Information

Processing Systems

MASTER CONTROL PROGRAM
REFERENCE MANUAL

Printed in U. S. America

Burroughs
B 5500
INFORMATION PROCESSING SYSTEMS
MASTER CONTROL PROGRAM
REFERENCE MANUAL

¢)

Burroughs Corporation
Detroit, Michigan 48232

1042462

COPYRIGHT® 1969 BURROUGHS CORPORATION

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con-
sequences arising out of the use of this material. The infor-
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence .regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

SECTION

TABLE OF CONTENTS

TITLE

INTRODUCTION. ¢« ¢ & & o« o+

1 MASTER CONTROL PROGRAM. . .

2 THE

General . . .« + .« + .+ .

Program Reference Table
for the MCP

OPTION Word
Array Information Table
STATION Table Format. .

DISK:e o ¢ o o o o o o
General
Disk Layout
Disk Directory. « . . .
DALOC « « + .+ .
Available~-Disk Table. .

3 MCP CLASSIFICATION AND ORGANIZATION
OF CORE STORAGE

General . . . + « . .+ .

Memory Links. . . + . .

4 LOGGING .« o &« ¢ o o o o o« o

General . . .« ¢« .+ + o« .

Abort Table

.

Format of the System/Log.

System/Log Specifications

Log Entry Specifications.

Code Word «

Control Card Information.

]

Compiler and Object Program

Information

Special Records and Log Initialization.

Record Zero . .

Record n + 1. .

Initializing the Log.

PAGE

vii

2-1
2-1
2-1
2-4
2-8
2-11

0N LV R

T
=N
@)

L.1o
L-10
L-10

iid

SECTION

iv

I/0

MCP

TABLE OF CONTENTS (cont)

TITLE

Format of the Remote Log
Remote Log Specifications., ..
Log Entry Specifications. . .
Type 1 Log-Out Entry.
Type 2 Log-In Entry . « « . .

Type 3 Control Card Entry
(31 Characters or Less) . . .

Type 4 Control Card Entry

(32 Characters Up to 72 Characters)

Type 5 Job Statistics

Type 6 Abort. Information Entry.

Creation of Remote Log Entries.

File Maintenance Procedures .

The WR Keyboard Input Message

CONTROL . + « v &« o o o o & o o &
General . . « + « +« ¢« + o o s e
I/0 Queue (LOCATQUE, UNIT). . . .

Input Output Assignment Tables. .
Logical Unit Numbers.
File Parameter Block (FPB) -

Addressed by R + 3. « . « + « .+ .
File Information Block (FIB). . .
File Tank . « « « « « o o & « o« .

Label Equation Table (Used by SHEET [13)

OPERATIONAL TABLES. . + « « o +

General . .« .« « « + o ¢« ¢ ¢ o &
PRT [*,%] « « « v v v v v v o o .
BED [%] & v v v v 0 o o 4 v e e
Jobs Actually Running (JAR) [*,*]
SLATE [*] « e
SHEET [*] « + « v o« v o« o o« & «

Segment Dictionary and Related PRT Cells

as Created by a Compiler. . .

Fields and Their Values for the Seg-
ment Dictionary and Related PRT Cells.

PAGE

L4-10
h-10
ho11
L-o1a
h_12

ho12

Lo12
h-13
L1k
h-1s

5-17
5-18

6-1
6-1
6-5
6-7
6-9
6-11

6-14

6-16

SECTION

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

INDEX

TABLE OF CONTENTS (cont)

TITLE

Format of First 30 Words (1~Disk
Segment) of all Program Files . .

Method for Declaring Array Space.

NFO
LOOKQ () .) L]
MESSAGEHOLDER ¢ ¢ « + o &+ o o o o o o

Inquiry: Array DCB [16] and the ORR Word

Handling an Inquiry Request Interrupt
Handling a Fill with Inquiry. « . . .
The ORR) Wordl . L] . L] L . L] . L] L] L] .

BINARY CARDS . L] [. L] .]

General . « ¢« o« o o+ o o o o o o o o
H/L Card. « « « o o o o o o o o o o »
ESPOL Transfer Card « « + o ¢« o « o+ o
ESPOL TLoad Card . « + o o o s o o o o
Initialization . « ¢ ¢« o ¢« o o o o o
LIBRARY MAINTENANCE « + + o o o o o o o s
General . .« « ¢ ¢ o o o o o o o o o

Format of a Library Tape. . « « « o o

Format of Library Maintenance Segment
for Load Information (SHEET Entry). .

INTERRUPT HANDLING. « + ¢ o o o o o o o o

GeneI‘al . L] . . . L] L] L] L] .

Presence Bit Interrupt Action

MCP COMMUNICATES « « ¢ o o o o o o o o
STANDARD B 5500 LABEL RECORD + « « ¢ +
CCMASK1 - CCMASK2 - MIXMASK - INFOMASK .
USASCII X3.4 - 1967 STANDARD CODE. . . .

] L] L] L] L] . . L] L] .

.

PAGE

6-17
6-17
6-18
6-19
6-20
6-20
6-21
6-21
6-21

[I |
=
o

SIENEESEESEEN N
1
= o S SR S
=

A-1
B-1
C-1
D-1

one

FIGURE

TABLE

TR 2w
FW N R R

- vi

LIST OF ILLUSTRATIONS
TITLE

Layout of Disk Below the Directory

Links for Available Area (3 Words) Field
Values and Functions + + &+ + o«

Links for In-Use Area (2 Words) Field
Values and Functions . . +. ¢« « ¢ o« o o o

Core Memory at Halt-Load Time: Modules
O, 1, 3, and 4 On Line « + « « . .

Disk File Log Entry. « « o« o« « o o o o o o

General Format of each of the Three Types of

Log Entries. L] 3 . . .

Format of General Program Information in a
Entry, including the Code Word

Format of One File Information Record. . .
Detailed Flowchart of the H/L Card
Format of a Library Tape . « + ¢ o« o o o« o

Format of the Library Maintenance Segment
for Load Information « +« « « « o o o o o o

LIST OF TABLES
TITLE

/0 Assignment Table . .+« + ¢« ¢« « & ¢ o o &
H/L Button Card. « « ¢« o ¢ ¢ ¢ « o o o o &
ESPOL Transfer Card. « « « « ¢ o o o o o &
ESPOL Load Card. « « « « & o o o o« o o o
Initialization Code Brought in by H/L Card

PAGE

PAGE

5-4
7=2
7-8
7-10
7-14

INTRODUCTION

Frequently, a lack of adequate information results in much time
being spent resolving software problems. This manual is an aid in
solving these problems. It includes assorted items of information
about the Master Control Program (MCP) Tables, segments, links,
words, and related material, which, together with a listing of the

MCP, will make it easier to define software problems.

Specifically, this reference manual is divided into nine sections,
which focus on the MCP Tables, the Disk, MCP classification and
Organization of Core Storage, Logging, MCP Operational Tables, Binary
Cards, Library Maintenance, and Interrupt Handling. In addition,

there are four appendices which supplement the text.

vii

SECTION 1
MASTER CONTROL PROGRAM TABLES

GENERAL.

An MCP is a modular supervisory computer program which takes over
repetitive functions, some being logically complex, to make computer
programmers and operations more productive and efficient. The MCP
provides the overall coordination and control processing that is

so important to total production through the maximum use of all

B 5500 components. Operator intervention is nearly eliminated
because complete management of the system is assumed by the MCP,

a comprehensive operating system that provides simultaneous Input/
Output (I/O) operations and multiprocessing. By controlling the
sequence of processing, initiating all I/O operations, and pro-
viding automatic handling procedures to meet virtually all pro-
cessing conditions, the MCP can obtain maximum use of the system
components at all times. Since so many functions are performed
under this centralized control, changes in schedule, system config-
uration, and program sizes can be readily accommodated. Thus,

greater overall production and efficiency is achieved.

All versions of MCP handle the primary functions of control pro-
grams: loading, interrupts, I/0 control, selection and initiation
of program I/0 error conditions, system log, storage allocation,
overlay, and multiprogramming. The MCP is composed of tables
(i.e., arrays) and of procedures with an outer block which coor-
dinates their operation. Section 1 focuses on the tables which

compose the MCP.

PROGRAM REFERENCE TABLE (PRT) FOR THE MCP.

The PRT contains the locations reserved for variables, data de-
scriptors, and program descriptors which give information about
data arrays and other program information. These locations are
likely to change in future MCP's., Brackets [] indicate a

descriptor. Otherwise, the variable is an operand.

1-1

Word Contents

RRRMECH Mask word used by STATUS to check I/0 devices.
[SLATE] Descriptor pointing to SLATE array.
NSLATE Pointer to last entry which was started

from SLATE.
LSLATE Pointer to last entry placed in the SLATE.

AVATL Contains the address of the stopper for
available storage links; its value is the

highest available address -1.

MSTART Contains the address of the first area of
storage after the end of the MCP SAVE Pro-

cedures and the outer block code.
MEND Pointer to last storage link in memory.

TOGLE Word containing the following mask bits:
HP2TOG, STATUSBIT, SHEETFREE, STACKUSE, STOREDY,
USERSPACEREADY, HOLDFREE, NSECONDREADY, ABORT-
ABLE, BUMPTUTIME, KEYBOARDREADY, NOBACKTALK,
QTRDY, INTFREE, SPOENDULLOG, REMOTELOGFREE.

[BED] Descriptor pointing to BED array.

PIMIX Mix index of normal state job for which work
is being done by Processor 1 in either normal

or control state.

P2MIX Mix index of the normal state job for
which work is being done by Processor

2 in normal state.

DATE Contains current date (YYDDD -- BCL).

CLOCK Contains the number of time interval interrupts
processed since Halt/Load (H/L) multiplied
by 64.

XCLOCK External clock which is set by system operator

and tells the time of day (maintained in 60ths

of a second).

Word

READY

[PRT]

[JAR]

[INTRNSC]

INTSIZE

[INTABLE]
[SHEET]

JOBNUM

[PRYOR]

NOPROCESSTOG

[NFO]
[ISTACK]

[PROCTIME]

[TOTIME]

[CHANNEL]

[FINALQUE]

[LOCATQUE]

Contents

Contains the contents of the ready register

on the last read.
Descriptor pointing to PRT array.

Descriptor pointing to Jobs Actually Running
(JAR) array.

Descriptor pointing to the INTRNSC array.

Used to determine row size for each mix index

in INTABLE.
Descriptor pointing to the INTABLE array.
Descriptor pointing to SHEET array.

Pointer to the last entry in the BED. The
number of entries in the BED is equal to
JOBNUM (in decimal) DIV 2 + 1.

Descriptor pointing to the PRYOR array, which
is a table containing priorities for each

mix index.

<0 if normal state processing is allowed.
Descriptor pointing to the NFO array.
Descriptor pointing to the independent stack.

Descriptor pointing to the PROCTIME array.
PROCTIME[1] contains processor time for job

with mix index = 1,

Descriptor pointing to the IOTIME array. IOTIME
[1] contains I/O time for job with mix index
= l.

Descriptor

CHANNEL[1]
descriptor

Descriptor

Descriptor

pointing
contains

sent out
pointing

pointing

to the CHANNEL array.

logical unit of last

on channel 1.
to the FINALQUE array.

to the LOCATQUE array.

1-3

Word
IOQUEAVAIL
[T0QUE]
[UNIT]
[TINU]

[WAITQUE]

NEXTWAIT

FIRSTWAIT

[LABELTABLE]
[MULTITABLE]
[RDCTABLE]
[PRNTABLE]

ILL

INQCT

PINGO

READQ

RRNCOUNT

[TRANSACTION]

LEFTOFF

MESSAGEHOLDER

BYPASS

1-4

Contents
Pointer to the first available space in IOQUE.
Descriptor pointing to the IOQUE array.
Descriptor pointing to the UNIT array.
Descriptor pointing to the TINU array.

A QUEUE of units for which there are I/0
requests but no I/0 channel is available.

Pointer into WAITQUE at next available slot.

Pointer at next unit to be used when a channel

becomes available.

Descriptor pointing to the LABELTABLE array.
Descriptor pointing to the MULTITABLE array.
Descriptor pointing to the RDCTABLE array.
Descriptor pointing to the PRNTABLE array.

The head of the queue through which all data

communication output passes.

Counter of unprocessed data communications
interrupts.

Used to link tanked MCP input messages
together.

The head of the queue of all "sought"

terminal/buffers.

Count of Read-Ready-Normal data communications
interrupts.

Descriptor pointing to the TRANSACTION array.
Used by OLAY for overlaying core.

Used by SPOUT and MESSAGEWRITER to link SPO

messages.

Used by ENTERUSERFILE to locate the ends of the
regular and bypass directories.

Word

NEXTSLOT

DISKBOTTOM

[DBARRAY |

DBADR

DIRECTORYFREE

TOMASK

SAVEWORD

CORE

KEYBOARDCOUNTER

NUMESS

Contents

Variable used to indicate the next available
position for file entry in the disk directory.

Variable set to the highest address of the
directory.

Descriptor pointing to the DBARRAY. The array
used with the DB feature of the DEBUGGING

option.

Variable used to contain the disk address
for the DB feature.

Variable used to interlock the directory.

Variable used as a mask to sleep until the

complete I/0 action is finished.

Used to indicate which "in-use" device is to

be saved.

Used by SELECTRUN to determine if a job should
be introduced into the mix.

Count of unprocessed keyboard requests.

Initialized to -100; counts +1 for each SPOUT
message waiting to go to the SPO.

" STATIONMESSAGEHOLDER

[STATION]
[Fs]

TUMAX

[ATTACHED|
[USERCODE]

LOOKQ

Beginning of link-~list of messages waiting to

go to remotes.

Descriptor pointing to the STATION array.
Descriptor pointing to the FS array.
Number of columns in the STATION array.

Descriptor pointing to the ATTACHED array.

Descriptor pointing to the USERCODE array.

Used to link user codes, masks, and times for

“remotes.

1-5

Word Contents
[UNITCODE] Descriptor pointing to the UNITCODE array.

MCP Variable containing the user identification

of the privileged user.

MIXMASK Mask for legal input mix messages from remotes.
INFOMASK1 Masks for legal input (from remotes) keyboard
INFOMASK2 - . .

messages not requiring a mix index.
CCMASK1 Masks for legal control card reserved words
CCMASK2 .

from remote stations.
OPTION Contains the OPTION word.
[USERDISK] Descriptor pointing to the USERDISK array.

OPTION WORD.

Word stored in MCP PRT to set and reset options. The OPTION word
is also stored as the first word in DIRECTORYTOP. The OPTION word
can be set or reset via the COLD START Routine or via the keyboard.

Option Field Keyboard Mnemonic
USEDRA [47:1] DRA
USEDRB [46:1] DRB
BOJMESS [45:1] BOJ
EOJMESS [4L4:1] EOJ
OPNMESS [43:1] OPEN
TERMGO [42:1] TERMNATE
GIVEDATE [41:1] DATE
GIVETIME [40:1] TIME
SAMEBREAKTAPE [39:1] ONEBREAK
AUTOPRINT [38:1] AUTOPRNT
CLEARWRS [37:1] CLEARWRS
DISCONDC or [36:1] DISCONDC
NOTIFYOP

COPNMESS [35:1] COMPLFILE
CLOSEMESS [34:1] CLOSE
None [33:1] ERRORMSG
RETMSG [32:1] RET

1-6

Option

LIBMSG
SCHEDMSG
SECMSG
DSKTOG
RELTOG
PBDREL
CHECKLINK
DSKMSG
DKLOG
LIBERR
USEPBD
SVPBT
MOD3I0S

Field

[31:1]
[30:1]
[29:1]
[28:1]
[27:1]
[26:1]
[25:1]
[24:1]
[23:1]
[22:1]
[21:1]
[20:1]
[2:1]

ARRAY INFORMATION TABLE (AIT).

One AIT is associated with each program.

Keyboard Mnemonic

LIBMSG

SCHEDMSG

SECMSG

DSKTOG

RELTOG

PBDREL

CHECK

DISKMSG

DISKLOG (TSS only)
LIBERR (TSS only)

- PBDONLY

SAVEPBT

(Cannot be accessed
through keyboard.)

WORD O
POINTER (i.e., INDEX) TO LAST
CURRENT AIT ENTRY
0 8 9 Ly
Field Contents
[0:9] 0
[19:39] Index to last current AIT entry.
(INTEGER) .
REMAINING WORDS
BLOCK ABSOLUTE PRT ADDRESS OF
COUNTER ARRAY DESCRIPTOR OR
FILE DESCRIPTOR 0/1
0 1 23 8 18 33 Ly

1-7

Field Contents

[0:1] Flag bit.
[1:2] 0 = array.
1 = run time error entry.
2 = file.
[3:5] Number of dimensions.
[8:10] Block counter (i.e., nesting depth when file or

array is declared).

[18:15] Absolute address of file or array descriptor or of
Run Time Errors* (RTE) cell containing label word.

[33:15] Save indicator (1=SAVE) for arrays or for RTE.

LABEL WORD
The operand constructed by GOTOSOLVER.

Field Contents

[CcF] R-relative address of the label descriptor.

