE PART>;
<BASIC PKOCEDURE HEAD> ::= <PROCEDURE NAME>
- <FIRMAL PARAAETER PART>
<PROCEDURE NAME> 3:= PROCEDURE <PROCEDURE IOENTIFIER>
<PROCEDURE IDENTIFIER> 2z= <TYPED PROCEDURE IDENTIFIER>

I <MNON-=TYPED PROCEDURE I[SENTIFIER>

<TYPEC PROCEDURE

ICENTIFIER> z2:= <IDENTIFIER>
<MON=-TYPED PROCEDURE

ICENTIFIER> 3:= <IDENTIFIER>
<FORMAL PAKAMETER PART> ::= <EMPTY >

1 (<FORMAL PARAMETER LIST>)
<FORMAL PARAMETER LIST> ::= <FORMAL PARAMETER>
| <FORMAL PARAMETER>,
<FURMAL PARAMETER LIST>

<FORMAL PARAMETER> ::= <IDENTIFIER>

<PROCEDURE TYPE PART> ::= <EMPTY>
I <FORMAL TYPE PART>

<FORMAL TYPE FPART> ::= <TYPE PART>
I <TYPE VARYING PART>

<TYPE PART> 3z FIXED
I CHARACTER <FIELD SIZE>

I 8IT <FIELD SIZE>

<TYPE VARYING PART> :1:= VARYING
t BIT VARYING
1 CHARACTER VARYING

<FORMAL PARAMETER DECLA-
RATION STATEMENT LIST> ::= <EMPTY>»

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<FORMAL PARAMETER
DECLARATION STATEMENT>

<FORMAL ELEMENT> ::=

(<FOR

<FORMAL INDENTIFIER LIST>

<FORMAL IDENTIFIER>

<C

SCOMPLEX IDENTIFIER>

<VARYING ARRAY SPECIFIER>

<VARYING ARRAY BOUND>

- e
e s

Before a progedure may be
been previocusly declared.
procedure calls another
firsta In this caser wh
necessarily contain at

has not yet been declared.

The <FORWAXD DECLARATION>

references by providing a
CFORWARD DECLARATIUN>» ho
the norwal graocedure decla

5=41

COMPANY CONFIDENTIAL

31860781700 S50L (BNF VYersion) (F)
P.S5. 2212 5405

<FORMAL PARAMETER OECLARATION STATEMENT>;
<FORMAL PARAMETER DECLARATION
STATENMENT LIST>

FORMAL <FORMAL ELEHMENT>

FORMAL_VALUE <FORMAL ELEMENT>

<FORMAL PARAMETER DECLARATION STATEMENT>,
<FORMAL ELEMENT>

MAL IDENTIFIER LIST>)
<FGRMAL TYPE PART>
<FJRmAL IDENTIFIER>
<FORMAL TYPE PART>

<FORMAL
<FDRMAL
<FORMAL

IDENTIFIER>
IDENTIFIER LIST>»
IDENTIFIER>

OMPLEX IDENTIFIER>
I <VARYING ARRAY SPECIFIER>

<SIMPLE IDENTIFIER>

I <ARKRAY IDENTIFIER>

<ARRAY SOUND>

<ARRAY [DENTIFIER>
<VARYING ARRAY BOUND>

(*)

it must have
arises when one
procedure Wwhich in turn references the
ichever procedure appears first must
least one reference to the second which

cal led» S5SDL specifies that
A contradiction

allows the prograrmer to use recursive

temporary procedure declaration. The
wevers _,does not eliminate the need for
ration which must follow in the progranm

and must have the same scopes

The parameters mentioned i
same formal rparameters (i
the procedure itself will

n the <FURWARD DECLARATION> must
n type and size» but not
declare.

te the
in name) that

S=42

BURROUGHS CORPORATION COMPAMY CONFIDENTIAL
COAPUTER SYSTEMS GROUP 818C3/81700 SDL (BNF version) (F)
SANTA BARBARA PLANT PaS. 2212 54205

Procedures may be either typed or non-typed depenaing on their
use. Formal data types may either be static or varyings again

depending on the program. These specifications will be discussed
in the section entitled "THE PROCEDURE STATEMENT".

The following examples 1illustrate the wuse of the <FORWARD
DECLARATION>:

FORWARD PROCECURE X CHARACTER VARYING;
FORWARD PROCEDURE J(K,L»#);

FORMAL K(x) BIT VARYING»

LC15) CHARACTER (8)»

M FIXED?

5=43

BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/BL70O SOL (BMF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

———— - o w—

<USE STATEMENT> ::= USE (<SIMPLE IDENTIFIER LIST>)
OF <DEFINE [IDENTIFIER>

<SIMPLE IDENTIFIER
LIST> ::= <SIMPLE IDENTIFIER>

| <SIMPLE IDENTIFIER LIST>», <SIMPLE IDENTIFIER>

<SIMPLE IDENTIFIER> <SICENTIFIER>

.
.
I

<JEF INE IDENTIFIER> <IDENTIFIER>

e
e
i

The purpose of the <USE STATEMENT> is to allow the programmer to
declare specific elements in a cefined structure within a

procedures By specifying only the desired elements» the Name
Stack size is kept to a ginimugs and prograr maintenance 1is
simplified. fhe compiler will wgenerate the structure using

fitlers and the specified elements.

The following restrictions apply to the <USE STATEMENT>:

1. It must appear within a procedure (i.e.» on a lexic
Level greater than 0)e

2e The referenced <DEFINE IDENTIFIER> must define one
structured declare statemente.

3. The structure may not contain arrays.

4a The outermost level of the structure (Jl) must be a

"CUMMY REMAPS"™.

EXAMPLE:

DEFINE X AS #
DECLARE 01 DUMMY REMAPS A, % MIGHT ALSO REMAP 3ASE
N2 3 BIT(S5)»
03 81 BIT(2).»
03 B2 BIT(3),

02 C CAARACTER(10)»
22 D 3ITCL)»

02 E FIXED>»

n2 F BIT(C24)45

PROCEDURE FIRST?
USE (C»D) OF X3

S5=44

HURROUGHS CORPORATION. COMPANY COMFIDENTIAL
COMPUTER SYSTEMS GROUP 818C0/817C0 SDL (BNF Version) (F)
SANTA BARBARA PLANT Pa5e 2212 5425

From the above <USE STATEMENT> the compiler wWwill generate the
following structure:

01 DUMMY REMAPS A,
02 FILLER BIT(5)»
03 FILLER BiT(2)»
03 FILLER BIT(3),
2 < CHARACTERC(10)»
92 0D 8ITCL)»
d2 FILLER FIXED»
02 FILLER BIT(24);

Note that Ller was substituted for the group item B. This

fi
woul d norrally generate a syntax errors» and is allowable only 1in
the <USE STATEMENT>.

6=1

BURROUGHS CORPORATION COMPANY CONFIDEMTIAL

COMPUTER SYSTEMS GROUP B1800/31700 SDL (3NF Version) (F)

SANTA BARBARA PLANT P.S. 2212 54195
PROCEDURES

<PROCEDURE STATZAENT> 23

<PROCEDURE DEFINITION>
| <SEGMENTY STATEMENT>

<PROCEDURE STATEMENT>

<PROCEDURE DEFINITION> ::= <COMPOUND PROCEDURE HEAD>
<PROCEDURE 3CDY>

SSEGMENT STATEMENT>::= SEE "THE SEGMENT STATEMENT™

<PROCEDURE BODY> ::= <DECLARATION STATEMENT LIST>

<PROCEDURE STATEMENT LIST>
<PROCEDURE EXECUTABLE STATEMENTY LIST>

<PROCEDURE ENDING>

Procedures are self=contained functional wunits within an 50L
program which may be accessed according to specific rules
discussed under "BASIC STRUCTURE OF THE S5DL PRUGRAM®™. Procedures
may be created by preceding self-contained statements with a
<COMPCUND PKROCEDURE HEAD>, and terminating it with a <PROCEDURE
ENDING>.

The <PROCEDURE DEFINITION> is composed <c¢f three basic parts:
heading» body» and endinge. Identifiers declared in a procadurse

may be accessed only in the procedure in which they are declared»
and in procedures nested within the declaring procedurz.

Procedures may be either “TYPED™ or "NON-TYPED". A "TYPED"™
procedure returns some value of the type specified 1in the
procedure declaration to the expression where the procedure was

invoked. See "VALUE VARIAQLES™ for details. A "NIM=TYPED"
procedure performs a function, does not return a valuer and 1is
invoked in an <EXECUTE PROCEDURE STATEMENT>. See "EXECUTE

PROCECURE STATEMENT"™,

6=2

BURROUGHS CORPOURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180u /81702 SDL (BN version) (F)
SANTA BARBARA PLANT PeS. 2212 5405

PROCEOURE HEAD

The syntax for the procedure heading is?

<COMPUOUND PROCEDURE

HEAD> ::= <PROCEDURE HEAD>
<FORMAL PARAMETER CECLARATION
STATEMENT LIST>

<PROCEDURE HEAD> 3:= <BASIC PROCEDURE HEAD>
<PROCEDURE TYPE PART>

<EASIC PROCEDURE HEAD>» 3= <PROCEDURE NAME>
<FORMAL PARAPETER PART>

<PROCEDURE NAME> z2:= PROCEDURE <PROCEDURE IDENTIFIER>
I INTRINSIC <INTRINSIC IDENTIFIER>

<PROCEDURE IDENTIFIER> 33

<TYPED PROCECURE IDENTIFIER>
1 <NON-TYPED PROCEDURE ICENTIFIER>

<TYPED PROCEDURE

ICENTIFIER> ::= <IDENTIFIER>

SNON-=TYPED PROCEDURE

ICENTIFIER> :2= <IDENTIFIER>

<IATRINSIC IDENTIFIER> ::= <TYPED INMTRINSIC IDENTIFER>

t <NON=-TYPED INTRINSIC IDENTIFER>

<TYPED INTRINSIC
ICENTIF IER> 33= CKIDENTIFIER>

SNON-TYPED INTRINSIC
ICENTIF [ER> 2:= <IDENTIFIER>

<FORMAL PARAMETER PART> 33= <EMPTY>
I (<FORMAL PARAHETER LIST>)

<FORMAL PARAMETER LIST =2:= <FORMAL PARAMETER>
I <FORMAL PARAMETER>,
<FORMAL PARAMETER LIST

<FORMAL PARAMETER> 33

<1DENTIFIER>

<PROCEDURE TYPE PART> ::= CEMPTY>
I <FORHUAL TYPE PART>

<FORMAL TYPE PART> ::= <TYPE PART>
I <TYPE VARYING PART>

<TYPE PART> =:= FIXED

BURRCUGHS CORFORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

SFIELD SIZE> ::=

<TYPE VARYING PART> :1:=

<FORMAL PARAMETER DECLA-

RATIGON STATEMENT LIST>

<FORMAL PARAMETER
DECLARATION STATEMENT>

<FORMAL ELEMENT> ::=

<FORHMAL IDENTIFIER
LIST> 3:=

<FORMAL IDENTIFIER> ::3

<COMPLEX IDENTIFIER> :

<VARYING ARRAY
SPECIFIER> ::=

<VARYING ARRAY BJOUND>

The procedure heading»
the <PROCEDURE NAME>,

<PROCEDURE TYPE PART>.»
returned if the procedure

» O -
o e =

i-e-’

6=3

COMPANY CONFIDENTIAL

31800/BL700 SDL (BNF version) (F)
P.S. 2212 5405

CHARACTER <FIELD SIZE>
BIT <FIELD S5SIZE>
REFERENCE

(<CONSTANT EXPRESSION>)

VARYING
BIT VARYING
CHARACTER VARYING

<CEMP.TY>

<FORMAL PARAMETER DECLARATION STATEMENT
LIST>;

<FORMAL PARAMETER DECLARATION>

FORMAL <FORMAL ELEMENT>

FORMAL_VALUE <FORMAL ELEMENT>

<FORMAL PARAMETER CECLARATION STATEAENT>,
<F ORMAL ELEAENT>

(<FORMAL IDENTIFIER LIST>)
<F ORMAL TYPE PART>

<FORMAL IDENTIFIER>
<FORMAL TYPE PART>

<FORMAL IDENTIFIER>
<FORMAL IDENTIFIER LIST>»
<F ORMAL IDENTIFIER>

<COMPLEX IDENTIFIER>
<Y ARYING ARRAY SPECIFIER>

<SIMPLE IDENTIFIER>

CARRAY IDENTIFIER>
<ARRAY BOUMND>

<ARRAY [DENTIFIER>
SVARYING ARKZAY BOUND>

(*)

<COMPOUND PROCEDURE HEAD>, contains

formal parameters (if any)s and the

ieCer the field type of the value to be
"TYPED". For example:

b=4

BURRGOUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81800781700 SOL (BNF Version) (F)
SANTA YARBARA PLANT PeS» 2212 5405

PROCEDURE X (MeN) FIXEDs
FORMAL (M»N) VARYINGS

which corresponds to the following syntax:

PRUOCEDURE <TYPED PROCEDURE IOENTIFIER>
(<FORMAL PARAMETER>, <FORMAL PARAMETER>)
<PROCEDURE TYPE PART>;
FORMAL (<FUORMAL IDENTIFIER>,<FORMAL IDENTIFIER>)
<SFORMAL TYPE PART>;

In this cases the value returned to the point of invocation
should be fixede There is» howevers no check for this at compile
time . [f the control card option FORMAL_CHECK is presents the

returned values will be checked against the procedure type at run
time

The "NON=TYPED™ procedure follows the same format except that the

<PROCEDURE TYPE PART> is omitted since no value is returnede For
instance:

PROCEDURE A (J»X»L)75
FORMAL J FIXED, (K»L) BIT VARYING?

which syntactically is the same as:

PROCEDURE <NON-TYPED PRUCECURE IDENTIFIER>
(<FORYAL PARAMETER>»<FORMAL PARAMETER>,
<F ORMAL PARANETEIR>);
FORMAL <FORMAL IDENTIFIER> <FORMAL TYPE PART>,
(<FORMAL I[CENTIFIER>»<FORMAL ICENTIFIER>)
<FORMAL TYPE PART>;

When a foramal parameter is declareg as FORMAL_VALUE, the actual
parameter wWill always be passed by value. See the section an

ACDRESS and VALUE PARAMETERS.

The field type of formal parameters (i.es>» components of the
<FORMAL TYPE PART>) may be static (BIT» CHARACTER, or FIXED) or
variabte (B8IT VARYING» CHARACTER VARYING» or VARYING).

The <FIELD SIZE> must be a <KCINSTANT EXPRESSION> (leewr an
expression whose value can be determined during compilation).

6=5

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18¢0/s817C0 50L (8NF version) (F)
SANTA BARBARA PLANT PeS. 2212 5495
Jften howeveres it 15 impossible to determine the data type at

compile time especially if the actual parameters are passed to

the pracedure from different points 1in the program and under
differing circurstances. SDL allows the user to specify variaole

data fields in the formal declarationa. The actual parameters
passed to that procedure wWwill provide the specifics. Thus

formals may be declared as "BIT VARYING™» "CHARACTER VARYING™» or
"VARYING".

In a variable bit or character fieldr the type of data passed
must be that which is specified (i.ees BIT or CHARACTER). The

tength» howevers remains variable. Formals specified as
"VARYING™ may accept any type of data of any lengthe

The data types of corresponding formal and actual parameters will
not be checked at compile time and only at run time when
FORMAL .CHECK has been specified as a control cara option.

Varying formals may be remappedr but it is the programmer®s
responsibility to ensure that the remapped formal parameter and
its corresponding actual parameter matche. A warning message witl
appear in the source listing where the rerapping has occurrede.

SOL also allows formally declared arrays to have a variable

number of elements by substituting "«" for the number following
the <ARRAY IDENTIFIER>. For instance:

PROCEOQURE X (A-,3);
FORMAL A (») FIXED», 3 (%) VARYING;

The word "INTRINSIC"™ may be used interchangeatly with the word
"PROCEDURE". It isr however: intended only for use by the SODL
group in order to provide 3DL intrinsics.

The use of "INTRINSIC™ forces the intrinsic to have as entry
point the displacement) wWwithin a new segment.

LE R

6=6

BURRGUGHS CORFORATION CoMPAKY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/8170¢ SDL (BNF Version) (F)
SANTA BARBARA PLANT " PeS. 2212 5405

PR 33 PSP 2 2N

The body of the procedure follows the heading. Included are
declaration of Local data (discussed wunder ™THE DECLARATION

STATEMENT")» nested procedures (also see "BASIC STRUCTURE OF THE
SCL PROGRAM")» executable statementsr and an endinge. The syntax
for the <PROCEDURE EXECUTABLE STATEMENT LIST> follows:

<PROCEDURE 80DY> ::= <DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST> .
<PROCEDURE EXECUTABLE STATEMENT LIST>
<PROCEDURE ENDING>

<PROCEDURE EXECUTABLE
STATEMENT LIST> ::= <PROCECURE EXECUTABLE STATEHENT>
| <PROCEDURE EXECUTABLE STATEMENT>
<PROCECURE EXECUTABLE STATEMENT LIST>

<PROCEDURE EXECUTABLE
STATEMENT> ::= : <EXECUTAELE STATEMENT>
1 <RETURN STATEMENT>
| <SEGMENT STATEMENT>
<PROCEDURE EXECUTABLE STATEMENT>

The <EXECUTABLE STATEMENT>»s will be discussed in the section
entitled "EXECUTABRLE STATEMENTS™. As indicated by the above

syntaxs, . executable statements wWwithin a grocedure may be
segmented. Howeverr, a procedure must end in the same segment in
which it begins. For other segmentation restrictions see "THE

SEGMENT STATEMENT".

The syntax for the <RETURN STATEMENT> is:

<RETURN STATEMENT> ::= <TYPED PROCEDURE RETURN STATMENT>
I <NON-TYPED PROCEDURE RETURMN STATEHENT>

<TYPED PAOCEDURE
RETURN STATMENT> z2:= RETURN <EXPRESSION>

<NON-TYPED PROCEDURE

RETURN STATEMENT> =:= RETURN
I RETURN_AND_ENASLE_INTERRUPTS

The <RETURN STATEMENT> takes one of two farms depending on the

type of the procedure encompassing ite If the procedure is
"TYPED™» an <EXPRESSION> wmust be returned ¢to the point of
invocation. In a "NON=-TYPED™ grrocedure, only a sigple return is
needede. Far expression specifications refer to the sactions

entitled "EXPRESSIONS™ and "PRIMARIES".

6=7

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP Bl80G/B1709 SOL (BNF Vversion) (F)
SANTA GARBARA PLANT PaS. 2212 5405

Type checking on a <RcZTURN STATEMENT> is5 dcne only at run time
when FORMAL.CHECK appears as a control card optione.

Hithin any given procedure (at any lexic Llevel)» gertain
statements are nested within other statements and are accesseds
much like a procedures by an address generated by the larger

statemente. The most general nesting level is zeros and the
nest ing level of any statement appears on an SDL listing under
the column "NL". The most common instance of statements

gccurring at Nesting Level 1 or greater are:

&

1. The conditionally executed statements following
"THEN™ and "ELSE™ in the <lF STATEMENT>.

2 Statements contained within a <CASE STATEMENT>.

3. <00-GROUP>s.

If the compiler cannot find a <RETURN STATEMENT> on AL C» it will
generate one directly preceding the XPROCEDURE ENDING>. This is
merely a safety measure to insure that a procedure can always be
properly exited.

A compiler=generated return works essentially in the same manner
as an explicit returns in a non=typed procedure» control is
returned to the point of the procedure's invocations In a typed
procedures the following values are returnede.

If the procedure is typed:? the compiler will return:

8IT BITS CONTAINING 0
OF LENGTH SPECIFIED

CHARACTER SLANKS OF LENGTH SPECIFIED
FIXED FIXED ZERDO
B8IT YARYING a~pITS OF ZERQ
CHARACTER VARYING ONE BLANK
VARYING FIXED 2ERQ

RETURN_AND_ENABLE_INTERRUPTS is for MCP use oniye. It will cause

a normal procedure exit to take places and will enable interrupts
as well.

6=8

BURROUGHS CORFPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180G/317Q00 SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSa 2212 5405

— e i s S - L

The <PROCEDURE ENDING> is the final statement of a procedures, and
the syntax is:

<PROCEDURE ENCING> ::= END
! ENDO <PROCEDURE LCENTIFIER>

The identifier following the reserved word "END" is optional.
Its sole purpose is to simplify the documentation of the program.
if an identifier is supplied bty the wuser» the compiler will

perform a syntax check to guarantee that ths <PROCEDURE ENDING>
is appropriately placed.

7=1

EURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 3180463/8317080 3DL (BAF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

ASSIGNMENT STATEMENTS AND EXPRESSIANS

CASSICGHNMENT STATEMENT> z2:= <A0DRESS VARIABLE>
SREPLACE>
<EXPRESSION>
<ADDRESS VARIABLE> ::= SEE "™ADDRESS VARIABLES"™
CREPLACE> ::z= =
SEXPRESSION> 2:= ¢STRING EXPRESSION>

I <STRING EXPRESSION>
CAT <EXPRESSION>

<STRING EXPRESSION>» z:= <LO0GICAL FACTOR>
! <«LOGICAL FACTOR>
<OR=ING OPERATOR>

<STRING EXPRESSION>

<OR=ING OPERATOR> ::= OrR § EXOR
<LOGICAL FACTOR> ::= <LOGICAL SECONDARY>

I <LOGICAL SECONDARY>
AND <¢LOGICAL FACTOR>

<LOGICAL SECONDARY> ::= <LOGICAL PRIMARY>
i MOT <LOGICAL PRIMARY>
<LOGICAL PRIMARY> ::= CARITHMETIC EXPRESSION>
! <ARITHMETIC EXPRESSION>
CRELATION>
CARITHNMETIC EXPRESSION>
<RELATION> ::= €} e= | =1 /=01 >>= 1 > }
. LSS t LE2 t EQL | NE@ |
GEQ 1 GITR
SARITHHETIC
EXPRESSION> 1 1= <TERM>
i <TERM>

<ADDITIVE OPERATOR>
<ARITHMETIC EXPRESSION>

<ADDIVIVE OPERATOR> z:= + | -

<TERM>::= <SIGNED PRIMARY>
1 <SIGNED PRIMARY>
<MULTIPLICATIVE QPERATOR>
<TERM>

SMULTIPLICATIVE
UPERATOR> 2:= * | MOD 1 7/

dURROUGHS CORPORATION
CONPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<SIGNED PRIMARY>::=

CUNARY QPERATOR> ::=

<PRIMARY> .
<UNARY (QPERATOR>
<PRIMARY>

+

7=2

COMPANY CONFIDENTIAL
B1840/81700 SOL (BNF Version) (F)

P.S.

2212 5495

7=3

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/81705 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

The following is a list of the SDOL operators from highest
precedence to lowest. This List or the table in Figure 3 may be
used when evaluating an expressione.

+ » = (<UNARY OPERATIR>)
ky [/» MOD

+» = (<ADDITIVE GPERATOR>)
Kp /=p =p €=» >=p >

NOT
AND
ORs EXOR
CAT
1. The assignment operator has higher precedence than

any operator to its left and Lower precedence than
any to its righte.

2. The order of evaluation of operators having egqual
precedence is always from (eft to righte

7=4

BURRQUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B182C¢/81705 3SDL (BNF Version) (F)
SANTA BARBARA PLANT P.5. 2212 5405

PRESENT 0OP.

NEG * + - = NOT AND OR CAT = {) ET
NE G > > > > < > > > < < > >
* < > > > < > > > < < > >
+ - < < > > < > > > < < > >
P
R = < < < > < > > > < < > >
F
v NOT < < < < > > > > < < > >
I .
0 AND < < < < < > > > < < > >
U
5 OR < < < 4 < < > > < < > >
] CAT < < < < < < < > < < > >
P
= < < < < < < < < < < > >
(< < < < < < < < < < =
) > > > > > > > > >
2 | < < < < < < < < < < =

FORMULA: PRECEDENCE <«PREVIOUS OP> <RELATION> PRECEOENCE <PRESENT GP>

NOTE :

m
(]

UNARY OPERATORS
MULTIPLICATIVE OPERATCRS
RELATIONAL OPERATORS

REPLACE OPERATORS

INFERRED BEGINNING TERMINATOR
INFERRED ENDING TERMINATOR

ML CO e M » 2
L B B 1

Fig 3. Operator Precedence Table

7=5

BURROUGHS CORPORATION COMPANY COMFIDENTIAL
COMPUTER SYSTEMS GKOUP B1800/8317C0 SDL (BNF Vversion) (F)
SANTA BARBARA PLANT P.Se 2212 5405

UNARY QPERATORS

The wunary operator acts upon one operand and may never appear as

an infix operator between two operandse. It may appear to the
right of any other operators» including itselfe.

The UNARY MINUS (=) generates the two's complement of the operand
associated with it (iegar =X = (NOT X)¢1). The operana may be
any data type. If it is fixedr the UNARY MINUS has the effect of
reversing the sign» and the result is labeled on the Evaluation
Stack as fixeds

If the operand 1is either a character or bit strings only the
low=order 24 bits Wwill be evaluated. Strings less than 24 bits
Wwill be padded with Lleading zeroes to 24 bitse The two's
complement of the string is generated and returned to the stack
as type fixede

The SDL compiler generates no code for the unary plus (+) whicnhn
exists soltaly for the convenience of the prograemere.

ARITHMETIC OPERATORS

* Addition

- Subtraction

* Multiplication

¥OD Division yietlding integer value of remainder

/ Division yielding integer value of quotient
The arithmetic operators perform 24=bit arithmetic on two
operands of any of the three data typese Sign analysis will be

done only if both operands are fixede. With any other coambination
of data typess» the magnitudes of the operands are evaluated.

7-6

BEURRUOUGHS CORPORATION CON¥PANY CONFIDENTIAL
COAPUTER SYSTEMS GROUP BLB8CU/BLTOY S5DL (BNF Version) (F)
SANTA BARBARE PLANT P.S. 2212 5405

For both bit and character datar» if the field is greater than 24
tits» only the tow=order 24 tits will be evaluated. If the field

is Lless than 24 bits», Leading zeroes will be supptied from the
Left .

A 24=bit result will be returned to the Evaluation Stack. If
bath operands are fixed» the result will be fixed. Otherwises

the result will De type bite

S5DL division results in an integer value. Any remainder is
truncated thus:

7 /7 3 =2
377 =14
Note this means that "#" and "/"™ do not associatee. In general-

(A « B) /7 C does not equal & » (8 /7 C).
The MCD operation is division resulting in the integer value of
the remainder. It is evaluated by the following formulas

Y MGD Z = Y=(Z*(Y/Z)) using inteqger division explained aboves

Faor example:

7 MOD 3 = 7=(3 = 2) = 1
=7 MOD 3 = =7=(3%x(=2)) = =1
3 MOD =7 = 3I=((=7)%x(=3)) = 3
=3 MOD =7 = (=3)=((=7) » 0) = =3
Note: For negative arguments» this definition is not the same as

the traditional definitions from mathematics.

RELATIONAL OPERATORS

= EaL EQuaL T3
/= NEQ NOT EQUAL TO
> GTR GREATER THAN
< L3S LESS THAN
>= GEQ GREATER THAN OR EQuUAL T2
<= LEQ LESS THAN 02 EQUAL TO

7=

BURRQUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180G/B1790 SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSe 2212 54C5

The relational operators do a comparison petween two operands of
any data type. A 1=bit result is returned == 3d(1)la if the

condition is trues IC1)03 if the condition is false.

If both operands are fixeds» the operator does a true signed
compare. I[f both operands are character stringss the shorter one
is padded on the right with blanks» and a character by character
magnitude compare by collating seguence is done.

for all other operand combinations» leading zerces are supplied
to the shorter of the twoe No sign analysis is doner and
oper ands are treated as positive magnitudes.

The Lecgical operators perform a bit by bit analysis aoan all three
data types. NOT is considered to ke a unary operators» and may
appear to the right of any other operator (including itself).

The other operators require two operandss. The shorter of the two
is ~ padded on the left with zeroes to duplicate the length of the
larger. The following <chart iJllustrates the use of each
operator.

IF X = 0 0 1 1
IFY = 9 1 ¢ 1
NOT X = 1 1 0 90
NOT ¥ = 1 9 1 0
X AND Y = 9 0 0 L
X OR Y = G 1 L 1

X EXOR v = O 1 1 0

-3

BURROUGHS CGRPORATION COMPANY CUNFIDENTIAL
COMPUTER SYSTEMS GROUP 31800/81700 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.Se 2212 5405

CASSIGNMENT STATEMENT>

.
.
i

<ADORESS VARIBLE>

SREPLACE>
<EXPRESSION>
<REPLACE> ::= =
SASSICNOR> 3= <ANDRESS VARTABLE>
<NON-DESTRUCTIVE REPLACE>
<EXPRESSION>
<NON=-DESTRUCTIVE
REPLACE> ::= <REPLACE, DELETE LEFT PART>»

I <REPLACE» DELETE RIGHT FART>

<REPLACE, DELETE
LEFT PART> ::=

<REPLACE, DELETE
RIGHT PART> ::=

e
(1]
il

NOTE: <REPLACE» DELETE RIGHT PART> symbol "::=" is the same
as the BNF definition symbol.

There are two basic types of replace operators: The destructive
<REPLACZ>» .associated wWwith the <ASSIGNMENT STATEMENT>», and the
<NON~-DESTRUCTIVE REPLACE> which occurs only within an expressione.

The destructive <REPLACE> operator causes the expression on its
right to "REPLACE™ the wvariable on its lefts. The Evaluation
Stack is flushed since this replace is necessarily the Last
operation in the statement.

The <NON=-DESTRUCTIVE REPLACE> takes two forms: "DELETE LEFT"™ and
"OELETE RIGHT", The "DELETE LEFT"™ causes the expression to the

right of the operator to replace the variatie on its left. The

variable is then deleted from the top of the Evaltuation Stack»
and the expression is left on the top of the stack.

The "DELETE RIGHT™ causes the same replacement. However» the
expression to the right of the operator 1i1s deleted from the
Evaluation Stacks» and the variable to the Left remains on the top
of the stacke

7=9

BURROUGHS CORPGRATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/7817C0 SDL (BNF Version) (F)
SANTA LARBARA PLANT PeSe. 2212 5405

The following example illustrates the use of the <NON=DESTRUCTIVE
REPLACE>:

PROCEDURE GOOD BIT VARYING;
DECLARE X BIT(48);
RETURN X ::= "RESULT";

END GOOD;

PROCEDURE BAD BIT VARYING;
DECLARE v BIT(48)5
RETURN Y := "RESULT";

END BAD;

PROCEDURE 600L will execute property since X» declared as bits, is

associated with the procedure type==bit wvarying. Notice,
howevers that in PROCEDURE BAD» Y is deleted from the stack and
the character string "RESULT™ remainse. Unless the controt card

option FORMALL.CHECK 1s set at compile timer there will be no
indication that the data types (as in PROCEDURE BAD) do not match
the procedure type. If FORMAL.CHECK is specifiedr the following
execute time error message will be printed:

"TYPE ERROR IN RETURNED VALUE"

[f both operands associated with any replace operator are
character fields.» and the receiving field is longer than the
sendiny field» trailing blanks will be added. 1f the receiving
field is shorters, characters will be truncated from the right.

With every other combination of data types» when the receiving
field is not equal in length to the sending field» leading binary
zeroes uwill be appended to the larger receiving field» or
high~order bits are truncated from the larger sending field.

Inconsistant results may be obtained in cases such as

I=SUBSTR (A,2,5)

(i.2er where the sending field and the receiving field are simple
primaries less than 24 bits apart). This protlem can te avoided
by enclosing the SUBSTR in parentheses.

