Burroughs

B5500

Information

Processing Systems

FORTRAN COMPILER
REFERENCE MANUAL

Burroughs
B 5500 ‘
INFORMATION PROCESSING SYSTEMS

FORTRAN COMPILER REFERENCE MANUAL

BUSINESS MACHINES GROUP
SALES TECHNICAL SERVICES
SYSTEMS DOCUMENTATION

Burroughs Corporation @

Detroit, Michigan 48232

Printed in U.S. America 4-68 1032083

COPYRIGHT © 1967, 1968 BURROUGHS CORPORATION

AA 945 756

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much cate has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con-
sequences arising out of the use of this material. The infor-
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

TABLE OF CONTENTS

SECTION TITLE PAGE
INTRODUCTION . . « v o & o o« o s o o o o o » ix
1 GENERAL PROPERTIES . . .« + o « & o & o &+ o« o 1-1
General . . ¢ + o ¢ 4« ¢« o « ¢« e o o . 1-1
Program Cards . .+ « « o & ¢ o o« + & « o 1-1
Comment Card. + « « + « + ¢ o o o o o 1-3
Dollar Sign Card. +« « « « o« o o o o« « o« 1=-4
Deck Set=Up + o « & o o & o o o o« o o o« 1=4
2 CHARACTER SET, CONSTANTS, VARIABLES. 2-1
Character Set . . . ¢ + « & & o & o & o+ 2-1
Digits « ¢« o ¢« o &« ¢ o + o « o o o« 2=1
vLetters. e e e 4 e e e e e e e e 2-1
Special Characters . « + + o« o o« o 2-1
Constants .+ . ¢ ¢« ¢ ¢ ¢« ¢ o o « o o + o 2-2
Integer Constant . . .« + + « + o« . 2-3
Real Constant. « ¢« . .+ .« 2-3
Double Precision Constants 2-4
Complex Constant . . +« « + &+ +« « « 2-=5
Logical Constant .« « « ¢« ¢« o o o 2-5
" Hollerith Constant . « .« « « « « o 2-5
Variables . « « &« o o o o o o + o o o« & 2=6
Simple Variable. « « o+ +« « ¢« « o« o+ 2=6
Subscripted Variable 2-17
3 EXPRESSTONS. o o ¢ ¢ o o o o o o o o s o o o -
General . .+ « o ¢ v & 4 e s 4 e e e e 3-1
Arithmetic Expression . . .« « « o o« + 3-
Logical Expression. . . « + « o« o o o+ 3-
Relation . .+ ¢ o« « ¢ o o o o o o o 3-5
L ASSIGNMENT STATEMENTS. + + & & o o & o & o o b=
General .« + + « « 4 o o & o o o o« o o o b-
Arithmetic Assignment Statement U4~

iii

SECTION

iv

4 (cont)

TABLE OF CONTENTS (cont)

TITLE

Logical Assignment Statement.

ASSTGN Statement. .

CONTROL STATEMENTS . . .

General . +« « « o+

.

Unconditional GO TO Statement
Computed GO TO Statement.
Assigned GO TO Statement.

Arithmetic IF Statement

Logical IF Statement.

DO Statement. . . .
CONTINUE Statement.
PAUSE Statement . .

STOP or CALL EXIT Statement

RETURN Statement. .
CALIL Statement. . .

DECLARATIVE STATEMENTS .
General . . .« .+ o« .
DIMENSION Statement
Variable Dimensions

COMMON Statement. .

EQUIVALENCE Statement

Type Statement. . .
EXTERNAL Statement.
DATA Statement. . .

INPUT/OUTPUT . . « +« + o

General .+ « ¢ o« o+

Input'Statements. P

Formatted Input Statements

Unformatted Input Statements

Output Statements .

Formatted Output Statements.

PAGE

5-4
5-4
5-5
5=7
5-8
5-8
5-9
5-10

6-8
6-9
6-9

]
L

N N
1
o

SECTION

7 (cont)

TABLE OF CONTENTS (cont)

TITLE

Unformatted Output

REWIND Statement .

Statements.

I/0 Lists « v v v o 0 e e e e e
Implied DO Loop + « &« o o + « « o
Action Labels . 4« « « o « o o «
Auxiliary I/0 Statements.

BACKSPACE Statement.

ENDFILE Statement.
CLOSE Statement. .
LOCK Statement . .
PURGE Statement. .

FORMAT Statement. . . .

Integer Conversion
Using Iw

Integer Conversion
Using Iw . .« . . .

Real Conversion on
Using Fw.d

Real Conversion on
Using Fw.d

Real Conversion on
Using Ew.d

Real Conversion on
Using Ew.d

. . 3 . .
.
.
.

.

on Input

on Output

.

Input

Output

Input

Output

.

.

Double Precision Conversion on

Input Using Dw.d .

.

Double Precision Conversion on

Output Using Dw.d.

Real Conversion on Input

USing Gwed o« o o« o

Real Conversion on
Using Gw.d « « .« &

Output

Octal Conversion on Input

Using Ow « « « o

Octal Conversion on Output

Us ing OW o o o o

Logical Conversion on Input

Using Lw . « « o« &

.

PAGE

1
H 0 0 00 3 O O W\t

~3
|

~ o= e

N B O O

NN NN NN NN
|

~2
1

7-12

7-13

7-1h

7-14

+7-15

7-16

7-17

7-18

7-18

7=19

SECTION

7 (cont)

TABLE OF CONTENTS (cont)

TITLE
Logical Conversion on Output
Using Lw . .+ ¢« ¢« ¢ o o o o o+ o =«

Alphanumeric Conversion on Input
US ing A.W L] L] . ° L L] » .

Alphanumeric Conversion on Output
Using AW « + ¢ o o o o o s o o

Inputting a Character String
Using WHS . [] L] ° L] .

Outputting a Character String
Using wHSe o o o ¢ o ¢ o o o o

Inputting a Character String
Using "s"e o o o o o o o o o s

Outputting a Character String
Using "S" [] . . © L] [L] L] . L] * L]

Skipping Characters Using nX . .

Editing Using Tn « « « o o o o o
Scale Factor nP. « « ¢« ¢« « « .+ &
Scale Factor on Input. « « « « &
Scale Factor on Output

Format Specification in an Array

Carriage Control+ .+ .+ .
Use of Slash (/) +« « v « o « o &
Repeat Specifications. . . « .« .

Format and I/0 List Interaction.

NAMELIST Statement « o o o o ¢ o o o

Input Using NAMELIST . « « « + o
Output Using NAMELIST. &

Tape and Disk I/0. + v v 4« o « o o « o

Unformatted Output . . « « . + .

BLOCKING & & o o & o o o o o o &
BUFFERING. « & & o o o o s o o &
Disk I/0 v v v o v o« o+ o o o &
SERIAL Disk I/0 ¢« « « & o+ .
RANDOM Disk I/0 + « « .+ .+ .

PAGE

7=22
7-22
7-23
7-23

724

SECTION

8

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX
APPENDIX
APPENDIX
INDEX. .

FTGURE

1-1

04 82 O o o >

T @

TABLE OF CONTENTS (cont)

TITLE
SUBPROGRAMS.: v v ¢ o o o o o o o o o o
General . . L] . L] . *] . L]
Functions . « ¢« ¢ ¢ o« o o« o o o

Statement Functions.
Intrinsic Functions.
External Functions
Referencing External Functions
Subroutine. . . « ¢ ¢ ¢« o« o 0 .
Defining Subroutine Subprograms

Nonstandard Returns from Subroutines
and Functions . « .« « « « +« + ¢ o« .

Multiple Entry Points into a

Subprogram. « .+ « + ¢ o 4 s e o s
BLOCK DATA. v « v v o v o v v v v .
GLOSSARY . + v v v v v v e e e e e e e
FILE CARDS. & + v v o o v 4 o o v v v u
DOLLAR SIGN CARDS + & v « « v v v o v v v .
COMPILE TIME ERROR MESSAGES . & + « « « o .

OBJECT TIME ERROR TERMINATION MESSAGES. . .

B 5500 VERSUS USAST FORTRAN, EXTENSIONS AND
DIFFERENCES « « « ¢ & ¢« ¢« o o« o« o o o « o

COLLATING SEQUENCE. .« « « o « o o « o« o o o
BIT-MANTPULATION INTRINSICS
PRT CONTENTS OF A FORTRAN OBJECT PROGRAM. .

. .

LIST OF ILLUSTRATIONS

TITLE
Program Card Layout« « « o« o« o + « o
Comment Card. . . « + o & o « o o o o o o
Dollar Sign Card. . .« + 2 ¢« « o o o o o o

PAGE

8-8
8-10

F-1
G-1
H-1
I-1

one

PAGE

e
1
= W o=

vii

FIGURE

5-1
-1

viii

LIST OF ILLUSTRATIONS (cont)
TITLE

DO NeSting. 3

File Format Using Unformatted Output
Statements. . L] . L] L] L] . L4 L] . . L]

LIST OF TABLES
TITLE

Resultant Type for Operation A**B ,
Combination of Elements . . . « « o+ + « o+ =«
Definitions of Logical Operators.
Relations and Meanings. . « « « « 4+ o o o+ o

Rules for Arithmetic Assignment Statement
(V = @) o v v v v e e e e e e e e e e e e

EQUIVALENCing Multiple Subscripts to
One Subscript + « « ¢ « « ¢ ¢ ¢ « 4 e e o

Datum Conversion. . « « + s o o o« o o o o =
Resulting Actions of an Intrinsic Function.

File Default Descriptions . . « « + « « + &

PAGE

6-7
7-20
8-12
B-1

INTRODUCTION

This manual provides a complete description of the Burroughs B 5500

FORTRAN compiler language.¥

The FORTRAN language is designed for writing programs for scientific
and engineering applications. Statements can be written in the
general format of mathematical notation, thus increasing the ease

of solving formula oriented problems.

The B 5500 FORTRAN compiler operates under the control of the
Master Control Programl(MCP) and, similarly, the object code pro-
duced by the compiler is executed under the control of the MCP.
For a description of the B 5500 MCP, refer to the B 5500 System
Operation Manual (1024916).

The B 5500 FORTRAN compiler language is based on USASI FORTRAN
(refer to the publication: ASA X3.9-1966). Refer to appendix F
of this manual for a listing of the constructs which differ from

USASI FORTRAN.

% FORTRAN is an acronym for FORmula TRANslation and was originally
developed for International Business Machine equipment.

ix

SECTION 1
GENERAL PROPERTIES

GENERAL.
Normally , a FORTRAN source program is prepared on punched cards.
These cards are ofvthree general types: general program cards,

comment cards, and dollar sign cards. These cards are free-form,

with the exceptions noted below.

PROGRAM CARDS.

Program cards are used to contain FORTRAN statements under the

following limitations (see figure 1-1):

/‘ABEL

=t © © CONTINUATION

2222122
3333133
444441
555558

FORTRAN STATEMENTS

00
78 910111213 1415 16 1718 19 20 24 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 6162 63 64 65 65 67 68 69 70 71 72
IERREERER RN R R R R R R R R AR R R AR R R R R R R R R R R R R R R R R R RR RN
22
33
444404404444444444444444444440444440444444444444444444444444444444
55
66
71771717171177717171717171711711717117711171711717171171717177171711711111711711171171711711117111
3866888658886886868800688806808880868868888880888880808888080088888888888838

9999999990999990999999099999999999
189 u

10111213 141518 17 181920212223 242526 27 28 20 30 31 32 33

IDENT
OR
SEQUENCE

00000000
70475 7677 7878 80
11111111
22222222
33333333
44444444
55555555
66666666
117111111
88888888

99999999

73 74 75 76 77 78 79 80

Figure 1-1. Program Card Layout

. Columns 1-5. The label of a labeled statement cons

ists

of from one to five digits and must be placed in columns
1 through 5. The label may be placed anywhere within
these columns or without leading zeros, i.e., neither
blanks nor leading zeros are significant in differentia-

ting statement labels. All labels within a program unit

must be distinct. The label field is ignored on all non-
executable statements except for cards containing FORMAT

statements.

Column 6. Column 6 of the initial card of a statement
must be either blank or zero. Column 6 of a continuation
card (any additional card after the initial card needed

to contain the statement) must contain any character other
than blank or zero. An unlimited number of continuation

cards may follow an initial card.

Blank characters are significant only in column 6 of a
non-comment card, in a Hollerith constant, or in a
Hollerith field specification. With these exceptions,
blanks may be used or omitted without affecting the in-

terpretation of a FORTRAN statement.

Columns 7-72. Columns 7 through 72 contain the FORTRAN

statement.

Columns 73-80. These columns are not interpreted by the
compiler and may contain identification or sequencing in-
formation. This field is, however, analyzed when changes

are merged with a source tape (see appendix C).

Two or more statements may be punched on the same physical
card if they are separated by semicolons. If columns 1
through 5 of the card are interpreted as a label, the label
corresponds to the first statement on the card. Subsequent

statements on that card are considered unlabeled.

A program unit must have an END statement as its last card.
The END statement is used only to tell the compiler that

it has reached the end of a program unit.

The END statement is a card with blanks in columns 1

through 6, the characters E, N, and D once each and in

that order in columns 7 through 72, preceded by, inter-

spersed with, or followed by blanks.

The END statement is not an executable statement.
program attempts to execute an END statement, the

is terminated with an INVALID EOJ message.

COMMENT CARD.

Comment cards are not interpreted by the compiler, but thei

If a

program

r in-

formation does appear on the compilation listing for documentation

purposes. A comment card cannot be followed by a continuat

.card. Card punching limitations are as follows (see figure

ion

1-2):

a. Column 1. A comment card must have the comment code, the

letter C, in column 1.

b. Columns 2-72. Columns 2 through 72 may be used for com-

ments.

c. Columns 73-80. These columns may contain identification

or sequencing information.

(9
COMMENTS

000

0000
678 910111213 1415 16 1718 19 20 21 22 23 24 25 26 21 28 20 30 31 32 33 34 35 36 37 38 30 40 41 42 43 8 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 67 6869 70 71 72
11

RREERERRRRRERRRERRRR AR R RR R R R R R R AR R R R R R R R ERR R R R RRR R ERRR RN

N

99222122

w

333

E

44444044040 088000480080A0040d00840A080A848A4d404d00048040404084444444040444

wn

555
6l666
17777777717777771717717111777711177171117711717177117117717117717177171171711771171711717171

/658888888888006868888880808888688886808888880888808880808888838880888808888838
999999999990999999999999999999999
4 § 54 9§

56 57 58 59 60 6162 63 64 65 66 67 68 69 70 71 72

IDENT
OR
SEQUENCE

00000000
I7374 75 76 77 78 19 80
IRRRRRRN]
22222222
33333333
44444444
55555555
66666666
11111111
868888888

99999999
0

1374 7576 77 78 19

Figure 1-2. Comment Card

DOLILAR SIGN CARD.

A dollar sign card is used to specify certain compiler options (see
appendix B). Punching limitations of the dollar sign card are as

follows (see figure 1-3):

a. Column 1. Column 1 of a dollar sign card must contain

a $.

b. Columns 2-72. Columns 2 through 72 contain the compiler

options desired,

Cc. Columns 73-80. These columns may contain identification

or sequencing information.

$
COMPILER OPTIONS IDggT

SEQUENCE

000C0000000000000000/00000000

0
8 910 111213 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72|73 74 75 76 77 78 79 80
1

000000
234587
R AR R R R R R RERRIIBRERRE B

N =

222)22222222
33333333333333333333333332333133333333
44444444444 4444444444444444444444444444444444444484444444444444444444444(44444444
51956555655555555555555555(55555555
6l6656666666666666666666666/666666686

-

MI1117117117711790771700717177717171111777111171071171777711711717112071171117111711171717171911111117111

Bl866888888088888688088838688680868088880868880680806880888680880886806808088868888880888/888888838

999999999999999999999999/99999999
64 65 66

9 9
47 48 49 50 51 2 $4 55 56 57 58 59 60 6 IB 63 676669 70 71 72|73 74 7576 77 18 79 80

Figure 1=3. Dollar Sign Card

DECK SET-UP.

The arrangement of cards for use with the FORTRAN compiler is as
follows:

? COMPILE CARD

? FORTRAN FILE LABEL EQUATION CARDS See B 5500

? FORTRAN CONTROL CARDS Operation Manual
? OBJECT FILE LABEL EQUATION CARDS No. 102h916
o

OBJECT CONTROL CARDS

1-4

? DATA CARD
DOLLAR SIGN CARD
FILE CARDS

SOURCE DECK
or
PATCH DECK

? END

See appendices

1-5

SECTION 2
CHARACTER SET, CONSTANTS, VARIABLES

CHARACTER SET.
The FORTRAN character set consists of digits, letters, and special

characters.

DIGITS.
A digit is any one of the following ten characters: 0, 1, 2, 3, L4,
5, 6, 7, 8, 9. Digits will be in the decimal number system unless

otherwise specified.

LETTERS.
A letter is any one of the following 26 characters: A, B, C, D, E,
r, G, H, T, J, K, L, M, N, 0, P, Q, R, S, T, U, V, W, X, Y, Z.

SPECIAIL CHARACTERS.
The special characters are divided into two categories, the USAST

FORTRAN special characters and those added to B 5500 FORTRAN.
The USAST FORTRAN special characters are the following:

Character Name

= Equal Sign

+

Plus Sign
- Minus Sign
Asterisk
Slash

Left Parenthesis

~ ~ L X

Right Parenthesis

Comma

-

. Decimal Point
Blank
$ Dollar Sign

B 5500 FORTRAN also recognizes the quote character (").

The following BCL* characters are recognized as alternatives to

the standard FORTRAN character set:

FORTRAN BCL
Character Alternative
+ &
= # or <

%
[

x (BCL multiplication sign)

X o~

" @ or :

The relational operators are represented in FORTRAN as two-letter
mnemonics which are preceded and followed by a period. These

operators and their BCL alternatives are:

FORTRAN BCL

Mnemonic Meaning Alternative
LLT. Less Than <
.LE. Less Than or Equal <
.NE. Not Equal #
.GT. Greater Than >
.GE. Greater Than or Equal =
LEQ. Equal =

Two remaining BCL characters serve special purposes. The semicolon

(;) may be used to separate two or more statements on one physical
card, and may also be used in a Hollerith field. The right bracket
(]) is reserved for use by the compiler. Imbedded blanks have no

meaning in a FORTRAN statement except in a Hollerith field.

CONSTANTS.

Six basic types of constants are allowed in the FORTRAN programing
language: integer, real, double precision, complex, logical, and
Hollerith.

* BCL is an abbreviation for Burroughs Common Language.

INTEGER CONSTANT.

An integer constant is formed by a string of decimal digits.

The general form is:

N

where -549755813887 < N < +549755813887

An integer constant is written without a decimal point or exponent.

If the range specified above is exceeded, the constant is inter-

preted as a double precision constant.

Examples:

12
~-16729
3624138

REAL. CONSTANT.
A real constant is a string of decimal digits with a decimal point

and, optionally, an exponent.

The general form is:

M.NEX

where M and N are strings of decimal digits, only
one of which may be blank; X is a signed or un-
signed one or two-digit integer which is the ex-
ponent.

A real constant may be signed or unsigned.

An exponent is optiomnal. If it is used, then a letter E follows

the mantissa and precedes the exponent.

The exponent, if present, is interpreted such that lOX is multiplied

times the mantissa.

2-3

4.314E68 > ABS(R) > 8.758E-47, where R is a real constant, is the

range within which a real constant may fall,

Examples:

56.9
. 075
-253.
71.32E+02 (which represents 7132.0)
-71.,32E-2 (which represents -.7132)

DOUBLE PRECISION CONSTANTS.
A double precision constant is of the same form as a real constant,
except that its mantissa may contain up to 23 decimal digits and

its exponent is preceded by a D instead of an E.

The general form is:

M.NDX

where M and N are strings of decimal digits, only
one of which may be blank; X is a signed or unsigned
one or two-digit integer which is the exponent.

The mantissa may contain up to 23 decimal digits. If more are used,

then the mantissa is truncated to the 23 most-significant digits.

The range of a double precision constant is identical to that of a

real constant.

A constant which does not have an exponent but which specifies more
digits than a single precision value can maintain is interpreted as

a double precision constant.

Examples:

12D-1
-5.36D+56
52D-07
.713D=17

24

COMPLEX CONSTANT.

A complex constant, in the mathematical sense,

real part and an imaginary part.

The general form is:

(M,N)

where M is the real part and
N is the imaginary part.

FEach of the two components may be either a real constant

integer constant.

Double precision components are not permitted.

Examples:

Complex
Constant

(5,64.2)
(0,-1)
(3.5E-2,75.9)

LOGICAL CONSTANT.

Mathematical
Interpretation

5 + 64.2i
-i

.035 + 75.91

A logical constant may be either true or false.

The general form is:

Examples:

.TRUE.

.FALSE.

HOLLERITH CONSTANT.

A Hollerith constant is a string

. TRUE,

. FALSE.

is composed of a

or an

of any valid FORTRAN characters.