[FF] Proper F Register setting. If O, then outer block.
[8:10] Block Counter setting.

The operand is usually contained in the stack or in the PRT (for

RTE). It is used to represent action labels or Fformal labels.

STATION TABLE FORMAT.
The Station Table Format is a Dump debugging aid. It is formatted

as follows:

Field Contents
[0:1] Flag bit (off).
[1:1] Output in process by STATIONMESSAGEWRITER.

¥Error type:

1 = integer overflow.
2 = exponent overflow.
4 = invalid index.
8 = divide by zero.
16 = flag bit.

1-8

Field

[2:1]

[3:1]
[b:b]

[8:1]
*[9:4]
*[13:1]

¥ 14 :4)
[18:4]

[22:1]
*[23:1]
*[24:1]
*[25:1]
[26:1]
¥ 27:1]

*[28:1]
[29:1]
%[30:1]
[31:1]

[32:1]

Contents

SPO Console input request flag (Bit 32 should be

on also).

Not used.

TU index into STATION for next control station. If

not a control station, its own index.

Not used.
TU address for this word.

DTCU Translator bypassed:
late=0.
BCL.)

(Translation:

Buffer address for this word.

Translate=1,

omit trans-

ASCIT to BCL or Baudot to

Buffer index into STATION for next control station.

If not a control station, its own index.

Station busy.

Adapter sensed "abnormal" condition.

Read-Ready Buffer,
Group mark or IFAL ending:
Break.

Write ready:
(Additional write required to clear

mark finish write.
Input error.
Write in-process.

Station not ready.

buffer.)

Group mark=0, IFAL=1.

1l=Write without group mark ending.

O=Group

Mix messages not desired flag (l=no mix message,

O=output mix messages.)

SPO Console flag.

*Indicates hardware-defined fields.

(When this bit is on, all input
is treated as if it had originated at the SPO.)

1-9

Field Contents

[33:1] Not used.

[34:1] Message Delete action required.

[35:3] Not used.

[38:5] Exclusive user's mix index. (=31 if station is

a SPO Console)

[43:1] Tanked input.

[l4l:1] Tanked MCP input being entered.
[45:1] Station assigned to a job.
[46:1] Station logged-in.

[47:1] Not used.

SECTION 2
THE DISK

GENERAL.
A disk file or system memory is a prerequisite to the use of the

MCP. The disk file is used by the MCP as an auxiliary storage

area. Therefore, it is necessary to be acquainted with its organ-
ization.
Disk storage is divided into two categories: system disk and user

disk. System disk is the disk area reserved for:

a. The DF MCP program and tables.
b. The disk directory.
c. The available-disk list, and other DF MCP uses.

User disk is the area used for remaining facilities. Data files,
scratch files, and library programs, including the B 5500 problem
oriented compilers, may be stored in the user disk area. This
section presents that disk information which is applicable to the
B 5500 MCP Tables.

DISK LAYOUT.

An area on disk to be used for a particular file must be explicitly
reserved for that file. A program must specify the amount of disk
required for a file. The DF MCP allows a single file to occupy
from one to twenty separate areas on disk. The number of areas

and their size is specified by the program that creates the file.
The fact that a file is stored in more than one area does not in
any way affect the way it is referenced by a program. Regardless
of the number of areas used, a program always addresses a file as

though it were one continuous string of records.

The disk layout is dealt with in the following manner:

ESP DIRECTORY
MCP DISK ABORT TOP DIRECTORY USER
1
01 993 999 Y
Segment Contents
0 Not used.
1 Copy of H/L Button Card.
MCP starts at Storage of operating system.
segment 2
ESPDISK Used by the MCP for scratch pad.
ABORT Location of the Abort Table (Segments 993
:=> 998) .
DIRECTORYTOP Contains parameters for MCP,
Segment 999 on disk.
Word Field Contents
0 OPTION word.
1 DATE (in BCL).
2 Number of electronic storage
units.
L Highest address of directory (Y).
5 Last number used for control
deck.
6 First control deck queued (locat-

ion in directory).

Seément Contents
DIRECTORYTOP (cont)
Word Field Contents
7 Last control deck queued (locat-

ion in directory).

8 Next number available for printer
backup disk.

o Multiprocessing core factor.

10 =y 15 Specify which data communications

stations are similar to the SPO.

[10].[0:16] Not used.
J16:16] TU 1, buffers 0 =) 15.
.[32:16] TU 2, buffers 0 =) 15.
[11].[0:16] TU 3, buffers 0 =) 15.
[16:16] TU 4, buffers 0 =) 15.
.[32:16] TU 5, buffers 0 =) 15.
[12].[0:16] T™W 6, buffers 0 =) 15.
[16:16] TU 7, buffers 0 =) 15.
.[32:16] T™ 8, buffers 0 =) 15.
[13].[0:16] TU 9, buffers O =) 15.
[16:16] TU 10, buffers 0 =) 15.
.[32:16] TU 11, buffers 0 =) 15.
[14].[0:16] TU 12, buffers 0 =) 15.
[16:16] TU 13, buffers 0 =) 15.
.[32:16] T™U 14, buffers O =) 15.
[15].[0:16] TU 15, buffers 0 =) 15.
[16:32] Not used.

Entries are made in words 10 =)
15 by the procedure MARKSPOSTA.

2-3

Segment Contents
DIRECTORYTOP (cont)
Word Field Contents
The Boolean variable HOLDFREE

is used to interlock the DI-

RECTORYTOP.

16 Q value for data communications
input.

17 =) 28 Reserved for expansion.

29 Contains USERDISKSL during re-

starts and breakouts.

DIRECTORY Area used by MCP to maintain di-

rectory of entire in-use disk.

USER Area used for storage of system
log, compilers, and all other

user files.

DISK DIRECTORY.

The MCP maintains, on disk, a disk directory which provides infor-
mation about all permanent files on the disk. FEach directory sec-
tion is composed of 16 segments which contain information for up
to 15 files. These sections are allocated as needed in the disk

directory area specified by the user.

The 16th segment in a section contains the names (i.e., file iden-
tification) of each file defined in that section. In the first

name position, @114 indicates last entry, and @14 means available

entry. The preceding 15 segments are referred to as file headers.
NAME
FILE HEADERS SEGMENT
1003 1017 1018

2-4

NAME SEGMENT
Contains up to 15 pairs of
section. The names are in

ceding 15 segments. There

FILE HEADERS

Word Field

0 [0:15]
[15:15]
[30:12]
[42:6]

1

2

3 [1:1]
[2:10]
[12:18]
[30:18]

L [1:1]

[2:7]
[9:1]

[10:1]
[11:25]

[36:6]

*Effective with Mark VIIT,
June 21, 1968.

names for each file defined in this
the same order as the files in the pre-

are two words for each file header.

Contents

Record length.
Block length.
Records per block.
Segments per block.

Row length in segments.

File creator or user code.

O Free file.
> O Public file, sole user file,
private file.

< O Security file.

If 1, then file is mnew format.*
Save factor (binary).
Date of last access (binary).

Creation date (binary).

= 1 if file interlock.

Used by library maintenance.

If 1, then file is new format.

If 1, then file is a program.

Reserved for expansion - bits set

to zero.

File type (used by Time Sharing System).

= 0, Unknown

= 1, BASIC
= 2, ALGOL
= 3, COBOL

change 41, page 3, Systems Note No. 229,

2-5

Word Field
4 (cont)
[42:6]
5 [1:1]
[1:48]
6 [6:42]
7
8
9

10 through 29

2-6

Contents

= 4, FORTRAN

= 5, TSPOL

= 6, XALGOL

= 7, SEQ

= 8, DATA

= 9, LOCK (Security).

Open count.

= 1, PRIVATE file.
= 0, SOLE user file or SECURITY file (see
H[2].[1:1]).
12, INFO file if H[6] = 12, and H[2] £ o;
PUBLIC file if H[6] = 0 and H[2] = 0;
FREE file if H[6] = 12 and H[2] = o.

File ID if SECURITY file (see H[2] and

H[5]).
Number of logical records (EOF pointer).

Number of segments per row, as specified in

file declaration.

Number of rows, as specified in file

declaration.

Binary disk addresses of rows (zero if not

assigned).

The layout of the disk below the directory is presented in figure

2-10

DISK
ADDR

Figure 2-1.

NOT USED

H/L BUTTON CARD

INTERRUPT CODES

MCP'S
PRT

OUTER BLOCK CODE

SAVE CODE

NON-SAVE CODE

ESPDISK
(MCP SCRATCH PAD AREA)

MCP DIRECTORY TOP
AND DIRECTORY

e DIRECTORYTOP (999)

e DI SKTOP

Layout of Disk Below the Directory

The MCP scratch pad area begins at the first segment beyond the
last segment used for non-save code. Initially, ESPDISKAVAIL is
set = 0, and DISKTOP is set to the address of the first usable
segment in the scratch pad area. DISKTOP will contain the address
of the first usable segment in the contiguous scratch pad area.

If DISKTOP + 1 ever becomes equal to the address of DIRECTORYTOP,
then a PUNT message of NO MCP DISK will be initiated and the system
will halt.

NOTE
GETESPDISK will return the address
of an available segment in the MCP

scratch area as an operand.

FORGETESPDISK (segment address) will
return the address specified by "seg-
ment address", which must be an operand,

to an available scratch area.

DALOC.
DAILOC is a two dimensional array used to manage overlay storage
both on drums and disk. It has MIXMAX + 1 rows, each of which is

initially nine words long, and is expandable as required.

DALOC INX PIMIX points to the DALOC Row for PIMIX which has the

following construction:

WORD O

INDEX LIMIT

WORD 1

DISK ADDRESS
(<O IF DRUM)

0 L7

WORD 2

0 9 12 18 24 30 36 L2 L
NOTE
Words 3 and 4, 5 and 6, 7 and 8, etc.
are identical in construction and use
to words 1 and 2.

Word O Field Contents

INDEX [18:15] Pointer to the first evenly numbered
word (2, 4, 6, etc.) which may be used
to locate some overlay storage.

LIMIT [33:15] Pointer to the last (largest) evenly
numbered word which is being used for
this PI1MIX.

Word 1

Contains the disk address of the base of a 500 segment section of

overlay storage. One such section is made available at SELECT RUN

time. If this word is negative, the overlay storage referenced is

on the drum.

Word 2

Field

[2:7)

[9:3]

[18:6]
[24:6)
[30:6]
[36:6]

[#2:6]

Contents

Contains the next relative address

available within the sub-section indi-
cated by the following field (9:3).

Indicates which of the following sub-

sections (100 segments each) is active
(0 through 4).

Sub-section

Sub-section

Sub-section

Sub-section

Sub-section

number

number

number

number

number

1,

2.

Each sub-section controls 100 segments

of overlay storage. The number in each

field indicates the number of times the

system has allocated space from the

applicable 100 segments of a sub-section.

When an area referenced by a descriptor has been overlaid, bits 33:6

of the descriptor contain a value used to locate the odd-numbered

word in the DALOC Row for this mix index, which contains the base

disk address of the 500 segment section in which the information

has been placed.

Bits 39:9 of the descriptor contain the offset,

whiéh, when added to the base, gives the absolute disk address of

the information.

When a previously overlaid area is made present again, these two

fields are transferred to the F field of the descriptor. This

will assure that subsequent overlays of this data will return to

the same place on disk.

1f we say DESC is defined as the descriptor,

2-10

then the disk address to

which we must re-overlay is calculated as

DALOC[P1MIX,DESC.[33:6]x2-1]+DESC.[39:9]

AVATLABLE-DISK TABLE.

The Available-Disk Table is a two part, Fine/Coarse Table.

the Fine Table is maintained on disk in

is kept in core memory.

The format of the Fine Table in ESPDISK

While

ESPDISK, the Coarse Table

is as follows:

WORD 29
DKSZ DISKA
O 3 24 L7y
WORD 2
DKSZ DISKA
0 3 24 Ly
WORD 1
DKSZ DISKA
o 3 24 Ly
WORD O
NUMBER OF VALID ENTRIES IN
THIS 30 WORD TABLE (1-29)
0 L7

The format of the Coarse Table in core memory is as follows:

WORD O

ESAD

UNUM

16 21 Ly

WORD 1

DKSZ

DISKA

0 3

24 iy

The Coarse Table is expandable in two word increments, as additional

Fine Table entries are required.

Word Field
DISKA [23:25]
DKSZ [3:20]

Contents
Absolute disk address of a section

of available disk.

Size of the available area starting

at DISKA.

In the Coarse Table, there are copies of the entry for the largest

area in the associated Fine Table.

ESAD [1:15]

UNUM [16:5]

Address of the associated Fine Table

in ESPDISK.

Number of wvalid entries in the Fine
Table. TUNUM must agree with word O
of the Fine Table.

SECTION 3
MCP CLASSIFICATION AND ORGANIZATION OF CORE STORAGE

GENERAL.
Certainly, if core storage is to be put to use efficiently, it must
be classified and organized. Basically, storage is organized

through the use of memory links.

The MCP classifies core areas containing information which must
remain in place as non-overlayable storage. For example, the MCP
has routines and tables that must frequently be used when handling
interrupt conditions and other control functions. The space that
would be momentarily gained by overlaying such information would
not be worth the time required to make the information present when

needed again.

There is also a need for certain kinds of object program information
to remain in fixed locations while a program is being processed.
This requirement holds for all information which will be referenced
by the MCP through the use of absolute addresses; for example,

control fields which contain absolute addresses of program segments.

Overlayable storage refers to information in core storage that
must be present when needed. It is often the case that all infor-
mation pertaining to a program cannot be in core at the same time.
This is most often the case when programming for operating systems
with less than maximum core. However, the majority of the infor-
mation related to object programs, and most information in the
MCP, may be used relatively infrequently. With respect to such
information, the major factor determining its necessity to be pre-

sent in core is that it must be present when needed.

Since the B 5500 programs are stored on disk during the time they
are processing, individual program segments are read into core as
they are needed. If the area used by the program segment is to be
overlaid, there is an exact copy of it on disk., The MCP has only

to mark the segment absent in appropriate places, and the area it

occupied can be used for other segments. If the segment is needed

again, it can be read into core from disk.

Available storage is storage currently not in use. Such storage
can be assigned as needed. Section 3 deals with the memory links
which are used by the MCP,

MEMORY LINKS.

Memory links are used by the MCP to keep track of the assignment
of core areas. There is an available memory link in every unas-
signed area. A memory link for available storage occupies three

words. These words provide the following information:

a. They specify that the area is available.
b. They specify the size of the area.

c. They provide the address of the following available area.

When core storage is classified and organized for the first time
after a H/L, the MCP performs operations to determine what memory
modules are available on the system in a contiguous area from mem-
ory address O. Links are set up so that the areas in those modules
which are not present are never assigned, and, consequently, never
addressed. Permanent MCP program segments related to initialization
routines may be in core after initialization, but they are over-

layable; all other core is marked available.

Figures 3-1, 3-2, and 3-3 present information necessary to

deal successfully with memory links.

WORD 1

ol1 ADDRESS OF ADDRESS OF
PREVIOUS AREA NEXT AREA
o 1 9 15 18 33 L7
Field Field Value Contents
[0:1] 0] Flég bit.
[1:1] 1 Availability.
[2:1] NA*
[3:6] NA
[9:6] NA
[15:3] NA
[18315] Address Address of first word of link
for previous area.
[33:15] Address Address of first word of link

*NA=Not Applicable

Figure 3-1.

for next area.

Links for Available Area (3 Words) Field

Values and Contents (Sheet 1 of 2)

3-3

WORD 2

3-4

Figure 3-1.

ADDRESS
SIZE OF OF NEXT
THIS AREA AVATILABLE
AREA
0 18 33 Ly
Field Field Value Contents
[0:18] 0 Zeros required by LLL operator.
[18:15] Varies Size of available area.
[33:15} Address Address of second word in link
for next available area.
WORD 3
ADDRESS OF
PREVIOUS
AVATILABLE
AREA
0 33 Ly
Field Field Value Contents
[0:33] 0 None.
[33:15] Address Address of second word in link

for previous available area.

Links for Available Area (3 Words; Field

Values and Contents (Sheet 2 of 2

WORD 1

S ADDRESS ADDRESS
A OF OF
010 |v TYPE MIX PREVIOUS NEXT
E AREA AREA
o 1 2 9 15 18 33 L

Field Field Value Contents

[0:1] 0 Flag bit.

[1:1] 0 Availability.

[2:1] 0/1 save (1 = save area).

[3:6] 0-7 Type of area:

O = miscellaneous data.

1 = program.

2 = data.

3 = I/0 buffers.

4 = ALGOL FIB.

5 = MCP data communications area.
6 = COBOL FIB.

7 = intrinsic segment.

[9:6] 0 - MIXMAX Mix index of program using area.
Intrinsics and MCP always have MIX
field = 0. Re-~entrant program code
has the mix of the first job.

[15:3] NA None.

Figure 3-2. Link for In-Use Area (2 Words) Field
Values and Contents (Sheet 1 of 2)

Field Field Value Contents
[18:15] Address Address of first word of link for
previous area.
[33:15] Address Address of first word for next area.
WORD 2
ADDR
0 1 33 L
Field Field Value Contents
[0:33] Varies Type 2 data-overlay address
on disk.
Size of program segments and
intrinsics.
[33:15] Address If data or file tank, address of

3-6

Figure 3-2.

array descriptor.