4:= (3UBSTR(A,2,5));

7=13

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSYEMS GROUP BL8OG/BL1730 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5495

41so see the reverse store operation in the section entitled
"EXE CUTE-FUNCTION STATEMENT™,

. 7=-11
BURROUGHS CCORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1&OO/B1748C SDL (BNF Version) (F)
SANTA JARBARA PLANT PeSas 2212 5405

CONCATENATIQN

Data items may be Llinked together (concatenated) by using the

"CAT™ operatore. Atthough this operator is intended to
concatenate bit strings or character strings, it may be used witn
any combination of data typese The result of any <concatenation

may not be greater than 8»191 characters or 65,535 bitse

If all the operands are character stringss the result is a
char acter string. For any other combination of data typess the
result is a pit string. For example:

LET 4 = "g" L CHARACTER
B = 3(1)101a 3 BITS
c = 17 FIXED
THEN
B CAT 8 = a(1)1011931Q 8IT STRING, LENGTH 5
A CAT A = "gB" CHARACTER STRING» LENGTH 2
A CAT 8 = a(1)110399141313 BIT STRING, LENGTH 11
B CAT C = 3(3)5000008123 BIT STRING» LENGTH 27

(EXPRESSED IN 0OCTAL)

8=1

BURRQUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP 31800/B1700 SDL (BNF Version) (F)

SANTA BARBARA PLANT P.S. 2212 5475
PRIMARY ELEMENTS OF THE EXFRESSION

<CPRIMARY> 2

<SCONSTANT>

<VARIABLE>
(<EXPRESSION>)
<CONDITIONAL EXPRESSION>
<CASE EXPRESSION>
<BUMPOR>

<DECREMENTOR>

<ASSIGNOR>

<VARIAZLE> ::= <ADDRESS VARTABLE>
! <VALUE VARIAZLE>

A primary is the most basic component of the SDL expressione To
avoid unnecessary repetitionr, see "HBASIC COMPONENTS OF THE SDL
LANGUAGE" for discussion of <corstantss and see TADDRESS
VARIABLES"™ and "VALUE VARIABLES™ for discussion of variables.

[}
o
1=
[[v=]
i
(2
i
o
[
>
(e
Irm
(73
"G
o
irm
In
s
=
[t
(=4

<CONDITIGNAL EXPRESSION> ::= IF <EXPRESSICN>

THEN <EXPRESSION>
ELSE <EXPRESSION>

The expression following the reservea word "IF™ is evaluated. If
the Llow=order bit of the result i1s 1, the expression following
"THEN™ is evaluatede. Otherwiser the expression following "ELSE"™
is evaluated. Unlike the <IF STATEMENT>» the "ELSE™ part of the
expression sust be presente.

8=2

BURROUGHS CORPURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B182G/BL700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

CASE EXPRESSICN

<CASE EXPRESSION> ::= CASE <EXPRESSION>
oF <EXPRESSIONLIST>)

<EXPRESSION LIST> ::= <SEXPRESSION>
I EXPRESSION>»

<EXPRESSION LIST>

In the <CASE EXPRESSION>, the value of the <EXPRESSION> following
the reserved word ©CASE™ s used as an index into the list of
expressions. The expression thus selected is evaluatedr and the
other expressions in the List ignored. The range of the index is
from zero to N=1» where N is the number of <EXPRESSION>s in the
Lists An example of an <A3SIGNMENT STATEMENT> containing a <CASE
EXPRESSION> follows:

A A

:1=C (A+8, A-8, AxB, 4/8» A MOD B) +
CA

E F
£ F (QxF~6» 9» 34+P, (A+3) MOD 2, O)

SE I O
58 J 0

if I=2 and J=3», the statement will be‘evaluated as follows:

A:=(Ax3) + (A+3) #H0OD 87

guMp
<BUMPOR> ::= BUMP <ADDRESS VARIA3BLE>
<MODIFiER>
<MODIFIER> 33= <EMPTY>
I 8Y <EXPRESSIOn>
BUMPGR leaves on the Evaluation Stack» a descrigtor of the

variable which has been incremented by the value ot the modifying
CEXPRESSION>. If <MCDIFIER>» is <EMPTY>, then the variable is
increrented bty 1. The results of the following expressions
(where A4 is an <ARRAY IDEWNTIFIER>Y are ecguivalent:

SBUMP A(X+Y) BY N
ACX+Y) z:= A(X#Y) + N

: 8=3
BURROUGHS CORPJRATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1800/817¢3 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSa 2212 5425

The advantage of using <BUMPOR> is that the code for putting the

descriptor on the stack is executed onty oncee. Thus it is more
efficient.

Like any variabler (<BUMPOR>) will cause a value to be Lloaded to
the top of the stack. Hences
PCBUMP X BY C-D)>
passes X by address but»
PCL{BUMP X 8Y C-=D));
passes X by value.
<BUMPOR> operates on atl three data typese. Character strings are
treated as if they were bit stringse. For fields greater than 24

bitss only the low~order 24 bits are evaluated.s If the field is
less than 24 bitss it is padded with leading zeroes to 24 Ditsa.

8=4

BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18Q0/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeS. 2212 5405
CECREMENT

<CCECREMENTOR> ::= DECREMENT <ADDRESS VARIABLE>

<MODIF IER>

SMODIFIER> s3:3= <SEMPTY>
! BY <EXPRESSION>

The <CECREMENTOR> works exactly Like <BUMPOR> except that
variablte 1is decreased by the value of the <EXPRESSION>.
above.

13-
Itn
i
I
Iy
1=
i
=5}

A
2
[7¢]
w
—
o
=
s |
e
v
.
o
it

the
See

See REPLACE OPERATORS in Chapter 7.

8=5
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180G/817GC SOL (BNF Version) (F)
SANTA BARBARA PLANT : P.S. 2212 5405

<ADDRESS VARIASBLE> s3:= <SIMPLE VARIABLE>
I <SUBSCRIPTED VARIABLE>
I <INDEXED VARIABLE>
| <ADDRESS~GENERATING FUNCTION DESIGNATOR>

<SIMPLE VARIABLE> ::3= <SIMPLE IDENTIFIER>

<SIMPLE IDENTIFIER> ::= <IDENTIFIER>

<SUBSCRIPTED VARIABLE> 3:= <ARRAY IDENTIFIER>(<EXPRESSION>)
<ARRAY IDENTIFIER> 3:= <IDENTIFIER>

As noted abaves <ADDRESS VARTABLE>s may take the form of a
<SIMPLE IDENTIFIER>, or an <ARRAY IDENTIFIER> followed by an
{<EXPRESSION>) designating the array element in questione. In
additions» simple and array identifiers may bte indexeds. '

INDEXING

<INDEXED VARIABLE> ::= <SIMPLE IDENTIFIER> <INDEX PART>
I <ARRAY IDENTIFIER> <INDEX PA&RT>

<INDEX PART> :3= [<EXPRESSION LIST>]

Each of the expressions in the <INDEX PART> is evaluateds» and the
sum of these is5 formed. This will be called the indexe.

The indexing operation occurs functionally as follows:
1. The simple or array descriptor is loaded to the top
of the Evaluation Stacks
2. If the descriptor is an array descriptors then it is
converted to a simple descriptor which describes the

first (zero) element of the array.

3. The address field of the descriptor is modified by
adding to it the index.

8=6

BURROUGHS CORPURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS gROuP B1800/B1700 S0L (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5495

Note that self-relative data items (i.ee.» data items whose length
is not greater than 24, Wwhich are not in a structures, and which
do ncot remap some other data i1item) may not be indexede

There are two methods of indexings

1. The descriptor provides the addresss and the index
provides the offset from this address.

2. The descriptor rprovides the offset» and the index
provides the addresse.

Example:

: N B8ITS : 5 8ITS ¢ 2 2 3 2

{mm=(mm==>L)=><E=>
<-—-—----3—-- ----- >

= Bt . e A- LR E R P ELELELRELEERXEELE BY

Field D may be accessed using either method (1) or wmethod (2).
Assume N contains the offset to B.

Method (1)

DECLARE
21 A BIT(5000)»
£2 8-
03 C BIT(5),
03 D B8IT(2)»
03 E BIT(3)»
N BIT(24)»
X BIT(2)?
/% THE NEXT STATEMENT WILL MOVE O (WITH THE OFFSET
GIVEN BY N) INTO X »~/
X 1 DINDS

8=-7

BURRJQUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18CU/BL1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSe. 2212 5475

Method (2)z

DECLARE
A BIT(5500),

BB REMAPS BASE-»
02 CC BIT(5),
02 DD BIT(2)»

D2 EE BIT(3)»

N 8IT(24),
X BIT(2)>

/% THE NEXT STATEMENT WILL MOVE DD

X 1

(WITH THE OFFSET GIVEN BY N) INTO X &/
DDIN» DATA_ADDRESS(MA 1

Note the followings:

1.

The structure abover corxprised of BE» CC» DD» and EE»
which remaps base is called a "template”.

This template may be applied to any data area merely
by providing the address as part of the indexe. This
is not the case when method(l) indexing is used.

The example above is contrived ==in method (2)» if W
contained the address of B rather than the offset to
8 from the beginning of A» then the statements which
store b into X would be identical: X | DDICNI?

8-8

EURROUGHS CORPUORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BL8GO/B170G6 SDL (BNF Version) (F)
SANTA BARSARA PLANT P.S. 2212 5405

ADDRESS GENERATING FUNCTIONS

5 2 pA)

<ADDRESS=GENERATING
FUNCTION DESIGNATOR> 3:= <SUB=STRING ADDRESS DESIGNATOR>

1 <¢FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR>
<DESCRIPTOR DESIGNATOR>
<DESCRIPTOR-GENERATOR DESIGNATOR>
<ADDRESS-HMNDIFIER DESIGNATOR>
NULL

SUBZII AND SUBSIR

<SUB=STRING ADDRESS
CESIGNATOR>» ::= <SUB=STRING FUNCTION IDENTIFIER>
(<STRING ADDRESS>, <QFFSET PART>)
I «SUB~STRING FUNCTION IGENTIFIER>
(<STRING -ADDRESS>» <OFF SET PART>,

<LENGTH PART>)

<SUB=-STRING FUNCTION

ICENTIFIER> SUBBIT | SUBSTR

<STRING ADDRESS> ::= <ADDRESS GENERATOR>
<ADDRESS GENERATOR> 3:= SEE "ADDRESS GENERATOR™
<JFFSET PART> ::= <EXPRESSION>

<LENGTH PART> ::= CSEXPRESSION>

SUBSTR yields a sub=string of a character string identified by
the <STRING ADDRESS>. The beginning character of the sub=string
is specified by the OFFSET PART> (where the first chsaracter of
the string is zero)e. The <LENGTH PART> specifies the length of
the sub=stringe. If omittede the rest of the string from the
"OFFSET"™ character is assumedes For examgle:

If X = "CHARACTER"™
C = "COALITION"
then

SUBSTR(X»&) 2= SUBSTR(C,Gr &)

8=9

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1833/8B17C0 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.Se 2212 5405

yields the character strings:

"CHARCOAL -~

Like alt character—to=character store operations» if the
receiving field 1is larger than the sending field» the sending
field is padded with blanks on the right. If the sending field
is Lltongerr» characters are truncated from the right. Note that
this is a function of the store operator and not substr.

SUBBIT yields a sub=string of a bit string 1identified by the
<STRING ADDRESS>. The beginning bit of the sub=string is
specified by the <UFFSET PART> (Note: The first bit of the
string is (). The length of the sub=string is specified by the

SLENGTH PART> whiche if omitteds will be assumed to be the rest
of the string.

EXAMPLE:
If A = 2(1)00101911013
0 = 3(1)L00921111¢13
then

SUBBIT(A,2,3) CAT SUBBIT(8,5)
results in:

4C171011119013
and

SUBBIT(A»3) CAT SUBBIT(B»Qr6)
results in: -

3(1)01911910600113

8=10C

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31800/81700 5DL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

FETCH COMMUNICATE _#45G EIR

<FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR> z2:= FETCH_COMMUNICATE_MSG_PTR

See the BI(CO MCP Reference Manual for a description of the run
structuree.

If the RS_MCP_BIT is setsr then RS_COMMUNICATE_MSG_PTR is
accessede. Jtherwiser RS_REINSTATE_MSG_PVR is accessed. The
accessed field is assumed to be a descriptor ancd is placed on the

top of the Evaluation Stacks

EXAMPLE:

DESCRIPTOR(COMM _MS5G) :=
VALUE.DESCRIPTOR(FETCH_COMMUNICATE_MSG_PTR);

COMM_MS5G now describes the communicate messages» assuming that the
message was described by a non~self-relative descrigptore

CESCRIPTORS

SBESCRIPTOR OESIGNATOR>::= DESCRIPTOR (<SIMPLE IDENTIFIER>)
I DESCRIPTOR (<ARRAY IDENTIFIER>)

"DESCRIPTOR™ places on the Evaluation Stackr» a descriptor which
describes the descriptor of a <SIMPLE IDENTIFIER> or an <ARRAY
IDENTIFIER>. The descripgtor function may appear as the object of
a replacement» thereby providing easy access to any part of a
descriptor.

EXAMPLE:

il. SUBBIT(DESCRIPTOR(X)»4+2) == 2;

Ze DESCRIPTOR(X) == DESCRIPTOR(Y);

8-11

BURRDUGHS CORFORATION COMPANY CONFIDENTIAL
COMPUTER SYSTENS GROUP B1300/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 54905

Example (2) forces both X and Y to describe the same
data name. Noter however:s that if X and Y are not

either toth simple items or both arrayss the result
will be incorrect.

———— e S D i e e s el S o

<CESCRIPTOR=GENERATOR
DESIGNATQOR> ::= MAKE_DESCRIPTORC<EXPRESSION>)

The value which is generated by the <EXPRESSICN> 15 assumed to be
a descriptor. This descriptor replaces on the Evaluation Stack»
the dgescriptor representing that <EXPRESSIUN>e. If the name=-value
bit of the expression's descriptor on the Evaluation Stack is
setr» then the value of the <EXPRESSION> 15 removed from the Value
Stacke.

A <DESCRIPTOR GENERATOR DESIGNATOR> may appear as the object of a
repl acement» however the programmer is responsible to see that
the descriptor puilt generates an address. There is no syntax
check for thise

The foltowing examples illustrate the relationships between the
descriptor functions:

DESCRIPTOR(X)=VALUE_DESCRIPTOR(X),
where X is non=sel f<relative

MAKE _DESCRIPTOR (DESCRIPTOR{X)) = X,
where X is non=self=relative

MAKE _DESCRIPTOR (VALUE_DESCRIPTORCE)) = E»
where E is an <ADORESS GENLRATOR>

VALUE_DESCRIPTOR (MAKE_DESCRIPTOR(E)) = E,
where the value of E is a valid <ADDRESS GENERATOR>

8=12

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BL8OG/BL7C0 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.Se 2212 5405

NEXT_LITEH. PREVIOQUS_ITEM

<ADDRESS-MODIFIER
CESIGNATOR> 2:= <ADDRESS-MODIFIER FUMCTION IDENTIFIER>
(<SIMPLE IDENTIFIER>)

<ADDRESS~MUDIFIER

FUNCTION IDENTIFIER> ::= NEXT_ITEM
| PREVIOUS_ITEM

The NEXT_ITEM function causes the length field of the descriptor
represented by the <SIHPLE IDENTIFIER> to be 'added to the address
field of that descriptore. This modified descriptor is put back
onto the Hame Stackr and also moved to the top of the Evaluation
Stacke Moving the modified descriptor to the Evaluation Stack
i5» in effectr a load address of the new itead described by the
<SIMPLE IDENTIFIER>». Hencer "NEXT_ITEM"™ may be used as the
obtject of a replacement. For examplesr the following statements:

DECLARE o1l CHAR_STRING CHARACTER(C1000)»
02 NEXT_CHAR CHARACTER(1);
NEXT_ITEHM (NEXT.CHAR)!I™D";

have the effect of storing *D" into the second character of
CHAR_STRINSG» which iss

SUBSTR(CHAR_STRING»1,1)7

The PREVIOUS_ITEM function is identical to NEXT_ITEM except that
a subtraction (of length from address) is performed.

NULL

This function generates an address of type character with zero
tength. A store into this address is essentially a no=op. NULL
is used primarily in conjunction with the REFER statement.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<ADDRESS
GENERATOR LIST> ::=

<ADDRESS GENERATOR> 23:=

<BUMPQOR> ::=
<CECREMENTOR> :1:=

<CONDITYIONAL ADDRESS
GENERATOR> ::=

<CASE ADDRESS
GENEKATQOR> ::

<ADDRESS-GENERATING
ASSIGNUR> 1:=

The <ADDRESS
address on the top of

GENERATOR>

includes any
the
ELEMENTS OF THE EXPRESSIUNT

8=13

COMPANY CONFIDENTIAL

g1L804/81700 SDL (BNF Version) (F)
P.S. 2212 54405

<ADDRESS GENERATOR>
<ADDRESS GENERATOR>,
<ADDRESS GENERATOR LIST>

<ADDRESS VARIABLE>

<BUMPOR>

<DECREMENTOR>

<CONDITIONAL ADDRESS GENERATOR>
<CASE ADDRESS GENERATOR>
<ADDRESS~GENERATING ASSIGNOR>

See "BUMPOR"™

See "DECREMENTOR"™

IF <EXPRESSION>
THEN <ADDRESS GENERATOR>
ELSE <ADDRESS GENERATIR>

CASE <EXPRESSION>
OF C(<ADDRESS GENERATOR LIST>»)

<ADDRESS VARIABLE>

<REPLACE» DELETE LEFT PART>
<ADORESS GENERATOR>

<ADDRESS VARTASLE>

<REPLACE, DELETE RIGHT PART>
SEXPRESSION>

primary which leaves an

Evaluation Stacke. See "PRIMARY

for more explicit detaila

8=14

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 3180G0/317990 3SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSe. 2212 54065

<VALUE VARIABLE> ::= <VALUE-GENERATING FUNCTION DESIGNATOR>

I <TYPED PROCEDURE DESIGNATOR>

I (<ADDRESS VARIABLE>)
| <FILE DESIGNATOR>

<FILE DESIGNATOR> ::= <FILE IDENTIFIER>

| <SWITCH FILE IDENTIFIER>UKEXPRESSION>)

<TYPED PROCEDURE

DESIGNATOR> ::= <TYPED PRGCEDURE IDENTIFIER>
<ACTUAL PRAMETER PART>

<TYPED PROCEDURE
ICENTIF IER> 3:= <IDENTIFIER>

<ACTUAL PARAMETER PART>

(1]

o
1

<EMPTY>
I (<ACTUAL PARAHMETER LIST>)

<ACTUAL PARAMETER LIST> <ACTUAL PARAMETER>
t <ACTUAL PARAMETER>»

<ACTUAL PARAMETER LIST»>

.
.
1]

<ACTUAL PARAH4ETER> ::= <EXPRESSION>

I <ARRAY DESIGNATOR>
<ARRAY DESIGNATOR> ::= <ARRAY IDENTIFIER>
CARRAY IDENTIFIER> ::= <IDENTIFIER>

Notice from the above syntax that any <ADDRESS VARIAGLE> enclosed
in parenss» such as (SUBBIT (A»I»J))r witl be treatea as a value
vartatle.

The wvatue generated by a <FILE DESIGNATOR> is the FP3 number of
the specified file. A warning message will Dbe 1issued when a
<FILE UCESIGNATOR> is wused as a values is.ee.r not in an [/0
statement.,

8=-15

BURRODUGHS CORPIRATION ‘ COMPANY CONFIDENTIAL
COMPUTER SYSTEHMS GROUP 31800/81700 SOL (BNF Version) (F)
SANTA BARBARA PLANT PeSa 2212 5405

IYPED PROCEDURES

The TYPED procedure (a procedure which returns a value) is
invoked within an expression according to the above syntax. The
procedure identifiers followed by its parameters C(if any)o»
enclosed within parens, is treated as an operand 1in the
exXpressione. For details on passing pararmeters» see ADDRESS AND

VALUE PARAMETERS. The procedure is evaluated and the returned
value replaces the <TYPEU PROCEDURE DESIGNATOR>. For example:

DECLARE Z FIXED?
PROCEDURE X(A»B) FIXED;

FORMAL (A,3) FIXED?

END X5
Z = X(BUMP M,R)+1>;

ADDRESS AND VALUE PARAMEIERS

Actual parameters may be passed to a procedure either by address
(which passes the address of the actual parameter) or by vatue
(which passes a duplicate copy of the actual parameter)e.

If an <ACTUAL PARAMETER > (See VALUE VARIABLES anda
EXECUTE-PROCECURE STATEMENT) is passed ty address» then any
change to the corresponding <FURMAL PARAMETER> in the procedure
will result in a change to the original value of the <ACTUAL
PARAMETER>.

If a parameter is passed by valuer then only the duglicate copy
of the <ACTUAL PARAMETER> can be changede. The original value
remains unalteredr, and the duplicate copy 1is erased when the
procedure 15 exited.

An <ACTUAL PARAMETER> may be any expression or an <ARRAY
ICENTIF IER>. SDL has specified that array identifiers may only
be passed by address. An array elements, howevers, may be passed
etther bty address or by value.

8=16

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
CIMPUTER SYSTEMS GROUP B1800/81L700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

Expressions may be divided into two groups:?

l. Those which may be passed either by address or ¢ty
values» and

2 Those which may only be passecd by valuee.

An <ADDRESS GENERATOR> i1s passed by address unless it is enclosed
within parentheses» or unless the formal parameter to which it
carrespands has been declared as FORMAL_vALUE. In these two
cases <ADDRESS GENERATJR>s will be loaded by valuee. ALl other
expressions are loaded by value only.

Examples of parameters passed by addresss

PCBUMP X» A)
PCECBUMP M) SUBBIT(X»3))
PONEXT_ITEM(B)» AzICH+D)

Examples of parameters passed by values

PCCBUMP X)» (A), 3)
PCC(B(3UMP M))» A+B)

PCSHAP(A,0)» (5UBSTR(4,5-3)))

VALUE GENERATING FUNCTIO

c2 2

<YALUE~GENERATING

FUNCTION DESIGNATOR> ::= <3ASE REGISTER DESIGNATOR>
<GINARY CONVERSION DESIGNATOR>
<BINARY_SEARCH DESIGNATUR>
SCOMMUNICATE WITH GISMO FUNCTION>
<CONSOLE SWITCHES CESIGNATOR>
<CONTROL STACK BITS DESIGNATOR>
<CONTROL STACK TOF DESIGNATOR>
SCONVERT DESIGNATIR>

<DATA ADDRESS DESIGNATOR>
<DATA_LENGTH DESIGNATOR>
<DATA_TYPE JESIGNATOR>

<DATE FUNCTION DESIGNATQOR>
<DECIHMAL CONVERSION DESIGNATOR>
<DELIMITED TOXKEN DESIGNATOR>
<DISPATCH DESIGNATOR>

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLANT

BASE_REGISTER

<BASE REGISTER
OQESICENATOR> ::

A value of type BIT(24)

G e M D un D A S s e G GMn AAD GED et SN Gl M GG e G MR e T R AEE N Sen e ey

8=17

COMPANY CONF IDENTIAL

B180C/81700 SOL (BNF Version) (F)
P.S. 2212 5405

<DISPLAY BASE DESIGNATOR>
<DYNAMIC MEMORY BASE DESIGNATOR>
<CEVALUATION STACK TOP DESIGNATOR>
<EXECUTE OPERATOR FUNCTION>
CEXTENCED ARITHMETIC FUNCTION>
<HASH CODE DESIGNATOR>
<INTERROGATE INTERRUPT STATUS DESIGNATOR>
<LAST LI0O STATUS DESIGNATOR>
<LENGTH DESIGNATOR>

<LIMIT REGISTER DESIGNATOR>
<LOCATION DESIGNATOR>
<NAME-OF=DAY FUNCTION DESIGNATOR>
<NAME STACK TOP DESIGNATOR>

<NEXT TOKEN DESIGNATOR>
<PARITY_ADDRESS DESIGNATOR>
<PROCESSOR_TIME FUNCTICN DESIGNATOR>
<PROGRAM_SHTICHES DESIGNATOR>
<SEARCH_LINKED_LIST DESIGNATOR>
<SEARCH_SDL_STACKS DESIGNATUR>
<SEARCH SERTAL LIST DESIGNATOR>
<MEMORY SIZE DESIGNATOR>
<SORT_SEARCH DESIGNATOR>
<SORT_STEP_DOWN DESIGNATOR>
<SORT_UNBLOCK DESIGNATOR>

<SP0 INPUT PRESENT DESIGNATOR>
<SUB_STRING VALUE DESIGNATOR>
<SWAP DESIGNATOR>

<TIME FUNCTION DESIGNATOR>

<TIMER DESIGNATOR>
<DESCRIPTOR_VALUE_GENERATOR DESIGNATOR>
CWAIT FUNCTIONS

BASC_REGISTER

is returnede. The value is the absolute

address of the base of the prodgrame It should be noted that two

separate executions

BASE_REGISTER may not yield the same

resultss, since the MCP may have moved the program in FemOry.

8=13

BURROUUGHS CCORPORATIGN CONMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18OL/B1700 SOL (BNF Vversion) (F)
SANTA BARBARA PLANT P.S. 2212 5495

e s e, it iy o

<BINARY CONVERSION
DESIGNATOR> = := BINARY (<EXPRESSION>)

The <BINARY CCNYERSION DESIGNATOR> returns a fixed value which is
the binary regresentation of the <EXPRESSION>. The <EXPRESSION>
is assumed to be a character string containing decimal digitse.
Only the low=order 8 characters will be converted. Zone bits are
ignorede.

If the conversion results in a binary value greater than 24 bits
(1e€ o> if the decimal number is greater than 16,777,215), then
the left=post bits will be truncated.

If the decimal number is greater than 8,388,607 (iasce» (2 exp
23)=1)» then the returned value will appear to be negative (is.easr
the high=order bit is 1).

. e s . S - o

<EINARY_SEARCH FUNCTION>::= BINARY_SEARCH
(<START_RECORD>» <COMPARE_FIELD>,
<COMPARE_VALUE>» <NUMBER_UF_RECORDS>)

<START_RECURD>::= <EXPRESSION>
<CUOMPARE _FIELD>z2:= <TEMPLATE>

<COMPARE _VALUE>::= <EXPRESSION>
<NUMBER_OF _RECORDS>::= <ADDRESS GENERATOR>

BINARY_SEARCH searches an ordered list of items that start at
(START_RECORD> for <NUMBER_OF_RECORDS> for a matche

The occurrence number of the entry that matches will Le returned,»
or if there is no match» the cccurrence number of the first entry
that is greater witl be returned.

Note: The cormparison is always left justified and uses the
Length of <COMPARE VALUE».

a=19

BURROUGHS CORPURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1830/81700 SDL (BNF vVersion) (F)
SANTA BARBARA PLANT P.S. 2212 5405

e s e s e s s . i s, e it e

<COMMUNICATE WITH GISMD
FUNCTION> s3:= COMMNUNICATE _WITH_GISMG (<EXPRESSION>)

The value of the operand is made non=self=-relative bty pushing its
value to the Value Stackr, if necessary. The atsolute address of
the value is copied into the T-register» and the length is copied
into the L-register. The proper swWapper value is put into the
X-reqgister and control is passed to GISMJ. Any value returned by
GISMO will be described by the same descriptor on the Evaltuation
Stack as was used to pass a value to GISMO.

COMMUNICATE _WITH_GISMO may be used either as a statement or as a
function.

CON

(%]

OLE_SHITCHES

<CONSOLE SWITCHES
DESIGNATUR>::= CONSOLE _SWITCHES

Note: This function has meaning only E1723=series systems.
It Uleaves on the top of the Evaluation Stack a
24=bit, self=-relative value of the 24 console
sWwitches.

- —— Y — —— T o o -

<CONTROL STACK
BITS DESIGNATCR>::= CONTROL _STACK_BITS

This function leaves on the top of the Evaluation Stack a 24=bit»
self=-retative value of type bit which is the number of tits Left

in the control stack until overflowe

CONTROL_STACK_TQP

<CONTROL STACK ToP
DESIGNATOR> = := CONTROL_STACK_TQP

8=29

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP - B18CLU/BL1700 SDL (BNF Version) (F)
SANTA 3ARBARA PLANT P.Se 2212 5405

A value of type BIT(24) 1is returned. The value is the base
relative address of the next entry to be placed on the control
stacke

<COMVERSION DESIGNATOR> ::= CUNVERT (<EXPRESSION>S
SCONYERSION PART>)
| CONv (<EXPRESSION>»
<CONVERSION PART>)

<CONVERSION PART> ::= <CONVERSIUON TYPE>
I <CONVERSION TYPE>,
<317 GROUP SIZE>
<CONVERSION TYPE> ::= BIT ¢ CHARACTER | FIXED

<BIT CROUP SIZE> =

.
1]
pot
—
[AN]
—
(%]
-
&

The <EXPRESSION>, which may be of any data typer willL bte
converted as specified by the <CONVERSION TYPE>. The converted
<EXPRESSION> will be returned as a values

The <«BIT GROUP SIZE> 115 wused orly with bit-to-character or
character=to=bit conversions. It specifies the number of bits

(of the ©bit string) which correspond to @2 character in the
character string.

Note: Bit-to-character conversion does not yield decimal
digits. I[f a bit string 1is to be converted to
decimal digitss it should be stored in a fixed
variabler, and the fixed variable convertede.

8=-21

dURROUGHS CORFORATION COMPANY COUNFIDENTIAL
COMPUTER SYSTEWS GROUP 818C0/B817CGY SDL (BNF Version) (F)
SANTA BARBARA PLANT PeS. 2212 5405

The following table shows the possible conversion
combinations:

gUTPUT: BIT CHARAC TER FIXED
INPUT: Rk kb kh bk kh kX kk kh Ak khAE bk kb kAR kA Sk bk Ak hhk kh kN khk kh k&
* * Convert to CHAR. & Return 24 BITS ¢
BIT # No change * under control of % providing lead~- »
* * <8IT GROUP SIZE>;« ing zeroes or *
* * if omitted use 4 * left truncationsx
x * # as necessary. *
khkhhk kb khkhkhhkhk Stk ki Ak bk kb kb hktthhkhbhk Akt bk kb kbt ki
Ak Xk khkkhhkktk bk bk kbbb hdhbhhethk itk hkhkhkd kbbb hk kb Ak *h
{onvert to bits =« & *
CHARAC= + ynder control of¥ No change * Sege Note. k
TER * <BIT GROUP SIZE>; * *
* jif omitted use 4= « *
Akt kx kX bk khk bk khhkhk kb bk bk kXXt ht kb kb kb2 kX
kk ki bk kh bk ko kk khk kb bk kh sk kb bkt Xk kk kR bk kX bk kb kS kk &
] * Jecimal conver— & *
* (hange type * sion w/ lLeading =« *
FIXEDL ¢to BIT # zeros & sign not # No change &
* * suppressed. (7 * *
* * digits + SIGN). = *
kkhkk hkkhk kb hhktrhkhhkk kkh bx ki hkhkhkhkhkhkkkrthhkhhhkkkbththbhhikt
Note: The character string may have leasding tlanks, sign
: (or none)» more bltankss and decimal digitss A plus
sign is ignored. The decimal digits f(only the
{tow=order 7) are converted to a binary number that is
right=justified in a 24=bit fietld. I[f the sign was
minus» then the 2's comprlement of the 24-bit field 1is
returned.
EXAMPLES:
CONVERT ("=72581",FIXED) returns -72581
COMVERT (a(3)7523»CHARACTERsG) "lEA"™
CONVERT (QCL)L10112-,FIXED) 27
CONVERT ("132",31T7»2) a(2y132a
CONVERTY (™132",031IT»4) A(4)1323

CONVERT (m27»31IT) a(4)23

8=22

BURROUGHS CORFURATION ' COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180C/B1700 SDL (BNF version) (F)
SANTA BARBARA PLANT P.Sa. 2212 5495

DATA_ADDRESS

<CATA ADDRESS

CESIGNATOR> ::= DATA_ADDRESS (<ADDRESS GENERATOR>)

<ADDRESS GENERATOR> :: See ADDRESS GENERATORS

The <CATA ADDRESS DESIGNATOR>» returns a value of type B8IT(24)
which is the base relative address generated by the <ADDRESS
GENERATOR>.

EATA_LENGIH
<DATA_LENGTH DESIGNATOR>::= DATA_LENGTH (<EXPRESSION>)

Returns the length in pbits of <EXPRESSION>» regardless of the
data typee.

<CATA_TYPE DESIGNATOR>: 3= DATA_TYPE (<EXPRESSION>)

Returns the type bits of <EXPRESSION>.

CATE

<DATE FUNCTION

DESIGNATOR> = DATE

I DATE (<DATE FORMAT>» <REPRESENTATION>)
<DATE FORMAT> ::= JULIAN § HONTH 1 DAY | YEAR
<SREPRESENTATION> ::= BIT | DIGIT 1 CHARACTER

The <DATE FUNCTION DESIGNATOR> returns a bit or character string
which i5 the date of the execution of the functione.

8=23

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BlBOO/Bl?Ou SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

DATE and DATE (MONTH,CHARACTER) are equivatent.

