Burroughs

B 6500

Information Processing Systems
REFERENCE MANUAL

Burroughs
B 6500

INFORMATION PROCESSING SYSTEMS

REFERENCE MANUAL

B

Burroughs Corporation
Detroit, Michigan 48232

$5.00

Printed in U.S. America 0-69 1043676

COPYRIGHT® 1969 BURROUGHS CORPORATION

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

SECTION

TABLE OF CONTENTS

TITLE

INTRODUCTION. . &+« « « o o o o o o
SYSTEMS DESCRIPTION+ .« . .

General. . « « « « o o+ o o o

Description of Units

System Options and Requirements
Auxiliary Cabinet
System'Power, e e e e e e s
Peripheral Control Cabinet.

System Organization.

Master Control Program
ClocKSe o « o « o o o o o
ProCcessSOoT. « « o o o ¢ o s o

Processor States. « « « «

Control State . . « « « .+
Normal State. . « « « « .+ .
Features. « « ¢« « « « + « o
Interrupt System . . .+ .« .+ .

Interrupt Handling.

Operator Dependent Processor Interrupts

.

3

Operator-Independent Processor Interrupts

External Interrupts
Main Memory. « « o« o o o o =

Memory Words. « « o+ « «+ o o

Memory Cycle Times. ¢« o e s
Second Level Memory. . . « « =

Input/Output Multiplexor . .«
Multiplexor Configuration .
Data Switching Channels . .
Peripheral Controls
System Expansion.

Peripheral Control Bus. . .

Processor Initiated I/O Operations.

PAGE

xxvii

=R
1 1 1 I 1
(R

T
1
O 00 OO\ Ut

1-12
1-12
1-12
1-12
1-13
1-13
1-14
1-15
1-15
1-16
1-16
1-17
1-17
1-17
1-17
1-17
1-18
1-18
1-18
1-19
1-21

iii

SECTION

iv

1 (cont)

TABLE OF CONTENTS (cont)

TITLE
Peripheral Control. . . .+ + v + o« o« o « o &
Data Communications Processor « . .
Data Communications Adapters. . . .« . « . .
Real Time Adapter. . . . + v « ¢« « o +

DATA REPRESENTATION . . v « v o o & o o o o &

General. « « + ¢ + ¢ o & ¢ o o o s e 4 e W
Internal Character CodesS. . + o o « o o o o
Number Bases .« ¢« « ¢ v ¢« o o o o o o o o @

Hexadecimal and Octal Notation

Number Conversion . . o o + « o o o o o o
Coded to Decimal Conversion.+ .
Decimal To Coded . .+ &+ v v v v o« o o o

Decimal and Hexadecimal Table Conversion
Hexadecimal to Decimal . . .

Decimal to Hexadecimal . . .

Order of Magnitude. . . .+ + . v ¢« o o o o« &

Data Types and Physical Layout.

Character Type « « o v o &+ o o o o o« o
Operands . . +« + v ¢« & 4 &« o o o o o o
Mantissa Field« .« ¢ v « o « o + .
Logical Operands . . .+ + + &+ « o o« o o .
Operators . . « ¢ ¢ v v & o 4 o o o« o o o
STACK AND POLISH NOTATION. &+ « &« « « o o o o .
The Stack . ¢« « + ¢ ¢ s ¢ « o« o o o o o o
General.« « 4 ¢+ 4 e e e 4 e e

Base and Limit of Stack.

Bi-Directional Data Flow In the Stack. .

Double~-Precision Stack Operation
Data Addressing . . ¢ o « o « o o o o o o
Data Descriptor. . . + « « + + + « + .

PAGE

1-21
1-21

e
1 I
NN
=N

VWD N NN NN NN
1 1] 1
ST BV G S - T T O

NN
1 1 1 1
O 00

2-10
2=-12
2-12

SECTION

3 (cont)

TABLE OF CONTENTS (cont)

TITLE PAGE
Presence Bit. « ¢« ¢ ¢« + ¢« o o o o o o o o o -
Index Bit « « ¢ o« + o« o o o o o o s o o« o o -
Il’lV'al id Ind eX L) - - . . . -
Valid ITndexX. o« o o o o o o o o o o o o o o o o -

Read-Only Bit. . « + « o« o o« o « o o« « «

Copy Bit « v v v o v 4 4 s e 4 4 e e e e
Polish Notation. . . . ¢« ¢« ¢ ¢ + o o « o o« « o = -
General . ¢ +« ¢« o 4+« 4 e s e e e e e e e e -
Rules for Generation of Polish String -
Polish String . .« « « o o o« o« o o o« o o o o -

W W W W wowwuwowoww
{
oo 0~ LUt bt bt it

Rules for Evaluating a Polish String.
Simple Stack Operation. . . « « +« « ¢« + « + « 3=9
Program Structure In Memory . . . « « . . o« . 3=1L

Memory Area Allocation . . « « « « « « « o 3=1Ah

Stack-History and Addressing-Environment
LiStS 3 3"16

Mark Stack Control Word Linkage. . . o« « . 3-16
Stack Deletion . « + &+ ¢« o o &+ « o « + « o« 3=16
Relative~Addressing. . + « « « o + « + « « 3=18
Base of Addressing-Level Segment. . . . 3-20
Absolute Address Conversion 3-=20

Multiple Variables With Common
Address Couples .+ ¢« ¢« o o o o o o o + 3-20

Address Environment Defined 3-21

Mark Stack Control Word Linkage 3-21

Stack History Summary. . « « « o o « o o = 3-21
Multiple Stacks and Re-Entrant Code 3=22
Level Definition+ « « + « . 3=22
Re-Entrance. « « « ¢ o« o o o o o o o o » o 3-22
Job-Splitting. . « « « « .+ ¢« +« « + . . + . 3=22
Stack Descriptor . « « « ¢ o ¢ ¢« o o o o 3-23
Stack Vector Descriptor.« « . . . 3=24

Presence Bit Interrupt . . « « « « « « « . 3=24

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
L MAJOR REGISTERS AND CONTROL PANELS. . « ¢ « +« . . L1
General . . . « . + « + ¢ 4 4 4 v e e 4 e
Panel A « v v v v v v v e v o v b
A Register . . + v v « v « v « o o« « o« o b1
B Register . .+ « v 4 o « o« o o« o o o o o« b
C Register . . .+« .« v v v v o o« « o o . -2
X Register . . +« v v v & « o« v o « o o o Lo
Y Register « v &« v « « « o o« .« + Lo
P Register v ¢ & v v o ¢« o« o o« o« h-2
Panel B . + &+ + &+ & 4 4 4 4o o 4 o v e v v v L2
Row A. v v v v v v v e e e e e e e e ho2
Row B. « « ¢ « ¢ v v v o v 4 e e v e w o b2
Row C. v v v v v v o v ¢ & o« « o o « o« o Loy
Family A, . « v + « v « v « o« « « « « Lh-s
Arithmetic Control. L4-5
Row D. v v v v v o v v v 4 e e e e e L-6
Family B, v ¢« o ¢« + & o « o o « « « « Log
Family C. + « v ¢ 4+ & & « &« « o« « « « Lo
Row Eo v v v v v v ¢ v v v « o o o o o« « L-s
Family D. + & « v « o« + o 4 o &« &« « o U-6
Family E. o ¢ « + o « o o« o o« o o« o o L7
ROW Fu v v v 6 v 6 v o o o o o v o v o W b-m
Row G.o v v « & v & + & & « o« o &+ o « o« + L-8
Interrupt Controller 4-8
Stack Controller « « « « « L-9
Memory Controller. k-9
Row H. . . . « + + « « ¢ v e v ¢ o« o o W L-10
Program Controller L-=10
Transfer Controller. Lh-11
General Maintenance Control... . . .« « + . . . bh-11
Power Controls. . « + « « & & & & o o o« o« o bL-12
General Clear and Halt-Load Function. . . . 4-12
Processor Register Clear. . « « + « « + o« . W14

vi

SECTION

4 (cont)

TABLE OF CONTENTS (cont)

TITLE

Multiplexor Register Clear.

MDL Register Clear. .
MDL Control Switches.

Display Select Switches

Clock Controls. . . .
Single Pulse Switch .
Pulse Train Switch. .
Indicators BO, Bl, B2
MDTR/Normal Switch. .
FF Reset Switch . . .

Halt Load and Load Select

.

Switches.

(Panel E)

Processor Maintenance Controls

Start Switch.

Conditional Halt Switch

Stop Switches
SECL Switch
INT~T Switch.
EXT~-T Switch.

Normal/Control State Switches

Parity Switch
Unit Clear Switch . .
Local/Remote Switch .
ADJ (0,0) Switch. . .
Read IC Switch
Read IC Operation . .
Write IC Switch . . .
Write IC.

Read Proc Reg Switches.

Multiplexor Registers and Flip Flops

Row B. . . « + .+ . .

Row C ¢« ¢« « ¢ o « o o
Row D . .+ « « + « «
Row E . . « + « « o o

.

PAGE

.o b1l
. h-ah
b1l
. b1k
. h-1s
. h-15
. bh-15
. bh-15
. h-15
. L-16
. h-16
. h-16
. h-16
Lh-17
T
R
R B
o h-17
. L4-18
. L4-18
. L-18
. 4-18
. 4-18
. L4-18
. h-19
. L4119
. h-19
. L-20
. b-22
22
. bh-23
. h-23
. 423

vii

SECTION

4 (cont)

viii

TABLE OF CONTENTS (cont)

Row F. .
Row G. .
Row H. .

TITLE

MPX Maintenance Control Panel.

Write SPM. .

Read SPM

Write Main Memory.

Read' Main Memory

Executing I/O Descriptors.

Single Cycle.

Recycle .

Logic Card Testing
Operators Control Console

Operator Panel

.

Power On (Switch Indicator, White)
Power Off (Switch, Brown).

Halt Switch (Switch/Indicator,

Running (Indicator, Yellow).

Load Select (Switch/Indicator,

Load (Switch, Brown) .

Card Load Operation
Disk Load Operation

Visual Message Control Center

Keyboard Control Keys.

Memory Tester .

Non-Test
Test . .

SYSTEM CONCEPT
General . .

Processor .

Operator

Families.

.

Red).

PAGE

Lh-24
b2k
L-26
Lh-26
27
L-27
L -28
I-28
4-29
L4-29
4-30
4-32
L4-32
Lh-32
4-32
L-32
h-32
h-33
h-33
4-33
4h-33
L34
434
L-36
L-4Lo
-4
Lh-n1

Uttt W\t
1
e T

SECTION

5 (cont)

TITLE

Program Controller.
Transfer Controller

Stack Registers.

Mask and Steering.

Arithmetic Controller
High Speed Adder

Interrupt Controller.

Operator Dependent

Memory Protect.

Invalid Operand

Divide by Zero.

Exponent Overflow

Invalid Index

TABLE OF CONTENTS (cont)

Internal Data Transfer

Section

Mask and Steering Example.

Interrupts.

Integer Overflow.

Bottom of Stack

Presence Bit.

Data-Dependent Presence Bit.

Procedure-Dependent Presence

Bit. . . .

Program Restart,.

Segmented Array

Programed Operator . .

External Interrupts.

Processor to Processor.

Interval Timer.

Stack Overflow.

Multiplexor Interrupts.

Scan Bus Control.

Priority Handling Example

Operator Independent Interrupts.

PAGE

1 I 1 1 ! ! I [1 I) 1
M B B R R R R R RHWO®OOOONUWWLWWNWN
W W WL KRR RO

Ut Ut Ut Ut bt it it Ut bt bt bt bttt ot Ut Ut bt ot
1

ix

SECTTION

5 (cont)

TABLE OF CONTENTS (cont)

TITLE

Priority Handling With ITHF Set.

I/0 Finished Data Communications

General Control Adapter.

External MPX . .
Alarm TITnterrupts. .
Loop « ¢« « « .+
Memory Parity. .
MPX Parity . . .
Invalid Address.
Stack Underflow.

Invalid Program Word

Interrupt Handling

String Operator Controller

Control State/Normal State

Input/Output Multiplexor . .
Scan Bus. . . .+ .« « « o .
Command Data Register . .

Scratch Pad Memory. . . .

Tag Register. . . « « .+ .
Memory Exchange
Interrupt Network

Time of Day Register. . .

Channel Assignment Control.

Character Translator. . .

Peripheral Control Interface.

Data Communications Interface

.

.

System Clock Control and MDL Processor.

System Clock.« .« .

Maintenance Diagnostic Processor

Display Mode. . . .

Diagnose Mode . . .

Detect Mode « « « ¢ « « & o o

PAGE

5=-20
5-20
5-21
5=21
5-21
5-22
5=22
5-22
5-20
5-20
5-21
5-25
5-25
5-27
5-29
5-29
5-29
5-29
5-31
5-31
5-31
5-31
5-31
5-31
5-33
5-33
5-33
5-33
5-34
5-34
5-34
5-34

TABLE OF CONTENTS (cont)

SECTION _ TITLE

5 (cont) Tnformation Flow From Card Reader To

Main Memory. « « o + o+ o o o « o o
Alpha Card Read
Binary Card Read.,
EBCDIC Card Read.« .

Memory and MPX Controller.

Memory Bus .« « . + + o o+ «
Scan Bus . . . « . .« ¢ . . .
Address Adder . . .« .+ « + « o+
Integrated Chip Memory.

Main Memory. . « « « o o o s o o o
Organization. . « « « « + « «
Memory Protection
Cabinet Configuration
Interface . « « « « o o o o o .
Priority. . « « ¢« « o + « « o .
Memory Registers. + . .
Memory Addressing . . « + « .+ .
Memory Interlacing.
Memory Testing. . .+« + ¢« + « + o

Stack Controller. . . « .« « « .

6 PROGRAM OPERATORS ¢ ¢ ¢ o+ o ¢ o o o
General. o+ « ¢ o « o « o o o 0 e .

Syllable Addressing and Syllable
Identification . « +« « +« + « o o o

Syllable Format and Addressing.

P and T Registers
Operation Types . « « +« + « o &
Name Call. . . . « « + + o+ .

Value Call « .+ « « .
Operators. . « . . + « + + o

Word Data Descriptor . . . « . .« .

String Descriptor.

PAGE

o
1
R

AN OOV OV OV OV NN DN
1
ARG R RN o e

xi

SECTION

6 (cont)

TABLE OF CONTENTS (cont)

TITLE

Segment Descriptor. .

Mark Stack Control Word
Program Control Word. .
Return Control Word . .

Indirect Reference Word

.

Stuffed Indirect Reference Word

Step Index Word

PRIMARY MODE OPERATORS. .
General
Arithmetic Operators. .

Add (ADD) 80
Subtract (SUBT) 81
Multiply (MULT) 82 .

Extended Multiply (MULX) 8F.

Divide (DIVD) 83

Integer Divide (IDIV) 84 . .
Remainder Divide (RDIV) 85 .,
Integerize, Truncated (NTIA)

Integer
Type-Trans

Set to
(sNGT)

Set to
(sNGL)

Set to
Logical Op
Logical
Logical
Logical
Logical
Relational
Logical

Greater

xii

ize, Rounded (NTGR) 87. . .
fer Operators

Single-Precision, Truncated
CC. . . L L] . L] . - . . . »

Single-Precision, Rounded
CD. v ¢ o « v v v v 00

Double-Precision (XTND) CE.

erators . . + . ¢ 4 4 4 . .
And (LAND) 90.
or (LOR) 91.

Negate (LNOT) 92

Equivalence (LEQV) 93. . .
Operators.
Equal (SAME) 94,
Than (GRTR) 8A

PAGE

6-9

6-10
6-11
6-12
6-14
6-14
6-16

(T I T R
[

| [A A R |
OOyt t R WwWw N

NN N NN NN NN NN
1

~3
1
o

NN N NN NN NN
1
NO \O O O 00 0 0 00 3 I

SECTION

7 (cont)

TABLE OF CONTENTS (cont)

TITLE PAGE

Greater Than or Equal (GREQ) 89. . « . .« . . -9

Equal (EQUL) 8C. + v v v « 4 o o o o o« o « -9

Less Than or Equal (LSEQ) o -9
Less Than (LESS) 88. « v v v « « . . -10
Not Equal (NEGL) 8D. .+« v v v v v v « « o « . -10
Branch Operators. . « « « o ¢« o o« + o o & o & -10
Branch False (BRFL) AO . . .+ « « & « « « . . -10
Branch True (BRTR) AL. . + « « o « o « o o . -10

Branch Unconditional (BRUN)A2
Dynamic Branch False (DBFL) A8

NN NN N N NN NN NN NN NN NN
| I
(-
= o

Dynamic Branch True (DBTR) A9,+ . . -11
Dynamic Branch Unconditional (DBUN) AA . . . -11
Step and Branch (STBR) AL4. -12
Universal Operators .« « « + « « o o o o o o o« -12
No Operation (NOOP) FE . . . « + « « « o« « . -12
Conditional Halt (HALT) DF « -12
Invalid Operator (NVLD) FF -12
Store Operators . .+ « & v v « « o & e e« s e -12
Store Destructive (STOD) B8. 7-13
Store Non-Destructive (STON) B9. 7-13
Overwrite Destructive (OVRD) BA. 7-13
Overwrite Non-Destructive (OVRN) BB, 7-173
Stack Operators . « + ¢ o o« o o ¢ o e e« e e 7-173
Exchange (EXCH) B6 . . « « v o « v o o o o « 7-13
Delete Top Of Stack (DLET) B5. . . +. 7=1h
Duplicate Top Of Stack (DUPL) B7 7-14
Push Down Stack Registers (PUSH) B4. 7-1h
Literal Call OperatorsS. . .« « + « 4« o o o+ « « o« 7=14
Lit Call Zero (ZERO) BO. . . +. « « « « . . . 7-1h4
Lit Call One (ONE) Bl. . +. « 4 &« « « o« o « o 7=1h
Lit Call 8 Bits (LT8) B2 . . + « + « « + + » 7-14
Lit Call 16 Bits (LT16) B3 . . « . « « .« . . 7-14

Lit Call 48 Bits (LT48) BE . . « . . « . . . 7-14

xiidi

TABLE OF CONTENTS (cont)

SECTION TITLE
7 (cont) Make Program Control Word (MPCW)
Index and Load Operators.
Index (INDX) A6. . . « « « « « .

xiv

Index and Load Name (NXLN) A5.

Index and Load Value (NXLV) AD

Load (LOAD) BD
Scale Operators+ « « o«
Scale Left (SCLF) CO
Dynamic Scale Left (DSLF) C1
Scale Right Save (SCRS) CkL .

Dynamic Scale Right Save (DSRS) C5
Scale Right Truncate (SCRT) c2 . .
Dynamic Scale Right Truncate (DSRT) C3

Scale Right Final (SCRF) C6.

Dynamic Scale Right Final (DSRF)
Scale Right Rounded (SCRR) C8.
Dynamic Scale Right Round (DSRR)

Bit Operators . . « + « o « o
Bit Set (BSET) 96.
Dynamic Bit Set (DBST) 97. .
Bit Reset (BRST) 9E.
Dynamic Bit Reset (DBRS) 9F.
Change Sign Bit (CHSN) 8E. .

Transfer Operators. .« « « « «
Field Transfer (FLTR) 98 . .

Dynamic Field Transfer (DFTF) 99

Field Isolate (ISOL) 9A. .

Dynamic Field Isolate (DISO) 9B.

Field Insert (INSR) 9C . . .

Dynamic Field Insert (DINS) 9D .

String Transfer Operators . . .

c7.

Transfer Words, Destructive (TWSD)
Transfer Words, Update (TWSU) DB .

PAGE

7-15
7-15
7-15
7-16
7-16
7-16
7-17
7-17
7-17
7-17
7-18
7-18
7-18
7-18
7-18
7-18
7-19
7-19
7-19
7-19
7-19
7-20
7-20
7-20
7-20
7-21
7-21
7-21
7-22
7=-22
7-23
7-23
7-23

SECTION

7 (cont)

TABLE OF CONTENTS (cont)
TITLE

Transfer Words, Overwrite Destructive
(TWOD) DU, v v v v v v v v e e e e e e e e

Transfer Words, Overwrite Update (TWOU) DC .
Transfer While Greater, Destructive

(TGTD) E2. « v o v o v v o o v o o o 0 o o &
Transfer While Greater Update (TGTU) EA.

Transfer While Greator or Equal,
Destructive (TGED) EL. . « « « o « o o« o & o

Transfer While Greater or Equal, Update

(TGEW) E9. v v v v v o o o o o v v o 0 o o
Transfer While Equal, Destructive (TGED) EL.
Transfer While Equal, Update (TEGU) EC . . .

Transfer While Less or Equal,
Destructive (TLED) E3. .+ +« « « « « « « o « =

Transfer While Less or Equal, Update
(TLEU) EB. « « & « o & o o o« o & o o o « «

Transfer While Less, Destructive (TLSD) EO .
Transfer While Less, Update (TLSU) E8. . . .
Transfer While Not Equal, Destructive

(TNED) EB5. ¢ v & o o ¢ o o o o o o o o + o o
Transfer While Not Equal, Update (TNEU) ED .

Transfer Unconditional, Destructive
(TUND) E6. + v v v o o o o o o o o o o o o

Transfer Unconditional, Update (TUNU) EE . .
String Isolate (STISO) D5 . + v « o « « o o &
Compare Operators . .+ « « « o o o o o o o o o

Compare Characters Greater, Destructive
(CGTD) F2. v v o v ¢ o o o v o o o o o o o

Compare Characters Greater, Update
(CGTU) FA. « v v o o o v o v o o o o o« o

Compare Characters Greater or Equal,
Destructive (CGED) Fl. . . « « « « « o« « « =

Compare Characters Greater or Equal,
Update (CGEU) F9u + v v v o o o o o o o « &

Compare Characters Equal, Destructive
(CEGD) Fh. . « v v v v v v e e e e e e e e

PAGE

7-23
7-23

7-20
7-24

7-25

7-25
7-25
7-25

7-25
7-25
7-26

7-26
7-26

7-26
7-26
7-26
7-27

7-28

XV

TABLE OF CONTENTS (cont)
SECTION TITLE
7 (cont) Compare Characters Equal, Update

(CEGU) PC. v v v v o v e

Compare Characters Less or Equal,

Destructive (CLED) F3.
Compare Charagters Less or Equal,
Update (CLEU) FB + + .+ « « . .
Compare Charactters Less, Destructive
(CLSD) FO. + v v v v v v v v v e v o
Compare Characters Less, Update

(cLsu) 8.

Compare Characters Not Equal, Destructive

(CNED) F5. . v v v v v v v v v v v o .

Compare Characters Not Equal, Update
(CNEU) FD. . . v v v v v v v v v v v

Edit Operators. v ¢« v v v « o « .

Table Enter Edit, Destructive (TEED) DO.

Table Enter Edit, Update (TEEU) D8 . .

Execute Single Micro, Destructive
(EXSD) D2. . . v v v v v v e e e

Execute Single Micro, Update (EXSU) DA

Execute Single Micro, Single Pointer
Update (EXPU) DD + v + + . .

Pack Operators. . . + v v « v v v o o o .
Pack, Destructive (PACD) D1.
Pack, Update (PACU) D9

Input Convert Operators

Input Convert, Destructive (ICVD) CA .
Input Convert, Update (ICVU) CB. . . .
Read True False Flip Flop (RTFF) DE. .
Set External Sign (SXSN) D6.

Read And Clear Overflow Flip Flop (ROFF)

Subroutine Operators. « . o + o o o o o .
Value Call (VALC) 00 =) 3F
Name Call (NAMC) 40 =) 7F.

xVvi

PAGE

7-29

7-29
7-29
7-29
7-30

7-30
7-30

7-30
7-30
7-30
7-31
7-31
7-31
7-32
7-32
7-32
7-32
7-32
7-32
7-33

SECTION

7 (cont)

TITLE

Exit Operator (EXIT) A3.
Return Operator (RETN) A7.
Enter Operator (ENTR) AB .
Evaluate (EVAL) AC . .
Mark Stack Operator (MKST) AE.,
Stuff Environment (STFF) AF.
Insert Mark Stack Operator (IMKS) CF

TABLE OF CONTENTS (cont)

VARIANT MODE OPERATION AND OPERATORS . .

General

.

Operators . . .« + « « o

.

.

Set Two Singles to Double (JOIN) 9542,
Set Double to Two Singles (SPLT) 95A43.
Idle Until Interrupt (IDLE) 954l .
Set Interval Timer (SINT) 9545 .
Enable External Interrupts (EEXI) 9546
Disable External Interrupts (DEXT)

Scan Operators. . . « .« .

Read
Read
Read
Read
Read
Read

Time Of Day Clock

General Control Adapter

Result Descriptor..

Interrupt Mask. .

Interrupt Register.

Interrupt Literal

.

.

Interrogate Peripheral Status.

Interrogate Peripheral Unit Type
Interrogate I/0 Path . ‘

Scan

Oout (SCNO) 954B .

Set Time Of Day Clock.

Set General Control Adapter.

Initiate I/0.

(Control State Only)

9547.

Read Processor Identification (WHOI)

.

PAGE

7-36
7-36
7-36
7-36
7-40
7-40
7-40

® 0 ® o ® o 0
1 1 1 1 1 |
NN R R

0o 00 0 0 0 00 0 G o
1 I 1 1 1 1 | 1 1 1
O 0N 0N LD NN

8-10
8-12
8-13
8-14
8-14
8-15
8-17

xvii

SECTION

8(cont)

xviii

TABLE OF CONTENTS (cont)

TITLE

Interrupt Other Processor (HEYU) 954F.
Occurs Index (OCRX) 9585

Integerized, Rounded, Double-Precision

(NTGD) 9587.

Leading One Test (LOG2) 958B
Move To Stack (MVST) 95AF.
Set Tag Field (STAG) 95B4.

Read Tag Field

(RTAG) 95B5

Rotate Stack Up (RSUP) 95B6.
Rotate Stack Down (RSDN) 95B7.

Read Processor

Register (RPRR) 95B8. .

Set Processor Register (SPRR) 95B9 . .

Read With Lock

(RDLK) 95BA

Count Binary Ones (CBON) 95BB.
Load Transparent (LODT) 95BC

Linked List Lookup(LLLU) 95BD.
Masked Search For Equal (SRCH) 95BE. .
Unpack Absolute, Destructive (UABD) 95D1
Unpack Absolute, Update (UABU) 95D9. .
Unpack Signed, Destructive (USND) 95DO .

Unpack Signed,

Transfer While True, Destructive (TWTD)

95D3
Transfer While

Transfer While
95D2

Transfer While

Scan While Greater, Destructive (SGTD)

95F2

Scan While Greater, Update (SGTU) 95FA

Update (USNU) 95D8. .

3 . °

.

True, Update (TWTU) 95DB.
False, Destructive (TWFD)

.

False, Update (TWFU) 95DA
Translate (TRNS) OB5D7. ¢ « « o o+ o« o«

.

Scan While Greater or Equal,
Destructive (SGED) 95F1.

Scan While Greater or Equal, Update

(SEGU) 95F9. .

.

PAGE

8-17
8-17

8-19
8-19
8-19
8-20
8-21
8-21
8-21
8-22
8~273
8-23
8-273
8-23
8-23
8-24
8-25
8-26
8-26
8-26

8-26
8-27

8-27
8-27
8-27

8-28
8-28

SECTION

8 (cont)

TABLE OF CONTENTS (cont)
TITLE

Scan While Equal, Destructive

(SEQD) 95FL.

Scan While Equal, Update (SEQU) 95FC .

Scan While Less or Equal,
(SLED) 95F3. . . +« « .+ . .

Scan While Less or Equal,
(SLEU) 95FB. . . «

Update

Destructive

Scan While Less, Destructive (SLSD)

OBFO0 v v o v 4 4 e e e e e e e e e e e e
Scan While Less, Update (SLSU) 95F8. . . .
Scan While Not Equal, Destructive (SNED)
OBFB v v v v e v e e e e e e e e e e e e
Scan While Not Equal, Update (SNEU) 95FD
Scan While True, Destructive (SWTD) 95D5 .
Scan While True, Update (SWIU) 95DD. . . .
Scan While False, Destructive (SWFD)
O5DU. . v v v e e e e e e e e e e e e e e
Scan While False, Update (SWFU) 95DC . . .

EDIT MODE OPERATION AND OPERATORS.

General

. . (3

Edit Mode Operators . « .« + « o o o+ o « =+
Characters (MCHR) D7. . . . « . .

Move
Move

Move

Numeric Unconditional

With Insert (MINS) DO .

(MVNU) D6 . .

.

.

Move
Skip
Skip
Skip
DA .
Skip
DB L]

With Float (MFLT) D1. . .
Forward Source Characters (SFSC) D2 .
Reverse Source Characters (SRSC) D3 .

Forward Destination Characters (SFDC)

.)

Reverse Destination Characters (SRDC)

Reset Float (RSTF) D4. « « « « « .
End Float (ENDF) D5. &« + « &+ o o o o« « o =

Insert Unconditional (INSU) DC

Insert Conditional (INSC) DD

PAGE

8-29
8-29

8-30
8~30
8-30
8-30

8-30

o0
1
[SY)
O

O O 0 O 0 0 Vv Vv O
1 I i 1 1 1 i 1
P W L R\ i e

SECTION

9 (cont)

10

11

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDTIX

XX

Q"M g 09w e

TABLE OF CONTENTS (cont)
TITLE

Insert Display Sign (INSG) D9.
Insert Overpunch (INOP) D8
End Edit (ENDE) DE

INPUT/OUTPUT MULTIPLEXOR AND PERTIPHERAL CONTROLS

General . . . ¢ « + ¢ ¢ v 4 e e e e .

Operation . . .+ « + o « o & o o o« o

Descriptor Formats.
Addxess Word« .« + « + ¢ .« .
Area Descriptor.+ . .
I/0 Control Word«

Result Descriptor.

Peripheral Units and Associated Peripheral

Controls. . . « « v o o « v o« o « o .
Console. . « + « o« o« ¢ o « o« « o .
Card Reader. « « « + « + .
Card Punch« .« . .
Line Printers. « « « .+ .
Magnetic Tape Subsystem.
Disk File Subsystem,« . .

Paper Tape« .+ « .+ « .

B 6500 DATA COMMUNICATIONS SYSTEM. . . .

General . . « . .+ .« + « o ¢ . e . .
Data Communications Processor (D.C.P.
Adapter Cluster« « v ¢ + « o o

Line Adapter. . . « +« « + « « « o «

- OPERATORS, ALPHABETICAL LIST
- OPERATORS, NUMERICAL LIST PRIMARY MODE
- CONTROL WORD FORMATS

- SCAN FUNCTION CODE WORDS
- DATA REPRESENTATION. . . .+ . +« & .+« . .
- B 6500 EBCDIC/HEX CARD CODE.
- HEXADECIMAL-DECIMAL CONVERSION TABLE .

PAGE

9-5
9-5
9-6

10-1
10-1
10-1
10-2
10-3
10-3
10-3
10-4

10-5
10-5
10-7
10-10
10-12
10-14
10-20
10-24

11-1
11-1
11-1
11-3
11-5

LIST OF TLLUSTRATIONS

FIGURE © TITLE PAGE
1-1 Auxiliary Cabinets. . v v v « ¢ o 4 o o o o o o « 1=6
1-2 B 6500 Power SUPDPLY « + + o « v v o o o 4 o 0w . 1=7
1-3 Peripheral Control Cabinet. 1=8
1-4 B 6500 Schematic Diagram.« « &« « « + o o . 1-11
1-5 Possible Magnetic Tape Subsystem. « . . . 1-19
1-6 Possible Disk File Subsystem. +. . . 1=20
1-7 Input/Output Subsystem. . + « « « & « « & & + « . 1=20
1-8 Organization of Data Communications Processor

Remote Lines.« . « + + v v v v o « o « o« + 1=22
2-1 Basic Word Structure. + + « « « . . . 2-1
2-2 Number Base Graphic Characters. . . « « o « o« . . 2=2
2=-3 Binary to Hexadecimal and Octal Conversion. . . . 2-3
2-4 Relationship of Octal, Decimal and Hexadecimal

Numbers . .« « « v « o v ¢ v 4 e e e e e e e e 2~3
2-5 Hexadecimal and Octal To Decimal.« . « . 2-=4
2-6 Decimal 101310 To Hexadecimal And Octal 2-=5
2-7 HEX and DEC Table Conversion. . . « . « o« « o« « o 2=6
2-8 Order of Magnitude Table. . . . + & « ¢« o o o + . 227
2-9 (-4259) in 8, 6, and 4-Bit Code . & + « 2-8
2-10 A Single-~Precision Operand. . « . « « o« &« o « & « o 2=10
2-10 B Single-Precision Operand. + + « + v o« + . 2=11
2-11 Double~Precision Operand. . . « +« « &+ & « +« o . . 2=11
2-12 Logical Operand . . + v « 4 & & o & o o o o« o o o 2=12
3-1 Top of Stack and Stack Bounds Registers 3~1
3-2 Polish Notation Flow Chart. +« « + + . . . 3=6
3-3 Stack Operation . . « ¢ ¢ v v v e e e e e e e e 3-~11
3-4 Object Program in MemoIry. . « « « « « o« + « « « « 3=15
3-5 Stack History and Addressing Environment List . . 3-17
3-6 Stack Cut-Back Operation on Procedure Exit. . . . 3-17
3-7 D Registers Indicating Current Addressing

Environment . . .+ ¢« ¢ ¢« ¢ v v 4 e e e e e e e W . 3-18

xxi

FIGURE

3-8

1 1
O 0N 0Nt W

T e I A B T R
1 !
[
N RO

1
=
W

xxii

LIST OF ILLUSTRATIONS (cont)
TITLE
ALGOL Program With Lexicographical Structure

Indicated. . « « ¢ ¢ ¢ ¢ « « o o o o« o +

Addressing Environment Tree of ALGOL

Program. . . . ¢ .« . ¢ o ¢ ¢ o 0 0 e 0 e e
Multiple Linked Stacks « . . .
Processor Display Panels « +« « « + &
Processor Display Panel.« +« « « + .
Processor/Multiplexor Display Panel. . . .
Panel C General Controls« « .« . .
Address Register
Panel E + o s s o o o o o o o ¢ o o o o o
Panel B. .+ + &+ ¢« « o « o o s v w4 e e

Panel D MPX Control Panel. . +« « « « + + o o

Operators Control Console. . . « + « . .
Visual Message Control Center. « . .
Keyboard Format. . . « + ¢« ¢« + « ¢« « o « o« o
Memory Tester. « ¢« « « ¢ o« o« o o o« o o« o o
Memory Tester. . .« « « o « o o o o o o o o =
B 6500 Processor Organization.
B 6500 Processor Block Diagram
Internal Data Transfer Section
Mask and Steering. . .« « « +« ¢« + + o o o+ .
Arithmetic Control . . .« ¢« « « « « « « « o
Presence Bit Interrupt . . .« « + « « « « +
B 6500 Scan Bus Priority Control
Stack Format « + « +« o ¢ o o« o o o 2 o o o
String Op Controller« . .« « + . .
E Register Functions « .« « + « « «
Multiplexor Block Diagram. . . . « « + . .

Command Data Register and Scratch Pad Memory

Data Information Flow, e e e s e e e e e e e

PAGE

3-19
3-23

h-1

-3

-4

L-13
L-21
L-22
L-25
4-31
4-35
L-36
=40
4-4o

=

1 1 1

N N NV = o0 0~ &= N =
N

o LW O

Ut Ut Ut Ut Ut Ut st bt ot st Ut Ut W\
| I R B | 1
W W N
N O

1
W
~3

FIGURE

5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21

N OOV OV O O O O\
|
2 o Ut BN

o O

| i 1
= N\O

@)

6-11
6-12
6-13
6-14

NN N NN NN
|
~N o0 BN

LIST OF ILLUSTRATIONS (cont)

TITLE

Memory Controller Decoding.

Memory Organization

Information Transmission.

B 6500 Memory Configuration

Memory Module Selection

Memory Registers. . . + « + o « +

Interlace Addressing. . . +« « « «

Hardware Stack Adjustment

Program Word. « .+ .+ .

Program Word, Syllable Addressing .
Syllable Decode Table

Word Data Descriptor.

String Descriptor (Non—indexed) . .
Byte/Word Index Field

Segment Descriptor.

Mark Stack Control Word

Program Control Word.

Return Control Word

Stuffed Indirect Reference.

Normal Indirect Reference Word. .

Program Level Bit Assignment. . . .

Step

Flow
Flow
Flow
Flow
Flow
Flow
Flow

Index Word+ « « « o .

of
of
of
of
of
of
of

Value Call Operator
Value Call Operator (cont).
Exit Operator
Return Operator
Enter Operator.
Evaluate Operator

Stuff Environment Operator.

7-34
7-35
7-37
7-38
7-39
741
7-42

xxidd

FIGURE

® 0 0 00 0 0 W W
1 | 1 1 I
O 00N O Ut RN

(o]
i

=
o

8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28

10-1
10-2
10-3
10-4

xxiv

LIST OF ILLUSTRATIONS (cont)
TITLE

Read Time-0f-Day Code Word.
Time of Day Word. . . .« +« « « o o « o

Read General Control Adapter Code Word.

Read Result Descriptor Code Word. . .
Result Descriptor ¢« « « « .+ .
Read Interrupt Mask Code Word
Interrupt Mask Word
Read Interrupt Register Code Word . .
Interrupt Register Word
Read Interrupt Literal Code Word. . .
Interrupt Literal Word.
Interrogate Peripheral Status Code Wo

Status Vector Word. . . v v o o o o

rd

Interrogate Peripheral Unit Type Code-Word.

Unit Type Code Word
Interrogate I/0 Path Code Word. . . .
I/0 Path Result Word.
Set Time Of Day Clock Code Word . . .
Time Of Day Word. . . .+ + « « o « + .
Set General Control Adapter Code Word
Initiate I/O Code Word.
Area Descriptor . . « « v « o ¢« o o .
I/0 Control Word. . . . + o v o o .+ .
Index Control Word. . .+« « « +« « + « .
Index Word.+ ¢ « + « « « .
Top of Stack Control Word (TSCW). N
Stack Rotation Up . . « « « « « o + .

Stack Rotation Down . . « « v « + o« o

Input/Output Subsystem.
I/0 Descriptor Formats.
Result Descriptor Format.

Console Control Center e e e e e e

PAGE

o 00 0 00 0 o 0 O W W W
1 1 i 1
o 00N N 0NNt LN

@

1 1 | 1 1 | |
= \O

@

8-11
8-11
8-12
8-13
8-14
8-14
8-15
8-15
8-16
8-16
8-18
8-18
8-20
8-21
8-21

10-1
10-2
10-5
10-6

FIGURE

10-5

10-6

10-7

10-8

10-9

10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22

10-23

10-24
10-25
10-26
10-27
10-28

11-1

11-2
11-3

LIST OF ILLUSTRATIONS (cont)
TITLE

Single Line Control Result Descriptor. . .
Single Line Control I/O Control Word . . .
Card Reader. . .« « ¢« « « o =+ ; o e e e e
Card Reader I/0 Control Word

Card Read Result Descriptor. + . .
Card Punch . . . « ¢ ¢« ¢« ¢ ¢ o o o o o o =
Card Punch I/0 Control Word.
Card Punch Result Descriptor
Line Printer . .« « ¢ ¢ ¢« ¢ o o o o o o o
Line Printer I/O Control Word.
Line Printer Result Descriptor
Free Standing Magnetic Tape Unit
Cluster Tape Unit. « ¢« « o ¢ ¢« ¢ o o o o
Magnetic Tape Configuration. &
I/0 Control Word Magnetic Tape
Magnetic Tape Result Descriptor.
Basic Disk File Subsystem. . . . «
Disk File Configurations . . « « « o « =« o
Disk File I/O Control Word « .« .+ .
Disk File Result Descriptor.« « . .
B 9120 Paper Tape Reader ¢« « .+ .
B 9220 Paper Tape Punch. ¢« « + «
Paper Tape I/O Control Word and Operations

Paper Tape Result Descriptor

B 6500 System Configuration Including Data
Communications . « « « o o o o o o o o o

DCP Block Diagram. . .« +« « o o o o o o o
Adapter Cluster. .« ¢« « ¢ « « o o« « « o o =

PAGE

10-7
10-7

10-8

10-8

10-9

10-10
10-11
10-11
10-12
10-13
10-13
10-15
10-15
10-17
10-18
10-19
10-21
10-21
10-23
10-23
10-25
10-26
10-27
10-28

11-2
11-4
11-6

XXV

TABLE

10-1
10-2
10-3
10-4
10-5

11-1

XXVi

LTST OF TABLES
TITLE
B 6500 Central Units Chart. +« + .

Evaluation of Polish String BC + 7 x A:= .

Description of Stack Operation.
Sub-Field Lengths . + « « + o o o o o o « .

F Field Codes . « o o v v o v v v v v v

Peripherals and Controls. . . « + .+ « « + =
Available Magnetic Tape Subsystems.

Magnetic Tape Operations. . « . + « « + +

Disk File Subsystem Types . « « « & « o o+ o

Data Communications Terminal Compatibility.

10-4
10-6
10-16
10-18
10-22

11-7

INTRODUCTION

The Burroughs B 6500 is a medium to large, high speed Information
Processing System. Some features that are incorporated in this

system include:
a. Monolythic Circuitry.
b. Memory expandable to 524,288 words.
c. Memory Cycle Times of 1.2 microseconds or 600 nanoseconds.

d. Peripheral configuration expandable to 256 units.

e. Dual Input/Output Multiplexor permitting up to 20 simul-
taneous Input/Output (I/O) operations.

f. Data Communication Software for remote computing and file

manipulation.
g. Disk File storage over 36 billion bytes (8—bit characters).

A unique hardware design, developed from years of successful ex-
perience with the B 5000 series, has resulted in the parallel de-
sign of the B 6500 hardware and software. Where traditionally hard-
ware was designed prior to software development, parallel design
assures that the hardware contains all necessary logic for effi-
cient software packages, which in turn optimizes hardware capa-
bilities. The B 6500 design affords a general "re-entrant" tech-
nique which permits multiple users to share a common object program.
In addition, the systems further expand the use of hardware stack
organization used in the B 5500. For example, the Segment Diction-
ary, a separate table for each program in the B 5500, has been
placed in the base of the program stack in the B 6500. This part
of the stack is used for multiple executions of the same program,
thus implementing in the hardware many of the bookkeeping functions

required to implement Master Control Program (MCP) re-entrancy.

xxvii

To provide dynamic storage allocation, the B 6500 system employs
and expands upon the Burroughs descriptor method of segmentation,
first used on the B 5500, in lieu of some form of fixed-sized

"paging" technique.

Designed to bring the user simplified brograming, operational ease,
and complete freedom of system expansion, the B 6500 offers a choice
of three problem-oriented languages: COBOL for business applica-
tions and ALGOL and FORTRAN for solution of mathematical problems.
Operator intervention is minimized by the MCP, which provides for

complete system management.

The complete flexibility of programing and control of the proces-
sing pattern provides the B 6500 with smooth growth potential.
Starting with a minimum configuration, the user may expand his
system in small increments to accommodate a growing work-load.
With each addition, the MCP automatically adjusts to attain in-
creased system production and efficiency, expanding system multi-

programing capabilities.

This reference manual describes the hardware characteristics of the
B 6500 system. Because of the design concept of the B 6500, there

exists a strong interdependence between the hardware and the Master
Control Program (MCP). This material pertains only to the hardware

considerations, whereas the MCP is discussed in a separate manual.

xxviii

SECTION 1
SYSTEMS DESCRIPTION

GENERAL.

This manual explains how the B 6500 Information Processing System
achieves flexibility and efficiency through a comprehensive system
approach to problem solving without considering the areas of com-
puter logic or circuit design. The program-independent modular
system design efficiently uses available units to process programs
and also permits system configuration changes without the need to
reprogram or recompile. This approach also offers the user the ad-
vantages of simplified programing, ease of operation and a com-
plete freedom of system expansion. The B 6500 is a compiler orien-
ted system designed to accept the common languages; ALGOL, COBOL,
and FORTRAN. The systems automatically handle memory assignments,
program segmentation and subroutine linkages, eliminating many of
the arduous programing tasks that are likely to produce errors.
The programs are debugged and corrected at the source language

level.

DESCRIPTION OF UNITS.

The B 6500 system configuration varies with application and work-
load requirements. The basic system includes one processor, one
maintenance test routine processor, one system control and one desk
console. The maximum system configuration includes 2 processors,
32 memory modules, 2 input/output multiplexors, 20 peripheral con-
trols, 8 data communications processors, and 256 peripheral units.
The central units are defined in table 1-1. The peripheral units
available with this system along with their characteristics, are
listed in Section 9. The Data Communication Sub-~System is de-

fined in Section 10,

Table 1-1
B 6500 Central Units Chart

Style
Number Description Notes
B 6503 Basic System 2.5 megahertz clock
B 6504 Basic System 5.0 megahertz clock
B 6506 Basic System 5.0 megahertz clock
B 6503-1 Second Processor 2.5 megahertz clock
B 6504-1 Second Processor 5.0 megahertz clock
B 6506-1 Second Processor 5.0 megahertz clock
B 6713 Multiplexor, 4 data switch- 1 allowed per B 6503
ing channels system
B 6713-1 Additional data switching
channel
B 6714 Multiplexor, 4 data switch-
ing channels
B 6714-1 Additional data switching
channel
B 6716 Multiplexor, 4 data switch-
ing channel
B 6716-1 Additional data switching
channel
B 6000 Optional Memory Control
Cabinet

Table 1-1 (cont)

B 6500 Central Units Chart

Style

Number Description Notes

B 6001-2 98,304 Bytes (16,384 words) 1.2 microsecond mem-~
ory for B 6503 and
B 6504 systems.

B 6002-2 196,608 Bytes (32,768 words)

B 6003-2 294,912 Bytes (49,152 words)

B 600L4-2 393,216 Bytes (65,536 words)

B 6005-2 491,520 Bytes (81,920 words)

B 6006-2 589,824 Bytes (98,304 words)

B 6007-2 688,128 Bytes (114,688 words)

B 6008-2 786,432 Bytes (131,072 words) B 6008-2 is the max-
imum memory size per-
mitted for the B 6503
system.

B 6010-2 983,040 Bytes (163,840 words)

B 6012-2 [1,179,648 Bytes (196,608 words)

B 6016-2 | 1,572,864 Bytes (262,144 words)

B 6020-2 | 1,966,080 Bytes (327,680 words)

B 6024-2 | 2,359,296 Bytes (393,216 words)

B 6032-2 | 3,145,728 Bytes (524,288 words)

Table 1-1 (cont)

B 6500 Central Units Chart

Style

Number Description Notes

B 6001-3 98,304 Bytes (16,384 words) 600 nanosecond mem-
ory for the B 6506
systems.

B 6002-3 196,608 Bytes (32,768 words)

B 6003-3 294,912 Bytes (49,155 words)

B 6004-3 393,216 Bytes (65,536 words)

B 6005-3 491,520 Bytes (81,920 words)

B 6006-3 589,824 Bytes (98,304 words)

B 6007-3 688,128 Bytes (114,688 words)

B 6008-3 786,432 Bytes (131,072 words)

B 6010-3 983,040 Bytes (163,840 words)

B 6012-3 |1,179,648 Bytes (196,608 words)

B 6016-3 |1,572,864 Bytes (262,144 words)

B 6020-3 [1,966,080 Bytes (327,680 words)

B 6024-3 [2,359,296 Bytes (393,216 words)

B 6032-3 |3,145,728 Bytes (524,288 words)

SYSTEM OPTIONS AND REQUIREMENTS.

The following list of requirements and options are available for
the B 6500 systems: "

a e

Co.

A minimum of one special D.C. module is required in a

B 6500 system. It can be installed in the following

cabinets:

1) Multiplexor.
2) Processor.
3) Peripheral Control.

4) Data Communications.

A minimum of one +12 volt inverter module is required

in a B 6500 system. It can be installed in the following

cabinets:

l) Multiplexor.
2) Processor.

3) Peripheral Control.
NOTE

This module precludes
the use of any other

module in a cabinet.

A Flip Flop display supply module is required on the

system and must be installed in the Multiplexor cabinet.

The Memory cabinets each must contain a special Memory
supply for developing the regulated voltages required

for the memory operation.

Each cabinet must contain an inverter for supplying power
to its regulators. A 600 amp inverter is required in the
Processor, Multiplexor and Data Communications cabinets.

All other cabinets require a 400 amp inverter.

1-5

AUXTLIARY CABINET.

Peripheral unit exchanges are located within auxiliary cabinets omn
the B 6500 system. This cabinet can accommodate varying combinations
of exchanges depending on their physical size. Two of the wvarious

combinations that are possible are shown in figure 1-1.

Figure 1-1. Auxiliary Cabinets
The following exchanges are available for use on the B 6500 system.

a. Tape Exchange
2X10
2X8
4x16

b. Disk File Exchange
1X2
2X5
4X10
4X20

SYSTEM POWER.

Main power is supplied to the system by 1 to 15 free standing A.C.
power cabinets. FEach power cabinet can furnish enough power for
eight B 6500 cabinets. The power cabinets receive 3 phase A.C. from
the wall breakers and convert it to 220 volt pulsating direct cur-
rent. Each B 6500 cabinet contains an Inverter which supplies the
regulated supply voltage required for use in its own compomnent

sections.

1-6

The AC module contains an AC control,

OV/UV indication panel.

power supply comnfiguration.

the AC/DC converter and a

Refer to figure 1-2 for a typical B 6500

A. C. MODULE
A.C. ov/uvV
CONTROL INDICATOR
A.C.
CONVERTER
400A
INV. SEQUENCE CONT. |
MAINT./DISPLAY
AUX. CAB.
400A 600A 600A 600A 400A
INVERTER INV. INV. INVERTER
FF SPECIAL
MEM DISPLAY *‘.f;’L' D.C.
SUPPLY MODULE SUPPLY MODULE
MEM
REGULATOR
MEMORY MPX DATA COMM. PROCESSOR PERP. CONTROL

Figure 1-2. B 6500 Power Supply

1-7

PERTPHERAL CONTROL CABINET.

The PC cabinet can accommodate up to 10 peripheral controls. A max-
imum of 5 large controls can be used with 5 small controls, however,
more than 5 small controls are possible if used in place of the

large controls.
The following controls are available:

a. Large
1. Magnetic tape
2. Disk file
3. Console Display

b. Small
1. Card reader
2. Card punch
3. Line printer
L. ©Paper tape reader

5. Paper tape punch

The large control has a two byte buffer and the small control con-
tains a one byte buffer, therefore either 8 or 16 bits may be

transferred in parallel to the Multiplexor at a time. Local opera=-
tions are performed by attaching a "Control switch" plug-on and two

"Indicators" plug-ons to various cards in the control.

LARGE
CONTROLS
OR
SMALL

! CONTROLS

SMALL
CONTROLS

Figure 1-3. Peripheral Control Cabinet

SYSTEM ORGANTIZATION.

Computer systems are generally organized around a central system
that controls memory accesses, establishes I/O priority etc. In

the B 6500 system this central control function has been distributed
throughout the system by providing each peripheral unit with an
associated control (figure 1-4). These peripheral controls, in
conjunction with the multiplexor, provide independent but controlled
access to main memory for each peripheral unit. The peripheral
activity is supervised by the MCP which assigns outgoing data to

the proper units or calls for required input data from others.
Because the MCP is constantly aware of the available environment,
the user program is efficiently executed whether units have been
deleted for preventive maintenance or added because of increased

work loads.

MASTER CONTROL PROGRAM.

The Master Control Program (MCP) provides overall system coordination
and control of processing on the B 6500 system, minimizing operator
intervention. The MCP obtains maximum use of the system components
by controlling the sequence of processing, initiating all input/
output operations and providing automatic handling procedures to

meet yirtually all processing conditions. Because many functions

are performed under MCP control, changes in scheduling, system con-

figuration and program size are readily accommodated.

CLOCKS.

The MCP for the B 6500 makes use of two hardware clocks: The real
time clock and the interval timer. The real time clock has a 2.4
microsecond resolution and counts up to 24 hours. It is used by

the MCP logging routines to provide extremely accurate timing in-
formation and also can be read by application programs. This clock
is associated with the multiplexor and runs continuously, even when
the processors are halted. The interval timer is a clock (one in
each processor), which provides a predetermined timed interrupt for
"time-slicing'", loop hang-up etc. This interval varies from 512

microseconds to one second, in 512 microsecond intervals.

. ADAPTER —te DATA
CLUSTER . | COMMUNICATIONS
NO. 16 LINES
upP TO -
16 H
"7~ ADAPTER 'r :
CLUSTERS :
ADAPTER e | DATA
» CLUSTER U COMMUNICATIONS
NO. 2 NES_ | NETWORK
ADAPTER e [oATA
CLUSTER LINEs | COMMUNICATIONS
BTN NO. 1 NETWORK
COMMUNICATIONS —
PROCESSOR
DATA
COMMUNICATIONS
PROCESSOR
DATA
COMMUNICATIONS [~ | 1-16 ADAPTER
16,384 TO 524,288 WORDS PROCESSOR CLUSTERS PER
(98,304 TO 3,145,728 BYTES) — iy
MEMORY MEMORY MEMORY COMMUNICATIONS [
MODULE MODULE MODULE PROCESSOR
1 2 32
—
1
I
| DATA
| INPUT/ | swiTCHING
. OUTPUT | CHANNELS
' MULTIPLEXOR| 4 1o
UPTO
32
MODULES
! PROCESSOR
i 1
|
|
I
! PROCESSOR
| 2
|
!
I DATA
| 'O'\L'JPT‘;L/T SWITCHING
CHANNELS
MULTIPLEXOR| 1)
[ApbAPTER o oaa
c';f,’éTE$ LINES | COMMUNICATIONS
2 NETWORK
DATA
L COMMUNICATIONS
PROCESSOR
DATA
L] COMMUNICATIONS |— :
PROCESSOR ADAPTER DATA
L1 CLUSTER | !-'6¢ | COMMUNICATIONS
DATA 1-16 ADAPTER NO. 16 LINES | NETWORK
COMMUNICATIONS f—=) CLUSTERS PER .

Figure 1-4.

PROCESSOR

DATA
COMMUNICATIONS
PROCESSOR

bce

B 6500 Schematic Diagram (sheet 1 of 2)

OO0 s ? Q

PAPER PAPER
EQ;{EE’ER g@ﬂéH PRINTER| |PRINTER] | TAPE TAPE MAGNETIC TAPE EXCHANGE
READER | | PUNCH
: PAPER | [PaPER] UP TO 5 MORE
PERIPHERAL CONTROLS
Rl [Some,,| [prner] |erinTer] | Tape TAPE TApe || TaPe | | TAPE TAPE
PC PC ReaDEr| |Punch| | pc PC PC PC
PC PC
PC PC
TAPE TAPE DisK DISK DISK
PC PC PC PC PC
1-20 1-20
MAGNETIC DISK FILE] DISK FILE
116 TAPE ELECTRONICS ELECTRONICS
TAPE EXCHANGE UNITS EXCHANGE UNITS UNITS EXCHANGE Q TAPE
I l O)| CLUSTER
TAPE TAPE DISK DISK DISK TAPE
PC PC PC PC PC PC
PAPER | [PAPER
CONS
-] Dise EQE{DDER EGE%H PRINTER] [PRINTER| | TAPE TAPE DisK DISK DISK
) PC PC PC PC PC READER| | PUNCH PC PC PC UP TO 4 MORE
| PC PC PERIPHERAL CONTROLS
R R e I
L
l?l": CONS CARD CARD PAPER PAPER
KvBD DISP oo | ISR, | |PrunTer| PRINTER) [TAPE TAPE DISK FILE EXCHANGE
rorcol | TERM i READER | | PUNCH

Figure 1-4.

0

- 20 ELECTRONlcsrl_]

UNITS

B 6500 Schematic Diagram (sheet 2 of 2)

1-11

PROCESSOR.
The B 6500 system accommodates either one or two processors, both

capable of accessing any portion of total memory.

All B 6500 processors are parallel machines; the B 6503 has a clock
frequency of 2.5 megahertz, the B 6504/6506 a clock frequency of

5 megahertz . Processors with different clock rates cannot be in-
termixed on the same system. The processor is basically word ori-
ented, but has extensive multiword string manipulation capabi-

lities for 4-bit, 6-bit, and 8-bit characters.

PROCESSOR STATES.

The processor operates in either of two states: control state for
the MCP or normal state for user programs and certain MCP functions.
In a dual-processor system either processor may handle external
interrupts. Both processors may be in control state at the same

time.

CONTROL STATE. Entry into a control state occurs when the proces-
sor enters or returns to a procedure marked as a control state
procedure, or executes a Disable External Interrupts operator. In
control state the handling of external interrupts dis inhibited
while the processor executes privileged instructions not available
in normal state. Exit from control to normal state occurs when-
ever the MCP initiates a normal state procedure, exits back to a
normal state procedure or executes an Enable External Interrupt
operator. After an interrupt, return to the user'!s program may or
may not be to the program that was operating when the interrupt

occured.

NORMAL STATE. Normal state excludes use of privileged instructions
required by the MCP and allows external interrupts. Exit from nor-
mal state occurs as a result of a Disable External Interrupt op-

erator or by a call to a control state procedure; e.g., to initiate

I/0. Many MCP functions are executed in normal state.

FEATURES.

Some of the processor features are:
a. Program code cannot be modified while in residence.

b. Hardware stack features provide efficient handling of

temporary storage and subroutine requirements.

C. Control bits in each word provide efficient MCP or hard-

ware action, depending upon the state of the control bits.

d. Memory protection, which prevents one program from affect-
ing another, is provided by a combination of hardware and
software features. Hardware features include detection
of program attempts to index beyond an assigned data area.
Another feature includes the use of a memory protect bit
in each word to prevent a user program from altering pro-
gram segments, data descriptors, segment descriptors, mem-
ory links, MCP tables, etc. The memory protect bits are
set by the software. Attempts to alter information with
this protect bit set will inhibit the write operation and

generate an interrupt.

e. The B 6500 processor is designed to implement higher-level

languages and to function under MCP control.

f. Major registers and control flip-flops in each of the pro-

cessors contribute to system multiprocessing capabilities.

INTERRUPT SYSTEM.

The method of detecting and servicing system interrupts contributes
to the ability of the B 6500 to process a mix of independent pro=-
grams in an efficient manner. Under the constant, automatic man-
agement of the MCP, multiprocessing is the normal mode of operation.
With one processor in the system, multiprograming (interlevel pro-
cessing) is employed. A dual processor B 6500 System combines both
multiprograming and parallel processing. The ability to multi-

program, parallel process, or both is defined as multiprocessing.

1-13

Extensive interrupt facilities initiate specific routines in the
Master Control Program (MCP). Since the MCP maintains a central
communications control, the interrupt transfers control to the MCP
initiating operations that can proceed simultaneously with compu-
tation. Some MCP functions are: data transfer control, input/

output control, error detection, etc,

There are two interrupt conditions: Internal (Processor Dependent)
or External (Processor Independent). Each processor in the B 6500
system is provided with a private internal interrupt network to han-
dle the processor dependent interrupt. Interrupts generated with-
in the processor are fed into this network and retained until ser-
viced by that processor. The processors also share the handling of
external interrupts generated by input/output operations occuring
on either Multiplexor. The command structure in conjunction with a
stack provides for implementation of string notation and automatic

linking of subroutines.

INTERRUPT HANDLING.
An interrupt causes the processor to initiate the following sub-

routine:
a. Mark the stack.

b. Insert an Indirect Reference Word into the stack, which
addresses a reserved location of the stack where a link

to the MCP interrupt routine has been stored.

C. Push all pertinent registers into the stack.

d. Insert into the stack an integer value defining the in-
terrupt.

e. Insert a second parameter into the stack, giving other in-

formation about the interrupt.

f. Execute an Enter operator.

The MCP processes the interrupt when it recognizes the Enter Op-
erator. The MCP reactivates the interrupted object program by re-

turning through the normal subroutine mechanism.

OPERATOR DEPENDENT PROCESSOR INTERRUPTS.

The interrupts listed below are set only by the action of operators.

a. Presence bit.
b. Invalid index.
c. Exponent underflow.
d. Exponent overflow.
e. Interger overflow.

f. Divide by zero.
g. Invalid operand.
h. Bottom of stack.
i. Sequence error.
j. Segmented array.
k. Memory protect.

