
ALGOL 

-

L THURN AU • JOHNSON • HAM 



ALGOL PROGRAMMING 

A BASIC APPROACH 



Although Burroughs Extended ALGOL contains many constructs not found 
in ALGOL 60, the subset covered in this text contains very few of them. With 
the exception of the character set, nearly every ALGOL 60 construct is 
contained in Extended ALGOL. Thus, this text should serve as a good 
introduction to other reasonably pure implementations of ALGOL 60. 
Appendix D contains a discussion of the differences which exist between 
the language covered herein and ALGOL 60 as defined in the ALGOL report. 

Our objective has been the creation of a textbook on ALGOL rather than 
a self-teaching document or a reference manual. Therefore, we would 
expect this material to be most useful in a normal course environment or 
to the individual who already has a computingbackground and is interested 
in learning ALGOL. Certain knowledge, such as the preparation of punched 
card decks, etc., is assumed and should be provided to the novice by an 
instructor or obtained from other textual material. Although the text is 
not primarily a reference manual, its many definitions and examples make 
it useful as such to the programmer. 

The authors would like to express their sincere thanks to Mr. A. Y. Wilson 
of the Burroughs Corporation whose confidence and support made the writ­
ing of the text possible. Our thanks also to w. H. Eichelberger, Major W. D. 
Marsland, Warren Gaynor, Darrell Albee, and A. H. Rabenau who made 
valuable suggestions for and provided critical comment bn the material 
herein. Finally, many thanks to Miss Kay Shackleford who typed the original 
manuscript, an awesome task considering the many special symbols 
involved. 

The Authors 
May, 1964 



CONTENTS 

PREFACE 5 

Chapter 1. INTRODUCTION 9 
1.1 THE COMPUTER 9 
1.2 PROBLEM SOLVING ON A COMPUTER 12 
1.3 ALGORITHMS 14 
1.4 FLOW CHAR TING 15 
1.5 COMMUNICATING WITH THE COMPUTER 17 
1.6 SYNTAX 19 

Chapter 2. BASIC LANGUAGE ELEMENTS 24 
2.1 CHARACTER SET 24 
2.2 BASIC SYMBOLS 25 
2.3 IDENTIFIERS 27 
2.4 NUMBERS 28 
2.5 VARIABLES 30 
2.6 COMMON FUNCTIONS 31 
2.7 ARITHMETIC EXPRESSIONS 32 

Chapter 3. STRUCTURE OF ALGOL PROGRAMS 38 
3.1 A PROGRAM 38 
3.2 STATEMENTS AND DECLARATIONS 40 
3.3 THE BLOCK AND COMPOUND STATEMENTS 41 
3.4 ASSIGNMENT ST AT EMENTS 45 
3.5 GO TO STATEMENTS AND LABELS 46 
3.6 THE COMMENT 48 
3.7 SIMPLIFIED INPUT /OUTPUT 49 

Chapter 4. CONDITIONAL STATEMENTS 56 
4.1 THE CONCEPT 56 
4.2 BOOLEAN EXPRESSIONS 57 
4.3 IF STATEMENT 60 
4.4 CONDITIONAL STATEMENTS 61 



@1964 

Burroughs Corporation 

Second, revised edition 

Material in this publication is, in part, taken 
from "Extended ALGOL Reference Manual 
for the Burroughs B 5000" Copyright 1962 
by Burroughs Corporation and "Basic 
ALGOL - A Compatible Subset of Burroughs 
B 5000 Extended ALGOL" Copyright 1964 
by Marathon Oil Company. Reprinted by 
permission. 



PREFACE 

This book has grown out of the authors' efforts in teaching classes in both 
ALGOL 58 and Burroughs Extended ALGOL, an expanded version of ALGOL 
60 implemented for the Burroughs B 5500 Computer. It also draws heavily 
upon their experience in actual programming for the B 5500 in Extended 
ALGOL, The book is aimed, primarily, at nonprofessional programmers. 
Therefore, the audience may very well include engineers, scientists, stu­
dents, technicians, etc., who are interested in becoming proficient enough 
in ALGOL programming to write their own programs. 

To attain its aim of providing the nonprofessional programmer with a 
working knowledge of ALGOL the text is based upon a proper subset of 
Burroughs Extended ALGOL, The subset is small enough to be readily 
grasped by the nonprofessional programmer. Yet it is comprehensive enough 
for most scientific and engineering applications. A knowledge of this sub­
set may be amplified, at the discretion of the student, to include other 
features of Extended ALGOL. 

A point of departure from previous textbooks on programming in Algo­
rithmic languages is an emphasis on one of the most attractive aspects of 
ALGOL. This aspect is the precise definition of the language in terms of 
its syntax. It is consistency in this area that provides the continuity between 
the subset and Extended ALGOL. This text presents syntax gradually, as an 
integral part of the discussion of the language. The syntactical approach 
simplifies the learning of this subset and makes readable the reference 
material on ALGOL and Extended ALGOL, 

The text begins by defining the basic elements of the language and sub­
sequently develops the entire language, in a building block manner, from 
these elements. A simple form of input/output is introduced quite early, 
allowing the student to write complete, working programs as each new 
concept is developed. This is extremely effective in creating and maintain­
ing interest. The liberal use of examples serves to point out the use of the 
constructs discussed. Each chapter is followed by a set of exercises which 
will allow the student to test his knowledge of the material covered, often 
by writing an actual program. These exercises are largely concerned with 
basic features of the language and can be supplemented by the instructor 
with applications-oriented problems. 

The approach used in the text has been followed in several actual class 
situations and has proved highly successful. The availability of a computer 
for running student problems is an added advantage. Each chapter can be 
covered in a class of about three hours' duration. This would indicate about 
30 hours of class time for adequate coverage of the material. 





ALGOL 

D. H. Thurnau, Ph. D. - Marathon Oil Company 

R. E. Johnson - Burroughs Corporation 

R •. J. Ham - Burroughs Corporation 



Chapter 5. FOR STATEMENTS 67 
5.1 THE CONCEPT 67 
5.2 THE FOR LIST 68 
5.3 USES OF THE FOR ST AT EMENT 71 

Chapter 6. SUBSCRIPTED VARIABLES 78 
6.1 THE CONCEPT 78 
6.2 ARRAY DECLARATION 82 
6.3 USE WITH THE FOR STATEMENT 84 

Chapter 7. COMMUNICATION - DATA AND RESULTS 87 
7.1 FILE DECLARATION 87 
7.2 FORMAT DECLARATION 89 
7.3 LIST DECLARATION 95 
7.4 READ STATEMENT 96 
7.5 WRITE STATEMENT 97 

Chapter 8. INTRODUCTION TO PROCEDURES 101 
8.1 SUBPROGRAM CONCEPT 101 
8.2 PROCEDURE DECLARATIONS AND 

STATEMENTS 102 
8.3 ELEMENTARY USE OF THE PROCEDURE 105 

Chapter 9. MORE ABOUT PROCEDURES AND BLOCKS 111 
9.1 THE CONCEPT OF FORMAL PARAMETERS 111 
9.2 THE CONCEPT OF TYPED PROCEDURES 112 
9.3 PROCEDURE DECLARATIONS - REDEFINED 113 
9.4 PROCEDURE STATEMENTS - REDEFINED 116 
9.5 FUNCTION DESIGNATORS - REDEFINED 118 
9.6 EXAMPLE OF USE OF PARAMETER LISTS 119 
9.7 BLOCKS IN ALGOL 122 

Chapter 10. DIAGNOSTICS 127 
10.1 ERRORS IN PROGRAMMING 127 
10.2 SYNTACTIC AL ERROR DIAGNOSTICS 128 
10.3 RUN-TIME ERROR CONDITIONS 131 
10.4 USE OF MONITOR AND DUMP 132 

Appendix A. RESERVED WORDS 135 
Appendix B, SYNTAX 137 
Appendix c. DECLARATIONS 155 
Appendix D. DEVIATIONS FROM ALGOL 60 157 



CHAPTER 1 - INTRODUCTION 

1.1 THE COMPUTER 

In the relatively shon period of time since the advent of the digital 
computer, an almost revolutionary change has been wrought in the 
approach to problem solving and the processing of data.* This phe­
nomenon is continuing to grow and now pervades, not only the 
physical sciences and obvious areas of data manipulation, but also 
the social and biological sciences and all levels of business decision 
making. 

Digital computers cannot compete with their designers in the ability 
to solve complex problems. In fact, the machines themselves are 
not able to solve even the simplest problem without human help. The 
approach required to solve a problem expressed as a precise, step­
by-step means of attaining the solution, must be provided to the 
computer. It is this set of step-by-step instructions that will be 
called a program. Programming a computer, then, is the develop­
ment of such a set of instructions. 
If the computer must be given instructions before it can effect the 

solution of a problem, where does its value lie? 
Computers are not really very smart. The most complex tasks of 

which they are capable are the simple operations of arithmetic: 
addition, subtraction, multiplication, and division-but they do them 
so terribly fast! In fact, it is in its speed where much of the power 
of the digital computer is centered. For example, the B 5500 can 
perform as many as 200,000 additions in a single second. The 
computer is also capable of executing these arithmetic operations 
to a much greater degree of precision than would be feasible 
in any other practical means of computation. It is significant that 

*The first electronic digital computer was built in the early 1940' s 
with the first commercial machine available some ten years later. 

9 



the modern digital computer originated in the need to perform 
voluminous calculations, beyond the practical scope of existing 
equipment, in the development of the atomic bomb. 

The digital computer does in fact possess one basic capability 
beyond that of the elementary arithmetic operations. It has the 
ability to make decisions on an either/or basis and take alternative 
courses of action. For example, the machine could be instructed to 
take one course of action if a variable X was negative and another if 
it was positive or zero. 

One of the major dif.ferences between the early machines and 
present day digital computers lies in the concept of a stored pro­
gram. Early machines depended upon some external source for 
their instructions. Modern computers are designed to store the 
sequence of instructions, as well as the input data and the results 
of computations, in their internal, rapid access, memory. This 
makes the computer much more versatile. 

Other significant improvements lie in the rapid technological 
advances in the hardware itself and in the development of software. 
Software is defined as a group of one or more programs written to 
ease the task of the user in programming and operating the com­
puter. The B 5500 ALGOL compiler is such a program. 

In summary then, to utilize the power of the computer, a problem 
must be presented to the computer in terms of those basic operations 
which it is capable of performing. How this is done will be the sub­
ject of the following discussion. 

This section closes with an amplification of the previous point 
regarding the basic abilities of the machine. A computer should be 
considered as a tool which extends the intellect of man. By freeing 
him from the drudgery of routine calculations and extending his 
ability to perform these calculations by many orders of magnitude, 
the computer allows man to utilize his creative ability to a greater 
extent. It is the merging of the capability of man and machine which 
opens the vistas of a limitless future. 

10 



B 5500 COMPUTER SYSTEM 

11 



1.2 PROBLEM SOLVING ON A COMPUTER 

Since it has been seen that the computer must be provided with 
specific instructions as to how a problem can be solved, and since 
these instructions must be expressed in terms of the basic opera­
tions which the machine can perform, it will be beneficial to consider 
the subject of problem solving on a computer. 

There are seven specific areas which should be considered when a 
digital computer solution to a problem is under development. 

1. Problem definition and establishment of goals. 
2. Mathematical description (model). 
3. Reduction to a numerical process. 
4. Programming. 

a. Flow charting 
b. Coding 

5. Debugging. 
6. Production. 
7. Evaluation. 

A critical factor in the ultimate success of any computer approach 
is the initial problem definition and the establishment of attainable 
goals. It is against these goals that success or failure will be 
measured. As Richard Hamming stated, "The objective of computing 
is insight, not numbers."* Appropriate problem definition allows the 
needed information to be gotten without also obtaining much extrane­
ous information. 

The desirability of defining a problem to get specific information 
does not preclude use of the computer as a research tool to produce 
results which cannot be anticipated. However, there should always 
be criteria for measuring the success of the effort. 

Once the problem has been defined in broad terms, it must be 
expressed in quantitative terms. Often this quantitative form is 
called a mathematical model. An example of a mathematical model 
might be a single formula or it might be the description of a missile 
trajectory. The model is merely the description of a process in 
mathematical or precise numerical terminology. 

After the problem is defined quantitatively, consideration must be 
given to whether or not the computer has the capability to perform 
all of the operations which are required. For example, does the 
problem require the extraction of a square root? Since the only 
operations which the computer can perform are the elementary 
arithmetic ones of addition, subtraction, multiplication, and division, 
the square root operation must be expressed in terms of these 
simple operations. This phase is called numerical analysis. Fortu­
nately, most complex mathematical operations, as well as most 
methods of solving problems of a nonmathematical nature, can be 
reduced to simple numerical steps which the computer can handle 
with the basic operations and the capability to make comparisons. 

*"Numerical Methods for Scientists and Engineers," Richard W. 
Hamming, McGraw-Hill. 

12 



The importance of basic knowledge in the area in which the problem 
is found cannot be overlooked. For example, it is not reasonable for 
someone who knows no Russian to attempt to devise a detailed tech­
nique for automatic translation of Russian to English. Similarly, in 
solving most scientific problems on a computer, there is no substi­
tute for a sound background irf mathematics. 

With the problem solving process described as a step-by-step 
sequence of elementary operations, an equivalent series of instruc­
tions can be given to the computer and then executed to effect the 
solution of the given problem. It is this sequence of instructions 
which is the computer program. 

There are two steps in the writing of the program. One is the 
expression of the numerical process in a formal manner, such as a 
flow chart. The second is the actual writing of the program in a 
language which the machine can accept. The first of these will be 
discussed briefly later in this chapter. The second is basically the 
subject of the entire text. 

Once the program has been written, a period of time is usually 
required to make sure it is in fact performing correctly. This phase 
is usually called checkout or debugging. The programmer usually 
tries to eliminate as many errors as possible by carefully checking 
his program before it is ever given to the computer. The program 
is tested on the computer using input information or data for which 
the results are known. 

When the program is checked out and running correctly, it can be 
used to calculate results based on realistic sets of data. This phase 
is considered as production and produces results which can be used 
to determine the success of the problem solving operation. 

It is this evaluation which constitutes the final phase of the prob­
lem solving operation. Based on the original problem definition and 
the goals which were to be attained, production results can be used 
to measure the degree of success which was attained. If the objec­
tives were reached the particular job is finished; if not, it may be 
necessary to reevaulate the original objectives and go through all 
or part of the problem solving cycle again. 

Consider how the first three steps of the problem solving technique 
might be applied to a given problem. Suppose we define a problem 
and an objective by saying that we have two lines on a plane surface 
and want to know where they intersect. 

Mathematically, the problem can be stated by describing each of 
the lines relative to an x-y coordinate system on the plane. The 
lines are then defined by linear equations. For example, line 1 
would be represented by the equation ax+by=c and line 2 by the 
equation dx+ey=f. The problem then becomes one of solving the 
two equations simultaneously. That is, values of x and y are needed 
which will satisfy both the equation for line I and the equation for 
line 2 at the same time. 

However, we cannot merely provide these equations to the com­
puter and await an answer. We must specify, in terms of the 
elementary operations, a procedure by which the computer can solve 
these equations. 

13 



It can be shown that the required values of x and y are given by 
the following expressions: 

x _ ec-bf 
- ae-db 

_ af-dc 
Y - ae-db where ae-db 1- 0 

Thus, the problem has been reduced to one of six multiplications, 
three subtractions, and two divisions, which can easily be imple­
mented for solution on a computer. 

1.3 ALGORITHMS 

We have been discussing the idea of a step-by-step approach to 
a problem using only the elementary operations of arithmetic. Now 
we will describe this in a formal manner and give the concept a 
title-an ALGORITHM. There are many acceptable definitions of 
an algorithm, one of which is:* 

An algorithm may be defined as a series of simple 
operations which, when applied to a problem from a 
particular class of problems, will lead to a solution 
in a finite number of steps. 

The close relationship between the idea of an algorithm as defined 
above and the development of a computer program should now be 
obvious. If an algorithm can be written for a problem which is 
being considered for a computer solution, the necessary computer 
program can be easily developed since the approach to the solution 
is spelled out in terms of simple operations by the algorithm. 

Consider again the problem of solving two linear equations simul­
taneously. It was stated that the values of x and y could be found 
from the relationships: 

x = ec-bf 
ae-db 

y = af-dc 
ae-db 

These equations provide the basic approach to finding x and y. 
To develop more fully the idea of an algorithm, that is the precise, 

step-by-step approach to finding x and y, the specific steps to follow 
might be written: 

*"Algorithms and Automatic Computing Machines," B. A. Trakhten­
brot, D. c. Heath & Company. 

14 



1. Calculate the value of ae and save it. 
2. Calculate the value of db and save it. 
3. Subtract the result of step 2. from the result of step 1. and 

save it. 
4. Calculate the value of ~c and save it. 
5. Calculate the value of bf and save it. 
6. Subtract the result of step 5. from the result of step 4. and 

save it. 
7. Calculate the value of af and save it. 
8. Calculate the value of de and save it. 
9. Subtract the result of step 8. from the result of step 7. and 

save it. 
10. Divide the result of step 6. by the retoult of step 3. and call 

the resulting value x. 
11. Divide the resul~ of step 9. by the result of step 3. and call 

the resulting value y. 

These 11 steps represent the algorithm for finding x and y. A per­
son totally unfamiliar with the problem and knowing how to subtract, 
multiply and divide could find x and y, given the above step-by-step 
approach. The task of a programmer then, is to put the steps of an 
algorithm into a form which is meaningful to the computer. Since the 
medium in which the algorithm is expressed is unimportant, it is 
obvious that a computer program is in fact an algorithm, since it 
expresses a specific, step-by-step approach to solving aparticular 
kind of problem. 

1.4 FLOW CHARTING 

Once the mathematics of a given problem have been stated in 
terms of an algorithm, the task of expressing the algorithm in 
terminology which the computer understands can begin. The result 
of this expression is a computer program. However, good pro­
gramming technique often calls for a step preceding that of actual 
program writing. This step is called flow charting. 

A flow chart is a block diagram indicating the logical flow of a 
program. That is, it presents in a pictorial form the sequence of 
steps leading to the solution. It is based to a large degree upon the 
algorithm or numerical process which has previously been devel­
oped, representing it in a highly formal manner. It will usually, 
however, be more comprehensive than the algorithm, including all 
operations which supply valid data to the algorithm and results to 
the programmer. 

The technique used in flow charting tends to vary with the indivi­
dual; however, the following conventions might be suggested: 

15 



An overt action such as the addition of two numbers and the sav; 
of the result is represented by a rectangle. 

B 
A test or comparison is represented by a diamond. 

Input/Output operation denoted by an elipse. 

c __ Re_ad_A_) 

Connector to a distant point in the flow chart indicated by a circle. 

® 
The flow through these is indicated by lines from box to box with 

arrow heads denoting directions. 

Note the single line going into the decision box and the two lines 
coming from it. This box usually produces either a yes or a no 
answer and shows both alternatives. 

The previous algorithm might be flow charted as follows: 

16 



Read a, b, c, 
d e f 

Tl-ae 

T2-db 

T3-Tl-T2 

etc. 

Yes 

1.5 COMMUNICATING WITH THE COMPUTER 

In one sense, the computer program was created when the flow 
chart was developed. It fits most of the criteria since it is broken 
down into simple operations in a proper sequence leading to a solu­
tion. However, the computer is not capable of understanding the 
program in this form. Therefore, the flow chart must be transcribed 
into a form which the computer will accept. 

Every computer has its own internal language. Usually this lan­
guage, while highly appropriate and meaningful to the given machine, 
is highly foreign to a human programmer. In fact, it is called 
machine language. 

To make communication easier for a human problem solver, 
languages have been developed which can be mechanically converted 
into machine language. These are called procedure oriented lan­
guages since they are ways in which well defined procedures (i.e., 

17 



flow charts, etc.) can be expressed in a form palatable to the com­
puter. 

The machine itself effects the conversion of the program to its 
internal language through a program called a compiler. The compiler 
is itself a program written for the particular machine, usually by 
the manufacturer. A particular program which is to be translated 
(or compiled) is provided to the compiler as data. This result (or 
output) of the compilation is a machine language equivalent of the 
input program. This operation might be depicted as follows: 

INPUT 
PROG. 

M.L. 
PROG. 

The input program is usually called the source program, and the 
resulting machine language is called the object program. 

This text discusses a particular procedure oriented language 
which is a subset of Burroughs Extended ALGOL.* This in turn 
is derived from the ALGOL 60 language. Actually the language 
presented (except for Input and Output, which are not defined in 
ALGOL 60) is essentially a subset of ALGOL 60. Thus, it is use­
ful to all students of the ALGOL language. 

The ALGOL language had its beginnings in an international desire 
to develop a general, precisely defined, algebraic language for use 
in communicating problems to a computer. In 1958, a meeting in 
Europe produced a first attempt at such a language called ALGOL 
58. ALGOL, by the way, is an acronym developed from the two 
words ALGOrithmic Language. This acronym calls attention to the 
important connection between algorithms and programming lan­
guages. 

In 1960 the group met for a second time to improve upon the 
language and to further solidify its logical foundations. The result­
ing language is called ALGOL 60. ** 

The outstanding features of the language developed by this group 
are its consistency and the precise definition of its syntax. The 
syntax is the body of rules which governs the construction of 
meaningful entities from the basic language elements, much as the 
syntax of English tells us how to form sentences, paragraphs, etc. 
from words. 

ALGOL bears a strong resemblance to algebraic notation. This, 
of course, makes it highly adaptable to use in scientific and engi­
neering problems. For example, the simple algebraic expression 
for calculating distance in terms of rate and time, 

*"Extended ALGOL Reference Manual for the Burroughs B 5000," 
5000-21012, Burroughs Corporation. 
**"Report on the Algorithmic Language ALGOL 60," Naur, P. et 
al., Communications of the Association for Computing Machinery, 
May, 1960. 

18 



d =rt 

where d stands for distance, r for rate and t for time, would appear 
in ALGOL as 

where d represents the variable distance, -stands for the operation 
of assignment, r and t are the variables rate and time and X says to 
multiply. 

That is, the AL00L "statement" says to take the value of r, 
multiply it by the value oft anc. assign it to the variable represented 
by d. 

A program written in ALGOL is easily read ar.d readily changed. 
Since the language is so much like algebraic notation, the initial 
writing of the program is itself quite simple and the basic mathe­
matics of his problem are constantly before the user. Further, 
programming in ALGOL requires very little intimate knowledge of 
the machine that processes the program. Quality results are thus 
attainable by the engineer or scientist without his becoming 
immersed in details that are totally foreign to his problem. 

1.6 SYNTAX 

To facilitate the discussion and the formal definition of the ALGOL 
language, a simple symbolic language was developed. This symbol­
ism provides a means of discussing a programming language, just 
as mathematics provides a notation for dealing with quantitative 
problems. This precise definition of the language is extremely 
important in implementing a compiler to translate the source lan­
guage into machine language, since the syntax expresses the rules 
which are to be embedded in the compiler. If a compiler is written 
for a poorly defined language, the true syntax of the language 
accepted by the compiler is available only to those who can read the 
compiler program. The syntax of a programming language is similar 
in function to the syntax of the English language, in that it specifies 
those rules which govern the writing of meaningful constructs in 
the language. 

The symbolic language which is used is called a metalanguage­
that is, a language which is used to define another language. It is 
based upon a very few symbols which are defined as follows: 

1. The Broken Brackets, ( ) . 
An element of the language which is not a basic symbol 
of the language will be called a metalinguistic variable and 
will appear between broken brackets. 

Example, (number) 
19 



In other words, when a number is defined or used in the 
definition of some other construct, it will appear as 
(number). 

2. The Colon-Colon-Equal Symbol, : :=. 
This symbol is read "is defined as" and is used to sepa­
rate a metalinguistic variable on the left from the expres­
sion appearing on the right which defines this variable. 

Example, (number) : : = 
This would be read, "a number is defined as." 

Often there are alternative definitions for a given variable. This 
will require an additional symbol. 

3. The Vertical Line, I . 
This symbol is read ••or" and is used to separate alterna­
tive definitions of a metalinguistic variable. For example, 
consider how the concept of color might be defined in this 
manner. 

Example, (color) : : = (bright) I (dull) 
This would be read, "color is defined as bright or dull." 

When a definition has been reduced to the basic elements of the 
language (i.e., the alphabet or a similar basic element), those basic 
elements will not appear enclosed in broken brackets. This is, in 
fact, how the basic elements are distinguished. These elements will 
not always be in the nature of single characters but may be groups 
of characters which are considered as a basic entity in themselves. 
For example, if red, yellow, and orange are basic elements in a 
language, the following rn.ight be written: 

(bright ) : : = red I yellow I orange 

One further set of symbols is required to completely define 
ALGOL in this manner. 

4. The Braces,! 1. 
The braces are used to define variables which cannot be 
expressed in terms of previously defined variables or 
groups of variables. The English language definition will 
appear between the braces. 

This method of definition is not restricted in its application to the 
discussion of programming languages. To develop this syntactical 
approach further, consider how a telephone number might be rigor­
ously defined.* To start with, the basic symbols used in the definition 
of a telephone number must be given. 

(basic symbol ) : : = ( letter ) I ( digit ) I ( hyphen) 

This is read, "a basic symbol is defined as a letter or a digit 

*Courtesy Glynn Jones, Burroughs Corporation. 

20 



or a hyphen." Since the definition itself contains metalinguistic 
variables, it is necessary to present further definitions: 

(letter) AIBICIDIEIFIGIHIIIJ IKILIMINIOIPIRISITIUI 
VIWIXIY' 

(digit)::= 0111213141516171819 
(hyphen) : : = -

Since the elements on the right side of the above metalinguistic 
formulas are not enclosed in broken brackets, it can be correctly 
assumed that they represent the basic elements from which a tele­
phone number is written. Notice that the definition of letter excludes 
the letters Q and Z. This is perfectly valid since the definition 
specifically shows this and because these letters do not enter into 
a telephone number. 

Once the basic elements have been specified, it is an easy task to 
define a telephone number in a syntactical manner. 

(telephone number) : : = ( area code) (exchange part) (hyphen) 
(subscriber number) 

A telephone number is defined as an area code followed by an 
exchange part, followed by the basic symbol hyphen and followed by 
the subscriber number. For readability, spaces are specifically 
allowed between the above components. Notice that the juxtaposition 
of metalinguistic variables in the definition serves to indicate that 
these variables appear side by side in the element defined. 

(area code ) : := (digit )(digit) (digit) I (empty) 
(empty) : : = t the null string of symbols} 

The area code may be composed of three consecutive digits or it 
may be empty, indicating that its use is not mandatory. 

(exchange part) : : = ( exchange) (frame number) 
(exchange) ::= (letter)(letter)I (digit)(digi9 

Notice that the exchange may be made up of two consecutive letters 
or two consecutive digits. 

( frame number) : : = (digit ) 
( subscriber ilumber) : : = (digit) (digit) (digit) (digit) 

The above syntactical definition serves to validate the structure of 
any telephone number. Consider for example, the telephone number 
303 623-3284. The area code which may consist of three digits is 
303. The exchange part is defined as the exchange followed by the 
frame number. Since the exchange may be made up of two digits 
and the frame number a single digit, 623 is structurally correct 
for the exchange part. Following the hyphen, which is a basic sym­
bol, is the subscriber number 3284 which satisfies the definition. 
Verify that the following telephone numbers satisfy the syntactical 
definition. 

21 



. 

CH4 - 6200 
313 OL5 - 1112 

789 - 1234 
113 221 - 4605 
412 PR4 - 8241 

MA3- 3284 

Verify that the following are not correctly formed telephone numbers: 

COL - 1643 
794' 2601 
GA 2-21 21 
ZE5 - 7163 

The purposes of learning the syntactical definition of ALGOL are 
many. It is an extremely useful tool in merely learning the language 
discussed in this text. Furthermore,aknowledgeofsyntax will allow 
the programmer to extend his knowledge of ALGOL, by referring 
directly to reference manuals on the language, the majority of which 
are written using this notation. Finally, it facilitates the debugging 
or error correction of a program since all possible constructs may 
be checked, using the appropriate syntactical defnition. It would be 
impossible to define by example all constructs allowed in ALGOL. 

22 



EXERCISES 

l. Write an algorithm for finding, from a group of five numbers, 
the number with the smallest absolute value 

2. Write an algorithm for algebraically sorting five numbers into 
ascending order. 

3. List the steps involved in solving the quadratic equation, 
using the quadratic formula: Yt>2 -b + -4ac x = -

2a 

4. Develop a flow chart for the problem expressed in exercise l 
above. 

5. Construct a flow chart for the problem given in exercise 2 
above. 

6. Flow chart the algorithm to solve a quadratic equation. 

7. Develop syntactical formulas for writing a date in forms, such 
as: 

Nov. 18, 1957 
28 Sept. 1956 
22 Dec 24 
June 5, 1904 
26 January 1899 
Sat., Jun 13, 1964 

23 



CHAPTER 2 - BASIC LANGUAGE ELEMENTS 

2.1 CHARACTER SET 

ALGOL, like any language, is written in terms of letters, numerals 
and special symbols. The number of these characters that can be 
used with present-day computing equipment is limited by mechanical 
practicalities. One result of this is that lower-case letters are 
;rarely used. Another is that the number of available special 
symbols is not large. 

The B 5500 utilizes a set of 64 characters, which includes: 

1. The 26 letters of the English alphabet, in upper case, 
2. The 10 Arabic numerals (digits), 
3. The blank (a single space), and 
4. The following special symbols: 

[ • < ; : > , ] ... +- x I<~ = # ~ >$ # @ 3 * & "? 

There are two important concepts here that are unusual to the 
layman. One is the status of the blank as a character. While one or 
more blanks are often used in programs merely to improve read­
ability, there are a few places where blanks are essential to mean­
ing. This will be discussed further in Section 2.3. The other concept 
is the strict limitation to just this set of characters, with no vari­
ations such as superscripts or subscripts. 

Two of the special symbols, given above, are used for very 
restricted purposes. The quote mark is used only in conjunction 
with strings, which are covered in Section 7.2. The question mark 
may not be used at all in writing ALGOL programs. It is normally 
used only by the B 5500 system to represent an illegal hole com­
bination on a punched card. 

24 



2.2 BASIC SYMBOLS 

It is essential to classify the basic symbols from which ALGOL 
programs are formed. Without this, precision, clarity and com­
pleteness are not possible in discussing and defining many aspects 
of the language. There are three kinds of basic symbols. These 
are letters, digits and delimiters. Expressed as a formula, this 
becomes: 

(basic symbol) : : = ( letter) I (digit >I ( delimiter) 

The first two forms are defined as follows: 

(letter) ::= AIBJCIDIEIFIGIHII ~IKILIMINIOIPIQIRISITIUI 
VIWIXIYI z I 

(digi~ ::= 0111213141516171819 

It is helpful that these definitions correspond, for the most pan, 
with those normally associated with .. letter" and "digit." Note that 
many other .. letters," such as lower-case letters, the Greek alpha­
bet, etc., are not included as letters in B 5500 ALGOL. 

