
Burroughs~

PRICED ITEM

Printed in U.S.A. May 1979 1067535

Printed in U.S.A.

Burroughs m

B 1800/B 1700
Systems

BASIC

REFERENCE MANUAL

Copyright © 1979 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

May 1979 1067535

Burroughs believes that the software described in this manual is
accurate and reliable, and much care has been taken in its preparation.
However, no responsibility., financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance~ with laws, rules, and regulations of the
jurisdictions with respect tei which it is used.

The information contained. herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Correspondence regarding this document shr:>uld be addressed directly to Burroughs Corporation,
P. 0. Box 4040, El Monte, California 91734, Attn: Publications Department, TIO - West.

TABLE OF CONTENTS

Section Title Page Section Title Page

INTRODUCTION v PRINT Statement 6-3
COMPONENTS OF BASIC 1-1 Zoned Format 6-4
General 1-1 Packed Format 6-4
Constants 1-1 Vertical Spacing 6-6

Numeric Constants 1-1 TAB Function 6-6
String Constants 1-1 IMAGE Statement 6-7

Variables 1-1 Picture String Patterns 6-7
Numeric Variables 1-1 Numeric Patterns 6-8
Subscripted Variables 1-2 String Patterns 6-11

Expressions 1-3 Literal Patterns 6-12
Arithmetic Expressions 1-3 Formatted Output Rules 6-12
Relational Expressions 1-4 PRINT USING Statement 6-15
String Expressions 1-4 WRITE USING Statement 6-15

Syntax Rules 1-5
7 DISK FILES 7-1

2 ASSIGNMENT STATEMENTS 2-1 General 7-1
General 2-1 File Declarations 7-1
Arithmetic Assignment Statement 2-1 FILES Statement 7-1
Multiple Arithmetic Assignment 2-1 File Designator 7-2

Statement FILE Statement 7-2
String Assignment Statement 2-2 FILE Modes 7-3
Multiple String Assignment Statement 2-2 Character Files 7-3

INPUT Statement 7-3
3 CONTROL STATEMENTS 3,.1 PRINT Statement 7-4

General 3-1 Character READ Statement 7-5
GO TO Statement 3-1 Character WRITE Statement 7-5
IF Statement 3-1 FILE WRITE USING Statement 7-6
ON Statement 3-2 FILE PRINT USING Statement 7-6
Program Loops 3-2 DELIMIT Statement 7-6
FOR and NEXT Statements 3-3 MARGIN Statement 7-6
END Statement 3-4 BACKSPACE Statement 7-7
STOP Statement 3-5 Memory-Image Files 7-7
CHAIN Statement 3-5 Memory-Image READ Statement 7-8

Memory-Image WRITE Statement 7-8
4 SPECIFICATION STATEMENTS 4-1 Memory-Image READ FORWARD 7-9

General 4-1 Statement
DIM Statement 4-1 BACKSPACE$ Statement 7-10

SETW Statement 7-10
5 PROGRAM DOCUMENTATION 5-1 Non-Type Dependent File Statements 7-10

General 5-1 RESTORE Statement 7-10
REM Statement 5-1 SCRATCH Statement 7-11
Comments 5-1 APPEND Statement 7-11
NULL Statement 5-2 IF END Statement 7-11

IF MORE Statement 7-12
6 INPUT /OUTPUT 6-1 File Functions 7-12

General 6-1 External File Error Conditions 7-12
READ and DATA Statements 6-1
RESTORE Statement 6-2 8 INTRINSIC FUNCTIONS 8-1
INPUT Statement 6-2 General 8-1

iii

TABLE OF CONTENTS (Cont.)

Section Title Page Section Title Page

8 INTRINSIC FUNCTIONS (Cont) Single Statement Functions 9-1
Numeric Functions 8-1 Multiple Statement Functions 9-2

ABS(X) Function 8-1 Subroutine Subprograms 9-4
ATN(X) Function 8-2
BCL Function 8-2 10 MATRIX OPERATIONS 10-1

COS(X) Function 8-2 General 10-1

COT(X) Function 8-2 MAT ADDITION Statement 10-1

DET Function 8-2 MAT ASSIGNMENT Statement 10-3

EBC(X) Function 8-2 MAT CON Statement 10-3

EBCDIC Mnemonics 8-2 MAT IDN Statement 10-4

EXP(X) Function 8-3 MAT INPUT Statement 10-4

IDA Function 8-3 MAT INV Statement 10-5

INT(X) Function 8-3 MAT MULTIPLICATION Statement 10-6

LEN(A$) Function 8-4 MAT NUL$ Statement 10-7

LOG(X) Function 8-4 MAT PRINT Statement 10-7

MOD(X,Y) Function 8-4 MAT PRINT USING Statement 10-8

NUM Function 8-4 MAT READ Statement 10-10

RND Function 8-4 MAT SCALAR MULTIPLICATION 10-12

RANDOMIZE Statement 8-4 Statement

SCN(A$, B$, J ,K) Function 8-5 MAT SUBTRACTION Statement 10-14

SGN(X) Function 8-6 MAT TRN Statement 10-15

SIN(X) Function 8-6 MAT WRITE Statement 10-16

SQR(X) Function 8-6 MAT WRITE USING Statement 1.0-16

T AN(X) Function 8-6 MAT ZER Statement 10-18

TIM Function 8-6
V AL(A$) Function 8-6

APPENDIX A - BASIC CARD READER INPUT A-1

String Functions 8-7
General A-1

CHR$(X) Function 8-7
Compilation Card Deck A-1

CLK$ Function 8-7
COMPILE Card A-2

DAT$ Function 8-7
Label Equation Card A-2

EXT$(A$,J ,K) Function 8-7
MCP Label Card A-2

REP$(A$,B$,C$,J ,K) Function 8-8
Compiler Option Control Card A-3

STR$(X) Function 8-9
Source Input Cards A-4

UNO$ Function 8-9
END Card A-4

Sample Compilation Deck A-4

9 SUBPROGRAMS 9-1 APPENDIX B - REMOTE BASIC B-1
General 9·.1

Function Subprograms 9-1 INDEX Index-I

iv

INTRODUCTION

The purpose of this manual is to provide a description of the BASIC language as implemented on the B 1800/
B 1700 systems. BASIC, an acronym for Beginners All-purpose Symbolic Instruction Code, was initially devel­
oped under the direction of Professor Kemeny and Professor Kurtz at Dartmouth College. B 1800/B 1700
BASIC includes the capabilities of the original Dartmouth College BASIC plus extensions provided by Bur­
roughs.

BASIC is a problem-oriented language designed for a wide range of applications and may be easily applied
to both business/commercial and engineering/scientific processing tasks. The BASIC language is designed for
use both by individuals who have little previous knowledge of computers as well as individuals with considera­
ble programming experience. A distinct advantage of BASIC is that its rules of form and grammar are learned
quite easily.

A program written in B 1800/B 1700 BASIC, called a source program, is accepted as input by the BASIC com­
piler. The compiler first verifies that each source statement is syntactically correct and then converts the
source program into BASIC S-code. The S-code generated by the compiler can then be executed on a B 1800/
B 1700 computer system using the BASIC interpreter. The interpreter causes the system hardware to perform
the operations specified by the S-code and thus the source program.

The B 1800/B 1700 BASIC compiler operates under the control of a Master Control Program (MCP). Similarly,
the S-code generated by the compiler is executed under control of the MCP.

v

GENERAL

SECTION 1
COMPONENTS OF BASIC

BASIC statements are composed of certain key words that are used with the fundamental elements of the lan­
guage. The fundamental elements of B 1800/B 1700 BASIC are discussed in this section.

CONSTANTS

A constant in the BASIC language represents a value that cannot change during program execution. Constants
can be either numeric or string and are assigned by the programmer.

Numeric Constants

A numeric constant consists of a series of decimal digits which may be preceded by a sign (+ or -) and may
optionally contain a decimal point. Unlike some programming languages, BASIC does not distinguish between
numbers containing a decimal point (real numbers) and those written without a decimal point (integers). All
numeric values, in BASIC, are stored internally in floating-point form and thus are handled as if they were
real numbers.

A numeric constant may be expressed in scientific form through the use of the letter E followed by a signed
or unsigned 1- or 2-digit integer which is the power of 10 by which the number preceding the letter E is to
be raised. For example, 2.145E-4 represents the value .0002145. The decimal point in a number expressed
in E notation may follow or precede any digit if the correct power of 10 is expressed.

In B 1800/B 1700 BASIC, the range for numeric values is 4.31808E-78 through 5.7896E+76. Zero is also al­
lowed. The precision for numeric values is nine significant digits. The maximum integer value which can be
accurately represented is 2**30-1 (1073741823).

String Constants

A string constant is enclosed in quotation marks and consists of any sequence of EBCDIC characters valid
to the B 1800/B 1700 processor. Since the quotation mark is used to define the beginning and the end of a
string constant, the quotation mark may not be embedded in the string. Examples of string constants are:

A, 12, $* 1-%#

VARIABLES

Unlike a constant, whose value remains fixed, a variable name represents a data item whose value may be
changed during program execution. Variables are associated with either numeric or string values, and may be
either simple variables or array elements. _Explicit declarations of variable types are not required; a currency
symbol ($) serves to distinguish string from numeric variables, and the presence of a subscript distinguishes
an array element from a simple variable.

Numeric Variables

A numeric variable name is a symbolic name used to represent a numeric value. A numeric variable name
may be a single alphabetic letter or a single alP,habetic letter followed by a single decimal digit. Valid numeric
variable names are:

A, AO, Al, A2, Z, ZO, Zl, ... Z9.

In B 1800/B 1700 BASIC, each numeric variable used in a program is initialized to 0 during compilation.

1-l

A string variable is a symbolic name used to represent an EBCDIC character string. A string variable name
is a letter, optionally followed by a digit, followed by a currency symbol ($). Valid string variable names are:

A$ B$ C$ D$ X$ Y$ Al$ B6$ C9$

In B 1800/B 1700 BASIC, each string variable used in a program is initialized to null during compiilation. The
length of the character string associated with a string variable can vary during execution of a program from
a length of 0 characters (signifying the null or empty string) to 4095 characters.

Subscripted Variables

A variable may also be subscripted to refer to a particular element in an array. A subscripted variable in
BASIC represents an element of a 1- or 2-dimensional array. The general form of a subscripted variable is
as follows:

n(sl ,s2)

where n is the array name and s 1 and s2 are arithmetic expressions which determine the values of the sub­
scripts. The second subscript, s2, is optional depending on the number of dimensions in the array.

A subscripted variable represents a specific element in a numeric array and consists of the name of the array
followed by a set of subscripts enclosed in parentheses which indicate the position of the element within the
array. An array may have a maximum of two dimensions.

An array name must be a single alphabetic letter. The same letter, however, may be used in a program as
both a simple variable name and an array name.

Unless an array is dimensioned in a DIM statement, BASIC assumes that each subscript of a subscripted
variable can range from 0 through 10. When either subscript of a subscripted variable exceeds 10, the dimen­
sions associated with the array name must be declared in a DIM statement. See section 4 for additional infor-
mation on the DIM statement. ·

When an array is used in a program, whether dimensioned in a DIM statement or not, the elements n(O) and
n(0,0) are available in a I-dimensional and 2-dimensional array, respectively.

A subscript may be any arithmetic expression. Wben an arithmetic expression is used as a subscript, it is eval­
uated and the resulting value is converted to an integer by using the formula INT(X + 0.5) before being used
as a subscript.

In B 1800/B 1700 BASIC, each array used in a program is initialized to 0 (or to null if the array is a string
array), during compilation.

1-2

EXPRESSIONS

An expression is any constant, variable, function reference, or a combination of these separated by operators
or parentheses. There are three types of expressions:

Arithmetic
Relational
String

Arithmetic Expressions

An arithmetic expression is a means for computing a numerical value and is any numeric constant, numeric
variable (either simple or subscripted), arithmetic function 'reference, or combination of these separated by
arithmetic operators or parentheses. An arithmetic expression may contain the following arithmetic operators:

Operator

**
i
! (exclamation point)
*

+

Meaning

Exponentiation
Exponentiation
Exponentiation
Multiplication
Division
Addition
Subtraction
Negation

Negation is a unary operator; that is, it operates on only one variable. The other operators are binary operators
requiring two variables, two constants, or a combination of variables and constants. No arithmetic operation
may be assumed to be present.

Examples of valid and invalid arithmetic expressions follow:

Val id

-A+B
CA•B>-CC••S>
X+4 •5

Invalid

A//B
CA+B> CC•D>

Parentheses may be used in an arithmetic expression to denote the order in which operations are to be per­
formed. Parentheses have highest precedence in determining the order of evaluation; when nested parentheses
occur, evaluation proceeds from the innermost set to the outermost set.

1-3

The precedence order (or hierarchy of arithmetic operators~ used in evaluating an arithmetic expression is as
follows:

(highest)

(lowest)

Function reference
Exponentiation
Unary minus
Multiplication and division
Addition and subtraction

The order in which operators of the same le~el are performed is from left to right, except for exponentiation,
where evaluation is from right to left. For ~xample, A **B**C is evaluated as A **(B**C).

References to both user-defined functions anµ mathematical functions may also appear in arithmetic expres­
sions. User-defined functions and mathematiaal functions are discussed in subsequent sections of this manual.

Relational Expressions

A relation expresses a condition between two arithmetic expressions that, when evaluated, is either true or
false. A relational expression consists of any two arithmetic expressions separated by a relational operator.
The relational operators and their meanings , are as follows:

Relational
Operator

<
<= or=<

<> or><
>
>= or =>

Meaning

Less than
Less than or equal to
Equal to
Not equal to
Greater than
Greater than or equal
to

Chains of relations are not permitted. For example, A<B<C is not a valid relational expression.

String Expressions

A string expression represents a sequence qf string operations to be performed over the given set of string
constants, string variables (either simple or subscripted), and string function references, or combination of
these, resulting in a string value. Concaten~tion is the only operation permitted in a string expression. The
concatenation operator is either ampersand (&) or plus (+).

Example:

10 A$ = "FIRST ---"
20 8$ = "~ECONO ---"
50 C$ = A$ + 8$ K "THIRD"
40 PRINT C$
50 Et-\0

Result:

FIFST ---SECOND ---THIRD

14

SYNTAX RULES

The following rules must be observed in the formation of source statements for a BASIC program:

1. Each source statement must be on a separate card image.
2. A statement may not be continued onto a second card image.
3. Each statement must begin with a unique line number. The line number must start in column 1 and

may consist of as many as five decimal digits. The line number is used as both a statement label and
a sequence number. The source statements comprising a program are required to be in ascending nu­
merical sequence as each source statement being read by the compiler is sequence checked. A given
BASIC .line of code may contain a maximum of 243 characters per line.

4. Blanks are ignored except in strings, image statements, and within or preceding line numbers at the
beginning of lines. Blanks, with these exceptions, may occur anywhere in a BASIC statement and may
be used as . follows to improve the appearance and readability of a program.

15 GO TO 245
15 GO TO ?.45
1'1GOT0245
15 G 0 TO 2 4 5

1-5

GENERAL

SECTION 2
ASSIGNMENT STATEMENTS

Assignment statements are used to assign a value to a simple or subscripted variable. The following assignment
statements are discussed in this section:

Arithmetic assignment statement.
Multiple arithmetic assignment statement.
String assignment statement.
Multiple string assignment statement.

ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement is used to assign a value to a numeric variable. The arithmetic assignment
statement has the following format:

<n> LET <variable> = <arithmetic expression>

where <n> is the line number of the LET statement, <variable> is either a simple or subscripted numeric
variable, and <arithmetic expression> is a numeric constant, numeric variable (either simple or subscripted),
or an arithmetic expression.

The word LET is optional.

Examples:

10 LET A = 4
15 LET PC2,3> = SQRCA**2 + 8**2)
20 Zl = A8S<8Cl.'1»

MULTIPLE ARITHMETIC ASSIGNMENT STATEMENT

The multiple arithmetic assignment statement is used to assign a value to more than one numeric variable.
The multiple arithmetic assignment statement has the following format:

<n> LET <variablel> = <variable2> = <variable3> = ... = <arithmetic expression>

where <n> is the line number of the multiple arithmetic assignment statement; <variablel> = <variable2>
= <variable3> ... represents a sequence of simple or subscripted numeric variable names separated by the
equal sign; and <arithmetic expression> is a numeric constant, numeric variable (either simple or subscripted),
or an arithmetic expression.

2-1

The multiple arithmetic assignment statement assigns the value of the <arithmetic expression> to each
variable name on a left-to-right basis. For e?'ample, the multiple arithmetic assignment statement:

10 LET X=I=A<I>=4

assigns the value 4 to X, I, and A(4) as though the following statements had been used:

10 LET X=4
20 LET I=4
30 LET H4)=4

The word LET is optional in this statement.

Examples:

lJ LET A=B=C=O
50 LET VC1) =W=X=Y=X= Z*A+B

STRING ASSIGNMENT STATEMENT

The string assignment statement is used to assign a value to a string variable. The string assignment statement
has the following format:

<n> LET <variable> = <string expressiolll>

where <n> is the line number of the LET statement, <variable> is either a simple or subscripted string
variable, and <string expression> is a string constant, string variable (either simple or subscripted), or a string
expression.

The word LET is optional.

Examples:

0 l 0 Z 11> = '' D f F tt
015 LET P$C2~3> = "AHC" + /]$
100 LET A$ = P$C2,3>

MULTIPLE STRING ASSIGNMENT STATEMENT

The multiple string assignment statement is used to assign a value to more than one string variable, and has
the following format:

<n> LET <variable!> = <variable2> = ... <string. expression >

where <n> is the line number of the. multiple strill1g assignment statement, <variable 1 > = <variable2> ... rep-.
resents a sequence of simple or subscripted string variable names separated by the equal sign, and <string

2-2

expression> is a string constant, string variable (either simple or subscripted), or a string expression. This
statement assigns the value of the <string expression> to each variable on a left-to-right basis. For example,
the string assignment statement:

10 LET I = 3
15 LET X$ = Yi = A$CI> = "fOUR"

assigns the string "FOUR" to X$, Y$ and A$(3) as though the following statements had been used:

lJ LET X$ = "FOUR"
20 L£r Y$ = "FOUR"
~0 LET A$(3) = "FOUR"

The word LET is optional.