1. Programed operator.

Within a processor, only one operator dependent interrupt is set at

any one time.

OPERATOR-INDEPENDENT PROCESSOR INTERRUPTS.

The operator-independent interrupts include:

a. Memory parity.

b. Stack overflow.

C. Invalid address.

d. Interval timer.

e. Instruction timeout.
f. Scan buss parity.

g. Stack underflow.

h, Invalid program word.
i. MPX parity.

Je Loop.

EXTERNAL INTERRUPTS.

External interrupts are fed into the processor interrupt system.

If the interrupt network is disabled on one processor, the external
interrupt signal is routed to the other, since both processors in

a dual-processor system are able to respond and process external
interrupts independently and simultaneously. The ability of either
processor to handle interrupts is made possible because of a dis-
tributed interrupt network and the ability of both processors to be
in control state at the same time. The activities of two proces-
sors in control state are coordinated (interlocked) by the software
through the use of the Read With Lock mechanism. If both proces-
sors are handling interrupts, additional interrupts are retained

for future processing.

A unique literal wvalue is assigned to each external interrupt con-
dition. This literal value is tramsmitted to the processor and
placed into the stack as the processor acknowledges the external

interrupt and enters the interrupt sequence.
The external interrupts include:

a. Processor to Processor.

b. I/0 Finish.

c. Data Comm. Att'm Needed.

d. General Control Adapter.

e. External Interrupt (piggyback MPX).

f. Change of peripheral-unit status.

MATN MEMORY.

Main memory is expandable from one to eight modules on a B 6503
system, and from one to 32 modules on B 6504 and B 6505 systems.
Each memory module contains 16,384 words permitting a current max-
imum memory size of 524,288 words. Future provisions will allow

for over one million words of storage.

MEMORY WORDS.

Fach memory word contains L8 information bits, three control bits,
and a parity bit. The three control bits are used to identify de-
scriptors, provide memory protection, describe the type of data,
and provide other control functions. The twenty-bit binary combi-
nations can provide up to 1,048,576 memory addresses, though pre-
sently only 524,288 are used. 0dd parity is used to check validity

of information storage and transfers in the B 6500 system.

Each system has a memory test facility used for fault detection and
isolation. When the unit test facility is used to check one of

the modules, the others are available to the system.

MEMORY CYCLE TIMES.
The memory cycle time is 600 mnanoseconds for the B 6506 systems

and 1.2 microseconds for the B 6503 and B 6504 systems.

SECOND LEVEL MEMORY.

Burroughs unique head-per-track disk file subsystem provides the
user with virtually unlimited expansion capability. The 20 to 60
millisecond average access time of the various disk file models
permits extremely large programs and data segments to be stored on

the disk and brought into main memory by the MCP when required.

INPUT/OUTPUT MULTIPLEXOR.

The Input/Output Multiplexor and associated peripheral control
modules are used to control the transfer of data between memory

and all peripheral equipment, independent of the processor. The
multiplexor receives instructions from the processor and, with it's
associated peripheral controls, executes these instructions. One
or two multiplexors may be used with the B 63500 System. Fach multi-
plexor is capable of processing up to ten simultaneous I/O opera-

tions with up to 20 peripheral units.

MULTIPLEXOR CONFIGURATION.

Each multiplexor provides four separate and independent units:

a. Data switching channels which provide the necessary
linkage between the peripheral device (excluding data

communications) and main memory.

b. Data communications processors which permit interfacing

of remote devices to the B 6500,

c. A real time adapter which permits interfacing of real

time devices such as wind tunnels and rocket stands.

d. The peripheral system configuration tables for software

use.

DATA SWITCHING CHANNELS.

The number of data switching channels determines the number of
simultaneous I/0 operations that can be performed. The channels
float, assigned by the multiplexor to peripherals upon initiation
of an operation and released to the multiplexor for reassignment

upon completion.

PERTPHERAL CONTROLS. _

Two types of peripheral controls are available, large and small.
The large controls are used with high-speed devices such as mag-
netic tape, disk files, and display consoles; the small controls
are used with slower peripherals such as printers, card readers,
and card punches. The large controls contain a two byte buffer

and the small a one byte buffer. Fach multiplexor can accommodate
up to ten large and ten small controls. A small control may occupy

a large control position.

SYSTEM EXPANSION.
The maximum configuration with two multiplexors (20 controllers per

multiplexor) can be expanded further through the use of disk file

and magnetic tape exchanges. Figure 1-5 illustrates a possible mag-
netic tape subsystem. Figure 1-6 illustrates a possible disk file
subsystem.

PERIPHERAL CONTROL BUS.

A peripheral control (P.C.) bus extends from the multiplexor to the
various peripheral controls (figure 1-7). Information in one- or
two-byte groups can be sent along the bus to or from any peripheral

control every 1.2 microseconds.

LARGE PERIPHERAL CONTROLS

/0 APPROP. | APPROP, | APPROP. | APPROP. | APPROP.| APPROP. | APPROP. | APPROP. | APPROP. | APPROP.
— MULTI- TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PLEXOR P.C. P.C. P.C. P.C. P.C. p.C. P.C. P.C. P.C. P.C.
1
TA‘,’,:; 2 2X 8 1706
CLUSTERS TAPE EXCH, FREE
STANDING
UNITS
_/ 1108
1OR2
TAPE PHASE
ICLUSTER ENCODED
UNITS
17016 z
T = FREE o .
& 3y STANDING 5
<& g~ UNITS O X
o~ ® - & 0 ()
2 2 < &
- N
2x8
TAPE EXCH. I 4 X 16 TAPE EXCHANGE l 1 X 8 COMMON
I | l L r I ELEC. EXCH.
1/0 APPROP. | APPROP. | APPROP. | APPROP. | APPROP. | APPROP. | APPROP.| APPROP.| APPROP. | APPROP. | APPROP =
— MULTI- TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PLEXOR P.C. P.C. P.C. P.C. p.C. P.C. P.C. P.C. P.C. PC. p.C.

" Only 10 tape P.C.*s per 1,/0 Multiplexor.

The 11th shown here is for illustration purposes only. LARGE PERIPHERAL CONTROLS

Figure 1-5. Possible Magnetic Tape Subsystem

PERIPHERAL CONTROLS

LARGE
1/0 MODEL MODEL | MODEL MODEL | MODEL | MODEL | MODEL | MODEL
MULTI- B 6373 -— B 6373 B 6373 e B 6373 B 6373 B 6373 B 6373 B 6373
PLEXOR DISK FILE P.C. | DISK FILE | DISK FILE *~+ | DISK FILE | DISK FILE | DISK FILE | DISK FILE | DISK FILE
P.C. P.C. P.C. P.C. P.C. P.C. P.C. P.C.
r 2 X 10 EXCH. I [NI x N2 EXCHANGE j
ELECTRONICS UNITS 170 20 ELECTRONICS UNIT
1705 1705 -
DISK MODULES PER DISK MODULES - = I
ELECTRONICS UNIT PER g 5 3
ELECTRONICS UNIT o] o a =
o~ N Q 35
z oz nwZ
x -0 ox U
* —El P2=o
z G — 0o w
o
2]
1705 [—
DISK
MODULES
1 ELECTRONICS UNIT
Vo o e R N N S N s
MULTI- gf;fim P.C. P.C. P.C. P.C. P.C. P.C. P.C. P.C DISK FILE
PLEXOR
P.C. p.C.
PERIPHERAL CONTROLS
LARGE
Figure 1-6. ©Possible Disk File Subsystem
17010 4/0 .
CARD LINE UNITS OR/SUB- ;S,:%H
READER | | PRINT SYSTEMS REQ.
SMALL
B 9112 | |B9343-] PERIPH. CONTLS. B 9213
MODEL | MODEL ! ' MODEL | MODEL
B 6110 B 6240 B 6340 B 6210
17010
P.C. P.C. P.C. P.C.
INPUT/OUTPUT DATA « PERIPH. CONTLS.
MULTIPLEXOR SWITCH
CHNLS. APPROP. | APPROP. 170 10 APPROP, | MODEL
TAPE TAPE TAPE B 6373
P.C. P.C.
| 1
T [T
CONSOLE
DISPLAY
M/T TERMINAL
| CLUSTER B 93472-1

Figure 1-7.

“ Total per side is 10 with a
maximum of 5 large per side

1 TO 10 1/0 UNITS OR
SUBSYSTEMS REQ. LARGE
PERIPH. CONTLS.

Input/Output Subsystem

PROCESSOR INITIATED I/0 OPERATIONS.

Either processor can initiate an I/0 operation on either multi-
plexor (in a two processor/two-multiplexor configuration) by ex-
ecuting an Initiate I/0 command. This command transfers a Unit
Number Word.and an Area Descriptor to the multiplexor wvia the scan
bus. The multiplexor then fetches the I/0 Control Word located

at the Area Base Address (in the Area Descriptor) and initiates
the peripheral operation. An I/0 Finished Interrupt is set after
the peripheral operation is completed. The Result Descriptor is
returned when either processor executes a Read Result Descriptor

command.

PERTPHERAL CONTROLS.

Up to 20 peripheral controls can be used with each I/O multiplexor.
The peripheral controls are housed in one or two B 6500 peripheral
control cabinets. Each cabinet can accommodate 10 controls, five
of which can be large controls and five small controls. The fol-

lowing peripheral controls are available:

a. Magnetic Tape.

b. Card Reader.

c. Card Punch.

d. Line Printer.

e. Paper Tape Reader.
f. Paper Tape Punch.
g. Disk File.

h. Console Monitor and Keyboard.

DATA COMMUNICATIONS PROCESSOR.

Because the B 6500 is designed for continuous multiprocessing, the
systems readily accommodate applications and procedures requiring
data communications. Realtime operations, remote computing, remote
inquiry, and on-line programing become additions to the multipro-~
cessing job mix of the B 6500. The data communications processor

is the heart of the data communications network.

The Data Communications Processor (DCP) is a small special purpose
computer which contains sufficient registers and logic to perform
all basic functions associated with sending and receiving data. Up
to four DCP's can be connected to an I/0 Multiplexor, with each DCP
capable of accommodating from one to 256 communications lines (fig-
ure 1-8). In a two Multiplexor system, this provides a B 6500 with

the ability to service 2048 data communications lines.

ADAPTER 10 w’ DATA
| CLUSTER LINES COMMUNICATIONS
NO. | - | NETWORK

ADDITIONAL ADAPTER
CLUSTERS 2 THROUGH 15

1-16 1-16 1-16 ADAPTER <_] TO—-»lé
ADAPTER ADAPTER ADAPTER - CLUSTER LINES
CLUSTERS || CLUSTERS || CLUSTERS NO. 16 _——
DATA DATA DATA DATA
COMMUN- | COMMUN- | COMMUN- | COMMUN-
ICATIONS | ICATIONS |ICATIONS |ICATIONS
PROCESSOR | PROCESSOR | PROCESSOR | PROCESSOR
1/0 MULTIPLEXOR
Figure 1-8. Organization of Data Communica-

tions Processor Remote Lines

DATA COMMUNICATIONS ADAPTERS.

Fach communications channel requires an adapter which provides the
logic to interface with a Data Set or to connect directly to a

communications line. The following adapters are available:

a. B

1)
2)
3)
)
5)
6)

b. B

1)
2)
3)
L)
5)
6)

C. B

1)
2)
3)
L)
5)
6)

6650-1 with the following characteristics:

Direct or modem connect.
Asynchronous.

Up to 600 BPS.

Two wire or 100 series modem.
Serial by bit transmission.

Half-Duplex mode.
6650-2 with the following characteristics:

Direct or modem connect.
Asynchronous.

Up to 1800 BPS.

Two wire or 202 series type Data Set.
Serial by bit transmission.

Half-Duplex mode.
6650-3 with the following characteristics:

Modem comnnect.

Synchronous.

Up to 2400 BPS.

201 series type Data Set.
Serial by bit transmission.

Half-Duplex mode.
6650-4 same as B 6650-3 except: up to 4800 BPS.
6650-5 same as B 6650-3 except: up to 9600 BPS,
6650-6 Touch-Tone® Telephone Input.,
6650-7 Audio Response.

6650-8 Automatic Dial Out.

® Registered Service Mark of A.T.T Co.

REAL TIME ADAPTER.
An optional real time adapter may be attached to an I/O multi-

plexor. Real time devices require custom engineering for inter-

face with the real time adapter and the software.

SECTION 2
DATA REPRESENTATION

GENERAL.,

Several data representations are used in the B 6500 Information
Processing Systems for word and character oriented data. FEach word
contains 48 information bits, three tag bits and one parity bit
(figure 2—1). The data field may be a 48 bit single-precision oper-
and, or a sequence of characters in 8-bit, 6-bit or 4-bit format.
The tag bits in positions 50 through 48 are control bits which
identify descriptors, provide memory protection, etc. The tag bits
are inaccessible to normal state (user) programs. The parity bit

in position 51 assures correct information transfer between the

processor and main memory or from the scratch pad to main memory.

55444
10987 .
i x /
CONTROL FIELD DATA FIELD
PARITY BIT

N Figure 2~1. Basic Word Structure

INTERNAL CHARACTER CODES.

Extended Binary Coded Decimal Interchange Code (EBCDIC) is the pri-
mary internal character code of the B 6500. EBCDIC is an 8-bit
alphanumeric code containing 4 zone and 4 numeric bits. The Ameri-
can Standard Code for Information Interchange (ASCII) is the pri-
mary data communication code. In addition, the Burroughs Common
Language Code (BCL) provides interface compatibility with peri-
pheral units. The pack operator allows greater packing density of
numeric information by storing 4-bit digits in both the numeric and

zone bit positions BCL and EBCDIC codes (figure 2-9).

NUMBER BASES.

Because the arithmetic operators are implemented in octal (base 8)
and data display in registers and certain printed forms is Hexa-

decimal (base 16), an understanding of both octal and hexadecimal
numbering systems is useful. A brief discussion of binary and de-

cimal numbering systems is also included.

The decimal system is based on the ten digits, O, 1, 2, 3, 4, 5, 6,
7, 8, and 9, and upon the powers of ten. Similarly, the binary
system is based upon the two digits, O and 1, and the powers of two.
Two raised to the third power (23) is 8, the base of the octal
system. Likewise, 2 raised to the fourth power (24) is 16, the
base of the Hexadecimal system. The decimal range for each number

system is shown in figure 2-2.

DECIMAL 012345678910 11 1213 1415
BINARY 01

OCTAL 01234567

DECIMAL 012345678¢9

HEXADECIMAL 0123456789 A8 CDE F

Figure 2-2. Number Base Graphic Characters

The digits O through 9 and the alphabetic characters A through F
are used to cover the 16 character requirement for the hexadecimal
numbering system. The letter A is assigned a value of 10, B equals

11 etc., to F which equals 15.

HEXADECIMAL AND OCTAL NOTATION.

Since binary words are cumbersome to display, the more efficient
methods of Hexadecimal and Octal notation are employed. The hexa-
decimal representation of a binary word is obtained by dividing the
bits into groups of four with each group assigned a successive power
of 16. A binary to octal conversion is obtained by dividing the
bits into groups of three and assigning successive powers of 8 to

each group (figure 2-3).
2-2

Nxl6? Nx16° Nx162 Nx16! Nx16° Nx16™! Nx16~2
8 8 8 8 8 8 8
4 4 4 4 4 4 4
HEXADECIMAL 2 2 2 2 2 2 2
1 1 1 1]
BINARY ::lf:: . gslxs ;:Junlmlzooﬁqsulmlual Mraz I 1e| 8 l 4 I 2 l 1 I % I % l1/sl1/1sl1/32|1/ui1/12+1261
Nx8® nxg* Nx8® Nx82 Nx8' nxg? Nx8™! N
‘ 4] —14
ocTaL 2 2| | 2] 20 M2t | el el | el
' Hinen NN
BINARY g;l & |73§8 ;‘0‘ 8192|4008|2048|1024] 512I256 l128 | 64 I 32 | 16 I 8 I 4 l 2 l 1 I % l % L1/BI1,11L|/M|1/“|

Figure 2-3. Binary to Hexadecimal and Octal Conversion

The relationship between octal, decimal and hexadecimal is shown in
figure 2-4 using the decimal number 101310 (equivalent to 1’7658 and

3F5l6 where the subscript 8, 10, or 16 indicates the base) .

lx83

1 x 512
512

1 x 103 +
1 x 1000 +
1000 +
3\F5]6 0x16° +
0 x 4096 +

0 +

+
+
+

1 7658

1m%0

2-4.

Figure

7><82 +
7x64 +
448 +
0x102+
0x 100+

0 +

3x'|62+
3 x 256 +
768 +

Relationship of Octal,

6x8]
6x8
48

lxlol
1x10
10

F x 16]
Fx16
240

5x8
5x1

3x10
Ix 1

5x160
5x1

10‘3]0

1013]0

101310

Decimal and Hexadecimal Numbers

2-3

NUMBER CONVERSION,
CODED TO DECIMAL CONVERSION.

The conversion to base ten of the integral value of a number whose
base is other than ten may be accomplished by the addition of com-
puted place positions as shown in figure 2-4. Another method of
conversion is by repeated multiplications and additions as shown in
figure 2-5. The multiplier is the decimal value of the desired

number base when using this system.

DECIMAL TO CODED.
The conversion of a Decimal number to any other base is accomplished
by repeatedly dividing the number by the desired number base and

retaining the successive remainders (figure 2-6).

1765 (AN OCTAL NUMBER + MULTIPLY BY 8)
B
|
1
x 8
8 +7 =15
x 8
120 + 6 = 126
x 8

1008 + 5 = 1013]0

13 F5 16 (HEXADECIMAL NUMBER - MULTIPLY BY 16)
3
x16
48 + 15 = 63
x 16

Figure 2-5. Hexadecimal and Octal To Decimal

126 63

8 1013]0 - REMAINDER 5 16| 1013]0 - REMAINDER - 5 —
15 3
8 126 - REMAINDER 6 —— 16 63 - REM=15=F
1 0
8| 15 - REMAINDER 7 16' 3 - REMAINDER - 3
0 ﬁ
8] 1 - REMAINDER 1 3F 516
bl
1765

Figure 2-6. Decimal 1013,, To Hexadecimal and Octal

DECIMAL AND HEXADECIMAL TABLE CONVERSTION.

(Use figure 2-7 for following computations.)

Hexadecimal to Decimal. Find the decimal wvalue for each hexadecimal
digit according to its position. Add these to obtain the decimal
equivalent.

Decimal to Hexadecimal. Find the next lower decimal number and its
Hexadecimal equivalent. Subtract and use difference to find the
next decimal value and hexadecimal equivalent until the complete

number is developed.

2-5

6) 4 3 2 1
HEX DEC HEX DEC HEX DEC | HEX DEC |HEX DEC HEX DEC
0 00 0| o0 0j 0 0]0 0 {0 0
1 1,048,576 | 1 65,536 | 1 4,096 1 2561 1 16 1 1
2 2,097,152 | 2 131,072 | 2 8,192 2 51212 32 |2 2
3 3,145,728 | 3 196,608 | 3 12,288 3 768 3 48 |3 3
4 4,194,304 | 4 262,144 | 4 16,384 4 1,024| 4 64 |4 4
N 5,242,880 | 5 327,680 | 5 20,480 5 1,280 § 80 |5 5
6 6,291,456 | 6 393,216 | 6 24,576 6 1,536(6 9% |6 6
7 7,340,032 | 7 458,752 | 7 28,672 7 1,792} 7 112 |7 7
8 8,388,608 | 8 524,288 | 8 32,768 8 2,048|8 128 |8 8
9 9,437,184 | 9 589,824 | 9 36,864 9 23049 144 {9 9
A 10485760 | A 655,360 | A 40960 | A 2560|A 160 [A 10
B 11,534,336 | B 720,896 [B 45056 | B 2816|B 176 |B 11
C 12,582912 |1 C 786432 | C 49,152 | C 3,072|C 192 |C 12
D 13,631,488 | D 851,968 | D 53,248 D 3328{D 208 |D 13
E 14,680,064 | E 917,504 | E 57344 | E 3584 |E 224 |E 14
F 15,728,640 | F 983,040 | F 61440 | F 3,840fF 240 |F 15
HEXADECIMAL TO DECIMIAL DECIMAL TO HEXADECIMAL
3 F 516 ‘ 3 F 516
768<—| | 101310 ’

240 - 768

+ 5 245

1013 - 240

10 —s

Figure 2-7. HEX and DEC Table Conversion

ORDER OF MAGNITUDE.

The order of number magnitude in relation to the 39 bit mantissa,

decimal numbers and powers of base 16, 8,

2-8.

and 2 are shown in figure

REGISTER NUMERIC
BIT SET EQUIVALENT HEX. | ocTaL | minary |
0 1 1.0 162 g? 20
7 3 0.5
2 4 0.2 : ;
3 8 0.12 : 8 2
4 16 0.062 5 1%
5 32 0.031 25 ;)
6 64 0.015 625 8 2
> 128 0.007 812 5)
8 256 0.003 906 25 T6
5 512 0.001 953 125 8° 2’
10 1024 0.000 976 562 5
n 27048 0.000 488 281 25 ; . -
12 4096 0.000 244 140 625 | 16 5 2
13 8192
1 T6 384
15 32 768 . 8> 213
16 65 536 T6
17 131 072
—t
18 7262 144 g° 38
1 524 288 s
20 17048 576 T6
2] 2 097 152 8’ 221
2 2194 304
23 8 388 608]
24 6 777 216 T 1 8° 324
25 33 554 432
26 67 108 864
9 peea—
27 134 217 728 N 8 227
28 268 435 456 T%
29 536 870 912
30 17073 741 824 g0 530]
31 2 147 483 648 o
32 4 294 967 296 T6
33 8 589 934 592 8! 233—4
34 17 179 869 184
35 34 359 738 368 2 6]
36 8 719 476 736 6’ T8 3
37 137 438 953 472
38 274 877 906 944 ” 29]
39 545 755 813 888 B 3

Figure 2-8.

Order of Magnitude Table

2-7

DATA TYPES AND PHYSICAL LAYOUT.
CHARACTER TYPE.

Character representation may be 8-bit bytes, 6-bit characters, or A4-
bit digits. The 8-bit EBCDIC (Extended Binary Coded Decimal Inter-
change Code) is the primary B 6500 code. When 8 or 6-bit numeric
characters are used, the sign of the number is in the zone bits of
the least significant character. For L4-bit digits, the sign is the
most significant digit of the number. The number (-4259) is repre-

sented as 8, 6, & U4-bit characters in figure 2-9.

8-BIT BYTE EBCDIC CODE)

TAG A
T o 1 2 3 4 5
8 8
0 4 4
0 2 2 {122
l I
Z N Z N Z N Z N Z N « N
- 0 0 4 2 5 9
6-BIT CHARACTER (BCL CODE)
TAG ~ —
0 1 2 3 4 5 6 7
oflsf4 IBRAE
BDNE [al2 {faDd[al2][al2
olls] sl |[s]1][s
- 0 0 0 o 4 2 5 9
4-BIT DIGITS (PACKED EBCDIC OR BCL)
TAG _ —
0O 1 2 3 4 5 6 7 8 9 10 1
8 R
ol 4 4
ol 2 2]2 2 |2
o | BE
:
- 00 0 0 0 0 o0 4 2 5 9

Figure 2-9. (-4259) in 8, 6, and 4-Bit Code

Table 2«2

Negative Sign Bit Configuration

Size Sign Location - Negative Positive
8~Bit Zone, least significant char. 1101 Any bit con-
figuration
6-Bit Zone, least significant char. 10 other than the
4-Bit Most significant digit 1101 negative com-
binations.
OPERANDS.

Operands may be used to represent either numeric or logical infor-
mation in the B 6500 system. An operand may be single or double-
precision. The tag bits of a memory word (bits 50, 49, 48) when
zero, denotes a single-precision operand, and when two (bit Lo set),
a double-precision operand. The structure of a single-precision
operand is illustrated in figure 2-10 in a hexadecimal register
format. Note that since the exponent is an octal scale factor, the
single-precision operand is also shown in octal for reference.
Figure 2-11 illustrates the double-precision operand in hexadecimal

register format.

An integer is a single-precision.operand with an exponent of zero.

The maximum value of an integer is +77777777777778, 54975581388710
or 7FFFFFFFFF16.

As an example, the decimal number 12 (148, 016’) might be repre-

sented in any of the following forms:

a. In OCTAL format:
0000000000000014 (INTEGER)
1010000000000140
1020000000001400 ¢ (Floating point, or REAL)
1131400000000000

2-9

b. In HEXADECIMAL format:
00000000000C (INTEGER)

208000000060
210000000300 (Floating Point)
241800000000
TAG EXPONENT MANTI{SSA
—— —— p— 4 ~
47 [39] 3
50 |} 46 38 2
49 || 45 1
48 |[44 | 0
OCTAL
POINT

Figure 2-10-A. Single Precision Operand

[50:3] Tag field = O for Single Precision Operand.
[47:1] Unused.

[46:1] Sign of operand = 1 for negative.

[45:1] Sign of exponent = 1 for negative.

[44:6] Exponent.

The exponent is a binary number which with its sign, is an octal
scale factor for the mantissa. The exponent is used for automatic
scaling of operands when performing arithmetic, comparison and
integer operations. The range of the exponent is from +63 to -63

for single-precision operands.

MANTISSA FIELD.

The mantissa is the significant part of the operand. The magnitude
of the operand is obtained by multiplying the value contained in the
mantissa by eight raised to the value of the exponent sign and ex-

ponent as follows:

V=+Mx28+E
V = Value of number
+M= Mantissa with sign

+E= Exponent with sign

The range of numbers that can be expressed in single-precision is
-51
(813 -1) x 8+63 to 1 x 8 5 and zero,.

TAG EXPONENT MANTISSA
—— — i,
50 laz [l 44| |33 >
49 |46 \]
48 |[45 39 |f 3 1o
OCTAL
POINT

Figure 2-10-B. Single Precision Operand

TAG EXPONENT MANTISSA
vt pn— A
47 [39] 3
0146 38 2 | FiRsT
49 [L45 . 7 | WORD
48 |44 | 1 o
MANTISSA OCTAL
1AG EXPONENT (EXTENSION) o
N ettt A
47 39| 3
>0 38 2 | SECOND
49 ;| worD
48 o

Figure 2-11, Double-Precision Operand
[50:3] Tag Field = 2 for double-precision operands.

The first word of the operand is identical to the single-precision
operand except for bit position 49, which indicates that this is one

of a pair of words.

The fractional part of the mantissa is contained in the mantissa- ex-

tension field of the word.

The 15-bit exponent of a double~precision operand is formed by the
concatenation of the exponent extension with the exponent. The ex-

ponent extension is more significant than the exponent.

LOGICAL OPERANDS.

Logical operands have one of two values: true (on) or false (off).
Logical values are the result of Boolean operations or relational
operations. Relational operators generate a logical value as the
result of an algebraic comparison of two arithmetic expressions.
Bit number =zero (0) represents the logical value. Relational op-
erators set bit number zero, and conditional operators use bit zero
for the decision. Logical (Boolean) operators consider each bit,
from 47 to bit O, as an individual logical value, operating on the
whole word. A logical value is expressed in the following form

(figure 2-12).

47 3
50 | 46 2
49 | 45 4
49 | 44 0

Figure 2-12. Logical Operand

[50:3] = O TAG = S.P. OPERAND
[0:1] = 1 TRUE, O FALSE
OPERATORS.

The operators used in the B 6500 systems are divided into three
major categories; Primary, Variant and Edit. Details regarding
the format and function of these operators are found in Sections

6, 7, 8, and 9.

SECTION 3
STACK AND POLISH NOTATION

THE STACK.
GENERAL.

The stack is an area of memory assigned to a job to provide storage
for basic program and data references for the job. It also pro-
vides for temporary storage of data and job history. When a job

is activated, four high~speed registers (A, X, B, and Y) are linked
to the job's stack (figure 3-1). This linkage is established by
the stack-pointer register (S), which contains the memory address
of the last word placed in the stack. The four top-of-stack reg-

isters (A, X, B and Y) extend the stack to provide quick access for

data manipulation.

PATH OF DATA

TOP OF STACK REGISTER —l
IN/OUTPUT N] | X |

TO STACK I
| = 1L vy 1/ s | |
I WORD ntx -~
STACK'AREA
ASSIGNED
10 PROGRAM Le] TOS WORD TOS WORD
STACK AREA | — ,
CURRENTLY (—— — I STACK LIMIT REGISTER |
IN USE - TR
WORDn | BOS I
~ STACK 4
MEMORY
AREA

Figure 3-1. Top of Stack and Stack Bounds Registers

Data are brought into the stack through the top-of-stack registers in
such a manner that the last operand placed into the stack is the
first to be extracted. Total capacity of the top~of-stack register
is two operands. Loading a third operand into the top-of-stack reg-
isters causes the first operand to be pushed from the top-of-stack
registers into the stack. The stack-pointer register (S) is in-
cremented by one as each word is placed into the stack and is de-
cremented by one as each word is withdrawn from the stack and placed
in the Top~of-Stack registers. As a result, the S register con-

tinually points to the last word placed into the job's stack.

BASE AND LIMIT OF STACK.

A job's stack is bound, for memory protection, by two registers, the
Base-of-Stack register (BOSR) and the Limit-of-Stack register (LOSR).
The contents of BOSR defines the base of the stack, and the LOSR
defines the upper limit of the stack. The job is interrupted if the

S register is set to the value contained in either LOSR or BOSR.

BI-DIRECTIONAL DATA FLOW IN THE STACK

The contents of the top-of-stack registers are maintained automa-
tically by the processor to meet the requirements of the current
operator. If the current operator requires data transfer into the
stack, the top-of-stack registers receive the incoming data, and
the surplus contents of the top-of-stack registers, if any, are
pushed into the stack. Words are brought out of the stack into the
top-of-stack registers for operators which require the presence of
data in the top-of-stack registers, but do not explicitly move data

into the stack.

DOUBLE-PRECISION STACK OPERATION.

The top-of-stack registers are operand-oriented rather than word-
oriented. Calling a double-precision operand into the top-of-stack
registers loads two memory words into the top-of-stack registers.
The first word is loaded into the A register, where its tag bits

are checked. If the value indicates double-precision the second

word is loaded into X. The A and X registers are concatenated, or
linked together, to form the double~-precision operand. The B and Y
registers concatenate when a double-precision operand is moved to
the B register. The double-precision operand reverts to single
words as it is pushed from the B and Y registers into the stack.
The concatenation is repeated when the double~precision operand is

returned from the stack into the top-of-stack registers.

DATA ADDRESSING.

The B 6500 Processor provides three methods for addressing data or

program code:

a. Data Descriptor (DD)/Segment Descriptor (SD).
b. Indirect Reference Word (IRW).
c. Stuffed Indirect Reference Word (SIRW).

The Data Descriptor (DD) and Segment Descriptor (SD) provide for
addressing data or program segments located outside of the job's
stack area. The Indirect Reference Word (IRW) and the Stuffed
Indirect Reference Word (SIRW) address data located within the

job's stack. The IRW and SIRW address components are both relative.
The IRW addresses within the immediate environment of the job rel-
ative to a display register (described later in Non-local Addres-~
sing). The SIRW addresses beyond the immediate environment of the
current procedure, and addresses relative to the base of the job's

stack. Addressing across stacks is accomplished with an SIRW.

DATA DESCRIPTOR.

In general, the descriptor describes and locates data or pProgram
code associated with a given job. The Data Descriptor (DD) is

used to fetch data to the stack or store data from the stack into
an array located outside the job's stack area. The formats of the
Data and Segment Descriptors are illustrated in Section 6. The
ADDRESS field of both descriptors is 20 bits in length and contains
the absolute address of an array in either system main memory or

in the backup disk file as indicated by the Presence bit (P). The

referenced data is in main memory when the presence bit is set.

PRESENCE BIT.' A Presence Bit interrupt occurs when the job ref-
erences data with a descriptor which has its P bit and copy bit
equal to ZERO. The Master Control Program (MCP) recognizes the
Presence Bit Interrupt and transfers data from the disk file to
main memory. After the data transfer to main memory is completed,
the MCP marks the descriptor present by setting the P-bit to ONE,
and places the new main memory address into the ADDRESS field of

the descriptor. The interrupted job is then reactivated.

INDEX BIT. A Data Descriptor describes either an entire array of
data words, or a particular element within an array of data words.
If the descriptor describes the entire array, the Index bit (I—bit)
in the descriptor is ZERO, indicating that the descriptor has not
vet been indexed. The LENGTH field of the descriptor defines the
length of the data array.

INVALID INDEX.

A particular element of an array may be described by indexing an

array descriptor. Memory protection is ensured during indexing op-
erations by performing a comparison between the LENGTH field of the
descriptor and the index value. An Invalid Index Interrupt results
if the index value exceeds the length of the memory area defined by

the descriptor, or if the index is less than zero.

VALID INDEX.
If the index wvalue is wvalid, the LENGTH field of the descriptor is

replaced by the index value, and the I-bit in the descriptor is set
to ONE to indicate that indexing has taken place. The ADDRESS and
INDEX fields are added together to generate the absolute machine
address whenever a present, indexed Data Descriptor is used to

fetch or store data.

The Double-Precision bit (D) is used to identify the referenced
data as single or double~precision and has a direct affect on the
indexing operation. The D-bit equal to ONE signifies double-pre-

cision and causes the index value to be doubled before indexing.

3-4

READ-ONLY BIT. The Read-Only bit (R) specifies that the memory area
described by the Data Descriptor is read-only area. An interrupt
results when an area is referenced through a descriptor with inten-

tions of storing with the R bit set to ONE.

!

COPY BIT. The Copy bit (C) identifies a descriptor as a copy of

a master descriptor and is related to the presence bit action. The
copy-bit links multiple copies of an absent descriptor to the omne
master descriptor. The copy-bit mechanism is invoked when a copy
is made in the stack, of an absent-Data Descriptor. If the Absent-
Data Descriptor is the original (master) descriptor, the processor
sets the copy bit to ONE and inserts the address of the master de-
scriptor into the ADDRESS field. Thus, multiple copies of absent-

data descriptors are all linked back to the master descriptor.

POLISH NOTATION.
GENERAL.
To understand the B 6500 stack, Polish notation must be understood.

A problem that exists with most forms of mathematical notation is
defining the boundaries of specific terms. This is eliminated with
the use of parentheses, brackets, and braces. The expression 5Z +
7/27 and (5Z + 7)/22 express different functions of Z, but one
could easily be used when the other was intended. However, with a
complex equation, it becomes necessary to duplicate the use of the

few types of delimiters that exist.

Polish notation is an arithmetical or logical notational system

using only operands and operators arranged in sequence oOr string
which eliminates the necessity for defining the boundries of any
terms. Figure 3-2 presents a flow chart for conversion to Polish

notation.

3-5

3IBY) MOTJ UOTIBION USTTOJ ‘g-§ oandryg

||||||||| - ———

_
_ _ S aa _ ONIILS NOILVION HSI10d |
| ! _ D 4 \ _
_ d ! _ a33>0ud
ALdW3 SI 1S17 HINA | 108WAS “1°Q S aNv
r “$*N'd OINI 3DV1d _ | | a3aiNa 1s» el ONIYLS NOILVION
ANV STO8WAS "1°@ IAOWIY HSI1Od FHL NI
Q3¥3IN3 1SY1 JAOWIY h | 108WAS 3DV1d
ALIONd 2 — _ t
ALI¥ONMd = "1 TOWAS "1°Q _ TOTWAS
:S1 T09WAS "1°Q SIA QIF3LN3I 1SV _ 213730
QI]WILING ISV IAOWI REERSY]
aNVv) 4
1S17 ¥3LIwWi3a
NI TO8WAS
ON PV
ALW3 1SN 7
YOLVAVAIS €
1IDVHE 1431 °Z
ALROINd ¥3IMOT ° 1 N
:S1 T08WAS
"1'a QWIINT 1SV1

NVI100¢

JOLVI3dO
IN3W
-DVIidN

S3IA

S3IA

o.&“7

i0
anN3

1IDVIE

TIVRIVA

JOLV¥3dO
oz< N

NOISS3IdX3

RULES FOR GENERATION

Name

Variable

Operator-Separator

Arithmetic or Boolean operator
and last entered delimiter list

symbol was:

a. An operator of lower

priority.

b. A left bracket "[" or

parenthesis "(".
Cc. A separator.

d. Nothing (delimiter list
empty.

Arithmetic or Boolean operator
and last entered delimiter list
symbol was: an operator of pri-
ority equal to or greater than

the symbol in the source.

A right bracket "]|" or paren-

thesis ")".

OF POLISH STRING.

The source of expression is:

Action

Place wvariable in string being

built and examine next symbol.

Place in delimiter list and ex-

amine next symbol,.

Place operator in the delimiter
list and examine next source

symbol.

Remove the operator from the de-
limiter list and place in the
string being built. Then compare
the next symbol in the delimi-
ter list against the source ex-

expression symbol.

Pull from delimiter list until
corresponding left bracket or

parenthesis.

3-7

POLISH STRING.

The essential difference between Polish and conventional notation
is that operators are written to the right of the operands instead
of between them. For example, the conventional B + C is written

B C + in Polish notation: A = 7(B+C) becomes BC + 7 x A =.

Any expression written in Polish notation is called a Polish string.
In order to fully understand this concept, the rule for evaluating

a Polish string should be known.

RULES FOR EVALUATING A POLISH STRING.

The rule is summarized in a few steps:
a. Scan the string from left to right.
b. Remember the operands and the order in which they occur.
c. When an operator is encountered:
1) Record the last two operands encountered.
2) Execute the required operation.
3) Disregard the two operands.

4) Consider the result of (2) as a single operand, the

first of the next pair to be operated upon.

Following this rule, the Polish string B C + 7 x A := results in A
assuming the value 7 (B + C) (table 3-1).

Evaluation

Table 3-1

of Polish String BC + 7 x A :=

Operands Being
Remembered and

Symbol Their Order of
Being Symbol Occurence (1 or 2)|Operation Results of
Step | Examined Type Before Operation Taking Place | Operation
a. B Operand
b. c Operand 1B
c. + Add 2 C B + C (B + C)
Operator
d. 7 Operand 1(B + C)
e. x Multiply 2 7 7 x (B + C) 7 x (B+C)
Operator 1(B + C)
f. A Name 1 7(B + C)
g. 1= Replace 2A
Operator 1 7(B + C) A :=7(B + c)| A=7(B + C)

SIMPLE STACK OPERATION.

All program information must be in the system before it can be used.

Input areas are set aside for information entering the system and

output areas are set aside for information exiting the system,

and table areas are allocated to store certain types of data.

data is stored in several different areas:

data tables (arrays), and the stack.

arithmetic registers,

arithmetic registers and the stack.

array

Thus

The input/output areas,
Since all work is done in the

all information or data is transferred to the

3-9

At this point, an ALGOL assignment statement and the Polish nota-
tion equivalent will be related to the stack concept of operation.
The example is Z:=Y + 2x(W+V), where := means "is replaced by." 1In
terms of a computer program, this assignment statement indicates
that the wvalue resulting from the evaluation of the arithmetic ex-
pPression is to be stored in the location representing the variable

Z.

When Z:;=Y + 2X(W+V) is translated to Polish notation, the result is
Y2WV+x+Z:=. Each element of the example expression causes a cer=
tain type of syllable to be included in the machine language pro-
gram when the source problem is compiled. The following is a de-
tailed description of each element of the example, the type of
syllable compiled, and the resulting operation (see figure 3-3 and

table 3-2).

In the example statement, Y is added to a quantity; therefore, Y

is brought to the stack as an operand. This is accomplished with

a Value Call (VALC) syllable that references Y. The value 2 is

then brought to the stack, with an eight bit literal syllable (LT8).
Since W and V are to be added, the respective variables are brought
to the stack with Value Call syllables. The ADD operator adds the
two top operands and places the sum in the top of stack. This ex-
ample assumes single-precision operands for simplicity not requiring
use of the "X" and "Y" registers which are used in double-precision

operations.

The multiply operator is the next symbol encountered in the Polish
string and when executed, places the product "2x(V+W)" in the top
of the stack. The next symbol, ADD, when executed leaves the final
result "7+2x(W+V)" in the top of the stack.

Since Z is to be the recipient of a value, the address of Z must be
placed into the stack just prior to the store command. This is ac-
complished with a name call syllable which places an Indirect Refer-
ence Word (IRW) in the stack. The IRW contains the address of Z in
the form of an "address couple" that references the memory location

reserved in the stack for the variable Z.

3-10

uotTaeIadp 3yoBlg *{-¢ oan3Tg
A A A A A A A A A
M M M M M M — M M M
A A A A A A A A A
A+M)Z+A le S z S z le— S z 4 z Zz le-S Z - § z
A A A A S A A A le— s
4 z b4 z z f—S 4 oS
QIVANI (A+MIT+A (A +M)Z+A (A+Mm)Z (A+M) M Z QaltvANI dnvaNI
anvaNI L 2 mal AIVANI QITVANI anvANI A e M A GINVANI
4 A M A
aols DWVN aav 1INW aay DIVA D1IVA I1IVA
JAILONYLSIA OIS QOIS
(119 8) IW¥3IIN 811
1VD IWYN DWWYN
NVoIMVA - 3IVA = FX A~ ONI¥LS NOILVLON HSI10d
S3dAL NVIIAS fA+M) X Z IN3WLVIS 1091V

N 718D
1+ N8
T+ N 18D
€+ N 118D
¥+ N 118D

S+ N 8D

\£L A
ADVIS OO

JSIOF w8u
YILSION wVa

3~-11

Table.3-2

Description of Stack Operation

Polish -

Execution Notation Syllable Type Function of Syllable Dur-
Sequence Element Compiled ing Running of the Program
0 Stack location of pro-

gram variables illustrated.

1 Y Value call Place the value of Y inmn

for Y. the top of the stack.

2 2 Literal 2. Place a 2 in the top of
the stack.

3 W Value call Place the value of W in

for W. the top of the stack.

L v Value call Place the value of V in

for V. ' the top of the stack.

5 + Operator Add. Add the two top words in
the stack and place the
result in B register as
the top of the stack.

6 x Operator Mul- Multiply the two top of

3-12

tiply.

the stack operands. The
product is left in the B
register as the top of
the stack. (The A reg-
ister contains the multi-
plier and the B register

the multiplicand.)

Table 3-2 (cont)

Description of Stack Operation

Polish
Execution Notation Syllable Type Function of Syllable Dur-

Sequence Element Compiled ing Running of the Program

7 + Operator Add. Add the two top words in
the stack and leave the
result in the B register

as the top of the stack.

8 Z Name call on Build an Indirect Ref-

Z. erence Word that contains
the address of Z and
place it in the top of
the stack.

9 ¢ = Operator Store] Store an item into mem-
Destructive. ory. The address to store
into is indicated by an
Indirect Reference Word

or a Data Descriptor.

The address can be above

or below the item stored.

The Store syllable completes the execution of the statement Z:=Y +
2x(W+V). The store operation examines the two top of stack operands
looking for an IRW or Data Descriptor. In this example the IRW ad-
dresses the location where the computed value of Z is to be stored.

The stack is empty at the completion of this statement.

3-13

PROGRAM STRUCTURE IN MEMORY.

When a problem is expressed in a source language, portions of the
source language fall into one of two categories. One describes the
constants and variables that will be used in the program, and the
other the computations that will be executed. When the source pro-
gram is compiled, variables are assigned locations within the

stack whereas the constants are embeded within the code stream that
forms the computational part. A program residing in memory occupies
separately allocated areas. Separately allocated means that each
part of the program may reside anywhere in memory, and the actual
address is determined by the MCP,. In particular, the wvarious

areas are not assigned to contiguous memory areas. Registers with-
in the processor indicate the bases of the various areas during the

execution of a program.

MEMORY AREA ALLOCATION. The separately allocated areas of a program

are:

a. Program Segments -- Sequences of instructions (syllables)
that are performed by the processor in executing the pro-
gram. Note that there is a distinction between program
segments and data areas. The program segments contain no
data, and are not modified by the processor as it executes

the program.

b. Segment Dictionary -- This is a table containing one word
for each program segment. This word tells whether the
program segment is in main memory or on the disk, and gives
the corresponding main memory or disk address of the pro-

gram segment.

cC. Stack Area -- This is the pushdown stack storage, which
contains all the variables associated with the program,
including control words which indicate the dynamic status

of the job as it is being executed.

d. MCP Stacks and Segment Dictionary ~- This area contains
variables pertinent to the MCP. It also contains the MCP
segment dictionary entries. PFigure 3-4 shows in basic

form the separately allocated areas of a program.

OBJECT
OBJECT PROGRAM
D [4]—=| PROGRAM CODE
STACK SEGMENT
CONTAINING (h+1)
D [3]—| VARIABLES
AND -
DYNAMIC
D [2]—=] sTATUS OBJECT
PROGRAM
CODE
SEGMENT
OBJECT (n)
PROGRAM
SEGMENT
DICTIONARY
5. D. PROG. OBJECT
PROGRAM
. D. PROG. CODE
D [1] —+| SEG. DEC. O. B. OUTER
BLOCK
CODE
SEGMENT
MCP STACK
AND
SEGMENT
DICTIONARY
D [0]

Figure 3-4. Object Program in memory

3-15

STACK-HISTORY AND ADDRESSING-ENVIRONMENT LISTS.

One very important aspect of the B 6500 is the retention of the
dynamic history for the program being processed. Two lists of pro-
gram history are maintained in the B 6500 stack, the stack-history
list and the addressing-environment list. The stack-history list
is dynamic, varying as the job proceeds along different program
paths with changing sets of data. Both lists are generated and
maintained by B 6500 hardware.

MARK STACK CONTROL WORD LINKAGE. The stack history is a list of
Mark Stack Control Words (MSCW), linked together by their DF fields
(figure 3—5). A MSCW is inserted into the stack as a procedure is
entered, and is removed as that procedure is exited. Therefore,
the stack history list grows and contracts with the procedural
depth of the program. Mark Stack Control Words identify the por-
tion of the stack related to each procedure. When the procedure
is entered, its parameters and local variables are entered in the
stack following the MSCW. When executing the procedure, its para-
meters and local variables are referenced by addressing relative
to the MSCW.

STACK DELETION. Each MSCW is linked to the prior MSCW through the
contents of its DF field to identify the point in the stack where
the prior procedure began. When a procedure is exited, its portion
of the stack is discarded. This action is achieved by setting the
stack-pointer register (S) to address the memory cell preceding the
most recent MSCW (figure 3-6). This top-most MSCW, addressed by
another register (F), is deleted from the stack-history 1list by
changing F to address the prior MSCW, placing it at the head of

the stack history.

This is an efficient and convenient means of subroutine entry and

exit.

~

PROCEDURE B

PROCEDURE A |

PROCEDURE D

PROCEDURE C 7

OUTER PROG BLOCK 7

TOS WORD
ADDRESS STACK
~ ~ ENVIRONMENT HISTORY
LIST LIST
MSCW | “[(DISP F—— [BF }—
1] | L
MSCW | [DisP f—— [DF_]
- - ‘
MSCW _'| DE "r‘-‘-:
\
MSCW [_ -
y
(MSCW [~ _[oF 3

Figure 3-5.

Stack History and Addressing Environment List

~ ~ DISCARDED STACK
PORTION HISTORY
S [;“77"‘ #1705 WORD | OF STACK LIST
F
Csfsse| MSCW [DF besss
-
> -
~ ~ PROCEDURE "A" 2
A
MSCW DF g

< %‘\\h\\\

T PROCEDURE "D"

MSCW

[(DF T

Figure 3-6.

Stack Cut-Back Operation on Procedure Exit

RELATIVE-ADDRESSING. Analyzing the structure of an ALGOL program
results in a better understanding of the relative-addressing pro-
cedures used in the B 6500 stack. The addressing environment of an
ALGOL procedure is established when the program is structured by
the programmer, and is referred to as the lexicographical ordering

of the procedural blocks (figure 3—8). At compile time, the lex-

ADDRESS
ENVIRONMENT
STACK LIST
MEMORY
_ AREA _
[s F—+{tosworo
~ ~ PROCEFURE B
F mscw | [pise | ——
PCW-B
V3 I PROCErURE A
msew | [oise [/—— —"
D REGISTERS ! ~
D31
13 < Vs PROCEDURE D
D6 msew_ | [oise |
D5 ~ ~ <
D4 PCW-D
D3 V4 ! PROCEDURE C
D2 _ 1 .
DI mscw | [Dpisp —
DO ~ ~ <1
PCW-C
PCW-A J
v2 ! OUTER PROG BLOCK
V1

mscw | [bise [|

Figure 3-7. D Registers Indicating Current Addressing Environment

3-18

— BEGIN
REAL V1;
REAL V2;
PROCEDURE A;
BEGIN
’_ REAL V3;
PROCEDURE B;
BEGIN
V3 -—3;
V1e—V3;
END;
B
—— END;
PROCEDURE C;
— BEGIN
REAL V4;
PROCEDURE D;
— BEGIN
REAL V5;
V4 =—4;
V5e—35;
A;
v2 V4;
~— END;
D;
— END;
C;
—END;

LEXICOGRAPHICAL LEVEL 2

L= 2,8=2
L£=2,8=3
L£=2,8=4

LEXICOGRAPHICAL LEVEL 3
£ =3,8=2
€= 3,8=3
LEXICOGRAPHICAL LEVEL 4

= 2,8=5
LEXICOGRAPHICAL LEVEL 3

L= 3,8=2

L= 3,8=3

LEXICOGRAPHICAL LEVEL 4
L= 4,8=2

Figure 3-8. ALGOL Program With Lexicographical Structure Indicated

PROCEDURE B

PROCEDURE A-

OUTER PROGRAM BLOCK

PROCEDURE "D"

PROCEDURE "C"

— = LEXICOGRAPHICAL LEVEL 4

LEXICOGRAPHICAL LEVEL 3

LEXICOGRAPHICAL LEVEL 2

Figure 3-9. Addressing Environment Tree of ALGOL Program

3-19

icographical ordering is used to form address couples. An address

couple consists of two items:
a. The addressing level (§Q) of the variable,

b. An index wvalue (S) used to locate the specific wvariable

within its addressing level.

The lexicographical ordering of the program remains static as the
program is executed, thereby allowing wvariables to be referenced

via address couples as the program is executed.

Base of Addressing-lLevel Segment.

The B 6500 processor contains an array of D Registers (DO through
D31) which address the base of each addressing-level segment (fig-
ure 3—7). The local variables of all procedures are addressed rel-

ative to the D registers.

Absolute Address Conversion.

The address couple is converted into an absolute memory address
when the variable is referenced. The addressing level portion of
the address couple selects the D Register which contains the ab-
solute memory address of the MSCW for the environment (addressing-
level) in which the variable is located. The index value of the
address couple is added to the contents of the D Register to gen-

erate the absolute memory address.

Multiple Variables With Common Address Couples.

The address couples assigned to the variables in a program are not
unique. This is true because of the ALGOL scope-of-definition
rules, which imply that two variables may have identical address
couples if there is no procedure within which both of the wvariables
can be addressed. This addressing system works because, whereas

two variables may have the same address couples, there is mnever any
doubt as to which variable is being referenced within any particular

procedure.

Address Environment Defined.

There is a unique MSCW which each D Register must address during the
execution of any particular procedure. The D Registers must be
changed, upon procedure entry or exit, to address the correct MSCWs.
The list of MSCWs which the D registers address is the addressing

environment of the procedure.

Mark Stack Control Word Linkage.

The addressing environment of the program is maintained automatically
by linking the MSCWs together in accordance with the lexicographical
structure of the program. This linkage is the Stack Number (stack
No.) and Displacement (DISP) fields of the MSCW, and is inserted

into the MSCW whenever the procedure is entered. The addressing
environment list is formed by linking each Mark Stack Control Word

to the MSCW immediately below the declaration for the procedure

being entered. This forms a tree-structured list which indicates

the addressing environment of each procedure (figure 3-7 and 3-9).
This list is used to update the D Registers whenever a procedure

entry or exit occurs.

STACK HISTORY SUMMARY. The entry and exit mechanism of the Proces-
sor hardware automatically maintains both the stack history and
address-environment lists to reflect the current status of the pro-
gram, Interrupt response is a procedure entry, Therefore, the
system is able to respond to, and return from, interrupts conven-
iently. Upon recognition of an interrupt condition, the proces-
sor creates a MSCW, inserts an indirect reference word into the
stack to address the interrupt-handling procedure, inserts a lit-
eral constant to identify the interrupt condition and a second para-
meter, and initiates an MCP interrupt-handling procedure. The D
Registers are updated upon entry into the interrupt-handling pro-
cedure, to display all legitimate variables. Upon return, the D

Registers are updated to display variables of the former procedure.

3-21

MULTIPLE STACKS AND RE-ENTRANT CODE.

The B 6500 stack mechanism provides a facility to handle several
active stacks. These stacks are organized in a tree structure. The
trunk of this tree structure is a stack which contains MCP global

quantities.

LEVEL DEFINITION. A program is a set of executable instructions,
and a job is single execution of a program for a particular set of
data. As the MCP is requested to run a job, a level-1 branch of
the basic stack is created. This level-1l branch contains the Des-
criptors the executable code and Read-only Data segments for the
program. Emerging from this level-1 branch is a level-2 branch,
containing the variables and data for this job. Starting from the
job's stack and tracing downward through the tree-structure, one
finds first the stack containing the variables and data for the
job. (at level 2), the program code to be executed (at level 1), and
the MCP's stack at the trunk (level 0).

RE-ENTRANCE. A subsequent request to run another execution of an
already-running program requires that only a level-2 branch be
established. This level-2 stack branch sprouts from the level-1
stack of the already-running program. Thus two jobs which are
different executions of the same program have a common node, at
level-1, describing the executable code. It is in this way that
program code is re-entrant and shared. It comes about simply from
the proper tree-structured organization of the various stacks with-
in the machine. All programs within the system are re-entrant, in-
cluding all user programs as well as the compilers and the MCP
itself.

JOB~-SPLITTING. The B 6500 stack mechanism also provides the faci-
lity for a single job to split itself into two independent jobs.

A most common use of this facility occurs when there is a point in
a job where two relatively large independent processes must be per-
formed. This splitting could be used to make full use of a multi-
processor configuration, or to reduce elapsed time by multiprogram-

ing the independent processes.

3-22

A split of this type establishes a new limb of the tree-structured
stack, with the two independent jobs sharing that part of the stack
which was created before the split was requested. The process is

recursively defined, and can happen repeatedly at any level.

STACK DESCRIPTOR. Stack branches are located by an array of descrip-
tors, the stack vector array (figure 3-10). There is a data des-
criptor in this array for every stack branch. This data descriptor,
the stack descriptor, describes the length of the memory area as-

signed to a stack branch, and its location in either main memory or
disk.

Jos Jos Jos Jos
STACK STACK STACK STACK
NO.n NO.3 NO.2_ NO.I

STACK
VECTOR
ARRAY MSCW
MSCW
DDn MSC
~ I 1 MSCW }je—
D53 MSCW
DD4 /..:' ~ ~
bD3 ~
'ggf MSCW D
SEGMENT r 1 REGISTERS
L DDO DESCRIPTORS ~ ~
D3
SD £ 1
L 1} = Y
D3
SD D2
MSCW le— 1 DI
RO~ ! 1 DO
:‘-— STACK VECTOR ~ L
DESCRIPTOR
MSCW

Figure 3-10. Multiple Linked Stacks

A stack number is assigned to each stack branch. The stack number

is the index wvalue of the stack descriptor in the stack vector array.

3-23

STACK VECTOR DESCRIPTOR. The stack wvector array's size and location
in memory is described by the stack wvector descriptor. This des-
criptor is located in a reserved position of the stack's trunk
(figure 3-10). All references to stack branches are made through

the stack vector descriptor, indexed by the stack number.

PRESENCE BIT INTERRUPT. A Presence Bit Interrupt results when an
addressed stack is not present in memory. This Presence Bit
Interrupt facility permits stack overlays and recalls under dynamic
conditions. TIdle or dinactive stacks may be moved from main memory
to disk as the need arises, and when subsequently referenced gen-
erates a Presence Bit Interrupt to cause the MCP to recall the non-

present stack from disk.

SECTION 4
MAJOR REGISTERS AND CONTROL PANELS

PROCESSOR REGISTERS.

GENERAL.

The Processor Registers and Flip Flops are displayed in the Display
Cabinet of the system as shown in figure L-1. Panel A displays the
stack registers. Panel B is shared with the Multiplexor. Panels

C, D, and E contain indicators and switches for the entire system.

<

| aa‘

Y

Figure 4-1. Processor Display Panels

PANEL A (Refer to figure 4-2)

A REGISTER. The A register is a 51 bit information register that
holds one complete word. This register is the TOP OF STACK when
AROF on indicates that it contains a valid word. It is used in
many ways, arithmetic, boolean, character string, addressing, in-

dexing, camparing, etc.

B REGISTER. The B register is a 51 bit information register con-
sidered as the second word in the Stack when the A Register is valid.
It, too, has multiple usage such as arithmetic, boolean, character

string, addressing, etc. The B register is valid when BROF is omn.

-1

C REGISTER. The C register is a 51 bit information register for
general purpose use. It may contain an address, an IRW, an infTor-

mation word, a character or the "flash back" from a memory cycle.

X REGISTER. The X register is a 51 bit information register used

basically as the second word of a double-precision operand.

Y REGISTER. The Y register is the counterpart of the X register
for double-precision operands. It is the second-word of the B

register operand.
P REGISTER. The P register is a 51 bit instruction register.

PANEL B (Refer to figure L4-3).
Panel B indicators are shared by the Processor and Multiplexor

Flip Flops.

The PROC/MPX switches located on Panel C (Refer to figure L)
control the display mode of this panel.

Panel B is divided into related family and control groups. The
Maintenance Diagnostic Logic (MDL) Processor is common to both

display modes.

ROW A. This contains the Flip Flops for addressing the IC memories

in the Memory Controller.

BRSO =) BRS7 - Base read select O thru 7
IRSO =) IRS7 - 1Index read select O thru 7
BWSO =) BWS7 - Base write select O thru 7
IWSO =) IWS7 - 1Index write select O thru 7
DRSO =) DRS5 =~ Display read select O thru 5
DWSO => DWS5 - Display write select O thru 5

ROW B. This row contains the Flip Flops for the MDL Processor.
There are three registers AOLl => Al10, BO1 => BO8, and CO1 => CO8
associated with this processor. Fach has a dual purpose depending
on the use of MDL on I/O testing or system testing. The other
Flip Flops in Row B are for MDL control.

h-2

PROCESSOR

@Foo 'owébooooqdﬁ

@oooobp@doodddbdq

m%@ QQQ@@O@OO@Q@Q,

I

@
obooboooboomm@o@,
2lI00IRIQ 00 QIO 0l olG 0

%ogdoodooooddBEd@
oloqdeoqwoodqoodo
nc 45 O QLQ"O QQ OLQ O O Q OLQ@J

X REGISTER

ooorboo@oodoo‘d

I
®J10 O
0|0!0 0J0|0l0 0lojol0 Olololo Olo]
QR.Q

0lold oiolold ol

-

2lolofolo

Y REGISTER

'@OQjoooo@oodoooo@

o[olo olojofo olojofo ololold olo
™ a5 '—Q’J 3% QQ[%; O Q‘FO O Q OLQ"@

lojo olE10[6 dlol6lo 0/Blo6 6l0/@
oqodbmdooqq’bdo
1100 010/0[0 0i0le/0 ®l0jo. o

Figure 4-2. Processor Display Panel

PROCES SOR
I€ MEM WRITE SELECT——

IC MEM READ SELECT —

000000

DAS3 IRS? IRS3 BRS?

