urroughs

i

2500
and

B 3500
SYSTEMS

ASSEMBLERS REFERENCE MANUAL

Burroughs
B 2500 and B 3500

INFORMATION PROCESSING SYSTEMS
ASSEMBLERS
REFERENCE MANUAL

D

Burroughs Corporation
Detroit, Michigan 48232

$5.00

Printed in U.S. America 4-69

COPYRIGHT ©1966, 1968, 1969 BURROUGHS CORPORATION
AA 828690 AA995117 AAB88919

This Reference Manual also contains information previously contained in “B 2500 and
B 3500 Systems Advanced Assemblers Language Manual,” form number 1025491,
COPYRIGHT®1966 Burroughs Corporation, AA 828688.

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con-
sequences arising out of the use of this material. The infor-
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

This reprint includes the information released under the following:

PCN 1034949-001 (October 30, 1969)
PCN 1034949-002 (November 20, 1970)

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to- Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

TABLE OF CONTENTS

8-Bit Format (UA) « « . .

Word Format . .« ¢ « ¢ o o« o o o o o o =

SECTION TITLE PAGE
INTRODUCTION. . . +« ¢« ¢ + « o & « o & o o o o o « XxXvii

1 DATA FORMATS. .+ . v v v 4 v o ¢« o o o o o o &+ o« o« 1=1
General. . .« « « « « « ¢ 4 e 4 e e e e e 1-1

Internal Storage . . +« ¢ ¢« ¢ o « « o « o 1-1

Unsigned 4-Bit Numeric Format (UN). . . 1-1

Signed 4-Bit Numeric Format (SN). . . . 1-2

Floating Point Format« . . 1-2

1-3

1-3

1-4

Input/0Utput « « « « v v 4 e e e e e e e e

2 GENERAL PROCESSOR DESCRIPTION 2-1
General. . .« . ¢« « ¢ « ¢ ¢ + 4+ e o o 4 e« 2 . 2=1
Instruction Format « . « « .+ + . 2-1

Operation Code. . .+ .« +« + « o o o o o« o 2-1
Variants. . ¢« « « « ¢ ¢ & « o + o o + o« R2=1
Address Field « « « « o« .« . 2-2
Branch Format+ ¢« « « « o « o o = 2-3
Index Registers. . « « + « o« o o o o o « o 2-3
Indirect Addressing. . « « « « « « « + « o« . 2=4
Literal Operations . . . « +« « ¢ « o o« « = 2-4
Field Lengths. . . .+ + + ¢« o o « « o o« « = 2-5
Program Reserved MemoTry. . . « « + o « o o o+ 2=6
Base and Limit Registers . . + « ¢ « « o« « = 2-"7
Edit Operators . .« + + o« « o o o o o o 4+ & o« R2=7
Edit ExampleS. « « o o o o o o o« o o o s o 2-11
Verbal Description.« .+ .+ . 2~11
COBOL Pictures. . . + +« o o & o o o o« o 2=12
Indirect Field Length. 2=14

3 ASSEMBLER CODING FORM . . .+ + ¢ « « « &+ « &« « « « 3-1
General, . .« « « « & o o & 4 e e e e e s e 3~
Sequence Number. . . .« +« + « « &« o o o « o 3-1

Revised 10/30/69 .
by PCN 1034949-001 1iid

SECTION

iv

3 (cont)

TABLE OF CONTENTS (cont)
TITLE

Label. . « « +« ¢« « ¢ o o o« o o
Op Code. « + v v ¢ o« o &+ o o
Variant Field. « . .« .
Address Label Fields A, B, and
Address Increment Fields A, B,
‘Address Index Fields A, B, and

Address Controller Fields A, B,

Remarks Field.« .+ « « &

and
C .

C

and C.

MULTI~-STATEMENT STRUCTURES AND CONTROL

INFORMATION . . & v o ¢ + o o o &
General. . « ¢« + « o« « « o +
Program Structure.
Lower-Level Structures
File and Record Declaration. .

Program Segmentation

Control Information for Basic and

Advanced Assembler . . . « . .

BASIC ASSEMBLER INPUT/OUTPUT CODING
General. « « « 4+ o o « o o« o

Basic Assembler and Advanced
Assembler Differences.

Basic Assembler Input/Output
Instructions . . . « . . .« . .

Use of Special I/0O Control (SIOC)

Routines for Basic Assembler .
STOC Routines« . .
FILE Construct.
"Label Handling.

Blocking and Variable Size Records

STOC Error Recovery Procedures

Magnetic Tape Read .
Card Read and Punch.

I.ine Printer

PAGE

W W LW w w ww
1 I
Nt LW W

= F
1 I
=

Ut Ut Ut Ut Ut bt Ut bt it
1
N OOV LW LD

SECTION

5 (cont)

TABLE OF CONTENTS (cont)
TITLE
Use of INIT, INER, IOGU, TIOC, -:-
and RTRN Constructs. .« « ¢ o« ¢ « o o o o o

User Routines. . « «v o« ¢ v v v o« o o o o

ASSEMBLY OPERATION CODES. . . . + + « « « « o

General. + + « o ¢ & 4 evitemrie 4 e e e e
Declare Address Constant (ACON) -
Declarative . . « « ¢« .« « « + . ..

Accept SPO Type-In (ACPT) - Pseudo. .

Three-~Address ADD (ADD)
Machine Code-02 . ., + .+ + .+ .

Allocate Storage for Segment
Dictionary (ADSD) - Declarative . . .

Declare Extended Alpha Constant
(ALFA) - Declarative. . . . +« « « o .

Ad just Location Counter (ALOC)

Pseudo. e e e e
Logical AND (AND) - Machine Code -
L
Blank (bbbb) - Pseudo

Branch Communicate to Control
Program (BCT) - Machine Code-30 . . .

Bit One Test (BOT) ~ Machine
Code-41« .« « v « v v v e e

Branch Reinstate (BRE)
Machine Code-90 « ¢ o « o o .

Increment by One (BUMP) - Pseudo. . .

Branch Unconditional (BUN)
Machine Code=27 . . ¢ ¢« ¢ cee o o« =

Bit Zero Test (BZT) - Machine
Code-40 e e e e

Close File (CLOS) - Pseudo.
Declare Constant (CNST)
Declarative . « + « « ¢ « « « o o «

Enable Printed Object Listing
(CODE) - Pseudo . v « o « v v v o « .

Obtain Amount of As51gned Core
(CORE) = Pseudo . « « v « « v « « « .

Revised 11/20/70
by PCN 1034949-002

PAGE

6-9
6-11

6-12

6-16
6-18

6-19

6-20
6-22

A%

SECTION

vi

6 (cont)

TABLE OF CONTENTS (cont)

TITLE
Compare Alphanumeric (CPA) -
Machil]e COde-LI-5. 3 .] . .

Compare Numeric (CPN) -
Machine COde—Ll-6. L) 3 . .

Allocate Record Fields (DATA) -
Declarative. + ¢« o« « o+ ¢ o o o o @

Obtain Systems Date (DATE) - Pseudo.

Two-Address Subtract (DEC) -
Machine Code-03. ¢« « ¢ ¢ o« & o o+ =&

Decrement by One (DECR) - Pseudo .
Delimit Constants (DELM) - Pseudo.

Display Message on SPO (DISP) -
Pseudo L . L] . L] L] . . . L] . . L .

Divide (DIV) - Machine Code-06 . .

Delete Source Statements in Update
(DLET) - PseudO. « & o « « « o« o &

Comment (DOCU) - Pseudo. . « + +

Suspend Program Temporarily (DOZE)
Pseudo L] L] . . . L) L] L] . L] . L) . L]

DUMP Program Memory (DUMP) - Pseudo.

Edit (EDT) - Machine Code-49 . . .
End File Block (ENDF) - Pseudo . .
End Record Block (ENDR) - Pseudo .

End Overlayable Segment (ENSG)
Pseudo . . . L L] L] . L] L] . L] L] . .

Define Symbol of Equivalence
(EQIV) - pseudo. « o« « + « o o o &

Branch Equal (EQL) ~ Machine
COde—22. L] L] L] . .

Exit from Subroutine (EXT) -
MaChi]’le COde—32.

FP Add (FAD) - Machine Code-80 . .
FP Divide (FDV) - Machine Code-83.

Declare Logical File (FILE) -
Declarative (Advanced Assembler) .

Declare Logical File (FILE) -
Declarative (Basic Assembler). . .

End of Symbolic Input (FINI) -
Pseudo . o ¢ « o o o ¢ o o o o o

PAGE

6-29
6-31

6-33
6-34

6-35
6-38
6-38A

6-39
6-40

6-43
6-Lk

6-45
6-46
6-U47
6-149
6-50

6-51
6-52
6-53

6-54
6-56
6-58

6-60
6-68

6-70

SECTTION

6 (cont)

TABLE OF CONTENTS (cont)

TITLE

FP Multiply (FMP) - Machine Code-82
FP Subtract (FSU) - Machine Code-81

Branch Not Less (GEQ) - Machine
Code-26. . + « « « « « .«

Branch Greater (GTR) - Machine
Code-2L.« . « « « « . ..

Halt on Breakpoint (HBK) - Machine
Code-48. « . « « o < ..

.

Halt/Branch (HBR) - Machine Code-29.

Program Name (IDNT) - Pseudo . . .

Initiate I/0 (IT0) - Machine Code-94

Two-Address Add (INC) - Machine
Code-01l. . . « « « o« « o o« & o «

Initiate I/0 (INER) - Pseudo . . .

Indirect Field Length (INFL)
Pseudo . ¢ + + o o o o e e e s e e

Initiate I/0 Operation (INTT)
Pseudo . . .« + ¢+ ¢ ¢ o . . 0 0.

Obtain Symbolic Channel and Unit
(IOCU) - Pseudo. . + « « « « + o«

Define Ascending Key (KEYA)
Declarative. « « « « « « o o o o

Define Descending Key (KEYD)
Declarative. « « « « o o o « o+ o o

Branch Not Greater (LEQ) - Machine
Code-23. « « +« « « « . e e e e e

Enable Printed Source Listing
(LTST) - Pseudo. . .« « « « « « «

Set New Location Counter Value
(LOCN) - Pseudo. . . .+ « o < .+ .

Branch Less (LSS) - Machine Code-21
Multiply (MPY) - Machine Code-05 ..
Multiply (MUL) - Machine Code-05 .

Move Alphanumeric (MVA) - Machine
Code-10. . + ¢« ¢ ¢ o « ¢ « o o« o

Move and Clear Words (MVC) - Machine

Code=13. ¢ ¢ ¢« o o o o s 2 o o o
Move Links (MVL) - Machine Code-09

Move Numeric (MVN) - Machine Code-11

Revised 11/20/70

by PCN 1034949-002

PAGE

6-71
6-73

6-77
6-79
6-81
6-82

6-83
6-85

6-87

6-88

6-90
6-90B
6-90D
6-91

6-92
6-93
6-94
6-96

6-97

6-100
6-102
6-10L

vii

SECTION

6 (cont)

viii

TABLE OF CONTENTS (cont)

TITLE

Move Repeated (MVR) - Machine

Code-14.« . 4 ..
Move Words (MVW) - Machine
Code=12.+ +« v v v v« v « W

Branch Not Equal (NEQ) -~ Machine
Code=25. . . + « « « « « v e . .

Disable Printed Object Listing
(NOCD) - Pseudo. . . « v v v v .« . .

Disable Printed Source Listing

(NOLT) - Pseudo. . . . « « v v « . .
No Operation (NOP) - Machine
Code-20. « « + v 4 4 ...
Logical Exclusive Or (NOT) -
Machine Code-4L.
Enter Subroutine (NTR) - Machine
Code=-31. . . . v v v v v « v e e W .

Declare Extended Numeric Constant
(NUMR) - Declarative

Branch On Overflow (OFL) - Machine
Code-28.

Open File (OPEN) - Pseudo.
Logical Or (ORR) - Machine Code-473 .

Call and Enter Subsegment (OVLY)
Pseudo + .+« v . . .

Declare COBOL -~ Form Edit Mask
(PICT) - Declarative

Position External File (POSN) -

Pseudo 0 .. .
Read Address (RAD) - Machine Code -
92 « v v o e e e e e e e e e e
Read and Clear Timer (RCT) - Machine
Code=96. . v v v v e e e e e

Read Timer (RDT) - Machine Code-95 .
Read Record (READ) - Pseudo.
Declare Record (RECD) ~ Declarative.

Receive Data from Another Program
in Core (RECV) - Pseudo.

Reference Label (REFR) - Pseudo. .

PAGE

6-108
6-110
6-112
6-113
6-114
6-115
6-116
6-118
6-120A

6-121
6-122
6-124

6-126
6-127
6-129
6-130A

6-131
6-132
6-133
6-134

6-136
6-136B

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE

6 (cont) Comment (REMK) - Pseudo. . . « 6-136C

Restore Previous Location Counter
Value (RLOC) - Pseudo. . [. [6—137

Reset Data Field to a Zero (RSET) -
Pseudo . o 3 .] 3 . . o . 3 6-138

Return to Control Program from User
Routine (RTRN) - Pseudo. . « 6-139

Proceed to Next Program (RUNN) -
Pseudo] 6'1#0

Scan Delimiter Equal (SDE) - Machine
COde—l6. . [. [. 6-141

Scan Delimiter Unequal (SDU)
Machine COde—l7. . L4 . L] . L] L] . L] . . 6"141"

Search (SEA) - Machine Code-39 6-146
Search Equal (SEAE) - Pseudo 6-151
Search Low (SEAL) - Pseudo 6-152
Seek Disk Record (SEEK) - Pseudo . . . 6-153

Define Start of Overlayable Segment
(SEGM) - PseudO. + « + « o« « « o« o « o 6-155

Send Data to Another Program in
Core (SEND) - Pseudo . « o & o o o + &

Set Data Field to a One (SETT) -
PseudO .] . [. . . . [. 6"157

Declare Segment Number (SGNM) -
DeclaratiVe. « « s o o o o o « s o o » 6-158

Standard I/0 Package (SIOC) - Pseudo . 6-159
Begin Sort Key Definition (SKEY) -

DeClarative. . . L] . . L] L] L) [L] . L) . 6-160

Search Lowest (SLST) - Pseudo. 6-160B
Set EBCDIC/USASCI. Mode Flip-Floj

(SMF) - Machine Code-47. 6-161

Sort File (SORT) - Pseudo. «. . « « . . 6-162

Start New Listing Page (SPAC) -

Pseudo 6—162B

Specify Assembler Options (SPEC) -
Pseudo . L] . . L] L] . L] e L] . L] . [L] L) 6—163

Fill Area (SPRD) - Pseudo. « « +« o« o« . 6=167
Scan Result Descriptor (SRD) -
Machine COde—9l. . . L) 6-169

Revised 11/20/70
by PCN 1034949-002 ix

SECTION

6 (cont)

TABLE OF CONTENTS (cont)

TITLE

Terminate Program Execution (STOP)
Pseudo L] L] L] 1] L] . L] . L] . L] . L] L] L]

Set Timer (STT) - Machine Code-97. .

Three-Address Subtract (SUB) -
Machine COde - 04 L] L] .

Synchronized Location Counter
(SYNC) - Pseudo. « « « « o« o o o & &

Scan Delimiter Zone Equal (SZE) -
MaChi]‘le COde—lS. . . 3] . [] (] . L[]]

Scan Delimiter Zone Unequal (SzU) -
Machine Code-19. + + ¢« &« o o o o o o

Read Systems Clock (TIME) - Pseudo .
Test I/0 Complete (TIOC) - Pseudo. .

Trace Program Execution (TRAC) -

Pseudo
Translate by Table (TRN) - Machine
Code-l5o (3 [. . .

Unlock Record (UNLK) - Pseudo. . . .

Declare User I/0 Procedures (USER) -
Declarative. « ¢« o « o o o o o o o

Obtain Control Card Value (VALU) -
Pseudo L] L] . L] L] L] L] L] L] L] L] L] L] L] L]

Write Record (WRIT) - Pseudo

Execute Control Card Function (ZIPP)
Pseudo .« « + ¢ « o ¢ o o o o o o o

DATA COMMUNICATIONS OPERATION CODES« .

General. ¢ ¢« o o ¢ ¢ o« o« o o o o o » o

Accept from Remote SPO (ACPR) -

Pseudo . L] L[] Ld L] . L] . . L] . L] L] L] .
Cancel DC I/0 if Inactive (CNCL) -
PseudO’ ‘o)
Display onto Remote SPO (DISR) -
Pseudo . L] L] L] . L] . L] . L) (] L] . L] .

Enable DC Device (ENBL) - Pseudo . .

Fill Input Area from DC Device
(FILL) - PSeudo. . . . L] L] . . L] . .

Obtain I/0 Character Count (INTA) -
Pseudo . L] L] L] L] L] L] L] . L] L] . L] . L]

Interrogate DC Result Descriptor
(INTR) - PseudO. « + « o o & o o o«

PAGE

6-171
6-172

6-173
6-175
6-176

6-179
6-182
6-183

6-184

6-185
6-188

6-188A

6-190
6-191

6-193

7-10

7-11

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
7 (cont) Continue Stream Mode into Next

Buffer - (REDY) - Pseudo . . + « o . . 7=14

Read DC Record (REED) - Pseudo 7-15

Write DC Record (RITE) - Pseudo. . . . 7-17

Cancel DC I/O Unconditionally (UNCL) -
PseudO L] . L] . . 7"'19

Await Inquiry (WAIT) - Pseudo. 7-20

Write to Control/Read to Control
(WCRC) - PseudOQ LI L] . . . 7—22

Write to Control/Read Transparent
(WCRT) - PseudO- 3 L] 7—24

Write Transparent/Read to Control
(WTRC) - PseudOo . . o . L] 7""26

8 SORTER~READER AND LISTER OPERATION CODES. . . . 8-1
General. [[] [. L) L) . . . L) . 8‘-
Enable Lister (ABLE) - Pseudo. 8-2

Advance Batch Counter (CWNT) -
Pseudo . . [. .]] . [8-3

Start Sorter-Reader in Flow Mode
(FLOW) - Pseudo. « « « « « & o o o o« . 84

Turn on Pocket Light (LGHT) -
Pseudo L] L] L] . . . L] L] L] L) L] . L] L] L[] L]

Print MTL Record (LSTR) - Pseudo . . .

Exit from Pocket Select Routine
(PCKT) - PseudOo L] . [. .] [3 . . . 8-8

Skip MTL (SKIP) - Pseudo 8-10
Slew MTL (SLEW) - Pseudo . . « + + « . 8-12
Space MTL One Line (SPAS) - Pseudo . . 8-1L

Read Record from Sorter File (SRTR) -
Pseudo . [. [. . . [. L) . [. . * . 8"16

9 FREE~FORM ASSEMBLY LANGUAGE « ¢ ¢ ¢ « o o o o o 9-
General . L] L] 9_1
Language Description . « ¢« « ¢ ¢ o« « o o« « 9-1

Revised 11/20/70
by PCN 1034949-002 xi

SECTION

xii

9 (cont)

10

TABLE OF CONTENTS (cont)

TITLE
Delimiters. . . .
Strings
Statements. . . .

Sequence Number
Statement Label
Addresses . . .
Modifiers . . .
Null Modifier .
Op Code

.

(Optional).

AF and BF Entries

Literals. . . .

Special String.

.

REMK and DOCU Pseudos

Free-Form Comments.
CNST Declarative.
PICT Declarative.

Remarks

Error Deletion.

File Declarative.

SPEC Pseudo . .
DLET Pseudo . .
OPEN Pseudo . .
MEMORY Pseudo .

.

.

Advanced FFT File-Names

Free-Form Messages.

MACRO FACILITY FOR ADVANCED ASSEMBLER.

General.. . . .

Macro Syntax and Method for Calling

Macro

.

Features of a Macro.

.

.

The Three Fundamental Components

a Macro Definition

Header.

.

PAGE

O O O ¢ 0 VOV WV W Vv ¢ O WV Vv O
| I I S N I D |

H 0O 0 0N 00N EBEREWLWWNRE
o

9-10
9-10
9-11
9-11
9-11
9-12
9-12
9-13
9-13
9-13
9-13

10-1
10-1

10-1
10-1

10-1
10-1

TABLE OF CONTENTS (cont)
SECTION TITLE

10 (cont) Model Statements.
The MEND STATEMENT.

Example of a Macro Definition .

Calling a Macro., . « v « « « « o o .

Null and Omitted Parameters . .

Keyed References.

Macros Calling Other Macros . .

Nested Calls of Systems Macros.

Details for Defining a Macro

CNST and DATA Declarations. . .

Labels.« . .+ + « « +« « .

Macro Assigned Labels

Macro Conditionals.

Booleans.+ . . ¢ . . .

Boolean Conditional. . . .

_ SETB and CLRB Pseudos. . .

MERR Pseudo« . « . .

Defining and Calling a Library Routine. .
The Definition
Calling a Library Routine.

Creation and Maintenance of a Macro
Library on Disk+ « ¢« « « « « « o .

Features of the Maintenance Program.
Layout of MACDIR +« « « « « .
Index Record.
Directory . . « v « ¢ o « « o
Control Information.
File Control.+ +« + « + .
Loading Routines

Dumping Routines

Crunching Routines

File Maintenance. . .« « « « « .

Revised 10/30/69
by PCN 1034949-001

PAGE

10-2
10-3
10-3
10-4
10-5
10-6
10-7
10-7
10-8
10-8
10-9
10-9
10-9
10-11
10-12
10-13
10-13
10-14
10-14
10-14

10-17
10-17
10-17
10~-17
10-18
10-18
10-18
10-19
10-19
10-20
10-20

xiii

SECTION

10 (cont)

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX
APPENDIX
APPENDIX

FIGURE

£ LN NN NN NN D
1
H H 3 00Ut &N

xiv

[c5 I w B O o v B

Q

TABLE OF CONTENTS (cont)

TITLE

Adding Routines. . .
Removing Routines. .
Patching Routines. .
Copying Routines . .

Directory Dump . . .

BASTIC ASSEMBLER OBJECT PROGRAM OUTPUT . .
NOTES ON ADVANCED ASSEMBLER OPERATIONS.

BCP INPUT/OUTPUT START AND RESULT DESCRIPTORS

EBCDIC, USASCII, AND BCL REFERENCE TABLE.

BASTC ASSEMBLER AND ADVANCED ASSEMBLER
ERROR MESSAGES. « ¢« ¢ ¢ ¢« « « « o o o o+ o

ADVANCED ASSEMBLER PROGRAM LISTING. . . .
ADVANCED ASSEMBLER SYMBOLIC TABLE LISTING
ASSEMBLY OPERATION CODE LISTING

LIST OF ILLUSTRATIONS

TITLE

Address Syllable of Instruction (Six Digits)

One Syllable Instruction (Six Digits). .
Two Syllable Instruction (12-Digits) . .
Three Syllable Instruction (lB—Digits) .
Four Syllable Instruction (24-Digits). .
Address-branch Instruction Format. . . .
Coding for Machine-Language Edit Masks .

Assembler Coding Form. « « « .

FILE Declaration and Working-Storage Porti

of Symbolic Deck« .+ « « « « o o
Example of a Segmented Program

Core Memory Requirements for Figure L-2.
Sample 1 of BCP I/0 Coding« . .
Sample 2 of BCP I/O Coding

Translate Tables in Core . . + +« + + « &

.

.

.

PAGE
10-21
10-22
10-22
10-23
10-23
C-
D-1
E-

BP-

G-

H-
PAGE
2-2
2-2
2-3
2-3
2-3
2-3
2-14
3-2
h-3
h-5
L-6
5-9
5-10
6-187

FIGURE

TABLE

5-2
10-1

LIST OF ILLUSTRATIONS (cont)
TITLE

Example: Use of Sort Pseudo
Example of Sorter-Reader Program

Example of Advanced Free-Form Translator
Program Listing. . . + . « « ¢« ¢« v v « « 4 .

Example of Macro Definition with Call and
Generated Code . . + ¢ v v v v v 4 e e W W

Sample Advanced Assembly Card Deck
Sample Advanced Update Assembly Card Deck. .

Sample Advanced Free-Form Translator Card

Deck . « « v o v v v o 00y e e e e e e e
Sample Advanced Update Free-Form Translator
Card Deck. . . « ¢« « o v v v v 4 4 4 e e e

LIST OF TABLES

TITLE

Symbolic Substitution Entries.

Component Fields of the File Information
Block. . . « v v ¢ v v v v e e e e e e e e

Component Fields of External File Label. . .

Conditional Test Possibilities

Revised 10/30/69
by PCN 1034949-001

PAGE

6-162A1R
8-17

9-14

10-16
B-3
B-k

B-4

B-5

PAGE

Xv

INTRODUCTION

The Burroughs B 2500/B 3500 Assembly Language is a symbolic code
which makes all of the capabilities of the B 2500 and B 3500 avail-
able at the machine language level and offers full flexibility in
the specification of instructions and data. Standard linkages to
MCP and BCP operating routines may be called out to be included in
the object program, as well as any pre-written symbolic code desired
from the library file. The machine language output from the assem-
bly translators is ready for execution in the environment of the

appropriate Control Program.

To use the Assembly Language properly and efficiently, the programmer
must have a greater knowledge of instruction and data conventions in
the B 2500/B 3500 Systems than required when using higher-level lan-
guages., This manual describes these conventions and also acts as a
general introduction to processor operations without requiring prior

study of the B 2500/B 3500 Systems Reference Manual.

Revised 10-30-69 .
by PCN1034949-001 xvii |l

SECTION 1
DATA FORMATS

GENERAL.

Extreme versatility at processing data in different formats is de-
signed into the hardware of B 2500/B 3500 Series Systems. This
permits maximum storage efficiency with very little programming
overhead. The processor recognizes mixed-format operations and, in
all common cases, automatically performs any necessary data conver-

sion.

Defined within this section are signed and unsigned numeric, floating
point, word, and 8-bit EBCDIC and USASCII formats. The features a=-

vailable for efficient input/output data transfer are also described.

INTERNAL STORAGE.

Storage is organized into 4-bit digit locations, each with a unique

decimal address. All information stored can be processed under one

or several of the following formats:

a. Unsigned 4-bit numeric (UN).
b. Signed 4-bit numeric (SN).
c. Floating point.

d. 8-bit alphanumeric (UA).

e. Word.

UNSIGNED 4-BIT NUMERIC FORMAT (UN).

This format is for high-density storage of data and consists of a
string of 1-100 decimal digits or undigits (see note below) starting
at any location in storage and occupying one storage position per

digit.

Example:

(1003) (1009)
1055623

The length of the example above is seven and the access address of

the data is 1003,

NOTE
Four data bits can hold 16 (Zh) different
values. In the B 2500/B 3500 System, ten
of these values are reserved for the decimal
digits 0-9. The other values are undigits

and are assigned as shown in the chart below.

BINARY VALUE CONSOLE DISPLAY CODING DECLARATION
1010 o] A
1011 X B
1100 Z C
1101 2 D
1110 /A E
1111 S F

SIGNED 4-BIT NUMERIC FORMAT (SN).

This format is for high-density storage of data and consists of a
string of 1-100 decimal digits preceded by a sign starting at any
location in storage and occupying one storage position per digit

plus one for the sign.

Example:

(1003) (1010)
+5567141

The length of the above example is seven and the access address of

data is 1003. The sign is not counted in the length of a SN field.

FLOATING POINT FORMAT.

This format is for scientific computation and consists of an ex-
ponent sign, two decimal exponent digits, a mantissa sign, and a
string of 1-100 decimal mantissa digits starting at any location in

storage and occupying one storage position per digit or sign.

Example:

(1003) (1011)
+03+15331

The length of the example above is five and the access address of
data is 1003. Only the mantissa digits are counted in the length
of the field.

8-BIT FORMAT (UA).
This format provides simple communication with the peripheral de-
vices and consists of a string of 1-100 characters starting in any

even-numbered location in storage and occupying two addressable

storage positions per character.

Example:

(1000-1) (1018-9)
ABCDEFGHIJ

The length of the example above is ten and the access address of
data is 1000. The first digit within a character is called its
zone digit and the second its numeric digit. For example, the digit
representation of the character X is E7, where E is the zone undigit

and 7 is the numeric digit.

WORD FORMAT.

This format provides for fast manipulation of program and data
blocks and consists of a string of 1-10,000 words starting in any
modulo-4 location in core storage (address evenly divisible by

four) and occupying four addressable storage positions per word.

Example 1:
(1000-3) (020-3)

Example 2:

(1000-3) (rL020-3)
0012|5641 | 7785|4109 3218| 4476]

Example 3:

(1000-3) (1020-3)
Al2|6792|12B|cc|2148] 62P|

The length of each of the above examples is six and the access

address of data is 1000.

All data fields, regardless of format, are accessed at the left-most

(Lowest address) digit location occupied by the field.

INPUT/OUTPUT.

All data transfers between main memory and input/output units are

performed at the character or word level depending on the type of
peripheral and channel used. Transfers to or from main memory are
parallel 8-bit core-image and all necessary conversion to special
external representation (card codes, bit-serial disk recording,
etc,) is performed within the peripheral control units themselves

as a normal hardware function.

The standard internal character set for the B 2500/B 3500 is the
8-bit Extended Binary Coded Decimal Interchange Code (EBCDIC)
(refer to appendix D). EBCDIC information can be read from or
written to punched cards and 9-channel magnetic tape, thus provid-

ing data compatibility with other computer systems.

For data compatibility with other Burroughs machines, and to permit
the attachment of proven-design peripheral units to the System,
hardware translation between EBCDIC and BCL (Burroughs Common
Language) is provided within the Central Control. Translation of
output data to line printers or tape listers is automatic. Hard-
ware translation is programmatically selectable for punched cards,
paper tape, and magnetic tape. Translation is performed directly
upon the data stream as it passes through the Central Control unit

without any slowdown of I/O data rate.

To facilitate the use of other character sets for data communica-
tions (e.g., UNIVAC XS-3 and IBM 1050 PTTC codes), a powerful hard-
ware translate instruction is provided. Up to 10,000 8-bit charac-
ters can be converted from one character set to another by means of
a single instruction execution through conversion tables which are

easy to set up and understand.

In data communication environments which involve heavy traffic in the
USASCIT character set, an even greater execution speed can be ob-

tained by use of the USASCII programming mode. This operating mode,

1-4

which is programmatically selectable, causes all arithmetic opera-
tions and format conversions to produce the USASCII sign/zone bit

configurations in the result field, rather than the EBCDIC config-
urations. Thus, numeric data can be received, processed, and re-

turned without any translation whatsoever.

1-5

SECTION 2
GENERAL PROCESSOR DESCRIPTION

GENERAL,

This section provides a detailed description of the following

machine-language fundamentals:

a. Instruction format.

b. Index registers.

¢c. Indirect addressing.

d. Literal operations.

e. Field lengths.

f. Program reserved memory.
g&. DBase and limit registers.
h, Edit operators.

i. Indirect field length,

INSTRUCTION FORMAT,

Instructions consist of two functional groups with similar formats;

processor instructions and I/0 descriptors. /0 descriptors directly
concern only those users who are controlling sorter-readers or un-
usual peripheral devices under the BCP, otherwise, physical details
of'I/O are entirely handled by the software. Descriptors are ex-
plained in the section on BCP I/O coding methods (refer to section

5), and also in the B 2500/B 3500 Systems Reference Manual.

Processor instructions are variable in length (from one to four
syllables) and contain none, one, two, or three addresses. Each

syllable of the instruction has a length of six L-bit digits.

OPERATION CODE.

The first two 4-bit digit positions of each instruction will be in-

terpreted as an operation code.

VARIANTS.

The next four digit positions are used to specify one or two opera-
tional code variants. In most processor instructions, these wvar-

iants are referred to as AF (A field length) and BF (B field

length), each being two digits in length. The variant digits AF/BF

have other uses which will be described. in detail when applicable.

ADDRESS FIELD.

The address field (see figure 2-1) is comnstructed in three parts:

a. Indexing. The two high-order bits of the first digit select

an index register to be applied (if any) as follows:

1) 00 - no indexing.

2) 01 - apply Index Register 1.
3) 10 - apply Index Register 2.
4) 11 - apply Index Register 3.

b. Address Controller. The two remaining bits of the first
digit specify the data format of the addressed field. Ad-

dress controllers are as follows:

1) 00 - unsigned numeric.

2) 0l - signed numeric (including floating point).
3) 10 - alphanumeric (8-bit code).

4) 11 - indirect address.

c. The remaining five digits specify a base-relative (to the

start of the program's memory area) address in core memory.

I

ADDR
AC

=N =0

Figure 2-1. Address Syllable of Instruction (Six Digits)

Figures 2-2 through 2-5 provide formats of one, two, three, and

four syllable instructions.

OoP AF BF

=N 00

Figure 2-2. One Syllable Instruction (six Digits)

=N o

Figure 2-3,

=N 00

oP

AF

BF

AT

AC

A

1

Two Syllable Instruction (12 Digits)

i oP AR BF AT A BI B
o I T T | Be |
Figure 2-4, Three Syllable Instruction (18 Digits)
opP AP BF AT A BT B CI
L1014 §2°] g4 g g |5 1 e
Figure 2-5. Four Syllable Instruction (24 Digits)

BRANCH FORMAT.
Address-branch instructions contain no variant field and the 2-digit
is immediately followed by the 6-digit branch ad-

of O, l,

operation code

dress. Values or 2 in the address controller are regarded

as a high-order digit of the branch address. A binary value of 3
in the controller is interpreted as an indirect-address flag.

Figure 2-6 provides the format of the address-branch instruction.

8

A or AT A

2 AC or

1] A L1 1 1

Figure 2-6. Address-branch Instruction Format

INDEX REGISTERS.

If an address field in an instruction specifies that an index regis-

ter is to be applied, the value contained in the specified index
register is algebraically added to the 5-digit address to produce

an effective address,

Index registers are 7-digit signed numeric fields at fixed locations
in Program Reserved Memory. The digit immediately following the
sign must be zero and the remaining six digits may contain any

decimal number from 1 through 999999.

The value in an index register always represents machine location

displacement, without regard to the data format of the field ac-
cessed. For example, to index through successive characters in an
alphanumeric field, the index register must be incremented by two

since each alphanumeric character occupies two machine locatiomns.

INDIRECT ADDRESSING.

When the address controller in an address field is a binary 3, it

specifies an indirect address; i.e., the field pointed to by the
address contains, not data to be accessed, but another 6-digit
address field which functions as though it had been in the original
instruction. Such an address may in turn specify another indirect
address, and so on to any depth. The controller of the final
(direct) address specifies the format of the operand field to be
accessed and must conform to any address controller restrictions

for the instruction.

Full generality of indexing is maintained in indirect addressing.
Any or all of the indirect addresses in a chain may be indexed. As
a practical matter, there are three index registers available so
that no more than three different index quantities can apply to any
one instruction. However, any or all three can be applied any

number of times.

LITERAL OPERATIONS.

The A ADDRESS field of most machine instructions can be used for

literals instead of addresses. That is, the actual data to be used
in the instruction can be stored in the A ADDRESS field, rather than
the address of the data. This option is indicated by an 8-bit and

a 2-bit being ON in the high-order four bits of the AF field. The
address controller bits must be relocated since the A ADDRESS field
contains actual data when a literal is used. The high-order bit

of the address controller is represented by the 1-bit of the high-

2-4

order digit of the AF field. The low-order bit of the address
controller is represented by the 8-bit of the low-order digit of
the AF field. The length of the literal is indicated by the 1, 2,
and 4-bits of the low-order digit of the AF field in normal binary-
coded decimal. The L-bit of the high-order digit of the AF field
must be OFF. Literal data and indirect field length are mutually

exclusive.

Example:
A" field = ADl6 = 101 01 lOl2 = 515

The first bit group signals literal operation, the second group an
address controller of 01 (signed numeric format), and the third

group reflects a length of five digits.

The maximum lengths that can be specified in literals are:

a. Unsigned numeric - six digits.
b. Signed numeric - five digits and sign.
€c. Alphanumeric - three characters.

Literal capability can be used in the following instructions:

a. Move Alphanumeric (MVA).

b. Move Numeric (MVN).

c Move Repeat (MVR).

d. Move Links (MVL).

e. All arithmetic instructions (including floating-point),
f. Compare Alphanumeric (CPA).

g Compare Numeric (CPN).

h Logical AND (AND).

i. Logical OR (ORR).

j. Logical NOT (NOT).

k. All Scan instructions.

FIELD LENGTHS.

When arithmetic instructions have a third address, its field length

is some combination of the AF and BF values, depending on the

2-5

command , since there is mno place in the instruction format to contain

an explicit C field length. The maximum length of 100 characters/

digits is specififed by 00. When two fields in an arithmetic in-

struction (except multiply and divide) have different field lengths,

the shorter of the two is automatically padded with leading zeros in

the processor.

This padding does not affect stored values.

PROGRAM RESERVED MEMORY .

Base relative locations 00000 through 00063 of each program contain

several fixed-location fields used to control the execution of

certain instructions and store the results from other instructions.

Assignment of these locations is as follows:

Location

00000-00007

00008-00015

I 00016-000273

00024-00031

00000-00037
00038-00039
00040-00045

00046-00047

00048-00063

Assignment

Unassigned (sometimes used for run-time

parameters).
Index Register 1 (used by the SEA instruction).

Index Register 2 (used by MCP "no-work-area"

buffer access technique - see FILE, READ, WRIT).

Index Register 3 (used by the NTR and EXT

instructions).

also:
Allowable addresses for indirect-field-length’

\

2-digit counters.

Count storage from Scan instructions (SDE, SDU,
SZE, and SZU).

Top-of-stack address for subroutine linkage

(NTR and EXT).
Halt breakpoint digit (HBK).

8~-character table of edit insertion characters,

referred to as table entries 0-7 (EDT).

These fields can be accessed in a program the same as any other
core location, and may be used as working storage if such use will
not conflict with implicit usage of the area by hardware instruc-

tions.

BASE AND LIMIT REGISTERS.

Relocation and memory protection are accomplished on the B 2500/

%B 3500 Systems by means of the hardware base and limit registers.
The values in these registers define the lower and upper bounds of

the core memory assigned to a program.

An object program reference (during operation) to a main memory
location uses a base-relative address. The hardware will add the
indicated address to the contents of the base register to obtain
an absolute core address. A program can therefore be loaded into
any location in memory and executed without modification of ad-
dresses within the program. It can also be "pushed down" to a
different location without modification to allow the MCP to bring
other programs into the mix when a job has been completed, thus

gaining optimum use of core.

For further explanation of the base and limit register functions,

refer to the B 2500/B 3500 Systems Reference Manual.

EDIT OPERATORS.
Editing is accomplished on B 2500/B 3500 Systems by means of a

highly versatile and compact "edit control" technique. The edit
masks which are referenced (but not changed) by EDT commands and
used to control data movement from the source field to the edited
field are made up of strings of l-character (double-digit) edit

insertion operators.
Three machine flip-flops affect the execution of an EDT instruction:

a. T -~ initially ZERO and set to ONE when zero-suppression ends
(by mask specification or by occurrence of a non-zero source

digit).

2-7

b.

C.

Q - initially ZERO and can be set to ONE to obtain check-

protection editing.

S - set to ZERO if the A field is negative and to ONE if

the A field is zero, positive, or unsigned (UN).

The first (zone) digit of each edit-operator character is the pri-

mary operation specifier (called M). The second (numeric) digit

(called V) specifies a count for repetition of the operation, an

entry number for access to the Edit Insertion Table in Program

Reserved Memory, or an extension of the operation specifier.

The M operation specifiers are:

a.

O - Move Digit. Sets T equal to ONE, moves a digit/
character from the source field to the edited field, and
sets the zone in the edited character to the EBCDIC/USASCII
numeric subset zone. The V digit specifies repetition

(see page 2-10).

1 - Move Character. Sets T equal to ONE and moves a digit/
character from the source field, to the edited field. Char-
acters are moﬁed unchanged. Digits receive the EBCDIC/
USASCII numeric subset zone in the edited field. The V

digit specifies repetition.

2 - Move Suppress. If T is equal to ONE or ZERO and the

source digit (or numeric portion of the source character)
is non-zero, the Move Digit operation is performed. If T
is equal to ZERO, the source digit (or numeric portion of

the source character) is ZERO, and:
1) Q equals ZERO - a blank is moved to the edited field.

2) Q equals ONE - table entry 2 (usually %) is moved to
the edited table.

The V digit specifies repetition.

d.

3 - Insert Character. Moves the character specified by the
V digit of the edit operator to the edited field. The V
digit specifies Table Entry (see page 2-10).

4 - Insert on Plus. If S equals ONE, the character speci-
fied by the V digit of the edit operator is moved to the
edited field. If S and Q both equal ZERO, a blank is

moved to the edited field. If S equals ZERO and Q equals
ONE, table entry 2 (usually *) is moved to the edited field.
The V digit specifies table entry.

5 - Insert on Minus. If S equals ZERO, the character speci-
fied by the V digit of the edit operator is moved to the
edited field. If S equals ONE and Q equals ZERO, a blank is [
moved to the edited field. If S and Q both equal ONE, table
entry 2 (usually *) is moved to the edited field. The V

digit specifies table entry.

6 - Insert Suppress. If T equals ONE, the character speci-
fied by the V digit of the edit operator is moved to the
edited field. If T and Q both equal ZERO, a blank is moved
to the edited field. If T equals ZERO and Q equals ONE,
table entry 2 (usually'*) is moved to the edited field.

The V digit specifies table entry.

7 - Insert Float. If T equals ONE, the move digit opera-
tion is performed. If T equals ZERO and the source digit
(or numeric portion of the source character) is non-zero,
the character specified by the V digit of the edit opera-
tor is moved to the edited field, then the move digit op-
eration is performed. If T equals ZERO, and the source
digit (or numeric portion of the source character) is ZERO,

and:
1) Q equals ZERO - a blank is moved to the edited field.

2) Q equals ONE - table entry 2 (usually *) is moved to
the edited field.

The V digit specifies table entry.

i.

8 - End Float Mode. If T equals ZERO, the character speci-
fied by the V digit of the edit operator is moved to the
edited field. If T equals ONE, no action occurs and thus

proceed to the next edit operator.

9 - Special Operations. If V equals O, T is set to ZERO.
If V equals 1, T is set to ONE. If V equals 2, the setting
of Q is reversed (e.g., if Q equals ZERO, it is set to ONE
and if it equals ONE, it is set to ZERO). If V equals 3,

skip over the next source-field digit/character.

The values of the V digit of the edit operator have two sets of

meanings:

Repetition. Repeat the edit operation V times. For example,

example, the edit operator 05 (move digit, repeat five

times) will cause six digits to be moved.

Table Entry. The values of V between zero and seven select
entries O through 7 of the Edit Insertion Table in Program
Reserved Memory. The values between 8 and 11 (undigit)
specify conditional or special’character selects. These

selects are as follows:

1) V equals O - select entry O (usually +).
2) V equals 1 - select entry 1 (usually -).
3) V equals 2 - select entry 2 (usually *).
4) V equals 3 - select entry 3 (usually).
5) V equals 4 - select entry 4 (usually).
6) V equals 5 - select entry 5 (usually $).
7) V equals 6 - select entry 6 (usually O).

8) V equals 7 - select entry 7 (usually blank).

9) V equals 8 - if S equals ONE, select table entry O and
if S equals ZERO, select table entry 1 (+ if positive

and - if negative}.

lO) V equals 9 - if S equals ONE, select blank character
and if S equals ZERO, select table entry 1 (blank if

positive and - if negative).

11) V equals A (undigit value) - if S equals ZERO, select
blank character and if S equals ONE, select table entry

0 (+ if positive and blank if negative).

12) V equals B (undigit value) - select the character which
immediately follows the edit operator in the mask as an
insertion character in place of a table entry. This
character will be properly skipped in the mask after

the insertion operation has been performed.

NOTE
When operating with the Basic Assembler or if
not using the PICT command, the user program
must load the Edit Insertion Table. The Ad-
vanced Assembler will load the standard values
into the Edit Insertion Table if PICT declara-

tives appear in a source program.

EDIT EXAMPLES.

The following are examples of edit mask construction. The editing

desired is described either verbally or as COBOL pictures.

VERBAL DESCRIPTION.
To edit a field containing 0000500010 to form 5-digit fields with
a blank between the fields, zero-suppressed up to, but not including

the units position of each field, the result should be:

bbbb5bbbb10 (b equals blank)

The edit mask for the operation above is:

a. 23 ~ move suppress four digits.
b. 00 - move digit once.
c. 90 - reset T equal to ZERO to resume zero suppression,

37 - insert table entry 7 (usually blank).
e. 23 - move suppress four digits. '

f. 00 - move digit once.

To edit +000375 to become bbb3.75+ and -000007 to become bbbb.07~,

the edit mask is:

a. 23 - move suppress four digits.

b. 33 - insert character period (.).

c. 0Ol -~ move digit twice.

d. 38 - insert character (+ on positive and - on negative).

NOTE
The corresponding COBOL PICTURE for
the above example would be ZZZZ.99+.

COBOL PICTURES.

The following are COBOL editing pictures and their corresponding

machine language edit masks.

The COBOL picture Z(6) would edit 000325 to bbb325, and 000000
to bbbbbb. The edit mask is 25 (move suppress six digits).

The COBOL picture $7Z7Z,7279.99 would edit 0013775 to $bbbl37.75 and
0000050 to $bbbbb0.50. The edit mask is:

a. 35 - insert character $.

b. 21 - move suppress two digits.

c. 64 - insert suppress comma (,).
d. 21 - move suppress two digits.

e. 00 - move digit once.

f. 33 - insert character period (.).
g. Ol - move digit twice.

The COBOL picture $**,%¥%¥9,99 would edit 0013775 to $*x%¥%¥137.75 and

0000050 to $***¥%¥%*0,50, The edit mask is:

a. 135 - insert character §$.

b. 92 - turn on Q to obtain ¥ fill instead of blank fill.

c. 21 - move suppress two digits.

d. 64 - insert suppress comma (,).
e. 21 - move suppress two digits.

f. 00 - move digit once.

g, 33 - insert character period (.).

h. Ol - move digit twice.

The COBOL picture $$8$,$$9.99 would edit 0013775 to bbb$137.75 and

0000050 to bbbbb$0.50. The edit mask is:

a. 75 - insert float § (COBOL PICTURE specifies one extra

position).
b. 75 - insert float §.
c. 64 - insert suppress comma ().
d. 75 - insert float §.

e. 75 - insert float §.

f. 85 - end float $ to force out § if it has not yet been

inserted.
g. 00 - move digit once.
h. 33 - insert character period (.).
i. 01l - move digit twice.

Machine language edit masks should be coded as strings of numeric

digits and undigits in a CNST statement, then associated with a

UA label and length by means of the EQUIV operation.

For example,

the last example above would be coded as shown in figure 2-7.

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Label +Inc. |All Ac Label +Inc. |Bi] Be Label + Inc. |Ci] Ce
0 1 1 2 2 313 3 4 4 (4 4 5 515 5
_F 4 8 & 2 112 4 0 3 J4 6 2 5 16 8
MIAISIK Llv e ulA ,
| IENSIT | 2I8|uiN] 7|5{7]5|6/4{75|7|5/85/0/0/3 50(1

Figure 2-7. Coding for Machine Language Edit Masks

INDIRECT FIELD LENGTH.
Indirect field length is indicated when the two high-order bits of

the AF or BF variant length field are ON. The processor considers
the low-order six bits of the AF or BF field (grouped 2-bits and
4-bits) to be the two low-order digits of a 5-digit address (high-
order digits equal 000) where the 2-digit length (or a similarly-
formated pointer for another indirect-length field) is to be found.
This address must be an even number between 00000 and 00038 (within

the Program Reserved Memory Area).

Example:
BF field = D816 = 11 01 lOOO2 = 318

The first bit group (binary 3) signals indirect field length, and
the next two groups indicate memory address 00018 which points to

a location in the Program Reserved Memory area.

NOTE
Some instructions (MVW, MVC, TRN, etc.) interpret
the variant field as a U-digit length value. In-
direct field lengths are still accessed on a 2-
digit basis, however, and the resultant actual
field lengths are then put together to form the
h-digit length.

SECTION 3
ASSEMBLER CODING FORM

GENERAL.

This section describes the assembler coding form (Form 1024627,

figure 3—1) used with the assembler.

The form is divided into eight general fields: Sequence Number,
Label, Operation Code, Variants, three Address Fields (A, B, and C),
and Remarks. The three Address Fields are further divided into:

the Address Label, Address Increment, Address Index, and Address
Controller. The following general rules apply.

SEQUENCE NUMBER (COLUMNS 2-7).

Sequence numbers are used for the sequential numbering of the sym-

bolic dinput.

LABEL (COLUMNS 8-13),

This field is used for entering symbolic names and program points,

left-justified. Normal label names must start with an alphabetic
character and may be up to six characters in length. The second
through sixth character may be any combination of alphabetic,
numeric, or special characters. Labels are reuseable, but not with-

in a given segment.

Program points are normal label names of up to five characters in
length (for the Basic Assembler, only one alphanumeric character in
length) preceded by a period (.). These program points have the
property of unrestricted reusability and need not be unique. They
are usually, but not necessarily, used for short distance refer-

ences (definition and reference less than 20 statements apart).
Every label and program point definition is associated with:

a. Corresponding base-relative address.
b. Length of the field named by the label (normal labels only).
c. Data format of the field (normal labels only).

d. Segment.

3-1

Z-¢

Program Id. Burroughs ASSEMBLER CODING FORM Page of
VAR. A ADDRESS B ADDRESS C ADDRESS
S'::g: LABEL ngé AF | BF Label +1ne. |Ail Ac Label +lnc. |Bi Bc Label +1lne. |Ci| cc REMARKS
0 1 1 2 2 313 3 4 4 |4 4 5 515 5 [] 7
2 4 8 _p |2 I8 12 |4 0 3le s 2 516 s 16 15 0
L 1
1 1
1 I
1 L
1 L
L 1
1 1
! 1
! 1
! 1
1 1
1 1
| 1
1 1
|]
1 1
| 1
L |
1 !
! |
! 1
1 i
| 1
! 1
! !
i] I

Figure 3-1.

Assembler Coding Form

The following labels are reserved and can be referred to, but not

reused:

Label Location Description

BASE 00000-undefined length 4-bit unsigned numeric format.

IX1 00008-00015 L-bit signed numeric format
(refered to as Index Register 1).

X2 00016-00023 L_bit signed numeric format
(refered to as Index Register 2).

IX3 00024-00031 L-bit signed numeric format
(refered to as Index Register 3).

TOCxxx BCP translator only. 6-character -

labels starting with TOC are used
in the SIOC input-output package
and should be avoided by the pro-

grammer.

OP. CODE (COLUMNS 14-17),

This field is used for entering the particular mnemonic instruction
to be assembled, macro to be expanded, or assembler control func-
tion. All 3-character mnemonic operation codes will produce a
single instruction, while the number of instructions generated by a
macro operation depends upon the particular macro specified and the

operating software.

VARIANT FIELD (COLUMNS 18-21),

This field is used for specifying variants to the basic instructions

and/or additional specifications for operations. It may be left
blank when label-associated lengths are correct for the instruction.
The AF length must always be specified for literals (other than
label literals).

ADDRESS LABEL FIELDS A, B, AND C (COLUMNS 22-27, 34-39, AND 46-51).

These fields are used to specify operands to be associated with

given instructions. Entries to these fields must be left-justified

3-3

and can be any of the following forms:

a. A name which is defined in the label field of some state-

ment, or a reserved label.

b. A program point, with the period replaced by a plus (+) to
denote forward reference (next definition) or a minus (-)
to denote backward reference (lasz definition) to a program

point defined in the label field of some statement.

c. A single asterisk to denote the address of the first digit

of the current instruction.
d. An unsigned 5-digit base-relative address.
e, A literal, when acceptable by the instruction (A ADDRESS

label only).

ADDRESS INCREMENT FIELDS A, B, AND C (COLUMNS 28-30, 40-42, AND 52-54).

These fields are used to specify positive or negative increments

which will alter the value as defined in the address label field.
The range of permissable increments is from -999 to +999,. Plus
signs need not be written and minus increments above -99 are coded
with the letters J thru R to decrement from 100-900, Signs must
be left-justified and the integer right-justified. This increment

may not be in conjunction with a literal (except label literal).

The increment is understood as being in number of digits/characters

rather than in machine locations. Thus, for an alphanumeric label,

an increment value of +5 would increase the label-equivalent address
by 10 rather than by 5 since each alphanumeric character occupies

two machine locations.

ADDRESS INDEX FIELDS A, B, AND C (COLUMNS 31, 43, AND 55).

These fields are used to specify that the contents of a designated

index register are to be added to the address given or implied in
the address label field during the execution of the program. The

acceptable codes are:

3-4

t= Y
b.
Coe.

dl

Blank - no index register.

1
2
3

Index Register 1.
Index Register 2.
Index Register 3.

NOTE
The address index field may

not be used with a literal.

ADDRESS CONTROLLER FIELDS A, B, AND C (COLUMNS 32, 33, 44-45, AND 56-57).

These fields are used to specify the format of the data referred to

by the operand in the address label field and need only be specified

if it differs from that declared in the data field declarative, in

which case it overrides the other. Only those address controllers

permitted by the individual instructions are wvalid. If a certain

address controller is legal, its corresponding literal also is legal

unless explicitly excluded.

The address controller notations and their meanings are as follows:

a.
b.
c.

d.
e.
f.
g.
h.
i.

j.

Blank - as defined in the data declaration.

UN
SN
UA
IA
NL
SL
AL
LL

LL

- unsigned numeric.
-~ signed numeric.
- unsigned alphanumeric.

- indirect address.

- unsigned numeric literal.)

- signed numeric literal.

- alphanumeric literal. Legal only in the A
- label literal ADDRESS controller
- segment number literal., J

NOTE

(label literal) yields an unsigned numeric literal

equal to the equivalent address of the referenced

operand (label, program point, asterisk, or 5-digit

address). The length of the field need not be given

and will be assumed to be six digits if not specified

in the variant field. If a field length less than

Revised 11/20/70
by PCN 1034949-002 3~-5

six is specified, the high-order digits of the label
literal will be used. Index and controller bits
associated with the label are not assembled into the
literal, NL, SL, and AL must be used when a literal
is the »nperand. AL literals may not contain untrans-
latable EBCDIC characters when the source program is
maintained on a seven-track magnetic tape. SG yields
a 3-digit unsigned numeric literal equal to the seg-
ment number of the referenced program segment. An
asterisk (*) will dindicate the segment in which the

instruction is contained.

REMARKS FIELD (COLUMNS 58-80).

The remarks field may be used to furnish documentational remarks

or a description of the operation being performed.

SECTION 4
MULTI-STATEMENT STRUCTURES
AND CONTROL INFORMATION |
GENERAL.

An entire Assembly language source program can be regarded as a
coding structure made up of substructures. Just as there are divi-
sions and sections in COBOL programs, and subroutines and functions
in FORTRAN programs, there are coding structures in Assembly pro-
grams which are made up of several elementary statements. These
structures are used to define program entries which cannot be de-
scribed in a single elementary statement (e.g., record descrip-
tions), or which by their nature consist of many elementary state-
ments (e.g., program segments). These structures are described in

this section.