Examples:

10 LET A$ = 8$ = Cl = "lfRO"
15 0$ = Et = Fl$ = At + 8$

2-3

GENERAL

SECTION 3
CONTROL STATEMENTS

Normally, the executable statements in a BASIC program are executed in line number sequence; that is, after
one statement has been executed, the statement immediately following it is executed. Control statements are
used to alter the normal flow of a program. They may transfer the control to another part of the program.
terminate program execution, or control iterative processes. The following control statements are discussed
in this section:

GO TO statement.
IF statement.
ON statement.
FOR statement.
NEXT statement.
END statement.
STOP statement.
CHAIN statement.

GO TO STATEMENT

At some point in a program it may be necessary to unconditionally transfer control to a line number out of
the physical (line number) sequence of instructions. The GO TO statement is used to transfer control to the
statement whose line number is specified. The GO TO statement has the following format:

<n> GO TO <line number>

where <n> is the line number of the GO TO statement and <line number> is the line number of the statement
to which control is transferred.

Example:

110 GO TO 200

IF STATEMENT

Execution of the IF statement causes a relational expression to be evaluated and the sequence of execution
of the program statements to be altered only if the specified condition is satisfied. The IF statement has the
following format:

<n> IF <relational expression> [THEN] <line number>
[GO TO]

where <n> is the line number of the IF statement, <relational expression> is a relational expression as de­
scribed in section 1 under the heading RELATIONAL EXPRESSIONS, and <line number> is the line number
to which control is transferred if the <relational expression> is satisfied. Either of the key words THEN or
GO TO may be used in the syntax of this statement.

3-1

If the <relational expression> is satisfied, program control is transferred to the statement specified by <line
number>. If the <relational expression> is rtot satisfied, program control is passed on to the next statement
in line number sequence following <n>.

Example:

30 If A<lOO THEN 7C.

specifies that program control is to be transferred from line number 30 to line number 70 if the value of A
is less than 100 when this line is executed. If A is greater than or equal to 100, control is passed to the line
following line 30.

ON STATEMENT

Execution of the ON statement allows program control to be transferred to one of several line numbers, de­
pending upon the value of a specified arithmetic expression. The ON statement has the following format:

<n> ON <arithmetic expression> [THEN] <Jine 1 >, <line2>, ...
[GO TO]

where <n> is the line number of the ON statement; <arithmetic expression> is any numeric constant, numer­
ic variable (either simple or subscripted) or arithmetic expression; and <line 1 >, <line2>, <line3 >, . . . repre­
sent the line numbers to which program control is transferred, depending upon the value of the <arithmetic
expression>.

If the value of the <arithmetic expression> is 1, program control transfers to the statement whose line number
is <linel>. A value of 2 transfers control to the statement whose line number is <line2> and so on. If
INT(<arithmetic expression>) is less than 1 or greater than the number of elements in the list, a run-time
error message is printed and the program halts.

Example:

10 K = 4
20 ON K GO TO 60,. 40, SO, 70

Execution of the two statements in the example causes program control to be transferred to the statement
at line number 70.

PROGRAM LOOPS

The BASIC language provides the capability to execute a portion of code repeatedly. This function is referred
to as a program loop. Certain parameters are supplied to the loop to specify the number of times the portion
of code is to be executed.

Example:

10 READ A,.'3
20 LET C = A+B/10
30 LET D =A•C
40 PRINT "C= "; c, "0= "i.0
50 GO TO 10
61 DATA 12,5,15,14,.1,.1e,4,1~

In this example, line numbers 10 through 40 arc executed in the normal manner. When line number 50 is
executed, program control is unconditionally transfe1red back to line number 10. Line numbers 10 through 40

3-2

are repeated and when line number 50 is executed, control is once more returned to line number 10. This
repetition continues until all of the data items in line number 60 are exhausted. At that time, program execution
is terminated. Since the loop is one of the most useful tools in programming, the FOR and NEXT statement~
are provided in BASIC for controlling program loops.

FOR AND NEXT STATEMENTS

The FOR and NEXT statements are used together to cause the same portion of a program to be repeated
a specified number of times. The FOR statement may have either of the following formats:

<n> FOR <variable>=<expressionl> TO <expression2>

<n> FOR <variable>=<expressionl> TO <expression2> [STEP <expression3>}

where <n> is the line number of the FOR statement; <variable> is a simple numeric variable; and
<expression!>, <expression2>, and <expression3> are any numeric constant, numeric variable (either sim­
ple or subscripted), or arithmetic expression.

The <variable>, ~mown as the index of the loop, must be an unsubscripted numeric variable. In the general
form <expression!>, <expression2>, and <expression3> are referred to as the initial, final, and incremental
parameters, respectively, for the index <variable>. The value of <expression!> is the initial value assigned
to the index <variable>. The value of <expression2> is the maximum value which the index <variable> may
attain. The value of <expression3> is the increment or decrement to be added to the index .e:variable> on
each pass through the loop. If a STEP clause is not specified (option 1), the value of <expres'sion3> is as­
sumed to be 1.

A NEXT statement must follow the FOR statement. The range of the loop i~ delimited by the NEXT state­
ment, whose format is as follows:

<n> NEXT <variable>

where <n> is the line number of the NEXT statement and <variable> is the same index <variable> used
in the companion FOR statement.

Execution of a FOR statement results in the following action:

1. The values of <expression!>, <expression2>, and <expression3> are calculated. If a STEP clause
is not specified, the value of <expression3> is assumed to be 1.

2. The value of <expression!> is assigned to a temporary simple variable supplied by the compiler.
3. The value of <expression3> is tested to determine whether the step size is positive or negative. If

the value of <expression3> is greater than or equal to 0, step 4 is performed; otherwise, step e is
performed.

4. The value of the temporary variable is compared to the value of <expression2>. If the value of the
temporary variable is greater than the value of <expression2>, the loop is exited and program control
is transferred to the statement following the NEXT statement; otherwise, step 6 is performed.

5. The value of the temporary variable is compared to the value of <expression2>. If the value of the
temporary variable is less than the value of <expression2>, the loop is completed and program con­
trol is transferred to the statement following the NEXT statement; otherwise, step 6 is performed.

6. The value of the temporary variable is assigned to the index <variable>.
7. All executable statements within the range of the FOR... NEXT loop are executed.
8. The value of <expression3> is added to the temporary variable, and steps 3 through 7 are repeated

until the loop is satisfied.

3-3

When it is desired to increment the index <variable> by something other than l, the STEP clause (expression)
is used in the FOR statement. The step size need not be an integer.

Example:

10 FOR I= 1 TO D STt:P .1

The above example is a valid FOR statement. When the STEP clause is used,< expression3 > must always
assume a non-zero value; otherwise, the range of the loop is executed indefinitely.

The values of <expressionl>, <expression2>, and <expression3> may each be either positive or negative.
However, if the initial, final and incremental values in the FOR statement form an impossible combination,
the range of the loop is not executed and program control is transferred to the statement following the com­
panion NEXT statement. The following FOR statement contains an impossible combination of control
parameters:

10 FOR I = 3 TO -3

A FOR ... NEXT loop may appear within the n,tnge of another FOR ... NEXT loop. When nested loops are used,
the inner loop must completely reside within' the range of the outer loop; that is, they must not overlap as
illustrated in the following:

Legal Nesting Illegal Nesting

10 F OH X=l TO 5 10 FOR X=2 TO 5 . . . 20 FOR Y= 1 TO 5
50 F OF Y=l TO 5

ec NEXT x
6C NEXT y 90 NEXT y

90 NEXT x

The same index <variable> may not be used in two loops, one of which is nested within the other, and
FOR ... NEXT loops may not be nested to rriore than 20 levels.

Example:

05 FOH l=l lG 9 STEP 4
10 f~EAD A,.b
20 LET C=f\+A/lC
30 LET D=A•C
40 PRINT "C= ";c~"D= ";D
5') NEXT I
60 DATA 1z,.5,.1s,.14,.1,.1e,.4,.15
7 0 ENO

END STATEMENT

The END statement is used to indicate the end of a BASIC program. The END statement has the following
format:

<n> END

where <n> is the line number of the END statc!mcnt.

In B 1800/B 1700 BASIC, the END statement is optional in a program. The END statement, if used, must
be the last statement in a program.

3-4

STOP STATEMENT

The STOP statement is used to stop the execution of a program. The STOP statement may appear anywhere
in the program. The STOP statement has the following format:

<n> STOP

where n is the line number of the STOP statement.

More than one STOP statement may be used within a BASIC program.

CHAIN STATEMENT

. The CHAIN statement is used to begin compilation and execution of the designated program and terminate
the current program without operator intervention. The CHAIN statement has the following format:

<n> CHAIN <file name>

where <n> is the line number of the CHAIN statement. The <file name> must conform to the standard rule~
for disk names and is the name of a BASIC source program residing on disk.

All files are closed before the new program is initiated. The new object file is not saved.

Examples:

CH A IN "USEH /PfWGH AM /2"
c H fd N n lJ s [R I p RO c; R f\ M 3 I n

CHAIN ~PROGRAM/4~

CHAIN "PROGRAMS"

Note
The first two examples require source files to be on a user pack labeled USER.
The last two examples require source files to be on the system disk.

3-5

GENERAL

SECTION 4
SPECIFICATION STATEMENTS

Specification statements are non-executable statements used to supply compile-time information about program
variables to the compiler. The DIM statement is the only specification statement in the BASIC language and
must be used in a program to declare the size of an array whenever one or both dimensions exceed 10.

DIM STATEMENT

The DIM statement is used to specify the dimensions of a designated array. The DIM statement has the fol­
lowing format:

<n> DIM <array declarator list>

where <n> is the line number of the DIM statement and <array declarator list> is a list of one or more
array declarations separated by commas. An array declaration consists of an array name followed by a left
parenthesis, followed by either a single positive integer indicating a I-dimensional array or two positive inte­
gers separated by a comma indicating a 2-dimensional array, followed by a right parenthesis. The integer or
integers specify the maximum subscript value for each dimension of their respective array names.

An array name in B I800/B I700 BASIC may be any single alphabetic letter. Examples of valid array names
are:

A, B, C, D$, E$

Numeric array names are a single letter. String array names are a single letter followed by a $.

The DIM statement specifies the number of data elements which may be contained in an array. Unless an
array name appears in a DIM statement, BASIC by default reserves space for elements 0 through 10 for
I-dimensional arrays (1 I spaces total), and elements in both rows and columns 0 through 10 for 2-dimensional
arrays (12I spaces total).

When an array is used in a program, whether dimensioned in a DIM statement or not, the elements
<array-name>(O) and <array name>(O,O) are available in a I-dimensional and 2-dimensional array, respective­
ly.

The maximum number of elements permitted in an array is 262I43 (2**I8-1). An array may have a maximum
. of 2 dimensions.

Example:

4-1

GENERAL

SECTION 5·
PROGRAM DOCUMENTATION

Explanatory remarks, included throughout a program for documentational purposes, are an important part of
any program. In BASIC, comments preceded by an apostrophe may follow a statement, or entire lines in a
program may be devoted to remarks through use of the REM statement.

REM STATEMENT

The REM (REMARKS) statement is used to insert explanatory remarks at any point within a BASIC program.
The REM statement has the following format:

<n> REM <remark>

where <n> is the line number of the REM statement and <remark> consists of any valid EBCDIC characters.

The REM statement allows entire lines of documentation to be included in a BASIC program. When the first
three characters following the line number of a statement are REM, the compiler ignores the entire statement.
Although the contents of each REM statement are ignored, the line number of a REM statement may be refer­
enced in a GO TO, IF, or ON statement. This enables control to be transferred to a descriptiort of the routine
which follows, thereby enhancing the readability ·of a BASIC program.

COMMENTS

Comments may be included on the same line following a BASIC statement if the comment is separated from
the statement by an apostrophe ('). Anything in the columns between the apostrophe and the end of that line
is ignored by the compiler and treated as a comment.

5-1

NULL STATEMENT

NULL statements are used to enhance the readability of the BASIC program. The NULL statement can be
used anywhere in the BASIC program, and consists of a line number entry only. The following example con­
tains NULL statements at line numbers 055 and 185.

Example:

5-2

010 t<'fM
02 0 FEM
030 REM
040 HEM
050 PE'.1-1

** FINAL GRADl CALCULATION PROGRAM **
G = EXAMIN~TION GRADE
W = CXAHINATION WEIGHT CF EACH EXA~

f = FINAL GP~OE B~SED ON FIVf EXA~S

05 5
Of>,) OIM W(5)

070 FOR E = l Tfl 5
OHC READ \'JO:.>
1'.)90 NEXT E
100 FOR S = 1 TO 4
i 10 LET F = C
120 f OH E - 1 TG 5
no HfAD G
140 LEl. F = F+WCE>*G
150 NEXT [
160 PRI~T "STUDENT NU~BER n;~,

17C NfXT X
180 STC~

1~5

1.9<) DATA .10,.15,.20,.?5,.30
200 DATA 75,e2,R5,79,91
210 DATA 100,76,88,92,9P
220 DATA 63160175,721f3
230 DATA 94,t7,90,91,95
240 END

'TH I S IS A tJ U l L ST ATE MEN T

'READ EXAM WEIGHTS
'fOF FIVE EXAMS

'S = STUDENT NUMBER
'INITIALIZE FINAL GRADE TO 0

'FfAD EXPHE>
'ACCU~ULATE FINAL GRADE

~FINAL GR~DE= ";F

'THIS rs A NULL STATEMt:NT
'EXAt-1 ~!EIGHTS

'STUDfNT l GRADES
'STUDENl 2 GRADES
'STUDENT 3 GRADES
'STUDENT 4 GRADES

GENERAL

SECTION 6
INPUT/OUTPUT

In BASIC, data files are considered to be either internal or external to the program which processes those
files. External files, discussed in section 7, are files which reside on disk. Internal files contain data entered
into the program by means of a DAT A statement, or a remote terminal. The following input/output statements
pertaining to internal files are discussed in this section:

l. READ and DAT A statement.
2. RESTORE statement.
3. INPUT statement.
4. PRINT statement.
5. PRINT USING statement.
6. WRITE USING statement.

READ AND DATA STATEMENTS

The READ statement is used to assign values to the variables listed in the READ statement, using data
elements from the associated DATA statement(s). The READ statement has the following format:

<n> READ <list of variable names>

where <n> is the line number of the READ statement, and <list of variable names> is a list of one or more
variables (either simple or subscripted) separated by commas.

The DAT A statement is always used in conjunction with the READ statement and contains the data values
which are to be assigned to the variables appearing in the READ statement list. The DAT A statement has
the following format:

<n> DAT A <list of constants>

where < n >is the line number of the DAT A statement and <list of constants> is a list of one or more nu­
meric or string constants separated by commas.

Prior to the execution of a BASIC program, all DAT A statements contained in a program are combined into
one data block according to the order in which the DAT A statements appear in that program. Each time a
READ statement is executed, a constant is accessed from the data block for each variable name contained
in the READ statement list. If the data block is exhausted and a READ statement attempts to initialize another
variable, program execution is terminated with an OUT OF DAT A message. When more constants are sup­
plied in DATA statements in a program than are required by the READ statement(s), they are ignored.

Examples:

1 iJ rn AD x. Yd
z,J DAH 10~2odo

The above statements result in the same action as:

u LET x = 10
15 LET v =. 2C
20 L f T l -= 30

6-1

RESTORE STATEMENT

The RESTORE statement is used to position the data pointer associated with the data block to the beginning
of the block. The RESTORE statement has the following format:

<n> RESTORE

where <n> is the line number of the RESTORE statement.

All DAT A statements contained in a program are combined into one data block according to the order in which
the DAT A statements appear in that program. The RESTORE statement enables the data pointer associated
with that data block to be reset from its current position to the first element in the block, so that subsequent
READ statements can reread the data.

Example:

l.') READ x~v

20 RESl<JH~
30 READ Z
40 DATA 10,ZOdO
5:) END

Execution of the above example causes the numeric constant 10 to be assigned to variables X and Z, and
the numeric constant 20 to be assigned to variable Y.

INPUT STATEMENT

The INPUT statement is used to assign values from a card file or remote terminal to the variables whose
names are listed in the INPUT statement. The INPUT statement has the following format:

<n> INPUT <list of variable names>

where < n >is the line number of the INPUT statement and <list of variable names> is one or more nu­
meric or string variables (either simple or subscripted) separated by commas.

The INPUT statement allows data values to be assigned to variable names during execution of the program.
In a batch BASIC environment: the INPUT statement is used to obtain input from a card device or card reader
during program execution. The data values to be entered into the program are obtained from a card file whose
file ID is INPUT. In the absence of a DELIMIT statement referencing the INPUT file, individual data values

6-2

are punched free-field, and delimited by commas. Individual punch cards in the INPUT card file must not
contain line numbers, because any line numbers in the file are treated as data elements. The INPUT statement
obtains data from a remote terminal if the program was compiled and executed under "control of CANDE.

Example:

10 INPUT A,.B
20 ENO
?DATA INPUT
12.s,2s&
?END

Execution of the above example causes the numeric constants 12.5 and 256 from the card file labeled INPUT
to be assigned to variables A and B, respectively. The following is a list of possible error conditions that can
occur during input:

Message

INVALID DATA ITEM

NOT ENOUGH INPUT

EXCESS INPUT

NUMBER OUT OF BOUNDS

PRINT STATEMENT

Condition

Illegal data type or wrong data
type.

Insufficient data.

Excess input.

Conversion of numeric data
causes overflow or underflow.

The PRINT statement is used to print output on the line printer or remote terminal during program execution.
If the program was compiled from cards the output goes to the line printer. If the program was compiled under
control of CANDE, the output goes to a remote terminal. The PRINT statement has the following format:

<n> PRINT <list>

where <n> is the line number of the PRINT statement and <list> consists of one or more numeric constants,
string constants, numeric variable names (either simple or subscripted), numeric or string expressions, arithme­
tic expressions, or references to the TAB function separated by commas or semicolons.

The PRINT statement enables numeric and/or string data to be printed in either a zoned or packed format
on the line printer during program execution. Zoned or packed output format is specified through use of com­
mas or semicolons, respectively, as separators between data items in the PRINT statement list.

6-3

Zoned Format

Zoned format provides the ability to evenly space data items across a print file record. There are five print
zones, each 15 characters in length, in a print file record. Use of the comma to separate multiple items in
the PRINT statement list causes the first item to be printed starting at the beginning of the first zone (print
position 0), the second item at the next zone (print position 15), the third item at the next zone, and so on.
If more than five items are to be printed in the zoned format, output is continued in the first zone of the
next output line when the fifth zone is used, and printing continues in this same manner until the PRINT state­
ment list is exhausted. Upon completion of a PRINT statement list that does not end with a control character
(comma or semicolon), the next PRINT statement begins output on the succeeding line.

