Burroughs @)

B 1700 Systems

Micro Implementation

Language (MIL)

REFERENCE MANUAL

PRICED ITEM /

Burroughs @

(’
- B 1700 Systems

Mlcro Implementation
Language (MIL)

REFERENCE MANUAL

PRICED ITEM

Burroughs believes that the software described in this manual is
accurate and reliable, and much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Correspondence regarding this document should be addressed directly to Burroughs Corporation,
P. O. Box 4040, El Monte, California 91734, Attn: Publications Department, TIO — West

Section

TABLE OF CONTENTS

Page
INTRODUCTION ix
Background . . ix
Related Documents . ix
MICROPROGRAMMING CONCEPTS . -1
General . 1-1
Micro- Instructlons . 1-1
Defined Field Concepts . 1-1 .
Interpretation of the Virtual Language 1-2

SYNTAX DIAGRAMS
Forward Arrows

End of Statement
Continuation
Keywords

Variables

i

NN(I\)NNN
PO B D) et et

BASIC COMPONENTS OF MIL .
General

Identifiers

Labels . .

Card Termmators

Numbers .

Bit Strings .

Character Strings .

Literals .

Arithmetic Expre351ons

Ooabhdhbhdbi=4l

UJUJUJUJUJ?)UJUJUJUJ

+
AN

STRUCTURE OF A MIL PROGRAM .

SEGMENTATION

Introduction .

Label Addresses

Segment Statement

Code.Segment Statement . .

Compiler - Generated Code .

Main Code Block .
External Code Block

(JILIIUILII\U\(JI(JIUI
AN NN WD et =

DECLARATIONS

Data Types .

Declare Statement .
Non-Structured Declaratlons
Structured Declarations

Declare Examples
Introduction
Non-Remap Items
Remap Items

General
Reverse

1 1

1

C."
i,

B Odoodrddhhtost

Section

iv

7

TABLE OF CONTENTS (Cont)

Page

REGISTERS AND SCRATCHPAD
General .o
Register Groups
Alphabetical Listing of Reglsters and Key Concepts
Active Registers L. .. .
X and Y Registers
Field (F) Register
Local (L) Register
Transform (T) Register
Micro-Instruction (M) Register . .
Base (BR) and Limit (LR) Reglsters
Address (A) Register . . . e e e e e e e e e e e e e
A Stack (TAS) . . D Y
Top of Control Memory (TOPM) Reglster N £
Memory Base (MBR) Register T £
Control (C) Register . . . Y Y
Combinatorial Logic or Functlonal Box Y 3
Result Registers . . . Y £
XORY Result Regrster 7-8
XANY Result Register 7-8
XEOY Result Register 718
CMPX Result Register 18
7-8
7-8
7-8

o o o o
NN N ===

\l\)\]\]\]QT]\l\]\l\l\l

CMPY Result Register
MSKX Result Register
MSKY Result Register

SUM Result Register . . S £
Difference (DIFF) Result Regrster e
Scratchpad . . . Y)
Scratchpad Words 24 Blts Each Y
Double Scratchpad Words - 48 Blts Each e £
Constant Registers . . . T S
Maximum Main Memory (MAX) Register 1710
Maximum Control Memory (MAXM) Regrster A S (1
NULL Register . . . Y £ [0
Input/Output Registers« .« 110
Console.Switches . . . D £ (1]
Console Cassette Tape Input (U) Reglster T A8
Command (CMND) Register . . . Y A L]
Data Register 710
Condition Registers .11
Introduction . . N S N |
Binary Conditions (BICN) Reg1si (3 o A5 B |
XY Conditions (XYCN) Register. 1711
XY States (XYST) Register 112
Any.Interrupt Bit . . Y V)
Console Interrupt (CC(3)) .o Y £
Main Memory Read Parity Error Interrupt (CD(O)) Y £ 0
Main Memory Address Out-of-Bounds Override (CD(1)) 7-13

Section

7

TABLE OF CONTENTS (Cont)

REGISTERS AND SCRATCHPAD (Cont)
Read Address Out-of-Bounds Interrupt (CD(2))

Write/Swap Address Out-of-Bounds Interrupt (CD(é)).

Field Length Conditions (FLCN) Register

Interrupt Conditions (INCN) Register .
Register Designations and Areas of Application .
Organization of Fields and Subfields

MIL STATEMENTS
Index to Statements
ADD Scratchpad
ADJUST .

AND . .

ASSIGN .

BEGIN

BIAS . .

BRANCH. EXTERNAL
CALL . . .

CALL. EXTERNAL
CARRY . .
CASSETTE .

CLEAR . . .

CODE. SEGMENT
COMPLEMENT
COUNT

DEC .

DEFINE . . .
DEFINE. VALUE
DISPATCH .

ELSE . . .

EMIT. RETURN TO EXTERNAL
END .
EOR

EXIT . . .
EXTRACT .

FA POINTS

FINI . .

GOTO .

HALT .

IF .

INC . .

JUMP .

LIT . .

LOAD
LOAD.MSMA .
LOAD.SMEM . .
LOCAL.DEFINES . . .
MACRO DECLARATION

Section

8

Appendix A

‘TABLE OF CONTENTS (Cont)

MIL STATEMENTS (Cont)
MACRO REFERENCE . | .
MAKE.SEGMENT.TABLE. ENTRY
MICRO . .
M.MEMORY. BOUNDARY
MONITOR .

MOVE

NOP . .
NORMALIZE

OR . . .

OVERLAY

PAGE .

POINT . .
PROGRAM.LEVEL

READ . . .
REDUNDANT.CODE
RESERVE.SPACE .
RESET .

ROTATE .

SEGMENT .

SET . . .
SHIFT/ROTATET e
SHIFT/ROTATE X/Y/YX .
SKIP
S.MEMORY.LOAD |
STORE . .

SUB.TITLE . .
SUBTRACT SCRATCHPAD
SWAP

TABLE

TITLE
TRANSFER.CONTROL
WRITE . .

WRITE. STRING

XCH

PROGRAMMING TECHNIQUES
Virtual-Langauge Definitions
Source Image Format

Program Example

MIL COMPILER OPERATION
Control Cards

General . .

Dollar Cards

Ampersand Cards
MIL Compiler Files .

&
]
(¢

oo aaaalLLhLasddaanddadd
CHAIRRARROOX IR RDR—OTIRN WO~ 0

% 00 00 00 Q0 00 00 Q0 GO 00 GO Q0 Q0 GO GO OO Q0 Q0 Q0 QO GO 0O QO QO 0 OO QO

TABLE OF CONTENTS (Cont)

‘Section | Page

Appendix B HARDWARE INSTRUCTION FORMATS AND TABLES
' B 1700 Hardware Tables . F
B 1700 Hardware Instruction Formats
Bias ., . . .
Bit Test Branch False B
Bit Test Branch True
Branch o 0oL o oL
Call s o .. BT
Cassette Control B7
Clear Registers v . . . « < B8
Count FA/FL B8,
Dispatch B9
Extract FromT ... Bl0.
Four-Bit Manipulate B-10
Halt - S
Load F From Doublepad Word S - T
Monitor - 5
Move 8-Bit theral S - A
Move 24-Bit Literal - 5
No Operation-.« v v ... B13,
Normalize X . . . - K
Overlay Control Memory O - 3 £ 3
Read/Write Memory . . .- Bl4,
Read/WriteMSM Bl5
Register Move B-le.
Scratchpad Move ... B17,
Scratchpad Relate FA BI17
Set CYF - D K-
Shift/Rotate T Left .. - N k-
Shift/Rotate XY Left/R;lght e - S
Shift/Rotate X/Y Left/Right . B20.
Skip When . . . B, - S0 N
Store F Into Doublepad Word e e e e e e oo B21
Swap F with Doublepad Word B22
SwapMemory B22
“TransferControl B23
Micro-Instruction Timing .. . B24
B17210Notes B2s
B1720Notes B25

O\O\L'IIUIUII——‘P-‘

TEWEEE®E

Appendix C RESERVED WORDS AND SYMBOLS €l

Indexo e e s e I-1.

vii

viii

AND Truth Table

EOR Truth Table

OR Truth Table

String Definitions
Register Addressing
Condition Registers
Microinstructions
Variant Field Definitions
Micro-Instruction Timing

LIST OF TABLES

Page

8-4
8-31
8-67
8-97

B-1

B-2

B-3

B-4
B-24

INTRODUCTION

BACKGROUND

The Burroughs Micro Implementation Language (MIL) is a symbolic coding technique that makes available
all the capabilities of the B 1700 Processor. The MIL compiler’s machine language output is ready for
execution directly upon the hardware. The user, however, must be prepared to programmatically control
the total environment including bootstrap loading, interrupt servicing, and potential machine malfunction-
ing (e.g., parity error detection).

To use MIL properly and efficiently, the programmer must have an extensive knowledge of the available
registers and their capabilities. This manual describes the registers, the syntax and the semantics of the
MIL language and may be used to write programs without prior knowledge of the system.

/

RELATED DOCUMENTS

A description of the Input/Output subsystem and the I/O descriptors as well as more detailed information
about the registers can be found in the B 1700 Systems Reference Manual (form 1057155).

ix

1. MICROPROGRAMMING CONCEPTS

GENERAL

Microprogramming is a method for programming a computer hardware architecture. The microprogrammer
is concerned with machine registers which were formerly the domain of the hardware systems designer.
Strings of micro-instructions manipulate those internal registers to present an outward appearance of
system hardware which is more functional for problem-oriented programming. In most machines now in
the market place, read-only memories (ROM’s) contain microprograms which convert the unique internal
environment of several different processors into a standard assembly language. Once created, the micro-
programs are unalterable and may contain compromises in efficiency because of a limited hardware instruc-
tion set.

The Burroughs B 1700 system makes use of the latest technology to implement a writable control memory
and has several microprograms, each optimized for the functions it will perform. The virtual system archi-
tectures chosen have been those of the standard (such as COBOL and FORTRAN), problem-oriented,
compiler languages. Other microprogrammers may choose architectures and create languages optimized
for other purposes.

MICRO-INSTRUCTIONS

A micro-instruction is the smallest programmable operation within the system. Each micro-instruction is
fetched from memory and decoded in the (micro) register to be directly executed by the hardware.

DEFINED FIELD CONCEPTS

A defined field concept allows bit-level data addressing with lengths from 1 to 65,535 bits. There are no
visible boundaries or “best” container size for any information contained in main memory. Virtual
machine instruction strings (the B 1700 analog of machine object code) and their data may thus be densely
packed into meaningful fields, saving considerable memory space. The programming problem of packing
and unpacking data fields across hardware container boundaries is completely resolved, saving much pro-
gramming effort and processor time. The microprogram fetches groups of bits in meaningful field sizes
from anywhere in main memory as needed.

Special hardware, called a Field Isolation Unit, has been implemented to achieve bit addressability and
variable length fields and to automatically increment addresses. This allows maximum flexibility in defin-
ing data fields and resolves the problem of packing and unpacking data fields across hardware container
boundaries.

1-1

INTERPRETATION OF THE VIRTUAL LANGUAGE

The traditional approach to supporting a higher-level language is to translate the source statements as
written by the programmer into another language either directly recognized by the hardware, (e.g., machine
object code) or easily translatable into the machine object code (e.g., an assembly language). An alternate
technique is the interpretive execution for each source statement with a logically equivalent routine in some
lower-level language. A microprogrammed system offers the opportunity to combine the best of both
methods. The source statements in the higher-level language are translated into a virtual system code by

a compilation process. This system code, also called S-code or S-language, very closely resembles the
original source language. Micro-instruction routines then interpretively execute each virtual language state-
ment. The results are:

a. Faster compilation,

b. System architecture, as expressed in the set of microroutines, which is optimized to the source
language,

¢. Reduction in the processor time required to perform the logical equivalent of each source state-
ment,

d. Reduction in the memory space required to encode each source language operation.
A set of microprogrammed routines is called an interpreter and effectively creates a virtual system archi-
tecture for the source language being executed. That is, when the COBOL interpreter is executing, the

system is effectively a COBOL machine. When the FORTRAN interpreter is executing, the system is a
FORTRAN machine, and so on for any other S-language defined.

1-2

2. SYNTAX DIAGRAMS

The principal means of describing MIL syntax is through the syntax diagram, commonly known as “rail-
road‘ notation. The basic conventions are discussed below.

FORWARD ARROWS

Any path traced along the directional flow of the arrows will produce a syntactically valid command. The
following example illustrates the technique:

—[: DOW? BY THE OL:_| » STREAM TPI
up l—PMILL-J ‘ |->WHERE|

RIVERSIDE ‘: FIRST
LAST

I:: SAW -j—-—b YOU - -
FOUND l—> (NOT ME BUT YOU) —J

— TADPOLES =

Valid syntax generated from this diagram could be:

DOWN BY THE OLD MILL STREAM

UP BY THE OLD, OLD STREAM

DOWN BY THE RIVERSIDE WHERE I FOUND TADPOLES

DOWN BY THE OLD STREAM WHERE I FIRST SAW YOU (NOT ME BUT YOU)
UP BY THE RIVERSIDE WHERE I LAST FOUND YOU

The bridge over OLD, unless otherwise specified, can be crossed any number of times.
\

END OF STATEMENT \

The completion of a statement is indicated by the following convention:

-

2-1

CONTINUATION

The following convention indicates that any number from 0 through 9 is syntactically valid:

0

9

KEYWORDS

Upper-case letters indicate keywords which must literally appear in MIL statements.
VARIABLES

Lower-case letters, words, and phrases within angle brackets indicate syntactic variables which require
information to be supplied by the programmer. The following example illustrates the technique:

» (animals) WERE IN THE {body-of-water) ——#= ? -——I
l—: THE ﬂ NEAR
SOME CLOSE TO -

Valid syntax generated from this diagram might be:

THE ' TADPOLES WERE IN THE STREAM?
COWS WERE CLOSE TO THE POND?
SOME BIRDS WERE NEAR THE OCEAN?

3. BASIC COMPONENTS OF MIL

GENERAL

To understand MIL grammar the user should be familiar with the following basic elements of the MIL
language.

{(point):

(underscore):

(digit):

(letter):

3-1

(special.characters):

- . .l
/e & J ampersand

-
| e =
e
—) ——

— -——-—J blank {(one non-visible character)

IDENTIFIERS

(identifier).

| s

—= (letter)
——— {digit) j
L - .

3-2

RESTRICTIONS

1. An (identifier) must begin with a (letter).

2. An {identifier) may not contain blanks.

3. Reserved words may not be used as (identifiers).
(See Appendix C: Reserved Words and Symbols.)

4. An{identifier) is limited to a maximum of 63
characters: only the first 25 characters are used

in uniqueness detection.
Examples

TEST.NAME.1 T.123.Q ABC LOOP .. 12

LABELS
(labeD:
r r o (letter) l r .
- (digit) v — . —J
Cunique.label):

& (lgbel) —>|

(point.label.declaration):

» (label) —b*

(point.label.reference):

3-3

{label.reference):

- (unique « label) ’ »l

L= (point « label « reference)

(label declaration):

- {unique.label) *‘{
= (point.label.declararion) ———J

(Labels)s may be declared by: (1) starting the (label) anywhere in columns 1 through 5 of a source image,
or (2) starting the {label) immediately after the reserved words TABLE, SEGMENT, or CODE.SEGMENT.
(See also Segmentation: Label addresses.)

RESTRICTIONS

1. A {label) must begin with a {letter) or a { digit)

2. A (label) may not contain blanks.

3. A({labeD is limited to a maximum of 63 characters:
only the first 25 characters are used in uniqueness
detection.

4. (Unique Labels may be declared only once.

5. (Point Labels may or may not be unique.

Examples
A.POINT.LABEL = REGULAR.LABEL LOOP BEGINNING.OF.TEST.1
CARD TERMINATORS

(card.terminatonr):

>%___>|

34

RESTRICTION

A percent sign (%) is treated as any other string charac-
ter if it is contained within a { character-string). How-
ever, in all other cases, a % will cause the scanning of
the current source image to terminate.

NUMBERS

{number):

= (decimal . number)j——F.
b——— (bit -group)

{decimal - number):

{ » (digit) >l

BIT STRINGS

{binary-string):

S
e

(quartal.-string)-

. -
o]

3-5

(octal-string):

(hex-string):

{ bit-group):

&= (hex - string) ,.l

———= (4) (hex - string)

-————~m= (3) ({octal - string)

————= (2) (quartal - string)——

e (1) {binary * string)

(bit-string):

> (bit - group) ————'

RESTRICTION

If no bit mode is specified (i.e., the indicator digit in
parentheses is omitted), then “hex” is assumed.

(string):

—» (character ¢ string) ;’
——— (bit- sm'ng)-——J

CHARACTER STRINGS

{character.string):

—w (string - character - list) ————D-I

(string.character.list):

» (string » character) —-‘

(string.character):

> (digif) —l
—— { Jetter) :ﬂ
—— (special - character)

«** THIS IS AN EXAMPLE OF A CHARACTER STRING”
“ ROW THE BOAT GENTLY ...”

Examples

RESTRICTION

The quotation mark (‘) cannot be specified as a
{string character). As an alternative, the programmer
can specify a { hex string) instead of a { character.string).

3-7

LITERALS

(literal):

& (number) PI

= (string)

————(declare - special)

\———»(declared - identifier)

{declare-special):

» DATA.LENGTH ({declared - identifier) »I
L—— LENGTH.BETWEEN.ENTRIES ((amzy-idem‘t‘ﬁfff))——J

(declared.identifier):

» (simple - identifier) ’i
(array - identifier) ——J

(array-identifier):

» (simple - identifier) —————s» (array + index) —-———»‘

(array-index):

» (number) ——-—l

DATA LENGTH ({declared-identifier)) will supply the specified or computed length in bits of the indicated
(declared-identifier). For an array-identifier), the length will be the length of one of the items in the
array, not the length of the entire array.

3-8

LENGTH-BETWEEN-ENTRIES ({array-identifier y) will supply the bit difference between the beginning of
one item in the specified array and the next item in the array. Note that in the case of structured arrays
(See Structured Declarations) this will not always be the same as DATA.LENGTH (array-identificr).

Examples:
1587
“STRING” :

DATA-LENGTH (AN-ITEM)
ARRAY-ELEMENT (7)

ARITHMETIC EXPRESSIONS

(arithmetic-expression):

r‘ - - (term) ——-——-—I
—— (unary + operator) ‘j

= (grithmetic - expression) {adding - operator)

{ term):

- (literal) >|
———— (term) (multiplying - oprator) {literal) —ﬂ
- (arithmetic - expression) :

(unary-operator):

- qdding - operator) ——l

{adding-operator):

{multiplying operator):

(Arithmetic expression)s yield numerical values by combining {literal)s in accordance with specified
operations. The operators +, -, *, and / have the conventional mathematical meanings of addition, sub-
traction, multiplication, and division, respectively.

The sequence in which operations are performed is determined by the precedence of the operators involved.
The order of precedence is:

First: * /
Second: + -

When operators have the same order of precedence, the sequence of operation is determined by the order of
their appearance, from left to right. Parentheses can be used in normal mathematical fashion to override
the usual order of precedence.

Parenthesized expressions are treated as {term)s, i.e., they are evaluated by themselves and the resulting

value is subsequently combined with the other elements of the {arithmetic. expression). Thus the normal
precedence of operators may be overridden by careful placement of parentheses.

3-10

4. STRUCTURE OF A MIL PROGRAM

There are two parts or sections to a MIL program: the declarations and the body. The declarations should
contain: : o

a. A comment description of the function of the MIL program.

b. Any global data structures (DECLARES). Note that “global” refers to use throughout the
program; local refers to use restricted to a part of the program,

¢. Any global DEFINEs.
d. Any MACRO definitions.

The body follows the declarations and will contain all code-producing statements. The statements should
be logically grouped in labeled BEGIN . .. END blocks. Each BEGIN . .. END block may contain its own
local data structures, LOCAL.DEFINES or labels. The last statement of the body should be FINI.

The following is a basic outline of a MIL program using the above general rules. For specific details on
assembly coding forms and program examples refer to: Programming Techniques.

: % descriptive comment
Declarations DECLAREs
DEFINEs
" MACROs

LABEL.A

BEGIN A

(code for A)
Body END A

BEGIN B
(code for B)

END B

FINI

4-1

5. SEGMENTATION

INTRODUCTION

Segmentation in MIL is a multi-faceted and somewhat complicated subject. Because MIL is the language

of the B 1700’s, and because it is used for many different purposes (Diagnostics, Emulators, Interpreters,
I/O Drivers, MCP Kernels, etc.), it must attempt to satisfy the needs of a wide range of users. Segmentation
plays a particularly important role on the B 1700 because of the READ/WRITE access capability of the
hierarchical memory structure (M-Memory, S-Memory, Disk).

LABEL ADDRESSES

To begin the discussion on segmentation, we must first identify the label types pertaining to address assign-
ment. They are: {regularlabel) and physical.label). (These should not be confused with the two types

of label representation:(unique.label y and (point.label). See Basic Components Of MIL: Labels.) The types
are based on how the labels are declared which in turn determines how the address of the label is to be
assigned.

A (label) which is declared by starting it in column 1-5 of a source image is always a { regular.label).

A (label) which is declared by starting it immediately after the reserved words TABLE, SEGMENT, or
CODE.SEGMENT is always a { physical.label).

A (regular.label) is always given the current { segment.code.address) when the (label is declared.
A (physical.label) is always given the current { physical.code.address) when the <.label) is declared.

The (segment.code.address) is updated by 16 as each micro-instruction is generated and can be changed to
a new value by the appearance of a SEGMENT or CODE.SEGMENT statement.

The { physical.code.address) is also updated by 16 as each micro-instruction is generated and can be changed
to a new value by the appearance of an ADJUST LOCATION statement. (See MIL Statements: ADJUST).

Both the { physical. code.address) and the { segment.code.address) are initialized to 0 (zero) when a compila-
tion begins.

5-1

SEGMENT STATEMENT

Syntax.
— NEWSEGMENT Pl
--——»(label)——J l-—> AT —a—— ADDRi(labe—l)jJ
——(Jiteral)
NOTE
The (literal) must be MOD 16, meaning the last four
bits must be @ (1) 0000 @.

Semantics’

Through the use of the SEGMENT statement, the user has the means to divide his/her MIL program into
several parts such as a single primary.code.block) and one or more (segment.block) (s). The { primary.
code. block) should provide one or more areas suitable for containing the individual (segment.block) (s).
These areas are designated by declaring one or more { regular.label)(s) somewhere within the { primary.code.
block). Quite often there will be only one designated area for { segment. block)(s), and it will begin at the
end of the primary.code.block).

The purpose of the SEGMENT statement is to inform the compiler exactly where the { segment. block) will
be (relative to the { primary.code.block)) when its code is executed. In this way the compiler can generate
the correct branch/call displacements whenever a statement in the { primary.code.block) branches to or
calls a routine in one of the {segment. block)(s). In the same way, a statement in one of the (segment.
block)(s) may branch to or call a routine in either the { primary.code.block) or in any of the (segment.
block)(s). (See MIL Statements: EMIT.RETURN.TO.EXTERNAL, CALL.EXTERNAL, BRANCH.
EXTERNAL)) '

All code is assumed to be in the (primary.code.block) until the first SEGMENT statement is encountered.
From this point one, all code is assumed to be in that segment until the next SEGMENT statement is
encountered, and so on.

The SEGMENT statement may also be used to specify logical breaks within a continuous stream of code.
In this case, only the name of the segment needs to be specified since the code addresses are to continue
linearly. The entire program and all of the (segment.block)(s) are given entries in the segment dictionaries
as part of the parameter blocks associated with a MIL code file. From these dictionary entries and from
the segment name-to-number correspondence table the addresses and lengths of each segment are available
and can be used to do sophisticated static binding prior to execution of the code. (See MIL Statements:
MAKE.SEGMENT, TABLE.ENTRY).

5-2

CODE.SEGMENT STATEMENT

Syntax

CODE.SEGMENT——><1abe1>_—>|

Semantics

Another form of segmentation in MIL is used when a microprogram is running with the MCP, or under MCP
control. All of the interpreters as well as GISMO are examples of this situation. With this mechanism, a
microprogrammer is able to specify which portions of the program are to reside on disk until they are
actually needed for execution. This provides the programmer with the same facility normally only found

in higher level languages.

In order to use this facility, the programmer must follow certain rules and remember some restrictions.
First, some definitions:

{main.code.block): all code generated until the first CODE.SEGMENT statement is
encountered; this may encompass the { primary.code.block) and
one or more { segment. block)(s).

(external.code.block): all code generated between a given CODE.SEGMENT statement
and the next CODE.SEGMENT statement, or the end of the
program, whichever comes first.

{(main.code.base): the M-Memory bit address of the first micro-instruction in the
{main.code.block). If no part of the {main.code.block) resides
in M-Memory, then the { main.code.base) should be 0.
If the processor is an S-Memory processor, then the { main.code. base)
should be the memory address of the first micro-instruction in the
program. (See MIL Statements: MAIN.CODE.BASE.)
(mbr.topm): a 24-bit bucket containing the MBR value for the {main.code.block).
In addition, since the MBR value is always a MOD 16 number, the low
order 4 bits of { mbr.topm) should be the TOPM value of the
{main.code.block). '
The microprogrammer must provide the following items in a program:
a. A define for MAIN.CODE.BASE to indicate the Scratchpad word containing { main.code. base).
Example:
DEFINE MAIN.CODE.BASE = S14B#
b. A define for MBR.TOPM to indicate the Scratchpad word containing { mbr.topm).

Example:

DEFINE MBR.TOPM = S15A
5-3

NOTE

The above defines must be included in the {main.code.
block) and must not be defined within some LOCAL.
DEFINE scope. In addition, the two Scratchpad
locations must be initialized by the interpreter when

it is given control from GISMO.

¢. A routine labeled GO. TO.EXTERNAL.SEGMENT to interrogate the interpreter dictionary and
generate a communicate (if necessary) to guarantee that the requested { external. code.segment)
is present in S-Memory. In addition, it must perform the initial transfer to the { external. code.
segment).

Example:

GO.TO.EXTERNAL.SEGMENT .
% T CONTAINS SEGMENT NUMBER
% L CONTAINS BIT DISPLACEMENT WITHIN SEGMENT

SHIFT T LEFT BY 6 BITS TO X % T * 64
SHIFT T LEFT BY 4 BITSTO Y %T* 16
MOVE SUM TO FA % T * 80

ADD ADDR.INTERP.SEG.DICT TO FA
READ 2 BITS TO X
IF LSUX THEN % THE SEGMENT IS PRESENT
BEGIN PRESENT
COUNT FA UP BY 32

READ 24 BITSTO X % SEGMENT BASE ADDRESS
IF SUBSET THEN INCLUDE % FOR S-MEMORY PROCESSORS
BEGIN
MOVELTOY
MOVE SUM TO A
END ELSE
BEGIN
MOVE 0 TO TAS % NECESSARY FOR
7% M-MEMORY SYSTEM
MOVELTOT % NEW A AND TOPM VALUE
MOVE XTO L % NEW MBR VALUE
TRANSFER.CONTROL
END
END PRESENT
MOVETTOL
MOVE 58 TO T % COMMUNICATE NO.FOR

% NON PRESENT SEGMENT
SHIFT T LEFT BY 16 BITS
SET L(0) % ONE LEVEL SEG DICT.
GO TO GIVE.UP.CONTROL. % SAVE STATE AND XFER TO
% MCP VIA GISMO

54

NOTES

a. The initial “T”’ and “L” values are supplied by the
compiler prior to entering the above routine.

b. Other registers may -be destroyed depending on
how the routine is written.

c. The routine must push a 0 (zero) onto the A stack
for the M-Memory Processor. This is necessary so
that an exit within an (external.code.block) can
be trapped into a routine that will transfer control
back to the { main.code.block). This also implies
that parameters may not be passed via the A stack
when initially transferring to an { external.code.
block).

The compiler will provide all other routines necessary to effect the transfer to and from (external.code.
blockX(s). :

The only kind of transfers allowed are calls and branches from the (main.code.block) to an { external. code.
block) and from an { external.code.block) to the { main.code.block). Transfers between { external.code.
block)(s) are not allowed. In addition, such calls and branches must be syntactically separated from calls
and branches with the same (code.block). Instead of CALL, the command CALL EXTERNAL must be ,
used. Instead of GO TO, the command BRANCH.EXTERNAL must be used. (See MIL statements: EMIT.
RETURN.TO.EXTERNAL, CALL.EXTERNAL and BRANCH.EXTERNAL.) ‘

Compiler - Generated Code

Following is the code the compiler generates when CODE.SEGMENTSs are used. (All (label)s used in the
examples are shown for clarity only: the compiler has its own internal representation for the labels.)

MAIN CODE BLOCK

a. For each different (label>) occurring after a CALL.EXTERNAL or BRANCH.EXTERNAL
statement in the {main.code.block), the compiler will divert the call or branch to the following
code which is generated at the end of, and part of, the { main.code.block):

- MOVE ADDRESS (label) TO L
MOVE (label segment.number) TO T
GO TO GO.TO.EXTERNAL.SEGMENT

b. If the program executes on an M-Memory Processor (B 1726), the following code will be emitted
in the main.code.block:

EXIT.TO.EXTERNAL
MOVE TASTO L
MOVE TASTO T
MOVE LF TO TF
MOVE 0 TO LF
TRANSFER.CONTROL

5-5

EXTERNAL CODE BLOCK

a.