PROGRAM STRUCTURE.

An Assembly source program is structured in roughly the same fashion

as a COBOL program, The same sequence of identification, environ-
ment , data, and procedure divisions should be followed, though the
Assembler is more flexible than COBOL in permissible statement
sequences. The following statement sequence is recommended for

source programs:
a. The first statements should be SPEC and IDNT.

b. FILE statements along with their associated RECD statements
should follow.

c. Following the last FILE block, working-storage records,

areas, and constants should be declared.

d. Executable instructions and macros follow the working-

storage declarations.

Statement categories b through d above are repeated for each seg-
ment in a multi-segment program. Any category can be omitted if it

is not needed.

Revised 10/30/69
by PCN 1034949001 L1

LOWER-LEVEL STRUCTURES.

There are several lower levels of multi-statement structuring with-

in a typical source program:

A e

FILE declarations and their associated records (see below).
Data fields within a record (see below).
Segments within a program (see below).

Parameters in a subroutine=call instruction (refer to the

NTR instruction).

FILE AND RECORD DECLARATION.

Figure L-1 provides a skeleton example of the FILE declaration and

working-storage portion of the symbolic input deck for the B 2500/

B 3500 Systems Assemblers. The following are rules that should be

foliowed when constructing this deck:

Record declarations following a FILE declaration are as-
sembled into the file's work area (if there is one), or

into location 00000 if the file has no work area.

I several record blocks follow a single FILE declaration,
they are assembled into the same area, thus redefining each

other.

Both Assemblers require the ENDR statement to terminate a

working-storage record block.

The Basic Assembler requires and the Advanced Assembler

permits an ENDR to terminate a file-associated record block,

Both Assemblers require the ENDF statement to terminate the
last file block.

The Basic Assembler requires and the Advanced Assembler
permits an ENDF to terminate file blocks other than the
last.

FILE

rRECD
Record | DATA
Block DATA
ENDR (required in the Basic Assembler

File and optional in the Advanced

Block _ Assembler)
RECD
Record | DATA
Block DATA
File ENDR (optional in both assemblers when
Section - followed by ENDF)
ENDF (required in the Basic Assembler
- and optional in the Advanced
Assembler).
B FILE
RECD
File Record | DATA

Block Block DATA
ENDR (optional when followed by ENDF)

ENDF (BEnd of File declaration, required

— in both assemblers)

CNST
RECD

Working Working DATA

Storage Storage DATA

Section Record ENDR (End of working-storage record,

required in both Assemblers)

CNST

Figure 4-1. FILE Declaration and Working-
Storage Portion of Symbolic Deck

g. Only the DATA statement may be used to define fields within

a file-associated record.

h. Both Assemblers count the number of characters defined by
DATA statements within a record, and give a syntax error
if the total does not equal the length declared in the
RECD statement.

h-3

PROGRAM SEGMENTATION.,

Segmentation is required when a program and its data areas are too

large for available core memory. It is also desirable when a pro-
gram consists of several sequentially-executed parts (e.g., house-
keeping, main processing routine, and recapping) of long duration,
Segmentation consists of separating the program into mutually ex-
clusive parts, with no data or control cross-references, at as many
levels as necessary. These parts are then declared as overlayable

segments and share common core storage.

Segments are declared by means of the SEGM and ENSG pseudo opera-
tions. Refer to the description of these pseudos for the restric-

tions on segment coding.

Segment loading and inter-segment communication is accomplished by
the OVLY pseudo operation, The Assemblers perform extensive checks

on the validity of inter-segment references.

The total core memory required for a segmented program is equal to
the length of the main (permanently—resident) segment plus the
length of the largest chain of nested subsegments. The Assemblers

will automatically compute the memory requirement.

Figure 4-2 provides an example of a segmented program in terms of

Assembly coding and memory allocation at object time.

Figure 4-3 shows the amount of core memory required for the example

segmented program in figure 4-2,

SEGA

EXAMIN

SEGZ

CHECK

UPDAT

CLOSE

OPEN

COPY

REJECT

NEW#

REPORT

Figure 4-2.

IDNT

SEGM
SEGM
SﬁGM
EﬁSG
SEGM

ENSG
ENSG
SEGM

.

SEGM

ENSG
SEGM

ENSG
SEGM

SEGM

ENSG
SEGM

ENSG
ENSG
ENSG
ENSG
SEGM

ENSG
FINT

Example of a Segmented Program

PRIGRAM (5000 digits)

(2000

(2000

(3000

(1000

(2000

(1000

(1000

(1000

(1000

(1000

(k000

digits)

digits)

digits)

digits)

digits)

digits)

digits)

digits)

digits)

digits)

digits)

h-5

0 digits 5000 digits 10000 digits
l | |
l | I
| | l
| | |
| | |
| | l
| (MAIN) | SEGA EXAMIN | SEGZ

'
l
CHECK |
I
UPDAT CLOSE :
|
opEN |
—
|

COPY | REJECT

NEW#

REPORT

h-6

Figure L4-3.

Core Memory Requirements for Figure 4-2

CONTROL INFORMATION FOR BASIC AND ADVANCED ASSEMBLER,

The following Program Control Cards are necessary for assembly of

a source program by the Advanced Assembler.

The first input control card notifies the MCP to assemble the in-

dicated Program-Name (P—N) using one of the following options:
a. ?COMPILE P-N WITH ASMBLR (compile and run object program).

b. ?COMPILE P-N WITH ASMBLR LIBRARY (object program left on
disk and entered in disk

directory).

c. ?COMPILE P-N WITH ASMBLR SAVE (combines features of compile

and go and compile for library).
d. ?COMPILE P-N WITH ASMBLR SYNTAX (for syntax check only).

e. ?COMPILE P-N WITH ASMBLR AFTER JOB (wait to compile until
completion of execution

of another program).

The second control card is the data card which provides file identi-

fication. It is formatted as follows:

a. ?DATA CARDS (for EBCDIC source language input).
b. ?DATAB CARDS (for BCL source language input).

The End Card must be the last card in the source deck. Its format

is:

?END

The Basic Assembler requires the following control cards for assembly

of a source program:

a7

TASMBLR

Entries

/’/ Symbolic

- Substitution

(Optional)

The first card specifies the input unit where ASMBLR is to be found.

A "T" (as in the above example) indicates magnetic tape.

would indicate the control unit,

reader.

A HC "

card reader or paper tape

The symbolic substitution entries are optional and can be loaded in

place of, or in addition to, the symbolic entries loaded at BCP load
time. See table 4-1 for symbolic substitution entries.
Table 4-1
Symbolic Substitution Entries
Symbolic Device Recommended Card
Entry No. Unit No. Format
00 Systems tape 1 00CC029140
o1 Card reader - 01CC220000
o1 s or Card reader - 01¢C200000
02 Printer 0] 02CC102000
03 Card punch - 03CC230000
03 é or Card punch - 03CC250000
oL Output tape 2 oLkcco69240
05 Output tape 3 05CC0693L40
06 Output tape L 06CCO0694LO
07 Input tape 5 07cC029540
08 Output tape 6 08cco069640
09 Paper tape reader - 09CcCcL0o00VO*
10 Paper tape punch - 10CccL800VOo*
CC = Channel Number
¥V = 1 BCL to EBCDIC translation; V 2 EBCDIC

L-8

The card format for the symbolic substitution is:

COLUMN

1-2 Symbolic Reference Number
3-4 Channel Number

5-10

First Syllable of I/0 Descriptor

The § card signifies the end of the control cards.

The symbolic
input, beginning with a SPEC card,

immediately follows the §$ card.

The last card of the symbolic deck must be an END card in the follow-
ing format:

?bEND where b = blank

k-9

SECTION 5
BASIC ASSEMBLER INPUT/OUTPUT CODING

GENERAL.

The Basic Assembler differs in several ways from the Advanced As-
sembler due to the differences in the operating programs. Whereas
the Master Control Program will provide many functions to the user's
program such as blocking, label checking, and comprehensive error
recovery procedures, none of these functions are provided in the
Basic Control Program. The programmer, therefore, must understand
the logic of these functions and provide this logic in his program
if he requires these functions. The purpose of this section is to
outline the areas of consideration that the programmer must know in

order to write programs for use with the Basic Control Program.

It is also necessary for the programmer to fully understand the
functions of the hardware in order to implement the logic desired.
Appendix C contains a summary of the I/0 and result descriptors
plus other subject matter that must be fully understood by the user.
A more detailed explanation of descriptors can be found in the
Burroughs B 2500/B 3500 Systems Reference Manual.

BASIC ASSEMBLER AND ADVANCED ASSEMBLER DIFFERENCES.

The differences between the two languages of this text are primarily

in the area of the input and output instructions. The following are

differences between the two:

a. The following mnemonics are not available in the Basic
Assembler:
MACR MEXT RITE PCKT SGNM
MEND BOOL WCRC SPAS ADSL
MEQL SETB WTRC SKIP SEAE
MLSS CLRB WCRT SLEW SEAL
MGTR SYST FILL FLOW SLST
MLEQ SEEK LSTR SRTR REDY
MGEQ OVLY WATIT ABLE ACPR
MNEQ USER INTR CWNT DISR
MBUN DATE UNCL LGHT INTA
MNOP PICT CNCL CORE SEND
MERR REED ENBL DOZE RECV

b. With the assumption that the SIOC macro is used, the
following mnemonics are available in the Basic Assembler

language:

FILE ENDF READ
ACPT OPEN WRIT
DISP CLOS POSN

c. The following mnemonics are not available in the Advanced

Assembler:

INIT SIOC
TIOC RUNN
INER VALU
TI0CU

BASIC ASSEMBLER INPUT/OUTPUT INSTRUCTIONS.

The Basic Assembler has two methods of initiating input/output

commands to the BCP. One method, SIOC, allows the program to be
upward compatible with the advanced software. This method covers
only the magnetic tape, line printer, paper tape, and card units.
The second method will allow the program to initiate any device
available to the B 2500/B 3500 hardware. The two methods are

outlined below.

USE OF SPECIAL I/O CONTROL (SIOC) ROUTINES FOR BASIC ASSEMBLER.

Unlike the MCP, the BCP has to be provided with the hardware environ-

ment through the loading of a machine language program. This en-
vironment can change from time to time, therefore, the BCP contains
a Symbolic Substitution Table which each program can access to pro-
vide the current descriptor to itself for later execution. The
basic software provides this information to an object program
through the OPEN statement., The OPEN statement contains a symbolic
substitution number that refers to the Symbolic Substitution Table
provided in the BCP. This table has a symbolic number that has an
associated channel number and I/0 descriptor for a specific unit on
the system. By referencing the symbolic number in the OPEN state-

ment, the channel number and I/0 descriptor are automatically

5-2

provided to the user's program. The Symbolic Substitution Table
needs to be loaded only once with each cold start, or it may be
reloaded with the initialization of each program. Tt should be
noted that if both options are used, the OPEN statement will over-
ride the I/O descriptor in the FILE statement.

SIOC ROUTINES.

The SIOC pseudo Op Code (refer to section 6) calls out a standard
input/output control package and assembles it into the object pro-
gram. The routine occupies approximately 1500 bytes of storage.
This pseudo allows the use of the following Advanced Assembler con-

structs:

FILE CLOS POSN
ENDF READ
OPEN WRIT

For Basic Assembler variations, refer to these constructs in section

6 of this manual.

The above constructs can be used for the following peripheral

devices:
a. Magnetic tape.
b. Card reader.

¢c. Card punch.
d. Line printer.
e. Paper tape reader.

f. Paper tape punch,

All other peripheral devices will have to use the INIT and INER

options.

FILE CONSTRUCT,
The FILE construct provides the following outline for a file:

a. File Information Block - 72 digits in length.
b. File Label - 80 bytes in length.

C. File Buffer - defined size.

d. Delimiter - two digits in length.

e, File Work Area - defined size.
Table 5-1 shows the component fields of the File Information Block.

TABLE 5-1
Component Fields of the File Information Block

Label Length Function
TOCNXT Six digits Next record address
TOCWRK Six digits Work area address
T0CSIZ Four digits Record size in words
IOCIO One digit I/0 flag
TOCDIG Five digits Record size in digits
TOCERR Six digits Use routine tape parity
TOCLAB Six digits Standard label
IO0CAEA Six digits Actual end address
TOCCHN Two digits Channel
TOCRD Four digits Result descriptor
TIO0COP Two digits Op code
I0CYAR Four digits Variants
TI0CBEG Six digits Begin address
TOCIEND Six digits End address
IOCDFA Eight digits Efserved __

Table 5-2 shows the component fields of an External File Label.

LABEL HANDLING.

This routine will verify correct values in the first several fields
of the standard label format. These include label identifier,

multi-file ID, and file ID.

Non-standard labels will have to be handled by the user. This can

be accomplished in two ways:

TABLE 5-2

Component Fields of External File Label

Position Value or Function
—
1-8 bLABELDbD
9 (0]
10-16 Multi-file ID or zeros
18-23 Identifier
24 0
25=-27 Reel number
28-32 Date written
33-34 Cycle
35-39 Purge date
Lo Sentinel (zero equals End-of-File
and one equals End-of-Reel)
Li-L45 Block count (ending label)
L6-52 Record count (ending label)
53 Memory-~dump~-key, beginning label
(one means memory dump follows)
54-58 Physical~reel-number
59-80 User's portion
— ————

Alter the label area in core programmatically before the

OPEN statement for that file.

Ignore the halt-breakpoint error on the console or error

message on the supervisory printer (SPO).

Multi-file tape reels will have to be programed by the user.

The following are the formats of the two types of labeled tape

reels:
Standard Labeled Reels Multi-File Labeled Reels
Begin Label Begin Label
EOF Mark EOF Mark
Data File Data File
EOF Mark EOF Mark
End Label End Label

Begin Label
Etc.

BLOCKING AND VARIABLE SIZE RECORDS.
The blocking and unblocking of files will have to be handled by
this routine. Variable size records and variable size records

blocked will have to be handled by the user.

SIOC ERROR RECOVERY PROCEDURES.
MAGNETIC TAPE READ. This procedure will attempt to read the record

ten times and then indicate an I/0 error.

CARD READ AND PUNCH. This procedure will check for an End-of-File
condition. If not at End-of-File condition, an I/0 error is indi-

cated.

LINE PRINTER. This procedure will test for an End-of-Page condi-
tion. If End-of-Page condition, it will branch to the user's rou-
tine. If not, it will perform a skip to channel one. If there is

some condition other than End-of-Page, it will ignore the error.

USE OF INIT, INER, 10CU, TIOC, AND RTRN CONSTRUCTS.

When working with a limited memory system or when using types of
peripherals other than those specified in the SIOC macro, the user
will have to construct his own file area. In this case, he will

have to provide the following:

a. Memory allocation for each file (including buffers).
b. Constant areas for each channel number.

c. His own error procedure with each channel.

An example of this is shown in figure 5-~2. The only requirement
to be concerned with when designing this file area is that a copy
of the result descriptor is placed in the program by the BCP, four
digits in front of the I/0 descriptor. The rest of the file re-

quirements may be designed at the discretion of the programmer.

A thorough knowledge of the I/0 descriptors and their associated
result descrip%ors is required. These are provided in Appendix C
of this manual in summary form. For a more detailed explanation
of result descriptor meanings, refer to the Burroughs B 2500/B 3500

Systems Reference Manual.

USER ROUTINES.

The design of an exception routine will take two general formats.

These are the INIT and TIOC commands and the INER command. These
are governed by the type of option the user requests in his instruc-

tions. These options are as follows:

a. Where an INIT or TIOC command is used, a simple branch to
an ERROR label will occur and no de-link of the channel
will take place.

b. When the user issues an INER command and column 19 (AF) of
the statement equals O-4, the BCP will send 16 digits of
information to the USE routine when an exception condition

exists. These are as follows:

Ut
1
~N3

1) Result descriptor address - six digits.
2) Channel number - two digits.

3) End address code - one digit (code 1 means "ending
address returned" and
code zero means "no end-

ing address requested").

4) Error handling code - one digit (code one means '"no
error handling re-
quested" and code zero
means "error handling

requested").
5) End address location - six digits.

Coding at the start of an exception routine should lqok like this:

ENTRY LABEL BUN +A
CNST 16 UA I/0 COMPLETION INFO
<A XXX

When an INER is used and an exception condition does arise, the BCP
will pass control to the use routine. The BCP can control but one
exception condition at a time. The BCP allows all I/O descriptors
to finish and will service new ones on the error channel only. A
RTRN or a pocket select descriptor use routine clears this condition
in the BCP. When a RTRN or a pocket select descriptor is initiated,

control is returned to the current program point.

An INER statement that has a 5-9 in the AF field (column 19) will
have the BCP branch to the USE routine on any I/O complete. This
condition is used for I/0 devices where timing is critical (e.g.,
sorter/readers). The 16 digits of BCP information is not transferred

as in option b above.

Figures 5-1 and 5-2 provide samples of I/O coding under the Basic
Control Program (BCP).

5-8

700-6¥6¥€0T NDOd A9
0L/0Z/11 Pasiady

-G

6

Program Id. Burroughs ASSEMBLER CODING FORM Bagic ASSEME !Pw‘; L of |
VAR. A ADDRESS B ADDRESS C ADDRESS
SEQ. LABEL op. REMARKS
NO. CODE AF | BF Label + Inc. A}l Ac Label + Inc. |Bil Be Label + Inc. |Ci} Ce CARD Te PR‘NT NO 1
0 0 1 1 2 2 2 313 3 4 4 |4 4 5 515 5 [7
2 8 4 8 0 2 112 4 0 3 |4 6 2 516 8 16 15 0
SIPlElc clARD TIAPIE LIST | l
ST 1 1
CIARD [iLlg|00)80 o 1 BUFFER |~UMLABE LED
C|WA RIEC Dlojo[8lo]UlA CARD WORK AREAI l
EINID v 1 |
EINDIF] 1
PIRIINT| FlriL €0 [32IPIRITINT S 1 BUFFERI-LARELED
wal | | Rlelcplo/13/2]ui PAINT WORK. AREA| |
EIND I !
EINID|F 1 1
S[T|ACIK| IDAT|Al0|ZiclolulN | l
l;'lvu 0/6/0/6|STIAIC! LiLioool4|0 INITIAL AC
O[PIEINIIN| | ICIAIRID o1 C, CHW/ Ro
oPleiloT | |PRIIINT] oz, DESC, CHAN FROM EINTRY#2|
SPP|RID|4loi4i0 PW;\ BLANK. PRINTER WoRK AREA
READ | CARD END 1 I
Mviw | | 4oiCwA _PWA | CARD To PRINT WoRKIAREA |
WRITIOM | PRI NT] RERERNRRE g ! !
u L =1 aEEEEE G0 To GETI NEXT CARD
NID. clLos | | IPRILINT e | ’ PRINT ENDINe LAREL. |
SToP | END OF 1IOR I
FIINT| | | ; ! !
EIND ‘ % 1 |
i I !

Figure 5-1., Sample 1 of BCP I/0 Coding

0T-¢

Program 1. Burroughs ASSEMBLER CODING FORM pac. accemp Poge ——of 2
VAR. A ADDRESS B ADDRESS C ADDRESS
No. LABEL covt | ar Jor Label +ine. |Alf Ac Label +inc. |B] Be Label tine. |cil c< | CARD To P;fm‘.‘;.ws 2
0 0 1 1 7] 2 2 313 3 4 4 4 5 515 5 [] 7 8
2 F 4 8 0 2 f 112 4 0 4 6 2 516 8 16 15 0
SIPEIC CIARD TIAP LisT ! 1
| !
Liolc olojoj4ib 1]
C _AJsT 2/ulN FlF| ALLow HAILTS L
v | |
xkbe|CIAIRD |F[1|Rl |AND |BIUIFIF p sl | I
Cl-|CIHAINIDA| T] 2[UIN CHANNEL!L l
(o DIAIT AI-LJl RESULT DESCRI\PTORI
CDRgC DTATA LlUIN I/Jo DESCRIPTOR | |
ALQ SEEREE BEGIN ADDRESS |
CIONI c dj};: o) ENO ADR| |
C RIEEICD (e, CARD WoRk AREA |
D] |
Cl-|RUFIFIRIEIC DS olul CARD BUFFER |
EIND i] i
| » X PARL NTI_EJ FlaI AND_BUIF|FIE|R %% | i
Pl-lcluAMDAT z CHANNEL | |
P~ CNISIT | | [4lu 8000 RESULY DESCRIPTOR1
PDE§!Q DAT blU I/o DESCRIProR |
¢lo Pl-IRIUE|F REGIN ADR !
PIWA RE/CID |12l I PRINT WORK. AREA |
Eagb ‘ 1 1
Bi- REICD |1]312 [U}A PRINT RUFFER |
E|NID! I 1
PIORD | DAY 4iuiN PG ouT RESULT DESC
Pldaigssﬂéﬁ bl 1/1ldlold1 SKIP T0 CMANNEL 4

Figure 5-2.

Sample 2 of BCP I/0 Coding (Sheet 1 of 3)

11-6

Program 1d. Burroughs ASSEMBLER CODING FORM BAsic Assamg’fénz—“}—
VAR. A ADDRESS B ADDRESS C ADDRESS .
SEQ. LABEL OP. _ REMARKS
NO. CODE | AF | BF Label +lInc. |Ai| Ac Label +Inc. |Bil Be Label tine. |C] Cc | c ARD TO PRINT No 2
0 0 1 1 2 2 313 3 4 4 5 515 5 [7 [:]
2 I 4 8 b |2 I8 112 |4 0 4 2 5l |8 16 L5 0
xx*s|§]'r P STAlc.K Flo|R Mrl MBS I 1
TCKP TA | [1HuluN 1 !
myin| lolelole|S|TlAlclK LiLololol4]o INITIALEZE STACK
| 1
XXX E[QU[I]N] [TIo] |OIPIEIN| ISITIAITIEIMEINIT] &[5! 1 1
11lociiolt coegl_‘tj C|-ICIHIAIN S INIT. CARDS FROM EINT #1 |
Tlolc|ulof2] | |PIniElslc Pl-lclHAN AlSIE] INIT. PRLNT FROM EINT #2
MvIN| [0[110/11|PIDIEISIC] | |03 P bgﬁc Q3 SET PAGEIDESC UNOT
IINIL|T] PlG|DIE|SIC Pl-ICIHIAIN SET NEW 1PG l
1'1&4; PMJRIJ 1 1
| |
xx;dsTA QF |PIROG LIOGIIC,| ILINIITILIALILIZIATION %%% |
SIPIRID 4014 0/PINA BLANK PRONT WoRK IAREA |
O|PIE 1NIT CINES Cl-|CIHAN ! !
TiLlo cl-|RD olel-lERR . .
BUIN +B 1 i
] |
XX®CIARD |TIO IPRINT. [LUQETIC 1%(%% | I
. T‘}IOC Cl-|RD CJL R CARD READ| DONE. NO| WAELT
. M YW 0410(:- ClWA | YES MOVME] C RUFF |To WA |
IEAID | IINIIT cpesﬁE Ci-|CIHA READ A CIARD To BUIFFER
0a4o/c/WA ANA MovE CRD WA TO PRN WA
Ijoic P~RD P~ E|R PRINT WIRITE DONE| WAIT |
.C MV oonggA \P- | BUFIF YES MovE (P WA To P BUFE
LTIE IINIIT PDE|SC Pl-ICHIA WRITE PRN Bure
Blle A f | | [LooP BACK ;

Figure 5-2.

Sample 2 of BCP I/0 Coding (Sheet 2 of 3)

Al et

Program 1d. Burroughs ASSEMBLER CODING FORM Basic Asseme —=— 13
VAR. A ADDRESS B ADDRESS C ADDRESS
SEQ. LABEL OP. - REMARKS
NO. CODE | AF | BF Label +nc. Al Ac Label +Inc. |Bd Bc Label tine. [Ci| Cc | CARD T
0 0 1 1 73 2 2 33 3 4 4 14 4 5 515 5 7
2 18 4 8 b 2 112 14 0 Bla_ s 2 sl I8 16 15 0
eIl TRl e T e e .
1 1
DIERRIMINI O Cl-ICIHIAIN Cl-tHIAlLT! o i I
| ?ﬁ@fﬂﬂ o | laz | | c|-jnialiT] la4 : !
C|-|HIAILITIH Ojalo|F !]
EX|T 1]
I 1
1% i T C|RIDIEIR L 1
4%LM& @IPIE 1 |
1 1
Cl-lERIR| ICIPIAl (OrSl0{SIEIN AlLIC|-|RIU[FE| |0 \ \
ElQIL ullls]]
N|T C|RID|EIR[R! I]
LIN[TIT! bIE|S|C! Cl-1CIH 1 1
u - 1]
1 l
1 . 1
PI-EIR[A [BILIN] (¥ IGNGRE. 1PRINT | CHECKS
(MAY D@ 1PAGING |QuUT
Siriele] | |SiTielP HERE, Wi IERE APPLLICABLE). |
FII[NIT 1 l
i |
I 1
1 1
I 1
| |

Figure 5-2. Sample 2 of BCP I/0 Cnding (Sheet 3 of 3)

SECTION 6
ASSEMBLY OPERATIONS CODES

GENERAL,

This section contains all of the operation codes used in the B 2500/
B 3500 Assembler Language, with the following exceptions: Data Com-
munications, MICR sorter-reader and lister. A description of these
instructions and the Advanced Assembler macro facility are contained

in separate sections. These operation codes are described in alpha-

betical sequence, and each description is presented in a standard
format which is keyed to the assembly coding form. First is the
symbolic operation code (i.e., machine code, macro, pseudo, or
declarative) and then a general description of the instructions
function. This is followed by a coding example of the operation
code and then a description of LABEL entry restrictions and entries
(if any). After the LABEL entry description, the conventions (if
any) defining the length of the C field in a three-address instruc-
tion are defined. Next, the coding requirements (if any) for the
A, B, and C ADDRESS fields along with their subfields are defined.
Any changes to the comparison and OVERFLOW indicators and Program
Reserved Memory are described next. This is then followed by any
programming notes, semantic connections with other operations in a
program, and finally operational examples of the operation code

(only in some cases).

ACON

DECLARE ADDRESS CONSTANT (ACON) - DECLARATIVE.

The function of this declarative is to specify that the base-

relative address corresponding to the specified label is to be

assembled

as a constant,

index bits.

The format for the ACON instruction is as follows:

with all associated address

controller and

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL

CODE AF | BF Laobel +1Inc. |A Ac Label + Inc. |Bi} Bc Label + Inc. |Ci| Ce
0 1 1 2 2 2 313 4 4 |4 4 5 515 5
8 4 8 0 2 8 112 0 3 |4 6 2 5 16 8
TlA|R|AlDlRlAICIgIN] TA'B + ol |ula

L]

There are no LABEL restrictions when using this instruction.

No VAR length is specified. The assembled address constant has an

implicit length of six digits and is an unsigned numeric constant.

Specified in the A ADDRESS field is the label whose base~relative

address is to be assembled. Full generality of increment, index,

and controller apply. If an address controller is associated with
the label, it will be assembled into the address constant unless

overridden. The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

The ACON command may be used to specify a parameter following a NTR
instruction within executable coding, or independently within work-
ing storage. The assembled address constant will be synchronized

modulo-=2.

ACCEPT SPO TYPE-IN (ACPT) - PSEUDO.

The function of this pseudo is to read an operator-supplied message

from the Supervisory Printer.

The format of the ACPT instruction is as follows:

ACPT

B ADDRESS

VAR. A ADDRESS C ADDRESS
oP.

LABEL CODE | AF | BF Label + Ine. AII Ac Label +Inc. |BY Be Label + Inc. |Cif Cc
0 1 1 313 4 Ay 5 515 5
j & 4 8 12 0 3 J4 2 sl s
RIEIAWDIWlAlC|AIT 2] Plalelalms
There are no LABEL restrictions when using this instruction.
The AF field specifies the number of characters to be read. If it

is blank, the length associated with the A ADDRESS label is used.

The A ADDRESS field points to an alphanumeric area into which the

typed-in message is copied. Indexing is not permitted, and the

address controller must be UA. The remaining fields are not used
by this instruction.
Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

Under control of the MCP, an ACPT causes the program to suspend

execution and type a "waiting message" notification. The operator
then responds with an AX text type-in, and the program resumes oper-

ation.

When using with BCP, SIOC assumes that the supervisory printer is onl

symbolic substitution entry 11.

6=3

ADD

THREE-ADDRESS ADD (ADD) - MACHINE CODE-02.

The function of this instruction is to perform a three-address

addition by adding the contents of the A field to the B field and

storing the result in the C field.

The format of this instruction is

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +Ine. Al Ac Label + Inc. |Bi| Be Label + Inc. JCi} Cc
0 1 1 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 B 112 4 0 3 |4 6 2 5 16 8
|- ol DD lg ol s:.cdu‘m'n.t clglulnltlz
Ls T

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of digits/characters in the A
field and the BF field specifies the number of
the B field.

digits/characters in
The C field length is assumed to be equal to the
larger of the AF and BF values. If the number of significant digits
in the sum is greater than C field length, the addition will not be
performed, If the A and B field lengths are unequal, the shorter of
the two is assumed to be left-zero-filled until the lengths are

equal.

The A ADDRESS field points to the addend field and all address con-
trollers are valid. UN fields are assumed to have a positive value.
Only the numeric digits of a UA field will be accessed and the sign

will be assumed positive.

The B ADDRESS field points to the augend field and the address con-

troller conventions are the same as for the A ADDRESS.

The C ADDRESS field points to the field into which the sum is stored.
If the C field is UN, the sign of the sum will be lost and the ab-

solute value will be stored. If the C field is UA,

the sign of the

sum will be lost, the absolute value of the sum will be stored into

6=4

ADD

continued

the numeric-digit portion of each character position, and the zone-

digit portion will be set to the numeric-subset zone.

If the sum is too large to fit into the C-field,

cator is set and the comparison indicators remain unchanged;

wise,

sum (even if the sign is not stored).

These settings are as follows:

Program Reserved Memory is not

Setting

LOW

EQUAL
HIGH

changed by this instruction.

the OVERFLOW indi-

other-

the comparison indicators are set according to the sign of the

Operational examples of the Three-Address Add instruction are as

follows:

Unsigned Numeric To Signed

Numeric Giving Signed Numeric.

Unsigned Numeric To Signed
Numeric Giving Unsigned Alpha-

OP AF BF A ADDRESS| B ADDRESS | C ADDRESS
ADD | 02 05 20(NL) COUNT1(SN) | COUNT2(SN)
BEFORE AFTER
A ADDRESS 20 20
B ADDRESS +00015 +00015
C ADDRESS XXXXXX +00035
COMP. INDC. XXX HIGH
OVERFLOW unchanged

numeric,

OP | AF | BF A ADDRESS | B ADDRESS | C ADDRESS
ADD | 02 05 INCR(UN) COUNT1(SN) | COUNT2(UA)}
BEFORE AFTER

A ADDRESS 10 10
B ADDRESS -00050 =-00050
C ADDRESS XXXXX oooko
COMP. INDC. XXX Low
OVERFLOW unchanged

6-5

ADD
continued

Add Producing Overflow Condi-
tion.

OP | AF | BF| A ADDRESS| B ADDRESS | C ADDRESS
ADD | 02 | 02 | COUNT1(UN)| COUNT2(UN)| SUM(SN)

BEFORE AFTER
A ADDRESS 61 61
B ADDRESS 53
C ADDRESS unchanged
COMP. INDC. unchanged
OVERFLOW XXX ON

6-6

ADSD

ALLOCATE STORAGE FOR SEGMENT DICTIONARY (ADSD) - DECLARATIVE.

This instruction is defined for the Advanced Assembler only., Its
function is to allocate storage area for the segment dictionary at

the current storage location.

The format for the ADSD instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LABE
t CODE AF | BF Label +Ine. JA Ac Label + Inc. [Bif Bc Label + Inc. [Ci] Ce
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 8 112 4 0 3)4 6 2 516 8

P;szos

LABELS are not permitted with this instruction.

The VAR field is used to specify the number of segments in the
program. This L4-digit right-justified count should correspond to,
or exceed, the number of SEGM statements in the program. Leading

zeros are optional,
The remaining fields are not used by this instruction.

Ordinarily, the Assembler automatically assigns space for the
segment dictionary at the end of the program area. If, however, the
program is longer than 50KB (100K digits), the segment dictionary
will not be reachable because of addressing limitations, and all
OVLY commands will cause syntax errors in the assembly. The ADSD
declarative makes it possible to locate the segment dictionary
within the first 50KB of long programs, thus avoiding the addressing

problem. ADSD must be the last statement of the main segment.

Revised 10/30/69 .
by PCN 1034949-001 6=17

ALFA

DECLARE EXTENDED ALPHA CONSTANT (ALFA) - DECLARATIVE INSTRUCTION.
This instruction permits the declaration of an alphanumeric constant

of up to 59 characters, and it is defined for Advanced Assembler
only,

The format for the ALFA instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Lobel +Ine. AL} Ac Label +Inc. |B{ Be Lobel + Inc. |Ci] Cc
0 1 1 2 2 313 |3 4 afa |4 5 515 |5
8 4 8 b |2 1|2 |4 0 34 e 2 506 |s
L G AlL|F] 4'051\/7"/ £l Kl/Mel Iimrlele }35 LlgWlaElo] 14]S A| ClgMs|l7anT

There are no LABEL restrictions when using this instruction.

The BF field specifies the number of characters to be allocated for

the constant; a range of 0l through 59 is acceptable. If omitted,

the Assembler will assume 59.

The constant data is specified, left-justified, in columns 22-80.

The remaining fields are not used by this instruction. Program Re-

served Memory and the comparison and OVERFLOW indicators are not

changed by the instruction.

6-8

ADJUST LOCATION COUNTER (ALOC) - PSEUDO.

ALOC

The function of this pseudo is to algebraically add the integer in
the A ADDRESS label field to the current value of the location

counter.

The format of the ALOC instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LAB
EL CODE | AF | BF Label +1Inc. Al Ac Label +Inc. |Bi] Be Labet +Ine. |Ci] Ce
0 1 1 2 2 I3 13 4 a4 |4 5 515 |5
8 4 8 _p 2 ﬁ 12 14 0 314 16 2 56 I8
Ui -lololdl1lo)

LABELS are not permitted with this instruction.

A signed 5-digit

integer is specified in the A ADDRESS field and the sign must be

present.

The remaining fields are not used for this instruction.

If this pseudo is coded within an overla?able segment, the adjusted

value of the Location Counter must not be less than the beginning

address of the segment.

Revised 10/30/69

by PCN 1034949-001

6-8A

AND

LOGICAL AND (AND) - MACHINE CODE-42.

The function of this instruction is to compare the A field bits
with the corresponding B field bits and store a 1 bit into the
C field if the corresponding A and B field bits are both on.

The format of the AND instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE | AF | BF Label + Inc. JAll Ac Lobel +Inc. |Bi Be Label +tnc. |Ci] Ce
0 1 1T R 2 2 R E 4 4 |4 4 5 515 15
8 4 8 2 8 112 14 0 3 |4 6 2 516 |s
AN|D Flrlef o Als|i! | 1|el Ipla |

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of digits/characters in the A
field and the BF field specifies the number of digits/characters

in the B field. The C field length is assumed to equal the larger
of the AF and BF wvalues.,. If the A and B fields are not of equal
length, the shorter of the two is padded by assuming trailing O-bit
digits/characters (0/00).

The A ADDRESS field points to the first field to be AND'ed. The
A address controller may not be SN and the final A address controller

must be the same as the final B and C address controllers.

The B ADDRESS field points to the second field to be AND'ed. The
B address controller may not be SN. The final B address controller

must be the same as the final A and C address controllers.

The C ADDRESS field points to the field into which the AND'ed
result is to be stored. The C address controller may not be SN,
and the final C address controller must be the same as the final

A and B address controllers.

6-9

AND
continued

The comparison indicator is set to HIGH if the last result bit
(i.e., the low-order bit of the last C field digit/character) is
one. The comparison indicator is set to EQUAL if the last result

bit is zero.

The OVERFLOW indicator is not changed by this instruction. Program

Reserved Memory is not changed by this instruction.

The AND instruction processes bit strings, with no implicit con-

version between formats. An example of this follows:

Operands Result

A Field | B Field | C Field

= = O O
H O = O
= O O O

The following are operational examples of the AND instruction.

Unsigned Numeric To Unsigned
Numeric Giving Unsigned Numeric.

Unsigned Alphanumeric To Un-
signed Alphanumeric Giving Un-
signed Alphanumeric.

6-10

op | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
p | aAF | 8F [A ADDRESs |8 ADDRES ADDRES:
AND | 02 | 03 | FIELDA(UN) |FIELDB(UN) | FIELDC(UN) o B DDRESS S {C S
AND |03 | 03 | FIELD1(UA) |[FIELD2(UA) |FIELD3(UA
BEFO] AFTER
BEFORE AFTER
A ADDRESS Fé6 F6 111101100000
B ADDRESS 235 235 001000110101 A ADDRESS XYz XYZ 111001111110100011101001
C ADDRESS xXX 220 001000100000 B ADDRESS MQJ MQJ 110101001;01;00011010001
COMP. INDC. XXX EQUAL C ADDRESS XXX DHA 110001001100100011000001
OVERFLOW unchanged COMP. INDC. XXX HIGH
OVERFLOW unchanged

BLANK (bbbb) - PSEUDO.

bbbb

The function of this pseudo is to provide remarks for documentation

purposes.

The format of the bbbb instruction is as follows:

Its function is identical to that of the REMK statement.

VAR, A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Label +Inc. |AH Ac Label + Inc. |Bi] Bc Label + Inc. JCi| Cc
0 1 T B 2 3[3 |3 4 3[4 |4 5 515 |5
8 4 8 b] 102 |4 0 3la s 2 56 |8
ot TiHli|s| |pls|Elulplal |elrlvlels! [drlelalde ,}{E&WABIUTY
A label or program point may be entered in the LABEL field. It will

be equated to the current value of the location counter (next avail-

able storage location), but will not have any field length or data

format associated with it.

Documentation text may appear anywhere in columns 18 through 80,

Program Reserved Memory of the object program and the comparison

and OVERFLOW indicators are not changed by this instruction.

BCT

BRANCH COMMUNICATE TO CONTROL PROGRAM (BCT) - MACHINE CODE-30.

The function of this instruction is to store program address and

status registers, change execution mode to control state, and branch

to a specified address.

The format for the BCT instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label + Inc. |Al} Ac Label +Inc. |Bi} Bc Labe! +Inc. |Ci] Cc
0 1 1 2 2 313 3 4 4 |4 4 5 515 5
8 4 8 0 B 112 4 0 3 j4 6 2 5 16 8
RICIT] [0]|2[5i4

There are no LABEL restrictions when using this instruction.

The VAR field specifies the low-order four digits of an absolute
machine address (high-order digits equal 00). 1If this address
contains an undigit F, the five digits immediately following it are
interpreted as another absolute machine address, and control is

transferred to that address. If the address specified by the B
variant field does not contain an undigit F, a processor interrupt

is generated.

The remaining fields are not used by this instruction.

The settings of the comparison, OVERFLOW, normal/control state, and
EBCDIC/USASCII mode indicators are stored into fixed locations in

Systems Reserved Memory, and then reset.

The instruction address register and certain status indicators are
stored into Systems Reserved Memory upon execution of this command.
The base and limit registers are changed to include all of core

storage.

6-12

BCT

continued

If a processor or I/0 interrupt occurs during normal state proces-
sing, the processor in effect generates a BCT 0094 command and
executes it as though it had been issued within the normal state

program., This command is used for all program/MCP communicating.

6-13

BOT

BIT ONE TEST (BOT) - MACHINE CODE-41.
This instruction tests the A field (in 8-bit groups) for 1l-bits in
the bit positions selected by the BF field mask.

The format for the BOT instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS

OP.
LAB
EL CODE AF | BF Label + Ine. |Al]l Ac Label +Inc. |BH Bc Label + Inc. |Ci] Cc
0 1 1 2 2 2 313 3 4 4 |4 4 5 515 5
8 4 8 0 2 112 4 0 3 |4 6 2 5 16 8

Tis|rislwr BT [Flo

-

Hl[i

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of digits/characters to be tested
in the A field. The BF field specifies an 8-bit selection mask.
1-bits within this mask select those bit positions to be tested for
a 1l-bit within each 8-bit group of the A field. A through F may be
used to specify undigits in the mask. The A ADDRESS points to the
field to be examined and its controller may not be SN. If the A
address controller is UN, the A field will be tested against the
mask as consecutive pairs of 4-bit digits. If the A field length

is odd, the last (low-order) single digit will be tested against the
high-order four bits of the mask.

The remaining fields are not used by this instruction.

The comparison indicators are set to EQUAL if any tested bit in the
A field is one. They are set to HIGH if all tested bits in the A

field are zero.

Program Reserved Memory and the OVERFLOW indicator are not changed

by this instruction.

The BOT instruction essentially treats the A field as a string of

bits to which the BF mask is repetitively applied. A 1-bit in the

6-14

BOT

continued

mask causes a test of the corresponding bit in the A field, and the

comparison indicators are set according to the results.

The following are operational examples of the BOT instruction.

Bits Found.

OP | AF | BF| A ADDRESS| B ADDRESS

C ADDRESS

Bits Not Found.

OP | AF | BF

BOT [03 | FO | SWITCH(UN)

A ADDRESS| B ADDRESS | C ADDRESS

BOT | 02 03 | AREA(UA)

BEFORE AFTER BEFORE AFTER
A ADDRESS 001 001 A ADDRESS Db DD
B ADDRESS - _— B ADDRESS —_— I
C ADDRESS i I C ADDRESS —_ _—
COMP. INDC. XXX EQUAL COMP. INDC. XXX HIGH
OVERFLOW unchanged OVERFLOW unchanged

BRE

BRANCH REINSTATE (BRE) - MACHINE CODE-90

This instruction may not be used in normal state programs. It
reinstates the machine registers and transfers control back to the
point it had reached when a BCT command was issued. The BCT command
may have been issued as a program instruction, or it may have been
generated by the hardware. The execution mode is changed from

acontrol back to normal.

The format of the BRE instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LABEL CODE AF | BF Label +Ine. Al Ac Label + Inc. |Bi} Be Label + Inc. |Ci| Cc
0 1 2 2 2 313 4 4 |4 4 5 515 5
8 8 0 2 B 112 0 3 14 6 2 5 {6 8

.B}ETIuJRNBRE 0

There are no LABEL restrictions when using this instruction.

The AF field (column 18) specifies whether or not interrupts are to

be masked. Coding is as follows:

Code Description
o) Interrupts enabled. If an in-
terrupt is pending when the BRE
command is issued, it will immedi-
ately be converted into a BCT it-
self,
1 Interrupts masked. Interrupts

cannot be serviced until the in-

struction sequence which receives
control from the BRE executes a

BCT itself.

The remaining fields are not used by this instruction.

6-16

BRE
continued

The machine address and condition registers (base, limit, EBCDIC/
USASCIT mode, and comparison) are restored from Systems Reserved

Memory where they were stored when the last BCT command was issued.
Program Reserved Memory is not changed by this instruction.

Non-interruptable normal state execution mode (AF digit equals 1)
is usually invoked for special I/0 routines such as pocket selec-
tion on the sorter-reader. If an invalid instruction or address

is attempted in this mode, the machine stops completely.

BUN

BRANCH UNCONDITIONAL (BUN) - MACHINE CODE=-27

This instruction causes control to be transferred to an address

specified by the A field.

The format for the BUN instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE | aF | BF Label +lnc. |Al Ac Label +Inc. |8 Be Label + Inc. |Ci] Ce
0 1 R E 2) BNl E 7 7 P P 5 3 R
8 4 8 0 2 B 1]2 4 0 3 |4 6 2 5]6 8

L

There are no LABEL restrictions when using this instruction.

Any defined branch address may be coded in the A ADDRESS field.
Indexing is unrestricted. Address controller bits are interpreted
as a high-order digit of the branch address, except that A/C 112
retains the indirect address meaning. Thus, a base-relative branch

address up to 299998 may be assembled.

The remaining fields are not used by this instruction. The Com-
parison and OVERFLOW indicators and Program Reserved Memory are not
changed by this instruction. The instruction is of 8-digit address-

branch format.

6-19

BZT

BIT ZERO TEST (BZT) - MACHINE CODE-40.
The function of this instruction is to test the A field (in 8-bit
groups) for zero bits in the bit positions selected by the BF field

mask.

The format of the BZT instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE | AF | BF Label +lne. JAIl Ac Labe! +1Inc. |Bi| Bc Label + Inc. |Ci| ce
0 1 R E 2 3[3 |3 4 a4 |4 5 515 |5
8 4 8_p |2 1]2 |4 0 <J C [2 sle |s
Nl B;‘T 1(2|sh s [ric|H

There are no LABEL restrictions when using this instruction,.

The AF field specifies the number of characters/digits to be tested
in the A field. The BF field specifies an 8-bit selection mask.
1-bits in this mask select those bit positions to be tested for
zero bits within each 8-bit group of the A field. A through F may

be used to specify undigits in the mask.

The A ADDRESS field points to the field to be examined and its

address controller may not be SN.

tested
If the A
will be

If the A address controller is UN, the A field will be
against the mask as consecutive pairs of L-bit digits.
field length is odd, the last (low-order) single digit

tested against the high-order four bits of the mask.
The remaining fields are not used by this instruction.

bit in the
in the A

The comparison indicator is set to EQUAL if any tested
A field is zero. It is set to HIGH if all tested bits

field are one (1).

Program Reserved Memory and the OVERFLOW indicators are not changed

by the instruction.

6-20

BZT
continued

The BZT instruction essentially treats the A field as a string of
bits to which the BF mask is repetitively applied. A 1 bit in the
mask causes a test of the corresponding bit in the A field, and the

comparison indicators are set according to the results.

The following are operational examples of the BZT instruction.

Test For All Alphanumeric. Test For All Alphanumeric.
oP AF BF A ADDRESS | B ADDRESS | C ADDRESS oP AF BF A ADDRESS | B ADDRESS | C ADDRESS
BZT {05 C0 } FIELD(UA) BZT {05 CO0 | FIELD(UA)
BEFORE AFTER BEFORE AFTER
A ADDRESS CAX#D CAX#D A ADDRESS BRACE BRACE
B ADDRESS B ADDRESS
C ADDRESS C ADDRESS
COMP. INDC. XXX EQUAL COMP. INDC. XXX HIGH
OVERFLOW unchanged OVERFLOW unchanged

CLOS

CLOSE FILE (CLOS) - PSEUDO.

The function of this pseudo is to terminate processing of a file or

reel (including end-label creation, device release, locking, etc.).

The format for the CLOS instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +Inc. ALl Ac Labe! + Inc. |Bil Bc Labe! + Inc. |Ci} Ce
0 1 1 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 B8 112 4 0 3]4 [2 516 8

There are no LABEL restrictions when using this instruction.

The AF field (column 18) specifies whether a logical file (any

device) or a physical reel (magnetic tape only) is to be closed.

Coding is as follows:

Code

blank
F
R

Description

Close file
Close file

Close reel

When a close reel operation is performed, the file remains logically

(o] Ee,n ’

the current reel is terminated, then the next reel is located

‘and made available to the program.

The AF field (column 19) specifies the disposition of the file.

Coding is as follows:

6-22

Description

End label, rewind, retain device
assignment to program (e.g., for a
subsequent re-open within the

program).

CLOS

continued

Code Description

R End label, rewind, release to
system (e.g., for subsequent use
by another program).

L End label, rewind, lock (e.g., for
removal and storage).

N End label, no rewind.

P Rewind, purge, release to system.

NOTES

An output disk file must be closed with

lock or release if it is to be passed to

another program, If it is not closed
with lock or release, it will be purged

at the end of the current program,

End-of-Job procedures perform a close re-

lease on any unclosed file other than disk.

In the basic language, blank and R both

mean release to system.

The A ADDRESS label field contains the internal file-name of the
file to be closed. Incrementing, indexing, and address controllers

are not permitted.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not chanéed by the dinstruction.

Files are assumed closed at the beginning of a program execution
and must be opened to permit processing of them. They should be
closed when processing is complete, and must be closed if they are

to be re-opened in a different mode.

Revised 11/20/70
by PCN 1034949-002 6-213

CLOS

continued

If a file is declared and opened within an overlayable segment, it
should be closed before control exits to a higher-level segment
(nearer to the main routine). If a file within a segment is left
open when control exits from that segment, its status at a later
re-entry to the segment is uncertain (depending on whether the

segment has been overlaid in the meantime).

6-24

DECLARE CONSTANT (CNST) - DECLARATIVE.

CNST

This instruction allocates storage for and loads a numeric oxr alpha-

numeric constant declared in the statement.

The format for the CNST instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL oP.
CODE | AF | BF Label +Inec. Al Ac Label +Inc. |BY Bc Label +Inc. |Ci] Cc
0 1 1 P 2 2 33 4 4 |4 5 51 15
I8 4 8 2 B 12 0 3 J4 2 S5le |8
MIA| X Clvs Z|o]S|v olololo|o] 2)3]|7|o)5

There are no LABEL restrictions when using this instruction.

The VAR field contains a 4-digit count of characters/digits to be
allocated for the constant. This length should agree with the
data format length conventions. Only the first 24 positions of a

If the declared count

storage will be allocated and initialized to zero's if

constant area are loaded from this statement.
is greater,
the controller is UN or SN. It will be inditialized to blanks if the

controllexr is UA.

The data format of the constant is declared left-justified in the

A ADDRESS label field. Coding is as follows.

Code Description

blank Unsigned numeric
UN Unsigned numeric
SN Signed numeric
UA Alphanumeric

The constant data is specified left-justified in the B and C ADDRESS
fields (columns 34 through 57) for a maximum of 24 digits/characters.

In an unsigned or signed numeric constant, A through F may be codedl

to denote undigits.

6-25

CNST

continued

In a signed numeric constant, column 34 (first position) must be
plus (+) or minus (-). 1In numeric constants, blank columns within

the length will assemble as zeroes.

NOTE
If a 7-track symbolic (SYMTIN) tape is
being created by the assembly, CNST
data should not contain untranslatable

EBCDIC characters (refer to appendix D).

The remaining fields are not used by this instruction. Program
Reserved Memory and the comparison and OVERFLOW indicators are not

changed by the instruction.

If an alphanumeric constant is declared, the location counter will

be automatically synchronized to a character boundry (modulo-z).

6-26

CODE

ENABLE PRINTED OBJECT LISTING (CODE) - PSEUDO.

This instruction starts or resumes printing of the assembled

machine code.

The format for the CODE instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE AF | BF Label +Inc. AN} Ac Label + Inc. |Bil Bc Label + Inc. |Ci] Cc
0] T k|2 7 313 |3] 7 VR 5 3 I
I 4 8 p |2 s 112 |4 0 N Y 2 sl s

LABELs are not permitted with this instruction, nor are the remain-
ing fields used. Program Reserved Memory and the comparison and

OVERFLOW indicators are not changed by the instruction.

There are mno operands for this instruction. CODE may be used in

conjunction with, or instead of, the CODE option on the SPEC com-

mand.

CORE

OBTAIN AMOUNT OF ASSIGNED CORE (CORE) - PSEUDO.

This pseudo places the value of the amount of core assigned to the

object program in a specified 6-digit field.

The format for the CORE instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE | AF | BF Label *inc. JAl Ac Labe! #Inc. |B4 Be Label #lnc. JCif Cc
0 1 1 2 I3 |3 4 4 |4 L 4 g
k 4 8 2 112 14 Jo B 2 H |s
clolele clel<lch~ ’

There are no LABEL restrictions when using this instruction.

The A ADDRESS field must contain a label referencing a 6 UN field

into which the value is to be placed.

The remaining fields are not used by this instruction Program

Reserved Memory, and the comparison and OVERFLOW indicators are not

changed by this instruction.

6-28

CPA

COMPARE ALPHANUMERIC (CPA) - MACHINE CODE-45

This instruction compares the characters in the A and B fields
according to the binary collating sequence, left-justified, and

sets the comparison indicators accordingly.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label + Inc. JAI} Ac Label + Inc. |Bi| Be Label + tnc. |Ci} Ce
0 1 1 2 2 2 3|3 3 4 4 14 4 5 515 5
jg 4 8 0 2 1j2 4 0 3 14 6 2 5 |6 8
TisltiTglplcle +§| z9/q Tl | | []

There are no LABEL restrictions when using this instruction.

The AF field specifies the length of the A field and the BF variant
specifies the length of the B field. If the field lengths are
unequal, the shorter field is padded in the processor with trailing

blank fill to equal the length of the longer.

The A ADDRESS points to the first field to be compared and its con-
troller must be UA or IA. The B ADDRESS points to the second field
to be compared and its controller must be UA or TA. The remaining

fields are not used by this instruction.

The comparison indicator is set to HIGH if the binary wvalue of the
A field is greater than that of the B field. The comparison in-
dicator is set to EQUAL if the two fields have exactly the same bit
pattern (including trailing blanks), and to LOW if the binary value
of the A field is less than that of the B field.

Program Reserved Memory and the OVERFLOW indicators are not changed

by this instruction.

The address controller restriction is important. The processor

treats each field as a string of bits, with no format conversion

6-29

CPA

continued

involved.

detected,

The instruction terminates when an unequal condition is

or when the fields are exhausted.

The following are operational examples of the CPA instruction.

Compare Unequal Lengths.

Compare Equal Lengths.

OP | AF | BF| A ADDRESS| B ADDRESS | C ADDRESS OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
CPA| 05 | 03 | NAME CODE CPA |02 | 02 X Y
BEFORE AFTER BEFORE AFTER
A ADDRESS ATSbb ATSbb A ADDRESS AN AN
B ADDRESS ATS ATS B ADDRESS BN BN
C ADDRESS C ADDRESS — —
COMP. INDC. XXX EQUAL COMP. INDC. XXX LOW
OVERFLOW unchanged OVERFLOW unchanged

6-730

CPN

COMPARE NUMERIC (CPN) - MACHINE CODE-46.

This instruction algebraically compares the A field against the

B field and sets the comparison indicators according to the results.

The format for the CPN instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE | AF | BF Lobel +1nc. JAIl Ac Label +Inc. |Bil Bc Label + Inc. |Ci] Cc
0 1 T kB |2 2 33 I3 4 VR PR P ' 5 3 E
8 4 8 b 2 142 |4 0 3 |4) 2 G I

crnaslmiucpn 1] lo N{QEHCNIT

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of digits/characters in the A
field and the BT field specifies the number of digits/characters in
the B field. TIf the A and B fields are not equal in length, the
shorter of the two is padded in the processor by assuming leading

zeros until their lengths are equal.

The A ADDRESS points to the first field to be compared and the B
ADDRESS points to the second field to be compared. UN and UA fields
are considered positive. Only the numeric digits of a UA field

are used in the comparison.
The remaining fields are not used by this instruction.