2-5

The general form is:

wHs

where w is the width of the
string and s is the string.

"S"

where s is the string.

Blanks appearing in the string must be included in the field width

w when form wHs is used.

The string may contain any valid FORTRAN characters except the

quote character (") and its alternatives: @ and :.
Strings are stored in memory, six characters per word.

Although a B 5500 word is capable of storing eight characters, only
the six right-most character positions are used for storage. The

two left-most character positions always contain zeros.

If a string does not contain a multiple of six characters, then in
the last word used for storing the string the remaining characters

are stored left-justified over a field of blanks.

Examples: (b represents blank)

2HbT

"pouT"

5HABCDE
VARIABLES.
There are two forms of variables: simple and subscripted. FEach of
these are, in turn, classified into five basic types: integer,

real, double precision, complex, and logical.

SIMPLE VARTABLE.

A simple variable represents a single value.

The general form is:

From one to six alphanumeric characters,
the first of which must be alphabetic.

A variable name with a first character of I, J, K, L, M, or N
implicitly types that variable as an integer variable. A variable
name beginning with any other alphabetic character is implicitly
typed as a real variable unless otherwise defined in a Type state-

ment.

A variable of type DOUBLE PRECISTION, COMPLEX, or LOGICAL must be

declared as such in a Type statement.

Examples:
Integer Real
Variables Variables
IB2 Al23
Ji2 TSUB2
KALPHA 725QD

SUBSCRIPTED VARTABLE.
A subscripted variable refers to a particular element of an array
off the same name as the subscripted wvariable. (See section 6 for

additional discussion).

The general form is:

N(al,az,...,an)

where N is the array name, ajs@nise..say are
arithmetic expressions which determine the

values of the subscripts of the subscripted
variable, and n is the number of subscripts
declared in the declaration of the array N.

A subscripted variable is named and typed according to the same

rules as a simple variable.

All elements of an array must be of the same type, i.e., if N(2)

is integer, then N(3) must also be integer.
A subscript may be an integer or real arithmetic expression.

If a subscript is a real arithmetic expression, then it will be
evaluated and converted to integer by rounding before being used

as a subscript.

Subscripted variables must have their subscript bounds specified
in a DIMENSION, Type, or COMMON statement prior to their first
appearance in either an executable statement or in a DATA state-

ment.

A subscript value, after any necessary conversion, must be greater

than zero and may not exceed the bound specified for the array in

the DIMENSION, Type, or COMMON statement in which it is declared.

Multi-dimensioned arrays are stored with the left-most subscript
varying most rapidly and the right-most subscript varying least

rapidly.

Examples:

B(I)

GSUB(8*K+3,L)
DMIN(I,J,K)
ISUB(TI,J*K/L,C,B*¥D,F/G)

SECTION 3
EXPRESSTIONS

GENERAL .
An expression is any constant, variable, or function reference, or
combination of these separated by operators, commas, or parentheses.

There are two types of expressions:

a. Arithmetic.

b. Logical,

ARITHMETIC EXPRESSION.

An arithmetic expression is a rule for computing a numerical value.

The general form is:

Any constant, variable, or function ref-
erence, or combination of these separated
by operators, commas; or parentheses.

An arithmetic expression may contain the following arithmetic

operators:
Operator Meaning
+ Addition

- Subtraction

* Multiplication

/ Division

* % Exponentiation

() Grouping Operator Pair

Arithmetic expressions may be connected by arithmetic operators
to form other expressions, provided no two operators appear in
sequence and no arithmetic operator is assumed to be present. Ex-

amples of invalid arithmetic expressions are:

A++B

(A+2) (B+3)

Any arithmetic expression can be enclosed in parentheses.

All actual arguments of a function reference are evaluated before

the function is evaluated.

Parentheses may be used in an arithmetic expression to denote the
order in which operations are to be performed. Parentheses have
first precedence in determining the order of evaluation and, when
nested parentheses occur, evaluation proceeds from the innermost

to outermost set.

The precedence order used in evaluating an arithmetic expression

is as follows:

(highest) Primary
Exponentiation
Multiplication and division
(lowest) Addition and subtraction

where the precedence for successive operators of the same level is

from left to right, e.g., A¥*¥B**C is evaluated as (A¥¥B)**C,

For the operation A¥*B, the valid combinations and results are

noted in table 3-1.

Table 3-1
Resultant Type for Operation A**B

Exponent B

Base A) Double
Integer Real Precision Complex

Integer Integer Real Double Not permitted
Precision

Real Real Real Double Not permitted
Precision

Double Double Double Double Not permitted

Precision Precision Precision Precision

Complex Complex Complex Complex Not permitted
(see NOTE)

The double precision exponent is con-
verted to real before exponentiation.

NOTE

Any element may be combined with any other element through use of

all the arithmetic operators except exponentiation.

The resultant

type is listed in table 3-2 for A OP B, where A and B are operands

and OP is either +, -, *, or /.

Examples:

B
2.316
K + 1

(x + A(T,3,L) - sIN(Y(K)))

X - C + Y(1,L) * 16.397

Table 3-2

Combination of Elements

Precision

Complex

Precision

Complex

Precision

Complex

NOTE 1

Precision

Complex

B
A
. Integer Real Doupl§ Complex
Precision
Integer Integer Real Double Complex
(see NOTE 1) Precision
Real Real Real Double Complex
Precision
Double Double Double Double Complex

(see NOTE 2)

Complex

(see NOTE 2)

Integer division yields a truncated result.

The double precision element is con-
verted to real before the operation.

NOTE 2

3-3

LOGICAL EXPRESSION.

A logical expression is a rule for computing a logical value.

The general form is:

Any constant, variable, or function ref-
erence, or combination of these separated
by operators, commas, or parentheses.

LLogical quantities may be combined by logical operators to form
logical expressions in a manner analogous to the combination of

arithmetic quantities by arithmetic operators.

A logical quantity, of itself, may also constitute a logical ex-

pression.
A logical quantity may be:

a. Any logical wvariable.
b. Either of the logical constants .TRUE. or .FALSE,
Any logical function reference.

d. Any relation.
The logical operators are defined in table 3-3.

The precedence of operators in the evaluation of logical expres-

sions is:

(highest) Function reference
** (Exponentiation)

¥ and / (Multiplication and division)

+ and - (Addition and subtraction)
.. 7., .LE., .EQ., .NE., .GT., .GE.
.NOT.
.AND.

(Lowest) . OR.

Parentheses may be used to alter the order of evaluation (just as

in arithmetic expressions).

Table 3-3

Definitions of Logical Operators

E, Operator Definition
.NOT. The expression .NOT. P is .TRUE.
when P is ,FALSE. The expression
.NOT. P is .FALSE. when P is
. TRUE.
LAND.

The expression P ,AND. Q is
when both P and Q are .TRUE. It
is .FALSE. if either P or Q is
.FALSE. or both are .FALSE.
.OR. The expression P .OR.
if either P or Q,

. TRUE.

Q is .TRUE.
or both,

are
. TRUE. It is .FALSE, if and only
if both P and Q are .FALSE. 44
Examples:
If A and B are logical expressions, then each of the following is
also a logical expression:
.NOT. B
A
(B)
A.OR.B

((B))

B .AND. A

RELATION.

A relation is a conditional logical expression.

The general form is:

A OP B

where A and B are arithmetic expres-
sions and OP is a relational operator,.

The relational operators and their meaning are noted in table 3-4,

3-5

Table 3-4

Relations and Meanings

Relation Meaning
= S|
Al .GT. A2 Al Greater Than A2
Al .GE. A2 Al Greater Than or Equal'to A2
Al .LT. A2 Al Less Than A2
Al .LE. A2 Al LLess Than or Equal to A2
Al .NE. A2 Al Not Equal to A2
Al .EQ. A2 Al Equal to A2

NOTE

A1l and Ap may be of type INTEGER, REAL, or DOUBLE
PRECISION. Neither may be of type COMPLEX.

Relations, when evaluated, may have one of two values, true or

false.

Chains of relations are not permitted, e.g.,

A .LT. B .LT. C

A correct form would be:

A .LT. B .AND. B .LT. C
or

A .LT. B .AND. A .LT. C

whichever is intended.
Examples:
(o, B, Q, Z, E, F;, X, G, H, and Y are arithmetic expressions.)

A .LT. B
A .LT. B .AND. Q .GT. Z
(E+F).NE.SIN(X).OR. (G-H).LT.ABS(Y)

3-6

SECTION L4
ASSIGNMENT STATEMENTS

GENERAL.

There are three types of assignment statements:

a. Arithmetic assignment statement.
b. Logical assignment statement.
c. ASSIGN statement.

ARTTHMETIC ASSIGNMENT STATEMENT.

The arithmetic assignment statement causes the value represented
by an arithmetic expression appearing to the right of the assign-
ment operator (=) to be assigned to the simple or subscripted

variable appearing to the left of the assignment operator.

The general form is:

Vo= a.e.

where v represents a variable name,
simple or subscripted, and a.e. rep-
resents an arithmetic expression.

The variable v cannot be of type LOGICAL.

The rules provided in table L-1 apply for type and value assign-

ment in arithmetic expressions,

Examples:
X = Y+Z
x(10) = A(5)+B(6)-(c/D)
JX = 342
X = 5.49
X(1) = B(1)+cos(a(1))
X(4) = D - C*%2

X(1,J) = A(T,3)+B(J,I)

Table 4-1

Rules for Arithmetic Assignment Statement (v = a)
v a Rule
— — |
Integer Integer Assign.
Integer Real Truncate to an integer and assign.
Integer Double Truncate to an integer and assign.
Precision
Integer Complex Not permitted.
Real Integer Assign.
Real Real Assign.
Real Double Assign the most-significant part.
Precision
Real Complex Not permitted.
Double Integer Extend to double precision and assign.
Precision
Double Real Extend to double precision and assign.
Precision
Double Double Assign.
Precision Precision
Double Complex Not permitted.
Precision
Complex Integer Not permitted.
Complex Real Not permitted.
Complex Double Not permitted.
Precision
Complex Complex Assign.
e e —

LOGICAL ASSIGNMENT STATEMENT.

The logical assignment statement causes the value represented by the

logical expression appearing to the right of the assignment operator

(=) to be assigned to the simple or subscripted variable of type

LOGICAL appearing to the left of the replacement operator.

The general form is:

l.e.

where v is a simple or subscripted
variable of type LOGICAL and l.e.
represents a logical expression.

The variable v must be of type LOGICAL.

Examples:

(K, L, M, and N are logical Variables.)

K = A .OR. B

L(J,5) = .TRUE,

M =A .LT. B

N =Q .GT. R .AND. Z .LT. P

ASSIGN STATEMENT.

The ASSIGN statement is used to initialize an assigned GO TO

statement (see section 5).

The general form is:

ASSIGN n TO t

where n is a statement label ref-
erenced in an assigned GO TO state-
ment, and t is a simple integer or
real variable appearing in the same
assigned GO TO statement.

The statement label n must be referenced in the assigned GO TO

statement being initialized.

The variable t must be the same variable referenced in the assigned

GO TO statement being initialized.

Example:

ASSIGN 10 TO J

4-3

SECTION 5
CONTROL STATEMENTS

GENERAL.

Control statements are used to alter the normal flow of a program.
They may transfer control to another part of the program, terminate
computation, or control iterative processes. Control may be trans-
ferred to labeled executable statements only. There are 11 dif-

ferent control statements:

a. Unconditional GO TO statement.
b. Computed GO TO statement.

c. Assigned GO TO statement,

d. Arithmetic IF statement.

e. Logical IF statement.

f. DO statement.

g. CONTINUE statement,

h., PAUSE statement.

i. STOP or CALL EXIT statement.
Je RETURN statement.

k. CALL statement (not including CALL EXIT).

UNCONDITIONAL GO TO STATEMENT.

Execution of this statement causes control to be transferred to a
statement other than that sequentially following the unconditional
GO TO statement.

The general form is:

GO TO n

where n is a statement label which
exists within the same program unit.

A statement label n must be defined within the same program unit

as the unconditional GO TO statement which references it.

The statement labeled n may appear before or after the uncondi-

tional GO TO statement referencing it.

Example:

GO TO 31

COMPUTED GO TO STATEMENT,.

Execution of this statement causes control to be transferred to one
of several statements other than that sequentially following the

computed GO TO statement.

The general form is:

GO TO (nl,nz,...,ni), t

where nj,Nss... n; are statement labels
and t is an arithmetic expression.

Control will be transferred to the statement label whose position
in the list is equal to the value of the arithmetic expression

ty, id.e., nt.
The statement labels nl,nz,...,ni must exist in the same program

unit as the computed GO TO statement.

The computed GO TO statement is valid for values of t such that
1 =t =< i, otherwise the program will be terminated with an INVALID
INDEX.

The arithmetic expression t must be of type INTEGER or of type
REAL.

If t is of type REAL, it will be evaluated and then rounded to an

integer.

nt
1
N

Example:

K=4
Go T0 (50,40,30,20,10),K

Execution of these two statements will cause control to be trans-

ferred to statement 20.

ASSIGNED GO TO STATEMENT.

Execution of this statement causes control to be transferred to
one of several alternative statements other than that sequentially

following the assigned GO TO statement.

The general form is:

GO TO t, (nl,nz,...,ni)

where t is a simple integer or real vari-
able and nl,nz,...,ni are statement labels.

Control will be transferred to the statement whose label has been

ASSTIGNed to t with an ASSIGN statement.

The values ASSIGNable to t are the actual statement labels appear-

ing in the 1list NN, e s

2 i

The variable t must be a simple integer or real variable.

If t has not been assigned a label appearing in the list, an INVALID
INDEX termination of the program will result.

The statement labels Ny, 000 sny must appear in the same program
unit as the ASSIGN statement and the ASSIGNed GO TO statement (see
ASSTIGN statement, section L),

Example:

ASSIGN 10 TO J
GO TO J,(50,40,30,20,10)

Execution of these two statements will cause control to be trans-

ferred to statement 10.

ARITHMETIC IF STATEMENT.

Execution of the arithmetic IF statement causes an arithmetic
expression to be evaluated and a different branch to be made de-
pending upon whether the expression evaluated is negative, zero, or

positive.

The general form is:

IF(a.e.)nl,nz,n3
where a.e. is an arithmetic expression
and n,n and n, are statement labels.

27 3

Execution of the arithmetic IF statement causes control to be trans-

ferred to n,n,, or n if a.,e. is less than, equal to, or greater

3

than zero, respectively.
The arithmetic expression a.e. may not be complex.

Examples:

TF(A-B) 1,2,3
IF(x(T,J)-C*E) 43,51,96

LOGICAL TIF STATEMENT.

Execution of the logical IF statement causes a logical expression
to be evaluated and the sequence of execution of the program state-
ments to be altered, depending upon whether the logical expression

evaluated is true or false.

The general form is:

IF(l1.e.) s

where l.e. is a logical expression and
s is an executable FORTRAN statement.

The statement s may be any executable FORTRAN statement except a
DO statement.

5-4

Execution of the logical IF statement results in the logical ex-
pression l.e. being evaluated. If l.e. is true, statement s is
executed. If 1.e. is false, then statement s is not executed, and
control is transferred to the next sequential executable statement

following the logical IF statement.
Examples:
X and Y are of type LOGICAL.,

IF(X .AND. Y) A = 3.1

IF(A .LE. B .OR. I .EQ. O0) GO TO 5

DO STATEMENT.

The DO statement provides a means of controlling program loops.

The general form is:

DO m i=n_ ,n

1M

3

where m is a statement label, i
is a variable, and nj,ns, and
ng are arithmetic expressions.

Execution of a DO statement results in the following actions:

a. The control variable i is set to the initial wvalue n.,.

1
b. All executable statements up to and including the terminal
statement are executed.
c. The control variable i is incremented by n3.
d. The value of the control variable i is compared to the
terminal value n,. If the terminal value has been ex-

ceeded, control is transferred to the first executable
statement following the terminal statement. Otherwise,
steps b through d are repeated until the control wvariable

comparison is satisfied.

In the general form, the control .variable i is a simple integer or

real variable,

5-5

In the general form, m is the label of an executable statement

terminating the DO loop.

In the general form, n n and n, are integer or real arithmetic

1’ 727 3
expressions which are the initial, terminal, and incremental para-
meters, respectively, for the control variable i.

If not specified, n, is assumed to be 1.

3

If present, n, must be greater than zero.

3

In the general form, n, must be greater than n

2 1’

The DO statement is always executed once with its dinitial wvalue.

The DO parameter is incremented and compared to n, prior to its

2
use and may be modified by any statement within the range of the

DO loop.

The control variable i is available for use by all statements within
the waloop, including the terminal statement, and may be modified —
as desired. The control variable i is available for computation
when exiting from a DO loop by transferring outside the loop and
not making a normal exit. When a normal exit is made\from the DO

loop, the control wvariable is undefined.

A DO statement may appear within a DO loop. This is defined as
being a DO mest. However, all statements in the range of the

latter DO loops must be within the range of the initial DO loop

o[~ v

(see figure 5-1).

DO

DO

]]

Figure 5-1. DO Nesting

5-6

Nested DO's may specify the same statement as their last statement

m.

Any number of DO statements may be nested within the range of

another DO statement.

There are no restrlctlons on transfer out of or into the range of

a DO loop. If a transfer is made into the range of a DO loop, then
the programmer is responsible for the appropriate assignment of a

value to the control wvariable i.

When several DO statements share the same last statement m, the
control variable i of the outermost DO statements is not reassigned
and tested until each of the inner DO statements in its range is
satisfied, starting with the innermost one. When the outermost
DO statement is satisfied, a normal exit is made and control is
transferred to the next executable statement following the range of

the just-satisfied DO loop.

Examples:

DO 10 I=2,200,4

io0 ...

DO 5 INDEX=5,10

CONTINUE STATEMENT.

The CONTINUE statement is considered a dummy statement because it
causes no action in the execution of a program. It is frequently
used as the terminal statement of a DO loop to provide a transfer

point for an IF or GO TO statement.

The general form is:

CONTINUE

5-7

Example:

DO 30 J=2,N
B(J)=NM(J-1) + INC
IF (N(J).LT. MAX) GO TO 30
K=J-1
GO TO 4O

30 CONTINUE

ho ...

PAUSE STATEMENT.

The PAUSE statement is used to interrupt execution of a program

when action is required of the computer operator.

The general form is:

PAUSE n

where n is an integer constant up
to six digits long or is blank.

If the n is present, it is displayed to the operator at the time of
interruption. Execution is resumed with the first executable state-
ment immediately following the PAUSE statement after an OK message
has been keyed in at the SPO (refer to B 5500 Operation Manual).

NOTE

SPO stands for SuPervisOry printer,
and specifies the console typewriter.

Examples:

PAUSE

PAUSE 30

STOP OR CALL EXIT STATEMENT.

The STOP statement causes immediate termination of the program.

5-8

The general form is:

STOP n

where n is an integer comstant up
to six digits long or is blank.

The CALIL EXIT statement is equivalent to STOP.

The general form is:

CALL EXIT

Examples:

STOP
STOP 4

CALL EXIT

RETURN STATEMENT .

Execution of the RETURN statement causes control to be transferred

from a subprogram to the calling program.

The general form is:

RETURN n

where n is an arithmetic
expression or is blank.

Every subprogram must contain at least one RETURN statement, but

more than one may appear in a subprogram,

If n is not blank, control returns to the point of reference and is
used to select one of the formal parameters in the subroutine re-
presented by an asterisk (nonstandard return). Control then returns
to the statement specified by a corresponding actual parameter in

the calling program (see nonstandard returns, section 8).

If n is blank, then control returns to the point of reference in

the calling program unit.

CALL STATEMENT.

A subroutine is referenced by a CALL statement.

The general form is:

CALL N
CALL N(al,az,...,an)

where N is the name of the subroutine and
aps8,5..05a are the actual parameters.

The actual parameters which constitute the parameter list must
agree in order, number, and type with the corresponding formal

parameters in the program unit defining the subroutine subprogram.

If a formal parameter is real, then an integer actual parameter

may be used.

For purposes of type agreement, a Hollerith constant is considered
of type INTEGER.

An actual parameter in a subroutine reference may be one of the

following:

a. A Hollerith constant.

b. A variable name,

c. A subscripted variable.

d. An array name.

e. An expression.

f. The name of a subprogram.

g. $label (see nonstandard returns, section 8)

Execution of a subroutine reference results in an association of
actual parameters with all appearances of formal parameters in
executable statements in the subroutine body, and in an association

of actual parameters with variable dimensions in the subroutine,

if any exist.

5-=10

Following the above associations, control is transferred to the

first executable statement in the subroutine body.

If an actual parameter is a subscripted variable with an arith-
metic expression as a subscript, then, effectively, the arithmetic
expression is evaluated, and the resulting subscripted variable is
associated with the corresponding formal parameter in the sub-

routine.

If a formal parameter of a subroutine is an array name, the corres-
ponding actual parameter must be an array name or an array element

name.

