Burroughs @

B 1700 Systems
COBOL

REFERENCE MANUAL

PRICED ITEM

o

Burroughs @

B 1700 Systems
COBOL

REFERENCE MANUAL

Copyright © 1966, 1968, 1969, 1970, 1972, 1974, 1975
Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

_J

Printed in U.S.A.

March, 1975

10567197

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Technical
Information Organization, TIQ-Central, Burroughs Corporation, Burroughs Place, Detroit,
Michigan 48232

Section

TABLE OF CONTENTS

ACKNOWLEDGEMENT .,................ et et e e e
INTRODUCTION e e e e e et .
Advantages of COBOL0.... et e
Program Organizationc000.. et e e et e
LANGUAGE FORMATIONvveveeeenen ettt i e e .
General Gt e e e e et et
Character Set .. e e e e e e e e a e ettt e e
Characters Used for Wordscvuiieiorenntenncenncenas
Punctuation Characters C it e e e
Characters Used in Editing s et e s et .
Characters Used in Formulas B T
Characters Used in Relations et e
Definition of Words i e . e Che e
Types of Wordé e e et e et et G r e e e
NOoUNSivvveneessensnnnnnsas oo ceeee s e
Verbs ...ttt nrvans e et o
Reserved Words e e . e
Language Description Notation Ch e e
Key Wordsccveeieeconneens e e e e e oo e
Optional Wordsoeevveeuaus e s e e ce e
Generic Terms e e Cee s e e s e
Braces ettt et e e oo . s en .
Brackets e cev e Che it s e e e . ‘oo
Ellipsis cest et e e ettt e e e
Periodveievueninnnonsnans ces e e
CODING FORM 0o nnnsnnennssoanns e e s e
Generalci00000enn s et et i e ettt
Sequence Field (Card Columns 1-6)co0e0u.. e e
Continuation Indicator (Column 7) . et e et e

iii

Section

iv

3

TABLE OF CONTENTS (Cont)

CODING FORM (Cont)

Margin A (Columns 8 thru 11) ,..........
Margin B (Columns 12 thru 72)
Right Margin (Column 72)oveeeenoe
Identification (Columns 73 thru 80)

Punctuation c e e s e e ecs et s

Sample Coding
IDENTIFICATION DIVISION

@ 6 6 0 00 0000000000000

General000.. ce st e s et e sssnes s

IDENTIFICATION DIVISION Structure

MONITOR ... vivveeeeionoccersocsscanonnss

Coding the IDENTIFICATION DIVISION

ENVIRONMENT DIVISION0cveevenness

Generalccc0ccccnt0000rrns
ENVIRONMENT DIVISION Organization
ENVIRONMENT DIVISION Structure

CONFIGURATION SECTION000000.

SOURCE-COMPUTER 00000000 ee

OBJECT-COMPUTERcc0c0e0
SPECIAL-NAMESce0veeuoes
INPUT-OUTPUT SECTION: 00000
FILE-CONTROLccvveeevecanens
I-O-CONTROLccceevvvnsns

Coding the ENVIRONMENT DIVISION ...

o0 0 0 00

e 0o 0 0 00

DATA DIVISIONceivneeeonnoeones ‘oo

General cheseevoo s e
DATA DIVISION Organization .,,,...
DATA DIVISION Structure
File and Record Concepts
Physical Aspects of a File

e s 0 0 0 @

Conceptual Characteristics of a File

Record Conceptscieeevevoccasnns

.

« o s 00

o o o e e 0000 00
o 0 0 0 0 0 e 00 0 0 ¢
.. o % 0 0 0 o 0,0

3-3
3-3
3-3
3-3
3-4
3-4

4-1
4-1
4-2
4-3
5-1
5-1
5-1
5-1
5-2
5-3

TABLE OF CONTENTS (Cont)

DATA DIVISION (Cont)

Level

Qualif
Tables
Subscr
Indexi
Identi

Numbers Conceptce0000.
ication i ivinennns
ipting ...ttt annanas

NE ot ieerereeccsosssosnssssas

fieriiiiieiitiecroenns

FILE SECTIONc0veuveeenennas
FILE DESCRIPTION000000000s0

BLOCK

® ¢ 0 0 0 0 0 0 0 0 s 0 0 000 0 000 e 0 e e s a0

DATA RECORDS ,....cco0eveeencencnns
FILE CONTAINSceivevennnennnns

LABEL
RECORD
RECORD
VALUE
RECORD
BLANK
Condit
Data-N
JUSTIF
Level-
PICTUR
Catego
Classe
Fun

@ & 2 4 0 0 0 6 0 5 0 s 0 0 4 0 00 80000800 0 0

© 0 8 0 0 a8 0 0 0 00 0 0 000006000000

ING MODEcci00eeneases
OF ID ... nensnnonnnnn
Descriptionvc00000e

WHEN ZEROcvvveevvnnenes

ion=Nameccoevevveocoeons

AME . ..o vvveessosvosscsosnse

IED;cocoolbocooonooooountoo
Number ,.....ceoeecevveceoces
E

ries of Datacce0000..

e @ s 000000000 0 0 0 0 0 06 0000 80 0

s of Data0iieveennns
ction of the Editing Symbols

Editing Rules cee e
Insertion Editing

Simple Insertion Editing ...

Special Insertion Editing ...

e o o 0 LY
o o o o Y
o0 0 000 .

o o 0 o e 0 0
o e o 0 ¢ o o
. s . .

e 0 0 0 0 0 .
y e .

® s 00 00 0 0
e 0 o 0 . .

0 00 00000 000 00 . .
. o o s 0 o LR) .
. . . . s 6 o 0 00 .

L) LY . . e e 8 00 s 0
. o e 0 0 s e e 0 0 o s 0 .
e o o 0 P A] LRI . .
e o0 s 0 0 0 00 s .
. o . . . o o 6 0 00 00 00
....................
e o v o 0 . o
e e o 0 000 000 . . o o
....................
@ o o 0 0 0 08 00 000000000 00
. . 4 o o 0 6 0 0 0800 000 0 s 0
. o o 0 o 0 o 0 o 0 . .
e o 0 0 00 o e 0 0 o 0 o o e .
LY . 3 @ ¢ 0 0 00 6 00 0 0 0 0
o0 0 0 0 o0 . . o 0 0 0 o
. . . o o 0 0 0 o . "
o 0 0 6 60 s 0000 0 0 . . .
o o 6 0 TRy . o .
¢ e o 0 0 00 e o o 0 00 00 0 s 0 e
@ 6 0 6 0 0 06 006 00600 020 00 00
L R A A A I e o o o 0 o 8 o » .
.......... 4 o 0 0 s 00 0 00
.. . 4 06 6 060 0 0 06 0 004 00
. ® ¢ o 0 6 s 6 8 000000600 00
e o 0 0 8 0 00 . ¢ s 0 0 0 o 0 .
L A ¢ o 0 0 0 0 0 06 a0 s 0

Fixed Insertion Editing00ceeevnen.. ettt

Floating Insertion Editing ..

Suppression Editing
Replacement Editing

Precedence of Symbolsciiiveteeveronnans e

Page

6-8
6-11
6-12
6-14
6-15
6-16
6-16
6-19
6-21
6—-22
6-23
6=-26
6-27
6-28
6—32
6-35
6-36
6-39
6-40
6-42
6-48
6-48
6-49
6—-50
6-54
6-54
6-54
6-54
6-55
6-56
6-56
6-57
6—58

TABLE OF CONTENTS (Cont)
Section
6 DATA DIVISON (Cont)

REDEFINES ... itiiitiiioinensnsosnnannsns
RENAMES ...t ivtiinenrnsnresosrnssnnsnsnss
USAGE ...ttt ittt eesnnentononsensnanns
VALUEcc0... e raen Ceeresr s ens

Organization et ceecee s

Non—-Contiguous WORKING—-STORAGE ce e
WORKING—STORAGE RE€COTAS''vveveoeeseonnns

Initial Values et et e e
Condition=Names ,......ceveeveeecesons e
Coding the WORKING-STORAGE SECTION,...

. PR

. oo ..
PR s e e 00
----------- .
........ . .

e e 0 0 e
¢ o 0 0 00)
....... .
st e 0 0.
P)
v 0 00 0 0 °
........
« s e e
..... .
........
. e

7 PROCEDURE DIVISION ,..........00... e s e et ettt e

General ,............. e e e et

Rules of Procedure Formation0.. Crece e en e
Execution of PROCEDURE DIVISION et .
Statements e i e e et es e en st e a0 b e - .
Imperative Statements Gt ot e e s e e s e e e e
Conditional Statements et ettt e
Compiler-Directing Statementsciiiviiiiiviernnnans
Sentences ,.....ieceiiiinititiieenns et s e e et e
Imperative Sentencescveeteveecorsorscsenesacssseneoss
Conditional Sentencesc.iveiieiieerereensnosenones
Compiler—Directing Sentencesceecveeveesees . .
Sentence Punctuation s eeesrecss e ana . ceeeenen
Execution of Imperative Sentences ce s esesea e e ceee .
Execution of Conditional Sentences i e s et
Execution of Compiler-Directing Sentences C et
Control Relationship Between Procedures e c s .
Paragraphsccc000a00044 e e s e s e e e e s e e . ce e]
Sections e eeessares e st s es o0 Gt
Segmentation .,......... h e s e e e ce e e e N . . e .
Program Segments e s ettt e s e s e st s et e e e s et b as s e s e
Segment Classification et et e s et e s e e e e a0 s 0
Priority Numbersiitienettesnersresenennaes ceesesns

vi

Page

6-62
6-64
6—66
6-69
6-71
6-71
6-71
6-72
6-72
6-72
6-72

7-1
7-1
7-2

Section

TABLE OF CONTENTS

PROCEDURE DIVISION (Cont)

Declarativesccveveveeanesns
USE Declarative00004.
COPY Statement as a Declarative

Arithmetic Expressions
Arithmetic Operators

Formation and Evaluation Rules

Conditionsoveeeeeceeeccocense

Logical Operatorscceceee.

Relation Condition

Relational Operators
Comparison of Operands
Sign Condition ,..... e e i
Class Conditioncveeueeee
Condition—-Name Condition .,......

Evaluation Rules

Simple Conditionsc000.
Compound Conditions
Abbreviated Compound Conditions
Internal Program Switches

= o o

Specific Verb Formats

ACCEPTiitiiineinnnonennannns
ADD ,.......... Ceesseaos et es oo

CLOSE ...t iiiiiieiienenennsnnenns
COMPUTEeivevrneeenonnnennsas

COPY .. iiiiiiiiiiinnnnnnnonnannnans
DISPLAYtttiinnnnnnnnnnnnnns

DIVIDE
DUMP .. iiiiiiiiiniieennnonneneas
EXAMINE
EXIT

L I I I A R R R R B I R B R B R A

GO TOcovvevnnennnnns ceseeaans

IF

(Cont)

® e % o 00 0 0 0 0 08 0 a0 L) e 00 .
¢ o0 .o . . . L) LI
o e 0 0 ® 4 0 0 0 00 0.0 0 0 00 LY . .
. 00 e 0 00 0 00 L) . e e 0 0 0 o0
e 0 2 0 00 00000 000 ® o 0 0 0 0 0 0 0 0
o 0 o 0 0 . e o e s 0 00 L A A I I I)
o o 2 0 0 LY e 0 L) . e e 0 0 0 .
. L] 0 00 0 0 00 0 00 . LI) .
® 0 0 0 0 0.0 00 0.0 000 e o 0 .
o o o o 0 D) e s 0 0 0 0 0 . .
-------- . LRI * s 0 0o 0 L) .
e o 0 0 0 * o 0 00 Ly . . .
o o 0 0 0 . o 0 0 o o 00 0 0 0 0 e .
e @ o 0 0 0 0 6 0 0 0 L) . o o o0 LI .
® 0 0 0 0600 00 00 . . Ly . LR
0 0 0006 0.0 0 0 0.0 0 4 0 0 0 0 0 .
o ¢ e 0 0.0 0 00 00 00 e o 8 0 0 0 00 L)
® 0 0.0 0.0 0 00 00 o v 0 . ® s 0 e o o 0 .
e 0 0 0.8 0 00 00 .. . e . .
® 0 0 0 0.0 0 0 0 0 . .o
® 0 6 0 0 0 00 000000 00 e . .
e e o 0 0 ¢ 0 0 0 00 . o o o 0 LY . .
® 6 0 06 0 0 0.6 0 00 LY LY L A] .
® 0 5 0 0. 0.0 0.0 0 0000 00 060 o o0 L] .
. o e 0 0 00 0 00 ® 4 6 0 0 0 0 0.0 00 0.0 00
® o 0 00 0 0 ¢ o 0 s 0 0 ® e 0 0 0.0 0.0 0 0 0
LI) ® ® 5 0 5 6 0 0 006 0 0000 00 00 0 0
. e o 0 0 0 . ® o 0 0 0 0 0 0 00 0 L
o 0 5 0 00 0 0 0 0 o 0 0 0 0 0 0 L] .. .
.o LY 00 0 0 0 00 o o0 o . e o 0 0 0
. L) ® 0 0 0 0 0 o & 0 0 00 o ® 0 0 0
90 0 0 00 0 00 0 000 00 e o 0 e o o L
* o 0 0 0 0 ® @0 0 0 0.0 0.0 0 0 0.0 00 . . o
LY ® 0 0 060 06 6.0 06 0 0 06 000 000 0 00

Page

7-13
7-13
7-13
7-14
7-14
7-15
7-17
7-17
7-17
7-19
7-19
7-20
7—-20
7-21
7-21
7-22
7-22
7-24
7-26
7-27
7-28
7-29
7-30
7-33
7-34
7=39
7-40
7-44
7-45
7-47
7-48
7-50
7-51
7-53

vii

Section

7

viii

TABLE OF CONTENTS (Cont)

PROCEDURE DIVISION (Cont)

MOVE ...ttt vneeensonnsoeossacsas
Elementary Moves

Legal Elementary Moves .,...

Group Movescovvieneee
Translationccceevueee

Index Data Items004.
Valid MOVE Combinations
MULTIPLYcitvennnnoneocnrons
NOTEiieerveveeessontenonasans
OPEN ...t viiiveoroncasonsannssnnss
PERFORM ,......¢ccivevevennncsnas
READicnireereseorsnsocncnnns
RELEASE ...is it tvenenroosncnans
RETURNc00itievernncooansoans
SEARCH et Ceeeaes
SEEK0iiviiinereannas ceeenn
BET ..t iiitiiietiienirenseenncsns
SORT ... iietieracersoonosanssnans
STOPo00venus e esseeses s
SUBTRACTcivvroernsscsnnsnnss
TRACE ...ttt evseeosnesssosoansons
USE ..t rventossnesnscsssaonnsns
WRITEi0etoeencasosesonnsons

/3

Coding the PROCEDURE DIVISION ...
B 1700 COBOL READER-SORTER

Generalii00000t 000000000
ENVIRONMENT DIVISION Requirements
FILE CONTROLv00etveouoes
I-O CONTROLccveuvvveosones
DATA DIVISION Requirements
FILE SECTION Cresncsenes
PROCEDURE DIVISION Requirements .
MICR Character Typescceeee.

. s e 00 00
.o c o0 s 0.
. . B
e s 0 0 e .
..... . .
oo e
. P
D A SR B IR

0 0 0 o e o 0 o
. . e s 0 00
. . e s 00 0 0

000 o0 s 0 0 00 ® 00
* s 00 80 . . e e o 00 06
. @ 0 0 0 00 00000000
® 8 0 8 e 0000 000 00 e o o
. 0 0 0 0 0 00 00 00 0 LY
o s 0 e . e o 0 . .
------ . .o o e . e

Y .. o o 0 0 e 0

e o 0 0 0 00 00 0 o o 0 . .
e o0 00 LY ¢ o o o0 ..
20 @0 00 e e 08 000 0 00
® 0o 6 0 0 0 0 0 0 . . .

o e 0 0 0 L) s 0 0 0 00 .
. o o s 0 0 0 00 00 00 0
------ LY
o o 0 LRy e ¢ s 0 0 00 0 .
¢ o e e e 0 00 00 0 .
e e 0 0 00008 00 o e 0 00
L) . L) e o 00 0 00 s

.o . LI . ¢ 0 0 0 0 .
® e 0 0 0 20 e e 0 0 0 0 0 0 0 0 0
e e 0 0 0 e 8 0 0 00000 0 .

e o 0 s o o o 00 0 e o
oo 0 0 0 LY @ 0o 0 0 00 8.5 0 0
o o 0 0 0 o . e o e o 0 o . .

Page

7-54
7-54
7-55
7-56
7-56
7-56
7=57
7-59
7-60
7-61
7-65
7-71
7-74
7=75
7=76
7-80
7-81
7-83
787
7-88
7-89
7-90
7-93
7-96
7-96

TABLE OF CONTENTS (Cont)

Section

10

11

B 1700 COBOL READER-SORTER (Cont)

Considerations After the Format Verb Has Been

Executedciieieieeetcenctossoscssssessosssocasens

Programming Considerations ...

USE Routineceeeeeveeescanns

Main Linec0000.
Timing Requirements

Sample Program

o o 0 000 0 0

DATA COMMUNICATIONS

Generalcco00e0000000

Specific Verb Formats
INTER~PROGRAM COMMUNICATION

Generalcccciiiec00cnns
QUEUE FilesS0v000000.

QUEUE in COBOL .,......0000..

FILE-CONTROL
FILE SECTION
PROCEDURE DIVISION

COBOL COMPILER CONTROL

General0000000000
Compilation Card Deck
?Compile Cardceecoeees
MCP Label Cardce0c0ess
$0ption Control Card
Source Data Card
Label Equation Card

Appendix A - Reserved Words .,.......

Appendix B — COBOL Syntax Summary ..

Appendix C - Compiler Error Messages

Index

o2 000000000

o006 00000000

oo 0 000600000

o0 0 00

o 60 0 0 0

e e 0 00 0

o o 0 0 o0

e 0 s 0 0 0

e o 0 0 0 0

e o 00 00

o o 0 0 00

6 6 @ 0 0 0 0 6 6 0 6 0 0 0.0 0 0 0.0 00 0000000000000 0000060000

.

6 6 00 000600000000

6 0 0 0000008000000

LRI “ 00 DY
o s 0 0 o s 0

..... . e Oy
. o

6 00060000 00

e 0 o 00 0000 0 0

Page

8-6

8-8
8-9
8-10
8-11
9-1

9-1

9-1
10-1
10~-1
10-1
10-3
10-3
10-3
10-4
11-1
11-1
11-1
11-2
11-2
11-3
11-6
11-7

A-1

B-1

Cc-1

eeeesseseseIndex—1

ix

Figure
3-1
3-2

6-7
6—8
6-9

7-2
7-3

7-5

LIST OF ILLUSTRATIONS

COBOL COGANG FOLM 4o s vvvvvssosoenonnesosasnssnsnonnenesnns

Example of Continuation of Words and Literals
IDENTIFICATION DIVISION Coding
ENVIRONMENT DIVISION Coding
Level Number Construction

Concept of Level Numbers ,,0coveevenees
Coding of Multi-Dimensioned Table
Coding of FD and DATA RECORDS

Coding of Condition—Name

Relationship of Class and Category ., ,..............
Permissible Editing Types
Examples of RENAMESccovvuennnunnn..
WORKING-STORAGE SECTION Coding
Valid MOVE Statement Compinations ,, , ,.............
PERFORM Statement Varying One Identifier
PERFORM Statement Varying Two Identifiers

Example of SEARCH Operation Relating to Option 1

¢ 60 00600 00

SET Statement Operand Combinationse0000..
Coding of PROCEDURE DIVISIONieeveesoeocceases
Compilation Card DECK .« et vvreeeeencsoensoeosesaesses

LIST OF TABLES

Maximum Value of Integers ,.,,....

Recording Modes for Peripheral Devices
Editing Symbols and Results ,,,....................
Order Of PrecedencCeoeeeeeuseernnnnennns
Editing Application of the PICTURE Clause

Combination of Symbols in Arithmetic Expressions

® 9 00000 00

Relationship of Conditions, Logical Operators,
and Truth Values

D A A R R R I I A R A R A R R I I R R

Combinations of Conditions and Logical Operators

® ¢ 2 09 00 0060600000008 000000

.

® 0 0 0 s 00606000000 e v 0

® ¢ 8 00000000

ACKNOWLEDGEMENT

The information contained in this document is based on the COBOL language
initially developed in 1959 and the updated COBOL6S.

COBOL is an industry language, and as such is not the property of any company

or group of companies, or of any organization or group of organizations.

The authors and copyright holders of the copyrighted material used in this

document,

FLOW-MATIC (trademark of Sperry Rand Corporation), programming

for the UNIVAC (:) I and II. Data Automation Systems, copyrighted
1958, 1959 by Sperry Rand Corp.; IBM Commercial Translator, form
No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760,
copyrighted 1960 by Minneapolis—Honeywell,

have specifically authorized the use of this material in whole or in part,
in the COBOL specifications. This authorization extends to the reproduction

and use of COBOL specifications in programming manuals or similar publications.

Any organization interested in reproducing the COBOL report and specifications
in whole or part, using ideas taken from this report as the basis for an in-
struction manual, or for any other purpose, is free to do so; however, all
such organizations are requested to reproduce this section as a part of the
introduction to the document. Those using a short passage, as in a book
review, are requested to mention COBOL in acknowledgement of the source, but

need not quote this entire section.

No warranty, expressed or implied, is made by any contributor or by the COBOL
committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by
the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries con-
cerning the procedure for proposing changes should be directed to the Executive
Committee of the Conference on Data Systems Languages.

x1i

SECTION]

INTRODUCTION

This manual provides a complete description of COBOL (COMMON BUSINESS ORIENTED
LANGUAGE) as implemented for use on the Burroughs B 1700 system. This concept
of COBOL embraces the adoption of the American National Standards Institute
(ANSI) 1968.

ADVANTAGES OF COBOL

The long 1list of COBOL advantages is derived chiefly from its intrinsic quality
of permitting the programmer to state the problem solution in English. The
programming language reads much like ordinary English prose, and can provide
automatic program and system documentation. When users adopt in—house standard-
ization of elements within files, plus well-chosen data-names, before attempt-
ing to program a system, they obtain maximum documentational advantages of the
language described herein.

To a computer user, the Burroughs COBOL offers the following major advantages:

a. Expeditious means of program implementation.
Accelerated programmer training and simplified retraining requirements.
Reduced conversion costs when changing from a computer of one manu-
facturer to that of another.
Significant ease of program modification.
Standardized documentation.
f. Documentation which facilitates non—technical management participation
in data processing activities.
Efficient object program code.

m

h., Segmentation capability which sets the maximum allowable program size
well in excess of any practical requirement. -

i. Due to the incorporation of debugging language statements, a high de-
gree of sophistication in program design is achieved.

j. A comprehensive source program diagnostic capability.

A program written in COBOL, called a source program, is accepted as input by
the COBOL compiler. The compiler verifies that all rules outlined in this

manual are satisfied, and translates the source program language into an ob-

1-1

ject program language capable of communicating with the computer and directing
it to operate on the desired data. Should source corrections become necessary,
appropriate changes can be made and the program recompiled. Thus, the source
deck always reflects the object program being operationally executed.

PROGRAM ORGANIZATION

Every COBOL program must contain these four divisions in the following order:

IDENTIFICATION
ENVIRONMENT
DATA

PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In addition, the program-—
mer may include such optional pieces of information as the date compiled, and
programmer's name for documentation purposes. This division is completely ma-

chine—~independent and thus does not produce object code.

The ENVIRONMENT DIVISION specifies the equipment being used. It contains
computer descriptions and deals, to some extent, with the files the pro-

gram will use.

The DATA DIVISION contains file and record descriptions describing the data
files that the object program is to manipulate or create, and the individual
logical records which comprise these files. The characteristics or properties
of the data are described in relation to a standard data format rather than

an equipment-oriented format. Therefore, this division is to a large extent
computer—independent. While compatibility among computers cannot be absolutely
assured, careful planning in the data layout will permit the same data de-

scriptions, with minor modification, to apply to more than one computer.

The PROCEDURE DIVISION specifies the steps that the user wishes the computer
to follow. These steps are expressed in terms of meaningful English words,
statements, sentences, and paragraphs. This division of a COBOL program is
often referred to as the "program'" itself. In reality, it is only part of

the total program, and is insufficient by itself to describe the entire pro-
gram. This is true because repeated references must be made (either explicitly
or implicitly) to information appearing in the other divisions. This division,
more than any other, allows the user to express his/her thoughts in meaningful
English. Concepts of verbs to denote actions, and sentences to describe pro-
cedures, are basic, as is the use of conditional statements to provide alter-
native paths of action.

1-2

A program written in COBOL is called the source program, and is accepted as in-
put by the B 1700 COBOL compiler. The compiler will verify that the rules
presented in this manual have been followed and will generate an object pro-
gram in machine code, ready to be executed. Due to the speed of compilation,
no object deck is supplied. Instead, the object program is placed on the

disk, and may be dumped on a magnetic tape for back—up storage. Should changes
become necessary, the source deck is corrected and a new compilation run made.

Thus, the source deck always reflects the object program being executed.

SECTION 2

LANGUAGE FORMATION

GENERAL

As stated in section 1, COBOL is a language based on English, and is composed
of words, statements, sentences, paragraphs, etc. The following paragraphs
define the rules to be followed in the creation of this language. The use of
the different constructs formed from the created words is covered in subsequent
sections of this document.

CHARACTER SET

The COBOL character set for this system consists of the following 53 char=

acters:
0-9 . period or decimal point
A-7Z 5 semicolon
blank or space " quotation mark
+ plus sign (left parenthesis
- minus sign or hyphen) right parenthesis
* asterisk > greater than symbol
/ slash (virgule) < less than symbol
= equal sign : colon
$ currency sign @ "at" sign
, comma

Characters Used for Words

The character set for words consists of the following 37 characters:

0-9
A-2%Z
- (hyphen)

Punctuation Characters

The following characters may be used for program punctuation:

@

"

(
)

"at" sign

quotation mark .
left parenthesis s
right parenthesis H

space or blank
period
comma (see note below)

semicolon

NOTE

Commas may be used between statements,

at the programmer's discretion, for

enhanced readability of the source

program, Use of these characters

implies that a following statement is

to be included as a portion of an entire

statement.

Characters Used in Editing

The COBOL compiler accepts the following characters in editing:

$

*

b

B
0

currency sign

asterisk (check protect)
comma

period

space or blank insert
zero insert

+ plus
- minus
CR credit
DB debit

Z Zero suppress

Characters Used in Formulas

The COBOL compiler accepts the following

characters in arithmetic expressions:

+

*

/

addition *k
subtraction (
multiplication)
division

exponentiation
left parenthesis
right parenthesis

Characters Used in Relations

The COBOL compiler accepts the following characters in conditional relations:

I

A

equal sign
less than symbol
> greater than symbol

DEFINITION OF WORDS

A word is created from a combination of not more than 30 characters, selected
from the following:

A through Z
0 through 9
= hyphen

A word is ended by a space, or by a period, comma, or semicolon. A word may
not begin or end with a hyphen. (A literal constitutes an exception to these
rules, as explained later.)

Types of Words
COBOL contains the following word types:

a. Nouns.
b. Verbs.

C. Reserved words.
Nouns

Nouns are divided into ten special categories:

File—name Mnemonic—name
Record—name Index—name
Data—name Literal

Condition—name Figurative constant

Procedure~name Special registers

Since the noun is a word, its length may not exceed 30 characters (exception:
literals may not exceed 160 characters). For purposes of readability, a noun
may contain one or more hyphens. However, the hyphen may neither begin nor end

the noun (this does not apply to literals).

File-Name. A file—-name is a name containing at least one alphabetic character
assigned to designate a set of data items. The contents of a file are divided
into logical records that in turn are made up of any consecutive set of data

items.

Record—-Name. A record-name is a noun containing at least one alphabetic char-
acter assigned to identify a logical record. A record can be subdivided in-
to several data items, each of which is distinguishable by a data—-name.

Data—-Name. A data—name is a noun assigned to identify elements within a
record or work area and is used in COBOL to refer to an element of data, or

to a defined data area containing data elements. Each data—name must contain

at least one alphabetical character.

Condition—Name. A condition—name is the name assigned to a specific value,
set of values, or range of values, within the complete set of values that a
data item may assume. The data item itself is called a 'conditional variable.”
The condition—name must contain at least one alphabetic character and must

be unique, or be able to be referenced uniquely through qualification. A con-
ditional variable may be used as a qualifier for any of its condition—names,
If references to a conditional variable require indexing, subscripting, or
qualification, then references to any of its condition—-names also require the
same combination of indexing, subscripting, or qualification. A condition-
name is used in conditions as an abbreviation for the relation condition; its
value is TRUE if the associated condition variable is equal to one of the set
values to which that condition—name is assigned.

Procedure—Name. A procedure—name is either a paragraph-name or section-name,
and is formulated according to noun rules. The exception is that a procedure-
name may be composed entirely of numeric characters. Two procedure—names are
identical only if they both consist of the same character strings. For ex-
ample: procedure—~names 007 and 7 are nct equivalent.

Mnemonic—Name. The use of mnemonic-names provides a means of relating certain
hardware equipment names to problem-oriented names the programmer may wish to
use. See the discussion of SPECIAL-NAMES in section 5.

Index~Name. An index—name is a word with at least one alphabetic character that
names an index associated with a specific table (refer to indexing in section 6).
An index is a register, the contents of which represent the character position
of the first character of an element of a table with respect to the beginning

of the table.

Literals. A literal is an item of data which contains a value identical to
the characters being described. There are three classes of a literal: numeric,

non—numeric, and undigit.
Numeric Literal

A numeric literal is defined as an item composed of characters chosen from
the digits O through 9, the plus sign (+) or minus sign (=), and the decimal
point. The rules for the formation of a numeric literal are:

a. Only one sign character and/or one or more one decimal point may be
contained in a numeric literal for use with Sterling. The leftmost
decimal determines the scale.

NOTES
A comma must be substituted for the decimal
point if the DECIMAL-POINT IS COMMA option
is used (see SPECIAL-NAMES in the ENVIRON-
MENT DIVISION).

The implied USAGE of numeric literals is
COMPUTATIONAL except when used with the
verbs DISPLAY or STOP.

b. There must be at least one digit in a numeric literal.

c. The sign of a numeric literal must appear as the leftmost character.
If no sign is present, the literal is defined as a positive value.

d. The decimal point may appear anywhere within the literal except for
the rightmost character of a numeric literal. A decimal point with-
in a numeric literal is treated as an implied decimal point. Absence
of a decimal point denotes an integer quantity. (An integer is a
numeric literal which contains no decimal point.)

e, A numeric literal used for arithmetic manipulations cannot exceed
160 digits. The following are examples of numeric literals.
13247
.005
+1,808

—-.0968
7894. 54

Non—Numeric Literal

A non—numeric literal may be composed of any allowable character. The begin-—
ning and end of a non—numeric literal are each denoted by a quotation mark. Any:
character enclosed within quotation marks is part of the non—numeric literal.
Subsequently, all spaces enclosed within the quotation marks are considered

part of the literal. Two consecutive quotation marks within a non—numeric
literal cause a single quote to be inserted into the literal string. Four
consecutive quotation marks will result in a single " literal.

A non—numeric literal cannot itself exceed 160 characters. Examples of non-

numeric literals are:

Literal on Source Program Leyel Literal Stored by Compiler

"ACTUAL SALES FIGURE" ACTUAL SALES FIGURE
"=-1234, 567" -1234, 567
"ML IMITATIONS™" "LIMITATIONS"
""ANNUAL DUES" ANNUAL DUES
M "
nAn gy A"B

NOTE

Literals that are used for arithmetic com-
putation must be expressed as numeric 1lit-
erals and must not be enclosed in quotation
marks as non—numeric literals. For example,
"-7.7" and -7.7 are not equivalent. The
compiler stores the non—numeric literal as
-7.7, whereas the numeric literal would be
stored as 0077 if the PICTURE were S999V9
DISPLAY with the assumed decimal point 1lo-
cated between the two sevens.

Undigit Literals

Binary 10 through 15 are represented as A through F and must be bounded by @
signs. For example, binary 11 would be expressed as @B@, An undigit literal
cannot exceed 160 digits. Undigit literals are treated like numeric literals
by the compiler.

Figurative Congtant. A figurative constant is a particular value that has
been assigned a fixed data—-name and must never be enclosed in quotation marks
except when the word, rather than the value, is desired. The figurative con-

stant names and their meanings are:

ZERO Represents the value 0, or one or more of the
ZEROS .

ZEROES character 0, depending on the context.

SPACE Represents one or more spaces (blanks).
SPACES

HIGH-VALUE Represents the highest internal coding sequence

HIGH=VALUES (i o, 999) value. When HIGH-VALUES are moved to a
signed numeric computational field, the sign will
be changed to a plus sign.
LOW-VALUE Represents the lowest internal coding sequence (blanks)
LOW-VALUES

value. When LOW VALUES are moved to a signed numeric
computational field, zeros will be moved into the field

and the sign will be changed to a plus.

QUOTE Represents one or more of the single character " (quotation
QUOTES mark). The word QUOTE or QUOTES does not have the same
meaning in COBOL as the symbol ". For example, if ""STANDARDS"
appears as part of the COBOL source program, STANDARDS is
stored in the object program. If, however, the full
"STANDARDS" is desired in a DISPLAY statement, it can be
achieved by writing QUOTE '"'STANDARDS'" QUOTE, in which case
the object program will print "STANDARDS'". The same
result can be obtained by writing "''"STANDARDS""'" in the
source program. Only the latter method can be used in

MOVE statements and conditionals.

ALL When followed by an integer numeric literal, a non—numeric
literal, or a figurative constant, the word ALL represents a
series of that literal. For example, if the COBOL statement
is MOVE ALL literal TO ERROR-CODE, then the resultant ERROR-
CODE would take on the following values:

ALL literal Size of ERROR~CODE Resulting value of

‘ ERROR-CODE

ALL "ABC" 7 characters ABCABCA

ALL "3" or ALL 3 5 characters 33333

ALL "HI-LO" 12 characters HI-LOHI-LOHI
ALL QUOTE 3 characters reeen

ALL SPACES 9 characters (nine spaces)

NOTE
The use of ALL with figurative constants,
as illustrated in the last two instances, is
redundant. MOVE ALL SPACES and MOVE SPACES
would yield the same result.

Special Registers. The B 1700 COBOL compiler provides the following five
special PROCEDURE DIVISION register names:

a., TALLY.
b. TODAYS-DATE (Calendar).
c. TODAYS-NAME,
d., DATE (Julian).
e, TIME,
Tally

The special register TALLY is automatically provided by the COBOL compiler and
has a defined length of five COMPUTATIONAL digits, The primary use of TALLY is

2-7

in conjunction with the EXAMINE statement; however, TALLY may be used as
temporary storage or an accumulative area during the interim when EXAMINE...
TALLYING... is not being executed in a program.

Todays—Date (Calendar)

This special register is included in each COBOL program and will contain the
current date whenever TODAYS-DATE is requested as the sending field in a MOVE
statement. 1Its format is made of three character pairs, each representing
the month, day and year. For example, if the current date is Dec. 13th, 1971,
the TODAYS-DATE register contains 121371. The function of TODAYS-DATE is to
provide the programmer with a means of referring to the current date during
program execution. TODAYS-DATE is maintained in COMPUTATIONAL form.

Todays—Name (Day of Week)

This special register is included in each COBOL program and will contain the
current day of the week whenever TODAYS—-NAME is requested as the sending field
in a MOVE statement. TODAYS-NAME is returned left-justified in a nine-character
field.

Date (Julian)

This special register is included in each COBOL program and will contain the
current Julian date whenever DATE is requested as the sending field in a MOVE
statement. Its format is YYDDD. For example, if the current date were
January 1, 1975, the DATE register would contain 75001. The function of DATE
is to save programmatic evaluation of TODAYS-DATE when Julian dates are re-
quired. DATE is maintained in COMPUTATIONAL form.

Time

Access to an internal clocking register reflecting the time of day is pro-
grammatically available whenever TIME is requested as the sending field of a
MOVE statement. The contents of the TIME register will be maintained in hours,
minutes, seconds and 10th of seconds. 1Its format is HHMMSST. For example,
10:30:51:8 would be stored as 1030518,

Verbs

Another type of COBOL word is a verb. A verb in COBOL is a single word that

denotes action, such as ADD, WRITE, MOVE, etc. All allowable verbs in COBOL,
with the exception of the word IF, are truly English verbs. The usage of the
COBOL verbs takes place primarily within the PROCEDURE DIVISION.

Reserved Words

The third type of COBOL word is a reserved word. Reserved words have a specif§
function in the COBOL language and cannot be used out of context, or for any
purpose other than the one for which they were intended. Reserved words are
for syntactical purposes and can be divided into three categories:

a. Connectives.
b. Optional words.
c. Key words.

A complete list of reserved words in COBOL used by the compiler is included
in appendix A.

Connectives. Connectives are used to indicate the presence of a qualifier
or to form compound conditional statements. The connectives OF and IN are
used for qualification. The connectives AND, AND NOT, OR, or NOT are used
as logical connectives in conditional statements. The comma is used as a
series connective to separate two or more operands.

Optional Words. Optional words are included in the COBOL language to improve
the readability of the statement formats. These optional words may be inclu-
ded or omitted, as the programmer wishes. For example, IF A IS GREATER THAN
B... is equivalent to IF A GREATER B..... Therefore, the inclusion or omission
of the words IS and THAN does not influence the logic of the statement.

Key Words. The third kind of reserved words is referred to as being a key
word. The category of key words includes the verbs and required words needed
to complete the meaning of statements and entries. The category also includes
words that have a specific functional meaning. In the example shown in the
previous paragraph, the words IF and GREATER are key words.

LANGUAGE DESCRIPTION NOTATION

COBOL reference manuals have almost universally adopted a particular form of
notation. This manual uses that notation as described in the paragraphs that
follow.

Key Words

All underlined upper case words are key words and are required when the
functions of which they are a part are utilized. Their omission will cause

error conditions at compilation time. An example of key words is as follows:

IF data-name IS [NOT) {'ﬁ'fpﬁiéﬁm}

The key words are IF, NOT, NUMERIC, and ALPHABETIC.
Optional Words

All upper case words not underlined are optional words and are included for
readability only and may be included or excluded in the source program. In
the example above, the optional word is IS.

Generic Terms

All lower case words represent generic terms which must be supplied in that
format position by the programmer. Integer—1l and integer—2 are generic terms
in the following example:

FILE-LIMIT IS integer—1l THRU integer-—2

Braces

When words or phrases are enclosed in braces { 1}, a choice of one of the
entries must be made. In reference to the key words example above, either
NUMERIC or ALPHABETIC must be included in the statement.

Brackets

Words and phrases enclosed in brackets[] represent optional portions of a
statement. If the programmer wishes to include the optional feature, he may
do so by including the entry shown between brackets. Otherwise, it may be
omitted. In terms of the example above, the word enclosed in brackets is op—
tional. However, if the programmer wishes to distinguish between NUMERIC and
ALPHABETIC, he must choose one of the words enclosed in braces.

Ellipsis

The presence of three consecutive periods (...) within any format indicates
that the data immediately preceding the notation may be successively repeated,
depending upon the requirements of problem solving.

Period

When a single period is shown in a format, it must appear in the same position
whenever the source program calls for the use of that particular statement.

SECTION 3

CODING FORM

GENERAL

The format of the COBOL coding form (figure 3~1) has been defined by CODASYL,
by ANSI, and by common usage. The B 1700 COBOL compiler accepts this standard
format. Should program interchange be a major consideration, the user is
directed to the ASA standard.

The same coding form format is used for all four divisions of a COBOL program,
These divisions must appear in proper order: IDENTIFICATION, ENVIRONMENT,
DATA, and PROCEDURE,

SEQUENCE FIELD (CARD COLUMNS 1-6)

The sequence field may be used to sequence the source program, Normally, a
numeric sequence is used; however, the B 1700 compiler allows any combination
of characters. A warning message 1is given if there is a sequence error. The
B 1700 compiler provides for insertion or replacement of card images during
compilation, controlled by the sequence field. (See section on '"COBOL
COMPILER CONTROL,'" section 11.)

CONTINUATION INDICATOR (COLUMN 7)
Column 7 has several functions as follows:

a. A $ symbol in column 7 is used for cards which specify options for
compiler operation. (See section 11.)

b. If column 7 contains an asterisk (*), the rest of the card is con-
sidered to be a comment and, hence, is not '"compiled" to produce
object code.

c. If column 7 contains a slash (/), the listing, if any, is advanced
to channel 1 before printing, and the card is considered to be a com-
ment card.

d. The letter L followed by a "library—name' entry causes all suc-
ceeding source card data to be placed into the COBOL Library File
during compilation. Termination of the action takes place when an

L card is encountered followed by spaces.

BURROUGHS COBOL CODING FORM

ADDITIONS. DELETIONS AND CHANGES

PROGRAM COBOL DIVISION PAOE 3
PROGRAMMER DATE IDENT 73)
A1 1 1 1 1 & 1

PAGE | LINE A L] z

NO. NO.

1 3ja 6|7i8 i 22 32 42 s 2 62 T2
[} o '] | T et

[L L IS S WG T YW T N O O U W B S O %lllllllll%lllLlLJll%llllllJlll
1

I O L lJLllJL'llJl}lIlllllll%llllLlll _lrllJlllllL'LlJJLlllilillllillJll
)

B I L lIJLLLIJJ{LlJiLLllJ]LlllLlllJ fltlllllllfllllllllllrl_lJ‘JLlLlJL
)

ilj: l!!lIlllllli%'IllLllJJJT_llllLLlJ %lllllllIl%Illllllll}llllllllll

11 P! [LLLJIIIIJILLIJJLIIJLJ,LIIIIlll %llllllIJ'ILllJlllllL%llJ‘LllllL
i

1.1 ! L1 1 1lllLLllL{LlllLLlll{l]JlllII }lllllllJLTLllJLllle}llllLllllL
1]

B N L1 LngLll11+L141L1111%1111L1IJ %jllllt||1jL111111111%1111L1111L
]

11 | Ld 1 N T S N O T W G S T T T T +91111111J+L111J111111Jlllllllll
1

11 ll P4t LllJLLllJl{lilllllli]llillllll ‘%‘yLllJlL!l_L%lllJ,Lllllalllll_llllL
[

i ! 114 1lXJLLLLI%LIIILLLII%llIJIIll TLLAI][LLIJ_%'[[JLll[J}llIJLIIJJ
]

I ; ! i [U N T B N =||.|I'LLJ{L1114J_|1 :LLllJlLlllgliIlllllllllllllllllL
| 1

I ||I [R T S S T U I S N S S T Y N S Y W %LlllLLLlJ%LIllLLlll}lllJLl_llj

lLl: 11y 1111111:‘41LL41'111{11111111 11111! IS VT T T N N T S D Y W

1 l: g LliJJLLlI%LlllllllJ_Jrllllllll %lLlllLilJlllllJLLlLJJILLIJLIIIII

11 13 ! IR LLIIIL[II%LLIIllLll}ill]LLLl %llllllllJJILllllLllJJ'LlIlllllll
]

[p ! Lo llLliiLLlJlll'llLLllJrlLllllll %iLIllllll{lllllLllJ%LLj_jJ¢lllJ
I

1.1 l: 11y LLL!JL[IlJIlllIJLL’I‘HllIJJLl %4L1_11111|J'L111L1|114I+LL41|L111

111: 11y 1ll!lllLl%llllllllll[l!llllll lrLl_LlJLlll%L'llLLlll{illlJlllJl

1L [JE lllllllllilLilelll%llLllll| JrLLLl_lillléLLIllllllJrillllLllJJ
N -

]ll: J 1 1 Llllllll;lgglILIJJLLL+JIIIJLLI {Vlllllllll{rlllllllllJ,LllllllllJ

11) ! L1 TSN N N NN NN N SSU5 N AN N N SN0 S0 S N WA TSN G U S N O N S IS O I | I N S B N I N I N 0 AW IO Y SO0 S N N0 S A N N0 S0 S B B S I O A I |
N T T L LI 1

ll ll J | J S N S WO SRS NS NS T T W N N YN (NN VAN Y U S O W (S WA TSN O T N N VU AN U S (S N S N (N U N S NN SN U U NN N N N T U U S N N N N S S
! v L T | T

[| 1! Lot S WS U N T WA T W Y N AU (S TN WA U NN WD WA S S U0 N A G U O SR U N U U (AU S U VN5 WA WA NS SN A G0 UOR T U0 N (O N U S G (OIS WO A S Y S |
[L LI r I T

[} o L ill_LllLl‘Llll!lll(lt{llllllll 1rJ11114J_ltlexLllJLlltlrlLLLJLLn(J
]

L [Ll S VU SO0 WO N VN S U U G S U VN N T O T U U W N U T W T N O T W U s T O N T W T W O 0 I B O |

Figure 3-1.

COBOL Coding Form

€. The presence of a hyphen (-) indicates that the last word or literal
on the previous card is not complete, but is continued on this card.

Words and numeric literals may be split at any point by placing a hyphen in
column 7 of the following card. Any rightmost blank spaces on a card are
ignored as are the leftmost blank spaces on the continuation card.

Non—numeric literals are split in a slightly different fashion. On the ini-
tial card, starting from the quotation mark, all information through column 72
is taken as part of the literal, and on the next card a quote mark must be
used to indicate the start of the second part of the literal.

MARGIN A (COLUMNS 8 THRU 1)

DIVISION, SECTION, and PARAGRAPH headers must begin in margin A. A division
header consists of the division name (IDENTIFICATION, ENVIRONMENT, DATA, or
PROCEDURE), followed by a space, then the word DIVISION followed by a period.

A section header consists of the section—name, followed by a space and then
the word SECTION, followed by an optional priority number, followed by a period.

A paragraph header consists of the paragraph—name followed by a period. The
first sentence of the paragraph may appear on the same line as the paragraph
header.

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and paragraph
headers are fixed and only the headers shown in this manual are permitted.
Within the PROCEDURE DIVISION, the section and paragraph headers are defined
by the user.

MARGIN B (COLUMNS 12 THRU 72)

All entries which are not DIVISION, SECTION, or PARAGRAPH headers should start
in margin B.

RIGHT MARGIN (COLUMN 72)

The text of the program must appear between columns 8 and 72, inclusive. A

word or statement may end in column 72.

IDENTIFICATION (COLUMNS 73 THRU 80)

The identification field may contain any information desired by the user. The
field is ignored but is reproduced on the output listing by the compiler. This
field normally contains the program name.

PUNCTUATION

The following rules of punctuation apply to the writing of COBOL programs
for the B 1700,

a. A sentence is terminated by a period followed by a space. A
period may not appear within a sentence unless it is within a
non—numeric literal or is a decimal point in a numeric literal or
PICTURE string.

b. Two or more names in a series may be separated by a space or by a
comma. If used, commas can appear only where allowed.

c. Semicolons (;) are used only for readability and are never required.

d. A space must never be embedded in a name; hyphens should be used in-

stead. (A hyphen may not start or terminate a name.) For example:
NET-PAY
SAMPLE CODING

An extract sample from a source program, showing the continuation of both
words and non—numeric literals, is illustrated in figure 3-2.

BURROUGHS COBOL CODING FORM

ADDITIONS. DELETIONS AND CHANGES

PROGRAM COBOL OIVISION PAGE of
CthYTUQUJ€Tu:oS 1
PIOGRA“MER% DATE IDENT. 78 o0
AN A A
PAGE | LINE A L3 z
NO. NO. o
« slrle e 22 32 a2 52 62 T2
— ———3
1 ' T l
L1t FILE-CONTRAOL, ., 1561’..5@1“—1 IPRﬁ:Nﬂ—LN\ﬁlFLIxLaEl {Pt N YT AP ESERN
1
p g B 1941A|L—GEMNT51|N@_1N1$J-11111L11%111111111%1111111ll; Lld1 1 a1
1
Lilio Lo lLLLLLlJLlMElLIElC—i-ri 1M1AJ$'T'151RITAUIPM'¢114|F&_§L§E&'ALFTQ Tlntllelll!ll% RES | 11
1
L1 J:—ILJ 11IIE?lVlELL‘l'PTILITIGZI'\)[PVTEIIAIKIEIA(I-IlLl%lllllllll‘LJJlllllll} S EENEN
11 g AT T U U N U U U T A S U U S N T WO N T W T U A W N U0 W T N A U U T O S0 W M N A N A Y A0 O S S B O SN A N N B N SR A
1 1 t ! L 1
1l t I T S S R A T I O B B SRS B B B B B A A
| ' .
L1l wtolglKIl”Gl‘lSl‘rDIRLPﬂG{El 1$E|CT\'II£>1M-= T T S S S S S 0 O Y
i
ll ll 11 Llll]llll%l|l|lllli%llllllLLl%J||||||11]I;Lllll|lll%' 1 1 Lt] L1
: :
1101t 'LJA‘PrﬁfMﬁﬂthﬁﬁﬁﬁﬂﬁhi%tll111|11P§7111NMMQI11111114{ BN EE
1
[I LN o AR llILLLLLJ{LJILIIIIIrlLitiTl“llial‘SIIlrl.llllvlpiLJ*:EI‘laISILlI{ RSN EEE
1
11 | LI e T LJIIILII‘H5IGI'17I?' L1 11341-14149ﬁ||11111|1|11|11¢1111111 L1111 [
|_ L T T 1
11 g)1 1111111"%!‘IJ'L1LL111 ! 1991711111J111ILI%IIIIIILLL} Loty
1
1 O L VY W Y S W S U S WAL AR A B 0 N A S B f?Vf77w11 L1 1%4L1J,L11 U W T W S W W
i T
11 (1 L 114L1|||1015'1 INO N~ 1”14"&1‘ 1'-11;7'111?111C14] 13|OD|1A14+1‘/1&LL1W5111} L ALY 2
[}
[O L el BT T RO Y 1"\&21%?“5%1 VAL TD |-|$mu‘h = gey T Y T S S 0 I A A
1
[p ! P |LLil1111%!1'1111||{|||||1lll%lliliilll%LilllJ_lll: [L Ll L1
)
[1 i:/lll lllllll’l“L'lllLll‘l%lll‘lllll1l':lL|lllllillllJJ_lllf 11 1 1.1 (.|
ry ot ! O T T S0 S GO S S S S S 0
1
TSR L ﬂzpﬁsmxl&ﬁamgvlgsﬁﬁﬂp1LJL4'J1v|||1111r1|11||141111|cL1+111% I |
]
11 1: S S S S S S S S S S S S S S S A A
L ! F‘:R":T'l"n?krklkﬁ'xlpqﬁﬂui1111|1=MQ\/151 13’:’-|5161=|1|:|||14411:1111L1% [N I AN IS I A !
1
[1 LM 11.111111{1111”1 '1Q91m1N1&1"‘1LlIm'1'2r3101 1J'11L11LLI1} 11 [11
]
1 1 l ! JUE 1 | S U N N S W U | TIF‘ L_I—IHLEIEl l-: J[IHQL‘\ 1 IG-pl Trol 1FIIK51Trl ?A 1 1 11 11 1 1 { 1 1 1. 1.1 11
]
Lyt vl GRAP TP T 0 N U U B O B B l;l Lt
: '
L la 1 11LJ111Al||1|||J¢11111111|111L11111LL114|1411111111L11 L4 11011

Figure 3-2.

Example of Continuation of Words and Literals

SECTION 4

IDENTIFICATION DIVISION

GENERAL

The first part or division of the source program is the IDENTIFICATION DIVISION:

Its function is to identify the source program and the resultant output of its

compilation. In addition, the date the program was written,

the date the com-

pilation was accomplished, plus other pertinent information may be included

in the IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION STRUCTURE

The structure of this division is as follows:

[MONITOR. . .]

IDENTIFICATION DIVISION.
[PROGRAM-ID. Any COBOL word.]
[AUTHOR. Any entry.]
(INSTALLATION. Any entry.]
[DATE-WRITTEN. Any entry.]

tained by the MCP.]
[SECURITY. Any entry.]

[DATE-COMPILED. Any entry - appended with
current date and time as main-

[REMARKS. Any entry. Continuation lines must
be coded in Area B of the coding form.]

The following rules must be observed in the formation of the IDENTIFICATION

DIVISION:

a. The IDENTIFICATION DIVISION must begin with the reserved words

IDENTIFICATION DIVISION followed by a period.

b. All paragraph—names within this division must begin in Area A

of the coding form.

c. An entry following a paragraph—-name cannot contain periods, with the
exception that a period must be present to denote the end of that

entry.

When DATE-COMPILED is included, the compiler automatically inserts the time
of compilation in the form of HH:MM and the date of compilation in the form
of MM/DD/YY.

With the exception of the DATE-COMPILED paragraph, the entire division is
copied from the input source program by the compiler and listed on the output
listing for documentation purposes only.