The comparison indicator is set to HIGH if the algebraic value of
the A field is greater than that of the B field. The comparison in-
dicator is set to EQUAL if the algebraic value of the two fields

is equal and to LOW if the algebraic value of the A field is less

than that of the B field. Plus zero compares equal to minus zero.

Program Reserved Memory and the OVERFLOW indicator are not changed

by this instruction.
The following are operational examples of the CPN instruction.

6-31

CPN

continued
Compare Signed Numeric Against Compare Unsigned Numeric Against
Unsigned Numeric. Signed Numeric.
OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS op | AF | BF | AADDRESS|B ADDRESS | C ADDRESS
CPN |02 |05 [+20(SL) FIELD(UN) CPN [06 | 02 | 000012(NL) |FIELDB(SN)
BEFORE AFTER BEFORE AFTER
A ADDRESS +20 +20 A ADDRESS 000012 000012
B ADDRESS 00015 00015 B ADDRESS +25 +25
C ADDRESS C ADDRESS
COMP. INDC. XXX HIGH COMP. INDC. XXX Low
OVERFLOW unchanged OVERFLOW unchanged

6-32

Compare Unsigned Numeric Against

Unsigned Alphanumeric.
OP | AF | BF| A ADDRESS| B ADDRESS | C ADDRESS
CPN| 03 | 03 | FIELD1(UN) |FIELD2(UA)
BEFORE AFTER

A ADDRESS 213 213

B ADDRESS KAM KaM

C ADDRESS

COMP. INDC. XXX LOwW

OVERFLOW unchanged

DATA

ALLOCATE RECORD FIELDS (DATA) - DECLARATIVE.,
This instruction causes allocation of storage, without loading any

value into the allocated area.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP
LABEL
CODE AF | BF Label +Ine. |AIl Ac Label +Inc. |Bi| Be Label +inc. [Ci] Cc
0 1 2 2 313 3 4 4 |4 4 5 515 5
8 2 1B 1]2 4 0 3 |4 6 2 5 {6 8

1
4 8
TiALl [DAT fzsula.

There are no LABEL restrictions when using this instruction.

The number of digits/characters to be allocated is specified as a
h-digit right-justified number in the VARiant field. Leading zeroes

are not required,

The data format is specified left-justified in the A ADDRESS label

field. Coding is as follows:

Code Description

blank Unsigned numeric
UN Unsigned numeric
SN Signed numeric
UA Alphanumeric

The remaining fields are not used by this instruction. Program
Reserved Memory and the comparison and OVERFLOW indicators are not

changed by this instruction.

The DATA statement may be used to allocate storage either indepen-
dently or within a logical record. Alphanumeric DATA allocatiomns

are automatically synchronized modulo-2.

DATE

l OBTAIN SYSTEMS DATE (DATE) - PSEUDO.

This instruction is defined for the Advanced Assembler only. It

copies the systems date at_execution time into a specified location.

The format for the DATE instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LABE
t CODE AF Label + Ine. + Inc. Label +Inc.
1 1 2 2 3 3 4 4 |4 5 515
4 2 I8 1}2 0 2 5
DialT I}y SHAT

There are no LABEL restrictions when using this instruction.

The A ADDRESS field receives the systems run date and it must be a
6-digit UN field. The coding format is MMDDYY (e.g., 101967).

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

TWO-ADDRESS SUBTRACT (DEC) - MACHINE CODE-03.

DEC

This instruction subtracts the contents of the A field from the

contents of the B field and leaves the result in the B field.

The format for the DEC instruction is:

LABEL

OP.
CODE

VAR.

A ADDRESS

B ADDRESS

C ADDRESS

AF

BF

Label

+ Inc.

Al

Ac

Label

Inc.

Label

+ Inc.

—

—_

oON

NN

2

w

N W

&~ w

t
4
0

[Xr S
kN

5
2

v Oy
[- 3%

w

Tlgir

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of digits/characters in the
field, and the BF field specifies the same for the B field.

A
It

the AF and BF lengths are unequal, the shorter of the two is assumed

left-zero-filled until their lengths are equal.

difference is too large to fit into the B field,

is not performed.

If the calculated

the subtraction

The A ADDRESS points to the subtrahend, and any address controller

is wvalid.

A UN field is assumed to be positive.

Only the numeric

digits of a UA field enter into the subtraction and the field is

assumed to be positive.

The B ADDRESS points to the minuend/difference, and any address-

controller is wvalid.

A UN field is assumed to be positive as the

minuent and the sign of the difference is lost.

digits of a UA field enter into the subtraction.

stored in the numeric digits,

numeric-subset zone,

Only the numeric

The difference is

the zone digits are set to the

and the sign of the difference is lost.

The remaining fields are not used by this instruction.

DEC

continued

If the difference is too large to fit into the B field, the

OVERFLOW indicator is set,

unchanged;

otherwise,

and the comparison indicators remain

ing, to the sign of the difference (even if the sign is not

stored).

Setting

Low

EQUAL

HIGH

The settings are as follows:

Sign

Program Reserved Memory is not changed by this instruction.

the comparison indicators are set accord-

The following are operational examples of the Two-Address Subtrac-

tion.

Normal Two-Address Subtraction.

Two-Address Subtraction With
Negative A And B Fields.

Two-Address Subtraction With
Negative A Field.

OP | AF | BF| A ADDRESS| B ADDRESS | C ADDRESS
DEC 3 3 | BB10O BB200 OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
DEC 3 3 BB100 BB200
BEFORE AFTER
BEFORE AFTER
A ADDRESS +014 +014
B ADDRESS +062 +048 A ADDRESS -035 -035
C ADDRESS B ADDRESS -029 +006
COMP. INDC. XXX HIGH C ADDRESS
OVERFLOW unchanged COMP. INDC. XXX HIGH
OVERFLOW unchanged

Two-Address Subtraction With
A Greater Than B

6-36

OP | AF | BF| A ADDRESS|B ADDRESS | C ADDRESS
pEC | 2 5 | BB10O BB200 OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
DEC 3 3 BB100 BB200
BEFORE AFTER
BEFORE AFTER
A ADDRESS -71 -71
B ADDRESS +121 +192 A ADDRESS +259 +259
C ADDRESS B ADDRESS +138 ~121
COMP. INDC. xxx HIGH C ADDRESS
OVERFLOW unchanged COMP. INDC. XXX LOW
OVERFLOW unchanged

Two-Address Subtraction Causing

Overflow.

DEC

continued

OP | AF | BF | AADDRESS|B ADDRESS | C ADDRESS|
DEC| 3 3 BB100 BB200
BEFORE AFTER
A ADDRESS -556 -556
B ADDRESS +942 +942
C ADDRESS
COMP. INDC. unchanged
OVERFLOW XXX ON

DECR

DECREMENT BY ONE (DECR) - PSEUDO.

This instruction decrements the contents of the A field by one.

The format for the DECR instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE | AF | BF Label Ei Ine. AII Ac Label +Inc. |BY Bc Label +Inc. |Ci] Ce
0 p 1 2 2 313 3 4 4 14 4 5 515 5
B 4 8 2 112 4 0 3 {4 6 2 5 |6 8
D& ClR] KIE16GIL]S] 7|

There are no LABEL restrictions when using this instruction.
The A ADDRESS points to the field to be decremented.
The remaining fields are not used by this instruction.

This pseudo yields a decrement instruction. The length of the field
to be decremented, and its controller are obtained from the declara-

tion of the data field referenced by the A ADDRESS.

6-38

DELM

DELIMIT CONSTANTS (DELM) - PSEUDO.
The function of this pseudo is to stop the passage of constants to

the program's STACK when a DELM is encountered in a list of con-

stants following an NTR instruction.

The format for the DELM pseudo is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label +lne. JAY] Ac Label + Inc. |BH B¢ Label + Inc. [Ci] Ce
0 1 1 2 2 2 33 3 4 4 4 4 5 515 5
18 4 8 0 2 B 112 4 0 3 |4] 2 5 6 8
[DIE]

Only the OP CODE field is used for this instruction.

The return address stored in the program's stack for the NTR pre-
ceding this pseudo will be the address of the constant following

the DELM.

The remaining fields are not used by this instruction. Program
Reserved Memory and the comparison and OVERFLOW indicators are not

changed by this instruction.

Revised 11/20/70
by PCN 1034949-002 6~38A

DISPLAY MESSAGE ON SPO (DISP) - PSEUDO.

DIsP

This instruction causes a message to be typed out on the console

supervisory printer.

The two formats allowed for the DISP instruction are:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL

CODE! AF | BF Label + Ine. JAll Ac Label +Inc. |Bil Be Label +Inc. |Ci] Cc
0 1 1 2 2 2 3|3 3 4 4 {4 4 5 515 5
8 4 8 0 2 B 112 4 0 3 |4 6 2 5 {6 8
3 pirlslp | [| [elmmislelt

¥ n
D\ IS |~ IWNIAUIT| dalBgL] [Folsl 1ol7isik| |1A71le] ovds | ele

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of characters to be typed out.
If it is blank, the length associated with the A ADDRESS label is

used.

The A ADDRESS points to an alphanumeric text field to be typed out.

Incrementing is permitted; indexing is not. Literals are not per-

mitted and the address controller must be UA.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

If column 22 = ("), the character string*following the quote will be
The string must be delimited with a right (") somewhere
DISP "No.

displayed.

prior to column 58, Embedded quotes are allowed, i.e.,

"xxx"" will display No. "xxx". The size of the string need not be

given.

When used with BCP, SIOC assumes that the supervisory printer is on

symbolic substitution entry 11.

¥ Maximum size is 34 characters.

DIV

DIVIDE (DIV) - MACHINE CODE-06.
This instruction divides the value of the B field by that of the

A field and stores the quotient into the C field.
is left in the B field.

The format for this instruction is:

The remainder

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LAB
EL CODE AF | BF Label +Ine. ANl Ac Label + Inc. |Bi| Be Label +Inc. |Ci] Cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 18 112 4 0 3 |4 6 2 5 16 8
DLy }z sile slLipulnclEls! ¢P.m|p-s

There are no LABEL restrictions when using this instruction.

The AF field specifies the length of the A field and the BF field
specifies the length of the B field. The length of the B field
must be greater than that of the A field. The C field length is
the difference in length of the A aﬁd B field.

to large to fit into the C field,

If the quotient is

the division is not performed.

The A ADDRESS points to the divisor field, and any address control-
‘"ler is valid. ©UN fields are considered to be positive. Only the
numeric digits of a UA field enter into the division; the field

is considered to be positive.

The B ADDRESS points to the dividend/remainder field, and any

UN fields are considered to be posi-

the

The sign of the remainder is
If the B field is UA, the

address controller is wvalid.
tive., Only the numeric digits of a UA enter into the division;
field is considered to be positive.

the same as the sign of the dividend.
remainder is stored into the numeric digits and the zone digits are

set to the numeric-subset zone.

6--40

Div
continued

The C ADDRESS points to the quotient field, and any address
controller is valid. If the C field is UN, the quotient sign is
lost. If the field is UA, the quotient is stored in the numeric
digits, the zone digits are set to the numeric-subset zone, and

the quotient sign is lost. If the C field is SN, the quotient sign

will be algebraically correct.

If the quotient is to large to fit into the C field (e.g., the
absolute value of the divisor is not greater than the absolute
value of a corresponding number of leading digits of the dividend),
the OVERFLOW indicator is set on and the comparison indicators are

not set.

The comparison indicators are set according to the sign of the
quotient, even if the sign is not stored. The settings are; LOW

if negative, EQUAL if zero, and HIGH if positive.
Program Reserved Memory is not changed by this instruction.

The following are operational examples of the Divide instruction.

Normal Division With Positive Division With Minus Operands.
Operands.

OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS

DDRE
OP | AF | BF | AADDRESS|BADDRESS | CA SS piv | 2 5 BB100 BB200 BB300
DIV} 1 4 BB100 BB200 BB300
BEFORE AFTER
BEFORE AFTER

A ADDRESS -12 -12
A ADDRESS +9 +9 B ADDRESS -00187 -00007
B ADDRESS +0101 +0002 C ADDRESS xXXX +015
C ADDRESS xXXX +011 COMP. INDC. xxx HIGH
COMP. INDC. xxx HIGH OVERFLOW unchanged
OVERFLOW unchanged

6-41

DIV

continued
Division With Unlike Signed Alphabetic Division.
Fields.
oP AF BF A ADDRESS| B ADDRESS | C ADDRESS oP AF BF A ADDRESS| B ADDRESS | C ADDRESS
DIV]|] 3 5 BB100 BB200 BB300 DIV 3 4 BB100 BB200 BB300
BEFORE AFTER BEFORE AFTER

A ADDRESS -180 -180 A ADDRESS ’

B ADDRESS +03920 +00140 B ADDRESS 2323 8328

C ADDRESS XXX =21 C ADDRESS xx +1

COMP. INDC. XXX Low COMP. INDC. XXX HIGH

OVERFLOW unchanged OVERFLOW unchanged

Division Where The Absolute
Value Of The Divisor Is Not
Greater Than The Absolute Value
Of The Corresponding High Order
Positions Of The Dividend.

oP AF BF A ADDRESS | B ADDRESS | C ADDRESS

DIV 3 5 BB100 BB200 BB300
BEFORE AFTER

A ADDRESS +017 +017

B ADDRESS +29451 +29451

C ADDRESS unchanged

COMP. INDC. unchanged

OVERFLOW XXX ON

6-42

DLET

DELETE SOURCE STATEMENTS IN UPDATE (DLET) - PSEUDO.

This instruction causes deletion of input source-program statements

between the sequence number bounds specified in this statement.

The format for the DLET instruction is:

SEQ.
NO.

LABEL

OP.
CODE

VAR.

A ADDRESS

B ADDRESS

C ADDR

AF

BF

Label

Ine.

Al

Ac

Labe! Inc.

Labe!

1
4

—

o
oON

NN

hg
7
$

LS

(%]

*
a
0

w s
S

£

|L~o

g
|

DLIg.T o'g*ﬂs

L) T - v

The starting sequence number for deletion is specified in columns

2 through 7 of the SEQ. NO. field.
LABEL entries are not permitted with this instruction.

The ending sequence number for deletion is specified in the A
ADDRESS label field.
field may be left blank.

If only one statement is to be deleted, this

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This statement is used when performing an assembly with source card

changes being posted against a library input file contained on

magnetic tape or disk. It can only be used when the input file is

sequenced since it causes the deletion of one contiguous sequence
of records. The DLET pseudo causes deletion of all statements whose
sequence numbers fall between the starting number and the ending

number inclusive. Thus, the numbers specified in the pseudo need
not precisely equal the first and last sequence numbers to be de-
leted.

will not appear in the final assembly listing.

The DLET pseudo itself has only a clerical function and

DOCU

COMMENT (DOCU) - PSEUDO.
The function of this pseudo is to carry remarks for documentation

purposes. Its function is identical to that of the REMK statement.

The format of the DOCU instruction is:

VAR, A ADDRESS B ADDRESS C ADDRESS
OP. N
LABEL
CODE AF | BF Label +Ine. |Al} Ac Label + Inc. |Bi| Be Label % Inc. [Ci} Ce
0 1 1 2 2 2 33 3 4 4 |4 4 5 515 B
_Ig 4 0 2 1]2 4 0 3 14 6 2, I516 8

i~

8
D@Hu@lﬂu}mglur Nidrlelalsle] IRIElalDlalR LTy IGRHAFH

™ ™t L | L. 4 L4 L9 " T

LABELs are not permitted with this instruction.
The remarks text may be located anywhere in columns 18 through 80,

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

6-LL

DOZE

SUSPEND PROGRAM TEMPORARILY (DOZE) - PSEUDO.

This instruction is defined for the Advanced Assembler only. It

causes execution of the program to be suspended for a specific

number of seconds.

The format of the DOZE instruction is as follows:

[

‘ VAR. A ADDRESS B ADDRESS C ADDRESS
A OP.
EABEL
;! CODE AF | BF Label +Ine. |Al|l Ac Label + Inc. |Bil Be Label + Inc. |Ci] Cc
0 ! L 1 2 2 313 3 4 4 |4 4 5 515 5
8 4 8 0 2 B 112 4 0 3 |4 6 2 5 16 8

PAu ;iﬁz&, A %%tﬂ

There are no LABEL restrictions when using this instruction.

The A ADDRESS points to a 5-digit unsigned numeric field containing
the number of seconds the program is to be suspended. Literal
values are not permitted. The maximum allowable value in this

field is 86399 (23 hours, 59 minutes, and 59 seconds).
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

6-45

DUMP

. DUMP PROGRAM MEMORY (DUMP) - PSEUDO.

This instruction causes a temporary suspension of program execu-
tion while the entire contents of program memory (base to limit)

are dumped to the printer. Execution then resumes.

The format for this instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
AB
LABEL CODE AF | BF Label +1Ine. JAIl Ac Label + Inc. |Bil Bc Label + Inc. |Ci] Ce
0 1 1 2 2 2 313 3 4 4 |4 4 5 515
I 4 8 P o 1{2 |4 0 34 s 2 5 |6
SNkS HIT DuHP

There are no LABEL restrictions when using this instruction.
The remaining fields are not used by the instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by the instruction.

There are no operands for the command. The command produces the
same dump format as the keyboard DM and DP commands. It may be

used any number of times in the program, and at any point.

6-46

EDT

EDIT (EDT) - MACHINE CODE-49.

This instruction moves digits or characters from the A field to the

C field under control of the edit mask in the B field.

characters may be inserted according to the specifications of the
edit mask.

The format of this instruction is:

Additional

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +Ine. JAIl Ac Label + Inc. |Bi| Be Label +Inc. |Ci] Cc
0 1 1 2 2 2 313 3 4 4 14 5 515 5
8 4 8 0 2 8 112 4 0 3 J4 2 5 16 8
{alzlola| |elnjT Tiglvlall] Pal(|7)) VA IPIRTIRECIYS0)

There are no LABEL restrictions when using this instruction.

The AF field is not used for execution and may contain any value.
The BF field specifies the number of characters in the edit mask.
If the edit mask has been defined by a PICT declarative (Advanced
Assembler only), this field should be left blank. The length of
the C field depends on the specifications of the edit mask.

Data movement and editing are stopped by the exhaustion of the
edit mask,

The A ADDRESS points to the source field to be edited, and all

address controllers are legal. If the A field is UA,

portion of the first (most-significant) character is treated as a
If the field is UN,

the zone

sign. it is considered positive.
The B ADDRESS points to the edit mask, and its address controller

must be UA or TA. The B field consists of a string of double-

digit edit operators which control data movement. These operators

are explained in section 2 of this manual.

The C ADDRESS points to the area into which the edited data is

stored; its address controller must be UA or IA.

6-47

EDT
continued

The comparison indicator is set to HIGH if at least one digit or
character was fetched from the A field and the A field is non-zero
positive. It is set to EQUAL if no digits or characters were
fetched from the A field, or if the field is zero. It is set to
LOW if at least one digit or character was fetched from the A field
and the field is non-zero negative., The OVERFLOW indicators are

not changed by this instruction.

This command makes use of the Edit Insertion Table (Program Reservei
Memory locations 00048-63) if the edit operators specify insertion _:
of punctuation characters. The standard punctuation set in the p
Edit Insertion Table (the set which is loaded by the Advanced As-
sembler if the PICT declarative is used) is +, -, *,",’,$,0, and b
(blank). The user may load a different punctuation set into the
Edit Insertion Table, but should be extremely careful with his

"housekeeping" coding.

The EDT command may be used to edit several data fields in one in-
struction providing they are in adjacent source fields and are to be
adjacent in the edited field. Proper specification of the edit

operators will accomplish this multiple editing quite easily.

6-48

ENDF

END FILE BLOCK (ENDF) - PSEUDO.
This pseudo signals the Assembler that all declaratives of one FILE
block have been processed, or that a single FILE declarative is now

being delimited.

The format for the ENDF instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label +1ne. Al Ac Label +Inc. {Bi] Bc Label + tnc. |Ci] Cc
0 1 1 2 2 2 313 3 4 4 |4 4 5 515 5
g 0 2 112 |4 0 3 |4 6 2 516 I8

4 8
NDIF

LABELs are not permitted, nor are the remaining fields used by this

instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by the instruction.

In the Advanced Assembler this pseudo is optional if the next command

is FILE or USER, and required otherwise.

The Basic Assembler requires that each file be delimited with an
ENDF.

6-49

ENDR

END RECORD BLOCK (ENDR) - PSEUDO.

This pseudo defines the end of assembly statements which comprise

one record definition.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
A
LABEL CODE AF | BF Label + Inc. |Al] Ac Label + Inc. |Bi| Be Label + Inc. |Ci} Cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
Bk 4 8 b |2 112 |4 0 3js s 2 sl s
I L)

LABELs are not permitted, nor are the remaining fields used by this
instruction. Program Reserved Memory and the comparison and OVER-

FLOW indicators are not changed by this instruction.

The instruction has no operands. Under the Advanced Assembler, the

ENDR statement is not required if the next statement is USER, FILE,
ENDF, or RECD.

The Basic Assembler requires that each RECD be delimited with an
ENDR.

6=-50

END OVERLAYABLE SEGMENT (ENSG) - PSEUDO,

ENSG

This instruction defines the end of an overlayable coding segment.

The format of this instruction is:

LABEL

oP

VAR.

A ADDRESS

B ADDRESS

C ADDRESS

CODE

AF | BF

Label + Inc.

Al

Ac

Label

+ Inc.

Bil

Be

Label

+ Inc.

Ci

—t

A

NN

2

=

w

4
0

o~ o

5
2

48

ENHQ SiTlAlRT |

LABELs are not permitted with this instruction.

A segment-entry label is given in the A ADDRESS label field if
control should enter the segment (via OVLY from another segment)
at other than the first executable instruction. Indexing is not

permitted. The A ADDRESS increment field may be used.

The remaining fields are not used by the instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

Every SEGM card must have a corresponding ENSG card. The main
routine (code preceding the first SEGM card) is not considered to be

a segment and, thus, must not have an ENSG card.

6-51

EQIV

DEFINE SYMBOL OF EQUIVALENCE (EQIV) ~ PSEUDO.
This instruction defines a label according to the values in the

variant and A ADDRESS fields.

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL op.
CODE AF | BF Labe!l +1Ine. |All Ac Labe! + Inc. |Bil Bc Labe! +Inc. |Ci] Ce
0 1 1 2 2 33 3 4 4 |4 4 5 515 5
8 4 B _p 2 B 142 4 0 3 14 6 2 516 |8
S Eq'; 05} ulA

Jonly LABELs (not program points) may be defined by this OP code.

If the A ADDRESS field does not have a length associated with it,
or if the length is to be changed, a new h-digit value can be

entered in the VAR field.
The A ADDRESS label field may contain any one of the following:

a. A normal label.

b. An asterisk reference (current value of the Location Countef).
c. An unsigned 5-digit base-relative address.
d. A forward or backward reference to a program point.

. e. May reference files and records associated with files.

The A ADDRESS increment field may contain a positive or mnegative
.Value. The A ADDRESS index field may be used. The A address

controller field may contain a data format (UN, SN, or UA) if the

A ADDRESS label has no format associated with it, or if its format

is to be overridden.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

Any references to a Label defined in an EQIV statement must follow

the EQIV statement.

6-52

BRANCH EQUAL (EQL) - MACHINE CODE-22

EQL

The EQL instruction causes control to be transferred to the speci-

fied address if the comparison indicator is set to EQUAL.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP. :
LABEL
: E CODE | AF | BF Label +1inc. JAll Ac Label +Inc. |Bi| Bc Label +Inc. |Ci] Cc
0 1 [7] 2 2 I EBRE 4 474 5 ST 18
4 8_p 2 j8 112 J4 0 3 |4 2 S5le |8

There are no LABEL restrictions when using this instruction.

Any defined branch address may be coded in the A ADDRESS field.

Indexing is unrestricted,

The address controller bits are inter-

preted as a high-order digit of the branch address except that A/C

ll2 retains the indirect address meaning.

The remaining fields are not used by this instruction.

ibranch address up to 299998 can be assembled.

Thus,

a base-relative

Program

Reserved Memory and the comparison and OVERFLOW indicators are not

changed by this instruction.

This instruction is of 8-digit address-branch format.

6-53

EXT

EXIT FROM SUBROUTINE (EXT) - MACHINE CODE-32.

This instruction reverses the actions performed by the NTR instruc-

tion, and thus accomplishes exiting from a subroutine.

The format of this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE AF | BF Label +ine. Al Ac Label + Inc. |Bi| Be Label + Inc. |Ci] Ce
(4] 1 1 2 2 2 313 3 4 4 |14 4 5 515 5
I 4 8 b > 3 12 s 0 3fsa s 2 sl s
EX[IT] | [EXIT

There are no LABEL restrictions when using this instruction.

The A ADDRESS is optional. If it is omitted, the Assembler will
generate a return branch to the location specified in the subroutine
stack entry (the address of the first instruction after the corres-
ponding NTR). If the A ADDRESS is specified,

turned to the A ADDRESS location after the top entry in the sub-

control will be re-

routine stack has been removed.
The remaining fields are not used by this instruction.

The settings for the comparison, OVERFLOW, and EBCDIC/USASCII in-
dicators that were stored in the subroutine stack will be restored

into the machine indicators.

The address located in IX3 (loaded by the NTR instruction) is copied
into location 00040, The transfer-control address is interpreted

(BASE + IX3 Indirect unless overridden) and stored. The previous
value of IX3 is copied from the stack into location IX3. The stored

transfer-control address is then used to access the next instruction.

Any paramter values left in the stack entry are lost; they are not
copied back to the area following the NTR instruction which loaded

them into the stack.

6-5U

EXT

continued

The following is an example of the execution of the EXT instruction.

010970 EXT (assembled as 32F00000)

assume that the contents of storage before execution of the EXT are:

IX3 +0001024
00040 001046
001024 003034
+0000010
00
203010

after execution of the EXT instruction, the values will be:

next instruction address: 003034

IX3 +0000010
00040 001024
001024 (unchanged)

6-55

FAD

FP ADD (FAD) - MACHINE CODE=-80.

The function of this instruction is to add one floating-point wvalue

to another and store the result into a third field.

The format for the FAD instruction is:

. VAR. A ADDRESS B ADDRESS C -ADDRESS
OoP. R K
LABEL CODE AF | BF Label +Inc. ALl Ac Label +Inc. |Bi} Be Lobel + Inc. |Ci| Cc
0 1 2 2 313 3 4 4 14 4 ‘ 5 595 |5
4 8 0 142 4 0 3 }4 6 {2 56 |8
IFlalo 1lo R{ADI n{ l o{tx.:

There are no LABEL restrictions when using this instruction.

The AF and BF fields specify the number of mantissa digits in their
corresponding floating-point numbers. The C field result contains

as many mantissa digits as the longer of the A and B fields.

The A ADDRESS field points to the first floating-point number to be

added, and its address controller must be SN or TA. The number need

not be normalized.

The B ADDRESS field points to the second floating-point number to

be added, and its address controller must be SN or IA. The number

need not be normalized.

The C ADDRESS field points to the field into which the sum is to be

stored, and its address controller must be SN or IA. The sum is

If the result exponent is less than -99 (underflow),
The C field may not overlap the A or the

normalized.
floating zero is stored.

B field.

The OVERFLOW indicator is set if floating-point overflow (result

exponent greater than +99) occurs. If overflow occurs, the

result will not be stored.

6-56

FAD

continued

The comparison indicator is set HIGH if the result is positive or if

floating-point overflow occurs.

The comparison indicator is set to

EQUAL if the result is zero and to LOW if the result is negative.

Floating-point zero is stored as -99+0000..,.

digits dictated by the A and B field-lengths).

(number of mantissa

The following are operational examples of the FP Add instruction.

Normal Floating Point Add.

Floating Point Add Causing

; ' Overflow,
OP | AF BF A ADDRESS| B ADDRESS | C ADDRESS
FAD |02 05- A(SN) B(SN) C(SN) OoP AF BF A ADB’EEWS,S B ADDRESS | C ADDRESS
)) FAD | 01 03 | A(SN) B(SN) C(SN)
BEFORE AFTER
BEFORE AFTER
A ADDRESS ’0&"'20 '8&*22501
B ADDRESS -05+67501 -05+ l
C ADDRESS XXXXXXXXX =O04+26750 g ﬁgggggg :331;99 :gg:;99
COMP. INDC. XXX HI(;H C ADDRESS unchanged
OVERFLOW unchange COMP. INDC. xxx HIGH
‘ OVERFLOW xxx ON
Revised 10/30/69 6
by PCN 1034949-001 =57

FDV

FP DIVIDE (FDV) - MACHINE CODE-83.

This instruction divides the floating-point number of the B field
by that of the A field.

the C field and the remainder is stored in the B field.

The format of this instruction is:

The floating-point quotient is stored in

VAR. A ADDRESS B ADDRESS C ADDRESS
oP
LABEL gl
CODE AF | BF Label +Ine. |Al] Ac Label +Inc. |Bi] Bc Label + Inc. |Ci} Ce
0 1 1 2 2 3|3 3 4 4 14 4 5 515
B 4 8 2 F 142 4 0 3 |4 6 2 516
FlolV clds 1IN TlAIN

There are no LABEL restrictions when using this instruction.

The AF and BF fields specify the number of mantissa digits in their
corresponding fields. The B field must be longer than the A field

The length of the C field is the difference
between the A and B field lengths.

or overflow will occur.

The A ADDRESS points to the field containing the floating-point
divisor and its address controller must be SN or IA. The divisor

must be normalized.

The B ADDRESS points to the field containing the floating-point
dividend and also receives the remainder.

this field must be SN or IA.

The address controller

for The dividend must be normalized

and the remainder will not be normalized.

The

C ADDRESS points to the field which receives the quotient, and

its address controller must be SN or IA., The quotient is normalized.

The OVERFLOW indicator is set on if the mantissa of the B field is
shorter than the mantissa of the A field or, if floating=-point

overflow (quotient exponent is greater than +99) or underflow

6-58

FDV
continued

(quotient exponent less than -99 and quotient mantissa is non-zero)

occurs. The quotient and remainder are not stored.

The comparison indicator is set to HIGH if the quotient is positive,
floating-point overflow occurs if the B field mantissa is shorter
than the A field mantissa. It is set to EQUAL if the quotient is

zero, and LOW if the quotient is negative or floating-point under-
flow occurs,

Program Reserved Memory is not changed by this instruction.

Division by zero will cause floating-point overflow. The following

are operational examples of the FP Divide instruction.

Normal Floating Point Divide. Floating Point Divide Causing
Underflow.
OP | AF | BF | A ADDRESS| B ADDRESS | C ADDRESS
FpV |02 | 05 | AFP BFP CFP op | AF | BF | A ADDRESs|B ADDRESS | c ADDRESS
FDV | 02 05 AFP BFP CFP
BEFORE AFTER
BEFORE AFTER
A ADDRESS +00+20 +00+20
D Amourss ooidonoo gprongoo s ammss asorzo usoszo
COMP. INDC. XXX HIGH B ADDRESS -60+60000 -60+60000
C ADDRESS unchanged
OVERFLOW unchanged COMP. INDC. xxx Low
OVERFLOW XXX ON

6-59

FILE

DECLARE LOGICAL FILE (FILE) - DECLARATIVE. (ADVANCED ASSEMBLER)
This instruction is defined for the Advanced Assembler only. It
declares a logical input/output file and specifies the device, access

method, etc.

The format of the FILE instruction is:

VAR. A ADDRESS B ADDRESS - C ADDRESS
OP.
LAB
EL CODE AF | BF Label +Ine. |AIl Ac Label + Inc. |Bi] Bc Label + Inc. |Ci| Ce
0 1 1 2 2 2 3]3 3 4 4 14 4 5 515
8 4 8 0 2 142 4 0 3 |4 6 2 5 16
plsIKlglulTlFzIL N qulsT D K";l siolololzlols| [1] | | loldlzlw]

A normal LABEL must be used, and this LABEL is the internal file-

name used in MCP control operations.

The VAR field is used for OCR and MICR reader files only. Column

19 specifies the buffer technique and coding is as follows:

Code Description
(0] MICR read with non-alternating
buffers.
1 MICR read with alternating buffers.
2 OCR read with non-alternating
buffers (demand or flow),
3 OCR read with alternating buffers
(flow only).
L OCR and MICR read with non-alterna-
ting buffers (demand only).
5 OCR/MICR read with alternating

buffers.

Column 21 specifies record formatting and read-error suppression.

Coding is as follows:

6=-60

FILE

continued
Code Description
0] No record formatting; report all
read errors.
1 No record formatting. Ignore the

cannot-read errors after the

second transit~field delimiter.

2 No record formatting. Ignore
reading after the second transit-

field delimiter.

L Format the record. Report the
amount~field and transit-field

errors separately.

5 Format the record. Report the
amount-field and transit-field
errors separately. TIgnore the
cannot-read errors after the second

transit-field delimiter.

6 Format the record. Report the
amount-field and transit-field
errors separately. Ignore reading
after the second transit-field

delimiter.

Unless "labels omitted" is specified in column 46, the A ADDRESS

field must contain the external file identification. This identi-
fication must begin with a letter followed by zero to five alpha-
numeric characters. It is the name that the MCP uses to associate

the logical FILE declaration with a physical data file.

The A ADDRESS increment/index controller contains an auxiliary file
identification for multiple-file tape reels only. The auxiliary
file-name identifies the reel, and the ordinary file-name identifies

the file within the reel.

Revised 11/20/70
by PCN 1034949-002 6-61

FILE
continued

Columns 34 through 36 of the B ADDRESS must contain the peripheral

equipment type. Coding is as follows:
Code Description
blank 7- or 9-track magnetic tape.
MTP 7- or 9-track magnetic tape.
MT'7 7-track magnetic tape.
MTO9 9-track magnetic tape.
MPE Phase encoded tape.
CRD Card reader.
PR¢ Printer only.
CPU Card punch.
PBT Printer back-up tape.
PRN Line printer.
PRF Printer special forms.
DSK Disk file.
DKF Assign disk by file number.
DKA Assign disk by area number.
Edd Assign disk to Designated Elec-
tronics Unit (where dd = specified
unit).
PTR Paper tape reader.
PTP Paper tape punch.
S@R MICR sorter-reader.
MTL Multiple tape lister.
SP¢ Supervisory printer.
TYP 9350 Typewriter.
¢LB B 606.
TWX TWX.
T50 1050 (IBM) terminal.
T30 1030 (IBM) terminal.
D20 _ UNIVAC DCT-2000.
B35 B 3500,
B25 B 2500,
AAl 8A1,
TLX Telex.
BTT Burroughs audio response.
BDD Burroughs digital display.

6-62

FILE

continued
Code Description
A3B ' 83B3 (Teletype 28).
F73 Friden 7311.
TCS- Burroughs TC 500.
TC7 Burroughs TC 700.
BO5 Burroughs 500 series computer.
VDD B 9352 wvisual display.

Column 37 of the B ADDRESS field contains either the code transla-
tion for tape or data communications, or the access method for disk.

Coding is as follows:

Code Description

N No code translation for 7-track

magnetic tape.

blank or T BCL/EBCDIC translation for 7-track

magnetic tape.

N No code tramnslation for data

communications.

blank or T Device code/EBCDIC translation for

data communications.

P Upper and lower case PTTC-6/EBCDIC
translation for IBM 1050 (device
code T50).

F Upper and lower case USASCII-EBCDIC

translation.
blank or S Sequential access to disk records.
R Random access to disk records.

A "W" in column 38 declares work files and will cause the <mix index)

number assigned to the object program, while under MCP control, to

Revised 11/20/70
by PCN 1034949-002 6-63

FILE
continued

be placed into the file-name. This creates a unique name and will

allow the same program to multiprocess with itself.

An S in column 39 specifies a shared disk file. Any shared disk

file must also be declared random.

For disk files, the number of logical records per area is coded in
columns 40 through 43 (maximum value of 9999) of the B ADDRESS field
and the number of areas in the file is coded in columns 44 through
45 (maximum value of 20). If more than 9999 records per area are
desired, columns 40 through 43 must be left blank. For tape with

a non-standard label, the length of the label in characters is spec-
ified in columns 40-43. The minimum length is 80, and if no length

is specified, 80 characters are assumed.

NOTE
During program execution, disk space is assigned
to a file (as needed) in blocks of contiguous
physical segments called areas. A file may be
checkerboarded across the disk in a maximum of
20 areas. By this means, dedicated but unused
disk space is held to a minimum. As files are
purged, the areas are released back to the sys-
tem, For a more detailed explanation, refer to
"format of files on disk" in the B 2500/B 3500
Master Control Programs Information Manual
(1031218).

The physical label convention of the external file is declared in
column 46 of the C ADDRESS field. Coding is:

Code Definition

O or ¢ Omitted label.
blank or S Standard label.

U USASCII label.

I Installation label.

Non-standard labels must be declared omitted and they are verified

or created by the program. Refer to the USER command.
6-64

FILE

continued

Labels other than the above may be created or verified by the pro-

gram through the USER pseudo.

labels should be declared omitted.

When this option is exercised, the

The external recording mode of the file is declared in column 47 of

the C ADDRESS field.

netic tape,

as follows:

This specification is only required for mag-

cards, and paper tape. Coding for card input/output is

Code Definition

N or A BCL card code.

S, E, 2, or blank EBCDIC card code.

U, 1 or B Binary card code.
NOTE

The recording mode of an input card file

is entirely determined by the file header

card unless the file is attached to the

program by means of an UL console command.

EXAMPLE:
?DATA or ?LABEL - the card code is EBCDIC.
?DATAB - the card code is BCL.

The MCP currently cannot read binary-coded
cards because of the control card recogni-

tion problem.

The coding for 7-track tape input/output is as follows:

Code Description
N or A Even parity (BCL or BCD).
S or blank 0dd parity (binary).

The coding for paper tape is as follows:

Code Description

A

‘USASCITI

Revised 11/20/70
by PCN 1034949-002

6-65

FILE

continued

Code Description
B or blank BCL
E EBCDIC

The number of alternate buffers (input/output) is declared in column
48 of the C ADDRESS field. Coding is:

Code Definition
0O or blank No alternate buffers (one buffer

is always assigned). Sorter-reader

files must use this technique.
1-9 Number of alternate buffers desired.

NOTE
A tape lister file (MTL device) requires
at least three alternate buffers if a
work area is declared, or at least four

if no work area is declared.

The file retention period (in days) is declared in columns 49 through
51 of the C ADDRESS field. A blank or zero value will indicate a
zero retention period; the result of this will depend on the parti-

cular MCP's handling of a zero day retention period.

The number of logical records per block is declared in columns 52
through 54 of the C ADDRESS field. A blank or zero implies 001 (un—
blocked records).

The buffer access technique is specified in column 55 of the C AD-
DRESS field. Coding is as follows:

Code Description
Blank, O, or W Work area and buffer.
1 or B Buffer only.

If no work area is assigned, the MCP will supply the address of the

next logical record by way of Index Register 2.

6-66

FILE
continued

The record type is specified in column 56 of the C ADDRESS field.

Coding is:

Code Description
Blank or F Fixed-length.
v Variable-length.

The first four characters of a wvariable-length record must contain
the length of the record, in 8-bit numeric characters. For example,
if a record contained 170 data characters (exclusive of the length

count), its first four characters would be O017L.

Columns 58 through 63 of the REMARKS field contain a control label

or value for wvarious special files. These labels or values are:

a. Random access disk files - a label addressing an 8-digit UN

field containing the actual key.

b. Variable-length records - the maximum block length in
digits. l

c. Multiple tape lister file - a label addressing a U4-digit
UN field containing the lister

unit and tape designation.

d. Sorter-reader file -~ necessary branch-address label for
manual End-of-File.

e. On-line banking - label addressing a location into which
the MCP stores the terminal unit number

upon completion of each I/0 operation.

Optional files may be declared by coding OPT in columns 64 through
66. For a disk file, if more than 9999 logical records per area are
desired, the number is coded, left-justified, in columns 67 through
74. TFor the Assembler to recognize this field, columns 40 through
43 must be blank.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction. Revised 11/20/70

by PCN 1034949-002 6-66A

FILE

continued

Any FILE statement must be followed by a RECD statement (regardless

of work-area conventions) to define (maximum) logical record length.

Revised 11/20/70
by PCN 1034949-002

6-67

FILE

DECLARE LOGICAL FILE (FILE) - DECLARATIVE. (BASIC ASSEMBLER)

This instruction is defined for Basic Assembler only.

It declares

parameters for file processing while under control of the SIOC

routine in the Basic Control Program environment.

The format of the FILE instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE | AF | BF Label +1Inc. |AIl Ac Label +lnc. |Bi| B¢ Label +1Inc. |Ci] Ce
0 1 T R 2 2 313 |3 4 4 |4 4 5 515 15
8 4 8 b |2 I8 12 |4 0 3la |6 2 516 18
TlAlPElZINFlTIL ouJon]Asre q olols

The name of the file is given in the LABEL field. This is the name

used to refer to the file in executable macros.

The VAR field specifies a lU-digit maximum record length in charac-

ters and must be an even number.

The external file identification is specified in the A ADDRESS label

field unless "labels omitted" is declared in column 46.

The multi-file identification, if necessary,

28 through 33 of the A ADDRESS field.

is provided in columns

A 2-digit actual channel number for the device carrying the file,
may optionally be declared in columns 38-39 of the B ADDRESS
field. If a symbolic substitution number is specified in the B
ADDRESS of the OPEN to this file, the actual channel number

specified here will be overridden.

The first syllable of an I/O descriptor for the file may optiomnally
be given in columns 40-45 of the B ADDRESS field.

is overridden if the file's OPEN specifies a symbolic substitution

This descriptor

entry. For a more detailed explanation of coding under SIOC, refer

to section 5.

6-68

FILE
continued

The external label convention is declared in column 46 of the C
ADDRESS field. Coding is as follows:

Code Definition
0O or @ Labels omitted.
blank or S Standard labels.

The number of logical records per physical block is specified in

columns 52 through 54, Zero or blank is equivalent to 001.
The remaining fields are not used with this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

6-69

FINI

END OF SYMBOLIC INPUT (FINI) - PSEUDO.

This instruction signals the end of the symbolic input file.

The format for this instruction is:

. VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label +Ine. Al Ac Label + Inc. |Bi Be Label + Inc. |Ci} Ce
0 1 2 2 313 4 4 14 4 5 515
8 8 0 1]2 0 3 |4 6 2 5 16

LABEL entries are not permitted, nor are the remaining fields used

by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by the instruction.

The instruction has no operands.

It is required and must be the

last instruction in the symbolic input.

6=70

FMP

FP MULTIPLY (FMP) - MACHINE CODE-82.

This instruction multiplies the floating~point number in the A field

by the number in the B field and stores the result in the C field.

The format of the FMP instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +Inc. |Al] Ac Label + tnc. | Bi] Be Label + Inc. |Ci] Cc
0 1 1 2 12 313 3 4 4 14 4 5 515 5
8 4 8 0 2 8 112 4 0 3 |4 6 2 5 16 8
FMP Pltlz pl|a clr c%w

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of mantissa digits in the A ADDRESS
field number and the BF field does the same for the B ADDRESS field
number. The C ADDRESS mantissa field-length is the sum of the A and

B mantissa field-lengths.

The A ADDRESS field points to the field containing one of the
factors. The B ADDRESS field points to the field containing the
second factor and the C ADDRESS field points to the field which
receives the product. The address controllers for these fields
must be SN or IA. The factor must be normalized for the A and B
fields and the product will be normalized for the C field. The

C field may not overlap the A or B fields.

The OVERFLOW indicator is set on if floating-point overflow (result
exponent gréater than +99) or underflow (result exponent less than
-99 and result mantissa non—zero) occurs. Iif over/underflow occurs,

the result will not be stored.

The comparison indicator is set HIGH if the result is positive or
if floating-point overflow occurs. It is set EQUAL if the result
is zero, and LOW if the result is negative or if floating-point

underflow occurs.

6-71

FMP
continued

Program Reserved Memory is not changed by the instruction.

Floating-point zero is stored as -99+0000 (number of mantissa digits

dictated by the A and B field lengths).

The following are operational examples of the FMP instruction.

Normal Floating Point Multiply. Floating Point Multiply Causing
Overflow.
OP AF BF A ADDRESS| B ADDRESS | C ADDRESS
FMP | 02 04 A B C OoP AF BF A ADDRESS| B ADDRESS | C ADDRESS
FMP | 02 02 A B C
BEFORE AFTER
BEFORE AFTER
A ADDRESS +01+20 +01+20
B ADDRESS -01-5050 -01-5050
ammss oI hhIdiee saommess oo v
COMP. INDC. xxx Low C ADDRESS unchanged
OVERFLOW unchanged COMP. INDC. xxx HIGH
OVERFLOW XXX ON

6-72

FSU

FP SUBTRACT (FSU) - MACHINE CODE-81.

This instruction subtracts the A field floating-point number from

that of the B field and stores the result in the C field.

The format of the FSU instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LAB
EL CODE AF | BF Label + Ine. Al Ac Label +inc. |Bil Bc Label + Inc. |Ci] Cc
1 1 2 2 2 313 3 4 4 14 4 5 515 5
4 8 0 2 1]2 4 0 3 |4 6 2 516 8
_.§| FlSiu A[S UIAL 8lslqlu Rl %cs#u[;\

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of mantissa digits in the A field
number and the BF field does the same for the B field number. The
C field result contains as many mantissa digits as the longer of
the A and B fields.

The A ADDRESS field points to the subtrahend field (number to be
subtracted) and its controller must be SN or IA. The subtrahend
need not be normalized. The B ADDRESS field points to the minuend
field (number to be subtracted from) and its controller must be SN

or TA. The minuend need not be normalized.

The C ADDRESS field points to the field into which the difference
is to be stored, and its controller must be SN or IA. The differ-
ence is normalized. The C field may not overlap the A field or

the B field. If the result exponent is less than -99 (underflow),

floating zero is stored.

The OVERFLOW indicator is set on if floating=-point overflow (result
exponent greater than +99) occurs. If overflow occurs, the result

will not be stored.

Revised 10/30/69 -
by PCN 1034949-001 6-73

FSU

continued

The comparison indicator is set to HIGH if the result is positive

or floating overflow occurs.

Zero,

and LOW if the result is negative.

Program Reserved Memory is not changed by this instruction.

It is set to EQUAL if the result is

Floating-point zero is stored as -99+000 (number of mantissa digits

dictated by the A and B field-lengths).

The following are operational examples of the FP Subtract instruc-

tion.

Normal Floating Point Subtract.

Floating Point Subtract Causing
Overflow.

6-7h

oP AF BF A ADDRESS| B ADDRESS | C ADDRESS
FSU | 03 02 A B C OP AF BF A ADDRESS| B ADDRESS | C ADDRESS
FSU | 03 03 A B C
BEFORE AFTER
BEFORE AFTER
A ADDRESS +02+500 +02+500
B ADDRESS +03+20 +03+20
C ADDRESS XXXXXXX +034150 A ADDRESS +98-100 +98-100
COMP. INDC. xxx HIGH B ADDRESS *99+993 994993
C ADDRESS unchanged
OVERFLOW unchanged COMP. INDC. xxx HIGH
OVERFLOW xxx ON

GEQ

BRANCH NOT LESS (GEQ) - MACHINE CODE-26.

This instruction transfers control to the specified address if the

comparison indicator is set to HIGH or EQUAL.

The format of this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label +lne. Al Ac Labe! + Inc. |Bi] Bc Lobel + Inc. |Ci] Cc
0 1 1 2 2 2 313 3 4 4 |4 4 5 515 5
8 4 8 0 2 112 4 0 3 14 6 2 516 8
GlElq] s

There are no LABEL restrictions when using this instruction.

Any defined branch address may be coded in the A ADDRESS field, and
indexing is unrestricted. The address controller bits are inter-
preted as a high-order digit of the branch address except that

A/C ll2 retains the indirect address meaning. Thus, branch address

up to 299998 base-relative may be assembled.

The remaining fields are not used, nor are Program Reserved Memory

and the comparison and OVERFLOW indicators changed by this instruc-

tion.

The instruction is of 8-digit address-branch format.

GTR

BRANCH GREATER (GTR) - MACHINE CODE-24.

This instruction transfers control to the specified address if the

comparison indicator is set to HIGH.

The format for this instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label + Ine. |Al} Ac Label +Inc. {Bil Bc Label + Inc. |Ci| Ce
0 1 1 2 2 313 3 4 4 |4 4 5 5 5
‘P 4 8 0 8 1]2 4 0 3 14 6 2 5 8
G| TR G|RIEIA[TIR!

There are no LABEL restrictions when using this instruction.

Any defined branch address may be coded in the A ADDRESS field, and

all indexing is unrestricted. The address controller bits are in-

terpreted as a high-order digit of the branch address except that
retains the indirect address meaning. a base-relative

A/C 11, Thus ,
branch address up to 299998 can be assembled.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

The instruction is of 8-digit address-branch format.

6-76

HBK

HALT ON BREAKPOINT (HBK) - MACHINE CODE-48.

This instruction performs a mask test against a halt character in
Program Reserved Memory and examines the execution digit in Systems
Reserved Memory to determine the halt/proceed choice if the mask

test is satisfied.

The format of this instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP
LABEL :
CODE | AF | BF Label +1Inc. Al Ac Label +Inc. |Bi] Be Label + Inc. |Ci] Cc
0 1 1 2 2 33 |3 4 a4 |4 5 515 5
8 4 8 b 2 I8 12]4 0 34 |6 2 5le |s

HHK 1

There are no LABEL restrictions when using this instruction.

The BF field specifies an 8-bit breakpoint control mask. This mask
is tested bit for bit against the program's breakpoint control
character (Program Reserved Memory location 00046). If any 1 bit

in the mask matches a 1 bit in the breakpoint control character, the
breakpoint test is satisfied. The processor then examines the halt
execution digit in Systems Reserved Memory location 00077 to deter-
mine what kind of halt should be executed. Undigit values may be
used in the BF field, but the mask should be specified as two 4-bit

digits, not a character.

The remaining fields are not used, nor are the comparison and OVER-

FLOW indicators changed by this instruction.

This instruction examines the breakpoint character in Program Re-

served Memory location 00O0L46.

See the HBR command for an explanation of the System Halt execution
digit options. The program's breakpoint control character may be

set by the BK console command while under control of the MCP.

HBK
continued

If the breakpoint test is not satisfied, or if the System Halt
execution digit specifies ignoring halts, this command functions
like a NOP and control passes immediately to the mnext instruction in

sequence.

This command should not be used to suspend a program temporarily
when operating under the MCP because it halts all other programs as
well. A DISP/ACPT instruction paired with an informative operator
messége is better. This instruction might be used in conjunction
with an appropriate setting of the System Halt execution digit to
cause an invalid instruction interrupt and thus end a program ab-

normally when unpassable errors occur.

6=-78

HBR

HALT/BRANCH (HBR) - MACHINE CODE-29.

This instruction conditionally executes a halt and then transfers

control to a specified address.

The format of the HBR instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE | AF | BF Label +Ine. fAll Ac Label +Inc. |Bi| Bc Label +1Inc. |Ci] Ce
0 1 1 7 2 2 313 3 4 4 14 4 5 515 5
B 4 8 |2 112 |4 0 34 |6 2 5le s
|HIRIR EIRIRIP|RIT]

There are no LABEL restrictions when using this instruction.

The A ADDRESS specifies the instruction to which control is to be

transferred after the machine has been started (if a halt occurred).
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This instruction is of 8-digit address-branch format. The halt ex-
ecution digit at absolute location 00077 (in Systems Reserved Memory)
is tested to determine if the processor should halt. The possible

values at this location are:

Digit Action
0 All halts are executed.
1 All normal state halts are ignored.

Control state halts are executed.

2 All control state halts are ig-
nored. Normal state halts are

executed.

6-79

HBR
continued

Digit Action
3 All halts are ignored.
L All halts are treated as invalid

instructions (processor interrupt).

5 A1l normal state halts are ignored,
and control state halts are con-

sidered as invalid instructions.

6 All control state halts are
ignored, and normal state halts
are considered as invalid instruc-

tions.
7 All halts are ignored.

While under control of the MCP, the System halt execution digit is
set by means of the EX console command. The HBR command should not
be used to suspend a program temporarily when operating under the
MCP because it stops all other programs as well. Instead, a DISP/
ACPT instruction paired with a message like TYPE GO WHEN READY is
greatly preferred. Any I/0 operations in progress when the halt

occurs will be completed.

6-80

IDNT

PROGRAM NAME (IDNT) - PSEUDO.

This instruction establishes a name for the program being assembled.

The format of this instruction is as follows.

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE AF | BF Label +lne. Al Ac Label +Inc. |Bil Bc Label + Ine. |Ci} Cc
0 1 1 2 2 313 3 4 4 |4 4 5 515 5
)] 4 8 o 2 18 1]2 4 0 3 |4 6 2 5 |6 8

LABEL entries are not permitted with this instruction.

The program name is declared in the A ADDRESS label field and must

be made in the normal label form.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

While under control of the Advanced Assembler, IDNT is used only to
provide a program name for the assembly listing. The file-name for
the generated object program is obtained from the ? COMPILE card.
IDNT is optional in the Advanced Assembler language.

In the Basic Assembler language, IDNT provides the file-name for
the generated program and should be present if the object program is
being generated to magnetic tape. IDNT is optional if the generated

object program is going to be written into punched cards.

6-81

HO

INITIATE 1/O (110) - MACHINE CODE-94.

This instruction may not be used in normal state programs. It
delivers an I/O descriptor to a specified peripheral control unit

for initiation, then continues program execution.

The format for this instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL -
CODE | AF | BF Label +Inc. |AIl Ac Label +Inc. |B{ Be Labe! +Inc. |Ci} Cc
0 1 B 2 33 13 4 a4 |4 5 515 |5
B 4 8 _p |2 I 12 |4 0 34 |6 2 sls I8

rialplrlzldl |] lolslriolelslclr

There are no LABEL restrictions when using this instruction.

The BF field specifies the channel number whose peripheral control
unit (PCU) is to receive the I/0 descriptor. The PCU performs all

subsequent operations involved with the I/O request.

The A ADDRESS field points to the I/0 descriptor which is to be
delivered to the channel's PCU. The final A ADDRESS must be even
and its controller may only be UN or IA,

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

All input/output operations are started by means of this instruction.

INC

TWO-ADDRESS ADD (INC) - MACHINE CODE-01.

This 2-address instruction adds the contents of one location to

another and stores the result into the second location.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS

OP.
LABEL
CODE AF | BF Label +Inc. Al Ac Label + Inc. |Bil Bc Label + tnc. |Ci| Ce
1 1 2 2 2 313 3 4 4 14 4 5 515 5
4 8 0 2 ;é 112 4 0 3)4 6 2 516 8

.%IHC # I 1olsl1 N'L(:J[QHNT

There are no LABEL restrictions when using this instruction.

The AF and BF fields specify the lengths of the incrementing and in-
cremented fields. If the sum is longer (because of carrying) than
the specified length of the incremented field, the result is not
stored. Both fields retain their prior contents. If the two fields
are of unequal length, the shorter field is assumed to be zero-

filled until it is equal to the longer field.