If object program, segment number.
If it is a data communications'
buffer area, READQ or ILL link word.
If MCP program segment, PRT address.
If intrinsic, segment number for

the job which first made it present.

Link for In-Use Area (2 Words) Field

Values and Contents (Sheet 2 of 2)

sutr1 uQ 4 pue ‘¢ ‘T ‘O SOTNPOW :9UWLL 1/H 3e Agowel oI0) (=€ e2andTd

3-7

IT000€000000000O0O LLLLY

Tzl€¢€0L4LLLLOOOOOD 9LLLY

000000000E0000O0T QLLLY

T2.L€000000000000 2000&

9 L L LN HLLLTOOODO 00 T000€
c L L Ly LLLLTOOOOOGZT 0000¢

 @INAOW ¢ TTINAON

0oo0o00€02LEE0O0D0O00ODO0OOO0T LLLLT

9 L L L% 00000000O0O0O rAAAN0)
ToOoOOEE H#SO0OKHTOOOOOO 12L€0
./ L L L TOOO0OO0OODOOOOOC ozlfo

0000000O0DO0O0OO0O0OO0OO TO000
oz L €o0oSLLLKHOOOTOTI 00000

T T1NAON 0 HTINAOW

Al 1

SECTION 4
LOGGING

GENERAL.

MCP maintains a computer log recording the system time and other
information concerning the program. The maintenance of the log is
performed automatically by the MCP. Records are written on the

log file in the order in which the information becomes available.
The log information is written in a file on user disk called SYSTEM/
LOG.

The first record in the log is used by the MCP. The value of the
first field in this record specifies the number of records written
in the log. The wvalue of the second field specifies the record
capacity of the log. The third and fourth fields are used in con-
junction with the warning messages supplied by the MCP which specify
when the log is half full or full. The fifth field contains the
word "DSKLOG."

The MCP writes several types of records for every job. These are:

a. BOJ and EOJ records.
b. File records.
c. Idle time and H/L records.

A program to print the log is provided. However, any program can
read the log file. Consequently, each installation can provide
its own log printing program, and format the output as desired.
Section 4 is a detailed presentation of the logging procedures and
formats for the B 5500 Systems.

ABORT TABLE.
The Abort Table is kept by the MCP to log-off abort jobs. It is

used by NSECOND in termination. The Table is located at
DIRECTORYTOP - 6.

Word Contents

0 XCLOCK

Word Contents

1 DATE
2 "ABORT"

The next three entries are repeated for each job in the mix. If

the mix number is not assigned, the entries are zeroed.

Relative Location Contents
BXMIXl Process time.
3xMIX + 1 I/0 time.
3xMIX + 2 IDLETIME (from the JAR).
3xMIX + 90 First name of object program.
3xMIX + 91 Second name of object program.
3xMIX + 92 [1:23] start time, and [24:24] pointer

to location of control card in ESPDISK
to be written into the SYSTEM/LOG.

FORMAT OF THE SYSTEM/LOG.

A program to print the log is provided by Burroughs Corporation.

However, any program can read the log file. Consequently, each
installation can provide its own log printing program, and format

the output as desired.

SYSTEM/LOG SPECIFICATIONS.

Log information for programs run on a B 5500 System is written in
a file on user disk. The log file occupies one area on disk, and
has the (file identification prefix) SYSTEM and the (file identifi-

cation) LOG. It is the user's responsibility to provide this file.

The file SYSTEM/LOG is blocked. There are six logical records per
physical record. The logical records are five words (i.e», 4o

characters) in length; the physical records are 30 words in length.

1. Mix index.

h-2

LOG ENTRY

SPECIFICATIONS.,

Entries in the log can be considered to fall into one of four cate-

gories:

a.
b.
c.

d.

Compile-and-Go entries,
Compile-Only entries,
Execute entries, and

Disk log entries.

With respect to these categories, the following rules determine how

a program is entered in the log.

Qe

If a Compile-and-Go run is made and the program being com-
piled contains no syntax errors, the log information for
both the compiler and the object program is listed in a Com=-

pile-and-Go entry.

If a Compile-and-Go run is made and the program being com-
piled contains syntax errors, or if a Compile-for-Syntax
run is made, or if a Compile-to-Library is made, the log
information for the compiler is listed in a Compile-Only

entry.

If an Execute run (i.e., library call-out) is made, the log
information for the object program is listed in an Execute

entry.

If the DISKLOG compile time option for the MCP is set, disk
files will be logged at the time the files are removed from
the disk (e.g., after a CC REMOVE) under the following con-

ditions:
1) When a scratch file is CLOSEd.
2) When a file is CLOSEd after obtaining more space.

3) When a file is LOADed from a library tape with the same
(multi-file identification) / (file identification) as

a file on disk.

4-3

4) When the operator enters a log=-out istruction, LNDK.

The LNDK message logs out all disk files and resets
their creation date (H[B].[BO:lS]) and the creation
time (H[1].[25:23]).

Figures 4-1 and 4-2 present the disk file and the general format

for log entries. The first log entry starts in the record with

relative address 1.

TYPE USER CREA- CREA- DATE TIME NUMBER

MFID FID TION TION OF o}
CODE CODE TIME TIME LOGGED | LOGGED |SEGMENTS
WORD 1 WORD 2 WORD 3 WORD 4 WORD 5 JWORD 6 WORD 7 WORD 8 WORD 9 WORD 10

<
1 RECORD
Entry
Type Code
MFID
FID

User Code
Creation Date
Creation Time
Date Logged
Time Logged

Number of Segments

0

sle

=8
First Name of File (7 CHR)

Second Name of File (7 CHR)

(7 cHR)
In Form YYDDD (BCD)
1/60 Second (0CT)
In Form YYDDD (BCD)
1/60 Second (0CT)
(ocT)

Reserved for Expansion

1 RECORD

Description

Figure L4-1. Disk File Log Entry

Ll

aﬁ

CONTROL CARD

COMPILE-AND-GO ENTRY

COMPILER INFORMATION

OBJECT PROGRAM

TINFORMATTON INFORMATION
A ___ A A
V= \
H !
c | 1st 72 ¢ |GENERAL ' ¢ | GENERAL
o | coLumns oF| o |PROGRAM 1 EUE o | prooraM Y TRC
COMPILE D | INFOR- ? varton [P | INFOR- 8 MATT ON
CARD E |[MATTION ' E | MATTION "
[]
Fl - a+1 —lg— i4n
2 RECORDS 2 RECORDS N RECORDS 2 RECORDS IM RECORDS
(CODE = 3) (CODE = 1 OR 2) (CODE = 0)

COMPILE-ONLY ENTRY

CONTROL CARD

COMPILER INFORMATION

INFORMATION
N _ A
| d— h ¥ T
cl 1st 72 ClGENERAL VTLE
0 | COLUMNS OF] Of PROGRAM IINFOR_
D | coMPILE Dl INFOR- VAT ON
E | CARD E|MATION :
[]
}‘2 RECORDS 2 RECORDS | N RECORDS
(CODE = 3) (CODE = 1 OR 2)

CONTROL CARD

EXECUTE ENTRY

OBJECT PROGRAM

INFORMATION INFORMATION
N -

[re— d— - |] b
clist 72 Cc | GENERAL : FTLE
olcoLuMNS OF JO | PROGRAM ! TNFOR-
D | EXECUTE D | INFOR- b AT ON
EJCARD MATION :

[

rtf 1*: ‘iiﬂ— —
2 RECORDS 2 RECORDS M RECORDS
(CODE = 3) (CODE = 0)

NOTE

=2

]

Number of files declared by compiler.

Number of files declared by object program.

Figure 4-2. General Format of each of the
Three Types of Log Entries

CODE WORD.

As shown in Figure 4-2, each 1log entry contains:

a., Control card information, and

b. Compiler and/or object program information.

The code word preceding each group of information denotes the type
of information. Information preceded by a 1 pertains to the ALGOL
Compiler; information preceded by a 2 pertains to the COBOL Com-
piler; and information preceded by a O pertains to an object pro-

gram. Code 4 denotes the end-of-log information.

CONTROL CARD INFORMATION.

Control card information is contained in the first two records of

a log entry, starting at the second word of the first record. This
information is a copy of the contents of the first 72 columns of the
COMPILE Card or EXECUTE Card that caused the particular run to be
scheduled.

The word immediately pPreceding the control card information is a

code with the integer wvalue 3.

COMPILER AND OBJECT PROGRAM INFORMATION.
Compiler information and object pProgram information have identical
formats. Therefore, the format for this information will be dis-

cussed under the general name "program information!.

Program information falls into two categories:

a. General program information, and
b. File information.
The general program information is contained in two records. The

file information requires a variable number of records, depending
upon the number of files declared by the pProgram. There is one
record required in the log for each file declared by the program.

Each record of file information, however, has the same format.

k-6

Figure 4-3 shows

the format of general program information. Figure

4-li shows the format of one record of file information.

‘ GENERAL PROGRAM INFORMATION

NO. OF PRO-
CODE | FILES :gggmss %43@ RATED DATE 2:;;‘ ggg;sn RFE
DECLARED TIME
1 WORD 1 WORD
1 RECORD 1 RECORD
Entry Description

CODE

NO. OF FILES
OPENED

PROCESS TIME
I/0 TIME
DATE

START TIME
STOP TIME
FINISH CODE
RFE

INTEGER: 1
5
8

ALGOL, 2 = COBOL, 3 = obj. Prog.,
printer backup, 6 = FORTRAN,
disk log

INTEGER

INTEGER: Time in 60ths of a second.

INTEGER: Time in 60ths of a second.

BCL: YYDDD format* (e.g., 65046).

INTEGER: 60ths of a second since H/L time.
INTEGER: 60ths of a second since H/L time.
INTEGER: O = EOJ, 1 = SYNTAX ERROR, 2 = DS-ed.

(Reserved for Expansion).

¥The YYDDD format provides that the YY characters specify the last

two digits of the year, and the DDD characters specify the number

of the day of the year.

Figure 4-3. Format of General Program Information

in a Log Entry, including the Code Word.

h-7

c
MULTIPLE U
R R FILE vy |r IN R | LENGTH OF
F FILE F| oenti- | BPPU L pate|c |F [o | Y| F | TiME FILe
E IDENTI- E FICATION : L1e|e | T|E| was oPENED
FICATION E T
g L g —g— Spl— _—
WORD 1 WORD 2 : WORD 3 WORD 4 WORD 5
) |

Entry Description

MULTIPLE FILE BCL: Located in second through eighth cha-

IDENTIFICATION racters of WORD 1.

FILE IDENTIFICATION BCL: Located in second through eighth cha-~
racters of WORD 2.

REEL NO. BCL: Located in first through third cha-
racters of WORD 3.

DATE BCL: Located in fourth through eighth cha-
racters of WORD 3.

CYCLE BCL: Located in first and second charac-
ters of WORD .4,

NOE (Number of errors BINARY: Located in fifth and sixth characters

while handling file) of WORD 4.

UNIT BINARY: Located in seventh character of WORD 4.
(See list below for meanings of the
values of UNIT.)

LENGTH OF TIME FILE INTEGER: Time in 60th of a second.

WAS OPENED
RFE

Figure 4-4,

(Reserved for expansion.)

Format of One File Information Record

The values of UNIT specify what unit was used by the subject file.

The values are now defined.

Value

0

O 0NNt W

=
o

11
12
13
14
15
16

17
18
19
20

21
22
23
24
25
26
27
28
29
30
31

I/0 Unit

Not opened
MTA
MTB
MTC
MTD
MTE
MTF
MTH
MTJ
MTK
MTL

MTM
MTN
MTP
MTR
MTS
MTT
DRA
DRB
DKA
DKB

LPA
LPB
CPA

CRA

CRB
SPO
PPA
PRA
PPB
PRB
DCA

SPECIAL RECORDS AND LOG INITIALIZATION.
Additional information concerning log maintenance for the MCP

includes the following:

RECORD ZERO. The first record in SYSTEM/LOG (i.e., the record with
relative address 0) is used by the MCP when making log entries.

The value of the first word in record zero specifies the number of
records written in the log. The value of the second word specifies
the record capacity of the log. The third and fotirth words ate
used in conjunction with the warning messages supplied by the MCP
which signify when the log is half-full and full. The fifth word
contains, in BCL, "DISKLOG".

RECORD N + 1. The first word of the record immediately following
the last log entry contains a code with the value 4. This record
denotes the end-of-log information, and it is not included in the

value contained in the first word record of record zero.

INITTALTIZING THE LOG. If a user bProgram wishes to initialize the
log (i.e., set up the log so that the MCP considers the log empty),

the following actions are performed:

a. The first, third, and fourth words in record zero

must be set to =zero.
b. The first word in record 1 must be set to k.

FORMAT OF ‘THE REMOTE/LOG.
The topic of formatting the Remote Log is dealt with by giving the

necessary specifications for the log. The log entry specifications
are presented as six types. In addition, the two part partition
of the file REMOTE/LOG is discussed with the file maintenance pro-

cedures and with the WR keyboard input message.

REMOTE LOG SPECIFICATIONS.
The remote log information for the data communications' facilities
is written in a file on the user disk. The file has the <file

identification prefix) REMOTE and the (file identification) LOG.

L-10

The file REMOTE/LOG is blocked and is confined to one area on the
disk. There are five logical records per physical record. A logi-
cal record is five words in length or 40 characters; a physical
record is 30 words in length. It is the user's responsibility

to provide this file. Logging for data communications is bypassed
if the system does not provide a REMOTE/LOG file.

LOG ENTRY SPECIFICATIONS.

Entries in the Remote Log are of six types:

Type 1 Log-out entry.

Type 2 Log-in entry.

Type 3 Control card entry of less than 32 characters.
Type 4 Control card entry of 32 characters or more, but

not greater than 72 characters.
Type 5 Job statistics entry.
Type 6 Abort information entry.

Types 1, 2, and 3 each require one logical record in the log.

Types 4, 5, and 6 require two logical records per entry.

TYPE 1 LOG-OUT ENTRY.
The following information is entered into the file REMOTE/LOG when

a data communications' station logs out.

» Word O 9:9] Station number ([9:4]=TU,[14:4]=BUF).
[42:6] Code = 1.

Word 1 User identification (as specified by the

1 Record < File Security System).

Word 2 Current date (YYDDD-BCL).

. Word 4 TUnused.

Lh-11

TYPE 2 LOG-IN ENTRY.
The MCP enters the following information in the file REMOTE/LOG

when a data communications' station logs in.

(" word o [9:9] Station number ([9:4]=TU,[14:4]=BUF).
[42:6] Code = 2.

Word 1 User identification (as specified by the
File Security System).
1 Record ﬁ

Word 2 Current date (YYDDD-BCL).

Word 3 Time of day at log-in.

\ Word 4 TUnused.

TYPE 3 CONTROL CARD ENTRY (31 CHARACTERS OR LESS).

The MCP enters the following information (or type 4 information)
in the file REMOTE/LOG when a job is selected to run. Every RUN
or EXECUTE from a remote station is logged.

 Word O [9:9 Station number ([9:4]=TU,[14:4]=BUF).
[18:24] RUN NUMBER*.

[42:6] Code = 3.
1 Record 4

Word 1
through Contents of control card.
L Word 4

TYPE 4 CONTROL CARD ENTRY (32 CHARACTERS AND UP TO 72 CHARACTERS) .
The MCP enters the following information (or type 3 information)
in the file REMOTE/LOG when a job is selected to run. Every RUN
or EXECUTE from a remote station is logged.

[18:24] RUN NUMBER¥*,
[42:6] Code = L.

Word O [9:9] Station number ([9:4]=TU,[14:4]=BUF).

2 Records
Word 1
through Contents of control card.
Word 9

¥Entries in the file REMOTE/LOG corresponding to entries in the file
SYSTEM/LOG have the same RUN NUMBER, where a job's RUN NUMBER is de-
fined to be its start time (in 60ths of a second) as specified in
the System Log.

h-12

TYPE 5 JOB STATISTICS.

The MCP enters the following information in the file REMOTE/LOG

when a station detaches from a Jjob.

Word Field Contents

0 [2:1] 1 if this station attached by entering
an EXECUTE or RUN card; O if attached

by READ, SEEK or WRITE.
[9:9] Station number ([9:4]=TU, [14:4]=BUF).
[18:24] RUN NUMBER (as specified in the types

3 or 4 entries).

[42:6] Code = 5.
1 User code.
2 First name of the object program

(seven characters).

3 Second name of the object program

(seven characters).

L Processor time in 60th of a second;

i.e., processor time used for this

station,

5 Pro-rated time in 60th of a second;

i.e., pro-rated time used by this

station,

6 I/0 time in 60th of a second;
i.e., I/O time used by this station,
out of total used by job.

7 [3:21] Start date;
attached to this station (in binary).

out of total used by job.

out of total used by job.

date when job

4-13

Word Field Contents
7 (cont) [27:21] Stop date; i.e., date when job detached

from station (in binary).

8 Attach time; i.e., time when job

attached to station.

