—

THURNAU

JOHNSON

HAM

ALGOL PROGRAMMING

A BASIC APPROACH

Although Burroughs Extended ALGOL contains many constructs not found
in ALGOL 60, the subset covered in this text contains very few of them. With
the exception of the character set, nearly every ALGOL 60 construct is
contained in Extended ALGOL. Thus, this text should serve as a good
introduction to other reasonably pure implementations of ALGOL 60.
Appendix D contains a discussion of the differences which exist between
the language covered herein and ALGOL 60 as defined in the ALGOL report.

Our objective has been the creation of a textbook on ALGOL rather than
a self-teaching document or a reference manual. Therefore, we would
expect this material to be most useful in a normal course environment or
to the individual who already has a computingbackground and is interested
in learning ALGOL, Certain knowledge, such as the preparation of punched
card decks, etc., is assumed and should be provided to the novice by an
instructor or obtained from other textual material. Although the text is
not primarily a reference manual, its many definitions and examples make
it useful as such to the programmer.

The authors would like to express their sincere thanks to Mr. A, Y. Wilson
of the Burroughs Corporation whose confidence and support made the writ-
ing of the text possible. Our thanks alsoto W, H. Eichelberger, Major W, D.
Marsland, Warren Gaynor, Darrell Albee, and A, H. Rabenau who made
valuable suggestions for and provided critical comment dn the material
herein. Finally, many thanks to Miss Kay Shackleford who typed the original
manuscript, an awesome task considering the many special symbols
involved.

The Authors
May, 1964

Chapter

Chapter

Chapter

Chapter

CONTENTS

PREFACE

INTRODUCTION

THE COMPUTER

PROBLEM SOLVING ON A COMPUTER
ALGORITHMS

FLOW CHARTING

COMMUNICATING WITH THE COMPUTER
SYNTAX

Pt ot ot ot
O\ U i WO =

BASIC LANGUAGE ELEMENTS
CHARACTER SET

BASIC SYMBOLS
IDENTIFIERS

NUMBERS

VARIABLES

COMMON FUNCTIONS
ARITHMETIC EXPRESSIONS

MNRNNNND
NONUN R Wi -

STRUCTURE OF ALGOL PROGRAMS

A PROGRAM

STATEMENTS AND DECLARATIONS

THE BLOCK AND COMPOUND STATEMENTS
ASSIGNMENT STATEMENTS

GO TO STATEMENTS AND LABELS

THE COMMENT

SIMPLIFIED INPUT/OUTPUT

QJOJ.QJO)CAJCDOJCD

NO N W -

CONDITIONAL STATEMENTS
THE CONCEPT

BOOLEAN EXPRESSIONS

IF STATEMENT
CONDITIONAL STATEMENTS

B
W N -

©1964

Burroughs Corporation

Second, revised edition

Material in this publication is, in part, taken
from ‘‘Extended ALGOL Reference Manual
for the Burroughs B 5000’ Copyright 1962
by Burroughs Corporation and ‘‘Basic
ALGOL - A Compatible Subset of Burroughs
B 5000 Extended ALGOL’’ Copyright 1964

by Marathon Oil Company. Reprinted by
permission,

PREFACE

This book has grown out of the authors’ efforts in teaching classes in both
ALGOL 58 and Burroughs Extended ALLGOL, an expanded version of ALGOL
60 implemented for the Burroughs B 5500 Computer. It also draws heavily
upon their experience in actual programming for the B S500 in Extended
ALGOL. The book is aimed, primarily, at nonprofessional programmers.
Therefore, the audience may very well include engineers, scientists, stu-
dents, technicians, etc., who are interested in becoming proficient enough
in ALGOL programming to write their own programs.

To attain its aim of providing the nonprofessional programmer with a
working knowledge of ALGOL the text is based upon a proper subset of
Burroughs Extended ALGOL, The subset is small enough to be readily
grasped by the nonprofessional programmer. Yet it is comprehensive enough
for most scientific and engineering applications. A knowledge of this sub-
set may be amplified, at the discretion of the student, to include other
features of Extended ALGOL,

A point of departure from previous textbooks on programming in Algo-
rithmic languages is an emphasis on one of the most attractive aspects of
ALGOL. This aspect is the precise definition of the language in terms of
its syntax. It is consistency in this areathat provides the continuity between
the subset and Extended ALGOL, This text presents syntax gradually, as an
integral part of the discussion of the language. The syntactical approach
simplifies the learning of this subset and makes readable the reference
material on ALGOL and Extended ALGOL,

The text begins by defining the basic elements of the language and sub-
sequently develops the entire language, in a building block manner, from
these elements. A simple form of input/output is introduced quite early,
allowing the student to write complete, working programs as each new
concept is developed. This is extremely effective in creating and maintain-
ing interest. The liberal use of examples serves to point out the use of the
constructs discussed. Each chapter is followed by a set of exercises which
will allow the student to test his knowledge of the material covered, often
by writing an actual program. These exercises are largely concerned with
basic features of the language and can be supplemented by the instructor
with applications-oriented problems.

The approach used in the text has been followed in several actual class
situations and has proved highly successful. The availability of a computer
for running student problems is an added advantage. Each chapter can be
covered in a class of about three hours’ duration. This would indicate about
30 hours of class time for adequate coverage of the material.

ALCOL

Pragramming
1100 7% Badic Approack

D. H. Thurnau, Ph. D. - Marathon Oil Company

R. E. Johnson - Burroughs Corporation

R..J. Ham - Burroughs Corporation

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Appendix
Appendix
Appendix
Appendix

o on o en
W N -

o oo o
W N =

NNNNNN
Qb W N =

90 o0 00
N -

[«
.
w

00 PO
NONU s W -

Som>

FOR STATEMENTS

THE CONCEPT

THE FOR LIST

USES OF THE FOR STATEMENT

SUBSCRIPTED VARIABLES

THE CONCEPT

ARRAY DECLARATION

USE WITH THE FOR STATEMENT

COMMUNICATION - DATA AND RESULTS
FILE DECLARATION

FORMAT DECLARATION

LIST DECLARATION

READ STATEMENT

WRITE STATEMENT

INTRODUCTION TO PROCEDURES
SUBPROGRAM CONCEPT
PROCEDURE DECLARATIONS AND

STATEMENTS
ELEMENTARY USE OF THE PROCEDURE

MORE ABOUT PROCEDURES AND BLOCKS

THE CONCEPT OF FORMAL PARAMETERS

THE CONCEPT OF TYPED PROCEDURES

PROCEDURE DECLARATIONS - REDEFINED

PROCEDURE STATEMENTS - REDEFINED
FUNCTION DESIGNATORS - REDEFINED
EXAMPLE OF USE OF PARAMETER LISTS
BLOCKS IN ALGOL

DIAGNOSTICS

ERRORS IN PROGRAMMING
SYNTACTICAL ERROR DIAGNOSTICS
RUN-TIME ERROR CONDITIONS

USE OF MONITOR AND DUMP

RESERVED WORDS

SYNTAX

DECLARATIONS

DEVIATIONS FROM ALGOL 60

87

89
95
96
97

101
101

102
105

111
111
112
113
116
118
119
122

127
127
128
131
132

135
137
155
157

1.1

CHAPTER 1 - INTRODUCTION

THE COMPUTER

In the relatively short period of time since the advent of the digital
computer, an almost revolutionary change has been wrought in the
approach to problem solving and the processing of data.* This phe-
nomenon is continuing to grow and now pervades, not only the
physical sciences and obvious areas of data manipulation, but also
the social and biological sciences and all levels of business decision
making.

Digital computers cannot compete with their designers in the ability
to solve complex problems. In fact, the machines themselves are
not able to solve even the simplest problem without human help. The
approach required to solve a problem expressed as a precise, step-
by-step means of attaining the solution, must be provided to the
computer. It is this set of step-by-step instructions that will be
called a program. Programming a computer, then, is the develop-
ment of such a set of instructions.

If the computer must be given instructions before it can effect the
solution of a problem, where does its value lie?

Computers are not really very smart. The most complex tasks of
which they are capable are the simple operations of arithmetic:
addition, subtraction, multiplication, and division—but they do them
so terribly fast! In fact, it is in its speed where much of the power
of the digital computer is centered. For example, the B 5500 can
perform as many as 200,000 additions in a single second. The
computer is also capable of executing these arithmetic operations
to a much greater degree of precision than would be feasible
in any other practical means of computation. It is significant that

*The first electronic digital computer was built in the early 1940’s
with the first commercial machine available some ten years later.

9

the modern digital computer originated in the need to perform
voluminous calculations, beyond the practical scope of existing
equipment, in the development of the atomic bomb.

The digital computer does in fact possess one basic capability
beyond that of the elementary arithmetic operations. It has the
ability to make decisions on an either/or basis and take alternative
courses of action. For example, the machine could be instructed to
take one course of action if a variable X was negative and another if
it was positive or zero.

One of the major differences between the early machines and
present day digital computers lies in the concept of a stored pro-
gram. Early machines depended upon some external source for
their instructions. Modern computers are designed to store the
sequence of instructions, as well as the input data and the results
of computations, in their internal, rapid access, memory. This
makes the computer much more versatile.

Other significant improvements lie in the rapid technological
advances in the hardware itself and in the development of software.
Software is defined as a group of one or more programs written to
ease the task of the user in programming and operating the com-
puter. The B 5500 ALGOL compiler is such a program.

In summary then, to utilize the power of the computer, a problem
must be presented to the computer in terms of those basic operations
which it is capable of performing. How this is done will be the sub-
ject of the following discussion.

This section closes with an amplification of the previous point
regarding the basic abilities of the machine. A computer should be
considered as a tool which extends the intellect of man. By freeing
him from the drudgery of routine calculations and extending his
ability to perform these calculations by many orders of magnitude,
the computer allows man to utilize his creative ability to a greater
extent. It is the merging of the capability of man and machine which
opens the vistas of a limitless future.

10

B S500 COMPUTER SYSTEM

11

1.2

PROBLEM SOLVING ON A COMPUTER

Since it has been seen that the computer must be provided with
specific instructions as to how a problem can be solved, and since
these instructions must be expressed in terms of the basic opera-
tions which the machine can perform, it will be beneficial to consider
the subject of problem solving on a computer.

There are seven specific areas which should be considered when a
digital computer solution to a problem is under development.

1. Problem definition and establishment of goals.
2. Mathematical description (model).
3. Reduction to a numerical process.
4. Programming.
a. Flow charting
b. Coding
5. Debugging.
6. Production.
7. Evaluation.

A critical factor in the ultimate success of any computer approach
is the initial problem definition and the establishment of attainable
goals. It is against these goals that success or failure will be
measured. As Richard Hamming stated, ‘“The objective of computing
is insight, not numbers.”’ * Appropriate problem definition allows the
needed information to be gotten without also obtaining much extrane-
ous information.

The desirability of defining a problem to get specific information
does not preclude use of the computer as a research tool to produce
results which cannot be anticipated. However, there should always
be criteria for measuring the success of the effort.

Once the problem has been defined in broad terms, it must be
expressed in quantitative terms. Often this quantitative form is
called a mathematical model. An example of a mathematical model
might be a single formula or it might be the description of a missile
trajectory. The model is merely the description of a process in
mathematical or precise numerical terminology.

After the problem is defined quantitatively, consideration mustbe
given to whether or not the computer has the capability to perform
all of the operations which are required. For example, does the
problem require the extraction of a square root? Since the only
operations which the computer can perform are the elementary
arithmetic ones of addition, subtraction, multiplication, and division,
the square root operation must be expressed in terms of these
simple operations. This phase is called numerical analysis. Fortu-
nately, most complex mathematical operations, as well as most
methods of solving problems of a nonmathematical nature, can be
reduced to simple numerical steps which the computer can handle
with the basic operations and the capability to make comparisons.

**‘Numerical Methods for Scientists and Engineers,’’ Richard W.
Hamming, McGraw-Hill.

12

The importance of basic knowledge in the area in which the problem
is found cannot be overlooked. For example, it is not reasonable for
someone who knows no Russian to attempt todevise a detailed tech-
nique for automatic translation of Russian to English. Similarly, in
solving most scientific problems on a computer, there is no substi-
tute for a sound background il mathematics.

With the problem solving process described as a step-by-step
sequence of elementary operations, an equivalent series of instruc-
tions can be given to the computer and then executed to effect the
solution of the given problem. It is this sequence of instructions
which is the computer program.

There are two steps in the writing of the program. One is the
expression of the numerical process in a formal manner, such as a
flow chart. The second is the actual writing of the program in a
language which the machine can accept. The first of these will be
discussed briefly later in this chapter. The second is basically the
subject of the entire text.

Once the program has been written, a period of time is usually
required to make sure itisinfact performing correctly. This phase
is usually called checkout or debugging. The programmer usually
tries to eliminate as many errors as possible by carefully checking
his program before it is ever given to the computer. The program
is tested on the computer using input information or data for which
the results are known.

When the program is checked out and running correctly, it can be
used to calculate results based on realistic sets of data. This phase
is considered as production and produces results which can be used
to determine the success of the problem solving operation.

It is this evaluation which constitutes the final phase of the prob-
lem solving operation. Based on the original problem definition and
the goals which were to be attained, production results can be used
to measure the degree of success which was attained. If the objec-
tives were reached the particular job is finished; if not, it may be
necessary to reevaulate the original objectives and go through all
or part of the problem solving cycle again.

Consider how the firstthree steps of the problem solving technique
might be applied to a given problem. Suppose we define a problem
and an objective by saying that we have two lines on a plane surface
and want to know where they intersect.

Mathematically, the problem can be stated by describing each of
the lines relative to an x-y coordinate system on the plane. The
lines are then defined by linear equations. For example, line 1
would be represented by the equation ax+by=c and line 2 by the
equation dx+ey=f. The problem then becomes one of solving the
two equations simultaneously. That is, values of xand y are needed
which will satisfy both the equation for line 1 and the equation for
line 2 at the same time.

However, we cannot merely provide these equations to the com-
puter and await an answer. We must specify, in terms of the
elementary operations, a procedure by which the computer can solve
these equations.

13

1.3

It can be shown that the required values of x and y are given by
the following expressions:

x = ec-bf
ae-db
y = af-dc
ae-db where ae-db # 0

Thus, the problem has been reduced to one of six multiplications,
three subtractions, and two divisions, which can easily be imple-
mented for solution on a computer.

ALGORITHMS

We have been discussing the idea of a step-by-step approach to
a problem using only the elementary operations of arithmetic. Now
we will describe this in a formal manner and give the concept a
title—an ALGORITHM, There are many acceptable definitions of
an algorithm, one of which is:*

An algorithm may be defined as a series of simple
operations which, when applied to a problem from a
particular class of problems, will lead to a solution
in a finite number of steps.

The close relationship between the idea of an algorithm as defined
above and the development of a computer program should now be
obvious. If an algorithm can be written for a problem which is
being considered for a computer solution, the necessary computer
program can be easily developed since the approach to the solution
is spelled out in terms of simple operations by the algorithm.

Consider again the problem of solving twolinear equations simul-
taneously. It was stated that the values of x and y could be found
from the relationships:

_ec-bf
X = 2e-db

_ af-dc
Y = Fe-db

These equations provide the basic approach to finding X and y.

To develop more fully the idea of an algorithm, that is the precise,
step-by-step approach to finding x and y, the specific steps to follow
might be written:

*¢“Algorithms and Automatic Computing Machines,’’ B. A, Trakhten-
brot, D, C, Heath & Company.

14

1.4

Calculate the value of ae and save it.

Calculate the value of db and save it.

Subtract the result of step 2. from the result of step 1. and
save it.

Calculate the value of ¢c and save it.

Calculate the value of bf and save it.

Subtract the result of step 5. from the result of step 4. and
save it.

Calculate the value of af and save it.

Calculate the value of dc and save it.

Subtract the result of step 8. from the result of step 7. and
save it.

10. Divide the result of step 6. by the result of step 3. and call

the resulting value x.
11. Divide the result of step 9. by the result of step 3. and call
the resulting value y.

OO .ODND—*

V>N

These 11 steps represent the algorithm for finding x and y. A per-
son totally unfamiliar with the problem and knowing how to subtract,
multiply and divide could find x and y, given the above step-by-step
approach. The task of a programmer then, is to put the steps of an
algorithm into a form which is meaningful to the computer. Since the
medium in which the algorithm is expressed is unimportant, it is
obvious that a computer program is in fact an algorithm, since it
expresses a specific, step-by-step approach to solving a particular
kind of problem.

FLOW CHARTING

Once the mathematics of a given problem have been stated in
terms of an algorithm, the task of expressing the algorithm in
terminology which the computer understands can begin. The result
of this expression is a computer program. However, good pro-
gramming technique often calls for a step preceding that of actual
program writing. This step is called flow charting.

A flow chart is a block diagram indicating the logical flow of a
program. That is, it presents in a pictorial form the sequence of
steps leading to the solution. It is based to a large degree upon the
algorithm or numerical process which has previously been devel-
oped, representing it in a highly formal manner. It will usually,
however, be more comprehensive than the algorithm, including all
operations which supply valid data to the algorithm and results to
the programmer.

The technique used in flow charting tends to vary with the indivi-
dual; however, the following conventions might be suggested:

15

An overt action such as the addition of two numbers and the savi
of the result is represented by a rectangle.

aeb +c

A test or comparison is represented by a diamond.

Input/Output operation denoted by an elipse.

(Read A)

Connector to a distant point inthe flow chart indicated by a circle.

®

The flow through these is indicated by lines from box to box with
arrow heads denoting directions.

!

Note the single line going into the decision box and the two lines
coming from it. This box usually produces either a yes or a no
answer and shows both alternatives.

The previous algorithm might be flow charted as follows:

16

1.5

Read a, b, c,
d, e, f

Tleae

T2«db

T3+T1-T2

Yes
_f Error

etc.

COMMUNICATING WITH THE COMPUTER

In one sense, the computer program was created when the flow
chart was developed. It fits most of the criteria since it is broken
down into simple operations in a proper sequence leading to a solu-
tion. However, the computer is not capable of understanding the
program in this form. Therefore, the flow chart must be transcribed
into a form which the computer will accept.

Every computer has its own internal language. Usually this lan-
guage, while highly appropriate and meaningful to the given machine,
is highly foreign to a human programmer. In fact, it is called
machine language.

To make communication easier for a human problem solver,
languages have been developed which canbe mechanically converted
into machine language. These are called procedure oriented lan-
guages since they are ways in which well defined procedures (i.e.,

17

flow charts, etc.) can be expressed in a form palatable to the com-
puter.

The machine itself effects the conversion of the program to its
internal language through a program called a compiler. The compiler
is itself a program written for the particular machine, usually by
the manufacturer. A particular program which is to be translated
(or compiled) is provided to the compiler as data. This result (or
output) of the compilation is a machine language equivalent of the
input program. This operation might be depicted as follows:

INPUT M.L.
PROG, PROG.

The input program is usually called the source program, and the
resulting machine language is called the object program.

This text discusses a particular procedure oriented language
which is a subset of Burroughs Extended ALGOL.* This in turn
is derived from the ALGOL 60 language. Actually the language
presented (except for Input and Output, which are not defined in
ALGOL 60) is essentially a subset of ALGOL 60. Thus, it is use-
ful to all students of the ALGOL language.

The ALGOL language had its beginnings in aninternational desire
to develop a general, precisely defined, algebraic language for use
in communicating problems to a computer. In 1958, a meeting in
Europe produced a first attempt at such a language called ALGOL
58. ALGOL, by the way, is an acronym developed from the two
words ALGOrithmic Language. This acronym calls attention to the
important connection between algorithms and programming lan-
guages.

In 1960 the group met for a second time to improve upon the
language and to further solidify its logical foundations. The result-
ing language is called ALGOL 60, **

The outstanding features of the language developed by this group
are its consistency and the precise definition of its syntax. The
syntax is the body of rules which governs the construction of
meaningful entities from the basic language elements, much as the
syntax of English tells us how to form sentences, paragraphs, etc.
from words.

ALGOL bears a strong resemblance to algebraic notation. This,
of course, makes it highly adaptable to use in scientific and engi-
neering problems. For example, the simple algebraic expression
for calculating distance in terms of rate and time,

*‘Extended ALGOL Reference Manual for the Burroughs B 5000,
5000-21012, Burroughs Corporation.

**‘Report on the Algorithmic Language ALGOL 60,”’ Naur, P. et
al., Communications of the Association for Computing Machinery,
May, 1960.

18

1.6

d =1t

where d stands for distance, r for rate and t for time, would appear
in ALGOL as

der xt

where d represents the variable distance, ~stands for the operation
of assignment, r and t are the variables rate and time and X says to
multiply.

That is, the ALGOL ‘‘statement’’ says to take the value of r,
multiply it by the value of t and assign it to the variable represented
by d.

A program written in ALGOL is easily read and readily changed.
Since the language is so much like algebraic notation, the initial
writing of the program is itself quite simple and the basic mathe-
matics of his problem are constantly before the user. Further,
programming in ALGOL requires very little intimate knowledge of
the machine that processes the program. Quality results are thus
attainable by the engineer or scientist without his becoming
immersed in details that are totally foreign to his problem.

SYNTAX

To facilitate the discussion and the formal definition of the ALGOL
language, a simple symbolic language was developed. This symbol-
ism provides a means of discussing a programming language, just
as mathematics provides a notation for dealing with quantitative
problems. This precise definition of the language is extremely
important in implementing a compiler to translate the source lan-
guage into machine language, since the syntax expresses the rules
which are to be embedded in the compiler. If a compiler is written
for a poorly defined language, the true syntax of the language
accepted by the compiler is available only tothose who can read the
compiler program. The syntax of a programming language is similar
in function to the syntax of the English language, in that it specifies
those rules which govern the writing of meaningful constructs in
the language.

The symbolic language which is used is called a metalanguage—
that is, a language which is used to define another language. It is
based upon a very few symbols which are defined as follows:

1. The Broken Brackets, {).
An element of the language which is not a basic symbol
of the language will be called a metalinguistic variable and
will appear between broken brackets.
Example, (number})
19

In other words, when a number is defined or used in the
definition of some other construct, it will appear as
(number).

2. The Colon-Colon-Equal Symbol, ::=,
This symbol is read ‘“is defined as’’ and is used to sepa-
rate a metalinguistic variable on the left from the expres-
sion appearing on the right which defines this variable.

Example, (number) ::=
This would be read, ‘‘a number is defined as.”
Often there are alternative definitions for a given variable. This
will require an additional symbol.

3. The Vertical Line, | .
This symbol is read ‘“or’’ and is used to separate alterna-
tive definitions of a metalinguistic variable. For example,
consider how the concept of color might be defined in this
manner.
Example, {color) ::= (bright) | {dull)
This would be read, ‘‘color is defined as bright or dull.”

When a definition has been reduced to the basic elements of the
language (i.e., the alphabet or a similar basic element), those basic
elements will not appear enclosed in broken brackets. This is, in
fact, how the basic elements are distinguished. These elements will
not always be in the nature of single characters but may be groups
of characters which are considered as abasic entity in themselves.
For example, if red, yellow, and orange are basic elements in a
language, the following might be written:

(bright):: = red|yellow|orange

One further set of symbols is required to completely define
ALGOL in this manner.

4, The Braces,! 1.
The braces are used to define variables which cannot be
expressed in terms of previously defined variables or
groups of variables. The English language definition will
appear between the braces.

This method of definition is not restricted inits application to the
discussion of programming languages. To develop this syntactical
approach further, consider how a telephone number might be rigor-
ously defined.* To start with, the basic symbols used in the definition
of a telephone number must be given.

{basic symbol) ::= (letter) | (digit) | (hyphen)

This is read, ‘“a basic symbol is defined as a letter or a digit

*Courtesy Glynn Jones, Burroughs Corporation.

20

or a hyphen.”” Since the definition itself contains metalinguistic
variables, it is necessary to present further definitions:

(letter) ::= A|B|C|D|E|F|G|H|I|JK|L|M|N|O|P|RIS|T|U|
VIw[X|Y

(digitd ::= 0|1|2|314]5|6]7|8(9

(hyphen) ::= -

Since the elements on the right side of the above metalinguistic
formulas are not enclosed in broken brackets, it can be correctly
assumed that they represent the basic elements from which a tele-
phone number is written. Notice that the definition of letter excludes
the letters Q and Z. This is perfectly valid since the definition
specifically shows this and because these letters do not enter into
a telephone number.

Once the basic elements have been specified, it is an easy task to
define a telephone number in a syntactical manner.

(telephone number) ::= (area code){exchange part) (hyphen}
(subscriber number)

A telephone number is defined as an area code followed by an
exchange part, followed by the basic symbol hyphen and followed by
the subscriber number. For readability, spaces are specifically
allowed between the above components. Notice that the juxtaposition
of metalinguistic variables in the definition serves to indicate that
these variables appear side by side in the element defined.

(area code) ::= (digit Wdigit) (digit Y| {empty)
(empty) ::= { the null string of symbols}

The area code may be composed of three consecutive digits or it
may be empty, indicating that its use is not mandatory.

(exchange part) ::= (exchange){frame number)
(exchange) ::= (letter){letter) | {digit) (digid)

Notice that the exchange may be made up of two consecutive letters
or two consecutive digits.

(frame number) ::= (digit)
{ subscriber number) :: = (digit)(digit)(digit)(digit)

The above syntactical definition serves to validate the structure of
any telephone number. Consider for example, the telephone number
303 623-3284. The area code which may consist of three digits is
303. The exchange part is defined as the exchange followed by the
frame number. Since the exchange may be made up of two digits
and the frame number a single digit, 623 is structurally correct
for the exchange part. Following the hyphen, which is a basic sym-
bol, is the subscriber number 3284 which satisfies the definition.
Verify that the following telephone numbers satisfy the syntactical
definition. 51

CH4 - 6200

313 OLS - 1112
789 - 1234
113 221 - 4605
412 PR4 - 8241
MAS3 - 3284

Ver'ify that the following are not correctly formed telephone numbers:

COL - 1643
794 , 2601
GA 2-21 21
ZE5 - 7163

The purposes of learning the syntactical definition of ALGOL are
many. It is an extremely useful tool in merely learning the language
discussed in this text. Furthermore, a knowledge of syntax will allow
the programmer to extend his knowledge of ALGOL, by referring
directly to reference manuals on the language, the majority of which
are written using this notation. Finally, it facilitates the debugging
or error correction of a program since all possible constructs may
be checked, using the appropriate syntactical defnition. It would be
impossible to define by example all constructs allowed in ALGOL.

22

EXERCISES

Write an algorithm for finding, from a group of five numbers,
the number with the smallest absolute value

Write an algorithm for algebraically sorting five numbers into
ascending order.

List the steps involved in solving the quadratic equation,

using the quadratic formula:
X = -b 1@2 -Lac

2a

Develop a flow chart for the problem expressed in exercise 1
above.

Construct a flow chart for the problem given in exercise 2
above.

Flow chart the algorithm to solve a quadratic equation.

Develop syntactical formulas for writing a date in forms, such
as:

Nov. 18, 1957

28 Sept. 1956

22 Dec 24

June 5, 1904

26 January 1899

Sat., Jun 13, 1964

23

2.1

CHAPTER 2 - BASIC LANGUAGE ELEMENTS

CHARACTER SET

ALGOL, like any language, is writtenin terms of letters, numerals
and special symbols. The number of these characters that can be
used with present-day computing equipment is limited by mechanical
practicalities. One result of this is that lower-case letters are
rarely used. Another is that the number of available special
symbols is not large.

The B 5500 utilizes a set of 64 characters, which includes:

1. The 26 letters of the English alphabet, in upper case,
2. The 10 Arabic numerals (digits),

3. The blank (a single space), and

4, The following special symbols:

L.,]e+-X/<<c=¢2>3#@%*&n?

There are two important concepts here that are unusual to the
layman. One is the status of the blank as a character. While one or
more blanks are often used in programs merely to improve read-
ability, there are a few places where blanks are essential to mean-
ing. This will be discussed furtherinSection 2.3. The other concept
is the strict limitation to just this set of characters, with no vari-
ations such as superscripts or subscripts.

Two of the special symbols, given above, are used for very
restricted purposes. The quote mark is used only in conjunction
with strings, which are covered in Section 7.2. The question mark
may not be used at all in writing ALGOL programs. It is normally
used only by the B 5500 system to represent an illegal hole com-
bination on a punched card.