5-6

If the program executes on an M-Memory Processor (B 1726), the following code will be emitted
at the beginning of every (external code.block):

MOVETASTO T
LEAVE.EXTERNAL.SEGMENT
" MOVE MBR TOPM TO L

MOVELFTOT
SETLFTOO
TRANSFER.CONTROL

For each different ¢ label) occurring after a CALL.EXTERNAL or BRANCH.EXTERNAL
statement in the (external code.block), the compiler will divert the call or branch to the follow-
ing code which is generated at the end of, and part of, the { external.code.block):

1. If the program executes on an S-Memory PRocessor (B 1712 - B 1714) the following
code is generated:

MOVE ADDRESS ({labeD) TO X
GO TO SUBSET.BRANCH.TO.MAIN

2. If the program executes on an M-Memory Processor (B 1726) the following code is
generated for each different {label> in a BRANCH.EXTERNAL statement:

MOVE ADDRESS (dabel) TO X
GO TO BRANCH.TO.MAIN

3. If the program executes on an M-Memory Processor (B 1726) the following
code is generated for each different (label) in a CALL.EXTERNAL statement:

MOVE ADDRESS (Uabel)) TO X
GO TO CALL.TO.MAIN

At the end of every { external code.block) the following code is emitted.
1. For S-Memory Processor (B 1712 -B 1714):

SUBSET.BRANCH.TO.MAIN
MOVE MAIN.CODE.BASETO Y
MOVE SUM TO A

2. For M-Memory Processors (B 1726):

BRANCH.TO.MAIN
MOVE TAS TO NULL
MOVE MAIN.CODE.BASE TO Y
MOVE SUMTOT
GO TO LEAVE.EXTERNAL.SEGMENT

CALL.TO.MAIN
MOVE MAIN.CODE.BASE TO Y
MOVE SUMTO T
MOVEMBR TO L
MOVE TOPM TO LF
MOVE L TO TAS
MOVE ADDRESS (EXIT.TO.EXTERNAL) TO X
MOVE SUM TO TAS
GO TO LEAVE.EXTERNAL.SEGMENT

NOTES

a. When branching from the { main.code. block) to an
(external code.block) the T and L registers are
used, plus whatever registers the GO.TO.EXTER-
NAL.SEGMENT routine uses.

b. When calling or branching to a routine in the
(main.code.block?, the X and Y registers are used:
This means that they cannot also be used for
passing parameters. In addition CP should be
equal to 24, otherwise the transfer may not take
place correctly.

Also, on an M-Memory Processor, the T and L
registers, as well as the A stack are used. Thus, a
good rule of thumb is to avoid using X, Y, T, L,
and TAS when passing parameters to/from the
(main.code.block) and (external.code.block)(s).

¢. The code for S-Memory Processors is different
than the code for M-Memory Processors. Thus,
CODE.SEGMENTS cannot be used if the program
is to execute interchangeably on either the B 1710
or B 1720 Series processors. (See Appendix A:
$ NO EXTERNAL).

6. DECLARATIONS

DATA TYPES

Three main types of data fields may be declared in MIL:

1. BIT
2. CHARACTER
3. FIXED

A bit field consists of a number of bits specified by a number in parentheses following the reserved word
BIT.

A character field consists of a number of 8-bit characters specified by a number in parenthesis following
the reserved word CHARACTER.

A FIXED data field is the same as a BIT (24) field but is allowed in order to keep declare syntax con-
sistent with SDL . ‘

DECLARE STATEMENT
Syntax
s
DECLARE —-E—> {declare - element) - —p'
Semantics

The DECLARE statement specifies the addresses and characteristics of contents of memory storage areas.
The maximum number of data elements (including fillers, dummys, and implicit fillers) allowed in one
structure is 50. Any attempt to declare more will cause a table overflow error to be detected at compile
time,

An (array) may have a maximum of 65535 elements, each being a maximum of 65535 bits (8191 charac-
ters).

The two types of (declare.clements) are discussed separately below.

6-1

Non-Structured Declarations

(declare.element):

——— (identifier) & BIT ((#)) —
—=(array - id) (&) > l—— REVERSE-—I CHARACTER({#)
, FIXED ———b
- («EE—;ienaﬁer)) — | BIT{#) ' 4
(array - id) ((#) —~ CHARACTER ((#)) l—— REVERSE -J
(identifier) — FIXED

(array - id) (#))

& REMAPS ——# BASE.ZERO ——————» Note: ({#) = ((number))
= ABSOLUTE (literal) ———=
-—»~ADDRESS ((unique - label)) —

-—m (identifier) >
—— (array - id) »

Data may be declared as simple, having one occurrence, or as subscripted, having as many occurrences as
specified by the {array bound). In the latter case, array subscripts are considered to range from
zero to {array bound)-1.

BIT, CHARACTER or FIXED specifies the type of data in the field and the field size.

REVERSE specifies that an item or a structure is to be accessed in a reverse manner or in a reverse direction
from some base. The easiest way to remember what is happening is to realize that the compiler will simply
compute the address of a declared (identifier) normally, and then, if reverse is specified, subtract the
(identifier)’s length from the address to get the starting address of the (identifier).

As the syntax indicates, different data fields having the same format may be declared collectively inside
parenthesis ().

The following example illustrates the various options available in this type of declaration statement).

Example

DECLARE
PRIDE FIXED
COVETOUSNESS CHARACTER (10),
GLUTTONY BIT (40),
(LUST, ENVY, ANGER (5)) BIT (10),
SLOTH (20) FIXED,
WRATH (5) CHARACTER (6);

6-2

where
PRIDE is a 24-bit numeric field;
COVETOUSNESS is a 10-byte character field;
GLUTTONY is a 40-bit field;
LUST and ENVY are each 10-bit fields, as is each of the five elements
comprising ANGER;
SLOTH occurs twenty times, each element being a 24-bit numeric field;
WRATH is a six-byte character field occurring five times.

Data fields may be re-formatted by the use of the REMAPS option. Remapping is subject to the same
general rules discussed above. The following example best illustrates its use:

B FIXED, C BIT (50),
BB REMAPS B CHARACTER (3),
CC (2) REMAPS C FIXED;

Note that CC specifies 48-bits (or 2 elements, 24-bits each). The last two bits will be considered as an
implied filler by the compiler. A field may not be remapped larger than its original size.

There is no limit on the number of times a field may be remapped. A field which has remapped another
may itself be remapped. The remap option specifies that the (identifier) on the left side of the reserved
word REMAPS will have the same starting address as the { identifier> on the right side.

A data field may be remapped to BASE.ZERO which will give the field a relative address of zero. For
example:

DECLARE Q REMAPS BASE.ZERO BIT (7);

This device is used as a free-standing declaration since it does not remap a previously declared data item.

6-3

Structured Declarations

(declare.element):

(level) y—o= (identifier)

.
--(array - id)Y((#)) 4-‘ L» REVERSE -J BIT ((#)
> el ' CHARACTER ({#))
o ({identifier) o) - FIXED
(array - id)(#)) — BIT ((#))
- FILLER —-»{ |—» CHARACTER ({(#)) |—> REVERSE —J
(identifier) P —» FIXED
array - id)(#)) :T

DUMMY
—= ((#) -J

L"REMAPSW—P BASE.ZERQ —————

|— (identifier)

= ABSOLUTE (literal) ————»
— ADDRESS (unique . label) -

- (array . id).

—

-

Note: ({#)) = ((number))

MIL allows the structuring of data where a field may be subdivided into a number of sub-fields, each of
which has its own (identifier). The whole structure is organized in a hierarchical form, where the most
general declaration is a (level) 01 (or 1). No declaration may be on a (level) greater than 99. A sub-
divided field is called a Group Item, and a field not subdivided is known as an Elementary Item.

The type and length of data need not be specified on the group level. All Elementary Items must indicate
type and length; the compiler will assume type bit and add the lengths of the components to determine
the length of the Group Item. Note that the length of the Group Item is the sum of the lengths of its

Elementary Items.

In the following example, both A.A and C.C are considered Group Items; A.A has a total length of 90 bits,

and C.C is 50 bits in length.
Example

DECLARE
1 AA,
2 C.C,

3 D BIT (20),
3 E BIT (30),

2 H CHARACTER (5);

6-4

Fillers may be used to designate certain Elementary Items which the program does not reference. If the
filler is the last item in a structure, it may be omitted; the compiler will consider the Group Item to have
an implied filler. A filler may never be used as a Group Item.

If the 01 level group item is an array?, it is mapped as a contiguous area in memory. However, sub-
divisions of this { array) are not contiguous as shown in the example structure below:

Example

DECLARE DECLARE
1 Q(5) BIT@48), or 1 Q)
2 R FIXED, 2 (R, W) FIXED;
2 W FIXED;

— (each item of Q) 48 bits

Qo Q1 Q2 Q3 Q4

RO W0 R1 W1 W1 R2 R3 w3 R4 w4

l—b (each item of R and W) 24 bits

If a Group Item is an (arra)), an { array specification) may not appear in any subordinate item; that is, only
one-dimensional { array)s are allowed. An {array specification) is implied for all subordinate items.

If a Group Item is declared with the REVERSE option, then REVERSE is also implied for all subordinate
items in that group. Specification of the REVERSE option for subordinate items would be redundant.

Structured data may be remapped in the same manner as non-structured data. In addition, structured data _
may be remapped with a dummy group identifier. The purpose of this construct is to allow the user to
remap data items without having to declare another Group Item which describes the same area in memory.
Thus in the following example:

Example
DECLARE
1 YAK BIT(100),
2 AARDVARK BIT(20),
2 SEA.OTTER BIT(80);

Y AK might be remapped as:

DECLARE DECLARE
1 AA REMAPS YAK BIT(100), 1 DUMMY REMAPS YAK BIT(100),
2 CC BIT(30), or 2 CC BIT(30),
2 DD BIT(70); 2 DD BIT(70);

Both YAK and AA refer to the same area in memory: hence AA is redundant.

6-3

If a remapped item contains the REVERSE option, then REVERSE is also implied for the remapping item.
The user should note the distinction between DUMMY and FILLER. DUMMY is used in conjunction with
REMAPS to eliminate the necessity of declaring a redundant Group Item. FILLER is used if one desires
to skip over a part of the structure.

The following restrictions apply to the use of DUMMY REMAPS:

1. DUMMY may only be used with { remap declarations).

[

All restrictions applying to REMAPS apply to DUMMY REMAPS.
3. DUMMY must not remap another DUMMY.
4. DUMMY Group Items must have at least one non-filler component.
DECLARE EXAMPLES
Introduction

Let us illustrate by example exactly how declarations might be used in a MIL program, and note the
associated relevant points.

The DECLARE statement in MIL is one which allows the user to logically assign names to physical or

relative memory address in a structured manner. This facility allows one to construct data structures
in a format that is simple to understand and easy to change when the occasion arises.

Non-Remap Items

The MIL compiler maintains a variable which is initialized to 0. When an item is declared, it is assigned
the current value of this variable and the variable is incremented by the bit length of the declared item.

Example
DECLARE
DISPATCH.REGISTER BIT(24),
GLOP1 BIT(48),
ADDR.GISMO BIT(24),
LOCN.MAKE.MCP.BE.HERE BIT(36),
GLOP2 BIT(29),
ADDR.MCP.LIMIT FIXED;

Note that the DECLARE statement is completely free form, must begin with the world “DECLARE”’, must
end in a *‘;”, and that each element must be separated from its predecessor with a ““,”.

b

Each element thus declared is used exactly as a (l/iteral) and most often represents a memory address.

6-6 .

Example

MOVE ADDR.GISMO TO FA
READ 24 BITS TO X

This would assign the literal 72 (= 24+48 = ADDR.GISMO) to register FA and would cause the contents
of memory at address 72 to be read into register X.

Should the compiler encounter another DECLARE, it will merely start assigning addresses where it left
off previously.

Example

DECLARE
GLOP3 BIT(10)
CHAR.SAVE.AREA CHARACTER(8);

GLOP3 above would be assigned the value of the aforementioned address-counting variable, in this instance
185.

DECLARE elements may also be structured such that some names overlap pieces of memory described
by other names.

Example
DECLARE
1 TRACE.BITS BIT(27),
5 FILLER BIT(15),
5 TB.FLAGS BIT(1),
5 TB.TYPE BIT(4),
8 FILLER BIT(1),
8 TB.STORES.ONLY BIT(1),
8 TB.BRANCHES BIT(1),
8 TB.THE.REST BIT(1),
5 TB.GET.SPACE.TYPE,

99 (TB.STORES.ONLY,
TB.BRANCHES,
" TB.REMAINDER) BIT(1);

This example illustrates the following points:
1. The address picks up where the previous DECLARE leaves off. This is not true, however, where
the previous item or structure is a ““remap item”. The compiler’s internal variable used for

default address assignment is maintained and incremented only for non-remap items or structures.

2. DECLAREs may be structured such that some fields are denoted as being contained within
other fields.

3. “FILLER” can be used in structures as often as necessary to increment the address-counting

variable past an area of memory which the programmer does not intend to reference by a
symbolic name.

6-7

4, Items with the same type and length can be put into a list surrounded by parentheses, with the
type and length specified only once at the end.

5. The length of an item need not be specified if it has sub-items whose lengths can be determined.

Remap Items

GENERAL

NOTE

Structures must begin with an “01”" level identifier.
Substructures may then have any level from 02 to 99
inclusive, with the substructure always having higher
level numbers than the superstructure.

It is possible to temporarily suspend the mechanism which causes addresses to be assigned based on where
the last DECLARE left of by using remaps structures.

For example, if we wish to declare a “template’, where the declared addresses are added to some base prior
to actual use, we would do the following:

DECLARE

1

2
2
2

N NN

2

w w

SYSTEM.DESCRIPTOR REMAPS BASE.ZERO,

SY.MEDIA BIT(2),
SY.LOCK BIT(1),
(SY.IN.PROCESS,

SY.INITIAL,

SY.FILE) BIT(1),
FILLER BIT(10),
SY.TYPE BIT(4),
SY.ADDRESS BIT(36),
FILLER BIT(12), % PORT AND CHANNEL
SY.CORE BIT(24),
SY.LENGTH BIT(24);

One might use the above structure as follows:

DEFINE SYS.DESC.BASE = S14A#

%

MOVE SY.TYPE TO FA
ADD SYS.DESC.BASE TO FA
READ DATA.LENGTH (SY.TYPE) BITS TO X

Note the use of a new reserved word, “DATA.LENGTH”. This construct allows one to use the length of a
declared item without having to define it elsewhere.

6-8

The remap structures that are permitted are:

REMAPS BASE.ZERO

REMAPS ABSOLUTE (literal)
REMAPS ADDRESS ({unique.label))
REMAPS (identifier)

REMAPS (array.identifier)

SRCNRESES

If one knew the absolute address of some data structure in memory, the following could be done:

DECLARE

1 SAVE.AREA REMAPS ABSOLUTE 1024,
2 SAFIRST.ITEM FIXED,
2 SA.SECOND.ITEM CHARACTER(200),
2 SA.THIRD.ITEM BIT(256);

The following technique could be used when a { label) denoting the start of a table of constants was
present in a program:

DECLARE
1 TRACE.TABLE(10) REMAPS ADDRESS (TRACE.MNEMONICS),

2 ADDR.TRACE.NAME CHARACTER (4);%

%
TRACE.MNEMONICS

TABLE

BEGIN
‘GLA ”
‘CALA 2
6‘STN 2.
“STD »
“LIT ~
“ILA 2
CESTO 2
“CASE”
“IFTH”

“IFEL ”
END

%

MOVE ADDR.TRACE.NAME (2) TO FA
READ 24 BITS TO X INC FA

READ 8 BITSTO Y

Note the use of {array) in the above example. If the programmer does not know the index to use at
compile time, the following could be done:

6-9

DEFINE TRACE.INDEX = SOB
%
MOVE TRACE.INDEX TO X
MOVE LENGTH.BETWEEN.ENTRIES (TRACE.TABLE) TO Y
CALL MULTIPLY .X.Y
% AND SO FORTH
%
MULTIPLY. XY
% MULTIPLICATION CODE
EXIT

The above examples have shown, among other things, two of the “specials’ that are included in MIL syntax
to augment usage of DECLAREd items. They are:

DATA.LENGTH ({declared.identifier))
LENGTH.BETWEEN.ENTRIES (K array.identifier)

Note that when (array) names are used with the specials, the subscript is not included; it is syntactically
invalid to do so.

Another type of remaps is one that remaps a previously declared structure. In this case, the addresses of
the remap structure will begin at the address of the remapped structure.

Example

DECLARE
1 SAVE.AREA.CHARS REMAPS SA.SECOND.ITEM
2 SA.NAME CHARACTER(30),
3 (SA.PACK.ID,
SA.FAMILY.NAME,
SA.OFFSPRING NAME) CHARACTER(10),
2 SA.OWNER.NAME CHARACTER(14);%
% THE RIGHTMOST 156 CHARACTERS OF SA.SECOND.ITEM ARE NOT REMAPPED HERE

REVERSE

“REVERSE” is an attribute that may be applied to a remapping simple item or structure. The presence of
this reserved work causes the address associated with a { declared identifier) to be the normally-calculated
address minus its declared length.

For example, suppose a programmer wishes to specify a structure that describes the top memory and wants
to list the {identifier’s from the top of memory downward. The following could be done:

DECLARE

1 TOP.OF. MEMORY REMAPS BASE.ZERO REVERSE,
2 FILLER - BIT(32),
2 ADDR.INTERRUPT.QUEUE BIT(553),
2 ADDR.SAVED.A.STACK" BIT(240),
2 ADDR.GISMO.WORK.SPACE BIT(384),
2 ADDR.TEMP.FIB BIT(920),
2 ADDR.TRACE.SPACE BIT(2232),
3 ADDR.TRACE.CODE BIT(24);

These (identifier)s could then be used in MIL statements as follows:

MOVE ADDR.INTERRUPT.QUEUE TO Y
EXTRACT ADDR.TRACE.CODE FROM T TO X

GENERAL

7. REGISTERS AND SCRATCHPAD

This section is intended only as a brief overview of the registers within the processor. It is assumed that
the reader is familiar with the contents of the B 1700 Systems Reference Manual (form 1057155). (See
also Appendix B in this manual).

REGISTER GROUPS

NOTE

The most-significant (left-most) bit in any register is
identified in the MIL syntax as bit O (zero), the next
most-significant as bit 1, etc. This is particularly
advantageous in a bit-addressable machine since, for
software purposes, it is often desirable to think of a
register as being an extension of main memory. It
should be noted that this convention is at variance
with the hardware bit numbering convention where,
generally, all bits are numbered right to left, 0 through
N. This difference has particular significance when
any bit data is to be OR’ed into the M register at
run time.

The registers briefly described in this section are divided into the following logical groups:

Active registers
Result registers
Scratchpads

Constant registers

Input/Output registers

Condition registers

7-1

Source! & Sink

4-bit Source & Sink

* TOPM

T subregister

FB subregister

4-bit source & sink

source & sink

TA TB TC TD TE TF

FU FT FL

L subregister

C subregister

4-bit source & sink

source & sink

LA LB LC LD LE LF

CA CB CC *CD **CP

* %

MSMA, TOPM, MBR and the low order 3 bits of CD are not
physically present in the S-Memory Precessor. When addressed
as a source they will yield a binary value of zero. When
addressed as a sink (destination) the data is lost.

CPU, a 2-bit subregister of CP, is not addressable as a
source or a sink,

RESULT REGISTERS

Source

SUM

CMPX
CMPY
XANY
XEOY
MSKX
MSKY
OXRY
DIFF

CONSTANT REGISTERS

Source

MAXS
MAXM

CONDITION REGISTERS

4-bit Source

BICN
FLCN
*INCN
XYCN
YXST

Single Scratchpad

Source & Sink

SOA.

S16A

S0B

S158B

SCRATCHPAD

Double Scratchpad

Source & Sink

S0

S156

INPUT/OUTPUT REGISTERS

Source

Sink

Source & Sink

CMND

DATA

INCN is not physically present on the
S-Memory Processor. When addressed as
a source it yields a binary value of 0.
When addressed as a sink (destination)
the data is lost.

7-1B

ALPHABETICAL LISTING OF REGISTERS AND KEY CONCEPTS

7-2

Name
A

BICN
BR

C

CA

CB

CC

CD
CMND
CMPX
CMPY

Console
Switches

Control
Memory

Ccp
CPL
CPU
CYD
CYF
CYL
DATA

DIFF

Length
In Bits

®

24

24

24
24
24
24

16-bit

words
8
5

24
24

48

Source
Sink

so & sk

source

so & sk

so & sk
so & sk
so & sk
so & sk
sink
source
source

source

so & sk

so & sk

so & sk

so & sk

source

Note

Control Memory Micro-instruction Address
* 24 (1726), 19 (S-1), 20 (S-2)

boolean conditions

Base Register or low address
S-Memory protection

Control; not addressable as a unit

subfield of C; general purpose

subfield of C; general purpose

subfield of C; interrupts and flags

subfield of C; interrupts and flags

I/O Command Register

Result: complement of X; masked by CPL
Result: complement of Y; masked by CPL

the 24 toggle switches located on the Console
front panel

Location of micro-instructions on M-Memory
Processor

Control Parallel; subfield of C

Control Parallel Length; subfield of CP
Control Parallel Unit; subfield of CP

Carry Difference or carry of borrow

Carry Flip-Flop; subfield of CP

Carry Level or carry of sum; masked by CPL
I/O Data Register

result of X-(Y + CYF); masked by CPL

Field in S-Memory; FA and FB concatenated

Length

Name In Bits
FA 24
FB 24
FL 16
FT 4
FLC 4
FLD 4
FLE 4
FLF 4
FLCN 4
FU 4
INCN 4
L 24
LA 4
LB 4
LC 4
LD 4
LE 4
LF 4
LR 24
M 16
MBR 24
MAXM 24

Source
Sink

so & sk

so & sk

so & sk
so & sk
so & sk
so & sk
so & sk
so & sk
source

so & sk

source

so & sk

so & sk
so & sk
so & sk
so & sk
so & sk
so & sk

so & sk

so & sk

so & sk

source

Note
Field Address in S-Memory

Concatenation of S-Memory Field Unit (FU),
Field Type(FT), and Field Length(FL)

Field Length in S-Memory

subfield of FB

subfield of FL

subfield of FL

subfield of FL

subfield of FL

boolean Field Length Conditions
S-Memory Field Unit size; subfield of FB

boolean dispatch Interrupt Conditions
M-Memory Processor

Local register also used in DISPATCH, OVERLAY,

TRANSFER.CONTROL, READ/WRITE MSML
AND S-MEMORY ACCESS

subfield of L
subfield of L
subfield of L
subfield of L
subfield of L
subfield of L

Limit Register or high address S-Memory
protection

current Micro-instruction register

Main Memory Micro-instruction Base
Register; not on S-Memory Processor

hardwired Constant; number of 16-bit
words of M-Memory

7-3

7-4

Name

MAXS
MSKX
MSKY
MSMA
Main
Memory
NULL

PERR

READ

SFL
S0-S15
S15A-S15B
S-Memory
SU

SUM

TAS
TA
B
TC
D
TE

TF

Length
In Bits

24
24
24

16

24

24

16
48

48

24
24

24

& P 2 2 » »

Source
Sink

source
source
source

so & sk

so & sk

source

source

so & sk

so & sk

source

so & sk

so & sk
so & sk
so & sk
so & sk
so & sk
so & sk

so & sk

Note

Constant; size in bits of available S-Memory
Result; mask of X; length by CPL
Result; mask of Y; length of CPL

Control Memory addressed by the A register;
M-Memory Processor only

S-Memory

always zero

Parity Error Register; reflects error conditions
from S & M-Memory, and cassette

Console switch position; reads S-Memory
addressed by FA to Console lights (A on 1714)

subfield of SOB corresponding to FL in FB
Double Scratchpad Words

Single Scratchpad Words of S15

Main Memory

subfield of SOB corresponding to FU in FB
Result (X + Y + CYF) length; masked by CPL
Transform - will ROTATE, SHIFT or EXTRACT
bits; used also in SMEMORY ACCESS and
TRANSFER.CONTROL

Top of A Register-Stack

subfield of T

subfield of T

subfield of T

subfield of T

subfield of T

subfield of T

Name

TOPM

WRIT

XANY
XEOY
XORY
XY

XYCN

XYST

Length

In Bits

16
24

24
24
24
24

48

24

Source

Sink

so & sk

source

so & sk
source
source
source
source
source
source

so & sk

Note

Top of Control Memory; not on S-Memory
Processor

cassette input only

Console position switch; writes Console
switches to address of memory contained
in FA(Aon 1714)

input to Function Box

Result; X and Y; length by CPL

Result; X EOR Y; length by CPL
Result; X OR Y; length by CPL

X AND Y concatenated

boolean XY Conditions

boolean XY States

input to Function Box

7-5

ACTIVE REGISTERS
The following are descriptions of the active registers:

X and Y Registers

The X and Y registers (both of which are 24 bits wide) are used as inputs into the 24-bit Function Box

(see below). All functions are performed under control of the C (Control) register, which regulates the

length of the operation, class of arithmetics, and least-significant carry input. The X and Y registers are
capable of being shifted or rotated individually or as a unit and may receive or transmit data from or to
main memory.

Field (F) Register

The F register is divided into FA and FB, each sub-register being 24 bits wide. The FA (Field Address)
portion is used to address main memory. FB is divided into FU (Field Unit, consisting of four bits used
to indicate arithmetic unit size; FT (Field Type), a general-purpose 4-bit field; and FL (Field Length),
consisting of 16 bits used to indicate the length of fields in main memory. FL is subdivided into FLC,
FLD, FLE and FLF, each four bits in length.

Local (L) Register

The L register is 24 bits wide and is subdivided into LA, LB, LC, LD, LE and LF, each four bits in length.
L and its subdivisions are generally used to temporarily hold the contents of other processor registers.
It is also used as a source and destination for main memory access and has implicit use in the DISPATCH,
OVERLAY, READ/WRITE MSML and TRANSFER CONTROL micro-instructions.

Transform (T) Register

The T register is a 24-bit transformation register used extensively for interpretation of virtual-language
operators. It is subdivided into TA, TB, TC, TD, TE and TF, each four bits in length. T has strong
SHIFT and EXTRACT logics associated with it and is the principal formatting register of the processor.
This register also has the capability of receiving or transmitting data from and to main memory.

Micro-Instruction (M) Register
The M register is a 16-bit register which holds the micro-operator for decoding and subsequent execution

by the hardware. It is addressable as a source and sink register; when used as a sink register the source is
bit-ORed with the upcoming M-op, except in TAPE mode.

Base (BR) and Limit (LR) Registers
The BR and LR registers are each 24 bits wide and are used to hold the main memory base and limit

addresses for the currently active main memory process. The M- Memory processor hardware uses these
registers to determine if addresses in the Field Address (FA) register are within the base/limit boundaries.

7-6

Address (A) Register

The A register is the microprogram address register which contains the bit address of the next micro-
instruction. Values in the A register are always MOD 16; i.e., the low-order four bits are always zero.

It is capable of addressing 16,384 micro-instructions located in either control memory or main memory
or both. The A register is automatically incremented to the next micro-instruction before the current
micro-instruction is executed. It is also capable of having any value from 0 to 4,095 added to or sub-
tracted from it to facilitate microcode branching.

A Stack (TAS)

The A stack is a 32-element-deep, 24-bit wide, push-down, pop-up memory, i.e., a last-in-first-out (LIFO)
storage structure. The A stack is used to nest microroutine linkages and allows highly shared routines,

_thus reducing control memory requirements. Although the A stack was intended for microcode addresses,
it has been made 24-bits wide to allow for any operand storage.

NOTE

The S-Memory Processor A stack has only 16 storage
elements.

Top of Control Memory (TOPM) Register
M-Processor Only

The TOPM register is four bits wide and is used to determine which memory (control or main) contains the
next micro-instruction. If the A register is equal to or greater than (TOPM*512*16), the next micro-
instruction will be fetched from main memory rather than control memory. The TOPM register is address-
able as a source or as a sink (destination). The fetch from S-Memory takes place at address

A+MBR. :

Memory Base (MBR) Register
M-Processor Only

The MBR register is used with the A and TOPM registers to obtain the main memory address of the next
micro-instruction. (See above formula). The MBR register is addressable as both a source and as a sink.

Control (C) Register

The C register is a 24-bit control register for the microprocessor. It contains the 24-bit Function Box
controls and carry input plus some of the processor interrupts and flags. It is subdivided into CA, CB,
CC, CD, each four bits wide; and CP, eight bits wide. CA and CB may be used as general-purpose regis-
ters. CC and CD represent processor interrupts and flags (see discussion under Condition Registers
below). CP contains Function Box controls: CYF (0 bit of CP), CPU (1 and 2 bits of CP), and CPL
(3,4,5,6, and 7 bits of CP). CYF (Carry Flip Flop) notifies the Function Box that a previous unit carry
must -be added to its summary results. CPU (Control Parallel Unit) notifies the Function Box of the type
of unit contained in X and Y: 00 = binary, 01 = 4-bit decimal. CPL (Control Parallel Length) specifies
the width, in bits, of the Function Box and Read/Write micro-instructions.