The formats (in bits) of the returned strings are:

BIT DIGIT CHARACTER
JULTIAN (YYDDD) 7+9=16 8+12=20 16+24=40
AONTH (MWDDYY) Le5+7=16 BeBe8=24 16¢16¢16=48
DAY (DDMMYY) S+4+7=16 8+r8+8=24 16+16+16=48
YEAR (YYMMDD) 7T+4+5=16 8+8+83=24 16+16+¢16=43

Example: DECLARE D CHARACTER(S);
D := DATE (JULIAN,CHARACTER);

-l B R e —— —— B S —

<DECIMAL CONVERSION
CESIGNATOR> z:= DECIMAL (<EXPRESSION>,
<DECIMAL STRING SIZE>)

<DEC IMAL STRING SIZE> ::

<EXPRESIION>

The value of the first <EXPRESSION> following the reserved word
DECINMAL 1is converted to a string of decizal characterse. If the

vatue of the <EXPRESSION> generates more than 24 bitsr, then only
the laow=order 24 bits are usede

The number of <characters returned is given by the value of the
<DEC IMAL STRING SIZE>. A maximum of B decimal characters will be
returned» even if the value of the <DECIMAL STRING SIZE> is
greater. If the <DECIMAL STRING SIZE> is less than the number of
decimal charactersr» then characters are truncated from the left.

<DELIMITED TOKEN
DESIGNATCR>» 2z = DELIMITED_TOKEN (<FIRST CHARACTER>,
<DELIMITERS»» <RESULT>)

<FIRST CHARACTER>::= <SIDENTIFIER>

<CELIMITERS>: &= <CHARACTER STRING>
I <BIT STRING>

8=24

BURROUGHS CORFPURATION ' COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18Q00/81703 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.5. 2212 5405
<SRESULT>::= <IDENTIFIER>

The <FIRST CHARACTER> is a simple identifier which describes the
first character to be examinede. <DELIMITERS> will generate 16
bits of informations each of the 8-bit bytes being used as a
delimiter. For S50L», <DELIMITERS> will De X7 for COBOL»

A7FD33 (Quote followed by ETX).

DELIMITED_TOKEN will leave on the top of the Evaluation Stack the
descriptor of the string of characters from (and including)

<FIRST CHARACTER> up to (but not including) whichever delimiter
was found. The descriptor cof <RESULT> will be replaced by this
descriptor. The address field of <FIRST CHARACTER> will be
changed to point to the delimiter which stopped the scan.

- o o e

(1)

<DISPATCH DESIGNATOR> DISPATCHC<PORT»CHANNEL>,

<I/0 OESCRIPTIR ADDRESS>)
<PORT,CHANNEL> 2:= <CEXPRESSION>

<IsG DESCRIPTOCR
ACDRESS> 1= <SEXPRESSION>

The rightmost seven bits of the value of <PORT, CHANNEL> contain
the following information from left to right:

3 3ITS 4 BITS

: PORT : CHANNEL =

A R A R AR SR A GRS N N GH et SR ED YA TE S AP O AR TS WS SD WS e - -

The rightwmost 24 bits of the wvalue of the <I/0 DESCRIPTOR
ADDRESS> is the absolute address of the [/0 descriptor.

Using these two valuesr» an I/0 operation is initiated. A bit
value with the follLowing meanings i1s returned:

G = DISPATCH REGISTER LOCK BIT S€ET
L = SUCCESSFUL OISPATCH
2 = SUCCESSFUL DISPATCHs BUT MISSINC DEVICE

8=25

BURRQUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B180C/81700 SDL (BNF Version) (F)

SANTA BARBARA PLANT PaS. 2212 54095
DISPLAY_BASE

<DISPLAY BASE
DESIGNATOR> 33 = DISPLAY_BASE

This function leaves on the top of the Evaluation Stack a 24~bits
self-relative value of ¢type ©bit which is the base~relative
address of the base of the Display Stacke

—— e ——— —— —

<OYNAMIC MEMORY
BASE DESIGNATGR> ::= DYNAMIC _MEJORY_BASE

The <DYNANIC MEMORY BASE DESIGNATOR> returns 3 24=bit value which
is the base relative address of the prograa's dynamic memory.
Fefer to the SOL S-Language dccumentation for discussion of the
use of dynamic memorye

EVALUATICN STACK _T0P

<EVALUATION STACK
TCP DESIGNATOR>::= EVALUATION_STACK_TOP

This function leaves on the top of the Evaluation Stack a 24=bits
self-relative value of type bit which is the base-relative

address of the top of the €Evaluation Stack (before execution of
this function).

EXECUTE

<EXZ CUTE OPERATOR
FUNCTION>::= EXECUTE C(<EXPRESSION LIST>)

CEXPRESSION LIST>::= SEXPRESSION>
I <EXPRESSION LIST>», <EXPRESSION>

Note: The EXECUTE function is intended only for use Dby
interpreter wWriters 1in the exrerimental design of new
apcodese.

8=286

BURROYGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTENS GROUP 818C3/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 54905

The value of the last expression may be expected to te an opcode
which may then be executed by the intergpreter. EXECUTE may be
used as a statement as well as a <VALUE GENERATING FUNCTION
CESIGNAT(OR>.

This staterent or <VALUE GENERATING FUNCTION DESIGNATOR> when
used with released interpreters will result in a "BRANCH TO
INVALID 6P COCE™ condition.

8=27

BURROUGHS CORPUORATION COPPANY COUNFIDENTIAL
COMPUTER SYSTEMS GROUP BLBVG/B8L7003 SCL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

——— e S . s S s . e e o B e s e e s i

<EXTENDED ARITHMETIC
FUNCTION>z2:= CEXTENDED ARITHMETIC FUNCTION DESIGNATOR>
(<EXPRESSION>» <EXPRESSION>)

CEXTENDED ARITHMETIC
FUNCTION DESIGNATOR>: X_ADD 1 X_SUB | X_MUL 1 X_DIV |
I X_N0D

The indicated operation is performed on the two operandss which
are treated as bit stringse. The operation is performed on the
fultl length of the operands» not just the low~order 24 bits. The
length of the result is derived as descrited below:

Addition (Subtraction): I1f the two operands are of different
Lengths» then the shorter 1is padded on the left with binary
Zeroes. The tength of the sum (difference) will te equal to the
tength of the Longer of the two operandss The resutlt will be in

two's complement notation.

Multiclication: The length of the product will bte the sum of the

tengths of the two operandses (This sum may not exceed 65+535
bits.)
Division (Aodulo): The length of the quotient (residue) will be

tength of the dividend (modulus).

For X_SU3. X_DIV, and X_MIDe the second argument represents the
subt rahend, divisor, and moduluss respectivelye

HASH_CODE
<HASH CODE DESIGHNATOR>::= HASH_COO0E (<TOKEN>)
<TQKEN>::= SEXPRESSION>

The HASHLCODE will leave on the Evaluation Stack a descriptor of
type BIT and tength 24. The value will be computed from the
characters of <TOKEN> and the length of <TOKEN>. (If <TOKEN> is
longer than 15 charactersr» only the first 15 are considered.)

To be effectiver the value genarated by HASH.CODE must be used
modulo a prime nurber (wnich is then the hash table size).

8-28

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRODUP 8180G/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeS. 2212 5405

—— " T — W D o i s A 2 S Y W S0 gt S .

<INTERROGATE INTERRUPT
STATUS DESIGNATOR> ::3= INTERROGATE _INTERRUPT_STATUS

A 24—bit data item of type bit is returned. The value represents
the interrupt ©bits of the M=machine. The applicable M=machine
interrupt bits are resete. Mote that the INCN bits will not be
reset.

T T s e e e e S

«LAST LIOD STATUS
DESIGNATOR>»::= LAST_LIO_STATUS

Returns the Llast logical I/0 status as type bit with a length of
RS_LAST_LIO_STATUS_SIZE.

LENGTH
<LENGTH DESIGNATOR> ::= LENGTH (<EXPRESSION>)

The <LENGTH DESIGNATOR> returns a 24-bit, type bit field

containing the number of units in the <EXPRESSION>. If the
<EXPRESSION> is type character» then each chzaracter is a unit.

Otherwisesr each bit is a unite

<LIMIT

REGI
DESIGNATOR> LIMIT_REGISTER

The <LIMIT REGISTER DESIGNATOR> returns a value of type B3IT(24)
which is the tase relative address of the program's Run Structure
Nucl euse. For further explanations please refer to the BL770 MCP
Manuale.

8=29

BURROUGHS CORFORATION CONPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP 81800/61700 SDL (BNF Version) (F)

SANTA BARBARA PLANT PaSe 2212 5405
LOCATIGON

<LUCATION DESIGMNATOR> 3= LOCATION (<PROCEDURE IDENTIFIER>)

1 LOCATION (<SIMPLE TODENTIFIER>)
| LOCATION (<ARRAY ICENTIFIER>)

<PROCEDURE IDENTIFIER> ::= <IDENTIFIER>
<SIMPLE IDENTIFIER>::= <IDENTIFIER>
<ARRAY IDENTIFIER>::= <IDENTIFIER>

For procedures» the <LOCATION DESIGNATOR> returns a 33-bit value
(typed 3IT) containing» from laft to right:

ADDRESS TYPE, CONTAINING a(3)63 4 BITS
SEGMENT NUMBER & 3ITS
PAGE NUMBER o BITS
DISPLACEMENT 20 BITS

This 33~bit value is the address of the procedure in question.

A forward declaration is required only during recomgpilation or
Create-Master for any procedure on which a location is performed.
An ercor is given if this is not done .

For simple and array identifierss the <LOCATION DESIGNATOR>

returns a lo=tit value (typed BIT) containing, from left to
right:
ADDRESS TYPE CONTAINING A(2)0Qa 2 BITS
LEXIC LEVEL 4 BITS
UCCURRENCE NUMBER 10 BITS
NAME _QF DAY

<NAME OF DAY
R>

FUNCTICON
DESIGNATO HE

NAME_OF_DAY

A character strings, which is the name of the day of the week» is
returned as a 9-character stringe. The name is left justifieda

Example: DECLARE DAY CHARACTER(9);
DAYINAME_OF_DAY

8=3¢

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COHPUTER SYSTEMS GROUP B18C0O/B1790 SOL (BNF Version) (F)
SANT A BARBARA PLANT PeSa 2212 5405

——— . —— —— —— —— ————

<NAME.STACK
TOP DESIGNATOR>::= NAME_STACK_TOP

This function lLeaves on the top of the Evaluation Stack a 24=bit»
self-relative wvalue of type 0bit wWwhich 15 the base~relative
address of the top of the Name Stacka

NEXT_TOKEN

<NEXT TOKEN DESIGNATOR>3:= NEXT_TOKEN (<FIRST CHARACTER>,
<SEPARATOR>»s <NUMERIC=TO=ALPHA INDICATOR>,
<RESULT>)

<FIRST CHARACTER>::= <IDENTIFIER>

<SEPARATOR>::= <CHARACTER STRING>

CNUMERIC=TO=ALPHA :

INDICATOR>: := SET 1 RESET

The <FIRST CHARACTER> is a sirple identifier which describes the
first character to be examined. This witl usually be the first
character of the token. The <SEPARATUR> is the token separator:
®_" for SDL», "™-" for COBOL» etc. It must te a single character;
if none is needed» use "A". SNUMEK IC-TO-ALPHA INDICATOR>

is set if sysbols such as 235848 are allowed. It is ' RESET
othervwisee.

NEXT_TOKEN will Leave on the top of the Evaluation Stack the
descriptor of the next tokene. This token will be an identifier»
a nunber» or a special character. The descriptor of <RESULT>
“ill also be replaced by this descriptors. The address field of
<FIRST CHARACTER> will be <changed to point to the character
foltowing this tokene NEXT_TOKEN assumes that <FIRST CHARACTER>
describes a non~blank character.

SBURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT

3183¢/81780 S

<PARITY ADODRESS
DESIGNATOR>

8-
- e

PARITY _ADDKESS

For MCP use only.

The <PARITY_ADDRESS DESIGMATOR> returns a 2
the address of the first parity error encoun
If no parity error is founds QFFFFFFQ

<PROCESSOR_TIME FUNCTION GENERATOR>

PRUCESSOR_TIME will yield the accumulated
BOJ in tenths of a second as a BIT(2¢) data i
Example:

8-31

COMPANY CONFIDENTIAL
DL (BNF Version) (F)
PeSe 2212 5405

4Lb=bit value which is
tered in S=Memory.

is returned.

PROCESSOR_TIME

gprocessor time since
tem.

DECLARE (PROC_TIME»HDURS,»MINUTES,SECUNDS-»TENTHS) BIT(20);

/x EARLY CODE 7
PROC_TIME := PROCESSOR_TIME;

/x CODE T8O BE TI1IME
PROC_TIME := PROCESSOR_TIME = PROC_TIME;
HOUR S := PROC_TIME 7 36009;

MINUTES t= PROC_TIME 40D 36005 7/ 6005
SECONDS := PROC_TIME MOD 690 / 103
TENTHS := PROC_TIME #0D 105

/« L ATE Co0DE */

PROGRAM SWITCHES

<PROGRAM_SWITCHES
DESIGNATOR>

PROGRAM_SWITCHES

I PROGRAM_SWITCHES

D x/

(<EXPRESSION>)

8=32

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18045/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.Se. 2212 5405

This function is used to read the program switches wWwhich have
been specified by the Program's Parameter Block (PPBY» a control

card or a SPO 1input. If a parameter 15 specified» the
corresponding switch (0 through 9) 1is returned as a 4=bit
quantitye. A parameter which is5 less than zero or greater than
nine will yield a run timse error of invalid substringe. If no

parameter is specified, all ten switches are returned as a 4U=bit
result. SDL gprovides no means to modify the program switchese

<SEARCH_LINKED_LIST

DESIGNATOR> ::= SEARCH_LINKED_LIST
(<START RECORO>,<COMPARE FIELD>,
CCOMPARE VALUE>,<RELATION>,
cLINK FIELD>)

<START RECORD> ::= <SEXPRESSIGHN>
<SCOMPARE FIELD> ::3= <STEMPLATE>
<CUMPARE VALUE> s::= <SEXPRESSION>
<RELATION> z2:= ' < 1 <= ll= i /=1 >= 1 > |
LSS I LEQ 1 EQL { NEQ 1
GEQ I GTR |
<LINK FIELD> ::3= <TEMPLATE>
<TEMPLATE> ::= <ADDRESS GENERATOR>
i. The <START RECUAD> is ¢the first structure to be

examinede. Typicallys it is an <ADDRESS GENERATOR>,»
but an <EXPRESSION> is alloweds

2e The <COMPARE FIELD> 1is a template which gives the

relative offset and size in the structures of the 24
(or Lless) bit field being compared with the <COMPARE

VARIABLE>.
3. The <COMPARE VALUE> is the value against which the
specified field in the structure s compared.

<COMPARE VALUE> is considered "on the left™ of the
relatione. -

4, The <RELATIUON> specifies the desired relation in the
comparison of the two valuess

Se The <LINK F{ELD> is a temptate which gives the
relative offset and size in the structures of the 24
(or less) bit field containing the address of the

8=-33

BURROUGHS CORPCGRATION COMPANY CONFIDENTIAL
COMPUTER SYSTEWS GROuP B1800/BL703 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSs 2212 54075

next structure to be examined (if comparison with the
current structure fails)e.

4 temrlate is an address generator whose address is relative to
the beginning of a structure rather than base relativee. A field
in @ structure declared REMAPS BASE has such an address.

The last structure in the tinked list contains all |l bits in the
field described by the <LINK FIELD>.

The Llinked list is searched until the desired comparison succeeds
or until the comparison fails with the last structure.

If the search succeeds» the base-relative address of the current

structure is returned as a 24~bit value. If the search fails,
AIFFFFFF3a 1s returned.

SEARCH_SDL_STACKS

<SEARCH_SDL_STACKS

QESIGNATOR> z:= SEARCH_SDL_STACKS
(<STACK BASE>» <STACK T0P>,
<CO4PARE BASE>» <COMPARE TOP>)

<STACK BASE>::= ~ <EXPRESSION>
<STACK TOP»:2:= <EXPRESSION>
<COMPARE BASE>:z:= <EXPRESSION>
<COMPARE TdP>»::= <EXPRESSION>

The four rparareters are expected to generate values which are
base~relative addresses of the base and top of a stack of 30L
descriptors and of an address ranger resgectively. The stack
will be searched for a non~arrays non=self=relative 3S0L
descriptor whose address is within the given ranges If the
search is successful 3(1)13 will be returned; otherwiser» 3(1)03
will be returned.

8=34

BURRCUGHS CORPURATION COMPANY CUNFIDENTIAL
COMPUTER SYSTEMS GROUP B180U/B1700 SDL (BNF Version) (Ff)
SANTA BARBSARA PLANT PeSe 2212 5405

SEARCH_SERIAL_LIST

<SEARCH SERIAL

LIST DESIGNATOR> ::= SEARCH_SERIAL_LIST (<SSL COMPARE VALUE>,
<SSL COMPARE TYPE>, <3SSL COMPARE F IELD>»
<SSL FIRST ITEM>» <35SL TABLE LENGTH>,
<55L RESULT VARIABLE>)

<SSL CUMPARE VALUE> ::= <EXPRESSION>
<SSL COMPARE TYPE> ::= <t <=1 =1 /=1 >=1 >
1 LSS ¢ LEQ 1 EQL | NEQ 1 GEQ ' GTR
<S5L COMPARE FIELD>::= <TEMPLATE>
<S5L FIRST ITEM>::= _ <ADDRESS GENERATOR>
<SSL TABLE LENGTH>::= SKEXPRESSION>
<SSL RESULT vARIABLE>::= <ADDRESS GENERATOR>
STEMPLATE> ::= <ADORESS GENERATOKR>

SEARCH_SERIAL_LIST searches a serial List of items LbLeginning wWwith
the structure described by <SSL FIRST ITEM>. <S55L COMPARE VvALUE>
is compared (as specified by <S5SL COMPARE TYPE>) against the
field of the field described by <SSL COMPARE FIELD> (<SSL COMPARE

FIELD> is a TEMPLATE) until a match has been founds or until <SSL
TABLE LENGTA> number of bits has been searched.

Khen the relation is non~commutatives the comparisons are made as
though <SSL COMPARE VALUE> was "on the teft™ of the relation.

If the search succeeds» the base relative address of the item
containing the successful <S55L COMPARE FIELD> is stored in <SSL
RESULT VARIABLE> and a A(1)13d is returnede

If the search failse then the end address of the table if stored
in <SSL RESULT VARIABLE> and a 3(1)0ad is returned.

8=35

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
CONPUTER SYSTEMS GROUP B180G/B1700 5DL (BNF Version) (F)
SANTA BDARBARA PLANT Pa.Ss 2212 54455

- —— — i " i S W

<MEMGORY SIZE
DESIGNATOR> 2:= S_MEM_SIZE | M_MEM_SIZE

The requested memory size is returned as a 24~bit data item of
type bite.

SORT_SEARCH

<SORT_SEARCH
UESIGNATUR> s3:= SORT_SEARCH

(<TABLE ADDRESS>,<LIMIT>)
<TABLE ADDRESS> ::= <ADDRESS GENERATOR>

<LIMIT» 2:= <EXPRESSION>
For use by sort onlye.

The <SUORT SEARCH CESIGNATOR> provides the inforwmation tc evaluate
a record for sorting purposess The <TABLE ADDRESS> contains the

address» in an array of records» of the first record to be
examined and the condition under which records will be selected.

The <LIMIT> specifies the tast record to be exarinede.

e o . S oy s i D s e s ot

<SORT_STEP_DOWN

DESIGNATGR> ::= SORT_STEP_DOWN
(<RECORU 1>»<RECORD 2>»
<KEY TABLE ACDRESS»>

<RECOGRD 1> ::= <EXPRESSION>
<RCCORD 2> 3= SEXPRESSION»
<KEZY TABLE ADODRESS> ::= <EXPRESSION>

8=-36

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQUP B18C0/B1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P-Ss 2212 5405

For use by sort onlye.

The <SGRY_STEP_DOWN DESIGNATOR> provides the information
necessary to compare two regcordse. <RECORD 1> and <RECUORD 2> are.

respectivelyr the first and second records which are to be
compared. The <KEY TABLE ADODRESS> specifies the sort key used in
the comparisone.

<SOR T_UNBLOCK

DESIGNATUR> ::= SORT_UNBLOCK (<MINI FIB ADDRESS>»
<LENGTH>» <SOURCE>, <DESTINATION>)

<MINI FIB ADDRESS> ::= <ADDRESS GENERATOR>

SLENGTH>» ::= <EXPRESSION>

<SQURCE> ::= <EXPRESSIONS>

<DESTINATION> z::= <EXPRESSION>
For use by SORT only.

The <SORT_UNBLOCK DESIGNATOR> moves a record to or from a buffers
updating the buffer pointer and block count. It normally returns
a zero. “hen the block count goes to zerosr it restores the
original buffer pointer and block count» and returns a 1l»
signalling the need for an I/0.

A pbit on the mini=FIB signals S50RT_UNBLOCK to create sort tags.

for this function» it uses the sort key tatle and selects ontly
the key information to w@ove from the buffer. A4 value in the

mini ~FI8 represents the length of the receiving field.
SPO_INPUT _PRESENT

<3P0 INPUT
PRESENT OESIGNATOR>::= SPO_INPUT_PRESENT

B=37

HURROUUGHS CORPURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GiROUP 81800781783 SOL (BNF Version) (F)
SANTA QgARSARA PLANT P.Se. 2212 5405

4 specialrs SPUO_INPUT_PRESENT, has been added to allow the
presence of 3P0 input to be tested before having to perform an
accept to the #CP.

SUBBIT AND 3SUBSIR

<SUB=STRING VvaA

DESIGNATOR> = <SU3=STRING FUNCTION IDENTIFIER>
(<STRING VALUE>»<{OFFSET PART>)

I <SUB=STRING FUNCTION IDENTIFIER>
(<STRING VALUE>,<OFFSET PART>,

<LENGTH PART>)

<SUB-~STRING FUNCTION

[DENTIFIER> ::= SUBBIT 1 SUBSTR
<STRING VYALUE> :3= KEXPRESSION>»
<OFF SET PART> ::= <SEXPRESSION>
<LENGTH PART> ::= <SEXPRESSION>

The <SUB=STRING VALUE DESIGNATOR> and the <SUB=STRING ADDRESS
DESIGNATOR>» are identical except that the former returns a value
if its <STRING VALUE> is not an <ADDRESS GENERATOR>. Please see
SUB3IT AND SUBSTR under AODDRESS VARIABLES for the specifics of

the function.

The foiLlowing examples ilLlLustrate some of the uses of the
<SUB=STRING VALUE DESIGNATOR>:

X1SUBSTRCA CAT B»5»10);
MAKE_DESCRIPTOR(3483 CAT SUB3IT(A OR B, 0» 16) CAT X)) la...75

IF SUBSTR(3263 CAT ABC, 0) = Y THEN ..’

8=38

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B18C0/8170) SOL (BNF Version) (F)

SANTA BARBARA PLANT PeS. 2212 5405
SHAR

<SWAAP DESIGNATOR> ::= SWAP (<ADDRESS GENERATOR>,»<EXPRESSION>)

The Llength of the value described by the <ADDRESS GENERATOR> is
used as the tength, L» of the data to be SWAPpede. Howevers if
the length of the value is greater than 24 bitss, L will be 24
bits» and only the Low=ordar 24 bits of the <ADDRESS GENERATOR>
willL be modified.

SHAP is indeed a true swap aperation: that is» the items are
exchanged in one “"virtual™ memory cycle. This is necessary for
the synchronization of independent gprocesses (2.9.» MCP and
GIsMG).

The rightmost L bits of the value descrited by the <ADDRESS
GENERATOR> are isolateds and become the destination field.

The rightmost L bDits of the value generated by the <EXPRESSION>
are isolated. Leading zerces are supplied if the length of the
value 1is less than L bits long. - This field is known as the
source field.

The source field is stored 1into the destination field» the

original value of which is the value returned. The returned
value is of type bit and of length L.

Examples
AVO;
IF SHWAP (A,1) THEN DO ... END;
ELSE D0 e.e END;
In the above examples the ELSE part of the statement is

evaluateds since A was originally set to 0 (i.e.» falsed)e At the
end of the SWAP» 1 has been stored into A, and O returned to the
top of the Evaluation Stacke.

HBURROUGHS CORPORATION
COMPUTER SYSTEMS GxOouP

8=39
COMPANY CONF IDENTIAL
B18oo/sB1700 SDL (BNF Version) (F)

SANTA BARBARA PLANT P.S. 2212 54905

T14t

<TIME FUNCTION
DESIGNATOR> z2:3= TIME

I TIME (<TIME FORMAT>,<REPRESENTATION>)

CSTIME FORMAT> ::= COUNTER | MILITARY 1 CIVILIAN
<REPRESENTATION> ::3= BIT | DIGIT 1| CHARACTER
The <TIME FUNCTLION DESIGNATOR> returns a bit or character string

which is the time of the function®'s execution. The <TIME FORMAT>

may have three basic formats:

COURTER: Returns the time of day in tenths of secondse

MILITARY: Returns the time of day in the following foram

HHMMSST (Where T=Tenths of seconds).

CIVILIAN: Returns HHMMSSTAP(Where AP=AM QR PM).

The time of day may be represented in either bitss digitss or
characters in the following faormats:
BIT DIGIT CHARACTER
COUNTER 20 BITS 24 BITS 48 BITS
MILITARY S5+btotlh=21 B+B3+8+4=28 I6¢l6+16+R=56
CIVILIAN L+b+o+Hh +16=30 8+8+B+4+10=44 16+16+16+8+16=72
NOTL ¢ TIME and TIME (CIVILIAN,CHARACTER) are equivalent.
JIMER

<TIMER DESIGNATOR>::= TIMER

A value of type BIT(24) 15 returneda. The value is the current

setting of the TIME register.

8=47

BURROUGHS CCRPDRATION ConMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81840/81700 SDL (BNF VYersion) (F)
SANTA BARBARA PLANT P.S. 2212 54°5

VALUE _QESCRIFTOR

<CESCRIPTOR-VALUE GENERATOR
DESIGNATOR> ::= VALUE_DESCRIPTOR (<ADDRESS GENERATOR>)

<ADDRESS GENERATOR» =:

See ADLCRESS GENERATORS

The <ADDRESS GENERATOR> is represented by a descriptor at the tap
of the £Evaluation Stack. This descriptor is wmoved to the Valtue
Stacke In its place on the Evaluation Stack is teft a descriptor
describing the one just moved to the VYalue Stack.

The Name=value bit is set in the descriptor Left in the
Evaluation Stacke.

WAILT
<WAIT FUNCTION> 3:= WAIT <START POSITION> C(<EVENT
LIST>)
¢<START POSITION> ::= [<EXPRESSION>] 1 <EMPTY>

<EVENT LIST> ::3 SEVENT> § <EVENT LIST>, <EVENT>

<EVENT> :2:= <SIMPLE EVENT> | <QUALIFIED EVENT>
CQUALIFIED EVENT> ::= <SIMPLE EVENT> WHEN <EXPRESSION>
<SIMPLE EVENT> ::= TIME_TENTHS (<EXPRESSION>)

SPO_INPUT_PRESENT

SPO_INPUT_PRESENT

DC_TO0_COMPLETE

READ_OK (<FILE SPECIFIER>)

WRITE_OK (<FILE SPECIFIER>)
Q_WRITE_OCCURRED (<FILE IDEWNTIFIER>)

<FILE SPECIFIER> :2:= <FILE IDENTIFIER>
! <FILE IDENTIFIER> (<EXPRESSION>]

The WAIT function returns a fixed value which 1is the ordinal
position of a true event in the <EVENT LIST>. If no event is
truer the process will be blocked until one of the events occurs.
If more than one is true» the value that is returned is the
position of the first event fcund true in a Lleft to right
circular scan starting from <START POSITION>. If <START
POSITION> is emptys, zero is assumede. If <START POSITION> is

EURRUUGHS CORPURATION

COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT

greater than or equal

the MCP will terminate the

8=41

COMPANY CONFIDENTIAL

B18CG/BL7CD SDL (BNF Version) (F)
PeSe 2212 54G5

to the nurmber of items in the <EVENT LIST>»
jobe. In the <case of a <QUALIFIED

EVENT>, the event will never vecome true unless the aqualifying
KEXPRESSIQON> evaluates to true» 1e€u» its Lowest order bit is a

CNea

The wvarjous events
satisfied:

EVENT

TIME_TENTHS (<EX~
PRESS ION>)

SPO_INPUT_PRESENT
CC_I0_COMPLETE

REAC_DX (<FILE
SPECIFIER>)

WRITE_OK (<FILE
SPECIFIER>)

G_WRITE_OCCURRED
(<FILE IDENTIFIER>)

Restrictions:

1« If TIMEL.TENTHS

tefte.

N
.

The maximum

1e2a2» 2% hoUrSe

true when the condition{s) telow are

CONDITIONCS)

The specifiecd number of tenths of sec=
onds have elapsed since the WAIT began
exacution,

A message frcm the operator has been
queued for the WaITing programe.

A previously initiated data communications
I3 has teen completed.

The buffer for the specified file contains
a record waiting to be read. If a
{<EXPRESSION>] is specifieds it is taken
to be a subscript of a aqueue file family.
If the file is a queue file family and ro
subscript is specifieds, the event is
always true.

A buffer for the specified file is emptys
Wwaiting for a write operation. See above
for queue file familiesa

A Write operation has teen done (by
anaother process) an a rember of a queue
file family nared in the time since the
WAIT began executione This event will te
correct only when preceded by
MESSAGE COUNT,

the lists it must be at the extreme

of tenths of seconds is 864,000,

9-1

EUKROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTENMS GROUP 31800781709 SDL (BNF Version) (F)
SANTA oARBARA PLANT P.S. 2212 5405

o e ol e e e e ——— i — - - -

<170 CONTROL STATEMENT>

e
1}

<OPEN STATEAENT>
<CLOSE STATEMENT>
<READ STATEMENT>
<ANRITE STATEMENT>
¢SEEK STATEMENT>;
<ACCEPT STATEMENT>;
<OISPLAY STATEMENT>;
<SPACE STATEMENT>
<SKIP STATEMENT>;

s

Each file is numbered sequentially, beginring with zero. This
number is the <FILE NUM4AER> and will eventually be used as an
index into the FIB dictionary. The file decltaration will ke useg
to construct an FPB in the code file.

BURRGOGUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

QPEN STATE

MENT

<OPEN STATEMENT>::=

<OPEN PART>::=

<FILE DESIGNATOR>z::=

<OPEN ATTRIBUTE PART>

<OPEN ATTRIBUTE LIST>

°
]

<ATTRICUTE SEPARATOR>::=

<OPEN ATTRIBUTE> ::=

<INPUT=-0UTPUT HMODE>
<LACK MODE> ::=
<OPEN ACTION MODE> ::=

<MFCU MODE>::=

<ON BEHALF OF 40DE>:=

<FILE MISSING PART>::=

<FILE LOCKED PART>::=

FORMAT GPTICGNS:

1. OPEN DECLARED_FILE;

If no attributes are specifiedsr

P=2

COMPANY CONFIDENTIAL

Blage/s8l7G¢2 SDL (BNF Version) (F)
P.Se 2212 54405

<JPEM PART>;
<OQPEN PART>;
<UPEN PART>;
<OPEN PART>;
<F ILE LOCKED

<FILE MISSING PART>

<FILE LOCKED FART>
SFILE MISSING PART>
PART>

OPEN <FILE DESIGNATOR>
<UPEN ATTRIBUTE PART>

<F ILE IDENTIFIER>
SSWITCH FILE IDENTIFIER> (<EXPRESSION>)

SEMPTY>
<OPEN ATTRIBUTE LIST>
WITH <QPEN ATTRIBUTE LIST>

<GPEN ATTRIBUTE>
<OPEN ATTRIBUTE> <ATTRIBUTE SEPARATIR>
<OPEN ATTRIBUTE LIST>

» | <SLASH> | <EMPTY>
<INPUT=OUTPUT MOQE>
<LJCK MUDE>

<GPEN ACTION HODE>
<MFCU MODE>

<ON BEHALF OF MODE>
DUTPUT I

INPUT | NEH

LOCK 1 LOCK.OUT
NO_REWIND | REVERSE

PRINT 1
STACKERS

PUNCH 1
INTERPRET |

ON_SEHALF_1OF <EXPRESSION>
ON FILE_MISSING <EXECUTABLE STATEMENT>

ON FILE_LOCKED <EXECUTAJLE STATEMENT>

INPUT is assumede.

9=3

BURRODUGHS CORPORATION COMPANY CONFIOENTIAL
COMPUTER SYSTEMS GROQUP B18CC/B817039 SOL (BNF Version) (F)
SANTA BAXBARA PLANT PeSe 2212 54135

FOLLOWED BY: AND/OR:

LOCK

INPUT LOCK_GUT
2. DOPEN DECLARED_FILE guTPUT NC_REWIND

NEW « REVERSE

INPUT», CUTPUTY LOCK» NO_REWIND
3. GOPEN DECLARED_FILE WITH QUTPUT», NEW LOCK» REVERSE

INPUT» QUTPUT, NEW LOCK_0OUT, NO_REWIND
LOCK_OUT» REVERSE

* NEW alone assumes OUTPUT, NEW.