MONITOR

This statement provides a debugging trace of specified data-names and/or
procedure—names.

The format of this statement is:

MONITOR [DEPENDING] file-name ([data-name] ...

{{ %%cedure--name. : }]) ']

e

This statement must begin under Area A of the coding form. The parentheses
and colon are required as part of the source program statement,

Only one MONITOR statement per program is allowed and must precede the
IDENTIFICATION DIVISION header card in the source program,

The file—name must be ASSIGNed to a line printer and is recognized by the com-
piler as being the output media for the MONITORed data~-names., When the ALL
option is used, the file—name must be opened in the first paragraph in the
program; otherwise, a run—time error will occur.

The data—name(s) may be any name (s) appearing in the DATA DIVISION except for
those which require subscripting or indexing.

Whenever a MONITORed elementary data-name is encountered as the receiving
field in a MOVE or arithmetic statement, the data—name and its current value
are listed.

If a group item appears in the data—name—list, it will be MONITORed only when
explicitly used as a receiving field.

If the DEPENDING option is present, SW6 will be tested for an ON-OFF condition.
Print of MONITORed items will depend upon the setting as being '"ON",

All paragraph—names listed will be printed each time they are encountered,
along with a total indicating the number of times that a paragraph—name has
been passed.

The use of the ALL option, instead of the procedure—name list, will cause all
section~names and paragraph—names to be MONITORed, thus providing a trace of
the entire program's control path during operation.

CODING THE IDENTIFICATION DIVISION
Figure 4-1 provides an example of how the IDENTIFICATION DIVISION may be

coded in the source program., Note that continued lines must be indented to
the B position of the form, or beyond.

BURROUGHS COBOL CODING FORM

ADDITIONS., DELETIONS AND CHANGES

PROGRAM COBOC_DIVISION PAOE oF
"DENTIF\&A‘T’\QN E\U\S\QM Ca’gnd@. l 1
PROGRAMMER bEE ’ DATE iDENT. 3 o0
A1 &1 1.1 411

PAGE | LINE | | A . -
NO. NO.

ala s7]8 ule 22 32 a2 . 52 62 72

1 1
L1l : I;')ENT[IF.:LQAHTIQMI; m'I;VlLS:tlth\i-% EEEN NN RIS Lt L1 1) ; [IS A ! ; [N
113 : PROGIRAM-TTD .., | Eﬂ\ﬂqsﬁg‘ﬁlgfﬁzfﬂﬁhﬂhﬂﬁhEig1| TSNS .
11 l: AVNTHOR, . (LWL F“bﬁ&TI“-l S S T O B T B S O B o B O S B B O
1 13 MﬁTAL&J{Fﬁn&q_@HR&DMﬁﬁﬁaﬁmsaﬁQﬂmﬁDQM N T B B W Y I
Lyt NI AR S A A S Eﬁ?ﬁqEﬂjAsu F&AIALI T B O S S S O S T W
11 1: DATE "1URELT‘T'E|Q|-116 I\‘LLJ!NE(LIJql"Tl"'l-JlLLLIII%lllllllll%LlllllJ_llillllllllll
1 1: DATE |C43ﬁﬂpﬂhLﬁ§bn11 T T S 0 B0 B B x{le O Y T T G 1} L1 dd bt
Ll E SECWRITM., | | n;;hEﬁAE&41'ull T S S S S S S W S W SO G 1%11 Pty
L1l :'¥'| I I A IR A G ﬁﬁhElIDﬁﬁlﬂﬁﬂEfkrﬁﬂﬁrfnﬁggﬂ?ﬂmﬁ IR
L1 Lo REMARKS ., | 1fr“ﬁh FERESY (P FET KJF[ET?HilfP€£DGn2£%N f?g;%QjjéLJ&L4_&&ﬁ£44§£b£ﬂ§§LjﬁmiﬁL_
]

y oy Ly : sl SALES, GMACYFAy.FCE LbﬁEﬂﬁn e STN) gST"Aﬂ'EﬁAEﬂ&T’:FKJRﬁN L1 Lp)1
[Il s I LT—'_B;E'L SECOND, fplﬁqRLT IEle?ng‘lSIS%Elsl IUBES E, CC:TI\X TBINR; I BT O B B B A R
L : TR Lnf%&BPHffﬁﬁﬂwﬁﬁ-ngl%ilLf|1 T TS S O S O O
11l : SN T T U S T T U T W U 0 N W 0 WY S S S Y O T Y S Y 0
J_ll: 44 Jll#lllll%lllLllllL%_lllllll_llgllllllLllf]llllllJl%LlllllLJll
11 1: FERTEN U T O A T S S G S B W Y B S SR W S
i : L S T T T T O S S S S W W
1111 : S S S S S S S A S R S S 0 A B
I : T T S S OB S OV 0B S S
J_ll: Lll1lllLllll{‘lllillll%JllLlllll=(lllllLII%LILLJLJ_llirllIJJIIAllL
L] |: U T T U T A ST U W S S T U S 0 A S S W 0 0 B
'l ‘: J U - | 1lllllLfI%lJl#[LLll{lllll‘lll‘l]lllllll:illLlluL%_Llllllel
11 l: L1 1 llllllill]lrl‘\J_LllilléllllllllLJJlll‘llllfllj_l_lllll%llLLlllJll
I : T S S Y W R O S
[IR B RN TN U W S S G SN i U A S S U U S G AN A SR U G S SR S T B G B 0 0 B S 00 S S 0 A U B O S A S A A A U S S A O 5 0

Figure 4-1. IDENTIFICATION DIVISION Coding

SECTION S

ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second division of a COBOL source program.

Its function is to specify the computer being used for the program compilation,
to specify the computer to be used for object program execution, to associate
files with the computer hardware devices, and to provide the compiler with
pertinent information about disk storage files defined within the program.
Furthermore, this division is also used to specify input-output areas to be
utilized for each file declared in a program.

ENVIRONMENT DIVISION ORGANIZATION

The ENVIRONMENT DIVISION consists of two sections. The CONFIGURATION SECTION
contains the overall specifications of the computer. The INPUT-OUTPUT SECTION
deals with files to be used in the object program.

ENVIRONMENT DIVISION STRUCTURE

The structure of this division is as follows:

ENVIRONMENT DIVISION.

[[CONFIGURATION SECTION.]
[SOURCE-COMPUTER . . .]
[OBJECT-COMPUTER . . .]
[SPECIAL-NAMES . . .|

[INPUT-QUTPUT SECTION.]
[FILE-CONTROL . . .]
[I~Q-CONTROL . . .]]

The following rules must be observed in the formulation of the ENVIRONMENT
DIVISION:

a. The ENVIRONMENT DIVISION must begin with the reserved words
ENVIRONMENT DIVISION followed by a period.
b. All entries other than the ENVIRONMENT DIVISION source line are op-

tional but, when used, they must begin in Area A of the coding form.

CONFIGURATION SECTION

CONFIGURATION SECTION

The CONFIGURATION SECTION contains information concerning the system to be
used for program compilation (SOURCE-COMPUTER), the system to be used for
program execution (OBJECT-COMPUTER), and the special-names paragraph, which
relates hardware names used by the B 1700 COBOL compiler to the mnemonic—names

in the source program,

SOURCE-COMPUTER

Source-Computer

The function of this paragraph is to allow documentation of the configuration

used to perform the COBOL compilation.
The format of this paragraph has the following two -options:

Option 1:

SOURCE-COMPUTER. COPY library-name

[, REPLACING word-1l BY word-2

[, word-3 BY word-4] ...] .
Option 2:
_ B-1700
SOURCE- COMPUTER. {any entry}

This paragraph is for documentation only.

OBJECT-COMPUTER

Object-Computer

The function of this paragraph is to allow a description of the configuration
used for the object program.

The format of this paragraph has the following two options:

Option 1:

OBJECT-COMPUTER, COPY 1library—name

L REPLACING' word—-l BY word-2

[, word-3 BY word—4] ...] .

Option 2:

OBJECT- COMPUTER. [{B"17°° }]

any entry

[, [SORT] MEMORY SIZE integer-1 [CHARACTERS@
"[, DATA SEGMENT-LIMIT IS integer-2 CHARACTERS]

[
[, SEGMENT-LIMIT IS priority number] .

If section priority numbers are used in the PROCEDURE DIVISION, they must be
positive integers with a value from O through 99. The SEGMENT-LIMIT clause
signifies the 1limit for non—overlayable program segmentation of sections num-
bered from O through 49, See SEGMENT CLASSIFICATION, PROGRAM SEGMENTS, and
PRIORITY NUMBERS.

The MEMORY SIZE clause is used to increase the amount of memory for overlayable

data or change the size of memory for the sort to use during a sort operation,

When the SORT MEMORY SIZE clause is used, the integer—-1 will reflect the
amount of memory the sort will use when the program is executed. If integer-1
is less than 8K bytes, the sort will use 8K bytes by default.

When the MEMORY SIZE clause is used without the SORT option, the compiler will
assign the amount of memory between the base and limit register to reflect the
size of integer-1l, or the memory required for all of the overlayable data seg-

ments when more than one segment is referenced in the same operation.

Both SORT MEMORY SIZE and MEMORY SIZE clauses may be used in the same OBJECT
COMPUTER paragraph.

5-4

OBJECT-COMPUTER

The use of the word CHARACTERS after integer=-1 specifies the number of bytes
to be used; otherwise, the specification is the number of digits to be used.

The DATA SEGMENT-LIMIT clause may be used to specify the size of the data
segments in the WORKING-STORAGE section. Integer—2 will reflect the number
of characters desired in each data segment. When the value of integer-2 is
zeéro, the WORKING~STORAGE section will not be segmented, and will reside in
memory as a contiguous block.

If the DATA SEGMENT-LIMIT clause is omitted, no data segmentation will take
place.

When data segmentation is specified each file record is placed in a separate
segment.

All 77 level entries are placed in data segment 0 (zero).

A record (01 level) that is greater in length than the DATA SEGMENT-LIMIT
will be placed in a segment by itself, and will not be split between segments.
If DATA SEGMENT-LIMIT has been declared larger than the defined record size,
the record will reside in the declared amount of memory, as well as succeeding
records to the limit of the defined segment.

SPECIAL-NAMES

Special-Names

The function of this paragraph is to allow the programmer to assign a signifi-
cant character for all currency signs, to declare decimal points as being
commas and to provide a means of relating implementor hardware—names to user
specified mnemonic—names.

The format of this paragraph has the following two options:

Option 1:

SPECIAL-NAMES. COPY 1library-name
[REPLAQING word-1 BY word-2

L word-3 BY word-4] ...].

Option 2:

SPECIAL-NAMES, [CURRENCY SIGN IS literal]

[, implementor-names IS mnemonic-name] . .

([, DECIMAL-POINT IS COMMA]

This paragraph is required if all decimal points are to be interchanged with
commas and/or if all currency signs are to be represented by a character other
than a dollar sign ($).

This literal is limited to a single character and must not be one of the

following:

a. Numeric digits O through 9.
b. Alphabetic characters A, B, C, D, J, K, P, R, S, V, X, Z, or blank.
c¢. Special characters * + = , _, ; () ".

The clause DECIMAL-POINT IS COMMA signifies that the functions of comma and
period are to be exchanged in the PICTURE character-string and in numeric
literals.

The implementor—-name clause must be one of the allowable B 1700 COBOL hard-
ware-names which may be specified in FILE-CONTROL paragraph. For example:

PUNCH IS CARD-PUNCH-EBCDIC

SPECIAL-NAMES |

The mnemonic named device can be directly referred to in the ASSIGN clause.

The SPECIAL-NAMES paragraph statement ends with a period as a delimiter.
Periods between clauses are not allowed.

INPUT-OUTPUT SECTION

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section contains information concerning files to be used
by the object program, the manner of recording used or to be used, and the

presence of any multiple—file tape or disk.

FILE-CONTROL

FILE-CONTROL

The function of this paragraph is to name each file, to identify the file
medium, and to specify a particular hardware assignment. The paragraph also

specifies alternative input-output areas.

The format of this paragraph has the following three options:

Option 1:

FILE-CONTROL. CopPY library—name

['EEPLACING {ggig:iame_l} BY [ggig:iame-Z\

literal-1
- word—4)

[N \g‘ggg;;&;yg"*l]
Option 2:

FILE-CONTROL,

SELECT [OPTIONAL] file-name-1 ASSIGN TO hardware—name-1

-[QB] BACKUP [{%%gg}]] [FORM] [FOR MULTIPLE REEL] [SINGLE]
) [ALL-AT-OPEN] [WORK]

NO AREA
»BESERVE {integer-l} [ALTERNATE [{AREAS}]]

'{FILE-QIMIT IS } {1itera1~1 } {IHEU e r
| FILE-LIMITS ARE data~name-1 THROUGH a
- —_—— data—name—2

{1itera1-m } {gﬂgg } {literal-n }] . .]
’ |data—name—m THROUGH data—-name—n

RANDOM
EACCESg MODE IS {EﬁiﬁEﬁTIAL }]

[ACTUAL KEY IS data-name-3]
[LPROCESSING MODE IS SEQUENTIAL] . [SELECT]

FILE-CONTROL

Option 3:

FILE-CONTROL,
SELECT sort—file—name ASSIGN TO SORT DISK.

Option 1 may be used when the system's library contains the LIBRARY name entry.
See COPY verb, section 7.

The files used in a program must be the subject of only one SELECT statement.
If it is to be OPENed INPUT-OUTPUT or I-0O, it must be present in the MCP
Disk Directory.

The OPTIONAL clause is applicable to input files only. Its specification
is required for input files that are not necessarily present each time the
object program is executed.

The ASSIGN clause must be used in order for the MCP to associate the file
with a hardware peripheral component. The allowable hardware—name entries

are:
CARD96 QUEUE
DISK (or DISC) READER
DISK-DFC1 READER-SORTER
DISK-DFC2 REMOTE
DISK-DPC1 SPO
DISK-DPC2 TAPE (7 or 9 channel MCP to assign)
DISK-HPT TAPE-MTC1
DISKPACK TAPE-MTC2
MFCU TAPE-MTC3
PRINTER TAPE-MTC4
PT-PUNCH TAPE-MTC5
PT-READER TAPE-7 (7 channel only)
PUNCH TAPE~9 (9 channel only)

The BACKUP option will cause printer output files to be placed on a printer
backup tape or disk file for subsequent printing. The BACKUP option will

cause punch output files to be placed on punch backup disk files for subsequent
punching.

When hardware—name—1l is selected, without the backup option, the output file
may be manually assigned to printer backup by the operator with an "OU"

message.

FILE-CONTROL

Use of the FORM option with printer or punch files will cause the program
to halt and an MCP message to be printed declaring the need for special forms
to be loaded in the Line Printer or Card Punch, as applicable.

It is recommended that a STOP literal be executed just prior to a STOP RUN
if the FORM option is used. This will allow the opérator sufficient time to
remove the special forms before the printer is released back to the MCP.
Without a temporary halt, there is a possibility that another job in the mix
may start printing on that same printer.

With the exception of the ASSIGN clause which must follow the SELECT clause,
the rest of the clauses in this paragraph may appear in any order.

The MULTIPLE REEL clause is for documentation only. This function is per-
formed by the MCP.

When the SINGLE option is used, a file assigned to DISKPACK will not be
assigned to a multi-file disk cartridge.

The ALL-AT-OPEN option will cause the MCP to allocate all of the areas re-
quested by this file at the time the file is opened.

When the WORK option is used, the MCP will insert a six digit job number
(assigned to the program) into the file name starting in the second position

from the left. This will allow a program with temporary work files to be
multi-programmed.

The RESERVE clause allows a variation of the number of input or output physical
record buffers to be supplied by the MCP at the time the file is opened. Each
alternate area reserved requires additional memory to be utilized, and will be
the size of a physical record as defined in the FD statement of the DATA
DIVISION for that specific file. Up to 63 alternate areas may be specified.

No alternate areas are reserved when the NO option is specified or if the
entire option is omitted.

The MCP will keep track of record data being passed to or from the buffer and
the record work area.

The programmer can use the READ or WRITE statements without regard to the
buffering action taking place.

The FILE-LIMIT clause is invalid if specified for a sort file description
(SD) entry. The FILE-LIMIT clause for input and output files associated with
the SORT verb will not be effective during execution of the SORT unless an
input/output procedure is declared.

FILE-CONTROL

The FILE-LIMIT clause specifies the following:

a. For SEQUENTIAL access, logical records are obtained from, or placed
sequentially in, the disk storage file by the implicit progression
from segment to segment. The AT END imperative statement of a READ
statement is executed when the logical end of the last segment of the
file is reached and an attempt is made to READ another record. The
INVALID KEY clause of a WRITE statement is executed when the end of
the last segment is reached and an attempt is made to WRITE another

record. The END option specifies that the compiler is to determine
the upper limit of an existing file. No ACTUAL KEY entry is neces-—

sary for the SEQUENTIAL mode.

b. For RANDOM access, logical records are obtained from, or placed
randomly in, the disk storage file within the specified FILE-LIMIT,
The contents of ACTUAL KEY not within the specified 1limit will cause
the execution of the INVALID KEY branch in the READ and the WRITE
statements. The ACTUAL KEY entry must be specified.

In the FILE-LIMIT clause, each pair of operands associated with the key word
THRU represents a logical segment of a file. The logical beginning of a
disk storage file is considered to be that address represented by the first
operand of the FILE-LIMIT clause; the logical end is considered to be that
address as specified by the last operand of the FILE-LIMIT clause.

In a FILE-LIMIT series, SEQUENTIAL records are accessed in the order in which
they are specified. For example:

FILE-LIMITS 1 THRU 5, 10 THRU 12, 3 THRU 7

This example will result in the sequential access of records 1, 2, 3, 4, 5,
10, 11, 12, 3, 4, 5, 6 and 7 in that order,

The data—names used with the FILE-LIMIT clause must be defined with a PICTURE
of 9(8) COMPUTATIONAL.

For the ACCESS MODE SEQUENTIAL clause, the disk storage records are obtained
or placed sequentially. That is, the next logical record is made available
from the file on a READ statement execution, or a specific logical record is
placed into the file on a WRITE statement execution. The ACCESS MODE
SEQUENTIAL clause is assumed if ACCESS MODE RANDOM is not specified.

Values of the ACTUAL KEY data-name—=3 are controlled by the programmer, inclu-
ding any execution of the USE FOR KEY CONVERSION statement. The value may

range from 1 to n, where n equals the number of records in the file or as

5-12

FILE-CONTROL

reflected by the FILE-LIMITS clause. The ACTUAL KEY signifies the relative
position of a record within the file and is equated to a data-name at any

level which is defined with a PICTURE of 9(8) COMPUTATIONAL., ACTUAL KEY is
not used for ACCESS MODE SEQUENTIAL files.

The ACTUAL KEY specified for a queue file signifies the relative sub—queue
position within the file and is equated to a data—name at any level which is
defined with a PICTURE of 9(8) COMPUTATIONAL. If no KEY is specified, the
relative queue number will be set to 1.

The ACTUAL KEY specified for a remote file is defined as follows:

01 REMOTE-KEY

03 STATION-RSN PC 9(3) (As defined in NDL network controller)
03 TEXT-LENGTH PC 9(4) (Actual length of current message)
03 MSG-TYPE PC X(3) (0 = write

1 = read)

STATION-RSN refers to the relative station number within the file. TEXT-
LENGTH defines the length of the message in characters, and should never be
larger than the largest 0Ol record declared for the file. Otherwise, data
would be truncated from the low~order position.

MSG-TYPE defines a user—defined value to be treated appropriately by the user
program. '

The ACTUAL KEY for remote file does not have to be defined at the 01 level;
however, the group length must be 10 bytes. If ACTUAL KEY is omitted, message
length will be taken from the message length being written.

The PROCESSING MODE IS SEQUENTIAL clause is for documentation only.
All integers must be of positive values.

File=name~1 must be unique in the first ten characters if the use of an MCP
Label Equation Card is anticipated.

The sort—file—name in Option 3 is the SD level file—name to be used by the
SORT verb.

5-13

1-O-CONTROL

I-O-Control

The function of this paragraph is to specify memory area, to be shared by
different files during object program execution and the point in time that a
rerun procedure is to he established.

The construct of this paragraph is:

Option 1:

I-O0-CONTROL.. COPY 1library—name
[REPLACING word-1 BY word—-2
[, word—-3 BY word-4] ...].

Option 2:

I-0-CONTROL.

[; SAME [RECORD] AREA FOR file-name-2 [file-name-3] ...]

L
. ' DISKPACK dispack-id }
[’ MULTIPLE FILE {EABE multi-file-id

CONTAINS file-name-5 [POSITION integer-2]
[, file~name—~6 [PQSITION integer-3]] cee]

The I-0-CONTROL paragraph name may be omitted from the program if the paragraph
does not contain any of the clause entries,

The SAME AREA clause in this COBOL compiler is used to assign the same address
to the record work areas of all files named in the clause. This area will be
in the overlayable data section of the program when data segmentation is used.
Due to the Virtual Memory concept employed in the design of the system, a given
file's file information block (FIB), buffer, and ALTERNATE AREAS will not exist

5-14

1-O-CONTROL

in memory until an OPEN statement in the PROCEDURE DIVISION has been executed.
At this time, to contain these areas the MCP allocates sufficient memory out-
side of the limits of the Base and Limit registers. The Record Work area of
the file is called into the overlayable data section of the program whenever
it is referenced by the program. When the file is programmatically CLOSEd, the
memory being used to contain the file's FIB, buffer and ALTERNATE AREAS will be
returned to the MCP.

COBOL restricts the OPENing of files defined as residing in the SAME AREA

of memory to one file at a time. This system ignores that logic and the re-

sult saves memory over the conventional intent by not using memory to contain
FIB record area, buffers, or ALTERNATE AREAS until a file is actually OPENed

by the program,

When the RECORD option of the SAME AREA clause is used, only the record area
is shared and the associated alternate areas for each file remain independent.
In this case, any number of the files sharing the same record area may be
OPEN at one time, but only one of the records can be processed at a time.

The use of the RECORD option may decrease the physical size of a program as
well as increase the speed of the object program. To illustrate this point,
consider file maintenance., If the SAME RECORD AREA is assigned to both the
0old and new files, a MOVE will be eliminated which transfers each record from
the input area to the output area. The records do not have to be defined in
detail for both files. Definition of a record within one file and the simple
inclusion of an 01 level entry for the other file will suffice.

Because these are record areas, in fact, in the same memory location, one set
of data—names is sufficient for all processing requirements, without requiring
qualification,.

The MULTIPLE FILE clause specifies that disk files reside on a removable disk
cartridge or disk pack, or two or more tape files are resident on one magnetic
tape. All files resident on a multi~file (that are required in a program)
must be represented in the source program by a SELECT statement and a FD entry
for each file.

For tape, the file—name entries do not have to be defined in the program
sequence 1in which the files appear on the multi-file tape. However, the MCP
will read the label of the next file on tape, check the label against the file
request, and, if the next file is not the one requested, the MCP will rewind
the multi-file tape and will start searching for it from the beginning of tape.

5-15

I-O-CONTROL

When the MULTIPLE FILE clause is used to identify a file on a removable disk
cartridge or disk pack, the MCP will use the specified diskpack-ID to locate

that file. File—name list is a series of FD file-names in the program indi-

cated as residing on the specified disk cartridge or disk pack.

The "multi-file—id" is the file—name contained in the physical tape label
of a magnetic tape containing multi-files, when file-name-1list is a series

of FD file—names in the program indicated as residing on the multi-file-tape.

All files named in the MULTIPLE FILE TAPE clause have an implied SAME
AREA clause.

Multi~files, or any file contained within the file may be OPTIONAL.
The POSITION clause is for documentation only,
CODING THE ENVIRONMENT DIVISION

An example of ENVIRONMENT coding is provided in figure 5-1.

5-16

BURROUGHS COBOL CODING FORM

ADDITIONS, DELETIONS AND CHANGES

PROGRAM COBOL DAVISION PAGE oF
EnvigenmenT Division Coapirog [{
PROGRAMMER DATE IDENT 73 ™)
KE&\HN IS WA |
PAGE | LINE A L 4
NO. NO.
1 3la ls 7|8 nle ‘zz lsz _ Iaz 15: [sz ; 72
il ENNTIRONMENT] IDI%\II:ISIOINL-I_l Ly T D T W S S
N .
1] | |ICONF JUGQATﬁIKDM;mSJECfFZ¥Q£LJ,1 N B Y B Y Y I B Y B A A A A A I I B W W A W
]
BB 5E&KRCEH~K33¢NFRET1$R;11 ﬁ&‘ﬂf?ﬁ*%-l\ T W S N O LA,LJ,LJIALLgLI I T Y
0
1t : Cﬂ&JExTT}~F¥JMﬁHMHWGELA liBln'fZOKh L SIE MEZM A
11t SRECIALHMNMaﬂwlg1JDEQSMAmerﬁNTL¢§%K¥M$Mﬂ¢4l%4lLJLJl1L%1LL11111|1
| ¥ -
P gt N SR O S S S S O S S S W S I B B S S B A S B R A S S
|
Ly |1]:NIPIT—OIW“PMTllmMIOLIIlLl]l]JllllLLllIlIll%llllllljll[llLJllllll
}
i FTLE-CONTRAOL., 1$E LECT 1Q?TAI;QMA’— :D;A{ILP’P’HAPE: RS N TS ﬁjﬁ?%sul [I |
1
L1l ! L SELECT Am%sﬂ'sﬁbﬂFﬂAhEil #hS&ﬂY&N .Tznggqsma. N T A O
1
1113 L ;11FIL£##@MLﬂ|I$ ar pm&w MOQQ% ST O T O 0 6 B O
i
1) I: SR A W«:ﬁﬂﬁSﬁﬂ &ﬂ?@lsjTRqubfﬂux|kﬂJﬂUMhL|g<§hj|EEIQSEQﬂCFQAYﬂF¥§kn1 W R A
i1 1 : L ISELECT, xM'NSmEL'ZL“l‘TTAPEJ L%%&Iﬁnl\l =] %-T-!PN[?!Elol T T Y T T Y W
L1 l: L1 5&5L@$3T1152§§h?rﬁ*ﬂN951|Aﬁ$&IﬁMQ e FnﬁgﬂElfREﬁ&Eﬂth|lwsu|ﬁ&1H§SngﬁI§h|ﬁﬁmﬁ&$p|
19 1 : 1 SIENLECT FMEH?AJeruﬁﬂhkmhéégs-'F _ ASIS Sk NN
L1l : L SELECT ISMYDFELE| iA] SISTGA (T i;;;:_:,&g,.. L4 L1 WA
Ll: l'lllll!llll%ll‘llJIll{lLIlIALlll%lllllllllAILlJlilllLlTlllIlllllll
111 : I -O-ICONTROL~ O T S S S 0 S S B B B
11 b ! 11 SAME 'RlEICOI&Dx ARES, | Q;!ZI DOLLY- T Q?|5|a|) |K|EQ|R|*;T|5{P:E| L1 L
[I
1o by ! P HU<LI PLE, 11:111 LE, D 1151K1P1&\Q1KL1 MO LT, PxA K"y JC;OJUﬂ'nAileSl N T W O T A A W
I
o 1 : J I | 1 1 lulQlSlTERl IF IIL El lD[ElTA'l]JrLI JCMNIGIE 5| |'F IIL El N Bt UMIHIA}EI?I IFI L E"l 1 " | I N N N S '
L 1 ll) D S | I VS W NN N N W W I T I T U S D N T U S T U N N U U S U N N N NN U Y U N N U N U N T U AN N U N O A N T N D N T U e T N
) T L T | 1
I [111 4 i 4 9 . r ¢ ¢ ¢ o4 & 4 1 4 1 1 4 1 & .1 3 & 4 4 £ 1 & r ¢ 1 & 3 .+ 4 4 4 £ 1 4 4 4 1 4 4) 4 4 £ 3 1 3 ¢t 1 2 4 3 1 1
1 T T T T 1
L1 l. L1 4 A S U T U N S N A N N U (N N SN S N N S S SN N N N U S N A N U D S A N N N T N N SN N N N SN B I B e I B A S U B e |
N t f t 1 T
111: L1 4 1||1|l||11r11141411‘1%14111#111'1lllllllJl#lJLJJJILl%lLLJxlllAL
Ll ca L et L el

LT-S

Figure 5-1. ENVIRONMENT DIVISION Coding

GENERAL

SECTION 6

DATA DIVISION

The third part of a COBOL source program is the DATA DIVISION which describes
all data that the object program is to accept as input, and to manipulate,

create,

gories:

Q.

C.

or produce as output. The data to be processed falls into three cate-

Data which is contained in files and which enters or leaves the in-

ternal memory of the computer from a specified area or areas.

Data which is developed internally and placed into intermediate stor-

age, or placed into a specific format for output reporting purposes.

Constants which are defined by the programmer.

DATA DIVISION ORGANIZATION

The DATA DIVISION is subdivided into two sections:

a.

The FILE SECTION defines the contents of data files which are to
be created or used by an external medium. Each file is defined

by a file description, followed by a record description or a series
of file-related record descriptions.

The WORKING-STORAGE SECTION describes records, constants, and non-
contiguous data items which are not part of an external data field,
but which are developed and processed internally.

DATA DIVISION STRUCTURE

DATA DIVISION STRUCTURE
The general structure of the DATA DIVISION is as follows:
DATA DIVISION.

FILE SECTION.
[;file-description-entry

} [record-description-entry] ... | ...
(sort-description—entry

[WORKING‘ﬁTORAGE SECTION.
[77-1eve1-description-entry]]

record-description—-entry

Each section of the DATA DIVISION is optional and may be omitted from the
source program if not needed. However, if a section is included, it must be
incorporated in order of appearance shown above. These sections are described

on the following pages.

The file description defines information pertaining to the physical aspects
of a file. Such items as number of records in a block, identification of
records in the file, the presence or absence of labels, etc., are included
to describe the entire file.

The record description presents logical characteristics of each record. This
includes the layout of items within each record type, size of various items
in the record, indication of the range of values for each item, picture

of the contents of each item, whether the item is signed or not, and the
usage of an item within the program. All of these parameters may be utilized
to define logical characteristics of each record.

The WORKING-STORAGE SECTION is comprised of internal record descriptions and
individual unrelated items, which are described as record entries, or parts

of record entries,

In summary, the DATA DIVISION contains information pertaining to the data to
be used by the program: the files used, the records contained in each file,
and items comprising each record; in addition, working storage and constants
may be specified.

FILE AND RECORD CONCEPTS

FILE AND RECORD CONCEPTS

The approach taken in defining file information is to distinguish between the
physical aspects of the file and the conceptual characteristics of the data
contained within the file.

Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input
or output media and include such features as the following:

a. The mode in which the data file is recorded on the external medium.

b. The grouping of logical records within the physical limitations of
the file medium,

c. The means by which the file can be identified.
Conceptual Characteristics of a File

The conceptual characteristics of a file explicitly define each logical entity
within the file itself. 1In a COBOL program, the input or output statements
refer to one logical record.

It is important to distinguish between a physical record and a logical record. -
For COBOL a logical record is a group of related information, uniquely identi-

fiable, that is treated as a unit.

A physical record is a physical unit of information whose size and recording
mode are convenient to a particular computer for the storage of data on an
input or output device., The size of a physical record is hardware-dependent
and bears no direct relationship to the size of the file of information con-
tained on a device,

A logical record may be contained within a single physical unit; or several
logical records may be contained within a single physical unit; or a logical
record may require more than one physical unit to contain it. There are
several source—language methods available for describing the relationship

of logical records and physical units. Once the relationship has been
established, the control of the accessibility of logical records as related
to the physical unit is the responsibility of the operating system. In this
manual, reference to records means to logical records, unless the term
"physical record" is specifically used.

The concept of a logical record is not restricted to files but may be applied
to all sections of the DATA DIVISION.

FILE AND RECORD CONCEPTS

Record Concepts

The record description consists of a set of DATA DESCRIPTION entries which
describe the characteristics of a particular record. ZEach DATA DESCRIPTION
entry consists of a level—number followed by a data—name, followed by a

series of independent clauses, as required.
Example:
01 ITEM-ONE PICTURE IS X(6).

The maximum size of a record description (i.e., the sum of the maximum sizes
of all the items subordinate to an 01 level item) is restricted to 65,535

bits.

o
1
1SN

LEVEL NUMBERS CONCEPT

LEVEL NUMBERS CONCEPT

The concept of hierarchy is inherent in the structure of a logical record.
This concept arises from the need to specify subdivisions of a record for
the purpose of data reference. Once a subdivision has been specified, it
may be further subdivided to permit more detailed data referral. 1In other
words, level numbers define the interrelationship of the items comprising
the record and allow the programmer to access individual items or groups
of items.

The most basic (least generic) subdivisions of a record, that is, those not
further subdivided, are called elementary items; consequently, a record is
said to consist of a sequence of elementary items, or the record itself may
be an elementary item. ‘

In order to refer to a set of elementary items, the elementary items may

be combined into groups. Each group consists of a named sequence of one or
more elementary items. Groups, in turn, may be combined into groups of two
or more groups, etc. Thus, an elementary item may belong to more than one
group.

In COBOL, the item relationship is specified by the use of a series of level
numbers. These numbers may range from 1 thru 49. (Special level numbers
of 66, 77, and 88 are discussed later.)

Each record of a file begins with the level number 1 (which may also be
written as 01). This number is reserved for the record name only, as the
most generic grouping. Less inclusive groupings are given higher numbers
(not necessarily successive) up to a limit of 49. Figure 6-1 illustrates a
form of level construction.

The smallest elements of the description are called elementary items. In
figure 6-1, EMP-NO, EMP-COST-CENTER, EMP-LAST-NAME, EMP-FIRST-INITIAL, and
EMP-M~INITIAL are all elementary items, as well as EMP-H-MONTH, EMP—-H-DAY,
EMP-H-YEAR, EMP—-GROSS, EMP-HOSPITAL, EMP-LIFE, EMP-FICAT, EMP-STATE-TAX,

EMP-WITHHOLDING, EMP-LMONTH and EMP-LDAY. None of these items are further

subdivided; therefore, they are called elementary items.

Each elementary item belongs to one or more groups. In the example, EMP-
HOSPITAL is a part of the EMP-INSURANCE group. EMP-INSURANCE, in turn, is
part of the EMP-DEDUCTIONS group, which is part of the EMP-PAY-DATA group.
Therefore, a group is defined as being composed of all group and elementary
items described under it, until a level number equal to or less than the

o2}
4 BURROUGHS COBOL CODING FORM

ADDITIONS. DELETIONS AND CHANGES

COBOL DIVISION PAQE Of

1d3ONOD S¥IIWNN 1IAN

PROGRAM C
LEV EL ?\Suw\&g\'a ONSTRUCToon) | {
PROGRAMMER B DATE IDENT ig] 0
Am -) N U S U N T
PAGE | LINE A L z
NO. NO.
1 3]a 6|71 8 nie 22 . 32 42 52 62 72
i | I ' 1]
R ql‘lElMpiLol\/!E]E‘}n'“JPDJ-ALlJil%J1111LJIJ{lllllll‘llJJJLJLJll%llllllJlJL
1
y L ! Jlllel'lJJJJTLE‘!NUPJ"LMQIJllir'JLIIJlll%‘ll?Lrlcjqus-)lLJLllll11%L41Llilllll
I
y L1t L O3) L1%EMP»‘1Cp|$ﬁ"-¢c1:&ik):'ﬁ&1ﬁ144_14‘1 Bra qu!»‘L% T O S S G T S I B
1
1 J: Li051LlLLJJiﬁNﬁﬂM&M&w%JJLJiiJJl%LILL N T S S W B 6 S A
plat L L(OLSJL'il%EIMPL‘JLIP‘JSWI‘XNJ'NMIEIILLllif I’PlIfCAIXLCA'IB%I-IIiitillillilluLLL
l
Li gt Lol O L1 %GM'PI-1F1IRSTF1—P:1MIE\'111A{L1 Ly L PTG Xy S T S T A Y B W S A W
‘ i
SRR b 9SS L‘LEN\J/‘%"LM*;INJET‘I:MLLLJ1 - PIrg 1)(1-111[11111 T SR I W
]
A1 L O, 1 1y LL%E-lM?J:‘LALNIQMPHLplslﬁLLLAIKYI 14‘ 1 L‘PLQ 13L(L(01)%V191%-1_'. ¥R R L4 P14y
]
Pt L1 ob\L‘iJllJﬂaMFrﬁmlﬂﬂL&EQ-LLllJJ,l%ltLiJngLlill W Y W S S T
1
JE Ll OS5 LL%ENAQ‘ﬁh’meQﬂ?M Py 1fﬂtﬂlnﬂfhuu%lx I S
()
1 A'Jl L 11Q5u41_L__;_+§|M39—1Hr_')AULJ'1111411L1_%11ﬂ-|:@ﬁ1q1-1%11L1111an%lllllisL.L
||
L :j' ja 11015411,_A_+E'M(‘D)‘;H1‘A\/JELAEEJT111111111%1141-1C41C?flu141111114‘1L11'11111L1111
il
Lty L B +5MQ'L|JAV1~@&TLALQ1111114[1_||s1114|%1x I W A A A W
[
lLi:wﬁ ol :1QS1L11111rE|M|px"1GraQLS¢§__+11¢1ll1L11T1i’PLIlcl 19(101)V1qu'11L1L1 nrxxxlj SIS W
[L 1LoigxgL1¢L%EIM’?_;DIEDLWCI—T@LOI'*‘lSPJ1Sll%,LlJlJ1Ill%llllxtLJ_l{JLiiJllllJ
]
Lt bl L 1x1:09111|J'ELM.n'P"lﬂMSMt?:Ag\)ﬁErLJ4_1,1liAL*LlelLiJlJ_LL'nilxn%lxlxlixin
i
t1 1! ol iaaay EMP-HOSPTTAL) gy Prc lql(ll{‘DJVSIQL‘L YU T T O S B Y B B B S
[T T t 1+
11 | I 11t'Jill’JLJ'ELN‘APFLLiLFlel%i'J11111k+1LP4]:LgLL9|(Aq‘1)%V1q-q“A1111;}1[11111111
1
[L1 x;;fthi14LJE:MLPL’H—NY;EJ&HLL»114141111111L11111|1111111111111L1111
| T T)T L
| : _J_L_J_P__l‘l da] ‘l|" 1 lgMPL lFXILQiAI 4 JJ D T U B & L+ i l’PlLC‘I IQqul }uﬁlil’LJ L1 % i d 4. 41 1 .3
(P4
1 | | 14 | S D S N Ll‘\l 1 lElM?K LFIAETEI IT—AX i i J S | Yl 1. LIJQQ IQICLL{D%VHIQJ'LI U S ; [S W U T S U G B |
i
1ol Lo AN ETET F1 N } M?-LMIL-G_LH‘LQ’L‘L)L]:‘L'Q{G‘} Lol nr 1 I‘Pl:ci 1‘?1%‘?3;\/1 1(1&111‘L1 TN SO SRS T ST T W W
\
) 1 | - LJx%;JLlLJL1+EM¢(PL"1L4P15L"1?{E¢VI1&P~?A11411rL1111LllL{lLJLJl[ll#LLJLl;I||1
1 '
A e T IRt S A{EMNH-TM.ﬂ4an1HIII Ly 1'RI¥;19fﬁ-1% T O 0 W Y U B S
1
P4 da ! L LLOH'A1|11415M1P1'1L1333A\/L11141111 1[1L?£CLiqql‘1l R U S U S NN [WA VN (S U0 S W N O O |

Figure 6-1. Level Number Construction

LEVEL NUMBERS CONCEPT

group level number is encountered. In the example, EMP—-PAY-DATA group in-
cludes all items to, but not including, EMP-LAST-REVIEW (which has an equal
level number). Likewise, EMP—-DEDUCTIONS group includes all subsequent items
up to, but not including, EMP-LAST-REVIEW (which has a level number less than
EMP~DEDUCTIONS) .

Level numbers used in defining successively smaller groupings, working toward
an elementary item, are given in larger values, Although it is not necessary
that they be consistent or consecutive, a level number must not exceed 49. A
level number immediately following the last elementary item of a group must
have a value of less than or equal to the level number for that group and equal
to the level number of some previous group. An exception is that level number-
1 (or 01) is reserved exclusively for identifying the beginning of a record

description.

In the above example, the rule prohibits EMP-ANNUAL-SALARY from having a level
number of 2 (or 02). Likewise, the entry name EMP-LAST-REVIEW could not have
had a level number of 10 or 06 because, in the example, no previous group ap-
pears with either of these levels. As a completely separate group, it could
only have a level number the same as that of the major groups previously shown,
Figure 6—2 illustrates another way to visualize the concept of level numbers

by using the same example,

AL

(o
EMPLOYEE INFORMATI ON
2 -

e |o] EmPLOYEE- |ANNUAL{ DATE PAY DATA <z
MN |S NAME SALARY|HIRED o
pu T - A ~E AR
LM NORMAL DEDUCTIONS
°B |€ GROSS

N A -
E R Y S
E E INSURANCE TAXES

R =
SR ERANRANNEEEENT LIitidt DLt E ettt ettt
m 2] - ng > zO zZ T @ -n %) £ 20

o} 5= o = = = >
$ o 5 25 z 2%z % & 3 g & I g%
~ in - e c ur] £ o [m T o
(] ! ! "m > T = jur v \ T
< O Z -y ~ r >) o
m m > 2 -] ' = - - -
moz z EERR Y 2 & = x 2
z & " 3 F g » m 3
c 2 rp > o |
E4 [) » o
m < 2
m
P

Figure 6-2. Concept of Level Numbers

QUALIFICATION

QUALIFICATION

Every user-defined name explicitly referenced in a COBOL source program must
be uniquely referenced either because no other name has the identical spelling
and hyphenation or because it is unique within the context of a REDEFINES
clause, or because the name exists within a hierarchy of names such that
reference to the name can be made unique by mentioning one or more of the
higher—level names in the hierarchy, These higher—level names are called
qualifiers and this process that specifies uniqueness is called qualification,
Identical user—-defined names may appear in a source program; however, unique-
ness must then be established through qualification for each user-defined name
explicitly referenced, except in the case of redefinition, A1l available

qualifiers need not be specified so long as uniqueness is established.

The hierarchy of qualification is as follows: names associated with a level
indicator are the most significant; then names associated with level-number
01, then those names associated with level-number 02, ... , 49. A section-
name is the highest (and the only) qualifier available for a paragraph-name.
Thus, the most significant name in the hierarchy must be unique and cannot
be qualified. Subscripted or indexed data-names and conditional variables,
as well as paragraph-names and data-names, may be made unique by qualifica-
tion. The name of a conditional variable can be used as a qualifier for any

of its condition-names,

Regardless of the available qualification, no name can be both a data-name

and a procedure-name.

Qualification is performed by following a data-name or a paragraph-name by
one or more phrases composed of a qualifier preceded by IN or OF,. IN and

OF are logically equivalent.
The format for qualification consists of two options which are shown below:

Option 1:

} file—name]

5=

{lﬂ data-name—2 c [{
OF

data-name-1 }
condition—name

IN ——
l{§f] file—name

QUALIFICATION

Option 2:

215

paragraph—name { } section—name

The rules for qualification are as follows:

a. Each qualifier must be of a successively higher level and within

the same hierarchy as the name it qualifies.

b. The same name must not appear at two levels in a hierarchy so that
the name would appear to qualify itself.

C. If a data-name or a condition-name is assigned to more than one
data item in a source program, the data-name or condition-name
must be qualified each time it is referred to in the PROCEDURE
DIVISION, ENVIRONMENT DIVISION, and DATA DIVISION (except REDEFINES

where, by definition, qualification is unnecessary).

d. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referenced

within its own section.

e. A data-name cannot be subscripted or indexed when it is being used

as a qualifier.

f. A name can be qualified, even though it does not need qualification:
if there is more than one combination of qualifiers that ensures

uniqueness, then any such set can be used.

In the example below, all item descriptions (except the data-name PREFIX)
are unique. In order to refer to either PREFIX item, qualification must be
used. Otherwise, if reference is made to PREFIX only, the compiler would
not know which of the two is desired. Therefore, in order to move the
contents of one PREFIX into the other PREFIX, the PROCEDURE DIVISION must

be coded with one of the following sentences:

MOVE PREFIX IN ITEM-NO TO PREFIX OF CODE-NO.

MOVE PREFIX OF ITEM-NO TO PREFIX IN MASTER-FILE,

MOVE PREFIX OF TRANSACTION-TAPE TO PREFIX IN CODE-NO,.
MOVE PREFIX IN TRANSACTION-TAPE TO PREFIX IN MASTER-FILE.

Q 0 T

QUALIFICATION

Example:
01 TRANSACTION-TAPE . . . 01 MASTER-FILE
03 ITEM-NO . . . 03 CODE-NO
05 PREFIX . . . 05 PREFIX
05 CODE . . . 05 SUFFIX .
03 QUANTITY . . . 03 DESCRIPTION .

TABLES

TABLES

Frequently, the need arises to describe data that appears in a table (i.e.,
array, list, etc.). For example, a master record might contain 16 total
fields, and these might be described as TOTAL-ONE, TOTAL-TWO, etc. However,
this requires 16 data-names, and each total must be individually referenced
in the PROCEDURE DIVISION. A more powerful way to describe the field is:

TOTAL . . . OCCURS 16 TIMES.

Elements of a table are referenced thru the use of subscripting or indexing.

An element of a table is represented by an occurrence number.

The elements of a table may contain subordinate fields. For example:

02 TOTAL . . . OCCURS 16 TIMES.
03 TOTAL-A . . . PICTURE 9(6).
03 TOTAL-B . . . PICTURE 9(6) OCCURS 3 TIMES.

Also, as shown above, OCCURS may be nested to describe tables of more than
one dimension by applying an OCCURS clause to a subordinate name. Standard
COBOL 1limits tables to three-dimensions.

In the WORKING-STORAGE SECTION, initial values of elements within tables may
be specified as follows. The table may be described as a record by a set of
contiguous data description entries, each of which specifies the VALUE of an
element, or part of an element, of the table. In defining the record and its
elements, any data description clause (USAGE, PICTURE, etc.) may be used to
complete the definition, where required., This form is required when the
elements of the table require separate handling due to synchronization, USAGE,
etc. The hierarchical structure of the table is then shown by use of the
REDEFINES entry and its associated subordinate entries. The subordinate
entries following the REDEFINES entry, which are repeated due to the OCCURS
clause, must not contain VALUE clauses.

Example:

01 W-S-TOTS.
03 FILLER PC X(24) VALUE IS ZEROS.
03 CARDIMAGE-VALUES PC X (80).

01 R-TOTS REDEFINES W-S-TOTS.
03 TOT PC 9(4) OCCURS 26 TIMES,

SUBSCRIPTING

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual element
within a table of like elements that have not been assigned individual data-
names. (Refer to the OCCURS clause.)

'The subscript can be represented by a numeric literal that is an integer,
or by a data~name. The data—name must be a numeric elementary item that rep-

resents an integer. The data—name may be qualified.

The subscript may be signed and if signed must be positive. However, the sub-
script cannot be computational—-3 or J—signed. The lowest permissible subscript
value is 1. This value points to the first element of the table. The next
sequential elements of the table are pointed to by subscripts whose values are
2, 3, The highest permissible subscript value, in any particular case,
is the maximum number of occurrences of the item as specified in the OCCURS
clause, Violation of this rule will cause the object program to terminate

with an INVALID SUBSCRIPT message.

The subscript, or a set of subscripts, identifying the table element is en—
closed in parentheses. The table element data—name appended with a subscript
is called a subscripted data—name or an identifier. When more than one sub-
script appears within a pair of parentheses, the subscripts may be separated
by commas and are written in the order of successively less inclusive dimen-—
sions of the data organization.

The general construct for subscripting is:

data-name }
condition—name

(subscript [;subscript] ...)

For example, in figure 6-3, to reference the first volume, EN-VOLUME (1) is
written, If data—name N contains the number of the volume desired, EN=VOLUME
(N) is written. If the data item PAGE~NO contains the number of the page
desired, then EN-HEADING (N, PAGE-NO) would reference the 12-character

page heading.

Where qualification and subscripting are both required, the qualification is
shown first, followed by the subscripting. For example, EN-PAGE OF
ENCYCLOPEDIA (N, PAGE-NO). EN-PAGE (N, 3) OF ENCYCLOPEDIA is incorrect.

For further restrictions, refer to the discussion of identifiers in this
section.

6—12

£1-9

BURROUGHS COBOL CODING FORM

ADD! TIONS,

DELETIONS AND CHANGES

PROGRAM .-3 COROL DIVISION PAGE oF
Muiri- Vimeosiomsn __.__!_ckm_g-, e v 4 ! (—
PROGRANMMER _B DATE |DENY 73 0
eV N0 W S S N O
PAGE | LINE A s 2
NO. NO .
s|7|8 i .z 32) a2 52 62 I
[l - : ! T T
Ll : 1IN EI&LC\/‘C,LO'PE,D]:A,,, L A G R S S S T S T T W 0 B 0 A O W
11 1141' L1 OS5 o g LEk)r-VpJLmMag \Q)lcl_lélgl_id*_QL_LTL%_l_,L.{._LJ_J_.L'll‘lfillJLlllil
[
il NI RNt N < !llllENl—lDNmElelJl TS Y A R '1;11111%m 1>‘1(161)1-|711111111111
1
11 { il stler) BNSURASE cURS: TIMES. BN
g 11 19 +_Q_ =14 L 1 - L
L1l [AR RS Sy i +§1!\)" EEEKQZ:N@J I I ! NI 1‘?]:1@ AN I IS I I
|
it AT SRR §L=THN 151"‘1"'?#‘1‘21#3@_1%&1 IOC RS %SI}‘JIJMESIoI 1_1rLL AN T TN T U T W D T 0 T N A 0 W BN 1
.]
L gt Lol LM_‘:_LEIX—H Loy R S S AR PR XJ(I&[QQ)*.J_LI_LJ__LJ__[_.L_L__
i
[W RN SN NN } [R il A]L‘lnllLllifLLl'i 1L!%1111J!llll
1 .
1 P : R . ' i
| i i _'__i_J_L_J._L_l__LL!l S0 FD Y N S| 11 P11 IS U I W | [N
1 ; 11 it - %111 { 1 +-].\ i
i ! g THRS SE SR A A TS bl - 4J_KLLLxl_II'lLll S SO Y 0 WS W0 N S W U U W S)
: 1
L1y ! L) U | THS N Y L S S L} T W O | TGS S T Y W R S T T Y S T O I W
1
11 l: oL Y S N S S S S 1 ! AR - TOOE A S S S O YT T O Y O D B B ST B
[P! JR Y Lot 1o | 4L AL_L__LJ_L__fLRLJ._ l% XLLLllli%lllLLl 11%111111111
1
] .
i H ! —_ A - -
lJll 1 1ixA11|11T114111 S l% 1111L|11'1111' l,+_J__LI[|||[_L__j__
11 L ! - D N N WSS W U W T ! - i 11 15 IR TN S W 0 ! T IO N S Bt N TS W N T J N . .
i i _L_L.4+_&,L_1 Ll bt i _‘.é 1.4 1 } ! t t 1 i L
r g ! { N R A W S T LS S B W 11 1{_L141|11~|_}||111;4LJ_§,_1_L_4_J__;__1_1_1_J_,_L_
l R
|
. !
4 sl PR S O i i } L PN T I I S -
1 l';F_L_L_T__ LLLJ_LILL+ i)l ;1 1 Ly 1LJL¢114%11111L41LIQ_L 1ot]
1! vl ; i
) R U R 13 . 0 TR W T T T S T T S O
JLllj_“ Lr L 4 L;lll%ll.llxl %1!1 LJ_Ajl 1.1 1111_}1 111141J_.’,__L 'y
T L I i L ' 1y I J) 1 TN N S N N N SN S A O B [S |
11 i A Ll ! J Rt Lrl i -} _l s) } } 1 i
1 1 : 10k) I N S U W I L,l_.‘__'_l_Li - 'Ll Pl le) N S S N W S W = I W N 1LL1+L S| o4
1 1 : R AN U U B N W B %l lJ_L_L_LL14_+_LJ_L¢_L_LJ_‘LL~F_LLJ_L4_L_LL_L_+_1_L_LJJ_LLLIJ‘_LI il 1L
]l [L1 .1 U0 NN S S S SN S B N N U N S S S S L1l L 3§ A N W S U U S G U A N SR TN W N S S S N SN S | 1
N —1" T T T v
11 1! O U WS WY S T S S A | 1111%11- L} I N | lliflLLJ_llJ_lllll 141 1
[
1) IR : !] T SO T U NN N S G I S N WO 1 9 OO U O A Y 1_d
: i_J_J__L_J_J_l_LJ_._+__I__I_l_J_l_J_L_J_l+.gJ__L_L_J_J_L.J_J' 4 4
1 JOL Li S N SR W N N S S A G 1 1] L1 ol N N W VO S 10 U0 W (0 S TN WS S U Y AN N S S G U O 4
Figure 6-3. Coding of Multi-Dimensioned Table

ONILdI¥OSENS

INDEXING

INDEXING

References can be made to individual elements within a table of like elements
by specifying indexing for that reference. An index is assigned to that level
of the table by using the INDEXED BY clause in the definition of a table. A
name given in the INDEXED BY clause is known as an index—name and is used to
refer to the assigned index. The value of an index corresponds to the occur~—
rence number of an element in the associated table., An index must be initial-
ized before it is used as a table reference, An index can be given an initial
value by either a SET or a PERFORM statement.