It is necessary to discuss the third form of basic symbol, the 
delimiter, somewhat formally. The role of the delimiters in the 
language is classified in the remainder of this section. The specific 
meaning of each one will be presented in subsequent sections of the 
text. A full appreciation for this classification depends upon an 
overall acquaintance with ALGOL. 

The special symbols of the B 5500 character set are used as 
delimiters, but there are many delimiters that cannot be represented 
by special symbols. In practice this requires the adoption of a con­
cept known as .. reserved words." The latter are groupings of 
letters, such as STEP, GO, FOR, OUT, IF, whichhavefixed 
meaning in the language. It is useful to chink of each of them as an 
additional special symbol. 

However, even if each of them could be represented by a special 
symbol, such would not be desirable because their presence lends 
to ALGOL much of the readability of English. 
If reserved words could be written in italics or bold-face type, 

they would not have to be reserved. Since letters come in only one 
style, it is essential to avoid the use of reserved words for any 
purpose not defined in the language. A complete list of the reserved 
words of Extended ALGOL is given in Appendix A. 

A broad definition of delimiters might assen that they constitute 
the permanent vocabulary of ALGOL. That is, they specify definite 
processes or meanings that are to be applied to adjacent entities. 
For example, the special symbol x specifies that the quantities 
given on either side of it are to be multiplied together. The paren­
theses are used in several ways to cause a group of entities to 
be treated as one entity, as in 2 X(A X B +l). Similarly, the delim­
iters BEGIN and END (reserved words) are used to enclose several 
constructs so that they can be treated as a single entity. 

Spelling out the exact meaning of each of the ALGOL delimiters 
is essentially the purpose of this text. For the present it is 

25 



sufficient to complete our defininition of basic symbol with only 
cursory explanations of the delimiter functions. 

(delimiter) : : = (arithmetic operator) I (relational operator) I 
(logical operator) I (sequential operator)! 
(separator) I (bracket) I (declarator) 

This merely says there are seven kinds of delimiters. Happily, 
some of these are defined so as to coincide with normal technical 
usage. 

(arithmetic operator) : := +I -1 x I I I* 
These are used in the manner of algebraic notation with the 

addition of the * operator to denote exponentiation. 

(relational operator) : : = s: I< I =I :<!:I> I i 

These are used to assert relationships between arithmetic 
quantities. These assertions constitute truth values that are needed 
in making yes/no decision. 

(logical operator) : : = ORI AND 

These are used in forming combinations of truth values, the final 
truth or falsity of which is usable for decision making. 

(sequential operator) : := GO jToj IF jTHENI ELSE I FOR! DOI 
READI WRITE !PAGE 

These specify courses of action to be taken when used in language 
constructs that are unfamiliar at this point. 

(separator) : : = .1.1 @I: I; I ..... I (single space\ ISTEPj UNTILj 
COMMENT 

(single space)::= la single unit of blank horizontal spacing1 

These play a role in ALGOL similar to that of punctuation and 
spacing in English. 

(bracket\ : :: [I <I >I JI "IBEGIN I END 

As stated above, these are used to enclose combinations of 
entities to give them special meaning or treatment. 

(declaratoI') : == INTEGER IREAL !ARRAY I LABEL I LIST I 
FORMATl'IN 1outl FILEI MONITOR! 
DUMP! PROCEDURE 

These delimiters essentially inform the reader (or the compiler) 
that certain entities are hereby defined and/or treated as having 
certain specific properties. 

26 



Much more detail will be given on all of these delimiters as their 
uses are encountered throughout the text. 

2.3 IDENTIFIERS 

A powerful feature of ALGOL is the possibility of using problem­
oriented nomenclature in writing computer programs. This permits 
programs to be largely self-documenting and highly readable. 

With little restriction, names may be devised to represent many 
different entities. For instance, variables are normally given names 
which, in themselves, describe the arithmetic quantities associated 
with them. All such names are formally called identifiers. 

The exact usage of identifiers in various ALGOL constructs will 
be discussed in detail as these constructs are encountered. However, 
in every case, the metalinguistic variable identifier will be used to 
mean the same thing. The rules for forming an identifier are 
expressed by the formula, 

(identifier) : : = ( letter) I (identifier) ( letter) I (identifier\ (digit) 

This specifies that an identifier is composed of any combination 
of letters and digits, such that the leftmost character is a letter. 

Practical considerations in the B 5500 computer impose a minor 
restriction that the total number of characters in an identifier may 
not exceed 63. One further restriction is that reserved words (see 
Appendix A) cannot be freely used as identifiers. 

Note that the above definition specifies only letters and digits as 
legal characters in an identifier. Thus, blanks and special symbols 
may not occur in identifiers. This makes it possible to distinguish 
identifiers from other ALGOL constructs. For example, in 
A + B2-CG, the three identifiers A, 82 and CG are readily recog­
nized. Similarly, A STEP 2 UNTIL ZIT is easily found to contain 
two identifiers, A and ZIT, two reserved words, STEP and UNTIL, 
and one unsigned integer, 2 (to be defined in Section 2. 4). 

In the latter example, note that removal of the blanks (used as 
separators) produces an entity, ASTEP2UNTILZIT, which can only 
be regarded as a single identifier. This is a direct consequence of 
the fact that reserved words are formed from the same kind of 
characters that are used in identifiers. In fact, the only mandatory 
occurrences of blanks in B 5500 Extended ALGOL are before 
reserved words which follow other reserved words and identifiers, 
and after reserved words which precede either identifiers or 
unsigned numbers. Three of these requirements are illustrated in 
A STEP 2UNTIL ZIT, where 2UNTIL will not be mistaken for an 
identifier, whereas ASTEP, STEP2 or UNTILZIT would lose their 
intended meanings. 

27 



The reader may verify the classification of the examples given in 
the following lists: 

Legal Identifiers 

A 
I 
BS 
YSQUARE 
TOO BAD 
LONG TONS 
LAZY8 
PRESSURE 
XOVERZ 
02P471GL 
CURRENT 
SPEED 
ALTITUDE 

2.4 NUMBERS 

Illegal Identifiers 

BEGIN 
1776 
2BAD 
$ 
X/Z 
y SQ 
W-2FORM 
00 
(CAPTION) 
SEC(X) 
RATE/HR 
NO. 

Numerical values which are built into an ALGOL program are 
called numbers. They are sometimes called constants because 
they are not altered during execution of a program. 

A number in ALGOL may not be written in all of the forms of 
number in common technical usage. Further, there are character 
set limitations which interfere with normal ways of writing powers 
of 10. The meaning of number must be carefully spelled out. 

The rules for correctly forming a number are completely given 
in the following series of syntactical definitions: 

(number) : : =. (unsigned number) I + (unsigned number) I 
-(unsigned number) 

(Unsigned number) : := <decimal number) I (exponent part) I 
(decimal number) (exponent part ) 

(decimal number) : := (unsigned integer) I (decimal fraction) I 
(unsigned integer) (decimal fraction) 

(exponent part) : == @(integer) 

~decimal fraction) : : = • (unsigned integer) 

28 



(integer) : :::: (unsigned integer) I +(unsigned integer) I 
-(unsigned integer) 

(unsigned integer) : ::: \digit) I (unsigned integer) (digit) 

The first formula states that a number may or may not carry a 
sign. An unsigned number is understood to be positive. Later for­
mulas indicate that a number is a base 10 number, with or without 
an exponent part. It may also consist of the exponent part alone, 
indicating that the number is a power of ten. (Thus, 1.0@6, 1@6, 
+10@5, @6 all are possible ways of writing 1000000.) 

The reader will profit from a verification of the following examples 
of each of the meta-variables defined above. A series of illegal 
numbers is also given. 

Unsigned integers Decimal fractions Decimal numbers 

5 .5 .69 
69 .69 .546 

.013 3.98 

Integers ExEonent Earts Unsigned numbers 

1776 @8 99.44 
-62256 @-06 @-11 
548 @+54 1354.543@48 

.1964@4 

Numbers Illegal numbers 

0 5000. 
+549755813887 1,505,278.00 

1.75@-46 @63 
-4.314@68 5 @8 
-@2 1@2.5 

.375 l.667E-Ol 

The illegal number examples, given above, emphasize the fact 
that the only characters that are used to form numbers are digits 
and the basic symbols . @ + and - . Note that no provision is made 
for spaces to occur inside numbers. Also, note that a decimal point 
as the final character of a number is not allowed. 

For purposes which will later become clear, numbers are classi­
fied into two types, INTEGER and REAL. All integers are of type 
INTEGER. All other numbers are of type REAL. 

The B 5500 hardware allows a maximum absolute value for 
integers of 549755813887. Non-zero REAL numbers must lie in the 
approximate (absolute value) range 1. 75@-46 to 4.314@68. 

29 



2.5 VARIABLES 

A variable in ALGOL has a role similar to that of a variable in 
algebra. It is a symbolic representation of an arithmetic quantity. 
A variable may be thought of as the name (temporarily) attached 
to a specific storage location. The arithmetic value stored there 
may be altered by the program, and it may be used, without 
destruction or erasure, for a variety of computational purposes. 

The syntactical definition 

(variable) : : = (simple variable) I (subscripted variable) 

indicates that there are two basic kinds of variables. 'However, the 
definition and discussion of subscripted variables will be post­
poned until Chapter 6. 

The rule for forming a simple variable is given by: 

(simple variable) : : = (identifier) 

Note that this does not say that all identifiers are simple variables. 
Rather, it means that simple variables are formed by the rules 
already given in Section 2.3 for identifiers. 

The information that a given identifier is a simple variable in a 
given program is provided by a type declaration which precedes any 
use of this identifier in the program. (This and other declarations 
are discussed further in Section 3.2.) The type declaration also 
specifies whether the kinds of arithmetic values represented by a 
simple . variable are inherently integers or not. For reasons of 
precision and efficiency, it is usually desirable, in digital com­
puting, to specify those variables whose values must always be 
integers. (If the integral value could possibly become greater than 
549755812887, this practice cannot be followed.) Suen variables are 
declared to be of type INTEGER. Variables whose values are not 
necessarily integers are declared to be of type REAL. 

The rules for writing a type declaration are given by: 

(type declaration) : := (type)(type list) 
(type)::: REALI.INTEGER 
( type list) : : = ( simple variable) I (type list), (simple variable) 

Thus, type declarations are permitted to be written either as 

INTEGER 
REAL 
REAL 
INTEGER 
REAL 

or as 
INTEGER 
REAL 

18 
w 
A 
K 
MAX 

18,K 
A, W, MAX 



Either group of declarations means the same thing. Namely, 18 
and K are to be treated as representing integral arithmetic values, 
and A, W and MAX are understood to represent values which (may, 
or) may not be integers. 

The arithmetic values thatcanbetakenonby variables are subject 
to the same limitations given\for numbers in Section 2.4. 

2.6 COMMON FUNCTIONS 

Because of their frequent occurrence in scientific programming, 
a number of common mathematical functions are furnished auto­
matically by the ALGOL compiler. These are listed in the table 
below. The last three listed are not always regarded as mathematical 
functions but are best represented as such in an algorithmic lan­
guage. The nontechnical student may wish to ignore all but the last 
three common functions. 

These functions are furnished in the form of subprograms that 
operate on t.he argument to produce the desired result. The square 
root is computed by an iterative process. The trigometric, log­
arithmic and exponential functions are computed from polynomial 
approximations. 

The argument of each of these functions may be an arithmetic 
expression, whose formal definition is given in Section 2. 7. For 
brevity, the symbol AE will stand for arithmetic expression in the 
table to follow. 

ALGOL 

Representation 

SQRT (AE) 
SIN (AE) 
COS (AE) 
ARCTAN (AE) 

LN (AE) 

EXP (AE) 

ABS (AE) 
SIGN (AE) 

ENTIER (AE) 

COMMON FUNCTIONS 

Description 

Produces the square root of the value of AE 
Produces the sine of the value of AE 
Produces the cosine of the value of AE 
Produces the principal value of the 

arctangent of the value of AE 
Produces the natural logarithm of 

the value of AE 
Produces the exponential function of the value 

of AE, i.e., eAE. 
Produces the absolute value of AE 
Produces one of three values depending on the 

value of AE t+l for AE>o, O for AE =O 
and -1 for AE<O) 

Produces the value which is the largest integer 
not greater than the value of AE 

31 



The ENTIER function is easily misunderstood to perform simple 
trllll.cation. The following examples show that this is not the case. 

ENTIER (2.6) = 2; ENTIER (3.1) = 3; 
ENTIER (-0.01) = -1; ENTIER (-3.4) = -4; 
ENTIER (-1.8) = -2. 

Since the common (base 10) logarithm is not one of the functions 
built into the ALGOL compiler, it is useful to be aware of the 
relationship LOG10 (X) = LOG .i.O (e) >. LN (X) 
where LOG10 (e) has an approximate value of 0.4342944819. 

There is a type associated with all of the above functions except 
ABS, which has the type of its argument. The rest of the functions 
are considered to be of type REAL except SIGN and ENTIER which 
are of type INTEGER. 

For SIN, COS and ARCT AN, the associated angles are in units of 
radians. Thus the ARCT AN function can have values from +TT /2 to 
-n/2. Recall that the number of degrees per radian is 180/n or, 
roughly, 57.295780. 

2. 7 ARITHMETIC EXPRESSIONS 

At this point, enough basic language elements have been defined to 
permit introduction of the primary active element of the language. 
This is the arithmetic expression. An arithmetic expression provides 
the rule for computing a single numerical result. Basically, it is 
composed of arithmetic primaries and operators. 

The value of an arithmetic expression is obtained by performing 
the indicated arithmetic operations upon the actual numerical values 
of the primaries. The evaluation of an arithmetic expression is 
closely analogous to the evaluation of algebraic expressions. The 
exact rules by which the computer performs such an evaluation 
are spelled out later in this section. 

A primary is defined as follows: 

(primary) : : = \ unsigned number'> I (variable\ I 
(function designator)J((arithmetic expression)) 

Here we find that two of the possible forms for a primary involve 
metalinguistic variables not yet defined. One is an arithmetic 
expression enclosed in parentheses. Another is the function desig­
nator which, for the present, may be regarded merely as the formal 

32 



name given to the common functions of Section 2.6. Later, in Chap­
ter 9, an expanded definition of function designator will be given. 

(function designator) : := (common function identifier') 
((arithmetic expression) ) 

(common function identifien ::= SQRTjSINjcosjARCTANjLNj 
EXPI ABS! SIGN I ENTIER 

Note that the argument of the common function identifier is an 
arithmetic expression enclosed in parentheses. 

We now see that we must know how an arithmetic expression is 
defined before we can write a primary which is other than an 
unsigned number or a variable. Yet, as will be seen, an arithmetic 
expression cannot be written without using a primary. Evidently the 
simplest arithmetic expressions must involve primaries which are 
either variables or unsigned numbers. Indeed, we shall see that the 
following are legal, if simple, forms of arithmetic expressions. 

MEAN 
22 
SIN (ALFA) 

LN (14.92) 
(X) 
NETMANHOURSWORKEDPERYEAR 

Two kinds of arithmetic operators are explicitly defined. 

(adding operator) : := +I -
(multiplying operator) : : = XI/ 

These have the normal mathematical meanings: addition, sub­
traction, multiplication and di vision. Another mathematical operator, 
*, used for exponentiation, is defined in a table below. 

We are now adequately prepared for the definition of an arithmetic 
expression. For completeness, the definition of a primary is 
repeated here. 

(arithmetic expression) : : = (term) I (adding operator) (term) I 
(arithmetic expression ') 
(adding operator'> (term) 

(term) : == (factor) I (term) (multiplying operator) ( factor') 

(facto~ : : = (primary) I (factor)* (primary) 

vrimary > : : = (unsigned number> I <variable) I (function designator> I 
((arithmetic expression)) 

All of the rules for forming legitimate arithmetic expressions are 
concisely given here. Since arithmetic expressions are written so 
nearly like algebraic notation, the chief use the programmer might 
make of the above rules is to avoid writing illegal arithmetic 
expressions. For example, implied multiplication is not allowed, 

33 



nor can any other symbol, but X, be used to indicate multiplication. 
Thus, A(B+C) and A.(B+C) are illegal ways of writing Ax(B-+C). 
Likewise, the syntax tells us that two arithmetic operators may not 
occur in sequence, such as Wx-4 (which can be written legally as 
WX(-4) or -Wx4 or -4xW). 

The correct classification of examples in the following lists should 
be verified by the student. 

Legal Examples 

Primaries: 

5.678 
SIGMA 
Yl 
(X-Y) 
COS(T) 
ABS(l-X/Y) 
((GEE-+H.AW)/PLOU) 
(AX64*2+B) 

Factors: 

5.678 
CHARLIE 
2*(X+Y) 
Y*3 
Q*V*2 
(l 4+3.142) 

Terms: 

5.678 
MABLE 
KXF2 
SUM/N 
4XAX(l/C) 
(A+B)/(C-D) 
2*(X +Y) 

Arithmetic Expressions: 

COS {A+B) +C 
Y*3 
+8 
B*2-4XAXC 
(-B+SQRT(D))/(A +A) 
-T*3 
5.678 
THETA 

Illegal Examples 

+7 
SIN X 
A/B 
LOG((M-1)/10) 
-Z 
+(X-Y) 

-9.81 
+DCB 
8-A 
X*-3 
10-16 

-13.6 
-(A -+B) 
A+B 
L*-A 
*ENTIER (60) 
RATE. DAYS 
4{AC) 

34 



There will be instances where the type of an arithmetic expres­
sion affects the results obtained in particular ALGOL constructs. 
The type may be ascertained by (perhaps repeated) use of the 
following table: 

Operand Operand Value Resulting from the 012erator 
On Left On Right ~ _j_ * 

Integer Integer Integer Real Note l 
Integer Real Real Real Real 
Real Integer Real Real Real 
Real Real Real Real Real 

Note 1: If the right operand is negative, Real, otherwise Integer. 

The exact operation corresponding to the exponentiation operator, 
*, depends upon the types and values of the operands involved. These 
evaluation methods are specified for the factor Y*Z in the following 
table: 

If Z is Integer and If Z is Real and 
z>o Z=O Z<O Z>O :L=O Z<O 

If Y>O Meth.I 1 Meth.2 Meth.3 1 Meth.3 
u v<o Meth.I I Meth.2 Note 1 1 Note 1 

If Y=O 0 Note 1 Note I 0 Note 1 Note 1 

Method 1: Y*Z = YXYXY ..• XY(Z times) 
Method 2: Y*Z = the reciprocal of Y-xY ... -xY (Z times) 
Method 3: Y*Z = EXP (ZXLN(Y)) 
Note 1: Value of expression is not defined 

Present-day means of communicating with computers (e.g., 
punched cards) require the linearized mathematical notation repre­
sented by ALGOL arithmetic expressions. However, this causes 
ambiguities in expressions such as A+ 13/C or X*2+B since each has 
two possible mathematical interpretations: 

A +!! or A+B and 
c c 

2+8 x or 

To circumvent these ambiguities, it is necessary to assign a prece­
dence to the arithmetic operators. Each operator has an order of 
precedence associated with it as follows: 

First: * 
Second: x ,/ 
Third: +,-

35 



When operators have the same order of precedence, the sequence 
of operation is determined by the order of their appearance, from 
left to right. Parentheses can be used in normal mathematical 
fashion to override the usual order of precedence. 

To help illustrate the importance of operator precedence as well 
as to provide some final concrete examples, the following table is 
offered: 

Mathematical Equivalent Nonequivalent 
Exeression ALGOL Exeression ALGOL Exeression 

A X B AXB AB 

A+~ 
2 

A+ 8/2 

x + l (X + l)/Y X + l/Y 
-y-

D +E2 (D+E*2)/(2x A) (D + E * 2)/2 A 
2A 

4(X + Y)3 4 X (X + Y)*3 4XX +Y * 3 

M _N +sxio-6 (M - N)/(M + N)* P + 5@-6 
(M + N) P 

36 



EXERCISES 

Write ALGOL arithmetic expressions corresponding to each of the follow­
ing mathematical expressions! 

1. x+ y3 

3. xl.667 

5. A +B -c-

7. A +B 
C +D 

9. A +B 
--D 
C+'F"+G 

11. (~~ q-1 

13. (x3 +x3 
1 2 

+X3) 
3 

15. 2Rsin ~ 
2 

17. -cos4x 
4 

19. _A __ + 1964. 
B•C B c 

2. (x + y)3 

4. A + ~ - 1570. 795· 10-3 

B 
6. A+ C + D 

8. A +B + x2 
C +D 

2 3 lo 1 +.x+!.+.! 
• 21 31 

12. a· b· c - 2 d ( x)-2 

14. 2·P·R·sin(TT/P) 

18. x 

2 1+-x ____ _ 

3 + (2x)2 

5 + (3x)2 

7 + (4x)2 

20• (start time)+ (distance traveled) 
(average speed) 

37 



CHAPTER 3 - STRUCTURE OF ALGOL PROGRAMS 

3.1 A PROGRAM 

In Chapter 2 the basic elements of the ALGOL language were 
developed. The purpose of this chapter is to utilize these basic 
elements as building blocks in the development of the main objec­
tive, a series of instructions to the computer which constitutes a 
program. Recall from Chapter 1 that the actual computer program 
is a representation of the steps required to solve a particular prob­
lem in a highly formal manner. Once the program has been stored 
in the memory of the computer its execution is entirely dependent 
upon the internally stored instructions. 

Just as it was necessary to be very precise in defining the basic 
language elements in the previous chapter it will be necessary to 
formalize the definition of a program beyond that which we have 
been using. In fact, all definitions will be developed in the same 
formal manner. 

For the purpose of discussing the structure of a program we will 
introduce a symbolic notation for the elements that make up the 
program. These will not be the basic elements which have already 
been considered but rather constructs made up of these basic 
elements. A construct called a declaration will be noted by a D 
and one called a statement by an S. Both of these constructs will 
be discussed in full in Section 3.2. 

A program might be defined as a bracket symbol BEGIN followed 
by declarations and then statements with the end of the program 
indicated by the bracket symbol END and a period which has been 
defined as a separator. Symbolically a more concise definition can 
be written as follows: 

BEGIN D; D; S; S; S END. 

38 



A more general form would be: 

BEGIN D; D; ••• D; S; S; ... S; S END. 

It is important to note the use of the separator semicolon in the 
above symbolic examples.' The semicolon is used to separate 
declarations from declarations, declarations from statements and 
statements from statements. A semicolon is not needed immediately 
preceding an END, however. 

A formal definition of a program is given at the end of Section 3.3. 
At this point it is probably in order to digress briefly and discuss 

the format which one might follow in writing a program and how the 
program, once written, is communicated to the computer. 

An ALGOL program is introduced into the computer as data for the 
compiler which subsequently produces an equivalent program in 
machine language. Normally this ALGOL source program is read 
into the computer from punched cards. These punched cards are 
prepared from the program as written by the programmer in long­
hand. Each column of the punched card represents one character as 
written by the programmer. 

To facilitate keypunching, as well as to provide the programmer 
with a suggested format to follow in writing his program, printed 
programming forms are often used. An example of such a form 
appears in the following figure: 

... -.--____ ....__. 
r- 1....- rn 

'. •,::![• •i• !I.'~ •••••••••••••••••••••••• ·-· •.•••• ;. •·••.••1•·····:· ·············•::!!:·:~1· •1•!• ••• 
TI : ; '·T ]! 

i:y , , . n 
, ! _LI•' 

J. • 

_L ,1: 

' I' 

I ....................... , ........... ..._ ... 

39 



A convention, which is often followed, is to begin only declarations 
and labels in column one; start only the bracket symbols BEGIN and 
END in column eleven; and begin all other constructs in column six­
teen. The compiler will only recognize the first 72 columns. This 
leaves columns 73 to 80 for program identification and a card 
sequence number. The following example shows this format: 

1 11 16 73 

BEGIN f)RBITOOl 
REAL A, W, MAX; PRBIT002 
~NTEGER IB, K; f) RBIT003 

S· f) RBIT004 ' S· f) RBIT005 ' s f) RBIT006 
END f) RBIT007 

The programmer writes his program in ALGOL on a programming 
form such as the above. This form is transcribed, column by column, 
into punched cards. There will be a card created for each line 
written on the form. This deck of cards, the source deck, is then 
compiled and the program executed. As a by-product of compilation 
a listing of the source cards is produced. This usually constitutes 
the programmer's working document since it is always up to date. 
Adherence to a readable card format such as that used in the above 
example will produce readable listings, and the program deck is 
readily modified without any loss of readability. 

It might be noted at this point that the compiler does not consider 
the information provided to it as a series of disjoint cards. Rather it 
treats the information as a continuous string of characters starting 
with the first column of a card, ending with column 72, and followed 
immediately by column one of the next card. 

3.2 STATEMENTS AND DECLARATIONS 

Statements and declarations are the building blocks from which an 
ALGOL program is constructed. They are, in a sense, analogous to 
sentences in the English language. 

Statements are the active elements of an ALGOL program. They 
actually indicate some type of operation to be performed-add two 
numbers together, read in data, print a line, etc. Statements are 
normally executed sequentially, in the order in which they were 
written. This sequential flow may be altered, however, by a state­
ment which indicates its successor to be other than the one 
immediately subsequent to it. 

(statement) : := fonconditional statement )I 
(conditional statement) I<. for statement) 

40 



The unconditional statement is similar to the imperative sentence 
in the English language in that it specifically states an operation to 
be performed. The conditional statement provides for the choice of 
alternative courses of action depending upon the answer to a par­
ticular question. The for statement allows for the repetition of a 
given process in a specifically controlled manner. The latter two 
types of statements will be discussed in Chapters 4 and 5. 

Declarations differ from statements in that they are passive 
elements of the language. They are not really executed as are 
statements. The declaration serves to provide the ALGOL compiler 
with information about identifiers in the program. For example, a 
declaration is required to specify that the identifier for a particu­
lar variable is always to represent an integer. 

(declaration) : := (type declaration) I (array declaration) I 
(label declaration) I (file declaration\ I 
(format declaration) I (list declaration) I 
(diagnostic declaration) I (procedure declaration) 

These eight declarations provide the compiler with all of the 
information which it requires about a given program. The type 
declaration has already been encountered in Section 2.5. The other 
declarations will be discussed as the need arises. 

A word of caution is in order at this point. All identifiers which a 
programmer chooses must be doclared by one of the above declara­
tions. This is, in fact, the way an explicit meaning is attached to 
a particular identifier. Thus, it is natural to group declarations 
above statements in a program according to the rules discussed in 
the following section. 

Con sider the following example of REAL and INTEGER declarations 
written in the previously discussed format. 

1 11 16 73 

BEGIN 
REAL X, ZBAR, Tl, K; 
INTEGER I, Q, KMAXl; 

These declarations say to consider the variables represented by the 
identifiers X, K, ZBAR, and Tl as REAL variables and those repre­
sented by I, Q, and KMAXl as INTEGER variables. 

3.3 THE BLOCK AND COMPOUND STATEMENTS 

It has been shown that a statement has three possible forms. One 
of these is the unconditional statement defined as follows: 

41 



(unconditional statement) : : = (basic statement) I 
(.compound statement) I \block) 

The first of these, the basic statement, is a construct which 
stands alone in the program structure. Its many forms are speci­
fied by the following definitions: 

(basic statement ) ::= (unlabelled basic statement) I 
(label): ( basic statement ) 

(unlabelled basic statement) : : = (assignment statement) I 
(go to statement) I 
\dummy statement) I 
(read statement)\ 
(write statement) I 
(procedure statement) 

For example, in ALGOL the process of adding the values of two 
variables A and B and assigning the sum to the variable X would be 
written as follows: 

This is an example of an assignment statement. The assignment 
statement as well as the other basic statements will be discussed 
in detail as the need arises. 

A label provides a way of uniquely identifying a particular state­
ment. Labels and their use are discussed in Section 3.5. 

The other two forms of the unconditional statement, the compound 
statement and the block, require formal definition and discussion. 

The student may not fully appreciate all aspects of the concepts 
developed in the remainder of this section. However, due to the 
importance of these concepts it will be necessary to continually 
review them as further material is developed. 

(compound statement) : : = (unlabelled compound statement) I 
(label): (compound statement) 

<'unlabelled compound statement) · ·= BEGIN (compound tail) 

(compound tail) : : = ~tatement) ENDj (statement); 
(compound tail) 

The above syntactical definitions state that an unlabelled com­
pound statement is composed of the bracket symbol BEGIN, fol­
lowed by one or more statements separated by semicolons and ter­
minated by END which is also a bracket symbol. Symbolically it 
could be represented by the following example: 

BEGIN S; S; S; S END 
It is understood, of course, that any number of statements may 

appear between the bracket symbols. Note that no semicolon need 
appear immediately preceding the END. 

42 



The purpose of the compound statement is to group together 
several basic statements which are to be considered, in some sense, 
as a logical entity. It would be used, for example, in a situation 
where three assignment statements are to be executed if the answer 
to a given question is true and all three bypassed if the answer is 
false. In this case, the three assignment statements are considered 
as a logical group. Such a compound statement might be written as 
shown below: 

BEGIN 
X ,_A+ B; 
Y .... c; 
z .... x - y 

END 

EX. 
EX. 
EX. 
IEX. 
EX. 

1 
2 
3 
4 
5 

The purpose of the compound statement will be fully appreciated 
only when the other types of statements, the conditional statement 
and the for statements have been discussed. 

A block differs from a compound statement in the important 
respect that it contains not only statements but also declarations 
between the bracket symbols. These declarations must appear 
immediately following the BEGIN and preceding any statements. The 
formal definition of a block is: 

(block) : : = \unlabelled block) I (label) : (block) 

(unlabelled block) : : = (block head) ; (compound tail) 

That is, an unlabelled block is defined as a block head followed by 
a semicolon and a compound tail. 

Since we have already discussed the compound tail we need only 
define a block head. 

(block head) : := BEGIN (declaration) I (block head); ( declaration) 

Symbolically we can represent a block which might contain two 
declarations and four statements. 

BEGIN D; D; S; S; S; S END 

The block head is represented by BEGIN D; D and the compound 
tail by S; S; S; S END with the two parts separated by a semi­
colon as defined. Consider an example of a hlock written in ALGOL. 
This example illustrates the structure of a block but has no real­
istic meaning. 

