‘Burroughs

B 2500
and

B 3500
SYSTEMS

FORTRAN REFERENCE MANUAL

B

Burroughs

B 2500 and B 3500 Systems
FORTRAN REFERENCE MANUAL

Burroughs Corporation
Detroit, Michigan 48232

$3.00

Printed in U. S. America 8-71

1030376

COPYRIGHT © 1967, 1969, 1971 BURROUGHS CORPORATION
AA 945756 AA 120797

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con-
sequences arising out of the use of this material. The infor-
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

This revison incorporates the information
released under the following PCN:
1030376-001 (Jan 13, 1970}

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed direcily to Systems Documcntation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

TABLE OF CO

SECTION TITLE

INTRODUCTION. . &« & & + &

1 GENERAL PROPERTIES., . . .
General . . . « o« o« .
Program Cards
Comment Card.

Deck Structure. . . .

2 CHARACTER SET, CONSTANTS,
Character Set
Digits. e o e e
Letters
Special Characters
Constants
Integer Constant.
Real Constant . .
Double Precision C
Complex Constant.
Logical Constant.
Hollerith Constant
Variables . . « 4+ .+
Simple Variable .
Subscripted Variab

3 EXPRESSTIONS . .+ « « o & &
General . . + « .+ . .
Arithmetic Expression

Logical Expression. .

Relation.
L ASSIGNMENT STATEMENTS ., .
General . . .+ +« + o+ .

Arithmetic Assignment

NTENTS

e e o & o
e e o o
« o o o o
e o o o o
o e e s
e o o & &
onstant .
e e s o
¢ o s e @
¢ e e o »
e s e o s

le. « .+ .

Statement

PAGE

ix

P
1 1 1] I
WO R R R

I R R
) 1 1 I 1 | 1 |
N

NNNNNI'\)NNNNN
OOVt Ut Ut EWLNDNN

TYRYY
I
N R R e

h-1
h-1
L-1

iii

SECTION

iv

TABLE OF CONTENTS (cont)

4 (cont)
ASSIGN Statement. .

5 CONTROL STATEMENTS. . .

General . ¢« + o« o

TITLE

Logical Assignment Statement.

Unconditional GO TO Statement
Computed GO TO Statement.
Assigned GO TO Statement.
Arithmetic IF Statement
Logical IF Statement.

DO Statement. . . .
CONTINUE Statement.
STOP Statement. . .
RETURN Statement. .
CALL Statement. . .

6 DECLARATIVE STATEMENTS.
General « « « o+ o+

DIMENSION Statement

Variable Dimensions

COMMON Statement. .

EQUIVALENCE Statement

Type Statement. . .
EXTERNAL Statement.
DATA Statement. . .

7 INPUT/OUTPUT. « « « + &
General « + + ¢ o«

Input Statements. .

Formatted Input

.

.

Statements.

Unformatted Input Statements.

Output Statements .

Formatted Output Statements

.

PAGE

L-2
43

6-1
6-1
6-1
6-2
6-3

6-8

SECTION

7 (cont)

TABLE OF CONTENTS (cont)

TITLE

Unformatted Output

Statements.

I/O Lists. . L L] L] L] . . L] L] Ll . L
Implied DO Loop. . . .

Action Labels. « « .« &

. . L] . . . L] . . .

Auxiliary I/0 Statements

REWIND Statement .

BACKSPACE Statement. . .« ¢« « « « o« +

ENDFILE Statement.
REREAD Statement .

FORMAT Statement . . .

Integer Conversion
Integer Conversion
Real Conversion on
Real Conversion on
Real Conversion On

Real Conversion on

On Input Using Iw .
on Output Using Iw.
Input Using Fw.d. .
Output Using Fw.d .
Input Using Ew.D. .
Output Using Ew.d .

Double Precision Conversion on Input

Using Dw.d

. . . 3 . . . L] . 3

Double Precision Conversion on Output

Using Dwed « . . .
Real Conversion on
Real Conversion on
Logical Conversion

Logical Conversion

Input Using Gw.d. .
Output Using Gw.d .
on Input Using Lw .
on Output Using Lw.

Alphanumeric Conversion on Input

Using Aw . ¢« « « &

Alphanumeric Conversion on Output

Using AW « « o o+

Entering a Character String as Input

Using wHs. « . . .

.

Producing a Character String as Output

Using wHs. . « . .

Skipping Characters Using nX

Tn Format Specification. . . .«

7-17
7-17
7-17
7-19
7-19

7-20

7-20

7-21

7=-22
7-22
T-22

SECTION

7 (cont)

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
INDEX. .

FIGURE

-1
-2

Ut
9

vi

Q@ =5 &85 o Q o »

TABLE OF CONTENTS (cont)

TITLE

Scale Factor on Input. . « ¢« ¢« « « « &
Scale Factor on Output . . « « « « « .
Format Specification in an Array . . .

Carriage Control « « « « o o o o o « o

Use Of Slash (/)

Repeat Speéifications. o e e e s 4 e e

Format and I/0 List Interaction. . . .

SUBPROGRAMS., + &« & o o o o o o s s o o o o o
General. « + « ¢ ¢ ¢ ¢ o o o o o o « o s
Functions. « « « ¢« o o o ¢ o s o s o & o =

Statement Functions. . . « « « « « o« &
Intrinsic Functions.: . « « « o « o o
External Functions . . . + « « « « « .

Referencing External Functions
Subroutinne « ¢ ¢ + o ¢ ¢ & s e o o s e e
Defining SUBROUTINE Subprograms. .« . .
BLOCK DATA &« & & o ¢ o ¢ s o o o o o o o o

B 2500/B 3500 FORTRAN VERSUS B 5500 FORTRAN .
SOFTWARE LIBRARY. . ¢ ¢ ¢ ¢ o o o o « & o o =
CONTROL CARDS « ¢ ¢ ¢ ¢ s o s o o o o o o o
READ/WRITE INTRINSICS ADDITIONAL INFORMATION.
DEBUGGING ATIDS. &« ¢ ¢ o o o« o o o o o s o o
FORBLR: « ¢ o o o ¢ o o o o o o o o o o s s o
FORTRAN ERROR MESSAGES AND FLAGS. . « « « .+ .

LIST OF ILLUSTRATIONS

TITLE

Program Card Layout . « « ¢ « o ¢ ¢« ¢ s ¢ o o

C Ommel’l't Card . . . bo L] L] L]

DO Nestingt . . L] . . . L] . L] L] . L] . .

PAGE

7-23
T=23
7-24
7=25
7-25
7-26
7-26

8-1
8-1
8-1
8-1
8-2
8-3
8-9
8-10
8-10
8-11

A-1
B-1
C-1

E-1
F-1
G-1

one

PAGE

LIST OF TABLES

TITLE

Resultant Type for Operation A¥¥B.
Combination of Elements. . « « « « « o« o o
Definitions of Logical Operators
Relations and Meanings . . « « « o o o o &

Rules for Arithmetic Assignment
Statement (V - a)

Equivalencing Multiple Subscripts
to One Subscript « ¢« ¢« ¢« o ¢« ¢ ¢« ¢ o o o

Datum Conversion « « + o o o o s o o o o

Resulting Actions of an Intrinsic Function

7-18
8-4

vii

INTRODUCTION

This manual provides a complete description of the Burroughs B 2500/

B 3500 FORTRAN Compiler language.*

The FORTRAN language is designed for writing programs for scientific
and engineering applications. Statements can be written in the
general format of mathematical notation, thus increasing the ease of

solving formula-oriented problems.

The B 2500/B 3500 FORTRAN Compiler operates under the control of the
Master Control Program (MCP) and, similarly, the object code produced
by the compiler is executed under the control of the MCP.

The B 2500/B 3500 FORTRAN Compiler language is based on ANSI (some-
times referred to as USASI) FORTRAN (refer to the publication: ASA
X3.9-1966).

* FORTRAN is an acronym for FORmula TRANslation, and was originally
developed for International Business Machine equipment.

ix

SECTION 1
GENERAL PROPERTIES

GENERAL.,
Normally, a FORTRAN source program is prepared on punched cards.

These cards are of three general types:

a. General program cards.
b. Comment cards,
c. Control and § cards.

PROGRAM CARDS.

Program

T A
OL1OW

ing

cards are used to contain FORTRAN source statements under the

o - 2\
ligure i=-1):3

//;EL

FORTRAN STATEMENTS’

NUA’

i

000000000000000000000600
LR RURIRFRERIRIRCRIEIRIR- FiF-F-F ¥ 3 E KRR R E L L 4243 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72}
IR R R R R R R R R R R R AR R R R R AR R R R R R R R R R R REERERR R R
22
33
44444044444 404444444440404444444444444448440444004444444444444444
9555
66

111177111700 7110900077777107110071007177011171111711711711711111111711711

-«
= = & C

2222122
333333
444444
555545)5

88888888888838833886838688883888038888860888808888888888388886888888

IDENT
OR
SEQUENCE

00000000
RUBBI BN
11111111
2222221212
33333333
44444444
95555555
66666666
111117111
88888888

899

998
189

99999
BHBET

V1213 141516171818 781980

Figure 1-1. Program Card Layout

Columns The label of a labeled statement consists of

1-5,
from one to five digits (unsigned integer) and may be placed
anywhere within these columns with or without leading zeros,
i.e., neither blank nor leading zeros are significant in

differentiating statement labels. All labels within a pro-

gram unit must be unique. The label field is ignored on all

non-executable statements except for cards containing FORMAT

statements.

b. Column 6. Column 6 of the initial card of a statement must
be either blank or zero. Column 6 of a continuation card
(any additional card after the initial card needed to contain
the statement) must contain any character other than blank or
zero. An unlimited number of continuation cards may follow

an initial card.

c. Blank characters are significant only in column 6 of a non-
comment card, in a Hollerith constant, or in a Hollerith
field specification. With these exceptions, blanks may be
used or omitted without affecting the interpretation of a

FORTRAN statement.

d. Columns 7-72. Columns 7 through 72 contain the FORTRAN

statement.

e. Columns 73-80. These columns are not interpreted by the com-
piler and may contain identification or sequencing informa-
tion. However, this field is analyzed when changes are merged

with a source tape (refer to appendix E).
f. Only one statement may be punched on a physical card.

g. A program unit must have an END statement as the final card.
The sole purpose of the END statement is to inform the com-
piler that it has reached the end of a program unit. The END
statement is a line with blanks in columns 1 through 6, the
characters E, N, and D once each and in that order in columns
7 through 72, preceded by, interspersed with, or followed by
blanks. It is not an executable statement; therefore, if a
program attempts to execute an END statement, the program is

aborted.

COMMENT CARD.

Comment cards are not interpreted by the compiler, but their

information does appear on the compilation listing for documentation

1-2

purposes. A comment card cannot be followed by a continuation card.

Card punching limitations are as follows (see figure 1-2):

a., Column 1. A comment card must have the comment code, the

letter C, in coiumn 1.
b. Columns 2-72. Columns 2 through 72 may be used for comments.

c., Columns 73-80. These columns may contain identification or
sequencing information or may be used with columns 2-72 to

contain part of the comment.

N

COMMENTS IDENT

OR
SEQUENCE
000000000000000000000000000000'000ﬂ000000'00!000000000000000000000000ﬂﬂ000000000
1z:4ss7.:mnunuﬁmnuumﬂununnﬂnnwumuuwsnuamnuuuusuu«wmnsssswsuwmuuunmnm-mnn:unnnnnu
ittt 11lllIlIlllll1lllllllll1llll1Illll11ll!lllllIlllIllllll1|1llllllilllllli
22
33

E

444
55
'TSGGGGGGBGGGGGGBG66668668856668656666586666655866566666566866565666666686666558
7777111777777777771717777777177777777777777777777777177177717777777777777777777

-

B8888888888888888888888888B8B8888808888888888888388888885088888888888808888888
999999999999999999999/99993999
525 5859 60 61 656

B6 6768637071 72|73 747576 77 78 79 80

9399999999999999999999999999999999999999599599999939
123456708 s1n|n||ln|um NNBABBABBNN R U5 B nmlnu«ﬁwua 8505

Figure 1-2. Comment Card

DECK STRUCTURE.

The basic deck structure is as follows:

? COMPILE (JOBNAM) FORTAN
or COMPILE (JOBNAM) FORTAN TO LIBRARY
or COMPILE (JOBNAM) FORTAN TO SYNTAX
? DATA CARDS
or DATAB CARDS

1-3

or ? DATAB CARDS
HOLL

voe Source Deck

Refer to appendix C for discussion of control cards and label equation
cards.

1-4

SECTION 2
CHARACTER SET, CONSTANTS, VARTIABLES

CHARACTER SET.

The FORTRAN character set consists of digits, letters, and special

characters.

DIGITS.
A digit is any one of the following 10 characterss O, 1, 2, 3, 4,
5’ 6’ 7’ 8! 9‘

LETTERS.
A letter is any one of the following 26 characters: A, B, C, D, E,

n T k’d AT ~ k) ~ En) o Vet

F’ rey Il I, J, Doy L, Ivi, Ny Uy Fy Wy Ity Dy 1, U, V’ W’ X, 'Y, z.
SPECIAL CHARACTERS.
The special characters are as follows:
Character Name
= Equal sign
+ Plus sign

- Minus sign

* Asterisk

/ Slash

(Left parenthesis

) Right parenthesis

’ Comma

. Decimal point
Blank

$ Currency symbol

The following BCL or BCD characters are recognized as alternatives

the standard FORTRAN set under the HOLL option.

to

FORTRAN BCL
Character Alternative

+ &
#
(%
[

CONSTANTS.
Six basic types of constants are allowed in the FORTRAN programming
language: dinteger, real, double precision, complex, logical, and

Hollerith.

INTEGER CONSTANT.

An integer constant is formed by a string of decimal digits.

The general form is:

n

where -99999 < n =< 99999

An integer constant is written without a decimal point or an exponent.

NOTE
Integer size may be increased
to 47 digits through use of the
SIZE Control Card.

Examples

12
-16729
36241

REAL CONSTANT.
A real constant is a string of decimal digits with a decimal point

and, optionally, an exponent.

The general form is:

m.nEx

where m and n are strings of decimal
digits, only one of which may be blank;
x is a signed or umsigned 1- or 2-digit
integer which is the exponent.

A real constant may be signed or unsigned.

An exponent is optiomal. If it is used, the letter E follows the
mantissa and precedes the exponent. The exponent, if present, is

interpreted such that 10% is multiplied times the mantissa.

The range for a real datum is -.99999999 x lO99 < m.n < .99999999 x

1099 by default. Refer to the SIZE Card in appendix C for extended

ranges.
NOTE
Real size may be increased to 45
digits (mantissa size) through
use of the SIZE Control Card.
Examples
56.9
075
-253
71.32E+02
-71.32E=-2

DOUBLE PRECISION CONSTANT.

A double precision constant is of the same form as a real constant,
except that its mantissa, exponent, and sign can contain up to 20
decimal digits; and the format specifier D precedes the exponent part.

If more than 20 digits are used, the mantissa is truncated to the 16

most-significant digits.

2-3

The range of a double precision constant is identical to that of a

real constant.

A constant which does not have an exponent but which specifies more
digits than a single precision value can maintain is not initialized
as a double precision constant unless it occurs in a double precision

expression.

Examples

12D-1
-5.36D+30
52D-07
.713D=-17

COMPLEX CONSTANT.

A complex constant in the mathematical sense is composed of a real

part and an imaginary part.

The general form is:

[1
\lll, J.J.l

where m is the real part and
n is the imaginary part.

Each of the two components may be a real constant.

Double precision components are not permitted.

Examples
Complex Mathematical
Constant Interpretation
(5,64.2) 5 + 64,21
(0,-1) -1
(3.5E-2,75.9) 035 + 75.9i

NOTE
i = V-1

2-4

LOGICAL CONSTANT.

A logical constant may be either TRUE or FALGSE.

The general form is: .

.TRUE.

+FALSE.

SONSTANT.

L
Hollerith constant is a string

The general form is:

of any valid FORTRAN characters.

wHs

where w is
string and

the width of the
s is the string.

Blanks within the string must be

Examples

2HbT
5HABCDE
11HJOHN SMITHE
8H¥*/ (+)*¥/

included in the field width w.

NOTE

b represents blank

VARIABLES. ‘
There are two forms
these is classified

PRECISION, COMPLEX, LOGICAL, and

of the

of wvariables:

into six basic types:

ALPHA type wvariable.

simple and subscripted.
INTEGER, REAL, DOUBLE

ALPHAnumeric.

)]
/

Each of

(Refer to page 6-8

SIMPLE VARIABLE.

A simple variable represents a single value.

The general form is:

From one to six alphanumeric characters,
the first of which must be alphabetic.

A variable name with a first character of I, J, K, L, M, or N implic-
itly types that variable as an INTEGER variable. A variable name
beginning with any other alphabetic character is implicitly typed as

REAL unless otherwise defined in a Type statement.

A variable of type DOUBLE PRECISION, COMPLEX, LOGICAL, or ALPHA must

be declared as such in a Type statement.

Examples
INTEGER REAL
Variables Variables
IB2 Al123
Jiz TSUBZ2
KALPHA ZSQD
IJbK ABbLCD

NOTE

b represents blank

SUBSCRIPTED VARTABLE.

A subscripted variable refers to a particular element of an array.

The general form is:

n(al,a

29a3)

where n is the array name; a,,a,,

- . 1772
and a, are arithmetic expressions
which”determine the wvalues of the
subscripts of the subscripted vari-
able. An array may have one, two,
or three dimensions.

2-6

A subscripted variable is named and typed according to the same rules

as a simple variable.

All elements of an array must be of the same type; i.e., if N(2) is

INTEGER, N(3) must also be INTEGER.
A subscript must be an integer constant or integer expression.

Subscripted variables must have their subscript bounds specified in a
DIMENSION, Type, or COMMON statement prior to their first appearance

in either an executable statement or in a DATA statement.

The maximum number of elements per array is 9999. The maximum number

of dimensions is three.

Multi-dimensioned arrays are stored with the left-most subscript vary-

ing most rapidly and the right-most subscript varying least rapidly.

EX“mﬁle"
B(I)

GSUB(8%K,L,+3)
DMIN(I,J,K)

2-7

SECTION 3
EXPRESSIONS

GENERAL .
An expression is any counstant, variable, or function reference, or a
combination of these separated by operators or parentheses. There are

two types of expressions:

a. Arithmetic.
b. Logical.

ARTTHMETIC EXPRESSION.

An arithmetic expression is a rule for computing a numerical value.

The general form is:

Any constant, variable, or function refer-
ence, or a combination of these separated

by operators. Parentheses may be used for
grouping within an expression.

An arithmetic expression may contain the following arithmetic

operators:

Operator Meaning
+ Addition
- ‘ Subtraction
* Multiplication
/ Division
** Exponentiation
() Grouping operator pair

Arithmetic expressions may be connected by arithmetic operators to
form other arithmetic expressions, provided two operators do not
appear in sequence and an arithmetic operator is not erroneously

assumed present. Examples of invalid arithmetic expressions are:

A/-B
(a+2) (B-3)
A+-B

Any arithmetic expression can be enclosed in parentheses.

All actual arguments of a function reference are evaluated before the

function is evaluated.

Parentheses may be used in an arithmetic expression to denote the
order in which operations are to be performed. Parentheses have first
precedence in determining the order of evaluation and, when nested
parentheses occur, evaluation proceeds from the innermost to outermost
set. There is no limit on the number of sets that may be nested

together.

The precedence order (or hierarchy) used in evaluating an arithmetic

expression is as follows:

a. rimary (unary + and -). Highest priority.
b. Exponentiation.
c. Multiplication and division.

d. Addition and subtraction. Lowest priority.

The precedence for successive operators of the same level is from left

to right, e.g., A¥¥B¥XC is evaluated as (A¥¥B)**C.

For the operation A¥¥B, the valid combinations and results are mnoted

in table 3-1.

Any element may be combined with any other element through use of any
of the arithmetic operators except exponentiation. The resultant type
is listed in table 3-2 for A OP B, where A and B are operands and OP

is either +, -, ¥, or /.

Examples

K + 1
(X + A(T,J,L) - SIN(Y(K)))

X - ¢+ Y(I,L) * 16.397
Table 3-1
Resultant Type for Operation A¥¥B
Exponent B
Base A
] DOUBLE
INTEGER REAL PRECISION COMPLEX
INTEGER INTEGER REAL DOUBLE Not permitted
PRECISION
REAL REAL REAL DOUBLE Not permitted
PRECISION
DOUBLE DOUBLE DOUBLE DOUBLE Not permitted
PRECISION PRECISION PRECISION PRECISION
*
COMPLEX COMPLEX COMPLEX COMPLEX Not permitted

The DOUBLE PRECISION exponent is converted to REAL before

exponentiation.
Table 3-2
Combination of Elements
B
A DOUBLE
INTEGER REAL PRECTSTION COMPLEX
*
INTEGER INTEGER REAL DOUBLE COMPLEX
PRECISION
REAL REAL REAL DOUBLE COMPLEX
PRECISION
* %
DOUBLE DOUBLE DOUBLE DOUBLE COMPLEX
PRECISION PRECISION PRECISION PRECISION

3-3

Table 3-2 (cont)

Combination of Elements

B
A DOUBLE
INTEGER REAL PRBCLSTON COMPLEX
* %
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

% INTEGER division yields a truncated result.

%% The DOUBLE PRECISION element is converted to REAL before
the operation.

LOGICAL EXPRESSION.

A logical expression is a rule for computing a logical wvalue.

The general form is:

Any constant, variable, or function reference,
or a combination of these separated by
operators, logical operators, or parentheses.

Logical quantities may be combined by logical operators to form logi-
cal expressions in a manner analogous to the combination of arithmetic

gquantities by arithmetic operators.

A logical quantity, by itself, may also constitute a logical

expression.
A logical quantity may be:

a. Any logical variable.
b. Either of the logical constants .TRUE. or .FALSE.
c. Any logical function reference.

d. Any relation.

The logical operators are defined in table 3-3.

3-4

Table 3-3

Definitions of Logical Operators

Operator Definition

-NOT. The expression ,NOT. P is .TRUE.
when P is .FALSE. The expression
.NOT. P is .FALSE. when P is .TRUE.

+AND. The expression P ,AND. Q is .TRUE.
when both P and Q are ,TRUE. It
is .FALSE. in any other case.

.OR., The expression OR. Q is .TRUE,

P .
if either P or Q is .TRUE. It is
LFALSE. if and only if both P and

Q are .FALSE.

3
by
o

precedence of operators in the evaluation of logical

)_I
n

a., Function reference. Highest.
b. ** (exponentiation).

c. * and / (multiplication and division).

d. + and - (addition and subtraction).
e. .LT., .LE., .EQ., .NE., .GT., .GE.
f. .NOT.
g +AND.

h, .OR. Lowest.
Parentheses may be used to alter the order of evaluation.

1f A and B are logical expressions, each of the following examples

also a logical expression:

Examgles

+NOT. B
A
A.OR.B

expressions

is

3-5

(B)

B .AND. A

RELATION.

A relation is a conditional logical expression.

The general form is:

a op b

where a and b are arithmetic expres-
sions and op is a relational operator.

The relational operators and their meaning are noted in table 3-4.

Table 3-4

Relations and Meanings

Relation Meaning

m A A + n
Al -GT. A, A greater than A2
A, .GE. A, A, greater than or equal to A2
Al LT, A2 Al less than A2
A1 .LE, A2 Al less than or equal to A2
Al .NE, A2 Al not equal to A2
Al .EQ. A2 Al equal to A2

NOTE
Al and A2 may be of type INTEGER, REAL,

or DOUBLE PRECISION. Neither may be of
type COMPLEX.

Relations, when evaluated, may have one of two values, TRUE or FALSE.

Chains of relations are not permitted, e.g.,

A ,LT. B .LT. C

3-6

A correct form is:

A ,LT. B ,AND, B .LT. C
or

A ,LT. B ,AND. A .LT. C

whichever is intended.

In the following examples A, B, Q, Z, E, F, X, G, H,

arithmetic expressions.

Examples

and Y are

3-7

SECTION 4
ASSIGNMENT STATEMENTS

GENERAL.

There are three types of assignment statements:

a. Arithmetic Assignment statement.
b. Logical Assignment statement.

SSIGN statement.

o
:;:

ARTTHMETIC ASSIGNMENT STATEMENT.

The Arithmetic Assignment statement causes the value represented by an
arithmetic expression appearing to the right of the assignment oper-
ator (=) to be assigned to the simple or subscripted variable appear-

ing to the left of the assignment operator.

The general form is:

V = a.e.

where v represents a variable name,
simple or subscripted, and a.e. rep-
resents an arithmetic expression.

The variable v cannot be of type LOGICAL.

The rules provided in table 4-1 apply for type and value assignment in

arithmetic expressions,

Examples

X = Y+Z

x(10) = A(5)+B(6)-(c/D)
X = 5.49

X(1,J) = A(1,7)+B(J,T)
X(4) = D-C¥*2

Table 4-1

Rules for Arithmetic Assignment
Statement (v = a)

Rule

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

COMPLEX

COMPLEX

COMPLEX

COMPLEX

INTEGER

REAL

DOUBLE
PRECISION

COMPLEX

INTEGER

REAL

DOUBLE
PRECISION

COMPLEX

INTEGER

REAL

DOUBLE

PRECISION

COMPLEX

INTEGER

REAL

DOUBLE
PRECISION

COMPLEX

Assign.
Truncate to INTEGER and assign.

Truncate to INTEGER and assign.

Not permitted
Convert to REAL and assign.
Assign.,

Assign most-significant part.

Not permitted

Extend to DOUBLE PRECISION and assign.

Extend to DOUBLE PRECISION and assign.

Assign.

Not permitted

Not permitted
Not permitted

Not permitted

Assign.

LOGICAL ASSIGNMENT STATEMENT.

The Logical Assignment statement causes the value represented by the

logical expression appearing to the right of the assignment

L-2

operato

»
e

(=) to be assigned to the simple or subscripted variable of type
LOGICAL appearing to the left of the replacement operator.

The general form is:

vV = l.e.

where v is a simple or subscripted
variable of type LOGICAL and 1l.e.
represents a logical expression.

The variable v must be of type LOGICAL.
In the following examples K, L, M, and N are LOGICAL variables,
Examples

K =M .OR. N
L(J,5) = .TRUE.

M =A .LT. B

N =Q .GT. R .AND. Z .LT. P

ASSIGN STATEMENT.

The ASSIGN statement is used to initialize an Assigned GO TO statement

The general form is:

ASSIGN n TO t

where n is a statement label referenced
in an Assigned GO TO statement, and t
is a simple INTEGER variable appearing
in the same Assigned GO TO statement.

The statement label n must be referenced in the Assigned GO TO

statement being initialized.

Example

ASSIGN 10 TO J

h-3

L-h

NOTE
Use of the ASSIGN statement
requires an INTEGER size of
at least 5, the default value.

SECTION 5
CONTROL STATEMENTS

GENERAL .

Control statements are used to alter the normal flow of a program.
They may transfer control to another part of the program, terminate
computation, or control iterative processes. Control may be trans-
ferred to labeled executable statements only. There are 10 different

~ =+
control sta

a. Unconditional GO TO.
b. Computed GO TO.

c. Assigned GO TO.

d. Arithmetic IF.

e. Logical IF.

f. DO.

g. CONTINUE.
h. STOP.

i. RETURN.
j. CALL.

UNCONDITIONAL GO TO STATEMENT.

Execution of this statement causes control to be transferred to a
statement other than that sequentially following the Unconditional
GO TO statement.

The general form is:

GO TO n

where n is a statement label which
exists within the same program unit.

A statement label n must be defined within the same program unit as

the Unconditional GO TO statement which refers to it.

The statement labeled n may appear before or after the Unconditional

GO TO statement referencing it.

Example

GO TO 31

COMPUTED GO TO STATEMENT.

Execution of this statement causes control to be transferred to one of
several statements other than that sequentially following the Computed
GO TO statement.

The general form is:

GO TO (nl,nz,...,ni), t

where n_,n, ,...,n, are statement labels
and t is anli integer expression.

Control is transferred to the statement label whose position in the

list is equal to the value of the integer expression t, i.e., n, .
The statement labels n,,n.,...,n, must exist in the same program unit
172 i

as the Computed GO TO statement.

The Computed GO TO statement is valid for values of t such that 1 =

t < i; otherwise, the program is terminated with an address error.

Example

K=4
Go T0 (50,%0,30,20,10),K

Execution of these two statements causes control to be transferred to

statement 20.

ASSIGNED GO TO STATEMENT.

Execution of this statement causes control to be transferred to one of
several alternative statements other than that sequentially felleowin

g
the Assigned GO TO statement.

The general form is:

GO TO t, (nl,n2,...,ni)

where t is a simple INTEGER variable and
NyyN55eee,n, are statement labels.

Control is transferred to the statement whose label has been ASSIGNed
to t with an ASSIGN statement.

The values ASSIGNable to t are the actual statement labels appearing

in the list DN,y eee,n, .

The variable t must be a simple INTEGER variable.

If t has not been assigned a label appearing in the list, an address

error termination of the program results.