Direct indexing is specified by using an index—name in the form of a subscript.
Relative indexing is specified when an index—name is followed by the operator
+ or —, followed by an unsigned integer numeric literal all delimited by the
balanced pair of separators left parenthesis and right parenthesis following
the table element data—name. The occurrence number resulting from relative
indexing is determined by incrementing (where the operator + is used) or
decrementing (where the operator - is used), by the value of the literal, the
occurrence number represented by the value of the index. When more than one
index—name is required, they are written in the order of successively less-—

inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table ele-
ment, the value contained in the index referenced by the index—name associated
with the table element must neither correspond to a value less than one (1)
nor to a value greater than the highest permissible occurrence number of an
element of the associated table. This restriction also applies to the value

resultant from relative indexing.

The general construct for indexing is:

(R (. Il
index—name literal—-2 index—name literal-4

condition—name

{data*name J (r) .

literal-1 literal-3
\ E ’

6-14

IDENTIFIER

IDENTIFIER

An identifier is a term used to reflect that a data-name, if not unique in
a program, must be followed by a syntactically correct combination of quali-

fiers, subscripts, or indices necessary to engure uniqueness.
The construct for identifiers has two options which are as follows:

Option 1:

data-name-1 [{%% } data—name—z]

[(subscript-1 [, subscript-n]...)]

Option 2:

data-name-1 [{%;-} data—name-z]

[([index“name-l [{f} literal-z]] [[index—name—z [{j} 1itera1-4]]].“Jl

literal-1 literal-3

zi-

Restrictions on qualification, subscripting, and indexing are as follows:
a. The commas as shown in both options are optional.
b. The data-name-2 must not itself be subscripted nor indexed.
c. Indexing is not permitted where subscripting is not permitted.

d. An index may be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause
permit storage of the values of index-names as data without con-

version. Such data items are called index data items.

e. Where more than one occurrence number is required for a data—name
reference, it is illegal to use a data—name for one occurrence num—
ber and an index—name for another, However, literals and index-

names may be mixed,

6-15

FILE SECTION

FILE SECTION
This section contains descriptions of the files used by the object program.
FILE DESCRIPTION

The function of the FILE SECTION is to furnish information to the compiler
concerning the physical structure, identification, and record names pertaining

to a given file.

The construct of this section contains four options:

Option 1:
FD file-name COopY library-name
. 'word-2 1
REPLACING {g:ig:i me-l} BY |data-name-2
— a | literal-1
word-4
word-3 }
. -BY data-name-4 .
[{data-name—S — [1itera1-2]]]
Option 2:
ASCII
FD file-name-1 : RECORDING MODE IS STANDARD
NON-STANDARD
B RECORDS
STATIONS
;FILE CONTAINS integer—-1 [BY integer-2]{ STATION
QUEUES
i QUEUE
;BLOCK CONTAINS [integer-3 i - ECORD
|’ [integer-3 T0] integer-4 [CHARACTERS

[JRECORD CONTAINS [integer-5 TQ] integer-6 CHARACTERS]

[EL {BECORD IS }{OMITTED
_’LAﬁ—— RECORDS ARE [|STANDARD [data-name-1[,data—name-2 ...]]}]

" (VA - [[literal-1/] [literal-2][/[literal-4]]
E{XALHE} OF ID 18 { data-name-3 }

[SAVE-FACTOR, IS integer-7]]

RECORD IS]

[;DATA {EEQQBDS ARE data-name—4 [,data-name-5 ...]]

FILE SECTION

‘Qgtion 3:

SD sort-file-name COPY library-name

[word-1 word-2
REPLACING { } BY data-name-2
—_— data-name-1 _— literalel
word-4
[{ggzg:iame—B} BY [data—name-4]] s] .
literal-2

Option 4:

SD sort-file-name
FILE CONTAINS integer-1 [BY integer-2] RECORDS

[RECORD CONTAINS integer—4 CHARACTERS |

. _. [RECORDS
LBLOCK CONTAINS integer—6 [EEKEKETERS]]

RECORD IS
LQAIA {ﬁibﬁﬁﬁs ARE

} data-name-1 [data—name—z]...]

A level indicator of FD or SD identifies the beginning of a File Description
or a Sort File Description and must precede the file statement. Both entries
should commence under Area A of the coding form. Only one period is allowed

in the entry and it must follow the last clause specified.

Options 1 and 3 can be used when the Systems library contains the library-

name entry: otherwise, Option 2 and/or Option 4 must be used.

In many cases, the clauses within the File Description or Sort File Description:
sentence are optional. Their order of appearance is immaterial. Each clause

is discussed in detail.

Figure 6-4 illustrates the use of the File Description sentence followed by

data record entries.

NOTE
The three 01 levels implicitly redefine
the record area. The DATA RECORDS clause
is treated by the compiler as being for
documentation purposes only and does not

cause an explicit redefinition of the area.

6-17

8T1-9

BURROUGHS COBOL CODING FORM

ADDITIONS., DELETIONS AND CHANSES

NOILD3S 3114

FROGRAM COBOL DIVISION PAGE of
s e Decrion. Examers ! !
FROGRAMMER DATE IDENT 73)
\)\AL\E [U U U U U T S
PaAGE LINE A L] 4
NO . NU
r-‘— 3la 6/T| 8 "2 22 32 42 92 62 ks d
[] T 1 - [1
441! FII‘L1615|E1QA:QﬁLJLlJJL¢LIII%illl,LLJLlj'LLlLLlJl%JlLl_lllil%lJJLlllLJL
1
Lol ED) MASTER-FPLLE 1 BLOCGK CONTATNG, 3y RECAORDE | 4 111ttt 1it
]
I O Lo VIBL WE OF D D PERS ";f“ MASTER" |§§|V§|:fiﬁﬁmgﬁl f‘OI-L]_l N Y T O
1
| 11 1: OhxEMP[LLﬁREICa-'TLv144L1;1.§L;141::li;tnluu!l;jﬁi;t:xa;:n%:Jnnljl::l
11 1: '11qslilllLll%EMPLI“INIWMBE‘LRILIJLIliLwLTDl Clﬂl(ﬁas-'%llililx11%114114¢111
[L tJ015‘11111L11@1€1PLT’1111L14LJL411111SDJ-DCAHJQﬁLuL;A111114_1L1|114L11L|11
| i i
JLW_L_:._‘, Alo’sllAlll!llJrFLIILJLIE{RlliL%A VoLl TAPII‘LCLDSLCHDN¢IL11LJ_LL1LJ%1L4L|||1|1
I : Pod :O'S‘L__I__'__;___L_ALJ_I_F_S_QLB:SQEJEL‘L‘*_LL 1L {PIILQ A)‘I)‘IX!XI-I% TS U S S T O Y O T £
L} lloS;LLll]‘,L_.i_F_—lI_ighgg L;jL,liLiLlilli?inCle(Lém)L-lLl_l_L]lllil]llllllllllL
.]
[L S, E.X:T;RF\C.'H‘LFI.L.E S FELE QQ!Q! AT NS "QQQQ_LE@QQ@FD_Q_‘L_L.' L_I_.L_L_l_*,_L_I_LJ_LI_J_l_.l_l_q
! §

Al O SORTM=REC. f o L TR S O W 1
|
5 14_:_‘ dla 2 OS L +§T;&§WM,MMM

Ll o OS i (STEMPLoOUWMBER, 11 (PRC) ACED ey it]
FT U N UL S < =S U S 4_L.,i._L_+EJLL-i_LL52L_J__4 Lpdb g %PII-CI I)Q(QL?I)I-}LL Lol
1 FDb, . DEPT“?'E(PMJVL&‘LMLEL QFx o T 1?5&51"1/1"1"2151%?1'1 " TR A A

| S N W WS T S S W W |

}
H
Y NN DU S O Y T S Y X

i t
11 ".: | L DATIA ‘R._EJSQ&M_BQDZM_L‘LIL%M_J%‘lLLILMEJ& T T S Y Y G R Y Y N
,.[..L.,J._.;.NT Q‘;A__ft\.EAA\;bJ;N_@LJSI*‘M J.M TP S S S S T O W WS W S B '

L _:__T Ol iﬁob Y= AL_&Q%LLJ_M%%M.%QMM%MMJH;@M

S NP _.“Tosluu__l opdoBmCodE . PEme X(4) B4, , L W L
L OS Le EMeLCoun BEG 208D e]

| :__x_ ,_.L_L__ijg Lo i1 '%HI_AL;ME.? L1 Prc X H S e 11 VAN T N Y S W
’,_l.._lu.._i__‘i_i,..l_..’__;“_ i AL S S U WS A S N % N S S B | f TS S G Y T T T S A S e IS ES N |
_LJ,A;_I.,.:..,_,. I = PO U TV S VSRS S S S T O0 E VE HE W SOLGS S§ S S T ET B O SYIS O SS B S S
Lot : } S N S N T O S S U N O B 1 B llJJrLl1lJ_J.L1_L+.J_J__L_J._L.J_J__l~l_*_J_l_L.L_l_I_L_LJ_L_
it PR U N S T S W W U U U A0 U W S S W VU VO WA A W U U T W A U W Y S N A U S S S A A O O S O O

Figure 6-4. Coding of FD and DATA RECORDS

BLOCK

BLOCK

The function of this clause is to specify the size of a physical record
(block).

The construct of this clause is:

BLOCK CONTAINS [integer-1 TO] integer-2 [%%%%%ERS]

Integer-1 and integer-2 must be positive integer values.
This clause is required if the block contains more than one logical record.

When only integer-2 is used, it will represent logically blocked, fixed—length,
records if its value is other than 1. When the integer-l TO integer-2 option
is used, it will represent the minimum to maximum size of the physical record
and indicates the presence of blocked variable-length records. Integer-1 is

for documentation purposes only.

The maximum value of the integer used in this clause is shown in table 6-1

and refers to the number of characters in a block.

The word CHARACTERS is an optional word in the BLOCK clause. Whenever the
key word RECORDS is not present, the integers represent characters.

For object program efficiency, the use of blocked records is recommended. The
physical size of the block should be as large as possible depending on memory
availability.

Blocks of records are read into the input buffer area by the MCP, and the
delivery of each record to the record work—area of the program (required by

an explicit READ statement) is completed.
Blocking or deblocking of records is automatically performed by the MCP.
NOTE

If the file is assigned to an input disk
file and this clause is omitted, the block~
ing factor specified in the disk file header
will be used by default.

6—-19

BLOCK

Table 6-1. Maximum Value of Integers

1/0 MEDIUM MAXIMUM BLOCK SIZE - CHARACTERS

READER 80/96

PUNCH 80/96

TAPE Limited only by the amount of
memory available.

DISK Limited only by the amount of
memory available,

PRINTER One print line.

PT-READER Limited only by the amount of
memory available.

PT-PUNCH Limited only by the amount of
memory avgilable.

Every explicit WRITE statement causes compiler—generated object code to notify
the MCP that a write is to be done., The MCP accumulates the number of logical
records necessary to create a specified block size and writes the block. When
a file is CLOSEd, the records left in the output buffer area, if not a full
block, will be written as a short block by the MCP before the file is physi-
cally CLOSEd, The transfer of records to the buffer is automatic, and is a
function of the MCP.

The user must specify the actual size of variable—-length records in the first
four bytes of each record. This four—character indicator is counted in the

physical size of each record.

The BLOCK clause is not applicable to the READER, PT-PUNCH, or PT-READER
peripherals.

This clause may be omitted for unblocked files.

When a file is assigned to disk, the user should be aware that the physical
disk segment size is 180 bytes and that all READ and WRITE statements are, in
effect, in multiples of this size. The hardware must write (or read) in seg-
ments; therefore, it is preferred that the block size used be a multiple of
180 bytes.

DATA RECORDS

DATA RECORDS

The function of this clause is to document the names of the logical record(s) .

actually contained within the file being described.

The construct of this clause is:

DATA

{ RECORD 1IS } data-name-~1 [, data—name~2]. .

RECORDS ARE

This statement is only for documentation purposes. The compiler will obtain

this information from 01 level record description entries.

The presence of more than one data-name indicates that the file contains
more than one type of data record. These records may be of differing sizes,

different formats, etc. The order in which they are listed is not significant

No syntax error will occur when a record declared for the file is not listed
in the DATA RECORDS clause.

FILE CONTAINS

FILE CONTAINS

The function of this clause is to indicate the number of logical records in
a file. This statement is required for disk files, and optional for all
other files.

The construct of this clause is:

RECORDS

‘ - TATIONS
FILE CONTAINS [integer-1 BY] integer-2 { STATION

QUEUES
QUEUE

The indicated integers must be positive values.
Integer-1 may not exceed 105 when present.

An entry of FILE CONTAINS 20 by 500 RECORDS will notify the MCP to allot 20
separate areas of disk as each area is programmatically required. The size
of each area would be 500 logical records in length.

The above technique allows the MCP to efficiently assign file areas as needed,
rather than to assign immediately one huge file area during the first operation
of the program.

Programmatic usage of the file can either enhance the area technique or defeat
its purpose completely. For example, assume that a RANDOM file at some future
date will require a maximum size of 40 x 1584 (126,720) logical records, and
that no key conversion formula is used, due to the key being a six—digit num-
ber running from 1 through 126,720, which exactly fills the key requirement,
as is the case in auto license numbers in some states. It could happen that
the first 40 records could open up an entire disk module, if they were in
increments of 1584, which would negate the area technique completely and thus
cause the MCP Disk Directory to recognize the file as being of maximum size,

even though only 40 records were processed,

FIIE CONTAINS integer-1 STATIONS must be specified if more than one station

exists on this file. Otherwise, only one station will be enabled.

6—22

LABEL |

LABEL

The function of this clause is to specify the presence or absence of file

label information as the first and last record of an input or output file.

The construct for this clause is:

LABEL

{REQQRD IS] OMITTED.
RECORDS ARE] |STANDARD [data-name-1 [,data—name-2 ..,]]}

STANDARD specifies that labels exist for the file or device to which the file
is assigned. It also specifies that output labels conform to the standards

as implemented.

STANDARD, when specified for disk files, indicates that the 20-character
contents of the VALUE OF ID clause will be inserted into the disk file header.
Should VALUE OF ID be omitted, the first 10 characters of the FD or SD file-
name will be inserted into the second 10 characters of the disk file header.
When the LABEL clause is not specified, LABEL RECORD STANDARD is assumed,

Data~name~1l, data-name—-2,.,.., are names of label records and must not appear
in the DATA RECORDS clause, or be the subject of a record description asso-
ciated with the file,

OMITTED specifies that physical labels do not exist for the specific input
file to which the file is ASSIGNed. During object program execution, the
operator will be queried by the MCP as to which unit possesses the input data.

The operator must reply with "mix—index'" UL "unit-mnemonic'" control message.

OMITTED specifies that labels are not to be created for the specific output
file ASSIGNed.

6-23

LABEL

The Burroughs Standard label record serves as both the beginning and ending

label record,

Position

1

2-8

9
10-16

17
18-24

25-27

28-32

33-34

35-39

40

41-45

46~ 52

53

6—-24

and is comprised of the following parts:

Field Description
Always blank.
Always contains the literal "LABEL '".
Always contains zero.

Contains zeros, unless the file is a multifile tape (that
is, a tape which may contain more than one file), in which
case the field will contain the value of the identification
of the multi-file, from one to seven characters.

Always contains zero.

Contains the value of the identification of the file, from

one to seven characters. In a COBOL program, this value is
taken from the VALUE OF ID clause in the File Description,

or from the first seven characters of the FILE-NAME in the

File Description if the clause has been ommited.

The value of the reel number is preset at "00l" and incremented
by 1 each time a subsequent reel is opened for this file,

The value of this field is taken from the current date as
maintained by the MCP.

The value of cycle is preset to "00", This field may be used
to distinguish between multiple runs of the same program, as
controlled by a user program,

The date at which the MCP will assume this tape to be a scratch
tape. If this date is reached, and the tape is mounted with

a write ring in place, it is a contender for selection by the
MCP as an output tape file, and could be over-written. This
date, by default, is one day after the file was created (as
taken from the MCP current date filed). To assign a save-
factor of more than one day, refer to the SAVE-FACTOR option

of the File Description,

Used only for ending labels, and enables the MCP to distin-
guish between the physical end of a reel (indicating that a

subsequent reel or reels follow) and the actual end of a file.
0 end-of-file.

1 end-of~reel.

]

Used only in ending labels, and contains the number of blocks
(physical records) written on the tape.

Used only for ending labels, and contains the number of records
(logical records) written on the tape.

A value of 1 notifies the MCP to format the output into memory
dump notation. This feature is not implemented.

Position

54-58

59-63
6466
67-69

70-80

LABEL

Field Description

Used to maintain a permanent serial number (usually a tape
library reel number) for this reel. It may be assigned by
the user, then permanently maintained by the MCP, regardless
of the tape's status (in use, scratch, multifile reel, etec.).

Identifies the system which created this tape. When created
on the B 1700, this value will always be " B 1700 ',

File buffer size in binary; for use by MCP if the DEFAULT
option is specified.

Record size in binary; for use by MCP if the DEFAULT option
is specified.

Reserved.

6-25

RECORD

RECORD

The function of this clause is to specify minimum and/or maximum variable
record lengths.

The construct of this clause is:
RECORD CONTAINS [integer—l EQ] integer-2 CHARACTERS

Integer-1l and integer-2 must be unsigned non-zero integer values.

If integer-1 and integer-2 are specified, the variable-length record technique

is utilized.

If only integer-2 is specified, the compiler will treat the clause as being
documented only. The record size will bhe determined by the structure of the
record description.

If integer-1l and integer-2 are specified, they refer to the minimum and maximum
size of the variable records to be processed. At least one record description
must reflect the maximum size record length as specified in the RECORD CONTAINS
clause.

The user must specify the actual size of variable-length records in the first
four bytes of each record. The four-character variable-size indicator is

counted in the physical size of each record.

This clause is applicable to disk or magnetic tape files sequentially OPENed
INPUT or OUTPUT.

G-26

RECORDING MODE

RECORDING MODE

The function of this clause is to specify the recording mode for peripheral

devices, where a choice can be made,

The construct for this clause is:

STANDARD
RECORDING MODE IS | NON-STANDARD
| AscTr

STANDARD RECORDING MODE is assumed if this clause is absent from the FD
sentence. The MCP automatically checks the parity of input magnetic tapes
and will read the tape in the intelligent mode. For this reason, this clause

is not required for input tapes.

The MCP will automatically assign STANDARD RECORDING MODE on 9-channel magnetic
tape drives if a SELECT clause indicates TAPE, even though the programmer has
designated the unit as being NON-STANDARD,

Binary files are read or written, with no possibility of translation,.

The recording modes for the peripheral devices are provided in table 6-2.

Table 6-2. Recording Modes for Peripheral Devices

DEVICE STANDARD NON-STANDARD
TAPE-7 Odd Parity Even Parity
TAPE-9 Odd Parity -

DISK . Memory Image -
READER EBCDIC Binary
PUNCH EBCDIC or BCD Binary
PT-READER BCL Binary
PT-PUNCH BCL Binary
PRINTER BCL -

6-27

VALUE OF ID

VALUE OF ID

The function of this clause is to define the identification value assigned, or
to be assigned, to a file of records and to declare the length of time that a
file is to be saved,

The construct of this clause is:

EALEE} . {[literal-1/] .. _ . _
{EA OF ID 18 { data-name-1 [1literal-2] [/[literal-3]]

[SAVE-FACTOR IS integer-1]

This clause may be used when the label records are present in the file being
described, If this clause is not present, the compiler will take the VALUE OF
ID from the first 10 characters of the file—name (FD or SD) and place that ID
in the ID entry of the label where the value of the main directory entry would
normally be found. The file—name must be uniquely constructed so that the MCP
will be able to recognize the files.

Example:
FD SCHEDULE-DISK1 Would create a VALUE OF 1D as
FD SCHEDULE-DISK?2 SCHEDULE-D for both files and

cause a dup file action by the MCP.
To make them unique:

FD DISKOUTPAY Would create a VALUE OF 1D as
FD DISKOUTTAX DISKOUTPAY and one of DISKOUTTAX,
thus causing no MCP confusion

during object program execution.

The first name for a magnetic tape file is a common name of a multi-file tape
and the second name will be the name of a file within the multi-file. The
first name of a magnetic tape file will be taken from the multi-file clause in
the I-O—CONTROL paragraph. The second name will be taken from the value of

literal—2., Non—-disk files are limited to two names.

The pack—id name of a disk file will be taken either from the multi-file clause
in the I-O-CONTROL paragraph, or from the value of literal-l. The main di-
rectory (family) name will be taken from literal-1l (in the case of systems

disk or if I-O-CONTROL is used to specify user disk), from literal-2 (in the
case of user disk without I-O-CONTROL or if literal—2 is followed by a slash
(/)). The sub-directory entry (file—name) will be taken from the value of
literal-3. Literal—-3 cannot be used when literal—-l and literal-2 are both

6-28

VALUE OF ID

blank, When using the literal option, if three literals are used, they repre-
sent pack-id, main directory (family), and sub-directory (file—name), respec-
tively, If two literals are used they represent main directory and sub-
directory. If only one literal is used it represents the main directory entry.

PACK-1ID MAIN DIRECTORY SUB-DIRECTORY
[1literal-1 /] [literal-2] [l / [1literal-3]]
can be specified in can come from FD or forces literal—-1l / and
I-O—~CONTROL and forces SD name literal-2 to be speci-
literal-2 to be speci- fied
fied
Examples:

VALUE OF ID IS "USER1"/"PAYROLL'"/"DEDUCTS".
VALUE OF ID IS "WORKPACK1'"/"TRANS"/.

VALUE OF ID IS "PAYROLL"/'"MASTER",

VALUE OF ID IS "ITEMS".

VALUE OF ID IS "MSTTAPE" SAVE-FACTOR IS 031.

The data—name—l option should only be used if file names are to be built under
program control, as this option overrides file equates and I-O—CONTROL name as-
signments for that file. When data—-name—-1l is used it must be defined as being
30 characters in length and alphabetic or alphanumeric.

When the data—name—1 option is used for disk files, the disk—pack-id must be
included in the description., The compiler will use the first 10 characters of
the data—name as the disk—pack—id each time the file is opened. If the file
is on or is to be created on systems disk, the first 10 characters must be
blank,

01 DATA-NAME-1, Overrides I—-O-CONTROL or use of

FD or SD name for that file.

03 PACK-ID PC X(10). Pack—id name for user disk must be
blank for system disk or non-—disk
files,

03 MAIN-DIRECTORY PC X(10). Cannot be blank at open time.

03 SUB-DIRECTORY PC X(10). A non-blank entry here requires a

non-blank entry for MAIN-DIRECTORY.

6-29

VALUE OF ID

Examples:

01 FILE-IDENTIFICATION.
03 PACK-ID PC X(10) VA "USER1 BPBKK'".
03 MAIN-DIRECTORY PC X(10) VA "PAYROLL BKK'".
03 SUB-DIRECTORY PC X(10) VA "DEDUCTS BPK."

01 DATA-NAME-1.

03 PACK-ID PC X(10) VA "WORKPACK1p".
03 MAIN-DIRECTORY PC X(10) VA "TRANSBBBBL".
03 SUB-DIRECTORY PC X(10) VA SPACES.
01 FILE-ID,
03 PACK-ID PC X(10) VA SPACES.
03 MAIN-DIRECTORY PC X(10) VA "PAYROLLBBK'".
03 SUB-DIRECTORY PC X(10) VA "MASTERBYKBK'".
01 VA-NAME.
03 PACK-ID PC X(10) VA SPACES.
03 MAIN-DIRECTORY PC X(10) VA "ITEMSKBBBY" .
03 SUB-DIRECTORY PC X(10) VA SPACES.

01 SOME-DATA-NAME,

03 BACKUP-PACK-NAME PC X(10) VA SPACES.

03 WHICH—-SYSTEM PC X(10) VA SPACES.

03 FOR-WHAT-DAY PC X(10) VA SPACES.
NOTE

Names must be moved in prior to OPEN,

A file with one name (main directory name) will be placed in the main di-
rectory by means of a scramble technique, The address following the name in
the directory will point to the disk file header. A file with two names adds
another level to the directory. The first name is the family or main direc-
tory name. The main directory name will be scrambled to a directory with the
file—~type set to "2". The "2" designates that the address following the name
is the address of a sub—directory. The second name or sub—directory name is
then placed in this additional directory. The address in the sub~directory
now points to the disk file header of the file. The sub-directory entry will
not be scrambled into the directory, as is the main directory entry which has
the location of the sub-directory. When the MCP finds the sub-directory, it

must search for the sub—directory file—name.

VALUE OF ID

The VALUE OF ID declared for OUTPUT disk files will cause up to 20 characters
to be inserted into the disk file header. Inversely, up to 20 characters will
be checked against the MCP Disk File Directory to obtain the physical disk
location of the file when declared as being INPUT or INPUT-OUTPUT disk files.
The (PACK-ID) is carried in the file parameter block FPB or in the INPUT-
OUTPUT disk files.

When SAVE-FACTOR is specified for output magnetic tape files integer-1 repre-
sents the number of days the file is to be saved before it can be purged and
used for other purposes by the system; integer—1 is limited to an unsigned

integer not to exceed three digits in length with values from 001 to 999.

SAVE-FACTOR, when declared for a disk file, is for documentational purposes,
due to the fact that files residing on disk should only be purged by mutual
consent within an EDP organization and can only be performed as a physical
action by the systems operator on the automatic RMOV option of MCP,

If SAVE-FACTOR is not specified, tapes are automatically assigned a SAVE-FACTOR
of one day to preclude expiration action when the system is being operated

during the period just prior to midnight or thereafter.
NOTE

For magnetic tape file names, the names
must be unique in the first seven char-

acters of each name.

RECORD DESCRIPTION

RECORD DESCRIPTION

This portion of a COBOL source program follows the file description entries
and serves to completely identify each data element within a record of a
given file,

The construct of these entries contain the following four options:

Option 1:

01 data-name-1; COPY library—name

word-2
REPLACING [Word-1 BY data-name-3
data-name-2 — .
literal-1l

word-4
;{word—S } BY data-name-5 e .
data-name-4 literal-2

Option 2:

level-number {FILLER } [[REDEFINES data-name-2]

data-name-1

PC
;{ PIC IS (allowable PICTURE characters)
BICTURE

i DISPLAY 3 .

;[USAGE 1S] ;| coup-1 |

COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-3
| INDEX]
ASCII |

" OC
_’{6ECURS } [integer-2 TOlinteger-3 TIMES [DEPENDING ON data-name-3]

RECORD DESCRIPTION

ASCENDING
[T{5E§Efﬁ5TNG} KEY IS data-name-4 [,data-name-5] ...]
[INDEXED BY index-name-1 [,index—name-z]] ...]
[[SY LEFT
;| SYNC {ﬁT@ﬁT}
|| SYNCHRONIZED
[[dS
.| JUST RIGHT
" | JUSTIFIED
. (B2
’ \BLANK WHEN ZERO
[VA s 1, .
’{VKLUE }[ARE]llteral—l].

Option 3:
66 data-name-1 RENAMES data—name-2 EEBH data-name-3
20 Bl it el THROUGH

Option 4:

o VA [1s] .. THRU .
88 condition-name {VKLUE } BUHJ literal-1 [{TﬁﬁﬁUGH} 11tera1—2]

[,1iteral—3 [{‘%%%guen} literal-4]]...

The optional clauses shown may occur in any order, with the exception that if

REDEFINES is used it must follow data—-name—1,
The record description must be terminated by a period.

Level—numbers in Option 2 may be any number from 1-49 or 77. The optional
clauses may be written in any order, with two exceptions: the data—name-1 or
FILLER clause must immediately follow the level-number; the REDEFINES clause,

when used. must immediately follow the data—name—1l clause.

RECORD DESCRIPTION

The clauses PICTURE, BLANK WHEN ZERO, JUSTIFIED, and SYNCHRONIZED must occur

on elementary item level only.

The PICTURE clause must be specified for every elementary item except an index

data item, in which case use of the clause is prohibited.

Option 1 can be used when the COBOL 1library contains the record description
entry. Otherwise, one of the other options must be used.

In Option 4, there is no practical limit to the number of literals in the

condition—name series.

The SYNCHRONIZED clause is for documentation only.

6—34

BLANK WHEN ZERO

BLANK WHEN ZERO

The function of this clause permits the blanking of an item when its value

is zero.

The construct of this clause is:

BZ
[ﬁfANK WHEN ZERO }

BLANK WHEN ZERO may be abbreviated BZ.

This clause overrides the zero—-suppress float-sign functions in a PICTURE.
If the value of a field is all zeros, the BZ clause will cause the field to
be edited with spaces. However, it does not override the check protect

function (zero suppression with asterisks) in a PICTURE,

The BZ clause can only be used in conjunction with an item on an elementary

level.

BLANK WHEN ZERO may be associated only with PICTUREs describing numeric or

numeric edited fields.

The category of the item is considered to be numeric edited.

CONDITION-NAME

CONDITION-NAME

Condition—name is a special name which the user may assign to a value or
values within a data element. This value may then be referred to by the

specified condition—name.

The construct of this clause is:

. VA IS] . THRU .
88 condition-name {VKLUE} [ARE literal-1 [{Tﬁﬁ@UGH} 11tera1—2]

. THRU .
Ellteral—S [{TﬁﬁﬁUGH} 11tera1—4]]

Since the testing of data is a common data processing practice, the use of
conditional variables and condition-names supplies a shorthand method which
enables the writer to assign meaningful names (condition-names) to particular

code values that may appear in a data-field (conditional variable).

A condition-name can be associated with any item containing a level—number,
except the following:

a. Another condition-name.
b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED, or
USAGE (other than USAGE IS DISPLAY).

d. An index data-item.
When defining condition-names, the following rules must be observed:

a, If reference to a conditional variable requires subscripting, then

references to its condition—names also require subscripting.

b. A conditional variable may be used as a qualifier for any of its

condition—names.
c. Condition—names can only appear in conditional statements.

d. Whenever the THRU phrase is used, literal—-1l must be less than
literal-2, literal-3 less than literal-4, etc.

CONDITION-NAME

e. The characteristics of a condition—name are implicitly those of its
conditional variable.

The following example illustrates a conditon—name., If THIS-YEAR identi-

fies the 12 months of a year, whereas its subordinate data items are defined

as JANUARY, FEBRUARY, etc,, and the values assigned to each month range from

01 to 12, then it follows that JUNE would have the assigned value of 06. Using
the condition—name JUNE, the programmer can utilize it in conditional state-
ments as follows:

IF JUNE GO TO
which is logically equivalent to the statement:

IF THIS-YEAR IS EQUAL TO 06 GO TO . .

SWEN-UOT JTPUO) yo 3Burpo) °'¢-g 2an3rg

CONDITION-NAME

rvvreyry v r vy ry T rrrrrrrrroy T rerr T rTrrrr e r T e Tyttt T T v T 7
]
I) 4 I
4-~_44444|¢1A_\ﬂ—J4__ddjdfq-ﬁﬂa‘qﬁa__AAAﬂﬁﬂq_q_4~a_4‘4___A-_,AAT- T T 1Y T 1
i
-} 4
44_-——-_J};*TJ_‘A\A—JAJ‘A-_<]—4_A_‘_‘1* |1 A A A D L S S U I e S M R S T 1 T 1
1
| } 4
_w_ﬂ__—.f,—44¢ﬂ-1—_]14 #~—_4___ Tt 7 1 1 Frr171r T T T 1T 7T 11 1717571 171 T —_ ‘—u
Lt
Il 1 l L ~ -
a«...ﬂ___ﬁqu.______.___q____444|ﬂ_«___‘_~.q_m<,_..<q“.4W"4_ T T
]l P } 1 | } A ; o
- T T N T T i T \ T
TTYT T T T T T T T T ey TR el e VA _Jqﬂ.mowmlmql_wgw{&rw_ 3] H "
1 { 1 H —— . - — . .
LANLENL S L S S LI B L B B B N B A LA LN R ST 4”514&454 T7 _JwJKmQUﬂ.—AU‘W_IJ.—A@MﬁId Mn.%j T T " T T
T T 7T T 171717 * T T 71 T T - .% mW(Q { \HUMW # ~MHN~ T T T T !] T T
B } b 1 ¢ . B
4 T \BRE T T T ;
T T T T T @4 S@I.Lr T {_>. T _AQO_I_Uﬂ_IMﬁ(Mw Wﬂwq 1 ,_M“ T T 1
: L
T]I]IﬂjTjjl]inTJl]quj Ql-irr 1 w.w rr T e A | 1T
4 } + > LI “ a q4+ T T 7 T T rJ| |4|LT _a T
Jw.d-_q_q_q_a‘__u._4.4-ﬂ4_4_4_s4-:4f_>._ “_Wﬁ{@_w_lf; "] qmuw v “
i Il i i ety — - .
T T T T 1T 1T 1771 _JlﬂquT__“quﬂ‘ T T 71T 1T 1+° _0_._ _<\— TT 177 _AUH(_N—J.‘;HQ _w.kdd_dyﬁ T vW.I_JJ.
) | | '
4_~_144ﬂ__drq_ﬁ__ﬁ_4~__a__ﬂ____:tro.\-__,_aﬂa W.Am(d@lgm_ww_l4 T T L
1 1
j]iﬂjji%j%di 1 M4 M ‘m T 4!1; 0||_;l4lfJ.l T
i i 4. | _; d
TIT T T T 1T 1T 1T v 1T 7 T 1 1 11 ¢ jﬂﬁ_J\qj_NMd(ﬂ\’__q_._14%I.1_ajdhﬂ4wiwjliqull4lﬂlﬂ T
]
L | J— -}
T I TTrrrvvVr 7 vy 17rvyr 17177 7 1 yrr1rriv1r17 17717 1T 7177177 M@ﬂ-% Wa.w.llﬂ__ AW T ﬂI_J—_I.ﬁ_
. . :
1] 4) I l - +
riyrrrrrrrrrrrrrrrrrrrrrrrrrrd .J_\\l—m m{_\\vﬂ_ IR _WAU{_M@H-meHm_ _.N~N~ T T 17 1 57 1 w|ﬂ4|< __ | dw T
. i i
! i - i ‘ i - -
4—4«___‘_.4_<<_..4_d—+414 44_4__._#_ _(\ﬂ__d_‘%%«ow. R T T RN
{
4 i L — —r N .
= T T T 7717 LA S S TTUT T
LISNLALIL L L L L L B L B B B L [[_ “ !
1 | i
L L L L N | “ T T 7T I 7T I T 7T 1T T 1 T7 d\jmﬂl_lj Iu%&ﬁ@rﬂzgwﬁw_ TERT T T T T _qu T
|
_ i Il i | . i
T T T T T 171 TT T T T T T T 7 P U T T T T =T AR T 1T 1T T QN do-T IS »Bigr + 1 7 T T T ,,4 T
1 1 } . N LI
Tﬂ44JI7ﬂ44111T%14~‘ﬂ~__-4~4« TTT T T T T St T T T SN st T T T TTISE T
' H
1] } . i
—__.q-ﬂ4‘Jdd_AM_____wﬂd____4_4-4_14ﬂ-__4<d.dan_AAﬂ__«A:HA4A HALAA
i 1 S i
_______q“4+q_ﬂm_a_ﬁqJ_qﬁq___ﬁﬁﬁﬁqad_m___.«d_~ﬂ_«__Lﬂ. 7T, T (LRI
1 i R t !
<_%44qqq_q+anJﬂ4___“.A_WA‘qu._«ﬁﬂﬂa.__<_ﬁ4444« ™ T T TTTTTT T T
F 1 : —". . = _ ool
[y X zs zv) zs 72 FIED) ? e ;
! TON N
z . v INIT | 39vae
= e SSSSE e — z=d
R S S T S A e p.)(@l
LELLLE LANE]
o [Y3 AN3O! 3uvg e I _ R
| | SSWSN 2:0![.,0.200
30 0vd NOISIAK 10803 nYUOCNd

$3I9NVYHD ONV §NOIL373Q0 °'SNOlIligay

W304 ONIGOD 10803 SHONOYINS

6-38

DATA-NAME

DATA-NAME

The purpose of this mandatory clause is to specify the name of each data
element to be used in a program. If a data element requires a definite label.
a data-name is assigned. Otherwise, the word FILLER can be used in its

place.

The construct of this clause is:

{FILLER }
data-name-1

The word FILLER can be used to name a contiguous description area that does

not require programmatic reference,

This entry must immediately follow a level-number other than an 88 level.

FILLER is only applicable to elementary levels.

A data-name need not be unique if it can be made unique through qualification

by use of data—names on higher levels than itself,

JUSTIFIED

JUSTIFIED

The JUSTIFIED clause specifies non-standard positioning of data within a
receiving data item,

The format for the JUSTIFIED clause is as follows:

gggT;FIED}
[JU T RIGHT

The JUSTIFIED clause cannot be specified for a numeric-edited data item or
for an item described as numeric. The JUSTIFIED clause cannot be specified

for an item whose size is variable, for group items or for an index—data—name.
The following are the standard rules for positioning within an area:

a, Numeric data is aligned by decimal point (either implicit or explicit),
with zeros filling any unused positions on either end, as required.
In the absence of an explicit decimal point indication, the decimal
point is assumed to be in the next position to the right of the units
digit, Edited numeric data items are aligned by decimal point, with
zero fill or truncation at either end as required within the receiv-
ing character positions of the data item, except where editing require-
ments cause replacement of the leading =zeros.

b. Alphabetic or alphanumeric receiving data items are aligned at the
leftmost character position in the data item, with space fill or
truncation to the right.

When the receiving data items are described with the JUSTIFIED clause and it
is larger than the sending item, the data is aligned at the rightmost char-
acter position in the data item, with leading space fill.

Example:
SENDING RECEIVING
pic x(5) |a]1]2]|3]c] pic x(0 | | lafilz2]3]c]

When the receiving item is described with the JUSTIFIED clause and it is
smaller than the sending item, the left-most characters are truncated.

Example:
SENDING RECEIVING
pic x(7) |al1|2]|3|c|p|E] pic x(5) |2|3]c|p]E]

If JUSTIFIED RIGHT is specified for an alphabetic or alphanumeric item, data
is placed into the area, with space fill to the left,

JUSTIFIED

If JUSTIFIED RIGHT is specified for an alphabetic or alphanumeric item and the
receiving field is smaller than the sending field, truncation will occur from

the left,

When standard justification is desired, the JUSTIFIED clause is not required.

Justification is considered only when data is moved into an area,

LEVEL-NUMBER

LEVEL-NUMBER

The function of this clause is to show the hierarchy of data within a logical
record. Its further function is to identify entries for condition-names, non-

contiguous constants, working-storage items, and for re-grouping.
The construct of this clause is:

level-number data-name—1

{FILLER }

A level-number is the first required element of each record and data-name

description entry.

Level-numbers may be as follows:

a. Ol to 49 record description and WORKING-STORAGE entries.

b. 66 - RENAMES clause used as a record description or WORKING-
STORAGE entry.

c. 77 - applicable to WORKING-STORAGE only as non-contiguous

items and must precede all other level-numbers.

d. 88 - condition names clause used as a record description or
WORKING-STORAGE entry.

Level-numbers 01 through 49 are used for record or WORKING-STORAGE descriptions.
Level number 0l is reserved for the first entry within a record description.
Level-number 66 is reserved for RENAMES entries. Level-number 77 is used for
miscellaneous elementary items in the WORKING-STORAGE SECTION when these items
are unrelated to any record. They are called non-contiguous items since it
makes no difference as to the order in which they actually appear. Level-
number 88 is used to define the entries relating to condition-names in record
descriptions or WORKING-STORAGE entries.

For additional information on level-numbers, see LEVEL NUMBER CONCEPT.

OCCURS

OCCURS

The OCCURS clause eliminates the need for separate entries for repeated data,
and it supplies information required for the application of subscripts and

indices.
The construct for this clause has the following two options:

Option 1:

{%%QURS} integer—2 TIMES

Hﬁﬁgﬁﬂglﬂg } KEY IS data—name-2 [,data-name-3] ...]

DESCENDING
[INDEXED BY index-name-1 [,index—-name-2] -
Option 2:
oc . _ . _ - -
{OCCURS} integer-1 TQ integer—2 TIMES [DEPENDING ON data—name-1]
ASCENDING _ _ _ _
[{BEEEEEETEG] KEY IS data—name-2 [,data—name-3] ,..] e
[INDEXED BY index-name-1 [,index-name-2] ..

Integer—1l and integer—2 must be positive integers. If both are used, the value -
of integer—1 must be less than integer—2, The value of integer—-1 may be zero,

but integer-2 cannot be zero.
The data description of data—name—1 must describe a positive integer.

Data—-name—2 must either be the name of the entry containing the OCCURS clause
or the name of an entry subordinate to the entry containing the OCCURS clause.

Data—-name—-3, etc., must be the name of an entry subordinate to the group item

which is the subject of this entry.
Data—-name—1l, data—name-2, and data—-name—3 may be qualified,
The OCCURS clause cannot be specified in a data description that:

a. Has an 01, 66, 77, or 88 level—number.
b. Describes an item whose size is variable. The size of an item is
variable if its data description, or any item subordinate to it,

contains option 2 of the OCCURS clause,

OCCURS

The OCCURS clause is used in defining tables and other homogeneous sets of
repeated data, Whenever the OCCURS clause is used, the data-name which is the
subject of this entry must be either subscripted or indexed whenever it is re-
ferred to in a statement other than SEARCH., Further, if the data—name asso-
ciated with the OCCURS clause is the name of a group item, then all data~
names belonging to the group must be subscripted or indexed whenever they

are used as operands.

Except for the OCCURS clause itself, all data description clauses associated
with an item whose description includes an OCCURS clause applies to each oc-

currence of the item described.

In option 1, the value of integer—2 represents the exact number of occurrences
of items within the table.

In option 2, the value of integer—1 represents the minimum number of oc-
currences, and integer-2 represents the maximum number of occurrences. This
does not imply that the length of the table is variable but that the number
of occurrences is variable., When option 2 is specified in a data description
entry, only items subordinate to the data item described with the optioh 2
OCCURS may follow in the Record Description. Thus, the following is illegal:

01 DATA-1.
05 TAB-1 OCCURS 1 TO 50 DEPENDING ON CNT.
10 TAB-2 PIC 9(5).
05 TAB-3 PIC 9(5).

Any unused character positions resulting from the DEPENDING option will appear
in the external media.

The DEPENDING option is for documentation and serves only to document the end
of the occurrences of data items. The value of data—name-1 is the count of
the number of occurrences of items, and its value should not exceed integer-2,
The user must employ his own tests to determine how many occurrences of the
item are actually valid and present in the record.

If data-name-1 in the DEPENDING option is an entry in the same record as the
current data description entry, data—name—-1l should not be the subject of, or
be subordinate to, an entry whose description includes option 2 of an OCCURS
clause.

OCCURS

An entry which contains option 2, or has a subordinate entry which contains
option 2, cannot be the object of the REDEFINES clause, For example, the
following is illegal:

01 W-S—-TABLE.
02 TAB-SIZE 5 OCCURS 1 TO 5 TIMES DEPENDING ON DEP—-NAME.
02 RED-TAB REDEFINES TAB.

When integer—-2 and integer—3 are both specified, variable length records are
implied and the user must specify the actual size of variable—length records
in the first four bytes of each record. The four—-character variable size
indicator is counted in the physical size of each record,

The KEY IS option is used to indicate that the repeated data is arranged in
ascending or descending order according to the values contained in data-name-
2, data—name-3, and so on, The data-names are listed in descending order of
their significance,

If data—-name—-2 is not the subject of this entry, then the following applies:

a. All of the items identified by the data—names in the KEY IS phrase
must be within the group item which is the subject of the OCCURS
entry.

b. None of the items identified by data—-names in the KEY IS phrase can
be described by an entry which either contains an OCCURS clause or is
subordinate to an intervening entry which contains an OCCURS clause.

The following example illustrates a use of the OCCURS clause to provide nested
descriptions. A reference to ITEM-4 requires the use of three levels of sub-
scripting; e.g., ITEM-4 (2, 5, 4). A reference to ITEM-3 requires two sub-
scripts; e.g., ITEM-3 (I,d).

N

ITEM; OCCURS 2 TIMES;...
3 ITEM-1;...
3 ITEM-2; OCCURS 5 TIMES;...
4 “TEM-3;...
4 ITEM-4; OCCURS 5 TIMES;...
5 ITEM-5;...
5 ITEN-6;

In the example above, there are 50 ITEM—4 quantities.

OCCURS

The following example shows another use of the OCCURS clause, Assume that
the user wishes to define a record consisting of five AMOUNT items, followed
by five TAX items. Instead of the record being described as containing 10
individual data items, it could be described in the following manner:

1 TABLE;...
2 AMOUNT; OCCURS 5 TIMES;...
2 TAX; OCCURS 5 TIMES;...

The above definition would result in memory allocated for five AMOUNT fields
and five TAX fields. Any reference to these fields is made by addressing
the field by name AMOUNT or TAX followed by a subscript denoting the parti-
cular occurrence desired. (See the discussion on subscripts, page 6-12.)

An INDEXED BY clause is required if the subject of this entry, or an item
within it, is to be referred to by indexing. If indexing is to be used, each
table dimension must contain an INDEXED BY clause. The index—names identified
by the clause must not be defined elsewhere in the program and must be unique.

The ASCENDING/DESCENDING KEY option is for documentation only.

The operands in the INDEXED BY option are index—names or indices. The operands
of an INDEXED BY option must appear in association with an OCCURS clause and
are usable only when referencing that level of the table. 1In the use of three-
level indexing, each level must have an INDEXED BY option and in a given

indexing operation, only one operand from each option may be used.

Other than its use as an index into an array, an index—name may be referred

to only in a SET, SEARCH, PERFORM, or in a relation condition. All index—names
must be unique. Index—names have an assumed construction of PC S9(6)
COMPUTATIONAL.

Using an index—name associated with one row of a table for indexing into
another row of a table will not cause a syntax error, but will, in most
cases, cause incorrect object—time results, since it is the index—-name that

contains the information pertinent to the element sizes.
When using an index-name series (e.g., INDEXED BY A, B, C):
a. The indexes should be used only when referencing the associated row,.

b. All "assumed" references are to the first index—name in a series.

Others in the series are affected only during an explicit reference.

OCCURS

Indexing into a table follows much the same logic as subscripting. There is
a limit of three indexes per operand (e.g., A (INDEX-1, INDEX-2, INDEX-3)).
The use of a relative index allows modification of the index—name without

actually changing the value of the index—name.
Example:
A (INDEX-1 + 3, INDEX-2 - 4, INDEX-3)
An index—name followed by a + or — integer indicates relative indexing, which

causes the affected index to be incremented or decremented by that number of

elements within the table.
A data—-name whose USAGE is defined to be INDEX is an index-data—name.

Condition-names, PICTURE, VALUE, SYNCHRONIZED, or JUSTIFIED cannot be associated’

with an index—~data—name.

The COBOL compiler will assign the construction of a PCS9(6) COMPUTATIONAL

area for each index—data—name specified,

It is not permissible to relationally compare an index—data—name against a

literal or against a regular data-name.

PICTURE

PICTURE

The PICTURE clause describes the general characteristics and editing require-

ments of an elementary item.

The general construct for the PICTURE clause is as follows:

PICTURE
PIiC IS character-string
PC

The following are rules for the PICTURE clause:
a. A PICTURE clause can only be used at the elementary item level.

b. A character-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols, The allowable
combinations determine the category of the elementary item.

¢. The maximum number of symbols allowed in the character-string is 30.
When an unsigned integer enclosed in parentheses immediately follows
a symbol, the integer specifies the number of consecutive occurrences
of that symbol., This may not be used for those symbols limited to

one occurrence per picture.

d. A PICTURE clause must appear in every elementary item except those
items whose USAGE is declared as INDEX.

Record descriptions do not have to conform to the physical characteristics
of an ASSIGNed hardware—name. The flow of input-output data will terminate
at the end of the prescribed PICTURE size, For example:

READER (can read 80 columns) description can be PICTUREd

from 1 through 80.

PUNCH (can punch 80 columns) description can be PICTUREd
from 1 through 80.

CARD96 (can read or punch 96 columns) description can be
PICTUREd from 1 through 96.

PRINTER (120/132 character lines) description can be
PICTUREd from 1 through maximum.

Categories of Data
There are five categories of data that can be described with a PICTURE clause:
alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric edited.

These categories are described as follows:

PICTURE

ALPHABETIC

To define an item as alphabetic, its PICTURE character-string can only contain
the symbol A, and its contents, when represented externally, must be any com-
bination of the 26 letters of the alphabet and the space from the COBOL charac-
ter set.

NUMERIC

To define an item as numeric, its PICTURE character-string can only contain
the symbols 9, P, S, J, K, and V, Its contents, when represented externally,
must be a combination of the numerals O, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The
item may include one operational sign.

ALPHANUMERIC

To define an item as alphanumeric, its PICTURE character-string is restricted
to certain combinations of the symbols A, X, 9, and the item is treated as if
the character-string contained all X's. Its contents, when represented exter-
nally, are any of the allowable characters in the COBOL character set. A
PICTURE character-string which contains all 9's or all A's does not define an
alphanumeric item,

ALPHANUMERIC EDITED

To define an item as alphanumeric edited, its PICTURE character-string is
restricted to certain combinations of the symbols A, X, 9, B, and 0 (zero)
given by the following rules:

a. The character-string must contain at least one B and one X, or at
least one 0 (zero) and one X, or

b. The character-string must contain at least one 0 (zero) and one A.

NUMERIC EDITED

To define an item as numeric—edited, its PICTURE character—-string is restricted
to certain combinations of the symbols B, P, V, Z, 0, 9, , (comma), . (period),
*, +, =, CR, CB, and the currency sign ($). The PICTURE character string must

contain at least one symbol other than V and 9. The allowable combinations

are determined from the order of precedence of symbols and the editing rules.

Classes of Data

The five categories of data items are grouped into three classes: Alphabetic,
Numeric, and Alphanumeric. For Alphabetic and Numeric, the classes and cate-
gories are synonymous. The Alphanumeric class includes the categories of

Alphanumeric Edited, Numeric Edited and Alphanumeric (without editing). Every

6-49

PICTURE

elementary item belongs to one of the classes and further to one of the cate-
gories. The class of a group item is treated at object time as Alphanumeric
regardless of the class of elementary items subordinate to that group item,
Figure 6-6 depicts the relationship of the class and categories of data items,

LEVEL OF ITEM CLASS CATEGORY
Alphabetic Alphabetic
Elementary Numeric Numeric

Numeric-editied
Alphanumeric Alphanumeric—edited
Alphanumeric

Alphabetic

Numeric

Non—elementary Alphanumeric Numeric—edited
(Group) Alphanumeric-edited

Alphanumeric

Figure 6-6. Relationship of Class and Category

Function of the Editing Symbols

An unsigned non—zero integer which is enclosed in parentheses following the

symbols A, X, 9, P, Z, *, B, 0, +, -, the comma, or the currency sign ($)

indicates the number of consecutive occurrences of the symbol. Note that the

following symbols may appear only once in a given PICTURE clause: S, J, V, K,
(period), CR, and DB,

The functions of the symbols used to describe an elementary item are explained

as follows:

A The symbol A in the character-string represents a character position

which can contain only a lettexr of the alphabet or a space.

B Each symbol B in the character~string represents a character position

into which the space character will be inserted.

J The symbol J indicates an operational sign appearing as an overpunch
in the least-significant position for DISPLAY or as a trailing digit
in CMP, J is not allowed for CMP-3. J is not counted in the size
for DISPLAY but is counted in CMP. Only one operational sign may be
present in each PICTURE. J and S are mutually exclusive. See the S

sign discussion for the exact bit configuration of signs.