The A ADDRESS points to the incrementing field. If the address-
controller is UN or UA, the field sign is assumed to be positive.

Only the numeric digits of an alphanumeric A field enter into the

operation.

The B ADDRESS points to the incremented field and, if its address
controller is UN or UA, the sign of the field is assumed to be
positive. Only the numeric digits of an alphanumeric B field enter
into the operation and the result sign is not stored back into it.
The standard EBCDIC/USASCII form of the result sign is stored back
into a SN field.

The remaining fields are not used by this instruction.

6=-83

INC
continued

If the sum is too large to fit into the B field, the OVERFLOW

indicator is set and the comparison indicators remain unchanged;

otherwise, the comparison indicators are set according to the

sum (even if the sign is not

follows:

Setting

LOW
EQUAL

HIGH

stored).

Sign

0

+

The settings are as

Program Reserved Memory is not changed by this instruction.

The following are operational examples of the INC instruction.

Addition Of Unsigned Numeric To
Signed Numeric.

Addition With Overflow.

oP AF BF A ADDRESS | B ADDRESS | C ADDRESS
OoP AF BF A ADDRESS | B ADDRESS | C ADDRESS INC 02 03 FIELD1 FIELD?2
INC | 02 04 FIELDA FIELDB
BEFORE AFTER
BEFORE AFTER
A ADDRESS 18 18
A ADDRESS AX AX e 985 985
g ADDRESS +0257 +0274 COMP. INDC. unchanged
ADDRESS OVERFLOW xxx ON
COMP. INDC. XXX HIGH
OVERFLOW unchanged

6-84

INER

INITIATE /O (INER) - PSEUDO.
This pseudo is defined for Basic Assembler only. It is used to in-

itiate an I/0 operation, with automatic entry to a user-coded I/0

complete routine.

The format for the INER instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LAB
EL CODE AF | BF Label + Inc. A‘I Ac Label + Inc. |Bil Be Label +Inc. |Ci] Cc
0 1 1 2 313 3 4 4 14 4 5 515 5
18 4 8 1]2 4 0 3 |4 6 2 5]6 8

i (
:'z
>
(o]

Rl | [tMeld Ja ::H,DIS'C Mic. LHNI Plkls

There are no LABEL restrictions for this instruction.

If the AF field contains a value between zero and four, the BCP
invokes a USE routine at I/0 complete time only if an exception
occurred. If the AF value is between five and nine, the BCP always

invokes a USE routine at I/0O complete time.

A label referencing a descriptor. is specified in the A ADDRESS label

field. Indexing is not permitted.

A label referencing a 2-digit channel number is specified in the

B ADDRESS label field. Indexing is not permitted.

The entry label of the user's I/0 complete routine is specified in
the C ADDRESS label field. A label referencing the area into which
the BCP should store the ending address as specified in columns 52

through 57.

The remaining fields are nov used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

INER
continued

When the I/0 complete branch is executed, the Basic Control Program

will lock out the servicing of I/0 result descriptors of all other

channels. In this case, the users program can initiate I/O commands

for this channel and expect results back out. Normal processing of

channel result descriptors is restored with the RTRN command. This
exception branch will essentially give the programmer a non-inter-

ruptable normal state condition which is important where the I/O
device timing is critical.

6-86

INFL

INDIRECT FIELD LENGTH (INFL) - PSEUDO.

This instruction causes the AF and/or BF fields of the machine in-
struction that immediately follows this command to be assembled as
indirect field lengths, referring to locations declared in this

command,

The format of this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL oP.

CODE AF .BF Label +1ne. |Al| Ac Label + Inc. |Bi] Bc Label +Inc. |Ci] Cc
0 1 1 2 2 iz [3 7] T4 [4 5 515 |5
s 4 I I P Is 12 |4 0 3 l4 {6 2 5l 18

INEJL BAJFS £l | [+[ys
The A ADDRESS field entry converts into the AF indirect field-
length address for the next instruction. It may be omitted if the

AF indirect-length is not desired. The value in this field may be:

a. A label or program point, with increment or decrement
permitted.
b. An unsigned 2- or 5-digit base-relative address.

The assembled value must be even and between 00000 and 00038 inclu-

sive. The address controller may be UA or UN.

The B ADDRESS field entry converts into the BF indirect field-length
address for the next instruction. It may be omitted if the BF in-
direct-length is not desired. Coding restrictions are the same as

for the A field entry.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

Revised 11/20/70
by PCN 1034949-002 6-87

INIT

INITIATE 1/O OPERATION (INIT) - PSEUDO.
This pseudo is defined for Basic Assembler only. It is used to
initiate an I/O operation. When the I/O operation is completed, no

special handling is performed by the BCP if an exception occurred.

The format of the INIT instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS

OP.
AB
LABEL CODE AF | BF Label +Inc. Al Ac Label + Inc. |Bi] Be Label tlne. [Ci] Ce |
0 1 1 2 2 2 313 3 4 4 |4 4 5 515 5
8 4 8 0 2 1]2 4 0 3 14 6 2 516 |8

_;lpr Ple TN (T Tbesc,l Ticln Jgu}pAD

There are no LABEL restrictions when using this instruction.

A label referencing an I/O descriptor is specified in the A ADDRESS
label field. The result descriptor will be stored, four digits to
the left of this address. Indexing is not permitted.

A label referencing a 2-digit channel number is specified in the

B ADDRESS label field. Indexing is not permitted.

A label referencing where the ending address is to be stored is
specified in the C ADDRESS label field. The BCP will insert the 1/0
ending address in the referenced field as a 6-digit unsigned numeric
value. The C ADDRESS label field may be blank if no I/O ending

address is required. Indexing is not permitted.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

6=-88

I0CU

OBTAIN SYMBOLIC CHANNEL AND UNIT (IOCU) - PSEUDO.

This pseudo is defined for Basic Assembler only. It fetches the

actual channel number and the first syllable of the I/O descriptor

from a specified entry in the Symbolic Substitution Table.
The format of this instruction is:
VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Label + Ine. JAI} Ac Label + Inc. {Bi] Be Label + Inc. Ci| Cc

0 1 T R |2 2 313 |3 3 ala |4 5 515 15
4 o |2 s 12 |4 0 314 |6 2 56 |8

tlelc|uide TJD'E slc] rlcly H L|glalpls

There are no LABEL restrictions when using this instruction.

The AF field specifies a 2-digit symbolic device number for accessing

the Symbolic Substitution Table.

The A ADDRESS field points to a 6-digit field into which the first
syllable of the I/0 descriptor is stored. The B ADDRESS field points
to a 2-digit field into which the physical channel number is stored.
Indexing is not permitted, and the address controller must be UN or

TA for either field.

The C ADDRESS field points to a 1l-digit area which functions as a
logical switch. The Basic Control Program will store a 1 into this
position if the specified Symbolic Substitution entry has been pre-
viously loaded,

or a zero if it has not been loaded. Indexing is

not permitted, and the address controller must be UN or TA.

The remaining fields are not used, by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

Revised 10/30/69

by PCN 1034949001 6-89

KEYA

DEFINE ASCENDING SORT KEY (KEYA) - DECLARATIVE.

This instruction is defined for Advanced Assembler only. It loads
a constant (12 UN), at the current value of the location counter,

which describes an ascending sort key. This value is used by the

MCP sort intrinsic through the sort pseudo.

The format for the KEYA instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE AF | BF Label Ii Ine. JAIl Ac Label +Inc. |Bi Bc Label + Inc. |Ci] Cc
0 1 2 ‘E 3[3 |3 4 alda |4 5 515 15
s 4 8 b _I2 1]2 |4 0 3]a |6 2 5l |s
KlEIVIA //d (2,17, Vi UANA|¥

There are no LABEL restrictions when using this instruction.

The VAR field specifies the length of the key. The maximum size
permitted for a signed alphanumeric field is 50 characters; all

others may have a length of 99.

The A ADDRESS field contains a 5-digit number, left-justified, which
is the location of the key within the record. Permitted values are
in the range 00000 to 99999. The A ADDRESS controller specifies

the type of data on which to sort:

Code Definition

UA Unsigned alphanumeric.

SN Signed numeric.

SA Signed alphanumeric.
blank Unsigned numeric.

An asterisk (*) in the B ADDRESS field indicates the final key

definition.

The remaining fields are not used by this instruction.

6-90

KEYA
continued

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by the instruction.

A maximum of 49 keys (total KEYA and KEYD declarations) may be
defined. The SKEY declaration must directly precede the first
KEYA or KEYD definition.

See figure 6-2 (page 6-162A) which illustrates a sample program
using the SORT pseudo.

Revised 10/30/69
by PCN 1034949-001 6-90A

KEYD

DEFINE DESCENDING SORT KEY (KEYD) - DECLARATIVE.
This instruction is defined for Advanced Assembler only. It loads

a constant (12 UN), at the current value of the location counter,
which describes a descending sort key. This value is used by the

MCP sort intrinsic through the sort pseudo.

The format for the KEYD instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE AF | BF Label +Inc. |AI} Ac Label +Inc. |B{ Bc Label + Inc. |Ci] Cc
0 1 1 2 2 313 3 4 4 14 4 5 515 5
E 4 8 2 112 4 0 3 14 6 2 516 8
KIElY (D Jlololo]slo Sla

There are no LABEL restrictions when using this instruction.

The VAR field specifies the length of the key. The maximum size
permitted for a signed alphanumeric field is 50 characters; all

others may have a length of 99.

The A ADDRESS field contains a 5-digit number, left-justified, which
is the location of the key within the record. Permitted values are

in the range 00000 to 99999, The A ADDRESS controller specifies
the type of data on which to sort:

Code Definition
UA Unsigned alphanumeric.
SN Signed numeric.
SA Signed alphanumeric.
blank Unsigned numeric.

An asterisk (%) in the B ADDRESS field indicates the final key

definition.

The remaining fields are not used by this instruction. Program

Reserved Memory and the comparison and OVERFLOW indicators are not

changed by the instruction.

6-90B

KEYD

continued

A maximum of 49 keys (total KEYA and KEYD declarations) may be
defined. The SKEY declaration must directly precede the first KEYA
or KEYD definition.

See figure 6-2 (page 6-162A) which illustrates a sample program

using the sort pseudo.

Revised 10/30/69
by PCN 1034949-001 6-90C

LEQ

BRANCH NOT GREATER (LEQ) - MACHINE CODE-23.

This instruction transfers control to the specified address if the

comparison indicator is set to LOW or EQUAL.

The format of the LEQ instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LAB
EL CODE AF | BF Label + Ine. Label + Inc. |Bi| Bc Label + Inc. |Ci] Cc
‘10 1 1 2 2 3 4 4 14 4 5 5 5
18 4 8 0 2 B 4 0 3 14 6 2 5 8
LIEIQ AHTIBIL |+ |4

There are no LABEL restrictions when using this instruction.

The A ADDRESS field is used to code any defined branch address, and
indexing is unrestricted. The address controller bits are inter-
preted as a high-order digit of the branch address except that A/C

Thus, a base-relative

ll2 retains the indirect address meaning.

branch address up to 299998 can be assembled.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

The instruction is of 8-digit address-branch format.

6-90D

ENABLE PRINTED SOURCE LISTING (LIST) - PSEUDO.

This pseudo causes the printing of symbolic input to be started or

resumed.

The format of the LIST instruction is:

LIST

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE | AF | BF Label +Ine. JAIl Ac Label + Inc. |Bil Be Lobel + Inc. |Ci] Ce
0 1 2 2 313 4 4 |4 4 5 515 5
f 8 0 112 0 3 |4 6 2 5 |6 8

LABEL entries are not permitted with this instruction.

ing fields are not used by this instruction.

The remain-

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This pseudo has no operands and may be used in conjunction with, or

The LIST card

instead of,

itself is printed.

the LIST option in the SPEC statement.

6-91

LOCN

SET NEW LOCATION COUNTER VALUE (LOCN) - PSEUDO.

This pseudo sets the location counter to the value represented in

the A ADDRESS label field.

The format of this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
op.
B
LABEL CODE AF | BF Label i'lnc. All Ac Label +Inc. |Bil Be Label +Inc. |Ci] Cc
0 1 T k|2 7 33 |3 2 a4 |4 5 515
I 4 8 b |2 s 1|2 |4 0 3la e 2 5 |6
LgicIN TIRILEN

LABEL entries are not permitted with this instruction.

The A ADDRESS label field may contain any of the following:

An unsigned 5-digit base-relative address.

a.
b. A backward-refering label or program point (i.e., the label
or program point has been defined in a prior statement),
Labels defined by EQIV

A ADDRESS increment may be used.
statements may not be used here.
An asterisk reference (current value of the location

c.
counter), with the A ADDRESS increment specified.

The A ADDRESS controller specifies whether the A ADDRESS increment

indicates digits or characters.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.
The current value of the location counter is saved before the new
value is loaded to permit possible later reinstatement by a RLOC

command .

6-92

LSS

BRANCH LESS (LSS) - MACHINE CODE-21.

This instruction transfers control to the specified address if the

comparison indicator is set to LOW.

The format of this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL ngé AF | BF Label +1nc. |All Ac Lobel +Inc. |B Be Labe! +Inc. [Ci| Cc
0 1 T kB]2 2 3[3 |3 4 ala |4 5 515 |5
8 4 8 b |2 s 112 14 0 <3 CH 1) 2 56 |8
G LISIS L¢I¢ P
There are no LABEL restrictions when using this instruction.
Any defined branch address may be coded in the A ADDRESS field.
Indexing is unrestricted. The address controller bits are inter-
preted as a high-order digit of the branch address, except that
A/C 11, retains the indirect address meaning. Thus, a base-relative

2
branch address up to 299998 can be assembled.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This instruction is of 8-bit address-branch format.

6-93

MPY

MULTIPLY (MPY) - MACHINE CODE-05.

This instruction multiplies the value of the A field by that of the

B field and stores the result in the C field.

The format for the MPY instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +1ne. JAH Ac Label + Inc. |Bi] Bc Label + Inc. |Ci} Cc
0 1 R E 2 33 |3 7] a4 |4 5 565 5
I8 4 8 o |2]2 |4 0 3ja s 2 5l |s
ely| | [3] | [slels] N nPle_lulcP LIN[T &{T

There are no LABEL restrictions for this instruction.

The AF field specifies the length of the A field and the BF field
does the same for the B field. The C field length is assumed to
equal the sum of the A and B field lengths.

Bl The A ADDRESS field points to the multiplicand field and any address-

controller is valid. UN fields are assumed to be positive. Only
the numeric digits of a UA field enter into the multiplication and

the field is assumed to be positive.

.The B ADDRESS field points to the multiplier field and the address-

controller conventions are the same as for the A ADDRESS.

The C ADDRESS field points to the field into which the product is

stored. If the address controller for this field is UN, the sign
of the product is lost and the absolute value of the product is
stored. If the address controller is UA, the sign of the product
is lost, the absolute value of the product is stored into the
numeric digits of the C field, and the zone digits are set to the

numeric-subset zone.

6-94

MPY

continued

The remaining fields are not used by this instruction.

The OVERFLOW indicator is not affected by this instruction.

The

comparison indicators are set according to the sign of the product.

These settings are,

positive.

LOW if mnegative,

EQUAL if =zero,

Program Reserved Memory is not thanged by this instruction.

and HIGH if

The following are operational examples of the MPY instruction.

Multiply - Mixed Operands.

Multiply

Operands.

- Signed Numeric

oP AF BF A ADDRESS | B ADDRESS | C ADDRESS
MPY | 02 | 05 | FIELDA(UA) |FIELDB(UN) | FIELDC(SN) or | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
BEFORE APTER MPY | 02 02 | FIELD1(SN) |FIELD2(SN) | FIELD3(SN)
BEFORE AFTER
A ADDRESS JK JK
B ADDRESS 00011 00011
C- ADDRESS XXXXXXXX +0000132 A ADDRESS -15 -15
COMP. INDC. XXX HIGH B ADDRESS -17 -17
OVERFLOW unchanged C ADDRESS XXXXX +0255
COMP. INDC. XXX HIGH
OVERFLOW unchanged

6-95

MUL

MULTIPLY (MUL) - MACHINE CODE-05.

This instruction is an alternate mnemonic for the MPY command (refer

to the explanation of the MPY command).

The format of the MUL instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +Inc. |Al} Ac Label + Inc. |Bi] Be Label + Inc. |Ci] Ce
0 1 1 2 2 313 4 4 4 5 5 5
_E 4 8 0 112 0 3 {4 6 2 5 8
Mul | | 1] lal7s PRLINGP mra{sr

There are no LABEL restrictions when using this instruction.

The function of the remaining fields, Program Reserved Memory, com-
parison indicators and OVERFLOW indicators is identical to those of

the MPY command.

6-96

MVA

MOVE ALPHANUMERIC (MVA) - MACHINE CODE-10.
This instruction moves digits or characters from one field to

another, left-justified.

The format of this instruction is:
VAR. A ADDRESS B ADDRESS C ADDRESS
oP.

LABEL CODE AF | BF Label +Ine. Al Ac Label + Inc. |Bi| Bc Labet +Inc. |Ci] Cc
0 1 T kB |2 2 3[3 4 44 (4 5 51515
s 4 8 _p |2 Is 12 0 34 |6 2 56 |s

Mvial | [2! [s|ng] Al s’SAI el [1] lula

There are no LABEL restrictions when using this instruction.
The AF and BF fields specify the number of digits/characters in
their respective fields. If the sending field is longer than the
receiving field, the data is transmitted right-truncated. If the
sending field is shorter than the receiving field, the excess low-

order positions of the receiving field are filled with zeroes (UN

or SN) or blanks (UA).

The A ADDRESS field points to the sending field and the B ADDRESS
points to the receiving field. The remaining fields are not used

by this instruction.
When the A and B fields are both of UN format, each digit is moved.

When the A field is UN and the B field is of SN format,
is moved and the sign of the B field is set to the standard EBCDIC/

each digit

USASCII positive-sign code.

When the A field is UN and the B field is of UA format, each digit
is moved and the zone digits of the receiving field are set to the

EBCDIC/USASCITI numeric-subset code.

When the A field is SN and the B field is of UN format, each digit

is moved and the A field sign is not moved.

6=-97

MVA
continved

When the A and B fields are both of SN format, each digit is moved
and the sign of the B field is set to the standard EBCDIC/USASCII
form of the A field sign.

When the A field is SN and the B field is of UA format, each digit
is moved. The zone digits of the receiving field are set to the
E/A numeric-subset code except that the zone digit of the most-
significant character in the B field receives the standard EBCDIC/

USASCITI form of the A field sign.

When the A field is UA and the B field is of UN format, each numeric
digit of the A field is moved and the A field zone digits are

ignored.

When the A field is UA and the B field is of SN format, each numeric
digit of the A field is moved. The A field zone digits are ignored,
except that the sign of the B field is set to the standard EBCDIC/
USASCIT form of the sign contained in the zone digit of the most-

significant A field character.

When the A and B fields are both of UA format, each character is

moved.

If the length of the A field is greater than the length of the B
field, the OVERFLOW indicator is set to on.

The comparison indicators are set to HIGH if the numeric digits

moved are non-zero, and:
a. The A field is UN, or
b. The A field is SN and signed positive, or
c. The A field is UA and the B field is UN or UA, or

d. The A field is UA, the B field is SN, and the high-order

zone digit of the A field is positive.

6-98

MVA
continued

The comparison indicator is set to EQUAL if the numeric digits

moved are all zero.

are nomn-z

.

b.

Program Reserved Memory

ero and:

The A fi

The A field is

digit of

eld is

UA,
the A

field is negative.

SN and signed negative,

the B field is SN,

or

It is set to LOW if the numeric digits moved

and the high-order

is not changed by this instruction.

The following are operational examples of the MVA instruction.

Move'Alphanumeric - Unsigned
Numeric To Signed Numeric
Causing Overflow.

oP AF BF A ADDRESS| B ADDRESS | C ADDRESS
MVA| § 3 | FIELD1(UN) | FIELD2(SN)
BEFORE AFTER
A ADDRESS 23511 23511
B ADDRESS XXXX +235
C ADDRESS
COMP. INDC. XXX HIGH
OVERFLOW XXX ON

Move Alphanumeric
Alphanumeric to Signed Numeric.

-~ Unsigned

Move Alphanumeric
Numeric To Unsigned Alphanumeric.

- Signed

OP | AF | BF | A ADDRESS| B ADDRESS | C ADDRESS
MVA|] 3 3 | FIELDA(SN) |FIELDB(UA)
BEFORE AFTER
A ADDRESS +823 +823
B ADDRESS XXX H23
C ADDRESS
COMP. INDC. XXX HIGH
OVERFLOW unchanged
Move Alphanumeric - Unsigned

Alphanumeric to Unsigned Alpha-

numeric.

0P AF BF A ADDRESS| B ADDRESS | C ADDRESS oP AF BF A ADDRESS | B ADDRESS | C ADDRESS
MVA 3 5 | FIELDX(UA) |FIELDZ(SN) MVA 3 5 | FIELDJ(UA) |FIELDK(UA)
BEFORE AFTER BEFORE AFTER
A ADDRESS MNO MNO A ADDRESS XYZ XYZ
B ADDRESS XXXXXX -45600 B ADDRESS XXXXX XYZbb
C ADDRESS C ADDRESS
COMP. INDC. XXX Low COMP. INDC. XXX HIGH
OVERFLOW unchanged OVERFLOW unchanged

6-99

MVC

MOVE AND CLEAR WORDS (MVC) - MACHINE CODE-13.

This instruction moves words (refer to Data Formats) from one field
to another and clears the sending field to numeric zeroes after the

move has been performed.

The format of this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Label +Ine. All Ac Labe! + Inc. |Bil Bc Label + Inc. |Ci} Ce
0 1 B 2 33 |3 4 a4 |4 5 515 15
ﬁ 4 8 b |2 112 14 0 3la |6 2 sle s
\IQ’ O|04IOTA \,lEL TIA|BIL|E!
There are no LABEL restrictions with this instruction.
The VAR field specifies the U-digit count of words to be moved and
cleared. If this field is blank, the word count is generated from
the length associated with the A ADDRESS label. Generation is as
follows:
Label Action
Alphanumeric The length is divided by two. A
non-zero remainder will cause a
syntax error.

Unsigned numeric The length is divided by four. A
non-zero remainder will cause a
syntax error.

The A ADDRESS field points to the sending field. This address must
be evenly divisible by four (modulo—h) after all indexing and in-
direct addressing have been applied or a processor interrupt will
occur at execution time. The address controller for this field must

be UN or UA if the word count is to be calculated. If the word

count is specified, the address controller may be SN. The hardware

does not use the address controller, and literals are not permitted.

6-100

MvC

continued

The B ADDRESS field points to the receiving field. Coding restric-

tions on modulo-4 and the address controllers are the same as for

the A ADDRESS field.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

After all data has been moved, the A field is cleared to an all-

zero bit pattern regardless of the data format.

The following is an operational example of the MVC instruction.

Normal Move And Clear.

OP AF BF A ADDRESS| B ADDRESS | C ADDRESS
Mvc| 00 | 04 | RECA(UN) | RECB(UA) |
BEFORE AFTER
A ADDRESS C1C2C3ChC5C6C7C8 0000000000000000
B ADDRESS XXXXXXXX ABCDEFGH
C ADDRESS
COMP. INDC. unchanged
OVERFLOW unchanged

6-~101

MVL

MOVE LINKS (MVL) - MACHINE CODE-09.

This instruction rotates the contents of the three data fields to

the left.

A field to the C field.

The format of the MVL instruction is:

The contents of the B field are moved to the A field,
the contents of the C field to the B field,

and the contents of the

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE AF | BF Label +Ine. JAIl Ac Label + Inc. |Bi] Bc Labe! + Inc. |Ci} Cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 B8 1]2 4 0 3 14 6 2 5 |6 8
Lirls uFMIv.LI ols| | |AfT QI gln c ql_g_

There are no LABEL restrictions for this instruction.

The AF field provides the length of all the fields and the BF field

is ignored by the hardware.

The A ADDRESS field points to the first field to be rotated. Its
address controller must be UN

controllers of both the B and

or UA and must agree with the address
C fields.

The B ADDRESS field points to the second field to be rotated. Its

address controller must be UN or UA and must agree with the address

controllers of both the A and C fields.

The C ADDRESS field points to the third field to be rotated. Its
address controller must be UN or UA and must agree with the address
controllers of both the A and B fields.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

6-102

MVL
contfinued

The hardware picks up the C address controller and controls all
data formatting.

The A and B address controllers are not inter-

preted by the hardware and they are assumed to be identical to the

C address controller.

The following are operational examples of the MVL instruction.

Move Links

- Unsigned Numeric.

OP | AF | BF| A ADDRESS| B ADDRESS | C ADDRESS
MVL | 05 ATAG(UN) | BTAG(UN) | CTAG(UN)
BEFORE AFTER

A ADDRESS 12345 67890
B ADDRESS 67890 ABCDE
C ADDRESS ABCDE 12345
COMP. INDC. unchanged
OVERFLOW unchanged

Move Links

numeric.

- Unsigned Alpha-

OP | AF BF A ADDRESS| B ADDRESS | C ADDRESS
MVL |03 AAREA(UA) | BAREA(UA) | CAREA(UA)
BEFORE AFTER
A ADDRESS XYz MNO
B ADDRESS MNO GHI
C ADDRESS GHI XYz
COMP. INDC. unchanged
OVERFLOW unchanged

6-103

MVN

MOVE NUMERIC (MVN) - MACHINE CODE-11.

The function of this instruction is to move digits or characters

from one field to another, right-justified.

The format of the Move Numeric (MVN) instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
L
ABEL CODE AF | BF Label +Inc. [AIl Ac Label + Inc. |Bi| Be Label +'lnc. |Ci| Ce
0 1 1 2 2 2 313 3 4 4 |4 4 5 515 5
8 4 8 0 2 112 4 0 3 14 6 2 5 16 8

nHu 3| | [slolz Plg N{T

There are no LABEL restrictions when using this instruction.

The AF and BF fields specify the number of digits/characters in the
A and B fields. If the B field is longer than the A field, the

excess high-order positions of the B field are filled with numeric

or alphanumeric zeros. Tf the B field is shorter than the A field,
the excess high-order positions of the A field are scanned and, if
any of these positions contain a non-zero digit or character, the
move will not be performed. TIf all the excess A field positions are

zero, the A field data will be moved (left-truncated) to the B field.

The A ADDRESS points to the field from which data is moved, the B
ADDRESS points to the field into which the data is moved, and the
C ADDRESS 4is not used.

When the A and B fields are both of UN format, each digit is moved.

When the A field is UN and the B field is of SN format, each digit
is moved and the sign of the B field is set to the EBCDIC/USASCII

positive-sign code.

When the A field is UN and the B field is of UA format, each digit
is moved and the zone digits of the B field characters are set to

the EBCDIC/USASCII numeric-subset code.

6-104

MVN

continued

When the A field is SN and the B field is of UN format, each digit

is moved and the sign of the A field is not moved.

When the A and B fields are both of SN format, each digit is moved
and the B field sign is set to the standard EBCDIC/USASCII form of
the A field sign.

When the A field is SN and the B field is of UA format, each digit
is moved. The zone digits of the B field characters are set to the
EBCDIC/USASCII numeric-subset code, except that the zone digit of
the most-significant B field character receives the standard

EBCDIC/USASCII form of the A field sign.

When the A field is UA and the B field is of UN format, each digit

of the A field is moved and the A field zone digits are ignored.

When the A field is UA and the B field is of SN format, each numeric
digit of the A field is moved and the sign of the B field is set to
the most standard EBCDIC/USASCIT form of the sign in the zone digit of

the most«significant A field character.

When the A and B fields are both of UA format, each numeric digit of
the A field is moved and the zone digits of the B field characters
are set to the standard EBCDIC/USASCII numeric-subset code.

If the A field is longer than the B field and the excess high-order
positions of the A field contain non-zero digits/characters, the
OVERFLOW indicator is turned on. If the OVERFLOW indicator is
turned on, the comparison indicators are not changed by the instruc-

tion.

The HIGH comparison indicator is turned on if the numeric data moved

is non-zero and:

a. The A field is UN, or

b. The A field is SN and signed positive, or

c. The A field is UA and the B field is UN or UA, or

d. The A field is UA, the B field is SN, and the high-order

zone digit of the A field is positive.

6-105

MVN

continued

The EQUAL comparison indicator is turned on if the numeric data

moved is

numeric data moved is non-zero and:

a.

b.

zZero.

The A field is SN and signed negative,
The A field is UA,

the B field is SN,

or

zone digit of the A field is megative.

The LOW comparison indicator is turned on if the

and the high-order

Program Reserved Memory of the object program is not used or changed

by this instruction.

Operational examples of the Move Numeric instruction are as follows:

Unsigned Numeric To Unsigned

Numeric Move With B Field

Unsigned Numeric To Unsigned
Numeric Move With B Field Longer.

Shorter.
oP AF BF A ADDRESS| B ADDRESS | C ADDRESS
OP AF BF A ADDRESS| B ADDRESS | C ADDRESS] VN 3 5 | FIELDC(UN) | FIELDE(UN)
VN § 3 | FIELDA(UN) | FIELDB(UN)
BEFORE AFTER
BEFORE AFTER
A ADDRESS 123 123
A ADDRESS 00123 00123 g :ggﬁggg XXXXX 00123
B ADDRESS XXX 123 COMP. INDC
. . XXX HIGH
C ADDRESS OVERFLOW h a
COMP. INDC. XXX HIGH unchange
OVERFLOW unchanged

Unsigned Numeric To Unsigned
Numeric Move Causing Overflow.

Unsigned Alphanumeric To Signed
Numeric Move.

orP AF BF A ADDRESS | B ADDRESS | C ADDRESS
IMVN | § 3 | FIELDA(UN) |[FIELDB(UN)
BEFORE AFTER

A ADDRESS 12300 12300

B ADDRESS unchanged

C ADDRESS

COMP. INDC. unchanged

OVERFLOW XXX ON

6-106

OP AF BF A ADDRESS| B ADDRESS | C ADDRESS
MVN| 3 5 FIELDA(UA) | FIELDB(SN)
BEFORE AFTER

A ADDRESS RYZ RYZ

B ADDRESS XXXXXX D00989*

C ADDRESS

COMP. INDC. XXX Low
 OVERFLOW

* D is negative~sign undigit

MVN

continued

Unsigned Alphanumeric To Un-
Signed Alphanumeric Move.

OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
MVN| 5 7 | FIELDA(UA) | FIELDB(UA)

BEFORE AFTER
A ADDRESS bbbbb bbbbb (blanks)
B ADDRESS XXXXXXX 0000000
C ADDRESS
COMP. INDC. XXX EQUAL
OVERFLOW unchanged

6-107

MVR

MOVE REPEATED (MVR) - MACHINE CODE-14.

This instruction moves digits/characters from one field to another,
and repeats the move into successive receiving locations a speci-

fied number of times.

The format for the MVR instruction is.

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LAB
EL CODE AF | BF Label + Inc. Al Ac Label + Inc. {Bil Bc Label +Inc. |Cil Cc
0 1 1 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 8 1]2 4 0 3 J4 6 2 516 8

AR AT A

There are no LABEL restrictions when using this instruction.

The AF field specifies the length of the sending field and the BF
field specifies the number of times the move is to be performed.
The BF field may not be left blank.

The effective length of the receiving field is the product of the
AF field times the BF field (the number of digits/characters moved

multiplied by the number of times the move is performed).

The A ADDRESS field specifies the sending field and its address
controller may be UN oxr UA.

The B ADDRESS field specifies the receiving field and its address
controller may be UN or UA, independent of the format of the A field.

The following are various address controller conventions and their

corresponding move description for the A and B fields:

A ADDRESS B ADDRESS Move Description
UN UN Each digit is moved.
UN UA Each sending digit is moved and

the EBCDIC/USASCII numeric subset

6-108

A ADDRESS

UA

UA

B ADDRESS

UN

UA

Move Description

MVR

continued

zone digit is inserted in each

receiving character.

Only the numeric digits of the

sending field are moved to

receiving field.

Each character is moved.

The remaining fields are not used by this instruction.

the

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

The following are operational examples of the MVR instruction.

Move Repeated - Unsigned Numeric
To Unsigned Numeric.

Move Repeated - Unsigned Alpha-
numeric To Unsigned Numeric.

OP | AF | BF | AADDRESS|B ADDRESS | C ADDRESS OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
MVR | 3 4 ADF(UN) CGT(UN) MVR | 3 2 TAG(UA) NUMTAG(UN
BEFORE AFTER BEFORE AFTER
A ADDRESS 057 057 A ADDRESS MNO MNO
B ADDRESS XXXXXXXXXXXX 057057057057 B ADDRESS XXXXXX 456456
C ADDRESS C ADDRESS
COMP. INDC,. unchanged COMP. INDC. unchanged
OVERFLOW unchanged OVERFLOW unchanged

6-~109

MVW

MOVE WORDS (MVW) - MACHINE CODE-12.

This instruction moves words (refer to Data Formats) from one loca-

tion to another.

The format of the MVW instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label +Inc. |AHl Ac Label + Inc. |Bi| Be Label + Inc. |Ci] Cc
1 1 2 2 2 313 3 4 4 14 4 5 515 5
0 2 E 142 4 0 3 14 6 2 5 16 8

0
8 4 8
LQPY .nlv Ol4|O{CIAIRID I C F.}QIdIT

There are no LABEL restrictions for this instruction.

The VAR field specifies the 4-digit count of words to be moved. If
the variant field is blank, the word count is generated from the
length associated with the A ADDRESS label. If the label is alpha-
numeric, its length is divided by two and a non-zero remainder on
the divide causes a syntax error. If the label is unsigned numeric,
its length is divided by four and a non-zero remainder causes a

syntax error.

The A ADDRESS field points to the sending field and this address
must be evenly divisible by four (modulo-h) after all indexing and
indirect addressing has been applied. If not, a processor interrupt

will occur at execution.

The address controller for this field must be UN or UA if the move
length is to be calculated., If the word count is specified, it may
be SN. The address controller is not used by the hardware. Literals

are not permitted.

The B ADDRESS field points to the receiving field. The coding re-
strictions on modulo-4 and the address controllers are the same as

for the A ADDRESS field.

6-110

MVW

continued

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators
are not changed by this instruction.

This is a high-speed data move. It is twice as fast as MVA on
fields of the same length and can move much longer fields with a

single instruction execution.
The following are operational examples of the MVW instruction.

Move Words - Numeric Fields. Move Words - Alphanumeric Fields.

oP AF BF A ADDRESS| B ADDRESS | C ADDRESS oP AF BF A ADDRESS| B ADDRESS | C ADDRESS
MVW | 00 04 | FIELDA(UA)| FIELDB(UN) MVW| 00 | 03 | FIELDC(UA) | FIELDE(UA)
BEFORE AFTER BEFORE AFTER

A ADDRESS 01020304 01020304 A ADDRESS VWXYZA VWXYZA

B ADDRESS XXXXXXXX 01020304 B ADDRESS XXXXXX VWXYZA

C ADDRESS C ADDRESS

COMP. INDC. unchanged COMP. INDC. unchanged

OVERFLOW unchanged OVERFLOW unchanged

6-111

NEQ

BRANCH NOT EQUAL (NEQ) - MACHINE CODE-25.

This instruction transfers control to the specified address if the
comparison indicator is set to HIGH or LOW.
The format of this instruction is:
VAR. A ADDRESS B ADDRESS C ADDRESS
OP.

LABEL CODE AF | BF Label + Ine. Al Ac Label + Inc. |Bil Be Label + Inc. |Ci] Cc
0 1 T R |2 2 3[3] 214 |4 5 515 |5
8 4 - O P s 1]2 0 3la |6 2 516 |s

NEEIQ U NIE Q’L

There are no LABEL restrictions for this instruction.
The A ADDRESS field is used to code any defined branch address. In-

dexing is unrestricted, and the address controller bits are inter-
preted as a high-order digit of the branch address, except that
Thus,

A/C ll2 retains the indirect address meaning. a base-relative

branch address up to 299998 may be assembled.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This instruction is of 8-digit address-branch format.

6-112

DISABLE PRINTED OBJECT LISTING (NOCD) - PSEUDO.

This pseudo instruction inhibits printing of the assembled machine

code.

The format of this instruction is:

NOCD

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LABEL
CODE AF | BF Label +Inc. Al Ac Label +Inc. |Bil Bc Labe! + Inc. |Ci] Cc
0 1 1 2 2 2 313 3 4 4 |4 4 5 515 5
ﬂg 4 8 0 2 I 142 4 0 3 |4 6 2 5 16 8
NIg[CID

LABEL entries are not permitted with this instruction,

fields are not used by this instruction.

The remaining

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This instruction has no operands.

may be resumed with the pseudo instruction CODE.

Printing of assembled machine code

6=113

NOLI

DISABLE PRINTED SOURCE LISTING (NOLI) - PSEUDO.

This instruction inhibits the printing of symbolic input.
The format of the NOLI instruction is:
VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
E CODE AF | BF Lobel +Ine. JAIl Ac Label + Inc. |Bi] Be Labe! + Inc. |Ci] Cc

0 T 7] 2 313 4 als |4 5 515
s 4 8 b 12 0 < 'I 2 5 J6

A\lbL

LABEL entries are not permitted for this instruction.

fields are not used by this instruction.

The remaining

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This command has no operands.

The NOLT card itself is printed.

Printing of symbolic input may be resumed with the pseudo instruc-
tion LIST.

6-114

NOP

NO OPERATION (NOP) - MACHINE CODE-20.

This instruction causes control to pass to the next sequential in-

struction.

The format of the NOP instruction is:

: VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LABEL
CODE AF | BF Label + Inc. All Ac Label +Inc. |Bi} Be Label +inc. |Ci|] Cc
0 1 1 2 2 3 |3 3 4 4 |4 4 5 515 5
_P 4 8 0 2 112 4 0 3 4 6 2 5§16 8
(i EIX|L[T]

There are no LABEL restrictions‘when using this instruction.

Any address may be coded into the A ADDRESS field. The address
controller bits are interpreted as a high-order digit of the address,
except that 112 retains the indirect address meaning, thus address

up to 299999 base-relative may be assembled.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

The NOP instruction may be used as a program switch. Since this in-
struction is of 8-digit address-branch format, it can only be con-
verted into a conditional/unconditional branch or an EXT command ,

and not into a data handling instruction.

6-115

NOT

LOGICAL EXCLUSIVE OR (NOT) - MACHINE CODE-44.

This instruction compares the A field bits with the corresponding

B field bits and stores a 1 bit into the C field position if the

A and B bits are not equal.

field.

Otherwise,

The format for this instruction is:

a O bit is stored into the

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LAB
EL CODE AF | BF Label +Inc. AN} Ac Label + Inc. |Bi| Be Label + Inc. |Ci| Ce
0 1 1 2 2 2 313 3 4 4 14 4 5 515
_‘g 4 8 0 2 112 4 0 3 |4 6 2 5 |6
1| lo|2lo ASV!lIT glsiwlr (T H@PFHT

There are no LABEL restrictions when using this instruction.

The AF and BF fields are used to specify the number of digits/oharac—

ters in their corresponding fields.

to be equal to the larger of the AF and BF values.

The C field length is assumed
If the A and B

fields are not of equal length, the shorter of the two is padded by

assuming trailing l-bit digits/characters (F or FF).

The A ADDRESS field points to the first field to be Exclusively ORed.

The address controller may not be SN and the final controller must

be the same as the final address controller for the B and C fields.

The B ADDRESS field points to the second field to be Exclusively

ORed.

The address controller may not be SN and the final controller

must be the same as the final A and C field address controllers.

The C ADDRESS field points to the field into which the result is to

be stored.

The address controller may not be SN and the final con-

troller must be the same as the final address controllers for the

A and B fields.

6-116

The remaining fields are

The comparison indicator
(i.e., the low-order bit

The comparison indicator

0. The

NOT

continuved

not used by this instruction.

is set to HIGH if the last result bit
of the last C field digit/character) is 1.
is set to EQUAL if the last result bit is
OVERFLOW indicator is not changed by this instruction.

Program Reserved Memory is not changed by this instruction.

The NOT

version

The following are operational examples of the NOT

between formats,

For example:

Operand Bits Result Bit
A field B field C field

(0] o 0]

0] 1 1

1 0 1

1 1 0

Exclusive OR - Unsigned Numeric

Operands,

instruction processes bit string's with no implicit con-

instruction.

Exclusive OR - Unsigned Alpha-
numeric Operands.

op | AF | BF| A ADDRESS| B ADDRESS | C ADDRESS OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS

INOT | 03 03 | INVERT(UN)| FIELD(UN) IFIELD(UN) NOT | 02 02 | PLUS(UA) CHARS(UA) | PCHARS(UA)
BEFORE AFTER BEFORE AFTER

A ADDRESS FFF FFF 111111111111 A ADDRESS &é& && 0101000001010000

B ADDRESS 641 6A1 011010100001 B ADDRESS GP GP 1100011111010111

C ADDRESS XXX 95E 100101011110 C ADDRESS XX P 1001011110000111

COMP. INDC. XXX EQUAL COMP. INDC. XXX HIGH

OVERFLOW unchanged OVERFLOW unchanged

6-117

NTR

ENTER SUBROUTINE (NTR) - MACHINE CODE-31.

This instruction causes control information and parameters to be
copied into the subroutine stack, and transfers control to a speci-

fied address.

The format for the NTR instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP. .
LABEL CODE | AF | BF Label +Inc. JAll Ac Label + Inc. |Bi] Bc Label +Inc. |Ci] Cc
0 1 7] 2 2 3[3 4 4 |4 4 5 5 5
E 4 0 2 8 1]2 0 3 |4 6 2 5 8
R EIS|QIRIT

There are no LABEL restrictions when using this instruction.

The VAR field should be left blank. The assembler calculates a

k-digit count of characters in the parameters to be transferred to

the subroutine and puts this count into the variant field of the
assembled machine instruction. The assembler assumes that all
CNST and ACON statements immediately following the NTR instruc-

tion are parameters.

The A ADDRESS label field specifies the address to which control is
to be transferred after the parameters have been copied into the

subroutine stack.
The remaining fields are not used by this instruction.

The settings of the comparison and OVERFLOW indicators are stored,

then cleared by this instruction.

The address contained in Program Reserved Memory location 000LO is
assumed to point to the first available location in the subroutine
stack. This address must be initialized by the program, before the
first NTR is executed, to point to an area (which must be modulo=2

oriented) within the program that is large enough to hold the maximum

6-118

NTR

continued
expected nesting of subroutine calls. The following information is
copied into the location specified by this address:
Digit Information
0-5 The return address, i.e., the address

of the instruction which follows the

parameters.
6-13 The current setting of IX3.
14 Zero.
15 The current settings of the comparison,

OVERFLOW, and EBCDIC/USASCII indicators.
Bit 8: 1 = USASCII 0 = EBCDIC

Bit 4: 1 = OVERFLOW O = NO OVERFLOW

Bits 2 and 1: 1 = High, 2 = Low, 3 = Equal

The remaining digits of the stack entry are the parameters following
the NTR instruction.

The current value of the address in Program Reserved Memory location
00040 is then copied into IX3, and the new value of "next available

location in subroutine stack" is copied into location 00040,

When coding subroutine references to the parameters, note that the
first parameter character/digit is located at "contents of IX3 plus
16", since the IX3 value points to the beginning of the entire
current stack entry and linkage information occupies the first 16

positions of the entry. This is shown in the example below.

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
CODE AF | BF Label Li Ine. All Ac Label + Inc. |BY Bc Label + Inc. |Ci] Cc
\ 1 2 2 3|3 3 4 4 |4 4 5 515 5 [
4 8 p 2 1]2 4 0 3 |4 6 2 5 8 16
Al 13113 g | |+ |8PuACAD|E ALP F
5] |5 1163 |LINIC|ALINT] NuM REE |

6-119

NTR

continued

Subroutines may call themselves (recurse) to any depth permitted by
the size of the area allocated for the subroutine stack. Subroutines
r;turn to the level that called them by means of the EXT instruction.
This instruction requires that the value loaded into location IX3

by the corresponding NTR instruction be still present. Therefore,
any subroutine which uses IX3 for processing must save its wvalue

before altering it and restore the saved value before exiting.

EXAMPLE FORMAT:
001560 NTR SUBRTN (at location 003016, assembled 310003020166)
001570 ACON ARGUMT (at location 003028, assembled 203010)

Assume that before execution of the NTR instruction, IX3 contains
+0000010 and O00LO contains 001024, After execution of the NTR in-

struction, the field contents will be:

next instruction address: 020166

IX3: +0001024
00040 001046
001024 : 003034 (instruction address after

parameters)
+0000010 (stored value of IX3)
00 (stored value of machine indicators)

203010 (ACON parameter)

6-120

NUMR

DECLARE EXTENDED NUMERIC CONSTANT (NUMR) - DECLARATIVE,
This instruction permits the declaration of a numeric constant of

up to 59 digits, and it is defined for Advanced Assembler only.

The format for the NUMR instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label + Ine. AII Ac Label + Inc. |B{ Bc Label + Inc. |Ci] Cc
0 1 1 12 2 313 3 4 4 |4 4 5 515 5
8 4 2 B 1]2 4 0 3 14 6 2 5 Jé 8
£1X17] MU /|3 4,4]455555166666 71717171818181818191 91919

There are no LABEL restrictions when using this instruction.

The BF field specifies the number of digits to be allocated for the
constant; a range of Ol through 59 is acceptable. If omitted, the

Assembler will assume 59.
The constant data is specified, left-justified, in columns 22-80.

Any non-numeric character other than A through F will have the

zone bits removed, and a number will be assembled.

The remaining fields are not used by this instruction. Program
Reserved Memory and the comparison and OVERFLOW indicators are

not changed by the instruction.

Revised 11/20/70
by PCN 1034949-002 6-120A

OFL

BRANCH ON OVERFLOW (OFL) - MACHINE CODE-28.

This instruction transfers control to the specified address provid-

ing the OVERFLOW indicator is set to on.

The format of the OFL instruction is:

VAR, A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE | AF | BF Lobel +Ine. |All Ac Label +1Inc. |Bi| Be Label +1Inc. |Ci] Cc
0 1 B B 2 33 |3] 4|4 |4 5 515 |5
8 4 g8 b |2 I8 112 |4 0 3la s 2 5le s
TISITIAVIBOF |¢ RIRLIN
There are no LABEL restrictions when using this instruction.
Any defined branch address may be coded in the A ADDRESS field. In-

dexing is unrestricted, and the address controller bits are inter-

preted as a high-order digit of the branch address, except that A/C
11 Thus 9

2
branch address up to 299998 may be assembled.

retains the indirect address meaning. a base-relative

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison indicators aire not changed

by this instruction. The OVERFLOW indicator is reset by this in-

struction.

This instruction is of 8~digit address-~branch format.

6-121

OPEN

lOPEN FILE (OPEN) - PSEUDO.
T

his pseudo initializes a logical file for reading or writing (in-

cluding device assignment, label creation, etc.).

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE | AF | BF Label +Inc. A Ac Label +Inc. |Bi| Be Label +Inc. |Ci] Ce
0] 1T R 2 2 313 4 a4 |4 5 505
s 4 8 2 8 142 0 34 |s 2 5 |6
SITIAIRIT ¢PEI N | ICIARIDIIIN

There are no LABEL restrictions when using this instruction.

The AF field specifies the direction of data flow on the file.
Coding is:

Code
IN
oT
I0

oI

Description

Input.
Output.

Input/output (Advanced Assembler

only - disk file

updating).

Output/input (Advanced Assembler

only

updating).

- disk file

A file may bhe OPENed in one direction, processed, CLOSed, and then

OPENed in the opposite data-flow direction.

Column 20 of the BF field provides extra

magnetic tape files and disk files.

6=122

Code
blank

N°

information pertaining to

Description

Rewind at OPEN.

No rewind.

Coding is as follows:

OPEN

continuved
Code Description
R OPEN for reverse reading (Magnetic tape).

Column 21 of the BF field specifies the MICR sorter-reader proces-

sing mode. Coding is:
Code Description
D Demand
P F1 ow }(Advanced Assembler only).

For a disk file, an F in column 21 specifies an OPEN WITH LOCK
(Advanced Assembler only). This allows the user to have unrestricted

INPUT and OUTPUT capabilities on the specified file while restrict-

ing subsequent users of that file to INPUT activity only.

The A ADDRESS field contains the internal file-name (as defined in
the label field of a FILE statement) of the file to be OPENed. TIn-

crementing, indexing, and address controlling are not permitted.

The B ADDRESS field (in the Basic Language) may optionally contain
a left-justified 2-digit reference to the symbolic substitution
table. The BCP will obtain a channel number and an I/0 descriptor
syllable from this table, and override any entry in the FILE state-
ment. Refer to the Basic I/0 Section.

NOTE

The Advanced Assembler ignores this field.

The C ADDRESS field (in the Basic Assembler) may optionally contain
an error branch address. Control branches to this address if the

BCP is unable to recover from an I/0 error on the file.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

A logical file must be OPENed before any I/O commands (READ, WRIT,
POSN, SEEK, etc.) are issued to it.

Revised 10/30/69
by PCN 1034949-001 6-1213

ORR

LOGICAL OR (ORR) - MACHINE CODE-43.

This instruction compares the A field bits with corresponding B
field bits and stores a 1 bit into the C field if either or both

of the corresponding A and B field bits are on.

The format of the ORR instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS

LABEL

CODE | AF | BF Label + Inc. JAl] Ac Labe! Inc. |Bi| Be Label + Ine. |Ci| Cc

*
4 4[4 5
0 2

w
w
w

x O
—
ON
N
v n
W
o

2
2 3 112 4

ol L] igleld | el | [1]o] rfj‘\:sﬂlrcu u'Nan N glm_

There are no LABEL restrictions when using this instruction.

The AF and BF fields specify the number of digits/characters in
their corresponding fields. The C field length is assumed to equal
the larger of the AF and BF values.

If the A and B fields are not equal length, the shorter of the two
is padded in the processor by assuming trailing O-bit digits or

characters (0 or 00).

The A ADDRESS field points to the first field to be ORed and its
address controller may not be SN. The final A address controller

must be the same as the final B and C address controllers.

The B ADDRESS field points to the second field to be ORed and its
address controller may not be SN. The final B address controller

must be the same as the final A and C address controllers.

The C ADDRESS field points to the field into which the ORed result
is to be stored and its address controller may not be SN. The final
C address controller must be the same as the final A and B address

controllers.

6-124

ORR

continued

The remaining fields are not used by this instruction.

The comparison indicator is set to HIGH if the last result bit
(i.e., the low-order bit of the last C field digit/character) is 1.
It is set to EQUAL if the last result bit is O. The OVERFLOW in-

dicator and Program Reserved Memory are not changed by this instruc-

tion.

This instruction processes bit strings, with no implicit conversion

between formats. This is shown in the example below.

Operand Bits Result Bit

A field B field C field

= = O ©
B O = O

H = = O

The following are operational examples of the ORR instruction.

Logical OR - Unsigned Numeric Logical OR -~ Unsigned Alpha-
Operands. numeric Operands.

oP AF BF A ADDRESS] B ADDRESS | C ADDRESS oP AF BF A ADDRESS| B ADDRESS | C ADDRESS
[ORR | 02 | 03 | BITS(UN) |SWITCH(UN) | SWITCH(UN)| ORR | 03 | 02 | CHAR1(UA) |CHAR2(UA) | FIELD(UA)

DEFORE AFIER BEFORE AFTER

A ADDRESS 81 81 100000010000 A ADDRESS AED ABD 110000011100001011000100
B ADDRESS 223 223 001000100011 B ADDRESS 23 23 111100101111001100000000
C ADDRESS xxx 433 101000110011 C ADDRESS xxx 330 111100111111001111000100
COMP. INDC. xxx HIGH COMP. INDC. xxx EQUAL

OVERFLOW unchanged OVERFLOW unchanged

6=125

OVLY

CALL AND ENTER SUBSEQMENT (OVLY) - PSEUDO.

This pseudo is defined for Advanced Assembler only.

It tests for the

presence of a subsegment, loads it if not present, and transfers

control into the subsegment.

The format of the OVLY instruction is:

LABEL

oP.
CODE

VAR.

A ADDRESS

B ADDRESS

C ADDRESS

AF

BF

Label

+ Ine.

Al

Ac

Label

+ Inc.

Bi

Be

Label

Inc.

1

—

2

2

w

4
0

Y

S

hd
5
2

@ O
N W
a

8 (2) 2 . 1
E oglP RF.CAF |

There are no LABEL restrictions when using this instruction.

4
v

The A ADDRESS label field contains the name of the called subseg-

ment, as defined in a SEGM card. The called segment must be an
immediate subsegment (nested and one level down) of the segment

which contains the OVLY command.
The remaining fields are not used by this instruction.

The previous comparison indicator setting is eliminated by this in-

struction and the new value is unpredictable.

Program Reserved Memory and the OVERFLOW indicator is not changed

by the instruction.

Control enters the subsegment at its first executable instruction
unless a label was specified in the ENSG card of the subsegment,

in which case control enters at that label. Refer to the discussion
of segmentation (section 4), and the description of the SEGM pseudo-

operation.

6-126

DECLARE COBOL-FORM EDIT MASK (PICT) - DECLARATIVE.,

This declarative is defined for Advanced Assembler only.

PICT

It con-

verts the specified COBOL PICTURE into a string of editing micro-

operators.

The format of the PICT instruction is:

VAR, A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE | aF | BF Labet +1ne. |all Ac Label +1nc. |Bd Be Label +nc. |ci| ce
0] Tk |2 2 2 E 3 R 5 3 G 5
F 4 8 P 2 142 |4 0 3 |4 6 2 sle 1s
Elvtirll lplrlelr] | 1z EAENAREERD A

The LABEL entry may not be a program point.

The VAR field specifies the number of characters (right-justified)
in the COBOL PICTURE (columns 20 through 21).
related to either the length of the field to be edited or the re-
sultant length of the edited field.

This value is not

It also is not related to the
length of the converted micro-operator string (the length of the
the value associated with the PICT label).
the COBOL PICTURE is 24 characters.

string is The maximum

length of
The COBOL PICTURE is coded in the B and C ADDRESS fields.
There are no restrictions other than the 24~character length limit.
Refer to Section 2, for a full explanation of PICTURE usage.

The remaining fields are not used by this instruction.

The comparison and OVERFLOW indicators are not changed by this in-

struction.

6-127

PICT

continued
The standard Edit insertion characters (+, -, *, ', ’, $§, 0, b) are
suitably generated in the Reserved Memory Locations 48-63.

If a PICT declarative is used to define the edit mask for an EDT
instruction (this is highly recommended), the following coding rules

apply to the EDT command:

a. The label of the PICT command should be coded in the B
ADDRESS label field.

b. The increment, index, and address controller fields for the
B ADDRESS field should be left blank.

c. The BF field of the EDT instruction should be left blank.