The statement labels n.,n_,...,n. must appear in the same program unit
1’72 i P

as the ASSIGN statement and the Assigned GO TO statement. The value

of t must not be changed between execution of the ASSIGN statement and

execution of the Assigned GO TO statement.

Examgle

ASSIGN 10 TO J
GO TO J,(50,40,30,20,10)

Execution of these two statements causes control to be transferred to

statement 10.

ARTTHMETIC TF STATEMENT.

Execution of the Arithmetic IF statement causes an arithmetic expres-

sion to be evaluated and a different branch to be made depending upon

whether the expression is negative, zero, or positive.

5-3

The general form is:

IF(a.e.)nl,nZ,n3

where a.e. is an arithmetic expression
and ny,0,, and n3 are statement labels.

Execution of the Arithmetic IF statement causes control to be trans-

ferred to n,,n or n, if a.e. is less than, equal to, or greater than

2’ 3

zero, respectively.
The arithmetic expression a.e. may not be COMPLEX.

Examples

IF (A-B) 1,2,3
IF(X(1,J)-C*E) 43,51,96

LOGICAL IF STATEMENT.

Execution of the Logical IF statement causes a logical expression to
be evaluated and the sequence of execution of the program statements
to be altered, depending upon whether the logical expression evaluated

is TRUE or FALSE.

The general form is:

IF(l.e.) s

where l.e. is a logical expression and
s is an executable FORTRAN statement.

The statement s may be any executable FORTRAN statement except:

a, A DO statement.
b. An IF statement.

Execution of the Logical IF statement results in the logical expres-
sion l.e. being evaluated. If l.e. is TRUE, statement s is executed.

If l.e. is FALSE, statement s is not executed; and control is

5=k

transferred to the next sequential executable statement following the

Logical IF statement.
In the following examples X and Y are of type LOGICAL.

Examples

IF (X .AND. Y) A = 3.1
IF (A .LE. B .OR. I .EQ. 0) GO TO 5

DO STATEMENT.

The DO statement provides a means for controlling program loops.

The general form is:

DO m 1=nl,n2,n3

where m is a statement label, i is
an INTEGER variable, and n,,n,,
and n3 are arithmetic expréssfons.

Execution of a DO statement results in the following actions:
a. The control variable i is set to the initial value n,.

b. All executable statements up to and including the terminal
statement are executed.

c. The control variable i is incremented by n3.

d. The value of the control variable i is compared to the ter-
minal value n2. If the terminal value has been exceeded,
control is transferred to the first executable statement fol-
lowing the terminal statement. Otherwise, steps b through d
are repeated until the control variable comparison is

satisfied.

The control variable i is a simple INTEGER; m is the label of an

executable statement terminating the DO loop.

The initial, terminal, and incremental parameters Ny, Ny, and n3,
respectively, are each either an INTEGER variable or INTEGER constant.

If not specified, n3 is assumed to be 1.

If present, n, must be greater than O (zero).

3

In the general form, n, must be greater than ng. At the time of exe-
cution of the DO statement, n, N,y and n, must be greater than O

3

(zero).
The DO statement is always executed once with its initial value.

The control variable i is available for use by all statements within
the DO loop, including the terminal statement, and may be modified as
desired. The control variable i is available for computation when
exiting from a DO loop by transferring outside the loop and not making
a normal exit. When a normal exit is made from the DO loop, the con-

trol variable is undefined.

A DO statement may appear within a DO loop. This is defined as being
a DO nest. However, all statements in the range of the latter DO

loops must be within the range of the initial DO loop (see figure 5-1).

DO DO E

L =L

Figure 5-1. DO Nesting

DO

Nested DO's may specify the same statement as their last statement m.

A maximum of nine DO statements may be nested within the range of

another DO statement.

The terminal statement of a DO loop may not be:

a.
b.
C.
d.
e.

f.
g.

A GO TO of any form.
IF statement.
RETURN,

STOP.

PAUSE.

DO statement.

REREAD statement.

A DO statement has an extended range if both of the following apply:

Q.

If there is a GO TO
within the range of
nest that can cause

pletely nested nest

statement or an Arithmetic IF statement
the innermost DO of a completely nested
control to pass out of that nest (a2 com-

is one in which both the nested DO state-

ment and its terminal statement are within the outer loop).

If there is a GO TO

statement or Arithmetic IF statement not

within the nest that can cause control to be returned into

the range of the innermost DO of the nest.

If a statement is the terminal statement of more than one DO state-

ment, the statement label of that terminal statement may not be used

in any GO TO or Arithmetic IF statement that occurs anywhere but in

the range of the most deeply nested DO with that terminal statement.

Examples

10

DO 10 I=2,200,4

DO 5 INDEX=5,10
DO 5 J=1,10

5-7

DO 10 I=1,5,2
DO 5 J=1,10

3 e o 0
GO TO 20
5 CONTINUE

10 ...

20 X=Y+Z
GO TO 3

CONTINUE STATEMENT.

The CONTINUE statement is considered a dummy statement because it
causes no action in the execution of a program. It is frequently used
as the terminal statement of a DO loop to provide a transfer point for

an IF or GO TO statement.

The general form is:

CONTINUE
Example
DO 30 J=2,N
B(J)=NM(J-1) + INC
INC=INC+1
IF (NPARM(J).LT.MAX) GO TO 30
K=J-1

30 CONTINUE

STOP STATEMENT.

The STOP statement causes immediate termination of the program. At
least one STOP statement or a CALL EXIT statement (refer to
appendix B) must appear in a FORTRAN program.

The general form is:

STOP

5-8

Example
STOP

RETURN STATEMENT.

Execution of the RETURN statement causes control to be transferred

from a subprogram to the calling program.

The general form is:

RETURN

Every subprogram must contain at least one RETURN statement, but more

than
Viilla

Control returns to the point of reference in the calling unit.

CALL. STATEMENT.

A subroutine is referenced by a CALL statement.

The general form is:

1. CALL n

2. CALL n(al,az, ce ,an)

where n is the name of the subroutine and
al,az,...,an are the actual parameters.

The actual parameters are:

a. A Hollerith constant.
b. A variable name.

c. An array element name.
d. An arrav name,.

e. An expression.

f. The name of a subprogram.

Execution of a subroutine reference results in an association of

actual parameters with all appearances of formal parameters in

5-9

executable statements in the subroutine body, and in an association
of actual parameters with variable dimensions in the subroutine, if

any exist.

Following the above associations, control is transferred to the first

executable statement in the subroutine body.

If an actual parameter is a subscripted variable with an arithmetic
expression as a subscript, then, effectively, the arithmetic expres-
sion is evaluated, and the resulting subscripted variable is asso-

ciated with the corresponding formal parameter in the subroutine.

If a formal parameter of a subroutine is an array name, the corres-
P ’
ponding actual parameter must be an array name or an array element

name .

Examples

CALL FALL(X,Y,Z)
CALL KOST(A(I+J,2),B,4HHEAD)

NOTE
An equivalenced array whose elements are
of a size less than the SU (storage unit)
number of digits must be passed to a sub-

routine in COMMON, not as a parameter.

5-10

SECTION 6
DECLARATIVE STATEMENTS

GENERAL,
The declarati-e statements are non-executable statements used to
supply variables and array information and storage allocation infor-

mation. The six different declarative statements are:

a. DIMENSION.
b. COMMON.

c. EQUIVALENCE.
d. Type.

e. EXTERNAL.

™ AMA
L. DALA .

Declarative statements must appear preceding all executable statements

in the program part.

DIMENSION STATEMENT.

The DIMENSION statement provides a means for specifying a collection
of values with a single name, and at the same time specifying to the

compiler the structure which is imposed on the collection.

The general form is:

DIMENSION al(il), az(iz), a3(13) e e

where each a is an array name and each i repre-
sents dimension information having the form of
one or more subscript bounds separated by commas.

Each bound is an integer constant.

Variable names appearing with subscripts in the source program must

have dimension information specified for them prior to their use.

Dimension information may be given in a DIMENSION, COMMON, or Type
statement; however, the dimension information for a specific array
name must appear only once in the program unit.

The magnitude of the values of the subscript bounds indicates the
maximum values the subscripts may obtain in any reference to ‘the
array. The lower subscript bound is always one. The maximum number
of elements in an array is 9999. The maximum number of dimensions in

a multi-dimensional array is three.

VARTABLE DIMENSIONS.

An array may have variables for its subscript bounds in a FUNCTION or
SUBROUTINE subprogram. In this case, the array name and all variables
used as subscript bounds must appear as formal parameters in the sub-

program.

The advantage to this is that a given subprogram can perform calcula-
tions on such a generally stated array with specific dimensions pro-

vided from any calling program.

The actual values assumed by these variables are not determined until

the subprogram is entered at execution time.

The general form is:

DIMENSLION a; (i), a,(i,), ag(ig) « « . .

where each a is an array name and each i is
one or more subscript bounds separated by
commas. FEach bound is an integer variable.

Specific dimensions passed to the subprogram from the calling program

must be identified in a DIMENSION statement of the calling program,

Specific variable size can be passed through more than one level of a

subprogram to a given subprogram using the variable as a dimension.

Example

DIMENSION A{10,20)

e
e
TN

CALL SUB(A,I,J))

END
SUBROUTINE SUB(B,K,L)
DIMENSION B(K,L)

END

COMMON STATEMENT,

The COMMON statement provides a means for sharing core storage among
the main program and its subprograms, or among the subprograms. In-
formation appearing in the storage area reserved by a COMMON statement
is ordered in the sequence specified by the COMMON statement. The
ordered information is relative to the beginning of a given COMMON

block. There are two types of COMMON storage: labeled and unlabeled.

The general form is:

COMMON/xl/al/xz/aZ/. . ./xn/an

where each a in the COMMON statement is a list
containing any combination of variable names,
array names, or dimensioned ariray names; and
each x is a block name or is empty. If x, is
empty, the first two slashes are optional,

Array names in a COMMON statement may have their dimensioning infor-
mation appended to them. When arrays are dimensioned in a COMMON

statement, they cannot be dimensioned in a Type or DIMENSION statement
as well,

COMMON area storage is assigned in the order of

elements within the COMMON block list.

Block names may be duplicated within a program unit, causing the asso-
ciated elements from each COMMON block list having the same name to be

cumulatively assigned to one block with the same name. The effect is

the same as declaring the block name once and listing all elements for
that block in the COMMON block list. This is also true for multiple
unlabeled COMMON block lists within a given program unit.

Variables and array names may not be duplicated in COMMON statements.

COMMON elements may be assigned initial values through use of the
BLOCK DATA subprogram.

The number and type of variables appearing in the COMMON block list
and related EQUIVALENCE statements specify the length of the COMMON
block.

All subscript bounds for any array which appears in a COMMON statement

must be integer constants.

All variables stored in COMMON are stored in SU digits; SU is defined

as the maximum of:

a. 2 x ALPHA precision (2x6 or 12 by default).
b. REAL precision + 4 (8+4 or 12 by default).
c. INTEGER precision + 1 (5+1 or 6 by default).

Therefore, when default precisions are used, an integer stored in
COMMON is left-justified in a 12-digit field instead of occupying six
digits. In this case, half of the space in an all-integer COMMON is

wasted.

An element in COMMON which is double precision or complex must be an
odd-numbered element (i.e., first, third, fifth, etc.), counting from

the left.

Labeled COMMON statements are specified by a COMMON block name, be-
tween slashes, preceding the list of elements assigned to that labeled
COMMON block. Termination of the list of elements assigned to a block
is by:

6-U4

a. Termination of the COMMON statement.
b. Introduction of a new block name.

c. Introduction of an unlabeled COMMON block.

COMMON block names are unique identifiers. A maximum of 10 unique

COMMON block names may be defined in a program part.

Blocks of labeled COMMON statements in different program units which
have the same block name reference the same storage area. Therefore,
there is a direct correspondence of variable names in the COMMON

statements.

Unlabeled COMMON statements are specified by a blank block name, e.g.,

/ /s followed by the unlabeled COMMON block list. The two slashes may
be omitted if they appear at the beginning of a COMMON statement list.
Termination of an unlabeled COMMON block is accomplished by the intro-

duction of a block name or termination of the COMMON statement.

Examples

COMMON X,Y,Z
COMMON //X,Y,Z

COMMON /YY/ K(5,5),L
COMMON A,B,C/s/D(10,10),E
COMMON /Y/Q,R,S/ /X(5,5),L

EQUIVALENCE STATEMENT.
By using the EQUIVALENCE statement, a storage location can be given

more than one name. Thus, variables or array elements not listed in

an EQUIVALENCE statement have unique storage assignments,

}.J-
w
.-

EQUIVALENCE (ql),(qz),(qB),....,(qn)

where each g is a list of two or more
simple or subscripted variables or
array names separated by commas.

6-5

Subscripts must be positive integer constants and must correspond in
number to the declared number of dimensions of the array, or be single
subscripted by equating the element position in the array to a single

subscript. For an explanation of the latter, refer to table 6-1.

Example

DIMENSION C(120)
DIMENSION B(4,5,6) element referenced B(3,2,1)
EQUIVALENCE (B,C)
B(3,2,1) = c([3]+[4x(2-1)]+[bx5x(1-1)]) = c(7)

An array name without subscripts is considered as that identifier with

a subscript of one.

Elements may be entered into COMMON blocks by setting them equivalent
to an element appearing in a COMMON statement list. If the element is
an array element, the whole array is brought into COMMON. This may
extend the size of the COMMON block involved at its end only.

When two elements share storage because of their appearance in one or

more EQUIVALENCE statements, only one may appear in a COMMON statement.

All subscript bounds for an array which appears in an EQUIVALENCE

statement must be integer constants.

An EQUIVALENCE statement must precede any reference to the elements

equivalenced.

Example

DIMENSION A(10), B(5,5) D(3,3,3)
EQUIVALENCE (A(3), B(5,%), p(1,1,1)), (a(1),E)

The above statements assign specific variable values to the same stor-
age locations, as shown below, where each horizontal line is one

memory location.

6-6

L-9

Table 6-1
Equivalencing Multiple Subscripts To One Subscript

Number of Array Array Same Array Element Maximum Single-
Dimensions Declarations Element With One Subscript Subscript Value
1 A(1) A(di) A(di) I
2 A(1,J) A(di,5) A(i+Ix(j-1)) IxJ
3 A(1,J,K) A(d,j,k)| A(i+Ix(j-1)+IxIx(k-1)) IxJxK

A(1) B(3,4) cen E

A(2) B(k4,4) e ce
A(3) B(5,4) D(1,1,1)
A(L) B(1,5) D(2,1,1) cee
A(5) B(2,5) D(3,1,1) cen
A(6) B(3,5) D(1,2,1) ces
A(7) B(4,5) D§2,2,l) cen
A(8) B(5,5) D(3,2,1) cen
A(9) cos D)1,3,1) cen
A(10) cee D(2,3,1) ces

Variables placed in an EQUIVALENCE statement are stored in storage

units, SU digits. SU is defined as the maximum of':

a. 2 x ALPHA precision (2x6 or 12 digits by default).
b. REAL precision + 4 (8+4 or 12 digits by default).
c. TINTEGER precision + 1 (5+1 or 6 digits by default).

Therefore, when default precisions are used, an integer placed in an

EQUIVALENCE statement is left-justified in a 12-digit field.

TYPE STATEMENT.

Type statements are used to declare the type of variables, array

names, and function names.

The general form is

1. INTEGER type list

2. REAL type list

. DOUBLE PRECISION type list

. LOGICAL type list

3
L4, COMPLEX type list
5
6

. ALPHA type list

where a type list is composed of variable
names, array names, or statement function
names separated by commas. In addition,
arrays may be dimensioned by appending
the dimension information to the array
name in one or more subscript positions.

Implicit type assignment is overridden by Type statements.

A variable name must be typed prior to its use in an executable state-
ment or DATA statement. If the first letter of a variable name is I,
J, K, L, M, or N, it is implicitly declared of type INTEGER and need
not appear in a Type statement. If a variable name begins with any
other letter, it is implicitly declared of type REAL and need not

appear in a Type statement.

NOTE
Type statements must appear before all
executable statements in the associated
program part. An ALPHA type statement
must be specified for all alphanumeric

variables and arrays.

Examples

INTEGER X,Y,Z,A(10,10)
REAL H,I,J,K

LOGICAL ATEST

ALPHA WORD

EXTERNAL STATEMENT.

When an actual parameter list of a function or subroutine reference
contains a function or subroutine name, that name must appear in an

EXTERNAL statement.

The general form is:

EXTERNAL nl,nz,.....,nn

where the n's are the names of the functions
or subroutines appearing in the parameter
list of a function or subroutine reference.

The EXTERNAL statement appears in the calling program unit.

6-9

NOTE
When a function is referenced in an EXTERNAL
statement, its name must conform to default
naming conventions, e.g., an INTEGER func-
tion must have a name beginning with one of

the characters I through N.

Example

EXTERNAL SIN,COS
CALL SUBT (SIN,COS)

END
SUBROUTINE SUBT(AA,BB)
TANX=AA (X)/BB(X)

RETURN
END

DATA STATEMENT.

The DATA statement permits variables and arrays to be initialized to

predetermined values. It must be the last non-executable statement in

the program part in which it appears.

The general form is:

DATA listl/dl,dz,dB,...,dn/,listz/dl,dz,...,dn/,.../

A list element may be an array name or a simple or subscripted
variable name, where the subscripts must be integer constants.
The d. represents a constant, or has the form i¥c, where i is

a repeat count and c is a constant.

The constants may be any of the following:

a. Integer, real, or double precision constant.
b. Logical constants.

c. Hollerith constants.

6-10

d. Complex constants. (A complex constant must be

enclosed in parentheses.)

A one~to-one correspondence must exist between the list elements and

the constants,

DATA statement variables retain their values from one execution to the
next, as they are initialized only once by the DATA statement at

compilation time.

COMPLEX VAR
ALPHA A(3)
DATA A/6HABCDEF,6HGHIJKL,6HMNOPQR/,VAR/(8.3,4.5)/

Elements in a COMMON block may appear in a DATA statement only in a
BLOCK DATA subprogram (refer to section 8).

Variables assigned quantities by a DATA statement may be assigned

other values during execution.

When an array name without subscripts appears in the list, the entire

array is initialized.

Subscripted variables appearing in a program must have their subscript
bounds specified in a DIMENSION, COMMON, or Type statement prior to

the first appearance of the subscripted variable in a DATA statement.

Examgle

DIMENSION N(5,5),A(8)

LOGICAL ATEST,BTEST

DATA I,J,H/1,3,5.7/,X,Y,ATEST/6.2,99.99, .FALSE./
777

DATA X,N,Z,BTEST,A/0,25%0,-99.,.TRUE. ,8%77.

6-11

GENERAL,

SECTION 7
INPUT/OUTPUT

The following areas of input/output (I/0) are covered in this section:

e

b.

Input statements.

~

Output statements.

-

C lists.

Implied DO loop.

Action labels.

Auxiliary I/0 statements.
FORMAT statement.

INPUT STATEMENTS.

In explanations presented in this section of the manual, the symbols

u, r, f,

k, and 1 have the following meanings unless otherwise

specified.

Symbol Meaning
u File specifier or unit number. The file specifier is

an integer variable or integer constant whose value
identifies the file being used for input or output.
Unless otherwise specified by a FILE Card, it is as-
sumed at object time that the file specifier desig-

nates the default hardware type as defined on page C=5.

Random record number. It is an integer constant or
variable whose value represents a particular record

within a random disk file.

Format specifier. It may be the label of a FORMAT

statement or an array identifier.

Action label. It specifies a statement label to which
a branch is made if a parity error or an End-of-File
condition is encountered during execution of an input

statement,

Symbol Meaning
k Input/output list. It may be a blank or it may con-

tain one or more variables and/or implied DO loops,

in any combination.

Execution of any of the READ statements causes the next record to be
read from the input file. The information is scanned and converted
as specified by the format specifier f if the statement is a formatted
READ. The values are assigned to the elements specified by the list
k. If the list is not specified in an unformatted READ, a record is
skipped; if the list is not specified in a formatted READ, data are

read into the locations in storage occupied by the FORMAT statement.

FORMATTED INPUT STATEMENTS.
Formatted input statements are always associated with a FORMAT

statement or any array containing FORMAT specifications.

The general form is:

1. READ (u,f) k

2. READ (u,f,1) k

3. READ (u=r,f) k

4, READ (u=r,f,1) k

In all four forms, the input list may be empty (i.e., blank).

When the first or second form is used, input is assumed to be from
whatever peripheral device is associated by default with the specified

unit number, unless otherwise specified by a FILE Card.

When the third or fourth form is used, input should be from random

disk file. In this instance, a FILE Card must be used.

In using the third or fourth form, the random record number r, when

evaluated, must have a non-negative integer value.

Examples

READ(8,IBID)((L,J,A(T,J),J=6,9),I=1,5)
READ(IUNIT,75)X,Z,A

READ{14,1ISTA)
READ(6=5,25,END=101,ERR=77) ARAY

UNFORMATTED INPUT STATEMENTS.
Unformatted input statements do not have a format specifier associated
with them. TInput must be from a variable length tape file or disk

file which has been created with an unformatted output statement.

The general form is:

1. READ(u) k

2. READ(u,1) k

3. READ(u=r) k

4, READ(u=r,1) k

In all four forms, the input list k may be empty (i.e., blank).
If the list k is not specified, a record is skipped.

The file used for input must have been previously created with a

similar unformatted output statement.

When either of the first two forms is used, input must be from a tape

or serial disk file.

When either of the last two forms is used, input must be from a random

disk file.

Examples

READ(9) I,A,J,B,D
READ(2,ERR=37) SAM
READ (IUNIT=10,END=99) FEAT,HAMER

7-3

OUTPUT STATEMENTS.
In the following explanation, the symbols u, T, f, 1, and k have the

same meanings as outlined under input statements.

Execution of any of the output statements causes the next record in
the output file to be created. The information is converted and posi-
tioned on output as specified by the format specifier £ if the state-
ment is a formatted output statement. If the list is not specified,
either a record is skipped or data contained in the locations in stor-
age occupied by the FORMAT statement are outputted. When output is to
a serial disk file and a format is not specified, a blank record is
written. When output is to a random disk file, a record is not

written.

FORMATTED OUTPUT STATEMENTS.
Formatted output statements are always associated with a FORMAT

statement or an array containing FORMAT specifications.

The general form is:

1. WRITE(u,f) k

- & 5

2. WRITE(u=r,f) k

In both forms, the output list k may be empty (i.e., blank).

When either form is used, output is to whatever peripheral device is
associated by default with the unit number specified, unless otherwise

specified by a FILE Card.

When the second form is used, output is to a random disk file. 1In

this instance, a FILE Card must be used.

In using the second form, the random record number r, when evaluated,

must have a non-negative integer value.

If output is to the line printer and the associated FORMAT statement

specifies more information than can be printed on one line, data are

7-4

not lost. Beginning with the first element that does not completely
fit on the print line, the remainder of the record is written on the

next print line,

Examples

WRITE(3=3,68)MATR
WRITE(NO,I) ROW
WRITE(3=J,68) MATRIX

UNFORMATTED OUTPUT STATEMENTS.
Unformatted output statements do not have a format specifier

associated with them. Output must be to a tape or disk file.

The general form is:

1. WRITE(u) k

2. WRITE(u=r) k

In both forms, the output list k may be empty (i.e., blank).

When the first form is used, output must be to a tape or serial disk
file.

When the second form is used, output must be to a random disk file.

Exalees

WRITE(oUT) (X(X),K=I,J),XX
WRITE(11=IREC) BOOL

I/0 LISTS.

An input list k in an input statement specifies the variables to which
values are assigned on input. An output list k specifies the vari-
ables whose values are transmitted on output. The input and output

lists are of the same form.

7-5

The general form is:

KysKyseoosk,

where k. ,k ,...,kn are variables, array names,
or implied”DO loops, or any combination thereof.

An element ki of an I/0 list may be a simple variable, a subscripted
variable, an array name without subscripts, an implied DO loop, or any

combination of these elements.

An array name without subscripts in an I/0 list is equivalent to in-
putting or outputting the entire array in the same order in which the
elements are stored in memory, i.e., column-wise, with the left-most

subscripts varying most rapidly.

Examples

I,J,A,KP,B(I)
(A(INDEX),LP,INDEX=1,20),ZIP,ZAP

IMPLIED DO LOOP.

An implied DO loop is used as an element in an I/0 list to specify a

repeated cycle of list elements.

The general form is:

1. (L,i:nl,nz,nB)

2. ((L,i:nl,nz,nB),k=ml,m2,m3)

where L is a 1list of I/0 elements which
may contain an implied DO loop, and i,
n;,n,,n ;and their counterparts k, m.,
m2,m3 age as defined for the DO statement.

Example

WRITE(6,35) ((1,B(1,J),I=1,3),J=6,7)

7-6

The output for the above statement takes the following form:

W WM
W w
W WD

where the subscripted B's represent the values of those elements.

ACTION LABELS.

The formatted and unformatted input statements can be extended to pro-

grammatically recover from either End-of-File conditions or non-

recoverable parity conditions, or both, through use of action labels.

The general form is:

1. ERR:nl

2. END=n2

3. ERR=n_ ,END=n,

L, END=n,,,ERR=n,

where nl and n2 are statement labels,

When an attempt is made to read a record which has a parity error from
which the operating system cannot recover, control is transferred to

the statement labeled nl.

When an attempt is made to read an End-of-File, control is transferred

to the statement labeled nz,

The program is terminated immediately by the operating system if
either of the above conditions occurs and the associated label is not

specified in the input statement being executed.

An End-of-File condition can occur under the following circumstances:

-7

Examples

Attempting to read a card with an invalid character in

column one.
Attempting to read beyond the last record written on a tape.

Attempting to read a record from an area of disk which has

not been written.

Attempting to read a record beyond the last record previously

written on disk.

READ(3,END=99)
READ(6=R,35,ERR=70) A
READ(11,85,END=77,ERR=78) J,S,V

AUXILIARY I/0 STATEMENTS.

There are four types of auxiliary I/O statements:

a.
b.
Ce.

d.

REWIND.
BACKSPACE.
ENDFILE.
REREAD.

REWIND STATEMENT.

The REWIND statement causes a pointer for the specified tape or disk

file to be reset to the beginning of the file.

The general form is:

REWIND u

Execution of the REWIND statement causes the file u to be positioned

to its initial point.

If the last reference to the file u is a WRITE statement, the file is

closed and an ending label is written (tape only) prior to positioning

the file to its initial point.

7-8

The REWIND statement is undefined for other than tape or disk files.

Examples

REWIND 5
REWIND TIUNIT

BACKSPACE STATEMENT.
If the pointer in file u is positioned at record n, execution of the

BACKSPACE statement causes the file pointer to point at record (n-1).

The general form is:

BACKSPACE u

If file u is positioned at its initial point, execution of this

statement has no effect.

Examplies

BACKSPACE 8
BACKSPACE N

ENDFILE STATEMENT.
The ENDFILE statement causes a tape mark and ending label to be

written on the specified file and the file to be closed.

The general form is:

ENDFILE u

The ENDFILE statement is undefined for anything other than a tape file.

When an ENDFILE statement folilows a WRITE statement on the same fiie
u, an End-of-File record is written and the tape is positioned such

that the next record written follows the End-of-File record.

When an ENDFILE statement follows a READ statement on the same file u,
the tape is positioned to the beginning of the next file on the tape.

7-9

When an ENDFILE statement follows a BACKSPACE statement on the same
file u, the tape is positioned to the beginning of the file u.

When an ENDFILE statement follows REWIND or another ENDFILE statement
on the same file u, the ENDFILE statement is ignored.

Examples

ENDFILE IF1
ENDFILE 7

REREAD STATEMENT.
The REREAD statement causes the last record read in any file to be

reaccessed.

The general form is:

A REREAD statement is associated with the next READ statement to be
executed and yields the last record read from that file. REREAD
should immediately precede the READ statement for which this function

is desired.

REREAD may not be the terminal statement of a DO loop.

Example

FILE 4=TAPFIL,UNIT=TAPE,FIXED
READ(5,70) A
READ(4,20) ARAY
IF(A.EQ.CNTR) GO TO 10
REREAD
READ(5,91) B,C,D

10 CONTINUE

7-10

FORMAT STATEMENT.

The FORMAT statement specifies what type of conversion is to be
performed on data from external representation to internal machine

representation or vice versa.

The general form is:

\

n FORMAT(fl,I"Z, R

n

where n is a statement label and f._,
f2"'°’fn are format specifications.

The FORMAT statement is non-executable.

The FORMAT statement is always associated with one or more formatted

input and/or output statements.

Each FORMAT specification must agree in type with the corresponding

variable in the list of the associated I/0 statement.

When inputting data under a numeric format specification (I, F, E, D,
G), leading blanks are not significant and other blanks are

interpreted as zeros.

Plus signs are optional on input and may be omitted.

When inputting data under a real format specification (F, E, G, D), a
decimal point appearing in the input field overrides the decimal point

placement specified.

Any blanks read in under a numeric format specification (I, F, E, D,
G) which are outputted without an action being performed on them be-
tween inputting and outputting appear in the output field as negative

zeros.

