
Printed in U.s. America 

Burroughs 
MEDIUM SYSTEMS 

8 3700/8 4700 

CENTRAL PROCESSOR 

REFERENCE MANUAL 

COPYRIGHT © 1966, 1968, 1969, 1972 
AA828689 AA995115 AA 120798 

Burroughs Corpora.tlon 
Detroit. Michigan 48232 

$2.00 

12-72 1063799 





INTRODUCTION . 
System Description 

B 3700 .... . 
B 4700 ... ' .. 

TABLE OF CONTENTS 

TITLE 

Variable Field Length Floating Point (Optional) 
B 3700/B 4700 System Configurations 
Data Representation .... 
Processor Instruction Format 

Operation Code . . . 
Variant Digits 
AF, BF Variants 
Indirect Field Length 
Literal 
Addresses .... . 

Indexing .... . 
Indirect Addressing 
Extended Address 

Interrupts . . . . . . 
Control State Interrupts 
Normal State Interrupts 

Logical Units ..... 
Logic Section . . . . . 

Comparison Flip-flops 
Overflow Flip-flop 
Data Registers . 
Bussing ..... 

Arithmetic Section 
Adder ...... . 
Floating Point Arithmetic . . . . 
Floating Point Adapter (Optional) . 
Fixed Length Arithmetic Unit . . 

Accumulator, Exponent Register, Extension Register 
Adder ..... . 
Scratchpad Memory 
Arithmetic Register 
Multiplier 

Control Section . . . . 
In terru pts . . . . . 
Result Descriptors ... 
Processor Result Descriptor 

In valid IIO .... 
Invalid Instruction 
Memory Parity Error 
Address Error 
Instruction Time-Out 
Timer ...... . 
Operator Interrupt . 

Normal/Control State Operation 
OP Register ........ . 
Logic Counter-Sequence Counter 

iii 

PAGE 

1 
1 
1 
1 
1 
1 
1 
7 
7 
7 
7 
7 
8 
8 
8 
8 
9 
9 
9 

10 
10 
10 
10 
11 
11 
12 
12 
12 
12 
14 
14 
14 
16 
16 
16 
16 
17 
18 
18 
18 
19 
19 
19 
19 
19 
20 
20 
20 
21 
21 

For Form 1063799 



TABLE Of CONTENTS (Cont) 

Addressing Section . . . 
Address Register . . . 
Base-Limit Registers 
Addressing Techniques 
Address Memory . , 
1/0 Address Memory 
1/0 Address Register 

Memory Control Section 
Translator . . . . . 
Error Correction 

Operator Console and Display 
Operator Display 
Console Controls 
Load Function . 

Universal Load 
Normal Load .. 

Central System Power 
+4.75, -2, DC Common 
+ 170 Volts ..... . 
+ 12 Volts and + 10 Volts 
30 Volts AC 
Air Sense ..... . 
Power OnlOff ... . 
+4 Volts, +22 Volts . . . . . .. . 

APPENDIX A B 3700/B 4700 Instruction Set 

TITLE 

LIST Of IllUS1RPi T~ONS 

FIGURE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

TABLE 

1 

TiTLE 

Typical B 4700 Configurations 
Typical B 3700 Configurations 
Extended Address 
Adder Functional Flow Chart 
Adder Examples 
Fixed Length Arithmetic Unit 
Fixed Length Adder 
Memory Allocation 
RID Format 
Processor Result Descriptor 
Operational Block Diagram 
Interrupt and BRE Reserved Memory 
Error Correction 
Processor Voltages 

LIST Of l' ABLES 

TITLE 

B 3700lB 4700 Processor Styles 

iv 

PAGE 

21 
22 
22 
22 
23 
23 
23 
23 
23 
24 
24 
24 
26 
28 
28 
28 
28 
29 
29 
29 
29 
29 
29 
29 

A-I 

PAGE 

3 
5 
9 

13 
14 
15 
16 
17 
18 
19 
20 
21 
25 
29 

PAGE 

2 



INTRODUCTION 

The B 3700 system and the even more powerful 
B 4700 system constitute Burroughs response to 
the EDP equipment users' demand for more ef­
ficient, faster, and more sophisticated data­
processing systems. The B 3700 and B 4700 sys­
tems are character-oriented toward business 
and data communications applications. They 
consist of highly efficient modular hardware/ 
program products, plus a wide range of excep­
tional peripheral devices that fulfill the re­
quirements involved in solving the data 
gathering and immediate response requIre­
ments that confront data processing installa­
tions today and in the near future. 

It is the purpose of this manual to acquaint the 
reader with the Central Processor and asso­
ciated components offered by Burroughs Cor­
poration which are applicable to the B 3700 and 
B 4700 systems. 

SYSTEM DESCRIPTION 

B 3700 

The B 3700 is characterized by a 3 MHz clock 
speed and a memory cycle time of 667 
nanoseconds. Memory sizes range from 100,000 
to 300,000 bytes of solid state (IC) memory. A 
unique method of overlapping memory cycles 
has been implemented in the B 3700, to enhance 
the processor's response characteristics during 
high I/O activity periods. Due to this feature, an 
I/O bandpass of 3 million bytes per second is 
possible. 

The B 3700 can accommodate up to 20 concur­
rent I/O channels, 10 for high speed peripheral 
subsystems and 10 for low speed peripheral de­
vices. The I/O subsystem can be expanded to 
accommodate integrated data communication 
controls which will accommodate up to 36 lines. 

B 4700 

The B 4700 system has a higher clock rate (4 
MHz) than does the B 3700. The B 4700 has the 

-1-

B 3700/B 4700 
CENTRAL PROCESSOR 

capability to handle 20 standard I/O channels , 
or up to 56 channels for data communication 
applications. The memory subsystem may con­
tain up to one million directly addressable dig­
its of high-speed core memory having a cycle 
time of 500 nanoseconds. 

Both systems can utilize all medium systems 
peripheral devices as well as the full mix of me­
dium systems controls, exchanges and adapters. 

Power for the system, excluding peripheral de­
vic~s, is deri.ved from one central power supply, 
whICh contaIns all the required regulator and 
sensing circuitry. These supplies are internally 
compensated so as to reduce to a minimum any 
power fluctuation to the system. Several 
detectors are utilized to sense fault conditions 
such as low input voltage, dropped cycles, or in­
put voltage that is too high. In addition, tem­
perature sensors are employed to warn users of 
excessive room temperature. 

Variable Field Length Floating Point 
(Optional) 

This adapter is available for those users who 
require the Floating Point commands, OP 80 
through 83. Installation of this adapter enables 
the user to perform real-arithmetic operation 
with ~p to 100 digits of accuracy. Basically, th~ 
functIOn of this adapter is to handle the align­
ment and normalization of operands as general­
ly required in real-arithmetic operations. 

B 3700/B 4700 SYSTEM CONFIGURATIONS 

The configurations for the B 3700 and B 4700 
systems are described in table 1, which lists 
various cabinets and operating characteristics. 
Figure 1 shows various B 4700 configurations 
and figure 2 shows the typical B 3700 equip~ 
ment configurations. 

DATA REPRESENTATION 

The basic unit of data used in the B 3700 and 
B 4700 processors is the bit, which represents 

For Form 1063799 



the presence or absence of a specific piece of in­
formation. By assigning particular values to 
specific bits, these bits can be combined to form 
larger, more efficient units of information. Be­
cause of the overall system orientation toward 
COBOL and the business applications by the 
majority of users, analysis indicated that four 
bits would be the optimum size of this unit of 
information, designated as the digit. By as­
signing binary weights of 1, 2, 4, and 8 to each 
of the bits, the combined value can represent 
any number from 0 through 15. The digits 

shown below illustrate how various bit combi­
nations are used to represent numerical values: 

8 Bit 1 0 1 1 

4 Bit 0 1 1 0 

2 Bit 0 0 0 1 

1 Bit 1 1 0 1 

(A) (B) (C) (D). 

Table 1. 8 3700/8 4700 Processor Styles 

FEATURES 

B 3771 3MHz 1 8 100 300 N/A 1 No No 

B3772 3MHz 2 18 3M 100 300 600 2 Yes Yes 

B 4704 4MHz 1 8 2M 150 500 N/A 1 No No 

B 4711 4MHz 1 10 2M 150 500 N/A 1 (b) (b) 

B 4712 4MHz 2 18 2M 150 500 1,000 2 Yes Yes 

B 4713 4MHz 3 26 2M 150 500 1,500 3 Yes Yes 

B 4714 4MHz 4 34 2M 150 500 2,000 4 Yes Yes 

B 4708 4MHz 1 8 4M 150 500 N/A 1 No No 

B 4731 4MHz 1 10 4M 150 500 N/A 1 (b) (b) 

B 4732 4MHz 2 18 4M 150 500 1,000 2 Yes Yes 

B 4733 4MHz 3 26 4M 150 500 1,500 3 Yes Yes 

B 4734 4MHz 4 34 4M 150 500 2,000 4 Yes Yes 

NOTES 

(a) Minimum. 
(b) Included if multiple disk file controls. 
(c) Amounts shown are millions of bytes per second per system. 

-2-



I r I 
I I 

PERIPHERAL CORNER PERIPHERAL -
CONTROL JUNCT CONTROL POWER 

I 1 I I I SUPPLY 
I I I 

-~ POWER -I- ~ . . 
SUPPLY 

-I- -~ 

-r- CORNER PERIPHERAL 
MEMORY 

JUNCT CONTROL . 
AUX -~ 

T 

I I I I 
I 

CORNER 
.~ 

MEMORY JUNCT MEMORY PROC 
-I-

I I I r 
I I I I 

-~ --
PROC CONFIGURATION "8" 

-~ -~ 

I 
I 

CONFIGURATION "A" 
PERIPHERAL CORNER 

CONTROL JUNCT 
CORNER PERIPHERAL 

JUNCT CONTROL 

. 
POWER POWER POWER 
SUPPLY SUPPLY _~ SUPPL Y 

I , 

MEMORY 
CORNER 

JUNCT 
PERIPHERAL CORNER 

MEMORY 
CONTROL .IUNCT 

CORNER 
MEMORY 

JUNCT 
I I 1 1 , 

to -~ 

PROC PROC PROC 

-~ 

CONFIGURATION "C" CONF IGURATION "0" CONFIGURATION "E" 

PIN SIDE 

CORNER PERIPHERAL PERIPHERAL CORNER 
JUNCT CONTROL CONTROL JUNCT 

I , 
PIN SIDE - POWER r- . 