BEGIN DECL 01 
jREAL X, Y; DECL 02 
~NTEGER J, K; DECL 03 

X ,_ Y; DECL 04 
Q ,_J +K DECL 05 

END DECL 06 
43 



One purpose of a block is to introduce a new level of nomenclature. 
An identifier has the same meaning inside a block as it has outside 
as long as it is not redeclared within the block head. Q in the above 
example is such an identifier. Thus Q is said to be global to this 
block. If it is declared in the block head of some block, the meaning 
within that block may be completely different from its meaning out­
side the block. The new meaning holds while the block is executed 
and then reverts back to the meaning in effect outside the block. 
Identifiers are said to be local to the block in which they are 
declared. The local nature of identifiers used as labels is discussed 
further in Section 3.5. 

To fully understand the above paragraph we must go back to the 
definition of a statement as a block. This means that syntactically a 
block may occur as a statement within a program. In other words, a 
block may be nested within another block or a compound statement 
and logically considered as a statement. For example, a program 
might be diagrammed as follows: 

BEGIN D; D; S; S; S END. 

However, when the program is diagrammed more completely, one 
or more of the statements may be a block. 

BEGIN D; D; S; BEGIN D; S; S END; S END. 

The underlined portion is, therefore, a block nested within a 
program. We will reserve a discussion of the full power provided 
by the block concept until Chapter 9. 

The compound statement can occur in much the same way. If a 
program were diagrammed in detail, for example, one or more of 
the statements IJ\ight be compound. 

BEGIN D; D; S; BEGIN S; S; S END; S END. 

The underlined portion represents the compound statement. The 
compound statement differs from the block in that it contains no 
declarations and therefore no change in nomenclature. 

A formal definition of a program can now be given. 

(program) : : =(unlabelled block). !(unlabelled compound statement). 

Note the explicit appearance of a period as the final delimiter of a 
program. By far, the majority of programs are written as unlabelled 
blocks. 

44 



3.4 ASSIGNMENT STATEMENTS 

The assignment statement is the first unlabelled basic statement 
which will be discussed in detail. It is the fundamental statement in 
the language and also the most straightforward to understand and 
use. 

Basically the assignment statement causes the value of an expres­
sion to be assigned to a variable appearing to the left of a~. The~ 
is called the replacement operator and means that the value of the 
expression to the right of the .... is assigned to the variable appear-
ing on the left of the ..... The .... indicates actual replacement rather 
than equality and so the previous value of the variable is lost. 

Values assigned to variables are "stored" until one of the follow­
ing occurs. 

1. A new value is provided by an assignment statement. 
2. A new value is provided by a read statement (to be 

covered in Section 3. 7). 
3. The block in which the variable is declared is eXited. 

Since most programs depend upon evaluating expressions and 
assigning the resultant value to other variables, the assignment 
statement is the work horse of the language. Consider its formal 
definition. 

(assignment statement) : := (left part list)(arithmeticexpression) 
(left part list) : : = (left part) I (left part list) (left part) 
(left part) : : = (variable) .... 

Since the arithmetic expression was covered in Section 2. 7, an 
understanding of the assignment statement requires only a discussion 
of the idea of a left part list and a left part. A left part is defined as 
a variable followed by the replacement operator. 

A .... 

LAMDA .... 

XI .... 

The above are examples of the left part list. The left part list may 
contain left parts as indicated in the following examples: 

A~AMDA .... XI .... 

The left part list allows the value of an expression to be assigned 
to several variables in the same statement. A restriction on this 
type of assignment statement is that all variables appearing in the 
left part list must be of the same type (real or integer). 

The execution of an assignment statement may be considered as 
two steps: 

45 



1. The expression on the right of the +- is evaluated. 
2. The value of the expression is assigned to all of the variables 

in the left part list. 

There can be a difference between the type of the arithmetic 
expression and the type of the variables in the left part list. Two 
different cases arise: 

1. If the left part list is of type REAL, and if the value of the 
arithmetic expression is of the type INTEGER, the value 
is assigned unchanged. 

2. If the left part list is of type INTEGER, and if the value of the 
the arithmetic expression is of type REAL, the function 
ENTIER (AE+0.5), where AE represents the value of the 
arithmetic expression, is automatically applied. This, 
therefore, causes the value to be rounded to an integer 
before it is assigned. 

The following examples will indicate the form of the assignment 
statement. 

X +- A X (B - C) 
ALPHA +-BET A+- GAMMA .... 3.1416 
XI .... R X COS(THET A) 
FUNCTIONOFX +-AX X*3 + Bx X*2 + C X X + D 
XSUM +-XSUM +SQRT (X) 

Two final points can be made regarding the assignment statement. 
As is indicated by the syntactical definition only variables may 
appear in the left part list. Therefore, a construct of the form X+ Y+-B 
is obviously invalid. 

The second point involves the use of the same variable in the left 
part list and in the arithmetic expression. For example, X .... X +l. 
When this assignment statement is executed the current value of X 
will be used in evaluating the expression and that value will be 
assigned to X. In this example, the value of X will be one greater 
after the statement is executed. 

3.5 GO TO STATEMENT AND LABELS 

It was said previously that statements were executed sequentially, 
in the order in which they appear, unless a statement is encountered 
which specifically states that the next statement to be executed is 
not the next one in sequence. This ability to change the sequential 
flow of the program logic contributes in a major way to the power 
of a digital computer. 

46 



One way in which the sequence of execution of statements can be 
changed is by the use of the go to statement. This statement speci­
fically designates the statement which is to be executed next. 

(go to statement\ : : = GO TO (label) 

From its formal definition it is seen that the go to statement is 
made up of the reserved words GO TO and a label which is defined 
below. 

It is apparent that to effect a change of control from one state­
ment to another, not in sequence, there must be a way of uniquely 
designating the destination statement. This is dare by the use of a 
label. Formally a label is defined as an identifier. Therefore, a 
label may be arbitrarily chosen within the restriction imposed upon 
the choice of characters making up an identifier. The programmer 
serves notice that a given identifier is used as a label by means of 
a label declaration, which is written similar to type declarations. 

(label declaration) : : = LABEL (label list ) 
(label list\::= (label) I (label\ (label list) 
(labe1) ::=(identifier) · 

This declaration must occur in the block head of any block that 
contains a labelled statement. The label list contains only those 
identifiers used to label statements in this block. It is only within 
this block, and any blocks nested within it, that these labels may 
appear in a go to statement. Thus, a go to statement may not 
reference a label in a block nested within the block which contains 
the go to statement. 

Recall that the definition of a basic statement included as an 
alternative definition a (label): (basic statement). Also, a block 
could be of the form (label): (block) and a compound statement of 
the form (label):(compound statement). It is apparent then, that 
any construct which may be considered as a statement may be 
uniquely labelled by preceding it with a label followed by a colon. 
We can effect a change of control to any statement by writing GO 
TO (label), where the label precedes the statement which is to 
be executed next. For example, GO TO OVER would cause the state­
ment with the associated label OVER to be executed next. The 
following section of ALGOL source coding will serve as an example 
of both assignment statements and go to statements. This example 
is not a very practical one since it is obvious that once the state­
ment labelled ST ART is encountered the program will be in a never 
ending loop. 

LABEL 
START: 

BEGIN 
START; 
X - Y; 
A - c~s (THETA); 
GSl) TSl) ST ART 

47 

009 
010 
011 
012 
013 



An occasionally useful statement is the dummy statement which 
we define as empty. 

(dummy statement) : := (empty) 
(empty) : := l the null string of symbols} 

This statement represents no actual operation but serves to place 
a label in a convenient location. For example, it allows the delimiter 
END to be labelled, and, if a transfer of control to the label pre­
ceding the END is specified, a block or compound statement can be 
executed without executing all of its statements. Note that the label 
Ll, since it puts a dummy statement before the END, makes the 
semicolon mandatory after the statement C .... C + 1. 

BEGIN 10 
!LABEL Ll,FL~W; 11 

X ... A +B; 12 
Gf/) Tg:> Ll; 13 

FL~W: A+- SQRT (C + D); 14 
c .... c + 1; 15 

Ll: END 16 

3.6 THE COMMENT 

Often the purpose of a section of an ALGOL program can be made 
more apparent by including a comment on the program at an 
appropriate point within the sequence of statements or declarations. 
A comment may be included in the program by using the reserved 
word COMMENT in one of the following ways: 

; COMMENT ! any sequence of characters not containing ; } ; 
BEGIN COMMENT f any sequence of characters not containing ; } 

The first of these says that after any semicolon which separates 
statements and declarations, as previously discussed, the reserved 
word COMMENT may be written followed by any comment written 
in the legitimate character set except the semicolon. The semi­
colon serves to indicate the end of a comment. The second case 
indicates that a comment may follow a BEGIN. 

Another form of the comment, not using COMMENT, may follow 
an END as indicated below: 

END l any sequence of characters not containing END or ELSE or 
WHILE or UNTIL or any special character unless it occurs as 11 

pan of an ALGOL number} 

48 



This is useful in making commentary at the end of a compound 
statement, a block, or a program. It should be emphasized that 
these comments are for documentation purposes only. They appear 
on the program listing which is produced by the compiler but have 
no effect on the machine language generated. 

!BEGIN 
~~MMENT 

C~MMENT 

END 

THIS EXAMPLE ILLUSTRATES THE 
USE OF C~MMENT ARY WITHIN A 
C~MP~UND STATEMENT; 
x ..... y; 
A ..... B + C + D; 
S~ D~ES THIS; 
I ..... J ..... K ..... O; 
PHI .... THETA 
~F THE EXAMPLE 

3.7 SIMPLIFIED INPUT/OUTPUT 

With the discussion of one additional topic, enough of the ALGOL 
language will have been developed to write simple but complete 
programs. This additional topic is input/output-how to get data 
into the computer for the program to operate on and how to get the 
results back out to the programmer. The subject will be treated 
very briefly here, to allow complete programs to be written, and 
developed in depth in Chapter 7. 

The media available for input/output are fairly extensive, includ­
ing magnetic tape, paper tape, punched cards, printed hard copy, etc. 
Furthermore, with developments in optical character recognition, 
new forms of input/output will be developed. We choose to consider 
only the most common of these possible media, punched cards for 
input and the printed line for output. The reasons for this choice 
are twofold. First, these two media are sufficient for many 
scientific applications. Secondly, this allows the basic concepts 
of data input/output to be developed. These concepts can be easily 
extended to other input/output devices by the student, especially 
since he will have the capability to read the refere11ce documents 
which use the metalinguistic approach to definition. 

To provide a basic input capability, consider the data as it would 
appear on a punched card. 

Data will be, for now, punched into cards, one value per card. 
The number will be punched as in the example below where the 
symbol X represents any digit. The largest value which can be 
read in will be 9999.999999. The sign must appear in column 1 
of the card and the decimal point in column 6. If the number is 
positive, column 1 may be left blank, implying a plus sign. 

49 



±xxxx.xxxxx 
I 

011110111110 0 0 0 0 0 0 I 0 0 0 0 0 0 0 e 0 00 0 0 e 0 000 OOl I 00000010 0 0 0 0 000D000010 OD 0 0 0 0 0 0 I 0 0 00 0 0 00 
1 2 l t ~I JI 11~11 >11J1'1'111l111!2G21111llt11'621llll!lllll1ll34l13'lllll9111'1~14l44t;4itJ!ll!~ll~~l$4~5i!l~>t60illZ~l64615!i!il69101illlll~J>HllllJ!I~ 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

2 2 2 2 2 2 2 112211!!1!11121111122112!21 2 22 2 2 2 2 ! 1111111121212 112112!!11121211112112221 

3 3 3 3 313 3 l l J l 3 3 3 3 3 3 3] 3 J 3 J 3 J J 3 3 J 3 J 3 3 3 J 3 3 3 J J 3 3 3 3 3 J 3 3 3 3 J 3] 3 3 3 3 J 3 3 3 3 J J 3 3 3 J 3 J J 3 3 J J j 3 J J 

4444444444444444444444444444444444444444444(444444444444444444444444444444444444 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

6i6' &6 6 6 6 6 6 6 6 6 6 66 6 66 i 6 ti 6 6 6 6 66 6 5 6 6 6 6 6 G 6 6 6 6 6 6 6 66 6 & 6 6 6 ti 66 6 6 6 S6 6 6 6 & 6i 6 6 6 6 6 6 6 6 6 6 6 6 i 6 5 

1111111111111111111111111111111111; 111111111111111111111111111111111111111111111 

a 8 I B , •• 8 8 BB 8 8 8 8 B 8 a B' I BB 8 B 8 BB I B 11 B 8 BB I Ba a I 8 818888Ba18 8 '8 a B 8 a B 8 8 818 I B 8 a a I Ba 8 8 81 8 8 I 

The following cards represent the input values -43.2, + 6572.001, 1.0. 

LO 
I 
€>572.001 

I 
43.2 

I 

D 01100000110 I 0000BOD11a00000ID0111000011011110 0 00 0 DO 0000a111D110 0 0 D 0 D 0 0 0 I 0 0 D 0 0 OD 
I t J 4 l I l I I 10 11 II \l ~ 15 1111 II ltllll1 l21l~2116 21lttll0ll ll llll ll 3'l! Jll 11"141U04'4HOU111110 11 llSl!.4 ~ 5611 ~ l!Mlil UIJ!i411ii11Hit10 11111l l471JI IJJI 19tli 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

21122212222122!222212 2 ! ! 1212 22 2 2 2 2 2!!!22221221221!212112 2121z121112 2 2222z!121221 

3 3 3 3113 3 3 3 3 J JJ J J J 3 33 3 3 J J J J J J J J 33 J 3 J J 3 J 3 J Jl 3 3 33 J J J J 3 J J J 3 J 3 3 3 3 J 3 J J 3 J 3 3 3 J 3 J l l J 3 3 l J J 

4 4 •I• 4''' ''' 4 .f' 4'. '. 4. 4 4' '' 4 ' ••• 4 4'' 4' 4 4 4 4 4. 4'' 4 4 '. 4' 4' 4 4 4 4 4 4 4 ' '''' 4 4 4 4 4 4' 4' 4 4 4 4 

5 5 5 5 5 I 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 I 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ii 5 11 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 I 5 5 5 5 5 

& & 6 & u & & & ' & & &&& & & && ' & & && 6 & & && ~ & e us & 6'' & & & s & && & 1 & & & 6 u && ' & & & " & &i u & ' & n & & & && && & 

1 11 11111 7 1111 l 7 11 J 1111 111111111 l 111 7 J 111 1 l 111111111111111111 7 111111 7 1111 I 17 7111 7 

8 8 11818 8 8 8 8118 8 8 8 11818888111811111181111118888118 818 8118 B 1111B18118 8 B 8111111818 I 

9 9 9 ~ 9 9 9 9 9 9 9 9 g 9 ~ 9 9 3 9 9 9 9 q 9 9 9 9 9 9 9 !9 9 9 9 9 9 9 9 9 ' 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 g 9 9 g 9 S9 ! 9 
I l l "e~eal IBS~ I 10,, 11ll1~ \Ii,, 111! 20 l11l Bl•~c, 2611 llaJO 31 32 O;J1 JI Jo;·" JO lt4Q•I ~2 "344 114111 •1~9 50ll 11 ll !>IS~~ Slit !16061 61 ~lfr'il Olill ii" 10 11 ll JJ II JI~ JJ 1' 118'11 

50 



The format which will be used in communicating results from the 
computer to the programmer on the printer is shown below: 

HIS IS A SAMPLE OF PRINTED OUTPUT. 

_xxxx.xxxxxx ±xxxx.xxxxxx 

+xxxx.xxxxxx ±xxxx.xxxxxx 

It will be possible to print a line of heading information followed 
by a blank line and the data. The data will appear in a tabular form 
with from one to six values on a single line. 

To accomplish the basic input and output functions which we have 
defined above, it wi11 be necessary to provide several ALGOL con­
structs which will be discussed fully in Chapter 7. These constructs 
are in fact declarations and as such,must appear in some block head. 

At this point these declarations will be defined as a series of five 
cards which should be inserted immediately following the initial 
BEGIN in the program. 

FILE IN 
FILE g)UT 
Fll)RMAT IN 
IF'~RMA T V'UT 
F~RMAT ~UT 

BEGIN 
CARD (2, 10); 
LINE 1 (2, 15); 
FIN (Fl2.6); 
FT 1 (X 10, .. ____________ .. I/); 
FT2 (6 (X4, Fl2.6, X4) /); 

01 
02 
03 
04 
05 
06 

The form of a program will be, therefore, as indicated in the 
above example. The BEGIN which indicates the start of a program 
would appear as card number 01 in the example. Cards numbered 
02 through 06 are those necessary to set up the basic input/output 
capability. Card number 05 deserves special consideration. The 
heading information on the printed output page is the string of 
characters which appear between the quote marks on this card. 
This string may contain any of the defined characters except the 
quote itself and for the present must be contained entirely on one 
card. 

To read data which is punched into cards according to the format 
defined above, the read statement is used. 

READ (CARD, FIN, (list))[ (label\ J 

51 



The list is a series of identifiers, separated by commas, which 
represents those variables which are to be assigned the values 
read from the cards. 

As many cards will be read as there are identifiers in the list 
for each read statement executed. It is important, then, that there 
exists a one-to-one correspondence between the elements of the list 
and the cards to be read. 

Notice the label appearing in square brackets. This entire con­
struct (including the brackets) is optional. Its function is to provide 
a label which uniquely specifies a statementtowhich control should 
be transferred if an attempt is made to read when no more data 
cards exist. This is useful when a program is written to do the same 
operations on successive sets of data. A data set can be read, the 
computation performed, and control transferred (via a go to state­
ment) back to the read statement to read in the next set of data. 
When no more data exists the next statement executed will be the 
one preceded by the label. 

READ (CARD, FIN, A, B, C, ALPHA, PHI) LfHROUGHl 

The above read statement will read in five cards assigning the 
successive values, in order, to the variables, A, B, C, ALPH, PHI. 
If an attempt is made to execute this statement again, after all 
data has been read, control will be transferred to the statement 
labelled THROUGH. 

The write statement is highly analogous to the read statement. 

WRITE (LINE, FTl) 

Execution of this statement causes the heading information to be 
written on the printer. 

WRITE (LINE,FT2, (list)) 

Execution of the above statement will effect the printing of the 
values of the variables or expressions represented by the elements 
in the list, six numbers per line, until the list has been satisfied. 
Fewer than six numbers may be printed on the final line if there is 
not a multiple of six elements in the list. 

WRITE (LINE, FT2, LAMDA, I, J, 314159, A+ B) 

This example would cause the values of the five list elements to be 
printed. Notice that arithmetic expressions may appear as elements 
in the list of a write statement. They will be evaluated and their 
value printed. 

The following example utilizes those constructs which have been 
developed to express the previously discussed algorithm for solving 
simultaneous linear equations as an ALGOL program. Recall that the 
values for x and y may be formed from the following relationships: 

x = ec -bf 
ae -db 

af -de 
Y =ae -db 
52 



rILE IN 
FILE OUT 
FORMAT IN 
FORMAT UUT 
FORMAT UUT 
Rf.AL 
LABEL 

AGAIN1 

BEGIN 

FINISHED• END• 

CAROC2, lO>J 
LINE 1 c2.1s>J 
r1Ncr12.6lJ 
FT1CX10•"SDLUTION or SIMULTANEOUS LINEAR EUUATIDNS"//)J 
rT2Cb(X4,f12,6,X4l/)J 
x.v.A.e.c.o.E.r.TJ 
AGAIN,rI"'ISHEDJ 
WRITECLlhE,rT1)J 
~EADCCARD.FIN.A.e.c.o,E.r>CFJNISHrDJ J 
WRITECLINE,FT2,A,R,C•D•E•r>J 
T•Axl.•OxtlJ 
X• (lxC•BxF)/T J 
Y• CAxF•DxCl/T J 
WRITE<LINE.rt2.x.Y)J 
GO TO AGAINJ 

SLEU 1 
SLEU 2 
SLEU 3 
Sl[U 4 
SlfU 5 
SLEU 6 
SLEU 7 
SLEU II 
SLEU 9 
SLEU 10 
SLEU 11 
SLEU 12 
SLEU 13 
SLEU 14 
SLEU 15 
SLEU 16 
SLEU 17 

This sample program is complete in every detail and, if punched 
into cards, would compile and run on a B 5500 computer. Notice that 
the program starts with BEGIN and the five declarations which will 
be used to provide the basic input/output capability. The sequence of 
characters between the quotation marks in the declaration on card 
SLEQ 5 will be printed as the heading information. 

In addition to the five declarations which are used to provide the 
input/output capability, nine real variables and two labels are 
declared. 

The first write statement effects the printing of a heading on the 
output. The heading will say SOLUTION OF SIMULTANEOUS LIN EAR 
EQUATIONS. The read statement bearing the label AGAIN will cause 
the variables, A, B, c, D, E, and F to be initialized to the values 
read from six consecutive punched cards. The write statement 
following the read will print out the input data. This is always good 
programming practice. 

After the calculations are performed the results will be printed 
out by the second write statement. Control will then be transferred 
back to the read statement via the GO TO AGAIN construct. This 
loop will be repeated until no more data sets exist at which time 
control will be transferred to the label, FINISHED, specified in the 
action label part of the read statement and the program will be com­
pleted. 

53 



EXERCISES 

1. Write ALGOL assignment statements for the following mathematical 
formulas: 

a. y = a - bx + cx2 - dx3 + ex4 - fx5 

b. circle area =TI x (radius)2 

c. gross pay = 30 x (normal rate)+ [(total hours)-30] X (overtime rate) 

d. discriminant = b2 - 4ac 

e. tangent of x = sin x 
cos x 

f. TI :3.141593 

g. new distance= (starting distance) - (speed) X (time) 
(route tortuosity) 

2. Find the syntactical error in each of the statements: 

a. W2F ... (ALPHA - BET A)S@-13 

b. PLUTO: A ... B4U + ACT*-Q 

c. WRONG: 60 t-MIN 

d. F ... TIZ + 136. - A/2 + B64000 

e. 43: X .... X + .195 

f. GOTO LOST 

g. Ll:L2: T ... T - 2DELTEMPAVE 

h. GO TO 12 

i. BEGIN LABEL EXT; EXIT: END 

j. BEGIN Y ... Y + 1 , X ... X - 1 END 

k. J ... Z + 6.23(X-Y) 

1. XZ ... YZ ... A-B._z ... 4 

m. PQY+- -4.3 X (HX(X-Y) 

n. A .... B@4 + Z• (1-4) 

o. CO TO L+l 
54 



p. BEGIN 
FILE IN CARD (2, 10); 
INTEGER A, B, D; 
REAL I, C, E; 
C• 3; E ., 4.67; 
LABEL FINIS; \ 
READ(CARD, ..... ); 

FINIS: END 

3. The following compound statement represents the most efficient 

way to compute Z, given A. 

BEGIN 

TEMPI ... 2.5 X A +4; TEMP2 ... TEMPI *2; 

Z e-(TEMP1-+(TEMP2+1)/A)/(TEMP2-1) 

END; 

Write an equivalent single assignment statement for computing Z from A. 

4. Write a program to read single data values from an unknown number 

of cards, print each value, and accumulate the sum of the values and 

the sum of their squares. Compute and print the average and the 

standard deviation of the complete set of numbers. Recall that, for 
2 

N values, (ave.) = (sum of values)/N and (std. dev.) = [N x (sum of 

squares) - (sum of values)2]/(N(N-l)). 

5. Write a program to read an angle, x, from a data card, compute values 

for sin(x), tan(x), log10(sin(x) ), and log10(tan(x) ) and print them on a 

single line. Repeat this process for as many data cards as are pre-

sented to the program, thus printing a table. Compare the results with 

values tabulated in a handbook. Assume the angles are in degrees. 

55 



CHAPTER 4 - CONDITIONAL STATEMENTS 

4.1 THE CONCEPT 

One of the features of the digital computer that distinguishes it 
from lesser devices. such as tfie desk calculator, is its decision­
making capability. Although widely misunderstood in degree, it is 
this capability. along with the storage (or memory) capability, that 
allows· computers to solve complicated problems. In reality. the 
computer itself only makes binary (yes/no) decisions. It is the com­
bined effect of many binary decisions. in a program, that seems to 
endow a computer with a rudimentary intelligence. Note that it is 
the program. written by humans, which embodies the intelligence, 
if any. exhibited by the computer. 

The binary decision capability of computers takes the form of 
alternative actions depending on the result of very simple compari­
sons. For example. most computer hardware is capable of sensing 
whether a given numeric value is zero or non-zero and whether its 
sign is negative or positive. If the problem decision to be made is 
at all complex. the difficulty of correctly programming it as a series 
of binary decisions in machine language can be very great. 

ALGOL greatly simplifies the programming of decision processes. 
It does this by allowing the decisions to be expressed in a highly 
readable form. For example. a special action to be taken, in case 
the value represented by a variable ALTITUDE is negative, might 
be expressed by the ALGOL statement: 

IF ALTITUDE < 0 THEN GO TO CRASHED 

A considerably more complex decision process is found in the 
example. 

IF (A>B OR C = 0) AND D /E ~ B X A 
THEN X ... y ELSE Y'"'X/2 

56 



Nevertheless, the latter example is still simple to write, to read 
and to modify (when necessary). Either example is easily converted 
into correct and efficient machine language by the ALGOL compiler. 

One purpose of the present chapter is to set forth the rules gov­
erning the writing of statements such as those above. These are 
called conditional statements. Their syntax will be discussed in 
Sections 4.3 and 4.4, after development of one component, the 
Boolean expression, is completed in Section 4.2. 

4.2 BOOLEAN EXPRESSIONS 

A vital portion of all conditional statements is the part which 
expresses the truth value upon which the condition is based. Mathe­
matically, these are called Boolean expressions. For simplicity, 
the preseP..t subset of ALGOL utilizes these only in conditional 
statements. Further, the subset narrows the definition of Boolean 
expression to include only the most needed forms. 

Analogous to the primary in arithmetic expressions, there is the 
Boolean primary. It is defined as 

(Boolean primarY) : := (relation) I ((Boolean expression)) 

The relation is the basic truth value, which is either true or 
false. It is formed according to the formulas, 

(relation) : := (arithmetic expression) (relational operator) 
(arithmetic expression) 

(relational operatoz> : : = <I ~ I =I -1: I ~ I > 

The relational operators have the conventional mathematical 
meanings, as follows: 

< is less than 

is less than or equal to 

= is equal to 

is greater than or equal to 

> is greater than 

is not equal to 

57 



They assert a relationship between two arithmetic expressions 
which may be either true or false, depending on the numerical 
values of the variables or numbers that occur in the arithmetic 
expressions. 

Note that literally any arithmetic expression is allowed on either 
side of a relation. Thus, Nf:.-7 and 2:::;2 are legal relations, as is 
K X SIN(BET A)< (P X COS(PHI) )/(l+N). Note that these are also 
perfectly good Boolean primaries. 

A word of caution is in order on the use of REAL arithmetic 
expressions in relations. Most decimal fractions cannot be repre­
sented exactly as a binary (base 2) number. For example, if the 
value of A is computed by originally setting it to zero and then suc­
cessively adding 0.1, the relation A = 1.0 never becomes true. The 
situation is analogous to that experienced in decimal (base 10) cal­
culations where 3 x (1/3) i- 1 because 1/3 cannot be represented 
exactly as a decimal fraction. Note that (1/3 + 1/3 + 1/3) < 1 if 
1/3 is approximated by 0.3333333333, and (2/3 + 2/3 + 2/3) > 2 
if 2/3 is approximated by 0.6666666667. The most prudent rule is 
to avoid the use of the relations which involve REAL arithmetic 
values where the case of exact equality is important. 

The two logical operators AND and OR are needed in forming 
Boolean expressions. The operator AND gives the logical product 
and OR gives the logical sum of two truth values, according to the 
following table, where BEl and BE2 represent Boolean expressions: 

BEl 
BE2 
BEl AND BE2 
BEl OR BE2 

False 
False 
False 
False 

True 
False 
False 
True 

False 
True 
False 
True 

True 
True 
True 
True 

We are now adequately prepared to define the Boolean expression. 
For completeness, the formula for a Boolean primary is repeated 
here. 

(Boolean expression) : : = (Boolean factor) I (Boolean expression) 
OR (Boolean factor) 

(Boolean factor) : : = (Boolean primary) I (Boolean factor)AND 
(Boolean primary) 

(Boolean primary) : : = (relation) I <(Boolean expression)) 

Note the roles played by the two logical operators. The AND opera­
tor has a higher precedence than does OR. This causes the Boolean 
factor to be treated as an entity just as the term A/B is an entity 
in the arithmetic expression M + A/B. For example, the Boolean 
expression X .J 1 OR Y = 0 AND Z £ 0 is evaluated by the steps: 

58 



1. Obtain the truth values fo:r; all the relations 

2. Evaluate the Boolean factor Y = O AND Z 1 0 

3. Combine the result with the truth value for X 'f 1, via the OR 
operator 

Since a Boolean expression can be made a Boolean primary by 
enclosing it in parentheses, the order of precedence of the logical 
operators can be overridden. This is analogous to the use of paren­
theses in arithmetic expressions. 

The student should verify the classifications of examples given 
below: 

Boolean primaries 

-1 = 0 

1-A > B* (-E) 

(X=Y OR W-K<4) 

(Ff.N AND 1 +N ~A/D) 

Boolean factors 

X = 0 AND Yf. 0 

A> 1 AND (B = 0 OR C < D) 

(A =B OR C=D) AND (X<2 OR Y<2) 

Ff. N AND 1 + N~A/D 

Boolean expressions 

Af.B 

DX > DXMAX OR DY> DYMAX 

I = 0 AND J = 0 OR K~l 

(I f. 0 OR J f 0) AND (A>O OR X/Y<l) 

59 

Illegal 

A>BANDC<D 

A f.B OR C = D 

1-W*2 

A'f:. B OR C = D 

1 +A AND Z>O 

(B*2-4 X AX C) 



4.3 IF STATEMENT 

The most commonly used conditional statement is the if state­
ment. (A complete definition of conditional statements is given 
in Section 4.4). 

(if statement) : := (if clause) (unconditional statement) 

We see that any if statement is composed of two parts. Recall that 
the unconditional statement was defined and discussed in Chapter 3. 

(if clause) : := IF (Boolean expression) THEN 

This requires that all if clauses begin with the reserved word IF 
and end with another reserved word THEN. Recall in Section 2.2 
that IF and THEN are formally called sequential operators. 

Note that, although the if clause seems to have a very simple form, 
the occurrence of the Boolean expression within it adds all of the 
variety brought out in the preceding section. 

So, an if statement may take on great simplicity, such as: 

IF N;iM THEN GO TO RECT 

or 

IF A< L THEN B ... 2 

On the other hand, either the Boolean expression or the uncon­
ditional statement or bothcanbequitecomplex. Since the latter may 
be a block, an if statement can constitute a major portion of an 
ALGOL program. 