In the following FORMAT discussions, the symbols w, d, b, and s have

the following meanings.

7-11

Symbol Meaning

w Total input or output field width. A positive
unsigned integer

d Number of decimal places. A non-negative unsigned
integer

b Blank

] A string of any valid FORTRAN characters

INTEGER CONVERSION ON INPUT USING Iw.
The integer format specification Iw on input causes the value of the
integer datum in the input field to be assigned to the corresponding

integer variable in the input list.

The general form is:

Iw

The integer datum must be in the form of an integer constant right-

justified in the input field.

Examples
Input Field Specification Internal Value
567 I3 +567
bb-329 I6 -329
-bbbb27 I7 -27
27bbb I5 +27000
-bb234 16 -234

INTEGER CONVERSION ON OUTPUT USING Iw.
The integer format specification Iw on output causes the value of the
corresponding integer variable in the output list to be written on the

specified output file.

7-12

The general form is:

The integer is placed right-justified in the output field over a field
of blanks.

The plus sign is omitted for positive numbers.

The appearance of asterisks in the output field indicates that the

value is larger than its format specification.

Examples
Internal Value Specification Output Field
+23 T4 bb23
-79 T4 b-79
+67486 I5 67486
0] I3 bbO
37216 I4 KKK

REAL CONVERSION ON INPUT USING Fw.d.
The real format specification Fw.d on input causes the value of the
real datum in the input field to be assigned to the corresponding real

variable in the input list.

The general form is:

Fw.d

If there is no decimal point in the input field, a decimal peint is

inserted d places from the right side of the input field.

The field width w must be greater than or equal to the specified

number of decimal places d.

7-13

Examples

Input Field Specification Internal Value
36725931 F8.L4 +3672.5931
3.672593 F8.4 +3.672593
-367259. F8.4 -367259

REAL CONVERSION ON OUTPUT USING Fw.d.
The real format specification Fw.d on output causes the value of the
corresponding real variable in the output list to be written on the

specified output file.

The general form is:

Fw.d

The real number is placed, right-justified and rounded to d decimal

places, in the output field over a field of blanks.

The plus sign is omitted for positive numbers.

The appearance of asterisks in the output field indicates that the

value is larger than its format specification.

Examples
Internal Value Specification Output Field

+36.7929 F7.3 b36.793
-0.0316 F6.3 -0.032
0.0 F6.4 0.0000
0.0 F6.2 bb0.00
+579.645 F6.2 579.65
27.15 Fh,2 *HXH

7-14

REAL CONVERSION ON INPUT USING Ew.d.
The real format specification Ew.d on input causes the value of the
real datum in the input field to be assigned to the corresponding real

variable in the input list,

The general form is:

Ew.d

If there is no decimal point in the input field, a decimal point is
inserted d places from either the right side of the input field or

from the E denoting the exponent, if there is one.

The field width w must be greater than or equal to the specified

number of decimal places d.

An input datum may or may not have an exponent.

Examples
Input Field Specification Internal Value
bbbbbb25046 Ell.4 +2.5046
bbbbb25.046 Ell.4 +25.046
-bb25046E-~3 E1l.4 -0.0025046
bb250.46E-3 El1l.4 +0.25046
b-b25.04678 Ell.4 -25.04678

REAL CONVERSION ON OUTPUT USING Ew.d.
The real format specification Ew.d on output causes the value of the
corresponding real variable in the output list to be written on the

sup

specified output file.

The general form is:

Ew.d

7-15

The real number is placed right-justified and rounded to a d-digit
mantissa, together with a 4-place exponent field, in the output field
over a field of blanks. Note that with the Ew.d format specification,
d takes on a slightly different interpretation since significant dig-
its are not written to the left of the decimal point in the output
field. The plus sign is omitted for positive numbers. This rule

should be followed:
(w - d) > 6

If a scale factor n is used, it controls the decimal normalization

between the number part and the exponent part as follows:

a., Ifn < 0, then lnl zeros are placed immediately to the right
of the decimal point with (d—lnl) significant digits follow-

ing the zeros.

b. If n > 0, then n significant digits are placed to the left of
the decimal point and (d—n+l) significant digits are placed
to the right of the decimal point.

Examples
Internal Value Specification Output Field
+36.7929 El2.5 bb.36793EbO2
-36.7929 El11.5 -.36793EbO2

DOUBLE PRECISION CONVERSION ON INPUT USING Dw.d.

The double precision format specification Dw.d on input causes the
value of the real datum in the input field to be assigned to the
corresponding variable of type DOUBLE PRECISION in the input list.

The general form is:

Dw.d

Aside from the fact that a double precision value may contain twice as

AP ; . 1 s . .
many significant mantissa digits as a single precision real,

7-16

the exponent in the input field is preceded by a D rather than an E,
the double precision format specification Dw.d functions in the same

manner as Ew.d,

DOUBLE PRECISION CONVERSION ON OUTPUT USING Dw.d.
The double precision format specification Dw.d on output causes the
value of the corresponding double precision variable in the output

list to be writtem on the specified output file.

The general form is:

Dw.d

The double precision format specification Dw.d is identical to Ew.d,

with the following exceptions:

a. The value associated with it is stored with twice the number

of mantissa digits as a real field.

b. The variable name associated with the value must be of type

DOUBLE PRECISION.

c. The exponent part of the output contains a D rather than

an E.

REAL CONVERSION ON INPUT USING Gw.d.

The real format specification Gw.d on input is identical to Fw.d.

The general form is:

Gw.d

REAL CONVERSION ON OUTPUT USING Gw.d.
The real format specification Gw.d on output causes the value of the
corresponding real variable in the output list to be written on the

specified output file.

7-17

The general form is:

Gw.d

The representation in the output field is a fraction of the magnitude

of the real number being outputted.

If n is the magnitude of the number being outputted, table 7-1 shows

how the number appears in the output field.

Table 7-1

Datum Conversion

Magnitude of Datum Equivalent Conversion Effected
0.1<n<1 F(w=-4). d, 4X
1<n<10 F(w-4). (d-1), b4x
10‘jl"‘°‘gn<1od'l F(w-4).1, 4X
10‘1"l_<_n<1od F(w-4).0, U4X
Otherwise Ew.d

If a scale factor is used, it has no effect on output conversion un-
less the magnitude of the number being written is outside the range

which permits effective use of F conversion.

Examples
Internal Value Specification Output Field
+10. G12.5 bbl10.000
+1000. Gl2.5 bbl1000.0

7-18

Internal Value Specification Output Field

+100000. Glz2.5 bb.10000EbO6
+1000000. Gl2.5 bb.10000EbO7
LOGICAL CONVERSION ON INPUT USING Lw.
The logical format specification Lw on input causes the value of the

logical datum in the input field to be assigned to the corresponding

variable of type LOGICAL in the input list.

The general form is:

Lw

The input field width w must be greater than or equal to one. There
may be leading blanks. The first character encountered in the field
exclusive of leading blanks must be either T or F, for TRUE or FALSE,

respectively. Any characters following the T or F are ignored.

If the input field for a logical variable contains neither a T nor an

F, the internal value is FALSE.

Examples
Input Field Specification Internal Value
T L1 TRUE
bbF L3 FALSE
bbbTRU L6 TRUE

LOGICAL CONVERSION ON OUTPUT USING Lw.
The logical format specification Lw on output causes the logical value
of the corresponding variable of type LOGICAL in the output list to be

written on the specified output file.

The general form is:

Lw

7-19

The logical value is placed right-justified in the output field over
a field of blanks as a T or F, for TRUE or FALSE, respectively.

Examples
Internal Value Specification Qutput Field
FALSE L1 . F
FALSE L3 bbF
TRUE L2 bT

ALPHANUMERIC CONVERSION ON INPUT USING Aw.
The alphanumeric format specification Aw on input causes the character

string of width w in the input field to be assigned to the correspond-

ing variable in the input list.

The general form is:

The variable must be of type ALPHA. If the field width w is greater
than alpha size (six by default), the input field is right-truncated.
If w is less than six, the alpha string is stored left-justified in
memory with (alpha size - w) trailing blanks. Alpha size is six in

the following examples.

Examples
Input Field Specification Internal Value
ABCDEFGHIJK A3 ABCbbb
ABCDEFGHIJK A6 ABCDEF
ABCDEFGHIJK All ABCDEF

ALPHANUMERIC CONVERSION ON OUTPUT USING Aw.
The alphanumeric format specification Aw on output causes the char-

acter string assigned to the corresponding variable in the output list

to be written on the specified output file.

7-20

The general form is:

Aw

The string is placed left-justified in the output field over a field
of blanks.

Examples
Internal Value Specification Output Field
ABCbbb A3 ABC
ABCbbb A5 ABCbLD

ENTERING A CHARACTER STRING AS INPUT USING wHs.
The Hollerith field specification wHs on input causes the character
string of width w in the input field to replace the character string

s of the Hollerith field specification in a FORMAT statement.

The general form is:

wHs

The Hollerith field specification on input may be used to read in page
headings which are to be printed on output, but which may vary in

content from one run to another.

Example

READ(5,15)
15 FORMAT(2X, 9HDUMMYbbbb)
WRITE(6,15)

Input

11
12345678901 (card column)
XYbADbSAMPLE

7-21

Outgut

bPbbADbDbSAMPLE

Note that in the printed output, although 2X has been specified, only
one blank is printed since the first blank is a carriage control char-

acter (refer to carriage control, page 7—25).

PRODUCING A CHARACTER STRING AS OUTPUT USING wHs.
The Hollerith field specification wHs on output causes the character
string s of width w of the Hollerith field in a FORMAT statement to be

written on the specified output file.

The general form is:

wHs

The string s remains unchanged.

Example

vt

WRITE(7,95)
95 FORMAT (12HbBURROUGHSbD)

Output

111
123456789012 (card column)

P BURROUGHG SDDD

SKIPPING CHARACTERS USING nX.
The format editing specification nX on input or on output causes n

characters to be skipped in the respective input or output field.

The general form is:

Tn FORMAT SPECIFICATION
The Tn format specification causes data transmission on input or on

output to begin in the nth character position. When used with a line

7-22

printer file, data actually begin in the (n-1)st character position

because the first character of the record is used for carriage control.

The general form is:

Exampl

o

WRITE(6,10)
10 FORMAT(T4,5HABCDE)

Output

1 23456 7 (printer position)
P b ABCDE

Example

WRITE(7,8)
8 FORMAT (T4, 7HEXAMPLE)

Output

1
123456789 0 (card column)

bbb bEXAMPLE

SCALE FACTOR ON INPUT.

For F, E, G, and D format specifications on input, when the input
datum does not have an exponent, the input datum is multiplied by 107"
where n is the scale factor. For example, the datum 573.19 read with
a format of 2PF6.2 is stored internally as 5.7319. If the input datum

contains an exponent, the scale factor has no effect.

SCALE FACTOR ON OUTPUT.

For F, E, and D format specification on output, when the output datum
does not have an exponent, the output datum is multiplied by lOn,
where n is the scale factor. For example, the number stored inter-

nally as 5.7319 and written with a format of 2PF6.2 has the external

7-23

value of 573.19. If the output datum contains an exponent, the datum
is multiplied by 10" and the exponent is reduced by n. Therefore,
the value is not changed. For example, the number stored internally
as .57319E+02 and written with a format of 1PEl11l.3 has the external
value of 5.732E+01.

For the G format specification on output, the effect of the scale
factor is suspended unless the magnitude of the datum being outputted
is outside the range that permits effective use of F conversion. If
the use of E conversion is required, the scale factor has the same

effect as when using the E format specification on output.

For further information refer to real conversion on page 7-15 using

Ew.d.

FORMAT SPECIFICATION IN AN ARRAY.

Any of the formatted input/output statements may contain an array name
in place of a FORMAT statement label. At the time the input/output
statement containing the array reference is executed, the array must
contain the equivalent of a FORMAT statement, with the first character
being a left pare
final right parenthesis of the FORMAT statement in the array are
ignored. There may not be embedded blanks between the left and right

parentheses.

Example

Program

ALPHA FORM(5)
DIMENSION INFO(6)
READ(5,75) FORM
75 FORMAT (5A6)
READ(20,FORM) Q,R, (INFO(I),I=1,6)

Input

(F6.2,3X,E15.8,6I3)bbbbbbbbbbb

7-24

CARRTAGE CONTROL.
When a line printer is used for output, the first character of each
line of print controls the spacing of the printer carriage. The con-

trol characters are:

Character Action

Blank One space before printing
Zero Double space before printing
1 Skip to channel 1 of carriage

control tape before printing.

Plus sign No advance before printing

One of the above characters must be specified by a Hollerith constant,
a skip (lX = blank), or a Tn; otherwise, a single space before print-
ing carriage control is assumed, and the first character is not

printed.

Examples

25 FORMAT(1HO,E12.6,A5)
Causes the carriage to double space before printing.

35 FORMAT (6H+TITLE)
Provides no carriage advance before printing.

45 FORMAT(3X,615)
Causes the carriage to single space before printing.

55 FORMAT (1H1,5HTITLE)
Causes the carriage to skip to channel 1 and print TITLE.

USE OF SLASH (/).
A slash in a FORMAT statement is used to indicate the end of a record.
On input, any remaining characters in the current record are ignored

when a slash is encountered in the FORMAT statement.

On output, the current record is terminated and any subsequent output
is placed in the next record. Multiple slashes may be used to skip

several records on input or create several blank records on output.

7-25

REPEAT SPECIFICATIONS.

Repetition of any format specification except nX or wHs is accom-
plished by preceding it with a positive integer constant called the
repeat count. If the I/0 list warrants it, the specified conversion
is interpreted repetitively up to the specified number of times. ITf

a scale factor is included, it must precede the repeat count.

Repetition of a group of format specifications is accomplished by en-
closing them within parentheses and preceding the left parenthesis
with a positive integer constant called the group repeat count, which
indicates the number of times to interpret the enclosed groupings. If
a group repeat count is not given, the group is repeated until the I/O
list is exhausted. Grouping with parentheses may be continued to nine

levels.

Example

85 FORMAT(3E16.6,5(F10.5,13,4A2))

FORMAT AND I/0 LIST INTERACTION.
The execution of a formatted I/0 statement initiates format control.
If there is an I/0 list, at least one format specification other than

wHs or nX must exist in the FORMAT statement referenced.

When a formatted input statement is executed, one record is initially
read. No other records are read unless specified by the FORMAT state-
ment. The I/O list associated with a FORMAT statement may not require

more data of a record than it contains.

When a formatted output statement is executed, writing of a new record
occurs each time the FORMAT statement referenced so specifies. Termi-
nating execution of a formatted output statement causes the current

record to be written. A slash also causes the record to be written.

Except for the effects of repeat counts, the FORMAT statement is
interpreted from left to right.

7-26

To each I, ¥, E, G, D, A, or L format specification there corresponds
one element in the I/0 list. A list element of type COMPLEX is con-

sidered, for purposes of I/0 conversion, as two list elements of tvpe
REAL, Thus, there must be two format specifications (or a format spe-
cification preceded by a repeat count) for every list element of type

COMPLEX.

There is no corresponding I/O list element for any wHs, Tn, or nX for-
mat specification. Instead, the information is inputted or outputted

directly to or from the FORMAT statement.

If, under format control, the right-most right parenthesis of the FOR-
MAT statement is encountered and the I/0 list is still not exhausted,

format control reverts to the last previously encountered left paren-

thesis. If a group repeat count precedes this left parenthesis, it

also takes effect.

io nt, the I/0 iist is
exhausted but the right-most right parenthesis of the specified FORMAT
statement has not been encountered, execution of the I/0 statement is

complete.

7-27

SECTION 8
SUBPROGRAMS

GENERAL.
A subprogram is a program unit, a self-contained and independent
routine, which may be referenced by the main program and by other

subprograms. There are three types of subprograms:

a. FUNCTION.
b. SUBROUTINE.
c. BLOCK DATA.

FUNCTIONS.

In mathematics if the value of one quantity is dependent on the wvalue
or values of another quantity, it is said to be a function of the
other quantity. The first quantity is called the function and the

other quantities are called the arguments. For example, in
arctan(x)

arctan is the function and x is the argument.

Functions may be divided into three categories:

a. Statement.
b. Intrinsic.

C. External.

STATEMENT FUNCTIONS.
A statement function is declared within the program unit in which it
is referenced. It is defined by a single statement similar in form to

n Arithmetic or Logical Assignment statement.

Q
[Nt

The general form is:

f(Xl,Xz, © s o ,Xn)=e

where f is the statement function name,
X, 3X,9s0s9X_ are the dummy arguments,
and € is an expression.

The rules for naming a function subprogram are the same as those for
naming a variable (refer to section 2). The dummy arguments may be
simple or subscripted variables. They represent values which are
passed to the function subprogram and are used in the expression e in
order to evaluate the function f. The dummy arguments are undefined
outside of the statement function and may be redefined within the pro-
gram unit. Together, f and e must conform to the rules for Arithmetic

or Logical Assignment statements.
Aside from the dummy arguments, the expression e may contains

a. Variables used in the program unit.
b. Intrinsic function references.
c. References to previously defined statement functioms.

d. External function references.
A statement function must be defined before it is referenced.

A statement function is referenced in the same manner as a FUNCTION

subprogram.

The name of a statement function must not appear in an EXTERNAL state-

ment, nor as a variable name or an array name in the same program unit.

Example

DIMENSION A(10)

LOGICAL STAFUN,Y,Z

STAFUN(N)=X .LT. SIN(A(N))

READ(5,25)X,Y, (A(T),I=1,10)
25 FORMAT (F8.2,L2,10F7.2)

DO 50 J=1,10

Z=Y .AND. STAFUN(J)

50 ..

INTRINSIC FUNCTIONS.

The intrinsic functions are those functions made available to a
FORTRAN object program by the operating system. The names, types,
and definitions of the intrinsic functions are predefined, so they

.
need onl

11v be referenced in order fo be used.

8-2

An intrinsic function name may be redefined within a program unit.
However, if it has been redefined, that intrinsic function is no
longer recognized by the compiler, but its identifier is used as it

has been redefined.

An intrinsic function is referenced by using it as a primary in an
arithmetic or logical expression. The actual parameters which con-
stitute the parameter list must agree in type, number, and order with
the specifications in table 8-1, and may be any expression of the

specified type.

Execution of an intrinsic function reference results in the passing of
the actual parameter values to the corresponding formal parameters of
the intrinsic function and an evaluation of the intrinsic. The resul-
tant value is then assigned to the intrinsic function identifier and

thereby passed back to the intrinsic function reference.

IBIG = MAX0(I,J,K,LEST)
TANGE = SIN(X+Y)/C0S{A-B)

EXTERNAL FUNCTIONS.
An external function is a program unit which has as its first state-

ment a FUNCTION statement.

The general form is:

t FUNCTION f(al,ag,...,gn)

where t is either INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or empty; f is the symbolic name of the
function being defined; and a,,...,a_are formal
parameters which may be eithe¥ a variable name, an
array name, a subroutine, or function name.

An extermal function must be referenced by another program unit,

not by itself,

8-3

%-8

Table 8-1

Resulting Actions of an Intrinsic Function

. . s Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function
Absolute value |al 1 ABS Real Real
IABS Integer Integer
DABS Double Double
CABS Complex Real
Truncation Sign of a times 1 AINT Real Real
largest integer INT Real Integer
<la IDINT Double Integer
Remaindering¥* a, (mod a2) 2 AMOD Real Real
MOD Integer Integer
DMOD Double Double
Choosing largest value Max (al,a2...) >2 AMAXO Integer Real
AMAX1 Real Real
MAXO Integer Integer
MAX1 Real Integer
DMAX1 Double Double
Choosing smallest value| Min (al,az. e.) >2 AMINO Integer Real
AMIN1 Real Real
MINO Integer Integer
MIN1 Real Integer
DMIN1 Double Double
FLOAT Conversion from 1 FLOAT Integer Real

integer to real

¢-8

Resulting Actions of an Intrinsic Function

Table 8-1 (cont)

. s Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function
Fix Conversion from 1 IFIX Real Integer
real to integer
Transfer of sign sign of 2, 2 SIGN Real Real
times al ISIGN Integer Integer
DSIGN Double Double
Positive difference al—Min (al,az) 2 DIM Real Real
IDIM Integer Integer
Obtain most significant 1 SNGL Double Real
part of double
precision argument
Express single 1 DBLE Real Double
precision argument
in double precision
form
Obtain real part 1 © REAL Complex Real
Obtain imaginary part 1 ATIMAG Complex Real
Create complex C = Al + ia2 2 CMPLX Real Complex
Complex conjugate C =X - 4iY 1 CONJG Complex Complex
Exponential e 1 EXP Real Real
1 DEXP Double Double
CEXP Complex Complex

9-8

Table 8-1 (cont)

Resulting Actions of an Intrinsic Function

. s g Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function

Natural logarithm 1oge (a) 1 ALOG Real Real

1 DLOG Double Double

1 CLOG Complex Complex
Common logarithm logq (a) 1 ALOG10 Real Real

1 DLOG10 Double Double
Trigonometric sine sin (a) 1 SIN Real Real

1 DSIN Double Double

1 CSIN Complex Complex
Trigonometric cosine cos (a) 1 COS Real Real

1 DCOS Double Double

1 CCOsS Complex Complex
Arctangent arctan (a) 1 ATAN Real Real

1 DATAN Double Double
Arctangent arctan (al/az) 2 ATAN2 Real Real

2 DATANZ Double Double
Square root (a)l/2 1 SQRT Real Real

1 DSQRT Double Double

1 CSQRT Complex Complex
Hyperbolic tangent tanh (a) 1 TANH Real Real

L-8

Table 8-1 (cont)

Resulting Actions of an Intrinsic Function

Where applicable, trigonometric

functions must be in radians.

s e Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function
Trigonometric tangent tan (a) 1 TAN Real Real
NOTE

* The functicns MOD, AMOD, and DMOD (a
denotes the integral part of a.

l,a2) are defined as a; - [al/az]*az, where [a]

The construction of external functions is subject to the following

conditions:

a. The function name must be used as a variable within the func-
tion subprogram to the left of the replacement operator (=)
in an assignment statement at least once. Its value at the
time of execution of any RETURN statement within the function

subprogram is the value of the function.

b. The name of the function must not appear in any non-
executable statement in the function subprogram, except for

the FUNCTION statement.

c. The symbolic names of the formal parameters may not appear in
an EQUIVALENCE, COMMON, or DATA statement in the function sub-

program,

d. The function subprogram may define or redefine one or more of
its parameters to effectively return results in addition to

the value of the function.

e. The function subprogram may contain any statements except

SUBROUTINE, another FUNCTION statement, or BLOCK DATA.

f. The function subprogram must contain at least one RETURN

statement.

g. An END statement must be the last statement of the subprogram

body.

{

Example

FUNCTION EVAL(U,V)
1r(U .LT. V) GO TO 1
EVAL=V/U
RETURN

1 EVAL=U/V
RETURN
END

8-8

REFERENCING EXTERNAL FUNCTIONS,

An external function is referenced by using it as a primary in an
arithmetic or logical expression. The actual parameters, which con-
stitute the parameter list, must agree in order, number, and type with
the corresponding formal parameters in the defining program. An
actual parameter in an external function reference must be one of the

following:

a. A Hollerith constant.
b. A variable name.

c. An array element name.
d. An array name.

e. An expression.

f. The name of a function or a subroutine.

If an actual parameter is a function name (external or intrinsic) or a
subroutine name, the corresponding formal parameter must be used as a

function name or a subroutine name, respectively.

If an actual parameter corresponds to a formal parameter that is de-
fined or redefined in the referenced subprogram, the actual parameter
must be a variable name, an array element name, or an array hame.
Execution of an external function reference, as described in the fore-
going, results in an association of actual parameters with all appear-
ances of corresponding formal parameters in the executable statements
of the subprogram, and in an association of actual parameters with
variable dimensions, if present, in the subprogram. Following these
associations, execution of the first executable statement of the sub-

program body is undertaken.

5

actual parameter which is an array element name containing vari-

ables in the subscript can, in every case, be replaced by the same pa-
rameter with a constant subscript containing the same values as can be
derived by computing the variable subscript just before association of

parameters takes place.

8-9

If a formal parameter of an external function is an array name, the
corresponding actual parameter must be an array name or array element

name.

Example

TOTAL=EVAL(P,X) + CPS(Y)

SUBROUTINE.

A subroutine is defined externally to the program unit that references
it. A subroutine defined by a FORTRAN statement headed by a
SUBROUTINE statement is called a subroutine subprogram.

DEFINING SUBROUTINE SUBPROGRAMS.
The SUBROUTINE statement is one of the forms:

1. SUBROUTINE n

)

2. SUBROUTINE n (al,az,...,an

where n is the symbolic name of the subroutine
to be defined; the a's are formal parameters
which mav be either a variable name, an array
name, a function or subroutine name.

The construction of subroutine subprograms is subject to the following

restrictions:

a. The symbolic names of the formal parameters may not appear in

an EQUIVALENCE, COMMON, or DATA statement in the subprogram.

b. The subroutine subprogram may define or redefine one or more

of its parameters in order to effectively return results.

c. The subroutine subprogram may contain any statements except

FUNCTION, another SUBROUTINE statement, or BLOCK DATA.

d. The subroutine subprogram must contain at least one RETURN

0

statement.

8-10

e. An END must be physically the last statement.

Example

SUBROUTINE FALL(T,V,S)
G=32.172

S=G*T*%2/2

V=G*T

RETURN

END

BLOCK DATA.
Further use of the DATA statement is in the BLOCK DATA subprogram. It

is used to enter data into COMMON blocks; however, the following must

be observed:

a. There may be no executable statements in a BLOCK DATA sub-
program. The first statement of the subprogram must be BLGCCK
DATA.

b. The subprogram may contain only Type, EQUIVALENCE, DATA,
DIMENSION, and COMMON statements.

c. All elements of a COMMON BLOCK must appear in the COMMON
statement list even though some do not appear in the DATA

statement list.

d. More than one COMMON block may be initialized by a single
BLOCK DATA subprogram.

e. There may be as many BLOCK DATA subprograms as desired in a
program, Any common block identifier may occur in only one

BLOCK DATA subprogram unless an INITTIAL Card is used to spe-

ol

or initialization.

)

ogram tOo be used

ot
[o}

in a DATA statemsnt must be listed in the order i

H
o
~

O]
.g

de

3

oy

]

®

0)

4
3

[0}

be

which they appear in a COMMON statement.

8-11

Example

BLOCK DATA
COMMON/TEST/K,L,S/AATWO/B,C
DIMENSION C(10)

DATA L,S/ 1, 3.5/, C/ 10¥16.2/
END

8-12

APPENDIX A
B 2500/B 3500 FORTRAN VERSUS B 5500 FORTRAN

The constructs cited below are characteristics of B 2500/B 3500
FORTRAN and indicate differences between B 2500/B 3500 and B 5500
FORTRAN:

a. Only one statement is allowed per card as opposed to two or

more statements separated by semicolons.

b. The character set does not include the (") quote sign.
Therefore, all literal strings must be designated as
Hollerith (H) fields.

c. The relational operators <, <, #, >, and > are not allowed.
The FORTRAN mnemonics .LT., .LE., .NE., .GT., and .GE. must

be used.

d. The maximum number of dimensions which can be declared for an
array is three. The maximum number of elements in an array

is 9999.

e. A subscript may not be a REAL expression. It may, however,

be an INTEGER constant, variable, or expression.
f. In the statement:
GO TO i, (kl,kz,...,kn)
i may be an INTEGER variable, never a REAL variable.
g. In the statement:

Go 10 (k. ,k k

li 2&“‘! i

)
n}!
i may be an INTEGER variable, never a REAL variable.

h., TIn the statement:

IF (1.e.)s

APPENDIX A (cont)
B 2500/B 3500 FORTRAN VERSUS B 5500 FORTRAN

s may be any executable statement except a DO statement or
an IF statement. B 5500 FORTRAN permits usage of IF state-

ments for s.

B 5500 FORTRAN allows the terminal statement of a DO loop to
be any executable statement. B 2500/B 3500 FORTRAN forbids
usage of a GO TO of any form, an IF statement, RETURN, STOP,
PAUSE, or DO statement.

In the statement:

DOmi = n,,n,,n

3

i may not be a REAL variable, only an INTEGER variable. The

terms n,,n,,n, may be either INTEGER constants or INTEGER

2773
variables. They may not be INTEGER or REAL expressions as is
permitted in B 5500 FORTRAN.

CLOSE u, LOCK u, and PURGE u are not permitted.

O 3 L F] A At S) [=RALE T g GRS | LA~ LY

In I/0 and auxiliary I/O statements, the unit number (u) may

not be an expression.
NAMELIST is not allowed.
PRINT and PUNCH I/0 statements are not permitted.

The intrinsics: COTAN, ARSIN, ARCOS, ERF, GAMMA, ALGAMA,
AND, OR, COMPL, EQUIV, CONCAT, and TIME are not available.

Non-standard returns from subroutines are not permitted.
Multiple entry points to subprograms are not permitted.

Each of the two components of a COMPLEX constant may be REAL
only, not INTEGER.