9 Detach time; i.e., time when job

detached from station.

TYPE 6 ABORT INFORMATION ENTRY.
The form of a type 6 entry is:

Word Field Contents
0 [2:1] 1 if this station attached by entering

an EXECUTE or RUN Card; O if attached
by READ, SEEK or WRITE.

[9:9] Station number ([9:4]=TU, [14:4]=BUF).
[18:24] Run number.
[42:6] Code = 6.

1 User code.

2 First name of object program.

3 Second name of object program.

L Processor time in 60ths of a second;

i.e., processor time used by this station

out of total used by job.

5 Pro-rated time in 60ths of a second;
i.e., pro-rated time used by this station

out of total used by job.

6 I/0 time in 60ths of a second; i.e., I/0

L1l

Word Field Contents

6 (cont) time used by this station out of total
used by Jjob.

7 [3:21] Start date; i.e., date when job attached

to this station (in binary).

[27:21] Stop date; i.e., date of last H/L

(in binary).

8 Attach time; di.e., time when Jjob

attached to station.
9 Detach time; i.e., time at last H/L.

CREATION OF REMOTE LOG ENTRIES.
As indicated above, log-in, log-out, and control card entries are
made at the time at which they occur. This is possible since the

information contained in those entries is immediately available.

The information contained within a job statistics' entry is accumu-
lated during the time that a remote terminal is attached to a pro-
gram. The entry is recorded in the Remote Log at the time a pro-

gram and remote terminal become detached from one another.

It is the responsibility of the object program to dictate which
remote station is to be charged for any particular "slice" of a
program's processor, I/0, and pro-rated time. The task involved
in specifying the station to be charged is, however, an easy one.

The procedure involved in slicing times is as follows.

The MCP maintains a table, called USERSTA, which contains one loca-
tion for each program in the mix. The contents of a given program's
location in this table is the station address of the remote station

presently specified to be charged for the time used by that program.

When a program enters the mix, its location in the USERSTA Table
is set to the address of station 0/0, a non-existent remote termi-

nal. The times assigned to station O/O are those which the program

4-15

does not assign to any given station; i.e., they are unassigned
time. Then from that time until the address in that program's
USERSTA location changes, station 0/0 is charged for all processor,
I/O, and pro-rated times charged to the program. When the address
in the program's USERSTA location changes, the remote terminal
whose address is then specified begins being charged for the times

assigned to the program, etc.

The way in which a program designates the address to be placed in
USERSTA (i.e., the way in which a program designates the station

to be charged) is to perform either a passive or active interrogate
statement referencing the station. In ALGOL, this involwves a
statement of the form STATUS (TUBUF,0) or STATUS (TUBUF,1). In
COBOL, it involves a statement such as MOVE FILENAME FROM TU, BUF
TO STATUSWORD or MOVE FILENAME FROM TU, BUF AFTER CHECK TO STATUS-
WORD. Each time such an interrogate is performed, the MCP checks
to see if the terminal buffer address currently in the program's
USERSTA location is different from the one specified in the interro-
gate statement. If it is, the old station is charged with all
times since the previous change in USERSTA and the new station is

established as the new recipient of time.

It should be noted that, if a program wishes to designate certain
times as being unassigned (i.e., assigned to station 0/0), it

should perform a passive interrogate on station 0/0.

Whenever a station is detached from a program, a job statistics
entry is recorded in the log. The entry, of course, contains all
the times which were allotted to the station in the manner des-

cribed above.

The file REMOTE/LOG is partitioned in two parts. If n is an integer
specifying the number of 30 word segments used by the file, then

the first n-ABRTLNGTH segments are reserved for remote terminal
log-entries. The record capacity of this area in logical records

is 6 x (n-ABRTLNGTH). The abort information is written in the
remaining ABRTLNGTH segments of the file. The parameter ABRTLNGTH

h-16

(MCP Sequence No. 00908000) specifies the number of segments used
in maintaining abort information and must not exceed 34. A remote
terminal requires an entry in the Abort Table for each program to
which it is attached; the maximum number of entries accommodated

is 3 x ABRTLNGTH ~-1. In the event that a H/L is mnecessary, the
abort area of the file REMOTE/LOG is checked to determine if any
remote terminals were attached prior to the H/L sequence. Abort
information is formatted as a type 6 entry, and placed in the first
(n-ABRTLNGTH) segments. '

FILE MAINTENANCE PROCEDURES.
To retain information for the file REMOTE/LOG, a FILE CARD group
should appear in the Cold Start Deck (see Burroughs B 5500 Elec-

tronic Information Processing System Operation Manual, Foxrm 1024916,
pages 3-9 through 3-11).

The first record of the file REMOTE/LOG (i.e., the record with
relative address 0) describes the remainder of the file., Contents

of record O are:

r

Word O Value of word equals the number of
logical records written in the file
REMOTE/LOG .
Record O Word 1 Value of word equals the record capacity
File . . . ;
REMOTE/LOG (in logical records) of the file REMOTE/
LOG.
Word 2
through Reserved for system use.
L Word 4

A user program must initialize word O of the file REMOTE/LOG to O
and word 1 to the record capacity of the file. For example, if the
FILE Card in the FILE CARD group of the Cold Start Deck has the

form

FILE REMOTE/LOG,1x1000

4-17

then a user program must initialize Record O, Word O to O and
Record 0O, Word 1 to 6000,

The B 5500 operator is notified when the log is half-full and when
the log is full. Should the log become full, wrap around will
occur. If the log is not present, the operator will be notified

the first time the log is accessed.
Operator notification is wvia the SPO and the messages are:

#REMOTE/LOG FULL
This message is typed when the log is full. Wrap-

around will occur the next time the log is accessed.

#DUMP REMOTE/LOG
This message is typed when the log is half-full,

#NULL REMOTE/LOG
This message is typed the first time the remote log

is accessed and is not present.

THE WR KEYBOARD INPUT MESSAGE.

If the file with (file identification prefix) REMOTE and (file
identification} LOG is not on disk and the operator enters a WR
keyboard input message, then 1000 segments are obtained for the
file REMOTE/LOG and it is entered in the disk directory. The
first 1000-ABRTLNGTH segments are reserved for log-entries; the
record capacity in logical records of this area equals 6 x (1000-
ABRTLNGTH). The remaining segments are reserved for information
bertinent to remote terminals currently attached to programs for
abort logging if necessary. An entry is made in this section of
the file for each remote terminal attached to a job. The maximum
number of such entries is 3 x (ABRTLNGTH—l). The message

#REMOTE LOG ON DISK

is typed out on the SPO when the REMOTE/LOG has been placed on disk

and initialized.

L4-18

SECTION 5
I/0 CONTROL

GENERAL.
The I/0 Control functions of the MCP are logically divided into

two parts:

a. Processing of I/O requests made by the object program,

and,
b. Processing of situations resulting from a hardware actionj;
i.e., an independent interrupt.

The first covers opening the files, reading and writing files, with
special regard to problems offered by the disk files, and closing
the files. The second describes the processing of I/O results,
hardware errors, and error routines. Section 5 focuses on the

detailed MCP Table information which is applicable to I/0 Control.

T/0-QUEUE (LOCATQUE, UNIT).
TOQUE, FINALQUE, and LOCATQUE together with UNIT forms the I/0-

QUEUE. An I/O request for logical unit U requires three words of
space in the I/O—QUEUE. If the request occupies position S in the
I/0-QUEUE, then TOQUE(S) contains the I/O descriptor for the re-
quest. FINALQUE(S) contains the I/0 descriptor skeleton to be used
at I/0 complete time to rebuild the original I/0 descriptor. LO-
CATQUE(S) points to the location of the I/O descriptor at the time
of request. The spaces not used in the I/O—QUEUE are linked to-
gether through IOQUE. The first available entry is pointed to by
TOQUEAVAIL.

All entries in LOCATQUE have the following format:

MIX NOT

ADDRESS
TNDEX USED ER LUN INDEX

Word Field Contents

5 [0:3] Descriptor identification bits.

MIX INDEX [3:5] MIX INDEX of program which requested
the I/0 operation.

[8:3] Not used.
ER [11:1] Error retry in process.
LUN [12:6] Logical unit number of unit on which

the I/0 is to be executed.

INDEX [18:15] Index into I/0-QUEUE of next I/0 request
on this unit. @77777 if no additional

requests occur.

ADDRESS [33:15] Address of the I/O descriptor used for
this request at time request was made.
If buffering is being used by the object
brogram, the descriptors are rotated
and the I/0 descriptor may not remain

in its original location.

All entries in UNIT have the following format (this is a SAVE

array):
&/ ERROR
TYPE =] NOT _
FLAG | WAIT VARIES INDEX INDEX
CODE E =1 reapy| ¥4
BIT
0 5 13 14 15 16 18 33 Ly

5-2

Word

Type code

Error field

o/1

Varies

INDEX

Field

[0:1]

[13:1]

[14:1]

[15:1]

[16:2]

[18:15]

Contents

Flag bit.

0 = card reader.

1 = line printer.

2 = magnetic tape.

3 = drum.

4 = disk.

5 = SPO.

6 = card punch.

8 = paper tape punch.
9 = paper tape reader.

=
o
I

data communications.

Error field of last I/O done on this

unit.

Not ready bit O

unit ready.

1 = unit not ready.
Error flag bit O = no errors.
1l = errors.

Waiting for I/0 channel 1 = I/O

awaiting an I/0 channel.

I/0 in process bits 00 = unit not
in process.
11
01

I

unit in process.

for line printer
only. TI/O
complete but
awaiting printer

finish.

Index of first I/O request for which

service is not complete. @77777 it

5-3

Word Field Contents

INDEX (cont) none, This is the first entry in the
QUEUE.
[33:15] Index of last I/0 request (entry in the

QUEUE) for which service is not complete.

INPUT OUTPUT ASSIGNMENT TABLE.
The I/0 Assignment Table is bPresented as table 5-1. The discussion

which follows the table focuses on the logical unit numbers for

each I/0 unit.

LOGICAL UNIT NUMBERS.

The MCP associates one unique logical unit number with each I/0
unit, which is different from the hardware unit number. The logical
unit numbers assigned the I/0 units were determined by the format

of the result of the Read-Ready-Register (RRR) operator. The re-
sult of the RRR operation is stored in the field [17:31]. Num-
bering from right to left, bit [47:1] is numbered 0, and bit [22:1]

is numbered 25.

Table 5-1
I/0 Assignment Table

UNIT LOG&SQEEENIT RRRMECH BIT
MTA 0 Ly
MTB 1 46
MTC 2 Ls
MTD 3 Ly
MTE 4 43
MTF 5 L2
MTH 6 41
MTJ 7 4o
MTK 8 39

Table 5~1 (cont)
I/0 Assignment Table

UNIT LOGﬁgﬁiEENIT RRRMECH BIT
MTL 9 38
MTM 10 37
MTN 11 36
MTP 12 35
MTR 13 34
MTS 14 33
MTT 15 32
DRA 16 31
DRB 17 30
DKA 18 29
DKB 19 28
LPA 20 27
LPB 21 26
CPA 22 25
CRA 23 24
CRB 24 23
SPO 25 22
PPA 26 21
PRA 27 20
PRB 28 19
PPB 29 18
DCA 30 17
XXX (Used by 31
ZIP)

CDA 32
CDB 33
CDC 34
CDD 35
MTX 36

CDE through CDZ, ex- 37 through 64

cluding CDI and CDO,

and CD2 through CD9.

il

5-5

TINU is an array used by the I/O routines and provides information

about the I/0 units.

logical unit number.

The entries in TINU are ordered according to

Information about the unit with logical unit

number, LUN, is in TINU [LUN]. All entries in TINU have the following

format:
HARDWARE R/
UNIT LUN W UNIT MNEMONIC
NUMBER
0o 3 8 11 24 L7
Word Field Contents
0 [0:3] Not used.
[3:5] Unit number recognized by hardware.
0 [8:5] Not used.

[11:17] This field contains the logical unit
number indicator, which has the following
characteristics. The expression
(0&TINU [LUN] . [5:11:7] /@1000000000000)
will produce a result with all Zeros, ex-
cept in the bit location corresponding to
the RRR result bit location designated
for the unit represented by TINU [LUN].

[18:12] Error count for unit while open.

Unit [30:18] Three character abbreviation for the unit
mnemonic

represented by TINU [LUN].
CRA.

For example,

LABELTABLE, MULTITABLE, and RDCTABLE contain label information by

logical unit number.

5-6

The LABELTABLE is the primary table in the group. The entry of a

unit into this table specifies one of the following:
a. The unit is NOT READY.

b. The unit is READY and contains a file that can be used
for output (e.g., a line printer file, or a magnetic

tape file with a write-ring).

Cc. The unit is READY and contains an input file not in-use
(the LABELTABLE entry in this case would include the

file identification of the input file), or
d. The file is READY but in-use.

The MULTITABLE contains the multiple file identification of the
file, if any, on the unit represented by the table entry. The RDC
Table contains the reel number, purge date, and cycle number of

the file, if any, on the unit represented by the table entry. In-
formation in the LABELTABLE, the MULTITABLE, and the RDCTABLE is
obtained from the standard labels on the files, if the files are

so labeled. Otherwise, the information can be supplied through the
use of Label Equation Cards or operator messages. The STATUS Pro-

cedure has the primary responsibility of maintaining these tables.

LABELTABLE [I] contains the file identification for logical unit I.
MULTITABLE [I] contains the corresponding multi-file identification.
RDCTABLE [I] contains the corresponding reel number ([14:10]), cre-
ation date ([24:17]), and cycle ([41:7]). If UNIT I is assigned

to a program, RDCTABLE [I], [8:6] contains a mix index. Special
entries into the LABELTABLE include:

Entry Contents

@114 Unit not ready.

-@1h Unit in use by system.

@214 Unit is RW/L or saved.

@314 Unit contains an unlabeled tape.
+ Unit available.

Entry Contents

- Unit in use.
0 Scratch.

For units O through 15:

PRNTABLE [I] contains a 1 in [30:18] if the file is labeled, and,
if assigned to a program, the address of the top I/O descriptor in
[15:15]. PRNTABLE [I] . [1:1] is 1 if the unit has a write ring.
UNIT[S] contains the F field pointing to the first I/0 in IOQUE.
IOQUE[S] (waiting 1/0 descriptors) contains the F field pointing
to next I/0. If none, @77777 and C field points to UNIT[S].
TIOQUEAVATL points to the first open space in IOQUE; each then
points to the next.

FINALQUE[S] (skeleton descriptors) contains the result expected.
LOCATQUE[S] contains the location of the top I/0 descriptor.

DATA COMMUNICATION BUFFER

] A DA

PRIMARY FTLE WORD TACOM DATA

MEMORY I/0 LINK NT STATUS -

LINK ' cou WORD BUFFER
NOTE

With respect to File Link, [FF]
link to next buffer, and [CF]
address of top IOD.

1l

NON-DATA COMMUNICATION BUFFER

PRIMARY
MEMORY
LINK

SECONDARY
MEMORY
LINK

FILE ILINK
[FF]

[cr]

WORD
COUNT

DATA
BUFFER

NOTE

For input, READQ 1link; for output, ILL
link, [FF] = points td previous entry.
[CF] = points to next entry - the Data-~
com status word is the first word of
the Data Buffer,

FILE PARAMETER BLOCK (FPB) - ADDRESSED BY R+3.
Each program has an FPB, which is created when a program is com-
piled. It is later modified by the SELECTION Routine during the

"fix-up" before a program is initiated. The FPB for a program has

an entry for every file to be used by the program.

When a file is declared in a program, that is, when the source
program associates the file identifier with a file name and file
handling techniques, the compiler assigns the file identifier a
file number. This file number, rather than the file identifiér, is
then used in all references made to the corresponding file by the
object program. For each file member, and in file number order,
there is an entry in the program's FPB. Each entry in the FPB
contains thé file identifier, the multiple file identification, and
the file identification for the particular number. The location

and size of the FPB are placed in an entry of the program's zero

5-9

segment. When the SELECTION Procedure is performing "fix-up" op-
erations, it uses this information to obtain the FPB. The FPB

must be used at this time to process Label Equation Cards, if any.

Label Equation Cards are special program parameter cards that can
be used at run time to associate a file name with a file identi-
fier used in the source language representation of a program. Each
Label Equation Card contains the file identifier concerned and

the equation information. The equation information includes the
multiple file identification and the file identification to be
associated with the file identifier. When SELECTION obtains a
program's FPB, it also obtains all Label Equation Cards for the
program, if any. Then the file identifiers in the FPB entries are
compared with the file identifiers on Label Equation Cards. If a
match is found, information in the FPB is replaced with the corres-
ponding information from the Label Equation Card. It is in this
way that file names associated with files represented by file
identifiers can be decided at run time. After all Label Equation
Cards for a program have been handled, SELECTION modifies the FPB
again by removing the file identifier entries, which are no longer
required. Then a descriptor containing the address of the compacted
FPB is placed in a specified location in the object program's PRT.
Using this description and a file number, the object program is

able to make all necessary references to FPB entries.

WORD 1
METID
0 6 Ly
Word Field Contents
0 [0:6] Not used.