PICTURE

NOTE

If J appears as other than the leftmost character in a
PICTURE character string, it no longer performs as an oper-
ational sign but serves to reinitiate zero suppression. J
represents a character position and is counted in the length
of the elementary item,

The letter P indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when the
point is not within the number that appears in the data item. The
scaling position character P is not counted in the length of the
data item. Scaling position characters are counted in determining
the maximum number of digit positions (160) in numeric edited items
or NUMERIC items which appear as operands in arithmetic statements.
The scaling position character P can appear only to the left or right
as a continuous string of P's within a PICTURE description. Since
the scaling position character P implies an assumed decimal point
(to the left of P if P's are leftmost PICTURE characters, and to

the right of P if P's are rightmost PICTURE characters), the assumed
decimal point symbol V is redundant as either the leftmost or right-
most character within such a PICTURE description. The character P
and the insertion character "." (decimal point) cannot both occur in
the same PICTURE character string.

The letter S is used in a character—string to indicate the presence

of an operational sign and must be written as the leftmost character

in the PICTURE. The S is not counted in determining the length of

the elementary item unless USAGE is CMP. If USAGE is DISPLAY, S in-
dicates the sign is carried as an overpunch in the most—significant
position. J and S are mutually exclusive. For CMP, S indicates the
sign is carried in the leading digit of the field. The four zone bits
in EBCDIC and CMP are set to a "D", for negative, and to a "C" for po-
sitive. Wherever possible, PICTURE S should be used rather than J or K.

NOTE
Any value other than D will be assumed positive.

The letter K in the character string indicates the presence of an 8-
bit (byte) sign appearing in the leftmost character position of an
item when USAGE is implicitly or explicitly DISPLAY and is counted
in the length of the item. If USAGE IS COMPUTATIONAL, the letter K

6—-51

PICTURE

becomes the same as an S, Data elements requiring a K PICTURE clause
may not be described by a VALUE clause with a signed literal.

The letter V is used in a character-string to indicate the location

of the assumed decimal point and may only appear once in a character-
string. The V does not represent a character position and, therefore,
is not counted in the length of the elementary item. When the assumed
decimal point is to the right of the rightmost symbol in the string,
the V is redundant.

Each letter X in the character-string is used to represent a charac-
ter position which contains any allowable character from the computer's

character set.

Each letter Z in a charadter—string may only be used to represent the
leftmost leading numeric character positions which will be replaced
by a space character when the contents of the character position is
zero. Each Z is counted in the length of the item. Zero suppression
is terminated with the first ncn-zero numeric character in the data.
Insertion characters are also replaced by spaces while suppression is
in effect. Z can also appear to the right of J, when the J symbol is
used to reinitiate zero suppression. For additional information on
zero suppression, see the BLANK WHEN ZERO clause.

Each 9 in the character-string represents a character position which
contains a numeral and is counted in the length of the item. If
USAGE is explicitly or implicitly DISPLAY, the data will be operated
on as 8-bit (BYTE) characters., If USAGE is CMP, it will be operated
on as 4-bit digits.

Each 0 (zero) in the character-string represents a character position
into which the numeral zero will be inserted. When that item is re-
ceiving field, the 0 is counted in the length of the item.

Each comma in the character-string represents a character position
into which the comma character will be inserted. This character posi-
tion is counted in the length of the item. See DECIMAL-POINT

IS COMMA.)

When the character period appears in the character-string, it is an
editing symbol which represents the decimal point for alignment
purposes; in addition, it represents a character position into which
the period character will be inserted. The period character is
counted in the length of the item. For a given program, the functions

CR
CB

PICTURE

of the period and comma are exchanged if the clause DECIMAL-POINT IS
COMMA is stated in the SPECIAL-NAMES paragraph. 1In this exchange, the
rules for the period apply to the comma and the rules for the comma
apply to the period whenever they appear in a PICTURE clause. V and
(.) are mutually exclusive.

The symbols +, -, CR, and CB are used as editing sign control symbols.
When used, they represent the character position(s) into which the
editing sign control symbol will be plat¢ed. The symbols are mutually
exclusive in any one character-string, and each character used in the
symbol is counted in determining the length of the data-item. (Note
that the symbols CR and DB are two character symbols, and any other
use of C or D constitutes an error.)

Each * symbol in the character-string represents a leading numeric
character position into which an asterisk will be placed when the
contents of that position is zero. Each * is counted in the length

of the item. Asterisk replacement is disabled when the first non-zera
character is encountered, or when the decimal point (implicit or ex-
plicit) is reached. When the PICTURE character string specifies only
asterisks (*), and the value of the item is zero, the entire output
item will consist of asterisks and the decimal point, if present.
BLANK WHEN ZERO does not override the insertion of asterisks.

The currency symbol ($) in the character-string represents a character
position into which a currency symbol is to be placed. The currency
symbol in a character-string is represented by either the dollar sign
($) symbol or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph. The currency symbol is counted
in the length of the item,

The symbol - when not the leftmost or rightmost character, is treated
as a fixed insertion hyphen. This feature is valid only to the left
of the decimal if the preceding character is not the symbol Z.

NOTE

Any other character which is not a defined
picture character appearing in the PICTURE
is assumed to be an insert character.
Example
99/99/99 could be a date mask and
999-99-999 could represent a social

security number mask.

PICTURE

Editing Rules

There are two general methods of performing editing in the PICTURE clause:

by insertion or by suppression and replacement.

Floating insertion editing and editing by zero suppression and replacement are
mutually exclusive in a PICTURE clause. Only one type of replacement may be
used with zero suppression in a PICTURE clause.

The type of editing which may be performed upon an item is dependent upon the
category to which the item belongs. Figure 6-7 specifies which type of editing
may be performed upon a given category.

CATEGORY TYPE OF EDITING
Alphabetic None
Numeric None
Alphanumeric None
Alphanumeric Edited Simple Insertion, 0 and B
Numeric Edited All, Subject to Note Above

Figure 6-7. Permissible Editing Types

Insertion Editing. The following are the four types of insertion editing avail-
able:

Simple Insertion.

Special Insertion.

o T &

Fixed Insertion,

d. Floating Insertion.

Simple Insertion Editing. The comma (,), B (space), and 0 (zero) are used as
the insertion characters. The insertion characters are counted in the length

of the item and represent the position in the item into which the character
will be inserted.

Special Insertion Editing. The period (.) is used as the insertion character.

In addition to being an insertion character, it also represents the decimal point
for alignment purposes. The insertion character used for the actual decimal
point is counted in the length of the item. The use of the assumed decimal point
(represented by the symbol V) and the actual decimal point represented by the

insertion character) in the same PICTURE character—string is prohibited. If the

6—-54

PICTURE

insertion character is the last symbol in the character—entry, the character-
string must be immediately followed by the semicolon punctuation character,

and then followed by a space. If the PICTURE clause is the last clause of that
DATA DIVISION entry, and the insertion character is the last symbol in the
character—string, the insertion character must be immediately followed by a
period punctuation character followed by a space. This results in two con-=
secutive periods (or ",." if DECIMAL POINT IS COMMA has been specified) appear—
ing in the data description entry. The result of special insertion editing is
the appearance of the insertion character in the item in the same position as
shown in the character—string.

Fixed Insertion Editing. The currency sign ($) and the editing sign control
symbols "+', "-="_ CR, and DB are the insertion characters. Only one currency
symbol and only one of the editing signh control symbols can be used in a given -
PICTURE character—-string. When the symbols CR or DB are used, they represent
two character positions in determining the length of the item, and they must
represent the rightmost character positions that are counted in the size of the
item, The character '"-" may be used as a fixed or floating sign insertion char*
acter. When this character appears to the left of the decimal point, its use
as either a sign or a hyphen is determined as follows: if the character cannot:
be legally used as a sign according to the usual rules, then it is interpreted
as a hyphen. To the right of the decimal point, it is only interpreted as a
sign. The symbol "+", when used, must be the leftmost or rightmost character
position to be counted in the size of the item. The currency symbol must be
the leftmost character position to be counted in the size of the item except
that it can be preceded by either a + or a — symbol. Fixed insertion editing
results in the insertion character occupying the same character position in

the edited item as it occupied in the PICTURE character—-string. Depending upon:
the value of the data item, editing sign control symbols produce the results
indicated in table 6-3.

Table 6-3. Editing Symbols and Results

EDITING SYMBOL IN DATA ITEM DATA ITEM
PICTURE CHARACTER-STRING POSITIVE NEGATIVE
+ + -
- SPACE -
CR 2 SPACES CR
DB 2 SPACES DB

PICTURE

Floating Insertion Editing. The currency symbol and editing sign control

symbols + or = are the insertion characters, and they are mutually exclusive

as floating insertion characters in a given PICTURE character—-string.

Floating insertion editing is indicated in a PICTURE character—-string by using
a string of at least two of the allowable insertion characters to represent the
leftmost numeric character positions into which the insertion characters can be
floated. Any of the simple insertion characters embedded in the string of

floating insertion characters or to the immediate right of this string are part
of the floating string; however, they represent themselves rather than numeric

character positions.

In the PICTURE character—-string, there are only two ways of representing float-
ing insertion editing. One way is to represent any or all of the leading num-
eric character positions to the left of the decimal point by the insertion char-
acter. The other way is to represent all of the numeric character positions

in the PICTURE character—-string by the insertion character,.

The result of floating insertion editing depends upon the representation in

the PICTURE character—-string. If the insertion characters are only to the left
of the decimal point, the result is a single insertion character that will be
placed into the character position immediately preceding the decimal point, or
the first non—zero digit in the data represented by the insertion symbol string,
whichever is further tc the left in the PICTURE character-string.

If all numeric character positions in the PICTURE character—-string are repre-
sented by the insertion character, the result depends upon the value of the
data., If the value is zero, the entire data item will contain spaces. If the
value is not zero, the result is the same as when the insertion character is
only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the
receiving data item must be the number of characters in the sending data item,
plus the number of fixed insertion characters being edited into the receiving
data item, plus one for the floating insertion character. '

Suppression Editing. The suppression of leading zeros in numeric character
positions is indicated by the use of the character Z or the character *
(asterisk) as suppression symbols in a PICTURE character-string. These symbols
are mutually exclusive in a given PICTURE character-string. Each suppression
symbol is counted in determining the length of the item. If Z is used, the
replacement will be the space, and if the asterisk is used, the replacement
character will be the *,

PICTURE

Zero suppression and replacement are indicated in a PICTURE character-string
by using a string of one or more of the allowable symbols to represent leading
numeric character positions which are to be replaced when the associated char-
acter position in the data contains a zero. Any of the simple insertion char-
acters embedded in the string of symbols or to the immediate right of this
string are part of the string.

In a PICTURE character—string, there are only two ways of representing zero
suppression. One way is to represent by suppression symbols, any or all of

the leading numeric character positions to the left of the decimal point. The
other way is to represent all of the numeric character positions in the PICTURE
character—string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any
leading zero in the data which corresponds to a symbol in the string is re-
placed by the replacement character. Suppression terminates at the first non-
zero digit in the data represented by the suppression symbol string or at the
decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character—string are repre-
sented by suppression symbols and the value of the data is not zero, the re-
sult is the same as if the suppression characters were only to the left of the
decimal point. If the value is zero, the entire data item will be spaces if
the suppression symbol is Z or all asterisks (*), except for the actual decimal
point, if the suppression symbol is *,

When the asterisk is used as the zero suppression symbol and the clause BLANK
WHEN ZERO also appears in the same entry, the zero suppression editing overrides
the function of BLANK WHEN ZERO.

Replacement Editing. Symbols +, -, *, Z, and the currency symbol, when
used as floating replacement characters, are mutually exclusive within a
given character string. At least two floating replaéement characters must
appear as the leftmost characters in the PICTURE,

6-57

PICTURE l

Precedence of Symbols

Table 6-4 shows the order of precedence when characters are used as symbols
in a character string. An X at an intersection indicates that the symbol(s)
at the top of the column may precede, in a given character string, the
symbol(s) at the left of the row. Arguments appearing in braces indicate
that the symbols are mutually exclusive. The currency symbol is indicated
by the symbol 'cs",.

At least one of the symbols "A", "X", "Z", "9", or "*¥", or at least two of

the symbols "+'", "=" or '"cs'" must be present in a PICTURE string.

When "+" or +-+ is to be the rightmost printable character in a PICTURE char-
acter(s) P, if any, must follow, instead of preceded, the "+" or "-'", There-
fore, PICTURE 99+PPP is valid, and PICTURE 99PPP+ is invalid.

Non-floating insertion symbols "+" and "-", floating insertion symbols "Z',
Mk ongn s = and "c¢s", and other symbol "P" appear twice in the PICTURE
character precedence chart. The leftmost column and uppermost row for each
symbol represent its use to the left of the decimal point position. The
second appearance of the symbol in the chart represents its use to the right

of the decimal point position,

6—58

Table 6-4.

Order of Precedence

PICTURE

First Non-Floating Floating
Other Symbols
Symbol Insertion Symbols Insertion Symbols
Second +M(+)| (CR b4 Z2)(+) | (+ A
1 o}, |. cs cs| cs| 9 S|v]|P|P
Symbo -){-J|\{DB * *) (=) (- X
B X| x| x|x X x x| x| x X X X ix X X
@ 0 x| x | x| x X X X | x| x X x X | x X b
—
o)
gﬁn ' X | X | X |x X X | X|x|x| x X x X b3
- &
+
o . X | X X X X X X b4
O g
- 0
[-
r 0 (+ -)
-3RY
O o
Z a (+ =) x| x| x X X X X X X X | x| x
5]
(]
(CR DB) X | x| x b X X X x X X| X |Xx
cs X
(z *) x| x b X X
wn
—t
g (z *) x| x| x|x X X | x x x
o &
S w
- (+ =) X | X X X
o+
9 5
0O
- (+ =) x| x| x X X | X x X
L
o
©n
a cs x | x X X
Lo]
cs X | X |x|x X X X X
9 b 4 X | X | X X X b X X | X| X | X X
‘UI
3 A X X X | x /
a
<]
> s
(5]
~
) \% X X X X X X X X X X
£
Fe)
o P x| X b4 b4 X X X b4 b 4 x
P X X X | x X

PICTURE

The following examples illustrate some of the ways a PICTURE clause may be

coded:

ALPHABETIC ITEMS;
AA
A(25)
ALPHANUMERIC ITEMS:
XX
X(15)
A(5)9(4)
99A99XX
NUMERIC ITEMS:
9
99999
9v99
599V99
999PPP
J99
EDITED NUMERIC ITEMS (CLASS IS ALFHANUMERIC):
9.99
77227
$$.99CR
B(4)9
$xk kkk,K 99
————— 9 ("-" IS A MINUS SIGN)
++,++9.999
Sk k*kk, 99DB
999,999
99-99-99 ("-" IS A HYPHEN)

PICTURE

Table 6-5 demonstrates the editing function of the PICTURE clause.

Table 6-5. Editing Application of the PICTURE Clause
SOURCE AREA RECEIVING AREA
EDITING
PICTURE DATA PICTURE EDITED DATA
9(5) 12345 $27,229.99 $12,345.00
V9 (5) 12345 $3%, $$9. 99 $0.12
v9(5) 12345 $77,7279.99 $ 0.12
9(5) 00000 $38%, $$9.99 $0.00
9(3)V99 12345 $Z7,779.99 $ 123.45
9(5) 00000 355, $5%. $%
9(5) 01234 $k* *%9, 99 $%1,234.00
9(5) 00000 Bokok | kokok | kok Aokokokokokok | kok
9(5) 00123 $kk *%9, 09 $***123, 00
9(3) V99 00012 $27Z,779. 99 $ 0.12
9(3)Vv99 12345 $$$, $$9.99 $123.45
9(3)V99 00001 $27,7227,99 $.01
9(5) 12345 $3%, $$9.99 $12,345.00
9(5) 00000 $27,7227 .27
9(3)V99 00001 38, 5. 3% $.01
S9(5) (+) 12345 77779 . 99+ 12345. 00+
S9(5) (=) 00123 --99999, 99 -00123.00
9(3)V99 12345 999. 00 123.00
S9(5) (=) 12345 77779, 99~ 12345, 00~
S9(5) (+) 12345 7727279 .99~ 12345.00
9(5) 12345 BBB99. 99 45.00
S9(3)V (-) 12345 ~7Z7779, 99 -12345. 00
S9(5) (=) 12345 $SB$$$. 99CR | $12345.00CR
S99V9 (3) (=) 12345 | ====——- .99 -12.34
S9(5) “(+) 12345 $$8$$$.99CR | $12345.00
9(3)V99 12345 999. BB 123,
9(5) 12345 00999. 00 00345. 00
9(7) 0012003 77.99J79 12 3

REDEFINES

REDEFINES

The function of this clause is to allow an area of memory to be referred to

by more than one data—name with different formats and sizes.

The construct of the REDEFINES clause is:
level-number data-name—1 REDEFINES data-name—2

The REDEFINES clause, when specified, must immediately follow data—name-1.
The level-numbers of data—name—1l and data—-name—~2 must be identical and must
not be 66 or 88.

This clause must not be used in 01 level entries of the FILE SECTION, as an
implicit REDEFINES is assumed when multiple Ol level entries within a file
description are present. The size of the record(s) causing implicit redefini-
tion does not have to be equal to that of the record being redefined, The
various sizes of implicitly redefined record descriptions create no restriction
as to which description is to be coded first, second, third, etc., in the
source program. The size of the largest 01 level entry determines the size of
the storage area.

Redefinition starts at data—name—-2 and ends when a level—-number less than or

equal to that of data—-name-2 is encountered in the source program.

When the level—-number of data—name—1 is other than 01 (in the WORKING-STORAGE
SECTION), it must specify a storage area of the same size as specified by data-
name—2. It is important to observe that the REDEFINES clause specifies the
redefinition of a storage area, not simply of the data items occupying that
area. Redefined 01 levels do not have to be the same size.

Multiple redefinitions of the same storage area are permitted. The entries
giving the new descriptions of the storage area must follow the entries defin-—
ing the area being redefined, without intervening entries that define new
storage areas. Multiple redefinitions of the same storage area may all use
the data—name of the originally defined area or the data—name of the area

defined just prior to the new area description.

The data description entry being redefined cannot contain an OCCURS clause,

nor can it be subordinate to an entry which contains an OCCURS clause,

The entries giving the new description of the storage area must not contain

VALUE clauses, except in condition—name entries.

Data—name—=2 need not be qualified.

6-62

An example

of REDEFINES entries follows:

01 WORKI1,

03
03

03

PART-ONE PC X (60).

PART-TWO REDEFINES PART-ONE.

05 X PC X(40).

05 Y PC X(20).

PART-THREE REDEFINES PART-TWO PC 9(60).

REDEFINES

RENAMES

RENAMES

The RENAMES clause permits alternative, and possibly overlapping grouping of
elementary items.

The construct of this clause is:

ROUGH
66 data—name—1 RENAMES data—name—2 [{%%Eﬁ“‘} data-name-S]

One or more RENAMES entries can be written for a logical record. All RENAMES
entries associated with a given logical record must immediately follow its
last record description entry. It is not possible to "chain' RENAMES; i.e.,
it is illegal to rename data item "A" to "B" and then rename "B" to ”C”. How-
ever, multiple RENAMES of a data—-name are permitted. (See figure 6-8,)

Data-name—2 and data—name—3 must be names of elementary items or groups of
elementary items of the same logical record and cannot be the same data—name.
A 66 level entry cannot rename another 66 level entry nor can it rename a 77,
88, or 01 level entry.

When data—name-3 is specified, data—name—1l is a group item which includes all
elementary items starting with data—name—-2 (if data-name~2 is an elementary

item) or the first elementary item in data—name—-2 (if data—name-2 is a group
item), and concluding with data-name-3 (if data-name-3 is an elementary item)

or the last elementary item in data=-name-3 (if data—-name—-3 is a group item).

When data—name—3 is not specified, data—name—2 can be either a group or an
elementary item; when data—name—=2 is a group item, data—name—1 is treated as
a group item; and when data—name~2 is an elementary item, data—name~1 is

treated as an elementary item.

The beginning of the area described by data—name—~3 must not be to the left of
the beginning of the area described by data—name—2. The end of the area des-
cribed by data—-name—3 must not be to the left of the end of the area described
by data—name—2, Data—name—3 cannot be contained within data—-name—2. Data—name-

2 and data—name—3 may be qualified.

Data—name—1 cannot be used as a qualifier, and can only be qualified by the
names of the level 01, SD, or FD entries., Neither data—-name-2 nor data—name-3
may have an OCCURS clause in its record description entry or be subordinate

to an item that has an OCCURS clause in its record description entry.

When data—~name=3 is specified,
including data—name—2 and data—name-3,

Data—-name—~1 will assume the USAGE of the item being renamed.

RENAMES

none of the elementary items within the range,

can be variable—occurrence items.

If the THRU

option is used, all items within the RENAMES range must have the same

USAGE,
01 TAB.
03 A.
05 Al PIC X.
05 A2 PIC XXX,
05 A3 PIC XX,
05 A4 PIC XX,
03 X,
05 X1 PIC XX,
05 X2 PIC X(6).
05 X3 PIC X(8).
66 B RENAMES A. (i.e., Al THRU A4)
66 C RENAMES A. (i.e., Al THRU A4)
66 D RENAMES Al THRU A3.
66 E RENAMES A4 THRU X2
66 F RENAMES A2 THRU X, (i.e., A2 THRU X3)
66 G RENAMES A THROUGH X. (i.e., Al THRU X3)

Figure 6-8, Examples of RENAMES

USAGE

USAGE

The function of this clause is to specify the format of a data item in computer

storage.

The construct of this clause is:

[USAGE 1S] { comp-1 >
CoMP-3 :

COMPUTATIONA

COMPUTATIONAL-1
COMPUTATIONAL—-3

INDEX
* ASCII ’

The USAGE clause can be written at any level. If USAGE is written on group
level, it applies to each elementary item in that group.

The USAGE of an elementary item cannot contradict the USAGE of a group to
which the item belongs.

COMPUTATIONAL-1 and CMP-1 are acceptable substitutes for, and are equivalent
to, COMPUTATIONAL, COMP, or CMP entries.

A warning message of POSSIBLE CMP GROUP USAGE ERROR will appear whenever the
receiving field is a group CMP item. This message indicates that the resultant
contents during object—program execution of the group CMP item may not contain
expected results.

Group moves are performed whenever the sending or receiving field is a group
item, and both will be treated as alphanumeric (byte) data. The appropriate
conversion takes place when a translation occurs from ASCII to EBCDIC or
EBCDIC to ASCII.

USAGE is a declaration for the EBCDIC internal representation of the system

and is defined as follows:

a, When USAGE IS DISPLAY, the data item consists of 8-bit (byte)
characters.

USAGE

b. When USAGE IS COMPUTATIONAL, the data item consists of 4-bit coded

digits and must be numeric. If a group item is described as compu-
tational, the elementary items in the group are computational. The

group item itself is not computational (cannot be used in computa=-
tions).

c. When USAGE IS INDEX, a PICTURE may not be specified. For example,
"77 ABC USAGE IS INDEX." An elementary item described with the USAGE
IS INDEX clause is called an index data item. An index data item can
be referred to directly only in a PERFORM, SEARCH, or SET statement
or in a relational condition. A PICTURE may not be specified.

d. When USAGE IS COMPUTATIONAL-3 or CMP-3 it specifies the data item
_ consists of 4-bit coded digits with the low-order digit (LSP) contain-

ing the sign. If the data item is unsigned, the LSD position will
contain a filler. A COMPUTATIONAL-3 or CMP-3 data item will élways
end on a byte boundary and its length will be a multiple of a byte
adding filler to the left, if necessary.

For example: PC S9999 CMP-3 VALUE +1234 IN MEMORY = B1234C
PC S9999 CMP-3 VALUE -1234 IN MEMORY = J1234D
PC 9999 CMP-3 VALUE +1234 IN MEMORY = B1234p
PC 9999 CMP-3 VALUE -1234 IN MEMORY = KB1234p

¥ indicates that one digit of filler has been added.

e. The USAGE IS ASCII clause can only be used for 77 level or 01 level
data-names in the WORKING-STORAGE SECTION. A file with recording mode -
of ASCII will be ASCII USAGE by default.

The PICTURE of a COMPUTATIONAL item can contain only 9's, the operational sign

character S, J, the decimal point character V, and one or more P's.

COMPUTATIONAL items may be declared for 9-channel magnetic tape files (TAPE-9),
disk file (DISK), Supervisory Printer, paper tape files (PT-READER or PT-PUNCH),
or for WORKING-STORAGE SECTION items.

A DISPLAY item is automatically converted to its 4-bit equivalent whenever the
receiving area is defined as COMPUTATIONAL, except when the receiving area is
a group item. A CMP item is automatically converted to its 8—bit equivalent
whenever the receiving area is declared DISPLAY, except when the sending CMP

item is a group item.

USAGE

If the USAGE clause is not specified for an elementary item, or for any group
to which the item belongs, the usage is assumed to be DISPLAY.

For the most efficient use of hardware storage and internal record storage
areas, records should be devised so as to avoid intermixing of odd-length
COMPUTATIONAL items with DISPLAY items. This rule is due to the compiler auto-
matically placing the machine addresses of DISPLAY areas to a character bound-
ary.

When the USAGE IS ASCII is used, it specifies that the data item consists of
ASCII coded data. A DISPLAY or COMPUTATIONAL item will be automatically con-
verted to its ASCII equivalent whenever the receiving area is defined as

ASCII. An ASCII item will be automatically converted to its numeric or EBCDIC
equivalent when the receiving field is COMPUTATIONAL or DISPLAY.

6—-68

VALUE

VALUE
The function of this clause is to declare an initial value to WORKING-STORAGE

items, or the value associated with a condition—name,

The construct of this clause is:

s) _ THRU . _
{ VALUE } IS literal-1l [{hTHEOUGH} literal-2]
. _ THRU . _
[literal-3 [{ THROUGH} literal 4]

The VALUE clause cannot be stated for any item whose size, explicitly or im~

plicitly, is variable.
Abbreviation VA can be used in lieu of VALUE,
Literals may consist of Figurative Constants; e.g., ZEROS, QUOTES, etc.

Literals may be replaced by the reserved word DATE-COMPILED. If DATE-COMPILED
is used in the VALUE clause, the date that the program was compiled will be
placed in the data-name in the JULIAN form of YYDDD.

In the FILE SECTION, the VALUE clause is allowed only in condition—name (88
level) entries. VALUE entries in other data descriptions in the FILE SECTION
are considered as being for documentation purposes only.

The entire VALUE clause may be used with condition—name entries. All levels

other than 88 are restricted to the use of literal—1l only.

The VALUE clause must not be stated in a Record Description entry with an
OCCURS clause, or in an entry which is subordinate to an entry containing an
OCCURS clause. This rule does not apply to condition-name entries.

The VALUE clause must not conflict with other clauses in the data description
of an item or in a data description within the hierarchy of the item. The

following rules apply:

a. If a category of an item is numeric, all literals in the VALUE clause
must be numeric literals; e.g., VA 1, 3 THRU 9, 12, 16 THRU 20, 25
THRU 50, 51, 56.

b. If the category of the item is alphabetic, all literals in the VALUE
clause must be specifically stated as non—numeric literals; e.g., VA IS
HAH ’ HB" ’ 1" CH ’ HF" ’ "Mll ’ "N” ’ HOH s " PH ’ te QH , 'lZH .

VALUE

c¢c. All literals in a VALUE clause of an item must have a value which
requires no editing to place that value in the item as indicated by
the PICTURE clause.

d. The function of any editing clause or editing characters in a PICTURE
clause is ignored in determinihg the initial appearance of the item
described. However, editing characters are included in determining
the length of the item.

In a condition—name entry, the VALUE clause is required and is the only clause
permitted in the entry. The characteristics of a condition—-name are explicitly

those of its conditional variable,.

Whenever the THRU phase is used, literal—1 must be less than literal-2,
literal—-3 less than literal-4, etc,.

If this clause is used in an entry at the group level, the literal must be a
figurative constant or a non—numeric literal (byte characters). The group
area is initialized without consideration for the USAGE of the individual ele-
mentary items. Subordinate levels within the group cannot contain VALUE

clauses.

The VALUE clause must not be specified for a group containing items that require

separate handling due to the USAGE clause.

In a VALUE clause, there is no practical limit to the number of literals in a

series. VALUE cannot be associated with an index—data—name.

All numeric literals in a VALUE clause of an item must have a value which is

within the range of values indicated by the PICTURE clause, and must not have
a value which would require truncation of non-zero digits. Non-numeric items
in a VALUE clause of an item must not exceed the size indicated by the PICTURE

clause.

WORKING-STORAGE SECTION |

WORKING-STORAGE SECTION

The WORKING—STORAGE SECTION is optional and is that part of the DATA DIVISION:
set aside for intermediate processing of data. The difference between
WORKING-STORAGE and the FILE SECTION is that the former deals with data

that is not associated with an input or output file., All clauses which

are used in normal input or output record descriptions can be used in a
WORKING-STORAGE record description.

Organization

Whereas the FILE SECTION is composed of file description (FD or SD) entries
and their associated record description entries, the WORKING-STORAGE SECTION
is composed only of record description entries and non~contiguous items. The
WORKING-STORAGE SECTION begins with a section—header and a period, followed by
item description entries for non-contiguous WORKING-STORAGE items, and then by
record description entries for WORKING—~STORAGE records, in that order. The
format for WORKING-STORAGE SECTION is as follows:

WORK ING-STORAGE SECTION.

77 data—-name-1

88 condition—name-1

77 data-name-n
01 data—name—2
02 data—name-3

66 data—name—m RENAMES data—-name-3
01 data—name=4
02 data—name-5
03 data—name-n
88 condition—name-2

Non-Contiguous WORKING-STORAGE

Items in WORKING-STORAGE which bear nd relationship to one another need not be
grouped into records, provided they do not need to be further subdivided. In-
stead, they are classified and defined as non-contiguous items. Each of these
items is defined in a separate record description entry which begins with the
special level~number 77. The following record description clauses are require
in each entry:

a. Level—number.
b. Data—name.
C. PICTURE clause.

WORKING-STORAGE SECTION

The OCCURS clause is not meaningful on a 77 level item and will cause an error
at compilation time if used. Other record description clauses are optional

and can be used to complete the description of the item if necessary.

All level 77 items must appear before any 01 levels in WORKING~STORAGE.

WORKING-STORAGE Records
Data elements in WORKING-STORAGE which bhear a definite relationship to one

another must be grouped into records according to the rules for the formation
of record descriptions. All clauses which are used in normal input or output
record descriptions can be used in a WORKING-STORAGE record description, in-
cluding REDEFINES, OCCURS, and COPY. Each WORKING-STORAGE record-name (01
level) must be unique since it cannot be qualified by a file—name. Subordinate

data—-names need not be unique if they can be made unique by qualification.
Initial Values

The initial value of any item in the WORKING-STORAGE SECTION is specified by
using the VALUE clause of the record description. If VALUE is not specified,
the initial values are set to 4-bit zeros (COMPUTATIONAL). The initial value

of any index data item is unpredictable,
Condition-Names

Any WORKING—-STORAGE item may be a conditional variable with which one or more
condition—names are associated. Entries defining condition—names must immed-
iately follow the conditional variable entry. Both the conditional variable

entry and the associated condition—name entries may contain VALUE clauses,

Coding the WORKING-STORAGE SECTION
Figure 6-9 illustrates the coding of the WORKING-STORAGE SECTION,

6-72

BURROUGHS COBOL CODING FORM

ADDITIONS. DELETIONS AND CHANGES

PROGRAM COBOL DIVISION PAGE oF
Ujaaxux&—inzmﬁag Secviorns Conung | !
PROGRAMMER ¥ DaTE IDENT. 73 [
\WMBERLY . A0 0 4 141

PAGE | LINE A L] 2

NO. NO.

1 3fa 6|7) 8 HRE 22 32 42 52 62 T2
T ' J {

113! WORK] |$TO&&§;@:$Ev¢FﬁIlQNw;||-L11114111;LL1111%1111111||%LL41114411
1

[W A LI N A 1N LSJKI—I(DNTlRLQLlf"Il(TWRE| aEd, IQQMP]LNTMF"MON:AMH S I W L1
1

Pt vl 0, TorAL—~ IsALlE‘Sl ..’\?LQH.(n.\D. NthMEéé&Q, T e e o S ST B B S A
1

L1 |: 11 SR ES—QUOT &115§g1q&ﬂﬁDp1111lxj%lenl1111{111111111%11n1|14411

111! U S T 0 O T T U0 S VA T TN T WO S N0 A WA N WA A N WO Y Y S O D Y U A T Y U S A S S S N U N U A0 U S A0 W SR O O 0 O O
1 1 t T T —

a3 1! QU:SL"T';M'TTG—F‘TNB;LIEH11|111i:{1111¢4111:||l||:1|1%1111111||%11|x||111|
1 ! A

1ty L 1 JOS Ly 0 y i STOANTES by b by b e bbby b bbb b v bt
[T T T T T

T L Ll!lOl\lll{QLAiLiI;FllllL:’ercL4qJQLqIQIJI;IlllllllllelllllllﬁLLLJJl]llll
1

10l ! I LI‘IOIllJl%NELVIMIAI{ILIPICIIqI(J"LI)VLLLiLIILII[:llIllllll}llllll]ll!
i

11yt RIS ITENE I e B! JJIlQRlELllli lﬂI{Calql(l"'jJCLLLLILL TN 0 S T Y Y O
; :

1Ll L |O5 JS'T'P«TT'IE—K}E\A RE[DEF;LNlEg ISITATES |,Q|S_| RS 1. NS N Y B 0 W 0
|

B | Lt LS lé.'ﬁUEPJQ@jE|L1 PIILC-quIC’nLJI4141‘|11¢+||||1|||1=||l||1111
1

P 1! | ST ITQlOMNl-rl\/'IIl{llﬁscqulll!{IlLllllJl'Llllllg_LLlLrllllllljll
1

T I ! _'_L?-rs‘llilxlcﬂ'-'o-ﬁyllil144111ﬂl:lcl)91-1||r|||11|;11%11111411|=1L11111111
|

| | 1! Q'i}@LGJ ll'lI.NEIOILIL]i 1 1 l%ll ll{]llilllLl%llllllLJl
i

L) T - S x%ﬁI LER \L_.L_.MELJLS_.RACEIS. L1
1

L1 p ! 1 X SEN I |’ |Q':j§ Prc ﬁgl Zl & 5 ALES, |E§g'EQ&M|bMQE|" I Ly |
7

11 1! TN < &I xFlLLaLlE{RI A‘PLTCJ 1)‘:(15'1)1 LSIPL’\CIESL-LJI% TR S I W A
1

J_Ll' 1 i | S S T T S U S G |) I S W S N N T N N T N U N N TN S T N TN VO VR N SR NSNS 0 G N A RO I TN NN AN N U Y N SN T N N N U N N |
] 1 ; f f 1 L

J 1 l:" 11 Lll’lllll{"LlllJLJ{illlll||l%|l|llllll%ll‘LlJllll%llllllll‘LL

1 1 L S | LIIAIJAKI%JlllJlLlllrLlllljlllglLlllllll%lJ.llJiLlLL N T O U WO S B
1

llll 11 1) S W T N N N U S N U0 U N S N A S N S SN T U U SN G NN NN S NN S SN S N I N N N N T N SN N SN T N U N A NN N S W SR W T N N N
i T T T I T

Illl PR S LJIJ!IIll}\L*LlllL\{K!'lllll\%lllllJ\ll;l!llllLLl%‘lllllllll
1

11 P L1 1||||11L‘|1ulitiil%l"llllill#JJlIllJ_ll%lLLllJlJl%llIljllnnl
1

Pl TR TSV S N U U T U YO U U U O 0 Y S U WA T WS U O U0 N O WS U U 0 T 0 WY O S T A S G U O 0 A Y T A B S M A B A A A

€L-9

Figure 6-9. WORKING~STORAGE SECTION Coding

NOILD3IS OVIOLS-ONDIIOM

SECTION 7

PROCEDURE DIVISION

GENERAL

The fourth part of the COBOL source program is the PROCEDURE DIVISION. This
division contains the procedures needed to solve a given problem. These pro-
cedures are written as sentences which may be combined to form paragraphs,
which in turn may be combined to form sections. The purpose of the following

discussion is to explain this division and its elements.
RULES OF PROCEDURE FORMATION

A procedure is composed of a paragraph, a group of successive paragraphs, a
section, or a group of successive sections within the PRCCEDURE DIVISION. 1If
declaratives are specified, then sections must be used in the remainder of
the PROCEDURE DIVISION. A procedure—name is either a paragraph—name or a

section—name,

The end of the PROCEDURE DIVISION (the physical end of the program) is that
physical position in a COBOL source program after which no further procedures

appear,

A section consists of a section header followed by one or more successive
paragraphs. A section ends immediately before the next section—name, at
the end of the PROCEDURE DIVISION, or in the Declaratives portion of the
PROCEDURE DIVISION at the key words END DECLARATIVES.

A paragraph consists of a paragraph—name followed by one or more successive
sentences. A paragraph ends immediately before the next paragraph—name or
section—-name or at the end of the PROCEDURE DIVISION.

A sentence consists of one or more statements and is terminated by a period

followed by a space.

A statement is a syntactically valid combination of words and symbols begin-
ning with a COBOL verb, ,

The term "identifier" is defined as the word or words necessary to make

unique reference to a data item.

EXECUTION OF PROCEDURE DIVISION

Execution begins with the first statement of the PROCEDURE DIVISION, excluding
declaratives, Statements are then executed in the order in which they are pre-
sented for compilation, except where the rules in this section indicate some
other order,.

The body of the PROCEDURE DIVISION must conform to the following format:
PROCEDURE D ION,
[DECLARATIVE§.
section—-name SECTION. declarative—statement.
paragraph—-name. [statement.] ...
[paragraph-name. [statement.] ...] ...

"section—name SECTION. declarative—statement.

paragraph-name, [statement.] ...

[paragraph-name. [statement.] ...] ...] ...

END DECLARATIVEﬁ.]

[[section-name SECTION [priority-number] .]
paragraph—name, [statement.] ...

[[paragraph-name.] ... [statement.] ...] ...] .o

[END-QF-J0B.]

STATEMENTS

STATEMENTS

There are three types of statements: imperative statements, conditional
statements, and compiler—directing statements.

Imperative Statements

An imperative statement is any statement that is neither a conditional state-
ment nor a compiler-directing statement. An imperative statement may consist
of a sequence of imperative statements, each possibly separated from the next
by a separator., A single imperative statement is made up of a verb followed by
its operand. A sequence of imperative statements may contain either a GO TO
statement or a STOP RUN statement which, if present, must appear as the last
imperative statement of the sequence. Some of the imperative statements are:

ACCEPT DISPLAY MOVE SEEK
ADD(1) DIVIDE(1) MULTIPLY(1) SET
ALTER EXAMINE OPEN SORT
CLOSE EXIT ' PERFORM STOP
COMPUTE(1) GO READ(3) SUBTRACT(1)

WRITE(2) (4)

Conditional Statements

A conditional statement specifies that a truth value of a condition is to be
determined and that the subsequent action of the object program is dependent on
this truth value. A conditional statement is (1) an IF or SEARCH statement, (2)
a READ or RETURN statement that specifies the AT END phrase, (3) a READ or WRITE
statement that specifies the INVALID KEY phrase, (4) a WRITE statement that
specifies the END-OF-PAGE phrase or (5) the arithmetic statements ADD, SUBTRACT,
COMPUTE, DIVIDE, or MULTIPLY that specify the optional phrase ON SIZE ERROR.
For example, the IF statement syntax is as follows:

statement—-1 statement—2

NEXT sentencs] [EWSE {Npx1sentesce |

Statement—l1l or statement—2 can be either imperative or conditional statements.
If conditional, the statement can, in turn, contain conditional statements to
a depth of 15, Also, if statement—-1l or statement—2 is conditional, then the

IF conditional {

conditions within the conditional statement are considered to be '""nested".

Compiler—Directing Statements
A compiler—directing statement is one that consists of a compiler—directing
verb (COPY and NOTE) and its operand(s).

1 Without the SIZE ERROR Option. 3 Without the AT END Option.
2 Without the INVALID KEY Option. 4 Without the EOP Option.

SENTENCES

SENTENCES

There are three types of sentences: imperative sentences, conditional sen-—
tences, and compiler—directing sentences. A sentence consists of a sequence
of one or more statements, the last of which is terminated by a period.

Imperative Sentences

An imperative sentence is one or more imperative statements terminated by a
period. An imperative sentence can contain either a GO TO statement or a STOP
RUN statement which, if present, must be the last statement in the sentence.
The following are examples of an imperative sentence.

ADD MONTHLY-SALES TO TOTAL-SALES, THEN GO TO PRINT-TOTAL.
or

DISPLAY "PGM—END'" THEN STOP RUN.
Conditional Sentences

A conditional sentence is a conditional statement which may optionally contain
an imperative statement and must always be terminated by a period.

Examples:

IF HEIGHT IS GREATER THAN SIX-FEET-NINE GO TO
TALL-MEN, ELSE ADD 1 TO SOME-OTHER, GO GET-ANOTHER-
RECORD,

IF SALES IS EQUAL TO BOSSES—-QUOTA THEN MOVE SALESMAN
TO HONOR-ROLL OTHERWISE MOVE SALESMAN TO QUOTA-
LIST.

Compiler-Directing Sentences

A compiler—directing sentence is a single compiler—directing statement termin-
ated by a period.

Example:

SCAN. COPY SCANER.

SENTENCES

SENTENCE PUNCTUATION
The following rules apply to the punctuation of sentences:
a. A sentence is terminated by a period followed by a space.

b. A separator is a word or character used for the purpose of enhancing

readability. The use of a separator (other than a space) is optional.

c¢. The allowable separators are spaces, the semicolon (;), the comma
(,), and the reserved word THEN,

d. Separators may be used in the following places:
1. Between statements.
2. In a conditional statement.
(a) Between the condition and statement-1.
(b) Between statement-1 and ELSE,

e. A separator(other than a space) should be followed by at least one

space but is not required.
EXECUTION OF IMPERATIVE SENTENCES

An imperative sentence is executed in its entirety and control is passed to
the next applicable procedural sentence.

EXECUTION OF CONDITIONAL SENTENCES

In the conditional sentence:

IF condition statement—1 QIHEEKL&E} statement—2.
- ELSE
the condition is an expression which is TRUE or FALSE. If the condition is

TRUE, then statement-1l is executed and control is then implicitly transferred
to the next sentence unless statement—l1l causes some other transfer of control.
If the condition is FALSE, statement—-2 is executed and control passes to the

next sentence unless statement-2 causes some other transfer of control.

If statement—-1l is conditional, then the conditional statement must be the last
(or only) statement comprising statement—l. For example, the conditional sen-
tence would then have the form:

IF condition—1 imperative—statement—1] JIF condition—2

statement-3 {OTHE WISE} statement—4 {OTHERWISE

ELSE FLSE } statement-2.

SENTENCES

If condition—-l1 is TRUE, imperative—statement-1l is executed. If condition-2

is TRUE, statement—3 is executed and control is transferred to the next sen-
tence. If condition-2 is FALSE, statement—4 is executed and control is trans-—
ferred to the next sentence. If condition—~1l is FALSE, statement-2 is executed
and control is transferred to the next sentence. Statement—-3 can in turn be
either imperative or conditional and, if conditional, can in turn contain con-
ditional statements to an arbitrary depth. 1In an identical manner, statement—4
can either be imperative or conditional, as can statement—-2. The execution of
the phrase NEXT SENTENCE causes a transfer of control to the next sentence
written in order, except when it appears in the last sentence of a procedure
being PERFORMed, in which case control is passed to the return control.

EXECUTION OF COMPILER-DIRECTING SENTENCES

The compiler—directing sentences direct activities during compilation time.

On the other hand, procedural sentences denote action to be taken by the object
program. Compiler—directing sentences may result in the inclusion of routines
into the source program. They do not directly result in either the transfer
or passing of control. The routines themselves, which the compiler~directing
sentences may have included in the source program, are subject to the same
rules for transfer or passing of control as if those routines had been created

from procedural sentences only,

CONTROL RELATIONSHIP BETWEEN PROCEDURES

CONTROL RELATIONSHIP BETWEEN PROCEDURES

In COBOL, imperative and conditional sentences describe the procedure that is
to be accomplished. The sentences are written successively, according to the
rules of the coding form (section 3), to establish the sequence in which the
object program is to execute the procedure. In the PROCEDURE DIVISION, names
are used so that one procedure can reference another by naming the procedure
to be referenced. 1In this way, the sequence in which the object program is
to be executed may be varied simply by transferring control to a named pro—

cedure.

In procedure execution, control is transferred only to the beginning of a
paragraph or section. Control is passed to a sentence within a paragraph only
from the sentence written immediately preceding it. If a procedure is named,
control can be passed to it from any seuntence which contains a GO TO or PERFORM,
followed by the name of the procedure to which control is to be transferred.

PARAGRAPHS

So that the source programmer may group several sentences to convey one idea
(procedure) , paragraphs have been included in COBOL, In writing procedures

in accordance with the rules of the PROCEDURE DIVISION and the reguirements

of the coding form (section 3), the source programmer begins a paragraph with

a name, The name consists of a word followed by a period, and the name pre-
cedes the paragraph it names, A paragraph is terminated by the next paragraph-
name. The smallest grouping of the PROCEDURE DIVISION which is named is a
paragraph. The last paragraph in the PROCEDURE DIVISION is the optional special
paragraph—-name END-OF~JOB, which will be the last card in the source program the
compiler will use to generate code for the object program. 7

Programs may contain identical paragraph—names, provided they are resident in
different sections. If such paragraph—names are not qualified when used, the
current section is assumed. Paragraph—names may be used in GO, PERFORM, and
ALTER statements.

SECTIONS

A section consists of one or more successive paragraphs and must be named when
designated. The section—name is followed by the word SECTION, a priority num~
ber which is optional, and a period. If the section is a DECLARATIVE section,
then the DECLARATIVE sentence (i.e., USE or COPY) follows the section header
and begins on the same line., Under all other circumstances, a sentence may

not begin on the same line as a section-name. The section—name applies to all

CONTROL RELATIONSHIP BETWEEN P:ROCEDURES

paragraphs following it until another section—name is found. It is not re-
gquired that a program be broken into sections, but this technique is exception-
ally useful in trimming down the physical size of object programs by stating a

priority number to declare overlayable program storage (see SEGMENT CLASSIFI-
CATION).

Since paragraph—names and section—-names both have the same designated position
on the reference format (i.e., position A), section—names, when specified, are
written on one line followed by a paragraph name on a subsequent line. When
PERFORM is used in a non—-DECLARATIVE procedural section to call another section,
the same rules apply as when PERFORM is used in a DECLARATIVE section.

SEGMENTATION

SEGMENTATION

COBOL segmentation is a facility that provides a means to specify object pro-
gram overlay requirements, COBOL segmentation deals only with segmentation
of procedures. As such, only the PROCEDURE DIVISION and the ENVIRONMENT
DIVISION are considered in determining segmentation requirements for an ob-

ject program,
PROGRAM SEGMENTS

Although it is not mandatory, the PROCEDURE DIVISION for a source program may
be written as a consecutive group of sections, each of which are operations
that are designed to collectively perform a particular function. Each section
must be classified as belonging either to the fixed portion or to one of the
independent segments of the object program. Segmentation in no way affects

the need for qualification of procedure—names to ensure uniqueness.

The object program is composed of two types of segments: a fixed segment and

overlayable segments.

a. The fixed segment is the main program segment and may be overlaid in
the same manner ‘as if it were an overlayable segment.

b. An overlayable segment is a segment which, although logically treated
as if it were always in memory, can be overlaid, if necessary, to
optimize memory utilization. However, such a segment, if called for
by the program, is always made available in its '"initial" state when
the segment priority—number is 50 or greater. When the segment prior- -
ity-number is 49 or less, the segment will be made available in its
last—-used state.

In addition, depending on availability of memory, the number of permanent seg-
ments in the fixed and overlayable portions can be varied by changing the
SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph.

Segment Classification

Sections which are to be segmented are classified by means of a system of
priority numbers and the following criteria:

a. Logic requirements: sections with priority numbers from 00 through
49 in a program may reside in the fixed segment, depending on the
value specified in SEGMENT-LIMIT. Sections containing a priority
numbeir lower than that specified in SEGMENT-LIMIT, regardless of
their physical location in the program, will be assigned to the fixed

SEGMENTATION

segment; all other sections will be assigned as overlayable segments.
"Fall-through" control from one SECTION to another SECTION is accom~

plished in their order of appearance in the source program.

b. Relationship to other sections: sections coded within the SEGMENT-
LIMIT range will become the fixed segment and can communicate freely
with each other. Those coded cutside the stated SEGMENT-LIMIT range
fall into the overlayable category and can also communicate from one
to the other,

The compiler will create one program segment which will include all
sections with priority numbers below the value specified in SEGMENT-
LIMIT. The overlayable sections will be called into memory as needed
by the program., When memory is available, more than one overlayable
section will be in memory at the same time, This will reduce the
number of disk accesses, which in turn will cause the program to have

a shorter run time.
Priority Numbers

Section overlay classifications are accomplished by means of a system of
priority numbers., The priority number is included in the section header. The
general construct of a section header is as follows:

section—name SECTION priority—number.

The priority number must be an integer ranging in value from 00 through 99
(also 0. 1, 2, etc., are permissible priority numbers). If the priority num-—
ber is omitted from the section header, the priority number is assumed to be O.
Segments with priority numbers ranging from O up to, but not including, the
value specified in the SEGMENT-LIMIT clause (or 50 if no SEGMENT-LIMIT clause
has been specified) are considered as being located in the fixed portion of the
object program. Segments with priority number equal to or higher than the
value specified in SEGMENT-LIMIT (but not exceeding 99) are independent seg-
ments and fully ALTERable; however, segments with priority numbers greater
than 49 will be made available in their '""initial" state each time they are
referenced. A GO TO paragraph in a section whose priority is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with a
different priority. Sections in DECLARATIVES are assumed to be 00 and must

not contain priority numbers in their section headers. Priority numbers may
be stated in any sequence and need not be in direct sequence. The fixed seg-
ment does not end when the first priority number equal to or greater than
SEGMENT-LIMIT is encountered.

SEGMENTATION

All segments, regardless of their physical location in the source progran,
whose priority number is less than that which is specified in SEGMENT-LIMIT
will be ''gathered" into a single segment. All other segments equal to or
greater than that which is specified in SEGMENT-LIMIT will be ''gathered" in-
to overlayable segments according to equal priority number, regardless of
their physical location in the source program.

The use of the '"gathering" technique will allow programmers to create tailored
segments which will reduce disk access times. For example:

Program A: SEGMENT-LIMIT equals 17.

Non-Gathered

egment Description Size in Digits

00-16 Main body of the program 20,000
17 Used frequently 1,000
18 Used frequently 5,000
19 Used infrequently 4,000
20 Used at EOJ only 500
21 ‘Used frequently 2,000
22 Used at BOJ only 1,000
23 Used frequently 500
24 Used for infrequent test 1, 500
25 7 Used infrequently 3,000

Gathered

Segment Description Size in Digits

00-16 : Main body of the program 20,000
17 ' Used frequently 1,000
18 Used infrequently 5,000
19 Used infrequently 4,000
20 Used at EOJ 500
17 Used frequently (was segment 21) 2,000
19 Used at BOJ (was segment 22) 1,000
17 Used frequently (was segment 23) 500
20 Used for infrequent test (was segment 24) 1,500
20 Used infrequently (was segment 25) 3,000

SEGMENTATION

Results of Gathering

Segment Description Size in Digits
00-16 Main body of the program 20,000

17 Used frequently 3,500

18 Used infrequently 5,000

19 Used infrequently 5,000

20 Used infrequently 5,000

"Fall through" will be performed in the sequence as outlined in the above
"Non-Gathered" example, and not as they appear in the '""Results of Gathering"
example above, therefore preserving the logical integrity of the original
program.

The COBOL interpreter will automatically check to see if an overlay being
called for by an object program is already present in memory. If it is
present, no disk access is required and the program is not interrupted. If it
is not present, the COBOL interpreter interrupts the program and will access
the disk for the desired overlayable portion of the program. The COBOL inter-
preter uses overlay segments directly from the program library where the ob-
ject program was compiled to and is called in as an overlay in its initial
generated code each and every time it is required by the operating program.
Although the initial code is retrieved each time, the latest addresses of
ALTERed exits are still applicable and are in force by the use of an automatic

ALTER table for segments with a priority number of 49 or less.