O
O
O
O

O OO0
20

[
~

010
301

OO
:
3
:

3
o
3
-]
D
in
»
-]
1
@
-
D
ol
@
-
]
@
]
D
73
b
®
8

OFO30

OXON®
OfO
§OR030 OpO3I0I01

i
a
o
€
@

O

(0 0O00®
OO0 OO0 G
3

O O0OO0®
OQO000O0O
HOJONONO IONONON®
O OO0 00
O QOO0 O

=
>
o
~

3
»
=
3
3
-
@) Q
5]
b
a
o
b
-
o
8
n

>
F
[=]
=4
-
il
-
=}
7]
v

0
10

O
HO)

o:
O
5050 0|00 0 O
2
g
8
Ok
0
o8
o
o
o
0

O
O
O

'TNFF FECH ERR2 LO2F|MAOI MAO4 MAO7 MA|O| BO4F BOBF AO6F AO9F CO2F COSF COSF
l——eCORE ADDRESS wmeeedeu-TC NO — L— —STRING N0 ————
MDL DISPLAY

020
O
O
080
10|

o
2
»
o
(g
>
>
>
N
o
>
m
»
»
e

OO
O

=
2
2
R
@
=3
4
w
3
»
>
X
>
>
m
>
>
3
>
>

®
50
oF

8
§

O%
NN N

208
OO
5

o
b
»
>
>
>
%
>
>
>
3
w
$
3
>

QO0O00O0
0000
O

o
(2
-]
-
o
]
o
<
m
2
®
n
%
]
8
>
>
N
g

O
O
O
O

-~
F4

>

m
2
@

n
u
&
8
o
[2]
5
n
o
2

QB2F TB2F JUB6F JB2F | STRK TRO2 JCO6 JCO2 QC6F LLOZ

(>3
(2]
s
n

O
O

QBIF TBIF JBSF JBIF | STRJ TROI JCO5 JCOI QC2F LLOY

O 000000000

TB4F TBOF JB4F JBOF| STRC TROO JCO4 JCOO LLO4 LLOO

O

O

50

O
00000000

3030

00000000
00000000

1

@

@

A

8

a3

!

L)

™
BN

3

Dg

25

>
»
w
>
S
®
@
n
»
I
2
a
o
=4
m
o
]
]
n
o
@
L2

FAMILY B FAMILY C

FAMILY D FAMILY £
O000000O0000000O000 0000
QD3F TD3F JD?F JD3F QDBF QL7F OPR4 QEOI JECB KEOI (NOB D208 DBO® DIOB FC2A KEDZ ICRB DIGH
ONOXONONONOONONORONONONONONONO® O O
QD2F TD2F JUD6F JD2F QDAF QD6F OPR3 GEO2 JEO4 CNCO CNO4 D204 DBO4 0104 DI04 0204 0804 ICR4 DI1GH4
ONORONCIICNCIONONORONONORONONONONORO)
QOIF TDIF JD5F JDIF GD9F QDSF OPR2 QEO3 JEO2 CNOP CNO2 D202 DBO2 0102 DIO2 0202 0OBO2 ICR2 DIG2
VOO0 0000000000000 00 0

%o

VARF OPR8 JFO3 Je08 DIOB sSI08 EDIT QFOL GQHOI XROF EROB EXTF
STBH OPR4 KF03 JFOZ KGO3 JGO4 DI04 SIO4 NVLF QF02 QHC2 E5F ERO4 FLTF
OO0 0O®

STBF OPRI KFO) JFOO KGOl JGOI CSZ1 SS521 DIOI SIOL JFIF GFO4 QHC1 LHFF EROI OFFF
FAMILY U

1
~
Ow
E24
>
D0
ox
e

3

x
)
o
(=3
z
=
»
o

INTERRUPT CONTROL

O
O
O
O
O
of

QI2F JI03 EXIA INVC SCC2 LIBI ACT8 JO2F | TRIP MAOF CZAF PET2

@
k4
d
o
=
a
1%
E
[
X
Q
v
4
8

0

w
Xz
E
v
z
w
x|
(s}
w
K4
o
&
o
[

QS2F IF | TIMO SPFF SUBF M6

O
@)
O

QSIF BROF| TIMI MWRC FETO

vy
S
=]
v
3
o
v
z
o
[t
9
4
]
[
z
=4

O
O
O
Oz0

£35d

QPP
$O

30303
0 O
10103
30

303
000
O3

® 0 O OEO
503080

o
@
w
3

N

o
N
o

=
0

O OrO:03:0Z0
OI0I0E0
50302080

:OEOE01010 |

O kO O 0O
5
50

0@

1
~
*
&
[-d

OICEO0
0000000
0000000

00000000

PROF JPOF CPIO PSRO SSRO CSRO TOM TOAO TOMA TOMO D4 DISO Y126 AT26
PROGRAM CONTROL- t——————————————TRANSFER CONTROL-

g

Figure 4-3. Processor/Multiplexor Display Panel

ROW C.

This row contains Family A Flip Flops and one half of the

Arithmetic Controller Flip Flops.

Family A,
TROO =) TRO3
JRAO =) JRAL
QRO1

QROO(A)

QRO2

QRO3 =) QRO7
QRO8 =) QR1O0
QR11 =) QR1A4
QR15
QROO/QRO1
QROO(N) /CINA
NCRO =) NCR5
MBRO =) MBR2
MYRO =) MYR2
EARO

EBRO

STRA

XXA1

TRX1

Contains the OP Code

Sequence Count used in the OP Code flow
Pre-Carry INTO Adder

Carry-in set control

High-speed clock phase control

Logic control

Temporary storage

Q Counter

Interrupt flip flop

Carry~in reset control

Multiple control

N Counter

B Register Mantissa Field Extension

Y Register Mantissa Field Extension
Extension of A Register Exponent Field
Extension of B Register Exponent Field

Family A Strobe F.F. (turned on by the Pfogram
Controller thru the Z10 bus)

Function Parallels STRA
Function Parallels TRO1

Arithmetic Control.

All other Flip Flops in this Controller are used for logic control.

They

are:

BBSZ
AAS1
ETBT
EATB
BTBB
ATBB
FSLC (1)
FSLC (2)

FCBB (2)
FSRC (1)
FSRC (2)
AA1Z
ECBC
ECCB
ECBB
FCBC (1)

b-5

FSLC (5)
FSLC (6)
FCBB (1)

ROW D.

Family B.
TBOF =) TBA4F

JBOF =) JB6F
QB1F =) QBA4F

Family C.
TROO =) TRO3

JCOO =) JCO7

LLOO =) LLOL

STRC
STRJ
STRK
QC1F

=) QC8F

NCSF

This row

FCB1 (2)
FCBS (1)
FCBS (2)

contains the Family B and C Flip Flops.

Contains the OP Code
Sequence Count used in the OP Code flow
Logic Control

Contains the OP Code
Sequence Count used in the OP Code flow

Lexicographical level Flip Flops for the

Program flow

Strobe Family C (Sub-routine)
Strobe Family J (Value Call)
Strobe Family K (Name Call)
Logic Control

Normal Control State Flip Flop OFF signifies
Normal State

The Cohtrol State Flip Flop extends the Operator set to include

some additional Operators and disables external interrupt detection

by the Processor.

CRUN

ROW E.

Family D.

Family C Run Flip Flop

This row contains the Family D and E Flip Flops.

TDOF

TD1F =) TD4F -
JDOF =) JD7F -

Family E.
OPRS

OPR1 =) OPRA
JEO1 =) JE16
DIGLl =) DIGS8
TICR1 =) ICRS8
0BO1 =) OBOA
0101 =) 0104
0201 =) 0204
DBO1 =) DBOS8
D101 =) D108
D201 =) D208
CNO1 =) CN16
QEOL =) QEO3
ROW F.

Family D Strobe ‘
Contains the OP Code

Sequence Count used in OP Code flow

QDIF =) QDY9F, QDAF, QDBF -

Logic Control Flip Flops

Family E Strobe

Contain the

OP Code

Sequence Count used in OP Code flow

Length Field

Input Convert
Octal Buffer Bit

Octal 1 bit
Octal 2 bit

Digit Buffer Bit

Digit 1 Bit
Digit 2 Bit

Counter

Logical Control

This row contains the Family U (String OP) Flip Flops.

Family U is the hardware logic for the STRING OP CONTROLLER.

OPR1 =
KOl =
JFOO =
KGOl =
JGO1 =

VARF
DSz1
DSz2
SSZ1
SSz72

DIO1l =
SIO0l =

EDIT

OPRS
KFO3
JFO03
KGO3
JGO8

DIOS8
STIO8

Contains the OP Code for this controller

Extension of Sequence count for

Sequence Count used in Family F

Extension of Sequence count for

Sequence Count used in Family G

Destination
Destination
Source Size
Source Size

Destination

family F
OP Code flow
family G or H

or H OP Code flow
Variant Flip Flop to alter the OP Code

Size Less Significant Bit

Size More Significan
Less Significant Bit
More Significant Bit

Character Pointer

Source Character Pointer

Edit Mode for String OPS

t Bit

h-7

NVLF - Invalid OP Code

JGIF - JG Interrupt State

JFIF - JF Interrupt State

QFO1 - Invalid OP Interrupt

QF02 ~ Presence Bit Interrupt
QF03 - Memory Protect Interrupt
QFO4 - Segmented Array Interrupt

QHOLl =) QRO1 Logical Control

XROF - Register Occupied
RPZE -~ Logical Control
DGSF -~ Logical Control
LHFF - Logical Control

EROL => ERO8 E Register Flip Flops (used for Memory Cycle

requests during String OP Code flow)

EXTF - External Sign
FLTF - Float

TFFF - True False
OFFF - Overflow

ROW G. This row contains the Flip Flops for the Interrupt Con-
troller, the Stack Controller and the Memory Controller.

Interrupt Controller.

JI0O0 =) JIO4 - Sequence Count for Controller Flow
SO1F - Stack Overflow
PTPI - Processor to Processor Interrupt

L -8

QI1F, QIRF Logical Control

EXTA - External Interrupt A (MPX-A)
EXIB - PExternal Interrupt B (MPX-B)
ITAR - Interval Timer Armed

SUFL - Stack Underflow

SDIS - Syllable Dependent Interrupt
scCl, scCCz2 ~ Scan Counter Bit i and 2
ICFF - Interrupt Controller Run
HLTD - Halted

LOAD - Load ,

SCIL - Scan Interlock

LTBO, LTB1 Load Timer Bit

Stack Controller,.

JO1F =) JO3F - Sequence Count for Controller flow
ACTS8 - Address Couple to Z8 bus

QS1F, QS2F - Logical Control

AROF - The A Register Contains a Valid Word
BROF -~ The B Register Confains a Valid Word

Memory Controller.

SMOO =) SM20 - Address Adder Output Flip Flops. These are for

display only. (No Manual Set or reset Controls)

TRIP - Trip Control Invalid Address

TIMO =) TIM2 Invalid Address Timer

MAOF - Memory Address Obtained
SPEF - Scan Bus Parity Error
MWRC - Memory Write Control
REQF - Memory Request

CZAF - Carry Zero Control

SUBF - Address Adder Subtract

PETO =) PET2

Information Parity Test Control Register Bit

MI48 - Memory Protect Bit
LPBF - Line Parity Bit from Memory
MPEF -~ Memory Parity Error

ROW H. This row contains the Flip Flops for the Program Controller

and Transfer Controller.

Program Controller.

JPOF =) JP3F - Sequence Count for Controller Flow

PROF - The P register contains a Valid Word

VARF - Variant Mode FF (used to escape to 16 Bit
Instruction)

TEEF - Table Enter Edit

EDIT - Edit Mode

CPIO, CPI1 - A 2 bit counter used to back up the PIR (Program

Index Register)

CTIR - A 1l bit counter used to back up the TIR (Table
Index Register)

SECF - Secl (Syllable Execute Complete Level) Saved

INFF - Inhibit Fetch FF (used to inhibit bringing a new

program word to the P register)

PSRO => PSR2 - Program Syllable Register O=>5 Pointer (Points to
next syllable to be executed from the P register)

QPIF, QP2F - Logic Control

SSRO => SSR2 -~ Syllable Saved Register O (used to save the current
position of PSR when in Table Mode)

CSRO =) CSR2 - Command Syllable Register 0=)5 (used to save the

current position of PSR)

h-10

Transfer Controller.

TOAO =) TOA5

TOMO =) TOM5

DISO =) DIS5

YTZ6
XTZ6
CTZ6
BTZ6
ATZ6

Z6L8

Z6T9

Z6L9

Z6T9

Top of Aperature Flip Flops (used to select top bit
of 48 bit field to be transferred thru the steering

and mask network)

Top of Mask Flip Flops (used to select top bit of
48 bit field to be dinhibited thru the steering and

mask network)

Displacement Flip Flops (used in steering network

to logically displace bits of a 48 bit field)

Gating Flip Flops to the Z6 bus. (Allows the
contents of the various registers to be gated to

this bus)

76 Bus Lower to Z8 Bus (Allows bits 13:14 to be

transferred)

76 Bus Top to Z8 Bus (Allows bits 39:20 to be

transferred)

76 Bus Lower to Z9 Bus (Allows bits 35:16 to be

transferred)

76 Bus Top to Z9 Bus (Allows bits 39:20 to be

transferred)

GENERAL MATINTENANCE CONTROLS.

The maintenance control panel shown in figure 4-4 is panel C. It

contains the indicators and necessary controls for maintenance of

the B 6500

system. Units which cannot be controlled from this

panel have their own local maintenance controls.

h-11

POWER CONTROLS.

Power supplied to the B 6500 system can be controlled by two se-
quence control circuits. (Sequence Control Circuit A and B). There
are two sets of power control switches located on the upper-right
corner of panel C. These are the power-on switch and the power-off
switch. One set controls sequence control A, and the other controls
sequence control B. Besides the power on and off switches there is
a set of three toggle switches labeled connect-disconnect, "A", "B",
or "C". These switches establish the mode in which the "Power on
and off" switches are used. When switches A, B, and C are in the
disconnect position they indicate that power section "A'", "B", and
"C" are controlled independently by their respective switches. When
switch "C" is in the connect position, we can connect power section

"A", and "B" to a third section "C" and have a common control.

Lamp indicators "1, 2, 4, and 8" indicate the failure of one of 15
AC modules. For example, if AC module #7 has failed, indicators

labeled "1", "2" and "4" will turn omn.

GENERAL CLEAR AND HALT-LOAD FUNCTION.

On the upper-right corner of the control panel there are two push-
button switches labeled "General Clear A, and General Clear B".
The domain of each of these switches depends on the positions of
switches A, B, And C are in the disconnect mode, section A is
cleared with the "GEN CLEAR A" switch, and section B is cleared
with the "GEN CLEAR B" switch. If a third section "C" exists, it
will have its own general clear. If switches A, B, and C are in
the connect positions, sections A, B, and C are cleared whenever

either one of general clear switch A or B is depressed.

There is no direct clear switch located at the operator's console;
however, system's general clear from this unit is pProvided through
the "load" switch. Whenever the load switch is depressed, the

system is automatically cleared before the load command is executed.

The "HALT", "LOAD", and "CARD LOAD SELECT" switches are duplicated
at the maintenance panel (panel C) for convenience of operation.

These switches are located in the lower-left corner of panel C.

System's clear through Load Switch: When the "load" switch at

either the console or the maintenance panel is depressed, a clear
signal is generated. Both sections A and B are cleared. When the
load switch is released, the load logic generates the load command

which is transmitted to the data processors.

POWER CONTROLS

OO0 0000

OFF ON GEN CLEAR

@@@WOQQ

C = DISCONNECT OFF ON GEN CLEAR
PROC REG CLEAR

O00000O

MPX REG CLEAR MDL REG CLEAR

@@@@@@@

TOD AC

00065 60

LOAD STOP RUN DIAGNOSE HALT CYCLE LOCK CLEAR

I-SYST ‘"~CLOCK CONTROLS_II. DISP .|
HALT OFF NORMAL SYST PROC 1 MPX 1 OFF

PROC-1

OFF
LD SLCT PULSE MDL DISPLAY PROC-2 MPX-2 l PROC-2
TRAIN MPX-1

(;;> <::> <: > (::> <::>|<::>| Qorr
LOAD §INGLE 82 B MPX-2

Figure 4-4. Panel C General Controls

4-13

PROCESSOR REGISTER CLEAR.

A set of six pushbutton switches is provided for individual clear
of registers A, B, C, X, Y and P of the Data Processor selected
by the display select switch.

MULTIPLEXOR REGISTER CLEAR.
The Multiplexor registers may be individually cleared with the

switches listed below:

a. Switch D clears the Data Register.

b. Switch C clears the Command Register.

C. Switch T clears the Tag Register.

d. Switch TOD clears the Time of Day Register.

MDL REGISTER CLEAR.
The MDL registers may be individually cleared with the switches

listed below:

a. Switch MC clears the Core Address.
b. Switch B clears the TC No.
c. Switch AC clears the String No.

MDI, CONTROL SWITCHES.
This group of switches is used for loading and controlling the

Maintenance Diagnostic Logic.

DISPLAY SELECT SWITCHES.
This group of switches is composed of three toggle switches located
in the lower-right corner of the panel. The function of these

switches is as follows:

a. On-0ff Switch: This switch enables or disables the
display logic.

h-14

b. Processor Select Switch: This is a three-position toggle
switch which selects which of two processors is scanned by

the MDL.

c. Multiplexor Select Switch: This is a three-position toggle
switch which selects which of two multiplexors is scanned

by the MDL.

CLOCK CONTROLS.
The clock control switches provide the means of inhibiting the

system clock to the various components of the system.

Clock toggle switches when activated in the "up" position inhibit

the following.

a. SYST - Entire system

b. PROC-1 - Processor #1

c. MPX-1 - Multiplexor #1

d. MDL - Maintenance Diagnostic Processor
e. Display - Display Logic

f£. PROC-2 - Processor #2

g. MPX-2 - Multiplexor #2

SINGLE PULSE SWITCH.
This switch is used to produce a single clock when the clock has

been inhibited.

PULSE TRAIN SWITCH.
This switch is used to produce a train of pulses. Fach depression
produces all the clock pulses that normally appear within a 500 nano

second period.

INDICATORS BO, Bl, B2.
These indicators indicate the logical time division of the Pulse

Train.

MDTR/NORMAL SWITCH.
This switch is used to change the system from a normal mode of op-

eration to that of Maintenance Diagnostic Logic.

-15

FF RESET SWITCH.
This switch when depressed indicates that a flip~-flop in the unit

selected is to be reset.

HALT, LOAD, and LOAD SELECT SWITCHES.

The function of these switches is the same as their corresponding
switches at the console. The Halt Switch is used to halt the system
in an orderly manner. The Load Switch is used to perform a Load
Operation as per the positions of the Load Select Switch. The Load

Select Switch is used to select a Disk or Card Load operation.
The indicator is 1lit when Card Load is selected.
NOTE

For a detailed description
off the Load operation refer
to the descfiption of the
Operators panel (Section 4).

PROCESSOR _MAINTENANCE CONTROLS (Panel E).

Fach processor is provided with an independent maintenance control
panel. These controls are additions over and above the console
controls (Halt, load, power on/off ---, etc.) and the general systems

controls (Panel C).

The I. C. Memory registers of the processor are not displayed by
the system's display unit; however, certain switch controls located
on the processor control panel allow control and display of these

registers.

The control switches provided on the processor control panel and
their related functions are described in this section. Reference is

made to figure 4-6 which shows a front view of Panel E.

START SWITCH.
The start switch is a pushbutton type switch which functions to

start, a halted processor, to execute the next operator syllable

Lh-16

pointed to by "PSR", "PIR", and "PBR". This switch is active only
when the processor's clock is enabled and when depressed activates
the "SECL" switch to cause the execution of the next operator syl-

lable to be initiated in the normal manner.

CONDITIONAL HALT SWITCH.

This switch is a 2 position toggle switch which functions to enable
the conditional halt operation to stop the data processor. The
conditional halt operator functions as a "No-Op" when executed with
the "CONDITIONAL HALT" switch in the down position and functions to

stop the data processor when in the up position.

STOP SWITCHES.

The following set of stop switches enable the data processor to
stop upon the occurrence of specified conditions. The exact action
of these switches is modified by the position of the "STOP MODE"

switches.

SECL SWITCI.
The SECL switch when in the "up" position causes the processor to

stop after the execution of each operator syllable. It activates

the "INFL" (inhibit fetch level).

INT-I SWITCH.

The stop on internal interrupt switch (INT—I) causes the data
brocessor to stop upon the occurrence of an internal interrupt
condition, when in the "up" position. The data processor stops
displaying both the Pl and P2 interrupt parameters in the A and B

registers just prior to entering the interrupt procedure.

EXT-TI SWITCH.

The stop on external interrupt switch (ECT—I) causes the data
processor to stop upon the occurrence of an external interrupt,

when in the "up" position and if the interrupt system is so enabled.
The data processor stops displaying the Pl and P2 interrupt param-
eters in the A and B registers, just prior to entering the inter-

rupt procedure.

h-17

NORMAL/CONTROL STATE SWITCHES.
These are 2 position toggle switches which function to enable the
stop switches to function when the data processor is in control

state, normal state or both.

PARITY SWITCH.

This switch enables the processor to stop on a memory parity error.

UNIT CLEAR SWITCH.
The unit clear switch is a pushbutton type switch which functions
to clear the flip-flops of the related data processor, when de-

pressed.

LOCAL/REMOTE SWITCH.

This switch is a 2 position toggle switch which places the data
processor to a local state, when placed in the "LOCAL" position.
The processor unit functions normally when in the local state ex-

cept for the following:

a. The scan bus is isolated from the system functionally,
so that manual intervention within the processor will

not interfere with the rest of the system.

b. The facilities of the "READ PROC REG" switches are
enabled.

ADJ (0,0) SWITCH.

This is a pushbutton switch which activates the Push Down Stack Reg-
ister operator to cause all TOS registers to be stored in memory,
therby saving the contents of the A and B registers so that these
registers may be used to subsequently manipulate the data proces-
sor's I.C. memory via the maintenance panel switches (READ-IC and
WRITE-IC). The ADJ (0,0) switch is active only when the proces-

sor's clock is enabled.

READ IC SWITCH.

This is a pushbutton switch which initiates a Read Processor Reg-

418

ister operator to read the contents of a processor IC memory reg-
ister into the A register (19:20). The address of the selected IC
memory register must be placed into the B register prior to de-
pressing this switch. The "READ IC" switch is active only when

the processor's clock is enabled.

READ IC OPERATION.
a. Adjust 0,0.

b. Load the address in the B register.
C. Turn BROF on.

d. Depress the READ IC pushbutton; the contents of the

addressed cell will appear in the A register.

WRITE IC SWITCH.

This switch is a pushbutton switch which activates a Set Proces-
sor Register operator to cause the contents of a processor IC
memory register to be replaced with the contents of the A register.
(19:20). The address of the selected IC memory register must be
placed into the B register prior to depressing this switch. The
"WRITE IC" switch is active only when the processor's clock is
enabled.

WRITE IC.
a. Adjust 0,0.

b. Load the address in the B register.
C. Load the information to be writtem in the A register.
d. Turn on AROF and BROF.

e. Depress the WRITE IC pushbutton; the contents of the

A register will be written in the cell addressed.

4-19

READ PROC REG SWITCHES. These switches enable the read out and
display of the related processor register (IC memory register).

The register's contents are displayed only while the switch is de-
Pressed, releasing the switch allows the processor to revert to its
prior state. The "READ PROC REG" switches activate a DC read out
of the IC memory cells and as a result are enabled only when the
processor is in "LOCAL". The "READ PROC REG" switches along with

their functions are listed below:

a. Switch S is the read S register switch.
b. Switch F is the read F register switch.
C. Switch PBR is the read PBR register switch.
d. Switch PIR is the read PIR register switch.
e. Switch BOSR is the read BOS register switch.
f. Switch LOSR is the read LOS register switch.

NOTE

These IC memories are dis-

played in the SM register.

L_20

¥ 8

BINARY % 4 2 DECODE FOR DESIRED
2
5

WEIGHT 2] REGISTER
1 4 1 0
'

0 = DISPLAY REG O => 15

1 = DISPLAY REG 16 =) 31

2 = INDEX REG O =) 7

3 = BASE REG O =) 7
Register Decimal Hexidecimal

Name Usage Address Address

DOO 0=) 00=)
D31 Display 31 1F
PIR Program Index 32 20
SIR Source Index 33 21
DIR Destination Index 34 22
TIR (BUF3) Table Index 35 23
LOSR Limit of Stack 36 24
BOSR Base of Stack 37 25
F MSCW Address 38 26
BUF Used for Temporary Storage 39 27
PBR Program Base L8 30
SBR Source Base 49 31
DBR Destination Base 50 32
TBR (BUF2) Table Base 51 33
S Top of Stack Address 52 34
SNR Stack Number 53 35
PDR Program Segment Descriptor Index 54 36
TEMP Temporary Storage 55 37

Figure 4-5. Address Register

h-21

0009

. PBR

OO0

PIR BOSR LOSR

[—STOP MO DE—
: CONDITIONAL
ADJ-0.0 HALT

Ole o

READ-IC | PARITY INT-|

Ole ©

WRITE-IC JCONTROL EXT-I
STATE

0 ©

START NORMAL SECL

U LOCAL
CLEAR REMOTE

Figure 4-6. Panel E

MULTIPLEXOR REGISTERS AND FLIF FLOPS.

The MPX Registers and Flip Flops are displayed on Panel B as seen

in figure 4-7. This panel is shared with the Processors for display

mode.

ROW B.
This row contains the logical elements for Maintenance Diagnostic
Logic. Each flip flop may be used in one of two ways, I/0 testing

or Data Processor testing.

4h-22

FLIP FLOP
FECH

AROF

ESTF

TNFF

MAOF

LPF

CERF

ERRL

ERR2

LO1F, LO2F
MAOL =) MA1O
BO1lF =) BOS8F
AO1F =) ALOF

ROW C.

USE ON I/0 TEST

OFF FOR I/0

NOT USED

TAPE VERTICAIL PARITY
"PEST NOT" FLIP FLOP
MEMORY ACCESS OBTAINED
BAD RECORD MEMORY
CONTROL PARITY ERROR
SOLID ERROR
INTERMITTENT ERROR
SEQUENCE COUNT
MEMORY ADDRESS

TAPE READ CONTROL

USE ON DP TEST

ON FOR DP

A,C REGISTER OCCUPANCY
END OF STRING FLIP FLOP
"TEST NOT" FLIP FLOP
MEMORY ACCESS OBTAINED
MEMORY INFO PARITY BIT
CONTROL PARITY ERROR
SOLID ERROR
INTERMITTENT ERROR
SEQUENCE COUNT

MEMORY ADDRESS

DATA

CHARACTER BUFFER WORD BUFFER COMMAND-DATA

This row contains the 51-bit data register used in I/0 operations

along with the following control flip flops:

PSYF
PSRF
SAOR
MATF
STEF

ROW D.

Processor Sync
Processor Scan Request
Scan Access Obtained Scan Bus Control Flip Flops
Mark Access Time

Scan Transmission Error

This row contains the 60-bit Command Register used in I/O operations.

Refer to figure L4-=T7

ROW E.

for a detailed description of this register.

This row contains the 10 sets of Associative Tag Register flip flops

used for Scratch Pad Memory assignment.

Also within each set of

flip flops is the corresponding Read Scratch Pad Memory (RSPM) flip

flop.

Row E also contains (5) MTRI flip flops, one for each pair of Tag

registers.

ROW F.
This row contains the following MPX Control flip flops:

ICc 1 => 8 1Initiate Count Cycle for operational sequence flow.

Ky 1 => 5 Xey Register flip flops used as comparitor selection of
Scratch Pad Memory slots.

LK 1 => 5 Link Register used on initiate cycle for Key Register

selection.

Al => A8

Bl =) B8 Input Translator Digit Bits
\

C1l =, C8

D1 => D8

ESCFEF Enable service cycle

EICF Enable initiate cycle

RRDF Read result descriptor

PCTF Service priority control

RCDF Read SPM to Command data register

MTOF Memory time zero

AP2F Address plus 2 store

LSAF Least significant address

ROW G.

This row contains the Time of Day Register and the Interrupt status
bit flip flops.

TIME OF DAY O =) 43 - This register contains 44 flip flops of
which 36 are used for time-of-day. The other 6 are used when the

entire register is being used during MTR logic card test.

IS O =) 9 - Interrupt status bits.

Lh-24

MULTIPLEXOR

©-O- OO0 OF7]| [®@ O-=C-00 0O O @
O-O-OP0s0»O%0z | | |CEQEO=040 O O O
(OO~ OO[O= s | |O O=O0:030 O O O
0=-0=CFO;0s 08| |O QEOsO40 O O O

OCOOO0OO0O0O®
OCOO0OOO0OOO
OCO0OO0OO0OOO0O0
COO0OO0O0O0O

OC000O®

#]| [O 0s0=040-0-0-O-]

x
-

\—— CORE ADDRESS

OOOOOOOOO%{OOOOOOO@
zei
o

¢l| |0 Q30040 00 0-] OO®®O OO0

9

Os0:040-0-0-0-] [C-O-®- G
02030 O O O=] & O~O=@-
0xb40-0-0-0- | O O @-

00000 00600006

O
O
O
0QQYP O
cRcicloleXe
l e KMADD:Q%OSS

O

O O O O[O CRCECE O=020s(0 OOk || [O 020804002 00x :
O O O O|O GBI} 0001002 0803 | | | OEQE0sO40:0:0:0s | OEOROE0I030E0E 04
O O O O|O C2OE0E £ | O|CRO=2C=C=0=0=0¢ || |O O:0:040s0:0:0x | O;OFOIOI0F0E0: O3
O O O OO CEOIOE | | OlOOAOs0=02 002 || |O OE0:040e0s0:0s | 00050303002 0%
O O O O|0 OsCk 20:0sORC#0:020%¢| |O 020:090 O O O ;OI0;030 00 O
~O 00 0|0 0:Ck 00RO 0s0=0%{3 E0E0E:00 O OO GQi03080 O O O
O O O O|OF0R0E0% § = O[[CHOO0 0=0 Ok |z ;0 0:0:040 O¥0308 OJ030503
O O O O[03050%0i £ £ OO GsCTHQ =0 O=l§ [0 QE0s0s0 OO O O
O OO OO OICE03 | FO|00s040 O O O | |O O=0*O4080:0:0E O
O O O 0|0 OIC} 0080510 O O O | |[OE0E0:040 O O30 O
O O OO0 O§C% O

O

®

®

%

@

PM 103 [RSPM 9.

00000

O
| OF
O3OROIOH® O
® 0 O O 0

®

L-25

Panel B

Figure 4-7.

ROW H.

This row contains the following control flip flops:

MAPL - Memory address parity error level.
MIPL - Memory information parity error.
SPEL - Scan parity error.

SIPL - Scan bus information parity.

CRF - Clear Flip Flop.

SIF2 - Scan In Flip Flop.

MANF - Memory access needed.

MROF - Memory read obtained.

MAOF - Memory access obtained.

ANXF - Allow Next Service Cycle Control.
I0CB - Input/Output Complete Bus-.

STCB -~ Start Channel Bus.

ADP2 - Address Even Bus.

RDAB - Result Descriptor Available Bus.
LSAL - Least Significant Address.

MINS - Minus Bus Level

SIO6 =) SIO7

MPX MAINTENANCE CONTROL PANEL.
Panel D as seen in figure 4-8 is used for local maintenance opera-
tions with the Multiplexor. Four types of operations can be accom-

plished using this panel:

a. Reading and writing the MPX scratch pad memory.
b. Reading and writing main memozry.
c. Executing I/0 descriptors.

d. Logic Card testing.

The requirements for these operations are twofold; the MPX must be
in local using the Local/Remote switch, the MPX display mode must

be active as well as system clock.

The following paragraphs will deal with the operational use of these

maintenance switches to accomplish the above 4 modes.

h-26

WRITE SPM.

Single or Continuous writing into a SPM location addressed by the

tag word is accomplished as follows:

Je

READ SPM.

Put MPX in Local mode.

Scan~-in Tag word in the Tag Reg.

Scan-in the same Tag word into the Key Reg.

Scan~-in the desired contents

Registers (112 bits).

Put Read/Write switch on the
to the WRITE position.

Put Memory/SPM switch on the
to the SPM position.

Activate Maintenance Mem/SPM

maintenance control panel.

If single cycle operation is

for each SPM write cycle.

If continuous recycling is desired,

into the Command and Data

MPX maintenance control panel

MPX maintenance control panel

on the MPX

Enable switch

desired, press Start button

activate the Recycle

switch and press Start button to commence recycling.

To stop recycling,

place Recycle switch to OFF position.

Single or Continuous reading of a SPM location is accomplished the

same as writing except for 2 steps.

Step 4 - Omit

Step 5 - Put the Read/Write switch to the READ position and

proceed as in WRITE SPM

mode.

WRITE MAIN MEMORY.

Single words can

in the following mannexr:

A

b.

Put MPX in Local mode.

Scan~in Memory Address into

Scan-in any desired bit patterm into the Data Reg.

be written to main memory from the Data Register

Command Reg.

(Pattern

will not clear out of the Data Reg. after each write op-

eration.)

Put Read/Write switch on the MPX maintenance control panel

to the WRITE position.

Put Memory/SPM switch on the MPX maintenance control panel

to the MEM position.

Activate Maint. Mem/SPM Enable switch.

Press Start button for each

NOTE

memory write cycle.

Activating Memory Request
Inhibit switch will disable
all logic that might set

MANF including local maintenance.

READ MAIN MEMORY.

Main memory cells may be read either

one address or consecutive addresses

a.

b’

Put MPX in Local mode.

Scan-in Memory Address into

If recycle, use "Write SPM"

singly or continuously from

in the following manner:

Command Reg.

maintenance logic to write

Command/Data Reg. into SPM (highest priority TAG Word with

Zeros.)

d. Put Read/Write switch on the MPX maintenance control panel

to the READ position.

e. Put Memory/SPM switch on the MPX maintenance control panel

to the MEM position.
f. Activate Maint. Mem/SPM Enable switch.

g. If single read cycle operation is desired, press Start

button for each memory read cycle.

h. If continuous recycling is desired, activate the Recycle

switch and press Start button to commence recycling.

i. To manually stop recycling place Recycle switch in OFF

position.

Jo If stop on error is desired during recycling, activate the
Error Stop switch. If a memory parity error or time out
occurs, recycling will stop with the Error flip-flop set.
Pressing the Start button will clear the error and restart

the cycling.

k. Note that activating Memory Request Inhibit switch will
disable all logic that might set MANF including local

maintenance.

1. Activating the Inhibit Memory Address Count switch, if so
desired, will cause retention of the original memory ad-
dress with each cycle. Otherwise, the memory address will

be updated with each memory cycle.

EXECUTING I/0 DESCRIPTORS.
SINGLE CYCLE. A single execution of an I/0 descriptor found in the

Command/Data register is defined below:

a. Put MPX in Local mode.

I -29

RECYCLE.

Scan-in Area and I/0 Descriptors into Command/Data Reg-
isters. The specified Unit Designate will select the chan-

nel on which the descriptor is to be executed.

Utilize single "Write SPM" procedure for any SPM location

using a code of 00001 in Key and Tag Registers.
NOTE

There must be at least
one other Tag word avail-
able at the beginning

of the test.

Place Maintenance Mem/SPM Enable switch in OFF position.

Place Maintenance Descriptor Enable switch in ENABLE posi-

tion.

Press Start Button once to execute a single maintenance

descriptor once for each depression of the Start button.

Continuous executions of I/0 descriptor found in the Com-

mand Data Register are accomplished as follows:

4 -30

A e

Steps 1 through 5 are the same as Maintenance Descriptor

(single) procedure.
Activate Recycle switch.

Press Start button to commence recycling of the same main-
tenance descriptor. A new cycle will be intitiated upon
completion of the previous I/O operations defined by the

maintenance descriptor.

To manually stop recycling place Recycle switch to OFF

position.

If stop on error is desired during recycling activate
the Error Stop switch.

criptor error from the P.C.

Upon detection of a result des-

or an error in initiating the

channel, recycling will stop with the Error flip-flop set.

Pressing the Start button will clear the error and restart

the cycling.

CARD TEST

™ MAINT DESCRIPTOR ===

ENABLE START
OFF

— 2T MEM INHIBIT

REQUEST ADRS-CQUNT

NORMAL NORMAL

ENABLE

50 O

IMCF RECF ERRF

RECYCLE ERROR STOP

Q @

START OFF OFF
MAINT MEM/SPM
ENABLE MEM WRITE

Q © ©

OFF SPM READ
UNIT LOCAL I
CLEAR REMOTE

Figure 4-8.

Panel D MPX Control Panel

4-31

LLOGIC CARD TESTING.

Logic Card testing is accomplished by using a MDL test case tape,
the Time of Day (TOD) register and a special single card slot lo-
cated on the MPX backplane. The testing procedure is activated by
putting the card test enable switch up, loading the TOD with the
appropriate test code and activating the card test start switch.
The output of the card under test will be displayed in the 44 flip
flops that represent the TOD register.

OPERATORS CONTROL CONSOLE.

The Operators Control Console as seen in figure 4-9 contains an

operators panel and a visual message control center for communica-
ting with the Operating system. A total of 8 devices, such as In-

put Display or TC 500, may be used for this communication.

OPERATOR PANEL.

The operator panel includes the following switches and indicators.

POWER ON (Switch Indicator, White). This Switch/Indicator initiates
the power on cycle for all Central System units. The indicator is

lit and remains lit as long as power remains on.
NOTE

a. The peripheral units power must
be turned on and off at each

peripheral unit.

b. When power is turned on, Disk

Load is selected.

POWER OFF (Switch, Brown). This switch initiates the power off

cycle for all Central System units.

HALT (Switch/Indicator, Red). Halt the system stopping all I/0
operations in an orderly manner. The indicator is 1lit when all

processors have been halted.

h-32

RUNNING (Indicator, Yellow). This indicator is 1lit when the system
is running. The run state is established by 2 second run multi's

in each processor. Each processor multi is triggered by that pro-
cessor executing an interrogate peripheral unit status operator.

The run indicator is lit when the multi in any processor which is in
remote is ON. If all processors are in local, the run indicator

will also be 1lit.

LOAD SELECT (Switch/Indicator, Yellow). This switch selects between
Disk Load and Card Load. Each time the switch is depressed, the
selection is changed. The indicator is 1lit when Card Load is se-

lected.

LOAD (Switch, Brown). The Load button is used to perform a load
operation of the system. Two types of load can be performed as

follows:

Card Load Operation.

The Card Load operation is used for initiating the system via the
card reader. This type of initiation is used for reading a cold
start deck or test routine decks. The following actions occur when

the button is depressed and then released:

a. The load timer in the Processor interrupt controller is
triggered to produce an 800 nanosecond (ISIG) signal
which is sent to MPX-A.

b. Address registers LOSR, BOSR, F, STKNR, and Display O are

set to Zero.
c. Register S is set to 8192.
d. PDR (Program Dictionary Index) is set to a value of 4.
e. PIR (Program Index Register) is set to a value of 1.

f. The Processor is forced into an idle state to await an ex-

pected I/0 finished interrupt.

g. g. The MPX responds to the LOAD signal by jamming the appro-
priate unit number into the Command/Data register. The
MPX sequence control logic is set to IC 02 and the card

read cycle is started.

h. The information (a bootstrap program) on the EBCDIC punched
card is read into the lst twelve memory locations. This

information must contain tag fields (6 chr/wd plus tag).

i. At the end of the successful card read, the MPX sends an
I/O finished interrupt to the Processor. It responds by
entering a hardward interrupt handling procedure. Memory
cell DO 3 (absolute cell 003) contains a portion of the
bootstrap program that is subsequently used to handle the
interrupt and then causes the remaining card deck to be

loaded.

Disk Load Operation.

The Disk Load operation is used for initiating the system by reading
8192 words from the lst segments of disk memory. This type of an
operation is used to bring the lst portion of the operating system

to core memory.

The same hardward functions take place as for card read except for

two things:

a. A disk unit number is placed in the Command/Data register

because the Load select switch selected a DISK LOAD.

b. The I/O finished interrupt reflects a disk operation in-

stead of a card operation.

VISUAL MESSAGE CONTROL CENTER (Refer to Figure 4-10),

The Visual Message Control Center consists of one or more Input
Display Modules each of which contains an input keyboard and a

video output screen.

=34

Figure 4-9.

Operators Control Console

Figure 4-10.

KEYBOARD CONTROL KEYS.
The following is a list of the

tion. Refer to figure 4-11.

Key

LOC Places the
lights the

REC Places the
lights the

XMIT Places the
lights the

4-36

Visual Message Control Center

keyboard control keys and their func-

Function

system in the Local Mode, which

TLocal indicator.

system in the Receive Mode, which
Receive indicator.
system in the Transmit Mode, which

Transmit indicator.

Key Function

PRINT Causes the printer mode to be entered. This
mode causes the Transmit light to blink. Re-

turns to Local Mode on completion of the print.

X ETX End of text character. Places the end of text

character at the cursor location.

a. Shifted = Places the system into the form
compose mode and blinks the Local light.

b. Unshifted - Takes the system out of the form

compose mode.

> us Shift-Tn - Places a Shift-In (SI) character at
the cursor location if the system is in the Form

Compose Mode.

d Rs Shift-Out - Places a Shift-Out (SO) character
at the cursor location if the system is in the

Form Compose Mode.

\\ HOME Causes the cursor to be moved to the home (upper
left) position.

LINE ERASE a. If the system does not have forms option, or
if it is in the Form Compose Mode, Line
Erase erases all data in the line except
tab flags. Data is erased from the cursor
position (including the cursor position) up
to and including the last character in the

line.

b. If the system has Forms Options and is not
in the Form Compose mode, Line Erase erases
all data (except tab flags) that are not
bracketed by Shift-In/Shift-Out.

Key

LINE ERASE
(cont)

N CLEAR

FRASE LOCK

TAB

TAB CLEAR

& (Line Feed)

L4-38

Function

Line Erase will not function unless Erase
Lock is depressed simultaneously with Line

Erase.

Unshifted - Clear erases all data on the
screen except tab flags and with Forms

Option data bracketed by Shift-In/Shift-Out.

Shifted - Clear erases all data on the

screen and all tab flags.

Clear will not function unless Erase Lock

is depressed at the same time as Clear.

Erase Lock is used as an interlock for Clear

and Line Erase. Erase Lock must be depressed

to permit operation of the Clear or Line Erase.

Unshifted - Tab causes the cursor to move
forward to the next tab stop location. It
no tab stop is found on a line, the cursor

moves to the left edge of the next line.

Shifted - Shifted Tab is Tab Set. Tab Set
causes a tab stop flag to be entered at the

cursor position in all lines.

Unshifted - Tab Clear causes the removal of
the tab stop flag located at the cursor

position in all lines.

Line Feed moves the cursor down one line. When

the cursor is in the bottom line, L.F. causes

it to reappear in the top line.

T (Reverse Line Feed)

—~ (Backspace)

— (Forward Space)

REPT

Reverse Line Feed moves the cursor
up one line. When the “cursor is in
the top line, RLF causes it to reap-

pear in the bottom line.

Backspace cursor one character. When
the cursor is at left edge of page,
B.S. causes it to reappear at right

edge of page in the same line.

Forward Space moves the cursor one
space to the right. If the cursor is
at right edge of page, F.S. causes it
to reappear at the left edge down
shifted one line. If the cursor is
located in last position of bottom
line, F.S. causes it to reappear in

the Home position.

If the Repeat key (REPT) is depressed
along with any other key except LOC,
REC, XMIT, TAB CLEAR or CLEAR, that
key will be repeated at a rate of
about 15 Hertz. Depressed in conjunc-
tion with LOC, REC, XMIT, TAB CLEAR
or CLEAR Repeat has no effect.

-39

2 ! # $ % & < ERASE| = |BACK HOME|CLEAR
xmiT | ETX ;) : ; 50 () p - |k UL
< 6 7 8 9
ERROR - | @ « | cr LINE |ERASE
ReseT | REPT Q| w E R T Y U [o P v ERASE|LOCK
C x + TAB
LOC |FORM A S D F G H J K L 3 A TAB | c(EAR
?
RS SHIFT 11 <> ?SHIFT l T
REC | 4 z | X cl v s | A | M| s g /
us SPACE BAR -— | —
PRINT|

Figure 4-11. Keyboard Format

MEMORY TESTER.

The B 6500 includes a Memory Tester for diagnosing and testing any

of the Memory modules attached to the system.

N

Figure 4-12. Memory Tester

The Memory tester is located in a small cabinet, with its display
panel as shown in figure 4-12, The tester can be used in 2 modes,

Non-Test or Test (figure 4-13).

h-10

NON-TEST.

Three types of operations:

a. Single cycle read or read/write.

b. Search memory(s) for specific data; search for equal or
unequal.

c. Sample a given address for changes.

i
TEST.
The following operations performed using the test pattern switches:

a. None of the patterns selected checks for parity errors

using the read only operation.
b. #1 Test-pattern selected enables a fixed test pattern.
c. ‘#2 Test-pattern selected runs an all "one" test.
d. #3 Test-pattern selected runs an all "zero" test.

e. #U4 Test-pattern selected runs a checkerboard pattern

writing two zeros then two ones.

f. #5 Test-pattern selected runs the checkerboard complement

pattern test.

g. #6 Test-pattern selected runs the bit complement pattern
test.

h. #7 Test-pattern selected runs the complement bit complement

pattern test.

i. #8 Test-pattern selected runs the full walking "one!" pat-

tern floating one test. -

j. #9 Test-pattern selected runs the full walking "“zero!" pat-

tern floating =zero test.

k., #12 Test-pattern selected runs the memory clear pattern ?=
Master reset test.

h-nLi

MEMORY TEST PANEL:
INRIBIT

NOT EQU -rSEARCH
©) ©) Q- @ o

START HALT EQUAL SAMPLE ”"L@VC““ BIT RESET WORD PROTECTED O'RIDE PROTECT WRITE REQUEST CLEAR

COMPARE/READ/ LOCK-OUT#

F0000000000000000O0]
OO

OMPARE

w
4]

@@@@@@@@@@@@@@©@@@

MEMORY WRITE

WRITE CLEAR 50 47 44 4 38 35 32 29 26 23 20 17 4 1l

49 46 43 40 37 3% 31 28 25 22 19 & 13 10

©

©)

©

©

©
<O
©

©
©-O-

-0-0-O

©

©

slelefelefelofelelofeXefeYeo el loXe
| o -

0.0 0 0l looo ococol

S 00 00000

@@W'§@@i§@©@ 00000

&)
D D

'-_TIME COUNTER PHASE . MICR REGUESTDELAYT MODULE LOCK WORD LOCK
O O iz |

. D Tl 'e @
6 @@2 Sgee o
@) © 0O ® Qe @

8)

9 @ ©
Q) © =D
oS

29)
oz~
Q
Pl
x

©

W TEST PATTERN]
@ © MANUAL INSERT @ @CHECKERBOARD @ COMPL-BIT COMPL @ WALK'G-I
@)

NONTEST
@ALL } @ @ CHK'BD COMPL @ @ FULL WALKG-1 @ @ WALK'G-Q
Q ALL o @ @ BIT COMPLEMENT @ @FUL_ WALK'G-O @ @

TEST ON

MEM CLEAR

Figure 4-13. Memory Tester Panel
h-L2

SECTION 5
SYSTEM CONCEPT

GENERAL.

The B 6500 system consists of one or more Processors, one or more
I/O multiplexors, Main Memory, a Memory Tester, one or more Power
modules, an Operators Console, a Maintenance Diagnostic Processor,
a Display Panel, one to four Peripheral Control cabinets and the
associated Peripheral equipment for Input/Output. This section

generally defines the overall system hardware operation.

PROCESSOR.
The Processor produces the objective results of a program by per-
forming the necessary arithmetic and logical functions of the pro-

gram flow.

The Processor contains two major divisions: the Functional Re-
sources and Operator Algorithms (figure 5-1). The Functional Re-

sources are referred to as the "hardcore" of the Processor.

OPERATOR FAMILTES.

The Functional Resources are the Arithmetic Unit, Data Registers,

Address Processor Unit and Seven Functional Controllers. The op-

erator algorithms provide the logic required to control the func-

tional flow of the program. The ten groups of these operators are

called the Operator Family Controllers.

The Operator Family Controllers and Functional Controllers are
linked by 13 busses (ZO through Z12). These busses provide for

data movement and signal routing within the processor (figure 5-2).

A bus is a group of wires used to transmit signals from one place
to another. The busses within the transfer controller are etched
on a single card connecting the same bit of all "hard registers"”

together, i.e., Bit 1 of Registers A, B, C, X and Y are all on the

same physical card.

e FUNCTIONAL RESOURCES OPERATOR ALGORITHMS ——
ADDRESS MEMORY OP, FAMILY OP FAMILY
ARITHMETIC PROC UNIT CONTROLLER CONTROLLER - A CONTROLLER - F
UNIT (960 BIT I.C.
(48 BIT ADDER) MEMORY & 20 PROGRAM OP. FAMILY OP. FAMILY
BIT ADDER) SEQUENCE CONTROLLER - B | CONTROLLER -G
CONTROLLER OP. FAMILY OP. FAMILY
DATA REGISTERS STACK CONTROLLER - C CONTROLLER - H
(A, B,C, X, YAND P ADJUST OP. FAMILY OP. FAMILY
51 BITS EACH) CONTROLLER CONTROLLER - D CONTROLLER - |
INTERRUPT OP. FAMILY OP. FAMILY
CONTROLLER CONTROLLER - E CONTROLLER ~ J
STRING
ARITHMETIC OPERATOR TRANSFER
CONTROLLER CONTROLLER CONTROLLER

Figure 5-1. B 6500 Processor Organization

The operators are grouped into ten groups called the Operator Fam-
ilies (figure 5-1). The grouping of related operators into families
minimizes the logic required in the processor. The Ten families of

operators with a brief purpose for each are:

a. Family A OPS ~ Arithmetic Operators

b. Family B OPS - Logical Operators

c. Family C OPS - Sub-routine Operators

d. Family D OPS - B 6500 Word Oriented Operators
e. Family E OPS - Scaling Operators

f. Family F,G,H, OPS - String Operators

g. TFamily J OPS - Value Call

h. Family K OPS - Name Call

PROGRAM CONTROLLER (Refer to Figure 5-2). This controller controls

the program flow in the following manner: first, it controls the

transfer of a program word to the P register via the Memory Control-
ler and Z3 bus in the Transfer Controller. This word contains six
8-bit instruction syllables. It also selects and decodes the syl-
lable to be executed, and furnishes this OP code to all the Family
Controllers thru the Z10 bus. The Program controller strobes the

proper OP family allowing that OP family to proceed thru its logical

steps performing the function of that operator. At the completion
of the operator a SECL (syllable execute complete level) is sensed
by the Program Controller which then decodes the next syllable of
the P register.

TRANSFER CONTROLLER (Refer to figure 5-2). The Transfer Controller
has two major sections: a hard register section, referred to as
stack registers, for data and program information, and an internal
data transfer section. Six busses, Z1 thru Z6, are used for the
normal data movement to and from the hard registers. 721, 72 and

73 are input busses to these registers and Z4, 75 and Z6 are output

busses. The capacity of each bus is 51 bits.

Two special busses are used for arithmetic operations. 77 is used
for transferring data from the A, B or Y registers to the AA reg-
ister of the high speed adder. Z0 is used for transferring data
from the CC register of the high speed adder to the B, C or Y reg-

isters as shown in figure 5-=5.

Stack Registers.

Fach information register has 51 bit positions. Registers A, B, C,
X and Y are for information handling during program flow. Register
P contains one B 6500 program word. The P register contents are

never written into Main Memory.

The Z3 and Z4 busses provide for bi-directional data flow between

the hard registers and Main Memory or the Multiplexor.

The A and B registers are the Top of Stack registers, while X and Y
are normally second-word information registers for double-precision
operands. Register C is a general purpose register which provides

temporary storage during syllable execution.

Internal Data Transfer Section (Refer to figure 5—3).

The internal transfer section permits the following data transfers

between stack registers:

wexSer(q OoTd JL0SS800IJ 009 g -G oanStg

-—
O4N{ AJOWIW

L0
WaIW
4N ¥0 ksayaay _ 3
AYOWIW OL | W3IW I

A4

_om_mm_vm_“ X £ e2|eZ]1Z]

M3, n

7 -
330QV L™= v

3Ov4d SSIyaav W3Iw
-431NI]
XdW Ol XdW
-— 1€==0
0vd
AYOWIW OL O
=431INI AV1dSia

ng O3 sng O34
mﬁD&.mde 1NdNI

YIISNVIL ﬂ
TVNYILNI

dITTOUINOD YIISNVIL

- Z0uwX] jo <€ v s

Oxwn

(310AD AYOWaW) 4ITTOILNOD AYOWIW

I — 4 JINOD S LdNYIILINI
$dO ATIWYH ANV SLdNYYILN | no ”

WIV1Y 1dNYYIINI IVYNYILX3
S¥ITTOYINOD WOU4
¥3110¥INOD
snrav \:,
MOVIS \\ ,ﬂ/

SNg LLZ S1dMY¥¥3LNI INIAN243A YJOLVIIJO

$dO do do $dO $dO $4O o) $dO
ONIYLS 1¥D IWYN 11¥D INTVA ONIVIS Q3IN3O q¥om| | INILNOY¥-8ns WI1901 SILIWHLISY
H'O ‘4 AlWv4 A ATIWV4 r ANWYA 3 ATIWV4 a ATIWvA D ATIWVA 8 AlWY4 v ATWYA
SNg 012
4
¥0UL
wmwém_/n__nouu (300230 318VTIAS) ¥T1104INOD
ONINLS 4TTTONINOD WYIDONd SILIWHLIAY

5-1

a. A direct, full-word transfer path using the 75 and 722

busses.

b. A logical transfer path to create the results of the Fam-
ily B (logical) operators, using the 7Z4 and Z3 busses. The
logical transfer path also provides omne additional full

word transfer path between registers.

C. A steering Network and Mask network providing a field dis-

placement between stack registers using the 7Z6 and Z1

busses.

d. An TInsert Matrix providing character-handling operators
with the ability to store into any of the 4, 6 or 8-bit
fields using the Z5 and Z1 busses.

e. A transfer path to the address adder of MEMORY/MPX Control-
ler via the Z6 to Z8 or Z9 busses. This path extracts omne
of four fields, (39:20), (35:16), (19:20) or (13:1L4),

from a stack register during execution of operator syllables.

f. A data movement path to and from the high speed adder via
the Z0 and Z7 busses.

Mask and Steering.

The mask and steering network moves bit fields from register to reg-
ister, via the Z6 and Z1l busses. All bits are transferred to and
from the busses in parallel. Two pointers set up a "window" de-
fining the upper and lower limit of the bits being transferred to
the accepting data register. A displacement register shifts the
bits to the right, O to 47 bits from the position previously held
in the sending data register.. The three controls used to steer and

mask are:

a. TOA (TOP OF APERATURE) - the highest bit position of the
accepting field (highest bit of the window).

5-5

b. TOM (TOP OF MASK) - the highest bit position to be inhibi-
ted on the transfer (lowest bit of the window),

c. DIS (DISPLACEMENT) - a right shift of the bits through the

steering matrix.

The registers TOA, TOM, and DIS are set by the operator families or

other controllers.

Mask and Steering Example.

Assume the C register contains a stuffed indirect reference word
(SIRW) and it is necessary to extract the STKNR (stack number) field
(bits 45:10) and place these bits into the INDEX field of the C
register. The logic sets the window TOA := 29, TOM := 19, as shown
in figure 5-4. The displacement register is set to 16: DIS := 16.
The actual starting bit of the field is calculated as: TOA + DIS =
29 + 16 = 45,

A1l Bits in the C register are gated to the Z6 bus. The bits (ex-
cept tag) are then shifted 16 places to the right with only the bits
that align with the window appearing on the Z1 bus. The Z1 bus is
then gated to the C register with the masked fields destroyed or

retained depending on the operation performed.

ARTTHMETIC CONTROLLER (Refer to figure 5-2). The Arithmetic Control-
ler is a Functional Controller between the Stack Registers (A, B, C,
X and Y) and the Mantissa Adder. This Controller is enabled by the
Arithmetic Family Operators and other operator families that re-

quire the use of these facilities.

High Speed Adder.

Figure 5«5 depicts the logical flow of data to and from the high
speed adder. The adder is made up of three 48-bit registers AA,
BB, and CC and the associated add logic. The add logic receives
its input from the AA and BB registers. The add logic output is
fed into the CC register which feeds either the BB register or the

hard registers via the ZO bus.

5-6

Z0

Z1

76
TO

Z8
OR
£9

ICONTRO\

HIGH

SPEED
ADDER

Figure 5-

3.

4 BIT (PACKED NUMERIC)
INSERT — 6 BIT (BCL)
°_l 8 BIT (EBCDIC)
—
INSERT
MATRIX
MASK STEERING
NETWORK NETWORK
DIRECT TRANSFER
22 NETWORK 25
Z6
LOGICAL TRANSFER
£3 NETWORK 24
\ \ I 1 / /
1 < 77
NN NG AAAA N
1 A I
\\\ \\. \\\ [m /’ /’ /’ J/i
T B I
NN N | X | A
- AAS
AR AN I ; —
{l
\———i P]
ADDRESS

ADDER

MEMORY
INTERFACE

Internal Data Transfer Section

5~7

C REG
A5

36 0
STKNR J J [l l
Ll
Z6 BUS
45 STEERING (DIS = 16)
\ 36
N NN
TOA = 20\ TOM =19
5‘_[19
MASK 29 MASK
20
—
WINDOW
| ¢
Z1 BUS
J 1 l
T
A C REG
29
G 20
\——V*—_
STKNR

Figure 5-4. Mask and Steering

INTERRUPT CONTROLLER (Refer to figure 5-2). The Interrupt Control-
ler provides a method intervening in the program flow when a pre-

determined condition arises.

This controller sets up the necessary control words in the stack for
entry into the Interrupt-handling procedure. Two identifying words

are placed in the stack by the operator or the Interrupt controller.

5-8

Internal interrupts are divided into two groups, operator dependent

and operator independent interrupts.

The operator dependent interrupts are divided into two classes. Bit
24 of the interrupt ID identifies the interrupt as class 1, where
the values of PIR, PSR, PBR and PDR are "comsistent". Bit 23 iden-
tifies class 2 interrupts where the values were changed by the op-

erator before the interrupt.

STACK REGISTERS | I
A
REG C R | AA |
z7 ! | R l
ﬂJS :l l E
REG A | ’:‘ I G cc :
R
| | E |
¢ | o |
C l LOGIC s |
o) | T |
REG X N | B8 ER
T R l
o G
=P REGY L | |
: | |
E
R I |
Z0 | |
BUS [|
' |
|
L]

Figure 5-5. Arithmetic Control

Operator Dependent Interrupts.

These interrupt conditions are sensed by the operator and normally
results in a premature termination of the operator under control of
the operator's own logic. The operator inserts both Pl and P2 para-

meters into the TOS and activates the interrupt controller. PIR and

5-9

PSR are reset to the beginning of the current operator before the

interrupt,

terrupted procedure.

The operator-dependent interrupts are:

a.
b.
c.
d.

€.

Memory Protect
Invalid Operand
Divide by Zero
Exponent Overflow
Exponent Underflow
Invalid Index
Integer Overflow
Bottom of Stack
Presence Bit
Sequence Error
Segmented Array

Programed Operator

Memory Protect.

This dinterrupt occurs when:

e

A STORE, OVERWRITE,

Descriptor that has

thus the operator is restarted upon return to the in-

or READ/LOCK is attempted using a Data
the read only bit on (bit 43). The op-

eration is terminated prior to the memory access, leaving

the descriptor in the A register.

A STORE is attempted into a word
field representing PROGRAM CODE,
DESCRIPTOR. The memory write is
detected in the "flashback"

in memory that has a tag
RCW, MSCW, or SEGMENT
aborted when bit 48 is
that is placed into the

C register. The operation is terminated leaving the

original addressing word in the A register.

24

BIT

Memory Protect Interrupt ID

Invalid Operand.

This interrupt occurs when operators attempt to use the wrong types
of control words or data. When control words and data are accessed,
they are checked to meet the necessary requirements of the operator
being executed. When the interrupt occurs, the operator is termi-

nated prematurely.

24 1 BIT

Invalid Operand Interrupt ID

Divide by Zero.