APPENDIX A (cont)
B 2500/B 3500 FORTRAN VERSUS B 5500 FORTRAN

The format specified Ow is not permitted.
Recursive subroutines are not allowed.
STOP n and PAUSE are not available.

e

An EQUIVALENCE statement may not be used to extend the size

of a COMMON block at its beginning, only at its end.

No more than nine DO statements may be nested within the
range of another DO statement. In other words, DO statements

may be nested no more than nine deep.
CALL EXIT is treated as a STOP statement.

The maximum number of parameters allowed in a subprogram

argument list is 42,

There is no check for divide by zero or exponent overflow or

underflow.

APPENDIX B
SOFTWARE LIBRARY

Three types of FORTRAN subprograms appear on the Systems tape. The
first of these, READ., WRITE., RWIND., EXPON., ALOG, EXP, DLOG, DEXP,
are called by the FORTRAN Compiler. READ and WRITE are implicitly
called when a READ and WRITE statement are used in the program. The
other five routines are called when the *¥% operator is used. Another

group of subprograms are described in table 8-1.

In addition to these functions, some commonly used subroutines are
provided. The purpose and parameters of these subroutines are de-

scribed below.

SUBROUTINE ACCEPT,.

The purpose of the ACCEPT subroutine is to receive data from another

job in the mix. It is of the form:
CALL ACCEPT (DATA, NCH, LV, HOLLER)

DATA may be a variable name or an array name of any data type. It
specifies into which variable or array the data which are received are

to go,.

NCH is an integer constant or integer variable name. It specifies the
number of characters of DATA to be received. NCH must be less than

10000, Note that one character is equivalent to two digits.

LV is a logical variable. If ACCEPT actually receives the data from
a sending program, LV is set to .TRUE. If there is no program sending

data when ACCEPT is ready to receive data, LV is set to .FALSE.

HOLLER is a Hollerith constant or variable containing Hollerith data.
It specifies the program identifier from which the NCH characters of
DATA are being sent. Note that HOLLER is not a subprogram name, but
the name of a code file. The Hollerith data are exactly six char-

acters, ending in blanks if necessary.

APPENDIX B (cont)
SOFTWARE LIBRARY

NOTE
The core-to-core option (CRCR)
must be set in CP--S versions

of the Master Control Program.

Example

A program expects to receive a real array with 10 elements

from another program in the mix called TRANS.

LOGICAL LV
DIMENSION BRAY (10)

10 CALL ACCEPT (BRAY, 60, LV, 6HTRANSD)
Ir (.NOT. LV) GO TO 10

STOP
END

Assume a default size of 12 digits or six characters per real element.
Then NCH is 60 since 10 elements at six characters per element is 60

characters.
The data being received from TRANS go into BRAY.

The Logical IF statement states that if LV is .FALSE. (i.e., data have
not been received), loop back to statement 10 and try again. In other

words, the program keeps looping and waiting for TRANS to send the
data.

NOTE
Refer to the description
of SUBROUTINE SEND for the

method ¢f sending data.

APPENDIX B (cont)
SOFTWARE LIBRARY

SUBROUTINE CHANGE.

This subroutine changes the file identification associated with a
logical unit number and can be used to reduce the core requirement of

a program when logically distinct files with identical attributes are

to be processed. It is of the form:
CALL CHANGE({file number),(new file identifier))

The (file number) is an integer constant or variable which is the unit

number of the file to be changed.

The <new file identifier> is a 6-character Hollerith constant or ALPHA

variable,

All processing on the first file should be completed before it is
changed. The first file is closed with no rewind by the CHANGE sub-

routine.

The attributes of the new file must be identical to the attributes of

the original file.

Example

FILE 8=TAPEl,BUFFERS=1,FIXED,RECORD=80,BLOCKING=10
READ(8,10) A,B,C
READ(8,20) D,E,F
CALL CHANGE(8,6HTAPE2)

LI I A N

LI]
WRITE(8,50) RSULT,XMAX

In the example all references to unit 8 prior to execution of the

CHANGE subroutine are to FILEl. Subsequent references are to FILE2.

SUBROUTINE CLOSE.
The purpose of the CLOSE subroutine is to close a file. When CLOSE

is not specified by the programmer, files opened implicitly by a READ

B-3

APPENDIX B (cont)
SOFTWARE LIBRARY

or WRITE remain open until the end of execution. Its form is:
CALL CLOSE (IUNIT, HOLLER)

The term IUNIT is an integer constant or integer variable name which

specifies the unit number of the file to be closed.

HOLLER signifies a Hollerith constant or a variable containing Hol-

lerith data which specify the type of CLOSE to be performed.

Only the first two characters of HOLLER are used and have the follow-

ing meanings:

First Character Meaning
R Reel close (for use with

multireel tape files)

F File close
Any other character (including a blank) is regarded as an implicit
FILE CLOSE.
Second Character Meaning
Blank Normal CLOSE (rewind, retain)
N CLOSE, NO REWIND, RETAIN
R CLOSE WITH RELEASE and REWIND*
L CLOSE WITH REWIND and LOCK
P CLOSE WITH REWIND and PURGE*
C CLOSE WITH CLOBBER (disk file
with same name is removed)
Any other CLOSE WITH REWIND and RETAIN

* Magnetic tape units are returned to the MCP as available for use
with other programs in the mix.

B-4

APPENDIX B (cont)
SOFTWARE LIBRARY

SUBROUTINE DATE.
The purpose of the DATE subroutine is to obtain the contents of the
current date word used by the MCP. It is of the form:

CALL DATE (IM, ID, IY)

IM is an integer variable which, after the execution of DATE, contains
the month that is in the MCP date word. The value is an integer be-

tween 1 and 12 inclusive.

ID is an integer variable which, after the execution of DATE; contains
the day that is in the MCP date word. The value is an integer between

1 and 31 inclusive. -

1Y is an integer variable which, after the execution of DATE, contains

the year that is in the MCP date word.

NOTE
Fach of the variables IM, ID, IY may be
printed out with the format specification

of I2.

The MCP date word may be set by the oper-
ator with a DT SPO message. DT 12/20/68
sets the value of the MCP date word to
122068. Thus, subsequent use of the DATE

- subroutine sets the value of IM to 12, the
value of ID to 20, and the value of IY to 68.

SUBRCUTINE EXIT.

The purpose of the EXIT subroutine is to stop the execution of an

object program. Its form is:

CALL EXIT

APPENDIX B (cont)
SOFTWARE LIBRARY

The CALL EXIT statement does exactly the same things as a STOP state-
ment. Tt is included to allow existing FORTRAN programs that already
use CALL EXIT to run without making any changes.

SUBROUTINE FMDUMP.

The purpose of this subroutine is to produce an analysis of the memory

of a program during its execution. It is of the form:
CALL FMDUMP(N,L)

N is the unit number of a PRINTER file; the output from FMDUMP appears

on this printer.

L is a logical variable. If its value is TRUE when FMDUMP is called,
a memory dump is produced with the analysis. If the value of L is

FALSE, only the analysis is produced.

The analysis provides the following information:
a. Sizes of data types and storage unit size.
b. Contents of index registers.

c. Number of program segments and the segment last brought into

memery.

d. Analysis of each program segment giving its status (IN or NOT
IN), base relative beginning and ending addresses, and the

address of the first executable instruction.

e. Analysis of each file giving the unit number, address of the
file information block (FIB), device type, label, status
(closed or open), blocking factor, address of the work area
if one is used, number of buffers, and the disk key for a

random disk file.

B-6

APPENDIX B (cont)
SOFTWARE LIBRARY

f. Analysis of stack in reverse order of calling (latest stack
entry to first entry), giving the address in the stack where
the entry begins, contents of the return control word, number
of parameters passed with the associated NTR, and the stack

address of the first five parameters.

SUBROUTINE SEND.

The purpose of the SEND subroutine is to send data to another Jjob in

the mix. It is of the form:

CALL SEND (DATA, NCH, HOLLER)
DATA may be a constant, a variable name, or an array name of any data

type. DATA specifies the data to be transferred.

NCH is an integer constant or integer variable name. It specifies the
number of characters of DATA to be transferred. Note that one char-

acter is equivalent to two digits.

HOLLER is a Hollerith constant or wvariable containing Hollerith data.
It specifies the program identifier to which the NCH characters of

DATA are being sent. Note that HOLLER is not a subprogram name, but
the name of the code file. The Hollerith data are exactly six char-

acters, ending in blanks if necessary.

Example

Suppose a programmer decides to send a real array of 10
elements to a program in the mix called ACCT. Let the

name of this array be ARAY. The FORTRAN program includes

the following:

DIMENSION ARAY (10)

.
.

B-7

APPENDIX B (cont)
SOFTWARE LIBRARY

CALL SEND (ARAY, 60, 6HACCTbb)

STOP
END

NCH has a value of 60 since we are assuming that a real element

contains 12 digits or six characters.

NOTE
The core-to-core option (CRCR) must be
set in CP--S versions of the Master

Control Program.

If the program specified in HOLLER
(ACCT in the example) is not yet ready
to receive the data, the sending pro-
gram waits until the receiving program

is ready.

Refer to the description of SUBROUTINE
ACCEPT for the method of receiving data.

SUBROQUTINE SPOACP.

The purpose of this subroutine is to accept input from the system SPO.
The data are placed in a specified variable and may be either INTEGER

or ALPHA. It is of the form:
CALL SPOACP(N,VAR)

N is an integer constant or variable whose value is 0 or 1. If N=O,
the input is to be considered INTEGER; if N=1, the input is to be
considered ALPHA.

VAR is an integer or alpha variable (simple or subscripted) which re-

ceives the SPO input. VAR must be of type ALPHA or INTEGER depending

on the type of

input designated by N.

B-8

APPENDIX B (cont)
SOFTWARE LIBRARY

If the input is infteger, only the integer digit of each character is

placed in VAR,

If the SPO input is longer than the length of the receiving variablie,
it is truncated. If it is shorter, it is left-justified in the field

with trailing blanks or zeros.

Example

ALPHA MEST(4)
DO 20 I=1,4

OATT SDNA
VAL/L OrUA

20 CONTINUE

Q-
e}
—_~

SUBROUTINE SPOMSG.

The purpose of this subroutine is to display a message at the system
SPO. It is of the form:

CALL SPOMSG(<character count},(message})

The <character count> is an integer constant denoting the number of

characters in the message to be displayed.

The <message> is a Hollerith constant of up to 60 characters which is

the message to be displayed.

Example

To display "MOUNT A SCRATCH TAPE ON A 9-CHANNEL DRIVE" at the
system SPO, code:

CALL SPOMSG({41,41HMOUNT A SCRATCH TAPE ON A 9-CHANNEL DRIVE)

SUBROUTINE TIME.

The purpose of this subroutine is to obtain the contents of the

current time word used by the MCP. It is of the form:

CALL TIME (T1, T2)

APPENDIX B (cont)
SOFTWARE LIBRARY

Tl may be either a real constant or a real variable name. It is used

as input to the TIME routine.

T2 is a real variable., After execution of TIME, T2 contains the
difference between the current time and Tl. That is, if the current
time is TC, then T2 has the value TC - Tl. The unit of time is

milliseconds.

To obtain the current time, the following CALL TIME statement can be

used:

CALL TIME (0., T2)

Example

To time out a certain DO loop, the following FORTRAN statements

can be used:

CALL TIME (0., TME)
DO 20 I = 1, 1000

20 CONTINUE
CALL TIME (TME, TME)

TME contains the length of time (in milliseconds) required to

execute the DO 20 lcop.

SUBROUTINE TRACE.

The TRACE subroutine is used to turn a trace on and off during the
execution of an object program. It may also be used to give a com-

plete or partial dump of the object program. Its form is:

CALL TRACE (I)
CALL TRACE (21,I,J)

When using the first option, I is an integer constant or variable and
is used as an input parameter to the TRACE routine. I can have the

L A s

following values:

B-10

APPENDIX B (cont)
SOFTWARE LIBRARY

Value of T Meaning
0 Turn off TRACE
1 Turn on normal state TRACE

Turn on control state TRACE¥*

N

3 Turn on normal and control state TRACE¥

20 Dump entire program
When tracing, the program should be alone in the mix.

The second option permits the user to selectively dump part of his
program. I is an integer constant or variable which is the base rela-
tive address at which the dump begins. J is an integer constant or

variable which is the base relative address at which the dump ends.

Examples

To trace the object time execution of a set of FORTRAN statements:

CALL TRACE (1)

. series of statements
. to be traced

CALL TRACE (0)
To dump core between base relative addresses 3150 and 9000:
CALL TRACE(21,3150,9000)

SUBROUTINE ZIP.

The ZI1P subroutine is used to execute a control card from a currently

executing program. Its form is:

CALL ZIP (ARGM)

¥ Can be used only if MCP TRACE option is set (i.e., TRAC=1)

APPENDIX B (cont)
SOFTWARE LIBRARY

ARGM must be a Hollerith constant or variable or an ALPHA array name
containing Hollerith data. The Hollerith data may be any valid con-
trol card ending with a period. Note that all control cards start

with the two characters CC.

The execution caused by the execution of the control card contained in
ARGM is carried on concurrently with the execution of the program that

contains the CALL ZIP statement.

Example

? COMPILE ZIPRGM WITH FORTRAN
? DATA CARDS

10 CALL 7ZIP (18 HCC EXECUTE MATMPY.)

STOP
END
? END

When the execution of ZIPRGM reaches statement 10, the execution of
the ZIP routine causes the MCP to start the execution of the program

MATMPY (if it exists on disk). The executions of ZIPRGM and MATMPY

then proceed simultaneously.

The same results can be obtained with the following FORTRAN program:

ALPHA ARAY (3)
DATA ARAY / 18HCC EXECUTE MATMPY. /
. / 6HCC EXE,6HCUTE M, 6HATMPY./

10 CALL ZIP (ARAY)

STOP
END

GENERAL.

APPENDIX C
CONTROL CARDS

When a FORTRAN program is compiled the functions to be performed by

the compiler are specified through the use of control cards. The for-

mat and effect of each of these cards are described below. The fol-

lowing diagram presents the fundamental components of a FORTRAN source

deck.

?END

FORTRAN
SOURCE

I DECK l

FORTRAN - —

CONTRNOT

ULV LAy

CARDS

MCP
CONTROL
CARDS

MCP CONTROL CARDS.

The first control card instructs the MCP to compile with FORTAN (the

FORTRAN Compiler) the indicated program name <p-n> using one of the

following options:

?COMPILE (p-n) WITH FORTAN. This option causes the symbolic
program to be compiled and executed. The pseudo code file
(also referred to as independentiy Compiied Subroutine, ICS,
file) of each program part is entered on disk, but the object
program is not placed in the library. (Refer to appendix F

for a description of an ICS file.)

?COMPILE (p-n) WITH FORTAN LIBRARY. This option causes the
symbolic program to be compiled and the object program to be

APPENDIX C (cont)
CONTROL CARDS

entered in the disk directory with the ID <p-n>. An ICS is
also created and placed on disk for each program part. The
ICS file of a main program is given the ID PROGAM unless an
IDENT Card is used; the ICS file of a subroutine has the name
of the subroutine as the file identifier. (If an IDENT Card
is used, the name specified must be the subroutine namej; re-

fer to IDENT Card which is described below.)

?2COMPILE <p-n> WITH FORTAN SYNTAX. This option causes the
symbolic program to be compiled and checked for syntax errors.
The ICS file for each program part automatically replaces its
namesake on disk if it is syntax- and flag-free. The com-
pilation of a program part that contains flags, but no errors,
causes a DUP LIB message to be displayed on the SPO, leaving
its replacement on disk to the operator's discretion. The
compilation of a program part which contains errors does not
result in an ICS file being placed on disk. The object pro-

gram is not entered in the disk directory.

NOTE
The logic governing automatic replace-
ment of ICS files on disk described in

c above is used for all compile options.

The second control card is the label card which provides file

identification. Its format is:

a e

b.

?DATA CARDS for EBCDIC source language input.
?DATAB CARDS for BCL source language input.

NOTE
Refer to HOLL Card, which is de-
scribed below, for control cards

to be used when the input is BCD.

APPENDIX C (cont)
CONTROL CARDS

The last card in the deck is the END Card, which signifies the
physical end of the card file to the MCP, Its format is:

?END

FORTRAN CONTROL CARDS.

The following control cards may be included optionally in the source
deck to define particular user requirements to the compiler. Each
control card consists of a key word which must begin in column 1 and
additional information, coded in columns 7 through 72. Continuation
cards are permitted as defined for the FORTRAN language. Blanks

appearing in columns 7 through 72 are ignored, and commas are used as

delimiters.

*TLE CARD

EA ~d ErEAN T

A FILE Card is used to define the attributes of a file when other than
default attributes are desired. A FILE Card may contain the descrip-
tion of one file; multiple FILE Cards are permitted.

A FTILE Card is coded as follows:
a. The key word FILE is coded in columns 1-4,

b. n=<file ID>,UNIT=<hardware type}, optionally followed by an
(attribute list), is coded in columns 7-72. Specifications
are free-field and delimited by commas. Continuation cards

may be used.

The <file ID> may be specified as <mult1—f11e ID}/{flle ID> for tape
files only.

The <(hardware type) is specified as follows:

Reserved Word Device Type
PRINTER Line printer
PRINT Line printer

APPENDIX C (cont)
CONTROL CARDS

Reserved Word Device Type
READER Card reader
TAPE 7- or 9-channel magnetic tape
TAPEO 9-channel magnetic tape
TAPET T-channel magnetic tape
DISK Disk
PUNCH Card punch
PTP Paper tape punch
PTR Paper tape reader

By default the FORTRAN Compiler associates a unit number referenced in
an I/0 statement with a particular hardware type, which is, in turn,
associated with a file description. These default associations are

given in table C-1.

The FILE Card may be used to specify associations different from those
given above. Any number of attributes listed for each file descrip-
tion may be redefined; those attributes not specifically defined in a
FILE Card retain the default condition for the hardware type. For ex-
ample, FILE 10=DSKFIL,UNIT=DISK,RECORD=100 redefines unit number 10
and associates it with a disk file named DSKFIL. The record length is
redefined at 100 characters. All other attributes are those assigned
by default for disk, such as blocking factor of 2, sequential access,

and so forth.

c-4

$-0

Table C-1

Unit Number/Hardware Type Default Associations

Unit Hardware Parit Label No of Work|Blocking Record Records
Number Type y Buffers|{Area| Factor Length Per Area
1-4 Magnetic odd FILEn 2 Yes|Variable|100UA
10-19 |tape (7- (n = maximum
or 9-channel unit no.) (variable)
5 Card FILES 2 No 1 80uA
reader
6-8 Line Even |FILE6 2 No 1 132UA
printer
7 Card FILE7 2 No 1 80UA
punch
9 Disk Even |[FILE9 2 No 2 50UA 100

SAIVY TOWLNOD
(2uo00) o XTANEIAV

APPENDIX C (cont)
CONTROL CARDS

The reserved words which may be used in the (attribute list) and their

meanings are given below.

Definition
(Reserved Word) Meaning
All Hardware Devices
UNLABELED Unlabeled file (not valid for disk)
OPTTIONAL Optional file
BLOCKING={unsigned Number of logical records per block
integer>
BUFFERS=(unsigned Number of buffers
integer>
RECORD:(unsigned Record iength in characters
integer)
WORKAREA Assigns work area for file
Magnetic Tape
ATLPHA Even parity
FIXED Fixed length record (must be specified when
I/0 statements reference a FORMAT)
SAVE:(unsigned Assigns save factor of <unsigned integer>
integer> days to retain file
TRANSLATE ' Causes translation of characters from 8-bit

form to 6-bit form for 7-channel tape.
(This attribute is for 7-channel tape only

and must be used.)

c-6

APPENDIX C (cont)
CONTROL CARDS

Definition
(Reserved Word) Meaning
Disk

LOCK Enters file in disk directory at CLOSE time
(when STOP or CALL EXTIT is executed)

RANDOM Random access technique. (A work area is
assigned in addition to two buffers.)

SEQTODISK Sequential l/- access technique

EU:(unsigned Specifies EU on which file is to reside

integer>

AREA:{unsigned Number of records per area (20 areas are

integer> assumed)

PACKED Item in unformatted record is length of its
data size (by default each item is SU size
in length)

Line Printer
BACK Forces file to backup
NOBACK Prohibits file from going to backup

A file must be defined with a FILE Card when an integer wvariable is

used as its unit designator in an I/0 source statement.

Examples

FILE 8=TAPER,UNIT=TAPE,FIXED,
*RECORD=80, BLOCKING=10
DIMENSION PRAY(8)

WRITE(8,10) PRAY

C-7

APPENDIX C (cont)
CONTROL CARDS

10 FORMAT (8F10.3)

STOP
END

In the above example unit 8 is designated a tape file with the ID
TAPER. Records are a fixed length of 80 characters with 10 records
per block. The FIXED specification is necessary because the records

being written are formatted.

FILE 5=FILE5,UNIT=READER
DIMENSION P(10,15),R(10,15)
N=5
DO 10 I=1,15
READ (N,20) P(1,I),R(2,I)
20 FORMAT (2F10.3)
10 CONTINUE

STOP
END

In the above example the FILE Card is needed because the integer vari-

able N is used as a unit designator in a READ statement. All default

attributes are associated with the file.

FILE 9=RANFIL,UNIT=DISK,RANDOM,PACKED,AREA=500
DIMENSION I(15)
WRITE(9=5) I

STOP
END

In the above example RANFIL is a random disk file whose records con-
sist of packed data written without a FORMAT. There are 500 records
per disk area, with the file expandable to 10,000 records.

By default each element written unformatted to a disk file occupies SU
number of digits on disk. The PACKED specification causes each ele-

ment to occupy a number of bytes on disk equal to the size of its data

APPENDIX C (cont)
CONTROL CARDS

type. In the above example, with the PACKED specification and default

sizes, the following record is written.

43 BYTES+»a-3 BYTES +

e <3 BYTES+
(1) |~ 1(2) | |

1(15) |

Without PACKED, RECORD=90 must be declared, and the following record

is written.

<4—— 6 BYTES ——pg———— 6 BYTES ——> <4———— 6 BYTES — »

l 1(1) | 1(2) [ooeee] 1(15) |

FILE 4=MASFIL/FIRST,UNIT=TAPE

In the above example the FILE Card defines a multi-file tape file with
the multi-file ID MASFIL and the file ID FIRST. All other attributes

are default, i.e., variable length records, and so forth.

HOLL CARD.
The HOLL Card must be used when BCD symbolic source input is to be

compiled.
The HOLL Card is coded with the letters HOLL in columns 1-4,
?DATAB CARDS is required as the MCP label control card.

The HOLL Card causes the following characters to be translated for

compilation:
a. % to (.
b. [to).
c. & to +.
d. # to =.
Example

?COMPILE {(p-n) FORTAN
?DATAB CARDS

Cc-9

APPENDIX C (cont)
CONTROL CARDS

HOLL

. BCD source
. deck

?END

IDENT CARD.
The IDENT Card may be used to specify an identifier for a main program

or a subprogram.

The IDENT Card immediately precedes the program part it names and is

coded as follows:
a. The key word IDENT is coded in columns 1-5.

b. An identifier which consists of one to six alphanumeric
characters, the first of which is alphabetic, is coded

in columns 7-72.

The specified identifier is used as the ICS file 1D for the associated
program part. When an IDENT Card does not precede the main program,
its ICS file has the default ID, PROGAM. The ICS file ID of a sub-

program is the subprogram name by default.

An IDENT Card which names a subroutine must specify the name of the

subroutine as the identifier.

If a REPLACE Card is used, the symbolic tape must contain IDENT Cards
for every program part. (Refer to REPLACE Control Card which is de-

scribed below.)

The program name, <p—n>, used in the COMPILE Card should not be speci-
fied as an identifier in an IDENT Card. This causes a ** DUP LIBRARY
(p-n> message to be displayed, and an RM message causes the ICS file
with the ID, <p-n), to be removed and the object code file to be
placed on disk.

APPENDIX C (cont)
CONTROL CARDS

Example

IDENT MAIN
READ (5,10) DATA
10 FORMAT (F10.2)
CALL MYSUB

END
IDENT MYSUB
SUBROUTINE MYSUB

RETURN
END

INITTAL CARD.
The INITTIAL Card specifies the names of BLOCK DATA subprograms which

L

i e hha 1raad o daad
have been compiled independently an re to be used to ini

COMMON. It must be used in all cases when an IDENT Card is used +n
name a BLOCK DATA subprogram.
The INITIAL Card is coded as follows:
a. The key word INITTAL is coded in columns 1-7.
b. One or more BLOCK DATA subroutine names are coded
in columns 9-72, delimited by commas.
By default BLOCK DATA subroutines are named BD.0Ol, BD.002,..., BD.OOn

sequentially as they appear in the source file. The term n is equal

to the number of BLOCK DATA subprograms in the source file. An IDENT
e used i ic identifier to a BLOCK DATA sub-
program, in which case an INITIAL Card must be included in the source

deck.

An INITIAL Card is not necessary when the required BLOCK DATA subpro-
gram is included in the compile deck of the program for which initial-

ization is desired and is not preceded by an IDENT Card.

APPENDIX C (cont)
CONTROL CARDS

The INITIAL Card is needed in the following example.

Example

?2COMPILE XTRA FORTAN SYNTAX
?DATA CARDS
IDENT FSTBLK
BLOCK DATA
COMMON /FIRST/ K,M,N
DATA X,M,N/1,2,3/
END
BLOCK DATA
COMMON /SECND/ R,S,T
DATA R,S,T/5.2,3.98,1.0/
END
?END
?COMPILE BIGPRO FORTAN LIBRARY
?DATA CARDS
SEGMENT READ.,WRITE.
LOAD PROGAM
INITIAL FSTBLK, BD.OO1
?END

An INITIAL Card is not needed in the following example.

Example

?COMPILE BIGPRO FORTAN LIBRARY
?DATA CARDS
SEGMENT READ., WRITE.
COMMON /FIRST/ K,M,N /SECND/ R,S,T /THIRD/ A(20)

END
BLOCK DATA
COMMON /FIRST/ K,M,N
DATA K,M,N/1,2,3/
END
BLOCK DATA
COMMON /SECND/ R,S,T
DATA R,S,T/5.2,3.98,1.0/
END

?END

APPENDIX C (cont)
CONTROL CARDS

LLOAD CARD.
The LOAD Card is used to create an object code file when the main

program is not included in the source deck,
The LOAD Card is coded as follows:

a. The key word LOAD is coded in colummns 1-%4.

b, The identifier of the main program is coded in columns 7-72.

Unless it is preceded by an IDENT Card, the main program identifier is
PROGAM,

The LOAD Card provides the name of the ICS file of the main program to
the compiler, This is essential for proper linkage during the "load"

phase of the compilation,

All desired FORTRAN control cards (except IDENT for the main program)
mast be included in the source deck, i.e., FILE Cards, SIZE Card, and
so forth.

Only one LOAD Card may be included in a source deck.

A LOAD Card may be used in conjunction with a REPLACE Card.

Example

?COMPILE BIGPRO FORTAN LIBRARY
?DATA CARDS

LOAD MAIN

?END

The above exampie creates an object program with the ID BIGPRO and
enters it in the disk directory. It is assumed that the ICS files for
the main program and any referenced subroutines reside on disk, and
that the main program has been compiled with an IDENT Card containing

the identifier MAIN.

APPENDIX C (cont)
CONTROL CARDS

Example

?COMPILE SMPRO FORTAN
?DATA CARDS
LOAD PROGAM
FILE 9=RANFIL,UNIT=DISK,RANDOM
SIZE REAL=20
SUBROUTINE INERR(R,N,T)

o e s 00 0 0 00

RETURN
END
?END

When a sizable program is compiled and only part of the program re-
quires recompilation, the LOAD Card can be used effectively to reduce
recompilation time. As in the above example, the subroutine to be re-
compiled is included in the source deck, and a LOAD Card causes the
object code file to be created. Thus, recompilation of the entire

program is not performed.

REPLACE CARD.

The REPLACE Card is used to recompile a program part (main program or

subroutine) which resides on a symbolic tape file.
The REPLACE Card is coded as follows:
a. The key word REPLACE is coded in columns 1-7.

b. The program part identifier for which recompilation

is desired is coded in columns 9-72.

An IDENT Card must precede every program part on the symbolic tape.
The identifier coded in the REPLACE Card is that which appears in the
IDENT Card for the desired program part.

Patch cards for the program part follow the REPLACE Card.

(@]

-1k

APPENDIX C (cont)
CONTROL CARDS

The specified program part is recompiled and its ICS file is replaced
on disk according to the rules outlined under MCP Control Cards (dis-

cussed previously in this appendix).
The symbolic tape must have been created as follows:
a, The main program is first on the tape.

b. The IDENT Card for the main program is the first card

image on the tape.

c. No card images are between an END Card and a subsequent

IDENT Card.

d. Sequence numbers are present to allow merging and/or

replacement with patch cards.,

The following card deck creates a symbolic tape file against which a
REPLACE Card can be used.