7-12

DECLARATIVES

DECLARATIVES

Declaratives are procedures which operate under the control of the input-
output system. Declaratives consist of compiler—directing sentences and their
associated procedures. Declaratives, if used, must be grouped together at the
beginning of the PROCEDURE DIVISION. The group of declaratives must be pre-
ceded by the key word DECLARATIVES, and must be followed by the words END
DECLARATIVES. Each DECLARATIVE consists of a single section and must conform
to the rules for procedure formation. There are two statements that are

called declarative statements in the COBOL compiler. These are the USE and

the COPY statements. The next source statement following the END DECLARATIVES

statement must be a section—name or paragraph—name.
Use Declarative

A USE declarative is used to supplement the standard procedures provided by

the input—output system. The USE sentence immediately following the section-
name, identifies the condition calling for the execution of the USE procedures.
Only the PERFORM statements may reference all or part of a USE section. The
USE sentence itself is never executed. Within a USE procedure, there must be
no reference to the main body of the PROCEDURE DIVISION. The construct for the
USE declarative is as follows:

section—name SECTION, USE................

paragraph—name. First procedure-statement...
Complete rules for writing the formats for USE are stated under the USE verb.
COPY Statement as a Declarative

A COPY declarative is used to incorporate a DECLARATIVE library routine in
the source program, that is, a routine which is a USE declarative., The con-
struct of the COPY declarative is:

section—name SECTION. COPY 1library—name

Complete rules for writing the format for COPY are stated under the COPY verb.

ARITHMETIC EXPRESSIONS

ARITHMETIC EXPRESSIONS

An arithmetic expression is an algebraic expression which is defined as:
a. An identifier of a numeric elementary item.
b. A numeric literal.
¢. Such identifiers and literals separated by arithmetic operators.
d. Two arithmetic expressions separated by an arithmetic operator,
e. An arithmetic expression enclosed in parentheses.

Any arithmetic expression may be preceded by a unary + or -, The permissible
combinations of identifiers, literals, and arithmetic operators are given in
table 7=1. Those identifiers and literals appearing in an arithmetic expres-
sion must represent either numeric elementary items or numeric literals on

which arithmetic operation may be performed.

Table 7-1. Combination of Symbols in Arithmetic Expressions

Second Symbol

First

Symbol Variable X /%% +- ()
Variable - P P - P
* / %k 2 - P P -
+= P - - P -
(P - P P -
) - P P - P

NOTE

In the above table, the letter '"P" represents
a permissible pair of symbols. The character
"=" yrepresents an invalid character pair. Vari-

able represents an identifier or literal.
Arithmetic Operators

There are five arithmetic operators that may be used in arithmetic expressions.
These operators, listed below, are represented by specific characters which

must be preceded by a space and followed by a space.

ARITHMETIC EXPRESSIONS

har er Meaning
+ addition
- subtraction
* multiplication
division
*k exponentiation

Formation and Evaluation Rules

Parentheses may be used in arithmetic expressions to specify the order in
which elements are to be used. Expressions within parentheses are evaluated
first and, within a nest of parentheses, evaluation proceeds from the least
inclusive set to the most inclusive set. When parentheses are not used or
parenthesized expressions are at the same level of inclusiveness, the follow-

ing hierarchical order of operations is implied:

Unary + or =
* %

* and /

+ and -

The symbols + and -, if used without parenthesizing, may only follow one of the
arithmetic operators **, * / or appear as the first symbol in a formula.
Parentheses have a precedence higher than any of the operators and are used
to eliminate ambiguities in logic where consecutive operations of the same
hierarchical level appear, or to modify the normal hierarchical sequence of
execution in formulas where it is necessary to have some deviation from the
normal precedence. When the sequence of execution is not specified by paren-
theses, the order of execution of consecutive operations of the same hierarchi- _
cal level is from left to right. Thus, expressions ordinarily considered to
be ambiguous, e.g., A/ B *x C, A/ B / C, and A**¥B**C are permitted in COBOL.
They are interpreted as if they were written (A / B) * C, (A / B) / C, and
(A**B) **C, respectively. Without parenthesizing, the following example:

A+ B/ C+ D*x E * F - G
would be interpreted as:
A+ (B/ C)+ ((D**x E) * F) - G

with the sequence of operations working from the innermost parentheses toward
the outside, i.e., first exponentiation, then multiplication and division, and

finally addition and subtraction.

ARITHMETIC EXPRESSIONS

The way in which operators, variables, and parentheses may be combined in an

arithmetic expression is summarized in table 7-1.

An arithmetic expression may only begin with the symbols (, +, =, or a
variable and may only end with a) or a variable. There must be a one-to-one
correspondence between left and right parentheses of an arithmetic expression
such that each left parenthesis is to the left of its corresponding right

parenthesis.

CONDITIONS

CONDITIONS

A condition causes the object program to select between alternate paths of
control, depending upon the truth value of a test. Conditions are used in IF
and PERFORM statements. A condition is one of the following:

a. Relation condition,

b. Class condition.

c. Condition—name condition.
d. Sign condition.

e. NOT condition.

AND

f. Condition {QE

} condition,

The construction NOT condition is not permitted if the condition itself con-
tains NOT,.

Logical Operators

Conditions may be combined by logical operators. The logical operators must
be preceded by a space and followed by a space. The meaning of the logical
operators is as follows:

Logical Operator Meaning
OR Logical Inclusive OR
AND Logical Conjunction
NOT Logical Negation

Table 7-2 indicates the relationships between the logical operators and condi-
tions A and B. Table 7-3 indicates the way in which conditions and logical

operators may be combined.
Relation Condition

A relation condition causes comparison of two operands, each of which may be
a data—name, a literal, or an arithmetic expression (formula). Comparison
of two elementary numeric items is permitted, regardless of the individual
USAGE clauses. However, for all other comparisons, the operands must have
the same USAGE. Group numeric items are defined to be alphanumeric. It is

not permissible to compare an index—data—-name to a literal or a data-name,

CONDITIONS

Table 7-2. Relationship of Conditions,
Logical Operators, and Truth Values

CONDITION CONDITION AND VALUES
A B A AND B A OR B NOT A
TRUE TRUE TRUE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE

Table 7-3. Combinations of Conditions
and Logical Operators

SECOND
SYMBOL
FIRST
SYMBOL CONDITION OR AND NOT ()
CONDITION - P p - - P
OR P - - P P -
AND P - - P P -
NOT *P - - - P -
(p - - P p -
) - P P - - p

NOTE

The letter "P" represents a permitted pair
of symbols, and the character "-'" repre-

sents an invalid character pair.

The general format for a relation condition is as follows:

data—-name—1 data—-name—2
literal-1l : relational-operator literal-2
arithmetic—expression—1 arithmetic-expression-2

The first operand, data—-name—1, literal—=1l, or arithmetic expression-1 is
called the subject of the condition. The second operand, data—-name-2,
literal-2, or arithmetic expression—2 is called the object of the condition.
The object and the subject may not both be literals.

* Permissible only if the condition itself is not a "NOT condition".

CONDITIONS

Relational Operators

The relational operators specify the type of comparison to be made in a rela-
tion condition. The relational operators must be preceded by a space and
followed by a space. Relational operators are:

IS [NOT] GREATER THAN,
IS [NOT] LESS THAN,

Is [NOT] EQUAL To.

IS [NOT] >.

Is [NOT]
1s [NoT]
EQUALS.

Comparison of Operands

A

Non=Numeric, For non-~numeric (byte) operands, a comparison will result when

determination is made that one operand is less than, equal to, or greater than
the other with respect to a specified internal collating sequence of characters.
The size of an operand is the total number of characters in the operand. Non-
numeric operands may be compared only when their USAGE is the same, implicitly

or explicitly. There are two cases to consider:

a. If the operands are of equal size, characters in corresponding
character positions of the two operands are compared starting from
the high-order end through the low—order end. If all pairs of char-
acters compare equally through the last pair, the operands are con-
sidered equal when the low—order end is reached. The first pair of
unequal characters to be encountered is compared to determine their
respective relationship. The operand that contains the character
that is positioned higher in the internal collating sequence is con-

sidered to be the greater operand.

b. If the operands are of unequal size, the comparison of characters
proceeds from high—-order to low—order positions until a pair of un-—
equal characters is encountered, or until one of the operands has no
more characters to compare. If the end of the shorter operand is
reached and the remaining characters in the longer operand are spaces,

the two operands are considered to be equal.

Numeric. For operands that are numeric, a comparison results in the deter-

mination that one of them is less than, equal to, or greater than the other

with respect to the algebraic value of the operands. The length of the oper-
7-19

CONDITIONS

ands, in terms of number of digits, is not significant. Zero is considered
a unique value regardless of the sign. Comparison of these operands is per-
mitted regardless of the manner in which their usage is described. Unsigned

numeric operands are considered positive for purposes of comparisons.

The signs of signed numeric operands will be compared as to their algebraic
value of being plus (highest) or minus (lowest).
Sign Condition

The sign condition determines whether or not the algebraic value of a numeric
operand is less than, greater than, or equal to 0. The general construct for
a sign condition is as follows:

_ POSITIVE
arithmetic—expression IS |[NQOT] {NEGATIVE
ZERO

An operand is positive if its value is greater than zero, negative if its

value is less than zero, and zero if its value is equal to zero.
Class Condition

The class condition determines whether the operand is numeric; that is,
consists entirely of the characters 0, 1, 2, 3, ..., 9, with or without an
operational sign, or alphabetic, that is, consists entirely of the characters
A, B, C, ..., Z, and space. The general construct for the class condition is
as follows:

identifier IS [NQT] {grggﬁ;gTIc}

The usage of the operand being tested must be described, implicitly or ex—
plicitly, as DISPLAY or DISPLAY-1.

The NUMERIC test cannot be used with an item whose record description de-
scribes the item as alphabetic. If the record description of the item being
tested does not contain an operational sign, the item being tested is de-
termined to be numeric only if the contents are numeric and an operational
sign is not present.

The ALPHABETIC test cannot be used with an item whose record description

describes the item as numeric. The item being tested is determined to be
alphabetic only if the contents consist of any combination of the alpha-

betic characters A thru Z and the space.

7-20

CONDITIONS

Condition-Name Condition

In a condition—name condition, a conditional variable is tested to determine

whether or not its value is equal to one of the values associated with a
condition—name. The general construct for the condition—name condition is

follows:
[NOT] condition—name

If the condition—name is associated with a range or ranges of values, then
the conditional variable is tested to determine whether or not its value

falls in this range, including the end values.

The rules for comparing a conditional variable with a condition—name value

are the same as those specified for relation conditions.

The result of the test is TRUE if one of the values corresponding to the

condition—name equals the value of its associated conditional variable,
Evaluation Rules

The evaluation rules for conditions are analogous to those given for arith-
metic expressions, except that the following hierarchy applies:

a. Arithmetic expressions (formulas).

b. All relational operators.

C. NOT.
d. AND,
e, OR,

as

CONDITIONS

Simple Conditions

Simple conditions, as distinguished from compound conditions, are subdivided
into four general families of conditional tests: Relation Tests, Relative
Value Tests, Class Tests, and the Conditional Variable Tests. A detailed ex—

planation of each of these can be found under the IF verb discussion.

Compound Conditions

The most common construct of a compound condition is:

simple—condition—-1 {%%Q} simple—condition=-2
AND} AND . - cps
[{QE P zﬁ;‘ simple~condition—n

Simple conditions can be combined with logical operators, according to speci-
fied rules, to form compound conditions., The logical operators AND, OR, and
NOT are shown in table 7-2, where A and B represent simple conditions. Thus,
if A is TRUE and B is FALSE, then the expression A AND B is FALSE, while the
expression A OR B is TRUE.

The following are illustrations of compound conditions:
a. AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20,

. AGE IS GREATER THAN 24 OR MARRIED.
c. STOCK-ON-HAND IS LESS THAN DEMAND OR STK-SUPPLY IS
GREATER THAN DEMAND + INVENTORY.

d. A IS EQUAL TC B, AND C IS NOT EQUAL TO D, OR E IS NOT
EQUAL TO F, AND G IS POSITIVE, OR H IS LESS THAN I * J.

e, STK-ACCT IS GREATER THAN 72 AND (STK~NUMBER IS LESS
THAN 100 OR STK-NUMBER EQUAL TO 76920).

Note that it is not necessary to use the same logical connective throughout.
The rules for determining the logical (i.e., truth) value of a compound condi-

tion are as follows:

a. If AND is the only logical connective used, then the compound
condition is TRUE if, and only if, each of the simple conditions 1is
TRUE.

b. If OR is the only logical connective used, then the compound
condition is TRUE if, and only if, one or more of the simple condi-
tions is TRUE.

CONDITIONS

c. If both logical connectives are used, then the conditions are grouped
first according to AND, proceeding from left to right, and then by OR,
proceeding from left to right.

Parentheses may be used to indicate grouping as specified in the examples
below. Parentheses must always be paired the same as in algebra, i.e., the
expressions within the parentheses will be evaluated first. 1In the event that
nested parenthetical expressions are employed, the innermost expressions within
parentheses are handled first. Examples of using parentheses to indicate

grouping are:

a. To evaluate Cl AND (C2 OR NOT (C3 OR C4)), use the first part of
rule ¢ above and successively reduce this by substituting as follows:

Let C5 equal "C3 OR C4", resulting in
C1l AND (C2 OR NOT C5)

Let C6 equal "C2 OR NOT C5", resulting
in C1 AND C6

This can be evaluated by referencing table 7-2,

b. To evaluate Cl OR C2 AND C3, use the second part of rule c and
reduce this to Cl1 OR (C2 AND C3), which can now be reduced as in

example a.

¢, To evaluate Cl1 AND C2 OR NOT C3 AND C4, group first by AND from left

to right, resulting in:
(C1 AND C2) OR (NOT C3 AND C4)
which can now be evaluated as in example a.

d. To evaluate C1 AND C2 AND C3 OR C4 OR C5 AND C6 AND C7 OR C8, group
from the left by AND to produce:

((C1 AND C2) AND C3) OR C4 OR ((C5 AND C6)
AND C7) OR C8

which can now be evaluated as in example a,
e. The following uses a condition—name as part of the statement.

IF CURRENT-MONTH AND DAY = 15 OR 30... would

be treated as:

i

IF (CURRENT-MONTH AND DAY

actual test desired is:

15) OR 30... the

i

IF CURRENT-MONTH AND (DAY 15 OR 30).

CONDITIONS

The required result is that CURRENT-MONTH must be true and DAY must
contain either 15 or 30.

Without the parentheses as shown, the conditions are:

1. DAY = 30 or
2. CURRENT-MONTH is true AND DAY = 15.

Abbreviated Compound Conditions

Any relation condition other than the first that appears in a compound condi-
tional statement may be abbreviated as follows:

a. The subject, or the subject and relational operator, may be omitted.
In these cases, the effect of the abbreviated relation condition is
the same as if the omitted parts had been taken from the nearest
preceding complete relation condition within the same condition;

that is, the first relation is a condition and must be complete.

b. If, in a consecutive sequence of relation conditions (separated by
logical operators) the subjects are identical, the relational oper-
ators are identical and the logical connectors are identical, the

sequence may be abbreviated as follows:

1. Abbreviation 1: when identical subjects are omitted in a con-
secutive sequence of relation conditions. An example of abbre-

viation 1 would be:
IF A = B AND = C.
This is equivalent to IF A = B AND A = C.

2. Abbreviation 2: when identical subjects and relational operators
are omitted in a consecutive sequence of relation conditions.

An example of abbreviation 2 is:
IF A = B AND C.
This is equivalent to IF A = B AND A = C.

c. As indicated in the previous paragraphs, compound conditions can be
abbreviated by having implied subjects, or implied subjects and re-
lational operators, providing the first simple condition is a full

relation. The missing term is obtained from the last stated relation

724

CONDITIONS

in the sentence, The following examples further illustrate the abbre-

viated compound conditions:
1. IF A =B OR C is equivalent to IF A = B OR A = C.

2, IFA<BOR=CORD is equivalent to IF A < B OR
A =CORA-=D,

INTERNAL PROGRAM SWITCHES

INTERNAL PROGRAM SWITCHES

Every compiled object program contains eight automatically provided program-
matic switches. Switches SW1 through SW8 are composed of one unsigned digit
in length and are located in memory locations 0 through 7 of data segment O.

These switches can be referred to in the PROCEDURE DIVISION by the use of the
reserved words SW1l, SW2,,.SW8. During execution, each individual switch
setting can be changed by a MOVE, ADD, SUBTRACT, etc.. For example:

MOVE 0 TO SW1.
ADD 1 TO SW2.
SUBTRACT 1 FROM SW3.

Note that SW6 has an effect on the MONITOR DEPENDING,...requirement if the
statement is present.

The switch memory locations are reserved and operate identically to those of
the reserved TALLY locations,.

7-26

VERBS

VERBS

The verbs available for use with the COBOL Compiler are categorized below.

Although the word IF is not a verb in the English language,

it is utilized

as such in the COBOL language. Its occurrence is a vital feature in the

PROCEDURE DIVISION.

a. Arithmetic:
ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

b, Compiler Directing:
COPY
MONITOR
NOTE
USE

c. Data Manipulations:
EXAMINE
FORMAT
MICR-EDIT
MOVE

d. Ending:
STOP

e. Input-Output:
ACCEPT
CLOSE
CONTROL
DISPLAY
OPEN
READ
SEEK
WRITE

f. Logical Control:
IF

VERBS

g. Procedure Branching:
ALTER
EXIT
GO
PERFORM
ZIP

h. Sort:
RELEASE
RETURN
SORT

i. Table Manipulation:
SEARCH
SET

j. Debugging:
DUMP
TRACE

Specific Verb Formats

The specific verb formats, together with a detailed discussion of the restric-
tions and limitations associated with each, appear on the following pages in

alphabetic sequence.

ACCEPT

ACCEPT

The function of this verb is to permit the entry of low—volume data from the
console typewriter.

The construct of this verb is:

£

ACCEPT identifier [FROM {mnemonic—name}]

This statement causes the operating object program to halt and wait for appro--
priate data to be entered on the console printer (SPO). The SPO entry will
replace the contents of memory specified by the identifier. The systems
operator answers an ACCEPT halt by keying in the following message:

mix—index AXdata-required
If a blank appears between the AX and data—required, the blank character will

be included in the data—stream.

The MCP will space f£ill to the right if the number of characters entered is
less, or truncate to right if the number of characters entered is more.

If mnemonic—name is used, it must appear in the SPECIAL-NAMES paragraph and
be equated to the hardware—name SPO,

The receiving identifier may be a group level entry and cannot be subscripted.
The maximum number of characters per ACCEPT statement is unlimited.

ACCEPT responses of greater than 60 characters must be entered through the SPO’
in exact groups of 60 characters, except for the last group, which can be of
any size up to 60.

Because of the inefficiency of entering data through the keyborad, this tech-
nique of data transmission should be restricted solely to low-volume input
data.

NOTE

The "<" is a backspace character and is
not passed by the MCP.

ADD

ADD

The function of this verb is to add two or more numeric data items and adjust
the value of the receiving field(s) accordingly.

The construct of this verb has three options.

Option 1:

literal-1 literal—2
ADD {identifier"l} [{identifier-z} -'-]
TO identifier-m [ROUNDED] [identifier-n [EQQHDED]...]
[;ON SIZE ERROR statement-1[;ELSE statement-z]]

Option 2:
ADD literal-1 } literal-2 literal-3
— identifier-1 identifier—z} identifier—3} T
GIVING identifier-m [ROUNDED] [,identifier—n [ROUEQEQ]] e
[flON SIZE ERROR statement-1 [;ELSE statement-2]]
Option 3:
CORR . e . e
ADD {COBBESPONDING identifier~-1l TO identifier-2

[ROUNDED] [;oN SIZE ERROR statement-1 [;ELSE statement-2]]

With Option 1, the value(s) of the operand(s) preceding the word TO will be
added together and the sum will be added to the existing value(s) of operand(s)
following the word TO. A resummation does not occur if the value of one of

the identifiers changes in the process.

For example, the result of the statement
ADD A, B, C TO C, D(C), E
is equivalent to

ADD A, B, C GIVING TEMP
ADD TEMP TO C

ADD TEMP TO D(C)

ADD TEMP TO E

where TEMP is an intermediate result item provided by the compiler.

7-30

ADD

In Option 2, the sum of the operands preceding the word GIVING will be in-
serted as a replacement value of identifier(s) following the word GIVING.

In Options 1 and 2, the identifiers must refer to elementary numeric items only,
except that identifiers appearing only to the right of the word GIVING may refer
to elementary numeric—edited items.

An ADD statement must have at least two operands.

The composite of operands, which is that data item resulting from the super-
imposition of all operands, excluding the data item that follows the word
GIVING, aligned on their decimal points, must not contain more than 125 digits

or characters.

The internal format of operands referred to in an ADD statement may differ
among each other. Any necessary format transformation and decimal point align-

ment are automatically supplied throughout the calculation.
Each literal must be a numeric literal.

If, after point alignment with the receiving data item, the calculated result
extends to the right of the receiving data item (i.e., an identifier whose
value is to be set equal to the sum), truncation will occur. Truncation is
always in accordance with the size associated with the resultant identifier.
When the ROUNDED option is specified, it causes the resultant identifier to
have its absolute value increased by 1 whenever the most—-significant digit of
the truncated portion is greater than or equal to 5.

Whenever the magnitude of the calculated result exceeds the largest magnitude
that can be contained in a resultant data—name, a size error condition arises.
In the event of a size error condition, one of two possibilities will occur,
depending on whether or not the ON SIZE ERROR option has been specified. The
testing for the size error condition occurs only when the ON SIZE ERROR option

has been specified.

a. In the event that ON SIZE ERROR is not specified and size error con-
ditions arise, the value of the resultant identifier is unpredictable,

b. If the ON SIZE ERROR option has been specified and size error condi-
tions arise, then the value of the resultant identifier will not be
altered. After it has been determined that there is a size error
condition, the "any imperative—statement'" associated with the ON SIZE
ERROR option will be executed.

If Option 3 is used multiple operations are performed. The operations are exe-
cuted by the pairing of identical data-names of numeric elementary items subor-

7-31

ADD

dinate in hierarchy to identifier—1 and identifier—-2., Data—-names match if they,
and all their possible qualifiers up to, but not including identifier—-1 and
identifier—2, are the same. All general rules pertaining to the ADD verb apply
to each individual ADD operation. For instance, if the size of matched data-
names does not correspond, in that the decimal point is out of alignment or

the sizes differ, the decimal point alignment or truncation takes place accord-
ing to the rules previously discussed.

In the process of pairing identical data—names, any data—name with the
REDEFINES clause is ignored. Similarly, data—names which are subordinate to
the subordinate data—names with the REDEFINES clause are ignored.

NOTE

This restriction does not preclude
identifier—1 or identifier—-2 from having
REDEFINES clauses or from being sub-

ordinate to data—names with REDEFINES
clauses,

If the CORR or CORRESPONDING option is used, any item in the group referred
to which contains an OCCURS clause will be ignored. Any items subordinate to
such an item will also be ignored.

In Option 3, if either identifier—-1 or identifier—2 is a group item which con-

tains RENAMES entries, the entries are not considered in the matching of names.

In Option 3, identifier-l1l and identifier—2 must not have a level number of 66,
77, or 88.

If corresponding data—names are not elementary numeric items, the ADD operation
will be ignored.

In Option 3, CORR is an acceptable substitute for CORRESPONDING.

7-32

ALTER

ALTER

The function of this verb is to modify a predetermined sequence of operations

by changing the operand of a labeled GO TO paragraph.

The construct of this verb is:

ALTER procedure—name—1l TO [PEOCEEQ IQ] procedure—name-2
[procedure-name-3 TO[PROCEED TQO] procedure-name-4 ...]

Procedure—name—1, procedure—name=3, .., are names of paragraphs, each of

which contains a single sentence consisting of only a GO TO statement as

defined under Option 1 of the GO TO verb. Procedure—name—-2, procedure—name—4.
are not subject to the same restrictions and they may be either paragraph-

names or section—names,

When control passes to procedure—name—1l, control is immediately passed to
procedure—name—2 rather than to the procedure—name referred to by the GO TO
statement in procedure—name—1l, Procedure-:ame-=1 is therefore a '"gate' which

remains set until again referenced by another ALTER statement.

A GO TO statement in a section whose priority is greater than or equal to 50
must not be referred to by an ALTER statement in a section with a different

priority.

All other uses of the ALTER statement are valid and are performed even if the
GO TO which the ALTER refers to is in an overlayable section, as long as the

section priority number is less than 50.

CLOSE

CLOSE

The function of this verb is to communicate to the MCP that the designated
file~name being operated on or created is programmatically completed, and also
to fulfill the stated action requirements.

The construct of this verb is:

LOCK
PURGE
CLOSE file-name-~1 [REEL] WITH RELEASE
NO REWIND
REMOVE

[file-name-2...]

¥File—names must not be those defined as being SORT files. A file must have
been OPENed previously before a CLOSE statement can be executed for the file.
File space in memory will not be allocated until the file has been OPENed.
When a file is programmatically CLOSEd and the assigned unit is released, the
memory allocated for that file will be returned to the MCP, The MCP I/0 as~-
signment table reflects any unit which remains assigned to the program after
the file on that unit has been CLOSEd.

The above statement applies to the following categories of input and output
files.

a. Files whose input and output media involve print files, card files,

etc.

b. Files which are contained entirely on one reel of magnetic tape
and are the only files on that reel.

c. Files which may be contained on more than one physical reel of
magnetic tape. Furthermore, the number of reels might possibly be
higher than the number of physical tape units provided on the system.

d. Disk files.

To show the effects of the CLOSE options, each type of file will be discussed
separately.

a. Card Input.

1. CLOSE - does not release the input memory areas or the reader.

2. CLOSE WITH NO REWIND - same as CLOSE.

CLOSE

CLOSE WITH RELEASE - releases the input memory areas and returns
the reader to the MCP.

CLOSE WITH LOCK - same as CLOSE WITH RELEASE,
CLOSE WITH PURGE - same as CLOSE WITH RELEASE,

CLOSE WITH REMOVE - same as CLOSE,

Card Output.

1.

5.
6.

CLOSE - punches the trailer label (if any) and does not release
the output memory areas or the punch.

CLOSE WITH NO REWIND - same as CLOSE,

CLOSE WITH RELEASE - releases the output memory areas and
returns the punch to the MCP.

CLOSE WITH LOCK - same as CLOSE WITH RELEASE,
CLOSE WITH PURGE - same as CLOSE WITH RELEASE.

CLOSE WITH REMOVE - same as CLOSE.

Magnetic Tape Input.

1.

2.

6,

CLOSE - rewinds the tape and does not release the input memory

areas. The unit remains assigned to the program.

CLOSE WITH NO REWIND - same as CLOSE except the tape is not
rewound,

CLOSE WITH LOCK - releases the input memory areas, rewinds the
tape, and the MCP marks the unit not ready,

CLOSE WITH RELEASE - releases the memory input areas, rewinds
the tape, and returns the unit to the MCP,

CLOSE WITH PURGE - releases the input memory areas, rewinds the
tape, and if a write ring is in the reel, over-writes the 1label,
making the tape a scratch tape which becomes a candidate for use
by the MCP. The unit is returned to the MCP.

CLOSE WITH REMOVE — same as CLOSE.

Magnetic Tape Output.

CLOSE

1. CLOSE = does not release the output memory areas, writes the
trailer label (if any), aand rewinds the tape. The unit remains

assigned to the program.

2. CLOSE WITH NO REWIND - does not release the output memory areas,
writes the trailer label (if any). The tape remains positioned
beyond the trailer label (or tape mark if there is no trailer
label). The unit remains assigned to the program.

3. CLOSE WITH LOCK - releases the output memory areas, writes the
trailer label (if any), rewinds the tape, and the MCP marks the

unit not ready.

4, CLOSE WITH RELEASE - releases the output memory areas, writes
the trailer label (if any), rewinds the tape, and returns the
unit to the MCP.

5. CLOSE WITH PURGE - releases the output memory areas, writes the
trailer label (if any), rewinds the tape, returns the unit to
the MCP, and the MCP overwrites the label, making it a scratch
tape and a candidate for use by the MCP.

6. CLOSE WITH REMOVE - same as CLOSE.
e. DPrinter Output.

1. CLOSE - prints the trailer label (if any) and does not release the
output memory areas or the printer.

2. CLOSE WITH NO REWIND - same as CLOSE,

3. CLOSE WITH RELEASE — releases the output memory areas and
returns the printer to the MCP.

4., CLOSE WITH LOCK - same as CLOSE WITH RELEASE.
5. CLOSE WITH PURGE - same as CLOSE WITH RELEASE.
6. CLOSE WITH REMOVE - same as CLOSE,

f. Disk Files. The actions taken on files ASSIGNED to DISK will be
discussed in terms of old files and new files. An old file is one
that already exists on disk and appears in the MCP Disk Directory.
A new file is one created by the program and does not appear in the
Directory. A new file may only be referenced by the program which

creates it.

1. CLOSE - does not release the input/output memory areas.

7-36

CLOSE

(a) For an old file, the file is left in the Directory and is

available to other programs.

(b) For a new file, the file is not entered in the Directory;
however, it remains on the disk and may be OPENed again by

this program.
2. CLOSE WITH NO REWIND - not permitted on disk files.
3. CLOSE WITH RELEASE - releases the input/output memory areas.

(a) For an old file, the file is left in the directory and is

available to other programs.

(b) For a new file, the file is entered in the directory and
is available to other programs.

4, CLOSE WITH LOCK - releases the input/output memory areas.

(a) For an old file, the file remains in the Directory and is
made available,

(b) For a new file, the file is entered in the Directory and

is available to other programs.

CLOSE WITH PURGE - releases the input/output memory areas.

(911

(a) An old file is immediately removed from the disk and
deleted from the Directory.

(b) A new file will be immediately removed from the disk.

6. CLOSE WITH REMOVE - releases the input/output memory areas.
This option will cause the MCP to REMOVE a file from the disk
directory that has the same file—id as the file being closed.
This acticn will take place prior to entering the closing files
file—id in the disk directory. Use of this option will eliminate
the DUPLICATE FILE condition and reduce operator intervention.
If the REMOVE option is not used, the "RM" SPO input message will

accomplish the same results.

If a file has been specified as being OPTIONAL, the standard end-of—-file pro-

cessing is permitted whenever the file is not present.

If a CLOSE statement without the REEL option has been executed for a file, a
READ, WRITE, or SEEK statement for that file must not be executed unless an
intervening OPEN statement for that file is executed.

CLOSE

The CLOSE REEL option signifies that the file—name being CLOSEd is a multi-
reel magnetic tape input or output file. The reel will be CLOSEd when the
CLOSE REEL statement is encountered and an automatic OPEN of the next se~

quential reel of the multi-reel file is then performed by the MCP,

COMPUTE

COMPUTE

The function of this verb is to assign to a data item the value of a numeric
data item, literal, or arithmetic expression.

The construct of this verb is:

identifier—-2
COMPUTE identifier-1 [ROQUNDED] = literal
arithmetic expression

[;ON SIZE ERROR statement-1 [;ELSE statement-2]]

The literal must be a numeric literal,

Identifier—2 must refer to an elementary numeric item. Identifier-1 may describe
an elementary edited item.

The arithmetic expression option permits the use of any meaningful combination

of identifiers, numeric literals, arithmetic operators, and parenthesization,
as required.

All rules regarding ON SIZE ERROR, ROUNDED options, truncation and editing are
the same as for ADD.

If numeric-literal exponents are used, the results are accurate up to 18

digits in length or to as many decimal places.

COPY

COPY

The function of this verb is to allow library routines contained on a source

language library file to be incorporated into the program.

The construct of this verb contains the following two options:

Option 1:
cOo library—name
Option 2:
library—name
word-1 word-2]
REPLACING { _ _ } BY identifier—2
data—name—1 literal-1
word-3 word—-4
{d ta~n me—B} BY identifier—4 s
atamna literal-2

The COPY statement may refer only to one library entry in the library. Library-
name is the value placed in a library entry bounded by quotes or a procedure-
name type word. The library entry can contain up to three l0-character non-
numeric literals each separated by a slash (/), following normal naming

conventions for disk files.

The library file is inserted in the source program immediately after the COPY
statement at compilation time. The result is the same as if the library data

were actually a part of the source program,

Library data can encompass an entire procedure, which may be any number of

statements, paragraphs, or entire source program divisions (or parts thereof).
Library files may not contain COPY statements.

No statement may appear to the right of the COPY statement on the same source

card.

COPY during the PROCEDURE orxr ENVIRONMENT divisions must follow a SECTION or
paragraph—-name, and all information contained in the library file is included

and can be fully referenced.

COPY

On a COPY during the DATA DIVISION, the FD file—name, or the level 0l data—name:
preceding the COPY is saved and the relative constructs from the library file

are discarded. For example, the statement
FD MASTER-INPUT COPY '"MASTER".

will cause the library file titled MASTER to be inserted into the source
program immediately following the COPY statement. The source program must
refer to the FD file—name as MASTER-INPUT, not as MASTER. The library FD
file~name will appear on the output listing, but cannot be referenced in the

source program.

Library texts copied from the library are flagged on the output listing by an
"L" preceding the sequence number,

In Option 2, a word is defined as being any COBOL word that is not a COBOL
reserved word. For example, the following statement reflects non-reserved
COBOL words AAA,BBB and 1234, where AAA and BBB are data—names and 1234 is a
COBOL word:

MULTIPLY AAA BY BBB, THEN GO TO 1234.

If the COPY REPLACING option is specified, each word—1l or data—name—1l stipulated
will be replaced by the word—2 or data—name—=2 entries specified in the option.

Data—names may not be subscripted, indexed, or qualified.

Use of the COPY REPLACING option requires that the "library—name'" COBOL source
image file be present on disk, prior to compilation of the source program con-
taining the COPY REPLACING option. The use of this option will not cause
alteration of the library file residing on disk,.

In Option 2, literals contained in a library file cannot be replaced by liter-
als, words, or data—names. If an integer is used for a word and it is the
last entry in a replacing list, it must be followed by a blank and then a

period. For example:

COPY BERMAN REPLACING AAA BY HOURS,
BBB BY PAY-SCALE, 1234 BY 58b.

The COPY REPLACING option is exceptionally useful for conversion of generalized
COBOL source—language library routines into specific and well—-named routines
within a given program. For example, a generalized COBOL source—language
library routine may use the following data—names for the purposes shown.

COPY

Data—-name Purpose
AAA Monthly hours worked per employee.
BBB Employee pay—rate.
CccC Employee social security number.
DDD Employee income tax rate.
EEE Employee year to date gross income,
FFF Employee year to date net income.
GGG Employee gross pay for month.

Employee net pay for the month.

1234 Specifies a GO TO exit from the routine,

A program calling upon the above generalized routine can replace the noh-
descript data—-names with descriptive names as defined in the program's record
description or WORKING—-STORAGE area. For example:

COPY. . .REPLACING AAA BY HOURS-WORKED

COPY...REPLACING BBB BY RATE-OF—-PAY

COPY...REPLACING CCC BY SOC—-SEC-NR

COPY...REPLACING DDD BY INC-TAX-RATE

COPY. . .REPLACING EEE BY YR-TO—-DATE—-GROSS

COPY...REPLACING FFF BY YR-TO-DATE-NET

COPY. . .REPLACING GGG BY THIS-MONTHS-GROSS
COPY...REPLACING HHH BY THIS-MONTHS-NET

COPY. . .REPLACING 1234 BY WRITE-EMPLOYEE-DRAFT,

The specified source program data—names and exit points will be inserted into
the library file routine at every occurrence of the assigned generalized names

within the routine.

Library Creation. A library file will be created only during a COBOL compila-

tion each time a source card is encountered that contains an "L" in column 7
followed by a library—name on that same card, A library—file may contain up
to a maximum of 20,000 card images.

Each library file in the source program will be terminated when a card contain-
ing an "L" in column 7 followed by all blanks or another library—name is en-—

countered,

Once a file has been created, it may be COPYed by other programs, or by the
creating program in succeeding FD, 01, or procedure COPY statements.

7-42

COPY

The source data used to create an original library file will also be compiled

into the object program at the point of appearance.

All assigned library—names must be unique to other library—names contained in
the library, to preserve the integrity of the COBOL library systen,

Library files to be used with the COPY verb can be created by a user program
which creates a card image file on disk. The compiler will automatically

accept any blocking the user may desire.

DISPLAY

DISPLAY

The function of this verb is to provide for the printing of low—volume data,

error messages, and operator instructions on the console typewriter.

The construct of this verb is:

identifier-1 identifier—2

s

DISPLAY {11tera1’1 } E{llteral—z } "']

: SPO)
[HBQE {mnemonic-name}]

Each literal may be any figurative constant except ALL,
All special registers (DATE, TIME, TALLY, SW1 c SWn, etc.) may be DISPLAYed.

The DISPLAY statement causes the contents of each operand to be written on the
supervisory printer (SPO), from the MCP SPO queue, to ensure that a program is
not operationally deterred while a message is printing,

If a figurative constant is specified as one of the operands, only a single

character of the figurative constant is displayed.

The data—names may be subscripted or indexed and can be COMPUTATIONAL or
DISPLAY items.

An infinite amount of characters may be displayed with one statement. The
compiler will supply automatic carriage returns and line feeds, if appro-

priate,

The DISPLAY series option will cause the literals or identifiers to be printed
on one line and, if required, the compiler will cause automatic carriage re-
turns and line feeds for information extending to other lines of print. The
compiler will format each line so that a partial word at an end of a line will

not be printed on that line and continued on the following lines.

When mnemonic—name is used, it must appear in the SPECIAL-NAMES paragraph
equated to the hardware—name SPO.

DIVIDE

DIVIDE

The function of this verb is to divide one numerical data—item into another

and set the value of an item equal to the result.

The construct of this verb contains the following two options:

Option 1:

literal—l }

DIVIDE (MOD] {identifier_l INTO identifier-2 [ROUNDED]

[;ON SIZE ERROR statement-1 [;ELSE statement—2]]
Option 2:

literal—-1 BY literal—2
DIVIDE [MQQ] {identifier-l} { NTO} {identifier—z}

ANTO
GIVING identifier—3 [ROUNDED]

[REMAINDER identifier-4 F_ngg_ma_nj]
[ON SIZE ERROR statement-1 [;ELSE statement-2]]

Identifier—-3 and identifier—4 of Option 2 may refer to elementary numeric-

edited items,
Each literal must be a numeric literal.

Division by zero is not permissible and, if executed, will result in a size
error indication. This can be handled programmatically, either by doing a

zero test prior to the division or by the use of the SIZE ERROR clause, If
SIZE ERROR is not written, an attempt to divide by zero will result in pro-

gram termination.
All identifiers must refer to elementary numeric items,

In Option 1, the value of the operand preceding the word INTO will be divided
into the operand following INTO and the resulting quotient stored as the new

value of the latter.

The use of the BY option will cause literal—-1l, identifier-1 to be divided by
literal-2, identifier—-2, whereas the INTO option will cause literal-1,
identifier-1 to be divided into literal—2, identifier-2.

In Option 2, the resulting quotient will be stored as the new value of
identifier—-3. The value of the operands immediately to the left of the word

GIVING will remain unchanged.

DIVIDE

The ROUNDED option and ON SIZE ERROR clause and truncation are the same as
those discussed for the ADD statement.

The size of the operands is determined by the sum of the divisor and the
quotient. The sum of the two cannot exceed 99 digits.

The use of the MOD option will cause the remainder to be placed in identifier—2
of Option 1 and identifier—-3 of Option 2. The remainder will be carried to the
same degree of accuracy as defined in the PICTURE of the quotient, and all extra
positions will be filled with zeros.

Literals cannot be used as dividends.

The use of the REMAINDER option will cause the remainder to be placed in
identifier—4, and identifier-3 will contain the quotient, unless the MOD option
is also included. If the MOD option is included, both identifier-3 and
identifier-4 will contain the remainder.

DUMP

DUMP

The DUMP statement causes messages to be displayed oa the line printer in-—
stead of the console printer. The syntax is as follows:

DUMP [1list]
where [1ist] is a list of data—names, literals, and blanks (for spacing).

The DUMP statement must be used in counjunction with the MONITOR declaration
because it uses the same WRITE routine.

EXAMINE

EXAMINE

The function of this verb is to replace a specified character, and/or to count

the number of occurrences of a particular character in a data item,
The construct of the verb contains the following two options:
Option 1:

EXAMINE identifier-1

ALL s -
TALLYING [LEADING (e ier-2) [B.EEL&C_L_NQ_B.Y. {
|UNTIL FIRST

literal-2]
identifier-3j

Option 2:
AL
EXAMINE identifier—1 REPLACING LEADING
[UNTIL] FIRST

{1itera1—3 }

identifier—-4 BY

{litera1—4 }
identifier—5

The description of identifier—-1 must be such that USAGE is DISPLAY explicitly
or implicitly.

Each literal used in an EXAMINE statement must consist of a single DISPLAY

character, Figurative constants will automatically represent a single DISPLAY
character,

Examination proceeds as follows:

a. For items that are not numeric, examination starts at the
leftmost character and proceeds to the right. Each 8-bit character
in the item specified by the data—name is examined in turn. Any
reference to the first character means the left-most character.

b. If an item referenced by the EXAMINE verb is numeric, it must consist
of numeric characters and may possess an operational sign.
Examination starts at the leftmost character (excluding the sign)
and proceeds to the right. Each character except the sign is
examined in turn, Regardless of where the sign is physically located,
it is completely ignored by the EXAMINE verb. Any reference to the
first character means the leftmost numeric character,

The TALLYING option creates an integral count (i.e., a tally) which replaces
the value of a special register called TALLY. The count represents the num-
ber of:

7-48

EXAMINE

a, Occurrences of literal-l or identifier—2 when the ALL option is used.

b. Occurrences of literal-l or identifier—2 prior to encountering a
character other than literal-l or identifier—2 when the LEADING
option is used.

c. Characters not equal to literal-l or identifier—2 encountered before
the first occurrence of literal—l or identifier—2 when the UNTIL
FIRST option is used.

When either of the REPLACING options is used (i.e., with or without TALLYING),

the replacement rules are as follows:

a, When the ALL option is used, then literal—2 or identifier-3 or
literal—-4 or identifier-5 is substituted for each occurrence of
literal-1l or identifier~2 or literal-3 or identifier-—4.

b. When the LEADING option is used, the substitution of literal-2 or
identifier—3 or literal—-4 or identifier—5 terminates as soon as a
character other than literal—l or identifier-2 or literal-3 or
identifier—4 or the right—-hand boundary of the data item is en-
countered.

¢c. When the UNTIL FIRST option is used, the substitution of literal-2
or identifier—3 or literal—4 or identifier—5 terminates as soon as
literal-1l or identifier—2 or literal—-3 or identifier—4 or the right-
hand boundary of the data item is encountered.

d. When the FIRST option is used, the first occurrence of literal-3
or identifier—-4 is replaced by literal—-4 or identifier-—5,

The field called TALLY is a 5—digit field provided by the compiler. Its
usage is COMPUTATIONAL and will be reset to zero automatically when the
EXAMINE,.. TALLY option is encountered.

EXIT

EXIT

The function of this verb is to provide a terminating point for a PERFORM

loop, whenever required.

The construct of this verb is:
EXIT,

If the EXIT statement is used, it must be preceded by a paragraph—name and
appear as a single one-word paragraph., EXIT is documentational only, but if
used, must follow the rules of COBOL.

The EXIT is normally used in conjunction with conditional statements contained
in procedures referenced by a PERFORM statement. This allows branch paths

within the procedures to rejoin at a common return point.

If control reaches an EXIT paragraph and no associated PERFORM or USE state-—
ment is active, control passes through the EXIT point to the first sentence

of the next paragraph.

GO 10

GO 10

The function of this verb is to provide a means of interrupting out of the se-
quential, sentence by sentence, execution of code, and to permit continuation

at some other location indicated by the procedure—name(s).
The construct of this verb has the following two options:

Option 1:
GO TO [procedure—name]
Option 2:

GO TO procedure~name-l [, procedure~name~2] ... , procedure-name-3
DEPENDING ON identifier

Each procedure—name is the name of a paragraph or section in the PROCEDURE
DIVISION of the program,

Whenever a GO TO statement (represented by Option 1) is executed, control is
unconditionally transferred to a procedure—name, or to another procedure-
name if the GO TO statement has been changed by an ALTER statement.

A GO TO statement is unrestricted as to where it branches to in a segmented
program. It can call upon any segment at either the section level or para-
graph levels.

In Option 1, when the GO TO is referred to by an ALTER statement, the follow-

ing rules apply, regardless of whether or not procedure-name is specified:
a. The GO TO statement must be the only statement in the paragraph.

b. If the procedure-name is omitted, and if the GO TO statement is not
referenced by an ALTER statement prior to the first execution of the
GO TO statement, the MCP will cause the job to be terminated.

If a GO TO statement represented by Option 1 appears in an imperative state-
ment, it must appear as the only or the last statement in a sequence of im-

perative statements.

GO TO

In Option 2, GO TO... DEPENDING... may specify up to 1023 procedure—names

in a single statement. The data—name in the format following the words
DEPENDING ON must be a numeric elementary item described without any positions
to the right of the assumed decimal point. Furthermore, the value must be
positive in order to pass control to the procedure—names specified. Control
will be transferred to procedure—~name-l1 if the value of the identifier is 1,
to procedure—name-2 if the value is 2, etc. If the value of the identifier is
anything other than a positive integer, or if its value is zero, or its value
is higher than the number of procedure—-names specified, control will be passed
to the next statement in normal sequence. For example:

GO TO MFG, RE-SALE, STOCK, DEPENDING ON S-O.

VALUE OF S-0 GO TO PROCEDURE-NAME
-1 next statement
0 next statement
1 MFG
2 RE-SALE
3 STOCK
4 next statement

IF

IF

The IF statement causes a condition to be evaluated. The subsequent action of
the object program depends on whether the value of the condition is true or

false.

The construct for the IF statement is as follows:

IE condition=l; {NEXT SENTENCE NEXT SENTENCE

Statement—1 and statement—2 represent either a conditional statement or an im-

statement—-1 } [; ELSE {statement-z }]

perative statement, and either may be followed by a conditional statement.

The semicolons are optional,.

The phrase ELSE NEXT SENTENCE may be omitted if it immediately precedes the

terminal period of the sentence.
When an IF statement is executed, the following action is taken:

a, If the condition is true, the statements immediately following the
condition (represented by statement-1l) are executed, and control then
passes implicitly to the next sentence unless statement—l1l causes some
other transfer of control.

b, If the condition is false, either the statements following ELSE are
executed or, if the ELSE clause is omitted, the next sentence is

executed.

When an IF statement is executed and the NEXT SENTENCE phrase is present, con-—
trol passes explicitly to the next sentence, depending on the truth value of
the condition and the placement of the NEXT SENTENCE phrase in the statement.

IF statements within IF statements may be considered as paired IF and ELSE
combinations, proceeding from left to right; thus, any ELSE encountered is
considered to apply to the immediately preceding IF that has not already
been paired with an ELSE.

When control is transferred to the next sentence, either implicitly or ex-
plicitly, control passes to the next sentence as written or to a return
mechanism of a PERFORM or a USE statement.

The method of evaluating conditional expressions allows early exit, once the
truth value of the expression has been determined. If the expression contains
procedure calls on user intrinsics or makes use of implied subjects, the ex-—

pression is evaluated fully.

MOVE

MOVE

The MOVE statement transfers data, in accordance with the rules of editing,

to one or more data areas.

The construct for the MOVE statement consists of the following two options:

Option 1:

MOVE {ig::;;fier—l} TO identifier-2 [, identifier-3] ...
Option 2:

MOVE {_S_SEEESPONDING} identifier-1 TQ identifier-2

Identifier-1 and literal represent the sending field; identifier-2,
identifier-3 represent the receiving fields. Literal may be any literal

or figurative constant consistent with the class of the receiving field.

Option 1 provides for multiple receiving fields. The data designated by
the literal or identifier—1 will be moved first to identifier-2, then to
identifier—3, etc. Subscripting or indexing associated with identifier—1 is
evaluated only once, immediately before data is moved to the first receiving

field. The notes referencing identifier—-2 also apply to the other areas.
The result of the statement:

MOVE A(SUB) TO SUB, B(SUB)
would produce the same result as:

MOVE A(SUB) TO TEMP.
MOVE TEMP TO SUB.
MOVE TEMP TO B(SUB).

Elementary Moves. Any more in which the sending and receiving items are both

elementary items is an elementary move, All other moves are defined as group

moves. Every elementary item belongs to one of these five categories:

a. Numeric.

b. Numeric Edited.
c. Alphabetic.

d. Alphanumeric.

e

. Alphanumeric Edited.

MOVE

See the PICTURE clause description in section 6 for a detailed discussion of
these categories. Group items, non—-numeric literals, and all figurative con-
stants, except ZEROS and SPACES, are classed as alphanumeric. Numeric
literals and the figurative constant ZEROS are classed as numeric. The
figurative constant SPACES is classed as alphabetic.

Illegal Elementary Moves. The rules governing illegal elementary moves are

as follows:

1. A numeric-edited item, alphanumeric edited item, SPACES, or an

alphabetic item cannot be moved to a numeric or numeric edited item.

2. A numeric literal, ZEROS, a numeric data item, or a numeric edited

item cannot be moved to an alphabetic data item.

3. A non—integer numeric literal or a non—integer numeric data item can-

not be moved to an alphanumeric or alphanumeric edited data item.

Legal Elementary Moves. The rules governing legal elementary moves are as

follows:

4, When an alphanumeric or alphanumeric edited item is a receiving
field, justification and any necessary space filling takes place
as defined under the JUSTIFIED clause. If the size of the sending
field is greater than the size of the receiving field, the excess
characters are truncated on the right after the receiving item is
filled.

If the sending field is described as being signed numeric, the
operational sign will not be moved. If the sign occupies a separate
character position (KSIGN), that character will not be moved and the
size of the sending field will be considered to be one less than its
actual size.

For example:
Given these data descriptions:

77 S PIC K9999.
77 R PIC X(6).

Then the statements:

MOVE -124 TO S.
MOVE S TO R.

will result in R being equal to "0124 "

MOVE

5. When a numeric or numeric edited item is the receiving field in an
elementary move, data is moved algebraically (that is, values are
moved, characters are not moved). Therefore, if the data in the
sending field is not numeric, zone bits will be stripped and the
data will be modified. Alignment by decimal point and any neces-
sary zero—filling takes place as defined under the JUSTIFIED clause,

except where zeros are replaced because of editing requirements.

When a signed numeric item is the receiving field, the sign of the
sending field is placed in the receiving field. Conversion of the
sign representation takes place as necessary. If the sending field

is unsigned, a positive sign is generated for the receiving field.

When an unsigned numeric item is the receiving item, the absolute
value of the sending item is moved and no operational sign is gen-

erated for the receiving item.

When an alphanumeric item is the sending field, data is moved as if

the sending item was described as an unsigned numeric integer.

6. When the receiving fieldfis alphabetic, justification and any neces-
sary space filling takes place as defined under the JUSTIFIED clause.
If the size of the sending field is greater than the size of the re-
ceiving field, the excess characters are truncated on the right,
after the receiving field is filled.

Group Moves. A group move is any move in which either the sending field or the
receiving field is a group item. -Group moves are handled as alphanumeric to
alphanumeric moves, regardless of the class of the receiving field and without
consideration for the individual elementary or group items contained within

either the sending or receiving area.

Translation. Any necessary translation of data from one form of internal repre-
sentation to another, i.e., ASCII to EBCDIC, EBCDIC to hexadecimal, etc., will

be done for any elementary or group move in which data is moved non—algebraically.

The type of translation depends on the usages of the sending and receiving
data items. Data items declared within the sending or receiving fields are

not considered.

MOVE

For example, moving an elementary numeric item of type integer to an alpha-
numeric item causes the absolute value of the elementary item to be converted
to characters of the same size as their destination. Then they are placed in
their destination, left-justified, with spaces in any character positions to
the right.

INDEX DATA ITEMS

An index data item cannot be used}as an operand in a MOVE statement. The

SET statement must be used to move index data items.

VALID MOVE COMBINATIONS

Figure 7-1 shows the valid combinations of sending and receiving fields per-
mitted in COBOL.

When Option 2 is used, selected items within identifier—-1 are moved, with any
required editing, to selected areas within identifier-2. Identifier—-1 and
identifier—2 must be group items. Items are selected by matching the data-
names of items defined within identifier—1 with like data—names of areas de-
fined within identifier—2, according to the rules specified in the discussion
of the CORRESPONDING option. The resulting operation on each of the sets of

matched data items proceeds as if an Option 1 MOVE had been specified.

8C -1

(TREATED AS INTEGER LIT)

ALPHABETIC ® ® ® ® * * * * *
- GROUP ©) ® O O ® ® ® ® ®
ELEM ® (:) ©) ® (:) ® ©) ®@ @
AR © @ ® ® * * * * *
géﬁgkgg INTEGER * (:) (:) (:) (:) (:> (:> <:> <:)
(DN OR LIT) | REAL * (:) * * (:) (:) (:) (:> (:)
cup INTEGER * ® ® @ @ ®@ @ ©) @
NUMERIC REAL « ® x * ® @ ® ® | @
NE * ©) ® ® * * * * *
HEX LIT (:) (:) (:) (:)
©) © ® ®

NON-NUM LIT

®|©

G

®|®

SENDING | PROPER ZONES

NON-NUMERIC | NUMERIC | LEFT | JUST. BY NECESSARY | ZONES L aeD OR gg;?éggED
MOVE MOVE JUST. | DECIMAL TRANSLATION | STRIPPED | SUPPLIED BY

® / / /

® v /

® v v /

@ / / / v /

B v / Y

® / Y / /

@ / /

*ILLEGAL

Figure 7-1.