This interrupt results when a division operator is attempted with
the divisor equal to zero. This interrupt terminates the operation
prematurely, leaves the A register cleared, the interrupt ID in the
B register and PSR and PIR backed up to point to the initiating

operator.

24 BIT

Divide by Zero Interrupt ID

Exponent Overflow and Underflow.

These interrupts occur when the capacity of the exponent field is
exceeded for either single or double-precision arithmetic results.,
The interrupt ID is dependent on the exponent sign and both clear

the A register.

24 3 BIT
[| x|

Exponent Overflow Interrupt ID

5-11

24 4 BIT

Exponent Underflow Interrupt ID

Invalid Index.
This interrupt is caused by an attempt to index by less than zero

or not less than the upper bound (length) in the operations:

FPamily
a. Occurs Index (A)
b. Link List Lookup (B)
c. Index (¢)
d. Move Stack (C)
e. Display Update (c)
f. Dynamic Branch (C)

g. Stuffed IRW (pseudo) (C)
h. Index and Load Name (¢)
i. TIndex and Load Value (C)

If an index outside the Pprescribed bound is attempted, the operator
is terminated. Backing up PSR, PIR is only done on the first two

operators.

24 23 5 BIT
0 =ON
0|0 X OR OFF

Invalid Index Interrupt ID

NOTE

If bit 23 is on,
bit 24 is off.

5-12

Integer Overflow.

This interrupt occurs upon detection of attempted uses of operands

greater than integer maximum value by operators that require inte-

gers. In general, the checking is performed before the operand is

converted into an integer by reducing the exponent field. The fol-

lowing operators may invoke this interrupt.

a. Integer Divide (both SP and DP)
b. Integerize Truncated

c. Integerize Rounded

d. Occurs Index

e. Integerize Rounded, Double Precision

If the interrupt is invoked, the operator is terminated.

24 6 BIT

Integer Overflow Interrupt ID

Bottom of Stack.

This interrupt is used to inform the Operating System that a RETURN
or EXIT Operator has caused the program stack to be cut back to its
base. Tf the condition arises, the operator will terminate with the

last accessed RCW (Return Control Word) left in the A register.

24 7 BIT

Bottom of Stack Imnterrupt ID

Presence Bit.

This interrupt is used to inform the system that an attempt has been
made to access a qguantity not present in main memory. All operators
that access memory with descriptors have the ability to set this
interrupt. Special consideration is given to this type of an in-

terrupt for data or procedure-dependent descriptors.

5-13

46 24 23 8 BIT
O € ON
OR OFF

Presence Bit Interrupt ID

Special Consideration-Presence Bit Interrupts.

There are two classes of presence bit interrupt conditions.

a. Data Dependent

b. Procedure Dependent

Each class requires that the PIR and PSR value for the RCW be man-
ipulated differently.

Data-Dependent Presence Bit. The Data-Dependent Presence Bit In-
terrupts are incurred while the processor is seeking data from with -
in its current procedural environment. Recovery is achieved by re-
executing the operator upon return from the "P-bit" interrupt-han-

dling procedure.

The P-bit procedure makes the non-present reference pPresent prior
to returning to the interrupted program. The PIR and PSR setting
for the current operator are saved in the RCW for data-dependent

Presence-~bit interrupts.

Procedure-Dependent Presence Bit. The Procedure-Dependent Presence
Bit Interrupts are incurred when the Processor attempts to enter a
new procedural environment or to return to an old procedure. These
interrupts occur during display up-date and when trying to "digest"
a non-present segment descriptor. Recovery is achieved by the exit
operator mechanism after the P-bit procedure has made the refer-—
enced area present. The processor has not yet fetched the first op=-
erator of the new procedure when this presence bit interrupt occurs;
therefore, the PIR and PSR settings from the PCW or RCW, depending
on whether an entry or exit was being performed, are saved when fab-

ricating the RCW upon entry into the P-bit interrupt procedure.

5-14

Program Restart. In order to restart some operators after a pre-
sence bit interrupt, it is necessary for the P-bit procedure to
return either an IRW or D.D. The "RT-bit" in the presence bit I.D.
(P1) indicates to the P-bit procedure whether to perform an exit
or return operator when returning to the interrupt program. The
"RT-bit" is manipulated by the hardware prior to honoring the pre-
sence bit interrupt. Figure 5-6 (Presence Bit Intefrupt Table)
illustrates the (PSR, PIR), exit/return and "RT-bit" relationship

to the wvarious presence bit interrupt conditions.

Segmented Array.

This interrupt is used by the string operators as an upper limit
boundary detection. Arrays in main memory may be segmented into
groups of 256 words each, bounded on both ends by memory link words.
Each word read from memory during string operator executions is
checked for the presence of bit 48 (memory protect). If the bit is
on, the segmented-array interrupt is set. String operator interrupts
leave a special parameter in the A register. This indicates how
many words in the stack, below the parameter, will be needed to
restart the operation after the new segment of data has been brought

to main memory.

A Register Parameter

2 10
X X

Segmented Array Interrupt ID

Programed Operator.

This interrupt is used as detection for invalid operator codes.
Primary codes BC, E7, EF, F6, and F7 are detected and cause the
interrupt. Fach family controller detects these codes. Any invalid
code not detectable will result in a loop timer interrupt. The pro-
gramed operator interrupts are used as communicate operators to

the system.
5-15

7dniaequyr 3Tg ooussogd

(fa)

*9=-¢ 2andTyg

szojeiodo uInjgey Youeag JO0 }OBIS OAONR
9TqeTT4As Jojeaedo gquoaano o0g jurod ygd pue UTId ©y3l S93eOTpPUT Ug
*3ul eyg urT pesoed sT 3Tq Y
uingey yoduead pue ‘3oelg 9AO0R ‘Iadjud ‘Tre) enTep 3deoxs saxozexeado TTV
I93Uy JO0 TTIe) oniTeA

‘a‘T

P S N
— AN
SN

WOy 071

sautod Adop Jo

BTeT T (v 625 1T
PT®Td @V f°d ut

Adoo eTAa (WOW) | mod/mOd ‘a‘'zc (£doo)
‘d*s ®3eod07] WO.I ITXH 0 QU ‘a's - Joa3dTaose(q
juemIeg quepuede(
exnpeooad
93epdn
AeTdstp Butanp
BOQ\BOM ‘a1 A%Qoov ‘g I031092A 3oeig
-pojou oxoym WO.I ITXH 0 cquT ‘a'a - J0309A 30o®AS
‘d°'d uxrngeda
¢ yuesoad sotdoo ‘I (£doo)
pue WO oMew (1) Sm uwIngey T ‘quT cqaq ANV
é g gusesaad 9ouUeI9 JIaI
70u yo satdod a ‘a'T A%Qoov vlep Iutanp
JIOJ 30®lS YOoIeag A:v IS ITXH 0 *qur ‘a‘q AHV xogdraosaqg ele(q quspusdeq
a (peggnys) wed
(#) s urngey T *qur MaT (2)
*pojou ogoym
M I uInjea A:v Gm 1TXH 0 Aﬁo@%spmv
‘équesoead -qg-°(q maT (1) oousI9 JoI
exeuw ‘MIT 99Ul elep JuraInp
BeTA Q' 3JUSS ‘qQ'T ‘d°g JI0300A 3Oo®IG
-~oad jqou 93woo0T] cquT 0SAq Amv JI0309A 3O®]1g
uoTgouUnyg MDY moN | xozexadg AQ: pﬁﬂv uotqgTpuo) gdnaxszur
aIemlJog dSd ¥YI1d | Sutuxngey (€) 31T 9douesead

1Td 19

5-16

1 ' 10 0 BIT
24 ololojolo olg o|o]o o)

Programed Operator Interrupt ID

Operator Independent Interrupts.

These interrupts are induced by conditions outside the operator or
processor logic. They are divided into two groups, Extermal In-

terrupts and Alarm Interrupts.

External Interrupts.

These interrupt conditions are anticipated and inform the system

of some change in the external environment. They normally result

in a momentary interruption of a program process which will be
continued after handling or recording the interrupt condition. The
external interrupts are recognized by the hardware operators. The
program sequence controller senses the interrupt condition, inhibits
activation of the next operator, and initiates an interrupt pseudo-
operator in its place. PIR and PSR fields of the RCW address the
next operator syllable so that the program will be restarted with
the execution of the next syllable upon continuation. The external

interrupts are:
a. Processor to Processor interrupt

b. Special Control interrupts
1) Interval timer

2) Stack overflow

c. Multiplexor interrupts
1) I/0 finish
2) Data Communications
3) General Control Adapter
4) Change of Peripheral Status

5-17

Processor to Processor.

This interrupt is used to interrupt another Processor on the system.
When a Processor executes a HEYU operator, an external interrupt is
sent to all other system processors. When the interrupt is recog-
nized by a Processor, its interrupt controller clears the A register
and sets the B register equal to the ID. The normal Interrupt Pro-

cedure entry is then executed.

21 BIT

Processor to Processor Interrupt ID

This interrupt is also used to initiate an Idle Processor on the
system. It could also cause another Processor to suspend its op-

eration on a program whose stack is about to be overlayed.

Interval Timer.

This interrupt is used for programmatic time slicing. The interval
timer is activated by the SINT (Set Interval Timer) operator. The
timer is set to the value of bits 10:11 of the B register and de-
crements every 512 microseconds until equal to zero. At this time,
if the timer is still armed, the interrupt is set, leaving the ID
in the B register and A register cleared. The maximum interval is

1 second. The timer is disarmed whenever the Processor handles an
External interrupt.

22 0 BIT

Interval Timer Interrupt ID

Stack Overflow.

This interrupt is used to inform the operating system that the Stack
Controller has sensed the use of the highest address allotted for
this program's stack (LOSR, limit of stack register). The program
is halted to allow the Operating system the option of allocating a

-18

Ut

larger stack area or aborting the program. The interrupt controller
leaves the A register cleared, the interrupt ID in the B register
and PIR backed up if PROF is on.

22 1_BIT

Stack Overflow Interrupt ID

Multiplexor Interrupts.

The MPX interrupts may be handled by any system processor. A
priority is established between multiplexors and processors to
determine which Processor responds when an interrupt is present.
This is necessary when multiple Processors and Multiplexors are

present because they all share a common SCAN BUS.

Scan Bus Control.
Scan bus control is established by a closed loop circuit in which a
control "bit" is passed from one Processor to another on every 3rd

clock pulse.

A Processor may initiate a scan-bus operation when it has the con-

trol bit and the IIHF (inhibit external interrupt flip flop) is off.

Priority Handling Example.

Assume MPX-A and MPX-B have I/O finished interrupts occuring at the
same time. Both Processors are operating with IITHF off and could
therefore respond to an external interrupt. If both Processors were
allowed to respond, a SCAN-IN of the interrupt literals would be

attempted simultaneously on one common bus.

The 2nd priority established, is a left to right (LTRP), or right
to left (RTLP) priority which allows a multiplexor to place its
interrupt in the appropriate Processor. Figure 5-~7 is a hypothetical

system configuration that will be used for explanation.

Each of the Left-to-Right or Right-to-Left priorities are only true
for one Processor at one time. LTRP is mormally used to allow MPX-A
to set its interrupt in Processor #1. RTLP is normally used to al-

low MPX-B to set its interrupt in Processor #2.

The priorities may be passed to another Processor when the ITHF is
on. IIHF on in a Processor, causes the Priority to be passed and
inhibits the interrupt controller from responding to any MPX in-
terrupts. The priorities in a Processor are re-established when

ITHF is reset.
Priority Handling With IIHF Set.

Assume Processor #1 had its IIHF set because it was in Control state.
Setting this flip flop in Processor #1 causes the LTRP to be passed
to #2. Now assume identical timed interrupts appear in both MPX-A
and MPX-B. Both are recognized by the interrupt Controller in Pro-
cessor #2. The interrupt controller in Processor #2 now assigned
MPX-A the lst priority and will subsequently SCAN-IN the interrupt
literal from MPX-A while making MPX-B hold its interrupt line on.
(The MPX interrupts are not reset until a SCAN-IN is performed.)

The RTLP priority could also be passed to Processor #1 should it
enter normal state while Processor #2 is in Control state, thus each
system Processor is capable of handling external interrupts from

either Multiplexor.

I/0 Finished Data Communications.

Both interrupts are handled by the Interrupt Controller as follows:

a. A SCNI (SCAN-IN) operator is forced into the Processor at
the next SECL to read the interrupt literal into the B

Register.

b. An identification bit (20) is placed into the interrupt
ID, the A register is cleared and PIR is backed up.

c. The normal operation of entry to the Interrupt Handling

Procedure is then executed.

5-20

20) 7 6 5 4 1 0 BIT
. O = ON
OR OFF

I/0 Finished/Data Communications Interrupt ID
NOTE

Bits 1:2 identify which MPX
the literal was read from.

MPX-A=01, MPX-B=10.

Bits 7:4 identify type of
interrupt.

1001=I/0 finished
0001=DCP #1

0010=DCP #2

0011=DCP #3
1111=Change of status

General Control Adapter.
This interrupt indicates a special control device such as an Analog

device, a plotter, or some machine being controlled by the system

wished to communicate to the Processor.

External MPX.

This interrupt will be used when a second Multiplexor is connected
to one of the 4 word-interfaces of a Multiplexor, and it wishes to

have one of its interrupts recognized.

Alarm Interrupts.

These interrupt conditions are not anticipated and inform the system
of some detrimental change in environment. They normally result from
either a programing error or hardware failure. The alarm interrupt
conditions are recognized upon occurrence by the interrupt control-
ler. The interrupt controller seizes control of the machine, clears
the activated operator family, marks the TOS registers full and ac-
tivates the pseudo interrupt operator. In either case the current

operator is terminated prematurely. The alarm interrupts are:

5-21

a. Loop

b. Memory Parity
c. MPX Parity

d. Invalid Address
e. Stack Underflow

f. Invalid Program Word

Loop.

This interrupt is invoked if the Processor hardware fails to pro-
vide a SECL (Syllable execute complete level) at least every 2 sec-
onds. This could occur if an attempt is made to execute an invalid
operator. Should the interrupt occur, the ID is left in the B reg-

ister, the A register is cleared and PIR is backed up.

25 0 BIT
X X

Loop Interrupt ID

Memory Parity.

This interrupt is invoked if the Memory Controller detects an even

number of bits being transmitted between the Processor and Memory.

Should the interrupt occur, the ID is left in the B register, the A

register is cleared and PIR is backed up.

25 1 BIT

Memory Parity Interrupt ID

MPX Parity.
This interrupt is the same as Memory Parity except it is used for

Processor/Multiplexor transfer.

25

N

BIT

MPX Parity Interrupt ID
5-22

Toxguopy AL3TIOTIJ sng UeOS 0059 d

*L-G ean3Tg

S13NI9VD 11V Ol NOWWOD - Sn4 Z<Um\ﬂ

VA

1dNYILNT TVNIILX3

\
¢y 420 (4 d2a
71 e v N INIL YV
XdW XdW LV LINISVD
NI
RN D ——— NO AINO
—_— T~ W L8
- e — | — — — |] a1 ~ 10¥INOD
~ SNg NYOS
\ S
Q\ ; SINI
\. 1dN¥YILNI /
VIX3 vIX3
r. //IP‘ J .\\ 7
jv g1x3 \ J\ g81X3 AJ
24 DOUd ALI¥OI¥d Ly DO¥d

5-23

Invalid Address.

This interrupt is set by the Memory Controller upon detecting an
attempt to access a non-existent Memory module by a failure to ob-
tain an acknowledgement to a memory request within 8 clock periods.
The Memory Controller initiates the interrupt and the Interrupt Con-
troller leaves the ID in the B register with the A register clear

and PIR backed up.

25 3 BIT

Invalid Address Interrupt ID

Stack Underflow.

This interrupt is invoked if the Stack Controller detects an attempt
to move the S register to an address less than BOSR (Bottom of Stack
Register) during stack adjustment. Should the interrupt occur, the
ID will be left in the B register, the A register is cleared and

PIR backed up.

25 4 BIT

Stack Underflow Interrupt ID

Invalid Program Word.
This interrupt is invoked if one of the following conditions is en-

countered:

a. A word with a tag not equal to 3 is placed in the P reg-

ister for execution. (Except in Table mode).

b. The Variant operator is decoded as the second part of a

2~-syllable variant operator.

5-24

c. The Processor is in EDIT mode and a family strobe is emit-
ted for another operator family. Should the interrupt
occur, the ID is left in the B register, the A register is

cleared and PIR is backed up.

25 5 BIT

Invalid Program Word Interrupt ID

Interrupt Handling.

The occurrence of an interrupt condition causes the processor to
enter an interrupt handling procedure after marking the stacks and
inserting two interrupt parameters into the stack. The procedure
entered is called from a reserved location (DO + 3), relative to
the base (trunk) of the MCP stack. Figure 5-8 depicts the stack

format just prior to and after entering the interrupt procedure.

The two interrupt parameters Pl and P2 that are inserted into the
stack as the interrupt condition is recognized are used to supply
information describing the interrupt condition. The Pl parameter
identifies the interrupt type and instructs the interrupt procedure
how to return to the interrupted program. The P2 parameter supplies
supplementary information about the interrupt condition (e.g., in
the case of some presence bit interrupts P2 is a copy of the non-

present descriptor).

The interrupt procedure is entered by inducing an enter operator
with an IRW pointing to DO + 3 at F + 1. The hardware expects to
find a PCW at DO +3; however, an IRW or IRW chain pointing to a PCW

are legitimate conditiomns.

STRING OPERATOR CONTROLLER. The String Controller controls the char-
acter handling operators. It is integrated with the F, G, and H
family hardware (figure 5-9). This controller is unique in many
ways. One of the ways is by having the E register initiate memory

cycle requests via the memory controller, during logical stepping

5-25

STACK FORMAT AFTER ENTERING THE INTERRUPT PROCEDURE

Figure 5-8.

Stack Format

T
OBJECT PROGRAM CODE
r P2 3y
Pl C
IRW DO +3 2
OBJECT
MSCW
PROGRAM >C PBR PIR PSR
STACK
OBJECT
PROGRAM
DATA
~
[Bosk F— 1scw
rea Y4 N
INTERRUPT HANDLING PROCEDURE CODE
)
_ ¢
SEG DESC. —_——— — — Y
MCP
STACK <
PCW o’
- RCW
DO MSCW
STACK FORMAT PRIOR TO CALLING THE INTERRUPT PROCEDURE.
NS ATJ
.
P2
. INTERRUPTED OBJECT PROGRAM CODE
)
" OBJECT ’
PROGRAM ﬁ RCW o ()
STACK MSCW
TSCW
INTERRUPT HANDLING PROCEDURE CODE
3
(
)
N N 4 (
PBR
MCP PIR
STACK PSR
[DO J—n MSCW

of the operator flow. This allows simultaneous logic flow with mem-
ory cycles, to accelerate the logic flow. The E register decoding

is shown in figure 5-10.

The String OP Controller contains one OP code register for all

three families. There are two sequence registers; the JF registers
are used for the Family F sequence flow together with a sequence
extension register KF. The JG registers are used for the Family G

and H sequence flow together with a sequence extension register KG.

CONTROL STATE/NORMAL STATE. Any B 6500 Processor has the ability to
perform in either Normal or Control state. The difference between
the two states is the inhibiting of external interrupts while per-
forming in control state as well as enabling a few privileged opera-
tors. The Normal Control State flip flop (NCSF) and Inhibit Inter-
rupt flip flop (IIHF) are both set when operating in control state.

The Processor switches to control state upon entering a procedure
via a control state program control word or by the execution of
disable external interrupt operator. Likewise it switches to normal
state when entering a procedure via a normal state program control

word or by the execution of the enable external interrupt operator.
The Operators that are enabled in Control State are:

a. Set Interval Timer

b. Scan Out

5-27

STRING OP CONTROLLER
OP8F | OP4F | OP2F | OPIF
OP CODE REG.
8 4 2 |
E REG.
FAMILY F
KF3
rJFB l JF2] JF1 I JFOJ
KF2
' KF1
FAMILY G, H
KG3
JG3 | J62 | Joi JGO KG2
KG1

Figure 5-9. String OP Controller

E
REG FUNCTION REG
1 READ Y
2 " B
3 " C
4 " X
5 " A
9 WRITE-PROTECT Y
10 " B8
11 " C
12 " X
13 " A
14 OVER-WRITE X
15 " A

Figure 5-10. E Register Functions

5-28

INPUT/OUTPUT MULTIPLEXOR.

The Input/Output Multiplexor and associated peripleral control
modules are used to control data transfers between memory and all
peripheral equipment, independent of the processor. The multi-
plexor receives instructions from the processor and, together with
its associated peripheral controls, executes them. Fach multiplexor
is capable of processing up to ten simultaneous I/O operations from
up to 20 peripheral controls, handling a combined maximum of 256

peripheral devices (figure 5-11).

SCAN BUS.

The Scan Bus is the communications link between various components
as seen in figure 5-11. It consists of 20 Address lines, U8 data
Information lines, 1 Parity line and 11 Control lines. MPX or Data

Communications operations are initiated via the Scan Bus.

COMMAND DATA REGISTER.

This 113 bit register is used with the Scratch Pad Memory for the
control of Imput Output data flow. The command portion of this reg-
ister accepts an I/0 Command from the Processor via the SCAN BUS

and uses the data portion to accept or send information to the I/O
devices via the peripheral control cabinets. Commands and partial
data words are shuttled to and from the scratch pad memory between
data character times. Full words are read or writtem to Main Mem-
ory without Processor intervention. An expanded Command Data word

is shown in figure 5-12.

SCRATCH PAD MEMORY.

The Scratch Pad contains 120 bits of IC memory per word. The 1/0
MPX may contain from 4 thru 10 such words. These words provide
temporary storage locations between command data word character
collection times. In this way one Command Data register can ser-
vice up to 10 simultaneous I/0 operations. A fixed assignment (1
through 10) is given during the initiation of the I/0 request and
remains as such until the end of the I/0O operation. The unit des-

ignate field as seen in figure 5-12 reflects this assignment.

5-29

JOV443INI
TOIINOD
RAZ2-ELEIRER]

SANI
TOILNOD

welSeT(q MO00Tg JIoX9TdTATNK

*TT-S °andtyg

2'0°d

13NIgVD
TOYINOD "di3d

N

S3IDIA3A
TVE3IHdIYAd

SINN
O4NI 91

f

JOSSID0Y4 1AW
ANV XD0172 WILSAS

;

O AVa SYOMLIN
40 1dN¥¥LNI
IWIL XdW SAM Ol ¥
am/slig ozt
AYOWIW
3ISIoy avd HOLV¥DS
ovL
'
934 VIVA/INYWWOD T
10¥INOD
INIWNOISSY TINNVHD
JOLVISNVAL

"HOX3 AYOWIW

SNg NVDS

ﬁl\

[nU<Z o>u]

— AN
M @)

[~~~

L SNE Waw

40S5300¥d

| 30vadaINT Avowaw |

.

N

JOVIYILNI
QIOM ¥

A

SJIOSSID0Yd
WWOD
viva

Y VY

AJOWIW
NIVW

5-30

TAG REGISTER.
The Tag Register (5 FF/SPM SLOT) associates a Scratch Pad Memory
word with a specific I/O channel. This assignment is made when

the initial I/0 request is received from the Processor.

MEMORY EXCHANGE.

The Memory Exchange allows sharing of the Memory Interface lines
between the MPX and Data Communications Processors. The Memory
Exchange has 8 control lines, 20 address lines, 51 data lines and

1 parity line to the Memory interface.

INTERRUPT NETWORK.
The MPX Interrupt Network informs the Processors of an interrupt
condition in the MPX. This indication remains true until one of

the Processors reads the interrupt by a SCAN-IN command.

TIME OF DAY REGISTER.
The Time of Day Register is comprised of 36 flip flops used to
accumulate increments (2.h Msec) of time. The system Processors

set or read these registers wvia the SCAN BUS.

CHANNEL ASSIGNMENT CONTROL.
The Channel Assignment Control assigns a priority to specific I/O
devices. This is a fixed physical assignment as per system re-

guirements.

CHARACTER TRANSLATOR.
Data flow between the MPC and Peripheral devices is translated in

one of three ways:

a. Direct (no translation in the MPX)
b. 6 bit INTERNAL to BCL or vice versa
c. 8 bit EBCDIC to BCL or wvice versa

5-31

AJous peg Yo3®BIOS pue I931sTTey ele(PUBWUIO)

—_—

*TT-S °andtyg

e ———
ai3aid 31vNo2lIS3a \
1IN~
0 L
IAOEV SV IWVS
it 611
AYOWIW aVd HOLV¥DS
at3id you¥3
(99 == 4S) LINN/TO¥INOD
118 104INOD
a13i4 YOou¥3 @34 ovl
QYVANVLS
QIOM V1VQ 404 ALI¥Vd HLONTT ¥344n4
/ 'S ~ —
J &
0 o [islis | és sofzsles| velse |oc] 22)sz] sglz6
69|zsies|+8lss |98 8|6z] 68| ssIaav
| os g | 29 Joz Q\\\\ 08 los| AYOWIW
L 9 S vy € 4 1 0 /N 1816 Lt

(LYWYO4 1i89) SNOILISOd ¥3LDVIVHD

Ovl
431519 viva

zm._.ZDOU\
JILOVIVHD

431S1O ANVWWOD

5-32

PERIPHERAL CONTROL INTERFACE.
The Peripheral Control Interface consists of 16 INFO lines and 12
Control lines which are bussed to all of the Peripheral controls.

Four additional control lines are sent to each Peripheral Control

for a total of 80. The additional control lines are:
a. BUSY/ - PCn
b. ARL - PCn (Access Request Level)
c. AGL - PCn (Access Granted Level)
d. CDL - PCn (Channel Designate Level)

The 16 info lines are used bi-directionally for 8-bit byte, or byte

pair, transmissiomn.

DATA COMMUNICATIONS INTERFACE.

The Data Comm Interface consists of 4120—wire cables sharing 2
word interfaces. Busses 2 and 4, 1 and 3 share the same memory
request logic. Data Comm is routed through the MPX only to uti-
lize the Memory Exchange of the Multiplexor.

SYSTEM CLOCK CONTROL AND MDL PROCESSOR.
The Multiplexor cabinet contains hardware that makes up the MDL

Processor and System Clock.

SYSTEM CLOCK. The system clock is generated by a 10 megahertz
crystal oscillator and shaped into 25 and 45 nanosecond width
pulses. A Central Control divides and controls the basic clock for

distribution to the entire system as follows:

a. Processor

Type Basic Clock Arithmetic Clock
B 5 megahertz 5 megahertz
C 2.5 megahertz 2.5 megahertz

5-33

b. I/0 Multiplexors
5 megahertz 25 nanosec width

1.67 megahertz 25 nanosec width

¢c. Memory

5 megahertz 25 nanosec width

d. Peripheral Control
1.67 megahertz 45 nanosec width

e. Data Communications Processor

5 megahertz 25 nanosec width

MAINTENANCE DIAGNOSTIC PROCESSOR. The Maintenance Diagnostic Logic
Processor (MDL) is a special purpose computer composed of an I/O
Channel and a Data Processor. It is used for fault detection and
isolation in the B 6500 Processor, B 6500 Multiplexors and the Per-
ipheral Controls. The MDL Processor provides for three modes of

operation: Display, Diagnose, and Detect.

Display Mode.

In this mode the MDL scan-out of eight flip flops per word pro-
gresses continuously in a loop under control of the display logic.
It is used for indication and control of Processor and MPX flip

flops.

Diagnose Mode.

In this mode the MDL Processor reads test cases from a tape unit,
thru an I/O Channel, to memory. The MDL uses this information for
logical testing of system components and halts at the end of a

string of test cases when a failure is diagnosed.

Detect Mode.

This mode of operation is initiated in the same manner as diagnose
mode; however, the test procedure is halted after the first failure

of a test case.

INFORMATION FLOW FROM CARD READER TO MAIN MEMORY.

The information flow between a Card Reader and main memory is
shown in figure 5-13. Three types cards may be read from the card

reader.

ALPHA CARD READ.

Cards punched in the Alpha mode are decoded in the card reader
from Card Code to 6-bit BCL EXTERNAL Codé. The character is
transmitted to the information register in the Card Reader Control
in the Peripheral Control Cabinet. The information (1 character)
is held until the Multiplexor honors an access request and places
the appropriate SPM word in its Command/Data register. I/0 des-
criptor control bits 42 (translate) and 41 (6 or 8 bit) steer the
character through the appropriate translator and place it in the
next character position of the Data régister. The data register
can store 6 or 8 characters depending on the translator used.

When the data register receives the last character of a word, a
memory request cycle is initiated to write this full 52 bit word
in memory. A tag field read is optional on this type of a card
read, with any tag code (the first character of a word) allowable

in this mode of operation.

BINARY CARD READ.

Cards punched in the binary mode contain twice as much information
as those punched in Alpha mode. Fach card column contains two char-
acters. Positions 12, 11, O, 1, 2 and 3 provide for one row of
characters on the upper half while positions 4, 5, 6, 7, 8, and 9
provide for another row of characters on the lower half. Control
bits 42 and 41 equal to zero bypasses the translator and causes
direct transfer of information into the Data Register. The infor-
mation contained in one card column is strobed twice (once for each
half of the card) and presented to the multiplexor as two 6-bit
characters. Tag read is optional in this mode but the only allow-

able code is Program tag (3).

EBCDIC CARD READ.

Cards punched in the EBCDIC mode are read in a similar fashion

as binary mode, upper and lower half, However, the actions within
the Peripheral Control are quite different. Three translations are
required within the control before an 8 bit EBCDIC code is present=
ed to the MPX data register. The first two occur as the upper and
then lower halves of the card are strobed into the information
register. The information register at this point represents the
12, 11, 0, 9 and 8 card punches directly and a binary cont'iguration
of punches 1 thru 7 as seen in figure 5-13. The information reg-
ister is then decoded into EBCDIC code as it is presented to the
information lines on its way to the Data register. When 6 bytes
are collected in the data register, a memory request cycle is in-
itiated to write the full 52 bit word. Tag read is optional in

this mode with any tag code being permissable.
NOTE

Two other codes are available
for use on the B 6500 system.
They are ICT and BULL codes.
Both are decoded by a special
Alpha/Binary decoder (in the
Card Reader) to BCL code.

MEMORY AND MPX CONTROLLER.

The Memory Controller responds to 21 commands decoded from nine
INPUT lines. Figure 5-14 shows the 4 types of Memory Controller
cycles that respond to these INPUT lines. During a core memory
write, the contents of the cell being written are "flashed" back
to the Processor. Certain Write operations are aborted by the

memory if the memory protect bit (48) is on.

MOTJ UOT3IBWIOJUT

eleq

*CT-¢ 2an8Tyg

5-37

AYOWIW NI AM/10D Qi¥vD 8

av3ay Q¥vd D1ade3
300D 9Vl Y] x| x
ANY SMd < o 3l .
S¥ILOVYVHD < ! M / _ 1-2L =V "¥HD
- 8 (o]
(31A8) 118 8-9 QoM Li8 s (1) _ 1 4 1 mmﬁﬁ
Y w 0 K AIVNIE _
L 3 41VH ZL / 41vH
JI1go83 lig 8 2% 3 VIO v
l=1¥ 118 d tile}
0=2v lig n ¥3ddN
ILVISNVYL 7—
J0O1d1¥253a O/1 ¥30023a u_ouﬁl_ 1186 OL9 g 9 “
AYOWIW NI GM/T10D QiVD ¥
X v VD AYVN
ATNO OVL > avay qivd AYVNIE
WV3¥903¥d SNd X
(S3LAE 9) €11 =V "¥HD
$1191a 118 ¥-Z1 /] h
] 4IVH
QIOM Lig Zs (1) - 4IMO1
1O3Ia m e
y / m
0= 1L¥ Lig AN IR Zuuh,mo%ﬁ —
_ = 33ddN
DPRA 1675 118 41VH ¥3ddN LI9 9
JO141¥D$3a O/1
% ” AYOWIW NI am/T0D Q¥VvD 8
mmmwuo&w NMAN_ M:um D) % aviy q¥vd YHAV
89 X [Dla2e3
4o X oL X _ 3
340D OV1 ANV SN1d 18 ES 3 [-Zl =V "¥4HD
-]
431519 Viva i € f o)
| o3 1 — N % £ Jvnaaxa 3
(g8 (= < U INT “1X3128 118 9 158 118 o_ :
(Lig9)o=1v <17 ol o a
(ALVISNWIL) L =2v LI 108 O4NI _ AY¥VYNIE
01412530 O/1 /NHAY

AJOWIW

JOXIdILTINW

(LINIEYD Dd NI) _
10¥INOD Qv QdVD

Y3AaVI Q¥VO

[
1
212 —1 1 MEMORY
BUS ——2——3 CONTROLLER
INPUT)\ 4 |
LINES —2— MPRC TO MEMORY
— 6 | RESPONDS TO -
—Z—a 21 COMMANDS (PREVENTS MEMORY WRITE WHEN
- — Z12-6 1S TRUE AND BIT (48) IS
DETECTED IN WORD BEING
WRITTEN INTO)
TYPE OF MEMORY MEMORY CONTROLLER
REQUESTING | CONTROLLER Z 12 LEVELS PROCESSOR REGISTERS
OPERATOR FUNCTION 8 7 6 5 43 210 USED
1 001 A
100 B
READ READ ONLY 100 C
100 1 X
100 1 Y
100 1 P
OVERWRITE, : ! A
STACK ADJ., B
READ WITH OVERWRITE * 1 C
LOCK ! ! X
| 1 Y
NOTE

Figure 5-14,.

When the Overwrite function

is used the Memory write is

not aborted if the addressed

area has the protect bit on.

The Read With Lock operator

exchanges the contents of the

A register with the contents

of memory addressed by the

B register.

Memory Controller Decoding

11 A
PROTECTED sroTECTED* * | | ! B
WRITE WRITE 11 C
(PSEUDO) 1 X
11 Y
NOTE
When this function is used
Memory write is aborted by
detection of Protect bit.
(no indication of abort
is given).
1 1 A
PROTECTED 1 1 B
STORE
WRITE/READ 1 1 C
OPERATORS .. , : X
1 1 Y

Figure 5-14. Memory Controller Decoding (cont)
The Memory/MPX Controller contains the following sections:

a. B 6500 Memory and MPX interface.
b. Address Adder.
Cc. Integrated Chip Memory,.

The interface consists of two sections: a memory bus and a scan

bus.

MEMORY BUS. The MEMORY BUS contains 20 address lines, 5l data (in—
formation) lines, 1 parity line and 8 control lines. It transmits
information bi-directionally between MEMORY and Processor '"hard

registers" A, B, C, X, Y and P,

Control of the memory interface is thru the Z12 bus which is pro-
duced by FUNCTIONAL CONTROLLERS and FAMILY OPERATOR CONTROLLERS

5-39

when a memory cycle is desired.

SCAN BUS. The SCAN BUS contains 20 address lines, 48 data infor-
mation lines, 1 parity line and 11 control lines. It provides
an asynchronous communhication path between the B 6500 Processors

and B 6500 Multiplexors or B 6500 Data Communication Processors.

ADDRESS ADDER.

The Address Adder is a 20-bit parallel adder with inputs from the
28 and Z9 busses, the Carry flip flop and the Subtract flip flop.
The busses derive their addressing information from the 48 IC mem-
ories or from the "hard registers" via the Z6 bus in the transfer
controller. The Carry flip flop and Subtract flip flop are used
to modify the output address.

The output of the Address Adder is an input to the Memory Address
register for memory selection or an input to one of the 20 bit IC

memories.

INTEGRATED CHIP MEMORY.

The Memory Controller contains 48 IC memories, each containing 20
bits. Thirty-two of these display the current address of an object
program. These D registers (DO thru D31) provide for multiple le-
vels of addressing. The D registers are controlled by Display
READ/WRITE SELECT logic.

The other 16 IC memories are divided into two groups, base and
index (O thru 7). Fach is a 20-bit memory used by Family Operator

logic and Program sequence flow for base and index addressing:

a. PBR (0) PROGRAM BASE

b. SBR (1) SOURCE BASE

c. DBR (2) DESTINATION BASE

d. TBR (BUF2) (3) TABLE BASE

e. S (4) TOP OF STACK ADDRESS

f. SNR (5) STACK NUMBER

g. PDR (6) PROGRAM DICTIONARY INDEX
h. TEMP (7) TEMPORARY STORAGE

5-40

i.
Jo
k.
1.
m.
n.
o.

P.

PIR
SIR
DIR

(0) PROGRAM INDEX
(1) SOURCE INDEX

(2) DESTINATION

TIR (BUF3) (3) TABLE INDEX
(4) LIMIT OF STACK
(5) BASE OF STACK
(6) POINTS TO TOP MSCW
(7) TEMPORARY STORAGE

LOSR
BOSR
F
BUF

MAIN MEMORY.

ORGANIZATION.

INDEX

Main memory in the B 6500 is organized so that any memory module

can send information to,

or receive information from both proces-

sors and both I/0 multiplexors over any one of four information

busses (see figure 5—15).

MEMORY MEMORY MEMORY
MODULE MODULE |-=—=—- MODULE
1 2 n
/O
MULTI- - o)
PLEXOR N Y N
1
PROCESSOR o o r)
.I \1} L/ \
PROCESSOR o Fary)
2 ANV P \
70
MULTI- 4 4 y:
PLEXOR ~ ~
2

Figure 5-15.

Memory Organization

541

The modules examine each word that is placed on the bus to deter-
mine whether that particular module is being addressed; if it is,
linkage is set to receive the word. This eliminates the need for
a central control to establish a linkage directing the word to the
proper module. Two hundred nanoseconds after the memory cycle is
initiated, the module grants access. In another 200 nanoseconds,
the word is available to the bus, and 200 nanoseconds later the
word is in the processor or I/0 multiplexor register. Operation
of each memory module is independent of the operation of any other
memory module. Memory cycles can occur simultaneously within all

four modules.

Information is transmitted along the bus in parallel, as illustrated

in figure 5-16.

20 BIT ADDRESS
6 BITS FOR 0-63 MODULES
14 BITS FOR MEMORY ADDRESSES 0-16,383

INFORMATION BUSS 6 CONTROL BITS
(READ, WRITE, BUSY, ETC.)

52 INFORMATION BITS

Figure 5-16. Information Transmission

MEMORY PROTECTION.

Memory protection prevents one program from affecting another with
a combination of hardware and software features. One of the hard-
ware features is automatic detection of an attempt by a program

to index beyond its assigned data area. Another is a memory pro-
tect bit in each word to prevent user programs from writing into
memory words which have the protect bit set. (The protect bit

is set by the software.) Any attempt to alter protected data is
inhibited and an interrupt is generated. Thus a user program
cannot change program segments, data descriptors, or any program

words or MCP tables during execution.

CABINET CONFIGURATION.

The B 6500 Main Memory consists of 1 to 32 memory modules con-
taining 16,384 words each. Up to three modules and associated hard-
ware can be housed in one Memory Cabinet (49,152 words). FEach cab-
inet has a memory controller which responds to six requestors for

memory accesses. The requestors are:

a. Processor #1 or #2
b. Multiplexors A or B
c. Memory Testor

d. MDL Processor

INTERFACE.,

The requesting unit's memory interface contains five hubs (except
for the MDL Processor). Each hub has 80 bus lines for bi-direction-
al communication with memory. FEach memory cabinet has six hubs,
one hub for each possible requestor. A typical maximum size system
is shown in figure 5-17. Notice how the hubs within the requestors
are all tied to the same address and information flow lines. Take
the example of a Processor requesting access to Memory module zero
in cabinet zero. The Processor places the address and information
on the busses. Tt is seen by all of the memory controls, but

only accepted by module zero because of the address decoding in
Memory Cabinet zero. This means that each Memory Control must have
the ability to accept addresses from six different requestors and
connect them to one of three memory modules. This is accomplished
by a crosspoint control located within the memory control (figure
5—18). There are three sets of crosspoint controls for each
requestor within each memory control. Three requestors may gain
simultaneous access to the same memory cabinet if they are addres-

sing separate memory modules.

PRIORITY.
A priority system, which is activated prior to the crosspoint con-
trols, prevents conflicts when more than one requestor is addres-

sing the same memory module.

5-43

SANH ¢ UoT3eINFITIUO) AJoWS 00S9 € *LT-G eanStg

P
Vi \ \« 1INN
401SINO
| W3ISAS
Y1117 SINN _ QIOM 88Z°'¥2¢
viva ¥ NI $31NAOW Z
anv _ NIVINOD ATNO AVW
1111} ssIyaay _ /
- [0l 9 € z
T11 1+ _ * CN) . v . avd * VD
IDV4IIINI _ W3Iw WIw WaIw Waw
sng _
1111 AYOW3IW _
WK
gNH INO
SNIVINOD AINO 1aw
/ / / /
204 J01s3L Ty s [. 4 ¥
aw . E b XdW XdW * D0¥d 20Yd
NOISNVdX3 INI1 08
_l - g 7 v 0
m<u . v . \%) . gvD V>
S8NH 9 WIW WIW WIw waw WaIw
TN
/ \ \ SN \ z 3 _
TOIINOD AYOWIW . @MW(. W<<W< * %<<U
" T 1 1 MOTd VIvVa aNV 3 ElAl
{ ﬁ ! ILVNOISIQ LINN
) ¥300>3a
. 11111 ss3¥aqv

5-41

MOD.

=
—\ \ 16384
\

WORDS

CROSSPOINT
l CONTROL MOD
REQ I
t4 CROSSPOINT
CONTROL _ 16384
WORDS
CROSSPOINT
CONTROL
REQ ™ —
e
__| mop. l
—1 N
L —
REQ . | e384 l
fe . WORDS
I] |

L MEMORY CABINET __l

Figure 5-18. Memory Module Selection

Request hub #1 has the highest priority and any of the six request-
ing units can be attached to this point by the Field Engineer.

5-45

MEMORY REGISTERS.

FEach Memory module contains 2 core stacks, a MIR (a 52-bit memory
information register), and the appropriate timing and control logic
necessary for reading and writing (figure 5-19). The memory cycle
is divided into two parts, a destructive read where the information
is read into the MIR's, and a write into the cores from the MWR's.
The MWR's are loaded from one of the six requesters. When a mem-
ory protect bit (h8) is on during the read portion of the cycle,
and the operation is not overwrite, the information is rewritten

from the MIR's.

REQ 1 l |'
| g MWR
REQ 2 ' l
REQ 3 l v N} '
| STACK STACK l
REQ 4 l r l '
REQ 5 l l
’ |
MIR
REQ 6 . I
MEMORY
i MODULE l
GERED GHEND GERED TSRS LN]

Figure 5-19, Memory Registers

MEMORY ADDRESSING.
Memory modules are addressed by 20 bits (figure 5-20). Bits O
thru 13 are used for word selection and bits 14 thru 19 are used

for module selection.

MEMORY INTERLACING.
Each memory module has the ability to interlace every other word
to the next consecutive module. Interlacing is controlled by a

pluggable jumper located on each module and provides the advantage

of faster memory accesses when consecutive words are addressed.

5-46

Interlacing saves time because the mext consecutive access may be
requested in an adjacent module while the first module is finishing
its cycle. Bit 14 of the module select address is exchanged with
bit zero when interlacing is used. Examples of module and word
selection when using the interlace option are shown in figure 5-20.

This feature can be quickly enabled or disabled by a field engineer.

HEXADECIMAL | INTERLACE
ADDRESS ADDRESS | MOPULE | WORD MODULE WORD
00000 00000 0 0 SELECT SELECT
00001 04000 1 0
04000 00001 0] / 22: 15 1 1 7 3
04001 04001 1 !
08000 08000 2 0 18 14 10 6 2
08001 0C000 3 0
0C000 08001 2 ! 171 13 o1 5 !
0C000 0C000 3 i
10000 10000 4 0 16 | 12 S R
W

Figure 5-20., 'Interlace Addressing

MEMORY TESTING.

Fach system includes a test facility which can exercise any of the
memory modules. When the test facility is being used with one of
the memory modules, the other modules can be used by the system,

if the module being tested is not interlaced. If it is, the option

must be disabled before testing can take place.

STACK CONTROLLER.

The B 6500 provides automatic stack adjustment as required by the
operators. These requirements are supplied to the Stack Controller
on the Z1l1l bus from the Operator Families and other Functional Con-

trollers.

The Stack Controller manipulates data between Main Memory and the
A and B registers on both pop=-up and push—down cycles. The X and Y
registers are included in the adjustment cycles when double-preci-

sion operands are involved.

5-47

A typical program stack is shown in figure 5-21. The Stack Con-

troller determines whether a bop-up or push-down cycle will be

initiated.

All other Controllers remain idle until an ADJC (Adjust

complete) is sent to the Controller that initiated the adjustment.

| Aror]

[

| ARG

[BroF |

| srec

PUSH —»

up

[Lok F—+

/
s |
I MsCW
L o
T
[BOSR TSCW

5-48

Figure 5-21.

>

] xrec

—_—— e

| vreo

SOFTWARE
ALLOCATED
MEMORY
AREA

STACK CONTROLLER FUNCTIONS

COMMAND OPERATION RESULT
AROF | BROF
Z110 EMPTY A AND B 0 0
Z1 EMPTY A, FILL B 0 1
Z112 EMPTY B, FILL A 1 0
Z113 FILL BOTH 1 1
Z114 EMPTY A 0 -
Z115 FILL A 1 -
NOTE:

0 = UNOCCUPIED
1 = OCCUPIED

STATUS WILL NOT BE USED BY
THE OPERATOR CAUSING THE
ADJUSTMENT

Hardware Stack Adjustment

SECTION 6
PROGRAM OPERATORS
GENERAL.
The machine language operators are composed of syllables in a
program string. The operators are divided into three major classes,
Primary, Variant and Edit:! The operators are either Primary Mode,

Variant Mode, or Edit Mode.

SYLLABLE ADDRESSING AND SYLLABLE TIDENTIFICATION.
SYLLABLE FORMAT AND ADDRESSING.

A machine language program is a string of syllables which are nor-
mally executed sequentially. Fach word in memory contains six
8~bit syllables. The first syllable of a program word is labeled
syllable O and is formed by bits 47 thru 40 (figure 6-1).

SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE
0 1 2 3 4 5
47 | 43 39 | 35 19 15 7 3
46 | 42 38 | 34 18 14 6 2
45 | 41 37 | 33 17 13 5 1
44 | 40 | 36 | 32 16 12 4 o
Figure 6-1. Program Word

P AND T REGISTERS.

The P Register contains the currently active program word. The T

Registers are the control (instruction) registers. There is one

four-bit T register in each operator family. These registers con-

tain the operation to be executed in a particular operator family.
The four high-order bits of the operator syllable are decoded to
select the operator family to receive the strobe pulse, (execute
pulse). The PSR (Program Syllable Register) points to the next
syllable to be used and also determines when a new program word is

required in the P register.

When a new program word is required it is brought from the memory
location indicated by the sum of PBR (Program Base Register) and
PTR (Program Index Register). This program word is placed in the
P register and PSR is set to the first syllable of the next op-
erator. PIR is incremented by 1 to address the next required pro-

gram word (figure 6-2).

PROGRAM
SEGMENT
A

PROGRAM WORD . . . n l PROGRAM INDEX REGISTER —i‘;

)
(8
)

*J PROGRAM WORD 3 r— r— 1T PROGRAM BASE REGISTER

I
PROGRAM WORD 2 [
PROGRAM WORD 1 +—- I

(
—
L"1

PROGRAM WORD 0 < — ADDRESS

ADDER

k ll P ls P F
4.{ “P" REGISTER
L PSR
3] 3 3 3]
7] z
] 1 (] o
. [0] 0 °] = J

Y
OPERATOR FAMILY T REGISTERS

OPERATOR FAMILY "T" REGISTERS
Figure 6-2. Program Word, Syllable Addressing

OPERATION TYPES.

Operations are grouped into 3 classes: Name call, Value Call, and
operators. The two high-order bits (bits 7 and 6) determine whether
a syllable begins a Value Call, Name Call or operator (figure 6-3).

(BITS 7 & 6) Syllable # of
Identification Type : Syllables Function

00 Value Call 2 Brings an operand into
the stack.

01 Name Call 2 Brings an IRW into the
stack.

1X Other Operators 1 =) 12 Performs the specified
operation.

Figure 6-3. Syllable Decode Table

NAME CALL. Name Call builds an Indirect Reference Word in the
stack. Stack adjustment takes place so that the "A" register is
empty. The six low-order bits of the first syllable of this opera-
tor are concatenated with the eight bits of the following syllable
to form a 1lU4-bit address couple. The address couple is placed,
right-justified, into the "A" register, with the remainder of the
"A" register set to zero. The TAG field of the "A" register is

set to 001 and the register is marked full.

VALUE CALL. YValue Call loads into the top of the stack the operand
referenced by the address couple formed in the same manner as in
the Name Call operator. If the referenced Memory Location is an
Tndirect Reference Word or a Data Descriptor, additional memory
accesses are made until the operand is located. The operand is
then placed in the top of stack registers. The operand may be
either single or double-precision, causing either one or two words
to be loaded into the stack.

OPERATORS. Operators vary from 1 to 12 syllables in length. The
first syllable of each operator determines the number of additional
syllables forming the operator. Upon completion of each operator,
the program counter addresses the first syllable beyond all of the

syllables comprising the operator.

Operators work on data as either full words (48) data bits plus
tag bits) or as strings of data characters. Word operators work

with operands (single or double—precision) in the top of the stack.

String operators are used for transferring, comparing, scanning,
and translating strings of digits, characters, or bytes. In ad-
dition, a set of micro-operators provides a means of formating

data for input/output.

The string operators use source and destination pointers which are
located in the stack. These pointers set the following hardware

registers:

a. Source Base Register - (SBR).
b. Source Word Index Register - (sIRr).
C. Source Byte Index Register - (SIB).
d. Source Size Register - (ssz).
e. Destination Base Register - (DBR).
f. Destination Word Index Register - (DIR).
g. Destination Byte Index Register - (DIB).

h. Destination Size Register - (psz).

In some of the string operators the source pointer may not be used.
In this case, an operand may be in the stack; its characters are

circulated as it is being used.

String operators have an optional Update function, producing up-
dated source and destination pointers and count. At completion of
an operation the source and destination pointers are updated as

follows:
a., If the source is an operand it is left in the stack.

b. If the pointer is a descriptor, the Word Index fields and
Byte Index fields are updated from SIR/DIR and SIB/DIB.
The String Size fields are updated from SSZ/DSZ.

c. If the pointer is a Data Descriptor or a non-indexed
String Descriptor, it is converted to an Indexed String

Descriptor and updated.

6-4

TIf both the source and destination descriptors have size fields
equal to zero, the size registers indicate 8-bit character size.
When both a source and destination are required and the size field
of one is equal to zero and the other is mnot, then the size field

of the non-zero descriptor is used.

If neither size field is equal to zero and the size fields are not
equal and the operator is not Translate, the invalid operand inter-
rupt is set and the operator is terminated. The size field is con-

sidered equal to zero when the source is an operand.

WORD DATA DESCRIPTOR.

Word Data descriptors refer to data areas, including input/output
buffer areas. The Word data descriptor defines an area of mem-

ory starting at the base address contained in the descriptor. The
size of the memory area in operands is contained in the length
field of the descriptor. Word Data descriptors may directly refer-
ence any memory word address from zero through 1,0485,575 (current
maximum is 524,288 words). The structure of the Word Data descrip-

tor is illustrated in figure 6-4 and contains the following:

351 31 27 15 11 7|1 3
1 LENGTH/INDEX EM/DISK ADDRESS
34| 30| 26 14] 10 6 2
0
331 29| 25 13 9 5 1
1
32| 28] 24 12 8 4 0

Figure 6-4. Word Data Descriptor
a. Bit 50:3, a tag of 101.

"b. Bit 47:1, the presence bit, indicates the presence or
absence of data in main memory. A Zero causes a presence
bit interrupt whenever the descriptor is used by a pro-
cessor to obtain non-present data. A one indicates that

the data described is in main memory.

6-5

Bit 46:1, the copy bit. A zero indicates that this is the
original descriptor for the particular data area. A one
indicates that this descriptor is a copy of the original

descriptor.

Bit 45:1, the indexed bit. A zero indicates that an in-
dexing operation is required before the descriptor may be
used to obtain data. A one indicates that indexing has
already taken place and the index wvalue is stored in bit
positions 39:20 (Length/Index).

Bit 44:1, the segmented bit. A zero indicates that the
data is not segmented. A one indicates that the data is

divided into segments.

Bit 43:1, the read-only bit. A zero indicates that the
data may be referenced for reading or writing. A one in-

dicates thati the area cannot be used for data storage.
Bit 42:2, a zero indicates a word data descriptor.

Bit 40:1, the double-precision bit. A zero indicates sin-
gle-precision operands, a one indicates double-precision

operands.

Bit 39:20, contains either the length of the memory area
(If bit 45 = 0) or an index value (if bit 45 = 1). If
bit 45 equals zero, the descriptor has not been indexed.
This field is used for size checking during the indexing
operation. If bit 45 equals one, the descriptor has been
indexed. TFor a double-precision operation, the index is
doubled after index size checking, and the result is stored

in the index field.

Bit 19:20, contains either a main memory or disk address.

If the presence bit (bit 47) equals one, this field contains

the memory address of data. If the presence bit equals
zero and the copy bit (bit 46) equals zero, this field

contains the disk address of the data. If the presence

bit equals zero and the copy bit equals one, this field

contains the memory address of the original descriptor.

STRING DESCRIPTOR.

String Descriptors refer to strings of L-bit digits, 6-bit charac-

ters or 8-bit bytes. The String Descriptor defines an area of

memory starting at the base address contained in the descriptor.

The size of the memory area in characters is contained in the

length field of the descriptor. The structure of the String Des-

criptor is illustrated in figure 6-5 and contains the following

information:

391 35| 31| 27| 23 191 15 1N 7 3

LENGTH IN CHARACTERS
38 34) 30| 26 22

MEM/DISK ADDRESS
18] 14) 10} 6 2

37) 33] 29| 25| 2] 171 13 91 5 i

36| 32| 28f 24| 20F 161 12 8] 4 0

Figure 6-5. String Descriptor (Non-indexed)
Bit 50:3, a tag of 101.

Bit 47:1 the presence bit. A zero causes a presence bit
interrupt if the descriptor is used to access data. A

one indicates the data is present in main memory.

Bit 46:1, the copy bit. A zero indicates that this is
the original descriptor for the particular data area. A
one indicates that this descriptor is a copy of the ori-

ginal descriptor.

Bit 45:1, the indexed bit. A zero indicates indexing
is required. A omne indicates that indexing has taken
place and the word and character index are length/index

field (see figure 6-6).

Bit 44:1, the segmented bit. A zero indicates that the
data area is not segmented. A one indicates that the data

is segmented.

Bit 43:1, the read only bit. A zero indicates that the
data may be referenced for reading or writing. A one

indicates that the data can be read only.

Bit 42:3, character size field. 100 indicates 8-bit bytes,
011l indicates 6-bit characters, and 010 indicates 4-bit
digits.

Bit 39:20, contains either the length of the memory area
(bit 45=0) or an index value (bit 45=1). When bit 45
equals zero, this field contains the length of the area
in digits, characters or bytes. This field is used for
size checking during indexing operations. When bit 45
is equal to one, bits 39:4 contain a byte index and bits

35:16 contain a word index as illustrated in figure 6-6.

351 31 27{ 23
WORD INDEX
30 26

34 22

33] 29} 25) 21

32] 28] 24| 20

Figure 6-6. Byte/Word Index Field

Bit 19:20, contains either a main memory or a disk address.
If the presence bit (bit 47) is one, the field containsa
memory address of the data. If both the presence bit and
the copy bit (bit 46) are equal to zero, the field contains
the disk address of the non-present data. If the presence
bit is zero and the copy bit is one, the field contains

the memory address of the original descriptor.

SEGMENT DESCRIPTOR.

The segment descriptor (figure 6—7) describes a program segment

and contains the following information:

39| 35 31| 27 191 15 11 7 3

LENGTH
38| 34 30] 26

MEM/DISK ADDRESS
18] 14] 10| 6 2

37| 33 29] 25 17] 13 91 5 1

36| 32 28| 24 16 12 8 4 0

Figure 6-7. Segment Descriptor
Bit 50:3, a tag of Oll.

Bit 47:1, the presence bit. A zero indicates that the

segment is absent from main memory.

Bit 46:1, the copy bit. A zero bit indicates that this
is the original segment descriptor. A one indicates that

this is a copy of the original segment descriptor.

Bit 45:1, unused.

Bit 44:5, unused.

NOTE

unused bits may be

either zero or omne.

Bit 39:20, specifies the length of the program segment

in words.

Bit 19:20 contains either the main memory address or the
disk file address. If the present bit (bit 47 equals one,
the field contains the main memory address of the program

segment. If both the presence bit and the copy bit (bit 46)

6-9

equal zero, the field contains the disk address of the

non-present program segment. If the presence bit equals
zero and the copy bit equals one, the field contains the
absolute memory address of the original program segment

descriptor.

MARK STACK CONTROL WORD.

The Mark
provides

register

The MSCW

Stack Control Word (MSCW), with the Return Control Word,
a linking mechanism for the history of previous control-

settings through the stack.

is placed in the stack by the Mark Stack operator. The

MSCW is organized as illustrated in fTigure 6-8 and provides the

following data:

43| 39} 35] 31| 27] 23 3
STACK NO DISPLACEMENT
42, 38} 34| 30| 26| 22 2
41| 37} 33| 29| 25| 21] 1
40| 36f 32| 28] 24| 20 0

Figure 6-8. Mark Stack Control Word
Bit 50:3, a tag of OlLl.

Bit 47:1, the different-stack bit. A zero indicates that
the stack-number field refers to the current stack. A
one indicates that the stack-number field refers to a

different stack.

Bit 46:1, the environment bit. A zero indicates an in-
active MSCW, generated directly by the Mark Stack operator.
The procedure entry has not been performed. A one denotes
an active MSCW generated upon entry into a procedure, at
which time the environment fields (stack number, displace-
ment, and value fields) are stored into the Mark Stack

Control Word.

d. Bit 45:10, the stack-number field, contains the number of
the stack from which the PCW was obtained at procedure-

entry.

e. Bit 35:16, the displacement field, which, when added to
the stack base address, locates the Mark Stack Control

Word of the prior lexicographic level.

f. Bit 19:1, the value bit. A zero indicates that the MSCW
was generated during any operation that will be restarted
from the beginning. A one indicates that the operator
must continue after the Exit or Return which refers to

this MSCW (e.g., an accidental entry by a Value Call).

g. Bit 18:5, the LL field denotes the lexicographical level
at which the program was running when the procedure was

entered.

h. Bit 13:14, denotes the stack history. This field locates
in the stack, the preceding MSCW (i.e., the previous "F"

register setting).

PROGRAM CONTROL WORD.
The Program Control Word (PCW), and the Mark Stack Control Word

are used during entry into a procedure. The organization of the

PCW is illustrated in figure 6-9 and contains the following:

27 3
! P.1.R.
26 2
1
25 1
|
24 0

Figure 6-9. Program Control Word

a. Bit 50:3, a tag of 111,

b. Bit 47:1, unused.

c. Bit 46:1, unused.
d. Bit 45:10, stack number containing the PCW.

e. Bit 35:3, defines the program syllable within the word
located by PIR.

f. Bit 32:13, an index to the Program Base Register.
g. Bit 19:1, normal state (zero) or control state (one).
h. Bit 18:5, the level of the procedure being entered.

i. Bit 13:14, the segment descriptor index. Bits 12 through
zero specify the value to be added to the address located
by either D register zero or one. When bit 13 equals zero,
D register zero is selected; when bit 13 equals one, D

register one is selected.

RETURN CONTROL WORD,

The Return Control Word and the Mark Stack Control Word are used
for subroutine handling. The Return Control Word stores the en-
vironment to which the subroutine will return. The organization
of the Return Control Word is illustrated in figure 6-10 and

contains the following:

31 27 3
P.1.R.

30| 26 2

29| 25 1

28] 24 0

Figure 6-10. Return Control Word

Bit 50:3, a tag of 011.

Bit 47:1, External Sign flip flop.
Bit 46:1, Overflow flip flop.