7-7

Combinatorial Logic or Functional Box

The Combinatorial Logic, often called the Function Box, produces the Result Registers. Inputs are the

X register, the Y register and the Carry Flip-Flop (CYF). The inputs are combined under control of the
Conrol Parallel Unit (CPU) register and the Contrcl Parallel Length (CPL) register. When values are loaded
into the X and Y registers, a large collection of output values and comparisons (called Result Registers) is
made available to all subsequent micro-instructions.

RESULT REGISTERS

The Result registers are outputs from the 24-bit Function Box. Their contents are produced immediately
and automatically from the inputs to. the Function Box (X, Y and CYF) and cannot be changed except by
changing inputs or by changing CPU (Control Parallel Unit) or CPL (Control Parallel Length). If the value
of CPL is less than 24, then the (24-CPL) most-significant bits of all Result registers will be zero.

These registers are source registers only and therefore cannot be used as the sink (destination) register in
a MOVE or in any other instruction.

XORY Result Register

This register contains the INCLUSIVE OR of the X register combined with the Y register. This is a bit by
bit operation with corresponding pairs of bits treated independently.

XANY Result Register

This register contains the AND of the X register combined with the Y register. This is the logical product
of the X register and the Y register. Corresponding pairs of bits are treated independently.

XEOY Result Register

This register contains the EXCLUSIVE OR of the X register and Y register.

CMPX Result Register

This register contains the 1’s complement of the X register.

CMPY Result Register

This register contains the 1’s complement of the Y register.

MSKX Result Register

Masked X contains the low-order bits of the X register. The value of CPL determines the number of bits
placed in MSKX. All other high-order bits are zero. If CPL is equal to 24, then MSKX is identical to the
X register.

MSKY Result Register

Masked Y contains the low-order bits of the Y register. The value of CPL determines the number of bits

placed in MSKY. All other high-order bits are zero. If CPL is equal to 24, MSKY is identical to the Y
register.

7-8

SUM Result Register

SUM is the decimal or binary value (determined by CPU) of the X register plus the Y register plus the
CYF register. Corresponding pairs of bits are grouped by CPU control, and grouping may be binary or

4-bit decimal. If the sum of (X +Y + CYF) is larger than the size specified by CPL, then the CYL;

(Carry Level) will be true (one). CYL may be gated into CYF through use of the CARRY micro-instruction.

Difference (DIFF) Result Register

DIFF stores the amount resulting from the subtraction of the sum of the contents of the Y and CYF
registers from the contents of the X register. The contents of the CPU register determine whether the
subtraction is decimal or binary. Corresponding pairs of bits are grouped by CPU. If the difference is
negative, X-(Y+CYF) 0, then Diff Result will be in 2’s complement form of 10’s complement form
depending upon the mode, either binary or decimal respectively; and CYD (Carry Difference) will be
true (one).

NOTE

The CYD register is not conditioned by CPL; it is
always based on a 24-bit comparison. The programmer,

. therefore, must know what is in the high-order positions
of the X register and the Y register if CPL is less than
24.

SCRATCHPAD

The scratchpad can be used for temporary storage of active registers. The scratchpad may be addressed
as sixteen, 48-bit double words or thirty-two, 24-bit words.

Scratchpad Words - 24 Bits Each

SOA S4A S8A S12A
SOB S4B S8B S12B
S1A SSA S9A S13A
S1B S5B S9B S13B
S2A S6A S10A S14A
S2B S6B S10B S14B
S3A S7A S11A S15A
S3B S7B S11B S15B

Double Scratchpad Words - 48 Bits Each

SO S4 S8 S12
S1 S5 S9 S13
S2 S6 S10 S14
S3 S7 S11 S15

(Sn = SnA and SnB concatenated, where n = 0 through 15)

7-9

CONSTANT REGISTERS

The following is a description of the constant registers.

Maximum Main Memory (MAXS) Register

The 24-bit MAXS register is set by the field engineer and contains the value of the maximum installed

number of main memory bits. -It is addressable as a source only. Main memory addresses begin at zero.
The lower 15 bits are always zero, i.e., MAXS has a 4096 byte (32K bit) resolution.

Maximum Control Memory (MAXM) Register
The 24-bit MAXM register is set by the field engineer and contains the value of the maximum installed
number of control memory words, each word comprising 16 bits. It is addressable as a source only. The

lower 10 bits are always zero, i.e., MAXM has a 1024 word resolution. On the B 1710 series MAXM
will always contain zero. ’

NULL Register

The NULL register is a 24-bit, addressable field of zeros. It may be addressed as source of sink; in the
latter case it accepts the data but remains zero.

INPUT/OUTPUT REGISTERS

The following is a description of the Input/Output registers.

Console.Switches

M-Processor Only

This 24-bit register reflects the current state of the 24 Console Switches on the processor.

Console Cassette Tape Input (U) Register

The U register accumulates the data read from the tape cassette on the Console control panel. It is
addressable as a source in the RUN mode with the MOVE REGISTER micro-instruction and in the TAPE
mode with the MOVE 24-BIT LITERAL micro-instruction. (See MIL Statements: LOAD.MSMA.) It

is not addressable as a sink.

Command (CMND) Register

The CMND register is used to transfer commands to the I/O controls. It is 24 bits wide and is address-
able as a sink only.

Data Register

The DATA register is used to transfer data to and from the I/O controls and their peripherals. It is 24
bits wide and is addressable as a source or as a sink.

7-10

CONDITION REGISTERS
Introduction
There are five Condition registers:

Binary Conditions (BICN)

Field Length Conditions (FLCN)

Interrupt Conditions (INCN)

X AND/OR Y registers(s) Conditions (XYCN)

X AND/OR Y registers(s) States Conditions (XYST)

Each Condition register consists of four bits. The bits are identified from left to right and are asmgned
the position numbers 0 through 3, with 0. being the most-significant bit.

All Condition registers are source registers only. They may be moved to another register or tested, using
the IF and SKIP instructions, for their current contents. They may not be the sink (destination) register of
any micro-instruction.

BIT BICN XYCN XYST FLCN INCN
0 LSUY MSBX LSUX FL =SFL NO-DEVICE
1 CYF X=Y ANY.INTERRUPT FL SFL HI-PRIORITY
2 CYD XY Y NEQO FL SFL INTERRUPT
3 CYL XY X NEQO FL NEQO LOCKOUT

Binary Conditions (BICN) Register

LSUY is true if the least-significant unit of the Y register is 1 and the Control Parallel Unit (CPU) register
specifies binary (CPU = 0); or 9 and the CPU register specifies decimal (CPU = 1).

The Carry Flip-flop (CYF) register indicates the value of the carry-in in the Control Parallel (CP) register .
The CYF register may be manipulated as part of the CP register and by the CARRY instruction.

The Carry Difference (CYD) register is true if X-(CYF +Y) 0. This condition is not affected by CPL,
i.e., a 24-bit compare is always made.

The Carry Level (CYL) register is true if (X + Y + CYF), limited by the Control Parallel Length (CPL)
register, overflows.

XY Conditions (XYCN) Register

MSBX is true if the most-significant bit of the X register, as determined by the Control Parallel Length
(CPL) register, is a 1.

NOTE

The comparisons of the X register to the Y register are
not affected by CPL; they are always 24-bit compares.

7-11

XY States (XYST) Register

LSUX is true if the least-significant unit of the X registeris 1 and the Control Parallel Unit (CPU) register
specifies binary (CPU = 0); or is 9 and the Control Parallel Unit (CPU) register specifies decimal (CPU = 1).
The comparisons of the X register or the Y register to zero are not affected by CPL; all 24 bits of the X
register and/or the Y register are used in the comparisons.

Any.Interrupt Bit

This bit is true if any of the following conditions in registers CC, CD, of INCN (M-Memory Processor)
are true:

Event Register (Bit Position)
MISSING DEVICE INCN (0)
PORT INTERRUPT INCN (2)
1/0 SERVICE REQUEST INTERRUPT CC(2)
CONSOLE INTERRUPT CC (3)

MAIN MEMORY READ PARITY
ERROR INTERRUPT CD (0)

MEMORY WRITE/SWAP ADDRESS
OUT OF BOUNDS INTERRUPT CD (3)

The CC and CD registers are both 4-bit source and sink (destination) registers within the C register. The
bits in each are numbered O through 3, with bit O being the most significant. They.have been assigned
the following uses and meanings:

CC (0) STATE LIGHT

CC (1) TIMER INTERRUPT

CC (2) 1/O SERVICE REQUEST INTERRUPT

CC(3) CONSOLE INTERRUPT

CD (0) MAIN MEMORY PARITY ERROR

CD (1) MAIN MEMORY WRITE/SWAP ERROR OVERRIDE

CD (2) MAIN MEMORY READ OUT OF BOUNDS ERROR

CD (3) MAIN MEMORY WRITE/SWAP OUT OF BOUNDS ERROR

All bits in the CC and CD portions of the C register, once set, remain set even though the conditions that
caused them to be set may no longer exist. Therefore, if it is desired to clear any of these bits to zero,

this must be done explicitly. CD (1), CD (2), and CD (3) of the C register are always zero in the S-Memory
Processor but still may be addressed and tested.

Console Interrupt (CC(3))

This bit is set when the interrupt toggle switch on the Console control panel is turned on. It remains set
as long as the switch is on. It can be reset programmatically but not by turning the Console toggle switch
off. This bit is also reported in ANY.INTERRUPT when it is on.

Main Memory Read Parity Error Interrupt (CD(0))

This bit is set when a main memory parity error is detected during a READ or a READ portion of a SWAP
operation or when an attempt is made to access non-existent main memory.

Main Memory Address Out-of-Bounds Override (CD(1))

M-Processor Only

This bit is tested if the Field Address (FA) register setting is less than the Base Register (BR) setting or
greater than or equal to the Limit Register (LR) setting; then WRITE or SWAP operations will be inhibi-
ted unless this bit is set (one). The state of this bit does not affect the setting of CD (2) or CD (3).

Read Address Out-of-Bounds Interrupt (CD(2))

M-Processor Only

This bit is set when a READ operation is attempted and the Field Address (FA) register setting is either
less than the Base Register (BR) setting or greater than or equal to the Limit Register (LR) setting. The
READ operation is not inhibited.

Write/Swap Address Out-of-Bounds Interrupt (CD(3))

M-Processor Only

This bit is set when a WRITE or SWAP operation is attempted and the Field Address (FA) register setting
is either less than the Base Register (BR) setting or greater than or equal to the Limit Register (LR) set-
ting. This bit, when on, is also reported in ANY.INTERRUPT.

Field Length Conditions (FLCN) Register

All conditions are based upon comparisons between the 16 bits of the FL register and either zero or the
corresponding low-order 16 bits of the first word in the Scratchpad (SOB).

Interrupt Conditions (INCN) Register

M-Processor Only

NO DEVICE is true if an interrupt message is present in the dispatch buffer for a port or channel which
does not have a device attached to it. This condition is normally cleared by the processor with a DIS-

PATCH READ AND CLEAR instruction.

HI PRIORITY is true if there is a high-priority message present in the dispatch buffer.

7-13

INTERRUPT is true if there is a message present in the dispatch buffer for the processor. This condition
is normally cleared by a DISPATCH READ AND CLEAR instruction. It is also reported in ANY.INTER-
RUPT.

LOCKOUT is true if the interrupt system is locked (marked as “in use”’).
REGISTER DESIGNATIONS AND AREAS OF APPLICATION
The following is a list, arranged by areas of application, of registers and their associated designations.
MICRO-INSTRUCTION CONTROL
A (Micro-instruction Address)
M (Current Micro-instruction)
TAS (Top of Address Stack)

TOPM (Logical Top of M-Memory)
MBR (Micro-instruction Base Register)

S-MEMORY CONTROL
BR (Base Register)
LR (Limit Register)
FA (Field Address)
FL (Field Length)
Ccp (Control Parallel)
INTERRUPT CONTROL
CC
CDh
INCN
PARALLEL WIDTH CONTROL
C
CP
CPL
CPU

ORGANIZATION OF FIELDS AND SUBFIELDS

The following is a description of the organization of register fields and subfields, expressed in the notation
of MIL structured data declarations.

7-14

1 C BIT(24),

[NSTI NS I (O3 (O3 9]

NOTE: C doesnot exist as a composite,

CA
CB
CC
CD
Cp
3
3
3

BIT(4),
BIT(4),
BIT(4),
BIT(4),
BIT(8),
CYF BIT(1),
CPU BIT(2),
CPL BIT(5);

only as subfields.

1 L BIT(24),

NSRS O O I)

LA
LB
LC
LD
LE
LF

BIT(4),
BIT(4),
BIT4),
BIT(4),
BIT(4),
BIT(4);

1

F BIT(48),

1 T BIT(24),

2
2

NN NN

FA
FB
3
3
3

TA
TB
TC
TD
TE
TF

BIT(24),
BIT(24),

FU BIT4),

FT BIT(4),

FL BIT(16),

4 FLC BIT®4),
4 FLD BIT@4),
4 FLE BIT(4),
4 FLF BIT(4);

BIT(4),
BIT(4),
BIT(4),
BIT(4),
BIT(4),
BIT(4);

7-15

INDEX TO STATEMENTS

8. MIL STATEMENTS

Following is an alphabetical list of MIL statements found in this section.

Statement

ADD SCRATCHPAD

ADJUST LOCATION

AND

ASSIGN

BEGIN

BIAS

BRANCH.EXTERNAL

CALL

CALL.EXTERNAL

CARRY

CASSETTE

CLEAR

CODE.SEGMENT

COMPLEMENT

COUNT

DEC

DEFINE

DEFINE.VALUE
*DISPATCH

EMIT.RETURN.TO.EXTERNAL

ELSE

END

EOR

EXIT

EXTRACT

FA.POINTS

FINI

GO TO

HALT

IF

INC

JUMP

LIT

LOAD
*LOAD.MSMA

LOAD.SMEM

LOCAL.DEFINES

MACRO

Page

LAdd

O O IR USRY
NP W—ONTOVOUVMBbWNOOOYIONMMBWND -

w
\O

Statement

MAKE.SEGMENT.TABLE.ENTRY

MICRO
*M.MEMORY.BOUNDARY
MONITOR
MOVE
NOP
NORMALIZE
OR
*OVERLAY
PAGE
POINT
PROGRAM.LEVEL
READ
REDUNDANT.CODE
RESERVE.SPACE
RESET
ROTATE
SEGMENT
SET
SHIFT/ROTATE T
SHIFT/ROTATE X/Y/XY
SKIP
S.MEMORY.LOAD
STORE
SUB.TITLE
SUBTRACT SCRATCHPAD
*SWAP
TABLE
TITLE
TRANSFER.CONTROL
WRITE
WRITE.STRING
XCH

* Available on B 1720 systems only.

Page

8-59
8-60
8-61
8-62
8-63
8-65
8-66
8-67
8-69
8-70
8-71
8-72
8-73
8-75
8-76
8-77
8-78
8-79
8-80
8-82
8-84
8-85
8-87
8-88
8-89
8-90
8-91
8-92
8-93
8-94
8-95
897
8-99

8-1

ADD SCRATCHPAD

Syntax

ADD ———————=(scratchpad - word) ————»= TO FA-——»-I

Semantics

This instruction adds the left half of any scratchpad word (SOA . .. S15A) to the Field Address (FA) regis-
ter. The result is placed in FA; the contents of { scratchpad word) remain unchanged. (See also:
SUBTRACT SCRATCHPAD.)

Example

ADD S9A TO FA

8-2

ADJUST

Syntax
ADJUST LOCATION TO = literal) ——*-I
t——— LOCATION ——F——» PLUS
— +
- MINUS
_
Semantics

[y

This pseudo-operation adjusts the (physical code.address) of the compiler. The value of the { physical.
code.address) specifies the location (control memory address) into which the next generated micro-
instruction is to be placed, generally by a user-developed loader. (See also Segmentation: Label Addresses.)

LOCATION PLUS (+) OR MINUS (-) increments/decrements the {physical.code.address) by the value of
the (literal). If this option is not used, the { physical.code.address) is set to the value of the {literal).

The {literal) must have a value of 0 MOD 16.

NOTE

This instruction is generally used to compensate for
disposable loader routines.

Examples

ADJUST LOCATION TO @100@
ADJUST LOCATION TO LOCATION + 32
ADJUST LOCATION TO LOCATION MINUS 128

AND

Syntax

AND ——={source - sink - register) ————w | TH ——= (SOUrCE - Fegister) 1 ‘P{

Semantics

This instruction logically ANDs the contents of a 4-bit source and sink (destination) register with the bit

———»{Jiteral)

configuration of the (/iteral) or the contents of a 4-bit source register. The result is placed in (source.
sink.register); the contents of { source.register) remain unchanged. (See also: OR and EOR.)

The register may be any of the following:

(source.sink.register)

CA CB *CC *CD
FT FU

FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF

TOPM (available on B1720 only)

(source.register)

(source.sink.register)

BICN

FLCN

INCH (available on B1720 only)

PERR (available on B1720 Model II only)
XYCN

XYST

*CC and CD represent processor interrupts and flags

The {literal> has a decimal range from 0 to 15.

Table 8-1: AND Truth Table

Source . Sink . Register (Literal) or { Source.Register) Source . Sink . Register
0 AND 0 Yields 0
0 AND 1 Yields 0
1 AND 0 Yields Y
1 AND 1 Yields 1

8-4

Example

AND TB WITH 3
TA TB TC D TE TF
T 0000 1010 1111 0011 0001 0010 before (0AF312)
- 0011 - - - - literal (3)
T 0000 0010 1111 0011 0001 0010 after (02F312)

8-5

ASSIGN

Syntax
ASSIGN ——p———» ARCHITECTURE.NAME - = - (character - string)

——— COMPILER.LEVEL o = > (literal)

——— MCP.LEVEL —————D{

- GISMO.LEVEL ——|

L » ATTRIBUTE (literal) AS { identifier) ———————p— = >0

I

Semantics

This statement assigns values to the various interpreter verification attributes. These attributes occupy
fields in the IPB (Interpreter Parameter Block) of all interpreters. They are accessed at BOJ (Beginning of
Job) time by the MCP and are used to verify that the proper interpreter has been chosen.

The (character.string) for ARCHITECTURE.NAME must be a string of 10 or fewer { character)s.

(literal) has a decimal range from 0 to 255 for COMPILER.LEVEL, MCP. LEVEL and GISMO.LEVEL;
and from 0 to 79 for ATTRIBUTE.

Examples
ASSIGN ARCHITECTURE.NAME = “GISMO.26”

ASSIGN MCP.LEVEL = 197
ASSIGN ATTRIBUTE 64 AS ITEM.01=1

8-6

BEGIN

Syntax

BEGIN—L—" {label) —3——"

Semantics

This statement is paired with the END statement to combine MIL statements into logical blocks. If the
BEGIN/END block is labeled, the MIL program listing will reflect the first ten letters of the block name on
every line of the block (See example in Programming Technique section).

The BEGIN/END block is useful in an IF statement when more than one statement is necessary following
a condition.

Example
IF condition THEN
BEGIN TRUE.CONDITION

END TRUE.CONDITION
ELSE '
BEGIN FALSE.CONDITION
END FALSE.CONDITION

BEGIN/END blocks may be nested to fifteen levels, meaning that no portion of a MIL program may reflect
more than fifteen BEGIN’s without matching END’s,

(See also: END statement and LOCAL.DEFINES statement)

8-7

Example

8-8

BLOCK
NESTING
LEVEL

R SN WWWNINDNNN——=0 0

BEGIN BLOCK. 1
BEGIN ANOTHER.BLOCK

BEGIN INNERMOST.BLOCK

END INNERMOST.BLOCK
END ANOTHER.BLOCK

END BLOCK.1

BIAS

Syntax
BIAS BY —= UNIT b‘
—» F J l —- TEST—J
I—> AND S ﬂ
.
—» S >~
|—> AND F —J
- CP >
I—— AND F —J
Semantics

This instruction sets the Control Parallel Length (CPL) register and the Control Parallel Unit (CPU) register
to values calculated from the given operands.

NOTE

All references to register S refer to the SFL or SFU
registers in the second half of the first scratchpad word,
e.g., the SFL (low order 16 bits) part of the SOB
register.

The CPU register will be set to 1 if the value of the Field Unit (FU) register is set to 4 or 8; otherwise
CPU is set to 0. This is done for all variations of BIAS except BIAS BY S, which sets the CPU register
from SFU rather than from the FU register.

BIAS BY .. . sets the CPL register equal to 24 or to the value in the specified register if it is less than
24. BIAS BY UNIT sets the CPL register equal to the FU register (4 for 4-bit decimal, 8 for 8-bit
decimal, or any other value less than 16 for binary).

If the TEST option is used the above actions are performed, and the next micro-instruction is skipped
if CPL has not been set to zero.

Examples

BIAS BY F This instruction sets the CPL register to 24 or to the value of the Field
Length (FL) register, if it is less than 24. It also sets the CPU register
equal to the unit in the FU register.

BIAS BY F AND CP This instruction sets the CPL register to 24, to the value in the FL

register, or to the value in the CPL register, whichever is the smallest.
It also sets the CPU register to the unit in the FU register.

8-9

BIAS BY UNIT

This instruction sets the CPL register equal to the length of the unit of
the type specified by the FU register. It also sets the CPU register equal
to one unit of the type specified in the FU register, i.e., 4-bit decimal,
8-bit decimal, or binary.

NOTE
In all cases except UNIT, CPU is set to 1 if FU (or

SFU) is 4 or 8; otherwise CPU is set to 0. If UNIT
is specified, CPL is set directly to the value in FU.

BRANCH.EXTERNAL

Syntax

BRANCH.EXTERNAL »=TO - <1abel)—>|

Semantics

This instruction transfers control to the external segment location specified by (label). (See: Segmenta-
tion.)

(Label) must be associated with a run-time address that has a displacement from the BRANCH.EXTERNAL
instruction of less than 4096 micro-instructions.

NOTE
If an external segment does not exist because $NO
EXTERNAL has been specified, BRANCH. EXTER-
NAL is equivalent to GO TO.

Example

BRANCH.EXTERNAL TO EXTERNAL.SEGMENT.LABEL

CALL

Syntax

CALL »(label)——-»l
—>+ﬂ
> - —)

Semantics

This instruction stores the address of the next micro-instruction in the A stack, then branches to the loca-
tion specified by { label).

The location specified by the label may be a maximum of 4095 micro-instructions away from the CALL
instruction.

Example
CALL MULTIPLICATION.ROUTINE

CALL M.IN.OUT
CALL +ABC

8-12

CALL.EXTERNAL

Syntax
CALL.EXTERNAL ——————» (lgbel) ——>|

Semantics

This instruction stores the address of the next micro-instruction in the A stack, then branches to the
external segment location specified by (label). (See: Segmentation.)

{ Label) must be associated with a run-time address that has a displacement from the CALL.EXTERNAL
instruction of less than 4096 micro-instructions.

NOTE
If an external segment does not exist’, becuase $NO

EXTERNAL has been specified, CALL.LEXTERNAL
acts identically to CALL.

Example

CALL.EXTERNAL BEGINNING.OF.LOOP.1

CARRY

Syntax
CARRY 0 >|
—1
— SUM
——— = DIFFERENCE
Semantics

This instruction sets the Carry (CYF) register to either O or 1. CARRY 0 or CARRY 1 sets the CYF
register to 0 or 1 respectively. CARRY SUM sets the CYF register to the value of CYL single bit.
CARRY DIFFERENCE sets the CYF register to the value of the Carry Difference (CYD) register:

If: X>Y X=Y AND CYF=0 X=Y AND CYF=1 XY
CYD is set to: 0 0 1 1

The CYD register, unlike the CYL register is not conditioned by the CPL register. That is, all 24 bits of
the X and Y registers are compared when setting CYF by the CYD register. The programmer should,
therefore, know what is in the high-order position of the X and Y registers when using the CYD register
if the CPL register is set to less than 24.

8-14

CASSETTE

Syntax

CASSETTE START »‘
[: STOP
|—> WHEN X EQL Y
E: NEQY

Semantics

This instruction causes the system cassette tape to start or stop a READ operation at the next inter-record
gap.

The information read from the cassette is loaded into the U register and remains there for a maximum of
two clock cycles before the U register is cleared.

NOTE

The data on the cassette is duplicated every eight
bits to ensure its validity. The cassette will discrimi-
nate against parity incorrect data and, if necessary,
use the duplicate eight bits. If both copies are in
error, the load will be aborted. If the STEP-RUN-
TAPE switch is in the TAPE position (see: LOAD.
MSMA) and the START button is pushed, the
successive 2-byte increments will be moved from
the U register. If the instruction being executed

is a 24-bit literal MOVE TO MSMA, then the next
16 bits (2 bytes) that appear in the U register are
loaded into control memory at the address indica-
ted by the A register. The A register is then incre-
mented by 1.

Example

CASSETTE STOP
CASSETTE STOP WHEN X NEQ Y

8-15

CLEAR

Syntax

CLEAR r - { register) | —I

— (scratchpad . word) ——-J

Semantics
This instruction sets the specified register(s) or 24-bit scratchpad word(s) to zero.

The following may be cleared:

{ register) {scratchpad. word)

A SOA

BR e

CA CB *CC *CD CP CPU S15A

FA FB FL FT FU

FLC FLD FLE FLF SOB

LA LB LC LD LE LF ——

TA TB TC TD TE TF TAS S15B

TOPM (available on B1720 only)
*CC and CD represent processor interrupts and flags
Each register clear takes one clock cycle; each scratchpad word clear takes two clock cycles.
NOTE

MOVE NULL TO (register) will be generated for each
register specified on B 1710 systems. '

Example

CLEAR S10A
CLEAR BR L CB S4B TOPM FU

8-16

CODE.SEGMENT

Syntax
CODE.SEGMENT-——-———»(label)—>|

Semantics

See Segmentation: CODE.SEGMENT

8-17

COMPLEMENT

Syntax

COMPLEMENT (register) ((literaly)

LND register) ({ literal)) ——*’T

Semantics

This instruction COMPLEMENTS (switches the state of) the specified bit. By using the options, more than
one bit in any one register can be complemented with the same instruction IF ALL BITS ARE IN THE
SAME 4-BIT REGISTER. (See also: SET and RESET.)

The { register) may be any 4-bit source and sink (destination) register below:

CA CB CC CD (CC and CD represent processor interrupts and flags)
FT FU

FLC FLD FLE FLF

LA LB LC LD LE LF

TA TB TC TD TE TF

TOPM (available on B1720 only)

It may also be the FL, FB, L, or T register: all bits must then be in the same 4-bit subfield.

The literal has a decimal range from 0 to 3 for a 4-bit register; from O to 15 for the FL register; and from
0 to 23 for the FB, L, and» T registers.

Example
COMPLEMENT LD(0) AND 1(13)
LA LB LC LD LE LF
L 0001 0010 0011 1000 0101 0110 before (123856)
L 0001 0010 0011 0100 0101 0110 after (123456}

0] 3 4 7 8 11 H 15 16 17 18 23
LD(0) -L{13)

8-18

It should be noted that most registers can be addressed in either of two ways:

LA LB LC LD LE LF
0 3 3 3 01 23 0 3 0 3
0 ... 3 7 11 12 ... 15 16 19 20 ... 23
1 L(0) LD(0) L(13)
or or o
LA(0) L(12) LD(1)

8-19

COUNT

Syntax

COUNT ——#= FA——# UP |__> j ™ 8Y CPL »I
AND FL DOWN (literal) [’——’l‘of\
L DOWN - BITS
l—'— AND FL—[-> uP

- DOWN
—p FL, = UP
: 1 AND FA DOWN—J
DOWN
' |——-> AND FA —» UP
|——> DOWN -J

A

Semantics

This instruction increments or decrements the designated registers by the value of the (literal) or the
contents of the Control Parallel Length (CPL) register. If the value of {literal) is 0, the value contained
in the CPL register is used.

If the FA register is counted down, it may pass through O (i.e., if FA=0 and is counted down by 1, it
will be set to hexadecimal FFFFFF). If the FL register is counted down, it will not become less than 0.

If either the FA or FL register overflows, wraparound to or through 0 will occur; e.g., if either is equal to
the maximum value it can contain and is counted up by 1, it becomes equal to O.

The {literal) has a maximum decimal value of 72.

8-20

Example

Count FA Up and FL Down by 10

FA- 0000 1001 1010 0111 111 1011 before (09A7FB)
- - - - - 1010 (literal) +A
FA 0000 1001 1010 1000 '0000 0101 after (09A805)
FL 0000 0000 0000 1000 before (0008)
- - - 1010 (literal) -A
FL 0000 0000 0000 0000 after (0000)

FA is counted up by decimal 10 (hexadecimal A), while FL is counted down by 8 to its minimum value.