5-10

Word Field Contents
MFID [6:#2] Seven characters multi-file identifica-
tion.
WORD 2
FID

0 6 L7
Word Field Contents
0 [026] Not used.
FID [6:42] Seven character file identification.
WORD 3

REEL DATE

0 18 Ly
Word Field Contents
REEL [0:18] Reel number in three character alpha.
DATE [18:30] Creation date in five characters.
WORD 4

CYCLE ERRORS LU + 1 TYPE
L
0 12 24 36 L2 43 L7

Word Field Contents

Cycle [0:12] Cycle number (two characters).
Error [24:12] Total number of errors for this file.
LU + 1 [36:6] Logical unit number plus one. Zero

indicates unit not assigned.

Forms [42:1] 1 = types of forms messages.
Type 0 = CP/CR.
[43:5] 1 = LP only.
2 = MT.
3 = DG (designated).
4 = LP/PBT.
5 = specified unit (unlabeled).
6 = PBT only.
7 = PT.
8 = PT unlabeled.
9 = MT unlabeled.
10 = disk.
11 = SPO.
12 = disk serial.
13 = disk update.
14 = data communications.
15 = PBD only.
16 = PBT/PBD.
17 = LP/PBD.
18 = LP/PBT/PBD.
19 = REMOTE
WORD 5
Word Field Contents
File open [1:1] 1 = file is open.
[2:46] I/0 time on this unit.

FILE INFORMATION BLOCK (FIB).

At run time, there is one FIB generated for each file to be used by

a program. An FIB is generated by an object program at each

5-12

program point_corresponding to a filékdéélaration in the source
language representation of the program. Initially, the FIB con-
tains only the information about file handling techniques provided
in the source program. When a file is put to use, I/O routines

use a file's FIB to store information pertinent to the file such

as block counts, record counts, etc. At the point when a file's
FIB is created, a buffer descriptor area, containing an I/O descrip-~

tor for each buffer area to be used for the file, is also created.

Word Field Contents
0 Beginning file.
1 Beginning reel.
USE Routines (see note).
2 Ending file.
NOTE
Field Contents
[1:11] Starting index, BEFORE Routine.
[12:12] Ending index, BEFORE Routine.
[24:12] Starting index, AFTER Routine.
[36:12] Ending index, AFTER Routine.
3 Ending reel.
L [1:1] 1 = USE Routines present.
[2:1] 1 = labels omitted,
[3:2] EOR rerun: 00 = no,
01 = output tape,
10 = scratch tape.
[5:1] 1 = optional.
[6:1] 1 = no I/0 part.
[7:1] 1 = sort file.
[8:4] Internal type code.
0 = CR
1 =1P

5-13

5-14

= MT
= DR
= DK
= SPO
= SPO
= PBT
= PP
= PR
DC
CD
PBD

O 00 N O Ut W
1

T
N RO
noonon

[12:1]

[13:11]
[24:1]
[25:2]

[27:3]

[30:18]

[1:1]

[18:15]

Contents

= bits [13:11] are the file number.
1 = bits [13:11] are the FPB index.

See above.
1l = release unit at CLOSE.

Disposition of file.
00
01 = no rewind.

10 = RW/LK.

11 = RW and release.

rewind.

Access mode.

O = serial.
1l = random.
2 = update.

Save factor.

Used by File Security to indicate (in
ALGOL and COBOL I/0O ERROR Routines) that
we do not have a parity, but an invalid

user condition.

Used by PRNPST/DISK to contain a count of

the number of writes used.

Word Field Contents

[40:1] 1 = at end of file.
[41:1] 1 = CLOSED, unit retained.
[42:1) 1 = CLOSED, unit released.
[43:1] 1 = input.
RN 1 = reverse.
[45:1] Not used.
[46:2] 0 = unblocked.
1 = TECH A.
2 = TECH B.
3 = TECH C.
6 Block count.
7 Record count.
8 [3:15] Relative PRT location of descriptor for

hash totals.

[15:10] Number of rows.
for disk files.
[33:15] Size of rows.
9 [1:1] Block already checked (COBOL).
[3:45] Rerun control (number of records).
10 Rerun control counter.
11 Number of records per block.
12 Number of records in current block.
13 [1:9] Number of buffers requested.
[10:9] Number of buffers assigned.
[19:1] 1 = bad key.
[20:1] 1 = seek given.

[21:1]

[
i

read (first operation) for COBOL only.

5-15

Word Field
[22:1]
[23:1]
[24:1]
[25:1]
[26:1]
[27:1]
[28:10]
[38:1]
[39:5]
[44:3]
[47:1]

14

15

[24:6]
[30:10]
[40:8]

16%

17

18 [3:15]
[18:15]
[33:15]

19%

¥ With flag bit off.
5-16

Contents

1

open.
1l = write block back.

O = alpha (mode).

1l = reverse (direction).
1l = memory inhibit (for input).
1 = input.

Current reel number.
1 = forms.
External type code.
Not used.
1 = COBOL.

Descriptor for disk file header in core.

If file is open, 30 words. (See note.)

Error use input index.

Error use input end index.

Logical unit number.

Special select counter.

Block count.

Copy of current original I/O descriptor.
Number of words left in the buffer.
Buffer size.

TECH C buffer length.

Maximum record length.

Final I/O descriptor for program release
(FINALQUE).

NOTE
FIB[14] has a special use for printer backup

files.

[18:15] Pointer to current 18-word psuedo-
buffer; i.e., area where next buffer load

will go (count backwards).

[33:15] Pointer to last available pseudo-
buffer.

When FIB[14].[FF] = FIB[14].[CF], then a
PBIO must be done.

FIB[5].[18:15] contains a count of the num-

ber of writes (number of pseudo-buffers) used
in this file. Used to put in I/0 descriptor
for use at print time to catch parities, dis-

crepancies, etc.

FILE TANK.
ALGOL (Addressed by a descriptor located in the file's PRT cell.)

Woxrd Contents

0] Pointer to label (parity action label). not used
1 Pointer to label (EOF action label). }by COBOL
2 Pointer to FIB[O].

3 ‘Pointer to read-in label if input.

Pointer to build label if output.
L Pointer to top I/0 descripfor.
5 Top I/0 descriptor.
6

'~ Remaining I/0 descriptors.

5-17

COBOL

Words 2 through N are located in the PRT for COBOL object programs.

Words 0 and 1 are not present.

LABEL FEQUATION TABLE (USED BY SHEET [13]).

Entries in the Label Equation Table are:

Word Field

0

1

2 [0:18]
[18:30]

3 [0:12]
[42:1]
[43:5]

5-18

Contents

Multi-file identification (seven

characters).
File identification (seven characters).

Reel number (BCL three characters).

Creation date (BCL five characters).
Cycle (BCL two characters).
Forms message required bit.
File types:
O = card punch or card reader.
1l = line printer.

2 = labeled magnetic tape.

3 = specific unit.

4 = line printer or printer backup tape.
5 = unlabeled specific unit.

6 = printer backup tape.

7 = paper tape.

8 = unlabeled paper tape.

9 = unlabeled magnetic tape.
10 = random disk.
11 = SPO.

12 = serial disk.

13 = update disk.

Word Field

L [0:6]

[6sk42]

5-11

12

13
14

26
27
28

29

Contents

14 = data communications.
15 = printer backup disk.

16 = printer backup tape or printer

backup disk.
17 = line printer or printer backup disk.

18 = line printer, printer backup tape

or printer backup disk.
19 = remote.

Number of characters in the internal file

name.

First seven characters of the internal

file name.

Remainder of the internal file name (as

required).

Equals ? if this is the last entry; other-
wise, entries 14 through 25 are the same

as above for the next file.

Disk address of the next Label Equation
entry. If there is no other entry, it

equals 0.

SECTION 6
MCP OPERATIONAL TABLES

GENERAL.

The MCP must have certain information about the object programs

it is running and the equipment it is controlling. This information
is stored in various tables and is updated during execution time.
This section deals with the tables and procedures which sustain the

operation of the MCP.

PRT|*2*|.

The PRT is a two dimensional array. The rows of the PRT array are
the PRT's of the object programs in the current mix. The rows of
the PRT array are ordered according to the MIX indexes of the pro-
grams in the mix. Access can be made to the PRT of a given program
by accessing the PRT array with a row subscript equal to the pro-
gram's MIX index; e.g., PRT [MNDX, 7] references the eighth word

in the PRT of the program which has the MIX index MNDX.

Word [I, *] of the PRT array is:

ADDRESS OF
FIRST WORD OF
1lo0|1 WORD PRT FOR JOB
COUNT WITH MIX
INDEX I
0 1 2 8 18 33 Ly
Field Contents
[0:3] Identification.
[3:5]
[8:10] Size of PRT.
[18:15]
[33:15] Address of first word in PRT of

object program (R+0).

Format of Object Program's PRT:

10

11

12

13

14

Contents

"EEEEEEEE"

5 000....0

FPB

SD

BC

AIT

MSCW
INCW

COM/PRL

SIZEERROR/
OWN ARRAY

TABLE

ALGOLWRITE/
COBOLFCR

D iption

Used by MCP to denote beginning of PRT.

Used by ANALYSIS for branch to non-

pPresent label.

"Memory" for normal state.

Descriptor pointing to FILE PARAMETER
BLOCK.

Descriptor pointing to SEGMENT
DICTIONARY.

Descriptor pointing to BLOCK CONTROL

intrinsics.

Descriptor pointing to ARRAY INFOR-
MATION TABLE.

Mark Stack Control Word.
Initiate Control Word.

Location to store constants for the
Communicate and Program Release

operators.

Data descriptor pointing to R+0. F
field points to location of stack
bottom.

Descriptor pointing to OAT in ALGOL.

COBOL [FF] points to the PRT cell re-
served for SIZE ERROR indicator.

Program descriptor pointing to write
intrinsics for ALGOL, and to FCR for
COBOL.

Cell Contents Description

15 ALGOLREAD Program descriptor pointing to read
intrinsics for ALGOL.

16 ALGOLSELECT/ READ/WRITE descriptor pointing to
COBOLREAD
select descriptor for ALGOL.

17 0 ZERO.

20 BLOCKCTR Block level counter (starts at 1 with

outer-most block of symbolic programs).

21 JUNK ' Temporary storage location for use by

software.

22 EXITR Character mode descriptor which refer-
ences the first syllable of the program;
i.e., the outermost block which is gen-

erated by the compiler.
23 LISTRTN Used to obtain next element of a list.

24 Program descriptor of block number 2;

i.e., the block which corresponds to

the outermost block of the symbolic

program.
25 ERROR Storage location used by compiler to
COUNT store the error count. First PRT
location assigned by compiler.
26 SAVE TIME Length of time to save object code.

Cells 22 through 25 are used in this context by ALGOL.

The PRT contents of a FORTRAN object program are:

Cell Contents
R+ 0 EEEEEEEE
1 Used by .LABEL.
2 500000000...0
3 FPB
L SD
5 BC
6 ATIT
7 MSCw
10 INCW
11 COM/PRL
12 R + 0, stack
13 OWNARRAY description
14 ALGOL WRITE
15 ALGOL READ
16 ALGOL FILE CONTROL
17 o
20 BLOCKCTR
21 JUNK
22 BASENSTIZE
23 LISTRTN
24 CLASN
25 HOLTOG
26 Powers of ten
27 21 word ARRAY for any formatted output and for use by ZIP.
30 ERR
31 SQRT
32 ARSTIN
33 EXP
34 SIN
35 ALOG
36 TAN
37 ATAN
Lo GAMMA
L1 DATAN
L2 DCos

6-4

Cell Contents

R + 43 DSIN
Ll ATAN?2
Ls CABS
Lhe DMOD
Ly DEXP
50 DSQRT
BED [*].

The BED array, the SLEEP, and COMPLEXSLEEP procedures are used to
suspend the processing of an object program until a certain condi-
tion exists. Two word entries into the BED are made through use

of the SLEEP Routine. The last entry in the BED is pointed to by
JOBNUM. The BED is also used by the NOTHINGTODO Routine to restart
jobs which have been temporarily suspended. Entries made by the
SLEEP Routine are:

WORD 1
ADDRESS
OF WORD
1]01}11 MIX
- TO BE
TESTED
o 12 8 18 33 Ly
Contents Field Description
5 [0:3] Descriptor identification bits.
MIX [3:5] MIX INDEX of suspended program.
0 [8:10] Size field.
rr [18:15] F Register setting for suspended program.
Address [33:15] Address of word to be tested to determine

if the necessary condition is satisfied.

6-5

WORD 2

0 MASK WORD

0 L7
Word Field Contents
0 [0:1] Flag bit (cannot be used for mask bit).
MASK [1:47] Contains ones in bit positions which

indicate when the needed condition is
present. All other bits are set to

zero.

Entries made via the COMPLEXSLEEP Routine are:

WORD 1
ADDRESS OF
WORD TO BE
°191° MIX rF TESTED
0 1 2 8 18 33 Ly
Word Field Contents
0 [0:3] Operand identification bits.
MIX [3:5] MIX INDEX of suspended program.
0 [8:10] Size field.
P [18:15] F Register setting for suspended program.

Word Field Contents

Address [33:15] Value to be tested against the result
from the procedure called by accessing

word 2.

WORD 2
ACCIDENTAL ENTRY PROGRAM DESCRIPTOR
u
0 7
Word Field Contents
Program [0:48] Program descriptor which, when accessed,
Descriptor

will return a value of 1 if the suspended
program can be reactivated. It returns
a value of O (zero) if it cannot be re-

activated.

As conditions dictate, NOTHINGTODO searches the BED to determine if
a program can be reactivated. Essentially, the following statements

indicate how the test is made.

NT1l := Index of entry to be tested;
NT2 := BED [NT1] ;
NT3 := BED [NTLl + N

TF NOT (NT2 AND NT3) # NOT O THEN START JOB;

BED is ordered by priority.

JOBS ACTUALLY RUNNING: (JAR) [*,*].

The SELECTION routine will fill the JAR from the SHEET when enough

space is available to run a job. Entries in the JAR are ordered by

mix index and are:

L

Field

[1:1]

[1:2]

[8:10]

[18:15]

[33:15)
[8:10]

[33:15]

[1:23]

[24:2L4]

[18:15]

Contents

Object program's first name (seven char-

acters). If this is a compiler, this

entry is < O,

Object program's second name (seven char-
acters). If this job is in the process

of being DS-ed, this entry is < O,

After SELECTION, if this program was
compiled using COBOL = 1.

During SELECTION, as follows:

O = normal.

2 = job has been XS-ed.

3 = job has been ES-ed.

0 = go job (from Compile-and-Go).

1 = compiler (Compile-and-Go).

2 = execute job.

3 = compiler (syntax check - set to 2
later).

4 = compiler (Compile-to-Library).

5 = run job.

99 = aborted job (from Initialize).

1023 = syntax errors.

Skeleton disk address (if JAR [2] . [8:10]
= 1, 2, or 4) for the skeleton SHEET for

GO part.
Priority.
Scheduled identification for this job.

Estimated processor time.

Estimated I/0 time.
Starting date for the log (binary),

Starting time for the log.

Size of log information in ESPDISK.

Word Field Contents

6 [33:15] Location of the first record of the log
information in ESPDISK. If [2] . [8:40]

= 0, then this is the compile log infor-

mation.
7 Idle time.
8 Length of each row of the code file.
9 Number of rows.
10-29 Disk address for each row of the code
file.

The code for a given program may be located by using the JAR entries
beginning at JAR [10]. The Segment Dictionary for any given normal
state program contains a disk address in the [33:15] field which

is the address of that segment, relative (by disk segment) to the

JAR [10] entry. If any given relative address exceeds the JAR [8]
length, then the next row (JAR [11], JAR [12], etc.) is automatically
chosen for the location of the code on the disk. The following for-
mula may be used to locate a given segment of code on the disk for

a given program:

Assume RD = the relative disk address from Segment Dictionary
entry [33:15] field.
DISK SEGMENT ADDRESS = (JAR [PIMIX, (RD DIV JAR [PIMIX, 8])
+ 10]) + (RD MOD JAR [PIMIX, 8])

Mix indexes which are inactive are indicated by a zero entry in
JAR [MIX]. If a breakout has been done, JAR [10] = 0, and the Seg-

ment Dictionary addresses point to the copied code file in backup

storage.

SLATE |*|.

The SLATE is a queue of requests to run independent MCP routines
whose functions are not directly related to object programs; e.g.,
STATUS, CONTROLCARD, SELECTION, and RUN.

6-9

MCP routines which desire to run independent routines cause entries
to be made in the SLATE by calling the INDEPENDENTRUNNER Routine and
passing the address of the program descriptor for that routine and

a parameter for the routine. INDEPENDENTRUNNER then makes the two
necessary entries into the SLATE. The first word of an entry is a
parameter to the routine. The second word of an entry is the PRT
address of the routine. NSLATE and LSLATE are pointers into the
SLATE. NSLATE points at the last entry which was started, and
LSLATE points at the last entry placed in the SLATE.

Routines noted in the SLATE are called out by the NOTHINGTODO Routine

on a first-in, first-run basis. All entries in the SLATE have the
format:
WORD 1
PARAMETER
0 Ly
[0:48] varies according to routine. The parameter is for the

Independent Routine.