6-128

POSN

POSITION EXTERNAL FILE (POSN) - PSEUDO.
This pseudo causes forward spacing of the printer paper (both As-
semblers) or forward/backward spacing on magnetic or paper tape

(Advanced Assembler only).

The format of this instruction is:

VAR. A ADDRESS , B ADDRESS C ADDRESS
oP.
LABEL
CODE AF | BF Lobel +1Inec. |AI} Ac Label + Inc. |Bif Bc L.abel + Inc. |Ci] Cc
0 1 T B |2 2 313 13 7] 7 U] 5 515 15
B 4 8 b |2 B 112 |4 0 <3 7) 2 sl s
BKlZIA | 1Ag siMaolasl szm 'S 71~

There are no LABEL restrictions for this instruction.

For magnetic tape, the VAR field specifies the number of BLOCKS to
be skipped (permitted values are 000l to 9999 and -001 to -999).
For example, if columns 18-21 are coded 0010, the tape will be
skipped forward 10 full blocks and positioned to read the eleventh
block from the point at which the POSN was issued. Similarly, 4if
columns 18-21 are coded -999, the tape will be skipped backward 999
blocks and positioned to read/write the 999th block from the point
at which the POSN was issued.

For the printer, the AF field specifies the number of lines to be
spaced. Permitted values when using the Advanced Assembler are Ol
to 99; when using the Basic Assembler, code only O1 or 02. The

BF field specifies a channel number for the printer control

tape. For example, if columns 20-21 are coded 09, the carriage con-
trol tape will be skipped to channel 9. Permitted values are O1

to 11.

The A ADDRESS label field specifies the internal file-name of the
file to be positioned. Incrementing, indexing, and address control-
ling are not permitted. The B ADDRESS label field optionally speci-

fies an End-of-Volume branch address.

Revised 10/30/69
by PCN 1034949-001 6-129

POSN

continued

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

6-130

READ ADDRESS (RAD) - MACHINE CODE-92.

RAD

This is a privileged instruction and may not be used in normal

state programs.

It reads a 6-digit address from scratch pad memory

and stores it at a specified location.

The format of this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +lne. JAll Ac Label +Inc. |Bil Bc Label +Inc. |Ci| Cc
0 1 1 2 2 Ias 3 2 a|s |4 5 515 15
15 4 8 2 s 1|2 a 0 3la e 2 sle |8
RAl| | llols!r]Alr[elVD]

There are no LABEL restrictions when using this instruction.

The AF field (column 19) specifies whether the first or second
address (beginning or ending address of an I/0 descriptor) is to

be read out. Coding is:

Code Action
Read out first address.
1 Read out second address.

The BF field specifies a channel number (from 00 to 19). The

scratch pad address will be read out of the corresponding slot.

‘'The A ADDRESS field specifies the location into which the address

value is to be stored, The

and the final address must be even.

address controller may only be UN or IA.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This command is used to determine the ending address of I/0 de-

scriptors (short record read etc,).

Revised 10/30/69

by PCN 1034949-001 6-130A

RCT

READ AND CLEAR TIMER (RCT) - MACHINE CODE-9%6. .

This is a privileged instruction and may not be used in normal
state programs. It transfers the contents of the first timer word
from scratch pad memory to a specified storage address, and then

clears the word to zeroes.

The format of the RCT instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +Inc. JAIl Ac Label + Inc. |Bi] Bc Label + Inc. 1Ci] Cc
0 1 1 2 2 313 3 4 4 14 4 5 515 5
I8 4 8 2 1]2 |4 0 3la e 2 sle s
Ric TiT|MERN 111

There are no LABEL restrictions when using this instruction.

The A ADDRESS field points to a 6-digit area into which the timer
word is to be stored, and its address controller must be either UN

or TA. The final A ADDRESS must be even.

The remaining fields are not used, nor are Program Reserved Memory
or the comparison and OVERFLOW indicators changed by this instruc-

tion.

The first timer word is the one which is automatically incremented

by the hardware.

6-131

RDT

[READ TIMER (RDT) - MACHINE CODE-95.

This is a privileged instruction and it may not be used in normal
state programs. It transfers the contents of the first timer word

from scratch pad memory to a specified address.

The format of the RDT instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP
B .
LABEL CODE AF | BF Label +Inec. ALl Ac Label +Inc. |Bil Bc Label +Inc. |Ci] Cc
0 1 1 P 2 2 313 3 4 4 14 4 5 515 5
8 4 8 _p 2 112 4 0’ 3 |4 6 2 516 8
RIDIT] el]alplsle]

There are no LABEL restrictions for this instruction.

The A ADDRESS field points to a 6-digit area into which the timer
word is to be stored, and its address controller must be UN or TA.

The final A ADDRESS must be even.

The remaining fields are not used, nor are Program Reserved Memory

and the comparison and OVERFLOW indicators changed by this instruc-

tion.

The first timer word is the one which is automatically incremented
by the hardware (real-time clock). This command does not reset the

first timer word in scratch pad memory.

6-132

READ

READ RECORD (READ) - PSEUDO.
This instruction makes the next record available to the program

from an input/output file.

The format of the READ instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE AF | BF Label + Ine. All Ac Label + Inc. |Bi Be Label + Inc. |Ci] Cc
0 1 1 2 2 3143 3 4 4 14 4 5 515 5
8 142 4 0 3 J4 6 2 516 8

[MRS EARFIIN R

There are no LABEL restrictions for this instruction.

A 1l or an L in column 18 of the AF field causes a READ with LOCK

to be performed on a shared disk file.

The A ADDRESS Label field specifies the internal file-name from
which the record is to be read. Incrementing, indexing, and address
controllers are not permitted. For the Advanced Assembler only, a
record name associated with the file may be used instead of the
file-name. The B ADDRESS field may optionally contain an End-of-

File branch address.

The remaining fields are not used, nor are the comparison and OVER-

FLOW indicators changed by this instruction.

A file must be opened before records can be read from it. If the
file declaration specifies "work-area technique," the READ statement
causes the next record to be placed into the work area. If the file
declaration specifies "no-work-area technique," the READ statement
causes the address of the first character of the next record to be
loaded into Index Register 2, thus destroying its previous contents.
1f the file declaration specifies "disk random-access," a key value
must be loaded into the actual key field before a READ statement is

issued.

Revised 11/20/70
by PCN 1034949002 6-133

RECD

DECLARE RECORD (RECD) - DECLARATIVE.
This instruction declares a logical record, either associated with

a file or as a separate working-storage record.

The format of the RECD instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +Inc. JAHl Ac Label + Inc. |Bi| Be Label + Inc. |Ci| Cc
0 1 1 2 2 313 3 4 4 |4 4 5 515 5
fﬁ 4 8 2 E 112 4 0 3 |4 6 2 516 8
C|RIDIRIEICIREICDIOO|FO|UIA

The RECD entry must appear in an Advanced Assembler source deck

prior to the first program instruction.
The LABEL entry may not be a program point.

The VAR field contains the U-digit, right-justified record length.
The record length must be an exact number of words (two characters

or four digits per word).

The format of the record is declared left-justified in the A ADDRESS
label field. Coding is as follows:

Code Definition
blank Numeric.

UN Numeric.

UA Alphanumeric.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

The address of a logical record will be synchronized modulo-4 by the
assembler. If several logical records are associated with a single

FILE declaration, they will be assembled into the same storage area.

6-134

RECD
continued

If the associated FILE declaration specifies no work area, the logi-
cal records will be assembled at base-relative location 00000 to
facilitate access to record fields within the buffer area by way of

Index Register 2 (refer to READ and WRITE).

Fields within a working-storage record may be defined by the DATA
and CNST operations. Only the DATA operation may be used to define
fields within a record that is associated with a FILE declaration.
The total length of all defined fields (if any) within a record
must exactly equal the length of the record.

Revised 11/20/70
by PCN 1034949-002 6-135

RECV

RECEIVE DATA FROM ANOTHER PROGRAM IN CORE (RECV) - PSEUDO.

This pseudo is defined for the Advanced Assembler only. It receives
data from another program, using the core-to-core transfer function
in the MCP., When running under a "CP" version of the MCP, the CRCR
option must be set, i.e., CRCR=1.

The format for the RECV instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +Ine. JAH Ac Label + Inc. |Bi} Bc Label + Inc. |Ci] Ce
0 1 1 2 2 2 313 3 4 4 |4 4 5 515 5
_l§ 4 8 2 112 4 0 3 |4 6 2 5 16 8
LilslrlelNRElCN] | l2s|PRiGNAM clv J[R BISIENID

There are no LABEL restrictions for this instruction.

The VAR field specifies the number of characters to be received. If
blank, the length associated with the B ADDRESS label field will be

used.

The A ADDRESS label field points to a 6-character alphanumeric field
containing the program ID (left—justified) of the program that is
sending data. This field may not be indexed. If the referenced
program-ID is 6 blanks, data will be transmitted to any program
issuing a corresponding SEND. This is referred to as a "global"

RECV.

The B ADDRESS label field points to the alphanumeric field which is
to receive the data. The B ADDRESS field may not be indexed.

The C ADDRESS field is optional and specifies a branch address to
which control should transfer if the sending program has not yet
issued the corresponding SEND command. If this operand is not coded
and the RECV command is issued before the SEND command in the other
program, the program containing the RECV is suspended until the SEND

command is dissued.

6-136

RECV

continued

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

For a more detailed explanation of this instruction, refer to the

B 2500/B 3500 Master Control Programs Information Manual.

Revised 11/20/70
by PCN 1034949-002 6-136A

REFR

REFERENCE LABEL (REFR) - PSEUDO.

This pseudo when encountered, causes a list of sequence numbers
associated with previous instructions that reference the label coded

in the A ADDRESS field to be printed.

The format for the REFR pseudo is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP. .
LABEL
CODE AF | BF Lobel + Inc. {AR] Ac Label +Inc. |Bi] Bc Lobel + Inc. |Ci} Ce
0 1 1 2 2 313 3 4 4 14 4 5 515 5
k 4 8 b 2 B 1|2 4 0 3 |4 6 2 5 |6 8

R T

The A ADDRESS field contains the label for which a list of ref-

erences is desired.

The remaining fields are not used nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

6-136B

REMK

COMMENT (REMK) - PSEUDO.

This pseudo provides remarks text for documentation purposes.

The format for the REMK instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LABEL [
CODE AF | BF Label + Inc. |All Ac Label + Inc. |Bi] Bc Label + Inc. |Ci] Ce
0 1 2 2 2 313 3 4 |4 4 515 5
8 8 0 2 112 4 3 14 6 516 8

1 4 5
4 0 2
a RIEIMKIRIEMAIR]K]S nlay ENX|TIE]N T“IRMP THIE '%{QE_HA ofefe

A label or program point may be entered in the LABEL field.

It will
be equated to the current value of the Location Counter (next avail-

able storage location), but will not have any field length or data
format associated with it.

The REMARKS text may be coded anywhere within columns 18 through 80.

Revised 11/20/70
by PCN 1034949-002 6-136C

RLOC

RESTORE PREVIOUS LOCATION COUNTER VALUE (RLOC) - PSEUDO.

This pseudo restores the location counter to the value it contained

before the last LOCN command was given.

The format for the RLOC instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL J
CODE AF | BF Label +tne. |All Ac Label + Inc. |Bi] Be Label +Inc. |Cif Cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
P 4 8_p |2 12 |4 0 3la s 2 5J6 |s

LABEL entries are not permitted for this instruction.

The remaining fields are not used, nor are Program Reserved Memory

and the comparison and OVERFLOW indicators changed by this instruc-

tion.

This instruction is usually used to resume main-line location assign-
ment after a jump-out which initialized a special location. This

command has no operands.

6-137

RSET

RESET DATA FIELD TO A ZERO (RSET) - PSEUDO.

This instruction moves a numeric literal of "O" into the data field
specified by the A ADDRESS.
The format for the RSET instruction is:
VAR. A ADDRESS B ADDRESS C ADDRESS
oP
LAB :
EL CODE AF | BF Label +Ine. JAH Ac Labe! +Inc. |Bi Be Label +Inc. |Ci] Cc
0 1 T R |2 2 3[3 |3 4 a4 5 515 15
4 8 b 12 B 1|2 |4 0 3 |4 2 s5le s
RIS|&]7] BI &M

There are no LABEL restrictions when using this instruction.

The A ADDRESS points to the field which is to be reset to zero.

The remaining fields are not used by this instruction.

This pseudo yields a MVN instruction.

address controller are obtained from the declaration of the data

field referenced by the A ADDRESS.

6-138

The AF and BF fields and

RTRN

RETURN TO CONTROL PROGRAM FROM USER ROUTINE (RTRN) - PSEUDO.

This pseudo returns control from the user-coded error or label-

handling routine to the Control Program.

The format for the RTRN instruction is as follows:

VAR. A ADDRESS ' B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label + Ine. JAI} Ac Label + Inc. |Bi] Bc Label + tnc. |Ci] Cc
0 1 1 2 2 313 3 4 4 14 4 .5 515 5
8 4 8 2 112 4 0 3 |4 6 2 516 8

Ealo- r el INfAME

There are no LABEL restrictions for this instruction.

The A ADDRESS field contains the internal file-name for which the I

user routine was initiated.
The remaining fields are not used by this instruction. .

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by the instruction.

This instruction should not be used for MICR pocket-select routines.

The proper return instruction for this is PCKT.

Program control will be returned to the object program immediately

after the instruction that caused the user routine to be initiated.

6-139

RUNN

PROCEED TO NEXT PROGRAM (RUNN) - PSEUDO.

This pseudo is defined for Basic Assembler only. It terminates the
current program and reads the control records for the next program,

without halting.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
op
LABEL :
CODE AF | BF Label i‘nc. All Ac Label + Inc. |Bil Be Label + Inc. |Ci] Cc
0 1 1 2 2 33 |3 2 V3 P P 5 1515
4 0 pla s 2 sl s

R R TITT i

There are no LABEL restrictions for this instruction.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

This instruction has no operators. The control information for the
next program must be present and ready at the control device (card

or paper -tape reader) when this command is issued.

6-140

SDE

SCAN DELIMITER EQUAL (SDE) - MACHINE CODE-16

This instruction scans each character/digit position of the B field
against a list of delimiters in the A field and identifies the first

equal condition.

The format of the SDE instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LAB
EL CODE AF | BF Label +Ine. Al Ac Label + Inc. |Bi} Be Label +Inc. |Ci] Ce
0 1 T B |2 2 31313 7] 7 PR) 5 51515
4 s b |2 Is 112 |4 0 3la s 2 sl |s
Sd‘[AtJﬂf soe{ ol | | AILCTL|FLD

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of delimiter characters/digits
in the A field, and the BF field specifies the number of characters

to be examined in the B field.

The A ADDRESS field points to the delimiter list, and the B ADDRESS
field points to the character string to be scanned for the occur-
rence of delimiters. Their address controller may not be SN and,
if the address controller is UN, each digit is converted to a

numeric-subset character for comparing.
The remaining fields are not used by this instruction.

The comparison indicator is set to LOW if the first character in
the B field equals one of the delimiters in the A field. It is

set to EQUAL if some character in the B field (not the first one)
is equal to one of the delimiters in the A field. The indicator
is set to HIGH if none of the characters in the B field are equal
to any of the delimiters in the A field. The OVERFLOW indicator

is not changed by this instruction.

6-141

SDE
continued

This instruction stores a character count (not storage position)
into Program Reserved Memory location 00038-39 according to the

following rules:

a. 00 is stored if the first B field character is equal to

the delimiter.

b. The number of characters in the B field preceding the
equal character is stored if the rnon-first character in

the B field is equal to the delimiter.

c. The length of the B field minus one is stored if no B

field character is equal to the delimiter.

Upon completion of the SDE command, to branch if a delimiter is
found, the programmer should use the LEQ command. To branch if a

delimiter is not found, the programmer codes GTR.

The sequence of execution is: the first B field character is com-
pared with all the A field characters and if a match is found the

scan is completed. If not, the next B field character is compared
and so forth until a match is found, or until the B field is ex-

hausted.

The following are operational examples of the SDE instruction.

Scan Delimiter Equal - First B Scan Delimiter Equal - Non-First
Field Character Equal. B Field Character Equal.
OP | AF | BF | AADDRESS|B ADDRESS | C ADDRESS] OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
ISDE | 01 04 | DELIMS(UN) | FIELD SDE | 01 05 | DELIMS FIELD
BEFORE AFTER BEFORE AFTER

A ADDRESS 1 1 A ADDRESS = =

B’ ADDRESS 1HDR 1HDR B ADDRESS AB=5. AB=5.

C ADDRESS C ADDRESS

COMP. INDC. XXX LOwW COMP. INDC. XXX EQUAL

OVERFLOW unchanged OVERFLOW unchanged

00038: XX 00 00038 : XX 02

6=-142

SDE

continued

Scan Delimiter Equal - No B
Field Character Equal.

OP | AF | BF | AADDRESS| B ADDRESS | C ADDRESS
SDE | 02 | 05 | DELIMS(UA)|FIELD(UN)

BEFORE AFTER
A ADDRESS 12 12
B ADDRESS 45678 L5678
C ADDRESS
COMP. INDC. XXX HIGH
OVERFLOW unchanged
00038 : %X ok

6-143

SDU

SCAN DELIMITER UNEQUAL (SDU) - MACHINE CODE-17.

This instruction scans each character/digit position of the B field
against a list of delimiter character/digits in the A field and

identifies the first unequal conditiom.

The format of this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Label + Ine. Al Ac Label + Inc. |Bi] Be Label + Inc. |Ci] Cc
0 1 2 2 2 313 4 4 14 4 5 515 5
18 8 0 2 8 1]2 4 0 3 14 6 2 5 16 8
4] | | [sioud joja] | fo AuT|AIELD]

There are no LABEL restrictions for this instruction.

The AF field specifies the number of delimiter character/digits in
the A field and the BF field specifies the number of characters to

be examined in the B field.

The A ADDRESS field points to the delimiter list amd the B ADDRESS
field points to the character string to be scanned for the occur-
rence of a non-delimiter, Their address controller may not be SN.
If their address controllers are UN, each digit is econverted to a

numeric-subset character for comparing.
The remaining fields are not used by this instruction.

The comparison indicator is set to LOW if the first character/digit
in the B field is not equal to any of the delimiters in the A field.
Tt is set to EQUAL if some character/digit in the B field (not the
first one) is not equal to any of the delimiters in the A field.

The comparison indicator is set to HIGH if all the characters/digits
in the B field are equal to the delimiters in the A field. The
OVERFLOW indicator is not changed by this instruction.

6-144

continued

sbuU

This instruction stores a character count (not storage position)

into Program Reserved Memory locations 00038-39 accordiﬂg to the

following rules:

Upon completion of the SDU command,

found,

non-delimiter is not found,

The sequence of execution is:
pared with all the A field delimiters and,
If not,

00 is stored if the first B field character is not equal

to any delimiter.

The number of characters in the B field preceding the un-

equal character is stored if the non-first character in

the B field is not equal to any delimiter.

The length of the B field minus one is stored if all the

B field characters are equal to the delimiters.

scan is complete.

and so forth until a match is found,

to branch if a non-delimiter is

the programmer should use the LEQ command.

the programmer codes GTR.

if a match is found,

To branch if a

the first B field character is com-

the

the next B field character is compared

or the B field is exhausted.

The following are operational examples of the SDU instruction.

Scan Delimiter Unequal - First Scan Delimiter Unequal - Non-
B Field Character Not Equal. First B Field Character Not
Equal.
OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
SDU |03 05 | DELIMS(UA) | FIELD(UN) OP { AF | BF | AADDRESS|B ADDRESS | C ADDRESS
BEFORE AFTER SDU | 03 | 04 | DELIMS(UA) | FIELD(UA)
BEFORE AFTER
A ADDRESS 123 123
B ADDRESS 61234 61234
C ADDRESS A ADDRESS ABC ABC
COMP, INDC. xxx LoW B ADDRESS ABCD ABCD
OVERFLOW unchanged C ADDRESS
00038: xx 00 COMP. INDC. XXX EQUAL
OVERFLOW unchanged
00038: xx 03

6-145

SEA

SEARCH (SEA) - MACHINE CODE-39,

This instruction compares the A field with the B field, then B+nn,
then B+2xnn, etc., until the incremented B ADDRESS reaches the
C ADDRESS, or until the condition specified by the C address con-

troller is satisfied.

The format for the SEA instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Label + Ine. JAl] Ac Label + Inc. |Bi| Be Label + Inc. |Ci] Ce
0 1 T R |2 2 3|3 |3 a a1a |4 5 515 15
I 4 8 _p 2 I8 1f2 14 0 <3 I [0 2 56 s
slelal lolslde|ARle UNTAaldE uln(ra|dc]e] | f2ld [uly

There are no LABEL restrictions for this instruction.

The AF field specifies the number of characters/digits to be com-
pared between the A and B fields. The BF field specifies the
number of characters/digits by which the B ADDRESS is to be in-

. 1
cremented between comparisons .

The BF value is independent of the AF value and may be smaller (for

scanning purposes).

The A ADDRESS field specifies the location of the argument to be
searched for. The A address controller specifies the data format
of both the A and B fields in the comparison. The A ADDRESS field

may be literal.

The B ADDRESS field specifies the first entry to be compared against
the A field. The B address controller bits have no effect on the
comparison (which is completely specified by the AF and A address
controller), but are used in conjunction with the BF value to deter-

mine incrementation between comparisons.

1. nn is the increment to the B ADDRESS.

6-146

SEA
continued

EXAMPLE :
B Address Controller Increment
UN nn
SN nn + 1
UA 2 X nn

The C ADDRESS field specifies a maximum limit for the incremented
value of the B ADDRESS. When the value of the B ADDRESS reaches
or exceeds the value of the C ADDRESS, the search operation is
terminated immediately. The value of the C ADDRESS should be be-
yond the end of the table, that is, it should be greater than the
last value of the B ADDRESS for which comparing is desired.

The following C address controllers specify the type of search to

be performed:

a., If the C address controller is UN, search equal is per-
formed and the search is terminated when a B field entry

equal to the A field argument is found, or when the end
of the B field is reached.

b. If the C address controller is SN, search low is performed
and the search is terminated when a B field entry less then
the A field argument is found, or the end of the B field is

reached.

c. If the C address controller is UA, search lowest is per-
formed and the search proceeds as with the search low,
except that if a B field entry less than the A field argu-
ment is found, the search is continued with the low B
field entry in place of the A field argument. If a new B
field entry is found that is lower than the first B field
entry found, the new one takes its place, and so forth.
The search is terminated only when the end of the B field

is reached.

6-147

SEA
continued

NOTE
Although the C address controller does
not define a C field data format in
machine language, the Assembler will
still use the specified controller to
determine the meaning of the C ADDRESS
increment. To avoid conflict and mis-
assembly, define a label just beyond
the last entry of the table and use
that label in the C ADDRESS.

The setting of the comparison indicator is dependent upon the con-

dition found by a search:

a. If during search equal an equal condition is found, the
comparison indicator is set to EQUAL. If an equal condi-
tion is not found, the comparison indicator is set to
HIGH.

b. If during search low a low condition is found, the compari-
son indicator is set to EQUAL. If a low condition is not

found, the indicator is set to HIGH.

c. If during search lowest at least one low is found, the
comparison indicator is set to EQUAL. If no low condition

is found, the indicator is set to HIGH.
The OVERFLOW indicator is turned off at End-of-Instruction.

The address of the B entry is loaded into Index Register 1 (IX1l) if
a B entry is found that fulfills the search conditions. These con-

ditions are as follows:

a. If during search equal an equal condition is found, the B
address entry is loaded into IX1. If an equal condition

is not found, IX1l remains unchanged.

6-148

SEA

continued
b. If during search low a low condition is found, the B
ADDRESS entry is loaded intl IX1. If low is not found,
IX1 remains unchanged.
c. If during search lowest at least one low is found, the

lowest B ADDRESS entry is loaded into IX1. If no low is

found, the A ADDRESS or the address of the A ADDRESS field

(if A ADDRESS is a literal) is loaded into IX1.

Because comparison length is independent of the entry length, the
Search instruction may be used for scanning as well as table lookup.
This is accomplished by addressing a keyword constant in the A
ADDRESS and a text field in the B ADDRESS, with a l-character in-
the entire text field will be scanned

the C ADDRESS wvalue

crement. When this occurs,

for the occurrence of the keyword. However,
must be carefully set to avoid overscanning of the field and
possibly producing false results. For example, if an 80-character
card image is being scanned for a 5-character keyword, the C ADDRESS
should point to column 77 since that is the first column for which

a 5-character compare will overrun the field.

The following are operational examples of the SEA instruction.

Search Equal -

Equal Found.

Search Low

- Low Not Found.

OP | AF | BF | A ADDRESS| B ADDRESS | C ADDRESS| OP | AF | BF | A ADDRESS| B ADDRESS | C ADDRESS
SEA | 01 02 | ARG(UA) 1000(UA) 1020(UN) SEA 1 1 ARG(UN) 1000(UN) 1010(SN)
BEFORE AFTER BEFORE AFTER
A ADDRESS A A A ADDRESS 2 2
B ADDRESS A1B2C3D2E1 A1B2C3D2EL B ADDRESS 3459876345 F45987¢ 45
C ADDRESS C ADDRESS
COMP, INDC. XXX EQUAL COMP. INDC. XXX HIGH
OVERFLOW XXX OFF OVERFLOW XXX OFF
IX1: XXX +0001000 IX1 : unchanged

6-149

SEA

continued

6-150

Search Lowest.

oP AF BF A ADDRESS | B ADDRESS | C ADDRESS

SEA 1 1 | ARG(UA) 1000(UA) 1020(UA)
BEFORE AFTER

A ADDRESS E E

B ADDRESS EBCDICASCI EBCDICASCI

C ADDRESS

COMP. INDC. XXX EQUAL

OVERFLOW XXX OFF

IX1: XXX +0001012

SEAE

SEARCH EQUAL (SEAE) - PSEUDO.

This instruction is a special case of the SEA operation code (refer
to the search command SEA) which performs

a search equal operation
(Cc address controller assembled as UN).

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
Label +lne. JA Ac Label +Inc. |Bi Bc Label + Inc. |Ci] Cc
2 33 3 4 4 14 4 5 515 I5
112 14 0 < CH O 2 sl s

There are no LABEL restrictions for this instruction.

Coding for the remaining fields and the settings of Program Reserved

Memory, comparison, and OVERFLOW indicators are identical to that
of the SEA instruction.

6-151

SEAL

l SEARCH LOW (SEAL) - PSEUDO.

This instruction is a special case of the SEA operation code (refer
to the search command SEA) which performs a search low operation

(C address controller assembled as SN).

The format for this instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
AB
LABEL CODE | AF | BF Label + Ine. All Ac Label + Inc. |Bil Bc Label + Inc. |Ci] Ce
0 1 1 2 2 3|3 |3 4 4 |4 4 5 515 5
F 4 8 2 é 1]2 |4 0 3la s 2 sl |8
Lo x T B{L% T|A %LI :

There are no LABEL restrictions for this instruction.

Coding for the remaining fields and the settings of Program Reserved
Memory, comparison, and OVERFLOW indicators are identical to that of

the SEA instruction.

6=152

SEEK

SEEK DISK RECORD (SEEK) - PSEUDO.

This instruction is defined for Advanced Assembler only. It inditi-
ates a search for a random-access disk record, and reads it into an

I/0 buffer.

The format for the SEEK instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL oP.
CODE AF | BF Label +lne. Al Ac Label + Inc. |Bi] Be Label + Inc. |Ci] Cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 B 112 4 0 3 |4 6 2 516 8

Ftlu_lorrse{e plzlslit

There are no LABEL restrictions for this instruction.

A SEEK with LOCK on a shared disk file is specified by a 1 or an L
in column 18 of the AF field.

The A ADDRESS field specifies the internal file-name of the disk
file containing the record. Incrementing, indexing, and address

controlling are not permitted.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

The SEEK function in certain cases must be performed by the MCP, if
it has not been performed by the program. Explicit SEEK statements

within the program will speed execution in the following cases:
a. Random-access read (input or input/output mode).

b. Random-access write to a blocked file (output or

input/output mode).

An actual key number must be loaded into the key area before a SEEK

is performed. To obtain greater execution speed (indeed, to prevent

Revised 11/20/70
by PCN 1034949-002 6- 153

SEEK

continued

a slowdown), a SEEK should follow a READ of an input file. A SEEK
must not precede a write command when the file is unblocked or the

write was immediately preceded by a read (input/output mode).

For further explanation of the SEEK functions, refer to the B 2500/

B 3500 Master Control Program Information Manual.

6-154

SEGM

DEFINE START OF OVERLAYABLE SEGMENT (SEGM) - PSEUDO.

This pseudo defines the start of an overlayable segment and declares

the name of the segment.

The format for the SEGM instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label +1Ine. ALl Ac Label + Inc. |Bi|l Be Label +Inc. ICi] Cc
0 1 1 2 2 2 313 3 4 4 [4 4 5 515 5
8 4 8 0 2 18 112 4 0 3 |4 6 2 516 8

1_g{lglc_ {p slele)

The segment name is specified in the LABEL field of this segment.

It must be unique within the program and conform to the syntactic
standards for normal labels. The segment name is optional in Basic

Assembly language.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

The following notes apply to programs containing overlayable l

segments:

a. The statements preceding the first SEGM card are considered
to be the main routine of the program. This routine is

permanently resident in core.
b. Segments may be nested to a depth of 32.

c. When one segment is overlaid by another, any processing
results stored in areas within the first segment are lost.
The first segment is not copied out to disk. If and when
it is called for again, a fresh copy is loaded from the

original object program file.

6-155

SEGM
continued

6-156

If a segment relinquishes control and regains it again
later without having been overlaid in the meantime, a
fresh copy will not be loaded. Thus when coding overlay-
able segments, strict initialization discipline should be

adhered to.

A branch-address command may be used to pass control of

a segment to any of its parent segments (at any level).

The OVLY command may be used under the Advanced Assembler
to pass control of a segment to its immediate subsegments
only, one level down. Recommended OVLY coding methods
for Basic Assembler language will be described in a sub-

sequent publication.

A segment may make data references to itself or to any of
its parent segments, but not to any other segments (in—

cluding its own subsegments).

The sum of the lengths of the largest combination of nested

segments is the core requirements for a segmented program.

All coding for a segment (or the main routine) should

precede the SEGM card for the first of its subsegments.

The A-LABEL field may optionally contain a 6-digit re-
sequence amount. This value will replace the original
resequence amount specified in the SPEC card. This

value is ignored if the SPEC card did not specify re-

sequencing.

SEND

SEND DATA TO ANOTHER PROGRAM IN CORE (SEND) - PSEUDO.

This pseudo is defined for the Advanced Assembler only. It trans-
mits data to another program, using the core-to-core transfer func-
tion in the MCP. When running under a CP version of the MCP, the
CRCR option must be set, i.e., CRCR=1.

The format for the SEND instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP. :
LABEL
CODE AF | BF Label +Ine. |A} Ac Label + Inc. |B{ Bc Lobel + Inc. |Ci] Cc
0 1 1 2 2 313 |3 4 4 1a |4 5 515 |5
8 4 8 2 112 |4 0 3fa Je 2 sle |8
X|71A1L1K] 1Sieiviolols [dolRldviFiAle 1] oAl A wzkscv

There are no LABEL restrictions when using this instruction.

The VAR field specifies the number of characters to be transmitted
(up to 9999). If blank, the length associated with the B ADDRESS
label field will be used.

The A ADDRESS label field points to the 6-character alphanumeric
field containing the left-justified program ID of the program which
is to receive the data. This field may not be indexed. If the
referenced program ID is 6 blanks, data will be transmitted to any
program issuing a corresponding RECV. This is referred to as being
a "global" SEND.

The B ADDRESS label field points to the alphanumeric field to be

transmitted. This field may not be indexed.

The C ADDRESS field is optional and specifies a branch address to
which control should transfer if the receiving program has not yet
issued the corresponding RECV command. If this operand is not coded
and the SEND command is issued before the RECV command in the other
program, the program containing the SEND is suspended until the RECV

command is issued.

Revised 11/20/70
by PCN 1034949-002 6-156A

SEND
continued

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

Before transmission can occur, a SEND from program A to program B
must be matched by a corresponding RECV (refer to the RECV command)
in program B. If the SEND is issued first, program A is suspended
until program B executes the RECV command. If the declared lengths
differ (SEND vs RECV), the shorter length controls the move.

6-156B

SETT

SET DATA FIELD TO A ONE (SETT) - PSEUDO.

This instruction moves a numerical literal of "1" into the data

field specified by the A ADDRESS.

The format for the SETT instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL -
CODE AF | BF Label + Inc. All Ac Label +Inc. |Bq Be Label +Inc. |Ci] Cc
f 0 T B2 2 313 |3 I 13 |4 5 515
8 4 s b |2 12 s 0 f 4o 2 sl |s
SIElT |7 Blwl LlEW

There are no LABEL restrictions when using this instruction.
The A ADDRESS points to the field which is to be set to one.

The remaining fields are not used by this instruction.

This pseudo yields a MVN instruction. The AF and BF fields, and

address controller are obtained from the declaration of the data

field referenced by the A ADDRESS.

6-157

SGNM

DECLARE SEGMENT NUMBER (SGNM) - DECLARATIVE.

This instruction is defined for Advanced Assembler only. It provides

the assembled segment-number as a constant.

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
AB
LABEL CODE AF | BF Label + Inc. |Ail Ac Label + Inc. |Bi] Be Label + Inc. |Ci} Cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
%8‘ 4 -] 0 2 I8 1]2 4 0 3 |4 6 2 5 |6 8
sleleialsle] ElXAMIIN

There are no LABEL restrictions when using this instruction.

The segment-name is coded in the A ADDRESS label field. This label
must be defined elsewhere in a SEGM card. Incrementing, indexing,

and address controlling are not permitted.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

The segment-number will be assembled as a 3-digit UN constant.

6-158

STANDARD I/0O PACKAGE (SIOC) - PSEUDO.

This pseudo is defined for Basic Assembler only.

SIOC

It assembles a

standard file-oriented input/output control package into the user's

program.

The format for the SIOC instruction is as follows:

LABEL

OP.
CODE

VAR.

A ADDRESS

B ADDRESS

C ADDRESS

AF

BF

Label

+ Inc.

Al

Ac

Label

+ Inc.

Bil

Be

Label

+ Inc.

Ce

=)

—

oN

N

2

—

NWw

w

4
0

5
2

0 U

slrlglc

3l

LABEL entries are not permitted with this instruction.

To cause inclusion of ACPT/DISP capabilities in the STOC package,

this word SPO may be optionally coded left-justified in the A
ADDRESS label field.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

The SIOC routines permits the use of the OPEN, CLOS, READ, WRIT, and

POSN macros for file handling. Refer to BCP I/0 Coding Methods

(section 5) for a complete description of the capabilities and limi-

tations of the SIOC package. The Advanced Assembler treats the

STIOC pseudo as a comment.

Revised 11/20/70

by PCN 1034949-002 6-159

SKEY

BEGIN SORT KEY DEFINITION (SKEY) - DECLARATIVE.

This instruction is defined for Advanced Assembler only. It loads
a constant (12 UN), at the current value of the location counter,
with specifications which are used by the MCP sort intrinsic through

the sort pseudo.

The forma+t for the SKEY instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE | AF | BF Label +Inc. JAI} Ac Labe! +tnc. |B{ Be Label +Inc. |Ci] Ce
0 1 1 2 2 33 |3 4 4 {4 |4 5 515 IS5
4 8 2 B 12 }4 0 3 J4_]6 2 5l6 s

KEYH;FSKEVFR -00]00600},0 us}se At oLy Vo Ure i el

This instruction must directly precede the first KEYA or KEYD decla-

ration.
This instruction must be labeled; program points are permitted.

The AF field specifies the input file close type, and the BF field
specifies the output file close type. These types are the same as

defined in the CLOS pseudo.

The A ADDRESS field must contain an 8-digit number, left-justified,
which specifies the number of records per area to be used for sort

work files. 20 areas are allocated by the SORT intrinsic.

The B ADDRESS field may contain the reserved word USERBLOCK if this
option is desired. It permits redefinition of a disk file with
respect to record length and blocking factor for sorting purposes.
For example, a file created with 100O-character records blocked 3

could be specified as containing 300-character records blocked 1.

The C ADDRESS field specifies the action to be taken if a parity

error occurs. The following reserved words are used:

6-160

SKEY

continued
Word Meaning
USE USE records in block with parity.
DROP DROP records in block with parity.
blank Initiate MCP DS oxr DP action if parity is
encountered.
The remaining fields are not used by this instruction. Program Re-

served Memory and the comparison and OVERFLOW indicators are not

changed by the instruction.

See figure 6-2 (page 6-162A) which illustrates a sample program
using the SORT pseudo.

Revised 10/30/69
by PCN 1034949-001 6-160A

SLST

SEARCH LOWEST (SLST) - PSEUDO.
This pseudo is a special case of the SEA operation code (refer to
the search command SEA) which performs a search lowest operation

(C address controller assembled as UA).

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE | AF | BF Label +1Inc. |All Ac Label +Inc. |Bi] Bc Label +Inc. |Ci] Ce
0 1 1 2 2 33 |3 4 a4 14 5 515 |5
4 8 2 I 112 14 0 346 2 5 |8
s:.s{[_o olslalrleisl2 TA{SLJ TAHL +{=o

There are no LABEL restrictions for this instruction.

Coding for the remaining fields and the settings of Program Reserved
Memory, comparison, and OVERFLOW indicators are identical to that

of the SEA instruction.

6-160B

SMF

SET EBCDIC/USASCII MODE FLIP-FLOP (SMF) - MACHINE CODE-47.

This pseudo sets or resets the EBCDIC/USASCII mode flip-flop, thus
determining what bit configurations are generated for the numeric

subset and sign zone digits.

The format for this instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LABEL
CODE AF | BF Label +1nc. JAll Ac Label +Inc. |Bd Bc Label +Inc. |Ci] Cc
(] 1 1 2 2 2 313 3 4 4 |4 4 5 515
8 4 8 0 2 112 4 0 3 |4 6 2 5 J6

Alsliiy | [sIMe] [1]o

There are no LABEL restrictions for this instruction.

The 10 digit of the AF field (column 18) specifies which mode is
to be established. Coding is as follows:

Code Mode
EBCDIC.
1 USASCIT.

The units digit of the AF field must be zero.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators
are not changed by this instruction.

The processor is usually set in the EBCDIC mode, but the USASCII

mode is advantageous when the program is processing large amounts
of data in the USASCII character set.

the USASCII mode within the program.

The programmer must establish

Revised 11/20/70
by PCN 1034949-002 6-161

SORT

SORT FILE (SORT) - PSEUDO.
The function of this pseudo is to sort a data file using the MCP
sort intrinsic and subsequently to produce an output file of sorted

records. This instruction is defined for Advanced Assembler only.

The format of the SORT pseudo is:

VAR. A ADDRESS B8 ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label + Ine. All Ac Label + Inc. |B{ Be Label +inc. |Ci} Cc
0 1 1 2 2 2 303 3 4 4 |4 4 5 515 5
P 4 8 £ 2 112 4 0 3 14 6 2 5 8
S Aol v Fl/iL 1A Klelaels

There are no LABEL restrictions when using this instruction.

The A ADDRESS field contains the internal file name of the INPUT
file.

The B ADDRESS field contains the internal file name of the OUTPUT
file.
The C ADDRESS field points to the SKEY declaration. Incrementing

and indexing are not permitted.

The remaining fields are not used by this instruction. Program Re-
served Memory and the comparison and OVERFLOW indicators are not

changed by the instruction.

The user should not OPEN the specified files prior to the initiation
of this instruction, as the sort intrinsic will perform the open

functions as an inherent feature.

When this pseudo is included in a program, the object program is

assembled with a minimum core requirement of 21,000 digits.

Figure 6-2 (page 6-162A) illustrates a sample program using the

sort pseudo.

6-162

100-6¥6¥€0T NOd 49
69/0€/01 pasiaoyg

vZ9l-9

(4088)
(4100)
(4112)
(8124)
(4136)
(4148)

(4160)
(4194)
(4228)

1D = SRYDEM
SEQ NO LABEL

VO O e
N CcC ZZ
-t ~—¢ VD
0
mc

KEY1

KEY?2

o

F

SORT
SORT
sTop
FINI

AFBF

100

100

132

F L

10

20
FR

25

SEMBL
L ‘l

S
B

ER / 2/
ERorhl 12t

(2222222282222 X2 2222222 X2 %)

« INPUT. AND OUTPUT FILES *

I T2 2222222222222 232222 X2]

B3500 A
A=LBL INC AIAC B=L
CARD 1]
SRTDEM? 13
P $ s 3 P
gty oo
QUTPUT?S LI] DSK
UA t (]
PRTOT ¢ t PRN
UA] [|

11 !
'

0120 !
'

(2323233332833 3 3323323832124

* SORY KEY DEFINITIONS «
S I I I LI IS,

0l0§ﬁo
0'1?0:
0‘1}20
001%41
0‘1?6:
04148,

505-000358500560
11

?02-0006000!4240
300-001000030010
ooo-oozoooosonal
ooosooooeoooznoo
ooo'oozsooooszlt

ARk R RN R
* SORT FILE TWICE ¢

I3 2222233222221 23223222

0000600800 ¢ 1@

12 01c @
00014 ¢ t 3UA

12 DIG ®
00030 L]

12 DIG @
00050 ¢ t 1ISA »

12 DIG @
000060800 3

12 D!G]
00005 ¢ t 1UA

12 DIG [
INPUT ¢
INPUT ¢ $

34 D16

06 DIG @

Figure 6-2.

04228,

Use of Sort Pseudo

0002300194

BL INC cice
LI |

5t

S

LI |] s K] 1
34 D!G:g:;”I?O) ?0?'3003&1570?419:0?40085000006!001672
e 8119&. 000'3002§13700322000ll3650000064003152

PAGE

888

000
000

888

000
000
000
000
000
000

000
000
000

1

panu}juod
LIOS

SPAC

START NEW LISTING PAGE (SPAC) - PSEUDO.

This pseudo causes the assembler output listing to

page.

The format for the SPAC instruction is as follows:

skip to another

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
B .
LABEL CODE AF | BF Label +Ine. Al Ac Label + Inc. d Bc Label + Inc. |Ci] Ce
1o 1 2 313 3 4 4 |4 5 45
B 8 112 |4 0 3 {4 2 6

LABEL entries are not permitted for this instruction.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

This instruction has no operands. This pseudo is ineffective if

column 80 of the SPAC card specifies no heading (value 0). The

SPAC card itself prints as the last line on the old page.

6-162B

SPEC

SPECIFY ASSEMBLER OPTIONS (SPEC) - PSEUDO.

This pseudo specifies device types for assembly input and output,

and permits selection of assembly output options.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
CODE AF | BF Label + Inc. All Ac Label + Inc. |BH Bc Label +Inc. |[Ci} Cc F
1 T B]2 2 3[3 |3] a{a |4 5 515 |5 5
4 8 b 2 112 |4 0 3lsa s 2 5l |s 16
PlEle clalriol | lcRIEl [T 1HalAd lololt|oldolo]dlol1lold List-cpp £
|
LABEL entries are not permitted for this instruction. An M in

column 3 of the SEQUENCE field will cause symbolic code to be
listed with every MACRO and LIBRARY call. A D in column 6 will

cause the Advanced Assembler to print an exact image of the disk

object program at the end of the Assembly listing.

‘The A ADDRESS label field specifies the symbolic input device.

Coding is as follows:

Code Definition

blank Card reader (file-name is CARDS).
CARD Card reader.

TAPE Magnetic tape (file-name is SYMTIN).
TAPEB Blocked tape (core = 55000 or more)

Advanced Assembler only.

DISK Disk file, Advanced Assembler only
(file-name is SYMDIN).

DISKB Blocked disk (core = 55000 or

more) Advanced Assembler only.

PAPER Paper tape reader.

Revised 11/20/70
by PCN 1034949-002 6-163

SPEC

continued

To obtain a cross-reference listing, code CRF in the A ADDRESS in-

crement field (Advanced Assembler only).

The B ADDRESS label field specifies the symbolic output device.

Coding is as follows:

Code Definition

blank No symbolic output desired.

CARD Card punch (EBCDIC).

CARDN BCL card punch output.

TAPE Magnetic tape.

TAPEB Blocked tape (core = 55000 or more,

Advanced Assembler only.
DISK Disk file (Advanced Assembler only)
PAPER Paper tape punch.

The B ADDRESS increment, index, and controller fields specify the
object program output device for the Basic Assembler only (Advanced
Assembler always writes the object program output to disk). The
object program file-name is obtained from the IDNT card. Coding is

as follows:

Code Definition

blank No object program output desired.
CARD Card punch.

TAPE Magnetic tape.

PAPER Paper tape punch.

LTB Add object program to existing

systems tape.

6-164

SPEC
continued

Columns 40 through 45 may also be used to specify the number of
lines per page desired on the symbolic listing by coding SKIPnn,
where nn is the number of lines per page. If this option is used,

the SPAC pseudo remains effective.

If resequencing of the symbolic output file is desired, a 6-digit
unsigned starting sequence number is specified in the C ADDRESS
label field. Otherwise, the field is blank. If resequencing has
been called for, the increment, index, and address controller fields

of the C ADDRESS specify a 6-digit sequence-increment wvalue.

The appearance of LIST in columns 58 through 61 of the REMARKS field
causes the symbolic input to be printed. The reserved word PART
coded in columns 58 through 61 causes a symbolic listing of only

those segments being patched to be printed.

Code Definition

PRNT Printer only (Advanced
Assembler only).

TAPE Backup tape only.

Also, symbolic input is printed if the SPEC card is omitted. Refer
to the LIST and NOLI commands.

The appearance of CODE in columns 63 through 66 of the REMARKS field
causes the assembled machine language to be printed. Refer to the
CODE and NOCD commands.

SEQ in columns 68 through 70 causes sequence checking of the sym-
bolic input file. Any occurrence of a sequence value equal to or
less than the previous card's value will be flagged, and will inhi-

bit the creation of an object program file.

If SYNTAX appears in columns 72 through 77, creation of an object
program file will be inhibited.

A code of blank or 2 in column 80 yields a double spaced printed

Revised 11/20/70
by PCN 1034949-002 6-165

SPEC

continued

listing with page headings. Zero (O) yvields a single spaced listing
without headings and overrides the SKIPnn option. A omne (1) yields

a single spaced listing with headings.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This card is optional. If present, it must be the first card of the

symbolic input file.

6-166

SPRD

The function of this pseudo is to fill a designated area with

FILL AREA (SPRD) - PSEUDO. I

multiple copies of a 4-digit mask.

The format for the Fill Area instruction (SPRD) is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL oP.
CODE AF | BF Label +Ine. Al Ac Labe! + Inc. [Bil Bc Laobel + Inc. |Ci] Cc
[¢] 1 1 2 2 2 3|3 3 4 4 14 4 5 515 5
0 2 B 112 4 0 3 |4 6 2 5 16 I8

_P 4 8
FILHU‘PS a{o oldlolrialplRlElC

There are no LABEL restrictions when using this instruction.

The VAR field specifies a fill pattern as four L-bit digits or

undigits.

The A ADDRESS field specifies the area to be filled. This area must
be word-oriented and its length must be an exact number of words
(2n character or 4n digits). The area must be at least two words
long. The B and C ADDRESS fields are not used for this instruction.

The OVERFLOW indicator and Program Reserved Memory are not changed.

This command is frequently used to clear an output record area to
blanks. Operational examples of the Fill Area instruction (SPRD)

are as follows:

6-167

SPRD

continued

Clearing Output Record Area To

Resetting Accumulator Blocks,.

Blanks.
oP AF BF A ADDRESS | B ADDRESS | C ADDRESS
opP AF BF A ADDRESS| B ADDRESS { C ADDRESS sprD | 00 00 ACCUMS
SPRD| 40 | 40 | TAPREC
BEFORE AFTER
BEFORE AFTER
A ADDRESS XXXXXXXXXxXxXXx 000000000000
B ADDRESS
g ﬁgggggg XXXXXXXXXAXX hol4okokolUohO (blanks) ¢ ADDRESS -
C ADDRESS COMP. INDC. XXX HIGH
COMP. INDC. xxx HIGH OVERFLOW unchanged
OVERFLOW unchanged

6-168

SRD

SCAN RESULT DESCRIPTOR (SRD) - MACHINE CODE-91.

This instruction may not be used in normal state programs. It scans
the result descriptor areas in Systems Reserved Memory to locate

unserviced I/0 or processor interrupt conditions.

The format for the SRD instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF t abel +Ine. JAH Ac Label +Inc. |B{ Bc Label + Inc. |Ci] Cc
0 1 1 2 2 2 313 /|3 4 4 |4 4 5 515 5
8 4 8 0 2 48 112 4 0 3]4 6 2 516 8
SIRID| |0]1{010

There are no LABEL restrictions for this instruction.

The VAR field contains a 4-digit number which is interpreted as
the low-order digits of an absolute machine address in Systems
Reserved Memory (like the BCT command). High-order digits are as-

sumed +to equal 0O,
The remaining fields are not used by this instruction.

The INTERRUPT indicator is reset at the start of execution. The
OVERFLOW indicator is not changed by this instruction.

The address specified in the VAR field is assumed to point to a 16-
bit result descriptor area. The first bit of this area is scanned

and:

a. If it is equal to O (no result descriptor present), the
four digits immediately following the 16-bit result de-

scriptor area are accessed and:

l) If they are 0000, the comparison indicator is set to
EQUAL and the instruction terminates (no result de-

scriptors found).

6-169

SRD

continued

2) If they are not 0000, they replace the original
address wvalue specified in the wvariant field of

the SRD command and the scan is then repeated.

b. If it is equal to 1 (result descriptor present), the
address of the result descriptor area is stored into
Systems Index Register One. The next bit is examined

and :

l) If it is O (normal termination), the comparison

indicator is set to HIGH.

2) If it is 1 (abnormal termination), the comparison
indicator is set to LOW. The instruction then

terminates.

This command has no operands.

6-170

STOP

TERMINATE PROGRAM EXECUTION (STOP) - PSEUDO.

This pseudo causes termination of execution and the performance of
the standard End-of-Run procedures for the Control Program when
using the MCP. With BCP, a coded halt is executed.

The format for the STOP instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label +Ine, Al Ac Label + Inc. |Bi] Be Label + Inc. |Ci] Cc
0 1 1 2 2 3]3 3 4 4 14 4 5 5105 5
8 4 2 112 4 0 3 |4 6 2 516 |8

8
i

-+ *

There are no LABEL restrictions when using this instruction.

The remaining fields axe not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

This statement need not be the last executable statement in the
program. It may be inserted wherever program execution should

logically terminate.

6-171

STT

SET TIMER (STT) - MACHINE CODE-97.

This instruction may not be used in normal state programs. It loads
a timer-limit wvalue from a specified storage address into the second

timer word in scratch pad memory.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
op.
LABEL CODE AF | BF Label +Ine. Al] Ac Label +Inc. |BY Bc Label + Inc. [Ci| Cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
8 4 8 O 2 112 4 0 3 |4 6 2 5 J6 8
clpirlr wglr T K1loldlolo

There are no LABEL restrictions for this instruction.

The A ADDRESS field points to a 6-digit field which is to be loaded
into the timer word. The final A ADDRESS must be even. The A

address controller may only be UN or IA.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

When the contents of the first timer word (automatically incremented
by the hardware) reach the same value as the contents of the second
timer word, a timer interrupt is generated. This interrupt is used

to control and schedule program execution time.

6-172

SUB

THREE~-ADDRESS SUBTRACT (SUB) - MACHINE CODE-04

This instruction subtracts the value of the A field from that of
the B field and stores the result into the C field.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Label +Inc. JAI} Ac Label + Inc. |Bi] Bc Label + Inc. {Ci] Cc
0 1 1 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 I8 1]2 4 0 3 |4 6 2 516 8
S|u ALl S NILIH @ UIRIS RID|HIRIS i

There are no LABEL restrictions when using this instruction.

The AF and BF fields specify the length of their corresponding
fields. If the A and B field lengths are unequal, left-zero-fill is
added to the shorter of the two in the processor until their lengths
are equal. The length of the C field is assumed equal to the larger
of the AF and BF values. If the number of significant digits in the
difference is greater than the C field length, the subtraction is

not performed.

The A ADDRESS field points to the subtrahend field, and all address
controllers are valid. UN fields are assumed to be positive. Only
the numeric digits of a UA field enter into the subtraction and the

sign is assumed to be positive.

The B ADDRESS field points to the minuend field. The address con-

troller conventions are the same as for the A ADDRESS.

The C ADDRESS field points to the field into which the difference is
stored. If the field is UN, the sign of the difference is lost and
the absolute value of the difference will be stored. If the field

is UA, the sign of the difference is lost and the absolute value of

6-173

sus

continued

the difference is stored into the numeric digit positions of the
C field and the zone-digit positions are set to the numeric subset

zone digit.
The remaining fields are not used by this instruction.

If the difference is too large to fit into the C field, the OVERFLOW
indicator is set and the comparison indicators remain unchanged;
otherwise, the comparison indicators are set according to the sign
of the difference (even if the size is not stored). These settings

are: LOW if negative, EQUAL if zero, and HIGH if positive.
Program Reserved Memory is not changed by this instruction.
The following are operational examples of the SUB instruction.

Normal Three Address Subtract. Three Address Subtract Causing

Overflow.
OoP AF BF A ADDRESS| B ADDRESS | C ADDRESS

opP AF BF A ADDRESS| B ADDRESS | C ADDRESS
SUB | 01 05 | FIELD1(UN) | FIELD2(UN) | FIELD3(SN)

SUB | 03 03 | FIELDA(SN) | FIELDB(SN) | FIELDC(SN)

BEFORE AFTER
BEFORE AFTER

A ADDRESS 5 5
B ADDRESS ABCDE ABCDE A ADDRESS -500 -500
C ADDRESS XXXXXX +12340 B ADDRESS +525 +525
COMP. INDC. XXX HIGH C ADDRESS unchanged
OVERFLOW unchanged COMP. INDC. unchanged

OVERFLOW XXX ON

6~174

SYNC

SYNCHRONIZE LOCATION COUNTER (SYNC) - PSEUDO.

This pseudo forces the Location Counter value up to the next exact

multiple of a specified number unless its value is already synchron-

ized.

The format for the SYNC instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LAB
EL CODE | AF | BF Label + Ine. Al Ac Labe! +Inc. |B{ Bc Label +Inc. |Ci] Ce
0 1 1 2 3[3 |3 4 414 |4 5 515 |5
4 8 112 |4 0 34 J6 2 Sl 18

SN 3110 d

LABEL entries are not permitted for this instruction.

Specified in the A ADDRESS label field is a L-digit value that is
left-justified and zero-filled.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

This dinstruction is mostly used to assufe thousands-orientation for
Translate Tables (see operation code TRN) and word-orientation for

record-storage fields.

6-175

SZE

SCAN DELIMITER ZONE EQUAL (SZE) - MACHINE CODE-18.