8-21

DEC

Syntax

DEC ____ (source . sink - register) —————w= BY ———w» (source - register) *I
— (Jiteral) >| » TEST —J

Semantics

This instruction decrements the contents of a 4-bit { source.sink.register) by the value of the (literal) or
the contents of a 4-bit {source.register). The result is placed in source.sink.register); the contents of
(source.register) remain unchanged. (see also: INC.) ’

The registers may be any of the following:

(source.sink.register) (source.register

CA CB *CC *CD (source.sink.register)

FT FU BICN

FLC FLD FLE FLF FLCN

LA LB LC LD LE LF INCN (available on B1720 only)
TA TB TC TD TE IF XYCN

TOPM (available on B 1720 only) XYST

*CC and CD represent processor interrupts and flags
The (literal) has a decimal range from O to 15.
If the TEST option is used and { source.sink.register) underflows (is decremented beyond 0, the smallest
value it can contain), the next micro-instruction is skipped. If underflow does not occur or if the TEST
option is not used, the next micro-instruction is executed.

NOTE

All 4-bit registers count modulo 16;e.g., if a register

contains a value of 0 and is decremented by 2, it

underflows to a value of 14,

Example

DEC TB BY 7
DEC FLD BY LC TEST

8-22

DEFINE

Syntax

DEFINE ———————— (identifier) = T 4-'
I—»(string)J |—> # —J

Semantics

This declaration assigns a name ({identifier)) to a string of characters. Any subsequent reference to the
(identifier)is replaced by the({string). The pound sign merely clarifies the end of the DEFINE (srring)if
present.

(String) may be a scratchpad name (24 or 48-bit); a register name; a {literal); a part of one instruction;
an entire instruction, part of which may have been previously DEFINED; or empty. It may neither
begin with a pound sign (#) nor contain any embedded pound signs.

The entire DEFINE declaration must be contained on one card, and all DEFINEs must be declared prior
to any executable instruction. ‘

Nested DEFINEs are allowed up to 13 levels.

Example

DEFINE SOURCE.POINTER = S3# % LOAD F FROM SOURCE.POINTER
DEFINE OP.REG =L % CLEAR OP.REG

DEFINE TEST.OP = @80 0000@# % MOVE TEST-OP TO OP.REG
DEFINE HINT = CC(3) - % RESET HINT

DEFINE IGNORE.HALT = RESET HINT % IGNORE.HALT

DEFINE LAZY = WRITE 21 BITS FROM X INC FA AND DEC FL#% FINGER SAVER

8-23

DEFINE.VALUE

Syntax

DEFINE.VALUE

——=(identifier)= (literal) f}
(literal) —J

——->+j——>
-

Semantics

This instruction assigns the value of the {arithmetic.expression) to the identifier). Any occurrence of the
{identifier) in the program is replaced by its assigned value.

DEFINE.VALUE creates a 24-bit (literal). Values less than zero are in 2’s complement notation and are
24 bits long.

If defined (identifier) are used as {literals) in the { arithmetic.expression), they must be previously defined.

Example

DEFINE. VALUE AA = @50@ % VALUE is hex 000050
DEFINEB=AA +1 % VALUE is hex 000051
DEFINEC=AA-3 % VALUE is hex 00004D
DEFINE.VALUE F03 = @(1)0010@ + 4 % VALUE is hex 000006

8-24

DISPATCH

(available only on B 1720 systems with port interchange)

Syntax
DISPATCH — g LOCK ,'
L » SKIP WHEN UNLOCKED -J
= WRITE
L__» READ
—» AND CLEAR —J
Semantics

This instruction sends a message (e.g. an 1/O descriptor address) from the processor to a device on an I/O
port.

Before sending a message to a port, the processor should first attempt to gain control of the interrupt
system with a DISPATCH LOCK. This is necessary because the interrupt system is shared by all ports.

DISPATCH LOCK locks (marks as “in use’’) the interrupt system. If the interrupt system was already
locked, the next micro-instruction is skipped.

DISPATCH LOCK SKIP WHEN UNLOCKED locks the interrupt system and skips the next micro-
instruction if the interrupt system is already unlocked.

DISPATCH WRITE sends a 24-bit message to a port. Before a DISPATCH WRITE is executed, the L
register must contain the 24-bit message; the seven least-significant bits of the T register must contain
the destination port (bits 17-19) and channel numbers (bits 20-23). The contents of the L register are
then stored in the Dispatch buffer (main memory locations 0-23), and the port and channel numbers
are transferred to a hardware register (Dispatch register) in the port interchange. The contents of the
L and T register remain unchanged.

DISPATCH READ transfers both a 24-bit message from the Dispatch buffer to the L register, and the
source port and channel numbers to the seven least-significant bits of the T register.

NOTE

If T (23) is found set after a DISPATCH READ and
the source port is an I/O multiplexor, a main memory
parity error was encountered during the fetch of an
I/O descriptor address or an I/O descriptor, or during

a RESULT SWAP operation. Consequently, the
message transferred to the L register will be the address
+24 of the parity error.

8-25

DISPATCH READ AND CLEAR does everything a DISPATCH READ will do and in addition clears the
Interrupt Condition (INCN) register. That is, it resets all INCN bits to zero.

Only the least-significant seven bits of the T register are involved in any DISPATCH operation.

If the SKIP WHEN UNLOCKED option is used with any variant other than a DISPATCH LOCK, the
next micro-instruction is skipped.

8-26

ELSE

Syntax

ELSE

Semantics

I——> (statement) —J

The ELSE statement is used in conjunction with the IF statement to indicate that a (statement) is to be

executed on a condition False. For example:

IF condition THEN

statement
ELSE
statement

The statement following the THEN clause will only be executed if the condition is true. Likewise, the
statement following the ELSE clause is executed only if the condition is false.

The IF statement may also contain a BEGIN/END block following the THEN clause, in which case the
ELSE clause becomes part of the END statement (see: END).

Examples

a. If condition THEN
statement

ELSE

statement

b. IF condition THEN

BEGIN

END ELSE
statement

c. IF condition THEN
statement

ELSE
BEGIN

END

8-27

8-28

IF condition THEN
BEGIN

END ELSE
BEGIN

END

EMIT.RETURN.TO.EXTERNAL

Syntax

EMIT.RETURN.TO.EXTERNAL : DI

Semantics

This instruction causes the compiler to emit the common code necessary to get back to the main segment
from the external segment. The compiler automatically emits this code when the first CODE.SEGMENT
statement is encountered. If the program requires the code to be emitted before the first CODE.SEGMENT
is encountered, this statement can be used to emit the code. This code also includes the return code used
when the segment is exited for the last time. (See: Segmentation.)

- RESTRICTION
This statement cannot be used more than once in a

program, and cannot be used after the occurrence
of the first CODE.SEGMENT statement.

8-29

END

Syntax

END »(Mbel)T——b ELSE j——’l

Semantics

This statement is paired with the BEGIN statement to combine MIL statements into logical blocks. The
END statement must have the same { label) as its matching BEGIN statement.

The ELSE clause is used only when needed as part of an IF statement. For example:
BLOCK
NESTING
LEVEL MIL STATEMENT

IF condition THEN
BEGIN TEST.TRUE.BLOCK

END TEST.TRUE.BLOCK ELSE
BEGIN TEST.FALSE.BLOCK

— e b bt () et b = e OO

END TEST.FALSE.BLOCK

Good programming practice recommends that BEGIN’s and matching END’s start in the same column
while the statements within the block should be indented to reflect the nesting level. (See also: BEGIN
and LOCAL.DEFINES).

Example

IF LD(2) FALSE THEN
BEGIN EMIT.INFO
WRITE 16 BITS FROM T INC FA AND DEC FL
MOVE X TO S7A
SET CB(1)
END EMIT.INFO ELSE
MOVE Y TO S7B

8-30

EOR

Syntax

EOR ——»(source - sink - registery —— \WITH —I::

Semantics

(literal)

(source -

This instruction logically EXCLUSIVE ORs the bits in a 4-bit { source.register) with the value of the literal
or the contents of a 4-bit { source.register). The result is placed in (source.sink.register); the contents of
{source.register) remain unchanged. (See also: AND and OR.)

The register may be any of the following:

(source.sink.register)

CA CB *CC *CD
FT FU
FLC FLD FLE FLF

LA LB LC LD LE LF

TA TB TC TD TE TF

TOPM (available on B1720 only)

{source. register)

{source.sink.register)

BICN
FLCN

INCN (available on B1720 only)
PERR (available on B1720 only)

XYCN
XYST

#CC and CD represent processor interrupts and flags.

The {literal) has a decimal range from 0 to 15.

Table 8-2 EOR Truth Table

Source.Sink-.Register

(literal)
Source.Registgr

Source.Sink .Register

0 EOR 0 Yields 0
0 EOR 1 Yields 1
1 EOR 0 Yields 1
1 EOR 1 Yields 0

8-31

Example

EOR TB WITH 3

TA T8 TC D TE TF

T 0000 0101 111 0011 0001 0010 before (05F312)
- 0011 - - - - EOR (030000)

T 0000 0110 1111 0011 0001 0010 after (06F213)

8-32

EXIT

Syntax

EXIT ’I

Semantics

This instruction returns program control to theicalling routine by causing the compiler to generate a MOVE
TAS TO A operation.

The top of the A stack (TAS) is moved to the ADDRESS (A) register, which is used by the hardware logic
as the address of the next micro-instruction to be fetched. The stack is decremented automatically by the
hardware after the move.

NOTE

MOVE TAS TO A may be used instead of EXIT
with the same result.

8-33

EXTRACT

Syntax
EXTRACT ——— (arithmetic - expression) BITS FROM T ({literal)) —|
L—» (declared . identifier) FROM T l—-> TO——» L -
I—-> ({literal)) T
X
Y -
Semantics

This instruction isolates the specified bits from the T register and moves them to a distination register (L,
T, X, Y). If a destination register is not specified, T is assumed.

The value of the following combinations may not exceed 24 bits:

{arithmetic.expression) +{literal) .

DATA.LENGTH of { declared.identifier)

DATA.LENGTH of { declared.identifier)literal)

DATA.LENGTH of {declared.identifier) + DATA.ADDRESS of { declared.identifier)
| NOTE

If the starting bit for { declared.identifier) is not
specified, its DATA.ADDRESS is used. .

Examples

EXTRACT 4 BITS FROM T(20) TO L

DECLARE
1 STUFF REMAPS BASE.ZERO BIT (24),

2 ITEM.I BIT @),

2 ITEM.2 BIT (127),

2 ITEM.3 CHARACTER (1);

MOVE STUFF TO FA

ADD BASE TO FA

READ DATA.LENGTH (STUFF) BITSTO T
EXTRACT ITEM.2 FROM T TO X
EXTRACT ITEM.1 FROMT() TO T

8-34

EXTRACT 4 BITS FROM T(20) TO L

TA TB TC TD TE TF
T 0000 0001 0011 1000 1110 0100 before (0138E4
T(20)
LA LB LC LD LE LF
L 1001 1110 0011 1001 1111 1100 before (1E39FC)
L 0000 - 0000 0000 0000 0000 0100 after (000004)

Register T remains unchanged while its four extracted bits are placed in the L register. The bits are right-
justified; leading zeroes are added.

EXTRACT 0 BITS FROM T(23) TO a destination
register may be specified, but the programmer must

NOTE

OR into the M register the number of bits to be

extracted. Caution must be exercised, however, when
ORing into the M register: the machine hardware

instruction requires the right-bit pointer for the

extraction field, not the left. The hardware also
indexes the T register from 1 to 24, left to right,
not 0 to 23; the compiler performs this conversion.

8-35

FA.POINTS

Syntax

FA.POINTS TO ———(arithmetic-expression)

-]

Semantics

This pseudo-operation does not generate any code. It merely informs the compiler of the current contents
of FA. This information is then used when compiling the POINT constructs in the READ, WRITE and
POINT instructions.

The FA .POINTS and POINT constructs are provided so that the user may symbolically reference the
memory structures declared in a declaration statement. Such references will show up in a cross-reference
listing and can often result in automatic code changes when the declaration needs to be changed.

Example

DECLARE
1 STRUCTURE,
2 DATA.A BIT(10),
2 DATA.B CHARACTER(20),
2 DATA.C FIXED;

FA.POINTS TO DATA.A

READ DATA.LENGTH (DATA.A) BITS TO X POINT FA TO DATA.B
POINT FA TO STRUCTURE

MOVE DATA.C TO FA

WRITE DATA.LENGTH (DATA.C) BITS FROM Y POINT FA TO DATA.B

8-36

Semantics

This instruction signals the compiler that the end of the file of source images has been reached. It should
be the last statement in the source program.

8-37

GO TO

Syntax

GO TO

l j - (lgbel)—»'
+

This instruction transfers control to the location specified by (label). (Label) must be associated with a
run time address that has a displacement from the GO TO instruction of less than 4096 micro-instructions.

Semantics

Example
GO TO SORT.ROUTINE

GO TO -LOOP.1
GO TO +LOOP.2

8-38

HALT

Syntax

HALT ’l

Semantics

This instruction brings the proéessor to an orderly halt. The settings of the register select dials determine
the register displayed.

Pressing the START pushbutton on the system Console will cause the processor to again begin executing

micro-instructions. If the STEP/RUN switch is in the STEP position, only one micro-instruction is
executed each time the START pushbutton is depressed.

8-39

IF
Syntax

FORMAT 1: CONDITIONAL PROGRAM CONTROL

—» TRUE —

IF ———=(register) ({literal)) j»THEN-»BEGIN-'C<suufement>——> END]

o statement)

= FALSE —

L= (condition)

L= F| SE -—— BEGIN E(statement) ———~ END

‘o= (statement)

FORMAT 2: CONDITIONAL COMPILATION CONTROL

IF-»=(module - option) » THEN INCLUDE BEGIN —£-> (statement) = END >|
[TRUE j ' %
— FALSE
-
— ELSE BEGIN —L»(statement) b END —

Semantics
FORMAT 1. CONDITIONAL PROGRAM CONTEROL

This instruction tests a bit(s) for TRUE (one) or FALSE (zero), If the test condition is met, either the
specified single statement or the specified BEGIN/END statement(s) is executed. If the test condition

is not met, a branch around the first BEGIN/END pair is taken, and the ELSE BEGIN/END statement(s)
is executed. Logical operators are valid on the registers immediately following the IF, enabling more than
one bit to be tested at the same time, but only if all of the bits are in the same 4-bit reglster (See also:
COMPLEMENT, SET and RESET.)

840

Logical operators are valid on the registers immediately following the IF, with the following restrictions:

1) All registers logically related must be within the same 4-bit group: IF T(0) and T(3) is
valid, IF T(2) and T(4) is not.

2) Only two register elements may be logically related: IF T(2) or T(0) is valid, IF T(2) and
T(1) and T(0) is not.

3) NOT logic may be applied anywhere: IF NOT (L(3) or NOT L(0)) is valid.
The { register) may be any 4-bit source and sink (destination) register below:
CA CB CC CD (CC and CD represent processor interrupts and flags)
FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF
TOPM (available on B1720 only)
The (register) may also be the FL, FB, L, or T register: all bits must then be in the same 4-bit subfield.

The {literal) points to the bit position which is to be tested. It has a decimal range from 0 to 3 for a
4-bit (register); from 0 to 15 for the FL register; and from O to 23 for the FB, L and T registers.

The condition may be any of the following conditions available from the condition registers:

8-41

8-42

X
L.

b LSS ————y
———— GEQ ———»

e LEQ——-———J

Y
<

—» GEQ ——»

—— ANY.INTERRUPT

n]
b EQL ———»

———— NEQ ——»

o

]
.

—— <
= GTR ——— =}

- > —

= | SS ——»

————» | _LEQ ~———

Y
X

—— FL

p— <

‘::GTR —
> —

==]
e EQ | =

= NEQ ————

> 0
L~ SFL—,

¥

» SFL

— CYD

—= CYF

——— CYL
——— LSBX
—-——» LSBY
= LSUX
——— LSUY
——= MSBX

——— LOCKOUT
L———» HI. PRIORITY
p—~- INTERRUPT
L———» NO.DEVICE

Y

Borrow Out Level

Carry Flip-Flop

Carry Out Level

Least Significant Bit of X
Lease Significant Bit of Y
Least Significant Unit of X
Least Significant Unit of Y '
Most Significant Bit of X

Any combination of conditions that is contained in one condition register can be tested using AND/OR
logic if all bits can be tested for TRUE (on) or FALSE (off). For example, the following are valid
conditions:

CYL AND LSUY
CYLORCYD

EXAMPLE: IF CYL AND LSUY TRUE THEN GO TO END.OF.ROUTINE
IF CYL OR CYD FALSE THEN GO TO LOOP

If TRUE or FALSE is not specified, TRUE is assumed.
EXAMPLE: IF TD(2) THEN GO TO LABL7

Register TD Branch to LABL7
0101 NO (bit position two is OFF)
1101 NO (bit position two is OFF)
o111 YES (bit position two is ON)
0011 YES (bit position two is ON)

Note: TD(2) could have been referred to as T(14)

Example
The following examples illustrate Format 1: Conditional Program Control:
IF X=Y THENGO TO +A

IF TB(1) ORTB(3) THEN EXIT
IF LF(2) THEN

MOVEXTOY
IF FU(1) FALSE THEN
COMPLEMENT T(10)
ELSE
RESET FL(5)

FORMAT 2: CONDITIONAL COMPILATION CONTROL

This instruction should be used for conditional inclusion of code, depending upon the setting of a user-
defined, (module.option) toggle. This { module.option) toggle is declared and SET or RESET via a module
option $card. (See Appendix A: MIL Compiler Operation.)

More than one { module.option) toggle can be tested with the same IF statement by using AND/OR logic.
If NOT is used in front of any { module.option’ toggle, that { module.option) toggle is checked for the
RESET state. If both TRUE and FALSE are omitted, TRUE is assumed.
NOTES
1. A conditional inclusion-block may not be used to

include or exclude a BEGIN statement when the
associated END statement is not part of the block.

8-43

2. Logical operators are valid on the registers
immediately following the IF, with the following
restrictions and capabilities:

a. All registers logically related must be within
the same 4-bit group: IF T(0) AND T(3) is
valid, IF T(2) AND T(4) is not.

b. Only two register elements may be logically
related: IF T(2) or T(0) is valid, IF T(2) AND
T(1) AND T(0) is not.

¢. NOT logic may be applied anywhere: IF NOT
(L(3) OR NOT L(0)) is valid. .

The following examples illustrate Format 1 (Conditional Program Control):

IF X=Y THEN GO TO +A
IF TB(1) OR TB(3) THEN EXIT

IF LF(2) THEN
MOVEXTOY
SET TA(1)
IF FU(1) FALSE THEN
COMPLEMENT T(10)
ELSE
RESET FL(5)
SET L(6) AND L(7)

IF FLF(3) FALSE THEN
BEGIN
RESET FB(1) AND FB(3)
CLEAR S14A
END
XCH S14 F S14

IF LA(0) THEN
BEGIN
MOVE TASTO T
END ELSE
MOVEFATOT
MOVE TE TO LF

IF TD(3) THEN
MOVE LTO X
ELSE
BEGIN
MOVETTOX
MOVE SUM TO X
END
MOVE SUM TO FA

8-44

IF LA = 14 THEN
BEGIN
MOVE 512 TO X
END
COMPLEMENT FU(0) AND FU(2)

The following are examples of conditional inclusion of code:

$ SET DEBUG, RESET TRACE
$ SET TRACE, RESET B1700

After processing these § cards, the module options will be set TRUE or FALSE as follows:

DEBUG = TRUE
TRACE = TRUE
B1700 = FALSE

IF DEBUG THEN INCLUDE
CALL DEBUG.ROUTINE
IF TRACE THEN INCLUDE
BEGIN
CALL SAVE.REGISTERS
CALL TRACE.ROUTINE
END
IF DEBUG AND NOT B1700 INCLUDE
BEGIN
MOVE T TO X
END ELSE :
BEGIN
MOVE L TO X
MOVE T TO SOA
END
IF NOT TRACE OR B1700 INCLUDE
BEGIN
MOVE L TO X
MOVE T TO S1A
END ELSE
BEGIN
CALL TRACE.ROUTINE
MOVE T TO X
END ELSE
BEGIN
CALL TRACE.ROUTINE
MOVETTO X
END

Any of the preceding examples may be nested within any of the above BEGIN/END pairs up to a maximum
of 15 levels. That is, at any given time during a compilation there may be at most 15 BEGINs that have
not been paired with their respective ENDs.

8-45

INC

Syntax

INC ———(source-sink-register) & BY ™ (source-register) Dl
L (literal) J —= TEST -J

Semantics

This instruction increments the contents of a 4-bit { source.sink.register) by the value of the {literal) or the
contents of a 4-bit { source.register). The result is placed in the (source.sink.register); the contents of the
(source.register); remain unchanged. (See also: DEC.)

The registers may be any of the following:

{source.sink.register) (source.register)

CA CB *CC *CD {source.sink.register)

FT FU BICN

FLC FLD FLE FLF FLCN

LA LB LC LD LE LF INCN (available on B1720 only)
TA TB TC TD TE TF XYCN

TOPM (available on B1720 only), XYST

*CC and CD represent processor interrupts and flags
The literal has a decimal range from 0 to 15.
If the TEST option is used and source.sink.register overflows (is incremented beyond 15, the largest value
it can contain), the next micro-instruction is skipped. If overflow does not occur or if the TEST option is
not used, the next micro-instruction is executed.
NOTE

All 4-bit registers count modulo 16;e.g., if a register

contains a value of 15 and is incremented by 2, it over-

flows to a value of 1.

Example

INCLB BY 7
INC FLD BY BICN TEST

8-46

JUMP

Syntax

JUMP - FORWARD_ "
—— BAC KWARDM—J L (Jjteral) ——J ‘
——» TO

= (label)
L

This instruction transfers control to the designated location.

Semantics

The address of (label) is limited to a maximum relative displacement of plus or minus 4095 micro-
instructions.

The {literal) has a decimal range from 0 to 4095.

If (literal) is not specified, FORWARD/BACKWARD causes the compiler to generate a JUMP instruction
with a displacement of zero and a direction sign of plus or minus. This is to facilitate ORing the actual
displacement into the M register prior to the execution of a JUMP instruction.

Examples

JUMP TO + LOOP.1

JUMP TO END.OF.CODE.LABEL
JUMP FORWARD

JUMP BACKWARD

NOTE

It is strongly recommended that only JUMP FORWARD
and JUMP BACKWARD be used, that they be used only
without a (literal), and only where necessary to generate
a displacement of zero. Use the GO TO statement for
all other uses.

8-47

LIT

Syntax

—]:: MOVE_—J———> (literal) TO (sink-register) —j—>|
LIT (scratchpad-word)

Semantics

This instruction moves a { literal) to any sink (destination) register (except the M register) or to any 24-bit
scratchpad word. (See also: MOVE.)

The { literal) may be any decimal integer from O to 16777215, a hexadecimal number from @0@ to
@FFFFF@, a binary number from @(1)0@ to @(1)111111111111111111111111@, or a { character.string)
up to three characters in length. Leading zeros are not required unless the actual value of the (literal) is
zero. The value of the (literal) should not exceed the maximum value that the (sink.register) can contain;
if less, left zero fill occurs.

(Literal) moves to a 24-bit scratchpad word generate MOVE (literal) TO TAS followed by MOVE TAS TO
{scratchpad.word).

PROGRAMMING NOTE

It is recommended that the MOVE instruction be used
instead of LIT.

Example
MOVE 12 TO L
LA LB LC LD LE LF
L 0011 0000 1001 1010 0001 0011 before (309A13)
1100 LIT (C)
L 0000 0000 0000 0000 0000 1100 after (00000C)

8-48

LOAD

Syntax
LOAD F FROM ———>(double-scratchpad-word),-+-—>{

Semantics
This instruction moves any 48-bit double scratchpad word (SO . .. S15) to the Field (F) register.
NQTE

The compiler will generate two MOVE instructions
for B 1710 systems.

Example

LOAD F FROM S11

8-49

LOAD.MSMA
(Available on B 1720 systems only)

Syntax
LOAD.MSMA ——L—> START -1
—= STOP —J

Semantics

This pseudo-operation causes the compiler to either start or stop prefacing all emitted mlcrocode with the
first 16 bits of a MOVE 24 BIT LITERAL TO MSMA instruction.

The above action is required when a microprogram is to be loaded into control memory from a cassette
tape while the system is in the TAPE mode. The action of the hardware while in this mode is as follows:

.READLOOP

READ 16 BITS FROM THE CASSETTE TO THE U-REGISTER

MOVEUTOM

IF M = FIRST HALF OF 24-BIT LITERAL MOVE, THEN READ 16 BITS
FROM THE CASSETTE TO U

EXECUTE THE MICRO-OPERATION IN M ‘
(IF M= @9D00@=MOVE 24-BIT LITERAL TO THE CONTROL MEMORY
WORD ADDRESSED BY THE A-REGISTER; THEN U, WHICH NOW
CONTAINS THE ACTUAL MICRO-INSTRUCTION, IS MOVED TO
CONTROL MEMORY ADDRESSED BY THE A-REGISTER AND A IS
INCREMENTED BY 1)

IF M = CASSETTE STOP THEN
STOP CASSETTE AND HALT PROCESSOR

ELSE
JUMP TO -READLOOP

No statement between LOAD.MSMA START and its corresponding LOAD.MSMA STOP may reference
any (label) which has not been declared prior to the LOAD.MSMA STOP.

8-50

Example

The following source code could be used to enable a microprogram to be loaded from a cassette into
control memory, beginning at control memory address zero:

MOVE 0O TO A

SEGMENT ANYNAME AT 0
LOAD.MSMA START

(Microprogram)

LOAD.MSMA STOP
MOVEOTO A
CASSETTE STOP

8-51

LOAD.SMEM

Syntax

LOAD.SMEM —E: STARTT—"|
STOP

Semantics
This pseudo-instruction causes the compiler to either start or stop appending each micro-instruction with
the following instructions:

MOVE 24 BIT LITERAL TO X

WRITE (25) BITS FROM X

WRITE 16 BITS FROM X INC FA

These instructions are required when a microprogram is to be loaded into main memory from a cassette
tape while the system is in the TAPE mode.

Example

MOVE 4096 TO FA % START ADDRESS
LOAD.SMEM START

(microprogram)

LOAD.SMEM STOP

CASSETTE STOP

NOTE: The FA muét start at a mod 32 value.

8-52

LOCAL.DEFINES

Syntax

LOCAL.DEFINES ’I

Semantics

This statement is provided to allow the use of local definitions (sece DEFINE, DEFINE.VALUE, DECLARE ,
MACRO). Local definitions are useful in limiting unauthorized or unnecessary access of special-purpose
definitions outside of their only areas of use. LOCAL.DEFINES, however, does allow duplicate definitions
with a special local meaning probably different from a more global meaning. Thus microprogrammers should
be careful to avoid such potentially confusing duplications.

A definition which follows LOCAL.DEFINES has that definition only within the scope of the block in
which it is defined. For example:

BLOCK
NESTING

LEVEL MIL STATEMENTS
0 BEGIN LOCAL.BLOCK.1
1 DECLARE L.1 FIXED;
l LOCAL.DEFINES
1 DECLARE L.2 FIXED;
1 BEGIN INNER.BLOCK.1
2 DECLARE 1.1 FIXED;
2 LOCAL.DEFINES
2 DECLARE 1.2 FIXED;
1 END INNER.BLOCK.1
0 END LOCAL.BLOCK.1
0 BEGIN LOCAL.BLOCK.2
1 DECLARE AA.1 FIXED;

The definition of L.1 preceeds LOCAL.DEFINES and may be referenced outside of LOCAL.BLOCK.1.
The definition of L.2 follows a LOCAL.DEFINES and may be referenced only within LOCAL.BLOCK.1.

The definition of 1.1 follows LOCAL.DEFINES of LOCAL.BLOCK.1 and is within that block. Thus I.1
may be referenced only within LOCAL.BLOCK.1.

The definition of 1.2 follows LOCAL.DEFINES of INNER.BLOCK.1 and is within that block. Thus 1.2
is limited to use within INNER.BLOCK.1.

The definition of AA.1 is not within any block containing LOCAL.DEFINES. Thus AA.l may be used
anywhere in the statements that follow, even outside of LOCAL.BLOCK.2.

8-53

The previous example was not intended to be a model for microprogrammers. It merely demonstrates the
effect of LOCAL.DEFINES. Good programming practice is to combine all global definitions at the begin-
ning of the program and to combine all local definitions after the LOCAL.DEFINES following the BEGIN
statement of the block to which they are localized.

Example

BEGIN LOCAL.BLOCK
LOCAL.DEFINES
DEFINE
DEFINE.VALUE . ..
DECLARE . ..
MACRO. ..
% MIL STATEMENTS FOLLOW

END LOCAL.BLOCK

8-54

MACRO DECLARATION

Syntax

MACRO { macro-identifier)

= L(statement— list) e p —bl

L (-Eb(formal.parameter)) _.T

This declaration assigns a name, the {macro.identifier), to a (statement.list) and declares any (formal. para-
meter)s that is used in the (statement.list). Any subsequent reference (see MACRO reference) to (macro.
identifier) will be replaced in-line by the (statement.list) and any (formal parameters) used in these state-
ments will be replaced by the (actual. parameters) used in the MACRO reference.

