Burroughs

B 2500

~and

B 3500
SYSTEMS

CHARACTERISTICS MANUAL

)

H
2
H

i
I

Burroughs

B 2500 and B 3500 SYSTEMS
CHARACTERISTICS MANUAL

7

Burroughs Corporation
etroit, Michigan 48232

_ Printed in U.S. America 370 1025517

COPYRIGHT© 1966, 1969 BURROUGHS CORPORATION
AA 828692

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

This edition incorporates the information released
under the following PCN:
1025517 - 001.

Correspondence regarding this document chould be forwarded using the Remarks Form at

the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

TABLE OF CONTENTS

SECTION TITLE PAGE
INTRODUCTION. e i e e e e e e et e e e ix

1 PROGRAMING LANGUAGES i i it e i e 1-1
General e e e e e e . 1-1

Problem-Oriented Languages0 e, 1-1

Data Processing Language (COBOL) 1-1

Computational Language (FORTRAN) 1-1

Assembler Language00t . 1-2

Report Program Generator. 1-2

Compilation of a Source Programcc..... 1-2

2 SYSTEM DESCRIPTIONttt ittt ittt e, 2-1
T T 2 1 2-1

Central Controlv ittt i ettt e et e e e 2-1

L0707 (=01 (55 11 o) 7 2-1

B 2500 .. e e e 2-1

B 3500 .. e e e e e e 2-1

Address MeImMOTY . . oottt ittt ettt ettt e ettt e et inannn 2-1

The Input/Output Systemiuiirii i, 2-1

The ProCesSOr .. i i ittt ittt it ettt ittt e 2-3

Single-Line and Multi-Line Controls .-« - .+« o vvev e, 24

3 SYSTEM ORGANIZATION ... ittt it ettt e 3-1
General ... et i et e e 3-1

Read-Only Storagecciiiiiinininnennennennennnnn 3-1

Data Representationouuiinitnnnnenneennneennenanens 3-1

DagitS .o e et e e 3-1

111 F:1 ¢ 17 {5 - 3-1

R0 3-2

Instruction Representation i iiiinnnn. 33

Processor Instructionsc.ciiiiiiiiiinnnnnn. 3-3

OperationCodecciiiiiinnnnnnnennnnnn. 3-3

Vamants e e e e 33

Address Syllablesciiitiiiiii it 3-4

Branch Instructionsciiiiivirineenn.. 3-6

Addressing TechniQuUe « v v v oo o v viinnienin it ieeieieinrennnnn. 3-7

Input/Output Instructionsccoiiirininrninnnn.. 3-8

4 SYSTEM OPERATIONottt it et et e ennens 4-1
€153 4 T<] 1 P 4-1

Operational Statesiiitrniinninnerrenneenneeneennn 4-1

TABLE OF CONTENTS (Cont)

SECTION TITLE PAGE
4 (cont) CoNtrOl State . . v vt e ittt ettt e e e 4-1
Normal State .. oo vttt ettt e e i ettt eaans 4-1
Arithmetic .. oottt ettt e et 4-1
DataMOVement . oo oot te et et e et 4-2
Data COmpariSonvuurvnrnueenennenneeeneenns 4-2
Branchingcvviiiii it it it i 4-2
Subroutine Operationccciiuiiriiiiiiiann 4-2
Interrupt Systemttt i 4-2
5 MASTER CONTROL PROGRAM 5-1
Multiprograming e e e e e e e e e e 5-1

Program Loading and Scheduling 5-1
I/O Scheduling.o 5-1
File Handling « « .« « « « « .. 5-1
Printer Back-Up 5-1
Pseudo Card Readers « 5-2
Memory Allocation 5-2
AutomaticOverlay oo oL 5-2
Operator-System Communications 5-2
Logging o . e 5-2
Library Maintenance 5-2
System Clock0 5-2
Major Priority Programs 5-2
Data Communications. « « « « « o o o 5-2
Expansion Without Reprograming 5-3
Graceful Degradation L. 5-3
Programing Simplicity L. 53
Ease of Operation o 5-3
Summary o o o e e e e e e e e e e e e e 53

6 PERIPHERAL COMPONENTS ittt it ineaaneennnns 6-1
General ... e i e e e 6-1
System Console ..o v vt e e e e 6-1
Supervisory Printer e 6-1
System MemoOry ...ttt ittt 6-1
Disk File ..ottt it e i e e e e i e 6-1
Magnetic Tapeciiit i i e et e e 6-1
Card Readers . ..ottt et et e e 6-1

vi

SECTION

6 (cont)

TABLE OF CONTENTS (Cont)

TITLE PAGE

Line Printersiiinintii ittt ettt 6-1
Card Punches ittt ittt e 6-2
MICR Reader Sorter c.iiiiii i iiiiteiinieennn.. 6-2
Paper Tape Readersiiiiiiiiiinriiiiniiinnnnnnnns 6-2
Paper TapePunch i, 6-2
Data Communications Equipment i... 6-2
SOFTWARE SYSTEMS ittt it ittt ettt e 7-1
@) 1T 7-1
COBOL .. i et e s e e e 7-1
COBOL Cross-Referencing and Flow Chart System - - - 7-1
FORT RAN .. e e e e e 7-1
Assembler Programing Systemcciiiiiinnnn... 7-2
Report Program Generatoreiritiinenneeennennns 7-2
Sort Program Generator ,ouiitiit e, 7-2
Media Conversion Program Generatorcoeeeruunnn. 7-2
B 100/B 200/B 300/B 500 Simulatorot 7-3
MCP SOrtINtrinsiC - - v v v v v o v et e e e e e e e e et e et e et e e e e e 7-3

vii

FIGURE

TABLE

2-1
3-1

LIST OF ILLUSTRATIONS

TITLE

(2]

Yoot Lt LDALNND S A D VENN Qrogdarag (i s ana
interrelationship of B 2500 and B 3500 Systems Componeiit

Layout of Floating-Point Number
First Syllable of an Instruction
Format of Index Register
Address Syllable of Instruction
Format of a 4-Syllable Instruction
Format of a Branch Instruction

LIST OF TABLES

TITLE
Type of I/O Channel Requirements

Index Register Configurations
Address Controller Configurations

viii

.....................................

...........................

................................

...................................

..............................

...........................

.............................

..........................

............................

...........................

PAGE

2-2

3-3
3-5
3-5
3-6
3-6

This manual contains a description of the B 2500
and B 3500 Systems operation. It is intended to
provide technical information and reference for
those directly associated with data processing —
data processing managers, systems analysts, pro-
grammers, and management personnel acquainted
with the concepts of electronic data processing. It
is not intended as a teaching manual, programing
primer, or operation manual.

The B 2500 and B 3500 Information Processing
Systems are modular systems incorporating mono-
lithic circuitry, high speed storage, and special
hardware features designed to permit complete
integration of hardware capabilities with software
systems. The design philosophy of the B 2500 and
B 3500 Systems is unique. The hardware and sup-
porting software were designed in parallel, instead
of the traditional approach of building a machine
and then determining what software is needed for
system support. Through this design concept, the
hardware contains the necessary logic to allow the
software to be written and executed in the most
efficient manner and, conversely, the software
makes optimum use of all the capabilities of the
hardware. The fact that the B 2500 and B 3500
function as systems, rather than advanced sets of
hardware, has determined the organization of this
manual.

The programing languages, COBOL, FORTRAN,
Assemblers, and Report Program Generator are
presented first (section 1) because they constitute
the communications link between the user and the
system. Through their use, the problem is stated
and the method of receipt of the ultimate solution
is defined. The next three sections, System Des-
cription, System Organization, and System Opera-
tion discuss the reasons for, and the way in which
the B 2500 and B 3500 function as systems. Overall
coordination and control of processing, so impor-
tant to total production through maximum use of
the components of the B 2500 and B 3500 Systems,
is supplied by the Master Control Program (MCP)
which is described in section 5. The operational
characteristics of the peripheral components which
implement this unique system are specified in
section 6.

INTRODUCTION

The B 2500 and B 3500 Systems were designed as
a complete system, combining components and
built-in programing aids to bring the user simpli-
fied programing, ease of operation, and complete
freedom of system expansion.

The programmer is allowed to choose the language
best suited to his current needs. For normal busi-
ness applications he may use the English narrative
statements of COBOL, or if the current problem is
of a mathematical nature, he may use the formula
notation of FORTRAN. Also for those programs
which are of a generative nature requiring exten-
sive instruction modification based on parameters
furnished at execute time, the programmer is
furnished with an assembler language which allows
for complete flexibility of manipulation on an
instruction-for-instruction level.

In the area of operations, as in programing,
alternatives are provided. Operator intervention may
be nearly eliminated through the use of the Master
Control Program (MCP) which provides for com-
plete management of the system. The MCP is a
comprehensive operating system housed either on
the disk file or system memory of the B 2500 and
B 3500 Systems, and provides for simultaneous
input, output and compute operations and time
sharing. By controlling the sequence of processing,
initiating all input/output operations, and providing
automatic handling procedures, the MCP can obtain
maximum usage of the system components. Thus,
the system achieves greater production and effi-
ciency.

It is this complete flexibility of programing and
control of the processing pattern which provides
the B 2500 and B 3500 Systems with such smooth
growth potential. The user may start with the mini-
mum configuration to process his current work
load and expand at will with small increments as
his volume increases, or as it becomes necessary to
run more and larger programs. As more components
and larger memories become available on a system,
the MCP will automatically make use of them,
through multiprograming, gaining increased sys-
tem production and efficiency.