Note: The combination INPUT» NEW results in a syntax error.

If the <OPEN ATTRIBUTE>s have been explicitly or implicitly

includeg in the fite declaration» then the file need not be
explicitly opened here.

8URROUGHS CORPORATION
COMPUTER SYSTEMS GRQOUP
SANTA BARBARA PLANT

CLOSE STATEMENT

<CLOSE STATEMENT>::=

<FILE DESIGNATOR> ::=

<CLOSE ATTRIBUTE PART>

<CLOSE ATTRIBUTE LIST>

9=4

COMPANY CONFIDENTIAL

BL8NG/BLI70Q5 SDL (BNF Version) (F)
PaSe 2212 5405

CLOSE <FILE CESICGNATOR>
<CLOSE ATTRIBUTE PART>;

<FILE IDENTIFIER>
<SAITCH FILE IDENTIFIER> (<EXPRESSIuUN>)

<SEMPTY>
<CLOSE ATTRIBUTE LIST>
WITH <CLOSE ATTRIBUTE LIST>

<CLOSE ATTRIBUTE>

<CLOSE ATTRIBUTE> '¢ATTRIBUTE SEPARATOR>
<CLOSE ATTRIBUTE LIST>
SATTRIBUTE SEPARATOR> ::= » | <SLASH> | <EMPTY>
<CLOSE ATTRIBUTE> :1:= <CLOSE MODE>»
CRUNCH 1 ROLLOUT ¥ PURGE 1| REMOVE
<CLOSE M0DE> = REEL | RELEASE 1 PURGE 1 REMOVE
MO_REWIND 1t LOCK
FORMAT DOPTIONS:
1. CLUOSE DECLARED_FILE
There 1is no default. If LOCK is specified as part of the
file attributes» the file is LOCKed 1f the program
terminates abnormally. UOtherwises the file is not LOCKed.
FOLLOWED BY AND/OR ONE QF: «
¢ DR ONE OF:
_ REEL
2. CLOSE DECLARED_FILE ROLLOUT RELEASE
CRUNCH PURGE
IF_NOT_CLOSED REMOVE
NO_REWIAD
LOCK
& If more than one aption is specifiecr only the final
one is used by the compiler.

9=5

dURROUGHS CORPORATION COVFPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31810/8170¢ SOL (BNF Version) (F)
SANTA BARBARA PLANT P.Se 2212 545
Files need not be explicitly closed. Howevers <closing a file

when finished with it will free memory space for other usess

9=6

BURRUOUGHS CORPURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18CL/B170C SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSa 2212 5405

<READ STATEMENT> 3= <READ PART>;
1 <¢READ PART>;<(ON 3SEQUENCE>
I <READ PART><RESULT M4SK>; <0ON SEQUENCE>

<READ PART> ::= <READ SPECIFIER>

I <DISK READ SPECIFIER>
I <REMOTE READ SPECIFIER>

I <QUEUE READ SPECIFIER>

<READ SPECIFIER> ::= READ <FILE DESIGNATOR>
(<ADDRESS GENERATOR>)

<FILE DESIGNATOR> ::= <FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> (<EXPRESSIUN>)

<CISK RKEAD SPECIFIER> ::= READ
¢F ILE DESIGNATOR>
<R ECORD ADDRESS PART>
(<ADDRESS GEMERATOR>)

<RECCRD ADDRESS PART> ::= <EMPTY>
| [<RECORD ADDRESS>]

<RECORD ADDRESS> ::= <EXPRESSION>

<REMGTE READ SPECIFIER>

.
1]

READ <FILE DESIGNATOR>
<REMOTE KEY PART>

(<ADDRESS GENERATOR>)

e

<REMOTE KEY PART> ::= CEMPTY>

I [<REMOTE KEY>1
<REMOTE KEY> :1:= <ADDRESS GENERATOR>
CQUEUE READ SPECIFIER> 2:= READ <FILE DESIGNATOR>

<QUEUE FAMILY MEMBER PART>
(<ADDRESS GENERATOR>)

<QUEUE FaMILY
MEMBER PART> 1::= <EMPTY>

! [<QUEUE FAMILY MEMBER>]
<QUEUE FAMILY MEM3ER> ::= <EXPRESSION>

CRESULT MA3K>::= %ITH RESULT_MASK <ADDRESS GENERATUR>

9=7

EURRUOUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18C¢5/31700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 54905

The <READ STATEMENT> provides the necessary information to read a
file: 4 file identifiers, record address» data inforrations and
instructions to be executed if an end-of-file or a parity error
is detected.

The <READ STATEMENT> separates files into four categories: disk
files» remote filesr queue files, and all others (cardrs tape,
papertacer etce)e If the file attributes indicate a random disk
file, the user may specify <RECORD ADDRESS>. In all casess the
user need only give the <FILE DESIGNATOR> and <ADDRESS
GENERATOR>.

If the file is of type REMITE» and the REMOTE_KEY ATTRIBUTE s
set then a <REMITE KEY> may be useds. (For the format of this»
see the discussion wunder REMOTE_KEY in the FILE DECLARATION
SECTION.) If the REMOTZ_KEY attribute is not set» then a <REMOTE
KEY> may not be used. After performing the read, the REMOTE KEY
will have been stored in the fietd specified as the <REMDTE KEY>.

If the file is of type QUEUE and is a multi~queue family, then a
<QUEUE FAMILY MEMBER> may be used. This is an expression whose
value will specify which member of the family to reaag from. If
this is omitted» then the oldest messaqge in all of the queues
witl be read.

If the <RESULT MASK> option is useds the occurrence of an
exceptian in the mask is signalled bty the UON EXCEPTION sequence.

9-8

BURROUGHS CORPORATION COVMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18Qu/BL73) SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

- S - — o —

<HRITE STATEMENT>

s
.o
i

CARITE PART>;

<SWRITE PART>3<0ON SEQUENCE>
I <ARITE PART> <RESULT MASK>;

<ON SEQUENCE>

<WRITE PART> z::= <ARITE SPECIFIER>

I <DISK WRITE SPECIFIER>
I <REAOQOTE WRITE SPECIFIER>
| <QUEUE WRITE SPECIFIER>

<WRITE SPECIFIER>

-
..
]

RRITE <FILE DESIGNATOR>
<CARRIAGE CONTROL PART>
(<EXPRESSION>)

I WRITE <FILE IDENTIFIER>
<CARRIAGE CONTRUOL PART>

<FILE DESIGNATQOR> : <FILE IDENTIFIER>

I <SWITCH FILE IDENTIFIER> (REXPRESSION>)

<CARRIAGE CONTROL PART> 1:= <EMPTY>
| CCARRIAGE CONTROL SPECIFIER>

<CARKIAGE CONTROL
SPECIFIER> 2:= NO + SINGLE 1 DOUBLE ! PAGE
I <SKIP=TU=CHANNEL> | NEXT

<SATP-TO-CHANNEL> ::3= <CHANNEL NUMBER>
<SCHANNEL NUNMBER> ::= L 1 21 31 aea 1 11 1 12
<CISK WRITE SPECIFIER> 1= WRITE

<FILE DESIGNATCOR>
<RECORD ADDRESS PART>
(<EXPRESSION>)

<RECORD ADDRESS PART> ::= SEMPTY>
{ [<RECORD A4DDRESS>]

<RECORD ADDRESS> ::= <EXPRESSION>

CREMOTE WRITE

SPECIFIER>:z:= WRITE <FILE DESICNATOR>
<REMOTE KEY PART»>
(<EXPRESSION>)

CREMGTE KEY PART>z:= SEMPTY>
I [<REMOTE KEY>)

<REMOTE KEY>::= <ADDRESS GENERATOR>

<QUEUE WRITE

9=9

BURROUGLHS CORPOFATION CONPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BLEQO/BL7DY SOL (BNF version) (F)
SANTA BARBARA PLANT PeSe 2212 5495
SPECIFIER>: 2= WRITE <FILE CESIGNATOR>

CQUEUE FAMTILY MEMBER PART> <T0P>
(<ADDRESS GENERATOR>)

<FILE DESIGNATQOR>»::= <FILE IGENTIFIER>
1 <SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<TOP> ::= <EMPTY> 1 TQP

<QUEUE FAMILY
NEMBER PART>::= <EMPTY>
I [<QUEUE FAMILY MEMBER>]

<SQUEUE FAMILY MEMBER>::z= <EXPRESSION>

<RESULT HASK> ::= RITH RESULT_MASK <ADDRESS GENERATOR>

The <WRITE STATEMENT> provides the necessary information to write
a filea The <WRITE STATEMENT> treats disk files separately from
other file ¢types by allowing the user the option of specifying
<RECORD ADODRESS> on his random disk filese. The <CARRIAGE CONTROL
PART> is intanded for use with a printer file.

If the file is of type RENOTE, and the REMOTE_KEY attribute is
set then a <REMOTE KEY> may be useds (For the format of this»
see the discussion under REMOTE_KEY in the FILE DECLARATION
sect ions.) If the REMUOTE_KEY attribute is not setr then a <REMOTE
KEY> may nut te used. The <REMOTE KEY> will specify the terminal
toc which the write is to be performed.

If <DISK WRITE SPECIFIER>» is used when the actual device 1is5 a
data recorder» the <RECIRD ADDRESS> will be used to select a
stacker.

If the file is of type AUEUE and is a multi-queue familyr» then a
<QUEUE FAMILY MEMBER> may be used. This is an exrression whose
value will specify which mesber of the farily tc write to. if
TOP 1s specifieds the message will be written to the front of the
gueue.

If the <END=-QF~=PAGE PART> is5 set in the file attributes» then
when end=of=page is detected on a printer filer the <EOF PART>
will be executeds This facilitatesr» for exampler printing totals
and/or headings without keeping a line counter.

9=19

EURRUUGHS CCRFPORATION COMPANY CONFIDENTIAL
COAMPUTER SYSTENS GRQUP 31800781700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.Se. 2212 5495
If the <RESULT HASK> option is useds the occurrence of an

exception in the mask is signalled by the ON EXCEPTION sequencee.

EXAMPLE:

WRITE PRINTOUT SINGLE (PRINT_LINE);
ON EOF 007
WRITE PRINTOUTS 2 SKIP A LINE:
ARITE PRINTOUT PAGE (TOTALS):
HRITE PRINTGUTY DOUBLE (HEADER);
END 3

9=11

BURRUUGHS CORPORATION ' COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81800/B1700 SOL (BNF Version) (F)
SANTA BAR3BARA PLANT PeSe 2212 5435

SEEK STATEMENT

e R - i - o

<SEEK STATEMENT> ::= SEEK
<FILE CESIGNATOR>
{<RECORD ADDRESS>]

<FILE DESIGNATOR>::= FILE IDENTIFIER>
I <3WITCH FILE IDERTIFIER> (<EXPRESSIUN>)

<RECGRD ADDRESS> :: <EXPRESSION>

The <SEEK STATEMENT> calis up a record frcm a randor disk file in
preparation for a read on that records This statement should
only be usaed with disk files that are being read using a randonm
access technigue.

4 <SEEK STATEMENT> performed immediately prior to a <READ
STATEMENT> is less effective than merely reading the recorde.

9=12

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180G/817%C90 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.Se 2212 5405

SACCEPT STATEMENT> z:= ACCEPT <ADDRESS GENERATOR>

The <ACCEPT STATEMENT> causes the execution of a program to halt
until the appropriate information is entered via the SPQ by the
operatore. The message keyed in wWwill ©be read into the area
specified by the <ADDRESS GENERATOR> following the reserved word
ACCEPT. -

See ADDRESS VARIABLES for the syntax of the <ADDRESS GENERATOR>.

9-13

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1B8QC/EL700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

DISPLAY STATEMENT

<CISPLAY STATEMENT> ::= DISPLAY <EXPRESSION>
SCRUNCH SPECIFIER>
<CRUNCH SPECIFIER> ::= <EMPTY>
t » CRUNCHED

The <DISPLAY STATEMENT> prints an output message on the SPO. Ag
noted, the <CRUNCH SPECIFIER> is optional. If » CRUNCHED 1is
specifieds the system will delete trailing blanks and substitute
one blank for each occurrence of multiple erbedded tlanks.

9=-14

EURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS CROUP 31860/B17930 SDL (BANF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

SPACE STATEMENT

<SPACE STATEMENT>

<SPACE PART>;
1 <SPACE PART>; <0ON SEQUENCE>

.
i

<SPACE PART> ::= SPACE <FILE DESIGNATOR>
<SPACING SPECIFIER>

<FILE DESIGNATOR> : <FILE IDENTIFIER>

I <SHUITCH FILE IDENTIFIER>U<EXPRESSION>)

<SPACING SPECIFIER>

<EXPRESSION | TO <EXPRESSION>
{ TO_EOF

it

The <SPACE STATEMENT> allows the wuser to skip over certain
records in a sequential file.

The <SPACING SPECIFIER>» may take three forms. An <EXPRESSION>
alone will indicate the nunrber of records to be spaceds it may
be a negative number indicating reverse spacing. T0O <EXPRESSION>
witlt always be a positive number and indicates the number of the
record to space tos TO_EDF wilt cause the file to space to its
current end.

' 9-15
JURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B180G/8170CG SCL (3NF version) (F)
SANTA BARBARA PLANT P.Se 2212 5405

SKIP STATEMENT

<SKIP STATEMENT> z:= SKIP <FILE I[ODENTIFIER> TO <CHANNEL NUMEER>

«FILE DESIGNATOR> ::= <FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> (<EXPRESSIAON>)

<CHANNEL NUMBER> ::= 1 1 21 3 1 00 i 11 1 12

The <SKIP STATEMENT> causes ¢the Lline gprinter to skip to a
specified channel number on its carriage tapee. The channel
numbers control the vertical spacing of data on a printed page
and are defined by the carriage tape on the device.

9=186

SURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18CO/B1700 SCL (BNF Version) (F)
SANTA BARBARA& PLANT PeSe 2212 5405

<0ON SEQUENCE> ::= <ON CLAUSE> <EXECUTABLE STATEMENT>
I <ON SEQUENCE> <dgN CLAUSE> <EXECUT=
TABLE STATEMENT>

<ON CLAUSE> ::= ON EOF | ON INCOMPLETE_IO
I ON EXCEPTION | UN EXCEPTION
(<STATUS>)
<STATUS> 2:= <ADDRESS GENERATOR>

An ON SEGQUENCE is used to examine the status of the 1/0 requested
by the preceding statement. When any of the <ON CLAUSE>s are
true, the corresponding <EXECUTABLE STATEMENT> will be executed
before proceeding. Only one condition will be true. If <STATUS>
is requested in ON EXCEPTION, a 24-bit result describing the

exact exception will be assigoned to the given <ADDRESS
GENERATOR>.

The <EXECUTABLE STATEMENT>s of the <ON SEQUENCE> are considered
subordinate to the <WRITE STATEMENT>. Therefores segmentation of
these statepents is temporary (See THE SEGMENT STATENENT).

Note: Exceptions may be masked by the EXCEPTION_MASK clause n
the file declaration.

' lo=1
EURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP BlLeco/8L70D SDL (BNF Version) (F)
SANTA BARBARA PLANT P.Ss 2212 5405

e —— —— s n e ——) - - — R

SEXZ CUTABLE STATEMENT
LIST> ::= <EXECUTABLE STATEMENT>
1 <EXECUTA9LE CSTATEMEANT>
<SEXECUTABLE STATEMENT LIST>

<EXZ CUTABLE STATEMENT> :2:= <D0 GROUP>;

<GROUP TERMINATICN STATEMENT>;
<[F STATEMENT>;

<CASE STATEMENT>;

CASSIGNMENT STATEMENT>;

SREFER STATEMENT>;

<REDUCE STATEMENT>;
<EXECUTE=PROCEDURE STATEMENT>;
SEXECUTE=FUNCTION STATEMENT>;
<[/70 CONTROL STATEMENT>
<SMODIFY INSTRUMENTS>;

<NULL STATEMENT>

<FILE ATTRIBUTE STATEMENT>;
<STOP STATEMENT>;

<ZIP STATEMENT>;

<SEARCH STATEMENT>;

<ACCESS FILE HEADER STATEMENT>S
CARRAY PAGE TYPE STATEMENT>;
<COROUTINE STATEMENT>;
<SEGMENT STATEMENT>
SEXECUTABLE STATEMENT>

L e M G S et A GNh el MBS AN s M R WS e wAD S e

CASS IGNMENT STATEMENT> ::= SEE ASSIGNMENT STATEMENTS
AND EXPRESSIONS

<I/0 CONMTROL STATEMENT> 33

1]

SEE I/0 CONTROL STATEMENTS

CSEGMENT STATEMENT> 3= SEE THE SEGHENT STATEMEAT

10=-2

BURRUUGHS COXRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1890/81700 SOL (BNF Version) (F)
SANTA BARBARA PLANT PaSs 2212 5405
DD GRCUPS
<C0U GROUP> ::= <GROUP HEAD>
<GROUP 80DY>
<GROUP HEAD> ::= <GROUP KAME>»
<FOREVER PART>;
<GROUP NAMLE> 121:= 00
1 DO <GROUP IDENTIFIER>
<FOREVER PART> =2:= CEMPTY>
! FOREVER
<GROUP IOENTIFIER> z1:= <IDENTIFIER>»

<GROUP BdaDY> 33

<SEXECUTABLE STATEMENT LIST>
<GROUP ENDING>

<GROUP ENDING> 3= €MD
! END <GROUP ICENTIFIER>

The <00 GROUP> is a collection of <EXECUTASLE STATEXENT>s which

functions as a routine. It is executed once urless FOREVER
appears after the <GROUP NAME>,.

If FCREVER 1is present, the <D0 GPOUP> will be executed

iteratively until a specific condition is mete. Only a <GRQUP
TERMINATICN STATEMENT> {(UNDD) or a <TYPED PROCEDURE RETURN

STATEMENT> (RETURN) can get the program out of this Loop. See
the following example:

DO THIS FOREVER:?
READ CARD (A); ON EOF UNDO?
IF 55 GTR 3uUMP X
THEN WRITE PRINTER (4);

ELSE DO’
XILs
WRITE PRINTER PAGE (A);
END
END THIS?

If it is necessary to execute the statements in a <D0 GROUP> from
different points in the programs more efficient code is generated
by making the tody of the group a procedure rather than by
repeating the <D0 GROUP>,

10=3

BURROUGHS CCRPORATION ‘ COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BLBCL/BL7Y0 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5445
RESTRICTIONS:

| If a <GRUUYP IDENTIFIER> is included in the <GROUP
NAME>» it must also appear in the <GROUP ENDING>.

2 e If the <GROUP NAME> does not include an identifiers
the <GROUP ENDING> must not contain one.

3. FOREVER 1is not a reserved word and may appear as the
<GROUP IDENTIFIER». DO FOREVERS is considered to be
the <GROUP HEAD> of an un—nameds iterative <D0
GROUP>. DO FOREVER FOREVER is a tegal heading for a
nameds, iterative group.

b Nested <Dg GROUP>s may not have duplicate
identifiers. If this occurs» 3 warning message will
appear on the program listinge.

5. <C0 GROUP>s may be nested 32 levels deep. However, a

<GROUP TERMINATION STATEMENT> can UNDD only a maximum
of lbo levels.

10 =4

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81800/31700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSe 2212 5405
UNeo

<CROUP TERMINATION
STATEVENT> ::= UNDD
t UNDO. <GROUP IDENTIFIER>

<GROUP IDENTIFIER> 3= <IDENTIFIER>

The <GROUF TERMINATION STATEMENT> will cause the execution of 3
<D0 CGROUP> to cease» and wWill transfer control to the next
statement following the <D0 GROUP> which has teen UNDONE. The
staterent may take one of three forms:

l. UNDO will transfer control out of the <D0 GROUP>
which contains the statemente

2. UNDO <GARNUP IDENTIFIER> takes control out of the <DO
GROUP> specified by the identifiere.

Te Another form», UNDD(x)» 1is now considered obsolete.
It transferred control out of the outermost <D3
G ROUP>.

Note: UNDO <ICENTYIFIER> can undo a maxinrue of 16 levelss

EXAMPLE S
1. DO ONE?
2. DO THO FOREVER?
3. IF <EXPRESSION> THEN
4. D0 THREE;
Se CASE <EXPRESSION>S
6e UNDQO37 7/« SAME AS UNDO THREE; &/
7. UNDO THWO;
8e END CASE;
9. END THREE?
19. END TWG?
11. ENC ONE;

Executiaon of Lline 6 transfers control to line 10.
Execution of line 7 transfers control to the statement
following Lline 11,

1¢-5

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COAPUTER SYSTEMS GROUP 81800/81709 SCOL (BNF Version) (F)
SANTA BARB4RA PLANT P.S. 2212 5405

IE STATEMENT

<IF STATEMENT> =: <IF CLAUSE>

<EXECUTABLE STATEMENT>
1 <IF CLAUSE>
<EXECUTABLE STATEMENT>
ELSE <EXECUTABLE STATEMENT>

<IF CLAUSE> ::= IF <EXPRESSION> THEN

The <EXPRESSION> is evaluateds If the Llow~order bit of the

result is 1 (i.e.» trued» the statement following THEN is
executeds If the Low=order bit i5s 0 (je.es» false)sr the statement
following ELSE (if present) is executed. If the result of

the<EXPRESSION> is falser» and the ELSE part is omittedr control
is transferred to the next statement after the <IF STATEMEAT>.

<IF STATEMENT>s may be nested. The outerwrost <IF CLAUSE> and the
corresponding ELSE» if any» are on #dNesting Level Q. The

<EXZC CUTABLE STATEMENT>s following THEN and ELSE are on Nesting
Level 1. Nesting may be no deeper than 32 levels.

When using nested <IF STATEMENT>s» the wuser must maintain
correspondence between the deiblimiters THEN and ELSE on each
Leveles The innermost SLSE will always be associated with the

innermost THEN. From this point continues an outward progression
(ieeer from highest nesting Llevel to lowest) of THEN=ELSE
association.

Thus» if an <IF STATEMENT> on Nesting Level N is to have an ELSE
associated with its» then every <IF STATEMENT> on a nesting lLevel
greater than N must also have ELSEs associated with them. If the
user wishes to execute nothing on a false conditions then ELSE
followed by a <NULL STATEMENT> may be used.

19-6

BURROUUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31864G/81759 SBL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5495
EXAMPLE:

Let E=1» E=2s E=3, and E-4 be <EXPRESSION>s», and Llet 5-2, S=3,
and S=4 be <EXECUTABLE STATEMENT>s.

IF E-1
THEN IF E=2
THEN IF E=3
THEN IF E-4
THEN S=4;
ELSES
ELSE S-3;
ELSE S§5=27

ALl statements here are the [IF=-THEN=-ELSE type» except the first
IF which has no corresponding ELSE.

13=7

2URRDUGHS CORPORATION COMPANY CONFIDENTI AL
COMPUTER SYSTEMS GROUP B18J0UG/B17C0O SDL (BNF Version) (F)
SANTA BARBARA PLANT PeS. 2212 5405

CASE STATEMENT

<CASE STATEMENT> ::= <CASE HEAD>
<CASE BODY>

<CASE HEAD>

CASE <EXPRESSION>

<CASE 800Y>

(1]
(1]
i

<EXECUTABLE STATEMENT LIST>
<CASE ENDING>

<CASE ENDING>

END CASE

The <EXPRESSION> serves as an index into the List of <EXECUTAGBLE
STATEMENT>s. The statement selacted is executed» and the others
ignorede Control is then transferred to the statement following
the <CASE ENDING> untesss of courses the statement causes a
RETUKN or an UNDO to some other locatione

If there are N number of statements in the lists, then the range
of the value of the <EXPRESSION> may be from 0 through N-1.

The statements in the (ist may ©be any LlLegal <EXECUTASBLE
STATEMENT> aillowed in SCGL. If the user wWwishes to execute nothing
in a given caser the <NULL STATEMENT> s an appropriate
statement.

10=-8

GURRCUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS CROUP B18C4/817C5 SDL (BNF Version) (F)
SANTA BARBARA PLANT PaS. 2212 5405
REFER STATEMENT

<REFER STATEMENT> ::= REFER <REF VAR> TO <ADDRESS GENERATOR>
<REF vAR>::= <IDENTIFIER>

The statement will make <ADDRESS GENERATOR> become the new
referent of <REF VAR>. Since an <ADDRESS GENERATOR> in SOL can
locate any arbitrary area of memory (using MAKE.DESCRIPTOR»
indexinges etc)s» the reference variable may do likewiser but in
UPL the restriction to a safe subset of <4DCRE3S GENERATJIR>'s
also guarantees the safety of reference variablese.

The only wexception to this safety 1is the «classic dangling

reference problem: Supposer while executing a lexic level one
procedura, that a reference variable declared at lexic level zero
is bound to a locally declared referente If that reference

variable is then used after the procedure is exited» its referent
will not exist and an unpredictable piece of data or garbage will
pbe accessed.

Jechnicallys this error can only be detected at run time» but its
gccurrence can be precludecd altogether Dy making a strong

restriction in the syntaxs: the lexic tevel of the <ADURESS
GENERATOR> may not be greater than that of <REF VAR>. This
cannot ©pe checked for some <ADDHESS GENERATOR>S» notably

MAKZ <DESCRIPTOR» but it can be checked in all cases for UPL.

An <ADDRESS GENERATOR>S NULL» is available so that reference
variables may te re=pbound to suche Testing for NULL is done by
checking for length of zeroce.

16=9

BURRGUGHS CORPORATION COMPANY CONFIDENTIAL
COAPUTER SYSTEMS GROUP B18C0/8170G SDL (BNF Version) (F)
SAMT A BARBARA PLANT P.5. 2212 54135

- S R e am D - —

<REDUCE STATEMENT> ::= REDUCE <03JECT REFERENCE> <SETTING
RESULY REFERENCE PART> UNTIL
<FIRST OR LAST> <EQL OR NEQ QR IN>
<EXPRESSION>
<ON EOS_CYCLE PART>

<0BJECT REFERENCE :2:= <IDENTIFIER>

CSETTING RESULT REFERENCE PART> s:= <EMPTY> | SETTING <RESULT
REFERENCE>

CRESULT REFERENCE> 3= <IDENTIFER>
<FIRST QR LAST> 3= FIRST 1| LAST
<EQL CR NEG OR IN> 32:= EQL | HEQ ¢ IN & =1 /=

<ON EQOS_CYCLE PART> ::= <EMPTY> 1 ON ENS_CYCLE <EXECUTABLE STATEMENT> |
ON £©05 <EXECUTABLE STATEMENT>

Reduction is a flexible and efficient means for scanning
char acter strings which wuses reference variatles rather than
intagers as pointers which select substringse The basic function
of reduction is to truncate a reference variakble from the Lleft
until its first character satisfies some conditione No change is
actually made to the datas the reference variable 1is simply
repbound to a substring of its former referente. For examples» the
original referent of Rl is a string “ABCDEF".

* A B CDEF =
k & % &k & k Kk Kk &
*

*

Rl
After the statement

REDUCE RL UNTIL FIRST = ™D";

is executed the referent of Rl is "DEF".

4 8CDETF

& *

kkk kkik
*

Rl

10-1¢

BURRJOUGHS CCKPURATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81824/BL700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 54935

If the character string deleted is of interestr another reference
may be referenced to it by the variation:

REDUCE R1 SETTING R2 UNTIL FIRST = "D";

Starting with K1's original referents "ABCDEF"» this leaves

* A g C» DEF =

hk kk kkx kk AXxk ki Lk Xk

* *
* *
R2 Rl

thus dividing the original string according to the conditicr
FIKST = D",

The entire operation may also pe done in reverse (scanning right
to left) in which case the last character of Rl must satisfy the
condition.

REDUCE R1 SETTING R2 UNTIL LAST = =Dv";
results in the neﬁ binding

« A BC O« EF «

hkk kk kk kk ¥k k&xkhkkx

* *
* *
Rl R2

Three types of conditions may be specified:

= scans for a character wWwhich is the same as the specifiec
charactera .

/= scans for a character which 1is different from the
specified character.

IN scans for a character whichs when transtated to by the
specifted bit tabler yields a 3(1)13d. See CHAR=TABLE for a
convenient means for specifying oDit table constants.

hY

19=11

BURRGOUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP d1800/81700 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

In the first two cases» a single character must be given as a

scan argument. In the third cases» a btit string of length 256
bits must be given as a table.

The <EXPRESSION> must evaluate to either CH2RACTER(L) or BIT(8)
or BIT(256) depending upon the condition type. Improper type on
this <EXPRESSIUN> is the only possible run=time error froa
reduction.

Irm
1=
o

9F SIRING

The REDUCE statement terminates when either a character
satisfying the condition is found or the length of the <O0BJECT
REFERENCE> has been reduced to zerosr i.e2.» it is NULL. Since the
tatter termination is often of separate interest its occurrence
may be detecta2d using syntax analogous to that for detection of

spectial conditions on I/0 statements. The syntax was shown
aboves The <EXECUTABLE STATEMENT> is executed if and only if the
original reference has been reduced to NULL. (If a <RESULT

REFERENCE> was specifieds» it wWwill then refer to the original
referent of the <OBJECT REFERENCE>.)

Frequently» the end~of=string code will reset the <OBJECT
REFERENCE> to some new datar Dperhaps by reading a new card. In
this case» control returns from the EQOS_CYCLE back to the REDUCE.»
thus effecting scanning over record btoundaries without additional
caeding. If the <QBJECT REFERENCE> remains NULL after execution

of the Z0S_CYCLE code» control passes to the fcllowing statement

as usuale. These semantics may seenm awkward at firsts. btut they
have the desirable effect of guaranteeing the proper exit
conditions of a REDUCE statenent==either the condition is

satisfied by the first <(or last) «character of the <DBJECT
REFERENCE> or the <O8JECT REFERENCE> 15 NULL=-regardless of
whether or not an EOS_CYCLE has been specified. This principle
can be violated only by a branch instruction (UNDO» RETURN) in
the ECS code. -

If ON_EUS 1is wused 1in place of EOS_CYCLE, then control always
passes to the next statement.

10-12

BURRGUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18CO/BL7CO SDL (BNF Version) (F)
SANT A BARBARA PLANT P.S. 2212 5405

AOLDIFY STATEMENIS CCLEAR», BUMP, DECREMENT)

<MCDIFyY INSTRUCTION> ::= <CLEZAR STATEMENT>
1 <BUMP STATEMENT>
<DECREMENT STATEMENT>

<CLEAR STATENMENT> :: CLEAR <ARRAY IDENTIFIER LIST>
CARRAY IDENTIFIER LIST> ::= <ARRAY IDENTIFIER>

I <ARRAY IDENTIFIER>.
<ARRAY IDENTIFIER LIST>

As the syntax indicatesr» the <CLEAR STATEMENT> may only clear
arraysa. If the array has been declared tit or fixedsr zeroces are
moved to each element. If it was declared as characters Llanks
are moved to each element. Paged arrays may not be cleared.

<BUMP STATEMENT> ::= BUMP <ADDRESS VARIAZLE><MODIFIER>
<ADDRESS VARIABLE> ::= See ADDRESS VARIABLES
<MUODIFIER> z33= CEMPTY>

1 BY <EXPRESSIGN>

<DECREMENT STATEMEANT> ::= DECREMENT <ALCDRESS VARIABLE><MODIFIER>

The ©tump and decrement statements rerform the same functions as
their counterparts in the <EXPRESSION> (BUMPOR and OECREMENTOR).
See those sections for specific usage. Since these constructs
exist as statements in their own rights» and not merely as parts
of the <EXPRESSION>» they are included here.

10-13

BURROUGHS CORPORATION CONPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/BL730 SODL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5435

[
=
[
l—
-~
(44}
—d
P
—
rm
x
i
=
o
v

(1]

"

i
e

The semi=colon is considered to be a statement in its own righte.
It may be used in any construct where the syntax requires that an
<EXECUTABLE STATEMENT> be presentr but the user wishes to execute
noth inge. It is most commonly used in the <IF STATEMENT> and the
<CASE STATENMENT>» but may also be functionalt in the read» write»
and space statementse Refer to the individual descriptions for
more specific detailse

EXaMPLE:

CASE <EXPRESSION>;

IF <EXPRESSION> THEN; YCASE 0
ELSE <STATEMENT>;

; ZCASE 1
003 ACASE 2
CEXECUTABLE STATEMENT LIST>
€ 3D;

END CASE;

tiotice that the above <CASE STATEMENT> contains three <EXECUTABLE
STATEMENT>s® An <IF STATEMENT>» a <NULL STATEMENT>» and a <00
GROUP>. If the value of the <EXPRESSION> following CASE is 1»
then nothing is executed. In addition, the following THEN 1is
a <HULL STATEVNEMNT>.