Example

?COMPILE MATINV FORTAN DATA CARDS
$CARD LIST NEW TAPE
IDENT MAIN

DIMENSION X(5),Y(20,3),z(10,10)

s e 0 ¢ 0 0 e 0w
s 6 00 0 08 0 0

END
IDENT SUB1
SUBROUTINE SUBL

@ ¢ e e 0080 00

END
IDENT SUB2
SUBROUTINE SUB2

S ¢ s 0 0 0000

END
?END

APPENDIX C (cont)
CONTROL CARDS

The REPLACE Card may be used in conjunction with a LOAD Card to create

an object code file if the replaced program part is syntax-error free.

Example

?COMPILE APPROX FORTAN SYNTAX
REPLACE SUB1

A=SQRT(B*C) 00000200
CALL SUB2 00000210
IF (A-2) 3,4,6 00000211

?END

The above example causes the compiler to search a symbolic tape for
the IDENT, SUBLl, recompile the program part with the patch cards, and,
if syntax-error free, enter the resulting ICS file on disk with the ID

SUB1 (replacing its namesake if necessary).

Example

?COMPILE COMPUT FORTAN
LOAD MAIN

REPLACE C

. patch cards for C

?END

In the above example, after recompiling subroutine C and finding it

syntax-error free, an object code file is created and executed.

SEGMENT CARD.
The SEGMENT Card may be used to make specified subroutines overlayable,

and thus reduce the core requirement of a program.
The SEGMENT Card is coded as follows:

a. The key word SEGMENT is coded in columns 1-7.

APPENDIX C (cont)
CONTROL CARDS

b. The names of two or more subroutines which are to be
segmented (made overlayable) are coded in colummns 9-72,

delimited by commas.

Subroutines which are referenced by a chain of CALLs may not overlay
one another, i.e., if A CALLs B, B CALLs C, and C CALLs D, these sub-
routines may not overlay each other. (However, they may overlay sub-
routines not in the CALL chain.) If a subroutine name is coded in a
YSEGMENT Card and the compiler determines that it cannot be overlaid

with any other subroutines, a segment dictionary entry (32 digits) is

generated for it although the subroutine is always core resident.
No segmentation is performed by default.

The SEGMENT Card may be used and an object program may be reloaded
without recompiling any of its program parts. (Refer to LOAD Card.)

A subroutine name which appears in a SEGMENT Card must be referenced
in the program. Otherwise, the syntax error message SEGMENT CARD:
UNKNOWN PROGRAM IDENTIFIER is generated by the compiler.

Examgle

SEGMENT SUBA, SUBB, SUBC,READ, WRITE.
IDENT MAIN
READ (5,10) A,B,C
WRITE (6,20) A,B,C
10 FORMAT §3F10.3)
20 FORMAT (1H1,3F10.3)
CALL SUBA(A)

STOP
END

SUBROUTINE SUBA(P)
CALL SUBB

CALL SUBC

APPENDIX C (cont)
CONTROL CARDS

o8 0 e 0 00 00

END
SUBROUTINE SUBB

¢ o0 0 00 ¢ 0 0

END
SUBROUTINE SUBC

END

The above sequence of CALLs may be represented by the following

diagram.

WRITE.
MAIN READ.
SUBB
SUBA
SUBC

In the above diagram, SUBC and SUBB overlay each other; WRITE., READ.,

and SUBA overlay one another.

SIZE CARD.
The SIZE Card is used to specify the amount of core to be allocated
for REAL, INTEGER, and/or ALPHA variables when other than default

sizes are desired.

By default a REAL variable occupies 12 digits (one digit for the sign
of the exponent, a 2-digit exponent, one digit for the sign of the
mantissa, and an 8-digit mantissa). The default size of an INTEGER
variable is six digits (a l1-digit sign and five digits of precision).

The default size of an ALPHA variable is six bytes (12 digits).
The SIZE Card is coded as follows:

a. The key word SIZE appears in columns 1-4,

b. ©One or more of the following specifications appear in

columns 7-72, delimited by commas:

APPENDIX C (cont)
CONTROL CARDS

1) INTEGER = n.
2) REAL = m.
3) ALPHA = 1.

The term n is the number of digits of precision; m is the
mantissa sizej; and 1 is the number of characters. The
maximum sizes which may be specified are: n=48, m=45, and

1=24,

Example

SIZE REAL=10
*ALPHA=4

The cards in the above example specify that all real variables in the
program are to have 10-digit mantissas, causing 14 digits to be allo-
cated for each real variable. All alpha variables are allocated four

bytes (eight digits) of memory.

Example

SIZE REAL=12, INTEGER=6, ALPHA=4

The SIZE Card in the above example specifies that all real variables
are to have 12-digit mantissas, all integer wvariables are to have six
digits of precision (seven digits of core allocated for each), and all

alpha variables are to be four bytes in length.

STACK CARD.
The STACK Card may be used at compile time to define the size of the’
stack* of a program. (By default the stack size is 1000 digits.)

The STACK Card is coded as follows:

a. The key word STACK is coded in columns 1-5.

¥ A stacl 4 eand h-r he NTR nd EYXT insttructi
> ~ viatoda [=2=1 01 s FEa EL O SR i ALLlLID U [%]

< 11 ~ + - 2o o En)
S u Y T INLIR TUCvi0oiiS. ne
appendix F for a detailed explanation.

APPENDIX C (cont)
CONTROL CARDS

b. An integer constant which is the number of digits to be

allocated for the stack is coded in columns 7-72.

There is no upper limit to stack size other than program size, which

may not exceed 100,000 digits (50 KB).

The stack resides at the top of memory of a FORTRAN program. Because
the MCP allocates core to a program in a MOD 1000 digit area, the
stack actually occupies its specified size (1000 digits by default)

plus any remaining core up to the limit register.

Example

A DC PROG SPO inquiry to the MCP reveals that PROG requires
100,000 digits. The MCP allocates 101,000 digits of core for
its execution (MOD 1000). Since PROG is given a 1000-digit
stack by default, the usable stack size is actually 1900 digits.
By recompiling PROG with the control card, STACK 900, the core
requirement of the program is reduced by 1000 digits. (DC PROG
now yields a requirement of 100,000 digits.)

NOTE
Refer to appendix E for sug-
gested usage of the STACK Card.

USE CARD.
The USE Card causes a specified subroutine to be referenced instead of
another subroutine each time a CALL to the latter appears in the pro-

gram. The card makes recompilation unnecessary.
The USE Card is coded as follows:

a. The key word USE is coded in columns 1-3.

APPENDIX C (cont)
CONTROL CARDS

b. One or more equations of the form {(identifier) = <identifier>
appear in columns 7-72, delimited by commas. The first
(identifier) is the name of the subroutine to be used in

place of the second <identifier>.

In the following example a program contains CALLs to subroutine A, and
the user wishes to use subroutine B in its place. He may compile B
independently, then reload his object program (refer to LOAD Card).
This assumes that the original program has already been compiled and

its ICS files reside on disk.

Example

?COMPILE DUMMY FORTAN SYNTAX
?DATA CARDS
SUBROUTINE B

END
?END
?COMPILE ORIGIL FORTAN LIBRARY
?DATA CARDS

LOAD MAIN
USE B=A
?END

After execution of the above, the ORIGIL object program is on disk
and, when executed, CALLs B where a CALL A has been coded in the

original source statements.

NOTE
Intrinsic functions such as
SIN, COS, and SQRT are con-

sidered to be subroutines.

FORTRAN CONTROL CARDS FOR DEBUGGING AIDS.
The following FORTRAN control cards produce program debugging aids.

Their application is explained in detail in appendix E.

DEBUGN HEADINGS CARD.
The DEBUGN HEADINGS Card causes the following information for

APPENDIX C (cont)
CONTROL CARDS

specified program parts to be printed after the symbolic listings

e

Base relative
Base relative
Base relative

Base relative
BASE).

Base relative

BASE), double

beginning address of program part (Low ADRS).
ending address of program part (HIGH ADRS).
address at which data begin (DATA BASE).

address at which executable code begins (CODE

addresses for the beginning of Junk (JUNK
precision temporaries (DBLT BASE), and single

precision temporaries (SNGT BASE).

The length in digits of the following: JUNK, DBLT, SNGT,
and DATA and their total length.

The amount of

code in digits.

Subprogram names called by the program part with their base

relative beginning addresses and segment numbers.

Names of referenced common blocks with their base relative

beginning addresses.

The DEBUGN HEADINGS Card is coded as follows:

a.

b.

The key words DEBUGN HEADINGS are coded in columns 1-15.

The program part identifiers for which headings are desired

are coded in columns 17-72, delimited by commas. Continua-

tion cards may be used.

APPENDIX C (cont)
CONTROL CARDS

As many as 100 identifiers may be specified in the DEBUGN HEADINGS
Card.

Unless it is preceded by an IDENT Card, the main program identifier
is PROGAM.

Examgle

?COMPILE PREP FORTAN LIBRARY

?DATA CARDS

DEBUGN HEADINGS MAIN, READ., WRITE., SUBA
*SUBB

IDENT MAIN
CALL SUBA

END
SUBROUTINE SUBA
CALL SUBB

® s 0 00 0 00 ¢

END
SUBROUTINE SUBB

END
?END

DEBUGN CARD.

The DEBUGN Card causes the compiler to produce a listing of generated
object code and headings following the symbolic listing.

The DEBUGN Card is coded as follows:
a. The key word DEBUGN is coded in columns 1-6.

b. Optionally, program part identifiers for which code and

headings are desired are coded in columns 8-72, delimited

by commas.

Unless it is preceded by an IDENT Card, the main program identifier is
PROGAM.

APPENDIX C (cont)
CONTROL CARDS

When identifiers are not specified in the DEBUGN Card, code and head-
ings are produced for every program part, including referenced FORTRAN

intrinsics.

The headings produced are identical to those generated by DEBUGN
HEADINGS.

Object code for a program part is listed following a heading for that

program part. Addresses are base relative.

Examples

DEBUGN SPOMSG
DEBUGN

MAP CARD.
The MAP Card produces a list of variable names and associated

addresses following the symbolic listing of each program part.
The MAP Card is coded with the key word MAP in columns 1-3.

There are three groupings of variables which, if applicable, appear

in MAP output:

a. Data relative identifiers. These variables are local to the
program part. Their associated addresses are relative to the
beginning of the data area for the program part. The base
relative address of an identifier is the sum of the DATA BASE
address generated by a DEBUGN or DEBUGN HEADINGS and the
address generated in the MAP listing.

b. COMMON block identifiers. These variables are defined in
COMMON statements in the program part. They are listed by
COMMON block name, with / / for blank COMMON, and their

associated addresses are relative to the beginning of the

APPENDIX C (cont)
CONTROL CARDS

COMMON block in which they are defined. The base relative
address of a variable is the sum of the address of the COMMON
block which is generated by a DEBUGN or DEBUGN HEADINGS and
the address generated by MAP feor that variable.

c. Stack address of arguments. These variables are the formal
parameters listed in the argument list of a SUBROUTINE state-
ment. Their associated addresses are relative to the begin-

ning of the stack entry which is created by the NTR executed

for a CALL to the subroutine.

The MAP Card should be used in conjunction with a DEBUGN Card or a
DEBUGN HEADINGS Card.

Example

?COMPILE TROUBL FORTAN LIBRARY
MAP
DEBUGN

. FORTRAN source statements

?END

FORTRAN DOLLAR SIGN CONTROL CARDS.

Dollar sign control cards are optional and contain specifications to

the compiler governing symbolic input and output.
The dollar sign control card is coded as follows:
a. The $§ symbol is coded in column 1.

b. Options from the table below are coded in columns 2-72

in free field format with blanks as delimiters.

The following dollar sign options can be used.

Option

LIST

CARD
TAPE

NEW TAPE

DEBUGN

CHECK

SEQ nnnnnnnn + nnnnnn

SPACE nn

JAPN

APPENDIX C (cont)
CONTROL CARDS

Effect

Lists source program

Source code from cards
Source code from tape

Creates source language

tape (ID is TAPES)

Lists pseudo code inter-
spersed with symbolic

code

Checks corder cf sequence

numbers

Resequences beginning
with 8-digit number

using 6-digit increment

Prints nn lines per page

on symbolic listing

Symbolic listing begins

in column 37.

By default the compiler assumes $CARD LIST.

Default

Lists only limnes
with syntax errors

or flags
Card
Card

No tape output

No listing of

pseudo code

No sequence check

No sequence. If
starting sequence
not specified, 1000

assumed

Standard number of

lines per page

Symbolic listing

begins in column 1.

Dollar sign control cards may be freely interspersed within a FORTRAN

source deck.

When the compiler encounters a dollar sign card, options

specified on a previous one, and not repeated, are negated.

APPENDIX C (cont)
CONTROL CARDS

NOTE
A "9's Card" must be inciuded in a symbolic deck
which specifies TAPE in a dollar sign card. This

card immediately precedes the ?END Card and has a

sequence field of eight 9's. With the exception

of the sequence field, the 9's Card may be blank,

Example

?COMPILE MYPRO FORTAN LIBRARY DATA CARDS
$TAPE NEW TAPE SEQ 00000100 + 000010 LIST

. Patch cards

99999999
?END

In the above example the compiler applies the patch cards included in

the symbolic deck to a symbolic tape, creating a new symbolic tape

which is resequenced. A symbolic listing of the entire program is

printed.

APPENDIX D
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

GENERAL.

This appendix contains information to be used in file planning and
debugging. The different possibilities for layouts of data when writ-
ten to various devices are described, followed by a brief summary of
run-time error messages displayed by the READ. and WRITE., intrinsics,

and programming suggestions for efficient I/0 execution.

FORMATTED INPUT AND OUTPUT.
A format is‘used to read or write data which are in byte (EBCDIC/dis-

play) form, regardless of device type. The length of the item, i.e.,
the number of bytes, is determined by the field width in the format
specifier. An exception occurs when a WRITE to a line printer refer-
ences a FORMAT which does not contain an explicit carriage control
specification, such as 1X or 1Hl1l. In this case, the first format spe-
cifier is used for carriage control, and the length of the first item

is decreased by one (effectively dropping the first character).

Example

I=310
R=25.264
WRITE (9,10) I,R
10 FORMAT (2HI=,I5,3X,2HR=,F7.3)
STOP
END

The above program produces the following 50-byte record on disk:
CO9TELOLOF3F1FO4OLOLODITELOF2F54BF2FO6FLLO. . L 4O

UNFORMATTED INPUT AND OUTPUT.

Data may be read from or written to disk or tape by an I/0 statement
which does not reference a FORMAT statement. The format of this data
as it appears in the file differs slightly depending on whether:

a. The file is tape or disk.

b. The file is defined with a PACKED attribute if disk.

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

c. The file is 7-channel or 9-channel if tape. The "formats"
for unformatted records are described below. References
are to writing a record, with the understanding that an un-

formatted READ performs an identical operation in reverse.

DISK.

By default (no PACKED specification in a FILE Attributes Card), an
unformatted WRITE to a disk file produces a record comprised of fixed-
length data items. The length is the size of a storage unit (su),
which is, in turn, determined by the "sizes" of the various data types.
SU is the largest of the following: N+1, M+4, and 2xL, where N is the
number of digits of precision for an integer, M is the mantissa size
for a real, and L is the number of characters for an alpha variable.

(Refer to SIZE Card in appendix C.)

Unformatted data on disk is in digit form (UN/COMP), left-justified in
a SU size field and blank filled to the right. A complex variable

i AlAa i+l +h ﬁna'l
L31cSiGS v v e

AAArr~d A ~
] W ulx 1L

T
\.I\./\JLI.H-LUD v W

o+,

ar+t n +tha £
(="t e V] va -

4 ra and t+the -"dima
in 1e rs ang Tiie 1ma

part in the second. A double precision variable also occupies two

fields, left-justified with trailing blanks.

The following example assumes default sizes (giving SU=12 digits or

six bytes) and default attributes for disk.

Example

LOGICAL L

ALPHA A

COMPLEX CMP

DOUBLE PRECISION D
DATA A/4HABCD/
I=56789

R=1234.56

L=.TRUE.
D=-12345.67890D0
CMP=(111.222,333.444)
WRITE(9) A,I,R,L,D,CMP
STOP

END

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

The variables A,I,R,L,D, and CMP are stored in core as follows:

A=Cl1c2c3chhoko

I=C56789

R=CO4C12345600

=1

D=C05D1234567890000000
CMP=C073C11122200C03C33344400

The disk record produced by the above program is:

- A >t I >e¢— R > L >
clc2ci3chlholocs6789404040C0UC123456001 04040404040

< D > CMP »Filler
C05D12345678900000004040C03C11122200C03C333444004040

An unformatted WRITE to a disk file defined with a PACKED specifica-
produces a record comprised of ems whose lengths are de-
termined individually by the "size" of the data type each represents.
(Refer to SIZE Card in appendix C.) This packed, unformatted data is

on disk in digit form, as it appears in core.

Example

Refer to the program in the example above. With the FILE Card
coded as FILE 9=FILE9, UNIT=DISK, PACKED, the following 50-byte

record is written:

- A >t— T —>e R >l - D >
clc2cs3chlolocs56789C04C1234560010C05D1234567890000000
- CMP peliller—s

C03C11122200C03C333444004040., . .40

MAGNETIC TAPE.

An unformatted WRITE to a magnetic tape produces a variable number of
variable length records, the actual number being dependent upon the
number of variables to be written, storage unit (SU) size, and the
maximum physical record length. When using unformatted I/O statements,

a magnetic tape must be variable length, the default attribute.

D-3

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

An unformatted WRITE produces one or more records with the following

format:
Lua 1UA
R
R-L C DATA
F

Record length (R-L) is a 4-character field containing a count of the
number of characters in the record, excluding itself. The Record
Continuation Flag (RCF) is a l-character field used by the compiler
to group records associated with each I/0 statement in the FORTRAN

program.

RCF is one of the following:

Character Meanin
0] One and only one record
i First record
2 Intermediate record
3 Last record

The compiler writes as many records in the above format as needed to
exhaust an I/0 list. The number of records varies depending on
whether the tape is 7-channel or 9-channel because of a difference in

data representation.

Data items on 9-channel tapes are in digit (UN/COMP) format and are
fixed in length. The length is the size of a storage unit (SU), which
is, in turn, determined by the "sizes" of the various data types. SU
is the largest of the following: N+1, M+4, 2xL, where N is the number
of digits of precision for an integer, M is the mantissa size for a
REAL variable, and L is the number of characters for an ALPHA variable.

(Refer to SIZE Card in appendix C.) Data are left-justified in the

D-4

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

field with trailing blanks. A complex variable occupies two fields,
with the real part in the first and the imaginary part in the second.
A double precision variable is left-justified in two SU size fields

with trailing blanks.

Data items on 7-channel tape are in byte (UA/DISPLAY) format and are
fixed in length. The length is twice the size of a storage unit (SU),
the determination of which is described in the preceding paragraph.
Data are left-justified in the field with trailing blanks. A sign and
the numeric digit immediately following it are represented in one byte,
with the sign as the zone digit. All other numeric digits are repre-
sented with the numeric subset zone digit, F. Double precision and
complex variables each occupy two, fixed-length fields, or a field
four times SU size. The real part of a complex number occupies the
first field; and the imaginary part, the second field. An ALPHA vari-
able is not expanded; it is written as it appears in core followed by

trailing blanks if necessary.

Examples

FILE 3=MAGTAP. UNIT=TAPE,RECORD=26

DIMENSION I(3),R(4)

ALPHA ALP(3)

COMPLEX CMP

DOUBLE PRECISION BIG

DATA I,R,ALP,CMP,BIG/2%5,76543,6.5,10.194,
1-7.0,0.,6HABCDEF, 3HMY ,4HNAME, (9.9,.2),
*-,00099654387091/

WRITE(3) I,R,ALP,CMP,BIG

STOP

END

Assuming default data sizes, the above variables are stored in core as

follows:

I(1)=C00005
I§2)=000005
I(3)=C76543

D-5

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

s

R(1)=C01C65000000
REZ):CO2ClOl9hOOO
R§3)=001D7ooooooo
R(4)=D99C00000000
ALP(1)=C1C2C3CLC5CH
ALP(2)=D4EBLOLOLOLO
ALP(3)=D5C1D4C54040
CMP=C01C99000000C00C20000000
BIG=D03D996 5438709100000

The records produced on a 9-channel tape by the above program are:

R
C
<+R-L—»F +—I(l)—>e—1I(2) —>e—1I(3) —>e—R(1)—>
#1 FOFOF2F6F1C00005404040C00005404040C76543404040C01C6500000040

R
0]
<+R-L—»F <— R(2)—pet— R(3)—>e— R(4)—>e— ALP(1)—>
#2 FOFOF2F6F2C02C10194000C01D70000000D99C00000000C1C2C3CLC5C6L40

R
c
<«R-L —F «*—ALP(2)—»e—ALP(3) —se CMP >
#3 FOFOF2F6F2D4ES8404LOLOLOD5C1DAC54040C01C99000000C00C2000000040

R
o]
+R-L—>F = BIG —
#4 FOFOF1FAF3D0O3D9965438709100000404040

NOTE
An extra blank is added to each
record to make the physical

record an even number of bytes.

The same WRITE statement produces the following records on 7-channel

tape:

R
C
<«R-L—>F +———71(1) > 1(2) ————
#1 FOFOF2F6F1COFOFOFOF540404040404040COFOFOFOF5404040404040LOLO

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

R
c
<+R-L—»F +——1(3) > R(1) ————
#2 F0F0F2F6F207F6F5F14F340h04040h040&0003\1c6F5F0F0F0F0F0FohoA040
R
C
<+R-L—F «———— R(2) >a- R(3) —— s
#3 TFOFOF2F6F2COF201FOF1FOFAFOFOF04040COF1D7FOFOFOFOFOFOFOLO4OLOD
R
C
<«R-L = F <———— R(4) ALP(1) ———n

#4 FOFOF2F6F2D9F9COFOFOFOFOFOFOFOLLOLLOC 1¢c2c3chesc6h0404040404040

D
i

C
<«+R-L—pF <——— ALP(2) ALP (3) e
#5 FOFOF9F6F2D4E840404040404040404040D5C1D4C54040404040h04040h0

R
c
«+R-L—F = CMP
#6 FOFOF2F6F20OFlC9F9FOFOFOFOFOFOMOMOCOFOC2FOFOFOFOFOFOF0404040

R
C
<+R-L—spF =« BIG >
#7 FOFOF2F6F3DOF3D9F9F6F5FAF 3F8F7FOF9F1FOFOFOFOFOL40LOLOLOLOLOLO

RUN _TIME ERROR MESSAGES.

Each time an I/O statement is encountered during program execution,

the READ and WRITE intrinsics verify information which is passed to
them. File number, format, if referenced, and record length are
checked., If dinvalid information is found, ome of the error messages
below is displayed on the SPO followed by an ADDR ERROR, DS, or DP
message. The error message is preceded by R~~ for a READ error or

W-= for a WRITE error.

Message Meaning
IFN Invalid file number
GIC Invalid format character
IFC Invalid format character
RTL Record too long

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

Example

**(program—name>=<mix-index> W--RTL
--ADDR ERROR (program-name =<mix-index> nnnnn nnnn
* % <program—name = mix—index) DS OR DP

Conditions which are determined during program execution may cause
invalid information, impossible to syntax-check at compilation time,
to be passed to the READ/WRITE intrinsics. Frequent causes of run-

time errors are described below.

INVALID FILE NUMBER.

A unit designator (file number) is an integer constant or variable
with permissible values of 0-~19. An integer variable may have a value
which is negative or greater than 19 at the time it is referenced as a
unit designator in an I/O statement. When this occurs, an IFN message

is displayed.

INVALID FORMAT CHARACTER.
A format reference in an I/0 statement may be an array name, with the
assumption that when the statement is executed the array contains a

valid format. If the format is not valid, an IFN message is displayed.

The FORTRAN Compiler "deblanks" a FORMAT statement before making it
part of a FORTRAN program. For example, 20 FORMAT (346, 1I2)
appears in core as (346,1I2). Thus, an array used as a format may not
contain blanks before the final right parenthesis, and only wvalid

format characters may appear between the initial and final parentheses.

The following example illustrates a common error in using an array for

a format.

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

Example

Data Card

1111111111
1234567890123456789 (card columns)

(15,F10.4,2E20.4)
Program

ALPHA FMT(6)

nLANn{ =z 10 Ymvm
RIVADL D, 10) I'Ml

10 FORMAT(6A3)

READ(9,FMT) J,R,RMAX,RMIN

sToP

END
The above program causes an R--IFN message to be displayed on the SPO
because blanks appear within the format stored in the array FMT.
Assuming default sizes, each element of FMT is six characters in

length; and when filled using an A3 format specifier, the array in

core is (lower case b indicates blank):
I5,bbbF10bbb.4,bbb2E2bbb0. 4bbb)bbbbb

The program can be corrected by including a SIZE ALPHA=3 Control Card
or by changing statement 10 to FORMAT(3A6).

Another error which is often reflected by an IFC message is that of
subscripting an array beyond its dimensioned size. This error could
cause a format in core to be overwritten with data. Although a format
in an array is more susceptible to being overwritten, compiler-
generated formats immediately follow array storage in core and are

also subject to overwriting.

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

In addition to programmatically subscripting beyond the dimensioned
size of an array, overwriting of data can occur when an A format spe-
cifier is used to read data into a variable which is not typed ALPHA.

If the overwritten data is a format, an IFC message is displayed.

RECORD TO0OO LONG.

A logical record size is defined for a file either through a FILE Card
or the default associations of the compiler. If a READ or a WRITE
statement specifies a logical record of more data items than can be
contained in the defined record length, an RTL message is displayed on
the SPO. This applies to disk files, fixed-length tape files (i.e.,
formatted I/0 to tape), and card files. The READ/WRITE intrinsics
handle record overflow for the line printer and variable length tapes

(i.e., unformatted I/0 to tape).

The series of paragraphs relating to data representation in this
appendix should be used to determine the cause of an RTL message and
as a guide to specifying optimum record lengths for efficient core

and disk utilization.

PROGRAMMING FOR EFFICIENT I/0 EXECUTION.
For each I/0 statement the FORTRAN Compiler generates a series of NTR

instructions to the READ, or WRITE, intrinsic. Information is passed
to the intrinsic through the STACK entry created by the execution of
each NTR. Included in these instructions is an NTR for each wvariable
name in an I/0 list. An unsubscripted array name in an I/0 list
causes the array to be read or written in the order in which it is
stored in core (i.e., column order). When an implied DO loop is coded,
one NTR is generated; but this NTR is executed once for every value

the dummy subscripts assume.

Examples

DIMENSION ARAY(10.10)
WRITE (6,20) ((ARAY(I,J),I=1,10),J=1,10),BRAY

APPENDIX D (cont)
READ/WRITE INTRINSICS ADDITIONAL INFORMATION

Two NTR's are generated to pass the addresses of ARAY and
BRAY. The NTR generated to pass ARAY is executed 100 times.

WRITE (6,30) ALP,ARG,ZMAX,PSQ,RIN,ZAP,TOP

Seven NTR's are generated to pass the addresses of the variables
in the I/0 1list.

DIMENSION ARAY(10,10)
WRITE(6,40) ARAY

One NTR is generated to pass the address of ARAY; it is executéd

once, although 100 values are printed.

In view of the above considerations, the following suggestions are

made:

a. Do not use implied DO loops in I/0 statements where

they are not necessary.

b. When there are many variables to be read or written,
EQUIVALENCE a dummy array to the variables and code

the array name in the I/0 statement.

Example

DIMENSION DUM(10)

EQUIVALENCE (DUM(1),A), (DUM(2),B), (DUM(3),C),
*(DUMEh),D),(DUM§5),E),EDUM(6),F),(DUM(?),G),
*(DUM(8),H), (DUM(9),T), (DUM(10),JT)

WRITE(9,10) DUM

LR I T B I Y

END

Generated code for the above statements is more efficient than the

following:

WRITE(9,10) A,B,C,D,E,F,G,H,I,J

APPENDIX E
DEBUGGING AIDS

This appendix is a guide to the use of FORTRAN-supplied debugging
aids and contains information about the more common causes of address

errors.

A FORTRAN PROGRAM IN MEMORY.

The diagram on the next page illustrates the core layout of a FORTRA}

object program.

In the explanation given below for the FORTRAN program shown in the

illustration, some lengths are determined using the following

notation:
Abbreviation Meaning
M Mantissa length for REALs
N Precise digits for INTEGERSs
L ALPHA length in characters
SU Storage unit = MAX(M+4,N+1,2xL)

Starting at the base register (base relative address 00000), a FORTRAN

program consists of the following:

a. MAIN BLOCK - data size information as follows:

Base Relative Address Length in Digits Meaning
00000 2 2xM+3
00002 2 N
0000k 2 M
00006 2 M+3
00046 . 2 2xM+4
00048 2 SU

APPENDIX E (cont)
DEBUGGING AIDS

LIMIT

REGISTER
PROGRAM STACK

SEGMENTED SUBPROGRAMS

SEGMENTATION CODE AREA

NON-SEGMENTED SUBPROGRAMS

MAIN PROGRAM

RESULT

INTRINSIC TEMPS

HALF

TWO

NFLOAT
MAIN

ACCUM SEGMENT

VARIABLE UNIT TABLE

FIB AREA

COMMON BLOCKS

SEGMENT DICTIONARY

MAIN BLOCK

BASE

REGISTER

APPENDIX E (cont)
DEBUGGING AIDS

Base Relative Address Lerigth in Digits Meaning
00050 2 N+1
00052 z M+
00054 2 2xM
00056 2 2xM+ 3
00058 z 2xL
00060 2 2xSU-1
00062 2 2xSU

SEGMENT DICTIONARY - data used by the overlay code of the
MCP (refer to MCP Reference Manual for details). The length

ber of segments requested in a SEGMENT Control Card plus one.