A comma encountered in a PRINT statement list carnses the next data item to be printed either:

1. In the first position if the next print zone within the current output line, or
2. At the beginning of the first print zone on the next output line if the last zone of the current line

has been used.

Skipping of print zones in the output line may be accomplished by using successive commas in the PRINT
statement list. If the PRINT statement list ends with a control character (comma or semicolon), the succeeding
PRINT statement merely begins output in the first position of the next print zone.

Examples:

10 LET A=B=4
ZO PRINT "A+8=",. A+B,. "A*B=",. 16
30 ENO

Execution of the above example causes the following to be printed:

A+ 2-= 8 A 1t-B=

10 LET A=8=4
20 PRINT "A+G=",. A+B
.rn LET c = 16
40 PRlNT "A•B=",.C
50 ENO

Execution of the above example causes the following to be printed:

A+B= e

Packed Format

16

16

Use of the semicolon to separate multiple items in the PRINT statement list causes the output line lo be
printed in a more closely packed format. No spacing is made in the output line other than those spaces auto­
matically inserted when a numeric value is printed. [f insufficient· positions for another item remain in the out­
put line after a semicolon is encountered in the PRINT statement list, output is continued on the next line.

Unlike zoned format where the output line is divided into specific print segments, packed format uses the
length of the item to be printed to determine the ltmgth of a print segment. To determine what is printed in
packed format, it is necessary to understand how string constants and numeric values are printed by the
PRINT statement.

64

String expressions are printed by the PRINT statement just as they are declared in the program, with no lead­
ing or trailing spaces. Numeric values, however, are printed with a sign position preceding the number and
a trailing space following the number. Negative values are preceded by a minus sign, and positive numbers
are preceded with a blank sign position. The number of print positions occupied by a numeric value in the
output line depends upon the magnitude of the number and whether or not it is an integer. Numeric values
are printed in one of the following forms:

1. Integer form. A number containing one to ten decimal digits printed without a decimal point.
2. Fractional form. A number containing one to six decimal digits printed with a decimal point. Trailing

(right-most) zeros are not printed, and a number less than one is printed with a zero to the left of
the decimal point.

3. Scientific form. A number expressed in fractional form greater than one and less than ten followed
by a space, followed by the letter E, followed by a signed 2-digit integer which is the power of 10
to which the number in fractional form preceding the letter E is to be raised.

Numeric values are printed by the PRINT statement in the above forms according to the following rules:

1. An integer whose absolute value is less than 1073741824 (2**30) is printed in integer form.
2. An integer whose absolute value is greater than or equal to 1073741824 is rounded away from zero

to six significant digits and printed in scientific form.
3. A number whose absolute value is less than 0.1 and which can be represented exactly by six or fewer

digits is printed in fractional form.
4. A number whose absolute value is greater than or equal to 0.1 and less than 999999 is rounded away

from zero to six significant digits and printed in fractional form.
5. A number whose absolute value is less than 0.1 and which cannot be represented exactly by six or

fewer digits is rounded away from zero to six significant digits and printed in scientific form.
6. A number whose absolute value is greater than 999999 which is not an integer is rounded away from

zero to six significant digits and printed in scientific form.

Example:

10 LET A=B=4
20 PRINT "A+B="; A+a; "A*B="; 1~)

rn END

Execution of the above example causes the following to be printed:

At-B= 8 A*R= 16

If a PRINT statement list ends with a semicolon, the first element in the list of the next PRINT statement
begins at the end of the current print segment.

Example:

10 LET A=R=4
20 PRINT "A+B="; A+B;
30 LET C=lo
40 PRINT "A*B=n; C
50 F.ND

Execution of the above example causes the. following to be printed:

A .. 8-= 8 A* B= 16

6-5

Vertical Spacing

Since completion of a PRINT statement advances the carriage to the beginning of the next print line, vertical
spacing can be achieved through use of the PRINT statement with no list following the word PRINT. If the
previous PRINT statement did not end with a comma or semicolon, a blank line is left in the output.

Example:

lOJ PRINT "SALES FGP WElK ENDING MARCH 8"
110 PRINT
120 PRINT "JONES"• "SMITH"' "MILLER"
130 £ND

Execution of the above example causes the following to be printed:

SALES FOR WEEK ENDING MARCH f3

JO~ES S Ml TH MILL EH

Use of the PRINT statement consisting of only the word PRINT following a PRINT statement ending with
a comma or a semicolon causes a partially filled output line to be printed, as illustrated by the following exam­
ple:

Example:

10 FOR I = 1. TO c·
)

20 FOR· J = 1 TO I
30 PRINT J;
40 NEX'f J
50 PRINT
60 NfXT I
99 ENO

Execution of the above example causes the following to be printed:

1
1 2
1 2
1 2
1 2

3
3 4
3 4 5

TAB Function

The TAB function, TAB(X), may be used in the PRINT statement list to move the print mechanism to the
position determined by the argument of the TAB. The letter X, shown as the argument of the TAB function,
may be replaced by any numeric constant, numeric variable (either simple or subscripted), or arithmetic ex­
pression.

If a MARGIN statement has not been used, the output line consists of print positions 0 through 74. Use of
the comma in the PRINT statement list can be thought of as ·performing a tabulation to the next tab-stop.
These stops are set at print positions 0, 15, 30, 45, and 60. The TAB function does not cause anything to
be printed, but provides the ability to tab to any desired position within the output line.

The value of the argument, which may be any arithmetic expression, represents a print position in the output
line. After the argument is evaluated, it is converted to an integer. If the integer is larger than the current
margin setting (75 in the absence of a MARGIN statement) it is divided by the current margin setting and
the remainder is used. This final number is used to obtain a print position. The print mechanism is then moved
to this position in the output line. If the tab position specified by the value of the argument is less than the
current position of the print mechanism, then the TAB is ignored.

To achieve the desired tabulation, semicolons should be used to separate the items in a PRINT statement
which are to be controlled by the TAB function.

Example:

10 PRINT A;TARC20); 8; TA8C40);C

Execution of the above PRINT statement causes an output line to be printed. This line contains the value
of A starting in print position 0, the value of B starting in print position 20, and the value of C starting in
print position 40.

IMAGE STATEMENT

The purpose of the IMAGE statement is to control the format of the program's output. The IMAGE statement
has the following format:

<n> :<picture string>

where <n> is the line number of the statement which contains the picture string. The <picture string> is
one or more of the format characters or images described in the following paragraphs.

<n> LET <string variable> = <picture string>

where <n> is the line number of the LET statement which contains the image elements, the <string variable>
is any string variable name and <picture string> is a string expression.

Example:

10 ';ftflil- #fl. #11
20 PRINT USING lJ,. 1,. 1+1,. I-2
JO LET Al = "## ###U"
40 PRfNT USING A$, 1-11, 100 *3.147
50 E~D

Execution of the above example causes the following to be printed (b indicates the insertion of a blank charac­
ter):

bblbb2b-1
-4ob315

Picture String Patterns

The picture string associated with an IMAGE statement is composed of numeric, string, or literal patterns or
a combination of these patterns.

6-7

Numeric Patterns

Numeric patterns are a series of number signs (#) which may contain a decimal point, .and which may be
preceded or followed by certain special characters.

(Integer Pattern)

In an integer pattern, each number sign reserves a place in the field. The corresponding numeric expres­
sion is evaluated and converted to an integer. This value is used to store digits right-justified into the
places reserved. If the integral value is negative, the first place to the left of the digits is filled with a
minus sign. Unused places remaining at the left are filled with spaces. If insufficient places were reserved
by the pattern for this process, an asterisk is printed in the leftmost field position and the field is widened
to the right. Each set of multiple spaces in a literal pattern (leading, embedded, or trailing) on the same
line and anywhere to the right of the inadequate field is reduced to a single space in an attempt to main·
tain column alignment.

Example:

1 \) : # ti # II tt # Ii I/. ft It Tl- fl-
12 :###AB#U# A u ###

Vi :t1-1t11 ### ##fl
20 PRINT USING 10,. l,z,. 3, 4
30 PRINT USING 10 .. l:d,q99999tt12345.3,17
41 PRINT USING io,1,z,.3,4
SJ Pf?INT USING 12"-1:?34,.123,. 123
61 PRINT USING 15,.-1234,1?3,123
70 END

Execution of the above example causes the following to be printed:

bblbbbLbbot2b~bbtbcb3bbtbbbbt4
8blobbbtbbblbbtbbb*999999tt*l2345
bl7
Dtlbbbbbbbh2bbbbbbbb3tbbbbbbt4
*-1234A8123bAb8c1?3
•- l 234b 123t:: 123

(Decimal Pattern)

In a decimal pattern, each number sign (and the decimal point) reserves a place in the field. The corre­
sponding numeric expression is evaluated and rounded so that its fractional part contains as many digits
as there are places reserved to the right of the decimal point in the field. This rounded value is used
to store digits into the places reserved. If the value is negative, the first place to the left of the digits
is filled with a minus sign. Unused places to the left of the decimal point are filled with spaces; unused
places to the right of the decimal point are filled with zeros. Overflow of the field is treated iin the same
manner as specified for integer patterns.

Example:

10 :###.### ###.### ###.###
20 PPINT USING to, 1.234567,1234.567,12,34567
30 END

Execution of the above example causes the following to be printed:

bbl.23Sbbbbb*l234.567bt12.000
*34567.000

1111 (Exponential Pattern)

Exponential patterns are used as follows. Each number sign, the decimal point, and the four vertical bars
(the exclamation mark on the keyboard is printed as a vertical bar on the line printer) reserve places
in the field. The corresponding numeric expression is evaluated, and scaled and rounded so that it has
one digit fewer than the number of number signs in the field. The first number sign is filled with a blank
character if the value is positive, or with a minus sign if the value is negative. The scaled, rounded value
is then stored in the remaining number sign positions. Then the first vertical bar is replaced by E, the
second by a plus or minus, and the third and fourth by the appropriate exponent as adjusted during the
scaling. Unused places to the right of the decimal point are filled with zeros. No widening can occur.
The circumflex (@), and the right bracket (]) may be substituted for the vertical bar (I).

Example:

10 :##.#fl.hi 111
20 FOH I=O TO 5
30 PRINT USING 10" 1.234567*10*•I
40 NEXT I
50 END

Execution of the above example causes the following to be printed:

hl.235[t00
b 1.235(+01
ol.235E+02
t 1.235£+03
bl.235£+04
bl.235£+05

- (Minus Pattern)

The minus pattern is an extension of the integer pattern, decimal pattern, or exponential pattern which
permits the minus sign associated with a negative value to float. Minus signs may appear only at the
left of the specified pattern and are equivalent to number signs except that a minus sign is printed to
the left of a negative number in that field. No sign is printed for a positive number. Only one such sign
is printed. It is floated to the right until it is adjacent to the numeric output, or until the next position
in the pattern is a number sign or the decimal point.

Example:

10
20
3·J
40
50
60
99

:#fl.ttfttl
:--tt-##

#111111- .ff.II
--#If..##

PRINT US! NG 1 0,
PRINT USING 2 o,
PRINT USING 10,.
PRINT US I NG zo,.
END

/t##fl..##1111
--1111.##l It I

1,. 2, 3
i, 2,. 3
-1,.-z,7,-3.s91
-1,-2.7?-3.591

Execution of the above example causes the following to be printed:

bbbblbbbtb2.C0bbb300.00E-02
bbbblbbboh2.00bbb300.00E-02
bbt-lbbbb-2.70bb·359.1CE-02
b- lbbb- 2.70bh-3S9.10E-02

6-9

+ (Plus Pattern)

In general, the plus pattern is just like the minus pattern, but with plus signs also visible when appropri­
ate. It is an extension of the integer pattern, decimal pattern, or exponential pattern and permits either
algebraic sign associated with a value to be displayed and to float. Plus signs may appear only at the
left of the specified pattern and are equivalent to number signs, except that they cause a plus or minus
sign to be printed to the left of a value. Only one plus or minus sign is printed and is floated to the
right until it is adjacent to the numeric output or until the next position in the pattern is a number sign
or the decimal point.

Example:

10 : fl.# it It#
20 :++#11-11
30 PRINT
40 PRINT
50 PRINT
60 PRINT
99 END

fl # II II. fl It
.. .. ft # • fl ti

USING 10"
USING 2 o,,
USING 1 c"
USING 20~

11-11##11.1111-1 I I I
+·+d#l/-.#11111 I

l "2" 3
i .. 2" 3
-1, -2. 7" -:; • :. 91
-1,.-z.1,.-~;.·591

Execution of the above example causes the following to be printed:

bbbolbbbhb2.00bbb3000.00E-03
b+ lbbb+ 2.00bb+3000.00f-03
bbb-lbbbb-2.?0tb-3591.00E-03
b- tbbb- Z.70bb-3~91.00E-03

$ (Currency Pattern)

The currency pattern is basically an integer pattern or decimal pattern but also makes use of a floating
currency symbol. The currency symbol may appear only at the left of the integer pattern or decimal pat­
tern and is equivalent in effect to the number sign except that in the output a currency symbol appears
to the left of the (possibly signed) value. Only one such currency symbol is printed. The currency symbol
is floated to the right until it is adjacent to the signed numeric output, or until the next position in the
pattern is a number sign or the decimal point.

Example:

10 :$###.## i$##.## $$$#.#U $$$$.##

20 PRINT USING 10,.1,.1,,1,.1
30 PRINT USING 10,. -1~-1,.-1,.-1

40 PRINT USING 10,. .12,.12,..12,.12
50 PRINT USING 10,. -.12,.-.12~-.12,.-.12

9 9 END

Execution of the above example causes the following to be printed:

6-10

$ 1.00bbbS 1.00bbbb$l.OObtbti1.oo
$ -1.00bbbl-l.OObbb$-l.OObbb$-L.OC
$ ~.12b~bl 0.12bbbb$0.L2bbbbb$.l2
$ -0.12bbbS-0.12bthl-0.12bbb$-0.12

* (Asterisk Pattern)

The asterisk pattern is essentially a check-protection variant of the currency pattern. It consists of a cur­
rency symbol, followed by a sequence of asterisks, followed by either an integer pattern or decimal pat­
tern. The asterisks are treated as number signs appended to the left of the integer pattern or decimal
pattern, except that when asterisks appear in the pattern, asterisks rather than spaces are used for left­
side fill characters.

Example:

10 !$*****·##
20 FOR I=-2 TO 5
30 PRJNT USING 1Q,.3.7*10**I
40 NEXT I
5'J END

Execution of the above example causes the following to be printed:

$ * * ** *'. 0 4
$*****•37
$****3.70
$***37.00
$**370.00
$•3700.00
$31000.00
*$370000.00

String Patterns

A string pattern consists of an apostrophe followed by a justifier. A justifier is a series of zero or more L,
R, E or C characters.

(String Justifier)

The apostrophe reserves a place for a character of the string, as do the E, L, C, or R characters which
complete the field. The string expression is evaluated, and its characters are used to fill the reserved
places.

L (String Justifier)

If the justifier is L, the string is to be left-justified within the field. Unused places at the right are filled
with spaces; excess characters are truncated on the right.

E (String Justifier)

If the justifier is E, the string is to be left-justified within the field. Unused places at the right are filled
with spaces; excess characters cause the field to be extended to the right. If the field is extended, each
set of multiple spaces (leading, embedded, or trailing) in a literal pattern on the same line and anywhere
to the right of the inadequate field is reduced to a single space in an attempt to maintain column align­
ment.

6-11

R (String Justifier)

If the justifier is R, the string is to be right-justified within the field. Unused places at the left are filled
with spaces; excess characters are truncated on the right.

C (String Justifier)

If the justifier is C, the string is to be centered within the field. The algorithm for determining the leading
spaces is:

(INT((places-in-field - characters-in-string)/2)

Unused places at both ends are filled with spaces; excess characters are truncated on the right.

Example:

10 : 'LLLLL
20 :'EEEEE
30 : 'RRRRR
40 :•ccccc
50 LET A$="A8C"

'LLLLL
'EEfEt
'HRRRR
•ccccc

60 LET 8$="LMNOPQRS"
70 LE"!" C$="XYZ"
80 PRINT USING 10, A$,3$,C!
90 PRINT USING 20, A$,8$,C$
91 PRINT USING 30, A$,d$,C$
92 PRINT USING 40, A$,8$,C$
99 om

'LLLLL
I EE.£ EE

'RRRRR
•ccccc

Execution of the above example causes the following to be printed:

ABC
ABC

A 13 C
ABC

Literal Patterns

LMNOPQ
LMNOPQRS
LMNOPQ
LMNOPQ

XYZ
XYZ

XYl
xvz

A literal pattern is composed of characters or character strings which are neither string patterns nor numeric
patterns. A literal pattern appears on the print line exactly as it appears in the image. The lette:rs C, E, L
and R may be used since they are only format control characters when they are preceded by an apostrophe.

Formatted Output Rules

The following are the rules governing output when using format specifiers.

1. The IMAGE statement can be used in conjunction with the following output statements:

a. PRINT USING statement.
b. WRITE USING statement.
c. MAT PRINT USING statement.
d. MAT WRITE USING statement.

6-12

2. The execution of a WRITE USING statement generates a line which contains a delimiter immediately
following each non-literal field. The delimiters are extra characters not accounted for in the picture
string.

Example:

1J :###XXX 1 LLL
20 WRITE USING 10,. 123, "ABC"
30 END

Execution of the above example causes the following to be printed:

1. 2 3,. XX X A BC ,.

3. Each expression is evaluated in turn and its value used to complete the corresponding field as de­
scribed below. Output proceeds until a non-literal pattern is encountered in the picture string and the
expression list is exhausted.

Example:

10 :####///##ll#Ul/##/1
20 PRINT USING 10, 1,.2
30 ENO

Execution of the above example causes the following to be printed:

bob1111u211

4. If all patterns in the string have been exhausted by the time an expression is evaluated, then a new
line is begun and the first pattern in the picture string is used again. This process terminates when
the end of the expression list is reached.

Example:

10 :###;;###::
20 PRINT USING 10,. 1,2,3,.4,5
25 PRINT USING 10,6,7
30 Ef\JD

Execution of the above example causes the following to be printed:

bbU;bb2::
bb3;;bb4::
bt;S;;
bb&;;bb7::

6-13

6-14

5. Each formatted output statement starts at the beginning of its image. If the expression list ends in
a comma or semicolon separator, the line is not transmitted until another output statement or the end
of the program causes the line to be transmitted.