1C=14

EURRCOUGHS CORPURATION COMPANY CONFIDENTIAL
CONPUTER SYSTEMS GROUP B1660/81730 SOL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 54735

PILE ATTRIBUTE STATEMENT (CHANGE STATEMENT)

<FILE ATTRIBUTE
STATEMENT> ::= CHANGE <«FILE DESIGNATOR>

TO (<DYNAMIC FILE ATTRIBUTE LIST>)

<FILE DESIGNATOR> ::= <FILE IDENTIFLER>
1 <SWITCH FILE IDENTIFIER> (<EXPRESSIUN>)

<OYMAMIC FILE
ATTRIBUTE LIST> z:= <DYNAMIC FILE ATTRIBUTE>
| <DYNAMIC FILE ATTRIBUTE>»
<SDYNAMIC FILE ATTRIBUTE LIST>

<OYNAMIC FILE
ATTRIBUTE> z:= <DYNAMIC MULTI-FILE IDENTIFICATION PART>
SDYNAMIC FILE IDENTIFICATION PART>
<SDYNAMIC PACK_ID PART>

<DYNAAIC DEVICE PART>

<SDYNAMIC TRANSLATION PART>
<DYNAMIC FILE PARITY PART>
<DYNAMIC VARIABLE RECORD PART>
<DYNAMIC LOCK PART>

<DYNAMIC BUFFERS PART>

<DYNAMIC SAVE FACTOR PART>
<DYNAMIC RECORD SIZE PART>
<SDYNAMIC RECORDS-PER-BLOCK PART>
<DYNAMIC REEL NUMBER PART>
<DYNAMIC NUMBER-OF ~AREAS PART>
¢CDYNAMIC BLOCKS=-PER-AREA PART>
<DYNAMIC ALL=-AREAS=AT-0PEN PART>
<DYNAMIC AREA-BY-CYLINDER PART>
COYNAMIC EU_SPECIAL PARI>

¢DYNAMIC EU_INCREMENTED PART>
<DYNAMIC USE_INPUT_BLOCKING
DESIGNATOR PART>

e s T I e S

10=15

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31B00/BL170G SOL (BNWF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

<DYNAMIC MULTI=PACK PART>
<DYHAKIC END=-UF-PAGE PART>
CDYNAMIC OPEN=OPTION P2RT>
<DYNAMIC REMOTE=KEY PART>
<OYNAMIC NUMBER-OF -STATIONS PART>
<DYNAMIC QUEUE=-FAMILY=-SIZE PART>
<DYNAMIC FILE TYPE PART>

CDYNAMIC WORK FILE PART>

<SDYNAMIC LABEL TYPE PART>
<DYNAMIC IMVALID CHARACTER
REPORTING PART>

<DYNAMIC OPTIUNAL FILE PART>
<DYNAMIC SERIAL NUMBER PART>
<DYNAMIC EXCEPTION MASK PART>
<DYNAMIC QUEUE SIZE PART>
CDYNAMIC HEADER PART>

<DYNAMIC SOFT TRANSLATE PART>
DYNAMIC HOST_NAME PART>

<DYNAMIC OPEN_ON_BEHALF_OF PART>

The <FILE ATTRIBUTE STATEMENT> allows the user to dynamically
change the attributes of his file during the execution of his

programs This statement may occur at any point in the programe
put the change will not Dpecome effective until the file s
ofenede That is» if the file in question is5 open when the <FILE

ATTRIBUTE STATEMENT> is executed» then the change will not occur
until the file is5 closed and re-opened.

Each <DYNAMIC FILE ATTRIBUTE>» should be consistent with the
format and restrictions of its counterpart listed 1in the FILE

DECLARATIONS. Exceptions to this are specifically stated belows

If a <DYNAMIC FILE ATTRIBUTE> 15 omitteds the attribute remains
as 1t was previously set.

It should be noted that the following preccess is mandatory when
changing the attributes of an open file which is to be re-opened:

1« Close the file with an attribute which causes space for the
FIS to Dafalyrned: i.es» LOCK, RELEASE, etc. (If CLOSE is

used wWithout attributesr the FIB will QL ce rebuilt from
the FP8» and the attribute will remain unchanged).

N
L]

Change the desired attributes.

3. Cpen the file.

10-16

EURROUGHS CORPORATION COMPANY CONFICENTIAL
COMPUTER SYSTEMS GROUP B1800/B1730 SDL (8NF Version) (F)
SANTA BARBARA PLANT Pe.Ss 2212 5495

<OYNAMIC MULTI-FILE ,
ICENTIFICATION PART> ::= MULTI_FILE_ID ==

<DYNAMIC MULTI-FILE IDENTIFICATION>
<CYNANIC MULTI-FILE IQENTIFICATION> ::= <EXPRESSION>

<DYNAMIC FILE IDENTIFICATION PART> ::= FILE_ID 3= <DYNAMIC FILE
IDEMTIFICATION>

<CYNANIC FILE IDENTIFICATION> ::= <EXPRESSION>

<CYNAVIC PACK_ID PART> ::= PACK_ID :=
<DYNAMIC PACK IDENTIFICATION>

CSCYNAMIC PaCK IDENTIFICATION> ::= <EXPRESSION>

The <EXPRESSICN>s of these four attributes are each assumed to be
character stringse If they are bits» hcwever» they will ©be
converted to characters in the following manner:

la The bits are left justified.
2. Trailing blanks are appendeda However»> if the bits

are not a multiple of 8» then the string will appear
to te invalid characters.

EXAMPLE ¢
CHANGE F TO (FILE_ID := 3JFQEQ]);

WILL RESULT IN THE <FILE IDENTIFICATION>
BEING EQUAL TO:

AFCE4) 4044040404040 43

BURRJOUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<CYNAVYIC DEVICE PART> 3=

<DYNAMIC DEVICE SPECIFIER>

The low-order 10 ©bDits

follows (where the variant
hardware

DEVICE

CARD
TAPE
TAPE _9
TAPE _7
TAPE _PE
TAPE _NRZ
D ISK

DISK_PACK
DISK_FILE
DISK_PACK_CENTURY
DISK_PACK_CAELUS

10-17
CONMPANY CONFIDENTIAL
81800/8L709 50L (BNF Version) (F)

is the low=order six):

P.S. 2212 5405
DEVICE 2= <DYNAMIC DEVICE SPECIFIER>
tt= <EXPRESSION>
of the <EXPRESSIUON> must be coded as
is the high order four bits» and the
HARDWARE VARIANT
21
27
28
25
26
24
17 7 = SERIAL
1 = RANDOH
16 (SAME A5 DISK)
12 (SAME AS DISK)
15 (SAME AS DISK)

14 (SAME AS DISK)

PRINTER 8 ¢ = BACKUP TAPE OR DISK
1 = BACKUP TAPE
2 = BACKUP DISK
3 = 3ACKUP TAPE OR DISK
4 = HARDWARE ONLY
5 = BACKUP TAPE ONLY
6 = BACKUP DISK ONLY
7 = BACKUP TAPE OR DISK
PRINTER FOkMS & 8 + PRINTER VARIANT
CARD_READER 21
CARD_PUNCH 2 (SAHE AS PRINTER)
CARD_PUNCH FORHNS 2 (SAME AS PRINTER FORMS)
PUNC F 2 (SAME AS PRINTER)
PUNCH FORNS 2 (SAME AS PRINTER FORMS)
READER PUNCH PRINTE e (SAME AS PRINTER)
~REXDLR.PUNCH.PRINTER FORMS 5 (SAME AS PRINTER FORMS)
PUNC H_PRINTER 5 (SAME AS PRINTER)
PUNC H_PRINTER FORMS 5 (SAME AS PRINTER FORNMS)
PAPER_TAPE_PUNCH 20 (SAHE AS PRINTER)
PAPER_TAPE_PUNCH FORHS 20 (54ME AS PRINTER FORMS)
PAPER_TAPE_READER 6
READER_96 19
SORTER_READER 19
READER_SORTER 1
CASSETTE 30
REMO TE 63
GUEUE 61

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANT A BARBARA PLANT

<DYNAMIC TRANSLATION
PART> z2:=

<CYNAMIC TRANSLATION
SPECIFJIER> s3:=

The low=order 3 bits

translation as follows

w00 = EBCDIC
001 = ASCII
310 = BCL

<CYNAMIC OPEN-
OPTIUON PART>::=

<DYNAMIC OPEN-
OPTION SPECIFIER>::=

10-18
COMPANY CONFIDENTIAL
B18CG/BL7GO SDL (BNF Version) (F)

Pe.S. 2212 5405

TRANSLATION 3= ~
<DYNAMIL TRANSLATION SPECIFIER>

<EXPRESSION>

of the <EXPRESSION> determines the

OPEN_QPTION :=
<DYNAMIC OPEN_OPTION SPECIFIER>

<SEXPRESSION>

The low=order 12 bits of the expression determine the ¢type of
open as follows (bits are numbered from left to right within the

12):

(e d]
~
o

N U S WN =D

<CYNAMIC PARITY PART>

[L T N O I L T O 1|

FUNCTION (IF 1)

INPUT

QUTPUT

NE W

PUNCH

PRINT

NO_REWIND, INTERPRET
REVERSE, STACKERS
LoCK

LOCK_JuT

PARITY := <DYNAMIC PARITYy SPECIFIER>

dURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT
<OYNAMIC PARITY
SPECIFIER>

COYNANMIC VARI ABLE
RECORLC PARY> 2=

<CYNAMIC VARIABLE
RECORD SPECIFIER>

CCYNAMIC LOCK PART>
<SCYNAMIC LOCK
SPECIFIER> ::=

<CYNAMIC ALL=-AREAS-
AT=0FPEN PART>

> 8
. s =

<CYNAMIC ALL-AREAS-
AT=0PEN SPECIFIER>

<DYNAM¥IC

AREA=3Y
CYLINECER :

PART >

<QYNAMIC
CYLINBER

AREA=-ZY~-
SPECIFIER>

USE_INPUT_
PART>

<SDYNAMIC
ELOCKING

b -
P-r—1

<DYNANIC
BLOCKING

USE_INPUT_
SPECIFIER>

<DYNAMIC END=-OF -
PAGE PART>

<CYNAMIC END=-OF=-
PAGE SPECIFIER> z:=
<DYNAMIC MULTI=-
PACK PART>::=
<CYNAMIC MULTI-
PACK SPECIFIER> ::=

<DYNAMIC REMOTE-
KEY PART>»::=

(1}
(1]

. o -
HE-5—]

]
[

(1]

12=19
COMPANY CONFIDENTIAL
B1800/81700 SDL (BNF Version) (F)

PeS. 2212 5405
<EYPRESSION>

VARIABLE
<OYNAMIC VARIAEBLE RECORO SPECIFIER>

<EXPRESSION>

LOCK := <DVYNAMIC LOCK SPECIFIER>
<EXPRESSION>

ALL_AREAS_AT_OPEN :=
COYNAMIC ALL=AREAS=AT-0PEN SPECIFIER>

<EXPRESSION

SREA_BY_CYLINDER
<DYNAMIC AREA=BY=-CYLINDER SPECIFIER>

SEXPRESSION>

USE_INPUT_BLOCKING :=
<DYNAMIC USE_INPUT_BLOCKING SPECIFIER>

<EXPRESSION>

END_OF _PAGE_ACTION
<DYNAHMTC END-UF-PAGE SPECIFIER>

<EXPRESSION>

MULTI_PACK
<DYHAMIC MULTI-PACK

SPECIFIER>
<EXPRESSION>

REMOTE_KEY

<DYNAMIC REMOTE=-KEY SPECIFIER>

BURROUGHS COXPORATION
COMPUTER SYSTEMS GROUP
SANTA BARZARA PLANT

<DYNAMIC REMOTE-
KEY SPECIFIER>::=

<DYNAMIC WIRK
FILE PART>::=

<DYNAMIC WORK
FILE SPECIFIER>z:=

LG=2¢
COMPANY CONFIDENTIAL

8180G/861700 SODL (3NF Version) (F)

P.Se 2212 5405

<EXPRESSION>

WORK_FILE :=
<DYNAMIC WORK FILE SPECIFIER>

<EXPRESSION>

Only the tow~crder bit of each of the above <expression>s is used

to determine
are as follows:
PARITY
VARIAZBLL
L 6CK
ALL_AREAS_AT_OPEN
AREA_SY_CYUINDER

USE_INPUT_BLOCKLNG

END_CF_PAGE_ACTION

MULTI_PACK

REMOTE KEY

ADORK_F ILE

<CYNAMIC EU_SPECIAL
PART> ::=

<CYNAMIC EU_SPECIAL
SPECIFIER> 3=

e D PO e O S O e O

- o

v O b

the value of the attributes

LU T T O T O O T T A T I

0o

Woon

The code definitions

0DD

EVEN

FIXED

VARIABLE

NGT LOCKED

LOCKED

ALLOCATE AREAS AS NEEDED

ALLGCATE ALL SPACE AT OPEN TIME

PUT AREA ANYWHERE ON DISK

ONE AREA PER CYLINDER AT BEGINNING
TAKE ATTRIBUTES FROM FILE DECLARATION
TAKE ATTRIBUTES FROM DISK FILE HEACER
See FILE ATIRIBUTES

NO DETECTION OF END-OF =PAGE

BRANCH T0 <EOF PART> 0OF <HRITE
STATEMENT> AT END CF PAGE ON

PRINTER FILE

PLACE FILE ON MULTIPLE DISK PACKS
PLACE FILE ON SINGLE DISK PACK
REMOTE KEY [S PRESENT ON ALL REA&DS
AND WRITES TO0 THE FILE

REMUOTE KEY I& NOT PRESENT

INSERT JOB NUMEBER IN FILE IDENTIFIER
LEAVE FILE IDEMTIFIER ALONE

FU_SPECIAL :=

<DYNAMIC EU_SPECIAL SPECIFIER>
EU_SPECIAL :=

<OYNAMIC EU_SPECIAL SPECIFIER>
EU_DRIVE :=

<DYNAMIC EU_SPECIAL SPECIFIER>

<EXPRESSION>

. 1¢=-21

BURROUGHS CCORPORATICN COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81800/817G60 SNDL (BNF Version) (F)
SANTA BARSARA PLANT PS5« 2212 5405

<BYNANIC EU_DRIVE
SPECLIFIER> 2:= <EXPRESSION>

<DYNAMIC EU_
INCREVENTED PART> z:= EU_INCREMENTED :=
<DYNAMIC EU_INCREMENTED SPECIFIER>
| EU_INCREMENTED ==
<DYNAMIC EU_INCREMENTED SPECIFIER>»
EU_INCREMENT :=
CDYNAMIC EU_INCREMENT SPECIFIER>

<CYNAMIC EU_INCREMENTED
SPECIFIER> ::= <EXPRESSION>

<CYNAMIC EU_
INCRENMENT SPECIFIER> <EXPRESSION>

The low=order bit of the EU_SPECIAL and EU_INCREMENTED specifiers

serves to indicate whether or not the attribute is set (C=0ff»
1=0n). If the attribute is off» then inclusion of the EU_DRIVE
and ctU_INCREMENT specifiers is unnecessary.

If these attributes are set ons then the drive and increment

parts should be includedr and should conform to the
specifications in the FILE DECLARATIONS. If omitteds the
<CYNAMIC EU_DRIVE SPECIFIER> is not changede. If the <DYNAHIC

EU_IMCREMENT SPECIFIER> has never besen set (iseesr it is 0)» then
it is set to ones otherwiser it too remains unchanged.

BUKROUGHS CORFPORATION
COMPUTER SYSTEMS GROUP
SANT A BAHRZARA PLANT
<CYNAMIC BUFFERS PART> t:=

<CYNAMIC NUMBER
OF BUFFERS> ::=

<DYNANMIC SAVE
FACTOR PART> ::=

<CYMAMIC SAVE FACTOR> ::=

<CYNAVMIC RECORD
SIZE PART> ::=

<CYNAMIC RECORD SIZE> ::=
¢CYNAMIC RECORDS-
PER=BLUCK PART> ::=
<OYNAMIC RECORDS-
PER=BLOCK> 3:=

" <DYNAMIC REEL
NUMBER PART> z2:=

<SCYNAMIC REEL NUMBER> ::=
<DYNAMIC NUMNMBER-OF-
AREAS PART> ::=
<CYNAMIC NUMBER-
CF=AREAS>» ::=

<DYNAVMIC BLOCKS=-PER=-
AREA PART> :1:=
<CYNANMIC BLOCKS=PER
AREA> ::=

SCYNAMIC QUEUE=-FAMILY~-
SIZE PART>::=

<DYMAMIC QUEUE-
FAMILY=SIZE>: =
COYNAMIC NUMBER=-OF~-
STATICNS PART>»:2:=

<CYNAMIC NUMIER=OF-
STATIONS SPECIFIER>::=

19=22
COMPANY CONFIDENTIAL
B180G/BL700 SDL (BNF Version) (F)
P.S. 2212 5435
BUFFERS 3= «<DYNAVMIC NUMBER OF SUFFERS>
<EXPRESSION>

SAVE 3= <DYNAMIC SAVE FACTOR>

<EXPRESSION>

RECURD_SIZE := <DYNAMIC RECORD SIZE>

<EXPRESSION>

RECORDS_PER_BLOCK :=
<DYNAMIC RECORDS=PER-BLOCK>

<EXPRESSION>

REEL 2= <DYNAMIC REEL NUMBER>

CEXPRESSION>

NUMBER_OF _AREAS ==
<DYNAMIC NUMBER-GF-AREAS>

<EXPRESSION>

BLOCKS_PER_AREA :=
¢DYNAMIC BLOCKS-PER=-AREA>

<EXPRESSION>

QUEUE _FAMILY_SIZE :=
<DYNAMIC QUELE-FAMILY~-SIZE>

<EXPRESSION>

NUMBER_OF_STATIONS :=
<DYNAMIC NUMBER=-OF-STATIONS SPECIFIER>

<EXPRESSION>

10-23

EURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BLBCO/BL70D SDL (BNF WVersion) (F)
SANTA BARBARA PLANT P.S. 2212 5405

The above <EXPRESSION>s return a kit string which should bLe
consistent with the formats and restrictions listed in the FILE
OECLARATIONS_

<CYNAMIC FILE TYPE PART>::= FILE_TYPE := :
<DYNAMIC FILE TYPE SPECIFIER>

<DYNAMIC FiLE TYPE SPECIFIER>::= <EXPRESSION>

The value of the expression determines the file type:
VALUE TYPE

DATA ,
INTERPRETER

CODE
DATA

2 INTRINSIC

N0 N

<DYNAMIC LABEL
TYPE PART>::= LABEL_TYPE ==
<DYNAMIC LABEL TYPE SPECIFIER>

<DYNAMIC LABEL
TYPE SPECIFIER>::= <EXPRESSION>

The value of the expression determines the label typee

VALUE TYPE
0 ANSII
i UNLABELED
2 BURROUGHS STANDARD

<DYNAMIC INVALID

CHARACTER REPORTING> ::= INVALID_CHARACTERS :=
<DYNAMIC INVALID CHARACTER REPORT
TYPE>

<DYNAMIC IANVALID CHARACTER
REPORTING TYPE> ::= <EXPRESSION>

10=24

dURRQUGHS CORPORATION ‘ CONPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 818Q00/7B17CD SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

The value of the expression determines the type of reporting:

VALUE TrYPE

G Report all lines containing invalid
characterse.

1 Report all lines containing invalid
characters and ther stop fprograme

2 Report once that the file contains
invalid characters.

3 Don*'t report that the file contains

invalid characters.

<DYNAMIC GOPTIONAL
FILE PART> :3:= QPTIONAL := <EXPRESSION>

The low=order bit of the expression determines whether or not the
file may be optional. If the value is5 1» the file may be
optional; if O»r it must be presant.

<CYNAMIC SERIAL

NUMBER PART> = SERIAL 3= <EXPRESSION>

The expression should generate a 6=character stringr each of the
characters of which are a decimal digit. This number will be
used as the tape serial number.

<CYNAMIC EXCEPTION MASK
PART> ::= EXCEPTIUN_MASK = <EXPRESSION>

The Low order 24 bhits of the value c¢f the expression will be used
as the EXCEPTIAON MASK. See <EXCEPTION MASK PART> under <FILE

DECLARATION STATEMENT> in Section 6.

10-25

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMHS GROUP B81800/81700 SCL (BNF version) (F)
SANTA BSARBARA PLANT P.Se 2212 5405

<DYNAMIC QUEUE SIZE ,
PART> == QUEUE _MAX_MESSAGES = <EXPRESSION>

Sets size for gueue files.
KCYNANMIC HEADER PART> 3= REMDTE_HEADERS == <EXPRESSION>
Sets headers toolean for rewote filese.

<DyNaAMIC SOFT
TRANSLATE PART> 3:= TRANSLATE := <EXPRESSION>

I TRANSLATE_FILE 3= <EXPRESSIUN>

TRANSLATE sets a booleansr turning the translaticn option on or
off while TRANSLATE_FILE c¢hanges the file-id of the translate
table file.

<DYNANMIC HOST_NAME PART>::= HOST_NAME:s= <EXPRESSION>

Sets Host name for BDBNA.

<CYNAMIC OPEN_ON_BEHALF_OF

PART>s 2= OPEN_ON_BEHALF _OF:= <EXPRESSION>

Turns the OPEN_OM_BEHALF_OF Boolean on or off.

190=260

BURRUUGHS CORPORATION ‘ COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1600/B1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT | PeSe 2212 5425
SIGP STATEHENT

<STOP STATEMENT> ::= sTopP

1 STOP <EXPRESCSION>

The <STOP STATEMENT> is a comrunicate to the MCP that the programn
has finished. It should not be confused with FINI which is the
final statement in the program.

STOP <EXPRESSION> is intended for use by the compilers only. The
SEXPRESSION> communicates the number of syntax errors to the MCP.

10=27

BURROUGHS CORFORATION CONPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 818300/81703 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeS. 2212 5495

<ZIP STATEMENT> 2:= 2IP <EXPRESSION>

The <ZIP STATEMENT> allows the user to gass control instructions
to the MCP. The <EXPRESSION> should generate a character string

whose wvalue s a valid MCP control statement as defined in the
B1790 Software Operational Guidee

10-28

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEAS GROUP BLECO/BLT?O0 SCL (BNF Version) (F)

SANTA BAKBARA PLANT PaeSe 2212 5405

SEARCH_DIRECTORY SIAIEMENT N O onheholl 4

<SEARCH STATEMENT> 2::= <SEARCH PART>; <ON FILE PART»>

<SEARCH PART> :s:= SEARCH_DIRECTURY (<SEARCH OBJECT>»
<SEARCH RESULT>,<SEARCH RESULT MODE>

<SEARCH O0OBJECT> =:= <ADDRESS GENERATOR>

<SEARCH RESULTY> ::= <ADDRESS GENERATOR>

<SEARCH RESULT MODE>» ::= BIT | CHARACTER

<ON FILE PART> 2:= <EMPTY> I ON FILE_MISSING <EXECUTABLE

STATEMENT>

1 ON FILE_LOCKED <EXECUTABLE STATEMENT>

I ON FILE_MISSING <EXECUTABLE STATEMENT>;
ON FILE_LOCKED <EXECUTABLE STATEMENT>

i ON FILE_LOCKED <EXECUTABLE STATEMENT>;
ON FILE MISSING <EXECUTAZLE STATEMENT>

The <SEARCH STATEMENT> atllows the wuser to extract certain

information contained in the disk file header specified by the
<SEARCH GRBJECT>.

The <SEARCH 0OBJECT> is expected to be 30 characters in length
where the first 1¢ characters are the pack identifications the
second 10 characters are the multi-file identification, and the

thir¢ 1% are the file identificatione. File names less than 1l¢
characters must be left-justified in their respective fields with
trailing blanks appendede If only one file name exists» that

name should be left-justified in the multi=file identification
fields and the file identification shoutd be tlank.

The <SEARCH RESULT> specifies the receiving field and should be
366 bits long if bit mode is specifiedr or 59 tytes if character
mode is spacified.

The information is returned in the following format:

ACCESs - DFH eoea

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLANT

01

FILE_HEADER_FORMAT,

D2
02
02
92
02
02
D2
22
22
02
02
02
02
02
02

Note:

The

arise.

OPEN_TYPE
NO_USERS
RECORD_SIZE
RECIRDS_PER_BLOCK
EOF_POINTER
SEGMENTS_PER_AREA
USER_OPEN_OUTPUT

FILE_TYPE
PERMANENT_FLAG
BLOCKS_PER_AREA

AREAS_REQUESTED
AREA_COUNTER
SAVE_FACTOR
CREATION_DATE
LAST_ACCESS_DATE

BIT
BIT
8IT
BIT
BIT
8It
BIT
BIT
BIT
BIT
BIT
BIT
8I7
8IT
8It

10=29

COMPANY CONFIDENTIAL
818C0/B170Q0 SDL (BNF Version) (F)

(24)»
(24),
(24)»
(24)»
24),
(24)»
(24),
(24)»
(24)»
(24),
(24)»
(24),
(24)»
(24)»
(24),

of

DS ORE RE R ORE N R NE ND N 32 e 2N

This format may be subject to change.

P.s.

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

2212 5405

L)
2)
€4)
(4)
(8)
8)
(@)
2)
2)
(6)
3
3)
3)
{5)
(5)

these

<FILE MISSING PART> and <FJILE LUOCKED PART> allaw the user to
specify the course of action should either

conditions

10=3¢C

AULROUGHS CORPORATION COMPAMNY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 8180C/B1760 SDL (BNF Version) (F)
SANTA BAR3ARA PLANT PaSe 2212 5445

READ _FILE HEACER» WRITE FILE _HEADER

<CACCESS FILE HEADER
STATENMENT> ::= <ACCESS FILE HEADER PART>;
I <ACCESS FILE HEADER PARTI>;
<F ILE MISSING PART>
I <ACCESS FILE HEADER PART>;
<F ILE LOCKED PART>
| <ACCESS FILE HEADER PART>;
<FILE MISSING PART>
<F ILE LOCKED PART>

CACCESS FILE HEADER
PART> ::= READ_FILE_HEADER
(<FILE NAME>» <DESTINATION FIELD>)
| WRITE_FILE_HEADER
(<FILE NAME>», <SOURCE FIELD>)

<FILE NAME> ::= <ADDRESS GENERATOR>
<CESTINATION FIELD> 3:3= <ADORESS GENERATOR>
<SQURCE FICLD> :1:= <ADDRESS GENERATIOR>
<FILE MISSING PART> ::= ON FILE_MISSING <EXECUTABLE STATEHENT>
<FILE LOCKED PART> ::= ON FILE_LOCKED <EXECUTABLE STATEMENT>

The <ACCESS FILE HEADER STATEMENT> is intended for use in systems
programs only. It enables the programmer to either read or write
a file header.

The <FILE NAME> is expected to be a 30-character field where the
first 12 characters are the PACK_ID. the second 10U characters are
the VMULTI-FILE IDENTIFICATION and the third 190, the FILE
ICENTIFICATION. File names Lless than 1i¢ characters are
left=justified in their respective fields. 1If anly one file name
existss it is left=justified in the wmulti-file identification,
and the file identification should be set to tlankse.

The <S0URCE FIELD> or <DESTINATION FIELD> specifiess
respectively» the sending or receiving field» and is expected to
pe 576 to 432% bits in length depending upon the number of areas
allocated. Information is passed in the file header formate.
Refer to the 81700 MCP Manual for specificse.

10=-31

BURROUGHS CORPORATION CONMPANY CONFTDENTIAL
COMPUTER SySTEMS GROUP B18G0/BL700 SDL (BNF version) (F)
SANTA BARBARA PLANT P.S. 2212 54C5

The <FILE MISSING PART> and <FILE LOCKED PART> enable the
programmer to specify the course of action shoculd either of these
conditions arisee.

Note that extreme caution is advised when Wwriting a file header.

10=-32

BURRBUGHS CCORPURATION COvPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BLECO/EL700 SDL (BNF ¥Yersion) (F)
SANTA BARBARA PLANT PaeSe 2212 546C5

' <ARRAY PAGE TYPE
STATEMENT> ::= <ARRAY PAGE TYPE DESIGNATOR>
(<PAGED ARRAY NAME>,<PAGE NUMBER>)

<ARRAY PAGE TYPE
OESIGNATOR> t:= MAKE_READ_ONLY
! MAXE_READ_WRITE

" <PAGED ARRAY NAMNE> ::= <IDENTIFIER>

<PAGE NUMBER> ::= <EXPRESSION>

The <ARRAY PAGE TYPE STATEMENT> allows the user to mark certain
paged array pages as READ=ONLY. When this is doner a page wWwill
not be written out to disk every time it is overlaid.

MAKE _READ_WRITE allows the user to change information on a paged

arrayr» and to have that array wWwritten on cisk when it is
overtlaid. It is only necessary to specify MAKE_READ_WRITE after

a MAKE_READ_ONLY specification.

It is the programmer's responsibility to ensure that the
information in a page marked READ=ONLY is not changed. In
additions, the user is responsible for guaranteeing correct page
nuamber specificationsas There is no syntax check for eithere.

EXAMPLE:

DECLARE PAGED (32) P (1924) BIT(30)» T1 FIXED
TL = =13
DC FOREVER;
MAKE_READ_ONLY (P, BUMP T1);
IF T1 = 31 THEN UNDO?
END;

MAKE_READ_WRITE (P», 0);

10-33

BURROUGHS CORPORATICN COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18C0/B1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.Se 2212 5405

— e e D - o e, - o

<COROUTINE STATEMENT>::= <COROUTINE ENTRY STATEMENT>

1 <CORQUTINE EXIT STATEMENT>

<COROUTINE

ENTRY STATEMENT>

o

= ENTER_COROUTINE
(<COROUTINE TABLE SPECIFIER>)

<COROUTINE
TABLE SPECIFIER> z:= <ADDRESS GENERATIR>
<COROUTINE
EXIT STATEMENT>::= EXIT_COROUTINE
(<CORCUTINE TABLE SPECIFIER>)
The <CCROUTINE TAQLE SPECIFIER> associated with ENTER_COROUTINE

and EXIT_CURQUTINE is assumed to describe a table wWwith the
" following format:

DECLARE
01 TABLE |
»02 NUMBER_OF_ENTRIES BIT(4)
»02 ENTRY_ACDRESS BIT(32)
»32 PPS_COPY(16) 3IT(32)

-
»

ENTER_COROUTINE: The <CORDUTINE TABLE SPECIFIER> is assumed
to have the format described aboves. The current code
address is pushed on to the Program Pointer Stacke. The
number of elements of PPS5.COPY that 1is specified by
NUMBER_OF_ENTRIES 1is pushed onto the Program Pointer Stack.
The address of the next instruction is taken from
ENTRY_ADDRESS.

EXIT_CCROUTINC: The <COROQUTINE TABLE SPECIFIER> is assumeaq

to describe a table of the format given above. The current
nesting Level is stored in NUMBER_OF_ENTRIES. The current
code address is stored in ENTRY_ADDRESS. The number C(as

specified by NUMBER_OF _ENTRIES) of entries on the top of the
Program Pointer Stack is copied to PPS_COPY((C) through
PPS_COPY(NUNMBER_OF_ENTRIES=1). If NUMBER_OF_ENTRIES is 0«
then nothing is copied. An UNDO 11s performed» using
NUNMBER_OF_ENTRIES as the number of entries on top of the
Program Pointer Stack.

19=34

EURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTE#MS GROUP B130G/81700 SOL (BMNF vVersion) (F)
SANTA BARBARA PLANT _ PseSe 2212 5405

Note: Upon first execution of ENTER_COROUTINE, the table must
already be set ups. The easiest Wway to accosgplish this is to make
the first executable statement in the coroutine to be entered an
EXIT.CUROQUTINE statemente. The first entrance to the corcutine is
then accomplished by a call statement.

Note2 This is not a general coroutire mechanises~~i.ee» It is not
symmetrice The routine executing the ENTER_CCROUTINE is a master
to the slave routine which contains the EXIT_CURQUTINE'S.

Note: EXITY_CORQUTINE can only appear within procedures Wwith no
parameters and no local datas ieeer those procedures which do
not change the Control Stack.