There are no reservations on the kinds of unconditional statements 
that can occur in if statements. For example: 

IF Z/N > 2 THEN BANK: z._ ZLIM 

is perfectly legal because 

BANK: Z t-ZLIM 

is a legitimate basic statement, one of three forms of unconditional 
statements, defined in Chapter 3. In the same way, it is legal to 
write 

IF A< B OR C < B THEN 

UNDER: BEGIN D ... - D; K ... St- 0 END 

More examples of if statements are given at the end of Section 4.4. 
The meaning of an if statement is not hard to explain or to 

7emember because it coincides with normal English usage. That is, 
1f the truth value of the Boolean expression is true, the unconditional 

60 



statement is executed; if not, no action is taken beyond evaluation 
of the Boolean expression. If the truth value is false, control passes 
immediately to the statement following the if statement. If the truth 
value is true, the unconditional statement may cause control to be 
transferred to another portion of the program. If that does not 
happen, the statement followin~ the if statement is executed next. 

It is legal to refer to (via a GO TO) any label within an if state­
ment from points outside that if statement. Control then does not 
depend on the Boolean expression in the if clause of that if state­
ment. 

4.4 CONDITIONAL STATEMENTS 

We now have sufficient preparation to discuss the complete defi­
nition of a conditional statement: 

<conditional statement} : := (if statement) I (if statement) ELSE 
(statement) I (if clause'> (for statement) I 
(label) : (conditional statement) 

For convenience, we repeat previously given definitions of four 
of the above constituents. 

(if. statement) : : = (if clause) (unconditional statement} 

(if clause) : : = IF (Boolean expression) THEN 

(unconditional statement) : : = (compound statement} I 
(basic statement} I (block) 

(statement) : : = (unconditional statement) I (conditional statement) I 
(for statement) 

A fifth major constituent, the for statement. is to be taken up 
separately in Chapter 5. 

The above definition of a conditional statement implies to us the 
following: 

l The if statement, discussed in the previous section. is only one 
form of a conditional statement. 

61 



2. Another form, yet to be discussed, appends to an if statement 
the reserved word ELSE followed by a statement. No 
semicolon appears before the sequential operator ELSE 
because ELSE can not be the beginning of a new statement. 

3. Another form is an if clause followed by a for statement, to be 
discussed in Chapters·. 

4. A conditional statement can be labelled (with one or more labels) 
or it may be unlabelled. 

Before taking up the ELSE option, it is worth contemplating the 
recursiveness of the definition of the conditional statement. The 
power of the metalinguistic notation is well displayed here. How 
else could we as easily establish that it is legal to write, among 
countless other forms, a single conditional statement of the form: 

IF (Boolean expression) THEN 
(basic statement) ELSE 

IF (Boolean expression) THEN 
(label) :(basic statement) ELSE 

IF (Boolean expression) THEN 
(compound statement) ELSE 

(label): IF (Boolean expression) THEN 
(basic statement) ELSE 
(for statement'> 

Recall that such an example is not meant to demonstrate how to 
write (a portion of) an ALGOL program. It illustrates only that, if 
such a construct were to occur naturally in the writing of a pro­
gram, it would be syntactically correct and meaningful to the ALGOL 
compiler. 

The form of the conditional statement that employs the ELSE is 
sometimes called the "IF ... THEN ... ELSE statement." This arises 
from the definitions of its constituents, since 

(if statement)ELSE (statement) 

could equally well be written 

IF (Boolean expression) THEN (unconditional statement )ELSE 
( statement ) 

Again, the meaning ry-iay be correctly surmised from English usage. 
If the truth value is true, the unconditional statement portion is 
executed. If it is false, the statement (following the ELSE) is exe­
cuted. 

Control, unless directed elsewhere via a GO TO, passes to the 
next statement. The passage of control, in the absence of any GO TO, 
is perhaps better defined hy the diagrams: 

62 



ltruetl J, 
IF statement IF BE THEN Su S 

Ltalse __ ___,f 

ltrue+l + 
IF ••• THEN ••• ELSE statement IF BE THEN Su ELSE S S 

_j -false _ ___.t.__I __,t 
Here BE represents Boolean expression, Su represents uncon­

ditional statement, and S represents statement. Note the absence of 
a semicolon preceding ELSE. 

In case the statement following the ELSE happens to be an if state­
ment, the passage of control, without any GO TO, is diagrammed as 

rtrue ~I r true ---.t ... 
IF BE THEN Su ELSE IF BE THEN Su s 

I false t Lfalse t 
Another case might be 

rt rue ~I rtrue~f + 
IF BE THEN Su ELSE IF BE THEN u ELSE S ; s 

'--false f l false tu 
In the most general case, a conditional statement can be a series 

of conditions and the evaluation continues until a truth value of 
true is found. When this occurs, the next succeeding unconditional 
statement is executed. If none of the Boolean expressions has a 
truth value of true, the statement following the rightmost ELSE is 
executed. If no ELSE appears after the rightmost THEN, control 
continues in sequence. 

A go to statement may lead to a label within a conditional state­
ment. If this occurs, the flow from that point is determined by the 
same rules as if that point had been reached by entry through the 
if clause at the front of the conditional statement. 

Examples are given below for the new constructs discussed in 
this section. These include, for completeness, and later reference, 
an example of the (if clause) (for statement) construct, although the 
for statement is not discussed until Chapter 5. 

63 



EXAMPLES 

If clauses 

IF A> B THEN 

IF A .J. C OR X < Y+l THEN 

IF X > 0 AND Y < 0 THEN 

If statements 

IF A> B THEN A+- A -1 

IF W< 0 THEN BEGIN W+- 0; GO TO Ll END 

IF X :<!: 0 ANDY~ 0 THEN GO TO QUAD 

Conditional statements 

IF A< B THEN A+- A + l 

IF E > L THEN Z +- Y ELSE Y +- Z - E 

SCALE: IFS< 10.l THENS ._ 10 ELSE 

IF S < 20.2 THENS+- 20 ELSE 

IFS< 40.4 THENS .... 40 ELSE 

IFS < 80.8 THENS+- 80 ELSE 

BEGIN S ... S/10; GO TO SCALE END 

IF N> 0 THEN FOR I+- l STEP l UNTIL N DO 

H [I]+- A+ B X T [1] + C X T [I] * 2 

The following problem will serve as an example of the use 
of conditional statements in a program. The program evaluates 
ex from the infinite series approximation using the first 20 
terms of the series. 

x x x2 x'.3 x4 
Sample Problem: e = 1.+·rr + 21 + 3I +41 + · • · 

64 



BEGIN ETOii l 
COMMENT EVALUATE E•X FROM SERIES APPROXIMATIONI ETOii 2 
FILE IN CAROChlO>I ETOii 3 
FILE OUT LINE I <2115>1 ET.Oii 4 
FORMAT IN FINCF12.6)1 ETOii 5 
FORMAT OUT FTl(X101"E•X • 1+X/t+X•212+X•316+o•• R.E.JOHNSON"ll>I ETOX 6 
FORMAT OUT FT2(6CX41Fl2061X4>1>1 ET.Oii 7 
REAL X1ETOX,ETOXTI ETOii 11 
INTEGER JI ETOii 9 
LABEL FIRST1SECONO.LASTI ETOii 10 

WRITECLINE1FTt>I ETOii ll 
FIRSTI READCCARD1FIN,x>ILASTJI ETOii l2 

I + 21 ETOX u 
ETOXT + XI ETOii u 
ETOX + XI ETOii 15 

SF.CONDI IF I S 19 THEN ETOii 16 
BEGIN ETOii 17 

ETDXT + ETDXT IC XIII ETOii u 
ETDX + ETOX + ETOl<TI ETOii 19 
1•1•11 ETOX 20 
GO TD SECOND ETOX 2l 

[NOi ETOii 22 
ETOX +l+ETOXI ETOii 23 
WRITECLINE1FT2.ETOX1EXPCX))J ETOJI 24 
GO TD r1RsT1 ETOX 25 

LASTI E~O or PROGRAM. ETOii 26 

65 



EXERCISES 

1. What is the value of X after the following is executed? Assume 
A = 6.3, B = 1.2, C = D = 7. 

If A > B or C 'f: 0 and D ~ 3 then X .... 1 else X .... 23 

2. Write conditional statements that correspond tothefollowingverbal 
statements. If the statement is true, then transfer to label MRE 
otherwise transfer to label FIN. 

a. Either Q exceeds A, or itexceeds B, or it exceeds C, or is less 
than D. 

b. Both LS and MO must lie between 1.5 and 8.6. 

c. X exceeds Z and either A or B must be less than 3.4. 

3. Write a program to evaluate the constant e by the series 

1 1 1 1 
e = 1 + TI + 21 + 3! -+-41 ,.. 

Terminate the series when the next term would be less than 
0.00000001 or when the number of terms exceeds 300. Print 
the series sum after each 20 terms, as well as the final value. 

4. Write a program to read positive or negative data values; separate 
them into integer and fractional parts, and print a table of the num­
bers and their separate parts. 

5. Write a program to read five data values from cards, print them in 
the order read, sort them into algebraically ascending order, and 
print them again in that order. 

6. Write a program to compute a square root via an iterative process 
which uses the formula 

NEXTESTIMATE = (LASTESTIMATE + X/LASTESTIMATE)/2 

to obtain successive estimates for the square root of X. Use X/2 
as the initial value for LAST ESTIMATE, and terminate the itera­
tive calculation when ABS(NEXTESTIMATE/LASTESTIMATE-1)< 
0.00000001. Use the X values 0.0, 0.1, 0.2, 0.3, ...... , 4.0, and 
print X, the common function SQRT(X), and the computed estimate 
of the square root. 66 



CHAPTER 5 - FOR STATEMENTS 

5.1 THE CONCEPT 

In the solution of problems using numerical techniques, it is often 
desirable to execute a statement or series of statements in repetitive 
fashion. Suppose, for example, a program is to READ a value from a 
card, execute an assignment statement, and WRITE the result on 
the printer and this is to be performed for ten different input values. 
One way to do this would be to repeat the necessary statements ten 
times (in serial fashion) in the program. A better way, however, 
would be to write the necessary statements once and execute these 
same statements ten times. 

In ALGOL this. repetition or "looping" of statements is con­
veniently performed by means of a for statement. This statement 
permits the programmer to control the repetitive process for any 
number of statements. All statements which are to be repeated are 
under control of a variable called the controlled variable which is 
changed in value once per repetition, until some limit or condition 
is met as specified by the programmer. The following specifi­
cations cornpletely describe the for statement: 

( for statemen~: : !::: (fo.c clause) (statement) I (label): (for statement) 

(for clause): : = FOR (controlled variable) ... (for list\ DO 

(controlled variable)::= (simple variable) 

(for list) : : = (for list element) I (!or list), (for list element) 

f!.or list element):== (arithmetic expression) I 
(arithmetic expression }S'r E P 
(arithmetic expression)UNTIL 
(arithmetic expression) 

67 



The above definitions point out the use of four more reserved 
words, namely, FOR, DO, STEP, and UNTIL,Itis also seen that the 
basic constituent of the for statement is the for clause. The for 
clause controls the iterative process for the statement following DO. 
The controlled variable takes on only one form-that of a simple 
variable and appears immediately after the reserved word FOR, The 
for list is the element that provides the initial and limiting con­
dition to be applied to the statement following DO. 

From the specifications given for a for statement it is seen that 
following the reserved word DO is a statement. In Chapter 3, we 
saw that a statement has many definitions, such as block, con­
ditional statement, compound statement, for statement, etc. It should 
be kept in mind that any of these constructs may follow DO. Probably 
the most widely used statement following DO is the compound state­
ment. This construct permits the programmer great flexibility in 
writing his programs. 

The two types of for lists presented in the specifications above 
describe slightly different processes for the forming of loops in a 
program and therefore will be discussed separately. Before these 
are discussed, however, the student's attention is called to the 
recursiveness of the definition of the for list. Either, or both forms 
of the for list element may be repeated in the for list as long as 
they are separated by commas. 

The process described by more than one for list element is 
exactly the same as if the for list elements were used to form a 
series of for statements. Each for list element would be taken 
in turn from left to right to form individual for statements. These 
for statements would be written using the same controlled variable 
and the same statement following the reserved DO as contained in 
the original for statement. 

5.2 THE FOR LIST 

The simplest for statement that can be written is when the for 
list element is a single arithmetic expression. This can be illus­
trated as follows (where AE represents any arithmetic expression): 

FOR Y .... AE DO Sl;S2 

In this case, the value of AE is assigned to the variable Y and 
since there is no limiting condition, no test is made and the state­
ment following DO (represented by Sl) is executed. The for list is 
then considered exhausted and control will continue in sequence 
with the execution of the statement, represented by S2. Thus, in the 
above case, the same results are obtained by the series of state­
ments: 

68 



Y ... AE; Sl;S2 

A more complete and useful extension of the above form is when 
the for list definition is used recursively as follows: 

FOR J ... 3,4,A,C/D,SQRT(X) DO SR ... SR + J/2;S2; 

In this example, the for list consists of the arithmetic expressions 
3,4,A,C/D,SQRT(X). The first value assigned tothecontrolledvari­
able J, is a 3; the statement SR ... SR + J /2 is then executed. Next the 
value of 4 is assigned to J and the same statement is again executed. 
This process is repeated for all elements in the for list. After the 
last element (in our case, this is the value of SQRT (X)) has been 
assigned to J and the statement following DO has been executed, 
control will continue in sequence to the statement following the for 
statement (represented here by S2) . 

As the final example of this form of the for list element, assume 
that five values are to be read (one per card), their square roots 
taken, and the resultant values printed. The for statement to 
accomplish this is given as follows (note that in this case, vari­
able IM is used chiefly as a counter): 

BEGIN 

END 

FOR IM ... 1,2,3,4,5 DO 

READ(CARD,FIN,NUMBER); 

SQ ... SQRT(NUMBER); 

WRIT E(LINE, FT 2,IM,SQ,NUMBER) 

In this example, the three statements enclosed between the words 
BEGIN and END make up a compound statement. This statement is 
then under control of the for clause and will be executed a total of 
five times. 

The second form of the for list element is the STEP-UNTIL 
construct. Its general form is as follows: 

FOR V ... AEl STEP AE2 UNTIL AE3 DO Sl; S2 

In this case the initial value assigned to V is the value represented 
by AE 1. If this value has not passed AE3 the statement following DO 
(represented by Sl) is executed. All subsequent assignments to the 
controlled variable are equivalent to V ... V +AE 2 and are made 
immediately after the DO statement is executed. In all cases, before 
the DO statement is executed, a check is made to ascertain that the 
value of V has not passed AE3. The basic flow of the STEP-UNTIL 
construct can be illustrated by the following block diagram (in 
which AE2 is assumed to be positive): 

69 



V~AEl 

No 

Yes 

Sl 

v~ V+AE2 

52 

AEl AE2, and AE3 represent arithmetic expressions and may take 
on positive or negative values. This means that the for statement 
may either "step-up" or "step-down" during the repetitive 
process. The above block diagram shows that the DO statement may 
be executed zero or more times depending on the values of V and 
AE3. It also indicates that, if the value of AE 2 is always zero, the 
for statement will be caught in an infinite loop. A complete 
description (considering all sign possibilities) of the STEP­
UNTIL for list element follows: 

V ~ AEl; 

L2: IF AE2 = 0 OR (SIGN(AE2) = +l AND V~ AE3) OR 

(SIGN(AE2) = -1 AND V ~AE3) THEN 

BEGIN 

Sl; 
v~ V + AE2; 

GO TO L2 

END J 

S2 

70 



In the following example, if I = 1 and M = 0 the statement repre­
sented by S l will not be executed at all; but rather control will 
transfer immediately to the statement represented by S2. If I=l, 
J=l, and M=l, statement Sl will be executed once and only once 
before transferring control to statement S2. However, if J=O, 
then statement Sl will be conhnually executed. 

FOR K .- I STEP J LJNTIL M DO Sl; S2 

The following example illustrates the use of the STEP-UNTIL 
construct in the same situation as found in the previous example. 

BEGIN 

END 

FOR IM.- l STEP 1 UNTIL 5 DO 

READ(CARD, FIN ,NUMBER); 

SQ<- SQRT(NUMBER); 

WRITE(LINE,FT2 IM,SQ,NUMBER) 

The same example could be written using a conditional statement. 

IM.- l; 

LOOP: READ(CARD,FIN,NUMBER); 

SQ o-SQRT(NUMBER); 

WRIT E(LINE, FT 2,IM,SQ,NUMBER); 

IM.- IM +l; 

IF IM~ 5 THEN GO TO LOOP 

5.3 USES OF THE FOR STATEMENT 

Suppose it is necessary to find the natural logarithm for a series 
of numbers starting from 2 and goingthru3.l in increments of 0.01 
and to print all the results. This could be accomplished with the 
following for statement: 

71 



FOR N +- 2 STEP .01 UNTIL 3.1001 DO 

BEGIN 

ANS +-LN(N); 

WRITE(LINE,FT2,N,ANS) 

END 
In the above example, the number 3.1001 was used as the limiting 

value to insure that N will reach a value of 3.1. The programmer 
should always exercise caution in using real arithmetic values in 
this type of for list. The reason for this was discussed in Section 
4.2 
If another for statement follows DO, then the for statements are 

said to be nested. In this case the for list of the inner for clause is 
repeated for each element or step of the for list contained in the 
outer for clause. For example: 

FOR I +- 0 STEP 2 UNTIL 10 DO 

FOR J +- 1,2,4 STEP 1 UNTIL 7 DO 

TBK +- TBK+IXJ; 

READ(CARD, ••••••• ) 

The assignment statement TBK +- TBK+IXJ is executed for I equal 
to 0 and for J equal to 1,2,4,5,6, and 7; then I is assigned the value 
of 2 and the assignment statement is again executed for all values 
of J. This process is repeated until the outermost "for loop" is 
exhausted after which the READ statement would be executed. 

There are three aspects of for statements which the programmer 
should be aware of. The first is that a go to statement appearing 
outside the for statement may not transfer control to a labelled 
statement within the scope of a for statement. As illustrated: 

DIAG: 

GO TO DIAG; 

FOR JX +- 1 STEP -2 UNTIL -11 DO 

COMP+- COMP+ 4/JX 

In this case, the GO TO DIAG statement is not permitted as the 
controlled variable JX has not been assigned a value at the time 
of that particular entry. Control may be transferred to the for 
statement however, as follows: 

72 



GO TO DIAG; 

DIAG; FOR JX ... 1 STEP -2 UNTIL -11 DO 

COMP ... COMP + 4/JX 

The second condition to be aware of is the value of the controlled 
variable upon exit from the for statement. If a compound statement 
following DO contains a go to statement leading outside the for 
statement, the value of the controlled variable upon exit from the 
for statement will be the same as it was immediately preceding 
the execution of the go to statement. For example: 

TOT ... O; 

FOR I ... 1 STEP 2 UNTIL 10 DO 

BEGIN 

TOT-I+TOT; 

IF TOT> 5 THEN GO TO EXCEED 

END; 

EXCEED: J ... I 

When control is transferred co label EXCEED the value of I will 
be 5 and any reference co I will use this value. If an exit from the 
FOR statement is due to exhaustion of the for list, then the value of 
the controlled variable is not defined. 

Any statement following the for statement may access the variable 
I but the programmer cannot be assured of its value, unless it has 
been assigned some particular value after execution of the for 
statement. 

Finally, it should be noted that the controlled variable has the 
status of any simple variable within the for statement. In other 
words, it may appear in arithmetic expressions or on the left side 
of an assignment statement. 

Compute and print y, where 

y = x can + 2 l n I cos ~ I , 
2 

73 



for values of x equal to 0.5, 0.5+n, 0.5+2n, etc. Terminate the com­
putation when the next value of x will be greater than 1.5. 

BEGIN EVAL 
FILE IN CARD <2• 10)J EVAL 
FILE OUT LINE l (21 15lJ EVAL 
FORMAT IN l'IN CFl216ll [VAL 
FORMAT OUT FT1 CXI01 •FORMULA EVALUATION • H, MAR"/l)J [VAL 
FORMAT OUT FT2 (6CX41F12161X4)/)J [VAL 
REAL X1N1Y1TJ EVAL 

WRITE CLINE• FT1)J EVAL 
READ CCARD1 FIN• N)J EVAL 
WRITE CLINE• FT21 N)J EVAL 
FOR X • 0,5 STEP N UNTIL 115 DO EVAL 

BEGIN EVAL 
T • COS CX/2 >J EVAL 
Y • X x CSINCX/2)/Tl + 2 x LNCABSCT»J £VAL 
WRITE CLINE, FT21 X1 Y) EVAL 

END EVAL 
END OF PROGRAM, EVAL 

Notice that the value of n is read in as input data and used as the 
increment in the for clause. The entire calculation is done in the 
single for statement with the initial value of x=0.5, assigned the first 
time through the statement. Subsequently xis incremented by n and 
tested against the limiting value 1.5. 

74 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 



BUIN DHTI l 
F'ILE OUT LINE l C21 15JJ DHTI I 
F'ORMAT F'Tl cx10.•cOMPARJNG VALUES OF' SINCXJ GOTTEN TMO MAYS·>• DHTI I 

F'ORMAT F'T2 C6CX41F'l2161X4J/JI DHTS 4 
COMMENT A USE OF' SIMPLE •F'OR LIST ELEMENTS• TO GET SlNCXJ DHTl s 

BY A POLYNOMIAL APPROXIMATION, EVALUATION OF' OHTS 6 
(AxTJ + CB•T•IJ + CC•T•5J + CO•T•7J DHTI 7 
IS DONE IN THE CONVENIENT NESTED F'ORMI DHTI I 
T•CA + CT•2J•CB + CT•2J•(C + (T•2>•D>>>• DHTl 9 
llHERE T • C2xX)/PI AND DHTS IO 
A • 1157081 B • •164591 C • 107951 D • •1004 CROUGHLT>I DHTI II 

REAL X, POLLY• KOE1 TSG1 Tl DHTI 12 
WRITE CLINE• F'TlJI DHTI u 
FDR X + 0,070745 STEP ,I UNTIL 1158 OD DHTI lo\ 

BEGIN DHTl 15 
POLLY + •,004362481 T + (X+XJ/31141591 TH + T•TI DHTI 16 
F'DR KDE •• 079487661 •.61\5920911 1.57079485 DO DHTI 17 
POLLY + KOE + TSG x POLLYI DHTI 1• 
POLLY + POLLY • Tl DHTS 19 
WRITE CLINE• FT21 X• POLLY• SINCX>> DHTl 20 

ENO OF' X LDDPI DHTI 21 
END DHTI 22 

75 



EXERCISES 

1. For what values of Y will the statement following DO be executed? 

FOR Y ... 3,4,6,8 STEP 3 UNTIL 18, 19, 23 DO 

2. Evaluate the formula 

2 
h =Ax + bx-+c 

for each of the values 

x = 0.12, -0.134, 0.5, -1.4, and 2.13 

where 

A = 2.4, B = 6.1, and C = 9.34 

3. Write the following FOR clauses in the STEP ••• UNTIL form: 

a. FOR A +-1,2,4,8,16,32,64,128,256 DO 

b. FOR B +- l,0.5,0.25,0.125,0.0625 DO 

c. FOR C +- 0,0.5,0. 75,0. 875,0. 9375 DO 

d. FORD+- 100,90,81,72.9,65.61 DO 

4. Sum the squares of the integers 1 thru n. 

5. Repeat Exercise 3 of Chapter 4, utilizing the for statement where­
ever possible. 

6. Find and print all of the prime numbers (which are necessarily odd 
numbers) greater than 3 and less than 1000. Recall that a prime 
number is an integer which is not factorable into integers other 
than 1 and the number itself. The only conceivable factors are the 
odd integers from N down to 3, for a candidate number N. If divi­
sion by one of these yields an integer, the number N is not prime. 
(Do not overlook the possibility that SQRT(N) may yield values 
such as 8.9999999999 or 13.000000001 when N is a perfect square.) 

76 



7. Use a double FOR clause to evaluate the series: 

Also evaluate it in the form: 

8 8 8 8 

Lli+ L 2i+J3i + ... + L lOi 
n 

(whereL:mi=ml+ m2+m3+ ... +mn) 

8. Write a program which evaluates the series 

2 3 4 x x x 
ex = 1 + x + 21 + 3! + 4! + ----

to eleven terms by means of a FOR list and the nested form of the 
polynomial. (Hint: 9! = 10!/10, 81 = 91/9 etc.) Use x values from 
0 to 10.00000 in steps of (X+l)/2. Compare, via printed output, 
these results with EXP(x), 

77 



CHAPTER 6 - SUBSCRIPTED VARIABLES 

6.1 THE CONCEPT 

The correct use of a subscripted variable is very important in the 
writing of ALGOL programs. It is imperative that the student 
thoroughly understand this concept. Therefore, the following pages 
will be devoted to some background for and usage of subscripted 
variables. The discussion will be based on a description of what 
is meant by a "set." With this concept firmly implanted, there 
should be no difficulty for the student in understanding the meaning 
and usage of a subscripted variable in ALGOL. 

Mathematics defines a set by using such words as "class," 
"collection," "group," "family," etc. Additional phrases also help 
to define a set. For example: 

a set of dishes 
a set of books 
a set of students at UCLA 
a set of numbers 
a set ot pictures 
a set of numbered cards 
a set of houses in Denver 

It is seen that each set or group represents many constituents of 
similar items. The constituents of a set are referred to as ele­
ments or members of that set. There may be five numbers in a set 
of numbers, twenty books in a set of books, or a thousand students 
in a set of students from UCLA. Each of the five numbers is an. 
element of the set of five numbers, each book is an element of the 
set of twenty books, and each student is an element of the set of 
students. Each set is given a name; the elements or members of 
the set are commonly indicated by means of a subscript number. 

78 



For example, a set of four elements might be written as Di. D 2. 
D3, and D4- These are read as "D sub l," "D sub 2," "D sub 3," 
and "D sub 4." The numbers l, 2, 3, and 4 are called subscripts 
and have no other function except to identify or label a particular 
element; much as house numbers are used to identify a set of houses 
or airplane numbers are used to identify each airplane of a par­
ticnla r airline 

To further exemplify this idea, let's take the example of a set of 
students from UCLA. Suppose there are five students with the names 
of Sam, Jane, Pete, Joe, and Bette. The set of these five students 
will be given the name CLICK; then CLICK1 could represent Sam, 
CLICK2 could represent Jane, CLICK3 could represent Pete, etc. 
Thus, we see that five studentd, presumably each having something 
in common, all belong to the same set and each is a member or 
element of the set, identified by a subscript number. 

As one more example, we take a set of numbered cards. Suppose 
that six cards are numbered as follows: 500, 501, 502, 503, 504, and 
505. If the name of this set of numbered cards is DAT A, then DAT A 1 
represents a card with the number 500 on it,DATA2 represents a 
card with the number 501 on it, etc. In fact, we can go one step fur­
ther and say that DATA! representsthenumber500, DATA2repre­
sents the number 501, DAT A 3 represents the number 502, etc. 

With this last example we can go into the concept of an array. In 
ALGOL, an array has a meaning very similar to that of a set in 
mathematics. The name of an array is called an array identifier; 
the subscript of an array element is called a subscript list. As in 
sets, an array represents a group or series of items-usually 
numbers. The elements of an array generally have something in 
common, either in meaning or usage. Suppose we have an array 
called GRADES where each element of this array represents the 
score of a different student for some particular test. For example, 
GRADE l represents the score of student l in the last history exam­
ination, GRADE2 represents the score of student 2, GRADE 3 repre­
sents the score of student 3, etc. Hence, all the scores are 
referenced by one common name, and each score uniquely defined 
by a subscript number. 

Now in another illustration, suppose there are 400 employees of 
company PQ. Each employee is donating part of his salary to a 
local charity. The amount that each employee contributes can be 
represented by the array identifier DONAT. Then DONATI repre­
sents the contribution of employee number l, DONAT2 represents 
the contribution of employee number 2, and so forth. Assume also, 
that PAY is the identifier of an array which represents the salary 
of all employees, namely, PAY! is the salary of employee l, PAY2 
the salary of employee 2, PAY 3 the salary of employee 3, etc., 
and suppose further, that the contribution of each employee is to 
be deducted from his pay check, then PAY1 minus DONAT1 com­
putes the net pay of employee number l, PAY2 minus DONAT2 
will compute the net pay of employee 2, and so forth. Therefore, 
the net pay of all employees can be computed by -using the same for­
mula but varying the subscript numbers. 

79 



In the preceding example, the donatioh of each employee could 
have been represented by unique names. Thus, DONATI (this is 
not the same as DONAT1 ) could have been used to represent the 
contribution of employee number 1, DONAT2 the contribution of 
employee 2, etc.; but this would require 400 different names to 
represent each employee. The concept of arrays, however, allows 
the use of one identifier to represent all employee donations and a 
subscript expression to reference each employee separately. Since, 
however, all notation in ALGOL is linearized (i.e., all symbols are 
written on the same line), it is necessary to use a sligbtly different 
notation for a subscripted variable than has been used in the above 
examples. Thus, in ALGOL, DONAT[l] is used to represent 
DONAT 1, DONAT [2] is used to represent DONAT2, etc. The exact 
specifications for the writing of a subscripted variable will be given 
later. 

The above discussion has been limited to arrays wlth a subscript 
list containing a single number or subscript expression. This type 
of array is referred to as a one-dimensional or linear array. If two 
subscripts are needed to identify elements of an array, then we say 
that this array is two-dimensional. 

An example of a two-dimensional array is as follows: Assume six 
students are each taking five examinations. The results of these 
examinations can be placed in an array of 30 elements. We could 
use. a one-dimensional array, but a two-dimensional array will 
enable the subscript numbers to have more meaning. For example, 
GRADE1,1 represents the results of test lfor student l; GRAr1E1, 2 
represents the result of test 2 for student 1 ....... and GRADEJ,5 
represents the result of test 5 for student l; GRADE2,1 references 
the result of test 1 for student 2 .•. and GRADE 5 5 references the 
result of test 5 for student 5. This array can be diagrammatically 
pictured as follows: 

s 
t 
u 
d 
e 
n 

1 

2 

3 

t 4 

5 

6 

1 

GRADE array 
Test Results 

2 3 4 5 

L 
L / 

L 
11 

80 

GRADE3 4 
(student ~,result 4) 
GRADE53 
(student ~,result 3) 



Here again the subscripts merely label what is being referenced. 
Picture that each square is a door with its appropriate subscript 
list on it, such as 1, 1 or 3, 4 or 5, 5, etc. These numbers identify 
each door; behind each door is the actual element we reference. 
The element may change its value, but the subscript list on the door 
will never change its value. 