SECTION]

PROGRAMING LANGUAGES

GENERAL

Three levels of programing languages are available
with the B 2500 and B 3500 Systems: Pro-
blem-oriented compiler languages, report-oriented
generative languages, and a machine-oriented as-
sembler language. This allows the programmer to
choose a language directly suited to the solution
of his problem. Two problem-oriented languages
are available: COBOL for the solution of business
data processing applications and FORTRAN for
use in solving arithmetic problems. The ma-
chine-oriented Advanced Assembler language pro-
duces programs that are executed under control
of the Master Control Program. The report-ori-
ented generative language is a single compiler
capable of producing programs for the Master
Control system.

PROBLEM-ORIENTED LANGUAGES

Problem-oriented languages have many advantages.
They allow the programmer to state a problem in a
language directly adapted to a given problem. Also,
programs are less machine dependent and allow
greater flexibility for program modification and
exchange between users of different types of equip-
ment. The B 2500 and B 3500 Systems lend them-
selves well to compiler implementation. For exam-
ple, the Edit command of the Systems includes
within a single instruction all of the editing func-
tions required in COBOL, but is not limited to
them. Three advantages of this design as compared
to conventional machine and compiler techniques
are:

a. Reduced programing time.

b. Reduced time to compile and run the object
program.

c¢. Simplified debugging and program mainte-
nance.

Data Processing Language (COBOL)

Knowledgeable computer users, while desiring the
advantages of automatic programing systems, be-
came alarmed because many different languages

1-1

were being developed and put into use. In May,
1959, a meeting was held with representatives from
industry, government, and computer manufactur-
ers in attendance. They agreed that the develop-
ment of one common language tailored for business
use was both desirable and feasible. There were
three major requirements to be met:

a. The need to translate existing solutions to
business problems efficiently from one type
of computer to another with minimum con-
version costs.

b. The need for program documentation in a
form allowing changes and additions with
minimum time and expense.

c. The need for reducing the time requirements
for training of programing personnel.

A report outlining initial specifications of a COm-
mon Business Oriented Language (COBOL) was
published in April, 1960. In February, 1961, the
COBOL Maintenance Committee — a group of 12
Electronic Data Processing Equipment Manufac-
turers, including Burroughs Corporation, and 10
interested industrial users — met and completed
revisions to the original COBOL specifications. This
revised version of COBOL as adopted by the
United States of America Standards Institute is one
of the problem-oriented languages of the Burroughs
B 2500 and B 3500 Systems. The B 2500/B 3500
COBOL Compiler, as well as the resultant object
program, can be multiprogramed in an unre-
stricted environment.

Computational Language (FORTRAN)

FORmula TRANslation (FORTRAN) was original-
ly designed for the IBM Corporation, but has been
widely accepted both by computer users and man-
ufacturers. Because of this wide acceptance, the
United States of America Standards Institutes
FORTRAN 1V version was selected as the compu-
tational language of the Burroughs B 2500 and
B 3500 Systems.

When a scientific programmer attempts to solve an
arithmetic problem, his thoughts are channeled in
terms of algebraic notation, or a formula for the

solution. FORTRAN allows the problem to be
written with formula notation very similar to nor-
mal arithmetic. This ailows communication with
the machine in a language more applicable to the
problem and more familiar to the programmer,
thus reducing the time required to write and debug
programs. The Burroughs B 2500 and B 3500
FORTRAN Compiler, as well as the resultant ob-
ject program, can be multiprogramed in an unre-
stricted environment.

ASSEMBLER LANGUAGE

For those problems of a generative nature requir-
ing extensive instruction modification, according
to parametric input at execute time, the B 2500
and B 3500 Systems are provided with a machine-
oriented assembler language. The Systems Assem-
bler language permits programs to be coded in
symbolic form using mnemonics and symbolic
addressing.

The assembler is constructed very similar to the
Burroughs B 2500/B 3500 COBOL Compiler con-
struction. Data declarations are required and pro-
gram segmentation is allowed. Due to the macro
instructions at assembly time, and the MCP at exe-
cute time, the programmer need not concern him-
self with the detailed problems of input/output
and error conditions. However, with all these ad-
vantages, he is still allowed to program at the ma-
chine level with complete flexibility of instruction
modification, indexing, incrementation, and char-
acter or bit manipulation. In general, the pro-
grammer is provided with the generative macro
capabilities of compilers and still allowed the flex-
ibility inherent in the assembler. The Burroughs
B 2500 and B 3500 Advanced Assembler as well as
the resultant object program, can be multi-
programed in an unrestricted environment.

REPORT PROGRAM GENERATOR

The Report Program Generator provided with the
B 2500 and B 3500 Systems allows the user to
produce many programs in minimum time with
optimum efficiency. It compiles relatively com-
plete symbolic programs from a brief, simplified,

1-2

problem-oriented language similar to COBOL. Pro-
gram generation is fast and the resulting programs
wiil normally run at the rated speeds of the desig-
nated peripheral equipment. The Report Program
Generator creates an assembler source program
which is compatible with the M.C.P. The
Burroughs B 2500 and B 3500 Report Program
Generator, as well as the resultant object programs
themselves, can be multiprogramed in an unre-
stricted environment on an MCP controlled system.

COMPILATION OF A SOURCE PROGRAM

When a program has been written in one of the
languages acceptable to the B 2500 and B 3500
Systems, it must be converted from its source
language to the internal machine language. This is
accomplished for the user by the applicable Com-
piler, Generator and/or Assembler program. The
source program is punched into either cards or
paper tape and loaded into the system. The object
program is compiled or assembled with any of the
following optional outputs:

a. Object program compiled to the Disk File
Library with immediate execution (compile
and go under control of the MCP).

b. Object program compiled to Disk File Library
for future execution (compile for library
under control of the MCP).

The compiled object program consists of:

a. Program parameter record containing the ob-
ject program’s memory requirement, and the
location of the segment dictionary.

b. A File Information Block containing infor-
mation related to each file used in the
object program, as well as data areas for the.
files.

c. Main object program body.

d. Object program segments as applicable.

SECTION 2

SYSTEM DESCRIPTION

GENERAL

The following paragraphs describe the processor
and related control components which give the
B 2500 and B 3500 Systems their unusual capa-
bilities.

CENTRAL CONTROL

All peripheral unit operations are independent of
each other and of the processor; therefore, any
combination of simultaneous input/output and
compute operations is possible. Each peripheral
device, along with the processor, competes against
all other peripherals for use of core memory. When
a particular device wants a memory access, it makes
an access request to central control, which grants
the request as soon as all requests from higher
priority devices have been satisfied. Because of the
independent and concurrent operation of all devices,
a request for memory access may be one of several.
A rather sophisticated priority system is handled
in a very simple way within the central control. In
the event of multiple access requests, the unit with
the highest priority is granted access first. Because
of the unique structure of the priority control,
this is accomplished without the necessity of a scan
operation. The priority in determining memory
access for the various devices can be established or
changed by a field engineering adjustment, with the
exception of the processor which has the lowest
priority. The interrelationship of the central control
unit to the various components of the B 2500 and
B 3500 Systems is shown in figure 2-1.

CORE MEMORY

At this point, it is necessary to make a distinction
between the two system groups which constitute
the B 2500 and B 3500 Systems. The basic differ-
ences between the two systems are total core mem-
ory availability, number of I/O channels available,
and internal operational speeds. Since core memory
is one of the areas of difference, the two system
groups will be covered separately at this point.

B 2500

The B 2500 System is expandable in memory size
from 10,000 characters (bytes) to 120,000 char-
acters. The core memory in this system requires a

2-1

memory cycle time of two microseconds for
every two bytes accessed.

B 3500

The B 3500 System is expandable in memory size
to 500,000 characters (bytes). This expandability
is in increments of 10,000, up to 90,000; in incre-
ments of 30,000, from 90,000 to 240,000; in incre-
ments of 60,000, from 240,000 through 360,000;
in an increment of 90,000, from 360,000 through
450,000 and in a final increment of 50,000 for a
total of 500,000. The core memory in this system
requires a memory cycle time of one microsecond
for every two bytes accessed.

ADDRESS MEMORY

While the address memory is physically located
within the processor, it may be addressed by other
components of the system independent of the pro-
cessor. For this reason it is covered as a separate
control component. The purpose of address mem-
ory is to replace many of the costly ‘“hard regis-
ters” of conventional systems and at the same time
limit core memory access, thus greatly increasing
the processing speed of the system.

Minimum address memory consists of 24 6-digit
cells. Eight of these are assigned to the processor
for its use, and two are assigned for each I/O chan-
nel. Address memory is expandable in increments
of 12 cells up to a maximum of 120. During exe-
cution, the processor addresses core memory with
words from address memory so that memory ac-
cesses are not required for information relative to
the command itself during execution; that is, ac-
cesses during the execution phase are for data only.
I/O controls use address memory in a similar
fashion to reduce core accesses. A word from
address memory requires an access time of only
100 nanoseconds for both the B 2500 and the
B 3500.