WORD 2

ADDRESS

0 33 Ly

If word 2 is negative ([l:l] = 1), this program was compiled by
COBOL.

6-10

Word Field Contents

0 [0:33]

Address [33:15] Address points to the program descriptor of
the Independent Routine.

SHEET [*].

The SHEET provides information to the SELECTION Routine to introduce
jobs into the mix. Entries in this table are made by the CONTROL-
CARD Routine. Entries in the SHEET are:

Word Field Contents
0] Object program's first name (seven charac~-

ters). If this is a compiler, this word is

< 0.

1 Object program's second name (seven char-

acters).

2 [1:2] O = normal, waiting.
2 = job has been XS-ed.
3 = job has been ES-ed.
[8:10] 0 = go job (from Compile-and-Go).
1l = compiler (for Compile-and-Go - set to
2 later).
2 = execute job.
3 = compiler (for syntax check).
4 = compiler (for Compile-to-Library).
5 = run Job.
[18:15] Skeleton disk address (if SHEET [2] .
[8:10] = 1, 2, or k).
[33:15] Priority (same as SHEET [18]).
3 [8:10] Schedule identification for this job.
[33:15] Estimated processor time.
N Estimated I/0 time.

6-11

Word

10
11
12

13

14
15

16
17
18
19
20
21

22

23

6-12

Field

[1:23]
[24:24]
[1:1]
[18:15]

[33:15]

[9:9]

Contents

Starting date for the log (binary).
Starting time for the log.

1 = new format for Label Equation Cards.
FPB Information.

Location of the first part of the log.

Stack size.

Disk address of Label Equation entries

applicable to this entry only.

Disk address of Label Equation entries
presented when program was compiled, and

applicable to all executions of this job.
Estimated processor time.

Estimated I/0 time.

Priority,

Common value.

Estimated core requirement.

Stack size

Time to save program (on Compile-to-

Library).

Remote station address, if any, other-

wise, O,

Word Field

[31:17]

24
25
26
27
28
29

Contents

Time this job was entered in the SHEET
(for TS message).

User code.

Disk address for next SHEET entry (= O,
if this is the last entry).

The word, field, and contents for the format of segment zero for the

programs 1is:

Word Field

0

7 [18:15]
[33:15]

10
11
12

Contents

Relative location of the Segment Dic-

tionary.

Size of the Segment Dictionary.

Relative location of the PRT. If < O
then job compiled by COBOL.

Size of the PRT.

Relative location of the File Parameter
Block.

Size of the File Parameter Block.

Starting segment number. [1:1] =1 if

new format, else O.

Core requirement/6lL.

Number of files.

Word Field Contents

13

14

15 Disk address of Label Equation entries
presented when program was compiled and
applicable to all executions.

16 Estimated processor time (from
compilation).

17 Estimated I/0 time (from compilation).

18 Priority (from compilation).

19 Common value (from compilation).

20 Estimated core requirements (from
compilation).

21 Stack size (from compilation).

22

23

24

25

26

27

28

29

SEGMENT DICTIONARY AND RELATED PRT CELLS AS CREATED BY A COMPTILER.
Each program has a Segment Dictionary containing one entry for every
Program segment in the program, and one word for every intrinsic
used. The first word in the Segment Dictionary is referenced as

word zero. The entry for any particular segment is located in the

Segment Dictionary word that corresponds to that segment's number;
e.g., the entry for segment 3 would be in the fourth word of the

Segment Dictionary.

A Segment Dictionary entry as created by a compiler contains the
following information, except for entries for intrinsics.

a. The relative address of the segment within the program
file on disk. Relative address zero is reserved for a
special segment which contains such information as a
pointer to the PRT, a pointer to the Segment Dictionary,

a pointer to the program parameter block, etc.
b. The size of the segment.

c. An index into the PRT of the first program descriptor
that references the segment.

d. A flag specifying whether or not the segment is a type
2 segment.

Entries for intrinsics provide no segment size and have the intrin-
sics number in lieu of the relative disk address. Otherwise, they

are the same.

Although each Segment Dictionary entry may have one or more program
descriptors in the PRT, some have nonej e.g., fill segments. The
program descriptor entries in the PRT, as created by a compiler,

contain the following:

a. The relative address within the segment pertinent to

the program descriptor.

b. The index into the Segment Dictionary of the entry ior
the segment to which the program descriptor pertains.

This index is equal to the number of the segment.

c. A link (index) to the next program descriptor which

addresses the same segment.

d. A stop bit if the program descriptor entry is the last

one pertaining to the segment.

FIELDS AND THEIR VALUES FOR THE SEGMENT DICTIONARY AND THE RELATED
PRT CELLS.

This topic is dealt with by focusing on the fields and the values
of, first, the Segment Dictionary, and, second, the PRT. The

fields and their values for the Segment Dictionary are:

Field Field Value

[0:1]

[1:1] 1 for type 2 segments (DATA), otherwise, O.

[2:1] 1 for intrinsics, otherwise, O.

[3:1] Reentrant bit.

[L4:4]

[8:10] Link to program descriptor in PRT (links to first

entry in link-list).

[18:15] If program segment, size of segment; if present, its
location in core. For intrinsics, it is mean-

ingless.

[33:15] Disk address of segment or intrinsic number
(relative).

The fields and their values for the related PRT Cells are:

Field Field Value

[0:4] Non-present program descriptor bits.

[4:2] Mode and argument bits.

[6:1] Stop bit showing end of link list.

[7:11] If stop bit is on to indicate that it is the last

entry, this field contains the index into the
Segment Dictionary. Otherwise, it is a link (in-
dex) to the next program descriptor that references
the segment.

6-16

Field Field Value

[18:15] Index into Segment Dictionary of the entry per-
taining to the segment.

[33:15] Relative address within the program segment per-
tinent to the program descriptor.

FORMAT OF FIRST 30 WORDS (1 DISK SEGMENT) OF ALL PROGRAM FILES.
The first 30 words, starting at relative address O (zero), of all

program files must have the following format:

Word Field Contents

0 Location of Segment Dictionary.
1 Size of Segment Dictionary.

2 Location of PRT (O if compiled

using COBOL) .

Size of PRT.

Location of File Parameter Block.
Size of File Parameter Block.

Starting segment number.

N ot W

[33:15] Number of files.
[18:15] Core requirement/6k.

8-29 Not used.

NOTE
The locations noted above are specified accord-

ing to their relative address within the
program file. Sizes are expressed in terms

of number of words.

METHOD FOR DECLARING ARRAY SPACE.
The call on the DF MCP to declare array space is nearly identical
to the call made when using the MD MCP. With the exception that

a different literal value is used to specify the type of storage,

6-17

the same parameters are required in the stack. However, when the
DF MCP is called, an operand call on a block control intrinsic pro-

gram descriptor is used rather than a communicate operator.

The following parameters are required in the stack:

a. Mark Stack Control Word.

b. Descriptors pointing to the array descriptors for

each array being declared.

c. Sizes of the array dimensions.
d. Number of dimensions.
e. Number of arrays being declared.

f. TYPE of storage.

With these parameters in the stack, an operand call on the block
intrinsic program descriptor will cause the array space setup. The

values for TYPE are defined as follows:

= Regular array space (overlayable).
= SAVE array space (non-overlayable).

OWN array space.

W N = O
n

= SAVE and OWN array space.

NFO.
NFO contains the following for each active mix index and is used
for reconstructing the PRT for stack overflow conditions. NDX

represents the number of entries per job in the NFO Table.

NFO [(MIX—l) times NDX] = File Parameter Block data

descriptor.

NFO [(MIX-1) times NDX+1]

Segment Dictionary name

descriptor.

NFO [(MIX-1) times NDX+2]

NFO [(MIX-1) times NDX]
NFO [(MIX-1) times NDX]

NFO [(MIX-1) times NDX]

LOOKQ .

= Location of bottom of stack

(word containing all B's).

[1:17] = Clock time at BOJ.

Core estimate DIV 64,

[18:15]

LLocation of stackbottom.

[33:15]

LLOOKQ is a variable in the MCP's PRT which will point at the first

entry for a logged-in user of a remote device. Each entry is ten

words long, including the memory link. Each entry links to the

next and will eventually point back to LOOKQ. The format of the

LOOKQ word is:

Field Contents

[0:9] 0

[9:9] @777

[18:15] Address of secondary link word for last entry.
[33:15] Address of secondary link word for first entry.

LOOKQ entry:

Word Field
0
1
[0:9]
[9:9]
[18:15]
[33:15]
2
3

Contents

Memory link word for save memory

type.

Secondary link word.

o

Terminal and buffer number.
Address of next entry.
Address of previous entry.

User code.

CCMASK1

Word Field Contents

L CCMASK?2

5 INFOMASK1

6 INFOMASK2

7 MIXMASK

8 Time when user logged in (sec/60).
9 Not used.

MESSAGEHOLDER.

The MESSAGEHOLDER is dealt with as follows:

Field Contents
[18:15] Points at the last buffer added to the SPO queue.

The first word of each message starting at MESSAGE-

HOLDER [33:15] is a memory link address of the next

message in the SPO queue that is to be printed. The
last message in the SPO queue will contain zeroes

in the first word.

[33:15] Points at the SPO message that is currently being
printed or the next SPO message to be printed.

A maximum of 100 messages of varied length (length depends on the
routine that calls SPOUT) may be placed in the SPO queue. NUMESS +

100 equals the number of messages left in the SPO queue., If NUMESS
equals -100, then the SPO queue is empty. The messages must contain
a group mark (*). If not, when SPOUT is called, the memory follow-

ing the message will be printed and destroyed.

INQUIRY: ARRAY DCB [16] AND THE ORR WORD.

DCB is a table used by the data communications' handling procedures.

Initially, all words in DCB = O. There are two pointer words used
in conjunction with DCB. These pointer words are NEXTINQ and
CURRINQ. NEXTINQ points at the word in DCB that will be used when
handling the next Inquiry Request Interrupt. CURRINQ points at the

6-20

word in DCB that will be used when handling the next COM9; i.e.,
the next FILL <array row> WITH INQUIRY statement.

HANDLING AN INQUIRY REQUEST INTERRUPT.
When an Inquiry Request interrupt occurs, DCB [NEXTINQ] is tested

to see if it equals zero. If it is zero, a buffer area is obtained
and its address is placed in DCB [NEXTINQ] . [33:15]. Then a read
is performed to handle the interrupt, and the number of words in
the message is placed in DCB [NEXTINQ] . [18:15]. If DCB [NEXTINQ]
were not zero, it would already be set-up with the address and

size of an available buffer area.

If after the read is performed, the result descriptor shows that
input was received, DCB [NEXTINQ] . [1:1] is set to 1, DCB [NEXTINQ]
. [14:4] is set to the terminal unit number of the unit that pro-
vided the message, and the ORR word (see below) is set to note that
the TU is "output ready" or "output possible."

If thé result descriptor shows an "output ready" condition (i.e.,
ready for another line of a message), DCB and NEXTINQ are left as
is, and the ORR word is set to indicate the "output ready" condi-

tion.

HANDLING A FILL WITH INQUIRY.

When a communicate indicates that an inquiry message is requested,
DCB [CURRINQ] is tested for a value less than zero; i.e., tested

to see if DCB [CURRINQ] . [1:1] = 1. If DCB [CURRINQ] is less

than zero, the message from the buffer area addressed by DCB
[CURRINQ] . [33:15] is supplied to the requestor, together with

the TU number in DCB [CURRINQ] . [14:4]. CURRINQ is then incremen-

.ted to the next location. The space for buffer area addressed by
the previous CURRINQ word is returned. If DCB [CURRINQ] is not

less than zero, the requestor is put to COMPLEXSLEEP waiting on
DCB [CURRINQ] < O.

THE ORR WORD. ‘
The ORR word indicates the "output ready" status and "output possi-

ble" status of all TU's. A unit is "output ready" and "output

6-21

possible" if the TU is waiting for a message. If it is handling

one line of output and will be coming back for another,

it is "out-
put possible," but not "output ready."

The following tests provide
"output ready" and "output possible" information.

IF (TWO (TU) AND ORR) # O THEN OUTPUT READY

IF (TwWO (TU + 15) AND ORR) # THEN OUTPUT POSSIBLE

NOTE

TWO is a function such that TWO (X) = 2 * X.

6-22

SECTION 7
BINARY CARDS

GENERAL. ;

Once after every Halt/Load (H/L) operation, the initial operations
call the INITIALIZE Routine into action. The Routine reads from
disk into core the information which was entered into the system
through the MCP load deck and stored on disk by the Cold Start
Routine. This information is ﬁlaced in certain MCP PRT variables.
The Routine initializes and updates the tables used by MCP (PRT,
SHEET, etc.), and performs the first organization and classification

of core storage. It also creates the Available-Disk Table.

After these operations, the MCP prints the H/L messages on the SPO,.
During initialization, the field used to maintain the ready or not
ready status of the peripheral units is set to indicate that all
units are in not ready status. The first execution of the N~-Second

Routine sets the indicators properly.

This section on Binary Cards presents the H/L Button Card, the
ESPOL Transfer and Load Cards, and the Initialization Code brought
in by the H/L Card.

H/L CARD.

Information in the log is not lost due to H/L operations. When the
log becomes half full, a message is typed to notify the operator.
When the log is almost full, an MCP routine is fired up which
changes the name of the SYSTEM/LOG and which initializes a new
SYSTEM/LOG. The new name that is given to SYSTEM/LOG is (M) (D)
{C)/SYSLOG where (M) = a two digit number representing the month of
the year, <D> = a two digit number representing the day of the

month, and {(C) = a three digit number that is incremented each time
the name changing routine is invoked. A keyboard message which
gives the new name is written after the name has been changed. For
example,

*¥%%% NEW LOG FILE IS 1230007/SYSLOG

Table 7-1 presents the H/L Button Card, and figure 7-1 presents a
flow chart of the H/L Card.

7-1

Table 7-1

H/L Button Card

20

ohl1
3410
0360

4231

Mark Stack
Literal 702
Literal 74

Branch Forward Unconditional (40-0)

21

7500
0000

0000

0023

Word Mode
Program

Descriptor

22

0014

41131

0435

Interrogate Interrupt
Literal 3
Branch Backward Unconditional (22-0)

Exit

23

7012
7007

o421

0014

Operand Call F-2
Descriptor Call F-1
B Store Destructive

Literal 3

24

Lyi1
0054
4131

Liss

Initiate I/0
Literal 13
Branch Backward Unconditional (22-0)

Dial A 41

Table 7-1 (cont)

H/L Button Card

25

6461

1065
0000

oL25

Dial B 64
Transfer Bits 10
Literal O

B Not Equal to A

26

0074

0131
0064
4131

Literal 17
Branch Backward
Literal 15

Branch Backward

Conditional (22-3)

Unconditional (23-3)

_7

0000

0062
0064

4131

Literal O
Operand Call 14
Literal 15

Branch Backward

Unconditional (24-3)

30

0000

0066
0104

4131

Literal O
Operand Call 15
Literal 21

Branch Backward

Unconditional (24-3)

31

0000

0072
o124

4131

Literal O
Operand Call 16
Literal 25

Branch Backward

Unconditional (24-3)

7-3

Table 7-1 (cont)

H/L Button Card

32

0000
0076
014l
4131

Literal O
Operand Call 17
Literal 31

Branch Backward Unconditional (24-3)

33

5140
0000
Loyo
0137

Disk File Read Descriptor
7 Segments
from address specified

in 0137

34

5140
0000
L4770
o461

Disk File Read Descriptor
77(8) Segments
from address specified

in 0461

35

5140
0000
4770
L223

Disk File Read Descriptor
77(8) Segments
from address specified

in 4223

36

7700
0000

0000

0037

Character Mode
Program

Descriptor

7-4

Table 7-1 (cont)

H/L Button Card

37

0153
0204

o405

0000

Recall Source Address F-1
Recall Destination Address F-2
Transfer Words OL4

Exit Character Mode

Lo

0167

0106

oLkl
o4Lo

Descriptor Call 35
Operand Call 21
Mark Stack

Literal 9

41

0163

0106

oh41

0010

Descriptor Call 34
Operand Call 21
Mark Stack

Literal 2

L2

0157

0106

ohh1
0660

Descriptor Call 33
Operand Call 21
Mark Stack

Literal 14

k3

0600

0172

0520

4131

Literal 140
Operand Call 36
Literal 124

Branch Backward Unconditional (17-0)