Semantics

The { macro.identifier) and the { formal.parameter) list must be contained on one line, and this line must be
terminated by an equal sign (=). The macro statement list must then follow, beginning on the next line,
with one statement per line. '

A MACRO declaration must be terminated by a pound sign (#), either at the end of the last statement or
in columns 6 through 72 of the following line. For this reason, a statement within a MACRO declaration
must not contain a pound sign that is not a part of a { character.string).

The { formal.parameter) list must be enclosed in parentheses. A (formal parameter) must be a (simple.
identifier). If there is more than one (formal parameter), they must be separated by commas.

RESTRICTIONS
1. A MACRO must not reference itself although it
may reference another MACRO. The maximum

level to which MACROs may be nested is 10.

2. A MACRO may have a maximum of 7 { formal,
parameters.

3. A MACRO may have a maximum of 100 statement
lines (records) in its statement.list).

4. A MIL program may have a maximum of 100
MACRO declarations.

8-55

PROGRAMMING NOTE

A MACRO is often used as a single statement following
an IF statement. If the MACRO declaration statement
list consists of more than one statement and the state-
ment list is not bounded by a BEGIN/END pair, then a
branch will be made around ONLY the first statement
when the IF condition tests false. Whenever an entire
MACRO (statement.list> could conceivably be used as
either the THEN or ELSE part of an IF statement, the
first statement in the { statement.list) should be BEGIN
and the last statement should be END.

Examples

MACRO EXCHANGE (DESC.1, DESC.2) =
BEGIN
LOAD F FROM DESC.1
.LOOP
SWAP.THE.F.FIELD.WITH (DESC.2)
IF FL NEQ 0 THEN GO TO -LOOP
END#

MACRO SWAP.THE.F.FIELD.WITH (FIELD) =

BEGIN

BIAS BY F

READ TO X

XCH FIELD F FIELD

SWAP WITH X

COUNT FA UP AND FL DOWN BY CPL

XCH FIELD F FIELD

WRITE FROM X INC FA AND DEC FL
END#

% The above MACROs could be referenced as follows:

IF X Y THEN
EXCHANGE (FIELD.A, FIELD.B)

8-56

MACRO REFERENCE

Syntax

{ macro-identifier) T +‘
L (—E-> {actual-parameter) —|—>) ——vT

Semantics

A MACRO reference is replaced in-line by the statements in the (statement.list) associated with the
MACRO declaration of { macro.identifier) and the actual. parameter)s replace the occurrences of { formal.
parameter’s used in these statements (see MACRO declaration).

There must be a one-to-one correspondence between formal and actual parameters, i.e., no { actual para-
meter) may be omitted or left empty (blank), and the first { actual parameter) replaces the first formal.
parameter declared, etc.

(Actual. parameter)s may be (identifier), (literaDs, { string)s, reserved words, single line MIL statements or
portions of statements. In short, they may be almost anything, with the following exceptions:

RESTRICTIONS
{ Actual. parameter)s may not be or contain:

1. A comma, %, or unpaired parenthesis, unless con-
tained in a { character.string).

2. An unpaired quotation mark ().

3. A{labeD, unless preceeded, as a part of the
{actual parameter), by.a non-label token.

Example

MACRO GET.TABLE.DATA (TABLE.ADDRESS,ELEMENT.LENGTH, ELEMENT.IX, REG) =
BEGIN .
MOVE ELEMENT.LENGTH TO X ‘
MOVE ELEMENT.IXTO Y
CALL SET.SCRATCH.TO.X.TIMES.Y
MOVE TABLE.ADDRESS TO FA
ADD INTERP.MAIN.MEMORY.BASE TO FA
ADD SCRATCH TO FA
' READ ELEMENT.LENGTH BITS TO REG
END#

8-57

% Which could be referenced as:
GET.TABLE.DATA (ADDRESS (TABLE.A), 24, L, X)

Note that TABLE.A is a {label) and therefore could not be used alone as an {actual parameter).

8-58

MAKE.SEGMENT.TABLE.ENTRY

Syntax

MAKE.SEGMENT.TABLE.ENTRY - ,‘

—» VALUE (literal)—J

Semantics

This instruction causes an entry to be written into the segment name-to-number correspondence table
which is made a part of the final code file. This table, together with the segment dictionaries, can be used
for load time binding.

The format of each entry in the correspondence table is as follows:

1 CORRESPONDENCE.TABLE.ENTRY BIT (44) :
2 CORR.SEGMENT.NAME CHARACTER (10),
2 CORR.EXTERNAL.SEGMENT.NUMBER BIT (8),
2 CORR.INTERNAL.SEGMENT.NUMBER BIT (8),
2 CORR.VALUE BIT (8),
2 CORR.INTERNAL.SEGMENT.FLAG BIT (1),
2 FILLER BIT (39);

CORR.VALUE is set to zero if the “VALUE (literal)” clause is not present. If present, it must not exceed
255.

CORR.ESTERNAL.SEGMENT.NUMBER is always set to the number of the current external (CODE.
SEGMENT) segment. If no CODE.SEGMENT statement has been compiled at a given point, the value is
Zero.

If this statement is used immediately following a SEGMENT statement then the remaining fields are set
as follows:

CORR.SEGMENT.NAME is set to the name of the internal segment with right truncation or
blank fill.

CORR.INTERNAL.SEGMENT.NUMBER is set to the number of the internal segment.
CORR.INTERNAL.SEGMENT.FLAG is set to 1.

If this statement is used immediately following a CODE.SEGMENT statement, or prior to the occurrence
of either any CODE.SEGMENT or SEGMENT statement then the remaining fields are set as follows:

CORR.SEGMENT.NAME is set to the name of the external (CODE.SEGMENT) segment, with right
truncation or blank fill. This field will be blank if neither a CODE.SEGMENT nor a SEGMENT
statement has yet occurred.

CORR.INTERNAL.SEGMENT.NUMBER is set to zero, as is CORR.INTERNAL.SEGMENT.FLAG.

This statement can be used more than once within a segment if more than an 8-bit value is required.

8-59

MICRO

Syntax

MICRO ———(literal) ———’I

Semantics

This instruction places a 16-bit constant in line. The programmer is responsible for providing any protec-
tion that may be needed to prevent a MICRO from executing; therefore, this instruction should be used
with caution. ’

The (literal) has a decimal range fr_om 0 to 65535.

Examples

MICRO @83AA®@ % THIS IS EQUIVALENT TO “MOVE @AA@ TO L”
MICRO “22” % THIS IS EQUIVALENT TO @F2F2@

MICRO “HI” % “HI” = @C8C9@

MICRO 784 % =@0310@ =*“CLEAR X”

8-60

M.MEMORY.BOUNDARY
(Available on B 1720 systems only)

Syntax

M.MEMORY.BOUNDARY —E: MINIMUM j——’{
MAXIMUM

Semantics

This instruction sets the M.MEMORY boundary fields within the IPB (Interpreter Parameter Block) of a
MIL program to the current code address.

MINIMUM specifies to the operating system the number of micro-instructions that must be loaded into
M-Memory before the micro-program may be given control. If, however, this value exceeds the amount
of M-Memory physically present on a given system, the value will be ignored (considered = 0). The state-
.ment is generally used to ensure that the most used microcode will execute from control memory, where
it executes faster than if it is executed from main memory.

MAXIMUM specifies the maximum M-Memory utilization of a micro-program. No code emitted after the
occurrence of this statement will ever be loaded into, and hence executed from, M-Memory. It is generally
used to keep non-executable data, such as TABLEs, from being loaded into control memory, thus being
made inaccessible in main memory.

Thus at all times the portion of microcode in M-Memory will be, at the discretion of the operating system,
from the beginning of a given microprogram until some point between the appearance of the M.MEMORY.
BOUNDARY MINIMUM and the M.MEMORY.BOUNDARY MAXIMUM statements. The ficlds are
ignored for stand-alone microprogrames.

8-61

MONITOR

Syntax

MONITOR ———=literal) —-—.-I

Semantics

This instruction emits the monitor micro-operator with the {literal) occurrence identifier. (See also
Appendix B: MONITOR.)

The (literal) has a decimal range from 0 to 255.
Example

MONITOR 5

8-62

MOVE

Syntax
MOVE ——=(source-register) — = T0O (source-sink. register)j.' :
L—»(scratchpad- word) i > {scratchpad-word) —
— ADDRESS (label-réference} r rs
+ 3’(arithmetic expression)»
= { grithmetic expression) .
= SEGMENT.COUNT -
— HEX.SEQUENCE.NUMBER -
—» CODE.SEGMENT.NUMBER -
Semantics

This instruction copies the specified information into a (source.sink.register) or scratchpad word.
ADDRESS ({label.reference)) is a literal value equal to the code address of the label reference.
SEGMENT.COUNT is a literal value equal to the number of times a Segment statement has occurred.

HEX.SEQUENCE.NUMBER is a literal value eqLial to the leftmost six digits of the current source state-
ment sequence number.

CODE.SEGMENT.NUMBER is a literal value equal to the current CODE.SEGMENT number.
The following are restrictions on an S-Memory Processor.

a. If ADDRESS or {arith.expression) has a value greater than 255, and { source.sink.register) is
CP, the move wll not take place.

b. IfY¢ soz/rce. register) is U, (source. sink.register) may not be TAS, M, or A.
c. If (source. régister) is A, CP, M, or DATA, {source.sink.register) may not be a 4-bit register.
d. If (source.register) is SUM or DIFF, { source.sink.register) may not be CMND or DATA.
The following are restrictions on both an S-Memory and M-Memory Processor.
a. When (source.register) is DATA, (source.sink.register) may not be DATA or CMND.
b. When {source.sink.register) is M, the operation is changed to a BIT-OR which modifies the
next micro-operation; it does not modify the instructions stored in memory. In tape mode

no BIT-OR takes place. A literal value generated from ADDRESS, (arith.expression), or
SEGMENT.COUNT may not be moved to the M register.

8-63

Examples

MOVEXTOY

MOVE 48 TO S1A

MOVE ADDRESS (+ GLOP) TO T

MOVE 10 TOTA

MOVE S12A TO S10B

MOVE ADDRESS (BLAH) +16 *8-1TO FA
MOVE SEGMENT.COUNT TO T

MOVE (814(3*10)-1)/2TOY

8-64

NOP

Syntax

NOP »I

Semantics

This NO OPERATION instruction does nothing except use one clock cycle and take up one word of
control or main memory.

8-65

NORMALIZE

Syntax

NORMALIZE ’i

Semantics
This instruction shifts the contents of the X register left while counting the FL register down until

either the most-significant bit of X (determined by CPL) equals 1 or FL equals 0. If the most-significant
bit of X is already 1, of if FL is already O, then no shift takes place.

8-66

OR

Syntax

OR' ——— (source-sink-register) ————» WITH —I_—_:

Semantics

(source.

(literal)

This instruction is used to logically OR the contents of the 4-bit (source.sink.register) with the value of

the (literal) or the contents of a 4-bit (source.register). The result is placed in {source.sink.register);
the contents of { source.register) remain unchanged. (See also: AND and EOR.)

The (register)s may be any of the following:

(source.sink.register)

CA CB *CC *CD

FT FU

FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF

TOPM (available on B1720 only)

(source.register

{source.sink.register

BICN
FLCN

INCN (available on B1720 only)
PERR (available on B1720 only)

XYCN
XYST

*CC and CD represent processor interrupts and flags.

The (literal) has a decimal range from 0 to 15.

TABLE 8-3 OR Truth Table

Source. Sink .Register (Sou:cz.t;r:gster) {Source.Sink.Register)
0 OR 0 Yields 0
1 OR 0 Yields 1
0 OR 1 Yields 1
1 OR 1 Yields 1

8-67

Example

OR TB WITH 3

TA T8 TC ™ TE TF
T 0000 0101 1111 001 1 0001 0010 before (05F312)
- 0011 - - - - literal (3)
T 0000 0111 1111 0011 0001 0010 after (07F312)

8-68

OVERLAY
(Available on B 1720 systems only)

Syntax

OVERLAY ——‘—4

Semantics

This instruction overlays control memory from main memory. Before an overlay is initiated the L register
must contain the first control memory overlay address, the FA register must contain the beginning main
memory address, and the FL register must contain the length in bits to be overlayed. Overlay will continue
until the FL register equals O or the A register is out of bounds. If the A register goes out of bounds, FA
contains the address of the next micro-instruction in main memory; FL contains the length in bits of
unfetched data.

The action of the hardware executing this instruction is as follows:

MOVE A TO TAS
MOVE LTO A
.LOOP
READ 16 BITS TO L INC FA AND DEC FL
MOVE L TO CONTROL MEMORY ADDRESSED BY A
INCA
IF FL NEQ 0 AND A NOT OUT OF BOUNDS THEN GO TO -LOOP

8-69

PAGE

Syntax

PAGE ———!

Semantics

This instruction causes the source listing to skip to the top of a new page at compile time. Code is not
generated.

8-70

POINT

Syntax
POINT FATO ————»(arithmetic-expression)———'

Semantics

This pseudo-operation causes the compiler to generate an instruction that adjusts the value of FA to the
value of the (arithmetic.expression).

Prior to the execution of this instruction, the compiler must have been given some knowledge of the
contents of FA. This can be done via:

MOVE (arithmetic.expression) TO FA
or
FA.POINTS TO [(arithmetic.expression)

FA will be adjusted by up to 144 bits as a result of this command. (A warning message will result if the
adjustment is greater than 72 bits). (See also: READ and WRITE.)

Example

DECLARE
01 STRUCTURE,
02 DATA.A BIT(10),
02 DATA.B CHARACTER(20),
02 DATA.C FIXED;

FA POINTS TO DATA.A

READ DATA.LENGTH (DATA.A) BITS TO X POINT FA TO DATA.B
POINT FA TO STRUCTURE

MOVE DATA.C TO FA v

WRITE DATA.LENGTH (DATA.C) BITS FROM Y POINT FA TO DATA.B

8-71

PROGRAM.LEVEL

Syntax
CAT
PROGRAM.LEVEL (character.string) »I
TODAYS.DATE j
TODAYS.TIME
Semantics

This instruction places forty characters of information into the PROGRAM.LEVEL location of the IPB
(Interpreter Parameter Block).

If the TITLE statement is unused, the title headings of the program listing will reflect the PROGRAM.
LEVEL information.

Example

PROGRAM.LEVEL “THIS IS A SUBHEADING ” CAT TODAYS.TIME

8-72

READ

Syntax

READ —— MSML TO X) ..‘

» TO
—-—-(Iiteral)—[:BlT :T l——> REVERSE -J
BITS
E—P INC —

Y
- 4 < X

FA
FL —————————-ﬁ
FA AND DEC FL —~—=
FL AND DEC FA —»

> DEC — FA T -
FL —
FA AND FL ———»
FL AND FA
FA AND INC FL —
FL AND INC FA —

FA AND DEC FL —

REEREERRERER

FL AND DEC FA —»

= POINT FA TO (arithmetic-expression) -

Semantics

An M-Memory READ MSML TO X instruction reads to the X register the 16 bits in M-Memory pointed to
by the contents of the L register. The contents of L must be modulo 16. This facility is not available on
S-Memory Processors.

An S-Memory READ instruction reads from 0 to 24 bits of information from S-Memory into one of the
allowable sink (destination) registers: X, Y, T, or L.

If the {literal) is zero or is not specified, the field length is given by the contents of CPL. The read data
will be right justified in the selected sink register. If the field length is zero then X, Y, T, or L will be set
to zero.

Normally, on an S-Memory read, the contents of the FA register point to the first bit of the field to be

read. If the REVERSE option is used, the contents of the FA register point to the last bit + 1 of the field
to be read. The sink register receives the contents of this field as if it has been read in a forward direction.

8-73

INC/DEC adjusts FA/FL by the field length after the operation but in the same micro-instruction.

POINT FA adjusts FA by up to 144 + field length bits after the operation. (A warning message will be
issued if the adjustment is greater than 72 + field length bits). The POINT FA option can be used only
if (literal> BIT(S) is specified and is greater than (. (See also: FA.POINTS and POINT.)

Examples

READ MSML TO X

READ 24 BITS TO X

READ TO Y INC FA

READ 2 BITS REVERSE TO T DEC FA AND FL
READ REVERSE TO L INC FL

READ 10 BITS TO T POINT FA TO 100

8-74

REDUNDANT.CODE

Syntax

REDUNDANT.CODE _E: STARTJ——’l
STOP

Semantics
This REDUNDANT.CODE START pseudo-instruction causes the compiler to emit each micro twice until

the occurrence of the REDUNDANT.CODE STOP pseudo-instruction. It can be used to help ensure the
correct loading of a program or data from cassette.

8-75

RESERVE.SPACE

Syntax
RESERVE.SPACE FOR ————(arithmetic: expression) —————w= B|TS ——>|

Semantics

This instruction causes the compiler to emit a sufficient number of NOP’s (@0000@) to allow for the
number of bits specified by (arithmetic. expression).

The actual amount of space reserved will always be MOD 16; therefore up to 15 blts more than that
specified by the { arithmetic.expression) may be reserved.

Example

DECLARE IO0.DESCRIPTOR BIT(188);

DESC.LOCN
RESERVE.SPACE FOR DATA.LENGTH(IC.DESCRIPTOR) BITS

8-76

RESET

Syntax

RESET I_. _J »=(register) ((literal)) .I
NOT
—E> AND -ETregister)((literal))]J
NOT

Semantics

This instruction RESETs (sets to zero) the bit specified by the {literal) into the register. By using the
options, more than one bit in any one register can be reset with the same instruction IF ALL BITS ARE
IN THE SAME 4-BIT REGISTER. (See also: COMPLEMENT and SET.)

The register may be any 4-bit source and sink (destination) register below:

CA CB CC CD (CC and CD represent processor interrupts and flags)
FT FU

FLC FLD FLE FLF

LA LB LC LD LE LF

TA TB TC TD TE TF

TOPM (available on B 1720 only)

It may also be the FL, FB, L, or T register: all bits must then be in the same 4-bit subfield.

The (literal’ has a decimal range from O to 3 for a 4-bit register; from O to 15 for the FL register; and
from O to 23 for the FB, L, and T registers.

Example
RESET T(0) AND TA(3)
TA T8 TC “TD TE TF
T 111 1010 1100 1110 1001 1001 before (FACE99)

0110 1010 1100 1001 1001 after (BACE99)

T
0 | ‘ 3 4 7 8 1 1516 17 18 23
T(0) TA(3)

8-77

ROTATE

Syntax

ROTATE — & T LEFT BY —E-.—(literal) BITS
CPL ——:j l——> TO (register)

RIGHT BY {literal) BITS —

- X ~ LEFT j» BY —— (literal) BITS
— Y v RIGHT
- XY

Semantics

See SHIFT/ROTATE T and SHIFT/ROTATE X/Y/XY

8-78

SEGMENT

Syntax

SEGMENT —-E: NEWSEGMENT - »'
(label)——J |—> AT —L—:ADDRESS((Iabel))
literal)

NOTE: The {literal) must be MOD 16.

Semantics

See: Section 5 (SEGMENTATION).

8-79

SET

Syntax
SET & {register) TO (literal) F{
l—> NOT —J - (register) ({literal)) [
-E AND — s(register)((literaly) —
I—> NOT —J
Semantics

This instruction SETs the { register) to the value of the (literal) or SETs (bit=one) the bit specified by the
(literal) into the {register). By using the options rnore than one bit in any one register can be set with the
same instruction IF ALL BITS ARE IN THE SAME 4-BIT REGISTER. (See also: COMPLEMENT and
RESET.)

SET (register) TO (literal): The {register) may by any 4-bit source and sink (destination) register listed
below.

CA CB CC CD (CC and CD represent processor interrupts and flags)
FT FU

FLC FLD FLE FLF

LA LB LC LD LE LF

TA TB TC TD TE TF

TOPM (available on B 1720 systems only)

It may also be the CPU register. If CPU is used, the (literal) has a decimal range from 0 to 3; otherwise
the (literal) has a range from 0 to 15.

SET (register) ({literaD)): The (register) may be any 4-bit source and sink register listed above. It may be
the FL, FB, L, or T register: all bits must then be in the same 4-bit subfield. The (/literal) has a decimal
range from O to 3 for a 4-bit register; from 0 to 15 for the FL register; and from O to 23 for the FB, L, and
T registers.

Examples
SET TA TO 3
TA TB TC TD TE TF
T 1111 0100 0101 0110 0111 1000 before (F45678)
T 0011 0100 0101 0110 0111 1000 after (345678)

8-80

SET TC(2) AND T(11)

TA TB TC TD TE TF
0001 0010 0000 0100 0101 0110 before (120456)
1001 0010 0011 0100 0101 0110 after (923456)

TC(2) c———ﬁ——b T(11)

8-81

SHIFT/ROTATE T

Syntax

— SHIFTT LEFT BY (:literal) BITS »‘
_[: CPL ————-cJ |—> TO (register)—J *
RIGHT BY (literal) BITS -
- TO X
Y
T
L
> ROTATE T LEFT BY (llteral) BITS

CPL

j I—->TO (remster)-J
RIGHT BY(literal) BITS —

This instruction SHIFTs or ROTATESs the contents of the T register and places the result either in T or in
some other source and sink (destination) register. If the result is not placed in the T register, T remains
unchanged. SHIFT will zero fill.

Semantics

The (literal) has a decimal range from O to 24.

SHIFT/ROTATE T LEFT: If O or CPL is used, a shift or rotation by the value of the CPL register will
occur. If CPL is greater than 24, 24 is used.

TO (register). places the shifted or rotated results in the specified source and sink register; the T register
remains unchanged. If the TO register option is not used, the result is placed in the T register. The register
may be any source and sink register except DATA or MBR (refer to: Registers and Scratchpad). If the
(register) is M, the result of the SHIFT/ROTATE operation is BIT-ORed into the M register and modifies
the next micro-instruction.

ROTATE T RIGHT: Because the hardware can only rotate the T register to the left, the compiler converts
this instruction to the proper left rotate to accomplish the same result as the rotate right.

SHIFT T RIGHT: Because the hardware can only shift the T register left, the compiler will generate an
EXTRACT to accomplish the same result. Therefore, the T register may be shifted right only to the X,
Y, T or L register. If the TO... option is not used, the result is placed in the T register; otherwise, the T
register remains unchanged.

PROGRAMMING NOTE

It is recommended that the EXTRACT instruction
be used rather than SHIFT T RIGHT.

8-82

Examples

ROTATE T LEFT BY 4 BITS
TA T8 TC D TE TF
T 0110 0011- 1000 0101 111 0000 before (6385F0)
T 0011 1000 0101 1111 0000 0110 after (385F06)
SHIFT T LEFT BY 4 BITS
TA T8 TC TD TE TF
T 0110 0011 1000 0101 111 0000 before (6385F0)
T 0011 1000 0101 111 0000 0000 after (385F00)

8-83

SHIFT/ROTATE X/Y/YX

Syntax

—[: SHIFT X LEFT jD BY —={literal) BITS ——»l

ROTATE Y RIGHT
XY

Semantics

This instruction shifts or rotates the X, Y, or XY register (X concatenated with Y) a specified number of
bits to the right or left. Zero fill will: occur with the SHIFT instruction.

The {literal) has a decimal range from O to 23 for the X and Y register; and from 0 to 47 for the XY
register.

NOTE

The (literal) has a maximum value of 1 on the B 1710
systems when the concatenated XY register is specified.

Example

SHIFT X LEFT BY 5 BITS
ROTATE XY RIGHT BY 40 BITS

8-84

SKIP

Syntax

SKIP WHEN (register) ALL — —=(literal) »l
L' CLEAR —J |—> FALSE -J
Y

AN

EQL

(condition)

Semantics

This instruction causes one micro-instruction to be skipped if the designated { condition) is satisfied. (See
also: IF.)

SKIP WHEN (registers): The (literal) contains a 4-bit mask and may be comprised of decimal, binary, or
hexadecimal entries.

ALL is considered to be true only if all the bits in the { register corresponding to one bits in the mask are
true. That is, only the designated bit positions are tested to see if they contain ones. ANY is true if at
least one bit in the (register) corresponding to a one bit in mask is true. EQL is true if all the {register)
bits equal the corresponding bits in the mask. That is, the { register) must be exactly like the mask.

ALL CLEAR causes the masked bits of the { register) to be set to zeros after testing the ALL condition.
Only the bits tested are cleared, and the clearing action always occurs whether the SKIP is taken or not.
If ALL is used with a mask of 0000, the result is always false,

FALSE causes a skip when the whole (condition) is false.

SKIP WHEN condition: The { condition) may be any condition available from the condition registers.
(See: IF.)

The register may be declared as follows:

FU TA LA CA BICN
FT TB LB CB FLCN
FLC TC LC cC INCN
FLD TD LD CD XYCN
FLE TE LE XYST
FLF TF LF

8-85

8-86

PROGRAM NOTE

The use of the IF... THEN...ELSE instruction is recom-
mended rather than the SKIP instruction. The SKIP is
limited to one, 4-bit grouping mask in one register and
may only skip one micro-instruction. The IF is capable
of testing any combination of bits in many registers or
skipping blocks of micro-instructions and will generate
a SKIP WHEN hardware micro-instruction whenever
possible.

S.MEMORY.LOAD

Syntax

S.MEMORY.LOAD —® START ———Pl

Semantics

This instruction specifies the location for beginning statements in SSMEMORY. Code is not generated, but
the code address of the last statement is placed in the IPB (Interpreter Parameter Block) at RESERVED.
M.MEMORY.

This statement is used to specify the size of all code emitted previous to its occurrence into IPB.
RESERVED.M.MEMORY in the Interpreter Parameter Block of the final code file. IPB.RESERVED.M.

- MEMORY can then be used by a load time binder to load previously-generated code into control memory
and to make allowances for its absence in main memory.

8-87

STORE

Syntax

STORE F INTQ ——®= {double.scratchpad.-word) -——-——-I

Semantics

This instruction MOVEs the Field (F) register into any double scratchpad word (S0 ... S15); the F
register remains unchanged.)

NOTE

The compiler generates two MOVE instructions on
B 1710 systems.

Example

STORE F INTO S6

8-88

SUB.TITLE

Syntax
CAT —m——————
SUB.TITLE {character-string) ’I
TODAYS.DATEj
TODAYS.TIME
Semantics

This instruction modifies program title information.

If character.string) exceeds 72 characters, right-hand truncation will occur.

$ HEADINGS and $ PAGE.NUMBERS must be specified if subtitles are to be listed on page headings.
Example

SUB.TITLE TODAYS.DATE CAT “PROB.A” CAT TODAYS.TIME

8-89

SUBTRACT SCRATCHPAD

Syntax

SUBTRACT ——={scratchpad-word) —m FROM FA ————PI

Semantics

This instruction subtracts the left half of any scratchpad word (SOA . . .S15A) from the Field Address
(FA) register. The result is placed in FA; the contents of (scratchpad word) remain unchanged. (See
also: ADD SCRATCHPAD.)

Example

SUBTRACT S3A FROM FA

8-90

SWAP

Syntax

SWAP (literal) BITS

& WITH
I—— REVERSE —J

< X A4 r

Semantics
This instruction swaps the specified number of bits between main memory and the specified register.
The FA (Field Address) register must have been previously set to the proper main memory address.

The (literal) has a decimal range from O to 24. If the value of (literal) is zero, the contents of the CPL
register are used. If the CPL register is also 0, the register is cleared to all zeros. If less than 24 bits are
swapped, the leading bits of the register are set to zero.

Normally the contents of the FA register point to the first bit of the field to be swapped. If the REVERSE
option is used, the contents of FA point to the last bit + 1 of the main memory field involved. The
specified register (L, T, X or Y) receives the contents of this field as if it has been read in a forward
direction.

For the B 1710 ($Subset specified) the compiler emits the following code:

MOVE T TO TAS

READ ({literal) BITS (REVERSE) TO T

WRITE (literal) BITS (REVERSE) FROM (register)
MOVE T TO (register)

MOVETASTOT

PROGRAMMING NOTE

Incrementing or decrementing of the FA or FL registers
is not allowed with the SWAP instruction.

891

TABLE

Syntax

TABLE (labe]) —— BEGIN {character smng) = END -———»l
{hex. strmg)

Semantics

This instruction creates in-line character strings.

Any number of strings are allowed per line, but a string cannot cross a line boundary. The¢hex.stringymust
be enclosed within @ signs.

The BEGIN/END pair must surround all strings in the TABLE. The characters are grouped two per
address, i.e., 16 bits.

The (label> of the table must be unique; its use references the first 16 bits of the table.

Example
TABLE REF Code generated:
BEGIN
“AB” Cc1C2
@ABC@ C1C2
“D” C3C4
“45” F4F5
END ‘
MOVE ADDRESS (REF) TO Y The address of the table (REF) will

be loaded into the Y register

8-92

TITLE

Syntax

CAT -+————————

TITLE (character.string)

TODAYS.DATE j
"TODAYS-TIME

This instruction modifies program title information.