Examples:

CALL FALL(X,Y,Z)

CALL K0ST(A(I+J,2),B,"HEAD")

5-11

SECTION 6
DECLARATIVE STATEMENTS

GENERAL.
The declarative statements are non-executable statements used to
supply variable and array information and storage allocation in-

formation. The six different declarative statements are:

a. " DIMENSION statement.
b. COMMON statement.

c. EQUIVALENCE statement.
d. Type statement.

e. EXTERNAL statement.

f. DATA statement.

DIMENSTION STATEMENT.

The DIMENSION statement provides a means for specifying a collection
of values with a single name, and at the same time specifying to the

compiler the structure which is imposed on the collection.

The general form is:

DIMENSION al(il), az(iz), a3(i3) e e

where each a is an array name and each i repre-
sents dimension information having the form of
one or more subscript bounds separated by commas.

Each bound is an integer constant.

Variable names appearing with subscripts in the source program must

have dimension information specified for them prior to their use.

Dimension information may be given in a DIMENSION, COMMON,Vor Type
statement; however, the dimension information for a specific array

name must appear only once in the program unit.

The magnitude of the values of the subscript bounds indicate the
maximum values the subscripts may obtain in any reference to the

array. The lower subscript bound is always one.

An array may have variables for its subscript bounds in a FUNCTION
or SUBROUTINE subprogram only. In this case, the array name and
all variables used as subscript bounds must appear as formal para-
meters in the subprogram. The actual values assumed by these
variables are not determined until the subprogram is entered at

execution time (see variable dimensions below). -
No array may exceed 32767 words.

VARTABLE DIMENSIONS.

An array can be placed in a subprogram with variables used as
dimensions instead of constants. The advantage to this is that a
given subprogram can perform calculations on such a generally
stated array with specific dimensions provided from any calling
program. The specific dimensions must be provided in a DIMENSION
statement in the calling program. The actual values assumed by
these variables are not determined until the subprogram is en-

tered at execution time.

The general form is:

DIMENSION aj(i1), az(iz), a3(iz)s.....

where each a is an array name and each i is
one or more subscript bounds separated by
commas. FEach bound is an integer wvariable.

Variables can be used as dimensions of an array in a FUNCTION or

SUBROUTINE subprogram only.
The variables must appear in a DIMENSION statement of the subroutine.

The array name and all variables used as dimensions must appear as
formal parameters in the initial FUNCTION, SUBROUTINE, or ENTRY

statement.

Specific dimensions passed to the subprogram from the calling
program must be identified in a DIMENSION statement of the calling

program.

Specific variable size can be passed down through more than one
level of a subprogram to a given subprogram using the variable

as a dimension.

Example:

DIMENSION A(10,20)

END
SUBROUTINE SUB(B,K,L)
DIMENSION B(K,L)

END

COMMON STATEMENT.

The COMMON statement provides a means for sharing core storage

between the main program and its subprograms, or among the sub-
programs. Information appearing in the storage area reserved by
a COMMON statement is ordered in the sequence specified by the
COMMON storage: labeled and unlabeled.

The general form is:

CQMMON/xl/al/xZ/az/. .o /xn/an

where each a in the COMMON statement is a list
containing any combination of variable names,
array names, or dimensioned array names, and
each x is a block name or is empty. If x3 is
empty, the first two slashes are optional.

Array names in a COMMON statement may have their dimensioning infor-
mation appended to them. When arrays are dimensioned in a COMMON
statement, they cannot be dimensioned in Type or DIMENSION state-

ments.

6-3

COMMON area storage is assigned in the order of appearance of the
elements within the COMMON block list.

Block names may be duplicated within a program unit, causing the
associated elements from each COMMON block list having the same
name to be cumulatively assigned to one block with the same name.
The effect is the same as declaring the block name once and listing
all elements for that block in the COMMON block list. This is also
true for multiple unlabeled COMMON block lists within a given

program unit.

Variables and array names may not be duplicated in COMMON state-

ments.

COMMON elements may be assigned initial values through use of the
BLOCK DATA subprogram,.

The number and type of wvariables appearing in the COMMON block
list and related EQUIVALENCE statements specify the length of
the COMMON block.

All subscript bounds for any array which appears in a COMMON state-

ment must be integer constants.

A COMMON block need not have the same size in each program unit in
which it appears. However, if the size of a block is greater than
1023 words in any program unit, it must also be greater than 1023

words in the first program unit in which it appears.
No COMMON block may exceed 32767 words.

An element in COMMON which is double precision or complex must be
an odd-numbered element (i.e., first, third, fifth, etc.) counting

iﬁpm the left.
Example:

COMMON A ,B,C,D

If both A and C are double precision, then B and D may or may not be
double precision or complex. However, if B and D are double pre-

cision or complex, themn A and C must be double precision or complex.

Labeled common statements are specified by a block name, between
slashes, preceding the list of elements assigned to that labeled
COMMON block. Termination of the list of elements assigned to a
block is by:

a. Termination of the COMMON statement.
b. Introduction of a new block name.

C. Introduction of an unlabeled COMMON block.

COMMON block names are unique identifiers. When a block name is

present in a COMMON statement, it is embedded in slashes, e.g., /x/.

Blocks of labeled COMMON statements in different program units

which have the same block name will occupy the same storage area.

Unlabeled COMMON statements are specified by a blank block name,
e.g.,» / /» followed by the unlabeled COMMON block list. The two
slashes may be omitted if they appear at the beginning of a COMMON
statement list. Termination of an unlabeled COMMON block is accom-
plished by the introduction of a block name or termination of the

COMMON statement.

Examples:

COMMON X,Y,Z
COMMON /Y/Q,R,S

COMMON / / K(5,5),L

COMMON A ,B,C/s/D(10,10),E
COMMON /Y/Q,R,S/ /K(5,5),L

EQUIVALENCE STATEMENT.
By using the EQUIVALENCE statement, a storage location can be given

more than one name. Thus, variables or array elements not listed

in an EQUIVALENCE statement have unique storage assignments.

6-5

The general form is:

EQUIVALENCE (Q1),(Q2),(Q3)s.+v... (Qn)

where each Q is a list of two or more
simple or subscripted variables or
array names separated by commas.

Subscripts must be positive integer constants and must correspond
in number to the declared number of dimensions of the array, or be
single subscripted by equating the element position in the array
to a single subscript. For an explanation of the latter, see

table 6-1.

An array name without subscripts is considered as that identifier

with a subscript of one.

Any number of equivalence lists may appear in an EQUIVALENCE state-

ment.

Elements may be entered into COMMON blocks by setting them equiva -
lent to an element appearing in a COMMON statement list. TIf the
element is an array element, the whole array is brought into COMMON.
This may extend the size of the COMMON block involved either at its

beginning or at its end.

When two elements share storage because of their appearance in one
or more EQUIVALENCE statements, only one may appear in a COMMON

statement.

All subscript bounds for an array which appears in an EQUIVALENCE

statement must be integer constants.

An EQUIVALENCE statement must precede any reference to the elements
EQUIVALENCEd.

(4)0

——

= ([(T-1)x%SxH]+[(1-2)x4]+[€])D =

(1¢2°¢)d

(0¢d)HTONTATVAINDAE
(T¢2‘€) g peousasgex jusweTd (‘9°C¢+H)d NOISNAWIA
(02T)D NOISNAWIA

o rduexy

TXMXLXT ((T-1)*MXexXT+(T-F)XT+T)V (Tés1°CéT)v (T¢¥fpfT)V 1

MXLXT ((T-31)xpexXT+(T-C)XI+T)V (;1°CéT)V (dfrf1)Vv €

rXI ((T-C)x1+T)V (Cet)v (rf1)v Z

I (t)v (v)v (1)v T

_— —

snTep 3drtaosqng jdtaosqng 2up YITM 1uUowWe TH SUOTjeIRIOa(q SUOTSUSWI(J
-9 T8UTIgS WnwWIXep 1UQUR TH AevIay ouweg Aeaay Aeaavy Jo asquni

pdraosqng sup o sidraosqng oTAT3TnW SUTONIATVAINDA

=9 °1qel

6-7

Example:

DIMENSION A(10), B(5,5) D(3,3,3)
EQUIVALENCE (A(3), B(5,4), D(1,1,1)), (a(1),E)

The above statements assign specific variable values to the same
storage locations, as shown below, where each horizontal line is

one memory location.

Variable Value

A(1) B(3,4) ce E

AEZ) B(4,4) cen cen
A(3) B(5,4) D(1,1,1) -
A?h) B(1,5) D(2,1,1) e
A(5) B(2,5) D(3,1,1) e
A(6) B(3,5) D(1,2,1) e
A(7) B(4,5) D(2,2,1) ces
A(8) B(5,5) D(3,2,1)
A(9) ce D(1,3,1) cen
A(10) .o D(2,3,1) “ee

TYPE STATEMENT.

Type statements are used to declare the type of variables, array

names, and function names,.

The general form is:

INTEGER type list

REAL type list

DOUBLE PRECISION type list
COMPLEX type list

LOGICAL type 1list

where a type list is composed of variable
names , array names, or statement function
names separated by commas. In addition,
arrays may be dimensioned by appending
the dimension information to the array
name in one or more subscript positions.

When a subscripted variable is declared DOUBLE PRECISION or COMPLEX,
the compiler will automatically assign two words of storage for

each element of an array.

Implicit type assignment is overridden by Type statements.

6-8

A variable name must be typed prior to its use in an executable
statement or DATA statement. If the first letter of a variable
name is I, J, Ky, L, M, or N, it is implicitly declared of type
INTEGER and need not appear in a Type statement. If a wvariable

name begins with any other letter, it is implicitly declared of

type REAL and need not appear in a Type statement.

Examples:

INTEGER X,Y,Z,A(10,10)
REAL H,I,J,K
LOGICAL ATEST, BTEST

EXTERNAL STATEMENT.

When an actual parameter list of a function or subroutine reference

contains a function or subroutine name, that name must appear in an

EXTERNAL statement.

The general form is:

EXTERNA.L nl ,n2 20 0 0.0 0 0 ’nn

where the n's are the names of the functions
or subroutines appearing in the parameter
list of a function or subroutine reference.

The EXTERNAL statement appears in the calling program unit.

Example:

EXTERNAL SIN,COS
CALL SUBT (SIN,COS)

e o 0

END
SUBROUTINE SUBT (A,B)
TANX=A (X)/B(X)

RETURN
END

DATA STATEMENT.

The DATA statement permits variables and arrays to be initialized

to predetermined wvalues,

6-9

The general form is:

DATA 1istl/dl,d2,d3,...dn/, 1ist2/di,d2,...dn/,...

A list element may be an array name or a simple or
subscripted variable name, where the subscripts must
be integer constants. If more than one element of
an array is to be initialized, an implied DO loop
may be employed (see implied DO loop in section 7).
The d., represents a constant, or has the form i¥c,
where i is a repeat count and c¢c is a constant.

The constants may be any of the following:
a. Integer, real, or double precision constant.

b. Octal constants of the form 0dd...d, i.e., the letter
O followed by 1 to 16 octal digits (maximum allowable is
B3777777TTTTITTIT)

C. Logical constants. The quantities may be expressed as

. TRUE., .FALSE., T, or F.
d. Hollerith constants.

A one-to-one correspondence must exist between the list elements

and the constants.

DATA statement variables retain their values from one call to the

next, and they are initialized only once by the DATA statement.

If a Hollerith constant is used, it must be considered a single
value and must correspond to a single list element, even though

it may actually occupy several computer words. If it occupies more
than one word, the 1list element must be a subscripted variable, an
array name, or an implied DO loop with enough array elements remain-
ing in the array to contain the Hollerith constant (see Hollerith

constant in section 2).

Example:

DIMENSION A(3)
DATA A(1)/14HABCDEFGHIJKLMN/

Elements in a COMMON block may appear in a DATA statement only in
a BLOCK DATA statement (see BLOCK DATA in section 8).

Variables assigned quantities by a DATA statement may be assigned

other values during execution.

When an array name without subscripts appears in the list, the

entire array is initialized.

Subscripted variables appearing in a program must have their sub-
script bounds specified in a DIMENSION, COMMON, or Type statement
prior to the first appearance of the subscripted variable in a

DATA statement.

Example:

INTEGER X,Y,Z,A(5,5)

REAL H,I,J,N(8),K

LOGICAL ATEST ,BTEST

DATA X,Y,H/1,3,5.7/,1,J,ATEST/6.2,99.99,F/

DATA Z,A,K,BTEST,(N(T),I=1,8)/0,25%0,-99.,.TRUE. ,8%77.77/

GENERAL.

SECTION 7
INPUT/OUTPUT

The following areas of Input/Output (I/0) are covered in this

section:

Input statements.

Output statements.

I/0 lists.

Implied DO loop.

Action labels.

Auxiliary I/0 statements.
FORMAT statement.
NAMELIST statement.

Tape and Disk I/0.

INPUT STATEMENTS.

In explanations presented in this manual section, the symbols

u, ry, f, k, and 1 have the following meanings unless otherwise

specified:

u

- file specifier or unit number. The file specifier is an

arithmetic expression whose value identifies the file
being used for input or output. The file specifier must
conform to the restrictions of a subscript. Unless other-
wise specified by a FILE card (see appendix B), it is as-
sumed at object time that the file specifier designates a

tape unit.

random record number. It is an arithmetic expression
whose value represents a particular record within a random

disk file.

format specifier. It may be the label of a FORMAT state-

ment, an array identifier, or a NAMELIST identifier.

1 - action label. It specifies a statement label to which a
branch is made if a parity error or an End-of-File con-
dition is encountered during execution of an input state-

ment.

k - input/output list. It may be a blank or it may contain
one or more variables and/or implied DO loops, in any

combination.

Execution of any of the READ statements causes the next record to
be read from the input file. The information is scanned and con-
verted as specified by the format specifier f if the statement is
a formatted READ statement. The values are assigned to the ele-
ments specified by the list k. If the list is not specified, either
a record is skipped or data is read into the locations in storage

occupied by the FORMAT statement.

"FORMATTED INPUT STATEMENTS.
Formatted input statements are always associated with a FORMAT

statement, an array containing FORMAT specifications, or a NAMELIST.

The general form is:

. READ f,k

READ (u,f) k
READ(u,f,1) k
READ (u=r,f) k

. READ(u=r,f,1) k

(S RSN RV IS S

In all five forms, the input list may be empty (i.e., blank).

When the first form is used, the input will be assumed to be from

a card or tape file labeled READER.

When the second or third form is used, input will be assumed to be
from a tape file labeled TAPEn, where n is the wvalue of u in the
input statement, unless otherwise specified by a FILE card (see

appendix B).

When the fourth or fifth form is used, then input should be from

a random disk file. In this instance, a FILE card must be used.

In using the fourth or fifth form, the random number r, when
evaluated, must have a non-negative integer value (see random disk

I/0, page 7-36).

Examples:

READ 75
READ(8,BID),((1,J,A(1,J),J=6,9),I=1,5)
READ (UNIT ,75)X,2 ;A

READ (14 ,LTSTA)

READ (6=5%X~-3,25,END=101 ,ERR=77) ARRAY

For further information, see I/O lists, implied DO loop, action
labels, FORMAT statement, NAMELIST statement, and tape and disk
I/O in this section; FILE cards in appendix B.

UNFORMATTED INPUT STATEMENTS.
Unformatted input statements do not have a format specifier assoc-
iated with them. Input must be from a tape or disk file which has

been created with an unformatted output statement.

The general form is:

. READ(u) k
READ(u,1) k
READ{(u=r) k

. READ(u=r,1) k

LN

In all four forms, the input list k may be empty (i.e., blank).
If the list k is not specified, than a record is skipped.

The file used for input must have been previously created with a

similar unformatted output statement.

When either of the first two forms is used, input must be from a

tape or serial disk file.

When either of the last two forms is used, input must be from a

random disk file (see random disk 1/0, page 7-34),

Examples:

READ(9) I,A,J,B,D
READ(2%U,ERR=37) SAM
READ (UNIT=10,END=99) FEAT,HAMER

For further information, see I/O lists, implied DO loop, action

labels, tape and disk I/0 in this section; FILE cards in appendix B.

OUTPUT STATEMENTS.

In explanations following, the symbols u, r, f, and k have the

same meanings as outlined under input statements.

Execution of any of the output statements causes the next record in
the output file to be created. The information is converted and
positioned on output as specified by the format specifier f if the
statement is a formatted output statement. If the list is not
specified, either a record is skipped or data contained in the

locations in storage occupied by the FORMAT statement is outputted.

FORMATTED OUTPUT STATEMENTS.
Formatted output statements are always associated with a FORMAT

statement, an array containing FORMAT specifications, or a NAMELIST.

The general form is:

1. PRINT f,k
PUNCH f,k

3. WRITE(u,f) k

4., WRITE(u=r,f) k

In all four forms, the output list k may be empty (i.e., blank).

7-L

If the first form is used, output will be to a line printer file

labeled PRINT.

If the second form is used, output will be to a card punch file

labeled PUNCH.

When the third form is used, output will be to a tape which will be

labeled TAPEn, where n is the value of u in the output statement,

unless otherwise specified by a FILE card.

When the fourth form is used, output should be to a random disk

file. In this dinstance, a FILE card must be used.

In using the fourth form, the random record number r, when evalu-

ated, must have a non-negative integer value (see random disk I/0,

page 7-36).

Examples:

PRINT 95,v(J),K(4),ZEDD
PUNCH 55

WRITE(NO,A) ROW
WRITE(3=200-R,68) MATRIX

For further information, see I/O lists, implied DO loop, FORMAT
statement, tape and disk I/0, and random disk I/0 in section 7;

FILE cards in appendix B.

UNFORMATTED OUTPUT STATEMENTS.
Unformatted output statements do not have a format specifier as-

sociated with them. Output must be to a tape or disk file.

The general form is:

1. WRITE(u) k
2. WRITE(u=r) k

In both forms, the output list k may be empty (i.e., blank).

When the first form is used, output must be to a tape or serial

disk file.

7-5

When the second form is used, then output must be to a random disk

file (see random disk I/O, page 7-36).

Examples:

WRITE(0OUT) (X(K),K=I,J) XX
WRITE(11=REC) BOOL

For further information, see I/O lists, implied DO loop, tape and

disk I/0, and random disk I/0 in section 7; FILE cards in appendix B.

I/0 LISTS.

An input list k in an input statement specifies the variables to
which values are assigned on input. An output list k specifies the
variables whose values are transmitted on output. The input and

output lists are of the same form,

The general form is:

kl ’kz 9 e 0 0 ’kn
where kl’kZ""’kn are variables, array names,
or implied DO loops, or any combination thereof.

An element ki of an I/O list may be a simple variable, a subscripted
variable, an array name without subscripts, or an implied DO loop.

An I/O list k may consist of any combination of these elements.

An array name without subscripts in an I/0 list is equivalent to
inputting or outputting the entire array in the same order in which
the elements are stored in memory, i.e., column-wise: with the

left-most subscripts varying most rapidly.

Examples:

T,J,A,KP,B(I)
(A (INDEX) ,LP,INDEX=1,20) ,ZIP,ZAP

In addition, see implied DO loop and FORMAT statement in section 7.

IMPLIED DO LOOP.

An implied DO loop is used as an element in an I/O list to specify

a repeated cycle of list elements.

7-6

The general form is:

1. (L,i:nl,nz,nB)

2. ((L’i=nl 9112 ,1’13),j=ml ,m2 ,m3)

where L is a list of I/0 elements
which may contain an implied DO
loop, and i,nl,nz,nB and their
counterparts j,ml,mg,mB are as
defined for the DO statement.

Example:
PRINT 35,((1,B(I,J),I=1,3),J=6,7)
The output for the above statement would take the following form:

351,6)
B(2,6)
353,6)
B(1,7)
B(2,7)
B(3,7)

WV WD

where the subscripted B's represent the values of those elements.

For further information, see DO statement, section 5; I/O list,

section 7.

ACTION LABELS.

The formatted and unformatted input statements can be extended to
programmatically recover from either End-of-File conditions or non-
recoverable parity conditions, or both, through use of action

labels.

The general form is:

1. ERR:nl
2. END:n2
3. ERR:nl,END=n2

L, END:nZ,ERR=nl

where nq and n, are
statement labels.

When an attempt is made to read a record which has a parity error
from which the operating system cannot recover, control will be

transferred to the statement labeled nl.

When an attempt is made to read an End-of-File, control will be
transferred to the statement labeled n,.

2

The program will be terminated immediately by the operating system
if either of the above conditions occurs and the associated label

is not specified in the input statement being executed.

An End-of-File condition can occur under the following circum-

stances:

a. Attempting to read a card with an invalid character in

column one.
b. Attempting to read an End-of-File record on tape.

c. Attempting to read a record from an area of disk which

has not been written.

d. Attempting to read a record beyond the last record

previously written on disk.

Examples:

READ(3,END=99)
READ(6=R,35,ERR=70) A
READ(11,85,END=77,ERR=78) J,S,V

For further information, see input statements and tape and disk

I/0, section 7.

AUXTILTIARY I/0 STATEMENTS.