EXAMFLE:
DECLARE I FIXED? witl disclay "000003" (1)
DECLARE TASLE BIT(4+¢17%32); "g¢QasasT (2)
PROCEDURE SLAVE; ~000008" (3)
EXIT_CUORODUTINE(TABLE)? ZSEYS UP TABLE "COCILIT (4h)
OC FUREVER:? "
BuNp I 8y 23 "
DISPLAY DECIMALC(I»b5)? b
EXIT_COROUTINE(CTABLE)? ZRESETS TASLE "
END; ' "
END SLAVES "
PROCECURE MASTER? "5*n" (2n)
SLAVE; ZCALL FOR SETUP "S«n+3" (2n+¢l)
I := 07 ”

DC FOREVER?
BUNP I 8Y 33
DISPLAY DECIMALC(I»6);
ENTER_COROUTINECTABLE)? 2USES TABLE
END?
END MASTER;

13 31 13

10-=35

EURRJUGHS CORPORATIGN COMPANY CUNFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/B1700 SOL (BMNF Version) (F)
SANTA BARBARA PLANT ‘ P.S. 2212 5405

L . ——— ———— D i ——— S o — T —— -

<EXE CUTE~-PROCEDURE
STATEMENT> ::= <SNON-TYPED PROCEDURE DESIGNATOR>

<NON=-TYPED PROCEDURE
DESIGNATOR> 3:= <NOM-=TYPED PROCEDURE IDENTIFIER>
<ACTUAL PARANETER PART>

<NON=-TYPED PROCEDURE
ICENTIFIER> ::= <IDENTIFIER>

<ACTUAL PARAMETER PART> <EMPTY>

I (<ACTUAL PARAMETER LIST>)

<SACTUAL PARAMETER LIST>

.o
(1]

<SACTUAL PARANMETER>
1 <ACTUAL PARAMETER>»

<ACTUAL PARAMETER LIST>

<ACTUAL PARAMETER> 3:= SEXPRESSION>
I <ARRAY DESIGNATOR>

<ARRAY CESIGNATOR> 3@

<ARRAY IDENTIFIER>

A non~typed procedures iecer a procedure which performs a
function and does not return a values is invoked through an
SEXE CUTE=PRCCEDURE STATEAENT>. The name of the procedure is
followed by its parameters enclosed in parens. Refer to the
section ADDRESS AND VALUE PARAMETERS for information concerning
passing parameters.

For a description of the invocation of typed proceduresr, see
VALUE VARIABLES.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT

<SEXE CUTE-FUNCTION
STATEMENT> ::=

<FUNCTION DESIGNATOR> ::

it

N MR Lup Gue WS NS GER NN i Gt S Gk WA s NAm al MR MR Al M S ANE s T GG M TA el G NG G AN Ma S el Sam WU e dam

10=-36

COMPANY CONFIDENTIAL

B1800/BL7VC0 SDL (BNF Version) (F)
Pe3e 2212 5405

<FUNCTIUN DESIGNATOR>

<ACCESS FILE INFORMATION DESIGNATOR>
<CHANGE STACK SIZE DESIGNATOR>
<CHARACTER FILL CESIGNATOR>
<COMMUNICATE DESIGNATOR>
<COMPILE=CARD-INFO DESIGNATOR>
<DC_INITIATE_IO DESIGNATOR>
<DEBLANK DESTIGNATUR>
<DISABLE_INTERRUPTS DESIGNATOR>
<DUMP DESIGNATOR>
¢DUMP-FOR=-ANALYSIS DESIGNATOR>
<ENABLE_INTERRUPTS DESIGNATOR>
<ERROR COMMUNICATE DESIGNATOR>
CEXECUTE DESIGNATOR>

<SFETCH DESIGNATOR>

<F IND DUPLICATE CHARACTERS DESIGNATOR>
<FREEZE~-PROGRAM DESIGNATOR>
<GROW DESIGNATOR>

<HALT DESIGNATOR>

<HARDWARE MONITOR DESIGNATOR>
<INITIALIZE_VECTOR DESIGNATOR>
<MESSAGE COUNT DESIGNATOR>
<MONITOR DESIGNATOR>

<QVERLAY DESIGNATOR>

<READ CASSETTE DESIGNATOR>
<ACCESS-FP3 DESIGNATOR>
¢REFER_ADDRESS DESIGNATOR>
<REFER_LENGTH DESIGNATCR>
<REFER_TYPE DESIGNATOR>
<REINSTATE DESIGNATOR>
¢RESTORE DESIGNATOR>

<REVERSE DESIGNATOR>

<SAVE DESIGANATOR>

<SAVE_STATE DESIGNATOR>

<SORT DESIGNATOR>

<SORT_MERGE DESIGNATOR>
<SORT_SWAP DESIGNATOR>
<THAW_PROGRAM CESIGNATCR>
<THREAD_VECTOR DESIGNATOR>
<TRACE DESIGNATOR>

<TRANSLATE DESIGNATOR>

10-37

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEM3 GROUP 8180G/s81730 SOL (BNF version) (F)

SANTA 32ARBARA PLANT P.Ss 2212 54405

ACCESS FILE_INFORMATION

<ACCESS FILE INFORMATION

CESIGNATOR> 3= ACCESS_FILE_INFORMATION C(<FILE DESIGNATOR>»
<RETURN TYPE>» <DESTINATION>
<FILE DESIGNATOR> ::= <F ILE IDENTIFIER>
! <SHITCH FILE IDENTIFIER> (<EXPRESSION>)
<RETURN TYPE> 3:= BIT 7/ CHARACTER
CCESTINATION> z2:= <ADDRESS GENERATOR>

The <ACCESS FILE INFORMATION DESIGNATOR> returns the end-of-file
pointer and the device type from the FIB of the specified file to
the specified destination.

The information may be returned as either bit or character. The
format is as follows:

91 DESTINATION_FIELD,
02 EQCF_POINTER
02 DEVICE_TYPE

== ngl
-t by
an
~ £

)» % CHARACTER(S)
; %2 CHARACTER(2)

I
7~

To insure that the FIB existss this communicate should only be
used on open files.

CHANGE _STACK_SIZES

. — - ———— -

<CHANGE STACK

SIZES DESIGNATOR> s:= CHANGE_STACK_SIZES (<VSSIZE>,
<NSSIZE>» <CSSIZE>» <ESSIZE>S
<PPSSIZE>» <DYNAMIC SIZE>)

<VYSSIZE> ::= <NUMBER>
<NSSIZE> ::= <NUMBER>
<CSSIZE> ::= ~ <NUMBER>
CESSIZE>» ::= CNUMBER>
<PPSSIZE> ::= <NUMBER>

<DYNAMIC SIZE> z2:= <NUMBER>

Lo-38

BURROUGHS CORPORATION CONMPANY CONF IDENTIAL
COMPUTER SYSTEMS GROUP B18COH/B1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

This statement is restricted to Lexic Level Zero of programs with
no global datae. Also» due to technical tncompatibilitiess, it may
not pbe used in a program that invokes profilinge timing» or
monitoring facilities. Note that the parameters are in an order
corresponding to the order of the stacks in memory.

The result of the execution of the statewment 1is to change the
program's stack sizes to the values given.

CHARACT

im

R_EILL

<CHARACTER FILL

DESIGNATOR> ::= CHARACTER_FILL (<OF DESTINATION>,
<0F SOURCE>»)

<0F OQESTINATION> ::= <ADDRESS GENERATCR>

<0F SCURCE> ::= <EXPRESSION>

The high=order B8 bits of the <CF SOURCE> will be spread
throughout the <CF DESTINATION>.

COMMUNICATE

<COMMUNICATE CESIGNATOR>:z:3= CONMUNICATE (<EXPRESSION>)

The <EXPRESSICN> is expected to be a valid communicate message.
This is intended only for experimental testing of communicatese.

- - S ah - e - S e -

<COMPILE-CARD=-
INFD DESIGNATOR>::= COMPILE_CARD_INFO

(<CCI DESTINATION FIELD>»)
<CCI CESTINATION FIELD>::= <4DDRESS GENERATOR>

BURROUGHS CORPORATION

COMPUTER SYSTEMS GROUP

SANTA EARBARA PLANT

This

format:

function

JBJECT NAME
EXECUTE TYPE (DECIMAL)

0l
02
03
04
05
26
07
COMPILER
COMP ILER
COMP ILER
compP ILER
COMP ILER
COMP ILER
COMP ILER
COMPILER
FILLER

EXECUTE
COMPILE
CONMPILE
COMPILE
COMPILE
GO PARTY
GO P ART

is

returned

AND GO

FOR SYNTAX

TO LIBRARY

AND SAvE

OFf COMPILE AND 6O
OF COMPILE AND SAVE

PACK IODENTIFIER
INTERPRETER NAME
INTRINSIC NAME
PRIGARITY (DECIMAL)

SESSIGN

NU MBER

JOB NUMBER (DECIMAL)

15T AND
CHARGE

2ND NAMES OF RUNNING PROGRAM

NUMBER

COMPILATION DATE AND TIME COMPILED

FILLER

CO#MP ILER
COMPILER
COMP ILER
COMP ILER
COMP ILER

USERCODE
PASSHWORD

PARENT JOB NUMBER
PARENT QUEUE IDENTIFIER

L3G6 SPQ

CC_INITIATE_IO

<CC_INITIATE_I0
CESIGNATOR>» ::2=

<I0 DESC ADDRESS>

See MCP documentation for

DC_INITITATE_IQ (<PORT>,»
<I0 DESC ADDRESS»>

<EXPRESSIGN>
<EXPRESSION>

<EXPRESSION>

.- o -
e =

PusSe

intended for use by the campilers only.
information on the compile card is

the

CHARACTER
CHARACTER

CHARACTER
CHARACTER
CHARACLTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
BIT (36)
BITC(4)
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

10=-39

COMPANY CONFIDENTIAL
B1800/B1700 SOL (BNF Vversion)

(F)

2212 5405

The

following

(30)
2>

C130)
(33)
(10)
(2)
(%)
(5)
(29)
7))
)

(10)
(1o
(d4)
(2%)
1)

SCHANNEL >»

DC_INITIATE_IO (comrunicate verb 4Q).

10=4§

SURROUGHS CCORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1800/B1700 SDL (BNF Version) (F)

SANTA BARBARA PLANT P.S. 2212 5405
CEBLANK

<CEBLANK DESIGNATGOR>z:= DEBLANK (<FIRST CHARACTER>)

<FIRST CHARACTER>::= <IDENTIFIER>

The <FIRST CHARACTER> is a simple identifier which describes the
first character to be examinede. Deblank repeatedly increments
the address field of the descripter for <FIRST CHARACTER> until
<FIRST CHARACTER> describes a non~blank character.

CISABLE_INIERRUPIS

<CISABLE _INTERRUPTS
CESIGNATOR> 3 := DISABLE_INTERRUPTS

For MCP use onlye.

The <DISABLE INTERRUPTS DESICGNATOR> suppresses all interrupts
until an <ENABLE INTERRUPTS DESIGNATOR> is encounterede.

Note that this construct cannot be executed by normal state
programse

ouMP
<DUMP DESIGNATOR> s:= DuUMP
The MCP will create a dumpfile, and program execution witl

cont 1nue after the dumpe

10-41

BURRUUGHS CCRFORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180C/B1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.5. 2212 5495

CUMP_EOR_ANALYSLS

<CUMP-FOR~
ANAL YSIS DESIGNATOR>::= DQUMP _FOR_ANALYSIS

Execution of this function will cause a dumpfile to be created
and execution to continue.

e e e v s oo . it ot

<ENABLE_INTERRUPTS
BESIGNATOR> ::= ENABLE_INTERRUPTS

For MCP use only.

The <ENABLE INTERRUPTS DESIGNATOR> causes the MCP to return to
the normal interrupt=processing mode after the <DISA3LE
INTERRUPTS DESIGNATOR> has changed that mode. See above.

Note that this construct cannot be executed by a normal state

programs

ERROR_COUMMUNICATE

<ERROR COMMUNICATE
CESIGNATOR> ::= ERROR_COMMUNICATE (<EXPRESSION>)

The value of the expression should be in the followirg form:

2 BITS 6 BITS 16 BITS 24 BITS

where N is the error numpere.

19=42

BURROUGHS CORPORATION COFMPANY CONFIDENTIAL
CONPUTER SYSTEMS GROUP B1800/BL705 SDL (BNF vYersion) (F)
SANTA BARBARA PLANT P.S. 2212 544945

fThe value of the expression will be put on the Evaluation Stack
as a descrirtors and an MCP communicate will te perfornmed.

If N = 29 then the MCP will use the 1l6=bit field as a bit length
and the 24=-bit field as a base relative bit address of the error

message to be printed on the SPO. Otherwises N 1is the
MCP-defined error message number.

See <EXECUTE OPERATOR DESIGNATOR> in Section 8.

FETCH

<FETCH DESIGWNATCR> ::= <FETCH SPECIFIER> (<I/0 REFERENCE
ADDRESS>», <PORT», CHANNEL ADDRESS>»
<RESULT DESCRIPYOR ADDRESS>)

<FETCH SPECIFIER>»::= FETCH | FETCH_AND_SAVE

<170 REFERENCE

ADDRESS> 1::= <EXPRESSION>

<PORT» CHANNEL

ACDRESS> ::= <ADDRESS GENERATOR>

<ADDRESS GENERATOR> z2:= See AUDRESS GENERATORS

<RESULT DESCRIPTOR
ADDRESS> 3= <ADDRESS GENERATOR>

The <FETCH DESIGNATOR> fetches the result of an I/0 operations.
If there is a high priority interrupts, then that interrupt will
be reportede Otherwises if the <I/0 REFERENCE ADDRESS> is
non=zeros» then only an interrupt on an i/0 descriptor with the
reference address the same as the <[/f] REFERENCE ADDRESS> will be
reportede. The PORT (3 BITS) and CHANNEL (4 BITS) of the
interrupt are stored from left to right in the low=order 7 bits
of «PORT, CHANNEL ADDRESS>. The I/0 RESULT DESCRIPTOR REFERENCE
ADDRESS is stored in the LlLow=order 24 bits of the <RESULT
DESCRIPTOR ADCRESS>. If there were no interruptse then theses two
fields will be zero. FETCH_AND_SAVE is obsolete as of the 5_1
release.

13-43

BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GrOUP 31800/81700 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.Se 2212 5495

<FIND DUPLICATE CHARACTEKRS

DESIGNATGR> ::= FIND_DUPLICATE_CHARACTERS
(<FDC TEXT> » <DUPLICATE COUNT>»
<SOUPLICATE CHARACTER> » <NON-DUPLICATE

TEXT>)
<FDC TEXT> z:= <SIMPLE IDENTIFIER>
<CUPLICATE COUNT> ::= <ADDRESS GENERATOR>
<CUPLICATE CHARACTER> =2:= / <ADDRESS GENERATOR>
<NON=DUPLICATE TEXT> ::= <SIHPLE IDENTIFIER>

The text to be scanned for contiquaus duplicate characters is
described initially by <FDC TEXT». The text will be scanned

until three or more contigquous duplicates are faound. Upon
returns <FDC TEXT>*s descriptor will be reduced to describe the
text beyond the duplicates <NON=-DUPLICATE TEXT>'s descriptor

will be modified to describe the nor-duplicate text that was
scanneds; <DUPLICATE COUNT> will contain the number of duplicate
char acterss and <DUPLICATE CHARACTER> will describe the
dupl icate character.

. € — o —— > o -

<FREEZE-=PROGRAH
DESIGNATOR>::= FREEZE_PROGRAY

Execution of this function will prevent the prograe from being
moved in mewmory or from being rolled out of memory.

GROH

<GRIW ODESIGNATOR>::= GROW (<PAGED ARRAY IDENTIFIER>,
<EXPRESSION>)

This statement dynamically increases the array tound of the
specified paged array by the wvalue of the exvoression. The
expression may not be negative (the bound may not te decreased)
and the resulting array bound must not be larger than 16277215.

10-44

BURRGUGHS CORPORATIOGH COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1800/B17C0 SDOL (BNF Version) (F)

SANTA BARDARA PLANT PeS. 2212 5405
HALT

<HALT DESIGNATOR> z2:= HALT (<EXPRESSION>)

The <HALT DESIGNATOR> causes the value of the <EXPRESSION>» to be
moved to the M-Machine T-Register. If the value is lLonger than
24 bits, only the low~order 24 Dits are movecds. If the value is
Less than 24 bits> the wvalue is right=-justified and leading
zeroes are addede.

After the value is moveds an N-Machine halt is executed.

EXAMPLES:

DECLARE X BIT(24);
HALT (X:1HEX_SEQUENCE_NUMBER);

HALT (SUBBIT (HEX_SEQUENCE_NUMBER, 0s 24))3

———— - e e i o o

<HARDWARE MONITOR
DESIGNATUOR> 2:= HARDWARE_MONITOR C(<EXPRESSIGN>)

The monitor micro=opcode Wwill be executed using the Low=order 3
bits of the <EXPRESSION> as its operande

INITIALIZE VECIGQR
<INITIALIZE_VECTOR
CESIGNATOR> s 1= INITIALIZE_VECTNR (<TABLE ADDRESS>)

<TABLE ADDRESS> ::= SADDRESS GENERATORD>

For use by S50RT only.

L0=45

SURROUGHS CORPORATION CONMPANY CONF IDENTIAL
COMPUTER SYSTEMS GROUP B1800G/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

The <TABLE ADDRESS> points to the table ccntaining the vector
addresses the vector Level=1 addresss» the key table address» and
the vector Limit addresse.

e e A T2 T

CSMESSAGE _COUNT
DESIGNATOR> 3:= MESSAGE_COUNT (FILE DESIGNATOR>,
<ADDRESS GENERATOR>

<FILE DESIGNATOR> ::= <FILE IDENTIFIER>
I <SWITCH FILE ID> (<EXPRESSION>)

The <FILE SPECIFIER> is assumed to be a gqueue file and the number
of messages in the queue will be returred as a fixed number into
<ADDRESS GENERATOR>. I[f <FILE SPECIFIER>» is a gueue file family»
an array of values» one for each fanily memkter, will be returned
into <ADDRESS GENEKATOR>.

MONITOR

See Arpendix VIII: SDL MONITORING FACILITY

gy

im

RLAY

<CVERLAY DESIGNATOR> ::= OVERLAY (<EXPRESSION>)

The <EXPRESSIUN> will be used as an index into the interpreter
dictionary by the interpreter SWAPDETr. The interpreter
dict ionary entry will specify the action to be taken. See the
81700 MCTP Reference Manual.

1246

BURROUGHS CORPORATION : COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81800/81700 SOL (BNF Version) (F)

SANTA BARBARA PLANT PeSe 2212 5405

READ_CASSETTE

<READ CASSETTE
DESIGNATOR>2:= READ_CASSETTE (<DESTINATION SPECIF IER»
<HASH_TOTAL SPELIFIER>», <RESULT SPECIFIER>)

<CESTINATION SPECIFIER>::= CADDRESS GENERATOR>

<HASH_TOTAL SPECIFIER>::= HASH_TOTAL
t NO_HASH_TOTAL

<RESULT SPECIFIER>::= <ADDRESS GENERATOR>

The <READ CASSETTE DESIGNATOR> causes the number of bits
specified by the <DESTIHATION SPECIFIER> to be read froam the
console cassette to the address specified by that <DESTINATION
SPECIFIER>. This number of bits must be equal to the record size
minus the hash~total size (if it is present) of 116 bits. The
<HASH_TOTAL SPECIFIER> indicates whether or not a hash-total is
expected at the end of the recorde

A value ¢f O or 1 will ©be Lleft in the <RESULY SPECIFIER>
indicating that the HASH-TOTAL was incorrect or correct:-
respectively. ‘

READ_FPB» WRITE_FPB

<ACCESS-FPH
DESIGNATOR> :2:= <ACCESS~FPB IDENTIFIER>

(<FILE SPECIFIER>»

<SOURCE OR DESTINATION FIELD>)
<ACCESS-FPB ILENTIFIER> ::= READ_FPB 1 WRITE_FP3

<FILE SPECIFIER> ::= <FILE DESIGNATOR>
I <FILE NUMBER>

<FILE DESIGHNATOR> ::= <FILE IDENTIFIER>
{ CSWITCH FILE IDENTIFIER> (<EXPRESSION>)

<FILE NUMBER> ::= SEXPRESSION>

<SOURCE OR DESTINATION
FIELD> 2:= <ADDRESS GENERATOR>

<ADDRESS GENERATOR> 3:= See ADDRESS GENERATORS

10-47

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81803781700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSe. 2212 5405

The File Parameter Block of the file 1indicated by the <FILE
SPECIFIER> is read intos or written from the <SOURCE OR
DESTINATION FIELD>. -

Note that the <SOQURCE OR DESTINATION FIELD> should be 1440 bits
in Length.

READ_OVERLAY, WRITE _OVERLAY

- - —— - -

<ACCESS OVERLAY
DESIGNATOR> ::= <ACCESS OVERLAY IDENTVIFIER>(<EXPRESSION>)

<ACCESS OVERLAY
ICENTIF IER> 3:3= READ_OVERLAY / WRITE_OVERLAY

The wvalue of the <EXPRESSION> is assumrmed to be a 7b=bit field
with the following format from high=-order to low=order:

BITS , CONTENTS

. 0-3 EU = 0 (Not used)
4=27 Base relative beginning address
28=51 Base relative ending address
52~75 Disk address (Relative to user area)

The area described by the beginning and ending addresses is reag
tor» cor written from the user disk at the (relative) DISK ADDRESS
given.

REFER ADCRESS

<REFER_AD
DESIGNATO REFER_ADORESS (<REF VAR>» <EXPRESSION>)

The value of <EXPRESSIUN> is stored in the address fart cof <KREF
VAR> .

10-4¢8

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81800/81700 SDL (BNF version) (F)
SANTA BAKBARA PLANT P.S. 2212 5405

REEER LENGTH

<REFER_LENGTH_
DESIGNATOR>::= REFER_LENGTH (<REF VAR>, <EXPRESSION>)

The value of <EXPRESSION> is stored in the length part of <REF
VAR> . '

REFER IYPE

EAP R e T

<REFER_TYPE_
ODESIGNATUR> 2:= REFER_TYPE (<REF VAR>» <EXPRESSION>)

The value of <EXPRESSION> is stored in the type part of <REF
VAR> .

REINSTAIE
CREINSTATE DESIGNATOR> ::= REINSTATE (<REINSTATED PROGRAM>)
<REINSTATED PROGRAM> ::= <ADDRESS GENERATOR>

The <REINSTATED PROGRAM> is5 assumed to describe the field
RS_CONMMUNICATE_MSG_PTR of RS_NUCLEUS of the prcecgram to be
reinstated (See description of the RUN STRUCTURE in BLl700 MCP
Reference Manual).

The reinstating oprogram's M-Machine state is5 stored in the
appropriate parts of i1ts RS_NUCLEUS. The address of the
reinstating program?’s RS_NUCLEUS is stored 1in the reinstated
program®'s RS_COMMUNICATE_LR.

The program whose RS_COMMUNICATE_MSG_PTR is descrited by
<REINSTATED PROGRAM> is then reinstated.

10-49

BURROUGHS CORPORATION COVMPANY CONFIDENTIAL

COMPUTER SYSTEMS CGROUP 818046/B1700 SDL (BNF version) (F)

SANTA BARBARA PLANT P.S. 2212 5405
ReSTOKE

<RESTORE DESIGNATOR> ::3 RESTORE (<ADDRESS GENERATOR LIST>)

]

<ADDRESS GENERATOR
LIST> ::= See ADDRESS GENERATORS

The <RESTORE DESIGNATOR> assigns the current value on the top of
the Evaluation Stack to each <ADDRESS GENERATOR>,» from right to
Left» in the list. This operator is used in canjunction with the
<SAVE DESIGNATOR>»., 3ee above.

EXAMPLE:

SAVE (A»B»C)>;

»

RESTORE (A»8.0)3
NOTE THAT RESTORE (A,B»C) I35 THE SAME AS:
RESTORE (C):

RESTORE (B);
RESTORE (A);

REVERSE_SIORE

<REVERSE STORE
DESIGNATOR> ::= REVERSE_STORE
(<ADDRESS GENERATOR LIST>,<EXPRESSION>)
<ADDRESS GENERATJR
LIST> ::= See ADDRESS GENERATURS

The REVERSE_STORE OPERATION has the effect of evaluating multiple
stor € operations from left to right instead of from right to
Left. See THE REPLACE OPERATORS.

For example:

REVERSE_STORE (LsMsNsP»X+1);

has the same effect as:

10-590

BURROUGHS CORPDORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81800/81700G SOL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

L = M5

M = NJ

N 3= P;

P 1= Xel;

With the REVERSE_STORE, however, the descriptcr for each <ADDRESS
GENERATOR> in the tist is determined only onces

Note:
REVERSE_STORE (LsHeNs»PsX¢l)s
is not the same as

:=ﬁ:=N:=P:=X+1:_

Ien
>
|
im

<SAVE DESIGNATOR> 3= SAVE (<EXPRESSION LIST>)

Each of the <EXPRESSICN>s» from left to right, will be evaluated,
and the wvalue of weach left on the Evaluation Stack (and vValue
Stacks if necessary). See <RESTORE DESIGNATOR>.

SAVE_STATE
<SAVE STATE DESIGNATIR> ::= SAVE_STATE

The state of the interpreter will be stored in RS.M.MACHINE (See
g179C MCP Reference Manual). Execution will then continues

S0R1

<SORT DESIGNATOR>» =::= SORT (<SORT INFORMATIGN TABLE SPECIFIER>,
<S5C0RT KEY TA4BLE SPECIFIER>.»

<INPUT FILE DESIGNATORD>,

<QUTPUT FILE DESIGNATOR> <TRANSLATE
FILE DESIGNATOR>)

<SORT iINFORAMATION TABLE
SPECIFIER> 3= <ADDRESS GENERATOR>

13-51

BURROUGHS CCRPUORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1840G/817060 SOL (BNF Vversion) (F)
SANTA GARBARA PLANT PeSs 2212 5405

<SORT KEY TABLE
SPECIFIER> 33= <ADDRESS GENERATOR>

<INPUT FILE DESIGNATOR

= <FILE DESIGNATOR>

<TRANSLATE FILE

DESIGNATOR> ::= CSEMPTY> 1 o <FILE DESIGNATOR>
<QUTPUT FILE

CESIGNATOR> 3:= <FILE DESIGNATOR>

<FILE DESIGNATOR>::= <FILE IDENTIFIER>

1 <SKITCH FILE IDENTIFIER> (<EXPRESSION>)

The <SORT DESIGNATOR> is a communicate which reguests the
transfer of records from the input file to the output file
according 'to the SORT key table. The SORT information table
includes codes for SORT types hardware avsilable» and other
optionse.

For formatting specifications of the SORT information table,
refer to SORT documentation.

e o

SSURT_MERGE DESIGNATOR>

.
.
i

SORT_MERGE

(<SORT INFORMATION TABLE SPECIFIER>.
¢<SORT KEY TABLE SPECIFIER>,

<INPUT TABLE SPECIFIER>,

<QUTPUT FILE DESIGNATOR>

<TRANSLATE FILE DESIGNATOR>)

<INPUT TABLE SPECIFILR>

<ADDRESS GENERATOR>

o

See SORT STATEMENT for other parameterss, and SORT documentation
for table formats and semanticse

10=-52

BURROUGHS CCORFUORATION COVMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B18QG/B81700 SOL (3NF Version) (F)

SANTA BARBARA PLANT PeSe 2212 5405
SURI_SHAP

<SORT_SWAP DESIGNATOR> 2:= SORT_SHWAP (<RECORD 1>»<RECCRD 2>)

<SRECORD L> z2:= <ADDRESS GENERATOR>

<RECORD 2> ::= <ADDRESS GENERATOR>

While the <SORT SWAP DESIGNATOR> jis irtended to bte used by the
SORT» tts application is such that it may be generally usefule.

This cesignator allows the user to swap or exchangde two records
in memory wWwithout allocating a third area for storing one of the
records.

Specificallys the record pointed to by <RECORD 1> is exchanged
with the record pointed to by <RECURD 2>

Note: The interpreter being used must contain the S0RT_SWAP
operator.

<THAW=PROGRAH
CESIGNATOR>:z= THAW_PROGRAM

Execution of this function will altow the program to be rolled
out of memory. It will not force it to te rolled oute.

THREAD_VECTQR

—— — — - ——— Y~ - -

<THREAD_VECTAOR
CESIGNATOR> ::= THREAD_VECTOR (<TABLE ADDRESS>»<INDEX>)
<TABLE ADDARESS> ::= <ADDRESS GENERATOR>

<INDEX> ::= <EXPRESSION>

10=53

BURROUGHS CCKRPORATION , COFPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18170/81700 SDL (BNF Version) (F)
SANTA GARBARA PLANT PeSe 2212 5405

For use by sort only.

The <TABLE ADDRESS> points to the takle containing the
informration descrited wunder INITIALIZE_VECTOR. The <INDEX>
provides the offset from the beginning of the vector to the next

record to b2 used for comparisone

TRACE
<TRACE DESIGNATOR> ::= TRACE | NOTRACE | TRACE C(<EXPRESSION>)

The TYRACE will cause the SDL instructions of the normal state
program to be traced on the lLine printer. NOTRACE will turn off
the trace. The trace will only be effective when the program is
run uwith an SOL trace interpreter.

TRACE (<EXPRESSION>) provides greater control of the tracing to
be done. The low=crder 190 bits are used in the following way
(numbering of the 10 is from left toc right):

Bit Use

[+] Trace all commands except those which modify data or
change the program gointer stack. Normal state only.

1 Tfrace commands which modify data items (eegas CLR»
SNOL» etce)s Normal state only.

2 Trace commands which change the program pointer stack
(esge» IFTH» CASE, EXIT» etcrd). Normal state only.

3 Mot used.

L=6 Same as D=2» but for MCP W Several NMCP routines
(GETSPACES» FORGETSPACE, and others) will not be
traced.

7=-9 Same as 0=2» but will trace thase MCP routines not

traced by 4~6.

Note that TRACE(333C3) is the same as TRACE, while TRACE(D) 1is
the same as NIOTRACE.

. 12=54
JURKOUGHS CORPORATION COMPANY COMNFIDENTIAL

COMPUTER SYSTEMS GROUP B18C0/B1700 SDL (BNF Version) (F)

SANTA 3ARBARA PLANT P.S. 2212 5405
TRANSLATE

<TRANSLATE CESIGNATOR> :3= TRANSLATE (<TRANSLATE

<TRANSLATE ¥4BLE> » <TRANSLATE TABLE
ITEM SIZE> » <TRANSLATE RESULT>)

<TRANSLATE SOURCE> ::= <ADDRESS GENERATOR>
<TRANSLATE SOURCE ITEM

SIZE> ::= CEXPRESSION>
<TRANSLATE TAGBLE> ::= <EXPRESSION>
<TRANSLATE TABLE ITEM

SIZE> ::= CEXPRESSION>
<TRANSLATE RESULT>» ::= <ADDRESS GENERATOR>

<TRANSLATE SOURCE> 1is assumed to consist of items of size
<TRANSLATE SQURCE ITEM S51I2E>. €ach of the items in <TRANSLATE
TABLE> and <TRANSLATE RESULT> are assumed to be of size
<TRANSLATE TABLE ITEM SIZE>. ©Etach of the socurce items is used to
subscript into the table to obtain an item which is placed into
the result field in the pecsition corresponding to the position of
the original item obtained from sourcee This process continues
until the source is exhausteds the result is full, or an error
oCCUrss.

If either source or result is not a rultiple of 1its respective
item sizer» then the translaticn of the last item is undefinede.

Both source and tatle item sizes must te less than or equal to
2h. The table must be large enough to accomcdate atlt items in
SOUr Ceo I[f either of these is violatedr a run—time error wWitll
OCCUTr.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

APPENCIX It

is a list of reserved words
used

The following
May, 1978. These words may only be

ACCEPT AND A5

BASE 8IT BUMP BY

CASE CAT CHANGE CHARACTER CLEAR CLOS

DECLARE DECREMENT DEFINE DISPLAY 00

ELSE END EQL ENTER_COROUTINE

FILE FILLER FINI FIXED FORMAL FORMAL

GEQ GTR

IF INTRINSIC

LEQ LOCK L3S

M0D

NEQ NOT

0F ON GOR QOPEN

PAGED PHOCEDURE

EXIT_CORQUTINE

_VALUE

11-1
COMPANY CONFIDENTTAL

BL8Q0/BL7C0 SDL (BNF version) (F)

P.S. 2212 5405

in SDOL» complete as of
as reserved wordse

E
DUMMY DYNAMIC
EXJR

FUORWARD FROM

11=2

BURROUGHS CCORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/81700 SOL (BAF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

READ READ_FILE_HEADER RECORD REDUCE REFER REFERENCE REMAPS

RETURN RETURN_ANO_ENABLE_INTERRUPTS

SEARCH_DIRECTORY SEEK SEGMEMT SEGMENT_PAGE SKIP SPACE STOP
SUBAIT SUBSTR SWITCH_FILE

THEN TO

UNDO USE

VARY ING

WRITE WRITE_FILE_HEADER

Zip

11-3

BURROUGHS COXPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31800 /81700 SDL (BNF version) (F)
SANTA EARBARA PLANT P.S. 2212 5405

The following is a list of special words in SDL» complete as of
Decembers 1976 Each special Wword has a particular meaning»
however it may be used as an identifier. In that caser 1t loses
its special significance in SDL.