7-5

(2 Jo 1 399Us) pIep T/H 99U} JO 3IBYOMOTJ POTTe3sq ‘T-/ oandtd
aniva 840slig 84 ez
NOSIHNVJNOD 8 43MO1 OL Ligly Laly
¥ HOH NOVLS -0§30 11INS3y LNIHd OL LNIyd OL vz
NIO :1S1T woud stig n"3) {H "Dj 0L HONVHE
30v1d 8 U3JSNVHL 81via vvia
NOVISOL zZEHO IE)
TINNVHO AJVLS NI ‘0 ‘Lz 113001 SS3HO0HJ . ._3mm €
O/1 SHL HO4 o HONVHE ‘LdNHY3L NI MON sl FISLT 9NN
HOLd1HOS3a 1SL7 30Vd -NI GIHSINIA NOILVYY3d0 40 40O
17NS34 1V O/1 NO avad siay 3LVvOOHHIALNI
ﬁ YZZYO
SS3HAAY FHOD OL 000000 SSIHAAY
5IS10 WOUJ SLNIWD3S £9 DNIAVIY
SI NOLLYH3dO YSIa SHL 310N
MOVLS WOHH TSL1 {£0000)
0z aHOM £0000 QHOM MOVLS NI ONV 2530 V1vd 14 WOH 4
OLHONVYS A8 Cala03ds € 113130 ezzr SOV1SOL
SV NOILvH3dO 1817 30vd QHOM NI 00L HOoLldiunsaa
O/1 ALVILINI 11817 340LS MS1a 11V
ﬂ "MOVLS M *0£00000
3INTVA 028 L SVH ‘3404

3HL NI NOILISOd SLI A8 € 'ON
QHOM NI SI €2Z¥0LLPO0000V LS
HOL1dI"OS3a MSIq 3HL :3LIO0N

-3H3IHL ‘ONY ‘SS3HAAY MSIa v
SV Q3sn 38 17IM €ZZ¥ QYOM NI
G3HOLS SI LYHL 00 :1SL7 IHL

(20000) €Z QHOM
<-4 WOHd i OL HONvYHE
OV.LS Ol 00L J GNV JOVLS NI
as17 1Ivo MOY 30V1d

3OV1S 0L SE 0
3130 WOHA
IMEVIIAS
HOLdoS3a o aHOM
vav
S10 71V OLHONvuS

AJVLS NI
2oL
117 30vd

10000
1V Jovis
L MNdvW

'¥0000 OL L3S S| ,.4,,
'P0000 QHOM NI MOH 3HL GNV ‘€0000
QYOM NI 9530 Vv.1VQa 3S1Q 3HL ‘20000
THOM NI 002 :11SL17 JHL SIOVd SIHL

€TTYOLLPO0000PLS = SE000

7-6

(2 Jo z 239°Us) pIeD

1/H @2U3 Jo 3JIeyoMoTd PeTTe®31ad

*T-L @andtyg

3d3HL g30Vvd
lsnr 3a0d

31N23X3 ANV
0-L1 GHOM
Ol HONVHE

ZEv Ol
NHN.L3Y ‘300N
HVHO 11X3

viOL
ol WOH3

SQHOM
H34SNVHL

I-4 NOY3
ss3yaav

NOILVNILS3d
TMvo3d

-4
WOHd
syav

304NO0S
TIVO3H

O

“L1 ‘9L ‘Gl 'v1 SQHOM OL
MSIA 40 0 'ON LNJWOIS WOHL ATTVILINI IHONOYE
3009 40 SAHOM ¥ LSHId 3HL HIASNVHL TTIM SIHL

ﬁ

‘vL 40 SS3HAAY 3H1 O ..S.. SLIS SIHL

a

‘O¥L 40 SS3HAAY 3HL OLNO S13SSIHL

O

JNOVLS FHL 4O £0000 GHOM
NI G3HOLS S| HOM SIHL
19Y00LLp00000VLS = YEOOO

SRS

é\

‘GILVILINI3Y SI NOILYH3dO

O/l 3HL ‘3ISIMHIHLO "Z-I¥ OL G3INYNLIY SI HILSOIH .0,
IHL ‘MO 41 "NOILLYHIJO %SIa GO NOILVILINI WOHS SNHNL3Y
HOLdINOS3AA LINSIY ML "SINIWD3IS £9 30 L000000 SSIHAAY
3810 WOYd Z¥9 LV AHOW3IW 3HOO OLNI NOILVH3dO av3d

SI1A V 40 NOLLVILINI 3A0SV 1v3d3d MON T7IM SIHL

LE QHOM £Z QUOM
OL HONVYHE AOVLISNI AOVLS NI L0000 LV OL HONVHE
ANV JOVLS NI ovl 1 Sy NOVLS MUV ANV JOVIS NI
MOY 30V1d v 30¥d PV MDY 30Vd
“GALVILINIZY SI NOLLYHIdO O/I 3HL ‘ISIMH3HIO ZZ¥ OL
Q3INUNL3Y S} H31SO3Y .3, JHL “MO d1 ‘GNV ‘G3NOIHD NIHL SI
HOLdIHOS3A 1INS3Y JHL "SLNIWDIS L ‘0000000 SSIHAAY
3SIA WOH- OvL0 SSTHAAY AHOWIW 3HOD OLNI NOILYHIJO
GV3Y YSIA V 40 NOILVH3dO JA08V SLY3d3H MON SHHL
NOVLS OLEE SOVLS NI £Z QHOM MNOVLS OL vz
ayom Woud Z :Is1 10000 1V O HONVHE QYoM WOHA
YOLdIyos3a 30w 14 NOVLS HYIE ANV NOVLS NI HOLdiHos3a
3S1d VD MOY JOVid sid 1IvD
LE100L0V00000FLS = E£E000 a
ALdW3 0.
SOVLS NI 10000 1V SI JJVLS sLig 9s3a
L JOVLS NHVW GNv z:0v 0L 1Ins3y vt
811 IOV RZM_%..WFME od JHVIWOO

¢

O

7-7

ESPOL TRANSFER CARD.
This is an alphanumeric card, which is the final card in the MCP
Load Deck and the COLD START Deck. Table 7-2 presents this card.

Table 7-2

ESPOL Transfer Card

11 7500 Word Mode
0000 Program
0000 Descriptor

0012

12 0004 Literal 1
5355 Dial A 53 (C Field)
3061 Dial B 30 (F Field)

1765 Transfer Bits 1510

13 7006 Operand Call F-1
0004 Literal 1
o421 B Store Destructive

o435 Exit

14 7700 Character Mode
0000 Program

0000 Descriptor

0015

Table 7-2 (cont)

ESPOL Transfer Card

15 0253 Recall Source Address F—é‘
0104 Recall Destination
Address F-1
7752 Begin Loop 6310 The 3969
words
7705 Transfer Words 6310 P starting
at 00160
are re-
located.
16 0051 End Loop
0000 Exit Character Mode J
ohh1 Mark Stack
0046 Operand Call 11
17 ohh1 Mark Stack
0700 Literal 160
0100 Literal 20
0062 Operand Call 14
20 0040 Literal 10
4131 Branch Backward Unconditional (16-2)
0000
0000

NOTE

20 is overlaid by character

mode transfer in 15-3.

7-9

ESPOL LOAD CARD.
This card is a binary card, which is the first card of the MCP Load
Deck or the COLD START Deck.

The card is presented in table 7-3.

Table 7-3

ESPOL Load Card

20 0104 Literal 21
L1 INITIATE I/0
0020 Literal 4
4231 Branch Forward Unconditional (22-0)
21 5240 Card Read Descriptor
1200 Alpha 128 Words
4000 CRA
(o]
22 Liss Dial A 44 (Bit 20)
0211 Interrogate Interrupt
0020 Literal 4
4131 Branch Backward Unconditional (22-0)
23 7700 Character Mode
0000 Program Descriptor
0000
0024

7-10

Table 7-3 (cont)

ESPOL Load Card

24

o453
0304
0243

0005

Recall Source Address F-4
Recall Destination Address F-3
Call Repeat Field F-2

Transfer Words

25

0000
0065

0100

4131

Exit Character Mode
Transfer bits 00
Literal 20

Branch Backward Unconditional (22-0)

26

0110
4131
0055

0055

Literal 22
Branch Backward Unconditional (22-0)
Dial A OO

Dial A OO

_7

0000
0062

0050

L2231

Literal O
Operand Call 14
Literal 12

Branch Forward Unconditional (32-2)

30

0000
0066

0030

L2231

Literal O
Operand Call 15
Literal 6

Branch Forward Unconditional (32-2)

7-11

Table 7-3 (cont)

ESPOL Load Card

0000
0072

0010

4231

Literal O
Operand Call 16
Literal 2

Branch Forward Unconditional (32-2)

32

0000
0076
7561

0165

Literal O
Operand Call 17
Dial B 75

Transfer Bits Ol

33

0010
0231

0010

4131

Literal 2
Branch Forward Conditional (34-0)
Literal 2

Branch Backward Unconditional (33-2)

34

0004
0107

2025

00kl

Literal 1
Descriptor Call 21
Duplicate

Literal 11

35

0106

2025

3355

Lo61

Operand Call 21
Duplicate
Dial A 33

Dial B 40

7-12

Table 7-3 (cont)

ESPOL Load Card

36

2565
2025

2265

2025

Transfer Bits 25

Duplicate
Transfer Bits 22

Duplicate

37

1765
2025

1465

5355

Transfer Bits 17
Duplicate
Transfer Bits 14

Dial A 53

Lo

5361
1765

0000

o0oLL

Dial B 53
Transfer Bits 17
Literal O

Literal 11

41

0106
2025

1555

2261

Operand Call 21
Duplicate
Dial A 15

Dial B 22

42

0165
2255
7261

0465

Transfer Bits 01
Dial A 22
Dial B 72

Transfer Bits O4

Table 7-3 (cont)

ESPOL Load Card

L3 o441 Mark Stack
0116 ‘ Operand Call 23
0500 Literal 120

4131 Branch Backward Unconditional (20-0)

-

INITTAILTZATION.
The B 5500 System is initiated when the machine operation performs

an H/L operation by pressing the HALT switch, then the LOAD switch.

The operation automatically caused Processor one to go into control
state and a portion of code to be read into the first locations of
core memory in module zero. Control is then automatically trans-
ferred to core address 16 and the system is in operation. Initial
operations cause the INITIALIZE Procedure and permanent segments

off the DC MCP to be read from disk into core. The DC MCP then per-
forms various initialization functions, including performing the
first organization énd classification of core storage, and creating
the Available-Disk Table. Table 7-4 presents the format for the
Initialization Code brought in by the H/L Card.

- Table 7-4

Initialization Code Brought in by H/L Card

14 7700 Character Mode
0000 Program
0000 Descriptor

0015

7-14

Initialization Code Brought in by H/L Card

Table 7-4 (cont)

15 0253 Recall Source Address F-2)
0104 Recall Destination
address F-1
7752 Begin Loop 6310 Starting
at 00160,
7705 Transfer Words 6310 the 3969
words are
relocated
beginning
16 0051 End Loop at 00020.
0000 Exit Character Mode
0000
0000
17 ohkh1 Mark Stack
0700 Literal 1608
0100 Literal 208
0062

Operand Call 1&8

NOTE

Enter at 17-0 from branch command
43-3 of the H/L Card.

Operating Conditions:

a. Timer can be on.
b. Printer Finished or Keyboard Request will stop the program.
c. Will work on any I/0 Channel.

7-15

SECTION 8
LIBRARY MAINTENANCE

GENERAL.

Procedures are available to maintain the user program library, con-
struct requested library entries, and to update the associated
tables. Section 8 deals with library maintenance action by pro-
viding a detailed depiction of the format for a library tape and
the format of a library maintenance segment used for load informa-

tion.

FORMAT OF A LIBRARY TAPE.

The contents for each physical record determines the format of a

library tape. Figure 8-1 presents this information in a sequential
manner, providing a place for everything from tape label to tape

mark.

PHYSICAL
RECORD NO.

10

11

CONTENTS

TAPE LABEL

TAPE MARK

LAST ENTRY DENOTED BY AN
@14 1023 WORDS MAX SIZE

TAPE MARK

COPY OF RECORD
NO. 1 LABEL

LABEL FOR FILE NO. 1

TAPE MARK

FILE HEADER FROM DIRECTORY
30 WDS

CONTENTS OF FILE (ROW BY ROW)
IF ROW > 900 WDS THEN 900 WD
BLKS ELSE ROW SIZE BLOCKS

TAPE MARK

LABEL (COPY OF
RECORD NO. 6)

LABEL FILE NO. 2

TAPE MARK

ETC.

TAPE MARK, LAST
RECORD ON TAPE

Figure 8-1.

TWO WORDS
PER ENTRY

REPEATED FOR
EACH FILE

Format of a Library Tape

FORMAT OF LIBRARY MAINTENANCE SEGMENT FOR LOAD TINFORMATION (SHEET
ENTRY!.

The SHEET entry for load information requires a specific format for

each library maintenance segment. Figure 8-2 provides the format

for a segment to illustrate the arrangement of words and programs.

[O].[2:6]

.[8:1]

UNITNO = 23, 24 or > 32.

1, DUMP EXPIRED FILES.

.[FF] = T, no, indicating LOAD, DUMP, etc. (see MCP
procedure RESWDS).

[1] TAPE LABEL

[2] MULTI-FILE ID

(3] FILE ID

[27] MULTI-FILE ID

[28] FILE ID

[29] ESPDISK ADDRESS LINK

Figure 8-2. Format of the Library Maintenance

Segment for Load Information

SECTION 9
INTERRUPT HANDLING

GENERAL.
Interrupts are initiated by the hardware itself when the computer

is operating in normal state and certain conditions are encountered.
The MCP also provides facilities that allow programs to have rerun

points. If a program requests a breakout, all processing of object
programs is halted. Subsequently, all of memory and overlay storage
is written on magnetic tape; then, in the case of a breakout, object

programs are re-initiated and continue processing.

When a program is to be restarted at a rerun point, no programs may
be on the system. Also, all files related to the program(s) to be

restarted must be in place on the units where they were at breakout
time. At such a time, a restart request will be handled by reading

the restart information and restoring core to the condition that

existed when the breakout occurred. Then, overlay storage is re-
stored.
Finally, only that program is restarted. Other programs, which may

have been in process when the breakout occurred and which are re-
flected in the restored memory and overlay storage, are terminated.
The BREAKSTART Procedure is the primary procedure used to perform
breakouts and restarts. Section 9 focuses on the handling of a

Presence Bit Interrupt in the operation of B 5500 Hardware and

Software.

PRESENCE BIT INTERRUPT ACTION.

When a Presence Bit Interrupt is detected, control is transferred
to the Presence Bit Routine. The fact that a Presence Bit Interrupt
occurred means that a program has executed a syllable that caused

an attempt to access information described by a descriptor with a

zero presence bit. The following action takes place:

a. Presence Bit Interrupt is set in Central Control by the
attempt of a normal state program to access a non-present

data descriptor. This is a descriptor with bit [2:1] = O.

9-1

This being a syllable-dependent interrupt, it is sensed
at SECL (Syllable Execution Complete Level) time. This
causes an SFIL (Store for Interrupt Level) operator to be

placed into the T Register.
The B Register is pushed down.
The A Register is pushed down.

1f you are in character mode, build and push down an
ILCW (Interrupt Loop Control Word).

Build and push down an ICW (Interrupt Control Word).

Build and push down an IRCW (Interrupt Return Control Word).

Build an INCW (Initiate Control Word) and place it in the
object (normal state) program's PRT at R + 10 (octal).

Force an INI (Interrogate Interrupt) operator into the
T Register.

Transfer to either Cell 55 (octal) or Cell 67 (octal),
depending on whether this was a Presence Bit on Pl or
P2, Set the R Register to zero. Set the S Register to
100 (octal).

Place an 18 (decimal) in the TOS (Top of Stack) at
Cell 101 (octal).

Transfer to the MCP Outer Block Label P1PROCESS.

Set the S Register to point at the IRCW stored in the

object (Normal state) program's stack at step g, above.
Set the F Register to zero.

Branch forward as many syllables as indicated by the
number placed in the top of stack at 101 (octal in k,

above).

In this case, we will end up at the call MAKEPRESENT
(ANALYSIS). Note that ANALYSIS is a typed (REAL) pro-
cedure. Before entering MAKEPRESENT, we actually enter
ANALYSIS, returning with a value to be passed as a para-
meter to MAKEPRESENT.

9-3

APPENDIX A
MCP COMMUNICATES

To use the communicate operator, a normal state program first places
a parameter in its stack. The word at the top of the stack is then

stored in the cell addressed by R + 9. The Communication Interrupt
Bit is set and the MCP routine that handles this interrupt first
locates R + 9 of the program that caused the interrupt. Then, accor-
ding to this code value, the MCP transfers control to the section

of the MCP designed to handle a communicate interrupt with that code.
The operator is treated as a NOOP in control state. The following

is a list of the codes used by the communicate operator:

Code Description
0 Invalid End-of-Job in COBOL or FORTRAN.
1 TIME ((variable)) function in ALGOL.

DATA ({data name)) function in COBOL.

2 SLEEP call (wait) two parameters passed.

3 Return specific array (pass array name
and dimensions).

L ZIP WITH or PERFORM WITH array row or file mname.

5 Normal End-of-Job. Calls COM5 which calls
SIGNOFF,

6 WHEN function (pass number of seconds).

7 Fill array row.

8 ZIP (program-id) or PERFORM (program-id).

9 Fill with inquiry. (Not applicable to data

communications systems.)