The exact specifications for writing a subscripted variable in an 
ALGOL program is given as follows: 

(subscripted variable) : := (array identifier) [(subscript list) J 

(array identifier) : : = (identifier) 

(subscript list) : := (subscript expression )!(subscript list), 
(subscript expression) 

(subscript expression) : := (arithmetic expression) 

The subscript list specifies the element number within the array 
and is separated from its array identifier by means of the bracket 
symbols ] and [ If there is only one subscript expression in a sub­
script list then the array is said to be a single-dimensioned array, 
otherwise it is called a multi-dimensioned array. The subscript 
expressions of a multi-dimensioned array are separated from each 
other by means of a comma. There is no limit to the number of 
dimensions an array can have; for practical purposes, however, 
more than three or four dimensions are rarely used. Note that the 
subscript expression is defined to be an arithmetic expression. 
This means that all the rules given in Chapter 2 for the arithmetic 
expression can be applied to the subscript expression. In fact, the 
subscript expression can itself contain another subscripted variable. 

Each subscript expression is evaluated to yield a single numeric 
value. This value is treated as though it were of type INTEGER. If 
the evaluation of a subscript expression yields a value of type 
REAL or if in fact the subscript expression is a REAL number, 
then the following operations are automatically invoked before the 
value is used to obtain an element of an array: 

Subscript value = ENTIER (value of subscript expression + 0.5). 

Each subscript expression may take on positive or negative 
values; but the range of each subscript expression may not exceed 
1023 elements. Thus, a subscript expression could take on values 
from 0 thru 1022 or -10 thru 1012 or 5000 thru 6022. 

Verify the following expressions containing sul:scripted variables: 

MAT (-4] 

A+D-MAT[I] 

MATl[JK] 

81 



STUB[3,I] 

MIX[J] -MIX [l] +2.0 

CAD[A..SQRT(C)/2, B-Nx2] 

INV[M+N/3.4] 

SORT(A [l]+INV[2]/3)+JOB 

CHECK [TEST[J] J 

CHECK [TEST[TEST[l] 1 J 

MAN fl,J ,K,L [K] +2 l 

A [I]+ 1 

6.2 ARRAY DECLARATION 

The information that a given variable is subscripted is conveyed 
by means of the array declaration. This declaration also contains 
information as to the type of the array (namely, REAL or INT EGER), 
the number of dimensions in a given array, and the upper and lower 
bounds of each dimension. The syntax for the array declaration 
follows: 

(array declaration) : : = (array kind) ARRAY (array list') 

(array kind) : := (empty) I (type) 

(array list)::= (array segment) I (array list), (array segment) 

(array segment) : := (array identifier) [ (bound pair list) JI 
(array identifier), (array segment) 

The above specifies that the array list is basically made up of an 
array identifier followed by [(bound pair list)]. If the array kind 
is empty then the type of the array is assumed to be REAL, The 
bound pair list is defined as follows: 

82 



(bound pair list) : :: (bound pair) I (bound pair list), 
(bound pair) 

(bound pair) : := (lower bound): (upper bound) 

(lower bound) : := (integer) 

(upper bound) : == (integer) 

Note that both the upper bound and lower bound of each dimension 
of the array must be specified and that they are separated from 
each other by means of the colon. If the program accesses any 
element outside this range an error message is given and the pro­
gram is terminated. If more than one array has the same bound pair 
list and the arrays are all of the same type, the bound pair list 
need not be repeated for each array but rather follows the right­
most array identifier. The number of elements in any one dimen­
sion of an array may not be greater than 1023. 

The following are legal ways to write an array declaration: 

ARRAY MAT[0:240l, MATl [0:2401; 

REAL ARRAY STUBL0:4,1:6 ],CAD[ 400:500,1:50]; 

INTEGER ARRAY CHECK[-60:-4],MAN [0:5,0:25,1:7,4:15]; 

or 

ARRAY MAT ,MA Tl [0:240], STUB[0:4,1:6J, CAD [400:500,1:50]; 

INTEGER ARRAY CHECK [-60:-4]; 

INTEGER ARRAY MAN [0:5,0:25,1:7,4:16]; 

These declarations specify, for example, that array MAT contains 
241 elements; the value of the subscript expression may vary from 0 
thru 240, any other value would constitute an error. 

It should be mentioned at this point that the most efficient lower 
bound of any bound pair list is zero. This efficiency is dictat.ed by 
the B 5500 hardware. Although the extra time associated with a non­
zero lower bound is insignificant, the student should realize that 
larger programs written by efficiency-minded programmers will 
most generally declare arrays with a lower bound of zero-whether 
the zeroeth element is used or not. 

Wherever possible a multi-dimensioned array should be arranged 
so that the right-most subscript expression of the subscript list 
will be the one which is changed the most rapidly. 

83 



6.3 USE WITH THE FOR ST AT EMENT 

One of the most frequent uses of the subscripted variable is with 
the for statement. In this case, it is possible to repeatedly execute 
a statement where the same subscripted variable accesses a dif­
ferent value each time the statement is executed. This is accom -
plished by using the controlled variable in the subscript list of the 
subscripted variable. Whenever the controlled variable changes its 
value, a different element of the array is accessed. Suppose that 
an array is to be searched for the first element containing a value 
of zero. Then the following for statement will transfer control to a 
statement with the label ZERO if such an element is found: 

FOR I ... 1 STEP 1 UNTIL 500 DO 

IF MAT [I] =O THEN GO TO ZERO; 

Another illustration would be when a single for statement is used 
to figure the net pay of X-numbered men. In this example, each man 
is represented by a subscript number. Arrays are set up to contain 
the values of each man's pay rate, his social security tax, dona­
tions, etc. Another array is established to represent his net pay. 
Only one for statement is required to compute the net pay for all 
the men by varying the controlled variable so that each reference 
to an array accesses information for that man only, as follows: 

FOR I ... 1 STEP 1 UNTIL X DO 

MAN[Il ... PAY[Il - FICA[IJ - TAX[IJ - DONATION[I]; 

The last example will illustrate the "zeroing" out of the two­
dimensional array DAT A. Assume the array is declared as ARRAY 
DATA [0:10, 1:12] and that all elements are to be given the value 
of zero. 

FOR I ... 0 STEP 1UNTIL10 DO 

FOR J ... 1 STEP 1UNTIL12 DO 

DATA[I,Jjo-0 

An illustration of the use of subscripted variables is given in the 
following example. This simplified program will compute and print 
the weekly net pay for 100 employees. 

Three cards are read for each employee. Card 1 contains the 
employee number, card 2 the gross pay, and card 3 the numher of 
employee dependents. 

84 



lllGIN PAY l 
FI LE IN CARD <2• 10>1 PAY 2 
FILE OUT LINE l <2• 15>1 PAY 3 
FORMAT IN FIN (f"l2,6ll PAY 4 
FORMAT OUT FT! (XlO• •SIMPLIFIED PAYROLL • A, RASCAL•/l>J PAY 5 
FOR•UT OUT FT2 (6(X4, Ft2,6• X4)/)I PAY 6 
AH RAY EMPNO, GRSS• DEPEND• NETl0199JJ PAY 7 
l~TEGER II PAY II 
REAL TAXI PAY 9 

FON I • 0 STEP l UNTIL 99 DO PAY 10 
READ <CAHO• FIN• EMPNn[JJ, GRSSlll• OE PEND[ IJ )J PAY 11 
FDR I • 0 STEP l UNTIL 99 DO PAY 12 

BEGIN PAY 13 
TAX • <GRSSI JJ • 13 • DEPENDCIJ) • o,1u PAY 14 
NETllJ • GRSSCIJ • TAX PAY 15 

ENO I PAY 16 
•RITE (LINE• FTlll PAY 17 
FOR I • 0 STEP l UNTIL 99 00 PAY Ill 
WR!Tl <LINE• FT2• EMPNOlll• GRSS!ll• NETllJ) PAY 19 

END PAY 20 

85 



EXERCISES 

1. Write a for statement with 3forclausesto store 1.0 in all elements 
of array Z declared as follows: 

Z[0:5,0: -6,-10:10] 

2. Array A contains 50 numbers A[0:49]. Write a for statement to 
check each element for <0 and keep a count of all such numbers in 
variable CT. 

3. :Fill the elements of a 10 by 6 array, A, with values such that: 

when I <J, A [l,J] = I/J 

when I = J, A [1,1) = O 

when I> J, A[I,J] =J/I 

(where 0 < I < 11 and 0 < J < 7). 

Print the arr~, six elements to a line by means of a write list of 
the form A[I,lj, A[I,21 A[I,3], ... , A[l,6} 

4. Generate a 10 by 10 array similar to that of exercise 3 . Then com -
pute and print the summations for row I and column I for I values 
from. 1 to 1 O. 

5. Re-do exercise 5 of Chapter 4, using up to 60 data values. 

6. Re-work the illustrative program of Chapter 3, using a 2 by 3 array 
to store the incoming data. Perform the computations in a for state­
ment, using subscripted variables. To make it more interesting, the 
problem might be done for 3 equations in 3 unknowns. 

7. Re-work the illustrative program of Chapter 5 where the sine 
function is computed via a nested polynomial. Store the polynomial 
coefficients in a one-dimensioned array and write the nested poly­
nomial using a subscripted variable for the coefficients. 

86 



CHAPTER 7- COMMUNICATION - DATA AND RESULTS 

7-1 FILE DECLARATION 

In previous chapters, the reading of input data and the printing of 
the calculated results have been accomplished through the use of a 
read or write statement using identifiers which were defined by a 
fixed set of declarations placed at the beginning of the program. Con­
sider the following examples: 

READ (CARD, FIN, (list)> [(label)] 

WRITE (LINE, FT2, (list)) 

In each of the above examples, the first element within the paren­
theses is an identifier, the declaration of which appeared as one of 
the fixed set at the beginning of the program. The declarations which 
defined CARD and LINE were: 

FILE IN CARD (2,10) 

FILE OUT LINE 1 (2,15) 

The purpose of these declarations, called file declarations, is to 
associate an identifier with a particular data file and a specific 
method for handling the file. The above declarations associate the 
identifiers CARD and LINE with given files. This allows the pro­
grammer to call data files by symbolic names without regard to 
physical equipment requirements, such as, which card reader, etc. 
How the equipment is actually assigned will be discussed later. The 
identifiers may be chosen arbitrarily within the normal restrictions 
on identifiers. 

87 



For purposes of this text a file will be considered as either an 
input file consisting of punched cards or an output file consisting of 
information to be printed on the line printer. A single file, which 
will be uniquely distinguished by its identifier, will be a particular, 
logical grouping of information. For example, all of the input data 
for a program may be considered as a file. 

The syntactical definition of the filedeclarationfollows. The com­
plexity of the definition cannot be avoided since card input and 
printer output are a part of the language facilities designed to handle 
all kinds of input-output media. 

(file declaration)::= FILE (1-0 part)(file part) 

(l-O part)::= IN 1ouT 

(file part) : := (file identifier) (unit designation)< (buffer part)> 

(file identifier) : : = (identifier) 

(unit designation) : := (empty) I (space)l 

(space) : : = (single space) I (space) (single space) 

(buffer part) : == (number of buffers), (buffer size) 

(number of buffers) : : = (unsigned integer) 

(buffer size) : : = (unsigned integer) 

From the syntax, it is shown that the file declaration begins with 
the reserved words FILE IN or FILE OUT. This is followed by the 
file part. 

The file part consists of a file identifier followed by a unit desig­
nation followed by a buffer part in parentheses. The file identifier 
may be any valid identifier and can often be chosen with mnemonic 
appeal. For example, CARD implying card input data. 

The unit designation must he empty for card input files. For 
printer files, the digit one, separated from the file identifier by at 
least one blank, must he used. This is the only exception to the 
discussion on blanks in Section 2.3. 

The buffer part gives the number and size of the buffers in terms 
of unsigned integers. These buffers are arbitrary areas in memory 
which provide temporary storage for character information that is 
received from the card reader or transferred to the printer. The 
use of a buffer will be discussed further in the next section. The 
only consideration that the programmer must give to these buffers 
is their number and size. The number of buffers should be chosen 
according to the amount of data being read or written at a given 
time. Often multiple buffers will cause a given program to run more 
rapidly. For many problems, however, two buffers will be nearly 
an optimum choice. 

88 



The information contained in one punched card is interpreted as 
80 alphanumeric characters. This requires a buffer of ten words 
since each buffer word holds eight characters. Since we can print 
120 alphanumeric characters on a line of output, a buffer of 15 
words is required for one line of print. This explains the occurrence 
of 10 and 15 in the buffer size part of our previous examples. 

For many programs, the two file declarations previously used are 
adequate. The programmer might consider changing the buffer part 
to specify more than two buffers, if the program is highly depend­
ent on input or output. 

7.2 FORMAT DECLARATION 

The second identifier which appears in the parenthetical expres­
sion associated with both the read statement and the write statement 
is a format identifier. This identifier refers to precise specifi­
cations for the editing of input or output data. This identifier is 
associated with its corresponding editing specifications in a format 
declaration. 

It is necessary to specify this editing information, since data in 
an external representation is in the form of characters which must 
be converted into numerical values in the computer. (Care should be 
taken when comparing data read from cards with program constants 
since the converted input value may not be exact in the least signifi­
cant digit position; i.e., @+12 may not exactly equal 0.00000001@+20 
where the former is a constant and the latter an input value.)The pro­
grammer must indicate in what form the external data is furnished, 
in the case of input, or is to appear, in the case of output. For card 
input the programmer must specify exactly how each column of the 
card is to be treated when read. Similarly, it must be inlilicated 
exactly how each column of a printed line is to appear. It is usually 
best to lay out the desired format, possibly on grid paper, to 
facilitate the writing of editing specifications to obtain this format. 

The input capability used up to now allowed a card of the form 

1 
Fxxxx.xxxxxx 

to be read by the read statement 

READ (CARD, FIN, (list)> 

The identifier FIN refers to the format for editing this data as it 
is read into the computer. This format, recall, was of the form 
Fl2.6. This says to treat only the firsttwelve columns on the card, 
where there are six digits to the right of the decimal point (which 

89 



is in column 6), as a string of characters to be translated into the 
machine representation of a real number. 

On input, the information from a card is deposited in the buffer in 
character form. It is then converted, according to the editing speci­
fications, into the internal numerical form. In the output case, the 
program deposits the character information, according to output 
editing specifications, into the buffer. From there, it is automatically 
transferred directly to the printer. 

For reference purposes, in the following discussion, it will be 
valuable to list the syntax of the format declaration. 

(format declaration) : : = FORMAT(I-0 part) (format part) j 
FORMAT {format part) 

(I-0 part) : : = IN I OUT 

(format part ) : := ( format identifier ) ( (editing specifications)) 
(format part), (format identifier) 
((editing specifications)) 

(format identifier) : : = (identifier) 

(editing specifications)::= (editing segment) I 
(editing specifications) ;I 
/ (editing specifications) j 
(editing specifications) 

(editing segment) 

(editing segment) : : =(editing phrase)/ 
(repeat part) ({editing specifications)) I 
(editing segment), (editing phrase'> I 
(editing segment), (repeat part) 
( (editing specifications)) 

(editing phrase) : : = (repeat part) (editing phrase type) 

(field part) I (string) 

(repeat part) : : = (empty) I (unsigned integer) 

(editing phrase type) : : :::: E j FI RjI jX 

(field part): : :::: (field width) I (field width). (decimal places) 

(field width) : : :::: (unsigned integer) 

(decimal places)::= (unsigned integer) 

(string) : : = " {any string of valid characters except"} " 

The syntax indicates that the declaration begins with the reserved 
word FORMAT, which, may at the option of the programmer, be 
followed by IN or OUT. Next, there is an identifier which is to be 
associated with the adjacent editing specifications. 

90 



The editing specifications, themselves, are made up of editing 
segments which are in turn made up of editing phrases. It is the 
editing phrase type and its use in forming more complex struc­
tures which must now be considered. The editing phrase is the basic 
mechanism for describing the conversion of character strings into 
numeric form and vice versa. On output it also performs the addi­
tional function of transmitting a fixed string of characters, given as 
an editing phrase. 

For the editing of input information, the F, E, and R type editing 
phrases treat numbers with decimal points, converting them into 
real numbers internally. The I type is applicable to integers. The 
X type phrase, when applied to input, indicates that a certain number 
of columns on the card are to be ignored. 

When editing output, the E, F, R, and I phrases have an analogous 
function to the above, that is, they produce either decimal numbers 
or integers in the output string. The X phrase produces a specific 
number of blank spaces in the output line. 

The number of characters to be treated as a group by a particular 
editing phrase and the position of the decimal point, in the case 
of E, F, and R type editing phrases, is given by the field part. The 
field width is an unsigned integer specifying the number of charac­
ter positions to be edited. The decimal places are also indicated by 
an unsigned integer and specify the number of character positions 
between the decimal point and the right end of the field. 

For example, F6.2 would say to treat the contents of a field six 
characters wide, where the fourth character will be a decimal point, 
as a decimal number. This would be used to edit a number such as 
-32.05 appearing on a card. 

The following tables and associated discussion will clarify the 
use of the various editing phrase types for both input and output. 

INPUT EDITING PHRASES 

Editing Editing Type of Example 
Phrase Phrase Variable Reing of Field 
Type Example Processed As Initialized Contents 

E E9.2 6-bit characters REAL +7.18@-03 

F F7.l 6-bit characters REAL -3892.5 

R R8.0 6-bit characters REAL -5.1362 
63.0ElO 

I 16 6-bit characters INTEGER -76329 

x X7 6-bit characters None any 7 
characters 

91 



The definition of each input editing phrase type is given below: 

E - In~tializes a variable to the number found in the field described by 
field width. Field width must be at least 7 greater than decimal 
places, since the input data is required to be in one of the following 
forms: 

-n .ddd---d@+ee 
+n.ddd---a@+ee 
n. ddd ---d@+ee 

nn.ddd---d@,!ee 

A two-digit exponent must be in the rightmost two characters of the 
field. Preceding it, must be a sign, and preceding the sign is an @ 
symbol. Next, to the left, is a number of digits equal to decimal 
places in the editing phrase, preceded by a decimal point. To the 
left of the decimal, there may be either two digits or a sign and one 
digit. The sign may be indicated by+, -, or a single space which is 
interpreted as positive. 

F - Initializes a variable to the number found in the field described by 
field width. The input data must be in one of the following forms: 

+nn---n.dd---d 
-nn---n.dd---d 
nn---n.dd---d 

nnn---n.dd---d 
+.dd---d 
-.dd---d 

.dd---d 

The field width must be at least two greater than the decimal places 
to accommodate the decimal point and a possible sign. A decimal 
point must be present; zero or more digits may precede it. Finally, 
there must be one or more digits after the decimal point; the number 
of these digits must equal decimal places in the editing phrase. The 
rightmost decimal place must fall in the rightmost character of the 
field. If the sign is omitted, the number is taken to be positive. 

R - Initializes a variable to the number found in the field described by 
field width. It will treat data in either the E or the F formats with 
the following features: 

1. The number can be positioned anywhere in the field. 

2. The actual position of the decimal point in the number overrides 
that specified in the decimal place part of the editing phrase. 

3. The & is accepted as a+. 

4. An E may be used instead of (Q'. 

"i. The exponent part need not contain a si)ln position. 

92 



I - Initializes a variable to the integer found in the field described by 
field width. The least significant digit must fall in the rightmost 
character of the field. The sign need only occur if it is negative. 

OUT PUT EDITING PHRASES 

Editing Editing Type of Example 
Phrase Phrase Evaluated of Field 
Type Example Processed As Expression Contents 

E Ell.4 6-bit characters REAL -0.0125@+02 

F F9.3 6-bit characters REAL 6735.125 

R Rl0.3 6-bit characters REAL -1328.001 
-1.576@+05 

I 16 6-bit characters INTEGER 346140 

x XB 6-bit characters None 8 blanks 

Each output editing phrase type is defined below. 

E - Places the value of one expression in the field described by field 
width. This value has the following form when placed in the output 
data string: 

n.dd---d@_!ee 
-n.dd---d@~e 

Again, the field width must be 7 greater than the decimal places. 
If this is violated, an asterisk is printed in place of the number. 
If field width is more than 7 greater than decimal places, leading 
single spaces are used to complete the field. The value of the 
expression is rounded to one more than the number of places indi­
cated by decimal places of the editing phrase. The sign of the num­
ber, the first significant digit, and a decimal point occur first. If 
the number of significant digits in the expression value is less than 
decimal places plus one, trailing zeros are appended. To complete 
the field, the symbol@, the sign of the exponent, and the appropri­
ate two-digit exponent are inserted. 

The sign of the number is represented by a single space if positive, 
and a minus sign if negative. The sign of the exponent is either + or 
-. 

F - Places the value of one expression in the field described by field 
width. This value has the following form when placed in the output 
string: 

93 



nn---n.dd---d 
-nn---n.dd---d 
nnn---n.dd---d 

The expression value is rounded to the number of designated decimal 
places and that number of decimal places will be printed. If the 
digits preceding the decimal point and the sign of the number (if 
negative) do not fl.ii the remainder of the field, leading single spaces 
will be used to complete the field. If the specified field width is 
inadequate for printing the number, an asterisk will be printed 
instead of the number. 

R - Places the value of one expression in the field described by the 
field width. Depending on the size of the number to be converted, 
a choice is made between the E and F formats. If the number will 
fit into the format described by the field part, F type editing is used. 
Otherwise, it is edited using E type editing. 

I - Places the value of the expression in the field described by the field 
width. The expression value is rounded to an integer and placed 
completely to the right in the field, preceded by a minus sign for a 
negative number and leading single spaces, if any. 

The sign of the number is the same as for the E editing phrase type. 

Again, an asterisk is printed if the number of digits in the expres­
sion value exceeds field width for positive values or exceeds field 
width minus one for negative values. 

X - Places a number of single spaces, as indicated by field width, in the 
output string. 

Each editing phrase describes a portion of the input data being read 
or the output data being written. If the same editing phrase or 
series of editing phrases occur several times, the repeat part may 
be used to conserve writing. For example, the series of editing 
phrases FS.2, FS.2, FS.2 may be written 3F5.2. Similarly I3, X3, 
FS.2, 13, X3, FS.2 is equivalent to 2(13, X3, FS.2). If the repeat 
part is omitted before an editing phrase or phrases enclosed in 
parentheses, the effect is the same as if the repeat part were 
infinite and a slash were to appear just inside the right parenthesis. 
The occurrence of a slash (/) within a series of editing specifica­
tions causes a skip to the next record. In card input, this causes 
the remainder of the present card to be ignored and the next one 
read if more data is required. In printer output, it causes the 
remainder of the line to be filled with blanks. Subsequent data will 
then appear on the following line or lines. 

The series of editing phrases which occur in a particular set of 
editing specifications is applied to the data from left to right. When 
the end of a set of editing specifications is reached or the end of 

94 



the list part of the I-0 statement has been reached, the same action 
is effected as that which occurs when a slash is encountered. If, 
when the end of a set of editing specifications is reached, more 
items remain in the list, the format is reused from the beginning. 
If a slash follows the editing specifications for a complete record, 
the effect of two slashes is qbtained. 

Note that the syntax requires that commas be used to separate edit­
ing phrases within an editing segment. The quote marks at the ends 
of a string, which is one type of editing phrase, do not relieve the 
need for the comma. A comma may not appear adjacent to a slash 
since the comma is needed only within an editing segment. 

7.3 LIST DECLARATION 

The list declaration associates a set of arithmetic expressions with 
an identifier. Previously, in reading or writing, it was necessary to 
include the list in the read or write statement. The same effect is 
obtainable by the use of a list identifier in the I-0 statement. 
Formally the list declaration appears as follows: 

(list declaration ) : : = LIST (list part) 

(list part): : = (list identifier) ( (list)>!(list part), (list identifier) 
<(list)> 

(list identifier) : : = (identifier) 

(list) : : =(list segment) I (list), (list segment) 

(list segment)::= (expression part) I (for clause) (list segment) I 
(for clause) [(expression list) 1 

(expression part) : : =(arithmetic expression ) 

(expression list) : : = (expression part) I (expression list), 
(expression part~ I (list segment) I 
(expression list), (list segment) 

The syntax indicates that the list is a declaration containing a 
series of list identifiers and the list segments associated with 
them. Several examples should serve to illustrate the possible forms 
that the list may take. 

LIST Ll (A, B, C, 0) 

95 



This declaration associates the list of variables A, B, C, and D with 
the identifier Ll. If it is used in a read statement it will cause four 
variables to be initialized with input data. In the output case, it will 
cause the values of the four variables to be printed. 

LIST AFT (X, Y+2, Z*2, SQRT(X+Y), 1.5) 

The list AFT may only be used in a write statement since it con­
tains expressions. These expressions will be evaluated, using the 
current values of the variables, before being printed. Since a con­
stant is a valid arithmetic expression it may also appear as a list 
element for output. A minor restriction on the use of function desig­
nators in output list elements is discussed at the end of Section 10. 4. 
If only variables appear as elements of the list, the list may be used 
for both reading and writing. Ll above is such a list. 

LIST INPT (A, B, FOR I .... 1 STEP 1 UNTIL 3 DO X [Il> 

This list might be used in reading five input values. The first two 
will be assigned to A and B. The remaining three values will be 
assigned to the array elements X [l], X [2], and X [3 ]. In other 
words, a for clause followed by a subscripted variable may appear in 
a list for use in reading data into an array. 

LIST TWOARRAY (FOR I .... 1STEP1 UNTIL3 DO [A [I], B [11, C [I]]> 

This will cause the first three input data values encountered to be 
assigned to A [l ], B [l], and C [l ], the next three to A [21, B [21, and 
C [21, etc. It is possible to nest for clauses for use in reading data 
into arrays of more than a single dimension. 

One list declaration may contain several lists separated by 
commas. 

LIST Al (A, B, C), LIN (X+Y, Z*2), OUPUT (FOR I .... 1 STEP 1 
UNTIL 3 DO FOR J .... 1 STEP 1 UNTIL N DO 
[Q[I,J], P[I,J]]> 

7.4 READ STATEMENT 

The read statement actually causes values t•; be read from cards 
and assigned to specific variables. Recall that the read statement, 
which we have been using, actually refers to identifiers whose mean­
ings have been spelled out by declarations. The syntax of the read 
statement follows: 

96 



(read statement) : : = READ ((input parameters)> (action label) 

(input parameters): : = (file identifier),(format identifier), (list) I 
(file identifier), (format identifier), 
(list identifier) 

(action label) : : = [(end of file label) JI (empty) 

(end of file label) : : = (label) 

The file and format identifiers refer symbolically to the file 
from which the data is to be read and the specifications which are 
to be used in editing it. The list part may be an identifier referring 
to a list which is specified in a declaration, or it may be an actual 
list. 

The action label is a label to which control is transferred when an 
attempt is made to read more data than exists. Obviously, it must 
be a label which has been appropriately declared. 

When a read statement is executed, reading continues until all 
variables in the list have been assigned values. This requires care­
ful attention to the one-to-one correspondence which must exist 
between the input data elements, the format editing information, and 
the list elements up to the end of the list. Recall that the input 
character string is initially brought into a buffer from the card 
reader. The editing specifications are used to extract data values 
from the buffer and convert them into internal numerical represen­
tation. These values are assigned sequentially to the variables 
in the list. This process can occur simultaneously with the filling 
of other buffers, if more than one has been specified. The refilling 
of a buffer is initiated automatically, as soon as its present con­
tents have been edited. 

7.5 WRITE STATEMENT 

The write statement is highly analogous to the read statement. Its 
obvious function is to print out the values of elements which appear 
in its list. It can also be used to print strings of characters given 
in format declarations. Syntactically it appears below. 

(write statement) : : = WRITE ((output parameters)> 

(output parameters) : : =(file identifier) 
(format and list parameters ) 

97 



(format and list parameters) : : = <format and list part) I (empty) I 
[(skip to next page ) J 

(format and list part): : = , (format identifier) I 
,(format identifier), (list)! 
, (format identifier), ( list identifier) 

(skip to next page) : := PAGE 

The syntax points out several interesting features of the write 
statement. It can be used, in a form much like a read statement, co 
refer to a file, a format, and a list to print values of the expres­
sions in the list. 

Notice that, according to the syntactical definition, the file iden­
tifier must always be present while the format and list part might 
be empty. A write statement of the form 

WRITE (Fl) 

where Fl is a file identifier is perfectly valid. It would cause the 
printer to skip one line. 
If the format and list part consists of the skip to next page alter- . 

native, 

WRITE (Fl[PAGE]) 

the printer paper will be advanced to the top of the next page. The 
skip to next page alternative should not appear with a format and 
list part. 

Headings and other constant information can be printed using the 
alternative definition of the format and list part which says thar it 
may be a format identifier alone. 

Notice that a comma must separate the file identifier from the 
format and list part. Similarly a list part must be separated from 
the format identifier by a comma. The list part is defined syntacti­
cally in the previous section. 

There must be a correspondence between numeric values to be 
printed, editing specifications, and list elements, just as there was 
in the input process discussed in the previous section. The entire 
output process is analogous to that of input except that the direction 
of information flow is reversed. 

It is possible to expand the example of Chapter 6 so that various 
1/0 editing can be illustrated. Note that, in this example, a slightly 
different approach has been taken, in that no arrays are used. 