Example:

11 :###A ###B ###C ###0 ###E ###F ###G ###H
20 PRINT USING 10~7,a,9,10

30 PRINT USING 10, 11,12,13
40 PRINT USING 10, 14,t5,l6P
50 PRINT USING in, 11,1e,19,zo
99 END

Execution of the above example causes the following to be printed:

bt7Abbb88bbb9Cbbl00
bl lAbb 12Bbb UC
bl4Abbl5Rbb16Cbhl7Abt18Bbbl9Cbb20D

6. If the inclusion of any complete literal field would cause the length of the current line to exceed the
margin, then as many characters of the literal are generated as are needed to bring the length of the
current line up to the margin. A new line is begun, and the rest of the output is generated. If the
inclusion of any complete non-literal fieKd would cause the length of the current line to exceed the
margin, then the item's value begins a new line, and is not split unless its length is greater than the
margin size.

Example:

10 MARGIN #0: 13
20 :### #### ########
30 : 'LLLLLLLLLLLL.L
40 :###XXXXXXXXXXXXX###
50 :#######.#######
60 : •LLLLLLLLXX'LLL
10 PRINT 1;2;3;4;5;&;1;e
80 PRINT USING 20, 1z,345
81 PRINT USING 20, 98,765,4321012
82 PRINT USING 20, 20,71,285
83 PRINT USING 30, "ABCOEfGHIJKL"N"
84 PRINT USING 40, 123,456
85 PRINT USING SO, 1.2345*10**<-3>
86 PP.INT USING 60, "ABC","DEF"
90 END

Execution of the above example causes the following to be printed:

b lbb2bb 3bb4
b5bb6bb7bb8
b 1Zbb3 4 5
b98bb765
b4321012
b20bbb71
bbbbb285
ABCDEFGHIJKLM
N
123XXXXXXXXXX
XXX456
bbbbbbb.00123
45
ABCbbbbbbXX
DEF

PRINT USING STATEMENT

The PRINT USING statement is used to provide formatted output. A given line of output may contain up
to 174 characters of data. The PRINT USING statement has the following format:

<n> PRINT USING <image> , <expression list>

where <n> is the line number of the PRINT USING statement, <image> is either the line number of the
image statement to be used for formatting the output or a string expression containing the format image to
be used, and <expression list> is the set of elements to be placed in the output file. The <expression list>
may contain any numeric or string expressions. It may not contain a TAB function. The elements in the list
must be separated from one another by a comma or a semicolon.

Example:

10 PRINT USING 10,A$,8,C+7,25

Each PRINT USING statement, when executed, begins with the first element of the associated image, even
though a previ<;ms execution of that statement may not have used all of the elements of the image. The PRINT
USING statement begins a new line each time it is executed unless a previous PRINT statement ended with
a comma or a semicolon. If there are more data elements in the list than there are image elements in the
associated image, the excess data elements are printed on a new line and the image is used again beginning
with the first image element. The items in the expression list are formatted in exactly the manner shown by
the format elements in the IMAGE statement. (J nlike the PRINT statement, the separators between the items
in the expression list (semicolons or commas) do not control the spacing between the items on the output line.
The spacing between items is identical to the spacing between elements in the IMAGE statement.

WRITE USING STATEMENT

The WRITE USING statement performs the same function as the PRINT USING statement; however, with
the WRITE USING statement delimiters follow the data. The WRITE USING statement has the following
format:

<n> WRITE USING <image>, <expression list>

where <n> is the line number of the WRITE USING statement, <image> is either the line number of the
image statement to be used for formatting the output or a string expression containing the format image to
be used, and <expression list> is the set of elements to be placed in the output file. The <expression list>
may contain any numeric or string expressions. It may not contain a TAB function. The elements in the list
must be separated from one another by a comma or a semicolon.

Example:

10 WRITE USING 20, A~ g, c, D

6-15

GENERAL

SECTION 7
DISK FILES

One of the features of the BASIC language is the ability to READ or WRITE external data files. External
data files reside on disk and can be read or written under program control. The use of disk files frees the
program from containing all of the data which is to be processed, thereby permitting the construction of larger
programs. Disk files can be created either by a program or by a user at the terminal and saved for future
use. The following paragraphs explain how files are made accessible to the BASIC program through file declar­
ation statements.

In BASIC there are two major types of files. Data can either be stored as EBCDIC characters, or as memory­
image "words".

FILE DECLARATIONS

The FILES and FILE statements are used in BASIC to make files available to the program, and to specify
the type of file that is being accessed.

FILES Statement

The FILES statement is used to specify the external files which are available to the BASIC program. It is
also used to specify temporary files, and to reserve space for files which the programmer does not want to
explicitly name at the time of the declaration. ft_ program may contain more than one FILES statement and
a FILES statement may appear anywhere in a program. The first file name declared in the program is desig­
nated as file l, the second as file 2, and so on, and the files are referenced by these unique numbers. If a
second FILES statement occurs, and 4 files had been declared in the first FILE statement, then the first file
in the second FILE declaration statement would be number 5, and so on. A maximum of 16 total file names
may appear in FILES statements within a program. The FILES statement has the following format:

<n> FILES <file-namel>; <file-name2>; ...

where <n> is the line number of the BASIC statement, and <file-name> is the name of a file on disk, a
file place holder, or temporary file identifier.

If the file name is to refer to an actual file on disk, the name of the file may not be a quoted string and follow
standard Burroughs naming conventions. Refer to the B 1800/B 1700 Systems Software Operational Guide for
further information on naming conventions. When the file name is a file identifier, the file is opened and placed
in the read mode.

A file place holder is denoted by an asterisk (*) and reserves space for a disk file that can be specified later
on in the program. The file place holder permits the programmer to reserve room for a file before the program
logic has decided which file it needs to process. When it has been decided which file to use, an explicit declar­
ation can be made in a FILE statement, which is described later. When the file name is a file place holder,
a file number is reserved for a file; however, no file may be referenced by that number until a FILE statement
references the file.

7-1

The temporary file identifier, denoted by two asterisks i(**) creates a temporary work file for use by the BASIC
program.

Example of the FILES statement:

10 FILES ALPHA;BETA;*;BETA/GAMMAi**iA/8/C

In the previous example ALPHA, and BET A/GAMMA are unique names of files on the system disk. A/B/C
is the name of a file on a User disk named A. The * reserves a file number (3) for a disk file yet to be specified
by the program. The ** makes file number 5 a te!mporary file, accessible to the BASIC program.

File Designator

A file designator is a symbol which refers to the. type of file being accessed, whether character or memory­
image, followed by a numeric constant or numeric expression. The value of the expression is made an integer
to obtain the file number. A character-file designator is a number sign (#) followed by the file number (con­
stant or expression). A memory-image-file designator is a colon (:) followed by the file number (constant or
expression).

Examples:

11 SCRATCH #1
Z() SCPATCH :z+K

Statement 10 in the previous example performs an operation on a character file, while statement 20 operates
on a memory-image file.

Once a file is classified as a character or memory-image file, subsequent statements referring to iit must be
consistent with that classification until the file is redas:sified. The distinction between character files and mem­
ory-image files is based solely on the nature of the program statements referring to the file. Reference to a
memory-image file with a statement whose format is appropriate to a character file results in the error message
FILE NOT CHARACTER, and execution of the program is terminated. The file remains intact, however. In
order to reclassify a file, scratch the file with a SCRATCH statement of the form appropriate to the new classi­
fication of the file.

FILE Statement

The FILE statement is used to open or close designated files, and to declare the type of file being accessed,
whether character or memory-image. It is also used to specify the name of a file for a file number which had
previously been given a file place holder in a FILES statement. The FILE statement can optionally include
a length attribute for memory-image files which are to be randomly accessed. The FILE statement has the
following format:

<n> FILE <file-designator><file-number><p>[<file-name>][,<l>]

where <n> is the line number of the statement, <file-designator> is either a number sign (#) or a colon (:),
and <file-number> is the relative number of the file established in the FILES statement. This number may
not be 0 or greater than the number of files declared. The punctuation, <p>, after the <file-number> can
be either a comma or a colon. The <file-name> can be the actual name of a file given in quotes, a file place
holder (*), or a temporary file designator (**). The length, <l>, gives the number of "words" in a random

7-2

access file and specifies to the program that a file is random. Without this attribute a file is considered to
be sequential.

Examples of the FILE statement:

100 FILE #1."EPSILON•
200 FILE :2•"**"~2J
300 FILE :3,.7
400 FILE #4:"*"

In the previous statements, line 100 associates file 1 with a disk file named EPSILON. If file 1 had previously
referred to another disk file, that file is closed and EPSILON is opened in its place. Further references to
file 1 become references to EPSILON. This allows the program to access more than 16 files as long as only
16 files are open at any given time. Line 100 also gives the method by which a program can give an actual
file name for a file place holder described in the FILES statement.

Line 200 in the previous example makes file 2 a temporary file. Whatever file 2 had previously been is over­
ridden. Line 200 and line 300 give lengths for the files to which they refer. This specifies that the files are
to be random access and to have the given lengths.

Closing a disk file is demonstrated on line 400. The asterisk indicates that the file associated with number
4 is to be closed and made inaccessible.

FILE Modes

When a file, either memory-image or character, is being processed, it is in either the read mode, which means
that only READ or INPUT statements may be executed with the file, or the write mode, which means that
only WRITE or PRINT statements may be executed with the file. The FILE statement places a file in the
read mode unless the file is a temporary file. Before WRITE statements or PRINT statements can be executed
with a file which is in the read mode, it must be placed in the write mode by executing either a SCRATCH
statement or an APPEND statement. Before READ statements or INPUT statements can be executed with
a file which is in the write mode, it must be placed in the read mode by executing a RESTORE statement,
BACKSPACE statement, or FILE statement. Memory-image files are not subject to these mode restrictions.

CHARACTER FILES

Character files· refer to the standard EBCDIC representation of data, each character taking 8 bits to be repre­
sented. There are two divisions of char~cter files, sequenced and unsequenced. When a file is saved, the se­
quence information is saved with it as an attribute. Sequenced files differ from unsequenced files in that they
are numbered. Sequenced files may not be accessed using the INPUT or PRINT statements. Unsequenced
files may not be accessed using the READ or WRITE statements. A record in both types of character files
may only be read or written by accessing each record before it in order, with either a READ or a WRITE
statement. The following statements regard the handling of character files.

INPUT Statement

The INPUT statement for character files reads items from the file specified by the character-file designator
into the variables in the variable list. When the value of the character-file designator is 0, data items are read
from the terminal on a time sharing system or from a card file on a batch system. The INPUT statement as-

7-3

sumes that each record in the file contains only data and that it does not contain a line number. The INPUT
statement has the following format:

<n> INPUT #<numeric-expression> <p> <list-of-variable-names>

where <n> is the line number of the statement, and <numeric-expression> is any arithmetic expression giving
the file number. The punctuation, <p>, can be either a comma or a colon. The <list-of-variable-names> con­
tains a list of one or more variables (either simple or subscripted) separated by commas.

Example:

The INPUT statement is record oriented and ignores any margin restriction that may have been placed on
the file. When there are more items in a record than variables in the list, the next INPUT statement reads
the first item from the next record. When there are fewer items in a record than variables in the list, the
INPUT statement reads all the items from that record and then continues reading from the next record. When
the variable-list is empty, the next record is skipped.

The absence of data in an input item is to be interpreted as either 0 or the null string, depending on the type
of the corresponding variable in the variable list. The absence of data in the last input item is to be interpreted
as no data (that is, a trailing delimiter in an input record is ignored). On input from an external file, if an
ampersand appears as the last data item, it is treated as valid data as opposed to a line continuation character.

When the INPUT statement reads beyond the end of file, 0 is assigned to all remaining numeric variables and
the null string is assigned to all remaining string variables.

PRINT Statement

The PRINT statement for character files writes the items in the print statement list onto the file specified by
the character-file designator. The PRINT statement generates a file with no line numbers and no delimiters.
The format conventions of the PRINT statement for the terminal apply to the PRINT statement for character
files. A comma following an item in the list spaces the file to the beginning of the next 15-character zone;
a semicolon suppresses spacing. The PRINT statement has the following format:

<n> PRINT #<numeric-expression><p><output list>

where <n> is the line number, <numeric-expression> is an arithmetic expression giving the file number~ and
<p> is a comma or a colon. The <output list> is a list of numbers, characters, expressions, or variables
to be output.

Example:

Each PRINT statement writes one line of output unless the margin limit is exceeded or unless a comma or
a semicolon terminates the list. When the margin limit is exceeded, the current line is written and the output
continues on the next line. When a comma or a semicolon terminates the list, the next PRINT statement con­
tinues on the current line. When the PRINT statement list is empty and the current output line is not empty,
that line is written. When both the PRINT statement list and the line are empty, a blank line is written.

Before a PRINT statement can be executed with an external file which is in the read mode, the file must
be placed in the write mode using either a SCRATCH statement or an APPEND statement.

When the value of the character-file designator is 0, the output is written on the terminal. No SCRATCH state­
ment is required. File 0 is the only file which can lbe accessed with a PRINT statement after it has lbeen access­
ed with a WRITE statement.

74

Character READ Statement

The READ statement for character files reads items from the file specified by the charactt?r-file designator
into the variables in the variable list. It assumes each record in the file begins with a line number, which is
skipped by the READ statement. The READ statement ignores the margin size. It has the following format:

<n> READ #<numeric-expression> <p> <list-of-variables>

where <n> is the line number of the statement, <numeric-expression> is an arithmetic expression giving the
file number, and <p> is a comma or a colon. The <list-of-variables> is a list of one or more simple or subs­
cripted variables.

Example:

The READ statement is item oriented. When there are more items in a record than variables in the list, the
next READ statement reads the next item from the same record. When there are fewer items in a record than
variables in the list, the READ statement reads all the items from that record and then, after first skipping
the line number, continues reading from the next record. If the variable-list is empty, the next data item is
skipped.

The absence of data in an input item is to be interpreted as either 0 or the null string, depending on the type
of the corresponding variable in the variable list. The absence of data in the last input item is to be interpreted
as no datum (a trailing delimiter in an input response is ignored).

When the READ statement reads beyond the end of file, 0 is assigned to all remaining numeric variables in
the list and the null string is assigned to all remaining string variables.

When the value of the character-file designator is 0, data items are read from the block of numeric and string
data created by the data statements.

Character WRITE Statement

The WRITE statement for character files writes the items in the PRINT statement list onto the file specified
by the character-file designator. The WRITE statement generates a line-numbered file. The line numbers start
with 100 and increase by increments of 10. A delimiter is written immediately following each item written onto
the file. Unless otherwise specified by a DELIMIT statement, the delimiter is a comma. The WRITE statement
has the following format:

<n> WRITE #<numeric-expression><p><output-list>

where <n> is the line number of the statement, <numeric-expression> is any arithmetic expression giving
the file number, and <p> is a comma or a colon. The <output-list> contains one or more numbers, characters
in quotes, expressions, or variables to be output to the file.

Example:

10 WRITE #N~XJTABC15J;SJNCXl

Each WRITE statement writes one output record unless the margin limit is exceeded or unless a comma or
a semicolon terminates the list. If appending the output item and its subsequent delimiter to the current record
causes the margin limit to be exceeded, the current record is written, a new line number is generated, and
the output continues. When a comma or a semicolon terminates the list, the next WRITE statement continues
with the current record. When the output list is empty and the current output record is not empty, that record
is written. When both the output list and the record are empty, a record containing only a new line number
is written.

7-5

The format conventions of the PRINT statement apply when writing a file. A comma following an item in
the list spaces the file to the beginning of the next 15-character zone; a semicolon suppresses spacing. The
first character position into which an item can be written is considered to be a character position 0.

Before a WRITE statement can be executed with an external file which is in the read mode, the file must
be placed in the write mode using either a SCRATCH statement or an APPEND statement.

When the value of the character-file designator is 0, th·e output is written on the terminal. No SCRATCH state­
ment is required and no line numbers are supplied. Delimiters are written. File 0 is the only file which can
be accessed with a WRITE statement after it has been accessed with a PRINT statement.

FILE WRITE USING Statement

The FILE WRITE USING statement is used to format records written to an external file. The FILE WRITE
USING statement has the following format:

<n> WRITE #<numeric-expression>, USING <image><expression-list>

where <n> is the line number of the FILE WRITE LSING statement, <numeric-expression> is any arithme­
tic expression giving the file number, <image> is as described under the IMAGE statement, and <expression­
list> is as described under the PRINT USING statement.

FILE PRINT USING Statement

The FILE PRINT USING statement is used to format records written to an external file without any delimiters
or line numbers. The FILE PRINT USING statement has tl}e following format:

<n> PRINT #<numeric-expression>, USING <image>, <expression-list>

where <n> is the line number of the FILE PRINT USING statement, <numeric-expression> is any arithmetic
expression giving the file number, <image> is as described under the IMAGE statement, and <expression­
list> is as described under PRINT USING statement.

DELIMIT Statement

The DELIMIT statement specifies the delimiter to be used with the file specified by the character-file designa­
tor. The DELIMIT statement has the following form:

<n> DELIMIT #[<numeric-expression><p>] (<delimiter>)

where <n> is the line number of the statement, <numeric-expression> is any arithmetic expression giving
the file number, and <p> is a comma or a colon. The <delimiter> is any EBCDIC character.

Example:

10.DELIMIT #l, en
2 '.) 0 EL IM IT C ;)

A comma is the default delimiter. The DELIMIT statement is the only way to specify a delimiter other than
a comma. If the delimiter is specified to be the space character, multiple spaces are considered to be a single
delimiter. If the file-designator is omitted the default is FILE 0.

MARGIN Statement

The MARGIN statement specifies the number of character positions in a line of the file specified by the char­
acter-file designator. If the file designator is omitted the default is FILE 0. In the absence of a MARGIN state-

7-6

ment, the margin size is set to 75. The INPUT statement and READ statements ignore the margin setting.
The MARGIN statement has the following format:

<n> MARGIN [#<numeric-expression><p>]<margin-limit>

where <n> is the line number of the statement, <numeric-expression> is any arithmetic expression giving
the file number, and <p> is a comma or a colon. The <margin-limit> is the setting for the margin.

Ex&mple:

10 MARGIN #N~oo

20 MARGIN 60

The value of the expression is rounded up to an integer. When the integer is less than 1 or greater than the
maximum margin size, the margin is set to the maximum margin size. The maximum margin size for any file
other than the terminal is determined at the time of the first WRITE statement or PRINT statement to that
file.