10 Block Exit (ALGOL storage return).

11 ALGOL I/O0 Function. Pass parameter as follows:

Code

12
13
14
15
16
17

18

19
20
21
22
23
24
25
26

27
28
29
30
31

APPENDIX A (cont)

Description
O = file open. 1l = parity message.
2 = End-of-File message. 3 = End-of-Tape message.
4 = data communications. 5 = return disk.
6 = close file. 7 = process RER.
8 = select error. 9 = space.
10 = refill. 11 = read label.
12 = IOREQ. 13 = rotate buffers.

BREAK or RERUN.

COBOL I/O Functions (OPEN and CLOSE only).
Invert overlayable status of an array row.
DISPLAY.
ACCEPT.

COBOL I/0 errors (called from COBOLFCR or
Sort Intrinsic).

Inquiry Write (Not applicable to data

communications.)

Printer Backup Routine (PRNPBT).
Tape swap for tape sort.

Get Space for sort.

Return space from sort.

Load Control (LDCNTRL).

Return one row of a disk file.

Return old copy of OWN array.

Invalid arguments to intrinsics (LN, SQRT, etc.).

ALGOL only.
COBOL data communications interrogate.

ALGOL data communications interrogate.

Miscellaneous errors (error terminate).

Directory search statement and label equation.

ALGOL DELAY function.

Code

32

33
34

APPENDIX A (cont)

Description

Data communications seeks, detaches,

interrogates.
FORTRAN PAUSE statement.

FORTRAN error terminate.

and

Character
Word fword!

1 1-8
2 1
2 2-8
3 1
3 2-8
L 1-
L 4-8
5 1-2
5 3-7
5 8
6 1-5
6-17 6-8/1-4
7 5
7-8 6-8/1-2

APPENDIX B
STANDARD B 5500 LABEL RECORD

Character
record

1-8

9

10-16

17
18-24
25-27
28-32

33-34

35-39

Lo

L4i1-45
h6-52
53

54-58

Field
Description

Must contain bLABELDbD.
Must be zero.

Multi~file identification.
Must be zero.

File identification.

Reel-Number (within file).

Date-Written (creation date).

Cycle-Number (to distinguish

between identical runs on

the same day).

Purge-Date (date this file

can be destroyed).

Sentinel (1 = End-of-Reel,
0 = End-of-File).

Block Count.
Record Count.

Memory-Dump-Key (l = memory
dump follows label).

Physical Tape Number.

The remainder of the information contained in the label record

varies for ALGOL and COBOL files as follows:

APPENDIX B (cont)

ALGOL FILES

Character Character Field
Word !word! Srecord! Description
8 3 59 Blocking Indicator:

blocked = 1 for {fixed logical)
(fixed physical)

= 3 for <fixed physical>
(fixed logical)
not blopked =0

8 L-8 60-64 Buffer Size (number of words).
1-5 65-69 Maximum Record Size (number of

words).

9 6-8 70-72 Zeroes.,

COBOL FILES

Character Character Field
Word (word) _(record) Description
8 3-8 59-64 Reserved for File-Control-Routine

- not currently being used.

9-? 1-°? 65=-27 Users Portion - may be of any for-
mat desired by the user and may
be up to 8,120 characters in
length for tape files, up to 16
characters in length for card
file, and up to 56 characters in

length for printer files.

APPENDIX C
CCMASK1 - CCMASK2 - MIXMASK - INFOMASK

CCMASKs are used to check the wvalidity of a control card entered
via data communications. The variables CCMASK are used if a special

mask is not provided by REMOTE/USERS. The CCMASK Table shows the
card column used to set the bit in REMOTE/USERS, the associated bit
with each control function, and those bits which are set in the
standard mask. The MIXMASK is used in a similar way to check those
input messages which may or must have a mix number preceding them.
INFOMASK1l and INFOMASK2 are used to check the validity of those
input messages which do not include a mix index. The three mask

tables are now presented.

The format for the CCMASK Card is as follows:

Column Word CCMASK1l Bit Standard Mask
1-23 " Not used 0-22 -
24 INFO 23 no
25 USE 24 no
26 RELEASE 25 no
27 FREE 26 no
28 PUBLIC 27 no
29 USER 28 no
30 RUN 29 ves
31 COMPILE 30 ves
32 EXECUTE 31 yves
33 DUMP 32 no
34 UNLOAD 33 no
35 ADD 34 no
36 LOAD 35 no
37 REMOVE 36 no
38 CHANGE 37 no
39 UNIT 38 no
Lo END 39 yes
L1 DATA Lo no
L2 LABEL L1 no
43 FILE L2 yes
LL EXPIRED La no
Ly Not used Ly _———
Lhe Not used Ly -
Ly Not used Le -———
ug Not used Ly -

The format of the MIXMASK Card is as follows:

Column

ko
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Column

W oIt &FwikH

APPENDIX C (cont)

Word

Not used
Not used
PROCESS
I0
PRIORITY
COMMON
CORE
STACK
SAVE

Not used
Not used
Not used
ALGOL
XALGOL
FORTRAN
LONALG
BASIC
Not used
WITH
COBOL
LIBRARY
SYNTAX
FROM

TO

Word

Not used
DS
IL
ouU
OK
™
AX
FR
OF
TT
WY
RM
UL
ST
IN
oT
QT
PR
PS

CCMASK2 Bit

Standard Mask

Y o~onut LV HEO

MIXMASK Bit

yves
yves
no
ves
no
no
yes

ves
no
ves
yves
no
no
yes
no
no
no
no

Standard Mask

Vo~ EFEWwNEO

ves

APPENDIX C (cont)

Column Word MIXMASK Bit Standard Mask
20 XS 19 no
21 ES 20 - no
22 SM 21 yves
23 HR 22 yves
24 CT 23 no
25 XT 24 no
26 TL 25 no
27 SS 26 no
28 wU 27 no
29 WA 28 no
30 HM 29 no
31 CU 30 no

The format of the INFOMASK Card is as follows:

Column Word INFORMASK]1 Bit Standard Mask
1 Not used 0] -
2 PG 1 no
3 MX 2 ves
L DD 3 no
5 RW L no
6 PD 5 ves
7 DB 6 no
8 DP 7 no
9 DT 8 no

10 DS 9 no
11 PT 10 no
12 RS 11 no
13 ET 12 yves
14 CcC 13 ves
15 PB 1k no
16 RY 15 no
17 TR 16 no
18 oL 17 yves
19 LN 18 no
20 WD 19 ves
21 WwT 20 ves
22 LR 21 no
23 RO 22 no
24 SO 23 no
25 TO 24 ves
26 SV 25 no
27 LD 26 no
28 CD 27 ves
29 RD 28 no
30 RN 29 no
31 ED 30 no
32 CI 31 no

33 TF 32 ves

C-4

Column

34
35
36
37
38
39
Lo
41
Lo
43
inn
Ls
Le
Ly
48

Word

SF
TS
RR

Qv

"EX

PI
LO
LI
SIS
SM
HM
TC
77
BO
WP

Word

Not used
WU
LF
LC
LS
XTI
WR
WM
BK
BS
Us
SC
CL
QT
wWI
CcU

APPENDIX C (cont)

INFOMASK1 Bit

Standard Mask

33
34
35
36
37
38
39
Lo
L1

INFORMASK2 Bit

no
ves
no

no

ves
yes
ves
ves
ves
yes
ves
yes
yves
ves
no

Standard

Mask

VoI FWNNEHEO

no
no
no
no
no
no
ves
no
no
no
no
no
no
no
no

APPENDIX D

USASCII X3.4 - 1967 STANDARD CODE

b, > 0 0 0 1 1 1 1
b6 8 * | o 0 1 1 0 0 1 1
B, 5 0 1 0 1 0] 0
t b,|b,]b,|b Column
S 174173] 2] 0 1 2
3 4 5 6 7
AR EE BN LA
ofolo]o 0 NUL | DLE SP 0 @ P R p
ofo o] 1 SOH [pCi ! 1 A Q a q
ojoj1l]o 2 STX | DC2 " 2 B R b r
0o |1 | 3 ETX DC3 # 3 C S c s
ol11o]o 4 EOT | Dc4 $ 4 D T d '
0f{1]o |1 5 ENQ [NAK % 5 E U e u
ol1{1]o 6 ACK | SYN 8 6 F Y f v
o1 |1 | 7 BEL ETB / 7 G w 9 w
1]1o]ofo 8 BS CAN (8 H X h x
110 o |1 9 HT EM) 9 [Y i Yy
1]o]1 |o 10 LF SUB * J z ; z
1o |1 | 1 vi_ | Esc + ; K [k {
1]1]ofo 12 FF FS ' L \ | |
111 o | 13 CR GS - = M] m }
11]1]o 14 SO RS . > N A n ~
11| | 15 S us / ? o} — o DEL
NUL Null DLE Data Link Escape (CC)
SOH Start of Heading (CC) DC1 Device Control 1
STX Start of Text (CC) DC2 Device Control 2
ETX End of Text (CC) DC3 Device Control 3
EOT End of Transmission (CC) DC4 Device Control (stop)
ENQ Enquiry (CC) NAK Negative Acknowledge (CC)
ACK Acknowledge (CC) SYN Synchronous Idle (CC)
BEL Bell (audible or atten- ETB End of Transmission
signal Block (CC)
BS Backspace (FE) CAN Cancel
HT Horizontal Tabulation EM End of Medium

(punched card skip) (FE)

APPENDIX D (cont)

LF Line Feed (FE) ss Start of Special Sequence
VT Vertical Tabulation (FE) ESC Escape

FF Form Feed (FE) FS File Separator (IS)

CR Carriage Return (FE) GS Group Separator (IS)

SO Shift Out RS Record Separator (IS)

SI Shift In US Unit Separator (IS)

DEL Delete*

NOTE
(cCc) Communication Control.
(FE) Format Effector.

(IS) Information Separator.

The numbers in the left hand vertical column are the count contained
in DA1F through DA4F or DB1F through DB4F. The numbers in the top

horizontal row are the count contained in Dn5F through Dné6F.

o 1 2 3
o e F e bl. o
N A e s;on . 1
2 |24 |21 " 2
3 Lomx | o0 # 3
N e d 4
I ENQ A * 5
6 | ~hex |~ & 6
7 G w < 7
8 H X (8
9 I Y) 9
10 J z *
11 K [+ H
MULTI
12 L x , <
13 M] - -
14 N S0 $. >
15 s oM / ?

*In the strict sense, DLE is not a control character.

D-2

Abort Table, 4-1
Address, 6-1, 6-5,
1-8

6-6, 6-11
absolute,
Disk, 6-12
Disk segment, 6-9
relative, 6-15
AlGOoL, 5-17, A-1, B-1
Areas,
auxiliary storage, 2-1
3-1
1-7

1-2

core,

Arravy,
Date,

Bed, 6-5

Bits, 6-16, 9-1,

1-8

Cc-1
Flag,
Block,
File Information (FIB), 5-12
File Parameter (FPB), 5-9
Buffer, 6-20
Pseudo, 5-17
Card,
7-1

Control entry,

Binary,
ho11
Control information, 4-5
ESPOL Load, 7-10
ESPOL Transfer,
Lol
file group,
H/L, 7-2
CCMASK1l, C-1
CCMASK2, C-1
Cells,
PRT, 6-16
Run Time Error (RTE),

7-8
execute,

4-16

INDEX

COBOL, 6-14, 6-17, A-1,
Code,

USASCII Standard, D-1
7-14

5-16

5"17,

Initialization,
Internal Type,
Type, 5-3
Word, L-5
Communicates,
MCcP, A-1
bl
-and-Go entry, Hh4-4
Lol

b

Compile,

-Only entry,
6-14
Components,

B 5500, 1-1

Compiler,

Computer,
Programmers, 1l-1
Control,
Central, 9-1
/0, 5-1
Count,
error, 6-3
Counter,
Block, 1-7
h-7

2-8

Cycle,
DALOC,
Date,

Start, 4-1U4
Stop, L-1h
Deck,

Cold Start, h-16
Descriptors, 6-18
data, 1-1

I/0, 5-16

B-1

one

INDEX (cont)

program, 1-1, 6-7, 5-17 Format,

Dictionary, Station Table, 1-8

Segment, 6-16, 6-18 FORTRAN, 6-3, A-1
Dimensions, 1-8 GETESPDISK, 2-8
Directory, 2-4 Handling,

Disk, 2-1, 2-4, L4-17 Interrupt, 9-1

Layout of Disk Below the, 2-7 Hardware, 9-1
Directorytop, 1-6 Header,

Disk, 2-1 File, 2-4

System, 2-1 Holder,

User, 2-1 Message, 6-20
DSKLOG, 4-1 Identification,
Entry, 2-12 File, 4-7

Abort Information, 4-13 Multiple File, 4-7

Compile-and-Go, 4-4 INDEX, 5-3

Compile-Only, 4-4 Mix, 5-2

Control Card, U4-5 Indicator,

Log-In, 4-11 Save, 1-8

Log-Out, 4-10 INFOMASK, C-1

Run-Time Error, 1-5 Information,
Entries, Compiler and Object

Creation of Remote Log, 4-1A4 Program, 4-5

PRT. 6-16 Format of Library Maintenance
’ Segment for Load, 8-3
Field,

Error, 5-3
Fields, 3-1
Control, 3-1

Program, L-5
Initialization,

Special Records and Log, 4-9

Inquiry,

File, 1-8 Array DCB [16] and the
Subject, 4-8 ORR Word, 6-20

Files, Handling a Fill with, 6-21
Program 6-17 Integer, 1-7

FINALQUE, 5-8 Interrogate,

Flag, Passive, 4-15
Mix-message Ready, 1-8 Interrupt,

FORGETESPDISK, 2-8 Emergency, 9-1

two

Handling an Inquiry
Request, 6-21

Independent,

Presence Bit,

5-1
9-

1

Syllable-dependent, 9-2

Intrinsics, 6-1

TOQUEAVAIL, 5-8

JAR,
Key,

6-7

Memory-Dump,
LABELTABLE, 5-7

Layout,
Disk, 2

Links,

Memory,

List,

-1

3-2

6

B-1

Available-Disk,
LOCATQUE, 5-8

Log,

2-1

Initializing the, 4-9

Remote,

Logging,
LOOKQ, 6-
Mask, 6-16

h-11
h-1
19

Maintenance,

Library, 8-1

Memory,

Core, 3

Message,

WR Keyboard Input, 4-17

-7

Messages, C-1
MIXMASK, C-1
Modules, 3-7

MULTITABLE, 5-7

NFO,

6-18

INDEX (cont)

Numbers,

Logical Unit, 5-4

Read Ready Register (RRR), 5-4
Parameter, 6-10, 6-18, 9-3, A-1

Pointer, 6-15
PRNTABLE, 5-8
Procedure,
Breakstart, 9-1
Procedures,
File Maintenance, A4-16
Program,
Master Control (MCP), 1-1
User, 4-16
Programs,
B 5500, 3-1
Format of Segment Zero for,
PRT, 6-2
Queue,
1/0, 5-1
RDCTABLE, 5-7
Record,
n+l, 4-19
Standard B 5500 Label, B-1
Register, 9-2

Requests,
I/0, 5-1
Restart, 9-1

Ring,
Write, 5-7
Routine,

File-Control, B-2

Selection, 6-9
Segment, 2-4

Name, 2-4

Size of, 6-16

6-13

three

INDEX (cont)

SHEET, 6-11
SLATE, 6-9
Space,

Method for Declaring
Array, 6-17

Specifications,
L"“B,
h-2

Log Entry, 4-10
System Log,
Statement,
Interrogate, 4-15
Statistics, -
Job, 4-12
Storage,
Available, 3-2

MCP Classification and

Organization of Core, 3-1
Systems,

Format of the System
Log for B 5500, 4-2

Table,
Array Information (AIT), 1-7
Available-Disk, 2-11

5-18
Program Reference (PRT), 1-1
USERSTA, 4-15

Tables,

Label Equation,

Input Output Assignment, 5-U4

MCP, 1-1

MCP Operational, 6-1
Tank,

File, 5-17
Tape,

Format of a Library, 8-2
Time,

Attach, L-1.4

four

Clock, 6-19
Detach, 4-14

Save, 6-3
TINU, 5-6
Unit, 4-8, 5-3
Values,

Field, 3-3
Variables, 1-1, C-1
Word,

Code, 4-5

Label, 1-8

Option, 1-6

The ORR, 6-21

Pointer, 6-20
Zero,

Record, 4-9
Relative Address,

6-15

ted line

cut along

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS
REMARKS FORM

TITLE: FORM:

DATE:

CHECK TYPE OF SUGGESTION:
[JADDITION [JDELETION [_JREVISION [JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE

TITLE
COMPANY
ADDRESS

FOLD DOWN

STAPLE

SECOND

FOLD DOWN

- s e an ws e en s WD o - W - -, a» > " - "> e a» . e

Postage
Will Be Paid

by

Addressee

attn: Sales Technical Services
Systems Documentation

No
Postage Stamp
Necessary

If Mailed in the
United States

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

FOLD UP

FIRST

FOLD UP

Wherever There's
Business There’'s | Burroughs

1042462 6-69 Printed in U. S. America

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	8-01
	8-02
	8-03
	8-04
	9-01
	9-02
	9-03
	9-04
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	I-1
	I-2
	I-3
	I-4
	replyA
	replyB
	zBack