Bit 4%:1, True/False flip flop.
Bit 44:1, Float flip flop.

NOTE

43:1 will probably be TFOF,
True/False flip flop oc=-
cupied flip flop.

Bit 43:8 unused.

Bit 35:3, the program syllable of the operator to be ex-

ecuted after return from the subroutine.

Bit 32:13, the PIR setting of the operator to be ex-

ecuted next in the calling routine.

Bit 19:1, a normal state (zero) or control state (one)

procedure.

Bit 18:5, the level of the calling procedure when the RCW

is generated (at procedure entry).

Bit 13:14, the segment descriptor index. Bits 12 through
zero specify the value to be added to the address located
by either D register O or 1. When bit 13 = zero, D reg-

ister zero is selected; when bit 13 = one, D register one

is selected.

INDIRECT REFERENCE WORD.

Referencing a variable within the current addressing environment
of a procedure is accomplished through the address couple in the
Indirect Reference Word (IRW), and the Segment Descriptor Index of
the Program Control Word (PCW). Both references are relative to
the D Register specified by the address couple. The bit format

of the IRW is shown in figure 6-12.

STUFFED INDIRECT REFERENCE WORD.

Reference to wvariables outside the current environment is accom-

plished by a (stuffed) SIRW. This addressing is relative to the base

of the stack in which the variable is located.

The SIRW contains the stack number, the location (DISP) of the
MSCW, and the displacement of the variable relative to the MSCW.
The absolute memory location of the variable is formed by adding
the contents of DISP and displacement to the base address of the
referenced stack from the stack descriptor. The contents of the
SIRW (with the exception of displacement) is dynamic and is accu-
mulated as the program is executed. The stack number and DISP
fields are entered into the SIRW by a special operator (STFF).
The bit format of STIRW is shown in figure 6-11.

311 27| 23
ISPLACEMENT
30| 26| 22
29| 25| 21
28| 24| 20

Figure 6-11. Stuffed Indirect Reference

6-14

11 7 3

DDRESS COUPLE
100 6 2
9 5 1
8 4 0
Figure 6-12. Normal Indirect Reference Word

Bit 50:3, a tag of OOL,.
Bit 47:1, unused.

Bit 46:1, the environment bit. A one indicates a Stuffed

IRW. A zero indicates a Normal IRW.

Bits 45:10, stack number. When bit 46 equals one, speci-

fies the number of the stack containing the address.
Bit 45:26, unused, when bit 46 equals zero.

Bit 35:16, displacement field. When bit 46 equals one,
this wvalue added to the stack base address locates a

Mark Stack Control Word.
Bit 19:6, unused.

Bit 13:14, index field. When bit 46 equals one, the index
value is added to the contents of the D register specified

by the Mark Stack Control Word. Bit 13 is always zero.

Bit 13:14, when bit 46 equals zero, is divided into two
functional fields (figure 6-13). Fach field is variable
in length. The first sub-field, designated LL, selects
one of the D registers. The second sub-field is an index
value which is added to the contents of the selected D
register to form an absolute address. The lengths of the
sub-fields are defined by the current program level as

shown in Table 6-1,

6-15

Table 6-1

Sub-Field Lengths

Program Length of LL Length of Index
Level Field (Bits) Field (Bits)
0-1 1 13
2-3 2 12
b7 3 11
8-15) N 10
16-31 5 9

PROGRAM LEVEL PROGRAM LEVEL PROGRAM LEVEL PROGRAM LEVEL PROGRAM LEVEL

0-1 2-3 4-7 8-15 16-31
4 4 4
11 1 11

8 8
INDE X INDEX INDE X 10] INDEX 10| INDEX
] FIELD] FIELD] FIELD] FIELD 1 |6 | FIELD

13 12-0 13 11-0 13 10-0 13 9-0 13| 9] s-0
2 2 2 2
12 12 12 12

Figure 6-13. Program Level Bit Assignment
NOTE

The bit order of the
Ll field is inverted.

STEP INDEX WORD.
The Step Index Word figure 6-14 is used by the Step and Branch op-

erator, to increase efficiency in iteration loops. It contains

the following information:

47| 431 39 35 31 27
INCREME NT FINAL VALUE
46| 421 38 34 30] 26
45| 41| 37 33| 29| 25
44| 40| 36 32| 28| 24

Figure 6-14., Step Index Word

6-16

Bit 50:3,

Bit 47:12,

a tag of 100.

the value of the increment to Hbe added to the

current value field.

Bit 35:16,
loop.

the final wvalue, used to terminate the iteration

Bit 19:4, unused.

Bit 15:16,

NOTE

These bits must be zero.

the current value or count.

SECTION 7
PRIMARY MODE OPERATORS

GENERAL.
This section defines the primary operator's functions. In each

case the operator's name, mnemonic, and hexadecimal code is shown.

The universal operators are also included in this section.

ARITHMETIC OPERATORS.

The arithmetic operators usually require two operands in the top
of stack registers. These operands are combined by the arithmetic
process specified with the result placed in the top of the stack.
The operands may be either single-precision, double-precision, or
intermixed. The specified arithmetic process adapts automatically
to the data environment, with single-precision process invoked if
both operands are of the single-precision type and a double-pre-
cision process invoked if either operand is of the double preci-

sion type.

Each double-precision operand occupies two words. The second word
of the operand is an extension of the first word of the operand,
i.e., the mantissa of the first word of the operand may be an in-
teger but the mantissa of the second word is always a fraction.
When the top of stack registers are full, the first word of the
first operand occupies the A register, the second word of the first
operand occupies the X register. The first word of the second
operand occupies the B register, the second word of the second op-
erand occupies the Y register. Therefore, double-precision arith-
metic processes operate on four words in the stack instead of two
as in single-precision operations. Double-precision arithmetic

leaves a two-word result in the top of the stack.

Add, Subtract, and Multiply operations with two integer operands
yield an integer result if no overflow occurs. 1f one or both
operands is non-integer, or if the result generates an overflow,

the result is non-integer.

Upon entry into any operator the hardware stack-adjust function
fills or empties the top of stack register as required by the
operator. If either register contains an incorrect word, the

operator is terminated with an invalid operand interrupt.

ADD (ADD) 80.

The operands in the A register and the B register are added alge-
braically with the sum left in the B register. At the end of the
operation the A register is marked empty, and the B register is

marked full.

If only one of the operands is double-precision the single-preci-
sion operand's extension register is set to zero. The B register
is marked as a double-precision operand at completion of the op-

eration.

If the mantissa signs and the exponents are equal, the mantissas
are added and the sum placed in the B register. If the sum exceeds
13(26) octal digits, the mantissa of the sum is shifted right one
octade, rounded, and the exponent is algebraically increased by

one.

If the exponents are equal but the mantissa signs are unequal, the
difference of the mantissas with the appropriate sign is placed in

the B register.

If the exponents are unequal, the operands are first aligned. If
the alignment causes the smaller operand to be shifted right 14(27)

octal places, the larger operand is the result.

If the alignment causes the smaller operand to be shifted right,
but less than 14(27) octal places, the digits of the smaller oper-
and shifted out of the register are saved and used to obtain the

rounded result.

If the signs of the operands are equal, the mantissas are added
and the sum placed in the B register. If the sum does not exceed

13(26) octal digits, the last digit shifted out of the register

7-2

is used to round the result. If the sum is 14(27) octades the
mantissa in B (Y) is rounded to 13(26) digits.

If the signs of the operands are unequal, an internal subtraction

takes place with the rounded result placed in the B register.

If the result has an exponent greater than +63 (+32,767), the ex-
ponent overflow interrupt is set. If the result has an exponent

less than -63 (-32,767) the exponent underflow interrupt is set.

SUBTRACT (SUBT) 81.

The operand in the A register is algebraically subtracted from the
operand in the B register with the difference left in the B reg-
ister. The operation is the same as for the Add operator except

for initial sign comparisons.

MULTIPLY (MULT) 82.
The operand in the A register is algebraically multiplied by the
operand in the B register. The rounded product is left in the B

register.

Tf the mantissa of either operand is zero, the B register is set

to zero.

If both mantissas are non-zero, the product of the mantissas is
computed. If the product contains more than 13(26) digits, it is
normalized and rounded to 13(26) digits. A mantissa of all sevens

is not rounded.

If the result has an exponent greater than +63 (+32,767), an ex-
ponent overflow interrupt is set. If the result has an exponent

less than -63 (—32,767), an exponent underflow interrupt is set.

EXTENDED MULTIPLY (MULX) 8F.
The operands in the A and B registers are algebraically multiplied
and a double-precision product is placed in the B and Y registers.

The A register is marked empty and the B register marked full.

7-3

The actions outlined for Multiply operations also apply to this

operator.

If either or both operands are double-precision, then a normal

double-precision operation occurs.

DIVIDE (DIVD) 83.

The operand in the B register is algebraically divided by the
operand in the A register, with the quotient left in the B regis-
ter. After the operation the A register is marked empty, and the

B register is marked full.

If the mantissa of the B register is zero, the B register is set
to zero. If the A register mantissa is equal to zero, the divide
by zero interrupt is set. In either case the operation is termi-

nated.

If the mantissas of both operands are non-zero, they are normalized
and the operand in the B register is divided by the operand in the
A register. The quotient is developed to 14(27) digits, rounded

to 13(26) digits, and left in the B register.

If the result has an exponent greater than +63 (32y767) the exponent
overflow interrupt is set. If the result has an exponent less than

-63 (32,767) the exponent underflow interrupt is set.

INTEGER DIVIDE (IDIV) 8.4.

The operand in the B register is algebraically divided by the op-
erand in the A register and the integer part of the quotient is
left in the B register. After the operation the A register is
marked empty and the B register is marked full.

If the mantissa of the B register is zero, the B register is set
to zero. If the mantissa of the A register is zero, the divide by

zero interrupt is set. The operation is terminated in either case.

If the mantissas of both operands are non-zero, they are normalized.

If the exponent of the B register is algebraically less than the

7-1

exponent of the A register after both operands have been normalized,
the B register is set to zero. If the exponent of the B register
is algebraically equal to or greater than the exponent of the A
register the divide operation proceeds until an integer quotient

or a quotient of 13(26) significant digits is calculated.

If an integer quotient is developed, the quotient is left in the
B register with zero exponent for S.P. and the exponent set to 13
for D.P. If a non-integer quotient is developed, the integer

overflow interrupt is set.

REMAINDER DIVIDE (RDIV) 85.

The operand in the B register is algebraically divided by the op-
erand in the A register to develop an integer quotient. The re-

mainder of this Division is left in the B register. If this re-

mainder is an integral wvalue it is in the form of an integer (ex—
ponent = O for S.P., 13 for D.P.). After the operation the A

register is marked empty, the B register is marked full.

If the mantissa of the B register is zero, the B register is set
to zero. If the mantissa of the A register is zero the divide by

zero interrupt is set. In either case the operation is terminated.

If both mantissas are non-zeroy, both operands are normalized. If
the exponent of the B register is algebraically less than the ex-
ponent of the A register after both operands have been normalized,
the operand in the B register is the result. If the exponent of
the B register is algebraically equal to or greater than the ex-
ponent in the A register, the divide operation proceeds until an
integer quotient is developed and the remainder is then placed in

the B register.

If a non-integer quotient is developed, the integer overflow in-

terrupt is set and the operation is terminated.

INTEGERIZE, TRUNCATED (NTIA) 86.
The operand in the B register is converted to integer form without

rounding and left in the B register.

7-5

If the operand in the B register can not be integerized, i.e., the
exponent is greater than the number of leading =zeros in the oper-
and, the integer overflow interrupt is set and the operation is

terminated.

INTEGERIZE, ROUNDED (NTGR) 87.
The operand in the B register is converted to integer form. Round-
ing takes place if the absolute value of the fraction is greater

than 4. The rounded result is left in the B register.

If the operand in the B register can not be integerized, i.e., the
exponent is greater than the number of leading zeros in the oper-
and, the integer overflow interrupt is set and the operation is

terminated.

The operand is rounded if necessary by adding one to the mantissa.
1If a non-integer results from this operation, the integer overflow

interrupt is set.

TYPE-TRANSFER OPERATORS.
SET TO SINGLE-PRECISION, TRUNCATED (SNGT) CC.

The operand in the B register is set to a single-precision operand,
or in the case of a data descriptor, the double-precision bit is

set to zero.

1f the word in the B register is a non-indexed, double-precision
data descriptor, the double-precision bit is cleared to zero and

the length field multiplied by 2.

If the double-precision operand in the B register has an exponent
greater than +63 the exponent overflow interrupt is set. If the
exponent is less than ~63 exponent underflow is set, and the op-

eration is terminated.

If the operand in the B register is a double-precision operand
with an exponent less than +63 or greater than -63 the operand is
normalized, and the tag field in the B register is set to single

precision.

7-6

If the word in the B register is not an operand or a Data Descrip-
tor, then the invalid operand interrupt is set and the operation

terminated.

If the operand is single-precision, it is normalized and the opera-

tion is terminated.

SET TO SINGLE-PRECISION, ROUNDED (SNGL) CD.
The operand in the B register is changed to a rounded, single-

precision operand.

If the double-precision operand in the B register has an exponent
greater than +63 the exponent overflow is set. If the exponent is
less than -63 the exponent underflow is set. In either case the

operation is terminated.

If the operand in the B register is a double-precision operand with
an exponent less than +63 or greater than -63 the operand is nor-
malized, the tag field in the B register is set to single-precision,
and the operand in the B register is rounded from the Y register.

The Y register is set to zero.

If a carry is developed during the rounding operation the operand is

adjusted and the new exponent is checked as above.

If the operand is a single-precision operand, the operand is nor-
malized and no rounding occurs. The action is as stated for the

Set to Single-Precision, Truncated.

SET TO DOUBLE-PRECISION (XTND) CE.
The word in the B register is set to a double-precision operand with
the Y register set to zero. If a single-precision data descriptor

is present in the B register the double precision bit is set to one.

If the word in the B register is a data descriptor with both the
index bit and double-precision bit zero, the double-precision bit

is set to one and the length field is divided by two.

1If the operand in the B register is a double-precision operand
the operation is complete. If it is a single-precision operand
the tag field in the B register is set to double-precision and the

Y register is set to all =zeros.

If the word in the B register is not an operand or a Data Descrip-
tor, then the invalid operand interrupt is set and the operation

terminated.

LOGICAL OPERATORS.
LOGICAL AND (LAND) 90.

Each bit of the B operand, except for the tag bits, is set to one
where a one appears in the corresponding bit positions in both the
A operand and the B operand. The other information bits of the B
operand are set to zero. The tag of the B operand is not disturbed,
unless the tag of the A operand specifies double-precision,in which

case,the B operand tag is set to double-precision.

LOGICAL OR (LOR) 91.

All bit positions of the B operand except the tag bits, are set to
one if the corresponding bit position in either the A operand or
the B operand is one, otherwise the bit is set to mzero. The tag
bits are set to the value of the second item in the stack except
when the A operand is double-precision, in which case, the B reg-

ister tag is set to double-precision.

LOGICAL NEGATE (LNOT) 92.
Every bit in the A operand is complemented except the tag field,

which remains unchanged.

LOGICAL EQUIVALENCE (LEQV) 93.

FEach bit of the B operand is set to 1 except the tag bits, when

the corresponding bits of the A operand and the B operand are equal.
Fach bit of the B operand is set to O except the tag bits, when the
corresponding bits of the A and B operands are not equal. The tag
field is normally set to the value of the second item in the stack
except when the A operand is double-precision, in which case the

B register tag is set to double-precision.

7-8

RELATIONAL OPERATORS.

The relational operators perform algebraic comparison on the op-
erands in the A register and the B register. The single precision
result is left in the B register. The result is an operand in in-
teger form with the value one if the relationship has been met or
an operand with all information bits set to zero if the relation-
ship was not met. All relational operations compare the B operand

the A operand.

LOGICAL EQUAL (SAME) 9L,

All bits, including tag bits, of the A operand and B operand are

compared. If all bits are equalya single precision operand with

bit zero set to one and all other information bits set to zero is
stored in the B register. Otherwise, a single-precision operand

with all information bits set to zero is stored in the B register.

GREATER THAN (GRTR) 8A.
If the B operand is algebraically greater than the A operand, the
B register is set to an integer form one. Otherwise, all bits in

the B register are zero.

GREATER THAN OR EQUAL (GREQ) 89.
If the B operand is algebraically greater than or equal to the A
operand, the B register is set to an integer form one. Otherwise,

all bits in the B register are zero.

EQUAL (EQUL) 8C.
If the operands in the B and A registers are algebraically equal,
the B register is set to an integer form one. Otherwise, all bits

in the B register are zero.

LESS THAN OR EQUAL (LSEQ) 8B.
Tf the B operand is algebraically less than or equal to the operand
in the A register, the B register is set to an integer form omne.

Otherwise, the B register bits are all zero.

LESS THAN (LESS) 88.
If the operand in the B register is algebraically less than the
operand in the A register, set the B register to an integer form

one. Otherwise, the bits in the B register are all zero.

NOT EQUAL (NEGL) 8D.

If the operand in the B register is not algebraically equal to the
operand in the A register, set the B register to an integer form
one. Otherwise, the bits in the B register are all cleared to

zero.

BRANCH OPERATORS.

Branch instructions break the normal sequence of serial instruction
fetches. Branching may be either relative to the base address of
the current program segment or to a location in another program

segment. Branch operators may be conditional or unconditional.

BRANCH FALSE (BRFL) AO.

If the low order bit of the A register is zero, the Program Index
Register and Program Syllable Register are set from the next two
syllables in the program string. Otherwise, PIR and PSR are ad-

vanced three syllable positions.

The two syllables following the actual operator syllable form the
new PIR and PSR settings as follows: The three high order bits are
placed into Program Syllable Register and the next 13 low order
bits are placed in the Program Index Register. The Program Regis-

ter (P) is marked empty to cause an access to the new program word.

BRANCH TRUE (BRTR) Al.

If the low order bit of the A register is one, the Program Index
Register and Program Syllable Register are set from the next two
syllables in the program string. Otherwise, PIR and PSR are ad-
vanced three syllable positions. The Branch True Operator uses

the two syllables as described for the Branch False operator.

BRANCH UNCONDITIONAL (BRUN) A2.

Program Index Register and the Program Syllable Register are set

7-10

from the next two syllables of the program string. The Branch
Unconditional operator uses the two syllables as described for the

Branch TFalse operator.

DYNAMIC BRANCH FALSE (DBFL) A8.
If the low order bit of the B register is zero and the word in the
A register is a Program Control Word, or an indirect reference to

one, branch to the specified syllable of that program segment.

If the low order bit of the B register is zero and the word in the

A register is an operand, PIR and PSR are set from this operand.

If the word in the A register is an operand, it is used in the
following manner: The operand is made into an integer. If it is
negative or is greater than 16,384, the invalid index interrupt is
set and the operation is terminated. If bit zero of the operand
is zero, PSR is set to zero, otherwise PSR is set to three. The
next higher order 20 bits are placed in the Program Index Register.
The Program Register is then marked empty to cause access to the

new program word.

DYNAMIC BRANCH TRUE (DBTR) A9,
If the low order bit of the B register is one and the word in the A
register is a Program Control Word, or an indirect reference to one,

branch to the specified syllable of the program segment.

If the low order bit of the B register is one and the word in the A

register is an operand, PIR and PSR are set from this operand.

The operand in the A register is used in this operator in the man-

ner described for the Dynamic Branch False operator.

DYNAMIC BRANCH UNCONDITIONAL (DBUN) AA.
If the word in the A register is a Program Control Word or an in-
direct reference to one, branch to the specified syllable of the

program segment.

If the word in the A register is an operand, PIR and PSR are set

from this operand.

7-11

The operand in the A register is used in this operator in the same

manner described for the Dynamic Branch False operator.

STEP AND BRANCH (STBR) AlL.

The increment field of the step-index word addressed by the contents
of the A register, is added to its current-value field. If the
current-value field is then greater than the final-value field,
Program Index Register and Program Syllable Register are set from
the next two syllables from the program string. Otherwise, Program
Index Register and the Program Syllable Register are advanced three

syllables. The step-index word is replaced in memory.

If no SIW is in memory, and if an operand is found, it is
left in the stack. The A register is set to zero, PIR/PSR are ad-
vanced and the next operator is executed. If no operand is en-

countered, the invalid operand interrupt is set.

UNIVERSAL OPERATORS.
NO OPERATION (NOOP) FE.

No operation takes place when this syllable is encountered. PTR
and PSR are advanced to the next operator. This operator is also
valid in Variant Mode and Edit Mode.

CONDITIONAL HALT (HALT) DF.

This operator halts the processor if the conditional halt switch
is in the ON position. If the conditional halt switch is OFF, the
operator is treated as a NOOP., This operator is also wvalid in

Variant Mode and Edit Mode.

INVALID OPERATOR (NVLD) FF.
This operator sets the invalid operand interrupt. It is also wvalid
in Variant Mode and Edit Mode.

STORE OPERATORS.

The store operators use the words in the A register and B register.
The operand in the B register is stored in memory at the location
addressed by an Indirect Reference Word or a Data Descriptor. It

the A register contains an operand a hardware interchange takes

7-12

place so that the operand is in the B register.

STORE DESTRUCTIVE (STOD) BS8.

If the word in the A register is an operand the A and B operands are
interchanged. The Data Descriptor or IRW in the A register is the
address in memory where the operand in the B register (B, Y regis-
ters) is stored. After the operand is stored, the A register and

the B register are marked empty and the operation is complete.

If the word addressed by the Indirect Reference Word is a Program

Control Word, accidental entry occurs.

If the word addressed by the Data Descriptor has the memory protect
bit on (bit 48), the memory protect interrupt is set and the opera-

tion is terminated.

If the presence bit in the Data Descriptor is zero the presence bit
interrupt is set. After the data has been made present the opera-

tion is restarted.

STORE NON-DESTRUCTIVE (STON) BO.
This operator functions the same way as the Store Destructive opera-
tor except that at the completion of this operator the operand is

left in the B register.

OVERWRITE DESTRUCTIVE (OVRD) BA.
This operator functions the same way as the Store Destructive,

except that it overrides memory protection checks.

OVERWRITE NON-DESTRUCTIVE (OVRN) BB.
This operator functions the same way as the Store Non-Destructive,

except that it overrides memory protection checks.

STACK OPERATORS.
EXCHANGE (EXCH) B6.

The operands in the A register and the B register are exchanged.
The A and B registers may contain either operands or control words.

The control words are treated as operands by this operator.

DELETE TOP OF STACK (DLET) B5.

This operator marks the A register empty.

DUPLICATE TOP OF STACK (DUPL) B7.
The operand found in the B register is copied into the A register.

The A register is marked full,

PUSH DOWN STACK REGISTERS (PUSH) Bk.
This operator stores the valid word/words from the A register and/
or B register into the memory portion of the stack. The A and B

registers are marked empty.

LITERAL CALL OPERATORS.
LIT CALL ZERO (ZERO) BO.

This operator sets the A register to zero and marks the register

full. The result is a single-precision operand.

LIT CALL ONE (ONE) BLl.
This operator sets the A register low order bit (bit 0) to one,
leaving all other bits set to zero. The A register is marked full.

The result is a single-precision operand.

LIT CALL 8 BITS (LT8) B2.

The syllable following the operator is the literal value to be
placed in the A register bits 7:8. The rest of the A register is
set to zero. The A register is marked as full and the Program

Syllable Register is set to the syllable following the literal.

LIT CALL 16 BITS (LT16) B3.

The next two syllables following the operator are a 16-bit literal
value that is placed in the A register bits 15:16. The rest of
the register is set to zero. The A register is marked full and

PSR is advanced past the 16-bit literal.

LIT CALL 48 BITS (LT48) BE.

The next program word is placed in the A register, and the A reg-
ister tag is set to zero. The A register is marked full, and PIR
and PSR are advanced to the program syllable following the 48-bit
literal value. This operator requires that the 48 bit literal in

7-14

the program string be word synchronized if the operator syllable is
in any syllable position other than syllable 5, the syllables in-

tervening are not executed and are filled with invalid OP-Codes.

MAKE PROGRAM CONTROL WORD (MPCW) BF.

This operator performs a Lit Call 48 Bits as described above; how-
ever, the tag is set to a PCW (111) and the Stack Number Register
is placed in bits 45:10. The A register is marked full.

INDEX AND LOAD OPERATORS.
INDEX (INDX) A6.

The Index operator places the integerized value of the B register
into the 20-bit length/index field of the Descriptor in the A reg-
ister. The Descriptor is marked indexed (bit 45 is set to one).

The A register is marked full and the B register is marked empty.

If the word in the A register is an operand, the A operand is ex-
changed with the B operand. If the word in the A register is
neither a Descriptor nor an Indirect Reference Word Pointing to a
Descriptor, the invalid operand interrupt is set and the operation

is terminated.

If the indexing value is negative or greater than or equal to the
length field of the Descriptor the invalid index interrupt is set

and the operation is terminated.

If the descriptor is segmented, the index is partitioned into two
portions by dividing it by the proper divisor determined by the
type of data referenced by the descriptor, (d. p. word-128, s. p.
word-256, 4-bit digit-3072, 6-bit character-2048, or 8-bit byte=
1536). The quotient is used as an index to the given descriptor to
fetch the array-row descriptor. The remainder is used to index

the row descriptor.

If the Double-Precision bit (bit 45) in the Descriptor is one,
the index value in the B register is doubled. The balance of the

operation is as described in the first paragraph of this operator.

7-15

INDEX AND LOAD NAME (NXLN) A5.

This operator performs an Index operation, then after the word in
the A register is indexed, the Data Descriptor pointed to by this
word is brought to the A register. The Copy bit (bit h6) of the
Data Descriptor is set to one and the A register is marked full.

If the presence bit (bit h?) is off, the address of the original
descriptor is placed in “ihe address field of the stack copy. If
the word accessed by the index word in the A register is not a Data
Descriptor the invalid operand interrupt is set and the operation

is terminated.

1f the Data Descriptor accessed by the indexed word in the A reg-
ister has the Index bit (bit 45) set to one the invalid operand

interrupt is set and the operation is terminated.

INDEX AND LOAD VALUE (NXLV) AD.
This operator performs an Index operation, then after the word in
the A register is indexed the operand pointed to by this descriptor

is brought to the A register. The A register is marked full.

If the word accessed is other than an operand the invalid operand

interrupt is set and the operator is terminated.

LOAD (LOAD) BD.
The Load operator places the word addressed by the IRW or INDEXED
DATA DESCRIPTOR in the A register.

If at the start of this operator the A register contains other than
a Data Descriptor or an Indirect Reference Word pointing at a Data
Descriptor, the invalid operand interrupt is set and the operation

is terminated.

If the word pointed at by the Data Descriptor is another Data Des-
criptor, that Data Descriptor is marked as a copy (Copy bit [bit 46]
is set to one) and if the presence bit (bit 47) is off, the address
off the original is placed in bits 19:20 of the copy in the stack.

7-16

SCALE OPERATORS.

Higher-level languages such as COBOL require integer arithmetic.
The Scale Operators provide the means of aligning decimal points
prior to performing the arithmetic operations. In addition, the

Scale Right operators provide for binary to decimal conversions.

SCALE LEFT (SCLF) CO.

This operator uses the second syllable as the scale factor. The
operand to be scaled is placed in the B register and integerized.
The resulting integer is then multiplied by 10 raised to the power
specified by the scale factowr.

If scaling of a single-precision operand results in overflow the
single-precision operand is converted to a double-precision inte-
ger. A double-precision integer is defined as a double-precision

operand with an exponent equal to 13.

If scaling of the operand results in an exponent greater than 13,

(double-precision operand), the overflow FF is set to one.

DYNAMIC SCALE LEFT (DSLF) Cl1.

This operator performs the same operation as the Scale Left opera-
tor; however, scale factor is taken from the A register rather than
the program syllable following the operation syllable. The op-

erand in the A register is integerized before the scale.

SCALE RIGHT SAVE (SCRS) Ch.

This operator uses its second syllable as the scale factor. The
operand to be scaled is placed in the B register and is then in-
tegerized. The resultant integer is then effectively divided by

10 raised to the power specified by the scale factor.

The quotient resulting from the division is left in the A register.
The operand in the B register is the remainder which is converted
to decimal (4 bit digits) and is left justified. A and B registers
are both marked full.

If the scale factor is greater than 12, the invalid operand inter-

rupt is set and the operation is terminated.

7-17

DYNAMIC SCALE RIGHT SAVE (DSRS) C5.

This operator performs the same operation as the Scale Right Save
operator; however, the scale factor is obtained from the A regis-
ter rather than the program syllable following the operation syl-
lable. The operand in the A register is integerized before being

used.

SCALE RIGHT TRUNCATE (SCRT) C2.
This operator performs a Scale Right function using its second syl-
lable as the scale factor. The B register is marked as empty at

the conclusion of this operator.

DYNAMIC SCALE RIGHT TRUNCATE (DSRT) C3.
This operator performs the same operation as the Scale Right Trun-
cate except that the scale factor is found in the A register and

is first integerized by the operator.

SCALE RIGHT FINAL (SCRF) C6.

This operator performs a Scale Right operation except that the
quotient in the A register is deleted by marking the A register
empty. The sign of the quotient is placed in the external sign
flip flop.

If the quotient was non-zero at the conclusion of the operation the

overflow flip flop is set.

DYNAMIC SCALE RIGHT FINAL (DSRF) C7.
This operator performs a Scale Right Final operation with the scale
factor found in the A register which is integerized by the opera-

tor before use.

SCALE RIGHT ROUNDED (SCRR) CS8.

This operator performs a Scale Right operation and the quotient is
rounded by adding one to it if the most significant digit of the
remainder is equal to or greater than five. The remainder is de-

leted from the stack by marking the B register empty.

7-18

DYNAMIC SCALE RIGHT ROUND (DSRR) C9.
This operator performs a Scale Right Rounded operation with the

scale factor found in the A register.

BIT OPERATORS.

The Bit operators are concerned with a specified bit in the A reg-

ister and/or B register.

BIT SET (BSET) 96.

This operator sets a bit in the A register. The bit that is set
is specified by the program syllable following the operation
syllable.

If the program syllable defining the bit to be set has a value
greater than L7, the invalid-operand interrupt is set and the op-

eration is terminated.

DYNAMIC BIT SET (DBST) 97.
This operator performs a Bit Set Operation upon the bit specified
by the operand in the top of stack register. This word is integer-

ized before using it as a bit number.

If the word in the top of stack register is not an operand an in-

valid operand interrupt is set and the operation is terminated.

If after being integerized the operand is less than zero or greater
than 47, an invalid operand interrupt is set and the operation is

terminated.

BIT RESET (BRST) 9E.
This operator resets a bit in the A register. The bit that is reset

is specified by the syllable following the operation syllable.

If the program syllable defining the bit to be reset has a wvalue
greater than 47, an invalid-operand interrupt is set and the opera-

tion is terminated.

DYNAMIC BIT RESET (DBRS) 9F.
This operator performs a Bit Reset operation upon-the bit specified

by the operand in the top of stack register.

If the word in the top of the stack register is not an operand an

invalid operand interrupt is set and the operation is terminated.

If after being integerized the operand is less than zero or greater
than 47, an invalid operand interrupt is set and the operation is

terminated.

CHANGE SIGN BIT (CHSN) 8E.
The sign bit (bit 46) of the top-of-stack operand is complemented,

i.e., if it is a one it is set to zero, if zero it is set to one.

TRANSFER OPERATORS.

The Transfer Operators transfer any field of bits from one word in

the stack to any field of another word in the stack.

FIELD TRANSFER (FLTR) 98.

This operator uses its following three syllables to establish the
pointers used in the field transfer. This is done in the following
manner: The second syllable of the operator is K. The third syl-
lable of the operator is G. The fourth syllable of the operator

sets the L register.

The field in the A register, starting at the bit position addressed
by G is transferred into the B register starting at the bit position
addressed by K. The length of the field in the A and B registers

is defined by L. When the specified number of bits have been trans-
ferred, the A register is set to empty the B register is marked full

and the operation is complete.

If the second or third syllables of the operator are found to be
greater than 47 or the fourth syllable is greater than 48, the in-

valid operand interrupt is set and the operation is terminated.

7-20

DYNAMIC FIELD TRANSFER (DFTR) 99.

This operator performs a Field Transfer operation with the exception
that the B register operand is L. The B register is then reloaded
from the stack and this operand is G. The B register is again

loaded from the stack and this operand is K.

If any of the three operands is a non-integer, it is first integer-
ized. Bach is checked for a value less than zero or greater than
47 or 48 as specified in Field Transfer above. If either of these
conditions exist in any one of the three operands, an invalid op-

erand interrupt is set and the operation is terminated.

FIELD ISOLATE (ISOL) O9A.

This operator isolates a field of the word in the A register placing
it right justified in the B register. The balance of the B regis-
ter is cleared to zeros. The A register is marked empty and the B

register is marked full.

The operator uses its second and third syllables as the BIT pointers.
The second syllable of the operator addresses the starting bit of
the field in the A register. The third syllable of the operator
specifies the length of the field to be isolated.

If the value of the second syllable is greater than 47 or the value
of the third syllable is greater than 48 an invalid operand inter-

rupt is set and the operation is terminated.

DYNAMIC FIELD ISOLATE (DISO) 9B.

This operator performs a Field Isolate operation except that the
first item in the stack specifies the length of the field to be
isolated. The second operand in the stack addresses the bit in the

word of the third item in the stack that is to be isolated.

If after being integerized the value of the first item in the stack
is less than zero or greater than 47 an invalid operand interrupt

is set and the operation is terminated.

7-21

If after being integerized the value of the second item in the
stack is less than zero or greater than 48 an invalid interrupt is

set and the operation is terminated.

FIELD INSERT (INSR) 9C.

This operator inserts a field from the A register into the B regis-
ter word. The field in the A register is right Jjustified with the
length of the field specified by the third syllable of the operator.
The second syllable of the operand addresses the starting bit of the
field in the B register. At completion the A register is marked

empty and the B register is marked full.

If the value of the second syllable of the operator is greater
than 47 an invalid operand interrupt is set and the operation is

terminated.

If the value of the third syllable of the operator is greater than
48 an invalid operand interrupt is set and the operation is ter-

minated.

DYNAMIC FIELD INSERT (DINS) 9D.

This operator performs a Field Insert operation except the first
item in the stack is used as the insert field data. The second
item in the stack is used to specify the length of the field. The
third item in the stack is used to address the starting bit in the
receiving field in the B register. When operation is complete the

A register is marked empty and the B register is marked full.

If after being integerized the value of the second item in the
stack is less than zero or greater than 48 an invalid operand inter-

rupt is set and the operation is terminated.

1If after being integerized the value of the third item in the stack
is less than zero or greater than 47 an invalid operand interrupt

is set and the operation is terminated.

7-22

STRING TRANSFER OPERATORS.

String Transfer operators give the system the ability to transfer

characters or words from one location in memory to another location
in memory. The source and destination pointers are set from String

Descriptors in the stack.

TRANSFER WORDS, DESTRUCTIVE (TWSD) D3.

This operator requires three items in the top of the stack, an op-
erand, a String Descriptor or operand, and a String Descriptor.
The first operand is integerized and used as the count or repeat
field. The second item is either the source data or a descriptor
which points at the source string and the third item is used to
address the destination string. The number of words specified by
the repeat field are transferred from the source to the destina-
tion. At completion of the operation the A and the B registers

are marked empty.

This operation calls the Execute Single Micro, Transfer Words, and

End Edit operators before continuing with the program string.

If the memory protect bit is found on during the execution of the
Transfer Words operator, the segmented array interrupt is set and

the operation is terminated.

TRANSFER WORDS, UPDATE (TWSU) DB.

This operator performs the Transfer Words operator except that at
the completion of the transfer of data, the source and destination
pointers are updated to point to the location in memory where the

transfer ended. The A and B registers are both marked full.

TRANSFER WORDS, OVERWRITE DESTRUCTIVE (TWOD) DA4.
This operator performs a Transfer Words, Destructive operation,

overriding the memory protection checks.

TRANSFER WORDS,; OVERWRITE UPDATE (TWOU) DC.
This operator performs a Transfer Words, Update operation, over-

riding the memory protection checks.

7-23

TRANSFER WHILE GREATER, DESTRUCTIVE (TGTD) E2.

This operator transfers characters from a location in memory point-
ed to by the source pointer, to a location in memory pointed to by
the destination pointer, until the number of characters specified

has been transferred or the compare fails.

The first item in the stack is used as the delimiter. The second
item in the stack is the maximum number of characters to be trans-
ferred. The third item in the stack is the source data or a source

pointer and the fourth item in the stack is the destination pointer.

The delimiter character is retained while a call Execute Single
Micro operator initiates this operation. The character count is
placed in the repeat field register as the EXSD is completed. The
source and destination strings are checked for memory protection.
The source character is then compared with the delimiter. The
result of the compare is set in the True/False flip flop. If the
condition is met the TFFF is set to one, if it is not met it is

set to zero.

If the number of characters transferred was equal to the repeat
field the True/False flip flop will remain set to one. The A

and B registers are marked empty and the operation is complete.

If the comparison fails, the number of characters not transferred
is placed in the A register and the True/False flip flop is set to

zero.

If the first operand in the stack is not a S.P. operand an invalid

operator interrupt is set and the operation is terminated.

If either the source or destination word has a memory protect bit
on (bit 48=1) the segmented array interrupt is set and the opera-

tion is terminated.

If the second item in the stack is a descriptor it is used as the
source pointer and the length field or repeat field is set to 1,048,
575. All comparisons are binary (EBCDIC Collating Sequence).

TRANSFER WHILE GREATER UPDATE (TGTU) EA.

7-24

This operator performs a Transfer While Greater operation and up-
dates the source pointer and destination pointer to point at the
next characters in the source and destination strings. The Repeat
count is updated to give the number of characters not transferred.
If the operation is terminated because the relationship is not met,
the source pointer points at the character that failed the com-

parison.

TRANSFER WHILE GREATER OR EQUAL, DESTRUCTIVE (TGED) EL1.
This operator performs a Transfer While operation using the relation

greater than or equal to.

TRANSFER WHILE GREATER OR EQUAL, UPDATE (TGEW) E9.
This operator performs a Transfer While Greater or Equal operation.
The source pointer, destination pointers, and count are updated

at the conclusion of the operator.

TRANSFER WHILE EQUAL, DESTRUCTIVE (TEGD) Eh.
This operator performs a Transfer While operation with the relation

used in comparison being equal.

TRANSFER WHILE EQUAL, UPDATE (TEGU) EC.
This operator performs a Transfer While Equal operation. The source
pointer, the destination pointer and count are updated at the con-

clusion of the operator.

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE (TLED) E3.
This operator performs a Transfer While operation, using the Less

than or Equal comparison.

TRANSFER WHILE LESS OR EQUAL, UPDATE (TLEU) EB.
This operator performs a Transfer While Less or Equal operation.
The source pointer, destination pointer and count are updated at

the conclusion of the operator.

TRANSFER WHILE LESS, DESTRUCTIVE (TLSD) EO.
This operator performs a Transfer While operation using the Less

than comparison.

7-25

TRANSFER WHILE LESS, UPDATE (TLSU) ES.
This operator performs a Transfer While Less operation. The source
pointer, destination pointer and count are updated at the conclusion

of the operator.

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE (TNED) E5.
This operator performs a Transfer While operation, with the not

equal comparison.

TRANSFER WHILE NOT EQUAL, UPDATE (TNEU) ED.
This operator performs a Transfer While Not Equal operation. The
source pointer, the destination pointer and count are updated at

the conclusion of the operator.

TRANSFER UNCONDITIONAL, DESTRUCTIVE (TUND) E6.

This operator performs a Transfer While Greater or Equal., Destruc-
tive operation forcing a zero delimiter. This causes all charac-

ters to be equal or greater than the delimiter thus transfer will

continue for the length of the repeat field.

TRANSFER UNCONDITIONAL, UPDATE (TUNU) EE.
This operator performs a Transfer Unconditional operation. The
source pointer, the destination pointer and count are updated at

the conclusion of the operator.

STRING ISOLATE (SISO) D5.

This operator places in the top of the stack, right Jjustified, the
number of characters specified by the repeat field. The first item
in the stack is the number of characters in the repeat field. The
second item in the stack is either an operand or a descriptor used

as the source pointer.

This operator calls and executes the Execute Single Micro, Single

Pointer operation before proceeding as above.

If the number of bits to be transferred is greater than 48 the item

is double-precision.

If the number of bits is greater than 96 an invalid operand inter-

rupt is set and the operation is terminated.

7-26

If the source data has the memory protect bit (bit 48) set to one

the segmented array interrupt is set and the operation is terminated.

COMPARE OPERATORS.

The Compare Operators perform the specified compare of two strings
of data. The True/False flip f£flop is conditioned by the results

of the compare.

COMPARE CHARACTERS GREATER, DESTRUCTIVE (CGTD) F2.

This operator compares the characters of the two character strings.
If the characters in the B string are greater than the characters
in the A string the True/False flip flop is set to one. If not
the True/False flip flop is set to zero.

The first item in the stack is an operand which contains the length
of the fields being compared. The second item in the stack is an
operand or a descriptor pointing at the character string to be
compared against. The third item in the stack is a descriptor

pointing at the character string to be compared.

The operator compares characters until it encounters a pair which
are unequal. If the B string character is greater than the A string
character, the TRUE/FALSE F.F.is left set otherwise it is reset.

Memory access then continues until the repeat count is exhausted.

If the Repeat count is less than or equal to zero, the True/False

F.F., is reset.

If either of the data strings has the memory protect bit on (bit
48=1) the segmented array interrupt is set and the operation is

terminated.

All comparisons are by the binary character position in the col-

lating sequence.

COMPARE CHARACTERS GREATER, UPDATE (CGTU) FA.
This operator performs a Compare Characters Greater operation. The
source pointer and destination pointer are updated at the conclusion

of the operator.

7-27

COMPARE CHARACTERS GREATER OR EQUAL, DESTRUCTIVE (CGED) F1.
This operator performs the Compare Characters operation with the

comparison being greater than or equal. I the repeat count < O,
the True/False flip flop is set to zero.

COMPARE CHARACTERS GREATER OR EQUAL, UPDATE (CGEU) F9.
This operator performs a Compare Character Greater or Equal opera-
tion. The source pointer and destination pointer are updated at

the conclusion of the operator.

COMPARE CHARACTERS EQUAL, DESTRUCTIVE (CEGD) Fk4.
This operator performs the Compare Characters operation using the

Equal comparison. If the repeat count < O, then TFFF is set to omne.

COMPARE CHARACTERS EQUAL, UPDATE (CEGU) FC.
This operator performs a Compare Characters Equal operation. The
source pointer and destination pointer are updated at the conclu-

sion of the operator.

COMPARE CHARACTERS LESS OR EQUAL, DESTRUCTIVE (CLED) F3.
This operator performs the Compare Characters operation with the
Less than or Equal comparison. If the repeat count < O, then TFFF

is set to zero.

COMPARE CHARACTERS LESS OR EQUAL, UPDATE (CLEU) FB.
This operator performs a Compare Characters Less or Equal opera-
tion. The source pointer and destination pointers are updated at

the conclusion of the operator.

COMPARE CHARACTERS LESS, DESTRUCTIVE (CLSD) FO.
This operator performs the Compare Characters operation with the
Less than comparison. If the repeat count < 0, the TFFF is set

to zero.

COMPARE CHARACTERS LESS, UPDATE (CLSU) F8.
This operator performs a Compare Characters Less operation. The
source pointer and the destination pointer are updated at the con-

clusion of the operator.

7-28

COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE (CNED) F5.
This operator performs the Compare Characters operation using the
Not equal relation. If the repeat count < O, then TFFF is set to

zero.

COMPARE CHARACTERS NOT EQUAL, UPDATE (CNEU) FD.
This operator performs a Compare Characters Not Equal operation.
The source pointer and the destination pointer are updated at the

conclusion of the operator.

EDIT OPERATORS.
TABLE ENTER EDIT, DESTRUCTIVE (TEED) DO.

This operator is used to control edit micro-instructions. These
edit micro-instructions are contained in memory as a table and not
as part of the normal program string. Upon entering this operator
program execution is transferred to a table of micro-instructions.
The last micro-instruction in this table must be the End Edit op-

erator (see section 9). The table contains Edit Mode operators.

The first item in the stack is a descriptor pointing to the table
of Edit Micro-Instructions. The second item in the stack is a S.P.
operand or a descriptor pointing at the source string., The third

item in the stack is a descriptor pointing at the destination.

If the first item in the stack is not a descriptor the invalid

operand interrupt is set and the operation is terminated.

If the second item in the stack is a S.P. operand it is the source

string.

If the third item in the stack is not a descriptor the invalid op-

erand interrupt is set and the operation is terminated.

If the destination pointer descriptor has the Read Only bit set to
one (bit 43) the memory protect interrupt is set and the operation

is terminated.

7-29

If the length is less than 13 the operand in the top of the stack
is a single-precision operand. If the operand is 13 or greater

the result is a double-precision operand.

If the length is not less than 25 an invalid operand interrupt is

set and the operation terminated.

If the second item in the stack is an operand it is the source

string, and is composed of 8-bit bytes.

If the source data has the memory protect bit (bit 48) set to one

the segmented array interrupt is set and the operation is terminated.

PACK, UPDATE (PACU) D9.
This operator performs a Pack operation, updating the source pointer

at the completion of the operator.

INPUT CONVERT OPERATORS.
INPUT CONVERT, DESTRUCTIVE (ICVD) CA.
This operator converts either 6-bit BCL code, 8-bit EBCDIC or L-bit

digit code to an operand for internal arithmetic operations.

The first item in the stack is an operand that is integerized to
form the repeat field. The second item in the stack is a descrip-

tor used as a source pointer.

The Input Convert operator calls on the Pack operator. After this
operation is complete the 4-bit digit operand is converted to an

operand of the equivalent binary value.

The sign of the converted operand is then set from the True/False
flip flop. If the converted operand is a single-precision operand
the True/False flip flop is then set to one. If the converted
operand is a double-precision operand the True/False flip flop is

set to zero.

At the completion of the operator the B register is marked full.
The tag field is set to indicate either a single or a double~-pre-

cision operand.

If the item in the top of stack after being integerized is greater
than 23 the invalid operand interrupt is set and the operation is

terminated.

INPUT CONVERT, UPDATE (ICVU) CB.
This operator performs an Input Convert operation. The source

pointer is updated at the completion of the operator.

READ TRUE FALSE FLIP FLOP (RTFF) DE.

This operator places the status of the True/False flip flop into
the low order bit position of the A register. The rest of the A
register is set to all zeros. The A register is marked full at

completion of this operator.

SET EXTERNAL SIGN (SXSN) D6.

This operator places the mantissa sign of the top word of the stack
in the External Sign flip flop. This operand is not deleted from
the stack at the end of the operation.

READ AND CLEAR OVERFLOW FLIP FLOP (ROFF) D7.

Places the status of the Overflow flip flop in the least significant
bit of the A register, sets the rest of the A register to zero,
marks the register full and sets the Overflow flip flop to zero.

SUBROUTINE OPERATORS.
VALUE CALL (VALC) 00 =) 3F.

This operator loads into the A register the operand addressed by
the address couple formed by the concatenation of the six low order
bits of the first syllable and the eight bits of the following syl-
lable. The A register is marked full. Figures 7-1 and 7-2 are
simplified flow charts of the Value Call operator.

This operator makes multiple memory accesses if the word accessed
is either an indexed descriptor, Program Control Word, or an In-

direct Reference Word.

7-32

If the word accessed is an indexed Data Descriptor the word ad-
dressed by the Data Descriptor is brought to the top of the stack.
If the double-precision bit (bit 40) in the Data Descriptor is
equal to one, the other half of the double-precision operand is

brought to the X register.

If the word accessed by the Data Descriptor is another indexed Data
Descriptor the word addressed by that Data Descriptor is brought to
the top of the stack, and the above paragraph is repeated.

If a Data Descriptor does not address an operand SIW or another in-
dexed Data Descriptor an invalid operand interrupt is set and the

operation is terminated.

If the word accessed by the Value Call is an Indirect Reference
Word the word addressed by the IRW is accessed and evaluated. It

the word is an operand it is placed in the top of the stack.,

If the word accessed by the Indirect Reference Word is another IRW

the operation continues as described above.

If the word accessed by the Indirect Reference Word is an indexed
Data Descriptor the operator proceeds as described above for Data

Descriptors.

If the word accessed by the Indirect Reference Word is a Program
Control Word an accidental entry into the subroutine addressed by
the PCW is initiated. A Mark Stack Control Word and a Return
Control Word are placed in the stack and an entry into the program
is made. TUpon completion of the program a Return operator will

re-enter the flow Value Call at the label IRW, figure 7-2. .

NAME CALL (NAMC) 40 =) 7F.

This operator builds an Indirect Reference Word in the A register.
The address couple is formed by concatenating the 6 low order bits
of the first syllable and the 8 bits of the following syllable.

The A register is marked full and the operation is complete.

7-33

REMEMBER
ALL
VALUE
CALL
DATA

IS
STACK
ADJUSTMENT
NEEDED

YES ADJ,
L (0,2)

IS
WORD

5] oesc. R NOoRhRAAL NORMAL

FIG OPERAND OR STUFFED

7-2 DESC. IRW

STUFFED
PLACE
OPERAND
OPERAND IN OBTAIN
'A" REGISTER WORD ADDRESSED
BY IRW

OBTAIN OTHER
HALF OF OPERAND

IN
nxX" REGISTER
"ACCIDENTAL
ENTRY"
op (CALL ON A
: PROCEDURE
COMPLETE EDURE)

Figure 7-1. TFlow of Value Call Operator

7-34

1S
THIS
DESCRIPTOR
INDEXED

INVALID|
OPERAND |4 O
INTERRUPT

OBTAIN WORD
ADDRESSED
BY DESC.

OBTAIN
WORD
ADDRESSED
BY DESC.

Figure 7-2.

DIFFERENT
STACK

OBTAIN
STACK VECTOR
DESC.

YES

OBTAIN WORD
ADDRESSED
BY
SIRW

INVALID
OPERAND
INTERRUPT

Flow of Value Call Operator (cont)

EXIT OPERATOR (EXIT) A3.

This operator returns to a calling procedure from a called proce-
dure resetting all control registers from the Return Control Word
and the Mark Stack Control Word. The Exit operator does not re-
turn a value to the calling routine. Figure 7-3 shows a simpli-

fied flow chart of the Exit operator.

RETURN OPERATOR (RETN) A7.

This operator performs an Exit operator with the exception that

an ;perand or name in the B register is returned to the calling
procedure. If a name is returned, and the V bit (bit 19) in the
MSCW is on, the name is evaluated to yield an operand as described
in VALC. Figure 7-4 shows a simplified flow chart of the Return

operator.

ENTER OPERATOR (ENTR) AB.

This operator is used to cause an entry into a procedure from a
calling procedure. Entry is to the program segment and syllable
addressed by the Program Control Word. Figure 7-5 shows a simpli-

fied flowchart of the Enter operator.

The Enter operator accesses the Indirect Reference Word at F + 1
which points to the Program Control Word. The operator then builds
a Return Control Word into the stack at F + 1.

EVALUATE (EVAL) AC.

This operator loads the A register with an indexed Data Descriptor
or an Indirect Reference Word that addresses A "target", which

may be an SIW, an Un-Indexed Data Desc, g String Desc, Or an op-
erand. The "target" may be referenced through a chain of descrip-
tors, accidental entries, or Indirect Reference Words. In any

case memory accesses will continue to be made until the target is
located. The A register is left containing the Data Descriptor or
the Indirect Reference Word which addresses the target. Figure 7-6

is a simplified flow chart of the Evaluate operator.

EXIT

ISTHIS A
MSCW

INTERRUPT

ADJ (0, 0) ‘1
OBTAIN PREVIOUS
MSCW AND
SAVE ADDRESS
OBTAIN
RCW
AT (F+1)
A MSCW AND
HAS IT BEEN
SET UP NTERED
REGISTERS TO RETURN
TO PRIOR PROCEDURE,
SAVE BOSR AND CUT
BACK THE STACK

1S
THIS OBTAIN NEW
FOR A STACK AND
DIFFERENT SAVE
STACK IADDRESS INFO.

OBTAIN SEG. DESC.

ADDRESSED BY PDR.

SET PBR TO ADDRESS
IN S.D. & CAUSE A FETCH

COMPUTE OPER.
ADDRESS OF COMPLETE
PREVIOUS
MSCW

ADDRESS
LESS THAN
BOSR

OBTAIN WORD UPDATE D[2]
ADDRESSED AND
BY (F) OBTAIN NEW
MSCW

SEQ.ERRCR
INTERRUPT

Figure 7-3. Flow of Exit Operator

RETURN

ADJ (0, 1)
(SAVE RETURNED VALUE)

OBTAIN
RCW
AT (F+1)

SET UP
REGISTERS TO RETURN
TO PRIOR PROCEDURE,

SAVE BOSR AND CUT
BACK THE STACK

1S
THIS THE
BOTTOM
OF STACK

BOTTOM
OF STACK] YES

INTERRUPT

OBTAIN WORD
ADDRESS
BY (F)

COMPUTE ADDRESS
OF PREVIOUS
MSCW AND

SAVE VALUE BIT

IS
NEW

ADDRESS
LESS THAN
BOSR

NO

!

OBTAIN PREVIOUS
MSCW AND
SAVE ADDRESS

IS
THIS A
MSCW AND HAS
IT BEEN

ENTERED

OBTAIN NEW
STACK
AND SAVE
ADDRESS INFO,

THIS FOR
A DIFFERENT
STACK

UPDATE D .44
AND OBTAIN
NEW MSCW
SEQ. ERROR
INTERRUPT
OBTAIN SEG. DESC.
ADDRESSED BY PDR
SET PBR TO ADDRESS IN
$.D. & CAUSE FETCH
fvas GO TO EVAL
VALUE OPERATOR
BIT EQUAL &
TO ONE SET "T" REG.
7O VALC OP,

OPER.
COMPLETE

Figure 7-4.

Flow of Return Operator

ADJ (0, 0)
AND OBTAIN WORD
ADDRESSED BY
(F+1)

STUFFED

INTERRUPT

NORMAL

OBTAIN WORD
ADDRESSED BY
IRW
OBTAIN
MSCW
AT
NO
(F)
COMPLETE THE MSCW
AND STORE IT BACK
AT (F
s (F)
ITA OBTAIN NEW
DIFFERENT PROGRAM
STSSK STACK OBTAIN WORD
) ADDRESSED BY
NO NEW PDR
I
SAVE OFF PRESENT
REGISTER SETTINGS
(RCW)
DISTRIBUTE
PCW
REGISTER SETTINGS
PLACE PROGRAM
ADDRESS IN
PBR AND FORCE
RCW AT
(F+1)
OPER.
COMPLETE

Figure 7-5. Flow of Enter Operator

An indexed Data Descriptor is left in the A register when the tar-
get is referenced by an indexed Data Descriptor; a stuffed Indir-~
ect Reference Word is left in the A register when the target is

referenced by Indirect Reference Words.

If the A register does not contain a Data Descriptor or an Indir-
ect Reference Word at the start of this operator an invalid operand

interrupt is set and the operation is terminated.

MARK STACK OPERATOR (MKST) AE.
This operator places a Mark Stack Control Werd in the B register
containing a pointer to the previous Mark Stack Control Word in

the stack. It adjusts the stack to push the MSCW into Memory.

This operator is used to mark the stack when entry into a procedure

is anticipated.

STUFF ENVIRONMENT (STFF) AF.

This operator changes a normal Indirect Reference Word to a stuffed
Indirect Reference Word so that a quantity may be referenced from

a different addressing environment. The displacement field locates
the MSCW below the quantity and the index field locates the quan-
tity relative to the MSCW. TFigure 7-7 shows a simplified flow

chart of the Stuff Environment operator.

If the word in the A register at the start of the operator is not
an Indirect Reference Word an invalid operand interrupt is set

and the operation is terminated.

If when creating this stuffed IRW other than a MSCW is accessed a

sequence error interrupt is set and the operation is terminated.

INSERT MARK STACK OPERATOR (IMKS) CF.
This operator builds a Mark Stack Control Word and places it below

the two top-of-stack quantities.

7-40

ADJ (1, 2)

IS
THIS
AN
OPERAND

IS
THIS
A
DESCRIPTOR

ST;/Vs I:E MARK DESCRIPTOR
s “A" REGISTER AS A COPY AND
s SAVE IT IN THE
. 1 "A" REGISTER
NORMAL oPER
W COMPLETE

OPER.
ARE THE COMPLETE

STACK NUMBERS

OBTAIN WORD THE SAME

ADDRESSED BY

IRW
OBTAIN WORD
ADDRESSED BY
SIRW
OBTAIN

STACK VECTOR
DESCRIPTOR AT
DO +2

IsiT
A VALID

STACK
NUMBER

OBTAIN WORD
ADDRESSED BY
SIRW

Figure 7-6. Flow of Evaluate Operator

INVALID
OPERAND
INTERRUP

ADJ (1, 2)

OBTAIN WORD
ADDRESSED
BY
“D" REGISTER
OBTAIN
STACK VECTOR
DESCRIPTOR AT
NO DO +2
YES ISIT
Y A INVALID
SAVE VALID STACK INDEX
MSCW NUMBER INTERRUPT
STACK
NUMBER
IS SAVE
STACK STACK
NUMBER REGISTER BASE
AND MSCW ADDRESS

STACK NO.

COMPUTE DISP. FIELD
SET LL FIELD TO ZERO
AND MARK IRW
AS STUFFED

OPER.
COMPLETE

Figure 7-7. Flow of Stuff Environment Operator

7-42

SECTION 8
VARIANT MODE OPERATION AND OPERATORS

GENERAL.

The Variant Mode of operation extends the number of operation codes.
These operators are not used as often and require two syllables;

the first is the "Escape TO 16 Bit Instruction” (VARI) operator.
When the VARI operator is encountered the following syllable is

the actual operation and the syllable pointer is positioned beyond
the two syllables. The VARI operator is valid only for the syl-

lables covered in this section.

Variant codes EO thru EF are detected and cause a programed op=
erator interrupt. All other unassigned variant codes cause no

action and result in a loop timer interrupt.
Variant Mode operations are both word and string-oriented operators.

OPERATORS.
SET TWO SINGLES TO DOUBLE (JOIN) 9542.

The operands in the A and B registers are combined to form a double-

precision operand that is left in the B and Y registers.

The operand in the A register is placed in the Y register. The A
register is marked empty and the B register tag field is set to

double-precision.

SET DOUBLE TO TWO SINGLES (SPLT) 9543.
The SP(DP) operand in the B register is changed to two single-pre-
cision operands which are placed in the A and the B registers, both

registers are marked full.

If the operand in the B register is a single operand, the A register
is set to zero and the A and B registers are marked full. Both the

A and the B register tag fields are set to single-precision.

If the operand in the B register is a double-precision operand the
Y register operand is placed in the A register and the tag fields

of both the A and B registers are set to single-precision.

IDLE UNTTIL INTERRUPT (IDLE) 954k,
This operator suspends processor program execution until restarted
by an external interrupt. IIHF is reset to allow external inter-

rupts.

SET INTERVAL TIMER (SINT) 9545. (Control State Oper.)

This operator places the 11 low-order bits of the B register into
the Interval Timer register, and arms the timer. The Interval
Timer decrements each 512 microseconds, - interrupting the proces-
sor when it reaches zero and is still armed. The Interval Timer

is disarmed when the processor is interrupted by an external inter-~

rupt.

The operand used to set the Interval Timer is integerized before
the 11 low-order bits are used. If the operand can not be integer-
ized an integer overflow interrupt is set and the operation is

terminated.

ENABLE EXTERNAL INTERRUPTS (EEXI) 9546.

This operator causes the processor to enter normal state allowing
it to respond to external interrupts. This is accomplished by
setting the Normal-Control State (NCSF) and the Interrupt Inhibit
(TTHF) flip flops to zero.

DISABLE EXTERNAL INTERRUPTS (DEXI) 9547.
This operator causes the processor to ignore external interrupts.
This is accomplished by setting the Interrupt Inhibit flip flop to

one and entering control state.