There are six types of auxiliary I/0 statements:

a. REWIND statement.
b. BACKSPACE statement.
C. ENDFILE statement.

d. CLOSE statement.
e. LOCK statement.
f. PURGE statement.

REWIND STATEMENT.
The REWIND statement causes the pointer for the specified tape or
disk file to be reset to the beginning of the file.

The general form is:

REWIND u

Execution of the REWIND statement causes the file u to be positioned

to its initial point.

If the last reference to the file u was a WRITE statement, then an
End-of-File record is written prior to positioning the file to its

initial point.
The REWIND statement is undefined for other than tape or disk files.

Examples:

REWIND 5
REWIND UNIT
BACKSPACE STATEMENT.
If the pointer in file u is positioned at record n, then execution

of the BACKSPACE statement will cause the file pointer to point

at record (n-1).

The general form is:

BACKSPACE u

If file u is positioned at its initial point, then execution of

this statement has no effect.

Examples:

BACKSPACE 8
BACKSPACE N

ENDFILE STATEMENT.
The ENDFILE statement causes an End-of-File record to be written on

the specified file and the file to be closed.

The general form is:

ENDFILE u

The ENDFILE statement is undefined for anything other than a tape
file.

When an ENDFILE statement follows a WRITE statement on the same
file u, then an End-of-File record is written and the tape is
positioned such that the next record written will follow the End-

of-File record.

When an ENDFILE statement follows a READ statement on the same
file u, then the tape is positioned to the beginning of the next

file on the tape.

When an ENDFILE statement follows a BACKSPACE statement on the same
file u, then the tape is positioned to the beginning of the file u.

When an ENDFILE statement follows REWIND or another ENDFILE state-
ment on the same file u, then the ENDFILE statement is ignored.

Examples:

ENDFILE TF1
ENDFILE 7

CLOSE STATEMENT.

The CLOSE statement causes the referenced file to be closed.

7-10

The general form is:

CLOSE u

On a card file, a card containing an ending label is punched, and

the card punch is released to the system.

On a line printer file, the printer is skipped to chanﬂel 1, an
ending label is printed, the printer is again skipped to channel

1, and the printer is released to the system.

On an unlabeled tape output file, a tape mark and ending label are
written after the last block on tape, and the tape is released to

the system.

On a labeled tape output file, a tape mark and ending label are
written after the last block on tape, and the tape is released to

the system.

Examples:
CLOSE 19

CLOSE N

LOCK STATEMENT.

The LOCK statement causes the referenced file to be closed.

The general form is:

LOCK u

If the file is tape, then it is rewound and a system message is

written to notify the operator to remove the reel and save it.

If the file is not a disk file, then the unit is made inaccessible

to the system until the operator resets it manually.

Examples:

LOCK NUT

LOCK 7

PURGE STATEMENT.
The PURGE statement causes the referenced file to be closed,

purged, and released to the system.

The general form is:

PURGE u

Examples:

PURGE TAPE

PURGE 8

FORMAT STATEMENT.
The FORMAT statement specifies what type of conversion is to be

performed on data from external representation to internal machine

representation or vice=versa.

The general form is:

n FORMAT(fl,fZ,...,fn)
where n is a statement label and
fl’fz""’fn are format specifi-
cations.

The FORMAT statement is non-executable.

The FORMAT statement is always associated with one or more formatted

input and/or output statements.

The commas separating the format specifications may be replaced
with one or more slashes. However, slashes in a FORMAT statement

are used for record control.

Each FORMAT specification must agree in type with the corresponding

variable in the list of the associated I/0 statement.

7-12

When inputting data under a numeric format specification (I, F, E,
D, G, O), leading blanks are not significant and other blanks are

interpreted as zeros.
Plus signs are optional on input and may be omitted.

When inputting data under a real format specification (F, E, G, D),
a decimal point appearing in the input field overrides the decimal

point placement specified.

Any blanks read in under a numeric format specification (z, F, E,
D, G) which are outputted with no action being performed on them
between inputting and outputting will appear in the output field

as negative zeros.

In the following FORMAT discussions, the symbols w, d, b, and s

will have these meanings:

w - total input or output field width, a positive unsigned
integer.

d - number of decimal places, a non-negative unsigned integer.

b - blank.

a string of any valid FORTRAN characters.

0]
I

INTEGER CONVERSION ON INPUT USING Iw.
The integer format specification Iw on input causes the value of
the integer datum in the input field to be assigned to the corres-

ponding integer variable in the input list.

The general form is:

Iw

The integer datum must be in the form of an integer constant right-

justified in the input field.

7-13

Examples:

Input Field Specification Internal Value
567 I3 +567
bb-329 16 -329
~-bbbb27 TI7 =27
27bbb 5 +27000

INTEGER CONVERSION ON OUTPUT USING ITw.
The integer format specification Iw on output causes the value of
the corresponding integer variable in the output list to be written

on the specified output file.

The general form is:

Iw

The integer is placed right-justified in the output field over a
field of blamnks.

The plus sign is omitted for positive numbers.

If the size of the integer exceeds the specified field width w,
the output field will be filled with asterisks.

Examples:
Internal Value Specification Output Field
+23 Th bb23
-79 I4 b-79
+67486 I5 67486
-67486 5 % KK *
+978 TI1 *

REAL CONVERSION ON INPUT USING Fw.d.
The real format specification Fw.d on input causes the value of
the real datum in the input field to be assigned to the corres-

ponding real variable in the input list.

7-14

The general form is:

Fw.d

If there is no decimal point in the input field, then a decimal

point is inserted d places from the right side of the input field.

The field width w must be greater than or equal to the specified
number of decimal places d. An input datum optionally may have

an exponent (see real conversion on input using Ew.d).

Examples:

Input Field Specification Internal Value
36725931 F8.4 +3672.5931
3.672593 F8.L4L +3.672593
-367259. F8.4 -367259
-3672.E2 F8.4 ’ -367200
367259E2 F8. L +3672.59
3.672E-1 F8.4 +,3672
367259 F6.6 +0.367259

REAL CONVERSION ON OUTPUT USING Fw.d.
The real format specification Fw.d on output causes the value of
the corresponding real variable in the output list to be written

on the specified output file.

The general form is:

Fw.d

The real number is placed right-justified and rounded to d decimal

places in the output field over a field of blanks.

The plus sign is omitted for positive numbers.

7-15

If the size of the number exceeds the specified field width w,
then the output field will be filled with asterisks. A safe rule

to use is:

(w -a) =3

Examples:

Internal Value Specification Output Field
+36.7929 F7.3 b36.793
+36.7934 F9.3 bbb36.793
-~-0.0316 F6.3 -0.032
0.0 F6.4 0.0000
0.0 F6.2 bb0.00
+579.645 FL,2 * KX %
+579.645 F6.2 579.65
~-579.645 F6.2 XK KX KX

REAL CONVERSION ON INPUT USING Ew.d.
The real format specification Ew.d on input causes the value of
the real datum in the input field to be assigned to the corres-

ponding real variable in the input list.

The general form is:

Ew.d

If there is no decimal point in the input field, then a decimal
point is inserted d places from either the right side of the input

field or from the E denoting the exponent, if there is one.

The field width w must be greater than or equal to the specified

number of decimal places d.

An input datum may or may not have an exponent.

7-16

Examples:

Input Field Specification Internal Value
bbbbbb25046 El1l.4 +2.5046
bbbbb25.046 El1l.4 +25.046
-bb250L6E-73 Ell.4 -0.0025046
bb250.46E-3 El1l.4 +0.25046

REAL CONVERSION ON OUTPUT USING Ew.d.
The real format specification Ew.d on output causes the value of
the corresponding real variable in the output list to be written

on the specified output file.

The general form is:

Ew.d

The real number is placed right-justified and rounded to a d-digit
mantissa, together with a four-place exponent field, in the output
field over a field of blanks, Note that with the Ew.d format
specification, d takes on a slightly different interpretation
since no significant digits are written to the left of the decimal
point in the output field. The plus sign is omitted for positive
numbers. If the following rule is violated, the output field will
be filled with asterisks:

(w - d) = 6

If a scale factor n is used, then it will control the decimal
normalization between the number part and the exponent part as

follows:

a. If n < 0, then Inl zeros will be placed immediately to
the right of the decimal point with (d—|n|) significant

digits following the zeros.

b. If n > 0, then n significant digits will be placed to the
left of the decimal point and (d-n+l) significant digits
will be placed to the right of the decimal point.

7-17

Examples:

Internal Value Specification Output Field
+36.7929 E12.5 bb.36793Eb02
~-36.7929 E11.5 -.36793Eb0O2
-36.7924 E10.5 H KK KK KK KKK
+36.7929 -2PE12.5 bb.00368EbOL
+36.7929 - +2PE12.5 36.79290EbOO

DOUBLE PRECISION CONVERSTION ON INPUT USING Dw.d.

The double precision format specification Dw.d on input causes
the value of the real datum in the output field to be assigned
to the corresponding variable of type DOUBLE PRECISION in the

input 1list.

The general form is:

Dw.d

Aside from the fact that a double precision value is stored in two
words, and that the exponent in the input field is preceded by a D
rather than an E, the double precision format specification Dw.d

behaves in the same manner as Ew.d.

DOUBLE PRECISION CONVERSION ON OUTPUT USING Dw.d.
The double precision format specification Dw.d on output causes the
value of the corresponding double precision variable in the output

list to be written on the specified output file.

The general form is:

Dw.d

The double precision format specification Dw.d is identical to Ew.d,

with the following exceptions:

a. The value associated with it is stored in two machine

words.

7-18

b. The variable name associated with the value must be of
type DOUBLE PRECISION.

c. The exponent part of the output contains a D rather than

an E.

REAL CONVERSION ON INPUT USING Gw.d.

The real format specification Gw.d on input is didentical to Fw.d.

The general form is:

Gw.d

REAL CONVERSION ON OUTPUT USING Gw.d.
The real format specification Gw.d on output causes the value of
the corresponding real variable in the output 1list to be written

on the specified output file.

The general form is:

Gw.d

The representation in the output field is a fraction of the magni-

tude of the real number being outputted.

If N is the magnitude of the number being outputted, then table
7-1 shows how the number will appear in the output field.

If a scale factor is used, then it will have no effect on output
conversion unless the magnitude of the number being written is

outside the range which permits effective use of F conversion.

Examples:

Internal Value Specification OQutput Field
+10. Gl2.5 bbl10.,000
+1000. Gl12.5 bb1000.0
+100000, Gl2.5 bb.10000EbLO6
+1000000. Gl2.5 bb.10000EbO7

7-19

Table 7-1

Datum Conversion

Magnitude of Datum Equivalent Conversion Effected
m———— — o
0.1<N<1 F(w-4). 4, 4Xx
1<N<10 F(w-4). (a-1), ux
1od"2_<_10d'l F(w-4). 1, 4X
1od'l§10d F(w-4). 0, 4x
Otherwise Ew.d
P———— _ e |

OCTAL CONVERSION ON INPUT USING Ow.
The octal format specification Ow on input causes the value of the
octal datum in the input field to be assigned to the corresponding

variable in the input list.

The general form is:

Oow

If the datum is less than 16 octal digits long, then it is right-
justified and stored in a machine word. The maximum octal con-

stant which can be read is 3777777777777777-

Examples:
Input Field Specification Internal Value
16 @2 000000000000016
1777777777777777 #16 Y77777777777777

7-20

OCTAL CONVERSION ON OUTPUT USING Ow.
The octal format specification Ow on output causes the octal value
of the corresponding variable in the output list to be written

on the specified output file.

The general form is:

Oow

The octal value is placed right-justified in the output field over
a field of blanks.

Examples:

Internal Value Specification Output Field
0000376754320017 33 017
0000376754320017 @10 6754320017
0000376754320017 #16 0000376754320017

LOGICAL CONVERSION ON INPUT USING Lw.
The logical format specification Lw on input causes the value of
the logical datum in the input field to be assigned to the corres-

ponding variable of type LOGICAL in the input list.

The general form is:

Lw

The input field width w must be greater than or equal to one.
There may be leading blanks. The first character encountered in
the field exclusive of leading blanks must be either T or F, for
true or false, respectively. Any characters following the T or F

will be ignored.

Examples:

Input Field Specification Internal Value
T L1 TRUE
bbF L3 FALSE
bbbTRU L6 TRUE

LOGICAL CONVERSION ON OUTPUT USING Lw.
The logical format specification Lw on output causes the logical
value of the corresponding variable of type LOGICAL in the output

list to be written on the specified output file.

The general form is:

Lw

The logical value is placed right-justified in the output field

over a field of blanks as a T or F, for true or false, respectively.

Examples:
Internal Value Specification Output Field
FALSE .1 F
FALSE L3 bbF
TRUE L2 bT

ALPHANUMERIC CONVERSION ON INPUT USING Aw.
The alphanumeric format specification Aw on input causes the charac-
ter string of width w in the input field to be assigned to the

corresponding variable in the input list.

The general form is:

The variable may be real or integer. The field width w should

never exceed six. If it does, then the right-most six characters

7-22

in the string are stored and the rest are ignored. If w is less
than six, then the string is stored left-justified with (6—w)
trailing blanks.

Examples:
Input Field Specification Internal Value
ABCDEFGHIJK A3 ABCbbb
ABCDEFGHIJK A6 ABCDEF
ABCDEFGHIJK All FGHIJK

ALPHANUMERIC CONVERSION ON OUTPUT USING Aw.
The alphanumeric format specification Aw on output causes the char-
acter string assigned to the corresponding variable in the output

list to be written on the specified output file.

The general form is:

The string is placed right-justified in the output field over a
field of blanks.

Examples:
Internal Value Specification OQutput Field
Ve
ABCbbb A3 ABC
ABCbbb A5 ABCbb
ABCbbb A9 bbbABCbbb

INPUTTING A CHARACTER STRING USING whs.

The Hollerith field specification wHs on input causes the character
string of width w in the input field to replace the character string
s of the Hollerith field specification in a FORMAT statement.

The general form is:

wHs

The Hollerith field specification on input may be used to read in
page headings which are to be printed on output, but which may

vary in content from one run to another.

Example:
READ 15
15 FORMAT (2X,9HDUMMYbbbb)
PRINT 15
11
Input: 1234567 89 01 (card column)

XYDbPDADbDbSAMPLE

Output: bbAbSAMPLE

Note that in the printed output, although 2X has been specified,
only one blank is printed since the first blank is a carriage

control character (see carriage control, page 7-27).

OUTPUTTING A CHARACTER STRING USING wHs.
The Hollerith field specification wHs on output causes the charac-
ter string s of width w of the Hollerith field in a FORMAT state-

ment to be written on the specified output file.

The general form is:

wHs
The string s remains unchanged.
Example:
PUNCH
95 FORMAT (12HbBURROUGHSDLbD)
1 11
Output: 123456789012 (card column)

bBURROUGHS SDH®D®

7-24

INPUTTING A CHARACTER STRING USING "s".
The literal string specification "s" on input is identical in

operation to the Hollerith field specification wHs.

The general form is:

"S"
Example:
READ 15
15 FORMAT (2X,"DUMMYbbbb")
PRINT 15
11
Input: 12345678901 (card column)

XYbPbADbSAMPLE

Output: b bAbSAMPLE

OUTPUTTING A CHARACTER STRING USING "s'",.
The literal string specification "s" on output is identical in

operation to the Hollerith field specification wHs.

The general form is:

"s"

SKIPPING CHARACTERS USING nX.
The format editing specification nX on input or on output will
cause n characters to be skipped in the respective input or output

field.

The general form is:

nXx

EDITING USING Tn.
The format editing specification Tn on input or output will cause
data to be transferred from or to that position in the record

specified by n.

7-25

The general form is:

Tn

SCALE FACTOR nP.
A scale factor is defined for use with the F, E, G, and D format

specifications, and is of the form:

nP

where the scale factor n is
a signed integer constant.

When FORMAT control is initiated, a scale factor of zero is auto-
matically established and applies until a scale factor is encoun-
tered in the FORMAT statement. Once a scale factor is encountered,
it applies to all subsequently encountered F, E, G, and D conver-
sions until another different scale factor or the end of the FORMAT

statement is encountered.

SCALE FACTOR ON INPUT.

For Fy, E, G, and D format specifications on input, where the input
datum does not have an exponent, the input datum is multiplied

by lOn, where n is the scale factor. If the input datum has an ex-

ponent, then the scale factor has no effect.

SCALE FACTOR ON OUTPUT.

For Fy, E, and D format specifications on output, the mantissa of the
output datum is multiplied by 10" and the exponent is reduced by

n, where n is the scale factor. For the G format specification on
output, the effect of the scale factor is suspended unless the
magnitude of the datum being outputted is outside the range that
permits effective use of F conversion. If the use of E conversion
is required, then the scale factor has the same effect as when

using the E format specification on output.

For further information, see real conversion on page 7-16 using
Ew.d.

7-26

FORMAT SPECIFICATION IN AN ARRAY.

Any of the formatted input/output statements may contain an array
name in place of a FORMAT statement label. At the time the input/
output statement containing the array reference is executed, the
array must contain the equivalent of a FORMAT statement, with the
first non-blank character being a left parenthesis. Any charac-
ters in the array following the final right parenthesis of the

FORMAT statement in the array are ignored.

Example:

DIMENSION FORM (5),INFO(6)
READ(5,75) FORM

75 FORMAT (5A6)
READ(20,FORM) Q,R,(INFO(I),I=1,6)

Input: (F6.2,3X,E15.8,6I3)bbbbbbbbbbb

CARRTIAGE CONTROL.
When a line printer is used for output, the first character of each

line of print controls the spacing of the printer carriage. The

control characters are:

Character Action
Blank One space before printing.
Zero Double space before printing.
1-9 Skip to channel 1-9 of the

carriage control tape before
printing.

Plus sign No advance before printing.

Examples:

25 FORMAT (1HO,E12.6,A5)

Causes the carriage to double space before printing.

35 FORMAT (6H+TITLE)

Provides no carriage advance before printing.

7-27

45 FORMAT (3X,615)

Causes the carriage to single space before printing.

55 FORMAT (1H1, "TITLE")
Causes the printer to page eject and print TITLE.

USE OF SLASH (/).

A slash in a FORMAT statement is used to indicate the end of a
record. On input, any remaining characters in the current record
are ignored when a slash is encountered in the FORMAT statement.
On output, the current record is terminated and any subsequent
output is placed in the next record. Multiple slashes may be used
to skip several records on input or create several blank records

on output.

REPEAT SPECIFICATIONS.

Repetition of any format specification except nX, wilHs, "s'", or
Tn is accomplished by preceding it with a positive integer con-
stant called the repeat count. If the I/0 list warrants it, the
specified conversion will be interpreted repetitively up to the
specified number of times. If a scale factor is included, then

it must precede the repeat count.

Repetition of a group of format specifications is accomplished by
enclosing them within parentheses and preceding the left parenthe~
sis with a positive integer constant called the group repeat count,
which indicates the number of times to interpret the enclosed
groupings. If the group repeat count is not given, then the group
is repeated until the I/O list is exhausted. Groupings with paren-

theses may be continued to any desired level.

Example:
85 FORMAT(3E16.6,5(F10.5,I3,4A2))

FORMAT AND I/0 LIST INTERACTION.
The execution of a formatted I/0 statement initiates format control.

If there is an I/0 list, then at least one format specification

other than wHs, "s", nX, or Tn must exist in the FORMAT statement

referenced.

When a formatted input statement is executed, one record is read.
No other records are read unless otherwise specified by the FORMAT
statement. The I/0 list associated with a FORMAT statement may not

require more data of a record then it contains.

When a formatted output statement is executed, writing of a new
record occurs each time the FORMAT statement referenced so speci-
fies. Terminating execution of a formatted output statement causes

the current record to be written.

Except for the effects of repeat counts, the FORMAT statement is
interpreted from left to right.

To each I, ¥, E, G, D, O, A, or L format specification there cor-
responds one element in the I/0 list. A list element of type
COMPLEX is considered, for purposes of I/0 conversion, as two list
elements of type REAL., Thus, there must be two format specifica-
tions (or a format specification preceded by a repeat count) for

every list element of type COMPLEX.

There is no corresponding I/O list element for any wHs, "s'", Tn,
or nX format specification. Instead, the information is inputted

or outputted directly to or from the FORMAT statement.

If, under format control, the right-most right parenthesis of the.
FORMAT statement is encountered and the I/0 list is still not ex-~
hausted, then format control reverts to the last previously en-
countered left parenthesis. If a group repeat count precedes thisl

left parenthesis, then it also takes effect.

If, during execution of a formatted I/O statement, the I/0 list

is exhausted but the right-most right parenthesis of the specified
FORMAT statement has not been encountered, then execution of the
I/O statement is complete. This action, of itself, has no effect

on the scale factor.

NAMELIST STATEMENT.
The NAMELIST statement associates an I/0 list with a unique iden-

tifier. This identifier may not be used for any other purpose in
the program unit in which it occurs. Only wvariable and array
identifiers may be used as NAMELIST elements. These identifiers

may not be formal parameters.