Semantics

If (character.string) exceeds 72 characters, right-hand truncation will occur.
$ HEADINGS and $§ PAGE.NUMBERS must be specified if titles are required on following pages.
Example

TITLE TODAYS.DATE CAT “PATCHES”

8-93

TRANSFER.CONTROL

Syntax

TRANSFER.CONTROL _>l

Semantics

This instruction generates the Transfer.Control micro-instruction. (See Appendix B: Transfer.Control).
On the B 1710 series it acts as a NOP.

When it is necessary to transfer control from one firmware process to another, the A, MBR, and TOPM
registers may all need to be changed. Changing any one of these registers will cause a transfer of control
to some micro other than the next micro in line. Consequently some means of changing all three of these
registers simultaneously is required; this will be accomplished with the Transfer.Control instruction.

The action of the B 1720 hardware is as follows:

MOVE L TO MBR
MOVE TF TO TOPM
MOVE T(6) THRU T(19) TO A

Example

MOVE ADDRESS.OF.GISMO.IN.SMEMORY TO L
MOVE GISMO.EVENT.ADDRESS TO T

MOVE 0 TO TF

TRANSFER.CONTROL % OFF WE GO . . .

8-94

WRITE

Syntax

WRITE —I—b MSML FROM X J ’l

—» FROM
(literal) -j—-E:BIT jf |—>REVERSE —J
((literal)) BITS

‘:—F INC —7® FA 1 -1

r 4 < X

—= FL
— FA AND DEC FL —®
— FL AND DEC FA —J

B
A

—= DEC —— FA

— FL

— FA AND FL ———®»
—~ FL AND FA ————
—s= FA AND INC FL
—s= FL AND INC FA —p=
— FA AND DEC FL —#
— FL AND DEC FA —»

- POINT FA TO (arithmetic-expression) -

Semantics

An M-Memory WRITE (MSML TO X) instruction writes from the X register the 16 bits in M-Memory
pointed to by the contents of the L register. The contents of L must be modulo 16. This facility is not
available on S-Memory Processors.

An S-Memory WRITE instruction writes from 0 to 24 bits of information into S-Memory from one of the
allowable source registers: X, Y, T,or L.

The amount of data written (field length) is determined by the {literal/({ literal’) BIT(S) option. If this

is equal to O or is empty, then the field length is given by the contents of CPL is right justified in the
selected source register. If the field length is zero then nothing is written.

895

Normally the contents of the FA register point to the first bit of the field to be written. If the REVERSE
option is used, the contents of the FA register point to the last bit + 1 of the field to be written to memory.
Memory contains the rightmost contents of the source register as if it had been written in a forward direc-
tion.

INC/DEC adjusts FA/FL by the field length after the operation but in the same micro-instruction.

POINT FA adjusts FA by up to 144 + field length bits after the operation. (A warning message will be
issued if the adjustment is greater than 72 + field length bits). This option can be used only if literal/
((literal)) BIT(S) is specified and is greater than 0. (See also: FA.POINTS and POINT.)

The unparenthesized { literal) has a decimal range from 0 to 24. ({ Literal)) has a decimal range from O to
26: a value of 25 will cause 24 bits to be written with correct parity; a value of 26 will cause 24 bits to be
written with incorrect parity.

Examples

WRITE MSML FROM X

WRITE 24 BITS FROM X

WRITE FROM Y INC FA

WRITE 2 BITS REVERSE FROM T DEC FA AND DECFL
WRITE REVERSE FROM L DEC FL

WRITE 10 BITS FROM T POINT FA TO 25

7

8-96

WRITE.STRING

Syntax

WRITE.STRING ——=(string)

T & FROM
|—> REVERSE —J

- d < X

E——»— INC —T FA

) ™
- L |
— FA AND DEC FL —
— L AND DEC FA —
— DEC ——7 1 FA ‘ g
- FL)

— FA AND INC FL
— FL AND INC FA

Semantics

—® FA AND FL ————

-~ FL AND FA ———

—® FA AND DECFL —®=
= FL AND DEC FA ~—»

This instruction generates the necessary in-line { literal)s for a (string), with moves to the indicated register.
It also generates the WRITE commands to write the { string) into main memory, beginning at the address
in the FA register. If (literal) exceeds 24 bits, then an INC or DEC on FA is required.

The length of the {string’ is limited to the remainder of the source card image. It may be any of the data

types shown in table 8-4.

Table 8-4. String Definitions

Data Start-Stop Length of

Type Symbol Each Unit
Character - 8 bits
Hex @ 4 bits
Octal @(3) 3 bits
Quartal @(2) 2 bits
Unary @(1) 1 bit

Example

“APC128JKL”
@124ADF@
@(3)123567@
@(2)123321@
@(1)11001101@

8-97

Examples

WRITE.STRING “APC” REVERSE FROM X
WRITE.STRING “THIS PUTS A LITERAL INTO MEMORY” FROM T INC FA

8-98

XCH

Syntax

XCH ————»= (double-scratchpad-word.1) —w= F —————~ (double-scratchpad-word.2) ———Dl

Semantics

This instruction moves the Field (F) register to double scratchpad word.2 (S0 ... S15); double scratchpad
word.1 (SO ... S15) is then moved to the F register. The two words may be the same, causing data to be
swapped between F and a double scratchpad word.

Example

XCH SO F SO % equivalent to: MOVE FA TO SO0A
% MOVE FL TO SOB
%
% and simultaneously: MOVE SOA to FA
% MOVE SO0B TO FL

8-99

9. PROGRAMMING TECHNIQUES

VIRTUAL-LANGUAGE DEFINITIONS

A set of virtual-instructions for the virtual machine must first be defined as each being a unique string of
bits. This definition may be chosen according to any relevant criteria. For example, COBOL verbs may

be encoded according to their frequency of usage, the higher frequency verbs being encoded in three bits
with one escape code that specifies the next eight bits as an extended code string. Another approach
might be to accept directly the source language as in a time-sharing, “Line-at-a-time,” interactive mode.
After the S-instructions and their operand fields have been defined, any standard location or technique
should be selected. For example, the base values of S-instructions and S-data might be in S4A and S5A

of the scratchpad; or all routines.are to be referenced with CALL and end with an EXIT instruction to
facilitate subroutine usage. The microprogrammer is now ready to begin creating the microroutines needed
to perform each of the events in the S-language.

SOURCE IMAGE FORMAT

The éompiler accepts card images consisting of one symbolic micro-instruction per card. The source pro-
gram must reflect the following format:

Column Usage

1-5 Reserved for {label) declarations which, if used, must begin somewhere within
this field. Both {point.label)s and {unique.label)s are allowed, with a limit of 63
characters and no embedded blanks. A blank is the separator between the label
and the beginning of the micro-instruction. { Unique.label)s must be unique with-
in the first 23 characters; the remainder is considered documentation. {Point.label)s
must be unique within the first 25 characters.

1-72 A percent sign (%) anywhere within this field indicates that the remainder of
the card image is to be ignored.

6-72 MIL statements may appear anywhere within this field. At least one blank must
be used between words except in those cases where a { special.character) (e.g.,
a parenthesis or relational operator) is used, in which case blanks are

optional.
73-80 Reserved for sequence numbers.
81-90 Reserved for patch information.

Source code maintenance as well as other compiler options may be specified by the use of either a $ (dollar
sign) or & (ampersand) in column 1. (See Appendix A: MIL Compiler Operation.)

PROGRAM EXAMPLE

The following pages provide an example of a MIL program.

PH'

02:41
SEQUENCE

19756,

THURSDAY, DECEMBER 1b»

0035708776 12:25)

o

MARK

3URAROUGHS 81700 MIL COMPILER.

Vo v O
[elelelololnlelolelolalnlalelsloleololololelololelelolalofolalolelololololelelolololalelelelelalele) o O o
[eloleTolalolalalnlalelalalslelelolelelalslolelalaieleolalillalolololblolololalslololalalelslolele) o O o
ANM TNOMNDRO~AUMFTNOMND RO ANM I NOM OA O MFTNNON O RO M NON QOO — 0N ™M
ODCOOODOrm rdrt et rd td et vt = AJ OO N NI NI DI MMM P MMM M MM LT P 3 3 T 3 T <7 21N w un n
[alelalelole slfololslolololololalaiolelololelnlolololalelslalélatnlelolnlalelolelolalolelole o ld le) (=~ N ~]
[&lelolblelelwloleldlblalblelslolelslslilslalilolélolalélolorléfaloldlalslblalblolblald Lo leld e ld T o] o O O
[elelalelelelolalelalelalelale lololelalelatelalilelalalelalele fotelelolelolelaolaloleleleole J oo o) o o o
WO 20 08 09 40 CONE 59 00 €0 00 00 V0 PV 21 00 B0 F6 00 S0 20 90 PO 00 65 00 40 S0 00 00 CF 20 L R SV Y 0 BT S0 00 00 g0 C4 PU 00 00 B0 00 07 0 S0 80 00 40 P e
FLFLFTILXANINNRNR L o
e » (17,]

e wviul tad o

Ed oZzxu) N -

P e~ R Wy~

w Ll 72 I S 4 rt o

LA T & B g [ad Qv

N OD It L owo

re 0 o X ¥ <O

M 00 M tatatadad PP R | aud

N QO T M PLFLFL L tatatatad Op—td

IR P-4V L R aiatalad et X

L e e i PR talakala] - (XN rtrerere -

N OV LITO R PP PE A e ~ repe e =

E ST VETs LI FTEFLILEE DN a N TP SR o bl

M QUNNO M I OO & am e rereEFL -« I

r O E@Z "R PRI N O AN AOM F2 e Lo = Lodi

N —OQOOLM e FLMIEN HOJOT T I F et IR *® 7 PYe]

re O Ie 2 TIRIPL I "l ol o/ o N o/ Yt S PEPE PP TL Ik <L -t

L S s S | g sl b EA N o d cad oo b ol ol ~e NO N> L W

O xOw O 9w rn E e e e e e e] re ROV Twx

T a@ Az N ~ N OoOMO@OMOT M *» e o

. Il 3 e (2 r s NN =<t

N OO0 e e Ead b rn ot [7olaa)

e Haol Zlnn] 4 LAl e re > Ead r o > o

NFTL OO N N e xo e e (] W¥m W

NI_HUZ1TO N * e ox e bl - (7224 Lt

IV M =L PR Ead b Xul Ead * = xo z

FAaD O Ead N [ad WX e e [>z [

O W r » e e » re (=] ~AOD o

S {a Al S of ol VU 2 LTI] [y 0) »n e a. Lol 3= Q.

P VTV~ W N R < X0 Ny M . o °

r L= O N e e —la el »e = -t =z

E S [YOV 7, I S T S T A] e N"EZ r «© wiwl Q

P I« 4 N FY] bl el N OVNZW E L L I 0 (o] o -l

N2LIQXEZN L) P DO L e - e [

EL S A ASS 1ok Lo] Nl T O g R [} o > (5]

L, T RN T P LT 0 sy o d~TNE] D X >

A7 L ols A 4 o S] L LA S o dVEIPUT e af s 4 e o a L e &

N Zud =~ N N DD W) LA T8 I - L bed

POV L2 W PN PO DDy rtag (7] rwEX 7]

o ouir e~ e D PN L WS e T N Eafsa B 0 = W o =

¥ O~ T PN OO Al RO M — a0 -

e T2 "~ B I i S LTV TP) Iy P Q\IM iz .

ST L Tl *rn [L BN 2] &> ol b - P N (L xo -~

FEOPmE DD eNRE Lad T T L0 MM L OO : a.uo > e

FEF VDD dlad o e N WOLLIO OO W r rEOOOW o<l Wi o 4

re-x 2O CINI e o Ead P L L LT w O - [+a]

ta b dmw]y don b Jaodr g o] [ad Mo *rn [o —2r0]

M2 aAEr oOor (A >IN ™ e e Z0oXx Q Qe

FT L WL R L N NOOCO [=4 e Ll IR ag S I el] - -

N OUWIE O » tad *r ” ta 0 -z (¢4

re o QO ™~ EA] N re P r LIOO e a o

N Xz QDN Ead N O re Ead e TR o [2]

@ et e e FRFLFLFL EaitoT L B e et ol o o

e (x -t = FEPLFLFIL) TP PO re - ™M (Vo N

PN 1ODZNAN E a2 Ak ok e 4 Lk S AL A ATEITV VNPT it LN (] m (®

M OXAOZZN Rt a e tat 4 PP I IE st OZe

Mol Ortet RaZ AR LX) o] TEFLPL Lt et et LAY o Lale) [*%] td g

E A S LRV LS Eakalatad s Lad At X e SV FE PR L = L o> > >

Ead OOt SR aLL PP I UMY TEON X=Z (=) [B o]

P N0 O Eatatadale] NNNNOQOO adRialietalnl x xz X

I L DZER At t s b NF AT U 0w

N T WO LAz ot Xl TTLIIFL nZM zun

- A~ W TP D

"2 IO {3 [FN (7, TOVT 4 EL =T 0 B 1FV Ju o

LAl Y o T N T~

ol XLt PR h A ol o]

» rn L&t

» e Ll it

PRI PAFLTLIEPIILI AN PO NI TEPEIL FPL r

G0 KU 00 60 09 00 €3 20 00 20 0% 0¢ S0 DO $9 25 00 55 30 09 00 00 U PO 00 PP €9 02 F0 ¢6 S5 U0 90 90 UG 0y 00 PF 04 60 40 B0 42 PO 00 0P 0u 65 50 0g 00 O 40 20 0 ge

[T lanloutaalond 0l
DOOVDOOO

[alalalal ol QNN F O
QQODM LD OO0
QOODOD DOODOCOD
OO erivt vdomd OOLOCOOD
[elelelele L] ot et S byt Ut ol
TOOODD
OO0 CBCICUCH (BCV (B

Vid Yad bsnd rd Cod
QOFOOID
OOWVQOOQO
[ol a To s o QW1 o]
RO IR A

[elele) slolalolololvlalalalalelalolsleletilodslolslnlololalalelelolelrlalalalrlololalalolalelalwlole ol alelele]

[alolalelmlelelelolelelelelololelélelolalololalelelolololololelelelellslelele)
[={elalelelslolalololtlalalelolofolelolalolelolelelalelelolelololale Lnle lelalo]
SENDO M T NO NPT UNVO N C D e NIM I VMO M O N O = OIM P ITWON. DO i
LMD INNANOAD OO WO WO N MMM E AR’ NN O D QO 00D O VDN
[elolblals lalsle jololalelolalble]dlelelelolelels folls o lelsle lolels Lalslelele]
[elelslelolwlslslolalelslolalalolelololalelalele Lol lolw e fololelolalele lolelo]
[eleleloldlolelolelold [loldlels oo nlelolelele Lo Lo le it it rdodolelals to oo]
[slelalslelelalelololblelolotalololelole ol lolalelolalifaleloleloloalolo te o lo]

(aielelalolalelolelelelslelelolololele lolelolels)
[Siualelelalelolslelslalelelololelololel~lolele]
MFNONDWAOCANMINNONT RO N MITNO
AR OOODOOOOOOOQririricirdriod
DOODDOOO rirmicdrirded rdrtrd rird et ed et vd vt o
[elsleleloleleleislalolelolalelelelelololololeolw)
[elélelelolwlelolalefelelolofelelofelads folele] o)

S0 00 00 #0 00 90 09 50 50 00 05 00 05 05 €0 90 S¢ 0 00 50 00 S0 CO VO FT FU G0 NP PO P U0 NP 90 00 P9 R0 44 S0 PO 00 20 S0 50 F0 S0 00 20 $0 04 06 PO 00 S0 40 09 7 24 F9 00 40 45 P8 09 P8

0,24 81T
QUTINE.

T
MS
R

Pl
LR
PO
-
PR

Lad VoL X)

.
W
o
o
(&
..
a Ot
Q
it
-
el an
(&] 0o
» ey
=< (@
L W
[,
o =
-
o
@ o
[Ty []
- Z
z Q
o
Q-
a. o
1)
Pt e d
[en BN m
[l ®1%) o
-z =
(ST .
D . [TH
s~ q Q
Ll 4 .
Q. vrOul [t}
W2~ Z QO
Ll <l
O -y =
= OO0

XD Ml o b
I =)

f SNt e T]
[L.2C]

c

—LiuiuwiLIa.
> Fea(> 2 X
L OLWOOD

EEXITET

BEGIN
END FETCH

NUIAZ ===
[o] TS Law N {o - v)
AU DL
x nZ
ZW >y
o Z o QT A
LY LES g
NO > Il =
B SV ol B |

W
Z I
g+ X0
< (o] =]
D X

QIO WD
Q< []es]
T <
Z a0 E
QO M
U= €33O
= (Y el I e ld
D Qwne
I e D
WOD, =
X X v
(ad Db bt A

[P AT L 4 V]
L L e O
e JO L O

e
MO
reCINE

FEPL T I I PRI

INSTRUCTICN

T,
Q)
N

Quitlaloy

O>>.4<

.LOCP

XGET ADDEND.

XGET AUGEND.
XEND OF RESULY FIELD AND INSTRUCTION.

ZSUPPLY EBCDIC NUMERIC ZONES If 8-BIT

W OwoO>CDOviue
[Sod ofen [So]en Joollo [70]
- -
P
ot 2> T Tt
QI
QEXOQXD

BEGIN

LWRITE SUM.

M T DEC FA ANO FL

Eas A &l
EagesTad
RO
IR
N e
L re
FPLIPR
et
O
NZ R
EARAIVRE LS

END.OF.J0B
END END.CF.JC3

BEGIN

tad el
RV
e
rNN
EEZGR A
Ealrshd
~aC e
RO
FNOI
e 8
05
RO
L =L e
rON
Eag AR o d]

WO 69 00 00 00 00 49 FO 00 50 00 40 00 40 €0 20 47 10 26 62 *0 00 8 S0 GV €0 55 90 39 49 00 90 99 20 BU U0 00 S5 S0 U9 EV S0 G0 00 20 90 06 90 42 00 29 06 08 04 20 AU §5 F0 SV UV 40 00 00 b0

[l lanla o te To Tool
COOLOOQO
PN = DO
LOQOVOOOD
OOOODOMDOO
QOOOOLVOO
St b Y d L S o bk

C(IMCACI(IBCY

O PN QN
AL OU AL DO vt
[B1- o3[feldileTo]
WANNN-OOQO

IXITXTIXIXIXX
LO0OOLLLLLOLOLOL

B e e e e e e

[FYIPN(WRIRS [(VR FUIPVIVEINY)
| FOY U PG WO U WA VY Pl ¥ V'

e
QSO
O
O b rdot
[slelels)
OOoOwWwo
Somd St b brwd

[g:2¢:A8 A

NOMO
WO O N
OO
MWD

PRI e Y Y R T Y
DOOODODHODO
P AT LN P GO =T (DI €
T md e d vt v v v S vl o ol
COOCVOOOOHOO
OVOOADADOWM
S hd Yored B Sad b S b el el o

o eBCaucacacacaloca

L O et IOIMIMI NI ST OO M
i T et MY e LD LD
O rdifa O ODODOOO
W—OLICODOHOWO

L T X o §
[efele]
Wi O
———‘0d
DO
OO0
Vot Ve bad

cocecy

WO
DOO
jelele)
et et

e
o000
0\
AV ISVIgY)
(alels)
DOO
Yt o et

ocyce

OQOwedt
«C O\t
who
OO

[l elolalalslnlalnlalalmlalplolalalolslalalalsnlale]
QOOQOMODCICIACIIIQCISOICILIMAN0C
*L o «f oL L 4l AL <L L L L AL AL L AL L oL A LT L o L L L

€001 Q £C02401

LI
Lty

OOOOrtrdrdrdert rtydrmi et OO OO O QOO O O rted rictrd rirteirdet rmi 1M el e d it o4 A AU NI Ot d v d rd O O O D O rivd e O O D O OO0

9-3

[eTalalelolololelelalolslelalaloleleleleloléldlelote laleloale Lo leln Inle lelo]
[olslelolalolalalololalolslalslalalolalaleolalslolelblolalalslolilalolvwlala]
AUV ONM I INOA ORQ = OIM T VIO) RO e (M T N O R D ON QUM
< rd e OO IOI O NN LN M MM MAM M MMM RS S F 3 T 0P -T2 INUDNN
el ymd e e e et e e e o e ot]] 4 o e e el e v e e e e
[slel~loleloalolololalalviololnlolélnlololglélilalslololslolololleolele el]
[elaleldle [Sla e lalelelolblololblnlsle ol olhletolalololh Ialold loto IS Ll
[e)elalodelolelslolalefalalolilalslolnlolelalslolelslelulalalolele Lallla o]

@0 06 60 €U 50 U0 00 06 04 €9 00 S8 60 €0 00 09 37 08 05 0¢ 00 00 S0 08 €4 00 00 PP 00 60 00 €% vy 4E 00 40 08

)
W [
4 wy k- Q [=]
w %) - < [
m W [} a. Zuw
o x o = I e
o = [~ [*¥] ¢ O
- = o - W = wo
o < Vi Tz -1
L W Q e Xy g
(N x L. Zunn o0 [¢]
> - o < T w
@i [Tt ~ra.
¢ (3. B] (=] W v >
Fod Z0 z a.OnZ v Lol
T —d us Qnwrwn «Q
o Lo T el OW k-4
L. - A o W Lo
o Ol) | ulanl =i |] O«
Qo [oad 1 wWowwo x o
wo ox § SOCOVIL w
(] o= Ead rrLpe et [~NE
et g x W
[} w [o4 - Xo
o0 T << Ll (L} [w]en]
oz - [V - s o &)
4 (1 z - T uw Wz
[a] -4 C3re [T Py -l u e -
-dd wo -0 > 0o o L
i< g [V3] a [S15) o -l L) =T
(b =z o . ww O = wIXw Q
o (=] wZ Qo -t [« 4 1 4 =
| &) [Tz =T 4 -0 <
Lt b L= e —3 o~ [19) -
0.0 (ol [l @ a. — b -
> m Lo QW [= 1= > [[T
(SRS [x] (=) — - - x>
[S = T (4 * a (&)
PN Ly e=D - i = WOt W
-t 3 Db ow wwvm O << o
nexT D - —z w®e o T
L I Y o]« »] [adanl Wl L ¥4 4 >~
IO D e Qe > (2 D
Oty W NIk W v <« (%} o o o
qCL.O F <O WX X -~ O LU [XY o [od
wvi-Ll X O nv LD
~ ~ o~ NVZ >Ny NE E£0 O W ez w
[<] L o w2z -0 Q Wedad VI L (%]
Er+0 Ot b D OO] vy xTW = 4
O =M e =0 W WO el
P x E -0 o Zab - >
> LTI Db D = O W3 <>l
it NNV OLL VU =~ 0 VIO OmKE -
[~} T L.O < - . «C
< W WOAuIotluill I~ ¢ V) =AM~ 0
Q> P22 2m) M40 Ll LT o
OO0 QUWOXOOOOQLW X< XIL0 Okl
qFE FXREILITETED WO —+-0 [sa]e A PN FY)
=4 -t - (5]
Ll Ll -t
(& [=) (%] (=4
w Z Lt Zvr
4] w [s2] Wit
e
Latntad
tadakad
ol ¥
[- = reCOre
(o] et
o -2
-~ FRLIN
ALTLIRPERLIL LN L] PO
W5 06 00 00 $0 9 68 89 g0 00 40 g4 00 UC g T 40 00 U5 00 00 F6 T 49 BY €8 90 00 UV 40 00 WP 08 00 08 40 0D
~re [alalel ol el ol lale lanla] il]
QO QOOOOOoOLOVLODOO QOO
VWO MO IOOOW U O~N TN
N NN OV DI NI NIRRT MY MM
00 OOODOOOOONO0O [ele]=]
OO0 OO0COOOOOONOO [&Tela]
et Nt v ool e vl vl bt bmd Nend rd b d oo by bdd
fece cacecocece(ecoco(vceco(e cocecy
¥ AHOVOOUNDOINO DT NO-Y
O A«OMWMOLORL.OX MO <C
MW ONINO WOt =~Om OND@
ON AN DN = NN Qe Ottt
Wttt bt w bl b il
Q.o o o Qe (e (e Qo
QOOCHICIIIOICILNICILID =L of <L L I
QOAOOQODLOOODAMMO0N B o o o o
L QL L L L L L L Lo L Ll AL «F o <F <L
® & 5 90 0 et o0 e e RN [l YonYouTn)
QOOCQOOMOOOONOOMNO0n ¢ 00 e
o <L <X o, of o« «f < oL < «F X o «f L L o [ad aad and ol ood
OOVOOOAOOO0OOCIOOOOL LRyt
ol e o e d o ek e) o e d) ik el) o OWOID

OOOOCOOOOQrirdeirirdedted sided rt rded v e drd r el O OO O O vt rd eled ol O

IO

ORIRINTY

N

[elelale]
O M OON
[Zeataal gl
QOO0
OOO0O
ot el S d

(4 2o 1% 1¢
LOOO
0O OO0

o000
OO

OO0

NC ERRGCRS CETECTED

0058

MICRO INSTRUCTION COUNT

CAUTION:

APPENDIX A: MIL COMPILER OPERATION
CONTROL CARDS
General

The purpose of the compiler control card is to allow the programmer to specify option settings to the
compiler.

Every MIL control card has either a § (dollar sign) in column 1 and is called a “‘dollar card”, or has an &
(ampersand) in column 1 and is called an “ampersand card”. Column 73-80 may be used as a sequence
field.

Dollar Cards

SYNTAX
$ r I_’ _J {any-dollar.option-not.in.this-diagram) i 'y *-‘
NO
—® DEBUG T -
L> (literal) —I
—= HARDWARE.TYPE & S ran
t v
U
—= LINES.PER.PAGE (literal) >
—s= VIERGE -
= NOPS -
—~ PAGE >
—~ PASS,END -
- PROTECT -
SET (conditional-inclus ion-identifier)—————n
—]: RESET]
—= NO SEQ -
Le SEQ -
+ (increment)
(base)
(base) + (increment)
Lb_ VOID —
L> (terminating.sequence-field) —J
& — s LIBRARY (multi-file-id) -
{multi-file-id) | { file-id) — ? '
{pack-id multi) [{ file-id) -

{ pack-id) | { multi file-id) | { file-id)

A-2

$ (dollar-option)

= DEFAULT -[: SET T(condit.ion-inblusion-identiﬁer)—»
RESET

SEMANTICS

ALLCODE -
AMPERSAND
ANALYZE.CODEFILE

CHECK

COMPILE

CONTROL
DEBUG

DECK
DOLLAR
DOUBLE

ERROR.FILE
EXPAND
EXTERNAL
FORCE

FRAME

[

HARDWARE.TYPE = { §
M

HEADINGS

LINES.PER.PAGE

lists all code generated for each MIL statement when
listing

lists all ampersand records, except &$ records, when
listing (default on)

prints an analysis of the code file at end of source list-
ing

checks for sequence errors (default on)

when reset a fast source listing will be produced with
no code generation or syntax checking (default on)

prints all dollar cards when listing; same as $DOLLAR

for compiler debugging use

punches an object deck
prints all dollars cards on listing
double spaces listing when printing

lists errors and warnings on a separate printer file as
well as on the main listing

when listing, prints all statements (including comments)
within a macro when a macro is invoked

generates external segment branching code (on by
default)

generates a code file regardless of syntax errors

lists all IF, BEGIN . . . END statements which condition-
ally exclude code (defauit on)

specifies which hardware processor type will be

used: S =S-Memory; M =M-Memory;

U = Universal

prints all title and subtitle headings at the beginning of
each page when listing

specifies the maximum number of lines per page of
listing

LIST

LISTALL
LIST.NOW
LIST.PATCHES
LISTP

MERGE

NEW
NO

NOPS

OLD.LISTING.FORMAT
PAGE

PAGE.NUMBERS

PARAMETER.BLOCK

PASS.END
PROTECT

RELEASE

RESET
SEQ
SET
SINGLE

SUBSET

A4

lists all source records excluding macro records that
are compiled (default on)

lists all unconditionally excluded records to be printed
lists source records when read; same as $LISTP

lists all patches from CARDS file when read

same as § LIST.NOW

merges a secondary source file (“CARDS’”’) with the
primary source file (‘““SOURCE”) replacing primary
source records by secondary records with the same
sequence numbers

creates a new source file (‘“NEWSOURCE”’)

resets any specified dollar option if allowed

generates NOPs in external linking code for debugging
purposes

produces listing in pre-V.1 compiler format

skips to a new page before printing the next line
puts page number on each new page when listing and puts
a maximum number of lines on a page (60 by default)

which can be changed by SLINES.PER.PAGE

punches a parameter block with the object deck if used
with $DECK; otherwise only code is punched

displays compiler pass information on the SPO
protects SKIP when specified

generates a release tape with listing, code deck, code file,
and new source

resets any specified conditional inclusion option
resequences source records

sets any specified conditional inclusion options
prints single-space listings (default on)

generates code for B1710 (S-Memory) Processors; same
as SHARDWARE.TYPE=S

SUPPRESS
VOID

XREF

XREF.ALL

XREF.LABELS
XREF. NAMES
XREF.REGISTERS

suppresses printing of warning messages

deletes a specified range of source records. The termina-
ting sequence range must be exactly 8 characters

sets XREF.LABELS and XREF.NAMES

sets XREF.LABELS, XREF.NAMES and XREF.
REGISTERS

cross-references all labels
cross-references all names

cross-references all registers

NOTES AND RESTRICTIONS

1. Unless otherwise specified (through the MERGE option), the only source of input is the card
reader. Once $ MERGE has been specified and the first non-$ record has been encountered,
it is not possible to again indicate “CARDS ONLY™.