Before the first WRITE or PRINT operation to a scratched or a temporary file, the maximum margin size
is 174. At the time of that first WRITE or PRINT operation, the maximum margin size of that file is set to
the current margin setting.

Upon execution of an APPEND statement which references a saved character file, the maximum margin size
is set to the maximum margin size saved with that file.

BACKSPACE Statement

The BACKSPACE statement moves the record pointer backward and sets the mode for the file specified by
the character-file designator. If the pointer is moved to the previous record, the value of the VPS file function
(described under the heading File Functions) is decremented by 1. The BACKSPACE statement has the fol­
lowing format:

<n> BACKSPACE #<numeric-expression>

where <n> is the line number of the statement and <numeric-expression> is any arithmetic expression giving
the file number.

Example:

10 BACKSPACE #10

When the file is unsequenced, the BACKSPACE statement moves the pointer back one record. When the
pointer is at the beginning of a record, the pointer is moved to the beginning of the previous record. When
the pointer is in the middle of a record, it is moved to the beginning of that record.

When the file is sequenced, the BACKSPACE statement moves the pointer back one item.

When the BACKSPACE statement is executed with the pointer positioned at the beginning of the file, the
pointer is not moved.

MEMORY-IMAGE FILES

Memory-image files refer to the 48-bit word representation of a data item, the form used when performing
arithmetic operations in BASIC. This representation allows data to bt~ accessed without conversion and lends
itself to faster physical input/output. Memory-image files can be declared as sequential or random access type.

7-7

When a memory-image file is random access type (created by specifying a length in its FILE declaration),
selective access to any specific data item may be accomplished directly, without reading through the file from
the beginning to that data item. There is a pointer associated with each random file which points to the current
word of the file. This pointer can be set using the SETW statement.

The following statements refer to the handling of me:mory-image files.

Memory-Image READ Statement

The READ statement for memory-image files reads items from the file specified by the memory-image-file desi­
gnator into the variables in the variable list. There are no line numbers or delimiters in a memory-image file,
just the memory image representations of the numbers and strings. A null entry is interpreted as 0 for a numer­
ic variable and as the null string for a string variable. The memory-image READ statement has tht~ following
format:

<n> READ :<numeric-expression><p><list-of-variables>

where <n> is the line number of the statement, <numeric expression> is any arithmetic expression giving
the file number, and <p> is a comma or a colon. The <list-of-variables> consists of one or more simple
or subscripted numeric or string variables.

Example:

When the variable in the list is numeric, the number is read from the position indicated by the pointer and
the pointer is advanced one word.

When the variable in the list is of type string, the stn[ng control word is accessed from the position indicated
by the pointer, the following string is read, and the pointer is advanced to the word following the string.

When the variable list is empty, the next data item ·is skipped. If the pointer is pointing at a string control
word, the pointer is advanced to the word following the string; otherwise, the pointer is advanced one word.

For a sequential memory-image file, when the READ statement reads beyond the end of file, 0 is assigned
to all remaining numeric variables in the list and the null string is assigned to all remaining string variables.
For a random memory-image file, when the READ statement reads beyond the end of file, an error occurs.

Memory-Image WRITE Statement

The WRITE statement for memory-image files writes the items in the output list onto the file specified by
the memory-image-file designator. The WRITE statement for memory-image files does not write line numbers
or delimiters into the file, just the memory-image! representations of the numbers and strings. The WRITE
statement for memory-image files has the following formae

<n> WRITE :<numeric-expression><p><output-list>

where <n> is the line number of the statement, <numeric-expression> is any arithmetic expression giving
the file number, and <p> is a comma or a colon. The <output-list> contains one or more numbers., constants,
expressions (numeric or string), or variables.

Example:

The memory-image representation of any number occupies one word. The memory-image representation of a

7-8

string occupies one or more words. The first word contains a string control word which contains the length
of the string. The following words contain the string, six characters per word. If the last word does not contain
six characters, it is filled on the right with blanks. The string "ILLUSTRATE" is written op the disk as fol­
lows:

Word 1: The string control word
Word 2: ILLUST
Word 3: RATE

When the item in the list is a number, the number is written at the position indicated by the pointer and the
pointer is advanced one word.

When the item in the list is a string, a string control word, followed by the string, is written starting at the
position indicated by the pointer and the pointer is advanced to the word following the string.

When the output list is empty, a null entry is written at the position indicated by the pointer and the pointer
is advanced one word. A sequential memory-image file which is .in the read mode must be placed in the write
mode using either a SCRATCH statement or an APPEND statement before a WRITE statement can be
executed with it.

When a WRITE statement attempts to write beyond the end of a random memory-image file, an error occurs.

Memory-Image READ FORWARD Statement

The READ FORWARD statement for memory-image files selectively reads items from the file specified by
the memory-image-file designator into the variables in the variable list. The memory-image READ FORWARD
statement has the following format:

<n> READ FORWARD :<numeric-expression><p><variable-list>

where <n> is the line number of the statement, <numeric-expression> is any arithmetic expression giving
the file number, and <p> is a comma or a colon. The <variable-list> contains one or more variables, either
simple or subscripted.

Example:

10 READ FORWARD :3,A$,J,J,R$CX>

When the variable in the list is numeric, a forward search for a number is initiated at the position indicated
by the pointer. When the pointer is not pointing at a string control word, the number is read and the pointer
is advanced one word. If the pointer is pointing at a string control word, the pointer is advanced to the word
following the string and the process is repeated. When the pointer is pointing at a word which contains string
characters, that word is read as a number and the pointer is advanced one word.

When the variable in the list is of type string, a forward search for a string control word is initiated at the
position indicated by the pointer. When the pointer is pointing at a string control word, the following string
is read and the .pointer is advanced to the word following the string. If the pointer is not pointing at a string
control word, the pointer is advanced one word and the process is repeated.

When the variable list is empty, the next data item is skipped. If the pointer is pointing at a string control
word, the pointer is advanced to the word following the string; otherwise, the pointer is advanced one word.

For a sequential memory-image file, when the READ FORWARD statement reads beyond the end of file, 0
is assigned to all remaining numeric variables in the list and the null string is assigned to all remaining string
variables. For a random memoty-image file, when the READ FORWARD statement reads beyond the end of
file, an error occurs.

7-9

BACKSPACE$ Statement

The BACKSPACE$ statement moves the pointer backward to the last string control word in the file specified
by the memory-image-file designator and, if the file: is sequential, sets the read mode for that file. The
BACKSPACE$ statement has the following forma,t:

<n> BACKSPACE$:<numeric-expression>

where <n> is the line number of the statement and <numeric-expression> is any arithmetic expression giving
the file number.

Example:

10 ,BACKSPACE$:J+2

If no string control word is found, the pointer is movt:d to the beginning of the file. When the BACKSPACE$
statement is executed with the pointer positioned at the beginning of the file, the pointer is not moved.

SETW Statement

The SETW statement sets the pointer in the random memory-image file specified by the memory-image file
number to the word specified by the word number. The SETW statement has the following format.

<n> SETW <numeric-expression> TO <numt:ric-expression>

where <n> is the line number of the statement and the first <numeric-expression> is the number of the file.
The second <numeric-expression> is the word in the file to which the pointer is set (the first word is word
1).

Example:

10 SETW x TO v * c1-c2

Both the memory-image file number and the word number are converted to an integer before they are used.
A word holds either a number, a string control word, or six string characters.

NON-TYPE DEPENDENT FILE STATEMENTS

This subsection gives the format and uses for other statements which manipulate disk files. These statements
can be used with both character and memory-image files.

RESTORE Statement

The RESTORE statement positions the pointer to the beginning of the file and sets the mode for the file
specified by the file designator. The RESTORE statement has the following format:

<n> RESTORE <file-designator>

where <n> is the line number of the statement and <file-designator> is any arithmetic expression preceded
by a number sign or colon denoting either a character or memory-image file.

Example:

10 RESTORE #SGNC2J+2

7-10

SCRATCH Statement

The SCRATCH statement erases any existing data, positions the pointer to the beginning of the file, and sets
the mode for the file specified by the file designator. The SCRATCH statement has the following format:

<n> SCRATCH <file-designator>

where <n> is the line number of the statement and <file-designator> is any numeric expression preceded
by a number sign or colon designating the type of file.

Example:

10 SCRATCH : 1

For a random memory-image file, all data items in the file are replaced by null entries so that, when the file
is read, zeros or null strings are assigned to the variables in the read list.

APPEND Statement

The APPEND statement positions the pointer immediately following the last record, sets the mode for the file
specified by the file designator, and sets the VPS file function (described under the heading FILE FUNC­
TIONS) to the number of records in the file. The APPEND statement may not reference a memory-image
random file. The APPEND statement has the following format:

<n> APPEND <file-designator>

where <n> is the line number of the statement ann <file-designator> is any numeric expression preceded
by a number sign or colon.

Example:

lO APPEND #2

IF END Statement

The IF END statement tests for an end of file condition on the file specified by the file designator. The
IF END state,ment has the following format:

<n> IF END <file-designator> <expression>

where <n> is the line number of the statement and <file-designator> is any numeric expression preceded
by a number sign or colon. The <expression> is any BASIC expression except another IF statement, or a
FOR statement.

Example:

10 If END :3 X=X~l

When a sequential file is being read, an end-of-file condition exists after an attempt has been made to read
beyond the end of the data. An end-of-file. condition exists on a random memory-image file when the pointer
is greater than the number of words in the file.

When a sequential file is being written, the file grows as items are added to it. It is impractical to test for
an end-of-file condition when writing a sequential file.

7-11

IF MORE Statement

The IF MORE statement tests for more space available in the file specified by the file designator. The
IF MORE statement has the following format:

<n> IF MORE <file-designator><expression>

where <n> is the line number of the statement and <file-designator> is any numeric expression preceded
by a number sign or colon. The <expression> is any BASIC statement other than another IF statement, or
a FOR statement.

Example:

10 IF MORE #0 GO TO 300

The above example tests the DATA line for unread data and branches if there is data that has not been read.

When a file is being read, the IF MORE statement tests for more data items remaining to be read in the file.
When the file has been accessed with an INPUT state!ment, a test is made for more records remaining in the
file; when the file has been accessed with a READ statement, a test is made for more data items remaining
in the record or more records remaining in the file.

When a file is being written, the IF MORE statement tests for more space available to wrjte itt!ms to the
file. For a sequential file, there is almost always more space available since the space gro~s as the file is
written. For a random file, there is more space available when the pointer is less than or equal to the number
of words in the file.

FILE FUNCTIONS

The following file functions are built into BASIC and can be used in any expression. The argument of the
function, x, is converted to an integer to be used. as. the file number and may be any numeric expression.

Function

HPS(x)

LIN(x)
VPS(x)

LCW(x)

LFW(x)

Description

Returns the character position in tbe current record of the character file. The first character
is located at character position 0. The initial value of the HPS function is 0.
Returns the line number of the cunent record of the character file. The initial value is 0.
Returns the number of records. which have been read from or written to the character file.
The initial value is 0.
Returns the current value of the word pointer for the random memory-image file. The first
word is word number 1. The initial value is 1.
Returns the size in words of the random memory-image file.

EXTERNAL FILE ERROR CONDITIONS

The following error conditions result in the associated error messages. Since recovery from these error condi­
tions is not possible, they are considered fatal errors.

TOO MANY FILES
More than 16 files declared in FILES statements.

DUPLICATE FILE NAMES
File name appears more than once in FILES statements.

ILLEGAL FILE NAME
Illegal file name.

7-12

INVALID FILE NUMBER
Value of file-designator less than 1 in some statements, less than 0 in others, greater than number
of files declared, or specifies (in other than a FILE statement) a file which is closed.

INVALID FILE LENGTH
File length less than 1.

FILE NOT CHARACTER = <file name>
Tried to do character operation on memory-image file.

FILE NOT MEMORY-IMAGE = <file name>
Tried to do memory-image operation on character file

FILE NOT RANDOM
Tried to do random operation on sequential file.

FILE NOT SEQUENTIAL = <file name>
Tried to do sequential operation on random file.

FILE NOT SEQUENCED = <file name>
Tried to READ or WRITE an unsequenced file.

FILE NOT UNSEQUENCED = <file name>
Tried to INPUT or PRINT a sequenced file.

FILE NON-EXISTENT = <file name>
Tried to access a non-existent file.

ILLEGAL FILE COMMAND
Tried to INPUT or READ a file which was in the output mode or tried to PRINT or WRITE a
file which was in the input mode (not referenced with scratch or append or last referenced with
INPUT or READ).

DATA ITEM NOT NUMERIC
While reading a memory-image file, tried to read into a numeric variable when pointing at a string
control word.

DATA ITEM NOT STRING
While reading a memory-image file, tried to read into a string variable when not pointing at a string
control word.

INVALID WORD NUMBER
Word number less than 1 or greater than file length.

END OF FILE
Tried to read or write beyond end of file on a random memory-image file.

7-13

GENERAL

SECTION 8
INTRINSIC FUNCTIONS

Numeric and string functions are provided in the BASIC language. The names of these functions are known
to the compiler and need only be referenced in order to be used.

The value of the standard functions, as well as the number and types of arguments required for each function,
are described in this section. In all cases, X, Y, J, and K indicate numeric expressions, while A$, B$, and
C$ indicate string expressions.

NUMERIC FUNCTIONS

The numeric intrinsic functions are:

Function

ABS(X)
ATN(X)
BCL
COS(X)
COT(X)
DET
EBC(X)
EXP(X)
IDA
INT(X)
LEN(A$)
LOG(X)
MOD(X,Y)
NUM
RND
SCN(A$,B$,J ,K)
SGN(X)
SIN(X)
SQR(X)
TAN(X)
TIM
VAL (A$)

ABS(X) Function

Meaning

Absolute value
Arctangent
Numeric time of day
Cosine
Cotangent
Determinant
EBCDIC
Exponential
Numeric date
Integer
Length
Logarithm
Modulo
Number of data items
Random number generator
Scan
Sign
Sine
Square root
Tangent
Elapsed time
Value

The absolute value function, ABS(X), returns the absolute value of X.

Example:

10 LET X = 25.5
20 PRINT ttA8SOLUTE VALUE OF A = ";ABSCXJ
30 PRINT "ARSOLUTE VALUE or -123.45 = "'ABSC-123.451
40 END

Execution of the above example causes the following to be printed:

AB~OLUTE VALUE OF A = 25.5
ABSOLUTE VALUE OF -123.45 = 123.45

8-1

ATN(X) Function

The arctangent function, ATN(X), returns the arctangent of X in radians. The range of the function is:

-(Pl/2) <= ATN(X) <= (Pl/2)

where PI is the ratio of the circumference of a circlt! to its diameter.

BCL Function

The numeric time of day function, BCL, returns the time of day in hours and decimal fractions of hours based
on a 24-hour clock. As an example, the following program sequence was executed at 11 :02:

10 LET A = BCL
15 PRINT A
9 9 ENO

Execution of the above example causes the following to be printed:

11.0333

COS(X) Function

The cosine function, COS(X), returns the trigonometric cosine of X, where X is in radians.

COT(X) Function

The cotangent function, COT(X), returns the trigonometric cotangent of X, where X is in radians.

DET Function

The determinant function, DET, returns the determinant of the last matrix inverted, using the matrix function
INV. The initial value is 0.

EBC(X) Function

The EBCDIC function, EBC(X), returns the EBCDIC code for an EBCDIC graphic character or EBCDIC
mnemonic.

Examples:

10 EBCC")
20 EBCC})
30 EBCCNAK)

EBCDIC Mnemonics

The following list of EBCDIC mnemonics can be used with either the EBC(X) function or to specify a delim­
iter:

ACK BEL BS CAN CR DCl
DC2 DC3 DC4 DEL DLE EM
ENQ EOT ESC ETB ETX FF
FS GS HT LF MZ NAK
NL NUL PZ RS SI so
SOH SP STX SUB SYN us
VT

8-2

EXP(X) Function

The exponential function, EXP(X), returns the anti logarithm of X, which is the value of the base of the natural
logarithm 2. 71828 ... , raised to the power of X (e**X).

IDA Function

The numeric date function, IDA, returns the date in integer form, YYMMDD, where YY represents the last
two digits of the year, MM represents two digits for the month, and DD represents two digits for the day.
As an example, the following program sequence was executed on April 1, 1978.

10 LET A = IDA
15 PRINT A
99 fND

Execution of the above example causes the following to be printed:

78'J401

INT(X) Function

The integer function, INT(X). returns the largest integer not greater than X.

Example:

10 A -· 6.9
20 B = 6
30 c = -6.14
40 PRINT "GHEATEST INTEGER NOT GREATER THAN"; A;" IS"; INTCA>
51 PRINT "GREATEST INTEGER NOT GREATEP THAN"i 8;" IS "; INTCB>
60 PRINT "GREATEST INTEGER NOT GREATER THAN";C;" IS "; INTCCJ
70 PRINT "GREATEST INTEGER NOT GREATER THAN -2 IS"; INTC-2>
80 END

Execution of the above example causes the following to be printed:

GREi\TEST INTEGER NOT GREATER f HAN 6 • 9 I S 6
GHEA TEST INTEGER NOT GREA TEf< THAN 6 IS f,

GREATEST INTEGER NOT GHEATER THAN -6. 14 IS -7
GREATEST INTEGER NOT GHEATER THAN -2 IS -2

8-3

LEN(A$) Function

The length function, LEN(A$), returns the number oJf characters in the specified string.

Example:

10 READ A118,C$
20 LET A = LENCA$)
30 LET B = LENC6$)
40 LET c = LENCC$l
50 PRINT "A$ = "iA$;" LENGTH OF A$ ="';A
60 PRINT "B$ = ";8$i" LENGTH OF 8$ ="iB
10 PRINT "C$ = "'iC$;" LENGTH Of C$ =ff; c
80 DATA A8C11DEFGH11IJKLMNOPQRST
99 END

Execution of the above example causes the following to be printed:

A$ = AGC LENGTH OF A$ = 3
B$ = DEFGH LENGTH Of 8$ = 5
CS = IJKLMNOPQRST LENBTH OF C$ = 12

LOG(X) Function

The logarithm function, LOG(X), returns the natural logarithm of X; X must be greater than 0.

MOD(X,Y) Function

The modulo function, MOD(X,Y), returns the value of X - (Y * INT (X/Y)); Y must not equal 0.

NUM Function

The number function, NUM, returns the number of data items input into the last array in a MAT INPUT
statement.