Assume that the pertinent data for each employee is punched on an 
input card of the following format: 

Cols. 1-5 - employee number (15) 

Cols. 9- 14 - hourly base rate of pay (F6.2) 

Cols. 18-20 - number of hours worked - to the nearest hour (13) 
98 



Cols. 24-27 - overtime factor for hours over 40 (F 4.1) 

Cols. 31-33 - number of dependents (13 ) 

Cols. 37-42 - weekly donation to United Fund (F6.2) 

Cols. 46-51 - weekly contribution for savings bonds (F6.2) 

FILE IN 
FILE OUT 
FllHMAT 
FORMAT 

FORMAT 

FORMAT 

REAL 
JlllTEGLR 
LAllEL 
COHMEllT 

CUMMENT 
MOREi 
COMMENT 

CDHM[NT 

COMMENT 

COMMENT 

FINIS• 
COIOl[NT 

BEGIN TAX l 
CAHDl2•10>J TAX I' 
LINE l C2•15)J TAX 3 
FMICl5.x3.F6.2.x3.13•X3•F4ol••3•13•2CX3•F6,2) ) ' TAX 4 
FMTH(•[MPLOY[[•.xl••"HDURS UNITED FUNO•.xs.•sAVINGS B"TAX 5 

"ONO GROSS" ,. llUMBER BASE PAY WDRKEo•.x3. TAX 6 
"CONTRIBUTION CDNTRIBUTION".xs."PAY"• TAX 1 
x1.•N[T PAY•.x7.•TAX" ,,, TAX 8 

FHTO<Xl•l5•X6•F6o2•X4•14•X7•F6,2•X10•F6,2•X8•2<F7,2•X5)• TAX 9 
r7o2)J TAX 10 

FHTOCX!O~··•••••••• ••••••••"•XB• TAX 11 
••••••••• •••••••••• ••••••••••)• TAX 12 

FMTT(• TOTAL • "•F7,2.x2.16.X5.ra.2.x8.ra.2.x5.F10.2. TAX 13 
Xl,F9,2 )J TAX 14 

BASE.NET.UF.BOND.GRS.NETT,BASET.UFT.RONOT.GRST.DVERT,TAXJTAX 15 
EMP,HRW,HRWT•DEPJ TAX 16 
FINIS.MORE I TAX 17 
PRINT HEAOINGSJ TAX 18 
WRITE<LINE,FMTH)J TAX 19 
HEAD CARDS AND PRINT RESULTS UNTIL END or FILE REACMEDJ TAX 20 
HEAOCCARO.rMI.£MP.8AS£.HHW•OVERT.oEP.uF.BOND>CFINISJJ TAX 21 
COMPUTE GROSS PAY FROM 8ASl PAY AND OVERTIMEJ TAX 22 
Ir HRW > 4D THEN TAX 23 
GAS • ~O • BASE + OVERT•BASE • (HRN•40) ELSE TAX 24 
GRS • HRW • BASEi TAX 25 
COMPUTE TAX 1 TAX 26 
TAX • CGNS • 13 x OEP> x Ool4J Ir TAX < O THEN TAX • 01 TAX 27 
COMPUTE NET PAY AND PRINTJ TAX 28 
NET • GRS • TAX • BOND • uF ' TAX 29 
WRJTl <LINE.rMTU.EMP•BASE.HR•.ur.eONO.GRS.NET.TAX)J TAX 30 
CUMULATE TOTALSJ TAX 31 
HASET • HASET + BASEJ HRWT • HRWT + HRWJ TAX 32 
UFT • UFT + UF ' BONDT • RONDT + BDNDJ TAX 33 
GRST + GRST + GRSJ NETT + NETT + NET J TAX 34 
GD TU MOR[J TAX 35 
NRITllLINE.rMTUlJ TAX 36 
PRINT T0TALSJ TAX 37 
NRITECLINE,rMTT•BASET•HRWT•UFT•BDNDT•GRST•NETTlJ TAX 38 

END, TAX 39 

99 



EXERCISES 

1. Write formats for the following output table with appropriate spac­
ing between columns for readability. 

Number Area Diameter 

x x.xxxx®!_xx xxxx.xx 

2. Day, month, year, and page are variables containing two digit 
integers. What are the necessary format declarations and write 
statement(s) to print the heading 

TODAYS DATE IS xx/xx/xx. PAGE xx 

3. Lay out a data card in the following format 

FORMAT FN(X3,I6,F6.2,E20.6,X10,Rl2.6). 

4. Print a checkerboard, using the asterisk to form the lines and the 
letter X to fill in the dark squares. (Each printer space is 0.10 
inch wide and each line occupies 1/6 inch of vertical space.) 

5. Write a program to read in an array of N rows and M columns from 
cards with a reasonable number of data items per card (leaving 
space for sequence numbers). N and M, as well as a numeric repre­
sentation of a date, are to be read from the first data card. Print 
the array in some sensible format, giving N and M and the data as 
part of the annotations in a suitable heading. Neither N nor M is to 
exceed 30. If this is violated in the data, print an error message. 

100 



CHAPTER 8 - INTRODUCTION TO PROCEDURES 

8.1 SUBPROGRAM CONCEPT 

There are many facets to the ALGOL concept of the subprogram. 
Only a few of them will be covered in this introductory chapter. Some 
of the more abstract (and powerful) aspects will be reserved for 
discussion in the next chapter. 

A subprogram is a portion of a computer program which, for 
various reasons, is set apart from the main body of coding. It may 
be called into action from one or more points in the main program 
in $UCh a way that, when the subprogram has been executed, con­
trol returns to the calling point. It is as if a transfer of control from 
the main program could carry with it a label from the next state­
ment in sequence which could later be used to transfer back to that 
statement. 

Such a capability exists in ALGOL in the form of procedure declar­
ations and procedure statements. These will be formally defined 
later. For the present, we shall consider the procedure declaration 
to be a subprogram and a procedure statement a call on a sub­
program. 

The procedure statement causes a subprogram to be executed as 
if it existed as a body of ALGOL coding at the point occupied by the 
procedure statement. 

A variety of reasons to use subprograms can be given. Examples: 

1. If the same sequence of statements should occur at several 
points in a program, it can be made into a subprogram with 
gains in original writing and keypunching effort, ease of making 
revisions, readability, etc. 

101 



2. Subprograms can be devised and perfected in relatively simple 
test programs and then used in one or more, perhaps complex, 
unrelated programs. Little, if any, additional testing of the sub­
program is needed with each new use. 

3. Voluminous and difficult programming efforts can be packaged, 
as subprograms, for the use of many people other than their 
originators. With adequate description of the gross properties 
of a subprogram, it can be used by people Who never need bother 
with understanding its details. 

Note that in examples 2. and 3. there is no need to call upon a sub­
program more than once in a given program. The payoff is obtained 
by being able to utilize with confidence a proven section of program 
without the slightest alteration. This is apart from the benefits 
derived from clarifying the logical structure of the main program 
and from the ability to make major revisions easily. 

The present chapter provides only an introduction to the ALGOL 
procedure. Two important points will be established here: 

1. The entire subprogram, called a procedure in ALGOL, has the 
status of a declaration in the program. 

2. The form of procedure discussed here is called into action by an 
ALGOL statement which consists simply of the name arbitrarily 
given to the procedure in its declaration. 

8.2 PROCEDURE DECLARATIONS AND STATEMENTS 

The ALGOL constructs to be formally defined here are highly 
restricted relative to what is possible in B 5500 Extended ALGOL. 
The next chapter presents procedure declarations and statements 
in a much less restricted form. 

As with any other identifier, it is essential to declare the meaning 
of a procedure identifier before it can be used in a procedure state­
ment. Thus we have the procedure declaration which is defined as 
follows: 

(procedure declaration) : : = PROCEDURE(procedure identifier); 
(procedure body) 

(procedure identifier): : = (identifier) 

(procedure body) : : = (statement ) 

I 02 



In this simplified version, we see that a PROCEDURE is declared 
in such a way as to associate an identifier with a body of ALGOL 
coding. The procedure identifier is formed by the same rules that 
apply to any identifier. The procedure body may consist of any of the 
many forms of unlabelled statements. In many cases it will be a 
block. 

All identifiers appearing within a procedure body must, of course, 
be declared somewhere. If the procedure body is not itself a block, 
the identifiers occurring within it must be declared prior to the 
procedure declaration. If the procedure body is a block, additional 
"local" identifiers will be declared within it. Even then, under the 
restrictions of this chapter, some of the identifiers must be global 
(and declared prior) to the procedure declaration, in order for the 
procedure to have any meaning in the program in which it appears. 

There is no restriction on the usage of identical identifiers 
inside and outside of a procedure for totally different purposes. 
Consider a variable, HAY, occurring both in a procedure and in the 
program in which the procedure is declared. If it is separately 
declared within the procedure body, the effect is the same as if it 
were spelled HAY in the program and HEY (or any other spelling) 
in the procedure body. 

fhere is one additional restriction which applies to the procedure 
body of a procedure in B 5500 Extended ALGOL. Any identifier that 
is used but is not declared within a procedure body must be declared 
in a surrounding block, which is not itself another procedure body. 
This simply means that, if a procedure is declared within the body 
of another procedure, the body of the inner procedure may not use 
identifiers which are declared in the body of the outer procedure. 

For the restricted form of the procedure being discussed here, 
the statement which calls a procedure into action is very simple. It 
consists solely of the procedure identifier. Formally, this is 
expressed by 

(procedure statement) : : = (procedure identifier) 

The net effect of the execution of a procedure statement in a pro­
gram is the same as would be obtained if the entire procedure body 
were copied into the program at the point occupied by the procedure 
statement. Note, however, that such copying is not done by the 
ALGOL compiler. Rather the coding for the procedure body exists 
in one place only and all procedure statements cause control to be 
transferred to that one body of code. Upon completion of the execu­
tion of the procedure body, unless a go to statement has led to 
another point, control is returned to the point immediately follow­
ing that procedure statement which called the procedure. 

One small example will show how a simple procedure might be 
written and used. Suppose there were many occurrences in a 
program of a division with a (possible) divisor of zero. Suppose 
further that the desired results, C, for the division of A by B were 
specified by the table 

103 



A B c 
(any) ;io A/B 

>0 :0 +5@10 

:: 0 ::0 0 

<0 =O -5@10 

These rules could be expressed in a single conditional statement 
and made into a procedure as follows: 

PROCEDURE GOOFYDIV; 

IF B ~ 0 THEN C ... A/B ELSE 

IF A :: 0 THEN C ~ 0 ELSE 

IF A < 0 THEN C ... -5@10 ELSE 

c ... 5@10 

(Note that we have ignored the availability of the common function 
SIGN.) 

A typical use of this procedure would be to avoid anticipated 
divisions by zero in a statement, such as: 

Y(I,J,K] ... w[r+1,J,K-FJ / x (N-1,I] 

In place of this, one would write 

A ... W(I+l,J,K-F]; 

B ... X (N-1,I]; 

GOOFYDIV; 

Y(I,J,K] ... C 

Even in this simple-minded example, some saving in writing effon 
and a gain in clarity are found. Note, however, that the three vari­
ables A, B and C are global to the procedure body and must be 
declared before the procedure declaration. 

104 



8.3 ELEMENTARY USE OF THE PROCEDURE 

Presented below is a complete but simple program that illus­
trates many features of the procedure which were formally 
discussed in the preceding section. This example should not be 
misconstrued as an attempt to "sell" a particular philosophy of 
input data formatting. It was chosen because it provides an interest­
ing case for the use of procedures in ALGOL. A very similar 
example is used again in Chapter 9 to show, by comparison with the 
present example, the power of the more abstract features of pro­
cedures. 

BEGIN 

COMMENT 

FILE IN 

FILE OUT 

REAL 

INTEGER 

LABEL 

PROCEDURE 

BEGIN 

COMMENT 

A PROGRAM TO ILWSTRATE BASIC 
ASPECTS OF ALGOL SUBPROGRAMMING; 

CARD (2, 10); 

LINE 1 (2, 15); 

LOW, HIGH, DAT AVAL, A,B,C,D,X; 

LASTCDNO, RUN; 

EOFLAB, ERRLAB, ST ART; 

GETDATA; 

A DATA INPUT SUBPROGRAM THAT DOES 
THE FOLLOWING: 

(1) READS A DATA VALUE FROM A FILE 
"CARD", 

(2) PRINTS THE VALUE AND CARD NUMBER 
ON A FILE "LINE", 

(3) CHECKS FOR CORRECT CARD 
SEQUENCE, 

(4) CHECKS DAT A VALUE FOR PROPER 
RANGE, 

(5) PRINTS ERROR MESSAGES ASNEEDED. 

BESIDES FILES "LINE" AND "CARD", 
SIX NON-LOCAL IDENTIFIERS ARE USED 
AS FOLLOWS: 

105 



FORMAT 

FORMAT 

INTEGER 

LIST 

BEGIN 

END; 

BEGIN 

END; 

LASTCDNO-PREVIOUS CARD NO., 
INITIALLY ZERO 

DATAVAL - VALUE TO BE READ FROM 
CARD 

HIGH - UPPER LIMIT ON DAT AVAL 

LOW - LOWER LIMIT ON DAT AV AL 

ERRLAB - LABEL TO GO TO UPON 
ERROR 

EOFLAB - LABEL TO GO TO UPON 
END-OF-FILE 

ALLVAfilABLESMAYBEOFTYPEREA~ 

CRD (15, F20.9); 

CIM("CARD NO" 15 XlO "VALUE...J' • I I I - I 

F20.9), 

SQER (/X50, "CARD SEQUENCE ERROR"), 

VOR (/X50, "LAST VALUE OUT OF RANGE"); 

CARDNO; 

KRD (CARDNO, DAT AV AL); 

READ (CARD, CRD, KRV) [EOFLAB ); 

WfilTE (LINE, CIM, KRD); 

IF CARDNO - LASTCDNO:# 1 THEN 

WRITE (LINE, SQER); GO TO ERRLAB 

IF DATA VAL> HIGH OR DAT AVAL< LOW 
THEN 

WRITE (LINE, VOR); GO TO ERRLAB 

LASTCDNO ... CARDNO 

106 



FORMAT 

START: 

END OF GETDATA; 

HEAD (X30, "THIRD DEGREE POLYNOMIAL ", 
"EVALUATION---PROGRAM WXYZ" 11 I>. 
POLLY ("RUN NO.'' , 17, X6, "POLY=", E20. 81); 

WRITE (LINE, HEAD); 

LASTCDNO .... O; 

HIGH .... 10000; LOW .... l; GETDATA; RUN .... 
DAT AVAL; 

HIGH .... 1 ; LOW .... O; GETDATA; A .... DAT AVAL; 

GETDATA; B ... DATAVAL; GETDATA; C .... 
DAT AVAL; 

HIGH ... @-6; LOW --.1; GETDATA; D~ 
DAT AVAL; 

HIGH ~ 100 ; LOW .... 10; GETDAT A; X ~ 
DAT AVAL 

WRITE (LINE, POLLY, RUN,A +XX (B +XX 
(C +Xx D))); 

GO TO START; 

ERRLAB: EOFLAB: END OF PROGRAM WXYZ. 

The foregoing ,example program illustrates several important 
aspects of ALGOL procedures. It also contains several points of 
interest concerning ALGOL and good programming practice. The 
latter are flagged with asterisks in the list below. 

1. The procedure named GETDATAisjustoneofmany declarations 
in the program. 

2. All identifiers which are global to the body of the procedure are 
declared prior to the occurrence of the procedure declaration, 

3. The procedure body which can be any statement is, in this case, 
a block, since within the body there are declarations for CRD, 
CIM, SQER, VOR, CARDNO, KRD. 

4. Exit from the body of the procedure is possible by four different 
paths, one via the action label, two via go to statements, and one 
via reaching the end of the body. The last one is the normal and 
most efficient method of exit. 

107 



*5. The procedure is reasonably well documented by means of a 
built-in comment. It could thus be used, with ease, in a variety 
of unrelated programs. 

6. There are six separate calls on the subprogram GETDAT A in 
the program. The effect is the same !! if the body of the pro­
cedure were insened into the ALGOL program at all six 
occurrences of the statement GETDAT A. 

*7. The good practice of providing a record in the program output 
of the input data has been followed here. Also, an identifying 
heading for the program output is furnished. 

*8. The input data are qualitatively checked for correctness by the 
program. This process is somewhat simplified by the use of the 
subprogram GETDAT A. 

9. A point of interest is the use of two labels on the dummy state­
ment preceding the final END of the program. I~ other programs 
using GETDAT A these two labels might well be on different 
statements. 

*IO. The insertion of suitable comments after the END which ter­
minates a procedure body contributes significantly to the read­
ability of an ALGOL program 

11. A final point of interest is that the only "computing" done in 
the entire program appears in the polynomial expression in the 
list of the write statement. 

108 

., 



COMMENT 

F'ILE IN 
F'ILE OUT 
F'ORMAT 

BUIN 
ILLUSTRATION OF' THE SOLUTION OF' THREE SIMULTANEOUS 
EOUATIONS1 USING TWO SUBPROGRAMSJ 
CARD (2110)J 
LINE 1(2115>1 
ID <"ILLUSTRATION PROGRAM • CRAMERS RULE • DHT2"/), 
HD cx25,•A•.x15,•a•,x151•c•.x15,•o•.xa5,•x•11, 
ANS (3(X151 •F't6,71 E26o6/l// >• ERR<•OETERMINANT•O•/)J 
KARO Uf"l5o7ll 
M[013101•J• X[013JI 

ARRAY z, Rl1 R21 R31016JI 
D1 OENI 

F'ORMAT 
ARRAY 
INTEGER 
REAL 
INTEGER 
LABEL 
PROCEDURE 

COMMENT 

INTEGER 

PROCEDURE 

COMMENT 
INTEGER 

REEDI 

AUSI 

8AD1 
OIJNNI 

BEGIN 

I, J• Ct, C21 C3J 
DUNN• REED, BAD• AUSJ 
DETER 31 

EVALUATES DETERMINANT WHOSE COLUMN NUMBERS IN 
THE M ARRAY ARE GIVEN BY c1. c2. AND CJI 
II 
D + OJ 
roR I • l STEP l UNTIL 6 DD 
D + D + ZllJ x MCR1CIJ1ClJ x MIR2CIJ1C2J x MCR3Cll1C3J 

END OF' DETER31 

BEGIN 
llSETJ 

SETS UP Z1Rl1R21R3 ARRAYS WITH VALUES NEEDED BY DETER3J 
II 
roR I + l STEP l UNTIL 6 DO Ziil + SIGN(I • 3o5ll 
Rllll + R2121 + R3131 + Rll4] + R315J + R216] + lJ 
R3Ctl + RlC21 + R2C31 + R2C41 + RlC5] + R3[6J • 21 
N2Cll • R3[2J • Rll~I • R314J + R2[5J • Rl[6J • 3 

END or KSET I 

END 

WRITE CLINE• JDIJ 
NEAD <CARD. KARO. roR 

F'DR J 
c1 • 11 c2 • 21 cl 
Ir DEN • 0 THEN GD TD 
Cl • 4J 
cl • lJ C2 + 0 

llSETI 
I • 112•3 DO 
+ 1,2,J,4 DO 
• 3J DETERlJ 
BADJ 

OETER]J 
DETER JI 
DETER JI 

MC11JJ)[DUNNJJ 
DEN + DJ 

X11J • D I DENI 
Xl2J • D I DENJ 
XI]) • D I DENI C2 • 2J Cl • 0 

WRITE <LINE• ANS• F'OR I • 
C F'OR J + 

1•2'3 DO 
11213•4 DO 

GO TO REEOJ 
WRITE <LINE, ERR)J Xl11 + Xl2J • Xl3l + 01 GO TO AUSJ 

109 

DHT2 l 
OHT2 2 
OHT2 3 
OHT2 • 
DHT2 5 
DHT2 6 
OHT2 1 
OHT2 8 
OHT2 9 
OHT2 10 
DHT2 ll 
DHT2 l 2 
DHT2 l3 
DHT2 U 
OHT2 15 
DHT2 l6 
DHT2 17 
DHT2 ti 
DHT2 19 
DHT2 20 
DHT2 2l 
OHT2 22 
OHT2 23 
DHT2 U 
OHT2 25 
OHT2 26 
DHT2 27 
OHT2 28 
DHT2 29 
DHT2 30 
DHT2 3l 
DHT2 32 
DHT2 33 
DHT2 34 
DHT2 35 
DHT2 36 
DHT2 37 
DHT2 38 
OHT2 39 
DHT2 40 
DHT2 4l 
OHT2 42 
DHT2 43 
DHT2 U 
DHT2 •5 
DHT2 46 



EXERCISES 

1. Write a program whose main block contains only three statements 
which are procedure statements. These will be calls on 3 pro­
cedures to perform the following functions: 

Procedure 1: Read and print input data values for variables 
a, b, and c. 

Procedure 2: Compute the roots of the quadratic equation 

Y = ax2 +bx + c 

Procedure 3: Print values for the roots. 

2. Write a procedure called ERRORMESS which will print one of 
four error messages depending on whether the value of a global 
variable ERR is 1, 2, 3, or 4. 

110 



CHAPTER 9 - MORE ABOUT PROCEDURES AND BLOCKS 

9.1 THE CONCEPT OF FORMAL PARAMETERS 

Procedures of the kind discussed in Chapter 8 are often awkward 
to use. This is because the only means provided there, for com­
munication of information (data) to and from the procedure, was via 
global identifiers. Further, the fact that these identifiers must be 
declared outside the procedure declaration hampers the possible 
utility of a given procedure, without change, in a variety of unrelated 
programs. 

These difficulties are overcome by allowing another means of 
communication between a procedure and the program that calls it. 
In ALGOL, this is done by means of a parameter list. The procedure 
is written to operate on "formal parameters," which correspond to 
"actual parameters" furnished when it is called. The choice of 
identifiers to represent "actual parameters" need not have the 
least correspondence with those used for "formal parameters." 
Only one obvious requirement has to be met: formal and actual 
parameters must represent the same kinds of ALGOL entities. The 
latter point will be discussed at length in Section 9. 4. 

A concrete example will be used to preview the role of parameter 
lists before formally defining and discussing them in Sections 9.3 
and 9.4. The simple procedure, GOOFYDIV, of Section 8.2 can be 
better declared as follows: 

PROCEDURE GOOFYDIV (A, B, C); 

REAL A, B, C; 

IF B 'I- 0 THEN C .... A/B ELSE 

IF A = 0 THEN C .... 0 ELSE 

IF A< 0 THEN C .... -5@10 ELSE C .... 5@10 

111 



If this is the case, then our previous use of this procedure is 
reduced to the writing of one statement: 

GOOFYDIV (Wll+l,J,K-FJ, X (N-1,Jl, Y [I,J,K ]> 

In place of the formal parameters A, B, C, we have used actual 
parameters which are the array elements W[I+l,J,K-F], 
X[N-1,J], Y[I,J,K] 

The same net results are obtained as were obtained by the group of 
four statements in Section 8.2. Note, however, that the identifiers 
A, B and C are no longer needed as variables in the calling program. 
Rather, they are now formal parameters which are identifiers that 
are defined only within the procedure declaration. Their type is 
given in the REAL specification in the procedure heading. The 
latter two metalinguistic variables will be defined in Section 9.3. 

As will be seen later, actual and formal parameters are not 
limited to identifiers associated with single numerical values. 
They may be (or represent) nearly any kind of ALGOL entity. We 
note that the read statement and the write statement actually have 
the form of procedure statements that possess actual parameter 
lists. Thus, they are often called "intrinsic procedures." 

9.2 THE CONCEPT OF TYPED PROCEDURES 

A further elaboration on the subprogram concept is found in ALGOL 
in the form of "typed procedures." These are most useful when 
the computations within the procedure body always yield a single 
numerical result. The type (REAL or INTEGER) of this result 
dictates the type given to the procedure declaration. The presence 
of a type before the reserved word procedure indicates that this 
subprogram will be called as a special kind of function designator. 
Thus, an expanded definition of a function designator, over that 
given in Section 2. 7, will be discussed in Section 9.5. 

Once again, the example of Section 8.2 can be used to provide a 
more concrete preview of typed procedures. Since the subprogram 
GOOFYDIV yields only one (REAL) result, it can be declared as 
follows: 

112 



REAL PROCEDURE GOOFYDIV (A, B); 

REAL A, B; 

IF B 1 0 THEN GOOFYDIV .... A/B ELSE 

IF A = 0 THEN GOOFYDIV .... 0 ELSE 

IF A< 0 THEN GOOFYDIV .... -5@10 ELSE 

GOOFYDIV .... 5@10 

With this kind of declaration, the procedure is "called" much as 
we might "call" the SQRT common function: 

Y( I,J,K] .... GOOFYDIV (W[I+l,J,K-F],X[N-1,J]) 

And once more, the same results are obtained. 
It is not essential that communication with a typed procedure 

be via a parameter list. Some or all information can be passed by the 
mechanism of global identifiers. (This is also true of non-typed 
procedures.) In fact, although the typed procedure is designed 
to transmit a single numerical result in a convenient way, there 
is nothing wrong with allowing it to produce many "results" 
in the form of changes in globally declared variables, or as 
uutput from the program. 

9.3 PROCEDURE DECLARATIONS - REDEFINED 

Sufficient introduction and previews have now been given to allow 
an intelligible formal definition of procedure declarations. The def­
inition given in Section 8.2 will be seen to be a compatible subset of 
that to be presented here. This version is wholly consistent with 
the subset of B 5500 Extended ALGOL being presented throughout 
this text. 

A procedure is formed in either of two ways, as follows: 

(procedure declaration)::= PROCEDURE (procedure heading) 
(procedure body) I (type) 
PROCEDURE (procedure heading) 
(procedure body) 

The chief difference between this definition and that given in 
Section 8.2 lies in the procedure heading which is defined and dis­
cussed in detail below. One other apparent difference is in the 
possibility of a type appearing before the reserved word procedure. 
The definition of procedure body is unchanged from that given in 
Section 8.2. For the convenience of the reader we repeat the def-
initions. 

ll3 



(procedure body)::= (statement) 

(type)::= REALI INTEGER 

From the discussion in Section 9.2, it should be apparent that the 
existence of a type on a procedure declaration puts it into a special 
category. The manner of calling it is discussed in Section 9.5. 
Further, the procedure body must contain and cause to be executed 
at least one assignment statement, with the name of the procedure 
to the left of the assignment operator. Although it may appear rhat 
this would also allow the procedure name to be used elsewhere in 
the procedure body as a simple variable, such is not the case. 

One other rule must be observed within the procedure body of a 
typed procedure: exit must not be made via a go to statement. 

To complete the definition of a procedure declaration, we now 
have only to define the procedure heading. 

(procedure heading)::= (procedure identifier) 
(formal parameter part) ; 
(specification part) 

(procedure identifier) : : = (identifier) 

(formal parameter part) : : = (empty)' <(identifier list)> 

(identifier list) : : = (identifier) I (identifier list), (identifier) 

(specification part) : : = (empty) I (specification list) 

Definition of specification list will be pursued below. Note that, 
since both the formal parameter part and the specification part 
can be empty, a valid procedure heading could be simply an identi­
fier followed by a semicolon. This agrees with the definitions of 
Section 8.2. 

Note also that the semicolon is a necessary part of the procedure 
heading. 

If the formal parameter part is not empty, it can only be one or 
more identifiers separated by commas and enclosed in parentheses. 
These identifiers are simply called formal parameters. They may 
represent a variety of ALGOL entities, and the purpose of the spec­
ification part is to "specify" the kind of entity represented by each 
formal parameter. In no case is a formal parameter anything other 
than an identifier standing alone. (It makes no sense to place con­
stants or subscripted variables in a formal parameter list, for 
example.) Because of the previously mentioned restriction on 
leaving a typed procedure body via a go to statement, a formal 
parameter of a typed procedure may not be a label. 

The necessity of a specification list can be seen if one recalls 
that, in B 5500 Extended ALGOL, it is essential that all identifiers 
be "known" to the compiler prior to any use of them in an ALGOL 
program. The mere appearance of an identifier as a formal para­
meter is not sufficient to allow its use. The compiler must know a 
little more about it. The manner in which this is done is shown in 
the definitions to follow: 

114 



(specification list)::= (specification); I (specification list) 
(specification); 

(specification): :=(specifier)(identifier list) I (array specification) 

(specifier) : : = (type) I FILE I LIST I FORMAT I LABEL 

(array specification) : : = ARRAY (array specifier list) I 
(type) ARRAY (array specifier list) 

(array specifier list) : : = (array spec~f~er) I (array specifier list). 
(array specifier) 

(array specifier) : : = (array identifier list) [(lower bound list) J 

(array identifier list) : := (identifier list) 

(lower bound list) : : = (specified lower bound) I (lower bound list), 
(specified lower bound) 

(specified lower bound)::= (integer) I* 
The student might easily confuse the above specifications with 

declarations, since they do serve similar purposes. However, only 
in the case of simple variables and labels do the specifications and 
declarations appear identical. Except for array specifications, 
nothing more than the specifier is used to give information about a 
formal parameter. Declarations which are local to the procedure 
body must not be confused with the above specifications. Specifica­
tions appear in the procedure heading and declarations in the block 
head of the procedure body. 

The array specification provides information as to the kind of array 
represented by the formal parameter. It also contains information 
concerning the lower bounds of the actual array that will be 
"passed" to the procedure when it is called. If a lower bound is con­
stant, it is specified as an integer.If it is unknown, or may vary from 
call to call, an asterisk is used to impart this information. Since a 
lower bound of zero is most efficient in terms of running speed on 
the B 5500, one finds a high percentage of library procedures written 
with specified lower bounds of zero for formal parameters that are 
array identifiers. 

Only one simple example will be given here since several others 
are available for examination in Sections 9.1, 9.2, and 9.6. The 
present example is a typed procedure for computing the factorial 
of an Integer N. 

11 !i 



INTEGER PROCEDURE FACT (N); INTEGER N; 

BEGIN 

INTEGER PROD, I; 

IF N < 0 THEN FACT ... 0 ELSE 

BEGIN 

PROD ... l; 

FOR I+- l STEP l UNTIL N DO 

PROD +- PROD X I; FACT +- PROD 

END 

END OF FACT 

A point of interest here is the manner in which the correct value 
for F ACT(O) is obtained. 

9.4 PROCEDURE STATEMENTS - REDEFINED 

A procedure statement is formed by the following rules: 

(procedure statement)::= (Procedure identifier) 
(actual parameter part ) 

(actual parameter part) : := (empty) I ((actual parameter list)> 

(actual parameter list) : : = ~actual parameter) l 
actual parameter hst) , 
actual parameter) 

(actual parameter) : : = (arithmetic expression) I (array identifier) I 
(file identifier) I (format identifier) I 
(list identifier) I (label) 

Note that if the actual parameter part is empty, we have exactly 
the form given for the procedure statement given in Section 8.3. 

A procedure statement causes a procedure body which has been 
previously given in a procedure declaration, to be called for execu­
tion. If that procedure declaration had a formal parameter part, 

116 



the procedure statement must have an actual parameter part which 
provides the actual parameters to be used during this call on the 
procedure. A one-for-one correspondence must exist between the 
actual parameters in the actual parameter part and the formal para­
meters which appear in the ~ormal parameter part of the procedure 
declaration; this correspondence is one of position, where the posi­
tion of an actual parameter given in the procedure statement 
corresponds to the position of a formal parameter in the procedure 
declaration. 

A general description of the operation of the procedure statement 
can be given as follows: 

1. The formal parameters are replaced, wherever they appear in 
the procedure body, .bY the corresponding actual parameters. 
Identifiers thus introduced into the procedure body may be 
identical to local identifiers already there. Each is handled in 
such a way, however, that no conflict occurs. 

2. The procedure body, when modified as stated above, is then 
entered. 

3. Upon completion of the computations within the procedure body, 
the program flow returns to the statement following the (calling) 
procedure statement. 