This instruction scans the zone portion of each character in the
B field against a list of delimiter-zones in the A field and iden-

tifies the first equal condition.

The format for the SZE instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE | AF | BF Label +lne. JAl| Ac Label +Inc. {Bi Bc Label +Inc. |Ci| Ce
0 1] 2 2 K ERR K 4 aTa |4 5 515 15
8 4 8 o |2 12 |4 0 314 |6 2 56 18

sc;wixrs{g;l o1l | [a AllEltElUp]

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of delimiter-zone characters in
the A field. The BF field specifies the number of characters to be

examined for zone in the B field.

The A ADDRESS field points to the delimiter-zone list and the B
ADDRESS field points to the character string to be scanned for the
occurrence of delimiter-zones. Their address controller must be UA
or IA and the numeric portion of their field characters does not

enter into the operation.
The remaining fields are not used by this instruction.

The comparison indicator is set to LOW if the zone portion of the
first B field character is equal to the zone portion of one of the

A field delimiter-zone characters. It is set to EQUAL if the zone
portion of some character in the B field (EQE the first) is equal to
the zone portion of one of the A field delimiter-zone characters.

It is set to HIGH if no zone portion of any of the B field charac-
ters is equal to the zone portion of any of the A field delimiter-
zone characters. The OVERFLOW indicator is not changed by this

instruction.

6=-176

SZE
continued

This instruction stores a character count (not storage position)

into Program Reserved Memory locations 00038-39 according to the
following rules:

00 is stored if the first B field zone digit is equal to

a'
some delimiter zone.

b. The number of characters in the B field preceding the zone-
equal character is stored if some non-first B field =zone
digit is equal to some delimiter zone.

c. The length of the B field minus one is stored if no B

field zone digit is equal to any delimiter =zone.
Upon completion of a SZE command, the programmer should use the
LEQ command if he wishes to branch upon finding a =zone.

the first B field zone digit is

The sequence of execution is:
if a match is

compared with all the A field delimiter zones and,
If not, the next B field =zone digit

found, the scan is complete.
or until the B

is compared and so forth until a match is found,

field is exhausted.

The following are operational examples of the SZE instruction.

Scan Delimiter Zone Equal -

Scan Delimiter Zone Equal -
Zone Found Other Than First.

First Zone Found.

A ADDRESS | B ADDRESS | C ADDRESS]

OP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS OP | AF | BF

SZE | 02 | 03 | DELIMS FIELD SZE 102 | 04 | DELIMS FIELD
BEFORE AFTER BEFORE AFTER

A ADDRESS AJ AJ A ADDRESS AJ AJ

B ADDRESS KwA KwA B ADDRESS WKAM WKAM

C ADDRESS C ADDRESS

COMP, INDC. xXX Low COMP. INDC. xxx EQUAL

OVERFLOW unchanged OVERFLOW unchanged

00038: XX 00 00038: xX 01

6-177

SZE

continued

6-178

Scan Delimiter Zone Equal

Zone Not Found.

OP | AF BF A ADDRESS| B ADDRESS | C ADDRESS
SZE | 02 04 DELIMS FIELD
BEFORE AFTER
A ADDRESS 1-AJ AJ
B ADDRESS WXYZ WXYZ
C ADDRESS
COMP. INDC. XXX HIGH
OVERFLOW unchanged
00038: xx 03

SZU

SCAN DELIMITER ZONE UNEQUAL (SZU) - MACHINE CODE-19.

This instruction scans the zone portion of each character in the B
field against a list of delimiter-zones in the A field and identi-

fies the first unequal condition.

The format for the SZU instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LAB :
EL CODE | AF | BF Label + lnc. Al Ac Label +Inc. |Bi Be Label +Inc. |Ci{ Cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 1B 1]2 4 0 3 |4 6 2 5 16 8
sglu o3l | |aldls Al el el D]

There are no LABEL restrictions for this instruction.

The AF field specifies the number of delimiter-zone characters in
the A field. The BF field specifies the number of characters to be

examined for zone in the B field.

The A ADDRESS field points to the delimiter-zone list and the B
ADDRESS field points to the character string to be scanned for the
non-occurrence of delimiter zones. Their address controller must be
UA or TA. The numeric portion of their field characters does not

enter into the operation.
The remaining fields are not used by this instruction.

The comparison indicator is set to LOW if the zone portion of the
first B field character is not equal to the zone portion of any of
the A field delimiter-zone characters. It is set to EQUAL if the
zone portion of some character in the B field (EBE the first) is not
equal to the zone portion of any of the A field delimiter-zone char-
acters. It is set to HIGH if the zone portion of every B field

character matches an A field delimiter-zone character.

6-179

BUMP

INCREMENT BY ONE (BUMP) - PSEUDO.

This instruction increments the contents of the A field by one.

The format for the BUMP instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LAB .
EL CODE AF | BF Label + Inc. Al Ac Label + Inc. |BY Be Label + Inc. |Ci] Cc
0 1 1 2 313 |3] 4 |4 4 5 515 5
p 4 8 2 112 |4 0 3 14 6 2 sl s
BluimlP DITVA|F|L|O

There are no LABEL restrictions when using this instruction.

The A ADDRESS points to the field to be incremented.

The remaining fields are not used by this instruction.

This pseudo yields an increment instruction. The length of the field
te be incremented, and its controller are obtained from the declara-
tion of the data field referenced by the A ADDRESS.

SZU
continued

This instruction stores a character count (not storage position)

into Program Reserved Memory location 00038 through 00039 according

to the following rules:

a. 00 is stored if the first B field zone digit is not equal

to any delimiter =zone.

b. The number of characters in the B field preceding the zone-
unequal character is stored if some non-first B field zone

digit is not equal to any delimiter =zone.

c. The length of the B field minus one is stored if all the

B field zone digits are equal to the delimiter zones.

Upon completion of a SZU command, the programmer should use the LEQ

command if he wishes to branch if a non-delimiter zone is found.

The sequence of execution is: the first B field zone digit is com-
pared with all the A field delimiter zones and, if a match is found,
the scan is complete. If not, the next B field zone digit is com-

pared and so forth until a match is found, or until the B field is

exhausted.

The following are operational examples of the SZU instruction.

Scan Delimiter Zone Unequal - Scan Delimiter Zone Unequal -
First B Zone Unequal. Non-First B Zone Unequal.
OP | AF | BF | A ADDRESS| B ADDRESS | C ADDRESS oP | AF | BF | A ADDRESS|B ADDRESS | C ADDRESS
SZU |01 | 04 | DELIMS FIELD SZU |02 | 04 | DELIMS FIELD
BEFORE AFTER BEFORE AFTER
A ADDRESS A A A ADDRESS AJ AJ
B ADDRESS JABX JABX B ADDRESS ABXC ABXC
C ADDRESS C ADDRESS
COMP. INDC. XXX LOW COMP. INDC. XXX EQUAL
OVERFLOW unchanged OVERFLOW unchanged
00038 xx 00 00038: xx 02

6-180

SZU

continued

Scan Delimiter Zone Unequal -
All B Zones Equal.

BF | A ADDRESS|B ADDRESS | C ADDRESS

oP AF
SZU |02 04 DELIMS FIELD
BEFORE AFTER
A ADDRESS AJ AJ
B ADDRESS CDMO CDMO
C ADDRESS
COMP. INDC. XXX HIGH
OVERFLOW unchanged
XX 03

00038

6-181

TIME

I READ SYSTEMS CLOCK (TIME) - PSEUDO.

This pseudo copies the value of the system clock at run time into a

specified location.

The format for this instruction is:

, VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL cobE | aF | BF Label +1ne. |Al| Ac Label +1nc. |B] Be Label +nc. |ci| ce
0] 1 2 7 26 r 7 3 I
B 4 8 2 12 0 4 2 6 s

There are no LABEL restrictions for this instruction.

The A ADDRESS field receives the systems time and must be a 10-
digit UN area.

The systems time is expressed in milliseconds.

The remaining fields are not used, nor are Program Reserved Memory

and the comparison and OVERFLOW indicators changed by this instruc-

tion.

6-182

TIOC

TEST I/O COMPLETE (TIOC) - PSEUDO. I
This pseudo is defined for Basic Assembler only. It suspends all

processing until a designated I/0 operation is completed.

The format for the TIOC instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AEIBF Label 4+ Inc. JAI Ac Label +Inc. |B{ Bc Label +Inc. |Ci] Ce
2 313 |3 4 s |4 5 515 5
2 2 14 0 34 |6 2 5 8

B e

There are no LABEL restrictions for this instruction.

The A ADDRESS field points to the field which will receive the

result descriptor from the I/0 operation. This field is four digits
to the left of the original 1/0 descriptor.

The B ADDRESS field optionally contains a branch label. Control
will be transferred to this label upon completion of the I/0 opera-
tion if the result descriptor indicates abnormal completion. Con-
trol passes to the next instruction upon completion of the I/O if

the operation was normal or if the B ADDRESS is not coded.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

6-183

TRAC

TRACE PROGRAM EXECUTION (TRAC) - PSEUDO.

This pseudo either sets or resets the trace option, thus producing

a one-instruction-per-line trail of program execution.

The format for the TRAC instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
8 .
LABEL CODE AF | BF Label + Ine. JAIl Ac Label + Inc. |Bil Bc Label + Inc. |Ci] Ce
0 1 1 2 2 313 3 4 4 14 5 515 5
Is 4 8 2 112 |4 0 3 J4 2 sl s
I |R|AC I|TITIRACIN

There are no LABEL restrictions for this instruction:

The AF field specifies the options to be set or reset. Coding is

as follows:

Code Definition
blank Cease all tracing.
C Trace control state (MCP/BCP) only.
N Trace normal state (program) only.
CN Trace all machine instructions.
NC Trace all machine instructions.

The remaining fields are not used, nor are Program Reserved Mem-
ory and the comparison and OVERFLOW indicators changed by this

instruction.

This operation should be used sparingly since it requires consider-

able extra storage and is quite slow.

The output of the trace is specified in the B 2500/B 3500 Master

Control Programs Information Manual under debugging aids.

6-184

TRN

TRANSLATE BY TABLE (TRN) - MACHINE CODE-15.

This instruction translates a string of digits/characters according
to a specified equivalence table and stores the translated string

into a specified address.

The format for the TRN instruction is:

) VAR. A ADDRESS B ADDRESS C ADDRESS
- LABEL op.
CODE AF | BF Labe!l +1Ine. Al Ac Label + Inc. |Bi] Bc Label + Inc. {Ci] Cc
0 : 1 1 2 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 1]2 4 0 3 14 6 2 516 8

_nglﬁoe Ir IN][ololzlsINlalme TIRT|AlRL me%mm

There are no LABEL restrictions when using this instruction.

The VAR field specifies a L-digit count of digits/characters to be

translated. The maximum count of 10,000 is specified as 0000.

The A ADDRESS field points to the string to be translated and the

address controller is unrestricted, however, the sign of a SN field
will be ignored. If the A field format is UN or SN, the applicable
numeric-subset zone will be forced in over each digit before it is

translated.

The B ADDRESS field points to the equivalence table to be used for
translation. The final B ADDRESS must be modulo-1000, i.e., the

last three digits of the final address must be 000. The SYNC command
should be used when declaring the table, and the B address controller

must be UA or TA.

The C ADDRESS field points to the field into which the translated
characters will be stored and the address controller must be UA

or TA.

The remaining fields are not used, nor are Program Reserved Mem-
ory and the comparison and OVERFLOW indicators changed by this

instruction.

6~185

TRN
continued

The character translation is performed by the following algorithm:

EXAMPLE:

A low-order zero-bit is appended to the 8-bit character to

be translated.

The resultant nine bits are divided into three 3-bit groups.

The 3-bit groups are interpreted as three octal digits.

The three octal digits are combined with the B ADDRESS to

produce a table-access address.

The character in the derived table-access address is moved

to the C field.

EBCDIC A is llOOOOOl2

The stages of translation for the above example are:

a.

b.

For

For

For

For

For

step a above, llOOOOOl2 becomes 110000010.

step

step

step

step

C field.

b

above,

above,

above,

above,

110000010 becomes 110 000 O010.
110 000 010 becomes 6028.
table access address B = 602 is generated.

the character in B + 602 is moved to the

Figure 6-1 shows the general layout of translate tables in core.

Those areas in figure 6-1 which are Xed out are never accessed by the

TRN instruction.

6-186

SECOND AND THIRD OCTAL DIGITS

F 0002 0406(08)10 12 14 16(18)20 22 24 26(28)30 32 _ (58)60 62 64 66(68)70 72 74 76 (78 80 82 67 86 8890 92 94 98)
R © (I — —1 |
S 1 (F—aq 1] I —
T m_ I —— — |

2 [— ————
o (L —
cs)) —— ——
< =] =
: T mE=SSe
o (=]

— e —

D = I — ——
: | InnE=SES==on
G 7 | 1T |
1 e
L

Figure 6-1. Translate Tables in Core

The following is an operational example of the TRN instruction.

Normal Translate

oP AF BF A ADDRESS| B ADDRESS | C ADDRESS

TRN | 00 10 NAME ALFTAB CHKNAM
BEFORE AFTER

A ADDRESS JOHN-8-DOE JOHN-8-DOE

B ADDRESS table converts letters to O,
blanks to O, all else to 1

C ADDRESS XXXXXXxxxxx 0000010000

COMP. INDC. unchanged

OVERFLOW unchanged

Revised 11/20/70
by PCN 1034949-002 6-187

UNLK

UNLOCK RECORD (UNLK) - PSEUDO.

This pseudo causes an UNLOCK to be performed on a shared disk file.

The format for this pseudo is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP. .
LABEL
CODE AF | BF Label +ine. Al Ac Label + Inc. |Bi} Be ‘Label + Inc. JCi} Ce
0 1 1 2 2 2 33 3 4 4 14 4 5. 515 5
18 4 8 _p_ |2 B 1]2 |4 0 344 |6 2 50 |8

LK ;Hﬁlngl

*

The A ADDRESS label field specifies the internal file name of the
shared file to which a record is to be unlocked. Incrementing, in-

dexing, and address controlling are not permitted.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

Shared disk files must be declared random-access. Therefore a key

value must be loaded into the actual key field before the UNLK

statement is issued.

6-188

USER

DECLARE USER /O PROCEDURES (USER) - DECLARATIVE.

This declarative is defined for Advanced Assembler only. It speci-
fies the entry addresses for user routines which handle special

T/0 conditions.

The format for the USER instruction is as follows.

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL op.
CODE AF | BF Label + Inec. ;All Ac Label + Inc. |B{ Bc Label + Inc. [Ci} Cc

0 1 AR E 2 313 |3 4 afle |4 5 515 5
8 4 8 b |2 1]2 |4 0 3la e 2 sl Is

luls El, L BHL Tiple|RIRlL
LABEL entries are not permitted for this instruction.
The three ADDRESS label fields (A, B, and C), plus columns 58
through 63 in the REMARKS field point to routines for various func-
tions depending on the peripheral device. These routines are as
follows:

a. For conventional devices (printer, tape, disk):

1) A label - label handling routine.

2) B label - error handling routine.

3) C label - End-of-Page/beginning-file-limits violation.

4) REMARKS - ending-file-limits violation.

(Data Communications devices may use the A and B ADDRESS

fields).

b. For a MICR sorter-reader:
1) A label - read error (memory access, unreadable, uncoded).
2) B label - amount error.*

3) C label - transit field error.*

4) REMARKS

pocket select.

*¥ These addresses are effective only if the FILE declarative (column
21) specifies distinction between amount errors and transit errors.
If both fields contain errors, the general read error routine will
be selected.

Revised 11/20/70
by PCN 1034949-002 6-188A

USER
continued

Columns 58 through 63 are used for a user routine label.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

USER routines for conventional devices exit (return control to the
MCP) by way of the RTRN command, while USER routines for the sorter-
reader exit by way of the PCKT command.

This declarative must immediately precede the FILE declarative to

which it applies.

(Methods and restrictions on USER routine coding will be supplied

at a future date.)

6-189

VALU

OBTAIN CARD VALUE CONTROL (VALU) - PSEUDO.

This pseudo is defined for Basic Assembler only. It receives (from
the BCP) the six characters from columns 8 through 13 of the program
call-out record (e.g., TASMBLER 000002).

The format for the VALU instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE | AF | BF Label +1Inc. JAIl Ac Label +Inc. |B{ Bc Labe! +tnc. |Ci] Ce
0 h 1 2 33 3 4 414 |4 5 515 15
B 4 8 2 112 |4 0 34 6 2 sle s
yiAlL siclulels)

There are no LABEL restrictions for this instruction.

The A ADDRESS field points to a 6-character storage area into which

the control information is copied.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

The control field may be used to specify bit/character switches for

program options. The control card is read in the EBCDIC mode.

6-190

WRITE RECORD (WRIT) - PSEUDO.

This pseudo releases the current logical record to an output or

WRIT

input/output file, and specifies printer/punch control.

The format for this instruction is as follows:

B ADDRESS

VAR. A ADDRESS C ADDRESS
LABEL oP. :
CODE AF | BF Label +Inc. JAl| Ac Label + Inc. |B{ Bc Label + Inc. |Ci] Cc
o 1 2 2 313 |3 2 q [a 5 515 |5
8 8 2 12 |4 0 ? 4 2 sl |s
T Il Plﬁlv R gHQ el

There are no LABEL restrictions for this instruction.

A WRITE with LOCK or a WRITE without unlocking on a shared disk

file is specified by an L in column 18 of the AF field.

erencing a shared file, a blank in column 18 is interpreted as a
WRITE with UNLOCK.

The AF field (column 19) optionally specifies space-after-print.

Coding is as

The BF field

on the printer control tape or punch stacker selection.

as follows:

Printer

follows:

Code

N HO

Definition

Space suppress.

Single space.

Double space.

When ref-

(columns 20-21) optionally specifies a channel number

o

Code

1-11

Description

Skip to channel 1 through 11

(channel 12 is reserved for

End-of-Page detection).

Revised 11/20/70
by PCN 1034949-002

6-191

Coding is

WRIT

continued
Code Description
Punch 00 or blank Primary stacker.
(0NN Auxiliary stacker.
02 Error stacker.

If both spacing and skipping are specified, only the skip is per-

formed.

The A ADDRESS label field specifies the internal file-name of the
file to which a record is to be released. Incrementing, indexing,
and address controlling are not permitted. For the Advanced As-
sembler only, a record-name associated with the file may be used

instead of the file-name.

The B ADDRESS field optionally specifies an End-of-Volume branch
address. If a buffer and work area access technique is being em-
ployed for this file, another WRIT should be issued at this address.
Otherwise, the last print line will be lost. If the IX2 access
technique is being employed, a second WRIT should not be issued, as
the print line will not be lost. To avoid confusion, it is recom-
mended that a user routine be used for End-of-Page condition rather

than this B ADDRESS branch.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

A file must be opened before records can be written to it. The FILE

declaration determines the function of the WRIT statement:

a. If the FILE declaration specifies the work area technique,
the WRIT statement causes the current record to be moved

from the work area to an output buffer area.

b. If the FILE declaration specifies the no-work-area tech-
nique, the WRIT statement causes IX2 to be incremented

past the current record in the buffer area. If the records

6-192

WRIT

continued

are created elsewhere than in the output buffer area, the
last command before the WRIT should move the current record
to the location addressed by IX2.

If the FILE declaration is disk random-access, a key wvalue must be

loaded into the actual key field before the WRIT statement is issued.

Revised 11/20/70
by PCN 1034949-002 6-192A

ZIPP

EXECUTE CONTROL CARD FUNCTION (ZIPP) - PSEUDO.
This pseudo sends an alphanumeric test field to the MCP/BCP which

handles the test as though it were a control card.

The format for the ZIPP instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP. :
LABEL '
CODE | AF | BF Label +Ine. JAH Ac Label +Inc. |Bi| Be Label +Ine. |Ci] Cc
0 1 1 2 2 33 [3 4 4 e |4 5 5015 |5
B 4 8 2 112]4 0 34| 2 5l |8

cAIL;‘glg.;*gf_lP‘ IN[x]PlR!

There are no LABEL restrictions for this instruction.

The A ADDRESS field points to an area which contains the control
text. Under control of the MCP (Advanced), the control text may

contain any or all of the following functions:

a. EXECUTE

b. COMPILE.....WITH
Cc. FILE
d. VALUE

e. CHANGE
f. REMOVE

g. DUMP
h. LOAD
i. PRIORITY
j. CORE

The control text must end with a period. If it is longer than 72
characters, it must also begin with a period. When under control of
the BCP, the control text must be a l3-character field containing a

standard program call from tape.

Example:

TXXXXXXYYYYVYY

6=193

ZIPP
continued

where xxxxxx is the ID of the program to be loaded and executed,

and yyyyyy is the (optional) value to be delivered to the ZIPPed

program.,

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

When under control of the MCP, control returns after the ZIPP
statement. When under the BCP, the program which issues the ZIPP

is terminated.

6=-194

SECTION 7
DATA COMMUNICATIONS OPERATIONS CODES

GENERAL

The data communications operation codes are described in alphabeti-
cal sequence, and each description is presented in a standard format.
The symbolic code (i.e., pseudo) precedes the general description
of the function of each pseudo. A coding example of the operation
code and a description of LABEL entry restrictions and entries (if
any) follow. After the %ABEL entry description, each field used is
defined. Any changes to the comparison and OVERFLOW indicators and

Program Reserved Memory are described next.

ACPR

ACCEPT FROM REMOTE SPO (ACPR) - PSEUDO.

This is a data communications pseudo and is defined for the Advanced

Assembler only. Its function is to permit the entry of data from a

remote SPO to an object program.

The format of the ACPR instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE | AF | BF Label +1Inc. |All Ac Label +Inc. |Bq Bc Label +Inc. |Ci] Ce
1 1 2 2 33 |3 4 4[4 |4 5 515 IS
4 8 2 B 112 14 0 <3 L 1 2 5le |s
AlICIPRI2I5] | IMs]Gle Ric7ste

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of characters to be read from the
Supervisory Printer. If it is left blank, the declared length asso-
ciated with the A ADDRESS label is used. The maximum number of

characters which can be read is 72.

The A ADDRESS field points to the alphanumeric area which is to
receive the data transmitted from the remote SPO. Incrementing is
permitted. Indexing and indirect addressing are not permitted. The

address controller must be defined as being UA.

The B ADDRESS field points either to the alpha mnemonic of the remote
SPO or to the channel and unit of the remote SPO.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

An alpha mnemonic of a remote SPO is from one to six characters. If
less than six characters, it must be followed by a blank, and it must
be the same as the mnemonic stated on the unit card. Similarly, the
alpha channel and unit specification must be followed by a blank and

is in the following format: CC/U.

7=2

ACPR

continued

This instruction causes the operating object program to halt and wait

for appropriate data to be entered through the remote SPO. If the

named device is not a remote or not a remote SPO, or not logged=in,

the accept will be processed to the local SPO.

CNCL

CANCEL DC 1/O IF INACTIVE (CNCL) - PSEUDO.

This is a data communications pseudo and is defined for the Advanced
Assembler only. Its function is to cancel a previously issued

FILL command if data is not being received. It also cancels a
previously issued ENBL command if an inquiry has not come from the

device.

The format for the CNCL instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP -
LABEL .
CODE AF | BF Laobel +Inc. |A} Ac Label +Inc. |Bi] Be Label +Inc. |Ci] Cc
‘10 1 1 2 2 33 3 4 4 14 4 5 515 5
8 4 8 0 1]2 4 0 3 14 6 2 5 16 8

LQI[(_HL_J'TC c RlEM#T 1

There are no LABEL restrictions when using this instruction.

The A ADDRESS label field specifies the internal file-name for
which the FILL/ENBL command is to be cancelled. Incrementing, in-

dexing, and address controllers are not permitted.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by the instruction.

For more detailed information, refer to the B 2500/B 3500 Master
Control Programs Information Manual (1031218).

7=l

DISR

DISPLAY ONTO REMOTE SPO (DISR) - PSEUDO.

This is a data communications pseudo and is defined for the Advanced
Assembler only. Its function is to provide for the transmittal of
data, error messages, and operator instructions from an object

program to a remote SPO.

The format of the DISR instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE | AF | BF Label + Ine. AJ Ac Label +Inc. |BY Be Label + Inc. |Ci} Cc
] 1 1 2 2 33 |3 4 a4 J4 5 515
8 4 8 2 B 112 4 0 3]4_ 6 2 56
0/ |SiRI3l0 /‘/ESSIGE :ﬁIIVJPH

There are no LABEL restrictions when using this instruction.

The AF field specifies the number of characters to be typed out on
the remote SPO. If it is blank, the length associated with the
A ADDRESS label is used. The maximum number of characters which can

be displayed is 72.

The A ADDRESS field points to an alphanumeric area which contains
the data to be displayed on the remote SPO. Incrementing is permit-
ted; indexing and indirect addressing are not permitted. Literals

are not permitted, and the address controller must be UA.

The B ADDRESS field points to a data field containing either the
alpha mnemonic name of the remote SPO or the channel and unit desig-

nation of the remote SPO.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

An alpha mnemonic of a remote SPO is from one to six characters. If

less than six characters, it must be followed by a blank, and it must

DISR

continued

be the same as the mnemonic stated on the unit card. Similarly, the
alpha channel and unit specification must be followed by a blank and

is in the following format: CC/U.

This instruction causes the designated data to be written on the
remote SPO from the MCP/SPO queue to ensure that a program is not
operationally deterred while a message is printing if the named
device is not a remote, or not a remote SPO, or not logged-in. The

display will be processed to the local SPO.

ENBL

ENABLE DC DEVICE (ENBL) - PSEUDO.

This is a data communications pseudo and is defined for the Advanced
Assembler only. It recognizes input inquiry requests from a remote
device or disconnects the telephone line for dial lines and recog-

nizes a ringing signal.

The format for the ENBL instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL oF. -
CODE AF | BF Label +Ine. |Al] Ac Label +Inc. |B{ Bc Label +Inc. |Ci} Cc
0 1 1 2 2 313 3 4 4 14 4 5 515 5
Far 4 8 2 B 112 4 0 3 |4 6 2 5 {6 8
prleleleld leivsie BEN 4V MQlclr|L

There are no LABEL restrictions when using this instruction.

The A ADDRESS label field specifies the internal file-name of the
device. Incrementing, indexing, and address controllers are not

permitted.

The B ADDRESS label field may optionally contain an inquiry label.

A WAIT statement may be used to suspend processing until the message
is entered, at which time processing resumes with the statement
immediately following the WAIT or with this optionally specified

inquiry label.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

ENBL allows the device to establish a connection with the B 2500/
B 3500 system by depressing the inquiry key, if the device is con-
nected on leased lines, or by dialing the systems telephone number

if the device is on dialed lines.

7=7

FILL

FILL INPUT AREA FROM DC DEVICE (FILL) - PSEUDO.,

IThis is a data communications pseudo and is defined for the Advanced

Assembler only.

operation, and then returns to the program while the operation

continues.

The format of the FILL instruction is:

It initiates a data communications input/output

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +lne. Al Ac Label + Inc. |Bi] Bc Label +tnc. JCi} Cc
[d] 1 1 2 2 313 3 4 4 |4 5 515 5
8 4 0 8 112 4 0 3 |4 2 516 8
_IIAu’Ku PFIILL_DT Plgl1 wiclrlc NDS}PI

There are no LABEL restrictions when using this instruction.

The VAR field may contain up to four of the function modifiers,
left-justified, and in any order:

Code Description

=

Inhibit time-out.
Preset STX.

Dial,

Delete ETX.

Audio response,
Poll.

Ignore ENQ.

U o dog E O X

The A ADDRESS field specifies the internal file-name on which the

Tone Response.,

operation is to be started. Indexing, incrementing, and address

controlling are not permitted.

The type of operation to be started is specified left-justified in
the B ADDRESS label field. These are operation codes in their own
right and their functions are briefly explained in this manual.

These codes are as follows:

7-8

FILL

continued
Code Definition
REED Read from DC device.
WCRC Write-to-control/read-to-control.
WCRT Write-to~control/read-transparent.
WTRC Write-transparent/read-to-control.
RITE Write a data communications record. .

The C ADDRESS field may optionally contain an action label. Control
is transferred to this label if the FILL operation is completed

while the program is suspended in a WAIT pseudo. B
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by the instruction.

The file declared in the A ADDRESS field must have a work area de-

clared, otherwise, the pseudo is void. Stream mode is not permi‘tted..

For a more detailed explanation of the data communications functions,
refer to the B 2500/B 3500 Master Control Programs Information
Manual (1031218).

7=9

INTA

OBTAIN /O CHARACTER COUNT (INTA) - PSEUDO.

This is a data communications pseudo and is defined for the Advanced

Assembler only.

It makes the character count of the last I/0 opera-

tion of a specified file available to an object program.

The format of the INTA instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP
LABEL :
CODE | AF | BF Label + Inc. Ad Ac Label 4 Inc. |B{ Bc Label + Inc. |Ci| Ce
0 1 1 2 2 B ERE 4 a4 |4 5 5 5
B 4 8 2 112 |4 0 3J4 J¢ 2 5 8
Gl&|T Z 7] ZIMPi7 A um

There are no LABEL restrictions when using this instruction.

The A ADDRESS field must contain the file-name.

The B ADDRESS field must contain a label referencing a 6-digit field

into which the value is to be placed.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and overflow indicators

are not changed by this instruction.

7=10

INTR

INTERROGATE DC RESULT DESCRIPTOR (INTR) - PSEUDO.

This is a data communications pseudo and is defined for the Advanced

Assembler only. It obtains the result descriptor for a specified I
DC file.

The format of the INTR instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL op.
CODE AF | BF Label +ine. |AH Ac Label +Inc. |Bif Bc Label + Inc. |Ci|] Cc
0 1 1 2 g 313 3 4 4 |4 4 5 515 5
8 4 8 2 112 4 0 3 14 6 2 516 8
Wi#|A]7] ZIM7IR |E] 71Z 71510 S|C) l

There are no LABEL restrictions when using this instruction.

The A ADDRESS field specifies the internal file-name for which a

result descriptor is desired.

The B ADDRESS field points to a 16-digit unsigned numeric field into
which the converted result descriptor is stored. Each bit
of the hardware result descriptor is converted into a digit position,

O if the bit was off, and 1 if it was on.

The bits within the result descriptor are assigned the following

meanings:

1l - operation complete.
-~ exception condition.
- not ready local (single-line)
(multiline if during operation).
- data error.
- abandon call retry (ACR).
cancel complete.
- end-of-transmission (EOT).

- attempt to exceed maximum address.

o 0N ot F
I

- time-out.

7=11

INTR

continued
10 - memory parity error.
11 - write error.
12 - carrier loss.

13 through 16 - unit number.
4 and 5 - data loss.
6 and 7 - break detected.

Explanation of the result descriptor bits is as follows:
a. 1 - always ON if the attempted operation was completed.

b. 2 - will be ON if any combination of three through 16 are
ON. This is the test position to see if any exception
exists. If this position is ON by itself, a partially
complete condition exists due to the use of READ STREAM

MODE and will not occur in any other situation.

C. 3 - will be ON if the single-line control or the local
Data Set is not ready and the operation will be termin-
ated. For multiline control the digit is set ON in the
channel result descriptor unless it occurs during an
operation, in which case it is set ON in the adapter

result descriptor.

d. L - if a data error (message or character parity) occurs,
a READ operation continues until terminated in a normal
manner. The phone line is not disconnected. Attempts to

exceed maximum address, time-out, or EOT can also occur,

e. 4 and 5 - if data loss (missed memory access or MLC cycle),
a READ operation continues until terminated in a normal
manner. Attempts to exceed maximum address, time-out or
EOT can also occur. The phone line is not disconnected.

A WRITE operation is terminated immediately and position

11 is set.

f. 5 - if an abandon call retry condition exists, this posi-

tion will be set ON and the telephone line is disconnected.

7=12

INTR

continued

6 - if a cancel complete condition exists, this position
will be set ON and CANCEL is initiated.

6 and 7 - if a break is detected, these positions will be
set on for a WRITE operation. The telephone line is not

disconnected.

7 - if the EOT exists, this position is set ON and the

telephone line is disconnected.

8 - if an attempt to exceed maximum address exists, a
READ operation will initiate a time-out and wait for a
control code denoting End-of-Message. This position will
be set ON if an ETX is received before time-out. This
position along with position 7 will be set ON if an EOT
is received before time-out. This position and position
9 will be set ON if time-out occurs without ETX or EOT.

A WRITE operation is immediately terminated and this
position along with position 11 is set ON. The telephone

line is disconnected in each case.

9 - if time-out exists, this position is set ON and the
telephone line is not disconnected. Time-out occurs on

READ instructions only.

10 and 11 - if a memory parity error exists, these positions

are set ON and the telephone line is not disconnected.

Memory parity error occurs only on a WRITE.

12 - a READ operation continues until terminated in a normal

manner. The phone line is not disconnected. Attempt to

exceed maximum address, time-out, or EOT can also occur.

13 and 16 - unit number for single line will be O. Unit

number for multiline will be assigned.

Revised 11/20/70

by PCN 1034949-002 7<13

REDY

CONTINUE STREAM MODE INTO NEXT BUFFER - (REDY) - PSEUDO.
This is a data communications pseudo and is defined for the Advanced

Assembler only. The stream mode operation is to continue into the

next buffer of a data communications file.

The format for the REDY instruction is:

LABEL

VAR.

A ADDRESS

B ADDRESS

C ADDRESS

AF

BF

Label

+ Ine.

+ Inc.

Label + Inc.

Ci| Ce

=]

—

N

2
B

w

4
0

&

5
2

|

There are no LABEL restrictions for this instruction.

The A ADDRESS label field must contain the file-name in which the

stream mode operation is to continue. Incrementing, indexing,

and address controlling are not permitted.

The remaining fields are not used, nor are Program Reserved Memory

and the comparison and OVERFLOW indicators changed by this instruc-

tion.

For a more detailed explanation of this instruction, refer to the

B 2500/B 3500 Master Control Programs Information Manual.

REED

READ DC RECORD (REED) - PSEUDO.

This is a data communications pseudo and is defined for the Advanced
Assembler only. The function of this pseudo is to load data from a
remote device into ascending memory locations beginning with the
location specified by the A ADDRESS field. Loading will continue
until an ETX control code is detected, or until the buffer is filled.

The format of the REED instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label +Inc. Al Ac Label + Inc. |Bi| Bc Label + Inc. |Ci| Cc
0 1 1 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 8 142 4 0 3 |4 6 2 516 8
RElellx] | | [TRMN AJ[L 9 e g{gtlﬁlm

The VAR field may contain any or all of the following function

modifiers, left-justified, in any order:

Code Function

]

Inhibit time-~out.
Preset STX.
Dial.

O U ™

Ignore ENQ.

The A ADDRESS field specifies the internal file-name for which a

record is to be read. Incrementing and address controllers are
not permitted.

The A index field (column 31) may optionally contain an S to indi-
cate a stream mode. Operation in stream mode requires a minimum
record declaration of 200 digits (100 characters). The ETX control

code will terminate the operation. Other indexing is not permitted.

The B ADDRESS field may optionally contain an End-of-File label.

Revised 11/20/70
by PCN 1034949-002 7-15

REED
continued

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

The program is suspended (in contrast to the FILL command) until

the operation is complete.

7-16

RITE

WRITE DC RECORD (RITE) - PSEUDO.

This is a data communications pseudo and is defined for the Advanced
Assembler only. The function of this pseudo is to pass data to a

remote device from ascending memory locations beginning at the loca-
tion specified by the A ADDRESS field and continuing until an ETX is

sensed or until the end of the declared logical record.

The format for the RITE instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL CODE AF | BF Label +lnc. Al Ac Label + Inc. |Bi}l Bc Label + Inc. [Ci] Cc
0 1 1 [2 2 313 3 4 4 |4 4 5 515 5
18 4 8 0 1]2 4 0 3 14 6 2 5 6 8
1A R LTIE.DRI |R|E'~1dr 1| IEHD

There are no LABEL restrictions for this instruction.

The VAR field may contain up to four of the following functions,

left-justified and in any order:

Definition
Preset STX.
Dial.

Delete ETX.

Voice Response.

Function Modifier

g < B O X

Tone Response.

The A ADDRESS field specifies the internal file-name or associated
The A index field (column 31) may

optionally contain an S to signify stream mode.

record name to be released.

Otherwise, index-

ing is not permitted.
The B ADDRESS field may optionally contain an At-End action label.

The remaining fields are not used by this instruction.

Revised 11/20/70

by PCN 1034949-002 7-17

RITE

continued

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

7-18

UNCL

CANCEL DC 1/O UNCONDITIONALLY (UNCL) - PSEUDO.

This is a data communications pseudo and is defined for the Advanced
Assembler only. It cancels a previous data communications instruc-

tion regardless of data flow conditions.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LAB
EL copE | aF | BF Label +lne. |al] Ac Label +1nc. |B{ Bc Label +nc. |cif ce
0] 1 2 2 2 EINE 2 a4 3 31 R 5
k 4 8 ﬁ 2 1|2 s 0 3la |6 2 '
G QI;Llrgug}Lu plalT|aldl1

There are no LABEL restrictions for this instruction.

The VAR field may contain either or both of the following function

modifiers, in any order:

a. B - break transmitted.

b. H - hang up (disconnect phone line).

The A ADDRESS label field specifies the internal file-name on which
the I/O command is to be cancelled. Incrementing, indexing, and

address cdntrolling are not permitted.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

For a more detailed information, refer to the B ZSOO/B 3500 Master

Control Programs Information Manual.

Revised 11/20/70
by PCN 1034949-002 7-19

WAIT

AWAIT INQUIRY (WAIT) - PSEUDO.

This is a data communications pseudo and is defined for Advanced As-
sembler only. It suspends program execution until a previously in-
itiated FILL operation is completed, or a previously enabled device

inquires, or (optional) a time-out occurs.

The format for the WAIT instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS

oP.
LABEL
CODE AF | BF Label + lne. JAIl Ac Label + Inc. |Bi] Be Label + Inc. |Ci] Ce
1 1 2 2 3 3 4 4 |4 4 5 515 5
4 0 3 |4 6 2 516 8

0 3
F’ 4 8 2 1|2
»515‘:7 TE&H N

There are no LABEL restrictions for this instruction.

The A ADDRESS field optionally points to a 5~-digit UN field contain-

ing the maximum number of seconds the program is to be suspended.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.
Control returns to the next instruction following the WAIT if:
a. WAIT ends with a time-out or
b. There are no FILLs pending and no devices are enabled or

c. A FILL I/O is completed, or an enabled device inquires and
the corresponding FILL/ENBL command did not contain an

action label.

Otherwise, control is returned to the action label specified in the

FILL/ENBL command.

7-20

WAIT

continued

The programmer must assure that all action label routines that may
receive control are in core when the WAIT command is executed. The
MCP will not perform any implicit overlay operations. For more de-
tailed information, refer to the B 2500/B 3500 Master Control Pro-

grams Information Manual.,

Revised 11/20/70
by PCN 1034949-002 7-21

WCRC

WRITE TO CONTROL/READ TO CONTROL (WCRC) - PSEUDO.

This is a data communications pseudo and is defined for Advanced
Assembler only. The function of this pseudo is to pass data to a
remote device from memory locations and, when successfully completed,

to cause data to be read from the remote and passed to appropriate

memory locations.

The format for this instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE | AF | BF Label +1Inc. JAl] Ac Label +Inc. |B4 Bc Label +Inc. ICi| Cc
o 1 1 kb]2 2 33 |3 4 a4 |4 5 515 |5
8 4 8 b)2 112 |4 0 318 |6 2 56 |8

TR

There are no LABEL restrictions for this instruction.

The VAR field may specify up to four of the function modifiers, left-

justified, and in any order:

Code Description

)

Inhibit time-out.
Preset STX.

Dial.

Delete ETX.

Audio response.
Poll.

Ignore ENQ.

0o "o<g e O M

Tone response.

The A ADDRESS field specifies the intermal file name or associated
record name from which data is to be sent and into which data is
to be received. The A index (column 31) may optionally contain an

S to signify stream mode. Otherwise, indexing is not permitted.

NOTE
Stream and audio response

are an illegal combination.
7-22

WCRC

continued

Data will be passed to the remote device from ascending memory
locations starting with the location specified by the A ADDRESS
and will continue until an ETX is detected. A READ will then be
initiated on the remote device and the data will be passed to
ascending memory locations beginning with the location immediately
following the ETX control code which terminated the WRITE and will
continue until an ETX control code from the remote device is
encountered. FEach portion of the message being written and read

must be terminated by an ETX code.
The B ADDRESS field may optionally contain an End-of-File label.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

Revised 11/20/70
by PCN 1034949-002 7-23

WCRT

WRITE TO CONTROL/READ TRANSPARENT (WCRT) - PSEUDO.

This is a data communications pseudo and is defined for Advanced
Assembler only. The function of Write to Control/Read Transparent
is to pass data to a remote device (normally a computer) from memory
locations and when successfully completed, to cause data to be read
from the remote device and passed to appropriate memory locations
and terminating at the end of the record-description without passing

an End-of-Transmission control code.

The format for the WCRT instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS

LABEL op.
_ CODE | AF | BF Label +1Inc. JAl Ac Label +Inc. |Bi Bc Label +Inc. |Ci} Cc
Q 1 1 2 2 313 |3 4 414 |4 5 Sﬁ 5
4 8 b |2 112] 0 34 e 2 5 8

There are no LABEL restrictions for this instruction.

The VAR field may contain either or both of the following function

modifiers, left-justified, and in any order:

a. T = dinhibit time-ocut.
b. D - dial.

The A ADDRESS field points to the record area which is to transmit
and receive data or the file-name associated with the record. In-
dexing is not permitted. Data will be passed to the remote device
from ascending memory locations starting at this field and will
continue until a control code denoting End-of-Transmission is de-
tected. A READ will then be initiated on the remote device, and
the data word passed to ascending memory locations beginning with
the location immediately following the End-of-Transmission control
code which terminated the WRITE and will continue until the end of
record area is filled. Control characters in the data received

do not stop transmission.

7-24

WCRT

continued

The B ADDRESS field may optionally specify an End-of-File branch
label.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

Revised 11/20/70
by PCN 1034949-002 7-25

WTRC

WRITE TRANSPARENT/READ TO CONTROL (WTRC) - PSEUDO.

This is a data communications pseudo and is defined for Advanced
Assembler only. The function of this pseudo is to pass data to the
remote device until the end of the record description is reached and,
when successfully completed, to cause data to be passed from the
remote device to memory locations starting at the end of the record-
description and continuing until an ETX control code is detected.

A maximum of 100 characters can be received during the READ.

The format for this instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label +Inc. JAll Ac | Label + Inc. |B{ Bc Label + Inc. |Cif Cc
0 1 1 2 2 3]3 3 4 4 |4 4 5 515 5
_Fg 4 8 2 112 4 0 3 {4 6 2 5 6 8

nglr sp'gl aHg;F 1

There are no LABEL restrictions for this instruction.

The VAR field may contain either or both of the following function

modifiers, left-justified, and in any order:

a.,. T - inhibit time-out.

b. D - dial.

The A ADDRESS field points to the internal file-name or associated
record name from which and to which data is to be transmitted.

Indexing is not permitted.

The B ADDRESS field may optionally contain an End-of-File branch
label.

The remaining fields are not used, nor are the Program Reserved
Memory and the comparison and OVERFLOW indicators changed by this

instruction.

7-26

SECTION 8
SORTER — READER AND LISTER OPERATIONS CODES

GENERAL.

The sorter-reader and lister operation codes are described in alpha-
betical sequence, and each description is presented in a standard
format. FEach instruction has a coding example followed by a descrip-
tion of LABEL entry restrictions and entries (if any) follow. Fach
field used is defined. Changes to the comparison and OVERFLOW indi-

cators and Program Reserved Memory are described.

8-1

ABLE

ENABLE LISTER (ABLE) - PSEUDO.

This is a MICR pseudo and is defined for the Advanced Assembler only.

The function of this pseudo is to suspend the program until the Not

Ready condition has been corrected.

The format of the ABLE instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP
LABEL .
CODE AF | BF Label +Inc. ANl Ac Label + Inc. | B Be Label +Inc. ICi] Cc
0 - 1 1 2 2 2 313 3 4 4 14 5 515
I8 4 8 b |2 ke 112 |4 0 3 14 2 5 |6
Al L rAdNite '3l

There are no LABEL restrictions when using this instruction.

The A ADDRESS field specifies the internal file-name of the sorter.

The remaining fields are not used by this instruction.

name must have been opened before the ABLE can be executed.

The file-

Once the file has been enabled, the program is suspended until the

LISTER Not Ready condition (Not Ready or End—of-Paper) has been

corrected.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

ADVANCE BATCH COUNTER (CWNT) - PSEUDO.

CWNT

This is a MICR pseudo and is defined for the Advanced Assembler

only.

sorter~reader,.

The format for the CWNT instruction is:

It increments, by one, the batch counter in the specified

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label + Ine. Al Ac Label + Inc. {Bi| Bc Label +Inc. |Ci} Cc
0 1 1 2 2 3|3 |3 7] Vi PR 7 5 515 |5
8 4 8 o |2 Is 112 s 0 3la e 2 sle s
There are no LABEL restrictions when using this instruction. The

A ADDRESS field must specify the internal file-name of the sorter-

reader.

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

Flow must be stopped before this command is issued.

FLOW

START SORTER-READER IN FLOW MODE (FLOW) - PSEUDO.
This pseudo physically starts a sorter-reader feed in the flow mode.

The format of the FLOW instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL oP.
CODE AF | BF Label +ine. |All Ac Label + Inc. |Bi] Bc Label + Inc. |Ci] Ce
0 1 1 2 2 2 313 3 4 4 |4 4 5 515 5
8 4 8 0 2 8 1]2 4 0 3 }4 6 2 5 16 8

There are no LABEL restrictions when using this instruction.

The A ADDRESS label field specifies the internal file-name of the

sorter.

permitted.

Incrementing,

indexin

g

and address controlling are mnot

The B ADDRESS must contain an address to which control will pass if

the sorter is in a flow stopped mode.

Incrementing is allowed.

The C ADDRESS must specify a batch-ticket-routine.
allowed.

Incrementing is

The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by the instruction.

When a sorter-reader is started in the flow mode, logical read (SRTR)

commands for each item must be executed within a time 1limit to

prevent non-read conditions.

to the B 2500/B 3500 Master Control Programs Information Manual.

84

For a more detailed explanation,

refer

LGHT

TURN ON POCKET LIGHT (LGHT) - PSEUDO
This is a MICR pseudo and is defined for the Advanced Assembler only.
It causes the selected pocket light on the specified sorter-reader

to illuminate, thus requesting operator action.

The format of the LGHT instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL op
CODE AF | BF Label +1Inc. |AIl} Ac Label +Inc. [Bi] Bc Label + tnc. |Ci] Cc
0 1 1 2 2 2 3)3 3 4 4 14 4 5 515 5
8 4 8 0 2 1}2 4 0 3 4 -] 2 5 16 8
Ely] | | el % TIR1 K3

There are no LABEL restrictions when using this instruction.

The A ADDRESS label field specifies the internal file-name of the
sorter-reader. Incrementing, indexing, and address controlling are
not permitted. The B ADDRESS points to a 2-digit unsigned numeric

field containing the pocket number whose light is to be illuminated.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

FFlow must be stopped and all documents pocket selected. The sorter-
reader control is set to a Not Ready condition which must be cleared

by the depression of the sorter-reader start button.

The next successful sorter-reader request, other than pocket light,
turns off the selected pocket light.

8-5

LSTR

his instruction is a MICR pseudo and is defined for Advanced Assem-

I:RINT MTL RECORD (LSTR) - PSEUDO.

bler only. It releases a logical record to the multiple tape lister

for printing.

The format of the LSTR instruction is:

VAR. A ADDRESS B ADDRESS ' C ADDRESS
oP.
LABEL
CODE AF | BF Label +1Inc. Al Ac Label +Inc. |Bi] Be Label + Inc. |Ci] Cc
0 1 1 2 2 EEE] 714 |4 5 515 |5
E 4 8P |2 I8 1|2 |4 0 304 e 2 sle |s
s[r[R Ls|r|”leL drirbly

There are no LABEL restrictions when using this instruction.

The A ADDRESS label field specifies the record area containing the
record to be released or the file name associated with the record.
I’Fhis record must be specified as being 44 characters in length.

Incrementing, indexing, and address controllers are not permitted.

IThe B ADDRESS field must specify a Not Ready branch label to which
control passes, if the lister is in a Not Ready condition, to allow
for continuation or orderly suspension of the program. Indexing is

not permitted.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

The lister and tape designation must be loaded into the field refer-
enced by the FILE declaration (columns 58 through 63) before this
command is executed. The format for the various unit and tape desig-

nations for this field is outlined below:

Digit Positions

1 2 3 &4

U T U T

LSTR

continued

U = 0 - Suppress print.
U = Unit No. 1~3.
T = Tape No. 1-6.

For the master/slave/slave combinations, the first 22 characters of
the record are printed on both the master tape of unit 1 and the
tape designated by the first two digit positions (D1-D2). If the
first digit position (Dl) is zero, printing on both the master tape
on unit 1 and the tape designated by the second digit position (D2)

is suppressed.

For the 6-tape/6-tape combination, the second digit position (D2)
must equal zero, then the first 22 characters are printed on the
master tape of the unit designated by the first digit position (D1).
If the first digit position (Dl1) is zero, printing of the master.tape

is suppressed.

The second 22 characters of the record are printed on the tape desig-
nated by the third and fourth digit positions (DB-Dh). The printing
of the tape designated by the third and fourth digit positions
(D3-D4) is possible with the "18 tape lister."

For a more detailed explanation of multiple tape lister operations,
refer to the B 2500/B 3500 Master Control Programs Information

Manual.

PCKT

EXIT FROM POCKET SELECT ROUTINE (PCKT) - PSEUDO.
This is a MICR pseudo and is defined for Advanced Assembler only.

It pocket selects a MICR item, and performs the function of a RTRN.

The format of the PCKT instruction is:
VAR. A ADDRESS B ADDRESS C ADDRESS
oP.

AB

L EL CODE AF | BF Label + Ine. |AIl Ac Label +Inc. |Bif Be Label + Inc. JCi] Cc
0 1 T k|2 2 313 |3 2 I VR V) 5 5 5
s 4 s b |2 g 12 |4 0 3l e 2 5 8
eINDlPIk/s|PlclklT Miz|clR] plclilT T asa.Hr

There are no LABEL restrictions when using this instruction.

The A ADDRESS label field must specify the internal file-name of the

sorter-reader file. TIncrementing, indexing, and address controllers

are not permitted.

The B ADDRESS label field must point to a L-digit unsigned numeric

data field containing the following information in the format NNRV:

Code Definition

NN Pocket into which the item is to
be selected.

R Reserved (zero).

v Zero (0) to continue flow, and one

(1) to stop flow.
Indexing within the B field is not permitted.

The C ADDRESS field must contain a too-late-to-pocket-select branch

label. If the PCKT command was issued too late, execution passes

immediately to this label. Indexing is not permitted.

The remaining fields are not used by this instruction.

PCKT

continued

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

For a more detailed explanation, refer to the B 2500/B 3500 Master

Control Programs Information Manual.

SKIP

SKIP MTL (SKIP) - PSEUDO.
This pseudo is defined for Advanced Assembler only. It causes the
multiple tape lister to skip 2 1/2 inches of paper. Only the master

tape and one detail tape will move.

The format for the SKIP instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.

LABEL CODE AF | BF Label +Ine. Al Ac Label + Inc. |Bil Be Label + Inc. |Ci| Cc
0 1 T B |2 2 33 |3 4 T e |4 5 51515
s 4 8 _p |2] 112 |4 0 3la |6 2 56 |8
EINDRIGIN|S|Klz P g‘sr R1_.l Inr{AlDiY|t
There are no LABEL restrictions for this instruction.
The A ADDRESS label field specifies the internal file-name or
associated record-name of the lister to be skipped. Incrementing,

indexing, and address controlling are not permitted. The B ADDRESS
label field must specify a Not Ready branch label to allow orderly

continuation or suspension of the program. Indexing is not permitted.
The remaining fields are not used by this instruction.

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by this instruction.

The sorter must be stopped before this command is issued. Control

is returned to the program after the skip has been completed.

Before this command is executed, the lister unit and the tape desig-
nation must be loaded into the field referenced by the FILE declara-
tion (columns 58 through 63). The format of this field for the

various unit and tape designations for SKIP is outlined below:

Digit Positions
i 2 3 &

U T U T

8-10

SKIP

continued

U = Unit No. 1-3.
U = 0 - Suppress skip.
T = Tape No. 1-6.

For the master/slave/slave combination, a skip operation is performed
on both the master tape of unit 1 and the tape designated by the
first and second digit positions (D1-D2). If the first digit posi-
tion (Dl) is zero, then skipping on both the master tape on unit 1

and the tape designated by the second digit (D2) is suppressed.

For the 6-tape/6-tape combination the second digit position must
equal zero. The skipping of the master tape on the unit designated
by the first digit position (D1) is performed. If the first digit
position (Dl) is equal to zero, then skipping of the master tape is
suppressed, an additional tape can be skipped as designated by the
third and fourth digit positions (D3-DA4).

If the first and third digit positions (Dl—D3) are equal to zero,

an error will occur.

For a more detailed explanation of multiple tape lister operations,
refer to the B 2500/B 3500 Master Control Programs Information

Manual.

SLEW

SLEW MTL (SLEW) - PSEUDO.
This pseudo is defined for Advanced Assembler only. It slews the
paper 10 inches on the multiple tape lister. ’

The format for this instruction is as follows:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LAB
EL CODE AF | BF Label +1Inc. |AH} Ac Label + Inc. |Bi] Be Label +Inc. |Ci] Ce
0 1 1 2 2 313 3 4 4 |4 4 5 515 5
18 4 8 0 2 142 4 0 3 |4 6 2 5 16 8
Eulp_guus E LISTRi ngJrRoly

There are no LABEL restrictions for this instruction.

The A ADDRESS label field specifies the internal file-name, or an
associated record-name of the lister to be slewed. Incrementing,

indexing, and address controlling are not permitted.

To allow orderly continuation or suspension of the program, the B
ADDRESS label field must specify a Not Ready branch label. Indexing

is not permitted.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

Before this instruction is issued, the sorter must be stopped. Con-

trol returns to the program after the SLEW has been completed.

Before this instruction is executed, the lister unit and tape desig-
nation must be loaded into the field referenced by the FILE declara-
tion (columns 58 through 63). The format of this field for the

various unit and tape designations for slew is outlined below:

Digit Positions
i 2 3 4

U v U T

D1-D2:

D3-DkL:

A%

U

U

5

6

7

SLEW

continued

Allow SLEW of master tape.

Inhibit SLEW of

SLEW

SLEW

SLEW

SLEW

SLEW

SLEW

SLEW

all

all

all

all

all

all

all

tapes

tapes

tapes

tapes

tapes

tapes

tapes

H

2

master tape.