THE INPUT/OUTPUT SYSTEM

The input/output system consists of the peripheral
control units and their related input/outputchan-

110
VEMORY. 110 - BUFFER
MEMORY PROCESSOR — CHANNEL — PERIPHERAL
CONTROL

‘F 1&

- CENTRAL

N 1 CONTROL

i

BASE LIMIT
REGISTER REGISTER
1 {
MEMORY ADDRESS MEMORY
REGISTER INFORMATION
REGISTER
L 1
1/0
1/0 N BUFFER ERIPHER
CORE AL
> CHANNEL o
CONTROL

Figure 2 - 1. Interrelationship of B 2500 and B 3500 Systems
Components to Central Control

22

nels and operates independently of the processor.
The processor issues a command to the I/O system
and then proceeds independently until the I/O
system completes the operation and interrupts the
processor. I/O operations are independent of each
other and any or all I/O channels may operate
simultaneously. The I/O system time-shares core
memory and address memory with the processor,
under control of the central control unit. There is
an I/O channel and a peripheral control for each
peripheral unit, or group of units of the same type.
For example, a card reader requires an individual
I/O channel and peripheral control, while up to 10
magnetic tape units may use only one I/O channel
and peripheral control. Also, two or more I/O
channels may be floated between groups of periph-
eral units of the same fype. For example, assume

The B 2500 and B 3500 Systems differ in I/O chan-
nel capacity. B 2500 Systems may have from four
to eight I/O channels with a maximum of five of
these being type B channels. B 3500 Systems may
have up to 20 I/O channels with a maximum of 10
type B channels.

THE PROCESSOR

The processor contains the arithmetic units and the
logical controls of the system. Object programs are
floated in memory through the use of a base regis-
ter thus allowing several programs to be resident in
memory at one time. The Master Control Program
(MCP) will set the base register for one program,

Table 2-1
Type 1/O Channel Requirements

Peripheral Unit

Channel

A B

Magnetic Tape Unit

Card Reader

Card Punch

Printer (Externally Buffered)
Printer (Internally Buffered)
Multiple Tape Lister

Disk File

System Memory

MICR Reader Sorter
Consoie Printer

Paper Tape Reader

Paper Tape Punch

Data Communications Devices

ol

P34

R

two I/O channels are assigned to the same five tape
units. This means any of the five units may use
either channel that is available, allowing for the
simultaneous reading of any one unit while writing
on any other unit.

The 1/O channels are of two basic types: type A
channels and type B channels. Type B channels
permit the use of high-speed peripheral units which
transfer two characters simultaneously (in parallel)
while type A channels permit the use of low speed
peripheral control units which transfer only one
character at a time (serially). Different types of
peripheral units require different types of channels.
Table 2-1 shows a list of peripheral unit types and
the I/O channel type required for each.

2-3

retrieve it, and turn control over to that program.
After handling an interrupt, the MCP may reset the
base register and turn control over to another pro-
gram. All addresses are compiled for an object
program as base relative to zero and the program-
mer need not concern himself with the location of
his program in core memory at a given time, or with
the type of other programs which are present in
memory during its execution. The MCP will call in
a given program when there is memory available to
meet that program’s requirements by analyzing
contiguous core available and automatically push-
ing other operating programs down in memory
locations to facilitate the new program, and will
set the base register to the location to which the
program is to be assigned.

Along with the base register there is also a program
limit register so that memory can be protected from
programs attempting to access areas outside of their
boundaries. Any program attempting to access
memory below its base register setting or above its
limit register setting will be automatically discon-
tinued and the operator will be notified.

There are three index registers available to every
program in the memory mix.

Indirect addressing and indirect field length are
standard features of the system and are allowable
to any level.

A more detailed description of the processor is
given in section 3 which covers processor organiza-

tion, and in section 4 which explains the manner
in which the system operates.

SINGLE-LINE AND MULTI-LINE CONTROLS

The single-line and the multi-line controls are

24

functionally equivalent, except that the single-line
control services one communications line, whereas
the multi-line control services a number of commu-
nications lines on a time-shared basis. Both the
single-line control and the multi-line control can be
adapted to accommodate a variety of data sets and

+n foarmi
remote terminals.

No translation is provided for any code by either
control. Code translation is provided for by the
Data Communications MCP.

All controls include the capability to respond to a
Read Address instruction from the processor by
allowing the transfer of the contents of either word
of its associated address memory to the processor.
The invalid I/O descriptor bit of the processor is
set ON in the event that the instruction is received
by a busy channel. A multi-line channel is not
considered busy after returning a channel result
descriptor.

SECTION 3

SYSTEM ORGANIZATION

GENERAL

For further understanding of the total B 2500 and
B 3500 System concept, hardware and software
integration, this section will describe the way in
which an instruction is executed, the methods of
data representation, the format and techniques of
instructions, and the logical units within the proc-
essor. These capabilities allow the MCP to control
the system and free the programmer from the
tedious responsibility of input/output and system
control and also from the necessity of detailed
scheduling.

READ-ONLY STORAGE

Much of the traditional hard logic of conventional
systems is replaced by a device known as read-only
storage. Read-only storage is an extremely fast,
resistive type memory which is wired with inter-
pretive routines that are executed at hardware level
within 100 nanoseconds. These routines are called
microprograms and control all of the actions taken
by the processor, namely:

a. Memory reads and writes for the processor.

b. Transmission of data from register to register
within the processor.

c. Loading and unloading the processor’s eight
words of address memory.

d. Counting and setting of all the various regis-
ters.

e. The initiation of I/O operations.

The microprograms are automatically initiated by
the systems operation codes contained in the ob-
ject program instructions as they are fetched from
core memory.

DATA REPRESENTATION

The internal code of the B 2500 and B 3500
Systems is Extended Binary Coded Decimal Inter-
change Code (EBCDIC) which is an 8-bit alpha-
numeric code with no forbidden combination of
bit arrangements. Because many data communica-
tion devices transmit in United States of America

Standard Code for Information Interchange
(USASCII), provisions are also made within the
processor to directly process USASCII. This is
done by a mode switch that is
programmatically-selectable. In either the EBCDIC
mode or USASCII mode, the processor accepts and
acts upon data in the form of either digits,
characters, or words.

Digits

Decimal numbers are represented by four bits.
There are no forbidden combinations of the 16 pos-
sibilities, but arithmetic manipulation cannot be
performed on digits greater than nine. Numeric
fields may be either signed or unsigned. Where a
sign is expected, it is interpreted to be a separate,
leading 4-bit unit. All unsigned fields are con-
sidered plus. When an arithmetic result is specified
as a signed 4-bit numeric, the system will set the
leading unit to the proper internal sign configura-
tion. The internal sign digits are as follows:

a. EBCDIC:
b. USASCII:

plus-1100; minus-1101.
plus-1011; minus-1101.

A plus will collate higher than a minus in either
mode when it is specified as a sign digit.

Characters

Alphanumeric data are represented internally by
eight bits. As previously stated, alphanumeric
characters may be either EBCDIC or USASCII. If
an arithmetic operation uses one or more fields,
specifying 8-bit characters as operands, only the
least significant four bits of each character are
used. The most significant four bits are considered
to be the numeric subset of the applicable 8-bit
code. If the receiving field for the result is also
specified as 8-bit characters, the most significant
four bits of each character are automatically set to
the numeric subset of the selected 8-bit code. In
other words, if arithmetic is done on 8-bit charac-
ters, the character is assumed to be a number and
only the numeric portion of that character is
considered. The result field is automatically set to
a number. In common data processing terms, when
arithmetic is done on a character, all zone bits are
stripped. All alphanumeric fields are considered to
be positive.

Generalized address control capability provides
ability to automaticaily convert a field from its
4-bit representation to an 8-bit representation, or
vice versa during normal data movement from one
class of field to another or during arithmetic
manipulation of different field classes.

Words

Certain data movement instructions are word sensi-
tive. A word within the B 2500 and B 3500 Sys-
tems is considered to be 16 consecutive bits (two
bytes). It may be represented as either four numer-
ic digits or two alphanumeric characters. When
these instructions are used, 16 bits will be moved
in parallel, in binary order. There will be no change
in the internal data representation.

All information is addressed by the most signifi-
cant (or left-most) digit or character. This holds
true whether data are represented as digits, char-
acters, or words. If a field is signed, the sign digit
will be the digit addressed.

There is one special case of numeric representation
within the B 2500 and B 3500 Systems and it is for
floating-point operands which are to be used by the
optional floating-point arithmetic instructions. The
floating-point operands are in the 4-bit digit mode,
but have a special format. The components of the
floating-point format are:

a. 1-digit sign of the exponent (S/X).
b. 2-digit exponent (EXP).
c. 1-digit sign of the mantissa (S/M).

d. Mantissa - a variable length number ranging
from 1 to 100 digits.

The instruction will define the length of the mantis-
sa. When floating-point operands are addressed, the
sign of the exponent (SX) is the digit addressed.
Figure 3-1 shows the format of a floating-point op-
erand. The sign conventions are the same in fixed-
point, signed-numeric representation.

wn
‘,{

EXP SM

MANTISSA = 1 70O 100 DIGITS

I T N

\ \
®
\ EXPONENT

\—sucu OF THE MANTISSA

SIGN OF THE EXPONENT

NOTE

To address a floating-point field,

point to the sign of the exponent.

Figure 3-1. Loyout of Floating-Point Number

3-2

INSTRUCTION REPRESENTATION

All instructions are represented as 4-bit digits. In-
structions are of two basic types: processor instruc-
tions and input/output instructions (called descrip-
tors). The two types of instructions are discussed
separately in the following paragraphs.