24

2.2

BASIC SYMBOLS

It is essential to classify the basic symbols from which ALGOL
programs are formed. Without this, precision, clarity and com-
pleteness are not possible in discussing and defining many aspects
of the language. There are three kinds of basic symbols. These
are letters, digits and delimiters. Expressed as a formula, this
becomes:

(basic symbol) ::= (letter)|{digit)|(delimiter)

The first two forms are defined as follows:

(letter) ::= AIB|C|D|E[F|G|HII J|K|L|M|N|O|P|Q|R|S|T|U
AlBICl DI B F|GHIL f|K|L{M|N| 0| P|Q[R|S|T|u|
(digity ::= 0[1]|2]3]4|51617]8]9

It is helpful that these definitions correspond, for the most part,
with those normally associated with ‘“letter’’ and ‘‘digit.”’ Note that
many other ‘‘letters,”” such as lower-case letters, the Greek alpha-
bet, etc., are not included as letters in B 5500 ALGOL.

It is necessary to discuss the third form of basic symbol, the
delimiter, somewhat formally. The role of the delimiters in the
language is classified in the remainder of this section. The specific
meaning of each one will be presented in subsequent sections of the
text. A full appreciation for this classification depends upon an
overall acquaintance with ALGOL.,

The special symbols of the B 5500 character set are used as
delimiters, but there are many delimiters that cannot be represented
by special symbols. In practice this requires the adoption of a con-
cept known as ‘‘reserved words.”” The latter are groupings of
letters, such as STEP, GO, FOR, OUT, IF, which have fixed
meaning in the language. It is useful to think of each of them as an
additional special symbol.

However, even if each of them could be represented by a special
symbol, such would not be desirable because their presence lends
to ALGOL much of the readability of English.

If reserved words could be written in italics or bold-face type,
they would not have to be reserved. Since letters come in only one
style, it is essential to avoid the use of reserved words for any
purpose not defined in the language. A complete list of the reserved
words of Extended ALGOL is given in Appendix A.

A broad definition of delimiters might assert that they constitute
the permanent vocabulary of ALGOL, That is, they specify definite
processes or meanings that are to be applied to adjacent entities.
For example, the special symbol x specifies that the quantities
given on either side of it are to be multiplied together. The paren-
theses are used in several ways to cause a group of entities to
be treated as one entity, as in 2 X(A X B +1). Similarly, the delim-
iters BEGIN and END (reserved words) are usedto enclose several
constructs so that they can be treated as a single entity.

Spelling out the exact meaning of each of the ALGOL delimiters
is essentially the purpose of this text. For the present it is

25

sufficient to complete our defininition of basic symbol with only
cursory explanations of the delimiter functions.

(delimiter) ::= (arithmetic operator) | (relational operator) |
(logical operator)|({ sequential operator)|
(separator) | (bracket) |{declarator)

This merely says there are seven kinds of delimiters. Happily,
some of these are defined so as to coincide with normal technical
usage.

(arithmetic operator) ::= +|-| x| /|*

These are used in the manner of algebraic notation with the
addition of the * operator to denote exponentiation.

(relational operator) ::= <|<|=l2I>]#

These are used to assert relationships between arithmetic
quantities. These assertions constitute truth values that are needed
in making yes/no decision.

(logical operatory ::= OR| AND

These are used in forming combinations of truth values, the final
truth or falsity of which is usable for decision making.

(sequential operator) ::= GO|TO|IF [THEN|ELSE|FOR|DOJ
READ| WRITE |[PAGE

These specify courses of action to be taken when used in language
constructs that are unfamiliar at this point.
(separator) ::=,|.l@|:|;|~]| (single space) |STEP|UNTIL{
COMMENT
(single space)::= {a single unit of blank horizontal spacing}

These play a role in ALGOL similar to that of punctuation and
spacing in English.

(brackety ::= [|(|)]]| "|BEGIN|END

As stated above, these are used to enclose combinations of
entities to give them special meaning or treatment.

(declaratory ::= INTEGER |REAL|ARRAY |LABEL|LIST
FORMAT]|'IN |OU LFILEI MONITOR|
DUMP| PROCEDURE

These delimiters essentially inform the reader (or the compiler)
that certain entities are hereby defined and/or treated as having
certain specific properties.

26

2.3

Much more detail will be given on all of these delimiters as their
uses are encountered throughout the text.

IDENTIFIERS

A powerful feature of ALGOL is the possibility of using problem-
oriented nomenclature in writing computer programs. This permits
programs to be largely self-documenting and highly readable.

With little restriction, names may be devised to represent many
different entities. For instance, variables are normally givennames
which, in themselves, describe the arithmetic quantities associated
with them. All such names are formally called identifiers.

The exact usage of identifiers in various ALGOL constructs will
be discussed indetail as these constructs are encountered. However,
in every case, the metalinguistic variable identifier will be used to
mean the same thing. The rules for forming an identifier are
expressed by the formula,

(identifiery ::= (letter)|{identifier)(letter) | (identifier (digit)

This specifies that an identifier is composed of any combination
of letters and digits, such that the leftmost character is a letter.

Practical considerations in the B 5500 computer impose a minor
restriction that the total number of characters in an identifier may
not exceed 63. One further restriction is that reserved words (see
Appendix A) cannot be freely used as identifiers.

Note that the above definition specifies only letters and digits as
legal characters in an identifier. Thus, blanks and special symbols
may not occur in identifiers. This makes it possible to distinguish
identifiers from other ALGOL constructs. For example, in
A 4 B2-CG, the three identifiers A, B2 and CG are readily recog-
nized. Similarly, A STEP 2 UNTIL ZIT is easily found to contain
two identifiers, A and ZIT, two reserved words, STEP and UNTIL,
and one unsigned integer, 2 (to be defined in Section 2.4).

In the latter example, note that removal of the blanks (used as
separators) produces an entity, ASTEP2UNTILZIT, which can only
be regarded as a single identifier. This is a direct consequence of
the fact that reserved words are formed from the same kind of
characters that are used in identifiers. In fact, the only mandatory
occurrences of blanks in B 5500 Extended ALGOL are before
reserved words which follow other reserved words and identifiers,
and after reserved words which precede either identifiers or
unsigned numbers. Three of these requirements are illustrated in
A STEP 2UNTIL ZIT, where 2UNTIL will not be mistaken for an
identifier, whereas ASTEP, STEP2 or UNTILZIT would lose their
intended meanings.

27

2.4

The reader may verify the classification of the examples given in
the following lists:

Legal Identifiers Illegal Identifiers

A BEGIN
1 1776
B5 2BAD
YSQUARE $
TOOBAD X/Z
LONGTONS Y SQ
LAZYS W-2FORM
PRESSURE ©o
XOVERZ (CAPTION)
D2P471GL SEC(X)
CURRENT RATE/HR
SPEED NO.
ALTITUDE

NUMBERS

Numerical values which are built into an ALGOL program are
called numbers. They are sometimes called constants because
they are not altered during execution of a program.

A number in ALGOL may not be written in all of the forms of
number in common technical usage. Further, there are character
set limitations which interfere with normal ways of writing powers
of 10. The meaning of number must be carefully spelled out.

The rules for correctly forming a number are completely given
in the following series of syntactical definitions:

(number> iz (unsigned number)l + (unsigned number)l
-{unsigned number)

(unsigned number> ::= (decimal number) | {exponent part>|
decimal number) {exponent part)

(decimal number) ::= {unsigned integer) | (decimal fraction) |
(unsigned integer) (decimal fraction)

(exponent part) ::= @ (integer)

(decimal fraction) : : = ., (unsigned integer)

28

(integer) ::= (unsigned integer) | +(unsigned integer) |
-(unsigned integer)

(unsigned integer) : := {digit) | (unsigned integer) (digit}

The first formula states that a number may or may not carry a
sign. An unsigned number is understood to be positive. Later for-
mulas indicate that a number is a base 10 number, with or without
an exponent part. It may also consist of the exponent part alone,
indicating that the number is a power of ten. (Thus, 1.0@6, 1@6,
+10@5, @6 all are possible ways of writing 1000000.)

The reader will profit from a verification of the following examples
of each of the meta-variables defined above. A series of illegal
numbers is also given.

Unsigned integers Decimal fractions Decimal numbers
S i) .69
69 .69 .546
.013 3.98
Integers Exponent parts Unsigned numbers
1776 @8 99.44
-62256 @-06 @-11
548 @+54 1354.543@48
.1964@4
Numbers Illegal numbers
0 5000.
+549755813887 1,505,278.00
1.75@-46 @ 63
-4.314@68 S @8
-@2 1@2.5
375 1.667E-01

The illegal number examples, given above, emphasize the fact
that the only characters that are used to form numbers are digits
and the basic symbols . @ +and - . Note that no provision is made
for spaces to occur inside numbers. Also, note that a decimal point
as the final character of a number is not allowed.

For purposes which will later become clear, numbers are classi-
fied into two types, INTEGER and REAL. All integers are of type
INTEGER. All other numbers are of type REAL,

The B 5500 hardware allows a maximum absolute value for
integers of 549755813887. Non-zero REAL numbers must lie in the
approximate (absolute value) range 1.75@-46 to 4.314@68.

29

2.5

VARIABLES

A variable in ALGOL has a role similar to that of a variable in
algebra. It is a symbolic representation of an arithmetic quantity.
A variable may be thought of as the name (temporarily) attached
to a specific storage location. The arithmetic value stored there
may be altered by the program, and it may be used, without
destruction or erasure, for a variety of computational purposes.

The syntactical definition

(variable) : := (simple variable) | (subscripted variable)

indicates that there are two basic kinds of variables. However, the
definition and discussion of subscripted variables will be post-
poned until Chapter 6.

The rule for forming a simple variable is given by:

(simple variable)::= (identifier)

Note that this does not say that all identifiers are simple variables.
Rather, it means that simple variables are formed by the rules
already given in Section 2.3 for identifiers.

The information that a given identifier is a simple variable in a
given program is provided by atypedeclaration which precedes any
use of this identifier in the program. (This and other declarations
are discussed further in Section 3.2.) The type declaration also
specifies whether the kinds of arithmetic values represented by a -
simple - variable are inherently integers or not. For reasons of
precision and efficiency, it is usually desirable, in digital com-
puting, to specify those variables whose values must always be
integers. (If the integral value could possibly become greater than
549755812887, this practice cannot be followed.) Sucn variables are
declared to be of type INTEGER. Variables whose values are not
necessarily integers are declared to be of type REAL.

The rules for writing a type declaration are given by:

(type declaration) : := (type)(type list)
(type) ::= REAL|INTEGER
(type list) ::= (simple variable)|(type list),(simple variable)

Thus, type declarations are permitted to be written either as

INTEGER 18

REAL W

REAL A
INTEGER K

REAL MAX

or as
INTEGER 18,K
REAL A, W, MAX

30

2.6

Either group of declarations means the same thing. Namely, I8
and K are to be treated as representing integral arithmetic values,
and A, W and MAX are understood to represent values which (may,
or) may not be integers.

The arithmetic values thatcanbe takenonby variables are subject
to the same limitations given'for numbers in Section 2.4.

COMMON FUNCTIONS

Because of their frequent occurrence in scientific programming,
a number of common mathematical functions are furnished auto-
matically by the ALGOL compiler. These are listed in the table
below. Thelastthree listed are not always regarded as mathematical
functions but are best represented as such in an algorithmic lan-
guage. The nontechnical student may wish to ignore all but the last
three common functions.

These functions are furnished in the form of subprograms that
operate on the argument to produce the desired result. The square
root is computed by an iterative process. The trigometric, log-
arithmic and exponential functions are computed from polynomial
approximations.

The argument of each of these functions may be an arithmetic
expression, whose formal definition is given in Section 2.7. For
brevity, the symbol AE will stand for arithmetic expression in the
table to follow.

COMMON FUNCTIONS

ALGOL
Representation Description
SQRT (AE) Produces the square root of the value of AE
SIN (AE) Produces the sine of the value of AE
COS (AE) Produces the cosine of the value of AE
ARCTAN (AE) Produces the principal value of the
arctangent of the value of AE
LN (AE) Produces the natural logarithm of
the value of AE
EXP (AE) Produces the exponential function of the value
of AE, i.e., eAE,
ABS (AE) Produces the absolute value of AE
SIGN (AE) Produces one of three values depending on the

value of AE (+1 for AE>0, 0 for AE=0
and -1 for AE<O)

ENTIER (AE) Produces the value which is the largest integer
not greater than the value of AE

31

2.7

The ENTIER function is easily misunderstood to perform simple
truncation. The following examples show that this is not the case.

ENTIER (2.6) =2; ENTIER (3.1) =3;
ENTIER (-0.01) = -1; ENTIER (-3.4) = -4;
ENTIER (-1.8) = -2.

Since the common (base 10) logarithm is not one of the functions
built into the ALGOL compiler, it is useful to be aware of the
relationship LOG;; (X) = LOG ;, (e) X LN (X)
where LOG)) (e) has an approximate value of 0.4342944819.

There is a type associated with all of the above functions except
ABS, which has the type of its argument. The rest of the functions
are considered to be of type REAL except SIGN and ENTIER which
are of type INTEGER,

For SIN, COS and ARCTAN, the associated angles are in units of
radians. Thus the ARCTAN function can have values from +m7/2 to
-m/2. Recall that the number of degrees per radian is 180/m or,
roughly, 57.295780.

ARITHMETIC EXPRESSIONS

At this point, enough basic language elements have been defined to
permit introduction of the primary active element of the language.
This is the arithmetic expression. An arithmetic expression provides
the rule for computing a single numerical result. Basically, it is
composed of arithmetic primaries and operators.

The value of an arithmetic expression is obtained by performing
the indicated arithmetic operations upon the actual numerical values
of the primaries. The evaluation of an arithmetic expression is
closely analogous to the evaluation of algebraic expressions. The
exact rules by which the computer performs such an evaluation
are spelled out later in this section.

A primary is defined as follows:

{primary) ::: éunsigned number)| (variable)|
function designatorSl((arithmetic expression))

Here we find that two of the possible forms for a primary involve
metalinguistic variables not yet defined. One is an arithmetic
expression enclosed in parentheses. Another is the function desig-
nator which, for the present, may be regarded merely as the formal

32

name given to the common functions of Section 2.6. Later, in Chap-
ter 9, an expanded definition of function designator will be given.

(function designator) ::= {common function identifier)
({arithmetic expression))

(common function identifie’) ::= SQRT |SIN|COS| ARCTAN|LN|
EXP| ABS| SIGN | ENTIER

Note that the argument of the common function identifier is an
arithmetic expression enclosed in parentheses.

We now see that we must know how an arithmetic expression is
defined before we can write a primary which is other than an
unsigned number or a variable. Yet, as will be seen, an arithmetic
expression cannot be written without using a primary. Evidently the
simplest arithmetic expressions must involve primaries which are
either variables or unsigned numbers. Indeed, we shall see that the
following are legal, if simple, forms of arithmetic expressions.

MEAN LN (14.92)
22 (X)
SIN (ALFA) NETMANHOURSWORKEDPERYEAR

Two kinds of arithmetic operators are explicitly defined.

(adding operator) ::= +|-
(multiplying operator) ::= X|/

These have the normal mathematical meanings: addition, sub-
traction, multiplication and division.Another mathematical operator,
*, used for exponentiation, is defined in a table below.

We are now adequately prepared for the definition of an arithmetic
expression. For completeness, the definition of a primary is
repeated here.

(arithmetic expression) ::= (term) | (adding operator)(term) |
arithmetic expression)
(adding operator>{term)
¢erm) ::= (factor) | (term)(multiplying operator){ factor)
{factop) ::= (primary)| (factor)* (primary)
$rimary) ::= {unsigned number) | (variable) | (functiondesignator) |

({arithmetic expression))

All of the rules for forming legitimate arithmetic expressions are
concisely given here. Since arithmetic expressions are written so
nearly like algebraic notation, the chief use the programmer might
make of the above rules is to avoid writing illegal arithmetic
expressions. For example, implied multiplication is not allowed,

33

nor can any other symbol, but X, be used to indicate multiplication.
Thus, A(B+C) and A.(B+C) are illegal ways of writing Ax(B+C).
Likewise, the syntax tells us that two arithmetic operators may not
occur in sequence, such as Wx-4 (which can be written legally as
WX(-4) or -Wx4 or -4xW),

The correct classification of examples in the following lists should
be verified by the student.

Legal Examples

Illegal Examples

Primaries:

5.678 +7

SIGMA SIN X

Y1 A/B

(X-Y) LOG((M-1)/10)
COS(T) -7
ABS(1-X/Y) +X-Y)
((GEE+HAW)/PLOU)

(AX64*2+B)

Factors:

5.678 -9.81
CHARLIE +DC8
2¥(X+Y) B-A

Y *3 X*-3

Q*V*2 10-16
(14+43.142)

Terms:

5.678 -13.6
MABLE -(A 4B)

KXF2 A+B

SUM/N [.¥=A
4xAX(1/C) *ENTIER (60)
(A+B)/(C-D) RATE . DAYS
2*¥(X +) 4(AC)

Arithmetic EXxpressions:

COS (A+B) +C
Y*3

+8

B*24xAXC

(-B+SQRT(D))/(A+A)

-T*3
5.678
THETA

34

There will be instances where the type of an arithmetic expres-
sion affects the results obtained in particular ALGOL constructs.
The type may be ascertained by (perhaps repeated) use of the
following table:

Operand Operand Value Resulting from the Operator
On Left On Right +275% / *
Integer Integer Integer Real Note 1
Integer Real Real Real Real
Real Integer Real Real Real
Real Real Real Real Real

Note 1: If the right operand is negative, Real, otherwise Integer.

The exact operation corresponding to the exponentiation operator,
*, depends upon the types and values of the operands involved. These
evaluation methods are specified for the factor Y*Z in the following
table:

If Z is Integer and If Z is Real and
7>0 Z=0 <0 Z>0 2=0 7<0

If Y>0 | Meth.1 1 Meth.2 | Meth.3 1 Meth.3
If Y<O | Meth.1 1 Meth.2 | Note 1 1 Note 1
If Y=0 0 Note 1 |Note 1 0 Note 1 | Note 1

Method 1: Y*Z = YXYXY ... XY(Z times)

Method 2: Y*Z = the reciprocal of YyY ... XY (Z times)
Method 3: Y*Z = EXP (ZXLN(Y))

Note 1: Value of expression is not defined

Present-day means of communicating with computers (e.g.,
punched cards) require the linearized mathematical notation repre-
sented by ALGOL arithmetic expressions. However, this causes
ambiguities in expressions such as A+B/C or X*2+B since each has
two possible mathematical interpretations:

A +g or AEB and XZ*B or X2+B

To circumvent these ambiguities, it is necessary toassign a prece-
dence to the arithmetic operators. Each operator has an order of
precedence associated with it as follows:

First: *
Second: X,/
Third: +,-

35

When operators have the same order of precedence, the sequence
of operation is determined by the order of their appearance, from
left to right. Parentheses can be used in normal mathematical
fashion to override the usual order of precedence.

To help illustrate the importance of operator precedence as well
as to provide some final concrete examples, the following table is

offered:
Mathematical Equivalent
Expression ALGOL Expression
AXB AXxB
A+B A +B/2
2
X +1 (X +1)/Y
Y
D +E2 (D +E *2)/2x A)
2A
4X +Y)3 4% (X +Y)*3

M _N +3x10°0 (M - N)/(M 4 N)*P
M+ P

36

Nonequivalent
ALGOL Expression

AB

X+1/Y

(D+E*2)/2A

4xX +Y *3

+ 5@-6

EXERCISES

Write ALGOL arithmetic expressions corresponding to each of the follow-
ing mathematical expressions!

1. x4+ y3 2. (x+y)3
3. x1-667 4. A+ 1_3-1570.79540-3
B
5. A EB 6. A+ .C_"’—D
7. A +B 8. A+B. 2
C +D C +D
2 .3
9. A+B 10. 1 +x + X +X
==5 21 31
Ce F +G
11. (p) 41 12. a-bc-(2%)72
P
13. (x? +x§ +x§) 14. 2'P'R'sin(T/P)
15. 2Rstn 16. 2\&2 + (4x%/3)
17. -cos4x 18. X
4 2
1+ X
2
3. 20
5. B0
7 + (4x)2
19. A, 1964 20. (start time) + —{distance traveled)
B*C B (average speed)

37

3.1

CHAPTER 3 - STRUCTURE OF ALGOL PROGRAMS

A PROGRAM

In Chapter 2 the basic elements of the ALGOL language were
developed. The purpose of this chapter is to utilize these basic
elements as building blocks in the development of the main objec-
tive, a series of instructions to the computer which constitutes a
program. Recall from Chapter 1 that the actual computer program
is a representation of the steps required to solve a particular prob-
lem in a highly formal manner. Once the program has been stored
in the memory of the computer its execution is entirely dependent
upon the internally stored instructions.

Just as it was necessary to be very precise in defining the basic
language elements in the previous chapter it will be necessary to
formalize the definition of a program beyond that which we have
been using. In fact, all definitions will be developed in the same
formal manner.

For the purpose of discussing the structure of a program we will
introduce a symbolic notation for the elements that make up the
program. These will not be the basic elements which have already
been considered but rather constructs made up of these basic
elements. A construct called a declaration will be noted by a D
and one called a statement by an S. Both of these constructs will
be discussed in full in Section 3.2.

A program might be defined as a bracket symbol BEGIN followed
by declarations and then statements with the end of the program
indicated by the bracket symbol END and a period which has been
defined as a separator. Symbolically a more concise definition can
be written as follows:

BEGIN D; D; S; S; S END.

38

A more general form would be:
BEGIN D; D; ... D; S; S; ... S; S END.,

It is important to note the use of the separator semicolon in the
above symbolic examples.! The semicolon is used to separate
declarations from declarations, declarations from statements and
statements from statements. A semicolonis not needed immediately
preceding an END, however.

A formal definition of a program is given at the end of Section 3.3.

At this point it is probably in order to digress briefly and discuss
the format which one might follow inwritinga program and how the
program, once written, is communicated to the computer.

An ALGOL program is introduced into the computer as data for the
compiler which subsequently produces an equivalent program in
machine language. Normally this ALGOL source program is read
into the computer from punched cards. These punched cards are
prepared from the program as written by the programmer in long-
hand. Each column of the punched card represents one character as
written by the programmer.

To facilitate keypunching, as well as to provide the programmer
with a suggested format to follow in writing his program, printed
programming forms are often used. An example of such a form
appears in the following figure:

BANS AN GonmS Femn |
 S—— -
——) L onmm oo - st o ¥ -_—
asslss1ssenaunsevnennunnansansnansnorsnsccaccascosnuussnvasananasavnenn;
= r ;

L

¥ ¥ ¥ \ r ™ Y Y ey

i F|

T - Al v Y T v T Y 4 T

v -T na ¥ ™ T T Y T T R

39

3.2

A convention, which is often followed, is to begin only declarations
and labels in column one; startonly the bracket symbols BEGIN and
END in column eleven; and begin all other constructs in column six-
teen. The compiler will only recognize the first 72 columns. This
leaves columns 73 to 80 for program identification and a card
sequence number. The following example shows this format:

1 11 16 73
BEGIN @ RBITO001
REAL A, W, MAX; © RBIT002
INTEGER IB, K; © RBIT003
S; © RBIT004
S; © RBIT005
S @ RBIT006
END @ RBIT007

The programmer writes his program in ALGOL on a programming
form such as the above. This form is transcribed, column by column,
into punched cards. There will be a card created for each line
written on the form. This deck of cards, the source deck, is then
compiled and the program executed. As aby-product of compilation
a listing of the source cards is produced. This usually constitutes
the programmer’s working document since it is always up to date.
Adherence to a readable card format such asthat used in the above
example will produce readable listings, and the program deck is
readily modified without any loss of readability.

It might be noted at this point that the compiler does not consider
the information provided toitas aseries of disjoint cards. Rather it
treats the information as a continuous string of characters starting
with the first column of a card, ending with column 72, and followed
immediately by column one of the next card.

STATEMENTS AND DECLARATIONS

Statements and declarations are the building blocks from which an
ALGOL program is constructed. They are, in a sense, analogous to
sentences in the English language.

Statements are the active elements of an ALGOL program. They
actually indicate some type of operation to be performed—add two
numbers together, read in data, print a line, etc. Statements are
normally executed sequentially, in the order in which they were
written. This sequential flow may be altered, however, by a state-
ment which indicates its successor to be other than the one
immediately subsequent to it.

(statement) ::= (unconditional statement }|
(conditional statement)|{for statement)

40

3.3

The unconditional statement is similar to the imperative sentence
in the English language in that it specifically states an operation to
be performed. The conditional statement provides for the choice of
alternative courses of action depending upon the answer to a par-
ticular question. The for statement allows for the repetition of a
given process in a specifically controlled manner. The latter two
types of statements will be discussed in Chapters 4 and 5.

Declarations differ from statements in that they are passive
elements of the language. They are not really executed as are
statements. The declaration serves to provide the ALGOL compiler
with information about identifiers in the program. For example, a
declaration is required to specify that the identifier for a particu-
lar variable is always to represent an integer.

(declaration) ::= {type declaration) | (array declaration |
(label declaration) | (file declaration)|
{format declaratiom' (list declaration)|
(diagnostic declaration) | (procedure declarationy

These eight declarations provide the compiler with all of the
information which it requires about a given program. The type
declaration has already been encountered in Section 2.5. The other
declarations will be discussed as the need arises.

A word of caution is in order at this point. All identifiers which a
programmer chooses must be declared by one of the above declara-
tions. This is, in fact, the way an explicit meaning is attached to
a particular identifier. Thus, it is natural to group declarations
above statements in a program according to the rules discussed in
the following section.

Consider thefollowing example of REAL and INTEGER declarations
written in the previously discussed format.

1 11 16 73
BEGIN

REAL X, ZBAR, T1, K;

INTEGER I, Q, KMAX1;

These declarations say to consider the variables represented by the
identifiers X, K, ZBAR, and T1 as REAL variables and those repre-
sented by I, Q, and KMAX]1 as INTEGER variables.

THE BLOCK AND COMPOUND STATEMENTS

It has been shown that a statement has three possible forms. One
of these is the unconditional statement defined as follows:

41

{unconditional statement) : := (basic statement)|
(compound statement) | (block)

The first of these, the basic statement, is a construct which
stands alone in the program structure. Its many forms are speci-
fied by the following definitions:

(basic statement) :z= (unlabelled basic statement) |
(label): (basic statement)

{unlabelled basic statement ; : = (assignment statement)l
{(go to statement) |
(dummy statement) |
(read statement) |

(write statement) |
(procedure statement)

For example, in ALGOL the process of adding the values of two
variables A and B and assigning the sum to the variable X would be
written as follows:

X~A+B

This is an example of an assignment statement. The assignment
statement as well as the other basic statements will be discussed
in detail as the need arises.

A label provides a way of uniquely identifying a particular state-
ment. Labels and their use are discussed in Section 3.5.

The other two forms of the unconditional statement, the compound
statement and the block, require formal definition and discussion.

The student may not fully appreciate all aspects of the concepts
developed in the remainder of this section. However, due to the
importance of these concepts it will be necessary to continually
review them as further material is developed.

(compound statement) : : = éunlabelled compound statement) |
label): { compound statement)

(unlabelled compound statement) ::= BEGIN {(compound tail)

(compound tail) ::= G&tatement) END]| (statement);

{compound tail)

The above syntactical definitions state that an unlabelled com-
pound statement is composed of the bracket symbol BEGIN, fol-
lowed by one or more statements separated by semicolons and ter-
minated by END which is also a bracket symbol. Symbolically it
could be represented by the following example:

BEGIN S; S; S; S END
It is understood, of course, that any number of statements may
appear between the bracket symbols. Note that no semicolon need
appear immediately preceding the END,
42

The purpose of the compound statement is to group together
several basic statements which are to be considered, in some sense,
as a logical entity. It would be used, for example, in a situation
where three assignment statements are to be executed if the answer
to a given question is true and all three bypassed if the answer is
false. In this case, the three assignment statements are considered
as a logical group. Such a compound statement might be written as
shown below:

BEGIN EX. 1
X & A+ B; Exc
Y ~C; EX. 3
Z - X - Y Xo

END EX. S

The purpose of the compound statement will be fully appreciated
only when the other types of statements, the conditional statement
and the for statements have been discussed.

A block differs from a compound statement in the important
respect that it contains not only statements but also declarations
between the bracket symbols. These declarations must appear
immediately following the BEGIN and preceding any statements. The
formal definition of a block is:

{block) ::= (unlabelled block) | {l1abel) : (block)
(unlabelled block) ::= (block head) ; {(compound tail)

That is, an unlabelled block is defined as a block head followed by
a semicolon and a compound tail.

Since we have already discussed the compound tail we need only
define a block head.