RND Function

The RANDOM function, RND, returns the next number in a sequence of pseudo-random numbers between
0 and 1. The RND function does not require ap argument. The same set of pseudo-random numbers is always
used unless a RANDOMIZE statement has been executed.

RANDOMIZE Statement

While having the same set of random numbers can be very useful, particularly during the debugging of a
BASIC program, the capability of generating different sets of random numbers is often required. The
RANDOMIZE statement, when included in a BASIC program that references the RND function, causes a dif­
ferent set of random numbers to be produced.

84

The RANDOMIZE statement may be abbreviated as RAN.

Example:

10 RAN
20 FOR I = 1 TO 10
30 ZCil = RND
40 NEXT I
50 STOP
60 END

Each time the program in the above example is executed, a different set of random numbers is assigned to
the array Z. If the randomize statement is removed from the program, the first 10 values from the standard
set of random numbers are assigned to array Z each time the program is executed.

SCN(A$,B$,J,K) Function

The SCAN function, SCN(A$,B$,J,K), locates the specified occurrence of a segment of a string within a desig­
nated string and returns the number of the character position at which that occurrence was found.

The value returned is the character position in A$ of the first character of the Jth occurrence of B$, searching
from character position K in A$. If a value of 0 is returned, there is no first Jth occurrence of B$ after the
Kth character position in A$. The first character position is numbered 1.

Example:

10 A$ = "ABZABZZBA"
20 A$ = "' f.3 z"
30 C$ = nz7n

40 D = SCNCA$,8$,l,l>
50 E = SCNC A$,f:3$.-2, U
60 F - SCNCA$,C$,l,l)
70 G = SCNC A$,u;,7, ll
80 PRINT D.- E,. F, r ..)

99 END

Execution of the above example causes the following to be printed:

2 5 6 0

In the preceding example, the SCN function returned a value of 2 to the variable D. The function began its
search at the first character position of A$ and searched for the first occurrence of the string BZ. As the first
occurrence was found at the second character position of A$, the function returned a value of 2. A value of
6 was returned to the variable F for similar reasons. A value of 5 was returned to the variable E. The function
began its search at the first character position of A$ and searched for the second occurrence of the string
BZ. The second occurrence was found to begin at the fifth character position of A$. A value of 0 was returned
to the variable G. The function again began its search at the first character position of A$ and searched for
the seventh occurrence of the string ZZ. A seventh occurrence was not found.

8-5

SGN(X) Function

The sign function, SGN(X), determines the sign of the argument and returns the value of 0, + 1, or -·l, depend­
ing on whether the value of the argument is 0, positive and non-zero, or negative and non-zero, respectively.
As an example, the value of SGN (-5) is -1; the value of SGN(O) is 0.

SIN(X) Function

The sine function, SIN(X), returns the trigqnometric sine of X, where X is in radians.

SOR(X) Function

The square root function, SQR(X), returns a positive square root of X; X must be positive.

TAN(X) Function

The tangent function, TAN(X), returns the trigonometric tangent of X, where X is in radians.

TIM Function

The time function, TIM, returns the elapsed execution time in seconds.

Example:

10 FOR X = 1 TO SES
20 LET A = X
30 NEXT X
40 PRINT "ELAPSED TIME rs: ;Tr"
9 9 END

Execution of the above example causes the following to be printed:

ELAPSED TIME rs: 14.95

VAL(A$) Function

The value function, VAL(A$), returns the numeric value of the EBCDIC string contained in the variable A$.

This function may be used to convert numbers which entered the program as strings to numeric values which
may be used in arithmetic expressions. The numeric value may then be converted back to strings with the
STR$(X) function.

Example:

10 LET A$ = "12"
20 LET B = VALCA$)
30 LET Q =2•VAL{A$)
40 PRINT Q;
50 PRINT a;
99 ENO

Execution of the above example causes the following to be printed:

24 12

STRING FUNCTIONS

The string intrinsic functions are:

String
Function

CHR$(X)
CLK$
DAT$
EXT$(A$,J ,K)
REP$(A$,B$,C$,J ,K)
STR$(X)
UNO$

CHR$(X) Function

Meaning

Character
Clock
Date
Extract
Replace
Numeric to string conversion
User number

The character function, CHR$(X), returns the I-character string which corresponds to EBCDIC code X. Argu­
ments greater than 255 are treated modulo 256.

CLK$ Function

The clock function, CLK$, returns an 8-character string that gives the time of day on a 24-houf clock in the
form HH:MM:SS, where HH is hours, MM is minutes and SS is seconds.

Example:

10 PRINT CLKt

Execution of the above example causes the following to be printed:

23: 14:55

DAT$ Function

The date function, DAT$, provides the calendar date as a string in the form MM/DD/YY.

Example:

10 LET A$ = DAT$
20 PRINT A$
9 9 END

Execution of the above example causes the following to be printed:

04/19/73

EXT$(A$,J,K) Function

The extract function, EXT$(A$,J,K), extracts the designated segment of the specified string for use in a string
expression. The A$ is the string or string expression from which the extraction is to be made; J is the character

8-7

position in the string at which the extraction is to begin; and ~ is the character position in the string at which
the extraction is to end. The first character position is numbered 1.

Example:

100 A$ = "BASIC"
110 Bl = (XTCA,2,4)
120 P~J~T "THE STRING VARIABLE 8$ = ";BS
999 END

Execution of the above example causes the following to be printed:

THE STRING VARIABLE 0$ = ASI

In the preceding example, the string variable B$ was assigned the value of the segment of the specilfied string,
A$, which began at the second character position and ended at the fourth character position.

REP$(A$,8$,C$,J,K) Function

The replace function, REP$(A$,B$,C$,J ,K), replaces the specified occurrences of a segment of a string with
the designated string. A$ is the string within which the segment is to be found, B$ is the segment which is
to be replaced, and C$ is the string which is to replace B$. J specifies the number of occurrences of B$ to
be replaced, and K is an integer which specifies the character position in A$ at which search and replacement
begins.

If the parameter J is specified as less than 0, a11 o·ccurrences of B$, including and following the Kth character
in A$, are replaced with C$. If J is equal to 0, no replacements are made and the value returned by REP$
is equal to A$. If J is greater than 0, the number of occurrences of B$, specified by J are replaced by C$
beginning with the Kth character in A$. If the parameter J is specified as less than 0, the string to be replaced,
B$, may not be null.

Example:

100 A$ = "A9999833399983339999A"
110 8$ = "8333"
120 C$ = "C666"
130 oi = REP$CAs,ss,cs,1,6>
150 [$ = PEPCA,8$,Ct,2,6l
160 PRINT "0$ = ";C$
170 PRINT "ES = ";[$
999 Ef\JD

Execution of the above example causes the following to be printed:

0$ = A9999C66699983339999A
ES = A9999C6&6999C66&9999A

STR$(X) Function

The numeric-to-string conversion function, STR$(X), returns the string value of X as shown in the following
example. STR$(X) gives a value on conversion that is the same as if the value had been printed. Rounding
may occur.

100 READ A
110 A$=STR$CA>
120 PRINT A; LEN CA~);A$

125 IF LENCA$) = 10 GO TO 999
130 GO TO 100
140 OATA 1234.567, 1111.222~1234567890.
999 END

Execution of the above example causes the following to be printed:

1234.57 9
1111.22 9
1.23457E-t09

1234.57
1111.22

13 l.23457E-t09

NOTE
When a numerical expression is used, the LEN function counts a leading space
(or a leading minus sign in the case of negative numbers), and a trailing blank, just
as the PRINT statement would treat it.

UNO$ Function

The user number function, UNO$, returns the 10-character family name of the program.

Example:

100 LET A$ = UNO$
110 If A$="8170081\SIC'' THEN 150
120 PRINT "YOU ARE AN UNAUlHORIZEO USER"
130 STOP
150 REM START OF PROGRAM
999 END

In the preceding example, if the file name returned by UNO$ is not "B1700BASIC", the current user is not
allowed further access to the program.

8-9

GENERAL

SECTION 9
SUBPROGRAMS

Subprograms allow a particular calculation or a given routine to be coded once within a program and then
referenced repeatedly throughout the program. Subprograms in BASIC are of two types:

1. Function subprograms.
2. Subroutine subprograms.

FUNCTION SUBPROGRAMS

In addition to the standard functions provided by the BASIC compiler, the user may define functions within
a program with the DEF statement. User-defined functions may have two forms: single statement functions
or multiple statement functions.

Single Statement Functions

A single statement function, as its name suggests, is a function that can be defined by a single DEF statement.
A single statement function is useful when a particular arithmetic expression must be evaluated repeatedly
within a program for different values of the arguments involved. The single statement function may have either
of the following formats:

1. <n> DEF FN <letter> <expression>
2. <n> DEF FN <letter> (<argument list>) <expression>
3. <n> DEF FN<letter>$ = <expression>
4. <n> DEF FN <letter>$ (<argument list>) = <expression>

where <n> is the line number of the DEF statement; <letter> is any single alphabetic letter; <expression>
is any arithmetic expression; and, in option (2), <argument list> is a list of one to seven unsubscripted dummy
variable names separated by commas. Options (3) and (4) are for string functions and have the same form
as options (1) and (2) except for the $ character in the function name, and the fact that <expression> is a
string expression.

The name of a defined function must consist of three letters, the first two of which must be the letters FN.
In the general form, <letter> completes the function name and distinguishes a given function from other func­
tions which may be defined in the same program. In a given program each user-defined function must have
a unique name. Since defined functions are given 3-character names, the first two of which are always FN,
as many as 26 unique functions may be defined. Valid function names are FNA, FNB, FNC, .. ., FNZ. A
parameter that is passed to the function does not have its value changed even if the dummy variable associated
with it is changed during the execution of the function.

The <argument list> consists of one to seven dummy variables separated by commas, each of which must
be a distinct unsubscripted variable name. Each variable appearing in the <argument list> is replaced by the
value of the corresponding actual argument when the function is referenced. Dummy arguments merely reserve
a place for the actual arguments and therefore are undefined outside of the function definition. A dummy
variable is :QOt related to any variable of the same name appearing elsewhere in the program.

In a numeric function, the <expression> on the right side of the equal sign may be any arithmetic expression
that can be placed on the remainder of that statement line. In addition to the dummy variables, the
<expression> may contain any combination of variable names (either simple or subscripted) appearing else­
where in the program, references to other functions, (including functions previously or subsequently defined
by other DEF statements), and numeric constants. Variable names not listed in the <argument list> use their
current values assigned elsewhere in the program.

9--1

The DEF statement defining a single statement fulllction may be placed at any point within a BASIC program.
The function definition is only evaluated when a reference to that function is executed. Execution of a function
reference in an expression results in an association of the actual argument values with the corresponding
dummy arguments in the function definition ~nd a subsequent evaluation of the function definition. If a func­
tion reference or an arithmetic expression is : used as an actual argument, then these quantities are evaluated
before the association can take place. After the e:valuation of the function definition, the resultant value as­
signed to the function name then replaces the function reference in the expression.

Examples:

10 OEF FNACX.YJ = X••2 + ·2•X•Y ~ Y**2
20 DEF fNBCx .. v,,x1 .. ru = FNAC.X .. Y)/fNACXl .. Yl>
30 DEF FNZCA,.Bl = X * SINCAl + 4*INTCA*B-Z>
40 DEF FN£CWJ = W$ & W£
50 DEF fNFSC I> = "C,. & S lRSC I> & ">"

Multiple Statement Functions

Multiple statem~nt functions are not limited to those functions which can be expressed. in a single DEF state­
ment as are single statement functions. A multiple statement function consists of a DEF statement followed
by the statements which define the function. and terminated by a FNEND statement. The DEF statement in
the multiple statement function may have any of the following formats:

1. <n> DEF FN <letter> <local variable list>
2. <n> DEF FN <letter> (<argument! list>) <local variable list>
3. <n> DEF FN<letter>$ <local variable list>
4. <n> DEF FN <letter>$ (<argumerlt list>) <local variable list>

where <n> is the line number of the DEF statement; <letter> is any single alphabetic letter; <local variable
list> contains a list of variables that are uniquely defined for that function; and in option 2, <argument list>
is a list of one to seven unsubscripted dummy variable names separated by commas. String functions follow
the same pattern as in single line functions.

Following the DEF statement in a multiple statement function are those statements which define tlhe function.
These statements must be followed by an FNEND statement. The FNEND statement indicates the end of the
function definition and has the following format:

<n> FNEND

where <n> is the line number of the FNEND statement.

As discussed in this section under SINGLE STATEMENT FUNCTIONS, the name of a defined function must
consist of three letters, the first two of which must be FN. In the general form, <letter> completes the func­
tion name enabling a maximum of 26 functions (either single statement and/or multiple statement) to be defined
in the same program. Valid user-defined function names are FNA, FNB, FNC, ... FNZ.

9-2

The absence of the equals sign and the arithmetic expression in a DEF statement indicates that a multiple
statement function follows the DEF statement. A multiple statement function may consist of as many state­
ments as desired; the end of the function definition is indicated by the FNEND statement.

Multiple statement functions may not be nested. In addition, neither transfer of program control from within
a multiple statement function to some point in the program outside the function, nor the reverse, is permitted.

As with single statement functions, dummy variables appearing in the <argument list> represent the corre­
sponding actual arguments which are substituted for the dummy arguments when the function is referenced.
In addition to the dummy variables, the statements appearing in the multiple statement function definition may
contain any combination of variable names (either simple or subscripted) appearing elsewhere in the program,
references to other functions (including single statement functions defined within the program), and numeric
constants. Variable names not listed in the <argument list> use their current values assigned elsewhere in
the program.

When using a multiple statement function, the function name, <FN letter>, should be assigned a value before
the FNEND statement is encountered. If the function name has not been assigned a value when control
reaches the FNEND statement, 0 is returned for the function value.

The multiple statement function may be placed at any point within a BASIC program. The function definition
is only evaluated when a reference to that function is executed.

Example:

010
02 0
030
040
050
060
070
080
1 () 0
1l0
120
130
14 0
150
16 0
170
18 0
99 9

PEM CO~PUTE THE LARGEST FACTOR FOR
REM THE ODD NUMBERS 1001 to 1019.
REM
PRINT "NUMBER", "LARGEST FACTOR"
FOR I'::I TO 10
READ N
PRINT N,. FNF<N>
NEXT I

DEF fNFCNl
FOR f = INT(N/21 TO 1 SfEP -1
IF N/F <> INTCN/f) THEN 150
LET FNF=F

GO TO 160
NEXT F
FNENO

OATA 1001, 1003, 1005, 1007,. 1009
DATA 1011• 1013, 1C15,. 10].7,. 1019
END

9-3

SUBROUTINE SUBPROGRAMS

A subroutine enables a repetitive calculation that produces more than one value to be coded once as a subpro­
gram and then referenced as needed throughout the program. Program control is transferred to a subroutine
through the GOSUB statement. The GOSUB statcme:nt has the following format:

<n> GOSUB <line number>

where <n> is the line number of the GOSUB statement and <line number> is the line number of the first
statement in the subroutine.

A subroutine is called using the GOSUB statement. The RETURN statement is used to exit the subroutine
and return program control to the statement immediately following the calling GOSUB statement. The RE­
TURN statement has the following format:

<n> RETURN

where <n> is the line number of the RETURN statement.

A GOSUB statement may be used inside a subroutine 1to call another subroutine. When subroutines are nested,
the first RETURN statement to be executed returns control to the statement following the most recently
executed GOSUB. The next RETURN statement returns control to the statement following the GO SUB state­
ment which was previously executed, and so on. Ext::cution of a RETURN statement prior to the execution
of a GOSUB statement terminates program execution with an error message.

A subroutine may contain more than one RETURN statement.

Example:

94

100
110
12 0
130
l 4 ')
15 0
160
170
18 0
190
20 0
400
410
420
430
440
999

INPUT X,Y
IF X>= 0 THEN 140
LET A = 8 = 0
GO TO 160
GOSUB 400
LET 8 = A /X
PRINT A,8
I MP UT Z
GUSUB 42C
PPI~T l\
STQ?
REM SUBROUTINE TO CALCULATE

= SQRCX> LET Z
LET U
LET A =

= y - z
SQR(i.J*U+l)

u, AND A

RETURN
£ND

•RETURN T 0 LINE 1 ~> •J 0 F 190

GENERAL

SECTION 10
MATRIX OPERATIONS

As in many programming languages, matrices in BASIC can be manipulated by manipulating their elements.
However, it is often more convenient to regard matrices as entities rather than as indexed collections of enti­
ties, and to manipulate the entire entity at one time. BASIC provides a number of standard operations to
facilitate such manipulations.

All matrix statements (with the exception of data statements containing matrix data) are prefixed with the word
MAT.

A matrix may be dimensioned in a DIM statement. In addition, a matrix may be redimensioned implicitly or
explicitly when it appears in certain of the MAT statements. If a matrix is redimensioned in this manner, only
the number of elements in a row and/or column may be changed. It is an error to attempt to redimension
a 2-dimensional matrix as I-dimensional or a I-dimensional matrix as 2-dimensional. A matrix may not be redi­
mensioned to contain more elements than it contained in the original declaration.

MAT ADDITION STATEMENT

The purpose of the MAT ADDITION statement is to add two numeric arrays together giving a third numeric
array. The MAT ADDITION statement has the following format:

<n> MAT <matrix-I> = <matrix-2> + <matrix-3>

where <n> is the line number of the MAT statement and <matrix-I> is replaced by the sum of <matrix-2>
and <matrix-3>. <Matrix-2> and <matrix-3> must have the same dimensions. <Matrix-I> must not have

10.1

smaller dimensions than <matrix-2>. If <matrix-I> is larger than <matrix-2> then <matrix-I> is redimen­
sioned to the size of <matrix-2>. <Matrix-2> may appear on the left side of the equal sign.

Example:

100 DIM ~(3,3) 8(3,3), C(J,3)
110 MAT READ A,.B
120 DATA z,.2,.2
130 DATA 2,.2,.z
14::> DATA z,2,2
150 DATA 3,.3,.3
lGO DATA 31d,3
170 DATA 3,3_,3
1~0 PRINT "MATRIX A IS"
200 MAT PRINT A;
210 PRINT
220 PRINT "MATRIX B IS"
240 MAf PRINT o;
250 PRINT
260 PRINT "MATRIX C IS"
280 t.1AT C = A + B
290 MAT PRINT c;
999 END

Execution of the above example causes the following to be printed:

M.~TRIX A IS
2 2 2
2 2 2
2 2 2

MATRIX B I S
3 3 3
3 3 3
3 3 3

MATRIX c I S
5 5 5
5 5 5
5 5 5

10.2

MAT ASSIGNMENT STATEMENT

The purpose of the MAT ASSIGNMENT statement is to move the elements from one matrix to another. The
MAT ASSIGNMENT statement has the following format:

<n> MAT <matrix-I> = <matrix-2>

where <n> is the line number of the MAT ASSIGNMENT statement. <Matrix-I> must not be smaller than
<matrix-2>. If <matrix-I> is larger than <matrix-2>, <matrix-I> is redimensioned after the elements have
been moved.