The general form is:

NAMELIST/Nl/al,az,...,an/NZ/bl,b b

2,ooc,n

where N1 and N2 are NAMELIST iden-
tifiers and a;,.+.,a_ and b,,...,b

1 n 1 n
are variable or array names.

INPUT USING NAMELIST.

Input using NAMELIST is accomplished by executing a formatted READ
statement which has as its format gspecifier £ a NAMELIST identi-
fier which has previously been declared in the same program unit,

No input 1list k is allowed in the READ statement.

The input data file is free format except for the first two charac-
ters of the first record. The first character is ignored and the
second must be a dollar sign ($). The NAMELIST identifier desig-
nated in the associated READ statement must follow the dollar sign,

with one or more blanks following the NAMELIST identifier.

Following the NAMELIST identifier and blank(s) are placed, in
free format, the variables assigned to the NAMELIST and the values
which are being assigned to them. These may take any one of three

forms, or any combination thereof:

a. V = N, where V is a simple or subscripted wvariable
assigned to the NAMELIST identifier, and N is the

value being assigned to the wvariable V.

b. B(i) = m,, my ,,...,m , where B is a previously DIMEN-
SIONed array, i is an integer constant designating an
element of the array B (i is less than or equal to n),

and m,,ee.,m are the values being assigned to the

7-30

array elements B(i) through B(n) and are either con-
stants or are of the form i*c, where i is a repeat
count and ¢ is a constant. Values must be assigned

to all elements of the array from B(i) through B(n).

c. A = My My eee s, where A is a previously DIMENSIONed
array and ml,mz,...,mn are the values being assigned to
the entire array A, and are either constants or are of
the form i*c, where i is a repeat count and ¢ is a con-

stant.

If the first record is other than that specified above, then addi-
tional records are read until the required record is found or the

End-of-File is encountered.

The READ statement will be terminated when a second dollar sign is
encountered in the data file. Anything following the dollar sign

is ignored. Trailing blanks are interpreted as zeros.

Example:
DIMENSION A(4,4),M(10),N(20)
NAMELIST/NAMEA/A ,D,K ,M,N ,X/NAMEB/M ,N,X
READ NAMEA
First input card: 12345678..... (card column)
b$NAMEA D=7.1,N(4)=2.9,5.7,1.5,X=2.5,
Second input card: 12345678..... (card column)

A(2,3)=15.9,M=2,1,3%6,k*74}

OUTPUT USING NAMELIST.

Output using NAMELIST is accomplished by executing a formatted
output statement which has as its format specifier £ a NAMELIST
identifier which has previously been declared in the same program

unit. No output list k is allowed in the output statement.

Output records produced by using NAMELIST may be read by a READ
with NAMELIST statement, and are therefore of the same general for-
mat as that specified for input to a READ with NAMELIST statement.

7-31

Example:

DIMENSION A(4,4),M(10),N(20)
NAMELIST/NAMEA/A,D,K,M,N,X/NAMEB/M,N,X

WRITE(6,NAMEA)

WRITE(6,NAMEB)

TAPE AND DISK I/0.

Tape and disk file unformatted output statements, BLOCKING option,

and BUFFERing options are discussed below, followed by an expanded

discussion of disk I/0 (serial disk I/0 and random disk I/0).

UNFORMATTED OUTPUT.

When a tape or disk file is written using unformatted output state-

ments, it will be formatted in the manner shown in figure 7-1.

LOGICAL RECORD

First Intermediate
t¢————Physical Record - Physical Records————eje——Last Physical Record-———ewi
(R wvords long) (each R words long)

A A A

B B B

C C C

A=0 Denotes first A=0 Denotes intermediate A=777778 Denotes last

B=777778 Physical Record B=0 Physical Records B=0 Physical Record

C=R C=R O<C<R

(number of words used in
final record)

Figure 7-1. File Format Using Unformatted Output Statements

NOTE

Numbers with subscript 8 are octal.

In figure 7-1, R is the number of words per record as declared

with the RECORD option on the FILE card. A, B, and C are partial

words comprising the first word of each physical record, and

7-32

A =[3:15]
B = [18:15]
C = [33:15]

Therefore, if the physical and logical record sizes are the same,
i.e., the blocking factor is one, then A, B, and C will have the

following values:

A = 777774
B = 777774
C =R

When an unformatted output statement is used, then the file written,
whether tape or disk, will have the above format. For optimal use
of disk, however, it should be kept in mind that the disk is allo-

cated into 30-word segments.

BLOCKING.
The BLOCKING option on the FILE card provides the capability of

packing more than one record into a physical block.

There are two advantages in blocking files:

a. Faster I/O speeds can be obtained since many records can
be brought into or out of internal storage in a single

access, thus giving a faster access time per record.

b. More efficient packing of data can be obtained. For ex-
ample, an 80=character record written on disk unblocked
would waste 160 characters. This is because the smallest
addressable area on disk is the segment which contains
240 characters. By specifying three records per block
(BLOCKING = 3), 100% utilization of disk can be obtained.
Another example is tape blocking. By writing longer
blocks, the amount of tape space wasted by inter-record-

gaps would be reduced.

For most efficient utilization of disk, the blocking should be
such that the block size should be 30 words (240 characters) or

some integer multiple thereof.

7-33

The block size should not exceed 1023 words.

The blocking of records during WRITE and unblocking during READ is
handled automatically by the operating system.

BUFFERING.
The FILE card has an option whereby the number of buffers assigned

to a file can be specified (two are assigned by default).

The number of buffers that should be specified for a given file

depends on the characteristics of the file.

A file from which a record is accessed infrequently should have

only one buffer. Specifying more wastes internal storage space.

A file that is accessed frequently should have two buffers. While
data is being processed into or from one buffer, I/0 can be in

progress on the other buffer.

A file that is accessed N times between long processing loops should
have N buffers, Since the operating system always tries to keep

the buffers full for input and empty for output, the N buffers could
be processed without having to wait for any actual I/O. Then, during
the long processing loops, the operating system can do the required

actual I/0 operations.

DISK I/0.
The assignment of a file to disk requires the use of a FILE card

(see appendix B).

If the AREA option is specified, the first reference to the file
will cause the MCP to set up a directory indicating the amount of
disk specified. 1In making the actual allocation of disk, the MCP
will subdivide the file into 20 areas, each area containing 1/20
of the file. Actual allocation of disk space for each area occurs

only when a WRITE statement references a record in that area.

7-34

If the FILE option card does not specify the AREA option, the first

reference to the file expects the file to exist on disk.

To create a permanent file on disk, it is necessary to specify the
LOCK option and the SAVE option. In addition, the file should be
left open when the program goes to End-of-Job (EOJ), i.e., mno
REWIND statement can be executed on the file.

Fach record on disk is addressed by its relative location in the
file; the first record is record O (zero). The MCP, in order to
compute an actual disk address from a record address, requires

that each record be of fixed length. This record length is either
17 words (by default) or the record size specified in the FILE card.
Attempting to write or read a logical record where the amount of
data specified by the list exceeds the amount of data in the record
will result in program termination. For the situation where a
logical record is written which is smaller than the record size, the
contents of that portion of the record left unfilled is undefined.
Attempting to read this undefined data should be avoided; program

termination can occur.

Associated with each file on disk is an End-of-File pointer. Each
WRITE operation updates this pointer so that its value is always

that of the highest record written.

SERTIAL DISK I/0. Serial Disk I/0 is selected by specifying the
SERIAL option on the FILE card.

The operating system keeps an internal record pointer to control
serial disk I/0. This pointer is set to -1 initially. Each READ
or WRITE statement counts the pointer up to 1, then uses it as the

relative record address to read or write.

The random access forms of the READ or WRITE I/O statement can be
used for a file specified serial (see random disk I/0). When used,
the internal record pointer is set equal to the address specified

in the I/O statement rather than being counted by 1. Using the

7-35

random access forms of the I/0 statement on files specified as
serial, although allowed, is slower than when the file is specified

as random.

The results of mixing or alternating serial disk READ and WRITE

statements without intervening REWINDs are not defined.
REWIND sets the internal record pointer to -1.

RANDOM DISK I/O. Random Disk I/O is selected by specifying RANDOM
on the FILE card. Associated with random access is a special form

of file identifier in the READ and WRITE I/0 statements as follows:

u = r

where r is the relative address
of the record to be accessed.

The rules for the form of r are the same as for an array subscript.

The record specified by r will be the record accessed.

The internal record pointer is always set from r in the I/O state-
ments. If the serial forms of the I/0 statements are used with a
file specified random, the internal record pointer is not changed.
This results in several consecutive serial I/0 statements accessing

the same record repeatedly.
Mixing READ and WRITE statements is allowed in any sequence.
REWIND sets the internal record pointer at zero.

Examples:

READ(1=I....)

WRITE(6=(A+B-C)...

7-36

SECTION 8
SUBPROGRAMS

GENERAL.
A subprogram is a program unit, a self-contained and independent
routine, which may be referenced by the main program and by other

subprograms. There are three types of subprograms.

a. FUNCTION subprograms.
b. SUBROUTINE subprograms.,
c¢. BLOCK DATA subprograms.

FUNCTIONS.

In mathematics, if the value of one quantity is dependent on the
value or values of another quantity, then it is said to be a func-
tion of the other quantity. The first quantity is called the
function and the other quantities are called the arguments. For

example, in

arctan(x)
arctan is the function and x is the argument.
Functions may be divided into three categories:

a. Statement functions.
b. Intrinsic functions.

c. External functions.

STATEMENT FUNCTIONS.
A statement function is defined within the program unit in which
it is referenced. It is defined by a single statement similar in

form to an arithmetic or logical assignment statement.

The general form is:

f(xl,x ,...,Xn)=e

2

where f is the statement function name,
X1 3X2see0 93X, are the dummy arguments,
and e is an expression.

The rules for naming a function subprogram are the same as those

for naming a variable (see section 2). The dummy arguments may

be simple or subscripted variables. They represent values which

are passed to the function subprogram and are used in the expression
e in order to evaluate the function f. The dummy arguments are
undefined outside of the statement function and may be redefined
within the program unit. Together, f and e must conform to the

rules for arithmetic or logical assignment statements.

Aside from the dummy arguments, the expression e may contain:

a. Variables used in the program unit.

b. Intrinsic function references.

c. References to previously defined statement functions.
d. External function references.

A statement function must be defined before it is referenced.

A statement function is referenced in the same manner as a FUNCTION

subprogram is referenced.

The name of a statement function must not appear in an EXTERNAL
statement, nor as a variable name or an array name in the same

program unit.

Example:

DIMENSION A(10)

LOGICAL STAFUN,Y,Z

STAFUN(N)=X .LT. SIN(A(Ng)

READ 25,X,Y,(A(T),I=1,10
25 FORMAT(F8.2,L2,10F7.2)

DO 50 J=1,10

Z=Y .AND. STAFUN(J)

50 ...

INTRINSIC FUNCTIONS.
The intrinsic functions are those functions made available to a

FORTRAN object program by the operating system. The names, types,

and definitions of the intrinsic functions are predefined, so they

need only be referenced in order to be used.

An intrinsic function name may be redefined within a program unit.
However, if it has been redefined, then that intrinsic function
will no.longer be recognized by the compiler, but its identifier

will be used as it has been redefined.

An intrinsic function is referenced by using it as a primary in an
arithmetic or logical expression. The actual parameters which
constitute the parameter list must agree in type, number, and
order with the specifications in table 8-1, and may be any expres-
sion of the specified type. (For an explanation of actual para-
meters, see CALL statement, section 6.) When a real parameter

is specified, however, an integer parameter may be used.

Execution of an intrinsic function reference results in the passing
of the actual parameter values to the corresponding formal para-
meters of the intrinsic function and an evaluation of the intrinsic.
The resultant value is then assigned to the intrinsic function
identifier and thereby passed back to the intrinsic function refer-

ence.

Examples:

IBIG=MAXO(I,J,K,LEST)
TANGE=SIN(X+Y)/C0S(A-B)
EXTERNAL FUNCTIONS.

An external function is a program unit which has as its first state-

ment a FUNCTION statement.

The general form is:

t FUNCTION f(al,az,...,an)

where:

a. t is either INTEGER, REAL, DOUBLE
PRECISION, LOGICAL, COMPLEX, or
empty.

b. f is the symbolic name of the
function being defined.

Ce @f1se..7a, are formal parameters
which may be either a wvariable
name, an array name, a SUBROUTINE
or FUNCTION name, or an asterisk (*)
(see nonstandard returns).

An external function is normally referenced by another program

unit.

However, B 5500 FORTRAN permits an external function to

reference itself, i.e., recurse.

The construction of external functions is subject to the following

conditions:

a.

The function name must be used as a variable within the
function subprogram to the left of the replacement operator
(=) in an assignment statement at least once. Its value

at the time of execution of any RETURN statement within

the function subprogram is the wvalue of the function.

The name of the function must not appear in any non-
executable statement in the function subprogram, except

for the FUNCTION statement.

The symbolic names of the formal parameters may not appear
in an EQUIVALENCE, COMMON, or DATA statement in the func-

tion subprogram.

The function subprogram may define or redefine one or more.
of its parameters to effectively return results in addi-

tion to the wvalue of the function.

e. The function subprogram may contain any statements ex-
cept SUBROUTINE, another FUNCTION statement, or BLOCK
DATA.

f. The function subprogram must contain at least one RETURN

statement.

g. An END statement must be the last statement of the sub-
program body.

Example:

FUNCTION EVAL(U,V)
IF(U .LT. V) GO TO 1
EVAL=V/U
RETURN

1 EVAL=U/V
RETURN
END

REFERENCING EXTERNAL FUNCTIONS.

An external function is referenced by using it as a primary in an
arithmetic or logical expression. The actual parameters, which
constitute the parameter list, must agree in order, number, and
type with the corresponding formal parameters in the defining pro-
gram unit. If a formal parameter is real, an integer actual para-
meter may be used. An actual parameter in an external function

reference must be one of the following:

a. A Hollerith constant.

b. A variable name.

c. An array element name,

d. An array name.

e, An expression.

f. The name of a function or subroutine.
g. ¢ label. (See nonstandard returns.)

If an actual parameter is a function name (external or intrinsic)
or a subroutine name, then the corresponding formal parameter

must be used as a function name or a subroutine name, respectively.

8-5

If an actual parameter corresponds to a formal parameter that is
defined or redefined in the referenced subprogram, the actual
parameter must be a variable name, an array element name, or an
array name. Execution of an external function reference, as de-
scribed in the foregoing, results in an association of actual para-
1meter with all appearances of corresponding formal parameters in
the executable statements of the subprogram, and in an association
of actual parameters with variable dimensions, if present, in the
subprogram. Following these associations, execution of the first

executable statement of the subprogram body is undertaken.

An actual parameter which is an array element name containing vari-
ables in the subscript could in every case be replaced by the same
parameter with a constant subscript containing the same values as
would be derived by computing the variable subscript just before

association of parameters takes place.

If a formal parameter of an external function is an array name,
the corresponding actual parameter must be an array name or array

element name.

Example:
TOTAL=EVAL(P,X)+(P,X)+CPS(Y)
SUBROUTINE.

A subroutine is defined extermnally to the program unit that refer-
ences it. A subroutine defined by a FORTRAN statement headed by a
SUBROUTINE statement is called a subroutine subprogram.

DEFINING SUBROUTINE SUBPROGRAMS.
The SUBROUTINE statement is one of the forms:

8-6

SUBROUTINE N

SUBROUTINE N (ajjans...ap)

where:

a, The letter N is the symbolic name of
the subroutine to be defined.

b. The a's are formal parameters which may be
either a variable name, an array name, a
function or subroutine name, or an asterisk (*).

The construction of subroutine subprograms is subject to the

following restrictions:

e.

program,

Thevsymbolic names of the formal parameters may not appear

iﬂmgg‘EQUiVALENCE,VCOMMON, or DATA statement in the sub-

The subroutine subprogram may define or redefine one or
more of its parameters in order to effectively return

results.

The subroutine subprogram may contain any statements ex-
cept FUNCTION, another SUBROUTINE statement, or BLOCK
DATA.

The subroutine subprogram must contain at least one

RETURN statement.

An END must be physically the last statement.

In B 5500 FORTRAN, a subroutine may call itself, i.e., recurse.

Example:

SUBROUTINE FALL(T,V,S)
G=32.172

S=G*T*%2/2

V=G*T

RETURN

END

8-7

NONSTANDARD RETURNS FROM SUBROUTINES AND FUNCTIONS.

If a subroutine or function contains one or more nonstandard

return statements (has the term RETURN n), the formal parameter
list must contain one asterisk (*) for each return number. The
actual parameter list of the referencing program unit must then
have a dollar sign ($) followed by a label in the corresponding

position.

Example:

Calling Program Called Program

e SUBROUTINE XYZ (U,V,%,*%)

CALL XYZ (A,B,$10,$15) e

5 ... IF(EXP) 1,2,3
. 1 RETURN
o 2 RETURN 1
ce 3 RETURN 2
10 ... END
15 ...
END

In the above example, if the value of EXP is negative, control will
be returned to the referencing program at the statement labeled 5;
if the wvalue of EXP is zero, control will be returned at label 10;
and if the value of EXP is positive, control will be returned at
label 15.

MULTIPLE ENTRY POINTS INTO A SUBPROGRAM.

For a normal entry into a subroutine subprogram, a CALL statement
that refers to the subroutine name is used. A normal entry into

a FUNCTION subprogram is made by a reference to the function name
in an arithmetic expression. Entry is made at the first executable

statement following the SUBROUTINE or FUNCTION statement.

8-8

A subprogram can also be entered by way of a CALL statement or a
function reference that refers to the name in an ENTRY statement
in the subprogram. The entry is made at the first executable state-

ment following the ENTRY statement.

ENTRY statements are non-executable. Therefore, they do not affect
control sequencing during normal execution of a subprogram. The
type, order, and number of parameters need not agree between the
SUBROUTINE or FUNCTION statement and the ENTRY statement, nor do
the ENTRY statements have to agree among themselves. However, each
CALL or function reference must agree in type, order, and number
with the SUBROUTINE, FUNCTION, or ENTRY statement that it refers to.

The ENTRY statement in the called subprogram is one of the forms:

ENTRY n
ENTRY N(ajsass...ap)
where:
a. N is the symbolic name of an entry point.
b. The a's are formal parameters which may be
either a variable name, an array name, a
subroutine or function name, or an asterisk (*).

Example:
Calling Program Called Program

coe SUBROUTINE SUB(U,V,W,X)
5 CALL SUB(A,B,C,D) cee
. o o lO e o o
10 CALL ENT1 ENTRY ENT1
co GO TO 10

¢ o 0 LR

15 CALL ENT2(G,H) ce

ce ENTRY ENT2(G,H)
END cee
END

8-9

In the above example, execution of statement 5 causes entry into

SUB, starting with the first executable statement of the subroutine.
Execution of statements 10 and 15 also causes entry into the called
program, starting with the first executable statement following the

ENTRY ENT1 and ENTRY ENT2(G,H) statements respectively.
The following are additional rules for entry points:

a., An ENTRY name may appear in an EXTERNAL statement in the
same manner as a FUNCTION or SUBROUTINE name.

b. ENTRY statements may appear only in subprograms.

c. Entry into a subprogram initializes all references in the
entire called subprogram from items in the parameter list

of the CALL or function reference.

d. If an adjustable array name or any of its wvariable
dimensions appear in a parameter list for a FUNCTION,
SUBROUTINE, or ENTRY statement, that array name and all
its variable dimensions must appear in that parameter

list.

e. In a FUNCTION subprogram, only the FUNCTION name may be
used as the variable to carry a result back to the call-
ing program. The ENTRY name may not be used for this

purpose.

f. An ENTRY name defined in a subroutine subprogram must be
referenced in a CALL statement. Similarly, an entry
defined in a function subprogram must be referenced as a

function.

BLLOCK DATA.
Further use of the DATA statement is in the BLOCK DATA subprogram.
It is used to enter data into COMMON blocks; however, the follow-

ing must be observed:

Example:

There may be no executable statements in a BLOCK DATA
subprogram. The first statement of the subprogram must
be BLOCK DATA.

The subprogram may contain only Type, EQUIVALENCE, DATA,
DIMENSION, and COMMON statements.

All elements of a COMMON BLOCK must appear in the COMMON
statement list even though some do not appear in the DATA

statement list.

More than one COMMON block may be initialized by a single
BLOCK DATA subprogram.

There may be as many BLOCK DATA subprograms as desired
in a program, but any block identifier may occur in only

one BLOCK DATA subprogram.