SCAN OPERATORS.

The Scan operators communicate between the processor and the I/0
Data Com., or General Control Subsystems via a two section scan bus.
One section consists of 32 address and control lines and the other

section, 48 data lines. The Scan-In functions read information

from the subsystem to the top of stack register in the processor.
The Scan-0Out functions write information from the top of stack

registers in the processor to the subsystem.

Parity is checked during transmission of both address and infor-
mation, and a SCAN-BUS parity error interrupt is generated if the

check fails.

READ TIME OF DAY CLOCK.

This operation transfers the time-of-day register from the multi-
plexor to the B register. It is important to note that if the
system has multiple multiplexors only one time-of-day clock is

active. MPX A responds when a multiplexor is mnot designated.

As this operation is initiated, the A register contains the code

word shown in figure 8-1,

0
15

0
14

19

18

0
17] 13
16] 12

ol ol ©of o

oo]

Figure 8-1. Read Time-0f-Day Code Word

The time-of-day word resulting from this operation is shown in
figure 8-2. The B register is marked full and the A register is

marked empty at the completion of this operation.

31 271 23 19 15[11

N
(oV]

o~
N

300 26] 224 18] 14| 10

TIME OF DAY
29, 25, 21 17, 13 9 51 1
4

28] 24| 201 16 121 8

Figure 8-2. Time of Day Word

READ GENERAL CONTROL ADAPTER.

This operation places the contents of one of the three general con-
trol registers into the B register. Figure 8-3 shows the format

of the function code word that is present in the A register as the

operation is initiated.

Figure 8-3. Read General Control Adapter Code Word

There are four General Control designations:

a. Z = 0001, GCA A
b. Z = 0010, GCA B
c. Z = 0100, GCA C
d. Z - 1000, GCA D

The N field can address or read one of four, U48-bit general control

adapter registers. The registers and their addresses are:
a. N = 00, Input Register.
b. N = 01, Interrupt Mask.
c. N = 10, Interrupt Register.
. N =11, Output Register.

The A register is marked empty, the B register contains the word
read from the general control adapter and is marked full as this

operation is completed.

READ RESULT DESCRIPTOR.
This operation places a result descriptor into the B register from
the multiplexor specified. The A register contains the code word

shown in figure 8-1.4,.

Figure 8-4. Read Result Descriptor Code Word
Multiplexor designations are:

a. Z
b. Z

]

0001, MPX A
0010, MPX B

At the completion of this operation the B register contains the re-
sult descriptor shown in figure 8-5. The B register is marked full
and the A register is marked empty. The result is not defined if

the multiplexor has no result descriptor.

43| 39| 35 151 1 7] 3
42) 38| 34 14 10} 6] 2
EMORY ADDRE ERROR FIELD

41 37 33 13 9 5 1
40| 34| 32 12 8] 4] 0

Figure 8-5. Result Descriptor

The result descriptor error field is divided into a standard error
field and unit error field. The unit error field bit assignments

are defined individually for each peripheral control:

a. Bit O, Exception.

b. Bit 1, Attention.

c. Bit 2, Busy.

d. Bit 3, Not ready.

e. Bit 4, Descriptor Error.

f. Bit 5, Memory Address

g. Bit 6, Memory Parity Error.
h. Bit 16, Memory Protect.

8-5

The "U.N." field in figure 8-5 is the unit number field. The "C.C."

field is the character count field.

READ INTERRUPT MASK.
This operation places the interrupt mask word into the B register
from the multiplexor specified. The A register contains the code

word shown in figure 8-6.

Figure 8-6. Read Interrupt Mask Code Word

0001, MPX A
0010, MPX B

1l

Lo

b. Z

The B register contains the interrupt mask word as shown in figure
8-7 at the completion of this operator. The B register is marked

full, the A register is marked empty.

Figure 8-7. Interrupt Mask Word
The mask bit assignments are:

a. Bit 0, Status Change.

b. Bit 1, D.C.P. - 1.
c. Bit 2, D.C.P. - 2.
d. Bit 3, D.C.P. - 3.

e. Bit 4, D.C.P. ~ L,
£f. Bit 9, I/0 finished.

The bit is set in the interrupt mask if recognition of the inter-

rupt is dinhibited.

READ INTERRUPT REGISTER.

This operation places an interrupt register word into the B regis-

ter from the multiplexor specified. The A register contains the

code word shown in figure 8-8.

TFigure 8-8. Read Interrupt Register Code Word

a. Z
b. Z

1l

0001 MPX A
0010 MPX B

The B register contains the interrupt register word as shown in

figure 8-9 at the completion of this operation and is marked full,
the A register is marked empty.

Figure 8-9. Interrupt Register Word

8-7

The interrupt register bit assignments are:

a.
b.
C.
d.
e.

f.

Bit
Bit
Bit
Bit
Bit
Bit

2,

Status Change.
D.C.P, - 1.
D.C.P. - 2.
D.C.P. - 3.
D.C.P. - L.
I/0 Finish.

The bit is set in the Interrupt Status Register if the interrupt is

pending.

READ INTERRUPT LITERAL.

This function places the interrupt literal word into the B register
from the multiplexor specified. The A register contains the code
word shown in figure 8-10.

Figure 8-10. Read Interrupt Literal Code Word

Multiplexor designations are:

a e

b.

]

Z

0001
0010

MPX A
MPX B

At the completion of this operation the B register contains the

interrupt literal

the A register is

word as shown in figure 8-11 and is marked full,

marked empty.

Figure 8-11.

Interrupt Literal Word

The interrupt literal bit assignments are:

a. Bits 3(4), 0001
0010

b. Bits 7(4), 0001
0010
0011
0100
1001
1111

MPX A.
MPX B.

D.C.P., -~ 1
D.C.P. - 2.
D.C.P. - 3
D.C.P. - L,

Multiplexor I/0 finished.
Status Change.

INTERROGATE PERIPHERAL STATUS.

This operation places one of eight possible status vector words

into the B register from one of the multiplexors. A B 6500 may

have up to 256 peripheral units designated in the system. This

configuration requires eight status vector words, each indicating

the ready status of 32 units. Vector word O interrogates the s

of units O through 31, vector 1 the status of units 32-63, etc.

The A register contains the code word shown in figure 8-12.

tatus

Figure 8-12. Interrogate Peripheral Status Code Word

Multiplexor designations are:

a. Bit O ;

1l

M O, All multiplexors are to respond.
M

1, Multiplexor designated by Z to respond.

b. Bit 4(4); z
7

0001 MPX A
0010 MPX B

]

c. Bits 11(3), N = Status vector number, O thru 7.

At completion of this operation, the B register contains the status
vector word addressed by the value of N with the status vector word
in a format shown in figure 8-13. The B register is marked full

and the A register is marked empty.

31 271 23] 19] 15 1

STATUS BITS
30] 26§ 22, 18 14 10

29| 25| 2 17 13 9

32 28] 24| 20) V6] 12 8

Figure 8-13. Status Vector Word

A status-change bit is assigned to each line printer or display

unit and indicates completion of paper-motion or input request.
The X bit in the status vector word is on if the word is wvalid.

INTERROGATE PERIPHERAL UNIT TYPE.

This operation places the peripheral unit type word into the B
register from one of the multiplexors. The A register contains the

code word shown in figure 8-1k,.

15| N
UNIT E
14, 10F

1]
NUMBER
13, 9

Figur
a. M
b. M

When M = 1,

a. Z
b. 4

1l

1l

Il

8-1h. Interrogate Peripheral Unit Type Code Word
0O, A1l multiplexors to respond.

1, Multiplexor designated by Z respond.

the Z field MPX designations are:

0001, MPX A.
0010, MPX B.

Upon completion of this operator the B register contains the peri-

pheral unit type word as shown in figure 8-15 and is marked fullg

the A register is marked empty.

Figure 8~15., TUnit Type Code Word

The following codes identify the units:

Code
a. 00
b. (0NN
C. 02

ok

Unit

No unit.

Disk File.
Display.
Paper-Tape Reader.

Code

e.
f£.
.
h.
i.
Jo
k.
1.
m.
n.
o.
P.
q.

05
06

07

09

oB(11)
0D(13)
OE(14)
OF(15)
1D(29)
IE(30)
1r(31)
26(38)
27(39)

Unit

Paper-Tape Punch.
Buffered, Line-Printer I,
Unbuffered,

Card Reader.
Card Punch.
Tape(7 track).

Magnetic
Magnetic
Magnetic
Magnetic
Magnetic
Magnetic
Buffered

Tape
Tape
Tape
Tape
Tape

Line-Printer,

(9
(9
(7
(9
(9

track N.R.Z.).
track P.E.).

Line-Printer,

track).

track N.R.Z.).
track P.E.).
EBCDIC-subset drum.
EBCDIC-subset drum.

Unbuffered Line-Printer,

INTERROGATE I/0 PATH.

BCL Drum-.
BCL Drum.

With status
vector in-
formation.

No status
vector in-
formation.

This operation determines the availability or absence of an access

to a specified unit.

The result word is placed in the B register.

The A register contains the code word shown in figure 8-16.

15

UNIT
14)

NUMBER |

13

16

Figure 8-16.

Primary Multiplexor designations are:

M = 0,
M= 1,

All multiplexors respond.

Multiplexor designated by Z to respond.

Interrogate I/0 Path Code Word

Multiplexors designations with M=1 are:

a. Z = 0001, Multiplexor A.
b. Z 0010, Multiplexor B.

il

At the completion of this operation the B register contains the
result word shown in figure 8-17 and is marked full; the A reg-

ister is marked empty.

Figure 8~17. TI/0 Path Result Word
The A bit indicates path availability:

a. A = 0, No path available.
b. A 1, Path is available.

The 7 field identifies the multiplexor when a path is available:

a.

b.

0001, Path is via multiplexor A.

i

0010, Path is via multiplexor B.

A data channel consists of a data switching channel and a peri-

pheral control.

SCAN OUT (SCNO) 954B.

Scan Out places bits 0-19 of the top-of-stack word on the scan-bus
address lines, and the second stack word on the scan-bus informa-

tion lines. An Invalid Address interrupt results if the address-

word is invalid. The A and B registers are empty upon successful

completion of a Scan-Out.

SET TIME OF DAY CLOCK.

This operation transfers the time of day information from the B
register to the time of day register in the multiplexor (figure 8—19).
The code word shown in figure 8-18 is in the A register. MPX A
responds when a multiplexor is not designated. An invalid-operand

interrupt results if the processor is not in control state.

At the completion of this operation the A and B registers are

marked empty.

Figure 8-18., Set Time of Day Clock Code Word

35| 31 277 23] 19 150 1 7 3
0

34] 30| 26 22| 18 4] 10 6 2
0 TIME OF DAY

33| 29 25 21, 17 13 9 5 1
0

321 28] 24/ 20{ 16 12 8 4 0

Figure 8-19. Time of Day Word

SET GENERAL CONTROL ADAPTER.

This operation sets one of three addressable general control adap-
ter registers from the word in the B register. The three general
control adapter registers that can be set are the output register,

interrupt mask register and the interrupt register.

The A register contains the code word shown in figure 8-20 and the
B register contains the output, the interrupt mask or the interrupt

word.

50

49

48

Figure 8-20. Set General Control Adapter Code Word
Multiplexor designations are:

a. V4

0001, MPX A.
0010, MPX B.

(o2
Il

Output, interrupt, or interrupt mask register designations are:

a. N = 00, Output.
b. N = 01, Interrupt mask register.
c. N = 10, Interrupt register.

At the completion of this operator both the A and B registers are
marked empty.

INITIATE I/0. (Control State Only).
This operation initiates an I/O unit specified by the code word

in the A register. The code word format is shown in figure 8-21.

Figure 8-21. TInitiate I/0 Code Word

The B register holds the area descriptor and has the format shown
in figure 8-22. The area descriptor points to the base address

of the I/0 area where the I/0 control word is located (figure 8-23).

At completion of this operator the A and B registers are marked

empty.
35| 3 27 19] 150 N 7 3
0 BUFFER AREA
34, 30, 26 18] 14, 10, 6 2
} , }
0 LENGTH BASE ADDRESS
‘ 33, 29, 25 17, 13 9 5 1
0
32| 28| 24 16] 12 8 4 0

Figure 8-22. Area Descriptor

The I/0 control word pointed to by the area descriptor is trans-
ferred to the multiplexor. It is divided into a standard control
field and a unit control field. The unit control field bit assign-

ments are defined individually for each control:

47| 43
0 STANDARD
46, 42,
T 1§
0 CONTROL
45, 41,
1 T
0 FIELD
44; 40,

Figure 8-23. 1I/0 Control Word

Bit Assignment Bit=0 Bit=1

a. 47, Reserved _____ ____.
b. L6, Reserved . -
c. 45, Attention No Yes
d. 44, Read/write write read
e. 43, Memory Inhibit No Yes
£. 42, Translate No Yes
g. 41, Frame length 6-bit 8-bit
h. 40, Memory protect No Yes
i. 39, Backward transfer No Yes
Jj. 38, Test No Yes
k. 37-36, Tag field transfer 37=1 36=0
1. 37-36, Store program tag 37=0 36=1
m. 37-36, Store single-precision tag 37=0 36=0
n. 37-36, Store double-precision tag 37=1 36=1

READ PROCESSOR IDENTIFICATION (WHOI) 954E.

This operator places in the A register a single-precision operand
containing the value of the processor ID register. The register is
marked full,

INTERRUPT OTHER PROCESSOR (HEYU) O54F,
This operator sets the processor interrupt register of the other

processor.

OCCURS INDEX (OCRX) 9585,

This operator places in the B register a new index value calculated
from the Index Control Word (ICW) in the A register (figure 8-2U4)
and the operand in the B register (figure 8-25).

47 43 39 31 27 23 3
0
46 42 38 30 26 22 2
0 LENGTH SIZE
45 4] 37 29 25 21 1
0
44 40 36 28| 24 20 0
Figure 8-24. Index Control Word
47 43 39 35 31 27 23 19 15 11 7 3
46 42 38 34 30 26 22 18 14 10 6 2
INDEX
45 41 37 33 29 25 21 17 13 9 5 1
44 40 36 32 28 24 20 16 12 8 4 0

Figure 8-25. Index Word

The index word in the B register is integerized: if the index is
greater than the maximum integer value (549,755,813,887) the in-

teger overflow interrupt is set and the operation terminated.

The length field of the ICW is multiplied by the index value minus
1, and that value is added to the offset field of the ICW. This
result is the new index. The A register is marked empty and the

B register is marked full.

If either the ICW or the operand has a value of zero, the invalid-

index interrupt is set and the operation is terminated.

If the index value is less than zero or greater than the size field
of the ICW, the invalid-index interrupt is set and the operation

is terminated.

INTEGERIZED, ROUNDED, DOUBLE-PRECISION (NTGD) 9587.

This operator creates a double-precision, rounded integer in the
B register from the operand in the B register. The B register is
marked full. If the word in the B register at the start of this
operator is not an operand, the invalid-operand interrupt is set

and the operation is terminated.

If the operand in the B register is larger than 8126-1 in absolute
value, the integer-overflow interrupt is set and the operation is

terminated.

The B register is marked as a double-precision operand (tag bits

set to 010) and the exponent is set to 13.

LEADING ONE TEST (LOG2) 958B.
This operator locates the most significant "one" bit of the word
in the B register and places the location of that bit into the B

register (bit number + 1).
If a one bit is not sensed the B register is set to zero.
The B register is marked full.

MOVE TO STACK (MVST) 95AF.
This operator causes the processor's environment (or addressing
space) to be moved from the current stack to the program stack

specified by the operand in the B register.

The operator builds a Top of Stack Control Word (figure 8-26) and
places it at the base of the current stack as addressed by the Base

of Stack Register.

The operand in the B register is integerized and checked for in-
valid index against the stack vector. The value in the B register
is added to the address field of the stack vector Descriptor

(at D[O]+2), to address the descriptor for the new stack.

DSF DFF

ES - EXTERNAL SIGN FLIP-FLOP

O - OVERFLOW FLIP-FLOP

T - TOGGLE, TRUE-FALSE FLIP-FLOP

F - FLOAT FLIP-FLOP

DSF - DELTA S-REGISTER FIELD; VALUE OF rS RELATIVE TO BOSR
N - NORMAL-CONTROL STATE FLIP-FLOP

LL - ADDRESSING LEVEL

DFF - DELTA F-REGISTER FIELD; VALUE OF rF RELATIVE TO S

Figure 8-26. Top of Stack Control Word (TSCW)

The Data Descriptor for the requested stack is accessed. If its
presence bit is on, the address field is placed into the Base of
Stack Register. The Top of Stack Control Word is brought up and
the stack is marked "active" by storing the processor ID at the
base of the stack. The TSCW is distributed and the D registers

are updated.

If during the integerization the operand in the B register is too
large, the integer-overflow interrupt is set and the operation is

terminated.

If the index value is less than zero or greater than the length
field of the Data Descriptor for the stack vector array, an invalid

index interrupt is set and the operation is terminated.

SET TAG FIELD (STAG) 95B4.

This operator sets the tag field (bits 50:3) in the B register to
the value of bits 2:3 of the operand in the A register. At the
completion of the operation the A register is marked empty and the

B register is left full.

8-20

READ TAG FIELD (RTAG) 95B5.

This operator replaces the word in the A register with a single-
precision operand equal to the tag field of that word. The tag
bits are placed in bits 2:3. The A register is marked full.

ROTATE STACK UP (RSUP) 95B6).
This operator permutes the top three operands of the stack so that
the first operand has become second, the second has become the

third, and the third has become the first (see figure 8-27).

BEFORE ROTATION AFTER ROTATION
rA WORD ONE rA WORD THREE
B WORD TWO B WORD ONE
S— | WORD THREE S— WORD TWO

Figure 8-27. Stack Rotation Up

ROTATE STACK DOWN (RSDN) 95B7.
This operator permutes the top three operands of the stack so that
the first has become third, the second has become the first, and

the third has become the second (see figure 8-28).

BEFORE ROTATION AFTER ROTATION
rA WORD ONE rA WORD TWO
rB WORD TWO B WORD THREE
S—e WORD THREE S—> WORD ONE

Figure 8-28. Stack Rotation Down

READ PROCESSOR REGISTER (RPRR) 95BS8,
This operator reads the contents of one of the eight Base registers,
eight Index registers or one of the 32 D registers into the A

register.

The six low order bits of the A register selects the processor reg-

ister to be read.

The decoding of these six bits is as follows:

a. Bits 5 & 4 = 10 Index Register

b. Bits 2:3 = O, = PIR
=1, = SIR
= 2, = DIR
= 3, = TIR, BUF3
= 4, = TOSR
= 5, = BOSR
=6, =
=7, = BUF
c. Bits 5 & 4 = 11 = Base Register
d. Bits 2:3= 0, = PBR
=1, = IBR
= 2, = DBR
= 3, = TBR, BUF2
:Ll, = S
= 5, = SNR
= 6, = PDR
=7, = TEMP

If Bit 5 is zero, bits 4:5 select the D register equal to the
binary value of the bits. (i.e., Bits 4:5 = 00101 selects D reg-
ister 5.)

The A register at the completion of this operation contains the

contents of the register that was selected and is marked full.

SET PROCESSOR REGISTER (SPRR) 95B9.

This operator places the contents of the address field of the A
register into one of the eight Base registers, eight Index regis-
ters or 32 D registers selected by the six low-order bits of the

word in the B register.

The decoding of the six bits is the same as in the Read Processor

Register operator.
The A and B registers are marked empty.
READ WITH LOCK (RDLK) 95BA.

This operator performs the same operation as the Overwrite opera-
tor (see section 7) with the exception that the word which was in

memory before the overwriting is left in the B register.

COUNT BINARY ONES (CBON) 95BB.
This operator counts the number of omne bits in the S.P.(D.P.) op-
erand in the A register. At the completion of the operation the

total count is left in the A register with the register marked full.

LOAD TRANSPARENT (LODT) 95BC.

This operator performs a Load operator (see section 7) if the word
in the A register is a Data Descriptor or an Indirect Reference Word.
If it is not either of these, bits 19:20 of the A register are used
as the address to bring an operand to the A register. Copy bit

action does not occur.

LINKED LIST LOOKUP (LLLU) 95BD.

This operator searches a linked list of worxrds.

The operator starts with an operand in the top of the stack as the
index pointer. The second word in the stack is a non-indexed Data
Descriptor to the array containing the linked list. The third word

in the stack is an operand that is the argument.

The base address of the linked 1list, the length of the list and

the argument value are saved throughout the entire operator process.

The word addressed by the base address plus the index value is read
and checked for a value of zero in the address (Link) portion of
the word (zero denotes the end of the linked list). TIf the link
is non-zero, bits 47:28 are compared to the argument value. Ir

the argument of the linked-list word is less than the argument
value, the actions of this paragraph are repeated using the link as

the new index.

When the value of the argument field of the linked-list word is
equal to or greater than the argument value the operation is com-
bPlete. The index pointing to the word whose link points to the
argument which satisfies the test is left in the A register and is
marked full.

If the value of the link portion of the linked 1list word is equal
to zero, the A register is set to minus one (—l), and marked full

as the operation is completed.

I1f the index value in the linked list word is greater than the
length value from the descriptor, an invalid index interrupt is

set and the operation is terminated.

When the first word in the stack at the start of this operator is
not an operand an invalid-operand interrupt is set and the opera-

tion is terminated.

If the Data Descriptor has been indexed, the invalid-operand inter-

rupt is set and the operation is terminated.
MASKED SEARCH FOR EQUAL (SRCH) 95BE.

At the start of this operator the word in the A register must be a
Data Descriptor. The operand in the B register is a 51 bit mask.
The Data Descriptor in the A register and the mask in the B regis-

ter are saved and the 51 bit argument word is pPlaced into the B

register. If the descriptor is indexable (bit 45 equal to zero) ,
the index bit (bit 45) is set and omne is subtracted from the length
field. TIf bit 45 is equal to one the data descriptor is already

indexed, therefore, that index is the starting wvalue.

The word addressed by the descriptor is placed in the A register
and ANDed with the mask word. The result of this AND function is

tested to determine if it is identical to the argument word.

If the comparison is not equal the index field of the descriptor
is decreased by one and the operation is repeated. If the index
field is equal to zero, the A register is set to a minus one value

and marked full. The B register is marked empty.

If an equal comparison is made, the A register contains the index
pointing at the last word compared and is marked full. The B

register is marked empty.

UNPACK ABSOLUTE, DESTRUCTIVE (UABD) 95DL1.

This operator unpacks a string of L-bit digits into 6-bit characters
or 8-bit bytes. At the start of the operator the word in the A
register defines the length of the operand in the B register which

is the string of digits to be unpacked.

The third word in the stack is a string descriptor addressing the

destination of the string.

As the specified number of digits are transferred to the destinatiomn,

zone fill is as follows:

a. If the destination size is 6 bits (BCL), the characters are
transferred to the destination with the two zone bits set

to zero.

b. TIf the destination size is 8 bits (EBCDIC) the bytes are
transferred to the destination string with the four zone

bits set to 1111.

C. If the destination size was O, it is set to 8-bits and
handled as in (b) above.

UNPACK ABSOLUTE, UPDATE (UABU) 95D9.
This operator performs an Unpack Absolute operation, and at the
completion of the operation, the destination pointer is updated

and left in the stack.

UNPACK SIGNED, DESTRUCTIVE (USND) 95DO.

This operator performs an Unpack operation, with an added function,
if the External Sign flip flop is set then a zone of 10 is set in
the last character for 6-bit or a zone of 1101 is set in the last
byte for 8-bit.

If the destination size is 4-bit, the first digit position of the
destination string is set to 1101 if the External Sign flip flop
is set. If the External Sign flip flop is zero the first digit
is set to 1100,

UNPACK SIGNED, UPDATE (USNU) 95DS8.
This operator performs an Unpack Signed operation, and at the com-

pletion of the operator, updates the destination pointer.

TRANSFER WHILE TRUE, DESTRUCTIVE (TWTLD) 95D3.

This operator transfers characters from the source string to the
destination string for the number of characters specified by the
length operand while the stated relationship is met. If the rela-
tionship is not met the transfer is terminated at that point. The
relationship is determined by using the source character to index

a table. If the bit indexed is a one the relationship is true.

The operator uses the top four words in the stack to set up regis-

ters.

The stack words are used as follows: The top word addresses the table;
the second word is the length of the string to be transferred; the
third word in the stack is an operand or a descriptor, addressing

the source string or a single-precision operand which is the source
stringy the fourth word in the stack is a descriptor pointing at

the destination string.

8~-26

The table is indexed as follows to obtain the decision bit:

The source character is expanded to eight bits, if necessary, by
appending two or four leading zero bits. The three high-order bits
of these eight select a word from the table, indexing the table
pointer. The remaining five bits of the expanded source character

select a bit from this word by their value.

TRANSFER WHILE TRUE, UPDATE (TWTU) 95DB.
This operator performs a Transfer While True operation and updates

the source pointer, the destination pointer and repeat count.

If all the characters specified by the length field are transferred,
the True/False flip flop is set to one (true); otherwise, it is

set to zero (false).

TRANSFER WHILE FALSE, DESTRUCTIVE (TWFD) 95D2.
This operator performs a Transfer While operation testing for a

zero bit in the table.
TRANSFER WHILE FALSE, UPDATE (TWFU) 95DA.

This operator performs a Transfer While False operation, updating

the source pointer, the destination pointer, and the repeat count.

If all the characters specified by the length field are transferred,
the True/False flip flop is set to one (true); otherwise, it is set

to zero (false).

TRANSLATE (TRNS) 95D7.
This operator translates the number of characters specified as they

are transferred from the source string to the destination string.

The translation uses a table containing the translated characters.
The word in the top of the stack is a descriptor that addresses
the translation table. The second operand in the stack specifies
the length of the string. The third word in the stack is a des-
criptor addressing the source string (or an operand which is the

source string) and the fourth word in the stack is a descriptor

addressing the destination string. The source and destination are

updated at the end of the operation.

The translation occurs as follows: The specified string character
is used as an index into the table to locate a character. The

located character is transferred to the destination string.

The least significant 32 bits of each table word provide 4 eight

bit characters. The table sizes are as follows:
a. U-bit digits provide a 4 word table length.
b. 6-bit characters provide a 16 word table length.

c. 8«bit bytes provide a 64 word table length.

SCAN WHILE GREATER, DESTRUCTIVE (SGTD) 95F2.
This operator scans a string while the characters in the source
string are greater than a delimiter character; or until the num-

ber of characters specified have been scanned.

At the completion of this operator if all the characters have been
scanned the True/False flip flop is set to one. If the scan was
stopped by the delimiter test before the end of the string the True/
False flip flop is set to zero.

At the start of this operator the delimiter character is right
justified in the top word of the stack. The length of the string
to be scanned is the second word of the stack. The source pointer

is the third word in the stack.

If the second word in the stack is a descriptor, it is the source

pointer and the length of the character string is set to 1,048,575.
SCAN WHILE GREATER, UPDATE (SGTU) 95FA.

This operator performs a Scan While Greater operation, and updates

the count and the source pointer. The updated source pointer lo-

cates the character that stopped the scan. The number of characters
not scanned is placed in the A register, and the register marked

full.

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE (SGED) 95F1.
This operator performs a Scan While operation while the characters
in the source string are equal to or greater than the delimiter

character.

SCAN WHILE GREATER OR EQUAL, UPDATE (SEGU) 95F9.
This operator performs a Scan While Greater or Equal operation and

updates the count and the source pointer.

SCAN WHILE EQUAL, DESTRUCTIVE (SEQD) 95FL,
This operator performs a Scan While operation while the characters

in the source string are equal to the delimiter character,

SCAN WHILE EQUAL, UPDATE (SEQU) 95FC.
This operator performs a Scan While Equal operation and updates the

count and the source pointer.

SCAN WHTILE LESS OR EQUAL, DESTRUCTIVE (SLED) 95F3.
This operator performs a Scan While operation while the characters
in the source string are equal to or less than the delimiter char-

acter.

SCAN WHILE LESS OR EQUAL, UPDATE (SLEU) 95FB.
This operator performs a Scan While Less or Equal operation and

updates the count and source pointer.

SCAN WHILE LESS, DESTRUCTIVE (SLSD) 95FO.
This operator performs a Scan While operation while the characters

in the source string are less than the delimiter character.

SCAN WHILE LESS, UPDATE (SLSU) 95F8.
This operator performs a Scan While Less operation, and updates

the count and the source pointer.

SCAN WHILE NOT EQUAL, DESTRUCTIVE (SNED) 95F5.
This operator performs a Scan While operation while the characters

in the source string are not equal to the delimiter character.

SCAN WHILE NOT EQUAL, UPDATE (SNEU) 95FD.
This operator performs a Scan While Not Equal operation, and

updates the count and the source pointer.

SCAN WHILE TRUE, DESTRUCTIVE (SWTD) 95D5.

This operator uses each source character as an index into a table
to locate a bit in the same fashion as the transfer while True
operators. If the bit located is a one, the relationship is true

and the scan continues.

The first word in the stack is a descriptor addressing the table.
The second and third words in the stack are as they are for all

Scan While operators.

SCAN WHILE TRUE, UPDATE (SWTU) 95DD.
This operator performs a Scan While True operation and updates the
count and the source pointer. The number of characters not scanned

is placed in the A register.

SCAN WHILE FALSE, DESTRUCTIVE (SWFD) 95Dk,
This operator performs a Scan While False operation, except the re-

lation is true if the bit found by indexing into the table is zero.

SCAN WHILE FALSE, UPDATE (SWFU) 95DC.
This operator performs a Scan While False operation, and updates

the count and the source pointer.

8-30

SECTION 9
EDIT MODE OPERATION AND OPERATORS

GENERAL.

The purpose of the Edit Mode operators is to perform editing func-
tions on strings of data. The editing functions are those which
are normally involved in preparing information for output. They
include such operators as Move, Insert, and Skip, in the form of
micro-operators in either the program string or in a separate table.
In the program string, they are single micro-operators and are
entered by use of the Execute Single Micro or Single Pointer oper-
ators (see section 7). If the micro-operators are in a table, the
table becomes the program string that is to be executed. This
table is entered by means of the Table Enter Edit operators (see
section 7), and is exited through the End Edit micro-operator as

defined later in this section.

When using any of the Edit micro-operators the proper pointers must
be in the stack. Each of the micro-operators assume that il a
source pointer is used, a source pointer String Descriptor or the
source string itself as an operand will be present in the stack.

If a destination pointer is used a String Descriptor must be pre-

sent in the stack.

If the source or destination data has the memory protect bit (bit
48) equal to one, the segmented-array interrupt is set and the

current micro-operator is terminated.

EDIT MODE OPERATORS.

The Edit Mode operators are described in the following paragraphs

of this section.

MOVE CHARACTERS (MCHR) D7.
This micro-operator transfers characters from the source string

to the destination string.

If the operator was entered by the Table Enter Edit operator (see

section 7), the number of characters to be transferred is specified

by the syllable following the operator syllable.

If the operator is entered by the Execute Single Micro operator
(see section 7), the number of characters to be transferred is

specified by the operand in the top of the stack.

MOVE NUMERIC UNCONDITIONAL (MVNU) D6.

This micro-operator transfers the four low-order bits of the char-
acters of the source string to the destination string. If the
destination string character size is 6 bits (BCL) the zone bits
are set to 00, If the destination string character size is 8 bits

(EBCDIC) the zone bits are set to 1111.

If the operator was entered by use of the Table Enter Edit operator
(see section 7) the number of characters to be transferred is

specified by the syllable following the operator syllable.

If the operator is entered by executing the Execute Single Micro
operator (see section 7), the number of characters to be trans-

ferred is specified by the operand in the top of the stack.

MOVE WITH INSERT (MINS) DO.
This micro-operator performs a Move Numeric Unconditional or an

insert operation under the control of the Float flip flop.

In Table Edit mode the second syllable is the repeat value and the
third syllable is the character to be inserted under control of the
Float flip flop.

In Execute Single Micro mode the repeat field value is the top
word of the stack and the insert character is in the syllable fol-

lowing the micro-operator syllable.

If the Float flip flop is zero and the numeric portion of the
source characters is zero, the insert character is moved to the

destination string.

If the Float flip flop is zero, or if the Float flip flop is on,

9-2

the Float flip flop is set and the source character, with numeric

zone, is moved to the destination.

The number of characters transferred from the source string to the

destination string is defined by the repeat value.

MOVE WITH FLOAT (MFLT) DI1.

Tn Table Edit mode the second syllable is the repeat value (the
number of characters to transfer). The third, fourth, and fifth
syllables are the three insert characters. In single-micro mode,
the three insert characters are in the second, third, and fourth

syllables.

If the Float flip flop is zero and the numeric portion of the char-
acter in the source string is zero, the first-insert character is

transferred to the destination string.

If the Float flip flop is zero and the numeric portion of the char-
acter in the source string is not zero the Float flip flop is set.
If the External Sign flip flop is a one, the second-insert charac-
ter is tramnsferred to the destination string. If the External

Sign flip flop is zero the third-insert character is transferred to
the destination string. Then the numeric version of the source

character is transferred.

If the Float flip flop is one the numeric equivalent of the source

character is transferred to the destination.

This operation continues for the number of characters defined by

the repeat field wvalue.

This operator can be entered by the Execute Single Micro operator,

with the repeat field value in the top word of the stack.

SKTP FORWARD SOURCE CHARACTERS (SFSC) D2.

This micro-operator increments the source pointer registers.

If this micro-operator or any of the following Skip micro-operators

is entered by the execution of the Execute Single Micro operator
the number of characters to be skipped is specified by the operand
in the top of the stack. If entry is by the execution of the
Table Enter Edit operators, the number of characters to be skipped

is specified by the syllable following the micro-operator syllable.

SKIP REVERSE SOURCE CHARACTERS (SRSC) D3.

This micro-operator decrements the source pointer registers.

Also see Skip Forward Source Characters micro-opervator, second

paragraph.

SKIP FORWARD DESTINATION CHARACTERS (SFDC) DA.

This micro-operator increments the destination pointer registers.

SKIP REVERSE DESTINATTION CHARACTERS (SRDC) DB.

This micro-operator decrements the destination pointer registers.

RESET FLOAT (RSTF) D.4.

This micro-operator sets the Float flip flop to =zero.

END FLOAT (ENDF) D5.
This micro-operator transfers the character in the second syllable
of this operator to the destination string if the Float flip flop

is zero and the External Sign flip flop is one.

If the Float flip flop is zero and the External Sign flip flop is
zero then the character in the third syllable of this operator is

transferred.

If the Float flip flop is equal to one, then it is reset and no

characters are transferred.

INSERT UNCONDITIONAL (INSU) DC.

This micro-operator places an insert character into the destination
string the number of times specified by the repeat value. When
entered by a Table Enter Edit operator, the REPEAT is in the sylla-
ble following the micro-operator syllable, and the insert character

is in the next syllable.

9-4

If this micro-operator is entered by an Execute Single Micro op-
erator, the character to be inserted is in the second syllable and
the repeat value is specified by the operand that is in the top of
the stack.

INSERT CONDITIONAL (INSC) DD.
This micro-operator inserts a string consisting of omne of two char-
acters into the destination. The length of the string is given by

the repeat value from the table or the stack.

If the Float f£lip flop is zero the first insert character is in-

serted into the destination string.

If the Float flip flop is one the second insert character is in-

serted into the destination string.

The insert characters follow the repeat value syllable in Table
Enter Edit operation or the micro-operator syllable in Execute

Single Micro operations.

INSERT DISPLAY SIGN (INSG) D9.

This micro-operator places in the destination string the character
defined by the syllable following the micro-operator syllable if
the External Sign flip flop is equal to one.

If the External Sign flip flop is equal to zero this operator places
in the destination string the character defined by the third syll-

able of this operator.

INSERT OVERPUNCH (INOP) DS8.

This micro-operator places a sign overpunch in the destination string
character of either 10 for BCL or 1101 for EBCDIC if the External
Sign flip flop is equal to one.

If the External Sign flip flop is equal to zero the operator leaves

the destination string character unaltered.

9-5

END EDIT (ENDE) DE.
This operator terminates a string of Edit micro-operators in Table

Enter Edit operation mode.

The micro program string in the table must end with the End Edit

operator.

SECTION 10
INPUT/OUTPUT MULTIPLEXOR AND PERIPHERAL CONTROLS

GENERAL,

The internal processing speed of the B 6500 is complemented by
equally powerful input/output (I/0) hardware to achieve a well-
balanced computing system. Transfer of all data between memory
and all peripheral devices is controlled by the I/0 multiplexor,

independent of the One or two of these multiplexors

processor.
a B 6500,

simultaneously,

may be attached to each one capable of processing up to

ten I/O operations from any of 28 peripheral

devices.

OPERATION.

A peripheral control bus extends from the multiplexor to the
various peripheral devices. Attached along this bus are from
one to 20 peripheral controls (figure 10-1). Information in one
or two-byte groups can be sent along the bus to or from any peri-

pheral control every 1.2 microseconds.

11010 1/0 -
CARD LINE UNITS OR SUB- N
READER PRINT SYSTEMS REQ.
SMALL
8 9112 B 9343-1 PERIPH. CONTLS. B 9213
T T
MODEL | MODEL MODEL MODEL
B 6110 B 6240 B 6340 B 6210
17010
pP.C. p.C. P.C. P.C.
INPUT/OUTPUT DATA « PERIPH. CONTLS.
MULTIPLEXOR SWITCH
CHNLS. APPROP. | APPROP. 170 10 APPROP. | MODEL
TAPE TAPE TAPE B 6373
P.C. P.C. P.C.
| |
i 1 T
CONSOLE
DISPLAY

Figure 10-1.

M/T
CLUSTER

* Total per side is 10 with o
maximum of 5 large per side

TERMINAL
B 9342-1

1 TO 10 1/0 UNITS OR
SUBSYSTEMS REQ. LARGE
PERIPH. CONTLS.

Input/Output Subsystem

2 X 10 EXCH.

G

10-1

Either processor can initiate an operation on either multiplexor,

in a two processor/two multiplexor configuration, by executing a
Scan In/Out instruction. This instruction transfers an address

Word and a Data Word to the multiplexor. If the address Word spe-
cifies an Initiate I/0 operation, then the data word is an Area
Descriptor. The multiplexor fetches the I/0 Control Word located

at the Area Base Address (from the Area Descriptor) and initiates
the peripheral operation. Upon completion, the I/O Finish Interrupt
is set. The Result Descriptor is returned when processor executes

a Read Result Descriptor command.

DESCRIPTOR FORMATS.
The formats of the Address Word, Area Descriptor, and I/O Control

Word, respectively, are illustrated in figure 10-2,

47 0 I 0
UNIT
OlnNno. [F|2Z
0
T M
44 20(wiiz]s [L,

ADDRESS WORD

19
1 BUFFER AREA
N LENGTH BASE
s WORDS ADDRESS
20 0
AREA DESCRIPTOR
3| 3
45
44 | 40| 36 | 32 0

/O CONTROL WORD

Figure 10-2., I/0 Descriptor Formats

10-2

ADDRESS WORD.

When M of the address word equals 0, all active multiplexors re-
spond to the descriptor. When M equals 1, the multiplexor spe-
cified by the Z field responds to the command. (The 2-bit 7z field
designates a specific multiplexor.) When Z equals Ol and M is 1,
multiplexor A is selected. When Z equals 10 and M is 1, multiplexor
B is selected. All other bit combinations in the Z field are not

used. F-field codes are listed in table 10~1.

AREA DESCRIPTOR.
The area base address specifies the base address of the memory area.
Buffer length indicates the size of the area. The first word

of the area is the I/0 Control Word.

I/0 CONTROL WORD.

The I/0 Control Word contains a standard control field and a unit
control field. Bits 35 - 0, the unit control field, are unique
for each peripheral control. Bits 45 - 36, the standard control

field, are defined as follows:

Bit Assignment Bit = O Bit = 1
Ls Attention No Yes
o Read/Write Write Read
L3 Memory Inhibit No Yes
42 Translate In Unit No Yes
41 Frame Length 6-bit 8-bit
4o Memory Protect No Yes
39 Backward No Yes
38 Test No Yes
37 1001 (Tag bit
36 0101 field)

Store double-precision.

Store single-precision.

Store program tags.

Tag field transfer.

10-3

Table 10-1
F Field Codes

Scan F Bits| Mnem. Multiplexor
Oper. 8765 Operation
0000 TOIL Designated MPX to Initiate an I/0 Operation.
OUT Bits 16 through 9 contain Unit Designate.
0011 STOD Set the Time Of Day Register.
0100 SSIM Set the Interrupt Mask Register.
0000 IIOP Interrogate I/O path for upcoming Initiate
I/0 operation.
0001 IPST Interrogate Peripheral Status of the desig-
nated Status Vector.
0010 Read Result Descriptor.
IN
0011 RTOD Read Time of Day Register.
0100 SRIR Read Interrupt Register or Interrupt Mask
SRIM Register.
0110 IpPUT Interrogate Peripheral Unit Type.
1111 SRIL Read Interrupt Literal.

RESULT DESCRIPTOR.

The format of the Result Descriptor is shown in figure 10-3.

Bits 47:20 indicate the final memory address at which the I/0

operation terminated.

Bits 16:17 the error field, is subdivided

into a standard error field and a unit error field. The unit

error field bit assignments, bits 15:9 are unique for each peri-

pheral control.

The standard error field bit assignments, bits

6:7 and 16 are as follows:

10-4

=
He
o

Assignment

Memory Protection Error
Memory Parity Error
Memory Address Error
Descriptor Error

Not Ready

Busy

Attention

O R M WLV F U & O

Exception

HA
cHa
(o] UNIT
MEMORY U NO. ERROR
ADDRESS N FIELD
T
44 28| 24 16 0

Figure 10-3. Result Descriptor Format

PERIPHERAL UNITS AND ASSOCIATED PERIPHERAL CONTROLS.
Up to 256 I/O devices may be attached to a 2 multiplexor system.

These devices communicate with the multiplexor through a maximum
of 20 peripheral controls. One peripheral control cabinet houses
10 controls, 5 large and 5 small., Table 10-2 lists the peripheral
controls available excluding magnetic tape and disk file which are

listed separately.

CONSOLE.

The Console Control Center (figure 10-4) includes the Supervisory
Display and Keyboard, which allows the operator to communicate with
the system. The B 6340 Single Line Control connects the Console
Control Center and the multiplexor. Up to eight units can be ser-
viced by one Single line control. Figures 10-5 and 10-6 depict the
I/0 Control word and the result descriptor for the Single Line

Control.

10-5

PC PC
Style Peripheral Units tyle Type Peripheral Controls
B 9111 800 CPM Card Reader B 6110 Smali Card Reader Control
B 9112 1400 CPM Card Reader B 6110 Small Card Reader Control
B 9120 500-1000 CPS Paper Tape Reader B 6120 Small Paper Tape Reader Control
LB 9213 300 CPM Punch B 6210 Small Card Punch Control
B 9220 100 CPS Paper Tape Punch B 6220 Small Paper Tape Punch Control
B 9242-1 860 LPM Printer (120 Prt. Pos.) B 6240 Small Line Printer Control
B 9243-1 1100 LPM Printer(120 Prt.Pos.,44 Ch.}{ B 6240 Small Line Printer Control
B 9342-1 Console Display Terminal B 6340 Large Console Display & Optional
B 9342-2 Optional Printer/Keyboard Printer

Table 10~-2, Peripherals and Controls

Figure 10-4. Console Control Center

47 27 15 ||z
14 |10 |6
25 17113 |9
28 | 24 16 | 12
6:7 Standard Error Field
7 Memory Access Error
7 & 9 Information Parity Error
10 Control Message
11 No ETX
12 Unit ID - B9342-1

10-6

15 Time Out

16 Memory Protect Error (Read Only)
24 ¢8 TUnit Designate
27:3 Char. Count
4'7:20 Memory Address

Figure 10-5. Single Line Control Result Descriptor

43 | 39

42 | 38

41 | 37

44 | 40 | 36

45 = ATTENTION

44 = 1 READ Lo = 0
= 0 WRITE 39 = 0
43z = 0 38 = 0
b2 = 0 37 =0
41 = 1 8 bit 36 = 0 } tag bit field

Figure 10-6. Single Line Control I/O Control Word

CARD READER.

The B 6110 Card Reader Control can be used with either the B 9111
(800 cpm) or B 9112 (1400 cpm) card readers (figure 10-7). The
input hopper and the output stacker have a capacity of 2400 cards
each. The card readers accept alpha, binary or EBCDIC card codes.
Alpha card code is converted to BCL by the card reader, which is
then converted into internal BCL or EBCDIC by translators in the
multiplexor. EBCDIC card code is converted to internal EBCDIC by
the card reader control (B 6110). When reading binary punched

cards no translation is made.

10-7

The card readers can read 51, 60, or 80 column punched cards.
Optional features include the ability to read 40 column Treasury
checks and round holes in Postal Money Orders. Cards of varying
thickness are acceptable; however, card thickness and length must
be consistent during any one run. Figures 10-8 and 10-9 depict
the I/0 control word and the result descriptor for card reader

operations.

Figure 10-7. Card Reader

42

41 | 37

44 | 40 | 36

Figure 10-8. Card Read I/0 Control Word

10-8

L = 1
40 = 1 Memory protect
39 =0
38 = 0
Alpha EBCDIC
bz =1 hz2 = 0
L1 = 0 6 bit L1 = 1
41 =1 8 bit
Binary
L2 = 0 37 tag bit
41 =0 36 field
37 = 0
Figure 10-8. Card Read I/O Control Word (cont)
47 27 7
0|6
25 17 9
28 | 24 16 8 0
6:7 Standard Error Field
7 Memory Access Error
8 Read Check
7 & 9 Validity Error

10 Control card (alpha only)
16 Memory Protect Error
24:8 Unit Designate
27:3 Character Count
47220 Memory Address

Figure 10-9. Card Read Result Descriptor

CARD PUNCH.

The B 6210 Card Punch Control is used with the B 9213 Card Punch
(figure 10-10), which can punch either binary, alpha, or EBCDIC

code at a rate of 300 cards per minute. Pre-punched cards may be
used, but previously punched columns cannot be repunched. The

card punch has a 1000 card capacity input hopper and three output
stackers (primary, auxiliary and error) which have a capacity of
1200 cards each. Stacker selection is accomplished programmatically.
Figures 10-11 and 10-12 depict the I/O control word and the result

descriptor for the card punch operation.

Figure 10-10, Card Punch

10-10

Ly = 0
38 = 0
32 = 1
Alpha

h2 = 1
i = 0
b1 =1
Binary
L2 =0
41 =0
37 = O
EBCDIC
h2 = 0
b1 = 1

42

38

41

37

36

32

Auxiliary stacker

6 bit
8 bit

Figure 10-11.

Card Punch I/0 Control Word

37
36

tag bit

0O field

47

27

25

28

24

Figure 10-12.

Card Punch Result Descriptor

10-11

6:7 Standard Error Field
7 Punch Check
7 & 10 Memory Access Error
24:8 Unit Designate
21:3 Character Count
41:20 Memory Address

Figure 10-12. Card Punch Descriptor (cont)

LINE PRINTERS.

Two line printers (figure 10—13) are available for use on the

B 6500 system. The B 9242 prints 860 lines per minute (LPM) and
the B 9243, 1100 LPM, Both printers are available with either

120 or 132 print positions. Both have vertical skipping and end-
of-page formatting controlled by a punched paper tape. The B 6240
Line Printer Control connects the printer to the multiplexor.
Translators in the multiplexor convert internal BCL or EBCDIC into
BCL for transmission to the printer comntrol., Figures 10-14 and

10-15 show the Printer I/O control word and result descriptor.

Figure 10-13. Line Printer

10-12

Ll
b3
b3
L2
41
38
37
36

31
30

O O B O O

Figure 10-1A4,

Figure 10-15.

43 35| 3

42138 [34| 30

41137 |33

44 36 |32

Print

Space - Inhibit Data Transfer
Translate to BCL

6 bit; 41 = 1 8 bit

tag bit
field

Skip to Channel 1 =) 11
Double Space }only if 33:5

Single Space) equals zero

Line Printer I/0 Control Word

47 27

25 17 9

28 | 24 12 8

Line Printer Result Descriptor

10-13

6:7 Standard Error Field

8:2 Bit Transfer Error
9:3 Print Check
2418 Unit Designate
2733 Character Count

h7:20 Memory Address
Figure 10-15,. Line Printer Result Descriptor (cont)

MAGNETIC TAPE SUBSYSTEM.

A magnetic tape subsystem can include from one to four tape controls
servicing from one to sixteen magnetic tape units. Within a single
tape system all tape units must be used at the same speed and all

controls must be of the same type.

A magnetic tape exchange is required when more than one control or

more than six magnetic tape units are used.

The number of magnetic tape units on a system is limited only by
the number of exchanges and peripheral controls employed. The user
may choose either 7-channel tape or 9-channel tape which may be
intermixed, provided this is not attempted on the same subsystem.
The user may also select any of four packing densities up to 1600
bits per inch and transfer rates from 9,000 to 240,000 bytes per

second.

A choice of physical construction may be made between two free
standing devices which house one tape unit per cabinet (figure 10-
16), or the cluster unit (figure 10—17) which houses up to four
tape units per cabinet. The magnetic tape units are capable of
reading and spacing in either a forward or reverse direction.
Table 10-3 lists the available magnetic tape subsystems. Figure

10-18 shows possible configurations of these subsystems.

10-14

72KB MTU 144/192/240KB MTU

Figure 10-16. Free Standing Magnetic Tape Unit

Figure 10-17. Cluster Tape Unit

10-15

Table 10-3

Available Magnetic Tape Subsystems

Appropriate
Peripheral
Control Exchanges
Description of Magnetic
Style Tape Subsystems Style Quantity Style Type | Function
B 9381-2,34 9 channel 8 6381-1 1 None None | 1 Tape
36KB Cluster 800/200* BPI, 45 IPS, Operation
2 to 8 Tape Stations B 6381-1 lor2 B 6481 | 2x8 | 2 Tape
Operation
B 9382-2,3,4 9 channel B 6381-2 1 None None | 1 Tape
72KB Cluster 1600 BPI, 45 IPS, Operation
2 to 8 Tape Stations B 6381-2 1 or2 B 6481 | 2x8 | 2 Tape
Operation
B 9380-2,34 7 channel B 6381-3 1 None None | 1 Tape
36KC Cluster || 200/556/800 BPI, 45 IPS, Operation
2 to 8 Tape Stations B 6381-3 lor2 B 6480 | 2x8 | 2 Tape
Operation
B 9391 72 KC|| Either 1 to 6, 1 to 10, or B 6391-3 1 None None | 1 Tape
Free Stand’g || 1 to 16 Tape Units, 7 Channel, Operation
Tape Unit 200, 556, and 800 BPI, B 6391-3 1 or2 B 6490 | 2x10 | 2 Tape
90 IPS Operation
B 6391-3 1 to 4 B 6492 | 4x16 | 4 Tape
Operation
B 9392 72KB || Either 1 to 6, 1 to 10 or 1 to B 6393-1 1 None None | 1 Tape
Free Stand’g 16 Tape Units, 9 channel, Operation
Tape Unit 800/200* BPI, 90 IPS B 6393-1 lor2 B 6490 | 2x10 | 2 Tape
Operation
B 6393-1 1 to 4 B 6492 | 4x16 | 4 Tape
Operation
B 9394-1 Either 1 to6,0r 1 to 10 Tape B 6391-4 | None None | 1 Tape
24, 66, or Units, 7 channel, 200, 556 or Operation
96KC 800 BPI, 120 IPS B 6391-4 1or2 B 6490 | 2x10 | 2 Tape
Free Stand’g Operation
Tape Unit)
B 9394-2 Tither I 106, 1 1o 10 or I to B 6393-3 1 None | None |1 Tape
96 KB ape }Jmts, 9 channel, Operation
Free Stand’g || $00/200* BPI, 120 IPS B6393-3| 1or2 || B6490 | 2x10 |2 Tape
Tape Unit Operation
B 6393-3 1to4 B 6492 | 4x16 | 4 Tape
Operation
B 9393-1 1 to 8 Tape Units B 6393-2 1 B 6493-1| 1x8 |1 Tape
144KB 9 channel Operation
Free Stand’g Phase Encoded 2 Tape
Tape Unit 1600 BPI, 90 IPS B 6393-2 lor2 || B6493-2| 2x8 |Operation
B 9393-2 1 to 8 Tape Units B 6393-2 1 B 6493-1| 1x8 {1 Tape
192KB 9 channel Operation
Free Stand’g Phase Encoded 2 Tape
Tape Unit 1600 BPI, 120 IPS B 6393-2 lor2 [j B6493-2] 2x8 |Operation
B 9393-3 1 to 8 Tape Units B 6393-2 1 B 6493-1} 1x8 |1 Tape
240KB 9 channel Operation
Free Stand’g Phase Encoded 2 Tape
Tape Unit 1600 BPI, 150 IPS B 6393-2 1 or2 || B6493-2| 2x8 |Operation

* A Model B 6681 (for Clusters) or B 6691 or B 6692 (for Free Standing Units) Optional Adapter must
be attached to each peripheral control on a 9 channel 800 BPI tape system to provide 200 BPI capability.

10-16

LARGE PERIPHERAL CONTROLS

/O APPROP. | ApprOP. | ApPrROP. | APPROP. | APPROP.| ApPrROP. | APPROP. | APPROP, | APPROP. | APPROP.
— MULTI- TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PLEXOR P.C. P.C. P.C. P.C. pP.C. P.C. P.C. P.C. P.C. P.C.
1
TA?’EZ %E {106 X & COMMON
CLUSTERS TAPE EXCH. FREE ELEC. EXCH.
STANDING
UNITS 4 g
10R 2 _/ 108
TAPE :H'zscgoso
N
LUSTERS UNITS
17016 -
Z = FREE o |
ey 2y STANDING iz
XX ok UNITS O X
\ O “
o~ W < & ®
B3 = < 5
- [N |
1708
FREE
STANDING
UNITS
2x8
TAPE EXCH. (4 X 16 TAPE EXCHANGE l T X 8 COMMON
[I I I I l ELEC. EXCH.
1/0 APPROP. | APPROP. | APPROP. | APPROP. | APPROP. | APPROP. | APROP.| APPROP.| approp. | approP. | APPROP.*
MULTI- TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PLEXOR P.C. P.C. P.C. P.C. P.C. p.C. p.C. p.C. p.C. p.C. P.C.

= Only 10 tape P.C.'s per 1/0 Multiplexor.

The 11th shown here is for illustration purposes only. LARGE PERIPHERAL CONTROLS

Figure 10-18. Magnetic Tape Configuration

This

Figure 10-19 shows the B 6500 magnetic tape I/O control word,
word is used to depict the wvarious types of magnetic tape operations
possible that are listed in table 10-4, When an operation is

finished the result descriptor returned is shown in figure 10-20.

10-17

Lk

k3
L2
L1
4o
39
38

10-18

37

1
0
1
1
0
1
0o
o
2

2

Figure 10-19,

OPERATION STANDARD CONTROL FIELD
44 43 42 41 40 39 38 37 36

READ BCL 1 0 1 o © O 0

READ BINARY 1 0 0 0 o O 0

READ EBCDIC 1 0 0 ! c O 0 ()
SPACE 1 1 o 0
WRITE 8CL 0 0 1 o 0 0 o}
WRITE BINARY 0 0 0 0 0 0 (o)
WRITE EBCDIC 0 0 0 1 0 (e}
ERASE 0 1 (o} o 0 0 o
WRITE TM 0 0 0 0
REWIND 0 1 1 0

TEST 1

Table 10-4,

43 | 39 35| 31|27] 23

42 | 38| 341 30| 26

41 | 37| 33| 29

44| 40 | 36| 32| 28

Tape Read

Tape Write
Memory Inhibit
Translate

6 bit; = 1 8 bit
Memory Protect

Forward; = 1 Backward

Tag bit field

Equal to zero

BIT35=0AND 34 =1

Magnetic Tape Operations

I/0 Control Word Magnetic Tape

Format
1004 800 BPI
1014 555 BPI (7 track only)
1109 200 BPL
1111 1600 BPT (9 track only)
0009 Unit selected density

30 = 0 even parity

= 1 odd parity

9 Track Read only

29 = 1
28:2

Space Only

23:8

CRC Correction
If 29 = 1 then track to be corrected.

decimal wvalue of number of records to be

spaced, 100 max.

Figure 10-19. TI/0 Control Word Magnetic Tape (cont)

O 00~ 32

10
11

47 27 151N 7

25 17 113 [9

28 | 24 16 12 8 0

Standard Error Field

Memory Access Error

End of tape or beginning of tape
Read - end of file; write - lock out
Incomplete Record

Oversized Record

Figure 10-20. Magnetic Tape Result Descriptor

10-19

11:2 Density (test only)

00 -
o1 -
10 -
11 -

800
200

555
BPI

7 & 10 & 11 Mag tape

12 CRC correction possible,

BPI
BPT
BPT

parity error

13 Non-present option
15 6 £ft. blank tape

16 Memory Protect Error (read only)

24:8 Unit Designate

27:3 Character Counter

47:20 Memory Address

Figure 10-20,

DISK FILE SUBSYSTEM.

The Disk File Subsystem is an extremely high-speed,
dom information storage system.
electronics unit and from one to five storage units,
10-21. If more than one basic subsystem is used then an

may be installed to connect the two subsystems to a disk

bits 15:3 defines track

Magnetic Tape Result Descriptor (cont)

A basic system consists

modular, ran-

of omne
figure
exchange

file

control. Figure 10-22 shows various disk file configurations al-

lowed on a B 6500 system.

The exchanges involved are located

within the auxiliary cabinets that are attached to the peripheral

control cabinets. Fach of the disk file controls are the large

size controls, therefore,

they must be located only in positions

zero through four in the PCC.

The various types of disk file subsystems and their capacities

and speeds are indicated in table 10-5,

Figures 10-23 and 10-24

indicate the disk file I/0 control word and the disk file result

descriptor.

10-20

ELECTRONICS UNIT

Figure 10-21.

I
STORAGE MODULES

Basic Disk File Subsystem

PERIPHERAL CONTROLS

170 20
ELECTRONICS UNITS

w

]

-

2 &£
z

g 5

ll')¥ -

0%y

.-.Q‘i"u

LARGE
1/0 MODEL MODEL | MODEL MODEL | MODEL | MODEL | MODEL | MODEL
MULTI- B 6373 e B 6373 B 6373 P B 6373 B 6373 B 6373 B 6373 B 6373
PLEXOR DISK FILE e DISK FILE | DISK FILE i DISK FILE | DISK FILE | DISK FILE { DISK FILE | DISK FILE
P.C. P.C. P.C. P.C. P.C. P.C. P.C. P.C.
2 X 10 EXCH. J | N, x N, EXCHANGE I
17010
ELECTRONICS UNITS } TO 20 ELECTRONICS UNIT
1705 1705
DISK MODULES PER DISK MODULES -
ELECTRONICS UNIT PER g
ELECTRONICS UNIT &
ZN
X
-
1705
DISK
MODULES
1 ELECTRONICS UNIT
/o o I [I [[R L L
MuLTI- pIsk FiLE | P-C. P.C. P.C. P.C. P.C. p.C. P.C. P.C. | pisk FILE
PLEXOR e e

Figure 10-22.

PERIPHERAL CONTROLS

LARGE

Disk File Configurations

10-21

Table 10-5

Disk File Subsystem Types

Disk ‘lectronic Exchange Peripheral
Unit Control
[Style HDescription Style Style Type I Function "Style I Quantity
B 9372-11]] 10.87 mill. bytes or IB 9371-7 ‘
14.5 mill. char. - 20 ms
B 9375-10) Data Memory Bank wok
133 mill. char. or B 9371-8
100 mill. bytes — 23 ms
B 9376—10d Addt’l 26.6 mill. char. * %
or 20 mill. byte Incre- |IB 9371-8
ments — 23 ms
B 9375-12 Data Memory Bank e[| BO4TL NiXNg | 4x20 with 1B 63731 1 to4
133 mill. char. or B 9371-9 Adapters &
100 mill. bytes - 40 ms Extension*
B 9376-12|| Addt’l 30.5 mill. char. K
or 22.8 mill byte Incre-||B 9371-9
ments — 40 ms
B 9375-13{| Data Memory Bank * ok
133 mill. char. or B 9371-10
100 mill. bytes-60 ms
B 9376-13|| Addt’l 26.6 mill. char. *x
or 20 mill. byte Incre- ||B 9371-10
ments — 60 ms
= A === = —_—

A B 6471-5 or B 7471-5 Control Adapter (Ny) is required for each control in the subsystem and a

B 6471-6 or B 7471-6 EU Adapter (N») is required for each electronic unit in the subsystem. The
B 6471-7 or B 7471-7 Exchange Extension is required to go above 10 EU adapters on the sub-

system.