POWER 
SUPPLY - SUPPLY 

. --' 

MEMORY 
CORNER 

JUNCT 
CORNER 

MEMORY 
JUNCT 

I I I 

-r- + -~ ~ 

PROC PROC 
I- -~ to -~ 

CONFIGURATION "F" CONFIGURATION "G" 

Figure 1. Typical B 4700 Configurations (Sheet 1 of 2) 

-3- For Form 1 063799 



PIN SIDE PIN SIDE 
I 

PERIPHERAL CORNER PERIPHERAL PERIPHERAL CORNER PERIPHERAL 

CONTROL JUNCT CONTROL CONTROL JUNCT CONTROL 
I I 

PIN SIDE PIN SIDE 
r 

POWER POWER 

SUPPLY SUPPL Y . 
I , , I 

MEMORY 
CORNER 

JUNCT 

CORNER 
JUNCT 

MEMORY 

I j I 

~ 

PROC PROC 

I- I-

CONFIGURATION "H" CONFIGURATION "I" 

PIN SIDE 

CORNER PERIPHERAL PERIPHERAL CORNER 

JUNCT CONTROL CONTROL JUNCT 
I I , 

PIN SIDE --
POWER POWER 

SUPPLY 
~ -I-

SUPPLY 
l- I-

I I I I I 

CORNER CORNER 
MEMORY JUNCT MEMORY MEMORY JUNCT MEMORY 

I I I I 1 
I 

- l- I-

PROC PROC 

+ I-

CONFIGURATION "J" CONFIGURATION "K" 

PIN SIDE 

CORNER PERIPHERAL PERIPHERAL CORNER 
JUNCT CONTROL CONTROL JUNCT 

r- PIN SIDE 
POWER POWER 

SUPPLY SUPPLY -

PERIPHERAL CORNER 
CONTROL JUNCT 

MEMORY MEMORY 
CORNER PERIPHERAL 

JUNCT CONTROL 

I 

PIN SIDE 

-
PROC PROC 

-

CONFIGURATION "L" CONFIGURATION "M" 

Figure 1. Typical B 4700 Configuration (Sheet 2 of 2) 

-4-



pee 

es pee es es pee 

p p p P 
PWR W W W W 

R R R R 

es es cs pee es es pee 

P p P P 

R R R R R 

a a a a a 
e e e e e 

I pee es es pee 1 P 
W 

PWR PWR R 

[ pee es es pee I 
pee es pee 

P 

p P R 

R R a 
a a e 
e e 

L--- "----

.---- ..---- .---- .---

pee pee pee pee 

es PWR es es PWR es 

P P 

R R 

a a 
e e 

L--- L..-.-

l pee es cs pee 1 
P P 
w W 
R R 

es pee 
I I pee cs 

P P 
R R 
a a 
e e 

L....--- '----

Figure 2. Typical B 3700 Configurations 

- 5- For Form 1 063799 



In these examples, the presence of a bit is indi­
cated by a 1 in the particular cell, and the ab­
sence of the bit is represented by a O. In A 
above, both the 8-bit and the I-bit are present, 
so the digit value is 9. The next digit, B, has 
the 4 and 1 bit present, representing a decimal 
5. The last two columns, C and D, represent 
decimals 12 and 11, respectively, and as such 
cannot be represented as a normal decimal dig­
it. 

These special cases of digits having numeric 
values greater than 9 10 are called undigits and 
are represented either by alpha characters or 
by a slash through the units portion of the 
decimal value as shown below: 

DIGITIO 

10 

11 

12 

13 

14 

15 

REPRESENTED AS: 

IN PRINT 

A 

B 

c 
D 

E 

F 

ON CONSOLE 
DISPLAY 

The digit is the basic unit addressable by the 
processor, and is the smallest unit of data avail­
able to the user. 

As previously stated, the digit can only repre­
sent values of from 0 to 15, or 16 discrete 
states. Since this is not enough to represent all 
the possibilities of numeric digits, alphabetic 
characters and special symbols used in the data 
processing field, two digits are combined to 
form the unit of data called the byte, which has 
the ability to represent a total of 16 x 16, or 
256 discrete values. 

-6-

The byte, shown below, can be used to repre­
sent any alphanumeric or special character in 
either EBCDIC or ASCII. 

8 8 

4 4 

2 2 

1 1 

A byte is often referred to as a character; how­
ever, this is not entirely accurate. The byte is 
the measure of a quantity of data, which may 
or may not represent a character; however, a 
character is a specific array of bits that conveys 
some usable intelligence. 

A word, as used in B 3700 and B 4700 systems, 
consists of four contiguous digits, beginning 
and ending at specific locations in memory. As 
shown below, the four digits are identified as 
A, B, C, and D, with each bit of each digit being 
identified according to its binary value. Words 
must begin at MOD 4 addresses; that is, ad­
dresses that are evenly divisible by four. 

8 

Bits 4 

2 

1 

A 

A8 

A4 

A2 

Al 

DIGITS 

B 

B8 

B4 

B2 

Bl 

C D 

C8 D8 

C4 D4 

C2 D2 

Cl Dl 

Because many instructions use word-oriented 
data fields, the ability to address to a word lev­
el, and subsequently manipulate these large 
data blocks, rather than repetitively handling 
smaller units, affords a higher efficiency level 
and a significant increase in system 
throughput. 

The type of data to be used is specified by the 
instruction as being either unsigned numeric, 
signed numeric, or alpha. In the case of numer­
ic data, four-bit digits are used and, in the case 



of signed numeric, a sign digit is placed before 
the data field. If the instruction specified alpha 
information, the data field is treated as groups 
of 8-bit bytes. 

PROCESSOR INSTRUCTION FORMAT 

Processor instructions may vary in length from 
4 to 24 digits and have from none to three ad­
dresses as shown below: 

a. OP VV 

b. OP AAAA 

c. OP AAAAAA 

d. OP AFBF AAAAAA BBBBBB 

e. OP AFBF AAAAAA BBBBBB CCCCCC 

In the above example, OP indicates the 
operation code, VV indicates variant digits, AF 
and BF represent the A and B field variant dig­
its, and A, B, and C represent the addresses of 
the respective data fields. In all cases, each let­
ter represents one digit of instruction informa­
tion. 

Operation Code 

The first two digits of any instruction always 
represent the operation (OP) code. This OP code 
is indicative of the length of the instruction 
and, more importantly, informs the processor 
of the type of action to take on the specified 
data. 

Variant Digits 

These digits, when used in instructions such as 
shown in the previous example, give the proces­
sor more detailed information on how to handle 
the specified data. 

AF, SF Variants 

Generally, these digits specify the length of the 
"A" data field and the "B" data field, respec­
tively. Since both AF and BF are 2-digit fields, 
each may specify a length of 00 to 99, with 00 
representing a length of 100. In some instruc­
tions, AF and BF may be combined to represent 
lengths of from 0000 to 9999, with 0000 repre­
senting a value of 10,000. The significance of 

-7-

the value of the AF and BF variants is deter­
mined by the contents of the "A" field and "B" 
field, respectively. 

Indirect Field Length 

Another function available within the variant 
fields, when their use within an instruction 
specifies field length, is that of indirect field 
length. When the two high-order bits (8 and 4) 
of the most significant digit of AF or BF are 
ON, they indicate an indirect field length. The 
two low-order bits (2 and 1) plus the entire least 
significant digit indicate the tens and units dig­
its of an address where the field may be found. 
This address must be an even number. For ex­
ample: 

Indirect field 8 
length is 4 
indicated. 

Tens position of 2 
the address 1 
where the field 
can be found. 

x 
X 

X 

NOTE 

X 

X 

8 
4 

2 
1 

Units position 
of the address 
where the 
field length 
can be found. 

X indicates the bit is ON. Blank in­
dicates OFF. 

In this example, the variant reflects that an in­
direct address contains the field length of the 
instruction being executed and that the length 
of the field is to be found at base relative ad­
dress 00016. 

While it is logically possible to use indirect field 
length to any depth, it is obvious that the num­
ber of addresses generated by the technique is 
limited. The two low-order bits of the high-or­
der digit may represent values of 0, 1, 2, or 3. 
Since the address must be even, the range may 
be from 00000 to 00038, base relative. This tech­
nique can be very useful in cases where many 
instructions in a program refer to the same 
field, and that field is variable in length. The 
field length may be modified in only one loca­
tion. All instructions referring to that field will 
be so modified without the necessity of any oth­
er code change. 

For 'Form 1063799 



Literal 

Another use of the AF variant is to indicate 
that the A syllable of the B 3700 and B 4700 
Systems command does not contain an address, 
but instead contains literal data to be used di­
rectly by the command. This option is indicated 
by the 8-bit and the 2-bit, in the most 
significant digit of the AF field, being ON, with 
the 4-bit being OFF. A literal, as with any data, 
may be represented as 4-bit digits, either signed 
or unsigned, or as 8-bit characters. The l:.bit of 
the most significant digit of AF and the 8-bit 
of the least significant digit are used to indicate 
the internal representation to be used for the 
literal and are called controller bits which rep­
resent the following 27'bit values: 

a. 0 - unsigned numeric (4-bit mode). 

b. 1 - signed numeric (4-bit mode). 

c. 2 - alphanumeric (8-bit mode). 

d. 3 - unused. 

The remaining three bits of the low-order digit 
of AF specify the length of the literal. Since the 
A syllable is six digits in length, the following 
lengths are maxim urn: 

a. Unsigned numeric - six 4-bit digits. 

b. Signed numeric - five 4-bit digits plus a 
sign 4-bit digit. 

c. Alphanumeric - three 8-bit (byte) charac­
ters. 

For example: 

8-bit and 2-bit, being ON, 
indicate that a literal is 
present in the A address 
portion of the instruction. 

8 4} Indicate that the length 
2 - of the literal is 6. 
1 

-8-

In the example, bl and b2 both being OFF indi­
cate an unsigned numeric representation. The 
A syllable contains a literal of six unsigned nu­
meric digits. 

All field lengths specified for signed numeric 
fields reflect the length, excluding the sign. In 
floating-point instructions, field length reflects 
the length of the mantissa only. 

Addresses 

Typically, data field addresses have six digits, 
the most significant of which is used to flag 
such functions as indexing, indirect addressing, 
or extended addressing. The remaining five (or 
in the case of extended addressing, six) digits 
constitute the base relative address of the data 
field. 

INDEXING 

The eight-and four-bits of the most-significant 
digit of the address are used to specify indexing 
with anyone of the three programmable index 
registers available to each program. The condi­
tion of these bits indicates which index register 
is to be used, as shown below: 

8 4 
Bit Bit 

0 0 

0 1 

1 0 

1 1 

No indexing 

Index Register 1 (I x 1) 

Index Register 2 (I x 2) 

Index Register 3 (I x 3) 

If indexing is specified, the value of the index 
register is algebraically added to the address 
field prior to storing the address in address 
memory. 

INDIRECT ADDRESSING 

When the two low-order bits (2 and 1) of the 
most-significant digit of the address are both 
ON, the following five digits are considered to 
be the address of an address. In this case, the 
new address is read, checked for indexing or ad­
ditional indirect addressing, and is stored in ad­
dress memory only after all indirect addressing 
has been eliminated. 



EXTENDED ADDRESS 

If the second digit of an address is a binary 12 
(undigit 2), the following six digits constitute an 
address having the capability to address full 
memory (1,000,000 digits). Figure 3 illustrates 
the extended address and its flag compared to 
a normal unextended address. 

4 BITS 
OR 

the operating system examines the cause of the 
interrupt and determines the action to be taken. 

Interrupts may occur while the processor is in 
either normal or control state. Their handling 
is somewhat different under the different con­
ditions. 