BLOCK DATA

COMMON /TEST/ K, L, S/ AATWO/ B, C
DIMENSION C(10)

DATA L, S/ 1, 3.5/, ¢/ 10%16.2/
END

‘e Jo gaed TeafejuTr 93 SO0USP mmu

sIoyM “Nm*ﬂmm\ﬁﬁu -le se pPouUTIOp 8Jae Amdﬁﬂdv AOWd PU®B JOWV ‘dOW SuoIjouny O] :930N«x
Teax o013
J9399UT WOIXJ
Teoy asFequr IVOTd T UOTSIDAUOD 1eo0Td
aTqnodg sTqnoqa TNIRWa
Jedejur Teoy INIW
Jafequr xe8equrl ONIN
Te®y Tesy INIWV > T
Te9y | ae8sjul ONIWV z< (*°+%e* o) utn onTeA 3seoTTews JUTsSoO0TY)
@Tqnoda 9Tqnod TXVHA
Isdequl 1esy TXVHA
Io8equT J9893uTr OXVI
Teay Teay TXVVY > T
Teoy JIo39qul OXVIV < (=*°%e¢"e) xen anTe\ 3se3ae]T Bursooy)n
°Tqnoq ?TqnoQq qona
aa393uT Je89quT aon
Teoy Teay TONY A ANM UoEv Te »BUTIS PUTBWAY
Te8ejur eTqnoQ INIAI mm |>
Je89quy Teoy INT JI989qUT 3sedrer
Tea?y Tesy INTIV T sewTg ® Jo UITQ UOT3edund,
Tesy xa1dwmop savD
9TqnoQ 9aTqnoq sava
IsFoqur I98equft SagvI
Teoy Te?au sqdv T _m_ anTeA 931nTosqy
uortjyzounyg |juswnday sureN sjuemnS Iy
Jo odLg Jo odAg, OTToquAg Jo Jxaquny uorituried norsjoung

UOT3ouUng OTSUTJIGUI UB JO SUOTI0Y SUT4Tnsoy

-8 °T19®&lL

8-12

xoTdwmo) xoTdwoy dXdD T
sTqnoQq sTqnoq dXdda T
Tesy Tesy dXH T 2° Tetjausuodxy
xoTdwoyH xoTdwo)H HLNOD T XTI - X =0 oq1e8nlfuop xoTdwo)
xo1dwo) Teo ¢ Ty = d
a XTdRD [4 eT + "B = D XoTdwop) 93®'dI)
Teay | xordwop DVWIV T jaed AreurSem] urTelqo
Tedy | xoTdwo) VA T jaed Teeoy UTeIqO
WIOoJ UOTSTO9xd
oTqnog Ut jJusuN3aIVy
@Tqnod Te9?y d41da T UOTSTO9ad 9T8uTrg ssoaadxy
JuULsuINIIY
UOTSTO8axd oTqnog Jo 3xed
Te?yuy °Tqnod TONS T 1UedTITUITS 3SOW UrL®i1qO
- x98e3uT Ia89quTr WIQT -
Teay Teoy WId z Amdhﬂmv ﬁﬂZlHd 90USIdIIT(O 9AT3TSOd
9Tqnoda 9Tqnog NDIsd T
Je89qul xe89qufr NOIST _ w_ seuta
Teay Teoyg NOIS P Ce Jo u3Ts u8Ts Jo JoJsueIi]
JI9393UT 01
TedI wWoxJ
J9893uT Teay XTdAT T UOTSIDAUOD XTJ
uoT3oung | juewmndIy swreN sjusuUNI Iy
Jo ad4yg, Jo odAg oTToquAg Jo asqunN uoritutyed uorsound

uoTg4oung OTSUTLIJUT UB JO SUOT3O0Y SUTlTnsey

(3u00) 1-8 °219®BL

8-13

Teey Tesy NVIOD i Amv 3090 JU93Ue10) OTJIL9UWOSTA],
ey Teay NVI T Amv ueq jue8ue], OTJILoWOITI],
Te9y Te9ay HNVL T (e) yuez jusdue], oTTOoqIadAy
xa 1duio) xoTdwo) Ja9SH T
eTqnoqQq 9TqnoQq L3dsa T
Teay Teay NP (V]S T 2 /T (e) 300y aaenbg
aTqnog 8TqnoQq CNVLVd 4 > T
Teay Teay SNVIV z A d\ wv uejlodae 1uUe3uel1oIVy
aTqnoq °TqnoQ NVIVd T
Teay Teoy NVILV T Adv uej3oIe Juaduel1oay
xoTdwop | xeordwmop S000 T
aTqnoqg aTqnoqa S00da T
Teay Teay S0D T Amv s00 9UTS0) OTI39WOITI]
xaTdwo)n xaTdmon NISD T
9Tqnog aTgqnoQ NTSsa T
Tesay Teay NIS T Adv utrs OUTS OTJIFO9WOoITI],
aTqnoQg aTqnoq O0THOIA T 0T
Teay Teay 0THOTY T (e) Sot w4 TIeS0T UOUWmo)
xoTdwo)n xoTdwo) HnOID T
°oTqnoQg 2TqnoQq D01Id T 5
Teay Te9y DOTV T (e) Sot wylTIedo] TeanieN
uoT3aounyg | puUswNIIy aweN sjuauNSIy
Jo odAg Jo odAy OTToquAg Jo aaqunpy worsrurIed wotioung

uoTqoUNg OTSUTIFJUI UB JO SUOT10V SuraTnsey

(2uoo) T-g °TqeL

8-14

(poasnlpe

o=e -3ySTa)

uaym AQTXAX0 wIogd
eydiy Ie89qur AWNIL T utr @3ep ‘0 = ®© QuwT],

Io893uTr
Tesy Tesy IVONOD g UO0T3'US31BOUOD
Tesy Tesy ATNOA [4 AONTATVAIN®T TeoT80T 3Tq-Ly
Tesyg Tesyu TdWOD T INANATANOD TeOTS0T 3Tq-Lh
Tesy Tesy do 4 | YO TedT80T 3Tq-Ly
Tesyu Tea2yd aNvVv c ANV TeOTJ0T 3Tq-Ly
Teay Teoy YRVOIV T A@v eumes8 307 uoT1oUNg ewwen IJFof
Teay Tesy TIWNVD T Adv eumred UoT1oUNg euwwes
Teayd Teoy J94d T Amv UOT10UNT JIOIID uoTgoung JIOIJIH
Teoy Teey HS0D T Amv Ys oo ouTso0) OTToqxadAy
Tesy Teay HNIS T (e) yuts sutg otToqIadAyg
Teoy Teoyu elor:a T (®) eursoooae QUTS000JIY
Teoy Teoy NISUV T Adv ouUIsOJI® SUTSOJIY
I e | v |] wemmee

uoT3oungd OTSUTIIUL UBR JO SUOTYOY SutraTnseoy

(3uoo) 1=g °Tq®BlL

8-15

..—Nnmn Nn l_w“.m
us M
Ie8equl

*I9WT]
SUTyYOelU Pﬂﬂ.l@
Jo onTeA ‘4 = ®

*puUoI9S
B JO SUY3oT)
-XTs UT 3JB3lS
S$2T 20uUrs wess
-oxd Jo ouwTg
0/1I pesdele ‘¢ = ®

*puooos
' JO SU3eT]
-XTs UT jae}s
S]1T 90UTS
weaxdoaxd Jo
ewr3 Josssaooad
posdere ‘z = ®

AMOOHO anoy
-#Z Uo paseq)
puooas B JoO
SY3®TIXTS UT
L Aep Jo awT3 ‘T

il
]

(3uo0o) owrl

uoTiIdouUnyg
Jo eodAg

juauwINIay
Jo edAg

QueN
OTToquig

si1uULsWNI Iy

Jo asqunpn UOTITUT IO

uoTilounyg

uorlouUNng OISUTIGJUI U JO SUOII0Y SUurlTnsey

(3uo0) T-8 °1q®EL

8-16

APPENDIX A
GLOSSARY

ACTUATL, PARAMETERS. Those parameters in the parameter list of a
subroutine call or function reference. In contrast to FORMAL

PARAMETERS.

ALPHANUMERIC. Contraction of alphabetic and numeric, signifying

the alphabetic and numeric characters.
ASSIGNMENT OPERATOR. In FORTRAN, the equal sign (=).
BCLL.. An acronym for Burroughs Common Language.

EXECUTABLE PROGRAM. A program that can be used as a self-contained
computing procedure. It consists minimally of one main program.

It may consist of one main program and any number of subprograms.

EXECUTABLE STATEMENT. A non-declarative statement which is ex-
ecuted at object time. In contrast to NON-EXECUTABLE STATEMENT.

EXPONENT. That part of a real (floating-point) number which deter-

mines the decimal point placement in the mantissa.

EXPRESSION. Any constant, variable, or function reference, or any

combination of these separated by operators, commas, or parentheses.

FIXED-POINT. An arithmetic notation in which the decimal point is
not present and is assumed to be on the extreme right of a number.

In contrast to FLOATING-POINT.

FLOATING-POINT. An arithmetic notation in which the position of the
decimal point does not remain fixed with respect to one end of the

numerals. In contrast to FIXED-POINT.

FORMAL PARAMETERS. Those parameters in the parameter list of a
subroutine or function declaration. In contrast to ACTUAL PARA-

METERS.

MATN PROGRAM. A set of statements and comments not containing a
FUNCTION, SUBROUTINE, or BLOCK DATA statement.

MANTISSA., That part of a real (floating-point) number which con-

tains the significant digits.

MCP. An acronym for the Master Control Program, the B 5500 execu-

tive system.

NON-EXECUTABLE STATEMENT. A declaration which, at compile time,
provides the compiler with a description of data. It is not ex-

ecuted at object time. In contrast to EXECUTABLE STATEMENT.

PRIMARY. An arithmetic expression enclosed in parentheses, a
constant, a variable reference, an array element reference, or a

function reference.
PROGRAM UNIT. Refers to either a main program or subprogram,

PRT. An acronym for Program Reference Table. An area in memory
for the storage of operands, references (o arrays, references to
segments of a program, and references to files. Permits programs
to be independent of the actual memory locations occupied by data

and parts of the program.

REFERENCE. A term used with special meaning to indicate an identi-

f'ication of:

a. A datum, implying that the current value of the datum will
be made available during the execution of the statement

containing the reference.

b. A procedure, implying that the actions specified by the

procedure will be made available upon reference.

SPO. An acronym for SuPervisOry Printer, the B 5500 console type-

writer.

SUBPROGRAM. A set of statements and comments headed by a FUNCTION,
SUBROUTINE, or BLOCK DATA statement.

A=-2

APPENDIX B
FILE CARDS

FILE cards are optional since all the parameters used in declaring

a file have default values.

The various I/0 statements and their

default descriptions when a FILE card is not used are listed in

table B-1.

Table B-1

File Default Descriptions

T/0 Statement File Name Blocking Mode Peripheral
READ f ,k* READER 10 Word Buffer, Alpha Tape owr
80 Characters Card Reader
READ(u,f) k FILEd 17 Word Buffer, Binary | Tape
READ(u) k (where i is the | 132 Characters,
READ(u=1, f) value of u) (size of logical
record is un-
limited)
WRITE(u,f) k FILE] 17 Word Buffer Binary | Tape
WRITE(u) k (where i is the | 132 Characters,
value of u) (size of logical
record is un-
limited)
PRINT f,k* PRINT 17 Word Buffer, Alpha Line Printer
132 Characters
CH
PRINT: f ,k* PUNCH 10 Word Buffer, Alpha Card Punch
80 Characters
NOTE
In all cases,
the multi-file
name is empty.
¥FTLE cards cannot be used for these I/0 statements.

FILE CARD FORMAT

FILE cards are free format, with the exception of card columns 1-6:

123 5 6 (card column)
P I L b b

where a blank is denoted by b.

Columns 73 through 80 are used for a sequence number or identifica-
tion only, and will be ignored by the compiler except when merging

a card and tape file at compile time.

Following the two blanks, the following information must be inserted

in free foémat:

N = FID

N

MFID/FID

where N is an unsigned integer constant representing the logical
unit number. It is the value of u in READ(u,f)k and WRITE(u,f)k.
MFTD is the multi-file identification, and FID is the file identifi-
cation. If MFID is not included, then it is assumed to be seven
Zeros. For further information, see B 5500 Operation Manual,

No. 1024916.

The following is a 1list of options which may be included on the
FTILE card. They may be in free format, but they must come in the

order in which they are given below:

a. yUNIT = t
where t is one of the following:
PRINT
PRINTER
READER
PUNCH
DTSK
TAPE

TAPE is the default option for UNIT.
b. ,UNLABELED

LABELED is fthe delault option if unlabeled is mnot specified
(tape only).

C.

syALPHA
BINARY is the default option if ALPHA is not specified
(tape only).

4ySAVE = n
where n is an unsigned integer whose value cannot exceed
999. It is the save factor, in days (see B 5500 Operation

Manual). The default save factor is zero.

, LOCK
When this option is used, the MCP will close and lock a
disk file when the program creating it has gone to End-

of-Job (see tape and disk I/0, section 7).

ySERTAL
s RANDOM
This option specifies the access mode for disk files only.

The default option is SERTIAL.

where n is an unsigned integer constant which denotes the
amount of area on disk (in number of records) to reserve

for this file (see tape and disk I/0, section 7).

sBLOCKING = n
where n is an unsigned integer which represents the number
of logical records per physical block., The default option

is unblocked files, i.e., a blocking factor of zero.

sRECORD = n
where n is an unsigned integer which represents the size
(in words) of a logical record. The default option is 17

(see table B-1).

sBUFFER = n

where n is an unsigned integer which represents the number
of buffers. The default option is 2 (see tape and disk
I/O, section 7).

Tf the FILE option extends across more than one card, then the next
card must be flagged as a FORTRAN continuation card with a character

other than a blank or zero in card column 6.

In the I/0 statements READ(u,f)k and WRITE(u,f)k, if u is not an
integer constant, then its value at run time must correspond to
either a file number declared by default or to a logical unit number

declared on a FILE card.
If the option
UNIT = ¢

is used to declare the file as a line printer, card punch, or card
reader, then the remaining default descriptions used for this file

are designated in table B-1.

APPENDIX C
DOLLAR SIGN CARDS

A dollar sign card is optional and is used to indicate to the com-

piler that certain options are to be used at compile time. The

format of a dollar sign card is:

Card Column Contents
1 $
2-72 Options in free field format.
73-80 Card number or blank.

The dollar sign card may be placed:

Example:

Immediately after the MCP control cards used for compila-
tion and immediately before the first FORTRAN FILE card
or FORTRAN source or patch card if no FILE cards are used

(see section 1).

Anywhere else in the source or patch deck with a proper
sequence number in order to change options at some point
in compilation, e.g., to list only a part of the compiled

source program,

Sequence

Number
$CARD 00000100
A=B+C 00009000
$CARD LIST 00009100
X=SQRT (Y**2+Z*%2) 00009200
PAR=TAN(X/A) 00009300
V=SIN(X+Y-2) 00012200
$CARD 00012300

* 0 * s 0

Oonly cards 00009200 through 00012200 will be listed on the file

LINE.

When dollar sign cards are grouped together, all will be ignored

except the last one. If no dollar sign card is included with the

source deck, then the CARD and LIST options are assumed.

The various options available are as follows:

TAPE or CARD

LIST

@!

a .

One of these, but not both, must be the first option on

the dollar sign card immediately following the dollar sign.

CARD indicates to the compiler that the source program

input is entirely from the file labeled CARD.

TAPE indicates to the compiler that the source program
input is from the file labeled TAPE and that change or
patch cards may be inputted from the file labeled CARD.

If a change or patch card file is used, then it is merged
into the source program trom the file labeled TAPE as a
function of the sequence number in columns 73~80. If a
listing is obtained, then the source statements from the
TAPE file will have a T following the sequence number, and
the source statements being merged from the CARD file will
have an R following the sequence number on the compiled
source listing. The merging process uses the B 5500 alpha-

meric collating sequence (see appendix G).

If present, then a compiled source listing of the source
program will be made on the file LINE, including any change

or patch cards.

Segment and address information will also be listed with

the source program,

NEW or NEW TAPE

a.

PRT

DEBUGN

A .

If present, a new source tape file labeled I'ORSYM is
created which includes all change or patch cards and

FILE cards, but does not include dollar sign cards.

If present, then a listing of the source program will be
made on the file LINE, including any change or patch
cards, and at the end of each program unit listing, a
listing of PRT* and stack assignments for each local

identifier within that program unit will be made.

At the end of the entire program, PRT assignments for

all global names will be listed.

If PRT is specified, then LIST is assumed.

If present, then the actual machine code emitted by the
compiler is also listed on the file LINE together with

octal values of constants and format of PRT entries.

If DEBUGN is specified, then PRT and LIST are assumed.

If present, then information is listed on the file LINE
which indicates how the FORTRAN compiler is analyzing the

syntax of the source program.

TRACE should be used only in extreme cases because of the

great volume of output produced.

If TRACE is specified, the LIST, PRT, and DEBUGN options

are assumed.

* PRT is an abbreviation for Program Reference Table (see B 5500
Operation Manual No. 1024916).

SEQ £ s i

HOL

c-4

If present, the listing on file LINE and the new source

program on the file NEWTAPE, labeled FORSYM (if NEW or

NEW TAPE is specified), will be resequenced.

The specifications following SEQ have the following in-

terpretations:

1 -

The SEQ

the sequence number of the first card of the

source program.

any special character, usually plus (+) or

comma (,).

increment . If i=0, or i is not a number, then

an increment of 1000 is used.

option, if used, must be the last option on the

dollar sign card.

If the source cards are punched in IBM card code, then

the HOL

option need not be used. 1If this is the case,

then the listing of the source program produced by the

compiler will be in IBM card codes, e.g., (will be

printed as %, = will be printed as #, etc. However, the

compiler will properly interpret the source program and

compile

it.

Tf the source cards are punched in IBM card code and the

HOL option is used, then all characters will be converted

to BCL before printing on the file LINE.

If the source

cards are punched in IBM/360 card code, then

the HOL option must be used to convert the source program

to BCL.

TIME

CIECK

VOID n

a .

The IHOL option will translate all IBM or IBM/360 cards

to BCL including strings and Hollerith constants. This
option also causes the object program produced by the
compiler to automatically convert into BCL data read with
an A format specification and data read into Hollerith

strings.

The use of the HOL option will slow compilation speed.
For repeated compilations from large source programs,

it would be advantageous to use the NEW TAPE option with
HOL on the first compilation. Thereafter, compilations
may be made without the HOL option from the generated

source tape.

If present and if the LIST option is not present, then the
source program will not be listed, but at the end of the
compilation, compilation information will be listed on

the file LINE.

If present, and if TAPE and CARD files are being merged

at compilation, then the sequence numbers in columns

73-80 of the two files will be checked, and if a record(s)
from the CARD file is not in sequence, then a warning

message will be outputted on the file LINE:
SEQUENCE ERROR "n'" < "p",

where n is the new sequence number and p is the old
sequence number. The B 5500 alphameric collating sequence

is used (see appendix G).

If present, VOID must be the only option on the dollar
sign card. This option is used only when merging a CARD

and TAPE file.

c-5

If present, and if n is blank, the record on the TAPE
file with the same sequence number (in columns 73-80) as
the $VOID card will be ignored by the compiler, will mnot
be listed on the file LINE, and will not be inserted in
the Tile NEWTAPE, if the NEW option has been specified

previously.

Tf present, and if n is not blank, n must be the sequence
number of a record existing on the TAPE file and, in addi-
tion, the $VOID card must have a sequence number in
columns 73-80. The records on the TAPE file, starting
with the record which has the same sequence number as the
$VOTID card (columns 73-80), will be ignored up to but not
including the record on the TAPE file with the sequence
number n. These records will be ignored by the compiler,
not listed on the file LINE, and not inserted in the file
NEWTAPE, if the NEW option has been specified previously.