(block head) : = BEGIN (declaration)| (block head); (declaration)

Symbolically we can represent a block which might contain two
declarations and four statements.

BEGIN D; D; S; S; S; S END

The block head is represented by BEGIN D; D and the compound
tail by S; S; S; S END with the two parts separated by a semi-
colon as defined. Consider an example of a block written in ALGOL,
This example illustrates the structure of a block but has no real-
istic meaning.

BEGIN DECL 01
EAL X, Y; DECL 02
NTEGER J, K; DECL 03
X*Y; DECL 04
Q «J +K DECL 05
END DECL 06

43

One purpose of ablockis tointroduce a new level of nomenclature.
An identifier has the same meaning inside a block as it has outside
as long as it is not redeclared withinthe block head. Q in the above
example is such an identifier. Thus Q is said to be global to this
block. If it is declared in the block head of some block, the meaning
within that block may be completely differentfrom its meaning out-
side the block. The new meaning holds while the block is executed
and then reverts back to the meaning in effect outside the block.
Identifiers are said to be local to the block in which they are
declared. The local nature of identifiers used as labels is discussed
further in Section 3.5.

To fully understand the above paragraph we must go back to the
definition of a statement as a block. This means that syntactically a
block may occur as a statement within a program. In other words, a
block may be nested within another block or a compound statement
and logically considered as a statement. For example, a program
might be diagrammed as follows:

BEGIN D; D; S; S; S END.

However, when the program is diagrammed more completely, one
or more of the statements may be a block.

BEGIN D; D; S; BEGIN D; S; S END; S END,

The underlined portion is, therefore, a block nested within a
program. We will reserve a discussion of the full power provided
by the block concept until Chapter 9.

The compound statement can occur in much the same way. If a
program were diagrammed in detail, for example, one or more of
the statements might be compound.

BEGIN D; D; S; BEGIN S; S; S END; S END,

The underlined portion represents the compound statement. The
compound statement differs from the block in that it contains no
declarations and therefore no change in nomenclature.

A formal definition of a program can now be given.

{program) :: ={unlabelled block},

(unlabelled compound statement).
Note the explicit appearance of a period as the final delimiter of a

program. By far, the majority of programs are written as unlabelled
blocks.

44

3.4

ASSIGNMENT STATEMENTS

The assignment statement is the first unlabelled basic statement
which will be discussed in detail. It is the fundamental statement in
the language and also the most straightforward to understand and
use.

Basically the assignment statement causes the value of an expres-
sion to be assigned to a variable appearing to the left of a=. Thee
is called the replacement operator and means that the value of the
expression to the right of the +~ is assigned to the variable appear-
ing on the left of the~. The + indicates actual replacement rather
than equality and so the previous value of the variable is lost.

Values assigned to variables are ‘‘stored’’ untilone of the follow-
ing occurs.

1. A new value is provided by an assignment statement.
2. A new value is provided by a read statement (to be

covered in Section 3.7).
3. The block in which the variable is declared is exited.

Since most programs depend upon evaluating expressions and
assigning the resultant value to other variables, the assignment
statement is the work horse of the language. Consider its formal
definition.

(assignment statement) ::= (left part list)(arithmetic expression)
8eft part list) : : = (left part)| (left part list){left part
eft part) ::= (variable)e

Since the arithmetic expression was covered in Section 2.7, an
understanding of the assignment statement requires only adiscussion
of the idea of a left partlistand a left part. A left part is defined as
a variable followed by the replacement operator.

A~
LAMDA ~
X1+

The above are examples of the left partlist. The left part list may
contain left parts as indicated in the following examples:

A-L.AMDA«XI+~
I-J K+

The left part list allows the value of an expression to be assigned
to several variables in the same statement. A restriction on this
type of assignment statement is that all variables appearing in the
left part list must be of the same type (real or integer).

The execution of an assignment statement may be considered as
two steps: 45

3.5

1. The expression on the right of the + is evaluated.
2. The value of the expression is assigned to all of the variables
in the left part list.

There can be a difference between the type of the arithmetic
expression and the type of the variables in the left part list. Two
different cases arise:

1. If the left part list is of type REAL, and if the value of the
arithmetic expression is of the type INTEGER, the value
is assigned unchanged.

2. If the left part list is of type INTEGER, and if the value of the
the arithmetic expression is of type REAL, the function
ENTIER (AE+0.5), where AE represents the value of the
arithmetic expression, is automatically applied. This,
therefore, causes the value to be rounded to an integer
before it is assigned.

The following examples will indicate the form of the assignment
statement.

X=Ax(@B-0)

ALPHA ~BETA ~ GAMMA ~3.1416

XI <« R x COS(THETA)

FUNCTIONOFX -~ Ax X*3+ Bx X*2 +CXx X *D
XSUM < XSUM + SQRT (X)

Two final points can be made regarding the assignment statement.
As is indicated by the syntactical definition only variables may
appear intheleft partlist. Therefore, a construct of the form X+Y-B
is obviously invalid.

The second point involves the use of the same variable in the left
part list and in the arithmetic expression. For example, X « X+1.
When this assignment statement is executed the current value of X
will be used in evaluating the expression and that value will be
assigned to X. In this example, the value of X will be one greater
after the statement is executed.

GO TO STATEMENT AND LABELS

It was said previously that statements were executed sequentially,
in the order in whichthey appear, unless a statement is encountered
which specifically states that the next statement to be executed is
not the next one in sequence. This ability to change the sequential
flow of the program logic contributes in a major way to the power
of a digital computer.

46

One way in which the sequence of execution of statements can be
changed is by the use of the go to statement. This statement speci-
fically designates the statement which is to be executed next.

{go to statement) ::= GO TO {label)

From its formal definition it is seen that the go to statement is
made up of the reserved words GO TO and a label which is defined
below.

It is apparent that to effect a change of control from one state-
ment to another, not in sequence, there must be a way of uniquely
designating the destination statement. This is dore by the use of a
label. Formally a label is defined as an identifier. Therefore, a
label may be arbitrarily chosen within the restriction imposed upon
the choice of characters making up an identifier. The programmer
serves notice that a given identifier is used as a label by means of
a label declaration, which is written similar to type declarations.

(label declaration) :: = LABEL {abel list)
(label list) : : = (label) | {label), {abel list)
(labeD ::={identifier})

This declaration must occur in the block head of any block that
contains a labelled statement. The label list contains only those
identifiers used to label statements in this block. It is only within
this block, and any blocks nested within it, that these labels may
appear in a go to statement. Thus, a go to statement may not
reference a label in a block nested within the block which contains
the go to statement.

Recall that the definition of a basic statement included as an
alternative definition a (label):(basic statement). Also, a block
could be of the form {label): (block) and a compound statement of
the form (label):(compound statement). It is apparent then, that
any construct which may be considered as a statement may be
uniquely labelled by preceding it with a label followed by a colon.
We can effect a change of control to any statement by writing GO
TO (label), where the label precedes the statement which is to
be executed next. For example, GO TO OVER would cause the state-
ment with the associated label OVER to be executed next. The
following section of ALGOL source coding will serve as an example
of both assignment statements and go to statements. This example
is not a very practical one since it is obvious that once the state-
ment labelled START is encountered the program willbe in a never
ending loop.

BEGIN 009
LABEL START; 010
START: X - Y; 011
A ~ CPS (THETA); 012
GD T® START 013

47

3.6

An occasionally useful statement is the dummy statement which
we define as empty.

(dummy statement) ::= (empty)
(empty) ::= {the null string of symbols }

This statement represents no actual operation but serves to place
a label in a convenient location. For example, it allows the delimiter
END to be labelled, and, if a transfer of control to the label pre-
ceding the END is specified, a block or compound statement can be
executed without executing all of its statements. Note that the label
L1, since it puts a dummy statement before the END, makes the
semicolon mandatory after the statement C+~ C+ 1.

BEGIN 1
LABEL L1,FLPW; 11
X+~ A +B; 12
GP TP LI; 13
FLOW: A~ SQRT (C + D); 14
C-C+1; 15
L1: END 16

THE COMMENT

Often the purpose of a section of an ALGOL program can be made
more apparent by including a comment on the program at an
appropriate point within the sequence of statements or declarations.
A comment may be included in the program by using the reserved
word COMMENT in one of the following ways:

; COMMENT { any sequence of characters not containing ; 1 ;
BEGIN COMMENT { any sequence of characters not containing ; } ;

The first of these says that after any semicolon which separates
statements and declarations, as previously discussed, the reserved
word COMMENT may be written followed by any comment written
in the legitimate character set except the semicolon. The semi-
colon serves to indicate the end of a comment. The second case
indicates that a comment may follow a BEGIN,

Another form of the comment, not using COMMENT, may follow
an END as indicated below:

END{ any sequence of characters not containing END or ELSE or
WHILE or UNTIL or any special character unless it occurs as a
part of an ALGOL number }

48

3.7

This is useful in making commentary at the end of a compound
statement, a block, or a program. It should be emphasized that
these comments are for documentation purposes only. They appear
on the program listing which is produced by the compiler but have
no effect on the machine language generated.

BEGIN
COMMENT THIS EXAMPLE ILLUSTRATES THE
USE OF COMMENTARY WITHIN A
COMPQOUND STATEMENT;

X «Y;

A~B+C+ D;

COMMENT S® DPES THIS;

I ~JeKe 0

PHI~ THETA

END OF THE EXAMPLE

SIMPLIFIED INPUT /OUTPUT

With the discussion of one additional topic, enough of the ALGOL
language will have been developed to write simple but complete
programs. This additional topic is input/output—how to get data
into the computer for the program to operate on and how to get the
results back out to the programmer. The subject will be treated
very briefly here, to allow complete programs to be written, and
developed in depth in Chapter 7.

The media available for input/output are fairly extensive, includ-
ing magnetic tape, paper tape, punched cards, printed hard copy, etc.
Furthermore, with developments in optical character recognition,
new forms of input/output will be developed. We choose to consider
only the most common of these possible media, punched cards for
input and the printed line for output. The reasons for this choice
are twofold. First, these two media are sufficient for many
scientific applications. Secondly, this allows the basic concepts
of data input/output to be developed. These concepts can be easily
extended to other input/output devices by the student, especially
since he will have the capability to read the refereuce documents
which use the metalinguistic approach to definition.

To provide a basic input capability, consider the data as it would
appear on a punched card.

Data will be, for now, punched into cards, one value per card.
The number will be punched as in the example below where the
symbol X represents any digit. The largest value which can be
read in will be 9999.999999. The sign must appear in column 1
of the card and the decimal point in column 6. If the number is
positive, column 1 may be left blank, implying a plus sign.

49

/txxxx. ARARK
1

(T]1{k1! 000600000000000000000000000000000000800000000000000000000000603600000
t23esen 13115 617 181920 21 222020 25 26 21 76 2930 30 12 33 34 35 36 37 30 39 40 4142 4344 45 46 47 484950 51 525354 55 56 51 0596061 G2 I S SE B EEIIO N R I M IS IETI T 19
[EEERRRAR RN AR R AR R AR AR R RN AR R R R R RN RN R R AR R R R R R R R R R N RN R AR R R R AR R R R

22122112
331]3']33331113113333331!31]1!3]!!3333JJ3333333!133333353333333333133]3313333333
l‘lllllld“l444llll44llllllllllllllll4l!d#lllil‘4llllllllll‘llill!(l‘llll(llllll
55
Gﬁisiiiiiﬂﬁi‘iiiiiiiii‘ﬁiiiiliEGBBiSGGSSiGGSEEiGﬁlSiEGiiEiﬁBiSiGGiEiﬁﬁSiB‘EiE‘i‘
i
llll!lllﬂllllllBﬂﬂlilllll!lllllllllll!lilll!llllllIliﬂlﬂlllllllllllllllllﬂlllﬂll

lll117)7)7777171777771717117771171717117177177717777111777717711717177

999999999959999999999999999999899999999999999999999399999999965999599999999
ISRKl

T 203 T4 16 13 18197020 22 75 2025 26 20 20 2930 31 32 33 30 35 35 37 30 38 4N A1 42 €348 45 417 2049 525157 3 A B 8001 e 5 U0 01 673w 65 GHET S EA 10 N2 T3 TN TS 16 11 T8 140

The following cards represent the input values -43,2, + 6572.001, 1.0.

/

1.0 : I

Ve)

43,2
1
)
! 1
0000000000D00000000000000000000050009000000
3 1234567 0 9900 1213151617 10192020 2223202526 27 20 2930 31 3233 34 35 36 37 30 2940 41 42 43 44 4545 47 4 4350 51 525334 5556 57 4 5960 61 626354 63 GE 67 G 69 70 11 12 13 M TS 6 71 T8 MO
IRRRR R R R R AR R R R R AR R AR R R R R R AR R R R R R R R R R R R R R R R R R
3
| nuohnnnonnonnannnnnnunnunnonunnnnnnnn
4 Jllllllllllll3133333113113]33333333333111131313111333]333]!3333]1!]3]333331]33]3
. AARA 0080004000800 000000800800 000 0000000400840 00000000
5555595555555555555955555555555555555555555655555555555555555555555555555555855555
IR L R e R A R A A AL TR R DA L
4 IR RN
b !Bl'l'l‘l!ll!lﬂll|lllllillﬂlllllllllll‘llllllllllllll!lllllllll'lllﬂlll!laldllll
99999999999999999399999999999999999999599999999999999999999999999939999999993999
LA L RO TS 802513 404 A 359X A1 B B0 D W

50

The format which will be used in communicating results from the
computer to the programmer on the printer is shown below:

THIS IS A SAMPLE OF PRINTED OUTPUT.

FXXXX XXXXXX EXXXXXXXXXX —==== mmmmm omee- ———--

X XXX XXXXXX #XXXX XXXXXX —==-- mo-om —mme- -—=--

- - ————— - —— - ————— -———— -———— - -————

It will be possible to print a line of heading information followed
by a blank line and the data. The data will appear in a tabular form
with from one to six values on a single line.

To accomplish the basic input and output functions which we have
defined above, it will be necessary to provide several ALGOL con-
structs which will be discussed fully in Chapter 7. These constructs
are infactdeclarations and as such,must appear in some block head.

At this point these declarations will be defined as a series of five
cards which should be inserted immediately following the initial
BEGIN in the program.

BEGIN og
FILE IN CARD (2, 10); 0
FILE QUT LINE 1 (2, 15); 03
FPRMAT IN FIN (F12.6); 04
FORMAT QUT FT1 (X10,* ~-cmmmeeeee S 05
FORMAT QUT FT2 (6 (X4, F12.6, X4) /); 06

The form of a program will be, therefore, as indicated in the
above example. The BEGIN which indicates the start of a program
would appear as card number Ol in the example. Cards numbered
02 through 06 are those necessary to set up the basic input/output
capability. Card number 05 deserves special consideration. The
heading information on the printed output page is the string of
characters which appear between the quote marks on this card.
This string may contain any of the defined characters except the
quote itself and for the present must be contained entirely on one
card.

To read data which is punched into cards according to the format
defined above, the read statement is used.

READ (CARD, FIN, (list))[(label)]

51

The list is a series of identifiers, separated by commas, which
represents those variables which are to be assigned the values
read from the cards.

As many cards will be read as there are identifiers in the list
for each read statement executed. It is important, then, that there
exists a one-to-one correspondence between the elements of the list
and the cards to be read.

Notice the label appearing in square brackets. This entire con-
struct (including the brackets) is optional. Its functionis to provide
a label which uniquely specifies a statement to which control should
be transferred if an attempt is made to read when no more data
cards exist. This is useful when a program is written to do the same
operations on successive sets of data. A data set can be read, the
computation performed, and control transferred (via a go to state-
ment) back to the read statement to read in the next set of data.
When no more data exists the next statement executed will be the
one preceded by the label.

READ (CARD, FIN, A, B, C, ALPHA, PHI) [THROUGH |

The above read statement will read in five cards assigning the
successive values, in order, to the variables, A, B, C, ALPH, PHI,
If an attempt is made to execute this statement again, after all
data has been read, control will be transferred to the statement
labelled THROUGH.

The write statement is highly analogous to the read statement.

WRITE (LINE, FT1)

Execution of this statement causes the heading information to be
written on the printer.

WRITE (LINE,FT2, {ist))

Execution of the above statement will effect the printing of the
values of the variables or expressions represented by the elements
in the list, six numbers per line, until the list has been satisfied.
Fewer than six numbers may be printed on the final line if there is
not a multiple of six elements in the list.

WRITE (LINE, FT2, LAMDA, I, J, 314159, A + B)

This example would cause the values of the five list elements to be
printed. Notice that arithmetic expressions may appear as elements
in the list of a write statement. They will be evaluated and their
value printed.

The following example utilizes those constructs which have been
developed to express the previously discussed algorithm for solving
simultaneous linear equations as an ALGOL program.Recall that the
values for x and y may be formed from the following relationships:

- ec -bf _af -dc
ae -db y “ae -db
52

BEGIN SLEQ

FILE IN CARD(2,10)3 SLEQ
FILE Out LINE 1 (2,15)3 SLEO
FORMAT IN FINCF12.6)3 SLEQ
FORMAT OUTY FT1(X10,"SOLUTION OF SIMULTANEGUS LINEAR EQUATIONS®™//)3 SLEQ
FORMAT OUT FT2C(6(X4,F12.65%X8)/)3 SLEQ
REAL XsYsAsBsCrDsEsF»T3 SLEQ
LABEL AGAIN,FIMISHEDS SLEQ
WRITECLINE,FT1)3 SLEQ
AGAINS READCCARDsFINsAsBsCoD,E»FICFINISHED] 3 SLEQ
WRITECLINESFT2,AsBsCrDsE»F)3 SLEQ
TeAxt=DxH) SLEQ
X¢ (LxC=BxF)/T 3 SLEO
Ye (AxF=DOxC)/T 3 SLEQ
WRITECLINE,FT2,X,Y)} SLEQ
GO TO AGAINS SLEQ
FINISHEDt END. SLEO

This sample program is complete in every detail and, if punched
into cards, would compile and runona B 5500 computer. Notice that
the program starts with BEGIN and the five declarations which will
be used to provide the basic input/output capability. The sequence of
characters between the quotation marks in the declaration on card
SLEQ 5 will be printed as the heading information.

In addition to the five declarations which are used to provide the
input/output capability, nine real variables and two labels are
declared.

The first write statement effects the printing of a heading on the
output. The heading will say SOLUTION OF SIMULTANEOUS LINEAR
EQUATIONS. The read statement bearing the label AGAIN will cause
the variables, A, B, C, D, E, and F to be initialized to the values
read from six consecutive punched cards. The write statement
following the read will print out the input data. This is always good
programming practice.

After the calculations are performed the results will be printed
out by the second write statement. Control will then be transferred
back to the read statement via the GO TO AGAIN construct. This
loop will be repeated until no more data sets exist at which time
control will be transferred to the label, FINISHED, specified in the
action label part of the read statement and the program will be com-
pleted.

53

OB NOUV & WN -

EXERCISES

1. Write ALGOL assignment statements for the following mathematical

a.
b.
C.
d.

€.

f.

g.

formulas:
y=a -Dbx +cx2 -dx3+ ex? - £x°
circle area =1y (radius)2
gross pay =30 X (normal rate)+ [(total hours)-30] X (overtime rate)

discriminant =b2 - 4ac

tangent of x = _SinX
COos X

m =3.141593

(speed) x (time)

new distance = (starting distance) - -
(&) (route tortuosity)

2. Find the syntactical error in each of the statements:

0.

W2F ~ (ALPHA - BETA)5@-13
PLUTO: A« B4U + ACT*-Q
WRONG: 60 «MIN

F « TIZ + 136. - A/2 +B64000
43: X <X +.195

GOTO LOST

L1:L2: T« T - 2DELTEMPAVE
GO TO 12

BEGIN LABEL EXT; EXIT: END
BEGINY+~Y+1,X«X-1END
Je=Z + 6.23(X-Y)

XZ = YZ = A-B+Z+~4

PQY+~ -4.3 x (HX(X-Y)

A~ B@4 +Zx(I-4)

GO TO L+1
54

p. BEGIN
FILE IN CARD (2, 10);
INTEGER A, B, D;
REALI, C, E;
C+ 3; E « 4.67;
LABEL FINIS; |
READ(CARD,.....);

FINIS: END

3. The following compound statement represents the most efficient

way to compute Z, given A.
BEGIN
TEMP1 « 2.5 X A +4; TEMP2 « TEMP1 *2;
Z «(TEMPI1+(TEMP2 +1)/A)/(TEMP2-1)
END;

Write an equivalent single assignment statement for computing Z from A.

Write a program to read single data values from an unknown number
of cards, print each value, and accumulate the sum of the values and
the sum of their squares. Compute and print the average and the
standard deviation of the complete set of numbers. Recall that, for
N values, (ave.) = (sum of values)/N and (std. dev.)2= [Ny (sum of

squares) - (sum of values)2] /(N(N-1)).

Write a program to read an angle, X, from a data card, compute values
for sin(x), tan(x), log; o(sin(x)), and log, n(tan(x)) and print them on a
single line. Repeat this process for as many data cards as are pre-
sented to the program, thus printing a table. Compare the results with

values tabulated in a handbook. Assume the angles are in degrees.

55

4.1

CHAPTER 4 - CONDITIONAL STATEMENTS

THE CONCEPT

One of the features of the digital computer that distinguishes it
from lesser devices, such as the desk calculator, is its decision-
making capability. Although widely misunderstood in degree, it is
this capability, along with the storage (or memory) capability, that
allows” computers to solve complicated problems. In reality, the
computer itself only makes binary (yes/no)decisions. It is the com~
bined effect of many binary decisions, in a program, that seems to
endow a computer with a rudimentary intelligence. Note that it is
the program, written by humans, which embodies the intelligence,
if any, exhibited by the computer.

The binary decision capability of computers takes the form of
alternative actions depending on the result of very simple compari-
sons. For example, most computer hardware is capable of sensing
whether a given numeric value is zero or non-zero and whether its
sign is negative or positive. If the problem decision to be made is
at all complex, the difficulty of correctly programming it as a series
of binary decisions in machine language can be very great.

ALGOL greatly simplifies the programming of decision processes.
It does this by allowing the decisions to be expressed in a highly
readable form. For example, a special action to be taken, in case
the value represented by a variable ALTITUDE is negative, might
be expressed by the ALGOL statement:

IF ALTITUDE <0 THEN GO TO CRASHED

A considerably more complex decision process is found in the
example,

IF (A> BORC=0) ANDD/E<BXA
THEN X «Y ELSE Y « X/2
56

4.2

Nevertheless, the latter example is still simple to write, to read
and to modify (when necessary). Either example is easily converted
into correct and efficient machine language by the ALGOL compiler.

One purpose of the present chapter is to set forth the rules gov-
erning the writing of statements such as those above. These are
called conditional statements. Their syntax will be discussed in
Sections 4.3 and 4.4, after development of one component, the
Boolean expression, is completed in Section 4.2.

BOOLEAN EXPRESSIONS

A vital portion of all conditional statements is the part which
expresses the truth value upon which the conditionis based. Mathe-
matically, these are called Boolean expressions. For simplicity,
the presenrt subset of ALGOL utilizes these only in conditional
statements. Further, the subset narrows the definition of Boolean
expression to include only the most needed forms.

Analogous to the primary in arithmetic expressions, there is the
Boolean primary. It is defined as

(Boolean primary) ::= (relation)] ((Boolean expression))

The relation is the basic truth value, which is either true or
false. It is formed according to the formulas,

(relation) ::= (arithmetic expression) (relational operator)
(arithmetic expression)

{relational operator) ::= <|<|=|#|2|>

The relational operators have the conventional mathematical
meanings, as follows:

< is less than

< is less than or equal to

= is equal to

2 is greater than or equal to
> is greater than

is not equal to

57

They assert a relationship between two arithmetic expressions
which may be either true or false, depending on the numerical
values of the variables or numbers that occur in the arithmetic
expressions.

Note that literally any arithmetic expression is allowed on either
side of a relation. Thus, N#-7 and 2=2 are legal relations, as is
K X SIN(BETA) < (P x COS(PHI))/(1+N). Note that these are also
perfectly good Boolean primaries.

A word of caution is in order on the use of REAL arithmetic
expressions in relations.Most decimal fractions cannot be repre-
sented exactly as a binary (base 2) number. For example, if the
value of A is computed by originally setting it to zero and then suc-
cessively adding 0.1, the relation A =1.0 never becomes true. The
situation is analogous to that experienced in decimal (base 10) cal-
culations where 3 x (1/3) #1 because 1/3 cannot be represented
exactly as a decimal fraction. Note that (1/3 +1/3 +1/3) <1 if
1/3 is approximated by 0.3333333333, and (2/3 + 2/3 + 2/3) > 2
if 2/3 is approximated by 0.6666666667. The most prudent rule is
to avoid the use of the relations which involve REAL arithmetic
values where the case of exact equality is important.

The two logical operators AND and OR are needed in forming
Boolean expressions. The operator AND gives the logical product
and OR gives the logical sum of two truth values, according to the
following table, where BE1 and BE2 represent Boolean expressions:

BE1 False True False True
BE2 False False True True
BE1 AND BE2 False False False True
BE1 OR BE2 False True True True

We are now adequately prepared to define the Boolean expression.
For completeness, the formula for a Boolean primary is repeated
here.

(Boolean expression) :: = (Boolean factor) | (Boolean expression)
OR (Boolean factor)

Boolean factor) ::= (Boolean primary) | (Boolean factor) AND
(Boolean primary)

(Boolean primary) : := (relation) | ((Boolean expression))

Note the roles played by the two logical operators. The AND opera-
tor has a higher precedence than does OR, This causes the Boolean
factor to be treated as an entity just as the term A/B is an entity
in the arithmetic expression M+A/B. For example, the Boolean
expression X #1 OR Y = 0 AND Z # 0 is evaluated by the steps:

58

1. Obtain the truth values for all the relations
2. Evaluate the Boolean factor Y = 0 AND Z# 0

3. Combine the result with the truth value for X # 1, via the OR
operator

Since a Boolean expression can be made a Boolean primary by
enclosing it in parentheses, the order of precedence of the logical
operators can be overridden. This is analogous tothe use of paren-
theses in arithmetic expressions.

The student should verify the classifications of examples given
below:

Legal Illegal

Boolean primaries

-1=0 A>BAND C<D
1-A> B* (-E) A#BORC=D
(X=Y OR W-K<4) 1-W*2

(F#N AND 1+N=2A/D)

Boolean factors

X=0AND Y# 0 AZBORC=D
A>1AND (B= 0 OR C< D) 1+ A AND Z>0
(A=B OR C=D) AND (X<2 OR Y<2)

F#NAND 1+ N2A/D

Boolean expressions

A#B (B*2-4xX A X C)
DX > DXMAX OR DY > DYMAX

I =0AND J =0 OR K=1

(1 #0 OR J # 0) AND (A>0 OR X/Y<l)

59

4.3

IF STATEMENT

The most commonly used conditional statement is the if state-
ment. (A complete definition of conditional statements is given
in Section 4.4).

(if statement) ::= (if clause) (unconditional statement)

We see that any if statement is composed of two parts. Recall that
the unconditional statement was defined and discussed in Chapter 3.

(if clause) ::= IF (Boolean expression) THEN

This requires that all if clauses begin with the reserved word IF
and end with another reserved word THEN. Recall in Section 2.2
that IF and THEN are formally called sequential operators.

Note that, although the if clause seems tohave a very simple form,
the occurrence of the Boolean expression within it adds all of the
variety brought out in the preceding section.

So, an if statement may take on great simplicity, such as:

IF N#M THEN GO TO RECT
or
IF A< L THEN B «2

On the other hand, either the Boolean expression or the uncon-
ditional statement or both canbe quite complex. Since the latter may
be a block, an if statement can constitute a major portion of an
ALGOL program.

There are no reservations onthe kinds of unconditional statements
that can occur in if statements. For example:

IF Z/N > 2 THEN BANK: Z+ ZLIM

is perfectly legal because

BANK: Z «ZLIM

is a legitimate basic statement, one of three forms of unconditional

statements, defined in Chapter 3. In the same way, it is legal to

write

IF A<B OR C< B THEN

UNDER: BEGIN D+ - D; K« S« 0 END

More examples of if statements are given at the end of Section 4.4.
The meaning of an if statement is not hard to explain or to

remember because it coincides with normal English usage. That is,

if the truth value of the Boolean expressionis true, the unconditional

60

4.4

statement is executed; if not, no action is taken beyond evaluation
of the Boolean expression. If the truth value is false, control passes
immediately to the statement following the if statement. If the truth
value is true, the unconditional statement may cause control to be
transferred to another portion of the program. If that does not
happen, the statement following the if statement is executed next.