Processor Instructions

Processor instructions, with the exception of bran-
ches (a special case which will be covered separate-
ly), are variable in length from one to four syllables.
That is, instructions may contain no address, one
address, two addresses, or three addresses. Each syl-
lable contains 24 bits or six digits. The first syllable
contains the operation code (OP) which denotes
the operation to be performed and implies the num-
ber of syllables comprising the instruction; the A
field variant (AF) which specifies variable informa-
tion pertaining to the A address; and the B field
variant (BF) which specifies variable information
pertaining to the B address. The second, third, and
fourth fields, if applicable, contain addresses of da-
ta. The mode of operation, EBCDIC or USASCII,
- is irrelevant to code sensitivity within the instruc-
tions since the numeric portions of each code
(digits 0-9) are identical and all instructions are in
numeric digit representation.

OPERATION CODE

The first two 4-bit digits of an instruction are inter-
preted to be the operation code (OP). The opera-
tion code is indicative of the length of the instruc-
tion and triggers access to the proper string of mi-
cro-operators in read-only storage. The micropro-
gram thus initiated will fetch the balance of the in-
struction and execute the proper steps to accom-
plish the required operation.

VARIANTS

The remaining four digits of the first instruction
syllable are used as variants and are referred to as
AF and BF. In arithmetic commands, the first two
variant digits (AF) give the length of the field point-
ed to by the A address syllable and the second two
variant digits (BF) give the length of the field indi-
cated by the B address syllable. If the C address syl-
lable is used, the length of the C field is determined
by a combination of AF and BF. In some data
movement instructions, AF specifies the length of
the sending field and BF specifies the length of the
receiving field. Since the variant fields are two
digits and may range from 00 to 99, operands may

3-3

be from 1 to 100 digits or characters in length (00
indicates 100). In some data movement instruc-
tions, the AF and BF variants are combined to
represent values ranging from 0000 to 9999 (0000
indicates 10,000); thus, these instructions are
capable of moving from 1 to 10,000 digits,
characters, or words depending on the instruction
being executed, in one execution of the instruc-
tion.

Figure 3-2 illustrates the first syllable of an instruc-
tion.

OPERATING
CODE

A-FIELD
VARIANT

B~FIELD
VARIANT

Figure 3—2. First Syllable of an Instruction

Another function available within the variant fields,
when their use within an instruction specifies field
length, is that of indirect field length. When the
two high-order bits (8 and 4) of the most signifi-
cant digit of AF or BF are ON, they indicate an
indirect field length. The two low-order bits (2 and
1) plus the entire least significant digit indicate the
tens and units digits of an address where the field
may be found. This address must be an even
number. For example:

Indirect field _{ 8 X 8 Units position
length is indicated. 4 X 4 of the address
where the
Tens position of _{ 2 X 2 heldbl:;‘g::d
the address where 1 X 1 can eone:
the field can be
found.
NOTE
X indicates the bit is ON.
Blank indicates OFF.

In this example, the variant reflects that an indirect
address contains the field length of the instruction
being executed and that the length of the field is to
be found at base relative address 00016.

While it is logically possible to use indirect field
iength to any depth, it is obvious that the number
of addresses generated by the technique is limited.
The two low-order bits of the high-order digit may
represent values of 0, 1, 2, or 3. Since the address
must be even, the range may be from 00000 to
00038, base relative. This technique can be very
useful in cases where many instructions in a pro-
gram refer to the same field, and that field is vari-
able in length. The field length may be modified in
only one location. All instructions referring to that
field will be so modified without necessity of any
code change.

Another use of the AF variant is to indicate that
the A syllable of the B 2500 and B 3500 Systems
command does not contain an address, but instead
contains literal data to be used directly by the com-
mand. This option is indicated by the 8-bit and the
2-bit, in the most significant digit of the AF field,
being ON, with the 4-bit being OFF. A literal, as
with any data, may be represented as 4-bit digits,
either signed or unsigned, or as 8-bit characters. The
1-bit of the most significant digit of AF and the 8-
bit of the least significant digit are used to indicate
the internal representation to be used for the literal
and are called controller bits which represent the
following 2-bit values:

a. O - unsigned numeric (4-bit mode).

b. 1 - signed numeric (4-bit mode).

¢. 2 - alphanumeric (8-bit mode).

d. 3 - unused.
The remaining three bits of the low-order digit of
AF specify the length of the literal. Since the A syl-

lable is six digits in length, the following lengths are
maximum:

Table 3-1

a. Unsigned numeric - six 4-bit digits.

o

Signed nuineric - five 4-bit digits pius a sign
4-bit digit.

¢. Alphanumeric - three 8-bit (byte) charac-
ters.

For example:

8-bit and 2-bit, being ON,
—— indicate that a literal is
present in the A address por-
tion of the instruction.

b28

.14 x |4
2| X X |2

11 b1 1

Indicate that the length
of the literal is 6.

In the example, bl and b2, both being OFF, indi-
cate an unsigned numeric representation. The A syl-
lable contains a literal of six unsigned numeric
digits.

Ali fieid lengths specified for signed numeric fieids
reflect the length, excluding the sign. In floating-
point instructions, field length reflects the length of
the mantissa only.

ADDRESS SYLLABLES

As previously stated, an instruction may have none,
one, two, or three addresses and all have the same
format . The low-order five digits represent the base
relative to zero address. The most significant digit
of an address is split; the 8-bit and the 4-bit desig-
nate the index register by which it is to be incre-
mented or decremented. There are three index re-
gisters available to each program being operated
within the B 2500 and B 3500 Systems. The index
register configurations are shown in table 3-1.

Index Register Configurations

Configuration of
8 and 4-Bits Value Description
00 0 No indexing required.
01 1 Indax regicter one.
10 2 Index register two.
11 3 Index register three.

34

- N A 0

8
4
2 D1 D 2 D3 D 4 D5 D 6 D7 D 8
1
\— ALWAYS ZERO \
SIGN DIGIT YALUE USED FOR INDEXING

Figure 3 -3 Format of Index Register

Each index register is eight digits in length. The
most significant digit is a sign digit which allows
the index register to either increment or decrement.
The digit immediately to the right of the sign digit
is always zero and is included for expansion pur-
poses only. The remaining six digits contain the in-
dex value by which the address will be either incre-
mented or decremented. Figure 3-3 illustrates the
format of an index register.

The 1-bit and 2-bit of the most significant digit of
an address are called the address controller which
tells the system what the representation of the data
addressed is, e.g., signed numeric, unsigned numer-
ic or alphanumeric. The address controller may
also specify that the contents of the addressed field
is not data at all, but is an indirect address where
the data may be found. This technique is known

as indirect addressing and may be used to any
depth. The address controller configurations are
shown in table 3-2.

The indirect addressing technique may be used with
any combination of index registers. For an example
of indirect addressing, assume the common func-
tion of table look-up. A value within a table must
be located, and once found must be referenced by
several instructions. Once the value is located, the
address of that value may be stored in one location
and all other instructions may reference the value
through indirect addressing, with no address modi-
fication necessary. Figure 3-4 is an illustration of
the format of an address syllable, and figure 3-5 is
an illustration of a maximum size, 4-syllable instruc-
tion.

Table 3 -2

Address Controller Configurations

Configuration of the
1=Bit and 2-Bit Value Description
00 0 Unsigned 4-bit format
01 1 Signed 4-bit format
10 2 Alphanumeric 8-bit format
11 3 Indirect address
8 INDEX 8
4 4
) D1 D2 D3 D4 D5 :
1| CONTROLLER I

Lo
ADDRESS CONTROLLER

INDEX REGISTER

\—BASE RELATIVE ADDRESS

Figure 3—-4. Address Syllable of Instruction

35

1 H 1
: 1 ’
' 1 '
8 Al: A Bl B Cla ¢ 8
41 op AF BF [aDDRESs™ > | 4DDRESS > ADDREsSS > | 4
2 ! SYLLABLE ' SYLLABLE | SYLLABLE 2
'
8 T e 0 0 T A O B N R O
1
] 1 1

e B-FIELD VARIANT

————= A-FIELD VARIANT

. OPERATION CODE

Figure 3-5.

BRANCH INSTRUCTIONS

Branch instructions are considered as a special case
within the processor of the B 2500 and B 3500 Sys-
tems and have a format different from that of the
other processor instructions. The branch instruction
contains only eight 4-bit digits. The first two digits
are the operation code (OP) and the remaining six
digits are a standard address syllable. Variants are
not necessary in a branch instruction and an exe-

cute cycle is not required. If the condition demand-

C-FIELD ADDRESS

C INDEX AND
CONTROLLER

— B-FIELD ADDRESS

me=eB INDEX AND CONTROLLER

A-FIELD ADDRESS

e A INDEX AND CONTROLLER

Format of a 4-Syiiabie Instruction

ing the branch is met. or if the branch is uncondi-
tional, the address to where the program is to
branch is fetched. If the condition is not met, pro-
gram control goes directly to the next instruction
register (NIR) and the next instruction to be exe-
cuted is fetched. This method of controlling branch
instructions precludes the normal requirement of
placing an exit address in address memory and in
turn executing the instruction. Figure 3-6 shows
the format of a branch instruction.

8 INDEX 8
4 4
oP ADDRESS
2 _ 2
1 l CONT. I l 1
l] | |
OPER
L ATION ADDRESS INDEX AND CONTROLLER L BRANCH-TO-ADDRESS
CODE ,
NOTE The two controller bits have the following
meaning for Branch instructions:
00=0]
01 =1 6th digit of address
10=2
i1 T indirect address
Figure 3~6. Format of ¢ Bronch Instruction

3-6

It should be noted that the address within a branch
instruction is not pointing to data, but to another
instruction to be executed. Since all instructions
are represented in 4-bit digit format, the address
controller cannot specify any other type of format;
however, full generalities of indexing and indirect
addressing are included.