Unit 1 (V takes precedence over U).
Unit 2.

Unit 3.

Units 1 and 2 (For the 6/6-tape
combination, only
D1 = 3 can be
designated).

Units 1 and 3.
Units 2 and 3.

Units 1, 2, and 3.

Suppress SLEW of designated tape (D3-Dh are used only

a 4

Unit No.

0

Tape No.

1=

3.

on the 18 tape lister;
otherwise D3-D4 must

be zero).

- Do not suppress SLEW.

1-

6.

SPAS

SPACE MTL ONE LINE (SPAS) - PSEUDO.
This pseudo is defined for Advanced Assembler only. It provides for

single spacing on the multiple tape lister. Only the master tape

and one detail tape will move.

The format for this instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL oP.
CODE AF | BF Label +Inc. [Al] Ac Label +Inc. |B{ Be Labe! +Inc. |Ci] Cc
0 1 1 2 2 313 3 4 4 |4 4 5 515 5
J8 4 8 P 2 B 112 4 0 3 14 6 2 516 8
Ejo 5|ng ;.HAI;, L THF !nglr ﬂv

There are no LABEL restrictions for this instruction.

The A ADDRESS label field specifies the internal file-name or an
associated record-name of the lister to be spaced. Indexing, incre-

menting, and address controlling are not permitted.

To allow for orderly continuation or suspension of the program, the

B ADDRESS label field must specify a Not Ready branch label. Index-

ing is not permitted.

The remaining fields are not used, nor are Program Reserved Memory
and the comparison and OVERFLOW indicators changed by this instruc-

tion.

Before this instruction is executed, the lister unit and tape desig-
nation must be loaded into the field referenced by the FILE declara-
tion (columns 58 through 63). The format of this field for the

various unit and tape designations for SPAS is outlined below:

Digit Positions

i 2 3 &

U T U T

8-14

SPAS

continued

c
]

Unit No. 1-3.
U = 0 - Suppress SPAS.
T Tape No. 1-6.

For the master/slave/slave combination, a SPAS operation is performed
on both the master tape of unit 1 and the tape designated by the
first and second digit positions (Dl-D2). If the first digit posi-
tion (D1) is zero, then SPACING on both the master tape on unit 1
and the tape designated by the second digit (D2) is suppressed.

For the 6-tape/6—tape combination the second digit position must
equal zero. The SPACING of the master tape on the unit deéignated
by the first digit positon (D1) is performed. If the first digit
position (Dl) is equal to zero, then SPACING of the master tape is
suppressed. An additional tape can be spaced as designated by the
third and fourth digit positions (D3-D4).

If the first and third digit positions (Dl-DB) are equal to zero, an

error will occur.

For a more detailed explanation of multiple tape lister operations,
refer to the B 2500/B 3500 Master Control Programs Information

Manual.

SRTR

READ RECORD FROM SORTER FILE (SRTR) - PSEUDO.

This pseudo makes the next logical record from a sorter file avail-

able to the program (demand or flow mode).

The format of the SRTR instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label + Ine. AII Ac Label +iInc. |B{ Be Label + Inc. |Ci] Cc
0 1 1 2 2 313 3 4 4 |4 4 5 515 5
18 4 2 12 4 0 3 J4 [2 5 }6 8
RlomCIR] |SIRITIR HC+?FL'L FlFVS7V’ ¢ACHVWfr

There are no LABEL restrictions when using this instruction.

The A ADDRESS label field specifies the internal file-name of the
sorter. Increment, indexing, and address controlling are not per-

mitted.

The B ADDRESS label field specifies the address in the program to
which control passes if the sorter is in a FLOW STOPPED condition.

The C ADDRESS label field specifies the address in the program to
which control passes if the item processed by the prior SRTR command
was a batch ticket (Black Band Document).

Program Reserved Memory and the comparison and OVERFLOW indicators

are not changed by the instruction.

The logical record made available has already been pocket selected

by the PCKT command in the USER declarative procedures.

8-16

7]
¥ .
o Ll
< Vis
TV 0
W Y2
. ol
[3Y.}
Ot
=i o0 o on o L3 »o -
(371 =
> e L] - L -
oo o
z0 -t &« & &
-0 o] x X
o~y o - o - o« lal i ..
(o] o - XX X
T o T X x <t a.
oMmO o I - *TH W
WSS W o~ *xx W - x0 % -
NEO - * X - x X <
noee oo E IR 7,) o - -
-t xR Lad rTOR
~ X x FINEY
Y8 * X% x * 1
om x0 % < FTWEY w
ey o . ot o - o0 o -« L 1 on oo 00 oo @] o -3 EUIN o - oo owow
® *OX x = [y
[+ 4 s 9o 00 s on - L X7, X 3 Y o8 00 ss o8 o - [7,] KN os - .. noos g
wo Hhd (] — Lt % o
> xOX o X S
Dt ®*Ox — - xOx Ay
x os ot oe esoe oo L N e ov ov on o . .. RCI K oo o= oo csan
tud ' x0 X @ x0 x -~ H
N o * x z TOO o o W * x0 O0 O O o
wvim tat Y. 2 - Sallad — - o T e ey el
<_4 -1 o *iad & s Lo — - o ELdEp~ b = ®
[b o] - xR - 0o ¥ ¥ O AVIEY ¥ ¥ XY o
om < x *Dx T, o. a v «aD«0 0 O oA 0
(=] x ¥ * X 1
n R xx H
mo i} S R S R |)
Mex z zZ 2 Z Z £
Pt G0 00 00 PR OO - o - OR OS Gl G0 PO S0 S 00 OO OF ¢ S S5 B8 &8 00 o6 O G0 B 90 00 G0ee r
< 0
- Pe 08 08 o8 ok ee - OO U G0 S0 S5 O 0 SN B0 OB OF S0 O 0 96 o0 *e 00 00 55 o0 P G0N0 S
[3)
Z Gy
L) o)
- 0N S0 O¢ B8 - ee L _] GO G5 O G0 O DT B0 DS B0 OF B0 G0 OB S0 o8 OO -t e Fu 00 08 90 Seus
> o —)) (7,14} | o 0}
4 tine -« QIO z NN X LW -
oo (3 Ll L R SN N~ T R W) S ¥ X X et o,
Srow = racorooxraih OIXL O O O @ g
PO AL b ZZZ2Z IO O—X WO NE <O NOM O IO O <
<COENX DIDID =3 DDODDOD VN0 DNER XDV~ IAND ©caon oo ow 5d
3]
e VOO0 & LSOt L O o«
o coOo o c -— .
L ON vt =t — Zh- o o N N NN —
<< Lo, < 1
OFXLOTCT LWL OCTIT ZZET @ - ar - e ®
WZW SO OO0 -0 LIWOZ I ZZZ 2 ZNTZV ZZZZZZZXZ
LOCVIHuldadd rUZuWWTTgZ 00 D> SEDSEID>D-GODIZ 2O>D3D>0 - ¢
OVHILEDD LXWEOOOW COLMUVIEEXTTOMOMNE OO .IDO EFMEMDED IN. 5
-
O - 2 w - X 4 @ - 0
-t LWt —-Dow J0 X zZ =T o ¥ a = o or o o o
Wl DU L O — 1 o - W L X X W X v &
m oo ooy O o O b a0 - - O ¥ N W ST
< OOOII0. XX i W = W <« < Z < O X = YO
>4 NOE -~ 00 O m v @xa m W - @ « o oo
(W] x
@ =
QO COVOOCLOCOCOOCOCOCOOOOOCOOCOOCOO0OOCOCOCOOOOCOOSOO00
HZ e NNFINY MO O ONM N OMN O OO =M FIN O MO O C et NMZ IO OO (ML 1N ON OO\ O
x OO OO O OLWOO O vt wtwmt wmpvmtert vt et =N O NN N N NI) (Y O) NN MM NS T T T TP 2N
F OCOCOOCOOCOOOROOCOCCCCOOOOOOOCCOOOOCOOCOOCOOCOOCCOOO
b OO0COOCUACOOO00O000OO0OCO0O0 0000000 OOOOOOOCODOOOO O
IV OOCOO00 COCOOCOOOOCCCOOOOOOOC OO0 COCOOCOCOCOO
L
o -
-— *
Y (e oYY \I* e o laTalaTal (a’alalaYaYlalaYalalat oV o ¥ W N ¥ oV o9 lalalalaYa VoW or N
o LI FITROIN SION WO FOO FF T OO NOD 2 NO DO OO
O VOOOCXUN COOC COMND O\ OO © NI AN O wtomt VIR0 O O MN
<X [e Do J7o X B AR B R wtedetet w40\ O\ NN ON N 1) 30N 2 <7 I I NN
rw AN et DO D O 00 oD a0 A 60 A0 a0 a0 D QD 90 0 60 €00 ¢ a0 a0 80 @ a0 00
DE Al NSNS N Nt At Mol ol N Ao N N ol il o o Nl P ol b Nt N N N NSNS Pt
o
x
o

SECTION 9
FREE-FORM ASSEMBLY LANGUAGE

GENERAL.

This section describes a free-form assembly language which incor-
porates all the functions of the B 2500/B 3500 Assembly Language.

All elements of both the Basic and Advanced Assembler languages
are provided. A translator which converts free~form language to

regular assembly language is provided as systems program FFT.

LANGUAGE DESCRIPTION.

The pseudo FIXD is used to signal an escape from the free-form

assembly language described in this section, thus allowing insertion

of statements in the regular fixed format. The pseudo FREE is used

to signal return from fixed-form assembly language to free-~form

assembly language. The pseudo FREE must be entered in card columns

1 through 4. FIXD and FREE terminate translation of the card in

which they appear. The first statement in the selected mode is

assumed to start in the next card. The statement delimiter (semi-

colon) is optional following these pseudos.

A scale is printed on a remote 9350 following the receipt of a

record containing FIXD to facilitate fixed format alignment.

DELIMITERS.
Certain special characters (delimiters) are used to locate or define
fields. These delimiter characters and their function are listed
below.

Character Function

Locate the start of the sequence statement.
: (colon) Delimit the statement label.
Blank Delimit various fields. See the particular

field discussion for mandatory or optional

usage.

Character Function

/

()

.

H
(semicolon)

##

STRINGS.

Locate the end of the AF and/or the

beginning of the BF entry.

Enclose strings. Applies only to

following: REMK, DOCU, CNST, and

Locate modifiers (see modifiers).

Statement delimiter. Signals the

to write the translated statement

End-of-Record delimiter. Signals

the

literals.

translator

as output.

the trans-

lator to read another record. Automatically

inserted by the translator at the
input buffer.

Error deletion signal.

NOTE

Some delimiter characters may be used in
labels without conflict with their syntac-
tic function, but delimiters should in
general be avoided to prevent possible
failure of the translator. The characters
#, /» ", and) may be embedded in labels
(for exceptions, refer to page 10-8). The
characters ', blank, (, ', and < must not

be used in labels. All delimiter char-

end of the

acters may occur in strings without conflict.

A string is a list of characters enclosed in quote marks.

gquotes are not considered part of the string.

string may contain any character including the quote mark.

Examples:
MVN

1/ "2" HOLD;

CNST /6 UA "#,$, "";

The

A literal oxr constant

STATEMENTS.

A statement is the free-form code corresponding to a single B 2500/

B 3500 symbolic assembly instruction (blank input records are ig-

nored). A statement may begin anywhere on the input record and be
continued across as many records as desired. Each statement is
made up of several fields. The translator regards the following as
fields:

a. Sequence number.
b. Statement label.
C. Op Code.

d. AF or BF (if both are present, then the pair constitutes
a single field).

e. The A, B, and C ADDRESS.

f. ADDRESS modifiers.

. REMARKSs.

h. Strings.

i. Each word of REMK or DOCU text.

The following are restrictions for statements:

a. Every statement must be followed by the statement

delimiter (semicolon).

b. A statement field may not be continued from one record

to the next.

c. No field may begin with the error deletion signal ##

unless one intends to delete the entire statement.

d. The last statement to the translator must be the FINI

statement.

SEQUENCE NUMBER (OPTIONAL).
A pound sign (#) followed by one to six digits identifies the

sequence number, and the pound sign is not considered part of

the sequence number. One or more spaces must follow the last
character of the sequence number, and the sequence number is left-

justified on the output record.

Examples:
#123456 becomes 123456
#001 becomes 001

No embedded blanks or non-numeric characters are permitted in

the sequence number.

STATEMENT LABEL,

A valid label or program point followed by a colon. The colon is

not considered part of the label.

Examples:
BBX33: becomes BBX33
JA becomes JA
START: becomes START

No embedded colons are permitted in the statement label.

ADDRESSES.
The A, B, and C ADDRESS fields must be separated by one or more

spaces or modifiers.

Examples:
CPA INPUT OUTPUT;
CPN INPUT(UN)OUTPUT;
MPY X Y Z COMPUTE Z=X TIMES Y;
MPY X(uN)Y(UA)Z(UN) COMPUTE Z=X TIMES Y;

The translator contains a table indicating the maximum number of
addresses associated with each Op code. Fields which do not con-
stitute an ADDRESS are treated as remarks and placed in the REMARK
field (columns 58 through 80).

9.l

MODIFIERS.

The functions of indexing, incrementing, and address controllers
are regarded as modifiers of the applicable ADDRESS. Modifiers
must be enclosed in parentheses and follow the A, B, or C ADDRESS
to which they apply.

Examples:
MVA INPUT(UA) OUTPUT(UN) ;
MVR 3/40 (AL) PRINT;

In the first example, the A ADDRESS modifier is UA and the B ADD-
RESS modifier is UN. The second example shows a blank ADDRESS
modified by AL.

Spaces are not required between the ADDRESS and its modifiers.

Examples:
MVA INPUT(UN) OUTPUT;
MVN INPUT(UN)OUTPUT;
MVA INPUT (UN) OUTPUT (ua);

Indexing is denoted by a single digit from 1 to 3.

Examples:
INC FICA PAYROL(1 UA);
EXT BASE(3 IA);
MVA INPUT(2) OUTPUT (1) ;

Incrementing or decrementing must include the sign.

Examples:
MVA INPUT(-23) OUTPUT (+3) ;
MVN COKE(+123) BOTTLE(-1);
Modifiers may be written in any permutation. At least one space

must separate modifiers from each other.

Examples:

MVA INPUT (3) OUTPUT;
MVA INPUT(3 UA) OUTPUT;

INC SUM(+2 3 UN) TTL;
INC SUM (UN -12 1) ATTL;

NULL MODIFIER.

Writing the left and right parenthesis alone forms the null modifier.

The null modifier can be used to delimit a void ADDRESS label
field, thus leaving it blank.

Examples:

EXT() SKIP A-ADDRESS;

INFL () SIZE;

INFL() 00038

NOTE
To omit an optional B or C ADDRESS,
an extra modifier must be coded, since
one of them will be associated with
the A ADDRESS entry. For example,
READ FILE () () CARD READ;
OP CODE.

Any valid OP code followed by one or more blanks, or the alternate
delimiters discussed below. An OP code may be delimited by a

semicolon whenever the OP code by itself is a complete statement.

Examples:
REMK ;
EXT;
ENDR;
ENDF;

An OP code may be delimited by a slash (/) whenever the instruction

does not require an AF entry.

9-6

Examples:
MVA/3 INPUT OUTPUT;
CPN/1 TABLE TOP;

An OP code may be delimited by the

and BF

blanks.

null modifier whenever the AF

entries are not written and the A ADDRESS is to be set to

Examples:

INFL() SIZE;

EXT() REMARK ON EXIT;

NOTE

EXT, in the example above, normally allows

for an A ADDRESS.

been omitted,
appeared on the output
The desired result, by
was to blank out the A

the word

Had the null modifier

REMARK would have
as the A ADDRESS.
the above coding,

ADDRESS and place

the words REMARK ON EXIT in the REMARK
field (columns 58 through 80),

AF AND BF ENTRIES.

The AF and BF entries must be separated by a slash even if only

one of the entries is required or written. No slash is required
if the instruction requires no AF or BF entries. One or more
spaces must follow the BF field.
Examples:
FREE FORM AF BF
3/2 becomes 03 02
/F becomes F
14/ becomes 14
2/A becomes 02 A

The AF and BF entries are examined to determine if they contain

numeric or alphanumeric data.

If the contents are numeric, leading

9=-7

zeros are supplied. If the contents are alphanumeric, trailing
blanks are supplied. (See above example.) It may be necessary
to write the slash when an AF or BF entry is not required. For
example, both assemblers accept a label containing a slash such

as RD/WT. Assume it is desirable to write the code as:
NTR RD/WT;

In this case, the translator would look at the RD/WT as an AF /BF

field. To avoid this conflict write:
NTR / RD/WT;

This allows the translator to look on the first slash as the
AF/BF field (with no entries) and then process the RD/WT as an
A ADDRESS field.

The restrictions for AF and BF entries are:

a. The AF entry must not contain a semicolon, an embedded

blank, an End-of=-Record delimiter, or a slash.

b. The BF entry must not contain a semicolon, an embedded

blank, or an End-of+«Record delimiter.

LITERALS.

If a literal string is strictly numeric (made up only of the num-
bers O to 9), the translator automatically assigns an address con-
troller of NL (numeric literal). If the literal is not strictly
numeric, the address controller of AL (Alpha Literal) is assigned.
The automatic controller assignment may be overridden by a modifiexr
entry. Literals do not have to be written as a string unless
automatic controller assignment is desired or the literal contains
delimiters. Thus several .variations are possible to create a

literal in the A ADDRESS field.

Examples:
MVA 1/ """ OUTPUT;
MVA 3/ "%“!" OUTPUT;

9-8

MVN 1/ A(NL) OUTPUT;
MVN 1/ "A"(NL) OUTPUT;
MVN 1/ 2(NL) OUTPUT;
MVN 1/ "2" QUTPUT;
MVR 3/40 (AL) PRINT;

The following are restrictions for creating literals:

a. The AF entry must be given.

b. Delimiters, other than blank, must be in a string.

SPECIAL STRING.

A special string is the statement delimiter (;) or End-of-Record

delimiter (<) enclosed in quote marks, preceded and followed by at

least one blank.

Examples:

1.
9

Me 1t

Special strings must be used for carrying these delimiters as text
in a REMK, DOCU, or COMMENT portion of an instruction.

REMK AND DOCU PSEUDOS.

These pseudos must be followed by one or more spaces if any text

is to follow. The text begins with the first non-blank character
and may continue on subsequent input records until reaching the
statement delimiter (semicolon). Each word of the text is regarded

as a field, and unnecessary spaces between words are ignored.

The output text is placed in the equivalent positions (columns 22
through 80). Text which exceeds these 59 character positions is

truncated from the right.
The following is a restriction for the REMK and DOCU pseudos:

If the error deletion signal, statement delimiter or End-
of-Record delimiter is to be carried as text, then it must

be enclosed in quotes (e.g., "##").

FREE-FORM COMMENTS

It may be desirable to have certain comments appear on the free-form

listing which are not to appear on the ASMBLR version. The End-of-

Record delimiter implies this feature.

Examples:
+~ Starting a record with the left arrow
« allows all of these comments to
<~ appear on the free-form listing, vet
<~ not be translated or appear on the

«~ ASMBLR listing.

CNST DECLARATIVE.,

Constant data must be written as a string. The class (i.e., UA,

UN, SN) is treated as an A ADDRESS and not as a controller.

Examples:
CNST /2 UA "AB";
CNST /12 UN "123h56789032";
CNST /3 UA BLANKS;

It would be incorrect to write:
CNST /2 "AB"(UA);

The length of the string is determined by the concatenation of the
AF and BF entries. If the concatenation exceeds a value of 24, then

only the first 24 characters will be translated.

The string size must be given in the AF/BF field.

PICT DECLARATIVE.
The PICT declarative is coded like the CNST declarative, except
that the PICTURE text is not enclosed in quotes.

Example:
#020550 Z6: PICT /4 UA Z(6);

The first address field must be coded UA. The PICTURE may not
contain an embedded semicolon.

9«10

REMARKS.

REMARKs are for documentary assistance to the programmer. Any
fields which remain after processing the A, B, or C ADDRESSes are
regarded as remarks and are placed in the REMARK field (columns

58 through 80). REMARKs which exceed a length of 23 characters are
truncated from the right. An abort signal, semicolon or End-of-
Record delimiter in the text of the REMARK must be enclosed in
quotes (e.g., "##").

ERROR DELETION.
Any statement may be deleted from output by the presence of two

adjacent pound signs (##) at the beginning of a field. The deleted

statement must be completed with a semicolon.

Examples:
INC 1K ##
MVA INPUT OUTPUT ##;

The delete signal may be contained within a string without causing

the statement to be deleted.

Examples:
MVA 2/ "##" TANK DELETE SIGNAL AS LITERAL;
CNST /2 UA "##" DELETE SIGNAL AS CONSTANT;
REMK THE DELETE SIGNAL FOR THIS PROGRAM IS "##" ;

FILE DECLARATIVE.,

The FILE declarative is written in free-form format in a manner

analogous to any other command. For the Basic Assembler language
in which the maximum record size is required, the entry is written
as an AF/BF entry. Modifiers are used to insert information in
the required card columns other than the A, B, or C ADDRESS and
the REMARK fields.

Examples:
(BASIC) Name:
FILE 01/00 FILEID (MUFILE) XXXX0l (500000) S;

9-11

(ADVANCED) Name:
FILE FILETID (MUFILE) DSKS (999901) SS KEY1;

Entries for columns 22-27, 34-39, and L6-51 are left-justified
and filled with trailing blanks to a length of six. Note that in
the first example four filler characters are required for columns

lfMJ37 and, in this case, must be zeros.

SPEC PSEUDO.
The SPEC pseudo, in fixed-form coding, must be the first input

record. The translator assumes free-form format starting with the

next input record.

A printed listing of the free-form coding may be obtained by
punching an L in column 11 of the SPEC pseudo.

A fixed-form SYMTIN symbolic tape may be updated with free-form
statements. This feature is invoked by a P in column 12 of the
SPEC pseudo. The A ADDRESS of the SPEC pseudo specifies the source

device for correction cards in this case.

The A ADDRESS specifies the source device for free-form statements.

The following entries are permitted:

a. PAPER - paper tape reader.

b. CARDS - card reader.

c. TAPE - magnetic tape.

d. TYPE - remote B 9350 SPO (Advanced Translator only).
NOTE

When using a B 9350 SPO, the translator
deletes CR and LF from the input source.

DLET PSEUDO.

The DLET pseudo is, at present, ineffective in free-form update

translations.

9-12

OPEN PSEUDO.

Both Basic and Advanced Free-Form Translators expect three operands

on an OPEN statement. If REMARKs are to be included and only one

address is coded, null modifiers must be used. For example:
OPEN IN/ND file-name () () REMARKs;

MEMORY PSEUDO.

An Advanced Free-Form Program may inform the translator how much

core is available for assembly of the translated program by means
of the MEMORY pseudo. The format is:

MEMORY = (core available for assembly, in digits);
The MEMORY pseudo must appear on a record by itself.

Example:
IDNT TSTCRD; MEMORY = 40000; AREA: CNST /5 UA "ABCDE" ;

ADVANCED FFT FILE NAMES.

For purposes of label equating, the internal file names and extermnal

file ID's for Advanced Free-Form Translator files are:

Internal File-Name External File ID Function
REMOTE REMOTE Remote SPO in
CARDS CARDS Cards in
SYMPIN SYMPIN Paper Tape in
SYMTIN SYMTIN Magnetic Tape in
SYMDIN SYMDIN Disk in
PRINT ~ PRINT Print out
DFwW SYMDIN Disk out

FREE-FORM MESSAGES.

The following output messages are embodied in the free-form language.

*%¥ BOJ FFT (appears on B 9350 SPO)
SEQ# size too large
Invalid OP code

BF size too large

9-13

9-14

Missing quote mark - LITRL

Missing quote mark - CNST

Wrong delimiter

Size on + increment

Size on - increment

REMK exceeds 59 characters

*% EOJ FFT

2002
2003
$004
2005
2006
2007
2008
#020
2021
2022
£023
#2024
2025
2026
#027
2028
$#029
#030
#03}

* OF

(appears on B 9350 SPO)

IONT LSTCRODS

CRDFILt FILE CARD CRD 552 CARDS IN 3

CRDRECS RECD /80 UA RECORD AREAJ

PRTFILS FILE PRINT PRN S$SS52 PRINTQUTS

PRTRECY RECD 1/32 UA PRINT RECORD}

ENOFS

COUNT! CNST /4 UA "0000"3

REMK OPEN FILESs CLEAR PRINT AREA, GET READY}
OPEN IN/ CROFIL)

OPEN 0T/ PRTFILJ

SPRD 40/40 PRTREC }

REMK MAIN READ=PRINT LOOP FOLLOWS}

READS READ CRDFIL ENDFILS

MVW /80 CRDREC PRTREC MOVE IMAGE TO PRTJ

INC 1/ "1" COUNT COUNT CARDSS

MVA /4 COUNT PRTREC (+100)}

WRIT 1/ PRTREC « PRINT RECORDS

BUN READ)

ENDFILS® CLOS CROFIL’ #032 CLOS PRTFILS %033 STOP} #034 FINI}

ERRORS = 0000

Figure 9-1. Example of an Advanced Free-Form

Translator Program Source Listing.

SECTION 10
MACRO FACILITY FOR ADVANCED ASSEMBLER

GENERAL.

The Advanced Assembler provides a facility for the programmer to
define Macro and Library routines. These can be defined within the
program itself or placed in a Macro library on disk for general use.
In addition to the ability to create a library of Macro and Library
routines, there are library maintenance capabilities such as
patching, adding, removing and copying routines. The following
paragraphs describe the syntax for writing a Macro or Library
routine, the method used to call a routine, and the creation and

maintenance of a Macro library on disk.

MACRO SYNTAX AND METHOD FOR CALLING A MACRO.

FEATURES OF A MACRO.

The Macro may specify assembler language statements which may or may
not be assembled or may be altered depending upon conditions evalu-

ated at assembly time. For more information on this feature, refer

to the paragraph on Macro conditionals (page 10-2).

The Macro may inform the assembler to generate error messages when
the rules for writing a Macro call are violated. This is accom~-
plished through the MERR statement which is defined later.

A Macro may call other Macros.

A Macro may be user-defined, i.e., defined within a user's program,

or called from a system library.

THE THREE FUNDAMENTAL COMPONENTS OF A MACRO DEFINITION.

A header statement begins the Macro definition. It is followed by
model statements, and the definition is concluded with a Macro end
card. These statements are fully described in the following para~

graphs.

HEADER, The header card indicates the beginning of a Macro defini-

tion. The format of the header statement is:

10=1

VAR. A ADDRESS B ADDRESS C ADDRESS

OP.
CODE AF | BF Label + Ine. All Ac Label

2 2 3
4 8 2 1

3
2
F IMAIMmE] MA{CR E

i sl

A Formal Parameter is indicated by a $ followed by one to five

LABEL

2
®
0

Inc.

w

Label + Inc. |Ci} Cc
5
2

C=)
—
-
N
[
o
o &

wv

+

4

0
Eiva

N8
v

characters. This character string must follow normal assembler
label conventions. Formal Parameters in the Macro definition are
replaced by corresponding Actual Parameters specified in a calling

statement.

A Formal Parameter may be specified in columns 8 through 13. This
is used to transfer a column 8 label on the Call Statement to a

Model Statement in the Macro.
The operation code MACR specifies a Macro definition.

Columns 18 through 21 specify a i-character name of the MACRO.
Embedded blanks are not permitted.

Columns 22 through 57 specify the Formal Parameters (optional). A
comma must immediately follow each Formal Parameter except the last,
where the comma must be omitted. The parameters are coded in free-

field format and may be continued onto additional cards as needed.

MODEL STATEMENTS. The Model Statements comprise a combination of
regular assembler instructions and pseudos, plus the following Macro

conditionals and pseudos.

Macro conditionals:

OP Code Function

MEQL Equal.

MLSS Less.

MGTR Greater.

MLEQ LLess than or equal.
MGEQ Greater than or equal.
MNEQ Not equal.

BOOL Evaluate Boolean.

10=2

Macro pseudos:

OP Code Function

MACR Header.

MBUN Unconditional branch to another Macro conditional
or Macro pseudo.

MNOP Macro NOP.

MERR Macro specifies error message to appear in
Assembly listing.

MEXT Macro specifies that no more statements are to be
generated.

SETB Set Boolean.

CLRB Clear Boolean.

MEND End of definition.

An explanation of the use of model statements follows under the

heading, details for defining a Macro.

NOTE
FILE and other declaratives in Advanced Assembler

cannot be generated parametrically in a Macro.

THE MEND STATEMENT. The MEND card is required as the last statement

in the Macro definition.

EXAMPLE OF A MACRO DEFINITION, The format is:
VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL Cg;i:‘ AF | BF Label *E Ine. l:ul Ac Label +1Inc. |BY Bc Label +Inc. fCi] cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
8 4 8 0 2 152 4 0 3 |4 6 2 516 8
ENA £ MAIC&MI Vé__ﬁ;, S7HEIRE,
| 2| BFIRZm,| Iglnd,
#Sy DAasl

mviAl B1alslals AL S|4

v 8lBlglBLsl IR 7712

My S151S &SI

MEW

10=3

CALLING A MACRO.

A Call Statement is used to reference a Macro definition. A label
in column 8 is optional. The name of the Macro being referenced is
used as the OP code of the calling statement. If the Macro being
called is user-defined within the program and has the same name as

a Macro on disk, the one defined in the program will be used.

The Actual Parameters to be passed to the Macro definition are coded
in columns 22 through 57. This parameter list corresponds to the
parameter list in the Macro header card with the exception that it
is not necessary to make a reference to every Formal Parameter in
the Macro definition. See the description of Null and Omitted
Parameters (page 10-5).

Actual Parameters are coded in free-field format and may be coded

onto additional cards as needed.

The parameter list may contain signed or unsigned numbers, character

strings enclosed by quotation marks or program labels.

An example of the Call Statement follows along with the code that
is generated as the result of the call (See Macro MOVE defined in
the last example).

Call Statement:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
A
LABEL CODE | AF | BF Label +1Inc. JAI] Ac Label +Inc. |B{ Bc Label + Inc. |Ci|] Cc
0 1 1 2 7 2 El B rl ila |4 Sf 5
le 4 8_b |2 E]2 |4 0 3la|s 516 Is

5
2
45 [I,] .1 [sldcd=del,| Iptisi v

o
Yo

N
o

Vv “ A{@lc “1,] M

10=-4

Generated Code:

VAR. A ADDRESS B ADDRESS C ADDRESS

OoP.
CODE AF | BF Label +Inc. JAH Ac Label +Inc. |Bif Bc Label + Inc. |Ci| Cc

1 1 2 2 4 4 |4 4 5
4 8 2 B 0 3 6 2
Mia osfasxx c Al

vV zsjgrsx | |

v | | bolélsiduviddA Stali’¥

LABEL

0 O

—

(LT
W
W

\Kam

NOTE
A reference to a Formal Parameter in the AF or BF
field of a Macro Model Statement will yvield dif-
ferent values dependent upon the Actual Parameter
in the Call Statement. When the actual parameter
is a numeric value, that numeric value is substi-
tuted as in the above example where 25 was substi-
tuted for $B. When the actual parameter is a char-
acter string, the number of characters in that
string is used. As in the example, 3 was substi-
tuted for $A when the Actual Parameter was "ABC."
Finally, when the Actual Parameter is a program
label, the declared size of the variable to which
the label refers is substituted for the Formal

Parameter.

NULL AND OMITTED PARAMETERS. In the Call Statement it is not neces-
sary to make a reference to every Formal Parameter in the Macro
definition. If the parameter to be omitted in the calling statement
precedes any that are to be passed to the Macro (a Nuil Parameter) ,

a comma must be employed as a place-saver. This is not necessary if

the omitted parameter follows the desired Actual Parameters.

10-5

NOTE
Keyed References, which are described below,
may also be used when the programmer does not

wish to reference all of the Formal Parameters.

The following is an illustration of Null and Omitted Parameters where

the Macro which is called was defined in a previous example.

C ADDRESS

VAR. A ADDRESS B ADDRESS
oP.
AB
LABEL CODE AF | BF Label + Inc. Al Ac Label +Inc. |B{ Be Label 4 Inc. |Ci| Ce
0] 1 2 2 33 |3] ala |4 5 515 5
4 8 2 E 1]2 4 0 3 |4 2 5l s
%3 g1, 4
4 4 7
For the above call, $A and $THERE are Null Parameters; $T70, $S, and

$DEST are Omitted Parameters.

KEYED REFERENCES.

long, and a limited subset of the Formal Parameters is to be refer-

enced, Keyed References may be used.

Tn cases where the Formal Parameter list is rather

In the Call Statement,

the

Formal Parameter is written and equated to the Actual Parameter.

The following is an example of

Keyed References, where the Macro

MOVE was defined in a previous example:
VAR. A ADDRESS B ADDRESS C ADDRESS
LABEL op.
CODE |} AF | BF Label + Inc. AJ Ac Label + Inc. |B{ Bc Label +Inc. |Cif Cc
0 1 1 2 2 S EBRE 4 4[4 |4 5 515 |5
F 4 8 2 B 1]2 14 0 3fa 16 2 Sle |s
Vie d,| bla,| |, 7=ldal,| ls{rid-ls0
L4 L4 P4 rd

In the above call, the Formal Parameters $A, $THERE, $DEST, and $TO
are present; $B is null; and $FROM and $S are omitted.

In a Call, once an access is made via Keyed Reference, normal

designation of Actual Parameters is not permitted.

10-6

Keyed References may be in any order.

MACROS CALLING OTHER MACROS. A call on a previously defined Macro

may be embedded in a Macro definition.

The nested Call Statement may pass actual parameters as described
above or by references to the Formal Parameters of the calling

Macro.
The maximum level of nested Macro calls is 3-deep.

NESTED CALLS OF SYSTEM MACROS. Within a Macro definition, it is
permissible to "call" a system Macro, i.e., one which has been
defined and copied onto disk. To do this it is necessary to identify
the system Macro for the calling routine with the SYST pseudo. This
SYST card should be placed before the Header card of the Macro defin-

ition calling the system Macro.

The format of the SYST pseudo is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LABEL CODE AF | BF Lobel + Inc. |All Ac Label +Inc. |B{ Be Label + Inc. |Ci] Cc

- 5|5

0 T B |2 2 3[3 |3 4 7 VI P 5 5

Q 4 s b |2 3 1]2 4 0 3 4 |6 2 sle |s

SINSIZ
The name of the referenced Macro is specified in column 22, The

remaining fields are not used.

NOTE
Although system Macros may be called within
a Macro definition, a Macro definition within
another Macro definition is not permitted.
In other words, a Macro may call other Macros,

but Macro definitions may not be nested.

10=7

DETAILS FOR DEFINING A MACRO.

CNST AND DATA DECLARATIONS. If a CNST or DATA statement in a Macro
definition specifies only a Formal Parameter in column 22, a com-
plete declaration will be generated when there is a call on the
Macro. The length and data format of the Actual Parameter passed in

a Call Statement will be used when the CNST or DATA declaration is

generated.

If there are references in. fields other than one beginning in
column 22 in a CNST or DATA declaration with a Macro definition,

only explicit substitutions will be generated.

The following are examples of CNST declarations within a Macro defin-

ition, calls on the Macro and generated code.

Definition:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Label +Ine. {All Ac Label + Inc. |B{ Bc Label +Inc. |Cit Cc
0 1 1 2 2 2 313 3 4 4 14 4 5 515 5
| (] 4 8 P 2 112 4 0 3 J4 6 2 5 6 8
palclerdiie BA; L PO
CSK Al
X CmsiTisiAl | |8 /|1231456|7189
Y amsi7] | | uA]
Call:
VAR. A ADDRESS B ADDRESS C ADDRESS
OoP.
LAB
EL CODE AF | BF Label +Ine. JAl} Ac Labe! + Inc. |Bi Be Label +Inc. |Cif Ce
0 1 1 2 2 2 3 3 4 4 |4 4 5 515 5
8 4 8 0 2 B 2 4 0 3 14 6 2 5|6 8

[y
4

s

3
1
MPVE CANZYMAIN: a2 ¥

b

10-8

Generates:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL CODE AF | BF Label Li Inc. Ail Ac Label + Inc. |B{ Be Label + Inc. |Ci] Cc
0 1 1 2 2 A E r) 73 I] 5 B E
Is 4 8 2 1|2 |s 0 3la e 2 5 8
CMS|7] /UM 3
CWISI7] SV /123
CIMS17 £lYA ABIC
LABELS. In a Macro definition regular Assembler instructions and

pseudos may reference only labels appearing on other Assembler in-
structions and pseudos. Similarly, Macro Conditionals and Pseudos
may refer only to labels appearing on other Macro Conditionals and

Pseudos.

MACRO-ASSIGNED LABELS. An "(IX)" as the last 4 characters of a
label in a Model Statement causes the Assembler to provide Macro-
assigned labels. The first call on the Macro will generate 0001

as the last four characters of each Macro-assigned label; the second

call will generate 0002, the third 0003, and so on.

Although Assembler instructions and pseudos in a Macro definition
may use normal labels and/or point labels, the above technique will
avoid the generation of duplicate labels with multiple calls on a

Macro within a program.

MACRO CONDITIONALS. Macro Conditionals within the Macro definition
provide the capability of tailoring the generation of Assembly

language statements and their sequence when the Macro is called.

Macro Conditionals may examine four characteristics of the Actual

Parameters: TYPE, CONTroller, SIZE, and VALUe.

The format of a Macro Conditional is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
LABEL
CODE AF | BF Label + Inc. JAIl Ac Label +Inc. |Bi] Be Lobel + Inc. |Ci] Ce
0] 1 2 2 33 |3 7] rar 5 515 [5
#, 4 8 2 b 112 14 0 3 |4 2 sl |s

MHQFZIL;@MILLF #alelc iig//v

The operation code in column 14 specifies the condition for which

the Macro is testing.

The characteristic to be examined is indicated in columns 18 through

21. The four-letter codes are TYPE, CONT, SIZE and VALU.

The condition of the given characteristic which will be tested for
true is specified in column 22. See the table below for the entries

permitted with each characteristic and their meanings.

The formal parameter being referenced is written beginning in

column 34.

‘The C ADDRESS field contains a label to which the Macro will branch
to continue generation if the condition is met. This label must
appear on another Macro Conditional or on a Macro Pseudo. If the
condition is not met, the Macro generation continues with the next

sequential statememnt.
The following is a table of conditional test possibilities.

Table 10-1

Conditional Test Possibilities

Characteristic Condition of Meaning of Possible Status
of Parameter Characteristic Condition _ Agf Condition
TYPE VALUE parameter is a value MEQL
LABEL PARAMETER IS A LABEL MNEQ

NULL PARAMETER IS NULL
OMIT PARAMETER IS OMITTED

10-10

Table 10-1 (cont)

Conditional Test Possibilities

Characteristic Condition of Meaning of Possible Status
of Parameter Characteristic Condition of Condition
CONT UA UNSIGNED ALPHA MEQL
UN UNSIGNED NUMERIC MNEQ
SN SIGNED NUMERIC
SIZE dddd no. of characters MEQL
(four or digits MNEQ
digits) MLSS
MGTR
MLEQ
MGEQ
VALU signed value value or MEQL
unsigned wvalue | character string MNEQ
character to be compared to MLSS
string parameter MGTR
MLEQ
MGEQ
— |
NOTE

In table 10-1 "VALU" cannot be

tested for parameters passed by label.

BOOLEANS. The Assembler provides Boolean toggles which can be pro-

grammatically tested, set, and reset.

There are up to 99 Global toggles designated GOl, GO2, . . ., G99.

At the beginning of an Assembly, all Global toggles are initialized
to False. Any Global’toggle can be set or reset by the BOOL, CLRB

and SETB statements which are described below. Once set or reset,

the toggle retains that status until it is changed by a subsequent

BOOL, CLRB, or SETB.

10-11

There are up to 99 Local Boolean toggles designated LOl, LO2, . . .9
L99. When a Macro is called, all the Local toggles are reset. The
Formal Parameters of the Macro definition are in a one to one cor-
respondence with the Local toggles, and these are set or reset
depending on the presence or absence of Actual parameters in the
Calling statement. For example, LOl is set true if the first Actual
Parameter is present; it is reset False if the first Actual Parameter

is null or omitted.

Boolean Conditional (BOOL).

The BOOL Conditional provides the capability to make comprehensive
tests on the status of missing operands, allows communications from
one Macro to another Macro, and allows for the testing of compound

conditions.

The format of the BOOL Conditional is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label Ine. JAI] Ac Label +inc. |Bif Bc Laobel! + Inc. |Ci] Cc
0 1 1 2 313 3 4 4 [4 4 5 515 5
B 8 h 2 1]2 4 0 3 J4 6 2 5 |6 L&

+
2
B
F//Jj[r ld 2 2ld/| laal lelole

The A ADDRESS field optionally contains a label pointing to another
Macro statement from which Macro generation will proceed if the
designated Boolean expression is False. If the Boolean expression

is True, Macro generation continues with the next sequential instruc-
tion. If this option is not used, Macro generation continues with
the next sequential instruction regardless of the value of the

Boolean expression.

The A ADDRESS increment field optionally designates a single Global
or Local toggle which will be set or reset in accordance with the

value of the Boolean expression.

10-12

A Boolean expression is written left-justified in the B ADDRESS and
C ADDRESS fields and may extend beyond column 58 to the end of the
card. Three operators are permitted in a Boolean expression. 1In
order of precedence, these are the reserved words AND, OR, and NOT
which are interchangeable with the symbols *, +, and -, respectively.
The expression must be delimited by a semicolon. Parentheses may be
used within a Boolean expression to change the order in which the

operators are evaluated.

SETB and CLRB Pseudos.
The SETB pseudo is used to set a designated Global or Local toggle.

The CLRB pseudo is used to reset a designated Global or Local toggle.

The format for the SETB and CLRB pseudos is:

VAR. A ADDRESS B ADDRESS C ADDRESS
oP.
AB
LABEL CODE AF | BF Label +Ine. |AH Ac Label + Inc. |Bi Be Labe! + Inc. |Ci] Cc
f) l T B |2 2 1 Kl E] 7 P] 3 51515
2 4 s b |2 E 12 |a 0 3la e 2 sle |s
SIE118] 16 0]/
BAGE Llo]3]

The A ADDRESS field contains the toggle to be set or reset.
The remaining fields are not used by these instructions.

MERR PSEUDO. This pseudo causes the generation of a syntax error

and user-defined message during assembly.

VAR.) A ADDRESS B ADDRESS C ADDRESS
OP. :
LABEL CODE AF | BF Label +Ine. |Al} Ac Label + Inc. |BY Bc Label +Inc. |Ci} Cc
0 1 1 2 2 3|3 3 4 4 14 4 5 515 5
E 4 8 2 B 142 4 0 3 14 6 2 5 J6 8
»15/?& e 1d/ldd7 -RH,Z} el |21s| M/dslsiy Mo

Revised 11/20/70
by PCN 1034949-002 10-13

DEFINING AND CALLING A LIBRARY ROUTINE.
THE DEFINITION.

A Library routine is quite similar to a Macro routine with the

exception that no parameters are passed to it. But because of this

difference, it is much faster when called during an assembly.

Every Library routine must begin with a Header card. The format of

the Header statement is:

VAR A ADDRESS B ADDRESS C ADDRESS
LABEL oP.
CODE AF | BF Label +lne. JAIl Ac Label + Inc. [Bi Be Label + Inc. |Cij Cc
0 1 1 2 2 313 |3 4 ala |4 5 505 |5
I8 4 8 _b I2 1]2 |4 0 34 e 2 50 s

The operation code is LIBR.
A 4-character name for the routine must be written in columns 18

through 21. Embedded blanks are not permitted.
The remaining fields are not used for the Header statement.
Assembler instructions and pseudos follow the Header card.

The end of a Library routine must be signaled by a LEND card. This
is a statement with LEND in columns 14 through 17 and must be the

last card in the definition of a Library routine.

CALLING A LIBRARY ROUTINE.,
A Library routine is called with the LIBR instruction, and the asso-
ciated symbolic code is copied to the assembly source input file of

the calling program.

The format of the LIBR instruction is:

VAR. A ADDRESS B ADDRESS C ADDRESS
OP.
LABEL
CODE AF | BF Label Iilnc._Al Ac Label + Inc. {Bi Be Lobel +Inc. ICi] Cc
0 1 1 2 2 2 33 4 4 14 4 5 515
8 4 8 2 112 0 3 }4 6 2 5 |6
L1/ IBRIR 7]
L]/18 47

10=-14

Label entries are not permitted with this instruction.

The desired Library routine's U-character name is coded in the VAR

field or the A ADDRESS field.
The remaining fields are not used by the instruction.

See figure 10-1, page 10-16 for Macro definition and codes.

Revised 11/20/70
by PCN 1034949-002 10-15

=0

91

10 =

PAGE

PROGRAM DEMD 00 ASSEMBL%R 08/15/68
MEMARY SEQ NO LABEL QP AFBF A-EBL INC AIAE B=LBL INC BIBC C=LBL INC CICC REMARKS
SPEC CARD ¢ 13 s t 3 3 T e LIST CODE 1
IDNT DEMO L]
*MACRO DEFINITION®
MACR "ADER" $SA»$8,3C» 8D
8005 ERMES1 LO1 AND LO2 AND LO3 AND LO43
MNEQ TYPE LABEL ¢ [} $C 3 [] ERMESZI [|
MNEQ TYPE LABEL !¢ 1 $0] $ 3 RMES3: 1
MEQL TYPE VALUE ! t $A t 13 DEFNE 3 1 3
ADD $A H t 1 (1] t $ 8 (14 1]
NOWGO MNOP
ﬂ%?r 8 $C] L] t 1)) t 308 1UA
ERMES! :E§$ A PARAMETER IS MISSING
ERMES2 :Eg? FIELD FOR SUM IS NOT DEFINED
ERMES3 :EQ? PRINT AREA NOT REFERENCED BY LABEL
DEFNE MNQP
ALCIX) CNST $A
ADD ALCIX)? [| $8B] LI} $C $ [}
MBUN NOWGQ ¢ [}
MEND
«PROGRAM WITH MACRO CALLS AND 2 INTENTIONAL ERR®
(64) PRINT F1! PRNTR t 1 RN 3 [I |] LI}
(304) PRINTR Eﬁgé 132 UA [} P H [N}
(1000) TERMI CNST UN 585
08 0IG ® 01000, 00058500000
(1008) TERM2 CNST UN 243
04 DIG @ 01008, 00022440
(1012) SUM CNST UN
08 DIG ® 01012, 000200000000
ADER TERM1» TERM2,5 SUMs PRINTR
24 DIG ® 01020» 0003020804001000001008001012
18 DIG @ 01044, 000=110808001012200364
ADER 45, TERM2» SUM» PRINTR
02 DIG @ 01062, 000345
24 NIG @ 01064, 000=020204001062001008001012
ADER 18 DIGTOR35023§ gg?;}&0808001012200364
»
«sas MACRO ERROR (USER DEF!NED) LA L L A PARAMETER lS’M?SSING ’
ADER TERM1» TERM2, SUM» "AREA"
w24+« MACRO ERROR (USER DEF}?E?) LEL A PRINT AREA NOT REFERENCED BY LABEL

Figure 10-1.

Example of Macro Definition with Call and Generated

Code

1

CREATION AND MAINTENANCE OF A MACRO LIBRARY ON DISK.

FEATURES OF THE MAINTENANCE PROGRAM.
MACROS is a program which provides the capability of creating and

maintaining a symbolic file of Macro and Library routines on disk.
By means of a control card, the symbolic images of routines may be

loaded onto a disk file. The file thus created is called MACDIR.

After the creation of MACDIR, MACROS accepts additional control

cards allowing:

a. Adding additional Macro or Library routines.
b. Patching existing routines.

c. Removal of any routines.

d. Copying any routine to a selected medium.

e. Dumping MACDIR to a selected medium.

LAYOUT OF MACDIR.
MACDIR, the central file, has the following general layout:

The first segment (200—digits) is the Index Record where information

about the file structure is recorded.

Segments 2 through 99 of MACDIR are reserved for a directory which

contains an entry for each Macro or Library routine in the file.

Storage of the Macro/Library symbolic images follows the directory
beginning in the Starting Segment. One physical segment contains

one symbolic image.

INDEX RECORD. The Index Record occupies the first segment of MACDIR.
It is divided into four fields with symbolic names: NAS-D, NAS-DF,
TTLD, and DIREND.

NAS-D is the first field in the Index Record and contains a key
pointing to the next available segment number where a new directory

entry may be made.

10-17

NAS-DF, the second field, contains a key pointing to the next avail-
able segment number where a new routine may be started or an existing

routine copied during patching.
TTLD records the number of entries in the directory.

DIREND, the final field, contains a key pointing to the last segment
in the directory. Thus the Starting Segment will be DIREND + 1.

DIRECTORY. Fach directory segment (200-digits) contains a 2-digit
field giving the number of entries in the segment followed by a
maximum of twelve entries. The first 6-digits of the segment are
not used. The number of entries in an UN field occupying the 7th
and 8th digits. The remaining 192-digits are for the entries, each

being 1l6-digits in length.

Format of entry:

Symbolic Name Digit Positions Contents
NAME-D 1-8 Routine Name (4 UA)
KEY-D 9-14 Key to location in MACDIR (6 UN)
CLOS-D 15 Active = 0, Removed = 1 (1 UN)
ML-D 16 Macro = O, Library = 1 (1 UN)

CONTROL INFORMATION.
MACROS is executed by preparing a card deck as follows:

?EXECUTE MACROS; DATAB CARDS
{ CONTROL CARDS
?END
The control cards must have a dollar sign ($) in column 1.
FILE CONTROL. File control consists of the following:

a. Loading routines.
b. Dumping routines.

c. Crunching routines.

10-18

Loading Routines.

Routines may be read from cards, magnetic tape, or disk. The Start-
ing Segment number may be specified. The user may request a rese-
quencing of the symbolic images with a particular increment. These
options may be used alone or in conjunction with one another. The

"noise words", and, from, and to, may be employed for readability.
There are three options for specifying the desired input medium:

$L0AD
$LOAD TAPE

$LOAD CARDS

In the first instance the default medium will be disk; this disk
file will be labeled MACFIL.

The Starting Segment may be specified in the control card by punch-
ing SEG followed by any number greater than 2, up to the file limit.

An example of this option is:
$LOAD TO SEG 150
The default starting segment is 100.

A sequence request may be indicated by SEQ followed by a 6-digit
beginning number, a +, and the desired increment expressed as a

6-digit number. For example:
$LLOAD FROM CARDS AND SEQ 00100 + 00010.

Dumping Routines.

Active routines in MACDIR may be written off to punch cards, magnetic
tape, or a working disk file. The user may request a listing of the
symbolic images as well as resequencing with a desired increment.

The above options may be used alone or in conjunction with one
another. The "noise words", and, from, and to, may be employed for

readability.

10-19

There are three options for specifying the desired output medium:

$DUMP
$DUMP TO TAPE
$DUMP TO CARDS

In the first instance the default medium will be disk.

A listing is requested by punching LIST in the control card. For

example:
$DUMP TO TAPE AND LIST

The following control card will cause the entire directory to be
listed:

$DUMP LIST

A sequence request may be indicated by SEQ followed by a 6-digit
beginning number, a +, and the desired increment expressed as a

6-digit number. For example:
$DUMP AND SEQ 00210 + 00100.

Crunching Routines.

After removing, patching or adding a routine, the old routine takes
up valuable disk space. In effect crunching dumps the MACDIR file

and reloads it after all patching, adding, removing, and copying

functions are completed. The control card format for crunching is:
$CRUNCH
FILE MAINTENANCE. TFile maintenance consists of the following:

a. Adding routines.

b. Removing routines.

c. Patching routines.
d. Copying routines.
e. Directory dump.

10-20

Adding Routines.

A routine can be added to the existing disk file or MACDIR. It can
also be written on tape or punched out on cards. The latter feature
would permit a user to obtain his own personalized library file with
additional routines to those in MACDIR, without adding to or altering
the original disk file. This can be accomplished by first dumping
MACDIR to cards or tape, then adding the desired routines to the

same medium. This process leaves MACDIR unchanged.

When adding a routine to MACDIR, there are two possibilities, and
they are handled in the following manner. If the routine being
added already exists, it is written to MACDIR beginning at the
segment indicated by NAS-DF, and the existing directory entry is
used to locate the newly added version. If the routine is truly an

addition, a new entry is made in the directory.

The symbolic routine to be added must be in card form. The control

card format for adding a routine to MACDIR is:
$ADD MACR MOVE

Following the dollar sign is the directive ADD. Then the routine
type, either MACR or LIBR is specified, followed by its U4-character
name. A listing may be requested by punching LIST following the
routine name. A sequence request may be indicated by SEQ followed
by a 6-digit beginning number, a +, and the desired increment ex-

pressed as a 6-digit number. An example using these options is:
$ADD MACR MOVE LIST AND SEQ 010000 + 00000L1.

To add a routine to tape or have it punched on cards, the medium
must be specified in the control card as TAPE or CARDS following
the routine name. The list and sequence options may be used with

this feature. An example follows:

$ADD LIBR FSQT TO TAPE AND LIST.

10-21

Removing Routines.

MACROS removes a routine by making CLOS-D with a one (1); once
removed, it is permanently inaccessible. See Crunching Routines
(page 10-20) for control information necessary to physically remove

inactive routines from MACDIR,

The format of the control card necessary to effect the removal of a

routine is:
$REMOVE LIBR HELP.

The directive REMOVE follows the dollar sign. Then the routine
type, either MACR or LIBR, is specified followed by its U-character

name.

Patching Routines.

A routine may be patched, and the revised version may be optionally
written in MACDIR or on tape or cards. The latter feature would
permit a user to obtain an altered version of a routine in MACDIR

without changing the original one in the library file.

Patches must be in card form. When patching to change a routine in
MACDIR, the following occurs: The routine is merged with the card
patches according to the sequence numbers. The merged version is
rewritten into MACDIR beginning at the segment indicated by NAS-DF.
KEY-D in the directory entry for the routine is changed to point to
the new version. See Crunching Routines (page 10—20) for control
information necessary to physically remove the inactive routine from
MACDIR.

The control card format for patching a routine in MACDIR is:
$PATCH MACR MOVE.

Following the dollar sign is the directive PATCH. Then the routine
type, either MACR or LIBR, is specified, followed by its L-character
name. A listing may be requested by punching LIST following the

routine name. A sequence request may be indicated by SEQ followed

10-22

by a 6-digit beginning number, a +y and the desired increment ex-

pressed as a 6-digit number. An example using these options is:
$PATCH MACR MOVE LIST AND SEQ 010000 + 000010.

To patch a routine and write a new version on cards or tape, leaving
the original unchanged in MACDIR, specify CARDS or TAPE in the
control card following the routine name. The list and sequence

options may be used with this feature. For example:
$PATCH LIBR HELP TO TAPE AND SEQUENCE 001000 + 000010.