It is legal to refer to (via a'GO TO) any label within an if state-
ment from points outside that if statement. Control then does not
depend on the Boolean expression in the if clause of that if state-
ment.

CONDITIONAL STATEMENTS

We now have sufficient preparation to discuss the complete defi-
nition of a conditional statement:

(conditional statement\ ::= (if statement) | (f statement) ELSE
(statement) | (if clause)(for statement)l
{abel) :(conditional statement)

For convenience, we repeat previously given definitions of four
of the above constituents.

Gf statement) :: = (if clause) {(unconditional statement
@f clause) ::= IF (Boolean expression) THEN

(unconditional statement) ::= (compound statementy |
(basic statement) | (block)

(statement) ::= (unconditional statement} | (conditional statement) |
(for statement)

A fifth major constituent, the for statement,is to be taken up
separately in Chapter S.

The above definition of a conditional statement implies to us the
following:

1 The if statement, discussed in the previous section, is only one
form of a conditional statement.

61

2. Another form, yet to be discussed, appends to an if statement
the reserved word ELSE followed by a statement. No
semicolon appears before the sequential operator ELSE
because ELSE can not be the beginning of a new statement.

3. Another form is an if clause followed by a for statement, to be
discussed in Chapter 5.

4. A conditional statement can be labelled (with one or more labels)
or it may be unlabelled.

Before taking up the ELSE option, it is worth contemplating the
recursiveness of the definition of the conditional statement. The
power of the metalinguistic notation is well displayed here. How
else could we as easily establish that it is legal to write, among
countless other forms, a single conditional statement of the form:

IF (Boolean expressiony THEN
asic statement) ELSE

IF {(Boolean expressiony THEN
(1abel) :(basic statement) ELSE

IF (Boolean expression) THEN
compound statement ELSE

(label): IF (Boolean expression) THEN
basic statement) ELSE
(for statement)

Recall that such an example is not mecant to demonstrate how to
write (a portion of) an ALGOL program. It illustrates only that, if
such a construct were to occur naturally in the writing of a pro-
gram, it would be syntactically correct and meaningful to the ALGOL
compiler.

The form of the conditional statement that employs the ELSE is
sometimes called the ‘‘IF..,THEN...ELSE statement.”’ This arises
from the definitions of its constituents, since

(if statement)ELSE (statement)
could equally well be written

IF (Boolean expression) THEN (unconditional statement)ELSE
(statement)

Again, the meaning may be correctly surmised from English usage.
If the truth value is true, the unconditional statement portion is
executed. If it is false, the statement (following the ELSE) is exe-
cuted.

Control, unless directed elsewhere via a GO TO, passes to the
next statement. The passage of control, in the absence of any GO TO,
is perhaps better defined by the diagrams:

62

I’— true —li_j

IF statement IFBE THEN Su ; S

l—false -—-1
r— true — I ‘

IF...THEN...ELSE statement IF BE THEN Su ELSE S ; S

I——— false N ?

Here BE represents Boolean expression, Su represents uncon-
ditional statement, and S represents statement. Note the absence of
a semicolon preceding ELSE,

In case the statement following the ELSE happens to be an if state-
ment, the passage of control, without any GOTO, is diagrammed as

true
[) T — R
IF BE THEN Su ELSE IF BE THEN Su ; S

l— false * L false ————T

Another case might be

I—true jl rtrue *

IF BE THEN Su ELSE IF BE THEN u ELSE S ;

L fatee Flsate H 1‘

In the most general case, a conditional statement can be a series
of conditions and the evaluation continues until a truth value of
true is found. When this occurs, the next succeeding unconditional
statement is executed. If none of the Boolean expressions has a
truth value of true, the statement following the rightmost ELSE is
executed. If no ELSE appears after the rightmost THEN, control
continues in sequence.

A go to statement may lead to a label within a conditional state-
ment. If this occurs, the flow from that point is determined by the
same rules as if that point had been reached by entry through the
if clause at the front of the conditional statement.

Examples are given below for the new constructs discussed in
this section. These include, for completeness, and later reference,
an example of the (if clause}(for statement) construct, although the
for statement is not discussed until Chapter 5.

63

EXAMPLES

If clauses

IF A> B THEN

IF A #C OR X < YH THEN

IF X> 0 AND Y < 0 THEN

If statements

IF A>B THEN Ae A -1

IF W< 0 THEN BEGIN W« 0 ; GO TO L1 END
IF X 20 AND Y> 0 THEN GO TO QUAD

Conditional statements

IF A<BTHEN A+~ A +1

IFE>LTHENZ~YELSE Y+~ Z -E

SCALE: IF S<10,1 THEN S «+10 ELSE
IF S<20.2 THEN S+ 20 ELSE
IF S < 40.4 THEN S « 40 ELSE
IF S <80.8 THEN S+~ 80 ELSE

BEGIN S «~ S/10; GO TO SCALE END
IF N> 0 THEN FOR I+~ 1 STEP 1 UNTIL N DO

H-~Aa+BxT Ul +cxT[]*2

The following problem will serve as an example of the use
of conditional statements in a program. The program evaluates
e* from the infinite series approximation using the first 20
terms of the series.

Sample Problem: e* = 1 4.1—1‘ +X2

5 x4 ...
2 +

X
31 *a

64

BEGIN
COMMENT EVALUATE E#X FROM SERIES APPROXIMATION}
FILE IN CARD(1,10)3
FILE ouTt LINE 1 (2,15)3
FORMAT IN FINCF12,6))
FORMAT OUT FTI(X10,"E*X = 14X/14X#2/24X%3/6400¢ R.EJJOHNSON"//)3
FORMAT OUT FT2C(6(XA»F12.65X8)7)3
REAL X>ETOX,ETOXTS
INTEGER I’
LABEL FIRST»SECOND,LASTS
WRITECLINESFT1))
FIRSTs READCCARD,FIN,X)ILAST)}
1 ¢ 23
ETOXT ¢ X3
ETOX ¢ X3
SECOND? IF 1 € 19 THEN
BEGIN

ETOXT ¢ ETOXT x X/1I3
ETOX ¢« ETOX ¢ ETOXTS
I «1 ¢+ 13
GO TO SECOND
END3
ETOX ¢1¢ETOX}
WRITECLINE,FT2,ETOX,EXP(X))}
GO TOD FI1RSTS
LAST? END OF PROGRAM,

65

ETOX
ETOX
ET0X
ETO0X
ETOX
ETOX
ETOX
ETOX
ETOX
ETOX
ETOX
E70x
ETOX
ETOX
ETOX
ETOX
ETOX
ETOX
ETOX
ETOX
ETO0X
ETOX
ETOX
ETO0X
ETOX
ETOX

OBDNON S WN

EXERCISES

What is the value of X after the following is executed? Assume
A=63,B=12,C=D-=7,

If A>BorC# O0Oand D< 3 then X ~ 1 else X « 23

Write conditional statements that correspond to the following verbal
statements. If the statement is true, then transfer to label MRE
otherwise transfer to label FIN,

a. Either Q exceeds A, or itexceeds B, or it exceeds C, or is less
than D.

b. Both LS and MO must lie between 1.5 and 8.6.

c. X exceeds Z and either A or B must be less than 3.4.

Write a program to evaluate the constant e by the series

1 1 1 1
e=l.+—!+§!— +g *'4_!—*

Terminate the series when the next term would be less than
0.00000001 or when the number of terms exceeds 300. Print
the series sum after each 20 terms, as well as the final value.

Write a program to read positive or negative data values; separate
them into integer and fractional parts, and print a table of the num-
bers and their separate parts.

Write a program to read five data values from cards, print them in
the order read, sort them into algebraically ascending order, and
print them again in that order.

Write a program to compute a square root via an iterative process
which uses the formula

NEXTESTIMATE = (LASTESTIMATE + X/LASTESTIMATE)/2

to obtain successive estimates for the square root of X. Use X/2
as the initial value for LASTESTIMATE, and terminate the itera-
tive calculation when ABS(NEXTESTIMATE/LASTESTIMATE-1)<
0.00000001. Use the X values 0.0, 0.1, 0.2, 0.3,, 4.0, and
print X, the common function SQRT (X), and the computed estimate
of the square root. 66

5.1

CHAPTER 5 - FOR STATEMENTS

THE CONCEPT

In the solution of problems using numerical techniques, it is often
desirable to execute a statement or series of statements in repetitive
fashion. Suppose, for example, a program isto READ a value from a
card, execute an assignment statement, and WRITE the result on
the printer and this is tobe performed for ten different input values.
One way to do this would be to repeat the necessary statements ten
times (in serial fashion) in the program. A better way, however,
would be to write the necessary statements once and execute these
same statements ten times.

In ALGOL this repetition or ‘‘looping’’ of statements is con-
veniently performed by means of a for statement. This statement
permits the programmer to control the repetitive process for any
number of statements. All statements which are to be repeated are
under control of a variable called the controlled variable which is
changed in value once per repetition, until some limit or condition
is met as specified by the programmer. The following specifi-
cations completely describe the for statement:

(for statementy: : = (for clause)(statementy | {label): (for statement)

(for clause).:= FOR (controlled variable).(for listy DO

(controlled variable)::= (simple variable)
(for 1list)::= (for list element)|{or list),(for list element)
(for list element)::= (arithmetic expression

{arithmetic expressiong\fJ EP
$arithmetic expression)UNTIL
arithmetic expression)

67

5.2

The above definitions point out the use of four more reserved
words, namely, FOR, DO, STEP, and UNTIL,Itis also seen that the
basic constituent of the for statement is the for clause. The for
clause controls the iterative process for the statement following DO,
The controlled variable takes on only one form—that of a simple
variable and appears immediately after the reserved word FOR, The
for list is the element that provides the initial and limiting con-
dition to be applied to the statement following DO,

From the specifications given for a for statement it is seen that
following the reserved word DO is a statement. In Chapter 3, we
saw that a statement has many definitions, such as block, con-
ditional statement, compound statement, for statement, etc. It should
be kept in mind that any of these constructs may follow DO, Probably
the most widely used statement following DO is the compound state-
ment. This construct permits the programmer great flexibility in
writing his programs.

The two types of for lists presented in the specifications above
describe slightly different processes for the forming of loops in a
program and therefore will be discussed separately. Before these
are discussed, however, the student’s attention is called to the
recursiveness of the definition of the for list. Either, or both forms
of the for list element may be repeated in the for list as long as
theéy are separated by commas.

The process described by more than one for list element is
exactly the same as if the for list elements were used to form a
series of for statements. Each for list element would be taken
in turn from left to right to form individual for statements. These
for statements would be written using the same controlled variable
and the same statement following the reserved DO as contained in
the original for statement.

THE FOR LIST

The simplest for statement that can be written is when the for
list element is a single arithmetic expression. This can be illus-
trated as follows (where AE represents any arithmetic expression):

FOR Y ~ AE DO S1;S2

In this case, the value of AE is assigned to the variable Y and
since there is no limiting condition, no test is made and the state-
ment following DO (represented by S1) is executed. The for list is
then considered exhausted and control will continue in sequence
with the execution of the statement, represented by S2. Thus, in the
above case, the same results are obtained by the series of state-

ments:
68

Y « AE; S1;S2

A more complete and useful extension of the above form is when
the for list definition is used recursively as follows:

FOR J ~ 3,4,A,C/D,SQRT(X) DO SReSR + J/2;S2;

In this example, the for list consists of the arithmetic expressions
3,4,A,C/D,SQRT(X). The first value assigned to the controlled vari-
able J, is a3; the statement SR+ SR + J/2 is then executed. Next the
value of 4 is assigned toJ and the same statement is again executed.
This process is repeated for all elements in the for list. After the
last element (in our case, this is the value of SQRT (X)) has been
assigned to J and the statement following DO has been executed,
control will continue in sequence to the statement following the for
statement (represented here by S2).

As the final example of this form of the for list element, assume
that five values are to be read (one per card), their square roots
taken, and the resultant values printed. The for statement to
accomplish this is given as follows (note that in this case, vari-
able IM is used chiefly as a counter):

FOR IM ~1,2,3,4,5 DO

BEGIN
READ(CARD,FIN,NUMBER);
SQ ~ SQRT(NUMBERY);
WRITE(LINE, FT 2,IM,SQ,NUMBER)
END

In this example, the three statements enclosed between the words
BEGIN and END make up a compound statement. This statement is
then under control of the for clause and will be executed a total of
five times.

The second form of the for list element is the STEP-UNTIL
construct. Its general form is as follows:

FOR V < AE1 STEP AE2 UNTIL AE3 DO S1; S2

In this case the initial value assignedtoV is the value represented
by AEL. If this value has not passed AE3 the statement following DO
(represented by S1) is executed. All subsequent assignments to the
controlled variable are equivalent to V « V+AE 2 and are made
immediately after the DO statement is executed. In all cases, before
the DO statement is executed, a check is made to ascertain that the
value of V has not passed AE3. The basic flow of the STEP-UNTIL
construct can be illustrated by the following block diagram (in
which AE2 is assumed to be positive):

69

Ve« AEl

No

Yes

S1

v

Ve~ V+AE2

52 |e

AE1l, AE2, and AE3 represent arithmetic expressions and may take
on positive or negative values. This means that the for statement
may either ‘‘step-up’” or ‘‘step-down’’ during the repetitive
process. The above block diagram shows thattheDO statement may
be executed zero or more times depending on the values of V and
AE3. It also indicates that, if the value of AE 2is always zero, the
for statement will be caught in an infinite loop. A complete
description (considering all sign possibilities) of the STEP-
UNTIL for list element follows:

V - AEl;
L2: IF AE2 = 0 OR (SIGN(AE2) = +1 AND V< AE3) OR
(SIGN(AE2) = -1 AND V 3 AE3) THEN

BEGIN
S1;
Ve~V + AE2;
GO TO L2
END ;
S2

70

5.3

In the following example, if I =1 and M = O the statement repre-
sented by S1 will not be executed at all; but rather control will
transfer immediately to the statement represented by S2. If I=1,
J=1, and M=1, statement Sl will be executed once and only once
before transferring control to statement S2. However, if J=0,
then statement S1 will be continually executed.

FOR K+~1 STEP J UNTIL M DO S1; 52

The fellowing example illustraies the use of the STEP-UNTIL
construct in the same situation as found in the previous example.

FOR IM+ 1 STEP 1 UNTIL 5 DO

BEGIN
READ(CARD, FIN,NUMBER);
SQ+~ SQRT(NUMBERY);
WRITE(LINE,FT2 IM,SQ,NUMBER)
END

The same example could be written using a conditional statement.
IM«~1;

LOOP: READ(CARD,FIN,NUMBER);
SQ «~SQRT(NUMBER);
WRITE(LINE,FT2,IM,SQ,NUMBER);
IM«~ IM+1;
IF IM <5 THEN GO TO LOOP

USES OF THE FOR STATEMENT

Suppose it is necessary to find the natural logarithm for a series
of numbers starting from 2 and goingthru3.1 in increments of 0.01
and to print all the results. This could be accomplished with the
following for statement:

71

FOR N+ 2 STEP .01 UNTIL 3.1001 DO
BEGIN

ANS ~ LN(N);

WRITE(LINE,FT2,N,ANS)

END

In the above example, the number 3.1001 was used as the limiting
value to insure that N will reach a value of 3.1. The programmer
should always exercise caution in using real arithmetic values in
this type of for list. The reason for this was discussed in Section

If another for statement follows DO, then the for statements are
said to be nested. In this case the for list of the inner for clause is
repeated for each element or step of the for list contained in the
outer for clause. For example:

FOR I ~0 STEP 2 UNTIL 10 DO
FOR J ~1,2,4 STEP 1 UNTIL 7 DO
TBK ~ TBK+IxJ;
READ(CARD,.......)

The assignment statement TBK « TBK+IXJ is executed for I equal
to 0 and for J equal to 1,2,4,5,6, and 7; then I is assigned the value
of 2 and the assignment statement is again executed for all values
of J. This process is repeated until the outermost ‘‘for loop’’ is
exhausted after which the READ statement would be executed.

There are three aspects of for statements which the programmer
should be aware of. The first is that a go to statement appearing
outside the for statement may not transfer control to a labelled
statement within the scope of a for statement. As illustrated:

GO TO DIAG;

.

.

FOR JX = 1 STEP -2 UNTIL -11 DO
DIAG: COMP ~ COMP + 4/JX
In this case, the GO TO DIAG statement is not permitted as the
controlled variable JX has not been assigned a value at the time
of that particular entry. Control may be transferred to the for
statement however, as follows:

72

GO TO DIAG;

DIAG: FOR JX+ 1 STEP -2 UNTIL -11 DO
COMP ~ COMP + 4/JX

The second condition to be aware of is the value of the controlled
variable upon exit from the for statement. If a compound statement
following DO contains a go to statement leading outside the for
statement, the value of the controlled variable upon exit from the
for statement will be the same as it was immediately preceding
the execution of the go to statement. For example:

TOT « 0;

FOR 1 «1 STEP 2 UNTIL 10 DO
BEGIN

TOT~ I+TOT;

IF TOT > 5 THEN GO TO EXCEED
END;
EXCEED: J«I

When control is transferred to label EXCEED the value of I will
be 5 and any reference to I will use this value. If an exit from the
FOR statement is due to exhaustion of the for list, then the valué of
the controlled variable is not defined.

Any statement following the for statement may access the variable
I but the programmer cannot be assured of its value, unless it has
been assigned some particular value after execution of the for
statement.

Finally, it should be noted that the controlled variable has the
status of any simple variable within the for statement. In other
words, it may appear in arithmetic expressions or on the left side
of an assignment statement.

Compute and print y, where

y =xtan +2 Iln| cos x
2

I

73

for values of x equal to 0.5, 0.5+n, 0.5+2n, etc. Terminate the com-

putation when the next value of x will be greater than 1.5.

FILE IN
FILE OuT
FORMAT IN
FORMAT 0OUT
FORMAT QUT
REAL

BEGIN

BEGIN

END
END

CARD (2» 10)3

LINE 1 (2, 15)3

FIN (F12.,6))

FT1 (X10, "FORMULA EVALUATION = H, MAR%//)}
FT2 (6(XA,F12.65X8)7)}

Xs No Y5 T3

WRITE (LINE, FT1)3

READ (CARD, FIN, N)J

WRITE C(LINE» FT2, N)J

FOR X ¢ 0,5 STEP N UNTIL 1.5 DO

T ¢ COS(Xx/2)3
Y ¢ X x (SINCX/2)/T) 4 2 x LNCABS(T))}
NRITE C(LINE,» FT2, X» Y)

OF PROGRAM,

EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL

Notice that the value of n is read in as input data and used as the
increment in the for clause. The entire calculation is done in the
single for statement with the initial value of x=0.5, assigned the first
time through the statement. Subsequently x is incremented by n and
tested against the limiting value 1.5.

74

OBNOWV & WA~

FILE OuT
FORMAT
FORMAY
COMMENT

REAL

BEGIN

BEGIN

END
END

LINE 1 (2, 15))

FT1 (X10,"COMPARING VALUES OF SIN(X) GOTTEN THO WAYS™))
FT2 (6(X8,F12,65X48)/))

A USE OF SIMPLE "FOR LIST ELEMENTS®™ TO GET SIN(X)

BY A POLYNOMIAL APPROXIMATION, EVALUATION OF

CAXT) ¢ (BxTe3d) + (CxT#3) + (DxTe7)

1S DONE IN THE CONVENIENT NESTED FORMS

TXCA ¢ (T#2)x(B ¢ (T#2)x(C ¢ (Te2)xD)))»

WHERE T = (2xX)/P1 AND

A= 1,5708, B = =,6459, C = ,0795, D = =,008 CROUGHLY)}
X, POLLY» KOE» TSQ, T3

WRITE (LINE» FT1))

FOR X ¢ 0,070745 STEP .1 UNTIL 1,58 00

POLLY ¢ =,00436248) T ¢ (X4X)/3,141593 TSQ ¢ TxT)
FOR KOE ¢ 07948766, =,64592098, 1,57079485 DO
POLLY ¢ KOE ¢ TSQ x POLLY}

POLLY ¢ POLLY x T3

WRITE C(LINE» FT2, X» POLLY» SINCX))

OfF x LOOP3

75

DHT1
DHTY
OHTY
DHTY
DHT1
DHT1
DHTY
OHTY
DHTY
DHT1
DHTH
DHT1
OHTY
DHTY
DHTY
DHTY
DHT1
DHT1
DHT1
DHT1
OHTY
DHT1

OB N NS WN -

EXERCISES

For what values of Y will the statement following DO be executed?

FOR Y « 3,4,6,8 STEP 3 UNTIL 18, 19, 23 DO

Evaluate the formula

h= Ax2 + bx+c

for each of the values

x =0.12, -0.134, 0.5, -1.4, and 2.13
where

A =2.4,B=6.1, and C = 9.34

Write the following FOR clauses in the STEP,..UNTIL form:
a. FOR A ~1,2,4,8,16,32,64,128,256 DO

b. FOR B «1,0.5,0.25,0.125,0.0625 DO

c. FOR C ~0,0.5,0.75,0.875,0.9375 DO

d. FOR D « 100,90,81,72.9,65.61 DO

Sum the squares of the integers 1 thru n.

Repeat Exercise 3 of Chapter 4, utilizing the for statement where-
ever possible.

Find and print all of the prime numbers (which are necessarily odd
numbers) greater than 3 and less than 1000. Recall that a prime
number is an integer which is not factorable into integers other
than 1 and the number itself. The only conceivable factors are the
odd integers from N down to 3, for a candidate number N, If divi-
sion by one of these yields an integer, the number N is not prime.
(Do not overlook the possibility that SQRT(N) may yield values
such as 8.9999999999 or 13.000000001 when N is a perfect square.)

76

Use a double FOR clause to evaluate the series:
10 10 10 10 10
Ji 4y i2e) PaY ite a8

n

(where 3~ iM =)™ ,2M,3M, .M

Also evaluate it in the form:

8 8 8 8
211+Zzl+ a4 ZlOl
n

(wherezmi= m1+ m2+ m3 +...+mn)

Write a program which evaluates the series
2 3 4
X x X
eX=1 +x+ 21 +3! + 4] + --eu

to eleven terms by means of a FOR list and the nested form of the
polynomial. (Hint: 9! = 10!/10, 8! = 9!/9 etc.) Use X values from
0 to 10.00000 in steps of (x+1)/2. Compare, via printed output,
these results with EXP(X).

77

6.1

CHAPTER 6 - SUBSCRIPTED VARIABLES

THE CONCEPT

The correct use of a subscripted variable is very important in the
writing of ALGOL programs. It is imperative that the student
thoroughly understand this concept. Therefore, the following pages
will be devoted to some background for and usage of subscripted
variables. The discussion will be based on a description of what
is meant by a ‘“‘set.”’ With this concept firmly implanted, there
should be no difficulty for the student in understanding the meaning
and usage of a subscripted variable in ALGOL.

Mathematics defines a set by using such words as ‘‘class,”
“‘collection,”” ‘‘group,’”’ ‘‘family,”” etc. Additional phrases also help
to define a set. For example:

a set of dishes

a set of books

a set of students at UCLA
a set of numbers

a set of pictures

a set of numbered cards
a set of houses in Denver

It is seen that each set or group represents many constituents of
similar items. The constituents of a set are referred to as ele-
ments or members of that set. There may be five numbers in a set
of numbers, twenty books in a set of books, or a thousand students
in a set of students from UCLA. Each of the five numbers is an
element of the set of five numbers, each book is an element of the
set of twenty books, and each student is an element of the set of
students. Each set is given a name; the elements or members of
the set are commonly indicated by means of a subscript number.

78

For example, a set of four elements might be written as Dy, D2,
D3, and D4. These are read as ‘“‘D sub 1,”” “D sub 2,”” *‘D sub 3,”
and ‘‘D sub 4.” The numbers 1, 2, 3, and 4 are called subscripts
and have no other function except to identify or label a particular
element; much as house numbérs are used to identify a set of houses
or airplane numbers are used to identify each airplane of a par-
ticular airline.

To further exemplify this idea, let’s take the example of a set of
students from UCLA. Suppose there are five students with the names
of Sam, Jane, Pete, Joe, and Bette. The set of these five students
will be given the name CLICK; then CLICKI could represent Sam,
CLICK?2 could represent Jane, CLICK3 could represent Pete, etc.
Thus, we see that five students, presumably each having something
in common, all belong to the same set and each is a member or
element of the set, identified by a subscript number.

As one more example, we take a set of numbered cards. Suppose
that six cards are numbered as follows: 500, 501, 502, 503, S04, and
505. If the name of this set of numbered cards is DATA, then DATA
represents a card with the number 500 on it, DATA2 represents a
card with the number 501 on it, etc. In fact, we can go one step fur-
ther and say that DATA] represents the number 500, DATA2 repre-
sents the number 501, DATA3 represents the number 502, etc.

With this last example we can go into the concept of an array. In
ALGOL, an array has a meaning very similar to that of a set in
mathematics. The name of an array is called an array identifier;
the subscript of an array element is called a subscript list. As in
sets, an array represents a group or series of items—usually
numbers. The elements of an array generally have something in
common, either in meaning or usage. Suppose we have an array
called GRADES where each element of this array represents the
score of a different student for some particular test. For example,
GRADE] represents the score of student 1 inthe last history exam-
ination, GRADE2 represents the score of student 2, GRADE 3 repre-
sents the score of student 3, etc. Hence, all the scores are
referenced by one common name, and each score uniquely defined
by a subscript number.

Now in another illustration, suppose there are 400 employees of
company PQ. Each employee is donating part of his salary to a
local charity. The amount that each employee contributes can be
represented by the array identifier DONAT., Then DONAT] repre-
sents the contribution of employee number 1, DONAT2 represents
the contribution of employee number 2, and so forth. Assume also,
that PAY is the identifier of an array which represents the salary
of all employees, namely, PAY] is the salary of employee 1, PAY2
the salary of employee 2, PAY 3 the salary of employee 3, etc.,
and suppose further, that the contribution of each employee is to
be deducted from his pay check, then PAY}] minus DONAT] com-
putes the net pay of employee number 1, PAY2 minus DONAT2
will compute the net pay of employee 2, and so forth. Therefore,
the net pay of all employees canbe computed by ‘using the same for-
mula but varying the subscript numbers.

79

In the preceding example, the donatioi. of each employee could
have been represented by unique names. Thus, DONATI1 (this is
not the same as DONAT)]) could have been used to represent the
contribution of employee number 1, DONAT2 the contribution of
employee 2, etc.; but this would require 400 different names to
represent each employee. The concept of arrays, however, allows
the use of one identifier to represent all employee donations and a
subscript expression to reference each employee separately. Since,
however, all notation in ALGOL is linearized (i.e., all symbols are
written on the same line), it is necessary to use a slightly different
notation for a subscripted variable than has been used in the above
examples. Thus, in ALGOL, DONAT[1] is used to represent
DONAT], DONAT[2] is used to represent DONAT2, etc. The exact
specifications for the writing of a subscripted variable will be given
later.

The above discussion has been limited to arrays with a subscript
list containing a single number or subscript expression. This type
of array is referred to as aone-dimensional or linear array. If two
subscripts are needed to identify elements of anarray, then we say
that this array is two-dimensional.

An example of a two~dimensional array is asfollows: Assume six
students are each taking five examinations. The results of these
examinations can be placed in an array of 30 elements. We could
use a one-dimensional array, but a two-dimensional array will
enable the subscript numbers to have more meaning. For example,
GRADE],1 represents the results of test 1for student 1; GRADE] 2
represents the result of test 2 for student 1....... and GRADE] 5
represents the result of test 5 for student 1; GRADE2] references
the result of test 1 for student 2 ... and GRADE 5 5 references the
result of test S for student 5. This array can be d’iagrammatically
pictured as follows:

GRADE array
Test Results

1 2 3 4 5

1
GRADE3 4
S 2 V' (student 3,result 4)
/ GRADEs5 3
; 4 (student S,result 3)
i s A/
e .
n 4
t

A

80

Here again the subscripts merely label what is being referenced.
Picture that each square is a door with its appropriate subscript
list on it, suchas 1, 1 or 3, 4 or 5, 5, etc. These numbers identify
each door; behind each door is the actual element we reference.
The element may change its value, but the subscript list on the door
will never change its value.