2. If no dollar cards are used in the default options are: EXTERNAL, AMPERSAND, CHECK,
COMPILE, FRAME, LIST and SINGLE. All input will be from the CARDS file.

3. Options are tuined off only through the appearance of NO followed by the option word. Note
that NO and the option word are separated by at least one blank.

4., Comments may appear on dollar cards by preceeding the comment with a % (percent sign).

5. Dollar cards are not included as part of a “NEWSOURCE” file when § NEW is specified.

Ampersand Cards

Syntax

—~ $ (dollar.option)

—= LIBRARY ———— (multi.file.id)
o (multi.file.id) / { file.id)
—~(pack.id) / { multi.file.id) /

L (pack.id) /¢ muilti.file.id) /{ file.id

——‘:}—F {condition.inclusion.identifier) ——»

s DEFAULT ———» SET
= RESET

—-

A-5

SEMANTICS

LIBRARY

DEFAULT

Causes the specified file to be opened and compiled. Compilation proceeds to
the end of the Library file with no contribution from any standard primary or
secondary input file. At end of file, compilation is resumed from the standard
input files.

Specifies default settings for one or more conditional inclusion toggles. The
default setting for a particular toggle will take effect only if no previous $ or
& card specified a setting for that toggle.

EXAMPLE: & DEFAULT SET TOG.A RESET TOB.B

NOTES AND RESTRICTIONS

1. Alibrary file is assumed to be a disk file.

2. The last record in a library file that is to be compiled must be FINI: This record cannot be

omitted.

3. All & records are included as part of a “NEWSOURCE"’ file when $§ NEW is specified.

4, &$ records are listed only when both $ DOLLAR and $ AMPERSAND are specified.

5. LIBRARY, DEFAULT and $ statements may not be intermixed on a single & card.

MIL COMPILER FILES

Some of the internal file names in the compiler and the file uses are listed below. This information will
find use in label equation at compile time.

CARDS

LINE

PUNCH

SOURCE

NEWSOURCE

LIBSOURCE

LINESAVE
CODE.FILE

PARAM.FILE

" Input file containing control and source records. The DEFAULT bit is set for

this CARD.READER file.
Output file for the compile listing. The device is PRINTER or BACKUP.

Output PUNCH or BACKUP file for the object deck produced when “$ DECK”
is specified.

Secondary input file for source records when “$ MERGE” is specified. The
DEFAULT bit is set on this DISK file.

Output DISK file for new source records when “$ NEW” is specified. The file
contains 90-byte records, blocked 4.

Input DISK file for source records when “$ LIBRARY (file name) is encountered.
The DEFAULT bit is set for the file.

A temporary work file containing a copy of the listing.
A temporary work file ccntaining a copy of the object code.

A temporary work file containing parameters affecting the object code and the
listing.

MILXREF

CODE

ERROR.LINE

A temporary disk file containing information to be processed during the cross-
referencing phase. The file is produced only if one of the “$ XREF”’ options
is specified.

The actual generated code file. This DISK file contains a maximum of 300 180-
byte records, and may contain only one area.

An auxilliary PRINTER or BACKUP file replicating lines on file LINE that have
caused syntax errors, and the actual error messages, if “$ ERROR.FILE” has been
specified. This allows the main listing to go to backup with an immediate indica-
tion of any syntax errors.

APPENDIX

B: HARDWARE INSTRUCTION FORMATS AND TABLES

B 1700 HARDWARE TABLES

Table B-1. Register Addressing

Group SELECT (Column) NUMBER
(Row)
Number 0 1 3
0 TA FU X SUM
1 TB FT Y CMPX
2 TC FLC T CMPY
3 TD FLD L XANY
4 TE FLE A XEOY
5 TF FLF M MSKX
6 CA BICN BR MSKY
7 CB FLCN LR XORY
8 LA *TOPM FA DIEF
9 LB RESERVED FB MAXS
10 LC RESERVED FL *MAXM
1 LD *PERR TAS U
12 LE XYCN CP *MBR
13 LF XYST *MSM DATA
14 cC *INCN READ CMND
15 CD RESERVED WRIT NULL

* Available on B 1720 systems only

B-1

Table B-2. Condition Registers

Bits
0 1 2 3
BICN LSUY CYF CYD CYL
XYCN MSBX X=Y XY XY
XYST LSUX INT Y NEQ O X NEQO
FLCN FL = SFL FL SFL FL SLF FL NEQO
FINCN - PORT DEVICE PORT HIGH PORT INTERRUPT|] PORT LOCKOUT
MISSING PRIORITY
CcC STATE TIMER I/O CONSOLE
LIGHT INTERRUPT INTERRUPT INTERRUPT
CDh MEMORY MEMORY * MEMORY * MEMORY *
READ DATA WRITE/SWAP READ ADDR WRITE/SWAP
PARITY ERROR ADDR OUT CF OUT OF BOUNDS ADDR OUT
INTERRUPT BOUNDS OVER- INTERRUPT OF BOUNDS
RIDE INTERRUPT

B-2

*Available on B 1720 systems only

NOTES

BICN, FLCN, XYST, and XYCN are addressable
as source registers only.

The TOPM, MBR, and A registers are used to
determine the memory (control or main) and
location of the next micro-instruction.

MSMA is control memory and may be addressed
only from the maintenance Console during tape
mode.

CPU is destination register only.
NULL always contains a value of 0. Any

register or scratchpad word to which it is moved
will be cleared to O.

€-d

CRO NAME Me 3 a5 g ME 1 | 12 WF 15 00 ot 10 1
MICRO NA 0 | RS R (B "y VARIANTS | 000 001 010 011 100 101 110 111
T | REG 1 GR REG G 2
REcISTER MOVE | © SOURCE REGISTER |SELECT |StL oT | SINK Reqioten
0 G | REGISTER GROUP REG |MOV|DPW| DOUBLE PAD WORD | MOVDIR: [P<~—R | R=——P
SCRATCHPAD MOVE SOURCE OR SINK | SELECT DIR] 1/2 ADDRESS 172 0PW: | LEFT | RIGHT
ZBIT 0 1 | REGISTER GROUP |REG| MANIPULATE 4 BIT MANIP. MANIP SET AND OR EOR INC NC DEC DEC
MANIPULATE 4BITSOR&SNK |SEL! VARIANTS LITERAL VARIANTS: TEST TEST
BIT TEST REL 0 0 | REGISTER GROUP |REG| TESTBIT | DSP | RELATIVE BRANCH | DSP SIGN: |+ =
BRANCH FALSE 4 BIT SOURCE SEL | NUMBER | SGN | DISPLACEMENT MAG
BIT TEST REL 0 1 REGISTER GROUP |REG| TESTBIT | DSP | RELATIVE BRANCH | DSPSIGN: |+ -
BRANCH TRUE 4 BIT SOURCE SEL | NUMBER | SGN | DISPLACEMENT MAG
SKIP WHEN 3 G | REGISTER GROUP |REG| SKIP TEST 2 BIT TEST MASK SKIPTEST | ANY | ALL EQL ALL | ANY/ | AL | EQU/ | ALLU
4BITSOR & SNK__ |SEL| VARIANTS VARIANTS: | CLR/ | cLR/ | cLR/ | cLR ctR/ | cLRf | cia/ | cLR
READ/WRITE 0 1 |R/M]| COUNT FA/FL |DATA REG] TW DATA TRANSFER RMW VAR: | READ | WRT
MEMORY : VAR| VARIANTS CODE |SGN| WIDTH MAGNITUDE CNT VAR: | N@P | Fa FL FAL FA+ FAL FA+
MOVE B BIT 7 0 | REGISTER GROUP. ENTIRE B BITS OF 8 BIT LITERAL REG SEL: X v o R FLt FLv | FLt
LITERAL REG SEL IS 2 TW SIGN: + —
MOVE 24 BIT i T | REGISTER GROUP. 8 MOST SIGNIFICANT BITS OF
LITERAL REL SEL IS 2 FULL 24 BIT LITERAL
SHIFT/ROTATE 1 [SINK REGISTER SNK REG | S/R LEFT SHIFT/ROTATE S/R VAR: SHFT ROT
T REG GROUP SELECT |VAR COUNT
EXTRACT FROM 1 1 RIGHT BIT POINTER J SNK REG | EXTRACTION FIELD SINK REG
T REG FOR EXTRACTION FLD | CODE WIDTH CODE: X Y T L
BRANCH 7 DSP :
RELATIVE SGN RELATIVE DISPLACEMENT MAGNITUDE DSPSIGN: | + -
RE?_’Z‘{_'[VE 1 ggz RELATIVE CALLED ADDRESS MAGNITUDE DSPSIGN: |+
[q G | 0 0 1 0 |DATAREG| TW | DATA TRANSFER WIDTH| TWSIGN: |+ —
SWAP MEMORY CODE _ |sSGN MAGNITUDE REG CODE: | X Y T L
CLEAR @ o |0 0 1 1 |°L I TY | X FA‘ FL | FU l cP
REGISTERS REG| REG |REG | REG | REG| REG |REG |REG
SHIFT/ROTATE 0 c | o0 1 O 0 | S/RDIR |X/Y | LEFTORRIGHT, XORY | X/Y VAR: |X v
XORY -) VARIANT|VAR| SHIFT/ROTATE COUNT SR, DIR: _|SFT «— |SFT — |ROT <—|ROT —
SHIFT/ROTATE 0 0 o 1 0 1 | SIRDIR LEFT OR RIGHT X AND Y S/R,DIR [SFT «— [SFT — |ROT =—|ROT —
X AND Y VARIANT| SHIFT/ROTATE COUNT VARIANTS: |
COUNT FAJFL 0 o o 1 1 0 | COUNT FAJFL J COUNT SCALAR COUNT FA/ | N@P | FAR FAT FAY FAY FAY
VARIANTS MAGNITUDE FL VAR: FLt | FLY FLt FLY FL¥
0 0 o 1 1 1 SINK DPW SOURCE DPW
EXCHANGE DPW ADDRESS ADDRESS
SCRATCHPAD | 0 0 |1 0 o0 0 DSP | LEFT HALF PAD
RELATE FA SGN | WORD ADDRESs | DSPSIGN: |+ -
MONITOR 0 ol o 0 LITERAL OCCURRENCE IDENTIFIER
Jp— 0 6]0 0 o0 O0]0 ¢ ¢ 1 DISPATCH EKP SKP FLAG: | FAIL | SUCC
VARIANTS |{FLG| DISPVAR: | Lock | WRTLO | READ | R&C |WRITHI | ABSNT | UNDEF | UNDEF
CASSETTE] 0 Jo © 0 0|0 o0 1 o0 CASSETTE CASSETTE | START | STOP @ [STOP ON| UNDEF | UNDEF | UNDEF |STOP ON| UNDEF
CONTROL MANIP_VARIANTS MANIP: TAPE | GAP | XY X=Y
BIAS 0 610 0 0 00 0 T BIAS TST| TEST FLG: | TsT/ | TEST
VARIANTS |FLG] BIASVAR: | UNIT F s F5 NOP FCP NOP NGP
STORE F INTO [} 6]0 0 0 00 1 0 o SINK DPW
DPW ADDRESS
LOAD F FROM 0 0 10 0 0 00 1 0 1 SOURCE DPW
DPW ADDRESS
CARRY FF] o 0 0 ©0 o0 1 T 0 [CYF|CYF | CYF|CYF
MANIPULATE SYpléyL| T I ~0
HALT 0 6 o0 0 0 o0 0 0 o0 o0]o o0 o 1
OVERLAY 0 0]o o0 0 0]0 0 o0 0|0 0 1 o
M-STRING
NORMALIZE X 0 60 0 o0 0106 ©0 0 o]0 o0 71T 1
TRANSFER 0 0 0 0 0 0 0 0 0 o]0 1 0 o
CONTROL
0 G 0 0 0 0 0 6 o0]0 0 0 o0

NO OPERATION

Table B-3. Microinstructions

Table B-4. Variant Field Definitions

FOUR-BIT MANIPULATE ~ SKIP WHEN (6nnn) SKIP READ/WRITE MEMORY
(3nnn) VARIANTS TEST VARIANTS (7nnn) VARIANTS
BITS 4-6 CONDITIONS [BITS 4-6 CONDITIONS BITS 6-7 CONDITIONS
000 SET 000 ANY. SKIP 00 X REG.
001 AND 001 ALL. SKIP 01 Y REG.
010 OR 010 EQU. SKIP 10 T REG.
o011 EOR 011 ALL CLR. SKIP 11 L REG.
100 INC 100 NOT ANY. SKIP
101 INC/TEST | 101 NOT ALL. SKIP BITS 8-10 CONDITIONS
110 DEC 110 NOT EQU. SKIP
111 DEC/TEST| 111 NOT ALL. CLR. SKIP 000 NOP
001 FA UP
EXTRACT FROM T REG. SWAP MEMORY 010 FL UP
(8nnn) VARIANTS (02nn) VARIANTS 011 FA UP FL DN
100 FA DN FL UP
BITS 5-6 = CONDITIONS |[BITS 6-7 CONDITIONS 101 FA DN
110 FL DN
00 X REG. 00 X REG. 111 FA DN FL DN
01 Y REG. 01 Y REG.
10 T REG. 10 Y REG. CASSETTE CONTROL
11 L REG. 11 L REG. (002n) VARIANTS
COUNT FA AND FL DISPATCH {(001n) BITS 3-1 CONDITIONS
(06nn) VARIANTS VARIANTS
000 START TAPE
BITS 5-7 CONDITIONS |BITS 1-3 CONDITIONS 001 - STOP ON GAP
. 010 STOP ON X NEQY
000 NOP 000 DISPATCH LOCK 011-111 RESERVED
001 FA UP 001 DISPATCH WRITE
010 FL UP 010 DISPATCH READ BIAS
011 FAUPFLDN | 011 DISPATCH RD & CLR (003n) VARIANTS
100 FADNFLUP | 100 RESERVED
101 FA DN 101 RESERVED BITS 3-1 CONDITIONS
110 FL DN 110 RESERVED
111 FA DN FL DN 111 RESERVED 000 FU
001 24 ORFL
010 24 OR SEL
011 24 OR FL OR SFL
100 NOP
101 24 OR CPL OR FL
111 OR SFL

B-4

B 1700 HARDWARE INSTRUCTION FORMATS

Bias
OP BIAS TEST CPL NEQ 0 FLAG
CODE VARIANTS (V) 0-NOTEST
0000 0000 0011 0...7 1 TEST CPL RESULT
0 11 12 14 16

This instruction sets CPU to the value 1 if the value of FU is 4 or 8 and to O otherwise, unless V=2, If
V = 2, the value of the CPU is determined by SFU in lieu of FU. SFU is the first 4 bits of the scratchpad
word SOB. (On the B 1710, FU = 8 will set CPU =0.)

The value of CPL is also set to the smallest of the values denoted in the following table.

\%

NN WND=O

VALUES

FU

24 or FL

24 or SFL

24 or FL or SFL

CPL

24 AND CPL AND FL

CPL

CPL (not defined on the B 1710)

If the test flag equals 1 and the final value of CPL is not 0, the next micro-instruction is skipped.

Bit Test Branch False
oP REGISTER REGISTER REGISTER DISPLACEMENT DISPLACEMENT
CODE GROUP # SELECT # BIT # SIGN VALUE
0100 0...15 0...1 0..3 0-POSITIVE 0. .15
‘ 1-NEGATIVE
0 3 7 8 10 1 12 15

This micro-instruction tests the designated bit within the specified register and branches (relative to the
next micro-instruction) by the amount and direction of the signed displacement value if the bit is 0. If
the bit is 1, a displacement value of 0 is assumed, and control passes to the next in-line micro-instruction.
A displacement value indicates the number of 16-bit words from the next in-line micro-instruction. A
negative sign indicates lower addresses (backward displacement). The maximum displacement is 15 micro-

instructions.

B-5

NOTE

Register.Bit # is read from right to left, 0 - 3 in
accordance with the hardware bit numbering

convention.
Bit Test Branch True
oP REGISTER REGISTER REGISTER DISPLACEMENT DISPLACEMENT
CODE GROUP # SELECT # BIT # SIGN VALUE
0101 0 ..15 0...1 0...3 0 POSITIVE 0...15
1 NEGATIVE
0 3 4 7 8 9 10 11 12 15

This instruction tests the designated bit within the specified register and branches (relative to the next
instruction) by the amount and direction of the signed displacement value if the bit is 1. If the bit is 0,

a displacement value of 0 is assumed, and control passes to the next in-line micro-instruction. A dis-
placement value indicates the number of 16-bit words from the next in-line micro-instruction. A negative
sign indicates lower addresses (backward displacement). The maximum displacement is 15 micro-instruc-
tions.

NOTE

Register Bit # is read right to left, 0 - 3 in
accordance with hardware bit numbering

convention.
Branch
op DISPLACEMENT SIGN DISPLACEMENT VALUE
CODE 0 POSITIVE
110 1-NEGATIVE 0...4095
0 2 3 4 15

This instruction fetches the next micro-instruction from the location obtained by adding the signed dis-
placement value given in the instruction to the address of the next in-line micro-instruction.

A displacement value indicates the numbecr of 16-bit words.

B-6

Call

oP DISPLACEMENT SIGN DISPLACEMENT VALUE
CODE 0 - POSITIVE
111 1 NEGATIVE 0...4095
0 2 3 4 15

This instruction pushes the address of the next in-line micro-instruction (already contained in A register)
into the A stack and then fetches the next micro-instruction from the location obtained by adding the
signed displacement value given in the instruction to the address of the next in-line micro-instruction.

A displacement value indicates the number of 16-bit words.

NOTES

1. EXIT, the opposite of CALL, is accomplished
by employing the MOVE register instruction
with TAS as the source register and A as the
sink register.

2. When the A address is stored in the A stack,
it is multiplied by 16 and stored as a bit

address.
Cassette Control
op CASSETTE MANIPULATE RESERVED
CODE VARIANTS (V) FLAG BIT
0000 0000 0010 0...7 0...1
0 11 12 ‘ 14 15

This instruction performs the indicated operation on the tape cassette.

V=20

RN o WV, BRSNSV N I

Start Tape

Stop Tape

Stop Tape if X NEQ Y
Reserved

Reserved

Reserved

Reserved

Reserved

All Stop Tape variants cause the tape to halt in the next available gap.

B-7

Clear Registers

REGISTER FLAGS
op '
8-BITS
CODE
0000 oonn (LI TY|IX|F]IFIF]C
Alc]u]e
0 78 15

This micro-instruction clears the specified register(s) to 0 if the respective flag bit is 1.

Count FA/FL
opP COUNT LITERAL
CODE VARIANTS (V)
0000 0110 0...7 0...31

0 7 8 10 11 15

This micro-instruction increments (decrements) binarily the designated register(s) by the value of the
literal contained in the micro-instruction or by the value of CPL if the value of the literal is 0.

Neither overflow nor underflow of FA is detected. The value of FA may go through its maximum value
or its minimum value and wrap around.

Overflow of FL is not detected. The value of FL may go through its maximum value and wrap around.
Underflow of FL is detected and will not wrap arcund. The value O is left in FL.

Literal values (or CPL values if LIT=0) of 25 through 31 are truncated to the value 24.
Count variants are as follows:

V= 000 No Count
001 Count FA UP
010 Count FL UP
011 Count FA UP and FL DOWN
100 Count FA DOWN and FL UP
101 Count FA DOWN
110 Count FL DOWN
111 Count FA DOWN and FL DOWN

Dispatch

(Requires a hardware I/O subsystem available on the B 1720 only)

OoP DISPATCH) SKIiP VARIANT
CODE VARIANTS (Applies only to
0000 0000 0001 000 - LOCKOUT lockout variant)
001 - WRITE 0-SKIP IF ALREADY LOCKED
010 - READ 1-SKIP IF NOT ALREADY LOCKED

011 - READ AND CLEAR
100 - WRITE HIGH
101 - PORT ABSENT

0 11 12 14 15

This micro-instruction sends/receives interrupt and interrupt information to/from other ports.

Since the interrupt system is shared by all ports, the processor should gain control of the interrupt system
by successfully completing a LOCKOUT prior to a DISPATCH WRITE.

LOCKOUT sets the lockout bit in the DISPATCH register and allows, via the skip variant, skipping or not
skipping the next 16-bit instruction based upon the success or failure (already set) of the LOCKOUT.

WRITE (High or Low) DISPATCH sets the Lockout and Interrupt flip flops in the port interchange. It
also stores the contents of the L register into memory location 0 to 23 and the contents of the least-
significant seven bits of the T register (designating the destination port# and channel #) into the appro-
priate port interchange register. In addition, it sets (Write High) or resets (Write Low) the high Interrupt
flip flop in the port interchange.

READ DISPATCH stores the contents of memory locations O through 23 into the L register and the
contents of the Port Channel register into the least significant 7 bits of the T register. The other 17 bits
of T are unaffected.

READ AND CLEAR DISPATCH in addition to performing the READ DISPATCH operation clears the
lockout flip flop, the two interrupt flip flops and the Port Device Absent flip flop in the port interchange.
It does not clear any memory locations.

PORT ABSENT is executed by the processor when necessary to return a Port Device Absent Level signal
to another port indicating the absence of the designated channel.

Dispatch operations in the case of Processor-2 and Processor Adapter-1 (direct connect to memory) are
limited to the following:

a. LOCKOUT + SKIP-IF-NOT-ALREADY-LOCKED: always skips.
b. WRITE LOW: always sets Port Device Absent Level true (true indicates absence).

¢. READ and CLEAR: always sets the Port Device Absent level false (false indicates present).

No changes occur in the T and L registers. In the INCN register only the Port Device Absent bit can
change. The Lockout, the Interrupt, and High Rriority bits will always be false. No other dispatch
operations are defined.

Extract From T

op ROTATE DESTINATION EXTRACT
CODE BIT COUNT REGISTER BIT COUNT
1011 0...24 00 - X 0...24
01-Y
10-T
11-L
0 34 8 9 10 11 15

This micro-instruction rotates the T register contents left by the ROTATE count, extracts the bits specified
and moves the result to the sink register. If the extract bit count is less than 24, the data is right-justified
with the left (most-significant) zero bits supplied.

The contents of the T register are unchanged unless it is also the sink register.
A rotate value of 24 is equal to 0 and is equivalent to a NO OPERATION.
NOTE

The microprogramming language compiler uses the
left-most bit to be extracted and calculates the
rotate bit count to be used by the hardware circuits.
The assembler addresses the bits within the T regis-
ter left to right as O through 23; hardware addresses
the bits right to left as 0 through 23.

Four-Bit Manipulate

op REGISTER REGISTER MANIPULATE LITERAL
CODE GROUP # SELECT # VARIANTS (V)
0011 0...15 0...1 . 0...7 0...15

0 34 7 8 9 1112 15

This micro-instruction performs the operation specified by the variants on the designated register.
V= The register is set to the value of the literal.

The register is set to the logical AND of the register and literal.

The register is set to the logical OR of the register and literal.

The register is set to the logical EXCLUSIVE-OR of the register and literal.

The register is set to the binary sum (modulo 16) of the register and literal.

Dwro—~—oO

B-10

The register is set to the binary sum (modulo 16) of the register and literal, and the next
micro-instruction is skipped if a carry is produced.

The register is set to the binary difference (modulo 16) of the register and the literal.
The register is set to the binary difference modulo 16 of the register and literal, and

the next micro-instruction is skipped if a borrow is produced.

EXCEPTION

BICN, FLCN, XYCN, XYST, INCN (B1720) and CPU
(B 1710) when specified as operand registers are not
changed as a result of this operation. However, the
carry or borrow outputs are produced and a skip can

5

6

7

result.

Halt

OP CODE

0000 0000 0000 0001

0 15

This micro-instruction stops the execution of the micro-instructions. In RUN mode the next micro to be

executed is fetched and stored in the M register, and the A register points to the next following micro.
In TAPE mode the next micro is not fetched and stored in the M register, but the HALT micro is left in

the M register.

The register indicated by the register select switch will be displayed.

Load F From Doublepad Word

(Available on B 1720 systems only.)

op SCRATCHPAD
CODE WORD ADDRESS
0000 0000 0101 0...15

0 1112 15

This micro-instruction moves the contents of the A and B portions of the designated scratchpad word to

the FA and FB registers respectively.

Monitor

(Available on B 1720 systems only.)

OP CODE VARIANTS

0000 1001 7, 6 5 4 3 2 0

0 78 15

This micro-instruction skips to the next sequential instruction.

During the time this micro-operator is executing the operator and the last two bits (0 and 1) are decoded,
ANDed with the system clock and are present in the backplane as follows:

MONITOR 0 True for the OP Code

MONITOR 00RO True if last two bits are 00
MONITOR 01RO True if last two bits are 01
MONITOR 02RO True if last two bits are 10
MONITOR 03RO True if last two bits are 11

At the backplane, the monitors are one-half clock from leading edge to trailing edge.

Move 8-Bit Literal

oP DESTINATION LITERAL
CODE REGISTER
1000 GROUP 3 0...255
0...15
0 34 78 15

This micro-instruction moves the 8-bit literal given in the micro-instruction to the sink register. If the
move is to a register of length) 8 bits, the data is right-justified with left (most-significant) zero
bits supplied. ‘

EXCEPTIONS
1. READ and WRITE are excluded as sinks.
2. When M is used as a sink register, the operation is
changed to a bit-OR which modifies the next

micro-instruction. It does not modify the micro-
instruction as stored in memory.

B-12

Move 24-bit Literal

oP DESTINATION 24 - BIT LITERAL
coiog “ REGISTER
-1001 GROUP # 0...@FFFFFF@
0...15.
0 34 78 15 of “‘next’’ micro

This micro-instruction moves the 24-bit literal given in the double-length micro-instruction to the sink
register. If the move is between registers of length (24 bits, the literal is truncated from the left.

EXCEPTIONS

1. READ, WRITE, M and CP (B 1710) are excluded
as sinks.

2. The MSMA register (available only on the B 1720)
may be a sink only in the TAPE mode.

No Operation

opP
CODE
0000 0000 0000 0000

0 15

This micro-instruction initiates a skip to the next sequential micro-instruction.

Normalize X

op
CODE
0000 0000 0000 0011

This micro-instruction shifts the X register left while counting FL down until FL = 0 or until the bit in
X referenced by CPL = 1. Zeros are shifted into the right-most end of X.

CPL = 1 references the right-most bit of X while CPL = 24 references the left-most bit of X. If CPL =0,
the operation will continue until FL = 0.

B-13

Overlay Control Memory

(Available on B 1720 systems only.)

(o]

CODE
0000

0000 0000 0010

15

This micro-instruction overlays control memory (M-Memory) from main memory.

The starting main memory address is in the FA register; the length of the data to be overlaid, in bits, is in
the FL register. The starting control memory address is in the L register.

Execution of the micro-instruction proceeds as follows:

a. The contents of the A register are moved to the TAS register.
b. The contents of the L register are moved to the A register.
c. The first 16 bits of data are read from main memory and stored in the control memory
via register L. Register FL is decremented by 16 bits; FA is incremented by 16 bits;
and A is incremented by 1 word.
d. - Step 3 is repeated until FL=00or A MAXM, at which point the process terminates
with a move of TAS to A.
¢. The operation then continues with the next micro-instruction.
Read/Write Memory
oP DIRECTION COUNT REGISTER FIELD. MEMORY
CODE 0 TO REGISTER VARIANTS 00 =X DIRECTION FIELD
0111 1 TO MEMORY 0...7 o1=Y 0- POSITIVE LENGTH
10=T 1-NEGATIVE 0...26
1M=L
0 3 4 5 7 8 9 10 11 15

This micro-instruction moves the contents of the register (memory) to the memory (register). If the value
of the memory field length is less than 24, the data from memory is right-justified with left (most-signifi-
cant) zero bits supplied while the data from the register is truncated from the left.

The contents of the source is unchanged.

B-14

Register FA contains the bit address of the memory field while the memory field direction sign and memory
field length are given in the instruction.

If the value of the memory field length as given in the instruction is 0, the value in CPL is used.

Memory field length values (or CPL values if Memory Field Length = 0) of 25 and 26 are truncated to the
value of 24. When used on a WRITE operation, the value 25 and 26 cause odd and even parity respectively
to be written into memory regardless of the parity of the read data.

For a description of the count variants, sse COUNT FA/FL.

Read/Write MSM

(Available on B 1720 systems only.)

op VARIANTS R/W VARIANT.
CODE ‘ G/B H/F SIN oto X
0000 0000 0111 1 FROM X

0 11 12 13 14 15

This micro-instruction (1) moves the contents of the X register to the M-Memory word specified by the
address contained in the L register if the R/W variant bit = 1; data is right justified with left (most signi-
ficant) bits supplied or (2) moves the contents of the M-Memory word specified by the address contained
in the L register to the X register if the R/W variant bit = 0; data is right justified with left (most signifi-
cant) zero bits supplied.

The lower 4 bits and the upper 8 bits of the address in L are ignored.