ADDRESSING TECHNIQUE.

Addresses within all B 2500 and B 3500 Systems
object programs are compiled and executed as
being base relative to zero. This means that each
program is created and executed with the assump-
tion of zero being the object program’s beginning
point. When a program is assembled or compiled, it
is assigned a five-digit relative address, starting at
zero and continuing upward as far as necessary,
depending on the size of the program. During
execution of an instruction, each address contained
in the instruction is automatically incremented by
the three-digit base register, at no cost in execution
time. The combination of the base register and the
relative addresses creates a machine absolute loca-
tion. This is a hardware capability and allows the
MCP to assign a program to any contiguous area of
core memory large enough to contain the program,
and to subsequently relocate the program when
necessary, by merely changing the base register.
For example, assume the MCP loads a program
starting at location 150000; the setting of the base
register would be 150. The addresses within the
program will be executed as illustrated at the top
of the next column.

Starting

Program Location
MCP 00000
Job-1 26000
Job-2 46000
Job-3 66000
Available 86000
core area

Instruction Relative

Address 1 l 213 [45
Y
Base Register 1[5]0
Machine Absolute & ‘ Y
Address 116l 213145

Assume further that the program has indicated that
an instruction is to be indexed by the contents of
index register 1. The final absolute location would
be derived in the following manner:

Instruction Relative

Address 112§314]5
Y Y
Base Register 11510
Machine Absolute v v v T ¢ ¢
Address 116 I 5 [3] 4 _i_,
r v
Index Register 1 [+{0|1|2|3|4|51|6
Memory Address * + * ‘ }
Register Setting 218 slol1

To illustrate the relocation of programs, assume
that a given system has 50,000 characters (bytes) of
memory. Since each 4-bit digit may be addressed
individually, the addresses would run from 00000
to 99999, If core memory contained the MCP re-
quiring 13,000 bytes and three user programs, each
requiring 10,000 bytes, the memory structure
would be as follows:

Contiguous
Base Digits
Register Used
000 25,999
026 45,999
046 65,999
066 85,999
086 99,999

Next assume that Job-2 finishes and Job-4 which requires 22,000 digits is introduced. When Job-2 is re-

moved, the memory structure becomes:

Starting
Program Location
MCP 000000
Job 1 026000
Available 046000
core area
Job 3 066000
Available 086000
core area

37

Contiguous
Base Digits
Register Used
000 25,999
026 45,999
046 65,999
066 85,999
086 99,999

At this point there are 33,000 digits available and
Job-4 only requires 22,000, but Job-4 still cannot
be initiated since the largest single block of core
available is 20,000 digits. The very large operand
capability of the B 2500 and B 3500 Systems al-
lows the MCP to relocate Job-3 from location
066000 to 046000 with only one instruction. With
minor reinitializations, e.g., changing the base reg-
ister setting of Job-3 from 066 to 046, the MCP
can now initiate Job-4 at location 066000 and pro-
cessing of object programs may continue. During
the next process cycle of Job-3, all of its base rel-
ative addresses will be incremented by its new base
register setting, and the user will not be aware of
the fact that the program was removed.

Another problem that must be solved before a
system can effectively multiprogram is the ac-
cidental over-writing of one program by another,
or the problem of memory protection. The B 2500
and B 3500 Systems contain, along with its base
register, a limit register. When a program is as-
sembled or compiled, the program is automatically
provided with a prog’ram parameter record. This
record contains, among other things, the total
memory requirements of the program. As the MCP
initiates a program, it will set the base register ac-
cording to the memory location used, and the limit
register to the maximum bounds of the program,
i.e., the base register setting plus total memory
requirements for the program. During the fetch
cycle, after the machine absolute address has been
assembled by applying the base register and index
register, if applicable, the address is automatically
checked against both the base and limit registers at
no cost in execution time. If an address has been
generated which is below the base register setting
or above the limit register setting, the program is
immediately interrupted, the contents of the mem-
ory location addressed are not changed and control
is transferred to the MCP. The MCP will remove
the program from processing and inform the opera-
tor of the address error and its location.

3-8

Input/output Instructions

The B 2500 and B 3500 Systems initiate an I/O
instruction by sending controi information to the
peripheral control unit attached to the respective
channel. The peripheral control unit then executes
the operation independently from the processor,
except that it time-shares address memory and the
core memory sub-system with the processor and
other peripheral control units. After having initia-
ted an input or output instruction, the processor
proceeds independently of the executed instruc-
tion and calls on the next instruction programed
sequence. The peripheral control which received
the descriptor will then execute the instruction on
its own. Upon completion of the operation, it will
send a result descriptor to core memory and set an
interrupt to allow the processor to take the action
necessary upon receiving an I/O complete condi-
tion from the control unit. Each peripheral control
uses its own words of ‘“‘scratch pad” address-mem-
ory to handle memory accesses when data is being
passed to and from the peripheral. The peripheral
control is able to count up the first address word
and compares the result to the second address,
which is the base address of the data field to be
transferred which has been incremented by the
physical size of that field. When they become
equal, the peripheral control knows that the oper-
ation is finished, stops the transmission of informa-
tion and initiates an I/O complete. The transfer of
data may not be physically complete. For example,
begin-and-end addresses within a card-read de-
scriptor may be 40 characters apart, signifying that
only the first 40 columns of the card are desired
for a given program. The card reader would physi-
cally read all 80 columns, but the information
from column 41 on would not be transferred to
memory. When an I/O operation is completed,
either because the specified memory bounds have
been reached or because an end of record con-
dition has been sensed, peripheral control sends a
result descriptor to core memory, sets an interrupt
within the processor, and readies itself to receive
the next I/O descriptor.

SECTION 4

SYSTEM OPERATION

GENERAL

This section is intended to generally explain how
the B 2500 and B 3500 function as systems. The
modes (or states of operation), subroutine abilities,
and types of instructions will be discussed.

OPERATIONAL STATES

There are two states of operation within the B 2500
and B 3500 Systems processor: the control state,

when the MCP is being executed, and the normal
state, when user programs are being executed.

Control State

There are several privileged instructions which can-
not be executed in the normal state which allow
the MCP to regulate the system; for example,
initiate I/O operations, and control the program
mix by setting and clearing registers.

All input/output operations are initiated while in
the control state. During compilation or assembly,
a privileged instruction to store the settings of the
comparison and overflow indicators and the object
program’s return address will be automaticaily
generated upon encountering a read or write re-
quest. The same instruction will also cause entry
into control state. Base and limit registers are
cleared and control is transferred to the proper
point in the MCP.

Another method of entry into control state is the
automatic interrupt system of the B 2500 and
B 3500 Systems which is active during normal state
and will be discussed later in this section. If an
interrupt occurs during control state, the function
is to set an indicator. The MCP will interrogate the
interrupt indicators to determine if an interrupt
has occurred while in control state before returning
control to the object program currently being
processed. If an interrupt has occurred, the MCP
will first process it and then return to user
program processing.

While the processor is in control state, any of the
following conditions will cause the processor clock
to be turned off with all processor conditions left
static. That is, the system will halt and all registers
and displays will be left unchanged.

4-1

a. Memory parity error.
b. Address error.
c. Instruction time out.

d. Invalid instruction.

Normal State

During normal state, the system executes arithme-
tic manipulations, performs data movement and
editing, and does comparisons and control transfers
as desired. In addition, the B 2500 and B 3500
Systems have two special instructions which permit
efficient subroutine processing. Each of these areas
will be covered and the manner in which the system
executes them will be explained.

ARITHMETIC

The B 2500 and B 3500 Systems operation codes
supply a complete set of arithmetic instructions
capable of any type of calculation in either normal
or floating-point operations. The B 2500 and B 3500
Systems allow two-address normal addition and
subtraction; three-address normal addition, subtrac-
tion, multiplication, and division; and floating-
point addition, subtraction, multiplication, and
division. All floating-point instructions are three-
address. All operand fields, both normal and
floating-point, are variable in length from 1 to 100
digits or characters. Operands may be represented
in unsigned numeric 4-bit format, signed numeric
4-bit format, or alphanumeric 8-bit format. Any
combination of data representation is allowed in
all normal arithmetic operations. Floating-point
operands have a special format which is illustrated
in figure 3-1. When unsigned numeric information
and/or alphanumeric information is used, all values
are considered positive. If only one operand has a
sign, that sign is considered. If the result is to be
without sign, the absolute value is stored.

After each arithmetic operation, the comparison
indicator is set to either low for minus, equal for
zero, or high for plus. If the arithmetic operation
will cause overflow or underflow, the operation is
terminated, all operands are unchanged, and the
overflow indicator is turned on. This indicator may

be tested by a Branch on Overflow instruction.
If an overflow condition occurs and no test is made
of the overflow indicator, subsequent arithmetic
will not affect the indicator setting. Only the Branch
on Overflow instruction will turn the indicator off.
If a Branch on Overflow is executed when the
overflow indicator is in the off condition, the
branch will be treated as no operation. If overflow
occurs in an arithmetic instruction, the comparison

indiratn ;S nnapfnnforl
1inGiCawor 15 undiiclied.

All arithmetic in the B 2500 and B 3500 Systems
is accomplished from left to right (highrorder to
low-order).

DATA MOVEMENT.