The exact specifications for writing a subscripted variablein an
ALGOL program is given as follows:

(subscripted variable) ::= (array identifier){ (subscript list)]
(array identifier) ::= (identifier)
(subscript list) ::= (subscript expression)|(subscript list),

(subscript expression)
(subscript expression) ;::= (arithmetic expression)

The subscript list specifies the element number within the array
and is separated from its array identifier by means of the bracket
symbols] and[If there is only one subscript expression in a sub-
script list then the array is said to be a single-dimensioned array,
otherwise it is called a multi-dimensioned array. The subscript
expressions of a multi-dimensioned array are separated from each
other by means of a comma. There is no limit to the number of
dimensions an array can have; for practical purposes, however,
more than three or four dimensions are rarely used. Note that the
subscript expression is defined to be an arithmetic expression.
This means that all the rules given in Chapter 2 for the arithmetic
expression can be applied to the subscript expression. In fact, the
subscript expression canitself contain another subscripted variable.

FEach subscript expression is evaluated to yield a single numeric
value. This value is treated as though it were of type INTEGER., If
the evaluation of a subscript expression yields a value of type
REAL or if in fact the subscript expression is a REAL number,
then the following operations are automatically invoked before the
value is used to obtain an element of an array:

Subscript value = ENTIER (value of subscript expression +0.5).
ltach subscript expression may take on positive or negative
values; but the range of each subscript expression may not exceed

1023 elements. Thus, a subscript expression could take on values

from O thru 1022 or -10 thru 1012 or 5000 thru 6022.
Verify the following exprcssions containing subscripted variables:

MAT[-4]
A+D-MAT(I1]

MATL[JK]
81

6.2

STUB([3,I]

MIX([J] -MIX [1] +2.0
CAD[A4SQRT(C)/2, B-Nx2]
INV[M+N/3.4]
SORT(A[I]+INV[2] /3)+IOB
CHECK [TEST[J]]
CHECK[TEST[TEST[1]]]
MAN [1,J,K,L[K]+2]

All]+1

ARRAY DECLARATION

The information that a given variable is subscripted is conveyed
by means of the array declaration. This declaration also contains
information as tothe type of the array (namely, REAL or INTEGER),
the number of dimensions in a given array, and the upper and lower
bounds of each dimension. The syntax for the array declaration
follows:

(array declaration) ::= (array kind) ARRAY (array list)
(array kind) ::= (empty) | (type)
(array list) :: = (array segment) | {array list), (array segment)

(array segment) ::= (array identifier) [(bound pair list)]|
(array identifier), (array segment)

The above specifies that the array list is basically made up of an
array identifier followed by [(bound pair list)]. If the array kind
is empty then the type of the array is assumed to be REAL, The
bound pair list is defined as follows:

82

(bound pair list) ::= (bound pair)| (pound pair list),
(bound pair)

(bound pair) ::= (lower bound):{upper bound)
(lower bound) ::= (integer)
(upper bound) ::= (integer)

Note that both the upper bound and lower bound of each dimension
of the array must be specified and that they are separated from
each other by means of the colon. If the program accesses any
element outside this range an error message is given and the pro-
gram is terminated. If more thanone array has the same bound pair
list and the arrays are all of the same type, the bound pair list
need not be repeated for each array but rather follows the right-
most array identifier. The number of elements in any one dimen-
sion of an array may not be greater than 1023.

The following are legal ways to write an array declaration:

ARRAY MAT[0:2407, MAT1 [0:2407;

REAL ARRAY STUB[0:4,1:6],CAD[400:500,1:50);

INTEGER ARRAY CHECK [-60:-4],MAN [0:5,0:25,1:7,4:15];

or

ARRAY MAT,MAT1[0:240], STUB[0:4,1:6], CAD [400:500,1:507;
INTEGER ARRAY CHECK [-60:-47;

INTEGER ARRAY MAN [0:5,0:25,1:7,4:16];

These declarations specify, for example, that array MAT contains
24] elements; the value of the subscript expression may vary from 0O
thru 240, any other value would constitute an error.

It should be mentioned at this point that the most efficient lower
bound of any bound pair list is zero. This efficiency is dictated by
the B 5500 hardware. Although the extratime associated with a non-
zero lower bound is insignificant, the student should realize that
larger programs written by efficiency-minded programmers will
most generally declare arrays with a lower bound of zero—whether
the zeroeth element is used or not.

Wherever possible a multi-dimensioned array should be arranged
so that the right-most subscript expression of the subscript list
will be the one which is changed the most rapidly.

83

6.3

USE WITH THE FOR STATEMENT

One of the most frequent uses of the subscripted variable is with
the for statement. In this case, it is possible to repeatedly execute
a statement where the same subscripted variable accesses a dif-
ferent value each time the statement is executed. This is accom-
plished by using the controlled variable in the subscript list of the
subscripted variable. Whenever the controlled variable changes its
value, a different element of the array is accessed. Suppose that
an array is to be searched for the first element containing a value
of zero. Then the following for statement will transfer control to a
statement with the label ZERO if such an element is found:

FOR I «1 STEP 1 UNTIL 500 DO
IF MAT [I] =0 THEN GO TO ZERO;

Another illustration would be when a single for statement is used
to figure the net pay of X-numbered men. In this example, each man
is represented by a subscript number, Arrays are set up to contain
the values of each man’s pay rate, his social security tax, dona-
tions, etc. Another array is established to represent his net pay.
Only one for statement is required to compute the net pay for all
the men by varying the controlled variable so that each reference
to an array accesses information for that man only, as follows:

FOR I «~1 STEP 1 UNTIL X DO
MAN(I] ~ PAY[I] - FICA[I] - TAX[I] - DONATION[I];

The last example will illustrate the ‘‘zeroing’ out of the two-
dimensional array DATA. Assume the array is declared as ARRAY
DATA [0:10, 1:12] and that all elements are to be given the value
of zero.

FORI«~0 STEP 1 UNTIL 10 DO
FOR J~1 STEP 1 UNTIL 12 DO

DATA [1,J | «0

An illustration of the use of subscripted variables is given in the
following example. This simplified program will compute and print

the weekly net pay for 100 employees.)
Three cards are read for each employee. Card 1 contains the

employee number, card 2 the gross pay, and card 3 the number of
employee dependents.

84

FILE IN
FILE OUT
FORMAT IN
FORMAT OuT
FORMAT OUT
ARRAY
INTEGER
REAL

BEGIN

BEGIN

END

END

CARD (2, 10)3

LINE 1 (2, 15)3

FIN (F12.6))

FT1 (X10, "SIMPLIFIED PAYROLL = A, RASCAL"//)}
FT2 (6(XAs F12,6, X4)/))

EMPNO, GRSS» DEPEND, NET(08991)

13

TAXS

FOR | ¢ O STEP 1 UNTIL 99 DO

READ (CAKRD, FIN» EMPNALT), GRSSCI)» DEPENDILII)}
FOR 1 « 0 STEP 1 UNTIL 99 00

TAX ¢ (GRSS(T) = 13 x DEPEND(1]) x 0,14}
NETCL) ¢ GRSSCI] = TAX

3

WRITE (LINE, FT1)3

FOR I ¢« 0 STEP 1 UNTIL 99 0O

WRITE C(LINE,» FT2, EMPNOL1)» GRSSCI)» NETCI))

85

PAY
PAY
PAY
PAY
PAY
Pay
PAY
Pay
PAY
PAY
PAY
PAY
PAY
PAY
PAY
PAY
PAY
PAY
PAY
PAY

O® NORDWN -

EXERCISES

Write a for statement with 3 for clauses to store 1.0 in all elements
of array Z declared as follows:

Z[0:5,0:-6,-10:10]

Array A contains 50 numbers A[0:49]. Write a for statement to

check each element for <0 and keep a count of all such numbers in

variable CT.

'Fill the elements of a 10 by 6 array, A, with values such that:

whenI «J, A[[,LJ]=1/J

whenl=J, A[,LJ] =0

whenI>J, A[I,J] =J/I

(where O0<I<1l and 0<J < 7).

Print the arragf', six elements to a line by means of a write list of
1s

the form A[L1], A[L, 2], A[1,3], ..., A[L6].

Generate a 10 by 10 array similar tothat of exercise 3. Then com-
pute and print the summations for row I and column I for I values
from 1 to 10.

Re-do exercise 5 of Chapter 4, using up to 60 data values.

Re-work the illustrative program of Chapter 3, usinga 2 by 3 array
to store the incoming data. Pexrform the computations in a for state-
ment, using subscripted variables. To make it more interesting, the
problem might be done for 3 equations in 3 unknowns.

Re-work the illustrative program of Chapter S where the sine
function is computed via a nested polynomial. Store the polynomial
coefficients in a one-dimensioned array and write the nested poly-
nomial using a subscripted variable for the coefficients.

86

7.1

CHAPTER 7- COMMUNICATION - DATA AND RESULTS

FILE DECLARATION

In previous chapters, the reading of input data and the printing of
the calculated results have been accomplished through the use of a
read or write statement using identifiers which were defined by a
fixed set of declarations placed at the beginning of the program. Con-
sider the following examples:

READ (CARD, FIN, (list)) [(label))
WRITE (LINE, FT2, (list))

In each of the above examples, the first element within the paren-
theses is an identifier, the declaration of which appeared as one of
the fixed set at the beginning of the program. The declarations which
defined CARD and LINE were:

FILE IN CARD (2,10)
FILE OUT LINE 1 (2,15)

The purpose of these declarations, called file declarations, is to
associate an identifier with a particular data file and a specific
method for handling the file. The above declarations associate the
identifiers CARD and LINE with given files. This allows the pro-
grammer to call data files by symbolic names without regard to
physical equipment requirements, such as, which card reader, etc.
How the equipment is actually assigned will bediscussed later. The
identifiers may be chosen arbitrarily within the normal restrictions
on identifiers.

87

For purposes of this text a file will be considered as either an
input file consisting of punched cards or anoutput file consisting of
information to be printed on the line printer. A single file, which
will be uniquely distinguished by its identifier, willbe a particular,
logical grouping of information. For example, all of the input data
for a program may be considered as a file.

The syntactical definition of the file declarationfollows. The com-
plexity of the definition cannot be avoided since card input and
printer output are a part of the language facilities designed to handle
all kinds of input-output media.

(file declaration) : : = FILE (I-O part)(file part)

(-0 part)::= IN|OUT

(file part) ::= (file identifier)(unit designation)((buffer party)
(file identifier):: = (identifier)

(unit designation) ::= (empty) | {space)1

(space) ::= (single space)l (space) (single space)

(buffer part) ::= (number of buffers), (buffer size)
(number of buffers) : := (unsigned integer)
(uffer size) :: - (unsigned integer)

From the syntax, it is shown that the file declaration begins with
the reserved words FILE IN or FIILE OUT. This is followed by the
file part.

The file part consists of a file identifier followed by a unit desig-
nation followed by a buffer part in parentheses. The file identifier
may be any valid identifier and can often be chosen with mnemonic
appeal. For example, CARD implying card input data.

The unit designation must be empty for card input files. For
printer files, the digit onc, separated from the file identifier by at
least one blank, must be used. This is the only exception to the
discussion on blanks in Section 2.3.

The buffer part gives the number and size of the buffers in terms
of unsigned integers. These buffers are arbitrary areas in memory
which provide temporary storage for character information that is

received from the card reader or transferred to the printer. The
use of a buffer will be discussed further in the next section. The
only consideration that the programmer must give to these buffers
is their number and size. The number of buffers should be chosen
according to the amount of data being read or written at a given
time. Often multiple buffers will cause a given program to run more
rapidly. For many problems, howcver, two buffers will be nearly
an optimum choice.

88

7.2

The information contained in one punched card is interpreted as
80 alphanumeric characters. This requires a buffer of ten worfis
since each buffer word holds eight characters. Since we can print
120 alphanumeric characters on a line of output, a buffer of 15
words is required for one line of print. This explains the occurrence
of 10 and 15 in the buffer size part of our previous examples.

For many programs, the two file declarations previously used are
adequate. The programmer might consider changing the buffer part
to specify more than two buffers, if the program is highly depend-
ent on input or output.

FORMAT DECLARATION

The second identifier which appears in the parenthetical expres-
sion associated with both the read statement and the write statement
is a format identifier. This identifier refers to precise specifi-
cations for the editing of input or output data. This identifier is
associated with its corresponding editing specifications in aformat
declaration.

It is necessary to specify this editing information, since data in
an external representation is in the form of characters which must
be converted into numerical values inthe computer. (Care should be
taken when comparing data read from cards with program constants
since the converted input value may not be exact in the least signifi-
cant digit position; i.e., @+12 may not exactly equal 0.00000001@+20
where the former is a constant and the latter an input value)The pro-
grammer must indicate in what form the externaldata is furnished,
in the case of input, or is to appear, in the case of output. For card
input the programmer must specify exactly how each column of the
card is to be treated when read. Similarly, it must be indicated
exactly how each column of a printed lineis to appear. It is usually
best to lay out the desired format, possibly on grid paper, to
facilitate the writing of editing specifications to obtain this format.

The input capability used up to now allowed a card of the form

1

I_?xxxx.xxxxxx W

to be read by the read statement

READ (CARD, FIN, (list))

The identifier FIN refers to the format for editing this data as it
is read into the computer. This format, recall, was of the form
F12.6. This says to treat only the first twelve columns on the card,
where there are six digits to the right of the decimal point (which

89

is in column 6), as a string of characters to be translated into the
machine representation of a real number.

On input, the information from a card is deposited in the buffer in
character form. It is then converted, according to the editing speci-
fications, into the internal numerical form. In the output case, the
program deposits the character information, according to output
editing specifications, into the buffer. From there, itis automatically
transferred directly to the printer.

For reference purposes, in the following discussion, it will be
valuable to list the syntax of the format declaration.

(format declaration) : : = FORMAT(I-O part) format part)l
FORMAT (format part)

(-0 part) ::= IN|OUT

(format part) ::=(format identifier) ({editing specifications)) |
(format part),{format identifier)
({editing specifications))
(format identifier) :: = (identifier)
(editing specifications) : : = {editing segment) |
(editing specifications) /|
/ (editing specifications)
(editing specifications)
(editing segment)

(editing segment) ::= éediting phrase
repeat part) ({editing specifications))
(editing segment), (editing phrase)|

(editing segment), (repeat part)
({editing specifications))

(editing phrase) ::=(repeat part){editing phrase type)
(field part) | (string)

(repeat part) ::= {empty) | unsigned integer)
(editing phrase type) ::= E|F|R|I|X
(field part): := (field width)| (field width). (decimal places)
(field width) : : = (unsigned integer)
(decimal places)::= (unsigned integer)
(string):: = ““{any string of valid characters except’’}”’

The syntax indicates that the declaration begins withthe reserved
word FORMAT, which,may at the option of the programmer, be

followed by IN or OUT. Next, there is an identifier which is to be
associated with the adjacent editing specifications.

90

The editing specifications, themselves, are made up of editing
segments which are in turn made up of editing phrases. It is the
editing phrase type and its use in forming more complex struc-
tures which must now be considered. The editing phrase is the basic
mechanism for describing the conversion of character strings into
numeric form and vice versa. On output it also performs the addi-
tional function of transmitting a fixed string of characters, given as
an editing phrase.

For the editing of input information, the F, E, and R type editing
phrases treat numbers with decimal points, converting them into
real numbers internally. The I type is applicable to integers. The
X type phrase, when applied to input, indicates that a certain number
of columns on the card are to be ignored.

When editing output, the E, F, R, and I phrases have an analogous
function to the above, that is, they produce either decimal numbers
or integers in the output string. The X phrase produces a specific
number of blank spaces in the output line.

The number of characters to be treated as a group by a particular
editing phrase and the position of the decimal point, in the case
of E, F, and R type editing phrases, is given by the field part. The
field width is an unsigned integer specifying the number of charac-
ter positions to be edited. The decimal places are also indicated by
an unsigned integer and specify the number of character positions
between the decimal point and the right end of the field.

For example, F6.2 would say to treat the contents of a field six
characters wide, where the fourth character will be a decimal point,
as a decimal number. This would be used to edit a number such as
-32.05 appearing on a card.

The following tables and associated discussion will clarify the
use of the various editing phrase types for both input and output.

INPUT EDITING PHRASES

Editing Editing Type of Example

Phrase Phrase Variable Being of Field

Type Example Processed As Initialized Contents

E E9.2 6-bit characters REAL +7.18@-03

F F7.1 6-bit characters REAL -3892.5

R R8.0 6-bit characters RIEAL -5.1362
63.0K10

I 16 6-bit characters INTEGER -76329

X X7 6-bit characters None any 7
characters

91

The definition of each input editing phrase type is given below:

E - Injtializes a variable to the number found in the field described by
field width. Field width must be at least 7 greater than decimal
places, since the input data is required tobe in one of the following
forms:

-n.ddd---d@+ee
+n.ddd---d@ +ee

n.ddd ---d@+ee
nn.ddd---d@ ree

A two-digit exponent must be in the rightmost two characters of the
field. Preceding it, must be a sign, and preceding the sign is an @
symbol. Next, to the left, is a number of digits equal to decimal
places in the editing phrase, preceded by a decimal point. To the
left of the decimal, there may be either two digits or a sign and one
digit. The sign may be indicated by +, -, or a single space which is
interpreted as positive.

F -Initializes a variable to the number found in the field described by
field width. The input data must be in one of the following forms:

+n---n.dd---d
-nn---n.dd---d

nn---n.dd---d
nnn---n.dd---d
+.dd---d
-.dd---d
.dd---d

The field width must be atleasttwo greater than the decimal places
to accommodate the decimal point and a possible sign. A decimal
point must be present; zero or more digits may precede it. Finally,
there must be one or more digits after the decimal point; the number
of these digits must equal decimal places inthe editing phrase. The
rightmost decimal place must fall in the rightmost character of the
field. If the sign is omitted, the number is taken to be positive.

R - Initializes a variable to the number found in the field described by
field width. It will treat data in either the E or the F formats with
the following features:

1. The number can be positioned anywhere in the field.

2. The actual position of the decimal point in the number overrides
that specified in the decimal place part of the editing phrase.

3. The & is accepted as a +.
4. An E may be used instecad of @.

5. The exponent part need not contain a sign position.

92

I -Initializes a variable to the integer found in the field described by
field width. The least significant digit must fall in the rightmost
character of the field. The sign need only occur if it is negative.

OUTPUT EDITING PHRASES

Editing Editing Type of Example

Phrase Phrase Evaluated of Field

Type Example Processed As Expression Contents

E Ell.4 6-bit characters REAL -0.0125@+02

F F9.3 6-bit characters REAL 6735.125

R R10.3 6-bit characters REAL -1328.001
-1.576@+05

I 16 _ 6-bit characters INTEGER 346140

X X8 6-bit characters None 8 blanks

Each output editing phrase type is defined below.

E -Places the value of one expression in the field described by field
width. This value has the following form when placed in the output
data string:

n.dd---d@+ee
-n.dd---d@see

Again, the field width must be 7 greater than the decimal places.
If this is violated, an asterisk is printed in place of the number.
If field width is more than 7 greater than decimal places, leading
single spaces are used to complete the field. The value of the
expression is rounded to one more than the number of places indi-
cated by decimal places of the editing phrase. The sign of the num-
ber, the first significant digit, and a decimal point occur first. If
the number of significant digits in the expressionvalue is less than
decimal places plus one, trailing zeros are appended. To complete
the field, the symbol @, the sign of the exponent, and the appropri-
ate two-digit exponent are inserted.

The sign of the number is represented by a single space if positive,
and a minus sign if negative. The sign of the exponent is either + or

F -Places the value of one expression in the field described by field
width. This value has the following form when placed in the output
string:

93

nn---n.dd---d
-nn---n.dd---d
nnn---n.dd---d

The expression value is rounded to the number of designated decimal
places and that number of decimal places will be printed. If the
digits preceding the decimal point and the sign of the number (if
negative) do not fiil the remainder of the field, leading single spaces
will be used to complete the field. If the specified field width is
inadequate for printing the number, an asterisk will be printed
instead of the number.

Places the value of one expression in the field described by the
field width. Depending on the size of the number to be converted,
a choice is made between the E and F formats. If the number will
fit into the format described by the field part, F type editing is used.
Otherwise, it is edited using E type editing.

I - Places the value of the expressioninthe field described by the field

width. The expression value is rounded to an integer and placed
completely to the right in the field, preceded by a minus sign for a
negative number and leading single spaces, if any.

The sign of the number is the same as for the E editing phrase type.
Again, an asterisk is printed if the number of digits in the expres-

sion value exceeds field width for positive values or exceeds field
width minus one for negative values.

X -Places a number of single spaces, as indicated by field width, in the

output string.

Each editing phrase describes a portion of the input data being read
or the output data being written. If the same editing phrase or
series of editing phrases occur several times, the repeat part may
be used to conserve writing. For example, the series of editing
phrases F5.2, F5.2, F5.2 may be written 3F5.2. Similarly I3, X3,
F5.2, 13, X3, F5.2 is equivalent to 2(I3, X3, F5.2). If the repeat
part is omitted before an editing phrase or phrases enclosed in
parentheses, the effect is the same as if the repeat part were
infinite and a slash were to appear just inside the right parenthesis.
The occurrence of a slash (/) within a series of editing specifica-
tions causes a skip to the next record. In card input, this causes
the remainder of the present card to be ignored and the next one
read if more data is required. In printer output, it causes the
remainder of the line to be filled with blanks. Subsequent data will
then appear on the following line or lines.

The series of editing phrases which occur in a particular set of
editing specifications is applied to the data from left to right. When
the end of a set of editing specifications is reached or the end of

94

7.3

the list part of the I-0 statement has been reached, the same action
is effected as that which occurs when a slash is encountered. If,
when the end of a set of editing specifications is reached, more
items remain in the list, the format is reused from the beginning.
If a slash follows the editing specifications for a complete record,
the effect of two slashes is gbtained.

Note that the syntax requires that commas be used to separate edit-
ing phrases within an editing segment. The quote marks at the ends
of a string, which is one type of editing phrase, do not relieve the
need for the comma. A comma may not appear adjacent to a slash
since the comma is needed only within an editing segment.

LIST DECLARATION

The list declaration associates a set of arithmetic expressions with
an identifier. Previously, in reading or writing, it was necessary to
include the list in the read or write statement. The same effect is
obtainable by the use of a list identifier in the I-0 statement.
Formally the list declaration appears as follows:

{list declaration) ::=LIST (list part)

(list part)::= (list identifier)({list))|dist part), {ist identifier)

((list))
(list identifier) ::= (identifier}
(list) ::=(list segment)| {list), (list segment)

(list segment) : := (expression part) | (for clause)(list segment >|
(for clause)[(expression list)]

(expression part) ::=(arithmetic expression)

(expression list) ::= gexpression part) | (expression list),
expression part) | (list segment)
(expression list), (list segment)

The syntax indicates that the list is a declaration containing a
series of list identifiers and the list segments associated with
them. Several examples should serve toillustrate the possible forms
that the list may take.

LIST L1 (A, B, C, D)

95

7.4

This declaration associates the list of variables A, B, C, and D with
the identifier L1. If it is used ina read statement it will cause four
variables to be initialized with input data. Inthe output case, it will
cause the values of the four variables to be printed.

LIST AFT (X, Y+2, Z*2, SQRT(X #Y), 1.5)

The list AFT may only be used in a write statement since it con-
tains expressions. These expressions will be evaluated, using the
current values of the variables, before being printed. Since a con-
stant is a valid arithmetic expression it may also appear as a list
element for output. A minor restrictionon the use of function desig-
nators in output list elements is discussed at the end of Section 10.4.
If only variables appear as elements of the list, the list may be used
for both reading and writing. L1 above is such a list.

LIST INPT (A, B, FOR I+~ 1 STEP 1 UNTIL 3DO X[

This list might be used in reading five input values. The first two
will be assigned to A and B. The remaining three values will be
assigned to the array elements X[1], X[2], and X [3]. In other
words, a for clausefollowed by a subscripted variable may appear in
a list for use in reading data into an array.

LIST TWOARRAY (FOR 1«1 STEP1UNTIL3 DO [A[I], B[I], C[1]D)

This will cause the first three input data values encountered to be
assigned to A[1], B[1], and C[17, the nextthree to A[27, B[21, and
C[2], etc. It is possible to nest for clauses for use in reading data
into arrays of more than a single dimension.

One list declaration may contain several lists separated by
commas.

LIST Al (A, B, C), LIN (X+Y, Z*2), OUPUT (FORI ~1 STEP 1
UNTIL 3 DO FOR J = 1 STEP 1 UNTIL N DO
(QMa1, PlLITYD

READ STATEMENT

The read statement actually causes values t:: be read from cards
and assigned to specific variables. Recall that the read statement,
which we have been using, actually refers to identifiers whose mean-
ings have been spelled out by declarations. The syntax of the read
statement follows:

96

7.5

(read statement) ::= READ ({input parameters)) (action label)

(input parameters)::= (file identifierg,iformat identifier), (ist) |
(file identifier), (format identifier),
(list identifier)

?

(action label) : : = [{end of file label)]| (empty)

(end of file label)::= (label)

The file and format identifiers refer symbolically to the file
from which the data is to be read and the specifications which are
to be used in editing it. The list part may be an identifier referring
to a list which is specified in a declaration, or it may be an actual
list.

The action label is a label towhich control is transferred when an
attempt is made to read more data than exists. Obviously, it must
be a label which has been appropriately declared.

When a read statement is executed, reading continues until all
variables in the list have been assigned values. This requires care-
ful attention to the one-to-one correspondence which must exist
between the input data elements, the format editing information, and
the list elements up to the end of the list. Recall that the input
character string is initially brought into a buffer from the card
reader. The editing specifications are used to extract data values
from the buffer and convert them intointernal numerical represen-
tation. These values are assigned sequentially to the variables
in the list. This process can occur simultaneously with the filling
of other buffers,if more than one has been specified. The refilling
of a buffer is initiated automatically, as soon as its present con-
tents have been edited.

WRITE STATEMENT

The write statement is highly analogous to the read statement. Its
obvious function is to print out the values of elements which appear
in its list. It can also be used to print strings of characters given
in format declarations. Syntactically it appears below.

(write statement) ::= WRITE ({output parameters)

(output parameters) ::=(file identifier)
(format and list parameters)
97

(format and list parameters) : : = (format and list part) | (empty) |
[{skip to next page)]

(format and list part)::= , §format identifier) |
»(format identifier), (list)|
»{format identifier), (list identifier)

(skip to next page) ::= PAGE

The syntax points out several interesting features of the write
statement. It can be used, in a form much like a read statement, 0
refer to a file, a format, and a list to print values of the expres-
sions in the list.

Notice that, according to the syntactical definition, the file iden-
tifier must always be present while the format and list part might
be empty. A write statement of the form

WRITE (F1)

where F1 is a file identifier is perfectly valid. It would cause the
printer to skip one line.

If the format and list part consists of the skip to next page alter-.
native,

WRITE (F1[PAGEY)

the printer paper will be advanced to the top of the next page. The
skip to next page alternative should not appear with a format and
list part.

Headings and other constant information can be printed using the
alternative definition of the format and list part which says thar it
may be a format identifier alone.

Notice that a comma must separate the file identifier from the
format and list part. Similarly a list part must be separated from
the format identifier by a comma. The list part is defined syntacti-
cally in the previous section.

There must be a correspondence between numeric values to be
printed, editing specifications, and list elements, just as there was
in the input process discussed in the previous section. The entire
output process is analogous to that of input except that the direction
of information flow is reversed.

It is possible to expand the example of Chapter 6 so that various
I/0 editing can be illustrated. Note that, in this example, a slightly
different approach has been taken, in that no arrays are used.

Assume that the pertinent data for each employee is punched on an
input card of the following format:

Cols. 1-5 - employee number (I5)

Cols. 9-14 - hourly base rate of pay (F6.2)

Cols. 18-20 - number of hours worked - to the nearest hour (I3)
98

Cols.
Cols.
Cols.

Cols.