1 DIGIT 
I I 
: 1 DIGIT: 

UNEXTENDED ADDRESS FORM 

INDEX CONTROLLER 

ADDRESS CONTROLLER ---------' 

ADDRESS TEN THOUSAND 

ADDRESS THOUSANDS 

ADDRESS HUNDREDS 

ADDRESS TENS 

ADDRESS UNITS ----------. ----------------+-----+-------+----~--__4 

EXTENDED ADDRESS FORM 

INDEX CONTROLLER 

ADDRESS CONTROLLER 

EXTENDED ADDRESS FLAG 

ADDRESS HUNDRED THOUSANDS 

Figure 3. Extended Address 

All capabilities assigned to normal addresses, 
incl uding indexing, indirect addressing, and 
literal capability, apply to extended addresses. 

INTERRUPTS 

In order to make most efficient use of available 
system resources, an interrupt scheme had to 
be designed into the B 3700/B 4700 systems. As 
a result, the processor has been freed from 
time-consuming monitoring tasks and allowed 
to function with as little interference as possi­
ble. When some event does occur that requires 
processor action, the Interrupt flag is set, and 

-9-

Control State Interrupts 

When the processor is operating in control 
state, there may be interrupt conditions generated, 
but no automatic interrupt handling takes place 
at the completion of an instruction. Rather, at 
the time that the MCP attempts to return to 
normal state, automatic branching to control 
location 000094 will occur so that these inter­
rupts will be handled by the MCP. 

If the processor is operating in the zero-base 
state, the following processor conditions will 
caU8e the processor to branch to control location 
000094: 

a. Memory parity error interrupt. 

For Form 1063799 



b. Address error interrupt. 

c. Instruction time out interrupt. 

d. All non-assigned operator codes. 

e. Operator codes requiring options which are 
not present. 

f. Invalid halts. 

Since the processor is in the zero-base state, 
any of the above interrupts indicates that a 
hardware or an operating system error exists. 
A privileged instruction interrupt cannot occur 
because all of the instructions are executable in 
the zero-base state. The clock interrupt condi­
tion occurs in the same manner as in normal 
state, but no automatic branching occurs in 
control state. 

Normal State Interrupts 

When certain operational conditions occur 
within the processor while executing instruc­
tions in the normal state, the following logic oc­
curs: 

a. If either an operator interrupt, a timer in­
terrupt, or an I/O interrupt occurs, the inter­
rupt will generate a result descriptor and 
store the descriptor in the reserved memory 
location. 

b. The interrupt will set the interrupt flag and 
store the program return point and logical 
register settings. 

c. An automatic branch is taken to the ad­
dress specified by the contents of reserved 
memory location 000094. The processor oper­
ational mode is changed from normal state to 
control state, zero base. 

The branch to the control state is a branch to 
the operating system - the Master Control 
Program. It is the function of the operating sys­
tem to determine the type of interrupt and the 
course of action that is to be followed. The in­
terrupt system, as explained, is automatic and 
is an integral part of the processor hardware 
systeln. 

-10-

LOGICAL UNITS 

Functionally, the processor may be divided into 
four broad areas: a logical or data section, an 
arithmetic section, a control section, and an ad­
dressing section. Each of these areas is 
subdivided into smaller, more specialized func­
tional modules, and each is intimately associ­
ated with the other sections. 

Logic Section 

The first of these' major areas, the logic section, 
consists of the data comparison circuitry, the 
overflow flag, several data registers and the 
busses required to transfer data throughout the 
system. 

COMP ARISON FLIP-FLOPS 

Two hardware flip-flops make up the 
comparison logical unit. These two flip-flops 
have the following four combinations (0 = OFF, 
1 = ON): 

a. 00 - cleared. 

b. 01 - greater or high comparIson result. 

c. 10 - less or low comparison result. 

d. 11 - zero or equal comparison result. 

These four states represent the result of ex­
ecuting an instruction that affects these logical 
units. The cleared state indicates that there is 
no comparison result existing. The instructions 
that set a result into the comparison flip-flops, 
which are displayed on the appropriate console 
indicators, are: 

a. All arithmetic instructions. 

b. All floating point instructions. 

c. Compare instructions. 

d. Move Numeric instruction. 

e. Move Alphanumeric instruction. 

f. The bit test instructions. 

g. The logical instructions. 



h. The scan instructions. 

i. The Edit instruction. 

j. The Scan Result Descriptor instruction. 

k. Search instructions. 

Any branching that is done on the basis of t~e 
comparison flip-flops does not change theIr 
status. Only another instruction that affects 
them can change their status. When entering 
control state by means of the Branch Commu­
nicate instruction or the automatic interrupt 
system, the status of the comparison flip-flops 
is stored. The 2-bit and l-bit of the same char­
acter that stores the overflow flip-flop status 
will contain the status of the comparison flip­
flops. The flip-flops are then cleared befo~e 
branching to control state. When return IS 
made to the normal state, the Branch 
Reinstate. instruction will restore the 
comparison flip-flops from the character i,n re­
served memory. Similarly, when entenng a 
subroutine the Enter instruction stores the 
compariso~ flip-flops in the 2-bit and l-bit of 
the specified character in the memory stack. 
This same character contains the overflow 
flip-flops status. When leaving the su.brouti.ne 
with the Exit instruction, the companson fhp­
flops are restored from this character in the 
stack. 

OVERFLOW FLIP-FLOP 

The overflow flip-flop is a hardware :ogical 
unit that indicates the data field of a move or 
arithmetic instruction is exceeded. If an over­
flow condition is detected, the command is ex­
ecuted but the data is not affected. The over­
flow flip-flop is not cleared at the beginning 
of an arithmetic operation, therefore, it indi­
cates overflow that has occurred any time 
before or during a series of arithmetic opera­
tions or other interjected nonarithmetic opera­
tions. Instructions that can create an overflow 
condition are: 

a. Arithmetic instructions except Multiply. 

b. Floating point arithmetic instructions. 

c. Move Numeric. 

-11-

d. Move Alphanumeric. 

e. Fixed Length. Arithmetic Instructions. 

Overflow cannot occur during a Multiply in­
struction since the receiving field is always 
large enough to contain the product. In all 
cases except the floating point lnstructions, 
overflow results when the receiving field can­
not contain the sending field. With floating 
point instructions, the overflow can also be. 
caused by an out-of-range exponent. The over­
flow flip-flop is turned OFF by the Branch On 
Overflow instruction. Once cleared, it can be 
turned ON if the conditions arise while execu­
ting those instructions that may turn it ON. 
There are two ways by which the present set­
ting of the overflow flip-flop may be stored in 
the 4-bit of reserved location 000076, after 
which the flip-flop is cleared. These are: 

a. Branch Communicate. 

b. Automatic interrupt feature. 

The overflow flip-flop is restored from the re­
served memory location by the Branch 
Reinstate instruction. In addition, the object 
program may branch to some subroutine and 
the overflow flip-flop setting must be retained 
and restored at the conclusion of the subrou­
tine execution, prior to continuing in the ob­
ject program. The Enter instruction will store 
the flip-flop setting into the four bits of the 
reserved character location in the memory 
stack and then clear the overflow flip-flop. 
The Exit instruction will restore the overflow 
flip-flop setting from this reserved location. 

DATA REGISTERS 

Both the B 3700 and the B 4700 make exten­
sive use of internal data registers so as to al­
low a constant flow of fully buffered data, 
thus eliminating adverse effects to system per­
formance. Various instructions use these buf­
fer registers to hold arithmetic operands, data 
read from or to be written into memory, or 
data upon which comparisons are to be made. 
When used in arithmetic operations, some of 
these data buffers have the ability to automat­
ically form the complement of the number 
they contain, thus reducing the arithmetic cy­
cle times. 

for Form 1063799 



BUSSING 

In order to rapidly and efficiently move data 
from point to point within the processor, all 
registers and buffers must have some sort of 
interconnection scheme. By using a polynodal 
bussing network and the appropriate control 
signals, it is possible to transfer data into and 
out of registers without error or loss, all with­
in a few billionths of a second. This concept 
is used extensively throughout the B3700 and 
B 4700 processors. The speed of data transfers 
using this bussing technique is such that in 
many instances the only delay is that imposed 
by the propagation time of an electrical 
impulse through the system interconnections. 
Dependent upon the OP code, the processor 
generates the proper control signals to switch 
data from a selected source onto the busses, 
and then into the destination register. 

Arithmetic Section 

This area of the processor consists of the 
variable field length arithmetic unit or adder, 
the fixed field length arithmetic unit, and the 
floating point adapter. The Floating Point 
adapter is optional with either system. Variable 
field length arithmetic capability is standard on 
both processors. 

ADDER 

The processor uses an adder that accumulates 
two fields from the most significant to the least 
significant digit positions. Reverse addition, as 
incorporated in B 3700 and B 4700 systems, has 
the advantage of detecting an overflow condi­
tion prior to altering the receiving field for the 
result. The principle used in this type of adder 
is illustrated by the flow chart in figure 4 and 
the five examples in figure 5. If the data fields 
are signed, sign manipulation takes place prior 
to the addition since they are the most 
significant digits. 

In figure 5, there is no manipulation of signs 
shown. The addition of two data fields is only 
shown to present the technique of a left-to-right 
adder. 

In example 1, as each set of digits is added, no 
carry is generated and no nines are produced. 
As each new result is generated by the adder, 

-12-

the previous result is stored in the result field. In 
example 2, an overflow condition is immediately 
detected because of a carryon the first digit 
addition. In example 3, the first five nines are 
not stored until the result equal to eight is 
generated. The eight is retained until the carry is 
generated when adding the last digits, at which 
time the eight is made into a nine and stored. 
The following nines are then stored as zeros in 
the receiving field, and then the final digit (8) is 
stored. Nothing is stored in example 4 until the 
final digits are added. The receiving field in 
example 5 remains unchanged even though an 
overflow condition is not detected un til the final 
digits are added. This is due to the result being 
contained in the nine's counter of the adder. 

FLOATING POINT ARITHMETIC 

In order to represent very large or very small 
numbers using decimal notation, a great many 
digits must be used. To simplify calculations, 
"powers of ten," or standard notation, has long 
been used. For example, the decimal value of 
1,000,000 could be shown in standard notation 
as 1 x 109

• Numbers in this format can be ma­
nipulated using normal algebraic procedures 
far more simply than if they were shown in 
decimal format. 

Floating point arithmetic slightly modifies this 
standard notation to a format more usable in 
computers. In floating point format, the num­
ber 1 000 000 becomes +09+000001 when the , , 
field length specifies six digits. The general for­
mat for any floating point number is shown be­
low, 

EX ~ II MANTISSA I 
Where SX is the one-digit sign of the exponent, 
EX is the two-digit exponent, and SM is the 
one-digit mantissa sign. The mantissa may be 
from 1 to 100 digits in length, as specified by 
the appropriate field variant (AF or BF). Both 
the exponent and the mantissa are integers. 