The B 2500 and B 3500 Systems offer hardware
flexibility in data movement. Numeric fields may
be moved to alphanumeric fields creating alpha-
numeric representation; alphanumeric fields may
be moved to numeric fields creating numeric
representation; and source fields may be moved to
destination fields of unequal length being either
filled with zeros in numeric fields or blanks in
alphanumeric fields from the left or right depend-
ing on the relation of field sizes and the type of
instruction used. Data may be edited during move-
ment operations by using floating insertion char-
acters, fixed insertion characters, zero suppression,
orany combination of the above. There are instruc-
tions available to allow data to be translated from
any-code to any other code during data movements
through use of a translation table. The size of oper-
ands may range from one 4-bit digit to 10,000
16-bit words within one instruction.

DATA COMPARISON.

Hardware instructions within the B 2500 and
B 3500 Systems allow two operands to be com-
pared and the comparison indicator to be set to
less-than, equal-to, or greater-than according to the
relationship of the first (A) operand to the second
(B) operand. The operands may be of different
data representation and of unequal length if
desired.
BRANCHING.

Branching may take place unconditionally or
conditionally, depending upon the state of the
comparison indicator or the overflow indicator. If
conditional branching is executed on the basis of
the overflow indicator, the indicator is reset fol-
lowing the operation. If branching is made on the
basis of the comparison indicator, the indicator
remains unchanged following the operation. The
tollowing types of branches are availabie:

SD

42

b. Branch Unconditionally (BUN),

¢. Branch on an overflow condition (OFL).

d. Branch if a comparison reflects a Greater-
than condition (GTR).

e. Branch if a comparison reflects a Less-than
condition (LSS).

f. Branch if a comparison reflects an Equal-to
condition (EQL).

g. Branch if Less-than or Equal-to condition
(LEQ).

h. Branch if a comparison reflects a Greater-
than or Equal-to (GEQ).

i. Branch if a comparison reflects a Not Equal
condition (NEQ).

j. Halt and Branch (HBR).

Any conditional branch is effectively a NOP if the
condition of the branch is not met.

SUBROUTINE OPERATION.

It is often necessary to execute a given routine in
several different places within a program. It is ideal
in these cases to write the routine once, and each
time it is needed to pass the necessary parameters
to the routine, branch to and execute the routine,
and then return to the main program in sequence.

While this is the ideal way to process subroutines,
it has often developed that in conventional com-
puters it was more trouble than it was worth as
it required more instructions to pass the parameters
and create return linkage than to duplicate the
routine each time it was needed. Two instructions
have been implemented within the B 2500 and
B 3500 Systems which provide automatic recursive
subroutine linkages which are cailed Enter and
Exit. The Enter instruction will store the indicator
settings and clear the indicators, store the location
of the next instruction, pass parameters of from
1 t0 9,999 characters, and branch to the subroutine.
Upon completion of the subroutine, the Exit
(EXT) instruction will restore the setting of the
indicators (to the settings which were originally
stored) and branch to the address which was stored
by the Enter (NTR) command. This return address
branch may be indexed, thus providing for variable
return points if desired.

INTERRUPT SYSTEM.

The term “interrupt condition™ means that a

transfer of control takes place from the object
program to the MCP so that it may initiate cer-
tain types of operations, or automatically handle
errors which would cause time loss and operator
intervention in conventional systems. The inter-
rupt system also furnishes a means for continuous
automatic recognition of exception conditions
which otherwise would have to be checked pro-
grammatically at intervals. The conditions which
cause storage of information and return points
within a program and exit to the MCP are as
follows:

a. Memory Parity Error. The instruction is
terminated immediately. The address of the
field containing the parity error is stored
and a branch to the appropriate MCP rou-
tine is executed. The MCP will remove
the affected program and notify the opera-
tor of the location of the parity error.

b. Address Error. All memory write cycles
are inhibited. The MCP will remove the
program, notify the operator of the prog-
ram error and its location, and resume

processing of other programs.

Instruction Time Out. An instruction
timer is started with the fetch of an
instruction and should time run out (250
ms.) without the completion of the
instruction, an interrupt occurs and the
MCP is invoked.

Invalid Instruction. The MCP will remove
the program and notify the operator of
the location of the invalid instruction.

Privileged Instruction. If a privileged in-
struction is encountered while the proces-
sor is in the normal state, it will be
treated as an invalid instruction.

Receipt of Result Descriptor. When a
peripheral control unit completes an 1/O
operation, an interrupt occurs to allow the
MCP to handle the I/O Complete condi-
tion and check for any errors which may
have occurred, or to start the next I/O
operation on that peripheral control unit.

SECTION 5

MASTER CONTROL PROGRAM

MULTIPROGRAMING

One of the major advantages of comprehensive
operating system control is the ability to simulta-
neously process several programs. The Master
Control Program (MCP) supplied with B 2500 and
B 3500 disk file system configurations directs a
group of programs through the system according
to scheduling priority, automatically allocating
memory areas for each, assigning peripheral
equipment to meet I/O requirements, and tending
to all processing details (commonly referred to as
“housekeeping’). Independently written programs
may be entered into the system in any combi-
nation of B 2500 and B 3500 languages and in
any sequence. The MCP continues to assign hard-
ware components to meet the requirements of
incoming programs until the entire system is in
operation. As soon as a program is terminated,
the MCP allows another program or group of
programs to refill the system. In this way, the
MCP keeps the system at peak utilization as long
as there is work to be done.

A job may be entered into the system to meet an
unexpected demand, given precedence, and, if
desired, allowed to displace lower priority work
currently being processed. As soon as the rush
job is completed, regular work is resumed at the
exact point where it was interrupted.

Some of the major MCP functions which have
made multiprograming so successful are explained
below.

Program Loading and Scheduling

Programs may be requested by an operator or by
another program. When a program is requested,
the MCP analyzes the job for memory require-
ments and priority, and schedules it for exe-
cution.

Jobs are queued by priority and executed as core
becomes available. Any job may be given an
immediate action priority causing the MCP to
displace lower priority work until the rush job
has been completed. When this job is completed,
displaced programs will be automatically
reinstated.

This job scheduling capability and flexibility
taxes little of the system’s power yet results in
much higher productivity by assuring maximum
utilization of systems resources in a multi-
programing environment.

1/0 Scheduling

The MCP maintains tables indicating the status of
each I/O device as well as each I/O request being
processed or awaiting an opportunity to be proc-
essed. Each time an I/O operation is initiated or
terminated, the MCP compares the two lists and
attempts to initiate all possible I/O operations. As
a result, the system’s I/O devices are kept fully
active as long as there is work for them to do.

File Handling

On an MCP controlled B 2500 or B 3500 system,
the operator puts tape files for scheduled pro-
grams on any convenient tape unit. When the
unit is activated, the MCP reads the file label,
associates it with the unit, and thus is able to
identify it when the program is initiated. The
MCP also automatically assigns scratch tapes as
needed. If a needed file or scratch tape is not
mounted when the program is started, the MCP
will advise the operator and start the program as
soon as the requirements are met. Files from
random access disk storage are allocated space
automatically by the MCP and accessed by
symbolic relative addresses in the object program.
When a program is terminated, the MCP auto-
matically closes all files as part of its routine
housekeeping function.

Files may consist of fixed or variable length
records arranged in fixed or variable length blocks
within core memory size limitations. The MCP
automatically blocks and unblocks records
according to specifications of the program.

Printer Back-Up

In a multiprograming environment it is quite
possible for several programs to require printer or
punch output simultaneously. The MCP handles
this situation by diverting printer or punch out-
put to a scratch tape or disk area while the

printer or punch is busy and then reading the
captured data back to the printer or punch when
it is free. This allows processing to continue on
programs which would otherwise have been sus-
pended awaiting availability.

Pseudo Card Readers

To allow for maximum utilization of the card
reader(s) on the system, the MCP provides the
capability of creating pseudo card decks on disk.
The cards are read at full card reader speed while
the data is stored on disk. Subsequently, data is
read from disk by an object program exactly as if
the program were reading the data from a card
reader. In this manner the MCP provides up to
ten “card readers” for object program utilization
with only one physical card reader present on the
system.

Memory Allocation

At load time the MCP automatically reserves and
loads all disk file and core memory space neces-
sary for each program, its associated data, and its
I/O buffers. The MCP iakes advantage of base
relative addressing to ‘““float” programs and data
in memory to optimize the use of available core
space. When a program is terminated, the MCP
immediately carries out all housekeeping neces-
sary to make memory space available to the next
program and may relocate programs currently in
memory to prevent ‘‘checkerboarding” and
further maximize space availability.

Automatic Overlay

Compiler and Assembler programs may be seg-
mented to allow most of the program to remain
in disk storage during execution until needed in
core memory. The MCP automatically handles
overlay routines, shuttling program segments from

disk to core memory. This technique allows ex-
tremely large programs to be run on systems with
modest core memory size, reduces core storage
requirements for multiprograming, and lowers
overall system cost without sacrificing per-

formance.
Operator-System Communications

Most communications are from the MCP to the
operator. The MCP informs the operator when-
ever it initiates or terminates a program. It ad-
vises him when a file is missing or a new scratch
tape must be mounted and it warns of error

5-2

conditions. The operator at any time may request
a listing of all programs in the library or in
process, and can start or suspend programs,
change priorities, purge files, rewind tapes, and
perform other operations through commands to
the MCP.