ACCESS_FILE_INFORMATION

BASZ _REGISTER BINARY

CHANGE_STACK_SIZES CHARACTER_FILL CHAR_TABLE COVMUNICATE

COMPILE_CARD_INFO COMMUNICATE_WITH_GISMO CONTROL_STACK_BITS
CONTROL_STACK_TOP CONSOLE_SWITCHES CONV COMVERT

DaTA _ADDRESS DATE OC_INITIATE_IO DOEBLANK DECIMAL

DELIMITED_TOKEN DESCRIPTIR DISABLE_INTERRUPTS DISPATCH -
DISFLAY_SASE OMS_CALL CUMP DUMP_FOR_ANALYSIS DYNAMIC_MEAORY_BASE

ENABLE_INTERRUPTS ERFOR_COMMUNICATE EVALUATIDN_STACK_TOP
EXECUTE

FETCH FETCH_COMMUNICATE_MSG_PTR FETCH_AND_SAVE
FIND_DUPLICATE_CHARACTERS FREEZE_PROGRAM

GROW

HALT HARDWARE_MONITOGR HASH_CODE HASH_UNPACK

INITIALIZE_VECTOR INTERROGATE_INTERRUPT_STATUS

LENGTH LIMIT_REGISTER LOCATION

MAKE _CESCRIPTOR MAKE_READ _ONLY MAKE_READ_WRITE MESSAGE_COUNT
M_MEM_SIZE MONITOR_SEY MONITOR_RESET MONITOR_CHANGE MINITOR_SET

NAME _OF _DAY NAME_STACK_TOP NDL_OP NEXT_ITEM NEXT_TOKEN NOTRACE
NULL

OVERLAY

PARITY_ADDRESS PREVIOUS_ITEN PROGRAM_SHWITCHES

READ_CASSETTE READ_FPB READ_OVERLAY REINSTATE SRESTORE

RT VERSE_STORE

1i=4

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B81386CG/817C0 SDOL (BNF Version) (F)
SANTA BARBARA PLANT PaSe 2212 5405

SAVE SAVE_STATE SEARCH_LINKED_LIST SEARCH_SERIAL_LIST S_MEM_SIZE

SEARCH_SDL_STACKS SORT SORT_DELETE SORT_FILE_FIXUP SORT_MERGE
SORT_RETURN SORT_SEARCH SORT_STEP_DOWN SORT_SWAP SORT_UNBLOCK
SWAP SPO_INPUT_PRESENT

THAW_PROGRANM THREAD_VECTOR TIME TRACE TRANSLATE
VALUE_DESCRIPTOR
WALT WRITE_FPB WRITE_OVERLAY

X_ADD X_SUB X_NUL X_DIv X_MoD

12-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31800/B1703 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

APPENCIX IL: SOL CONIROL CARD OPTIONS

-——

Every SDL cantrol card must have a £ in column one. Columns
(3=-80 may pe used as a sequence fielde. Note that once an option
has been turned on (off)» it will resain on (off) wuntil

explicitly turned off {on)e.

<CONTROL CARD> ::= $ <CONTROL STATEMENT>

<CONTROL STATEMENT> =2:= <CONTROL OPTION LIST>
I <vOID OPTION>

<CUMTROL OPTIGON LIST> ::= <CONTROL OPTION>
I <CONTROL GPTION>

<CONTROL UPYION LICST>

<CONTROL OPTION>» 3:= <CONTROL OPTION WORD>
NO <CONTROL OPTION WORD>
" <DEBUG OPTION>
<SEQUENCE OPTION>
<P AGE CPTION>
<AERGE OPTIQON>
<STACK SIZE LIEST>
<INTERPRETER QOPTION>
<INTRINSIC QPTION>
<RECOMPILE OPTION>
<LIBRARY PACK OPTICN>

- . e S e R mae aas e

<CONTROL OPTIGN WORD> 3= LIST 1 LISTALL | SINGLE

SGL 1 DOUBLE | CODE

CONTROL | MEW 1| SUPPRESS

XMAP | CHECK | PROFILE 1 PPROFILE
DETATL | AMPERSAND ' NO_DUPLICATES
NO_SOURCE 1 MONITOR

XREF | XREF_CNLY 1 EXPAND_DEFINES
SIZE | FORMAL_CHECK
TIME_PROCEDURES 1 TIME_SLOCKS
PASS_END 1 £RROR_FILE

FREEZE | NEST_PROCEDURE TIMES
ADVISORY 1 LOCKI

USEDOTS | CONVERTDOTS

TIME_MCP | UNDERSCORES_IN_FILE_NAMES

S A S aB M M R ey SN Am S e e

<CEBUC OPTIOM> 2= DEBUG <NUMBER>
<SNUMBER> 2:= SUNSIGNED INTEGER»,» &8 OR LESS DIGITS>
<SEQUENCE OPTION> ::= ND SEQ

{f SEQ <SEQUENCE PARAMETERS>

SSEQUENCE PARAMETEHRS» 3= <BASE>
! <INCREMENT>

EURROUGHS COxPORATLON
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

|
<EASE> ::=
SINCREMENT> :z2=
<PAGE COPTION>
<MERGE QOPTION>

<STACK SI{ZE LIST> ::=

<STACK SIZC
DESIGNATQOR> 2=

<STACK CESIGNATOR> :3=

<STACK SIZE>
<VOID OPTION> 2:=

<TERMINATING SEQUENCE
FIELD> ‘

» . -
o=

<INTERPRETER OPTION> ::=
<INTERPRETER NAME> ::=
<INTRINSIC OPTION>

<INTRINSIC FAMILY
NAME >

> o -
. s =

SFILE FAMILY NAME> ::=

<PACK_ID> ::=
<MFID> 3=
<LI8RARY PACK OPTION>

+ ® =
e 2=

<RECOMPILE OPTION>::=
|

12-2

COMPANY CONFIDENTIAL

B18306/81700 SOL (BNF Version) (F)
PeSe 2212 5405

<BASE> CINCREMENT>

<NUMBER>

+ <NUMBER>

PAGE

MERGE

<STACK SIZE DESIGNATOR>

<STACK SIZE DESIGNATOR>

¢STACK SIZE LIDEST>

¢<STACK DESIGNATOR> <STACK SIZE>
VSSIZE | NSSIZE 1 ESSIZE
CSSIZE 1 PPSSIZE | DYNAMICSIZE
<NUMBER>

VOID <TERMINATING SEQUENCE FIELD>
SEMPTY>

<EXACTLY 8 CHARACTERS>
INTERPRETER <INTERPRETER NAME>
SEXTERNAL FILE NAME>

INTRINSIC

<INTRINSIC FAMILY NAME>
<ICENTIFIER> t <CHARACTER STRING>
<FILE FAMILY NAME>

<MULTIFILE ID>
<SPACK_ID/MULTIFILE ID>

<CHAR STRING>
<CHAR STRING>
LIBRARY_PACK <PACK_ID>

CREATE_MASTER
RECOMPTILE

12=3

BURRUUGHS CORPORATION COVMPANY CONFIDENTI AL
COHPUTER SYSTEMS GROUP B18l0/8170G SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSe 2212 5495

Motes: Default is OFF except where specified as ON.

ACVISORY

AMPERSAND

CHECK

CODE
CONTRCL

CONVERTDATS

CREATE_MASTER

€531¢E
DEBUG
DETAIL
DOUSBLE
DYNAMICSIZE

ERROR_F ILE

ESSIZE

EXPAND_DEFINES

FREE ZE

Prints advisory messages on the Llisting.
Default is 0N,

Prints those ampersand cards which are examined.
Default is ON.

The merged source wWwill be checked for sequence
errors. Default is ON. Sequence checking is

done after any resequencing due to a $5E£EQ 1is
complete.

Prints generated codee.
Prints control cards.

Converts dots "«." to underscores "_" when used
as separators in identifiers. The conversion

will be reflected in atl compiler output
including the Listing and NEWSOURCE files.

RECORD constructs wmay not be used with dot
separators in identifiers.

See Appendix VII_

Control Stack size.

Compiler debug use onlye.

Prints expansion of define invocationse

Oouble spaces listing when printing.

Admcunt of memory used for paged array fpagese

A separate error file will be produced
containiny only errors and warnings and the
source images to which they applye.

Evaluation Stack sizee

Causes define expansions to be cross=referenced
{used in conjunction wWwith XREF or XREF_ONLY).

The FREEZE bit will be set in the program's FBP,

preventing the program from being rolled out
during execution.

12=-4

BURROUGHS CORPURATION COvPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/B1700 SCL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5495

FORMAL .CHECK

INTERFRETER

INTRINSIC

LIBRARY_PACK

LIST

LISTALL

LGCK 1

MERGE

MONITOR
NEST _PROCE -

DURE_TIMES
NE W

NO

NO_DUPLICATES

NO_30URCE

Procedure actual parameters and values returned
from typed procedures will te checked
respectively against their corresponding formal
parameters and procedure formal tyrese

Changes the interpreter name.

Changes the family names of intrinsics to be
used. :

Assumes all {ibrary files are on the pack
specified.

Lists the source input which was compiled. NG
LIST witl also turn off LISTALL. Default is ON.

Lists atl SDL source input (whether or not

conditionally excluded), LISTALL turns on list,
but NO LISTALL will not turn off {ist.

Intermediate work files will be locked into the
disk directory as they are creazted. (See
Appendix IV: RUNNING THE COMPILEK) .

The primary source file is on tape or disk which
will have the cards» from the card readers»
merged Wwith ite.

See Appendix vIII: SDL MONITOR FACILITy

See Appendix I[Il.

Creates a new source filee

NO preceding an option {(which allows 1it) will
turn that option off.

Newly declared identifier will nct be checked

for uniquenesse. The programmer must guarantee
that ‘there are no duplicates before using this
option. It will reduce compile time for large

programs only.

Program source images will not be saveds theretby

shortening the compiler work file. No source
listing will be possible when this option is
speci fiede. This shculd be wused with Llong

programs only.

12-=5

BURRDUGHS CORPURATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B18C2/81700 SDL (BNF version) (F)

SANTA BARBARA PLANT P.S. 2212 5405

NSSIZE Name Stack sizee.

PAGE Page eject if listing.

PASS_END The total elapsed time and the numkter of errors
will be printed at the end of each rpasse.

PPSSIZE Program Pointer Stack sizes.

RECOMPILE See Appendix VII.

RECOMPILE_TIMES

SEQ

SINGLE (SGL)

SIZE

SUPPRESS

TIME _BLOCKS

TIAE _PROCEDURES

TIME _NCP

The start and stop times of each of the phases
of the "bind"™ pass of a CREATE_MASTER or
RECOMPILE will be printed on the Listing.

Resequences new source file wusirg base and
increment specifiede Default increment is 1239»
default base is the sequence number of the $SEG
carde If the $SEQ card has no sea number the
default base is 120¢.

Single spaces listing when printing. Default is
ON.

Prints segrent sizes by name at end of compiles

Suppresses warning MeSSAagesSe To suppress
sequence errcr messagess» turn off CHECK.

See Appendix III.

UNDERSCORES_IN_FILE_NAMES

USEDQTS

vain

Provides capability to convert internal file
names Wwith dots (.) as separataorse This option
should be used with the CONVERTOOTS option.

Al lows the use of dots» ™.™» as separaters in

identifiers. Otherwiser underscoress, "_" will
be required (See COKVERTOOTS).

The VOID option will void records in the primary
file which have sequence fields less than or
equal to the <TERMINATINCG SEQUENCE FIELD>. If
the field is omittedr» only the record with the
sequence nuaber corresponding to the VOID card
sequence nuoter will Gte deleted. The VvOID
option will not delete 1images 1in a secondary
(card) source file.

12-6

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BLBCU/8BL700 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.Sa 2212 54C5

VSSIZE

Value Stack sizes

WORKING_SET_BSBYTES

XMAP

XREF

XREF _GALY

Specifies the working set size of the object
program as used by NHCPI. This option has no

effect on programs to be run under MCPII.

Creates an extended <ccde map file for post
compilation analysiss The name of the file
passed to SDL/XMAP is "XMAPMMDDYY/<TIME>", where
MM is the rmonth» DD is the day of the month» YY
is the yearr» and <TVTIME> is the tijme of day of
the compiles

Produces a cross-reference listing of the
program. The name of the file passed to
SOL/XREF is "XREFHMDDYY/<TIME>", where MM is the
montho» DD is the day cf the months, YY is5 the
vearr» and <TIME> is the time of day of the
compile.

Produces a cross-reference listing and then
terminates the compgilatiaons The name of the
file passed to SDL/XREF_ONLY is
"XREFMMDOVYY/ <TIHE>™» where MM is the monther DD
is the day of the months YY is the years and
<TIME> is the time of day of the compile.

Note: All control cards may use &% in column 1 in place of

$.

Those control cards with 8 in column 1 will te

permanently placed in a new source file whenever one
is made. They may also be conditionally included or
excluded during compilatione.

Y sz,/xee:r—‘ Elle PFILE NAME XReF......
ELLE PRINT NANME ot flenone

F L %’Dc/{ﬂ

KR Flle MAPFILE NATLE XHAP .- -

Cie PRinjer Nafe auk ot flanae

13-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31820781700 SOL (BNF vVersion) (F)
SANTA BARBARA PLANT PoeSe 2212 5405

APPENCIX I1l1: PROGRAMMING OPTIMIZATION

The following control card options c¢an bte wuseful to the
programmer wWwho wWishes to determine the most time consuming
part(s) of his program. The purpose of these control options is

tec point out the parts of the program which are the most time
consuring and/or heavily useds

PROE ILE

PPROF ILE Establishes a dynamic arrays each element of
which is a ccunter for one proceduree. The index
number for each procedure appears in the listing
following the <PROCEDURE ICENTIFIER>. The value
of the counter will reflect the number of
entrances ta the procedure in question. Those
with the highest counters should be investigated
Wwith the PAROFILE ootion.

PROF ILE Establishes a dynamic array» each element of
which 1s a ccunter for one tranchirg operation
(<049 GROLP>» <|[F STATEMENT >» or <&CASE

STATEMENT>). The index into the array wWill
appear in the listing following the statement in

questiona Those branches with the highest
counter values are the branches most heavily
useds

HARDAARE MOMITOR

<HARDWARE MONITOR
DESIGNATOR> 2= HARDWARE_MONITOR (<EXPRESSION>)

The 817920 is equipped with a hardwafe moritor which may ¢tCte
manually wired to suit the needs of the programmer. The device

can be useful as a timer or a counter to monitor prograsn
efficiency.

The low=order 38 bits of the <EXPRESSION> is used as the low=order
8 pits of the M=instruction monitor. For wiring instructions of
the hardware device see fomputer Performance Monitor II: System
Summary Manual.

13=2

BURROUGHS CORFORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18C00/B170C SDL (BANF Version) (F)
SANTA SARBARA PLANT PeSe 2212 5405

PEOGRAM TIMING

A high-resolution timer and the means to access it are available
on select 81720 -series systems. This timer is accessed directly
by the interpreter» bypassing the MCP and its inherent effects on
timing accuracye

Timing of »procedures and/or blocks is initiated by the use of

control options: $ TIME_PRCCEDURES and s$TIME_ELUCKS. The
appearance of either of these options turns it on; the
appearance of the option preceded ¢ty NO turns it off. The

setting of the option at the time of parsing of the procedure
head or of the block head (D00 and DO FOREVER., in the case of DO
groups) determines whether or not the attendarnt body of code is
to be timed.

For each item to be timeds a timer cell numbter is assignede Upon
entrance to the body of coders the timer value 15 subtracted from
the proper cell and upon exits the timer value is added to the
cell. Procedures are not timed around calls cf other procedures:»
50 that procedure times reflect only the elapsec¢ time spent
within that gprocedure. Block timing works the same ways» 1eta>»
times of nested blocks are added to those of enclosing blocks»
tut times of procedures which are called are not included in the
times of the calling procedure or blockse The times of called
procecdures HILL be added to those of the caller by specifying the
option NEST_PRICEDURE_TIHES.

At the time of execution» an intrinsic will be invoked which will
print the timing cells ordered by value. The contents of these

cells are the number of microseconds spent in the timed bodies of
code . If the job terminates abnormallys, then DUMP/ANALYZER will

print the contents of the timing cellsa.

It is intended that the timing functions will be wuvsed 1in the
following manner: Firstr» all the procedures ir a program will be
timege Upon isolation of the ™hot™ proceduress tlock timings

will be requested for those blocks cantainecd in these grocedurese.
If both block and procedure timings are requestaed for large

programss» an inordinate amount of memory will be asllocated for
the timing cells» which are 48 bits in length-.

This scheme is usablz2 by the MCP. The $=option STIME_MCP must be
included at compile time. The timing cells are printed wWith a

SPO0 messages.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

l4=1

CONMPANY CONFIDENTIAL

831800/817C0 SCL (BNF VvVersion) (F)
PeSs 2212 540°F5

APPENCIX Iv: RUNNING THE COMPILER

There are two basic deck setup formatse They are:

4, The primary source file is on cards.

<SYSTEM COMPILE CARD>
& <FILE EQUATE CARD FOR FILE NEWSOURCE>

DATA CARDS
* § NEW
<5DL PROGRAMN>
FINI
END
* If the primary source file is to te

disk» these cards must be included.
The primary source file is on diske.
<SYSTEM COMPILE CARD>

<F ILE EQUATE CARD FOR FILE SOURCE>
* <FILE EQUATE CARD FOR FILE NEWSOURCE>

DATA CARDS
$ VMERGE
 § NEW
<PATCHES TO SDL PROGRAM>
END
* If the merged file is to be savedr

be includedas

saved on tape or

these cards must

Note: Refer to the 31700 MCP Software Operational Guide for

the exact format of the coespile

and file equate

cardse
SCL EILE NAMES
CARDS Card input fite (8C or 9G byte records)
SQURCE Primary source file if 3 MERGE is used (843
or 990 byte records)
NEWSOURCE Updated source file if 5 NEW is used (9G

byte records)

14-=2

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS CGROUP B18C0/BL1700 SDL (BNF version) (F)
SANTA BARBARA PLANT P.Se 2212 5495
L INE Line printer file
ERRORLLINE Separate error file (produced when

BERROR.FILE is used)

XREF L INE Lists file for XREF. Al lows file squation
in the compiler.

XMAP.LINE _ Lists file for XMAP. AMllows file equation
in the compiler

PFILE Intermediate file produced by the pre=passe.

IF ILE Interwediate file produced ¢y the first
PaASS5e

IMAGE .FILE Source image file produced ty the pre-=pass.

The compiler will notice if the operator gives it SPO0 input
during any of the first three passes (SDLP. SDLLl. SOL2). SPC
input will be ignored during SDL3, the partial recompilation
binder. The operator may give any of the foellowing commands in
the AX message:

STATUS The compiler will display the <current pass
executing» sequence number being compiled» and
errors detected so fare.

LIST The compiler will begin Listing in whatever
pass is currently executinga

NC LIST Stops Llisting 1in whatever pass is currently
executinge.

PASS_END Sets agption to display a message as each pass
complates.

NO PASS_END resets PASS_END option.
LOCKI The «compiler will lock intermediate files as

they are created and will lecck any that have
already been created bput not releasede. The

14=3

BURROUGHS CCRPORATIGN . COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1800/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

intermediate files rmay then be used to restart
the compiler 1{if necessary (see below) or be

analyzed with SDL/IA (not released outside the
companyde.

NO LGCKI Intermediate files not already locked will not
be locked.

R AR e

If intermediate files have been saved (see LOCKI above) and a
compile 1is terminated in SOL1, §DL2» or SDL3 due to machine
failuresr» it may be restarted in S50LY1 or SOL2 to avoid repeating
the entire compiles Program sWwitch zero is normally set to zero
indicating 3 full compile. It may te set on the compile carde
howevere to one (indicating an SDL1l restart) or two (indicating
an SDOLZ2 restart). SOL3 cannot be restarted; instead the
operator must restart SDL2.

The ccmpiler will expect the following files when restarted:

soLl PFILE
IMAGE.F ILE

MASTER/ IWF (if CREATE_MASTER compile)

SOL2 IFILE
IMAGELFILE
MASTER/ZINF (if CREATE_MASTER compile)

Files will have been saved under these names 1f (a) the operator
entered a LOCKI message or (b) S$LOCKI appeared on a compiler
control card.

15-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEHS GROUP 31800/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.35. 2212 5405

The conditional compilation facility allows the user to

selectively compile blocks of code without the necessity of
physically adding or removing recordse

<CONDITIONAL INCLUSION> records are always wWwritten to a new file

(if one is created)» whether or not they are cowscilede. If
conditional compilation records are to be printed with the source
Listing» then LISTALL aqust appear on the $-card. If not

specified» only those conditional compilation records which were
compiled are printed.

The 3NF for the conditional compilation is as follows:

<COMDIVTIONAL INCLUSION> 2= <SET STATEMENT>
<RESET STATEMENT>
<PAGE STYATEMENT>
<LIBRARY STATEMENT>

<IF BLOCK>
<SET STATEMENT> z2:= SET <SET Sy#BOL LIST>
<SET SyYMBOL LIST> ::= <SET SyYMBOL>

! <SET SyMBOL LIST>
<SET SYMBGL>

<SET SyMBoL> ::= <BO0LEAN SYMB0L>
<BOOLEAN SYMBOL> ::= <LETTER>
1 <BOOLEAN SYMBOL> <LETTER>
I <300LEAN SYMBOL> <DIGIT>
CRESET STATEMENT> ::= RESET <RESET SYMBOL LIST>
CRESET SYM3BCL LIST> ::= <RESET SvyMBOL>

I <RESET 5YM30L LIST>
<RESET SYMBCL»>

<RESET SyYM30L> z23= <BOOLEAN SYs80L>

<PAGE STATEMENT> ::= PAGE

<LIBRARY STATEMENT> ::= LIBRARY <FILE NAME>
<FILE NAME>::= SHULTI=FILE IDENTIFIER>

1 <MULTI-FILE IDENTIFIER> 7
<FILE IDENTIFIER>

1 <PACK IDENTIFIER> /
<HULTI-FILE IDENTIFIER> /

’

15=2

BURRGUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP BL8N0O/BLl7CC SOL (BNF Version) (F)
SANTA BAWBARA PLANT PeSe. 2212 5405

I <PACK IDENTIFIER> /

<MULTI-FILE IDENTIFIER> /
<FILE IDENTIFIER>

<PACK IDENTIFIER>»::= <IDENTIFIER>
SMULTI-FILE IDENTIFIER>::= <IDENTIFIER>
<FILE IDENTIFIER»::= <IDENTIFIER>
<If BLOCK> s::= <IF STATEMENT>

<INCLUSION BLOCK>
<END STATEMENT>

t <IF STATEMENT>
<TRUE PART>
<INCLUSION BLUCKO
<END STATEMENT>

CIF STATENMENT> ::= IF <BOOLEAN EXPRESSION>
<BOOLEAN EXPRESSION> ::2= <B00LEAN FACTOR>
| <BOOLEAN EXPRESSION> OR
<300LEAN FACTOR>
<BOOLEAN FACTOR> ::= <BOOLEAN SECONDARY>
| <300LEAN FACTOR> A4ND
<BOOLEAN SECONDARY>

<BOODLEAN SECONDARY>

<gODLEAN PRIMARY>
I NOT <pOCLEAN PRIMARY>

(1]
s

<GOOLEAN PRIMARY>

.
.
]

<SET SYMBOL>
I <RESET SYMBOL>

<INCLUSION BLOCK>

"

<3DL SOURCE IMAGE ELOCK>
I <IF BLOCK>

(1]
(1]

<SDL SOURCE
IMAGE BLOCX> :32= <CEMPTY>
1 <1 OR MORE SOL SOURCE IMAGES>

<END STATEMENT> z2:= END
<TRUE PART> ::= <INCLUSION BLOCK> <ELSE STATEMENT>
<ELSE STATEMENT> ::= ELSE

ALl records containing conditional compilaticn statements must
have an ampersand (%) in column 1 f{except the <5DL SOURCE IMAGE
ELOCK>). In acditions a complete conditicnal inclusion statement
wust be cantained on one %=CARD. Colusns 2=72 are free=field»
and columns 73=8G may contain sequence numbers.

15-3

BURRCOUGHS CGQRAPCAATION CO¥PANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18CO/B17C0 SDL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5405

Note that <BOOLEAN EXPRESSION>s may contain the logical operators
(from lowest rrecedence to highest): 0ORs AMD, and NOT.

The <PAGE STATCMENT> will cause a page eject if the source file
is being listed. The <LIBRARY STATEMENTY> will cause the 1images
from the file specified by <FILE NAME> to be included in the
source progranm.

4s an example, consider the following SDL source statements
illustrating nested conditional compilaticn statements and <S0OL
SOURCE IMAGE BLOCK>s.

coL 1 FREE=-FIELD: COLS 2-72 SEQ: 73-80
R SET A B C 01¢9)
3 RESET D E G260
DECLARE (A,B) FIXED; ¢330
& IF a4 AND E V4G)
A := B> G500
§ ELSE 0609
A = X CAT v+Z; % WHOLE SOURCE I[4AGE IS INCLUDEC c7oQ
g IF C ' G80¢C
8 1= A5 0990
3 END . 1000
& ENU 1107
&8 IF B GR D 12072
BUNP B 1300
2 ELSE 1400
BUMP A; 1500
g END 1600

The compilation of the following statements would result.

DECLARE (A,B) FIXEDs 0389
A 2= X CAT YeZ, % WHOLE SOURCE TMAGE IS INCLUDED o750
8 3= 4; 0990
sUMP 35 1300

Note that every IF must be paired with either an ELSE or an END.
Every ELSE npust have an END associated with ite

16-1

BURROUGHS CORPORATIGN CONPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B180G/sB1700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

AFPENDIX ¥I: S0L PROGRAMMING TECHNIQUES

This section contains coding suggestions and examples which
result in decreased source code and/or object code.

CGECLARATIONS:

1. As many non=structured declarations as possible (up to
a maximum of 32) should be declared in one <declare
STATEMENT>. Example:

OECLARE A FIXED, (B»C) BIT(24);

generates more efficient code than:

DECLARE A FIXED;
DECLARE (85C) BIT(24)7

2 A <CEFINE ACTUAL PARAMETER> (See DEFINE INVOCATION) may
be a series of SDL statements. For example:

DEFINE COMPARE(TS»S) AS#
IF TOKEN_SYMBOL=TS
THEN 00;
S;
UNDO THIS_ONE;
END #5

BURROUGHS CCRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT
invoked

may be ass

DO THIS_CONE FQOREVERS
CCMPARE ("SINGLE"™.,
COMPARE ("MERGE"»

IF LASTUSED +

l6=2
COMPANY CONFIDENTIAL

ELBCO/BL700 SDL (BNF Version) (F)

P.S5. 2212 5405

SINGLE_SPACE TRUED?

< e

THEN UNDO THIS_ONES

LASTUSED ==

2r

QPEN SOURCE INPUT

\READ SOURCE
COMPARE (nco'.oo);

END THIS_ONE;

PROCECURES:

Procedures from

PARANMETERS

NO
NO
YES
YES

STATEMENTS:
dhen the
ignored:

IF P(X=Y) THEN;

is more efficient than:

- -
=

TEMP P{X=Y);
Use "%Z" at the
”/*-00*/"
that record.

must continue
compile time is

If the

The expression:

value returned by a typed procedure

beginning
as deligiterse.
to detect the ending termiratore.
increaseds.

(TAFEWORKX))S

highest effictiency to lowest are:

LOCAL DATA

NG
YES
NO
YES

is to be

of a
The "Z"

/*..'k/“

comment rather than
stops the scanning of
for® is useds scanning
Thus

SUBSTR("0123456789ABCDEF™»N»1)

EURRCUGHS CORPORATIGN
COHPUTER SYSTEMS GROUP

16=3

COMPANY CONFIDENTIAL
318C0/831709 SDL (BNF version) (F)

SANTA BARBARA PLANT i P.S. 2212 5405

4.

generates much less code than
CASE N OF (0", 1", "2 saes "E"»"F")

The fact that a boolean expression evaluates to

a on e

or zero can often bte used to advantage. For example,

the statement:

X 2= A>(0;

is more efficient than

X 3= If A>0 THEN 1 ELSE §7

and the results are the same.

3UMP A := B} stores B into A and pbumps B» and BUMP

1= B stores B into 3 and bumps A.

REVERSE_STJORE (IF <CONDITION> THEN A ELSE 8,
selectively stores C into A or B.

Consider the followings

C:3)

In a compilers for exampler assume that all calls on

the error routine follow a THEN/ELSE cr are in a <CASE
STATEMENT >, Example:
1. IF <COMDITION> THEN ERROR(CEQGS);
2. CASE #;
o7
.5
.
ERROKRC(EL3T7)S
.y
END CASE;
It is sometimes desirable to put these calls into a
separate segments especially when EO0NS and £E137
represent character strings (is.ea» in=line ERROR
MES SAGEs).)
For example:
DEF INE ERROR(N) AS #SEGMENT (ERROR_CALLS);
ERROR_ROUTINE (N) &5
3ecause of the temporary nature of segmenting

subordinate executable statements» only the calls witl

be in separate segmentse.

16=4

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEAS GROUP 8180G/B81700 SDL (BNF Version) (F)
SANTA GARBARA PLANT P.S« 2212 5405

8 When tWwo or more elements of a <CASE STATEMENT> or an

<IF STATEMENT> have identical coder more efficient code

is generated if the «code 1is put intoc a separate
procedure (With no parameters or data)de. In both cases»

execution time will be identical, tut object <code
savings could be substantiale

Use conditional compilation statements to remove

debugging coder rather than physically removing the
code. See Appendix VII.

17 =1

EURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SySTEMS CGROUP 31800/81790 SDL (BNF version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

AEPENCIX V¥II: SDL PARTIAL RECOMPILATION FACILITY

The &SDL compiler includes a facility whereby it is possible to
save information from one comgilation which will enable the
compiler to recompile only one (or more) Lexic Level Zero

procedures in subsequent runse thus reducing computer time for
the recompilations.

A. SAVING THE MASTER COMPILER INFORMATION

The waster compile information is saved ty the compiler in the
following five files:

internal Name Default External Name
NEWSOURCE "NEW"/"SCURCE™
NEW_INFO_FILE “NEW"/"INF*"
MEW_SECONDARY_FILE "NEW"/"SEC"
NEW_BLICK_ADDRESS_F ILE "NEWT/"BAF "
NEW_FPB_FILE "NEW"/"FPB"

Note that the file NEWSOURCE is identical te» 3and created in the
same way as» the file created with the SNEW carde. ALl five files

will be created with the compiler $~-option (Ncte: Brackets here
indicate optional specifications):

SCREATE_MASTER L[C<PACK_ID>/1<«MULTIFILE_ID>1]

if specified, <MULTIFILE_ID> wWwill be used instead of the default
mult ifile ids "NEW"» for atl the filese. If alsa specifieds
<PACK_ID> will direct all the files to the named user disk pack
or cartridge instead of system disk. <PACK_ID> and <MULTIFILE_
IC> must be quoted character literals.

Notes:

l. The CREATE_MASTER option must be on the first card in
the compile deck (file "CARDS")» and that <card may

contain no other dollar options (except RECOMPILE--See
the following section).

17 =2

EURROUGHS CORPURATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GRCOUP Blastg/BL700 SOL (BNF Version) (F)

SANTA BARBARA PLANT P.S., 2212 5405
2. The new source file must te completely sequenced» so

BSEQ should be used . to assure ¢this if necessarye.
This includes all £=CARDS, as they will be included in
the new source filee.

3. $NEW option has no effect in conjunction Wwith
CREATE_MASTER.

B. PARTIAL RECOMPILATION

By supplying the information saved during a CREATE_MASTER

compiler one may have only those Lexic Level Zerc procedures
recompiled which have actually been patched. The patch deck is

perfectly ordinary except that no patch cards wmay change Lexic
Level Zero coder declarations or procedure heads.