READ/WRITE MSM causes the A register to be moved to the TAS register and the L register to be moved
to the A register before the instruction is executed. The TAS is restored to A after the READ/WRITE
MSM operation is completed.

The S variant is used to enable the set/reset of the G/B and H/F flip flops. If S=1, the G/B and H/F flip
flops are set/reset by the G/B and H/F variants. If S = 0, no change is made in the G/B and H/F flip flops.

If the G/B flip flop is true, all READ/WRITE MSM operations will force bad parity in the addressed word.
If the G/B flip flop is false, all READ/WRITE MSM operations will force good parity in the addressed
word.

If the M/F flip flop is true, the processor upon reading an M-Memory word containing parity error will
flag the error condition by setting a CD bit true. It will not halt. If the H/F flip flop is false, the pro-
cessor upon detection of a parity error in reading an M-Memory word will flag the error condition by
setting PERR bit 1 true and then halt. Reading an M-Memory word occurs when fetching a M-op from
M-Memory or when moving an M-Memory word to any destination.

The H/F and G/B flip flops are cleared to zero (false) with the CLEAR signal. If S= 1, the G/B and H/F
flip flops are set/reset prior to the execution of the READ/WRITE MSM portion of the operation.

B-15

Register Move

op SOURCE SOURCE DESTINATION DESTINATION
CODE REGISTER REGISTER REGISTER REGISTER
0001 GROUP # SELECT # GROUP # SELECT#
0...15 0...3 0...3 0...15
0 34 7 8 9 10 1112 15

This micro-instruction moves the contents of the source register to the sink register. If the move is between
registers of unequal lengths, the data is right-justified with left (most-significant) zero bits supplied or the
data is truncated from the left, whichever is appropriate.

L]

The contents of the source register are unchanged unless it is also the sink register.
EXCEPTIONS

1. WRIT, CMND (and CPU, READ on B 1720) are
excluded as source registers.

2. When the M register is used as a sink in RUN or
STOP mode, the operation is changed to an bit-
OR which modifies the next micro-instruction.
It does not modify the instruction stored as
in memory. In TAPE mode, no bit-OR
takes place.

3. BICN, FLCN, XYCN, XYST, INCN, READ,
WRIT, SUM, CMPX, CMPY, XANY, XEQY,
XEOR, MSKX, DIFF, MAX, MAXM, and U
are excluded as sink registers.

4. Uisexcluded as a source register in the STEP
mode.

5. When DATA (and SUM, DIFF on B 1710) is
designated as a source, CMND, and DATA are
excluded as sinks.

6. OntheB 1710 when A, M, CP, or DATA is
designated as a source, all 4-bit registers are
prohibited as sinks.

7. Onthe B 1720, when U or DATA is designated
as a source and when the next micro-instruction
is to be obtained from main memory, M is ex-
cluded as a sink.

Scratchpad Move

op REGISTER REGISTER DIRECTION SCRATCHPAD SCRATCHPAD
CODE GROUP # SELECT # 0-TO WORD WORD
0010 0...16 0...3 SCRATCHPAD 0 - LEFT WORD ADDRESS
1-FROM 1-RIGHT 0.|..15
SCRATCHPAD WORD
0 34 78 9 10 11 12 15

This micro-instruction moves the contents of the register (scratchpad) to the scratchpad (register). If
the move is between fields of unequal lengths, the data is right-justified with left (most-significant) zero

bits supplied or the data is truncated from the left, whichever is appropriate.
The contents of the source register are unchanged.
EXCEPTIONS

1. When the M register is used as a sink, the
operation is changed to a bit-OR which
modifies the next micro-instruction. It does
not modify the micro-instruction as stored
in memory.

2. BICN, FLCN, XYCN, XYST, INCN, READ,
WRIT, SUM, CMPX, CMPY, XANY, XORY,
XEQY, MSKX, MSKY, DIFF, MAXS, MAXM
and U are excluded as sink registers.

3. WRIT, CMND (and CPU, READ on B 1710)
are excluded as source registers.

4. U isexcluded as a source in STEP mode.

5. OntheB 1710 M as a source results in a trans-
fer of 24 zeros.

Scratchpad Relate FA

oP RESERVED SIGN OF SCRATCHPAD LEFT HALF ADDRESS
CODE 0= POSITIVE OF A SCRATCHPAD WORD
0000 1000 000 1= NEGATIVE 0...15

0 78 10 11 12 15

B-17

This micro-instruction replaces the contents of the FA register by the binary sum of FA and the left half of
the specified scratchpad word. '

Neither overflow nor underflow of FA is detected. The value of FA may go through its maximum value or
its minimum value and wrap around.

Set CYF
oP SET
CODE VARIANTS (V)
0000 0000 0110 1,2, 4,8
0 11 12 15

This micro-instruction sets the carry flip-flop as specified by the variants.

V=1 SetCYFtoO
2 SetCYFtol
4 Set CYF to CYL (carry total from sums)
8 Set CYF to CYD (carry borrow from difference)

NOTES

1. CYL is generated under the control of the
length in CPL.

2. CYF is an input to the arithmetic logic along
with the X and Y registers. CYF is the left-most
bit of the CP portion of the C register.

Shift/Rotate T Left

oP DESTINATION DESTINATICN SHIFT/ROTATE SHIFT/ROTATE
CODE REGISTER REGISTER 0 - SHIFT BIT COUNT
1010 GROUP # SELECT# 1— ROTATE 0...24
0...15 0...3
0 3 4 78 9 10 1 15

This micro-instruction shifts (rotates) register T left by the number of bits specified and then moves the
24-bit result to the sink register. If the move is between registers of unequal lengths, the data is right-
justified, with data truncated from the left.

The contents of the T register are unchanged unless it is also the sink register.

Zero fill on the right and truncation on the left occurs with the shift operation. ROTATE is an end-around
shift with no truncation or fill.

B-18

If the value of the SHIFT/ ROTATE COUNT as given in the instruction is 0, the value given in CPL is

used.

EXCEPTIONS

1. When the M register is used as a sink register,
the operation is changed to a bit-OR which
modifies the next micro-instruction. It does
not modify the micro-instruction as stored
in memory.

2. BICN, FLCN, XYCN, XYST, INCN, READ,
WRIT, SUM, CMPX, CMPY, XANY, XEOQY,
XORY, DIFF, MAXS, MAXM and U are
excluded as sink registers.

Shift/Rotate XY Left/Right

oP SHIFT/ROTATE SHIFT/ROTATE SHIFT/ROTATE
CODE VARIANT DIRECTION BIT
0000 0101 0- SHIFT VARIANT COUNT
1-ROTATE 0-LEFT 0...48
1-RIGHT
0 7 8 9 10 15

This micro-instruction shifts (rotates) register X and Y left (right) by the number of bits specified. The

register X is the left-most (most-significant) half of the concatenated 48-bit XY register. Only a count

of one may be specified on the B1710 for the concatenated XY register.

Zero fill on the right and truncation on the left occurs with the left shift. Zero fill on the left and trun-
cation on the right occurs with the right shift.

If the value of the SHIFT/ROTATE COUNT as given in the micro-instruction is 0, the operand is shifted/
rotated by the amount determined by CPU as follows:

CPU

00
01
10
11

SHIFT/ROTATE COUNT

1 bit

4 bits

Undefined

8 bits (available only on B 1720 systems)

NOTE

The shift by CPU option is available only on
B 1720 systems.

B-19

Shift/Rotate X/Y Left/Right

oP SHIFT/ROTATE SHIFT/ROTATE XIY SHIFT/ROTATE
CODE VARIANT DIRECTION VARIANT BIT
0000 0100 0-SHIFT 0-LEFT 0-X REG COUNT
1-ROTATE 1-RIGHT 1-Y REG 0...24
0 7 8 9 10 11 15

This micro-instruction shifts (rotates) register X or Y left or right by the number of bits specified.

Zero fill on the right and truncation on the left occurs with the left shift. Zero fill on the left and trunca-

tion on the right occurs with the right shift.

If the value of the SHIFT/ROTATE COUNT as given in the micro-instruction is 0, the operand is shifted
(rotated) by the amount determined by CPU as follows:

CPU SHIFT/ROTATE COUNT
00 1 bit
01 4 bits
10 Undefined
11 8 bits (not available on B 1710 systems)
| NOTE
The shift by the CPU cption is available on B 1720
systems only.
Skip When
op REGISTER REGISTER SKIP TEST MASK
CODE ROW # COLUMN # VARIANTS (V) 0...15
0110 0...15 0...1 0...7
0 34 7 8 15

This micro-instruction tests only the bits in the register that are referenced by the 1 bits in the mask and
ignores all others. It then performs the actions specified below. Exception: If V=2 or V = 6, it compares

all bits for an equal condition.

V=0

2

B-20

If all the referenced bits are 1’s, the next micro-instruction is skipped.

If the register is equal to the mask, skip the next micro-instruction.

If any of the referenced bits are I’s, the next micro-instruction is skipped.

This is the same as V = 1, but the referenced bits are also cleared to 0
without affecting the non-referenced bits.

If any of the referenced bits are 1’s, the next micro-instruction is not
skipped.

If all the referenced bits are 1’s, the next micrb-instruction is not
skipped.

If the register is equal to the mask, the next micro-instruction is not
skipped.

This is the same as V = 5, but the referenced bits are also cleared to 0
without affecting the non-referenced bits.

NOTES AND RESTRICTIONS

1. If the mask equals 0000 the ANY result is false.
' The skip is made for V = 0 and is not made for
V =4, If the mask equals 0000, the ALL result
is true. The skip is made forV=5and V=7
and is not made forV=1and V = 3.

2. BICN, FLCN, XYCN, XYST, and cannot be
cleared with V =3 or V = 7. However, they can
be tested.

Store F Into Doublepad Word

(Available on B 1720 systems only.)

op
CODE
0000

SCRATCHPAD
WORD ADDRESS
0000 0100 0...15

11 12 15

This micro-instruction moves the contents of the FA and FB registers to the designated scratchpad word.
FA is transferred to the A half of the scratchpad word, and FB (which contains FL, FT, and FU) is trans-
ferred to the B scratchpad word.

The contents of FA and FB remain unchanged.

B-21

Swap F with Doublepad Word

opP DESTINATION SOURCE
CODE 48-BIT 48-BI7
0000 o111 SCRATCHPAD SCRATCHPAD
WORD WORD
0...15 0...15
0 78 1112 15

This micro-instruction moves the contents of the FA and FB registers to a hardware hdlding register.
It then moves the contents of the left and right word of the source scratchpad word to the FA and FB
register respectively, and moves the contents of the hardware holding register to the destination scratch-
pad word.

Swap Memory

(Available on B 1720 systems only)

orP REGISTER # FIELD MEMORY
CODE 00=X DIRECTION FIELD
0000 0010 o1=Y 0- POSITIVE LENGTH
10=T 1-NEGATIVE 0...24
1M=L
0 78 9 10 1 15

This micro-instruction swaps data from main memory with the data in the specified register. If the value
of the memory field is less than 24, the data from memory is right-justified with left (most-significant)
zero bits supplied. The data from the register is truncated from the left before entering memory.

Register FA contains the absolute binary address of the main memory field while the field direction sign
and field is given in the instruction.

If the value of the memory field length as given in the instruction is 0, the value given in CPL is used.

B-22

Transfer Control

OP CODE
0000 0000 0000 0100

This micro-instruction moves the 24-bit value from the L register to the MBR register; moves the least
significant 4 bits from the T register to the TOPM register; and moves the most significant 20 bits from
the T register to the A register, truncating the left most 6 bits of the source.

B-23

MICRO-INSTRUCTION TIMING

Table B-5: Micro-Instruction Timing

B1710 B1720
Notes Clocks Micro-Instructions Clocks Notes

BIAS

BIND

BIT TEST BRANCH FALSE

BIT TEST BRANCH TRUE
BRANCH

CALL

CASSETTE CONTROL

CLEAR REGISTERS

COUNT FA/FL

DISPATCH

EXTRACT FROM REGISTER T
FOUR-BIT MANIPULATE

HALT

LOAD F FROM DOUBLEPAD WORD
MONITOR

MOVE 8-BIT LITERAL

MOVE 24-BIT LITERAL

NO OPERATION

NORMALIZE X

OVERLAY CONTROL MEMORY
READ/WRITE MEMORY
READ/WRITE MSM

REGISTER MOVE

SCRATCHPAD MOVE
SCRATCHPAD RELATE FA

SET CYF

SHIFT/ROTATE REGISTER T LEFT
SHIFT/ROTATE XY LEFT/RIGHT
SHIFT/ROTATE X/Y LEFT/RIGHT
SKIP WHEN

STORE F INTO DOUBLEPAD WORD
SWAP F WITH DOUBLEPAD WORD
SWAP MEMORY

AN BA DN =N

N
U]D—li—[\)y—lh—l!—lh—l'—ib-lahd)ﬂ)—lm—lb—iiﬂwhﬂ

[N 2N)
PO ' NN WOWRNDRARNDND ! O AN Y DD W
LN

p—
W
.bl\.).—ir—tn—lr--»—-l—lhlv—-u—nc\:

B-24

B 1710 Notes

The basic clock of the B 1710 is 4 megahertz.

1.
2.
3.
4.

This includes the fetch of the called micro-instruction.
For BCD result register moves, there are three clocks.
There are six clocks per bit plus one additional clock.

Only a value of one bit is allowed in the B 1710.

B 1720 Notes

The basic clock of the B 1720 is 6 megahertz.

1.

If the relative address is not within control memory (therefore in main memory), there are
two clocks.

There is one clock per bit.
There are five clocks per 16 bits (one micro-instruction) plus five clocks.

READ is five clocks until the processor receives the data. WRITE is four clocks until the
processor is released. Some instructions may be performed during the processor READ or
WRITE command times if they immediately follow the READ or WRITE commands: this
is called “concurrency”. Consecutive READ or WRITE commands operate at MAIN MEMORY
READ cycle speed (four clocks) or WRITE cycle speed (six clocks) respectively.

The data is presented to the processor and is released in one MAIN MEMORY READ cycle.
Concurrent execution of certain micro-instructions is performed if they immediately follow
the SWAP command. The WRITE portion of the SWAP command is begun and performed in
parallel to the READ portion, and main memory is not available for the duration of a WRITE
cycle. For consecutive main memory commands, refer to note 4.

B-25

APPENDIX C: RESERVED WORDS AND SYMBOLS

Note: Several elements in the following list will not appear elsewhere in this manual, being in the compiler
for future development or debugging purposes.

—(underscore)

>
#
@
¢ (apost;ophe)

2

{

A
ABSOLUTE
ADD
ADDRESS
ADJUST

ALL
ALLCODE
AMPERSAND

ANALYZE.CODEFILE

AND
ANY
ANY.INTERRUPT

ARCHITECTURE.NAME

AS
ASSIGN
ASTACK

AT
ATTRIBUTE
BACKWARD
BASE.LIMIT
BASE.ZERO
BEGIN

BIAS

BICN

BIT

BITS

BR
BRANCH
BRANCH.EXTERNAL
BY

B710

CA

CALL
CALL.EXTERNAL
CARRY
CASSETTE

CAT

CB

cC

CD

CHARACTER
CHECK

CLEAR

CMND

CMPX

CMPY
CODE.SEGMENT
CODE.SEGMENT.NUMBER
COMPILE
COMPILER.LEVEL
COMPLEMENT
CONSOLE.SWITCHES
CONSTANT
CONTROL
COUNT

CP

CPL

CPU

CYD

CYF

CYL

DATA
DATA.LENGTH
DATA.TYPE
DATA.USAGE
DEBUG

DEC

DECK

DECLARE
DEFINE
DEFINE.VALUE
DETAIL

DIFF

DIFFERENCE
DISPATCH
DOLLAR
DOUBLE
DOWN

DUMP

ELSE

EMIT.RETURN.TO.EXTERNAL

END

EOR

EQL
ERROR.FILE
EXIT
EXPAND
EXTERNAL
EXTRACT

F

FA
FA.POINTS
FALSE

FB

FINI

FIXED

FL

FLC

FLCN

FLD

FLE

FLF

FOR

FORCE
FORWARD
FRAME
FROM

FT

FU

GEQ
GISMO.LEVEL
GO

GTR

HALT
HARDWARE.TYPE
HEADINGS
HEX.SEQUENCE.NUMBER
HIL.PRIORITY
HIPRI

IF

INC
INCLUDE
INCN
INTERRUPT
INTO

JUMP

L

LA
LANGUAGE.EXTENSION
LB

LC

LD

LE

LEFT

LENGTH.BETWEEN.ENTRIES

LEQ

LF
LINES.PER.PAGE
LIST

LIST.NOW
LIST.PATCHES
LISTALL

LISTP

LIT

LOAD
LOAD.MSMA
LOAD.SMEM
LOCAL.DEFINES
LOCATION
LOCK

LOCKED
LOCKOUT

LR

LSBX

LSBY

LSS

LSUX

LSUY

M
M.MEMORY.BOUNDARY
MACRO
MAKE.SEGMENT.TABLE
MAP

MAXIMUM
MAXM

MAXS

MBR
MCP.LEVEL
MERGE

MICRO
MINIMUM
MINUS

C-2

MOD

MONITOR

MOVE

MSBX

MSKX

MSKY

MSMA

MSML

NEQ

NEW
NEWSEGMENT
NO

NO.DEVICE
NODEVICE

NOP

NOPS
NORMALIZE

NOT

NULL
OLD.LISTING.FORMAT
OLDIPB

OR

OVERLAY

PAGE
PAGE.NUMBERS
PARAMETER.BLOCK
PASS’END

PLUS

POINT

PORT
PROGRAM.LEVEL
PROTECT

READ
REDUNDANT.CODE
RELEASE
REMAPS
RESERVE.SPACE
RESET

REVERSE

RIGHT

ROTATE

S
S.MEMORY.LCAD
SEGMENT
SEGMENT.COUNT
SEQ

SET

SFL

SFU

SHIFT

SINGLE

SKIP

SPACE
START
STOP
STORE
SUB.TITLE
SUBSET
SUBTRACT
SUM
SUPPRESS
SWAP
SO
SOA
SOB

S1

S1A
S1B
S10
S10A
S10B
S11
S11A
S11B
S12
S12A
S12B
S13
S13A
S13B
S14
S14A
S14B
S15
S15A
S15B
S2

S2A
S2B

S3

S3A
S3B

S4

S4A
S4B

S5

SSA
S5B

S6

S6A
S6B

S7

STA
S7B

S8

S8A

S8B

S9

S9A

S9B

T

TA

TABLE

TAPE

TAS

TB

TC

TD

TE

TEST

TF

THEN

TITLE

TO
TODAYS.DATE
TODAYS.TIME
TOPM

TRACE
TRANSFER.CONTROL
TRUE

8)

UNIT
UNLOCKED
UP

VALUE

VOID ¥
WHEN

WITH

WRITE
WRITE.STRING
X

XANY

XCH

XEOY

XORY

XREF
XREF.ALL
XREF.LABELS
XREF.NAMES
XREF.REGISTERS
XREF.ZIP

XY

XYCN

XYST

Y

INDEX

Item

A Register

A Stack

Add Scratchpad Mlcro Instrucflon
Adjust Location Statement
Ampersand Cards

AND Statement
Any.Interrupt Bit
Architecture.Name .
Arithmetic Expressions
Array Declarations .

Array Group Items

Arrays: Maximum Size
Assign Statement
Attribute

Base Register

Base.Zero

Begin Statement . . .

Begin/End Code Blocks

Bias Micro-Instruction

Bias Statement

BICN Register

Bit Data Fields

Bit Strings

Bit Test Branch False Mlcro Instructlon
Bit Test Branch True Micro-Instruction
BR Register .

Branch Micro- Instructlon
Branch.External Statement

C Register

CA Register

Call Micro- Instructlon

Call Statement . .
Call.External Statement .

Card Terminator

Carry Micro-Instruction

Carry Statement .
Cassette Control Micro- Instruct1on
Cassette Control Statement

CB Register

CC Register

CD Register .

Character Data Flelds .

Character Strings

Clear Registers Micro- Instructlon

. iw
u\]
W 0 00 o
A = — Ok ~J 00 WA

. W
“dn
PR

o)

7-6

Index-1

‘INDEX (Cont)
Item

Clear Statement

CMND Register

CMPX Register

CMPY Register .

Code.Segment Statement

Combinatorial Logic

Compiler Control Cards

Compiler Files

Compiler.Level

Complement Statement

Condition Registers . .
~Condition Registers Summary

Console Interrupt .

Console.Switches Register

Constant Registers

Correspondence Table .

Count FA/FL Micro-Instruction

Count Statement . .

CP Register

CPL Register

CPU Register .

CYD Register .

CYF Register

CYL Register

Data Register

Data Types .

Data.Length

DEC Statement .
Declarations Maximum Number .
Declare Statement

Decrement Statement

Define Statement .
Define.Value Statement .

Diff Register

Digit .
Dispatch Mlcro Instructlon
Dispatch Statement .

Dollar Cards

Dummy

Elementary [tems

Else Statement .

Emit.Return.To. External Statement

End Statement

EOR Statement .

Exchange Scratchpads w1th F Reglster Statement

Index-2

'61 66th£ou§h611

Page
8-16
7-10
. 7-8
.. .78

5 1 5—3 throught 5-7
. 7-8

. .A—l
A-6, A7
. 86
8 18, 8-19
7-11

. . B2
7-12,7-13

38 68 6-10
8-22
6-1

8-22

8-23

8-24

7-9
.34
B-9, B-10
8-25, 8-26
A-2, A5
6-6

. 64
8 27, 8-28
8-29

.. 830
8-31, 8-32
8-99

INDEX (Cont)

Item

Exit Statement . . .

External Dollar-Option

Extract From T Mlcro-Instructlon
Extract Statement

F Register . . .

FA.Points Statement .

Field Length Conditions Regxster
Filler
FINI Statement .

Fixed Data Fields

FLCN Register

Four-Bit Manipulate Mncro-lnstructnon
FU Register

Function Box .

GISMO.Level . .
GO TO Statement
Group Items

Halt Micro-Instruction
Halt Statement

1/0 Service Request Interrupt
Identifier ..

IF Statement

IF Statement . .

INC Clause in Read/Wnte Memory Statements
INC Statement .o e e
INCN Register

Increment Statement

Input/Output Registers

Inter-Firmware Commumcatlons

Interrupt Conditions Register

Jump Statement .
Key Concepts Alphabetic List

L Register

Label . . .

Label Addresses .
Length.Between.Entries .
Letter .

Level Numbers

Limit Register

Lit Statement

Page

. . 833
8-11, 8-13
. . B-10
8-34, 8-35

7-6

. . 836

. 7-11,7-13
6-5, 6-6, 6-7
8-37

6-1

. 7-11,7-13
. B-10, B-11
8-10

7-8

8-6
8-38
6-4

B-11
8-39

. 7-12
3-2,3-3

: 84'0 through 8-45

.. 87

8 74 8-96, 8-97
. . 846
7-11, 7-13

8-46

7-10

.. 894
7-11, 7-13

8-47
. 7-2 through 7-5

. 16
3-3,34
R
3-9,6-10
.31
64, 6-8
7-6

8-48

Index-3

INDEX (Cont)
Item Page

Literals3
Load F From Double Scratchpad Word MICI‘O Instructlon e : O
Load Scratchpad Statement .- 849
Load Statement . . O - 22 8
Load. MSMA Statement T . A1 0 R)
Load.SMEM Statement 852
Local.Defines Statement . 8534854
LR Register e e s s e 7-6
LSUX . . . e s s s s s s s s T2
LSUY s e s s s s s s s s s s T

M Register . . . O A1)
M.Memory. Boundary Statement O - 12 o1 ¢
MACRO Declaration Statement . N < o I
MACRO Referenceo, 85T,
MACROS . . . 8-55
Make.Segment. Table Entry Statement

MAXM Register ..
MAXS Register e e e e e e s s e e s e e s s e
MBR Register L s s s s s 7-7
MCP.Level e e e s e 8-6
Micro Statement . . OO . 241 0]
Micro-Instruction Addresses e e s s s e 7-7
Micro-Instruction Decoding L0000 7-6
Micro-Instruction Timing Chart ... B 24, B-25
Micro-Instruction Summary TableB3B4
MIL Statements Alphabetic List 81l
Monitor Micro-Instruction B12
Monitor Statemento s, 862
Move Statement . . . A < 63, 8-64
Move 24-Bit Literal MICI‘O Instructlon e e e e e B-13
Move 8-Bit Literal Micro-Instruction B12
MSKX Register Lo e e e e e s s 7-8
MSKY Register Lo 7-8

NO Operation . 8-65
NO Operation Micro- Instructlon B-13
NOP Statement . R - 2 o1
Normalize Statement 866
Normalize X Micro-Instruction B-13
Null Register R A5 K 0
Number Lo 3s
Operator Precedence 310
OR Statement . . e e e e o 867,868
Overlay Control Memory MlCI‘O Instructlon O - 19 X

Index-4

INDEX (Cont)

Item

Page Statement

Parity Error .
Parity Error Interrupt .
Physical, Label

Point . . .

Point FA Clause .

Point Statement
Point.Label

Port Device Interrupts
Program, Level Statement

Read Memory Statement .
Read Out of Bounds Interrupt
Read/Write Memory Mlcro-lnstructlon
Read/Write MSM Micro-Instruction
Redundant.Code Statement
Register Addressing Table

Register Bit Numbering Convention
Register Move Micro-Instruction
Registers, Alphabetic List
Regular.Label . .

Remap Items .
Remap/Reverse Combmatlon .
Remapping Structured Data
Remaps

Reserve.Space Statement

Reserved Word List

Reset Statement .

Result Registers

Reverse

Rotate Statements

S.Memory.Load Statement .
Scratchpad .

Scratchpad Move MlCl'O Instructton
Scratchpad Relate FA Micro-Instruction .
Segment Dictionary .o
Segment Statement . .

Set CYF Micro-Instruction .

Set Statement .

SFL Register

SFU Register . . .

Shift/Rotate T Left Mlcro-Instructlon
Shift/Rotate T Statement

Shift/Rotate X/Y Left/ nght Mtcro-lnstructlon

Shift/Rotate X/Y/X/ Statement . . .
Shift/Rotate XY Left/Right Mlcro-Instructlon

6-8 through 6-11

. 7-2 through 7-5

5-1

6-6

6-5

6-3

. . 876

. C1,C2

. 877

... 18,79
. 6-2,6-5, 6-10
B-18, B-29, 8-84

8-87

7-9

. . . B-17
. B-17,B-18
.52
5-1,5-2

. . B-18
8-80, 8-81

. 89

... 810
. B-18, B-19
8-82, 8-83
B-20
8-84
B-19

[ndex-5

INDEX (Cont)
Item

Skip Statement .

Skip When Mlcro-Instructlon

Source Image Format .

State Light

Statements: Alphabetlc Llst

Store F Into Double Scratchpad Word Statement
Store F Into Doublepad Word Micro-Instruction
Store Statement e e e e e
Structured Declarations

Sub.Title Statement .

Subtract Scratchpad Statement

Sum Register . . .

Swap F With Doublepad Word MlCl‘O Instructlon
Swap Memory Micro-Instruction .o
Swap Statement . 4

T Register

Table Statement .

TAS Register

Timer Interrupt

Title Statement

TOPM Register .
Transfer.Control Micro- Instructlon .
Transfer.Control Statement

U Register
Underscore .
Unique.Label

Verlay Control Memory Statement

Write Memory Statement

Write.String Statement .
Write/Swap Out of Bounds Interrupt ..
Write/Swap Out of Bounds Override Flag

X Register .
X/Y Conditions Reglster .
X/Y States Register
XANY Register . .
XCH Statement

XEQY Register

XORY Register

XYCN Register

XYST Register

Y Register

24-Bit Function Box
Index-6

Page

. 8-85,8-86
. B-20, B-21

. 9-1
7-12
8-1
8-88
B-21
8-88
6-4 6-7
8-89
8-90
7-9
B-22
B-22
891

7-6
8-92
7-7
7-12
8-93
7-7
B-23
8-94

7-10
3-1
3-3

8-69

8-95, 8-96
8-97, 8-98
7-12, 7-13
7-12,7-13

7-6, 7-8
7-11

7-11

7-8

899

7-8

7-8

.. 711
7-11, 7-12

7-6, 7-8
. 7-8

Printed in U.S.A. May 1977 1072568

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	07-01
	07-01A
	07-01B
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	08-53
	08-54
	08-55
	08-56
	08-57
	08-58
	08-59
	08-60
	08-61
	08-62
	08-63
	08-64
	08-65
	08-66
	08-67
	08-68
	08-69
	08-70
	08-71
	08-72
	08-73
	08-74
	08-75
	08-76
	08-77
	08-78
	08-79
	08-80
	08-81
	08-82
	08-83
	08-84
	08-85
	08-86
	08-87
	08-88
	08-89
	08-90
	08-91
	08-92
	08-93
	08-94
	08-95
	08-96
	08-97
	08-98
	08-99
	09-01
	09-02
	09-03
	09-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	C-01
	C-02
	IDX-1
	IDX-2
	IDX-3
	IDX-4
	IDX-5
	IDX-6
	xBack