Valid MOVE Statement Combinations

JAOW

Q@

MULTIPLY

MULTIPLY

The function of this verb is to multiply two operands and store the results

in the last-named field (which must be a numeric data—name).

The construct of this verb is:

literal-1 {literal-z
MULTIPLY {identifier—l} BY (identifier-2]

[GIVING identifier—-3] [ROUNDED]

[;ON SIZE ERRQR statement—~1 [;ELSE statement-2]

All rules specified under the ADD statement regarding the presence of editing
symbols in operands, the ON SIZE ERROR option, the ROUNDED option, the GIVING
option, truncation, and the editing results apply to the MULTIPLY statement,
except the maximum operand size is 125 digits for the sum of two operands.

The identifiers must be elementary item references. If GIVING is used,

identifier—-3 may be an elementary edited numeric item. In all other cases,

the identifiers used must refer to elementary numeric items only.

If the GIVING option is used, the result of the multiplication replaces the

contents of identifier-3; otherwise, it replaces the contents of identifier-2.

If GIVING is not used, literal—-2 is not permitted, i.e., identifier—-2 must

appear.

NOTE

NOTE
The function of this statement is to allow the programmer to write explanatory

statements in his program which are to be produced on the source program list-

ing for documentation purposes.
The constructs of this statement are:

Option 1: Paragraph NOTE:

paragraph—name. NOQTE any comment,

Option 2: Paragraph NOTE:

NOTE any comment.
Option 3: Sentence NOTE:

NOTE any comment,

Any combination of the characters from the allowable character set may be
iancluded in the character string of a NOTE statement.

If a NOTE sentence is the first sentence of a paragraph, the entire paragraph
is considered to be commentary. Either Option 1 or Option 2 may be used as
NUTE staterents on a paragraph level,

If a NOTE statement appears as other than the first sentence of a paragraph,
only the sentence constitutes a commentary. After the word NOTE is encountered,
the first period followed by a space will cause the compiler to resume compi-
lation unless the new sentence commences with the word NOTE,

Refer to the paragraph entitled CONTINUATION INDICATOR (section 3) for an ex-
planation of comments (* or / in column 7) appearing anywhere within the

source program,

7-60

[oPeN

OPEN

The function of this verb is to initiate the processing of both input and
output files. The MCP performs checking or writing, or both, of labels and
other input—-output operations.

The construct of this verb is:

Option 1:

OPEN

WITH LOCK [ACCESS]l
INPUT file—name-1 REVERSED [file-name-2...]| ...
WITH NO REWIND J

¢{ [ourPuT file-name-3 [WITH NO REWIND] [file-name—4 ...]]...

—

~"
.

{%@%ﬂi:gﬁzgﬂl} file—name-5 ffile—name—6..J] cee

0-I file-name-7 [file—name~8...]]...

Option 2:
‘OUTPUT l
OPEN I-0 file—name
I INPUT-OUTPUT

[WITH PUNCH] [WITH {?ﬁ%gRéggT})] [WITH STACKERS]

More than one of the options in Option 2 may be specified in the OPEN state-
ment; for example, OPEN OUTPUT file—-name WITH PUNCH INTERPRET STACKERS. When
the PUNCH option is used, it implies a 96—character PUNCH operation.

When the PRINT 128 is used, it will require a work area of 96 + 128, or 224
characters. The first 96 will be for the punch output. The next 128 posi-
tions will be for printing on the card.

When the INTERPRET option is used, the output area need only be 96 characters
to cause the punch data to be printed on the card.

When the STACKERS option is used alone, it will cause a write with no data
transfer to the stacker selected. If used in conjunction with the other op—-
tions, data will be transferred also. When the STACKERS option is not used,
the cards will be selected to the default stacker on a READ or WRITE.

OPEN

File-names must not be those defined as being SORT files.
At least one of the options must be specified before a file can be read.
The I-0, INPUT-OUTPUT, and O-1I options pertain to disk storage files.

The OPEN statement must be executed prior to the first SEEK, READ, or WRITE
statement for that file.

A second OPEN statement for a file cannot be executed prior to the execution
of a CLOSE statement for that file.

A file area will not exist in memory until an OPEN statement is executed,
which in turn, causes the MCP to allocate memory for the file work area, and
any alternate areas or buffers. The MCP will obtain the needed information
from the File Parameter Block to determine the file's characteristics. Once
the file has been OPENed, memory will remain allocated until the file is
programmatically CLOSEd.

The OPEN statement does not obtain or release the first data record. A READ
or WRITE statement must be executed to obtain or release, respectively, the
first data record.

When the first label is to be checked or written, the user's beginning label

subroutine is executed if it is specified by a USE statement.

The REVERSED and the NO REWIND options can only be used with sequential,
single-reel tape files,

If the peripheral ASSIGNed to the file permits rewind action, the following
rules apply:

a., When neither the REVERSED nor the NO REWIND option is specified,
execution of the OPEN statement for the file will cause the file to
be positioned ready to read the first data—-record.

b. When either the REVERSED or the NO REWIND option is specified,
execugion of the OPEN statement does not cause the file to be po-
sitioned. When the REVERSED option is specified, the file must be
positioned at its physical end. When the NO REWIND option is speci-
fied, the file must be positioned at its physical beginning.

c. When the NO REWIND option is specified, it applies only to sequential,
single-reel files stored on magnetic tape units.

OPEN

When the REVERSED option is specified, the subsequent READ statements for the
file makes the data-records available in reverse record order starting with
the last record. Each record will be read into its record—area, and will
appear as if it has been read from a forward—-moving file.

If an input file is designated with the OPTIONAL clause in the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION, the object program causes an interroga-
tion to the MCP, for the presence or absence of a pertinent file. If this file
- is not present, the first READ statement for this file causes the imperative
statement in the AT END clause to be executed only when the operator has re-
sponded with an optional file "mix index OF" message.

The I-0 or INPUT-OUTPUT option permits the OPENing of a disk file for input
and/or output operations. This option demands the existence of the file to
be on the disk and cannot be used if the file is being initially created;
that is, the file to be OPENed must be present in the MCP disk directory, or
has been previously created and CLOSEd in the same run of the program.

When any input file option is used, the MCP immediately checks the MCP disk
directory to see if the file is present, or if it has been created and CLOSEd
in the same program run., The system operator will be notified in its absence,
and the file can then be loaded if it is available or the program can be DSed
(discontinued). If the decision is to load the file, the operator does so
and then notifies the MCP to proceed with the program, by means of a "mix-

index OK" message.

The 0-1 option is identical to OPEN I-0, with the exception that with the O-1I
option the file is assumed to be a new file to the disk directory. The OPEN
O—-1 option will short cut the usual method of initially creating I-O work
files within a program, e.g., OPEN OUTPUT, WRITE record(s), CLOSE WITH RELEASE,
OPEN I-0, etc. The O-I option does not, nor was it intended to, replace the
OPEN I-0 option, since the use of OPEN O-I assumes that a new file is to be

created each time,

During processing of mass storage files for which the ACCESS MODE is
SEQUENTIAL, the OPEN statement supplies the initial address of the first

record to be accessed.

’

The contents of the data—names specified in the FILE-LIMIT clause of the
FILE-CONTROL paragraph (at the time the file is OPENed) are used for all
checking operations while that file is OPEN. The FILE-LIMIT clause is dynamic

only to this extent,.

OPEN

When an OPEN OUTPUT statement is executed for a magnetic tape file, the MCP
searches the assignment table for an available scratch tape, writes the label
if specified by the program, and executes any USE declaratives for the file,
If no scratch tape is available, a message to the operator is typed and the
program is suspended until the operator mounts such a tape or one becomes

available due to the termination of a multiprogramming program.

OPENing of subsequent reels of multi-reel tape files is handled automatically
by the MCP and requires no special consideration by the programmer.

PERFORM

PERFORM

The function of this verb is to depart from the normal sequence of execution

in order to execute one or more procedures, either a specified number of times

or until a specified condition is satisfied. Following this departure, con-

trol is automatically returned to the normal sequence.
The construct of this verb has the following four options:

Option 1:

PERFORM procedure—name-l [{Iﬂ&ﬂ } procedure-name—z]

THROUGH
Option 2:
PERFORM procedure—name-1 [{Iﬂﬁﬂ } procedure-name-z]
= THROUGH
| lhentetior-10f TIMES
Option 3:

THRU }

PERFORM procedure—name-—1 [{THROUGH procedure-name-z]

UNTIL condition-1
Option 4:

IHRU } procedure-name-z]

PERFORM procedure—name-1 [{TﬁﬁOUGH

identifier—2 BY

VARYING |
literal—2

index—name-l} FROM

index—name—2
identifier—1.

{identifier‘3} UNTIL condition-1 [AFTER {

index-name—4}
literal-3

identifier—4

{identifier—G}

BY literal-6

index—name—5
FROM identifier-5
literal-5

PERFORM

{index-name-7}

identifier—-7 EROM

UNTIL condition—Z] [AFTER

index—~name—8 . e
’identifier—B BY {1§ent1ffer 9}
|1iteral-8 literal-9

UNTIL condition-S]

PERFORM is the means by which subroutines are executed in COBOL, The sub-
routines may be executed once, or a number of times, as determined by a
variety of controls. A given paragraph may be PERFORMed by itself, in con-~
junction with another paragraph, control may pass through it in sequential
operation, and it may be the object of a GO statement, all in the same pro-

gram,

Each identifier represents a numeric elementary item. Identifier-10 must be
described as an integer,

Each literal represents a numeric literal.

When the PERFORM statement is executed, control is transferred to the first
statement of procedure-name—1l. An automatic return to the statement following
the PERFORM statement is established as follows:

a, If procedure—name—l is a paragraph—name and procedure—name-2 is
not specified, then the return occurs after the last statement of

procedure—name-1. s

b. If procedure—name—1l is a section name and procedure—name—2 is not
specified, then the return occurs after the last statement of the last
paragraph in procedure—name-l,

c. If the procedure—name-2 is specified and it is a paragraph name, then
the return occurs after the last statement of the paragraph,

d. If the procedure—name—2 is specified and it is a section name, then
L]
the return occurs after the last sentence of the last paragraph in the

section.

There is no necessary relationship between procedure-name-1 and procedure-—
name~2, except that a consecutive sequence of operations is to be executed
beginning at the procedure named procedure-name-1 and ending with the execu-
tion of the procedure named procedure~name-2. In particular, GO TO and
PERFORM statements may occur between procedure-name-1 and the end of

PERFORM

procedure—name—2. If there are two or more direct paths to the return point,
then procedure—name-2 may be the name of a paragraph consisting of the EXIT
statement, to which all of these paths must lead.

If control passes to these procedures by means other than a PERFORM statement,
control passes thru the last statement of the procedure to the following
statement, unless a PERFORM statement is executed during execution of these
procedures.

If a statement within procedure—name—-1l or procedure—name—2 contains a nested
PERFORM, object program control will pass to the procedure—name contained in
the nested statement, and the procedure will be accomplished. Program control
will automatically return to the next sentence following the executed PERFORM
statement. Nested PERFORM statements are allowed to any reasonable depth.
However, the procedure named must return to the statement following the pre-
viously executed PERFORM and cannot contain a GO TO out of range of procedure-

name-=1 or procedure—name-2,

A PERFORM statement is not restricted by overlayable segment boundaries and

may reference a procedure—name anywhere within the PROCEDURE DIVISION,

Option 1 is the basic PERFORM statement. A procedure referred to by this
type of PERFORM statement is executed once, and then control passes to the
statement following the PERFORM statement,.

Option 2 is the TIMES option and, when used, the procedures are performed the
number of times specified by identifier—10 or integer—1l. The value of
identifier-10 or integer—1 must be positive. Control is transferred to the
statement following the PERFORM statement. If the value is zero, control
passes immediately to the statement following the PERFORM sentence. Once the
PERFORM statement has been initiated, any reference to, or manipulation of,

identifier—10 will not affect the number of times the procedures are executed.

Option 3 is the UNTIL option. The specified procedures are performed until
the condition specified by the UNTIL condition is TRUE, At this time, control
is transferred to the statement following the PERFORM statement. If the con-
dition is TRUE at the time that the PERFORM statement is encountered, the
specified procedure is not executed.

In option 4, when one identifier is varied, identifier-1 is set equal to the
current value of identifier—2, or literal—-2. If the condition is false,

the sequence of procedures, procedure—name—1 thru procedure—name-2, is
executed once. The value of identifier—1l is augmented by the specified incre-
ment or decrement (identifier—3), and condition—l1l is evaluated again. The

PERFORM

cycle continues until this expression is true; at this point, control passes
to the statement following the PERFORM statement. If the condition is true at
the beginning of execution of the PERFCRM, control passes directly to the
statement following the PERFORM statement. Figure 7-2 illustrates the logic
of the PERFORM statement when one identifier is varied.

In option 4, when two identifiers are varied, identifier—1 and identifier-—4
are set to the current value of identifier—2 and identifier—5, respectively.
At the start of the PERFORM statement, condition-1l is evaluated; if ture,
control is passed to the statement following the PERFORM statement; if false,
condition—-2 is evaluated. If condition—2 is false, procedure—name—-1 thru
procedure—name—2 is executed once, after which identifier—-4 is augmented by
identifier—6, and condition—-2 is evaluated again. The cycle of execution and
augmentation continues until this condition is ture. When condition—2 is
true, identifier—4 is set to the current value of identifier-5; identifier-1
is augmented by identifier—3, and condition—1l is re—evaluated. The PERFORM
statement is completed if condition—1 is ture; if not, the cycles continue

until condition—1l is true.

Figure 7—3 illustrates the logic of the PERFORM statement when two identifiers

are varied.

During the execution of the procedures associated with the PERFORM statement,
any change to the VARYING variable (identifier-1 and index-name-1), the BY
variable (identifier-3), the AFTER variable (identifier—4 and index—name-4),
of the FROM variable (identifier-2, index—name-2, identifier-5 and index—-name-
5) will be taken into consideration and will affect the operation of the PER-
FORM statement. '

When two identifiers are varied, identifier—4 goes thru a complete cycle
(FROM, BY, UNTIL) each time identifier—1 is varied.

At the termination of the PERFORM statement, identifier—4 contains the current
value of identifier-5. Identifier—-1 has a value.that exceeds the last used
setting by an increment or decrement, as the case may be, unless condition-1
was true when the PERFORM statement was entered, in which case identifier-1

contains the current value of identifier-—-2.

ENTRANCE

|

PERFORM

SET IDENTIFIER-1 EQUAL TO
CURRENT FROM VALUE

CONDITION-1 ?

lFALSE

EXIT

EXECUTE PROCEDURE-NAME-1
THRU PROCEDURE-NAME-2

AUGMENT IDENTIFIER-1 WITH
CURRENT BY VALUE

Figure 7—-2, PERFORM Statement Varying One Identifier

ENTRANCE

SET IDENTIFIER-1 AND
IDENTIFIER-4 TO
CURRENT FROM VALUES

» EXIT

=<<__ CONDITION-1 ?

TRUE

CONDITION-2 <?

EXECUTE PROCEDURE-NAME-1
THRU PROCEDURE-NAME-2

SET IDENTIFIER-4 TO ITS

CURRENT FROM VALUE

!

!

AUGMENT IDENTIFIER-4 WITH
CURRENT BY VALUE

AUGMENT IDENTIFIER-1 WITH

CURRENT BY VALUE

Figure 7-3, PERFORM Statement Varying Two Identifiers

PERFORM

In Option 4 where three conditions are required to control the number of
iterations that a given procedure is to be PERFORMed, the mechanism is the
same as for two—conditional control except that identifier-7 goes through a
complete cycle each time that identifier—6 is added to identifier—4, which in
turn goes through a complete cycle each time that identifier-1 is varied.

After the completion of option 4, identifier—4 and identifier-7 contain the
current value of identifier—5 and identifier—8, respectively. Identifier-l1
has a value that exceeds its last used setting by one increment or decrement
value, unless condition=1 is true when the PERFORM statement is entered, in
which case identifier—1 contains the current value of identifier-2,

Since the return control information is placed in the stack rather than being
directed through instruction address mcdification, a PERFORM statement exe-
cuted within the range of another PERFCRM is not restricted in the range of
paragraph names it may include. The examples shown below are permitted and
will execute correctly.

x PERFORM a THRU m x PERFORM a TERU m x PERFORM a THRU m
a a a
d PERFORM f THRU j d PERFORM f THRU j £
f m m
J t J
m 3 :] d PERFORM f THRU j
x PERFORM a THRU m x PERFORM a THRU m
a a
d PERFORM f THRU j d IF condition THEN
f IF condition THEN — PERFORM a THRU m
PERFORM a THRU m m

770

READ

READ

The functions of this verb are twofold, namely:

a. During processing of sequential input files, a READ statement will
cause the next sequential logical record to be moved from the input
buffer area to the record work area, thus making the record available
to the program.

All sequential records will be physically read into the buffer area
of the file. Physical READs are performed as a function of the MCP.
The READ statement permits the performance of a specified statement
when an end-of-file condition is detected by the MCP.

b, For random file processing, the READ statement communicates with the
MCP to explicitly cause the reading of a physical record from a disk
file, and also allows performance of a specified imperative statement
if the contents of the associated ACTUAL KEY data item is found to
be invalid.

The construct of this verb is:

AT END

READ file-name RECORD [INTO identifier] [,{ INVALID KEY

} statement—-1

[ELSE statement-Z]]

The AT END of file clause is used for non—disk files or for disk files
being processed in the sequential access mode. If no AT END or INVALID KEY
clause is stated, and one of these conditions occurs, the program will be
terminated with a DS or DP message,

If, during execution of a READ statement with AT END, the logical end-of-file
is reached and an attempt is made to READ that file, the statement specified
in the AT END phrase is executed, After the execution of the imperative
statement of the AT END phrase, a READ statement for that file must not be
given without prior execution of a CLOSE statement and an OPEN statement for
that file.

When the AT END clause is specified in a conditional sentence, all exits
within the sentence are controlled by using the rules pertaining to the

matching of IF,,.ELSE pairs. For example:

IF AAA = BBB THEN READ FILE-A, AT END
GO TO WRAP-UP, ELSE NEXT SENTENCE, ELSE STOP RUN,

READ

a., When AAA does not equal BBB, ccntrol will be passed to STOP RUN.
b. When AAA equals BBB, FILE-A is read, end-of-file is tested and if
the result is TRUE program control will be transferred to the
WRAP-UP procedure; however, a result of FALSE will cause program

control to be transferred to the next sentence,

The INVALID KEY applies to files that are ASSIGNed to disk. The access of
the file is controlled by the value contained in ACTUAL KEY,

An AT END or INVALID KEY clause must be specified when reading a file de-
scribed as containing FILE-LIMITS,

An OPEN statement must be executed for a file prior to the execution of the
first READ statement for that file.

When a file consists of more than one type of logical record, these records
automatically share the same storage area and are equivalent to an implicit
redefinition of the area. Only the information that is present in the cur-

rent record is available.

If the INTO option is specified, the current record is MOVEd from the input
area to the area specified by identifier according to the rules for the MOVE
statement without the CORRESPONDING option.

When the INTO option is used, the record being read is available in both the

data area associated with data—-name and the input record area.

If a file described with the OPTIONAL clause is not present, the imperative
statement in the AT END phrase is executed on the first READ, The standard
End-of-File procedures are not performed. (See the OPEN and USE statements,
and the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION.)

If the end of a magnetic tape file is recognized during execution of a READ
statement, the following operations are carried out:

a. The standard ending reel label procedure and the user's ending reel
label procedure, if specified by the USE statement, are performed.
The order of execution of these two procedures is specified by the
USE statement.

b. A tape swap is performed.

READ

c. The standard beginning reel label procedure and the user's beginning
label procedure, if specified, are executed. The order of execution
is again specified by the USE statement.

d. The first data record on the new reel is made available,

READ with INVALID KEY is used for disk files in the random access mode. The
READ statement implicitly performs the functions of the SEEK statement, ex-
cept for the function of the KEY CONVERSION option for a specific disk file.
If the contents of the associated ACTUAL KEY data item is out of the range
indicated by FILE LIMITS, the INVALID KEY phrase will be executed.

For random disk files, the sensing of an INVALID KEY does not preclude further.
READs on that file, nor must the file be closed and reopened before such READs
are performed,

RELEASE

RELEASE

The function of this verb is to cause records to be transferred to the initial

phase of a SORT operation.

The construct of this verb is:
RELEASE record—-name [FROM identifier]

A RELEASE statement may only be used within the range of an input procedure
associated with a SORT statement.

Record—name and data—-name must name different memory areas when specified,

The RELEASE statement causes the contents of record—-name to be released to
the initial phase of a sort. Record—-name will be transferred to the speci-
fied sort—file (SD) and becomes controlled by the sort operation,.

In the FROM option, the contents of data—-name are MOVEd to record—-name, then
the contents of record—name are released to the initial phase of a sort.
Moving takes place according to the rules specified for the MOVE statement
without the CORRESPONDING option.

When control passes from the input procedure, the SD file consists of all
records placed in it by the execution of RELEASE statements.

7-74

RETURN

RETURN

The function of this verb is to obtain sorted records from the final phase

of a SORT operation.

The construct of this verb is:

RETURN file-name RECORD [INTO identifier]

; AT END statement-1l [;ELSE statement—1]

File—-name must be a sort file with a Sort File Description (SD) entry in the
DATA DIVISION,

A RETURN statement may only be used within the range of an output procedure
associated with a SORT statement for file—name.

Records automatically share the same area when a file consists of more than
one type record and only the information pertinent to the current record is
available.

The execution of the RETURN statement causes the next record, in the order

specified by the keys listed in the SORT statement, to be made available for
processing in the record area associated with the SORT file (SD).

Moving is performed according to the rules specified for the MOVE statement
without the CORRESPONDING option.

When the INTO option is specified, the sorted data is available in both the

input-record area and the data—~area specified by data—name.

RETURN statements may not be executed within the current SORT output procedure
after the AT END clause has been executed.

SEARCH

SEARCH

The function of this verb is to cause a search of a table to locate a table-
element that satisfies a specific condition and, in turn, to adjust the as-
sociated index—~name to indicate that table—element,.

The construct of this verb has the following two options:
Option 1:

. s index—name—1
SEARCH identifier-1 [VARYING {identifier—Z}]
[;AT END imperative-statement~1]

. Cae { imperative statement—z}
; WHEN condition~1 \ NEXT SENTENCE

. e imperative statement-3}
[WHEN condition~2 {NEXT SENTENCE s

Option 2:

SEARCH ALL identifier-1 [;AT END imperative-statement-4]

. imperative statement—-5
;WHEN condition—3 { b }

NEXT SENTENCE

Identifier—-1 must not be subscripted or indexed, but its description in the
DATA DIVISION must contain an OCCURS clause and an INDEXED BY clause.

When Option 2 is specified, the description of identifier—3 may optionally
contain the ASCENDING/DESCENDING KEY clause.

When the VARYING option is used, identifier—2 must be described as USAGE 1S
INDEX, or as the name of a numeric elementary item described without any po~-
sitions to the right of the assumed decimal point. Identifier—-2 will be in-
cremented at the same time as the occurrence number (and by the same amount)
represented by the index—name associated with identifier-—1.

When Option 1 is used, condition-1, condition—2, etc., may be comprised of any
conditional as described by the IF verb,

When Option 2 is used, condition—3 may consist of a relational condition in-
corporating the relation EQUAL, or a condition—name condition where the VALUE
clause that describes the condition—name contains only a single literal,
Condition—3 may be a compound condition formed from simple conditions of the
type just mentioned, with AND being the only acceptable connective,

7-76

SEARCH

When Option 2 is used, any data—-name that appears in the KEY option of
identifier—-3 may appear as the subject or object of a test, or be the name of
the conditional variable with which the tested condition—name is associated.

When Option 1 is used, a serial type search operation takes place, starting
with the current index setting. The search is immediately terminated if, at
the start of execution of the statement, the index—name associated with data-
identifier—1 contains a value that corresponds to an occurrence number that is
greater than the highest permissible occurrence number for identifier—-1. Then,
if the AT END option is specified, statement-l is executed; if AT END is not
specified, control passes to the NEXT SENTENCE,

When Option 1 is used, if at the start of execution of the SEARCH statement, the
index—name associated with identifier—1 contains a value that corresponds to an
occurrence number that is not greater than the highest permissible occurrence
number for identifier~1l, the SEARCH statement will begin evaluating the con-
ditions in the order that they are written, making use of index settings
wherever specified, to determine the occurrences of those items to be tested.

If none of the conditions are satisfied, the index—name for identifier-—1l

is incremented to obtain a reference to the next occurrence. The process is
repeated using the new index—name setting for identifier—1l, which corresponds

to a table element which exceeds the last setting by one more occurrence,

until such time as the highest permissible occurrence number is exceeded, in
which case the SEARCH terminates as indicated in the previous paragraph.

When Option 1 is used, if one of the conditions is satisfied upon its evaluation
the SEARCH terminates immediately and the imperative statement associated with
that condition is executed; the index—name remains set at the occurrence which
caused the condition to be satisfied.

In Options 1 and 2, if the specified imperative statements do not terminate
with a GO statement, then program control will pass to the next sentence, after

the execution of the imperative statement.

In the VARYING option, if index—name~1l appears in the INDEXED BY option of
identifier-1l, then that index—name will be used for the SEARCH; otherwise, the
first index—name given in the INDEXED BY option of another table entry, the
occurrence number represented by index—name—l is incremented by the same
amount as, and at the same time as, the occurrence number represented by the

index~name associated with identifier—1 is incremented.

SEARCH

In Option 2, the initial setting of the index—name for data—-name—3 is ignored,
the effect being the same as if it were SET to 1.

In Options 1 and 2, if identifier-1 and identifier—3 constitute an item in a
group, or a hierarchy of groups, whose description contains an OCCURS clause,
then each of these groups must also have an index—name associated with it. The
settings of these index—names are used throughout the execution of the SEARCH
statement to refer to data—names—1 and 3, or to items within its structure.
These index settings are not modifi ed by the execution of the SEARCH state-
ment (unless stated as index—name-1l), and only the index—name associated with
identifier~1 and identifier—3 (and identifier—~2 or index—-name-1) is incremented
by the SEARCH. Figure 7-4 provides an example of SEARCH operation as related
to Option 1.

SEARCH

AT END* \W

INDEX SET:
HIGHEST PERMISSIBLE
CCURRENCE NUMBE

GREATER THAN ACCOMPLISH
= IMPERATIVE [—»

STATEMENT-1

LESS THAN OR EQUAL

CHECK
CONDITION-1
?

TRUE ACCOMPLISH
| IMPERATIVE [~> > See *x
STATEMENT-2

CHECK

CONDITION-2% TRUE ACCOMPLISH
?

"1 IMPERATIVE |
STATEMENT-3%

INCREMENT INDEX-
NAME FOR IDENTI-
FIER-1 OR INDEX-
NAME IF APPLICABLE

INCREMENT INDEX-
NAME (FOR A DIFF-

ERENT TABLE) OR
IDENTIFIER—-2%*

* These operations are only included when called for in the SEARCH statement.

** Each of the control transfers is to NEXT SENTENCE unless the imperative
statement ends with a GO statement,

Figure 7-4. Example of Option 1 SEARCH Statement

SEEK

SEEK

The function of this verb is to initiate the accessing of a disk file record
for subsequent reading and/or writing. The construct of this verb is:

SEEK file-name RECORD [WITH KEY CONVERSION]

The specification of the KEY CONVERSION clause indicates that the user-
provided USE FOR KEY CONVERSION section in the DECLARATIVE SECTION is to be
executed prior to the execution of the SEEK statement. If there are no
DECLARATIVES for KEY CONVERSION in a SEEK statement, then the KEY CONVERSION

clause will be ignored,

A SEEK statement pertains only to disk storage files in the random access mode

and may be executed prior to the execution of each READ and WRITE statement.

The SEEK statement uses the contents of the data—name in the ACTUAL KEY clause
as the location of the record to be accessed, At‘the time of execution, the
determination is made as to the validity of the contents of the ACTUAL KEY
data item for the particular disk storage file. If the key is invalid, the
imperative statement in the INVALID KEY clause of the next executed READ or
WRITE statement for the associated file is executed.

Two SEEK statements for a disk storage file may logically follow each other.
Any validity check associated with the first SEEK statement is negated by the
execution of a second implicit or implied SEEK statement.

An implied SEEK is executed by the MCP whenever an explicit SEEK is missing
for the specified record. An implied SEEK never executes any USE KEY CON-
VERSION Declaratives.

If a READ/WRITE statement for a file ASSIGNed to DISK is executed, but an
explicit SEEK has not been executed since the last previous READ or WRITE
for the file, then the implied SEEK statement is executed as the first step
of the READ/WRITE statement.

An explicit alteration of ACTUAL KEY after the execution of an explicit SEEK
has been performed, but prior to a READ/WRITE, will cause the initiation of
an implied SEEK of the initial record in the sequence. For example,

a. If ACTUAL KEY is 10, then

b. READ record 10, then

c. MOVE 50 to ACTUAL KEY, then

d. WRITE record 50.

An implied SEEK of record 50 will be performed between actions ¢ and d, above,

SET

SET

The SET statement establishes reference points or offsets operations by set-
ting index—names associated with table elements.

The construct of this verb has the following two options:

Option 1:

. . index—name—-3
index—name-1 index—name—2 .
integer-1

. cps . P identifier-3
SET {1dent1f1er 1} [’ {1dent1f1er 2}] o To []

Option 2:

SET index—~name—4 [, index-name-5] e {EE EXB } {identifier-4}

integer—2

All references to identifier—1 and index—name—1 apply equally to identifier-2
and index—name—2, respectively.

All identifiers must name either index data items, or elementary items des—
cribed as an integer, except that identifier—4 must not name an index data

item., When integer—1l is used, it must be a positive integer. Index—names

are considered related to a given table and are defined by being specified

in the INDEXED BY phrase of the OCCURS clause,

If index—name—-3 is specified, the value of the index before the execution of
the SET statement must correspond to an occurrence number of an element in
the associated table.

If index—-name—1l, index—name-2 is specified, the value of the index after the
execution of the SET statement must correspond to an occurrence number of an
element in the associated table., The value of the index associated with an
index-name after the execution of a SEARCH or PERFORM statement may be un-
defined,

In option 1, the following action occurs:

a. Index—name—l is set to a value causing it to refer to the table ele-—
ment that corresponds in occurrence number to the table element ref-
erenced by index—name—3, identifier-3, or integer—-1l. If identifier-3
is an index data item, or if index—name—~3 is related to the same

table as index—name—1l, no conversion takes place.

SET

b. If identifier—~1 is an index data item, it may be set equal to either
the contents of index—name—3 or identifier—3 where identifier-3 is
also an index data item; no conversion takes place in either case.

c. If identifier—1 is not an index data item, it may be set only to an
occurrence number that corresponds to the value of index—name-3.
Neither identifier—~3 nor integer-1 can be used in this case.

d. The process is repeated for index—name—2, identifier-2, etec., if
specified, Each time, the value of index—-name-3 or identifier-3
is used as it was at the beginning of the execution of the statement.
Any subscripting or indexing associated with identifier-1l, etc., is
evaluated immediately before the value of the respective data item

is changed.

In option 2, the contents of index—name—-4 are incremented (UP BY) or decre-
mented (DOWN BY) by a value that corresponds to the number of occurrences
represented by the value of integer—-2 or identifier—4; thereafter, the process
is repeated for index—name—5, etc. Each time the value of identifier-4 is
used as it was at the beginning of the execution of the statement,

Data in the figure 7-5 represents the validity of various operand combinations
in the SET statement. The parenthetical comment references the lettered para-

graphs above,

RECEIVING ITEM
SENDING ITEM INTEGER DATA 1ITEM INDEX-NAME INDEX DATA ITEM
Integer Literal No (c) valid (a) No (b)
Integer Data Item No (c) valid (a) No (b)
Index~Name valid (c) Valid (a) Valid (b)*
Index Data Item No (c¢) Valid (a)* Valid (b)*

*No conversion takes place.

Figure 7—-5., SET Statement Operand Combinations

SORT

SORT

The function of this verb is to sort an input file of records by transferring
such data into a disk sort-file (work file) and sorting those records on a
set of specified keys. The final phase of the sort operation makes each
record available from the sort-file, in sorted order, to an output procedure
or to an output file,

The construct of this verb is:

?Ng-K Y] file=name=-1

[{pmwg} ,]
RUN ON ERROR
END

DESCENDING

ON {A ENDING } KEY data-name-1 [,data-name-2] ...]

[ON {DESCBNDING) xmY aata-nane~3 [,data-mame-] ... |...

SINPUT PROCEDURE IS section—name-1 [{%ﬁ%gUgH} section-name-z]
: LOCK
USING file—name-2 PURGE
RELEASE

QUTPUT PROCEDURE IS section—name-3 [{%MU H} section-name-4]

When the TAG-KEY option is used, sorting is performed on keys rather than on the
entire record. The record numbers are placed in sorted order in the GIVING

file—name, which must specify a record size of 8 digits and should be blocked
45, The TAG-KEY option prohibits use of INPUT or OUTPUT procedures.

. LOCK
GIVING file-name-3 [—QQ"BEIEAS]

When the INPLACE option is used, the amount of disk space used for sorting is
minimized. The record sizes for file-name-2 and file—name~3 must be the same
as file—name-1.

File—name~1l must be described in a Sort File Description (SD) entry in the
DATA DIVISION, and file—name—2 and file—name—-3 must be described in a File
Description (FD) entry.

Section—name—1 specifies the name of the input procedure to be used before
each record is passed to the sort—-file, and section—name—-3 specifies the out-
put procedure to be used to obtain each sorted record from the sort-file.

7-83

SORT

Each data—name must represent data—items described in records associated
with file—name-1l. Data—-names following the word KEY are listed from left
to right, in the order of decreasing significance, without regard to their

division into optional KEY clauses.

The PROCEDURE DIVISION of a source program may contain more than one SORT
statement appearing anywhere in the program, except in the DECLARATIVES por-
tion or in the input/output procedures associated with a SORT statement.

The input procedure must consist of one or more sections that are written
consecutively and which do not form a part of an output procedure. The in-
put procedure must include at least one RELEASE statement in order to trans-
fer records to the sort—file after the object program has accomplished the
required input data manipulation specified in the procedure. Input procedures
can select, create and/or modify records, one at a time, as specified by the

programmer,

There are three restrictions placed on procedural statements within an input

or output procedure:

a, The procedure must not contain any SORT statements.

b. The input or output procedures must not contain any transfers of
program control outside the range of the procedure; ALTER, GO and
PERFORM statements within the procedure are not permitted to refer
to procedure—names outside of the input or output procedure.

c. The remainder of the PROCEDURE DIVISION must not contain any transfers
of program control to points within the input or output procedure;
ALTER, GO, and PERFORM statements in the remainder of the PROCEDURE
DIVISION must not refer to procedure—names within the range of the
input or output procedure.

The output procedure must consist of one or more sections that are written
consecutively and which do not form a part of an input procedure. The output
procedure must include at least one RETURN statement in order to make each
sorted record available for processing. Output procedures can select, create,
and/or modify records, one at a time, as they are being returned from the sort-
file.

When the ASCENDING clause is specified, the sorted sequence of the affected
records is from the lowest to the highest value, according to the binary

EBCDIC collating sequence.

SORT

When the DESCENDING clause is specified, the sorted sequence of the affected
records is from the highest to the lowest value according to the binary EBCDIC

collating sequence,

The SD record description of the sort—file must contain fully defined data-
name KEY items in the relative positions of the record, as applicable. A rule
to follow when using these KEY items is that when a KEY item appears in more
than one type of record, the data—names must be relatively equivalent in each
record and may not contain, or be subordinate to, entries containing an OCCURS
clause,

When an INPUT procedure is specified, object~program control will be passed to
that procedure automatically as an implicit function of encountering the gen-
erated SORT verb object code compiled into the program. The compiler will in-—
sert a "return—to—the—sort" mechanism at the end of the last section in the in-
put procedure, and when program control passes the last statement of the input
procedure, the records that have been RELEASED to file—name-1l are sorted.

If the USING option is specified, all records residing in file—name-2 will be
automatically transferred to file—name—1l, upon encountering the generated SORT
verb object code. At the time of execution of the SORT statement, file—name-2
must not be OPEN, The SORT statement automatically performs the function ne-
cessary to OPEN, READ, USE and CLOSE file—name~-2. If file—name—2 is a disk
file, it must be in the Disk Directory before the SORT intrinsic is called.

If an output procedure is specified, object—program control will be passed

to that procedure automatically as an implicit function when all records have
become sorted. The compiler will insert a "return—to—the—object program'" me-
chanism at the end of the last section in the output procedure; and when pro-
gram control passes the last statement of the output procedure, the object
program will execute the next statement following the pertinent SORT statement,

If the GIVING option is specified, all sorted records residing in file—name-1
are automatically transferred to the OUTPUT file as specified in file—name-3.
At the time of execution of the SORT statement, file—-name—-3 must not be OPEN.
File—name—3 will be automatically OPENed before the sorted records are trans-
ferred from the sort—-file and, in turn, will be automatically CLOSEd after the

last record in the sort—file has been transferred.

The ON ERROR option is provided to allow programmers some control over ir-
recoverable parity errors when input output procedures are not present in a
program, PURGE will cause all records in a block containing an irrecoverable
parity error to be dropped, and processing will be continued after a SPO mes-

sage has been printed that gives the relative position in the file of the bad

7-85

SORT

block. This option is always assumed if no other has been defined, RUN will
cause the faulty block to be used by the program and will provide the same
console printer message as defined for PURGE. END will cause the usual DS or
DP console printer message.

The PURGE, LOCK, and RELEASE options may be used to specify the type of file
close on file—~name—2 and file~name—3. Refer to description of CLOSE verb in
this section. The options only apply to the USING/GIVING options.

Example:

SORT file—name—1 ASCENDING KEY data—name-1
USING file—name~3 PURGE
GIVING file—name-3 LOCK.

Beginning and ending label USE procedures are provided as follows when input/
output procedures are present in the SORT statement:

a., OPEN INPUT file—name.
USE. . . (The programmer's USE procedure will be invoked).
b. OPEN OUTPUT file—name,

USE, . . (The programmer's USE procedure will be invoked).
c. CLOSE INPUT file—name.
USE, . . (The programmer's USE procedure will be invoked; however,

the contents of the ending input label will not be available to the
USE procedure) .,

d. CLOSE OUTPUT file-name,
USE. . . (The programmer's USE procedure will be invoked; however,
the ending label will have been written prior to execution of the
USE procedure).

NOTE

The above action provide label USE pro-
cedures at beginning and ending of files,
but not during switching of reels of
multi-reel files.

STOP

STOP

The function of this verb is to halt the object program temporarily or to

terminate execution.

The construct of this verb is:

b

Tteralf

STOP {literal

If the word RUN is used, then all files which remain OPEN will be CLOSED
automatically. New files ASSIGNED to DISK will be CLOSED WITH PURGE and all
others will be CLOSED WITH RELEASE., All storage areas for the object pro-
gram are returned to the MCP and the job is then removed from the MCP mix.

The STOP RUN is not used for temporary stops within a program. STOP RUN
must be the last statement of the program execution sequence.

If the literal option is used, the literal will be DISPLAYed on the console
printer and the program will be suspended. When the operator enters the MCP
continuation message mix—index AX, program execution resumes with the next
sequential operation. This option is normally used for operational halts to
cause the system's operator to physically accomplish an external action.

SUBTRACT

SUBTRACT

The function of this verb is to subtract one data item, or the sum of two or
more, numeric data items from another item, and set the value of an item equal

to the result(s).
The construct of this verb has the following three options:

Option 1:

fliteral-1l literal-2
SUBTRACT | igentifier-1f [{identifier—z}"'] FROM

identifier-m [ROUNDED] Edentifier~n [ROUNDED] ...]

[;oN SIZE ERROR statement-1 [;ELSE statement-2]]

Option 2:

literal-1l literal-2 \
SUBTRACT { [{ . o ...] FROM
— identifier-l} identifier—2{

identifier—-m
[;ON SIZE ERROR statement-1 [;ELSE statement-2]]

{”"eral"“ } GIVING identifier-n [RQUNDED)] [identifier-o [ROUNDED]]...

Option 3:
SUBTRACT {%’%ESPONDIN;} identifier-1 FRQM identifier-2

[ROUNDED] [;ON SIZE ERROR statement-1 [;ELSE statement-2]]

In Options 1 and 2, the identifiers used must refer only to elementary numeric
items. If Option 2 is used, the data—-description of identifier—-n and identifier-—

o may be an elementary numeric edited item.

All rules specified under the ADD statement with respect to the operand size,
presence of editing symbols in operands, the ON SIZE ERROR option, the ROUNDED
option, the GIVING option, truncation, the editing results, the handling of
intermediate results, and the CORR or CORRESPONDING option apply to the SUB-
TRACT statement.

When the GIVING option is not used, a literal may not be specified as the minuend.
When dealing with multiple subtrahends, the effect of the subtraction will be as
if the subtrahends were first summed, and then the sum subtracted from the

minuends.

7-88

TRACE

TRACE
The function of this verb is to create documentation of all normal and/or
control mode processing events and to output this data on a line printer,

The construct of this verb is:

TRACE 20
When a TRACE statement is encountered during object—-program execution, the
following actions will take place at that point in the program:
The 20 option will cause a memory dump to be taken of locations that are base
relative to the program's memory assignment. Processing will continue after

the memory '"snapshot."

USE

USE

The function of this verb is to specify procedures for any input/output
error and/or label handling which are in addition to the standard procedures
supplied by the MCP, and to calculate the ACTUAL KEY for files assigned to
DISK.

The construct of this verb has the following three options:

Option 1:

file-name-1 [,file-name-2] ...

INPUT
UTPUT
USE AFTER STANDARD ERROR PROCEDURE ON INPUT-OUTPUT
I—Q
0o-1
Option 2:

AFTER } {BE_GINNING}
USE {BEFORE STANDARD ENDING

file-name-1 [,file-name-2] ...
[{%—%}] LABEL, PROCEDURE ON {INPUT ’ |
FILE QUTPUT f

Option 3:
USE FOR KEY CONVERSION ON file~name-1 [,file-name-2...].

A USE statement, when present, must immediately follow a section header in
the DECLARATIVE portion of the PROCEDURE DIVISION and must be followed by a
period followed by a space. The remainder of the section must consist of one
or more procedural paragraphs that define the procedures to be used.

If the file-name option is used as part of Option 2, the File Description
entry for the file—name must not specify a LABEL RECORDS ARE OMITTED clause.

A USE statement specified for input and/or output files associated with the
SORT verb will not be executed when executing the SORT unless an INPUT and/or
OUTPUT PROCEDURE has been included in the program.

The USE statement itself is never executed rather, it defines the conditions

calling for the execution of the USE procedures.

USE

If neither REEL nor FILE is included in Option 2, the designated procedures
are executed for both REEL and FILE labels. The REEL option is not applicable
to mass storage files,

Within a given format, a file—name must not be referred to implicitly or
explicitly in more than one USE statement.

USE procedures will be executed by the MCP:

a, After completion of the standard I/O error retry routine (this applies
only to option 1), the record in error has been read; therefore, another.
READ cannot appear in the USE section, since the MCP is performing
the section because of a previous READ which has been completed.

Upon completion of the USE procedure, control is returned to the
statement following the READ which detected the error condition. In
the case of blocked or unblocked magnetic tape input, the tape will
be ready to read the next record as soon as the Option 1 procedure
is completed.

b. The USE AFTER STANDARD BEGINNING clause designates that the pro-
cedure following the clause must be called upon to check data on
input magnetic tape beginning-file-labels, or to insert data as
an output magnetic tape beginning—file—label before it is
written,

c. When the USE BEFORE STANDARD ENDING clause designates that a follow-
ing procedure must be called upon to check user created data contained
on input magnetic tape ending file labels or to insert data onto the
user's portion of an output magnetic tape ending file label before
it is written,

d. Prior to any SEEK WITH KEY CONVERSION statement on files named in
the USE FOR KEY CONVERSION statement.

References to common label items need not be qualified by a file—name within
a USE statement. A common label item is defined as being an elementary data
item that appears in every magnetic tape beginning and/or ending file—label
record, but does not appear in any data record of the program.

A common label item must have the same name, description, and relative po-
sition in every magnetic tape file-label record and may only be referenced
while in a USE,..LABEL PROCEDURE for that file.

If the INPUT or OUTPUT option is specified, the USE...LABEL PROCEDUREs do not
apply when files are described as having LABEL RECORDS OMITTED,

USE

There must not be any reference to non—declarative procedures within a USE
procedure. Conversely, in the non—declarative portion there must be no
reference to procedure—names that appear in the declarative portion, except
" that a PERFORM statement may refer to a USE declarative or to the procedures

associated with such USE declaratives.
Option 2 is not applicable to disk files,.
NOTE

USE AFTER STANDARD ENDING and USE BEFORE
STANDARD BEGINNING are both illegal entries
in B 1700 COBOL.

WRITE

WRITE

The function of this verb is to release a logical record for an output file.
It is also used to vertically position forms in the printer. For mass
storage files, the WRITE statement also allows the performance of a speci-
fied imperative statement if the contents of the associated ACTUAL KEY item

are found to be invalid.

The construct of this verb has the following two options:

Option 1:

WRITE record-name [FROM identifier-—1]

integer-1 }
{identifier-2 LINES)
{%%%%%E} ADVANCING l

TO CHANNEL {integer'z }s

identifier-3

imperative-statement]

END-OF-PAGE
EAT {EOP }

ERROR
TO AUXILIARY {literal-l }
STACKER identifier—4

Option 2:

WRITE record-name [FROM identifier]

[;INVALID KEY statement-1 [;ELSE statement—-2]]

An OPEN statement for a file must be executed prior to execution of the first
WRITE statement for that file.

The record—name must be defined in the DATA DIVISION by means of an 01l level
entry under the FD entry for the file. The record—-name and identifier—1 must
not be the same name, or be in two files that have the same record area.

The ADVANCING option allows the control of vertical positioning of each
record on the printed page. The options are as follows:

a, When LINES is used, identifier~2 must be declared as PC 99 COMPUTATIONAL
or integer—1l must be a positive integral value of 00 thru 99.
b. WRITE BEFORE ADVANCING is more efficient than AFTER ADVANCING.

WRITE

When CHANNEL is used, identifier—-3 or integer—-2 must contain a posi-
tive integral value of 01 .,. 11, Identifier—3 must be declared as
PC 99 COMPUTATIONAL. The MCP will advance the line printer's carriage

to the carriage control channel specified.

@]

The END-OF-PAGE option applies to a file that has been assigned to a printer.
When the END-OF-PAGE punch in the carriage control tape on the printer is de-
tected, the END-OF-PAGE branch will occur,

Option 2 must be used for writing on disk files.

If the FROM option is specified, the data is moved from the areas specified
by identifier—1 in option 1, to the output area, according to the rules
specified for the MOVE statement without the CORR or CORRESPONDING op-
tion, After execution of the WRITE statement is completed, the informa=
tion in identifier—1 is available, even though that record—name is not

available,

When the WRITE statement is executed at object time, the logical record is
released for output and is no longer available for referencing by the object
program, Instead, the record area is ready to receive items for the next
record to be written. If blocking is called for by the COBOL program, the
records will be automatically blocked by the MCP.

Short blocks of records which were written during EOF or EOJ will be of no
programmatic concern to the user when using the file as input at a later

time,

If a write error is detected during a magnetic tape write operation, the tape
record in error will be erased and a rewrite will be attempted further down
the tape until the record is finally written correctly. A punch or printer
write error will result in a message to the operator. The COBOL programmer
need not include any USE procedures to handle write errors.

The shortest allowable blocks which can be written on 7 and 9 channel mag-
netic tape units are 7 and 16 bytes respectively,

If a CLOSE statement has been executed for a file, any attempt to WRITE on

the file until it is OPENed again will result in an error termination.

For files which are being accessed in a SEQUENTIAL manner, the INVALID KEY
clause is executed when the end of the last segment of the file (last record)
has been reached and another attempt is made to WRITE into the file. The last
segment of a file is specified in the FILE-LIMITS clause or the FILE CONTAINS
clause, Similarly, for files being accessed in a RANDOM manner, the INVALID

WRITE

KEY clause will be executed whenever the value of the ACTUAL KEY is outside
the defined limits. An INVALID KEY entry must be specified when writing to
a file described as containing FILE-LIMITS,

Records will be written onto DISK in either a SEQUENTIAL or RANDOM manner
according to the rules given under ACCESS MODE, For RANDOM accessing, SEEK
statements may be explicitly used for record determination as defined under
ACCESS MODE, SEEK, and READ,

If the size and blocking of records being accessed in a RANDOM manner is such
that a WRITE statement must place a record into the middle of a block without
disturbing the other contents of the block, then an implicit SEEK will be
given to load the block desired (provided that an explicit SEEK has not been
given). If the file is being processed for INPUT-OUTPUT, then either an ex—
plicit or implicit SEEK for a READ statement will suffice to load the block
between the READ and WRITE statements.

If the value of the ACTUAL KEY is changed after a SEEK statement has been
given and prior to the WRITE statement, an implied SEEK will be performed
and the WRITE will use the record area selected by the implied SEEK as the
output record area. The value contained in the ACTUAL KEY will not be af-
fected.

For RANDOM access, when records are unblocked, the use of a SEEK statement
related exclusively to WRITE is unnecessary, and may result in an extra
loading of the record from disk, because the compiler is, in general, unable
to distinguish between SEEK statements that are intended to be related to a
READ and those intended to be related to a WRITE.

The card record being written will be selected to the ERROR or to the
AUXILIARY stackers if indicated in the particular WRITE being executed.

7-95

ZIP

ZIpP

The function of this verb is to cause the MCP to execute a control instruction
contained within the operating object program.

The construct of this verb is:

ZIP data—name
Data-name (any level) must be assigned a value equivalent to the information
contained in the MPC control card. ZIP may be used for programmatic scheduling
of subordinate object programs contained in the Systems Program Library or to
accomplish any of the MCP control functions as performed through the console

printer or card reader.

In the statement ZIP TO-CALL-PGM2, the DATA DIVISION of the source program
could contain the following entry:

01 TO—-CALL-PGM2 PIC X(12), VALUE IS "EXECUTE PGM2".

The MCP will be called upon when the object program encounters the ZIP state-
ment and will reference data—name (TO-CALL-PGM2 in the above example) to find
out which control function is being called for. Using the above example, the
MCP will schedule PGM2. When the time comes and the priority for PGM2 is
recognized and memory space becomes available, the MCP will retrieve PGM2 from
the program library and place it in the MIX for subsequent operation. The
program containing the ZIP verb will proceed to the next sequential instruc-—
tion following the ZIP.

CODING THE PROCEDURE DIVISION

Figure 7-6 illustrates the manner in which the PROCEDURE DIVISION can be coded.

L6-L

BURROUGHS COBOL CODING FORM

ADDITIONS. DELETIONS AND CHANGES

PROGRAM ,PRDCEBJ:KE. Dorans Ce’gu\)c,. COBOL OIVISION ::(Y "
PROGRAMMER A,—DP‘Q\Q DATE N ‘73‘ L !m
PAGE | LINE A ’ L] z
no. | wo.