&g

Data Memory Banks and Increments include an electronic unit for every 5 disk modules; however

additional optional EU’s may be ordered for more paths to the disk modules, using stated EU style
numbers.

10-22

Ll
b3

Ly
k3

Wi
b3

L2
L1
4o
39
37
36

43 | 39 31

42

41 | 37

44 | 40 | 36 0

=1 } Disk File READ

=1 } READ CHECK

=0 WRITE

e

= 0

=1

= 1 Memory Protect

= 1 Maintenance Segment
Tag Bit
Field

31:24 Disk File ADDRESS (decimal)

Figure 10-23. Disk File I/O Control Word

47 27 15| |7

25 17 9

28 | 24 16 8 0

Figure 10-24. Disk File Result Descriptor

10-23

6:7 Standard Error Field
7 Memory Access Error
8 Unit busy
9 Write lock out
7 & 9 Disk Read Error

11 Went not ready

15 Time out

16 Memory protect (READ only)
24:8 Unit Designate
2733 Character counter

47:20 Memory ADDRESS
Figure 10-24. Disk File Result Descriptor (cont)

PAPER TAPE.

The B 9120 Paper Tape Reader, figure 10-25, is capable of reading
punched paper tape at a rate of 1000 characters per second and
metalized mylar tape or fanfold tape at a rate of 500 characters
per second. Baudot and BCL to EBCDIC code translation is automatic.
All other codes are read directly into memory and may be translated
programmatically. The reader can accommodate 5-, 6-, 7-, or 8
channel tape as selected by the operator. Tape widths of 11/16,

7/8, or 1 inch are interchangeable.

The paper tape punch, see figure 10-26, is capable of punching a
standard paper tape format in either BCL or Baudot code. The punch
accommodates 5-, 6-, 7-, or 8 channel tape at a maximum rate of

100 characters per second, punching ten characters to the inch.
Standard tape widths of 11/16, 7/8, and 1 inch may be used in
either the oiled paper tape, dry paper tape, metalized mylar tape,

or laminated mylar tape.

Each paper tape I/0 control, reader or punch, can accommodate only
one paper tape unit each. The controls are the small size controls
which can be set into a PCC cabinet as either a right hand or a

left hand control.

10-24

Figure 10-25. B 9120 Paper Tape Reader

10-25

Figure 10-26., B 9220 Paper Tape Punch

Figure 10-27 indicates the paper tape control word and the wvarious
paper tape operations possible on the B 6500. Figure 10-28 in-

dicates the paper tape result descriptor.

10-26

Ll =

L3 =
h2 =
39 =
38 =

()
~2

35 &

Figure 10~27.

W

AN H O B B O

431 39|35

42138 | 34

37

Tape read
Tape punch
Inhibit data transfer
Translate
Forward; = 1 Backward
Test

Tag field bits

Formats:

10 - 8 bit no parity
00 - 7 bit dinfo plus 1 parity
0l - 6 bit info plus 1 parity

44 43 42 41 40 39 38 37 36 35 34
READ BCL 1 01 0O 0 0 0 O O 0 1
READ BINARY . 1 o 0 O 0 0 0 O O 0 O
WRITE BCL 6 0 ' O O 0 0 O 0 0 1
WRITE BINARY 0 0 0 O O 0 0 O 0 O O
PUNCH LEADER 0 ©O 0 0 0 O o
FWD SPACE Vo o) 0 0 0
BKWD SPACE 1o o 1 0 o
REWIND 0o 1 10
Paper Tape I/O Control Word and Operations

10-27

10-28

o 3 3

7 & 9
10
16

47 27 7

25 17 9

28 | 24 16 8

Standard Error Field
Memory Access Error

Read - EOT or BOT

Punch - Low Tape

Read - tape parity error
Incomplete record

Memory protect error

Figure 10-28. ©Paper Tape Result

Descriptor

SECTION 11
B 6500 DATA COMMUNICATIONS SYSTEM

GENERAL.

The B 6500 Data Communications System is comprised of one or more

of each of the following units:

a. Data Communications Processor (D.C.P.).
Each B 6500 Peripheral Control Multiplexor accommodates
up to 4 D.C.P.'s through the word interfaces. The word

interfaces provide access to the B 6500 main memory.

b. Adapter Cluster.
One Adapter Cluster services up to 16 Line Adapters
which may have dissimilar characteristics. A maximum
of 16 Adapter Clusters may be connected to one Data Com-
munications Processor. It is also possible to connect
an Adapter Cluster between two Data Communications Pro-

cessors. This allows the Adapter Cluster to be serviced

from either D.C.P.

c. Line Adapter.
Bach communication line requires at least one Line Adap-
ter. With some types of terminals two Line Adapters may
be required. Up to 16 Line Adapters are accommodated by

one Adapter Cluster.

The B 6500 Data Communications System can service a maximum of 2048

communications lines. A typical system configuration is shown in

figure 11-1.

DATA COMMUNICATTIONS PROCESSOR (D.C.P.).

The Data Communications Processor (D.C.P.) is a special purpose
processor. It handles the transmitting and receiving of messages
over the many data communications lines. A part of that task is
answering calls, terminating calls, observing the formal line dis-

ciplines, polling operations and the formatting of messages.

11~-1

SUOT3BOTUNWIO) ®B1B(J SULPNTOUI UOT1IBINSTIUO) WOJSAG 0069 94 "TI~TIT °oandtg

<—{ ¥0ss3d0ud
SNOILVIINNWWOD
S¥ILdVAV 91-1 SY3LVAV 91-1 SYILIVAY 9L-(viva
) o R e W ¥
SN | | [3D 331SNTD ¥055300¥d
¥3Ldvay ¥31dvav ¥3LVAY [| SNOILYIINNWWOD
1 | ! viva
¥0OSS3ID0¥d
SY¥3LSNTD ¥3LdVAY 91-1
2 SNOILVIINNWWOD
viva
¥0S53D0¥d
SNOILYDINNWWOD
viva
dSMS| [easmo FET)
¥31dvav ¥3ldvav | | ¥ildvav 01-%
STINNVHD| ¥OXTdILINW
H_._ { _._._ .._._ SNE TOUINOD 1V¥3HAIId|ONIHILIMS o/l]
viva
SYILdVAV 91-1 SYILAVAV S1-1 S¥ILIVAY 91-1 “
S¥IISNTD ¥3LAVAY 9L-1 . |
1
¥O$$3ID0Y¥d ml
|
l |
¥OSS3ID0Ud]
SIINAOW
ze
e oLdn
STINNVHD [4OXI1dILTINW _
SN8 TOILNOD TvYIHJIYAd | ONIHDLIMS o/l [
V1V - —r—
L
h 4_ h h NNAOW 3INa0wW | | 3Inaow
: AJOWIW AYOWIW | | AYOWIW

11-2

The Data Communications Processor is a stored program computer
obtaining its program instructions either from B 6500 main mem-
ory or fTrom an optional local memory. Through the use of the local
memory the throughput of the D.C.P. is significantly increased due

to the reduction in instruction fetch time.

If the optional local memory is not present, the Data Communications
Processor shares the B 6500 system main memory with the other units
of the B 6500. The memory allocation for the D.C.P. is controlled
by the B 6500 Master Control Program. Data exchanges occur

when the B 6500 processor initiates a D.C.P. operation and

when the D.C.P. finishes an operation, i.e. I/0 complete signal

from the D.C.P.

The internal form of the Data Communications Processor is shown in
figure 11-2. The Data Communications Processor is an elementary
micro-programed processor., Two-address and three-address instruc-
tions, operating on 8-bit bytes, are used by the Data Communications
Processor. The byte organization fits into a basic half-word

(three byte) structure permitting efficient half-word transfers
within the Data Communications Processor. The functions of the
D.C.P. are accomplished with a small array of intercommunicating
registers, a simple arithmetic-logical unit and an eight word

scratchpad memory.

For complete information on all Data Communications Processor reg-
isters and memories, refer to the Data Communications Processor

Ref'erence Manual.

ADAPTER CLUSTER.

The Adapter Cluster is the interface between the Data Communications
Processor and the data-communication Line Adapters. Each Adapter
Cluster services up to 16 Line Adapters. Data transmission rates

of from 45.5 B.P.S. to 4800 B.P.S. are handled by the Adapter Clus-

ter simultaneously.

11-3

weIldetd MooTg J0d

"Z-TT °In3Tyg

[l __ q |
3% QIOM [AYOWIW VW VI XAdal |ivovvy
SNOILONYLSNI | | | |
aIomF 11vH J J
_
SYIISNVIL QIOM 41VH
Z AYOWIW
AV1dS1Q 9va
\
L t _
. M |
[¥3SIOW QoM | [[ST+ “
1 VAL~ _
- =3 |
|
NOIIVISNVAL Jo—o I
(149 21901 _ | [
1OVIIENS-aav |
| SSIIAAY
157135 3148 | Cmsoz_
] | i
Qvd HOIVES |7 i — |
- . IDVAYILINI
TO4INOD \ —1 AYOWIW_— Iv||oV| VvV 33LsMmo _
$5300V
———— [vel .\ r'.lI.L
I (XdW VIA) TvIILC 103135 | 31A9 | “
__ IDVAYAINT |) _ X
SNE AYOWIW |+ Y e 1
b 00598 pe g J¥SOR . |
L 272 ss3¥aav ./ - ——n)
0059 9 -1 QQ<LT. lllllllllllllllllllll ’
o T
[SnE Nvds | Y I
00599 | " Ve
L_=="7 3
XdW Ol 104INOD

LdNYYTINT — | NVDS any

LdMYYILINI

L — — = NI1938 OL HONVug

Figure 11-3 shows a block diagram of the Adapter Cluster. The

Adapter Cluster basic functions are:

a. Line termination: Scanning, clocking and temporary stor-
age.

b. Character assembly and disassembly.

c. Synchronization attainment and maintenance.

d. Timer operation to maintain line discipline.

e. Some character recognition logic. (Mainly synchronization

characters for the wvarious line disciplines).

f. Provide the ability to exchange information with one or

two Data Communications Processors.

The Adapter Cluster functions in a manner that makes it appear
transparent to most characters and message formats. However as
stated in item (e) above it does recognize the SYN characters in
order to attain and retain synchronization when operating in the

synchronous mode.

LINE ADAPTER.

The Line Adapter types that are provided allow the Data Communica-
tions Processor to interface with data sets, Voice Response Systems
and the direct connection to remote devices. Fach ILine Adapter
terminates one line. The Line Adapter handles the exchange of
bits or characters between the Adapter Cluster and the data com-
munication line. The buffer of each type of Line Adapter contains
either one bit or one character, depending on the type. Table 11-1

shows a table of terminal compatibility.

For more detailed information on all phases of the Data Communica-
tions Processor refer to the Data Communications Processor Refer-

ence Manual.

11~5

Iogsniyy Io3adepy ¢-TT 2anItg

SANIT NOILVIINNWWOD V1va 91 WO¥d ANV OL SIDVAYILNI ¥31dvav

EEEEEEEEEREREEN

y Y Y 1 | & L | 4]]] ¥

-

le—

Gl 4! €l al L ot 6 8 L 9 S 14 € 4 l 0

e I e e e e

S¥31dVvav 3INIT 91 WO¥4 ANV OL
XIRLYW ONIHDLIMS 331dvavy

sV REE
T 3
IDNVNILNIVW / L Jo
J — .
1 -
L 3
zgdda | | 3 v Lef2
< I el N
n
1 |4

VO Z o0

L o)
L4 400 \
/ _
JOYINOD ILIM/avy

/

SINIOJSSOAD

TO4LNOD
1VNOIS3a

ANV 32010
IWLL TIV3Y

StivLietfcip ot 68l 2|9{s|vjelz|t]o

¥3LdVav/sLig 8y = AYOWIW DI

(ZHW G) JD01D
W3LSAS-9NS

11-6

sSdd oo2T o3 dn 202 X X X X TeutwIsl Q0S¢ OL
Aooﬂ>how UOTU[) UIdISOM
Sdd OTT o2 dn X X X *aTnbs x0) €4£8/82 TOPOW
102
IO Z20Z
sdg oo%®e o3 dn ‘cot X X X X X Aerdstq soTIes ZGE6 g
102
I0 go2
Sdg oo#z o3 dn ‘CoT X X X X X Aerdst(q soTIes TGE6 9
sdg ¢91 o2 dn £oT X X X X LE TOPOW *d ‘M
(SuttTeD T°OS
sdg oTT o2 dn £OT X X X X IV8 OST®) G¢ TOPOW *d ‘M
Ssdd OTT o3 dn COT X X X X €€ T9POW °*d ‘M
Sdg 04T o3 dn d1T18 X X 9O0TAJISS XML
eoFuey peadg odAT, *yyouig *youdsy | *uuon | poyorTMs | peseesq
W PON *IT(

A3 TTTqTredWo) TBUTWIS], SUOTIBOTUNUIO) BIR(

T-TT STq®eL

11-7

108 X 3TUn SUTTTBD OTjewoiny
SdD 8°KT o3 dn FAGLA X X X 0€0T WAI
sdd ootz o3 dn TOZ X X 02T TToMAsuoH
sdd o0z o3 dn 102 X X X X 006¢ €
sdd oo%2Z o3 dn TOZ X X X X 00%¢ d/0052 €
sdd oote o3 dn T0Z X X X X 00S g/0%€ 49/00€¢ €@

o3ury poadg odAy | *youkg *Youdsy | *uuo) | peyolTMG| poOsea]
U Pon *IT(

A1TTTqTaedwo) TEBUTWIS], SUOT3BOTUNWWO] BIE(

(3uo0o) T-TT STqEL

11-8

APPENDIX A

OPERATORS , ALPHABETICAL LIST

NAME

ADD

BIT RESET

BIT SET

BRANCH FALSE

BRANCII TRUE

BRANCH UNCONDITIONAL

CHANGE SIGN BIT

COMPARE CHARACTERS

COMPARE CHARACTERS

COMPARE CHARACTERS
DESTRUCTIVE

COMPARE CHARACTERS
UPDATE

COMPARE CHARACTERS

COMPARE CHARACTERS

COMPARE CHARACTERS
DESTRUCTIVE

COMPARE CHARACTERS
UPDATE

COMPARE CHARACTERS

EQUAL DESTRUCTIVE

EQUAL, UPDATE

GREATER OR EQUAL,

GREATER OR EQUAL,

GREATER, DESTRUCTIVE

GREATER, UPDATE

LESS OR EQUAL,

LESS OR EQUAL,

LESS, DESTRUCTIVE

MNEMONIC

ADD

BRST

BSET

BRFL

BRTR

BRUN

CHSN

CEQD

CEQU

CLED

CLEU

CLSD

80

9E

96

AO

Al

A2

8E

Fh

FC

Fl

F9

r2

FA

F3

B

FO

HEXADECIMAL

APPENDIX A (cont)
OPERATORS , ALPHABETICAL LIST

HEXADECIMAL

NAME MNEMONIC CODE
COMPARE CHARACTERS LESS, UPDATE CLSU F8
COMPARE CHARACTERS NOT EQUAL,
DESTRUCTIVE CNED F5
COMPARE CHARACTERS NOT EQUAL,
UPDATE CNEU FD
CONDITTIONAL HALT (all modes) HALT DF
COUNT BINARY ONES CBON 95 BB
DELETE TOP OF STACK DLET B5
DISABLE EXTERNAL INTERRUPT DEXI 95 47
DIVIDE DIV 83
DUPLICATE TOP OF STACK DUPL B7
DYNAMIC BIT RESET DBRS 9F
DYNAMIC BIT SET DBST 97
DYNAMIC BRANCH FALSE DBFL A8
DYNAMTIC BRANCH TRUE DBTR A9
DYNAMTC BRANCH UNCONDITTIONAL DBUN AA
DYNAMIC FIELD INSERT DINS 9D
DYNAMIC FIELD ISOLATE DISO 9B
DYNAMTC FIELD TRANSFER DFTR 99
DYNAMIC SCALE LEFT DSLF c1

A-2

APPENDTIX A (cont)
OPERATORS , ALPHABETICAL LIST

HEXADECIMAL
NAME MNEMONIC CODE

DYNAMIC SCALE RIGHT FINAL | DSRF c7
DYNAMIC SCALE RIGHT ROUND DSRR C9
DYNAMIC SCALE RIGHT SAVE DSRS C5
DYNAMIC SCALE RIGHT TRUNCATE DSRT C3
ENABLE EXTERNAL INTERRUPTS EEXT 95 46
END EDIT (edit mode) ENDE DE
END FLOAT (edit mode) ENDF D5
ENTER _ ENTR AA
EQUAL EQUL 8C
ESCAPE TO 16-BIT INSTRUCTION VART 95
EVALUATE DESCRIPTOR EVAL AC
EXCHANGE EXCH B6
EXECUTE SINGLE MICRO, SINGLE POINTER

UPDATE EXPU DD
EXECUTE SINGLE MICRO, DESTRUCTIVE EXSD D2
EXECUTE SINGLE MICRO, UPDATE EXSU DA
EXIT EXTT A3
EXTENDED MULTIPLY MULX 8F
FIELD INSERT INSR 9C
FIELD ISOLATE ISOL 9A

APPENDIX A (cont)

OPERATORS , ALPHABETICAL LIST

NAME

FIELD TRANSFER

GREATER THAN

GREATER THAN OR EQUAL

IDLE UNTIL INTERRUPT

INDEX

INDEX AND LOAD NAME

INDEX AND LOAD VALUE

INPUT CONVERT, DESTRUCTIVE

INPUT CONVERT UPDATE

INSERT

INSERT

INSERT

INSERT

INSERT

CONDITIONAL (edit mode)
DISPLAY SIGN (edit mode)
MARK STACK

OVERPUNCH (edit mode)

UNCONDITIONAL (edit mode)

INTEGER DIVIDE

INTEGERIZE, ROUNDED

INTEGERIZE, TRUNCATED

INTEGERIZE, ROUNDED DOUBLE-PRECISION

MNEMONTIC

FLTR

GRTR

GREQ

IDLE

INDX

NXLN

NXLV

ICVD

ICVU

INSC

INSG

IMKS

INOP

INSU

IDIV

NTGR

NTTIA

NTGD

HEXADECIMAL
CODE

98
8A
89
95 44
A6
A5
AD
cA
CB
DD
D9
CF
D8
DC
ok
97
96

95 97

APPENDIX A (cont)

OPERATORS , ALPHABETICAL LIST

NAME

INTERRUPT OTHER PROCESSORS
INVALTD OPERATOR (all modes)
JOIN TWO SINGLES TO DOUBLE
LEADING ONE TEST

LINKED LIST LOOKUP

LESS THAN

LESS THAN OR EQUAL

LIT CALL ONE

LIT CALL ZERO

LIT CALL 8 BITS

LIT CALL 16 BITS

LIT CALL 48 BITS

LOAD

LOAD TRANSPARENT

LOGICAL AND

LOGICAL EQUAL

LOGICAL EQUIVALENCE
LOGICAL NEGATE

LOGICAL OR

MNEMONIC

HEYU

NVLD

JOIN

L.OG2

LLLU

LESS

LSEQ

ONE

ZERO

LT8

LT16

LT48

LOAD

LODT

LAND

SAME

LEQV

LNOT

LOR

CODE
95 LF

FF

95 h2
95 8B
95 BD
88
8B
Bl
BO
B2
B3
BE
BD
95 BC
90
oL
93
92

91

HEXADECIMAL

APPENDIX A (cont)
OPERATORS , ALPHABETICAL LTIST

HEXADECIMAL

NAME MNEMONIC CODE
MAKE PROGRAM CONTROL WORD MPCW BF
MARK STACK MKST AFE
MASKED SEARCH FOR EQUAL SRCH 95 BE
MOVE CHARACTERS (edit mode) MCHR D7
MOVE NUMERIC UNCONDITIONAL (edit mode) MVNU D6
MOVE TO STACK MVST 95 AF
MOVE WITH FLOAT (edit mode) MFLT D1
MOVE WITH INSERT (edit mode) MINS DO
MULTIPLY MULT 82
NAME CALL NAMC 4o =) 7F
NO OPERATION (all modes) NOOP FE
NOT EQUAL NEQL 8D
OCCURS INDEX OCRX 95 85
OVERWRITE DESTRUCTIVE OVRD BA
OVERWRITE NON-DESTRUCTIVE OVRN BB
PACK DESTRUCTIVE PACD D1
PACK UPDATE PACU D9
PUSH DOWN STACK REGISTERS PUSH B4

APPENDIX A (cont)
OPERATORS , ALPHABETICAL LIST

NAME ' MNEMONIC
READ AND CLEAR OVERFLOW FLIP-FLOP ROFF
READ PROCESSOR IDENTIFICATION WHOT
READ PROCESSOR REGISTER RPRR
READ TAG FIELD RTAG
READ TRUE/FALSE FLIP-FLOP RTFF
READ WITH LOCK RDLK
REMAINDER DIVIDE RDIV
RESET FLOAT (edit mode) RSTF
RETURN RETN
ROTATE STACK DOWN RSDN
ROTATE STACK UP RSUP
SCALE LEFT SCLF
SCALE RIGHT FINAL SCRF
SCALE RIGHT ROUND SCRR
SCALE RIGHT SAVE SCRS
SCALE RIGHT TRUNCATE SCRT
SCAN IN SCNT
SCAN OUT SCNO
SCAN WHILE EQUAL, DESTRUCTIVE SEQD

HEXADECIMAL
CODE

D7

95

95

95

DE

95

85

DL

A7

95

95

CO

c6

Cc8

ch

c2

95

95

95

LE

B8

B5

BA

B7

B6

LA

LB

LF

APPENDIX A (cont)
OPERATORS, ALPHABETICAL LTST

HEXADECTMAL
NAME MNEMONTG CODE

SCAN WHILE EQUAL, UPDATE SEQU 95 FC
SCAN WHILE FALSE, DESTRUCTIVE SWFD 95 Dk
SCAN WHILE FALSE, UPDATE SWFU 95 DC
SCAN WHILE GREATER OR EQUAL,

DESTRUCTTIVE SGED 95 F1
SCAN WHILE GREATER OR EQUAL,
UPDATE SGEU 95 F9
SCAN WHILE GREATER, DESTRUCTIVE SGTD 95 F2
SCAN WHILE GREATER, UPDATE SGTU 95 FA
SCAN WHILE LESS OR EQUAL,
DESTRUCTTVE SLED 95 F3
SCAN WHILE LESS OR EQUAL, UPDATE SLEU 95 FB
SCAN WHILE LESS, DESTRUCTIVE SLSD 95 FO
SCAN WHILE LESS, UPDATE SLSU 95 F8
SCAN WHILE NOT EQUAL, DESTRUCTIVE SNED 95 F5
SCAN WHTILE NOT EQUAL, UPDATE SNEU 95 FD
SCAN WHILE TRUE, DESTRUCTIVE SWTD 95 D5
SCAN WHILE TRUE, UPDATE SWTU 95 DD
SET EXTERNAL SIGN SXSN D6
SET INTERVAL TIMER SINT 95 45

A-8

APPENDIX A (cont)

OPERATORS , ALPHABETICAL LIST

NAME
SET PROCESSOR REGISTER
SET TAG FIELD
SET TO DOUBLE-~PRECISION
SET TO SINGLE-PRECISION, ROUNDED

SET TO SINGLE-PRECISION,
TRUNCATED

SKIP FORWARD DESTINATION
CHARACTERS (edit mode)

SKIP FORWARD SOURCE CHARACTERS
(edit mode)

SKIP REVERSE DESTINATTION
CHARACTERS (edit mode)

SKIP REVERSE SOURCE CHARACTERS
(edit mode)

SPLIT DOUBLE TO TWO SINGLES
STEP AND BRANCH

STORE DESTRUCTIVE

STORE NON-DESTRUCTIVE
STRING ISOLATE

STUFF ENVIRONMENT

MNEMONIC

SPRR

STAG

XTND

SNGL

SNGT

SFDC

SFSC

SRDC

SRSC
SPLT
STBR
STOD
STON
SISO

STFF

HEXADECIMAL
CODE

95 B9

95 B4

CE

CD

cC

DA

D2

DB

D3

95

Al

B8

B9

D5

AF

L3

APPENDIX A (cont)
OPERATORS , ALPHABETICAL LIST

HEXADECTMAL

NAME MNEMONIC CODE
SUBTRACT SUBT 81
TABLE ENTER EDIT, DESTRUCTIVE TEED DO
TABLE ENTER EDIT, UPDATE TEEU D8
TRANSFER UNCONDITIONAL, DESTRUCTTIVE TUND E6
TRANSFER UNCONDITIONAL, UPDATE TUNU EE
TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD Eh
TRANSFER WHILE EQUAL, UPDATE TEQU EC
TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE TGED EL
TRANSFER WHILE GREATER OR EQUAL,
UPDATE TGEU E9
TRANSFER WHTLE GREATER, DESTRUCTIVE TGTD E2
TRANSFER WHILE GREATER, UPDATE TGTU EA
TRANSFER WHILE LESS OR EQUAL,
DESTRUCTIVE TLED E3
TRANSFER WHILE FALSE, DESTRUCTIVE TWFD 95 D2
TRANSFER WHILE FALSE, UPDATE TWFU 95 DA
TRANSFER WHILE TRUE, DESTRUCTIVE TWTD 95 D3
TRANSFER WHILE TRUE, UPDATE TWTU 95 DB
TRANSFER WHILE LESS OR EQUAL, UPDATE TLEU EB

A-10

APPENDIX A (cont)

OPERATORS , ALPHABETICAL LIST

NAME MNEMONTIC

TRANSFER WHILE LESS, DESTRUCTIVE

TRANSFER WHILE LESS, UPDATE

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE

TRANSFER WHILE NOT EQUAL, UPDATE

TRANSFER WORDS OVERWRITE DESTRUCTIVE

TRANSFER WORDS OVERWRITE UPDATE

TRANSFER WORDS, DESTRUCTIVE

TRANSFER WORDS, UPDATE

TRANSLATE

UNPACK ABSOLUTE, DESTRUCTIVE

UNPACK ABSOLUTE, UPDATE

UNPACK SIGNED, DESTRUCTIVE

UNPACKED SIGNED, UPDATE

VALUE CALL

TLSD

TLSU

TNED

TNEU

TWOD

TWOU

TWSD

TWSU

TRNS

UABD

UABU

USND

USNU

VALC

HEXADECIMAL

CODE

EO

E8

E5

ED

D4

DC

D3

DB

95 D7

95 D1

95 D9

95 DO

95 D8

00 =) 3F

APPENDIX B
OPERATORS , NUMERICAL LIST PRIMARY MODE

PRIMARY MODE.

HEXADECIMAL
CODE NAME MNEMONTIC
DF CONDITTIONAL HALT (UNIVERSAL OPERATOR) HALT
FE NO OPERATION (UNIVERSAL OPERATOR) NOOP
FF INVALTD OPERATOR (UNIVERSAL OPERATOR) NVLD
00 =) 3F VALUE CALL VALC
40 =) 7F NAME CALL NAMC
80 ADD ADD
81 SUBTRACT SUBT
82 MULTIPLY MULT
83 DIVIDE DIVD
84 INTEGER DIVIDE IDIV
85 REMAINDER DIVIDE RDIV
86 INTEGERIZE, TRUNCATED NTTIA
87 INTEGERIZE, ROUNDED NTGR
88 LESS THAN LESS
89 GREATER THAN OR EQUAL GREQ
8A GREATER THAN GRTR
8B LESS THAN OR EQUAL LSEQ

8C EQUAL EQUL

PRIMARY MODE.

HEXADECIMAL
CODE

8D
8E
8F
90
91
92
93
ol
95
96
97
98
99
9A
9B
9c
9D

9E

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME
NOT EQUAL
CHANGE SIGN BIT
EXTENDED MULTIPLY
LLOGICAL AND
LOGICAL OR
LOGICAL NEGATE
LOGICAL EQUIVALENCE
LOGICAL EQUAL
ESCAPE TO 16-BIT INSTRUCTION
BIT SET
DYNAMIC BIT SET
FTIELD TRANSFER
DYNAMIC FIELD TRANSFER
FITELD ISOLATE
DYNAMIC FIELD ISOLATE
FIELD INSERT
DYNAMIC FIELD INSERT

BIT RESET

MNEMONIC

NEQL
CHSN
MULX
LAND
LOR

LNOT
LEQV
SAME
VART
BSET
DBST
FLTR
DFTR
ISOL
DISO
INSR
DINS

BRST

PRIMARY MODE.

HEXADECTMAL
CODE

OF
AO
Al
A2
A3
Al
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

BO

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME

DYNAMTC BIT RESET

BRANCH FALSE

BRANCH TRUE

BRANCH UNCONDITIONAL

EXIT

STEP AND BRANCH

INDEX AND LOAD NAME

INDEX

RETURN

DYNAMIC BRANCH FALSE

DYNAMIC BRANCH TRUE

DYNAMTIC BRANCH UNCONDITIONAL

ENTER

EVALUATE DESCRIPTOR

INDEX AND LOAD VALUE

MARK STACK

STUFF ENVIRONMENT

LIT CALL ZERO

MNEMONIC

DBRS

BRFL

BRTRR

BRUN

EXIT

STBRR

NXLN

INDX

RETN

DBFL

DBTR

DBUN

ENTR

EVAL

NXLV

MKST

STFF

ZERO

PRIMARY MODE.

HEXADECIMAL
CODE

Bl

B2

B3

BL

B5

B6

B7

B8

B9

BA

BB

BD

BE

BF

CcO

C1l

C2

C3

APPENDIX B (cont)
OPERATORS , NUMERICAL LIST PRIMARY MODE

NAME

LIT CALL ONE

LIT CALL 8 BITS

LIT CALL 16 BITS

PUSH DOWN STACK REGISTERS

DELETE TOP OF STACK

EXCHANGE

DUPLICATE TOP OF STACK

STORE DESTRUCTIVE

STORE NON~DESTRUCTIVE

OVERWRITE DESTRUCTIVE

OVERWRITE NON-DESTRUCTIVE

I.OAD

LIT CALL 48 BITS

MAKE PROGRAM CONTROL WORD

SCALE LEFT

DYNAMTIC SCALE LEFT

SCALE RIGHT TRUNCATE

DYNAMIC SCALE RIGHT TRUNCATE

MNEMONTC

ONE

LT3

LT16

PUSH

DLET

EXCH

DUPL

STOD

STON

OVRD

OVRN

LOAD

LTLS8

MPCW

SCLF

DSLF

SCRT

DSRT

PRIMARY MODE.

HEXADECIMAL
CODE

ch
C5
Ccé6
c7
c8
C9
CA
CB
CC
CD
CE
CF
DO
D1
D2
D3
DL

D5

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME
SCALE RIGHT SAVE
DYNAMIC SCALE RIGHT SAVE
SCALE RIGHT FINAL
DYNAMIC SCALE RIGHT FINAL
SCALE RIGHT ROUND
DYNAMIC SCALE RIGHT ROUND
INPUT CONVERT, DESTRUCTIVE
INPUT CONVERT, UPDATE
SET TO SINGLE-PRECISION, TRUNCATED
SET TO SINGLE-PRECISION, ROUNDED
SET TO DOUBLE-PRECISION
INSERT MARK STACK
TABLE ENTER EDIT, DESTRUCTIVE
PACK DESTRUCTIVE
EXECUTE SINGLE MICRO, DESTRUCTIVE

TRANSFER WORDS, DESTRUCTIVE

TRANSFER WORDS OVERWRITE DESTRUCTIVE

STRING ISOLATE

MNEMONIC

SCRS

DSRS

SCRF

DSRF

SCRR

DSRR

TICVD

ICVU

SNGT

SNGL

XTND

IMKS

TEED

PACD

EXSD

TWSD

TWOD

SISO

APPENDIX B (cont)
OPERATORS , NUMERTICAL LIST PRIMARY MODE

PRIMARY MODE.

HEXADECTMAL
CODE NAME MNEMONTC
D6 SET EXTERNAL SIGN SXSN
D7 READ AND CLEAR OVERFLOW FLTP-FLOP ROTT
D8 TABLE ENTER EDIT, UPDATE TEEU
D9 PACK UPDATE PACU
DA EXECUTE SINGLE MICRO, UPDATE EXSU
DB TRANSFER WORDS, UPDATE TWSU
DC TRANSFER WORDS OVERWRITE UPDATE TWOU
DD EXECUTE SINGLE MICRO, SINGLE POINTER EXPU

UPDATE
DE READ TRUE/FALSE FLIP-FLOP RTFF
EO TRANSFER WHTLE LESS, DESTRUCTIVE TLSD
Bl TRANSFER WHILE GREATER OR EQUAL, TGED
DESTRUCTIVE
E2 TRANSFER WHILE GREATER, DESTRUCTIVE TGTD
E3 TRANSFER WHILE LESS OR EQUAL, DESTRUCTLVE TLED
Bl TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD
E5 TRANSFER WHILE NOT EQUAL, DESTRUCTIVE TNED
E6 TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND
E8 TRANSFER WHILE LESS, UPDATE TLSU

PRIMARY MODE.

HEXADECIMAL
CODE

E9

EA

EB

EC

ED

EE

rL

F2

F3

L4

F8

F9

FA

APPENDI
OPERATORS , NUMERI

X B (cont)
CAL LIST PRIMARY MODE

NAME

TRANSFER WHILE GREATER OR EQUAL,

UPDATE

TRANSFER WHILE GREATER, UPDATE

TRANSFER WHILE LES

S OR EQUAL, UPDATE

TRANSFER WHILE EQUAL, UPDATE

TRANSFER WHILE NOT

TRANSFER UNCONDITI

COMPARE CIIARACTERS

COMPARE CHARACTERS
DESTRUCTIVE

COMPARE CHARACTERS

COMPARE CHARACTERS
DESTRUCTIVE

COMPARE CHARACTERS

COMPARE CHARACTERS
DESTRUCTIVE

COMPARE CHARACTERS

COMPARE CHARACTERS
UPDATE

COMPARE CHARACTERS

EQUAL , UPDATE

ONAIL , UPDATE

LESS, DESTRUCTIVE

GREATER OR EQUAL,

GREATER, DESTRUCTIVE

LESS OR EQUAL,

EQUAL, DESTRUCTIVE

NOT EQUAL,

LESS, UPDATE

GREATER OR EQUAL,

GREATER, UPDATE

MNEMONTIC

TGEU

TGTU

TLEU

TEQU

TNEU

TUNU

CLSD

CGED

CGTD

CLED

CEQD

CNED

CLSU

CGEU

CGTU

PRIMARY MODE.

HEXADECTIMAL
CODE

rB

FC
FD

VARTANT MODE.
95 L2
95 43
95 Lk
95 U5
95 L6
95 47
95 LA
95 LB
95 LE
95 LF
95 85
95 87

95 8B

APPENDIX B (cont)

OPERATORS , NUMERICAL LIST PRIMARY MODE

NAME

COMPARE CHARACTERS LESS OR EQUAL,
UPDATE

COMPARE CHARACTERS EQUAL, UPDATE

COMPARE CHARACTERS NOT EQUAL, UPDATE

SET TWO SINGLES TO DOUBLE

SET DOUBLE TO TWO SINGLES
IDLE UNTIL INTERRUPT

SET INTERVAL TIMER

ENABLE EXTERNAL INTERRUPTS
DISABLE EXTERNAL INTERRUPTS
SCAN IN

SCAN OUT

READ PROCESSOR IDENTIFICATION
INTERRUPT OTHER PROCESSORS

OCCURS INDEX

INTEGERIZE, ROUNDED, DOUBLE-PRECISION

LEADING ONE TEST

MNEMONIC

CLEU

CEQU

CNEU

JOIN

SPLT

TIDLE

SINT

EEXT

SCNO

WHOT

HEYU

OCRX

NTGD

.OG2

VARIANT MODE.

HEXADECIMAL

CODE

95 AF

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

BL

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

DO

D1

D2

D3

DL

D5

APPENDIX B (cont)

OPERATORS , NUMERICAL LIST PRIMARY MODE

xavp
MOVE TO STACK
SET TAG PIELD
READ TAG FIELD
ROTATE STACK UP
ROTATE STACK DOWN
READ PROCESSOR REGISTER
SET PROCESSOR REGISTER
READ WITH LOCK
COUNT BINARY ONES
LLOAD TRANSPARENT
LINKED LIST LOOKUP

MASKED SEARCH FOR EQUAL

UNPACK SIGNED, DESTRUCTIVE

UNPACK ABSOLUTE, DESTRUCTIVE

TRANSFER WHILE FALSE, DESTRUCTIVE

TRANSFER WHILE TRUE, DESTRUCTIVE

SCAN WHILE FALSE, DESTRUCTIVE

SCAN WHILE TRUE, DESTRUCTIVE

MNEMONTIC

MVST

STAG

RTAG

RSUP

RSDN

RPRR

SPRR

RDLK

CBON

LODT

LLLU

SRCI

USND

UABD

TWEFD

TWTD

SWEFD

SWTD

VARTANT MODE.

HEXADECTMAL

CODE

95

95

95

95

95

95

95

95

95

95

95

95

B-10

D7

D8

D9

DA

DB

DC

DD

Mo

F1

r2

F3

Fh

E5

F8

F9

FA

FB

OPERATORS ,

TRANSLATE

APPENDIX B (cont)
NUMERTCAL LIST PRIMARY MODE

NAME

UNPACK SIGNED, UPDATE

UNPACK ABSOLUTE, UPDATE

TRANSFER WHILE FALSE, UPDATE

TRANSFER WHILE TRUE, UPDATE

SCAN WHILE FALSE, UPDATE

SCAN WHILE TRUE, UPDATE

SCAN WHILE LESS, DESTRUCTIVE

SCAN WHILE GREATER OR EQUAL,
DESTRUCTIVE

SCAN WHILE GREATER, DESTRUCTIVE

SCAN

SCAN

SCAN

SCAN

SCAN

SCAN

SCAN

WHILE

WHILE

WHILE

WHILE

WHILE

WHILE

WHTLE

LESS OR EQUAL, DESTRUCTIVE

EQUAL , DESTRUCTIVE

NOT EQUAL, DESTRUCTIVE

LESS, UPDATE

GREATER OR EQUAL, UPDATE

GREATER, UPDATE

LESS OR EQUAIL, UPDATE

MNEMONIC

TRNS
USNU
UABU
TWFU
TWTU
SWEFU
SWTU

SLSD

SGED
SGTD
SLED.
SEQD
SNED
SLSU
SGEU
SGTU

SLEU

VARIANT MODE.

IIEXADECIMAL
CODE

95 FC

95 D

EDIT MODE.

DO

D1

D2

D3

DL

D5

D6

D7

D8

D9

VARTANT MODE.

DA

DB

DC

OPERATORS , NUMERICAL LIST PRIMARY MODE
NAME
SCAN WHILE EQUAIL, UPDATE

SCAN

MOVE

MOVE

SKTIP

SKIP

APPENDIX B (cont)

WHILE NOT EQUAL, UPDATE

WITII INSERT
WITH FLOAT
FORWARD SOURCE CHARACTERS

REVERSE SOURCE CHARACTERS

RESET FLOAT

END FLOAT

MOVE

MOVE

NUMERIC UNCONDITIONAL

CHARACTERS

INSERT OVERPUNCH

INSERT DISPLAY SIGN

SKIP

SKIP

FORWARD DESTINATION CHARACTERS

REVERSE DESTINATION CHARACTERS

INSERT UNCONDITTIONAL

MNEMONIC

SEQU

SNEU

MINS

MFLT

SESC

SRSC

RSTEF

ENDF

MVNU

MCHR

INOP

INSG

SEDC

SRDC

INSU

APPENDIX B (cont)
OPERATORS , NUMERICAL LIST PRIMARY MODE

VARTANT MODE.

HEXADECIMAL
CODE NAME MNEMONIC
DD INSERT CONDITIONAL INSC
DE END EDIT ENDE

APPENDIX C

CONTROL WORD FORMATS

35| 31

27

151 1N 7 3

LENGTH/INDEX

EM/DISK ADDRESS

34 301 26 14 10 6 2
331 29| 25 13 9 5 1
32| 28| 24 12 8 4 0

DATA DESCRIPTOR

P = PRESENCE BIT = COPY BIT T = INDEX BIT S = SEGMENTED
BIT
1 = PRESENT 1IN = A COPY 1 = INDEXED 1 = AREA
MAIN MEMORY SEGMENTED
0 = NOT PRESENT IN = ORIGINAL O = NON INDEXED | O = NOT
MAIN MEMORY SEGMENTED
READ ONLY BIT Lo & 41 D = DOUBLE-PRECISION BI1T
1 = READ ONLY MUST = 00 1 = DOUBLE-PRECISION DATA
0 = READ/WRITE FOR DATA DESC. 0 = SINGLE-PRECISION DATA

11 7 3
ADDRESS COUPLE

10 6 2

13 ol 5 1

12 8l 4 0

NORMAIL INDIRECT REFERENCE WORD

C-1

APPENDIX C (cont)
CONTROL WORD FORMATS

31| 27| 23 Nl 7l 3
SPLACEMENT INDEX FIELD
30| 26] 22 0] 6 2
29 25| 2 5| 5|
28| 24| 20 8] 4] o
STUFFED INDIRECT REFERENCE WORD
35 31| 27| 23 n{ 7| 3
DISPLACEMENT
34| 30| 26| 22 1o 6| 2
(DF) PREVIOUS "F"
33| 29| 25| 2 13 9] 5 1
32| 28| 24| 20 12| 8| 4| o

MARK STACK CONTROL WORD

D.S. = DIFFERENT E. = ENVIRONMENT V. = VALUE BIT
STACK BIT
1= A NON-CURRENT 1 = ACTIVE MSCW 1 = RETURN A VALUE

STACK

0 = THIS CURRENT 0
STACK

1l

INACTIVE MSCW] O

RESTART FROM BEGIN

43 27

P.1.R.
26

42

STACK NO.
41

25

40 24

PROGRAM CONTROL WORD

APPENDIX C (cont

)

CONTROL WORD FORMAT

= NORMAL/CONTROL STATE r/F SD = Segment Descriptor
1 = CONTROL STATE
O = NORMAL STATE
7
31 27 3
P.1.R.
30| 26 2
291 25 1
28] 24 0
RETURN CONTROL WORD
E.S. = EXTERNAL SIGN 0 = OVERFLOW F/F | Tr = TRACE MODE
BIT
1 = NEGATIVE 1 = OVERFLOW T = TRUE/FALSE F/F
= POSITIVE 0 = NO OVERFLOW 1 = TRUE
0 = TALSE
TFOF = TRUE/FALSE F/F
OCCUPIED F/F
1 = TFFF VALID
0 = TFFF NOT DETERMINED
= FLOAT F/F N = NORMAL/CONTROL F/F
1 = FLOAT 1 = CONTROL STATE
= NO FLOAT O = NORMAL STATE

47| 43; 39 35 31 27
INCREME NT FINAL VALUE
46) 42, 38 34 30 26
45| 41 37 33 291 25
441 401 36 32| 28] 24

15 1 7 3
CURRENT VALUE
14 10 6

13 9 5 1

STEP INDEX WORD

APPENDIX C (cont)
CONTROL WORD FORMATS

31 27 191 151 1) 7 3
N CHARACTERS MEM/DISK ADDRESS
30| 26| 22 18f 14| 10 6 2
291 25| 21 171 13 9 5 1
23] 24 161 12 8 4 0
STRING DESCRIPTOR (NON-INDEXED)
P = PRESENCE BIT C = COPY BIT I = INDEX BIT S = SEGMENTED
BIT
1 = PRESENT IN 1 = A COPY 1 = STRING
MAIN MEMORY SEGMENTED
O = NOT PRESENT IN | O = ORIGINAL 0 = NON-INDEXED | O = NOT
MAIN MEMORY SEGMENTED
R = READ ONLY BIT | SIZE = 4 =) 8-~BIT BYTE
1 = READ ONLY SIZE = 3 =) 6-BIT CHARACTER
0 = READ/WRITE SIZE = 2 =) L4-BIT DIGIT
271 23
INDEX
0| 26) 22
251 21
24 20

c-l

STRING DESCRIPTOR (INDEXED)

APPENDIX C (cont)
CONTROL WORD FORMATS

P = PRESENCE BIT C = COPY BIT I = INDEX BIT = SEGMENTED
BIT
1 = PRESENT IN 1 = A COPY | 1 = INDEXED = STRING
MAIN MEMORY SEGMENTED
O = NOT PRESENT IN | O = ORIGINAL = NOT
MATIN MEMORY SEGMENTED
R = READ ONLY BIT | SIZE = 4 =) 8-BIT BYTE
1 = READ ONLY SIZE = 3 =) 6-BIT CHARACTER
0 = READ/WRITE SIZE = 2 =) 4-BIT DIGIT

&5

(SCAN TIN)

N N N N

0001,
0010,
0100,
1000,

APPENDIX D
SCAN FUNCTION CODE WORDS

19

18

17

Ol of o ©

16

351 311 271 23 19l 15/ 1} 7] 3

34| 30 26| 22 18] 14 10 6] 2
TIME OF DAY

33| 29 25, 21 17, 13, 9| 5] 1

321 28 24| 20 16| 12 8] 4] ©

Function Code Read General Control Adapter (OlOl)

GCA A is to respond

GCA B is to respond

GCA C
GCA D

N
N

N
N

1l

1l

00,
oL,

10,
10,

Read GCA

Read GCA
Register

Read GCA
Read GCA

Input Register
Interrupt Mask

Interrupt Register

Output Register

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

(SCAN IN) (cont)

47 43 39 35 3] 27 23 19 15 11

46 42 38 34 30 26 22 18 14 10
INDEX

45 41 37 33 29 25 21 17 13 9

44 40 36 32 28 24 20 16 12 8

a. G.C.A. Register Word Returned

b. G.C.A. Register Word Sent To Multiplexor

ol Ol ol ©

Function Code Read Result Descriptor (OOlO)

APPENDIX D (cont)
SCAN FUNCTTION CODE WORDS

(SCAN IN) (cont)

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

AN CANE >R UV R \C R N ©)

()

1l

15 1 71 3

47] 43] 39| 35

46] 42| 38| 34 14 10] 6] 2
MEMORY ADDRESS 1C. N.JU. ERROR FIELD
45(41 37 33 1 1 13 92 5

44] 40| 36} 32

12] 8 4l 0

Result Descriptor Word Returned

Exception

Software Attention
Busy

Not Ready

Descriptor Error
Memory Address Error
Memory Parity Error

Memory Protection Erroxr

Bits 15:9 are Unit Error Field (see MPX section)

Function Code Read Interrupt Mask (10100)

(scAN IN) (cont)

Bit
Bit
Bit
Bit
Bit
Bit

D-L4

O & W N H O

APPENDIX D (cont)
SCAN FUNCTION CODE WORDS

MMJ

2 ©

p—

Interrupt Mask Word Returned

Multiplexor I/O Finish

Data Comm. Processor 1

Data Comm. Processor 2

Data Comm. Processor 3

Data Comm. Processor L

Status Change

o

50
49
48

N

o] o] o o

Interrupt Register Word Returned

(scAaN 1IN

Bit
Bit
Bit
Bit
Bit
Bit

o &= W N N0
]

Bits 1:2

Bits 7:4

APPENDIX D (cont)
SCAN FUNCTION CODE WORDS

) (cont)

Multiplexor I/0 Finish
Data Comm. Processor 1
Data Comm. Processor 2
Data Comm. Processor 3
Data Comm. Processor 4

Status Change Interrupt

o] ©

o

Interrupt Literal Word Returned

o1
10

1l

Multiplexor A

Multiplexor B

0001 = D.C.P. 1
0010 = D.C.P. 2
0011 = D.C.P. 3
0100 = D.C.P. 4
1001 = I/0 Finished
1111 = Status Change

Il

APPENDIX D (cont)
SCAN FUNCTION CODE WORDS

(SCAN IN) (cont)

Function Code Interrogate Peripheral Status (OOOl)

M =0 = All Multiplexors to respond

M =1 = Multiplexor designated by Z to respond
Z = 01 = Designates Multiplexor A

Z = 10 = Designates Multiplexor B

N = 0 =) 7 Status Vector Number (in Binary)

271 23 19 15 11

STATUS BITS
26y 22 18, 14

25 21 17 13 9

241 20| 16 12 8

Unit Status Word Returned

o
|
o
1

Status word not present

=
]
-
]

Status word present

(scAN

IN)

APPENDIX D (cont)
SCAN FUNCTION CODE WORDS

(cont)

01
02
ok
05
06
07
08
OA
0B
ocC
oD
ID
IE
IF

Unit Type Word Returned

= No Unit

= Disk File

= Display

= Paper Tape Reader
= Paper Tape Punch

= Line Printer, Buf

= Card Reader

= Card Punch

= Magnetic Tape (7
= Magnetic Tape (9
= Magnetic Tape (9
= Magnetic Tape (7
= Magnetic Tape (9
= Magnetic Tape (9

fered, BCL drum

= Line Printer, Unbuffered, BCL drum

track)

track NRZ) Exchange

track P.E.).

track)

track NRZ) Serial or Cluster

track P.E.)

D-7

APPENDIX D (cont)
SCAN FUNCTION CODE WORDS

(SCAN IN) (cont)

T.C. (cont) = 26 = Line Printer, Buffered, EBCDIC drum
27 Line Printer, Unbuffered, EBCDIC drum

15
UNIT
14

NUMBER |
13

16

150 1
UNIT

lﬁ 10
NUMBER
i3

9

12

Input/Output Path Word Returned

A = 0 = No Path Available

A =1 = Path is Available

Z = 01 = Path via Multiplexor A

Z = 10 = Path via Multiplexor B

Z = 11 = Path wvia Either Multiplexor

APPENDIX D (cont)
SCAN FUNCTION CODE WORDS

(SCAN ouT)

Function Code Set Time of Day Clock (0011)

35

31

27

23

19

34

30

26

22

18

33

29

25

TIME OF

2]

17

32

28

24

20

Function Code Set General Control Adapter (0101)

APPENDIX D (cont)
SCAN FUNCTION CODE WORDS

(scAN oUT) (cont)

Z 2 2 N N N N
1l

0001 = GCA A is to Respond

0010 = GCA B is to Respond

0100 = GCA C

1000 = GCA D
00 = Set GCA Output Register
01 = Set GCA Interrupt Mask Register
10 = Set GCA Interrupt Register

Bit
Bit
Bit
Bit
Bit
Bit

D-10

O & W N H

Function Code Set Interrupt Mask (0100)

Interrupt Mask Word Sent To Multiplexor

= Multiplexor

= Data Comm. Processor

1
= Data Comm. Processor 2
= Data Comm. Processor 3

= Data Comm. Processor 4

= Status Change Interrupt

APPENDIX D (cont)
SCAN FUNCTION CODE WORDS

(sCAN 0UT) (cont)

39| 35| 31| 27 15| 1| 7] 3
0 BUFFER AREA

38| 34, 30 2 14, 10, 6] 2

v I L

0 LENGTH BASE ADDRESS

37] 33, 29 25 13, 9, 5 1
0

3| 32| 28| 24 12| 8 4] o0

Area Descriptor Word Sent To Multiplexor

APPENDIX E

DATA REPRESENTATION

CODES.
BCL BCL EBCDIC HEXADECIMAL
GRAPHIC EXTERNAL INTERNAL INTERNAL GRAPHIC
Blank 01 0000 11 0000 0100 0000 4o
. 11 1011 01 1010 0100 1011 4B
[11 1100 01 1011 0100 1010 LA
(11 1101 01 1101 0100 1101 4D
< 11 1110 01 1110 0100 1100 ke
“ 11 1111 01 1111 0100 1111 Ly
& 11 0000 01 1100 0101 0000 50
$ 10 1010 10 1010 0101 1011 5B
* 10 1100 10 1011 0101 1100 5C
) 10 1101 10 1101 0101 1101 5D
; 10 1110 10 1110 0101 1110 5E
< 10 1111 10 1111 0101 1111 5F
- 10 0000 10 1100 0110 0000 60
/ 01 0001 11 0001 0110 0001 61
) 01 1011 11 1010 0110 1011 6B
% 01 1100 11 1011 0110 1100 6C
= 01 1110 11 1101 0111 1110 7E
] 01 1110 11 1110 0101 1010 5A
" 01 1111 11 1111 0111 1111 7F
00 1011 00 1010 0111 1011 7B
@ 00 1100 00 1011 0111 1100 7C
: 00 1101 00 1101 0111 1010 7A
> 00 1110 00 1110 0110 1110 6E
> 00 1111 00 1111 0111 1101 7D

APPENDIX E (cont)
DATA REPRESENTATION

BCL BCL EBCDIC HEXADECIMAL
GRAPHIC EXTERNAL INTERNAL INTERNAL GRAPHIC
+ 11 1010 01 0000 1100 0000 co
A 11 0001 01 0001 1100 0001 c1
B 11 0010 01 0010 1100 0010 c2
C 11 0011 01 0011 1100 0011 C3
D 11 0100 01 0100 1100 0100 Ch
E 11 0101 01 0101 1100 0101 c5
F 11 0110 01 0110 1100 0110 cé
G 11 0111 01 0111 1100 0111 C7
H 11 1000 01 1000 1100 1000 c8
I 11 1001 01 1001 1100 1001 C9
x (Mult.)| 10 1010 10 0000 1101 0000 DO
J 10 0001 10 0001 1101 0001 D1
K 10 0010 10 0010 1101 0010 D2
L 10 0011 10 0011 1101 0011 D3
M 10 0100 10 0100 1101 0100 D4
N 10 0101 10 0101 1101 0101 D5
0 10 0110 10 0110 1101 0110 D6
P 10 0111 10 0111 1101 0111 D7
Q 10 1000 10 1000 1101 1000 D8
R 10 1001 10 1001 1101 1001 D9
01 1010 11 1100 0110 1101 6D
S 01 0010 11 0010 1110 0010 B2
T 01 0011 11 0011 1110 0011 E3
U 01 0100 11 0100 1110 0100 Bh4
v 0l 0101 11 0101 1110 0101 E5
W 01 0110 11 0110 1110 0110 E6
X 01 0111 11 0111 1110 0111 E7
Y 01 1000 11 1000 1110 1000 E8
z 01 1001 11 1001 1110 1001 E9

APPENDIX E (cont)
DATA REPRESENTATION

BCL "~ BCL EBCDIC HEXADECIMAL

GRAPHIC EXTERNAL INTERNAL INTERNAL GRAPHIC

0 00 1010 00 0000 1111 0000 FO

1 00 0001 00 0001 1111 0001 Fl

2 00 0010 00 0010 1111 0010 F2

3 00 0011 00 0011 1111 0011 F3

4 00 0100 00 0100 1111 0100 FL

5 00 0101 00 0101 1111 o101 F5

6 00 0110 00 0110 1111 0110 F6

7 00 0111 00 0111 1111 0111 F7

8 00 1000 00 1000 1111 1000 F8

9 00 1001 00 1001 1111 1001 F9

? 00 0000 00 1100 0110 1111 ALL OTHER
CODES (see
notes)

NOTES
a. EBCDIC 0100 1110 also translates to BCL 11 1010.

b. EBCDIC 1111 is translated to BCL 00 0000 with an
additional flag bit on the most significant bit
line (8th bit). This function is used by the un-

buffered printer to stop scanning.

c. EBCDIC 1110 0000 is translated to BCL 00 0000
with an additional flag bit on the next to most
significant bit line (7th bit). As the print
drums have 64 graphics and space this signal can
be used to print the 64th graphic. The 64th
graphic is a "CR" for BCL drums and a "g" for
EBCDIC drums.

APPENDIX E (cont)
DATA REPRESENTATION

The remaining 189 EBCDIC codes are translated
to BCL 00 0000 (? code).

The EBCDIC graphics and BCL graphics are the

same except as follows:

BCL EBCDIC
1) > ' (single quote)
2) x (multiply) Y
3) = __ (not)
L)y # _ (underscore)
5) - |

APPENDIX F
B 6500 EBCDIC/HEX CARD CODE

+ + |+ + |+ + +
N e _ _ CI
N
0|0 0 0 0 0 0 0
6 {6 |6 |6 6 6 6 6 VA
1
WON XdH Jdltata |90 V|6 |8 L19)S | # 9 Z T 0 XTH||WAN
L8 d I w e L ans | 1ag | sn uHImJJ d || Ls
98 q =|<| ¢ |+ MOV | su 0s q 98
<8 a () fyvN |(oNE | so | 8o a || ¢s
78 o) @ [%| % |> QHoa sd | Jdd 0 %8
€8 g # 1l $lo g || €8
Z8 v S HEEN v || 28
6 6 6 |z |a |1 z|x |t <] #|> WA 6 || 18
8 8 8 |X[d |H £ 1D |u - NVD 3 8
L L L X |d |9 x |d |3 10d | 0sd gicia L L
9 9 9 (Mg (4 mlo |g 914 | sg 9 (|l 9
G G S AN (4@ Alu |o il IH g q
Ut Ul 71N R |d nfwp U Ul
¢ ¢ C 1T |1 |2 3 |T |° £0a | X1d ¢ £
Z Z 2 |s |y |a s |3 |a NXS z20a |xXIs A | W
T T T ro|v ~IlC |e T T
T8 o § o] E. B [] o || ts
WNN xau || a |a |a |o g XHH NN
6

I OO\ o~

+

+ o o] = Ay
[4)]

NOZHE

APPENDIX F (cont)

B 6500 EBCDIC/HEX CARD CODE

Use of the B 6500 EBCDIC/HEX Card Code Chart.

a.

b.

Locate the desired EBCDIC graphic code within the table.

The two-part Hexadecimal Code is read as follows:

1) The first part is found in the vertical column

above or below the desired EBCDIC code.

2) The second part is found in the horizontal row

either to the right or left of the desired EBCDIC

code.,

a)

Examples:

SYN
F

32
C6

The two-part Card Code is found in the same manner as HEX

(b) except the zone and numeric bits are read from the

very outer portion of the table.