FILE IN
FILE OUT
FORMATY
FORMAT

FORMAT

FORMAT

REAL
INTEGER
LABEL
COMMENT

CUMMENT

MORE 8
COMMENT

COMMENT

COMMENT

COMMENT

FINIS?
COMMENT

24-27 - overtime factor for hours over 40 (F4.1)
31-33 - number of dependents (I3)
37-42 - weekly donation to United Fund (F6.2)
46-51 - weekly contribution for savings bonds (F6.2)
GIN TAX
CARD(2,10)3 TAX
LINE 1 (2,15)) TAX
FMICIS)X3sF6.2,X35135X3sFA,1,X35,1352(X3,F6,2)) } TAX
FMTH("EMPLOYEE",X14,"HUURS UNITED FUND%,X5,"SAVINGS B"TAX
"OND GROSS™ /" NUMBER BASE PAY NORKED™»X3» TAX
"CONTRIBUTION CONTRIBUTION™,X5,"PAY", TAX
X7»>"NET PAY", X7, "TAX® /)3 TAX
FMTO(X15I5sX65F642sX80 185 XT»F6.2sX102F6:2,X8s2(F7,22X5)» TAX
F7¢2)3 TAX
FMTD(X QN ==ommccacs ecccas cecmcsaa®, X8, TAX
LT P T seosesmcae csescsscse® T‘x
FMTIT(" TOTAL = PoFTe20X25169X5,FB842sX85F8425X55F10,2» TAX
X3,F9.,2)3 TAX
BASE,NET,UF,BOND» GRS, NETT,BASET,UFT,BONDT,GRST,0VERT, TAX3TAX
EMPsHRW, HRWT,DEP 3 TAX
FINIS,MORE 3 TAX
PRINT HEADINGSS TAX
WRITECLINE,FMTH)3 TAX
READ CARDS AND PRINT RESULTS UNTIL END OF FILE REACHEDS TAX
READCCARDSFMI,EMP,BASFsHRWN>OVERT,DEP,UF,»BOND)(FINIS)} TAX
COMPUTE GROSS PAY FROM BASt PAY AND OVERTIME} TAX
IF HRW > 80 THEN TAX
GRS ¢ 40 x BASE ¢ OVERTXBASE x (HRW=40) ELSE TAX
GRS ¢ HRW x BASE} TAX
COMPUTE TAX 3 TAX
TAX ¢ (GKS = 13 x DEP) x 0+143 IF TAX < 0 THEN TAX ¢ 0} TAX
COMPUTE NET PAY AND PRINT} TAX
NET ¢ GRS = TAX = BOND = uF 3 TAX
WRITE (LINE»FMTU,EMP»BASE,HRW,UF,BOND»GRS,NET,TAX)} Tax
CUMULATE TOTALS} TAX
BASET ¢ BASET + BASE} HRWT ¢ HRWT ¢+ HRW} TAX
UFT ¢ UFT ¢ UF 3 BONDT ¢ RONDT + BOND3 TAX
GRST ¢ GRST + GRS} NETT ¢ NETT + NET TAX
GO TU MORES TAX
WRITECLINE,FNTD)} TAX
PRINT TOTALSS TAX
WRITEC(LINESFMTT»BASET,HRWT>UFT»BONDT,GRSTHNETT)S TAX
END. TAX

99

1.

EXERCISES

Write formats for the following output table with appropriate spac-
ing between columns for readability.

Number Area Diameter
X X XXXX@+XX XXXX.XX

Day, month, year, and page are variables containing two digit
integers. What are the necessary format declarations and write
statement(s) to print the heading

TODAYS DATE IS xx/xx/xx. PAGE xx

Lay out a data card in the following format

FORMAT FN(X3,16,F6.2,E20.6,X10,R12.6).

Print a checkerboard, using the asterisk to form the lines and the
letter X to fill in the dark squares. (Each printer space is 0.10
inch wide and each line occupies 1/6 inch of vertical space.)

Write a program to read inanarrayof N rows and M columns from
cards with a reasonable number of data items per card (leaving
space for sequence numbers). N and M, as well as a numeric repre-
sentation of a date, are to be read from the first data card. Print
the array in some sensible format, giving N and M and the data as
part of the annotations in a suitable heading. Neither N nor M is to
exceed 30. If this is violated in the data, print an error message.

100

8.1

CHAPTER 8 - INTRODUCTION TO PROCEDURES

SUBPROGRAM CONCEPT

There are many facets to the ALGOL concept of the subprogram.
Only afew of them will be covered in this introductory chapter. Some
of the more abstract (and powerful) aspects will be reserved for
discussion in the next chapter.

A subprogram is a portion of a computer program which, for
various reasons, is set apart from the main body of coding. It may
be called into action from one or more points in the main program
in such a way that, when the subprogram has been executed, con-
trol returns to the calling point. Itis as if a transfer of control from
the main program could carry with it a label from the next state-
ment in sequence which could later be used to transfer back to that
statement.

Such a capability exists in ALGOL inthe form of procedure declar-
ations and procedure statements. These will be formally defined
later. For the present, we shall consider the procedure declaration
to be a subprogram and a procedure statement a call on a sub-
program.

The procedure statement causes a subprogram to be executed as
if it existed as a body of ALGOL coding at the point occupied by the
procedure statement.

A variety of reasons to use subprograms canbe given. Examples:

1. If the same sequence of statements should occur at several
points in a program, it can be made into a subprogram with
gains in original writing and keypunching effort, ease of making
revisions, readability, etc.

101

8.2

2. Subprograms can be devised and perfected in relatively simple
test programs and then used in one or more, perhaps complex,
unrelated programs. Little, if any, additional testing of the sub-
program is needed with each new use.

3. Voluminous and difficult programming efforts can be packaged,
as subprograms, for the use of many people other than their
originators. With adequate description of the gross properties
of a subprogram, it canbe used by people who never need bother
with understanding its details.

Note that in examples 2. and 3. there is no need to call upon a sub-
program more than once in a given program. The payoff is obtained
by being able to utilize with confidence a proven section of program
without the slightest alteration. This is apart from the benefits
derived from clarifying the logical structure of the main program
and from the ability to make major revisions easily.

The present chapter provides only an introduction to the ALGOL
procedure. Two important points will be established here:

1. The entire subprogram, called a procedure in ALGOL, has the
status of a declaration in the program.

2. The form of procedure discussed here is called into action by an
ALGOL statement which consists simply of the name arbitrarily
given to the procedure in its declaration.

PROCEDURE DECLARATIONS AND STATEMENTS

The ALGOL constructs to be formally defined here are highly
restricted relative to what is possible in B 5500 Extended ALGOL.,
The next chapter presents procedure declarations and statements
in a much less restricted form.

As with any other identifier, it is essentialto declare the meaning
of a procedure identifier before it canbe used in a procedure state-
ment. Thus we have the procedure declaration which is defined as
follows:

(procedure declaration) ::= PROCEDURE (procedure identifier);
(procedure body)

{procedure identifier): : = (identifier)
(procedure body) : := {statement)

102

In this simplified version, we see that a PROCEDURE is declared
in such a way as to associate an identifier with a body of ALGOL
coding. The procedure identifier is formed by the same rules that
apply to any identifier. The procedure body may consist of any of the
many forms of unlabelled statements. In many cases it will be a
block.

All identifiers appearing within a procedure body must, of course,
be declared somewhere. If the procedure body is not itself a block,
the identifiers occurring within it must be declared prior to the
procedure declaration. If the procedure body is a block, additional
““lJocal’’ identifiers will be declared within it. Even then, under the
restrictions of this chapter, some of the identifiers must be global
(and declared prior) to the procedure declaration, in order for the
procedure to have any meaning in the program in which it appears.

There is no restriction on the usage of identical identifiers
inside and outside of a procedure for totally different purposes.
Consider a variable, HAY, occurring both in a procedure and in the
program in which the procedure is declared. If it is separately
declared within the procedure body, the effect is the same as if it
were spelled HAY in the program and HEY (or any other spelling)
in the procedure body.

[here is one additional restriction which applies tothe procedure
body of a procedure in B 5500 Extended ALGOL, Any identifier that
is used but is notdeclared within a procedure body must be declared
in a surrounding block, which is not itself another procedure body.
This simply means that, if a procedure is declared within the body
of another procedure, the body of the inner procedure may not use
identifiers which are declared in the body of the outer procedure.

For the restricted form of the procedure being discussed here,
the statement which calls a procedure into actionis very simple. It
consists solely of the procedure identifier. Formally, this is
expressed by

(procedure statement) : : = (procedure identifier)

The net effect of the execution of a procedure statement in a pro-
gram is the same as would be obtained if the entire procedure body
were copied into the program at the point occupied by the procedure
statement. Note, however, that such copying is not done by the
ALGOL compiler. Rather the coding for the procedure body exists
in one place only and all procedure statements cause control to be
transferred to that one body of code. Upon completion of the execu-
tion of the procedure body, unless a go to statement has led to
another point, control is returned to the point immediately follow-
ing that procedure statement which called the procedure.

One small example will show how a simple procedure might be
written and used. Suppose there were many occurrences in a
program of a division with a (possible) divisor of zero. Suppose
further that the desired results, C, for the division of A by B were
specified by the table

103

A B ¢
(any) #0 A/B
>0 =0 +5@10
= =0 0
<0 =0 -5@10

These rules could be expressed in a single conditional statement
and made into a procedure as follows:

PROCEDURE GOOFYDIV;
IF B #0 THEN C -~ A/B ELSE

IF A = 0 THEN C « 0 ELSE
IF A <0 THEN C ~ -5@10 ELSE
C+ 5@10

(Note that we have ignored the availability of the common function
SIGN.)

A typical use of this procedure would be to avoid anticipated
divisions by zero in a statement, such as:

Y[I,3,K] = W[I+1,5,K-F] / X [N-1,I]
In place of this, one would write
A= W[1+1,J,K-F);
B~ X([N-1,I7;
GOOFYDIV;
Y[L,J,K]~C
Even in this simple-minded example, some saving in writing effort

and a gain in clarity are found. Note, however, that the three vari-
ables A, B and C are global to the procedure body and must be

declared before the procedure declaration.

104

8.3

ELEMENTARY USE OF THE PROCEDURE

Presented below is a complete but simple program that illus-
trates many features of the procedure which were formally
discussed in the preceding section. This example should not be
misconstrued as an attempt to ‘‘sell”’ a particular philosophy of
input data formatting. It was chosenbecause it provides an interest-
ing case for the use of procedures in ALGOL, A very similar
example is used again in Chapter 9toshow, by comparison with the
present example, the power of the more abstract features of pro-
cedures.

BEGIN
COMMENT A PROGRAM TO ILLUSTRATE BASIC
ASPECTS OF ALGOL SUBPROGRAMMING;
FILE IN CARD (2, 10);
FILE OUT LINE 1 (2, 15);
REAL LOW, HIGH, DATAVAL, A,B,C,D,X;
INTEGER LASTCDNO, RUN;
LABEL EOFLAB, ERRLAB, START;
PROCEDURE GETDATA;
BEGIN
COMMENT A DATA INPUT SUBPROGRAM THAT DOES

THE FOLLOWING:

(1) READS A DATA VALUE FROM A FILE
“CARD,,’

(2) PRINTS THE VALUE AND CARD NUMBER
ON A FILE “LINE”,

(3) CHECKS FOR CORRECT CARD
SEQUENCE,

(4) CHECKS DATA VALUE FOR PROPER
RANGE,

(5) PRINTS ERROR MESSAGES ASNEEDED,
BESIDES FILES ‘‘LINE” AND ‘‘CARD”,
SIX NON-LOCAL IDENTIFIERS ARE USED
AS FOLLOWS:

105

LASTCDNO-PREVIOUS CARD NO.,
INITIALLY ZERO

DATAVAL - VALUE TO BE READ FROM

CARD
HIGH - UPPER LIMIT ON DATAVAL
LOW - LOWER LIMIT ON DATAVAL

ERRLAB - LABEL TO GO TO UPON
ERROR

EOFLAB - LABEL TO GO TO UPON
END-OF-FILE

ALL VARIABLES MAY BE OF TYPE REAL;

FORMAT CRD (15, F20.9);
FORMAT CIM(‘“CARD NO.”, I5, X10, “VALUE="’,
F20.9),

SQER (/X50, ““CARD SEQUENCE ERROR”’),
VOR (/X50, “LLAST VALUE OUT OF RANGE”");
INTEGER CARDNO;

LIST KRD (CARDNO, DATAVAL);

READ (CARD, CRD, KRD) [EOFLAB]J;
WRITE (LINE, CIM, KRD);
IF CARDNO - LASTCDNO# 1 THEN
BEGIN
WRITE (LINE, SQER); GO TO ERRLAB
END;

IF DATAVAL > HIGH OR DATAVAL <LOW
THEN

BEGIN
WRITE (LINE, VOR); GO TO ERRLAB
END;

LASTCDNO « CARDNO
106

END OF GETDATA;

FORMAT HEAD (X30, ““THIRD DEGREE POLYNOMIAL *’,
“EVALUATION---PROGRAM WXYZ"” ///),

POLLY (““RUN NO.”, 17, X6, ‘““POLY ="’, E20.8/);
WRITE (LINE, HEAD);
START: LASTCDNO* 0;

HIGH « 10000; LOW * 1; GETDATA; RUN «
DATAVAL;

HIGH ~ 1 ; LOW ~ 0; GETDATA; A «~ DATAVAL;

GETDATA; B ~ DATAVAL; GETDATA; C ~
DATAVAL;

HIGH* @ -6 ; LOW *+ -.1; GETDATA; D -
DATAVAL;

HIGH ~ 100 ; LOW « 10; GETDATA; X «
DATAVAL

WRITE (LINE, POLLY, RUN,A + XX (B + X ¥
(C + X x D))

GO TO START;
ERRLAB: EOFLAB: END OF PROGRAM WXYZ.

The foregoing example program illustrates several important
aspects of ALGOL procedures. It also contains several points of
interest concerning ALGOL and good programming practice. The
latter are flagged with asterisks in the list below.

1. The procedure named GETDATA is just one of many declarations
in the program.

2. All identifiexrs which are global to the body of the procedure are
declared prior to the occurrence of the procedure declaration,

3. The procedure body which can be any statement is, in this case,
a block, since within the body there are declarations for CRD,
CIM, SQER, VOR, CARDNO, KRD.

4. Exit from the body of the procedure is possible by four different
paths, one via the action label, twovia go to statements, and one
via reaching the end of the body. The last one is the normal and
most efficient method of exit.

107

*S5.

*7.

*8.

*10.

11.

The procedure is reasonably well documented by means of a
built-in comment. It could thus be used, with ease, in a variety
of unrelated programs.

There are six separate calls on the subprogram GETDATA in
the program. The effect is the same as if the body of the pro-
cedure were inserted into the ALGOL program at all six
occurrences of the statement GETDATA.,

The good practice of providing a record in the program output
of the input data has been followed here. Also, an identifying
heading for the program output is furnished.

The input data are qualitatively checked for correctness by the
program. This process is somewhat simplified by the use of the
subprogram GETDATA.

A point of interest is the use of two labels on the dummy state-
ment preceding the final END of the program. In other programs
using GETDATA these two labels might well be on different
statements.

The insertion of suitable comments after the END which ter-
minates a procedure body contributes significantly to the read-
ability of an ALGOL program

A final point of interest is that the only ‘‘computing’’ done in
y p g

the entire program appears in the polynomial expression in the
list of the write statement.

108

BEGIN
COMMENT ILLUSTRATION OF THE SOLUTION OF THREE SIMULTANEOUS
EQUATIONS, USING TNO SUBPROGRAMS)
FILE IN CARD (2,10)}
FILE ouT LINE 1(¢2,15))
FORMAT ID C"ILLUSTRATION PROGRAM = CRAMERS RULE = DHT2"/),
HD (X25,"A%,X15,%B%,X155"C"»X15,"0"»X35,"X"/),
ANS (3(X1S, AF16.7, E2646/)//)» ERRC"DETERMINANT®=0"/)}
FORMATY KARD (AF1S.7))
ARRAY M{033,014), X(0831)
INTEGER ARRAY Z, R1, R2, R3(03613
REAL Ds OEN}
INTEGER I, Js» €1, C2, C33
LABEL DUNN, REED, BAD, AUS}
PROCEDURE DETER3}
BEGIN
COMMENT EVALUATES DETERMINANT WHOSE COLUMN NUMBERS IN
THE M ARRAY ARE GIVEN BY Ci, C2, AND C3
INTEGER 1
D ¢ 03
FOR I ¢ 1 STEP 1 UNTIL 6 DO
D ¢« D + Z(I) x MCRICI),C1) x M{R2CI),C2] x M(R3(I1,C3)
END OF DETER33
PROCEDURE KSET)
N
COMMENT SETS UP Z,R1,R2,R3 ARRAYS WITH VALUES NEEDED BY DETER3}
INTEGER 13
FOR I ¢« 1 STEP 1 UNTIL 6 00 2(I) ¢ SIGN(I = 3,5)}
R1[1) ¢ R2[2) ¢ R3[3) ¢ R1CA) ¢ R3I[S5) ¢ R2[6) ¢ 1}
R3(1) ¢ R1[2) ¢ R2(3) ¢ R2[4) ¢ R1(5) ¢ R3I(6) ¢ 2)
R2(1) ¢ R3[2) ¢ R1(3] ¢ R3[4) ¢ R2(5] ¢ R1(6] ¢ 3
END OF KSETS
WRITE (LINE» 10)3 KSETS
REED? READ (CARD, KARD, FOR I ¢ 1,2,3 DO
FOR J ¢ 1,2,3,4 DO M(I,J))CDUNN]S
Ci ¢ 13 €2 ¢ 23 €3 ¢ 35 DETER3} DEN ¢ Dj
IF DEN = 0 THEN GO TO BAD}
C1 ¢ a3 DETER33 X(1) ¢ D / DENS
C1 ¢ 13 C2 ¢ a3 DETER3S X[2) ¢ D / DENJ
C2 ¢« 2) Cc3 ¢ 43 DETERI} Xx[3) ¢ D / DENJ
AUSH WRITE CLINE» ANS» FOR I ¢ 1,2,3 DO
[FOR J ¢ 1,2,3,4 DO MLI,J), X[1))))
GO TO REED}
8ADs WRITE C(LINE, ERR)S X[1) ¢ XC2) ¢ X(3) ¢ 03 GO TO AUS)
DUNN3 END ‘

109

DHT2
DHT2
DHT2
DHT2
DHT2
OHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
OHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2
DHT2

OCBNO RS WA=

EXERCISES

Write a program whose main block contains only three statements
which are procedure statements. These will be calls on 3 pro-
cedures to perform the following functions:

Procedure 1: Read and print input data values for variables
a, b, and c.
Procedure 2: Compute the roots of the quadratic equation

2

Y =ax“ +bx +c

Procedure 3: Print values for the roots.

Write a procedure called ERRORMESS which will print one of
four error messages depending on whether the value of a global
variable ERR is 1, 2, 3, or 4.

110

9.1

CHAPTER 9 - MORE ABOUT PROCEDURES AND BLOCKS

THE CONCEPT OF FORMAL PARAMETERS

Procedures of the kind discussed in Chapter 8 are often awkward
to use. This is because the only means provided there, for com-
munication of information (data) to and from the procedure, was via
global identifiers. Further, the fact that these identifiers must be
declared outside the procedure declaration hampers the possible
utility of a given procedure, without change, ina variety of unrelated
programs.

These difficulties are overcome by allowing another means of
communication between a procedure and the program that calls it.
In ALGOL, this is done by means of a parameter list, The procedure
is written to operate on ‘‘formal parameters,’’ which correspond to
‘“actual parameters’’ furnished when it is called. The choice of
identifiers to represent ‘‘actual parameters’’ need not have the
least correspondence with those used for ‘‘formal parameters.”’
Only one obvious requirement has to be met: formal and actual
parameters must represent the same kinds of ALGOL entities. The
latter point will be discussed at length in Section 9.4.

A concrete example will be used to preview the role of parameter
lists before formally defining and discussing them in Sections 9.3
and 9.4. The simple procedure, GOOFYDIV, of Section 8.2 can be
better declared as follows:

PROCEDURE GOOFYDIV (A, B, C);
REAL A, B, C;
IF B# 0 THEN C ~ A/B ELSE
IFA=0THEN C+~ 0 ELSE

IF A<OTHEN C* -5@10 ELSE C+ 5@10
111

9.2

If this is the case, then our previous use of this procedure is
reduced to the writing of one statement:

GOOFYDIV (W[I41,],K-F], X[N-1,J7, Y[L,3,K])

In place of the formal parameters A, B, C, we have used actual
parameters which are the array elements W[I+1,J,K-F],
X[N-1,37, Y[LJ,K]

The same net results are obtained as were obtained by the group of
four statements in Section 8.2. Note, however, that the identifiers
A, B and C areno longer needed as variables in the calling program.
Rather, they are now formal parameters which are identifiers that
are defined only within the procedure declaration. Their type is
given in the REAL specification in the procedure heading. The
latter two metalinguistic variables will be defined in Section 9.3.

As will be seen later, actual and formal parameters are not
limited to identifiers associated with single numerical values.
They may be (or represent) nearly any kind of ALGOL entity. We
note that the read statement and the write statement actually have
the form of procedure statements that possess actual parameter
lists. Thus, they are often called ““intrinsic procedures.”’

THE CONCEPT OF TYPED PROCEDURES

A further elaboration on the subprogram conceptis found in ALGOL
in the form of ‘“‘typed procedures.’”” These are most useful when
the computations within the procedure body always yield a single
numerical result. The type (REAL or INTEGER) of this result
dictates the type given to the procedure declaration. The presence
of a type before the reserved word procedure indicates that this
subprogram will be called as a special kind of function designator.
Thus, an expanded definition of a function designator, over that
given in Section 2.7, will be discussed in Section 9.5.

Once again, the example of Section 8.2 can be used to provide a
more concrete preview of typed procedures. Since the subprogram
GOOFYDIV yields only one (REAL) result, it can be declared as
follows:

112

9.3

REAL PROCEDURE GOOFYDIV (A, B);

REAL A, B;
IF B # 0 THEN GOOFYDIV ~ A/B ELSE
IF A =0 THEN GOOFYDIV*~ 0 ELSE
IF A< 0 THEN GOOFYDIV « -5@10 ELSE
GOOFYDIV ~ 5@10

With this kind of declaration, the procedure is ‘‘called’’ much as
we might ‘“call’’ the SQRT common function:

v [1,J,K] « GOOFYDIV (W[I+1,J,K-F],X[N-1,J])

And once more, the same results are obtained.

It is not essential that communication with a typed procedure
be via a parameterlist. Some or all information can be passed by the
mechanism of global identifiers. (This is also true of non-typed
procedures.) In fact, although the typed procedure is designed
to transmit a single numerical result in a convenient way, there
is nothing wrong with allowing it to produce many ‘‘results’’
in the form of changes in globally declared variables, or as
output from the program.

PROCEDURE DECLARATIONS - REDEFINED

Sufficient introduction and previews have now been given to allow
an intelligible formal definition of procedure declarations. The def-
inition given in Section 8.2 will be seento be a compatible subset of
that to be presented here. This version is wholly consistent with
the subset of B 5500 Extended ALGOL being presented throughout
this text.

A procedure is formed in either of two ways, as follows:

{procedure declarationy :: = PROCEDURE (procedure heading }
(procedure bodyy| ¢type)
PROCEDURE (procedure heading)
{procedure body\

The chief difference between this definition and that given in
Section 8.2 lies in the procedure heading which is defined and dis-
cussed in detail below. One other apparent difference is in the
possibility of a type appearing before the reserved word procedure.
The definition of procedure body is unchanged from that given in
Section 8.2. For the convenience of the reader we repeat the def-
initions. 113

{procedure body)::= (statement)

(type) ::= REAL|INTEGER

From the discussion in Section 9.2, it should be apparent that the
existence of a type on a procedure declaration puts it into a special
category. The manner of calling it is discussed in Section 9.5.
Further, the procedure body must contain and cause to be executed
at least one assignment statement, with the name of the procedure
to the left of the assignment operator. Although it may appear that
this would also allow the procedure name to be used elsewhere in
the procedure body as a simple variable, such is not the case.

One other rule must be observed within the procedure body of a
typed procedure: exit must not be made via a go to statement.

To complete the definition of a procedure declaration, we now
have only to define the procedure heading.

(procedure heading)::= (procedure identifier)
éformal parameter part);
specification part)

(procedure identifier) : := (identifier)

(formal parameter part) ::= (empty) ’ ((identifier list))
(identifier list) : : = (identifier) | dentifier list), (identifier)
(specification part) ::= (empty)| (specification list)

Definition of specification list will be pursued below. Note that,
since both the formal parameter part and the specification part
can be empty, a valid procedure heading could be simply an identi-
fier followed by a semicolon. This agrees with the definitions of
Section 8.2.

Note also that the semicolon is a necessary part of the procedure
heading.

If the formal parameter part is not empty, it can only be one or
more identifiers separated by commas and enclosed in parentheses.
These identifiers are simply called formal parameters. They may
represent a variety of ALGOL entities, and the purpose of the spec-
ification part is to ‘‘specify’’ the kind of entity represented by each
formal parameter. In no case is a formal parameter anything other
than an identifier standing alone. (It makes no sense to place con-
stants or subscripted variables in a formal parameter list, for
example.) Because of the previously mentioned restriction on
leaving a typed procedure body via a go to statement, a formal
parameter of a typed procedure may not be a label.

The necessity of a specification list can be seen if one recalls
that, in B 5500 Extended ALGOL, it is essential that all identifiers
be ‘‘known’’ to the compiler prior to any use of them in an ALGOL
program. The mere appearance of an identifier as a formal para-
meter is not sufficient to allow its use. The compiler must know a
little more about it. The manner in which this is done is shown in
the definitions to follow:

114

(specification list) ::= éspeciﬁcation);| (specification list)
specification);

(specificationy: :=(specifier) (identifier list) | (array specification)
(specifiery ::= (type)|FILE |LIST| FORMAT| LABEL

(array specification> ::= ARRAY ﬁrray specifier liSte}l
(type) ARRAY (array specifi€r list)

(array specifier list) ::= (array specifiergl (array specifier list),
array specifier

(array specifier) ::= {array identifier listy [(lower bound list)]
(array identifier list) : := (identifier list)

(lower bound list) : : = {specified lower bound) | (lower bound list),
specified lower bound

(specified lower bound) ::= (integer) |*

The student might easily confuse the above specifications with
declarations, since they do serve similar purposes. However, only
in the case of simple variables and labels do the specifications and
declarations appear identical. Except for array specifications,
nothing more than the specifier is used to give information about a
formal parameter. Declarations which are local to the procedure
body must not be confused with the above specifications, Specifica-
tions appear in the procedure heading and declarations in the block
head of the procedure body.

The array specification provides information as tothe kind of array
represented by the formal parameter. It also contains information
concerning the lower bounds of the actual array that will be
‘‘passed’’ to the procedure when it is called. If a lower bound is con-
stant, it is specified as an integer.If it is unknown, or may vary from
call to call, an asterisk is used to impart this information. Since a
lower bound of zero is most efficient in terms of running speed on
the B 5500, one finds a high percentage of library procedures written
with specified lower bounds of zero for formal parameters that are
array identifiers.

Only one simple example will be given here since several others
are available for examination in Sections 9.1, 9.2, and 9.6. The
present example is a typed procedure for computing the factorial

of an Integer N,

115

INTEGER PROCEDURE FACT (N); INTEGER N;
BEGIN

INTEGER PROD, I;
IF N < 0 THEN FACT«~ 0 ELSE
BEGIN
PROD « 1;
FOR I+« 1 STEP 1 UNTIL N DO
PROD ~ PROD X I; FACT ~ PROD
END
END OF FACT

A point of interest here is the manner in which the correct value
for FACT(0) is obtained.

9.4 PROCEDURE STATEMENTS - REDEFINED

A procedure statement is formed by the following rules:

(procedure statement)::= (procedure identifier
(actual parameter part)
(actual parameter part) ::= (empty) | ({actual parameter list))
(actual parameter list) ::= (actual parameter)
actual parameter list) ,
actual parameter)

(actual parameter) : := (arithmetic expression) | (array identifier |
(file identifier) | (format identifier)
(list identifier) | (label)

Note that if the actual parameter part is empty, we have exactly
the form given for the procedure statement given in Section 8.3.

A procedure statement causes a procedure body which has been
previously given in a procedure declaration, tobe called for execu-
tion. If that procedure declaration had a formal parameter part,

116

the procedure statement must have an actual parameter part which
provides the actual parameters to be used during this call on the
procedure. A one-for-one correspondence must exist between the
actual parameters in the actual parameter part and the formal para-
meters which appear in the formal parameter part of the procedure
declaration; this correspondence is one of position, where the posi-
tion of an actual parameter given in the procedure statement
corresponds to the position of a formal parameterin the procedure
declaration.

A general description of the operation of the procedure statement
can be given as follows:

1. The formal parameters are replaced, wherever they appear in
the procedure body, by the corresponding actual parameters.
Identifiers thus introduced into the procedure body may be
identical to local identifiers already there. Each is handled in
such a way, however, that no conflict occurs.

2. The procedure body, when modified as stated above, is then
entered.

3. Upon completion of the computations within the procedure body,
the program flow returns to the statement following the (calling)
procedure statement.