Floating point arithmetic has some restrictions 
concerning zeros, their representation and use. 
The only correct way to represent a zero is with 
an exponent of -99 and a mantissa of all zeros, 



"'T1 

~ 
"'T1 
o 
3 

ADD 
CORRESPOND I NG 

t---'-----o-t DIGITS OF 

DOES 
THE 

RESULT 
= 9 

DOES THE 
REGISTER 

CONTAIN 
A RESULT 

DOES THE 
REGISTER 

CONTAIN 
A RESULT 

DATA FIELDS 

YES 

ADD ONE 
TO THE 

9'5 
COUNTER 

STORE THE 
REGISTER 

IN 
MEMORY 

ADD ONE 
TO THE 

RESULT IN 
THE REGISTER 

WAS 
THERE 

A 
CARRY 

YES 

HAVE ALL 
DIGITS 
BEEN 

ADDED 

PLACE THE 
NEW RESULT 

IN THE 
REGISTER 

STORE THE 
REGISTER 

IN 
MEMORY 

WERE 
THESE 

THE 1st 
DIGITS 

YES 

YES SET 
THE 

OVERFLOW 
FLIP-FLOP 

DOES 
REGISTER 
CONTAIN 
A RESULT 

DOES 
THE 9'5 

COUNTER 
=0 

PLACE THE 
NEW RESULT 

IN THE 
REGISTER 

YES 

NO 

10 

Figure 4. Adder Functional Flow Chart 

STORE THE 
REGI STER 

INTO 
MEMORY 

STORE A 9 
IN MEMORY & 
(9'5 COUNTER) 

- 1 

DOES 
THE 9'5 

COUNTER 
= 0 

DOES 
THE 9'5 

COUNTER 
= 0 

STORE A 0 
IN MEMORY & 
(9'5 COUNTER) 

- 1 

STORE A 9 
IN MEMORY & 
(9'5 COUNTER) 

- 1 



EXAMPLE 1: 

12343 
12343 

RESULT 24686 

EXAMPLE 2: 

12345 
92345 

RESULT 1: 0 + CARRY 
FINAL RESULT: OVERFLOW FLIP-FLOP SET 

EXAMPLE 3: 

876543229 
123455779 

RE SU L T 1: 999998998 + CARRY 
FINAL RESULT: 999999008 

EXAMPLE 4: 

0876543 
0123457 

RESULT 1: 0999990 + CARRY 
FINAL RESULT: 1000000 

EXAMPLE 5: 

876543 
123457 

RESULT 1: 999990 + CARRY 
FINAL RESULT: OVERFLOW FLIP-FLOP SET 

Figure 5. Adder Examples 

since this is the smallest value the notation can 
represen t. Leading zeros in non -zero mantissas 
are acceptable in addition or subtraction; how­
ever, in multiplication or division they will 
cause the entire mantissa to be treated as a 
zero and yield erroneous results. 

-14-

FLOATING POINT ADAPTER (OPTIONAL) 

The purpose of the floating point adapter is to 
manipulate the exponents and mantissas so 
that the numbers are aligned properly. This 
means that the exponent must either be 
decremented and the mantissa multiplied by 10 
for each decrement of the exponent, or the ex­
ponent incremented and the mantissa divided 
by 10 for each time the exponent is incre­
mented. The net effect of these rnanipulations 
does not change the value of the number, but 
it does position the digits properly so that they 
may be added or subtracted. 

In addition to the alignment function for addi­
tion and subtraction, this adapter also performs 
a normalizing function for multiplication and 
division. 

Normalization (elimination of leading zeros) is 
accomplished by examining the leading digit of 
the product or quotient and, if zero, multiplying 
the result field by 10 with a corresponding dec­
rement of the exponent. 

FIXED LENGTH ARITHMETIC UNIT 

This portion of the processor makes use of sev­
eral innovative techniques in arithmetic data 
manipulation; these include word-wide trans­
fers into and out of the various arithmetic reg­
isters, multiple shift capabilities, automatic 
overflow compensation, and a full word multi­
ply capability. This unit consists of several ma­
jor elements and their associated controls and 
interconnections as described below and illus­
trated in figure 6. 

ACCUMULATOR, EXPONENT REGISTER, 
EXTENSION REGISTER. These three 
elements work in conjunction to hold the com­
plete arithmetic operand. The Exponent Regis­
ter (SX) contains the exponent sign (XS), the 
exponent (XA), and the mantissa sign (MS) of 
the operand contained in the accumulator. Typ­
ically, the accumulator holds the mantissa or 
some intermediate stage of the arithmetic oper­
ation in progress which will form the mantissa 
at the· completion of the operation. The Exten­
sion Register (E), is used to extend the accuracy 
of the accumulator one additional digit or, in 
some cases, to reduce the chance of arithmetic 
overflow prior to normalization. 



I .... 
'f 

." 

~ 
." 
o 
3 

) 

) 

) 

) 

READ BUSS 

TM 

TL 

MRIC 

MRW 

. 

. 

. 

. 

WRITE BUSS 

" TM~B) 
"' 
" Tl(WI) 

"' 
" MWAC 

"' 
~ MWBD 

"' 

RT 

WT 

W 

I 
~ ~l PR-W PR PR PR 

I I I I 
4 3 I 

WA 

4 WORD SCRATCH Wi 
PAD STORAGE 

MULTIPLIER I--WC 

/ ADDER INPUT CONTROL: 

WD Ale = 0 AAI, BM, BA3, BA2, BAI 
AR5, AR4, AR3, AR2, ARI 

! i PP5 PP4 PP3 PP2 PPI 
AIC = I BA4, BA3, BA2, BA I 

AR4, AR3, AR2, ARI 

AlC = 2 BA4, BA3, BA2, BAI, E 

1 1 
AR5, AR4, AR3, AR2, AR I 

AlC = 3 XAL, XAM, AR2, AR3 

• 
AR AR AR ~~Rl~J 5 4 3 

I ~ ~IT-
~ MI I ~R ~R I ~R I - r-- r-

! ! ! l 
SHIFT RIGHT BY I 

T 1 

ta- l 1 
CI1F B==: 5 I 4 I 3 I 2 I I :=§MO' ClSf AlC2F 

TW ADDER 
SUIF 

I I I I 

iJh II D-
S5 54 53 S2 

SI !. 
S 

I E I 
- . 1 

I T 1 h I I 1 1 11 11 1 1 1 
I xs I XM I XL I MS I l~l~l'tI'l'I-:1 I ... ~I~I~I~I~I~I~I~I~I~I 3 

• l;J • ~ • • ~ ~ ~ ~ - SHIFT RIGHT IY 4,2, I 

JAA 

- SHFT LEfT IY 2, I 

SX I IA L 

Figure 6. Fixed Length Arithmetic Unit 



ADDER. The adder used in the fixed length 
arithmetic unit provides the capability to add 
or subtract two groups of five digits each and 
provides a decimally corrected result. As 
shown in figure 7, the adder consists of four 
major areas: input gating, hexadecimal adder, 
carry logic, and decimal correction logic. 

The input gating logic selects the two registers 
which are to be added or subtracted. In most 
cases, the inputs will be the B word of the accu­
mulator and the AR register. Other com­
binations may call for the inclusion of the E 
register or perhaps the addition of the operand 
exponents. 

The hexadecimal adder and its associated carry 
logic work together to provide parallel five-digit 
addition. Since these are decimally oriented 
systems, hexadecimal results must be con­
verted to decimal formats. The carry logic 
partially provides for this conversion by han­
dling any carry from sums greater than nine and 
propagating carries through intermediate carry 
generating sums. 

Decimal correction logic is used when the sum 
of an addition is greater than nine. As shown 
below, then 6 is added to the hexadecimal sum, 
the final sum is the correct decimal value: 

9 
+8 
II +--- hexadecimal sum 
+6 
17 +--- corrected decimal sum 

The decimal correction logic is, in effect, a sec­
ond stage of the adder which forces the addition 
of a 6 to the hexadecimal result. 

SCRATCHP AD MEMORY. Four words of 
high-speed scratchpad memory are provided 
for temporary operand storage during the 
execution of the instruction. Data may be 
shifted from the accumulator into any of the 
four words, or from the scratch pad to one of 
the arithmetic registers. 

ARITHMETIC REGISTER. This register, des­
ignated AR in figure 6, is most commonly used 
as one of the inputs to the five-digit adder. It 
is a full five-digit register and may receive 
data from the multiplier, the MR register, or 
directly from memory. This register has no 
shift capability. 

MULTIPLIER. The multiplier makes use of 
two registers, the four-digit PR and the 
shiftable four-digit MR, along with read-only 
memory look-up tables and adder circuitry. 
The basic algorithm for the multiply operation 
is as follows: 

1. Multiply all four digits of PR by the least­
significant digit of MR. This is done by us­
ing the digit values in PR and MR as ad­
dresses in the ROM look-up tables. 

2. Add the 4 two-digit products to form 1 
five-digit partial product. 

3. Shift MR right one digit. 

4. Multiply, add, and shift as in 1, 2, and 
3 until all digits have been multiplied. 

INPUT HEXADECIMAL DECIMAL 
SUM --+ GATING - ADDER - CORRECTION -OPERANDS 

• 

• 
CARRY 

LOGIC 

Figure 7. Fixed Length Adder 

-16-



5. After each step 2, the partial products 
must be added, thus building the final prod­
uct. 

Control Section 

This section of the processor is used to control 
and monitor internal system operation and to 
generate information for use by the operating 
system regarding processor status. Included in 
these control elements are the Normal flip-flop, 
the Interrupt flip-flop, result descriptors, Mode 
flip-flop, and the Timer. 

The operation of the B 3700/B 4700 systems is 
controlled by the MCP. This control program, 
which resides in memory starting at address 
zero, performs all of its functions with the base 
register equal to zero and the processor in con­
trol state. With the base r~gister equal to zero 
the following operational conditions exist: 

a. Privileged instructions are valid. 

b. Such processor errors as a memory parity 
error, memory address error, invalid instruc­
tion, and instruction time-out will cause the 
operation of the system to be stopped. 

When in control state, the operation of the 
processor is not sensitive to the setting of the 
Interrupt flip-flop. An interrupt will be ignored 
until it is programmatically sensed by the con­
trol program. 

All object programs are loaded into memory 
and initiated by the control program. At the 
time an object program is loaded into memory, 
it is allocated an area of memory by the control 
program. Each time an object program is initi­
ated, the base and limit registers are set to 
bound the area of memory that was allocated 
to the program (see figure 8). 

Also, the processor is put into what is referred 
to as normal state. Under these conditions 
(Base ~ 0 and normal state) the following oper­
ational features exist: 

a. Except for certain special conditions, all 
processor accesses to memory are restricted 
to the program's allocated area of memory. 

UNASSIGNED 
MEMORY 

MCP - LIMIT = MEMORY 
SIZE 

PROG. I
LiMIT -

PROGRAM 
C C 

BASE 

PROGRAM 
B 

-

-

LIMIT ~ 

BASE ) 

PROGRAM 

PROG. 

I 

LIMIT ---

A 

-17-

PROGRAM 
A 

BASE __ 

MCP 

- MCP - BASE = 000 

Figure 8. Memory Allocation 

b. All privileged instructions are invalid, due 
to Base ~ O. 

c. With the Base ~ 0, processor errors will 
result in storing a processor result descriptor 
and an immediate branch to the control pro­
gram. 

d. Because the processor is in normal state, 
the operation of the processor is sensitive to 
the Interrupt flip-flop. If set, then the proces­
sor forces a branch to the control program. 