ERROR

NUMBER

000
001
002
003
00k
005
006
007
008
009
010
011
012
013
o1k
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

APPENDIX D
COMPILE TIME ERROR MESSAGES

ERROR MESSAGE

SYNTAX ERROR
MISSING OPERATOR OR PUNCTUATION

CONFLICTING COMMON AND/OR EQUIVALENCE ALLOCATION

MISSING RIGHT PARENTHESIS

ENTRY STMT ILLEGAL IN MAIN PGM OR BLOCK DATA
MISSING END STATEMENT

ARTTHMETIC EXPRESSION REQUIRED

LOGICAL EXPRESSTION REQUTRED

TOO MANY LEFT PARENTHESES

TOO MANY RIGHT PARENTHESES

FORMAL PARAMETER ILLEGAL IN COMMON

FORMAL PARAMETER ILLEGAL IN EQUIVALENCE

THIS STATEMENT ILLEGAL IN BLOCK DATA SUBPROGRAM
INFO ARRAY OVERFLOW

IMPROPER DO NEST

DO LABEL PREVIOUSLY DEFINED

UNRECOGNIZED STATEMENT TYPE

ILLEGAL DO STATEMENT

FORMAT STATEMENT MUST HAVE LABEL

UNDEFINED LABEL

MULTIPLE DEFINITION

ILLEGAL IDENTIFIER CLASS IN THIS CONTEXT
UNPATIRED QUOTES IN FORMAT

NOT ENOUGH SUBSCRIPTS

TOO MANY SUBSCRIPTS

FUNCTION OR SUBROUTINE PREVIOUSLY DEFINED
FORMAL PARAMETER MULTIPLY DEFINED IN HEADING
ILLEGAL USE OF NAMELIST

NUMBER OF PARAMETERS INCONSISTENT

CANNOT BRANCH TO FORMAT STATEMENT

SUBROUTINE OR FUNCTION NOT DEFINED IN PROGRAM

ERROR
NUMBER

031
032
033
034
035
036
037
038
039
oLo
oh1
oLz
ous
oLl
o5
oL6
oLy
oL8
ol49
050
051
052
053
o054
055
056
057
058
059
060
061

APPENDIX D (cont)
COMPILE TIME ERROR MESSAGES

ERROR MESSAGES

IDENTIFIER ALREADY GIVEN TYPE

ILLEGAL FORMAT SYNTAX

INCORRECT USE OF FILE

INCONSISTENT USE OF IDENTIFIER

ARRAY IDENTIFIER EXPECTED

EXPRESSION VALUE REQUIRED

ILLEGAL FILE CARD SYNTAX

ILLEGAL CONTROL ELEMENT

DECLARATION MUST PRECEDE FIRST REFERENCE
INCONSISTENT USE OF LABEL AS PARAMETER

NO. OF PARAMS. DISAGREES WITII PREV. REFERENCE
ILLEGAL USE OF FORMAL PARAMETER

ERROR IN HOLLERITH LITERAL CHARACTER COUNT
ILLEGAL USE OF FORMAL PARAMETER

TOO MANY SEGMENTS IN SOURCE PROGRAM

TOO MANY PRT ASSIGNMENTS IN SOURCE PROGRAM
LAST BLOCK DECLARATION HAD LESS THAN 1024 WORDS
ILLEGAL I/0 LIST ELEMENT

LEFT SIDE MUST BE SIMPLE OR SUBSCRIPTED VARIABLE
VARIABLE EXPECTED

ILLEGAL USE OF .OR.

ILLEGAL USE OF .AND.

ILLEGAL USE OF .NOT.

ILLEGAL USE OF RELATIONAL OPERATOR

ILLEGAL MIXED TYPES

ILLEGAL EXPRESSION STRUCTURE

TLLEGAL PARAMETER

RECORD BLOCK GREATER THAN 1023

TOO MANY OPTIONAL FILES

FILE CARDS MUST PRECEDE SOURCE DECK

BINARY WRITE STATEMENT HAS NO LIST

ERROR
NUMBER

062
063
064
065
066
067
068
069
070
071
072
073
o7k
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

APPENDIX D (cont)
COMPILE TIME ERROR MESSAGES

ERROR MESSAGES

UNDEFINED FORMAT NUMBER

TLLEEGAL EXPONENT IN CONSTANT
ILLEGAL CONSTANT IN DATA STATEMENT
MATN PROGRAM MISSING

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

ARTTHMETIC

MUST
MUST
MUST
MUST
MUST
MUST
MUST

BE
BE
BE
BE
BE
BE
BE

ARRAY IDENTIFIER

EXPRESSION

LABEL

FUNCTION IDENTIFIER

FUNCTION OR SUBROUTINE TID
SUBROUTINE IDENTIFIER

ARRAY TDENTIFIER OR EXPRESSION

- LOGICAL CONFLICT ON STORE
ARRAYID MUST BE SUBSCRIPTED IN THIS CONTEXT
MORE THAN ONE MAIN PROGRAM

ONLY COMMON ELEMENTS PERMITTED

TOO MANY FILES
FFORMAT OR NAMELIST TOO LONG

FORMAL PARAMETER MUST BE ARRAY TDENTIFIER

FORMAL
FORMAL
FORMAL
FORMAL

PARAMETER MUST BE SIMPLE VARTABLE
PARAMETER MUST BE FUNCTION IDENTIFIER
PARAMETER MUST BE SUBROUTINE IDENTIFIER
PARAMETER MUST BE FUNCTION OR SUBROUTINE

DO OR IMPLIED DO INDEX MUST BE INTEGER OR REAL
ILLEGAIL, COMPLEX CONSTANT

ILLEGAL MIXED TYPE STORE

CONSTANT EXCEEDS HARDWARE LIMITS

PARAMETER TYPE CONFLICTS WITH PREVIOUS USE
COMPLEX EXPRESSION ILLEGAL IN IF STATEMENT
COMPLEX EXPRESSION ILLEGAL IN RELATION

TOO MANY FORMATS REFERENCED BUT NOT YET FOUND
VARTABLE ARRAY BOUND MUST BE FORMAL VARTABLE

APPENDIX D (cont)
COMPTLE TIME ERROR MESSAGES

ERROR
NUMBER ERROR MESSAGES
093 ARRAY BOUND MUST HAVE INTEGER OR REAL TYPE
094 COMMA OR RIGHT PARENTIHESTS EXPECTED
095 ARRAY ALREADY GIVEN BOUNDS
096 ONLY FORMAL ARRAYS MUST BE GIVEN VARTABLE BOUNDS
097 MISSING LEFT PARENTHESTIS IN IMPLIED DO
098 SUBSCRIPT MUST BE INTEGER OR REAL
099 ARRAY SIZE CANNOT EXCEED 32767 WORDS
100 COMMON OR EQUIV BLOCK CANNOT EXCEED 32767 WORDS
101 THTIS STATEMENT ILLEGAL IN LOGICAL IF
102 REAL. OR INTEGER TYPE REQUIRED
1073 ARRAY BOUND INFORMATION REQUTIRED
104 REPLACEMENT OPERATOR EXPECTED
105 IDENTIFIER EXPECTED
106 LEFT PARENTHESIS EXPECTED
107 ILLEGAL FORMAL PARAMETER
108 RIGHT PARENTHESIS EXPECTED
109 STATEMENT NUMBER EXPECTED
110 SLASH EXPECTED
111 ENTRY STATEMENT CANNOT START PROGRAM UNIT
112 ARRAY MUST BE DIMENSIONED PRIOR TO EQUIV STMT
113 INTEGER CONSTANT EXPECTED
114 COMMA EXPECTED
115 SLLASH OR END OF STATEMENT EXPECTED
116 FORMAT , ARRAY OR NAMELIST EXPECTED
117 END OF STATEMENT EXPECTED
118 I0 STATEMENT WITH NAMELIST CANNOT HAVE IO LIST
119 COMMA OR END OF STATEMENT EXPECTED
120 STRING TOO LONG
121 MISSING QUOTE AT END OF STRING
122 ILLEGAL ARRAY BOUND

123 TOO MANY HANGING BRANCHES

APPENDIX D (cont)
COMPILE TIME ERROR MESSAGES

ERROR
NUMBER ERROR MESSAGES
124 TOO MANY COMMON OR EQUIVALENCE ELEMENTS
125 ASTERISK EXPECTED
126 COMMA OR SLASH EXPECTED
127 DATA SET TOO LARGE
128 TOO MANY ENTRY STATEMENTS IN THIS SUBPROGRAM
129 DECIMAL WIDTH EXCEEDS FIELD WIDTH
130 UNSPECTIFIED FIELD WIDTH
131 UNSPECIFIED SCALE FACTOR
132 ILLEGAL FORMAT CHARACTER
133 UNSPECIFIED DECIMAL FIELD
134 DECIMAL FIELD ILLEGAL FOR THTS SPECIFTIER
135 ILLEGAL LABEL
136 UNDEFINED NAMELIST
137 MULTIPLY DEFINED ACTION LABELS
138 TOO MANY NESTED DO STATEMENTS
139 STMT FUNCTION ID AND EXPRESSTON DISAGREE IN TYPE
140 ILLEGAL USE OF STATEMENT FUNCTION
141 UNRECOGNIZED CONSTRUCT
142 RETURN, STOP OR CALL EXIT REQUIRED IN SUBPROGRAM
143 FORMAT NUMBER USED PREVIOUSLY AS LABEL
14h LABEL USED PREVIOUSLY AS FORMAT NUMBER
145 NON-STANDARD RETURN REQUIRES LABEL PARAMETERS
146 DOUBLE OR COMPLEX REQUIRES EVEN OFFSET
147 FORMAT PARAMETER ILLEGAL IN DATA STATEMENT

- SEQUENCE ERROR "n" < '"p'",
where n is the new sequence number and p is the old
sequence number,

APPENDIX E
OBJECT TIME ERROR TERMINATION MESSAGES

The following object time error termination messages are peculiar

to FORTRAN compiled programs:

ARG .GT. MAX f (where f is CSIN or CCOS)
Imaginary component exceeds 158.

DATA STMT ERR
a., Too much or too little data for list.

b. Complex, double, or logical list element must correspond

with complex, double, or logical data.
DIV BY ZERO {job specifier), (terminal reference)

An object program performed a Divide operation using a zero

denominator; processing of the subject program was discontinued.
{(job specifier) = {(mix index) DS-ED

Processing of an object program was discontinued before

End-of-Job; the EOJ option was set.
<compiler name) / <program identifier) = <mix index) DS-ED

Compilation was discontinued before the compiler reached

End-of-Job; the TYPE EOJ option was set.

EOF NO LABEL (file designator) : <job specifier), {(terminal

reference)

An object program has reached the end of the designated file
and has not specified what is to be done; processing of the

program was discontinued.

EXPON OVRFLW <job specifier), (terminal reference)

An object program has pertormed an operation which caused an
exponent overflow to occur; processing of the program was

discontinued.
FLAG BIT {(job specifier), {(terminal reference)

An object program has performed an operation which caused a
word with a flag bit of 1 to be accessed as if it were an

operand; processing of the program was discontinued.

FRMT ERROR

a. Illegal character in format.
b. Unrecognizable format specification.
c. Required numeric field is not numeric.

d. Field width greater than 63.

e. Format specifies record longer than buffer.
INTGR OVRFLW {job specifier), <terminal reference)

An object program performed an operation which caused an in-
teger overflow to occur; processing of the program was discon-

tinued.
INVALD ADRSS {job specifier), (Lerminal reference)

An object program performed an operation which addressed a
memory location in an absent memory module or an address less

than 00512; processing of the program was discontinued.
TINVALID ARG CONCAT

See appendix H.
INVALID EOJ

A STOP or CALL EXIT statement was missing from the mainline

program, and an attempt was made to execule an END statement.

LIST SIZE ERROR

The number of elements in the list of a READ statement exceeds

the number of data items in the logical record.
NEGATIVE BASE XTOI

A*¥%¥B, where A is negative and B is not an integer.
NEGTV ARGMNT LN <program specifier> <terminal reference>

A negative argument has been passed to the intrinsic which

compiles the natural logarithm.
NEGTV ARGMNT SQRT <program specifier> <terminal reference)

A negative argument has been passed to the SQRT intrinsic.
NMLST ERR

This error message can be generated during input only.

a. Tllegal subscript on data card.
b. Too many or too few subscripts.
c. ITllegal character encountered.
d. = missing.

y, or * missing after a constant.

f. Repeat count not an integer constant.
OPRTR DS-ED <job specifier>, <terminal reference)

The system operator caused processing of a program to be dis-

continued through use of a DS message.

SELECT ERROR (file designator) : {(job specifier), {(terminal

reference)

An object program performed an invalid operation on the
designated file, e.g., rewinding a card reader. Processing of

the program was discontinued.

STACK OVRFLW (job specifiery, (terminal reference)

TYPE

ZERO

ZERO

The operations performed by an object program have caused its
stack to overflow its limit; processing of the program has

been discontinued.
ERR

a. Exponent part in data contains non-digit after D, E, +,

or - (input only).

b. The data read in using an I specification in a FORMAT

statement is either:

l) Greater than the maximum integer allowed (549755813887).

2) Double or real,

c. The 1ist element using a D specification in a FORMAT state-

ment is not double precision.

d. The 1list element using an E, F, or G specification in a

FORMAT statement is logical, integer, or double precision.

e. The list element using an L specification in a FORMAT

statement is not logical.
ARGMNT LN <program specifier) <terminal reference>

An argument of zero has been passed to the intrinsic which

compiles the natural logarithm.
MODULES DMOD
DMOD(A ,B), where B = O.

NOTE
For further information, refer to

B 5500 Operation Manual No. 1024916,

APPENDIX T
B 5500 VERSUS USAST FORTRAN, EXTENSTIONS AND DIFFERENCES

ose extensions and differences listed below are based on a com-
rison of B 5500 FORTRAN and USAST FORTRAN, as specified in the
cument ASA X3.9-1966.

FTENSIONS PERMITTED IN B 5500 FORTRAN.

e following extensions are permitted in B 5500 FORTRAN.

a. More than one statement per card is allowed.
b. The character set includes the quote sign (").
C. The relational operators <, <, #, >, = are allowed in

place of their FORTRAN mnemonics.
d. Hollerith constants may be used in assignment statements.

e. Theoretically, there is no limit to the number of dimen-

sions which can be declared for an array.

f. A subscript may be any integer or real arithmetic expres-

sion.

g, In the statement:
GO TO 1,(kyskyseee k)

i may be an integer or real variable.

h. In the statement:
GO TO(kl,kz,...,kn),i

i may be an integer or real arithmetic expression.

i. In the statement:

IF(l.e.) s
s may be any executable statement except a DO statement.
j. The terminal statement of a DO loop may be any executable

statement, with any implications involved assumed to be

understood by the programmer,

In the statement:

DO m i=nl,n2,n3

i may be an integer or real simple variable.

n, ,n may be integer or real arithmetic expressions.

1772773

n, and n, do not have to be greater than zero.

o

and n, may, be. redefined within the range of the

3

DO statement. with any implications involved assumed to be

i,n. syn
719 29

understood by the programmer.
CLOSE uj; LOCK uj; PURGE u.

In I/0 and AUXILIARY I/0 statements, u may be an arith-

metic expression.
NAMELIST and NAMELIST I/O.
READ f,k; PUNCH f,k; PRINT f,k,

The intrinsics: TAN, COTAN, ARSIN, ARCOS, SINH, COSH, ERF,
GAMMA , ALGAMA, AND, OR, COMPL, EQUIV, CONCAT, TIME.

Random disk I/0.

Action labels.

Non-standard returns from subprograms.
Multiple entry points to subprograms.

Fach of the two components of a complex constant may be

either real or integer.
Hollerith constants and literals may be ehclosed in quotes.
The format specifications Ow and Tn.

The ability to have a subprogram recurse.

DIFFERENCE FROM USASI FORTRAN.

In the statements STOP n and PAUSE n, n is blank or an integer

constant of up to six digits.

r-3

APPENDIX G
COLLATING SEQUENCE

CODES
CHAR. INTERNAL ngs’AL BCL CODE | CARD CODE
BA | 8421 cope | PA | 8421 | ZONE | NUM.
Blank 1 0000 6 | 01 0000 - -
. 01 1010 32 1 1011 12 |8-3
[01 1011 33 1 1100 12 | 8-4
(o1 1101 35 11 1101 12 |8-5
< 01 110 36 1 1110 12 18-6
- 01 n 37 1 1 12 |8-7
& 01 1100 34 1 0000 12 -
$ 10 1010 52 10 101 n |8-3
* 10 01 53 10 1100 1| 8-4
) 10 1101 55 10 1101 1nm |8-5
; 10 1110 56 10 1110 1 | 8-6
< 10 1 57 10 1 n |(8-7
- 10 1100 54 10 0000 n -
/ 11 0001 61 01 0001 0 1
, 1 1010 72 01 101 0 [8-3
% n 101 73 01 1100 0 [8-4
= 1 1101 75 01 1101 0 [8-5
] 1 1110 76 | o1 1110 0 [8-6
v 1 n 77 | o1 1M 0 [8-7
4 00 1010 12 00 101 - 8-3
@ 00 1011 13 || 00 1100 - |8-4
00 1101 15 00 | 110 - |8-5
> 00 1m0 16 || 00 1o - |8-6
> 00 111 17 || 00 1nn - |8-7
+ 01 0000 20 n 1010 12 0
A o1 0001 21 11 0001 12 1
B 01 0010 22 n 0010 12 2
C 01 0011 23 1 0011 12 3
D 01 0100 24 1 0100 12 4
E 01 0101 25 n o101 12 5
F 01 0110 26 1" 0110 12 6
G 01 o 27 " o1 12 7

LOW

COLLATING SEQUENCE

HIGH

APPENDIC G (cont)
COLLATING SEQUENCE

CHAR. INTERNAL ngE'AL BCL CODE | CARD CODE
BA 842 CODE | PA 8421 | ZONE | NUM.
H 01 1000 3 | n 1000 | 12 8
| 01 1001 31 1 1001 12 9
x 10 0000 490 |10 00| n 0
J 10 0001 4 10 0001 1 1
K 10 0010 42 | 1w o010 N 2
L 10 oon 43 | 10 oon n 3
M 10 0100 44 | 10 0100 M 4
N 10 0101 45 |10 oo n 5
o 10 0110 4 | 10 ono| M 6
P 10 o 47 {10 oM 1 7
Q 10 1000 50 | 10 1000 11 8
R 10 1001 51 10 1000 n 9
1 1100 74 | o0 100 o 8-2
S n 0010 62 | 0 0010 0 2
T n 0011 63 | o 0o 0 3
U N 0100 64 | 0 0100 0 4
Y 1 0101 65 | 0 0101 0 5
w n 0110 6 | 0 0110 0 6
X 1 o111 67 | o 011 0 7
Y n 1000 70 | o1 1000 0 8
yA n 1001 7 01 1001 0 9
0 00 0000 00 | 00 1010 - 0
| 00 0001 01 00 0001 - 1
2 00 0010 02 { 00 0010 - 2
3 00 0011 03 | o0 00N - 3
4 00 0100 04 | 00 0100 - 4
5 00 0101 os | oo o0 - 5
6 00 0110 06 | oo o010 - 6
7 00 0 o7 | o0 oM - 7
8 00 1000 10 | 00 1000 - 8
9 00 1001 n 00 1001 - 9
2w oo | e omo| B0TS

LOW

HIGH

APPENDIX H
BIT-MANTPULATION INTRINSICS

The B 5500 FORTRAN compiler provides five intrinsics for use in
bit manipulation and masking. It is assumed that the programmer
who makes use of these intrinsics has a prior working knowledge of
the B 5500. All five of these intrinsics permit access to all but
the left-most bit, bit zero, of a B 5500 word.

AND.
This intrinsic logically ANDs bit numbers 1 through 47 of its two

arguments. The arguments remain unchanged.

The general form is:

AND (A ,B)

where A and B are real arithmetic expressions.

Examples:

A subscript of 8 indicates an octal number.
Y=AND(S,T)

S T Y

37777777777777778 11111111111111118 11111111111111118

12345670234567018 3210765&3210765#8 12105650220066008

OR.
This intrinsic logically ORs bit numbers 1 through L7 of its two

arguments. The arguments remain unchanged.
g g

The general form is:

OR(A ,B)

where A and B are real arithmetic expressions.

Examples:

A subscript of 8 indicates an octal number.
Y=0R(S,T)

S T Y

STTTTTTTTT7777T7g 1111111111111110 g 3777777777777777 g
12345670123456704 3210765432107654 3234767432347674

- COMPLEMENT.

This intrinsic returns the logical COMPLEMENT of its argument.

argument remains unchanged.

The general form is:

COMPRL (A)

where A is an arithmetic expression.

Examples:

A subscript of 8 indicates an octal number.
Y=COMPL (S)

S Y

37777777777777778 oooooooooooooooo8
12345670123456708 65432107654321078

EQUIVALENCE.
This intrinsic logically EQUIVALENCEs its two arguments. The

arguments remain unchanged.

The general form is:

EQUIV(A,B)

where A and B are real arithmetic expressions.

The

Examples:
Y = EQUIV(S,T)

S T Y

37777777777777778 llllllllllllllll8 11111111111111118

12345670123456704 3210765432107654 17535753175357534

CONCAT.
The FORTRAN intrinsic CONCAT provides general bit-wise partial-word
manipulation. CONCAT is a REAL FUNCTION of the form:

CONCAT (A,B,51,5S2,N)

where:
a. A and B are integer or real arithmetic expressions;
b. S1, S2, and N are integer arithmetic expressions;

c. S1 > O3
d. S2 > O;
e. N > 0;

f. S1 + N < 4L8;
g. S2 + N < 48.

If any one of conditions (c) through (g) is not true, the object
program will be discontinued with an INVALID ARG CONCAT message.

When this function is called, first bit S2 of B is transferred to
bit S1 of A, then bit S2 + 1 of B is transferred to bit S1 + 1 of A,
and so forth, until N bits have been transferred. In other words,
starting with bit 82 of B and moving to the right, each successive
bit is transferred to A, starting with bit S1 of A, until N bits
have been transferred. A, B, S1, S2, and N remain unchanged after
the operation unless they are to the left of the replacement

operator (=) in the statement referencing CONCAT.

Although there are 48 bits in a word, numbered O through 47, bit

number O cannot be accessed by using CONCAT.