The actual parameters may be expressions and array, file, format,
label and list identifiers. The actual expression or pertinent identi-
fier of the actual parameter replaces the corresponding formal
parameter wherever it appears in the procedure body. If a formal
parameter appears to the left of an assignment operator in the
procedure body, the corresponding actual parameter may only be
a variable.

It a simple variable is an actual parameter, the corresponding
formal parameter is replaced wherever it appears inthe procedure
body, by the identifier of the simple variable. The value representgd
py the simple variable is referred to each time the variable is
encountered during the execution of the procedure body. The actual
parameter is accessible throughout the procedure and can therefore
have its value altered.

Where a subscripted variable is an actual parameter, it is placed
in the procedure body wherever the corresponding formal parameter
appears. The subscript expression remains intact, and is evaluated
each time the subscripted variable is referred toduring the execu-
tion of the procedure body.

Where the actual parameter is a function designator, the corres-
ponding formal parameter is replaced by the function designator
wherever the formal parameter appears in the procedure body. The
function designator is evaluated whenever it is encountered during
the course of execution of the procedure body.

In the case where an arithmetic expressionis an actual parameter,
the corresponding formal parameter is replaced by the expression
in question. This expression is evaluated wheneveritis encountered
during the execution of the procedure body.

117

9.5

When the actual parameter is an array identifier, the corres-
ponding formal parameter is replaced by the array identifier
wherever the formal parameter appears in the procedurebody. Any
appearance of the formal parameter in the procedure body makes
reference to the actual array designated by the array identifier.

Where a file, format, or list identifier has been given as an actual
parameter, the corresponding formal parameter is replaced by the
identifier of the actual parameter wherever the formal parameter
appears in the procedure body. I-O statements in a procedure body
can thus be caused to utilize arbitrary files, formats and lists which
have been declared outside the procedure body being executed.

A simple example of a procedure statement was given in Section
9.1; a more elaborate example is presented in Section 9.6.

There is a useful feature of ALGOL procedure declarations that
is not included in the subset being presented here. That is, the
concept of call-by-value, which is used heavily in most B 5500
ALGOL library procedures. Call-by-value is discussed with clarity
in most of the ALGOL reference materials.

FUNCTION DESIGNATORS - REDEFINED

We will here expand the definition of a function designator given in
Section 2.7 as follows:

(function designator) : : = (procedure identifier)
actual parameter part)|
common function identifier?

({arithmetic expression)

(procedure identifier) :: = (identifier)
(actual parameter part) :: = (empty) | ({actual parameter list))
(actual parameter list) : := (actual parameter |
actual parameter list),
{actual parameter)

(actual parameter): : = (arithmetic expression)| (array identifier) |

file identifier) | (format identifier)

list identifier)

Note that the actual parameter part as defined above is the same

as that given for procedure statements in Section 9.4 except that it
may not contain a label.

118

9.6

The only kind of procedure that may be called as a function desig-
nator is one which was declared with a (type) in front of the
reserved word PROCEDURE, Upon completion of the execution of
the procedure body, control returns to the evaluation of the arith-
metic expression in which the function designator was encountered.
With the exception of the latter action, all other aspects of the opera-
tion of a function designator are the same as those given for
procedure statements in Section 9.4.

Examples of the use of a functiondesignator calling on a typed pro-
cedure aregiveninSections 9.2 and 9.6. The rules for using any kind
of function designator are given in Section 2.7.

EXAMPLE OF USE OF PARAMETER LISTS

The example program below is supposed to accomplish the same
thing as the program in Section 8.3. It is designed to illustrate the
manner in which parameter lists are used in practice.

BEGIN
COMMENT A PROGRAM TO DEMONSTRATE THE USE

OF PROCEDURE PARAMETER LISTS;
INTEGER LASTCDNO, RUN;

REAL PROCEDURE POL3(U,A0,Al1,A2,A3);

REAL U,A0,A1,A2,A3;
POL3+~ AGtU X (Al+U X (A2+4U x A3));
PROCEDURE GETDATA (FIN,FOUT, LEOF, LERR,
H, L, D);
REAL H, L, D;
FILE FIN, FOUT;
LABEL LEOF, LERR;

119

COMMENT

FORMAT

INTEGER
LIST

REAL
LABEL

FILE IN

BEGIN

BEGIN

END;

BEGIN

END;

A PROCEDURE FOR DATA INPUT WHEREIN:

I DATA ARE READ FROM A FILE “FIN”),

II THE DATA VALUES ARE WRITTEN ON
A PRINTER FILE “FOUT”,

III CARD SEQUENCE IS CHECKED AGAINST
A GLOBAL VARIABLE ‘“LASTCDNO”’
INITIALLY ZERO,

IV EXIT IS TO LEOF AT END-OF-FILE,

V. EXIT IS TO LERR IF EITHER D<L OR
D> H, LIMITS GIVEN BY CALLING

PROGRAM;

CRD (IS, F20.9),

CIM (‘“CARDNO.”, I5, X10, ““VALUE="’,
F20.9),

SQER (/ X50, “CARD SEQUENCE ERROR”’),

VOR (/X50,

“LAST VALUE OUT OF RANGE”’);

’

CARDNO;

KRD (CARDNO,D);

READ (FIN, CRD, KRD) [LEOF];
WRITE (FOUT, CIM, KRD);

IF CARDNO - LASTCDNO # 1 THEN

WRITE (FOUT, SQER); GO TO LERR

IF D> HOR D< L THEN

WRITE (FOUT, VOR); GO TO LERR

LASTCDNO +~ CARDNO

END OF GETDATA;

A, B, C: Da X;
EOFLAB, START;
CARD (2, 10);

120

FILE OUT LINE 1 (2,15);

FORMAT HD (X30, ‘““THIRD DEGREE POLYNOMIAL”,

“EVALUATION- - - PROGRAM ZYXW"’
/1)

POLY (“RUN NO.”, 117, X6, ““POLY =",
E20.8);

WRITE (LINE, HD);

START: LASTCDNO « 0;

GETDATA (CARD, LINE, EOFLAB,
EOFLAB, @5, 1, RUN);

GETDATA (CARD, LINE, EOFLAB,
EOFLAB, 1, 0, A);

GETDATA (CARD, LINE, EOFLAB,
EOFLAB, 1, 0, B);

GETDATA (CARD, LINE, EOFLAB,
EOFLAB, 1, 0, C);

GETDATA (CARD, LINE, EOFLAB,
EOFLAB, @-6, -.1, D);

GETDATA (CARD, LINE, EOFLAB,
EOFLAB, 100, 10, X);

WRITE (LINE, POLY, RUN, POL3
(X,A,B,C,D));

GO TO START;

EOFLAB: END OF PROGRAM ZYXW.

No claim is made that the above example is a sensible program. It
does, however, demonstrate the use of parameter lists in procedure
declarations, procedure statements and functiondesignators. Points
of interest:

1.

Both POL3 and GETDATA are declared in the block head of the
program, along with the rest of the declarations.

POL3 is lacking any comments for documentation, This is per-
haps excusable since the procedure body of POL3 is just one
assignment statement, while the body of GETDATA is a block.

No conflict arises over the existence of the identifier D as a
simple variable in the program and also as a formal parameter
of GETDATA.

GETDATA uses both formal parameters and a global variable
to pass information in and out.

Three different kinds of formal parameters are used in the
procedure GETDATA,

121

9.7

6. The specifier for the file identifiers is merely FILE, without
IN or OUT attached.

7. The list of the write statement contains two arithmetic expres-
sions, RUN and POL3 (X, A, B, C, D). The latter is a function
designator calling on the typed procedure POLJ3.

8. If actual use of this procedure were ever contemplated, the pro-
grammer would probably prefer to avoid making the file identi-
fiers formal parameters of GETDATA. In that case, the
declarations for CARD and LINE would have to occur before
the declaration of GETDATA. Also, the procedure body would
have to be changed to use CARD in place of FIN and LINE in
place of FOUT,

BLOCKS IN ALGOL

The block is a powerful feature of ALGOL, It is particularly
important in large programs and in many programs that contain
procedure declarations. This section will supplement the dis-
cussion of blocks in Chapter 3, in the light of concepts covered
in the later chapters. If Chapter 3 has not been reviewed since it
was first encountered, the student is advised to do so at this point.

Blocks have two primary purposes. One is that of isolating por-
tions of a program from one another so that identifiers can be
freely chosen in each of them. This is especially important when a
block is a procedure body because it makes possible the develop-
ment of libraries of procedures which can be used in any program,
No conflict results when the same identifier is declared to have
dissimilar meanings in different blocks of a program. This is true
whether the blocks are procedure bodies or not. Major portions of
a large program can be written separately, by different people, with
coordination on the choice of only the global identifiers.

The other prime use of the block isto obtain automatic segmenta-
tion of a program in order to cope with the realities of finite com-
puter memories. With a little care, aprogram can usually be written
such that portions which may be inactive for appreciable periods of
time become separate blocks. In the B 5500 these are compiled as
program segments which may be kept in auxiliary storage (such as
a drum or disk) whenever they are not active. In this way a maximum
amount of core memory is made available for data. This also pro-
vides a mechanism for minimizing the amount of memory used for
data storage at any given time. Memory is allocated to the storage
of an array, only within the block in which that array is declared.
When a block is exited, all memory used for arrays declared in
that block is released for other uses.

122

The example to follow will illustrate many of these points. For
clarity and brevity, several abbreviations will be used:

AD - array declaration
FD - file declaration
PD - procedure declaration
D - any other declaration
S - statement
BEGIN
FD; FD;
AD; AD;
D; D; D;
PD; block #2
PD;
PD; block #3
L1l: BEGIN l
D; block #4
S; ;S5 S;
S;S;S; S
END;
L2: BEGIN block #1
D; D;
AD; AD; AD;
PD; block #6 block #5
SHISHISHH
L3: S;S;S;
L.4: END;
L5: BEGIN

AD; AD; block #7
S; S; S

END;
S; S5 S; S;
L6: END.

123

This is a schematic representation of the general form of many
scientific programs. Block #1 is, of course, the program itself.
Blocks 2, 3 and 6 are the bodies of procedure declarations. Block
#4 might contain statements that read the data, perform some pre-
liminary data conversions, print a summary of the input data and
initialize some arrays that are declared in the block head of block
#1. Block #5 might perform alengthy iterative computation, perhaps
using a procedure (block #6) to do matrix inversions. Final process-
ing of the results and the printing of same might be conducted in
block #7.

We note that, while one of blocks 4,5 or 7 is active, the other two
need not be present in memory. Blocks 2 and 3 might be activated
by procedure calls anywhere, but unless they are being called fre-
quently there is no need to have them in memory. The procedure
declared in block #5 may be called only from within that block since
it is local to the block. When block #5 is entered, memory is allo-
cated for the three arrays declared therein. When block #5 is
exited, this memory is released and becomes available for alloca-
tion to the arrays declared when block #7 is entered. It is again
released after execution of block #7. One of the four statements at
the end may cause control to return to block #4 or #5. Since a
block must always be entered through the block head, a return to
block #4 or #5 can only be effected with a go to statement referenc-
ing the label L1 or L2, respectively.

The above example also provides anillustration of the local nature
of label declarations. Thelabels L1, L2, L5 and L6 must be declared
in the block head of block #1. Labels .3 and L4 must be declared in
block #5. The statement GO TO L3 cannot be used anywhere but in
block #5. However, atransfertoLl, L2, L5 or L6 can be made from
anywhere in the program since they are local only to the block which
constitutes the program.

Finally, a word of caution must be given on running speed con-
siderations in the use of blocks. Rapid looping through a block is not
desirable if that block contains array declarations. The time
required by the computer to allocate and release memory for array
storage is not insignificant unless a fair amount of computing is
performed within that block. The most eff1c1ent way to exit any
block is by falling out of the end of it.

124

COMMENT

FILE out
FORMAT
REAL

BEGIN

ILLUSTRATIVE USE OF PROCEDURES WITH AND WITHOUT
PARAMETER LISTS IN COMPUTING AN APPROXIMATION OF SIN(X)}

LINE 1 (2,15))

HEADING (X&0,®SINCX) COMPARISON PROGRAM = DHT3® ///)}

PHI, FIE, SY}

REAL PROCEDURE SYGNE (A)3
A

REAL

COMMENT
REAL

)
BEGIN

A POLYNOMIAL APPROXIMATION OF SINCA)J

COEF» S» T, TSQ3

S ¢ =,00036248 3 T ¢ A/ 903

7SO ¢ 1 % 713

FOR COEF ¢,07948766, =,64592098, 1,57079485 DO

S ¢COEF
SYGNE ¢ § x T
END OF SYGNES

REAL PROCEDURE GOODANGLE}
FOR FIE ¢ ABS(PHI + 90) STEP =360 UNTIL =180 DO

+ TSQ x §)

903

SYGNE(X)

SINCXI™ 7))

RSLTS (PHI, SY, SIN (PHI / 57,29578))}
WRITE C(LINE» COLLABS)}

O STEP 36 UNTIL 756 DO

SYGNE (GOODANGLE) IS A FUNCTION DESIGNATOR WHOSE ACTUAL
PARAMETER IS AN EXPRESSION CONTAINING ANOTHER FUNCTION
DESIGNATUR» GOODANGLE, WHICH HAS NO PARAMETER LISTS

GOODANGLE ¢ ABS(FIE) =
PRUCEDURE GETBUSY)
BEGIN
FORMAT COLLABS (" X (DEGREES)
WAYL (18, 2F16,7))
LIST
WRITE (LINE» HEADING))
FOR PH] ¢ 90 STEP =15 UNTIL =150,
BEGIN
COMMENT
SY ¢ SYGNE (GOODANGLE)}
WRITE (LINE» WAY1, RSLTS)
END PHI LOOP
END OF GETBUSY)
COMMENT

THE ONLY STATEMENT IN THE MAIN PROGRAM BLOCK FOLLOMS

GETBUSY)
END OF PROGRAM,

125

DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
OHT3
DHT3
DHT3
DHT3
DHT3
OHT3
DHT3
OHT3
DHT3
DHT3
DHT3
DHT3
OHT3
DHT3
DHT3
DHT3
DHT3
DHT3
DHT3
OHT3
DHT3
DHT3
DHT3

- s e
WA= O OBPNOUVS WN -

EXERCISES

Re-work exercise 6, Chapter 4, using a REAL procedure to com-
pute the square root.

Write a procedure to find the minimum and maximum values of the
elements in a single dimensioned array. The formal parameter
list should include the array identifier and two simple variables
for the minimum and maximum values. The elements of interest
have subscripts 1 thru N, where the value of N is provided in the
zeroeth element.

Re-work the Chapter 8 example program on the solution of three
simultaneous equations. Incorporate the solution process into a
procedure named CRAMER which has arrays M and X for formal
parameters. Nest KSET and DETER3 inside the body of CRAMER.
Make the arrays R1l, R2 and R3 global to CRAMER, Make DETER3
a REAL procedure with formal parameters Cl, C2 and C3, such
that the actual parameters for the four calls on DETER3 would be
(1,2,3), (4,2,3), (1,4,3), and (1,2,4).

126

10.1

CHAPTER 10 - DIAGNOSTICS

ERRORS IN PROGRAMMING

There are two broad classes of errors that occur regularly during
the development of a digital computer program. One class arises
from violations of the syntax of the programming language. Errors
of this type make it impossible for the compiler to complete the
conversion of the source program into machine language. The other
class covers logical faults in the program that prevent its success-
ful execution. Logical errors may precipitate a variety of error
conditions, some of which force an automatic termination of the
program, while others merely cause incorrect or incomplete
results.

Some logical errors are very easily traced. Others produce only
symptoms, at remote points, that may require considerable effort to
diagnose. Specific rules to follow in debugging any program are
impossible to formulate. However, a number of general techniques
are available. These will be discussed in this chapter.

Unfortunately, both syntactical and logical difficulties are often
caused by a single type of error, that of incorrect transcription of
a program into a deck of punched cards. Some of these are simple
typographical errors which every human makes with some regu-
larity. Many result from illegibly or incorrectly drawn characters.
Most computer installations establish conventions that permit dis-
tinction of easily confused character pairs suchas1 and I, 2 and Z,
0 (zero) and O, X and X. Coding forms are usually designed to pro-
mote accurate card punching. Seasoned programmers take every
precaution possible to insure the correctness of their card decks.
Often this includes visual verification of a listingof their program.

A common problem with card decks is that of getting one or more
cards out of sequence. Most installations utilize a scheme of
sequence numbering that is punched somewhere in columns 73

127

10.2

through 80 of every card. These can be checked quite easily, either
visually or via a service program. The compiler normally ignores
these card columns completely. Thus, a card sequence error can go
undetected until (or unless) it causes either asyntactical or logical
difficulty.

Most computer users ultimately conclude that they themselves are
responsible for the majority of the errors that occur in their pro-
grams. This does not prohibit their use of a machine, the computer
itself, to systematically search out these errors. Indeed, in many
programs, it becomes practically impossible to find all faults
without use of the computer. Inadvertent programming errors and
erroneous numerical methods can produce equally baffling symp-
toms. Often it is necessary to build self-checking features into a
complex program to detect errors or toguard against a future case
of bad data or data that bring to light a long undiscovered program
error. Programmer ingenuity plays an important role here.

In the sections tofollow, those features of B 5500 Extended ALGOL
that aid in debugging will be discussed. These and the normal
output statements are essentially the only debugging tools at the
disposal of the programmer. The general technique of using such
tools is commonly called ‘‘symbolic debugging.”’ It is usually more
efficient, for both man and computer, than the machine-oriented
techniques of console debugging and memory dumping. In fact, to
debug an ALGOL program on the B 5500by the latter approach is a
near impossibility. Moreover, the use of symbolic methods of
debugging is totally consistent with the use of ALGOL as a program-
ing language.

SYNTACTICAL ERROR DIAGNOSTICS

An ALGOL program must be free of syntactical errors before it
can be successfully translated into machine instructions by the com-
piler. Since errors are not entirely avoidable, the compiler is
designed to supply messages concerning any constructs that it is
unable to translate.

Error messages are given in the form of an error code and a
reference to that entity which appears tobe incorrect. For example,
an identifier which was not declared or which is misspelled is
meaningless to the compiler. There isnoway to correctly translate
a statement in which such an identifier occurs. Note that a mis-
spelled reserved word must be assumed to be an identifier (which
may or may not have been declared). Exrror messages pointing out
undeclared identifiers occur rather frequently.

In general, any violation of the syntax rules of ALGOL will cause
diagnostic error messages to be given. The message will reference

128

that entity in the program which gave the first indication of a syntax
violation. Often the actual error will be found at some distance to
the left of that entity (considering the program as one long string
that is read from left to right).

For example, the syntactical inconsistency of

T+ ABS ((I-J/(1+])+8xT)+ A*2-COS(PHI);

is not detectable until the compiler encounters the semicolon. It
then refers to the semicolon and provides the error code for the
message

MISSING RIGHT PARENTHESIS,

It is unable to determine that the parenthesis was omitted between
the J and the slash, since one could legally occur in several places.

In some cases the message can only tell what seems to be syn-
tactically wrong, since the actual error may not be syntactically
incorrect in itself. For example, suppose I- were punched for
IM. Then,

FOR I+« 1 STEP 1 UNTIL I- DO etc.
results in referencing the DO and the message
PRIMARY MAY NOT BEGIN WITH A QUANTITY OF THIS TYPE,

Here is another place where a knowledge of ALGOL syntax is
vital to the programmer. When the cause of an error message is
not immediately obvious, the programmer may need to use the
syntax to deduce the cause. Since he can regard the compiler as
a perfect embodiment of the syntax rules, he can work backward
from the diagnostics it provides.

It can happen that, after encountering one or more errors, the
compiler will appear tobecome confused and begin emitting spurious
error diagnostics. These need not be troublesome if the programmer
proceeds as follows:

1. Find and correct the error that caused the first message. This
message is never spurious.

2. Attempt to find the error that caused the next message. Correct
any error that is found. If one is not readily found, pass on to
step 3.

3. Repeat step 2 for all succeeding error messages.

4. lven if some of the indicated errors below the first one are not

identified, compile the program again and repeat these steps
until all syntax errors are corrected.

129

There is a good reason for following these steps, rather than
insisting on finding and correcting all indicated errors. This has
to do with the manner in which the compiler processes the pro-
gram. The program string is scanned from left to right, and every
basic element of the language is immediately translated if it fits
correctly into the syntax. At the first violation of syntax, an error
message describing the violation is issued. Depending on the type of
violation, the compiler may be forced to skip ahead to the next
semicolon, where a new statement or declaration begins, in order to
restart its analysis of the program string. Such a skip may cause a
syntactically vital program element (such as a BEGIN or an END, or
the latter portion of a declaration) to be ignored. This precipitates
the same series of error messages that would appear, if the skipped
portion of the program were inadvertently omitted by the program-
mer. Thus, some of the error diagnostics after the first one may be
spurious in that they can be a consequence of a previous error. In
most cases, spurious messages do not persist beyond the first or
second attempt to compile an ALGOL program.

A final commentis in order onthe role of the semicolon in ALGOL,
The presence of an extraneous semicolon can cause syntactical or
logical errors that are sometimes obscure unless the rules of
syntax are carefully applied. Recall that the semicolonis classed as
a separator which is used to separate declarations from declara-
tions, declarations from statements, and statements from state-
ments. Recall further the existence of the dummy statement, which
is nothing but empty space. Often an extraneous semicolon creates
an unwanted dummy statement.

The following illustrations will complete this discussion.

FOR I+ 0 STEP 1 UNTIL 40 DO; A[I] <1

There is no syntactical error here, but, at run time, there would
be 41 executions of the dummy statement between the DO and the
semicolon. The assignment statement would be executed only once.
BEGIN;D;D;S;S END

Here there is a syntactical error, namely, that of a statement
preceding a declaration in a block. The offending statement is the
dummy statement between the BEGIN and the semicolon.

BEGIN D;;D;S;S END

This extra semicolon causes the same syntactical error as in the
previous case.

IF BE THEN BEGIN S;S END; ELSE S

The semicolon after the END is syntactically wrong because it
causes ELSE to appear as the beginning of an illegal statement.

130

10.3

RUN-TIME ERROR CONDITIONS

Any attempt on the part of a program to exceed computer hard-
ware limitatiohs is necessarily categorized as a run-time error.
Such an attempt is usually only the first symptom of a logical
error in the program because actual machine errors are very rare
and machine limitations are quite easy tolive within. Therefore, an
analysis of the cause of any such event will usually result in the
elimination of at least one error inthe program. The analysis itself
may require use of techniques to be discussed in Section 10.4

The number and nature of hardware restrictions vary from one
computer to another. Four important arithmetic errors aredetected
by the B 5500 computer. A message, identifying the error and the
point in the ALGOL program where it occurred, is provided to the
programmer. Such information is usually essential tobegina search
for the program error.

The four arithmetic errors are described as follows:

1. Divide by Zero. Any attempt to perform a division by zero.
2. Integer Overflow. Any attempt to assign a value to an INTEGER

variable that is outside the allowed range, i.e., -549755813887
to +549755813887.

3. Exponent Overflow. Any attempt to compute a result that is
greater than the maximum allowed for the absolute value of a
REAL quantity. This maximum is (8*13-1) X 8*63, or approxi-
mately 4.3@68. (The lower limit is 8* (-51) or roughly 1.1@-47.
An attempt to compute a smaller value, other than zero, pro-
duces an exponent underflow condition which is not usually
considered an error. A value of zero is normally supplied as
the result in such a case.)

4. Invalid Index. Any attempt to use an index for a subscripted
variable that lies outside the declared range for that subscript.
For example, assuming the declaration for A is

ARRAY A [-5:10,0:250
an invalid index would occur if an attempt were made to utilize
the variable A [I,J] when I and J have values such that I>10 or
I<-50rJ>200rJ< 0.

This feature not only helps to pinpoint program errors but also

protects a program from the errors of another program when they
are executed concurrently on the same computer.

131

10.4

USE OF MONITOR AND DUMP

Often the actual cause of an arithmetic error is not immediately
obvious. It may become obvious only after considerable detective
work. Usually this requires one or more additional attempts to
execute the program with modifications designed to output inter-
mediate results of some sort.

Such additional output can be programmed using the write state-
ment. However, it is usually more desirable and much simpler to
‘“‘program’ this output with the diagnostic declarations, monitor
and dump, which are described below. With these, it is very easy to
study the behavior of a program inany suspected area. One or more
critical variables can be monitored to show the manner in which they
change. The logical flow can bedepicted interms of the sequence in
which labels are encountered. Periodic ‘‘pictures’’ can be printed
of as many of the program variables as may be desired. Used in
combination, these techniques are powerful enough to furnish the
information needed to isolate even the most obscure errors. They
allow the programmer to use the machine itself to ‘“debug’’ his
program without requiring any more acquaintance with the machine
than was needed to write the ALGOL program in the first place.

The exact type and quantity of diagnostic output needed to find a
given error depend heavily on the kind of error and on the back-
ground of the programmer. Since the error isone of program logic
(as opposed to a violation of ALGOL syntax), it is necessarily quite
problem-dependent. Two requirements are thus placed on the
programmer:

1. He must be prepared to improvise diagnostic approaches that
vary with both the problem and the error symptoms.

2. To find and correct all of his own errors, he must be intimately
familiar with his problem and the algorithm being used to solve
it.

This presupposes sufficient knowledge of ALGOL to use it cor-
rectly as a programming language. The previous nine chapters were
devoted to assistance in meeting this requirement.

We close this chapter with discussions of the syntax and the
effects produced by the monitor and dump declarations. It will be
noted, that like the list declaration, these declarations reference
identifiers which must have been previously declared. Thus, it is
common to place monitor and dump declarations at the very end of
a block head (just before the first statement of that block). Any
labels referenced by these declarations must be declared in that
same block head, since labels are always local in scope. Variables
are not subject to this restriction. These declarations fit into the
syntax as follows:

(diagnostic declarations) : := MONITOR {monitor part) |
DUMP {dump part)

132

The monitor declaration will be discussed first. The composition
of the monitor part is specified by the following rules:

{monitor part) ::=(file identifier) ({monitor list))

(monitor list) ::= (monitor list element) | (monitor list}),
{monitor list element)

(monitor list element) ::= (simple variable)| dabel) |
(array identifier)
(subscripted variable})

In most cases, the file identifier will be that associated with the
printer in a previous file declaration. In fact it is usually the same
file used by the program to produce normal printer output.

The monitor declaration causes certain entities tobe placed under
surveillance during the execution of the program. Each time an
identifier included in the monitor list is used in one of the ways
described below, the identifier and its current value (unless it is a
label) are written on the file indicated in the monitor declaration.

When a simple variable in the monitor list is used as a left part in
an assignment statement, the following information is written on the
designated file:

(simple variable) = {value of variable}

When a subscripted variable in the monitor list is encountered
during the execution of the program as the leftmost element in a
left part list, the following information is written on the designated
file:

(array identifier)[{value of subscript expression} |=

fvalue of variable}

When a subscripted variable, the array identifier of which is given
in the monitor list, is encountered as the leftmost element in a left
part list, the following information is written onthe designated file:

{(array identifier)[{value of subscriptexpression}]=
fvalue of variable}

Each time a statement bearing a label which is in the monitor list
is encountered in the program, the label identifier is written on
the designated file.

A monitor declaration might appear in a program in the following
manner.

BEGIN AA000001

FILE QUT LINE 1(2,15); AA00000;
RRAY X, Y[0:10,0:207 , T [0:1507, A00000
KX |0:10]; A00000

REAL MAX, P, Q; A AO000O
NTEGER A, K, I; A AOOOOO
ABEL LQ, HI, XIT, REED; AA00000
ONIT@ R LINE (X, Y, MAX, HI, I, 1., A A00000
TIK]); A A 00000

133 '

Here, diagnostic output would occur after the execution of state-
ments, such as:

X[L,K] ~Y [LK]XP - Q
MAX - T [0]/10;

HI: Ke1I;

I-I+2;

Y [0,0]+ kx[0,0] -~ MAX;
T [K] «~ 40;

No monitor action would occur for statements, such as:
FORI1+1,2,4D0O KX [I] «~1/KX[I];
REED: READ (CARD, FIN, MAX);
KeI;
KX [0,0] - Y [0,0] - MAX;
T [1] ~ 40;
If it were desired to monitor values of MAX obtained with the
read statement, the statement MAX *~ MAX could be added.
The dump declaration has the form

DUMP (dump part),

where the latter portion is formed according to the rules
(dump part) ::= (file identifier) ({(dump list)) {label):
(dump indicator)

(dump list) : : = (dump list element) | (dump list),
(dump list element)

(dump list element) ::= (simple variable) | (subscripted variable) |
(label) | (array identifier)

(dump indicator) ::= (unsigned integer) | {simple variable)

Diagnostic information requested by means of the dump declaration
is written on the designated file when a statement, carrying the label
which is given in the dump part, has been executed a number of
times equal to the dump indicator. Since the dump indicator can be
a simple variable, dump information can be obtained more than
once during each execution of the block containing the dump declara-
tion. The number of times the controlling statement is executed

134

applies to each pass through that block. The number is not cumu-
lative from one pass to the next.