« s|rle e 22 32 42 52 62 72
11 li P.‘ROQEDL&R@T.DINB:;&IQNJ‘L“H;.;11;“1 :T llllllll:lllLlllll§llllllLJ11
111: 'DI:SK—IEM&FAQ1&5&"‘@0?&-111111%1;114141lnrx|11|1|1|%11111;111%1111111111
11 l: Q?JE“ERNIIIIJIL{IllllLJll%lilllllllllilllllllilLlllllill!lj__lJ_LlillI|
Ll : L1 |QPEN helSle Lyl DESK TN I QNTIPWTY LPRFLN% T~QMNTT-) | L T .
11 l: L IMONE,) TS P\II&S‘IQAQNLTIRQthlIIIIl%llllJLll|{11111i1Ll§14L4lllLiLL
L) 1: 111P]EI‘ZIGQWLIWEfA}EL‘RJ-IIlll}11111411l;(lijlllllillkllJ;Ll%llIIIlLJl_[
|ll: REJH)Ii@élriiilllgll;Lllllll%lllllJlll%lllllllllelllllilLlillillIllll
1] 1: L REAY, ;DlIllel.IIle SN, TD:I}&“‘(E&E’Q.J e W W
11 l: L N}bll‘lIIQmPS&ﬂQDML@O;’—'aIILLLLJt_}llllllll'{lllllllll{lJiJllillL
110 : L MONE, DL&KI‘%RA&—'—L T CARD—TMAGE . | U T T S 0 W W S B Y O
11 11 : L1 F IEIMAlLl‘"C%Nm‘ = _l‘_‘m@&:u@ m%ﬁn'\lrl&l-h-l T T T Y O W S O B O
1y |y |l JR! IJFLEQ_&L\ALTER% > 13 MON’:E{ Ly TS 1QOMN%'|'§|E| SO N;Q lleIImEIQlo‘LI 11111y 1l
1) l: L WRETTE 1ml‘NW—REC1 TBIEIF)OF:E; 1N]>1V1AMC-1TATNG-1 12 ILIEINEls%-l I T G T A S A U 0 A N A
[l: Lo NP 3 T QQ\AMTIE{EH 1_3_@@1 TlQlﬁgﬁb‘llﬁnqxx.'1|{,11111.L.111,1J..1_1L1L_L1_.:__"
L1 1: .SJKlIJpplsl‘RloLlilJL%lllllllll}llllLLlll{lJllJ_LLLI{IILILJJLI%AIllLlelL
i 1 : Lo MIRTTE 1’&&&&\‘1’1-1’\2@(1 IFIRQM N,LJA‘J’PJRI:N-rpl T T S 0 S T T W Y B 0 B '

I 1 |1 : Ll pE_LRELQ@/_LH@_H_é_@_LGQ' .‘1’101 READT ANG. TR I T TSSO S A S K A
1_LL:“xEl@ERloull-1:1:11:114111:LJllllx|.+111|11nnnjlx»llnjlll{sllnllxl.’n
L L N E (SPAL A\ <. an REC Loty]
11 1E L JWRETE, PR I&IT RELC FQQMI e hlE€ ib|E|F'QR§| ADN IE& N, [A ER D U N
J ':T‘ 1LMOIVEJsln-Q{CQWMmE(Ri-II+lILJ_L1IlI}IlllllIlL:ll] PO G O W W
lL l: F[IIH S'Hl‘lll]Jll_l[llLLllllL%LllLlllLLlrlllllil]l{lllllllll%lLLLllllll
L1 l: 1 QLASE, TDJ:SIKF‘AI& ;RQlIIM-n‘TQMTrHLll 111}1 J O O | ||x=111||111 1 1[1 U U B B B N A |
L .: 111STQEPJKRMLN-.%i=1:|||LL=1»11|111|%|11|11|_1L11111111111%11111|L111
J 4 g M ENDOF ~IOD L by e

Figure 7-6.

Coding of PROCEDURE DIVISION

SECTION 8

B 1700 COBOL READER-SORTER

GENERAL

This section defines the B 1700 COBOL language facilities for handling reader-

sorter files.
ENVIRONMENT DIVISION REQUIREMENTS

File Control
Each reader-sorter being used must have a file assigned to it by means of the

following:
SELECT file-name ASSIGN TO READER-SORTER

RESERVE literal ALTERNATE AREAS,
ACTUAL KEY IS data—name.

Generally, a minimum of nine alternate areas should be specified to prevent any
documents from going to the reject pocket. The precise number is dependent on

the size of documents being read and the type of reader-sorter being used.

The ACTUAL KEY specifies the data area where document information is placed by
the MCP for use in a specified COBOL USE routine. This area must be in the
WORKING-STORAGE SECTION and the length must be a multiple of 112 characters.
The first 24 numeric computational digits of the ACTUAL KEY contain result
descriptor information for the document just read. The rest of the field
contains the data read from the document, right justified, with no blank—-fill. -
This field should be USAGE DISPLAY UNSIGNED. Document information is available
in the ACTUAL KEY area during the time control is in the USE routine. At any

other time, the area is undefined. The format of the result descriptor is:

NOTE
If a numeric value of 1 appears in result descriptor digits 1 through
17, the condition is considered ftrue; otherwise, the condition is con-

sidered false and will contain a numeric value of zero.

DIGIT DESCRIPTION DIGIT DESCRIPTION

1 OPERATION COMPLETE 11 TOO LATE TO READ (%)

2 EXCEPTION CONDITION 12 JAM (%)

3 NOT READY (*) 13 MISSORT (*)

4 UNENCODED DOCUMENT - NEED TO 14 BATCH TICKET - NEED TO POCKET
POCKET SELECT SELECT

5 RESERVED 15 HALT - NO ITEMS BEING READ

6 CAN'T READ CHARACTER IN DOCUMENT 16 RESERVED

7 RESERVED 17 TOO LATE TO POCKET SELECT (MAIN

8 RESERVED LINE ONLY)

9 RESERVED 18-20 RESERVED

10 DOUBLE DOCUMENT (*) 21-24 POCKET NUMBER (**) (MAIN LINE ONLY)

* Implies an invalid pocket must be selected if the condition is true.
** This pocket field is defined as USAGE DISPLAY.

Example:
01 THE-ACTUAL-KEY.
02 THE-RESULT-DES.
03 IOCOMPLETE PC 9 CMP.
03 AN-EXCEPTION PC 9 CMP.
03 NOT-READY PC 9 CMP.
03 THE-REST PC 9(21) CMP.
02 THE-DOCUMENT PC X(100).
I-O-Control

The APPLY clause is required and specifies the specific reader—sorter read

station(s) to be used. The construct of this verb is:

MICR MICR
OCR

APPLY <=OCR [2] ————]} file~name [,file-name] ...

Presently, only a single read station reader-sorter is implemented, so the

clause is limited to:

PPLY ‘MICRI

APPLY lQQB ‘ file—name [,file-name] ...

DATA DIVISION REQUIREMENTS
File Section

The FILE SECTION must contain an FD for each reader-sorter file selected. The
record area(s) for these files should be the same type and length as the actual
key data area specified for that file. The same information available in the

actual key data area during pocket select is available again to the programmer

8-2

in the file record area, after each READ of that sorter file is executed during
main—-line processing. ("Main—line" refers to PROCEDURE DIVISION code not with-
in a USE routine,) It is suggested that the ACTUAL KEY data area and the
reader—sorter record area be formatted identically, since document information
(result descriptor and data) will appear in the record area exactly as it ap-
peared in the key area,

PROCEDURE DIVISION REQUIREMENTS

A USE procedure must be specified for each reader-sorter, or a run time error

will occur. The construct of this verb is:

USE FOR READER-SORTER POCKET file—name.

File—name refers to the reader—sorter file. The USE verb must immediately
follow a section header in the DECLARATIVE portion of the PROCEDURE DIVISION.

The USE procedure is entered when the MCP realizes a need for pocket selection.

The USE procedure must contain a CONTROL verb which will cause the document to

be pocketed. The construct of this verb is:

CONTROL file-name |STOP-FLOW] POCKET {11teral }

data—name

File—name refers to the reader—sorter file. Data—-name must be declared

PICTURE 99 COMPUTATIONAL and contains the pocket number selected. A data—name
value of 31 represents a valid reject pocket selection. A value of @FF@ in
data—name represents an invalid pocket selection of the reject pocket. Certain
exception conditions (see result descriptor format) require this invalid pocket.
The STOP-FLOW option will stop the reader-sorter after that document is pocketed.

Since the pocket selection may be required at any poin in time, the main-—1line
code may be interrupted at any time and control transferred to the USE proce-
dure, i.e., the USE procedure is executed on an '"as—needed" basis, and the

main—-line code is executed on an "as—time—is—available' basis.

There may not be any code outside the USE procedure that would cause a
CONTROL. ..POCKET to be executed.

No I/0 verb other than CONTROL...STOP-FLOW...POCKET may be executed during
the USE procedure

Other variations of the CONTROL verb may be used in the MAIN-LINE portion of

the program. These constructs are:

‘BATCH—COUNT l
| POCKET-LIGHT {

CONTROL file—name identifier

Identifier must be an unsigned integer.

BATCH-COUNT causes the batch counter on the reader—sorter to be advanced by 1.
POCKET-LIGHT causes the MCP to issue a pocket light op.

MICR CHARACTER TYPES

MICR control characters are:

EBCDIC Description gi;gﬁiz
0111 1011 Amount #
0111 1100 Transit @
0111 1010 On~-Us :
0111 1101 End of Document !
0101 1100 Can't Read *

MICR special characters include the control characters plus the hyphen.
MICR characters include MICR special characters plus the numeric 0 through 9.

The FORMAT verb is used to break up document information into subfields, based
on MICR CONTROL characters. The construct of this verb is:

FORMAT identifier-1 INTO identifier-2 ON SIZE ERROR statement

Both identifiers must be USAGE DISPLAY. Identifier-2 is to be composed of nine
fields and each field must be 20 characters in length. Data movement from low
to high order. Beginning with the last character of identifier-1:

a. Move to the least significant position of a 20-character subfield

of identifier-2,

1. the source field character if it is a MICR control, and use the
next source character in step b, (delimiter found); otherwise,

2. a space and use the source character in step b (legal delimiter)

for transaction code field)
b. Continue to move data until
1. a MICR control character (excluding'cant't reads") is found, or
2. the 20th character subfield is exceeded.
c. If a control character was found in step b, then

1. if it is equal to the character placed in the least-signifi-
cant position of the subfield, then it is moved to the next

position of the same subfield, the rest of the subfield is

space—~filled and the next source character is to be used in
step a (complete field found, < 20 characters); otherwise,

2. the rest of the subfield is space—~filled and the control
character is used in step a (field delimiters not equal).

d. If the subfield size was exceeded in step b,

1. The ON SIZE ERROR statement is executed and the contents of
identifier—2 are undefined if document subfield is longer than

20 characters. .
e. Steps a through c¢ are repeated until

1. an end-of—~document character is found in identifier-1 and is
moved as in step a,

2, iddentifier—~1 is exhausted, in which case an end of document is
moved as in step a.

3. identifier—2 is exhausted, in which case the ON SIZE ERROR state-
ment is executed. The contents of identifier—2 are undefined.

The COBOL source FORMAT statement will cause a FORMAT S-OP to be generated
MCF COPX1, COPX2

COPX1 corresponds to identifier-1
COPX2 corresponds to identifier-—2

Example 1: (b = blank)
Identifier—1

':654321:@8765-4321@: 765-4321: 97#098765432 1#
Identifier—2

bbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb'
bbbbbbbbbbbb: 654321
bbbbbbbbb@8765-432 1@
bbbbbbbbbb: 765-4321:
bbbbbbbbbbbbbbbbb97b
bbbbbbbb#0987654321#

Example 2:

Identifier—1
'654321:8765-4321@*%765-4321*97#*98765432**

Identifier—2
bbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb'
bbbbbbbbbbbbb654321:
bbbbbbbbbh8765-4321@
bbbbbbb*765-4321*97#
bbbbbbbb*98765432**b

The FORMAT verb may be used in both the USE routine and in main line code.

The ON SIZE ERROR path will be taken (1) when the subfield on the document
being formatted exceeds 20 characters in length, (2) when the document being
formatted was non—encoded (as indicated by digit 4 of the result descriptor),
(3) when the total number of MICR characters plus '"can't read" characters in
identifier~1 exceeds the length of identifier-2.

Considerations After the Format Verb Has Been Executed

If a CANT.READ (*) character is placed into any subfield, the most significant
character of that subfield will be set to a -1 (@Dl@), and if there are no
CANT.READ characters in a subfield, the most—~significant character will be

set to a blank (@40@).)

If the first (least—significant) character of a subfield is sensed as a
CANT.READ, it is treated as a non-control character and stored into the sub-
field after a blank (@40@) is stored as the least—significant character.

The MICR-EDIT verb is used to edit document subfields and also to count the

number of MICR characters in the field. The construct of the verb is:
MICR-EDIT identifier—1 INTO identifier-2

Identifier-1 and identifier—-2 must be alphanumeric. The MICR-EDIT verb may
appear anywhere in the PROCEDURE division.

This verb moves identifier—1 to identifier—-2, right-justified, deleting all

MICR special characters (except '"can't reads") and spaces. Each deleted charac-
ter of identifier—-1 causes the remaining unmoved portions to be shifted right
one position in the identifier-2. Identifier-2 is left zero—filled, if neces-
sary. A count of all characters, except CANT READ, moved from identifier-1 is
provided in the COBOL special register TALLY.

The COBOL source MICR-EDIT statement will cause a MICR-EDIT S—-OP to be
generated

MCE COPX1, COPX2, COPX3 is generated.

COPX1 corresponds to identifier-1 (Source)
COPX2 corresponds to identifier—-2 (Receiving)
COPX3 corresponds to TALLY

EXAMPLE 1: EXAMPLE 2:
Source and receiving: Picture PC X(20) PC X(20)
Source: bbbbbbbbbb12-345678@ bbbbbbbbbbl2-345678%
Receiving: 00000000000012345678 0000000000012345678%
TALLY 8 8
where,

b = blank and * = can't read.

The READ verb can only appear in the PROCEDURE DIVISION main—-line code, and is
used to retrieve docunent information for processing. The construct of this

verb is:
READ file—-name [INTO identifier-—1]

The result descriptor for the READ will be placed in the first 24 digit posi-
tions of file—name's record area. The data that is read is stored following
the descriptor; consequently, the file record size declared should be large
enough to handle the maximum length of data expected. (There is no blank-
fill if the data length is less than that declared.)

If INTO is specified, data will be moved from the file record area into
identifier—1, according to the rules for COBOL moves. Note that in all cases,
this READ will retrieve information on a document that has already been
pocket—selected. The MCP, however, keeps track of how far behind the main-
line processing is from the USE routine pocket-selecting,and issues a STOP-
FLOW to the reader—sorter to allow main—line to catch up. Presently, a
difference of six documents will cause a STOP-FLOW.

Programming Considerations
USE Routine

a., The pocket selection command must be the last instruction executed
in the USE ROUTINE. If any instructions follow the POCKET command,
they will not be executed.

b. 1If the exception digit is turned on in the result descriptor, the
following exceptions should be tested until the problem area is located:

NOT READY (*)
UNENCODED DOCUMENT
CAN'T READ

DOUBLE DOCUMENT (*)
TOO LATE TO READ (%)
JAM (*)

MISSORT (*)

BATCH TICKET

If the above exceptions are not true, then the document was read

correctly and should be processed normally.

* Implies an invalid pocket must be selected if the condition is true,
@FF@

C. When a NOT READY, DOUBLE DOCUMENT, TOO LATE TO READ, JAM, or MISSORT
is encountered in the USE ROUTINE, the result descriptor will reflect
that condition or multiple conditions, and the programmer must pocket
select an invalid pocket, @QFF@., In addition, the invalid data is re-
ceived by the USE ROUTINE and should not be processed by the pro-

grammer,

d. When an UNENCODED DOCUMENT is detected in the USE ROUTINE, the docu-
ment should be pocket—selected to the reject pocket, @31@, also the
data is invalid and should not be processed by the program. Also, the

result descriptor will reflect this condition.

€. When the programmer exceeds the time allotted to pocket-select that
document, the result descriptor will reflect the '"too late to pocket
condition," which can be tested in main memory but not in the USE
ROUTINE.

f. When the programmer desires to issue either a POCKET-LIGHT or a BATCH-
COUNT command in main—line code, the USE ROUTINE must have the follow-

ing statement:

CONTROL file-name [STOP-FLOW] POCKET {i;gifgﬁwr}

Only the STOP-FLOW and POCKET commands may be used in the USE ROUTINE
as communicates to the READER-SORTER.

If the MICR FORMAT or MICR-EDIT statements are used in the USE
ROUTINE, those work areas must not be the same areas used in MAIN
LINE.

If both MAIN LINE and the USE ROUTINE use the EXAMINE statement, the
TALLY register must be saved at the beginning of the USE ROUTINE and
restored at the end of the USE ROUTINE (before the pocket selection

command is executed). This is required because the Main Line may be
interrupted at any time to service the READER-SORTER.

Only the POCKET-LIGHT and BATCH-COUNT statements may be issued in
MAIN LINE.

All result descriptors and checks or exception conditions received in
the USE ROUTINE will also be received by MAIN LINE.

If the exception digit is turned on in the result descriptor, the
following exceptions should be tested:

NOT READY

UNENCODED DOCUMENT

CAN'T READ

DOUBLE DOCUMENT

TOO LATE TO READ

TOO LATE TO POCKET SELECT
JAM

MISSORT

BATCH TICKET

If the above exceptions are not ture, then the document was read

correctly and should be processed normally.

When a NOT READY, UNENCODED DOCUMENT, DOUBLE DOCUMENT, TOO LATE TO
READ, JAM, or MISSORT is encountered in the MAIN LINE ROUTINE, the
condition(s) will be reflected by the result descriptor. Also, the
data that is received by the MAIN LINE is invalid and should not be
processed by the programmer.

e. Before a POCKET-LIGHT or BATCH-COUNT statement is issued in MAIN LINE,
the 15th digit of the result descriptor must be tested to ensure that
the READER-SORTER is not in flow mode. Also, a counter should be kept
in the USE ROUTINE and compared against in MAIN LINE to ensure that
this is the document to act on.

f. When the MICR FORMAT or MICR-EDIT statements are used in MAIN LINE,
those work areas must not be the same area as used in the USE ROUTINE.

g. The last two bytes of the result descriptor contain the pocket number
to which that item was pocket—selected. Examples:

1. F1FO - the document was pocketed in pocket 10,
2. F3F1 - the document was pocketed in the REJECT POCKET.

If the USE ROUTINE selected the invalid pocket, @FF@, the MCP will
return a value greater than 32 in the pocket number of the result

descriptor.
TIMING REQUIREMENTS

After a document starts through the reader—sorter, there is a time span
(dependent on the type of sorter being used), during which the device must re-
ceive pocket-select information. If the time 1limit is exceeded, the document
will be rejected, the result descriptor will reflect this condition, and pro-
cessing will continue. The programmer therefore must ensure that minimal time
is spent in the USE ROUTINE.

The following sample program reads, checks, and prints out the check image,
along with the result descriptor for that check. A running total is kept of
the check amount fields, and is printed at the end.
NOTE
No MICR-EDIT verbs are required in this

progran,

8-10

USE ROUTINE

SAMPLE PROGRAM

BEGIN
DECLARATIVES
SECTION

TRUE

EXCEPTION
?

EXCEPTION
2 .

FORMAT
THE
CHECK

DETERMINE
POCKET

PROCESS
CHECK

YES

DETERMINE
POCKET

Y

POCKET
THE
ITEM

END
DECLARA-
TIVES

MAIN LINE

SET UP

8-12

?

AND
OPEN FILES
-l
. READ PRINT
N JAM
DOCUMENT JAM
JAM YES
2
NO
FORMAT
CHECK
PROCESS
ITEM
PRINT
OUTPUT
E0J CLOSE
e CONDITIONN_YES FILES
TRUE PRINT
TOTALS

SECTION 9

DATA COMMUNICATIONS

GENERAL

This section deals with the COBOL constructs of the PROCEDURE DIVISION required
to activate the data communications equipment as defined by the ASSIGN to

hardware—~name clause.
SPECIFIC VERB FORMATS

The following differences exist in READ, WRITE, and USE when I/0 is to be

performed on remote files.

The READ statements will wait for a message and suspend program execution if no
messages are queued for that program.

AT END will be executed when the datacom network controller receives a QC

message, or when the MCS (if one exists) does an MCS.COMMUNICATE with
MESSAGE.TYPE set to 1 and MESSAGE.VARIANT set to 3.

WRITE requires MESSAGE~TYPE to be set to 0 if an actual key is used, as well
as TEXT-LENGTH set to the actual message length, and STATION-RSN to be set to

the correct relative station number of the terminal to which the message is to
be sent.

USE AFTER STANDARD ERROR PROCEDURE ON file—name must be specified to avoid a
DS or DP condition when library request sets in NDL are used. (This is not a
problem but is a standard procedure to follow.) The execution of TERMINATE

ERROR by the Network Controller will always invoke the USE procedure in the
associated application program.

SECTION]0

INTER-PROGRAM COMMUNICATION

GENERAL

This section describes the COBOL inter—-program communication (core—to—core
transfer), which is achieved by means of ''message queues" in memory. (A

queue is treated by the MCP and compilers almost exactly as if it were a normal
file.) A discussion on the implementation of queues is followed by the syntax
for COBOL queues.

QUEUES FILES

A queue file or queue file family may consist of one or several queues called
subqueues. The number of queues is primarily constrained by memory, since there
is a resident queue dictionary entry for each queue. With each queue file that
belongs to a queue family, there must be associated a number, zero—relative, by
which it is referenced. This number is provided in the key part of the read or
write communicate. The messages in the queues are considered blocks of data
which are transferred to and from the MCP 1/0 buffer according to the specifica-
tions in the communicate and the File Parameter Block (FPB). The MCP will han-
dle the blocking and deblocking of the buffer.

In the case of single queues, the MCP accesses the queue by a pointer in the
file's File Information Block (FIB). The name of that queue is supplied in the
FPB as a multi-file ID and file ID.

In the case of multiple queues (queue family) the file name for a queue is
created from the FPB entry for the multi-file ID and from the key passed in the
read or write communicate.

During OPEN, the MCP associated an FIB with one or several queues. The number
of queues that a user wishes to associate with an FIB is determined by the con-
tents of the "number—of-buffers—requested" field within the FIB. Note that
this does not mean the user sets the field by assigning buffers. See the
appropriate syntax in this discussion. With each new queue, a dictionary

entry and a buffer are created for each queue in the file. The queue diction-
ary contains the name of the queue, a pointer to the first message, a pointer

to the last message (all messages are linked), a user count, and a link to the

10-1

next and previous dictionary entries. The size of the buffer is determined, in
the usual manner, from the requested record size and number of records per block.
For a family of n subgqueues, the MCP creates a dictionary entry for queues of
the following name: family ID/ ##NNNNNNNN, where NNNNNNNN ranges from O to n.

On a write communicate, the logical record in the work area is transferred to
the queue file's write buffer, If the buffer is full, the MCP attempts to
transfer the buffer to the appropriate queue. If a buffer is transferred to
the queue, then any programs awaiting the queue are notified. The length

of the message in the queue will be the block size of the file that wrote it

to the queue, but the length of the message as delivered to a program is depen=
dent on the block size of the file that reads it.

On a read communicate from multiple queues, it is possible to request a block
of data from a specific subqueue, or to request a block of data from any queue.
In the latter case, the message associated with that queue family for the
longest period of time will be delivered. If the key passed in the read com-—
municate is 0, the oldest message in the queue family is transferred to the
work area from the appropriate buffer; otherwise, the top (first—in) message
from the subqueue corresponding to the key is delivered. The buffer is then
checked; if it is empty, the MCP transfers a queue entry to the buffer. If it
is successful, a logical record is transferred from the buffer to the work area.
(If the present key is different from that of the previous key, the MCP trans-—
fers a message from the appropriate queue to the buffer.) The logical record
is then transferreé to the work area., The buffer is checked and, if empty, a
message from the queue is transferred to the buffer. The logical record is
then transferred to the work area. Note that when the message is transferred
from a queue to a buffer, it is transferred as a character string. All rules

for the handling of character strings are followed.

The read and write communicates may request the status of two conditions:
invalid key number (a queue number greater than the number in the queue family
or file contains clause) and end of file. The queue number passed dynamically
as part of the communicate (KEY) has the potential for being out of range of
the number of queues requested at OPEN time. If requested, the MCP will report
the condition: otherwise, the MCP will terminate the issuing program with an
invalid key message. On a read communicate, the user may also request a report
of end of file. EOF for a queue file means that at the time a user program
issued the read, the buffer was empty and there was no message in the queue.

If no EOF reporting is requested, the MCP will place the process reading the

queue in a wait state.

10-2

NOTE

A message does not get placed in the queue
until a write buffer associated with that
queue becomes full. Hence, it is possible
to do several logical writes to a queue,

in the case of a blocked queue file, yet the

reading process is receiving EOF conditions.

During CLOSE, the MCP will flush all write buffers to the appropriate queue,.
The user count for the queue will be decremented, and when it is equal to O,
the queue directory, message list, and other associated space are released.

QUEUES IN COBOL

As with other files, queue files must be selected, described in the File
Section, opened, read, written and closed in the PROCEDURE DIVISION. The
compiler will generate the communicates and control information necessary for
the MCP. Inter—program communication may be utilized together with, or in-
dependently from, NDL, or any other Data Communications functions.

File-Control

SELECT file—name ASSIGN TO {QUEUE} ACTUAL KEY IS data—name-1

QUEUE is used for inter—program communication in general. Optionally, each
type may specify an ACTUAL KEY. If specified for QUEUE files, the KEY must be
described as PC 9(8) CMP,.

File Section

FD QuEvE |
FILE CONTAINS integer QUEUEﬁ’
data—name
VALUE OF IDENTIFICATION IS {1itera1 }

The FILE CONTAINS clause specifies the number of queues and must be specified
if the number is greater than 1. The FILE clause determines the queue family
size (single or multiple)., The literal of the VALUE clause is of the for
"multi-file—name" or "multi-file—name"/"file—name", For QUEUE files, the
first 10 characters of the multi—-file—name are used to identify the QUEUE,
BLOCK and RECORD clauses do apply, as with other files,

10-3

Procedure Division

(INPUT I

) INPUT-OUTPUT L

OPEN OUTPUT- INPUT file=name.
OUTPUT

WRITE file-record [FROM data-name]
READ file—name [INTO data-name] AT END any-statement

If the AT END is specified, the statement will be executed when no data is
available; otherwise, the program is suspended until data is available. On a
WRITE to a queue, the KEY must have the value set before the WRITE is issued.
On the READ from a queue, the value of the KEY must be set before the READ is
issued. If the KEY value is 0, it means a READ for the oldest message in

the queue.

On a READ, if exception conditions are to be handled, they must be handled
by a "USE AFTER STANDARD ERROR" procedure.

CLOSE {queue-file}

When the queue file is closed and the user count is equal to 0, the queue

space is released. None of the options of the CLOSE verb apply to queue files.

10-4

SECTION]]

COBOL COMPILER CONTROL

GENERAL

The COBOL compiler, in conjunction with the Master Control Program, allows for
various types of actions during compilation and is explained in the text that
follows.

COMPILATION CARD DECK

Control of the COBOL source-—language input is derived from presenting the
compilation card deck, illustrated in figure 11-1, to the MCP.

! ?END

P
ya

|_§0UE§§_29TA - _____"_______1
$ OPTION CONTROL CARD
y——— = —

V-
s

SOURCE DATA

SOURCE DATA
($ OPTION CONTROL CARD
(?DATA CARDS
(?LABEL EQUATION CARD
(2COMPILE CARD

Figure 11-1. Compilation Card Deck

11-1

The compilation card deck is comprised of several cards; these cards, along
with a detailed discussion of their function, are presented in the paragraphs
that follow.

?COMPILE CARD

The first input control card instructs the MCP to call the COBOL compiler and
to compile the indicated program—name (P-N) by means of one of the following

options:

a. To compile and run the resultant object program, the card is coded:
?COMPILE P-N WITH COBOL
b. To compile for a syntax check only, the card is coded:
?COMPILE P-N WITH COBOL SYNTAX
c. To compile and place the resultant object code into the Systems
Library, the card is coded:
?COMPILE P-N WITH COBOL LIBRARY
d. To compile and place the resultant object code into the Systems
Library, and then run the object program, the card is coded:
?COMPILE P-N WITH COBOL SAVE

NOTE

The word WITH is for readability only and
may be excluded from the above statements.

The absence of the ?COMPILE card will cause the System Operator to manually
execute one of the above options . through the SPO, using the MCP's CC nota-

tion in place of the invalid character ("?"),.
MCP LABEL CARD

The second control card, excluding Label Equation cards, is the MCP LABEL
Card and is formatted in the following form:

?DATA CARDS (indicates EBCDIC or BCD source language input).
The absence of the MCP LABEL card will cause the message
**NO FILE file—name program—name = mix—index

to be displayed on the SPO, The System Operator will not know the proper IL
message to give the MCP (because of the options involved), without specific
instructions by the programmer,

11-2

$OPTION CONTROL CARD

The third card, excluding Label Equation Cards, is the COBOL compiler option
control card ($ sign in column 7). This card is used to notify the compiler

as to which options are required during the compilation. If this card is
omitted, $CARD LIST CHECK SINGLE will be assumed. There must be at least one
space between each item on the control card. The options may be in any order.
Columns 1 through 6 of the $ card are used for sequence numbers. Any number of
$ cards may be used and may appear anywhere in the source deck. The options
specified will become either active or inactive from that point on. The op-

tions available for the COBOL compiler option control cards are as follows:

ANSI Causes the compiler to inhibit certain non—ANSI
extensions.
CARD This option is for documentation only. The

input is from the source language cards or from
paper tape.

CHECK Causes the compiler to check for sequence errors
and print a warning message for each sequence
error. The CHECK option is set, by decault, at
the beginning of each compile, but may be ter-

minated with the NO option.

CODE Lists the object code following each 1line of

source code from the point of insertion.

CONTROL Prints the $ Option Control Cards on the output
listing., The LIST option must be set.

DOUBLE Causes the output listing to be printed in a
double-spaced format.

HEX CODE Causes all addresses on the CODE listing to be
in hexadecimal format. If this option is omitted,

the addresses will be in decimal format.

LIST Creates a single—spaced output listing of the
source language ihput, with error and warning

message (or both), where required,

LISTP This option causes the compiler to force listing

of source images and to print errors as they occur.

MERGE Primary input is from a source other than a card
reader and may be merged with a patch deck in the

11-3

11-4

NEW

NO

NO DEBUG

NO SEQ

NOCOoP

Non—numeric
literal

card reader. It is assumed to be from a disk file,
with a file—ID of COBOLW/SOURCE, by default. If
it is desirable to change the input file—1ID or
change the input device from disk to tape, a

label equation card must be used. The NEW option
may be used with the MERGE option to create a new
output source file plus changes.

Creates a NEW cutput source file with changes, if

any, entered through the use of the MERGE option,

but does not include the compiler option cards,

if any, which must be merged in from the card

reader when the compilation is from disk or tape. The
output file will be created on disk, by default,

with the file~ID of COBOLW/SOURCE. If it is

desirable to change the output file—ID device

from disk to tape, a label equation card must be

used.

When the NO option precedes one of the above op-
tions (with the exception of MERGE which cannot be
terminated), it will terminate the function of that

option.

When this option is specified, the compilef will
not generate monitor object code even though the
statements are left in the source program. This
permits the user to approximate a conditional

compile for the debugging facilities.

Terminates the SEQ option and resumes using the
sequence number in the source statement as it is

read in.

This option causes the compiler to generate

current operand table entries in—line in the

code, This option requires more memory in order

to run, but it will increase execution speed by ap-

proximately 2 per cent,

Inserted in columns 73-80 of all following card
image for creation of a new source file and/or

listingi This option can be reset or

REFERENCE

SEQ

SEQ nnnnnn

SEQ + nnnnnn

SEQ nannnnn+nnnnnh

SINGLE

SPEC

set by a subsequent control card, with the
area between the quote marks containing blank

characters.

Provides monitoring of data—names specified in
the MONITOR declaration and referenced in the
program, even if the data—name values are un-
changed. This option must be used in conjunc-
tion with the MONITOR statements.

Starts resequencing the output listing and the
new source file, if applicable, from the last se-—
quence number read in and it increments the se-
quence number by 10 or by the last increment
presented in a previous $ option card. When
resequencing starts at the beginning of the
program source statements, the sequence will
start with 000010.

Starts resequencing the output listing and new
source file, if applicable, from the sequence num—
ber specified by nnnnnn, incrementing the sequence
numbers by 10.

Starts resequencing the output listing and new
source file, if applicable, from the last se-
quence number read in, incrementing by the num-
ber specified by +nnnnnn, When resequencing
starts at the beginning of the program source

statements, the sequence will start with 000010,

Starts resequencing the output listing and new
source file, if applicable, from the sequence
number specified by nnnnnn, incrementing by the

value of +nnnnnn.

Causes the output listing to be printed in a
single—-spaced format.

This option negates the CONTROL and LIST options

and causes only the syntax errors and associated

source code to be printed if syntax errors occur.
Otherwise, the CONTROL and LIST options remain in
effect.

SUPPRESS Suppresses all warning messages except sequence
error messages. The sequence error message can
be suppressed with the NO CHECK option.
The NEW option does not have to be included when operating with a tape or
disk source input, thus allowing temporary source language alterations without
creating a new source output file,

The MERGE option without the NEW option allows a disk or tape input file to
be referenced and to have external source images included from the card
reader on the output listing and in the object program. A new output file
will not be created.

Columns 1-6 of the compiler option control card may be left blank when compila-
tion is from cards. A sequence number is required when compilation is from tape
or disk, if the insertion of the $ option is requested within the source input.

SOURCE DATA CARD

Source data cards follow the $ option control cards. The following source
cards are used to create an updated version of the source input file or to

cause temporary changes to the tape or disk source language input:

a. VOID nnnnnn Patch Card. The punch sequence number in card columns 1-6
is followed by a $ in column 7, and then the word VOID., This will de-
lete the source records from the sequence number in the first six posi-
tions of the VOID card through the sequence number specified by nnnnnn.
If "n" is left blank only the source record identified by the sequence
number in the VOID card will be deleted from the compilation and the
output listing, tape or disk files.

b. Change or Addition Patch Card. DPunch sequence number in card columns
1-6 and changed or added source language data in applicable card
columns., These cards must be in the proper sequence for the source

input file in order to be properly merged into that file,

The COBOL compiler has the capability of merging inputs from two sources
(punched cards or paper tape, either of which may be merged with magnetic
tape or disk) on the basis of the sequence numbers,

When merging inputs, the output compilation listing will indicate all inserts
and replacements (or both).

All of the $ options may be inserted at any point within the source language
input data. Once an option has been set it will remain set until reset with
the NO option is another $ option card. In the case of the non—numeric

literal it must be reset by coding a non—numeric literal with blanks.

11-6

LABEL EQUATION CARD

This card may be used to change a compiler file-name in order to avoid duplica-

tion of file—names when operating in a multiprogramming environment,

The label equation card must be used in conjunction with the MERGE and NEW
options when the primary input or output is from magnetic tape, the input
disk file does not have a file—ID of SOURCE, or when a file-ID other than
COBOLW/SOURCE is desired for the new disk output file.

The format for the LABEL EQUATION CARD is:

?FILE internal file—name

users choice of file—-IDs, file—attributes ... ;
The label equation card (or cards), if used, must end with a semicolon, must
immediately follow the ?COMPILE ... control card, and precede the MCP LABEL

control card (refer to figure 11-1).

The internal file—names and external file—ids of the COBOL compiler are used
for label equation as follows:

INTERNAL FILE-NAME EXTERNAL FILE-ID DESCRIPTION
CARDS CARDS Input file from the card

reader., If $ MERGE is used
this file will be merged

with the input file on disk
or tape. The default input

is from the card reader,.

SOURCE COBOLW/SOURCE Input file from disk or
tape when the MERGE option
is used. The default input
is from disk,

NEWSOURCE COBOLW/SOURCE Output file to disk or tape
for a NEW source file when
the NEW option is used., The
default output is to disk.

LINE LINE Source output listing to
the line printer.

The following are examples of the label equation uses,

11-7

Example 1:

To compile a COBOL program from the card reader and create a copy of the
source program blocked five on a disk file with the file~ID of COBOL/TEST1,
the following Label Equation (FILE) cards could be used:

? COMPILE P-N WITH COBOL SYNTAX

-~

~)

DATA CARDS

$ CARD LIST DOUBLE NEW
..+ SOURCE PROGRAM DECK ...
? END

FILE NEWSOURCE NAME COBOL/TEST1 RECORDS.BLOCK 5;

To create the same program file on magnetic tape, use the following FILE card:

? FILE NEWSOURCE NAME COBOL/TEST1 TAPE RECORDS.BLOCK 5;

Example 2:

To compile a COBOL program from a disk file which had been created by the de-

fault option of the $ NEW option and to create a new source file on disk with

the file—ID of TEST2,

? COMPILE P-N WITH COBOL SYNTAX
? FILE NEWSOURCE NAME = TESTZ2;
? DATA CARDS

$ MERGE NEW
... PATCH CARDS IF ANY ...
? END

If the input file had a file-ID of COBOL/TEST1l, in
of SOURCE the following FILE card should have also

example.

11-8

? FILE SOURCE NAME COBOL/TEST1;

the following FILE card could be used:

place of the default file-ID

been used in the above

ABOUT
ACCEPT
ACCESS
ACTUAL
ADD

ADVANCING
AFTER

ALL
ALL-AT-OPEN
ALPHABETIC

ALTER
ALTERNATE
ALTERNATING
AND

APPLY

ARE

AREA
AREAS
ASCENDING
ASCII

ASSIGN

AT
AUTHOR
AUXILIARY
BACKUP

BATCH-COUNT
BEFORE
BEGINNING
BINARY
BLANK

BLOCK
BY

BZ
CARD96
CASSETTE

APPENDIX A

RESERVED WORDS

This appendix lists all the reserved words
recognized by the B 1700 COBOL compiler.

CHANNEL
CHARACTERS
CLOCK-UNITS
CLOSE

CMP

CMP-1
CMP-3
CODEFILE
COMMA
CoMP

COMP—-1

CoMP-3
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-3

COMPUTE

CONF IGURATION
CONTAINS
CONTROL
CONVERSION

cory

CORR
CORRESPONDING
CREATE

CRUNCH

CURRENCY
CURRENT
CYLINDER
DATA
DATA-BASE
DATASET

DATE
DATE~COMPILED
DATE-WRITTEN
DB

DDL~NUMBER

DECIMAL-POINT
DECLARATIVES
DELETE

DEMAND
DEPENDING

DESCENDING
DISC

DISK
DISK-DFC1
DISK-DFC2

DISK-DPC1
DISK-DPC2
DISK-HPT
DISKPACK
DISK-PPC2

DISPLAY
DIVIDE
DIVISION
DM-STATUS
DOWN

DUMP

ELSE
ENABLE
END
END-OF-JOB

END-OF-PAGE
END-TRANSIT
ENDING
ENVIRONMENT
EOP

EQUAL
EQUALS
ERROR
EVERY
EXAMINE

Appendix A (Cont)

EXCEPTION
EXIT

FD

FILE
FILE-CONTROL

FILE-LIMIT
FILE-LIMITS
FILL
FILLER
FIND

FIRST
FLOW
FOR
FORM
FORMAT

FREE
FROM
GIVING
GO
GREATER

HARDWARE-MONITOR
HERE

HIGH-VALUE
HIGH-VALUES

I-0

I-0-CONTROL

ID
IDENTIFICATION
IF

IN

INC~-EU
INDEX
INDEXED
INPLACE
INPUT

INPUT-OUTPUT
INQUIRY
INSERT
INSTALLATION
INTERPRET

INTO

INVALID
INVALID-REQUEST
INVOKE

IS

JS

JUST
JUSTIFIED
KEY

LABEL

LAST
LEADING
LEFT
LESS
LIBRARY

LINES

LOCK
LOW=VALUE
LOW=-VALUES
MEMORY

MFCU

MICR
MICR-EDIT
MICR-OCR
MOD

MODE
MODIFY
MODULES
MONITOR
MOVE

MULTIPLE
MULTIPLY
NEGATIVE
NEXT

NO

NO-ERRORS
NO-FORMAT
NON-STANDARD
NOT
NOT-READY

NOTE

NULL

NUMERIC

0-1I
OBJECT-COMPUTER

ocC
OCCURS
OCR

OF
OMITTED

ON

OPEN
OPTIONAL
OR

ORDER ING

OTHERWISE
OUTPUT
OUTPUT-INPUT
PACK

PAGE

PC
PERFORM
PIC
PICTURE
POCKET

POCKET-LIGHT
POSITION
POSITIVE
PRINTER
PRINT128

PRIOR
PROCEDURE
PROCEED
PROCESS ING
PROCESSOR

PROGRAM-ID
PT-PUNCH
PT-READER
PUNCH
PURGE

Q-EMPTY
Q-FULL
QUEUE
QUEUES
QUOTE
QUOTES

RANDOM

READ

READER
READER-SORTER
RECEIVE

RECORD
RECORDING
RECORDS
RECREATE
REDEF INES

REEL
RELEASE
REMAINDER
REMARKS
REMOTE

REMOVE
RENAMES
REPLACING
RERUN
RESERVE

RETRIEVAL
RETURN
REVERSED
REWIND
RIGHT

ROLLOUT
ROUNDED
RUN
SAME
SAVE

SAVE-FACTOR
SD

SEARCH
SECTION
SECURITY

SEEK
SEGMENT-LIMIT
SELECT

SEND

SENTENCE

SEQUENTIAL
SET

SIGN
SINGLE
SIZE

SORT

SORTER
SOURCE-COMPUTER
SPACE

SPACES

SPECIAL-NAMES
SPO

STACKER
STACKERS
STALEMATE

STANDARD
START-FLOW
STATION
STATIONS
STOP

STOP-FLOW
STORE
STREAM
SUB-QUEUE
SUB-QUEUES

SUBSET
SUBTRACT
SwWl

Sw2

SW3

Sw4
SWd
Swe
SwW7
SW8

SY

SYMBOLIC
SYNC
SYNCHRONIZED
TAG

TAG-KEY
TALLY
TALLY ING
TAPE
TAPE-MTC1

TAPE-MTC2
TAPE-MTC3
TAPE-MTC4
TAPE-MTC5
TAPE-7

TAPE-9
THAN
THEN
THROUGH
THRU

Appendix A (Cont)

TIME

TIMES

TO
TODAYS=DATE
TODAYS-NAME

TOP

TRACE
TRANSLATION
UNLOCK
UNTIL

up
UPDATE
UPON
USAGE
USE

USING
VA
VALUE
VALUES
VARY ING

VIA
WHEN
WITH
WORDS
WORK

WORKING-STORAGE
WRITE

ZERO

ZEROES

ZEROS

ZIP

APPENDIX B

COBOL SYNTAX SUMMARY

IDENTIFICATION DIVISION

[MONITOR ...]

[PROGRAM-ID. Any COBOL word.]

[AUTHQR. Any entry.]

[INSTALLATION. Any entry.]

[DATE-WRITTEN. Any entry.]

[DATE-COMPILED. Any entry - appended with

current date and time as
maintained by the MCP,]

[SECURITY. Any entry.]

[REMARKS. Any entry. Continuation lines must
be coded in Area B of the coding form,]

MONITOR

[MONITOR [DEPENDING] file-name ([data-name] cel 2
C

[pernane,)]

ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

[[CONEIGURATION SECTION.]

[SOURCE-COMPUTER ...]

[OBJECT-COMPUTER ...]

[SPECIAL-NAMES ...]

[INPUT-QUTPUT SECTION.]

[FILE-CONTROL ...]

[I-0-CONTROL ...ﬂ

Appendix B (Cont)

CONFIGURATION SECTION.

Option 1:
SQURCE-COMPUTER. COPY 1library—name
[, REPLACING word—1l BY word—2

[, word—-3 BY word-4] ...].

Option 2:

SOURCE-COMPUTER.. {B 1700 })

any entry

Option 1:
OBJECT-COMPUTER. COPY 1library-name

[, REPLACING word—1 BY word-2
[, word=-3 BY word-4] ...].

Option 2:

OBJECT-COMPUTER . [{B o on }]

any entry

[, SEGMENT-LIMIT IS priority-number].

[, [SORT] MEMORY SIZE integer-1 [CHARACTERS]]

[, DATA SEGMENT-LIMIT IS integer—-2 CHARACTERS]

Option 1:
SPECIAL-NAMES. COPY library—name
[REPLAQING word-1 BY word-2

[, word-3 BY word—4] ...].

Option 2:

[, implementor-name IS mnemonic-name] .,

[, DECIMAL-POINT IS COMMA].

SPECIAL-NAMES. [CURRENCY SIGN IS literal]

Appendix B (Cont)

INPUT-QUTPUT SECTIQN.

Option 1:
FILE-CONTROL. COPY library-name

[REPLAQING {gg};g:rllame_l} BY {ggzg:rzlame'Q}
literal—1l

word-3 word-4
E {data-name—s} BY g?g:;gifg'4] .,.].

Option 2:
FILE-CONTROL.

SELECT [OPTIONAL] file—name ASSIGN TO hardware-name-1

[[g_g] BACKUP [{%A—JLPEIE }]] [FORM] [FOR MULTIPLE REEL] [SINGLE]

[ALL-AT-OPEN] [WORK]

No . [aREA
[, RESERVE {2, ...} [pLTERNATE [AREAS]]]

{FILE_:_LIMIT IS } {1itera1-1 \ {T RU }{E%%eral-*z }
FILE-LIMITS AREf \data—-name-1f \THROUGH 4nta-name—2
literal—-m {Iﬂﬁﬂ {literal-n }

’ data—name-m} THROUGH data-name-n U

RANDOM }
[, ACCESS MODE IS {SEQIIENTIAI]

[, ACTUAL KEY IS data—name-3]
[, PROCESSING MODE IS SEQUENTIAL] . [SELECT]

Appendix B (Cont)

Option 1:

I-Q0—-CONTRQOL., COPY library-name
[REPLACING word-1 BY word-2

[, word-3 BY word-4] ...].

Option 2:

I-0-CONTROL.

E SAME [RECORD] AREA FOR file-name~2 [, file—name-3] ..]

) DISKPACK diskpack—id}
[MULTIPLE FILE {TAPE multi-file-id

CONTAINS file-name-5 [POSITION integer—2]

[, file-name-6 [POSITION integer~3]]

[; sppy (MR, [MER]} ei1emname (si1emnane]]

DATA DIVISION

DATA DIVISION.

FILE-SECTION.

file—description—entry _ . L
[{Sort—merge-description-entry} [record description entry] "'] "']

[WORKINQ—STQRAGE SECTION.

{77-1eve1“description—entry
record-description—entry

Appendix B (Cont)

FILE-SECTION.

Option 1:

FD file—name COPY library—name

word-1 : word—2
REPLACING {data_name_l} BY {data-name—2
literal—1l
word~4
word—3 }
, { - _ BY data—name-4} ceole
[data—~name—3 {literal—z
Option 2:
ASCII '
FD file-name |; RECORDING MODE IS {STANDARD
NON-STANDARD |
- RECORDS
‘gTATIQN
; FILE CONTAINS integer—1 [BY integer—2] { STATIONS
lQUEUE S
i UEUE

. . _ . _ [RECORDS
. BLOCK CONTAINS [integer-3 TQ] integer-4 [CHARACTERS]]

; RECORD CONTAINS [integer—5 TQ] integer—6 CHARACTERS]

. RECORD IS } { MITTED
; LABEL {BEQQRDg ARES \STANDARD [data—name-1 [, data-name-2] ...]}

s JVA [literal-1/] [literal-2] [/ [literal-S]]}
’ {yALUE} OF ID IS { data~name=—3

[SAVE-FACTOR IS integer-?]]

[; DATA {ggggggsliRE} data-name-4 [, data-name-5...]].

Appendix B (Cont)

Option 3:

SD sort—~file—name CQPY library—-name

word-1 word-2
REPLACING { 1 } BY {data-name-2
data—name-1 literal-1

- word—4]
’ {gii:_?ame_g} BY (data—-name-4
' literal-2)|'°°

Option 4:
SD sort—file—name
FILE CONTAINS intezer-1 [BY integer-2] RECORDS

[; RECORD CONTAINS integer-3 CHARACTERS]

‘ . . -, [RECORDS]
[, BLOCE CONTAINS integer—4 [CHARACTERS

[; DATA {ggcoggsliRE} data-name-1 [, data-name-2] ...]

Option 1:

01 data—-name-1; COPY library—name

- worc—2
REPLACING {ggﬁg—iame-Z} BY {data*name'S}
literal-1
d-4
word-3 ‘wor - -
[{data—name-4} BY)i?tzrgifg Sip -

B-6

Appendix B (Cont)

Option 2:
level-number {FI ER } (; REDEFINES data-name-2]

data—name-1

; { IC % IS (allowable PICTURE characters)]
!
l

BLANK WHEN ZERO}]

8
JUST RIGHT
JUSTIFIED

|
e |
{

; {SYNC ‘RIgHT}
| (SYNCHRONIZED| \LEFT
; EECHﬂs} [integer-2 TO] integer-3 TIMES
[DEPENDING ON data-name-3]
ASCENDING _ _ _ _
[{DE&CENDINQ KEY IS data~name—-4 [, data~name-5] ...|...
l}NDEXED BY index—name-1 [, index—name-—2] ...]]
i [DISPLAY 1T
CMP
CcMP-1
CMP-3
CoMP
coMpP-1
; [USAGE IS] 9 COMP—-3 (
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-3
INDEX
i [ASCII)

. JVA IS | 15 -
[, {VALUE} [AREJ literal-1] .

Appendix B (Cont)

Option 3:

- - —am e THRU - -
66 data—name—1 RENAMES data-name—2 [{THRQUGH } data—name 3] .

Option 4:
e VA IS , _ THRU . _
88 condition—name v LUE}[ARE] literal-l [{TﬁﬁBUGH} literal 2] .

. _.. [/ THRU . _
E literal 3[{THR;H§H} literal 4]] e .

PROCEDURE DIVISION

PROCEDURE DIVISION.
[DECLARATIVES.

section—name SECTION. declarative—statement.

paragraph—name., [statement.] ...
l?aragraph-name. [statement.] ...]...
l}ection—name SECTION. declarative—statement.

paragraph—~name, [statement.]...

[?aragraph-name. [statement.] ...]...]...
END DECLARATIVES.]

[[section-name SECTION [priority-number]].

paragraph-name, [statement.] ...
[paragraph—-name,] ... [statement,] ...]...]...

[END-QF-JOB.]

Verb Formats:

@)

. o S
ACCEPT identifier [FROM {Eﬁghonic—name}]

B-8

Appendix B (Cont):

Option 1:
ADD {literal-l } {literal-z
—— lidentifier-1 identifier—-2¢y °*°

TQ identifier-m [ROUNDED] [identifier-n [ROUNDED] ..J
E ON SIZE_ERRQOR statement-1 [; ELSE statement—z]]

Option 2:
ADD {1itera1-1 } {literal-Z } [{literal-S }]
——— \lidentifier-1 identifier—-2 identifier—3 "

GIVING identifier-m [ROUNDED] [, identifier—n [ROUNDED]] .o

[; ON SIZE ERROR statement—-1 [; ELSE statement—zl]

Option 3:

ADD {%%%%EﬁP;NDING} identifier-1 TO identifier-2

[ROUNDED] [; ON SIZE ERROR statement-1 [; ELSE statement—z]]

ALTER procedure—~name~1 TQ [PROCEED TO] procedure—-name-2

[, procedure—name~3 TO [PROCEED TO| procedure-name-4 ...]

LOCK
PURGE I

CLOSE file—name-1 [REEL] WITH { RELEASE [, file—name-2...]
NO REWIND’

REMOVE

COMPUTE identifier-1 [RQUNDED] [, identifier-n [ROQUNDED]] .o
identifier—2
= {literal-1l
Qarithmetic—expression

[; ON SIZE ERROR statement—1 [; ELSE statement-z]]

Appendix B (Cont)

Option 1:

CONTROL file-name [STQP-FLOW] POCKET {13232?%1er}
Option 2:

CONTRQL file—name {%AE%%%%%ENET} identifier
Option 1:

COPY library—name.

Option 2:
COPY library—name

word~2
[REPLAQ;EG {WOrd"l } BY ’identifier—l}

data-name-1f == {literal-l

_ word—4
’ {word_3 _ } BY identifier-Z? N
data-name-3 literal—2

literal-1l } {1itera1—2 }
DISPIAY {igitiiier1 E identifier-2 "']

Ery .

mnemonic—name‘

Option 1:

DIVIDE [MOD] {}égﬁziizér_l} INTQ identifier-2 [RQUNDED]

[; ON SIZE ERROR statement-1 [; ELSE statement—z]]

Option 2:
literal-1 {QX {1itera1-2 }
DIVIDE [MOD] {identifier-l} ;n:g} identifier—2

GIVING identifier—3 [RQUNDED]
[REMAIEQER identifier-5 [EQQHDEQi]
[; ON SIZE ERROR statement-1 [; ELSE statement-Z]]

DUMP [file-name]

B-10

Appendix B (Cont)

Option 1:

EXAMINE identifier—1 TALLING {%EADIN? identifier—2
UNTIL | EFIRST

literal—-2
[REP ACING BY {identifier-s}]

ALL } {1itera1-l }

Option 2:
ALL . 3
EXAMINE identifier—1 REPLACING {LEADING {1;2§§?%iir_2}
[UNTIL] FIRST

literal—-2
BY {identifier-S}

EXIT.

=T

FORMAT identifier—1 INTQ identifier—2 ON SIZE ERROR statement

Option 1:

GO TO [procedure-name]

Option 2:
GO TO procedure~name~1 [, procedure-name-2] ...