Item a above indicates that under certain condi­
tions the processor can access areas of memory 
that are outside of the Base/Limit register set­
tings. These conditions exist only when it is 
necessary to access certain areas of the control 
program's reserved memory. The following list 
indicates these conditions: 

a. Result descriptor storage, when it is neces­
sary to store a processor result descriptor 
into locations 80 through 83. 

b. NI (next instruction address) storage by all 
multiply and divide instructions into loca­
tions 88 through 93. 

c. The accessing of the Halt Execution digit 
in location 77 by the Halt instructions. 

For Form 1 063799 



d. The storage of pertinent information into 
locations 64 through 76 when the object pro­
gram branches to the control program. 

INTERRUPTS 

The interrupt feature of the system is used to 
indicate to the control program when it must 
respond to the systems needs. Interrupts can 
indicate either normal operating procedures or 
error conditions that may occur. 

Interrupts can be separated into two types: 
processor interrupts and 1/0 interrupts. Proc­
essor interrupts are a result of some action 
initiated by the processor. 1/0 interrupts are 
those that result from the completion of any 
1/0 operation. 

There is one interrupt flip-flop, located in the 
processor, that is used to indicate when any in­
terrupt condition exists. In order to determine 
the type of interrupt, processor or 1/0, a result 
descriptor is stored every time an interrupt 
condition exists. With every 1/0 result descrip­
tor (RID) written into memory the interrupt 
flip-flop is set. 

RESULT DESCRIPTORS 

The processor and each 1/0 channel have a spe­
cific area of memory in which to store its RID. 
These areas are located within the control 
program's area of reserved memory. The proc­
essor RID is always stored in the four digits 
starting at memory location 80. 

The 1/0 RID's are stored in memory starting 
at location 100 with a RID located every 20th mem­
ory address. For example; channel 00 RID is stored 
in 100, channel 01 RID is stored in 120, channel 02 
is stored in 140, etc. 

To determine the location of the RID for any 
1/0 channel, multiply the channel number by 
20, then add 100, (Ch#x 20 + 100=R/D location). 
For example: the RID location for 1/0 channel 
six can be determined by: 

(6 x 20) + 100 = 220 

L Ch# TL-__ Location of Ch #6 RID 

-18-

The result descriptors are used to describe some 
operation. Each RID is 16 bits in length, lo­
cated at a Mod 4 address (80, 100, etc.), there­
fore taking up one memory word. Referencing 
'figure 9, the two most significant bits of the RI 
D are the control bits that indicate the status 
of the result descriptor in memory. The most 
significant bit of the result descriptor, bit num­
ber 1, is referred to as the operation complete 
bit. Each time a result descriptor is written into 
memory, the operation complete bit is set to in­
dicate to the control program that the RID lo­
cation contains a valid result descriptor. 

Control 

Operation Complete 1 " =ttI
~----- Bits 

Exception Bit -- 2, 'r---r-I 5 I """""""'91131 \ , 
" 6 10 14 , 

3 7 11 15 

4 8 12 16 

Exception 

Condition 

Bits 

Figure 9. RID Format 

The second bit is referred to as the Exception 
bit. If set, it indicates that some exception con­
dition is indicated by the remaining bits of the 
descriptor, 3 through 16. 

When a result descriptor is written into its re­
spective location in reserved memory of the 
control program, the two most significant bits 
are set to indicate the following: 

BITS 

1 * 2" 

1 * 2 

INDICATION 

Operation complete, with no 
exception condition. 

Both control bits ON indicate a RID 
wi th an exception condition being 
described with the RID. 

The exception conditions described are those 
conditions which may occur as a result of some 
operation. 

PROCESSOR RESULT DESCRIPTOR 

The processor result descriptor bits and the con­
ditions described are shown in figure 10. Bits 4 
through 8 describe error conditions which can 
occur during the operation of the processor. 



Bits 9 and 10 are not considered error condi­
tions. Each exception condition is described be­
low. 

R/D BIT CONDITION DESCRIBED 

1 OPERATION COMPLETE 

2 EXCEPTION BIT 
----- ----------

3 N/A 

4 INVALID I/o 

5 INVALID INSTRUCTION 

6 MEMORY PARITY ERROR 

7 MEMORY ADDRESS ERROR 

8 INSTRUCTION TIME-OUT 

9 TIMER 

10 OPERATOR 

11 =C> 16 N/A 

Figure 10. Processor Result Descriptor 

INV ALID I/O. The Invalid I/O is indicated by 
bit 4. This type of an error indicates that the 
control program attempted to initiate an input 
or an output operation that was invalid. An in­
valid I/O is the result of the following: 

a. An attempt to initiate an I/O operation on a 
channel that does not contain a control; that 
is, an unused or nonexistent channel. 

b. An attempt to initiate an I/O Descriptor 
(instruction for the I/O control) that is not 
valid for this type of control;i.e., card read 
instruction to a magnetic tape control, etc. 

c. An attempt to initiate an I/O channel that 
is busy; that is, it is presently performing an 
I/O operation. 

d. The addresses in the I/O Descriptor are in­
valid. 

When an in valid I/O is detected, the processor 
will set the Interrupt flip-flop and store a result 
descriptor with bits 1, 2, and 4 set. 

-19-

INVALID INSTRUCTION. An invalid instruc­
tion error is detected while the processor is in 
a fetch cycle. This error is due to the following: 

a. An attempt to fetch a non-existent OP 
code. This also includes optional instructions 
(floating point instructions) when the option 
is not present. 

b. An attempt to fetch a privileged instruc­
tion with the base register unequal to zero. 

c. A Halt instruction is executed when the 
Halt Execution Digit in absolute address 77 
(reserved memory of the control program) in­
dicates that halts are invalid. 

d. Attempting to Branch Communicate to an 
invalid location in the control program. 

An invalid instruction error will result in the 
storage of a processor result descriptor with 
bits 1, 2, and 5 set. 

MEMORY PARITY ERROR. All accesses to 
memory will check the information in the 
memory word accessed for correct parity. If a 
parity error exists and the memory access was 
initiated by the processor, a processor R/D IS 

stored with bits 1, 2, and 6 set. 

ADDRESS ERROR. An address error will re­
sult in a processor R/D with bits 1, 2, and 7 
set. This type of an error is caused by the fol­
lowing: 

a. Base/Limit error - due to an attempt by 
the processor to access an area of the 
memory that is outside of the area specified 
by the base and limit registers; i.e., an ad­
dress that is less than the base or that is 
equal to or greater than the limit register. 

b. Non-synced addresses - odd addresses 
when even addresses are specified, or mod 2 
addresses when mod 4 'addresses are 
specified. 

INSTRUCTION TIME-OUT. The processor al­
lows itself 250 ms to perform either a fetch or 
an execute cycle. If it takes longer than 250 ms, 



it is assumed that the fetch or execute will not 
properly terminate itself; therefore, a processor 
R/D is stored with bits 1, 2, and 8 set. 

TIMER. The timer interrupt, which is not con­
sidered an error, is caused by word G of ad­
dress memory, the first timer word, being equal 
to or greater than the second timer word, H. 
This results in a processor R/D stored with bits 
1, 2, and 9 set and the interrupt flip-flop set. 

The frequency at which the timer interrupt will 
occur is determined by the control program. 
Normally, the MCP will set address memory 
word H to a value that will give a timer inter­
rupt once every second. 

OPERATOR INTERRUPT. The operator inter­
rupt will set the interrupt flip-flop and store a 
R/D with bits 1, 2, and 10 set. This interrupt is 
caused by the operator pressing the 01 key on 
the console to indicate to the control program 
that operator intervention is desired. 

NORMAL/CONTROL STATE OPERATION 

The processor operates in one of four states, 
with the Base register equal to or unequal to 
zero: 

1. Base = 0 & control state 
2. Base;F- 0 & normal state 
3. Base = 0 & normal state 
4. Base ;F- 0 & control state 

The control program functions with the Base 
= 0 and control state. Under these conditions 
the privileged instructions are valid and the 
operation of the processor is not affected by 
the interrupt flip-flop. If an interrupt occurs, 
it is detected programmatically by the control 
program. 

Object programs are initiated by the control 
program. They operate with the processor in 
normal state with the base register unequal to 
zero. If an interrupt should occur, the proces­
sor completes the instruction presently being 

BASE f 0 & NORMAL STATE BASE = 0 & CONTROL STATE I BASE to & NORMAL 

Processor Working Force Branch 
on Object Program to 
(Interrupt Occurs) Control Prog. 

BASE f 0 & NORMAL STATE 

r P'ow,o, Wo,k;09 \ Ob ject PW9.\ P'09. 'wooh 
Req. MCP to 

on Object Program 
actian Control Prog. 

MCP 

Perform Actions 
Required by 
Interrupt 

Select an 
Object Prog. 
that is 
Ready to Run 

Initiate 
Selected 
Object 
Pro rom 

BASE = 0 & CONTROL STATE 

MCP 

Perform Function Select an Initiate 
Needed by Object Prog. Selected 
Ob jec t Prog . 

tha~ is Object 
Ready to Run Proaram 

Figure 1 1. Operational Block Diagram 

- 20-

I 

Processor Working 
on Object 

Program 

BASE to & NORMAL 

Processor Work ing 
on Object 

Program 



executed, then branches to the control pro­
gram (see figure 11). 

The control program will perform the neces­
sary actions required by the interrupt and any 
other programmatic housekeeping chores that 
are needed at this time. 

It will then select an object program that is 
ready to run and initiate the object program 
on the processor in normal state. 

An object program may require that certain 
functions be performed by the control pro­
gram, such as initiation of I/O operations. In 
this case, the object program will take a 
branch to a predetermined location in the con­
trol program, allowing the appropriate actions 
to be taken for performance of the indicated 
function. 

After performing the necessary function, the 
control program will select an object program 
that is ready to be run and initiate this object 
program in normal state. 

In order to facilitate proper communication 
between the control program and the object 
program, the processor makes use of two in­
structions and an area of the control pro­
gram's reserved memory. The instructions 
used are the Branch Reinstate (BRE) and the 
Branch Communicate (BCT). The reserved 
memory utilized is located in absolute address 
64 through 76 of the control program. 

The reserved memory portion utilized is 
shown in figure 12. This area will contain the 
absolute address of the next instruction to be 
executed in the object program (aaaaaa), in lo­
cations 64 through 69. The object program's 
base (BBB) and limit (LLL) register settings 
are contained in locations 70 through 72 and 
73 through 75, respectively. In location 76 is 
the COM information to be set into the proces­
sor when an object program is initiated. The 
COM digit in 76 consists of: 

8 bit - ASCF (Mode FF) 

4 bit - OVF (Overflow FF) 

2 bit - COMLF 

1 bit - COMHF 

-21-

Prior to the initiation of an object program, 
the control program must put into locations 64 
through 76 of reserved memory the informa­
tion that pertains to the program being initi­
ated. 

76 

72 

68 

64 

~ 
V\ 

( 

B 

a 

a 

~ 

L 

a 

a 

'x"). 

( = (OM Indicators 

L L L = Limit Address 

B B B = Base Address 

a a a = Program Address 

X><>< 
--

Figure 12. Interrupt and BRE Reserved Memo.ry 

OP REGISTER 

This two-digit register holds the OP code of 
the instruction presently being executed and is 
used in conjunction with the logic and se­
quence counters to develop the micro­
operation necessary to execute the instruction. 