The actions obtained for each kind of dump list element are
described below.

A simple variable in the dump list causes the current value of
that variable to be supplied in the following form:

(simple variable) ={value of variable}

A subscripted variable in the dump list causes the current value
of that variable to be supplied in the following form:

array identifier)[{value of subscript expression}=
value of variable '

An array identifier in the dump list causes the current values of
all elements in that array to be supplied in tabular form and
identified by

(array identifier) =

which appears just above the table.

The order in which the array elements are written is as follows:
All subscripts are first set to their declared lower bounds, and
the corresponding value is printed out. The rightmost subscript is
then counted up, and the corresponding value is printed; this pro-
cedure continues until the subscript reaches its declared upper
bound. After this printout, the rightmost subscript is again set to
its declared lower bound, the next left subscript is counted up, and
the process recycles until all subscripts have reached their
declared upper bounds.

A label in the dump list causes a tally to be supplied which
represents the number of times the labeled statement has been
executed during this pass through the block containing the dump
declaration. The tally is supplied in the following form:

(label) {number of times statement has been executed}

A dump declaration that might be used in the previous example is
DUMP LINE (HI, KX, Y, MAX, REED) XIT: 1

Finally, attention is called to a restrictionon the use of any input-
output, including monitor and dump, in the body of typed procedures
which are called via function designators in expressions occurring
in the list of a write statement. All input-output editing is done by
a set of intrinsic procedures, which are not capable of intertwined
processing of an output list along with one or more other input or
output lists.

135

Appendix A - RESERVED WORDS

136

The following list includes all of the normally reserved words of B 5500
Extended ALGOL, They must be respected as such, even though they may
not occur in the subset presented in this text.

ABS FALSE OuT VALUE
ALPHA FILE OWN WHILE
AND FILL PAGE WITH
ARCTAN FOR PROCEDURE WRITE
ARRAY FORMAT READ

BEGIN FORWARD REAL

BOOLEAN GO RELEASE

CLOSE IF REVERSE

COMMENT IMP REWIND

COS IN SAVE

DBL INTEGER SIGN

DEFINE LABEL SIN

DIV LIST SPACE

DO LN SQRT

DOUBLE LOCK STEP

DUMP MOD STREAM

ELSE MONITOR SWITCH

END NO THEN

ENTIER NOT TO

EQV OCT TRUE

EXP OR UNTIL

This appendix is presented in two parts:

Part I contains the entire syntax in logical order. Part II contains a list of
all metalinguistic variables in alphabetical order.

137

Appendix B - SYNTAX

This appendix is presented in two parts:

Part I contains the entire syntax in logical order. Part II contains a list of
all metalinguistic variables in alphabetical order.

138

PART I

SYNTAX IN LOGICAL ORDER

The number appearing on the left is a formula number which is referred
to by Part II.

139

10.

11.
12.

13.
14.

15.

16.

17.
18.
19.

20.
21.

(basic symbol) ::= (letter) | (digit) | (delimiter)
(letter) : := A[IB|’CJID|E|F|GIH|I|J|K|LIMIN|O|P|Q|RIS|TIU|V
W|X]Y|Z

(digit) ::= 0,1 |2|3 |4|5| 6|7I8 19
(delimiter) ::= éseparator) | (bracket) | (declarator’|
arithmetic operator) | (relational operator) |
(sequential operator) | (logical operator)
(arithmetic operator) ::= +4- le /|*
(relational operatory ::= <|<|=|2|>|#
(logical operator) ::= OR|AND

(sequential operator) : := G%To IF| THEN |ELSE |FOR |DO|READ |
WRITE | PAGE

(separator) ::= ,|.|@| :|5|+| (single space) |STEP|UNTIL|COMMENT

(single space) ::= {a single unit of horizontal spacing which is
blank}

(bracket) ::= ()| [|] |*“|BEGIN|END

(declarator) : : = INTEGER REAL|ARRAY |LABEL| LIST FORMAT |
IN|OUT | MONITOR | DUMP | FILE| PROCEDURE

(identifier) : := (letter) | (identifier) (etter) | (identifier)(digit)

(number) ::= (unsigned number) | +(unsigned number >
-(unsigned number)

{unsigned number) ::= §decimal number) L {exponent part)|
decimal number) {exponent part)

(decimal number) ::= (unsigned integer) | (decimal fraction)|
(unsigned integer) (decimal fraction)

(exponent part) ::= @(integer)

(decimal fraction) :: = . (unsigned integer)
(integer) ::= (unsigned integer) | + (unsigned integer)l
- (unsigned integer

(unsigned integer) : := (digit) | {unsigned integer) (digit)

(variable) ::= (simple variable) | (subscripted variable)

140

22,
23.
24,
25.

26.

27.

28.

20.
30.
31.

32.
33.

34.

35.

36.

37.

(simple variable) : : = (identifier)
(type declaration) :: = (type) (type list)
(type) ::= REAL | INTEGER

type list) ::= (simple variable type list), (simple variable)
(
(primary) ::= (unsigned number) | (variable)

(function designator | ((arithmetic expression))

(function designator) :: = (common function identifier)
((arithmetic expression)) |
éprocedure identifier)

actual parameter part)

(common function identifier : : = SQRT| SIN [COS [ARCTAN|LN|
EXP| ABS|[SIGN |ENTIER

(adding operator)::= 4|-

(multiplying operator) ::=X | /

(arithmetic expression) ::= (term) | (adding operator)
Germ) (arithmetic expression)
(adding operatory (term)

(term) :: = (factor) | (term}) (multiplying operator) (factor)

(factor) ::x (primary) | (factory * (primary)

(statement) ::= (unconditional statement) |
(conditional statement) | (for statement)

(declaration) : : = étype declaration) | (array declaration)|
label declaration) | (file declaration)
iformat declaration) rl (list declaration)|
diagnostic declaration) |
{procedure declaration)

(unconditional statement) ::= {(compound statement
block) | (basic statement)

(basic statement) ::= {unlabelled basic statement) |
(1abel) : (basic statement)

141

38.

39.

40.

41.

42.
43,

44.

45.

46.
47.
48.
49,
50.
51.
52.
53.
S54.
53.
56.

57.

58.

(unlabelled basic statement) : := (assignment statement) |
o to statement)

dummy statement)l

read statement) |

write statement) |

{procedure statement)
(compound statement) : : = {unlabelled compound statement) |

{abel) : (compound statement)
(unlabelled compound statement) : := BEGIN (compound tail)
(compound tail) : := (statement) END | (statement);
(compound tail)

(block) ::= (unlabelled block) | (label) : ¢block)

(unlabelled block) ::= (block head) ; {compound tail)

(block head) : : = BEGIN (declaration) |{block head) ;
{declaration)

(program) ::= {unlabelled block). |
{unlabelled compound statement).

(assignment statement) ::= {eft part list) (arithmetic expression)
(left part list) ::= {left part) | (left part list) left part)

(left part) ::= (variable)+

(go to statement) ::= GO TO {abel)

(label declaration)::= LABEL (label list)

(label list) : := (label) | (label list) , (label)

(label) ::= (identifier)

(dummy statement) : := {(empty)

{empty) : :={the null string of symbols}

(Boolean primary) ::= (relations) | ({Boolean expression))

(relation) : := (arithmetic expression) (relational operator)
arithmetic expression)

(Boolean expression) ::= (Boolean factor) | Boolean expression)
OR (Boolean factor)

(Boolean factor) ::= (Boolean primary) | (Boolean factor) AND
Boolean primary)

142

59.
60.

61.

62.

63.
64.

65.

66.

67.

68.

69.

70.
71.
72.
73.

74.

75.

76.
77.

(if statement) :: = (if clause) dunconditional statement)

(if clause) ::= IF (Boolean expression) THEN

(conditional statement) : := (if statement) | (if statement)
ELSE (statement) | (if clause)
{for statement) |
(label) : (conditional statement)

(for statement) ::= (for clause) (statement) | (label) :
(for statement)

(for clause) ::= FOR (controlled variable) ~ (for list) DO
(controlled variable) : := (simple variable)

(for list) :: = ({for list element or lis
> <¢or list element l <f t> ’

(for list element) :: = (arithmetic expression)
@rithmetic expression
2arithmetic expression%
arithmetic expression

gTEP
UNTIL

(subscripted variable) : : = {array identifier)
{subscript list)]

(array identifier) : := {identifier)
(subscript list) ::= ésubscript expression)l

subscript list) ,

(subscript expression)
(subscript expression) ::= (arithmetic expression)
(array declaration) ::= (array kind) ARRAY (array list)
(array kind) : := empty) | (type)

(array list) ::= {array segment) | (array list) ,
array segment)

(array segment) ::= (array identifier) [{bound pair list)]|
(array identifier) , (array segment)

(bound pair list) : : = {(bound pair) | (bound pair list),
(bound pair)

(bound pair) ::= (lower bound) : (upper bound)

(lower bound) :: = (integer)

143

78.
79.
80.
81.

82.
83.
84,
895.
86.
87.
88.

89.

90.
91.

92.

93.

94.
95.
96.

97.

(upper bound) ::= (integer)
(file declaration)::= FILE (I-0 part) {file part)
(I-0 part) ::= IN|OUT

(file part) ::= (file identifier) (unit designation)
({buffer part))

(file identifier) ::= (identifier)

(unit designation) ::= (empty) | (space)1

(space) ::= (single space) | (space) (single space)
(buffer part) ::= (uumber of buffers) , (buffer size)
(number of buffers) :: = (unsigned integer)

(buffer size) ::= (unsigned integer)

(format declaration) : := FORMAT (I-0 part) (format part) |
FORMAT (format part)

(format part) ::= §format identifier) ({editing specifications))|
format part) , (format identifier)
({editing specifications))

(format identifier) : : = (identifier)

{editing specifications) ::= iediting segment)
editing specifications)/ |
/{editing specifications) |
(editing specifications)/
(editing segment)

(editing phrase) ' (repeat part)
({editing specifications)) | {editing segment),
§editing phrasez | {editing segment),

repeat part) ({editing specifications))

(editing segment) : :

lig

"

(editing phrase) ::= (repeat part) éediting phrase type)

(field part) | {string)
(repeat part) ::= (empty) | (unsigned integer)
(editing phrase typey ::= E |F|R|I |X
(field part) ::= (field width) | (field width). (decimal places)

(field width) ::= (unsigned integer)

144

98. (decimal places) ::= (unsigned integer)
99. (string) ::= ‘“‘{ any string of valid characters except’’} **
100. (list declaration) : : = LIST (list part)

101. (list part)::= glist identifier) ((list)) | st part),
list identifier) ({ist))

102. (list identifier) ::= (identifier)
103. (list)::= (list segment) | Qist) , (list segment)
104. (list segment) ::= 2expression part) | (for clause)
list segment)| {for clause
[expression list)]
105. (expression part) ::= (arithmetic expression)
106. {expression list) : :~ (expression part expression list) ,
expression part ist segment)
expression list) , (list segment)

107. (read statement)::= READ (({input parameters))
(action label)

108. (input parameters): := (file identifier) , (format identifier),
ist) | (file identifier),
ormat identifier) , (list identifier)

109. (action label) ::= [{end of file label)] | {empty)

110. (end of file label) ::= (label)

111. (write statement) ::

WRITE ({output parameters))

112. (output parameters) ::= (file identifier) (format and list parameters)
113. (format and list parameters): := (format and list part)

mpty) | [{skip to next page)]

114. (format and list part)::=, &format identifier
format identifier} , (list)|
. (format identifjer
, \list identifier

115. (skip to next page) :: = PAGE
116. (procedure declaration) ::= PROCEDURE {procedure heading)

rocedure body) | (type) PROCEDURE
rocedure heading) (procedure body)

145

117. (procedure body) :: = (statement)
118. (procedure heading) ::= (procedure identifier)
formal parameter) ;
specification part)
119. (procedure identifier):: = {dentifier)
120. (formal parameter part)::= {empty) | (Gdentifier list))
121. (identifier list) ::= (identifier) | (identifier list) , (dentifier)
122. (specification part) ::= (empty) | (specification list)

123. (specification list) ::= éspecification) ; | (specification list)
specification)

124. (specification) ::= gpeciﬁer} (identifier list)|
rray specification)

125. (specifier) ::= (type) |FILE|LIST|FORMAT|LABEL

126. (array specification):: = ARRAY (array specifier list) | ¢ype)
ARRAY (array specifier list’)

127. (array specifier list) ::= (array specifier)
{array specifier list),
Qrray specifier)

128. (array specifier)::= (array identifier list)
(lower bound list)]

129. (array identifier list) ::= (identifier list)

130. (lower bound list) ::= (specified lower bound) |
ower bound list),
pecified lower bound)

131. (specified lower bound) ::= (integer) |*

132. (procedure statement) :: = {procedure identifier)
(actual param ter part)

133. (actual parameter part) ::= {empty) | ({actual parameter list})

actual parameter list),

134. (actual parameter list) :: = éactual parameter)
actual parameter)

135. (actual parameter) ::= (arithmetic expression) | (array identifier)]

file identifier) | (format identifier) |
list identifier) | (label)

146

136.

137.
138.

139.

140.

141.

142,

143.

(diagnostic declaration) :: = MONITOR (monitor part) |
DUMP (dump part)

{monitor part) ::= {file identifier) ({monitor list))

{monitor list) : : = {monitor list element) | {monitor list),
(monitor list element)

{monitor list element) ::= (simple variable)
subscripted variable) |
array identifier) | (label)

(dump part) ::= éfile identifier) ((dump list)) (label):
dump indicator)

(dump list):: = {(dump list element) | (dump list) ,
{dump list element)

(dump list element) ::= (simple variable) |(subscripted variable)|
(abel) | (array identifier)

(dump indicator):: = {insigned integer) | (simple variable)

147

PART II

METALINGUISTIC VARIABLES IN ALPHABETICAL ORDER

Two columns of numbers appear to the right of each variable. The first
column of numbers references, in Part I, the formula given for this vari-
able. The second column of numbers refers to a paragraph number where
the formula is discussed in the text.

148

METALINGUISTIC LINE PARAGRAPH
VARIABLE NUMBER NUMBER

{action l1abel) ..cccieveeniieierecniinininiananns 109 7.4

{actual parameter) .ccccecececereranncncnnnns 135 9.4/9.5
(actual parameter liSt) ...ccecoceeesienennnn. 134 9.4/9.5
{actual parameter part)e.ceceeenennse. 133 9.4/9.5
(2dding OPerator)cceeerrcureroranencanne 29 2.7
(arithmetic eXpression)c.evereirrennne 31 2.7
(arithmetic OpPerator)c.ccececerenencncnens 5 2.2
{array declaration)cceceeeeenenenenns 71 6.2
{array identifier)cceeeieuriininincannne 68 6.1
(array identifier list)c.ccevuueeunnennnnnn. 129 9.3
{array kind)cceuinannnn. ceenenen cereeneeens 72 6.2
(array list) eeecesesnes ceecenes cesesssiesas 73 6.2
{array SEEMENt)ceceueierencnrnnennnansanns 74 6.2
{array specification)......cceeecuveniieianinns 126 9.3
{array specifier)ccceeevereniinnnnnn. 128 9.3
(array specifier list)cceceivueiiinnnnee 127 9.3
(assignment statement)c.c.cceeueernnene 46 3.4
(basic statement)cccererenenniananenns 37 3.3
(basic SYMbDOL) ce.cuurererenenennrnneneenranenens 1 2.2
(BLOCK Y verereeearersresareseneeesasessnenesnens 42 3.3
(DLOCK DEad .euververucrruecrerennenserenuennes 44 3.3
(Boolean eXpression) ..c.ececececrvencesaranns 57 4.2
{Boolean factor)c.ecerereeneniaennnnnens 58 4.2
(Boolean primary) ...c.ccceeeceererrecncanenens 55 4.2
149

METALINGUISTIC LINE PARAGRAPH
VARIABLE NUMBER NUMBER

(bound PaiT) ceceeerennrennreneieieraieeanennnnn, 76 6.2
(bound pair liSt) ...c.ccerereereninrancnannnnns . 75 6.2
(Dracket)ccecevverniinieniiniininiiiieiaianene 11 2.2
(buffer part)...... ceesecees cereseseceresasaanes 85 7.1
(buffer Size) ..c.ccevrierireiruriiniinnnnnnnnnns 87 7.1
(common function identifier) 28 2.7
(compound StatemMent) cee.eeececrssecosansene 39 3.3
(compound tail) .e.ecceevenrinrninnnnerniiennnes 41 3.3
(conditional statement)cceeeueuenennnas 61 4.4
» {controlled variable)c.eceeerieriinrnnennns 64 5.1
{(decimal fraction) ...c.c.cceeerureriiercncnenes 18 2.4
(decimal nUMDET)...cceveieruraraiirninnnnanns 16 2.4
(decimal places Y...cccervernininrninrecanonens 98 7.2
(declaration Y..c.eeceeeeriacenricenienenninennes 35 3.2
(declarator)cecceucereernireneiennreniennnes 12 2.2
(delimiter) ...ccveererriniianeniinnineinnnienanen 4 2.2
(diagnostic declaration)c.cceceueeennns 136 10.4
(QEGIEY vveenvenncrenneseereneseenenareeensenes 3 2.2
(dummy Statement)e.ccecererrescrrannnes 53 3.5
{dump indiCator) .c.ccecrrererrrnrenuunnisenns 143 10.4
{AUMP HSL) cevvvvrrruniirennnecruseenenenennnes 141 10.4
{dump list element Yecevarenrararanennes 142 10.4
(UMD PATE) .eerirnnniiiinunnerernnonseanrneaneee 140 10.4

(editing phrase)cceeereeereneennerenannens 93 7.2

150

METALINGUISTIC LINE PARAGRAPH

VARIABLE NUMBER NUMBER
(editing phrase type)c...c..... ceereiens 95 7.2
(editing segment)ccc.eveuiiiaciiniinnine, 92 7.2
(editing specifications)c.oceevuennen. e 91 7.2
(EIMPEY Y teverenererererracenenencasnensacsnananes 54 3.5
(end of file 1abel) ...coeirurnrnenenrinnnnn. 110 7.4
(exponent Part)ce.eceueennenns crerereraians 17 2.4
(expression list) eveerecareranas cereenes 106 7.3
(eXPression part)ccceceveceneeencinnennnnes 105 7.3
(faCtor) coveviriiiiiiieiiiiiiieieeeeenaes ceerenaes 33 2.7
(field Part) .ocevevuvenreeireneiiranenriranennes 96 7.2
(field WIAth) covinieeineiienenenns N 97 7.2
(file declaration)eeeeeivenvenennniennnnn. 79 7.1
(file identifier)c.ccerrrannnns ceertennenas 82 7.1
(file PATL) cevervrnrvrnrerernnernnenn. ceeeetenenans 81 7.1
{for clause) ..c.cceeerrenrenninninnne. e 63 5.1
TG (e} 3 511 A S 65 5.1
(for List element Y .cuuvveiunerennreneinnennnee. 66 5.1
(fOr SLAtemMent) ...c.eeevvuurererennnervenneannns 62 5.1
(formal parameter part d.....cceceeeiurnnenn. 120 9.3
(format identifier) e 90 7.2
(format and list parameters) 113 7.5
(format and list part) creerienes 114 7.5
(format declaration) crerereeens 88 7.2
{ format part)cccceeennnen ceereresarnnen 89 7.2

151

METALINGUISTIC
VARIABLE

<function designator)cccceveenieiinnnnnns
(g0 tO StatemMent)ccoveveurinrrunraneencanes
(Identifier)ceceveeerenreiennenieniecencencenes
(identifier LSt).ueeereruniieneiernnriennienanes
(if ClAUSEY) vivvrinrinniuniieienienciniraninnenans
(if statement).............. crereeneiaae
(input parameters) ceeesenreiasanas
(INEEZET Y vuinrnrentnninraianenencnerorerannnanennes
4 CT0 1 7.V 3 SRR
(label declaration) ...cccee.eeereereernnerenenns
L 1= e
(18DEL THSEY evevemeemeereeraiereneeneeneeenenes
(1eft PATE) cuvveeriieiiinnnnncereeennaneneeeenens
(left part LisSt) cieeeeereeererereiiueneranerenenens
(letter) oeeurernennnnn. R
(list declaration)ccecuveerrennnereennenenns
(list identifier) ceesrenteesaerineas crerenas
QT 1T« B S
(1iSt SEZMENT) vvvuvrvrrnerereerenerennernnerane
(logical OPeratory. ..ccecevererrvvnenccrrennnes
(lower bound)cceeeriiaieiaieiiiiieiiianenes
(lower bound liSt) .ccc.viveeirananenenenennnnns
{(monitor List Y....e weveererene. eereeerreanas

(monitor list element) crereneeenes
152

LINE

NUMBER

27
49
13
121
60
59
108
19
80
50
52
51
48
47

103
100
102
101

104

77
130
138
139

PARAGRAPH

NUMBER

2.7/9.5
3.5
23
9.3
4.3
4.3
7.4
2.4
7.1
3.5
3.5
3.5
3.4
3.4
2.2
7.3
7.3
7.3
7.3
7.3
2.2
6.2
9.3
10.4
10.4

METALINGUISTIC LINE PARAGRAPH

VARIABLE NUMBER NUMBER
{monitor part) ceveenenas 137 10.4
(multiplying operator).......... ceoees 30 2,7
(UMDbET Y uveerenniiiiiiiiiiiiiiiiiiiiia. 14 2.4
(number of buffers).........cccceeiiiiniieia. 86 7.1
{output Parameters) ...cvcecererrenncranennnn. 112 7.5
(primary)..... ceeecisiaissanes cevencanes cecensens 26 2.7
(procedure body)....cceeeireiuniiiiiiiiannn. 117 8.2/9.3
(procedure declaration).........c...e... 116 8.2/9.3
{procedure heading)cc.c.coevurueeuennnnnn. 118 9.3
(procedure statement)ceceveurannnns 132 8.2/9.4
{procedure identifier)..... Cereeereriecaraanas 119 8.2/9.3/9.5
{program).........ceeeneen. ceteecereneenenas 45 3.3
(read Statement) ...c.e.eeeeeeerenernnnersnenns 107 7.4
(€35 E15T0) 1 RN 56 4.2
(relational OPErator)ce.cevecruernnes 6 2.2/4.2
(TePeAt PATT) .uverurerunnienerenniernianeruennans 94 7.2
(SEPATALOT Y eruuvnrrnruirnrenienriereceennnenanns 9 2.2
(sequential OPETALOT) veveronmurerreererreanes 8 2.2
(single space)c....... crvereeieneaaens 10 2.2
{simple variable)cccviviieiiiiiieiennnenene 22 2.5
(sKip tO Next page)ceevverrenraninnnnns 115 7.5
(SPACE Y cuvreriiiiniainienns ceeieteenns ceesernnes . 84 7.1
(specification PRTIITE ceerenaies ceseeiesenatients 124 9.3
(specification list) cterecaiettcenenaans 123 9.3

METALINGUISTIC LINE PARAGRAPH

VARIABLE NUMBER NUMBER
(specification party crererranenes 122 9.3
(specified lower bound)c.ceveuennnen. . 131 9.3
(specifier) cerrererenaaen ernraae 125 9.3
(common function identifier} ceveenes . 28 2.7
(SLAtEMENLY 1w vureirnenensnenenencnnronnrnenaens 34 3.2
Q15 117 o YR creresaraiacaaans 99 7.2
('subscript eXpression)eeereueeernnenns 70 6.1
{subscript list) ...ccviviiiineieiiaianennne. . 69 6.1
{ subscripted variable Y..ccecveieeieenennnnn 67 6.1
{TIM) everviinrieraininneiaeenanes ceerereerereanns 32 2.7
14570 S creeeeenan 24 2.5
(type declaration)c.cceeveniiianenenenennnes 23 2.5
{EYyPE LISL) tervurrniuneeniinianrneiacaransnsennnns 25 2.5
{unconditional statement)c..ceeeuenns 36 3.3
(unlabelled basic statement) creeene 38 3.3
(unlabelled block) cereserieesiaians 43 3.3
(unlabelled compound statementy 40 3.3
(unit designation Y......cceeuiieeiniiniininnnen. 83 7.1
(unsigned integer)............. ceeeeeen eenes 20 2.4
(unsigned number) ceeeereeenenas ceenenas 15 2.4
{upper bound) crerenes crereeesenniies 78 6.2
(variable)cceuueue. cererierriatarararaaeeaes 21 2.5
(write statement) Cereceierecacnienns 111 7.5

154

Appendix C ~-DECLARATIONS

155

Declarations provide the compiler with required information about
identifiers used in a program. All identifiers must be explicitly defined
by a declaration. The following lists the eight declarations and briefly
points out the purpose of each. The reference following each definition
indicates the section in the text where the declaration is discussed.

(type declaration) -

(array declaration) -

(label declaration’) -
{ile declaration) -
(format declarationy -

(list declaration) -
(procedure declaration) -

(diagnostic declaration’) -

Specifies whether a simple variable is REAL or
INTEGER (2.5).

Specifies that an identifier represents an array
and gives the number of dimensions in the array
and the bounds on each dimension (6.2).

Specifies that certain identifiers are labels
3.5).

Associates an identifier with a set of file-
handling specifications (7.1).

Associates an identifier with a set of editing
specifications (7.2).

Associates one identifier with a set of expres-
sions to be initialized (in the case of input) or
printed (in the case of output) (7.3).

Associates an identifier with a body of coding
which is to be treated as a subprogram (8.2)
9.3).

Associates an identifier with either monitoring
or dumping specifications (10.4).

156

Appendix D - DEVIATIONS FROM ALGOL 60

157

Reference was made in Chapter 1 to ALGOL 60, the language on which
B 5500 ALGOL is based. Although the latter contains many extensions to
the language, not many of these have been included in the subset presented
in this text. Therefore, with few exceptions, this subset is also a subset of
ALGOL 60. This text can thus serve well as an introduction to ALGOL 60.

A student, who has learned the material in this text, can readily pinpoint
the few differences by consulting the ALGOL reference publications and
other discussions of ALGOL*,

Except for Chapters 7 and 10, most of the concepts presented here have
exact counterparts in ALGOL 60. The important areas of difference are

7 discussed below.

Input-Output Constructs - No facilities for communication of data and
results are specified in ALGOL 60.

Labels - In ALGOL 60, it is permissible to use unsigned integers, as well
as identifiers, for labels. No label declaration exists in ALGOL 60.

Character Set - The B 5500 character set does not include all of the char-
acters used in ALGQOL 60. As a substitute, reserved words such as AND and
OR are used. The replacement operator in ALGOL 60 is the character pair
:= whereas the B 5500 ALGOL compiler accepts either «~ or := as a replace-
ment operator. ALGOL 60 uses the symbol 1 for exponentiation, rather than
the asterisk. Powers of ten in numbers are written with an undersized 10
in ALGOL 60 while the @ symbol is used on the B 5500.

Reserved Words - There are no reserved words in ALGOL 60. Delimiters

such as BEGIN, STEP and IF are considered to be single symbols, (see
Section 2.2). The blank is not used as a separator in ALGOL 60, whereas
in che B 5500 it is often needed in conjunction with reserved words, (see
Section 2.3).

Identifier Length -~ No limit on identifier length is given in ALGOL 60.

Specifications - The specifications, which are a part of procedure head-
ings that contain formal parameters, are not mandatory in ALGOL 60.
In an array specification, no lower bound list is given in ALGOL 60.

GO TO’s in Procedure Bodies - No restriction on the use of a go to
statement referencing a label nonlocal to the body of a typed procedure
is given in ALGOL 60, (see Section 9.3).

Global Identifiers in Procedure Bodies - The restriction discussed in
Section 8.2 is not present in ALGOL 60.

*“‘Structure and Use of ALGOL 60,” Bottenbruch, H.,
Journal of the Association for Computing Machinery, April, 1962

‘“An Introduction to ALGOL 60,”” Schwarz, H. R.,
Communications of the Associationfor Computing Machinery,February,1962

158