Logging

Many difficult cost accounting problems are com-
pletely solved through use of the MCP-generated

log. On operator command, the MCP interrogates
its files and prints out a distribution of processor
and peripheral time used by each program, plus a
proration of system overhead time incurred. This
log provides an excellent base for job costing and,
as a complete and accurate picture of system
utilization, greatly enhances management control
over EDP operations.

Library Maintenance

The MCP allocates and maintains the system’s
library. It automatically assigns data and pro-
grams to the library, fetches them as required,
and keeps track of their usage. The library may
be maintained on magnetic tape or disk file or
both and may be in source language, machine
language, or both, thus affording complete flexi-
bility at the user’s option.

System Clock

The MCP maintains a 24-hour clock. It is used to
supply time to object programs, to record timings
in the log, and to trigger environment checking at
regular intervals. Each time the MCP polls the
equipment environment, it immediately takes
action to make use of newly activated devices.

Major Priority Programs

Many computer users have several long jobs
which must be run at regular intervals on a high
priority basis. On conventional equipment these
jobs tie up the entire system over a long period
of time. Multiprograming gives the user access to
his system during these long runs and allows him
to process a number of other programs without
disrupting the major run.

a
L=

Data Communications

The multiprograming capabilities of the B 2500
and B 3500 lend great power to these systems for
profitable data communications applications.

Rather than remaining idle while waiting for a
message or a request from the data communi-
cations network, these systems process the instal-
lation’s normal work. When a request is received,
it is processed simultaneously with the current
workload. Priorities are maintained. By elimi-
nating wasted time between requests and spread-
ing system cost among communications and nor-
mal processing, the B 2500 and B 3500 help
break the economic barriers to many data com-
munications and time sharing applications.

Expansion Without Reprograming

When the B 2500 or B 3500 configuration is
expanded to include more memory or additional
peripheral devices, a control card is entered to
advise the MCP of the change. This simple action
ordinarily represents the total reprograming re-
quired. The MCP automatically reorganizes the
in-process program mix to take full advantage of
the system’s new capabilities. Changing from a
B 2500 to a B 3500 is just as simple and usually
requires no reprograming whatsoever.

Graceful Degradation

If certain types of equipment must be deactivated
or removed from the system for maintenance, the
MCP may be advised with a control card. The
MCP will then dynamically reorganize processing
and allow the system to continue to operate
efficiently, although possibly with fewer programs
in the mix.

Programing Simplicity

Many of the tedious, repetitious operations inher-
ent in programing have been absorbed by the
MCP. B 2500 and B 3500 programmers avoid
nearly all detail work involved in memory alloca-
tion, loading routines, file opening and closing,

5-3

record blocking and unblocking, I/O procedures,
program overlays, library calls and other com-
puter housekeeping. They can concentrate their
talents on solving their problems rather than
those of the machine.

Ease of Operation

The - self-scheduling B 2500 or B 3500 system
takes over many operating tasks, greatly easing
the responsibilities of both the operator and the
computer department manager. At set-up time,
the operator may mount tape files on any con-
venient, unused, tape unit. The MCP will record
the file identification and will assign it to the
program at initiation time. The MCP also auto-
matically assigns scratch tapes. The combination
of MCP control and extensive disk file storage
capabilities makes it possible to store most pro-
grams and many files in random access storage.
This greatly reduces manual tape reel and card
deck filing and retrieval operations.

Nearly all bookkeeping is done by the system, as
is most scheduling. With the scheduling problems
eliminated and with a detailed accounting of
system use and utilization at his fingertips, the
DP Manager can work with greater efficiency and
ease on new applications and on further improve-
ments of current operations.

SUMMARY

The Master Control Program is more than a
computer program. It is a collection of programs
designed around special hardware features to
effect efficient and orderly use of the B 2500 and
B 3500 Systems, associated facilities, and person-
nel. Thus, many of the necessary costly tasks of
operating a computer system and running a com-
puter installation are assumed by the Burroughs

B 2500 and B 3500.

SECTION 6

PERIPHERAL COMPONENTS

GENERAL

This section discusses in general each of the peri-
pheral units used in the B 2500 and B 3500
Systems.

SYSTEM CONSOLE

Communications between the operator and the
system are made possible by the system console.
The console contains NIXIE® tube and light
displays which inform the operator of the contents
of the various registers and the settings of the logi-
cal indicators. There is a set of operating keys used
in conjunction with the numeric keyboard which
allow the operator to read or alter internal memory
or system control functions in any manner he
desires. Either a standing or desk level console is
available.

SUPERVISORY PRINTER

Next to, and considered a part of, the console is the
supervisory printer (if a part of the system). This
is an input or output device which allows direct
communication between the system and the oper-
ator under program control. For systems using
the Master Control Program, the supervisory printer
is required and will be the only device used for
normal system communications by the operator.

SYSTEM MEMORY

The system memory is a single magnetic disk
device capable of storing up to two million
characters of information. This information may
be retained indefinitely without regeneration. The
primary use of system memory is to house the
software package and the user program library. In
addition, it may be used for any type of working
or general storage function.

DISK FILE

Bulk disk-file storage is available with the B 2500
and B 3500 Systems and features head-per-track
construction.

@ Registered Burroughs trademark.

6-1

MAGNETIC TAPE

Considerable flexibility in the area of magnetic
tape handling devices is offered. The number of
units available on a given system is limited only by
the number of I/O channels used. Each I/O chan-
nel is capable of handling up to 10 magnetic tape
units. The user is given the choice of using 7-chan-
nel tape or 9-channel tape. These may be inter-
mixed if desired, but not on the same channel. The
user may also select any of four packing densities
desired up to 1600 bits per inch (BPI).

A choice of physical construction is also furnished.
The user may choose a free-standing device which
houses one magnetic tape unit within one cabinet,
or the cluster device which provides four tape-
handling devices in the same cabinet. A wide range
of packing densities and transfer rates are available
with either type of tape unit.

The magnetic tape units are capable of reading and
spacing in either a forward or reverse direction.

CARD READERS

A full range of punched card readers with input
speeds of from 200 to 1400 cards per minute are
provided with the B 2500 and B 3500 Systems.
These readers will accept 51, 60, 66 or 80 column
cards. Cards punched in EBCDIC are read as a
standard function. In addition, cards punched in
BCL may be read as an option, but must be
specified at the time of program execution. Auto-
matic BCL code translation to EBCDIC is pro-
vided, if needed. The number of card readers on a
given system is limited only by the number of
input/output channels available. The readers
feature photoelectric reading with character
validity and read checking performed according to
the character set of the code being read.

LINE PRINTERS

A wide selection of line printers is available. The
user may desire a printer with speeds ranging from

315 to 1100 lines per minute. All printers may
have either 120 or 132 print positions per line. All
have vertical skipping and end-of-page formatting
controlled by a punched paper tape and feature
printing units which contain a 64-character set.
Special purpose character sets are also available
optionaily. Again, the number and combinations of
printers are limited only by I/O channels available.

CARD PUNCHES

The user may select card punches rated at either
150 or 300 cards per minute. The punches will
create EBCDIC, BCL, or binary output under
program control. The 300 card per minute model
features programmatic stacker-select capabilities.

MICR READER SORTER

Reader sorters capable of reading and sorting docu-
ments encoded with magnetic ink at speeds up to
1565 items per minute are provided for use with
the B 2500 and B 3500 Systems. When under pro-
gram control, the reader sorter can operate in two
modes: demand and flow. In demand mode, docu-
ments are fed one at a time as required by the pro-
gram, at a maximum rate of 400 items per minute.
In flow mode, documents are read and sorted at
the free-flow rate of the reader sorter which is up
to 1565 items per minute.

PAPER TAPE READERS

The paper tape readers used with the B 2500 and
B 3500 Systems are capable of reading punched
paper tape at speeds of 1000 characters per second.
They are also capable of reading metalized Mylar or
fanfold tape at a maximum rate of SO0 characters
per second. Baudot and BCL to EBCDIC code
translation is automatic, but all other codes are
read directly into momory and arc programmati-
cally translated. The readers accommodate 5, 6, 7,
or 8-channel tape as selected by the system oper-
ator. Tape widths of 11/16, 7/8, or 1 inch are
interchangeable. The number of paper tape readers
is controlled by the number of I/O channels

available.

6-2

PAPER TAPE PUNCH

One or more paper tape punches, depending on
the I/O channels available, may be used as output
devices for the B 2500 and B 3500 Systems. The
paper tape punch is basically a teletype paper tape
punch which is capabie of punching standard paper
tape format in BCL or Baudot code. The punch
will accommodate 5, 6, 7, or 8-level tape at a
minimum rate of 100 characters per second, punch-
ing ten characters per inch. Standard tape widths
of 11/16, 7/8, and 1 inch may be punched.
Either oiled paper tape, dry paper tape, metalized
Mylar tape, or laminated Mylar tape may be used
on the punch.

DATA COMMUNICATIONS EQUIPMENT

The following partial list of remote devices may
communicate with the B 2500 and B 3500 Systems
using either single-line or multiple-line controls:

B 300 and B 500 Systems.

a.
b. Other B 2500 or B 3500 Systems.
C. B 9350 Typewriter Inquiry Station.
d. IBM 1030.

e. IBM 1050.

f. Burroughs Input and Display Unit.
g. TWX/Remote Typewriter.

h. Burroughs Audio Response System.

i UNIVAC DCT 2000.

j. AT&T-85A1 Selective Calling Service.
TTY-28.

. TC 500/TC 700

Burroughs On-Line Teller Consoles.