Example L:

IWORD=64

JWORD=1

IBIT=46

JBIT=47

N=1

X=CONCAT (IWORD ,JWORD ,IBIT ,JBIT,N)

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

LWORD
bef nd aft N/
(before a er) M
bit 6 9 12 15 18 21 24 27 30 33 36 39 42 Ls
JWORD
(before and after)
6 9 12 15 18 21 24 27 30 33 36 39 42 45
X
(after)

Example 2:

DATA TWORD,JWORD,IBIT,JBIT,N/¢777,¥$1111,39,36,6/

e o 0

JWORD=CONCAT (IWORD , JWORD , IBIT , JBIT ,N)

bit 6 9 12 15 18 21 24 27 30 33 36 39 L2 L5

IWORD
(before and after)

bit O 3 6 9 12 15 18 21 24 27 30 33 36 39 L2 45

JWORD
(before)

6 9 12 15 18 21 24 27 30 33 36 39 L2 45

JWORD
(after)

Example 3:

KOF=CONCAT(0,1750,24,36,12)

bit O 3 6 9 12 15 18 21 24 27 30 33 36 39 U2 u5

KOor
(after)

Example U:

INTEGER BIT

A=24 . 0E+0
BIT=42
A=CONCAT(A,12,38,BIT,6)

-5

bit

6

9 12 15 18 21 24 27 30 33 36 39 42 L5

9 12

15

21

27

30

33

36

39 L2 45

APPENDIX T

PRT CONTENTS OF A FORTRAN OBJECT PROGRAM

N oAVt ELWNEO

EEEEEEEE

Used by .LABEL.
500000000

FPB

SD

BC

ATIT

MSCW

INCW

COM/PRL

R + 0, Stack
OWNARRAY description
ALGOL WRITE
AI.GOL READ
ALGOL FILE CONTROL
)

BLOCKCTR

JUNK
BASENSIZE
LISTRTN

CLASN

HOLTOG

Powers of Ten
20 wd ARRAY for printer output
ERR

SQRT

ARSTIN

EXP

SIN

ALOG

TAN

ATAN

GAMMA

DATAN

DCOS

DSIN

ATAN2

CABS

DMOD

DEXP

DSQRT

TITLE

Action Label. . .+ =

Actual Argument . .

Actual Parameters .

Alphanumeric, . . .

AND L] L] L4 .

. . . .

Area Option , . . .

-ARG .GT. MAX £ , .,

Argument, Actual, .

Arguments,
Arithmetic
Arithmetic
Arithmetic
Arithmetic

Array . o+ .

Dummy.

.

Assignment

Expression

Statement

IF Statement

Operators,

Array, Format In., .

ASSIGN Stat

ement., .

3

Assigned GO TO Statement.

Assignment Operator

Assignment Statement,

Assignment Statement,

Auxiliary I/0 Statement

Aw e s e e

BACKSPACE S
BCL . . . L]

tatement

. . . .

.

.

3

Bit-Manipulation Intrinsics

Blanks, Significance of

BLOCK DATA Statement

BLOCKing .
Bounds, Sub
BUFFERing .,

script .

L] . . .

3

Logical

3

.

Arithmetic

INDEX

. . .
. . .
. . .
. . .
. . .
. . .
3 . .
. 3 .
. . .
. . .
. 3 L]
. . .
. . .
3 . .
. . .
. . .
. . .
. . .
. . .
. L] .
. .)
. . .
.] 3
. . .
. . .
. . .
. . [
. . .

orne

- 5-9, 5-10,
8-3, 8-5,

2-7, 2-8, 6-2,
. . L) L] . 1_2,
6-4, 6-11, 8-5,

8-2
-1

7-10
A-1
H-1
7-13
8-10
7-33
6-1
7-34

TITLE

CALL EX
CALL St
Cards,
Cards,
Cards,
Cards,
Cards,
Cards,
Cards,
Carriag
Change
Charact
Charact
CHECK .
CLOSE S

IT Statement . .
atement . « « o o
Change + « « « &
Comment . « «+ .+ &
Continuation . .
Dollar Sign. . .
FILE « « « o o
Patch.
Program.
e Control. . . .
Cards « o« « o o
er Set .+ « + o+
er String. . .« .

tatement

Collating Sequence . . .

Comment

COMMON

Cards « o« o o o

Statement , . . .

Compile Time Error Messages

COMPLEMENT + + « « & o .

Complex

Complex

Computed GO TO Statement

CONCAT .
Constan
Constan
Constan

Constan

Constant e o

Variable e e e

t 9 Complex ° . .

t s, Double Precision

t, Hollerith . .

t, Integer . . .

Constant, Logical . . .

Constan

t, Real . o +« « &

Constants .« « o« o« o « o

CONTINUE Statement . . .

Continuation Cards ., . .

Control

Control

Carriage . . « .

Statement . . .

7-33
. . 2

7-34
2-6,

, 6-
8-4

2-5

e« + o+ 5-10,
. . 3 l—l,
«1-2, 1-3,
b4 l—l, l-L"',

» 7-35, B-1,
. . . 7—279
7-23, 7-2h,
. . . l-lg

1, 6-3, 6-7,
y 8-7, 8-=10,
O . . 2-—-7,

» 5-10, 8-5,
. J.—Q, 1—3,
. . L] 7—27’

1-3

6-11,
8-11

o
|
[

HCIEEHCIEE ST S e N O S S s SEG| S e O S
1 1 1 1 1 I 1
A I R N I ;U VRN R, S

Ut
1
3

7-28
5-1

TITLE

DATA Statement . .
-DATA STMT ERR . .
DEBUGN . + « « « .

Deck,

Declarative (Non-Executable)

Set-Up . . .

Statement. .« . . .

Default Descriptions,

.

File .

Difference From USASI FORTRAN
DIMENSION Statement,

Dimensions,

Disk File, Random
Disk File, Serial
Disk I/O.
Disk I/0, Random ,
Disk I/0, Serial .
-DIV BY ZERO . . .
DO Loop, Implied .,
DO Statement . . .

Dollar
Dollar
Double
Double

Sign Card Options

Sign Cards

Variable

.

Precision Constant

Precision Variable

Dummy Arguments .

Dw.d .

End-of-File Condition
END Statement ., .
ENDFILE Statement

Entry Points, Multiple

ENTRY Statement .,
-EOF NO LABEL . .,
EQUIVALENCE . . .

EQUIVALENCE Statement
Error Messages,

Error Termination Messages,
Object Time . . .

.

Compile Time

2-8,

6"9,

8-1,

8-7, 8-10,
6-3, 6-11,
. . 5_10’
7-l, 7-5,
. . . 7"1",
1-1, 1-4,
e o+ R2=3,
2-7, 6=,

. . 8-1,
. . 7—189
1-3, 8-5,
8-4, 8-7,

7-34
7-36
7-35
E-1
7-6
5-5
Cc-2

2-4
7-18
8-2
7-26

7-7
8-7
7-10
8-8

TITLE

EWed o v o o o o o o 6 o o 4 4 e e e e e e . 716, 7-17, 7-18,
Executable Program &« o &+ o o o o o o o o o o o o o
Executable Statement+ + & & 4 4 4« 4+« « . . 2=-8,
~EXPON OVRFLW+ + o v o &« o o o o o o o o o o o o o o
Exponent . . o+ .+ 4 4 ¢ 6 4 4 e e s e e e 4 e e e e e e e e e
EXPpression . . v v 4 4 o o o 4 & o o 4 4 e o 4 s e e « o o 3=1,
Expression, Arithmetic+ « « o v v & o 4 4 e e
Expression, Logical . . ¢« v ¢ v ¢ 4+ 4 4 e o 4 e o o o o+ o 3=4,

Extensions Permitted in
B 5500 FORTRA—N . L] . . . L] L . . L] L] L] L] . . L]

External Function . . + v v v v v o o o o o o o o« o« o« + . 8=-3,

EXTERNAL Statement . . . v 4 & o 4 o 4 & o « o o« & o 6=9, 82,

Field, Hollerith2=2, 7-23, 7-24,
FILE Card Format . . .« .« o o ¢ o o« o o o o o o s o o o o o o &
FILE Card Options . ¢ & & & & & o o o s o s o o o o s o o o
FILE CardsS . + o & & « « « o« « o o « « «7=33, 7-34, 7-35, B-1,
File Default Descriptions . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o « o o o o o
File Specifier (Unit Number) v + & o o o o o o o o o
File, Random « & ¢ & o o o & o o s o o o o o« o o 71-1,
Fixed-Point‘. e e s s e e & e o e e s e e e s
=FLAG BIT . . 4 & 4 o o o o o o o o o o s o o o o o o o o o
Floating-Point « 4 4« o« o« o o o o o o o o o o« o o o« o =

Formal Parameters . . « 4 « o+ o« o o o« « 5=9, 5+10, 5-11,

FO rmat ? FILE Ca-rd- 3
Format In Array . . « o
Format SpeCifier . e ‘7_1’ 7—2’ 7—11'7

FORMA—T Statement ° . .] . . . 7-19 7-21 7-1", 7-12’
7=27,

Formatted Output Statements . , ., . . . 7-4, 7-12, 7-27, 7-29,
~FRMT ERROR . . . & v & & & o o o o o o o o o o« o o o o o o
Function, External . . . v « & o & o o o o o o o« o o o« o o 8=3,
Function, Intrinsic . . . « o + & « o o s o o o o o o o o o
Function Reference D L

FUNCTION Statement e = R

four

[0}
i
o

he]
Ut

N

I
| e

(W)
@)\

-

N == =N

~3

W0 Ut
oW

0
=

N

1 1
N Ut

0 W o 0EH NN NN P RPN OO T "N

N F

TITLE

Function, Statement

Function Subprogram

Gw.d e e e o e e s
GO TO Statement ,

GO TO Statement, Assigned
GO TO Statement, Computed

GO TO Statement, Unconditional .

HOL
Hollerith Constant,
Hollerith Field . .,

WHS

Identification . e
IF Statement « o e
Implied DO Loop . .
Index, Invalid .« .

Input Statement . .

Input Statements, Formatted

.

Input Statements, Unformatted

Integer Constant .
Integer Variables .,
~-INTGR OVRFLW , , .

Intrinsic Function

Intrinsics, Bit-Manipulation

-INVALID ADRSS , .
~-INVALID ARG CONCAT
~-INVALID EOJ ., , .,
Invalid Index , ., ,
1/0, Disk , ., ., . .
1/0, List ,
I/0, Random Disk
I/0, Serial Disk .

IW . . .]

.

3 3
. .
. .
3 .
. .
. .
. .
. .
. .
. .
. .
. .
. .
3 .
. .
. .
. .
. .
. .
. .
3 .
. .
. 3
. .
3 .

five

L7=11,

?

8-1,

3

h-3,

5-10,
7-24,
7-24,

PAGE

8-2
.8-1

7-26
5-1
5-3
5-2
5-1

c-4
8-5
7-25
7-25

B-2
5-4
7-6

5-2, 5-3

7-1,
7-27

1-3,
5-2,

7-28,

.

7-6
7-29

H-1
E-2
E-2
E-2
5-3
7-34
7-30
7-36
7-35

7-13, 7-1h4

TITLE

Label, Action .+ « « &« o o o o+ o o
Label, Statement . . .« +« ¢« « + + +
LIST v « o o o o o o o o o o o o o o
Listy, I/O « « « « & « & o o o o o«
-LIST SIZE ERROR. . . +« « « « « « .
Literal String . . « « o o « o o o« o
LOCK Statement . . . « ¢ ¢ ¢« « ¢ « =
Logical Assignment Statement
Logical Constant . .+ .« « « « « « =«
Logical Expression. . . « « + « & o
Logical IF Statement . . . « . + « .
Logical Operators . .« + + +« o+ o« o« o
Logical Quantity « « « « « .
Logical Variable. . . + « « « + « &
Loop,y, Implied DO . « . + « « &+ & o

LWo . . . (]

Main Program . . « « « o s o o o o
Mantissa « « ¢« ¢ ¢« o o o o o o o + o
MCP &« v o & o o o o o o o o o o o« o
Multiple Entry Points . . . « « .+ .

~-NAMELIST Statement . . « . « « .« .
-NEGATIVE BASE XTOL ., . . .« + « .+ .
-NEGTV ARGMNT LN . . ¢ « &« o « « o
-NEGTV ARGMNT SQRT . . . « . . + . .
NEW or NEW TAPE « + ¢ « «
-NMLST ERR. + « ¢« « ¢ o« ¢ & o « o o

Non-Executable (Declarative)
Statement « « ¢ ¢ o o o e

Nonstandard Return. . . . +« « o o o

Number, Sequence. . . « « o « « o o

Object Program, PRT Contents of a
FORTRAN . v ¢ ¢ « o o o o o o o o =

Object Time Error Termination
MeSSaAZES ¢ o o o o s & s e e s e e

six

. .
. .
. .
. .
. .
. .
. .
. .
. .
- .
. .
. .
. .
. e
. .
. .

. . .
. . .
. . .

. . .
0 . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

. .
. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .
. - .
. . .

. .

L] .
L] .
ng
. L]

TITLE

Octal (DATA Stmnt) . . + . .
Operator, Assignment
Operators, Arithmetic
Opérators, Logical . . « « &
Operators, Relational
~OPRTR DS-ED . & « o o o o o
Option, Area . « « o« « o o
Option, Random ., . . « « + .
Option, Serial ,+ + &
Options, Dollar Sign Card , .
Options, FILE Card .,
OR . v ¢ o ¢ o o o o o o o o
Output Statement« =
Output Statements, Formatted

Output Statements, Unformatted

OW . . . 3 . 3

nP (Scale Factor) . « o« o o

Parameters, Actual . . . « .
Parameters, Formal , . « « .

Parity Condition . . « « + =
Patch Cards « o« o« o ¢ o o » o
PAUSE Statement . « « + o o o
Precedence . . « o ¢ o o o o
Primary e e e e & o e e e
Program Cards . .+ « « o o+ o
Program, Executable
Program, Main . . o« + o« o o o
Program Unit . . « + « o o
PRT e e e e e s e s e e e e

PRT Contentls of a FORTRAN
Object Program ., , . .+ + o«

PURGE Statement , . « o o o o

. . .
. . .
. . 3
. . .
. . .
. . .
. . 3
. . .
. . .
. . .
. . .
L] . .
. . 3
. . .
. . .
. . .
. . 3
. . .
. . .
o . .
. . .
. . .
. . .
. . L]
. . .
. . .
. . .
. . .
. . .
. . .
. . .

seven

. . .
. . L]
. . .
. . .
. . .
. . .
. L] .
. . .
. 3 .
. . .
. . .
. . 3
. . .
7-U,
. . .
. . .
- . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
L] . .
. . .
. . .
. . .

.

7-12,

3

7-27,

.« 7-3>

7-U,

7-29,

7-5

. 7-20,

« 7-17,
5-10,

5-9,
8-3,

5-9,

.

8-5,

5-10,

8-5,

8-6,

7-26,

5-11,
8-6,

5-11,
8-8,

PAGE

7-20
A-1
3-1
3-5
2-2
E-3
7-35
7-36
7-35
Cc-2

1 1
N
0 0]

I
~ = N F P N W FO

-

-

I I 1 1 1
N

e R R VI | S TN B0 - o L
1 1
W N

TITLE
Quantity Logical

Random Disk File
Random Disk I/0 ,
Random File . .

Random Option , .

Random Record Number

Real Constant , |,

Real Variable , |,

Record Number, Random

Recurse

Reference

Reference, Function ,

Relation

Relational Operators

Repeat Count

.

Return, Nonstandard

RETURN Statement
REWIND Statement

Scale Factor , .,
-SELECT ERROR , |,
Semicolon , , , .

SEQ £ s i o o e

Sequence, Collating

Sequence Number .,
Serial Disk File
Serial Disk I/0 ,

Serial Option

Significance of Blanks

Simple Variable
Slash |,

Specifier, File (Unit Number)

Spec¢ifier, Format

SPO

3

. . .
. . .
. . .
. . .
. . .
. . .
] . .
. . .
. . .
. 3 .
. . .
. . .
. . .
. . .
. . .
. . L]
. L])
. . .
.] .
.] .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
3 . .
. . .
. . .
. . .
. . .

o e e
o e e
o e e
o e e
e o e
o e e
PR T
o e e
o o e
o e e
I
o o o
e o e
o e e
° o e
e e e
o e e
o e e
° o .
o e e
o e e
o e
o e e
®]-_2]
e o e
o e e
o o e
o e e
°o e @
e e e
o e o
°©o e e
e & e

. . . 7—4,
. . 3 7_19
. o 2"'77

- . 7—1’
5-9, 8-h,
5-9, 8-,
. . 7_-]-77

1-3, B-2,
. . 01_2’
7-1, 7-2,

PAGE
o o« 324

7-5, 7-6

.+ «7-36
7-1, 7-36
e o . 7-36
7-3, 7-5

e o + 2=3
7-14, 7-16
7-3, 7-5

8-4, 8-7

o o s A2

3-2, 3-4

3-4, 3-5

e+ o R-2

.« . 7-28
. + .8-8

8-5, 8-7

8"'5 H 8—7

7-26, 7-28
¢ «es E=3
1-2, 2-2
A

TITLE

-STACK OVRFLW . . .

Statement, Arithmetic Assignment

Statement, Arithmetic TIF .

Statement , ASSIGN .

Statement, Assigned GO TO

Statement , Auxiliary I/0

Statement, BACKSPACE .
Statement, BLOCK DATA

Statement, CALL . .

Statement , CALL EXIT .

Statement, CLOSE . .
Statement , COMMON .

Statement, Computed GO

Statement , CONTINUE
Statement, Control .
Statement, DATA ., .

Statement , DIMENSION .

Statement, Declarative

(Non-Executable) . .
Statement, DO . . .
Statement, END. . .
Statement , ENDFILE .
Statement, ENTRY . .

Statement , EQUIVALENCE

Statement, Executable

Statement , EXTERNAL

Statement, Format .

Statement Function.
Statement, FUNCTION
Statement, GO TO. .
Statement, IF . . .
Statement, Input. .
Statement, Label . .
Statement, LOCK ., .

6-11,

7-1,

8-5,

6-9,
7-2,

7-23,

8-3,

8-5,

h-3,
h-3,
7-9,
8-7,
5-10,

8-7,
2-8,
8-2,

7-4,
7~27
8-1,

8-7,

8-11
6-11

6-1
5-5
8-7
7-10
8-9
8-11
A-1
8-10

TITLE

Statement,
Statement ,
Statement,

Statement,

Statement,
Statement,
Statement,
Statement,
Statement ,
Statement ,
Statement ,

Statement ,

Statement,

Logical Assignment

Logical TIF

NAMELIST

Non-Executable
(Declarative) . . .

Output .
PAUSE . .
PURGE . .
RETURN .
REWIND .
STOP . .

.

Subroutine

Type . .

Unconditional

STOP Statement . . .

String, Cha
String, Lit

racter .

eral . .

Subprogram. . . .

Subprogram,

Subprogram,

Function.

Subroutine

Subroutine Statement.

Subroutine Subprogram

Subscript Bounds . .

Subscripted Variable

Subscripts. « . . .

TAPE or CARD. . . .
TIME . L L]

The « « o
TRACE . . .
~-TYPE ERR .

. . . .

Type Statement. . .

Unconditional GO TO

Statement

ten

5-9,
-9, 7
8-5,

2="7,

2="7,

8-1,
-lO "
8-6,

2-8,
6-8,

2-8,
6-8,

8-5
7-35,
8-7,

6-1,
6-11,

6-1,
6-11,

3
1

W
(o)}

| I B |
oL = W
-

00 00 00 0 P ~I =~ Ut Ut 0O 0 \Unt
| I R N R I N . |
N 0N BN NN

Ut Ut

[o)Y
1
|

5-11
5-11

C-2
C-5
7-25
C-3
E-4

6-3,
8-11

TITLE

Unformatted Output Statements
Unit Number (File Specifier) .

USASI . . L] L]

USAST FORTRAN, Difference From

Variable, Complex . ,

Variable Dimensions .

Variable, Double Precision

Variable, Integer ., .
Variable, Logical , ,
Variable, Real
Variable, Simple. . .
Variable, Subscripted
Variables

Void n.,

NX . o v ¢ o o o o o

-ZERO ARGMNT LN . ., .
-ZERO MODULES DMOD . ,

.

.

eleven

.ted line

tear along

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS
REMARKS FORM

TITLE: FORM:

DATE:

CHECK TYPE OF SUGGESTION:
[JADDITION []DELETION [_JREVISION [_JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE

TITLE
COMPANY
ADDRESS

STAPLE

FOLD DOWN SECOND FOLD DOWN

No
Postage Stamp
Necessary

If Mailed in the

Postage
Will Be Paid

by
Addressee

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

attn: Sales Technical Services
Systems Documentation

FOLD UP FIRST FOLD up

TITLE PAGE

Wherever There's
Business There's [Burroughs

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	I-01
	I-02
	IDX-01
	IDX-02
	IDX-03
	IDX-04
	IDX-05
	IDX-06
	IDX-07
	IDX-08
	IDX-09
	IDX-10
	IDX-11
	IDX-12
	replyA
	replyB
	zBack