The actual parameters may be expressions and array, file, format, 
label and list identifiers. The actual expression or pertinent identi­
fier of the actual parameter replaces the corresponding formal 
parameter wherever it appears in the procedure body. If a formal 
parameter appears to the lefi: of an assignment operator in the 
procedure body, the corresponding actual parameter may only be 
a variable. 
If a simple variable is an actual parameter, the corresponding 

formal parameter is replaced wherever it appears in the procedure 
body, by the identifier of the simple variable. The value represented 
oy the simple variable is referred to each time the variable is 
encountered during the execution of the procedure body. The actual 
parameter is accessible throughout the procedure and can therefore 
have its value altered. 

Where a subscripted variable is an actual parameter, it is placed 
in the procedure body wherever the corresponding formal parameter 
appears. The subscript expression remains intact, and is evaluated 
each time the subscripted variable is referred to during the execu­
tion of the procedure body. 

Where the actual parameter is a function designator, the corres­
ponding formal parameter is replaced by the function designator 
wherever the formal parameter appears in the procedure body. The 
function designator is evaluated whenever it is encountered during 
the course of execution of the procedure body. 

In the case where an arithmetic expression is an actual parameter, 
the corresponding formal parameter is replaced by the expression 
in question. This expression is evaluated whenever it is encountered 
during the execution of the procedure body. 

117 



When the actual parameter is an array identifier, the corres­
ponding formal parameter is replaced by the array identifier 
wherever the formal parameter appears in the procedure body. Any 
appearance of the formal parameter in the procedure body makes 
reference to the actual array designated by the array identifier. 

Where a file, format, or list identifier has been given as an actual 
parameter, the corresponding formal parameter is replaced by the 
identifier of the actual parameter wherever the formal parameter 
appears in the procedure body. 1-0 statements in a procedure body 
can thus be caused to utilize arbitrary files, formats and lists which 
have been declared outside the procedure body being executed. 

A simple example of a procedure statement was given in Section 
9.1; a more elaborate example is presented in Section 9.6. 

There is a useful feature of ALGOL procedure declarations that 
is not included in the subset being presented here. That is, the 
concept of call-by-value, which is used heavily in most B 5500 
ALGOL library procedures. Call-by-value is discussed with clarity 
in most of the ALGOL reference materials. 

9.5 FUNCTION DESIGNATORS - REDEFINED 

We will here expand the definition of a function designator given in 
Section 2. 7 as follows: 

(function designator) : : = (procedure identifier) 
(actual parameter pan)I 
(common function identifier) 
({arithmetic expression )) 

(procedure identifier) : : = (identifier) 

(actual parameter pan)::= (empty) I <(actual parameter list)) 

(actual parameter list) : : = (actual parameter) I 
(actual parameter list) , 
(actual parameter ) 

(actual parameter) : : = (arithmetic expression) I (array identifier) I 
(file identifier) I (format· identifier) I 
(list identifier) 

Note that the actual parameter pan as defined above is the same 
as that given for procedure statements in Section 9.4 except that it 
may not contain a label. 

118 



The only kind of procedure that may be called as a function desig­
nator is one which was declared with a (type) in front of the 
reserved word PROCEDURE. Upon oompletion of the execution of 
the procedure body, control returns to the evaluation of the arith­
metic expression in which the function designator was encountered. 
With the exception of the latter action, all other aspects of the opera­
tion of a function designator are the same as those given for 
procedure statements in Section 9.4. 

Examples of the use of a function designator calling on a typed pro­
cedure are given in Sections 9.2 and 9.6. The rules for using any kind 
of function designator are given in Section 2. 7. 

9.6 EXAMPLE OF USE OF PARAMETER LISTS 

The example program below is supposed to accomplish the same 
thing as the program in Section 8.3. It is designed to illustrate the 
manner in which parameter lists are used in practice. 

BEGIN 

COMMENT A PROGRAM TO DEMONSTRATE THE USE 
OF PROCEDURE PARAMETER LISTS; 

INTEGER LASTCDNO, RUN; 

REAL PROCEDURE POL3(U,AO,Al,A2,A3); 

REAL U,AO,Al,A2,A3; 
POL3 ... AOTU X (Al +U X (A2 +U X A3) ); 

PROCEDURE GETDAT A (FIN,FOUT, LEOF, LERR, 
H, L, D); 

REAL H,L,D; 

FILE FIN, FOUT; 

LABEL LEOF, LERR; 

119 



BEGIN 

COMMENT A PROCEDURE FOR DATA INPUT WHEREIN: 

I DATA ARE READ FROM A FILE "FIN'~ 
II THE DATA VALUES ARE WRITTEN ON 

A PRINTER FILE "FOUT", 
III CARD SEQUENCE IS CHECKED AGAINST 

A GLOBAL VARIABLE "LASTCDNO", 
INITIALLY ZERO, 

IV EXIT IS TO LEOF AT END-OF-FILE, 
v EXIT IS TO LERR IF EITHER D < L OR 

D > H, LIMITS GIVEN BY CALLING 
PROGRAM; 

FORMAT CRD (15, F20.9), 
CIM ("CARDNO ... , 15, XlO, "VALUE=", 

F20.9), 
SQER (/ X50, "CARD SEQUENCE ERROR"), 
VOR (/X50, 
"LAST VALUE OUT OF RANGE"); 

INTEGER CARDNO; 

LIST KRD (CARDNO,D); 
READ (FIN, CRD, KRD) (LEOF] ; 
WRITE (FOUT, CIM, KRD); 
IF CARDNO - LASTCDNO F 1 THEN 

BEGIN 

WRITE (FOUT, SQER); GO TO LERR 

END; 

IF D> HORD< L THEN 

BEGIN 

WRITE (FOUT, VOR); GO TO LERR 

END; 

LASTCDNO ... CARDNO 

END OF GETDAT A; 

REAL A, B, C, D, X; 

LABEL EOFLAB, ST ART; 

FILE IN CARD (2, 10); 

120 



FILE OUT LINE 1 (2,15); 

FORMAT HD (X30, "THIRD DEGREE POLYNOMIAL", 
"EVALUATION- - - PROG'RAM ZYXW" 
I I!>. 

POLY ("RUN NO.", 117, X6, "POLY=", 
E20.8); 

WRITE (LINE, HD); 

ST ART: LASTCDNO - O; 
GETDATA (CARD, LINE, EOFLAB, 

EOFLAB, @5, 1, RUN); 
GETDATA (CARD, LINE, EOFLAB, 

EOFLAB, 1, O, A); 
GETDATA (CARD, LINE, EOFLAB, 

EOFLAB, 1, O, B); 
GETDAT A (CARD, LINE, EOFLAB, 

EOFLAB, 1, 0, C); 
GETDAT A (CARD, LINE, EOFLAB, 

EOFLAB, @-6, -.1, D); 
GETDAT A (CARD, LINE, EOFLAB, 

EOFLAB, 100, 10, X); 
WRITE (LINE, POLY, RUN, POL3 

(X,A,B,C,D) ); 
GO TO START; 

EOFLAB: END OF PROGRAM ZYXW. 

No claim is made that the above example is a sensible program. It 
does, however, demonstrate the use ofparameterlistsin procedure 
declarations, procedure statements and function designators. Points 
of interest: 

1. Both POL3 and GETDATA are declared in theblock head of the 
program, along with the rest of the declarations. 

2. POL3 is lacking any comments for documentation. This is per­
haps excusable since the procedure body of POL3 is just one 
assignment statement, while the body of GETDAT A is a block. 

3. No conflict arises over the existence of the identifier D as a 
simple variable in the program and also as a formal parameter 
of GETDATA. 

4. GETDAT A uses both formal parameters and a global variable 
to pass information in and out. 

5. Three different kinds of formal parameters are used in the 
procedure GETDAT A. 

121 



6. The specifier for the file identifiers is merely FILE, without 
IN or OUT attached. 

7. The list of the write statement contains two arithmetic expres­
sions, RUN and POL3 (X, A, B, c, D). The latter is a function 
designator calling on the typed procedure POL3. 

8. If actual use of this procedure were ever contemplated, the pro­
grammer would probably prefer to avoidmakingthefile identi­
fiers formal parameters of GETDA TA. 1n that case, the 
declarations for CARD and LINE would have to occur before 
the declaration of GETDATA. Also, the procedure body would 
have to be changed to use CARD in place of FIN and LINE in 
place of FOUT. 

9.7 BLOCKS IN ALGOL 

The block is a powerful feature of ALGOL. It is particularly 
important in large programs and in many programs that contain 
procedure declarations. This section will supplement the dis­
cussion of blocks in Chapter 3, in the light of concepts covered 
in the later chapters. If Chapter 3 has not been reviewed since it 
was first encountered, the student is advised to do so at this point. 

Blocks have two primary purposes. One is that of isolating por­
tions of a program from one another so that identifiers can be 
freely chosen in each of them. This is especially important when a 
block is a procedure body because it makes possible the develop­
ment of libraries of procedures which can be used in any program. 
No conflict results when the same identifier is declared to have 
dissimilar meanings in different blocks of a program. This is true 
whether the blocks are procedure bodies or not. Major portions of 
a large program can be written separately, by different people, with 
coordination on the choice of only the global identifiers. 

The other prime use of the block is to obtain automatic segmenta­
tion of a program in order to cope with the realities of finite com­
puter memories. With a little care, a program can usually be written 
such that portions which may be inactive for appreciable periods of 
time become separate blocks. In the B 5500 these are compiled as 
program segments which may be kept in auxiliary storage (such as 
a drum or disk) whenever they are not active. In this way a maximum 
amount of core memory is made available for data. This also pro­
vides a mechanism for minimizing the amount of memory used for 
data storage at any given time. Memory is allocated to the storage 
of an array, only within the block in which that array is declared. 
When a block is exited, all memory used for arrays declared in 
that block is released for other uses. 

l ?'J 



The example to follow will illustrate many of these points. For 
clarity and brevity, several abbreviations will be used: 

Ll: 

L2: 

L3: 

L4: 

LS: 

L6: 

AD - array declaration 
FD - file declaration 
PD - procedure declaration 
D - any other declaration 
S - statement 

BEGIN 

FD; FD; 
AD; AD; 
D; D; D; 
PD; block #2 
PD; 
PD; block #3 

BEGIN 

l D· block #4 • 

j S; S; S; S; 

S; S; S; S 

END; 

BEGIN 

D; D; 
AD; AD; AD; 
PD; block #6 
S; S; S; S; 

S; S; S; 

END; 

BEGIN 

} AD; AD; block #7 
S; S; S 

END; 

S; S; S; S; 

END. 

123 

block #1 



This is a schematic representation of the general form of many 
scientific programs. Block #1 is, of course, the program itself. 
Blocks 2, 3 and 6 are the bodies of procedure declarations. Block 
#4 might contain statements that read the data, perform some pre­
liminary data conversions, print a summary of the input data and 
initialize some arrays that are declared in the block head of block 
#1. Block #5 might perform a lengthy iterative computation, perhaps 
using a procedure (block#6)todomatrixinversions. Final process­
ing of the results and the printing of same might be conducted in 
block #7. 

We note that, while one of blocks 4, 5 or 7 is active, the other two 
need not be present in memory. Blocks 2 and 3 might be activated 
by procedure calls anywhere, but unless they are being called fre­
quently there is no need to have them in memory. The procedure 
declared in block #5 may be called only from within that block since 
it is local to the block. When block #5 is entered, memory is allo­
cated for the three arrays declared therein. When block #5 is 
exited, this memory is released and becomes available for alloca­
tion to the arrays declared when block #7 is entered. It is again 
released after execution of block #7. One of the four statements at 
the end may cause control to return to block #4 or #5. Since a 
block must always be entered through the block head, a return to 
block #4 or #5 can only be effected with a go to statement referenc­
ing the label Ll or L2, respectively. 

The above example also provides an illustration of the local nature 
of label declarations. The labels Ll, L2, L5 and L6 must be declared 
in the block head of block #1. Labels L3 and L4 must be declared in 
block #5. The statement GO TO L3 cannot be used anywhere but in 
block #5. However, a transfer to LI, L2, L5 or L6 can be made from 
anywhere in the program since they are local only to the block which 
constitutes the program. 

Finally, a word of caution must be given on running speed con­
siderations in the use of blocks. Rapid looping through a block is not 
desirable if that block contains array declarations. The time 
required by the computer to allocate and release memory for array 
storage is not insignificant unless a fair amount of computing is 
performed within that block. The most efficient way to exit any 
block is by falling out of the end of it. 

124 



COMMENT 

FILE OUT 
FORMAT 
REAL 

BEGIN 
ILLUSTRATIVE USE Of PROCEDURES WITH AND WITHOUT 
PARAMETER LISTS IN COMPUTING AN APPROXIMATION Of SINCX)I 
LINE 1 <2•15>1 
HEADING CX40••SINCX) COMPARISON PROGRAM • DHT3• 111>1 
PHI• r!E, SYI 

REAL PROCEDURE 
REAL 

SYGNE CA)I 
Al 

COMMENT 
REAL 

BEGIN 
A POLYNOMIAL APPROXIMATIO,N Of SINCA>I 
COH• 5• T• TSQI 
S • •,00436248 I T • A I 901 TSQ • T • Tl 
FOH COEF •,07948766, •,64592098, 1,57079485 DO 

S •COEF + TSQ • SI 
SYGNE + S • T 

ENO or SYGNEI 
REAL PRUClDURl GODDANGLEI 

FON FIE • AHSCPHI + 90l STEP •360 UNTIL •180 DO 
GOOOANGLE • ABSCf IE> • 901 

PROCEDURE GETHUSYI 
BEGIN 

FORMAT COLLABS c• X COlGREES> SYGNECXl SINCXJ• /), 
WAY! (18• 2fl6,7ll 

LIST HSLTS <PHI• SY, SIN <PHI I 57,29578))1 
WRITE CLINE• HEADING)I WRITE CLINE• COLLABS)I 
FOR PHI • 90 $TEP •15 UNTIL •150, 0 STEP 36 UNTIL 756 DO 

BEGIN 
COMMENT SYGNl CGDOOANGLE> IS A FUNCTION DESIGNATOR WHOSE ACTUAL 

PARAMETER 15 A~ EXPRESSION CONTAINING ANOTHER FUNCTION 
UESIGNATUR• GOOOANGLE• WHICH HAS NO PARAMETER LISTI 
SY • SYGNE CGOODANGLE)I 
WRITE <LINE• WAY1• RSLTS> 

ENO PH I LOOP 
END or GETBUSYI 

COMMENT THl ONLY, STATEMENT IN THE MAIN PROGRAM BLOCK FOLLOWS 
GETBUSYI 

END Of PROGRAM, 

125 

OHT3 1 
OHT3 2 
OHTl 3 
DHT3 4 
OHT3 5 
DHT3 6 
OHT3 7 
DHT3 8 
OHT3 9 
OHT3 I 0 
OHT3 11 
OHT3 12 
OHT3 13 
OHT3 14 
OHT3 15 
OHT3 16 
OHT3 17 
OHT3 U 
OHT3 19 
DIH3 20 
DHT3 21 
DHT3 22 
OHT3 23 
OHTl 24 
DHTl 25 
OHT3 26 
OHT3 27 
OHT3 28 
OHT3 29 
OHT3 30 
OHT3 31 
DHT 3 32 
DHT3 33 
QHT 3 34 
DHTl 35 
DHT3 36 
OHT] 37 



EXERCISES 

1. Re-work exercise 6, Chapter 4, using a REAL procedure to com­
pute the square root. 

2. Write a procedure to find the minimum and maximum values of the 
elements in a single dimensioned array. The formal parameter 
list should include the array identifier and two simple variables 
for the minimum and maximum values. The elements of interest 
have subscripts 1 thru N, where the value of N is provided in the 
zeroeth element. 

3. Re-work the Chapter 8 example program on the solution of three 
simultaneous equations. Incorporate the solution process into a 
procedure named CRAMER which has arrays Mand X for formal 
parameters. Nest KSET and DETER3 inside the body of CRAMER. 
Make the arrays Rl, R2 and R3 global to CRAMER. Make DETER3 
a REAL procedure with formal parameters Cl, C2 and C3, such 
that the actual parameters for the four calls on DETER3 would be 
(1,2,3), (4,2,3), (1,4,3), and (1,2,4). 

126 



CHAPTER 10 - DIAGNOSTICS 

10.1 ERRORS IN PROGRAMMING 

There are two broad classes of errors that occur regularly during 
the development of a digital computer program. One class arises 
from violations of the syntax of the programming language. Errors 
of this type make it impossible for the compiler to complete the 
conversion of the source program into machine language. The other 
class covers logical faults in the program that prevent its success­
ful execution. Logical errors may precipitate a variety of error 
conditions, some of which force an automatic termination of the 
program, while others merely cause incorrect or incomplete 
results. 

Some logical errors are very easily traced. Others produce only 
symptoms, at remote points, that may require considerable effort to 
diagnose. Specific rules to follow in debugging any program are 
impossible to formulate. However, a number of general techniques 
are available. These will be discussed in this chapter. 

Unfortunately, both syntactical and logical difficulties are often 
caused by a single type of error, that of incorrect transcription of 
a program into a deck of punched cards. Some of these are simple 
typographical errors which every human makes with some regu­
larity. Many result from illegibly or incorrectly drawn characters. 
Most computer installations establish conventions that permit dis­
tinction of easily confused character pairs such as 1 and I, 2 and Z, 
0 (zero) and 0, X and X. Coding forms are usually designed to pro­
mote accurate card punching. Seasoned programmers take every 
precaution possible to insure the correctness of their card decks. 
Often this includes visual verification of a listing of their program. 

A common problem with card decks is that of getting one or more 
cards out of sequence. Most installations utilize a scheme of 
sequence numbering that is punched somewhere in columns 73 

127 



through 80 of every card. These can be checked quite easily, either 
visually or via a service program. The compiler normally ignores 
these card columns completely. Thus, acardsequenceerror can go 
undetected until (or unless) it causes either a syntactical or logical 
difficulty. 

Most computer users ultimately conclude that they themselves are 
responsible for the majority of the errors that occur in their pro­
grams. This does not prohibit their use of a machine, the computer 
itself, to systematically search out these errors. Indeed, in many 
programs, it becomes practically impossible to find all faults 
without use of the computer. Inadvertent programming errors and 
erroneous numerical methods can produce equally baffling symp­
toms. Often it is necessary to build self-checking features into a 
complex program to detect errors or to guard against a future case 
of bad data or data. that bring to light a long undiscovered program 
error. Programmer ingenuity plays an important role here. 

In the sections to follow, those features of B 5500 Extended ALGOL 
that aid in debugging will be discussed. These and the normal 
output statements are essentially the only debugging tools at the 
disposal of the programmer. The general technique of using such 
tools is commonly called "symbolic debugging." It is usually more 
efficient, for both man and computer, than the machine-oriented 
techniques of console debugging and memory dumping. In fact, to 
debug. an ALGOL program on the B 5500 by the latter approach is a 
near impossibility. Moreover, the use of symbolic methods of 
debugging is totally consistent with the use of ALGOL as a program­
ing language. 

10.2 SYNTACTICAL ERROR DIAGNOSTICS 

An ALGOL program must be free of syntactical errors before it 
can be successfully translated into machine instructions by the com­
piler. Since errors are not entirely avoidable, the compiler is 
desigped to supply messages concerning any constructs that it is 
unable to translate. 

Error messages are given in the form of an error code and a 
reference to that entity which appears to be incorrect. For example, 
an identifier which was not declared or which is misspelled is 
meaningless to the compiler. There is noway to correctly translate 
a statement in which such an identifier occurs. Note that a mis­
spelled reserved word must be assumed to be an identifier (which 
may or may not have been declared). Error messages pointing out 
undeclared identifiers occur rather frequently. 

In general, any violation of the syntax rules of ALGOL will cause 
diagnostic error messages to be given. The message will reference 

128 



that entity in the program which gave the first indication of a syntax 
violation. Often the actual error will be found at some distance to 
the left of that entity (considering the program as one long string 
that is read from left to right). 

For example, the syntactical inconsistency of 

To-ABS ((l-J/(l+J)+8XT)+ A*2-COS(PHI); 

is not detectable until the compiler encounters the semicolon. It 
then refers to the semicolon and provides the error code for the 
message 

MISSING RIGHT PARENTHESIS. 

It is unable to determine that the parenthesis was omitted between 
the J and the slash, since one could legally occur in several places. 

In some cases the message can only tell what seems to be syn­
tactically wrong, since the actual error may not be syntactically 
incorrect in itself. For example, suppose I- were punched for 
IM. Then, 

FOR I - 1 STEP 1 UNTIL I- DO etc. 

results in referencing the DO and the message 

PRIMARY MAY NOT BEGIN WITH A QUANTITY OF THIS TYPE. 

Here is another place where a knowledge of ALGOL syntax is 
vital to the programmer. When the cause of an error message is 
not immediately obvious, the programmer may need to use the 
syntax to deduce the cause. Since he can regard the compiler as 
a perfect embodiment of the syntax rules, he can work backward 
from the diagnostics it provides. 

lt can happen that, after encountering one or more errors, the 
compiler will appear to become confused and begin emitting spurious 
error diagnostics. These need not be troublesome if the programmer 
proceeds as follows: 

1. Find and correct the error that caused the first message. fhis 
message is never spurious. 

2. Attempt to find the error that caused the next message. Correct 
any error that is found. If one is not readily found, pass on to 
step 3. 

3. Repeat step 2 for all succeeding error messages. 

4. Even if some of the indicated errors below the first one are not 
identified, compile the program again and repeat these steps 
until all syntax errors are corrected. 

129 



There is a good reason for following these steps, rather than 
insisting on finding and correcting all indicated errors. This has 
to do with the manner in which the compiler processes the pro­
gram. The program string is scanned from left to right, and every 
basic element of the language is immediately translated if it fits 
correctly into the syntax. At the first violation of syntax, an error 
message describing the violation is issued. Depending on the type of 
violation, the compiler may be forced to skip ahead to the next 
semicolon, where a new statement or declaration begins, in order to 
restart its analysis of the program string. Such a skip may cause a 
syntactically vital program element (such as a BEGIN or an END, or 
the latter portion of a declaration) to be ignored. This precipitates 
the same series of error messages that would appear, if the skipped 
portion of the program were inadvertently omitted by the program­
mer. Thus, some of the errordiagnostics afterthe first one may be 
spurious in that they can be a consequence of a previous error. In 
most cases, spurious messages do not persist beyond the first or 
second attempt to compile an ALGOL program. 

A final comment is in order on the role of the semicolon in ALGOL. 
The presence of an extraneous semicolon can cause syntactical or 
logical errors that are sometimes obscure unless the rules of 
syntax are carefully applied. Recall that the semicolon is classed as 
a separator which is used to separate declarations from declara­
tions, declarations from statements, and statements from state­
ments. Recall further the existence of the dummy statement, which 
is nothing but empty space. Often an extraneous semicolon creates 
an unwanted dummy statement. 

The following illustrations will complete this discussion. 

FOR I+- 0 STEP 1 UNTIL 40 DO; A [Il .... 1 

There is no syntactical error here, but, at run time, there would 
be 41 executions of the dummy statement between the DO and the 
semicolon. The assignment statement would be executed only once. 

BEGIN;D;D;S;S END 

Here there is a syntactical error, namely, that of a statement 
preceding a declaration in a block. The offending statement is the 
dummy statement between the BEGIN and the semicolon. 

BEGIN D;;D;S;S END 

This extra semicolon causes the same syntactical error as in the 
previous case. 

IF BE THEN BEGIN S;S END; ELSE S 

The semicolon after the END is syntactically wrong because it 
causes ELSE to appear as the beginning of an illegal statement. 

130 



10.3 RUN-TIME ERROR CONDITIONS 

Any attempt on the part of a program to exceed computer hard­
ware limitatiohs is necessarily categorized as a run-time error. 
Such an attempt is usually only the first symptom of a logical 
error in the program because actual machine errors are very rare 
and machine limitations are quite easy to live within. Therefore, an 
analysis of the cause of any such event will usually result in the 
elimination of at least one error in the program. The analysis itself 
may require use of techniques to be discussed in Section 10.4 

The number and nature of hardware restrictions vary from one 
computer to another. Four important arithmetic errors are detected 
by the B 5500 computer. A message, identifying the error and the 
point in the ALGOL program where it occurred, is provided to the 
programmer. Such information is usually essential to begin a search 
for the program error. 

The four arithmetic errors are described as follows: 

l. Divide by Zero. Any attempt to perform a division by zero. 

2. Integer Overflow. Any attempt to assign a value to an INTEGER 
variable that is outside the allowed range, i.e., -549755813887 
to +549755813887. 

3, Exponent Overflow. Any attempt to compute a result that is 
greater than the maximum allowed for the absolute value of a 
REAL quantity. This maximum is (8*13-1) ')( 8*63, or approxi­
mately 4.3@68. (The lower limit is 8* (-51) or roughly l.l@-47. 
An attempt to compute a smaller value, other than zero, pro­
duces an exponent underflow condition which is not usually 
considered an error. A value of zero is normally supplied as 
the result in such a case.) 

4. Invalid Index. Any attempt to use an index for a subscripted 
variable that lies outside the declared range for that subscript. 
For example, assuming the declaration for A is 

ARRAY A [ -5: 10,0:250 J 

an invalid index would occur if an attempt were made to utilize 
the variable A [ I,J] when I and .T have values such that I>lO or 
I < -5 or J > 2::>0 or J < O. 

This feature not only helps to pinpoint program errors but also 
protects a program from the errors of another program when they 
are executed concurrently on the same computer. 

131 



10.4 USE OF MONITOR AND DUMP 

Often the actual cause of an arithmetic error is not immediately 
obvious. It may become obvious only after considerable detective 
work. Usually this requires one or more additional attempts to 
execute the program with modifications designed to output inter­
mediate results of some sort. 

Such additional output can be programmed using the write state­
ment. However, it is usually more desirable and much simpler to 
"program" this output with the diagnostic declarations, monitor 
and dump, which are described below. With these, it is very easy to 
study the behavior of a program in any suspected area. One or more 
critical variables can be monitored to show the manner in which they 
change. The logical flow can be depicted in terms of the sequence in 
which labels are encountered. Periodic "pictures" can be printed 
of as many of the program variables as may be desired. Used in 
combination, these techniques are powerful enough to furnish the 
information needed to isolate even the most obscure errors. They 
allow the programmer to use the machine itself to "debug" his 
program without requiring any more acquaintance with the machine 
than was needed to write the ALGOL program in the first place. 

The exact type and quantity of diagnostic output needed to find a 
given error depend heavily on the kind of error and on the back­
ground of the programmer. Since the error is one of program logic 
(as opposed to a violation of ALGOL syntax), it is necessarily quite 
problem-dependent. Two requirements are thus placed on the 
programmer: 

1. He must be prepared to improvise diagnostic approaches that 
vary with both the problem and the error symptoms. 

2. To find and correct all of his own errors, he must be intimately 
familiar with his problem and the algorithm being used to solve 
it. 

This presupposes sufficient knowledge of ALGOL to use it cor­
rectly as a programming language. The previous nine chapters were 
devoted to assistance in meeting this requirement. 

We close this chapter with discussions of the syntax and the 
effects produced by the monitor and dump declarations. It will be 
noted, that like the list declaration, these declarations reference 
identifiers which must have been previously declared. Thus, it is 
common to place monitor and dump declarations at the very end of 
a block head (just before the first statement of that block). Any 
labels referenced by these declarations must be declared in that 
same block head, since labels are always local in scope. Variables 
are not subject to this restriction. These declarations fit into the 
syntax as follows: 

(diagnostic declarations)::= MONITOR (monitor part) I 
DUMP (dump part) 

132 



The monitor declaration will be discussed first. The composition 
of the monitor part is specified by the following rules: 

(monitor part) : :=(file identifier) <(monitor list)> 

(monitor list) : == (monitor list element) I (monitor list), 
(monitor list element) 

(monitor list element) : : = (simple variable) J (label) I 
(array identifier) r 
(subscripted variable) 

In most cases, the file identifier will be that associated with the 
printer in a previous file declaration. In fact it is usually the same 
file used by the program to produce normal printer output. 

The monitor declaration causes certain entities to be placed under 
surveillance during the execution of the program. Each time an 
identifier included in the monitor list is used in one of the ways 
described below, the identifier and its current value (unless it is a 
label) are written on the file indicated in the monitor declaration. 

When a simple variable in the monitor list is used as a left part in 
an assignment statement, the following information is written on the 
designated file: 

(simple variable) ={value of variable} 

When a subscripted variable in the monitor list is encountered 
during the execution of the program as the leftmost element in a 
left part list, the following information is written on the designated 
file: 
(array identifier) [ (value of subscript expression} .I= 
{value of variable l 

When a subscripted variable, the array identifier of which is given 
in the monitor list, is encountered as the leftmost element in a left 
part list, the following information is written on the designated file: 

(array identifier) [ f value of subscript expression}]= 
f value of variable} 

Each time a statement bearing a label which is in the monitor list 
is encountered in the program, the label identifier is written on 
the designated file. 

A monitor declaration might appear in a program in the following 
manner. 

FILE SDUT 
RRAY 

EAL 
NTEGER 

LABEL 
SDNITC)R 

BEGIN 
LINE 1(2,15); 
X, Y[O:l0,0:201 , T [0:150], 

KX LO:lOJ; 
MAX, P, Q; 
A, K, I; 
L?l, HI, XIT, REED; 
LINE (X, Y, MAX, fll, I, Lf'), 

T [K] ); 
133 

A.AOOOOOl 
A.AOOOOO' 

AOOOOO 
AOOOOO 
AOOOOO 
AOOOOO 

AAOOOOO 
AAOOOOO 
'1\00000 



Here, diagnostic output would occur after the execution of state­
ments, such as: 

X(I,KJ <-Y [I,KJ XP-Q; 

MAX<- T (OJ /10; 

HI: K ... I; 

I ... I + 2; 

y [o,o J ... KX [o,o] ... MAX; 

T [KJ ... 40; 

No monitor action would occur for statements, such as: 

FOR I <-1,2,4 DO KX [I] ... l/KX [I]; 

REED: READ (CARD, FIN, MAX); 

K ... I; 

KX [o,o] ... y [o,o] ... MAX; 

T [I] ... 40; 

If it were desired to monitor values of MAX obtained with the 
read statement, the statement MAX ... MAX could be added. 

The dump declaration has the form 

DUMP (dump part), 

where the latter portion is formed according to the rules 
(dump part) : := (file identifier) <(dump list)> (label): 

(dump indicator) 

(dump list) : : =(dump list element) I (dump list), 
(dump list element) 

(dump list element) : : = (simple variable) I (subscripted variable) I 
(label) I (array identifier ) 

(dump indicator) : := (unsigned integer) I (simple variable) 

Diagnostic information requested by means of the dump declaration 
is written on the designated file when a statement, carrying the label 
which is given in the dump part, has been executed a number of 
times equal to the dump indicator. Since the dump indicator can be 
a simple variable, dump information can be obtained more than 
once during each execution of the block containing the dump declara­
tion. The number of times the controlling statement is executed 

134 



applies to each pass through that block. The number is not cumu­
lative from one pass to the next. 