Partial recompilation will be invoked with the $-option (Note:
Brackets here indicate optional specifications):

$RECOMPILE C[<PACK_ID>/1<MULTIFILE_ID]

The compiler will then expect the following six files as input:

Internal Mare Default External Name
SCURCE "MASTER"™/"SOQURCE"™
MASTER_INFU_FILE "MASTER™/"INF"
MASTER_SECONDARY_FILE "MASTER™/"SEC"™
MASTER_BLOCK_ADDRESS_FILE "MASTER™/"GAF ™
MASTER_FPB_FILE "MASTER™/T"FPB"
MASTER_MPT_FILE "MASTER"/"MPT"

If specified in the RECOMPILE options <MULTIFILE_ID> will te used
instead of the default id *"MASTER". 1If alsc specifiedr the files
will be expected to be found on user pack or cartridge <PACK_ID>,
<PACRK_ID> and <MULTIFILE_ID> wsust be guoted character literals.

Notes:

l. The RECOGMPILE option must be on the first card in the

compile deck (file "CARDS") and that card may contain
re other doltlar cptions (except CREATE_MASTER» see
previous section).

17=3

EURROUGHS CORPORATION CONPANY CONFIDENTIAL
COMPUTER SrSTEMS GROUP BLBCG/BLTCS SDL (BNF Version) (F)
SANTA BARBARA PLANT _ Pe.Se 2212 5405

2. The patch deck may contain 8$=CARDs and &85ET and RRESET
cards followed by patch cardse. If 8=CARDs are usedr»r
however» they Wilt only apply to procedures being
recompiled and may» therefore» cause unwanted effects.

3. Neither S$SEG nor SMERGE may be used with SRECOMPILE.

C. SIMULTANEQUS RECOMPILE AND CREATE_MASTER

New master information wmay be saved frow a recompilation run wWith
very little overhead. Both RECOMPILE and CREATE_MASTER options
(See above.) must be on the first card of the compile deck. ALl
restrictions noted in A4 and 8 should be observed.

D. GENERAL CONSIDERATIUINS

1. All input and output files must be ¢cn diske (This does

not apply to the =~ SOURCE file for a straight
CREATE_MASTER which is read in tne normal way as the

result of a $4ERGE card. It does apply to SOURCE when
doing RECOMPILE.)

2. File egquation cards for recompilation files will ©be
ignored wunless no <PACK_ID> or <MULTIFILE_ID> has been
specified on the

$=CARD.

3 During recompilation the only source wWwhich <can be
Listed is that which is actually teing recompiled.

be $=CARDs for timinge monitoring», and PROFILE may be
added during recompilationa They will only affect
those procedures being recoapiledr» however» even if
they are at the beginning of the patch deckes

Se A CREATE_MASTER corpilation reporting syntax errors
which are strictly local to lexic tevel zerao procedures
will produce usable master files. These may then bLe
used to recompile the offending procedurese. Since the
CREATE_MASTER produced no object filer however» some of
the $=Card information will be missing for the
recompilation—==-specifically stack size <cards. These
must te included in the recompile decks

He $XMAP is incompatible with partial recompilation and

may not be specified if CREATE_VMASTER or RECONPILE have
been invoked.

E. EXAMPLES

17 =4

HURROUGHS COxPORATION CONMPANY CONFIDENTIAL
COMPUTER SYSTENS GROUP 81800/B8170Q00 SDL (BNF VYersion) (F)
SANTA BARKBARA PLANT PoSa 2212 5465

1. CREATE_MASTER compilation

2COMPILE MYPROG WITH SDL TQ LIBRARY
?FILE SOURCE NAME MYPROG/OLDSOURCE TAPE?
2CATA CARDS

SCREATE_MASTER "MYPROG"™

S MERGE SER LIST

fPatch Cards)

?2END

2DUMP TO MYTAPE/RECOMP MYPRUG/=3
2. Partial recompilation (from user pack)

2LO0AD T3 MYPACK FROVM MYTAPEZ/RECUOHP MYPROG/=;

2COMPILE MYNEYPROG WITH SOL 10O LIBRARY
?DATA CARDS

SRECOMPILE "MYPACK™/"MYPRQG"™

SLIST

{Patch Cards]

2END

3. Simultaneous operations
2L0AD FROM MYTAPE/RECUOMP MYPROG/=>

2C0MPILE MYHNEWPROG WITH SDL TJ LIBRARY
?2DATA CARDS

SRECOHPILE "MYPROG™ CREATE_MWASTER "MYPROG™
[Patch Cards]

7END

20UMP TO MYNEWTAPE/RECOHP MYNEWPROG/=»;

18~1

BURROUGHS CORPORATION CO¥PANY CONFIDENTIAL
COMPUTEZR SYSTEMS GROUP B1805/BL709 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S5. 2212 5405

AFPENCIX VIJI1: SDL MONITORING FACILITY

Procecdure entry and exit <can be dynamically ronitored via
feat ures that are available through the SDL compiler. Use of the
moni toring feature proceeds in two stepse. first» at compilation
time» the wuser specifies via control cards that various
procecdures afe to be "candidates for monitoring” in subsequent
executions of the program. Then at execution time the user
specifies via a PRUN-TIME MONITOR STATEMENTY that some subset of
the candidate procedures are to be monitored for this run. The
RUN-TIME MONITOR STATEMENT can be input through the SP0, or from
some user files» at program BOJ or during the execution of the
program via execution of built=-in furctions.

QUTPUT FQRMATS

Assume a procedure named PRUC is being monitored and that it has
two parameters X and Y. An invocation of PROC would produce the
following mcnitor informatiaon:

“““ Kk blanks =====-=[k)PROC ccccccec==~>>dddddddd

----- “k*l planks======Y= the value of ¥ st the gpoint of invo-
cation as an SDL literal

----- =x+1 blanks~=====X= the value of X at the gpoint of invo-
cation as an SOL Lliteral

Here k describ2s the nesting level of the calls, cccccecce is the
sequence number of the invocation point» and dddddddd is the

sequence number of the procedure head of PRGC.
when PROC is exited» the following line is emitted:

meww==ik planks======{k] exit PROC at eceeecece

If PROC is a functions the fotlowing Lline witl also be emitted:

mwme==ktl blanks======PROC= the value of PROC specified as an
SOL literal

The ocutput <data may be directed to any file. This is done tCy
associating the file attribute MONITUR_OQUTPUT_FILE with some file
in the progranme The following restrictions hclde

18=2

BURRUUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18CG/B170% SOL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

MONITCK QUTPUT_FILE RESTRICTIONS

i. The feature is not dynamice. (It csnnot be changed wWith
4 CHANGE statement).

2e The Ltength of a recard in the ocutput file should be
more than 71 characterse.

3. I1f several files are given the MONITOR_OUTPUT_FILE

attributer» the last file so0o declared becomes the
monitor output file.

4o If any procedures are declared to be candidates for

maoanitor then a monitor output file should be declarede.
If it 1is5 note the compiler will append a file to tbhe

program for this purpose.

Se The file must be sequential with fixed Length records.
6. The user should never issue an explicit cpen on the
file.

If the wvalue of a parameter or a procedure is being written ang
current output record is insufficient in lengthe the literal will
te <continued to the next record for as wmany records as 1is
necessary. Indentation is not peformed on subsegquent Llines.
Indentation of the first tine ceases within 60 spgaces of the end
of the monitor output recorde. Vatues of lLlength zero are noted
agprogriately regardless of type. If a character value contains
unprintabtle datar the value will be printed as three asterisks
folloved by a hex representation of the datae. Only the first 3o
characters aof any procedure name and the first 10 characters of
any foreal name are useds

MONITCRING: SPECIFYING PROCEDURES

The user specifies that procedures are candidates for monitoring
with the dollar <card options MONITOR and MONITOR_OFF., The
qual ifier N3O 1is wmeaningful in front of both words. The
discussion of MONITOR_OFF will be deferred to a Llater section.
Hawevers» for the purposes of qualificaticrs the two options are
semantically equivalent. Specificallye if NONITIOR is ON when the
procedure name first appears (either in its fcrward or its head)-»
then the procedure becomes a candidate for monitoring. Note that
the MONITOR option relates to procedures and not to procedure
invocations. There is no way to specify the <concept that a
procedure 1is a candidate for monitoring but that scme particular
invocation aof that procedure is not to be monitorede. Also note
that it is the state of the option when the FURWARD (if present)

18=3

BURRJUGHS COKPORATION k CONPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31800181700 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.Ss 2212 5405

is encountered that is imsportant.

The concept of a RUN-TIME MONITORING statement was previously
introduced. This statement will be read into the program at BOJ
from any file that the user specifies. This is done by giving
the attrioute MONITOR_INPUT_FILE to some file declared in the
programe The following restrictions hold:

Restrictionss:
1. 12,2»3¢5» and 6 under MONITOR_OUTPUT_FILE RESTRICTIONS.

2e If no file is declared with the attributes
MONITOR_INPUT_ FILE and procedures are declared to be
cancdidates for wonitoring then the program issues
accepts at the beqginning of job to obtain the necessary
information from the SPO0.

3 if a file is declared to be the MONITCR_INPUT_FILE then

the wonitoring infcrmaticn must be the first record(s)
Of the file'

RUN=TIKE MONITOR STAVEHMENT

The RUN-TIME MONITOR statement consists of a run-time monitor

expression that is terminated by a semicolone. Formal
specification of the RUN-TIME MONITOR expression syntax is
deferred to a later sectione. The follcwing examples will

Chopefully) illustrate the salient features of the statement.
Here please read "all procedures”™ as "all grocedures which are
candidates for monitoring™.

EXAMPLE MEANING
le $ALLS Monitor all procedures
2e SNONES Monitor no procedures
e X1; Monitor all gprccedures whose name is

xl'

HURRGUGHS CORFURATION
COMPUTER SYSTEHS GROUP

SANTA

ba

6.

7»

BARBARA PLANT

sk Kk kK
X1 X23 «
* *
£ X1sX23 .
* w*
* X1 OR X2; *
x &
* X1 + X2; =+
k& k% &
LB & 4 * k&
« NOT X1; *
*® &
£ =X1; .
* %k &k * k&

0C005C0UQ=01999999:

*® &k k&

CO0500CI0=21999999
AND NOT SCAN3
J0G00C00~31999999

* = SCAN

% % % N N N K X B
Y EEELERE

»
»
»
»

& kX LR 2
QQ500002-C1999999 «
* *
« &« SCAN; &
&, kkk
& & & LR X
G1426C00=01579094 =
* or *
€ (274830C~99999999 «+
& or *
* SCAN; *
&k &k k ki

18=4

CONMPANY CONF IDENTIAL

318C0/81700 SOL (BNF Version) (F)
P.S. 2212 5495

(ALl four statements are equivalent).

Monitor all procedures named X1 or
or X2.

(Both statements are equivalent).

Monitor all procedures whose name is
not Xla

Monitor all procedures whose forwarcds
or procedure heads occurred on or be-

tween the two sequence numberse.

Same as (6.) aboﬁe except that proce-
dures name SCAN are not to be moni-
toreds '

Monitor all grocedures named SCAN in
the range descrited.

Monitor atll procedures in the two
ranges specified plus any procedure
nated SCAN which 1is out of these
rangess

18+5

EURROUGHS CORPORATION COMPANY CUNFIDENTIAL
COAPUTER SYSTEMS GROUP B18CU/B81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 5405

MONJTCRING: PROGRAMMATIC CONTROL

The SMONITJUR_CFF option and the three specials MONITOR_SET.,
MONITCR_RESET, and MONITOR_CHANGE are added to SDL to aliow
program contraol of monitorinje [f the BMONITOR_OFF option was
ever onrs the program will not require a RUN=-TIME MONITOR
staterent at B0J and will behave as if the RUN-TIME HONITOR
statement T"SNONE>?™ had been read.

Each of the three specials 1is an unvalued fprocedure with one
arguments, a RUN-TIME MONITOR statement expressed as an expression

which generates a character strings €eger MONITOR_SET
("X1l»X27™)5e MONITOR_RESET causes monitoring to be discontinued
for atl procedures satisfying its argument. If a procedure is

not currently being monitored but still satisfies MCNITOR_RESET's
argumant» it will continue not to bte monitored.

MONITOR_SET causes monitoring to be commenced on all procedures

satisfying 1its argumente. If a procedure is satisfied by
MONITCR_SET's argurent and 1is currently teing msonitoredr it
cont inues to be monitored. If a procedure 1is currently being

moni tared and does not satisfy MONITOR_SET's argqusents it
cont inues to te monitorad. '

After the execution of a MONITOR_CHANGE only those ¢grocedures
referenced by its argument will be monitorede.

There are no groblems of sysmetry on calls and returns; TeBor
one can begin monitoring a procedure that has already been
entered or discontinue the monitoring of some procedure that has
currently teen entereds The cnly loss is that the gonitor output
inforrwation is "thrown out of sync™ in terms of the nesting level
for a whila.

SYNTAX OF A RUN-TIME MONITORING STATEMENY

<STATEMENT> ::= <EXPRESSTON>; 1
1$ALL; 2
1 SNONE; 3
CEXPRESSION> 33= <TERM> 4
I<TERM> <OR> <EXPRESSION> 5

<TERM> ::= <FACTQOR>» 6

186-6

BURROUGHS CORPORATION COFVPANY CONFIDENTIAL
CO4PUTER SYSTEMS GROUP 318245/817G0 SOL (BNF Version) (F)
SANTA BARBARA PLANT P.Se. 2212 5405

I<FACTOR> <AND> <TERM> ‘ 7

<FACTOR> 2:= <PRIME> 8

1<NOT> <PRIME> 9

<PRINME> ::= (<EXPRESSIUN>») 15

1 <RANGE> 11

{1 <LIST> 12

<RANGE> s:= <8 DIGIT SEQ #>-<8 DIGIT SEQ ¥> 13

<LIST ::= <SDL_IDENTIFIER> L4

I<SOL_IDENTIFIER>, <LIST> i5

I <SCL_IDENTIFIER><LIST> 16

<OR> s:= QR - 17

1+ 18

CAND> 3= AND 19

1% 20

<NOT> 2:= INOT 21

i= 22

NOTES

1. The <8 DIGIT SEQ #>s referred to in line 13 nust

be such that the first is less than or equal to
the seconde.

The <SDL_IDENTIFIER>s referred to in (14=16) are
names of procedures in the progranme. Only the
first 33 characters are used.

18=7

BURROUGHS CCRPQORATICN COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18C0/81700 SCL (BNF Version) (F)
SANTA BARBARA PLANT PeaSe 2212 5405

IHE MONITOUR FILE

-

When monitoring a proarams the monitoring intrinsics reference a
randogs access file associated wWwith the compilation of the
programas The name of the c¢ode file and the name of its wmonitor
file are given below:

CODE FILE MONITOR FILE
a $54
A/8 A/3%3

A7d/C A/B/$3C

BURROUGHS CORPORATION
COMPUTER SYSTEMS CROUP

SANT A BARBARA PLANY

INDEX

ACCEPT STATEMENT 9=12
ACCESS_FILE_INFORMATION 10=37
ACDRESS AND VALUE PARAMETERS 8=15
ADDRESS GENERATING FUNCTIONS g~-8
ADDRESS GENERATORS g=-13

ACDRESS MODIFIER 8=12

ACDRESS VARIABLES 8=5

ACVISCRY 12-=3

ALL_AREAS_AT_QPEN 5-28, 10-19
AMPERSAND OPTION 12=3

APPENCIX I: RESERVED AND SPECIAL WORDS 11-

APPENDIX II: SDL CONTROL CARD IPTIONS 12-1

Ix-1

COMPANY CONFIDENTIAL

1

AFPENCIX III: PROGRAMMING OPTIMIZATICN 13-1

APPENCIX Iv: RUNNING THE COMPILER L4=1
APPENCIX V: CONDITIONAL COMPILATION 15-1

APPENDIX vI: SOL PROGRAMMING TECHNIQUES | oA

1

APPENDIX VvII: SOL PARTIAL RECOMPILATION FACILITY

APPENCIX VIII: SOL MONITORING FACILITY 18-1

AREA_BY_CYLINCER S=28» 13-19 . \
ARITHMETIC OPERATORS 7-5

ARRAY 5-2

ARRAY STRUCTURE 5=13

ASSIGNMENT STATEAENT 7-8

ASSIGNMENT STATEMENTS AND EXPRESSIONS 7-1
ASSIGNOR 8=4

BACKUS NAUR FCRM 1-1

BASE _REGISTER 5=17

BASIC COMPUNENTS OF THE SDL LANGUAGE 2-1
BINARY CONVERSION g=18

BINARY SEAHCH 8-18

8IT STRINGS 2=3

BUFFERS 5=24» 190=22

guMp 8=2» 19=12

CALLING ASILITY 3=5

CASE EXPRESSION 8=2

CASE STATEMENT 107
CHANGE STATEMENT (FILE ATTRIBUTE STATEMENT)
CHANGE _STACK_SIZES 15-37
CHAR_TASLE 2=5

CHARACTER STRINGS 2-4
CHARACTER_FILL 19-38
CHECK GPTION 12-3

CLEAR STATEMENT 10-12
CLOSE STATEMENT 9=4

CODE QPTIGN 12-3

i0=14

PaSe

i7-1

81800/81700 SDL (BNF Version) (F)

2212 5405

BURRGUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMMENTS 2-2
COMMUNICATE 10-38
COMMUNICATE_WITH_GI SMO
COMPILE_CARD_INFO 10-38
CONCATENATION 7-t1
CONDITIONAL COMPILATION
CONDITIONAL EXPRESSIUN
CONSULE_SWITCHES ~ 8-19
CONTROLTOPTION 12-3
CONTROL_STACK_BITS
CONTROL_STACK_TOP
CONVERT 3-20
CONVERTOOTS OPTION
COROUTINE STATEMENT
CSSIZE OPTION 12-3

8=19

15~1
8=1

8=19
8=19

12=3
10=33

DATA STRUCTURING
CATA TYPES 5-1
DATA_ADDRESS 8=22
DATA_LENGTH 8-22
DATA_TYPE 8=22
DATE 8=22
DC_INITIATE_IO
DEJLANK 10-40
DESUG GPTION 12-3
DECIMAL CONVERSION
DECLARATION STATEMENT
CECLARATIONS 5-1
DECLARE STATEMENT
DECREMENT 8=4»
DEFINE INVOCATION
DEFINE STATEHMENT
DELINITED_TOKEN
CESCRIPTORS 8-10

DETAIL QGPTION 12-3
DEVICE 5=22» LlU=17
DISABLE_INTERRUPTS 10=-40
DISK ALLOCATION 5-28
DISK CRIVE ASSIGNMENT
DISK FILE 5=26, 10-22
DISPATCH 8-24
CISPLAY STATEMENT
DISPLAY_SASE 8-25
0C GROUPS 10=-2
DOUBLE QPTION
OUAMY 5-13
DUMP 10-40
DUNP _FOR_ANALYSIS
DYNAMIC DECLARATIONS
CYNAMIC FILE CHANGE
DYNAMIC_MEMORY_BASE
DYNAMICSIZE OFTION

5=3

10=39

8=23
3=1

5=2
10~-12
5-38
5=36
8-23

5=28

=13

12~3

10=41
5-16
10=14
8=25
12-3

ENABLE _INTERRUPTS 10=41

IX=2

COFPANY CONFIDENTIAL
B180G/B1700 3SDL (BNF Version) (F)

PeSa

2212 5405

IX=3

GURROQUGHS CORFORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQOUP B180OJ/817C00 SOL (BNF Version) (F)
SANTA BARBARA PLANT PeSe 2212 5495

END OF STRING 10-11
END_GF_PAGE_ACTION 5-29, 10-19
ENTER_CORCUTINE 10-33

ERROR FILE OPTION 12-3
ERROR_COMMUNICATE 1G-4l

ESSIZE OPTION 12-3

EU_ASSIGNMENT 5-28
EVALUATION_STACK_TOP 8-25
EXCEPTION MASK PART 5-31
EXECUTABLE STATEMENT 3-1
EXECUTABLE STATEMENTS 10-1
EXECUTE 8-=25, 10~42
EXECUTE-FUNCTION STATEMENT 19-36
EXECUTE-PROCECURE STATEMENT 10-35
EXIT_CORIUTINE 10-33
EXPANC_DEFINES 12-3

EXPRESSIONS 7-1

EXTENDED ARITHMETIC FUNCTIONS 8=-27

rETCH 1042

FETCH_AND_SAVE 10=42
FETCH_COMMUNICATE_ASG_PTR 8=19
FILE ATTRIBUTE STATEMENT (CHAMGE STATEMENT) 1g=14
FILE DECLARATIONS 5=20

F ILLER 5=12
FIND_CUPLICATE_CHARACTERS 19=42
FINI 3-1

FORMAL .CHECK 5=41

FURMAL_CHECK 5=10» » » » 6=5
FORMAL _VALUE 6=4» B8=16
FORMALCHECK OPTION 12=4

FORWARD DECLARATION 5=40

FREE ZE 12-=3

FREEZE_PRCGRAM 10-43

GROW 10=643

HALT 10~44

HARDWAKE MONITOR 13-1
HARD WARE _MONITOR 10~44
HASH_capE §=27
HEX_SEQUENCE_NUMBER 2-5

1706 CONTROL STATEMENTS 9-1
ICENTIFIER 5-37

ICENTIFIERS 2-1

IF STATEMENT 18-S

INDEXED FIELD REFERENCES S-6
INOEXINE 8=5
INITIALIZE_VECTOR 10-44
INTERPRETER OPTION 12-4
INTERROGATE_INTERRJPT_STATUS 8-28
INTRA=STRUCTURE REMAP 5-11
INTRINSIC HEAD 6-5

IX=4

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B18GL/317C0 SDL (8BNF Version) (F)
SANTA BARBARA PLANT P.S. 2212 54405

INTRINSIC OPTION 12=4

LABEL 5-21, 10-16
LAST_LIU_STATUS 8=28
LENGTH 8-=28
LEXICOGRAPHIC LEVEL 3=2
LIMIT_REGISTER 8-28
LIST QPTION 12-=4
LISTALL QGPTION 12-4
LOCATION 8-29

LOCK S5=25. 10-19

LOCKI 12-4

LOGICAL OPERATORS 7-7

M_MEM_SIZE 8-35

MAKE _DESCRIPTCR A=1l

MAKE _READ_ONLY, MAKE_READ_WRITE 10-32

MERGE OPTION 12-4

MESSACGE_COUNT 10-45

MODE 5-=24, 10-18

MONDIFY STATEMENTS (CLEAR, 3UMP, DECREMENT). 10-12
MONITCK 10=45, 12-=4

MONITCR FILE 18-7

MONLITOR SPEC PART 5=31

MONITCR_OUTPUT_FILE RESTRICTIONS 18=1, 18-6
MULTI PACK 5-28, 10-19 -

NAME _OF_0AY 8-29
NAME _STACK_TOP 8=30
NEST_PROCEDURE_TIMES. 12-4
NESTING 3=2

NESTING LEVEL 6=7

NEW OPTION 12-4

NEXT_ITEM, PREVIOUS_ITEM 8-12
NEXT_TOKEN 8-39

NO OPTION L12-4

NO_DUPLICATES OPTION 12=4
NO_SOURCE_OPTION 12=4
NON-STRUCTURE DECLARATIONS 5-8
NSSIZE OPTION 12=5

NULL B=-12

NULL STATEMENT 10-13

NUMBER_OF _STATIONS 5=30
NUMBERS 2-3

ON SEQUENCE 7=16

OPEN OPTION 5=27

OPEN STATEMENT 9=-2

OPERATOR PRECEDFENCE TABLE 7T=4
JPTIONAL FILE PART 5=31

OTHER CONSTANTS 2=5

OVERLAY 1L3=45

PACK_ID 5=27» 10=16

IX=5

EURROUGHS CCRPORATION COVMPANY CONFIDENTIAL
COMPUTER SYSTEMS CGROUP 31800/81700 SDL (BNF Version) (F)
SANTA SARSARA PLANT PeSs 2212 5495

PAGE CPTION 12-5

PAGED ARRAY DECLARATIONS 5=15
PARTITY SPECIFICATION 1¢=18
PARITY_ADDRESS 8=31

PASS END OPTION 12=5

POLISH NOTATICN 7=2

PPROF ILE 13-1

PPSSIZE OPTION 12-5
PREVICUS_ITEM 8§=~12

PRIMARY ELEMENTS OF THE EXPRESSION =1
PROCEDURE 30DY 6=6

PROCECURE ENDING 6=8
PROCECURE HEAD 6=2

PROCECURE NESTING 3=4
PROCECURE STATEMENT 3-1
PROCECURES 6=1

PROCESSOR_TIME 8=31

PRJF ILE 13-1

PROF ILE, PPROFILE OPTION 12=5
PROGRAM SEGMENTATIUN 4=1
PROGRAM SWITCHES 8=-31

PROGRAM TIMING 13=2
PROGRAMMING OPTIMIZATION 13=-1
PRUGRAMMING TECHNIQUES 16=1

READ STATEMENT 9=5

READ_CASSETTE 10=46
READ_FILE_HEADER, WRITE_FILE_HEADER 10=-39
READ_FP3» WARITE_FPB 10=46

READ _CVERLAY, WRITE_QVERLAY 19=47
RECOMPILATION FACILITY 17 =1
RECOMPILE_TIMES OPTION 12=5
RECORD 5=4

RECOKRD REFERENCE DECLARATIONS 5=19
RECORL REFERENCE VARIABLES 5=19
RECORD SIZE 5=25» 10-22

RECORD STATEMENT 5=3

REDUCE STATEMENT 15=9

REEL NUMBER 5=26» 10=22

REFER ADDRESS L0=47

REFER LENGTH 10=48

REFER STATENENT 10=-8

REFER TYPE 10=43

REFERENCE DECLARATIONS 5=18
REINSTATE 10-458

RELATED PUBLICATIONS 1=2
RELATIONAL OPERATORS 7=6
REMAPPING 3=9, 5=13

REMOTE KEY 5=29

REPLACE OPERATGRS 7-8

REPLACEs, DESTRUCTIVE 7=8

RESERVED WOROS 11-1» 11-=3

RESTQORE LO=-49

Restrictionss® 5=17

IX-6

BURROUGHS CORPORATION COVMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 8L18CC/B1709 S0L (BNF version) (F)
SANT A BARBARA PLANT ' P.S. 2212 5405

RETURN STATEMENT 6-6
RETURN_AND_ENABLE_INTERRUPTS 6-6

REVERSE_STORE 10-49

S_MEM_STIZE», M_MEM_SIZE 3-35
SAVE 5=25» » 17=50
SAVE_STATE = 10-50

SCOPE 3-5

SCOPE OF PROCEDURES 3=2
SEARCH_DIRECTORY 10-28
SEARCH_DIRECTORY STATEMENT 10-28
SEARCH_LINKED_LIST 8-=32
SEARCH_SDL_STACKS 8-=33
SEARCH_SERIAL_LIST 8-34

SEEK STATEMENT 9-11

SEGMENT, SEGMENT_PAGE 4=l

SEQ OPTION 12-5

SEQUENCE _NUMBER 2-5

SERIAL NUMBER PART 5-31
SINGLE SPACE OPTION 12-5

SIZE GPTION 12-5

SKIP STATEMENT 9-15

SORT 14 =50

SORT_MERGE 10-51

SORT _SEARCH 8-35
SORT_STEP_DONN 8=35
SORT_SWAP * 18-52

SCGRT _UNBLOCK 8-36

SPACE STATEMENT 9=~14
SPO_INPUT_PRESENT 8=356

STOP STATEMENT 10-26
STRUCTURE DECLARATIONS S5-11
STRUCTURE OF AN SDL PROGRA4 3-1
STRUCTURED RECGRD STATEMENT 5-6
STRUCTURES 5-5

SUBBIT AND SUBSTR 8<-8» B8-37
SUPPRESS OPTICN 12-5
SKAP . :8=34

SWITCH FILE DECLARATIONS S5=34

THAW_PROGRAN 15=52
THREAD_VECTOR 10-52
TIME: 8=39

TIMER: .8-39

TIMING OPTION 12=-5
TODAYS_DATE 2=5
TRACE 10-53

TRANSLATE 18~54

TYPED PROCEDURES 8=15

UNARY QPERATORS 7-5
UNDERSCORES_IN_FILE_NAMES OPTION 12=5
UNOD Lo=4

USE INPUT BLOCKING 5-=29, 13=19

toe

IX=7

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEHS GRODUP 831800/81700 SDL (BNF Version) (F)
SANTA BARBARA PLANT PaSe 2212 5405

USE STATEMENT 5=43
USEDOTS OPTION 12=5

VALYUE GENERATING FUNCTIONS 8-16
VALUE VARIABLES B=14
VALUE_DESCRIPTOR g=40

VARIAELE DATA FIELDS 6=4
VARIABLE RECORD 5=24» 10~19
vOID CPTION 12=5

VSSIZE QOPTION 12-6

WAIT @=4)

WORK FILE 5=39

WORK ING_SET_3YTES OPTION 12-6
WRITE STATEMENT 9-8
WRITE_FILE_HEADER 10-30
WRITE_OVERLAY 10=47

X_ADD 8=27
X_DIv 8=27

X_MOD 8-27 "
X_qUuL 8=-27

X_SuB 8=27

XMAP COPTION 12-6
XREF 12-6

XREF _ONLY 12<6

ZIP STATEMENY Lo=27

EURROUGHS CCRPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUF ' 218G0/EL7499 9.1 REVISIOw
SANTA BARBARA PLANT

10~47

1G=48

TIMER

STIMER DESIGNATCR>::= TIMER
A value of tyoe 8IT(24) is returnec. . The value 1is the
current setting of the TIME register.
DATA LENGTH

CDATA_LENGTH CESIGNATCR>:2= DATA_LENGTH (<EXPRESSION>)
Returns the length in tits of <EXPRESSION>» regardless of"
the data type.

DATA TYPE :
<CATA_TYPE DESICNATOR>:2:= DATA_TYPE (<EXPRESSION>)

Returns the type bits cf <EXPRESSICK>.
(;

REFER ADDRESS

<REFER_ADDRES S REFER_ADDRESS (<REF VAR>,
DESIGNITOR>f:= . <EXRESSION>)

The value of <EXPRESSION> is stored ir the address of <REF
VAR>. . b ’

REFER LENGTH

<SREFEF_LENGTH_ REFER LENGTH (<REFER VAFR>,
DESIGNATOR>» :::= <EXPRESSICA>)

The value of <EXPRESSION> is stored in the length of <REF
VAR>.

REFER TYPE

<CREFER_TYPE_
DESIGNATOR>2:= REFER_TYPE (<REF VAR>» <EXPRESSIUN>

The value of <EXPRESSICN> is stored ir the tyre vpart of
<REF VAaR>,.

COMPUTER SYSTEMS GROUP B185Q/7E1700 9.1 REVISION
SANTA BARBARA PLANT

5=6

SDL BNF (P.S. 2212 5405)
STRUCTURED RECORD STATEMENT

<STRUCTURED RECORC STATEMENT> ::=
RECORD Q1 <RECORD ICENTIFIER> <TYPE>
<STRUCTURE ELEMENTS>

<RECORD IDENTIFIER> z:2:= <ICENTIFIER>

<STRUCTURE ELEMENTS> ::=
p<LEVEL NUMBER> <STRUCTURE ELEMENT>

I »<STRUCTURE ELEVMENTS>
<STRUCTURE ELEMENT> ::=

<FIELD NAME> <TYPE>
I <FIELD NAME> <ARFRAY BOUNC> <TYPE>
I FILLER <TYPE>

! <FIELD NAME> REMAPS <RENMAFS QOEJECT> <TYP
Structured Records have teen imglerented to asllcw easier

conversion of the current PlLs/I~style structures to
recordse.

Structured Records have the same capabilities as RECORDS.

Fields declared as an array nay. not have nested structure.

BINARY SEARCH

<BINARY_SEARCH FUNCTION>::= BINARY_SEARCH

<START_RECORD>: =
<CUMPARE_FIELC>::
<CUMP ARE_VALUE>z:
<NUMBER_OF_RECORD

(<START_RECORD>» <COMPARE_FIELD>,
<CCMPARE_VALUE>» <NUMBEER_OF_RECORDS>)

<EXPRESSIQN>
= <TEAPLATE>
= <EXPRESSIUON>
S»s:= <ADDRESS GEMNERATCR>

BINARY_SEARCH searches an ordered list of itess that start
at <START_RECORD> for <NUMBER_OF_RECOKRDS> for a mstche

The occurrence number of the entry that matches will be
returned» or if there is no match, the cccurrerce number
of the first entry that is greater Wwill te returned.

NOTE s The comparison is always left justified ard uses
the length of <COMPARE VALUE>.

-~

	0001
	0002
	0003
	001
	002
	003
	004
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	14-01
	14-02
	14-03
	15-01
	15-02
	15-03
	16-01
	16-02
	16-03
	16-04
	17-01
	17-02
	17-03
	17-04
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	IX-01
	IX-02
	IX-03
	IX-04
	IX-05
	IX-06
	IX-07
	_01
	_02