LOGIC COUNTER-SEQUENCE COUNTER 

These two counters, each having the ability to 
count from 0 through 15 working in conjunc­
tion with the OP code of the instruction being 
executed, are used to generate the micro­
operators required to complete the execution of 
the instruction. 

Addressing Section 

The addressing scheme used in the B 3700 and 
B 4700 systems is designed to yield optimum 
performance with the MCP's data-handling 
techniques. The ability to index or indirect ad­
dress previously discussed, along with the data 
protection offered by the use of base and limit 
registers, enables the MCP to more efficiently 
use the memory available. 

Prior to describing how the MCP makes use of 
the hardware, some of the addressing registers 
will be described. 

For Form 1063799 



ADDRESS REGISTER 

This register will contain the six-digit absolute 
address of the data or instruction in memory. 
Typically, this address is assembled during the 
fetch of the instruction and is placed into the 
address register at the end of the fetch. Associ­
ated with the address register is circuitry to en­
able address comparison and modification. Ad­
dresses, either for the processor or IIO devices, 
are placed into address memory by way of the 
address register. 

BASE-LIMIT REGISTERS 

These two 3-digit registers delineate the 
boundaries of a program in memory. When a 
program is loaded, the MCP automatically as­
signs a base and limit address, which, when 
added to the relative addresses within the pro­
gram, indicates the absolute addresses involved 
with that program. The MCP may reassign base 
and limit values to move programs around in 
memory in order to create a large area of 
unassigned memory from several smaller areas. 

ADDRESSING TECHNIQUES 

Addresses within all B 3700 and B 4700 systems 
object programs are compiled and executed as 
heing base relative to zero. This means that 
each program is created and executed with the 
assumption of zero being the object program's 
beginning point. When a program is assembled 
or compiled, it is assigned a five-digit relative 
address, starting at zero and continuing upward 
as far as necessary, depending on the size of the 
program. During execution of an instruction, 
each address contained in the instruction is au­
tomatically incremented by the three-digit base 
register, at .llO cost in execution time. The com­
bination of the base register and the relative 
addresses creates a machine absolute location. 
This is a hardware capability and allows the 
M CP to assign a program to any contiguous 
area of memory large enough to contain the 
program, and to subsequently relocate the pro­
gram when necessary, by merely changing the 
base register. For example, assume the MCP 
loads a program starting at location 150000; the 

-22-

setting of the base register would be 150 as 
shown below: 

Instruction Relative 
Address 

Base Register 

Machine Absolute 
Address 

Assume further that the program has indicated 
that an instruction is to be indexed by the con­
tents of index register 1. The final absolute lo­
cation would be derived as shown below: 

Instruction Relative 
Address 

Base Register 

Machine Absolute 
Address 

Index Register 1 

Final Address 
Register Setting 

Consider a system having 150,000 bytes of 
memory and using an MCP employing 25,000 
bytes. It is evident that there are 125,000 bytes 
left for user jobs. 

Supposing that the user wishes to have the fol­
lowing jobs running. 

JOB #1 

JOB #2 

JOB #3 

37K 
BYTES 

12K 
BYTES 

8K 
BYTES 



JOB #4 14K 
BYTES 

JOB #5 32K 
BYTES 

JOB #6 26K 
BYTES 

It is evident that Job #6 cannot be run, since 
Jobs 1 through 5 require 103K bytes, leaving 
only 22K available. However, when Job #3 is 
completed, the MCP will reassign the base and 
limit addresses of Jobs 4 and 5, so as to push 
them down in memory and generate 30K of 
contiguous memory. Job #6 is then called in and 
execution begins. 

ADDRESS MEMORY 

Address memory is a group of eight 6-digit reg­
isters used primarily to hold preassembled ad­
dresses. Each six-digit register is called an ad­
dress memory word and serves a specific func­
tion in processor operation. By preas sembling 
the addresses, and storing them beforehand, 
the processor is able to execute instructions in 
far less time than otherwise would be possible. 

These eight words are designated A through H 
and serve the following functions: 

A. Contain the A address of the instruction in 
the OP register. 

B. Contain the B address of the instruction in 
the OP register. 

C. Contain the C address of the instruction in 
the OP register. The C word may also be used 
for data during some arithmetic operations. 

D. Contain the address of the next instruction 
to be executed. 

E. General purpose; used for temporary stor­
age of addresses and data during processor 
operation. 

F. Contain the address of the instruction in the 
OP register. 

G. Contain the first timer word which IS 

counted up at a 1KHz rate. 

-23-

H. Contain the second timer word, which is 
programmably set. The G and H words are 
compared and, when equal, cause a timer in­
terrupt. 

I/O ADDRESS MEMORY 

In order to facilitate I/O operations, the assem­
bled begin and end addresses for the I/O data 
are stored in address memory similar to that 
used by the processor. Since each channel re­
quires a full word for both the begin and end 
addresses, two word locations are reserved for 
each channel. 

I/O ADDRESS REGISTER 

Outputs from, and inputs to, the I/O address 
memory are handled by the I/O address regis­
ter. By using a separate register for I/O 
activity, the processor's; address register is 
freed to perform other functions during periods 
of high I/O activity. 

Memory Control Section 

The memory control section is used by the proc­
essor as an interface to the memory subsystem 
and, as such, has the circuitry required to de­
code both data and addresses, generate and 
check parity, correct errors, and control the 
timing signals sent to the memory. 

When a request for a memory write is made, 
memory control decodes the address to select 
the proper area in memory. At the same time, 
the timing generators are enabled to gate the 
decoded address and data to their proper loca­
tions. As the data to be written goes through 
memory control, the bit count is determined; 
and, if it is even, a parity bit is generated which 
is written into memory along with the data. 

If this is to be a read operation, the address 
must be decoded, as was done with the write, 
and the' timing circuitry must also be enabled, 
to gate the information from memory into the 
data register. As the data is moving into the 
registers, it is checked for the correct parity 
and, if incorrect, the processor is notified of the 
error. 

TRANSLATOR 

Included within memory control is a translator 
which converts BCL or, optionally, ASCII data 

For Form 1 063799 



from peripheral devices to EBCDIC data for use 
in the central system. By using the bit 
configuration of the data as addresses to inte­
grated circuit ROM look-up tables, "on the fly" 
translation can be done with no loss of time. 
The decision as to whether to translate or not 
is made by the I/O control, dependent upon the 
media being handled. 

ERROR CORRECTION 

This feature enables the correction of single bit 
errors that would otherwise cause the job to be 
aborted. It involves the implementation of an 
additional five bits to the memory word which, 
in combination, can specify a particular bit po­
sition in the word. These additional bits, called 
hamming bits, are not available for use by the 
programmer. 

As shown in the representation of a memory 
word below, the hamming bits (Hn) occupy 
those positions which can be specified by a pow­
er of two; i.e., positions 1, 2, 4, 8, and 16. 

During writing, a hamming bit is used to gener­
ate even parity across specified bit positions. 
The hamming bits generated by a write are 
stored in memory along with the data and 
parity bits. 

In figure 13, the data written was F3D6, and 
the data read out was FBD6, due to picking up 
the B8 bit. The bit name, position and the data 
written are in the first three columns. The X's 
indicate those data bits that the particular 
hamming bit monitors. Remember that the 
hamming bit is used to maintain even parity 
over those bits it monitors. Since there are sev­
en bits ON out of the ten which are monitored 
by HB1, HB1 is turned ON to achieve even 
parity. HB2 is OFF, since there are six bits on 
in the positions HB2 monitors. Following this 
same logic, it can be seen thatHB4 will be ON, 
HB8 OFF, and HB16 ON. Since the bit count, 
including the hamming bits, is even, the parity 
bit is turned on to achieve overall odd parity. 

-24-

During a read, the previously written hamming 
bits are exclusively ORed with those generated 
by the read. If the resultant value is zero, and 
parity is odd, the data read is correct. If the 
resultant value is not zero, and parity is even, 
the data has a single error and is correctable. 
If the resultant value is not zero and parity is 
odd, the data read has a double error which, 
while detectable, is not correctable. In either er­
ror situation, the processor is notified of the er­
ror. Overall parity is such that the total bit 
count of data and hamming bits is odd. 

In those cases where single-bit errors are indi­
cated, the resultant value of the exclusive 
ORing process specifies the position of the in­
correct bit, which is then complemented. Error 
detection and correction are accomplished with­
out increasing the memory cycle time. 

OPERATOR CONSOLE AND DISPLAY 

Operator Display 

The operator display consists of the following: 

1. A numeric tube display of two groups of 
six digits representing the following combina­
tions: 

LEFT DISPLAY 

lop AF BF I 

MEMORY 
ADDRESS 

. PROGRAM 
ADDRESS 

RIGHT DISPLAY 

INSTRUCTION 
ADDRESS 

MEMORY 
INFORMATION 

BASE LIMIT 

Each group is appropriately identified by a 
legend which is illuminated only when the 
numeric tube display is operating in that par­
ticular mode. 

Each digit position is capable of displaying 
all 16 bits of the extended number set. 

A halt, whether programmed or manual, dis­
plays "OP-AF-BF" and "Instruction Ad­
dress". An 8-digit instruction (Address 
Branch-Exit-Halt Branch) displays its OP 
code on the left and the instruction address 
on the right. 



BIT POSITION IN WORD 

BIT NAME 

~ 
BIT POSITION IN WORD 

BIT NAME 

~ WRITE DATA 1F3DG( 

1 1 H1 H2 H4 H8 H16 

I READ DATA IFBDG - PICKED UP 

H1 H2 H4 H8 H16 

B8 BIT) 

r-- HAMMING BITS WRITTEN 

3 A8 1 X X 3 

5 A4 1 X X 5 

6 A2 1 X X 6 

7 A1 1 X X X 7 

9 B8 0 X X 9 

10 B4 0 X X 10 

11 B2 1 X X X 11 

12 B1 1 X X 12 

13 C8 1 X X X 13 

14 C4 1 X X X 14 

15 C2 0 X X X X 15 

17 C1 1 X X 17 

18 08 0 X X 18 

19 04 1 X X X 19 

20 02 1 X X 20 

21 01 0 X X X 21 

A8 1 X X 

A4 1 X X 

A2 1 X X 

A1 OJ X X X 

B8 1 X 

B4 0 X 

B2 1 X X 

B1 1 X 

C8 1 X X 

C4 1 X X 

C2 0 X X X 

C1 1 X 

D8 0 X 

D4 1 X X 

D2 1 X 

D1 0 X X 

X H1 1 + 

X H2 0 + 

X H4 1 + 

X H8 0 + 

X H16 1 + 

X 

X 

X 

X 

X 

X 

X 

r-HAMMIN 

GENERA 

0 - 1 

0 = 0 

1 = 0 

1 = 1 

1 = 0 

G BITS 

TED BY READ 

ERROR BIT 
POSITION 

BIT 9 = B8 

HAMMING -1 

BITS 

o o HAMMING -0 0 

BITS 

WRITTEN GENERATED 

BY READ 

Figure 13. Error Correction 

When indirect field length is specified in the 
AF or BF fields, the display in the AF or BF 
positions is the resultant field length and not 
the bit combination· specifying indirect field 
and its address. 