COMMON BLOCKS - core area allocated for variables declared
in COMMON statements.

FIB AREA - core allocated for File Information Blocks and,

as defined, buffers and work areas,

VARTABLE UNIT TABLE - FIB addresses for units 0-19. The

table consists of 20, 6-digit entries.

ACCUM - temporary storage used to avoid C-field overlap in
floating-point add and subtract instructions (length is
2xM+4).

NFLOAT - used for integer to real conversicn. The length is

MAX (2xM+4 ,N+4),
TWO - used for real to integer conversion (length is N+5).

HALF - used for rounding REALS (length is M+5).

E-L4

APPENDIX E (cont)
DEBUG3ING AIDS

INTRINSIC TEMPS - temporary storage used by in-line

intrinsic functions (length is 4xSU).

RESULT - used to pass the result of function subprograms
(length is 2xSU).

,

MAIN PROGRAM - the main program, as well as subroutines

and function subprograms, have the following format:

CODE

DATA

SINGLE PRECISION TEMPS

DOUBLE PRECISION TEMPS

JUNK CELLS

JUNK CELLS are optional and contain indireet addressing code
used for subscripted variables. DOUBLE and SINGLE PRECISION
TEMPS (temporaries) are optional, their presence being dic-
tated by the generated code. Local DATA and CODE are self-
explanatory, being generated from the symbolic input for the

program part.

NON-SEGMENTED SUBPROGRAMS - program parts residing sequen-
tially in core and having the same format as the main pro-

gram (described in paragraph 1).

SEGMENTATION CODE AREA - 26-digit entries, one created for
each declared segment. An entry consists of two instructions

used to initiate an overlay branch communicate.

APPENDIX E (cont)
DEBUGGING AIDS

o. SEGMENTED SUBPROGRAMS - overlay area, the length of which
is determined by the longest group of segmented subprograms

referenced in a chain of calls.

p. PROGRAM STACK - area of core utilized by the NTR instruction.
By default, this area is 1000 digits; optionally, a STACK

¥
Control Card may be used to specify its length (refer to
appendix c).

FORTRAN SUPPLIED DEBUGGING AIDS.

Control cards may be introduced at compilation to provide information

for debugging purposes. These are described in appendix C and are:

a. DEBUGN HEADINGS.
b. DEBUGN.

c. MAP.

d. $DEBUGN.

In addition to the above control cards, the intrinsic FMDUMP, when
CALLed, provides a memory analysis of the object program and, option-

ally, the memory dump (refer to appendix B).

A DEBUGN Control Card produces a listing of machine instructions,
grouped by program part following the symbolic listing. Addresses in
the DEBUGN listing are base relative. Each group of instructions is
preceded by a DEBUGN HEADING for the program part, and a page of gen-
eral information for the program is provided. The generated machine
instructions in a DEBUGN listing may be used as an aid in debugging by
correlating them to the symbolic code. With this, a dump can be used
effectively, and a normal-state trace becomes an invaluable tool for

debugging.

In addition to machine instructions, the locations of identifiers and

temporary storage areas must be known when debugging from a dump or

APPENDIX E (cont)
DEBUGGING AIDS

trace. The output generated by a MAP Control Card in conjunction
with a DEBUGN HEADING locates specific identifiers in core by their
base relative addresses. An address associated with a local wvariable
is "data relative," i.e., relative to the data base of the program
part in which it is defined. An address associated with a variable
in COMMON is "COMMON relative," i.e., relative to the beginning base
relative address of the COMMON block in which it is defined.

An argument passed as a parameter to a program part is referenced
through the stack (refer to appendix F). Thus, in a DEBUGN HEADING,
the "stack address of an argument" is relative to the beginning of

the stack entry created by an NTR <o the program part.

A DEBUGN HEADING also contains the base relative address of the single
precision temporaries, double precision temporaries, and junk cells
for the program part. In some cases, knowledge of these addresses is

necessary to understand the generated machine code.

In general, relative addresses are associated with identifiers in MAP
output, and the addresses to which these identifiers are relative are
provided in a DEBUGN HEADING. An example is shown on the next page to

clarify the correlation of the two debugging aids.

The "pseudo code" generated by a $DEBUGN Control Card is interspersed
with the symbolic code and may be used to facilitate the correlation

of machine instructions in a DEBUGN listing to symbolic instructions.

The dump analysis produced by the subroutine FMDUMP provides a snap-
shot of core during program execution, a valuable tool when the status
of a file, subprogram, stack entry, etc., at a particular instance is

questioned.

E-6

L-d

SYMBOLIC LISTING

SUBROUTINE NON(X,J)

COMMON RR,IJ,SM(5)/FIRST/DRAY,GRAY(6)
T:zx**z

MAX=J-1

RETURN

END

ok/16/71 6252 AM ASR#4.3 71011
0 MIN 3 SEC FOR COMPILATION PASS
10 CARDS AT 196 CARDS PER MINUTE
36 DIGITS DATA. 98 DIGITS CODE.

COMPILER

168 DIGITS COMMON.

[STACK ADDRESS OF ARGUMENTS
X 000030
J 000038
DATA RELATIVE IDENTIFIERS
NON 000000
T 000000
MAP MAX 000012
OUTPUT / / COMMON BLOCK Ol -~.--+ 00084 DIGITS LONG
RR 000000
J 000012
SM 000024
/FIRST / COMMON BLOCK 02 ----- 00084 DIGITS LONG
DRAY 000000
000012

///GRAY

0000124001500 = 001512

000000+000212 = 000212

DEBUGN HEADING

SYMBOLIC LISTING FOR NON :

LOW ADRS HIGH ADRS
001486 001622

DATA BASE CODE BASE

JUNK BASE DBLT BASE
001486 001486

JUNK LGTH DBLT LGTH
000000 000000

CORE LAYOUT OF

PROGRAM PART

CALLED SUBPROGRAMS :

/001500 001524
SNGT BASE
001486
SNGT LGTH DATA LGTH TOTAL CODE LGTH
000014 000024 000038 000098

001

NAME ADDRESS SEG. NO.
EXPON. 001622
COMMON BLOCKS REFERENCED :
NAME ADDRESS

000128
FIRST 000212

SAIV HNIHOHNEEA
(2u00) @ XTANAJJY

INFORMATION FROM
DEBUGN HEADING

JUNK CELLS

HIGH ADRS
CODE
FORTRAN CODE BASE
PROGRAM LOCAL DATA
IN CORE
[_— DATA BASE
SINGLE PRECISION
— TEMPORARTES
MAX SNGT BASE
DOUBLE PRECISION
TEMPORARIES
DBLT BASE
DRAY

LOW ADRS & JUNK BASE

APPENDIX E (cont)
DEBUGGING AIDS

ADDRESS ERRORS.

COMPILE-TIME.

An address error in the FORTRAN Compiler generally indicates a soft-
ware malfunction, one over which the programmer has no control. How-
ever, there is one possible cause of an address error which should be
investigated: stack overflow. An involved expression requires a
series of NTR instructions to be executed in the compiler; and if the
stack size is exceeded before the compiler completes the expression,
an address error occurs. A dump of the compiler after the address
error occurs reveals this problem. As in a FORTRAN object program,
the stack of the compiler is located at the top of the program. If
the stack is "full" and base relative address OOO4O points past or
close to the limit register, a stack overflow is the probable cause of
the failure. Successful compilation can then be achieved by breaking
the involved expression{(s) into subexpressions or by giving the com-

piler more core in which to execute, for example:

?COMPILE MYPRO FORTAN CORE 60000
?DATA CARDS

EXECUTION-TIME.

An address error may occur during the execution of a FORTRAN program
as a result of logic errors that are impossible to syntax-check during
compilation. If the cause of an address error is not apparent, the

following steps should be folllowed to isolate the problem:

a. Recompile with DEBUGN and MAP Control Cards. Strategic

CALLs to TRACE and/or FMDUMP may be included in the source

deck.

APPENDIX E (cont)
DEBUGGING AIDS

b. Execute and perform a DP in response to the DS or DP SPO
message. The instruction at which an address error occurs
is the instruction at or immediately preceding the PAR

address in the dump.

c. Use of additiomnal debugging aids may become necessary at

this point.

The more common causes of execution-time address errors are explained

below.

PROGRAM SIZE. A FORTRAN program may have a maximum size of 100,000
digits (50 KB), excluding disk file headers which reside beyond the
limit register. This core restriction is a result of the 6-digit
address inherent in the hardware design of the systems. The most-
significant digit of an address is used for index register and address
controller specifications, with the five remaining digits specifying
the actual base relative address. Thus, the largest address which

can be directly specified is 99999. With local data physically resid-
ing in a program part and instructions which are self-modifying (i.e.,
addressed as data), the 50 KB limit, when exceeded, usually results in

execution errors. Usually the result is an address error.

Frequently, the compiler can determine that the size of a program is
greater than 50 KB and generates a TREEANALYSIS syntax error. Because
the compiler is unable to detect this error in all cases, when the
size of a program is questionable, a DC SPO inquiry should be made
before attempting its execution. However, a dump also indicates the

core allocation of a program.

The following techniques can be used to effectively reduce core

requirements:

E-9

h.

APPENDIX E (cont)
DEBUGGING AIDS

SEGMENT (make overlayable) existing subroutines, including
FORTRAN intrinsics when feasible. (Refer to SEGMENT Control
Card in appendix C.)

Fracture the main program and/or subroutines to create more

subroutines which can be segmented.

Decrease the sizes of data types, remembering that a variable
in a COMMON or EQUIVALENCE statement occupies a storage unit
in core. (Refer to SIZE Control Card in appendix C.)

EQUIVALENCE large arrays. " This is effective when the ele-
ments of the arrays are a storage unit in length, i.e., with

default sizes, REAL or ALPHA.

Reduce the number of FIB's and the amount of core used for
buffers and work areas by using the CHANGE intrinsic. (Refer

to appendix B.)

Decrease the stack size of the program with a STACK Control

Card. If a program is executable, the amount of unused stack
can be determined from a dump taken after a reasonable amount
of processingj; a continuous field of numeric zeros is the un-

used portion.

Use FILE Control Cards to specify attributes which reduce the
amount of core assigned to a file, i.e., shorten record
lengths, reduce blocking factors, specify fewer buffers, and
so forth. (Refer to the table of default file attributes in
appendix C.)

Check array structures and specify minimum DIMENSIONs

according to usage.

Place in COMMON, variables that are repeatedly passed as

arguments to subroutines.

APPENDIX E (cont)
DEBUGGING AIDS

J. Divide a very large FORTRAN program into two programs, and
utilize the SEND and ACCEPT intrinsics for interprogram

communication.

CONTROL STATEMENTS. Address errors may be caused by the improper use

of control statements. Common errors are described in the following
paragraphs.
Use of an ASSIGN statement requires an integer size of at least 5. If

integer size is less than 5, the result of executing an Assigned GO TO
statement is unpredictable with an invalid instruction or address

error likely.

At the time of execution of an Assigned GO TO statement, the control
variable must have been ASSIGNed an integer value egqual to one of the

statement numbers in the GO TO list. If the variable does not corres-
pond to a label, an address error may occur. The control variable
should not be referenced between its appearance in an ASSIGN statement
and an Assigned GO TO statement, nor should it be EQUIVALENCEd to a

variable which is referenced in the interim.

Similarly, the control variable in a Computed GO TO statement must be
an integer value greater than zero but no greater than the number of
statements in the GO TO list when the statement is executed. A viola-

tion of this rule causes an address error.

READ/WRITE INTRINSICS. In appendix D, run-time error messages dis-
played by the READ/WRITE intrinsics and their meanings are described.
These error messages are followed by a programed address error to ter-
minate execution. The following procedure may be employed to isolate

the failing READ or WRITE statement:
a. Recompile with a DEBUGN Control Card and execute.

b. Perform a DP in response to the DS or DP message.

APPENDIX E (cont)
DEBUGGING AIDS

c. In the dump, go to the address contained in base relative

location 00040.

d. Carefully examine the stack entries preceding this memory
location, working backward through the stack until the most
recent NTR to the intrinsic is found. (AN R-- message pre-
fix indicates the READ intrinsicj; a W-- message prefix indi-
cates the WRITE intrinsic.) This stack entry contains a
return address which is not within the intrinsic, a fact

which is ascertained from the DEBUGN output.

e. The return address in this stack entry is the address of
the first executable instruction following an NTR to the

intrinsic for the failing I/0 statement.

f. PFind the instruction in the DEBUGN listing using its address
and associate the preceding NTR instruction with an /0

ement in the sym

bolic listing.

In addition to the programming errors reflected by the meanings of the
run-time error messages (e.g., W--RTL indicates an attempt to write a
record which is longer than the defined record length of the file), an
"IFC" message may be the result of an error which is not related to
the format of the I/0 statement in question. Because formats immedi-
ately follow arrays in core, a violation of array bounds may cause a
format to be overwritten with data. This can occur when a subscript
exceeds the dimension of an array or when data are read with an A for-
mat specifier into an array or variable which is not typed ALPHA.
Thus, a format which is syntactically perfect during compilation may
contain invalid format characters when referenced by an I/0 intrinsic

during execution.

MISCELLANEOUS. Address errors may be caused by a stack overflow or an

instruction time-out. A stack overflow is detected from a dump of the

APPENDIX E (cont)
DEBUGGING AIDS

program taken after the address error. If the stack is "full" and
base relative address 00040 points beyond or near the limit register,
a stack overflow is suspect. The program should execute properly
after recompilation with a STACK Control Card that sufficiently in-

creases the stack size.

An instruction time-out can occur when an operand contains undigits
that are meaningless to the instruction, i.e., integer arithmetic per-
formed on a floating point or alpha value and floating point arith-
metic performed on an alpha value. When variables of different data
types are EQUIVALENCEd in FORTRAN, it is possible to reference a vari-
able in a statement, forgetting that it previously has been referenced
by an EQUIVALENCEd identifier of a different data type and assigned a

value.

APPENDIX F
FORBLR

GENERAL .

FORBLR is a program which assembles subroutines written in assembler
language to interface with a FORTRAN program. Symbolic input to
FORBLR is.identical to assembler symbolic code except where additions,
differences, or limitations are noted in this appendix. The Assem-
blers Reference Manual should be used in conjunction with this appen-

dix, as the repertoire of available instructions is not repeated.

The FORBLR Assembler is used as follows:

OTNVINMITT/TY
[~

L
?DATA (B) CARDS

. Assembler
. symbolic
. code

.

?END

An IDNT pseudo must be included in the assembler symbolic code.

NOTE
Do not COMPILE with FORBLR. If this
is done, the MCP displays a message
on the SPO indicating that the pro-
gram contains syntax errors, regard-

less of whether it does or not.

The remainder of this appendix contains information which should be
known to correctly interface a FORBLR routine to a calling program

part.

THE FORTRAN COMPILER AND ICS FILES.

The FORTRAN Compiler performs two distinct functions, which, through

the use of control cards, may be mutually exclusive. It compiles

APPENDIX F (cont)
FORBLR

symbolic code (compile phase) and creates object code files (load

phase).

the following diagram and are described in detail below.

The two phases of compiler execution are illustrated by

SYMBOLIC SOURCE CODE

r/?END

(SUBROUTINE B

DISK FORTRAN
COMPILER
FORTAN
INTRIN
COMPILE
MATN PHASE
A
B
MYPRO
< LOAD
PHASE

COMPILE PHASE.

(B:SQRT(C)

r’SUBROUTINE A

j/'END

d

|—

_

—

/’IDENT MATIN

1
?COMPILE MYPRO

—

The FORTRAN Compiler generates a pseudo code file for each program

part introduced for compilation in a symbolic code file.

A pseudo

code file is a permanent disk file and is referred to as an Indepen-

dently Compiled Subroutine file (Ics file).

file is one of the following:

Qe

The file ID of an ICS

For a main program - the identifier coded in an IDENT Card

or, by default, PROGAM.

For a SUBROUTINE, FUNCTION,

program name.

program must be the subprogram name.)

or FORBLR subprogram - the sub-
(The identifier in an IDENT Card for a sub-

APPENDIX F (cont)
FORBLR

The disk format of an ICS file is shown on the following page.

An ICS file has a fixed format. The first five disk segments each

contain specific information and are continued, if necessary, on sub-

sequent segments in the file. The last eight digits in a segment are
k to the segment on which its information is continued. An ICS

~ T 3
a 1. L3l

file contains the following data:
a. IDENT segment.

1) Ident

2) Names of defined COMMON blocks (6UA each) with the num-

ber of storage units of data associated with each (4UN).

W
~-

If files are defined, their internal file names, multi-

file ID's, and external file ID's (18UA per file).
b. INITTALIZED DATA segment.

1) Data local to the program part and initialized by a DATA
statement in FORTRAN or a CNST declaration in FORBLR.

Data are in the following format:

| CODE' ADDRESS LENGTH' DATA >

~22UN ->—e— 6UN —be— 3UN—>we #digits specified by LENGTH —»

The above address is relative to an address which is
determined during the load phase of the compiler and
specified by the 2-digit CODE prefix. Refer to the

table of storage allocation codes given below.

2) If files are defined, information used by the FORTRAN
Compiler to build file information blocks (FIB's).

c. CODE segment - machine instructions generated for the program

RELATIVE
DISK
SEGMENT

~ Ot Loy

F-4

APPENDIX F (cont)

FORBLR
CONTENTS
100UA >
<«aSUN —»
IDENT LINK
INITIALIZED DATA LINK
CODE LINK
LABEL TABLE LINK
LABEL TABLE STACK HEAD LINK
LINK /
LINK ;
LINK
LINK o
rd
LINK
LINK ;77
LINK
LINK -~
e
LINK
LINK -~
"

APPENDIX F (cont)
FORBLR

preceded by a 2-digit storage allocation code, specifying

the address to which it is relative.

d. LABEL TABLE segment - labels defined within the program part.

e. LABEL TABLE STACK HEAD segment - reserved.

As stated above, all addresses in an ICS file are relative to a spe-

cified address which is determined during the load phase (described

below) of the FORTRAN Compiler. A 2-digit code which precedes each

address indicates the particular base relative address in the object

program to which the given address is relative.

cation codes" are defined below.

Code Meaning
50 Base register relative
51 Data relative
52 Code relative
53 Function table relative
54 Single temp relative
55 Junk relative
56 Parameter relative
57 File information blocks
58 Double temp relative
59 Label table relative
60 TWO relative
61 Function results
62 Common area relative
63 HALF relative

These "storage allo-

APPENDIX F (cont)

FORBLR

Code Meaning
6L ACCUM relative
65 NFLOAT relative
66 Intrinsic temps relative
67 Variable Unit Table relative
68 First COMMON generated by FORBLR
69 Second COMMON generated by FORBLR
70 Third COMMON generated by FORBLR
71 Fourth COMMON generated by FORBLR
72 Fifth COMMON generated by FORBLR
73 Sixth COMMON generated by FORBLR
Th Seventh COMMON generated by FORBLR
75 Eighth COMMON generated by FORBLR
76 Ninth COMMON generated by FORBLR
T7 Tenth COMMON generated by FORBLR
78 FORBILR generated file

Pertinent areas referenced by the storage allocation codes are

described in appendix E (Debugging Aids).

LOAD PHASE.

In its load phase, the FORTRAN Compiler creates an object code file
(executable program) by accessing ICS files of the main program and
the INTRN., file, and those of referenced program parts. The program
part identifiers in the IDENT segments of each ICS file provide the
linkage necessary to create a complete object program. As the code
file is built, the base relative addresses are associated with storage

allocation codes, and addresses in the pseudo code files are then

F-6

APPENDIX F (cont)
FORBLR

adjusted to be base relative. The compiler builds the object code
file using data from INITIALIZED DATA segments and instructions from

CODE segments; it provides for specified segmentation where possible.

COMMUNICATIONS BETWEEN PROGRAM PARTS.
At the btime of program execution, FORBLR routine is part of the

object code of a FORTRAN program and is referenced as though it were

a FORTRAN subroutine. From symbolic code, the FORBLR Assembler cre-
ates a pseudo code file having the same format as that produced for
each program part by the FORTRAN Compiler. (Refer to compile phase
above.) The file ID of the ICS file of a FORBLR routine is taken from
the IDNT Card. During the load phase of the compiler, all referenced
FORBLR routines are made part of the object code file of the FORTRAN

program.

A FORBLR subroutine is executed through an NTR instruction from the
calling program part, In FORTRAN this is accomplished with a CALL
statement to the name coded in the IDNT Card in the routine. The
FORTRAN Compiler generates an NTR instruction for a CALL statement
with constants generated for parameters passed in an argument list
following the NTR. A FORBLR routine may call another FORBLR routine

or a FORTRAN subroutine by executing an appropriate NTR instruction.

Example

?EXECUTE FORBLR

?DATA CARDS
SPEC CARD
IDNT ROUT

3 e e 3 222 2

FINI
?END
?COMPILE FORPRO FORTAN
?DATA CARDS

F-7

APPENDIX F (cont)
FORBLR

CALL ROUT

END
?END

The FORTRAN Compiler generates the following code for a CALL statement:

NTR xxxx nnnnnn Xxxxx = number of bytes passed; nnnnnn = first
executable instruction in subroutine

CNST 12 UN Reserved

CNST 2 UN Parameter length -——____One pair per

CNST 6 UN Address of parameter __| parameter passed

e 6 8 0 0 00 000

The address in the NTR instruction is the address of the instruction

that is executed next (nnnnnn above).

Execution of an NTR instruction creates an entry in the stack of the
program; in a FORTRAN program the stack is a reserved area of core at

the top of the program.

A stack entry is made beginning at the address contained at base rela-
tive address OOOLO. The contents of index register 3 (IX3) and the
address of the first executable instruction following the NTR are
stored in the stack entry as part of the return control word, and the
address in location 40 is placed in IX3. Thus, IX3 points to the most
recently created entry in the stack. After execution of an NTR, the
address of the first digit following the last stack entry is in loca-

tion 40. The following diagram illustrates the execution of an NTR.

APPENDIX F (cont)

FORBLR
IX3
7SN \ STACK BEFORE EXECUTION OF NTR
\
BEGINNING x
OF LAST
ENTRY RCW PARAMETERS
P 77
7~
e
7
e
BASE ADDRESS e
00040
6UN 7~
STACK AFTER EXECUTION OF NTR
NEXT
AVATLABLE 7
LOCATION S —————
IN STACK RCW PARAMETERS RCW PARAMETERS

The stack entry consists of a return control word and constants and/or
address constants following the NTR instruction. Its format when an

NTR for a CALL statement is executed is:

Number of Digits Use
6 Return address
8 Contents in IX3 at NTR Return
. — Control

1 Zero (0) Word (RCW)

1 Toogoles

- Yoo+ vY™
12 Reserved

2 Parameter length |__One pair for each
6 Address of parameter parameter passed

F-9

APPENDIX F (cont)
FORBLR

It is necessary to understand the execution of an NTR instruction,
for it is through the stack that a calling program part passes and

receives variables to and from a FORBLR subroutine.

ADDITIONAL PSEUDOS AVAILABLE WITH FORBLR.

To provide a facility for communications between a FORBLR routine and
the FORTRAN program of which it is a part, several special-purpose
pseudos are available with FORBLR. Descriptions of these pseudos and

their functions follow.

SUBR PSEUDO.

A SUBR pseudo must be used when a FORBLR subroutine calls another sub-
routine (this includes a supplied routine from the INTRN. file). One
SUBR pseudo is coded for each subroutine called. This pseudo creates
an entry in the IDENT segment of the ICS file of the FORBLR routine,

ensuring proper linkage with the referenced subprogram.

The format of the SUBR nseudo is:

VAR A ADDRESS B ADDRESS C ADDRESS
SEQ opP
NO. LABEL CODE | AF BF LABEL +INC [AllAC LABEL TINC[BI| BC LABEL 1INC |Cl| CC
0;0 0 1 1 12 |2 2 3|13 |3 4 414 |4 5 55
112 8 4 8 |0 |2 8 112 |4 0 3|4 |6 2 5|6
TR B ,,SJLN 1 ,SLGABR aodeed o Lo T [R T T TR (RSN T
PERSTINNS DRN OO IS SO SN UUUNINN SR DO TR S R ST Y UUUT S SUVER BRFRN 1 THRSVESATIRNT A EEEIUY W SR RO SN U WSO IO HOY S O '

The name of a subprogram which is called by the FORBLR subroutine is
coded in the label field of a SUBR pseudo.

APPENDIX F (cont)

FORBLR
Example
VAR A ADDRESS B ADDRESS C ADDRESS
SEQ OoP
NO. LABEL CODE | AF BF LABEL TINC A AC LABEL TiNC Bi| BC LABEL TiNC [Cij CC
010 4] 1 112 12 2 313 13 4 4i4 14 5 515
1:2 8 4 8 |0 {2 8 112 14 0 3/4 {6 2 5i6
N N S B § 4_:l:L‘_J.._L..l. :_ .._JA‘,Jf,,’J'_:,J...,A.._J [P DO | [L k) A4 L bodo _] [. J‘l
L1 VALLIUELQMSZI A 55H IR [1 CLM L 1) .1 Lol 11 o
__,__¢_L_LAS;QRT.. L 5|UBJ [P T SN TR ST SO R B | ! N - A) N I | 1 1 Lot 4 Ll 1
L AR BN B BV BT B BEIC LN 2 J
1 TR Lo 1 A [L1 1 R S S T S | [I B (I
e o & 20 v|jo v 8 g% 8|a sis
S S W | TR N N I 1 1 T R B S | 1.1 i I T S | - i 1.1 1| |
TS | | IS SR S T 1 1 xR" olo’wm 1 Lot I N Y S T | | I L T SR B 1
T DU N TP NUUE SO WA NNl IS AN S QMST 1 I.ZIDN_\ [L L I S R S | (1 ! 4. | 1
Y S N ' | N W N 'Y CMQSI___L_,__AZ_”JM_L. J Lt I ae T | (] 1 | S 1 £.1 1
B S S B | § D B T | nCﬁM 1 ’ UE» Lo i I SO N B | it L F I | Lot 1
TSI T B J,. ._J__._l l‘ 1‘,4 ._L'_i. . * 1’ ° ‘n I ! Loy L T R B R | b1 L T L {
TR I S B | I S B G | Loy 1 T S S R L1 " S S S W § 4 1 1 TS - !
COMN AND ENDC PSEUDOS.
The COMN and ENDC pseudos are used to declare COMMON blocks. A COMMON
block containing a variable which is referenced in a FORBIR routine
must be defined in that routine. The COMN pseudo has the following
format:
VAR A ADDRESS B ADDRESS C ADDRESS
SEQ opP
NO. LABEL CODE | AF BF LABEL TINC Al AC LABEL +INC Bi} BC LABEL TINC |[Clf CC
0|0 0 1 1]2 |2 2 3|3 |3 4 4ia |4 5 5|5
12 8 4 8 0 |2 8 |t|2 4 0 i3la |6 2 |sls
I S N T | Gg&”l‘! _gm.x Ao Lot [T RN [1 b L4 J F RN S S R

The name of the referenced COMMON block is coded in the label field of

the COMN pseudo.

A blank label field defines blank COMMON.

APPENDIX F (cont)
FORBLR

DATA declarations follow the COMN pseudo to define COMMON elements,
and an ENDC pseudo terminates the declaration. The ENDC pseudo has
the following format:

VAR A ADDRESS B ADDRESS C ADDRESS
SEQ oP
NO. LABEL CODE | AF BF LABEL TINC A AC LABEL TINC Bl BC LABEL TINC [Cl| CC
0|0 0 1 1 12 |2 2 3|3 |3 4 414 |4 5 515
1|2 8 4 8 |0 |2 8 112 4 0 34 |6 2 5/6
T NN TR T S SN Y IO Y S ,-N.chr 1 1 B R IO DU | [1 TR R S NS U PO SO N (UUUY FEUUK SRV SO DR VRS DU SR S AV RO AV EEN R [

Only DATA declarations may be coded between the COMN and ENDC pseudos.

DATA declarations following a COMN pseudo are considered individually
to determine the total number of storage units associated with the

COMMON block. The FORBLR Assembler assigns an even number of storage
units to each DATA declaration and writes the total number of storage

units following the block name in the ICS file of the routine.

Storage unit size is determined as it is by the FORTRAN Compiler, and
the same default data sizes are assumed. Thus, by default, a storage

unit is 12 digits.