Example:

CS DIM 8(4,4)
10 MAT READ A(2,2>
15 DATA 1P2,3?4
20 MAT B = A
25 MAT PHINT B;
9 9 ENO

Execution of the above example causes the following to be printed:

1. 2
3 4

MAT CON STATEMENT

The purpose of the MAT CON statement is to initialize all of the data elements of a specified matrix to the
numeric constant, ONE. The MAT CON statement may also be used to specify the dimensions of the matrix.
The MAT CON statement has the following format:

<n> MAT <matrix-I> = CON (<bound>,<bound>)

where <n> is the line number of the MAT CON statement, <matrix-I> is the name of the matrix to be initia­
lized, <bound> may be any numeric expression to specify the dimensions of <matrix-I>. If <bound> is not
specified no, redimensioning occurs and the size of the matrix remains the same.

A matrix may not be redimensioned to have more elements than were specified in the DIM statement for the
matrix, nor may the number of dimensions be changed.

Example:

10 DIM AC3,5>
20 MAT A = CON
30 MAT PRINT A;
40 END

Execution of the above example causes the following to be printed:

1 1
1 1
1 1

1 1 1
1 1 1
1 1 1

10.3

MAT ION STATEMENT

The purpose of the MAT IDN statement is to zero the matrix and place ones on the main diagonal. The MAT
IDN statement has the following format:

<n> MAT <matrix-1> = IDN (<bound>,<bound>)

where <n> is the line number of the MAT IDN statement. <Matrix-1> must be a square matrilx: it must __
have two subscripts and have its number of rows equal to its number of columns. <Bound>, if used, may
be any expression.

Example:

10 DIM xc3,.3)
20 MAT X=ION
39 MAT Y=IDNC4,.4l
40 PRINT X;
50 PRINT Yi
6C ENO

Execution of the above example causes the following to be printed:

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 c
0 0 1 0
0 0 0 1

MAT INPUT STATEMENT

The purpose of the MAT INPUT statement is to cause the data elements of a matrix to be read from an exter­
nal device. The MAT INPUT statement has the following format:

<n> MAT INPUT [#<numeric-expression>,]<list>

where <n> is the line number of the MAT INPUT statement, <numeric-expression> is any arithme~tic expres­
sion giving the file number, and <list> is one or more numeric or string matrices.

Examples:

10 MAT INPUT AC12,.7>

20 MAT INPUT A$C5)
30 MAT INPUT v
40 MAT INPUT #0,. A(6,.5}

104

MAT INV STATEMENT

The purpose of the MAT INV statement is to determine the inverse of the specified matrix and to place the
result in the designated matrix. The inverse of a matrix is analagous to the reciprocal of a numeric constant.
The MAT INV statement has the following format:

<n> MAT <matrix-1 > = INV (<matrix-2>)

where <n> is the line number of the MAT INV statement and <matrix-1> is the name of the matrix where
the results of the inverse are placed (must be 2-dimensional). <Matrix-2> must be enclosed in parentheses
and must be a square matrix.

The same matrix name may not appear on both sides of the equal sign. <Matrix-1> may not be smaller than
<matrix-2>. If <matrix-1> is larger than <matrix-2>, then <matrix-1> is redimensioned to the size of
<matrix-2>. A singular matrix is not inverted and causes a run-time warning to be printed. The determinant
of the singular matrix is set to 0. The value returned by the INV function is undefined if the argument was
a singular matrix.

The DET function may be used to return the value of the determinant of the matrix whose inverse was last
computed.

Example:

100 DIM A(3,3), 8(3,3>
ilO MAT READ A
120 DATA 1,z,3,4,5,6,7,e,a
130 MAT PHINT A;
140 MAT B = INVCAl
150 MAT PRINT 8,
160 MAT C = A * 8
170 t-AAT PRINT C
180 PRINT
190 PRINT "DETERMINANT IS"; DET
99 9 END

Execution of the above example causes the following to be printed:

1 2 3
4 5 6
7 8 8

-2.66667 2.666667 -1
3.33333 -4.33333 2

-1 2 • - l

l -7.45058£-09 0
l.49023E-08 1 • 0
o. -2.98023£-09 1

DETERMINANT IS 3

10.5

MAT MULTIPLICATION STATEMENT

The MAT MULTIPLICATION statement performs aJgebraic multiplication on two matrices and assigns the
result to another matrix. The MAT MULTIPLICATION statement has the following format:

<n> MAT <matrix-1> = <matrix-2> * <matiix-3>

where <n> is the line number of the MAT MULTIPLICATION statement, <matrix-1> is the matrix to which
the result of the multiplication is assigned, and <matrix-2> and <matrix-3> are the two matrices that are
multiplied together. <Matrix-1> must not be smaller than <matrix-2>. If <matrix-1> is larger than
<matrix-2>, <matrix-1> is redimensioned to the :size: of <matrix-2> after the new values are assigned. All
three matrices must be 2-dimensional. The same numc!ric matrix may not appear on both left and right sides
of the equal sign.

Although the matrices to be multiplied must be 2-dimensional, a vector can be represented as a row vector
or a column vector (using two dimensions) so that it can be used in a multiplication. A row vector must be
dimensioned (n, 1) to indicate a row vector consisting of n data elements. A column vector must be dimen­
sioned (1,m) to indicate a column vector consisting of m data elements.

Example 1: Matrix Multiplication

10 0 DI t-1 cc2,2>
110 MAl READ AC2r3) 8(3,.2}
120 DATA 2,.2,2,2 ... 2,2
130 DATA 3,3,3,3,.3,.3
140 MAT c = A * 8
15 \) PRINT "MAT A = "
l&O MAT PP I "l T A;
170 PRINT
180 PRINT "MAT B ="
190 MAT PRINT fj;

20 0 PRINT
210 PRINT"MAT c = "
220 MAT PRINT c;
230 ENO

Execution of the above example causes the following to be printed:

MAT A =
2 2 2
2 2 2

MAT 1:3 =
:~ 3
3 3
7
.J 3

~:AT c =
18 18
18 18

10.6

Example 2: Matrix Multiplication with Vectors

10 ~AT READ ACl,2},8(3,l>
20 MAT C = A * 8
30 MAT PRINT C
40 DATA 5,5,5,10,10,10
99 END

Execution of the above example causes the following to be printed:

150

MAT NUL$ STATEMENT

The purpose of the MAT NUL$ statement is to generate a string array whose elements are all null strings.
The MAT NUL$ statement has the following format:

<n> MAT <matrix-1) = NUL$ (<bound>,<bound>)

where <n> is the line number of the MAT NUL$ statement, <matrix-1> is the matrix to be generated, and
<bound> is the size of the array to be generated or redimensioned. <Matrix-1> can be either a single or
double-dimensioned array. If <bound> is not present, the size of <matrix-1> remains the same.

Example:

10 MAT A$ = NUL !

20 MAT 8$ = NlJL $ c 5)
3() MAT C$ = NUL $ (5 -6)

MAT PRINT STATEMENT

The purpose of the MAT PRINT statement is to print an array row by row (except for row and column 0).
The MAT PRINT statement has the following format:

<n> MAT PRINT [#<numeric-expression>,]<list>

where <n> is the line number of the MAT PRINT statement, <numeric-expression> is any arithmetic expres­
sion giving the file number, and <list> is a list of matrices to be printed.

If a file number is not specified, then the output is directed to the terminal, when compilation is performed
from CANDE, or to the line printer, if the compilation is done from cards.

The rules discussed under the PRINT statement are also applicable to the MAT PRINT statement.

A blank line is printed after each array in the <list>.

Example 1:

10 MAT READ A$(3,3)
20 MAT PRINT A$_;
30 DATA ONE, "2", THR~[, "4", FIVE, "6", SEVEN, "8", NINE
40 END

Execution of the above example causes the following to be printed:

ONE2THREE
4r1 v·E6
SEVEN8NINE

1().7

Example 2:

10 MAT READ A$(3•3)
20 MAT PRINT A$,
30 DATA ONE• "2"• THREE• "4"• FIVE• "6"• SEVEN, "f"• NINE
40 END

Execution of the above example causes the follow]lng to be printed:

ONE
4
SEVEN

Example 3:

2
FIVE
8

100 MAT READ A C4.4>
110 MAT PRINT A
115 PRINT
l?.O MAT PRINT A,
125 PRINT
130 MAT PRINT Ai

lHREE
f,

NINE

140 DATA ll,12,13~14•21,22•23P24•31•32•33•34•41•42•43•44

15 0 END

Execution of the above example causes the following to be printed:

l 1 12 13 14
2 1 22 23 24
3 1 32 33 34

4 1 42 ld 44

1 1 1? l3 14
21 22 2'. 3 24
3 l 32 3; 3 34
4 1 42 ~f 3 44

1 l 12 13 14
21 22 23 24
31 32 33 34
4] 42 43 44

MAT PRINT USING STATEMENT

The purpose of the MAT PRINT USING statemc~nt is to produce formatted matrices. The MAT PRINT
USING statement has the following format:

<n> MAT PRINT [#<numeric-expression>,] USING <image>, <list>

where <n> is the line number of the MAT PRINT statement, <numeric-expression> is any arithmetic expres-

10-8

sion giving the file number, <image> is as described under IMAGE statement, and <list> is one or more
names of matrices to be printed.

If a file number is specified, then the output is sent to a disk file; otheiwise, output is sent to the line printer
or a remote terminal, depending on the medium used for the compilation. The rules discussed under PRINT
USING statement are also applicable to the MAT PRINT USING statement.

A blank line is printed after each array in the <list>.

Example:

120:### ### ### ### ### ### ### ### ### ###
130 FOR I = 1 TO 10
140 FOR J = 1 TO 10
15 0 L£ T A Cl , J > = I * J
160 NEXT J
170 NEXT I
180 PRINT ~THIS WAS PRINTED USING THE MAT PRINT STATEMENT"
190 MAT PR'INT A;
19 5 f OR I = l T 0 4
196 PEINT
19 7 NEXT 1
200 PRINT "THIS w~s PRINTED USING THE MAT PRINf USING STATEMENT"
210 MAT PRINT USING 120~A

240 END

Execution of the above example causes the following to be printed:

THIS t.1ATRIX WAS PRINTED USING THE M,1\T PRINT STATEMENT
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 2 1 24 27 30
4 e 12 16 2G 24 28 32 26 40
5 10 15 20 25 30 3r.-.J 40 45 50
6 12 18 24 30 36 42 4e 54 60
! 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 SU 60 70 80 90 mo

THIS MATRIX WAS PHINfEO USING THE MAT PRINT USING STATEMENT
1 2 3 4 5 6 7 8 9 18
2 4 6 8 10 12 14 16 18 20
3 6 9 12 1.5 18 2 1 24 27 30
4 8 12 16 20 24 26 32 2b 40
5 10 15 20 25 30 35 40 45 50

10-9

MAT READ STATEMENT

The purpose of the MAT READ statement is to n~ad a matrix of specified size from data statements or a
file. The MAT READ statement has the following format:

<n> MAT READ [#<numeric-expression>,] <list>

where <n> is the line number of the MAT READ statement, <numeric-expression> is any arithmetic expres­
sion giving the, file number, and <list> is one or morn matrices to be read from data statements or external
files.

Matrices are filled row by row until the matrix is full or until the data list is emptied.

Example 1:

10 MAT READ A, B, C
20 HAT READ Ac12,1s>,RC25,25), CC50), 0$(20), [$(50160)
30 MAT RE~D A$, 8$, C$

When the DIM statement is used to specify the bounds of the matrix, the MAT READ statement used may
be without a bound specification to read a matrix of the size specified in the associated DIM statement.

Example 2:

10 DIM AC4,12)
15 MAT READ A
20 MAT PRINT fd
30 DATA i,.z.,3,4,5,,6,7,.e,9 .. 10,11,12
40 DATA 1,2,3,,4,5,6,7,e,.9,10,11,12
50 DATA l,z,3,4,5,G,7,a,9,10,11,12
60 DATA i,z,3,4,5,6,7,a,9,10,11,12
99 END

Execution of the above example causes the following to be printed:

1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 b 7 8 9 10 11 12
1 2 3 4 5 6 l 8 9 10 11 12

10.10

The DIM statement may be used to specify the maximum bounds of the matrix during the execution of the
program, whereupon the MAT READ statement may specify the exact bounds of the matrix for the current
read operation. The specification of the exact bounds in the MAT READ statement may be a numeric expres­
sion.

Example 3:

10 DIM AC4'12l
15 MAT READ A{4,.4)
20 MAT PRINT A.;
30 DATA 1 .. 2,.3,4,5,6,7,s,.9,.10,.11,12
40 DATA 1,z,3,4,.5,6,7,a,9,10,11 .. 12
50 DATA i,2~3,4,5,6,7,s,9,10,11,12

60 DATA 1,2,.3.,4,.5,.G,7,s,.9,10,11,.12
99 END

Execution of the above example causes the following to be printed:

l 2 3 4
5 6 7 B
9 10 11 12
1 2 3 4

In the MAT READ statement, data elements enter the matrix in a row-by-row fashion; that is, the first row
of the matrix is filled with data elements then the second row is filled, and so on.

10-11

MAT SCALAR MULTIPLICATION STATE:MENT

The purpose of the MAT SCALAR MULTIPLICATION statement is to multiply each element of :a specified
matrix by a specified multiplier and to place the result in the designated matrix. The MAT SCALAR
MULTIPLICATION statement has the following format:

<n> MAT <matrix-1> = (<multiplier>) * <matrix-2>

where <n> is the line number of the MAT SCALAR MULTIPLICATION statement, <matrix-1> is the ma­
trix to which the product is assigned, <multiplier> may be any numeric expression, and <matrix-2> is the
multiplicand. <Matrix-1> must not be smaller than <niatrix-2>. If <matrix-1> is larger than <matrix-2>,
then <matrix-1> is redimensioned to the same size as <matrix-2>. <Matrix-2> may appear on both sides
of the equal sign.

Example 1:

10 DIM AC3,3) 8(3,3>
20 MAT READ A
30 DATA 2,2,2
40 DATA 2,.z,2
50 DATA z,.zpz
60 PRINT "MATRIX A IS"
70 MAT PRINT A;
80 PRINT
90 PRINT "MATRIX B IS"
100 MAT 8 = C2> * A
110 MAT PRINT B;
120 PRINT
9 9 9 END

Execution of the above example causes the following to be printed:

MATRIX A IS
2 2 2
2 2 2
2 2 2

MATRIX B I S

4 4 4
4 4 4
4 4 4

10..12

Example 2:

100 DIM ac2.12>
110 MAT READ AC2,12>
120 DATA i,z,3,4,5,6,7,a,9,10,11,12
130 DATA 13,14,1s.16,11,1a,19,zo.21.22,23,z4
140 PRINT "MAT A="
150 MAT PRINT USI~G 190• A
160 MAT 8 = C2> * A
170 PRINT "MAT B = tt

180 MAT PRINT USING 190•8
190:## ## ## ## ## ## ## ## ## ## ## ##
20 0 END

Execution of the above example causes the following to be printed:

MAT A =
1 2 3 4 5 6 7 8 9 lO 11 12

1 3 11. 15 16 17 U3 l 9 20 21 22 23 24

MAT 8 =
2 4 6 8 10 12 14 16 18 20 22 24

26 28 30 32 34 36 38 40 42 44 46 43

1~13

MAT SUBTRACTION STATEMENT

The purpose of the MAT SUBTRACTION s(atem1!nt is to determine the arithmetic difference between two
specified matrices and to place the result in the designated matrix. The MAT SUBTRACTION statement has
the following format:

<n> MAT <matrix-1> = <matrix-2> - <matrix-3>

where <n> is the line number of the MAT SUBTRACTION statement. <Matrix-3> is subtracted from
<matrix-2> element by element, and the result is assigned to <matrix-I>. <Matrix-2> and <matrix-3> must
have the same dimensions. <Matrix-1> may appear on both sides of the equal sign and must have dimensions
equal to or greater than <matrix-2> and <matrix-3>. If greater, <matrix-1> is redimensioned to conform to
the dimensions of <matrix-2> and <matrix-3>.

Example:

100 DIM AC3,.3> fH3,3), CC3,3>
110 MAT READ A,B
12 0 OAT~ 2JI' 2 Jl'2
130 DA.TA 2, 2 "2
14 0 DATA 2,2,2
150 DATA 3,3,.3
160 DATA 3" 3, 3
17 0 DATA 3 .. 3 "3
180 PRINT "MATRIX A 1s~

200 MAT PRINT A;
210 PRINT
220 PRINT "MATRIX 8 IS"
240 MAT PRINT g;
250 PRINT
260 PRINT "MATRIX c I S"
2eo ~AT c = A - B
290 MAT PRINT c ;
999 ENO

Execution of the above example causes the following to be printed:

MATRIX .fl. IS
2 2 2
2 2 2
2 2 2

MATRIX 8 I 5
3 3 3
3 3 3
3 3 3

MAlRIX c IS
-1 -1 -1
-1 -1 - 1
-1 -1 -1

10..14

MAT TRN STATEMENT

The purpose of the MAT TRN statement is to interchange the rows and columns of the specified matrix and
to place the results in the designated matrix. The first row becomes the first column, the second row becomes
the second column, and so on. The MAT TRN statement has the following format:

<n> MAT <matrix-1> = TRN (<matrix-2>)

where <n> is the line number of the MAT TRN statement. <Matrix-1> is where the result of the transposi­
tion is to be placed, and <matrix-2> is the matrix to be transposed. The dimensions of <matrix-1> and
<matrix-2> must be such that the two matrices conform to the matrix transposition operation. In order to
conform in this manner, the number of rows in <matrix-1> must be equal to or greater than the number of
columns in <matrix-2>, and the number of columns in <matrix-1> must be equal to or greater than the num­
ber of rows in <matrix-2>. If either or both are greater, <matrix-1> is redimensioned accordingly.