, procedure—-name—n DEPENDING ON identifier

IF condition-1; {Sentence'l }

sentence—2
NEXT SENTENCE

L ELSE {NEXT SENTENCE

MICR-EDIT identifier-1 INTO identifier-2

Option 1:
MOVE {}gigﬁ;{fir'l} TO identifier-2 [, identifier-3] ...
Option 2:

:

MOVE R

{CORR PONDING} identifier—1 TQ identifier-2

Appendix B (Cont)

literal—l } {1itera1-2 }
MULTIPLY {identifier—l BY \identifier-2

[GIVING identifier-3] [RQUNDED]

[; ON SIZE ERROR statement-1 [; ELSE statement-2]]

Option 1 Paragraph NOTE:

Paragraph—-name. NOTE any comment.

Option 2 Paragraph NOTE:
NOTE. Any comment.

Option 3 Sentence NOTE:
NOTE. Any comment.

Option 1:
OPEN
[T {WITH LOCK [ACCESS]
INPUT file—name-1 REVERSED [file—name-2...] A
WITH NO REWIND

L

) [?UTPUT file-name-3 [WITH NO REWIND] [file—name—4...]] ..

{il_\]:gUT- UTPUT} file—name—5 {file-name-G . .]] TR

~~

[O—I file-name-7 [file-name48...]] - J
L -

Option 2:
fOUTPUT

OPEN 1I-0 file—name
IINPUT-OUTPUT

[WITH PUNCH] [WITH {gﬁ%ggpﬁgT}] [WITH STACKERS]

Option 1:

PERFORM procedure—name-1 [{%%%gUGH} procedure-name-z]

B-12

Appendix B (Cont)

Option 2:

PERFORM procedure—name-—1 [{%ﬁggﬂﬁﬁ} procedure-name-z]

integer-1 }
{identifier—lo TIMES

Option 3:

PERFORM procedure—name-—1 [{%%%EUGH} procedure-name-Z]

. index—name—2
index—name-1 in A,

VARYING {. e } FROM {1dent1f1er—2} BY
identifier—1 literal-2

{index—name-4}

identifier-3} e
{ UNTIL condition-—1 [AFTER lidentifier-4

literal—3

index—name~5
FROM identifier—5 BY {

index-name-G}
literal-5

literal—-6

Ce index—name—7
UNTIL, condition 2] [AEIEB {identifier-7} FROM

identifier—8 literal-9 } UNTIL condition-S]

index naneTd ay {identifier—g
literal-8

Option 1:

READ file-name [INTQ identifier]

Option 2:

READ file—name RECORD [INTQ identifier]

[{AT END

INVALID KEY} statement-1 [; ELSE statement-z]]

RELEASE record—-name [FROM identifier]

RETURN file—name RECORD [INTQ identifier]

; AT END statement-1 [; ELSE statement—2]

B-13

Appendix B (Cont)

Option 1:

. s index—name-1
SEARCH identifier-1 [VARY;NQ {identifier-Z}]
[; AT END imperative-statement—1]

. s o imperative"statement-z}
; WHEN condition-1 {NEXT SENTENCE

) e imperative"statement-B}]
[, WHEN condition—2 {NEXT N TENeE

Option 2:
SEARCH ALL identifier-3 [; AT END imperative-statement—4]

. cas imperative"statement—S}
; WHEN condition—3 {NEXT;SENTEHQE

SEEK file-name RECORD [WITH KEY CONVERSION]

Option 1:

SET {index—name-l} [{index-name-z}] TO {igggi;??gi:g}
. s P -) : s - LR —_—

—_— identifier-1 identifier—2 literal-1

Option 2:

IS

BY } {identifier-4}

SET index-name-4 [, index—name-5 ...] { BY literal-2

:

B-14

Appendix B (Cont)

SORT [TA 'KEY] f£ile~name

INPLACE
PURGE
RUN ON ERROR
END
DESCENDING
ON {KgggﬁDgﬂgG KEY data-name-1 [, data—name-2]
J DESCENDING} - - - -
_pN {ASCENDING KEY data—-name-3 [, data-name—4] ...] ce
[{THRU 3
INPUT PROCEDURE IS section—name—1l T GH} section—name-2
‘ LOCK (
USING file—name-2 PURGE
| RELEASE)
(THRU T
QUTPUT PROCEDURE IS section-name-3 [{TﬁﬁEUGH} section-name=4
5
e _ LOCK
LGIVING file~name—3 [EEZEASE]
RUN
SI0F {1itera1}
Option 1:
: literal-1 } {1iteral-2
SUBTRACT {identifier-l [’ identifier-z} "‘] FRO

FROM
identifier-m [RQUNDED] E identifier-n [ROUNDED] ...]

[; ON SIZE ERROR statement—1 [; ELSE statement~2]]

Option 2:

literal-1 literal-2 literal-m
SUBIRACT {identifier—l} [’ {identifier-Z} "'] FROM {identifier—m}

GIVING identifier-n [ROQUNDED] L identifier-o [RQUNDED]] e

[; ON SIZE ERROR statement—1 [; ELSE statement-z]]

B-15

Appendix B (Cont)

Option 3:
SUBTRACT {g&—gggEsmanNG} identifier-1 FROM identifier-2

[ROUNDED] [; ON SIZE ERROR statement-1 [; ELSE_Statement"Z]]

USE FOR KEY CONVERSION ON file-name-1l [, file—-name-2,..,]

IRACE 20
Option 1:
file—name-1 [, file—name-2]
INPUT
UTPUT
USE AFTER STANDARD ERROR PROCEDURE ON INPUT—-OUTPUT .
ot J
0-1
Option 2:
AFTER BE G|
UsE { BEFORE| STANDARD {ENDING }
file—name-1 [, file-name-21 ...
[{%}] LABEL PROCEDURE ON { INPUT
EFILE QUTPUT
Option 3:

Option 4:
USE FOR READER-SORTER POCKET file—name.

Option 1:

WRITE record—-name [FROM identifier-1]

integer-1 }
{AFTER } ADVANCING {identifier—z LINES
BEFORE(ARYVANCING

ERROR . -
[o iR (i
STACKER :

integer—2 }

TO CHANNEL {identifier-B

E AT {END-OF-PAGE

EOP } 1mperat1ve—statement]

Appendix B (Cont)

Option 2:
WRITE record—name [FROM identifier-1]
[; INVALID KEY any statement [; ELSE any statement]]

ZIP data—name

——

ERROR NO.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

APPENDIX c

COMPILER ERROR MESSAGES

MESSAGE

FILE-NAME EXPECTED

INTEGER LITERAL REQUIRED

INVALID LITERAL

RESERVED WORD REQUIRED

PARAGRAPH HEADER EXPECTED IN AREA A (COL. 8-11)
MISSING DIVISION

DOLLAR CARD ERROR

"DIVISION" REQUIRED

COMPILER ERROR

MISSING PERIOD

RESERVED WORD OR DATA NAME REQUIRED

COPY REPLACING OR MNEMONIC LIST OVERFLOW
DUPLICATE MNEMONIC NAME

UNIDENTIFIED ITEM

IMPROPER LABEL RECORD(S) DECLARATION
ILLEGAL NESTED COPY

ILLEGAL COPY OPERAND

STANDARD OR NON-STANDARD OR ASCII REQUIRED
DUPLICATE REPLACING

ILLEGAL SUBSCRIPTING

ILLEGAL LIBRARY NAME

ILLEGAL TYPE

ILLEGAL QUALIFICATION

ILLEGAL PROGRAM 1D

"SECTION" REQUIRED

MISSING FILE NAME

A PARENTHESIS WAS EXPECTED HERE

MISSING LABEL QUALIFICATION...MONITOR

NO FD OR SD

INVALID FD

ILLEGAL LEVEL

JLLEGAL DATA NAME

RELATIONAL OPERATOR REQUIRED

PICTURE SIZE ERROR

""PROCEDURE'" EXPECTED

ILLEGAL FD OR SD IN WORKING-STORAGE
PRIORITY NUMBER ERROR

MISSING IMPLIED LABEL OR LABEL QUALIFICATION
MISSING SECTION

NO "USE"

PARAGRAPH-NAME OR SECTION-NAME REQUIRED
VERB OR PARAGRAPH-NAME OR SECTION-NAME REQUIRED
MISSING FILE NAME

ILLEGAL LABEL RECORD REFERENCE OUTSIDE DECLARATIVES
ILLEGAL ARITHMETIC OPERAND

MISSING "=" OR "FROM"

NO VALID CORRESPONDING OPERANDS

Appendix C (Cont)

ERROR NO.

047

048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

064
065
066

067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086

087

088
089
090
091
092
093

094
095
096
097
098
099
100

MESSAGE

COMPOSITE ARITHMETIC SIZE > 125...MAY USE LARGE AMOUNT OF
CORE

MISSING "END DECLARATIVES'"

MISSING "DECLARATIVES"

ILLEGAL MOVE OPERAND

"TO" REQUIRED

AN ALPHABETIC ITEM CANNOT BE MOVED TO A NUMERIC ITEM

ILLEGAL GROUP TO ELEMENTARY MOVE

ILLEGAL "ALL" LITERAL

ILLEGAL SUBSCRIPTING OF A SUBSCRIPT

SUBSCRIPT NOT S-SIGN OR UNSIGNED

SUBSCRIPT NOT NUMERIC INTEGER

SUBSCRIPT NOT ELEMENTARY ITEM

ILLEGAL MIXING OF INDEX AND SUBSCRIPT

EXPLICIT DATA NAME TABLE OVERFLOW

THIS DATA NAME IS NOT DESCRIBED IN THE DATA DIVISION

QUALIFIER ARRAY TABLE OVERFLOW

ILLEGAL QUALIFIER

INSUFFICIENT QUALIFICATION

OVERLAPPING CORRESPONDING OPERANDS

NO MATCHING CORRESPONDING OPERANDS

CORRESPONDING NAMES ARE THE SAME

FD NAME ILLEGAL FOR CORRESPONDING

CORRESPONDING DATA NAME NOT GROUP ITEM

DUPLICATE PARAGRAPH OR SECTION NAME

LABEL NOT UNIQUE

LABEL QUALIFICATION NOT A SECTION

ALTER TABLE OVERFLOW

QUALIFIER LABEL TABLE OVERFLOW

REFERENCED PARAGRAPH OR SECTION DOES NOT EXIST

LABEL QUALIFIER IS NOT UNIQUE

LABEL RECORD IS NOT AN 01 LEVEL

ILLEGAL CONDITIONAL STATEMENT

ILLEGAL DOUBLE NEGATIVE

INVALID IMPLIED SUBJECT OR MISSING RELATIONAL OPERATOR

PICTURE TABLE FULL : RECOMPILE

PICTURE SPECIFIED ON A GROUP ITEM

RENAMES OPERAND OUT OF RANGE

RENAMES OPERAND LEVEL CANNOT BE 01 OR 66 OR 77 OR 88

RENAMES OPERAND IS SUBSCRIPTED

DUPLICATE NAME

"RENAMES" REQUIRED

GROUP RENAMES ITEM ADDRESS OR LENGTH NOT O MOD 2

BLANK WHEN ZERO SPECIFIED FOR NON NUMERIC CLASS

JUSTIFIED SPECIFIED FOR NUMERIC OR EDITED NUMERIC CLASS

UNSIGNED INTEGER EXPECTED

"OCCURS" SPECIFIED FOR LEVEL 01 OR 77

VARIABLE LENGTH DISK FILE MUST HAVE SEQUENTIAL ACCESS AND
NO FILE LIMITS

NON-ZERO VALUE EXPECTED

DUPLICATE "VALUE" CLAUSE

ILLEGAL "VALUE" LITERAL

DATA CLAUSE EXPECTED

ILLEGAL DATA CLAUSE FOR GROUP ITEM

ILLEGAL 4 BIT SPECIFICATION FOR HARDWARE DEVICE

"ZERO" EXPECTED

Appendix C (Cont)

ERROR NO. MESSAGE
101 ASCII MAY BE SPECIFIED ON ONLY WORKING-STORAGE LEVEL
01 OR 77
102 MISSING "OCCURS" FOR INDEX-NAME
103 INDEX NAME EXPECTED
104 LEVEL NUMBER EXPECTED
105 LEVEL NOT 01 THRU 49, 66, 77, OR 88
106 LEVEL 77 MUST FOLLOW ONLY WORKING-STORAGE SECTION
107 PICTURE REQUIRED FOR ELEMENTARY DATA NAME
108 NO DATA CLAUSE FOR INDEX DATA ITEM
109 COMPUTATIONAL ITEM NOT NUMERIC
110 COMPUTATIONAL SIGN NOT S OR J
111 IMPROPER REDEFINED NAME
112 LEVEL NUMBER NEQ REDEFINED LEVEL NUMBER
113 REDEF INED OPERAND IS SUBSCRIPTED
114 REDEF INED GROUP ADDRESS IS ODD
115 VALUE CANNOT BE SPECIFIED FOR SUBSCRIPTED ITEM
116 VALUE CANNOT BE SPECIFIED FOR REDEFINED AREA
117 VALUE CONFLICTS WITH GROUP VALUE
118 FILLER ADDED TO PREVIOUS ITEM
119 REDEFINED AREA NEQ REDEFINING AREA
120 USAGE CONFLICTS WITH GROUP USAGE
121 SUBSCRIPT MAXIMUM IS 3
122 INCONSISTENT LEVEL NUMBER
123 01 LEVEL NUMBER EXPECTED
124 "SELECT' EXPECTED
125 FILE PREVIOUSLY SELECTED
126 FILE NOT SELECTED
127 FILE INFO TABLE FULL
128 HARDWARE NAME EXPECTED
129 SD FILE NOT ASSIGNED TO DISK
130 UNIDENTIFIED WORD
131 WORD EXCEEDS 30 CHARACTERS
132 INVALID NUMERIC OR UNDIGIT LITERAL
133 ZERO SIZE LITERAL
134 MISSING RIGHT QUOTE
135 WORD ENDS IN A HYPHEN
136 NO ALPHA CHARACTER IN NAME
137 MISSING LEFT QUOTE
138 TABLE OVERFLOW IN MERGE: RECOMPILE
139 MISSING "BY" OR ' INTO'"
140 MISSING "GIVING"
141 "MOD' AND "REMAINDER' ARE MUTUALLY EXCLUSIVE
142 MISSING 'ERROR"
143 ILLEGAL PERFORM OPERAND
144 ILLEGAL PERFORM "TIMES" OPERAND OR MISSING "TIMES"
145 MISSING "UNTIL"
146 ILLEGAL PERFORM '"VARYING' OPERAND
147 ILLEGAL PERFORM "FROM' OPERAND OR MISSING '"FROM'
148 ILLEGAL PERFORM "BY' OPERAND OR MISSING "BY"
149 ILLEGAL SET OPERAND
150 FILE-LIMITS SPECIFICATION GIVEN FOR SD FILE
151 ACTUAL KEY MUST BE PC 9(8) COMP (DISK/QUEUE),PC X(112)
‘ (SORTER) ,PC 9(10) (REMOTE)
152 PICTURE REPEAT ERROR
153 PICTURE FLOAT ERROR
154 PICTURE SIGN ERROR
155 PICTURE "P' SPECIFICATION ERROR

Appendix C (Cont)

ERROR_NO.

156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

MESSAGE

PICTURE SIZE SPECIFICATION ERROR
PICTURE DECIMAL POINT ERROR

PICTURE ERROR...IMPROPER CHARACTER PRECEDING FLOAT,ZERO

SUPPRESS,0OR CHECK PROTECT
PICTURE CLASS ERROR
PICTURE MASK SIZE (100) EXCEEDED
VALUE OF ID CATEGORY IS NUMERIC
FILE-LIMIT MUST BE PC 9(8) COMP
"THRU" EXPECTED
DATA NAME OR INTEGER EXPECTED
"RANDOM" OR " SEQUENTIAL" EXPECTED
SD FILE MUST BE SEQUENTIAL
ACTUAL KEY REQUIRED
"BACKUP" EXPECTED
FILE-CONTROL CLAUSE EXPECTED
BACKUP FOR LINE PRINTER OR PUNCH ONLY
ILLEGAL USE OF FILE-NAME OR CONDITION-NAME
"MULTI-FILE-ID" EXPECTED
FILE NOT ASSIGNED TO TAPE OR DISK
I-0 CONTROL CLAUSE OR "." EXPECTED
APPLY CLAUSE NOT IMPLEMENTED
FILE NOT ASSIGNED TO HARDWARE DEVICE

DECLARATIVES NOT 1ST ITEM IN PRO.DIV. OR USE NOT BETWEEN

SECTION & PARAGRAPH
CONDITION-NAME LITERAL REQUIRED
"VALUE" REQUIRED
VALUE THRU...1ST LITERAL GEQ 2ND LITERAL
I/0 OPERAND MUST BE 01 RECORD OF A FILE
1/0 OPERAND CANNOT BE LABEL RECORD
1/0 OPERAND MUST BE SORT FILE
1/0 OPERAND MUST BE FILE
1/0 'OPERAND CANNOT BE WORKING-STORAGE 01 RECORD
1/0 OPERAND CANNOT BE SORT FILE
CAN MONITOR ONLY ON FILE
SORT KEY NOT WITHIN SCOPE OF SORT FILE
SORT STATEMENT NOT PERMITTED IN DECLARATIVES SECTION
MISSING '"ASCENDING" OR '"DESCENDING"
SORT KEY CANNOT BE SUBSCRIPTED
MISSING SORT KEY
NUMBER OF SORT KEYS GREATER THAN 40
SIZE OF KEY TOO LARGE
MISSING " INPUT"/"OUTPUT"/"USING"/"GIVING"
USING/GIVING FILE REC SIZE NEQ SORT REC SIZE
MISSING SORT INPUT/OUTPUT PROCEDURE NAME
SORT THRU PROCEDURE APPEARS BEFORE BEGINNING POINT
GO TO DEPENDING OPERAND MUST BE ELEMENTARY DATA-NAME
MORE THAN 1 ACCEPT OPERAND
MISSING WORD OR LITERAL
NOT READABLE/WRITEABLE HARDWARE
GO TO DEPENDING LABEL LIMIT (1022) EXCEEDED
FILE-LIMITS REQUIRE '"AT END" OR " INVALID KEY"
ILLEGAL READER-SORTER OPERAND
MISSING "DEPENDING" IN GO TO
READ/WRITE/SEEK ON SD OR RELEASE/RETURN ON FD
SEEK FILE NOT RANDOM DISK
ILLEGAL ADVANCING/STACKER OPERAND
INVALID I/0O OPERAND

INTEGER

ER,

211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257

258

259

260
261
262
263
264

Appendix C (Cont)

MESSAGE

MINUS SIGN NOT ALLOWED

MISSING GO TO LABEL

GO TO MUST BE TERMINATED BY "." OR "ELSE"

ILLEGAL OPTION FOR I/O DEVICE

INVALID OR MISSING OPEN TYPE

ATTEMPTED ALTER OF NON-GOTO PROCEDURE—-NAME

CHANNEL NUMBER GTR 11

RESERVED WORD (VERB) REQUIRED

CURRENT SECTION MUST HAVE SAME PRIORITY AS REFERENCED GOTO
PROC

TAPE FILE CANNOT HAVE 2 NAMES

EXPECTED A FILE DECLARATION CLAUSE

MISSING FILE CONTAINS

RECORDS PER AREA MADE MULTIPLE OF RECORDS PER BLOCK

DATA DICTIONARY FULL : RECOMPILE

REDEFINES NOT ALLOWED ON 01 RECORD OF FILE

MISSING FILE RECORD DESCRIPTION

BLOCK SIZE NOT MULTIPLE OF MAXIMUM RECORD SIZE

ARITHMETIC OPERAND MUST BE ELEMENTARY ITEM

ARITHMETIC OPERAND CANNOT BE INDEX ITEM

ARITHMETIC OPERAND MUST BE NUMERIC

ARITHMETIC LITERAL OPERAND MUST BE NUMERIC

FILE LABEL RECORDS OMITTED

DUPLICATE USE PROCEDURE

MONITOR ALLOWED ONLY ON FILE

CANNOT MONITOR ON SORT FILE

MONITOR ALLOWED ON LINE PRINTER ONLY

OBJECT OF SEARCH MUST BE INDEX

MISSING ALTER LABEL

DATA-NAME REQUIRED

DATA-NAME OR INDEX-NAME REQUIRED

WHEN CLAUSE REQUIRED

ILLEGAL USE OF RESERVED WORD

ITEM NOT DISPLAY

DATA LENGTH EXCEEDS 1 CHARACTER

ILLEGAL USE OF FIRST IN EXAMINE

MISSING FIRST IN EXAMINE

SIGN CONDITION OPERAND MUST BE ELEMENTARY NUMERIC OR
ARITHMETIC EXPRESSION

CLASS TEST OPERAND CANNOT BE ARITHMETIC EXPRESSION

CLASS TEST OPERAND MUST BE DISPLAY

NUMERIC VERSUS ALPHA COMPARE IS ILLEGAL

VIOLATION OF ANSI RULES FOR PERFORMING OVERLAYABLE SEGMENTS

RECEIVING FIELD TRUNCATION

FIELD TREATED AS 8 BIT DISPLAY

SEQUENCE ERROR

LITERAL EXCEEDS 160 CHARACTERS

CLASS TEST OPERAND CANNOT BE ASCII

MISSING SUBSCRIPT

DUPLICATE CONDITION SEND/RECEIVE

COMPARISON OF INDEX DATA ITEM MUST BE AGAINST INDEX DATA
ITEM OR INDEX NAME

COMPARISON OPERANDS MUST HAVE SAME USAGE

ILLEGAL USE OF "NEXT SENTENCE"

CANNOT COMPARE LITERALS

CANNOT COMPARE INDEX-NAME VS ZERO OR - LITERAL

SORTER FILE RECORD NOT MOD 112 IN LENGTH

C-5

Appendix C (Cont)

ERROR NO.

265
266
267
268
269
270
271
272
273
274
275
276
277

278
279
280
281

282
283
284
285

286
287

288
289
290

291
292
293
294
295
296
297
298
299

MESSAGE

CANNOT BLOCK SORTER FILE

GROUP NAME CANNOT BE "FILLER"

IF STATEMENT MUST BE TERMINATED BY "." OR "WHEN"

LITERAL SUBSCRIPT CAUSES OUT OF BOUNDS ERROR

HARDWARE MUST BE READER-SORTER

READER-SORTER ACTUAL KEY NOT IN DATA SEGMENT ZERO

RECORDING MODE BINARY NOT ALLOWED

MISSING MONITOR DECLARATION (TO DECLARE DUMP FILE)

MULTI RECEIVING FIELDS ILLEGAL WITH CORRESPONDING OPTION

TAG-KEY GIVING FILE MUST HAVE 01 RECORD OF PC 9(8) CMP

TAG-KEY SORT REQUIRES USING FILE AND GIVING FILE OPTIONS

COMPILER ERROR IN CODEGEN GET [(<«&$*) =/, %=]#@:>+F**<k>$

COMPILER ERROR IN CODGEN GET.TRASH [(<o&$*) ;=/,%=]#@: >+#**&
PRk =<F>P

COMPILER ERROR IN CODEGEN GET.POOL [(<. &$*) ;=/,%=]#@ :>+7#**
&PHk <k>F

COMPILER ERROR IN CODEGEN CONTROL [(<&$*);—/,%=]#Q@:>+7#*x*
&PF K <*k>$

COMPILER ERROR IN CODEGEN ARITH.EXP [(<&$*);-/,%= [#Q:>+#
*KGPKRK K>

COMPILER ERROR IN CODEGEN OPND.OVER [(<<&$*);=/,%=]#@:>+#
* KPRk K> ‘

COMPILER ERROR IN PROSYN GET [(< &$*);=/,%= J#@: >+Fkx&Phkk <>

USAGE DECLARED FOR AN ASCII FILE

BLOCK SIZE MADE EQUAL TO MAXIMUM RECORD SIZE

CURRENT COMPILER DATA SEGMENT LIMIT OF 000 EXCEEDED..
TEMPORARY SOLUTION=RESEGMENT

COMPILER ERROR..COLUMN TOO LARGE..DOES NOT AFFECT COMPILATION
[(Ke&$*) 1=/, %=] #Q: >+ #* K EPH¥-<*>G

A ROUTINE IN CODEGEN HAS ENCOUNTERED AN UNEXPECTED TOKEN..
COMPILER ERROR [(S<&$*) ;=/,%=]#@: >+ F#**&Pkx k>

CANNOT COMPARE ALPHA VS REAL

MINIMUM OF 2 OPERANDS MUST PRECEDE THE WORD GIVING IN AN ADD

SUBSCRIPT NOT INTEGER (SPACE REQUIRED BEFORE LIT IF DECIMAL-
POINT IS COMMA

INVOKED DATASET NAME IS NOT A WORD

EXPECTED "DB'" AS A LEVEL INDICATOR

INVALID DB NAME

EXPECTED A DDL-NUMBER

DATA-BASE DECLARATION NOT EXPECTED IN THIS SECTION

"DATASET" EXPECTED

WORK ING-STORAGE SECTION OR PROCEDURE DIVISION EXPECTED

DATA MANAGEMENT LEVEL Ol DATASET NAME REQUIRED

DATA BASE NAME REQUIRED

Item

abbreviated compound conditions ...

ACCEPT
ACCESS ... vvvrntienenronnens
RANDOM

s 0 6 0 0 0 0 0 0 0

ACTUAL KEY
ADD
ALL
ALL-AT-OPEN0i0etvennns
alphabetic items

4 0 6 6 0 0 0 0 0 0 a0 08 s 0 e
® 4 6 6 0 6 0 0 5 06 000 000060 06090

L I I I R B B)

alphanumeric edit items
alphanumeric items .
ALTER ...ttt ensnsoasones
ALTERNATE
AREA
arithmetic expressions
formation and evaluation
arithmetic operators
arithmetic verbs
ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT
ASCENDING .

ASCII Cees e e e
ASSIGN et

ASSIGN, READER-SORTER
AT END
AUTHOR
BACKUP

¢ 9 0 0 06 0 6063 0 0 00

s 6 9 0 06 6 060 06 000000009 0

SEQUENTIALc00000..

oooooooooo

rules

0 6 2 0 0 0 0 00 0808 & ¢

L R I I A I I I R B A R A)

5-9,

oo P = 9/
P . I+l -]
O 5-9, 5-12, 5-13

Y 10

C et ie et erae. 472, 4-3, 7-48

> el P> e B |

T e X
et et . 714
e e s essenens ce. 7714
S eesseoassecean e . 727
D 1Y
Cereer et e ceeeeeess 7739
Y A 3°)
P s ¢
T -1

............ 5-9, 5-10, 5-11
e esascecseseseneens v 8-1
e reses e nnn 5-12, 7-71
...... P T |
ce ettt 5-9, 5-10

Index—1

Item

BLANK WHEN ZERO
BLOCK0vetiveeoconronsas
braces 000 envnions

bracketsco0evevennean

character set e e s e e

charactersccceceenvees

editing0 .

formulas c et e

MICRcovevvveonnnns
relational

punctuation
class conditionsco00000
CLOSEcovvvesesesnansss

COBOL compiler control

coding formce0ecvuens
COMMA e s een et
comparison of operands
compilation card deck
compile card e e e
compiler—-directing sentence .
compiler—directing statement
compiler—~directing verbs

COPYcocvvuinnnn oo

MONITOR¢0e0cvuvuenn

NOTEciiivvennnnenns

USE ...iivieeononcronnns
compound conditions
COMPUTATIONALcetvvvvanss
COMPUTATIONAL-1 e
COMPUTATIONAL-3 e
COMPUTE ..,....00vevevvenenens
concepts ... eerierenan

file i i et e

level—number

Index—2

INDEX

(Cont)

. e e v e s v s e

. e s e 000 0
“ e e e e oo
e s e s 000 0 s e

e o 0 000 0 e o s 0
e o 8 0 0 00 00 60
. . LI
. © 6 6 0 000 00
. 0 0 0 e e s 00
. o 0 0 0 00 0 0 e
------- . e v 0 0
0 e e e 0 0 00 0 0
e 1 60 00 ¢ o o0 0 0
......... o e 0
. v . .o .

.. 6-33,

ccccc

6-34, 6-35,

6-16, 6-17,

oooooooo

e o 0 00 20

e e 0 0 6

oooooooooooooooooooo

Page
6-52
6-19
2-10
2=10

2-1

l tem

condition—namec00.0

condition—name condition ...

conditional sentence

conditional statement
conditional verb ,..........

0
conditionscc000 00000

abbreviated compound ..

classciiicin v

compoundcc0000000
condition—name .,.......

evaluation rules .,.....

relationcee000000.

= I = o

simple Gt et e s es a0
CONFIGURATION SECTION
connectivesc00000000
constant, figurative
continuation indicator
CONTROL .,....co0tevevesonson
control cards ,.........00..
control relationship between
COPYivivenncnssnss 073,
CORRESPONDINGc0000000s
CURRENCY SIGN000v000s
data, classes of
data communications

INDEX

o e 0 0 9 o

(Cont)

6 ¢ 0 00060 00 00

s & 0 060606000000

DATA DIVISION

DATA DIVISION, structure
data maniputation, verbs ...
EXAMINEivennnnnnns

procedures

-

.

.

oo 0 0 0 00

e 0 00 0 00

e 00 0 000

5-4, 5-6, 5-8, 5-14,

e e 0 000 00 0 0

FORMATiiirernnnnnnennnns
MICR-EDIT .,.....cevvevvennnoecns
MOVE ..., .t iereneeennnnsnns

data-name .,.......00000000. .

DATA RECORDScevuveennosanns

se 0 0 s 00

e 0 0 0 0 0 0

Page

2-4, 6-33, 6-36, 6-72, 7-21

.

ceseeeneseasees 1721
B -
B A
B A" Y
B X I
D Y

seessssessseeans 7-24 .

Y '

et aees 1727
Y - T-
B - -
P - -
Y 1 T
ceesreeess 23, 6-39
.s. 6-16, 6-17, 6-21

Index—3

tem

DATE

, julian

DATE-COMPILED .,

DATE-WRITTEN

debugging verbs

DECLARATIVES

definition of words

DUMP

e 0 0 s 0

e e 0 0 o 0

INDEX (Cont)

. LY LI ANY
e e 0 00 0 .
.« .)

DEPENDING

ccccc

DESCENDING ...

DISPLAY

DIVIDE
DIVISIONS

DATA

.....

IDENTIFICATION

PROCEDURE

editing ,,......

editing characters

editing rules

floating insertion ,,.......

fixed insertion

insertion

replacement

simple insertion

special insertion .,......

suppression

editing symbols

elementary items
elementary MOVE

ellipsis

END

Index—4

o 0 0 0 s 0

o o 8 ¢ 0 0 0 °
e e s 0 0 0 00 .
LR R) e

o0 0 00 ..
L) v o ..

. . .

.. . e o e 0

e o s 0 00 .

“ e o o0 LY

o0 e e . .
. e o 0 0 s o 0
¢ o 0 0 0 0 0 e .

. DY
e o 8 0 00 0 0 0 o e
. e o 0 0 s 0 0 s 0 s

A A
ceee 1-

e .
s e 0 e 0 s s 0 0 0
....... .

4000000000
¢t o0 e s e 000
¢ 00 s 000000
DR A R A A)
..... oo

T e o 00 0 0
....... CECEE Y
DR A A A A)

® 6 0 0 0 0 0 00 0 00

ve... 579,

INDEX (Cont)

Itenm Page

ENAINEG VeI D i ittt ittt estesossoesooessosssesssssssossessssesossssavseonee (=27

S - 7
END—=OF-PAGE ...t ivsuesonsoossssosssensosoocsoncassssssssssnsosssssvensnes 193!
ENVIRONMENT DIVISION .. .0 evivvseosontsosoosasonsasessansessosensossnsses D=1
ENVIRONMENT DIVISION, structure e ees s es s D+ e
evaluation of conditionsccveiviienennnn. et e e e . 7721
ERAMINE ittt ittt ononosesasasnasssssssssssssassensnsonssssassasensnsoans ves 7748
execution of PROCEDURE DIVISIONcoceeveeesvsens Y A
execution, SentencCetc0etteeettosrosressssscssssssssessesssscssres 15,
EXIT et et e e e e et e ceeereseenasares 71750,
FD ettt e Gt s et ea et e s e e e e sas a0t et s e ene s n s ... 616
figuratave constant S e e s s e s e e e e e e s e e s s e s et e s et et 0 u e as e rvee 278,
file concept 000000 ettt et ettt eessaa st et e st ve. 6-3.
FILE-CONTROL0c0000004. e s e e e cesecateisirsease. -1, 59
FILE-CONTROL, READER-SORTER0v0cveosevssonssossassssasnssonnsanssss 8-1.
file descCriptioncev ettt ieseiseoesossosssecssssesessssssnseseass 062, 6-16
FILE-LIMITce00teuuusnn e s e et e e o e, 579, 5-11, 5-12:
file—name At
FILE SECTION000vvusunuss e et iesersssescnasssssss 671, 6-2, 6-16
FILLER e e a e et e e et ettt et e 6-32, 6-39.
fixed insertion editing chee e te e e e ae st es e ce e . 6-54
floating insertion editingi ittt itsveresesssscssssosssasosesasnes 6756
FORM e rseenes - M e B

FROM ...t itnnnneotosaesonsonsessossseosssnassssscssnanssossssssancsones 1774,
EeNEYTIC TeYMS .. it e eveeroorscooseocssssssrsesssossssssssossosssnosascsnsonsnsses 210
GIVING e et sesseieceereseness 7130, 7731, 7—-45, 7-59, 7-83, T7-88
GO e I A <
group items¢cc00000000 c e e s ee Y T B
group MOVE c e e e et s ee e T e LS
IDENTIFICATION DIVISION e s e C et e et e 4-1 .
IDENTIFICATION DIVISION, structure e ettt 4-1.
identification field e ottt e yee 373
identifier .,..........c00.. et e e e e s e e e et e s e e e e s e s e as s 6-15, 7-1,
IF ittt it e e e et 7-53 .
imperative sentence Cee e s e e e e e i ee e ee e 74 .

imperative statementttt fe e e 7-3 .

Index-5

tem

INDEX

index data items,

index—name

INDEXED BY ..

indexing

e o0

initial value
INPLACE
INPUT, OPEN

INPUT-OUTPUT, OPEN .

e 6 0 8 v s v e s

MOVE

LRI I R)
e % 0 0 a0 0w e 0.
e 9 0 0 08 0 0 0 00
e s e 00

o 60 0 006 00 0 00

INPUT-OUTPUT SECTION

INPUT PROCEDURE

o0 ¢ 8 00008 0 00

input-output verbs

ACCEPT
CLOSE

« s 00 0

CONTROL

DISPLAY ...

OPEN

READ

SEEK

WRITE

e 9 0 00 0 00 0 0

e 00 060 ¢ 00

e 6 0 0 ¢ 008060 060

insertion editing

INSTALLATION ...

L R e R A)

internal program switches .

inter—-program communication

INTERPRET, OPEN
INTO
INVALID KEY
items

e 0 00

alphabetic

alphanumeric

alphanumeric

numeric

JUSTIFIED
key words
LABEL

s 6 0060 408 0 00

L R R A A

o 06 06 46 060 0 00

e 0 v 0 0 0 060 000

..... 00
e s s 0 0 000 0 00
......... .
. . o0 0.
. .. o e

INDEX (Cont)

D T
ceerrersees et aes s Cerereeeeas
et et es e es s ere e e s e
Ceveee Cirereeserarasas. 6714,
crresrus e e cevaen
cone ceer e et e e ae e
et rsrierren it s uenane tes s
e e e e e e e oo e o e s ns
ettt et et e
et e s e e e e e
et er et

® 6 6 6 0 0 & 0 0 6 0t 0 0 0 s 0 s e s 0 e 0 et e e o .
I I R R I R R N B I B R N L] .
--------------------------- e e 00 0 0 0

@ 6 0 2 0600060 00

® 0 02 0606600 ¢

............. 06 0800000000000 0000
............... s 8000000000000 ¢ s e 0080000000
----- 0 0 0 006 e 0088000000000 000000

® 6 4 4 00 800000000000 0000000000080 0

5 6 6 0 6 606060060000 060600000a00 o 0 008000

© @ 0 5 0 5 00 0 0 4 ¢ 0 00 e s s 000 s e e s e s e o0

D I R I R R R)

6-33,

Page
6-32
vevo. 757
2-4, 6-15
6-43, 6-46
6-14, 6-15
vee.. 6-72
cev.. 783
7-61
7-61
5-8
7-83
7-27
7-29
7-34
8-3
7-44
7-61
7-71
7-80
7-93
6-54
4-1

e o 0 00

© o0 00

e o 0 0 0

s e 0 00

s 0 0 s 0

ceee. 7726
ceess 10-1
* o 0 o0 7-61

7-72
7-93
6-48
6-49
6-49
6-49
6-49
6-49
6-28
6-40
2-10
6-23

Item

label equation card

language description notation

language formation

LEADINGcc0veveueunnn

level—number e e

level—number concept
literalsccovivnvennne
numeric00000.
NON~"NUMETIC ..o vvves
undigitc.00.

o s 0 0

LOCK, CIOSE0ei0vvvvunns .

LOCK, OPEN ¢ 00000c0.
logical control verbs
IF i tiiinnnnn

logical operators

logical recordc.e0.

margin A ..., . 0 00 i00eeen

margin Bc00etieenens
MCP label card ,....v00¢..

MEMORY Gt e e s eanes
MICR character type

MICR-EDITc000.,

mnemonic—hname ,........0..

MODcc00u e er e .

MONITOR ,.....covevunueoensn

MOVEcovensooeoooennes
elementary
ErOUP ..o vvuvosovonons
index data items

.

INDEX (Cont)

s 00 00 ¢ 6 0 06 0 00 00
o 6 0 0 0 00 « o 0 000
------- . o o ¢ 0 0o

. L) o« . s 0 0 0

® 5 0 8 06 006060000000

o ¢ e 0 00 0 000000 00

MOVE, valid statement combinations

MBG-TYPE0ovveeeevennnsanan
MULTIPLEc0ieieururnnnnns

MULTIPLE FILE e
MULTIPLE REEL e N .
MULTIPLYc0titevennnnonnans ceecientre e
NEXT SENTENCE cee e

NO .. .iiiiiiiiiiiian., e e

oo e DRI
s 00 ¢ e 0 0.
L R
A A AR

¢ o0 s a0 0 e .
oo 0 00 v o
.......... .

e o e s e e a0 e

¢ e 0 0 0000000
* 0 0 8 6 00 00 s
oo s e 0 DR
s o0 0 00 000 s
o s 0 00 00 0 s 0
¢ e o0 0 0 ..

e 68 0 060 00 0
“ o e Y

e« o o 0 e o 0 0 0 0
o s o 0 0 00 03 0 e
e o e 0 0 o e o
. o o 0 00 o s e
o6 0 0 0 0 e o
. ¢ o 0 00 0 o

s e 00 0 o e 0 e
.o I
e e o0 000 s a0
6 e 0 0000
e oo

o o 0 000 0 0 0
e 0 0 0 0 0 00 .
e s 0 0 0 0 o e o

L
. . .
. e .

INDEX
Item

NO REWIND, CLOSE00cevn

NO REWIND, OPENttt eeneeesorsoneosoescosesesoossssosannsssss e
non—contiguous WORKING~STORAGEc.cevveevoecoess Cer e et eeases e .
non—numeric literal ..,........ s st e s et s e s s s s ee s . .o
NON-STANDARD ,.......c00vevuussn . e e et . 6—16,
NOTE ., ittt it esoresnossoaroeesonnsennsennss e et et
nouns oo e e et e i e s e s .
condition—name ... e creesanae . ce v e . .o .o
data—-name et Pt e o e .o .o . o
figurative constant cer i s e s ans s teesssncan . . .
file—name0 00t e e et s eenoc et s nnesas
index—name0ct ettt anaraon . oo . .o e .. ‘e o
literals st e et e ettt e et i
MNEeMONiC—Name ..,.....c.cevviveeeosoocnnscs . coee teee s e v e
ProcedUre=NaNEe ,esveoreoaoonosscsnsas ce e cess oo oo .
record=nNamec0000. ceeresenn D -
special registers c et et a s . .o PN C e s e e
numeric edited itemsc00 et iineersnnrsenraanas et e .
numeric items C et e coesee e seseen s . . cet e
numeric literal oo . e . et e
OBJECT-COMPUTER et e . .o . e 5-1
object program e s et e . s e s s e e . [P . .o
OCCURSiceevevvunnss . . e et . 6—-32,
O-I, OPEN e e ea ceeonn cheenens oo e
OMITTED ..., ' ivrenreonnennsosansosensnnsas . e 6-16,
OPEN ..., .t rnsnnnocns e ettt e 5-10, 515,
option control cardceiveann Gt e et e e ettt
OPTIONALc0ovevevuvnnonns e . s eveorraese . 979, 5-10,
optional wordscec00.. ce s e e e .o ce et e 2-9,
OUTPUT, OPENc0tieereoonsnosannsos e v e e e e
OUTPUT PROCEDURE000veverenncsnnsos . ettt e
paragraph, definitionc it et erineeerteoesnossssosoansonsssons
structure i, e . . Ce e
paragraph NOTEc.00eeeeeeeernnns PR c e e e e e
PERFORM ,........0.c0iveunnn e s e e e e e e st e e e e e s et e e s e e e
period e e e e e . Gt e et e oo .o ce et e e e s et e e

Index-8

(Cont)

...

1-3
6-43
7-61
6-23
7-61
11-3

INDEX (Cont)

Itenm

PICTURE LRI A O L I I I I D L I D I L L B L
Precedenceeveessaasennnons
POSITIONivivvenivnnnronnnnsnnans

PrecedencCeceoe0000 000000000000

PICTURE e et sese e

PRINT128, OPEN e
priority numberc0 000000
procedure branching verbs ,,,.......

ALTER 0iiinieroonsnonsnnns

PERFORMiivviinnnnonnns
ZIP it i i
PROCEDURE DIVISION ,......ce00ccesee

PROCEDURE DIVISION, body ceenue

PROCEDURE DIVISION, execution ,.,..,
PROCEDURE DIVISION, READER-SORTER ,,
procedure formation, rules of ,.,,..
procedure MName ,.,......oe00v0000s00s
PROGRAM=ID ,ttt eneneonnsnnsons
program organization-,,.............
program segments ,.......cc00000000.
punctuationceco et aenasnnas
punctuation characters ,.,........ o o
punctuation, sentence ,,.,..........
PURGE, CLOBEiitiiiinnensnns
qualification ,.........000e0uvesnsn
qualifier ..,.... .0t voncosnenasos
QUEUE tiiiintiinonesessecsnnns
QUEUE, files ...,...0vveereencennns ..

READER-SORTER0vtiinunnnnns
ENVIRONMENT DIVISION

DATA DIVISION ceeeeae
PROCEDURE DIVISION oo
RECORD ettt

.. 5714,

® 6 6 0 4 8 0 8 00800 00 0

6 0 0 0 0 0 0 0 8 0 0 4 00

s 0 0 0 s 0 b e s 0
S0 0 0 a0 e e ¢ 00 s
DR R R R A))
e D A)

Page

5-7, 6-32, 6-48
e eseteceaseass., 6708

5-14

.. 6-58
.. 6-58
.. 7-61
.. 7-10

7-28
7-33
7-50
. 7-51
. 7-65
7-96
7-1
7-2
7-2
8-3
7-1

2-4, 7-1

4-1
1-2
7-9

Cecesseeenens 2-2
e . 7-5
Crerecenreeanas 7-34
Ceeecteeneteianan 6-8
ceeecreannan . 2-9
Ceeereieiaeaa.... 6716

5-15, 6-16, 6-17, 6-26

Index—9

tem

record concept

record description

record—name

RECORDING

REDEFINES
REEL, CLOSE

relation characters
relation condition

relational operators ..

RELEASE

REMARKS

o« 0 6 o

REMOVE, CLOSE

RENAMES

replacement editing ...

REPLACING ..
RERUN
RESERVE

reserved words

RETURN

REVERSED, OPEN

right margin
ROUNDED
SAME

LRI

SD
SEARCH
SECTION

FILE

o«

INPUT-OUTPUT

structure

€« e 0 6 0 06 0 00

LR

RELEASE, CLOSE

..
I A A R)

cee.. 073,

o e e r o o 0

WORKING—-STORAGE

SECURITY ,
SEEK

Index—10

INDEX (Cont)

e 6 86 0 0 00 00 00 0

.8 0 0 ¢ 0 0 6 6 0 00 0 0

. .. e 6 s 0 0 0 0
. L R S A A I I .
------ . " e e 0

Cee e ane
e eeseas
oo .
. ceeeaenes e e
ceir e
ceens et seens e
7-30, 7-31
........... , s
ceee e ettt e et e 000
...... Chee e e
B
. ceectese e
et iaen cees e
LI LRI ® & 0 0 0 5 0 8 0 000
A
Geeerneeeeer et ans
ceetansseeenans PP .
D
Ceeen et eer e eesee e uae
. B
L] e o 1 0 & s 0 00 «® 0 e 0 0 0 "0
cem et e e .

e o 0o 0

lten

segment classification ...
SEGMENT-LIMIT000.
SELECT 0000000t veans
SELECT, READER-SORTER
sentence, definition

sentenceccev0000000

. conditional

compiler-directing ..

imperative

sentence NOTE

sentence punctuation

sequence field
SEQUENTIALcivvevnens

SET .
sign

R R R I A A I N R I I B A

condition

simple conditions

simple insertion editing .
SINGLEiieeeveanssns

SIZE
SORT
sort

ERROR # & ¢ & & 0 4 & 2 0 0 8 b0
verbs ceeeeae ..
RELEASEc00000
RETURN -2 0 0 8 8 0 0t 0 0PN
SORTieieeveanes

SOURCE-COMPUTER

source data card

SOUYCEe PIrOSYAM ,...evoeeoes

special insertion editing
SPECIAL-NAMESce00veus
special registers

DATE, julian
TALLY .vvvvrnnnennns
TIME +0'vvvnernnnennn,
TODAYS-DATE
TODAYS-NAME

STANDARDcivvuvvenene

INDEX (Cont)

.

.o 71, 74

Index~-11

Item

statementc0c00000e

compiler—directing

INDEX (Cont)

conditionalcc0e00eens ce s e e e

imperative
STATIONc000veunes ‘e

STOP P e et e ettt e e e
STOP RUN e R .o e e et e . . .
SUBTRACTcciieivvnurennns e e e
subscripting S ettt e et e e et e e
suppression editingccc000i e e e .o eeeen
switches, internal programcceeieoeanessons . cee e e e
SYNCHRONIZED ... vvveeeeeoonas. ettt e e
tables0ttt it i i Ciee e et a e
table manipulation verbs cenes e e
SEARCH .,coivnne. et s e
SET cee e e e e e
TAG-KEY iiiiiinnnnnnnnnn e e ettt e
TALLY e e e et i
TALLYING ..., e C e e
TEXT-LENGTH | iiiitiiirintn i ineirananeenennnnns e
THROUGH e et ceee e et v
TIME000iiinvenens e ettt e e e st
timing requirements, READER-SORTER¢:cteeveeeeos ceee st

TODAYS—DATE ... it ittt ittt it nsserosassnsonsas ceoee

TODAYS-NAME00000s

TRACE ...t ii it in i tetnansunsnensasosnsnsas .

translation of data, MOVE
types of words004.

NNOUIIS & o 4 v o v o o o o s v 0 0 0 0 0 6 0 0 6 0 a 000 0a o020 0es0e0eeoeceosoecsesossaos

2= = e e e e

FESEIVEA vttt vt vt o o s o s o oo oo oot ososasessscessesossscccecos P

undigit literal
UNTIL FIRST
USAGE et

USE declarativec0c44.

VALUE

Index—-12

oooooooooo

e 0 0 e 00

6-16, 6-23, 6-28, 6-33,

ceee.. 7-48
6-32, 6-66
7-13, 7-90
6-36, 6-69

INDEX (Cont)

ltem Page

verb formats, data communicationccc0cectiertressrrtvsssssrsscasanss 971
VEIDS ... ii e s et et et e e e rte i et eeeess 278, TT27
verbs, arithmeticci0veeeeuenn et e e e et e s eanan c e et e sttt e e 7-27
L) s e eeean Y A 1Y)
COMPUTE ..ttt it entosesasessseansoonsssossonasseatsensonenass ceesss 7739
DIVIDE¢co00eeuoenns e e eae et D - 15
MULTIPLY ...ttt eneseecsoconssooanssonens s e s e et e e e s et 7-59
SUBT RACT .ttt ses v ensosasossossssssosasssosctoosnssenssssssonsssannss 7—-88
verbs, compiler—directingccieeeveeetssocsnn et e e e s et e a0 s e e s . 727
COPY e et a e e et s e e e et et 740
MONITORccviviievnncsnnnnn T
NOTEt eeeirononannnoannnes e s et e e eeas. 7760
L e e e et 7-90
verbs, conditionalcc0000iun.nn e e ce e e s s e e e T727
IF e, e e e N o
verbs, data manipulationc0iieietterertrsscsrsoscssscannsases ceceese 1727
EXAMINE P - 11
FORMATc0iovennenne T
MICR-EDITc.00euvuue P
MOVE ...t iienoeeosssensonnnns T ceeeivane. 1754
verbs, debuggingveveeeoeesseesotsoroseacssssosssosesssssacssssss e e e 7—-28
DUM P L ittt eos s sannoeeasosesssssssossnsennsensosssssasnssnnasesas 7-47
TRACE ...ttt enesorosensosserssnencnsssnsossosssossssnsssssssassansass (89
verbsS, eNAINgt eeriooeesessnsossseonssessessesoscoasosesssnssasesssnee (727
STOP ... iivreeesssnnsao P e - X 4
verbs, input-output e e s e Y 1
ACCEPTcun. ch e R N 7-29
CLOSE Y - 1

DISPLAYciiviivnasns . - "
OPEN, iiiinnnnnnn e e et et e e 7-61
READ Y A
SEEK ittt ittt et s it i et e et ceeeses 7780
WRITE Y g ° I
verbs, logic Ccontrol .,ttt reeorsennssttatosorasssscscnearansseees 1727

IF ... 0., e et e e e e e e e e ettt a s e e 7=-53

Index—13

Item

INDEX (Cont)

verbs, procedure branching

ALTER

GO ..

zip .

¢ 0 6 s 4 0 8 8 ¢ 0 4 0 0 0 s 0 58 00 s
----- o« ¢ e ¢ 6 ¢ 0 0 6 0 0 0 s 2 0 .
oooooo e o 6 0 4 0 . . « o0 LN .

verbs, SORTcceiieiieenrenansns

RELEA

SE e ees et eat e

RETURNivivrirencnncncas

SORT
verbs, tab

----- R A I I I R A B A R]

le manipulation

. e 0 8 s & s s 0 0 0 e
-------- . oo o
® 0 0 6 000 00 0 0 e
. o o 0 s 0 . . .
® a0 0 0 0 8 .] .
. “ s e 00 00 00 .
T s s s 0 0 s s . LR
“ o 8 0 0 0 0 oo s s 00

SEARCH e e e .
SETcc0vvuen. .o e e
WOrdSviiiieeereannnnnas ce e e Creeeaeoas coee
definition e e et e e
= 2 S . .

optionalce0ivvvertnneancs

reservedcc0cii0 0t .

types

WORK

WRITE

Index—14

NOUNS .. cesevvevseoecsasas .

reserved PP

7= i o

¢ e o0
“ e e e e A A AN
.......... . .o
.............. .
. o e . .

e s w0 s 0 e s s
“ e * o8 0 0000 00

.. DR S A
...... o000 0
o s 0 000 08 e .
S0 e s e s 0 s s e
s s 0 e 0 0 0800 s e

o« 0 s o6 0 0 0 0
.
e s 0 s s 8 o s 00 0 0
. . oo 0 80
I R R L R I)
. ® 5 e 0 3 0 0 0 .

............
.........
............
........... .
e
ceeee. 671,

2-9
2-3
2-3
2-9
7-27
5-11
6-71
7-93
7-96

cut along dotted line

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS
REMARKS FORM

TITLE: __B 1700 SYSTEMS FORM: _1057197

COBOL Reference Manual DATE: March, 1975

CHECK TYPE OF SUGGESTION:
[JADDITION []DELETION [JREVISION [JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE
TITLE
COMPANY
ADDRESS

STAPLE

FOLD DOWN SECOND FOLD DOWN

No
Postage Postoge Stomp

Will Be Paid

Necessary
If Mailed in the
United States

by
Addressee

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
Burroughs Place
Detroit, Michigan 48232

attn: Systems Documentation
Technical I nformation Organization, TIO-Central

FOLD UP FIRST FOLD up

Printed in U.S.A March, 1975 1057197