When a literal is specified in the AF field, the 
bit combination specifying the literal operand 
and the bit combination specifying the con­
troller are cleared to zero before display, Sub­
sequent use of the "A" key displays the ad­
dress of the operand and not the literal. (See 
description of the OP and the A keys.) 

2. Channel indicators (00 to 19) which light 
when the corresponding I/O channel is busy. 

-25-

3. The following legends which are 
illuminated only when the corresponding con­
dition exists. ("Program" lights for an invalid 
OP or an invalid address, "Check" lights for 
memory parity error, "Program" and "Check" 
light for an instruction time out.) 

NORMAL II I ASCII I I INTERRUPT 

LOW I I EQUAL I HIGH 
----__ ----J 

I PROGRAM I I CHECK f I OVERFLOW 

I TEST I I OVERHEAT 

For Form 1 063799 



Console Controls 

The console controls consist of keys used to en­
ter information into registers or memory, keys 
used to control the display of information, one 

key to stop and start the processor, one key for 
terminate, and keys for power on and power 
off. All keys are appropriately labeled. Key 
names and related functions are given below: 

CLR (clear) 

TERM 
(Terminate) 

STOP/RUN 

01 (Operator 
Interrupt) 

ON 

OFF 

SI (Single 
Instruct) 

Sets nearly all flip-flops in the processor, I/O controls, central control, 
and memory control to the false or cleared state, with the exception of 
the limit register which is set to memory size. This key is active only 
when the processor is in a stopped condition and when all I/O control 
operations are completed. 

Performs the same function as the CLEAR key except this key is always 
active and provides an absolute means of handling the processor which 
otherwise may be unhaltable because of a hardware or program failure. 
The halt is immediate. No display is presented. 

Causes the processor to halt if running or to start if halted. The legends 
just above the key indicate the appropriate state. The STOP switch 
causes a stop only at the end of the instruction being executed. The 
keyboard is inactive until all the I/O operations are complete. 

When depressed, this key alters the function of the STOP-RUN bar. If 
the processor is running, depressing of the STOP-RUN bar causes the 
Interrupt flip-flop to be set and stores a processor result descriptor. 
There is no halt. If the processor is in a stopped state, depression of the 
STOP-RUN bar starts the processor. 

The power ON key initiates the sequence up of the power supply cabinet 
which provides all power for the central system. System controlled 
auxiliary cabinets will also be powered on by the sequence initiated by 
the power ON switch. However, local controlled auxiliary cabinets and all 
peripheral units must be powered up individually. A delay inhibits the 
use of the power ON switch for a minimum of 10 seconds after the 
power OFF button has been pressed (even if the system is in a powered 
off state with circuit breakers on at the time that power OFF is 
pressed). 

This switch powers off the central system and system controlled 
auxiliary cabinets. Power OFF unlatches the overvoltage and undervoltage 
detection circuits. Therefore, if either an overvoltage or an undervoltage 
causes a power down sequence, power OFF must be pressed before the 
power ON switch is active. Moreover, the delay referred to in the power 
ON switch description above is triggered. This delay allows time for 
certain capacitors in the power supplies to discharge and their circuits to 
stabilize before another power on sequence may begin. The power OFF 
switch also clears most flip-flops in the central system and, thereby, 
unconditionally terminates all logical operations before the power down 
sequence begins. 

Causes current instruction to be executed and the next to be fetched and 
displayed. The first depression after a halt causes a fetch and display 
only. 

-26-



OP 

A, B, C 

PA (Program 
Address) 

BM (Base 
Modify) 

CS (Control 
State) 

AD (Address) 

WR (Write) 

SKIP 

Causes OP-AF-BF and address of current instruction (the "F" word of 
address memory) to be displayed. Subsequent use of the keyboard enters 
the digits (0 .. 9, 10 .. 15) into the OP-AF-BF register. The entry of the first 
digit blanks the remaining display. The entered digits are shifted from 
right to left in the left-hand group of six NIXIE® tubes. 

Depression of anyone of these three keys causes the current contents of 
the applicable word of address memory (A, B, or C) to be displayed in 
the right-hand group of NIXIE® tubes. The OP-AF-BF register contents 
also are displayed in the left-hand group of the NIXIE® tubes. 

Causes the program address of the next instruction (the "D" word of 
address memory) and the base and limit register settings to be displayed. 
Subsequent use of the keyboard enters an address into the program 
address register (the "D" word of ADM). The entry of the first digit 
blanks the remaining portion of the left-hand display. the entered digits 
are shifted from right to left in the left-hand group of NIXIE® tubes. 

When depressed, and in conjunction with other appropriate keys, causes 
memory address, program address, or instruction address to be displayed 
base relative in lieu of absolute. Therefore, while the base modify 
function is active, the value in the base register is subtracted from all 
addresses before they are displayed. Conversely, the base register value is 
added to all addresses entered via the keyboard while the base modify 
function is active. Therefore, base relative addresses must be entered 
under these circumstances. Pressing the BM key a second time unlatches 
the function. 

This key acts as a switch; when CS is on and the processor IS In normal 
state, depression of the SI key causes execution of a single instruction. If 
the execution of that single instruction causes a return to control state 
with this key active, all control st:J,te instructions are executed 
continuously; the processor halts only when normal state is reinstated. 
Thus, the execution of a communicate instruction consists of the 
execution of all control state instructions associated with that 
communicate. 

Causes the memory address register and the information contained at 
that address to be displayed. Subsequent use of the keyboard enters an 
address into the memory address register. The entry of the first digit 
blanks the remaining display. The entered digits are shifted from right 
to left. Depending on the mode of the address displayed in the left-hand 
NIXIE® tubes, 1, 2, or 4 digits of memory information are displayed in 
the right-hand NIXIE® tubes. Refer to READ key. 

This key is active only subsequent to the depression of the AD key and 
permits insertion of information to memory via the keyboard. The SKIP 
key can be used. The memory address is advanced with each entry. The 
digit to be changed appears left-justified. When a digit is entered, that 
digit appears right-justified and the new digit to be changed appears left­
justified. 

This key is active only subsequent to the depression of the WR key. This 
key is used to skip over a digit position when writing into memory 
without changing the digit. ®Registered Burroughs Trademark 

- 27- For Form 1063799 



READ This key is active only subsequent to the depression of the AD key. This 
key causes the next digit (or group of digits) to be read from memory 
and displayed. The memory address is advanced by four once it is 
synchronized to 000000 + 4N (mod 4). 

KEYBOARD The group of 16 keys from 0 to 5 representing the 16 hexadecimal 
numbers 0 through 15. The keyboard is active in the STOP state and 
inactive in the RUN state. 

LD (Load) Initiates a program load into memory from a preselected peripheral. 
Refer to load function. 

Load Function 

Two types of load commands are available. The 
first type, called Universal Load, permits oper­
ator selection of the input media. The second 
type, called Normal Load, restricts the 'selection 
of the input media to a particular peripheral. 
This peripheral selection can be changed by a 
simple field change made by the Field Engi­
neer. 

UNIVERSAL LOAD 

Manual depression of the clear button causes 
the processor to be cleared. The operator then 
inserts, via the keyboard, eight digits into 
memory beginning at location 000000. The first 
two digits form a two-digit channel number, 
and the next six digits form the first syllable 
of an I/O descriptor acceptable to the peripher­
al control attached to the channel selected. 

Operation code 66 is entered into the OP regis­
ter from the keyboard by the entry 660000. 

Manual depression of the RUN button causes 
the processor to go into a pseudo initiate I/O 
cycle in which the channel number and the first 
syllable of an I/O descriptor are obtained from 
memory starting at address 000000. 

The begin and end addresses for the I/O de­
scriptor are set to 001000 and 001400, respec­
tively; and segment number, in the case of a 
disk, is set to zero. Having completed the initi­
ate I/O cycle, the processor idles until the inter­
rupt flip-flop is set signifying completion of the 
I/O operation. When the interrupt flip-flop is 
set, the processor transfers the absolute ad­
dress of the pertinent result descriptor to IX1 
and clears the result descriptor area to zero aft­
er transferring the most-significant digit of the 

-28-

result descriptor to a temporary storage regis­
ter, BBA. If no exception bit (BBA4F) is pres­
ent, the processor strips the most-significant 4-
bit digits from sequential characters beginning 
at address 1000 and compresses the field to 100 
4-bit digits, which are stored back into memory 
address 1000 through 1099. A branch is then 
taken to location 001000. 

If the peripheral control returned an exception 
bit, the operation is automatically retried. 

An invalid descriptor causes the processor to 
halt. 

NORMAL LOAD 

A load button is on the console and a function 
providing the .eight-digit channel number and 
the first six digits of an I/O descriptor for in­
sertion in location 000000 is provided. The eight 
digits that are inserted can be changed by a 
Field Engineer. 

Depression of the load button causes these dig­
its to be written into memory starting at loca­
tion 000000 after which the sequence described 
under universal load takes place. 

CENTRAL SYSTEM POWER. 

All voltages utilized in both the B 3700 and the 
B 4700 systems, with the exception of those de­
veloped in the B 4700 memory, are developed 
and controlled in one central power cabinet. 
These voltages are developed by a converter-to­
inverter type system, i.e., one that first con­
verts the commercial input power to 160 VDC, 
then runs the 160 VDC through an inverter to 
develop a 160 V peak-to-peak, 2 KHz square 
wave, which is then used as a source to the var­
ious regulators. 



The regulators are both series and shunt types, 
generally employing on-board"voltage sensing, 
and, in some cases, remote overcurrent 
detection. 

The voltages used in the processor are shown 
in figure 14 and are described in the following 
paragraphs. 

+4.75, - 2, DC Common 

These three voltages are the primary logic sup­
ply voltage. The 4.75 volts is used as the logic 
TRUE level, -2 volts is the logic FALSE level, 
and DC COMMON is the reference line for 
these and all other logic voltages in the system. 

+ 170 Volts 

This voltage is used only in the NIXIE® tube 
portion of the display panel. Because of their 
construction, NIXIE® tubes require this volt­
age to ionize the gas surrounding the selected 
bar. 

+ 12 Volts and + 1 0 Volts 

These voltages are used for biasing and driving 
the transistors used in the console and display 
circuit. 

30 Volts AC 

This is a sampled portion of the source voltage 
which is used to monitor input voltage 
fluctuations. 

Air Sense 

This line comes from the AIR LOSS-TEMPER­
ATURE sense circuitry in the processor and is 
used to drop system power if there is a loss of 
airflow to the processor or if ambient 
temperature becomes too high. 

Power ON/OFF 

These lines come from the ON and OFF buttons 
on the operator console and enable the operator 
to bring up or drop system power. 

+4 Volts, +22 Volts 
These voltages, used only on B 3700 systems, 
are used to drive the IC memory components. 