Copying Routines.

Any active routine may be copied to punch cards, magnetic tape or a

working disk file.

The format of the control card for copying a routine that is in
MACDIR is:

$copy MACR MOVE TO CARDS.

Following the dollar sign is the directive COPY. Then the routine
type, either MACR or LIBR, is specified followed by its U-character
name. The medium is specified next: CARDS, TAPE, or BLANK. The
default medium is disk. A listing may be requested by punching LIST
in the control card. A sequence request may be indicated by SEQ
followed by a 6-digit beginning number, a +, and the desired incre-~
ment expressed as a 6-digit number. An example using all of these

features is:
$COPY LIBR HELP TO CARDS LIST AND SEQ 000100 + 000010.

Directory Dump.

The user may request a listing of the directory for the file MACDIR

with the following control card:

$DIRECTORY.

10-23

APPENDIX A
BASIC ASSEMBLER OBJECT PROGRAM OUTPUT

The Basic Assembler will produce an 80-column image on output.

The format for a Program Parameter Card is as follows:

Columns

1
2-9
10-14
15-20
21
22-27
28-74
75-80

Code

6

Zeroes

Address of first instruction
Program Identification

0 (zero)

Address of last instruction
Zeroes

Program Identification

The format for an Instruction Format Card (Single Instruction Per

Card) is as follows:

Columns

1

Code

1

Size of instruction (in characters)
Zeroes

Base relative location

Instruction (remaining portion fille
with zeroes)

Segment number (first segment equals
zeroes

Card number

Program Identification

NOTE
The last card punched out will be
identical to the previous card ex-
cept the segment number is 999.
This signals the end of the load
operation to the BCP.

d

A-1

APPENDIX B
NOTES ON ADVANCED ASSEMBLER OPERATIONS

In a heavy multiprogrammed assembly/generation environment, spe-
cial names for source program files will be a virtual necessity
to avoid confusion and misidentification. The internal file names

and external file ID's for Advanced Assembler files are:

Internal File-Name External File ID Function

CARDS CARDS Source of Update card input.

SYMTIN SYMTIN Source program magnetic tape
input.

SYMTOT SYMTIN Updated Source magnetic tape
output.

SYMTOT SYMTIN Updated Source punched card
output.

SYMDIN SYMDIN Source program disk input.

SYMDOT SYMDIN Updated Source disk output.

PRINT PRINT Assembly printed output
listing.

For example, to change the external ID of the updated source disk
output to UPOUT, the following label equation card should be

entered:
? FILE SYMDOT = UPOUT.

The Advanced Assembler is usually called from the card reader by

the following (minimal) set of control and data cards:

? COMPILE XXX WITH ASMBLR LIBRARY
? DATA CARDS
000100 SPEC

(source program, or updates if source input is from
tape or disk

? END

APPENDIX B (cont)

If updated source output to tape or disk is required, the SPEC
card is not written to the updated file. Subsequent re-assemblies
against the tape/disk file can then be run with different SPECifi-

cations.

Program generators (FFT, RPG, SRTGEN) usually write complete
Assembly language source programs (including a SPEC card) to tape
or disk, and then invoke the Assembler by a ZIPP operation. To
inform the Assembler that there is no card input to the assembly,
the following VALUE is declared in the ZIPP control field:

VALUE O
VALUE O

2 (source input from tape, no card input), or

3 (source input from disk, no card input)

User-written program generators may use this same convention when
delivering generated symbolic programs to the Assembler for trans-

lation to machine language.

In either a ?COMPILE or ZIPPed assembly, the user may tell the
Assembler to purge the source input file by the following VALUE

statement:
? VALUE O = 100000.

This option may be used in conjunction with the "no card input"
VALUE option: ? VALUE O = 100003 dindicates that the entire source
program is on disk with no updates from cards and that the input

source program file is to be purged upon completion of the assembly.

To provide a combined example of all the control options explained
above, assume that some program generator has just finished writing
an assembly-language source program to the disk and will ZIPP the

Assembler to produce a machine-language program and:
a. The name of the object program is to be EDTRUN.
b. The name of the source program file on disk is GENOUT.

c. The source program disk file is to be purged after

assembly.

APPENDIX B (cont)

The control field of the generator's ZIPP to the Assembler should
then read: COMPILE EDTRUN WITH ASMBLR LIBRARY FILE SYMDIN =
GENOUT VALUE O = 100003.

Advanced Assembler can operate in 14000 digits of core, but opera-
tion is slow (overlaying, symbol tables on disk, etc.). If CORE =

s 30000 is declared in the COMPILE card, speed roughly triples.
Speed continues to increase as more core is allocated, up to some
saturation point. The larger the program, the higher the satura-
tion point: e.g., for a 1000-card program, saturation point is
near CORE = 50000.

The following are samples of input card decks for assembly:

SOURCE PROGRAM STATEMENTS

/%002000 IDNT XXX

/%00100 SPEC CARD oo

? DATA CARDS.

? COMPILE XXX WITH ASMBLR

Figure C-1. Sample Advanced Assembly Card Deck

APPENDIX B (cont)

SOURCE UPDATES (if any)

//000100 SPEC TAPE (or DISK) ...

? DATA CARDS.

PR ——— e

? OTHER FILE OR VALUE CONTROL STATEMENTS

? COMPILE XXX WITH ASMBLR

Figure C-2. Sample Advanced Update Assembly Card Deck

/%00100 SPEC CARD .o

/? DATA CARD.

? EXECUTE FREE-FORM TRANSLATOR

Figure C-3. Sample Advanced Free-Form Translator Card Deck

APPENDIX B (cont)

FREE-FORM UPDATE STATEMENTS (if any)

_J/ 000100 SPEC TAPE e
// 2 DATA CARD.

? EXECUTE FREE-FORM TRANSLATOR

Figure C-4, Sample Advanced Update Free-Form Translator Card Deck

APPENDIX C
BCP INPUT/OUTPUT START AND RESULT DESCRIPTORS

The following chart provides the I/0 Start and Result Descriptors
for the Basic Control Program. An I/O Start Descriptor is an
instruction to an input/output channel to perform some operation.
It is formatted like a processor instruction with an operation
code, variants, and one to three data addresses where needed. In
the following descriptions, the letter r indicates a variant

position which currently has no meaning and should be zero.

An I/0 Result Descriptor is a 16-bit (4-digit) status message
which a channel returns to the bProcessor upon completion of an
I/0 operation. The bits within this message are numbered from

1 through 16 (from the left). Thus, RD bit 4 would be the 1 bit
of the first digit, RD bit 13 would be the 8 bit of the fourth
digit, etc. 1In all I/0 Result Descriptors, bit 1 means I/0

operation completed, while bit 2 means some exception condition

exists.

For more information on the I/0 functions, refer to the B 2500/

B 3500 Systems Reference Manual.

=0

I/0 START DESCRIPTOR

I/0 RESULT DESCRIPTOR

oP VAR |A ADDRESS |B ADDRESS |C ADDRESS FUNCTION BIT ON MEANING
CARD PUNCH
23 Srrr|BEGIN Punch card BCL 3 Unit not ready
24 Srrr |BEGIN Punch binary card L Punch check or memory
access error
25 Srrr | BEGIN Punch EBCDIC card Lé&6 Memory parity error
35 rrrr Input request 5 Not used
enable
97 rrrr Input request 7 Punch identification
disable (special feature)
99 rrrr Test 8-12]| Not used
13-16 | Zeroes
S = stacker select (0 = normal stacker,
1 = auxiliary stacker)
l
CARD READER
20 rrrr| BEGIN END Read BCL card 3 Unit not ready
21 rrrr| BEGIN END Read binary card L Memory access error
22 rrrr| BEGIN END Read EBCDIC card L&6 Validity exrror
35 rrrr Input request 5 Read check
enable
97 rrrr Input request 7-12 | Not used
disable
99 rrrr Test 13-16 | Zeroes

(#u02),D XIANIddV

£€=D

I/0 START DESCRIPTOR

I/0 RESULT DESCRIPTOR

oP VAR |A ADDRESS |B ADDRESS |C ADDRESS FUNCTION BIT ON MEANING
CONSOLE PRINTER
32 rrrr| BEGIN END Read message 3 Unit not ready
34 rrrr|BEGIN END Write message L Memory parity error
35 rrrr Input request 5-6 Not used
enable
97 rrrr Input request 7 NAK character received--
disable error (CTRL/U on key-
board)
99 rrrr Test 8 Attempt to exceed end
address (read)
9-12 } Not used
13-16 |} Zeroes
DISK FILE
50 UQrV|BEGIN END SEG# Disk write 3 Unit not ready
51 | UQrW|BEGIN END SEG# Disk read 4 Memory access error
52 UQrW| BEGIN END SEG# Disk check read L6 Memory parity error
| (No data transfer) (write)
L&6 Read error (read/check)
99 UQrr Test 5 Busy
6 Write lockout set (write)
7-9 Not used
10 Memory full (read)
11 Previously set

(#uod) D XIaN3IddV

=0

I/0 START DESCRIPTOR

I/0 RESULT DESCRIPTOR

oP VAR | A ADDRESS | B ADDRESS jJ C ADDRESS FUNCTION BIT ON MEANING
DISK FILE (cont)
12 Time-out (no data
received during one rev)
13-16| Electronics unit number
U = electronics unit
Q = high-order digit of disk segment number
(if applicable) or electronics unit
V = write protection clear
(O = remove protect,
1 = remove protect and inhibit data transfer)
W = read protection test
(0 = read without protect test,
1 = read and set protect,
2 = read unless protected, and
3 = read unless protected--set protect after read)
|
LINE PRINTER
10 SUNN | BEGIN Write line 3 Unit not ready
11 SUNN Skip L&s Bit transfer error
35 rUrr Input request L&6 Memory parity error
enable
97 rrrr Input request L&7 Print check or code
disable parity error
99 rUrr Test Not used
End-of-page (hole sensed
in carr. tape channel 12)
10-12} Not used
13-16 | Unit number (O or 1)

(uod) D XIAN3ddV

I/0 START DESCRIPTOR

I/0 RESULT DESCRIPTOR

oP VAR |A ADDRESS | B ADDRESS | C ADDRESS FUNCTION BIT ON MEANING
LINE PRINTER (cont)
[
S = spacing
(O = no space,
1 = single space,
2 = double space)
U = unit number for buffered printers
(0 = first unit, :
1l = second unit)
NN = skipping
(OO = no skip,
01-11 = skip to channel 01-11)
MAGNETIC TAPE
01 | rUrr REWIND 3 Unit not ready
02 FUVT |BEGIN END Read forward 4 Memory access error
(read/write/erase)
03 FUVT |BEGIN END Read backward L&6 Memory parity error
' ’ (write/erase)
04 | FUrr |BEGIN END Erase forward L&74&8| Tape parity error
‘ (read/write/space)
06 FUVr |BEGIN END Write 5 End- of-Tape/Beginning-
of-Tape
08 | FUNN Space forward 6 Write lockout--no ring
(write/test)
09 FUNN Space backward 6 End-of-File (read/space)
99 rUrr Test 7 Short block (read)
788 Transport density
setting (test)
8 Long block (read)

(#uod) D X1aNIddV

9=

I/0 START DESCRIPTOR

I/0 RESULT DESCRIPTOR

oP VAR | A ADDRESS | B ADDRESS | C ADDRESS FUNCTION BIT ON MEANING
MAGNETIC TAPE (cont)
9 CRC correction possible
(read)
10-12| Track in error (when bit
9 is on)
10 Non-available option
requested
11 Unit is rewinding
12 Instruction time-out--
blank tape
13-16 | Unit number (O through 9)
F = density/parity
(0 = 800 BPI even parity--7-track
1 = 800 BPI odd parity
2 = 555 BPI even parity--7-track
3 = 555 BPI odd parity--7-track
4 = 200 BPI even parity--7-track
5 = 200 BPI odd parity
7 = 1600 BPI odd parity--9-track
8 = even parity, density set on
transport
9 = odd parity, density set on
transport)
U = unit number (0 through 9)
V = options
(2 = write tape mark,
4 = EBCDIC/BCL translation on
7-track transports)
T = select CRC correction on 9-track
read (8 through undigit F selects
track to be corrected)
NN = number of records to space over

l 1l

(uod) D XIAN3IddV

L=0

I/0 START DESCRIPTOR

I/0 RESULT DESCRIPTOR

oP VAR |A ADDRESS | B ADDRESS | C ADDRESS FUNCTION BIT ON MEANING
MULTIPLE TAPE LISTER
70 UTDR|BEGIN END Lister print 3 Unit not ready
71 UTDR Lister space L&6 Memory parity error
72 UTDR Lister skip L&7 Print check
73 UVDR Lister slew 5 End~ of-paper
35 rrrr Input request 8-12| Not used
enable
97 rrrr Input request 13-16| Zeroes
disable
99 rrrr Test
U, T, D, R, V = select units and tapes.
The settings of these variants are quite
complex. The user should refer to the
Systems Reference Manual.
|
PAPER TAPE READER/PUNCH
Lo rrVr | BEGIN END Paper tape read 3 Unit not ready
L1 rrrr | BEGIN END Forward space 4 Memory access error
(read/space)
L3 rrrr | BEGIN END Backspace 4 Memory parity error
(write)
35 rrrr Input request L&6 Tape parity error (read)
enable
Ly rrrr Rewind 5 End-of-Tape/Beginning-
of-Tape (read)
48 rrVr | BEGIN END Paper tape write 5 Low paper (write)
Al

(#uod) D XI1AN3ddVY

I/0 START DESCRIPTOR I/0 RESULT DESCRIPTOR
OoP VAR |A ADDRESS | B ADDRESS | C ADDRESS FUNCTION BIT ON MEANING
PAPER TAPE READER/PUNCH (cont)
97 rrrr Input request 7 Incomplete (read/space/
disable write)
99 rrrr Test 8-12] Block (not used)
13-16| Zeroes
V = code level
(0 = seven-level odd parity,
1 = six~level odd parity with
BCL-EBCDIC translation,
2 = eight-level no parity)
SORTER READER
62 rVrC|AREAL AREAZ2 Flow-mode read 3 Unit not ready
63 rVrC|AREAL AREA2 Demand-mode read 3&5 Jam, or any sorter-not-
ready stoppage
60 NNrF Pocket select L Memory access error
66 rrrr Batch counter 4&586] Too late to read
increment
64 NNrr Pocket light L&7 Cannot read or uncoded
document
35 rrrr Input request L&7é Unencoded document (if
enable 10&11} start descriptor speci-
fied distinction)
97 rrrr Input request
disable
99 rrrr Test L &8 Double document

(4uod) D XIANIddV

I/0 START DESCRIPTOR fl I/0 RESULT DESCRIPTOR

VAR | A ADDRESS | B ADDRESS | C ADDRESS FUNCTION BIT ON MEANING

6-D

SORTER/READER (cont)

4410 | Amount field error (if
start descriptor speci-
fied distinction)

4&11 | Transit field error (if
start descriptor speci-
fied distinction)

5 Flow stopped
5&7 Batch ticket
Too late to pocket select
EOF button depressed
9 Not used

12 Buffer number (note that
the exception bit is not
set in this result des-
criptor)

|I13—l6 Zeroes

V = read station select code
C = format and error reporting code
NN = pocket number

F = continue/stop flow

Variant usage is complex for sorter/
reader descriptors. The user should
refer to the Systems Reference Manual.

(fuod) D X1ANIddV

APPENDIX D
EBCDIC , USASCII , AND BCL REFERENCE TABLE

GENERAL.

. This table reflects the internal EBCDIC structure in its sequential
code arrangement for B 2500/B 3500 Systems, plus the USASCII and BCL

magnetic tape coding structures.

The two methods of creating the two-character codes representing

these structures are broken down as follows:

a. 8-bit (byte) character code:

Decimal Equivalent Binary Decimal Equivalent

0 0000 0000 0

1 0001 0001 1

2 0010 0010 2

3 0011 0011 3

Converted 9 1001 1001 9 Converted

A (10 (1010 1010) 107 A
B 11 1011 1011 11y B
C 12/Undigit < 1100 1100 \|Undigit 12 C
D i 13\Character| 1101 1101 Lharacter 13 ? D
E 14 1110 1110 14 E
F 15 (1111 1111 15 F

Example:

If a memory dump reflects A3, the internal code would be
1010 00l1l1l. The highest sequential code is FF and the
internal code is 1111 1111.

b. 6-bit (byte) character code:

D=1

APPENDIX D (cont)

Decimal Binary Decimal
0 00 0000 0]
1 01 0100 4
2 10 1001 9 Converted
3 11 1010 10 A
0 00 1100 12 C
2 10 1111 15 F
c. The graphics appearing in the BCL column reflect differ-
ences between EBCDIC and BCL and those pertinent ones
left blank reflect that the graphics of each are the
same. This method holds true for the card code column
of the BCL description also.
NOTE
There are only 64 unique 6-bit BCL tape
codes. Therefore, where no BCL tape
code is indicated in the table, there
will be no BCL graphic character.
EBCDIC USASCII BCL
8-Bit 8-Bit .
Internal Graphic Card Code Internal 6-Bit Graphic Card
Tape Code Code
Code Code
00 NULL 12-0-9-8-1 80
01 SOH 12-9-1 81
02 STX 12-9-2 82
03 ETX 12-9-3 83
ok 12-9-4 84
05 HT 12-9-5 85
06 12-9-6 86
07 DEL 12-9-7 87
08 12-9-8 88
09 12-9-8-1 89
0A 12-9-8-2 8A
OB vT 12-9-8-3 8B
oC FF 12-9-8-4 8C
0D CR 12-9-8-5 8D
OE SO 12-9-8-6 8E
OF ST 12-9-8~7 8F

APPENDIX D (cont)

EBCDIC [USASCIT BCL
8~Bit 8-Bit .
Internal Graphic Card Code Internal S;B;tCode Graphic gigz
Code Code p
——

10 DLE 12-11-9-8-1 90

11 DC1 11-9-~1 91

12 DC2 11-9-2 92

13 DC3 11-9-3 93

14 11-9-4 oL

15 NL 11-9-5 95

16 BS 11-9-6 96

17 11-9-7 97

18 CAN 11-9-8 98

19 EM 11-9-8-1 99

1A 11-9-8-2 OA

1B 11-9-8-~3 9B

1C FS 11-9-8-4 9C

1D GS 11-9-8~5 9D

1E RS 11-9-8-6 OFE

1F Us 11-9-8-7 oF

20 11-0-9-8~1

21 0-9-1

22 0-9-2

23 0-9-3

24 0-9-4

25 LF 0-9-5

26 ETB 0-9-6

27 ESC 0-9-7

28 0-9-8

29 0-9-8-1

2A 0-9-8-2

2B 0-9-8-3

2¢C 0-9-8-14

2D ENQ 0-9-8-5

2E ACK 0-9-8-6

2F BEL 0-9-8-7

30 12-11-0-9-8-1

31 9-1

32 SYN 9-2

33 9~3

34 9-4

35 9-5

36 9-6

37 EOT 9-7

38 9-8

39 9-8-1

3A 9-8-2

3B 9-8-3

3C DCh 9-8-4

Revised 11/20/70
by PCN 1034949-002 D-3

APPENDIX D (cont)

EBCDIC USASCII BCL
8-Bit 8-Bit .
Internal Graphic Card Code Internal 6-Bit Graphid Card
Tape Code Code
Code Code
e
3D NAK 9-8-5
3E 9-8-6
3F SUB 9-8-7
Lo SPACE A0 10
L1 12-0-9-1
L2 12-0-9-2
43 12-0-9-3
Lh 12-0-9-4
L5 12-0-9-5
Le 12-0-9-6
L 12-0-9-7
48 12-0-9-8
49 12-8-1
LA [12-8-2 DB 3C 12-8-4
4B . 12-8-3 AE 3B
L¢ < 12-8-4 BC 3E 1.2-8-6
4D (12-8-5 A8 3D
4E + 12-8-6 AB 3A 12-0
LF | 12-8-7 DE 3F -
50 & 12 A6 30
51 12-11-9-1
52 12-11-9-2
53 12-11-9-3
54 12-11-9-4
55 12-11-9-5
56 12-11-9-6
57 12-11-9-7
58 12-11-9-8
59 11-8-1
5A] 11-8-2 DD 1E 0-8-6
5B $ 11-8-3 AL 2B
5C * 11-8-4 AA 2¢C
5D) 11-8-5 A9 2D
5E ; 11-8-6 BB 2E
5F — 11-8-7 DC 2F <
60 - 11 AD 20
61 / 0-1 11
62 11-0-9-2
63 11-0-9-3
64 11-0-9-4
65 11-0-9-5
66 11-0-9-6
67 11-0-9-7
68 11-0-9-8
69 0-8-1

APPENDIX D (cont)

EBCDIC USASCITI BCL
8-Bit 8-Bit .
Internal Graphic Card Code Internal 6-Bit Graphic Card
Tape Code Code
Code Code
6A 12-11
6B ’ 0-8-3 AC 1B
6C % 0-8-4 A5 1C
6D Underscore| 0-8-5 DF 1A # 0-8-2
6E > 0-8-6 BE OE 8-6
6F ? 0-8-7 BE 00
70 12-11-0
71 12-11-0-9=-1
72 12-11-0-9-2
73 12-11-0-9-=3
74 12-11-0-9-4
75 12-11-0-9-5
76 12-11-0-9-6
77 12-11-0-9-7
78 12-11-0-9-8
79 8-1
7A : 8-2 BA ON 8-5
7B # 8-3 A3 OB
7C @ 8-1 co oc
7D ! 8-5 A7 OF > 8-7
“E = 8-6 BD 1D 0-8-5
7R " 8-7 A2 1w 0-8-7
80 12-0-8-1
81 a 12-0-1
82 b 12-0-2
83 c 12-0-3
84 d 12-0-4
85 e 12-0-5
86 f 12-0-6
87 o 12-0-7
88 h 12-0-8
89 i 12-0-9
8A 12-0-8-2
8B 12-0~8-3
8¢C 12-0-8-4
8D 12-0-8-5
8E 12-0-8-6
8F 12-0-8-7
90 12-11-8-1
91 j 12-11-1
92 k 12-11-2
93 1 12-11-3
9L m 12-11-4
95 n 12-11-5
96 o 12-11-6

D-5

APPENDIX D (cont)

EBCDIC USASCIT BCL
8~Bit 8-Bit .
Internal Graphic Card Code Internal g;BltC a Graphic gagd
Code Code pe Loae ode
——

97 P 12-11-7

98 q 12-11-8

99 r 12-11-9

9A 12-11-8-2

9B 12-11-8-3

9C 12-11-8-4

9D 12-11-8-5

9E 12-11-8-6

9F 12-11-8-7

AO 11-0-8-1

Al 11-0-1

A2 s 11-0-2

A3 t 11-0-3

Al u 11-0-4

A5 v 11-0-5

A6 w 11-0-6

A7 X 11-0-7

A8 v 11-0-8

A9 z 11-0=-9

AA 11-0-8-2

AB 11-0-8-3

AC 11-0-8-4

AD 11-0-8-5

AE 11-0-8-6

AF 11-0-8-7

BO 12-11-0-8-1

Bl 12-11-0-1

B2 12-11-0-2

B3 12-11-0-3

B4 12-11-0-4

B5 12-11-0-5

B6 12-11-0-6

B7 12-11-0-~7

B8 12-11-0-8

B9 12-11-0-9

BA 12-11-0-8-2

BB 12-11-0-8-3

BC 12-11-0-8-4L

BD 12-11-0-8-5

BE 12-11-0-8-6

BF 12-11-0-8-7

co (+)pz 12-0

Cl A 12-1 Cl 31

c2 B 12-2 c2 32

C3 c 12-3 C3 33

APPENDIX D (cont)

EBCDIC USASCII BCL
8-Bit 8-Bit .
Internal Graphic Card Code Internal g-BltC d Graphic gagd
Code Code ape Loae - Locde
F== ch D 12-4 ch 34

C5 E 12-5 C5 35

cé6 F 12-6 cé6 36

C7 G 12-7 c7 37

c8 H 12-8 c8 38

c9 I 12-9 c9 39

CA 12-0-9-8-2

CB 12-0-9-8-3

cc 12-0-9-8-4

CD 12-0-9-8-5

CE 12-0-9-8-6

CF 12-0-9-8-7

DO (1)mMz 11-0 Al 2A x 11-0

D1 J 11-1 CA 21

D2 K 11-2 CB 22

D3 L 11-3 ceC 23

D4 M 11-4 CD 24

D5 N 11-5 CE 25

D6 0] 11-6 CF 26

D7 P 11-7 DO 27

D8 Q 11-8 D1 28

D9 R 11-9 D2 29

DA 12-11-9-8-2

DB 12-11-9-8-3

DC 12-11-9-8-4

DD 12-11-9-8-5

DE 12-11-9-8-6

DF 12-11-9-8-7

EO 0-8-2

El 11-0-9-1

E2 S 0-2 D3 12

E3 T 0-3 D4 13

EL U o-4 D5 14

E5 v 0-5 D6 15

E6 W 0-6 D7 16

E7 X 0-7 D8 17

E8 Y 0-8 D9 18

E9 Z 0-9 DA 19

EA 11-0-9-8-2

EB 11-0-9-8-3

EC 11-0-9-8-4

ED 11-0-9-8-5

EE 11-0-9-8-6

EF 11-0-9-8-7

APPENDIX D (cont)

EBCDIC USASCIT BCL
8-Bit 8-Bit o
Internal Graphic Card Code Internal 6-Bit Graphic Card
Tape Code Code

Code Code

IN0) 0 0 BO OA

F1l 1 1 Bl (o)}

F2 2 2 B2 02

F3 3 3 B3 03

L4 L L B4 oL

F5 5 5 B5 05

F6 6 6 B6 06

F7 7 7 B7 07

8 8 8 B8 08

F9 9 9 B9 09

FA 12-11-0-9-~

FB 12-11-0-9=

FC 12-11-0-9-

FD 12-11-0=9-

FE 12-11-0-9-

FF 12-11-0-9-

D-8

APPENDIX E

BASIC ASSEMBLER AND ADVANCED ASSEMBLER ERROR MESSAGES

The following are the error messages for the Basic Assembler as

they will appear on the printed listing:

XXXXXXXXXX ILLEGAL LABEL. (special characters or blanks)
XXXXXXXXXX DUPLICATE LABEL.

XXXXXXXXXX ILLEGAL OP-CODE.

XXXXXXXXXX A-LABEL.

XXXXXXXXXX A-CNT. (A address controller)
XXXXXXXXXX A-INDEX.

XXXXXXXXXX A-INCR.

XXXXXXXXXX LITSIZ. (literal size too large)
XXXXXXXXXX LIT-ERR.

XXXXXXXXXX B-LABEL.

XXXXXXXXXX B-CNT.

XXXXXXXXXX B-INDEX.

XXXXXXXXXX B-INCR.

XXXXXXXXXX C-LABEL

XXXXXXXXXX C-CNT.

XXXXXXXXXX C-INDEX.

XXXXXXXXXX C-INCR.

XXXXXXXXXX ILLEG-RECD-SZ. (illegal record size)
XXXXXXXXXX ILLEGAL AF.

XXXXXXXXXX ILLEGAL BF.

XXXXXXXXXX SEGM NESTED > 10.

XXXXXXXXXX SEQ ERR.

XXXXXXXXXX LOGICAL RECD SIZE.

The following are the error messages for the Advanced Assembler,

as they will appear on the printed listing:

XXXXXXXXXX DUPLICATE LABEL CL 8.
XXXXXXXXXX INVALID HARDWARE TYPE.
XXXXXXXXXX THIS FILE SHOULD NOT BE DECLARED RANDOM.

APPENDIX E (cont)

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXX XXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXX XXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXX XXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXX XXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

REC/AREA FIELD SHOULD BE BLANK.
REC/AREA FIELD INVALID.

MISSING REC/AREA FIELD.

NO OF AREAS SHOULD BE BLANK

INVALID NO OF AREAS.

NO OF AREAS SHOULD NOT BE BLANK.

LABEL INFORMATION FIELD INVALID.

THIS TYPE FILE CANNOT INDICATE EBCDIC.
INVALID RECORDING MODE FIELD.

INVALID ALTERNATE AREAS FIELD.

TOO MANY ALTERNATE AREAS REQUESTED.
INVALID RETENTION FACTOR.

INVALID REC/BLOCK.

COL 58 LAB UNDEF.

ILLEG BUFFER ACCESS.

INVALID BLOCKING TECHNIQUE.

THIS TYPE FILE MAY NOT HAVE VAR LENGTH
INVALID MAX BLOCK SIZE.

SEQUENCE ERROR.

A-LABEL UNDEFINED.

A-LABEL MUST BE A FILE.

SEEK OP NOT APPLICABLE TO THIS FILE.
ILLEGAL OVERLAY REQUEST.

CNST MAY NOT APPEAR AS PART OF A RECD.
INVALID INCREMENT.

ILLEGAL LIBR CALL.

RECORDS.

REQUESTED LIBR MACRO NOT ON LIBRARY TAPE.

C-LABEL UNDEFINED.
FILE KEY UNDEFINED.
B-LABEL UNDEFINED.

A-LABEL IS AN ILLEGAL REF OR IS UNDEFINED.

ILLEGAL A-CONTROLLER.
TLLEGAL A-INDEX.
DECLARED SIZE MUST BE MOD-4.

KXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

MISSING
B-LABEL
ILLEGAL
ILLEGAL
MISSING
LITERAL
MISSING
C-LABEL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL

LOC MUST REMAIN WITHIN CURRENT

FORWARD

LOC MUST REMAIN WITHIN CURRENT

MISSING
ILLEGAL

APPENDIX E (cont)

AF SIZE.

IS AN ILLEGAL REF OR IS UNDEFINED.
B-CONTROLLER.

B-INDEX.

BF SIZE.

SIZE TOO LARGE.

SIGN IN COL 22,

IS AN ILLEGAL REFERENCE OR IS UNDEFINED.
C~CONTROLLER.

C-INDEX.

SYNC STATEMENT.

ALOC STATEMENT,.

SEGMENT.
REF LOCN ILLEGAL.

SEGMENT.
ENDF.

RLOC.

LOC MUST REMAIN WITHIN CURRENT SEGMENT.
DECLARATION ERROR.
UNDEFINED OP-CODE,

ILLEGAL
MISSING
ILLEGAL

LABEL COL 8,
LABEL COL 8.
RECD SIZE.

RECD SIZE OMITTED.
RECORD SIZE MUST BE MOD-4.

INVALID

PH # LEGTH COL 65.

NEED COL 8 LABEL.

UNDEFINED OPEN.

AF-BF MUST BE NUMERIC.
DUPLICATE LABEL.

LOC OF A-LABEL MUST BE MOD-4.

SIZE OF

A-LABEL MUST BE MOD-4.

UNLABELED DISC FILE NOT ALLOWED.

ILLEGAL

AF-~BF.

NEED LABEL COL 58.

APPENDIX E (cont)

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

NEED LABEL COL 8.

INVALID SEGM LABEL.

DUPLICATE LABEL.

MISSING SEGM DECLARATION.

A-ADDR HIGHER THAN 38.

A-ADDRESS MUST BE MOD-2.

B-ADDRESS HIGHER THAN 38.

B-ADDRESS MUST BE MOD-2.

PROGRAM HAS SEGMENT TOO LARGE FOR 1 DISK
INVALID PICTURE.

MISSING LITERAL SIZE.

LOCN ILLEGAL WITHIN A RECD.

COL 20 DOES NOT COMPUTE.

ILLEGAL MCP IN COL 11 OF FINAL SPEC.

AREA.

PROGRAM
MEMORY

(64)
€384)
€1208)
€(1528)

(2768)

2776
€2798)
(2820)

(2856)
(2882)
€2900)
c2918)
€2936)
(2966)
€2974)
(2996)
(3018)

ID = LSTCRD

SEQ NO
001000
001100
001200
001300
0014800
001500
001600

001700
001800

001900
002000

002100
002200

002300
002400
002500
002600
002700
002800
002900
003000

003100

LABEL

CROFIL
CRDREC
PRTFIL
PRTREC

COUNT

READ

ENDFIL

oP

SPEC
IBNT
FILE
RECD
FILE
RECD
ENDF
CNST

REMK
OPEN

OPEN
SPROD

REMK
READ

MVH
INC
MVA
WRIT
BUN
cLos
cLOS
STOP
FINI

AFBF

80
0132

0a

IN
or
4040

40
01
04

0t

A=LBL

DISC CRF:

LSTCRD?
CARD ¢
UA [
PRINT 1
UA 1

UA

CRDFIL?
PRTFILS
PRTREC?

CRDFIL?
CROREC?
1 '
COUNT
PRTREC!
READ ¢
CRDFIL?

PRTFIL?

08

3
22
1
22
t
36

s

APPENDIX F
ADVANCED ASSEMBLER PROGRAM LISTING

B3500 ASSEMBLER 10/01/67

CRD

PRN

“ e e e

0000
DIG ® 02768,
OPEN FILES»
01G @ 02776,
DIG ® 02798,

DIG & 02820,

INC AIAC B=LBL INC RIBC C=LBL 1INC CICC REMARKS

LI ‘001000:00081200 LIST CODE

LI} §82 H [CARDS IN
[} RECORD AREA
[] §$82 ! L] PRINTOUT

t 3

PRINT RECORD
000=FOFOFOFO

CLEAR PRINT AREAs GET READY
000=3001342700279800006400
000=3001342700282000120810
000=11A404404028001528120065001528001532

MAIN READ=PRINT LOOP FOLLOWS

ENDFIL?

26 DIG @ 02856, 000230011427002882000063002974

t
18
'
18
'
18

s
30
:
08
t
21
'
21
06

PRTREC:
0IG ® 02882,
NL COUNT 3
DIG ® 02900,

LI} MOVE IMAGE TO PRT
0002120040200384201528

(I | COUNT CARDS
000=01A104100000202768

PRTREC:1003

DIG @ 02918,
* J
DIG ® 02936,
DIG @ 02966,
DIG @ 02974,
DIG @ 02996,

DIG ® 03018,

000=100404202768201728

1t PRINT RECORD
000=2300234270029660012080029360100
000%27002856
000=300154270029960000640
000=300154270030180012080

000=300194

PAGE

000
000
000
000

000

000
000

000

000
000
000
000
000
000
000
000
000

1

NO-

APPENDIX G
ADVANCED ASSEMBLER SYMBOLIC TABLE LISTING

RASE @ 0 t 1 UNREF
CROFIL (FILE) @ 64 [001100) 001100 001800 002200 002800
COUNT 4 UA e 2768 £001600) 002400 002500
CROREC 80 ua @ 383 10012001 002300
ENDFIL (PROG) @ 2974 £002800]1 002200
X1 7SN @ 8 t 1 UNREF
X2 TSN @ 16 t 1 UNREF
X3 7 SN @ 24 t 1 UNREF
PRTREC 132 UA @ 1528 £001400) 002000 002300 002500 002600
PRTFIL (FILE) @ 1208 10013001 001300 001900 002900
READ (PROG) @ 2856 [002200) 002700
SYNTAX ERRORS.
ASSEMBLY TIME 21 SEC
TOTAL RECORDS = 21
REGULAR LABELS = 11
POINT LABELS = 0

CORE REQUIRED FOR THIS PROGRAM = 4000 DIGITS

DATE ASSEMBLED 08/21/67 10104

G=1

APPENDIX H

ASSEMBLY OPERATION CODE LISTING

CONTROL ASSEMBLY INPUT/OUTPUT.

MNEMONIC

bbbb
CODE
DLET
DOCU
FINT
LIST
NOCD
NOLI
REFR
REMK
SPAC
SPEC

PSEUDO OPERATIONS WHICH AFFECT THE OBJECT PROGRAM.

NAME

BLANK . .+« ¢ v v v v v v v e e
ENABLE PRINTED OBJECT LISTING . . .
DELETE SOURCE STATEMENTS IN UPDATE.
COMMENT + v + & « 4 4 & o & o o o .
END OF SYMBOLIC INPUT
ENABLE PRINTED SOURCE LISTING (*%).
DISABLE PRINTED OBJECT LISTING. . .
DISABLE PRINTED SOURCE LISTING. . .
REFERENCE LABEL . ¢« v & « o & « o+ .
COMMENT « & & & o & & o o o o o o .
START NEW LISTING PAGE. . « « + . .
SPECIFY ASSEMBLER OPTIONS

CONTROL LOCATION COUNTER.

ALOC
LOCN
RIL.OC
SYNC

SEGMENTATION

ADSD
ENSG
SEGM

ADJUST LOCATION COUNTER . « . « . .
SET NEW LOCATION COUNTER VALUE. . .

RESTORE PREVIOUS LOCATION COUNTER VALUE

SYNCHRONIZE LOCATION COUNTER. . . .

CONTROL.

ALLOCATE STORAGE FOR SEGMENT DICTIONARY

END OVERLAYABLE SEGMENT (**). . . .

(*a)

DEFINE START OF OVERLAYABLE SEGMENT (**). .

MISCELLANEOUS.

EQIV
IDNT

DEFINE SYMBOL OF EQUIVALENCE. . . .
PROGRAM NAME. . . &+ ¢ &« « &« o o o &

PAGE
NUMBER
6-11
6-27
6-43
6-L4h
6-70
6-91
6-113
6-114
6-136B '
6~136C
6-162B
6-163

6-8A
6-92
6-137
6-175

6-7
6-51
6-155

6-52
6-81

*% Differences between Advanced and Basic Assembler constructs

and usage.

*A Only legal in Advanced Assembler.
*B Only legal in Basic Assembler.

Revised 11/20/70
by PCN 1034949-002

H-1

APPENDIX H (cont)

MISCELLANEOUS (cont)

MNEMONIC
INFL

NAME

INDIRECT FIELD LENGTH

DATA DIVISION DECLARATIVES.

FILES AND RECORDS.

DATA
ENDF
ENDR
FILE
RECD
SIOC
USER

. . .

ALLOCATE RECORD FIELDS. . .

END FILE BLOCK (**) .
END RECORD BLOCK (%*%)

DECLARE LOGICAL FILE (*¥%) .

DECLARE RECORD. . . .

STANDARD I/0 PACKAGE (*B) .
DECLARE USER I/0 PROCEDURES

WORKING STORAGE.

ACON
ALFA
CNST
KEYA
KEYD
NUMR
PICT
SGNM
SKEY

DECLARE ADDRESS CONSTANT. .
DECLARE EXTENDED ALPHA CONSTANT (*A).

DECLARE CONSTANT. . .

DEFINE ASCENDING SORT KEY (*A). . . .
DEFINE DESCENDING SORT KEY (*A) . . .
DECLARE EXTENDED NUMERIC CONSTANT (*A). . . . 6-120A
DECLARE COBOL-FORM EDIT MASK (*A) . .
DECLARE SEGMENT NUMBER (*A)
BEGIN SORT KEY DEFINITION (*A). . . .

EXECUTABLE INSTRUCTIONS AND PSEUDO INSTRUCTIONS.

DATA MOVEMENT AND CONVERSION.

BUMP
DECR
EDT
MVA
MVC
MVL
MVN

INCREMENT BY ONE. . .
DECREMENT BY ONE. . .
EDITs ¢« « o ¢ o o o o
MOVE ALPHANUMERIC . .
MOVE AND CLEAR WORDS.
MOVE LINKS. « « « +
MOVE NUMERIC. . + + =

%% Differences between Advanced and

usage.
*A Only legal in Advanced Assembler.

*B Only legal in Basic Assembler.

H-2

Basic

Assembler

PAGE
NUMBER

. . . 6-87

. « . . 6-33

. . . 6=ho
.« « . 6=50
.« . . 6=60
. < . . 6-134
.« . . 6-159
¢ « « . 6-188A

.. 6-2
.. . . 6-8
... . 6-25
. . . . 6-90
.+« . . ©6-90B

. . .. 6-127
.+ . . 6-158
.« . . 6-160

. « .+ . 6-18
« + .« . 6-38
.« o e . 6-47
e+« .+ 6-97
o o e e 6-100
o o o e 6-102
« « « . 6-104

constructs and

APPENDIX H (cont)
DATA MOVEMENT AND CONVERSION (cont)

PAGE
MNEMONIC NAME NUMBER
MVR MOVE REPEATED « « « +. 4 & 4 4 4 4 v 4 o« « + . 6-108
MVW MOVE WORDS. &+ &« v ¢« & v 4 4 &« v« o & o o v v . 6-110
RSET RESET DATA FIELD TO A ZERO. . . « . + 6-138
SETT SET DATA FIELD TO A ONE 6-158
SMF SET EBCDIC/USASCII MODE FLIP-FLOP 6-161
SORT SORT FILE (*¥A)e v v v o 4 v v v v o o v v v v 6-162
SPRD FILL AREA « « « o o v o o v 0 v v v v v s v v 62167
TRN TRANSLATE BY TABLE. + . . &« 4 + 4 &« &« o + . . 6-185
FIXED-POINT ARITHMETIC.
ADD THREE-ADDRESS ADD« . 4 v v v v v v « . 6=
DEC TWO-ADDRESS SUBTRACT. 6=35
DIV DIVIDE. v v v 4« v v v v v v v v v v . 6-40
INC TWO-ADDRESS ADD 6-83
MPY MULTIPLY. . . . « + + & v v v v v v v v v v . 6-94
MUL MULTIPLY. . « . « o o o v v v v v v v v v v . 6-96
SUB THREE-ADDRESS SUBTRACT 6=173
FLOATING~POINT ARITHMETIC.
FAD FPADD. 6-56
FDV FP DIVIDE 6-58
FMP FP MULTIPLY « . « v v v« v v v v . 6-71
FSU FP SUBTRACT v v v v v v v . 6=-73
COMPARISON AND SCANNING.
CPA COMPARE ALPHANUMERIC. 6-29
CPN COMPARE NUMERIC + . v & &« « « . . . 6-31
SDE SCAN DELIMITER EQUAL. 6-1h41
SDU SCAN DELIMITER UNEQUAL.« 6-14l
SEA SEARCH.+« 6-146
SEAE SEARCH EQUAL. +« v v v v « . . 6-151
SEAL SEARCH LOW.« 6-152
SLST SEARCH LOWEST + « + +« + v v « « . . . 6-160B
SZE SCAN DELIMITER ZONE EQUAL 6=176
SzU SCAN DELIMITER ZONE UNEQUAL 6-179

*A Only legal in Advanced Assembler.

Revised 11/20/70
by PCN 1034949-002 H-3

APPENDIX H (cont)

BIT TESTING AND MANIPULATION.

MNEMONIC

AND
BOT
BZT
NOT
ORR

BRANCHING.

BUN
EQL
GEQ
GTR
LEQ
LSS
NEQ
NOP
OFL

NAME

LOCGICAL AND . . « «+ .
BIT ONE TEST. .+ « .+ =
BIT ZERO TEST
LOGICAL EXCLUSIVE OR.
LOGICAL OR., + « .+ . =

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH

UNCONDITIONAL.
EQUAL.
NOT LESS . . .
GREATER. . . .
NOT GREATER. .
LESS + .« + « =«
NOT EQUAL. . .

NO OPERATION. . .« «+ .

BRANCH

ON OVERFLOW. .

SEGMENT/SUBROUTINE LINKAGE.

DELM
EXT
NTR
OVLY

DELIMIT CONSTANTS .
EXIT FROM SUBROUTINE.
ENTER SUBROUTINE. . .

CALL AND ENTER SUBSEGMENT

PRIVILEGED INSTRUCTIONS.

BRE
IT10
RAD
RCT
RDT
SRD
STT

BRANCH

REINSTATE. . .

INITIATE I/0. + « . .
READ ADDRESS.
READ AND CLEAR TIMER.

READ TIMER. « o o o o
SCAN RESULT DESCRIPTOR.
SET TIMER .« « « o & o+

PAGE

NUMBER
6-9
6-14
6-20
6-116
6-124

6-19
6-53
6-75
6-76
6-90D
6-93
6-112
6-115
6-121

6-38A
6-54

6-118
6-126

6-16
6-82
6-130A
6-131
6~-132
6-169
6-172

%% Differences between Advanced and Basic Assembler constructs

and usage.

¥A Only legal in Advanced Assembler.
*B Only legal in Basic Assembler.

H-4

APPENDIX H (cont)

NORMAL INPUT/OUTPUT.

PAGE
MNEMONIC NAME NUMBER
ACPT ACCEPT SPO TYPE-IN. « + v & & & &« o & « o« o o . 6-3
CLOS CLOSE FILE. + & ¢ & & s o o o o « « o« o o o o o 6-22
DISP DISPLAY MESSAGE ON SPO. +« «. « « « « . 6-39
OPEN OPEN FILE (*¥*). & v v v v v v v v o« o o o o v . 6-122
POSN POSITION EXTERNAL FILE (**) 6-129
READ READ RECORD &« « &« 4 + & 4 & 4 o o« o o« o« o o « . 6-133
SEEK SEEK DISK RECORD (*A) . . + + v v v v v o « . . 6-153
UNLK UNLOCK RECORD &+ + + & &« &+ 4 & o ¢ « o o « o « . 6-188
WRIT WRITE RECORD: « &« v « « & & & 4 o o o« o o o o o« 6-191
CONTROL PROGRAM COMMUNICATION.
BCT BRANCH COMMUNICATE TO CONTROL PROGRAM 6-12
CORE OBTAIN AMOUNT OF ASSIGNED CORE. 6-28
DATE OBTAIN SYSTEMS DATE (*A). v v v v & v v« v o« o . 6-34
DOZE SUSPEND PROGRAM TEMPORARILY (*A). 6-45
DUMP DUMP PROGRAM MEMORY + &« &+ & & &« & &« 4 o o « « o 6-46
HBK HALT ON BREAKPOINT. &+ « & &4 o o o o o o o o o o 6=77
HBR HALT/BRANCH &+ + v & v o 4 4 o 4 o o v o o o« o « 6-79
RECV RECEIVE DATA FROM ANOTHER PROGRAM I
IN CORE (*A). + v v v v v v v 4 v v v v v v v v 6-136
RTRN RETURN TO CONTROL PROGRAM FROM
USER ROUTINE. &+ « « &« 4 4 s o 4 o o« o o o« o o « 6=139
RUNN PROCEED TO NEXT PROGRAM (*B). . + « &« + + « + . 6-140
SEND SEND DATA TO ANOTHER PROGRAM IN CORE (*A) . . . 6-156A I
STOP TERMINATE PROGRAM EXECUTION . + & « « + o o« + o 6-171
TIME READ SYSTEMS CLOCK. +« & « & ¢ o« « « o o & & + . 6-182
TRAC TRACE PROGRAM EXECUTION . + « & & &« &« « o« + « o 6-184
VALU OBTAIN CONTROL CARD VALUE (*B). « o « « « . . . 6-190
ZIPP EXECUTE CONTROL CARD FUNCTION + « . . . 6-193

*% Differences between Advanced and Basic Assembler constructs
and usage.

*¥A Only legal in Advanced Assembler.

*B Only legal in Basic Assembler.

Revised 11/20/70
by PCN 1034949-002 H-5

APPENDIX H (cont)

BASIC CONTROL PROGRAM INPUT/OUTPUT.

MNEMONIC

INER
INIT
I0CU

T

T0C

NAME

INITIATE I/0 (*¥B) « « o o o« o o o o o
INITIATE I/0 OPERATION (*B)
OBTAIN SYMBOLIC CHANNEL AND UNIT (*B)
TEST I/0 COMPLETE (¥B). . « « « « «

DATA COMMUNICATIONS INPUT/OUTPUT.

ACPR
CNCL
DISR
ENBL
FILL
INTA
INTR
REDY
REED
RITE
UNCL
WAIT
WCRC
WCRT
WTRC

ACCEPT FROM REMOTE SPO (*A)« .
CANCEL DC I/O IF INACTIVE (*A). . . .
DISPLAY ONTO REMOTE SPO (¥A). . « . .
ENABLE DC DEVICE (*A) « « « « o « o« &
FILL INPUT AREA FROM DC DEVICE (*A) .
OBTAIN I/O CHARACTER COUNT (*A) . . .
TNTERROGATE DC RESULT DESCRIPTOR (*A)

CONTINUE STREAM MODE INTO NEXT BUFFER
READ DC RECORD (¥A) + ¢ « + « o « o &
WRITE DC RECORD (¥A). « « « « o « o =
CANCEL DC I/O UNCONDITIONALLY (*A). .
AWATIT INQUIRY (*%A). « « « o « o« « o &

WRITE TO CONTROL/READ TO CONTROL (*A)

WRITE TO CONTROL/READ TRANSPARENT (¥A). . .
WRITE TRANSPARENT/READ TO CONTROL (*A). . .

SORTER-READER AND LISTER OPERATION CODES.

ABLE
CWNT
FLOW
LGHT
LSTR
PCKT
SKIP

ENABLE LISTER (%A) + « « « « o o« o &
ADVANCE BATCH COUNTER (¥A). .« +« « + &
START SORTER-READER IN FLOW MODE (*A)

TURN ON POCKET LIGHT (*¥A) . « « o« « &
PRINT MTL RECORD (*A) . « « « « « o« =
EXIT FROM POCKET SELECT ROUTINE (*A).
SKIP MTL (%A) o & o v o« o o o o o o =

PAGE
NUMBER
6-85
6-88
6-89

6-183

7-17
7-19
7-20
7-22
7-24
7-26

%% Differences between Advanced and Basic Assembler constructs

and usage.

¥A Only legal in Advanced Assembler.
*B Only legal in Basic Assembler.

H-6

SORTER-READER AND LISTER OPERATTON CODES (cont)

MNEMONIC

SLEW
SPAS
SRTR

NAME

SLEW MTL (*A)
SPACE MTL ONE LINE (*A)
READ RECORD FROM SORTER FILE (*A)

MACRO CONDITIONALS AND PSEUDOS.

BOOL
CLRB
MACR
MBUN
MEND
MEQL
MERR
MEXT
MGEQ
MGTR
MLEQ
MLSS
MNEQ
MNOP
SETB

EVALUATE BOOLEAN (*A)
CLEAR BOOLEAN (*A). . . « . . . «
HEADER (%A) v o v v v v v v v v w v v
UNCONDITIONAL BRANCH TO MACRO PSEUDO (%A)
END OF DEFINITION (*A). . o« o . o
BRANCH BQUAL (*A) 10-2,
ERROR MESSAGE SPECIFIED (*A).
END OF STATEMENTS TO BE GENERATED
BRANCH GREATER THAN OR EQUAL (*A)
BRANCH GREATER (*A) . . v v v o o o + . .
BRANCH LESS THAN OR EQUAL (*A).
BRANCH LESS + & v v v v v 4 4 v v w v o .
BRANCH NOT EQUAL.
NOP FOR MACRO GENERATOR (*A).
SET BOOLEAN (*A). & v v v & o o v o o . .

LIBRARY PSEUDOS.

LEND
LIBR

**%* Differences between Advanced and Basic Assembler constructs
and usage.

END OF DEFINITION (*A). + o & o o o o . .
HEADER (*A) . o v v o v o v . ..

*¥A Only legal in Advanced Assembler.
*¥B Only legal in Basic Assembler.

Revised 11/20/70
by PCN 1034949-002

APPENDIX H (cont)

PAGE

NUMBER

8-173
8-15
8-17

10-12
10-13
10-1
10-3
10-3
10-11
10-13
10-3
10-11
10-11
10-11
10-11
10-11
10-3
10-11

10-14
10-14

H-7

cut alony dotted line

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS
REMARKS FORM

TITLE: _B 2500 and B 3500 Systems FORM: 1034949
Assemblers Reference Manual DATE: 4-69

CHECK TYPE OF SUGGESTION:
[_JADDITION [_]DELETION [_IREVISION [_JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE
TITLE
COMPANY
ADDRESS

STAPLE

FOLD DOWN SECOND

FOLD DOWN

Postage
Will Be Paid

by
Addressee

No
Postage Stamp

Necessary

1f Mailed in the

BUSINESS REPLY MAIL

First Class Permit No. 817, Detroit, Mich. 48232

L]

]

.]

Burroughs Corporation ————

6071 Second Avenue —————

Detroit, Michigan 48232 ———

. ___]

attn: Sales Technical Services ———

Systems Documentation ————
FOLD uP FIRST FOLD UP

PEECHOPE . ¥ ¥ o N

o 7 - ~.
Py . \ N\
[). - 3o
cdwl N

WNherever There's / _
Gusiness There's | Burroughs

0034944 4-69 Printed in U.S. America

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-001
	06-002
	06-003
	06-004
	06-005
	06-006
	06-007
	06-008
	06-008A
	06-009
	06-010
	06-011
	06-012
	06-013
	06-014
	06-015
	06-016
	06-017
	06-019
	06-020
	06-021
	06-022
	06-023
	06-024
	06-025
	06-026
	06-027
	06-028
	06-029
	06-030
	06-031
	06-032
	06-033
	06-034
	06-035
	06-036
	06-037
	06-038
	06-038A
	06-039
	06-040
	06-041
	06-042
	06-043
	06-044
	06-045
	06-046
	06-047
	06-048
	06-049
	06-050
	06-051
	06-052
	06-053
	06-054
	06-055
	06-056
	06-057
	06-058
	06-059
	06-060
	06-061
	06-062
	06-063
	06-064
	06-065
	06-066
	06-066A
	06-067
	06-068
	06-069
	06-070
	06-071
	06-072
	06-073
	06-074
	06-075
	06-076
	06-077
	06-078
	06-079
	06-080
	06-081
	06-082
	06-083
	06-084
	06-085
	06-086
	06-087
	06-088
	06-089
	06-090
	06-090A
	06-090B
	06-090C
	06-090D
	06-091
	06-092
	06-093
	06-094
	06-095
	06-096
	06-097
	06-098
	06-099
	06-100
	06-101
	06-102
	06-103
	06-104
	06-105
	06-106
	06-107
	06-108
	06-109
	06-110
	06-111
	06-112
	06-113
	06-114
	06-115
	06-116
	06-117
	06-118
	06-119
	06-120
	06-120A
	06-121
	06-122
	06-123
	06-124
	06-125
	06-126
	06-127
	06-128
	06-129
	06-130
	06-130A
	06-131
	06-132
	06-133
	06-134
	06-135
	06-136
	06-136A
	06-136B
	06-136C
	06-137
	06-138
	06-139
	06-140
	06-141
	06-142
	06-143
	06-144
	06-145
	06-146
	06-147
	06-148
	06-149
	06-150
	06-151
	06-152
	06-153
	06-154
	06-155
	06-156
	06-156A
	06-156B
	06-157
	06-158
	06-159
	06-160
	06-160A
	06-160B
	06-161
	06-162
	06-162A
	06-162B
	06-163
	06-164
	06-165
	06-166
	06-167
	06-168
	06-169
	06-170
	06-171
	06-172
	06-173
	06-174
	06-175
	06-176
	06-177
	06-178
	06-179
	06-18
	06-180
	06-181
	06-182
	06-183
	06-184
	06-185
	06-186
	06-187
	06-188
	06-188A
	06-189
	06-190
	06-191
	06-192
	06-192A
	06-193
	06-194
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	replyA
	replyB
	xBack