The actions obtained for each kind of dump list element are 
described below. 

A simple variable in the dump list causes the current value of 
that variable to be supplied in the following form: 

(simple variable) = (value of variable} 

A subscripted variable in the dump list causes the current value 
of that variable to be supplied in the following form: 

(array identifier) [(value of subscript expression} J = 
{value of variable } 

An array identifier in the dump list causes the current values of 
all elements in that array to be supplied in tabular form and 
identified by 

(array identifier) = 
which appears just above the table. 

The order in which the array elements are written is as follows: 
All subscripts are first set to their declared lower bounds, and 
the corresponding value is printed out. The rightmost subscript is 
then counted up, and the corresponding value is printed; this pro­
cedure continues until the subscript reaches its declared upper 
bound. After this printout, the rightmost subscript is again set to 
its declared lower bound, the next left subscript is counted up, and 
the process recycles until all subscripts have reached their 
declared upper bounds. 

A label in the dump list causes a tally to be supplied which 
represents the nLJmber of times the labeled statement has been 
executed during this pass through the block containing the dump 
declaration. The tally is supplied in the following form: 

(label) (number of times statement has been executed} 

A dump declaration that might be used in the previous example is 
DUMP LINE (HI, KX, Y, MAX, REED) XIT: 1 

Finally, attention is called to a restriction on the use of any input­
output, including monitor and dump, in the body of typed procedures 
which are called via function designators in expressions occurring 
in the list of a write statement. All input-output editing is done by 
a set of intrinsic procedures, which are not capable of intertwined 
processing of an output list along with one or more other input or 
output lists. 

135 



Appendix A - RESERVED WORDS 

136 



The following list includes all of the normally reserved words of B 5500 
Extended ALGOL. They must be respected as such. even though they may 
not occur in the subset presented in this text. 

ABS FALSE OUT VALUE 

ALPHA FILE OWN WHILE 

AND FILL PAGE WITH 

ARCTAN FOR PROCEDURE WRITE 

ARRAY FORMAT READ 

BEGIN FORWARD REAL 

BOOLEAN GO RELEASE 

CLOSE IF REVERSE 

COMMENT IMP REWIND 

cos IN SAVE 

DBL INTEGER SIGN 

DEFINE LABEL SIN 

DIV LIST SPACE 

DO LN SQRT 

DOUBLE LOCK STEP 

DUMP MOD STREAM 

ELSE MONITOR SWITCH 

END NO THEN 

EN TIER NOT TO 

EQV OCT TRUE 

EXP OR UNTIL 

This appendix is presented in two parts: 

Part I contains the entire syntax in lop;ical order. Part II contains a list of 
all metalinguistic variables in alphabetical ordL·r. 

137 



Appendix B - SYNTAX 

This appendix is presented in two parts: 

Part I contains the entire syntax in logical order. Part II contains a list of 
all metalinguistic variables in alphabetical order. 

138 



PART I 

SYNTAX IN LOGICAL ORDER 

The number appearing on the left is a formula number which is referred 
to by Part II. 

139 



1. (basic symbol) : : = (letter) I (digit) I (delimiter) 

2. (letter)::= Al Bl Cl DIEi FIGI HII IJIKILI MINI 0 IP IQIRIS IT IU IV 
WIXlYIZ 

3. (digit)::= 0111213141516171819 

4. (delimiter) : == {separator) I (bracket) I (declarator) I 
(arithmetic operator) I (relational operator) I 
(sequential operator) (logical operator) 

5. (arithmetic operator) : : = +I- Ix I I I* 
6. (relational operator) : : = ~I< I =I ~I> I ~ 
7. (logical operator)::= ORI AND 

8. (sequential operator) : : = GO I TO I IF I THEN I ELSE I FOR I DO I READ I 
WRITE PAGE 

9. (separator) : : = , I .1@1 : I; I ..... I (single space) I STEP I UNTIL I COMMENT 

10. (single space) : : = {a single unit of horizontal spacing which is 
blank} 

11. (bracket)::= <l>I [I ] l"IBEGINIEND 

12. (declarator)::= INTEGER !REALI ARRAY I LABEL I LISTI FORMAT I 
INIOUTIMONITO'RIDUMPIFILEI PROCEDURE 

13. (identifier) : := (letter) I (identifier) (letter) I (identifier)(digit) 

14. (number) : : = (unsigned number) I + (unsigned number ) I 
-(unsigned number) 

15. (unsigned number) : := (decimal number) I (exponent part) I 
(decimal number) (exponent part) 

16. (decimal number) : == (unsigned integer) I (decimal fraction) I 
(unsigned integer) (decimal fraction) 

1 7. (exponent part) : : = @(integer) 

18. (decimal fraction) : : = . (unsigned integer) 

19. (integer) : : = (unsigned integer) I + (unsigned integer) I 
- (unsigned integer j 

20. (unsigned integer) : := (digit) I (unsigned integer) (digit) 

21. (variable) : := (simple variable) I (subscripted variable) 

140 



22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

(simple variable) : : = (identifier ) 

(type declaration) : : = (type) (type list) 

(type)::= REAL I INTEGER 

(type list) : := (simple variable) I (type list), (simple variable) 

(primary) : := (unsigned number) I (variable) I 
(function designator) I ((arithmetic expression)> 

(function designator) : : = (common function identifier) 
((arithmetic expression)> I 
(procedure identifier) 
(actual parameter part) 

(common function identifier)::= SQRT! SIN !COS IARCT AN I LN I 
EXPI ABS I SIGN IENTIER 

(adding operator)::= +I-
( multiplying operator) : : =XI I 

(arithmetic expression) : : = (term) I (adding operator) 
~erm) (arithmetic expression) 
(adding operator) (term) 

(term) : : = (factor) I (term) (multiplying operator) (factor) 

(factor) : : = (primary) I (factor) * (primary) 

(statement) : : = (unconditional statement) I 
(conditional statement) I (for statement) 

(declaration) : : = (type declaration) I (array declaration) I 
(label declaration) I jfile declaration) j 
(format declaration) (list declaration) I 
(diagnostic declaratio ) I 
(procedure declaration) 

(Unconditional statement) : := (compound statement) I 
(block) I (basic statement) 

(basic statement) : := (unlabelled basic statement) 
(label) : (basic statement) 

141 



38. 

39. 

40. 

41. 

42. 

(unlabelled basic statement) : := (assignment statement) I 
(go to statement) I ldummy statement) I 
read statement) I 
write statement) I 
(Procedure statement) 

(compound statement)::= (unlabelled compound statement) I 
(label) : (compound statement) 

(unlabelled compound statement) : : = BEGIN (compound tail) 

(compound tail) : == (statement) END I (statement'> ; 
(compound tail) 

(block) : := (unlabelled block) I (label) : (block) 

43. (unlabelled block)::= (block head); (compound tail) 

44. (block head)::= BEGIN (declaration) j (block head); 
(declaration) 

4S. (program) : : = (unlabelled block)· I 
(unlabelled compound statement). 

46. (assignment statement) : := 4eft part list) (arithmetic expression) 

4 7. (left part list) : : = (left part) I (left part list) (left part) 

48. 

49. 

so. 

SL 

S2. 

S3. 

S4. 

SS. 

S6. 

S7. 

S8. 

(left part) : : = (variable ) .... 

(go to statement) : := GO TO (Label) 

(label declaration)::= LABEL (label list) 

(label list) : := (label) I (label list) , (label) 

(label) : : = (identifier) 

(dummy statement)::= (empty) 

(empty) : : = [the null string of symbols 1 
(Boolean primary) : == (relations) I <(Boolean expression)> 

(relation) : : = (arithmetic expression) (relational operator) 
(arithmetic expression) 

(Boolean expression) : : = (Boolean factor) I 43oolean expression) 
OR (Boolean factor) 

(Boolean factor) : := (Boolean primary) I (Boolean factor) AND 
(Boolean primary) 

142 



59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

(if statement) : : = (if clause) (unconditional statement) 

(if clause) : := IF (Boolean expression) THEN 

(conditional statement) : :: (if statement) I (if statement) 
ELSE (statement) I (if clause) 

(for statement) I 
(label): (conditional statement) 

(for statement) : := (for clause) (statement) I (label) : 
(for statement) 

(for clause) : := FOR (controlled variable) - (for list) DO 

(controlled variable) : := (simple variable) 

(for list) : : = (for l~st element) I ~or list) , 
~or hst element) 

(for list element) : : = (arithmetic expression) I 
~rithmetic expression~ STEP 
(ar~thmet~c express~on UNTIL 
(arithmetic express10n 

(subscripted variable) : : = (array identifier) 
[ (subscript list) J 

(array identifier) : : = (identifier) 

(subscript list) : : = (subscript expression) I 
(subscript list) , 
(subscript expression) 

(subscript expression) : : = (arithmetic expression) 

(array declaration) : : = (array kind) ARRAY (array list) 

(array kind) : :=(empty) I (type) 

(array list)::= (array segment) I (array list), 
(array segment) 

(array segment) : : = (array identifier) [(bound pair list) J I 
(array identifier) , (array segment) 

(bound pair list) : : = (bound pair) I (bound pair list) , 
(bound pair) 

76. (bound pair) : : = (lower bound) : (upper bound) 

77. (lower bound) : : = (integer) 

143 



78. (Upper bound) : := (integer) 

79. (file declaration)::= FILE (I-0 part) (file part) 

80. (1-0 part) : := INI OUT 

81. (me part) : : = (file identifier) (unit designation) 
<{buffer part)> 

82. (file identifier) : : = (identifier) 

83. (unit designation) : : = (empty) I (space) 1 

84. (space) : : = (single space) I (space) (single space) 

85. (buffer part) : : = (number of buffers) , (buffer size ) 

86. (number of buffers) : : = (unsigned integer) 

87. (buffer size) : : = (unsigned integer) 

88. (format declaration) : : = FORMAT ( 1-0 part) (format part) I 
FORMAT (format part) 

89. (format part) : : =(format identifier)<(editing specifications)> I 
(format part) , (format identifier) 
((editing specifications)) 

90. (format identifier) : : = (identifier ) 

91. 

92. 

93. 

94. 

95. 

96. 

97. 

(editing specifications) : : = (editing segment) I 
(editing specifications)/ I 
/ (editing specifications) I 
(editing specifications)/ 
(editing segment) 

(editing segment) : : !:: (editing phrase) I (repeat part) 
<(editing specifications)) I (editing segment), 
(editing phrase) I (editing segment), 
(repeat pan) ((editing specifications)) 

(editing phrase) : : = (repeat part) (editing phrase type) 
(field part ) I (string ) 

(repeat part) : := (empty) I (unsigned integer) 

(editing phrase type) : : = EI FI RI I IX 
(field part) : : = (field width) I (field width) . (decimal places) 

(field width) : : = (unsigned integer) 

144 



98. (decimal places) : : !:: (unsigned integer) 

99. (string) : :="{any string of valid characters except"}" 

100. 

101. 

102. 

103. 

104. 

105. 

106. 

107. 

108. 

109. 

110. 

111. 

112. 

113. 

114. 

115. 

116. 

(list declaration) : : = LIST (list part) 

(list part) : : = (list identifier ) ((list)) I Q.ist part) , 
(list identifier) ( Q.ist)) 

(list identifier) : : = (identifier) 

(list) : : = (list segment) I Q.ist) , (list segment) 

(list segment) : := (expression ~rt) I (for clause) 
(list segment) I (i.or clause ) 

[(expression list)] 

(expression part) : : = (arithmetic expression ) 

(expression list)::~ (express~on part) l (e.xpression list), 
(expression part} l Q.1st segment} I 
(expression list) , (list segment} 

(read statement}::= READ <(input parameters)) 
(action label ) 

(input parameters)::= (file identifier) , (format identifier), 
(list) I (file identifier ) , 
(format identifier) , (list identifier) 

(action label) : : = [(end of file label) J I (empty) 

(end of file label} : : = (label } 

(write statement)::= WRITE <(output parameters}> 

(output parameters) : : = (file identifier) (format and list paramerers) 

(format and list parameters)::: (format and list part} I 
~mpty) I [(skip to next page)] 

(format and list part) : : = , gormat identifier~ I 
ormat identifier , (list) I 

' format identifier 
', ~list identifier) 

(skip to next page) : : =PAGE 

(procedure declaration)::= PROCEDURE (procedure heading) 
(procedure body) \ (type ) PROCEDURE 
(procedure heading) (procedure body) 

145 



117. 

118. 

119. 

120. 

121. 

122. 

123. 

124. 

125. 

126. 

127. 

128. 

129. 

130. 

131. 

132. 

133. 

134. 

135. 

<procedure body) : : = <statement) 

(procedure heading) : : = ~rocedure identifier) 
formal parameter) ; 
specification part) 

(procedure identifier) : : = (identifier) 

(formal parameter part) : : = (empty) I ( (identifier list)) 

(identifier list) : : = (identifier) I (identifier list) , (identifier) 

(specification part) : := (empty ) I (specification list) 

(specification list) : : = (specification) ; I (specification list) 
(specification) 

(specification) : : = (specifier) (identifier list) I 
(array specification) 

~pecifier) : : = (type) I FILE I LIST I FORMAT I LABEL 

(array specification)::= ARRAY (array specifier list) I ¢ype) 
ARRAY ~array specifier list) 

(array specifier list) : : = (array specifier) l 
(array specifier hst), 
qirray specifier) 

(array specifier) : : = (array identifier list) 
[(lower bound list)] 

(array identifier list) : := (identifier list) 

(lower bound list) : : ::: (specified lower bound) I 
Q.ower bound list), 
~pecified lower bound) 

(specified lower bound)::= (integer) I* 
(procedure statement) : : = (procedure ici~ntifier) 

(actual param. 'ter part ) 

(actual parameter part) : : = (empty) I ( <actual parameter list)> 

(actual parameter list) : : = ~actual parameter) J 
actual parameter hst), 
actual parameter) 

(actual parameter) . ·­. ·- (arithmetic expression) I (array identifier) I 
( file identifier) I ( format identifier) I 
( list identifier) I (label ) 

146 



136. 

137. 

138. 

139. 

140. 

141. 

(diagnostic declaration) : : ~ MONITOR (monitor part) I 
DUMP (dump part) 

(monitor part)::= (file identifier)<(monitor list)> 

(monitor list) : : =(monitor list element) I (monitor list), 
(monitor list element) 

(monitor list element) : := (simple variable) I 
(subscripted variable) I 
(array identifier) I (label) 

(dump part) : : = (file identifier) ( (dump list) ) (label): 
(dump indicator) 

(dump list)::= (dump list element) I (dump list) , 
(dump list element) 

14 2. (dump list element) : := (simple variable) I (subscripted variable) I 
(label) I (array identifier) 

143. (dump indicator)::= ~nsigned integer) I (simple variable) 

147 



PART II 

METALINGUISTIC VARIABLES IN ALPHABETICAL ORDER 

Two columns of numbers appear to the right of each variable. The first 
column of numbers references, in Part I, the formula given for this vari­
able. The second column of numbers refers to a paragraph number where 
the formula is discussed in the text. 

148 



METALINGUISTIC LINE 
VARIABLE NUMBER 

(action label) • . • . . . . . • . • . . . . . • . • . • . . . . . • . . . . . • . • . 109 

(actual parameter) .•...•.. ................ .•.. 135 

(actual parameter list) ....................... 134 

(actual parameter part) ...................... 133 

(adding operator) .......•.•.•..... .............. 29 

(arithmetic expression) ...........•.........• 31 

(arithmetic operator) ....•...•...•.•...•...•.• 5 

(array declaration) •.....•.•...•...•.•......... 71 

(array identifier) . . . • . . . • . • .• . • . • . . . . . • . . . . . • . . 68 

(array identifier list) ......................... 129 

(array kind ) . . . . . . . . . .. . . . . . . . . . . . • . . . . . . . . . . . • . • 72 

(array list) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

(array segment) . . . •. . . .. . . •.• .• . •. . . . .• .• . .. •. . 7 4 

(array specification ) . .. ...•.•••. ......•.....•. 126 

(array specifier)............................... 128 

(array specifier list) ......................... 127 

(assignment statement) . • ...•.•...• .. .• . . . . .. 46 

(basic statement) . . • . . . • . . . . . • . • . • . • . . . • . . . . . . . 3 7 

(basic symbol ) . • . . . . . . . . . • . • . . . • . • . . . . . • . • . . . . .. 1 

(block) ............................................ 42 

(block head) ...•.•.....•.•...•.•.•...•.•... ....•. 44 

(Boolean expression ) . . . • . . . • . . . . . • . • . . . . . • . . . 5 7 

( Boolean factor) . • . • . • . • . • . • . • . • . • . • . • . • • • . . . • . . 5 8 

(Boolean primary) • . . . • . • . • •• . • . • . • . •. • . . . . . . . . 55 

149 

PARAGRAPH 
NUMBER 

7.4 

9.4/9.5 

9.4/9.5 

9.4/9.5 

2.7 

2.7 

2.2 

6.2 

6.1 

9.3 

6.2 

6.2 

6.2 

9.3 

9.3 

9.3 

3.4 

3.3 

2.2 

3.3 

3.3 

4.2 

4.2 

4.2 



METALINGUISTIC LINE 
VARIABLE NUMBER 

(bound pair) . . .. . . . . . . .• . . . . ................... •. 76 

(bound pair list) . . . .. . . .. .. .. .. • . ... . . .. . .. • .. .. 75 

(bracket) ......................................... 11 

(buffer part) .. .. . . . . .. .. . . . .. . . .. . ... . • . • .. . . . .. . 85 

(buffer size)..................................... 87 

(common function identifier) . . .. .. • . .. .. .. . 28 

(compound statement) .. .. • .. .. .. .. . . . .. .. .. .. 39 

(compound tail) .. . • .. .. . .. .. . . .. .. .. .. .. .. .. .. .. 41 

( conditional statement ) . .. .. . .. . . . . . . .. .. .. . . . 61 

( controlled variable) . .. .. • . .. .. .. .. .. . . • . .. .. • 64 

(decimal fraction ) .. . .. .. .. . .. .. . .. . . . .. .. . . . . . 18 

(decimal number).............................. 16 

(decimal places ) . . . . . . .. .. . . .. . .. . . . . . • . . . • . .. . 98 

(declaration ) .. .. • ... ... . .. • . .. .. .... • .. .. . • . • .. . 35 

(declarator) ..................................... 12 

(delimiter) ....................................... 4 

(diagnostic declaration) ...................... 136 

(digit) .......................... ··········. ..... ... 3 

(dummy statement) •. • .. .. .. .. .. .. .. .. . .. • .. . • . 53 

(dump indicator)............................... 143 

(dump list)....................................... 141 

(dump list element) .. .. .. ..................... 142 

(dump part)...................................... 140 

(editing phrase) ................................ 93 

150 

PARAGRAPH 
NUMBER 

6.2 

6.2 

2.2 

7.1 

7.1 

2.7 

3.3 

3.3 

4.4 

5.1 

2.4 

2.4 

7.2 

3.2 

2.2 

2.2 

10.4 

2.2 

3.5 

10.4 

10.4 

10.4 

10.4 

7.2 



METALINGUISTIC LINE 
VARIABLE NUMBER 

(editing phrase type) . .. . .. . . . . . . . . . . . . . . .. . . . . 95 

(editing segment) .......................... .... 92 

(editing specifications) .. .. . .. ... .. .. . ... .. . .. 91 

(empty) ........................................... 54 

(end of file label ) .. .. .. .. .. .. .. .. .. .. .. .. .. . .. . . ll 0 

(exponent part) .. .. .. .. .. .. .. .. . .. .. .. .. .. .. . . . . 1 7 

(expression list)............................... 106 

(expression part) .. .. .. .. .. . . .. .. .. .. .. .. .. .. .. 105 

(factor) ........................................... 33 

(field part) .. . . .. . . . .. . .. .. . . .. .. .. .. .. . . .. . . .. . .. 96 

(field width) ....... .......... ..... ............ ... 97 

(file declaration) . .. .. . .. .. .. .. .. .. .. .. .. .. .. . . . 79 

(file identifier ) .. . .. .. . . .. .. .. .. .. .. . .. . .. . . .. .. 82 

(file part) .. .. .. .. . .. .. . .. .... . .. .. .. .. .. .. .... .. . 81 

(for clause) .. .. .. .. .. .. .. .. . . .. .. .. .. .. .. .. .. . . .. 63 

(for list'>.......................................... 65 

(for list element ) .. .. .. . .. .. .. . .. .. .. . . . .. . .. .. 66 

(for statement) . .. . .. . . . . .. . . . . . .. .. . . . . . . . . . . . . 62 

(formal parameter part )..................... 120 

(format identifier)............................. 90 

(format and list parameters) . .. .. . . .. .. .. .. 113 

(format and list part) .. .. .. . .. .. .. .. .. .. .. .. .. ll 4 

(format declaration) .. .. .. .. .. .. .. .. .. .. .. .. .. 88 

(format part) .................................... 89 

151 

PARAGRAPH 
NUMBER 

7.2 

7.2 

7.2 

3.5 

7.4 

2.4 

7.3 

7.3 

2.7 

7.2 

7.2 

7.1 

7.1 

7.1 

5.1 

5.1 

5.1 

5.1 

9.3 

7.2 

7.5 

7.5 

7.2 

7.2 



METALINGUISTIC LINE 
VARIABLE NUMBER 

(function designator) . . . . . . . • . .. . . • . . . • . • . . . • . • 27 

(go to statement) . . . • . • . . . • . . . • . . . . . •. • . • . . . • . • . 49 

(identifier) . . . •.•........... .. •. . . . . . .•.•.. .•.• .• . 13 

(identifier list ) .•... .................... ........ 121 

(if clause) . . . . . . . . . • . . . . . • . • . • . . . . . • . • . • . . . • . • . . . . 60 

(if statement ) . .... .• . . .. .• .•.•.. .. . . . . . . . • .•.••• 59 

(input parameters)............................ 108 

(integer).......................................... 19 

(I-0 part)........................................ 80 

(label declaration ) . . . • . . . • . • . • .. . .. • . .. • . • . • .. . 50 

(label) ........................... .... ... ..... ...... 52 

(label list) .. . . ... . .. .. . . . .. .... . . .. . . . .. . . . . . .. . . 51 

( left part ) . .. . . • . . . • . . . . . . . . . • . . . • . . . . . • .. . . . .. • .. 48 

( left part list) • . . . .. • .. . . . • . . . .. . . • . • . . .. . • . • . • . . 4 7 

(letter)............................................ 2 

(list)............................................... 103 

(list declaration)............................... 100 

(list identifier) .....•...............•...•...•... 102 

(list part)........................................ 101 

( list segment ) . . . . .. . . . . . . • . • . . . . . . . • .. . . . . . • . . . • 104 

( logical operator ) . .. . . . . • . . . . . . . . . . . . . . . • . . . . . 7 

(lower bound) .•............. .................... 77 

(lower bound list).............................. 130 

(monitor list)..... ..........................•.. 138 

(monitor list element)........................ 139 
152 

PARAGRAPH 
NUMBER 

2.7/9.5 

3.5 

2.3 

9.3 

4.3 

4.3 

7.4 

2.4 

7.1 

3.5 

3.5 

3.5 

3.4 

3.4 

2.2 

7.3 

7.3 

7.3 

7.3 

7.3 

2.2 

6.2 

9.3 

10.4 

10.4 



METALINGUISTIC LINE 
VARIABLE NUMBER 

(monitor part) . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7 

(multiplying operator ) .. .. .. . .. .. . .. . .. .. .. ... 30 

(number ) . .. • .. .. .. .. . .. . . . . . . . . . .. . . . .. . . . . . . . . . . 14 

(number of buffers ) . . . . . . . . . .. .. . . .. . . .. .. .. .. 86 

(output parameters)........................... 112 

(primary ) . . . .. . . . . . . . . . . . .. . .. . . .. . . . .. . . . . . . .. .. 26 

(procedure body)............................... 117 

(procedure declaration ) . . . . .. . . . . .. . .. . . .. . . . 116 

(procedure heading) . . . . . . . . . .. . . . . . . . . . . . .. . . . 118 

(procedure statement) . . . . . .. . . . . . . .. . . . . .. . . . 132 

(procedure identifier) . . .. . . . . . . . . . .. . . . . .. . . . 119 

(program ) . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 45 

(read statement)............................... 107 

(relation) . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . .. • . .. . .. . 56 

(relational operator) .......................... 6 

(repeat part) . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 94 

<separator ) . . . . . . . . . . . . . . . . . . . . . . • . • . .. . . . . . . . . . . 9 

(Sequential operator) ..... ~·~·········........ 8 

(single space)................................... 10 

(simple variable) .. .. .. .. . .. . . . .. .. . .. . . . . .. . . . 22 

(skip to next page)............................. 115 

(space) .. ... . .. . . . . .. .. . . ........ .. . . . ... . .. . .. . .. . 84 

(specification).................................. 124 

(specification list) . . . . .. .. .. . .. . . . .. .. . .. . . .. . . 123 

153 

PARAGRAPH 
NUMBER 

10.4 

2.7 

2.4 

7.1 

7.5 

2.7 

8.2/9.3 

8.2/9.3 

9.3 

8.2/9.4 

8.2/9.3/9.5 

3.3 

7.4 

4.2 

2.2/4.2 

7.2 

2.2 

2.2 

2.2 

2.5 

7.5 

7.1 

9.3 

9.3 



METALINGUISTIC LINE 
VARIABLE NUMBER 

(specification part) . . • . . . . . . . . . . . . . . . . . . . .. . . . . 122 

(specified lower bound) ................... ..• 131 

(specifier) . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . 125 

(common function identifier) ............ ... 28 

(statement) ... . . . . .. . . . . . .. . . . . . . . .. . .. . . . . . .. .. . 34 

(string) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 

( subscript expression) . . . . . . . . . . . . . . . . . . . . . . . 70 

(subscript list) . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . 69 

(subscripted variable ) ... . . . . . . . . . . .. .. . . . . . . . 67 

(term)............................................. 32 

(type) . . . .. . . . . . . . . . .. . . . . . .......... .. . . .. . . . . .. . .. 24 

( type declaration ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

(type list) . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . 25 

(unconditional statement) . . . . . . . . . . . . . . . . . . . . 36 

(unlabelled basic statement) ... ...... .. ..•.. 38 

( unlabelled block) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

(unlabelled compound statement) .......... 40 

(unit designation ) . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . 83 

( unsigned integer ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

( unsigned number ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

(upper bound) . . . . . . . .. . . . .. . . .. . • . . . . . . . . . . . . . . . 78 

( variable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

(write statement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

154 

PARAGRAPH 
NUMBER 

9.3 

9.3 

9.3 

2.7 

3.2 

7.2 

6.1 

6.1 

6.1 

2.7 

2.5 

2.5 

2.5 

3.3 

3.3 

3.3 

3.3 

7.1 

2.4 

2.4 

6.2 

2.5 

7.5 



Appendix C -DECLARATIONS 

155 



Declarations provide the compiler with required information about 
identifiers used in a program. All identifiers must be explicitly defined 
by a declaration. The following lists the eight declarations and briefly 
points out the purpose of each. The reference following each definition 
indicates the section in the text where the declaration is discussed. 

(type declaration) 

(array declaration) 

(label declaration) 

(file declaration) 

(format declaration) 

(list declaration) 

- Specifies whether a simple variable is REAL or 
INTEGER (2.5). 

- Specifies that an identifier represents an array 
and gives the number of dimensions in the array 
and the bounds on each dimension (6.2). 

- Specifies that certain identifiers are labels 
(3.5 ). 

- Associates an identifier with a set of file­
handling specifications (7 .1 ). 

- Associates an identifier with a set of editing 
specifications (7 .2). 

- Associates one identifier with a set of expres­
sions to be initialized (in the case of input) or 
printed (in the case of output) (7 .3 ). 

(procedure declaration) - Associates an identifier with a body of coding 
which is to be treated as a subprogram (8.2) 
(9.3). 

(diagnostic declaration) - Associates an identifier with either monitoring 
or dumping specifications (10.4). 

156 



Appendix D - DEVIATIONS FROM ALGOL 60 

157 



Reference was made in Chapter 1 to ALGOL 60, the language on which 
B 5500 ALGOL is based. Although the latter contains many extensions to 
the language, not many of these have been included in the subset presented 
in this text. Therefore, with few exceptions, this subset is also a subset of 
ALGOL 60. This text can thus serve well as an introduction to ALGOL 60. 

A student, who has learned the material in this text, can readily pinpoint 
the few differences by consulting the ALGOL reference publications and 
other discussions of ALGOL*. 

Except for Chapters 7 and 10, most of the concepts presented here have 
exact counterparts in ALGOL 60. The important areas of difference are 
discussed below. 

Input-Output Constructs - No facilities for communication of data and 
results are specified in ALGOL 60. 

Labels - In ALGOL 60, it is permissible to use unsigned integers, as well 
as identifiers, for labels. No label declaration exists in ALGOL 60. 

Character Set - The B 5500 character set does not include all of the char­
acters used in ALGOL 60. As a substitute, reserved words such as AND and 
OR are used. The replacement operator in ALGOL 60 is the character pair 
: =whereas the B 5500 ALGOL compiler accepts either ... or := as a replace­
ment operator. ALGOL 60 uses the symbol tfor exponentiation, rather than 
the asterisk. Powers of ten in numbers are written with an undersized 10 
in ALGOL 60 while the @ symbol is used on the B 5500. 

Reserved Words -There are no reserved words in ALGOL 60. Delimiters 
such as BEGIN, STEP and IF are considered to be single symbols, (see 
Section 2.2). The blank is not used as a separator in ALGOL 60, whereas 
in che B 5500 it is often needed in conjunction with reserved words, (see 
Section 2.3). 

Identifier Length - No limit on identifier length is given in ALGOL 60. 

Specifications - The specifications, which are a part of procedure head­
ings that contain formal parameters, are not mandatory in ALGOL 60. 
In an array specification, no lower bound list is given in ALGOL 60. 

GO TO's in Procedure Bodies - No restriction on the use of a go to 
statement referencing a label nonlocal to the body of a typed procedure 
is given in ALGOL 60, (see Section 9.3). 

Global Identifiers in Procedure Bodies - The restriction discussed in 
Section 8.2 is not present in ALGOL 60. 

*"Structure and Use of ALGOL 60," Bottenbruch, H., 
Journal of the Association for Computing Machinery, April, 1962 

"An Introduction to ALGOL 60," Schwarz, H. R., 
Communications of the Association for Computing Machinery, February, 1962 

158 







1019973 
( Formerly 5000-21030) Printed in U. s. America 

r 