When a FORBLR subroutine contains COMMON declarations, storage unit
size must correspond to that used in the FORTRAN program in which the
routine is referenced. Data sizes can be specified, as in the FORTRAN
SIZE Control Card, to alter storage unit size with the REAL and INTG

pseudos described below.

The following example illustrates communications between a FORTRAN
program with COMMON declared and a FORBLR subroutine. (Assume default

data sizes.)

APPENDIX F (cont)
FORBLR

Example

COMMON /FIRST/RSLT (8)/SECND/IARG,IMAX, SUM

CALL FORB(IANS)
STOP
END

VAR A ADDRESS B ADDRESS C ADDRESS
SEQ op
NO. LABEL CODE | AF BF LABEL TINC [AI AC LABEL TINC [BI| BC LABEL +INC |Clj CC
aio0 0 1 1 ({2 |2 2 3|3 |3 4 414 4 5 5(5
112 8 4 8 |0 I[2 8 112 {4 0 3/4 16 2 56
2 s 3 a s e
FNUUE TN MU WY U0V SO NS UUOY S SO DU S R S PP SN I S S S S S PO S Lob f AURTRE S S Y D T S A 5 Y TRt Y U TR SO R S S O WS M
JSNURS SR U TOU U HR OO SR ENY NS R R IDNT Lol F1¢RIB I T S TR A SRS SV OO SR N S § Lol 4oL IR U B | 1.0

..;,_ALAA_EI_BSI.. Jdﬂl” JR PR SV NS ANNUON SR N B B | o 1,,_,_’,, S NS S B S| | Il Lot .t .4 Ll
PR IWM_L_J_._J(I TN TR S NN S SRS NN SO S TR (N IR SO N B [

M"l\: F IV SN N NS S N N S N § IS S TN SN NN N S NN B

120N L

PR 1
I IAL‘JA_LMJELE& 1 . duﬂq,x 1 b L [R | 1 I TN N T AR IOV S B 4

P S S N L L - SN UOU VU IO Y NPV QOO | b L T N N DO | ot 1 | U T T FI|

... lsEcAND I I

L1 q.gG'. O ASSN R 1l 1 | N O T S | 1 ¢ U SN TR S B | 1t

ST N N B | hGUM A 1 ! [R R T 1 11 1 S N I S | Lt
1 [4’ SM [-1 JEY SN SR Y BN T N | 1t i N N G U | it L

.
! | P P Lol § A U SR S T (O Y N RS U SO R ¥ N S SN N o S U
[SRR SO i L F R T T T U T G (e N NN N Y (U St RO D e 1 S W S e Ll
. 54R6 . . | .. | |.MAX .. |. .| SNBASE . | 303
. 1 L Lo [1 i [S S | [t I T S T Lt
'

TETE | I 1 i L Lo L 1 L ! 1t X 1

F N I T | L F IS TR S T i I T N | L1 I} I i i1
S T B S| 1 1 i L 1 b 1 11 1 -) bl .

The COMMON blocks defined in the above example appear in core and are

referenced as follows:

APPENDIX F (cont)

FORBLR
-— FIRST —
ELE1-5 ELE7 ELES8
/RSLT (1) RsLT(2) RSLT(3) RSLT(4) RSLT(5) /RSLT (6) /RSLT (7) /RSLT (8)
12UN h/ 12UN h/ 12UN V/ 12UN h/ 12UN 120N 12UN 120N |

-*+————eeee SECND -

ARG MAX SUM
TIARG IMAX SUM
| 12UN l 12UN l 12UN I

REAL AND INTG PSEUDOS.

The REAL and INTG pseudos "define" data sizes for real integer vari-
ables, respectively. The pseudos only effect the determination of
storage unit size, which, in turn, defines the lengths of COMMON
blocks declared in a FORBLR subroutine. The REAL and INTG pseudos

have the following formats:

VAR A ADDRESS B ADDRESS C ADDRESS
SEQ orP
NO. LABEL CODE | AF BF LABEL TINC |A AC LABEL +INC|BI| BC LABEL TINC|CH CC
0|0 0 1 1 12 |2 2 3|3 |3 4 414 |4 5 515
142 8 4 8 [0 |2 8 112 14 0 314 |6 2 5|6
NN SO IO IS S RO ,L,J,,,'REAL [T S} 41,10 i Lot | SEEE S T T B 1 (S} B R R N D R S P | S S R
TR N N - N U T I.M-AG‘_ A4 L ox [S ST A VORI S N NN O W S P (N O S W O O
Il 1 1 i t 1 1 1 § IO IS HY A | [N NS FUUR RN SRR § 1]) l..._)., - 1 i 1 1 i 1 1 1 S | 1 (R S} it) {

For both pseudos, a 2-digit size is specified left-justified in the
A ADDRESS field. The size coded in a REAL pseudo defines a mantissa
length for real wvariables. The size coded in an INTG pseudo defines

the number of digits of precision for integer variables.

Storage unit size is determined as with the FORTRAN Compiler, i.e.,
the largest of M+4, N+1, and 2xL; where M is the mantissa size of a
real, N is the number of digits of precision for an integer, and L

is the number of characters for an ALPHA wvariable,

APPENDIX F (cont)
FORBLR

EQIV PSEUDO.

The EQIV pseudo is used as it is in B 3500 Assembler. In addition,
it may be used to associate a label to an address which is determined
by the FORTRAN Compiler during its load phase. An EQIV pseudo with

the following format performs this function.

. VAR A ADDRESS B ADDRESS C ADDRESS
SEQ oP
NO. LABEL CODE | AF BF LABEL tINC AL AC LABEL TINC Bl BC LABEL TINC [Clf CC
0|0 0 1 1 12 |2 P4 3|13 |3 4 4(4 |4 5 515
112 8 4 8 |0 |2 8 112 14 0 3|4 |6 2 5(6

! 1qFIBMJXEQIVODO AOOJool Lo i oo [! 1oL [[

A 2-digit storage allocation code (from the table on page F-5) is
coded, lefﬁ—justified, in the B ADDRESS field. This code specifies
the address which is to be associated with the label. A length of
0006 is coded in the VAR (variant) field for a 6 UN address. The A
ADDRESS field contains a dummy address of five zeros; at load time
this address is "replaced" by the address specified by the storage

allocation code.

In the following example the label FIBRAY points to the beginning of
the variable unit table, which is specified by storage allocation code
67. The address of the FIB for unit 9 is moved to FIBADR; it is the
tenth 6-digit value in the variable unit table (i.e., an increment of

6x9, or 54, to FIBRAY).

APPENDIX F (cont)

FORBLR
VAR A ADDRESS B ADDRESS C ADDRESS

SEQ oP .

NO. LABEL CODE | AF BF LABEL +INC |Al AC LABEL +INC |Bl| BC LABEL +INC |Cl} CC
0|0 0 1 1 2 2 2 3|3 3 4, 414 4 5 5|5
142 8 4 8 |0 2 8 112 4 0 3|4 |6 2 5(6

NS BN TR Nl e T oo 00] NS VRS SR A AU PEITUNTRINS SRR B S
... FIBRAY| oooo. | . || .87 . 1oLl e L
DLI0GFIBRAY| . . IIUNFIBADR . . | UN |.. ||,
[NN SN CRY TN SR WUSNUN INERN IVY R S JO5 SN N e I i1 1 | S B |) B 1 | NN N SO SO I 11 1
o200 N e b]
... FIBA N. ... Il oooooo . .|| ||..[|.
uN . .|l . il.booooo . || b
;||||11|||’||:n|1||r|\1 J IS NN S SN U U S S N [N N TR NN N W SN S L

PROGRAMMING CONSIDERATIONS.

Considerations to be observed when writing a FORBLR subroutine follow:

a. Assembler pseudos not available with FORBLR are: LOCN, SEGM,
ENSG, ALOC, SORT, KEYA, KEYD, SKEY, SETT, RSET, BUMP, DECR.

b. An IDNT Card must be used. The identifier coded in this card
is used for the file ID of the ICS file of the routine and is
the name by which it is "called."”

c. Declarations must precede executable code, i.e., file
declarations and SUBR, COMN, EQIV, and DATA pseudos.

d. Declarations may be mixed freely.

e. In-line constant declarations, such as those coded after a

BCT, must each be modulo-2 digits. However, one modulo-2
constant may be coded, with non-modulo-2 parts of it refer-

enced through EQIV pseudos.

APPENDIX F (cont)
FORBLR

f. A STOP Card is not used unless program termination during

execution of the routine is desired.

g. An EXT instruction is used to "terminate" execution of a
FORBLR routine. Execution of an EXT returns control to the

instruction following the NTR to the routine.

h. Macro and library routines (MACR,LIBR) may not be defined
or referenced in FORBLR.

PROGRAMMING EXAMPLE.

Following is an example program using FORTRAN and FORBLR.

C THIS PROGRAM CALLS A FORBLR ROUTINE WHICH TAKES THE SQUARE ROOT OF
C THE PASSED PARAMETER. THE RESULT IS PLACED IN A VARIABLE IN COMMON.
REAL IRSLT,IARG
COMMON /SCAN/IRSLT,ARAY(5)
TARG=20.,
C CALL FORBLR ROUTINE, PASSING IARG
CALL DUMMY (IARG)
C THE SQUARE ROOT OF IARG + 5. IS IN IRSLT
WRITE(6,10) IRSLT
10 FORMAT(1X,F10.5)
STOP
END

8T-d

VAR A ADDRESS B ADDRESS C ADDRESS
SEQ oP
NO. LABEL CODE | AF BF LABEL +INC JAJAC LABEL ‘!INCEI BC LABEL {*INC|Cli CC REMARKS
ojo 0 1 1 |12 |2 2 313 |3 4 414 |4 5 6[6 |5 8
12 8 a4 8 |0]2 8 112 |4 9 3j4_|6 2 5|6 |8 0

PECAI‘CAI&D'!' TR T T T S I S N B} [T R T T 1 i RN SO0 N W W SN W W SN SN N N SN SO SO U
DnT 1 1 DJUHHIYI [1 [SRS A Wy G S | IR S U T N R S S S = 1 ”Ei NAHELL S G S T 1 T S S S T

NASI‘TO:O‘:'SN;" Y I N TN Y WY WY W QU o & YRS SR DN T R R (S S S 4 N T S W W WY
vsToolbllsN Il b b b

S50 (R R N S VN W S —

ujx 1 U S N S N B e e WO N OO 3 14 1 i S T S 1 il 1 : &5,4,4_‘74‘_,_‘4__
PR NI S T S T i VU T U W L L Lo SRR N N

A)IA 1 'z L] 44 L PR W WS NS U W N W S S S R O | [1 LS T O 5 S [N R Y A S G U W W
ATA -‘1 WAIL 11 4 Ll - - 1 WY W Y U W S Y . JLMMAAYLAL.LJ"LL,

) [

. 4

@F. FuNCTIGN RSLTS
fosann ||| ARGUMENT. ADRS TN STACK |

UN {101,]

TEN S O TN I S L § NN IO WS UV QU S O DU N SR (Ut ey N WU MU ROV W ey WY U U

I P A* s 1 ;V‘V A-D. «' t’*ov81c51
C1 Lo f '.OSQRT:.

Lo deda s PR LN G S RN SR

IFRsLI' o - 1) AU R N DU S T YA (U T S Y SO Y TR N U S
oo | || WSE SQRT. INTRINSIC T,

il | . [TAKE SQRT @F RSLT

U (SN0 T W WO S NN S W § GNS VU WU U UUNNT ST VIR NN (N S G S St SR St N SO SR SN N Qe B SR R

i), oo CNST] UN -

TR FUY PO N PR T . a4
covv oo . MUN 1212

L B IO VO O G RGNS i B N T T T e e

o |o). [PLACE ANS IN. COHHEN .

[R Y 4o a1 A t_ U RS SN W U -y PR 1 U S U 11 SR T TR (N T (- 11 #Ramw S SN SN TN Y NS TP NS WSS W FERY A WSS S S

ERRE I . [INI}» O O U U N S N O T E N N L1 1 4oL a1 [g [0S S TS S O DO TN SO N U U SO S PO S SO R AP O U UOR

N [o [T . 1 T | SN S RIS IR N0 SN W Sy AN Ut DU W g N SN S U B A | o . 1 T T T O T S O S e N

F—+ - -4 4.1 1 [[P i t (RSO [1 [G S I S E S T T A Y [NI S S S T T O T T S T T T R T O A P re Moy ua
P I| G o L ! oo [t [o 1 L2 T TS E T I S R R R R T T T I
TR T S Bt FE— n T W | i L Lodoo VI SN N G S T S ST W B s

ATHIOL
(2u00) J XTANAAAY

APPENDIX G
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number
IMPROPER STATEMENT TYPE 1
Self~explanatory.
ILLEGAL STATEMENT ORDER 2
a. The non-executable statements immediately preceding
this error message are not in acceptable order.
b. Statement order may be misarranged if one or more
preceding statements are illegally begun in column
6 or if one or more executable statements have been
interspersed with the non-executable statements.
c. If one or more of the non-executable statements
is mispunched or misrepresented, an error message
for that error is issued and that statement is
ignored. This, therefore, can cause a change in
sequence.
ILLEGAL COMBINATION OF OPERATOR AND OPERANDS 24
Variables and/or constants must be separated by an
operator. Two operators must not appear together.
Parentheses may not be used as operators.
MISSING EQUAL SIGN IN ASSIGNMENT STATEMENT 25
Self-explanatory.
IMPROPER NESTING OF DO STATEMENTS OR MISSING DO
TERMINATION 26

Self-explanatory.

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

INVALID OP CODE - COMPILER ERROR

SUBSCRIPTED VARIABLE IN EQUIVALENCE STATEMENT IS NOT
DIMENSIONED

A subscripted variable is being used in an EQUIVA-
LENCE statement without having been dimensioned

prior to that statement.

THIS STATEMENT CANNOT BE EXECUTED

Self-explanatory.

REPEAT COUNT ON A FORMAT DESCRIPTOR IS ZEROC

Repeat count must be an integer constant greater

than zero.

REPEAT COUNT ON A FORMAT GROUP IS ZERO

Repeat count must be an integer constant greater

than =zero.

D, E, F OR G FORMAT DESCRIPTOR FIELD WIDTH IS ZERO

An I/0 statement is attempting to describe a field

width of =zero.

I, A OR L FORMAT DESCRIPTOR FIELD WIDTH IS ZERO

An I/0 statement is attempting to describe a field

width of zero.

Error
Number

_7

28

29

30

31

32

33

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

D, E, F OR G FORMAT DESCRIPTOR FIELD WIDTH IS LESS
THAN FRACTIONAL WIDTH

A format field descriptor is specifying a field
which is smaller than its decimal part. Example:
F5.8.

ARRAY ELEMENT IS NOT SUBSCRIPTED

A variable name declared as an array name is being

used without a subscript.

MISSING RIGHT PARENTHESIS IN SUBSCRIPT
Self-explanatory.

IMPROPER SUBSCRIPT DELIMITER
Self-explanatory.

SUBSCRIPT EXPRESSION IS NOT TYPE INTEGER

An expression used as a subscript must consist of

integer constants and/or integer variables only,

MISSING LEFT PARENTHESIS BEFORE UNIT NUMBER IN READ/WRITE
Self-explanatory.

MISSING RIGHT PARENTHESIS BEFORE IO LIST IN READ/WRITE
Self-explanatory.

HOLLERITH CONSTANT LENGTH IS ZERO

A Hollerith constant must be defined with a length

greater than zero.

Erroxr

Number

34

35

36

37

38

Lo

41

G-3

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

TMPROPER FORMAT SPECIFIER IN READ/WRITE

Character read as format specifier is mot recognized
as valid. Check Hollerith constant lengths and

punctuation.
LAST STATEMENT NOT COMPLETELY PROCESSED

This message is self-explanatory and usually follows

another error message.
IMPROPER DELIMITER IN IO LIST

Elements in an I/0 list must be separated by commas.

Check the lengths associated with Hollerith constants.
IMPROPER ELEMENT TN TO LIST
Self-explanatory.

IMPROPER IMPLIED DO INITIALIZATION PARAMETER

At the time of execution of the DO statement, the
initial parameter must be greater than zerc, must be
an integer constant or integer variable, and must

not be greater than the final parameter.
MISSING LEFT PARENTHESIS IN IMPLIED DO
Self-explanatory.
MISSING RIGHT PARENTHESIS AFTER IMPLIED DO
Self-explanatory. Carefully examine syntax of

implied DO usage.

G-

Error
Number

L2

k3

Ly

by

L6

b7

L8

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

COMPLEX EXPRESSIONS NOT ALLOWED WITH RELATIONALS

Complex constants and variables are not permitted

in a relational expression.
INVALID UNIT NUMBER

Unit number may be integers between 1 and 19,

inclusive.

MISSING RIGHT PARENTHESIS IN WHAT APPEARS TO BE A
COMPLEX CONSTANT

Complex constants are coded as two real constants
delimited by a comma and enclosed by parentheses.

Er~ample: (3.2,4.5)
IMPROPER SUBROUTINE NAME IN SUBROUTINE STATEMENT

Subroutine name is one to six alphanumeric
characters, the first of which must be

alphabetic.
MISSING LEFT PARENTHESIS IN SUBROUTINE STATEMENT

The parameter list in a SUBROUTINE statement must

be enclosed by parentheses.

COMPLEX EXPRESSION NOT ALLOWED IN IF STATEMENT
Self-explanatory.

IMPROPER DUMMY VARTIABLE

Dummy variable in argument list must follow naming

Error
Number

Lo

50

51

52

53

5

55

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

conventions for wvariables; it must be of the same

type as its corresponding actual parameter.
IMPROPER FUNCTION NAME IN FUNCTION STATEMENT

Function name is from one to six alphanumeric

characters, the first of which must be alphabetic.
MISSING LEFT PARENTHESIS IN FUNCTION STATEMENT

An argument list associated with a FUNCTION state~-

ment must be enclosed by parentheses.
INCOMPLETE LIST IN DIMENSION STATEMENT
DIMENSION statement is incorrect.
IMPROPER IDENTIFIER IN DIMENSION STATEMENT
Identifiers must adhere to naming conventions.
MISSING LEFT PARENTHESIS IN DIMENSION STATEMENT
Dimensions must be enclosed by parentheses.
ARRAY BOUND IS TOO LARGE

The maximum array size which may be specified in

a DIMENSION statement is 9999 elements.

ADJUSTABLE DIMENSIONS CAN ONLY BE USED WITH DUMMY
VARTABLES

Variables in the main program may not have adjustable

dimensions.

Error

Number

56

57

58

59

60

61

62

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

IMPROPER ARRAY BOUND

Array bound must be an integer constant, or an
integer variable when adjustable dimensioning

is used.
IMPROPER ARRAY DELIMITER

Array declarations must be separated by commas.

Array dimensions must be separated by commas.
IMPROPER ARRAY DELIMITER

Array declarations must be separated by commas.

Array dimensions must be separated by commas.
IMPROPER COMPUTED GO TO VARIABLE

Control wvariable must be an integer expression
whose value is no greater than the number of

statement labels in the list.

INDETERMINATE STATEMENT TYPE. ASSIGNMENT STATEMENT
ASSUMED

Statements immediately preceding this message may

not be in legal order.

IMPROPER ARRAY DECLARATOR DELIMITER

DIMENSION statement is incorrect. List-elements

should be separated by commas.

IMPROPER SUBROUTINE IDENTIFIER IN CALL STATEMENT

CALL statement is coded incorrectly.

Error
Number

64

65

66

67

68

69

70

G-7

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number
MISSING LEFT PARENTHESIS IN CALL STATEMENT 71
Actual parameters in CALL statement must be enclosed
by parentheses.
TOO MANY IDENTIFIERS IN DATA STATEMENT 72
Compiler table is 450 digits. Nine digits are used
per named variable; 13 digits are used per array name.
Break‘the DATA statement into two or more accordingly.
MISSING LEFT PARENTHESIS IN EQUIVALENCE STATEMENT 73
Equivalenced variables must be enclosed by parentheses.
MISSING RIGHT PARENTHESIS IN EQUIVALENCE STATEMENT 74
Equivalenced variables must be enclosed by parentheses.
UNIT NUMBER MUST BE LESS THAN 20 75
Unit number must be between 1 and 19, inclusive.
DO TERMINATION LABEL SHOULD NOT APPEAR ON THIS STATEMENT 76
DO may not terminate on a GO TO, IF, RETURN, STOP,
DO, or REREAD statement.
LABEL MAY NOT APPEAR ON END STATEMENT 77
Self-explanatory.
MISSING RIGHT PARENTHESIS IN ASSIGNED GO TO STATEMENT 73

Statement numbers must be enclosed by parentheses.

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number

MISSING RIGHT PARENTHESIS IN I/0O STATEMENT 79
Parentheses must surround unit specifier, and FORMAT
statement label if used.

MISSING COMMA IN I/0 STATEMENT PARAMETER LIST OR IMPROPER

ELEMENT IN VARIABLE LIST 80
Elements must be separated by commas. Check the lengths
of Hollerith constants.

TWO MAIN PROGRAMS--CHECK FOR “SUBROUTINE", "BLOCKDATAY OR

YPUNCTION" CARD STARTING IN COLS. 1-6 81
Self-explanatory.

SUBSCRIPTED VARIABLE NOT SEEN IN DIMENSION STATEMENT 82
Array bounds must be specified in a DIMENSION, TYPE,
or COMMON statement before a subscripted variable is
referenced.

IMPROPER DELIMITER IN COMMON LIST 83
List elements in a COMMON statement must be separated
by commas.

MISSING SLASH IN COMMON STATEMENT 84
COMMON block names must be enclosed by slashes.

CONTINUATION CARD MUST CONTINUE SOMETHING 85

Self-explanatory. Check keypunching.

G-9

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

IMPROPER COMMON LIST ELEMENT

A COMMON list consists of COMMON block names, iden-

tifiers, and, optionally, dimensions.

EMPTY COMMON LIST

There are no identifiers associated with COMMON
block.

IMPROPER ELEMENT IN TYPE STATEMENT

Elements in TYPE statement must be identifiers,

simple or subscripted.

TWO END STATEMENTS

A program part may contain only one END statement
as the last card in the symbolic code for that

program part.

INVALID DATA IN SIZE CARD

The size of a data type is expressed as an integer.

IMPROPER DELIMITER IN TYPE STATEMENT LIST

Elements in TYPE statement are delimited by commas.

IMPROPER LIST ELEMENT IN DATA STATEMENT

Elements must be identifiers, subscripted or simple.

Error
Number

86

87

88

89

90

91

92

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

ARRAY IDENTIFIER MUST BE FOLILOWED BY A LEFT PARENTHESIS IN
A DATA STATEMENT

If array identifier is subscripted, subscript must
be enclosed by parentheses.
Example: DATA ARAY(2)/3.4/

but, DATA ARAY/3.4,4.4,5.6/

INCORRECT NUMBER OF SUBSCRIPTS OF AN ARRAY ELEMENT IN A
DATA STATEMENT LIST

Number of subscripts must correspond to the number

B W e s e O H .

defined in DIMENSION statement.
IMPROPER DELIMITER IN DATA STATEMENT LIST

Check commas and slashes for correct positioning

in DATA statement.
MISSING STOP CARD--LAST OUTPUT LINE MAY NOT BE PRINTED

Check that program has at least one STOP Card or
a CALL EXIT statement.

MISSING END CARD

Check that each program part is terminated with an

END statement.
IMPROPER DELIMITER IN VALUE LIST OF DATA STATEMENT

Elements in value list must be delimited by commas.

Error
Number

93

9L

95

96

97

98

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

THE LENGTHS OF THE DATA AND VALUE LISTS IN A DATA
STATEMENT ARE UNEQUAL

The number of wvalues must correspond to the number

of variables to be initialized. Check punctuation.
ILLEGAL LOAD CARD--ONLY ONE ALLOWED PER COMPILE
Self-explanatory.
IMPROPER CONSTANT IN VALUE LIST OF DATA STATEMENT

Constant must correspond in type to variable to

be initialized.

EXTERNAL STATEMENT MAY NOT APPEAR IN BLOCKDATA SUBPROGRAM

Seif-explanatory.
DECIMAL POINT ASSUMED IMMEDIATELY AFTER THE MANTISSA

When decimal point is not coded in a real constant,

it is assumed to follow the mantissa.
IMPROPER STATEMENT NUMBER IN ASSIGN STATEMENT

A statement number must be an integer constant or
variable greater than zero and less than six digits

when used in an ASSIGN statement.
ASSIGN STATEMENT VARTIABLE MUST BE INTEGER VARIABLE

A variable used in an ASSIGN statement must be of
type INTEGER.

Error
Numbexr

99

100

101

102

103

107
and
108

109

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

INTEGER PRECISION MUST BE.GREATER THAN 4 TO USE ASSIGN
Seif-explanatory.

INTEGER SIZE TOO LARGE COULD CAUSE RUN TIME ERRORS
Self-explanatory.

ALPHA SIZE TOO LARGE COULD.CAUSE RUN TIME ERRORS

REAL SIZE TOO LARGE COULD CAUSE RUN TIME ERRORS

IMPROPER EQUIVALENCE STATEMENT-POSSIBLE MISSPELLING
Self-explanatory.

ILIL.EGAL CHARACTER IN FORTRAN STATEMENT

Check character set for appearance of characters in
statement containing error. Frequent error is use
of quote marks instead of legal H format specifier

to specify Hollerith data.

STACK OVERFLOW CAN OCCUR. USE SUB-EXPRESSIONS

Involved expression may cause compiler stack overflow.

Use sub-expressions or give compiler more core in which

to execute with MCP CORE Card.

IMAGINARY PART OF WHAT APPEARS TO BE A COMPLEX CONSTANT
IS NOT REAL

Complex values must be expressed as floating point

values.

Error
Number

110

111

112

113

118

119

120

121

G-13

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number
MISSING PERIOD FOLLOWING RELATIONAL OR LOGICAL OPERATOR,
OR LOGICAL VALUE 122
Self-explanatory.
INVALID RELATIONAL OR LOGICAL OPERATOR, OR LOGICAL VALUE 123
Self-explanatory.
INVALID SPECIAL CHARACTER 124
It is illegal to mix character codes within one program.
IDENTIFIER CONTAINS MORE THAN SIX CHARACTERS 125
Self-explanatory.

A REAL CONSTANT WILL HAVE TO BE TRUNCATED 126
The constant cited has exceeded the prescribed
precision.

INVALID EXPONENT . 127
Self-explanatory.

AN ALPHA CONSTANT WILL HAVE TO BE TRUNCATED 128
The constant cited has exceeded the prescribed
precision.

A DOUBLE PRECISION CONSTANT WILL HAVE TO BE TRUNCATED 129

The constant cited has exceeded the prescribed

precision.,.

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number
INVALID DOLLAR SIGN OPTION 130
Seif-explanatory.
STATEMENT NUMBER MUST BE INTEGER 131
Self-explanatory.
STACK OVERFLOW CAN OCCUR, USE SUB-EXPRESSIONS 132

Involved expression may cause compiler stack overflow.
Use sub-expressions or give compiler more core in which

to execute with MCP CORE Card.

NORMALIZED EXPONENT IS TOO LARGE 133
Self-explanatory.

EXPONENT HAS TOO MANY DIGITS 134
Exponent may have only two digits.

INTEGER CONSTANT TOO LARGE 135

An integer constant appearing immediately before

this message exceeds the precision for integer wvalues.
STACK OVERFLOW OCCURRED, USE SUB-EXPRESSIONS 136

An involved expression has caused a compiler stack
overflow. Use sub-expressions or give compiler more

core in which to execute with MCP CORE Card.

STACK OVERFLOW OCCURRED, USE FEWER PARAMETERS OR 137
SUB-EXPRESSIONS

Check function call preceding error message.

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message : ‘ Number

UNEXPECTED COMMA TREATED AS TERMINATOR | : ' 138
Self-explanatory.

SEQUENCE ERROR ' B 139
Self-explanatory.

RETURN STATEMENT NOT ALLOWED IN MAIN PROGRAM OR

BLOCKDATA SUBPROGRAM : | 140
Self-explanatory.

NO RETURN STATEMENT IN THIS SUBROUTINE 141
A subroutine must contain at least one RETURN
statement. '

INCORRECT USE OF COMMA IN AN EXPRESSION 1h2
Self-explanatory.

HOLLERITH CONSTANT NOT ALLO&ED IN AN EXPRESSION 143
Self-explanatory. A Hollerith constant may be used
only in an assignment statement such as:ALF=2HAB.

COMPILER ERROR (INVALID ID IN EXPRESSION) 144
A subroutine ID, file ID, or CCMMON block ID may not
appear in an expression. |

JLLEGAL QUANTITY IN EXPRESSION 145

Self-explanatory.

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

MISSING OPERATOR IN EXPRESSION

Self-explanatory.

MISSING OPERATOR IN EXPRESSION

Self-explanatory.

Self-explanatory.

STATEMENT NUMBER IS GREATER THAN FIVE DIGITS

Self-explanatory.

ASSTGNMENT STATEMENT HAS AN OPERATOR PRECEDING THE EQUALS

Self-explanatory.

EQUAL SIGN IN NON-ASSIGNMENT STATEMENT EXPRESSION

Self-explanatory.