Example:

100!## #fl.
110:## ## ## ## ## ## ## ## ## ## ## ##
120 DIM Ac1z,z>
130 MAT READ Bez, 12)
140 PRINT "MAT 8 = "
150 MAT PRINT USING 110,B
160 PRINT "MAT A = "
170 MAT A = TRNCBJ
180 MAT PRINT USING 100,A
190 DATA 1,2,3,4,5,6,7,e,9,10,11,12
200 DATA 13,14,1s,16,11~1e,19,zo,21,22,23,z4

210 END

Execution of the above example causes the following to be printed:

MAT 8 =
1 2 3 4 5 6 7 8 9 10 1 l 12

13 14 15 16 17 18 19 20 cl 22 23 24

MAT A =

1 u
2 14
3 15
4 16
5 17
6 18
l 19
e 20
9 21

10 22
1 1 23
12 24

1(~15

MAT WRITE STATEMENT

The purpose of the MAT WRITE statement is to transmit a matrix to a designated disk file. The MAT WRITE
statement has the following format:

<n> MAT WRITE #<numeric-expression>, <list>

where <n> is the line number of the MAT WRITE statement, <numeric-expression> is any arithmetic expres­
sion giving the file number, and <list> is one or more matrix names. If there is more than one matrix name
in the <list>, each name must be separated by commas or semicolons.

The MAT WRITE statement produces a line-numbered file with the data elements separated by the delimiter
for the file (normally a comma).

Example:

10 FILES MATA
20 MAT READ A.C 10 >
25 SCRATCH #1
30 MAT WRITE #1,A;
40 RESTORE
50 MAT ~EAO 8(2,Sl
55 APPEND Ill
60 MAT WRITE 11,0;
70 DATA 1,z,3,4,5,6,7,a,9,10
99 END

Execution of the above example causes the following to be printed:

00100 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ,
00110 l , 2 , 3 , 4 , 5 ,
00120 6 , 1 , e , 9 , 10 ,

MAT WRITE USING STATEMENT

The purpose of the MAT WRITE USING statement is to transmit a formatted matrix to a disk file with line
numbers and with delimiters following the data items. The MAT WRITE USING statement has the following
format:

<n> MAT WRITE #<numeric-expression> USING <image>, <list>

where <n> is the line number of the MAT WRITE USING statement, <numeric-expression> is any arithme­
tic expression giving the file number, <image> is as discussed under the heading IMAGE STATEMENT, and
<list> is one or more matrix names separated by commas or semicolons.

10.16

The following example illustrates the difference between the MAT PRINT USING and the MAT WRITE
USING statements:

10 DIM AC2,.5}
20 FOR I = 1 TO 2
30 FOR J = 1 TO 5
40 ACI ,J) = 1 *J
50 NEXT J
60 NEXT I
70 PRINT "MAT PRINT USING:"
80 MAT PRINT USING 130,A
90 PRINT
100 PRINT "MAT WRITE USING:"
110 MAT WRITE USING 130,A
12 0 STOP
130 !## ## #H ## #U
140 END

Execution of the above example causes the following to be printed:

MAT PRINT USING:

1 2 3 4 5
2 4 6 9 10

MAT WRITf USING:

1, 2, 3, 4, 5,
2, 4, 6,, 8 I 10 I

Formatting by the IMAGE statement occurs only after the line number and between delimiters.

10-17

MAT ZER STATEMENT

The purpose of the MAT ZER statement is to numerically initialize the data elements of the specified matrix
to the constant 0. In addition, the MAT ZER statement may be used to specify new bounds for the matrix.
The MAT ZER statement has the following format:

<n> MAT <matrix-I> = ZER (<bound>,<bound>)

where <n> is the line number of the MAT ZER sitatement, <matrix-I> is the name of the matrix 1to be initia­
lized, and <bound> is a numeric expression.

A matrix must not be redimensioned to have more elements than were originally declared, and the number
of dimensions must not be changed.

Example:

1~ DIM ACS,.S>
20 MAT A = ZER
30 MAT PRINT A;
99 END

Execution of the above example causes the following to be printed:

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

6 12 18 24 30 36 42 ld3 54 60
7 14 21 28 35 42 49 ~> G 63 70
8 16 24 32 4 'J 48 56 64 72 80
9 18 27 3t 45 54 63 l2 81 90

10 20 30 40 50 50 70 HO 9Q 10 0

10.18

APPENDIX A
BASIC CARD READER INPUT

GENERAL

The BASIC compiler, in conjunction with the Master Control Program (MCP), enables source programs to
be compiled through use of a card reader or a card device. Compilation of the BASIC source language input
is achieved by presenting the source card deck to the MCP. Control cards included in the compilation deck
are of two general types: MCP control cards and compiler option control cards ($ CARDS). The structure
of the BASIC source card deck is described in this appendix.

COMPILATION CARD DECK

The entities comprising the structure of the BASIC compilation deck and the order of their occurrence are
as follows:

1. COMPILE card.
2. Label equation card (optional).
3. MCP label card.
4. Compiler option control card (optional).
5. Source input cards.
6. END (end-of-file) card.

MCP control cards are made distinguishable from other cards by entering in column 1 an invalid character
for 80-column cards or a valid question mark (?) for 96-column cards. An invalid character is represented by
a ? for clarity in this manual. MCP control information is punched in free-form format in columns 2 through
72. The presence of a percent sign (%) in an MCP control card terminates the control information on that
card and any information following the percent sign is treated as a comment by the MCP. Refer to the B 1800/
B 1700 Systems Software Operational Guide, form number 1068731, for further information regarding MCP
control cards.

A-1

COMPILE Card

The COMPILE card instructs the MCP to compile: the indicated program name with BASIC using one of the
following options:

1. ?COMPILE <program-name> BASIC

This option causes the source program to be compiled and executed (compile and go). The resultant
object program is not entered in the disk directory.

2. ?COMPILE <program-name> BASIC LIBRARY

This option causes the source program to be compiled and the resultant object program to be entered
in the disk directory with the identifier <program-name> for future execution.

3. ?COMPILE <program-name> BASIC SAVE

This option causes the source program to be compiled and the resultant object program to be entered
in the disk directory and then executed (a combination of 1 and 2 above).

4. ?COMPILE <program-name> BASIC SYNTAX

This option causes the source program to be compiled for a syntax check only.

In the absence of a COMPILE card, the system operator can manually execute one of the COMPILE options
through the console keyboard by keying in the appropriate message.

Label Equation Card

The label equation card optionally may be included in the compilation deck to change a compiler file name
in order to avoid duplication of file names when operating in a multiprogramming environment. If used, the
label equation card (or cards) must immediately follow the COMPILE card and precede the MCP label card.

The general form of the label equation card is:

?FILE <internal-file-name><file-attribute-1> [<file-attribute-2 ... >]

The BASIC compiler's internal file names and external file identifiers for use in label equation are as follows:

Internal File
Name

CARDS

LINE

MCP Label Card

External File Description
Id

CARDS Input file from the
c:ard reader.

LINE Compilation output
listing to the line
printer.

The MCP label card informs the MCP which type of input card code to expect and provides the file ID of
the card file.

The MCP Label Card is coded as follows:

?DATA CARDS

A-2

Compiler Option Control Card

The BASIC compiler option control card ($ sign following the line number) may be included in the source
deck as an option. This control card is used to notify the compiler as to which options are required during
the compilation. When this card is omitted, $ CARD LIST SINGLE is assumed. There must be at least one
space between each option specified for a $card; however, the options may be listed in any order. Any number
of $cards may be used and may appear anywhere in the source deck. The options specified become either
active or inactive from that point on. The format of the BASIC compiler option control card is as follows:

<line-number> $ <option> [<option> ...]

The options which may be specified on the compiler option control card are as follows:

CARD

LIST

Symbolic input is from source language cards. This option is for documentation purposes only.

Creates a line printer listing of the source language input, with error and/or warning messages, where
required. LIST is the default option and therefore need not be specified.

SINGLE
Causes the line printer listing specified by LIST or default to be printed in a single-spaced format.
SINGLE is the default option and need not be specified.

DOUBLE
Causes the line printer listing specified by LIST or default to be printed in a double-spaced format.

CODE

NO

Lists the object code generated for a source statement following that source statement from the point
of insertion in the source deck.

Each of the options 1 through 5 may be preceded with NO, which enables options to be turned on for
selected program parts and then turned off as desired. When an option is preceded by NO, there must
be at least one space between the word NO and the option to be terminated.

MARGIN <LPRS>[,<PPRS>]
<LPRS> is the logical record print size and defaults to 80 if the BASIC user is at a terminal. If specified,
it must be greater than or equal to 11. <PPRS> is the physical print record size and must be greater
than or equal to <LPRS>. This statement affects compilation only.

STACK
Specifies the number of words available for the numeric and string stacks. The default set by the com­
piler is 100 elements of 48 bits per element.

STRING SPACE
Specifies the number of data pages available for string concatenation, input, and other operations which
generate new strings. A string space data page holds 512 characters. The default set by the compiler is
8. The data pages may be extended using the $STRINGSPACE control option. The maximum number
of data pages allowed is 128.

Source Input Cards

These cards are the statements comprising the source program. When using BASIC with the card reader, each
card is taken as a different line and must contain only one statement. Each card between the ?DAT A card
and the ?END card must contain a line number. The line number must start in column 1 and contain 1 to
5 digits; it is terminated by a non-numeric character. The line number is used as both a statement label and

A-3

a sequence number. Each card is sequence checked as it is read. When using BASIC throu~h the card reader,
the INPUT statement causes data to be read from a card file labeled INPUT. Likewise, the PRINT statement
causes output to be printed on the line printer.

END Card

The END card designates the end-of-file of the source deck to the MCP.

The END card is coded as follows:

?END

The END card must be the last card in the compilation deck.

SAMPLE COMPILATION DECK

In the following example a BASIC program is to be compiled and executed from the card reader. A $card
is enclosed in the source deck to cause the line printer listing to be printed in a double-spaced format. The
options CARD and LIST are· not required but am included for documentation purposes only. The card file
labeled INPUT, following the source deck, is required during execution of the resultant object program.

Example:

A-4

?COMPILE PROGRAM/GCD WITH BASIC
?DATA CARDS
100 $CARD LIST DOUBLE
110 REM CALCULATE THE GREATEST CGMMON
120 REM DIVISOR Of THREE NUMBERS
130 REM x, y, ANO Z
140 DEF FNG (A,8)
150 LET R = A-INTlA/81*8
160 IF R = 0 THEN 200
llO LET A = 8
180 LEf 8 = R
190 GO TO 150
200 LET FNG = 8
210 FNEND
220 INPUT x,.y,z
230 LET G = FNGCX ... Y>
240 LET G = FNGCG,Z)
250 PRINT "X", "Y",. "l",. "GCD"
260 PRINT x.y,.z,.G
270 END
?END
?DATA. INPUT
12,3z,.s6
'?END

APPENDIX B
REMOTE BASIC

The B 1800/B 1700 BASIC compiler can be used to compile and execute programs which are submitted from
a remote terminal. When these programs are submitted through the use of the Command AND Edit (CANDE)
program, and the usercode/password file security system is being used, please refer to the B 1800/B 1700
CANDE User's Manual, form number 1090586, for complete information.

If the usercode/password file security system is not being used, the following conditions must be observed
when submitting jobs to BASIC from CANDE.

1. All station names for stations from which programs are submitted are limited to three characters.
2. The file names for those stations which use BASIC must be in the following format:

"F" <station name>

For example, if the station name is to be "AIR" then the file name would be "FAIR".

There are certain other CANDE/BASIC requirements. They are as follows:

1. A line number of 0 is allowed by CANDE, but is invalid in BASIC.
2. CANDE requires five decimal digits as a sequence number, but BASIC allows less than five digits

as a sequence number.

B-1

ABS, 8-1
APPEND, 7-3, 7-4, 7-6, 7-7, 7-9, 7-11
arguments, 8-1
arrays, 1-2

declarations, 4-1
initialization, 1-3
maximum size, 4-1
name, 1-2, 2-1

assignment statements, 2-1
assignments, 2-1

arithmetic, 2-1
multiple arithmetic, 2-1
multiple string, 2-2

asterisk pattern, 6-11
ATN, 8-2

BACKSPACE, 7-3, 7-7
BACKSPACE$, 7-10
BCL, 8-2
blanks, 1-5

CANDE, 6-3, 10-7
CHAIN, 3-5
CHR$, 8-7
CLK$, 8-7
comments, 5-1
compilation, A-1
compiler options, A-3
constants, 1-1

numeric~ 1-1
quotation marks, 1-1
range, 1-1
string, 1-1

continuation lines, 1-5
control statements, 3-1
COS, 8-2
COT, 8-2
currency pattern, 6-10

DAT$, 8-7
DATA, 6-1, 6-2
data block, 6-1
decimal pattern, 6-8
DEF, 9-1, 9-2
DELIMIT, 7-5, 7-6
DET, 8-2, 10-5
DIM, 1-2, 4-1, 10-1

INDEX

dimensions, 1-2
documentation, 5-1

EBC, 8-2
EBCDIC, 7-1, 7-3, 7-6
EBCDIC mnemonics, 8-2
END,34
end of file, 7-11
error conditions, 7-12
EXP, 8-3
exponential pattern, 6-9
expressions, 1-3

arithmetic, 1-3, 2-1, 3-2
evaluation, 1-4
functions, 1-4
parentheses, 1-3
relational, 14, 3-1
string, 1-4, 2-2, 2-3

EXT$, 8-7

FILE, 7-1, 7-2, 7-3
file declarations, 7-l
file designator, 7-2, 7-10, 7-11, 7-12
file functions, 7-12
file modes, 7-3, 7-7, 7-10
file name, 7-1, 7-2
file number, 7-2
file place holder, 7-1, 7-2
FILES, 7-1, 7-2
files, 3-5

character, 7-3
disk, 7-1
memory image, 7-1, 7-2, 7-7

FNEND, 9-2, 9-3
FOR, 3-3
format, 6-7

characters, 6-7
fractional, 6-5
integer, 6-5
numbers, 6-5
packed, 6-4
scientific, 6-5
strings, 6-5
zoned, 6-4

formatted output rules, 6-12
function subprograms, 9-1

index-I

functions, 9-1
argument list, 9-1, 9-3
multiple statement, 9-2
name, 9-1, 9-2, 9-3
numeric, 8-1
single statement, 9-1
string, 8-7

GO TO, 3-1
GOSUB, 9-4

HPS, 7-12

IDA, 8-3
identity matrix, 10-4
IF END, 7-11
IF MORE, 7-12
IF, 3-1
IMAGE, 6-7, 6-12, 7-6, 10-9, 10-16
INPUT, 6-1, 6-2, 7-3, 7-12

error messages, 6-3
INPUT/OUTPUT, 6-1
INT, 8-3
integer pattern, 6-8
intrinsic functions, 8-1
inverse matrix, 10-5

LCW, 7-12
LEN, 8-4
length of line, 1-5
LET, 2-1, 2-2
LFW, 7-12
LIN, 7-12
line numbers, 1-5, 3-1
literal patterns, 6-12
LOG, 8-4

MARGIN, 6-6, 6-7, 7-6
margin, 7-5, 7-7

maximum, 7-7
MAT, 10-1
MAT ADDITION, 10-1
MAT ASSIGNMENT, 10-3
MAT CON, 10-3
MAT ION, 10-4
MAT INPUT, 10-4
MAT INV, 10-5
MAT MULTIPLICATION, 10-6
MAT NUL$, 10-7
MAT PRINT, 10-7
MAT PRINT USING, 6-12, 10-8
MAT READ, 10-10
MAT SCALAR MULTIPLICATION, 10-12

index-2

INDEX {Cont)
MAT SUBTRACTION, 10-14
MAT TRN, 10-15
MAT WRITE. 10-16
MAT WRITE USING, 6-12, 10-16
MAT ZER, 10-18
matrix operations, 10-1
MCP control cards, A-1
minus pattern, 6-9
MOD, 8-4

negation, 1-3
NEXT, 3-3
NULL, 5-2
NUM, 8-4

ON, 3-2
operators, 1-3

arithmetic, 1-3
concatenation, 1-4
precedence, 1-3, 1-4
relational, 1-4

OUT OF DATA, 6-1

picture string, 6-7
picture string pattern, 6-7

numeric patterns, 6-8
string patterns, 6-11

plus pattern, 6-10
PRINT, 6-1, 6-3, 6-6, 7-3, 7-4, 7-7
PRINT USING, 6-1, 6-12, 6-15, 7-6
print zone, 6-4
program loops, 3-2

index, 3-3, 3-4
nesting, 3-4
parameters, 3-3

program termination, 3-4
punctuation, 7-2

RANDOMIZE, 8-4
READ, 6-1, 7-1, 7-3, 7-5, 7-8, 7-12
READ FORWARD, 7-9
REM, 5-1
remarks, 5~1
remote BASIC, B-1
REP$, 8-8
RESTORE, 6-1, 6-2, 7-3, 7-10
RETURN, 9-4
RND, 8-4

scientific notation, 1-1
SCN, 8-5
SCRATCH, 7-2, 7-3, 7-4, 7-6, 7-11

SETW, 7-10
SGN, 8-6
SIN, 8-6
spacing, 6-6

horizontal, 6-6
vertical, 6-6

specification statements, 4-1
SQR, 8-6
STEP, 3-3
STOP, 3-5
STR$, 8-9
string control word, 7-8, 7-9, 7-10
string justifiers, 6-11
subprograms, 9-1
subroutine subprograms, 9-4
subroutines, 9-1
subscripts, 1-2
syntax rules, 1-5

TAB, 6-6

INDEX (Cont)

TAN, 8-6
temporary file identifier, 7-1, 7-2
THEN, 3-2
TIM, 8-6
transpose, 10-15

UNO$, 8-9

VAL, 8-6
variables, 1-1

currency symbol, 1-1
numeric, 1-1
string, 1-2
subscripted, 1-2

VPS, 7-12

word, 7-7, 7-8
word pointer, 7-8, 7-9, 7-10, 7-12
WRITE, 7-1, 7-3, 7-5, 7-7, 7-8, 7-9

index-3

m ...
00
C)
C) ...,

:::0 m rn .,, ... rn_
:::0
rn C) z C) CJ
rn

"' s: -c)>

"' z .. c CD)> 51 I

"' m ...
"' -n

1067535

Printed in U.S.A.

I l--1"BINDER-I I
j+---111•• BINDER___,

Printed in U.S.A. May 1979 1067535

	000
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	idx-1
	idx-2
	idx-3
	xBack