+4.75V 

-2V 

DC COMMON 
.-.---

+170V 

-12V 

8 3700/8 4700 +12V 8 3700/B 4700 

PROCESSOR -10V POWER CABINET 

+10V 

30VAC 

208VAC 

AIR SENSING 

POWER ON 

POWER OFF 

+5V (B 3700) 

+22V (B 3700) 

Figure 14. Processor Voltages 

-29- For Form 1063799 





APPENDIX A 

B 3700/B 4700 INSTRUCTION SET 

MNE OP AF BF # OF COM OVF REMARKS 
ADD IND 

INC 01 aa bb 2 c c (A+B) ~B 

ADD 02 aa bb 3 c c (A+B) ~C u.J::t-l 
II II II 

DEC 03 aa bb 2 c c (B-A) ~ B 0..0..0.. 

.. ~~~ 

SUB 04 bb 3 (B~A) ~ C 
·~OOO 

aa c c tiUu U 
~ooo 

MPY 05 aa bb 3 c N.A. (AxB) ~ C clll\V 
('j 

;:: 

DIV 06 aa bb 3 c c (B/A) ~ C 
Remainder' in B 

MVD I 08 OV 00 3 N.A. N.A. Move words A~B, 
increment A and B 
add. (until B add C 
add) 

Decrement A and B 
add, then move 
backward A ~ B (un til 
B add = C add) 

MVL 09 nn ii 3 N.A. N.A. B~A, C~B, A~C 
nn =length of A,B,C 

MVA 10 aa bb 2 c c A~B 

MVN 11 aa bb 2 c c A~B 

MVW 12 nn nn 2 N.A. N.A. A~B, nnnn = 
N umber of words 

MVC 13 nn nn 2 N.A. N.A. A~B, Clear A, nnnn 
= Number of words 

MVR 14 aa nn 2 N.A. N.A. A~B, move A field 
nn times 

TRN 15 nn nn 3 N.A. N.A. Translate A with 
table in B and move 
in C 

B add must be 
multiple of 1000 nnnn 
= Number of char or 
digit to translate 

SDE 16 aa bb 2 c N.A. Com H - Char/Digit 
- No compare (AN ¢ Bn) 

A-l For Form 1 063799 



APPENDIX A (cont) 

B 3700/8 4700 INSTRUCTION SET (Cont) 

MNE OP AF BF # OF COM OVF REMARKS 
ADD IND 

SDU 17 aa bb 2 c N.A. Com E - Chat/Digit 
- Compare (An = Bn) 

SZE 18 aa bb 2 c N.A. Com L - 1st Char / 
Digit - Compare (An = Bl) 

SZU 19 aa bb 2 c N.A. Field Length into B + 38 

Nap 20 - - 1 N.A. N.A. No Significant Action 

LSS 21 - - 1 N.A. N.A. BR. to A add IF 
COM = LOW 

EQL 22 - - 1 N.A. N.A. BR. to A add IF 
COM = EQUAL 

LEQ 23 - - 1 N.A. N.A. BR. to A add IF 
COM = LOW or 
EQUAL 

GTR 24 - - 1 N.A. N.A. BR. to A add IF 
COM = HIGH 

NEQ 25 - - 1 N.A. N.A. BR. to A add IF 
COM ¥: EQUAL 

GEQ 26 - - 1 N.A. N.A. BR. to A add IF 
COM = EQUAL or 
HIGH 

BUN 27 - - 1 N.A. N.A. BR. to A add 
anytime 

OVF 28 - - 1 N.A. N.A. BR. to A add IF 
OVF IS SET 

HBR 29 - - 1 N.A. N.A. Exam ADD 77 And 
Halt unless: 

Bit 1 = 1 Ignore 
Halt in Nor 

Bit 2 = 1 Ignore 
Halt in Cont. 

Bit 4 = 1 Invalid 
inst. unless ignore 

Bit 8 = 1 Not 
significant 

A-2 



APPENDIX A {contl 

B 3700/B 4700 INSTRUCTION SET (ConH 

MNE OP AF BF # OF COM OVF REMARKS 
ADD IND 

BCT 30 AA AA 0 0 0 ABS (64-76)-NI, 
BA, LA, COM: 

BR. to AAAA 
(Indirect Address) 

IF AAAA Address 
is not 5nnnnn 
DO 300094 

ON B 4700' inv inst 
gives 300094 

NTR 31 nn nn 1 0 0 Stack-NI, IX3, COM, 
nnnn PAR IX3_Sa 
(Stack Address) 

EXT 32 - - 1 c c B+40_IX3, (IX3, 
COM) -,Stack Branch 
to A Address 

BST 33 aa mm 1 c N.A. Set Bits per mask 
(mm) in aaunits of 
a field 

BRT 34 aa mm 1 c N.A. Reset Bits per mask 
(mm) in aa units of 
a field 

SLL 37 aa nn 2 c N.A. Search Link List A 
compared to B+BF 
IF = Store B 
Address in IXI IF;#-
Go to B Add When 
B= 0 Set COMH 

A CONTROLLER 

00 Four Bit Mode 

01 Reserved 

10 8-Bit Mode 

11 Indirect Add 

AF = Length of Key 

BF = OffSet From B 

A =Key Address B 
1st list entry 

A-3 For Form 1063799 



APPENDIX A (cont) 

8 3700/8 4700 INSTRUCTION SET (Cont) 

MNE OP AF BF # OF COM OVF REMARKS 
ADD IND 

SLD 38 aa nn 2 c N.A. Search Link Delink 
As ahove, but IX1 = B Add 
IX2 = Previous B Add 

SEA 34 aa nn 3 c N.A. aa = Length of A & B 
nn = B Field Increment 
c Address = End 
cc = 0 Search for = 
cc = 1 Search for Lower 
cc = 2 Search for Lowest 

BZT 40 aa mm 1 c N.A. m = Mark A Bit/ 
= M bit~COM E Else 

BOT 41 aa mm 1 c N.A. m = Mark A Bit 
= M Bit~COME 
Else~COMH 

AND 42 aa bb 3 c N.A. (C Bit~ 1) IF (A Bit*B bit) 

ORR 43 aa bb 3 c N.A. (C Bit~1) IF (A Bit + bit) 

NOT 44 aa bb 3 c N.A. (C Bit~l) IF (A 
Bit*B bit)1 +(A. bit/* H bit) 

CPA 45 aa bb 2 c N.A. Collating Sequence 

CPN 46 aa bb 2 c N.A~ Algebraic Compare 

SMF 47 mi ii 0 N.A. N.A. m = '0 set EBCD1 C; 
m =1 set ASCII 

HBK 48 11 mm 0 N.A. N.A. m = (Base+46) then 
Execute BaIt as per 77ABS 

EDT 49 aa bb 3 c 0 C~A Format as per B 

lAD 50 -- -- 1 C.lF c ACC + A 
OVF 

TAS 51 -- -- 1 c c ACC + A ~ A 

ISU 52 -- -- 1 C.lF c ACC - A 
OVF 

ISS 53 -- -- 1 c c ACC - A --+A 

IMU 54 --. -- 1 C.lF c AXACC 
OVF 

IMS 55 -- -- 1 c c AX ACC ~A 

A-4 



APPENDIX A (conI) 

8 3700/8 4700 INSTRUCTION SET (Cont) 

MNE OP AF BF # OF COM OVF REMARKS 
ADD IND 

IMT 57 -- -- I C.IF c AC = 0 A + 1 ~AI AC = 
OVF 1, A-I ~ A 

ILD 58 -- -- I N.A. N.A. ,. A ~ ACC 

1ST 59 -- -- I c N.A. ACC ~ A 

CKB 60 dd In N.A. N.A. N.A. dd = Information, n 
bits - 8= 1 (READ) 

4 = 1 Base Mod, 1 
= 1 (Complement) 

ULD 66 ii ii N.A. N.A. N.A. U niv. Load, ABS 
ADD Zero = 
CCOPVVV (1/0 
Channel & 1/0 
DESC.) 

RAA 70 -- -- I C.IF c ACC + A 
OVF 

RAS 71 -- -- I c c ACC + A ~ 

RSU 72 -- -- I C.IF c I ACC-A 
OVF I 

RSS 73 -- -- I c c ACC -A~A 

RMU 74 -- -- I C.IF c AXACC 
OVF 

RMS 75 -- -- I c c AXACC ~ A 

RDV 76 -- -- I C.IF c ACC + A 
OVF 

RDS 77 -- -- I c c ACC -7- A~A 

RLD 78 -- -- I N.A. N.A. A ~. ACC 

RST 79 -- -- I c N.A. ACC ~ A 

FAD 80 aa bb 3 c c C <-B+A 

FSU 81 aa bb 3 c c C <-B-A 

FMP 82 aa bb 3 c c C <-BXA 

FDV 83 aa bb 3 c c C <- BI A (Remainder in B) 

A-5 For Form 1063799 



APPENDIX A (cont) 

8 3700/8 4700 INSTRUCTION SET (Cont) 

MNE OP AF BF # OF COM OVF RE.MARKS 
ADD IND 

ACM 84 Dill4 NA 0 C.IF c Dill4 
OVF 

o i Normalize 

1 i Convert Real to Integer 

2 i Set Mantissa sign to + 

3 i Set Mantissa sign to -

4 i Complement 
Mantissa Sign 

5 i Clear ACC to -99 + 0 

6 n Increment 
exponent by n 

7 n Decrement 
exponent by n 

IBA 85 ii 11 0 N.A. N.A. BRANCH TO 003000 
BRE 90 Ni 11 0 c c (NI, BA, LA, 

COM)f-(64-76) abs. 
N= 0 set NOR; 
AFB = 1 Set Trace FI F Br. 
to NI 

SRD 91 AA AA 0 c N.A. Examine RID's 
starting at AAAA 

RAD 92 1m cc 1 N.A. N.A. cc = Chan, # ; 
A--Begin (lm = 0) 
A·f-End (m = 1) Write 
A & B (m =9) 

no 94 11 cc 1 N.A. N.A. cc=Chan, # ; A Add 
locates 1/0 DESC 

RDT 95 ii ii 1 N.A. N.A. Af-G 

RCT 96 11 ii 1 N.A. N.A. Af-G; gf-O 

STT 97 11 11 1 N.A. N.A. Hf-A 

SNE 98 LS CT 0 Snap Execute l L =LC S = SC 

CT = Iteration 
count 

SNF 99 LS CT 0 Snap Fetch 

A-6 



Q) 
c 

~~. : 
o I 

BURROUGHS CORPORATION 
DATA PROCESSING PUBLICATIONS 

REMARKS FORM 

TITLE: MEDIUM SYSTEMS 
B 3700/8 4700 
CENTRAL PROCESSOR 
Reference Manual 

CHECK TYPE OF SUGGESTION: 

DADDITION DDELETION DREVISION 

FORM: ~1~06=3~7~99~ _____ _ 
DA TE: 12-72 ______ . _____ _ 

DERROR 

- ~.------------------
~ I GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION: 
:J 
u 

FROM: NAME 
TITLE 
COMPANY __________ _ 

ADDRESS 

DATE ___ _ 



STAPLE 

FOLD DOWN SECOND FOLD DOWN 

-------------------------------------------------------------~.---------------------------

attn: Sales Technical Services 
Systems Documentation 

BUSINESS REPLY MAIL 
First Class Permit No. 817, Detroit, Mich. 48232 

Burroughs Corporation 
6071 Second Avenue 
Detroit, Michigan 48232 

-------~---------------------------------------------------------------------------------

FOLD UP FIRST FOLD UP 


	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	replyA
	replyB