ILLEGAL OR MISSING OPERATOR IN AN EXPRESSION

Self-explanatory.

ILLEGAL OR MISSING OPERATOR IN AN EXPRESSION

Self-explanatory.

TLLEGAL COMBINATION OF TYPES IN AN EXPRESSION

Mixed modes are not permitted in this expression.

Error
Number

146

147

=
g
0

149

150

151

152

154

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

CANNOT DETERMINE STATEMENT TYPE
Self-e#planatory.

MIXED INTEGER AND REAL TYPES IN EXPRESSION
Self-explanatory.

A SEQ DOLLAR SIGN OPTION WITH A PLUS REQUIRES AN INCREMENT
Self-explanatory.

THE WORD NEW SHOULD BE FOLLOWED BY THE WORD TAPE IN $ CARD

Dollar sign option for creating a new tape is

incorrectly coded.
ILLEGAL COMBINATION OF TYPES ACROSS AN EQUAL SIGN
Self-explanatory.
NUMBER LONGERYTHAN 100 DIGITS
Self-explanatory.
FRACTIONAL PART LONGER THAN 100 DIGITS
Self-explanatory.
INCORRECT STOP STATEMENT
STOP statement is coded incorrectly.
COMPILER ERROR (MISTAKENLY IN EXPRESSION BLOCK)

Expression block expects an assignment, IF, or CALL

statement which has not been found.

Error

Number

156

157

158

159

160

161

162

163

164

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

IMPLIED DO CONTROL VARIABLE MUST BE INTEGER
Self-explanatory.

IMPLIED DO INITIALIZATION PARAMETER MUST BE INTEGER TYPE
Self~-explanatory.

IMPLTED DO TERMT
Self-explanatory.

IMPLIED DO INCREMENTATION PARAMETER MUST BE INTEGER TYPE
Self-explanatory.

STACK OVERFLOW CAN OCCUR. USE SUB-EXPRESSIONS

This error message is generated when a statement
contains an excessive number of operations. Use
sub-expressions or give the compiler more core in

which to execute with the MCP CORE Card.
COMPILER ERROR (PUTIN CANNOT FIND INFO ENTRY)

Check statement immediately preceding error message.

If correctly coded, replace deck in card reader for

INCORRECT QUANTITY FOLLOWING AN IF STATEMENT
Self-explanatory.

A FUNCTION IDENTIFIER APPEARS WITH NO ARGUMENTS

Error
Number

169

170

172

174

175

176

177

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number
EXPRESSION CAUSED STACK OVERFLOW. TUSE SUB-EXPRESSIONS 178
An excessive number of operations are contained
within one statement. Use sub-expressions or give
compiler more core in which to execute with MCP
CORE Card.
MISSING RIGHT PARENTHESIS IN FUNCTION CALL 179
Self~explanatory.
A FUNCTION IDENTIFIER PRECEDES THE EQUAL SIGN IN AN
ASSIGNMENT STATEMENT 180
Check for array identifier that has not been
dimensioned.
IMPROPER DELIMITER FOLLOWING A DUMMY ARGUMENT OF AN
ARITHMETIC STATEMENT FUNCTION 182
Dummy arguments must be separated by commas.
COMPILER ERROR (CHECKROW: INFO ROW DOES NOT EXIST) 183
IMPROPER COMMON BLOCK NAME 184
Self-explanatory.
A VARIABLE APPEARS TWICE IN COMMON 186
Self-explanatory.
A VARIABLE HAS BEEN DIMENSIONED TWICE 188

Check for wvariable dimensioned in COMMON that is also

dimensioned in a TYPE or DIMENSION statement.

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

IMPROPER ELEMENT IN EQUIVALENCE STATEMENT

Self-explanatory.

A DUMMY ARGUMENT CANNOT BE EQUIVALENCED

Self-explanatory.

An element must be equivalenced to something.

CONTRADICTORY OR REDUNDANT EQUIVALENCE STATEMENT
Self-explanatory.

IMPROPER QUANTITY FOLLOWING AN EQUIVALENCE STATEMENT
Self-explanatory.

SUBSCRIPT IN EQUIVALENCE IS NOT INTEGER
Self-explanatory.

MAXIMUM SUBSCRIPT SIZE IS FIVE DIGITS
Maximum subscript is 9999.

TOQ MANY SU

Number of subscripts must correspond to dimension

of wvariable,

MISSING RIGHT PARENTHESIS FOLLOWING THE SUBSCRIPT OF AN
EQUIVALENCED VARIABLE

Error
Number

189

190

=4
O
[

192

193

194

195

[
\O
N

197

G-21

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number

Equivalenced variables must be enclosed by parentheses.
Subscripts must be enclosed by parentheses.

TOTAL ARRAY SIZE IS TOO LARGE 198
An array may have no more than 9999 elements.

TOTAL ARRAY SIZE IS TOO LARGE 199
Array may contain no more than 9999 elements.

ARRAY REQUIRES MORE THAN 100,000 DIGITS 201
The core requirement of a program may not exceed
100,000 digits. This error message indicates that
an array alone exceeds 100,000 digits.

SUBSCRIPTED VARIABLE IN AN EQUIVALENCE STATEMENT IS NOT

DIMENSIONED . 202
A variable which appears in an EQUIVALENCE statement
must have been dimensioned previously.

SUBSCRIPT VALUE IN AN EQUIVALENCE STATEMENT IS TOO LARGE 203
Value exceeds declared dimension of identifier.

CONTRADICTION IN EQUIVALENCING VARIABLES 204
Self-explanatory.

DIMENSIONED VARIABLE IN TYPE STATEMENT PREVIOUSLY

DIMENSIONED : 206

A variable may be dimensioned only once.

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error Message

INTEGER PRECEDING X FORMAT DESCRIPTOR MAY NOT EXCEED 132

Self-explanatory.
COMPILER ERROR (FRSTX: COMMON NUMBER CANNOT BE FOUND)

IMPROPER QUANTITY FOLLOWING A RETURN STATEMENT

LR e Yaro ko aY-Val

IMPROPER QUANTITY FOLLOWING AN EXTERNAL STATEMENT
EXTERNAL statement is coded incorrectly.

FUNCTION NAME HAS NOT APPEARED LEFT OF THE EQUAL SIGN IN
AN ASSIGNMENT STATEMENT

In FUNCTION subprogram, the function name must appear
at least once on the left side of an equal sign in an

assignment statement.

END OF FILE AND PARITY ACTION LABELS MUST BE PRECEDED BY
AN EQUALS

In I/0 statement, action labels are coded as .END=n or

ERR=n.

END OF FILE AND PARIT

NUMBERS

<

ACTION LABELS MUST BE STATEMENT

Self-explanatory.

COMMON BLOCK NAME MUST BE AN IDENTIFIER

Self-explanatory.

Error
Number

208

209

210

211

212

213

214

215

G-23

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message) Number

CANNOT FIND AN IDENT CARD ON TAPE o 216
IDENT Card must be used in creating a new tape when
a REPLACE Card is to be used.

UNIT NUMBER NOT TYPE INTEGER IN READ/WRITE STATEMENT 217
Variable used as unit specifier must be_of type
INTEGER.

MISSING LEFT PARENTHESIS PRECEDING THE UNIT NUMBER IN

READ/WRITE STATEMENT 218
Self-explanatory.

FIRST ARGUMENT IN AN INTRINSIC IS THE WRONG TYPE 219
Self-explanatory. Check function usage.

SECOND ARGUMENT IN AN INTRINSIC IS THE WRONG TYPE 220
Self-explanatory. Check function usage.

ARGUMENT IN MAX/MIN INTRINSIC IS THE WRONG TYPE 221
Self-explanatory. Check function usage.

FORMAT ARRAYS MUST HAVE AN EVEN ELEMENT LGTH UNLESS

EQIV/COMMON REQUIRING EVEN STORAGE UNIT LGTH 222
Array used as FORMAT must be of type ALPHA.

AN IDENTIFIER IN A BLOCK DATA SUBPROGRAM DATA STATEMENT

MUST HAVE BEEN PREVIOUSLY SEEN 223

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message ‘ Number

Identifier must be defined in COMMON statement within
BLOCK DATA subprogram.

A DUMMY ARGUMENT MAY NOT APPEAR IN A DATA STATEMENT 224
Self-explanatory.

COMMON VARIABLES MAY ONLY APPEAR IN A DATA STATEMENT IN A

BLOCKDATA SUBPROGRAM 225
Self-explanatory.

IN A BLOCK DATA SUBPROGRAM ALL DATA STATEMENT VARIABLES

MUST BE IN COMMON 226
Self-explanatory. Check for declaration of wvariables
in COMMON statement in BLOCK DATA subprogram as well
as main program.

IN A DATA STATEMENT THE QUANTITY PRECEDING AN ASTERISK MUST

BE AN INTEGER CONSTANT 227
Repeat-specification must be an integer.

A SUBSCRIPT IN A DATA STATEMENT HAS MORE THAN FOUR DIGITS 228
An array may have no more than 9999 elements.

THE PRODUCT OF TWO SUBSCRIPTS IN A DATA STATEMENT HAS MORE

THAN FOUR DIGITS 229
An array may contain no more than 9999 elements.

A SUBSCRIPT IN A DATA STATEMENT IS NOT AN INTEGER CONSTANT 230

Seif-explianatory.

G-25

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number

THE PRODUCT OF THE SUBSCRIPTS IN A DATA STATEMENT HAS MORE

THAN FOUR DIGITS 231
An array may contain no more than 9999 elements.

INVALID CHARACTER IN ALPHA STATEMENT 232
ALPHA statement is not coded correctly.

ALPHA TYPE ON FUNCTION IS NOT ALLOWED 233
Self-explanatory.

SECOND ARGUMENT IN CMPLX INTRINSIC IS WRONG TYPE 234
Self-explanatory. Check intrinsic usage.

INVALID FORMAT DESCRIPTOR 235
FORMAT statement is coded dincorrectly.

INVALID FORMAT LIST ELEMENT 236
Self-explanatory.

UNASSOCIATED INTEGER IN FORMAT LIST 237
Self-explanatory.

INVALID CHARACTER IN FORMAT LIST 238
Self-explanatory.

INVALID SCALE FACTOR FOLLOWING MINUS 239

Compiler assumes an intended scale factor when it

encounters a minus sign in a FORMAT statement.

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number

MISSING P-DELIMITER FOLLOWING NEGATIVE SCALE FACTOR 240
P must follow scale factor and precede format
specifier.

MISSING RIGHT PARENTHESIS IN FORMAT 241
FORMAT statement must terminate with a parenthesis.

P~-DELIMITER NOT PRECEDED BY AN INTEGER IN FORMAT 242
Scale factor must be specified explicitly by an
integer preceding P.

X FORMAT DESCRIPTOR NOT PRECEDED BY AN INTEGER 243
Self-explanatory.

INVALID FIELD WIDTH FOLLOWING D, E, F OR G DESCRIPTOR 244
FORMAT statement is coded incorrectly.

MISSING DOT FOLLOWING FIELD WIDTH 245
Period must separate field width and factional part of
format specifier. >

INVALID FRACTION FIELD WIDTH FOLLOWING DOT 246
Fraction part is missing or larger than field width.

INVALID FIELD WIDTH FOLLOWING A, I OR L DESCRIPTOR 247

FORMAT statement is coded incorrectly.

G=-27

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number
MISSING DELIMITER BEFORE HOLLERITH CONSTANT IN FORMAT | 248
FORMAT statement is coded incorrectly.
TOO MANY RIGHT PARENTHESES IN FORMAT 249

Too many right parentheses or garbage is found

following final right parenthesis.

PROGRAM UNIT CONTAINS MORE THAN 100,000 DIGITS. SUBROUTINIZE
AND SEGMENT OR OPTIMIZE DATA 250

Program part itself contains more than 100,000 digits,
the maximum total program size. Try to make part of
program unit a subroutine(s) and make subroutine

overlayable through SEGMENT Card.

EXCESSIVE USE OF STATEMENT NUMBERS IN COLUMNS 1-5 CAUSES
TABLE OVERFLOW. IF NECESSARY SUBROUTINIZE 251

Self-explanatory.

STATEMENT NUMBER 00000 IS DUPLICATED IN COLUMNS 1-5. ONLY
THE LAST APPEARANCE WILL BE REFERENCED 252

Self-explanatory.

STATEMENT NUMBER 00000 IS REFERENCED BUT DOES NOT APPEAR
IN COLUMNS 1-5 253

Self-explanatory.

STATEMENT NUMBER 00000 IS DUPLICATED BY A FORMAT NUMBER
IN COLUMNS 1-5 254

Self-explanatory.

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number

SEGMENT CARD: UNKNOWN PROGRAM IDENTIFIER 501.
A program part identifier which appears in a SEGMENT
Card must be referenced in the program.

USE CARD: TUNKNOWN PROGRAM IDENTIFIER 502
Self-explanatory.

INITIALIZE CARD: UNKNOWN PROGRAM IDENTIFIER 504
Self-explanatory.

FILE CARD: INVALTID FILE NUMBER MUST BE BETWEEN O AND 190 510
Self-explanatory.

FILE CARD: INVALID UNIT DESIGNATOR 511
Self-explanatory.

FILE CARD: INVALID FILE ATTRIBUTE 512
Self-explanatory.

DUPLICATE FILE DECLARATIONS: ONLY FIRST WILL BE USED 513
More than one FILE Card has been coded specifying
same unit number.

STACK CARD: INVALID STACK SIZE 520
STACK Card is coded incorrectly.

CONTROL CARD: INDETERMINATE CARD TYPE 530

[

G-29

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Error
Error Message Number
CONTROL CARD: IDENTIFIER TOO LONG, 11 CHARACTER MAXTMUM 531
Self-explanatory.
HANDLECODE: OP CODE nn FOUND IN BUT NOT IMPLEMENTED 540
Floating point hardware or SEA (Search) is not in
machine,
TREEANALYSIS: DATA FOR EXCEEDS 100,000 DIGIT LIMIT 541
Data for the listed program part(s) exceeds the 100,000
digit program size limit. Program should be segmented.
HANDLECODE: LABEL NOT FQUND 542
Self-explanatory.
TREEANALYSIS: CODE FOR EXCEEDS 300,000 DIGIT LIMIT 543
Self-explanatory. Theoretically, code may reside above
the 100,000 limit. This is true only if that code is
not self modifying.
Flag
Flag Message : Number
AN EXECUTABLE STATEMENT MAY NOT APPEAR IN A BLOCK DATA
SUBPROGRAM 29
Self-explanatory.
HOLLERITH CONSTANT TOO LONG ' 35

Hollerith constant used in FORMAT statement may not

exceed 132 characters. Hollerith constant used in

G-30

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Flag
Flag Message Number

other statements should not exceed ALPHA size
for progrem.

INTEGER PRECISION MUST BE AT LEAST 5 TO ACCOMMODATE AN

ASSIGNED GO TO 68
Self-explanatory. If integer precision is not at
least 5, address error may occur when Assigned
GO TO is executed.

A GO TO MUST BE FOLLOWED BY A STATEMENT NUMBER, INTEGER

ID, OR LIST 96
Self-explanatory.

IMPROPER STATEMENT NUMBER IN A COMPUTED GO TO LIST 97
Statement number must be integer of one to five
digits.

STATEMENT NUMBERS IN A COMPUTED GO TO MUST BE DELIMITED

BY A COMMA OR RIGHT PARENTHESIS 129
Self-explanatory.

A COMPUTED GO TO LIST MUST BE FOLLOWED BY A COMMA 130
A comma must follow the right parenthesis of the
statement list and must precede the control variable.

A LOGICAL IF MAY NOT CONTAIN A LOGICAL IF 131
A Logical IF may not contain an IF of any type.

ANYTHING AFTER THIRD LABEL IN AN IF STATEMENT IS INVALID 157

Self-explanatory.
G-31

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Flag Message

NOT ENOUGH STATEMENT NUMBERS IN AN IF STATEMENT

IF statement must contain three statement numbers.
COMPILER ERROR
LOGICAL QUANTITY . (DOT) NOT ALLOWED IN AN EXPRESSION

a. An illegal mixing of modes causes this message.

b. If a period has been incorrectly called in an

expression, this message may occur.
MISSING TERMINATION STATEMENT NUMBER IN DO STATEMENT
Self-explanatory.
EXCEEDED MAXTMUM NESTING OF DO STATEMENTS
DO statement may be nested a maximum of nine deep.
IMPROPER DO CONTROL VARTIABLE
Control variable must be an integer wvariable.
MISSING EQUAL SIGN IN DO STATEMENT
Self-explanatory.
COMMA MUST FOLLOW INITIALIZATION PARAMETER IN DO STATEMENT
Self-explanatory.
ILLEGAL INITIAL PARAMETER IN DO STATEMENT

Self-explanatory.

G~-32

Flag
Number

158

212

219

220

502

504

510

512

513

APPENDIX G (cont)
FORTRAN ERROR MESSAGES AND FLAGS

Flag
Flag Message Number
ILLEGAL TERMINATION PARAMETER IN DO STATEMENT 530
Self-explanatory.
ILLEGAL INCREMENT PARAMETER IN DO STATEMENT 531

Self-explanatory.

G-33

INDEX

absolute value, 8-4 card

ACCEPT, subroutine, B-1 comment, 1-2

action labels, 7-7 continuation, 1-2, 1-3
alphanumeric conversion on control, C-1

input using Aw, 7-20 DEBUGN, C-23
alphanume?lc conversion omn DEBUGN HEADINGS, C-22
output using Aw, 7-20

arctangent, 8-6 dollar sign control, C-25

Arithmetic Assignment FILE, C-3

statement, 4-1 FORTRAN control, C-3
arithmetic expressions, 3-1 HOLL, C-9

arithmetic expression IDENT, C-10

Uix ALJIIN L g v

operator precedence, 3-2

Arithmetic IF statement, 5-3

INITIAL, C-11
LOAD, C-13

MAP, C-2.4

MCP control, C-1

arithmetic operator, 3-1

array, format specification
in an, 7-24

ASSIGN statement, 4-3
Assigned GO TO statement, 5-2

program, 1-1
REPLACE, C-14

Assignment statement, SEGMENT, C-16
Arithmetic, 4-1 SIZE, C-18

Assignment statement, STACK, C-19
Logical, 4-2
& ’ USE, C-20

assignment statements, 4-1 carriage control, 7-25

(14 _
auxiliary I/0 statements, 7-8 CHANGE, subroutine, B-3
Aw, alphanumeric conversion on
input using, 7-20 character set, 2-1
character set, constants,

Aw, alphanumeric conversion on .
: b variables, 2-1

output using, 7-20
characters, special, 2-1
n
P

BACKSPACE statement, 7-9 CLOSE, subroutine, B-
block, COMMON, 6-3 comment card, 1-2
BLOCK DATA, 8-11 COMMON block, 6-3
BLOCK DATA statement, 6-11 common logarithm, 8-6

COMMON statement, 6-3
CALIL statement, 5-9

one

INDEX (cont)

complex conjugate, 8-5 dimensions, variable, 6-2

complex constant, 2-4 DO loop, implied, 7-6

Computed GO TO statement, 5-2 DO nesting, 5-6

constant DO statement,. 5-5
complex, 2-4 dollar sign control cards, C-25
double precision, 2-3 double precision constant, 2-3
Hollerith, 2-5 double precision conversion on

integer, 2-2 input using Dw.d, 7-16

double precision conversion on

logical, 2-5 output using Dw.d, 7-17

real, 2-2 Dw.d, double precision conversion
constants, 2-2 on input using, 7-16
constants, variables, Dw.d, double precision conversion
character set, 2-1 on output using, 7-17

continuation card, 1-2, 1-3

CONTINUE statement, 5-8 EQUIVALENCE statement, 6-5

equivalencing multiple subscripts
to one subscript, 6-7

END statement, 1-2
ENDFILE statement, .7-9
End-of-File condition, 7-7

control cards, C-1
control cards, FORTRAN, C-3
control, carriage, 7-25
control statements, 5-1
cosine, trigonometric, 8-6 entering a character string as
create complex, 8-5 input using wHs, 7-21

error flags and messages, G-1

DATA statement, 6-10 EXIT, subroutine, B-5

DATE, subroutine, B-5 exponential, 8-5
H

datum conversion, 7-18 . .
express single precision argument

debugging aids, E-1 in double precision form, 8-5
DEBUGN Card, C-23 expression, arithmetic, 3-1
DEBUGN HEADINGS Card, C-22 expression, logical, 3-4

deck structure, 1-3 expressions, 3-1

declarative statements, 6-1 external functions, 8-3
defining SUBROUTINE external functions, referencing,
subprogram, 8-10 8-9

digits, 2-1 EXTERNAL statement, 6-9
DIMENSION statement, 6-1 Ew.d, real conversion on input

using, 7-15

two

INDEX (cont)

Ew.d, real conversion on output = functions, intrinsic (cont)
using, 7-15 AMOD, 8-4
ATAN, 8-6
factor, scale, 7-16, 7-18 ATAN2, 8-6
FILE Card, C-3 CABS, 8-
file specifier, 7-1 ccos, 8-6
fix, 8-5 CEXP, 8-5
float, 8-4 CLOG, 8-6
FMDUMP, subroutine, B-6 CMPLX, 8-5
FORBLR, F-1 CONIG, 8-5
format and I/0 list -
interaction, 7-26 cos, 8-6
format specification in an CSIN, 8-6
array, 7-24 CSQRT, 8-6
format specifier, 7-1 DABS, 8-4
FORMAT statement, 7-11 DATAN, 8-6
formatted input statements, 7-2 DATAN2, 8-6
formatted output statements, DBLE, 8-5
T-4 DCoOS, 8-6
functions, 8-1 DEXP, 8-5
external, 8-3 DIM, 8-5
intrinsic, 8-2 DLOG, 8-6

referencing external, 8-9 DLOG1O. 8-6
, 8-

resulting actions of an

intrinsic, 8-4 DMAX1, 8-4
functions, intrinsic DMIN1, 8-4
ABS, 8-4 DMOD, 8-4
AIMAG, 8-5 DSIGN, 8-5
AINT, 8-4 DSIN, 8-6
ALOG, 8-6 DSQRT, 8-6
ALOG10, 8-6 EXP, 8-5
AMAXO, 8-4 FLOAT, 8-L4
AMAX1, 8-4 IABS, 8-4
AMINO, 8-4 IDIM, 8-5
AMIN1, 8-4 IDINT, 8-4

TRFTY -5
=7

—a aday

three

INDEX (cont)

functions, intrinsic (cont)

INT, 8-4
ISIGN, 8-5
MAXO, 8-U4
MAX1, 8-4
MINO, 8-4
MIN1, 8-L
MOD, 8-4
REAL, 8-5
SIGN, 8-5
SIN, 8-6
SNGL, 8-5
SQRT, 8-6
TAN, 8-7
TANH, 8-6

Fw.d,; real conversion on
using, 7-13

Fw.d, real conversion on
using, 7-14

Gw.d, real conversion on
using, 7-17

Gw.d, real conversion on
using, 7-17

HOLL Card, C-9
Hollerith constant, 2-5
hyperbolic tangent, 8-6

IDENT Card, C-10
implied DO loop, 7-6
INITIAL Card, C-11
input/output, T-1
input/output list, 7-2

input statements, T7-1

input

output

input

output

input statements, (

unformatted, 7-

cont)

3

integer constant, 2-2

integer conversion
using Iw, 7-12

integer conversion
using Iw, 7-12

intrinsic function,
actions of an, 8-4

intrinsic functions

on input

on output

resulting

(See functions, intrinsic.)

I/0 lists, 7-5

I/0 statements, auxiliary, 7-8

Iw, integer convers
input using, 7-12

Iw, integer convers
output using, 7-12

library, software,
list, input/output,
lists, I/0, 7-5
LOAD Card, C-13
logarithm, common,
logarithm, natural,
Logical Assignment
logical constant, 2

logical conversion
using Lw, 7-19

logical conversion
using Lw, 7-19

logical expression,

logical expression
precedence, 3-5

four

ion on

ion on

B-1
7-2

8-6

8-6
statement,
-5

on input
on output

3-4

operator

4-2

INDEX (cont)

Logical IF statement, 5-4 real conversion on input using

logical operators, definitions Fw.d, 7-13

of, 3-5 real conversion on input using
] . Gw.d, 7-17
loop, implied DO, 7-6

. . . real conversion on output usin
Lw, logical conversion on input e p g

using, 7-19 Ew.d, 7-15
Lw, logical conversion on ;ﬁaé o;nzzr51on on output using
output using, 7-19 «dy [-
real conversion on output using
Gw.d, 7-17

MAP Card, C-24
referencing external functions, 8-9

natural logarithm, 8-6 relation, 3-6

nesting, DO, 5-6 relations and meanings, 3-6
nX, skipping characters using, remaindering, 8-4

7-22

repeat specifications, 7-26
REPLACE Card, C-14

obtain most significant part of REREAD statement, 7-10
double precision argument, 8-5 RETURN statement, 5-9
obtain real part, 8-5 REWIND statement, 7-8

operator, arithmetic, 3-1

obtain imaginary part, 8-5

operators, definitions of scale factor, 7-16, 7-18

logical, 3-5 scale factor on input, 7-23

output statements, 7-4 scale factor on output, 7-23
formatted, 7-4 SEGMENT Card, C-16
unformatted, 7-5 sequencing, 1-2, 1-3

SEND, subroutine, B-7

nth -2
pare eses, 3 set, character, 2-1

iti difference, 8-
positive © ’ > simple variable, 2-6
rogram cards, 1-1
prog ’ sine, trigonometric, 8-6

random record number, 7-1 SIZE Card, C-18

READ statement, 7-2 skipping characters using nX, 7-22
?

READ/WRITE intrinsics, D-1 slash (/), use of, 7-25

real constant, 2-2 software library, B-1

. . . ial -
real conversion on input using special characters, 2-1

BEw.d, 7-15 specifier, file, 7-1

five

INDEX (cont)

specifier, format, 7-1 statement (cont)

SPOACP, subroutine, B-8 output, 7-4

SPOMSG, subroutine, B-9 READ, 7-2

square root, 8-6 REREAD, 7-10

STACK Card, C-19 RETURN, 5-9

statement REWIND, 7-8
Arithmetic Assignment, U4-1 STOP, 5-8
Arithmetic IF, 5-3 Type, 6-8
ASSIGN, 4-3 Unconditional GO TO, 5-1
Assigned GO TO, 5-2 unformatted input, 7-3
assignment, 4-1 unformatted output, 7-5
auxiliary 1/0, 7-8 statement functions, 8-1
BACKSPACE, 7-9 STOP statement, 5-8
BLOCK DATA, 6-11 subprograms, 8-1
CALL, 5-9 gubprograms, defining SUBROUTINE,

-10

COMMON, 6-3

Computed GO TO, 5-2 subroutine

ACCEPT, B-1
CHANGE, B-3

CONTINUE, 5-8

control, 5-1

DATA, 6-10 CLOSE, B-3
declarative, 6-1 DATE, B-5
DIMENSION, 6-1 EXIT, B-5
DO, 5-5 FMDUMP, B-6
EQUIVALENCE, 6-5 SEND, B-7
END, 1-2 SPOACP, B-8

ENDFILE, 7-9 SPOMSG, B-9

EXTERNAL, 6-9 TIME, B-9
FORMAT, 7-11 TRACE, B-10
zIP, B-11

formatted input, 7-2

formatted output, an subroutine subprograms, defining,

8-10

input, 7-1 subscripted variables, 2-6
Logical Assignment, h-2

Logical IF, 5-4 tangent, hyperbolic, 8-6

six

INDEX (cont)

tangent, trigonometric, 8-7
TIME, subroutine, B-9

Tn format specification, 7-22
TRACE, subroutine, B-10
transfer of a sign, 8-5
trigonometric cosine, 8-6
trigonometric sine, 8-6
trigonometric tangent, 8-7
truncation, 8-4

Type statement, 6-8

Unconditional GO TO statement,
5-1

unformatted input statements,

USE Card, C-20
use of slash (/), T7=25

variable dimensions, 6-2
variable, simple, 2-6
variable, subscripted, 2-6
variables, 2-5

variables, character set,
constants, 2-1

wHs, entering a character
string as input using, 7-21
wHs, producing a character

string as output using, 7-22

Z2IP, subroutine, B-11

seven

Jotted line

cut ale

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS
REMARKS FORM

TITLE: _B 2500 and B 3500 SYSTEMS FORM: 1030376

FORTRAN Reference Manual DATE: 8.71

CHECK TYPE OF SUGGESTION:
[JADDITION []DELETION [IREVISION [_JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE

TITLE
COMPANY
ADDRESS

STAPLE

FOLD DOWN SECOND FOLD DOWN

No

Postage

Postage Stamp
Will Be Paid

Necessary
If Mailed in the
United States

by

Addressee

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

atin: Sales Technical Services
Systems Documentation

FOLD UP FIRST FOLD UP

Yid)

Wterever There's
Business There's | Burroughs

Printec in U, S. America

~1

1030378 e

	000
	001
	002
	003
	004
	005
	006
	007
	009
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	G-31
	G-32
	G-33
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	replyA
	replyB
	xBack