SECTION 7

SOFTWARE SYSTEMS

GENERAL

Today’s EDP Manager often finds he can no longer
meet increased demand on his department merely
by installing more equipment or a faster system.
This hardware approach often provides only a
temporary solution to his workload problem. It
fails to provide the responsiveness to unscheduled
demands, applicational changes, and new applica-
tions required in most installations. Even excellent
hardware is not enough to solve these problems, or
to provide the high equipment utilization required
for profitable EDP operation.

Software/hardware integration makes the differ-
ence. Burroughs B 2500 and B 3500 Systems are
a blend of advanced electronic technology and
unparalleled systems programing. They are de-
signed to allow fast response to changes in work-
load or application. Multiprograming facilities
(provided by the MCP) allow these machines to
serve many programs simultaneously and to ac-
cept unscheduled jobs as easily as more routine
processing.

In addition to this multiprograming capability, a
complete software package is available which in-
cludes COBOL, FORTRAN, and the Assembler
Programing System to meet his major programing
requirements. Generated software is also available
to meet day-to-day report, sort, and utility pro-
gram needs.

COBOL

Burroughs B 2500/B 3500 COBOL offers all the
advantages inherent in U.S.A.S.I. (United States of
America Standards Institute) COBOL plus the
unique benefits of B 2500 and B 3500 hardware
design and MCP guided operation. COBOL consists
of an English-like, business oriented language and
a compiler program which translates this language
into computer code. It has been implemented in
installations across the country for nearly a decade
and is the most widely used business oriented com-
piler language in existence.

COBOL’S popularity has been based on its distinct
advantages to the business data processing instal-

7-1

lation. Its easy-to-read language allows management
and supervisory personnel to see just what steps
are taken in a program and to understand the
process. Debugging and program modification are
simplified and documentation is nearly automatic.
Since a COBOL statement may represent an entire
string of machine instructions, programs written
in COBOL tend to be shorter and simpler; they
require less writing time; and they are easier to
test. In addition, COBOL programs written for
one computer system may, with minor modifica-
tions, be run on another system and similarly,
programmers are easily retrained to write COBOL
programs for different computer systems. All of
these advantages are inherent in COBOL usage.

B 2500/B 3500 COBOL meets or exceeds all the
standards proposed by the United States of Am-
erica Standards Institute X3.,4.4 task group in
May, 1965. This recently standardized version of
COBOL has been carefully integrated with
B 2500/B 3500 hardware and MCP design to
ensure optimum operation on these systems.

COBOL CROSS-REFERENCING AND FLOW
CHART SYSTEM

COBOL programs are normally very lengthy due to
the inherent nature of the language itself. They
normally contain data elements by the hundreds,
plus many procedure-names, thus causing time
consuming, manual effort when a programmer is
required to make a simple change in a program. A
single programmatic change in the source language
may affect many areas of a program with the
possibility that an affected area will be far removed
from that which was immediately changed and in
turn can be easily missed by the most experienced
programmer. The Cross-Referencing and Flow
Chart System allows a programmer to find all areas
that a change will affect, at a glance.

FORTRAN

FORTRAN is offered as the major computational

programing system for the B 2500 and B 3500. It
is the most widely used compiler system in exist-
ence. FORTRAN is similar in concept to COBOL,
but is tailored to scientific and engineering appli-
cations. Burroughs B 2500/B 3500 FORTRAN is
adopted from U.S.A.S.I. standards set by the X3.9
task group and accepted March 7, 1966.

FORTRAN offers two main advantages to the sci-
entific/engineering computer installation: improved
communications and greater programing speed. Its
language is expressed much like mathematical for-
mulae and is easily learned by most scientists and
engineers. Once learned, FORTRAN allows these
people to communicate directly with the computer
system for many of their processing requirements
and to work closely with the programing staff on
more complicated applications. The second major
FORTRAN advantage, speed, results from its sim-
plified condensed nature. Each FORTRAN state-
ment represents a string of machine instructions.

The programmer does not have to concern himself
with these machine instructions but instead uses
the FORTRAN language as a kind of shorthand.
The result is shorter, more straight forward pro-

graming.

Statements written in the FORTRAN language are
translated into machine language by the FORTRAN
compiler. On the B 2500 and B 3500 Systems,
this translation, or compilation, is done under the
guidance of the MCP and may be multipro-
gramed. The resulting program is usually about
equal in processing efficiency to one devised in
machine language by a competent programmer.
The time and cost involved in producing a
FORTRAN program, however, is far less than
that of machine coding.

The standardization inherent in FORTRAN pro-
graming has several major advantages. A program
does not have to be returned to its author to be re-
vised. Any programmer with FORTRAN training
can understand another programmer’s FORTRAN
program and expand it, revise it, or adapt it to an-
other computer system. This fiexibility can drasti-
cally cut costs during normal operating conditions
and offers even greater savings when a new system
is installed and software conversions must be made.
Little or no reprograming is required when chang-
ing B 2500 or B 3500 configurations or moving to
another computer system.

ASSEMBLER PROGRAMING SYSTEM

Assembler Programing Systems offer B 2500 and

7-2

B 3500 users the flexibility inherent in symbolic
languages plus the advantages of many compiler-
like macro-instructions to further ease the program-
ing task. The languages include facilities for sym-
bolic addressing, diagnostics, and operation with
the control programs.

While coding in the symbolic Assembler Language,
the programmer has complete flexibility of instruc-
tion modification, indexing, character or bit ma-
nipulation, and program segmentation.

Programs coded in the Assembler Language are
translated into machine language by the Assembler
Program. The time required for this assembly pro-
cess is minimal, and on MCP controlled systems,

assembly operations may be multiprogramed. The
resulting object programs operate in concert with
the control programs to take full advantage of
the hardware system capabilities and operate at
optimum speed.

REPORT PROGRAM GENERATOR

The Report Program Generator available with the
B 2500 and B 3500 Systems allows the user to
produce many programs of the simpler variety in
minimum time and at optimum efficiency. The Re-
port Program Generator is a generative program
which compiles relatively complex symbolic pro-
grams from a brief, simplified, problem-oriented
language. Program generation is fast and the result-
ing programs will normally run at the rated speeds
of the designated peripheral equipment. The Re-
port Program Generator is designed for use with
the Master Control Program. The generative pro-
gram and the resulting object program may be
multiprogramed on an MCP controlled system.

SORT PROGRAM GENERATOR

Sorting procedures, which take 30 to 50 percent of
total run time in many installations, are simplified

and made more efficient by the generative pro-
grams available with the B 2500 and B 3500.

The Sort Program Generator is designed to reduce
programing time and to quickly generate programs
tailored to the user’s requirements.

An Advanced Sort Program Generator is available
in both magnetic tape and disk file versions and
operates with the Master Control Program (MCP).

MEDIA CONVERSION
PROGRAM GENERATOR

The Burroughs B 2500 and B 3500 Information

Processing Systems user has the advantage of gen-
erative data conversion software. Generation elimi-
nates the cost of individually programing conver-
sion routines - yet provides better flexibility and
greater efficiency than is possible with standard
routines. The Media Conversion Program Genera-
tor, with a single specification card input, provides
complete media conversion routines tailored to
individual requirements. Both the generative pro-
grams and the generated media conversion routines
take full advantage of the computer system’s speed
and capabilities.

B 100/B 200/B 300/B 500 SIMULATOR

The B 2500/B 3500 Simulator of
B 100/B 200/B 300/B 500 Systems was designed
to provide the means to execute object programs
written for B 100/ B 200/B 300/B 500 Systems on
the B 2500/B 3500 Systems. The Simulator will
create a B 100/B 200/B 300/B 500 environment
within B 2500/B 3500 core to perform the orig-
inally intended functions, and can be multi-
programed with itself or with any other advanced
systems software package under MCP control.

The intent of this software package is to provide

7-3

every B 100/B 200/B 300/B 500 user with the
ability to take an auto-load deck, data, and
pertinent operating instructions to a
B 2500/B 3500 System and execute the program as
if the system was a B 100/B 200/B 300/B 500.

MCP SORT INTRINSIC

The MCP Sort Intrinsic allows all advanced system
languages available for the B 2500/B 3500 to
contain a disk sort capability, but does not demand
the user to provide disk storage space (library) for
internal program sort coding. Users will only find a
simple Branch Communicate linkage to the MCP at
the sorting point in his program which will cause
the MCP to generate a sort program (in approxi-
mately three seconds), roll-out and save the object
program, do the sort in the rolled-out-of-space,
deliver a sorted output file, roll-in the suspended
program to its original place in memory, and
proceed with the program. Error procedures, as
well as special file handling before and after the
sort is executed, are provided. Programs can
contain an infinite number of sorts without affect-
ing memory or disk storage, or the program’s
physical operation, to any degree.

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS
REMARKS FORM

TITLE: FORM:

DATE:

CHECK TYPE OF SUGGESTION:
[CJADDITION []DELETION [_JREVISION [_JERROR

tear alung dotted line

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE

TITLE
COMPANY
ADDRESS

STAPLE

FOLD DOWN SECOND

FOLD DOWN

Postage
Will Be Poid

by
Addressee

Necessary
If Mailed in the

United States

BUSINESS REPLY MAIL

First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

attn: Sales Technical Services
Systems Documentation

FOLD UP FIRST

FOLD up

Wherever There's
Business There's [Burroughs

1025517 3-70 Printed in U.S, America

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	replyA
	replyB
	xBack