1) Examples:
SYN = 9 2

= + 6

2) The card code exceptions to the above procedure

are enclosed in heavy lines on the chart and are

defined below:

a)

b)

c)

d)

e)

f)
g)

00
10
20
30
4o
50
60

+ 0981 (NUL)
+ =981 (DLE)
- 0981

+ =0981
BLANK

+ (&)

- (-)

70
CO
DO
EO
FO
61
El
6A

oy

- n n

o n

APPENDIX F (cont)
6500 EBCDIC/HEX CARD CODE

+

+

o O O © o 1

-09

+ -

APPENDIX G
HEXADECIMAL-DECIMAL CONVERSION TABLE

The table in this appendix provides for direct conversion of

decimal and hexadecimal numbers in the ranges:
Hexadecimal Decimal
000 to FFF 0 to 4095

For numbers outside the range of the table, add the following

values to the table figures:

Hexadecimal Decimal
1000 4096
2000 8192
3000 12288
L4000 16384
5000 20484
6000 24576
7000 28672
8000 32768
9000 36864
A000 40960
BOOO 45056
C000 49152
DOO0O 53248
E000 57344
FO00 61440

118
-1
6Lt
€9h

inw
1er
sin
66¢€

€8¢
i9¢
16¢
GEE

6i€E
£0¢
L8¢
128

gsé
6€¢
gee
L0

16t
S.1
651
£yl

221
117
46
64

£9
in
1€
st

01s
vew
8in
con

9ty
0EYy
2y
B6E

gl€
[2413
98¢
0d¢

wae
gee
¢ce
90¢

06l
gll
gsl
Zni

gci
oll
vé
g4

9
9n
o€
t1

605
g£6n
L
194

Svh
62y
€ty
16¢€

I8¢
o9¢
61E
EEE

LiE
10€
e8¢
692

€52
itc
1ce
s0¢e

681
€41
251
132}

el
601
€6
yys

19
€Y
62
£l

80&
4.1
9Lih
05

A4
gey
(A%
96¢

08¢
A2
1123
133

91¢
00€
vee
89¢

ése
9€2d
oee
w02

881
¢l
9c1
ovl

vzl
80T
cé
92

09
by

8¢
2t

406
160
it
(3

Evn
ey
iy
1.13

62¢
E9t
ivE
1EE

SI1E
66¢
£ee
L9¢

1114
1 %4
s1¢c
€0¢

81
11
S61
6€l

£ct
101
16
sl

65
£y

i
[3

906G
06l
biv
gatl

ey
9ch
VA%
76€

g.lt
29¢
9HE
0tg

213
g6¢c
2ge
992

0se
pee
gic
¢oe

9%1
041
wsl
8El

cel
9071
06
L2

8%
4]

9¢
01

G068
68t
€LY
L80

Tot
114
600
€6t

llt
19¢€

She
6¢t

€1€
462
T8¢
gye

6he
1 ¥4
i1
1oe

sgl
691
£S1
iE7

iet
SOt
68
€4

L5
1%
174

%05
88h
i
9un

ory
vey
80y
-1

9.¢
09¢

LAAY
8ce

¢ie
962
082
w9

gue
[1%4
912
002

rel
891
csl
9t
021
%01

88
el

€0S
8%
T4t
1194

6Eh
€Cy
L0%
16€

i€
6SE
Ene
12¢€

Tig
14114
64¢
£E9¢

ine
[$34
%4
661

£gl
191
161
el

611
€01
48
¥

20s
98
alv
new

gEY
éch
0%
06t

vlit
gsE

ent
92t

QTE
1214
8l
89¢
9ue
pEc
nic
86l

g8l
991
ost
pel

81l
gol
98
Y]

119
BE
2e

108
8%
691
€Sy

LEY
(¥4
1
68€

£i€
LSE
The
Y43

60¢
€6
lie
192

awe
6¢2
g£le
l61

181
691
601
£€el

i1l
101
1T]
69

€S
it
1e

00¢s
Y8
89t
2sy

9ty
0cy
200
98¢

2lt
9%¢€
One
HeE

80¢€
[4-14
94c¢
09¢

74l
gee
2ie
961

08l
791
1A
2el

91t
001
ve
9

es
9t
0¢

66"
%1
19%
5%

SEY
(134
E0v
i8¢

12€
66t
6€E
€2¢

L0¢€
162
sl
652

1314
le¢
11e
s6l

641
€91
inl
1el

13
66
€8
49

is

Gt
61

g6t
141
99t
osw

new
8w
4
98¢

0l¢
121
8¢€
et

90¢
062
wic
g86e

cye
9¢¢e
01
vel

8Ll
291
9t
(1

LAY
96
4]
99

0§
ve
81
[4

6t
igh
S9t
6t

g€y
21y
Tov
11

69¢
(343
FA33
12¢

S0t
68¢
€l
isé

ine
(144
602
€61

L13
191
112
621

£T1
l6
ig
<9

6%
£E

Pat
I

961
osty
L2
ghy

1%}
2%
0o
78t

89¢
[41%
9t¢t
(1143

{13
88e
2le
96¢e

one
nel
80¢e
26l

941
091
el
gel

13
96
08
9

8y
[4Y

91
0

0

041
031
oat
031

081
ov1
061
ogl

041
051
0¢gt
orl

o€l
oct
011
001

040
030
0ao0
020

080
ovo
060
080

020
090
060
ono

o€o0
020

oto
000

(Pi#u02) O XIANIdAY

G-2

g£eot
1001
166
Si6

656
Ené
126
116

668
648
£9¢
ine

lee
Sis
664
(3-73

194
164
€4
611

£E04
189
149
5§69

6€9
€29

109
16S

PA
655

£ns
l2%

ceol
9001
066
vié

856
cv6
9¢6
ot6

768
948
¢9e
9ne

0ts
vig
864
¢8s

992
0sd
rEd
814

c04
989

049
LAY

BEY
¢y
909
06S

LAY
8SS

cus
9¢s

1201
S001
686
€46

156
ive
Ge6
606

€68
lig
198
Sveg

628
o §°]
164
8L

Q9.
644
€€L
FAY!

104
89
699
€59

l£9
129
S09
685

€46
1SS

1329
94

0eotl
v001
8BS
ci6

966
ove
v
806

c68
9.8

09¢
rwe

8ce
cig
961
084l

L]
8l
2eL
91l

002
789
899
2]

9€9
09
vo9
88%

(23
9SS

0vs
®es

6101
E001
iB6
¥4}

191)
6€6
£26
106

168
Si8
658
Eve

PxA}
118

17
641

€9l
il
1€
3P

669
£89
199
169

G€9
619
£09
186

148
6§

6€S
£2s

giol
2001
986
046

756
8té6
2eéh
906

068
L8
858
eg

9¢ée
oie
vel
8Ll

292
9ne
0tl
ril

869
289
999
069

beE9
819
299
98S

048
7SS

8tsS
2zs

2101
1001
S86
696

€56
LE6
126
06

688
€48

i8¢
ive

sce
608
£64
Lid

192
Sl
62!
£l

469
1e9
S99
619

€E9
419
109
GBS

695
€66

ES
12s

9101
0007
LA
896

es6
9¢6
0es
vo6

888
ci8
968
ove

L14]
808

c6d
94l

092
LAy
B8C/
Ay

969
089
99
8179

2E9
919
009
vgs

895
2ss

9ts
0cs

clol
666
€86
196

1s6
SE6
616
t£06

i88
148
658
6t8

€¢e
408

164
&Ll

654
£Vl
121
1L

569
649
£99
9

1€9
st9
665
£E8S

496
168
GESQ
616

riol
866
11
996

056
nEd
Bi6
206

988
0i8
L1Y']
8cs8

écs
908
064
vll

864
[
9cl
o012

269
949

299
999

0E9
719

g66s
28s

99%
0SS

vES
816§

glotl
166
186
996

66
€E6
416
106

588
698
£G8
lEg

[£4]
508
684
€14

454
137
s¢l
602

€69
L19
199
an9

629
€19
468
185

59
6%S

tEES
l1s

elol
966
086
796

guvé
1Y)
916
006

88
898
41
9t g

0¢g
o8
884
eiL

962
0wl
el
804

269
949
099
LA'RS

8¢9
A%
96S
08s

L A2
8rs

439
91g

1101
$66
616
€96

ineé
€6
S16
668

€88
498
(39°]
1)
618
£08

i84
124

1193
6€4
£l
404

169
Sl9
659
£Ev9

129
1254
S6%
6.5

€95
PR A

1€S
s1s

ototl
hé6
816
296

916
0tEé
16
868

98
998
0s8
LAY

8ig
cog

984
012

LAY]
8€2
éel
904

069
"9
8G9
¢u9

9c9
0f9
76s
826

9%
9ns

0€s
ris

6007
€66
116
196

She
626
€16
468

ies
5§98
6he
€€Y

418
108

112
694

€64
Lel
12
S0l

689
€49
159
1327

29
609
€65
11

19s
ShS

62
£1s

T

8001
266
9.6
096

neé
8cé6
216
968

o8e
798
gve
2eeg

918
008
hed
894

2sl
9¢ 4l
0cl
"0l

889
2.9
969
on9

LAY
809
-3
9.¢

09¢
LA A

8es
¢S

0

04¢
03t
0ate
(141

08€
ovE
06¢
(1113

04E
09¢
0GE
orE

0EE
0ct

01¢€
oo¢g

042
03¢
oae
03¢

odeg
ove

062
0ge

0.2
092
062
one

0€eg
0ce

ote
0oe

(Pyiuod) © XIANIddY

G-3

GEST
6161
£0s1
legnl

vl
11 A
6Nl
genl

LA
I4£1
GLET
6GET

€neEl
L2t
T1€T
62l

6121
£€9¢t
in2l
tgel

glét
6611
gslt
1911

1git
sglt
6111
€otl

1801
1401
8G0T
6€01

vESH
glst

¢0sl
eyl

oLvl
LA A
geEwl
cend

90nl
06€l
rlET
8GE1l

grel
9zel

0TET

7621

Y EA
¢%cl
9nel
0ect

vici
8611
413
9911

0stl
yELT
glil
129}

9801
0201
S0l
8E0T

€Egl
4181
1067
qenl

6911
€Syl
€91
120t

S0yl
s8¢
1WA
45¢€1

Ived
ceel
60¢l
£6¢ct

LLet
1921
Shetl
6221

g£1el
1611
1etll
AN

6v11
€ELS
AR
1011

s801
6901
€507
1807

2est
91gi
00g1
renl

ovel
reEl
8oel
262l

9421
0921
el
geel

cizl
9611
0811
911

gyil
eell
gitt
0011

7801
8901
2sol
9€0T

231
Sist
6641
XL A

112l
611

6411
€911

PR AR
ietll
13
6601

€801
2901
150t
SEOT

0tEgl
rist
8énl
cuhrl

9911
oshl
A% A
givi

conl
FEET
0.t1
neeEl

BEET
¢eel
90€l
06l

widi
8adl
[AXAS
9eci

01c1
LTS
8it1
291t

911
0eT1
A% Y
8801

¢gol
9901
0601
yeEOT

6261
g6t
i641
Tanl

q9nt
(YAA"
gEenl
AR A

owl
Getl
69€1
€EGEl

LEET
teetl
GOET
68ct

1WEAS
521
1324
geel

6021
€611
2411
1911

syil
6211
€1l
1601

te0tl
S901
6401
€EOT

8cGl
Zgigl
96n1
ognl

79wl
8yl
Zenl
91yl

oowt
reel
89¢€tl
¢oEl

9tel
oeel
noed
8gel

L2l
9621
0yl
neel

A
128
9211
0911

voill
‘AR
eIt
9601

0801
901
gvol
2eo0t

1281
[25°Y!
a6t
6401

131 A1
AR
1end
Sinl

66€1
€gET
49¢€7
IgEl

GEET
61€l
€0€ET
i8al

| Y2
13T
6€c1
XA

1021
1611
L1
65811

evit
2211
(2251
S601

6401
E901
L9071
1€071

9261
01S1
w6l
gint

2ont
2 A R
oEwl
pivi

gotl
e¢eel
99¢1l
0GET

yEET
gTEl
20€1
g8t

0let
nsel
gect
gzet

90¢1
asll
L 7AR)
gsll

2vil
9211
ertl
%60%

gi01
2901
9001
QE01

Gegl
6061
g6t
it

1911
syl
621
Eiyl

lo6tl
18€1
69ttt
6%El

EEE]
L1€1
10€tl
sgel

6921
13T AY
ig21
1eet

soct
6811
€411
4511

ivil
gell
6011
€601

1101
1901
Svol
6201

$esi
gost
26nl
g4l

o9u1l
heul
geyl
Zinl

96¢€1
08€1
h9tl
8veEl

Zeel
9led
00€1
vecl

g9l
2gil
9¢2t
(A

7021
8811
gLl
9sti

oytl
wetl
8011
2601

9401
0901
ve01
8¢otl

£est
40S1
(13
Sinl

6abl
eyl
2eul
1222

S6¢E1
6.E1
€9€T
inel

IEET
SIEl
661
£9¢t

L9¢t
314!
sgct
61¢1

£0¢T
i811
PN
S6i1

6€T1
(X4Y]
011
1608

Qi0t%
6501
€401
22071

gegt
gost
06141
iyl

gonl
engl
9enl
0inl

veeEl
8i¢1
29gl
Inel

0€ET
L AT
86cl
égetl

9921
0set

weel
8121

eo2i
9811
011
rell

CIR g
¢zt
9011
0601

vi0t
8s0t%
ewotl
9201

1341}
sost
68n1
WEAS

cul
1S 241
gzt
6011

E6El
li¢1
Togl
Shel

62¢el
€TEl
621
13-TA

c9et
6nel
ggct
i1et

Toet
Gelt
6911
€gil

LETT
1etl
S0t
6801

€401
4501
Tyot
sz0t

14

0¢sl
vosi
88l
clitl

9snl
onvl
henl
goni

413
9.t1
09€1
oyel

8cEl
2iel
96¢1
08¢l

LA
8vel
2ecl
9121

0021
#ell
8911
eslhi

91l
021t
potl
8801

2401
9601
onol
#co1

0

04§
03¢

0as
038

0€S
ovs
0668
088

0l¢
09s
0sS
ors

0€EG
0es
otg
00¢

044
03¢
oan
00w

08w
ove
060
0|y

0%
o9t

oSy
(2.4

0EY
octy
oty
00%

(Py#u02) O XIANIdAY

G-4

17028
1€0¢
i0¢
6661

€86l
1961
1c6l
GE6d

6161
£061
1881
1481

csel
6€81
€egl
2081

1641
SiLT

6541
Evil

1241
1141
G691
6491

£991
L1791
g9t
ci9t

6651
€851

4961
1gst

9h0c
0€0¢
viod
8661

86l
9961
0561
r7eE6l

glel
¢061
9881
0481

vagl
gERl
cegl
9081

0641
will
8584l
cull

9¢il
0141
7691
8491

2991
991
0e9l
7191

8651
¢8sl

99s1
ossl

soe
6202
€108
1661

1861
5961
6we6l
g€6l

2161
1061
segl
6981

€581
lg81
12gl
o8l

6841
€441
1841
Tned

gcil
6021
€691
2291

1991
g9l
6291
g£l9t

1661
Tesl

s961
6051

yy0e
geoe
¢io¢
9661

0861
7961
gne6l
2e6l

9161
0061
788l
g9l

¢s8l
9€81
0eel
voel

881
eill
9541
ovdl

vell
80.1

2691
9491

0991
yH91
8col
¢i9l

9661
0gsl

79si
84Sl

Ev0e
202
1102
S661

6461
£961
iv61
1es61

5161
6681
€887
2981

1set
ceel
618l
cogl

4841
1441

5621
6€L1

XPA
4041
1691
6491

6591
En9l
4291
1191

S661
6451

€961
LSt

2noce
9c0¢
0102
w661

8461
2961
on6l
ote6l

7161
8681
2581
9981

osel
neE|l
gigl
208t

Sadl
04L1
vsll
8Ell

2ell
9041
0691
vi91

8691
ern9l
9291
0191

7661
8461

eysl
9nsl

Tvoc
Gcoc
6002
€661

1261
1961
Sh6l
6261

€161
158l
1gel
G981

6481
€e8l
181
1081

csgll
6941
€641
841

1241
S04t
6891
€291

1591
ivol
geot
6091

1434
2181

195t
shel

ovoe
wéoe
8002
€661

9.61
0961
w6l
8ol

ci6l
9681
088l
LALDS

sy8l
2esl
918l
008t

vell
8941
eall
9€l1

0cit
voLl
8891
ci91

9691
oy9l
ve9l
8091

2661
9461

09s1
wysl

6£02
€202
2002
1661

6161
6561
evel
1261

1161
s681
6487
€98l

it81
1€81
cigl
6641

€841
1911
1sdt
SELT

6141
€041
4891
1491

Ss91
6€91
€¢91
2091

1661
6461

6561
EnGl

ge0e
€202
9002
0661

yli61
8561
evol
9261

al6l
w68l
gi8l
2981l

981
0€8t
nigl
Bssl

egll
9941
psil
pell

-1 PAY
2041
2891
0491

ps91
eIl
8291
9091

0651
w451
gest
enst

1€02
1¢o¢
5002
6861

£L61
1561
trel
Gesl

6061
€681
1481
1981

svgl
6¢81
glgl
2641

1841
6911
641
€€l

AP
1021
S891
6991

€997
LE91
1e9t
s091

68S1
€451

4681
insl

9£0¢
0¢0¢
7002
8861

elel
9561
ool
heol

go6t
2681
9481
0981

12
ge8l
2igl
9641

0821
7911
gvil
el

9141
0041

7891
8991

2591
9¢€91
0¢91
7091

88s1
gisl
96s1
(AN

5€08
6102
€002
i86%

1261
G661
6€61
£c6l

L061
Te8l
5481
6581

£v8l
1281
118t
S6il

644t
€94%

L0
ledt

aldl
6691

€891
1991

1691
cE9l
6191
€091

1861
[F3
6661
6€5T

veoe
g8i0¢
2ooc
9861

0261
w56l
ge6l
2zotl

9061
Oe8l
781
gcel

engl
9281
otlel
n6Ll

8.1
2941
SuLl
0€Lll

LAPES
8691

2891l
9991

0591
he9l
8191
2091

9gst
04sl

veGl
8ggt

€E02
410¢
1ooc
cg6l

6961
g€ge6l
Fiy-1
126l

Go6l
6881
£281
1581

irel
czsl
6087
€641

1111
1941
sosl
6241

€141
1691

1891
6991

6191
€E9T
1191
1091

11
6951

gcsl
lesy

1

2e0c
9102
000¢
nge6l

8961
2s61
9e6l
0cél

woél
888l
cigl
968l

ovetl
728l
8081
26ll

94411
0941
#ull
8ell

2iil
9691

0891
1991

gn9l
2e9l
9191
0091

recl
89S1

2661
g9est

0

044
032
oas
032

084
ovi
064
08l

0Ll
094
0S¢
ond

otl
0ze
(1194
004

049
039
oag
039

069
ove

069
089

049
099
089
0v9

0€9
029

ol9
009

(Pytuo2) © XIANIddY

G-5

655¢
EnGe
i2s¢
1162

s6ve
6412
€9ne
Lo02

-t
™
ar
o~

siwe
66E¢
-2 %4

19¢€2
11134
SEEe
61€e

£0€e
1822
14¢2
1144

6€2¢
geee
loce
1s1¢

siie
6512
ente
212

111z
§60¢

6402
€902

gsse
Znae
9ésie
0182

rewe
84im2
c9ne
9vye

otwe
vin
g6t¢c
28ec

99¢€¢
05€e
reEc
gige

20€e
9uec
04¢¢
nace

#€ée
ceee
90¢cc
06t1e

Bilc
gsle
2nic
9eie

ottle
7602

8408
290¢

146¢
13214
G6ésce
6082

£61e
F¥3 14
tone
Suye

6Cnc
£ine
16€¢
18¢€e

59¢¢
6v€d
g£eee
21¢€2

10ge
sgee
692¢
€62

lg22
1eed
s0¢¢é
681¢

€i1c
2612
irie
ccle

601¢
€602

li0¢
1902

956¢
ovse
wese
80&<e

coke
9ihe
o9ne
whne

gcwe
eine
96€¢
08€c

votc
ghee

éege
91¢2

0o0€e
vece
89¢c
(4144

9eZe
0cee
woed
881¢

e
9cie
ovie
yeie

80te
2602

9402
0902

566¢
6€6¢
€eee
4062

16b¢
§iyc
6592
gwne

icwe
1ige

G6EC
6L€2

£E9€¢
inee

Teee
sige

66c¢
ggce
4922
13344

ceee
slec

€0¢e
i812

1412
sele
6E£12
€cie

{012
1602
si0¢
6502

L2114
BEGLC
éese
9062

oeve
bive
8she
chne

9cne
otne
111 %4
PAYA

c9ee
1234
Ogee
nige

g8ee
4724
992¢
ogee

veee
gice
(444
98le

0.12
wsle
gele
ccice

9pie
060¢
240¢
8502

€568
V3414
1ese
08¢

68142
€ine
P31
Towe

(14 14
60w

€6€C
lige

Tggc
SHeEe
6ege
€1€C

lece
1822
89¢ce
6nee

€gee
i1ce
loce
- 12%4

6912
£€12
ie1e
1e1e

411 ¥4
6802
€402
4502

¢sse
9tse
0ése
70G¢e

8ghe
2ine
9sne
orne

vene
80n¢e
41%4
9.€¢2

09€¢
12 244

- 14%4
[A1%4

962¢
ogee
v9ee
8vee

eeee
912e
00¢cce
vgte

89ic
¢sle
9ete
ocie

LA ¥4
880¢
cL0e
950¢

1562
gEGe
61s2
£0s¢

L8942
1iv2
SShe
6t 2

Eche
042

16€2
Qi€

65¢€2
gvee
L2€2
11e2

5622
6122
£9¢2
inee

13344
stee
661¢
14234

1912
1612
14 ¥
6l1e

€0te
4802

1202
§c02

0652
11477
gised
80s¢

1114
oLwe
L2124
8eENe

gecnd
9ove

-1 %4
ri€e

141 X4
(3 234
9ctc
pree

n6ee
gee
89¢e
9pec

pgce
p1ée
gole
gele

9912
oste
nele
glic

801¢
9802
0408
p50¢

67se
gEge
4152
1052

(1114
69#he
1) 1
LEwe

134X
sove

68€¢
€1l€2

i€
Tree
Geee
60€2

€622
1122
ivec
enee

6cee
gtee
1612
13:2%4

c91e
6wl
133 ¥
L1112

1oie
5802

690¢
£s0¢

8raed
14314
91ge
00se

rewe
gone
eane
9ene

0ewe
wove
88€e
¢ltd

95¢€cC
oree
rced
80¢€¢

4144
9icé
092
L2 I X4

gece
2iee
961¢
08te

y912
gyl
2gle
9112

00ie
802

g90¢e
2502

Py 2T
Tese
sise
664

1311
i9%e
tgwe
CEWE

6t
Eone
l9¢E2
1i€2

(3334
€€
g€eee
10¢€2

l6c2
sleg
66¢ce
£ved

lee2
itee
s6t1e
6112

€918
FRAY
1e12
siig

6602
€802

4908
1s02

IvGe
0€gc
rige
86%<c

2gye
9942
osue
rEYe

giye
<owe
98¢€c
02¢€2

vgEe
g€ec
(24X
90€¢

06¢
wi22
862¢e
4 Y44

92¢el
0lce
v61c
8l1¢

é9ie
9nie
oete
vite

8602
g0
9902
0602

1144
626¢
€162
lewe

fawe
s9ne
6ne
Egne

L1y
fove
1 :11-
69€2

€GeEC
LE€8
1zee
G0€¢

682¢e
g€1¢e
452¢
inie

g2ee
6028
11154
li11¢

1912
1A ¥4
62lic
199 ¥4

1602
1902
590¢
6h0c

1

L2214
414
2ree
96%¢c

o8ne
rone
gthne
2ene

911
00we
12284
g89¢d

[41%4
9tec
0cee
hoee

g8¢ce
2iic
96¢éé
onee

wéce
802ce
41
9i12

0912
L2 AT
gele
2ite

960¢
080¢

v90¢
eroe

0

046
036
0aé6
036

086
ové
066
086

046
096
0s6
one

0€s6
026
016
006

048
03g
oase
(o]}

odg
oveg
068
08e

0lg
09¢
0se
one

o€
0eeg
ote
ooe

(Piuod) © XIANIddY

G-6

140¢€
SS0€
6E0¢
£20¢

400¢€
1662
6162
66862

Enée
1262
1162
5682

6182
£98¢
in8e
€982

cige
6642
€84
L9l2

sl
g€l
6142
€042

189¢
1292
669¢
6£92

€292
109¢

1662
1 PL14

040t
780¢
BEOE
¢cot

900¢
0662
yi6¢
85628

vée
ge6c
oléc
682

848¢
298¢
9hge
oeee

#7182
g6l
¢g8lc
994¢

0sic
wele

gilc
colce

989¢
049¢
769¢
gE9C

4424
9092

06s2
LT

690¢
€30¢€
FANI1Y
1¢ot

c00¢E
6862
€£l6¢
1662

ivel
Ge6e
606¢
£68¢

i8¢
198¢
ange
628¢

£1ge
26412
|5:714
@942

6v.c
€gL8
4112
1022

48928
6992
£99¢
1€9¢

tege
S09¢

6882
€162

890¢€
¢aot
9e0¢
0coe

200¢€
8g86c
2¢i6¢
966

ove6e
| 1417
8062
2682

9i8¢
098¢
12114
gcee

r2%:14
96l¢
08le
w9ic

8nic
2gle
91ie
00l

v89¢
8992
cs9¢
9£9¢

0¢9¢
#09¢

Bese
2is¢e

L90¢
160¢E
SEot
610€

£E00E
1862
1262
119-14

6€62
£262
L0628
1692

§i8c
6582
gEvge
i2ge

i1ge
§642
6448
€942

inie
| $ 9%
s142
6692

£89¢
1992
1592
g€9¢c

619¢
£09¢2

4852
1482

990¢
050€
7E0E
810¢

¢00¢
986¢C
0462
66

8g6e
44T
9068
0682

tige
858¢
2vge
9cee

oige
162
84428
¢9ie

9nic
ogle
viie
gs92

2u9¢e
9992
0892
ye9e

8i9¢é
209¢
985
0462

G90¢
61 0€
EEOE
L10€

100¢
11:1.14

6962
13474

lg6e
| §4.1
Gp6e
6882

€482
1588
Thee
s¢8e

608¢
£€6lc
lile
[5°7 X4

shid
6242
€14¢
1692

1e9e
S99¢
679¢
g9

L19¢
To9e

19174
6952

v90€
8y0E
eeot
910t

000¢€
r86e
8962
1114

9¢6¢c
0262
v06e
8882

e
982
ovge
vege

8ogee
(4.7%4
9iLe
0942

vwie
8842
ciic
9692

089¢
v992

8r9e
1414

9192
0092

vese
89G¢

£90¢
LUQE
1€0€
sloe

6662
£862
1962
1662

st6c
6162
€062
4882

1482
6682
6tge
€eee

4082
1642
sile
6542

£vie
el
1142
§692

6492
£992
iv9e
1£92

si92
6652

£Eesd
1982

g90¢
9h0¢
0EOE
1 2%1%

9662
2g6¢c
9968
0562

VeSS
gie6e
206¢d
9882

0482
| 2914
geEee
eéc8d

9082
0642
wiic
8sie

évic
92l
eiic
h692

849¢
899¢
9v9<e
0£9¢

ni9e
8652

#88s¢c
9962

190€
g0t
620¢€
€0t

1662

1862

5962
6h6e

tee6e
1162
1062
5982

6982
€682
lEge
1¥4:1

s08e
68.¢
€412
i8¢

ivs2
cele
60.¢
€692

1198
199¢
q092
6292

£€19¢e
4662

1862
6962

090¢
LA X%
7413
2loe

9662
086¢c
7962
gun6e

4414
9162
0062
r88c

898¢
2s8¢
9€Be
0cee
r08e
g84¢d

élic
9642

ovic
wélic
804¢
c69¢

9.9¢
099¢

vy9e
8c9e

eige
9648

09s¢
w96¢e

660¢€
€Ev0¢€
L20¢€
110€

§66¢
6162
£96¢
L1168

1g62
s162
668¢
€882

1982
1582
11874
6182

€082
igl2
1248
66le

6€42
€cie
L04¢
1692

§49¢
6592
Ev9e
2292

192
1114

6152
€968

850¢€
eyot
920t
0to€

9662
8262
2962
9n62

0€62
LAY-T4
868¢
2ege

9982
0sge
vEge
glge

éoge
98.¢8
0LLe
wG6le

9€4¢
écle
g0s2
0692

vi92e
8692
eu9e
929¢

12 $°7
7652

8162
29s2

L50¢
41413
S20¢€
600t

€662
Ll62
t9sc
Shee

626¢
€162
L6862
1882

s982
6hge
€gge
11982

toge
sgic
6942
€6l

2e28
1222
s04¢
689¢

£.9¢2
1692
1y9¢
629

609¢
£66¢

44828
195¢e

1

960¢
0voE
beot
800¢

266¢
9.i6¢
0968
1AZ-T4

8262
2162
968¢
088¢

798¢
8r8c
1314
9182

008e
"gld
8942
[47%4

9tde
0¢4¢
v0l¢
g889¢

2492
9592

ov9c
yé9e

809¢
2652

9452
0962

0

048
038
oas
058

ode
ovd
068
088

0lg
098

ocd
ot8

oteg
0ca
olg
008

04v
03v
ony
0dv

ogv
ovy
osv
osv

04y
o9y
osv
oty

119]
ozy
oly
oov

(Py4u02) © XIANIddVY

G-7

EgsE
29SE
Tgst
SESE

616E
E0SE
lg0¢t
1ive

Goht
6ENE
| X429
lovE

16€€
SLEE

6GE€
Evee

LeEE
TIEE
Gs2¢
618¢

£92¢
VALY
13X43
gice

661€E
Egle
291€
IGlE

GETE
611¢€
€01¢
480¢

cgst
996E
osst
hEGE

glst
20st
98bE
olnt

hewt
gEft
(2423
90vE

06t
fiEE
BgtEE
cHeEE

9¢EE
0f€eE
w6lE
gicE

£9ct
9yt
otce
yice

861¢E
[4°1 1
991¢
0GlE

nele
giie
201¢g
980t

13:3%
§96¢
6WGE
€EGE

236¢€
105¢€
G8ne
690t

Eont
FAR 2
13413
SOwE

68EE
€4LEE

LGE€
T0EE

GeEE
60¢€
£62¢€
242¢

192¢
shete
6c2¢t
g1ee

261¢
181¢
S91¢
6%1E

EETE
111¢€
101¢
S80¢

085t
v 9GE
grst
2est

915¢
006¢
vent
g9tt

esht
9EHE
oche
OHE

88EEL
CLEE
9GEE
OvEE

weEE
80EE
1143
94ct

09ce
1A 241
geet
cize

961¢
ogle
7otlt
1 A%Y

19 %%
911¢e

001¢€
v80¢

616€
E95¢E
Fa a1y
Tege

glgt
661 €
3] 2
L9t

iapt
cene
(33:2%
EONE

L8EE
TLEE
GeEE
6EEE

gEeee
L0E€
162¢€
gice

66¢2¢
Epce
l22¢
1ice

G61¢
641€
gE91¢e
LY1E

1ele
stie

660¢€
£80¢€

8L6¢
e9&E
9hsE
(139

71G¢E
geve
I2°22%
994t

[V3°1 2
BENE
give
done

9s€E
04i€€
[2131
REEE

4439
90¢t¢€
06t
vice

BseE
14744
922t
o1ee

nele
8i1¢E
eote
9nle

OETE
#ite

860¢€
(41113

L15¢
13213
(1.293
626G¢E

1§13
l6WE
ieve
SonE

6hbE
€EVE
L1t
Tore

(113
69€¢
€6EE
JEEE

12eg
GOEE
68¢CE
€42¢€

Lact
Ince
gect
60¢c¢t

ESIE
1478
191¢€
GhitE

681€
€1le

1608
I8o¢t

946GE
0ygE
L2241
7413

cigt
96h¢E
OBnE
LA22%

1228 29
CEPE
9int
oone

1 2193
B9EE
1494%
9EEE

0cee
YOEE
88¢¢
cl2¢t

96et
ovee
wveee
802¢

ol
L1t
091¢
LA A1)

T3
2533

960¢
080E

G.6G¢E
6SSE
EvGE
PYA

1is¢g
17123
640E
£90¢

-
L
L
oy

m
&
o

Siye
66EE

£8EE
19¢¢
Tcte

GEEE

61€E
EOEE
i8¢¢
1ie¢

§6eE
6€CE
g2t
40¢¢

161¢
S21¢
651¢
Enie

lelg
13947
G60¢€
6.0€

L FATY
gas¢E
-3 21%
9est

1313
L 1-1AY
gine
é9vt

SuHE
pEVE
pine
Q6EE

égte
89¢€€
133
pEEe

BlEE
2ott
9ecet
042¢€

yece
geCE
gece
90ct

p61¢E
yile
gsie
1A%

gcle
pile

p60€
820¢€

£46¢€
186¢
13293
1944

606E
E6YE
LiDE
ione

Supe
6CH€
give
L6¢E

tgee
G9€E
6hEE
EEEE

LIEE
10ge
582¢
69¢¢

I XTAY
lECE
122¢
S0¢¢E

681¢
€l1¢E

L61¢
inig

geie
601€

€60€
L4Q€

cist
9SGE
) 213
#esE

80G¢E
112
9LE
09vE

poveE
geye
ginve
96€€E

08€€E
79€E
8hEE
2ete

C233%
00€€
hecE
892¢

1949
9tce
pcee
woce

ggle
2iie
9s1¢
ovte

plg
901¢

260¢€
940¢

tis€
1713
6€GE
(¥4 4

40S€
j6ve
SiVE
1723

Enye
LEDE
Tive
G6EE

64t¢
E9EE
V3 134
IEEE

SlEE
662C¢
£8CE
i9¢¢

[$14 3
GECE
618
£02¢

i81¢€
P23
sgle
6€1¢

g2ig
L01¢€
160¢€
Gl0¢€

046t
1A 11X
gEgE
éeget

90s¢€
o6ve
wive
gspe

4413
9eye
olye
L1123

8l¢¢€
¢9¢€E

2 2%%
ogee

tiee
86C¢€
292
992¢

0gcE
vEce
a1ce
2p2¢t

9g1€
021¢€
1913
8c 1€

éeie
So0i¢
060¢€
LY

696t
€cgE
1£6¢€
12s¢t

S0s¢€
68rE
EiveE
Fi4 13

Tone
1423

60%¢E
€8EE

1iE€
[1°1%3
SHEE
62E€

€1€E
2628
Tgee
G92¢

642€
gEece
i12¢
102¢

Ggle
691¢
[5%
1E1¢€

12ig
sole

680¢€
€10¢€

89S¢E
246Gt
9Est
0ese

70SE
geve
(7343
9Ghe

ovye
neye
80vE
1133

9.E¢
09¢€€
12217
82EE

2iee
96Z€
08ce
h9ce

avee
1141
9ice
002¢

vele
891¢€
esie
9t1¢

o2le
wole
880¢
¢lo¢g

0

040
03a
oaa
03a

084
ova
060
o080

020
090
080
0vd

0€0
02g
olga
ooa

040
03)
0ad
032

089
ovd

063
08

042
09
089
0%

0€d
023
)]
003

(Py#uod) © X1ANIdIY

S60n
6.00
Eg0t
LoOYy

Te0w
Siow
666E
Eg6t

196t
[£1-1%
SE6E
616¢€

€06E
188¢€
148¢
§G8E

6€9¢E
X229
08¢
11-733

SiiE
6G.E
€y4¢
l21¢

114¢
G69¢E
649¢
£99¢€

L9t
13329

si9¢
66SE

v60n
840w
290y
9ron

0t0Y
710y
B866¢
2°1-1%

996t
086¢
12713
g16¢

¢06t
9u8E
olst
7G8E

gegt
¢cet
9089¢E
06lt

1l.¢E
g6t
Zhit
9¢it

(R PRY
769t
849t
299t

9H9t
0EGE

yi9¢
g6st

€E60Y
140
190w
Shov

620
cloy
L66E
I186¢

G96¢€
66t
€E6E
L16¢€

F06€
SE8E
698t
£68¢€

lE8E
| $4:1%
S0t
68.¢€

€LLE
LG.8
| FAY
G2l¢€

60.€
£69¢
14l9¢
199¢

S 9e€
629¢€
£19¢
L65¢€

60w
9.0%
ogor
LA 234

820Y
ciow
966¢
086¢

796¢
86k
2E6E
916t

006¢E
rget
298¢t
(4413

9€8t
0cee
o8t
88.¢

clit
9G.¢E
ovit
pele

804t
269¢
949¢
099¢€

#H 9t
8eye
AS]Y
96S¢E

1600
Sl0t
650%
EROY

1200
Pt1on
866¢
6L6€

€96t
it6€
12¥-13
1413

668t
£88¢€
L98E
Tget

sEet
61 8¢E
£08¢E
l81¢

144¢
656/¢
6€LE
g€cic

{04¢
169¢
§49¢
6S9¢

EW9E
L29¢

119¢
G6G¢€

060%
7400
BEQY
2uon

9¢0v
olow
v66¢E
BL6E

296¢
9u6E
0E6E
vi6€E

868¢
Zyge
998¢
048¢E

rEBE
gigeE
euse
98l¢

044E
ralE
gt lt
2cle

904t
069¢€
49t
859¢

4213
929¢
019¢
76G¢E

680V
£l00
4500
Tvow

seow
600
E66¢
Ll6E

196¢€
19711
626¢
ET16E

l68¢
188¢€
98¢
6h8¢

19413
i18¢€
194113
GBIE

694
EGLE
lELE
12i¢

S04t
689¢
€19t
159¢

99t
29t

609¢
€66€

B8O
cLoY
A
ovovy

rcov
80Oty
266¢€
9L6t

096¢E
12 11%
8c6t
[2%-1%

968¢
088E
v9ge
8uBE

¢E8E
9ig¢t
ooet
bele

B9LE
€5.E
9ELE
0ci¢c

Y0lE
889¢E
cigt
959¢

ow9¢t
142
BO9E
€65E

4801
tL0%
cSon
6£0h

€S0y
400t
166¢
SLl6€

656¢€
Ev6E
L26¢
116t

568¢
648¢
£98¢
L78E

€8¢
Si8e
664E
£8.E

491€
[72N
SELE
6148

£0LE
L89¢E
1498
SG9¢E

6€9¢€
£29¢

109¢
16G€E

980%
Qi0Y
L1944
gEOY

2eov
900n
966¢
yi68

8S6¢
By6€
926¢
pl6¢€

h68€
g.8¢
298¢
gt8¢E

0EBE
yige

864t
g8l¢

994€
064€
pELE
81t

g0lt
989¢

049¢
§S9E

BEYE
2e9¢
909¢
065t

S8ob
6900
ESQn
L8010

1coy
soov
6856E
£l6¢€

466¢E
(3113
GC6¢
606¢

£68€E
Li8¢
198¢
Shge

628¢
elge
16.¢
18.¢€

S9.E
67 LE
£EELE
YA

104€
589t
699¢
£59¢

LE9E
(X417

S09¢
68GE

7800
890"
esoy
9t oY

0¢0%
w00y
886¢€
2l6¢

9G6€
ovét
726E
806¢

268¢
9i8¢
098¢
LR ALY

21 4°1%
2ige
964¢
08.¢

h9Lt
g it
2tlt
9i.l¢

004€
r89¢t
899€
269¢

9€£9¢
0¢9¢

709¢
895t

13- 11
L90Y
(51
SEO¥

6101
€000
486€
126€

SG6¢
6€6¢€
€CoE
406¢

168¢€
Qi8¢
658¢€
gyee

128¢
[2519
$64€
6L1€

£94¢€
inlE
393
sti¢e

669¢
tg9¢e
499%
169¢€

cE9¢
619¢
£09¢
LBSE

<gor
9900
050Y
vEoY

glot
2oov
986¢
0.6t

gG6t
8E6€
226¢€
906¢

068¢
vige
868¢€
4 19

928t
0lge
y6.i€
8lL¢

29.¢
9t LE
0€i¢
LAYEY

g69¢
g9t
999¢
0G9¢€

vE9E
8lgt

209¢
98s€

igov
SS90t
6h0Y
EEoY

210V
Toow
g6t
696¢

(X411
L€6€
Test
G06¢

688€
€/8€
L4688
13.4°13

1741
608¢
€64¢
118

194l¢
Shit
6248
ETLE

169¢
g9t
$99¢
6179¢

€E9E
119¢€

109¢
11:113

1

080¥
vo0w
8oy
ceEon

9tow
oooh
ra6t
896¢

(411
9t &€
0C6E
vo6¢E

888t
2i8¢
948t
o8t

LIAEY
808t
264t
9l.¢

094t
LA FAY
924¢

AL

969¢
089¢
r99¢
89t

Ze9¢
919¢
009¢
#8S¢E

0

044
034
oG4
004

084
ovd
064
084

04
094
064
Ovd

0€4
024
ot4
004

043
033
003
033

083
ov3

063
083

043
093
063
0h3

0€3
0¢3

013
003

(Py#u02) O XIANIddY

G-9

INDEX

Absolute Address Conversion, 3-20
Adapter Cluster, 11-=3

Add, 7-2

Adder High Speed, 5-6
Address Adder, 5-40

Address Environment, 3-21
Address Word, 10-3

ADJ (00) Switch, 4-18
Alarm Interrupts, 5-21
Alpha Card Read, 5-35

Area Descriptor, 8-16, 10-3
A Register, 4-1

Arithmetic Control, 4-5
Arithmetic Operators, 7-1
Auxilliary Cabinet, 1-6

Base and Limit of Stack, 3-2

Base of Addressing-Level Segment,
3-20

Binary Card Read, 5-35
Bit Operators, 7-19

Bit Reset, 7-19

Bit Reset Dynamic, 7-20
Bit Set, 7-19

Bit Set Dynamic, 7-19

Bit Sign Change, 7-20
Bottom of Stack, 5-13
Branch False, 7-~10
Branch False Dynamic, 7=11
Branch Operators, 7-10
Branch True, 7-~10

Branch True Dynamic, 7-11

Branch Unconditional, 7~10

Branch Unconditional Dynamic, 7-11

B Register, L-1

ore

Card Load Operation, 4-33
Card Punch, 10-10

Card Reader, 10-7

Channel Assignment Control,
5-31

Character Codes, Internal, 2-1
Character Translator, 5-31
Character Type Data, 2-8
Clear and Halt Load, L-12
Clock Controls, 4-15
Clocks, 1-9

Coded to Decimal Conversion,

2-4
Command Data Register, 5-29

Compare Characters Equal De-~
structive, 7-28

Compare Characters Equal Up-
date, 7-28

Compare Characters Greater’
Destructive, 7-=27

Compare Characters Greater or
FEqual Destructive, 7-28

Compare Characters Greater or
Equal Update, 7-28

Compare Characters Greater
Update, 7-27

Compare Characters Less De-~
structive, 7-28

Compare Characters Less or
Equal Destructive, 7-~28

Compare Characters Less or
Fqual Update, 7-28

Compare Characters Less Update,

7-28

Compare Characters Not Equal
Destructive, 7-~29

Compare Characters Not Equal
Update, 7-29

Conditional Halt, 7-12
Conditional Halt Switch, 4-17

INDEX (cont)

Console, 10-5

Controller, Interrupt, 4-8
Controller, Memory, 4-9, 5-=36
Controller, MPX, 5-36

Controller, Program, 4-10
Controller, Stack, L-9O
Controller, String Operator, 5-25
Controller, Transfer, 4-11
Control Panels, L4-1

Control State, 1-12

Control State/Normal State, 5-27
3-5
Count Binary Ones,

-2

Copy Bit,
8-23
C Register,

Data
Data
Data
Data

Data
1-21,

3-3

Communications Adapters,

Addressing,

1-22

5-33
5-20

Communication Interface,
Communications Interrupt,

Communications Processor,
11-1

11-1
5-14

Data Communications System,
Data-Dependent Presence Bit,
3-3

Data Representation,

Data Descriptor,
2-1
Data Switching Channels, 1-18
Data Types and Physical Layout,
2-8

Decimal to Coded Number Conversion,
2-4

Decimal to Hexadecimal Table Con-
version, 2-5

Delete Top of Stack, 7-14
Description of Units, 1-1

Descriptor Formats, 10-2

two

Detect Mode (MDP), 5-

Diagnose Mode (MDP),

3k
5-34

Disable External Interrupts,

8-2

Disk File Subsystems,

Disk Load Operation,

10-20
-3k

Display Mode (MDP), 5-3L4

Display Select Switches,

Divide, 7-4

Divide by Zero Interrupt,

h-1h

5-1

Duplicate Top of Stack, 7-14

Dynamic Branch False,

Dynamic Branch True,

7-11
7-~11

Dynamic Branch Unconditional,

7-11

EBCDIC Card Read, 5-36

Edit Mode Operation,
Edit Mode Operators,

9-1
9-1

Enable External Interrupts, 8

End Edit, 9-6

End Float, 9-4
Enter Operator, 7-36
Equal, 7-9

Evaluate, 7-36
Exchange, 7-13

Execute Single Micro
tive, 7-30

Execute Single Micro
Pointer Update, 7-30

Execute Single Micro

Destruc-

Single

Updat (S3F)

1

-2

7-30

Executing T/0 Descriptors, 4-29

7-36

Exit Operator,

Exponent Overflow and Underflow

Interrupt, 5-11

External MPX Interrupt,
EXT-I Switch, 4-17

5=

A,
B,
Cy
D,
E,

Family L-s
Family h-6
Family L-6
L-6

b7

Family
Family
Features, Processor, 1-13
FF Reset Switch, 4-16
Field 7-22

Field
Field
Field
Field

Field

Insert,

Insert Dynamic, 7-22

Isolate, 7-21

7=2

Isolate Dynamic,

Transfer, 7-20

7 -

Transfer Dynamic,

INDEX (cont)

21

1

21

General Control Adapter Interrupt,

5=21
Greater Than,

7-9

Greater Than or Equal,

7-9

Halt Load and Load Select Switches,

L-16
Halt Switch, 4-32

Hexadecimal Notation, 2-2

Hexadecimal to Decimal Table Con-

2-5

version,

Idle Until Interrupt, 8-2
7-15

Index and Load Name, 7-16

Index 9

Index and Load Operators,
Index and Load Value, 7-16
Index Bit, 3-4

Index, Invalid, 3-4

7-15

three

Index, Valid, 3-4
Indicators BO, Bl1, B2, 4-15
Indirect Reference Word, 6-14

Information flow (Card Reader
to Memory), 5-35

Initiate I/0, 8-15

Input Convert Destructive, 7-31
7-31
7-32

Input/Output Multiplexor, 1-17,
5-29

Insert

Input Convert Operators,

Input Convert Update,

9-5
9-5
Mark Stack Operator,

Conditional,
Insert Display Sign,

Insert

7-40
Insert Overpunch, 9-5

Insert Unconditional, 9-4
Integer Divide, 7-U4
Integerized Rounded D.P., 8-19
Integerize Rounded, 7-6
Integerize Truncated, 7-5

Integer Overflow Interrupt,

5-13
Integrated Chip Memory,
INT-I Switch, 4-17

5-40
Internal Character Codes, 2-1

Internal Data Transfer Section,
5-3
Interrogate I/0 Path, 8-12

Interrogate Peripheral Status,
8-9

Interrogate Peripheral Unit

Type, 8-10
Interrupt Controller, 4-8, 5-8
Interrupt Handling, 1-14, 5-25

Interrupt Network, 5-31

INDEX (cont)

Interrupt Other Processor, 8-17
Interrupt System, 1-13
Interrupts, Alarm, 5-21
Interrupts, External, 1-16, 5-17

Interrupts, Operator Dependent,

1-15, 5-9

Interrupts, Operator Independent,

1-15

Interval Timer Interrupt, 5-18
Invalid Address Interrupt, 5-24
Invalid Index Interrupt, 5-12
Invalid Operand Interrupt, 5-11
Invalid Operator, 7-12

Invalid Program Word Interrupt,

5-24
I/O Control Word, 10-3

T/0 Descriptor, Execute Recycle,
%-30

I/0 Descriptor, Execute Single
Cycles, U4-29

I/O Finished Interrupt, 5-20

I/0 Operations, Processor Initi-
ated, 1-21

Job-Splitting, 3-22
Keyboard Control Keys, 4-36

Leading One Test, 8-19
Less Than, 7-10

Less Than or Equal, 7-9
Level Definition, 3-22
Line Adapter, 11-5

Line Printer, 10-12
Linked List Lookup, 8-23
Lit Call Zero, 7-14

four

Lit Call One, 7-14

Lit Call 8 Bits, 7-14

Lit Call 16 Bits, 7-14
Lit Call 48 Bits, 7-1L4
Literal Call Operators, 7-14
Load, 7-=16

Load Select Switch, 4-33
Load Switch, 4-33

Load Transport, 8-23
Local/Remote Switch, 4-18
Logical And, 7-8

Logical Equal, 7-9
Logical Equivalence, 7-8
Logical Negate, 7-8
Logical Operands, 2-12
Logical Operators, 7-8
Logical Or, 7-8

Logic Card Testing, 4-32
Loop Imterrupt, 5-22

Magnetic Tape Subsystems, 10-1.4
Main Memory, 1-16, 5-41

Maintenance Control General,
L_o11

Maintenance Diagnostic Proces-

sor, 5-34

Make PCW, 7-15

Mantissa Field, 2-10

Mark Stack Control Word, 6-10

Mark Stack Control Work Link-
age, 3-16

Mark Stack Operator, 7-40
Mask and Steering, 5-5
Mask and Steering Example, 5-6

INDEX (cont)

Masked Search for Equal, 8-24 MPX Maintenance Control Panel,
Master Control Program, 1-9 =26

MDL Control Switches, 4-14 MPX Operation, 10-1

MDL Register Clear, L-1l MPX Parity Interrupt, 5-22

Multiple Stacks and Re-Entrant
Code, 3-22

Multiple Variables (Common Add-

MDTR/Normal Switch, 4«15
Memory Addressing, 5-46

Memory and MPX Controller, 5-36 ress Couples), 3=20
Memory Area Allocation, 3-14 Multiplexor Configuration, 1-~17
Memory Bus, 5-39 Multiplexor, Input/Output, 1-17
Memory Cabinet Configuration, 5-473 Multiplexor Interrupts, 5-19
Memory Controller, 4-9 %ulziplexor Register Clear,

-1

Memory Cycle Times, 1-~17
Multiplexor Registers and Flip
Flops, 4-22

Multiply, 7-3

Memory Exchange, 5-31
Memory Interface, 5-473
Memory Interlacing, 5-46

Multiply (extended), 7-3
Memory Organization, 5-41

Memory Parity Interrupt, 5-22 Name Call, 6-=3, 7-=33
Memory Priority, 5-43 No Operation, 7-12
Memory Protect Interrupt, 5-10 Normal/Control State Switches,

Memory Protection, 5-42 h-18
516 Normal State, 1-12

Not Equal, 7-10

Memory Registers,
Memory Second Level, 1-17

Memory Stack Controller, 5-47
hoLo Number Conversion, 2-4

Number Bases, 2-2

Memory Tester,

%fﬁiry Tester Non-Test Operation, Occurs Tndex, 8-17

Memory Tester Test Operation, 4-4l Octal Notation, 2-2
Memory Testing, 5-47 Operands, 2-9

Memory Words, 1-17 Operation Types, 6-2

Move Characters, 9-1 Operators Control Console, 4-32
Operator Dependent Interrupt,

5-9

Operator Families, 5-1

Move Numeric Unconditional, 9-2

Move TO Stack, 8-19

Move With Float, 9-3 Operator Independent Interrupts,
Move With Insert, 9-2 5-17

five

INDEX (cont)

Operator Panel, 4-32
Operators, 6-3
Operators Introduction, 2-12

Options and Requirements for
System, 1-5

Order of Magnitude, 2-=7
Overflow FF, Read and Clear, 7-32
Overwrite Destructive, 7-13

Overwrite Non-Destructive, 7-13

Pack Destructive, 7-30

Pack Operators, 7-30

Pack Update, 7-31

Panel A, 4-1

Panel B, 4-2

Paper Tape, 10-24

Parity Switch, 4-18

Peripheral Control, 1-21
Peripheral Control Bus, 1-19
Peripheral Control Cabinet, 1-8

Peripheral Control Interface, 5-33

Peripheral Controls, 1-18
Peripheral Units, 10-5
Polish Notation, 3-5
Polish String, 3-8

Polish String, Rules for evalu-
ating, 3-8

Polish String, Rules for gener-
ating, 3-7

Power Controls, 4-12
Power Off Switch, 4-32
Power On Switch, 4-32
Power, System, 1-6

P Register, L4-2, 6-1

Presence Bit, 3-4

six

Presence Bit Interrupt, 3-24,
5-13

Primary Mode Operators, 7-1
Priority Handling Example, 5-19

Priority Handling with ITHF
Set, 5-20

Procedure-Dependent Presence
Bit, 5-14

Processor, 1-12
Processor Features, 1-173

Processor Initiated I/0 Opera-
tions, 1-21

Processor Maintenance Controls
(Panel E), L4-16

Processor Register Clear, L-14
Processor States, 1-12
Processor System Concept, 5-1

Processor to Processor Inter-
I‘Upt, 5—18

Program Controller, 4-10, 5-2
Program Control Word, 6-11
Programed Operator, 5-15
Program Operators, 6-1

Program Restart, 5-15

Program Structure in Memory,

3-14
Pulse Train Switch, L4-15
Push Down Stack Registers, 7-14

Read GCA, 8-4

Read IC Operation, 4-19

Read IC Switch, 4-18

Read Interrupt Literal, 8-8
Read Interrupt Mask, 8-6
Read Interrupt Register, 8-7
Read Main Memory, 4-28

INDEX (cont)

Read Only Bit, 3-5 Scale Operators, 7-17
Read Processor Identification, Scale Right Dynamic Final, 7-18
8-17

Scale Right Dynamic Save, 7-18

Read P ist 8-22
ea rocessor Register, Scale Right Dynamic Truncate,

Read Processor Register Switches, 7-18

#-20 Scale Right Final, 7-18

Read Result Descriptor, 8-L Scale Right Round Dynamic, 7-19
Read SPM, h-27 Scale Right Rounded, 7-18

. 8_

Read Tag Field, 21 Scale Right Truncate, 7-18
. £ 8-7

Read Time of Day Clock, 3 Scan Bus, 5-29, 5-40

Read With Lock, 8-23 Scan Bus Control, 5-19
Real Time Adapfer, 1-24 | Scan Operators, 8-2
ﬁf;gcle Execution I/0 Descriptor, Scan Out, 8-13
Scan While Equal, Destructive,

8-29
Scan While Equal, Update, 8-29

Re-Entrance,
Register, A,

3
h-1
- B, U-
Register, ’ 1 Scan While False, Destructive,
Lh-2

Register, C, - 8-30

Register, P, 4-2 Scan While False, Update, 8-30
Register, X, L-2 Scan While Greater, Destructive,
Register, Y, 4-2 8-28

Relational Operators, 7-9 Scan While Greater, Update, 8-28

. . Scan While Greater or Equal,
- -18
Relative~-Addressing, 3 Destructive, 8-29

Remainder Divide, 7-5 Scan While Greater or Equal,

Reset Float, 9-4 Update, 8-29
Result Descriptor, 10-4 Scan While Less, Destructive,
8-29

Return Control Word, 6-12
Scan While Less or Equal, De-
Return Operator, 7-36 ctructive, 8-20

8-
Rotate Stack Down, 21 Scan While Less or Equal, Update,

Rotate Stack Up, 8-21 8-29
Rules for Generating Polish Scan While Less, Update, 8-29
String, 3-8 Scan While Not Equal, Destructive,
Running Indicator, 4-33 8-30

Scan While Not Equal, Update,
Scale Left, 7-17 ‘ 8-30

Scale Left Dynamic, 7-17

seven

INDEX (cont)

Scan While True, Destructive,

8-30

Scan While Tr
Scratch Pad M
SECL Switch,

Second Level

ue, Update, 8-30
emory, 5-29

h-17

Memory, 1-17

Segmented Array, 5-15

Segment Descriptor, 6-9

Set Double to
Set Extermal

Set GCA, 8-14
Set Interval

Set Processor
Set Tag Field
Set Time of D
Set to Double

Set to Single
7-7

Set to Single-Precision Truncated,

7-6
Set Two Singl

Single Cycle
criptor, 4-29

Single Pulse

Skip Forward
ters, 9-4

Skip Forward
9-3

Skip Reverse
ters, 9-4

Skip Reverse

9-4
Stack 3-1
Stack, Base a

Stack, Bi-Dir
3-2

Stack Control

two Singles, 8-1
Sign, 7-32

Timer, 8-2
Register, 8-23
, 8-20

ay Clock, 8-14
-Precision, 7-7

-Precision Rounded,

es to Double, 8-1
Execution I/0 Des-

Switch, A4-15

Destination Charac-
Source Characters,
Destination Charac-

Source Characters,

nd Limit, 3-2

ectional Data Flow,

ler, 5-47

Stack Deletion, 3-16
Stack Descriptor, 3-23

Stack, Double-Precision Operation,

3-2

Stack-History and Addressing-
Environment Lists, 3-16

Stack History, Summary, 3-21
Stack Operators, 7-13

Stack Overflow Interrupt, 5-18
Stack Registers, 5-3

Stack, Simple Operation, 3-9
Stack Underflow Interrupt, 5-24
Stack Vector Descriptor, 3-24
Start Switch, 4-16

States, Processor, 1-12

Step and Branch, 7-12

Step Index Word, 6-16

Stop Switches, 4-17

Store Destructive, 7-173

Store Non-Destructive, 7-13
Store Operators, 7-12

String Descriptor, 6-7

String Operator Controller, 5-25
String Transfer Operators, 7-23
Stuff Environment, 7-4LO

Stuffed Indirect Reference Word,
6-14

Subroutine Operators, 7-32
Subtract, 7-3

Syllable Addressing, 6-1
Syllable Format, 6-1
Syllable Identification, 6-1
System Clock, 5-33

System Clock Control and MDL Pro-
cessor, 5-=33

eight

INDEX (cont)

System Concept, 5-1 Transfer While Less or Equal, Des-

System Description, 1-1 tructive, 7-25

. Transfer While Less or Equal, Up-
System Expansion, 1-18 date, 7-25

System Options and Requirements,
1-5

System Organization, 1-9

Transfer While Not Equal, Destruc-
tive, 7-=26

Transfer While Not Equal, Update,

System Power, 1-6 7-26

Transfer While True, Destructive,
Table Enter Edit Destructive, 8-26
7-29 Transfer While True, Update, 8-=27

Table Enter Edit Update, 7-30 Transfer Words Destructive, 7-23

Tag Register, 5-31 Transfer Words, Overwrite Des-

Time of Day Register, 5-31 tructive, 7-23
Transfer Controller, 4-11 Transfer Words, Overwrite Update,
7=23

Transfer Operators, 7-6

Transfer Unconditional, Destruc- Transfer Words, Update, 7-23

tive, 7-26 Translate, 8-27
Transfer Unconditional, Update, T Register, 6-1
7-26

True False FF, Read, 7-32
Transfer While Equal, Destruc-
tive, 7-25

Transfer While Equal, Update,

Type Transfer Operators, 7-6

Unit Clear Switch, 4-18

7=-25

Transfer While False Destruc- Universal Operators, 7-12

tive, 8=27 Unpack Absolute Destructive, 8-25
Transfer While False, Update, Unpack Absolute Update, 8-26

8-27

Unpack Signed Destructive, 8-26

T?ansfer While Greater, Destruc- Unpack Signed Update, 8-26
tive, 7-24

Transfer While Greater or Equal, Valid Index, 3-U
y 3=

Destructive, 7-25
Value Call, 6-3
Transfer While Greater or Equal,

Update, 7-25 Varient Mode Operation and Opera-~
tors, 8-1

Transfer While Greater Update, ’

7-24 Visual Message Control Center, 4-3L

Transfer While Less, Destruc-

tive, 7-25 Word Data Descriptor, 6-5

Transfer While Less, Update, Write IC Operation, L-19

7-26

nine

Write IC Switch, Ll——l9
Write Main Memory, 4-28
Write SCM, 4—27

X Register, L-2

Y Register, 4-2

INDEX (cont)

ten

cut along do(. line

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

L REMARKS FORM
TITLE: FORM:
DATE:
—
CHECK TYPE OF SUGGESTION:
[JADDITION []DELETION [_]REVISION [_JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE

TITLE
COMPANY
ADDRESS

FOLD DOWN

STAPLE

SECOND FOLD DOWN

Postage
Will Be Paid

by
Addressee

attn: Sales Technical Services
Systems Documentation

No
Postage Stamp
Necessary

If Mailed in the
United States

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue

Detroit, Michigan 48232

FOLD UP

FIRST FOLD UpP

- ey - - - - - . -

Wherever There’ |

Business There’s [Burroughs

1043676 9-69 Printed in U.S. America

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	a-10
	a-11
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	c-1
	c-2
	c-3
	c-4
	c-5
	d-01
	d-02
	d-03
	d-04
	d-05
	d-06
	d-07
	d-08
	d-09
	d-10
	d-11
	e-1
	e-2
	e-3
	e-4
	f-1
	f-2
	f-3
	g-1
	g-2
	g-3
	g-4
	g-5
	g-6
	g-7
	g-8
	g-9
	ix-01
	ix-02
	ix-03
	ix-04
	ix-05
	ix-06
	ix-07
	ix-08
	ix-09
	ix-10
	z_00
	z_01
	z_back

